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The persistence of a relative Rabinowitz–Floer complex

GEORGIOS DIMITROGLOU RIZELL

MICHAEL G SULLIVAN

We give a quantitative refinement of the invariance of the Legendrian contact homology algebra in general
contact manifolds. We show that in this general case, the Lagrangian cobordism trace of a Legendrian
isotopy defines a DGA stable tame isomorphism, which is similar to a bifurcation invariance proof for a
contactization contact manifold. We use this result to construct a relative version of the Rabinowitz–Floer
complex defined for Legendrians that also satisfies a quantitative invariance, and study its persistent
homology barcodes. We apply these barcodes to prove several results, including: displacement energy
bounds for Legendrian submanifolds in terms of the oscillatory norms of the contact Hamiltonians; a
proof of Rosen and Zhang’s nondegeneracy conjecture for the Shelukhin–Chekanov–Hofer metric on
Legendrian submanifolds; and the nondisplaceability of the standard Legendrian real-projective space
inside the contact real-projective space.

53D10, 53D42

1 Introduction

Let .Y 2nC1; �/ be a .2nC1/–dimensional contact manifold with contact form ˛, and ƒ� Y be a (closed)
n–dimensional Legendrian submanifold. Specific assumptions we make for ƒ and .Y; �/ vary based on
our result. This list is summarized in Remark 1.3. A Reeb chord (or ˛–Reeb chord) of ƒ is a nontrivial
flow starting and ending on ƒ, of the Reeb vector field R˛ 2 �.T Y /, which is defined by ˛.R˛/D 1 and
d˛.R˛; � /D0. We are interested in estimating the number of Reeb chords from a given Legendrian (closed
submanifold)ƒ to its image under a contact isotopy with compact support. If there are no such Reeb chords,
we say that the contact isotopy displaces ƒ for that given ˛. This is the contact analogue of a Hamiltonian
isotopy displacing a Lagrangian submanifold; see Chekanov [7]. Our Main Theorem, Theorem 1.4, has
more information about Reeb chords than the known analogous results for Lagrangian intersection points,
because we not only give a single lower bound on how long some fixed number of chords persist, but
rather, a sequence of lower bounds depending on the number of chords required to persist.

Our main tool is a filtered Legendrian contact homology differential graded algebra (also called the
Chekanov–Eliashberg DGA). Let A.ƒ/ be the free noncommutative unital algebra over the field (or ring) k
freely generated by ˛–Reeb chords of ƒ. If the moduli spaces of these disks can be oriented in a coherent
way, for example by the choice of a spin structure on the Legendrian as in Ekholm, Etnyre and Sullivan [24]
and Karlsson [29], then k is Z or Zp. Otherwise kD Z2.
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2146 Georgios Dimitroglou Rizell and Michael G Sullivan

The grading is induced by the Conley–Zehnder index of Reeb chords; see Section A.2.

The differential @ has degree �1 and counts J –holomorphic disks in the symplectization .R� �Y; d.e�˛//
with Lagrangian boundary condition R� �ƒ.

Each Reeb chord c has a length (or action) `.c/ WD
R
c ˛ > 0. For 0 < l �1, let Al.ƒ/ be the unital

subalgebra generated by those generators c length bounded from above by
R
c ˛ < l . The action-decreasing

property of the differential, which is a direct consequence of the positivity of d˛–area and Stokes’ theorem,
implies that Al.ƒ/�A.ƒ/ is a unital sub-DGA.

An augmentation for the DGA Al is a (graded) DGA–morphism " W .Al ; @/! .k; @k WD 0/ to the ground
field. Because `.1/D 0, for any Chekanov–Eliashberg DGA A, there exists l > 0 such that Al has an
augmentation.

The oscillation of a contact (˛–)Hamiltonian Ht W Y �R� !R is

kHtkosc WD

Z 1

0

�
max
y2Y

Ht �min
y2Y

Ht
�
dt:

This oscillation defines the Hofer norm of the corresponding contact Hamiltonian isotopy �t˛;Ht .

In order to circumvent the analytical difficulties of establishing invariance of the Legendrian contact
homology algebra for general contact forms, we will make certain technical assumptions on the contractible
periodic Reeb orbits of .Y; ˛/, at least below some fixed length. To this purpose, we introduce the following
definition.

Definition 1.1 Consider a contractible and nondegenerate periodic Reeb orbit  of .Y; ˛/. We let
j j 2Z[f�1g denote the minimum of the expected dimensions of the moduli spaces of unparametrized
pseudoholomorphic planes inside the symplectization R�Y that are asymptotic to the Reeb orbit  at
the convex end, where the symplectization has been equipped with a cylindrical almost complex structure.
In the case when the first Chern class vanishes, this expected dimension does not depend on the chosen
plane, and j j 2 Z.

Note that, in the aforementioned moduli space, we do not identify planes that differ by a translation of
the symplectization coordinate. See Section A.1 for more details.

Example 1.2 The expected dimension j j of a contractible Reeb orbit is at least two for suitable
nondegenerate perturbations of the round contact sphere�

S2nC1; ˛st D
1

2

X
i

.xi dyi �yi dxi /

�
for n� 1;

as well as for the high-dimensional “lens spaces” given as the quotients S2nC1=Zk for a subgroup
Zk � S

1. We will here consider the case RP 2nC1 D S2nC1=Z2; see Proposition 6.4 for the relevant
index computation in the case of RP 2nC1. The computations for the sphere and lens spaces are analogous.

Geometry & Topology, Volume 28 (2024)
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The assumption j j>1 for all contractible Reeb orbits allows us to define the Legendrian contact homology
algebra without involving the contact homology algebra for the periodic Reeb orbits; see Dimitroglou
Rizell [13, Section 3.3.3]. (Note that the contact homology algebra of periodic Reeb orbits has a canonical
augmentation in this case.) The assumption j j > 1 also eliminates the need for considerations of the
periodic Reeb orbits in the proof of the invariance result from Ekholm [19] for the Legendrian contact
homology algebra under a Legendrian isotopy (while fixing the ambient contact form).

Remark 1.3 Before we state our results in detail, we give a quick summary, noting how general the
setup is in light of the above technical discussion on the Legendrian contact homology algebra.

� Theorem 1.4 proves lower bounds for the number of Reeb chords between a Legendrian and
its image under a contact Hamiltonian in terms of the oscillation norm. This is for an arbitrary
Legendrian in an arbitrary contact manifold, but the bounds incorporate the technical condition on
j j mentioned above.

� Theorem 1.6 proves that the Shelukhin–Chekanov–Hofer metric of a Legendrian orbit space is
nondegenerate. This is for an arbitrary Legendrian in an arbitrary contact manifold.

� Corollary 1.8 proves that the C 0–limit of a sequence of Legendrians is again Legendrian. Here we
assume the contact manifold is geometrically bounded and there exists some lower bound on the
length of Reeb chords in the sequence. But there is no assumption on the closed Reeb orbits.

� Theorem 1.9 generalizes the “interlinkedness” of an ordered pair of Legendrians; see Entov and
Polterovich [26, Theorem 1.5]. We make several assumptions here: the two Legendrians are
individually augmentable; j j> 1 holds for all closed Reeb orbits; and the resulting well-defined
Rabinowitz–Floer complex is not acyclic.

� Theorem 1.10 proves the nondisplaceability of the Legendrian equator in standard contact RP 2nC1

equipped with a small perturbation of the standard round S1–invariant contact form. We will show
that the j j> 1 assumption is satisfied because the perturbation is small.

� Proposition 1.11 proves roughly that the Legendrian contact homology algebra, below any fixed
action level, of an arbitrary Legendrian undergoing a small generic isotopy in an arbitrary contact
manifold is invariant under stable-tame isomorphism. Here we assume j j > 1 holds for those
closed orbits below this action level bound.

� Usually we assume the contact manifold is closed. However, Theorems 1.4, 1.6 and 1.9 automat-
ically carry over also to open contact manifolds, given that they arise as open subsets of closed
contact manifolds, and that the contact form on the open contact manifold is taken to be the
restriction of a contact form on the ambient closed manifold. In addition, Proposition 1.11 requires
us to be in a setting where the DGA can be defined: aside from closed contact manifolds, cases
that can be treated are contactizations and prequantizations of symplectic manifolds with a convex
boundary or noncompact end.

Geometry & Topology, Volume 28 (2024)



2148 Georgios Dimitroglou Rizell and Michael G Sullivan

Theorem 1.4 (Main Theorem) Fix a generic closed Legendrian ƒ� .Y; ˛/ of a contact manifold with
a fixed contact form. Generically, we can order the Reeb chords by action

0 < `.c1/ < `.c2/ < � � � :

Also , write „2 .0;C1� for the minimal length of a contractible periodic Reeb orbit  that satisfies j j � 1.
Suppose that Al.ƒ/ with 0 < l � 1 admits an augmentation to the field k, where l � „. Fix k and
consider any compactly supported contact Hamiltonian Ht W Y !R such that kHtkosc <minfl; `.ck/g.
Then there exist at least

nX
iD0

dim.Hi .ƒIk//� 2.k� 1/

many Reeb chords with one endpoint on ƒ and the other endpoint on �1˛;Ht .ƒ/.

Remark 1.5 The assumption on the expected dimension of the pseudoholomorphic planes inside the
symplectization should not be strictly necessary, but possible to replace by a condition on the existence
of an augmentation of the contact homology algebra of periodic Reeb orbits below the action level
l > 0. However, the setup and analysis become significantly simplified under our stronger assumption.
More precisely, without these assumptions, one would have to define the Chekanov–Eliashberg algebra
with coefficients in the periodic orbit contact homology algebra in order to define the differential; or, in
the case when .Y; ˛/ admits an exact symplectic filling, use anchored disks as in Ekholm [21]. More
importantly, our additional hypothesis allows us to avoid the technical gluing and transversality results for
pseudoholomorphic planes asymptotic to periodic orbits that require the use of virtual perturbations as
done by Pardon [36], Bao and Honda [1], and the polyfold theory of Hofer, Wysocki and Zehnder applied
in the SFT setting by Fish and Hofer [27]. With the additional hypothesis l � „, we only need SFT
compactness for closed Reeb orbits (see Bourgeois, Eliashberg, Hofer, Wysocki and Zehnder [3]), and the
gluing/transversality results for pseudoholomorphic discs with a single positive Reeb chord asymptotic.

Finally note that, even when replacing the assumption on the expected dimension of the pseudoholomorphic
half-planes by the existence of an augmentation, the contact form remains fixed throughout our Legendrian
isotopies. Hence, the difficult analytical issues that arise when proving the invariance under deformations
of the contact form would not be present even in the more general case.

In [17], we studied this problem when Y DP �Rz and ˛D dz�� , where .P; d�/ is an exact symplectic
manifold with a certain bounded geometry at infinity. In both cases we used a persistence homology
theory (via barcodes) defined by Reeb chords. The main difference between our setup in that article and
the typical setup, is that we considered complexes with a finite action filtration.

The new aspects of this article are: we translate known Floer-continuation results to new (but needed) Floer-
bifurcations results; we prove an invariance for a newly defined limited-action-window Rabinowitz–Floer
homology theory, which allows for chords of zero length to appear.

We now describe several new applications of the Main Theorem, Theorem 1.4.

Geometry & Topology, Volume 28 (2024)
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Fix a subsetN �Y and let L.N / be its orbit space under the identity component of the contactomorphism
group, C0.Y; �/. Given a contact isotopy �t and contact form ˛, let H˛;�

t be the contact Hamiltonian
for �t . Following Rosen and Zhang’s [39, Definition 1.7], define on L.N / the pseudometric

ı˛.N;N
0/D inf

�Z 1

0

max jHt j dt
ˇ̌̌
�1˛;Ht .N /DN

0

�
:

Shelukhin [41] shows that this defines a right-invariant nondegenerate norm on C0.Y; �/. If N is
n–dimensional and somewhere not Legendrian (or more generally, if N is not contact coisotropic) then
this pseudometric identically vanishes; see [39, Proposition 7.4]. We answer [39, Conjecture 1.10].

Theorem 1.6 The Shelukhin–Chekanov–Hofer distance ı˛ on a contact manifold that is assumed to be
either closed , or which admits a codimension-zero contact embedding into a closed contact manifold ,
and where ˛ moreover is the restriction of a contact form on the closed manifold , is nondegenerate when
restricted to closed Legendrian submanifolds.

Remark 1.7 (1) The condition on admitting an embedding into a closed contact manifold holds, for
example, for contactizations and prequantizations of Liouville domains.

(2) The nondegeneracy should hold for more general open contact manifolds which are of bounded
geometry. For the proof, the following features are crucial: the constant „ � 0 must be strictly
positive for some contact form, and we must be in a setting in which the SFT compactness theorem
for pseudoholomorphic curves is satisfied (we need, for example, convexity assumptions at infinity).

(3) We are grateful to Nakamura, who pointed out that it is most likely the case that the nondegeneracy
vs degeneracy of the distance depends on the particular choice of contact form in the case when
the contact manifold is open.

Two special cases of this were already proved: when the Legendrian is hypertight (no contractible Reeb
orbits or chords), by Usher [43], and when the Legendrian is orderable (no positive loops of Legendrians),
by Hedicke [28].

Consider a sequence of closed Legendrians ƒi which C 0–converges to a smooth (not necessarily Legen-
drian) embedding ƒ1. Assume that there exists a ı such that each ƒi has no Reeb chord  of ˛–length
`./ < ı. Nakamura [33, Theorem 3.4] proves that ƒ1 is again Legendrian assuming two conditions:

(1) The Reeb vector field R˛ is nowhere tangent to ƒ1, and certain geometric boundedness conditions
hold for M .

(2) .Y; ˛/D .P �Rz; dz� �/.

The only need for the second hypothesis in Nakamura’s proof is to use [17] to show the Reeb chords persist
under a contact isotopy of small oscillatory norm. Since our Theorem 1.4 generalizes the persistence of
Reeb chords proven in [17] to more general contact manifolds, we get an easy corollary.

Geometry & Topology, Volume 28 (2024)



2150 Georgios Dimitroglou Rizell and Michael G Sullivan

Corollary 1.8 Nakamura’s convergence result holds only assuming the initial hypotheses: the Reeb
chord lengths cannot approach zero , ƒi is closed , and the ambient contact manifold .M; ˛/ is either
closed , or admits a codimension-zero contact embedding into a closed contact manifold.

Entov and Polterovich define an ordered pair of Legendrians .ƒ0; ƒ1/ in .Y; ˛/ to be interlinked if for
some �; c > 0 and every contact Hamiltonian H satisfying H � c, there is a Hamiltonian orbit  from ƒ0

to ƒ1 such that `./� �=c. Using a persistence homology theory for Reeb chords, they proved if ƒ0 is
the 0–section in .Y D J 1Q;˛ D dz�p dq/, ƒ1 � J 1Q has an augmentation, and there exists a unique
nondegenerate Reeb chord from ƒ0 to ƒ1, then .ƒ0; ƒ1/ are interlinked; see Entov and Polterovich
[26, Theorem 1.5]. We can generalize this.

Theorem 1.9 Suppose ƒ0; ƒ1 � .Y; ˛/ are a generic pair of Legendrians with generic contact form ˛

for which j j � 2 is satisfied for all contractible periodic Reeb orbits  (cf Remark 1.5). Assume that ƒ0
and ƒ1 have augmentations.

Assume that the Rabinowitz–Floer complex RFCŒ0;C1/.ƒ0; ƒ1/D LCH.ƒ0; ƒ1/, which is well defined
(see Section 4.2), is not acyclic. (This is automatically the case for instance when the chords of positive
action cannot be partitioned into pairs .c; d/ with a.d/ > a.c/ and index difference jd j � jcj D 1.) Then
.ƒ0; ƒ1/ are interlinked.

Some hypothesis on the mixed chords is needed. Suppose ƒ0; ƒ1 are both in two Darboux charts in
.J 1Q;dz � p dq/, separated by a large z–distance. Isotope ƒ0 in the .p; q/ direction such that the
T �Q–projections of ƒ0 and ƒ1 no longer intersect. During the isotopy we see (for example, via the
T �Q– or J 0.Y /–projection) the mixed chords canceling in pairs with strips connecting them of expected
dimension 1. In this case neither .ƒ0; ƒ1/ nor .ƒ1; ƒ0/ are interlinked.

The standard Legendrian .nC1/–sphere inside the standard contact sphere is given by

ƒ0 WD S
2nC1

\ReCnC1;

ie the intersection of the conical Lagrangian in CnC1 which is given by the real-part and the unit sphere.
Quotienting by the Z2–antipodal map z 7! �z 2CnC1, ƒ0=Z2 is the standard Legendrian embedding of
RP n into the standard contact RP 2nC1 D S2nC1=Z2. It is easy to show that ƒ0 can be displaced from
itself in S2nC1. By computing a Rabinowitz–Floer theory (Definition 4.6), we prove this is not true for
this real projective plane.

Theorem 1.10 Consider the standard contact RP 2nC1 equipped with a small nondegenerate perturbation
of the standard round S1–invariant contact form as described in Proposition 6.12. The standard Legendrian
RP n Dƒ0=Z2 has a Chekanov–Eliashberg algebra that admits an augmentation , and a well-defined and
invariant Rabinowitz–Floer homology that is equal to

RFH.RP n;RP n/D
M
i2Z

Z2Œi �:

In particular , the standard Legendrian RP n cannot be displaced from itself for these contact forms.

Geometry & Topology, Volume 28 (2024)
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There are two standard methods to prove the invariance of holomorphic-curve-based theories, such as the
one underlying Theorem 1.4.

Given a generic Legendrian isotopy fƒtgt2Œ�;C� between two generic Legendrian submanifolds ƒ�
and ƒC, there is a filtered unital DGA–morphism

ˆ WA.ƒC/!A.ƒ�/

given by counting certain holomorphic disks in the symplectization R�Y with boundary lying on an exact
Lagrangian constructed from the trace of the isotopy withƒC (resp.ƒ�) at the positive (resp. negative) end.
See Chantraine [4], Chantraine, Colin and Dimitroglou Rizell [5] and Ekholm, Honda and Kálmán [25]
for details on these Lagrangian trace constructions. The filtration is defined by the length. The map ˆ
has a DGA–homotopy inverse, and so induces an isomorphism on homology; see Ekholm [19]. This
invariance approach is known as the continuation method.

The bifurcation method studies how the DGA A.ƒt / varies with t 2 Œ�;C�. Generically, there are
two events that occur at isolated t : a pair of Reeb chords can appear or disappear (birth/deaths); an
isolated holomorphic curve can appear (handleslide disk), and via one-parameter Gromov compactness,
can change the moduli spaces which define the differential. Each birth/death induces on the DGA a
stabilization/destabilization combined with possible filtered tame automorphisms, while each handleslide
disk induces a filtered tame automorphism; see Ekholm, Etnyre and Sullivan [23] and Chekanov [8]. So
the isotopy overall induces a sequence of (filtered) stable-tame isomorphisms.

