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We extend Mirzakhani’s conjugacy between the earthquake and horocycle flows to a bijection, demonstrat-
ing conjugacies between these flows on all strata and exhibiting an abundance of new ergodic measures
for the earthquake flow. The structure of our map indicates a natural extension of the earthquake flow to
an action of the upper-triangular subgroup P < SL2 R and we classify the ergodic measures for this action
as pullbacks of affine measures on the bundle of quadratic differentials. Our main tool is a generalization
of the shear coordinates of Bonahon and Thurston to arbitrary measured laminations.
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1 Main results

1.1 Conjugating earthquake and horocycle flow

This paper deals with two notions of unipotent flow over the moduli space Mg of Riemann surfaces. The
first is the Teichmüller horocycle flow, defined on the bundle Q1Mg of unit-area quadratic differentials q

by postcomposing the charts of the flat metric jqj by the parabolic transformation
�

1
0

s
1

�
. This flow is

ergodic with respect to a finite measure induced by Lebesgue in local period coordinates [Masur 1982;
Veech 1982] and is a fundamental object of study in Teichmüller dynamics.

The second is the earthquake flow on the bundle P1Mg, whose fiber is the sphere of unit-length measured
geodesic laminations on a hyperbolic surface. The earthquake flow is defined as a generalization of
twisting about simple closed curves, or by postcomposing hyperbolic charts by certain piecewise-isometric
transformations. While this flow is more mysterious, earthquakes are a familiar tool in Teichmüller theory,
playing a central role in Kerckhoff’s proof [1983] of the Nielsen realization conjecture, for example.

These two flows are both assembled from families of Hamiltonian flows (extremal length for horocycle
[Papadopoulos 1986] and hyperbolic length for earthquake [Kerckhoff 1983; Wolpert 1983; Sözen and
Bonahon 2001]) and exhibit similar nondivergence properties [Minsky and Weiss 2002], but the horocycle
flow belongs properly to the flat-geometric viewpoint and the earthquake flow to the hyperbolic one. All
the same, Mirzakhani [2008, Theorem 1.1] established a bridge between the two worlds, demonstrating a
measurable conjugacy between the earthquake and horocycle flows. Consequently, the earthquake flow is
ergodic with respect to the measure class of Lebesgue on P1Mg.

In this article, we deepen this connection between flat and hyperbolic geometry, proving that the corre-
spondence can be further upgraded to yield new results on both the ergodic theory of the earthquake flow
and the structure of Teichmüller space.

Theorem A Mirzakhani’s conjugacy extends to a bijection

O W P1Mg$ Q1Mg

that conjugates earthquake flow to horocycle flow.

The moduli space of quadratic differentials is naturally partitioned into strata Q1Mg.�/, disjoint subsets
parametrizing unit-area differentials with zeros of order � D .�1; : : : ; �n/. Similarly, for any � we may
define the regular locus P1M

reg
g .�/ to be the set of .X; �/ where � cuts X into ideal polygons with

.�1C 2; : : : ; �nC 2/ many sides, each with a cyclic symmetry of that order.

With this notation, Mirzakhani’s conjugacy can more precisely be stated as the existence of a bijection

P1M
reg
g .14g�4/$ Q1Mnsc

g .14g�4/

taking earthquake flow to horocycle flow, where the superscript nsc specifies the (full-measure) sublocus
of the stratum consisting of those differentials with no horizontal saddle connections.
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One of our main applications of Theorem A is to produce an analogue of Mirzakhani’s conjugacy for
components of strata (even those coming from global squares of abelian differentials), confirming a
conjecture of Alex Wright [2022, Remark 5.6] (see also [loc. cit., Problems 12.5 and 12.6]).

Theorem B For every �, the map O restricts to a bijection

P1M
reg
g .�/$ Q1Mnsc

g .�/

that takes earthquake to horocycle flow and (generalized ) stretch rays to Teichmüller geodesics.

While strata of holomorphic quadratic differentials are generally not connected, for g¤ 4 their connected
components are classified by whether or not they consist of squares of abelian differentials and the parity
of the induced spin structure (both of which depend only on the horizontal foliation when there are
no horizontal saddles), as well as hyperellipticity [Kontsevich and Zorich 2003; Lanneau 2008].1 The
bijection O respects both the horizontal direction and the Mod.S/–action, so Theorem B can be refined
to describe the preimages of these components.

As an immediate consequence of Theorem B, the earthquake flow is ergodic with respect to the pushforward
by O�1 of the Masur–Veech measure on any component of any stratum of quadratic differentials.

1.2 Geodesic flows and P–invariant measures

Pulling back the Teichmüller geodesic flow via O allows us to specify a family of “dilation rays” which
serve as a geodesic flow for the earthquake flow’s parabolic action and in many cases project to geodesics
for Thurston’s Lipschitz asymmetric metric. Combining dilation rays and the earthquake flow therefore
gives a action of the upper-triangular subgroup P < SL2 R on P1Mg by “stretchquakes”. See Section 15.3.

Due in part to the failure of O to be continuous, the stretchquake action on P1Mg is not by homeomorphisms
but rather by measurable bijections. More precisely, it preserves the �–algebra obtained by pulling back
the Borel �–algebra of Q1M.S/ along O. In a sequel [Calderon and Farre 2024a], we show that O is
actually a measurable isomorphism with respect to the Borel �–algebra on P1Mg and that the stretchquake
action restricted to each P1M

reg
g .�/ is by homeomorphisms; see also Remark 2.2.

Remark 1.1 In fact, Arana-Herrera and Wright [2024] have shown that there is no continuous map
conjugating the earthquake flow to horocycle flow, at least when P1Mg and Q1Mg are equipped with
their standard topologies.

In their foundational work on SL2 R–invariant ergodic measures on the moduli space of flat surfaces,
Eskin and Mirzakhani [2018, Theorem 1.4] proved that the support of any P–invariant ergodic measure
on Q1Mg is locally an affine manifold cut out by linear equations in period coordinates. Our conjugacy
translates this classification into a classification of ergodic measures for the extension of the earthquake
flow defined above:
1In genus 4, there are certain strata whose components have only been characterized via algebraic geometry [Chen and Möller
2014].
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Theorem C Every stretchquake-invariant ergodic measure is the pullback of an affine measure.

Proof If � is a stretchquake-invariant ergodic measure on P1Mg, then O�� is a P–invariant ergodic
measure on Q1Mg, which is affine by [Eskin and Mirzakhani 2018, Theorem 1.4].

Using this correspondence we obtain a geometric rigidity phenomenon for stretchquake-invariant ergodic
measures on P1Mg; the generic point is made out of a fixed collection of regular ideal polygons.

Corollary 1.2 For any stretchquake-invariant ergodic probability measure � on P1Mg, there is some �
such that �–almost every .X; �/ lies in P1M

reg
g .�/.

This in particular implies that the dynamics of the stretchquake action with respect to any ergodic
probability measure are measurably the same as its restriction to a stratum, on which we can identify
dilation rays as (directed, unit-speed) geodesics for the Lipschitz asymmetric metric on T.S/ (see
Proposition 15.12).

Remark 1.3 General ergodic measures for the stretchquake action can look quite different than the
Lebesgue measure class on P1Mg, even when pushed down to Mg. For example, if � gives full measure to
P1M

reg
g .4g�4/, then a �–generic point is obtained by gluing together a single regular ideal .4g�2/–gon;

in particular, the injectivity radius at the center of the polygon can be arbitrarily large, allowing g!1.
This implies that � gives zero mass to (the restriction of P1Mg to) sufficiently thin parts of the moduli
space, as any .X; �/ where X has a very short pants decomposition has injectivity radius uniformly
bounded above.

Remark 1.4 While an important result of [Eskin and Mirzakhani 2018] is that any P–invariant ergodic
measure on Q1Mg is actually SL2 R–invariant, the circle action on Q1Mg (corresponding to rotating a
quadratic differential) does not have an obvious geometric interpretation on P1Mg. See also [Wright
2020, Problems 12.3 and 12.4].

1.3 Dual foliations from hyperbolic structures

A foundational result of Gardiner and Masur (Theorem 2.1 below) states that quadratic differentials are
parametrized by their real and imaginary parts, or, equivalently, their vertical and horizontal foliations
(or laminations). In particular, the real-analytic submanifold Fuu.�/ of all quadratic differentials with
horizontal lamination � can be identified with the space MF.�/ of foliations that bind together with �.
See Section 2 for a formal definition. As the horocycle flow preserves the horizontal foliation, it induces
a flow on MF.�/.

Mirzakhani’s conjugacy and our extension therefore both follow from the construction of flow-equivariant
maps that assign to a hyperbolic surface X and a measured lamination � a “dual” measured foliation.
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For maximal laminations �, this dual is the horocyclic foliation F�.X / introduced by Thurston [1986],
obtained by foliating the spikes of each triangle of X n� by horocycles and extending across the leaves
of �. The measure of an arc transverse to F�.X / is then the total distance along � between horocycles
meeting the arc at its endpoints. As F�.X / necessarily binds S together with �, this defines a map

F� W T.S/!MF.�/:

We endow MF.�/ with the real-analytic structure coming from its identification with Fuu.�/. The main
engine of Mirzakhani’s conjugacy is the following theorem of [Bonahon 1996; Thurston 1986]; see also
Section 2.1 for a discussion of her interpretation of this result.

Theorem 1.5 (Bonahon and Thurston) For any maximal �, the horocyclic foliation map F� is a real-
analytic homeomorphism which takes the earthquake in � to the horocycle flow restricted to MF.�/Š

Fuu.�/ in a time-preserving way. Moreover , the family fF�g is equivariant with respect to the Mod.S/–
action. That is , Fg�.gX /D gF�.X / for all g 2Mod.S/.

When � is not maximal, the horocyclic foliation is no longer defined. The first thing one might try is to
simply choose a completion of �, but this approach is too naive. Indeed, this would require choosing a
completion of every lamination, which necessarily destroys Mod.S/–equivariance because laminations
(and differentials) can have symmetries.2 Such a map will not descend to moduli space and is therefore
unsuitable for our applications. Besides, for our purposes it is important that the geometry of the
subsurfaces of X n� predict the singularity structure of the corresponding differential.

If one restricts their attention to the case when � is filling and cuts X into regular ideal polygons, then there
is a canonical notion of horocyclic foliation. While this construction is equivalent on the regular locus to
the more general procedure we describe just below, any attempt to prove Theorem B with this restricted
viewpoint would necessarily rely on (Mod.S/–equivariant) descriptions of the loci of surfaces built from
regular polygons, as well as the intersection of Fuu.�/ with strata, results which (to the knowledge of the
authors) were heretofore unknown. Compare Corollary 2.6 and Section 2.2.

We therefore place no restrictions on the topological type or the complementary geometry of �. Following
a suggestion of Yi Huang (communicated to us by Alex Wright), we prove that the correct analogue of
the horocyclic foliation for nonmaximal � is the orthogeodesic foliation O�.X /, whose leaves are the
fibers of the closest-point projection to � and whose measure is given by length of the projection to �. As
in the maximal case, the orthogeodesic foliation binds together with �, inducing a map

O� W T.S/!MF.�/:

See Section 5 for a more detailed discussion of this construction.
2For example, take  to be a simple closed curve; completions of  correspond to triangulations of X n where the boundaries are
shrunk to cusps (up to a choice of spiraling about each side of  ). The space of such triangulations carries a rich Stab. /–action,
and a computation shows that the horocyclic foliations for two completions in the same Stab. / orbit need not be equal.
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Theorem D For any � 2 ML.S/, the orthogeodesic foliation map O� is a homeomorphism which
takes the earthquake in � to the horocycle flow restricted to MF.�/ŠFuu.�/ in a time-preserving way.
Moreover , the family fO�g is equivariant with respect to the Mod.S/–action. That is , Og�.gX /DgO�.X /

for all g 2Mod.S/.

Although MF.�/ does not have an obvious smooth structure, the map O� still exhibits a surprising amount
of regularity; see Theorem E.

The proof of Theorem D requires generalizing Bonahon’s machinery of transverse cocycles to new combi-
natorial objects, called “shear-shape cocycles”, which capture the essential structure of the orthogeodesic
foliation; see Section 2.1. The space of shear-shape cocycles forms a common coordinatization of both
T.S/ and MF.�/ that is compatible with the map O� and reveals an abundance of structure encoded in
the orthogeodesic foliation:

� When � cuts X into regular ideal polygons, the orthogeodesic and horocyclic foliations agree.

� The locus of points of X which are closest to at least two leaves of � forms a piecewise-geodesic
spine for X n � which captures the geometry and topology of the complementary subsurfaces
(see Theorem 6.4). Moreover, this spine is exactly the diagram of horizontal separatrices for the
quadratic differential with horizontal foliation � and vertical foliation O�.X /.

� For every measure � on �, the intersection of � and O�.X / is the hyperbolic length of � on X.

� The pullbacks of Teichmüller geodesics with no horizontal saddle connections are geodesics with
respect to Thurston’s Lipschitz (asymmetric) metric (Proposition 15.12).

The orthogeodesic foliation map can also be thought of as relating the hyperbolic and extremal length
functions `�. � / and Ext�. � / for any fixed �. Indeed, a seminal theorem of [Hubbard and Masur 1979]
states that the natural projection

� W Fuu.�/! T.S/

that records only the complex structure underlying a differential is a homeomorphism. Combining this with
the fact that the extremal length of � on Y is exactly the area of the differential ��1.Y /, we deduce that:

Corollary 1.6 For every � 2 ML.S/, the map � ı O� is a Stab.�/–equivariant self-homeomorphism
of T.S/ that takes the hyperbolic length function `�. � / to the extremal length function Ext�. � /.
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2 About the proof

Given Theorem D, which associates to .X; �/ a dual foliation O�.X / describing the geometry of the
pair, it is not difficult to prove Theorems A and B. First we recall the relationship between differentials,
foliations and laminations in a little more detail.

The space of measured foliations (up to equivalence) on a closed surface S of genus g � 2 is denoted
by MF.S/. There is a canonical identification [Levitt 1983] between MF.S/ and ML.S/, the space
of measured laminations on S ; throughout this paper we will implicitly pass between the two notions
at will, depending on our situation. By QTg and Q1Tg we mean the bundle of holomorphic quadratic
differentials over the Teichmüller space and the locus of unit-area quadratic differentials, respectively.
We similarly let PTg D T.S/�ML.S/ and P1Tg be the locus of pairs .X; �/ where � has unit length
on X.

To every q 2QTg one may associate the real measured foliation jRe.q/j which measures the total variation
of the real part of the holonomy of an arc; the imaginary foliation jIm.q/j is defined similarly. These
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foliations have vertical and horizontal trajectories, respectively, and so we will also refer to them as the
vertical and horizontal foliations (or laminations) of q and write

q D q
�
jRe.q/j; jIm.q/j

�
:

A foundational theorem of Gardiner and Masur implies that the real and imaginary foliations completely
determine q, and that, given any two foliations which “fill up” the surface, one can integrate against their
measures to recover a quadratic differential.

A pair of measured foliations/laminations .�; �/ is said to bind S if, for every  2ML.S/,

i.; �/C i.; �/ > 0;

where i. � ; � / is the geometric intersection pairing. In the literature, such pairs are sometimes called filling,
though we choose to distinguish the topological notion of filling from the measure-theoretic notion of
binding.

Theorem 2.1 [Gardiner and Masur 1991, Thereom 3.1] There is a Mod.S/–equivariant homeo-
morphism

QT.S/ŠMF.S/�MF.S/ n�;

where � is the set of all nonbinding pairs .�; �/. In particular , the set Fuu.�/ of all quadratic differentials
with jIm.q/j D � may be identified with MF.�/, the set of foliations which together bind with �.

Proof of Theorems A and B By definition, there is a Mod.S/–equivariant projection PTg!ML.S/

with fiber T.S/. Theorem 2.1 implies there is a Mod.S/–equivariant projection QTg!ML.S/ whose
fiber over � may be identified with MF.�/. Applying Theorem D on the fibers therefore yields an
equivariant bijection

O W PTg$ QTg

which takes unit-length laminations to unit-area differentials (Corollary 13.14), and quotienting by the
Mod.S/–action proves Theorem A.

Furthermore, we observe that the spine of the orthogeodesic foliation of a regular ideal .kC2/–gon is just
a star with kC 2 edges, which corresponds to the separatrix diagram of a zero of order k when there are
no horizontal saddle connections. Thus O restricts to the promised conjugacy on strata (Theorem B).

Remark 2.2 Mirzakhani’s conjugacy is defined on the Borel subset PT
reg
g .14g�4/ � PTg of full

Lebesgue measure and is moreover Borel measurable on its domain of definition. The latter assertion is a
consequence of a stronger result, namely that PT

reg
g .14g�4/! QTg is continuous (with respect to the

subspace topology on PT
reg
g .14g�4/).

While convergence of measured laminations (in measure) does not typically imply Hausdorff convergence
of the supports, whenever a sequence f�ng of maximal measured laminations converges to a maximal
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measured lamination �, �n is eventually carried (snugly) on a maximal train track also carrying �. From
here, it is not difficult to deduce that �n! � in the Hausdorff topology [Zhu and Bonahon 2004] and
thus the horocyclic foliations F�n

.X / converge to F�.X /. Intuitively, the leaves of �n intersect the leaves
of � with small angle (depending on the specific surface on which they are realized), so the orthogonal
directions become more parallel.

In [Calderon and Farre 2024a], we extend these ideas and prove that O is (everywhere) Borel measurable
with Borel measurable inverse by identifying a countable partition of PTg and QTg into Borel subsets on
which O is homeomorphic. See also Section 16.

In general, the compact edges of the spine of a pair .X; �/ correspond exactly to horizontal saddle
connections in the differential O.X; �/. This observation allows us to prove that the generic point for a
P–invariant ergodic probability measure on P1Mg consists of pairs .X; �/ where � cuts X into a fixed
set of regular ideal polygons.

Proof of Corollary 1.2 Using our conjugacy, the desired statement is equivalent to the fact that any
P–invariant ergodic probability measure on Q1Mg is

(a) supported in a single stratum, and

(b) gives 0 measure to the set of differentials with horizontal saddle connections.

The first statement is implied by ergodicity, while the second follows from the fact that the measure
is actually SL2 R–invariant [Eskin et al. 2015]. Indeed, for any quadratic differential q, the Lebesgue
measure of the set of directions � such that ei�q has a saddle connection is 0, so Fubini’s theorem
implies (b).

Refining the proof by considering connected components of strata, we can also conclude that �–almost
every pair has the same orientability, spin and hyperellipticity properties.

2.1 Shear-shape coordinates

Our strategy to prove Theorem D follows Mirzakhani’s interpretation of Theorem 1.5, in which she clarifies
the relationship between Thurston’s geometric perspective on the horocyclic foliation and Bonahon’s
powerful analytic approach in terms of transverse cocycles. Namely, she shows that the horocyclic
foliation map F� is compatible with shearing coordinates for both hyperbolic structures and measured
foliations. To motivate our construction, we give a brief outline of Mirzakhani’s proof below.

A (real-valued) transverse cocycle for � is a finitely additive signed measure on arcs transverse to � that
is invariant under isotopy transverse to �; observe that transverse measures are themselves transverse
cocycles. These objects equivalently manifest as transverse Hölder distributions, cohomology classes,
or weight systems on snug train tracks [Bonahon 1997a; 1996; 1997b]. The space H.�/ of transverse
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cocycles forms a finite-dimensional vector space which carries a natural homological intersection pairing
which is nondegenerate when � is maximal. The intersection pairing then identifies a “positive locus”
HC.�/�H.�/ cut out by finitely many geometrically meaningful linear inequalities. See also Section 7.1.

Bonahon [1996, Theorem A] proved that, for any maximal geodesic lamination �, there is a real-analytic
homeomorphism �� W T.S/! HC.�/ that takes a hyperbolic metric to its “shearing cocycle”, which
essentially records the signed distance along � between the centers of ideal triangles in the complement
of �. Mirzakhani [2008, Sections 5.2 and 6.2] then constructed a homeomorphism I� (essentially by
a well-chosen system of period coordinates) that coordinatizes MF.�/ by HC.�/ and for which the
following diagram commutes:

(1)

T.S/ MF.�/

HC.�/

F�

�� I�

Since F� D I�1
�
ı �� is a composition of homeomorphisms, it is itself a homeomorphism. As the

construction of the horocyclic foliation requires no choices, the family fF�g is necessarily Mod.S/–
equivariant. Finally, a direct computation shows that �� transports the earthquake in � to translation
in HC.�/ by �, and I� similarly takes horocycle to translation, demonstrating Theorem 1.5.

Shear-shape cocycles When � is not maximal, the space of transverse cocycles is no longer suitable to
coordinatize hyperbolic structures (or transverse foliations). Indeed, in this case the vector space H.�/ has
dimension less than 6g� 6 and its intersection form may be degenerate; this is a consequence of the fact
that the Teichmüller space of S n� now has a rich analytic structure that transverse cocycles cannot see.

In order to imitate (1) and its concomitant arguments for arbitrary � 2ML.S/, we therefore introduce the
notion of shear-shape cocycles on �. Roughly, a shear-shape cocycle consists of finitely additive signed
data on certain arcs transverse to � together with a weighted arc system that cuts S n� into cells; this pair is
also required to satisfy a certain compatibility condition mimicking features of the orthogeodesic foliation
(Definition 7.11). Generalizing results of [Luo 2007, Theorem 1.2 and Corollary 1.4], we show that such
an arc system is equivalent to a hyperbolic structure on S n � (Theorem 6.4), so shear-shape cocycles
may equivalently be thought of as transverse data together with a compatible hyperbolic structure on the
complementary subsurface(s). Like transverse cocycles, shear-shape cocycles also admit realizations as
cohomology classes or weight systems on certain train tracks (Definition 7.5 and Proposition 9.5).

Remark 2.3 Only certain classes of arcs admit consistent weights when measured by a shear-shape
cocycle, whereas transverse cocycles provide a measure to any arc transverse to �. While this sub-
tlety is exactly what allows us to understand how to relate shear-shape cocycles with the geometry of
complementary subsurfaces, it also presents a number of technical challenges throughout the paper.
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Unlike transverse cocycles, the space SH.�/ of shear-shape cocycles is not a vector space, instead forming
a principal H.�/–bundle over a contractible analytic subvariety of T.S n�/ (Theorem 8.1). All the same,
the cohomological realization of shear-shape cocycles equips SH.�/ with an intersection form

!SH W SH.�/�H.�/!R

that identifies a “positive locus” SHC.�/ and equips both SH.�/ and SHC.�/ with piecewise-integral-
linear structures. The positive locus forms an HC.�/–cone bundle over the same subvariety of T.S n�/

(Proposition 8.5) and fits into the familiar-looking commutative diagram

(2)

T.S/ MF.�/

SHC.�/

O�

�� I�

where �� and I� record shearing data along � as well as shape data in the complementary subsurfaces.
These maps can be thought of as a common generalization of Bonahon and Mirzakhani’s shear coordinates
as well as Fenchel–Nielsen and Dehn–Thurston coordinates adapted to a pants decomposition (see
Section 2.2). In the case when � is orientable, the map I� can also be viewed as an extension of Minsky
and Weiss’s description [2014, Theorem 1.2] of the set of abelian differentials with given horizontal
foliation.3

The conjugacy of Theorem D is then a consequence of the following structural theorem, which is an
amalgam of the main technical results of the paper (compare Theorems 10.15, 12.1 and 13.13).

Theorem E For any measured lamination �, diagram (2) commutes and all arrows are Stab.�/–equivariant
homeomorphisms. Moreover:

� �� is (stratified ) real-analytic and transports the earthquake flow to translation by � and the
hyperbolic length of � to !SH. � ; �/.

� The weighted arc system underlying ��.X / records the hyperbolic structure X n � under the
correspondence of Theorem 6.4.

� I� is piecewise-integral-linear and transports horocycle flow to translation by � and intersection
with � to !SH. � ; �/.

� The weighted arc system underlying I�.�/ records the compact horizontal separatrices of q.�; �/.

In the course of our proof, we also describe new “shape-shifting deformations” of hyperbolic surfaces
which generalize Bonahon and Thurston’s cataclysms by shearing along a lamination while also varying
the hyperbolic structures on complementary pieces. See Section 15.1.

3Technically, Minsky and Weiss [2014] investigate the family of abelian differentials with a fixed horizontal foliation and fixed
topological type of horizontal separatrix diagram, whereas our map applies to quadratic differentials (whether or not they are
globally the squares of abelian differentials) and packages together all possible types of separatrix diagrams.
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One particularly interesting family of deformations is obtained by dilation. The space SHC.�/ admits a
natural scaling action by R>0, and, since both earthquake and horocycle flow are carried to translation
in coordinates, this scaling action indicates extensions of each to P–actions. A quick computation
(Lemma 11.1) shows that the pullback of a dilation ray by I� is (a variant of) the Teichmüller geodesic
flow, so the P–action on the flat side is just the standard P–action on QTg.

On the hyperbolic side, these dilation rays define our extension of the earthquake flow, and correspond to
families of hyperbolic metrics on which the length of � is scaled by a uniform factor. They are therefore
natural candidates for (directed, unit-speed) geodesics for the Lipschitz asymmetric metric on T.S/, and
in some cases we can identify them as such (see Propositions 15.12 and 15.18, as well as Remarks 15.19
and 15.14).

Remark 2.4 Over the course of the paper we formalize the notion that shear-shape coordinates for
hyperbolic structures are essentially the “real part” of period coordinates for PTg. Interpreting ��.X /Ci�

as a complex weight system on a train track, Theorem C implies that the support of every stretchquake-
invariant ergodic measure on P1Mg is locally an affine measure in train track charts. See Lemma 10.10.

Coordinatizing horospheres Since the Thurston intersection form !SH captures both the hyperbolic
length of and geometric intersection with �, the coordinate systems of Theorem E also allow us to give
global descriptions of the level sets of these functions. In particular, we can recover Gardiner and Masur’s
description [1991, page 236] of extremal-length horospheres as well as Bonahon’s description of the
hyperbolic-length ones (which is implicit in the structure of shear coordinates for maximal completions).

Corollary 2.5 Suppose that � supports k ergodic transverse measures �1; : : : ; �k . Then , for all
L1; : : : ;Lk 2R>0, the level sets

fX 2 T.S/ j `X .�i/DLi for all ig and f� 2MF.�/ j i.�; �i/DLi for all ig

are both homeomorphic to R6g�6�k .

Analyzing this coordinatization more closely, in fact both level sets can be described as affine bundles of
dimension dimR HC.�/� k over the same subvariety of T.S n�/ as underlies SH.�/.

From this refinement, we are able to describe the intersection of the leaf Fuu.�/ with strata. The
decomposition of period coordinates into real and imaginary parts shows that this intersection (when
not empty) is locally homeomorphic to Rd , where d is the complex dimension of the stratum; our work
shows that these local homeomorphisms patch together to a global one. Compare [Minsky and Weiss
2014, Theorem 1.2].

Corollary 2.6 Suppose that � is a filling measured lamination that cuts a surface into polygons with
�1C2; : : : ; �nC2 many sides , and let "DC1 if � is orientable and �1 otherwise. Let QTg.�I "/ denote
the union of the components of the stratum QTg.�/� QTg that either are ("DC1) or are not ("D�1)
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global squares of abelian differentials. Then

fq 2 QTg.�I "/ W jIm.q/j D �g ŠHC.�/ŠRd ;

where d is the complex dimension of QTg.�I "/.

Proof Theorem E indicates that the metric graph of compact horizontal separatrices of q.�; �/ is
encoded by the weighted arc system underlying I�.�/. These weighted arc systems are organized in
a piecewise-linear subvariety B.S n �/ of a product of weighted filling arc complexes that encode the
combinatorics of how a zero of order �i can split up into lower-order zeros joined by horizontal saddle
connections (see Sections 6, 7.3 and 10.1 and Figure 5). For differentials in the indicated set, there are no
compact horizontal separatrices, and so the underlying arc system is always the empty (filling) arc system
∅ 2B.S n�/. In other words, the image of fq 2 QTg.�I "/ W jIm.q/j D �g in coordinates is just the fiber
over ∅, where Proposition 8.5 identifies SHC.�/ as an HC.�/–bundle over B.S n�/.

The second isomorphism HC.�/ŠRd is just a dimension count (see Lemmas 4.6 and 7.3 in particular).

In general, Fuu.�/\QTg.�I "/ forms a HC.�/–bundle over a union of faces of an arc complex of S n�.
As a consequence, the only obstruction to completeness of any such leaf comes from zeros colliding
along a horizontal saddle connection (see also [Minsky and Weiss 2014, Theorem 11.2]). This global
description of Fuu.�/\QTg.�I "/ also allows the importation of arguments from homogeneous dynamics
to investigate equidistribution in both Q1Mg and P1Mg and their strata; see the discussion in Section 16.

2.2 Generalized Fenchel–Nielsen coordinates

Our shear-shape coordinates for hyperbolic structures can be thought of as interpolating between the
classical Fenchel–Nielsen coordinates adapted to a pants decomposition and Bonahon and Thurston’s
shear coordinates. In both cases, one remembers the shapes of the complementary subsurfaces (pairs of
pants and ideal triangles, respectively) and the space of all hyperbolic structures with given complementary
shape is parametrized by gluing data (twist/shear parameters).

For general �, there is a map
cut� W T.S/! T.S n�/

that remembers the induced hyperbolic structure on each complementary subsurface. Theorem 12.1 then
implies that the image of cut� is a real-analytic subvariety B.S n �/ of T.S n �/ consisting of those
structures satisfying a “metric residue condition” (see Lemma 13.1). In the case where each component
of � is either nonorientable or a simple closed curve, B.S n�/ is just the space of hyperbolic structures
for which the two boundary components of the cut surface corresponding to a simple curve component
of � have equal length. Theorem 12.1 together with the structure of SHC.�/ also allows us to identify
the fiber cut�1

�
.Y / over any Y 2B.S n�/ with the gluing data HC.�/ (though not in a canonical way).4

4See the discussion around (18) in regards to the positivity condition for disconnected �; in essence, HC.�/ is the product
of HC.�i/ for each nonclosed minimal component together with the twisting data around simple closed curves.
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We summarize this discussion in the following triptych:

(3)

Fenchel–Nielsen shear-shape shear

R3g�3 T.S/

R3g�3
>0

HC.�/ T.S/

B.S n�/

HC.�/ T.S/

fptg

� a pants decomposition � arbitrary � maximal

In each coordinate system, T.S/ is the total space of a fiber bundle over a base space of allowable shape
data on the subsurface complementary to �, while the fiber consists of gluing data.

A completely analogous picture also holds for foliations transverse to �, demonstrating I� as a common
generalization of both Dehn–Thurston and Mirzakhani’s shear coordinates.

2.3 Fenchel–Nielsen and Dehn–Thurston via shears and shapes

In order to give the reader a concrete example of shear-shape coordinates, we include here a discussion of
our construction for �D P a pants decomposition. In this case, shear-shape coordinates are just a (mild)
reformulation of the classical Fenchel–Nielsen and Dehn–Thurston ones.

First we consider a hyperbolic structure X. A pair of pants in X nP is typically parametrized by its
boundary lengths .a; b; c/ or, equivalently, by the alternating side lengths of either of the right-angled
hexagons coming from cutting along seams. The orthogeodesic foliation on a pair of pants picks out
either a pair or a triple of seams (those which are realized as leaves of OP .X /), each weighted by the
length of a boundary arc consisting of endpoints of leaves of OP .X / isotopic to the seam. See Figure 1.
In this case, these lengths are just simple (piecewise-)linear combinations of the boundary lengths and the
metric residue condition defining B.S nP / just states that the boundaries that are glued together must
have the same length. See Figure 1.

The space HC.P / reduces to a sum of the twist spaces for each curve of P, and so Proposition 8.5 implies
that SHC.P / is a principal R3g�3–bundle over B.S nP /ŠR3g�3

>0
. The transverse data recorded by this

twist space then describes the signed distance between certain reference points in pairs of right-angled
hexagons in zX that are adjacent to the same curve of zP, which is the same as the twist parameter measured
by the appropriate choice of Fenchel–Nielsen coordinates.5

We can similarly recognize I� W MF.P /! SHC.P / as Dehn–Thurston coordinates. Now, from any
integral point � 2 SHC.P /, we can construct a multicurve ˛ with prescribed intersection and twisting
parameters as follows: the weighted arc system describes how strands of ˛ pass between and meet the

5Fenchel–Nielson coordinates always involve some choice of section of the space of twists over the length parameters, and so
have only the structure of a principal R3g�3–bundle over R3g�3

C
.
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.aCc�b/ 1

2
.bCc�a/

1
2
.aCb�c/

a b

c
a b1

2
.c�a�b/

Figure 1: The orthogeodesic foliation on pairs of pants. Note that the weight of each bolded arc
is a linear combination of the boundary lengths, whence the correspondence between shear-shape
and Fenchel–Nielsen/Dehn–Thurston coordinates. If any of the weights is zero, the orthogeodesic
foliation only picks out the two seams with nonzero weights.

components of P, while the transverse data recorded by HC.P /ŠRP describes the extent that strands
of ˛ wrap around components of P. This procedure is clearly reversible and can easily be extended to
transverse foliations using a family of standard train tracks on each pair of pants (see [Penner and Harer
1992, Section 2.6]). As in the hyperbolic case, one can easily pass between these coordinates and the
standard Dehn–Thurston ones just by replacing the count of strands of ˛ going from one boundary to the
other with the total intersection of ˛ with each boundary.

3 Outline of the paper

The rest of this paper is roughly divided into four parts, corresponding to the orthogeodesic foliation,
shear-shape cocycles and shear-shape coordinates for flat and hyperbolic structures, as well as a collection
of further directions for investigation, some of which have been completed while this article was in press
(Section 16). While the constructions of I� and �� both rely on foundational results established in the
first two parts, we have attempted to direct the reader eager to understand our coordinates to the most
important statements of these sections.

We expect that the reader is familiar with many of the standard constructions of Teichmüller theory, as
well as the definitions of both the earthquake and horocycle flows; we recommend [Minsky and Weiss
2002, Section 4] for a particularly lucid overview of the relevant objects. We also refer the reader to
[Casson and Bleiler 1988; Thurston 1979, Section 8] for more on laminations and to [Penner and Harer
1992] for a comprehensive introduction to train tracks.

Sections 4–6: the orthogeodesic foliation Cutting along a lamination results in a (possibly disconnected)
hyperbolic surface † with crown boundary, and in Section 4 we recall some useful information about the
Teichmüller spaces of such surfaces. One particularly important definition is that of the “metric residue”
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of a crown end, which is a generalization of boundary length and plays an important role in cohomological
constraints on the shape data of shear-shape cocycles (Lemma 7.9).

With these preliminaries established, in Section 5 we discuss in more detail the orthogeodesic foliation
and the hyperbolic geometry of X in a neighborhood of �. In this section we also give a geometric
interpretation of the map in Corollary 1.6 that relates hyperbolic and extremal length.

The most important result of this part occupies Section 6, in which we show that the orthogeodesic foliation
restricted to † completely determines its hyperbolic structure. More explicitly, dual to each compact edge
of the spine of O�.X / is a packet of properly isotopic arcs joining nonasymptotic boundary components
of †. By assigning geometric weights to each of these packets, we can therefore combinatorialize the
restriction of O�.X / to † by a weighted filling arc system.

Using a geometric limit argument, in Theorem 6.4 we prove that the map which associates to a hyperbolic
structure on † the associated arc system is a Mod.†/–equivariant stratified real-analytic homeomorphism
between T.†/ and a certain type of arc complex for †, generalizing a theorem of [Luo 2007] for surfaces
with totally geodesic boundary (see also [Mondello 2009b; Do 2008; Ushijima 1999]). Moreover, by
construction, this map records both the combinatorial structure of the spine of O�.X / as well as the metric
residue of the crowns of †.

Theorem 6.4 is used extensively throughout the paper in order to pass between the combinatorial data of
a weighted arc system, the restriction of O�.X / to †, and the corresponding hyperbolic structure on †.
The proof is independent of the main line of argument; as such, the reader is encouraged to understand
the statement, but may wish only to skim the proof.

Sections 7–9: the space of shear-shape cocycles The second part of the paper is devoted to our
construction of shear-shape cocycles for a given � and an analysis of the space SH.�/ of all shear-shape
cocycles. Upon reaching this section, the reader may find it useful to glance ahead to either Section 10 or
Section 13 to instantiate our definitions.

After reviewing structural results on transverse cocycles, in Section 7 we give both cohomological and
axiomatic definitions of shear-shape cocycles (Definitions 7.5 and 7.11, respectively), both predicated on
some underlying weighted arc system on †. In Proposition 7.13 we prove these definitions agree. Using
the cohomological description, we observe a constraint on the weighted arc systems that can underlie a
shear-shape cocycle coming from metric residue conditions (Lemma 7.9); this can also be thought of as a
generalization of the fact that one can only glue together totally geodesic boundary components of the
same length (compare Lemma 13.1).

Letting B.S n �/ denote the subvariety of the filling arc complex of † cut out by the aforementioned
residue conditions, we show in Section 8 that the space SH.�/ of shear-shape cocycles forms a bundle of
transverse cocycles over B.S n �/ with some additional structure (Theorem 8.1) whose total space is
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a cell of dimension 6g� 6 (Corollary 8.2). In this section we also introduce the Thurston intersection
form on SH.�/ (Section 8.2) and prove that the positive locus SHC.�/ it defines is itself a bundle
over B.S n�/ (Proposition 8.5).

Finally, in Section 9 we give train track coordinates for the space of shear-shape cocycles. The train
tracks we use give a preferred decomposition of arcs on S into pieces that are measurable by shear-shape
cocycles and as such give a useful way of specifying shear-shape cocycles by a finite amount of data.
The weight space for a train track is also a natural model in which to consider local deformations of
a shear-shape cocycle, a feature which we exploit in Section 14. In Section 9.3 we discuss how the
piecewise-integral-linear structure induced by train track charts endows SHC.�/ with a well-defined
integer lattice and preferred measure in the class of Lebesgue.

The reader willing to accept the structure theorems can adequately navigate the remaining two parts of
the paper using weight systems on (augmented) train tracks as a local description of the structure of
shear-shape space.

Sections 10 and 11: coordinates for transverse foliations At this point, we have established the
structure necessary to coordinatize foliations transverse to � by shear-shape cocycles.

A measured foliation �2MF.�/ determines a holomorphic quadratic differential qD q.�; �/2Fuu.�/ via
Theorem 2.1, and we begin by specifying an arc system ˛.q/ that records the horizontal separatrices of q.
We then build a train track � carrying � from a triangulation by saddle connections (Construction 10.4);
augmenting � by the arc system ˛.q/ then allows us to realize the periods of the triangulation as a
(cohomological) shear-shape cocycle I�.�/. This identification also gives a useful formula for I�.�/ as a
weight system on the augmented train track � (Lemma 10.10).

