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RICHARD HIND

ELY KERMAN

We consider the problem of packing a symplectic manifold with integral Lagrangian tori, that is,
Lagrangian tori whose area homomorphisms take only integer values. We prove that the Clifford torus
in S2 �S2 is a maximal integral packing, in the sense that any other integral Lagrangian torus must
intersect it. In the other direction, we show that in any symplectic polydisk P .a; b/ with a; b > 2, there
is at least one integral Lagrangian torus in the complement of the collection of standard product integral
Lagrangian tori.

53D12, 53D35

1 Introduction

In this paper we consider packings of symplectic manifolds by Lagrangian tori. Since every symplectic
manifold contains infinitely many disjoint Lagrangian tori, we must set a scale in order to pose meaningful
questions. We therefore restrict our attention to Lagrangian tori whose area homomorphism takes only
integer values. These will be referred to as integral Lagrangian tori.1 The fundamental packing question,
in this setting, is the following:

What is the maximum number of disjoint integral Lagrangian tori contained in a given
(pre)compact symplectic manifold?

A more approachable version of this question is to consider a specific collection of disjoint integral
Lagrangian tori in a symplectic manifold .M; !/, and to ask if it is a maximal integral packing in the
sense that any other integral Lagrangian torus in M must intersect at least one torus in the collection. In
this paper, we study this question in the simplest nontrivial setting.

1.1 Results

Equip the sphere S2 with its standard symplectic form ! scaled so that
R

S2 ! D 2. Let L1;1 be the
monotone Clifford torus (product of equators) in .S2�S2; ��

1
!C��

2
!/. Our first result is the following.

Theorem 1.1 The Clifford torus L1;1 is a maximal integral packing of .S2 �S2; ��
1
!C��

2
!/.

1These are also sometimes called Bohr–Sommerfeld Lagrangians.
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2208 Richard Hind and Ely Kerman

Consider R4 equipped with its standard symplectic structure !4. For real numbers a; b > 0, consider the
symplectic polydisk

P .a; b/D f.z1; z2/ 2C2
j �jz1j

2 < a; �jz2j
2 < bg �R4:

Identifying L1;1 with the standard Clifford torus in R4, Theorem 1.1 implies that L1;1 is a maximal
integral packing of each P .a; b/ with 1< a; b < 2.

If a and b are both greater then 2, then a natural candidate for a maximal integral packing of P .a; b/ is
the collection of integral Lagrangian tori

fLk;l j k; l 2N; k � bac; l � bbcg;

where Lk;l is the product of the circle about the origin bounding area k in the z1–plane with the circle
about the origin bounding area l in the z2–plane. The analogous packing in dimension two is always
maximal. Our second result shows that, in dimension four, this candidate always fails.

Theorem 1.2 If min.a; b/ > 2, then fLk;l j k; l 2N; k �bac; l �bbcg is not a maximal integral packing
of P .a; b/. For every � > 0, there is an integral Lagrangian torus LC in

P .2C �; 2C �/ n fLk;l j k; l 2 f1; 2gg:

1.2 Overview

The first step in our proof of Theorem 1.1 is to show that any integral Lagrangian torus contained in
.S2 �S2; ��

1
!C��

2
!/ is actually monotone. This follows from the work of Hind and Opshtein [9], and is

proved in Proposition 3.2 below. Arguing by contradiction, we then assume there is a monotone Lagrangian
torus L in .S2�S2; ��

1
!C��

2
!/ that is disjoint from the Clifford torus L1;1. The work of Ivrii [11] and

Dimitroglou-Rizell, Goodman and Ivrii [5] implies that there is a finite-energy holomorphic foliation F of
S2 �S2 n .L[L1;1/ which has a normal form near L and L1;1; see Section 3.5. We use F to establish
the existence of two symplectic spheres, F and G, in .S2 �S2; ��

1
!C��

2
!/. These are obtained from

the compactifications of the pseudoholomorphic buildings obtained in Section 3.7; see Propositions 3.20
and 3.22. Both F and G represent a homology class of the form .1; d/ 2 H2.S

2 � S2IZ/ D Z2 for
some large d . They also have special intersection properties with the leaves of F and with each other;
see Proposition 3.24. Using the spheres F and G, together with the operations of blow-up, inflation and
blow-down, we then alter the ambient symplectic manifold away from L[L1;1 to obtain a new monotone
symplectic manifold, .X; �/. This new manifold is symplectomorphic to .S2�S2; .dC1/.��

1
!C��

2
!//,

and L and L1;1 remain disjoint and monotone therein. However, the images (transforms) of the spheres
F and G in .X; �/ are now in the class .1; 0/ and their existence implies, by the work of Cieliebak and
Schwingenheuer in [4], that L and L1;1 must both be Hamiltonian isotopic to the Clifford torus in .X; �/.
It then follows from standard monotone Lagrangian Floer theory (as in Oh [17]) that it is not possible for
L and L1;1 to be disjoint. This contradiction completes the proof of Theorem 1.1.

Geometry & Topology, Volume 28 (2024)



Packing Lagrangian tori 2209

To prove Theorem 1.2 we construct, for every � > 0, an explicit embedding of the closure of P .1; 1/

into P .2C �; 2C �/ n fLk;l j k; l 2 f1; 2gg, using a time-dependent Hamiltonian flow. The desired
Lagrangian, LC, is the one on the boundary of the image.

1.3 Commentary and further questions

Given that Theorem 1.1 is reduced to the problem of detecting intersection points of two monotone
Lagrangian tori, using Hind and Opshtein [9], it is natural to ask whether Lagrangian Floer theory (rigid
holomorphic curves) can also be used to prove Theorem 1.1 directly. To the knowledge of the authors
this is not yet possible. The following result seems to be as close to a proof of Theorem 1.1 as one can
currently get using Lagrangian Floer theory.

Theorem 1.3 Suppose that L is a monotone Lagrangian torus in .S2 � S2; ��
1
! C ��

2
!/. If the

Lagrangian Floer homology of L, with respect to some C�–local system , is nontrivial , then L must
intersect L1;1.

This follows from the work of Ritter and Smith in [19].2 In particular, Corollary 1.5 of [19] implies that
the Clifford torus L1;1 split-generates the monotone Fukaya category of .S2�S2; ��

1
!C��

2
!/. It is not

known whether there exist monotone Lagrangian tori in .S2�S2; ��
1
!C��

2
!/ whose Lagrangian Floer

homology is trivial for every choice of C�–local system. In [20], Vianna constructs a countably infinite
collection of monotone Lagrangian tori in .S2 �S2; ��

1
!C ��

2
!/, no two of which are Hamiltonian

isotopic. Each of the tori in Vianna’s collection satisfies the hypothesis of Theorem 1.3.

The following question, in the spirit of Theorem 1.1, remains unresolved.

Question 1.4 Does every pair of monotone Lagrangian tori in .S2 �S2; ��
1
!C��

2
!/ intersect?

Progress on other aspects of the study of disjoint Lagrangian tori has also recently been made in two
related works by Mak and Smith [13], and by Polterovich and Shelukhin [18]. Let f
ig be a collection
of disjoint circles bounding disks of the same area, and let E be the equator in the sphere S2. In [13]
and [18] it is shown that, with respect to certain nonmonotone symplectic forms on S2 �S2, packings
of the form LD

F

i �E are maximal in the sense that any Lagrangian torus Hamiltonian isotopic to


1 �E must intersect L. In comparison, the maximal packing given by Theorem 1.1 only includes a
single torus, L1;1, but we do not assume any other tori are Hamiltonian isotopic to it. Theorem 1.2 shows
that analogous packings of the form

F

i � 
j are no longer maximal.

Below are a few of the questions suggested by Theorem 1.2, which also remain unresolved.

Question 1.5 Is every integral Lagrangian torus in P .2C �; 2C �/ n fLk;l j k; l 2 f1; 2gg Hamiltonian
isotopic to L1;1?

2We are grateful to the referee for pointing out this reference.

Geometry & Topology, Volume 28 (2024)



2210 Richard Hind and Ely Kerman

Question 1.6 Suppose 2< a; b < 3. Are there six disjoint integral Lagrangian tori in P .a; b/?

Question 1.7 Suppose 2< b < 3. Are there three disjoint integral Lagrangian tori in P .2; b/?

Question 1.5 has recently been answered negatively, and Questions 1.6 and 1.7 positively, by Hicks and
Mak in the preprint [7]. The question of whether these domains might actually contain infinitely many
disjoint integral Lagrangians remains completely open.

Acknowledgements The authors would like to thank the referee of this paper for their careful analysis
and many valuable comments. We also thank Karim Boustany for helpful comments and for pointing out
a few mistakes.

The authors are supported by Simons Foundation grants 633715 (Hind) and 429872 (Kerman).

2 Conventions, labels and notation

Every copy of the two-dimensional sphere S2 will implicitly be identified with the unit sphere in R3

and we will label the north and south poles by1 and 0, respectively. In .S2�S2; ��
1
!C��

2
!/, we use

these points to define the four symplectic spheres S0 D S2 � f0g, S1 D S2 � f1g, T0 D f0g �S2 and
T1 D f1g�S2. The ordered basis fŒS0�; ŒT0�g of H2.S

2 �S2IZ/ is used to identify it with Z2.

Let L� .M; �/ be a Lagrangian torus in a four-dimensional symplectic manifold. A diffeomorphism  

from T2 D S1 �S1 to L will be referred to as a parametrization of L. It specifies a basis of H1.LIZ/

and thus an isomorphism from H1.LIZ/ to Z2. We will denote this copy of Z2 by H
 
1
.LIZ/. The

parametrization  can also be extended to a symplectomorphism ‰ from a neighborhood of the zero
section in T �T2 to a Weinstein neighborhood U.L/ of L in M . We will denote the corresponding
coordinates in the neighborhood U.L/ of L by .p1;p2; q1; q2/ and, for simplicity, we will assume that

U.L/D fjp1j< �; jp2j< �g for some � > 0:

3 Proof of Theorem 1.1

Arguing by contradiction, we begin with the following.

Assumption 1 There is an integral Lagrangian torus L in .S2�S2; ��
1
!C��

2
!/ which is disjoint from

the Clifford torus L1;1.

We will show that Assumption 1 can be refined in three ways.

3.1 Refinement 1: we may assume that L is monotone

A symplectic manifold .M; �/ is monotone if the Chern and area homomorphisms,

c1 W �2.M /�H2.M;Z/! Z and � W �2.M /!R;

Geometry & Topology, Volume 28 (2024)



Packing Lagrangian tori 2211

are positively proportional. Recall that a Lagrangian submanifold L� .M; �/ is monotone if its Maslov
and area homomorphisms,

� W �2.M;L/! Z and � W �2.M;L/!R;

are positively proportional. We will denote the constant of proportionality of L by �.

If L is a Lagrangian torus, one can verify monotonicity by checking it for a collection of disks whose
boundaries generate H1.LIZ/.