A stable-tame isomorphism is conjecturally stronger than a homotopically invertible DGA–morphism. For
example, when making the analogous comparison for Morse chain complex invariance, the bifurcation
method preserves the stable–Morse number and certain torsion-based invariances (see Damian [12] and
Sullivan [42]), which the continuation method, a priori, does not. However, due to sensitive gluing
analysis, for studying Chekanov–Eliashberg invariance the bifurcation method has only been proved
if .Y; ˛/ D .P � Rz; dz � �/; see again [23; 8]. This (and the proof of Theorem 1.4) motivates
Proposition 1.11. The statement is somewhat unwieldy because a general contact manifold may have
infinite Reeb chords with actions arbitrarily close, while we can only analyze events involving finite
numbers of birth/deaths and handleslides. However, it can be roughly formulated in the following
(imprecise) way: the Chekanov–Eliashberg algebra in a general contact manifold is invariant under
stable-tame isomorphism below any fixed action level.

Proposition 1.11 (bifurcation analysis for concordance maps) Let fƒtgt2Œ�;C� be a generic Legendrian
isotopy between two generic Legendrian submanifolds ƒ� and ƒC. Denote by ˆŒa;b� the unital DGA–
morphism induced by the Lagrangian trace of the isotopy fƒtgt2Œa;b� with Œa; b� � Œ�;C�. Recall that
this is an exact Lagrangian cobordism diffeomorphic to a cylinder; see eg Appendix B for its construction.

Fix some number l > 0 and assume that all birth/deaths in the Legendrian isotopy ƒt are generic , so that
none occur precisely at action l , while there are finitely many that occur at action strictly less than l at
distinct times.

Geometry & Topology, Volume 28 (2024)



2152 Georgios Dimitroglou Rizell and Michael G Sullivan

For any sufficiently fine generic subdivision

�D t1 < t2 < � � �< tN DC

for which each .ti ; tiC1/ contains at most one birth/death below action l , the following holds. The
restricted DGA–morphism ˆŒti ;tiC1�jAl .ƒtiC1 /

can be conjugated to the algebra map that is defined by
mapping to zero any generator involved in a death moment and canonically identifying all remaining Reeb
chord generators , where the conjugation is by filtered tame automorphisms of the domain and target. This
means , in particular , that ˆŒti ;tiC1�jAl .ƒtiC1 / is a stable-tame isomorphism of DGAs.

Remark 1.12 Of course the sub-DGA Al is itself not invariant; the restriction ˆŒti ;tiC1�jAl .ƒtiC1 / is,
for example, not necessarily contained inside Al.ƒti /.

Remark 1.13 Since we do not discuss the virtual perturbation schemes for defining the contact homology
algebra for periodic Reeb orbits, we again need to assume that j j � 2 holds for any contractible Reeb
orbit of length at most l in the above proposition; cf Remark 1.5.

In [17], we exploited the bifurcation-type invariance in Ekholm, Etnyre and Sullivan [23; 24] to show
that the barcode from persistent homology induced by the action filtration is continuous with respect to
the oscillatory norm in the case of contactizations. The invariance by DG–homotopies from [19] that
holds in a general contact manifold also satisfies filtration-preserving properties, but these are a priori
not continuously depending on the oscillation alone; see the notion of length introduced in Sabloff and
Traynor [40]. Proposition 1.11 allows us to reprove the results from [17] in the general setting.

In Section 2 we review some algebra and combinatorics of DGAs, mapping cones and barcodes. In
Section 3, we prove Proposition 1.11. In Section 4, we introduce a Rabinowitz–Floer complex generated
by Reeb chords between two Legendrians, and study how a certain mapping cone of this complex changes
when one of the Legendrians isotopes (possibly through the other one). This version of the complex
was previously defined by Legout [31] in the case of a contactization, and is also related to the Floer
homology for Lagrangian cobordisms defined in [6]. In Section 5, we use the changing barcodes of these
mapping cone complexes to prove Theorems 1.4, 1.6 and 1.9. In Section 6, we compute the example of
Theorem 1.10; see Proposition 6.12.

Remark 1.14 We learned that Oh [34] has posted before us, by a couple of weeks, a related result: if
the Hamiltonian oscillation is less than the length of the shortest Reeb chord between, then the number
of Reeb chords is bounded below by the sum of the Betti numbers. This improves one of our earlier
results [16], in which we require the upper bound on the oscillation to be less than the length of the
shortest Reeb chord, multiplied by the conformal factor of the contact form. Whereas our prior results
[16; 17] and this paper use versions of Floer theory which have already been established by others, Oh’s
approach is different in that he establishes the analytical framework for a new theory called Hamiltonian
perturbed contact-instantons. With this new theory established, his result follows from Chekanov’s
original argument for Lagrangians [7].
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2 Algebraic preliminaries

This section is purely algebraic, with no mention of the geometric applications.

2.1 Filtered DGAs, augmentations and stable tame isomorphisms

Let .A; @/ be either a noncommutative or a graded-commutative semifree unital DGA over the ground
field k. Assume .A; @/ has an action filtration ` WA! f�1g[R, where `.@.x// < `.x/; we say that @
is (strictly) filtration-decreasing, or action-decreasing. See [17] for more details. Suppose A admits a
Z2–graded augmentation " WA!k. There is an induced filtration-preserving unital algebra-automorphism
‰" WA!A defined by

‰".a/D a� ".a/

on the generators, whose inverse is defined by

‰�1" .a/D aC ".a/:

In particular, the inverse is also filtration-preserving, and these automorphisms conjugate the differential to

@" WD‰" ı @ ı‰
�1
" ;

which preserves both word-length and action. In particular, if we write @".a/D
P
iD0.@

".a//i as a sum
of monomials, then .@"/1 defines a strictly filtration-decreasing differential on the graded vector space
generated by the DGA generators, which is of degree-.�1/.

A filtered tame automorphism ˆ W .A; @/! .A; @0/ of a semifree DGA A with preferred basis is defined
on the generators by

ˆ.x/D kxC ıyxw;

where k 2 k is a unit, ıyx is the Kronecker-delta, and w 2A is a word such that `.w/ < `.y/.

A canonical identification between semifree filtered DGAs with preferred bases is a DGA isomorphism
induced by an identification of the generators which preserves the grading and differential, but not
necessarily the filtration.

The stabilization .B; @B/ of .A; @A/ is constructed by adding to A two generators x; y such that @B.y/Dx

and @BjA D @A. Note that there is a canonical DGA inclusion A!B and DGA quotient B!A.

A (filtered) stable-tame isomorphism (STI) ˆ W .A; @A/! .B; @B/ is a finite composition of (filtered) tame
automorphisms, (possibly nonfiltered) canonical identifications, stabilizations, and inverse stabilizations.
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Let ˆ W .A; @A/ ! .B; @B/ be a DGA–morphism. For any augmentation " of B we can define the
conjugation

ˆ" WD‰" ıˆ ı‰
�1
"ıˆ W .A; @

"ıˆ
A /! .B; @"B/;

which satisfies
.ˆ"/1.@

"ıˆ
A /1 D .@

"
B/1.ˆ

"/1:

If ˆ is a (filtered) STI, then .ˆ"/1 is a finite composition of (filtered) handleslides, and birth/deaths at the
chain level; see Section 2.4.

2.2 Mapping cones with filtrations and invariance

Let .C01; d01/ and .C10; d10/ be filtered graded complexes with action filtrations ` WC !R[f�1g, and
strictly filtration-decreasing differentials. (The grading subscript is suppressed while the “01” and “10”
subscripts will be justified in Section 4.) Moreover, assume that the generators of C01 all have actions
above some fixed  2R while the generators of C10 all have actions below  . We write

C<a WD `�1.�1; a/� C

for the subcomplex consisting of chains of action less than a 2 R, and denote the quotient complex
consisting of chains in the action window Œa; b/ by C Œa;b/ WD C<b=C<a.

Let B W C01! C10 be a chain map, which automatically is strictly filtration-decreasing by the above
assumptions. For this reason, we get an induced action filtration on the chain complex given by the
mapping cone .Cone.B/; dB/, which we represent by�

C10˚C01; @Cone D

�
�@10 B

0 @01

��
;

ie @Cone is again strictly filtration-decreasing.

Suppose B 0 W C 001! C 010 is another chain map between filtered complexes. Again we assume that all
generators of the domain have action greater than the action of the generators in the target, which means
that B 0 is automatically strictly filtration-decreasing. A map f WC !C 0 between filtered chain complexes
with filtrations `; `0 is said to have degree � 2 R if `0.f .x// � `.x/C � for all x 2 C . Assume the
following:

(A1) There exist chain maps �01 W C01! C 001 and  10 W C 010! C10 with homotopy inverses  01 and
�10, with chain homotopies hij W ij ı�ij � idCij and kij W �ij ı ij � idC 0

ij
, where all maps above

are of degree �.

(A2) The map B is chain homotopic to  10B 0�01 via a chain homotopy H W B �  10B 0�01. Note that
this homotopy automatically has negative degree, ie it is strictly filtration-decreasing.

(Note in (A1) that the homotopies have degree � instead of 2� as is common in Hamiltonian Floer theory
literature, for example [44, Definition 8.1].)
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Then we have a homotopy commutative square

C01
B
//

�01
�� h !!

C10

�10
��

C 001 B 0
// C 010

where hD �10H C k10B 0�01 is the induced chain homotopy between �10B and B 0�01, which thus is a
map of degree �. Similarly, there is a chain homotopy h0 WB 01� 10B 0 given by h0DH 01C 01B 0k01,
which makes the square in the diagram

C 001
B 0
//

 01
�� h0 !!

C 010

 10
��

C01
B
// C10

commute up to homotopy. Both h and h0 are maps of degree �.

It follows that there are induced chain maps of the cones

C10 //

��

Cone.B/

f

��

// C01

��

C 010
//

��

Cone.B 0/

g

��

// C 001

��

C10 // Cone.B/ // C01

given by

f D

�
�10 h

0 �01

�
and g D

�
 10 h0

0  01

�
of degree �. By the five lemma, the induced homology maps are isomorphisms.

Lemma 2.1 The maps f ı g and g ı f are each chain homotopic to automorphisms of filtered chain
complexes (ie degree-zero chain maps with degree-zero inverses), via chain homotopies that are of
degree �.

Proof We show the statement for g ıf ; the argument for f ıg is completely analogous.

There is a chain homotopy �
h10 0

0 h01

�
of degree � from f ıg to a chain automorphism of the form�

idC10 K

0 idC01

�
:
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Since the entry K W C01! C10 is of nonpositive degree, the matrix is of degree zero. The matrix is a
chain map since it is chain homotopic to f ıg. This chain map property translates to the fact that K is a
chain map (that performs a grading shift by C1). Note that the inverse map is�

idC10 �K
0 idC01

�
;

which hence is also of degree zero.

2.3 Simple equivalences from small degree homotopy equivalences

Next we relate the homotopy equivalences of small degree as above with the invariance of bifurcation-type
that our previous work [17] was based on.

Recall that a basis feig of the filtered complex C is compatible with the filtration if there is an action
function `.ei / 2R defined on the basis so that c 2 C<a if and only if c can be written as a sum of basis
elements of action less than a; see [17, Section 2.1]. We say that a complex is ı–gapped if two different
basis elements in a compatible basis have action values that either coincide, or differ by at least ı > 0.

Lemma 2.2 Consider two filtered complexes C and C 0, where C is ı–gapped and satisfies the property
that each action level has at most finitely many generators , and for which

(1) C and C 0 admit bases compatible with the filtration whose elements are in a bijection x 7! x0,
under which the action satisfies `.x/� `0.x0/� �; and

(2) there are chain maps � W C ! C 0 and  W C 0! C , which both are of degree � > 0, where  � and
� are homotopic to automorphisms of filtered chain complexes via chain homotopies of degree �.

If ı > 4� > 0, then � is a isomorphism with inverse  .

If we endow the complexes with bases that are compatible with the filtrations , ordered in decreasing
action , with the additional assumption that two different elements have distinct action values , then � is
upper triangular with units on the diagonal.

Proof By the assumptions, we can write

 � DˆC @KCK@;

where ˆ is an automorphism of filtered chain complexes. By the assumption that C is ı–gapped, and
since K is of degree � < 1

4
ı, we conclude that K is in fact filtration preserving. Hence @KCK@ is strictly

filtration-decreasing. It follows by a standard fact that  � itself is an automorphism of filtered chain
complexes.

The map � is injective by the above. It thus suffices to show that � is surjective since, in that case,
 D ��1.

Geometry & Topology, Volume 28 (2024)



The persistence of a relative Rabinowitz–Floer complex 2157

Note that, for any basis element x 2 C in a basis compatible with the filtration, the map induced by
quotient and restriction

� W C Œ`.x/�3�;`.x/C3�/! C 0Œ`.x/�3�;`.x/C3�/

is a map between equidimensional vector spaces by the assumption on the action spectrum of the involved
complexes. Since  � is an automorphism of filtered complexes, together with the assumption that C
is ı–gapped, we deduce that the above map on the quotient is injective as well, and thus surjective.
Consequently the map � itself is surjective, as sought.

Lemma 2.3 (characterization of a birth/death) Consider two filtered complexes C and C 0, and assume
that C ŒaCı;aC3ı/ D C Œa;aC4ı/ are both two-dimensional , while C 0Œa;aC4ı/ D 0. Assume that there exist
chain maps � WC !C 0 and  WC 0!C which both are of degree � > 0, where  � and � are homotopic
to automorphisms of filtered chains complexes via chain homotopies of degree �. If ı > � > 0, then
C ŒaCı;aC3ı/ is a complex generated by x and y, with @x D ky for some unit k.

Proof Since the map � W C Œa;aC4ı/! C 0Œa;aC4ı/ D 0 induced by quotient and surjection is a homotopy
equivalence, C Œa;aC4ı/ is acyclic. The only two-dimensional acyclic complexes are the ones described
above.

2.4 Barcodes

We sketch without details the modified barcode theory done in [17, Section 2].

For t 2R, let C.t/btat be a filtered complex with filtration action ` taking values in Œat ; bt /�R and �1.
A piecewise continuous (PWC) family of such filtered complexes, parametrized by t , is characterized by
the following properties:

� The endpoints of the action window Œat ; bt / vary continuously with t .

� There exists a discrete set of t1< � � �<tN such that during any component I �Rnft1; : : : ; tN g, there
are canonically identified (for different t 2 I ) generators of the complexes which are compatible
with the action.

� The action of each such generator is continuous and almost everywhere differentiable with respect
to t 2 I .

� For each t 2 I , the differential strictly decreases the action.

� For each t 2 ft1; : : : ; tN g, the chain complex undergoes at most one of the following possible
“simple bifurcations”:

– The algebraic equivalent of a Morse handleslide.

– The algebraic equivalent of a Morse birth/death.

– An entrance (resp. exit) of one generator into (resp. from) either the top or bottom of the action
window.

Geometry & Topology, Volume 28 (2024)



2158 Georgios Dimitroglou Rizell and Michael G Sullivan

We continue to use [17, Section 2] in defining barcodes, but for the equivalent definition based on normal
forms, see [37, Section 2.1] and [44, Definition 6.2]. A barcode is a finite collection of “bars” Œs; e/,
where the endpoint e might be C1. Let �c0;c1 WH.C.t/

c0
at /!H.C.t/

c1
at / be induced from the inclusion

C.t/
c0
at ,! C�.t/

c1
at , where at � c0 � c1 � bt . The barcode of the complex .C.t/btat ; @t / is the barcode

uniquely characterized by the following properties:

� The number of bars with starting point s is equal to the dimension of the quotient

coker.�s;sC�/DH.C.t/sC�at
; @t /=im�s;sC�;

where � > 0 is any sufficiently small number.

� The number of bars with starting point s that persist at action level l � s is equal to the dimension
of the subspace

Œ�sC�;lC��.coker.�s;sC�//�H.C.t/lC�at
; @t /=im�s;lC�;

where � > 0 is any sufficiently small number and where the map

Œ�sC�;lC�� W coker.�s;sC�/!H.C.t/lC�at
; @t /=im�s;lC�

is induced by descending �sC�;lC� to the quotients.

Proposition 2.4 [17, Proposition 2.7] Consider a PWC family C.t/btat of filtered complexes with action
window. When the complex undergoes no such bifurcation , the barcode undergoes a continuous change
of action levels for its starting and endpoints. At the bifurcations the barcode undergoes the following
corresponding changes:

� Handle-slide The barcode is unaffected.

� Birth/death When two generators x; y undergo a birth/death , then a bar connecting `.x/ to `.y/
is added to/removed from the barcode. (The bar is not present at the exact time of the birth/death ,
but immediately after/before it is visible and of arbitrarily short length.)

� Exit below A generator slides below the action level at at time t . If the uniquely determined bar
which starts at the action level of that generator is of finite length , then that bar gets replaced with a
bar of infinite length whose starting point is located at the same action level as the endpoint of the
original bar. If the bar has infinite length , then it simply disappears from the barcode.

� Entry below This is the same as an exit below, but in backwards time.

� Exit above A generator slides beyond the action level bt at time t . There is a uniquely determined
bar which either ends or starts at the action level of that generator. In the first case , the bar gets
replaced with one that has the same starting point but which is of infinite length. In the second case ,
when the bar necessarily is infinite , then that bar simply disappears from the barcode.

� Entry above This is the same as an exit above , but in backwards time.
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2.5 A piecewise continuous family of complexes from small-degree homotopy equivalences

In order to investigate the continuous dependence of the barcodes in relation to the invariance properties
established in Section 2.2, we need to relate invariance under small-degree homotopy equivalence as in
Lemma 2.1 to the bifurcation-type invariance that Proposition 2.4 above is based upon.

Let C.t/, t 2 Œ0; 1�, be a family of finite-dimensional filtered complexes with choices of compatible basis
elements. We assume that all basis elements vary smoothly with t except that there are finitely many
times t1 < � � �< tN at which there is a unique birth/death moment. Roughly speaking, at these moments
precisely two basis elements of the same action either appear or disappear. The next paragraph gives the
precise characterization of a birth/death.

Since we require the differential to be strictly filtration-decreasing, the two basis elements that undergo
a birth/death at ti are necessarily missing from the complex C.ti /. However, in the case of a birth
(resp. death) two generators for t > ti (resp. t < ti ) are assumed to have actions that extend continuously
to t D ti , such that the extensions moreover attain the same action value at t D ti . (Note that, in particular,
the action of any basis element is bounded in the family, and there is a global bound on the dimension
of the complexes C.t/ in the family.) For simplicity we make the additional assumptions that, at each
birth/death moment t D ti , all elements in the compatible basis have distinct action values and, moreover,
their action values differ from the action of the (continuous extension of the) birth/death pair. In addition,
we assume that there is a finite set of times when the action values of a compatible basis are not distinct.

In order to simplify the notation, we will now assume that the finitely many times when the action
spectrum is not injective, as well as the birth/death moments, all occur at rational times t 2Q\ Œ0; 1�.

It is worth stressing that, at this moment, we have not yet made any assumptions on how the differential
of the complexes C.t/ varies; we are simply prescribing how their compatible bases depend on t . Under
the further assumptions of the next result, Proposition 2.5, we establish an invariance result for this family
of complexes; this is in fact one of the main goals of this section.