We then show that one can rebuild q just from the train track weights defined by I�.�/; a similar (but more
technical) argument then gives that I�.�/ 2 SHC.�/ (Proposition 10.12). This reconstruction technique
together with the structure of shear-shape space therefore allows to deduce that I� is a homeomorphism
onto its image. At the end of this section, we explain how the work done in the fourth and final part of the
paper implies that I� surjects onto SHC.�/ (Theorem 10.15), and why we choose to prove surjectivity
this way. See Remark 10.16 in particular.

Since I� essentially yields period coordinates, it is not surprising that (a variant of) Teichmüller geodesic
flow is given in coordinates by dilation (Lemma 11.1), while the Teichmüller horocycle flow is translation
by � (Lemma 11.2). We also naturally recover the “tremor deformations” introduced in [Chaika et al.
2020] as translation by measures � supported on � that are not necessarily absolutely continuous with
respect to � (Definition 11.3). Figure 17 details a dictionary between the language of [Chaika et al. 2020]
and our own.

Sections 12–15: coordinates for hyperbolic structures In the final part of the paper, we use the
geometry of the orthogeodesic foliation to coordinatize hyperbolic structures via shear-shape cocycles.
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From Theorem 6.4, we know that the combinatorialization of O�.X / on each subsurface S n � by a
weighted arc system completely encodes the geometry of the pieces. Cutting X n � further along the
orthogeodesic realization of each such arc, we obtain a family of (partially ideal) right-angled polygons.
The orthogeodesic foliation equips each polygon with a natural family of basepoints, one on each of its
sides adjacent to �, that vary analytically in T.S n �/. We are thus able to define a “shear” parameter
between (some pairs of) degenerate polygons, and this shear data assembles together with the “shape”
data on each subsurface to give instructions for gluing the polygonal pieces back together to obtain X.

In Section 12 we state the main Theorem 12.1, that the shear-shape coordinate map �� WT.S/!SHC.�/ is
a homeomorphism, supply an outline of its proof, and derive some immediate corollaries. The construction
of �� is given in Section 13, where we formalize the discussion from the previous paragraph. We also
prove that the central diagram (2) commutes (Theorem 13.13), which then implies that �� takes hyperbolic
length to the Thurston intersection form (Corollary 13.14).

Section 14 is the most technical part of the paper. In it, we define the “shape-shifting” cocycles
(Proposition 14.26) along which a hyperbolic structure can be deformed (Theorem 15.1); these de-
formations are generalizations of Thurston’s cataclysms or Bonahon’s shear deformations. Although the
construction of a shape-shifting deformation is rather involved, we attempt to keep the reader informed of
the geometric intuition that guides the construction throughout. Finally, in Section 15 we assemble all of
the necessary ingredients to prove Theorem 12.1. That the earthquake along � is given by translation
by � in SHC.�/ (Corollary 15.2) is an immediate consequence of the construction of shape-shifting
deformations as generalizations of cataclysms. We then discuss how the action of dilation in coordinates
can sometimes be identified with directed geodesics in Thurston’s asymmetric metric (Propositions 15.12
and 15.18).

4 Crowned hyperbolic surfaces

When a hyperbolic surface is cut along a geodesic multicurve, the (completion of the) resulting space is
a compact hyperbolic surface with compact, totally geodesic boundary. When the same surface is cut
along a geodesic lamination, the (completion of the) complementary subsurface can have noncompact
“crowned boundaries”. This section collects results about hyperbolic structures on such “crowned surfaces”
as well as the relationship between properties of the lamination and the topology of its complementary
subsurfaces.

Remark 4.1 Throughout this section and the following, we reserve S to denote a closed surface. If � is
a geodesic lamination, then S n� denotes the metric completion of the complementary subsurfaces to �
(with respect to some auxiliary hyperbolic metric); we will refer to the topological type of a component
of S n� by †. Hyperbolic metrics on S and † will be denoted by X and Y, respectively.
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Hyperbolic crowns While less familiar than surfaces with boundary, crowned hyperbolic surfaces
naturally arise by uniformizing surfaces with boundary and marked points on the boundary. They are also
intricately related to meromorphic differentials on Riemann surfaces with high-order poles (see eg [Gupta
2021]).

A hyperbolic crown with ck spikes is a complete, finite-area hyperbolic surface with geodesic boundary
that is homeomorphic to an annulus with ck points removed from one boundary component. In the
hyperbolic metric, the circular boundary component corresponds to a closed geodesic and each interval
of the other boundary becomes a bi-infinite geodesic running between ideal vertices; compare Figure 2.

In general, a hyperbolic surface with crowned boundary is a complete, finite-area hyperbolic surface with
totally geodesic boundary; the boundary components are either compact or hyperbolic crowns. We record
the topological type of a crowned surface of genus g with b closed boundary components and k crowns
with c1; : : : ; ck many spikes as †fcg

g;b
, where fcg D fc1; : : : ; ckg.

Remark 4.2 Ideal polygons may be considered as crowned surfaces of genus 0 with a single (crowned)
boundary component. All of the results in this section hold for both crowned surfaces with nontrivial
topology as well as for ideal polygons, but their proofs are slightly different. Our citations of [Gupta
2021] are all for the case when † is not an ideal polygon; for the corresponding statements for ideal
polygons, see [Gupta 2021, Section 3.3] or [Han et al. 1995].

Every crowned surface Y with noncyclic (and nontrivial) fundamental group contains a “convex core”
obtained by cutting off its crowns along a geodesic multicurve [Casson and Bleiler 1988, Lemma 4.4].
When Y has type †fcg

g;b
, this core is a subsurface of genus g with bC k closed boundary components.

Since each crown with ci spikes may be decomposed into ci ideal hyperbolic triangles by introducing
leaves wrapping around the totally geodesic boundary component, we have the following expression for
the area:

(4) 1

�
Area.Y /D 4g� 4C 2bC

kX
iD1

.ci C 2/:

Note that one can triangulate an ideal polygon of c sides into c � 2 ideal triangles, and so the above
formula also holds for ideal polygons.

The metric residue While crown ends (and ideal polygons) do not have well-defined boundary lengths,
one can define a natural generalization when there are an even number of spikes. This turns out to be a
fundamental invariant that controls when crowns can be glued together along a lamination (Lemma 13.1).

Let C be a hyperbolic crown or an ideal polygon with c spikes, where c is even. One can then orient C,
that is, pick an orientation of the boundary leaves so that the orientations of asymptotic leaves agree.
Truncating each spike of C along a horocycle based at the tip of the spike yields a surface with a boundary
made up of horocyclic segments h1; : : : ; hc and geodesic segments g1; : : : ;gc . See Figure 2.
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g1

h1

g2

h4

Figure 2: Truncating an (oriented) crown to compute its metric residue.

Definition 4.3 [Gupta 2021, Definition 2.9] Let C be either an oriented hyperbolic crown or an oriented
ideal polygon with an even number of spikes. Then its metric residue res.C/ is

res.C/D
cX

iD1

"i`.gi/;

where "i is positive if the truncated crown lies on the left of gi and negative if it lies on the right.

Since changing the truncation depth of a spike increases the length of two adjacent sides, the metric
residue evidently does not depend on the choice of truncation [Gupta 2021, Lemma 2.10]. Observe also
that flipping the orientation of C flips the sign of its metric residue.

Similarly, define the metric residue of an oriented totally geodesic boundary component ˇ of Y to
be ˙`.ˇ/, where the sign depends on whether Y lies to the left of ˇ (positive) or right (negative).

Deformation spaces of crowned surfaces We now record some useful facts about the Teichmüller
spaces of crowned hyperbolic surfaces.

Given any crowned hyperbolic surface Y, one can obtain a natural compactification yY by adding on an
ideal vertex at the end of each spike of each crown. The corresponding (topological) surface y†fcg

g;b
then

has bC k boundary components with ci marked points on the .bCi/th boundary component. A marking
of a crowned hyperbolic surface Y is a homeomorphism

f W y†
fcg

g;b
! yY

which takes boundary marked points to ideal vertices. We think of the boundary marked points as having
distinct labels, so different identifications of the boundary points of y†fcg

g;b
with the spikes of Y yield

different markings. The Teichmüller space of a crowned hyperbolic surface †fcg
g;b

is then defined to be the

space of all marked hyperbolic metrics on †fcg
g;b

, up to isotopies which fix the totally geodesic boundary
components pointwise and fix each ideal vertex of each crown.
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As noted above, any crowned hyperbolic surface †fcg
g;b

contains an uncrowned subsurface which serves as
its convex core. Therefore, the Teichmüller space of a crowned hyperbolic surface may be parametrized
by the Teichmüller space of its convex core together with parameters describing each crown and how it is
attached. A precise version of this dimension count is recorded below.

Lemma 4.4 [Gupta 2021, Lemma 2.16] Let †D †fcg
g;b

be a crowned hyperbolic surface or an ideal
polygon. Then T.†/ŠRd , where

(5) d D 6g� 6C 3bC

kX
iD1

.ci C 3/:

Fixing the length of any closed boundary component of†fcg
g;b

cuts out a codimension 1 subvariety of T.†/.
Similarly, the subspace of surfaces with fixed metric residues at an even–spiked crown has codimension
one. The following proposition ensures that the intersections of the level sets of length and metric residue
are topologically just cells of the proper dimension:

Proposition 4.5 [Gupta 2021, Corollary 2.17] Let †D†fcg
g;b

be a crowned surface or an ideal polygon.
Let ˇ1; : : : ; ˇb denote the closed boundary components of † and let C1; : : : ;Ce denote the crown ends
which have an even number of spikes. Fix an orientation of each crown end. Then , for any .Li/ 2Rb

>0

and any .Rj / 2Re,

f.Y; f / 2 T.†/ j `.ˇi/DLi and res.Cj /DRj for all i; j g ŠRd�b�e

where d is as in (5).

Topology When a crowned surface † comes from cutting a closed surface S along a geodesic lamina-
tion �, we can relate the topology of � to the topology of †.

Recall that the Euler characteristic of a lamination is defined to be alternating sum of the ranks of its
Čech cohomology groups, viewing � as a subset of S. Below, we compute the Euler characteristic of a
geodesic lamination in terms of the topological type of its complementary subsurfaces.

Lemma 4.6 Let � be a geodesic lamination on S. Then the total number of spikes of S n� equals�2�.�/.

We also record the corresponding formula for later use. Suppose that S n�D†1[ � � � [†m; then

(6) �.�/D�
1

2

mX
jD1

kjX
iD1

c
j
i ;

where fcj
1
; : : : ; c

j

kj
g denotes the crown type of †j .

Proof Fix some train track � which carries � and has the same topological type; in Section 5.2 below,
this is referred to as snug carrying of � on � . Lemma 13 of [Bonahon 1997b] states that, for any such
train track, �.�/D �.�/, and so it suffices to compute the Euler characteristic of � .
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Splitting the switches of � if necessary, we may assume that � is trivalent (observe that this operation
preserves the Euler characteristic). Then each spike of S n� corresponds to a unique switch of � , and
each switch corresponds to three half-edges, so

#spikes.S n�/D #switches.�/D 2
3
� #edges.�/:

Plugging this into the formula �.�/D #switches.�/� #edges.�/ proves the claim.

In general, the relationship between the boundary components of S n� and � can be rather involved. For
example, one can construct a lamination on a closed surface of genus g � 2 consisting of three leaves,
two of which are nonisotopic simple closed curves and one which spirals onto each of the closed leaves.
In this scenario, there is not a precise correspondence between closed leaves of � and totally geodesic
boundary components of its complementary subsurface.

Note So that we do not have to deal with possible spiraling behavior of �, we henceforth restrict our
discussion to those laminations that support a measure.

5 The orthogeodesic foliation

In this section we construct the orthogeodesic foliation O�.X / 2MF.�/ of a hyperbolic surface X with
respect to � and describe some of its basic properties.

5.1 The spine of a hyperbolic surface

We begin by describing the orthogeodesic foliation restricted to subsurfaces Y complementary to �. Let
Y be a finite-area hyperbolic surface with totally geodesic boundary, possibly with crowned boundary.
As we are most interested in those Y coming from cutting a closed surface along a lamination, we also
assume that Y has no annular cusps.

Definition 5.1 The orthogeodesic foliation O@Y .Y / of Y is the (singular, piecewise-geodesic) foliation
of Y whose leaves are fibers of the closest-point projection to @Y.

Near @Y, the leaves of O@Y .Y / are geodesic arcs meeting @Y orthogonally. To understand the global
structure of the foliation, however, we need to determine how the leaves extend into the interior of Y. In
particular, we must understand the locus of points that are closest to multiple points of @Y.

To that end, for any point x 2 Y, define the valence of x to be

val.x/ WD #fy 2 @Y W d.x;y/D d.x; @Y /g:
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Figure 3: The spine of a hyperbolic surface with crowned boundary. Note that the finite core Sp0

(represented in bold) contains a spine for the convex core of the surface.

The (geometric) spine Sp.Y / of Y is the set of points of Y with valence at least 2, and has a natural
partition into subsets Spk.Y /, where x 2 Spk.Y / if it is equidistant from exactly k points in @Y. For the
rest of the section we fix a hyperbolic surface Y and refer to Sp.Y / and Spk.Y / simply as Sp and Spk .

It is not hard to see that Sp is a properly embedded, piecewise-geodesic 1–complex with some nodes of
valence 1 removed (equivalently, a ribbon graph with some half-infinite edges). Indeed, Sp decomposes
into a finite core Sp0 and a finite collection of open geodesic rays; since we assumed Y had no annular
cusps, each ray corresponds with a spike of a crowned boundary component. See [Mondello 2009b,
Section 2] for a discussion of the structure of the spine of a compact hyperbolic surface with geodesic
boundary in which Sp0

D Sp.

We record below a summary of this discussion; see also Figure 3.

Lemma 5.2 The finite core Sp0 is a piecewise–geodesically embedded graph , whose edges correspond
to the components of Sp2 with finite hyperbolic length and vertex set

S
k�3 Spk . Each geodesic ray

of Sp n Sp0 exits a unique spike of Y.

By definition, the orthogeodesic foliation O@Y .Y / has k–pronged singular leaves emanating fromS
k�3 Spk for k � 3. The nonsingular leaves of O@Y .Y / glue along Sp2.Y / (usually at an angle) and can

be smoothed by an arbitrarily small isotopy supported near Sp. As the geometry of Sp interacts nicely
with the leaves of O@Y .Y /, we generally prefer to think about O@Y .Y / as a piecewise-geodesic singular
foliation rather than as a smooth one. When convenient, we will pass freely between the orthogeodesic
foliation and a smoothing.

We observe that there is also an isotopy supported in the ends of the spikes of Y and restricting to the
identity on @Y that maps leaves of the orthogeodesic foliation to horocycles based at the tip of the spike.
This equivalence between the orthogeodesic and horocyclic foliations in spikes is of vital importance in
Sections 13–15 as it allows us to adapt many of Bonahon and Thurston’s arguments to this setting.

Remark 5.3 One can check that, for regular ideal polygons, the isotopy in spikes extends to a global
isotopy between the orthogeodesic foliation and the symmetric partial foliation by horocycles.
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Following the leaves of the orthogeodesic foliation in the direction of Sp defines a deformation retraction
of Y onto Sp; let r W Y ! Sp be the map fully collapsing Y onto Sp. For x and y in the same component
of Sp2, the leaves r�1.x/ and r�1.y/ of O@Y .Y / are properly isotopic. We may therefore associate to
each edge e of Sp2 the (proper) isotopy class of r�1.x/ for x 2 e; we call this the dual arc ˛e to e.

There is a distinguished representative of ˛e that is geodesic and orthogonal to both @Y and e; compare
Figure 7. By abuse of notation, we henceforth identify ˛e with its orthogeodesic representative and define

˛.Y / WD
[

e�Sp0
2

˛e:

Lemma 5.4 The metric completion of the surface with corners Y n˛.Y / is homeomorphic to a union of
closed disks and closed disks with finitely many points on the boundary removed. That is , ˛.Y / fills Y.

Proof Each component of Y n˛.Y / deformation retracts onto a component of the metric completion
of Sp n˛.Y /. By the duality of arcs and edges of Sp0

2, each component of Sp n˛.Y / is contractible.

The orthogeodesic foliation also comes with a natural transverse measure: the measure of an arc k

transverse to (a smoothing of) O@Y .Y / is defined on small enough transverse arcs k first by isotoping
the arc into @Y transversely to O@Y .Y / and then measuring the hyperbolic length there. Locally, the
orthogeodesic foliation admits a reflection about each edge of Sp, so by restricting k to those leaves
of O@Y .Y / that intersect a given edge, we can use this symmetry to see that the measure of k is the
same after a transverse isotopy onto either boundary component of Y. Extending to all transverse arcs by
additivity defines a transverse measure on O@Y .Y /.

To each component e of Sp0
2 we associate the length ce > 0 of either component of r�1.e/\ @Y ; the

transverse measure of e is exactly ce . Anticipating the contents of the next section (see eg Theorem 6.4),
we define the formal sum

(7) A.Y / WD
X

e�Sp0
2

ce˛e:

5.2 The orthogeodesic foliation

Now that we have described the orthogeodesic foliation on each component of S n�, we can glue these
pieces together along the leaves of � to get a foliation of S.

Construction 5.5 Let X 2 T.S/ and � be a geodesic lamination on X. Cutting X open along � taking
the metric completion of each component, we obtain a union of hyperbolic surfaces with totally geodesic
boundary (possibly with crowned boundary). On each such component Y, we construct the orthogeodesic
foliation O@Y .Y / as described in Section 5.1 above.

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2019

A standard fact from hyperbolic geometry [Canary et al. 2006, Lemma 5.2.6] shows that the line field
defined by (a smoothing of) the orthogeodesic foliation forms a Lipschitz line field on X n�. Since � has
measure 0, this line field is integrable near �, so the partial foliation defined on X n� extends across the
leaves of �. This defines a measured foliation O�.X / 2MF.S/, and hence a map O� W T.S/!MF.S/.

Later, we prove in Lemma 5.8 that � and O�.X / bind, allowing us to restrict the codomain of O� to MF.�/.
Ultimately, our goal is to show that O� is a homeomorphism onto MF.�/.

Geometric train tracks We now consider the geometry of O�.X / in a neighborhood of �. The following
is a modification of an important construction of Thurston [1979, Chapter 8.9]:

Construction 5.6 Let � > 0 be small enough that the �–neighborhood N�.�/ is topologically stable. The
orthogeodesic foliation O�.X / restricts to a foliation of N�.�/ without singular points, and collapsing
the leaves yields a quotient map � W N�.�/! � where � can be C 1–embedded in N�.�/ as a train track
carrying � in X. By changing �, we may assume that � is trivalent.6 Then � D �.�;X; �/ is a geometric
train track.

We sometimes refer to N�.�/ as a train track neighborhood of � and the leaves of O�.X /jN�.�/ as ties.
A train track neighborhood coming from Construction 5.6 is a union of bands and annuli foliated by
ties glued together along the ties that collapse to switches of � . We recall that, if � meets every tie of �
and there is no path between spikes of S nN�.�/ that is contained in N�.�/ n�, then � is said to snugly
carry �. Equivalently, � snugly carries � if and only if S n� and S n � have the same topological type.
With this definition, it is clear that the geometric train tracks constructed above always carry � snugly.

Using the geometry of � W N�.�/! � , the branches of � admit a well-defined notion of length. Indeed,
let b � � be a branch, and choose a lift Qb to the universal cover zX. Let `; `0 � z� be leaves of the
elevation z� of � to zX that meet ��1. Qb/� N�.z�/ in segments g and g0. Since O�.X / is equivalent to a
horocyclic foliation in N�.�/, transporting g along the leaves of Oz�.

zX / near Qb onto g0 is isometric, so
`X .g/D `X .g

0/. We may therefore define the length of b (along �) as

`X .b/ WD `X .g/

for any g as above. Similarly, for any branch b � � , the ties of N�.�/ collapsing to b all have the same
integral with respect to �. Define

�.b/ WD �.k/

for any tie k � O�.X /j��1.b/; this is equivalently the weight deposited by � on b in its � train track
coordinates.

Lemma 5.7 For any hyperbolic structure X and any measure �0 on �, we have i.�0;O�.X //D `X .�
0/.

Proof Using Construction 5.6, find a geometric train track � WN�.�/! � snugly carrying � on X. By
definition, the intersection pairing is given by the integral over X of the product measure d�0˝ dO�.X /,

6In the literature, trivalent train tracks are also called “generic”.
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whose support is contained entirely in the train track neighborhood N�.�/. For each branch b � � , the
integral of this measure on ��1.b/ is just �0.b/`X .b/, so

i.�0;O�.X //D

“
X

d�0˝ dO�.X /D

“
N�.�/

d�0˝ dO�.X /

D

X
b��

“
��1.b/

d�0˝ dO�.X /D
X
b��

�0.b/`X .b/:

On the other hand, `X .�0/ is the integral over X of the measure d�0˝ dl�0 , locally the product of the
transverse measure �0 and 1–dimensional Lebesgue measure l�0 on the support of �0. Since �0 is supported
in �, the integral of d�0˝ dl�0 is equal to the integral of d�0˝ dl�, and again the support of the product
measure is contained in N�.�/. On each thickened branch ��1.b/ � N�.�/, the integral of d�0˝ dl�

is �0.b/`X .b/, giving
`X .�

0/D
X
b��

�0.b/`X .b/:

With this computation, we can now show that � and O�.X / together bind S.

Lemma 5.8 For any X 2 T.S/ and � 2ML.S/, we have O�.X / 2MF.�/.

Proof Suppose that � is an measured lamination such that i.�; �/D 0; without loss of generality, we
may assume that � is ergodic. Then one of two things must be true: either � is supported on � or its
support is disjoint from �. In the first case, i.�;O�.X //D `X .�/ > 0 by Lemma 5.7.

If � is disjoint from � then it is contained in a component Y of X n�, and we need only show that
i.�;O�.X // > 0. Scaling the measure of � as necessary, let us assume that `X .�/D `Y .�/D 1. Now we
recall that the set of weighted simple closed curves is dense in the space of measured laminations on Y.
By homogeneity and continuity of the intersection pairing, it therefore suffices to find some uniform
� > 0 such that

i.;O�.X //� �`X . /

for every simple closed curve  � Y. Indeed, once we have demonstrated such a bound we may
approximate � arbitrarily well by weighted curves =`X . / to deduce the desired bound on i.�;O�.X //.

So let Y0 be the convex hull of r�1.Sp0/; Y0 is compact and the inclusion of Y0 into Y is a homotopy
equivalence. Any simple closed geodesic  in Y is contained in Y0, and, since Y deformation retracts
onto the component of Sp contained in Y,  is homotopic to a concatenation of edges in Sp0.

Give Sp0 a metric making its edges e have length ce D i.e;O�.X //; then the inclusion Sp0
! Y0 with

this metric induces an equivariant quasi-isometry on universal covers (this follows because they are both
Gromov hyperbolic and �1.Y / acts cocompactly and properly discontinuous on each). The geodesic
lengths of closed curves in Sp and in Y0 are therefore comparable, so there is some � > 0 such that

i.;O�.X //D `Sp0. /� `X . /�;

demonstrating the desired uniform bound.
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.X; �/ q.O�.X /; �/

Figure 4: Inflating a lamination and deflating its complementary components.

5.3 Deflation

For a given pair .X; �/ 2 T.S/�ML.S/, the pair of laminations O�.X / and � bind by Lemma 5.8. By
Theorem 2.1, there is a unique quadratic differential q D q.O�.X /; �/, holomorphic on some Riemann
surface Z, whose real and imaginary foliations are O�.X / and �, respectively. In this section we define a
deflation map D� WX !Z that allows us to make direct comparisons between the hyperbolic geometry
of X and the singular flat geometry q. This discussion is further expanded on in [Calderon and Farre
2024a, Section 8].

An informal description of D� is that it “deflates” the subsurfaces of X n�, retracting them to Sp along
the leaves of O�.X /, while it “inflates” along the leaves of � according to the transverse measure. The
orthogeodesic foliation in a neighborhood of � assembles into the vertical foliation of the resulting
quadratic differential metric and D� maps Sp�X to the horizontal separatrices; compare Figure 4.

Remark 5.9 This heuristic description of D� can be made precise by grafting X along � (see eg [Dumas
2009]) and then collapsing the hyperbolic pieces along the leaves of O�.X /. In particular, D� is not the
grafting map.

Proposition 5.10 Given a marked hyperbolic structure7 Œf W S ! X � 2 T.S/ and � 2 ML.S/, let
Œg W S !Z� 2T.S/ be the marked complex structure on which q.O�.X /; �/ is holomorphic. There is a
map

D� WX !Z

that is a homotopy equivalence restricting to an isometry between Sp0 with its metric induced by integrating
the edges against O�.X / and the graph of horizontal saddle connections of q.O�.X /; �/ with the induced
path metric. Moreover , D� ıf � g and D��O�.X /D Re.q/ and D���D Im.q/ as measured foliations.

Proof Construction 5.6 supplies us with a geometric train track � W N�.�/ ! � . On the preimage
��1.b/ of each closed branch b of � we integrate the two measures O�.X /jN�.�/ and � giving ��1.b/

the structure of a bifoliated Euclidean rectangle of length `X .b/ and height �.b/ These rectangles glue
along their “short” sides f��1.s/ W s is a switch of �g to give N�.�/ the structure of a bifoliated Euclidean
band complex.

7Throughout the paper we suppress markings in our notation, but reintroduce them here to state the proposition precisely.
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The map � extends to a self–homotopy equivalence of X homotopic to the identity preserving the
orthogeodesic foliation leafwise. This means that the boundary of N�.�/ admits a natural retraction
onto Sp by collapsing the leaves of the orthogeodesic foliation in the complement of N�.�/, and we take
the quotient generated by this equivalence relation to obtain a new surface Y with its complex structure
described below.

On each rectangle ��1.b/, the bifoliated Euclidean structure gives local coordinates to C away from the
singular points of O�.X / locally mapping O�.X / to jdxj and � to jdyj, thought of as measured foliations
on the plane. These coordinate patches glue together along the spine to give local coordinates away from
the points of valence � 3. Moreover, these charts preserve jdxj and jdyj, so the transitions must be of
the form z 7! ˙zC ˛ for some ˛ 2 C. We have therefore built a Riemann surface Z equipped with a
half-translation structure away from the vertices of Sp, which become cone points of cone angle equal
to � � val.v/. Edges of Sp join vertices along horizontal trajectories representing all horizontal saddle
connections on q; their lengths in the singular flat metric are given by the integral over O�.X /. Thus D�
induces an isometry of metric graphs, as claimed.

This explicit description of the quadratic differential associated to the pair .X; �/ by the map O from the
introduction will be useful in order to prove in Theorem 13.13 that (2) commutes.

6 Cellulating crowned Teichmüller spaces

We now define a certain arc complex which combinatorializes the structure the orthogeodesic foliation
on complementary subsurfaces. The main result of this section is Theorem 6.4, which shows that this
arc complex is equivariantly homeomorphic to the Teichmüller space of the complementary surface.
In particular, this shows that the restriction of the orthogeodesic foliation to each component of S n �

completely determines the hyperbolic structure on that piece.

Before stating the theorem, we must first set up our combinatorial analogue for Teichmüller space. This
appears as Definition 6.1 after a series of auxiliary constructions.

Suppose that †D†fcg
g;b

is a finite-area hyperbolic surface with boundary and without annular cusps. A
properly embedded arc I ! † is essential if I cannot be isotoped (through properly embedded arcs)
into @† or into a spike. The arc complex A .†; @†/ of † rel boundary is the (simplicial, flag) complex
whose vertices are isotopy classes of simple essential arcs of †. Vertices span a simplex in A .†; @†/ if
and only if there exists a collection of pairwise disjoint representatives for each isotopy class. The filling
arc complex Afill.†; @†/ is the subset of A .†; @†/ consisting only of those arc systems which cut †
into a union of topological disks.

The geometric realization jA .†; @†/j of A .†; @†/ is obtained by declaring every simplex to be a regular
Euclidean simplex of the proper dimension; note that the topology of jA .†; @†/j obtained from the
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metric structure is in general different from the standard simplicial topology (see eg [Bowditch and Epstein
1988]). The geometric realization jAfill.†; @†/j is then the subspace of filling arc systems equipped with
the subspace topology induced by the metric structure.

Definition 6.1 The weighted filling arc complex jAfill.†; @†/jR of † rel boundary is the set of all
weighted multiarcs of the form

AD
X

ci˛i ;

where ˛ D
S
˛i 2 Afill.†; @†/ and ci > 0 for all i .

Throughout, we will use ˛ to denote a single arc, and ˛ to denote an (unweighted) multiarc. The symbol A

will be reserved to denote a weighted multiarc.

Note If † is an ideal hyperbolic polygon, then the empty arc system fills † and we consider it as an
element of jAfill.†; @†/jR. If † is not a polygon, then the empty arc system never fills.

So long as † is not an ideal polygon, jAfill.†; @†/jR is just jAfill.†; @†/j �R>0. When † is an ideal
polygon, jAfill.†; @†/jR is homeomorphic to the open cone on the filling arc complex�

jAfill.†; @†/j �R�0

�
=
�
jAfill.†; @†/j � f0g

�
:

See Figure 5, left, for an example of jAfill.†; @†/jR in the case when † is an ideal pentagon.

Remark 6.2 The standard duality between arc systems and ribbon graphs (see eg [Mondello 2009a])
assigns to every A 2 jAfill.†; @†/jR a metric ribbon graph spine for † (with some infinitely long edges
if † has crowns). One could of course translate the cell structure of jAfill.†; @†/jR into a cellulation of
an appropriate space of marked metric ribbon graphs.

While the arc complex definition is more practical for our definition of shear-shape cocycles, the dual
ribbon graph picture allows us to immediately understand how to record the geometry of the horizontal
trajectories of a quadratic differential (see Section 10).

Combinatorial geometry Now that we have defined our combinatorial analogue of Teichmüller space,
we can also define combinatorial notions of both length and metric residue.

Suppose that ˇ is a compact boundary component of † and A 2 jAfill.†; @†/jR; then we define the
A–length `A.ˇ/ of ˇ to be the sum of the weights of the arcs of A incident to ˇ (counted with multiplicity,
so that, if both endpoints of ˛ lie on ˇ, then its weight is counted twice).

Similarly, let C be an oriented crowned boundary component with an even number of spikes. Then the
edges of C are partitioned into those that have the surface lying on their left and those which have the
surface on their right; call these edges positively and negatively oriented, respectively. The A–residue
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c1˛1

c2˛2

c3˛3 c4˛4

ˇ

C

`A.ˇ/D c1C 2c2C c3C c4

resA.C/
D c4� c3

Figure 5: Arc complexes and combinatorial geometry. Left: the weighted arc complex of an ideal
pentagon rel its boundary. Right: the combinatorial length and residue associated to a weighted
filling arc system A.

resA.C/ of C is then defined to be the sum of the weights of the arcs incident to each positively oriented
edge of C minus the sum of the weights of the arcs incident to the negatively oriented edges (where both
sums are again taken with multiplicity). See Figure 5, right, for an example calculation.

We have now come to the most important object of this section, and a foundational result of this paper
that allows us to pass between hyperbolic metrics, orthogeodesic foliations and metric graphs embedded
in flat structures.

Construction 6.3 Let Y be a crowned hyperbolic surface. As discussed in Section 5.1, the orthogeodesic
foliation determines a spine for Y together with a dual (filling) arc system ˛.Y /. Weighting each dual arc
by integrating the measure induced by O@Y .Y / over the corresponding edge of Sp (compare (7)) therefore
defines a map

A W T.†/! jAfill.†; @†/jR:

When† has compact boundary, Luo [2007, Theorem 1.2 and Corollary 1.4] states that A. � / is a Mod.†/–
equivariant stratified real-analytic homeomorphism; see also [Mondello 2009b; Do 2008; Ushijima 1999].
Our aim is to generalize Luo’s theorem to surfaces with crowned boundary. While the arguments of [Luo
2007] can probably be adapted to this setting, we prefer to use some elementary hyperbolic geometry

† D†

 

Figure 6: The truncation of a crowned surface † along  and its double D†.
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to realize jAfill.†; @†/jR as a subcomplex sitting “at infinity” of the weighted filling arc complex of a
surface with compact boundary.

Theorem 6.4 Let † be a crowned hyperbolic surface. Then the map

A W T.†/! jAfill.†; @†/jR

is a Mod.†/–equivariant stratified real analytic homeomorphism. Moreover , let ˇ1; : : : ; ˇb denote the
closed boundary components of † and C1; : : : ;Ce the crown ends which have an even number of spikes.
Fix an orientation of each Cj . Then the map above identifies the level sets

f.Y; f / 2 T.†/ j `.ˇi/DLi ; res.Cj /DRj g Š fA 2 jAfill.†; @†/jR W `A.ˇi/DLi ; resA.Cj /DRj g

for any .Li/ 2Rb
>0

and any .Rj / 2Re.

The remainder of this section is devoted to deducing Theorem 6.4 from [Luo 2007, Theorem 1.2 and
Corollary 1.4; Mondello 2009b, Section 2.4]. Our plan is to appeal to the aforementioned references to
prove that, for a given maximal arc system ˛, the map A. � / extends to a real analytic map A˛ WT.†/!R˛

that agrees with A. � / on the locus of hyperbolic surfaces whose spine has dual arc system contained
in ˛ (Lemma 6.9). We show that A. � / is a homeomorphism by building a continuous right inverse
Y W jAfill.†; @†/jR! T.†/; Y .A/ is obtained as a geometric limit metric on a larger compact surface
with boundary as some arcs are pinched to spikes.

Endowing † with an auxiliary hyperbolic metric, we take †ı to be the surface with geodesic and
horocyclic boundary components obtained by truncating the tips of the spikes. Let  be the union of
horocyclic boundary components of †ı and double †ı along  to obtain a (topological) surface D† and
an identification of †ı with a subsurface of D† taking @†ı n  into @D†; see Figure 6.

Let AD
P

ci˛i be a weighted filling arc system on † and let ˇ be the mirror image of ˛ in D†, so that
˛[  [ˇ is a filling arc system on D†. For each t > 0, define

B t D

X
ciˇi C t

X
i C

X
ci˛i 2 jAfill.D†; @D†/jR:

Since D† is compact, we can apply [Luo 2007, Corollary 1.4], which states that there is a unique
hyperbolic structure Xt 2 T.D†/ whose natural weighted arc system coincides with B t .

Remark 6.5 It will be convenient to assume that ˛ is maximal, formally adding arcs of weight 0 to A

(and B t ) as necessary.

Our goal is now to show that .Xt / converges as t !1 to a surface Y 2T.†/ such that A.Y /DA. The
convergence is geometric: we take basepoints xt 2Xt lying outside of the “thin parts” of the subsurface
corresponding to †ı and extract a geometric limit of .Xt ;xt / as t !1. The limit metric Y has spikes
corresponding to  and so defines a point in T.†/. Moreover, Y inherits a filling arc system naturally
identified with ˛, which is necessarily realized orthogeodesically.
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We begin with an estimate on the lengths of orthogeodesic arcs.

Lemma 6.6 If X is a hyperbolic metric on a compact surface with totally geodesic boundary and
A.X /D

P
ci˛i , then

min
�

log 3; 2 tanh�1

�
tanh.log

p
3/

cosh
�

1
2
ci

� ��
� `X .˛i/�

2�

ci
;

for each i .

Proof Any leaf of the orthogeodesic foliation properly homotopic to ˛i has hyperbolic length at
least `X .˛i/. Thus the embedded “collar” about ˛i consisting of all leaves of the orthogeodesic foliation
in the same homotopy class of ˛i has area at least ci`X .˛i/ (see Figure 7). On the other hand, the
Gauss–Bonnet theorem bounds area of the collar above by 2� , so we get the bound

`X .˛i/�
2�

ci
:

Now we would like to find a lower bound for `X .˛i/ in terms of ci ; for notational convenience we fix i

and set ˛ D ˛i and c D ci . Assume that `X .˛/ < log 3. Let H be a component of X n˛ meeting ˛; then
there is a unique point u 2H equidistant from all boundary components of X meeting H. There is also a
universal lower bound to the distance from u to any such boundary component, given by log

p
3, the radius

of the circle inscribed in an ideal triangle. Thus the leaf of O@X .X / through u has length at least log.3/.

Since `X .˛/ < log 3, there is a leaf of the orthogeodesic foliation parallel to ˛ with length log 3. Using a
formula relating the lengths of the sides of a hyperbolic trirectangle [Buser 1992, Theorem 2.3.1], the
distance c0 from ˛ and this leaf is given by

(8) tanh
�

1
2
`X .˛/

�
D

tanh.log
p

3/

cosh .c0/
:

Now this expression is decreasing in c0, and x 7! tanh�1.x/ is increasing. We have that c > 2c0 by
definition (see Figure 7), so the lemma follows.

For any arc i of  , some elementary estimates similar to those given in the proof of Lemma 6.6
(compare (8)) give `t .i/ D O.e�t=2/. If ˛i appears in B t with coefficient ci D 0, then Lemma 6.6
provides a lower bound of log 3 for the length `t .˛i/ of ˛i on Xt . We also have the following upper bound:

Lemma 6.7 If cj D 0 for some j, then , for t large enough ,

log 3� `t . j̨ /� 2
X

ci C 8�
X 1

ci
Cj j log 144:

Proof We remove all arcs of ˛[ [ˇ with positive weight from Xt and let Ht be (the metric completion
of) the right-angled polygon component that contains j̨ . Our strategy is to find a path of controlled
length contained in @Ht joining the endpoints of j̨ .

Notice that @Ht alternates between segments of @Xt and arcs of ˛[  [ˇ with positive weight. From
Lemma 6.6, the total length of segments coming from arcs of ˛[ˇ is at most 8�

P
1=ci , because each
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˛

c

c0
j̨

� log 2

Hu

Figure 7: A foliated collar of width c about an orthogeodesic arc ˛. If the arc is shorter than
log 3, then there are (bold green) leaves of this collar of length equal to log 3. For a very short
arc i , the distance between the longest leaf of its collar and the leaf of length log 3 is at most
log 2. The dashed arc j̨ has weight 0 and corresponds to one of two possible choices of maximal
completion of ˛.

arc of ˛[ˇ can appear at most two times on @Ht . Similarly, from the construction of our coordinate
system, the total length of the segments coming from @Xt that correspond to collars of arcs in ˛[ˇ is at
most 2

P
ci .

Suppose some arc i of  forms a segment of @Ht . The distance between the leaf of the orthogeodesic
foliation parallel to i with length log.3/ and the singular, longest leaf parallel to i has distance uniformly
bounded above by log 2 for large values of t (see Figure 7). Truncate Ht by removing the leaves of the
orthogeodesic foliation parallel to i with length at most log 3 to obtain a new (nonconvex) geodesic
polygon H ıt . An application of the collar lemma [Buser 1992, Theorem 4.1.1] to the double DXt along
its boundary shows that j̨ does not enter the region of Ht that we removed.

Each arc i of  contributed at most 2tCO.e�t=2/ to the length of @Ht . However, after truncating, each
i contributes at most 2.log 2C log 3C log 2/D log 144 to the length of @H ıt . Putting together all of our
estimates completes the proof.