Lemma 3.1 Suppose that .M; �/ is a symplectic 4–manifold which is monotone with constant 1
2
�. A La-

grangian torus L in .M; �/ is monotone with constant � if there are two smooth maps v1; v2 W .D
2;S1/!

.M;L/ such that the boundary maps v1jS1 and v2jS1 determine an integral basis of H1.LIZ/ and
�.Œvi �/D ��.Œvi �/ for i D 1; 2.

Refinement 1 is validated by the following result.

Proposition 3.2 Every integral Lagrangian torus L in .S2 �S2; ��
1
!C��

2
!/ is monotone.

Proof By Theorem C of [5] there is a Hamiltonian diffeomorphism which displaces L from the pair of
spheres S1[T1. Hence, L can be identified with an integral Lagrangian torus L inside the polydisk
P .2� �; 2� �/ � .R4; !4/ for some sufficiently small � > 0. By Lemma 3.1, it suffices to find two
smooth maps v1; v2 W .D

2;S1/! .R4;L/ such that the boundary maps v1jS1 and v2jS1 determine an
integral basis of H1.LIZ/ and �.Œvi �/D 2!4.Œvi �/ for i D 1; 2. Simplifying further, we note that, for
R4, the maps � and !4 can be recast as homomorphisms

� WH1.LIZ/! Z and !4 WH1.LIZ/!R

and it suffices to find an integral basis fe1; e2g of H1.LIZ/ such that �.ei/D 2!4.ei/ for i D 1; 2.

Since L is contained in P .2��; 2��/, it follows from [3] that there is a smooth map f W .D;S1/! .R4;L/

of Maslov index 2 whose symplectic area is 1. To see this we include the polydisk P .2� �; 2� �/ into
B4.4� 2�/, the ball of capacity 4� 2�, and then compactify this ball to CP2 equipped with the Fubini–
Study form rescaled by .4� 2�/=� . In this setting, the proofs of Theorems 1.1 and 1.2 of [3] imply that
there are three discs mapping to CP2, with boundary on L, that each have Maslov index equal to 2 and
positive symplectic areas whose sum is at most .4� 2�/. These discs are holomorphic away from L and
are obtained from a limit of spheres in the class ŒCP1�. Hence, by positivity of intersection, exactly one
of the three discs intersects the line at infinity, and the other two discs, f and g, can be viewed as maps to
B4.4�2�/�R4. Since L is integral, the total symplectic area of f and g is either 2 or 3. In either case,
one of them, say f , has symplectic area equal to 1. If e1 is the element of H1.LIZ/ represented by f jS1 ,
we then have �.e1/D 2 and !4.e1/D 1.

Geometry & Topology, Volume 28 (2024)



2212 Richard Hind and Ely Kerman

Let c be a class in H1.LIZ/ such that fe1; cg is an integral basis. Since �.c/ is even, by adding integer
multiples of e1 to c, if necessary, we may assume that �.c/D 2. It remains to show that !4.c/D 1.

Arguing by contradiction, assume that !4.c/¤ 1. Set

yc D

�
c if !4.c/ > 1;

cC 2.e1� c/ if !4.c/ < 1:

Then fe1; ycg is an integer basis of H1.LIZ/ that satisfies

!4.e1/D 1; !4.yc/� 2 and �.e1/D �.yc/D 2:

In [9], Hind and Opshtein prove that if a Lagrangian torus in P .a; b/ admits such a basis, then either
a> 2 or b > 2. This contradicts the assumption that L lies in P .2� �; 2� �/ and we are done.

3.2 Refinement 2: we may assume that L lies in the complement of S0[S1[T0[T1

To verify this, we utilize the relative finite-energy foliations from [5], which we now recall.

3.2.1 Foliations of .S 2 � S 2/ n L In [6], Gromov proves that if J is a smooth almost complex
structure J on S2 �S2 that is tamed by the symplectic form ��

1
!C��

2
!, then there is a foliation of

S2 �S2 by J–holomorphic spheres in the class .0; 1/, and another with fibers in the class .1; 0/. For
any monotone Lagrangian torus L � .S2 � S2; ��

1
! C ��

2
!/, there is an analogous relative foliation

theory, developed first by Ivrii [11] and then completed by Dimitroglou-Rizell, Goodman and Ivrii [5],
with input from Wendl [21] and Hind and Lisi [8]. By stretching certain Gromov foliations along L and
smoothing the compactifications of the limiting buildings with more than one level, they obtain symplectic
S2–foliations of S2 �S2 that are compatible with L. A version of this is described below. As in [8], we
focus on the curves which, after stretching, map to S2 �S2 nL.

Input Let L be a monotone Lagrangian torus in .S2 �S2; ��
1
!C��

2
!/. Fix a parametrization  of L

and the corresponding Weinstein neighborhood

U.L/D fjp1j< �; jp2j< �g:

Definition 3.3 A tame almost complex structure J on (S2 �S2 nL; ��
1
!C��

2
!/ is said to be adapted

to the parametrization  if, in U.L/, we have

J
@

@qi
D�

p
p2

1 Cp2
2
@

@pi
:

For such a J , each negative end of a finite-energy J–holomorphic curve u mapping to S2 �S2 nL is
asymptotic to a closed Reeb orbit on a copy of the flat unit cotangent bundle S�

L
T2 of T2, corresponding

to L. This Reeb orbit covers a closed geodesic 
 of the flat metric on T2. In this case, we simply say
that the end of u is asymptotic to L along 
 .

Geometry & Topology, Volume 28 (2024)
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Output As described in Section 2.5 of [5], each J adapted to the parametrization  of L is part of the
limit, as � !1, of a standard family almost complex structures J��0 on S2 �S2 that are tame with
respect to ��

1
!C��

2
!. Taking the limit of the Gromov foliations for the J� as � !1, it follows from

Theorem D and Propositions 5.3 and 5.16 of [5], and the fact that L is monotone, that one obtains a
foliation FD F.L;  ;J / of S2 �S2 nL with the following properties.

� The foliation F has two kind of leaves: unbroken ones consisting of a single closed J–holomorphic
sphere in S2 � S2 n L of class .0; 1/, and broken leaves consisting of a pair of finite-energy
J–holomorphic planes in S2 �S2 nL.

� Each leaf of F intersects S1 in exactly one point. For a broken leaf this means that exactly one of
its planes intersects S1.

� The ends of two planes of a broken leaf are asymptotic to the same geodesic, but with opposite
orientations. This geodesic is embedded. We denote its homology class, equipped with the
orientation determined by the plane which intersects S1, by ˇ 2H1.LIZ/. This class is the same
for all broken leaves of F and is referred to as the foliation class of F.

� Limits of the Gromov spheres in the completion of a neighborhood of L, which is a copy of T �T2,
are cylinders asymptotic to geodesics in the classes ˙ˇ.

� Each point z 2S2�S2 nL lies in a unique leaf of F, and each point of L lies on a unique geodesic
in the foliation class ˇ that corresponds to a unique plane of a broken leaf of F that intersects S1.

� If L is disjoint from a configuration of symplectic spheres, then we may assume these spheres are
complex with respect to all J� . In particular, if L has been displaced from S0[S1[T0[T1,
then we may assume this configuration of symplectic spheres is J–complex.

� Suppose L is disjoint from S1 and we therefore take S1 to be complex. Then, by positivity of
intersection, there is a well-defined map p W S2 �S2! S1 which takes z 2 S2 �S2 nL to the
unique intersection of its leaf with S1, and takes z 2L to the intersection with S1 of the broken
leaf asymptotic to the unique geodesic through z representing the foliation class. The image p.L/

is an embedded closed curve in S1. Moreover, if L is homotopic to L1;1 in the complement
of T0[T1, then p.T0/ and p.T1/— which are points, since T0 and T1 are complex — lie on
opposite sides of the closed curve p.L/.

Lemma 3.4 (straightening) For all sufficiently small � > 0 we may assume , by perturbing J outside
of U.L/, that the unbroken leaves of F that intersect U.L/ do so along the annuli

fp1 D ı; q1 D �;�� < p2 < �g

for some � 2 S1 and nonzero ı 2 .��; �/.

Proof The statement for broken leaves was established in Proposition 5.16 of [5]; see the first bullet point
of the proof. This means the parts of the broken leaves lying outside of U.L/ form two S1–families of

Geometry & Topology, Volume 28 (2024)



2214 Richard Hind and Ely Kerman

holomorphic disks, with boundaries fp1D0; q1D�;p2D˙�g. We may smoothly identify a neighborhood
of such an S1–family of holomorphic disks in the complement of U.L/ with .��0; �0/�S1�D2, where
the disks correspond to subsets f0g � f�g �D2, and the circles fp1 D ı; q1 D �;p2 D ˙�g in @U.L/

match with the circles fıg � f�g � @D2. Hence our S1–families of holomorphic disks can be extended to
smooth families of disjoint smoothly embedded disks Dı;� D fıg � f�g �D2 with jıj< �0 and � 2 S1.
We may assume these disks extend smoothly into U.L/ along the surfaces fp1D ı; q1D �;�� <p2 < �g.
For a sufficiently small �0 > 0, we may also assume that the disks Dı;� are symplectic, since they are
C1–close to the holomorphic disks corresponding to ı D 0. Hence, we may choose a tame almost
complex structure, J0, which agrees with J inside U.L/ but is chosen outside of U.L/ so that the
disks Dı;� are J0–holomorphic. With this, we replace the foliation FD F.L;  ;J / with the foliation
F0 D F.L;  ;J0/ and the neighborhood U.L/ with

U0.L/D fjp1j< �0; jp2j< �g:

By construction, for each annulus fp1 D ı; q1 D �;�� < p2 < �g with jıj < �0, there is a pair of
J0–holomorphic disks which join smoothly with the boundary components to form J0–holomorphic
spheres in the class .0; 1/. These are unbroken leaves of F0 for ı ¤ 0, and broken leaves for ı D 0.
Moreover, by positivity of intersection, these are the only leaves of F0 intersecting U0.L/.

Example 3.5 (solid tori bounded by L1;1) For the Clifford torus L1;1 � S2 �S2 and a J adapted to
the standard parametrization  1;1 of L1;1, we get a foliation F1;1 of S2 �S2 nL1;1 with leaves in the
class .0; 1/. As L1;1 is disjoint from S0 [S1 [T0 [T1 we may assume that these four spheres are
J–complex. The broken leaves of F1;1 comprise two families of J–holomorphic planes with boundary
on L1;1, which can be labeled as follows: s0, which consists of the planes intersecting S0, and s1, which
consists of the planes intersecting S1. The families of holomorphic planes s0 and s1 can be seen directly
for a model almost complex structure, but in fact exist for all J adapted to a parametrization of L1;1. We
will write s0.J / and s1.J / when we want to highlight the dependence of these families on J . Modulo
reparametrization, s0 and s1 form compact moduli spaces, as they represent classes of minimal positive
area in H2.S

2 �S2;L1;1/. These moduli spaces are automatically regular by [21, Theorem 1].