Proposition 2.5 Let C.t/ be a family of complexes as above that satisfies the following additional
requirement. For all � > 0, all sufficiently large N � 0 and all i 2 f0; : : : ; N � 1g, there are chain maps

�i W C.i=N /! C..i C 1/=N / and  i W C..i C 1/=N /! C.i=N /

of degree � > 0, where  i�i and �i i are homotopic to automorphisms of filtered chain complexes via
chain homotopies of degree �. Then , for N � 0 is sufficiently large , there exists a piecewise continuous
family of complexes D.t/ that admit isomorphisms C.t/ŠD.t/ of filtered vector spaces , that moreover
are chain maps for all t D i=N , where i D 0; 1 : : : ; N .

Proof We start by prescribing
D.i=N / WD C.i=N /

for all i D 0; 1 : : : ; N .
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First we consider the special case when C.t/ has no birth/deaths, and the action values of the basis
elements are all distinct for all times. We then construct the PWC family as follows. The complexes
D.t/ for t 2 Œi=N; .iC1/=N / are constructed by setting D.t/ WDD.i=N / as a complex, and then simply
letting the action values of a compatible basis vary accordingly with t 2 Œi=N; .i C 1/=N /. (In particular,
the differential remains unchanged.) It is immediate that D.t/Š C.t/ holds on the level of filtered vector
spaces.

The family of complexes D.t/ for t 2 Œi=N; .i C 1/=N / extends by continuity to also t D .i C 1/=N ;
denote the limit filtered complex by zD..i C 1/=N /. What remains is to construct an isomorphism of
filtered complexes zD..i C 1/=N /ŠD..i C 1/=N /.

The assumptions of Lemma 2.2 are satisfied for all maps �i and  i whenever N � 0. In particular,
all complexes D.i=N / can be assumed to be ı–gapped for some fixed ı > 0. Hence �i W D.i=N /!
D..i C 1/=N / is a chain isomorphism of degree �. Since zD..i C 1/=N / is canonically identified with
D.i=N / (only the action values of the compatible basis have changed slightly), it follows that the induced
chain isomorphism �i W zD..i C 1/=N /!D..i C 1/=N / is of degree zero. This implies that we have a
PWC family, as sought.

In the case when the family C.t/ has birth/deaths or compatible basis elements of the same action value,
then we need to take care at those moments separately. This we do in the subsequent paragraph. After
having constructed the PWC family in a small neighborhood of these points in time, the family for the
remaining times can be constructed as above.

In the case when two action values for a compatible basis coincide at some t D i=N , then we can again
use Lemma 2.2 as above to construct the family D.t/ for t 2 Œi=N; .i C 1/=N � and Œ.i � 1/=N; i=N �. In
the case when there is a birth/death at t D i=N , the same can be done by alluding to Lemma 2.3. Once we
have taken care of the construction of D.t/ for these times, we simply invoke the construction in the first
simple case, ie the case when action values are distinct, and when there are no birth/death moments.

3 Proof of Proposition 1.11

Consider, in the symplectization .R� � Y; d.e�˛//, the Lagrangian trace of a Legendrian isotopy ƒt
with t ranging from � to C. This (exact embedded) Lagrangian concordance coincides with the cylinder
R�ƒ˙ for ˙� � k for some k� 0, and after reparametrizing the Legendrian isotopy, the �–level set
of the trace is close to f�g �ƒ� For example, see [4, Theorem 1.2], the proof of [19, Lemma A.1], the
proof of [25, Lemma 6.1], or [35, Definition 2.10] on constructing this trace. We recall the version of the
construction from Chantraine [4, Theorem 1.2] in Appendix B.

The length ı 2R�0 of the cobordism, as defined by Sabloff and Traynor in [40], is the shortest ı such
that f� 2 Œ�0; �0C ı�g �R�Y contains the noncylindrical portions of the cobordism and almost complex
structure. Proposition B.1 shows how the length of the trace cobordism constructed by [4] depends on
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the conformal factor of the contact isotopy; we also consider the length of the “inverse cobordism”. The
length is crucial for analyzing the filtered invariance result, since the chain maps produced by the trace
cobordism have filtration properties that depend on this.

We denote by xt a continuous family of chords of ƒt . Recall that the family of Legendrians is assumed
to be generic, which means that a chord x˙ of ƒ˙ that does not undergo a death-type bifurcation in the
family corresponds to a unique chord x� of ƒ�.

The Lagrangian together with an appropriately compatible almost complex structure J induce a DGA–
morphism

ˆ W .AC; @C/! .A�; @�/

between the DGAs .A˙; @˙/ of ƒ˙; see [19]. More precisely, we require as in [19] that the almost
complex structure is adjusted, which means that it is compatible with the symplectic form and cylindrical
outside of a compact subset; the latter means that the almost complex structure preserves the contact
planes lifted to R� �Y , is invariant under the R�–translation, and sends @� to the lifted Reeb flow.

Suppose the Lagrangian trace of an isotopy ƒt induces the map ˆ and the inverse trace induces the
map ‰. Construct a generic 1–family of Lagrangians connecting the trivial cobordism ƒC �R, with
induced DGA map id W .AC; @C/! .AC; @C/, to the trace concatenated with its inverse. Let G count
index �1 punctured pseudoholomorphic curves that occur at isolated moments in this family of cobordism,
as defined in [19]. Then

(3-1) idD‰ˆ� .@CG �G@C/:

The result below follows from the filtration-preserving properties of the DGA–morphisms and chain
homotopy involved.

Lemma 3.1 (1) Consider the Legendrian isotopy ƒt generated by a time-dependent contact Hamil-
tonian Ht . For any ı > 0 the Legendrian isotopies

fƒtgt2Œi=N;.iC1/=N� and fƒ�tgt2Œ�.iC1/=N;�i=N �

may all be assumed to have a trace cobordism of length less than ı whenever N � 0. In addition ,
both concatenations of these two trace cobordisms may be assumed to be compactly supported
Hamiltonian isotopic to the trivial cylinder through cobordisms of length at most 2ı.

(2) Let ˆ and ‰ above be induced by Lagrangian cobordisms of length ı > 0, where the concatenation
of the cobordisms are Hamiltonian isotopic to trivial cobordism through cobordisms of length at
most 2ı. (For instance the trace cobordisms from part (1).) Then

`.F.xC// < `.xC/e2ı

holds for F 2 f‰;ˆg, while any word xC that consists of letters that satisfy `.xC/ � a has the
property that G.xC/ consists of words of letters that all satisfy `.x�/ � e2ıa. (Notation as in
equation (3-1).)
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Proof (1) We start by fixing a global contact isotopy that generates the Legendrian isotopy ƒt .
For N � 0, we may assume by continuity that the restriction of the contact isotopy that generates
fƒtgt2Œi=N;.iC1/=N� has a conformal factor that is bounded by ı > 0. The construction of the trace
cobordisms with the sought properties can now be deduced from Proposition B.1.

(2) The statement is clear for any map F that is defined by a count of finite-energy pseudoholomorphic
disks in R� � Y with boundary on a Lagrangian cobordism of length at most 2ı and a single positive
puncture, when the almost complex structure is adjusted and, moreover, cylindrical where the cobordism
is cylindrical (eg outside of Œ�ı; ı��Y ). Namely, [6, Lemma 3.4 and Proposition 3.5(9)] explicitly bound
the Hofer energy of such curves used to define F.xC/ from below by 0 and from above by the quantity
`.xC/eı � `.F.xC//e�ı . To match with their convention, we ignore their distinction of pure and mixed
chords, and we center the concordance around �0 D 0 (from our definition of length above).

Since the chain maps F Dˆ;‰ are defined by pseudoholomorphic disks of the type mentioned above,
the statement now directly follows in these cases.

The chain homotopy G has a more complicated construction, which was carried out in [19, Appendix B].
Each term in G.xC1 � � � x

C

k
/ corresponds to a count of disconnected pseudoholomorphic buildings [3],

where each component of the building has the topological type of a broken disk with a single positive
puncture at xCi for i D 1; : : : ; k. In addition, each component satisfies the following:

� There is a single level consisting of a number of pseudoholomorphic disks of index �1 and 0 inside
R�Y , each with boundary on one of the Lagrangian cobordisms in the family that interpolates
between the concatenation and the trivial cylinder (these are all of length at most 2ı), and which all
have a single positive puncture. As in the first case, we can again assume that the almost complex
structure is cylindrical in the subset where the family of cobordisms are cylindrical (eg outside of
Œ�ı; ı��Y ).

� All other levels consist of punctured disks of index 1 and trivial strips of index 0 inside R� Y ,
with boundary on either R�ƒi=N or R�ƒ.iC1/=N and a single positive puncture, which are
pseudoholomorphic for a cylindrical almost complex structure.

If one considers these terms as a composition of operations, the fact that the disks of index 1 in the second
bullet point define the differential (which is strictly filtration-decreasing), the statement finally follows by
an energy estimate similarly to the first case.

The remainder of the proof of Proposition 1.11 is similar to the proof of Proposition 2.5; roughly, we
decompose the isotopy into small steps that then are shown to induce homotopy equivalences of small
degree. Lemma 3.1(1) implies that, for a sufficiently fine decomposition of Œ�;C�, each map ˆŒ�i ;Ci �
has an arbitrarily small cobordism length. To prove Proposition 1.11, we thus restrict to a single interval
of a sufficiently fine generic decomposition (this single small interval we continue to label Œ�;C�) and
show that it is a finite composition of (de)stabilizations and tame automorphisms.
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Note that the Reeb chord lengths vary continuously with the parameter t . For a very fine decomposition
we may thus assume that these lengths are almost constant in the interval Œ�;C�. Together with the
proposition’s hypothesis of genericity, and since ı > 0 can be assumed to be arbitrarily small, we get
three cases listed below. For all cases, we assume that no chord has action less than e2ı . Recall that we
only consider the Chekanov–Eliashberg algebra Al generated by chords with actions less than l . Below
we thus disregard all chords of action greater than l 0 for some suitable action level l 0� l . Moreover,
after further shrinking ı > 0, we can assume that no Reeb chords on the family ƒt of Legendrians has
length contained in the interval Œe�ı l 0; eı l 0�.

Case 1 There are no births/deaths in Œ�;C�. Further, any xC satisfies

`.x�/ 2 Œe�ı`.x˙/; eı`.x˙/�;

while any yC different from xC satisfies

Œe�ı`.y�/; eı`.y�/�\ Œe�ı`.xC/; eı`.xC/�D∅:

(In particular, any two Reeb chords have distinct lengths.)

Case 2 The chords whose lengths are contained in Œe�2ı`0; e2ı`0� are precisely two, and undergo a
birth/death at 0 2 Œ�;C�; ie there are precisely two chords xC; yC of lengths

`.xt /; `.yt / 2 Œe�ı`0; e
ı`0�

for t > 0 (resp. t < 0), while there are no such chords for t < 0 (resp. t > 0). Furthermore, `.xC/ > `.yC/
(resp. `.x�/ > `.y�/). The chords zt of length

`.zt / … Œe�2ı`0; e
2ı`0�

satisfy the assumptions of Case 1.

Case 3 There are no births/deaths in Œ�;C�. There are precisely two chords whose lengths are contained
in Œe�2ı`0; e2ı`0�, which moreover have lengths contained inside Œe�ı`0; eı`0�, and satisfy ˙`.x˙/ >
˙`.y˙/ while `.x0/D `.y0/. The chords zt of length

`.zt / … Œe�2ı`0; e
2ı`0�

satisfy the assumptions of Case 1.

In the case when there are no births/deaths, the invariance under DG–homotopy together with Lemma 3.1(2)
now implies that

(3-2) xC D .‰ˆ� .@CG �G@C//x
C
D k‰kˆx

C
C

X
j

vCj � .@CG �G@C/x
C

D k‰kˆx
C
C

X
j

vCj C
X
k

uC
k

is satisfied, where kˆ 2 k (resp. k‰ 2 k) are the coefficients hˆ.xC/; x�i and h‰.x�/; xCi, and vCj ; u
C

k

are monomials of chords of ƒC that satisfy

e2ı`.xC/� `.vCj /; `.u
C

k
/:
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Case 1 Looking at the last two terms in equation (3-2), Lemma 3.1(2) implies two things. First, if
vCj 2 .k n f0g/x

C, then vCj is in the image of ‰ of an element of action at most eı`.xC/, which by
definition is not contained in kx�. Second, if uC

k
2 .k n f0g/xC, then either xC appears as a term in

the differential of a word G.xC/ all of whose letters are of action at most e2ı`.xC/, or as a term in
G.wC/ for a word wC of action `.wC/ < `.xC/. Moreover, in the latter case, all letters in G.wC/, and
thus in particular xC itself, have action bounded by e2ı`.wC/. The hypotheses in Case 1 imply that
`.vCj /; `.u

C

k
/ < `.xC/. Thus kˆ D k�1‰ in (3-2) is a unit.

Cases 2 and 3 Case 1 handles all chords without other chords of approximately the same action. So we
have reduced to studying the maps at x and y which have approximately the same action. Consider the
2� 2 matrix

ŒF � WD

�
Fxx Fxy
Fyx Fyy

�
in the x; y basis, for the map F 2 fˆ;‰;G; @C; idg. The bound from below of `.z/ implies there is no
additional (nonlinear) term involving x or y in either F.x/ or F.y/. Since `.xC/ > `.yC/,

Œ@C�D

�
0 0

.@C/yx 0

�
for some .@C/yx 2 k. We also consider the corresponding 2� 2 matrix version of (3-2).

Case 2 Since .x�; y�/ do not exist,

Œ‰�D

�
0 0

0 0

�
D Œˆ�:

So (3-2) implies 1 D idxx D Gxy.@C/yx . In particular, after the tame automorphism of scaling y by
..@C/yx/

�1 D Gxy 2 k, we get @C.xC/D yCC
P
i wi with `.wi / < `.yC/. The result now follows

from Chekanov’s algebraic treatment of birth/deaths [8, Sections 8.4–8.5].

Case 3 Assume at t D 0 that J is generic so that the DGA differential @0 is well defined. Let
ˆ0 W .A; @C/! .A; @0/ and ‰0 W .A; @0/! .A; @C/ be the DGA morphisms induced by the trace and its
inverse over the subinterval Œ0;C�� Œ�;C�. Let G0 be the homotopy relating ‰0ˆ0 and id0. As above,
define the 2� 2 matrix �

Fxx Fxy
Fyx Fyy

�
in the x0; y0 basis for the map F 2 fˆ0; ‰0; G0; @0; id0g. Stokes’ theorem implies that Œ@0� D 0 as a
2� 2 matrix. From the 2� 2 matrix equations

Œid0�D ŒG0@0�C Œ@0G0�C Œ‰0ˆ0�D Œ‰0ˆ0�; Œ@Cˆ
0�D Œˆ0@0�D 0; Œ‰0@C�D Œ@0‰

0�D 0;

we get
1D .id0/xx D‰0xxˆ

0
xxC‰

0
xyˆ

0
yx; .@C/yxˆ

0
xx D 0; ‰0xy.@C/yx D 0;

which imply .@C/yx D 0.
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Since Œ@C�D0 as a 2�2matrix, equation (3-2) implies that Œ‰�; Œˆ�2GL.2;Z/: [11, Corollary 2.6 ] proves
that SL.2;Z/; which is an index 2 subgroup of GL.2;Z/; is generated by the two tame automorphisms�

1 1

0 1

�
and

�
1 0

1 1

�
:

But we also allow the map �
�1 0

0 1

�
2 GL.2;Z/ nSL.2;Z/:

Thus ‰ and ˆ are compositions of our allowable tame automorphisms.

4 A Rabinowitz–Floer theory for Legendrians

Rabinowitz–Floer homology in the case of a contact type hypersurface was originally defined by Cieliebak,
Frauenfelder and Oancea [9]. We present a version of the theory in the relative case, RFH, which previously
has been considered in the Hamiltonian setting by Merry [32] and Cieliebak and Oancea [10], and in
the SFT setting by Legout [31]. Our construction of the complex is the direct generalization of the
construction from [31] to the case of an arbitrary contact manifold, while allowing augmentations that are
only defined under some action level.

In Section 4.1, we compactify the moduli spaces used in Sections 4.2 and 4.3. In Section 4.2, we introduce
a Rabinowitz–Floer complex (RFC) as a mapping cone complex generated by Reeb chords. In Section 4.3,
we prove the invariance of this mapping cone complex. Compared to the invariance result from [31], we
here need to take extra care to control the filtration-preserving properties, in order to establish invariance
by a PWC family of complexes.

4.1 Compactification of certain moduli spaces

Let ƒC0 ; ƒ
C
1 � Y be two Legendrians isotopic to ƒ�0 ; ƒ

�
1 . Assume xƒ˙ WDƒ˙0 [ƒ

˙
1 is embedded. Let

� � t �C parametrize this isotopy. (We use ˙ instead ˙1 to avoid notational overuse of the symbol 1.)
Further, let L0; L1 � .R� �Y; d.e�˛// be the exact Lagrangian concordance arising from the trace of
the isotopy, with Li \f�g�Y Dƒ˙i for ˙�� 1. Assume that L WDL0[L1 has at most one transverse
double point q.

There exist primitives of e�˛jTLi by exactness. Since this primitive is necessarily locally constant
wherever Li is cylindrical, we can fix a unique primitive that vanishes on the negative ends of Li . After a
small perturbation of Li , we may assume that there is a nonzero difference of primitives at the unique
intersection point fqg D L0\L1.

We consider several types of asymptotic behaviors for our holomorphic disks.

� Mixed ˛˙–chords Such a chord starts on ƒ˙0 (resp. ƒ˙1 ) and ends on ƒ˙1 (resp. ƒ˙0 ).

� Pure ˛˙–chords Such a chord both starts and ends on ƒ˙0 (resp. ƒ˙1 ).

� Lagrangian intersection point q

Geometry & Topology, Volume 28 (2024)



2166 Georgios Dimitroglou Rizell and Michael G Sullivan

Let � be a nonempty cyclically ordered set of the above, each endowed with a sign. Repetition is allowed.
Let Bd 2 fL; xƒ˙g. Let Md .�IBd/ denote the moduli space of J –holomorphic disks u W D! R� Y ,
with boundary marked points, satisfying the following conditions:

� The boundary of the disk maps to L if BdD L and to R� xƒ˙ if BdD xƒ˙.

� The (formal) dimension of the component is d .

� Each marked point maps to an element of � . The cyclic ordering of marked points induced by the
boundary orientation matches the cyclic ordering of the chords/double points in � .

� If a marked point maps to the double point (ie when Bd D L), then the puncture is positive
(resp. negative) if the primitive of e�˛jL evaluated along the boundary of the disk makes a jump to
a lower (resp. higher) value at the puncture, while traversing the boundary in the positive direction.
If a marked point maps to a chord, the endowed sign ˙ indicates that it is an asymptotic limit at
the ˙1 end of the symplectization boundary.

Remark 4.1 Consider the Legendrian lift of L0[L1 to the contactization .R� �Y �RZ ; dZC e�˛/

that is uniquely determined by the requirement that its Z–coordinate vanishes at � D �1. The sign
of the puncture at a double point has the following direct reformulation in terms of the Reeb chord
on this Legendrian. A disk has a positive (resp. negative) puncture at q if and only if the value of the
Z–coordinate along the boundary of the disk, as specified by the Legendrian lift, jumps to a higher
(resp. lower) value at the puncture when traversing the boundary according to the orientation. This will
be important later, when we describe the cobordism by the front projection of its Legendrian lift.