For each ˛i 2 ˛ with positive coefficient ci in B t , the orthogeodesic length `t .˛i/ of ˛i on Xt is bounded
above and below by the positive real numbers independent of t provided by Lemma 6.6. If ci D 0

for some i , then Lemma 6.7 provides bounds on `t .˛i/ independent of t . Therefore, there exists a
subsequence tk tending to infinity such that .`tk

.˛i// converges to a positive number `i for each i , while
`t .i/DO.e�t=2/ for each i 2  .

The metric completion of Xtk
n .˛ [  [ˇ/ is a collection of hyperbolic right-angled hexagons, each

with three nonadjacent sides that correspond to arcs of ˛[  [ˇ. The lengths of these sides determine
uniquely an isometry class of right-angled hexagons, which we have just proved converge to (degenerate)
right-angled hexagons in which the edges corresponding to arcs of  become spikes in the limit. The
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(degenerate) right-angled hexagons glue along ˛ to form a complete hyperbolic surface Y homeomorphic
to † with a maximal filling arc system labeled by ˛ and realized orthogeodesically on Y. That is, we
have constructed a surface Y .A/D Y 2 T.†/.

Lemma 6.8 A.Y .A//DA:

Proof By construction, the length of the projection of every edge of the spine of Xt dual to an arc of ˛
was constant along the sequence .Xtk

/ converging geometrically to Y .A/. The lemma follows.

In order to show that the inverse Y . � / is well defined, we will need the following statement, which refines
the relationship between the coefficients of B t and the lengths of its arcs.

Let ı D ˛[  [ˇ denote the support of B t . According to [Luo 2007, Theorem 1.2], the lengths of the
closest-point projections of the edges of the spine dual to the arcs of ı (ie the coefficients of the weighted
arc system) extend to an analytic local diffeomorphism Bı WT.D†/!Rı whose image is a convex cone
with finitely many sides.8 Now we show that analyticity extends to infinity.

Lemma 6.9 For each maximal filling arc system ˛ defining a cell of full dimension in Afill.†; @†/, there
is an analytic map

A˛ W T.†/!R˛

such that , if the spine of Y 2 T.†/ has dual arc system contained in ˛, then A˛.Y /DA.Y /.

Proof The orthogeodesic length functions associated to our maximal arc system ı D ˛[  [ˇ on D†

form an analytic parametrization of T.D†/, which we denote by `ı W T.D†/ ! R
ı

>0
. We have a

commutative diagram of analytic embeddings

(9)
R
ı

>0
Rı

T.D†/

Bıı`
�1
ı

`ı Bı

An explicit formula for Bı ı `
�1 can be recovered from [Mondello 2009b, Section 2.4], which produces

an analytic mapping G WR
˛[ˇ

>0
!R˛[ˇ that describes how Bı behaves when the arcs corresponding to 

have length close to 0. More precisely, let �˛[ˇ W Rı! R˛[ˇ be the coordinate projection. Then, for
xı D .x˛;x ;xˇ/ 2R

˛[ˇ

>0
�R



�0
, we have

(10) �˛[ˇ ıBı ı `
�1
ı .xı/DG.x˛;xˇ/CE

uniformly on compact subsets of R
˛[ˇ

>0
� R



�0
, where E is a vector whose entries are all of order

O.max2 fx2
 g/.

8The “projection length” associated to each arc of ı (called the “radius coordinate” in [Luo 2007] and the “width” in [Mondello
2009b]) is positive when that arc is dual to an edge of the spine of a surface X 2 T.D†/.
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Restricting to the locus of symmetric surfaces fX 2 T.D†/ W `˛i
.X / D `ˇi

.X / for all ig, the map G

therefore induces an analytic map F WR
˛

>0
!R˛ . Again, we have an analytic parametrization `˛ WT.†/!

R
˛

>0
by length functions and a diagram

(11)
R
˛

>0
R˛

T.†/

F

`˛ Fı`˛

So take A˛ D F ı `˛; it follows from the definitions that, if the dual arc system to the spine of a
surface Y 2 T.†/ is contained in ˛, then A˛.Y /DA.Y /.

A priori, Y .A/ depends on the subsequence Xtk
converging geometrically to Y .A/. However:

Lemma 6.10 The limit Y .A/ does not depend on choice of subsequence Xtk
, ie Xt ! Y. Moreover ,

Y W jAfill.†; @†/jR! T.†/ is continuous.

Proof Throughout this proof, we let � WD�˛[ˇ be the coordinate projection from the proof of Lemma 6.9.

Let s > 0 and Xt;s 2T.D†/ be the surface obtained from Xt by keeping all lengths of arcs of ˛[ˇ fixed
and taking `i

.Xt;s/ WD `i
.XtCs/ for each i 2  . Note that `i

.XtCs/DO.e�.sCt/=2/. By construction
of Xt;s , the lengths of arcs of ˛[ˇ agree with those of Xt , so (10) gives

�.Bı.Xt //��.Bı.Xt;s//DO.e�.sCt//:

Recall that �.B˛.Xt //D �.B t / is constant for all t > 0, so that

�.Bı.XsCt //��.Bı.Xt;s//DO.e�.sCt//

as well. Since Bı is open analytic, and f�.`ı.Xt // W t > 0g �R
˛[ˇ

>0
lies in a compact set (Lemmas 6.6

and 6.7), we can adjust the lengths of arcs ˛i and ˇi of ˛ [ ˇ in Xt;s by O.e�.sCt// to obtain XsCt .
Thus, for any tk !1, the lengths .`tk

.˛[ˇ// form a Cauchy sequence, and hence converge. Thus any
two subsequential geometric limits (with basepoints away from the spikes of the subsurface associated
with †ı) coincide, which proves that Y .A/ is well defined.

To see that Y . � / is continuous, let Ak !A; by passing to a subsequence, we may assume that Ak are in
the closure of the cell associated to a maximal filling arc system ˛. Let Ak and A be the mirror images
(with corresponding weights) of Ak and A in D†, respectively. We build two families of approximating
surfaces Xk ;X

k
k
2 T.D†/ corresponding to the weighted arc systems

AC k
X

i CA and Ak C k
X

i CAk

on D†, respectively. By [Luo 2007, Theorem 1.2] (alternatively the proof of Lemma 6.9), each X k
k

is
close to Xk in T.D†/; hence, X k

k
and Xk have the same geometric limit Y .A/ 2T.†/, which is what

we wanted to show.
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We now have all of the pieces in place to complete the proof of Theorem 6.4.

Proof of Theorem 6.4 By Lemma 6.10, Y . � / is well defined and continuous, and, by Lemma 6.8,
Y . � / is a right inverse to A. � /; in particular, Y . � / is injective. For a given maximal arc system ˛, the
open orthant U˛ DR

˛

>0
�R˛ is identified with the interior of a top-dimensional cell of jAfill.†; @†/jR.

Some of the hyperplanes in @R˛
�0

are identified with the interior of cells associated with nonmaximal
filling arc systems contained in ˛; let U˛ denote the closure of U˛ in jAfill.†; @†/jR.

Then Y . � / defines a continuous bijection U˛! Y .U˛/, and this identification is homeomorphic, because
A˛ supplies an analytic inverse on Y .U˛/, by Lemma 6.9. Since these homeomorphisms glue along the
combinatorics of jAfill.†; @†/jR, the map Y . � / is the desired global homeomorphic inverse to A. � /.

Again by Lemma 6.9, A. � / is analytic restricted to the relative interior of the image under Y . � / of each
cell of jAfill.†; @†/jR, demonstrating the stratified real analytic structure. That level sets of the residue
functions are mapped to one another is an exercise in unpacking the definitions.

7 Transverse and shear-shape cocycles

We now define the main protagonists of this paper, the shear-shape cocycles on a measured lamination.
In Section 7.2, we give a first definition of shear-shape cocycles in terms of the cohomology of an
augmented neighborhood of �, twisted by its local orientation (Definition 7.5). While this definition has
technical merit (and exactly parallels the construction of period coordinates for quadratic differentials, a
fact which we exploit in Section 10), it is impractical to use. We rectify this deficiency in Section 7.3
by giving a second formulation which parallels Bonahon’s axiomatic approach to transverse cocycles
(compare Definitions 7.4 and 7.11). The main result of this section, Proposition 7.13, proves that these
two definitions agree.

The reader may find it helpful to consult Sections 10 or 13 while digesting these definitions so as to have
a concrete model of shear-shape cocycles in mind.

7.1 Transverse cocycles

As shear-shape cocycles generalize Bonahon’s transverse cocycles, we begin by recalling two equivalent
definitions of transverse cocycles for geodesic laminations which we generalize in Sections 7.2 and 7.3.

Remark 7.1 We have chosen to present transverse cocycles in a way that anticipates our construction of
shear-shape cocycles. The reader is advised that our treatment is ahistorical, and in particular omits the
fascinating (and quite subtle) relationship between transverse cocycles and transverse Hölder distributions.
For more on this correspondence, see [Bonahon 1997a; 1997b; 1996].
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The first definition we consider is cohomological. Let � be a measured lamination on S ; then an orientation
of � is a continuous choice of orientation of the leaves of �. If N is any snug neighborhood of �, then one
may take a corresponding (snug) neighborhood yN of the orientation cover y� of �. Let � be the covering
involution of yN !N, and let H 1. yN ; @ yN IR/� denote the �1 eigenspace for the action of ��,

Definition 7.2 With all notation as above, a transverse cocycle for � is an element of H 1. yN ; @ yN IR/�.
We use H.�/ to denote the set of all transverse cocycles for �.

With the definition above it is clear that H.�/ is a vector space, and, if � is a union of sublaminations
�1; : : : ; �L, then the space of transverse cocycles splits as

H.�/D

LM
lD1

H.�l/:

We record the dimension of H.�/ below.

Lemma 7.3 [Bonahon 1997b, Theorem 15] The space of transverse cocycles forms a vector space of
real dimension ��.�/C n0.�/, where n0.�/ is the number of orientable components of �.

When working with individual transverse cocycles, the above definition is rather unwieldy. Instead, it is
often more useful to think of a transverse cocycle as a function on actual arcs instead of on homology
classes.

Definition 7.4 Let � 2ML.S/. A transverse cocycle � for � is a function which assigns to every arc k

transverse to � a real number �.k/ such that:

(H0) Support If k does not intersect �, then �.k/D 0.

(H1) Transverse invariance If k and k 0 are isotopic transverse to �, then �.k/D �.k 0/.

(H2) Finite additivity If k D k1[ k2, where ki have disjoint interiors, then �.k/D �.k1/C �.k2/.

The reader familiar with train tracks will recognize that these rules resemble those governing weight
systems on train tracks; see Section 9 for a continuation of this discussion.

We direct the reader to [Bonahon 1997b] or [Bonahon 1996, Section 3] for a proof of the equivalence
of Definitions 7.2 and 7.4 (our proof of Proposition 7.13, the corresponding statement for shear-shape
cocycles, can also be adapted to prove this equivalence).

7.2 Shear-shape cocycles as cohomology classes

Our first definition of a shear-shape cocycle is as a cohomology class on an appropriate augmented
orientation cover, paralleling Definition 7.2. This viewpoint allows us to deduce global structural results
about spaces of shear-shape cocycles (Lemma 7.8) and also reveals implicit constraints on the structure
of individual shear-shape cocycles (Lemma 7.9).
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Suppose that ˛ is a filling arc system for S n �. For each arc ˛i 2 ˛, choose an arc ti which meets ˛i

exactly once and is disjoint from �[˛nf˛ig. We call such an arc ti a standard transversal to ˛i . Compare
Figure 9. An orientation of �[˛ is a continuous orientation of the leaves of � together with a choice of
orientation on each ti such that ti can be isotoped transverse to ˛i into � so that the orientations agree.
Most pairs �[˛ are not orientable, but each has an orientation double cover y�[ y̨ (the reader should
have in mind the orientation cover of a quadratic differential). We note that if �[˛ is orientable then �
itself must be.

Consider a snug neighborhood N�.�/ of � on some hyperbolic surface X ; since X n � and X nN�.�/

have the same topological type, we can identify the arc system ˛ as an arc system on X nN�.�/. In
particular, taking a small neighborhood N�.˛/ of ˛, there is a correspondence between complementary
components of X n .�[˛/ and X nN�.�[˛/. We will refer to any neighborhood N˛ of �[˛ whose
complementary components have the same topological type as X n .�[˛/ as a snug neighborhood.

Now let N˛ be a snug neighborhood of � [ ˛; then the cover y� [ y̨ ! � [ ˛ extends to a covering
yN˛!N˛ with covering involution �. By definition of the orientation cover, each standard transversal ti

lifts to a pair of distinguished homology classes

t
.1/
i ; t

.2/
i 2H1. yN˛; @ yN˛IR/

such that ��t
.1/
i D�t

.2/
i .

The odd cocycles H 1. yN˛; @ yN˛IR/� for the covering involution �� now provide a local cohomological
model for the space of shear-shape cocycles on �. Observe that, for each i and each � 2H 1. yN˛; @ yN˛IR/�,

�.t
.1/
i /D����.t

.1/
i /D��.��t

.1/
i /D �.t

.2/
i /:

Definition 7.5 Let � 2ML.S/. A shear-shape cocycle for � is a pair .˛; �/ where ˛ D
P
˛i is a filling

arc system on S n� and � 2H 1. yN˛; @ yN˛IR/� is such that the values �.t .j/i / are all positive.9

Let †1[ � � �[†m denote the components of S n�; then we define the weighted arc system underlying � ,

A WD
X

�.t
.j/
i /˛i 2

mY
jD1

jAfill.†j ; @†j /jR:

We denote the set of all shear-shape cocycles for � by SH.�/, the set of all shear-shape cocycles with
underlying arc system ˛ by SHı.�I˛/, and the set of all shear-shape cocycles with underlying weighted
arc system A by SH.�IA/. Often, we will leave the arc system implicit and just say that � is a shear-shape
cocycle for �.

9By Poincaré–Lefschetz duality, we have a linear isomorphism H 1. yN˛ ; @ yN˛ IR/ŠH1. yN˛ IR/ mapping the odd cocycles for ��

to the odd cycles for ��. Compare with [Bonahon and Dreyer 2017, Sections 4.1 and 4.4], where a theory of (appropriately
generalized) transverse (co)cycles are applied to give shear-type coordinates for some higher-rank Teichmüller spaces.
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Remark 7.6 By Theorem 6.4, a filling weighted arc system A is the same data as a marked hyperbolic
structure on each component of S n�. In Sections 12–15, we prove that (so long as � satisfies a positivity
condition) these metrics glue together to give a complete hyperbolic metric on S.

Our definition of shear-shape cocycle a priori depends on the choice of auxiliary neighborhood N˛

of �[˛. However, it is not hard to see that:

Lemma 7.7 The spaces of shear-shape cocycles defined by different snug neighborhoods are linearly
isomorphic. Moreover , any two choices of snug neighborhoods define the same underlying weighted arc
system.

Proof Given two nested, snug neighborhoods N 0˛ �N˛ there is a deformation retraction of N˛ onto N 0˛
(this comes from the assumption of snugness). This induces an isomorphism

(12) H 1. yN˛; @ yN˛IR/ŠH 1. yN 0˛; @
yN 0˛IR/

which also identifies the �1 eigenspaces of the covering involution. Therefore, we may identify the
shear-shape cocycles defined by N˛ with those defined by N 0˛ . To see that the weights on ˛ do not depend
on the choice of N˛, we note that the deformation retraction of N˛ onto N 0˛ takes standard transversals
to standard transversals, and hence the value of the cocycle on the transversals does not change as we
change neighborhoods.

Now, given any two snug neighborhoods N˛ and N 0˛ of �[˛, one may take a common refinement N 00˛
of N˛ and N 0˛ and apply (12) to deduce that the spaces of shear-shape cocycles defined by N˛ and N 0˛
are linearly isomorphic and define the same underlying arc system.

In view of this lemma, throughout the sequel we will change the neighborhood N˛ carrying � at will.

As the orientation cover of � naturally embeds into yN˛, we may identify H.�/ with a subspace of
H 1. yN˛; @ yN˛IR/. Since any element of H.�/ evaluates to 0 on each standard transversal, we can add
and subtract transverse cocycles from shear-shape cocycles without changing the underlying weighted arc
system. We therefore have the following analogue of Lemma 7.3:

Lemma 7.8 Let A be the weighted arc system underlying some shear-shape cocycle. Then SH.�IA/ is
an affine space modeled on the vector space H.�/. In particular , dimR.SH.�IA//D��.�/C n0.�/.

Homological constraints on residues When � is orientable (or, more generally, contains orientable
components), there are homological constraints governing which weighted arc systems may underlie a
shear-shape cocycle. Passing between arc systems and hyperbolic structures on complementary subsurfaces
(via Theorem 6.4), these homological constraints govern when two structures can be glued together along �.
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For example, if � is a simple closed curve then in order to glue a hyperbolic structure on S n� along �,
the lengths of the boundary components must have equal length. Tracing through the combinatorialization
by weighted arc systems, this implies that the A–length of the boundary components must be the same.
The following lemma generalizes this observation to the case when S n� has crowned boundary (compare
Lemma 13.1 for a similar discussion using hyperbolic geometry):

Lemma 7.9 Suppose that � is a shear-shape cocycle for � with underlying weighted arc system A, and
let � be an orientable component of �. Then the sum of the (signed ) residues of the boundary components
incident to � is 0.

Proof For any component � of �, let @.�/ denote the boundary components (either closed or crowned)
resulting from cutting along �. For the purposes of this proof, let ˛.�/ denote the subarc system of ˛
consisting of those arcs with endpoints on �.

Pick an orientation on �; this induces an orientation on each boundary component C 2 @.�/, and hence
gives the metric residue of each such C a definite choice of sign. Since we are eventually going to prove
that the sum of these residues is 0, it does not matter which orientation of � we pick.

As � is orientable, picking an orientation on � is also equivalent to picking one of the lifts O� of � in the
orientation cover y�[ y̨. Let b̨.�/ denote the set of all lifts of arcs of ˛.�/ which meet O�. Then, since
severing b̨.�/ disconnects O� from the rest of y�[ y̨, there is a relationX

y̨i2
b̨.�/

"i Oti D 0 in H1. yN˛; @ yN˛IZ/;

where "i is 1 if y̨i is on the left-hand side of O� and �1 if y̨i is on the right-hand side, and Oti is the (relative
homology class of the) oriented standard transversal corresponding to y̨i . See Figure 8.

Therefore, for any cohomology class � 2H 1. yN˛; @ yN˛IZ/, and in particular any shear-shape cocycle,

(13)
X

y̨i2
b̨.�/

"i�.Oti/D 0:

Now "i is positive when the arc is on the left–hand side of O�, or equivalently (equipping � � S with
the corresponding orientation) when S n� is on the left–hand side of �. Similarly, "i is negative when
the complementary subsurface lies to the right of �. Unraveling the definitions and partitioning the arcs
of ˛.�/ into their incident boundary components, (13) is equivalent to the statement thatX

C2@.�/

resA.C/D
X

˛i2˛.�/

"ici D 0;

which is what we wanted to prove.
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t1

t2

Ot1

Ot2

ŒOt1�� ŒOt2�D 0 in H1

�

O�

Figure 8: Severing ties with one of the lifts O� of an orientable component � of �. This partition
induces a relation in homology, and hence a restriction on shear-shape cocycles. The top surface
contains y� while the bottom contains �; the shaded regions are neighborhoods of these laminations.

7.3 Shear-shape cocycles as functions on arcs

In analogy with Definition 7.4, we can also view shear-shape cocycle as functions on transverse arcs which
satisfy certain properties. While this definition is more involved, it is more convenient for the calculations
of Sections 13–15 and better reflects the process of “measuring” arcs by a shear-shape cocycle.

As indicated by Lemma 7.9, we must first cut out the space of all possible weighted arc systems underlying
a shear-shape cocycle. Denote the complementary subsurfaces of � 2ML.S/ by †1; : : : ; †m, and set

B.S n�/ WD

�
A 2

mY
jD1

jAfill.†j ; @†j /jR

ˇ̌̌ X
C2@.�/

resA.C/D 0 for all orientable components �� �
�
;

where we recall that @.�/ denotes the set of boundary components of S n� resulting from cutting along �.

By Theorem 6.4, we can reinterpret B.S n�/ as the set of all hyperbolic structures on S n� such that the
metric residues of the boundary components resulting from any orientable component � of � sum to zero.
We note that when each component of � is nonorientable, B.S n�/ is just the product of the Teichmüller
spaces of the complementary subsurfaces. When � is a simple closed curve, B.S n�/ consists of those
metrics on S n� where the two boundary components have the same length.

Using this reinterpretation together with Lemma 4.4, B.S n�/ is topologically just a cell:
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Lemma 7.10 Let � 2ML.S/ with S n�D†1[ � � � [†m. Then B.S n�/ŠRd , where

d D�n0.�/C

mX
jD1

dim.T.†j //;

where n0.�/ is the number of orientable components of �.

Proof Let �1; : : : ; �n0.�/ denote the orientable components of � and fix an arbitrary orientation on each.
Then the lemma follows from the observation that B.S n�/ is a fiber bundle over

n0.�/Y
iD1

�
.Ri

k/ 2Rj@.�i /j
ˇ̌̌X

k

Ri
k D 0

�
with fibers equal to �

ŒY; f � 2

mY
jD1

T.†j /
ˇ̌̌

res.Ck/DRi
k for each Ck 2 @.�i/

�
:

By Proposition 4.5, the fibers are each homeomorphic to Rd , where

d D

� mX
jD1

dim.T.†j //

�
�

� n0.�/X
iD1

j@.�i/j

�
:

Totaling the dimensions of base and fiber gives the desired result.

We can now present our second definition of shear-shape cocycles.

Definition 7.11 Let � 2ML.S/. A shear-shape cocycle for � is a pair .�;A/ where A is a weighted
filling arc system

AD

nX
iD1

ci˛i 2B.S n�/

and � is a function which assigns to every arc k transverse to � and disjoint from ˛ WD
S
˛i a real

number �.k/, satisfying the following axioms:

(SH0) Support If k does not intersect �, then �.k/D 0.

(SH1) Transverse invariance If k and k 0 are isotopic through arcs transverse to � and disjoint from ˛,
then �.k/D �.k 0/.

(SH2) Finite additivity If k D k1[ k2, where ki have disjoint interiors, then �.k/D �.k1/C �.k2/.

(SH3) A–compatibility Suppose that k is isotopic rel endpoints and transverse to � to some arc which
may be written as ti [ `, where ti is a standard transversal and ` is disjoint from ˛. Then the loop
k [ ti [ ` encircles a unique point p of �\˛, and

�.k/D �.`/C "ci ;

where " denotes the winding number of k [ ti [ ` about p (where the loop is oriented so that the
edges are traversed k then ti then `). See Figure 9.
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While axiom (SH3) may seem convoluted upon first inspection, its entire effect is to prescribe how the
value �.k/ evolves as an endpoint of k passes through an arc of ˛. The sign change records whether the
map induced by k D ti [ ` from the oriented simplex into S is orientation-preserving or -reversing.

Remark 7.12 In Section 9 (Proposition 9.5 in particular), we show that there exists a choice of “smoothing”
for ˛ which resolves condition (SH3) into an additivity condition. This is equivalent to prescribing that
an arc k may only be dragged over a point of �\˛ in one direction.

The equivalence between Definitions 7.5 and 7.11 is essentially the same as the equivalence of the
cohomological and axiomatic definitions of transverse cocycles [Bonahon 1996, pages 248–249]. However,
the A–compatibility condition (axiom (SH3)) contributes new technical difficulties, and so we have
included a full proof for completeness.

Proposition 7.13 The cohomological and axiomatic definitions of shear-shape cocycles agree.

Proof Suppose first that � is a cohomological shear-shape cocycle, that is, a cohomology class of the
orientation cover yN˛ of N˛ that is anti-invariant under the covering involution and that gives positive
weight to the canonical lifts of the standard transversals of each arc of a filling arc system ˛. We begin by
building from � a function f� ; the basic idea is to restrict an arc to a neighborhood of �, resulting in a
relative homology class, and to set f� to be � evaluated on this class.

Suppose that k is any arc transverse to � and disjoint from ˛. Choose a small neighborhood N˛ of �[˛
so that k meets @N˛ transversely and @k \N˛ D∅; then kjN˛ is a union of arcs with endpoints on @N˛ .

Each arc ki of kjN˛ has two distinguished, oriented lifts k
.1/
i and k

.2/
i to yN˛ that cross y� from right to

left. As in Section 7.2, these distinguished lifts satisfy

(14) ��.Œk
.1/
i �/D�Œk

.2/
i �

in H1. yN˛; @ yN˛IZ/, where � is the covering involution of yN˛!N˛. In particular �.Œk.1/i �/D �.Œk
.2/
i �/

since � is anti-invariant under �. We therefore set

f� .k/ WD �.Œk�/;

where Œk� is the homology class of either lift of kjN˛ to yN˛.

We now prove that f� satisfies the axioms of Definition 7.11:

(SH0) If k does not intersect �, then kjN˛ is empty and Œk�D 0, implying f� .k/D 0.

(SH1) If k and k 0 are isotopic through arcs transverse to � and disjoint from ˛, then kjN˛ and k 0jN˛
are properly isotopic. One can lift this isotopy to the orientation cover to deduce that Œk�D Œk 0� for the
correct choice of lifts, so f� .k/D f� .k 0/.
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˛i

˛i

y�

yN˛

y�

y�

k `

ti

ti

k `

Œk�D Œti �C Œ`� Œk�C Œti �D Œ`�

Figure 9: Possible configurations of the disk y� and the corresponding homological relations.

(SH2) Suppose that kDk1[k2; then, so long as N˛ is small enough, it is clear that kjN˛Dk1jN˛[k2jN˛ .
Therefore, since a lift of kjN˛ consists of the union of lifts of k1jN˛ and k2jN˛ , we see that Œk�D Œk1�CŒk2�,
and hence the corresponding equality of f� values also holds.

(SH3) Finally, suppose that k is isotopic (rel endpoints and transverse to �) to `[ ti . Without loss of
generality, we assume that the restriction of each of k, ` and ti to N is a single properly embedded arc (if
not, simply break the arcs into smaller pieces and apply (SH1) and (SH2) repeatedly). We also assume
the restrictions are all disjoint (even at their endpoints), appealing to (SH1) as necessary.

The isotopy between k and `[ ti induces a map from a disk � to N˛ such that @�� @N˛ [ k [ `[ ti .
Refining N˛, isotoping the arcs, and homotoping the map as necessary, we may assume that � embeds
into N˛, and therefore must occur in one of the configurations shown in Figure 9.

Now choose one of the lifts y�� yN˛ of �; this choice specifies lifts of the arcs k, ` and ti and therefore
(after equipping the lifts with their canonical orientations) relative homology classes Œk�, Œ`� and Œti �. As
these lifts together with @ yN˛ bound the disk y�, we therefore get

Œk�D Œ`�˙ Œti �;

˛iN˛

�

Figure 10: A triangulation of a (snug) neighborhood of �[˛. Axioms (SH0)–(SH3) imply that
�.@�/D 0 for each triangle � in the triangulation, ie � is a cocycle.
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where the sign is determined by the relative configuration of the arcs. Inspection of Figure 9 reveals that
the sign coincides with the winding number of the loop k [ ti [ ` about p.

Now suppose that .�;A/ is an axiomatic shear-shape cocycle in the sense of Definition 7.11. Pick a snug
neighborhood N˛ of �[˛; our task is to show that the function k 7! �.k/ is indeed a cocycle (on the
orientation cover, and is anti-invariant under the covering involution).

We first show that � naturally defines a cochain on yN relative to @ yN˛ which is anti-invariant by ��.
Recall that any arc in the orientation cover comes with a canonical orientation. We may then assign to
any oriented arc Ok properly embedded in yN˛ the value ˙�.k/, where k is the image of Ok under the
covering projection and where the sign is positive if Ok is oriented according to the canonical orientation
and negative otherwise. To the (canonically oriented lifts of the) standard transversals ti we assign the
value ci . Anti-invariance then follows by construction (compare (14)).

To see that this cochain is actually a cocycle, we show that it evaluates to 0 on every boundary. For
the purposes of this argument, it will be convenient to realize H 1. yN˛; @ yN˛IR/ in terms of simplicial
(co)homology. The neighborhood N˛ may be triangulated as depicted in Figure 10 (compare [Sözen and
Bonahon 2001, Figure 1]). In such a triangulation, each point of �\˛ and each switch of N˛ corresponds
to a unique triangle, while the remaining branches each contribute a rectangle which is in turn subdivided
into two triangles. This triangulation clearly lifts to an (�–invariant) triangulation of yN˛.

It therefore suffices to prove that, for each oriented triangle � of yN˛, we have �.@�/D 0. There are
three types of triangles, each of which corresponds to a different axiom of Definition 7.11:

� If � is (the lift of) a triangle coming from a subdivision of a branch, then one if its sides does not
intersect � and is thus assigned the value 0 by (SH0). The other two sides are isotopic rel �, cross
� with different orientations, and are assigned the same value by (SH1). Therefore �.@�/D 0.
Similarly, if � comes from a neighborhood of ˛, then the edges transverse to ˛ are assigned the
arc weight ci (with opposite signs) while the other edge gets zero weight, so �.@�/D 0.

� Now suppose � is (the lift of) a triangle corresponding to a switch of N˛ with @�D k1C k2� k.
Then, since the concatenation of k1 and k2 is isotopic transverse to � to �k, axiom (SH2) implies

�.k1/C �.k2/� �.k/D 0

and again �.@�/D 0.

� Finally, suppose that � is (the lift of) a triangle corresponding to a point of �\˛, so @� is some
signed combination of the (canonically oriented) lifts of arcs k, ` and t , where t is a standard
transversal and k is isotopic rel endpoints and transverse to � to `[ t . Without loss of generality
we assume that � is positively oriented; then, depending on the configuration of k, t and `, we
have either

`� kC t D 0 or `� t � k D 0

(as in Figure 9). In either case, axiom (SH3) implies that �.@�/D 0.
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"DC1

Qk

ˇ1 ˇ2

ˇ3

Q�

Qk

Qk 0

zN˛

Figure 11: Since k makes progress around � in the positive direction, "DC1.

We have therefore shown that �.@�/D 0 for every triangle of a triangulation and hence � is indeed a
1–cocycle on yN˛ rel boundary, finishing the proof of the lemma.

Measuring arcs along curves We will also want to associate a number �.k/ to certain arcs k that have
nonempty intersection with ˛; this quantity should be invariant under suitable isotopy transverse to �
respecting the combinatorics of intersections with ˛.

So suppose �� � is an isolated leaf, ie a simple closed curve. We say that an arc k transverse to �[˛
and contained in an annular neighborhood of � is nonbacktracking if any lift Qk of k to the universal cover
intersects the entire preimage Q� of � exactly once and Qk crosses each lift of an arc of ˛ at most once.

If k is a nonbacktracking arc, then one may orient k and give � the orientation that makes k start to
the right of �. Record the sequence of arcs ˇ1; : : : ; ˇm crossed by k, in order (note that arcs of ˛ may
repeat in this sequence). Then, up to isotopy, we may assume that k is a concatenation of standard
transversals t1; : : : ; tm together with a small segment k0 disjoint from ˛ crossing � from right to left.
Compare Figure 11.

Since k is nonbacktracking, the points ˇ1\�; : : : ; ˇm\� make progress around � in either the positive
direction or the negative direction. Take "DC1 in the former case and "D�1 in the latter, then define

(15) �.k/ WD �.k0/C "

mX
jD1

cj ;

where cj is the weight corresponding to the arc ǰ . Note that the value of " only depends on k and not
on its orientation, as reversing its orientation also reverses the orientation of �.

Lemma 7.14 Suppose that k and k 0 are nonbacktracking arcs transverse to � [ ˛ contained in an
annular neighborhood of a simple closed curve component � of �. If there exist lifts Qk and Qk 0 to zS
whose endpoints lie in the same component of zS n .z�[ z̨/ and k is isotopic to k 0 transverse to �, then
�.k/D �.k 0/.

Proof Fix a snug neighborhood N˛ of � [ ˛; then we need only show that kjN˛ and k 0jN˛ define
homologous cycles in the orientation cover.
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We can find an isotopy Œ0; 1�2! zS between lifts of k and k 0 (transverse to �) that leaves the endpoints in
the same component of zS n zN˛ . Such an isotopy then descends to S under the covering projection. The
intersection of the image of each transverse arc with N˛ defines a cycle in the relative homology group,
and this family of cycles is constant along the isotopy.

Since � is orientable, an annular neighborhood of � lifts homeomorphically to yN˛, as do k and k 0.
Therefore, the isotopy between k and k 0 (and the homology between their restrictions) also lifts to the
orientation cover yN˛ , showing that the (lifts of the) restrictions of k and k 0 are homologous there as well.
Compare Figure 11.

8 The structure of shear-shape space

In this section, we investigate the global structure of the space of shear-shape cocycles. Whereas Bonahon’s
transverse cocycles assemble into a vector space, the space SH.�/ of all shear-shape cocycles is more
complex when � is not maximal, forming an principal H.�/–bundle over B.S n�/ (Theorem 8.1).

After understanding the structure of shear-shape space, we define an intersection form on SH.�/

(Section 8.2) and use it to specify the “positive locus” SHC.�/ (Definition 8.4), which we show in
Sections 10–15 serves as a global parametrization of both MF.�/ and T.S/.

8.1 Bundle structure

Lemma 7.8 of the previous section parametrizes all shear-shape cocycles which are compatible with a
given weighted arc system. In this section, we analyze how these parameter spaces piece together to get a
global description of the space of all shear-shape cocycles for a fixed lamination.

Let G be a topological group. A principal G–bundle is a fiber bundle whose fibers are equipped with a
transitive, continuous G–action with trivial point stabilizers together with a bundle atlas whose transition
functions are continuous maps into G. We remind the reader that a principal G–bundle does not typically
have a natural “zero section”, but, instead, any local section of the bundle defines an identification of the
fibers with G via the G–action. Moreover, any two sections define local trivializations of the bundle that
differ by an element of G in each fiber.

Theorem 8.1 Let � 2ML.S/. The space SH.�/ forms a principal H.�/–bundle over B.S n�/ whose
fiber over A 2B.S n�/ is SH.�IA/.

Proof There is an obvious map from SH.�/ to B.S n�/ given by remembering only the values �.ti/
of transversals to the arcs. For a given choice �0 in the fiber SH.�IA/ over A, Lemma 7.8 identifies
SH.�IA/ with H.�/ via the assignment � 7! � � �0.
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For any filling arc system ˛ of S n�, the space SHı.�I˛/ of shear-shape cocycles with underlying arc
system ˛ is naturally identified with the open orthant

(16) f� 2H 1. yN˛; @ yN˛IR/
�
W �.t

.j/
i / > 0 for all i; j D 1; 2g;

where N˛ is a snug neighborhood of �[˛ on S.

Consider the open cell Bı.˛/�B.S n�/ defined as all those weighted arc systems with support equal to
a maximal arc system ˛. Using cohomological coordinates (16) for SHı.�I˛/, we can find a continuous
section � of SHı.�I˛/!Bı.˛/. Then

�� WB
ı.˛/�H.�/! SHı.�I˛/; .A; �/ 7! �.A/C �;

is a homeomorphism preserving fibers of the natural projections. For another choice of section � 0,

��1
� .�� 0.A; �//D .A; �C �

0.A/� �.A//:

Evidently, the map A 7! � 0.A/� �.A/ 2H.�/ is continuous.

If N 0˛ is another snug neighborhood of �[˛, then N˛ and N 0˛ share a common deformation retract. The
composition of the linear isomorphisms induced on cohomology by inclusion of the deformation retract
preserves the orthants defined as in (16) as well as fibers of projection to B.S n �/. This proves that
the principal H.�/–structure of the bundle lying over Bı.˛/ does not depend on the snug neighborhood
whose cohomology coordinatizes SHı.�I˛/.

To show that the principal H.�/–bundle structures over all cells of B.S n�/ glue together nicely, we find
a continuous section of SH.�/!B.S n �/ near any given weighted arc system A. Indeed, if ˛ � ˇ,
then inclusion N˛ ,!Nˇ of snug neighborhoods defines a map on cohomology. This map restricts to a
linear isomorphism on the kernel of the evaluation map on the transversals to ˇ n˛. Thus, the closure

(17) SH.�Iˇ/D
[
ˇ�˛

˛ fills S n�

SHı.�I˛/

of SHı.�Iˇ/ in SH.�/ may be realized as an orthant in H 1. yNˇ; @ yNˇIR/
� with some open and closed

faces; one of the closed faces corresponds to SHı.�I˛/.10

Since the complex Afill.S n�/ is locally finite, there are only finitely many arcs ˇ1; : : : ; ˇk disjoint from ˛.
Let U �B.S n�/ be a small neighborhood of A and � be a continuous section of SH.�I˛/!Bı.˛/\U.
For each i , after including SHı.�I˛/ as a face of SH.�I˛ [ ˇi/, we may extend � continuously on
U \Bı.˛[ˇi/. Continuing this process, eventually extending � to higher-dimensional cells meeting U,
we end up with a continuous section U ! SH.�/, as claimed. As before, trivializations defined by two
different sections differ by a continuous function U !H.�/; this completes the proof of the theorem.

10When every component of S n� is simply connected, the empty set is a filling arc system. When this is the case, Bı.∅/ is
identified with a point, while SH.�I∅/DH.�/.
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Since every bundle over a contractible base is trivial, this implies that:

Corollary 8.2 Shear-shape space SH.�/ is homeomorphic to R6g�6.

Proof Let †1; : : : ; †m denote the complementary components of �, where †j has genus gj with bj

closed boundary components and kj crowns of types fcj
1
; : : : ; c

j

kj
g. By Lemmas 7.10 and 4.4, B.S n�/

is homeomorphic to a cell of dimension

�n0.�/C

mX
jD1

dim.T.†j //D�n0.�/C

mX
jD1

�
6gj � 6C 3bj C

kjX
iD1

.c
j
i C 3/

�
Lemmas 7.8 and 4.6 together imply that SH.�IA/ is an affine H.�/–space of dimension

n0.�/��.�/D n0.�/C
1

2

mX
jD1

kjX
iD1

c
j
i

Putting these dimension counts together via Theorem 8.1, SH.�/ is homeomorphic to a cell of dimension

mX
jD1

�
6gj � 6C 3bj C

3

2

kjX
iD1

.c
j
i C 2/

�
D

3

2�

mX
jD1

Area.†j /D
3

2�
Area.S/D 6g� 6;

where the first equality follows from (4).

8.2 Intersection forms and positivity

Now that we have a global description of shear-shape space, we restrict our attention to a certain positive
locus SHC.�/ inside SH.�/. The main result of this section is Proposition 8.5, in which we identify
SHC.�/ as an affine cone bundle over B.S n�/.

Positive transverse cocycles We begin by recalling the definition of positivity for transverse cocycles, as
developed in [Bonahon 1996, Section 6]. Fixing some �2ML.S/, we recall that a transverse cocycle for �
may be identified with a relative cohomology class of the orientation cover yN of a snug neighborhood N

of � (Definition 7.2). The intersection pairing of yN therefore induces a antisymmetric bilinear pairing

!H WH.�/�H.�/!R;

called the Thurston intersection/symplectic form. This form is nondegenerate when � is maximal and,
more generally, when � cuts S into polygons each with an odd number of sides [Penner and Harer 1992,
Section 3.2].