For each J as above, there is an analogous foliation of S2�S2 nL1;1 with leaves in the class .1; 0/. The
broken leaves in this case yield two families of J–holomorphic planes, t0 and t1, which consist of the
planes intersecting T0 and T1, respectively.

The following result establishes Refinement 2. The proof is based on that of Corollary E in [5].

Proposition 3.6 Suppose that L is a monotone Lagrangian torus in .S2 � S2; ��
1
! C ��

2
!/ that is

disjoint from L1;1. Then there is a Hamiltonian diffeomorphism � of S2 �S2 which displaces L from
S0 [ S1 [ T0 [ T1 and is supported away from L1;1. Moreover , �.L/ is homotopic to L1;1 in the
complement of T0[T1 and also in the complement of S0[S1.

Geometry & Topology, Volume 28 (2024)
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Proof We first displace L from S1 in the complement of L1;1, or equivalently S1 from L. Let J0 be an
almost complex structure on S2 �S2 nL1;1 that is adapted to the standard parametrization  1;1 of L1;1

and such that S1 is J0–complex. We deform J0 through almost complex structures J� to an almost
complex structure J1 which is also adapted to a parametrization of L. For each � we have a finite-energy
J�–holomorphic foliation in the class .1; 0/ including the broken leaves t0 and t1 as in Example 3.5. We
can find a smooth family of holomorphic spheres H� in the class .1; 0/, that is, unbroken leaves of the
corresponding foliations, with H0 D S1.

In the limit �!1, the moduli spaces of J�–holomorphic disks t0.J� / and t1.J� / both converge. Indeed,
their limits t0.J1/ and t1.J1/ still represent classes of minimal positive area in H2.S

2�S2;L1;1[L/,
where all classes still have integral area; see also Lemma 3.23 for this. Moreover, as the union of broken
spheres with respect to J1 still has codimension 1, we may assume the H� converge to an unbroken
sphere, H1. As the H� are all disjoint from L1;1 and H1 is disjoint from L, we can find a Hamiltonian
isotopy supported away from L1;1 displacing S1 from L, as required.

The remainder of the argument follows similar lines. We may assume that each of the spheres S0, S1,
T0 and T1 are J0–complex. Let F0 be the corresponding J0–holomorphic foliation of S2 �S2 nL1;1

in the class .0; 1/. Let p0 W S
2 � S2! S1 be the projection map from the (sixth bullet point of the)

description of F above. We may assume that the points p0.T0/ and p0.T1/ lie in different components
of S1 np0.L1;1/.

Fix a parametrization of L and let .P1;P2;Q1;Q2/ be the corresponding local coordinates on the
Weinstein neighborhood U.L/ of L. We may also assume that U.L/ is disjoint from the Weinstein
neighborhood U.L1;1/ corresponding to  1;1. Consider a smooth family Jt2Œ0;1� of almost complex
structures on S2 �S2 nL1;1 such that each Jt is equal to J0 in U.L1;1/, and in U.L/ we have

J1
@

@Qi
D�

@

@Pi
:

We can then smoothly extend the family Jt to t > 1 to stretch (to length t) along a small sphere bundle
in U.L/, as in [1]. This yields a family of foliations Ft of S2�S2 nL1;1. Since the planes of the broken
leaves of F0 have minimal area they persist under the deformation to yield the planes of the broken leaves
of Ft . This yields a family of maps pt W S

2 �S2! S1.

Lemma 3.7 The sets pt .L/ in S1 converge in the Hausdorff topology to a subset of a circle C1 2 S1

as t !1.

Proof Let J1 be the limiting almost complex structure on S2 �S2 n .L[L1;1/. The circle C1 is the
intersection with S1 of the broken leaves of the J1 foliation which are asymptotic to L. Now, pt .L/

consists of the intersection with S1 of Jt –holomorphic spheres which intersect L. Hence a sequence
of points zt 2 pt .L/ corresponds to a sequence of Jt –holomorphic curves in the class .0; 1/ which all
intersect L. Up to taking a subsequence, this sequence of curves converges to a broken curve asymptotic
to L and hence the zt converge to a point in C1.
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Lemma 3.8 If we denote the projection with respect to the fully stretched almost complex structure
by p1, then C1 D p1.L/ is disjoint from p1.L1;1/.

Proof This follows from the fact that the original planes of the broken leaves have area 1 and so cannot
degenerate further. Indeed, since L is monotone, any holomorphic curve asymptotic to L must have
integral area, and in particular curves in the class .0; 1/ cannot converge to buildings with more than two
top level curves.

The results above imply that there is an N > 0 such that pt .L1;1/ is disjoint from C1 for all t � N .
With this we can choose two continuous curves 
0; 
1 W Œ0;1/! S1 with the following properties:

� 
0.0/D p0.T0/ and 
1.0/D p0.T1/,

� 
0.t/ and 
1.t/ are disjoint from pt .L1;1/ for all t 2 Œ0;1/,

� for some N > 0, both 
0.t/ and 
1.t/ are disjoint from C1, and C1 is disjoint from pt .L1;1/

for all t �N ,

� C1 separates 
0.N / and 
1.N / in S1.

For each t 2 Œ0;1/, both p�1
t .
0.t// and p�1

t .
1.t// are Jt –holomorphic spheres in the class .0; 1/
disjoint from L1;1. The family of spheres

fp�1
t .
0.t//gt2Œ0;N �

forms a symplectic isotopy, which displaces T0 from L in the complement of L1;1. Similarly, the family
of spheres

fp�1
t .
1.t//gt2Œ0;N �

forms a symplectic isotopy which displaces T1 from L in the complement of L1;1. Moreover, these
isotopies can be generated by a single Hamiltonian flow on S2 �S2 that fixes L1;1. The inverse flow
displaces L from T0[T1. The final separation condition is enough to guarantee the homotopy condition
in the theorem.

By considering also the Jt –holomorphic foliation in the class .1; 0/ (see Example 3.5), we can displace L

from S0[S1 too. After adjusting the isotopy of S0[S1, we may assume that it fixes T0[T1; see
Corollary 3.7 of [5]. Hence the inverse flow will not reintroduce intersections with T0 or T1.

3.3 Refinement 3: we may assume that L is homologically trivial in
.S 2 �S 2/ n .S0[S1[T0[T1/

To see this, note that .S2 �S2/ n .S0[S1[T0[T1/ can be identified with a subset of the cotangent
bundle of T2 in which L1;1 is identified with the zero section. In this setting we can invoke the following.
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Theorem 3.9 [5, Theorem 7.1] A homologically nontrivial Lagrangian torus L in .T �T2; d�/ is
Hamiltonian isotopic to a constant section. In particular , if L is exact then it is Hamiltonian isotopic to
the zero section.

If our monotone Lagrangian L was homologically nontrivial in .S2�S2/n.S0[S1[T0[T1/ it would
then follow from Theorem 3.9 and Section 2.3.B00

4
of [6] that L\L1;1 ¤∅, which would contradict our

original assumption.

3.4 A path to the proof of Theorem 1.1

By the three refinements established above, it suffices to show that the following assumption is false.

Assumption 2 There is a monotone Lagrangian torus L in the set

Y D .S2
�S2/ n .S0[S1[T0[T1/

which is disjoint from the Clifford torus L1;1 and is homologically trivial in Y .

A path to a contradiction To obtain a contradiction to Assumption 2, we will show, using a sequence of
blow-ups, inflations and blow-downs, that it implies the existence of two disjoint monotone Lagrangian
tori in a new (monotone) copy of S2 �S2, which are both Hamiltonian isotopic to the Clifford torus
therein, and hence cannot be disjoint.

To perform the necessary sequence of blow-ups, inflations and blow-downs, we must first establish the
existence of a special collection of symplectic spheres and disks in our current model; see Proposition 3.24.
These spheres and discs must be well placed with respect to a holomorphic foliation of S2�S2n.L[L1;1/

which we introduce below in Section 3.5. They are obtained from special holomorphic buildings, whose
existence we establish in Section 3.7. These existence results rely on the analysis of a general stretching
scenario that is contained in Section 3.6.

Remark 3.10 To falsify Assumption 2, we must use it to build and analyze a complicated set of secondary
objects in order to derive a contradiction. The reader is asked to bear in mind that many of the results
established in the remainder of this section hold in a setting which will later be shown to be impossible.

3.5 Straightened holomorphic foliations of S 2 �S 2 n .L[L1;1/, under Assumption 2

Let L be a Lagrangian torus as in Assumption 2. Here we describe the holomorphic foliations of
S2 �S2 n .L[L1;1/ that are implied by the existence of L.

Let  be a parametrization of L and  1;1 be the standard parametrization of L1;1. Consider a tame
almost complex structure J on .S2�S2 n .L[L1;1/; �

�
1
!C��

2
!/ which is adapted to both  and  1;1.

We will always make the following assumption.

(A1) J is equal to the standard product complex structure near S0, S1, T0 and T1. In particular,
T0 and T1 are unbroken leaves of the foliation.
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Let J� be the family of almost complex structures on S2�S2 that are determined by J as in [5, Section 2.5].
Taking the limit of the Gromov foliations in the class .0; 1/ with respect to the J� as �!1, and arguing
as in [5], we get a J–holomorphic foliation

FD F.L;L1;1;  ;  1;1;J /

of S2�S2 n .L[L1;1/. The features of this foliation are described below and are illustrated in Figure 1.

Each leaf of F still intersects S1 in exactly one point, but there are now three types of leaves. The first
are unbroken leaves consisting of a single closed J–holomorphic sphere in S2 � S2 n .L[L1;1/ of
class .0; 1/. The second type of leaves are broken and consist of a pair of finite-energy J–holomorphic
planes in S2 � S2 n .L[L1;1/ that are asymptotic to L1;1 along the same embedded geodesic with
opposite orientations. As in Example 3.5, the collection of planes like this which intersect S1 comprise a
one-dimensional family, s1, and their companion planes comprise a family s0. The third class of leaves
are also broken, but consist of pairs of finite-energy J–holomorphic planes in S2 � S2 n .L[L1;1/

that are asymptotic to L. These pairs also have matching ends. We denote by r1 the set of all the
J–holomorphic planes of broken leaves that are asymptotic to L and intersect S1. The collection of
their companion planes will be denoted by r0. As established below in Lemma 3.11, the planes of r1
intersect both S1 and S0 while the planes of r0 intersect neither of these spheres. Since curves in the
class .0; 1/ have area 2, and by monotonicity planes asymptotic to our Lagrangians have integral area, no
more complicated degenerations are possible.

Note that there are now two foliation classes, ˇL and ˇL1;1
, determined by each of the two classes of

broken leaves.

The foliation F also defines a projection map

p W S2
�S2

! S1:

In this setting, the images p.L1;1/ and p.L/ are disjoint embedded circles in S1 which, by Proposition 3.6,
are disjoint from T0[T1 and are homotopic in the complement. Therefore, without loss of generality,
there are disjoint closed disks A0�S1 with boundary p.L/ and A1�S1 with boundary p.L1;1/, such
that p.T0/2A0 and p.T1/2A1. Denote the closed annulus defined by the closure of S1 n.A0[A1/

by B. These features of F are all represented in Figure 1.