Note that Md .�I xƒ˙/ has an R–translation in the range. We denote the quotient of this translation by
yMd�1.�I xƒ˙/ D Md .�I xƒ˙/=R. We next list different types of boundary conditions for the moduli

spaces. In all cases below, � may have some additional negative pure chords.

(1˙) BdD xƒ˙; � contains two positive mixed chords.

(2˙) BdD xƒ˙; � contains one positive and one negative mixed chord.

(3˙) BdD xƒ˙; � contains one positive pure chord and no mixed chords.

(4) BdD L; � contains two mixed chords (both positive).

(5) BdD L; � contains two mixed chords (one positive, one negative).

(6) BdD L; � contains one mixed chord (positive) and q (positive or negative).

(7) BdD L; � contains one mixed chord (negative) and q (positive or negative).

Note that the sign of the puncture at q in cases (6) and (7) can be recovered by the following data: the
component of the starting point (or endpoint) of the mixed Reeb chord asymptotic of the disk, together
with the two action values of the potentials at q for each of the two sheets of L.
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ƒ˙1

ƒ˙1

ƒ

ƒ

ƒ˙1 ƒ

ƒ˙1 ƒ ƒ˙1 ƒ ƒ˙1

ƒ˙1 ƒƒ˙1

ƒ˙1 ƒ

ƒƒ˙1

ƒƒ˙1 ƒ˙1 ƒ

Figure 1: Top: Boundary points of the compactification of the moduli space .1˙/ of punctured
disks with boundary on the cylinders overƒ[ƒ˙1 with two positive mixed Reeb chord asymptotics.
Note that we have omitted any trivial strip inside the symplectization level from the figure. The
broken configurations on the left and right belong to .2˙ � 1˙/, while the middle configuration
belongs to .1˙� 3˙/. Bottom: Boundary points of the compactification of the moduli space .2˙/
of punctured disks with boundary on the cylinders over ƒ[ƒ˙1 . Note that we have omitted any
trivial strip inside the symplectization level from the figure. The broken configuration on the left
belongs to .2˙�2˙/ while the one on the right belongs to .2˙�3˙/. There are similar breakings
for the disks whose mixed Reeb chords start on ƒ˙1 and end on ƒ.

We now describe the boundary @ in the sense of the SFT compactification [3], also called Gromov–Hofer
compactification, of certain one-dimensional moduli spaces, modding out by the R–translation when
one can. We illustrate the notation with some examples. The broken curve .2C � 1C/ has boundaries in
two copies of .R�Y;R�ƒC/. In the lower copy there is a curve of index 1 (rigid after R–translation)
of type (1C). In the upper copy there is one curve of index 1 (rigid after R–translation) of type (2C) and
one “trivial strip” of index 0, which is a curve of the form .R� chord/. (We omit listing the trivial strips.)
The broken curve (6� 6) has two index 0 curves of type (6) in the same copy of .R�Y;L/, one with a
positive puncture at q and the other with a negative puncture at q.

Figures 1 through 3 depict the broken configurations corresponding to the boundary strata of the moduli
spaces of the corresponding type. Note that, in these figures, any trivial strip inside a cylindrical level has
been omitted. For every broken configuration in which there is a nonempty level with boundary on xƒC,
as well as a middle level with boundary on L, there might be noncylindrical components in the middle
level with only pure punctures. Such components are not exhibited in the aforementioned figures; see
Figure 6 for an example where levels of this type arise in the boundary of the moduli space of type (5).
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ƒ ƒ

ƒ

L1 R�ƒ

L1

ƒC1 ƒC1 ƒƒ ƒ

R�ƒ R�ƒ L1

ƒ�1 ƒ

L1L1 R�ƒ R�ƒ R�ƒL1

ƒ�1

˙ �

Figure 2: Top: Boundary points of the compactification of the moduli space .3˙/ of punctured
disks with all boundary components on either the cylinder over ƒ, ƒ�1 , or ƒC1 . In other words,
these are the curves that are used in the definition of the Chekanov–Eliashberg algebra of either
Legendrian. All broken curves belong to .3˙ � 3˙/. Note that we have omitted any trivial strip
inside the symplectization level from the figure. Bottom: Boundary points of the compactification
of the moduli space .4/ of punctured disks with boundary on L D L0 [L1 with two positive
mixed Reeb chords. Note that we have omitted any trivial strip inside the symplectization level
from the figure. The broken configurations shown are as follows: The top row the left and middle
configurations are in .2C � 4/, while the one on the right is in .1C/. On the bottom row from left
to right, the configurations shown are in .6� 6/, .5� 5� 1�/, and .4� 3�/.

The figures depict the most general case that we will need, ie the special case when L0 D R�ƒ is a
trivial cylinder, which in particular means that ƒ˙0 D ƒ, while L1 is a Lagrangian cylinder from ƒ�1
to ƒC1 .
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L1 L1 L1R�ƒ L1

R�ƒ

ƒC1 ƒ

R�ƒ

ƒƒ�1

R�ƒ

R�ƒL1

ƒ�1

˙

�

L1

ƒC1

R�ƒ R�ƒ

ƒ

L1

ƒ�1

L1 R�ƒ

L1 L1R�ƒ

ƒ�1 ƒ

˙ ˙ ˙
˙

Figure 3: Top: Boundary points of the compactification of the moduli space .5/ of punctured
disks with boundary on L with one positive and one negative mixed Reeb chord puncture. Note
that we have omitted any trivial strip inside the symplectization level from the figure. The broken
configurations shown are in .5� 2�/, .5� 2C/, .6� 7/, and .5� 3�/, going from left to right.
There are analogous configurations when the mixed Reeb chords start on L1 and end on L0.
Bottom: Boundary points of the compactification of the moduli space .6/ of pseudoholomorphic
curves with one puncture asymptotic to a positive mixed Reeb chord from R �ƒ to L1, and
one positive puncture at the unique intersection point. The broken configurations shown are in
.2C � 6/, .6� 3�/, and .2� 7� 1�/, going from left to right. There are analogous configurations
in the case when the positive mixed Reeb chord starts on L1 and ends on R�ƒ.

Proposition 4.2 For a generic almost complex structure , the boundary of a one-dimensional moduli
space is made of the following configurations of rigid moduli spaces:

(1˙) .1˙ � 3˙/; .2˙ � 1˙/,

(2˙) .2˙ � 2˙/; .2˙ � 3˙/,

(3˙) .3˙ � 3˙/,

(4) .2C � 4/; .5� 5� 1�/; .1C/; .6� 6/; .4� 3�/,
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(5) .2C � 5/; .5� 2�/; .6� 7/; .5� 3�/,

(6) .2C � 6/; .5� 7� 1�/; .6� 3�/.

The Lagrangian cobordisms we study in Section 4 will not have any one-dimensional moduli space of
type (7).

Proof The mixed chords (or double points) each appears exactly once in the word of chords defining a
given moduli space. If a disk has only pure chords, then Stokes’ theorem implies it has a unique positive
pure chord. Therefore, transversality for these spaces can be achieved by either perturbing J near this
distinguished positive chord as in [13, Proposition 3.13], or by perturbing the Lagrangian boundary
condition near p as in [23].

These configurations are the only ones that can appear because

(a) a dimension argument implies exactly one (nontrivial) moduli space in a symplectization;

(b) each moduli space has at least one positive puncture.

4.2 The Rabinowitz complex as a mapping cone

In the following we assume that ƒ0 Dƒ is fixed, and that ƒt1 D �
t
˛;Ht

.ƒ1/ is a Legendrian isotopy of
ƒ�1 Dƒ1 for � � t �C. We write xƒt WDƒ0[ƒt1, while xƒDƒ0[ƒ1 as before.

Fix t 2 Œ�;C� as in Section 4.1. Choose a cylindrical almost complex structure that is regular for the
moduli spaces involved (ie that consist of disks for which there is a distinguished asymptotic that only
appears once, and where the moduli space is of expected dimension at most two before taking the quotient
by the action of translation). Recall that this is possible by [13, Proposition 3.13]. Assume there exist
augmentations "i defined for Al.ƒi /, i D 0; 1, which can be identified with an augmentation "0 of the
DGA Al

pure.
xƒ0/ that is generated by the pure chords. In [17, Lemma 3.4], we describe how to define an

augmentation "t for A
l�l.t/
pure .xƒt /, where

l.t/D

Z t

0

�
max
y2Y

H� .y/�min
y2Y

H� .y/
�
d�:

The setting for [17] was limited to .Y; ˛/D .P �Rz; dz� �/. However, [17, Lemma 3.4] used only that
the DGA underwent a stable-tame isomorphism. Thus, Proposition 1.11 implies that [17, Lemma 3.4]
applies to our more current general setting.

Since the stable tame isomorphism given by Proposition 1.11 are the DGA–quasi-isomorphism induced
by the Lagrangian trace cobordisms, we get

Lemma 4.3 For a sufficiently fine subdivision t1 < � � � < tN , the augmentation "ti can , moreover , be
assumed to coincide with the pullback of the augmentation "ti�1 under the DGA–morphism induced by
the exact Lagrangian trace of the isotopy ƒt1 for t 2 Œti�1; ti �.
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In the following, let x01 (resp. x10) indicate a mixed chord starting on ƒ (resp. ƒt1) and ending on ƒt1
(resp. ƒ). All other chords zi below are pure. We define the actions of x01 and of x10 to be, respectively,

a.x01/ WD C

Z
x01

˛ > 0 and a.x10/ WD �

Z
x10

˛ < 0:

Fix at ; bt 2R such that

(4-1) 0 < bt � at < l � l.t/:

Denote by

C�.Œat ; bt //D C�.R�0\ Œat ; bt // and C �.Œat ; bt //D C
�.R�0\ Œat ; bt //

the “linearized Legendrian contact homology complex” and the “dual cocomplex”, respectively, where the
former is generated by the mixed chords x01 while the latter is generated by the mixed Reeb chords x10.
In both cases we assume that the action a of the generators is contained inside the interval Œat ; bt /.

As prescribed below, the differential restricted to C�.Œat ; bt // (resp. C �.Œat ; bt //) is the usual differential
of the Legendrian contact homology (co)complex linearized by the augmentation "t that counts trips with
one positive (resp. negative) mixed input Reeb chord and one negative (resp. positive) mixed output Reeb
chord; see below for the precise formula.

Remark 4.4 For the cocomplex, the differential increases the Reeb chord length `, hence decreases
the above action a. This is why when taking the quotient complex, we consider C �.Œat ; bt // and not
C �..at ; bt �/.

Recall that the linearized Legendrian contact (co)homology complex of a pair of Legendrians can be
endowed with a grading that depends on additional choices of the two Legendrians involved; see [6] as
well as Section A.3. For simplicity we restrict ourselves to the case when the first Chern class of .Y; ˛/
vanishes, which means that we can choose a symplectic trivialization of the (square of the) determinant
C–line bundle det � ! Y . Given the choice of a homotopy class of such a symplectic trivialization,
together with choices of Maslov potentials ofƒi as described in Section A.3, we get a canonically induced
Z–grading for which the linearized differential (resp. codifferential) is of degree �1 (resp. 1). In addition,
the choice of a Maslov potential can be naturally extended over a Legendrian isotopy. Note that a loop
of Legendrians can induce a nontrivial action on its set of Maslov potentials; see Lemma 6.11 for an
example.

For a pair of mixed chords x; y in either complex, and ordered (possibly empty) sets of pure chords z
and z0, define

mxƒt .x
C; y˙/D

X
z;z0

] yM0.xCz�y˙z0�I xƒt /"t .zz
0/:
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Note that the action of the individual pure chord z in z or z0 is less than bt � at , and so "t .z/ is defined.
We suppress the subscript notation when we define the maps

d01 WC�.Œat ; bt //!C�.Œat ; bt //; d10 WC
�.Œat ; bt //!C �.Œat ; bt //; B WC�.Œat ; bt //!C �.Œat ; bt �/;

where
d01.x01/D

X
fy01ja.y01/2Œat ;bt /\R>0g

mxƒt .x
C
01; y

�
01/y01;

d10.x10/D
X

fy10ja.y10/2Œat ;bt /\R<0g

mxƒt .y
C
10; x

�
10/y10;

B.x01/D
X

fy10ja.y10/2Œat ;bt /\R<0g

mxƒt .x
C
01; y

C
10/y10:

Note that d01 and d10 are the linearized Legendrian contact homology differential and codifferential,
respectively.

Proposition 4.5 The matrix
dB WD

�
d01 0

B d10

�
is a filtered mapping cone differential for the filtered chain map B .

Proof By Proposition 4.2(1˙) and 4.2(2˙), the matrix squares to zero. Consider x01 2 C�.Œat ; bt // and
z10 2 C

�.Œat ; bt //, for example. Then

hd2Bx01; z10i D
X
y01

mxƒt .x
C
01; y

�
01/mxƒt .y

C
01; z

C
10/C

X
y10

mxƒt .x
C
01; y

C
10/mxƒt .y

�
10; z

C
10/;

which vanishes by Proposition 4.2(1˙).

Definition 4.6 Let .at ; bt ; "t ; l � l.t/; xƒt / denote the auxiliary information used to define this cone
complex. We denote this mapping cone complex as

RFCŒat ;bt /� .ƒ0; ƒ
t
1I "t /D

�
C�.t/Œat ; bt /˚C

n���2.t/Œat ; bt /; dB
�
;

which naturally is a filtered chain complex with action window Œat ; bt / and filtration induced by a.

Remark 4.7 (1) The sign change and shift of grading of the second summand is needed in order for the
summand B of the differential dB to be of degree �1. The relevant index for the disks with two positive
punctures whose count defines B was computed in [22, Lemma 2.5].

Further, with this convention, the degree of a generator is continuous under deformations through transverse
chords, even when the length of the chord at some point becomes zero, so that the component of the
starting and end points become interchanged; this readily follows from the definition of the grading in
Section A.3.

The mapping cone complex also can be defined without a grading. While the grading is necessary (and
warranted) to prove Theorem 1.10, the other results in Section 1 need only the ungraded complex.
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(2) We suppress the upper bound notation l � l.t/ in an attempt to reduce the overbearing set of
decorations. To be consistent with similar concepts in other literature, we sometimes call the mapping
cone complex the Rabinowitz–Floer complex, and when the Legendrian is augmentable (so that we can
choose bt D l D�at D1) we denote it by RFC�.ƒ;ƒt /.

(3) The Legendrian contact cohomology complex C �..�1; a�/ is the degree-wise dual of a possibly
infinite dimensional complex. In such a case the chords x10 do not form a basis of RFC�.ƒ;ƒt /, since
one must also allow formal infinite sums of such chords. In other words, in each fixed degree i 2 Z, the
filtered vector space RFC.�1;C1/i .ƒ;ƒt / is the inverse limit of the directed system

RFCŒ0;C1/i  RFCŒ�1;C1/i  RFCŒ�2;C1/i  � � �

of filtered vector spaces and canonical quotient maps induced by the filtration.

Theorem 4.8 Assume that the following conditions are satisfied :

� l � l.�/ > 0 is smaller than the length of any contractible periodic Reeb orbit  of degree j j � 1;

� "� is an augmentation of the sub-DGA A
l�l.�/
pure .ƒ0[ƒ1/ generated by pure Reeb chords; and

� ƒt1 is generated by a Legendrian isotopy of oscillation

l.t/D

Z t

�

�
max
y2Y

H� .y/�min
y2Y

H� .y/
�
d�:

Then , as long as l � l.t/ > bt � at > 0 and Œat ; bt / is a finite interval , there exists a sequence of
augmentations "t of the DGAs A

l�l.t/
pure .ƒ0[ƒ

t
1/ that makes RFCŒat ;bt /� .ƒ0; ƒ

t
1I "t / into a well-defined

PWC family of complexes with action-window Œat ; bt /. In particular , the complexes undergo the
deformations specified by the barcode proposition (Proposition 2.4) as t varies.

In the case when l D C1, at D �1 and bt D C1 holds for all t , then the homology of the entire
complex is invariant under Legendrian isotopy. In addition , in any smooth family of finite action windows ,
we may assume that we have a PWC family of complexes.

The analogous invariance also holds when the first Legendrian is deformed by a Legendrian isotopy, while
the second copy is being fixed. The proof is completely analogous and left to the reader.

Remark 4.9 � Theorem 4.8 holds if we replace l.t/ with the oscillation underlying the Shelukhin–
Chekanov–Hofer norm or the Usher norm

l1.t/D

Z t

�

max
y2Y

H� .y/ d� or l2.t/D l.t/Cmax
y2Y
jg.y/j:

Here g.y/ is the conformal factor for the time-t contactomorphism defined byH ; see [39, Definition 10.1].
This follows because l.t/� l1.t/; l2.t/.
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� If H defines a contact-form-preserving contactomorphism, ie if the conformal factor is 0, then the
length of the pure chords are preserved. It then follows from Proposition 1.11 that the stable-tame
isomorphism class of the Chekanov–Eliashberg algebra Al does not depend on t . In particular, Al has an
augmentation for all t , and we can improve Theorem 4.8 by dropping the condition l � l.t/ > 0.

To prove Theorem 4.8, we write the isotopy as a concatenation of short isotopies. Below any action level
upper bound, we can assume there is at most one of the following singular moments: a mixed chord
that enters or leaves the action window Œat ; bt /; the birth/death of a pair of chords occurs; the actions of
exactly two mixed chords coincide; the action of a pure chord equals l � l.t/; and the action of a mixed
chord vanishes. All of these moments, except the last one, are considered in [17, Proposition 3.5], which
is the equivalent of Theorem 4.8 in the special case .Y; ˛/D .P �Rz; dz� �/. The case when the action
of a mixed chord vanishes corresponds to when the Legendrians ƒ0 and ƒt1 intersect. By genericity we
can always assume that there are only finitely many such moments in the family. The invariance at these
moments is taken care of in Section 4.3.1 below.

To recycle the reasoning of [17, Proposition 3.5], we will apply the algebraic machinery from Section 2,
in particular Propositions 2.4 and 2.5, to our current geometric setup. (In particular, the algebraic
interpretation of bifurcation analysis done in [17] is replaced by Proposition 1.11.) And to apply the
Section 2 results, we need to establish the hypotheses (A1) and (A2) for Lemma 2.1.

Finally, in the case when l D C1, at D �1 and bt D C1, the proof of the invariance of the
complex is simpler, since we do not need to care about whether the maps consist of standard bifurcations,
ie handleslides or birth/deaths. (In other words, we do not need Lemma 4.13.) Instead, the weaker
property of quasi-isomorphism follows by standard invariance properties of the linearized Legendrian
contact homology as in [20], combined with the treatment of the double point and hypothesis (A2) in
Section 4.3.1 below.

4.3 Mapping cone complex invariance during a short Legendrian isotopy

We now consider a varying t 2 Œ�;C�. Assume that the interval Œ�;C� is small. As in Section 4.1,
L denotes the Lagrangian isotopy-trace concordance of xƒt . Since the oscillatory norm � D l.C/� l.�/

isotopy from xƒ� to xƒC is arbitrarily small, we assume that there are no pure chords whose lengths are in
the interval .l � l.C/; l � l.�//. Thus we can use the same action window Œa�; b�/D ŒaC; bC/D Œa; b/

for both complexes. Moreover, we assume that no mixed chords enter or leave this action window, and
that there are no birth/death pairs of chords when t 2 Œ�;C�.