Each transverse measure for � is in particular a transverse cocycle. Using the intersection form one can
therefore define a positive cone HC.�/ inside H.�/ with respect to the (nonatomic) measures supported
on �. Write

�D �1[ � � � [�L[ 1[ � � � [ M ;
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where the m are all weighted simple closed curves and the �l are minimal measured sublaminations
whose supports are not simple closed curves. Then set

(18) HC.�/ WD

�
� 2H.�/

ˇ̌̌
!H.�; �/ > 0 for all � 2

L[
lD1

�.�l/

�
;

where �.�l/ denotes the collection of measures supported on �l .

The reason for this involved definition is that the Thurston form is identically 0 exactly when the underlying
lamination is a multicurve. Therefore, if the support of � contains a simple closed curve  , the pairing
of  with every transverse cocycle supported on � is 0.11

On the other hand, so long as � is not a multicurve then the Thurston form is not identically 0. In fact,
the cone HC.�/ splits as a product

HC.�/D

LM
lD1

HC.�l/˚

MM
mD1

H.m/:

As � supports at most 3g� 3 (projective classes of) ergodic measures, each HC.�l/ is a cone with a side
for each (projective class of) ergodic measure supported on �l .

When � is a multicurve, there are no �l ’s and so the condition of (18) is empty. As such, in this case the
space of positive transverse cocycles is the entire twist space:

HC.1[ � � � [ M /DH.1[ � � � [ M /D

MM
mD1

H.m/ŠRM :

Therefore, no matter whether  is a multicurve or not, the space HC.�/ is a convex cone of full dimension
(where we expand our definition of “cone” to include the entire vector space).

Positive shear-shape cocycles We now repeat the above discussion for shear-shape cocycles. By
Definition 7.5, any shear-shape cocycle .�; ˛/ may be identified with a relative cohomology class of the
orientation cover yN˛ of a neighborhood N˛ of �[˛. As above, the intersection pairing of yN then defines
a pairing between any two shear-shape cocycles with underlying arc system contained inside ˛. However,
if the underlying arc systems of �; � 2 SH.�/ are not nested, then there is no obvious way to pair the two
cocycles.

While it does not make sense to pair two arbitrary shear-shape cocycles, we can always pair shear-shape
cocycles with transverse cocycles. Recall from (the discussion before) Lemma 7.8 that H.�/ naturally
embeds as a subspace of the cohomology of the neighborhood yN˛ defining a shear-shape cocycle and

11This is because the components of the orientation cover are all annuli, whose first (co)homologies all have rank 1. For noncurve
laminations, the homology has higher rank and so can support a nonzero intersection form.
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may be identified with the kernel of the evaluation map on transversals to ˛. Therefore, the intersection
pairing on yN˛ gives rise to a function

!SH W SH.�/�H.�/!R;

which we also refer to as the Thurston intersection form. Throughout the paper, we will differentiate
between the different intersection forms by indicating their domains in subscript.

We record some of the relevant properties of !SH below:

Lemma 8.3 The Thurston intersection form !SH is a Mod.S/Œ��–invariant continuous pairing which is
homogeneous in the first factor and linear in the second. Moreover , for any A 2B.S n�/ and � 2H.�/,
the function

!SH. � ; �/ W SH.�IA/!R

is an affine homomorphism inducing !H. � ; �/ on the underlying vector space H.�/.

Proof We begin by showing that the form is actually well defined. Suppose first that ˛ is maximal;
then, since the (homological) intersection form is natural with respect to deformation retracts, and any
two snug neighborhoods of �[˛ share a common deformation retract, the form does not depend on the
choice of neighborhood.

Now suppose that ˇ is a filling arc system that is a subsystem of two different maximal arc systems ˛1

and ˛2. Then one can take a snug neighborhood Nˇ of �[ ˇ which includes into neighborhoods Ni

of �[ ˛i for i D 1; 2. Now, since the (homological) intersection form is also natural with respect to
inclusions, the Thurston form must be as well. Therefore, for any � 2 SH.�Iˇ/ and � 2H.�/ it does not
matter if we compute !SH.�; �/ in Nˇ, N1, or N2.

Now that we have established that !SH is well defined, the other properties follow readily from properties
of the (homological) intersection form. Since the homological intersection pairing is linear in each
coordinate, !SH is in particular linear in the second coordinate. Similarly, for any A 2 B.S n �/ and
any two �1; �2 2 SH.�IA/, we know that �1� �2 is a transverse cocycle, and again by linearity of the
homological intersection form we get that

!SH.�1; �/�!SH.�2; �/D !H.�1� �2; �/

for all � 2H.�/. Thus !SH is affine on each SH.�IA/.

Finally, to see that the map !SH. � ; �/ is continuous for a fixed �, we recall that for any maximal arc
system ˛, the space SHı.�I˛/ of shear-shape cocycles with underlying arc system ˛ may be realized
as an open orthant in cohomological coordinates (16), and this parametrization extends to its closure
SH.�I˛/.
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Since the intersection pairing on cohomology is continuous, for each maximal arc system ˛ the function
!SH. � ; �/ is continuous on SH.�I˛/. But now, since we have checked that the value of !SH. � ; �/ does
not actually depend on the neighborhood, it agrees on the overlaps of closures SH.�I˛/ for maximal ˛.
Therefore, since the cell structure of B.S n �/ is locally finite, we may glue together the functions
!SH. � ; �/ (which are continuous on each SH.�I˛/) to get a globally continuous function on SH.�/.

With this intersection form in hand, we may now define a positive locus with respect to the set of measures
supported on �.

Definition 8.4 The space of positive shear-shape cocycles SHC.�/ is the set

SHC.�/D f� 2 SH.�/ W !SH.�; �/ > 0 for all � 2�.�/g:

Observe the difference between the definition above and the one appearing in (18): any positive shear-
shape cocycle must also pair positively with all simple closed curves m appearing in the support of �. The
essential difference between the two cases is that additional branches of �˛ coming from the underlying
arc system allows a shear-shape cocycle to meet each m without being completely supported on m.
Indeed, one can check that the contribution to the Thurston form coming from the intersection of ˛ with
a simple closed curve component of � is always positive (compare (20)). In particular, the positivity
condition is automatically fulfilled for any measure supported on a curve component of �.

On each cohomological chart (16) or (17) it is clear that SHC.�/ is an open cone cut out by finitely
many linear inequalities (one for each ergodic measure supported on �, plus positivity of arcs weights).
However, this does not yield a global description of SHC.�/. In order to get one, we must show that the
linear subspaces cut out by the positivity conditions intersect the H.�/ fibers transversely.

Proposition 8.5 The space SHC.�/ is an affine cone bundle over B.S n �/ with fibers isomorphic
to HC.�/.

By an affine cone bundle, we mean that there is a (nonunique) section �0 WB.S n�/! SH.�/ such that

SHC.�/\SH.�IA/D �0.A/CHC.�/

for every A 2B.S n�/. Moreover, any two such sections differ by a continuous map B.S n�/!H.�/.

Proof Choose mutually singular ergodic measures �1; : : : ; �N ; 1; : : : ; M on � that span �.�/, where
the supports of the �n are noncurve laminations and the m are all simple closed curves. Pick an arbitrary
� 2 SH.�IA/, and define

C.�/ WD f� 2H.�/ j !H.�; �n/ > �!SH.�; �n/ for all nD 1; : : : ;N g:

By linearity of !H on H.�/, together with the fact that the pairing !H. � ; �n/ is not identically 0 since
the support of �n is not a simple closed curve, this is an intersection of N affine half-spaces which do
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not depend on our choice of ergodic measures �i in their projective classes. Again by linearity, this is
just a translate of HC.�/ and hence is a cone of full dimension.

Now, since !SH. � ; �j / is an affine map on SH.�IA/ for each j,

� CC.�/D f� 2 SH.�IA/ j !SH.�; �n/ > 0 for all nD 1; : : : ;N g D SHC.�/\SH.�IA/

is an affine cone of full dimension (where the last equality holds because the positive discussion is
automatically fulfilled for each m). It is a further consequence of affinity that this identification does not
depend on the choice of � . The bundle structure then follows from continuity of !SH.

9 Train track coordinates for shear-shape space

In this section, we introduced train track charts for shear-shape cocycles. In Section 9.1, we recall
Bonahon’s realization of transverse cocycles to a lamination in the weight space of a train track that
snugly carries it. In Section 9.2, we reinterpret the cohomological coordinate charts (16) for SHı.�I˛/

by “smoothing” �[ ˛ onto a train track �˛ (Construction 9.3) and realizing SHı.�I˛/ as an orthant
in the weight space of �˛ (Proposition 9.5). This construction also has the added benefit of converting
axiom (SH3) of Definition 7.11 into a simpler additivity condition; this is convenient for computations
and provides an explicit formula (20) for the Thurston intersection pairing. We rely on this formula in
Section 10.2 to show that foliations transverse to � define positive shear-shape cocycles (Proposition 10.12).

Later, in Section 9.3, we explain how the PIL structure of SH.�/ is manifest in train track coordinates
and provides a canonical measure in the class of Lebesgue. When � is maximal, this measure is a constant
multiple of the symplectic volume element induced by !H. Finally, in Section 9.4 we consider how train
track charts facilitate an interpretation of SH.�/ as organizing the fragments of the cotangent space
to ML at �.

Remark 9.1 We advise the reader that two different types of train tracks appear below: those which carry
transverse cocycles for � and give coordinates on the fiber SH.�IA/, and those which carry shear-shape
cocycles and give coordinates on the total space SH.�/.

9.1 Train track coordinates for transverse cocycles

We begin by recalling how transverse cocycles can be parametrized by weight systems on (snug) train
tracks. The advantage of these coordinates is that they determine the cocycle with only finitely many
values (a main benefit of the cohomological Definition 7.2), but do so using unoriented arcs on the surface,
not the orientation cover (a main benefit of the axiomatic Definition 7.4).

Let � be a train track snugly carrying a geodesic lamination � and � a transverse cocycle, thought of
as a function on transverse arcs. For each branch b of � , pick a tie tb . Then one can assign to b the
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weight �.tb/; by axiom (H1) this value does not depend on the choice of tie, and by axiom (H2) these
weights necessarily satisfy the switch conditions. Therefore, any transverse cocycle can be represented by
a weight system on � , and in fact this map is an isomorphism.

Proposition 9.2 [Bonahon 1997b, Theorem 11] Let � be a train track snugly carrying a geodesic
lamination �. Then the map � 7! f�.tb/gb2b.�/ is a linear isomorphism between H.�/ and W .�/, the
space of all (real ) weights on � satisfying the switch conditions.

On a given train track snugly carrying �, the Thurston intersection form !H is easily computable in terms
of the weight systems. To wit, if �; � 2H.�/ then their intersection is equal to

(19) !H.�; �/D
1

2

X
s

ˇ̌̌̌
�.rs/ �.`s/

�.rs/ �.`s/

ˇ̌̌̌
;

where the sum is over all switches s of � , and rs and `s are the half-branches which leave s from the
right and the left, respectively. Compare [Penner and Harer 1992, Section 3.2].

9.2 Train track coordinates for shear-shape cocycles

In order to imitate the above construction for shear-shape cocycles, we first must explain how to build a
train track from � and a filling arc system ˛ on its complement.

Suppose that � carries � snugly; then the complementary components of � [˛ correspond to those of
�[˛. A smoothing of � [˛ is a train track �˛ which is obtained by choosing tangential data at each of
the points of � \˛ and isotoping each arc of ˛ to meet � along the prescribed direction. Each component
of S n � inherits an orientation from S, which in turn gives an orientation to the boundary (of the metric
completion) of each subsurface. A smoothing �˛ is standard if for each switch of �˛ with an incoming
half branch corresponding to an arc ˛i 2 ˛, the incoming tangent vector to ˛i is pointing in the positive
direction with respect to the boundary orientation of the component of S n� containing ˛i ; see Figure 12.

Recall (Construction 5.6) that a geometric train track � constructed from a hyperbolic structure X 2T.S/,
� 2 ML.S/, and � > 0 is obtained as the leaf space of the orthogeodesic foliation restricted to an
�–neighborhood of � in X (for small enough values of �).

Construction 9.3 (geometric standard smoothings) Let � 2 ML.S/ and X be a hyperbolic metric
on S. Let ˛ be a filling arc system in S n �, realized orthogeodesically on X. For small enough � > 0,
˛\N�.�/ lies in a finite collection of leaves of O�.X / and so each end of each arc of ˛ defines a point
in the quotient � D N�.�/=�, where � is the equivalence relation induced by collapsing the leaves of
O�.X /jN�.�/.

The geometric standard smoothing �˛ is then obtained by attaching ˛ onto the geometric train track � at
these points and smoothing in the standard way.
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Figure 12: Left: a geometric train track neighborhood of z� together with an arc system z̨. Right:
the (preimage of the) standard smoothing �˛ .

Since ˛ is filling, the components of X n.�[˛/ are topological disks. In a geometric standard smoothing �˛ ,
each complementary disk incident to an arc ˛ of ˛ has at least one spike corresponding to an end of
that ˛. Since no arc of ˛ joins asymptotic geodesics of �, the complementary polygons all have at least
three spikes and so �˛ is indeed a train track.

Remark 9.4 A geometric standard smoothing keeps track of the intersection pattern of � with ˛ on
“either side” of � , and the endpoints of ˛ on a geometric train track �� � X constructed from � by a
parameter � > 0 as in Construction 9.3 are stable as �! 0.

A standard smoothing �˛ is reminiscent of the construction of completing � to a maximal lamination �0 by
“spinning” the arcs of ˛ around the boundary geodesics of complementary subsurfaces to � in the positive
direction to obtain spiraling isolated leaves of �0 in bijection with the arcs of ˛. In Proposition 9.5 below,
we observe that, by smoothing ˛ onto � in a standard way, axiom (SH3) allows us to assign weights to
the branches of �˛ in such a way that the switch conditions are satisfied. Thus, for a shear-shape cocycle
carried by �˛, the weights deposited on the branches ˛ � �˛ encode “shape” data, rather than “shear”
data. As such, we do not think of a standard smoothing as corresponding to the completion of � to a
maximal lamination �0.

Proposition 9.5 Every shear-shape cocycle .�;A/ 2 SH.�/ may be represented by a weight system
w˛.�/ on a standard smoothing �˛ that also carries �. Moreover , the map � 7! w˛.�/ extends to a linear
isomorphism

H 1. yN˛; @ yN˛IR/
�
ŠW .�˛/;

where N˛ is a neighborhood of � [ ˛, yN˛ is its orientation cover and H 1. yN˛; @ yN˛IR/� is the �1

eigenspace for the covering involution ��.

In particular, this isomorphism realizes SH.�I˛/ and SHC.�; ˛/ as convex cones (with some open and
some closed faces) inside W .�˛/.
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ti

Œk�D Œti �C Œ`�

�.k/ �.`/

�.ti/

�.k/D �.ti/C �.`/

Figure 13: A standard smoothing of a geometric train track. The equation in homology encoded
by axiom (SH3) becomes an additivity condition on the train track.

Proof Let �˛ be a standard smoothing of � [˛ and for each branch b of �˛ , let tb denote a tie transverse
to b. Evaluating a shear-shape cocycle � on tb yields an assignment of weights

w˛.�/ W b! �.tb/:

By axiom (SH1) of Definition 7.11, this weight system does not depend on the choice of tie.

To check that w˛.�/ satisfies the switch conditions, we observe that there are two types of switches of �˛:
those that come from switches of � and those that come from smoothings of points of �\˛. Axiom (SH2)
implies that the switch condition holds at each of the former, while axiom (SH3) together with our choice
of smoothing ensures that w˛.�/ satisfies the switch conditions at each of the latter. Compare Figure 13.

We note that this discussion does not rely on the positivity of � on standard transversals, and so can be
repeated to realize an arbitrary element of H 1. yN˛; @ yN˛IR/� as a weight system on �˛.

Let AD
P

ci˛i ; then on any smoothing �˛ the identification of Proposition 9.5 restricts to an isomorphism

SH.�IA/Š fw 2W .�˛/ W w.bi/D cig;

where bi is the branch of �˛ corresponding to ˛i . Indeed, these coordinates together with the parametriza-
tion of transverse cocycles by weight systems on � � �˛ (Proposition 9.2) give another proof that the
difference of any two shear-shape cocycles compatible with a given A 2B.S n�/ is a transverse cocycle
(Lemma 7.8).

Remark 9.6 The metric residue condition (Lemma 7.9) is still visible in train track coordinates, though it
is somewhat obscured. Indeed, suppose that � contains an orientable component carried on a component �
of the geometric train track � ; fix an arbitrary orientation of �.

Take a geometric standard smoothing �˛ of � [ ˛. Reversing the tangential information as necessary,
we can then construct a (nonstandard) smoothing of � [ ˛ so that every arc of ˛ is a small branch
entering � according to the orientation. Moreover, by reversing the sign of the weight on each arc which
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has its smoothing data modified, this nonstandard smoothing still carries shear-shape cocycles as a weight
systems. But then, by conservation of mass, the total sum of the weights on the branches entering �
must be 0. Hence, in this setting, the metric residue condition manifests as a condition embedded in the
recurrence structure of smoothings.

The extended intersection form on SH.�/ also has a nice formula in terms of train tracks. Let � be a
(trivalent) train track snugly carrying � and let �˛ be a standard smoothing of � [˛; then, for � 2 SH.�/

and � 2H.�/,

(20) !SH.�; �/D
1

2

X
s

ˇ̌̌̌
�.rs/ �.`s/

�.rs/ �.`s/

ˇ̌̌̌
;

where the sum is over all switches s of �˛, and rs and `s are the right and left small half-branches,
respectively. The proof of this formula is the same as that of (19) and is therefore omitted; the only thing
to note in this case is that the value does not change if one completes ˛ by adding in arcs of zero weight.

9.3 Piecewise-integral-linear structure

A piecewise-linear manifold is said to be piecewise-integral-linear or PIL with respect to a choice of
charts if the transition functions are invertible piecewise-linear maps with integral coefficients. The track
charts that we have constructed from standard smoothings in this section endow each cell SH.�I˛/ with
a PIL structure which clearly extends over all of SH.�/ (compare [Penner and Harer 1992, Section 3.1]).

The points of the integer lattice in W .�˛/ are invariant under coordinate transformation; thus, the integer
points SHZ.�/� SH.�/ are well defined.

The PIL structure defined by train track charts gives a canonical measure �SH in the class of the .6g�6/–
dimensional Lebesgue measure on SH.�/. Namely, if B � SH.�/ is a Borel set, then

(21) �SH.B/ WD lim
R!1

#R �B \SHZ

R6g�6
:

Since the symplectic intersection form !SH is constant (19) in a train track chart, the volume element
defined by the .3g�3/–fold wedge product ^!SH is a constant multiple of �SH on each chart.

We note that B.S n�/ is cut out of jAfill.S n�/j by linear equations with integer coefficients, as is each cell
of jAfill.S n�/j. Therefore, the integer lattice SHZ.�/ restricts to a integer lattice in the bundle SH.�I˛/

over every cell B.˛/. Thus we obtain a natural volume element on the bundle over the k–skeleton
of B.S n�/ whenever it is not empty.

9.4 Duality in train track coordinates

We now take a moment to discuss shear-shape coordinates from the point of view of train track weight
spaces; this discussion is motivated by that in [Thurston 1986], and is meant to clarify how shear-shape
cocycles fit into the broader theory of train tracks.
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We begin by recalling the analogy between shear coordinates for Teichmüller space and the “horospherical
coordinates” for hyperbolic space. As observed by Thurston [1986, page 42], projecting the Lorentz
model

Hn
D fx2

1 C � � �Cx2
n �x2

nC1 D�1 j xnC1 > 0g

to hx1; : : : ;xni along a family of parallel light rays gives a parametrization for Hn in terms of a half-space.
In these coordinates, horospheres based at the boundary point � 2 @1Hn corresponding to the choice of
light ray are mapped to affine hyperplanes and geodesics from � are mapped to rays from the origin.12

When � is maximal and uniquely ergodic, Bonahon and Thurston’s shear coordinates similarly realize
T.S/ as the space of positive transverse cocycles HC.�/, in which planes parallel to the boundary are
level sets of the hyperbolic length of � and rays through the origin are Thurston geodesics. Equivalently,
if � is a train track carrying �, then shear coordinates identify T.S/ as a half-space inside W .�/.

However, shear coordinates are no longer induced by a global projection. Instead, as noted by Thurston,
they can be thought of as a map that takes a hyperbolic structure X to (the 1–jet of) its length function
with respect to a given lamination. Shear coordinates are then a map not into W .�/ but into its dual
space W .�/� (which can be identified with W .�/ via the nondegenerate Thurston symplectic form). The
image cone is then the positive dual13 of the cone of measures on �.

This formalism then indicates how shear coordinates generalize to maximal but nonuniquely ergodic
laminations. The map is the same, but now the positive dual of �.�/ has angles obtained from the
intersection of hyperplanes, one for each ergodic measure on �. Rays in the cone still correspond to
geodesics, and affine planes parallel to the bounding planes correspond with the level sets of hyperbolic
length of the ergodic measures on �.

Our shear-shape coordinates come into play when � is not maximal. In this case, one can go through the
above steps for each maximal train track � , obtained from a snug train tack carrying � by adding finitely
many branches. Since � is carried on a proper subtrack of � its cone of measures lives in a proper subspace
E �W .�/. Taking the positive dual of �.�/ and applying the isomorphism W .�/ ŠW .�/� induced
by the Thurston form then realizes Teichmüller space as a cone C in W .�/. By definition, C \E is
exactly HC.�/, and one can check this demonstrates C is an affine HC.�/–bundle.

However, the base of this bundle structure is not canonically determined, in part because E <W .�/ is
generally not symplectic. Moreover, the same hyperbolic structure is parametrized by elements in many
different maximal completions, and to achieve Mod.S/–equivariance one needs to understand how to
compare coordinates for different completions. Shear-shape space is designed to solve both of these

12This coordinate system is in some sense dual to the paraboloid model of [Thurston 1997, Problem 2.3.13]. Horospherical
coordinates place an observer looking out from the center of a family of expanding horospheres, whereas the paraboloid model
places an observer at another boundary point looking in.
13That is, those elements of W .�/� which pair positively with every element in �.�/ via the intersection form.
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problems, picking out geometrically meaningful completions and gluing together the corresponding cones
all while preserving the bundle structure.

Indeed, the shear-shape coordinates defined in Section 13 associate to each hyperbolic structure a natural
finite set of completions (corresponding to standard smoothings of snug train tracks plus geometric arc
systems) together with a weight system on each completion. The discussion of this section (Proposition 9.5
especially) then implies that the associated shear-shape cocycle is independent of the choice of completion,
and that the corresponding train track charts glue together according to the combinatorics of B.S n�/. In
this picture, level sets of the hyperbolic length now correspond to bundles over B.S n�/ whose fibers are
affine subspaces parallel to the boundary of HC.�/, while rays in SHC.�/ correspond to scaling both the
coordinate in B.S n�/ as well as the coordinate in HC.�/.

10 Shear-shape coordinates for transverse foliations

We now show how the familiar period coordinates for a stratum of quadratic differentials can be re-
interpreted as shear-shape coordinates. The main construction of this section is that of the map

I� W F
uu.�/! SH.�/

which records the vertical foliation of a quadratic differential and should be thought of as a joint extension
of [Mirzakhani 2008, Theorem 6.3; Minsky and Weiss 2014, Theorem 1.2].

The idea is straightforward: Given some quadratic differential q 2 Fuu.�/, the complement S nZ.q/ of
its zeros deformation retracts onto a neighborhood N˛.q/ of �[˛.q/ for some filling arc system ˛.q/

(whose topological type reflects the geometry of q). We may therefore identify the period coordinates
of q as a relative cohomology class in (the orientation cover of) N˛.q/ with complex coefficients. The
imaginary part of this class corresponds to �, while its real part is the desired shear-shape cocycle I�.q/.

The only obstacle to this plan is in showing that S nZ.q/ can actually be identified with a neighborhood
of �[˛.q/. To overcome this, we recall first in Section 10.1 how to reconstruct the topology of S n� from
the horizontal separatrices of q; this guarantees that all relevant objects have the correct topological types.
We then describe in Section 10.2 how to build from S nZ.q/ a train track �˛ snugly carrying �[˛.q/
(Lemma 10.6); this in particular allows us to identify S nZ.q/ as a neighborhood of �[˛.q/. We may then
define I�.q/ using the strategy outlined above and identify it as a weight system on �˛ (Lemma 10.10).

Section 10.3 contains a discussion of the global properties of the map I�: piecewise-linearity, injectivity,
and its behavior with respect to the intersection pairing. In this section, we also record Theorem 10.15,
which states that I� is a homeomorphism onto SHC.�/. For purposes of convenience, the proof of this
theorem is deduced from our later (logically independent) work on shear-shape coordinates for hyperbolic
structures (Sections 12–15). See Remark 10.16.

Geometry & Topology, Volume 28 (2024)



2054 Aaron Calderon and James Farre

10.1 Separatrices and arc systems

Given a quadratic differential with jIm.q/j D �, our first task towards realizing jRe.q/j as a shear-shape
cocycle is to build a filling arc system ˛.q/ on S n� that encodes the horizontal separatrices of q. We begin
by recalling how to recover the topology of S n� from the realization of � as a measured foliation on q.

Recall that a boundary leaf ` of a component of S n� is a complete geodesic contained in its boundary.
Note that infinite boundary leaves of S n� are in one-to-one correspondence with leaves of � which are
isolated on one side, while finite boundary leaves (ie closed boundary components) are in two-to-one
correspondence with closed leaves of �.14

The corresponding notion for measured foliations is that of singular leaves. Let F be a measured foliation
on S and zF denote its full preimage to zS under the covering projection; then a bi-infinite geodesic path
of horizontal separatrices ` is a singular leaf of zF if, for every saddle connection s of `, the separatrices
adjacent to s leave from the same side of ` (ie always from the left or always from the right); see [Levitt
1983, Figure 2].

There is a fundamental correspondence between boundary leaves of a lamination and singular leaves of a
foliation, which we record below. Heuristically, collapsing the complementary regions of a lamination
yields a foliation; the deflation map of Section 5.3 is a geometric realization of this phenomenon. Again,
compare [Levitt 1983, Figure 2] as well as [Minsky 1992, Lemma 2.1].

Lemma 10.1 Let � be a measured lamination on S and let F be a measure-equivalent measured foliation.
Then there is a one-to-one , �1.S/–equivariant correspondence between the boundary leaves of zS n z�
and singular leaves of zF. Moreover , singular leaves of zF that share a common separatrix correspond to
boundary leaves of the same component of zS n z�.

This lemma in particular allows us to read off the topological type of S n� from the horizontal separatrices
of q. Set „.q/ to be the union of the horizontal separatrices of q, equipped with the path metric. This
1–complex also comes equipped with a ribbon structure (that is, a cyclic ordering of the edges incident to
each vertex) and, by thickening each component of „.q/ according to this ribbon structure, „.q/ can be
regarded as a spine for the components of S n�.

Our construction of ˛.q/ then records the dual arc system to the spine „.q/ of S n�.

Construction 10.2 Let q be a quadratic differential on S with jIm.q/j D �. By the correspondence
of Lemma 10.1, each horizontal separatrix of q corresponds to a pair of boundary leaves of the same
component of S n�. Each infinite separatrix corresponds to a pair of asymptotic boundary leaves, while
nonasymptotic boundary leaves are glued along horizontal saddle connections. Dual to each horizontal
saddle connection of „.q/ is a proper isotopy class of arcs on S n�, and we set ˛.q/ to be the union of
all of these arcs.
14This is true because we have insisted that � support a measure, and so no nonclosed leaf may be isolated from both sides.
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Since „.q/ is a spine for S n� and ˛.q/ consists of arcs dual to its compact edges, we quickly see that:

Lemma 10.3 The arcs of ˛.q/ are disjoint and fill S n�.

Proof Each component of zS n z� has a deformation retract onto the universal cover z„ of a component
of „.q/. In particular, as the interiors of the edges of z„ are disjoint, duality implies that the arcs of z̨.q/
can all be realized disjointly. As this picture is invariant under the covering transformation, this implies
that the arcs are disjoint downstairs in S n�.

Similar considerations also imply that the arc system is filling: let † be a component of S n � with
universal cover z† with spine z„. By construction, the edges of z̨.q/ in z† are dual to the edges of z„.
Since „.q/ is a spine for S n�, any loop in † is homotopic to a union of saddle connections, implying
that any nontrivial loop must pass through an edge of ˛.q/. Hence, ˛.q/ fills S n�.

10.2 Period coordinates as shear-shape cocycles

Now that we understand the relationship between � and the horizontal data of q, it is easy to build objects
T� nH� and T� on q of the same topological type as � and �[ ˛.q/. However, it is not immediate to
actually identify these objects as neighborhoods of � and �[ ˛.q/. Below, we deduce this from the
stronger statement that they admit smoothings onto train tracks snugly carrying � and �[˛.q/; compare
[Mirzakhani 2008, Sections 5.2 and 5.3].

Construction 10.4 (train tracks from triangulations) Let H denote the set of all horizontal saddle
connections on q and let T be a triangulation of q containing H. Let T� be the 1–skeleton of the dual
complex to T and let H� denote the edges of T� dual to H. Note that T� is trivalent by definition.

Let � denote a triangle of T with dual vertex v� in T�. Using the jqj–geometry of � we may assign
tangential data to v� as follows (compare Figures 14 and 15):

� If no edge of � is horizontal, then a unique edge e has largest (magnitude of) imaginary part.
Assign tangential data to v� so that the dual edge to e is a large half-branch.

� Otherwise, some edge of � is horizontal and the other two edges have the same imaginary parts. In
this case, we choose tangential data so that the horizontal edge corresponds to a small half-branch
and leaves the large half-branch from the right, as seen by the large half-branch.

We denote the resulting train track by �˛ . The subgraph T� nH� can also be converted into a train track �
by deleting the branches of �˛ dual to H.

Remark 10.5 The edges of H� correspond to the arcs of ˛.q/ and �˛ is a standard smoothing of �[˛.q/.
Our convention for “standard” ensures that additivity in period coordinates corresponds to additivity in
train track coordinates.
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Figure 14: An example of the train track �˛ around a saddle connection. The thick black lines are
stems of horizontal separatrices of q while the light black lines are nonhorizontal edges of the
triangulation T. The dashed line is a branch of �˛ n � .

By construction, the graph T� (equivalently, the train track �˛) is a deformation retract of S nZ.q/.
Similarly, T�nH� (and � ) are deformation retracts of the complement of the horizontal saddle connections.
Together with our discussion above, this implies that � has the same topological type as � and �˛ has the
same topological type as �[˛.q/.

In order to actually realize these objects as neighborhoods of �, we observe that we can build an explicit
carrying map from (a foliation measure equivalent to) � onto � .

Lemma 10.6 The train track � carries � snugly. The weight system on � that specifies � is exactly the
(magnitude of ) the imaginary parts of the periods of the edges of T.
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Figure 15: Local pictures of the different types of switches of �˛ . Here we have illustrated
the images of each triangle under the holonomy map. The orientation of each edge should be
interpreted as indicating the value of Œ � �C, so that the edge vector is exactly the complex weight
assigned to the dual branch of �˛ . The graphical conventions of this figure mirror those of
Figure 14.
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Proof Let all notation be as above and let F denote the (singular) horizontal foliation of q.

One can directly build a homotopy of the nonsingular leaves of F onto � : in a neighborhood of each
edge e of T nH there is a homotopy of the leaves of F onto the branch of � dual to e. Now any leaf of F

which passes through a triangle � of T does so (locally) only twice and must pass through the side of �
with the largest imaginary part, which corresponds to a large half-branch of � . The complement of the
separatrix meeting the vertex of � opposite to the side with largest imaginary part separates the (locally)
nonsingular leaves of F passing through � into two packets that can be homotoped onto � , respecting the
smooth structure at the switch dual to �; compare Figure 15.

Now the horizontal foliation F of q is measure equivalent to �, and so as � carries F it carries � (snugness
follows as � and � have the same topological type). The statement about the weight system follows from
our description of the carrying map.

Now that we have identified � as a snug train track carrying �, we may in turn identify a neighborhood
of �[˛.q/ with (a thickened neighborhood of) �˛. With this correspondence established, we may now
define I�.q/ as the image of the real part of the period coordinates of q under the natural isomorphism on
cohomology.

Construction 10.7 (definition of I�.q/) Let S, �, q, ˛.q/ and �˛ be as above, Set M˛ to be a thickened
neighborhood of �˛ (in the flat metric defined by q) and let N˛ be a snug neighborhood of �[˛.q/ (taken
in some auxiliary hyperbolic metric). Perhaps by shrinking N˛ , we may assume it embeds into M˛ as a
deformation retract (this follows by snugness).

Now �˛ is itself a deformation retract of S nZ.q/, so the inclusion M˛ ,! S nZ.q/ is a homotopy
equivalence; composing inclusions N˛ ,!M˛ ,! S nZ.q/ and lifting to the orientation covers yields
the isomorphism

(22) H 1. yS ;Z.
p

q/IC/
j�
�!H 1. yN˛; @ yN˛IC/;

where the hats denote the corresponding orientation covers. As the composite retraction respects the
covering involution �, this isomorphism also identifies �1 eigenspaces for ��. We therefore define

I�.q/D Re.j � Per.q//;

where Per.q/ are the period coordinates for q, and where the real part is taken relative to the natural
splitting C DR˚ iR.

Remark 10.8 From the above construction, a basis consisting of branches for the weight space of �˛
(equivalently a basis for H1. yN˛; @ yN˛IZ/ of dual arcs) picks out a basis for H1. yS ;Z.

p
q/IZ/. Moreover,

each relative cycle is realized geometrically as a saddle connection (as opposed to concatenations, thereof).
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To see that I�.q/ is indeed a shear-shape cocycle, we need only observe that the values on standard
transversals to ˛.q/ are all positive. This follows essentially by definition of the orientation cover and
construction of ˛.q/. To wit: if ˛ is an arc of ˛.q/ dual to a saddle connection s, and t is a standard
transversal to ˛, then the canonical lifts of t are mapped to those of s under the isomorphism (22). As the
periods of

p
q increase as you move along the (oriented) horizontal foliation of . yS ;

p
q/, this implies

that the value of I�.q/ on either of the lifts of t is exactly the length of the saddle connection s.

Therefore, the weighted arc system underlying I�.q/ is none other than

A.q/ WD
X
˛2˛.q/

c˛˛;

where c˛ is the jqj–length of the horizontal saddle connection dual to the arc ˛.

Remark 10.9 Naturality of all of the isomorphisms involved quickly implies that this construction does
not depend on the choice of initial triangulation T. Indeed, suppose that T1 and T2 are two triangulations
giving rise to train tracks �1 and �2 and hence shear-shape cocycles �1 and �2. Since both �i carry
�[˛.q/ snugly, Lemma 10.6 implies that they have a common refinement � . Lifting the inclusions

N.� [˛.q// ,!N.�i [˛.q// ,! S nZ.q/

to their orientation covers and drawing the appropriate commutative diagram of cohomology groups, the
shear-shape cocycles built from each Ti coincide as weight systems on the common refinement � .

For use in the sequel, we record below the weight systems on �˛ corresponding to � and I�.q/. The proof
follows by combining the constructions above with the discussion in Section 9 and is therefore left to the
scrupulous reader. See also Figure 15.

For a complex number z, define

Œz�C D

�
z if arg.z/ 2 Œ0; �/;
�z if arg.z/ 2 Œ�; 2�/:

Observe that Œz�C D Œ�z�C for all z 2C.

Lemma 10.10 Let all notation be as above and , for each edge e of T, let be denote the branch of �˛
dual to it. Then the assignment

be 7!

�Z
e

p
q

�
C

defines a complex weight system w.q/ on �˛ satisfying the switch conditions. Moreover ,

Im.w.q//D � and Re.w.q//D I�.q/:

10.3 Global properties of the coordinatization

In this section, we show that the map I� defined above gives a global coordinatization of MF.�/ŠFuu.�/.
First, we record certain global properties of this map; as it is defined by reinterpreting period coordinates
as shear-shape cocycles, it preserves many of the structures imposed by period coordinates.
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For example, it follows by construction that I� respects the stratification of each space. That is, if
q 2 QT.k1; : : : ; kn/\Fuu.�/, then the spine dual to ˛.q/ has vertices of valence k1C 2; : : : ; knC 2. In
a similar vein, since both Fuu.�/ and SH.�/ have local cohomological coordinates (which induce PIL
structures) we can deduce the following:

Lemma 10.11 For any � 2ML.S/, the map I� is Mod.S/Œ��–equivariant and PIL.15

Proof Equivariance follows from the naturality of our construction: all combinatorial data (arc systems,
train tracks, etc) can be pulled back to a reference surface equipped with �, so changing the marking by
an element of Mod.S/Œ�� acts by transforming the combinatorial data on the reference surface.

The piecewise-linear structure on Fuu.�/ (respectively SH.�/) is given by period coordinates (respectively
cohomological coordinates in a neighborhood/train track coordinates) and so the map is by construction
piecewise-linear. Integrality comes from the fact that a homotopy equivalence induces an isomorphism
on cohomology with Z–coefficients, and hence takes integral points to integral points.

The Thurston intersection pairing gives us a powerful tool to understand constraints on the image of
I�; in particular, I�.q/ must be a positive shear-shape cocycle. Indeed, the tangential structure of the
train track �˛ at each switch provides us with an identification of each triangle � of T with an oriented
simplex. With respect to this orientation, we can compute the area of � by taking (one half of) the cross
product of two of its sides. Comparing the formula for the cross product with the Thurston intersection
pairing (20) then allows us to see that the intersection of � and I�.q/ is exactly the area of q; compare
[Mirzakhani 2008, Lemma 5.4].

Proposition 10.12 For all � 2MF.�/ and all � 2�.�/,

!SH.I�.�/; �/D i.�; �/:

In particular , I�.MF.�//� SHC.�/.

The proof of this proposition is made technical by the fact that if � and �0 2 �.�/ are ergodic but
not projectively equivalent then they are mutually singular. To deal with this difficulty, we build a
flat structure on the subsurface filled by � by integrating against �C t� and I�.�/ for small t . The
triangulation T then induces a combinatorially equivalent triangulation of this new flat structure by saddle
connections, allowing us to compare the area of this new flat metric (computed via cross products) with
the Thurston form on our original train track �˛ . This inverse construction will also be used in the proof
of Proposition 10.14.

Proof We begin by observing that since � 2 �.�/, there is a union of minimal components of the
horizontal foliation of q.�; �/ that supports �. Call this subfoliation F and let Y denote the subsurface
filled by F on q.�; �/. Note that @Y must be a union of horizontal saddle connections, and hence is
contained in any triangulation T used to define �˛. In particular, TjY is a triangulation of Y.