Lemma 3.11 The planes in r1 intersect both S0 and S1. Equivalently, the planes in r0 are disjoint
from S0[S1.

Proof We define a relative homology class † 2H2.S
2 �S2; .S0[S1[T0[T1/ by first choosing

an embedded path 
 W Œ0; 1� ! S1 with 
 .0/ D T0 \ S1 and 
 .1/ D T1 \ S1. Then choose a
family of embedded paths �t in each p�1.
 .t// going from S1 to S0. The union of the �t define †.
By Proposition 3.6 we may assume that 
 intersects p.L/ in a single point 
 .t0/. The intersection
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T0

plane in r1 plane in s1 S1

L
L1;1

T1

plane in r0 plane in s0 p�1.w/ S0

p

A0
S1

B A1 w

p.L/ p.L1;1/

Figure 1: The foliation F of S2 �S2 n .L[L1;1/.

L\p�1.
 .t0// is an embedded circle, bounding disks from r0 and r1. The disks in r1 intersect S1

by definition, so arguing by contradiction, if r0 happens to intersect S0 then our circle L\p�1.
 .t0//

separates S0 and S1, and thus must intersect the path �t0
. This is the only intersection between † and L,

and so we would conclude that † �L is nontrivial, contradicting Refinement 3.

Straightening Let .P1;P2;Q1;Q2/ be coordinates in the neighborhood U.L/ of L determined by  ,
and let .p1;p2; q1; q2/ be coordinates in the neighborhood U.L1;1/ of L1;1 determined by  1;1. As
in Lemma 3.4, where we had only one Lagrangian torus, we may assume that the leaves of F are
straight in both U.L/ and U.L1;1/. In particular, we may assume that the unbroken leaves of F that
intersect U.L/ do so along the annuli fP1 D ı ¤ 0;Q1 D �; jP2j< �g, the planes of r1 intersect U.L/

along the annuli fP1 D 0;Q1 D �; 0 < P2 < �g, and the planes of r0 intersect U.L/ along the annuli
fP1 D 0;Q1 D �;�� < P2 < 0g. Similarly, we may assume that the unbroken leaves of F that intersect
U.L1;1/ do so along the annuli fp1 D ı ¤ 0; q1 D �; jp2j < �g, the planes of s1 intersect U.L1;1/

along the annuli fp1 D 0; q1 D �; 0< p2 < �g, and the planes of s0 intersect U.L1;1/ along the annuli
fp1 D 0; q1 D �;�� < p2 < 0g.
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The map p can also be described simply in these Weinstein neighborhoods. In U.L/, we may assume
that the region fP1 < 0g �U.L/ is mapped by p into the interior of A0, and fP1 > 0g �U.L/ is mapped
by p into the interior of B. Similarly, we may assume that in U.L1;1/ the region fp1 > 0g �U.L1;1/ is
mapped by p into the interior of A1 and fp1 < 0g �U.L1;1/ is mapped by p into the interior of B.

Using some of the freedoms available in the choice of  and  1;1, we can add the following additional
assumption:

(A2) The foliation class ˇL is equal to .0;�1/ 2 H
 
1
.LIZ/, and the foliation class ˇL1;1

is equal to

.0;�1/ 2H
 1;1

1
.L1;1IZ/.

3.6 Stretching scenario for class .1; d/, under Assumption 2

Recall that for each nonnegative integer d and a generic tame almost complex structure J on S2 �S2

there exists a smooth J–holomorphic sphere u W S2! S2 �S2 representing the class .1; d/. Moreover,
this curve is unique, up to reparametrization, if we impose 2d C 1 constraint points. To see this, note
that for the integrable product complex structure such a curve can be written explicitly as the graph of a
degree d rational map, and this implies that the Gromov–Witten invariant associated to the homology class
and point constraints is 1. Hence, nodal curves will exist for all tame almost complex structures and away
from a codimension 2 subset of almost complex structures we will have smooth curves. The uniqueness
in the assertion above follows because spheres in the class .1; d/ have self-intersection number 2d , so
distinct spheres cannot satisfy the same 2d C 1 point constraints.

Let J� , for � � 0, be the family of almost complex structures on S2 �S2 used in Section 3.5 to obtain
the foliation F. For a sequence �k !1, let uk;d W S

2! S2 �S2 be a sequence of J�k
–holomorphic

curves in the class .1; d/ that converges to a holomorphic building Fd as in [1]. The limit Fd consists of
genus zero holomorphic curves in three levels. The top level curves map to S2�S2 n .L[L1;1/ and are
J–holomorphic. The middle level curves map to one of two copies of R�S�T2, the symplectization of
the unit cotangent bundle of the flat torus. These copies correspond to L and L1;1 and the identifications
are defined by the parametrizations  and  1;1. It follows from the definition of the family J� that these
middle level curves are all Jcyl–holomorphic where Jcyl is a fixed cylindrical almost complex structure.
Similarly, the bottom level curves of the limiting building map to one of two copies of T �T2 and are
Jstd–holomorphic, where Jstd is a standard complex structure.

Each top level curve of Fd can be compactified to yield a map from a surface of genus zero with boundary
to .S2 �S2;L[L1;1/. The components of the boundary correspond to the negative punctures of the
curve. They are mapped to the closed geodesics on L or L1;1 underlying the Reeb orbits to which the
corresponding puncture is asymptotic. The middle and bottom level curves can be compactified to yield
maps to either L or L1;1 with the same type of boundary conditions. These compactified maps can all be
glued together to form a map xFd W S

2! S2 �S2 in the class .1; d/.
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Definition 3.12 A J–holomorphic curve u in S2 �S2 n .L[L1;1/ is said to be essential (with respect
to the foliation F) if the map p ıu is injective.

Definition 3.13 Let u be a J–holomorphic curve in S2�S2 n .L[L1;1/. A puncture of u is said to be
of foliation type with respect to L .L1;1/ if it is asymptotic to a closed Reeb orbit which lies on the copy
of S�T2 that corresponds to L (L1;1) and covers a closed geodesic in an integer multiple of the foliation
class ˇL (ˇL1;1

). The puncture is of positive (negative) foliation type if this integer is positive (negative).

Lemma 3.14 Let u be a J–holomorphic curve in S2 �S2 n .L[L1;1/ with a puncture. Let fclg be a
sequence of circles in the domain of u which lie in a standard neighborhood of the puncture , wind once
around it , and converge to it in the Hausdorff topology. If the puncture is of foliation type with respect
to L .L1;1/, then the sets p.u.cl// converge to a point on p.L/ .p.L1;1//. Moreover each p.u.cl//

either maps into the point (in which case u covers a plane in a broken leaf ) or it winds nontrivially around
the point. If the puncture is not of foliation type then the sets p.u.cl// converge to p.L/ .p.L1;1//.

Proof This follows from the exponential convergence theorem from [10].

Corollary 3.15 If u is an essential J–holomorphic curve in S2 �S2 n .L[L1;1/, then its punctures
on L are either all of foliation type or none of them are , and similarly for the punctures on L1;1. If u has
no punctures of foliation type , then it is either a J–holomorphic plane or cylinder.

Assume u has no punctures of foliation type. If u is a plane , then the closure of the image of p ı u is
A0 or A1 or the closure of their complements in S1. If u is a cylinder , then the closure of the image
of p ıu is B.

Proof Lemma 3.14 implies that if u has punctures of both foliation type and not of foliation type on L

or L1;1, then p ı u will not be injective. Indeed, the projection of a small circle around a puncture
of foliation type on L (resp. L1;1) will intersect any circle sufficiently close to p.L/ (resp. P .L1;1/),
including the projections of small circles around punctures not of foliation type.

Essential curves with all punctures not of foliation type project onto connected subsets of S1 with
boundary components equal to L or L1;1. Checking possibilities, the second half of the statement
follows.

The following result can be proved in the same way as Lemma 6.2 in [8].

Lemma 3.16 Let u be an essential curve whose punctures on L are all of foliation type. Then these
punctures are either all positive or all negative (see Definition 3.13).

Similarly, let v be an essential curve whose punctures on L1;1 are all of foliation type. Then the punctures
on L1;1 are either all positive or all negative.
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image.u/\U

L

planes in r0 or r1

p

S1

p.L/ p.image.u/\U /

Figure 2: Images of curves of a limit Fd of Type 2b in a neighborhood U of p�1.p.L//. If one
replaces u with ud , then this picture also works for limits Fd of Type 1.

Let uk;d be a sequence converging to Fd as in the stretching scenario for class .1; d/. Positivity of
intersection implies that the curves uk;d must intersect each leaf of F exactly once. This fact imposes
several important restrictions on Fd in relation to the foliation F, allowing us to identify a handful of
possible limit types.

Proposition 3.17 Let Fd be a limit as in the stretching scenario for class .1; d/. Then the building Fd

is of one of the following types.

� Type 0 Fd is a (possibly nodal ) J–holomorphic sphere in S2�S2n.L[L1;1/ in the class .1; d/,
where one (essential ) sphere lies in the class .1; j / for some 1 � j � d , and any remaining top
level curves are either spheres covering unbroken leaves of the foliation , or pairs of planes covering
broken leaves of the foliation. Any middle and bottom level curves are cylinders asymptotic to
Reeb orbits in multiples of the foliation class.

� Type 1 Fd has a unique essential curve ud . The punctures of ud are all of foliation type , and
along L, and also L1;1, are either all positive or all negative. The image of p ı ud is S1 minus
finitely many points on p.L/[p.L1;1/. The other top level curves of Fd either cover unbroken
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plane in r1

L

image.uL/\U image.u/\U

plane in r0

p

S1

p.image.uL/\U /

p.image.u/\U /

Figure 3: Images of curves of a limit Fd of Type 2a or 3 in a neighborhood U of p�1.p.L//.

leaves of the foliation , or they are J–holomorphic planes covering one of the planes of a broken
leaf of the foliation. Any middle and bottom level curves cover cylinders asymptotic to Reeb orbits
in multiples of the foliation class.

� Type 2a Fd has exactly two essential curves , uL and u. The closures of the images of the maps
p ıuL and p ıu are A0 and B [A1, respectively. Any punctures of u on L1;1 are all of foliation
type and are either all positive or all negative. The other top level curves of Fd cover (broken or
unbroken) leaves of F. Any middle and bottom level curves in the copy of T �T2 corresponding
to L1;1 cover cylinders asymptotic to Reeb orbits in multiples of the foliation class.

� Type 2b Fd has exactly two essential curves , u and uL1;1
. The closures of the images of the maps

p ıu and p ıuL1;1
are A0[B and A1, respectively. Any punctures of u on L are all of foliation

type and are either all positive or all negative. The other top level curves of Fd cover (broken or
unbroken) leaves of F. Any middle and bottom level curves in the copy of T �T2 corresponding
to L cover cylinders asymptotic to Reeb orbits in multiples of the foliation class.