4.3.1 One double point Suppose ƒ\ƒt1 D ∅ when t 2 Œ�;C� n f0g and that there exists a unique
intersection point ƒ\ƒ01 D fqg that is transverse in a one-parameter family. In particular, the double
point arises as a transverse family of mixed Reeb chords ct , whose action a.ct / changes sign at t D 0.
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Remark 4.10 For the remainder of this discussion, we assume that c� runs from ƒ�1 to ƒ, and hence
a.c�/ < 0 < a.cC/. The case when c� runs from ƒ to ƒ�1 follows from this case by considering the
reverse-time isotopy.

For some sufficiently small interval Œ�;C�, after a possible C 0–small perturbation, we can choose a
contact-form-preserving Darboux neighborhood U � Y of q such that the following hold:

� There is a contact-form-preserving identification

U Š .B1/x � .B1/y � Œ��; ��z � .B1/x �Rny �Rz D .J
1.B1/; �.dz�px dx//

for some � > 0 that we can make arbitrarily small, and where Br �Rn is the disk centered at 0 of
radius r .

� ƒ\U is the 0–section j 10.

� ƒt1\J
1.B1/D j

1.ft / for some ft W B1!R that smoothly varies with t .

� For all x 2 B1 nB2=3, ft .x/ is independent of t .

� For all x 2 B1=3, ft .x/D kxk2C t .

� For all x 2 B1, .dft /�1.0/D 0.

� The chord ct � 0� 0�Rz is the unique mixed chord of ƒ and ƒt1 in U .

In order to describe the trace cobordism it is useful to utilize the exact symplectomorphism�
R� �Rnx�Rny�Rz; d.e

� .dz�y dx//
� Š
�! .R>0/q�Rnx�Rnpx �Rpq ; .�; x; y; z/ 7! .e� ; x; e�y; z/;

where the target is equipped with the symplectic form d.q dpq � px dx/. For the choice of primitive
d.�pq dq�px dx/, one can describe exact Lagrangians via their front projection to the contactization�

..R>0/q �Rnx �Rnpx �Rpq /�RZ ; dZ �pq dq�px dx
�
:

The noncylindrical part of the immersed Lagrangian trace cobordism inside R�U is constructed in these
coordinates via the front projection shown in Figures 4 and 5. We can assume that:

� The Lagrangian trace is cylindrical away from the intersection point, ie

L\ .R� � .Y nU//DR� � ..ƒ
C
1 [ƒ/ nU/DR� � ..ƒ

�
1 [ƒ/ nU/

holds for some small neighborhood U of q.

� There exists A < 0 < B so that L\fA� � � Bg contains the unique intersection point q in the
level f� D 0g.

� In the above identification of R�U with a subset of R� J 1B1, the noncylindrical part of L is
identified with the exact Lagrangian immersion whose front is as shown in Figures 4 and 5. (The
figures depictL in the coordinates .qD e� ; x; p; px; Z/ on the contactization of the symplectization
R�U described above.)
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Z

e�

L0 DR� �ƒ0

x

�
1
3

1
3

c�

cC

q

L1

Figure 4: The front projection of the Legendrian lift of the exact Lagrangian immersion L D
L0 [L1 inside R� �U to the contactization .R� �U/�RZ of the symplectization. The Reeb
chord q on the Legendrian lift corresponds to the unique double point fqg D L0 \ L1. The
cobordism is cylindrical with a vanishing primitive of e�˛ outside of a compact subset if all sheets
of the front are of the form e�f .x/ outside of a compact subset. In order for (4-2) to hold inside
the subset

˚
kxk � 1

3

	
, it suffices to consider a front which is the graph of a function of the form

e� . zf .x/Cg.e� // above Bn
1=3
:

� The pullback of the Liouville form e�˛ to L has a primitive that vanishes outside of a compact
subset; this is equivalent to the front projection in Figure 4 to consist of sheets that are of the form
e�f .x/ outside of a compact subset.

� In the subset of R � U ,! R � J 1B1 that lives inside R � J 1B1=3, the immersed trace L is,
moreover, of the form

(4-2) R�ƒ[f.�; �.�/R .x//I x 2ƒ�1 g

for some smooth .�/� 0 (but not monotonously increasing) function that vanishes when � � A,
and which is constant when � � B . Recall that �tR is the Reeb flow of ˛.

Remark 4.11 Equality (4-2) holds because ƒt1 is assumed to induced by the Reeb flow inside the
neighborhood J 1B1=3 of the double point.There is one subtle point here: the function .�/ must be
carefully chosen in order for e�˛ to admit a compactly supported primitive when pulled back to L, as
postulated by the fourth bullet point above. This condition on the primitive is easier to describe in the
coordinates of the front projection: the front should be the graph of a suitable function of the form
e� . zf .x/Cg.e� // above B1=3, where g.e� / is constant for all ˙� � 0 sufficiently large.
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Z

q cC

e�
c�

eB

L1

eA

z

q

cC

�
c� B

uC

u�

AR� �ƒ0

L1

Figure 5: Left: the front projection the Legendrian lift of the exact immersed Lagrangian cobor-
dism LD L1[ .R�ƒ0/ to the contactization .R� �B1=3/�RZ of the symplectization. Right:
the image of small disks u˙ with one puncture at the Reeb chord c˙ and a positivepuncture at the
double point q which is contained inside a slice consisting of the image of the line R� �f0g under
the Reeb flow.

Lemma 4.12 For Œ�;C� sufficiently small , the following holds. For a suitable compatible almost
complex structure on R � Y which is cylindrical outside of a compact subset , there exists a unique
pseudoholomorphic disk uC (resp. u�) with positive (resp. negative) asymptotic puncture at cC (resp. c�),
a positive puncture at q, and no other punctures. There exists a neighborhood of adjusted almost
complex structures (see Section 3) in which a generic choice J makes u˙ rigid and transversely cut out.
Furthermore , there are no disks with a negative puncture at q and with all other punctures negative Reeb
chord asymptotics , of which precisely one is mixed (and thus necessarily going from ƒ to ƒ�1 ).

Proof From the above assumptions (including formula (4-2)), there exists a local projection

� WR�U �R�J 1.B1/! T �.B1/

such that

�.L1\ .R�U//\T
�B1=3 D f.x; 2x/g\T

�B1=3 and �.R� .ƒ\B1=3//D f.x; 0/g:

Let JT �.B1/ be any almost complex structure compatible with the standard symplectic structure !0
on T �.B1/. This lifts to a unique cylindrical almost complex structure JU on R�U for which � is
.JU ; JT �.B1//–holomorphic.

If JT �.B1/ is integrable in a neighborhood of the double point 0 2 T �.B1/, then [14, Lemma 8.3(1)]
proves the transversality result for the strip u˙ � ��1.0/ whose image is the trace of the isotopy of the
Reeb chord ct between q and c˙. This strip is depicted in Figure 5.

Extend JU to an adjusted almost complex structure J for R�Y . Since transversality is an open condition,
we can perturb J generically to assume all rigid holomorphic disks are transversely cut out.

We will show uniqueness of uD uC first using a monotonicity result [13, Lemma 5.1] for Lagrangian
surgery cobordisms (the current setup is similar), then using a monotonicity result [30, Proposition 4.7.2]
for compact Lagrangians. The u� case is similar.
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Using the notation of [13], let �DA andCDB so that L is cylindrical outside of fA� � �Bg�R� �Y .
In [13, Section 3.3.1] the total energy is defined by

EŒA;B�.u/D e
�A

Z
u

d.e'.�/˛/C sup
�.�/

Z
u

�.�/ d� ^˛:

This total energy is the sum of the d.e'.�/˛/–energy of u, where

'.�/D

8<:
A if � � A;
� if � 2 ŒA; B�;
B if � � B;

and the .d� ^˛/–energy of u\f� … ŒA; B�g, and where the �.�/ are nonnegative bump functions that
have compact support contained in precisely one of the subsets

� .�1; A�, in which case
R

R �.�/ dt D 1, or in

� ŒB;C1/, in which case
R

R �.�/ dt D e
B�A.

Let h.qC/ > h.q�/D 0 be the primitives of e�˛jTL at the two sheets of the double point of L, whose
size is controlled by the size of `.c˙/; see the difference of Z–coordinates in Figure 4. Applying
[13, Proposition 3.11(2) and (3)] to the first and second term of the total energy, we get

e�A
Z
u

d.e'.�/˛/� eB�A`.cC/C e
�A.h.qC/� h.q�//; sup

�.�/

Z
u

�.�/d� ^˛ � eB�A`.cC/;

and thus
EŒA;B�.u

0/� eB�A`.cC/C e
�A.h.qC/� h.q�//C e

B�A`.cC/;

for any J –holomorphic strip u0 with its unique positive Reeb chord puncture at cC, one positive puncture
at q, and possibly additional negative Reeb chord punctures. For the computation of the above bound on
the energy, we have used that the primitive of e�˛ pulled back to L can be taken to have compact support.

In view of the above energy bound, and dependence of .h.qC/�h.q�// on `.c˙/, we get the following
crucial property: total energy of u0 can be assumed to be arbitrarily small, after shrinking the interval of
the isotopy used in the construction of the cobordism (in order for `.c˙/ to become arbitrarily small).

Following the proof of [13, Lemma 5.1] based upon the standard monotonicity property for pseudoholo-
morphic curves in symplectic manifolds (see [30, Proposition 4.3.1]), there is a constant E0 such that if
u0 intersects the subset fz D˙1g � J 1B1 (which is disjoint from L), then

EŒA;B�.u
0/�E0:

Under the assumption that the cobordism has been constructed so that `.c˙/ > 0 is sufficiently small
(while keeping the above coordinates, almost complex structure, and projection of L to T �B1=3 fixed),
we can hence conclude that u0 is disjoint from some fixed neighborhood of fjzj D 1g. Since

@U D fjzj D 1g[ @.B1 �B1/� .�1; 1/;

the projected curve v D � ıu0ju0�1.U / has boundary vju0�1.@U / contained in @.B1 �B1/� T �B1.
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In view of the above bound on the jzj–coordinate of u0, we conclude the following. If v intersects the
boundary @.B1=3�B1/, then its symplectic area can be bounded from below by Sikorav’s original mono-
tonicity result [30, Proposition 4.7.2]. More precisely, we apply this monotonicity to JT �B1–holomorphic
curves inside in .B1=3 �B1; !0/ with boundary on the transversally intersecting Lagrangian planes

�.L\ .B1=3 �B1 � Œ�1; 1�//� B1=3 �B1:

(The Lagrangian planar property of the projection of L is a consequence of formula (4-2).) We conclude
that any such v has !0–area bounded from below by some constant C > 0.

The holomorphicity of the projection � , together with the fact that the two-forms d.e'.�/˛/ and �.�/ d�^˛
pull back to nonnegative two-forms on any pseudoholomorphic curve for a cylindrical almost complex
structure (recall that '0.�/; �.�/� 0), implies the inequalities

0�

Z
v

eA d˛ �EŒA;B�.u/:

In particular, we conclude that EŒA;B�.u/ has a lower bound in terms of the symplectic area of v which,
in turn, is bounded from below by C > 0 in view of the aforementioned monotonicity argument. For
`.c˙/ > 0 sufficiently small, the upper bound on the left-hand side implies that the image of u must be
contained entirely inside B1=3 �B1 � Œ�1; 1�.

Since the projected boundary condition �.L \ .B1=3 � B1 � Œ�1; 1�// consists of two transversely
intersecting Lagrangian planes, Stokes’ theorem can be applied to show that v must have vanishing
!0–area. Hence the projection v is constantly equal to 0 2 B1=3 �B1. This means that u0 is contained
inside the Reeb orbit that projects to the origin in the above coordinates. The sought claim concerning
the uniqueness of u˙ follows from this.

The claim about the nonexistence of discs with only negative asymptotics is a consequence of Stokes’
theorem.

For a pair of mixed chords x; y and ordered (possibly empty) sets of pure chords z; z0 define

mL.x
C; y˙/D

X
z;z0

]M0.xCzy˙z0IL/"�.zz
0/:

Lemma 4.12 implies (up to a q 7! ˙q basis change)

(4-3) mL..cC/
C; qC/D 1DmL.q

C; .c�/
�/:

Since a positive (resp. negative) puncture at q means that the boundary of the disk makes a jump from
(resp. to) the component R�ƒ at the puncture, we immediately get the vanishing result

mL.q
�; .c�/

�/D 0DmL..cC/
C; q�/:

Choose ı such that
max
x10¤c�

`.x10/ < ı < `.c�/ < 0 <min
x01

`.x01/:
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Let RFCŒı;b/� .˙/ and RFCŒa;ı/� .˙/ be the Rabinowitz–Floer complexes for xƒ˙ with maps d˙01; d
˙
10; B

˙

from Definition 4.6.

Define the linear maps

�01 W RFCŒı;b/� .C/! RFCŒı;b/� .�/ and �10 W RFCŒa;ı/� .�/! RFCŒa;ı/� .C/

via the generators, as follows:

(4-4) �01.x01/D
X
y01

mL.x
C
01; y

�
01/y01CmL.x

C
01; q

C/c�; �10.x10/D
X
y10

mL.x
�
10; y

C
10/y10:

Note that �10.c�/D c�, and c� is not in the domain of either map.

Fix a small � > 0. By Lemma 3.1, we can assume that the time interval of the isotopy, Œ�;C�, is
small enough that the following holds. For any pair of distinct chords fx; yg ¤ fc�; cCg and any chord
z … fc�; cCg,

j`.x�/� `.yC/j> e��; j`.z�/� `.zC/j< e���; j`.c�/� `.cC/j< e
���:

Lemma 4.13 For � sufficiently small and for all x01; x10 … fc�; cCg,

h�01x01; x01i D k01 and h�10x10; x10i D k10

are units.

Proof The exact Lagrangian concordance L1 shown in Figure 4 has an inverse cobordism L2 constructed
in the same manner, so that the concatenation L2ˇL1 is (compactly supported) Hamiltonian isotopic
to R�ƒC. (One can either construct it by the front projection, or use the fact that the noncylindrical
component of L1 can be realized as a Lagrangian trace cobordism as constructed by Proposition B.1.)
Let L0 DR� xƒC and let L1 D L2ˇL1, such that L1\fj� j> �0g agrees with L0.

For 0� s � 1, let Ls be a smooth family of exact Lagrangian concordances with only double points of
arbitrarily small action, such that Ls\fj� j> �0g agrees with L0. As in the last statement of Lemma 4.12
(proven by an application of Stokes’ theorem and the positivity of the total energy) we conclude that
Md .�;Ls/ D ∅ whenever � has a double point of Ls (thus, of very small action), no positive Reeb
chords, and no negative Reeb at cC.

Md .�;Ls/D∅ implies that if we ignore disks with punctures at double points of the concordance, the
trace concordance and inverse-trace concordance induce mapsˆ;‰ which satisfy (3-2). In particular, if we
set x D x01 (resp. x10) then we get that kˆ is a unit, arguing as in Case 1 in the proof of Proposition 1.11
in Section 3. But kˆ is also a count of the disks contributing to h�01x01; x01i (resp. h�10x10; x10i).

Proposition 4.14 The maps �01 and �10 satisfy axiom (A1) with degree �.

Proof We first verify that �01dC01 D d
�
01�01:
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L1 L1 L1

R�ƒC1

R�ƒR�ƒ

R�ƒ�1 R�ƒ

Figure 6: Further examples of boundary points of type .5 � 2˙/ for the compactification of
the one-dimensional moduli space of pseudoholomorphic disks with precisely one positive and
precisely one negative mixed Reeb chord asymptotic, and boundary onL1[.R�ƒ/. See Figure 3.
The components in the middle level that have only pure Reeb chord asymptotics are responsible
for pulling back the augmentations under the DGA–morphism induced by the concordance.

h.�01d
C
01� d

�
01�01/x01; c�i

D

X
y01

hdC01x01; y01ih�01y01; c�i � h�01x01; y01ihd
�
01y01; c�i

D

X
y01

mxƒC.x
C
01; y

�
01/mL.y

C
01; q

C/�mL.x
C
01; y

�
01/mL.q

C; .c�/
�/mxƒ�.y

C
01; c

C
� /:

The term mL.q
C; .c�/

�/D 1 is added to illustrate how the first and second sums are of type .2C � 6/
and .2� 7� 1�/, respectively.

The breaking of curves that involve only pure chords can be disregarded when the strips are counted
with augmentations; see the analysis of the so-called “ı–breakings” in [6]. This is due to two different
mechanisms. First, a broken configuration such as .5� 3�/ shown in Figure 3, ie with a disk with only
pure punctures in the bottom level (these discs define the differential of the Chekanov–Eliashberg algebra
of xƒ�/, are canceled algebraically when the count is weighted by the value of the augmentation. (Recall
that augmentations vanish on boundaries of the Chekanov–Eliashberg differential by definition.) Second,
a disk with only pure punctures in the middle level, shown for instance in Figure 6, plays the role of
pulling back the augmentation "� under the DGA–morphism induced by the concordance L. In view of
Lemma 4.3, this pullback is equal to "C, as sought. For more details, see [6, page 416, I and II].

Since .6� 3�/ corresponds to such an augmentation-related breaking, Proposition 4.2(6) then implies the
right-hand side is 0. The relevant boundary of the moduli space is shown in Figure 3.
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For z01 ¤ c�,

h.�01d
C
01� d

�
01�01/x01; z01i D

X
y01

mxƒC.x
C
01; y

�
01/mL.y

C
01; z

�
01/�mL.x

C
01; y

�
01/mxƒ�.y

C
01; z

�
01/;

which are the .2C � 5/ and .5� 2�/ terms in Proposition 4.2(5). See Figures 3 and 6 for illustrations.
There is no .6� 7/ term since the component with a negative mixed Reeb chord asymptotic to z�01 must
have a negative puncture at q, while mL.q�; z�01/D 0 holds by Lemma 4.12. The .5� 3�/ terms are the
augmented terms. Finally,

.�01d
C
01� d

�
01�01/cC D �01.0/� d

�
01c� D 0� 0:

Verifying �10d�10 D d
C
10�10 has only one computation,

h.�10d
�
10� d

C
10�10/x10; z10i D

X
y10

mL.y
C
10; x

�
10/mxƒ�.z

C
10; y

�
10/�mxƒC.y

C
10; x

�
10/mL.z

C
10; y

�
10/;

which are all the terms in Proposition 4.2(5). Again the boundary is depicted in Figure 3, and we use
Lemma 4.12 to conclude that mL.qC; x�10/D 0 since x�10 ¤ c� holds by assumption.

For x01 ¤ cC, Lemma 4.13 implies h�01x01; x01i D k01 and h�10x10; x10i D k10 are units. So to
construct (strict, not just homotopy) inverses  01;  10 for �01; �10, it suffices to set

 01.x01/D k
�1
01 x01�

X
y01¤x01

h�01.x01/; y01iy01� h�01.x01/; c�icC;

 01.c�/D cC;

 10.x10/D k
�1
10 x10�

X
y10¤x10

h�10.x10/; y10iy10:

It is easy to check that these are chain maps.

Stokes’ theorem finally bounds all the maps’ degrees by � > 0.