15We recall that a PL map between PIL manifolds is itself PIL if it sends integral points to integral points.
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Since � and � are realized transversely on q.�; �/ and this specific realization of � is nonatomic (as any
closed leaves of � have become vertical cylinders), we can compute the intersection number between �
and any measure � supported on F as

(23) i.�; �/D

Z
S

���D

Z
Y

���:

We now build a new flat structure on Y whose conical singularities coincide with those of Y ; the salient
feature is that TjY can be straightened out to a triangulation by saddle connections on the new singular
flat structure that reflects the geometry of �C t�. To construct the new singular flat structure, we build
charts from a neighborhood of each triangle �� TjY to C and describe the transitions.

Each triangle � of T is dual to a switch s with an edge that is dual to a large half-branch b incident
to s. Orient �˛ \� so that a train traveling along b toward s is moving in the positive direction. The
other edges r and ` of � are dual to the half-branches of �˛ to the right and left of s, respectively. The
vertices or and o` are adjacent to r and `, respectively, and the vertex o is opposite b; see Figure 15.
On the interior of each triangle �, we orient the leaves of F parallel to b. The leaves of � are given
the orientation such that the ordered basis of tangent vectors to � and � at each point agree with the
underlying orientation of S. With this orientation, the measures � and � induce smooth real 1–forms d�

and d� that look locally like dx and dy, respectively (as opposed to jdxj and jdyj, respectively).

Restricted to the interior of �, the local orientation of the leaves of � also gives the measure � the
structure of a measurable 1–form that we call d�. Spreading out the measure on a closed leaf of � over
the horizontal cylinder of � corresponding to its support as necessary, we get that the map

Ft W�!C; p 7!

Z
p

d�C id.�C t�/;

obtained by integrating along a path p from or to p is isometric along leaves of F and nondecreasing
along leaves of �. We compute

Ft .o/D I�.�/.r/C i.�C t�/.r/ and Ft .o`/D I�.�/.b/C i.�C t�/.b/:

Transverse invariance and additivity of � gives

(24) Ft .o`/�Ft .o/D I�.�/.`/C i.�C t�/.`/:

Since the pair .F0.o/;F0.o`// forms a positively ordered basis for C (or, equivalently, since the triangle�
is positively oriented), the pair .Ft .o/;Ft .o`// is also positively oriented for small enough t . Let �0t be
the convex hull of .Ft .or /;Ft .o/;Ft .o`//.

The area of �0t may now be computed as half the cross product of Ft .o/ and Ft .o`/. Using (24) and
linearity of the cross product,

(25) Area.�0t /D
1

2

ˇ̌̌̌
I�.�/.r/ I�.�/.`/

�C t�.r/ �C t�.`/

ˇ̌̌̌
> 0:
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�

U.�/

o

or

o`

Ft

�0t

Figure 16: Integrating against � and �C t� defines a new flat structure on triangles. These charts
piece together to give a new half-translation structure on the subsurface filled by �.

Now, for each � and any small enough t , the map Ft may be extended to an open set U.�/ in Y nZ.q/

that contains � (minus its vertices) and is such that, for every p 2 U.�/, there is a unique nonsingular
jqj–geodesic segment p joining or to p. We claim that, moreover, we may choose U.�/ so that
�0t � F.U.�//; see Figure 16.

If not, there is some vertex v of TY n� such that Ft .v/ 2�
0
t nFt .�/. Indeed, by construction, U.�/

is a star-shaped neighborhood about the vertex or of �, so there is a saddle connection joining or to v.
This saddle connection passes through or shares a vertex of an edge e of �. Moreover, we may find v
such that the triangle �v formed by e and v is singularity free and contained in U.�/. But now, the
straightening �0v of Ft .�v/ in C lies inside �0t with the wrong orientation since Ft .v/ lies between
Ft .e/ and the corresponding edge of �0t . This is a contradiction to the fact that Ft is nondecreasing
along leaves of �, or, alternatively, to the fact that the straightenings �0t are all positively oriented for
small enough t . So we may assume that �0t � F.U.�//.

If �1 � TY shares an edge with �, then the construction of the map Ft on �1 agrees with Ft on
U.�/\U.�1/ up to multiplication by ˙1 (depending on the configuration of the switches dual to �
and �1) and translation by the period of the arc connecting the basepoints or of each triangle. Thus
these triangles glue up to a half-translation structure on Y nZ equipped with a triangulation by saddle
connections corresponding to TjY .

In our new flat structure on Y, �C t� is measure equivalent to the horizontal foliation and (the restriction
of) � is equivalent to the vertical foliation. Hence, we obtain, for any t small enough, thatZ

Y

�� .�C t�/D
X
�2TjY

Area.�0t /D
X
�2TjY

1

2

ˇ̌̌̌
I�.�/.r/ I�.�/.`/

�C t�.r/ �C t�.`/

ˇ̌̌̌
D !SH.I�.�/; �C t�/;

where the second equality follows from (25) and the third from (20). Combining this with formula (23)
and the linearity of the Thurston intersection form (Lemma 8.3),

i.�; �/D
1

t

�Z
Y

���C t��

Z
Y

���

�
D

1

t

�
!SH.I�.�/; �C t�/�!SH.I�.�/; �/

�
D !SH.I�.�/; �/;

completing the proof of the proposition.
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From the proof of Proposition 10.12, we can also extract the following, which allows us to recon-
struct a (triangulated) quadratic differential from a sufficiently positive shear-shape cocycle, inverting
Construction 10.4.

Lemma 10.13 Let � be a train track snugly carrying � and let �˛ be a standard smoothing of �[ ˛.
Suppose that � 2 SH.�/ is represented by a weight system on �˛ such that , at every switch s of �˛, the
contribution

1

2

ˇ̌̌̌
�.rs/ �.`s/

�.rs/ �.`s/

ˇ̌̌̌
of s to !SH.�; �/ is positive. Then there exists a quadratic differential q 2 Fuu.�/ such that I�.q/D �

and the dual triangulation to �˛ is realized by saddle connections on q.

Proof The assumption that the contribution at each switch is positive implies that the basis .F.o/;F.o`//
is positively oriented at each switch, and so we can build a positively oriented triangle � with the
prescribed periods. These glue together into the desired quadratic differential.

In particular, we can locally invert I� by building a quadratic differential out of triangles whose edges
have specified periods, so I� is injective.

Proposition 10.14 For any � 2ML.S/, the map I� is a homeomorphism onto its image.

Proof To see that I� is injective, we observe that Lemma 10.13 provides a (left) inverse map �� to I�.
Indeed, suppose that � D I�.q/ for some q and pick a triangulation T as in Construction 10.4; let �˛
denote the dual train track. Applying Lemma 10.13 then constructs a quadratic differential q0 on which
each edge of T is realized as a saddle connection. Since q and q0 have the same periods with respect to
the same geometric triangulation, they must be equal.

To prove that I� is continuous, we first observe that I� is by definition continuous on the closure
SH.�I˛.q// of any cell, as it is induced by a continuous mapping on the level of cohomology. In general,
we need only exploit this fact together with a standard reformulation of sequential continuity: a function
f WX ! Y is continuous if and only if every convergent sequence xn! x has a subsequence xnk

such
that f .xnk

/! f .x/.

So let qn ! q 2 Fuu.�/. The polyhedral structure of SH.�/ is locally finite, so, for n large enough,
I�.qn/ is contained in a finite union of cells. After passing to a subsequence qnk

, we may assume that qnk

all share the same underlying (maximal) arc system ˇ completing ˛. In particular, I�.qnk
/2SH.�Iˇ/ for

all k and so I�.qnk
/! I�.q/ follows from continuity on cells. Therefore I� is a continuous injective map

between Euclidean spaces of the same dimension (Proposition 8.5 and Corollary 8.2) and so invariance of
domain guarantees it is a homeomorphism onto its image.

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2063

The image of I� In light of Lemma 10.13, to show that I� surjects onto SHC.�/ it would suffice to
show that every positive shear-shape cocycle can be realized as a weight system on a train track where
every switch contributes positively to the intersection form. However, it is rather complicated to show that
every positive shear-shape cocycle admits such a representation (see the discussion in Remark 10.16).

Instead, we deduce this fact using the commutativity of (2) and the results appearing in Sections 12–15
coordinatizing hyperbolic structures by shear-shape cocycles. We emphasize, however, that Theorem 10.15
is logically independent from the work done in Sections 12–15 that leads to its proof. We include
the statement here (as opposed to after Section 15) to provide some closure to our discussion of the
parametrization of MF.�/ by shear-shape cocycles.

Theorem 10.15 The map I� W F
uu.�/! SHC.�/ is a homeomorphism.

Proof In Section 13, we define the geometric shear-shape cocycle ��.X / 2 SH.�/ associated to a
hyperbolic metric X 2 T.S/ and show (Theorem 13.13) that ��.X /D I�.O�.X //. In Section 15, we
prove Theorem 12.1, which states that the map �� WT.S/! SHC.�/ is a homeomorphism. In particular,
�� is surjective and hence so is I�. Together with Proposition 10.14, this implies the theorem.

Remark 10.16 If � is a maximal lamination, one can deduce surjectivity of I� by appealing to the
theory of “tangential coordinates” for measured foliations transverse to �. In general, given � snugly
carrying �, tangential coordinates can be constructed as a quotient of Rb.�/ by a vector subspace spanned
by vectors that model the change of length of branches of a train track on either side of a switch after a
small “fold” or “unzip”. When � is maximal, there is a linear isomorphism from shear coordinates to
tangential coordinates via the symplectic pairing !H; we refer the interested reader to [Thurston 1986,
Section 9] or [Penner and Harer 1992, Section 3.4] for details.

The transverse weights defined by the measure of � on � together with positive16 tangential data give
� the structure of a bifoliated Euclidean band complex. If the tangential data satisfy a collection of
triangle-type inequalities, this band complex can be “zipped up” to obtain a bifoliated flat surface with
conical singularities. When defined, the linear transformation mapping tangential coordinates to shear
coordinates preserves the intersection number, and hence positivity.

A standard positivity argument (see [Thurston 1979, Proposition 9.7.6] or [Thurston 1986, Theorem 9.3])
shows that any tangential data with positive intersection with � has a positive representative, and hence
defines a foliation transverse to �. In particular, the map from MF.�/ to the space of tangential coordinates
with positive intersection with � is surjective. As the space of tangential coordinates with positive
intersection is isomorphic to HC.�/, this completes the proof of surjectivity in the maximal case.

This being considered, even in the case when � is maximal “it is harder to see the [positivity] inequalities
satisfied by the shear coordinates [than the tangential coordinates]” [Thurston 1986, page 45] and it is not

16Here positive means that there is a representative of the tangential data that is positive on each branch of � .
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clear how to run the “standard positivity argument” without passing through tangential coordinates. We
have therefore chosen to prove Theorem 10.15 in a way that avoids developing a theory of tangential
coordinates dual to shear-shape cocycles. Instead, we take advantage of the relationship between the
Thurston intersection form on SH.�/ and the length of � on a given hyperbolic surface, as exploited in
the proof of Theorem 12.1 (see in particular Claim 15.8).

11 Flat deformations in shear-shape coordinates

The identification of Section 10 between periods of saddle connections and the values of the shear-shape
cocycle I�.q/ immediately allows us to transport certain flows on Fuu.�/ to shear-shape space. Moreover,
Theorem 10.15 affords a new perspective on the “tremor deformations” of [Chaika et al. 2020] (see
Definition 11.3).

The horizontal stretch We begin by observing that the space SHC.�/ carries a natural R>0–action
given by scaling both the underlying arc system A and the values assigned to test arcs (equivalently, the
corresponding cohomology class or the weights on a train track realization). Using our correspondence
between period coordinates and shear-shape cocycles (Lemma 10.10), this dilation expands the real part
of each period, so the corresponding flat deformation is just a horizontal stretch.17

Lemma 11.1 Let q 2 Fuu.�/; then

(26) I�

��
et 0

0 1

�
q

�
D etI�.q/

for all t 2R.

In particular, our coordinatization linearizes the expansion of the strong unstable foliation under the
Teichmüller geodesic flow.

Horocycle flow and tremors We now consider the horocycle flow on Fuu.�/, which is just the restriction
of the standard horocycle flow hs to the strong unstable leaf. An easy computation shows that, for every
saddle connection e of q, one has

(27)
�Z

e

p
hsq

�
C

D

�
Re
�Z

e

p
q

�
C

C s Im
�Z

e

p
q

�
C

�
C i Im

�Z
e

p
q

�
C

(here we have invoked the Œ � �C function to avoid fussing over square roots and orientations).

With the help of Lemma 10.10 we may translate this into the language of transverse and shear-shape
cocycles to observe:

Lemma 11.2 The map I� takes horocycle flow to translation by � in a time-preserving way. In symbols ,

I�.hsq/D I�.q/C s�:

17This is just the Teichmüller geodesic flow normalized so that the horizontal foliation remains constant. Applying the standard
geodesic flow takes .I�.q/; �/ to .et=2I�.q/; e

�t=2�/.
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More generally, we can perform a similar deformation for any measure � supported on �, resulting in the
tremor flow along �. First defined by Chaika, Smillie and Weiss in the context of abelian differentials, the
tremor trem�.q/ of a quadratic differential q D q.�; �/ by a measure � 2�.�/ is the unique quadratic
differential specified by shearing � by � and leaving � fixed. Why this makes sense (note that � and �
may not fill S ) and why it can be continued for all time present significant technical challenges in [Chaika
et al. 2020, Sections 4 and 13]. However, when considered in our coordinates (and restricted to a leaf of
the unstable foliation), tremors become quite simple.

For a given lamination �, let j�.�/j˙ denote the vector space of all signed transverse measures on �; this
is naturally a vector subspace of H.�/ of dimension at most 3g� 3 with basis consisting of the length 1
(with respect to some auxiliary hyperbolic metric) ergodic measures on �.

Definition 11.3 Let q 2 Fuu.�/ and let � 2 j�.�/j˙. Then the tremor trem�.q/ of q along � is the
unique quadratic differential specified by

(28) I�.trem�.q//D I�.q/C�:

Note that the fact that I�.q/C� 2 SHC.�/ follows by affinity of the Thurston form (Lemma 8.3).

Remark 11.4 Technically, the deformation considered above is a “nonatomic tremor” in the language
of [Chaika et al. 2020]. One can also consider “atomic tremors”, which transform q by twisting along
certain admissible loops of horizontal saddle connections.

In shear-shape coordinates, these admissible loops correspond to certain simple closed curves in the
complementary subsurfaces. Atomic tremors are then realized by appropriately shearing the underlying
arc system A.q/ along the curves and transporting the transverse cocycle using the affine connection
coming from train track coordinates. Of course, one can also define tremors along more complicated
laminations contained in S n�.

For the convenience of the reader familiar with the terminology of [Chaika et al. 2020], we have included
a dictionary which translates between our notation and theirs (at least when the horizontal lamination is
filling — when it is not, one must replace �.�/ with a subset of the zero set of � and take more care).
See Figure 17.

We can now immediately deduce certain properties of the tremor map from the structure of SHC.�/ and
the intersection pairing. While we will not use these results in the sequel, we have chosen to include them
in order to demonstrate the utility of our new perspective on these deformations. For example, using our
coordinates one can easily deduce that (nonatomic) tremors leave horizontal data invariant and hence can
be continued indefinitely while remaining in the same stratum.

Lemma 11.5 For any q 2Fuu.�/ and �2 j�.�/j˙, the tremor path tremt�.q/ is defined for all time and
is completely contained in SH.�IA.q//. In particular , ftremt�.q/g always remains in the same stratum.
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shear-shape cocycles foliation cocycles

�.�/ CCq
j�.�/j˙ Tq

!SH.�; �/D i.�C; �/� i.��; �/ signed mass Lq.�/

i.�C; �/C i.��; �/ total variation jLjq.�/

Figure 17: Translating between our language of shear-shape cocycles and the “foliation cocycles”
of [Chaika et al. 2020]. Throughout, we assume that qD q.�; �/where � is filling (or, equivalently,
q has no loops of horizontal saddle connections). We have written a signed transverse measure �
as �D �C��� 2 j�.�/j˙, where �˙ 2�.�/.

Remark 11.6 The above lemma is one specific instance of a much more general phenomenon. The
global description of Fuu.�/ afforded by shear-shape coordinates allows one to formulate a general
criterion for extending affine period geodesics, a topic which the authors hope to address in future work.

Using our interpretation of tremors as translation, it is similarly easy to describe how tremors interact
with other flat deformations. Compare with [Chaika et al. 2020, Propositions 6.1 and 6.5]. We leave
proofs to the reader, as they follow immediately from (28) and (26).

Lemma 11.7 Let q 2 Fuu.�/. Then , for any � 2 j�.�/j˙ and for gt D
�

et=2

0
0

e�t=2

�
,

gt trem�.q/D tremet=2�.gt .q//:

Additionally, for any �1; �2 2 j�.�/j˙,

trem�1
.q/ trem�2

.q/D trem�1C�2
.q/D trem�2

.q/ trem�1
.q/:

In particular , tremors commute with the horocycle flow.

12 Shear-shape coordinates for hyperbolic metrics

We now parametrize hyperbolic structures on S by shear-shape cocycles for a measured geodesic
lamination �. With respect to the Lebesgue measure on ML.S/, the generic lamination cuts a hyperbolic
surface into ideal triangles. As all ideal triangles are isometric, Bonahon and Thurston’s shearing
coordinates need only take into account the “shear” between pairs of complementary triangles to describe
a hyperbolic structure. As our objective is to generalize these coordinates to laminations with arbitrary
topology, we must therefore combine the data of the geometry of hyperbolic metrics in complementary
subsurfaces with the shearing data between them. The shear-shape space SH.�/ is well suited to this task.

In Sections 13–15, we explain how to associate a “geometric shear-shape cocycle” to a hyperbolic metric
and prove that the space of positive shear-shape cocycles coordinatizes Teichmüller space:

Theorem 12.1 The map �� W T.S/ ! SHC.�/ that associates to a hyperbolic metric its geometric
shear-shape cocycle is a stratified real-analytic homeomorphism.
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As detailed in the introduction, combining this theorem with Theorems 2.1 and 10.15 implies that the
orthogeodesic foliation map O� is a homeomorphism, and consideration of the earthquake/horocycle
flows in SHC.�/ coordinates then proves the conjugacy on slices (Theorem D).

We remark that the stratified regularity of �� and O� is the best one can expect, since the adjacency
of strata of differentials is not analytic (as there are multiple inequivalent ways to “break up a zero”).
Compare with [Dumas 2015, Theorem D], in which it is shown that, for a fixed Riemann surface Z, the
identification Q.Z/ŠML guaranteed by the Hubbard–Masur theorem [1979] is stratified real-analytic.

Fixed complementary subsurfaces By definition (see Section 13.2), the weighted arc system A.X /

underlying ��.X / exactly identifies the geometry of X n� via Theorem 6.4. Setting

T.S IA/ WD fX 2 T.S/ WA.X /DAg;

Theorem 12.1 therefore implies that T.S IA/ is nonempty if and only if A 2B.S n�/.

Remark 12.2 The authors do not know a proof of this fact that does not factor through Theorem 12.1
except in some special cases (for example, when the complement of � is polygonal, or when � is a union
of simple closed curves).18

In fact, since SHC.�/ is an affine cone bundle over B.S n�/ (Proposition 8.5), we see that:

Corollary 12.3 For each A 2B.S n�/, the set T.S IA/ is a real-analytic submanifold of T.S/ and the
restriction of �� to

T.S IA/! SHC.�IA/ŠHC.�/

is a real-analytic homeomorphism.

In this setting, the correspondence between T.S IA/ and HC.�/ is a natural generalization of shear
coordinates, since the complementary subsurfaces to � are always isometric. In fact, the shape-shifting
deformations built to deform X by some s 2 H.�/ (see the proof sketch of Theorem 12.1 just below)
restrict to cataclysms/shear maps in the sense of [Bonahon 1996, Section 5]. In particular, if s represents
a measure supported on �, then the shape-shifting deformation determined by s is part of an earthquake
in s (Corollary 15.2); if s is a multiple of ��.X /, the shape-shifting transformation can sometimes be
identified with part of a (generalized) stretch ray (Propositions 15.12 and 15.18).

In addition to being nonempty, T.S IA/ is structurally rich; the authors hope to explore this space further
in future work. Of particular interest is the (degenerate) Weil–Petersson pairing on this locus and its
relation with the Thurston symplectic form and Masur–Veech measures.

18One can of course complete � to a maximal lamination and then specify the shear coordinates on each of the added leaves, but
then one must be very careful to ensure that these shears satisfy the relations coming from the metric residue condition. The
argument then requires an involved computation with train tracks carrying the completed lamination.
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A sketch of the proof Since the proof of Theorem 12.1 spans several sections (two of which consist of
involved constructions of the relevant objects), we devote the remainder of this section to a broad-strokes
outline of the arguments involved. Our exposition throughout these sections is mostly self-contained, but
we sometimes refer to [Bonahon 1996] for proofs and to [Thurston 1986] for inspiration.

We begin in Section 13 by defining the map ��. Under the correspondence established in Theorem 6.4,
we associate to X the weighted arc system A.X / recording the hyperbolic structure on X n�. We cut X

along the (ortho)geodesic realization of �[˛ into a union of (degenerate) right-angled polygons, and
measure the shear between certain pairs of polygons. We then argue using train tracks that it suffices
to record the shearing data of ��.X / on short enough arcs k transverse to � and disjoint from ˛.X /.
The value of ��.X / on short k may then be defined by isotoping k to a path connecting vertices of
the spine Sp and built of segments alternating between leaves of � and of O�.X /, then measuring the
total (signed) length along �. These measurements are equivalent to Bonahon and Thurston’s method of
measuring shears (via the horocyclic foliation) when k is short enough, but cannot be globally derived
from theirs due to obstructions coming from complementary subsurfaces.

The proof that �� is a homeomorphism then follows the same general steps as appear in [Bonahon 1996].
After proving that �� is injective and lands inside SHC.�/ (Proposition 13.12 and Corollary 13.14), we
then show that it is open (Theorem 15.1) and proper. Since SHC.�/ is a cell (Proposition 8.5), invariance
of domain then implies that �� must be a homeomorphism.

Our proof of injectivity mirrors that of [Bonahon 1996, Theorem 12] with an additional invocation of
Theorem 6.4. For properness we mostly appeal to [Bonahon 1996, Theorem 20] but need to discuss
complications that arise from the piecewise-linear structure of shear-shape space. Similarly, our broad-
strokes strategy to prove openness parallels that of [Bonahon 1996, Section 5], in that we build a
“shape-shifting cocycle” 's for all small-enough deformations s of ��.X / (see Section 14). Deforming X

by postcomposing its charts to H2 with 's then yields a surface Xs with ��.Xs/D ��.X /C s.

It is in the construction of 's, performed in Section 14, where our discussion truly diverges from [Bonahon
1996; Thurston 1986]. When � is maximal, one can specify 's by shearing X along the leaves of � (ie
performing a cataclysm). Even in the maximal case this procedure is delicate, hinging on the convergence
of infinite products of small Möbius transformations (compare Section 14.2). In the nonmaximal case,
we must also simultaneously account for the changing shapes of complementary subsurfaces (which also
introduces extra complications into the shearing deformations since the shapes of spikes are changing).
See the introduction to Section 14 for a more granular description of the construction of 's.

13 Measuring hyperbolic shears and shapes

In this section, we take our first steps towards proving Theorem 12.1 by describing how to associate to
any hyperbolic surface X a geometric shear-shape cocycle ��.X / in a natural way; this yields the map

�� W T.S/! SH.�/:
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After fixing some notational conventions that we will use throughout the sequel, we define ��.X / by first
specifying its underling arc system A.X / in a variety of equivalent ways. After doing so, we define the
shear between “nearby” hexagons analogously to Bonahon and Thurston; placing all of this data onto a
standard smoothing �˛ of a geometric train track is therefore enough to specify ��.X / (Lemma 13.6).

We then show that the data of shears between any two nearby hexagons can be recovered from the weight
system on �˛, even if those hexagons are not “visible” to �˛ (Lemma 13.9). This in particular implies
that our choice of �˛ does not actually matter, and hence ��.X / is well defined.

We then conclude the section by proving some initial properties of ��. Proposition 13.12 shows that
the map is injective following an argument of Bonahon, while in Theorem 13.13 we show that our map
captures the geometry of the orthogeodesic foliation.

13.1 Preliminaries and notation

In this section, we discuss the geometry of a geodesic lamination on a hyperbolic surface and fix notation
in preparation for our definition of the geometric shear-shape cocycle of a hyperbolic structure.

Throughout, we use the symbol � to refer to both the measured lamination � and its support, realized
geodesically with respect to any number of hyperbolic metrics. We reserve S to denote a topological
surface and † the topological type of a component of S n�, while X and Y will denote their hyperbolic
incarnations. We also adopt the following family of notational conventions: the expression g � � means
that g is a leaf of �, and Y �X n� means that Y is a component of (the metric completion of) X n�, etc.
The notation of [Bonahon 1996] is used as inspiration, since we will make direct appeals to the results
therein. However, our situation requires more care, since we have more objects to keep track of. A key
difference is that we will focus not on the relative shear between complementary subsurfaces of X n�,
but on the relative positioning of pairs of boundary leaves of �, equipped with a natural collection of
basepoints determined by the orthogeodesic foliation.

Hexagons Given X 2 T.S/ and � 2ML.S/, realize � geodesically on X. Construct the orthogeodesic
foliation O�.X / on X with piecewise-geodesic spine Sp and dual arc system ˛ D ˛.X /, realized ortho-
geodesically with respect to X and �. The union �˛ D �[˛ is a geometric object on X that fills; that is,
the metric completion of X n�˛ is a union of geometric pieces that are topological disks, possibly with
some points on the boundary removed corresponding to spikes. We lift the situation to universal covers
z�˛ � zX, where we have also the full preimages �Sp, z�, z̨, etc of various objects.

Let H be the vertex set of �Sp; we will sometimes refer to v 2 H as a hexagon. Indeed, to v there is
associated a component Hv of zX n z�˛ which is generically a degenerate right-angled hexagon, though
Hv may also be a regular ideal or right-angled polygon, for example. We reiterate that, by abuse of
terminology, any complementary component Hv of zX n z�˛ is called a hexagon, no matter its shape.
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If fHv W v 2Hg contains components that are not degenerate right-angled hexagons in the usual sense,
then ˛ corresponds to a simplex of Afill.S n�/ of nonmaximal dimension (or the empty set, if � is filling
and ˛ is empty). One may always include ˛ in a maximal arc system ˇ, which necessarily defines a
simplex of full dimension. The complementary components of zX n z�ˇ are now degenerate right-angled
hexagons in the usual sense, and gluing them in pairs along ˇ n ˛ gives the more general “hexagons”
of zX nz�˛ . We will often tacitly choose and work with a maximal arc system containing the original when
convenient.

Pointed geodesics We now define a natural family of basepoints associated to boundary leaves of z�. For
v 2 H and its associated hexagon Hv, define the �–boundary @�Hv of Hv to be the set of leaves of z�
that meet @Hv.

For v 2 H and g a leaf of @�Hv, define pv to be the orthogonal projection of v to g. Observe that v
and pv lie along the same (singular) leaf of O�.X /. The orientation of S gives Hv an orientation and
hence orients @Hv; this yields an orientation-preserving, isometric identification of .g;pv/ with .R; 0/.
We refer to points on a based geodesic by their signed distance to the basepoint, so that 0 refers to pv

while ˙x refer to the points at signed distance ˙x from pv.

For a pair v¤w2H not in the same component of �Sp, there is a unique geodesic gwv 2@�Hv that separates
v from w. Symmetrically, there is such a pointed geodesic gvw 2 @�Hw separating w from v. Note that
gwv D gvw occurs if and only if this leaf is isolated, and, by the assumption that � is measured, projects to
a simple closed curve component of �. Even in this case, the points pv and pw are in general different.

13.2 The shear-shape cocycle of a hyperbolic structure

Our first task towards defining the geometric shear-shape cocycle ��.X / of a hyperbolic structure X is to
construct a weighted filling arc system A.X / 2B.S n�/ which records the shapes of the complementary
subsurfaces.

With the technology we have developed up to this point, we now have many ways of constructing A.X /,
all of which are easily seen to be equivalent:

� To each ˛ 2 ˛.X /, we associate the weight c˛ WD i.O�.X /; e˛/, where e˛ is the edge of Sp dual
to ˛. Equivalently, c˛ is the length of the projection of e˛ to either of the two leaves of � to which
it is closest. Then set A.X /D

P
c˛˛.

� Each component Y �X n� is naturally endowed with a hyperbolic structure; by Theorem 6.4 this
metric corresponds to a weighted filling arc system in jAfill.Y; @Y /jR, and we let A.X / denote the
union of these arc systems over all components of X n�.

� Let q be the quadratic differential with jRe.q/j D O�.X / and jIm.q/j D �; then set A.X /DA.q/.

The final definition together with the results of Section 10 implies that A.X / 2 B.S n �/ for every
hyperbolic structure X on S. In the interest of providing the reader with geometric intuition for this
condition, we have included an alternative, purely hyperbolic-geometric proof of this fact below.
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Lemma 13.1 With notation as above , A.X / 2B.S n�/.

Proof By Theorem 6.4, it suffices to show that for each minimal, orientable component � of �, the sum
of the metric residues of the crown ends of X n� incident to � is 0. If � is a simple closed curve, then
the metric residue is just equal to the (signed) lengths of the boundary components resulting from cutting
along �, which clearly must match.

So assume that � is not a closed curve and pick an orientation. Construct a geometric train track �
snugly carrying � as in Construction 5.6; then � inherits an orientation from the inclusion of � and so
has well-defined left- and right-hand sides. As in Section 5.2, every branch b of � has a well-defined
length along � which we denote by `� .b/ > 0. At each switch s of � , let hs be the leaf of the horocyclic
foliation of N�.�/ projecting to s. By assumption of snugness, the spikes of S n � correspond with the
spikes of S n�, so the union of the hs truncates each spike of each crown end incident to � by hs .

Each crown incident to � inherits an orientation from the chosen orientation on �, and we now compute
the total metric residue with respect to these orientations and the truncations induced by the hs . Recall that
the metric residue of an oriented crown C is the alternating sum of the lengths of the geodesic boundary
segments running between the truncation horospheres (Definition 4.3). Each such geodesic segment
defines a cooriented trainpath .b1 � � � bn;˙/ in � (ie a trainpath and a distinguished side, left or right,
corresponding to C and �, respectively) which runs along the entirety of a smooth component of the
boundary of X n � . Using this identification, we may compute that the corresponding contribution to the
total metric residue is given by ˙

P
i `� .bi/.

Finally, we observe that every branch of � is a subpath of exactly two smooth boundary edges of X n �

(corresponding to its left and right sides). Therefore, the sum of the metric residues of all of the crown
ends incident to � is the sum of the contributions of the corresponding cooriented trainpaths, which is
necessarily 0 since each branch is counted twice, once with positive and once with negative sign. Thus
A.X / 2B.S n�/.

Shears between nearby hexagons Our second step towards defining ��.X / is to determine how to
record shearing data between two hexagons that lie in different components of zX n z� yet are close
enough together. Except for sign conventions (see Remark 13.3), our discussion is essentially identical to
Bonahon’s definition [1996, Section 2] of shearing between the plaques of a maximal lamination. Our
restriction to pairs of nearby hexagons reflects the fact that if two hexagons are far apart, a path connecting
them may meet a subsurface of zX n z� in a variety of ways.

Given v;w 2H, consider the associated pointed geodesics .gwv ;pv/2 @�Hv closest to Hw and .gvw;pw/2
@�Hw closest to Hv. We say that the geodesic segment kv;w � zX joining pv to pw is a simple piece if
kv;w projects to a simple geodesic segment in X and kv;w bounds a spike in every hexagon that it crosses.
That is, if kv;w crosses Hu for some u 2H, then kv;w \Hu bounds a triangle in Hu, two sides of which
lie on asymptotic leaves gvu and gwu defining a spike of z�. If kv;w is a simple piece, then we say that
.v; w/ is a simple pair.
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pv

v

pw

w

r D���.X /.v; w/

Figure 18: Computing the shears between two nearby hexagons v and w. In this example, r < 0,
so ��.X /.v; w/ > 0.

We observe that, if v;w 2H are close enough together and lie in different components of �Sp, then .v; w/ is
a simple pair. The exact value of “close enough” is unimportant, but we note that it suffices for d.Hu;Hv/

to be smaller than the length of the shortest arc of ˛.X /.

Now, following [Bonahon 1996, Section 2], let ƒv;w be the leaves of z� that separate gwv from gvw,
equipped with the linear order < induced by traversing kv;w from pv to pw. Since .v; w/ is a simple
pair, the subset of those leaves that are also the boundary of a complementary component of zX n z� come
in pairs that are asymptotic in one direction. The partial horocyclic foliations on the wedges bounded
by pairs of asymptotic boundary leaves extend across the leaves of ƒv;w, foliating the region bounded
by gwv and gvw. In particular, the leaf of the horocyclic foliation containing pv meets gvw (and the leaf
containing pw meets gwv ).

Since the orthogeodesic foliation is equivalent to the horocyclic foliation in spikes, for any simple
pair .v; w/, the leaf of Oƒv;w .

zX / containing pv meets gvw (and the leaf containing pw meets gwv ). In
fact, simplicity implies that Oƒv;w .

zX / foliates the “quadrilateral” bounded by gvw , gwv and the two leaves
of Oƒv;w .

zX / containing pv and pw.

Definition 13.2 Suppose that .v; w/ is a simple pair of hexagons. Using the orientation conventions
of Section 13.1, identify the corresponding pointed geodesics .gwv ;pv/ and .gvw;pw/ with .R; 0/. Now
since the hexagons are close enough, the singular leaf of Oƒv;w .

zX / containing pv meets gvw in some
point r 2R, and we set ��.X /.v; w/D�r . See Figure 18.

It is not hard to see that ��.X /.v; w/ remains the same if we flip the roles of v and w. Indeed, following
along the leaves of the orthogeodesic foliation defines an orientation reversing isometry from a subsegment
of gwv to a subsegment of gvw that takes t 7! r�t . In particular, pv maps to a point on gvw that is positioned
r signed units away from pw, and so ��.X /.v; w/D ��.X /.w; v/.
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Remark 13.3 Our choice to set ��.X /.v; w/D�r instead of Cr records “how far along gvw you must
travel from r to get to pw”. Though this convention is the opposite of what appears in [Bonahon 1996],
it allows us to combine the data of ��.X /.v; w/ and A.X / into a system of train track weights on a
standard smoothing (Construction 13.5). Our convention also parallels our choice of Œ � �C function when
measuring periods of a quadratic differential (Lemma 10.10), which makes the relationship between the
hyperbolic geometry of .X; �/ and the flat geometry of q.O�.X /; �/ more transparent.

Below, we give an elementary estimate that will be used in the proof of Proposition 13.12; compare with
[Bonahon 1996, Lemma 8].

Lemma 13.4 Suppose that .v; w/ is a simple pair of hexagons. Let .gwv ;pv/ and .gvw;pw/ be the
associated pointed geodesics. Then the geodesic segment kv;w joining pv to pw satisfies

j��.X /.kv;w/j � `.kv;w/:

Proof As .v; w/ is simple, the partial orthogeodesic foliation Oƒv;w .
zX / foliates the region U bounded by

gvw , gwv and the two leaves of Oƒv;w .
zX / containing pv and pw . This foliation gives rise to a 1–Lipschitz

retraction � from U to gvw defined by following the leaves of the orthogeodesic foliation to gvw. The
image �.kv;w/ is then equal to the segment of gvw joining pw to the point labeled by ��.X /.v; w/, which
has length j��.X /.v; w/j. The lemma follows.

Hyperbolic shearing as train track weights Now that we have explained how to record the shapes
of X n� (Lemma 13.1) and the shears between nearby hexagons (Definition 13.2), we can package this
information together to define the geometric shear-shape cocycle ��.X / of a hyperbolic structure X.

Below, we realize the shape and shear information specified above as a weight system on a standard
smoothing of a geometric train track carrying �; this strategy allows us to specify ��.X / by a finite
collection of information. Once we show that the weights are well defined and satisfy the switch conditions,
we then invoke Proposition 9.5 to interpret this weight system as an (axiomatic) shear-shape cocycle (see
Definition 13.8). This reinterpretation in turn makes it apparent that our initial choice of train track does
not matter.

Using Construction 5.6, choose a geometric train track � �X that carries � snugly and let �˛ be a standard
smoothing of � [˛.X / (see Construction 9.3). Note that the components of zX n Q�˛ are in bijection with
the set of hexagons H, and that the assumption that � carries � snugly ensures that if two hexagons
correspond to adjacent components of zX n Q�˛ then they either share an edge of z̨ or form a simple pair.
We recall that two hexagons form a simple pair if the geodesic connecting their basepoints passes only
through spikes of S n�.

Construction 13.5 Fix �˛ �X as above. We then associate a weight system w.X / 2Rb.�˛/ as follows:

� To each branch corresponding to ˛ 2 ˛, assign the weight c˛ D i.O�.X /; e˛/, where e˛ is the edge
of Sp dual to ˛.
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N

SW SE

pSE

pN

pSW

b `

˛

s

s1 D w.X /.b/

d D w.X /.˛/

s2 D�w.X /.`/

Figure 19: Left: a local picture of � near s. Right: case (3). The switch condition is satisfied
because s1 D d � s2.

� For each branch b � �˛ that dos not correspond to an arc of ˛, choose a lift Qb 2 Q�˛. Let v;w 2
H denote the vertices of �Sp corresponding to the hexagons adjacent to Qb, and set w.X /.b/ D
��.X /.v; w/.

Lemma 13.6 Let X, �, ˛ and �˛ be as above. Then the edge weights w.X / 2 Rb.�˛/ given by
Construction 13.5 satisfy the switch conditions.

Proof Reference to Figure 19 will provide clarity throughout. We note that �˛ is generically trivalent,
but may be 4–valent if there are arcs ˛1; ˛2 2 ˛ whose endpoints on � lie on a common leaf of the
orthogeodesic foliation. We give an argument only for the trivalent switches of �˛, and leave it to the
reader to make the necessary adjustments for 4–valent switches (the statement for 4–valent switches can
also be deduced by continuity).

Let s be a trivalent switch; then standing at s and looking into the spike, there are small half-branches
exiting s on our right and left; call these r and `, respectively. By our convention on standard smoothings,
every half-branch of �˛ corresponding to an arc of ˛ is a right small half-branch.

If no branch of s corresponds to an arc of ˛, then the arguments appearing in [Bonahon 1996, Section 2]
imply that the weights satisfy the switch conditions, because the orthogeodesic foliation is equivalent to
the horocycle foliation in near s. See also [Papadopoulos 1991, Section 6] for a discussion more similar
in spirit to ours.

Otherwise, the right small half-branch r is labeled by some ˛ 2 ˛. Let b be the large half-branch incident
to s. Give names also to the hexagons incident to s and their distinguished points on b or ` by projection;
they are N, SE, and SW 2 H, and pN , pSE and pSW , respectively, where b and ` form part of the
boundary of N, ` and r form part of the boundary of SE, and r and b form part of the boundary of SW.
See Figure 19.