� Type 3 Fd has exactly three essential curves , uL, u and uL1;1
. The closures of the images of the

maps uL, u and uL1;1
are A0, B and A1, respectively. The other top level curves of Fd again

cover (broken or unbroken) leaves of F.

Limits of Type 2b and Type 3 are partially illustrated in Figures 2 and 3, respectively.
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Proof of Proposition 3.17 We begin with the following result, which allows us to use essential curves to
sort the limit structures.

Lemma 3.18 Let Fd be a limit as in the stretching scenario for class .1; d/. If u is a top level curve
of Fd , then it is either essential or else the image of p ıu is a point. The essential curves have disjoint
images under p, which are open sets , and these images include the complement of p.L/[p.L1;1/.

Proof The curves of Fd can be compactified and glued together to form a map xFd W S
2! S2 �S2 in

the class .1; d/. Let T be an unbroken leaf of the foliation. Since .1; d/ �T D .1; d/ � .0; 1/D 1, we see
that T can only intersect one top level curve with p ıu nonconstant. If u is a top level curve such that
the map p ıu is constant, then u covers part of a (possibly broken) leaf of our foliation and contributes
intersection number 0 with all unbroken leaves.

Assume then that u is a top level curve such that pıu is nonconstant. By the discussion above, u intersects
any unbroken leaf T either once or not at all, and therefore if p ıu has any double points they must lie in
p.L/[p.L1;1/. But positivity of intersection again implies that the nonconstant map p ıu is an open
mapping and this implies that the double points of p ıu form an open set. We conclude that there are no
double points and u is essential. To see that the essential curves have disjoint images under p we can
apply the same argument to a union u[ v. The intersection number also implies that all unbroken fibers
intersect at least one essential curve.

Lemma 3.18 implies that there is an essential curve u of Fd that intersects T0. The closure of the image
of p ıu must contain A0. By Corollary 3.15 the following cases are exhaustive.

Case 1 (u has no punctures) In this case, p ı u must be a bijection onto S1. Hence, u is a J–
holomorphic sphere in a class of the form .1; j / for j in Œ0; d �. By Lemma 3.18 all the other top level
curves of Fd must cover leaves of the foliation. This also implies that middle and lower level curves
cover cylinders asymptotic to multiples of the foliation class.

The top level curves of Fd which cover fibers fit together to form a possibly disconnected curve in the
class .0; d � j /. If j D d then Fd consists only of the curve u. Either way, the building is of Type 0.

Case 2 (u has punctures and they are all of foliation type) In this case we claim that Fd is of Type 1.
By Lemma 3.14, the image of the map p ıu includes points in each component of the complement of
p.L/[p.L1;1/, and so by Lemma 3.18 we have that p ıu is a bijection onto S1 minus a finite set of
points on p.L/[p.L1;1/. The other top level curves of Fd must either cover unbroken leaves of F or
they are J–holomorphic planes covering one of the planes of a broken leaf of F. The statement about
positivity or negativity of punctures is Lemma 3.16.

Case 3 (u has at least one puncture not of foliation type) Since u intersects the leaf T0, the closure of
the image of p ıu is either A0 or A0[B. In either case, u has exactly one puncture not of foliation type
and does not intersect T1.
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Suppose that the closure of the image of p ıu is A0. By Lemma 3.18, there is an essential curve v of Fd

that intersects T1, and the images of p ıu and p ı v cannot intersect. Hence the closure of the image of
p ı v is either A1 or B [A1. In the first case, Fd is of Type 3 with uL D u and uL1;1

D v, where the
third curve, u, exists by Lemma 3.18. In the second case, Fd is of Type 2a with uL D u and uD v.

If, instead, the closure of the image of p ıu is A0[B, a similar argument implies that Fd is of Type 2b.

This completes the proof of Proposition 3.17.

3.7 The existence of special buildings, under Assumption 2

In this section we will establish the existence of two special limits of the stretching scenario for class
.1; d/ when d is sufficiently large. The following result will be used to exploit the large d limit.

Lemma 3.19 There exists an � > 0 such that

area.u/� �u � .S0[S1/

for all J–holomorphic curves u in S2 �S2 n .L[L1;1/.

Proof Fix an open neighborhood of S1 of the form N� D S1 �D2.�/, where D2.�/ is the open disc
of area �. We may assume that the closure of N� is disjoint from L[L1;1 and, by (A1), we may assume
that J restricts to N� as the standard split complex structure. Let �2 W S1�D2.�/!D2.�/ be projection
and set

u�;1 D uju�1.N�/:

By perturbing � if needed we may assume that u�1.N�/ is a smooth manifold. We have

degree.�2 ıu�;d /D u �S1:

This implies

area.u�;1/�
Z

u�1.N�/
u��;1.!˚!/�

Z
.�2ıu�;1/�1.D2.�//

.�2ıu�;1/
�!D

�Z
D2.�/

!

�
u�S1D�u�S1:

A similar calculation for S0 gives the result.

Proposition 3.20 For all sufficiently large d , there exists a limiting building F as in the stretching
scenario for class .1; d/ such that F is of Type 3. The building consists of its three essential top level
curves , uL, u and uL1;1

, together with d � 1 planes in r0[ r1 and d planes in s0[ s1.

Proof Fix d C 1 points on L1;1 and d points on L. For � � 0, let J� be the family of almost complex
structures on S2�S2 from Section 3.5. It follows from the discussion in Section 3.6 and the compactness
result from [1] that for a sequence �k !1 there is a sequence uk W S

2! S2 �S2 of J�k
–holomorphic

curves in the class .1; d/ that pass through the 2d C 1 constraint points and converge in the sense of [1].
Their limit, F , is the desired building.
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To see this we first note that the point constraints already preclude the possibility that F is of Type 0.
Indeed, top level essential curves are disjoint from the point constraints, so these must be satisfied by
curves of F inside copies of T �T2 (corresponding to neighborhoods of L or L1;1). In the Type 0 case,
the nonessential curves fit together to form a union of spheres in the class .0; d � j / for some 0� j � d .
These intersect L[L1;1 in a finite set of geodesics, and any middle or lower level curves in our T �T2

cover cylinders asymptotic to these geodesics. As there are at most d such cylinders they cannot satisfy
the 2dC1 point constraints. (The holomorphic cylinders in T �T2 are described explicitly by Lemma 4.2
in [5].)

If F was of Type 1, then punctures of its essential curve on L1;1 would all be of the foliation type.
The remaining top level curves of F asymptotic to L1;1 would cover broken planes, and all the curves
of F mapping to the copy of T �T2 corresponding to L1;1 would cover cylinders over geodesics in the
foliation class ˇ1;1. To satisfy the d C 1 point constraints on L1;1 the essential curve of F must have at
least d C 1 punctures on L1;1, matching with at least d C 1 cylinders in the copy of T �T2. But then F

would have d C 1 curves covering planes in s0 [ s1. By Lemma 3.16, the punctures of the essential
curve on L1;1 are either all positive or all negative. Hence these d C 1 curves either all lie in s0 or all lie
in s1. This contradicts the fact that (the compactification of) F has intersection number d with both S0

and S1. The same argument precludes the possibility that F has Type 2a.

It remains to show that F does not have Type 2b. Assuming that F has Type 2b, we will show that it
must include a collection of curves of total area equal to two, that intersect S0 [S1 d times. If d is
sufficiently large, this contradicts Lemma 3.19 above.

Claim 1 If F has Type 2b , then it includes at least d planes in s0[ s1.

To see this, consider the subbuilding F1;1 of F consisting of its middle and bottom level curves mapping
to the copies of R�S�T2 and T �T2 that correspond to L1;1. Since it is connected and has genus zero,
it follows from Proposition 3.3 of [8] that

index.F1;1/D 2.s� 1/;

where s is the number of positive ends of F1;1. Since F1;1 passes through the d C 1 generic point
constraints on L1;1, and the Fredholm index in these manifolds is nondecreasing under multiple covers,
we must also have

index.F1;1/� 2.d C 1/:

Hence, F1;1 has at least d C 2 positive ends. Under the assumption that F has Type 2b, two of these
positive ends match with the two essential top level curves of F . This leaves at least d positive ends
of F1;1 that match with top level curves of F that cover planes in s0[ s1.

Remark 3.21 The same argument implies that if F has Type 3, then again it must include at least
d planes in s0[ s1.
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Claim 2 If F has Type 2b , then it includes d planes in r0 and none in r1.

The d constraint points on L imply that, if F is of Type 2b, it must contain d planes covering broken
planes asymptotic to L. These planes match, via cylinders in T �T2, with asymptotic ends of an essential
curve, and by Lemma 3.16 these ends are either all positive or all negative. Hence we have d planes
either all in r0 or all in r1. To show that these planes cannot be in r1, we consider intersections with
S0[S1. Overall, the top level curves of F must intersect S0[S1 exactly 2d times. The planes of F

asymptotic to L1;1 from Claim 1 account for at least d of these intersections.

Since L is homologically trivial in Y , by Lemma 3.11 each plane of r1 must intersect both S0 and S1,
while the planes in r0 intersect neither of these spheres. If the d planes of F asymptotic to L were in r1

then they would contribute another 2d intersections with S0 [S1. By positivity of intersection, this
cannot happen, so these planes must belong to r0 as claimed.

To complete the argument, we now balance areas. The total area of all the curves in F is 2.d C 1/.
If F has Type 2b, then the planes from Claim 1 and Claim 2 have total area at least 2d . Its essential
curves must then have total area equal to 2. Also, they must contribute the remaining d intersections
with S0[S1. It follows from Lemma 3.19, that this is impossible for all d sufficiently large. Hence F

cannot be of Type 2b, and must instead be of Type 3. Arguing as above, it follows that in addition to its
three essential top level curves, F must then have d planes in s0[ s1 and d � 1 planes in r0[ r1.

Proposition 3.22 For all sufficiently large d , there exists a limiting building G as in the stretching
scenario for class .1; d/ such that G is of Type 3. In addition to its three essential curves it consists of
d planes in r0[ r1 and d � 1 planes in s0[ s1.

Proof Here we fix d points on L1;1 and d C 1 points on L, and for J� as in Proposition 3.20 consider
the limit, G , of a convergent sequence of J�k

–holomorphic spheres, for �k !1, that represent the class
.1; d/ and pass through the 2d C 1 constraint points. The point constraints imply that G is not of Type 0.

If G was of Type 1, the point constraints would imply that G includes at least d planes, which by
Lemma 3.16 either all lie in s0 or all lie in s1, and at least d C 1 planes either all in r0 or all in r1.
From this it follows that the essential curve of G would have area 1. Recalling Lemma 3.11, since L is
homologically trivial, the planes of r1 each intersect S0[S1 twice. Arguing as in Claim 2 from the
proof of Proposition 3.20, if the planes asymptotic to L lie in r1 then the broken planes will contribute a
total of d C 2.d C 1/ intersections with S0[S1, a contradiction as there are only 2d such intersections.
On the other hand, if these planes all lie in r0 then the essential curve must contribute d intersections
with S0 [S1. As this essential curve has area 1, this contradicts Lemma 3.19 when d is sufficiently
large. Hence, G is not of Type 1.