Proposition 4.15 The maps B� and BC are chain maps which satisfy axiom (A2). That is , �10BC�01
is homotopic to B�, where B˙ are of degree �.

Proof To prove axiom (A2), define (on generators, then extend linearly) the map

H W RFCŒı;b/� .C/! RFCŒa;ı/
�C1 .C/; defined by H WDH˛CHˇ ;

where

(4-5) hH˛w01; v10i WDmL.w
C
01; v

C
10/ and hHˇw01; v10i WDmL.v

C
10; .c�/

�/h�01w01; c�i:

The degree of H is tautologically bounded from above by 0. It suffices to show that

(4-6) h.�01B
��01�B

C/x01; y10i D h.d
C
10H CHd

C
01/x01; y10i:
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Apply Proposition 4.2(4) to analyze @M1.xC01zy
C
10z
0IL/ for possibly empty words of pure cords z; z0. The

broken configurations that constitutes this boundary are shown in Figure 2. If the count these boundary
strata weighted by augmentations, then the strata of type .4 � 3�/ all cancel; for this reason, these
configurations can be ignored.

The right-hand side of (4-6) corresponds to the boundary strata of the following types:

(2C � 4) These boundary points correspond to all terms in dC10 ıH˛ �H˛ ı d
C
01.

.5� 5� 1�/ With the additional requirement that the component in .1�/ has one positive mixed Reeb
chord asymptotic to c�, these boundary points correspond to the terms in Hˇ ıd

C
01. (Here

we have used the chain map property of �01 established in Proposition 4.14 together with
equation (4-5).)

However, we also have:

(�) The broken configurations that correspond to dC10 ıHˇ , which are of type (2C � 5) (which, thus,
are not boundary points of (4)).

We continue by analyzing the left-hand side of equation (4-6):

(1C) These components equal the hBCx01; y10i term on the left-hand side.

By unraveling the definitions, the remaining term on the left-hand side is computed to be

�10B
��01.x01/D �10B

�

�
mL.x

C
01; q

C/c�C
X
y01

mL.x
C
01; y

�
01/y01

�
D �01

�X
z10

�
mxƒ�.z

C
10; .c�/

�/mL.x
C
01; q

C/C
X
y01

mxƒ�.y
C
01; z

C
10/mL.x

C
01; y

�
01/

�
z10

�
D

X
z10;w10

�
mL.w

C
10; z

�
10/mxƒ�.z

C
10; .c�/

�/mL.x
C
01; q

C/

C

X
y01

mL.w
C
10; z

�
10/mxƒ�.y

C
01; z

C
10/mL.x

C
01; y

�
01/

�
w10:

Here we find the remaining types of broken configurations that arise in the boundary @M1.xC01zy
C
10z
0IL/:

(5� 5� 1�) With the additional constraint that no Reeb chord asymptotic of the component 1� is
asymptotic to c�, these types correspond to the second term on the right-hand side.

What remains is the term (6� 6). For this we need to analyze the term

mL.w
C
10; z

�
10/mxƒ�.z

C
10; .c�/

�/mL.x
C
01; q

C/

in the expression �10B��01.x01/ further. We start by using Proposition 4.2(5) to rewrite this as

.mxƒC.w
C
10; z

�
10/mL.z

C
10; .c�/

�/CmL.w
C
10; q

�/mL.q
C; .c�/

�/mL.x
C
01; q

C/:
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These broken strata are shown in Figure 3. Since mL.qC; .c�/�/D 1 holds by Lemma 4.12, the previous
expression can be simplified even further. We have thus found:

(6� 6) This corresponds to the second term in the latter expression, ie the termmL.wC10; q
�/mL.x

C
01; q

C/.

The first term mxƒC.w
C
10; z

�
10/mL.z

C
10; .c�/

�/mL.x
C
01; q

C/ of the latter expression remains to be taken
care of, since it is not inside boundary @M1.xC01zy

C
10z
0IL/. However, these terms cancel with the

remaining contribution on the right-hand side of equation (4-6), since:

(�) The first term
mxƒC.w

C
10; z

�
10/mL.z

C
10; .c�/

�/mL.x
C
01; q

C/

is equal to dC10 ıHˇ by formula (4-5) (it is not a part of the boundary of the moduli space (4)).

We have thus established equation (4-6), as sought.

4.3.2 No double points Consider the summands C�.˙/D RFCŒ0;b/� .˙/ and C �.˙/D RFC.a;0�� .˙/.
We define �01 and �10 as in equation (4-4), noting that mL.xC01; q

�/D 0 since there is no double point q.
The rest of the arguments are essentially simplifications of the ones above, since curves of type (6) and (7)
do not exist. Note that bifurcations can occur that were not considered in Section 4.3.1. Notably, a pair of
mixed chords may be born or die, making one of the above pair of RFC–complexes nonisomorphic. But
even in the event of a birth (death is a reverse-time birth), the statement and proof of Lemma 4.13 still
apply. To recap our argument: since there are no double points, we can apply Proposition 1.11 to replace
the DGA–morphism induced by the Lagrangian concordance with a stable-tame isomorphism (STI) of
DGAs. Lemma 4.3 equates how the pullback of the augmentation induced by the concordance is the
same as the change in augmentation induced by the STI in [17, Lemma 3.4]. Thus, as outlined shortly
after stating Theorem 4.8, we can apply the techniques of [17, Section 3], to both complexes C�.˙/
and C �.˙/, to prove Theorem 4.8.

5 Proofs of Theorems 1.4, 1.6 and 1.9

We need the following variation of [17, Lemma 3.1], which allows us to estimate the oscillation of a
contact Hamiltonian based on the change of lengths of a pair of Reeb chords.

Lemma 5.1 Consider a smooth one-parameter family c.t/� .Y; ˛/ of Reeb chords with boundary on
a.t/2ƒ0; b.t/2ƒ1.t/, whereƒ0� Y is a fixed Legendrian submanifold andƒ1.t/� Y is a Legendrian
isotopy. (Here a is either the endpoint or the starting point , and c.t/ is allowed to be of zero length , ie a
double point ƒ0\ƒ1.t/.) Then

(5-1) d

dt
`.c.t//D ˛.Xb.t/.t//DHt .b.t//;
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where Xb.t/ 2 T Y is the contact vector field that generates ƒ1.t/. In particular , if c.t/ and d.t/ are two
Reeb chords as above , thenˇ̌�

`.c.0//� `.d.0//
�
�
�
`.c.1//� `.d.1//

�ˇ̌
� kHtkosc

is satisfied.

Consider a smooth one-parameter family c1.t/ of pure Reeb chords with initial and terminal endpoints at
a1.t/; b1.t/ 2ƒ1.t/. Then

d

dt
`.c1.t//D ˛

�
Xt .b1.t//

�
�˛

�
Xt .a1.t//

�
DHt .b1.t//�Ht .a1.t//:

Hence , the inequality j`.c1.1//� `.c1.0//j � kHtkosc holds.

Proof The calculation for the pure chords c1 was proven in [17, Lemma 3.1] for general contact
manifolds, so we only need to verify the computation for c.

When c.t/ has positive length, we may perform the computation for a contact vector field X that can
be taken to vanish along all of ƒ0 after cutting off the contact Hamiltonian in some neighborhood. The
computation of d

dt
`.c.t// is then a direct application of [17, Lemma 3.1].

In the case when c.t/ is of length zero, we replace ƒ0 by its image ��R˛ .ƒ0/ under the time-� Reeb
flow, and instead compute d

dt
`.zc.t// for the induced chord between ��R˛ .ƒ0/ and ƒ1.t/. Here zc.t/

corresponds to c.t/ under the natural bijective correspondence of Reeb chords between, on one hand, ƒ0
and ƒ1.t/ and, on the other hand, ��R˛ .ƒ0/ and ƒ1.t/. Under this bijection, gotten by “removing” the
first time-� portion, the chord lengths differ by the constant �.

The inequality involving the difference of lengths and oscillation of the contact Hamiltonian is finally
proven by the following computation:ˇ̌�

`.c.0//� `.d.0//
�
�
�
`.c.1//� `.d.1//

�ˇ̌
�

Z 1

0

ˇ̌̌
d

dt
`.c.t//�

d

dt
`.d.t//

ˇ̌̌
dt

D

Z 1

0

jHt .c
C.t//�Ht .d

C.t//j dt

�

Z �
max
y2Y

Ht �min
y2Y

Ht
�
dt D kHtkosc;

where cC.t/ and dC.t/ are the endpoints of the corresponding chords that lie on the component ƒ1.t/.

5.1 Proof of the Main Theorem

Recall the notation from Theorem 1.4. A Legendrian ƒ � .Y; ˛/ is moved by a contact isotopy �t˛;H ,
with 0 � t � 1. The Hamiltonian Ht W Y ! R satisfies kHtkosc < min fl; `.ck/g. Here 0 < l � 1 is
chosen such that there exists an augmentation " W Al.ƒ/! k, and ck is the Reeb chord with the kth

shortest length.
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Let 1� � > 0 be a constant to be determined. Let ƒ0 Dƒt0 Dƒ and ƒt1 D �
t
˛;H .ƒ

0
0/, where ƒ00 is a

perturbation of a push-off (of flow � in the positive Reeb direction) of ƒ0. Then let xƒt Dƒt0[ƒ
t
1.

First set �a0 D 2� D b0 and l.t/ D
R t
0 maxH� �minH� d� . We claim that RFCŒat ;bt /� .ƒ0; ƒ

0
1I "0/

(notation as in Definition 4.6) is quasi-isomorphic to the Morse complex of ƒ0. This can be seen since
C �.a0; 0� D 0 and d001 counts only holomorphic strips which approximate the gradient flows of the
function which represents ƒ01 graphically in a small J 1ƒ00 neighborhood of ƒ00 for a suitable cylindrical
almost complex structure; see eg [14].

We wish to adapt our situation in order to replicate [17, Section 3.4] as much as possible, which proves
the special case of Main Theorem, Theorem 1.4, when .Y DP �Rz; ˛D dz��/. In that case, due to the
global @z Reeb flow, we could choose a large N � 1 push-off instead of a small �� 1 one. The complex
considered in the previous setup is somewhat simpler since there never are any x10 chords throughout the
isotopy (or chords of zero length). The chords at t D 0 in the action window ŒN � 2�;N C 2�� form a
subcomplex which is quasi-isomorphic to the Morse complex of ƒ0.

The action of chords (� N versus � 0) which generate a Morse complex, and the generators of the
complex (type x01 versus type x01; x10) are the only distinctions between the existing argument for the
Main Theorem, Theorem 1.4, when .Y D P �Rz; ˛ D dz� �/ presented in [17, Section 3.4], and the
needed argument for the Main Theorem when .Y; ˛/ is arbitrary.

We briefly sketch this argument, deferring full details to [17, Section 3.4]. Label the Morse generators
x1; : : : ; xm. For each family xi .t/, consider families of two barcodes which are approximately based
on action windows Œ`.xi .t//� .l � l.t//C �; `.xi .t//C �� and Œ`.xi .t//� �; `.xi .t//C .l � l.t//� �� as
specified in [17, equations (3.6) and (3.7)]. Then [17, Lemma 3.7] implies that in each action window we
see an infinite bar that starts at `.xi .t//. Theorem 4.8 implies that we can use the barcode proposition
(Proposition 2.4) for this isotopy. By looking at both action windows simultaneously during this isotopy,
we verify that the bar can only disappear in the amount of time it takes `.xi .t// to coincide with one
of the values of some other mixed chord that was not part of the original Morse complex. The rate
of change of the difference of these action values is controlled by d

dt
l.t/ as calculated in Lemma 5.1,

which brings in the kHtkosc term as stated in the Main Theorem (Theorem 1.4). This sketch glosses over
the difference between the endpoints of the bars in a barcode, and their representations as Reeb chords.
However, this important distinction has been addressed in case (ii) in [17, Section 3.4], and the argument
there is independent of the contact manifold and form.

5.2 Proof of Theorem 1.6

Rosen and Zhang prove that, for any submanifold N � Y of dim.N / D n, the distance ı˛ is either
nondegenerate or ı˛ � 0; see [39, Theorem 1.9]. So it suffices to find ƒ1 and ƒ2 which are the images
of contact isotopies of ƒ, and for which ı˛.ƒ1; ƒ2/ > 0.
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Consider any closed Legendrianƒ and fix a contact form ˛ on Y . Letƒi , iD1; 2, be given by j 1.�2 �i �f /
in a standard contact-form-preserving jet-neighborhood of the form

D�rT
�ƒ� Œ�5�; 5��z � .J

1ƒ; dz�p dq/

inside Y which identifies ƒ with j 10, where f Wƒ! Œ0; 1� is a Morse function, and 0 < �� 1. Let

0 <min.f /Dm1 < � � �<mk Dmax.f /

be an enumeration of the critical values of f that we, moreover, assume correspond to distinct critical
points. After postcomposing the Morse function with a suitable change of coordinates, we may assume

(5-2) 2min.f / >max.f / > 0:

Using the notation of Definition 4.6 for the Rabinowitz–Floer complex with action window

RFCŒat ;bt /� .ƒ;ƒt I "t /

we choose the following: the action window is constantly equal to Œat ; bt / D Œ�2�;C2�/; the initial
action threshold, l D 6�, is sufficiently smaller than the length of any contractible periodic Reeb orbit 
of degree j j � 1; by the existence of the above standard neighborhood, all Reeb chords of ƒ and ƒi that
start and end on the same component have length at least 7�, so "0 is necessarily trivial; and ƒt is an
isotopy from ƒ1 to ƒ2 with oscillation l.1/� �.

If we had studied a Legendrian isotopy from ƒ1 to ƒ2 generated by a Hamiltonian Ht such that l.1/ no
longer satisfies l � l.1/ > b1� a1 (so that our technology breaks down), we automatically get a desired
lower bound Z 1

0

max jHt j dt � 1
2
kHtkosc >

1
2
l.1/� 1

2
.l � .b1� a1//D

1
2
.6�� 4�/D �:

Assume we can apply Theorem 4.8; thus the isotopy deforms the barcode of RFCŒ�2�;C2�/� .ƒ;ƒ1I "1/ to
that of RFCŒ�2�;C2�/� .ƒ;ƒ2I "2/ via the bifurcations specified by the barcode proposition, Proposition 2.4.

During this isotopy, one of the following scenarios occur:

Case 1 Some starting/end point of a bar in the barcode of RFCŒ�2�;C2�/� .ƒ;ƒ1I "1/ survives, and by
inequality (5-2), moves at least a distance �2.2min.f /�max.f // > 0.

Case 2 Some bar in the barcode dies or escapes the action window. Note that the concerned bars all
are of length at least minf�2.m2�m1/; : : : ; �2.mk �mk�1/g by the assumption made on distinct critical
values. (In fact, RFCŒ�2�;C2�/� .ƒ;ƒi I "i / for i D 1; 2 are the Morse complexes that compute the singular
homology H�.ƒIZ2/. So even more can be said about the barcode, but we do not use this.) Theorem 4.8
together with the barcode proposition, Proposition 2.4, then implies thatZ 1

0

max jHt j � C
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holds for this Hamiltonian that generates a Legendrian isotopy from ƒ1 to ƒ2, where

C WDminf�2.2min.f /�max.f //; �2.m2�m1/; : : : ; �2.mk �mk�1/g> 0

is a constant that only depends on the contact form ˛ and the Legendrians ƒ;ƒ1; ƒ2. Here we use
Lemma 5.1 to relate change in Reeb chord length and the value of the contact Hamiltonian Ht at the
endpoint of the Reeb chord of ƒt that corresponds to the moving bar.

We conclude that ı˛.ƒ1; ƒ2/ > C holds, as sought.

5.3 Proof of Theorem 1.9

Letƒt0D�
t
˛;Ht

.ƒ0/, withHt � c > 0, ƒt1Dƒ1 and xƒt Dƒt0[ƒ
t
1. Recall the assumptions thatƒ0; ƒ1

are augmented and that no pseudoholomorphic plane appears in the SFT–compactifications from [3]; see
Remarks 1.5 and 1.12. Thus we can set l DC1 and consider the sequence of complexes RFC�.ƒt0; ƒ1/,
whose barcode in any finite action window is well defined for all t � 0 and varies continuously as in
Theorem 4.8. Since each finite bar is a pairing of two mixed chords of relative grading 1, the hypothesis
implies the barcode at t D 0 either has an infinite bar with a starting point of positive action, or a finite
bar with starting point of negative action, and endpoint of positive action. The interlinkedness property
then follows by the continuity of the barcode, together with Lemma 5.1. Namely, according to the latter,
all endpoints of bars moves in the direction of decreasing action, with a speed bounded from below by
c > 0. (Here we use a large enough action window for the given Hamiltonian.)

6 Computations for the standard Legendrian RPn (proof of Theorem 1.10)

This section concerns computations of the Rabinowitz–Floer complex for the standard Legendrian
RP n �RP 2nC1, with the goal of proving Theorem 1.10.

Recall the definition
ƒ0 WD S

2nC1
\ReCnC1

� .S2nC1; �st/

of the standard Legendrian sphere inside the standard contact sphere, as defined in Section 1. By taking
the quotient under the antipodal map we obtain the standard Legendrian embedding

zƒ0 WDƒ0=Z2 � S
2nC1=Z2 DRP 2nC1

of RP n into the standard contact projective space.

Remark 6.1 It is possible to also pass to further quotients S2nC1=Zk with k � 2 in order to obtain
Legendrian embeddings in the standard contact (higher-dimensional analogues of) “Lens spaces”. Most
of the analysis carried out in this section should be possible to apply with only minor modifications in
order to derive similar results also for general even-dimensional lens spaces, ie k D 2m� 2. However,
we do not pursue this direction further.
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Similarly, any linear Lagrangian subspace V nC1 �CnC1 gives rise to a Legendrian embedding

ƒV WD S
2nC1

\V � .S2nC1; �st/

of Sn, and hence a corresponding Legendrian embedding

zƒV WDƒV =Z2 � .RP
2nC1; �st/

of RP n. (Note that zƒ0D zƒReCnC1 .) All of these different Legendrian embeddings are clearly Legendrian
isotopic via an ambient contact isotopy that preserves the round contact form. In particular, we obtain a
C1–small Legendrian push-off of zƒ0 by considering zƒV for a Lagrangian plane V �CnC1 which is
sufficiently close to ReCnC1.

Recall that the round contact S2nC1 is equipped with the contact form ˛st D
1
2

P
i .xi dyi �yi dxi /, and

a time-t Reeb flow given by complex scalar multiplication by ei2t . Hence S2nC1 is foliated by simple
closed Reeb orbits, all of whose periods are equal to � . It follows that the round RP 2nC1 is foliated
by simple closed Reeb orbits of period 1

2
k� for each k D 1; 2; 3; : : : . The orbits of period 1

2
k� form

a manifold �k ŠCP n of Reeb chords which are nondegenerate in the Bott sense; see the work [2] by
Bourgeois. Note that these Reeb orbits are contractible if and only if k D 2m.

The Reeb chords on zƒV all come in connected families Q.zƒV /
Bott
k
ŠRP n labeled by the Reeb chord

lengths 1
2
k� , k D 1; 2; 3; : : : . These families are also smooth manifolds which are nondegenerate in the

Bott sense.