Now take d D d.pSW ;pSE/, which is equal to w.X /.r/D c˛ > 0 by definition. Define also

s1 WD jw.X /.b/j D d� .pSW ;pN / and s2 WD jw.X /.`/j D d� .pN ;pSE/:
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Here d� is understood to mean the distance between leaves of the orthogeodesic foliation near � , measured
along any leaf of � (see Section 5.2 for an explanation of why this value is well defined).

There are three kinds of configurations for the projection points pSW , pN and pSE that determine the
signs of w.X /.b/ and w.X /.`/:

(1) The point pN precedes both pSW and pSE with respect to the orientation of � on induced by HN ,
so that

w.X /.b/D�s1 and w.X /.`/D�s2 with s2 > s1:

In this case, d D s2� s1 and so d � s2 D�s1, which is exactly the switch condition.

(2) Both pSW and pSE precede pN , so that

w.X /.b/D s1 and w.X /.`/D s2 with s1 > s2:

This possibility gives that d D s1� s2 and so d C s2 D s1.

(3) The point pSW precedes pN , which in turn precedes pSE , so that w.X /.b/D s1 and w.X /.`/D
�s2. In this case, d D s1C s2 and so d � s2 D s1, which is again the switch condition.

Therefore, no matter the configuration of points pN , pSW and pSE , the switch conditions are fulfilled at
s, completing the proof of the lemma.

Remark 13.7 Importantly, w.X / is generally not the same as the weight system coming from the shear
coordinates of a completion of � (unless � was maximal to begin with).

Invoking Proposition 9.5 and Lemma 13.1, the weight system w.X / defines a shear-shape cocycle with
underlying arc system A.X /.

Definition 13.8 The geometric shear-shape cocycle .��.X /;A.X // of a hyperbolic metric X is the
unique shear-shape cocycle for � corresponding to the weight system w.X / of Construction 13.5.

The rule that assigns to a hyperbolic structure its geometric shear-shape cocycle therefore defines a map

�� W T.S/! SH.�/; X 7! ��.X /;

which is the subject of the rest of this article.

Train track independence We have employed the language of train tracks for convenience — the ties
of a train track are a useful class of measurable arcs in the sense that they can be made transverse to �
and disjoint from ˛ (or record the weight associated to an arc of ˛). However, Construction 13.5 and
Definition 13.8 a priori depend on the choice of geometric train track �˛ carrying �.

Now that we have identified the weight system w.X / with the shear-shape cocycle ��.X /, however, we
can invoke both the axiomatic and cohomological interpretations (Definitions 7.5 and 7.11) to see that
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the value of ��.X / on any arc k transverse to � but disjoint from ˛ does not depend on the choice of
geometric train track. Indeed, let k be any such arc; then by transverse invariance (axiom (SH1)) we may
replace k with a concatenation of short geodesics, all of which are transverse to � but disjoint from ˛.
By additivity (axiom (SH2)), it therefore suffices to show that the value of ��.X / on any short geodesic
disjoint from ˛ does not depend on the train track.

Lemma 13.9 Let k be a short enough geodesic segment on X that is transverse to �. Lift k to an arc Qk
on zX and let v and w be the hexagons containing the endpoints of Qk; then

��.X /.k/D ��.X /.v; w/;

where on the left ��.X / represents the axiomatic shear-shape cocycle and on the right ��.X / represents
the shear between nearby hexagons (Definition 13.2). In particular , ��.X /.k/ does not depend on the
choice of train track employed in Definition 13.8.

In fact, the conclusion of this lemma holds for all simple pairs.

Proof So long as k is short enough (shorter than all arcs of ˛.X /), .v; w/ is a simple pair. Using
axiom (SH1), we may therefore isotope k through arcs transverse to � but disjoint from ˛ to an arc k 0,
defined to be the concatenation of kv;w, the geodesic connecting the points pv and pw on the boundary
geodesics gwv and gvw, together with segments of the orthogeodesic foliation inside each hexagon Hv

and Hw.

Let � be a geometric train track snugly carrying � defined with parameter �; then the collapse map
� W N�.�/ ! � takes k 0 to a train route on � , and hence on �˛. Orient k 0 (and hence also the train
route �.k 0/) so that it travels from v to w. Let vD u1;u2; : : : ;uN Dw denote the sequence of hexagons
corresponding to regions of zX n Q�˛ bordering this train route, so that the regions corresponding to ui

and uiC1 both meet the same subsegment of �.k 0/. Let pi denote their corresponding projections onto �.
Note that, since �.k 0/ is carried on � � �˛ , no pair of subsequent hexagons ui and uiC1 lies in the same
component of �Sp. This plus the construction of the train track implies that .ui ;uiC1/ is a simple pair,
and we can measure the shear ��.X /.ui ;uiC1/ (up to sign) as the distance along the train track between
�.pi/ and �.piC1/.

Now, given �˛ carrying �, we observe that k 0 also determines a (pair of) relative cycle(s) in the corre-
sponding (orientation cover of the) �–neighborhood of �˛. The value ��.X /.k/ D ��.X /.k 0/ is then
equal to the value of the cohomological shear-shape cocycle evaluated on either of the oriented lifts Ok 0

of k 0 which cross the lift of � with positive local orientation. We may therefore express

Œ Ok 0�D Œt1�� Œt2�C Œt3�� � � �˙ ŒtN�1�;

where ti is a (lift of a) tie corresponding to the branch of the train track connecting the regions corresponding
to ui and uiC1, lifted to the orientation cover to have positive intersection with �. See Figure 20.
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Figure 20: Measuring the shear of a small arc using a geometric train track. By isotoping k to a
proper arc in the geometric train track neighborhood and then expressing its relative homology
class as a sum of the branches, we can compute its shear as the alternating sum of shears between
adjacent hexagons.

But now, by construction, ��.X / evaluated on Œti � is just the shear ��.X /.ui ;uiC1/. In turn, this shear
is equal to the signed distance along the train track between �.pi/ and �.piC1/ (where the sign is
determined by the local orientation of �). Combining this with the expression for Œ Ok 0� above, ��.X /.k/ is
exactly equal to the signed distance along the train track between �.p1/ and �.pN /, which is the shear
��.X /.v; w/.

We note that, in the proof above, the cohomological interpretation of shear-shape cocycles provides a
convenient workaround for the obstacle that the train route with dual transversals t1; : : : ; tN�1 is not
in general isotopic to k through arcs transverse to �. Regardless, the relative homology class defined
by k 0\N�.�/ is homologous to a linear combination of ftig in the orientation cover of N�.�/.

Remark 13.10 The lemma above can also be proved by splitting any two geometric train tracks to a
common subtrack [Penner and Harer 1992, Theorem 2.3.1]. Each splitting sequence can then be realized
in the orthogeodesically foliated neighborhood N�.�/�X by cutting along compact paths in the spine
associated to a spike, as in [Zhu and Bonahon 2004, Section 3]. Splits induce maps on weight spaces,
and so Lemma 13.9 is essentially equivalent to the statement that Construction 13.5 is compatible with
splitting and collapsing. See also [Bonahon 1997b, Lemma 6].

The cocycle as a map on pairs It will be convenient to repackage the data provided by ��.X / in yet
another form, which also explains our choice of notation in Definition 13.2.

If v;w 2 H can be joined by a Lipschitz continuous segment kv;w which is transverse to �, disjoint
from ˛, and meets no leaf of z� twice, then we say that .v; w/ is a transverse pair and that kv;w is a
transversal. If .v; w/ is a transverse pair, we say that r is between v and w if there is a transversal kv;w

that decomposes as a concatenation of transversals kv;w D kv;r � kr;w. Finally, we define

��.X /.v; w/ WD ��.X /.kv;w/
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and declare that ��.X /.v; v/ D 0. Observe that, if .v; w/ is a simple pair, then this agrees with our
definition of the shear between nearby hexagons (Definition 13.2).

Lemma 13.11 The shear-shape cocycle ��.X / defines a map on transverse pairs that satisfies:

(1) �1–invariance For each  2 �1.X /, we have ��.X /. v; w/D ��.X /.v; w/.

(2) Finite additivity If .v; w/ is a transverse pair and r is between v and w, then

��.X /.v; w/D ��.X /.v; r/C ��.X /.r; w/:

(3) Symmetry ��.X /.v; w/D ��.X /.w; v/.

The proof of this lemma is simply a consequence of unpacking the definitions and showing that two
different choices of transversals give the same shear values; the latter statement is just a repeated application
of axiom (SH3).

13.3 Injectivity and positivity

We now record some initial structural properties of the map �� defined above. In particular, we demonstrate
that �� is injective and interacts coherently with the orthogeodesic foliation map O� and the shear-shape
coordinatization I� of transverse foliations.

Observe that injectivity of �� is equivalent to the statement that if two hyperbolic structures have the
same complementary subsurfaces and same gluing data along �, then they must be isometric. As the
horocyclic and orthogeodesic foliations are equivalent in spikes of complementary subsurfaces, the
proofs of [Bonahon 1996, Lemma 11 and Theorem 12] may be invoked mutatis mutandis. We outline
this argument below for the convenience of the reader, and direct them to [Bonahon 1996] for a more
thorough discussion of the estimates involved. We remark that this strategy also appears in the proof of
Proposition 15.12, where we use it to piece together Lipschitz-optimal homeomorphisms along �.

Proposition 13.12 The map �� W T.S/! SH.�/ is injective.

Sketch of proof Fix homeomorphisms . zS ; z�/ with . zXi ; z�/ that lift the markings S !Xi and are such
that each component z†� zS n z� maps homeomorphically to a component zYi �

zXi n
z� for i D 1; 2.

Suppose that ��.X1/D ��.X2/; then in particular A.X1/D A.X2/ and so, by Theorem 6.4, the com-
plementary subsurfaces X1 n� and X2 n� are isometric. Therefore, for a given component †� S n�,
we can find an �1.†/ equivariant isometry '† W zY1!

zY2. Define ' W zX1 n�! zX2 n� to be the union of
these maps on each complementary component; by construction, ' is an isometry.

We need to show that ' extends to a �1.S/–equivariant isometry ' W zX1!
zX2. To prove this, we apply the

arguments of [Bonahon 1996, Lemma 11], which we summarize presently. The first step is to construct
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a locally Lipschitz continuous extension of '; this step employs the length bound of Lemma 13.4 and
some elementary hyperbolic geometry, and the arguments of the first ten paragraphs of [Bonahon 1996,
Lemma 11] may be applied verbatim.

As in Bonahon’s original proof, we now show that ' is actually 1–Lipschitz, given that it is locally
Lipschitz. We first show that ' does not increase the length of leaves of the orthogeodesic foliation.

Given any segment ` of a leaf of the orthogeodesic foliation BO�.X1/, the length of ` restricted to any
hexagon Hu where u 2H is completely determined by the isometry type of Hu and the distance along z�
from pu 2 @�Hu. As ��.X1/ determines the shape of X1 n�, we can recover this information and hence
determine the length of `\Hu just from the data of ��.X1/.

From ��.X2/D��.X1/, we deduce that the length of ` in any hexagon of zX1 is equal to the length of '.`/
in the corresponding hexagon of zX2. Moreover, since ' is locally Lipschitz, the 1–dimensional Lebesgue
measure of '.`/\'.z�/ is at most the 1–dimensional Lebesgue measure of `\z�. By a now-classical fact,
the latter is zero [Birman and Series 1985]; hence, so is the former. Therefore, the length of ` in X1 is
equal to the length of ` in X2.

Now there is a path joining any two points in zX1 built from geodesic segments and segments of leaves of
the orthogeodesic foliation. The argument above shows that ' preserves the lengths of such paths, so ' is
globally 1–Lipschitz. The construction is completely symmetric, so '�1 is 1–Lipschitz as well. Now every
1–Lipschitz homeomorphism between metric spaces with 1–Lipschitz inverse is necessarily an isometry,
and equivariance of ' is immediate from the construction. Therefore X1 and X2 must be isometric.

The diagram commutes We have now developed sufficient technology to prove that the geometric shear-
shape cocycle of a hyperbolic metric is the same as the shear-shape cocycle associated to its orthogeodesic
foliation. In other words, diagram (2) commutes. Compare with [Mirzakhani 2008, Proposition 6.1].

Theorem 13.13 For all � 2ML and all X 2 T.S/, we have ��.X /D I� ıO�.X /.

Proof Fix a standard smoothing �˛ of a geometric train track � for � on X. Our approach is to
compute both ��.X /.b/ and I� ıO�.X /.b/ for each branch b of �˛ . These numbers will coincide, so, by
Proposition 9.5, ��.X /D I� ıO�.X /.

Let TX �X be the piecewise-geodesic triangulation of X whose vertices are the vertices of Sp, so that
there is an edge between v;w 2 Sp if the corresponding regions of X n �˛ share a branch. This recipe
generically yields a triangulation, but may have quadrilaterals in the case that two points of ˛.X /\� lie
on the same leaf of O�.X /\N�.�/. In this case, we may either choose a smaller initial neighborhood to
define our geometric train track so that this does not occur, or these points correspond to arcs that meet
an isolated leaf of � on either side; in the latter case, choose either diagonal that crosses the quadrilateral
to include into TX . Observe that each edge of TX is either transverse to O�.X / or a segment of a leaf (on
the off chance that two adjacent regions have exactly 0 shear between them).
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Let qD q.O�.X /; �/, and recall that Proposition 5.10 provides a homotopy equivalence D� WX ! q in the
correct homotopy class satisfying D��O�.X /D V .q/ and D���DH.q/ both leafwise and measurably.
Furthermore, D� maps TX to a (topological) triangulation of q with vertices at its zeros. It therefore
remains to show that ��.X / evaluated on a branch of �˛ is the same as I�.q/ evaluated on the dual edge
of this triangulation.

Now, by definition, A.X /DA.q/, so consider a branch b of �˛ not corresponding to an arc of the arc
system. Dual to b there is an edge e of the triangulation D�.TX / which is transverse to the orthogeodesic
foliation O�.X / on q (since TX was transverse to O�.X / on X ). Up to sign, the value of I�.q/ on b is the
magnitude of the real part of the period of e, which is just the geometric intersection number i.O�.X /; e/

by transversality.

On the other hand, ��.X /.b/ is equal to the shear between the two hexagons on either side of b. This in
turn is equal to the geometric intersection number i.O�.X /; kv;w/ up to sign, where kv;w is the geodesic
connecting the vertices pv and pw of �\˛.X /. Since D� takes kv;w to an arc transversely isotopic to e,
we have j��.X /.b/j D jI�.q/.b/j.

Finally, to show that the signs are equal, fix matching orientations on kv;w and e. These induce local
orientations on the leaves of � such that the algebraic intersection of � with kv;w, (respectively e) is
positive. In turn, this induces a local orientation on the leaves of O�.X / near kv;w (respectively e)
and our sign conventions are equivalent to stipulating that the sign is positive if kv;w (respectively e)
crosses O�.X / from left to right and negative if it crosses from right to left (compare [Mirzakhani 2008,
Section 5.2]). In particular, the signs agree and so ��.X /.b/D I�.q/.b/ for all branches b, completing
the proof of the theorem.

Corollary 13.14 For all � 2�.�/,

!SH.��.X /; �/D i.O�.X /; �/D `X .�/ > 0:

In particular , ��.T.S//� SHC.�/.

Proof The first equality is a direct consequence of Theorem 13.13 and Proposition 10.12. The second
equality was proved in Lemma 5.7.

14 Shape-shifting cocycles

In the previous section, we explained how to associate to each hyperbolic structure X a shear-shape
cocycle ��.X /. In this one, we explain how to upgrade a small deformation s of the cocycle into a
deformation of the hyperbolic structure; this is eventually used to prove that �� W T.S/! SHC.�/ is
open (Theorem 15.1). The main issue that we need to overcome is that we must simultaneously change
the geometry of the nonrigid components of X n� while shearing these subsurfaces along one another.
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The goal of this section is therefore to build, for every small enough deformation s of ��.X /, a �1.S/–
equivariant shape-shifting cocycle that records how to adjust the relative position of geodesics of �,

's W @�H� @�H! IsomC zX ;

where @�H WD f.hv;pv/� @�Hv W v 2Hg is the set of boundary geodesics of z� equipped with basepoints
obtained from projections of the vertices of �Sp. See Proposition 14.26.

In Section 15.1, we explain how to modify the developing map zX !H2 according to 's, resulting in a
new (equivariant) hyperbolic structure Xs with geometric shear-shape cocycle ��.X /C s (Lemma 15.6).
By fixing a pointed geodesic .hv;pv/ 2 @�H we identify IsomC. zX / with T 1 zX, so that the projection of
f's..hv;pv/; .hw;pw// j .hw;pw/2 @�Hg to zX is then the geodesic realization of z� in the new metric zXs.

When the deformation s preserves A.X /, the cocycle 's corresponds to a cataclysm map: the com-
plementary components of zX n z� are sheared along the leaves of z� and map isometrically into the
deformed surface Xs. When s alters A.X /, we must shear the complementary subsurfaces while also
simultaneously changing their shape, introducing complications not present in Bonahon and Thurston’s
original considerations.

Deforming the cocycle We first make explicit what we mean by a deformation of a shear-shape cocycle;
we quantify what we mean by “small” in Section 14.2.

Observe that, if � and � 0 in SHC.�/ are close, then, by Proposition 8.5, their underlying weighted arc
systems A and A0 are close in B.S n �/. In particular, the corresponding unweighted arc systems ˛
and ˛0 must both live in some common top-dimensional cell of B.S n �/, ie must both be contained
in some common maximal arc system ˇ. Let � be some snug train track for � and let �ˇ be a standard
smoothing of � [ˇ. By Proposition 9.5, we may then identify � and � 0 as weight systems on �ˇ; the
difference � � � 0 2W .�ˇ/ is then a deformation of � .

In general, if .�;A/ 2 SHC.�/ and ˇ is any maximal arc system containing the support of A, then the
deformations we consider in this section are those s 2W .�ˇ/ such that � C s 2W .�ˇ/ corresponds to a
positive shear-shape cocycle. Passing between equivalent definitions of shear-shape cocycles, we may
also think of s as a “shear-shape cocycle with negative arc weights”. The underlying weighted arc system
of any deformation s will be denoted by a; while its coefficients are not necessarily positive, they will
satisfy the zero total residue condition of (13) by construction.

By Theorem 6.4, the arc system ACa gives each component of S n� a new complete hyperbolic metric Y

with (noncompact) totally geodesic boundary. Since the supports of A and ACa are both contained inside
some common maximal ˇ, one may set up a correspondence between the complementary components
of X n�˛ with the components of Y n supp.AC a/ (adding in weight 0 edges as necessary).

A blueprint To help guide the reader through this rather intricate construction, we include here a
top-level overview of the necessary steps, together with an outline of the section. Briefly, our strategy is
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to explicitly define 's on two types of pairs of pointed geodesics: the “simple pairs” between which the
orthogeodesic foliation is comparable to the horocyclic, and the pairs which live in the boundary of a
common subsurface. Piecing together these basic deformations then allows us to define 's on arbitrary
pairs of pointed geodesics.

Our construction of 's for simple pairs parallels Bonahon’s construction [1996, Section 5] of shear maps,
and as such requires a detailed analysis of the geometry of the spikes of zX n z�. We therefore devote
Section 14.1 to recording a number of useful notions and estimates from [Bonahon 1996]. In this section,
we also introduce the “injectivity radius of X along �”, which measures the length of the shortest curve
carried on a maximal snug train track for � and plays a crucial role in our convergence estimates.

After these preliminary considerations, we turn in Section 14.2 to the actual construction of 's on simple
pairs. As in [Bonahon 1996], the map is defined by adjusting the lengths of countably many horocyclic
arcs in an appropriate neighborhood of �, compensating for changing shears between hexagons. Unlike
in [Bonahon 1996], we must also adjust the arcs to account for the changing shapes of each of the spikes
(as we are deforming the complementary subsurfaces). Convergence of the resulting infinite product of
parabolic transformations is delicate; our approach follows [Bonahon 1996, Section 5] with influence
from the more geometric approach of [Thurston 1986]. An accessible treatment of Thurston’s construction
of “cataclysm coordinates” can be found in [Papadopoulos and Théret 2007, Section 3.5].

We then turn in Sections 14.3 and 14.4 to defining 's on pairs of geodesics in the boundary of the same
hexagon or the same complementary subsurface, respectively. It is here that our work significantly differs
from that of Bonahon and Thurston. In these sections we also develop the idea of “sliding” a deformed
complementary subsurface along the original; this viewpoint allows us to easily demonstrate a number of
otherwise nontrivial relations between Möbius transformations (see Propositions 14.18, 14.19 and 14.24).

Finally, in Section 14.5 we build the shape-shifting cocycle 's from these pieces; the cocycle relation
(Proposition 14.26) then follows from the cocycle relations for pieces and the separation properties of z�.

Note Throughout this section and the next, we consider isometries via their action on a pointed geodesic,
and compositions should be read from right to left.

14.1 Geometric control in the spikes

We first record some useful definitions and associated geometric estimates. These estimates play a crucial
role in establishing convergence of the infinite products appearing in Section 14.2. Many of our definitions
follow Bonahon’s, but in order to contend with the fact that the complementary subsurfaces of � are
not always isometric, we must relate certain constants to the geometry of � on X (see Lemma 14.5, in
particular).

Our discussion will take place with certain data fixed. Choose a hyperbolic surface X 2 T.S/ and a
measured lamination � 2 ML.S/. Let � > 0 be small enough that an �–geometric train track � on X
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carries � snugly. The standard smoothing �˛ for the arc system ˛ D ˛.X / provides us with a vector
space W .�˛/ that models SH.�I˛/. With �˛ fixed, we endow the vector space of weights on branches
of �˛ with the sup norm k � k�˛ , and restrict this norm to the weight space W .�˛/.

Let kb be an oriented geodesic transverse to a branch b 2 � that also avoids ˛. Following Bonahon, we
define the divergence radius or depth rb.d/ 2Z>0 of a component d of kb n� to be “how long the leaves
of � incident to d track each other”, as viewed by � .

More precisely, lift everything to the universal cover zX. By convention, set rb.d/D 1 if d contains one
of the endpoints of kb . Otherwise, d is contained in a spike of Hv for some v 2H, ie d connects a pair
of asymptotic geodesics g�

d
and gC

d
. The divergence radius rb.d/ is then the largest integer r � 1 such

that �.gC
d
/ and �.g�

d
/ successively cross the same sequence of branches

b�rC1; b�rC2; : : : ; b0; : : : ; br�2; br�1

of Q� , where b0 is the lift of b meeting Qkb and � WN�.z�/! Q� is the collapse map. By equivariance, rb.d/ is
clearly independent of the choice of lift Qkb of kb .

Remark 14.1 After projecting back down to � � X, either b�rC1 � � � b0 or b0 � � � br�1 defines a train
route d in � that starts at b and terminates by “opening up” into the projection of Hv in X. That is, the
geodesics gC

d
and g�

d
diverge from each other (at scale �) at the terminus of d .

Now there are boundedly many spikes of X n�, and for each r � 1 each spike may contain at most one
component d � kb n� with depth exactly r . This gives us the following bound:

Lemma 14.2 [Bonahon 1996, Lemma 4; Sözen and Bonahon 2001, Lemma 5] For any branch b of �
and any transversal kb , the number of components d of kb n� with rb.d/D r is at most 6j�.S/j.

The train track interpretation of the depth of a segment also allows us to bound the value of a shear-shape
cocycle s in terms of its weights on a snug train track and the depth of its endpoints.

More specifically, for each component d of kb n�, let kd
b

be the subarc of kb joining the initial point of kb

to any point of d . Then, for any combinatorial deformation s and b a branch of �˛, there is an explicit
formula for s.kd

b
/ as a linear function of the weights of s on �˛ with at most rb.d/ terms [Bonahon

1997b, Lemma 6]. Conceptually, this formula arises by splitting �˛ open along the spike s containing d ,
until d is “visible” in some new track � 0˛ carried by �˛ (see also the proof of Lemma 13.9).

The exact expression for s.kd
b
/ will not be important for us; instead, we record the following estimate,

which follows by considering the growth of edge weights upon splitting.

Lemma 14.3 [Bonahon 1996, Lemma 6; Sözen and Bonahon 2001, Lemma 6] Let kb be a transversal
of a branch b. Then

js.kd
b /j � ksk�˛rb.d/

for every s 2 SH.�I˛/ and every component d of kb n�.
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We remark that our definitions of k � k�˛ and rb. � / make the bound given in Lemma 14.3 hold without a
topological multiplicative factor, as in [Bonahon 1996].

Geometric estimates on depth The depth of a component d of kb n� is proportional to the distance
from a lift Qd to the vertex u 2H inside the corresponding spike. The constant of proportionality in turn
depends on how quickly the spike of Hu containing Qd returns to kb on X ; we now identify a quantity
that will allow us to estimate this constant.

Let k be any geodesic arc transverse to � such that each lift Qk to zX bounds a spike in every hexagon that
it crosses; equivalently, the endpoints of Qk lie in a simple pair of hexagons. As in Section 13.2, it suffices
for k to be shorter than the shortest arc of ˛.X /. Now, for each leaf g of z�, there is a bound Rk.g/ > 0

for the distance in g between intersections of g with different lifts Qk1 and Qk2 of k. Indeed, any two lifts
of k meeting g differ by a deck transformation  2 �1.X / determined by a path in X that traces along
the projection of a segment in g and then closes up along k.

We then define the injectivity radius of X along � to be

inj�.X / WD inf
kt�

inf
g�z�

Rk.g/;

where the infimum is taken over all transverse arcs k whose endpoints lie in a simple pair of hexagons.

Equivalently, the injectivity radius of � may also be computed by taking an � such that the geometric
train track �max built from N�.�/ is snug and such that, for all �0 > �, the train track built from N�.�/ is
the same (not just equivalent) to �max, as follows.19

For each branch of �max, choose a tie tb (that is, a leaf of the orthogeodesic (or horocyclic) foliation
restricted to N�.�/ that is transverse to b). The injectivity radius along � is then equal to the infimum
of the recurrence times of � to any tb . Using the “length along a geometric train track” function `�max

defined in Section 5.2, we may therefore write

(29) inj�.X /D inf
��max

`�max. /;

where the infimum is taken over all simple closed curves  carried on the train track �max.

Remark 14.4 The length of the hyperbolic systole of X is clearly a lower bound for inj�.X /, which is
therefore positive. However, inj�.X / can be much larger than the length of the systole.

For example, if � does not fill the surface then there can be a disjoint curve of arbitrarily small length. In
addition, X may have a very short curve  transverse to �, and if � does not twist around  , then inj�.X /
is necessarily very large.

We can now relate the geometry of small arcs to their depth and injectivity radius along �.

19Any � sufficiently close to the supremum of � for which N�.�/ is snug satisfies these conditions.
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Lemma 14.5 [Bonahon 1996, Lemmas 3 and 5; Sözen and Bonahon 2001, Lemma 4] Given a branch b

of a geometric train track � constructed from � on X and a short transversal kb , there exists B > 0 such
that the following holds. For every component d of kb n� with depth rb.d/,

`X .d/� Be�D�.X /rb.d/;

where D�.X /D inj�.X /=9j�.S/j.

Proof The idea is the same as in the references, but our constants are different. Small geodesic arcs
meeting a spike s of a hexagon Hv transversely and far away from the vertex v look like horocycles,
which have length that decays exponentially in distance from v. Therefore, we just need to give a lower
bound for the distance between d and v 2Hv along the spike s in terms of inj�.X / and the topological
complexity of S.

Consider the train path d starting at b that defines rb.d/. By definition, d traverses exactly rb.d/

branches of � (counted with multiplicity). Now d decomposes as a concatenation of maximal sub–train
paths with embedded interiors, each forming a simple loop in � .20

The depth rb.d/ is thus bounded above by the number of consecutive simple loops in d times the size of
the longest simple loop in � . The size of a simple loop in � is in turn bounded above by the number of
branches of � , which is at most 9j�.S/j. Finally, since each simple loop in d is carried on � � �max, it
must have length at least inj�.X / by (29).

Putting the above estimates together, the distance between v and d in Hv is at least

inj�.X / � #fsimple loops in dg �
inj�.X /rb.d/

size of the longest simple loop in �
�

inj�.X /
9j�.S/j

rb.d/;

and the lemma follows.

14.2 Shape-shifting in the spikes

Our discussion now begins to diverge from [Bonahon 1996]. While pairs of asymptotic geodesics are all
isometric, the spikes of X n� come with extra decoration, namely, a choice of horocycle at each cusp
(equivalently, basepoints which lie on a common leaf of the orthogeodesic foliation). In this section,
we explain how to use these decorations to define the shape-shifting cocycle 's on pairs of basepointed
geodesics coming from simple pairs of hexagons.

We remind the reader that X, � and �˛ are fixed so that geometric objects like geodesic segments, hexagons,
arcs of ˛.X /, etc are understood to live in and be realized (ortho)geodesically on X. Throughout this
section we will fix ADA.X / and use it to denote both a weighted arc system and the induced metric
on S n�. Finally, we recall that s is a combinatorial deformation of ��.X / which changes A by a; we will
refer to the deformed hyperbolic structure on S n� by AC a and its hexagonal pieces by Gu for u 2H.

20A simple loop on a train track is a carried curve which traverses each branch at most once.

Geometry & Topology, Volume 28 (2024)



2086 Aaron Calderon and James Farre

q
p

Es

fX ;s.Es/

Gu Hu

Figure 21: Superimposing hexagons to measure the difference in the shapes of their spikes.

Shapes of spikes The group PSL2.R/ acts transitively on pairs of asymptotic geodesics but, having
done so, cannot further act on the family of horocycles based at the spike. To measure this failure, we
associate below a geometric parameter which records the placement of basepoints in each spike.

Suppose that u 2H is a hexagon of zX n z�˛ and s is a spike of Hu, that is, a pair of asymptotic geodesics
g and g0. Both g and g0 come with basepoints p and p0 obtained by projecting u to these geodesics. We
then associate to s the number hA.s/ which measures the length of either of the orthogeodesic leaves
connecting u to p or p0:

hA.s/ WD d.p;u/D d.p0;u/:

Our notation reflects the fact that this function clearly depends only on the geometry of X n� and not the
shearing along �. The reader familiar with the literature will observe that this parameter is essentially an
orthogeodesic version of the “sharpness functions” appearing in [Thurston 1986].

In order to measure the difference in sharpness functions between the realizations of s in A and in the
deformed metric AC a, we superimpose the hexagons Hu and Gu and measure the distance between
their boundary basepoints.

More concretely, choose an arbitrary orientation Es of the spike s and fix realizations of both Hu and Gu

inside H2. As PSL2.R/ acts simply transitively on triples in @H2, there is a unique isometry that takes
the realization of s in Gu to its realization in Hu. The vertex u of Sp is realized in both Hu and Gu; let p

and q denote the projections of these points to one of the boundary geodesics g of s. See Figure 21.

Lemma 14.6 With all notation as above , the signed distance from q to p along g is

(30) fX ;s.Es/ WD " log
�

tanh hACa.s/

tanh hA.s/

�
2R;

where "DC1 if Es is oriented towards the shared ideal endpoint , and "D�1 otherwise.

The parameter fX ;s.Es/ plays a crucial role below in our definition of the shape-shifting map on spikes. In
our convergence estimates, we will also need to consider the parameter

(31) kskEs WDmax
s
jfX ;s.Es/j<1;

which quantifies the maximum distance that the deformation s moves a basepoint in a spike.
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Proof We compute in the upper half-plane; up to isometry, we may assume that s is bound by the
imaginary axis V D iR>0 and its translate 2CV ; the spine of the orthogeodesic foliation in this spike is
a subsegment of the vertical line 1CV. With this choice fixed, the projections p and q of u to V may
be identified with iea and ieb for some a and b, respectively. Without loss of generality, we may also
assume that V is oriented upwards (towards1); the opposite choice of orientations simply reverses all
signs at the end of the computation.

Now, for t � 0, the path t 7! tanh t C i sech t is the unit-speed parametrization of the orthogeodesic
emanating from V at i . Observe that the isometry z 7! eaz stabilizes V and takes this segment to an
orthogeodesic segment emanating from iea D p which is distance a from i . Since the orthogeodesic
segment through p meets the spine 1CV after traveling distance hA.s/ (by definition), this implies that

e�a
D tanh hA.s/:

Similarly, e�b D tanh hACa.s/. Together, these imply that

tanh hACa.su/

tanh hA.su/
D ea�b:

Taking logarithms, we see that a� b is the signed distance from q to p along V, as claimed.

Remark 14.7 By Theorem 6.4, the parameter fX ;s.Es/ varies analytically in a (and hence s).

Orientation conventions We now specialize to the case where .v; w/ is a simple pair of hexagons with
associated oriented geodesic kv;w running between pwv on gwv (the projection of v to the boundary leaf
of @�Hv closest to w) and pvw on gvw.

Each leaf g � z� crossed by kv;w inherits an orientation by declaring that turning right onto g while
traveling from v to w along kv;w is the positive direction. We remark that if kv;w crosses a hexagon Hu,
then the induced orientation of gwu , the geodesic in @�Hu closest to w, is the opposite of the orientation
of gwu induced as a part of the boundary of Hu. On the other hand, the two orientations on gvu induced
by kv;w and coming from Hu agree. This is an artifact of our sign convention for measuring shears; see
Remark 13.3.

If g is a complete oriented geodesic in the hyperbolic plane and t 2 R, we let T t
g be the hyperbolic

isometry stabilizing g and acting by oriented translation distance t along g. The opposite orientation of g

will be denoted by Ng, so that T t
Ng D T �t

g .

For an oriented spike Es D .gvu;g
w
u /, its opposite orientation is Es D . Ngwu ; Ng

v
u/. In particular, we note that,

if Es is an oriented spike of Hu crossed by kv;w, then Es is an oriented spike crossed by kw;v D Nkv;w.

Shape-shifting in spikes Suppose .v; w/ is a simple pair and suppose u is between v and w. Let
Es D .gvu;g

w
u / be the spike of u crossed by kv;w with basepoints pv and pw. We define the elementary
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shaping transformation A.Es/ 2 IsomC. zX /D PSL2 R determined by X, s and s to be

(32) A.Es/ WD T
fX;s.Es/

gvu
ıT
�fX;s.Es/

gwu
:

Ultimately, the element A.Es/ will be the value of the shape-shifting cocycle 's on the pair .gvu;g
w
u /; see

just below for an explanation of how we think of A.Es/ as “changing the shape” of s.

Observe that A.Es/ is a parabolic transformation preserving the common ideal endpoint of s. A familiar
computation shows that in the spike determined by gvu and A.Es/gwu , the orthogeodesics emanating from
pv and A.Es/pw meet at a point distance hACa.s/ from each (supposing that the deformation is small
enough).

To the oriented spike Es of u, we also associate the elementary shape-shift

(33) '.Es/ WD T
s.v;u/
gvu

ıA.Es/ ıT
�s.v;u/
gwu

D T
s.v;u/CfX;s.Es/

gvu
ıT
�.s.v;u/CfX;s.Es//

gwu
;

where we recall that the value s.v;u/ is obtained by thinking of s as a function on transverse pairs (à la
Lemma 13.11). Note that '.s/ depends on our reference point v: whereas A.Es/ is eventually identified as
a value of the shape-shifting cocycle 's, the elementary shape-shifts '.Es/ are only building blocks for
values of 's.

For the opposite orientation Es D . Ngwu ; Ng
v
u/, we check

(34) A. Es/D T
fX;s. Es/
Ngwu

T
�fX;s. Es/
Ngvu

D T
fX;s.Es/

gwu
T
�fX;s.Es/

gvu
DA.Es/�1:

Since s.v;u/D s.u; v/, we may similarly observe that '. Es/D '.Es/�1.

Take Hv;w to be the set of hexagons between v and w equipped with the linear order u1 < u2 induced by
the orientation of kv;w . Let H�Hv;w be any finite subset and order its elements HD fu1; : : : ;ung. For
short, we denote hexagons by Hi WDHui

, spikes by si WD Esui
, geodesics by gvi WD gvui

, etc.

To the finite ordered set H we associate the product

(35) 'H WD '.s1/ ı � � � ı'.sn/ ıT
s.v;w/
gvw

2 IsomC. zX /:

The goal of the rest of the section is then to extract a meaningful limit from 'H as H increases to Hv;w.
Ultimately, this limit is how we will define the shape-shifting cocycle 's on the boundary geodesics gwv
and gvw corresponding to the simple pair .v; w/.

Remark 14.8 In the case that � is maximal, each Hi is an ideal triangle and so ADAC aD∅. In this
case, each spike parameter fX ;s.si/ is 0 and we recover the formula from [Bonahon 1996, page 255].

Geometric explanation of (33) Before proving convergence, however, let us explain the intuition behind
the formulas above. In order to interpret A.Es/ and '.Es/ as deformations of the hyperbolic structure X, we
will switch our viewpoint to think of them as values of a deformation cocycle, and so as affecting the
placement of pointed geodesics relative to each other. For brevity, let fX ;s.Es/D t .
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gwu

gvu
v

w

u

T �t
gwu
jQw T t

gvu
jQv

Figure 22: The effect of A.Es/ when considered as a composition of left and right earthquakes.

Let us focus first on the shaping transformation A.Es/. The oriented spike Es in the hexagon Hu is formed
by two pointed geodesics .gvu;p

v
u/ and .gwu ;p

w
u /. Fixing our viewpoint at .gvu;p

v
u/, we may think of

A.Es/ as deforming zX by holding .gvu;p
v
u/ fixed and identifying .gwu ;p

w
u / with A.Es/ � .gvu;p

v
u/. This has

the overall effect of “widening” the spike s so that its sharpness parameter increases from hA to hACa.

If instead we fix our basepoint to be outside of Hu, say at the basepoint pwv on gwv � @�Hv, then this
transformation can viewed as a composition of left and right earthquakes. Let Qw and Qv denote the
half-spaces to the left of the oriented geodesics gwu and gvu, respectively. Note that Qw � Qv. The
deformation A.Es/ may then be thought of as first transforming all geodesics of z� that lie in Qw by T �t

gwu
;

this has the effect of breaking zX open along gwu and sliding Qw to the left by distance t along gwu while
keeping zX nQw fixed. The deformation then further transforms all geodesics in Qv by T t

gvu
; this is

equivalent to the right earthquake with fault locus gvu that slides Qv to the right while keeping zX nQv

fixed. The cumulative effect is then that the spike s has been “pushed” in the direction of Es by distance t .
See Figure 22.

Remark 14.9 We give one final interpretation of A.Es/ as “sliding Gu along Hu” in the proof of
Proposition 14.19 below (see also Figure 26), once we have set up the framework to understand the utility
of this viewpoint.

In particular, note that the shear from Hv to Hu measured from pwv to the image of pvu under this
composition of earthquakes has increased by t D fX ;s.Es/. Therefore, if we let qvu denote the basepoint
on gvu corresponding to the hexagon Gu, then the shear from Hv to Hu measured from pwv to the image
of qvu under the deformation is exactly the original shear ��.X /.v;u/ between v and u.