Next we show that G cannot be of Type 2b. Assume that it is. Then G includes dC1 planes either all in
r0 or all in r1. Counting intersections as above, G must have d C 1 planes in r0.
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Arguing as in Claim 1 above, we consider the subbuilding G1;1 of G consisting of its middle and bottom
level curves that map to the copies of R � S�T2 and T �T2 that correspond to L1;1. Since G1;1 is
connected and has genus zero, we have

index.G1;1/D 2.s� 1/;

where s is the number of positive ends of G1;1. Since G1;1 passes through the d generic point constraints
on L, we also have

index.G1;1/� 2d:

Hence, G1;1 has at least d C 1 positive ends. Two of these positive ends match with negative ends of the
two essential curves of G1;1. It follows that G must have at least d �1 planes in s0[s1. This means the
planes covering broken leaves then have area at least 2d . As the limiting building has total area 2d C 2

and also includes two essential curves, we see that the essential curves each have area 1 and there are
exactly d �1 planes in s0[ s1. As the planes in r0 are disjoint from S0[S1, the essential curves of G

must have d C 1 intersections with S0[S1. Lemma 3.19 again implies that this is impossible for all
sufficiently large d .

Finally we show that G cannot be of Type 2a. In this case G includes d planes in r0[ r1 and d planes
all in either s0 or all in s1. The planes asymptotic to L1;1 thus account for all intersections with either
S0 or S1 and so the planes asymptotic to L therefore all lie in r0. The essential curves have total area 2

and must together account for all intersections with either S0 or S1. This contradicts Lemma 3.19 as
before.

Lemma 3.23 All curves in the limiting buildings F and G that map to S2�S2 n .L[L1;1/ have area 1,
and in particular are simply covered.

Proof To see this, first observe that classes in H2.S
2 �S2;L[L1;1/ all have integral area. Indeed,

adding classes which lie only in H2.S
2 � S2;L/ or H2.S

2 � S2;L1;1/, which have integral area by
monotonicity, any relative class can be completed to an integral area absolute homology class.

Note that since F is of Type 3, it has its three essential curves together with 2d �1 other top level curves
that cover leaves of the foliation. Since F has total area 2d C 2 and all curves have integral area, the
result for F follows.

The same argument applies to G .

3.8 A collection of symplectic spheres and disks, under Assumption 2

Let J be a tame almost complex structure on S2�S2 n .L[L1;1/ that is adapted to parametrizations  
and  1;1 of L and L1;1, respectively. Recall that for the projection p W S2 �S2! S1, defined by the
foliation F corresponding to J , the images p.L/ and p.L1;1/ are disjoint circles. There are also disjoint
disks A0 � S1 with boundary p.L/ and A1 � S1 with boundary p.L1;1/ such that p.T0/ 2A0 and
p.T1/ 2A1; see Figure 1. In this section we will prove the following result.
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Proposition 3.24 For sufficiently large d there exist embedded symplectic spheres

F;G W S2
! S2

�S2
n .L[L1;1/

in the class .1; d/, and embedded symplectic disks

E W .D2;S1/! .S2
�S2;L/ and E1;1 W .D

2;S1/! .S2
�S2;L1;1/

of Maslov index 2, such that :

(1) F , G, E and E1;1 are all J–holomorphic away from arbitrarily small neighborhoods of a collection
of Lagrangian tori whose elements are near to , and Lagrangian isotopic to , either L or L1;1.

(2) The class of EjS1 and the foliation class ˇL form an integral basis of H1.L W Z/.

(3) The class of E1;1jS1 and the foliation class ˇL1;1
form an integral basis of H1.L1;1 W Z/.

(4) Exactly one of F and G intersects the planes of r0 and the other intersects the planes of r1.

(5) Exactly one of F and G intersects the planes of s0 and the other intersects the planes of s1.

(6) F �ECG �ED d .

(7) F �E1;1CG �E1;1 D d .

(8) F �G D 2d .

(9) The set p.F \G/ consists of d points in A0 and d points in A1.

Remark 3.25 This proposition is the key to our result. Following Theorem 1.1, the spheres F and G will
eventually be transformed to form axes of a new copy of S2 �S2 in which L and L1;1 must intersect. A
natural approach to finding spheres in the complement of the Lagrangians may have been to fix constraint
points in the complement of L[L1;1 and then take a limit of holomorphic spheres through these points
as we stretch along L[L1;1. Indeed, generically this does give holomorphic spheres in the complement,
but it seems difficult to obtain in this way a pair of spheres where one intersects the family r0 and the
other the family r1.

Our alternative approach is to start with the Type 3 curves given by Propositions 3.20 and 3.22, and this is
why we need to assume d is large. The Type 3 buildings intersect our Lagrangians in such a way that they
can be deformed, by a diffeomorphism supported near the Lagrangians, into cycles which are disjoint
from L and L1;1 and have the required intersections. The process is illustrated in Figure 4. In the figure,
the blue curves correspond to curves in the building F and the black curves correspond to the deformed
cycle contained in the complement of L. The curves running vertically correspond to broken leaves of
the foliation, and those running horizontally to essential curves.

More precisely, we will deform the building F constructed in Proposition 3.20 to a building F .fv1;w1g/

containing curves asymptotic to Lagrangians L.v1/ and L1;1.w1/. In local coordinates L.v1/ will
be a translation of L and L1;1.w1/ a translation of L1;1. Similarly, the building G constructed in
Proposition 3.22 is deformed to a building G .fv2;w2g/ containing curves asymptotic to Lagrangians L.v2/
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and L1;1.w2/, where again, in local coordinates, L.v2/ will be a translation of L and L1;1.w2/ a
translation of L1;1.

Our proof proceeds by describing these deformations carefully and then remarking that the images of the
buildings can be smoothed to form our symplectic spheres. This smoothing occurs only near L.v1/ and
L1;1.w1/ for F .fv1;w1g/, and only near L.v2/ and L1;1.w2/ for G .fv2;w2g/. As the six Lagrangian
tori L, L.v1/, L.v2/, L1;1, L1;1.w1/ and L1;1.w2/ are disjoint, and in fact disjoint from any intersections
between different buildings, this smoothing does not affect our intersection pattern calculation.

Proof of Proposition 3.24 In what follows, F and G will be limiting J–holomorphic buildings of
Type 3 as established in Proposition 3.20 and Proposition 3.22, respectively. We assume that they are in
the same class .1; d/ for some large d .

The top level curves of F are

fuL;u;uL1;1
;u1; : : : ;ud�1; u1; : : : ; udg:

Here, uL, u and uL1;1
are the essential curves of F . For some nonnegative integer ˛0 � d �1, the curves

u1; : : : ;u˛0
belong to r0 and the curves u˛0C1; : : : ;ud�1 belong to r1. For some nonnegative integer

ˇ0 � d , the curves u1; : : : ; uˇ0
belong to s0 and the curves uˇ0C1; : : : ; ud belong to s1.

Similarly, the top level curves of G are

fvL; v; vL1;1
; v1; : : : ; vd ; v1; : : : ; vd�1g;

where for some nonnegative integer 
0 � d the curves v1; : : : ; v
0
belong to r0 and v
0C1; : : : ; vd belong

to r1, and for some nonnegative integer ı0 � d � 1, the curves v1; : : : ; vı0
belong to s0 and the curves

vı0C1; : : : ; vd�1 belong to s1.

3.8.1 Deformations near L Consider the coordinates .P1;Q1;P2;Q2/ in the Weinstein neighborhood
of L,

U.L/D fjP1j< �; jP2j< �g:

For each translation vector v D .a; b/ 2 .��; �/� .��; �/, there is a corresponding nearby Lagrangian
torus

L.v/D L.a; b/D fP1 D a; P2 D bg �U.L/:

Note that the parametrization  of L determines an obvious parametrization,  .v/D  .a; b/ of L.a; b/,
and a canonical isomorphism from H

 
1
.LIZ/ to H

 .a;b/
1

.L.a; b/IZ/.

Given a finite, nonempty collection of translation vectors,

V D fv1; : : : ; vkg D f.a1; b1/; : : : ; .ak ; bk/g;

let JV be an almost complex structure on the complement of the collection of Lagrangians

L.V /D
k[

iD1

L.vi/;
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which coincides with J outside U.L/ and inside has the form

(3-1) JV
@

@Qi
D��V

@

@Pi
;

where �V is a positive function away from L.V / and in a neighborhood of each L.vi/ has the form

�V D

p
.P1� ai/

2
C .P2� bi/

2:

In this case, we say that JV is adapted to L.V / with respect to  . The set of all such almost complex
structures adapted to some nontrivial collection L.V /�U.L/ will be denoted by JU.L/.

Following Section 2.5 of [5], for each JV in JU.L/ one can construct, for � � 0, a standard family of
almost complex structures JV ;� on S2�S2 that are tame with respect to ��

1
!C��

2
!, such that the limit

� !1 corresponds to the process of stretching the neck along small sphere bundles surrounding each of
the components of L.V /; see [1]. The structure JV is the part of the limit of the JV ;� corresponding to
S2�S2n.L.V /[L1;1/. The limit of the Gromov foliations for the JV ;� , in class .0; 1/, yields a foliation
F.V / of S2 �S2 n .L.V /[L1;1/. For example, for V D f.0; 0/g we have JV D J and F.V /D F.

Lemma 3.26 Leaves of the foliation F.V / intersect U.L/ along the annuli fP1 D ı;Q1 D �; jP2j< �g.
A leaf of F.V / that intersects U.L/ along the annulus fP1 D ı;Q1 D �; jP2j< �g is broken if and only
if the collection V contains an element of the form .ı; bi/.

Proof It follows from equation (3-1) that these annuli are JV –holomorphic. By assuming J satisfies the
conclusions of Lemma 3.4, they also extend to JV –holomorphic spheres in the class .0; 1/. By positivity
of intersection, these spheres, and indeed any holomorphic sphere in the class .0; 1/, are leaves of the
foliation F.V /.

First deformation process Our first deformation process allows us to deform a regular J–holomorphic
curve so that its ends on L become ends on a nearby Lagrangian L.v/.

Lemma 3.27 (Fukaya’s trick) Let u be a regular J–holomorphic curve with k � 0 ends on L and l � 0

ends on L1;1. For all vD .a; b/with kvk2Da2Cb2 sufficiently small , there is a regular Jv–holomorphic
curve u.v/ with k ends on L.v/ and l ends on L1;1. Moreover , the ends of u.v/ on L.v/ represent the
identical classes in H

 .v/
1

.L;R/, as do those of u in H
 
1
.L;R/. The classes corresponding to the ends

of u.v/ on L1;1 are also identical to those of u.