In Sections 6.1 and 6.2 below we will compute the Conley–Zehnder indices of these orbits and chords. In
addition, we compute the Conley–Zehnder indices of the chords and orbits after a generic perturbation by
a Morse function on the Bott manifolds as described in [2], which makes the contact form nondegenerate.
The conclusion of Proposition 6.4 in Section 6.1 is that the Chekanov–Eliashberg DGAs of the standard
Legendrian RP n �RP 2nC1 is well defined for the aforementioned nondegenerate perturbations of the
round contact form. In Proposition 6.8 from Section 6.2 the degree of the Reeb chords on RP n are
computed. This is useful for showing that RP n admits augmentations, which of course is crucial for
defining the Rabinowitz–Floer complex in Proposition 6.12.

6.1 Conley–Zehnder index of a periodic Reeb orbit

Here we perform Conley–Zehnder index computations for the periodic Reeb orbits on the round RP 2nC1,
as well as its nondegenerate perturbations. See Section A.1 for the definition of the Conley–Zehnder
index.

Recall that precisely the even covers of the simple orbits are contractible. In addition, since the universal
cover of RP 2nC1 is S2nC1, it follows that �2.RP 2nC1/ D 0, and any two planes with the same
asymptotic Reeb orbit are homotopic through planes of the same kind. Denote by � WRP 2nC1!CP n

the prequantum bundle projection, for which D�j� is injective. For any contractible Reeb orbit  2 �2m,
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take the trivialization of � along the Reeb orbit  that is induced by pulling back a symplectic frame at
the point �./ 2CP n under the bundle projection � .

We will apply the index formula (A-1) to prove the following.

Lemma 6.2 Consider a plane u WC!R�RP 2nC1 which is asymptotic to  2 �2m. The relative first
Chern class with respect to the above choice of trivialization satisfies

c
�
1;relŒu�D c

CPn
1 Œ� ıu�Dm.nC 1/ for m� 1;

where cCPn
1 is the usual first Chern class and the detailed definition of c�1;rel is in Section A.1.

Here we identify � ı u with a sphere that is homologous to m �L, where L 2 H2.CP n/ denotes the
homology class of a line.

Proof By Stokes’ theorem the symplectic area of the chain � ıu in CP n is equal to the length of the
periodic Reeb orbit. Here we have endowed CP n D RP 2nC1=S1 with the symplectic form induced
by the curvature d˛ of the prequantization form ˛ on RP 2nC1 via symplectic reduction. (With these
conventions, the area of a line in CP n is equal to � .) Since CP n is monotone, ie the area and index are
proportional, the second equality follows. The first equality then follows since

D�j� W �! TCP n

is a symplectic bundle morphism which is an isomorphism on the fibers.

Lemma 6.3 The Conley–Zehnder index of  2 �2m with respect to the above choice of trivialization is
equal to

(6-1) �CZ.A � ı � id/D n;

independently of the multiplicity 2m.

After a perturbation by a Morse function on the Bott manifold as in [2], the nondegenerate orbit that
corresponds to a critical point has Conley–Zehnder index

�CZ.A � ı � id/C i � 2nD i �n;

where i 2 f0; 1; : : : ; dim�2m D 2ng is the Morse index of the critical point.

Proof The computation in the Bott setting was performed in [45, (3.10)]. Alternatively, one can argue as
follows. The linearized Reeb flow in this trivialization is constantly equal to the identity map. Hence,
the aforementioned perturbation of the Reeb flow by a small positive rotation s 7! eiıs id in the contact
planes perturbs the nondegenerate return map to a nondegenerate one. We then compute the classical
Conley–Zehnder index of this path, as defined in [38], which gives 1

2
.2n/D n, as sought.

The Conley–Zehnder index after the perturbation by a Morse function on the Bott manifold follows from
formula (A-2). Recall that dim�2m D 2n is independent of m.
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In conclusion, we have shown the following.

Proposition 6.4 For a plane u WC!R�RP 2nC1 which is asymptotic to a Reeb orbit in the family �2m
for some m� 1, for the round contact form we have the identity

index.u/D ..nC 1/� 3/CnC 2m.nC 1/D .2mC 2/.nC 1/� 4

for the expected dimension of the moduli space of unparametrized pseudoholomorphic planes of the same
type (with asymptotics that are free to vary in the Bott family �2m).

Moreover , after a small perturbation of the contact form by a Morse function defined on the Bott manifolds ,
as constructed in [2], all periodic Reeb orbits may be assumed to be nondegenerate , and to satisfy the
bound

j j � 4.nC 1/� 4� 2nD 2n

on their degrees.

Proof The result follows from a direct application of the index formula (A-1) combined with the above
computations of the relative first Chern class and Conley–Zehnder indices.

6.2 Conley–Zehnder index of a pure Reeb chord

The next step is to compute the Conley–Zehnder indices for the pure Reeb chords Q.zƒV /k on ƒV , both
for the round contact form and after a nondegenerate perturbation. The definition of the Conley–Zehnder
index for Reeb chords will be recalled in Section A.2.

First, note that the Reeb chords on RP n �RP 2nC1 are all null-homotopic when considered as elements
in �1.RP 2nC1;RP n/ when n � 1. This follows since any Reeb chord lifts to a Reeb chord on the
standard Legendrian sphere under the universal cover

.S2nC1; S2nC1\ReCnC1/! .RP 2nC1;RP n/;

where both the map and the restriction S2nC1\ReCnC1 Š Sn!RP n are universal covers. Moreover,
any element in �2.RP 2nC1;RP n/ lifts to an element in �2.S2nC1; Sn/ under this map, where the latter
group vanishes whenever n > 1. Hence the Maslov class automatically vanishes on �2.RP 2nC1;RP n/
when n� 2. This is also the case for nD 1, by a standard calculation.

Contractibility of a Reeb chord is equivalent to the existence of a continuous half-plane

u W .H ; @H /! .R�RP 2nC1;R�RP n/

with boundary condition on the cylinder over the Legendrian RP n and puncture asymptotic to the Reeb
chord. It follows similarly to the case of planes discussed above that two half-planes that share the same
asymptotics are homotopic through half-planes of the same type when n� 2; indeed, �2.S2nC1; Sn/Š
�1.S

n/ D 0 whenever n � 2. In the case n D 1, �2.S3; S1/ Š �1.S1/ D Z and there are infinitely
many homotopy classes of planes asymptotic to any given family of Reeb orbits. The implication is the
following.
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Lemma 6.5 Any Reeb chord c is the asymptotic of a half-plane , and for any two pseudoholomorphic
half-planes u1 and u2 asymptotic to c, we have index.u1/ D index.u2/. Here , index.u/ denotes the
Fredholm index of a linearization of the x@J at u, viewed as an element of a standard Banach space of
maps.

The Reeb chords on the Legendrians zƒV for the round contact form come in Bott families Q.zƒV /
Bott
k
Š

RP n, where the images of these chords coincide with k–fold multiples of the simply covered periodic Reeb
orbits for kD 1; 2; 3; : : : . The index formula for a pseudoholomorphic half-plane inside R�RP 2nC1 with
boundary on zƒV and asymptotics to the chord c 2 Q.zƒV /

Bott
k

(without a constraint at a fixed asymptotic
orbit) is given by formula (A-3) in Section A.2. Namely,

index.u/D .CZ.c/� 1/C�R�RPn Œu�;

where CZ.c/ is the Conley–Zehnder index of the path of Legendrian planes along c; see Section 6.2.

In order to compute the Conley–Zehnder index and the relative Maslov class, we need to make the choice
of a capping path (up to homotopy) as described in Section A.2. Since the Reeb flow is totally periodic,
we will simply choose the constant capping path.

Lemma 6.6 For the constant capping path , we have the identity

�R�RPn Œu�D �RPn.� ıu/D k.nC 1/ for some k � 1;

where �RPn is the classical Maslov index for a disc with boundary on the Lagrangian RP n �CP n.

Here we identify � ıu with a disk in .CP n;RP n/ that is homologous to kD, whereD 2H2.CP n;RP n/
is the homology class represented by either of the two hemispheres in a complex line CP 1 ,!CP n that
intersects RP n in an equator.

Proof The claim about the homology class of � ıu follows an area consideration similar to the proof of
Lemma 6.2.

The first equality is immediate from the choice of capping path, together with the fact that D�j� W �!
TCPN is a bundle morphism that is a symplectic isomorphism on the fibers.

The Maslov index computation
�RPn.� ıu/D k.nC 1/

is well known. (Note that the symplectic area of the projected disc in .CP n;RP n/ is equal to 1
2
k� ,

where � is the symplectic area of a line.)

Lemma 6.7 With the above choice of constant capping paths , the Conley–Zehnder index satisfies

(6-2) CZ.c/D n

for any c 2 Q.zƒV /
Bott
k

, independently of k D 1; 2; 3; : : : .
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After a perturbation by a Morse function on the Bott manifold as in [2], the nondegenerate Reeb chord
that corresponds to a critical point has Conley–Zehnder index

CZ.c/C i �nD i;

where i 2 f0; 1; : : : ; dim Q.zƒV /
Bott
k
D ng is the Morse index of the critical point.

Proof This is similar to the computation of equation (6-1) in the periodic case. More precisely, the Reeb
flow on RP 2nC1 is totally periodic, and the starting point and end point of all Reeb chords on RP n

coincide. The return map of the Reeb flow is the identity, and we make it nondegenerate by performing a
small positive rotation s 7! eiıs id in the contact planes. Finally, the result is obtained by computing the
standard Conley–Zehnder index of this nondegenerate path.

Proposition 6.8 For a half-plane u as above with boundary on R�zƒV , and boundary puncture asymptotic
to a Reeb orbit in the family Q.zƒV /

Bott
k

for some k � 1, for the round contact form we have the identity

index.u/D .n� 1/C k.nC 1/D .1C k/.nC 1/� 2

for the expected dimension of the moduli space of unparametrized pseudoholomorphic half-planes of the
same type (with asymptotics that are free to vary in the Bott family Q.zƒV /Bott

k
).

Moreover , after a small perturbation of the contact form by a Morse function defined on the Bott manifolds
as in [2], all Reeb chords with boundary on zƒV may be assumed to be nondegenerate , and to satisfy the
bound

jcj � 2.nC 1/� 2�nD n

on their degrees.

Proof It suffices to use the index formula (A-3) with the computations from the above lemmas.

6.3 Computing the DGA and the Rabinowitz complex

First we show that the Chekanov–Eliashberg algebra of RP n � RP 2nC1 has a (canonically defined)
augmentation. Of course, here it is important that the Chekanov–Eliashberg algebra is well defined in
the first place, ie there is no Gromov-bubbling which is not captured in the algebra. This nonbubbling
follows from Proposition 6.4 above, which bounds the degree of a contractible periodic Reeb orbits from
below by 2n.

Proposition 6.9 Consider a small Morse perturbation of the round contact form to a nondegenerate one
as described above. The DGA of zƒV has an augmentation in Z2 that sends all Reeb chord generators to 0.

Proof In the case n > 1 this follows directly from the degree computation in Proposition 6.8; since all
chords have degree strictly greater than one, the differential of the DGA has no constant terms.
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In the case nD1we cannot argue merely by considerations of the degree. In this case there is a single Reeb
chord c in degree jcj D 1, while all other chords have degree at least 2. There are thus two possibilities
when coefficients in Z2 are used: either @c D 1, and there are no augmentations, or @c D 0, and there is a
unique “trivial” augmentation that sends all chords to zero. We will see that the latter case holds.

Since RP 3 D UT �S2 D f.q; p/ 2 T �S2 j kpk D 1g and zƒV is Legendrian isotopic to the conormal lift
f.q0; p/ j kpk D 1g of a point q0 2 S2, the Legendrian zƒV admits an exact Lagrangian filling isotopic to
f.q0; p/g � T

�S2 inside the exact symplectic filling T �S2 of the contact manifold UT �S2 DRP 2nC1

when n D 1. Hence, in this case, the Chekanov–Eliashberg algebra admits augmentations that are
geometrically induced by the fillings by the functorial properties of SFT proven in [19]. (Recall that
by functoriality, a Lagrangian filling induces a DGA–morphism from the Chekanov–Eliashberg algebra
of the Legendrian at the positive end to the empty-set Legendrian, whose DGA is the ground ring with
trivial differential. Such a morphism is by definition an augmentation.) In view of the above degree
consideration, the existence of the augmentation implies that @ has no constant terms. Hence, there is a
(trivial) augmentation.

The mixed Reeb chords that start on zƒ0 and end on zƒV and which are of length t � 0 can be parametrized
by their starting points

.ƒ0\ e
�i2t
�V /=Z2 � zƒ0:

The mixed chords from zƒ0 to zƒV are nondegenerate if and only if all Kähler angles between the two
subspaces are pairwise distinct. In any case, as for the pure chords, any mixed chord  can be concatenated
by any closed Reeb orbit of period 1

2
k� , in order to form a new mixed Reeb chord of length `./C 1

2
k� .

We continue to direct our attention to the following particular family of Lagrangian subspaces

Vs WD he
is�=.nC1/�s�

� @x1 ; e
is2�=.nC1/�s�

� @x2 ; : : : ; e
is.nC1/�=.nC1/�s�

� @xnC1iR �CnC1

for � > 0 sufficiently small, and the induced one-parameter family zƒs WD zƒVs �RP 2nC1 of Legendrians.

Lemma 6.10 For a suitable choice of Maslov potentials , the complex RFC�.zƒ0; zƒ1/ is generated by the
mixed chords ckj with k 2Z and j 2 f1; 2; : : : ; n; nC1g that all are nondegenerate and whose gradings are
given by jckj j D j C k.nC 1/� 1. In addition:

� The chords ckj with k D 0; 1; 2; : : : start on zƒ0, end on zƒ1, and are of the form

ckj .t/ WD e
i2t
� @xj

for t 2
�
0; 1
2

�
�.j=.nC 1/C k/� �

��
, j D 1; : : : ; nC 1 and k D 0; 1; 2; 3; : : : .

� The chords ckj with k D�1;�2;�3; : : : start on zƒ1, end on zƒ0, and are of the form

ckj .t/ WD e
i2t
� ei.j�=.nC1/��/@xj

for t 2
�
0; 1
2

�
�.�j=.nC 1/� k/C �

��
, j D 1; : : : ; nC 1 and k D�1;�2;�3; : : : .
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� Their actions satisfy
a.ck1j1 / < a.ck2j2 /

if and only if .k1; j1/ < .k2; j2/ with respect to the lexicographic order.

Proof Consider the family zƒs of Legendrian push-offs. It can be seen that for ı > 0 sufficiently small,
zƒı is obtained by the perturbation of the image of zƒ0 under a small positive Reeb flow by a perfect
Morse function RP n!R. Recall that such a Morse function has precisely nC 1 nondegenerate critical
points, one in each degree 0; 1; 2; : : : ; n.

We proceed to perform the computation of the grading of the mixed chords, as defined in Section A.3.
First, note that the chords ckj correspond to the critical point of the above Morse function with Morse
index j �1. For a suitable choice of Maslov potentials, a standard computation thus gives us jc0j j D j �1;
see eg [15, Lemma 2.9(2)].

The chords ckj with k > 0 have the same start and endpoints as c0j . By Section A.3 the difference in
Maslov potential can be computed by the relative Chern number c�1;relŒu� of a plane u WC!R�RP 2nC1

whose asymptotic is the k–fold cover of the simple periodic Reeb orbit that contains c0j , relative the
trivialization that is constant under the periodic Reeb flow. We compute this index to be

c
�
1;relŒu�D c

CPn
1 Œ� ıu�D k.nC 1/;

where the right-hand side is the first Chern class in CP n of the k–fold multiple of the generator of
H1.CP n/. The computation of jckj j for all k � 0 follows from this.

We leave the computation of the degree of the chords ckj with k < 0 to the reader, since it follows by
analogous computations (although the order of the Legendrians have been switched).

To deduce the statement for zƒ1 from the statement for zƒı , it suffices to use the continuity of the degrees
of the chords. This, in turn, holds since all chords remain transverse as the parameter s 2 Œı; 1� varies.

Lemma 6.11 There is a contact-form-preserving isotopy �t of the round projective space .RP 2nC1; ˛st/

such that

� �t acts on zƒ0 by the Reeb flow and a reparametrization , more precisely , �t .zƒ0/D et�=.nC1/ zƒ0
for all t 2 Œ0; 1�;

� in addition , �1 fixes zƒ1 setwise , ie �1.zƒ1/D zƒ1;

� the mixed Reeb chords with one endpoint on zƒ0 and one endpoint on �t .zƒ1/ remain nondegenerate
for all t 2 Œ0; 1�, in particular there are no birth/deaths of Reeb chords during this isotopy (note that
mixed chords can shrink to a zero-length chord and change direction in the path , which corresponds
to the moments when zƒ0\ zƒ1 ¤∅); and

� the path of nondegenerate mixed Reeb chords parametrized by t 2 Œ0; 1� that is induced by the
above isotopy connects the chord ckj (at t D 0) with the chord ckjC1 if j < nC 1, and with ckC11 if
j D nC 1 (at t D 1).
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Proof It suffices to consider the action on Cn of a path of real matrices in SO.nC 1/� SU.nC 1/�
GL.nC 1;C/ that starts with the identity matrix, and ends at a matrix in SO.nC 1/ that represents a
linear map of the form

@xj 7! ˙@xjC1 for j D 1; 2; : : : ; nC 1;

on the standard basis of CnC1 (here we write @xnC2 D @x1). In other words, the latter matrix performs as
a permutation of the real coordinate lines. The new Legendrian now corresponds to the subspace

CnC1
� V 0 WD h˙ei.nC1/�=.nC1/�s� � @x1 ;˙e

i�=.nC1/�s�
� @x2 ; : : : ;˙e

in�=.nC1/�s�
� @xnC1iR:

Note that this contact isotopy fixes zƒ0 set-wise for all t 2 Œ0; 1�, but that the time-1 map does not fix zƒ1.
It is finally a simple matter to apply the time-�=.2.nC 1// Reeb flow in order for the image of zƒ1 to
become fixed set-wise under the time-1 map.

This proves the first two bullet points, while the third and fourth follow from the first two.

Proposition 6.12 There exist arbitrarily small perturbations of the round contact form on RP 2nC1,
n � 1, to a nondegenerate contact form , for which the minimal degree of a contractible Reeb orbit is
j j � 2n. Moreover ,

(1) the Chekanov–Eliashberg algebra the standard Legendrian RP n, which is well defined and invariant
under Legendrian isotopy by the above , admits an augmentation; and

(2) the Rabinowitz–Floer complex RFC�.zƒ0; zƒ1/ for the above pair of standard RP n’s , which thus
also is well defined and invariant under Legendrian isotopy , can be assumed to have underlying
graded vector space of the form

RFC�.zƒ0; zƒ1/D
M
i2Z

Z2 � ci D
M
i2Z

Z2Œi �;

where jci j D i 2 Z and a.ci / < a.ciC1/, and with a differential that vanishes.

Proof We perturb the contact form by a Morse function defined on the Bott manifold of Reeb orbits
as in [2]. Proposition 6.4 implies the sought bound on the degree of the periodic Reeb orbits. The
well-definedness claimed in part (1) is a consequence of this bound. The augmentation of the Chekanov–
Eliashberg algebra then follows from Proposition 6.9.