The elementary shape-shift '.Es/ can be interpreted in much the same way, but now the spike should be
pushed distance fX ;s.Es/Cs.v;u/, so that the resulting shear (measured between pwv and the image of qvu)
is exactly ��.X /.v;u/C s.v;u/.

Finally, the composition (35) can be thought of as a composition of the operations described above (read
from right to left). Therefore, 'H first performs a right earthquake along gwv by s.v; w/, then performs
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an elementary shape-shift to pushing the spike sn by s.v;un/C fX ;s.sn/, then performs a shape-shift
for sn�1, etc. Observe that, if qvi denotes the basepoint in gvi corresponding to Gui

, then, by construction,
the shear between v and each ui measured from pwv to the image of qvi under the composite deformation
is exactly the desired shear ��.X /.v;ui/C s.v;ui/.

Assuming the convergence of 'H to a limit 'v;w (a step performed just below), the placement of
'H.g

v
w;p

v
w/ limits to that of 'v;w.gvw;p

v
w/. This in turn will be the placement of the geodesic .gvw;p

v
w/

relative to .gwv ;p
w
v / straightened in the deformed surface zXs; see Lemma 15.6.

Convergence We now consider the limiting behavior of 'H as H!Hv;w; that a limit exists is almost
exactly the content of [Bonahon 1996, Lemma 14]. We give a proof here for convenience of the reader
and to make sure that we are extracting the correct radius of convergence, ie that the modifications in the
cusps actually do not affect the radius of convergence (even though there are countably many contributions
from changing the shape of each spike).

Recall from Lemma 14.5 that the function D�.X /D inj�.Y /=9j�.S/j gives a bound for the rate of decay
of the length of a piece of a leaf of O�.X / in terms of its divergence radius.

Lemma 14.10 (compare [Bonahon 1996, Lemma 14]) If ksk�˛ < D�.X /, then 'H converges to a
well-defined isometry 'v;w as H tends to Hv;w.

Definition 14.11 The limiting isometry 'v;w is called the shape-shifting map for the simple pair .v; w/.

Remark 14.12 After combining all of our deformations in Section 14.5, the shape-shifting map 'v;w
will be identified as the value of the shape-shifting cocycle 's on the pair .gwv ;g

v
w/. However, due to the

asymmetry of our current definition, it is not clear that '�1
v;w D 'w;v. See Corollary 14.14.

Proof of Lemma 14.10 For brevity, we set D DD�.X / for the remainder of the proof.

Identify zX with H2 and IsomC. zX / with the unit tangent bundle T 1H2 so that the identity I is the vector
over pv 2 zX that is tangent to gwv and pointed in the positive direction with the orientation on gwv induced
by kv;w. Equip T 1H2 with a left-invariant metric d that is right-invariant with respect to the stabilizer
of pv . Finally, for A 2 IsomC. zX /, let kAk WD d.I;A/, so that kABk � kAkCkBk holds by the triangle
inequality.

We first show that 'H stays in a compact set in IsomC. zX /. Using boundedness, we then show that any
sequence H!H is in fact Cauchy with respect to d , and hence converges.

We start by bounding the lengths of segments of the form kv;w \Hu, where u 2 Hv;w. To this end,
construct a geometric train track � from � on X, and assume that the projection of kv;w meets � transversely.
Subdivide kv;w into arcs k1; : : : ; km whose projections meet � once in branches b1; : : : ; bm. For all but
finitely many u 2Hv;w, we have kv;w \Hu � kj n

z� for some j D 1; : : : ;m.
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If d � kj n
z�, we set r.d/ to be the depth rbj .d/ of d with respect to bj , and set r.d/D 1 otherwise. By

Lemma 14.5, there is B > 0 such that for all u 2Hv;w,

`.kv;w \Hu/� Be�Dr.kv;w\Hu/:

With this estimate in mind, our next task is to give a uniform bound on k'H ı T
�s.v;w/
gvw

k for all finite
H � Hv;w. For each i , let i 2 IsomC. zX / be the isometry corresponding to the tangent vector over
kv;w \gvi pointing toward the positive endpoint of gvi . Unpacking definitions, we may therefore write
the shape-shift '.si/ as

'.si/D iT
s.v;ui /CfX;s.si /

gwv
T
�.s.v;ui /CfX;s.si //

hi
�1

i ;

where hi WD 
�1
i gwi .

An explicit computation (in the upper half-plane model, say) shows that

kT
s.v;ui /CfX;s.si /

gwv
T
�.s.v;ui /CfX;s.si //

hi
k � .ejs.v;ui /CfX;s.si /j� 1/`.kv;w \Hi/

� Bejs.v;ui /CfX;s.si /j�Dr.kv;w\Hi /:

By Lemma 14.3 and the triangle inequality,

js.v;ui/CfX ;s.si/j � ksk�˛r.kv;w \Hi/CkskEs

and so we conclude that
k�1

i '.si/ik � B0er.kv;w\Hi /.ksk�˛�D/

for B0 D BekskEs .

Notice now that conjugation by i changes the reference point of our calculation at a distance in the
plane at most `.kv;w/, so the effect of �1

i '.si/i on gvi \ kv;w is a displacement by e`.kv;w/ times the
quantity indicated above. Since this is independent of H,

(36) k'.si/k DO.er.kv;w\Hi /.ksk�˛�D//

for any spike si corresponding to any hexagon u between v and w.

Expanding out 'H in terms of the '.si/ (see (35)),

k'H ıT
�s.v;w/
gvw

k D

 nY
iD1

'.si/

� nX
iD1

k'.si/k DO

� nX
iD1

er.kv;w\Hi /.ksk�˛�D/

�
:

Since there is a uniformly bounded number of gaps with given depth (Lemma 14.2), the last expression is
bounded by the sum of at most 6j�.S/j many geometric series which are convergent so long as ksk�˛ <D.
Therefore, there is a compact set K in IsomC. zX / such that 'H 2K for any finite subset H�Hv;w.

Now that we have shown the family of isometries f'Hg to be uniformly bounded, we can show that any
sequence of refinements is in fact Cauchy. So suppose that Hn increases to Hv;w and jHnj D n. By
construction, we may therefore write

'n D   
0 and 'nC1 D  '.su/ 

0;
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where HnC1 DHn[fug and  ; 0 2K. Writing 'nC1 D   
0'.su/Œ'.su/

�1;  0
�1
�, we have

d.'n; 'nC1/D k'.su/Œ'.su/
�1;  0

�1
�k:

The zeroth-order term in the Taylor expansion near the identity for the function X 7! kŒX;  0
�1
�k is 0,

because ŒI;  0�1
�D I. Since  0�1 stays in a compact set,

kŒ'.su/
�1;  0

�1
�k DO

�
k'.su/k

�
(see [Thurston 1997, Theorem 4.1.6] or [Gelander 2014, Lecture 2, Lemma 2.1]).

Combining this estimate with the triangle inequality and (36),

d.'n; 'nC1/DO
�
k'.su/k

�
DO.er.kv;w\Hu/.ksk�˛�D//:

Now there are at most 6j�.S/j many u 2Hv;w with r.kv;w \Hu/D r (Lemma 14.2), so as n!1 we
must have that r!1, and hence d.'n; 'nC1/! 0. Moreover, since this goes to 0 exponentially quickly,
the sequence is in fact Cauchy.

Shape-shifting as a limit of signed earthquakes Here we give a different description of the shape-
shifting map which forgoes approximations by “pushing spikes” in favor of approximations by left and
right simple earthquakes (compare [Epstein and Marden 2006, Section III]). While this reformulation
is symmetric and geometrically meaningful, it comes at the cost of restricting which approximating
sequences H!H actually yield convergent sequences of deformations 'H. See also the remark at the
top of page 261 in [Bonahon 1996].

Let .v; w/ be a simple pair and fix a geometric train track � snugly carrying �. So long as � is built from
a small enough neighborhood, we may assume that the geodesic kv;w is transverse to the branches of � .
Then, for each integer r � 0, let Hr

v;w denote the set of hexagons such that kv;w\Hu has depth at most r

with respect to the branches of � . Order

Hr
v;w D .u0 D v;u1; : : : ;un;unC1 D w/;

and, for each i D 0; : : : ; n, choose a geodesic hi that separates the interior of Hi from the interior of HiC1.
Orient each hi so that it crosses kv;w from left to right and set

(37) 'r
v;w D T

s.u0;u1/

h0
ıA.s1/ ıT

s.u1;u2/

h1
ıA.s2/ ı � � � ıA.sn/ ıT

s.un;unC1/

hn
:

We now wish to show that 'r
v;w ! 'v;w as r !1. As in the case of 'H! 'v;w, this argument will

parallel that of [Bonahon 1996], with the extra complicating factor of the adjustments A.si/ to the shape
of cusps.

The interpretation of (37) as a deformation cocycle is now similar to that of (35), but is now a combination
of spike-shaping transformations together with simple earthquakes.
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Let us give a description of the action of this deformation on the pointed geodesic .gvw;p
v
w/ in @�Hw

closest to v. Reading the formula from right to left, we can obtain 'r
v;w.g

v
w;p

v
w/ by first breaking zX

along hnD gvw and sliding the closed half-space containing Hw signed distance s.un;unC1/, keeping the
open half-space containing Hv fixed. Applying the spike shaping transformation A.sn/ then preserves
the natural basepoints pvn and pwn but increases the sharpness parameter hA.sn/, making it match that of
the spike in the hexagon Gun

in the deformed metric AC a. We then simply continue moving from w

to v (ie backwards along kv;w), alternating between signed earthquakes in the hi and shaping the next
spike until we reach gwv . Note that, unlike the deformations associated to 'H, each step of the process
requires only local information about the spike si and the shear between ui and uiC1.

Lemma 14.13 [Bonahon 1996, Lemma 16] So long as ksk�˛ <
1
2
D�.X /, we have limr!1 '

r
v;wD'v;w .

Proof Using additivity, s.ui ;uiC1/D s.v;uiC1/� s.v;ui/, we observe that

(38) 'r
v;w D .T

s.v;u1/

h0
A.s1/T

�s.v;u1/

h1
/.T

s.v;u2/

h1
A.s2/T

�s.v;u2/

h2
/ � � � .T

s.v;un/

hn�1
A.sn/T

�s.v;un/

hn
/T

s.v;w/
hn

:

So 'r
v;w is obtained from 'Hr

v;w
by replacing each term of the form

'.si/D T
s.v;ui /

gv
i

A.si/T
�s.v;ui /

gw
i

with
�.si/ WD T

s.v;ui /

hi�1
A.si/T

�s.v;ui /

hi

and T
s.v;w/
gvw

with T
s.v;w/
hn

.

The basic estimate we need is approximately how close '.si/ is to �.si/ in IsomC. zX / as r tends to
infinity. For this we will want to understand how closely hi�1 approximates gvi near its intersection
with kv;w, as well as for gwi and hi .

By construction, hi must be between gwi and gv
iC1

for each i D 1; : : : ; n and h0 is between gwv and gv
1

.
But gwi and gv

iC1
follow the same edge path of length 2r in � � �˛ , for otherwise there would be another

u 2Hr
v;w such that Hu separates Hi from HiC1. Thus hi follows the same edge path and fellow travels

gwi and gv
iC1

for length at least O.2rD�.X //; using negative curvature, hi is O.e�D�.X /r / close to both
gwi and gv

iC1
near kv;w.

From closeness of these geodesics from the previous paragraph (and our estimates for k'.si/k from
Lemma 14.10) it is possible to obtain the basic estimate

k�.si/
�1'.si/k DO

�
exp

�
ksk�˛r.kv;w \Hi/� rD�.X /

��
;

which is small when ksk�˛ <D�.X /. Notice that we have also used the fact that the adjustment parameter
associated to each spike s.si/ is uniformly bounded; that said, even if it grew linearly in r we would
obtain the same estimate (up to a multiplicative factor).

The rest of the argument ensuring that 'r
v;w and 'Hr

v;w
have the same limit as long as ksk�˛ <

1
2
D�.X /

follows [Bonahon 1996, Lemma 16] and is omitted. We remark that the factor of 1
2

appearing at the end
is a relic of the techniques used in [Bonahon 1996, Lemma 16].
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The following simple fact was not apparent from the definition of 'v;w due to its lack of symmetry.
Fortunately, the approximation of 'v;w by 'r

v;w gives us a symmetric description of 'v;w.

Corollary 14.14 If .v; w/ is simple and ksk�˛ <
1
2
D�.X /, then

'w;v D '
�1
v;w:

Proof We observe first that Hr
v;w DHr

w;v, so that each term of 'r
v;w appears in 'r

w;v with the opposite
orientation. Now, by (34), the inverse of the shaping transformation of an oriented spike is equal to the
shaping transformation of the same spike with opposite orientation. Therefore, 'r

v;w D .'
r
w;v/

�1 for all r ,
and the equality holds as we take r !1.

14.3 Shape-shifting in hexagons

In this section, we explain how to define the shape-shifting cocycle 's on pairs of basepointed geodesics
that lie in the boundary of a common hexagon; this will encode the change in hyperbolic structure on X n�.

While in this setting we do not have to worry about delicate convergence results, we must be more diligent
about recording the placement of basepoints on each geodesic of @�Hu. Moreover, the cocycle condition
(Propositions 14.18 and 14.19) only becomes apparent once we reinterpret the shaping deformations
defined below as “sliding the deformed hexagon along the original”.

Throughout this section, we have extended both A and AC a to some common maximal arc system ˛ by
adding in arcs of weight 0 as necessary. We remind the reader that s.˛/ denotes the coefficient of ˛ in a.

Notation and orientations Let Hu �
zX n z�˛ be a nondegenerate right-angled hexagon and enumerate

the �–boundary components of Hu as @�Hu D f.h1;p1/; .h2;p2/; .h3;p3/g, cyclically ordered about u.
Let ˛i 2 z̨ be the orthogeodesic arc opposite to hi , and denote by pij the vertex of Hu meeting both
hi and j̨ . See Figure 23. If Hu is a degenerate hexagon (ie a pentagon with one ideal vertex or a
quadrilateral with two), then we label only those points and geodesics which appear in its boundary.

Each choice of orientation Ę1 of ˛1 induces orientations of h2 and h3 such that ˛1 leaves from the
left-hand side of hj and arrives on the right-hand side of hk for fj ; kg D f2; 3g; an example is pictured
in Figure 23. Observe that the opposite orientation E˛1 induces the opposite orientations on h2 and h3.
Throughout this section, we also adopt similar conventions for each orientation of ˛2 and ˛3.

Recall that (by Theorem 6.4) the deformation s induces a new metric on zX nz� denoted by ACa and which
contains a hexagon Gu corresponding to Hu. The corresponding basepointed �–boundary geodesics and
vertices of Gu will be denoted by .gi ; qi/ and qij , respectively. We adopt similar orientation conventions
as above for the realizations of j̨ in Gu.
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u

p3 p31

Ę1

p21

p2

p23

˛3

p13

p1

p12

˛2

p32

h3

h2
h1

Figure 23: Distinguished points on a hexagon Hu and induced orientations on h2; h3 2 @�Hu.

Shapes of hexagons Paralleling our discussion for spikes, we first need to define geometric parameters
that measure the shape of the hexagon as well as the difference of the placements of the basepoints pi

and qi on the geodesics hi and gi . For concreteness, we only consider ˛1 below; the parameters for ˛2

and ˛3 are defined symmetrically.

We begin by associating to ˛1 the parameter

`s.˛1/ WD `ACa.˛1/� `A.˛1/ 2R;

which measures the difference in the hyperbolic length of ˛1 in the metric determined by AC a versus in
the original metric A induced by X.

Now fix an orientation Ę1 of ˛1; as above, this induces orientations of the geodesics h2, h3, g2 and g3.
Let dA. Ę1;u/ be the signed distance from p2 to p21 on h2;21 the local symmetry of the orthogeodesic
foliation implies that dA. Ę1;u/ can also be computed as the signed distance from p3 to p31 on h3. Define
similarly dACa. Ę1;u/ as the distance from q2 to q21 on g2 (equivalently, the signed distance from q3

to q31 on g3).

To all of this information, we associate the parameter

fX ;s. Ę1;u/ WD dACa. Ę1;u/� dA. Ę1;u/ 2R;

which measures the difference in how far u is from ˛1 in Gu versus in Hu. More precisely, considering
Hu and Gu in the hyperbolic plane, we can use an element of PSL2.R/ to line up .h2;p21/ with .g2; q21/

so that the basepoints and orientations agree. The parameter fX ;s. Ę1;u/ then measures the distance from
q2 to p2 along h2D g2. See Figure 24. Of course, symmetry shows that it is equivalent to align .h3;p31/

with .g3; q31/ and measure the signed distance from q3 to p3 along h3 D g3.

21The parameter dA. Ę1;u/ is called the “t–coordinate” of the arc ˛1 in the hexagon Hu in [Luo 2007]. See also [Mondello
2009b, Proposition 2.10], where a formula is given in terms of the lengths of f˛i W i D 1; 2; 3g.
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Gu

qu
2

Hu

pu
2

fX ;s. Ę1;u/

Ę1
Gv

qv2

Hv

pv
2

�fX ;s. Ę1; v/

h3

g3

h2 D g2

Figure 24: The parameter fX ;s. Ę1;u/ for two adjacent hexagons. We have decorated the base-
points on h2 D g2 with a superscript to emphasize their dependence on the hexagon.

Note that reversing orientations reverses signs, so that dA. Ę1;u/D�dA. E˛1;u/ and hence

fX ;s. Ę1;u/D�fX ;s. E˛1;u/:

The parameters associated to the hexagons which border a given arc are related in the following way:

Lemma 14.15 Let ˛ be any edge of z̨ and let Hu and Hv be its adjoining hexagons. Then

fX ;s. Ę;u/CfX ;s. E˛; v/D s.˛/;

where the orientation Ę is chosen so that u is on its left (equivalently E˛ is oriented so that v is on its left).

Proof The proof is an exercise in unpacking the definitions and being careful with orientations; compare
Figure 24. Let pu

2
and pv

2
denote the projections of u and v to either of geodesics common to @�Hu

and @�Hv, and let qu
2

and qv
2

play similar roles for Gu and Gv.

We can then write

fX ;s. Ę;u/CfX ;s. E˛; v/D fX ;s. Ę;u/�fX ;s. Ę; v/

D dACa. Ę;u/� dA. Ę;u/� dACa. Ę; v/C dA. Ę; v/

D dh.p
u
2 ;p

v
2/� dg.q

u
2 ; q

v
2/D s.˛/;

p3 D q3

Gu

Hu
Ę1

h3

h2

p2

p31 D q31

p21 D q21
p2 D q2

T
fX;s. Ę1;u/

h3
T
`s.˛1/

Ę1
T
�fX;s. Ę1;u/

h2

Figure 25: How the shaping transformation A. Ę1;u/ slides Gu along Hu.
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where we recall that s.˛/ denotes the coefficient of ˛ in a and where dh and dg represent the signed
distance measured along h2 and g2, equipped with the orientation induced by Ę.

Remark 14.16 Using Theorem 6.4 and some hyperbolic trigonometry, one may show that fX ;s. Ę1;u/

depends analytically on both A and a for fixed ˛1 and u.

Shaping hexagons To the hexagon Hu and oriented arc Ę1 in its boundary, we associate the shaping
transformation A. Ę1;u/ given by

(39) A. Ę1;u/ WD T
�fX;s. Ę1;u/

h2
ıT

`s.˛1/

Ę1
ıT

fX;s. Ę1;u/

h3
2 IsomC. zX /;

where T Ę1 denotes translation along the complete oriented geodesic extending Ę1. The shaping trans-
formation is explicitly constructed so that, if Hu and Gu are superimposed with .h2;p2/ D .g2; q2/,
then

A. Ę1;u/.h3;p3/D .g3; q3/:

This claim is not immediately apparent from the expression of (39), but is easy to verify once we reinterpret
A. Ę1;u/ as “sliding Gu along Hu”.

To wit, suppose that we superimpose Hu and Gu so that .h3;p3/D .g3; q3/. Now consider what happens
as we apply A. Ę1;u/ to Gu while holding Hu fixed; the first term T fX;s. Ę1;u/

h3
translates Gu along h3

so that q31 D p31, and the right angle formed by ˛1 and g3 in Gu lines up with the same angle in Hu.
The transformation T

`s.˛1/

Ę1
then slides T

fX;s. Ę1;u/

h3
Gu along ˛1 so that .h2; q21/ D .g2;p21/. Finally,

T
�fX;s. Ę1;u/

h2
slides T `s.˛1/

Ę1
T fX;s. Ę1;u/

h3
Gu along h2 D g2 so that q2 lines up with p2. See Figure 25.

Summarizing, we have shown that A. Ę1;u/ takes a superimposition of Gu on Hu with .h3;p3/D .g3; q3/

to another superimposition with .h2;p2/D .g2; q2/. In particular, this implies that applying A. Ę1;u/

to .h3;p3/ takes it to the position of .g3; q3/ in the latter placement of Gu, which is what we claimed.

Remark 14.17 An elementary hyperbolic geometry argument similar to that in the proof of Lemma 14.6
shows that if ˛1 in X degenerates to an oriented spike Es then the corresponding geometric parameter
fX ;s. Ę1;u/ limits to the parameter fX ;s.Es/. In particular, along this degeneration the corresponding
hexagon-shaping transformation A. Ę1;u/ converges to the spike-shaping transformation A.Es/.

A cocycle condition for hexagons A number of relations hold between the shaping transformations for
different arcs and different orientations; eventually, these relations are what ensure that the deformations
we are currently building package together into an honest cocycle (see Proposition 14.26).

First, we observe that reversing the orientation of ˛1 inverts the shaping transformation:

(40) A. E˛1;u/D T
�fX;s. E˛1;u/

Nh3

ıT
`s.˛1/

E˛1

ıT
fX;s. E˛1;u/

Nh2

D T
�fX;s. Ę1;u/

h3
ıT
�`s.˛1/

Ę1
ıT

fX;s. Ę1;u/

h2
DA. Ę1;u/

�1:
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Now suppose that Hu is on the left and Hv is on the right of the oriented arc Ę1. Combining the relation
of Lemma 14.15 with the definition of the shaping transformation, we obtain

(41) A. Ę1;u/D T
s.˛1/

h2
ıA. Ę1; v/ ıT

�s.˛1/

h3
:

This equation is used frequently in Section 14.4.

Finally, a beautiful and important relationship holds among the three shaping transformations in a single
right-angled hexagon. Our proof utilizes the “sliding” viewpoint explained above; the statement seems
difficult to prove just by writing down a string of Möbius transformations.

Proposition 14.18 Let u 2 H be a nondegenerate right-angled hexagon with boundary arcs Ę1, Ę2
and Ę3, oriented so that Hu lies to the left of each Ęi . Then

A. Ę3;u/ ıA. Ę2;u/ ıA. Ę1;u/D 1:

A similar statement clearly holds for any cyclic permutation of .3; 2; 1/.

Proof In order to prove the lemma, we superimpose Gu on top of Hu so that .g3; q3/ D .h3;p3/.
Holding Hu fixed, the first shaping transformation A. Ę1;u/ slides Gu along h3, then along ˛1, then
along h2 so that .g2; q2/ lines up with .h2;p2/. The second shaping transformation A. Ę2;u/ then acts
on this translated copy of Gu by sliding it along h2, then ˛2, then h1 so that .g1; q1/D .h1;p1/. Finally,
the last term slides A. Ę1;u/A. Ę2;u/Gu along the edges of Hu so that .g3; q3/ returns to .h3;p3/ (with
the same orientation).

Therefore, since A. Ę1;u/ıA. Ę2;u/ıA. Ę3;u/ preserves a unit tangent vector and IsomC. zX / acts simply
transitively on T 1 zX, the composition of the three shaping transformations must be trivial.

A similar result holds for degenerate right-angled hexagons, with the hexagon-shaping transformation
replaced with the corresponding spike-shaping transformation.

Proposition 14.19 Suppose that u 2H is a pentagon with two orthogeodesic arcs ˛1 and ˛2 and one
spike s, labeled so that .˛1; ˛2; s/ runs counterclockwise around u. Orient each j̨ so that Hu is on its
left and orient s so that it is pointing towards the ideal vertex of Hu. Then

A.Es/ ıA. Ę2;u/ ıA. Ę1;u/D 1:

Similarly, if u 2H is a quadrilateral with one orthogeodesic edge ˛ and two spikes s1 and s2 (labeled so
that .˛; s1; s2/ is read counterclockwise), then

A.Es2/ ıA.Es1/ ıA. Ę;u/D 1;

where all orientation conventions are as above.

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2099

p3 D q3

Gu

Hu

h3

h2

p2

h2 D g2

p2 D q2

T
�fX;s.Es/

h3
T
fX;s.Es/

h2

Figure 26: Interpreting the spike-shaping transformation A.Es/ as sliding Gu along Hu. Note that,
in this picture, fX ;s.Es/ < 0.

Proof We only explain how to interpret the spike-shaping transformation A.Es/ in our “sliding” framework;
once we have done so, the rest of the proof is completely analogous to that of Proposition 14.18.

So let Es be a spike of Hu, oriented as described; suppose that its left and right boundary geodesics are h3

and h2. Recall that A.Es/ is constructed so that, if we superimpose Gu and Hu with .g2; q2/D .h2;p2/,
then A.Es/.h3;p3/ D .g3; q3/. This can equivalently be interpreted by superimposing Gu on Hu with
.g3; q3/D .h3;p3/; then applying the shaping transformation to Gu while leaving Hu fixed takes Gu to
another superimposition where .g2; q2/D .h2;p2/. See Figure 26.

14.4 Shape-shifting along the spine

In this section we package together the hexagon-shaping deformations defined in (39) into deformations
of entire complementary subsurfaces of zX n z�. As always, we will exhibit this deformation by explaining
how to adjust the positions of the pointed geodesics in the boundary of each component of zX n z� relative
to one another. This in turn requires some bookkeeping of orientations and a liberal application of the
cocycle relation (Propositions 14.18 and 14.19).

Throughout this section, we fix some component Y of zX nz�. We remind the reader that the deformation s

induces a new hyperbolic structure ACa on Y whose hexagons and basepointed geodesics correspond to
those of Y.

Hexagonal hulls and induced orientations Suppose that v;w 2H are distinct hexagons of Y. Since
the corresponding component of �Sp is a tree it contains a unique oriented nonbacktracking edge path
Œv; w� joining v to w. We then define the hexagonal hull H.v; w/ of .v; w/ to be the union of all of the
hexagons corresponding to the vertices of Œv; w�. Define also the truncated hexagonal hull yH .v; w/ by
truncating each spike of H.v; w/ by the horocycle through the basepoints that are closest to the ideal
vertex. Note that both H.v; w/ and yH .v; w/ come with (�1.Y /–equivariant) collections of basepoints
on their boundaries obtained by projecting each of the vertices of Œv; w� onto the associated boundary
geodesics.
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pv

pw

v
w

ı�

ıC
p2 p3

p4

p5

p6

Figure 27: The truncated hexagonal hull (shaded) of the path Œv; w� and the induced orientations
on the paths ı˙ from pv to pw in its boundary.

Now, for any .hv;pv/ 2 @�Hv and .hw;pw/ 2 @�Hw , we have that @ yH .v; w/n fpv;pwg consists of two
paths ı˙. We orient each of ı˙ so that they both travel from pv to pw. See Figure 27.

With this induced orientation, the path ıC passes through a sequence of basepoints

pv D p1;p2; : : : ;pnC1 D pw:

We then associate a shaping transformation Ai to each subsequent pair of basepoints as follows:

� If pi and piC1 are in different hexagons, then they must lie on the same geodesic hi of @Y
and correspond to two hexagons Hi and HiC1 both adjacent to an arc ˛i . In this case, define
Ai D T

s.˛i /

hi
, where hi is given the orientation induced by ıC and where we recall that s.˛i/ is the

coefficient of ˛i in a.

� If pi and piC1 are in the same hexagon Hui
but do not lie on a common spike, then necessarily

they lie on geodesics connected by some arc ˛i . In this case, define Ai D A. Ęi ;ui/ where the
orientation on ˛i is induced from ıC.

� If pi and piC1 lie on a common spike si , then we define Ai DA.Esi/, where the orientation on si

is such that the horocyclic segment of ıC cutting off si runs from the left of one of the oriented
geodesics to the right of the other.

Finally, we then combine all of this information to define the shape-shifting transformation

(42) A.ıC/ WDA1 ıA2 ı � � � ıAn;

where we recall that we are multiplying from right to left. Define A.ı�/ analogously; the point is, however,
that the choice of ˙ does not matter.

Lemma 14.20 A.ı�/DA.ıC/:

Definition 14.21 We call 'pv;pw WDA.ıC/DA.ı�/ the shape-shifting map for ..hv;pv/; .hw;pw//.
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Proof The proof follows by induction on the length of Œv; w�. If Œv; w� has length 0, ie v D w, then this
statement is exactly the content of the cocycle relation for hexagons (Propositions 14.18 and 14.19).

Now suppose that Œv; w� has length n and let u be the penultimate vertex in Œv; w�. Let ˛ denote the arc
separating u from w, and choose the orientation Ę so that u lies on its left. Up to relabeling, we may
assume that the orientation of ıC agrees with the orientation of @ yH .v; w/. Denote by .h˙u ;p

˙
u / 2 @Y the

last basepoints of Hu visited by ı˙ and let ˙ denote the subpaths of ı˙ from pv to p˙u in the boundary
of the truncated hexagonal hull yH .v;u/. Define A.˙/ analogously to A.ı˙/. Then we may write

A.ıC/A.ı�/
�1
DA.C/T

s.˛/

h
C
u

B1B2T
�s.˛/
h�u

A.�/
�1

D .A.C/A. Ę;u/A.�/
�1/ �A.�/.A. Ę;u/

�1T
s.˛/

h
C
u

B1B2T
�s.˛/
h�u

/A.�/
�1;

where B1 and B2 are the shaping transformations corresponding to arcs and spikes of w that are different
from ˛ (labeled counterclockwise from ˛), oriented either so that w lies on the left of the arc or so that
the spike points into the common ideal endpoint.

Now observe that A.C/A. Ę;u/A.�/
�1 is trivial by the inductive hypothesis, as it corresponds to the

comparison between the two possible definitions of 'pv;p
�
u

. We also note that

A. Ę;u/�1T
s.˛/

h
C
u

B1B2T
�s.˛/
h�u

is conjugate to
T
�s.˛/
h�u

A. Ę;u/�1T
s.˛/

h
C
u

B1B2 DA. E˛;w/B1B2 D 1;

where the first equality follows from (41) (note the reversals in orientations of h˙u ) and the second follows
from the cocycle relation (Propositions 14.18 and 14.19). Therefore, the entire term A.ıC/A.ı�/

�1 is
trivial, which is what we wanted to show.

Remark 14.22 The above statement can also be proven by interpreting A.ı˙/ in terms of sliding. In
particular, let Z denote the �1.Y /–equivariant hyperbolic structure on Y corresponding to the weighted
arc system AC a. Then, superimposing Z on Y so that .gw; qw/ D .hw;pw/, one can consecutively
apply the shaping transformations Ai to Z while keeping Y fixed.

Doing so, An moves Z so that .gn; qn/ D .hn;pn/, then An�1 ıAn moves Z so that .gn�1; qn�1/ D

.hn�1;pn�1/, etc. At the end of this process, we have applied A.ıC/ to Z and by construction, the
pointed geodesic .gv; qv/ matches up with .hv;pv/. Since the final positioning of Z is the same relative
to Y whether we used A.ıC/ or A.ı�/, this allows us to conclude that the two compositions define the
same element.

Remark 14.23 While we used the distinguished boundary paths ı˙ to define the shape-shifting map,
one could in fact use any path from pv to pw in Y [ z̨. In this case, one must take more care to enumerate
basepoints so that pi and piC1 always either lie on the same geodesic or in the same hexagon.
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Observe that reversing the orientation Œv; w�D Œw; v� also reverses the sequence pnC1; : : : ;p1 of basepoints
that the boundary paths xı˙ meet. Since flipping the order of pi and piC1 inverts each of the Ai

transformations defined above, we therefore discover that 'pw;pv D '
�1
pv;pw

.

In a similar vein, it is not hard to see that the shape-shifting maps satisfy a cocycle relation.

Proposition 14.24 For any triple of pointed geodesics .hu;pu/, .hv;pv/ and .hw;pw/ of @Y,

'pu;pv ı'pv;pw ı'pw;pu
D 1:

Proof This follows immediately from the definitions when v lies on either of the paths ı˙ from u to w.

Otherwise, note that the intersection of paths Œu; v�\ Œv; w�\ Œw;u� is a point x 2H. Choosing a basepoint
px 2 @�Hx , compute the shape-shifting transformations using the boundary arcs that pass through x.
Then we may express 'pu;pv D 'pu;px

ı 'px ;pv and, using the observation about inverses above, we
realize that

'pu;pv ı'pv;pw ı'pw;pu
D 'pu;px

ı .'px ;pv ı'pv;px
/ ı .'px ;pw ı'pw;px

/ ı'px ;pu
D 1:

14.5 The shape-shifting cocycle

We now combine the shape-shifting maps for simple pairs (Definition 14.11) with those for complementary
subsurfaces (Definition 14.21) into the promised shape-shifting cocycle (Proposition 14.26), which is well
defined as long as the combinatorial deformation s is small enough. As usual, we construct a geometric
train track � from � on X such that the weight space of �˛ provides a notion of size for s.

Admissible routes For v;w 2H and Y a component of zX n z�, we say that Y is thick with respect to v
and w if either

(1) Y contains v and/or w, or

(2) v and w lie in different components of zX nY and the boundary leaves of Y closest to v and w are
not asymptotic.

Observe that, in the first case, there is either no or one boundary geodesic of Y separating v from w

(depending on whether v and w are both in Y or not), while, in the second, there are exactly two boundary
components of Y separating v from w.

Now let v;w 2H be any pair of distinct hexagons that do not lie in the same component of zX n z� and let
.hv;pv/ and .hw;pw/ be a pointed geodesic in @�Hv and @�Hw . Then there is a unique (possibly empty)
sequence h1; : : : ; hn of boundary geodesics of thick subsurfaces separating pv from pw, ordered by
proximity to v (with h1 closest).22 If one of the hi lies in the boundary of two complementary subsurfaces
(so corresponds to a lift of a curve component of �), then we record it twice, once for each of the adjoining

22This sequence is necessarily finite, as the distance that any geodesic travels in a thick subsurface is bounded below by the
shortest arc of ˛ (compare the discussion of “close enough” pairs of hexagons in Section 13.2).
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pv

p1

p2
p3

p4

p5

p6
p7 pw

Figure 28: Thick subsurfaces between v and w and an admissible route from pv to pw . We have
highlighted a path from pv to pw through the pi ; each subpath from pi to piC1 specifies a factor
in the shape-shifting transformation.

subsurfaces. Additionally, if either hv or hw is a boundary geodesic separating v from w, then we do not
record it as one of the hi . See Figure 28.

We now define an admissible route from pv to pw to be any sequence of basepoints

pv D p0; p1 2 h1; : : : ; pn 2 hn; pnC1 D pw

coming from the projections of the central vertices ui of hexagons Hui
to hi 2 @�Hui

. If any geodesic
hi D hiC1 is repeated, then we require that v and ui lie on one side of hi and that w and uiC1 lie on
the other. Observe that the sequence of pairs .ui ;uiC1/ necessarily alternates between simple pairs/pairs
sharing a boundary geodesic and pairs which lie in the same (thick) subsurface.

Shape-shifting along admissible routes To any admissible route we can then define a shape-shifting
transformation by concatenating the shape-shifting transformations for subsequent pairs:

(43) 'pv;pw WD 'p0;p1
ı � � � ı'pn;pnC1

;

where 'pi ;piC1
is as in Definition 14.11 if .ui ;uiC1/ is simple and as in Definition 14.21 if ui and uiC1

lie in the same subsurface. If hi D hiC1, then we orient hi to the right as seen from ui and set
'pi ;piC1

D T
s.ui ;uiC1/

hi
(recall that we can associate a shear value to the pair .ui ;uiC1/ by (15)).

Lemma 14.25 The shape-shifting map 'pv;pw is independent of the choice of admissible route (as long
as it is defined ).

Proof Since the hi are uniquely determined, it suffices to change one point at a time.

So suppose that pi and p0i are both basepoints on the geodesic hi ; we then demonstrate the equality

'pi�1;pi
ı'pi ;piC1

D 'pi�1;p
0
i
ı'p0

i
;piC1

;

from which the lemma follows. Orient hi so that it runs to the right as seen from v or ui�1.
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Without loss of generality, we may assume that the hexagons ui and uiC1 lie in the same subsurface.
Otherwise, the hexagons ui�1 and ui lie in the same subsurface and so .pi ;piC1/ is either simple or the
points lie on the same isolated leaf. If this happens, we prove that

'piC1;pi
ı'pi ;pi�1

D 'piC1;p
0
i
ı'p0

i
;pi�1

;

which is equivalent to the equation above since each of the shape-shifting factors inverts when one flips
the order of the points.

We first consider the shape-shifting transformations coming from comparing pi or p0i with piC1. By our
reduction above, ui and u0i lie in the same thick subsurface Y. Let ˛1; : : : ; ˛m denote the arcs of z̨ \Y

encountered when traveling from p0i to pi along hi ; then our definition of shape-shifting in subsurfaces
associates the transformation

'p0
i
;pi
D T

"1

Pm
jD1 s. j̨ /

hi
;

where "1 D 1 if hi is oriented from p0i to pi and �1 otherwise. Combining this equation with the
subsurface cocycle relation (Proposition 14.24),

(44) 'p0
i
;piC1

D 'p0
i
;pi
ı'pi ;piC1

D T
"1

Pm
jD1 s. j̨ /

hi
ı'pi ;piC1

:

We now turn our attention to the transformation 'pi�1;p
0
i
. Consider first the case when .pi�1;pi/ is

simple; since pi and p0i both lie on hi , this implies that .pi�1;p
0
i/ is also simple. Moreover, since the

geodesics Hi�1;i that separate pi�1 from pi are the same that separate pi�1 from p0i , we may write

'pi�1;pi
D lim

H!Hv;w
'.s1/ ı � � � ı'.sn/ ıT

s.ui�1;ui /

hi

and similarly for 'pi�1;p
0
i
. In particular, each approximation for 'pi�1;pi

differs from the approximation
for 'pi�1;p

0
i

by translation along hi , and so the same is true in the limit:

(45) 'pi�1;p
0
i
D 'pi�1;pi

ıT
s.ui�1;u

0
i
/�s.ui�1;ui /

hi
:

Applying axiom (SH3) for shear-shape cocycles (Definition 7.11) multiple times, we compute that

(46) s.ui�1;u
0
i/� s.ui�1;ui/D "2

mX
jD1

s. j̨ /;

where "2 DC1 if pi precedes p0i along hi and �1 if p0i precedes pi . Combining (44), (45) and (46),

'pi�1;p
0
i
ı'p0

i
;piC1

D 'pi�1;pi
ıT

"2

Pm
jD1 s. j̨ /

hi
ıT

"1

Pm
jD1 s. j̨ /

hi
ı'pi ;piC1

D 'pi�1;pi
ı'pi ;piC1

since "2 D�"1. This completes the proof of the lemma in the case when .ui�1;ui/ is simple.