Proof For kvk sufficiently small, the Lagrangian isotopy t 7! L.tv/ for 0� t � 1 is contained in U.L/.
Let ft;v be a family of diffeomorphisms of S2 �S2 such that

� f0;v is the identity map,

� ft;v.L/D L.tv/ for all t 2 Œ0; 1�,

� each ft;v is equal to the identity map outside of U.L/, and

� kft;vkC 1 is of order 1 in kvk.
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Let Jtv be a family of tame almost complex structures in JU.L/ such that each Jtv is adapted to L.tv/

with respect to  . Set
zJtv D .f

�1
t;v /�Jtv :

For kvk sufficiently small, zJtv is a tame almost complex structure on S2�S2n.L[L1;1/ for all t 2 Œ0; 1�.
Since u is regular, for sufficiently small kvk the curve u persists to yield a regular zJv–holomorphic
curve zu.v/ with the same asymptotic behavior as u. By our choice of zJtv , the curve

u.v/D f1;v ı zu.v/

is then regular, Jv–holomorphic and has k ends on L.v/ instead of L.

Applying Lemma 3.27 to F and G To apply Lemma 3.27 to the top level curves of F and G we need
these curves to be regular. Lemma 3.23 implies that the top level curves of the buildings F and G are
somewhere injective. Since they are the limits of embedded curves, they are actually embedded and hence
regular for generic choice of J . The work of Wendl in [21] implies that they are regular for all J .

Lemma 3.28 For any tame almost complex structure J on

.S2
�S2

n .L[L1;1/; �
�
1!C�

�
2!/

that is adapted to both  and  1;1, the top level curves of the buildings F and G are all regular.

Proof By [21, Theorem 1], any embedded J–holomorphic curve u mapping to S2 �S2 n .L[L1;1/ is
regular if its Fredholm index is greater than or equal to the number of its asymptotic ends. In our setting,
we have

index.u/D s� 2C 2c1.u
�T .S2

�S2/;u�TL/;

where s is the number of ends and c1 is the relative first Chern class. It suffices to show that for each top
level curve u of the buildings F and G , we have c1.u

�T .S2 �S2/;u�TL/� 1.

Since F and G both have Type 3, it follows from Lemma 3.23 that each top level curve u is either a
J–holomorphic plane or cylinder. If u is a plane, then 2c1.u

�T .S2 �S2/;u�TL/ is just the Maslov
class. By monotonicity, this is equal to 2 since, by Lemma 3.23, our top level curves all have area 1.

If u is a J–holomorphic cylinder, we can then produce a disk v from it by compactifying the ends of u

and smoothly gluing a disk w to one of them. If the disk w has area A then, by monotonicity, it has
Maslov index 2A. By additivity of the area and the Chern class, v has area AC 1 and Maslov index
2c1.u

�T .S2 �S2/;u�TL/C 2A. Since the area is AC 1, by monotonicity v must have Maslov index
2.AC 1/. This implies that 2c1.u

�T .S2 �S2/;u�TL/D 2, as required.

For v D .a; b/ with kvk sufficiently small we now define the deformed building F .v/ as follows. The
top level curves of F .v/ are obtained by applying Lemma 3.27 to those top level curves of F with ends
on L, and leaving the others unchanged. That is, the top level curves of F .v/ are

fuL.v/;u.v/;uL1;1
;u1.v/; : : : ;ud�1.v/; u1; : : : ; udg:
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The middle and bottom level curves of F .v/ are the same as those of F except they are now considered
to map to copies of R�S�T2 and T �T2 that correspond to L.v/ rather than L.

Note that F .v/ still has a continuous compactification xF .v/ W S2! S2 �S2, which can be deformed
arbitrarily close to L.v/ to obtain a smooth sphere F D F.v/ W S2! S2 �S2 which is Jv–holomorphic
away from a small neighborhood of L.v/.

Lemma 3.29 Set v D .a; b/ and V D f.0; 0/; vg and suppose that kvk is small enough for F .v/ to exist.
If a and b are both nonzero and jaj is sufficiently small with respect to jbj, then each top level curve of
F .v/ is JV –holomorphic for some JV in JU.L/.

Proof By Lemma 3.26, for any adapted almost complex structure, the leaves of the corresponding
foliation intersect U.L/ in the annuli fP1 D ı;Q1 D �; jP2j < �g. Hence if b ¤ 0 and a D 0, the
preimages of the regions A0 and B for L.v/ intersect U.L/ in the subsets fP1 < 0g and fP1 > 0g,
respectively (since they consist of the leaves which are not broken along L.v/). It follows that the closures
of the essential curves of F .v/ are disjoint from L: the curves themselves are disjoint since they project
to the regions A0, B or A1, and they are compactified by circles in L.0; b/ or L1;1.

By continuity, these essential curves remain disjoint from L also for sufficiently small a when we
deform using Lemma 3.27. Therefore, for all jaj sufficiently small, the essential curves of F .v/ are JV –
holomorphic for any JV which only differs from Jv in a small enough neighborhood of L. Meanwhile,
any top level curves of F .v/ that cover broken leaves intersect U.L/ in annuli lying in fP1 D ag, and
these annuli are holomorphic for any adapted almost complex structure.

Arguing in a similar fashion we can assert that the top level curves of F .v/ are JV –holomorphic for
more general collections V . For example, we have the following statement.

Lemma 3.30 Set v1 D .a1; b1/, v2 D .a2; b2/ and V D f.0; 0/; v1; v2g, and suppose that kv1k is small
enough for F .v1/ to exist. If a1 and b1 are both nonzero , ja1j is sufficiently small with respect to jb1j,
and kv2k is sufficiently small with respect to ja1j, then each top level curve of F .v1/ is JV –holomorphic
for some JV in JU.L/.

The deformed building G .v/ is defined analogously, and satisfies the analogues of Lemmas 3.29 and 3.30.

Second deformation process Consider V D f.0; 0/; .a1; b1/; .a2; b2/g with b1 and b2 nonzero. For
suitable choices of ai and bi , our second deformation process deforms the essential J–holomorphic
curve uL of F into a curve, uV

L , which has the same asymptotics as uL but is JV –holomorphic for some
JV that is adapted to L.V / with respect to  .

The primary deformation result is as follows.
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Lemma 3.31 Set v D .0; b/, V D f.0; 0/; vg and suppose that 0 < jbj < �. For s 2 Œ0; 1�, let Js be a
smooth family of almost complex structures in JU.L/ such that

� J0 D J ,

� Js is adapted to L, with respect to  , for all s 2 Œ0; 1/, and

� J1 is adapted to L.V / with respect to  .

Then the essential curve uL of F belongs to a smooth family of Js–holomorphic planes uL.s/ for
s 2 Œ0; 1�. Moreover , the JV –holomorphic plane

uL.1/ WC! S2
�S2

n .L.V /[L1;1/

is disjoint from the region fP1 > 0g and is essential with respect to F, and the closure of the image of
p ıuL.1/ is A0.

Proof By Lemma 3.23, the initial curve uL has area equal to 1. Since L is monotone, no degenerations
are possible until s D 1. In other words, the family of deformed curves uL.s/ exists for all s 2 Œ0; 1/

and it suffices to show that it extends to s D 1. To prove the first assertion of Lemma 3.31 we argue
by contradiction, and assume that there is a sequence sj ! 1 such that the curves uL.sj / converge to a
nontrivial JV –holomorphic building H which includes curves with punctures asymptotic to L.v/. We
will show that this implies that, unlike uL, none of the curves of H intersect T0, a contradiction.

Claim 1 Let v be a JV –holomorphic curve of H . Any puncture of v asymptotic to L.v/ must cover a
closed geodesic in a class .k; l/ 2H1.L.v/IZ/ with k � 0.

Since the closure of p ıuL is A0, by our choice of coordinates in Section 3.5, uL is disjoint from the
leaves of F which intersect U.L/ in the region fP1 > 0g. The same is true of the curves uL.s/ for all
s < 1. Hence, v must also be disjoint from these leaves. The curve v can be extended smoothly to
the oriented blow-up of the relevant puncture, such that the resulting map Nv acts on the corresponding
boundary circle as

� 7! .0; b;Q1C k�;Q2C l�/

for some Q1;Q2 2 S1. The tangent space to the image of Nv at a boundary point on the circle is spanned
by fk @=@Q1C l @=@Q2; k @=@P1C l @=@P2g. If k were positive, this would contradict the fact that v is
disjoint from the leaves through fP1 > 0g since v D .0; b/. This proves Claim 1.

Claim 2 Let v be a JV –holomorphic curve with a puncture that is asymptotic to L.v/ along a geodesic
in a class which is a multiple of the foliation class , ie of the form .0; l/ 2H

 .v/
1

.L.v/IZ/. Then v must
cover a plane or cylinder of a twice broken leaf of the foliation F.V /.
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This follows, as in [8, Lemma 6.2], from the asymptotic properties of holomorphic curves and the fact that
v lies in fP1 � 0g. Let w be a broken plane asymptotic (modulo taking to covers) to the same Reeb orbit
as an end of v. Then if v does not cover w it must intersect all nearby leaves of the foliation, including
those which lie in the region fP1 > 0g. This gives a contradiction as in Claim 1, proving Claim 2.

We can now complete the proof of the first assertion of Lemma 3.31. Let Htop denote the collection
of top level curves of H , let HL be the subbuilding consisting of the middle and bottom level curves
of H that map to the copies of R�S�T2 and T �T2 corresponding to L, and let Hv be the subbuilding
consisting of the middle and bottom level curves of H that map to the copies of R�S�T2 and T �T2

corresponding to L.v/.

Consider the classes .k1; l1/; : : : ; .km; lm/ 2 H1.L.v/IZ/ of the geodesics determined by all of the
punctures of top level curves of H that are asymptotic to L.v/. These constitute the boundary of the
cycle in L.v/ that is obtained by gluing together the compactifications of the curves of Hv . Hence, the
sum of the classes .k1; l1/; : : : ; .km; lm/ must be .0; 0/ and, by Claim 1, each ki must be zero. It then
follows from Claim 2 that any curve of H with an end on L.v/ must cover a plane or cylinder of a broken
leaf of F.v/.

Partition the curves of Htop [Hv D H nHL into connected components based on the matching of
their ends in the copies of R�S�T2 and T �T2 corresponding to L.v/. Denote these components by
H1; : : : ;Hk . The compactification of each Hj is a cycle representing a class in �2.S

2 � S2;L/. By
monotonicity, the symplectic area of this cycle is a positive integer. Since the area of uL is one, we must
have k D 1 and the area of the cycle determined by H1 must be one. Assuming the limit is a building
including curves asymptotic to L.v/, by definition all curves of H1 have ends on L.v/. By the discussion
above, this implies that all the curves of H1 must cover a plane or cylinder of a broken leaf of F.V /

through L.v/. None of these leaves intersect T0, and neither do the curves of HL. Hence, no curve of
H DH1[HL intersects T0, which is the desired contradiction.