For part (2), the form of the graded vector space that underlies the complex can be seen by considering
Lemma 6.10. Recall that the mixed chords described in that lemma already are transversely cut out,
and may be assumed to be unaffected by the small perturbation of the round contact form by the Morse
functions. The same is also true for the path of mixed Reeb chords in the isotopy produced by Lemma 6.11.

Consider the barcode of the filtered complex

RFC�.zƒ0; zƒ1/

with coefficients in Z2. The claim that the differential vanishes is equivalent to the claim that there are no
finite bars in this barcode for any finite action window.
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We argue by contradiction and assume that there exists a finite bar. By degree considerations, this finite
bar must start at some Reeb chord ci end at ciC1 for some i 2 Z.

Consider the family of barcodes that corresponds to the family of filtered complexes

RFC�.zƒ0; �t .zƒ1//; with t 2 Œ0; 1�;

obtained from the isotopy produced by Lemma 6.11. Here we can impose a finite action window that
includes `.ci / and `.ciC1/, and is much larger than the oscillation of the Hamiltonian which generates �t .
This enables us to apply Theorem 4.8 to get a PWC. For this family of pairs of Legendrians, no births/deaths
of mixed Reeb occur; the Reeb chords remain transverse, even if their lengths can shrink to zero and
change direction. Since the barcode varies continuously, we deduce that no bar can (dis)appear during the
deformation.

Lemma 6.11 moreover implies that the generators of RFC�.zƒ0; �t .zƒ1// vary continuously for t 2 Œ0; 1�,
and connect ci to ciC1. In particular, since ci is the start of a finite bar, we conclude that there must be a
finite bar in the barcode of

RFC�.zƒ0; �1.zƒ1//D RFC�.zƒ0; zƒ1/

that starts at ciC1 as well. It is however impossible for a single chord to correspond to both an endpoint
and a starting point of a bar, which is the sought contradiction.

Appendix A Gradings and indices for Reeb chords and orbits

Here we recall some generalities about index formulas of pseudoholomorphic curves and Conley–Zehnder
indices for a .2nC1/–dimensional contact manifold .Y; ˛/ with a choice of contact form which is
nondegenerate in the Bott sense. We consider both cases of periodic Reeb orbits and Reeb chords on
Legendrians. We also consider Maslov potentials for pairs of Legendrians and induced gradings of mixed
Reeb chords. None of these results are new, but since they can be difficult to extract from the literature,
we give a brief but systematic treatment of relevant definitions and basic results.

For simplicity we assume that the first Chern class of the contact distribution �! Y vanishes. The Reeb
chords and orbits of ˛ are assumed to be nondegenerate in the Bott sense; see [2]. (In particular, this also
includes the case when the Reeb chords and orbits are nondegenerate in the usual sense.)

A.1 Grading and Conley–Zehnder index for periodic Reeb orbits

The grading j j of a contractible period Reeb orbit  2 C1.S1; Y / that lives in a Bott manifold � is
defined as the expected dimension

j j D vdim M.�/

of the moduli space that consists of unparametrized finite-energy pseudoholomorphic planes

u WC!R� �Y
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that are

� asymptotic to some Reeb orbit in the (possibly zero-dimensional) Bott family � 3  (which is free
to vary); and

� pseudoholomorphic for an almost complex structure J that is compatible with d.e�˛/ and cylin-
drical outside of a compact subset.

Here we do not identify two solutions that differ by a translation of the symplectization coordinate � 2R.

Remark A.1 Both the contractibility of  and the vanishing of the first Chern class on spherical classes
are crucial for the well-definedness of the grading.

One can compute the expected dimension from topological data of the map u. Namely,

j j WD index.u/:

This Fredholm index index.u/ has been computed; see [2], [45, Proposition 3.7] or [18]. Here we use the
formulation from [45, Proposition 3.7] applied to the special case of a pseudoholomorphic plane.

(A-1) index.u/D ..nC 1/� 3/C�CZ.A � ı � id/C 2c
�
1;relŒu�;

where ı > 0 is a sufficiently small number. Strictly speaking, we will not define the individual terms in
the expression A � ı � id, although see Remark A.3.

Remark A.2 The quantity nC 1 in our formula corresponds to n in [45]. In addition, unlike the
formulation from [45, Proposition 3.7], we consider the moduli space of unparametrized planes; one thus
has to add dimR Aut.C/D 4 to (A-1) in order to get the cited formula.

What remains is now to explain the quantities in the formula. First we need to choose a symplectic
trivialization of the contact planes � along  (up to homotopy).

� The relative first Chern class c�1;relŒu� is the algebraic number of zeros of a section of the determinant
line u� det � line that is constant in the trivialization of � det �! S1 chosen along the Reeb orbit.

� The Conley–Zehnder index �CZ.A�ı � id/ in the nondegenerate case can be computed as a Maslov
index of a suitable (nonclosed) path of Lagrangians, as shown in [38, Remark 5.4]. The path of
Lagrangians is obtained by taking the graphs of the symplectic path induced by the linearized Reeb
flow (in the chosen trivialization of ��! S1); this is a path of symplectic matrices that start with
the identity matrix and ends with a symplectic matrix whose eigenvalues are all different from one
(by the nondegeneracy assumption).

� The Conley–Zehnder index �CZ.A �ı � id/ in the degenerate case, ie when the linearized time-one
map of the Reeb flow along  has an eigenvalue equal to one, is computed as follows. Deform the
path of symplectic matrices induced by the linearized Reeb flow by adding a small positive rotation
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s 7! eiıs id, for some ı > 0, in the contact plane. Then compute the above Conley–Zehnder index
for this deformed path.

Remark A.3 The notation �CZ.A � ı � id/ is motivated by the nondegenerate case (second bullet
point above), where the Conley–Zehnder index also can be computed by first perturbing the asymptotic
operator A for the linearized x@J –equation by adding a small negative multiple of the identity, and
then computing the corresponding classical Conley–Zehnder index. We refer to [45, Section 3.2] for a
description of the asymptotic operator A , which has a discrete spectrum, and which is injective if and
only if the periodic Reeb orbit  is nondegenerate.

As described in [2], for a contact manifold .Y; ˛/ with a Reeb flow that is nondegenerate in the Bott sense,
one can use a small Morse function f W � ! R defined on the Bott manifolds in order to perturb the
contact form to one whose Reeb flow is nondegenerate, while still keeping control of the periodic orbits.
More precisely, the Reeb orbits obtained by such a perturbation coincides with the critical points of the
Morse function f , where the Reeb orbit corresponding to the critical point p has Conley–Zehnder index

(A-2) �CZ.A � ı � id/C index.p/� dim�;

where index.p/ denotes the Morse index of the critical point p of f .

Remark A.4 In particular, the Conley–Zehnder in the degenerate case coincides with the Conley–
Zehnder index of the nondegenerate orbit at the maximum of the Morse function that arises from the
aforementioned perturbation.

A.2 Grading and Conley–Zehnder index for pure Reeb chords which bound planes

In addition to the vanishing of the first Chern class of �!Y , we now also assume the Maslov class of R�ƒ

vanishes. In this case, the grading jcj of a contractible pure Reeb chord c 2 C1
�
.Œ0; `�; f0; `g/; .Y;ƒ/

�
that lives in a Bott manifold Q can be defined as the expected dimension

jcj D vdim M.c/:

Here M.c/ denotes the moduli space that consists of unparametrized finite-energy pseudoholomorphic
half-planes

u W .C\fy � 0g; fy D 0g/! .R� �Y;R�ƒ/

that are

� asymptotic to some Reeb chord in the (possibly zero-dimensional) Bott family Q 3 c (which is free
to vary); and

� pseudoholomorphic for an almost complex structure J that is compatible with d.e�˛/ and cylin-
drical outside of a compact subset.

Here we do not identify two solutions that differ by a translation of the symplectization coordinate � 2R.
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Remark A.5 Again, for the well-definedness of the above grading, both the contractibility of  as well
as the vanishing of the Maslov class for disks are crucial properties.

As before we can compute the expected dimension from topological data of the map u by

jcj WD index.u/;

where the Fredholm index can be expressed as

(A-3) index.u/D .CZ.c/� 1/C�R�ƒŒu�:

We proceed to describe the quantities in the above formula. First we need to choose a continuous capping
path of Lagrangian tangent planes along c.t/ that connects Tc.0/ƒ � �c.0/ to Tc.`/ƒ � �c.`/ (up to
homotopy).

� The relative Maslov class �R�ƒŒu� of the half-plane u which is defined by concatenating the path
of Lagrangian tangent planes along ujfyD0g with the capping path at the puncture to obtain a closed
path of Lagrangian tangent planes, and then computing the usual Maslov index for this loop of
Lagrangian tangent planes in the trivialization induced by u.

� The Conley–Zehnder index CZ.c/ in the nondegenerate case is defined as follows. First, we use
the Reeb flow to identify the contact planes along the Reeb chord. Construct a closed loop of
Lagrangian tangent planes by rotating Tc.0/ƒ to Tc.1/ƒ in the contact plane by using the minimal
positive Kähler angles (these are nonzero by the nondegeneracy assumption). Then concatenate
this path with the capping path to obtain a loop of Lagrangian tangent planes. The Maslov index of
this loop is the Conley–Zehnder index.

� The Conley–Zehnder index CZ.c/ in the degenerate case is computed as above, but where we first
perturb the Lagrangian tangent plane Tc.0/ƒ at the starting point by a small positive rotation eiı id
in the contact plane.

Similarly to the perturbation of Bott manifolds of periodic Reeb orbits by Morse functions as constructed
in [2], one can also perform a perturbation of the Bott manifolds of Reeb chords. We again obtain an
analogous formula

(A-4) CZ.c/C index.p/� dim Q

for the Conley–Zehnder index of the nondegenerate Reeb orbit that corresponds to the critical point p of
the Morse function f W Q!R. Here index.p/ denotes the Morse index of the critical point p of f .

Remark A.6 As in the periodic orbit case, the Conley–Zehnder in the degenerate case coincides with
the Conley–Zehnder index of the nondegenerate orbit at the maximum after such a perturbation.

A.3 Grading and Conley–Zehnder index for mixed Reeb chords

In this subsection we assume that the mixed Reeb chords are all nondegenerate in the strong sense.
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The grading of a mixed Reeb chord with endpoints on two different Legendrians ƒ0 and ƒ1 depends
on several additional choices. First, we need to choose a symplectic trivialization of the square of the
determinant C–line bundle .detC �/˝C2! Y (up to homotopy). This is possible since the first Chern
class vanishes (in fact one only needs it to be two-torsion). Note that, since Tƒi � � is Lagrangian, its
image ŒTc.0/ƒi �� .detC �c.0//˝C2 ŠC inside the determinant line is a one-dimensional real subspace.
Second, we need to make continuous choices of lifts to R of the angular phase in R=�Z, ie the argument,
of the images

ŒTƒi � WD .detRƒi /˝R2 � .detC �/˝C2! Y

of these real subspaces in the latter C–line bundle. (Passing to the square means that this operation is well
defined on unoriented Legendrian tangent spaces.) The choice of such a lift is called a Maslov potential,
and it exists if and only if the Maslov classes of ƒi vanish. See [15, Section 2.5] or [6] for more details
about Maslov potentials in the Legendrian setting.

We can define the grading of a mixed Reeb chord c W Œ0; `�! Y from ƒi to ƒj as follows. Let x�i 2R

be the lifts of phases of ŒTƒi � � .detC �/˝C2 at the endpoints of the Reeb chord c as defined by the
choice of Maslov potential. Use the Reeb flow �tR W .Y; ˛/! .Y; ˛/ to identify Tc.0/ƒi with a Lagrangian
tangent plane �`R.Tc.0/ƒi /� �c.`/. By continuity (of course using the triviality of .detC �c.1//˝C2! Y )
we obtain a lift x�00 of the phase of Œ�`R.Tc.0/ƒi /� � .detC �c.`//˝C2. Perform the smallest positive
rotation ei�0 , for some �0 2 .0; �/, that makes the real line

Œ�`R.Tc.0/ƒi /�� .detC �c.`//
˝C2 ŠC

coincide with Œ�`R.Tc.`/ƒi /�. (The nondegeneracy implies that this angle is nonzero.) The Conley–Zehnder
index is then the difference

CZ.c/D 1

�
.x�00C �0�

x�1/ 2 Z

of lifts of phases, and we define the grading via

jcj WD CZ.c/� 1 2 Z:

This grading depends on the chosen symplectic trivialization of the C–line bundle .detC �/˝C2! Y as
well as the choice of Maslov potentials of the Legendrians involved.

A feature of this grading is that an unparametrized pseudoholomorphic strip in R� �Y that has a positive
asymptotic to the mixed Reeb chord cC, and a negative Reeb chord asymptotic to the mixed Reeb
chord c�, lives in a moduli space of expected dimension

vdim M.cC; c�/D jcCj � jc�j:

Note that, for this dimension, we again do not identify solutions that differ by a translation of the
�–coordinate.

We end by noting that Legendrian isotopies naturally induce continuous extension of the Maslov potential.
In the case of a loop ƒt of Legendrians, the effect on the Maslov potential at a point p 2 ƒ0 D ƒ1
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can be seen to be as follows. Take a smooth path .t/ 2ƒt so that .0/D p D .1/, and consider the
trivialization of �.detC �/˝C2 induced by the real lines ŒT.t/ƒt �. The action on this isotopy of the
Maslov potential at p can then be seen to be equal to

c
�
1;relŒu� 2 Z:

Here the relative first Chern class computes the algebraic number of zeros of a smooth extension of
the section of u�.detC �/˝C2 along a smooth orientable compact surface u W † ! Y whose bound-
ary parametrizes .t/, where we require the section to be nonzero and constant with respect to the
aforementioned trivialization along the boundary .t/.

Appendix B Length of trace cobordisms and conformal factors

It is well known that the trace of a Legendrian isotopy can be deformed to an exact Lagrangian concordance
in the symplectization; see [4; 5; 25] for different versions of this construction. Here we revisit the version
from [4, Theorem 1.2] and show that it fits our purposes as far as control on the length is concerned. The
length of a Lagrangian cobordism was defined in [40] by Sabloff and Traynor; see Section 3.

Let ƒ� .Y; ˛/ be a Legendrian submanifold of a contact manifold with a choice of contact form ˛. Let
�t˛;H W .Y; ker˛/! .Y; ker˛/ be a contact isotopy with �0˛;H D id, which thus is generated by a contact
Hamiltonian Ht W Y !R defined by Ht ı�t˛;H D ˛. P�

t
˛;H /. Furthermore, let ft W Y !R be the smooth

function for which .�t /�˛;H˛ D e
ft˛. The function eft is called the conformal factor of the contact

isotopy and was introduced in Section 1. In particular, .�; y/ 7! .� �ft .y/; �
t
˛;H .y// is a Hamiltonian

isotopy of the symplectization that is generated by the t–dependent Hamiltonian e�Ht W R� � Y ! R.
Note that this symplectic isotopy preserves the primitive e�˛ of the symplectic form.

Proposition B.1 For a contact isotopy as above , the following holds for any arbitrary choice of � > 0:

(1) There exists a Lagrangian trace cobordism L01 � .R� � Y; e�˛/ from ƒ to �1˛;H .ƒ/ of length
equal to �e1C� minx2Y;t2Œ0;1� ft .x/� 0.

(2) There exists a Lagrangian trace cobordism L10 � .R� � Y; e�˛/ from �1˛;H .ƒ/ to ƒ of length
equal to e1C� maxx2Y;t2Œ0;1� ft .x/� 0.

(3) One can assume that the two concatenations L01ˇL10 and L10ˇL01 of traces , which are thus
Lagrangian cobordisms from ƒ to itself and �1˛;H .ƒ/ to itself , respectively, are of length

c0 WD e
1C�

�
max

x2Y;t2Œ0;1�
ft .x/� min

x2Y;t2Œ0;1�
ft .x/

�
:

Moreover , these concatenations are Hamiltonian isotopic to the trivial Lagrangian cylinders R�ƒ

and R��1˛;H .ƒ/, respectively, by isotopies supported in a subset of the form Œ0; c0��Y (after a
suitable translation of the �–coordinate).

(4) All Lagrangian cobordisms constructed above have primitives of the pullback of e�˛ that can be
taken to be globally constant on each cylindrical end ˙� � 0.
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Proof (1) It suffices to consider the image of the trivial Lagrangian cylinder R�ƒ under the time-one
map of the Hamiltonian isotopy defined by a Hamiltonian of the form �.�/e�Ht . Recall that � is the
symplectization coordinate here, while t is the time-coordinate. We take �.�/ WR� ! 0 to be a smooth
function that vanishes on the subset .�1; 0� and is equal to one on the subset Œı;C1/ for some ı > 0.

So far we have merely repeated the argument from the proof of [4, Theorem 1.2]. To achieve the bound
on the length, it suffices to choose ı > 0 sufficiently small, so that the inequality

e1C�
�
� min
x2Y;t2Œ0;1�

ft .x/
�
� ı� min

x2Y;t2Œ0;1�
ft .x/

is satisfied. To show the result follows from this inequality, we use the fact that e�Ht generates a Hamil-
tonian isotopy .�; y/ 7! .� �ft .y/; �

t
˛;H .y// of the symplectization, which means that maxy2Y ft .y/ is

the maximal translation in the negative symplectization direction at time t .

(2) This is similar to (1), using the fact that .�t˛;H /
�1 again is a contact isotopy (thus it is generated by a

contact Hamiltonian) whose conformal factor is equal to �ft . We then apply the construction from (1) to
the cylinder R��1˛;H .ƒ/ instead of R�ƒ, while using the contact isotopy .�t˛;H /

�1 instead of �t˛;H .

(3) The constructions in (1) and (2) can be taken to depend smoothly on the family of contact isotopies
t 7! .�t˛;H /r WD �

rt
˛;H for t 2 Œ0; 1�, where the family is parametrized by r 2 Œ0; 1�. Writing efr;t for the

conformal factor of .�t˛;H /r we immediately note that

max
x2Y;t2Œ0;1�

ft .x/� max
x2Y;t2Œ0;1�

fr;t .x/ and min
x2Y;t2Œ0;1�

fr;t .x/� min
x2Y;t2Œ0;1�

ft .x/

holds for any r 2 Œ0; 1�, from which the sought length properties follow.

We thus produce families of Lagrangian cobordisms whose concatenations Lr01ˇL
r
10 (resp. Lr10ˇL

r
01)

interpolate between R�ƒ (resp. R� �1˛;H .ƒ/) at r D 0 and L01ˇL10 (resp. L10ˇL01) at r D 1.
The corresponding isotopy may be assumed to be supported inside Œ0; c0��Y . Since this is an isotopy
through exact Lagrangians, a standard fact implies that it is generated by a global Hamiltonian isotopy.

(4) As follows by Cartan’s formula, a Hamiltonian isotopy �t
�.�/e�Ht

WR�Y !R�Y , with �0.�/ being
of compact support, pulls back the primitive of the symplectic form e�˛ to a one form e�˛C dG. Since
�t
�.�/e�Ht

preserves the primitive e�˛ outside of a compact subset, we conclude that G W Y !R is locally
constant outside of a compact subset or, equivalently, dG is compactly supported. The sought statement
follows from this.
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