Similarly, if pi�1 and pi lie on the same isolated leaf of �, then so must p0i . Unpacking the definitions
shows that (45) holds in this case, and Lemma 7.14 implies that (46) does as well. Therefore, in this case
we also see that the desired equality holds.
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pv D rv

rw pw

ru

pu

'pu;pv

'pv ;pw

'pw ;pu

Figure 29: The cocycle relation for admissible routes.

Finally, now that we have constructed shape-shifting maps for arbitrary pairs of pointed geodesics in @�H,
we can prove that they piece together into an IsomC. zX /–valued cocycle.

Proposition 14.26 The map constructed from X and s,

's W @�H� @�H! IsomC. zX /; ..hv;pv/; .hw;pw// 7! 'pv;pw ;

is a �1.X /–equivariant 1–cocycle as long as ksk�˛ <
1
2
D�.X /.

Proof That ' is �1.X /–equivariant means that 'pv;pw D  ı'pv;pw ı
�1 for  2�1.X /; this follows

directly from the construction.

That ' is a 1–cocycle means it satisfies the familiar cocycle condition on triples, ie

'pu;pv ı'pv;pw D 'pu;pw :

Note that, if pv lies on some admissible route from pu to pw, then this is fulfilled automatically by
unpacking the definitions and invoking Lemma 14.25.

One special case of the cocycle condition is when puDpw; in this case we must show that 'pv;pwD'
�1
pw;pv

.
To demonstrate this, observe that reversing an admissible route from v to w produces an admissible route
from w to v. Moreover, by Corollary 14.14 in the simple case and by definition in the other cases, each
'pi ;piC1

also inverts when we flip i and i C 1, proving that reversing v and w inverts 'pv;pw .

Now suppose that u, v and w are all distinct; then there exists a unique subsurface Y of zX n z� such
that each component of zX nY contains at most one of u, v or w (note that some of u, v and w may be
inside Y ). Choose basepoints ru, rv and rw on the boundary components of Y that are closest to u, v
and w (if any � 2 fu; v; wg is in Y then set r� D p�). See Figure 29.

Choose an admissible route from pu to pv containing ru and rv, and similarly for the other two pairs.
Then, by Lemma 14.25 and the observation that the cocycle condition holds along admissible routes, we
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may write
'pu;pv D 'pu;ru

ı'ru;rv ı'rv;pv

and similarly for the other two pairs. Combining all three equations and applying the cocycle relation
for Y (Proposition 14.24),

'pu;pv ı'pv;pw D 'pu;ru
ı'ru;rv ı'rv;pv ı'pv;rv ı'rv;rw ı'rw;pw D 'pu;ru

ı'ru;rw ı'rw;pw D 'pu;pw ;

finishing the proof. See Figure 29 for a graphical depiction of this argument.

15 Shear-shape coordinates are a homeomorphism

We now finish the proof of Theorem 12.1 by proving that the map �� W T.S/ ! SHC.�/ is open
(Theorem 15.1) and proper and thus, by invariance of domain, a homeomorphism.

In Section 15.1, we use the shape-shifting cocycle 's, built in the previous section, to deform the
representation � W�1.S/!PSL2 R that induces the hyperbolic structure X. The deformed representation �s
is then discrete and faithful (Lemma 15.3) and the quotient surface Xs has the desired shear-shape cocycle
(Lemma 15.6). In particular, this gives us a continuous local inverse to ��, proving openness. These
statements are similar in spirit to those in [Bonahon 1996], but the specifics of our proofs are different. In
particular, instead of adjusting the relative placements of ideal triangles of zX n z�, we adjust the relative
position of pointed geodesics in z�.

We then prove properness of �� in Section 15.2, concluding the proof of Theorem 12.1. Here we return
to Bonahon’s argument [1996, Theorem 20], but applying this strategy in our setting still requires a bit of
extra care due to the polyhedral structure of SHC.�/.

Finally, in Section 15.3, we show that the action of R>0 on SHC.�/ by dilation produces lines in T.S/

that can sometimes be identified with directed Thurston geodesics.

15.1 Deforming by shape-shifting

In this section, we show that any positive shear-shape cocycle close enough to ��.X / is actually the
geometric shear-shape cocycle of a hyperbolic structure. Compare with [Bonahon 1996, Proposition 13].

Theorem 15.1 Let ˇ be a maximal arc system containing ˛.X / and let �ˇ be a standard smoothing.
Then , for any s 2 W .�ˇ/ such that ksk�ˇ <

1
2
D�.X / and such that ��.X /C s represents a positive

shear-shape cocycle , there exists Xs 2 T.S/ close to X with

��.Xs/D ��.X /C s:

In particular , the image of ��.X / is open in SHC.�/.

The proof of this theorem appears at the end of this subsection as the culmination of a series of structural
lemmas. Our strategy is to explicitly define Xs by using the shape-shifting cocycle constructed in
Section 14 to deform the hyperbolic structure on X. Before proceeding we note the following:
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Corollary 15.2 For all t 2R and for all � 2�.�/,

��.Eqt�.X //D ��.X /C t�:

Proof That the earthquake Eqt�.X / is defined for all time is a consequence of countable additivity (equiv-
alently positivity) of �; a complete proof can be found in [Epstein and Marden 2006, Section III]. Viewing
the set of measures supported on � as a subset of H.�/, the formula is immediate from Theorem 15.1
once we note that Eqt�.X /DXt�, which follows from the description of 't� as a limit of simple left (or
right) earthquakes; see (37) and Lemma 14.13.

Fix s as in the statement of the theorem and pick an arbitrary v 2H and .hv;pv/ 2 @�Hv . Identifying zX
isometrically with H2 and .hv;pv/ with a pointed line picks out a representation � W �1.S/! PSL2 R

that induces X. Since ksk�˛ <
1
2
D�.X /, Proposition 14.26 allows us to construct the shape-shifting

cocycle 's.

We may now deform the representation � by 's by defining

�s W �1.S/! PSL2 R;  7! 'pv;pv ı �. /:

The equivariance and cocycle properties of Proposition 14.26 ensure that �s is itself a representation.
Indeed,

�s.12/D 'pv;12pv ı �.12/

D 'pv;1pv ı'1pv;12pv ı �.1/ ı �.2/

D 'pv;1pv ı �.1/ ı'pv;2pv ı �.1/
�1
ı �.1/ ı �.2/

D �s.1/ ı �s.2/

for all 1; 2 2 �1.S/. Our goal in the rest of the section is then to show that �s is discrete and faithful,
and that the quotient surface has the correct geometric shear-shape cocycle.

Adjusting geodesics To show that �s has the desired properties, we use 's to adjust the position of z� in zX.
Ultimately, these adjusted geodesics correspond to the realization of � on the quotient surface zX=im �s.

Let G . zX / be the space of geodesics in zX, and let @z� � G . zX / denote the set of boundary leaves of z�.
Define a map

p̂v W @
z�! G . zX /

as follows: If h is a leaf of @z�, then hD hu for some .hu;pu/ in @�H. The map p̂v then takes .hu;pu/

isometrically to the pointed geodesic 'pv;pu
.hu;pu/� zX. Note that, if huD hw for some other .hw;pw/

in @�H, then
'�1

pv;pu
ı'pv;pw D 'pu;pw

by the cocycle relation (Proposition 14.26) and 'pu;pw is by definition a translation along h. Therefore

p̂vhw D p̂vhu, so p̂v is indeed well defined.
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Using the fact that S is closed, the following lemma follows directly from the fact that �s defines a
representation of �1.S/ in the same component of representations as �. We give a hands-on explanation
that does not use this fact.

Lemma 15.3 The representation �s constructed above is discrete and faithful.

Proof For distinct leaves hu and hw 2 @z�, we claim that p̂v .hu/ is disjoint from p̂v .hw/. Indeed, by
the cocycle relation, the position of p̂v .hw/ relative to p̂v .hu/ is the same as the position of 'pu;pwhw

relative to hu. Every finite approximation of 'pu;pw by compositions of elementary shape-shifting
transformations preserves the property that the image of hw is disjoint from hu, so the same is true in the
limit.

Therefore, as long as �. / does not stabilize hv , p̂v .�. /hv/D �s. /hv is different from p̂v .hv/D hv .
If �. / is a translation along hv, we can find 0 such that �.0

�1
0
/hv 6D hv, and so �s. / does not

stabilize �.0
�1
0
/hv . In either case, this implies that �s. / acts nontrivially on the space of geodesics,

so in particular �s. / 6D 1, ie �s is faithful.

Since �1.S/ is a nonelementary group and �s is faithful, im �s is a nonelementary subgroup of isometries.
So assume towards contradiction that �s is indiscrete. Then im �s must be dense in PSL2 R; see eg
[Sullivan 1985, Proposition, page 246]. In particular, there is an element  2 �1.S/ such that �s. / is
arbitrarily close to a rotation of angle �

2
around pv. Then �s. /hv D p̂v�. /hv meets hv in a point,

which is impossible because p̂v .hv/ is either equal to or disjoint from p̂v .�. /hv/. We conclude that
�s is discrete, completing the proof of the lemma.

By Lemma 15.3, the quotient Xs D
zX=im �s is a hyperbolic surface equipped with a homeomorphism

S ! Xs in the homotopy class determined by �s. As such, �s induces a .�; �s/–equivariant homeo-
morphism @ zX ! @ zX, and hence a continuous, equivariant map on the space of geodesics.

Lemma 15.4 The map p̂v extends continuously to z�, and p̂v .
z�/ descends to the geodesic realization

of � on Xs.

Proof By equivariance, the induced map on geodesics agrees with p̂v on @z�. The leaves of @z� are
dense in z�, so the closure of the image of p̂v is the geodesic realization of z� on zXs, which is invariant
under the action of �s.

Since p̂v .
z�/ is the lift of the realization of � on Xs, we may now leverage our understanding of the

shape-shifting cocycle to show that the complementary subsurfaces of Xs n� have the desired shapes.

Lemma 15.5 A.Xs/DA.X /C a:

Proof Recall that by construction the unweighted arc systems of X n� and Xs n� are both contained in
some joint maximal arc system ˇ, leading to an identification of hexagons of zX n� with those of zX n�s.
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So let ˇ be an arc of ˇ, realized orthogeodesically in Xs. Let ˇ also denote a choice of lift, orthogonal to �s
in zX, and let u and w denote the hexagons adjacent to ˇ. Choose either of the geodesics g of � meeting ˇ
and let qu and qw be the basepoints of u and w on g. Then, by the cocycle relation (Proposition 14.26),

'pv;pw D 'pv;pu
ı'pu;pw

and so, applying equivariance, the placement of qw relative to qu differs from the placement of pw relative
to pu only by 'pu;pw .

But now, since u and w are in the same subsurface, we see by definition that 'pu;pw is translation along g

by exactly s.ˇ/. Therefore, the distance along 'pu;pwg between qu and qw is exactly the distance along g

between pu and pw plus s.ˇ/. Translated into arc weights,

��.Xs/.ˇ/D ��.X /.ˇ/C s.ˇ/;

completing the proof of the lemma.

Now that we know that the “shape” part of the data of ��.Xs/ is what it is supposed to be, we need only
check that the “shearing” data is as specified. Compare [Bonahon 1996, Lemma 19].

Lemma 15.6 The surface Xs has geometric shear-shape cocycle ��.Xs/D ��.X /C s.

Proof Observe that, by the cocycle relation (Proposition 14.26) and the discussion in Section 13.2, it
suffices to compute the change in shearing data between simple pairs.

So suppose that .v; w/ is simple. For each integer r , recall that Hr
v;w D .ui/

n
iD1

denotes the set of
hexagons such that the intersection of the geodesic from pv to pw with ui has depth at most r with
respect to a fixed geometric train track. Set vD u0 and wD unC1, and let hi D gvui

, the pointed boundary
geodesic of ui closest to v. Then, by Lemma 14.13,

'r
pv;pw

D T
s.u0;u1/

h0
ıA.s1/ ıT

s.u1;u2/

h1
ıA.s2/ ı � � � ıA.sn/ ıT

s.un;unC1/

hn

is a good approximation of 'pv;pw for large enough r .

Now, for each r , we can deform the hyperbolic structure on zX by 'r
pv;pw

(sacrificing equivariance) and
measure the shear �r .v; w/ between v and w in that deformed structure. More precisely, we recall that, if
h0i denotes the other geodesic in ui that separates v from w, the spike-shaping transformation is equal
to a translation along h0i then along hi . We may then deform zX by replacing each translation in the
factorization of 'r

pv;pw
with a (right) earthquake along the same geodesic; compare with our “geometric

explanation” of spike-shaping in Section 14.2.

Since each translation T
s.ui ;uiC1/

hi
appearing in 'r

pv;pw
shears zX along a leaf of �, it preserves the

orthogeodesic foliation in complementary components. Therefore, each such term in the deformation
thus changes the shear between v and w by exactly s.ui ;uiC1/.
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On the other hand, each spike-shaping transformation A.si/ is a parabolic transformation fixing the vertex
of the spike and thus preserves horocycles based at that point. In particular, the distinguished basepoints
of each hi and h0i remain on the same horocycle and hence deforming by A.si/ does not affect �r .v; w/.

In summary, deforming zX by the approximation 'r
pv;pw

changes the shear between v and w by

�r .v; w/� �.v; w/D

nX
iD0

s.ui ;uiC1/D s.v; w/;

where the last equality follows from finite additivity (axiom (SH2)).

Since this equality holds in each approximation and 'r
pv;pw

! 'pv;pw as r!1, the equality holds in the
limit as well. Therefore, deforming zX by 'pv;pw changes the shear between v and w by exactly s.v; w/,
which is what we needed to show.

Proof of Theorem 15.1 As ksk�˛ <
1
2
D�.X /, Lemmas 14.10 and 14.13 ensure that the limits in

the definition of 'pv;pw make sense for all simple pairs .v; w/. Proposition 14.26 then allows us to
construct 's. By Lemma 15.3, the deformed representation �s D 's � � is discrete and faithful, and, by
Lemma 15.6, the quotient surface has the correct geometric shear-shape cocycle.

Finally, we observe that the values of shape-shifting cocycle 's all converge to the identity as ksk�˛ ! 0,
and consequently Xs!X.

15.2 The global structure of the shear-shape map

We have already proven in Corollary 13.14 that the image of �� lies in SHC.�/. We now show that this
containment is in fact an equality, completing the proof of Theorem 12.1.

We proceed in two steps; the first is to show that:

Proposition 15.7 The shear-shape map �� is a homeomorphism onto its image.

Proof Proposition 13.12 (injectivity of ��) allows us to invert �� on its image and, for each X 2T.S/,
Theorem 15.1 provides us with an open neighborhood of ��.X / 2 SHC.�/ on which ��1

�
is defined

and continuous. By Proposition 8.5, SHC.�/� SH.�/ is an open cell of dimension 6g� 6. Invoking
invariance of domain, ��1

�
and hence �� are local homeomorphisms. An additional application of

Proposition 13.12 implies that �� is globally injective, so �� is a homeomorphism onto its image, as
claimed.

The second step is to prove that �� W T.S/! SHC.�/ is a proper map. That is, we must show that,
when Xk escapes to infinity in T.S/, the corresponding shear-shape cocycles ��.Xk/ must diverge
in SHC.�/. Since proper local homeomorphisms are coverings and SHC.�/ is a cell, the map �� must
be a homeomorphism.
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The proof we present below is essentially just that of [Bonahon 1996, Theorem 20], but we have to
address the additional complications introduced by the PL structure of SHC.�/; this manifests itself in
the stratified real-analytic structure of the map.23

Proof of Theorem 12.1 We begin by recording an estimate for the geometry of surfaces near the
boundary of the image of �� (where “near” is measured in a train track chart).

So suppose that X 2T.S/, set ˛D˛.X /, and build a standard smoothing �˛ carrying � geometrically on X.
Fix � > 0 and suppose that there exists some s 2W .�˛/ with ksk�˛ < � such that ��.X /C s 2 SHC.�/

is not in the image of ��; then Theorem 15.1 implies that

1
2
D�.X /� ksk�˛ < �:

The following claim can be extracted from the proof of [Bonahon 1996, Theorem 20]; we outline a proof
for the convenience of the reader.

Claim 15.8 There is a transverse measure � 2�.�/ with 1=9�.S/� k�k�˛ � 1 and

`X .�/D !SH.��.X /; �/ < �:

Proof If there is a simple closed curve component of �with length at most �, then we are done. Otherwise,
even though AC a defines a hyperbolic structure on each piece of S n�, the overall shear-shape cocycle
��.X /Cs does not define a hyperbolic structure on S because the proof of Lemma 14.10 or Lemma 14.13
fails. Therefore, there is a simple pair .v; w/ for which the finite products 'H (or 'r

v;w) fail to converge
as H tends to Hv;w (or r !1).

We claim that there exists u between v and w and a spike s D .g; h/ of Hu such that the following holds:
for any geodesic transversal k � X to � meeting the spike s, the countably many points of Qk \ g � g

(labeled by r 2 N) exiting one end of g escape at a rate strictly slower than �.r � 1/. In other words,
there are segments dr � g such that `X .dr /� �.r � 1/ and dr meets k exactly r times.

If this were not the case, then, as in the proof of Lemma 14.5, the “gaps” cr � kv;w n � have length
`X .cr /DO.e��r /, where cr \g is labeled by r 2N. This estimate on the decay of gaps implies that 'H

converges as H!Hv;w and that 'r
v;w! 'v;w as r !1 (see the proof of Lemma 14.10), contradicting

our assumption.

Now consider the weight system wr on �˛ (not satisfying the switch conditions) defined by counting
the number of times dr travels along each branch of �˛, and dividing by the total number of branches
nr that dr traverses, with multiplicity. Observe that nr � r by definition. Then kwrk�˛ � 1 in the
vector space Rb.�˛/ and wr takes value zero on branches corresponding to arcs of ˛. Moreover, wr is

23Recall that HC.�/ is an open cone with finitely many faces in a vector space, while SHC.�/ is an affine cone bundle over a
piecewise-linear space with no obvious way of extending the smooth structure over faces of B.S n�/.
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nonnegative on each branch and approaches the weight space W .�/ � Rb.�/ as r !1. Since wr are
built from leaves of �, any limit point � defines a transverse measure supported on � (compare also
[Penner and Harer 1992, Proposition 3.3.2]).

There are at most 9�.S/ branches of �˛ , so by the pigeonhole principal there is a branch such that each
wr has mass at least 1=9�.S/, and therefore so must �. But now, by construction,

`X .�/D lim
r!1

`X .dr /

nr
<
.r � 1/�

nr
< �;

providing the desired measure.

Now suppose towards contradiction that ˛ is maximal and ��.Xk/ 2 SHC.�I˛/ is a sequence ap-
proaching some � 2 SHC.�I˛/ that is not in the image of ��. We may then apply the above construc-
tion to � � ��.Xk/ to extract a family of measures �k on � satisfying 1=9�.S/ � k�kk�˛ � 1 and
!SH.��.X /; �k/! 0. By compactness of the set measures on � with norm bounded away from zero and
infinity, there is some nonzero accumulation point � of �k . Continuity of !SH (Lemma 8.3) then gives

!SH.��.Xk/; �k/! !SH.�; �/D 0;

and so � 62 SHC.�I˛/, a contradiction. Hence, im.��/\SHC.�I˛/ is relatively closed. On the other
hand, �� is a local homeomorphism by Proposition 15.7, and hence im.��/\SHC.�I˛/ is relatively
open.

If we knew that the projection of im.��/ surjected onto B.S n�/ (or at least met each top-dimensional
face), we would be done. Since we do not a priori have this information, we instead work our way out
in B.S n�/ cell by cell.

To wit, we may invoke Theorem 15.1 once more to deduce that im.��/\SHC.�I˛0/ is relatively open
for every filling arc system ˛0 that shares a common filling arc subsystem with ˛ (hence, SHC.�I˛/

and SHC.�I˛0/ intersect). Repeating the argument above for these cells, im.��/� SHC.�I˛0/ as well.
Since B.S n�/ is connected, iterating this procedure allows us to deduce that im.��/� SHC.�/. The
reverse inclusion follows from Corollary 13.14, so �� is a homeomorphism onto SHC.�/.

To address the regularity of ��, we note that while T.S/ has a natural R–analytic structure, SH.�/ does
not. However, for each arc system ˛, filling or not, the open cell Bı.˛/ has a well-defined analytic
structure compatible with that of the analytic submanifold of T.S n �/ that it parametrizes. The total
space of the bundle SHı.�I˛/!Bı.˛/ also carries an analytic structure, invariant under train track
coordinate–transformations (Proposition 8.5); thus SH.�/ has a stratified R–analytic structure.

The shape-shifting cocycle 's, and hence the surface Xs, then depends real-analytically on s 2W .�˛/

(where ˛ here is equal to the support of A.X /, not a maximal completion). The reason for this is
clear: all elementary shape-shifting transformations are products of small parabolic transformations (see
[Thurston 1986, Section 9] or [Bonahon 1996, Theorem A]) or translations with translation distance that
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are (restrictions of) real-analytic functions on (an analytic submanifold of) T.S n �/. These products
converge absolutely to the shape-shifting cocycle, and hence uniformly on compact sets to an analytic
deformation.

15.3 Dilation rays and Thurston geodesics

Using our coordinatization, we can define an extension of the earthquake flow to an action by the
upper-triangular subgroup.

Definition 15.9 Given a measured geodesic lamination �, a hyperbolic surface X 2 T.S/, and t 2R,
define an analytic path of surfaces fX t

�
gt2R by

X t
� WD �

�1
� .et��.X //;

called the dilation ray24 based at X directed by �.

As the earthquake flow acts by translation in coordinates (Corollary 15.2), dilation and earthquake
along � (together with scaling the measure on �) fit together into an action by the upper-triangular
subgroup B < GLC

2
R on PTg. More explicitly, we can specify an action of B on T.S/�R>0� (by

homeomorphisms) by setting

(47)
�

a b

0 c

�
� .X; �/ WD

�
��1
� .a��.X /C b�/; c�

�
:

These B–actions assemble into a Mod.S/–equivariant B–action on PTg (observe that �� depends only
on the support of � and not the actual measure). Quotienting by the mapping class group and restricting to
the unit-length locus then gives a P–action on P1Mg, and since dilation preserves the property of being
regular, a P–action on each stratum P1M

reg
g .�/. We call any such action an action by stretchquakes.

Using the commutativity of (2) (Theorem 13.13), we can compare (47) with the computations performed
in Lemmas 11.1 and 11.2 to see that:

Proposition 15.10 The map O takes the P–action of (47) on P1Mg to the standard P–action on Q1Mg.

While we have defined them via coordinates, it is not hard to see that dilation rays are geometrically
meaningful families of surfaces. Generally, we obtain paths of surfaces along which the length of � scales
nicely, and we can identify some dilation rays as directed lines in Thurston’s asymmetric metric on T.S/.

Mirzakhani [2008, Remark, page 33] observed that, for a maximal lamination �, the dilation ray t 7!X t
�

corresponds to the stretch path directed by � defined by Thurston [1986, Section 4]. Very roughly, stretch
paths are obtained by gluing together certain expanding self-homeomorphisms of the ideal triangles that
form X n� along the leaves of �.

24We are abusing terminology here by declaring that the image of R under an analytic mapping is a ray. Our aim is to emphasize
that the dilation ray should be thought of as directed toward the future, even though it can be defined for all time.
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Lemma 15.11 [Thurston 1986, Proposition 2.2] Let Pn be a regular ideal hyperbolic n–gon. For any
K � 1, there is a K–Lipschitz self-homeomorphism Pn! Pn that maps each side to itself and expands
arclength along the boundary by a constant factor of K.

Proof The orthogeodesic foliation O.Pn/ is measure equivalent to a partial foliation by horocycles
centered at the spikes of Pn. The desired K–Lipschitz homeomorphism Pn!Pn is constructed by fixing
the central horocyclic n–gon and mapping each horocyclic arc at distance s from the central region to the
horocyclic arc at distance Ks in the same spike.

Any partition � D .�1; : : : ; �n/ of 4g� 4 determines a regular locus PT
reg
g .�/ of pairs .X; �/, where the

complement of � in X is a union of regular ideal .�iC2/–gons. Then P1M
reg
g .�/ is the moduli space of

pairs where `X .�/D 1.

Gluing together the expanding maps of regular polygons provides an explicit model of dilation rays
in P1Mg.�/ and identifies them with geodesics for the Thurston metric. A survey of some basic properties
of Thurston’s metric as well as similarities and differences between directed stretch rays and Teichmüller
geodesics can be found in [Papadopoulos and Théret 2007]. The following proposition was inspired in
part by recent work of Horbez and Tao [� 2024], in which they investigate the minimally displaced sets
in the Thurston’s metric using a similar construction.

Proposition 15.12 For any .X; �/ 2 PT
reg
g .�/, the dilation ray fX t

�
W t 2 Rg � PT

reg
g .�/ is a directed

unit-speed geodesic in Thurston’s asymmetric Lipschitz metric.

Proof Since � is regular on X, ��.X / 2 SHC.�/ lies in the fiber over the empty arc system. Scaling
��.X / preserves this arc system, so X t

�
is regular for all t . It suffices to prove that the optimal Lipschitz

constant for a map X !X t
�

in the homotopy class determined by markings is et for all t � 0.

Let H�.X / denote the (partial) foliation of X by horocyclic arcs that is measure equivalent to O�.X /.
The maps of Lemma 15.11 assemble to an et –Lipschitz homeomorphism X n �! X �

t n � such that
H�.X / maps to H�.X

t
�
/D etH�.X / on each component (as measured foliations). Now, using the fact

that ��.X t
�
/ D et��.X /, we can adapt the argument of [Bonahon 1996, Lemma 11] (as sketched in

Proposition 13.12) to show that this map is locally Lipschitz and hence extends across � to an et –Lipschitz
homeomorphism X !X t

�
.

Thus et provides an upper bound for the optimal Lipschitz constant in the homotopy class determined by
markings. On the other hand,

`X t
�
.�/D !SH.��.X

t
�/; �/D !SH.e

t��.X /; �/D et`X .�/;

so et is also a lower bound for the optimal Lipschitz constant.

Remark 15.13 As in the last line of the proof of Proposition 15.12 we always have `X t
�
.�/D et`X .�/

for arbitrary � 2ML.S/. Thus the distance from X to X t
�

in Thurston’s metric is at least t . However, we
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do not always know how to build et –Lipschitz proper homotopy equivalences X n�! X t
�
n� (in the

correct homotopy class) that expand arclength along @X n� by a constant factor of et .

Remark 15.14 (added in proof) In recent work, Pan and Wolf [2022] build new families of geodesics for
the Lipschitz metric using harmonic maps. Their work also uses our coordinates to show that certain “Hopf
differential disks” in Tg converge to “stretch–earthquake disks”. It would be interesting to know if their
new geodesics coincide with the dilation rays defined here, and, by extension, if their stretch–earthquake
disks are the same as the orbits of the stretchquake action defined here.

Remark 15.15 Our dilation rays are different from Thurston’s stretch rays defined with respect to one
of the finitely many maximal completions of � when � is not maximal. This follows from the fact that
O�.X / 6D O�0.X /, where �0 is a maximal completion of �.

The map PT
reg
g .�/�R!PT

reg
g .�/ defined by the rule .X; �; t/ 7! .X t

�
; e�t�/ is called the stretch flow.

The stretch flow is Mod.S/–equivariant and

`X t
�
.e�t�/D `X .�/;

and hence descends to P1M
reg
g .�/.

Corollary 15.16 Let � be a P–invariant ergodic probability measure on P1Mg.

� For �–almost every .X; �/, the dilation ray t 7!X t
�

is a unit-speed geodesic in Thurston’s asymmetric
metric.

� On a set of full �–measure , the action of the diagonal subgroup of P is identified with the stretch
flow and O conjugates stretch flow to Teichmüller geodesic flow.

In particular , the stretch flow is ergodic with respect to �.

Proof By Corollary 1.2, �–almost every point is regular (with respect to the same topological type of
lamination), so the first statement of the theorem is immediate from Proposition 15.12.

The second statement is essentially a restatement of Theorem B combined with the previous statement.
Alternatively, in the Gardiner–Masur parametrization of QTg (Theorem 2.1), the Teichmüller geodesic
flow at time t is given by .�; �/ 7! .et�; e�t�/, so unraveling the definitions and using commutativity
of (2) (Theorem 13.13) gives the result.

For ergodicity, we apply Theorem C which asserts, in particular, that O�� is an ergodic SL2 R–invariant
probability measure on Q1Mg.�/. The Howe–Moore Theorem implies that any noncompact, closed
subgroup of SL2 R inherits ergodicity (see eg [Feres and Katok 2002, Theorem 3.3.1]); in particular, the
Teichmüller geodesic flow is ergodic with respect to O��. So O maps any stretch flow–invariant set B of
positive �–measure to an O�� Teichmüller geodesic flow–invariant set of positive measure, which must
have full measure by ergodicity. Thus �.B/D 1, demonstrating ergodicity of the stretch flow.
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Recently, Allessandrini and Disarlo [2022] constructed Lipschitz maps between some pairs of degenerate
right-angled hexagons that stretch alternating boundary geodesics by a constant factor. Recall from
Section 6 that the Teichmüller space of an ideal quadrilateral is 1–dimensional and can be described as
the cone over a pair of points corresponding to the two arcs ˛ and ˇ that join opposite sides of Q.

Lemma 15.17 Let Q be an ideal quadrilateral with weighted filling arc system sı, where ı 2 f˛; ˇg. Let
Qt be the quadrilateral with arc system etsı. There is an et –Lipschitz surjection Q!Qt that multiplies
arclength along the boundary of Q by a factor of et . Moreover , the projection of the compact edge of the
spine of Q is mapped to the projection of the compact edge of the spine of Qt .

Proof Every ideal quadrilateral has an orientation-preserving isometric involution swapping opposite
sides. Thus the orthogeodesic representative of ı cuts Q into two isometric pieces, each of which is a
right-angled hexagon with two degenerate sides. On each piece, we can apply [Alessandrini and Disarlo
2022, Lemma 6.9] to obtain maps which glue together along ı to give a map with the desired properties.

We immediately obtain some new geodesics for Thurston’s metric.

Proposition 15.18 If S n� consists of ideal triangles and quadrilaterals , then , for any X 2T.S/, t 7!X t
�

is a directed , unit-speed geodesic for Thurston’s asymmetric metric.

Proof The proof is nearly identical to the proof of Proposition 15.12, so we only provide a brief outline.
Construct an et –Lipschitz surjective map X n�!X �

t n� from the units of Lemmas 15.11 and 15.17.
For the same reason as before, this map extends continuously across the leaves of � and provides an
et –Lipschitz homotopy equivalence X !X t

�
in the homotopy class determined by markings. Thus et

is an upper bound for the Lipschitz constant among homotopy equivalences X ! X t
�

in the correct
homotopy class. This is clearly an upper bound for the ratio

max
�2ML.S/

`�.X
t
�
/

`�.X /
:

But et is also a lower bound for this ratio, because the length of � is scaled by a factor of et .

By [Thurston 1986, Theorem 8.5], there is an et –Lipschitz homeomorphism X !X t
�

homotopic to the
map constructed above.

Remark 15.19 The proof of Proposition 15.18 clearly supplies a more general statement: if � is filling
and cuts X 2 T.S/ into a regular polygons and quadrilaterals of any shape, then t 7!X t

�
is a geodesic

for Thurston’s metric.

There are other cases in which we can glue Lipschitz maps between degenerate right-angled hexagons
that can be found in the literature (eg [Alessandrini and Disarlo 2022; Papadopoulos and Yamada 2017]).
However, these other cases require additional symmetry that is not always present in our setting. We
suspect that there is a different approach that would prove that dilation rays can always be identified with
Thurston geodesics, so that O conjugates a kind of Thurston geodesic flow to Teichmüller geodesic flow.
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16 Future and ongoing work

There is much more to understand about the correspondence between hyperbolic and flat geometry
described in this paper. In addition to using the orthogeodesic foliation to import tools from Teichmüller
dynamics into the world of hyperbolic geometry (and vice versa), the authors expect this link to provide
retroactive explanations for analogous phenomena in the two settings.

We describe a number of future directions and potential applications of the correspondence below, some
of which will be addressed in forthcoming sequels.

Continuity and equidistribution Theorem D states that, for a fixed lamination O� WT.S/!MF.�/ is
a homeomorphism, but, as Mirzakhani [2008, page 33] already observed, O cannot be continuous on PTg.
Moreover, Arana-Herrera and Wright [2024] have proven that the earthquake and horocycle flow are not
topologically conjugate by any map. At fault is the basic fact that the support of a measured lamination
does not vary continuously in the relevant topology.

In [Calderon and Farre 2024a], we investigate the continuity properties of O restricted to specific families
of .X; �/ with constrained geometry and topology. On these families, the support of � is forced to vary
continuously in the Hausdorff topology as the pair varies (in the usual topology on PTg). For example,
each of the regular loci has this property. With this extra geometric control in hand, we prove that O

restricts to a homeomorphism PT
reg
g .�/$ QTnsc

g .�/ on each regular locus.

By imposing a stronger (yet still geometrically meaningful) topology on ML.S/, we ensure the continuity
of O varying over all pairs: let ML.S/ denote the set of measured laminations with the “Hausdorff C
measure” topology, so that measured laminations are close in ML.S/ if they are close both in measure
and their supports are Hausdorff close. We prove a general phenomenon that O WT.S/�ML.S/!QT.S/

is locally Hölder continuous with respect to a nice family of locally defined metrics in geometric train
track coordinates [Calderon and Farre 2024a, Theorem 12.7].

Our continuity arguments depend on a detailed analysis of the geometric structure of small foliated
train track neighborhoods of a lamination on a hyperbolic surface. This analysis is sufficiently robust to
produce “enough continuity” to deduce that O is a Borel-measurable isomorphism, a fact which is pivotal
for applications. The results of Section 1.2 then live in a more natural setting, as well.

Combined with this work, the conjugacy of Theorems A and B allows us to import techniques of flat
geometry to the hyperbolic setting. In particular, while O is not continuous, its discontinuity is controlled
enough that we can translate between equidistribution in P1Tg and equidistribution in Q1Tg [Calderon
and Farre 2024b].

Symplectic structure For a maximal lamination �, Sözen and Bonahon [2001] identified the Goldman
symplectic form on the Teichmüller component of Hom.�1S;PSL2 R/=PSL2 R (also the Weil–Petersson
symplectic form) as ��

�
!H in shear coordinates. For arbitrary �2ML.S/ and X 2T.S/, the shape-shifting
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cocycles built in Section 14 provide an open set of deformations of the hyperbolization Œ� W�1S!PSL2 R�

of X (Theorem 15.1). Taking derivatives (as in [Sözen and Bonahon 2001]) identifies the tangent space
to Œ�� with the vector space of Ad�–invariant Lie algebra valued 1–cocycles, yielding a reasonably explicit
formula for a vector in the tangent space at Œ��. Using this formula, it is then possible to compute
an expression for the Goldman symplectic form in shear-shape coordinates. It remains to understand
precisely how O interacts with the various natural symplectic forms on PMg and QMg and the (degenerate)
symplectic forms on strata, a question that is made technical by the lack of regularity of O.

Measures To each PSL2 R–invariant ergodic probability measure on Q1Mg, pushforward along O�1

produces a P–invariant ergodic probability measure on P1Mg (and vice versa). An important class of
such measures on the singular flat side is furnished by the Masur–Veech measure �� on a component of
a stratum Q1Mg.�/. In [Calderon and Farre 2024a], we give a geometric description of �� WD O�1

� .��/

on the corresponding “stratum” P1M
reg
g .�/, which parallels [Mirzakhani 2008, Theorem 1.4] that on the

principal stratum, �� disintegrates into the Weil–Petersson measure on hyperbolic surfaces and Thurston
measure on laminations (up to a normalization factor). We give an outline of the various ingredients
required to make the analogous statement for �� with � arbitrary.

As discussed in Section 9.3, the piecewise-integral-linear (PIL) structure on SH.�/ endows it with an
integer lattice and distinguished measure in the class of Lebesgue. Indeed, for each filling �, the integer
lattice in SHC.�/ restricts to an integer lattice on the fiber HC.�/ over the empty arc system due to
integrality of the equations defining the piecewise-linear structure of B.S n�/. The empty arc system
corresponds to the set of X on which � is regular, and so the PIL structure induces a measure (in the
class of Lebesgue) on this regular locus.

We identify the kernel of the Goldman symplectic form restricted to regular loci as tangent to certain
“hyperbolic Schiffer deformations” associated to each even-gon in the complement of �. These directions
admit explicit descriptions as weight systems on a snug train track for � [Bonahon and Wong 2017,
Appendix] which can be reinterpreted as 1–forms on regular loci obtained as the differentials of coordinate
functions. Using our formula for the Goldman symplectic form restricted to regular loci, we identify
the pullback of the Lebesgue measure on the fiber H.�/ over the empty arc system with an analytic
volume form obtained as a wedge power of the restricted symplectic form then wedged together with the
distinguished 1–forms associated to the kernel.

Using snug train tracks, one can define a �–Thurston measure on the space ML.�/ of polygonal measured
laminations of a given topological type. While this is essentially Lebesgue measure in train track
coordinates for the “measureCHausdorff” topology, it is not locally finite in the usual topology on ML.S/.
One can construct natural train track coordinate charts that give local measurable trivializations of
P1Mg.�/ and exhibit �� as the product of �–Thurston measure and the Weil–Petersson-type volume form.

Expanding horospheres Counting problems for square-tiled surfaces/curves on hyperbolic surfaces
are intricately related to the equidistribution of L–level sets for the intersection number with/hyperbolic
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length of laminations as one takes L ! 1. When � is a multicurve, the equidistribution of such
“expanding horospheres” to the Masur–Veech measure on the principal stratum of Q1Mg/ the pullback
by O of this measure on P1Mg (sometimes called Mirzakhani measure) was established in [Mirzakhani
2007; Arana-Herrera 2021; Liu 2022] using the geometry of the (symmetrized) Lipschitz metric, the
nondivergence of the earthquake flow, and a no-escape-of-mass argument. On the other end of the
spectrum, the equidistribution of expanding horospheres for maximal � to Q1Mg can be proven using
a standard “thickening plus mixing” argument from homogeneous dynamics; in the flat setting this is
implicit in the work of Lindenstrauss and Mirzakhani [2008], and was recently generalized in [Forni
2021, Theorem 1.6] using different methods. Equidistribution in the hyperbolic setting then follows from
the continuity results described above.

Using our extension of Mirzakhani’s conjugacy (and the continuity results described above), the same
“thickening plus mixing” technique can be used to prove that expanding horospheres based at any � equidis-
tribute to the Mirzakhani measure on P1Mg. Moreover, an analogous result holds for strata: intersections
of expanding horospheres based at � and the regular locus should equidistribute to the pullback to P1Mg

of the Masur–Veech measure for a component of Q1Mg.�/ [Calderon and Farre 2024b, Theorem 1.4].
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