The remaining assertions of Lemma 3.31 follow easily from positivity of intersection. To see that uL.1/ is
disjoint from the region fP1 > 0g note that the initial curve uL is disjoint from the leaves of the foliation
that intersect this region since its image under p is A0 and our choice of coordinates has fP1 > 0g

projecting to B. Positivity of intersection implies that no new intersections of the uL.s/ with these fibers
can appear during the deformation.

Finally, since uL.1/ does not cover a leaf of the foliation, it also follows from positivity of intersection
that uL.1/ is disjoint from the hypersurface fP1 D 0g. In particular, any intersection with leaves in
fP1 D 0g would imply intersections with the region fP1 > 0g. Hence the closure of p ıuL.1/ is equal
to A0.

Translating the Lagrangian tori of Lemma 3.31 slightly in the P1–direction, we get the following
generalization.
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Corollary 3.32 Let uL be the essential curve of F which is mapped by p onto A0. Choose nonzero
constants b1 and b2 in .��; �/. If ı > 0 is sufficiently small , then for any a1 and a2 in .�ı; ı/ and

V D f.0; 0/; .a1; b1/; .a2; b2/g;

there is a JV –holomorphic curve

uV
L WC! S2

�S2
n .L.V /[L1;1/

in the class of uL such that uV
L is disjoint from the region fP1 > 0g and is essential with respect to F,

and the closure of the image of p ıuV
L is A0.

Proof This has been established in the case when a1 D a2 D 0. But then if the ai are sufficiently small
we can appeal to Lemma 3.27 to see that still there are no degenerations.

Intersections near L Consider translation data

V D f0; v1; v2g D f.0; 0/; .a1; b1/; .a2; b2/g:

In what follows we will always assume that v1 and v2 are distinct and the ai and bi are as small as
necessary but not zero. If kv1k is sufficiently small then, as described in Lemma 3.30, the deformed
building F .v1/ is well defined and its top level curves

fuL.v1/;u.v1/;uL1;1
;u1.v1/; : : : ;ud�1.v1/; u1; : : : ; udg

are all JV –holomorphic for some JV in JU.L/.

We also assume that Corollary 3.32 holds for V . This yields a JV –holomorphic curve uV
L which

is disjoint from the region fP1 > 0g and intersects the leaves of F.V / that pass through the planes
fP1 D c < 0; Q1 D �g exactly once.

The intersection number between each top level curve of F .v1/ and the curve uV
L is well defined since

the curves of F .v1/ are disjoint from L, as established in Lemma 3.30; see Figure 4. We denote the total
of these intersection numbers by F .v1/ �uV

L .

Similarly, the intersection number of each top level curve of F .v1/ with any of the planes in either r0

or r1 is well defined and all such intersections are positive. Since this number is the same for any plane
in the family, we denote these numbers by F .v1/ � r0 and F .v1/ � r1, respectively.

Let xF .v1/ W S
2 ! S2 � S2 be the compactification of F .v1/, let E W .D2;S1/ ! .S2 � S2;L/ be

the compactification of the curve uV
L , and let Nr0 and Nr1 be the solid tori obtained by compactifying

the planes of r0 and r1. Deforming xF .v1/ in a neighborhood of L.v1/, we obtain a smooth map
F D F.v1/ W S

2! S2 �S2 such that

F �ED xF .v1/ �ED F .v1/ �uV
L ;(3-2)

F � Nr� D xF .v1/ � Nr� D F .v1/ � r� for � D 0;1;(3-3)
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u˛0C1.v1/u˛0C2.v1/ud�1.v1/ u˛0C1 u˛0C2 ud�1

L.v1/
uL.v1/ u.v1/

uV
L

L

u1.v1/ u2.v1/ u˛0
.v1/

Figure 4: The intersection pattern of Lemma 3.33 for the case b1 > 0. The large dots in the figure
represent the isolated intersections points, in U.L/, of the relevant pairs of curves.

where xF .v1/ � Nr� denotes the intersection number with any disk in the family. Moreover, the intersection
points that determine the equal intersection numbers in (3-2) and (3-3) are identical.

Recall that ˛0 is the number of top level curves of F lying in r0. Hence, by Proposition 3.20, there are
d � 1�˛0 top level curves lying in r1.

Lemma 3.33 Consider V D f0; v1; v2g D f.0; 0/; .a1; b1/; .a2; b2/g such that v1 and v2 are distinct ,
a1 is negative , and b1 and b2 are nonzero. Suppose that ja1j is sufficiently small with respect to jb1j.

If b1 > 0, then F � Nr0 D 0, F � Nr1 D 1 and F �ED ˛0.

If b1 < 0, then F � Nr0 D 1, F � Nr1 D 0 and F �ED d � 1�˛0.

Proof Here we give the proof of the case when b1 is positive. The proof for b1 < 0 is identical and is
left to the reader.
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The situation for b1 > 0 is illustrated in Figure 4, where the black curves can be deformed near L.v1/

to form our sphere F . As the figure suggests, the contribution to F � Nr0 from intersections in U.L/ is
zero, the contribution to F � Nr1 from intersections in U.L/ is one, and the contribution to F �E from
intersections in U.L/ is ˛0. These assertions are proven below along with the fact that there are no other
contributions to these numbers.

The map F represents the class .1; d/. For each disk in Nr0 there is a companion disc in Nr1 such that the
pair can be glued together, along L, to form a sphere in the class .0; 1/. Hence,

F � Nr0CF � Nr1 D 1:

Since all intersections are positive, in order to prove that F �Nr0D 0; and F �Nr1D 1, it suffices to prove that
F � Nr1 � 1. In particular, it suffices to show that for the curve u.v1/ of F .v1/, we have u.v1/ � r1 � 1.

The curve u.v1/ is essential and projects under p to the region in S1 bounded by p.L.v1// and p.L1;1/.
Thus it intersects U.L/ in the region fP1 > a1g and intersects all leaves of the foliation which meet
U.L/ in this set. Also, if U.L/ is sufficiently small, it intersects U.L/ inside fP2 > 0g. This is true when
a1 D 0 because b1 > 0, and remains true for small a1 by continuity. As r1 intersects U.L/ in the region
fP1 D 0; P2 > 0g and r0 in the region fP1 D 0; P2 < 0g, we see that u.v1/ intersects the planes in r1

rather than those in r0, as required.

It remains to prove that F �ED ˛0 when ja1j is sufficiently small with respect to jb1j. By (3-2), and the
fact that the top level curves of F .v1/ are

fuL.v1/;u.v1/;uL1;1
;u1.v1/; : : : ;ud�1.v1/; u1; : : : ; udg;

it suffices to prove that for ja1j sufficiently small with respect to jb1j, we have

(3-4) ui.v1/ �uV
L D 1 for 1� i � ˛0;

and uV
L is disjoint from all the other top level curves of F .v1/.

By Corollary 3.32, the curve uV
L is essential for F, and the closure of the image of p ıuV

L is A0. So if w
is another curve in S2 �S2 and p ıw is disjoint from A0, then uV

L is disjoint from w. This observation
implies that uV

L is disjoint from uL1;1
and the uj for j D 1; : : : ; d , since these curves all project into A1.

Another consequence of uV
L being essential with respect to F is that it intersects any fiber of F either

once or not at all. The curve uV
L intersects U.L/ in the region fP1 < 0g and has an end asymptotic to a

circle in LD fP1 D P2 D 0g. Since b1 > 0, this implies that for all a1 < 0 such that ja1j is sufficiently
small with respect to b1, uV

L must intersect the annuli of the form fP1 D a1;Q1 D �;P2 < b1g exactly
once. Now the planes ui.v1/ all belong to broken fibers of F that intersect U.L/. For 1 � i � ˛0, the
curves ui.v1/ intersect U.L/ in annuli of the form fP1 D a1;Q1 D �;P2 < b1g. For i > ˛0, the ui.v1/

intersect U.L/ in annuli of the form fP1 D a1;Q1 D �;P2 > b1g. Hence, for 1� i � ˛0, uV
L intersects

the fiber of F containing ui.v1/ at a point on ui.v1/. This yields equation (3-4). On the other hand,
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for i > ˛0, uV
L intersects the fiber of F containing ui.v1/ at a point in the complement of ui.v1/. Hence,

uV
L is disjoint from these curves.

Next we show that, when ja1j is sufficiently small with respect to jb1j, uV
L is disjoint from u.v1/.

Considering projections, it is clear that the part of u.v1/ in the complement of U.L/ is disjoint from uV
L

since its projection is contained in the interior of B [A1.

Suppose that a1 D 0. Then u..0; b1//\U.L/ is contained in fP1 > 0g and is asymptotic to L.0; b1/.
This is disjoint from uV

L \U.L/, which is contained in fP1 < 0g and is asymptotic to L. By continuity,
u..a1; b1//\U.L/ is then disjoint from uV

L \U.L/ for all a1< 0 with ja1j sufficiently small with respect
to jb1j.

Lastly, we must prove that
uL.v1/ �uV

L D 0

when ja1j is sufficiently small with respect to jb1j. Following Lemma 3.31 the compactifications of uV
L

and uL are homotopic in the space of smooth maps .D2;S1/! .p�1.A0/;L/, so for a1 sufficiently
small it suffices to show that

uL.v1/ �uL D 0:

Let NuL.v1/ and NuL be compactifications of uL.v1/ and uL. We claim that uL.v1/ �uL D 0 is equivalent
to the fact that the Maslov index of NuL is equal to 2. To see this we recall that

(3-5) �. NuL/D 2c1. NuL/;

where c1. NuL/ is the relative Chern number of NuL, which is equal to the number of zeros of a generic
section � of Nu�L.ƒ

2.T .S2 �S2/// such that �jS1 is nonvanishing and is tangent to ƒ2.T L/.

Let �. NuL/ be the normal bundle to the embedding NuL and fix an identification of Nu�L.T .S
2 �S2// with

the Whitney sum �. NuL/˚ T .D2/. For polar coordinates .r; �/ on D2 consider the section r @=@� of
Nu�L.T .S

2 �S2//. The restriction r @=@� jS1 is nonvanishing and tangent to T L.

Replacing v1 by tv1 for some small t > 0, if necessary, we may assume that NuL.v1/ is close enough NuL,
in the C 1–topology, to be identified with a section, �L.v1/, of �. NuL/� Nu

�
L.T .S

2�S2//. The restriction
�L.v1/jS1 is roughly parallel to the vector field @=@P2. By rotating in the normal bundle this section is
homotopic through nonvanishing sections of the normal bundle to a section of T L along @D2 which is
orthogonal to @=@� .

Set � D r @=@� ^�L.v1/. It follows from the discussion above that �jS1 is nonvanishing and is tangent to
ƒ2.T L/. Moreover, the zeroes of � correspond to the union of the zeros of r @=@� and �L.v1/. Since NuL

is embedded, the zeros of �L.v1/ exactly correspond to the intersections uL.v1/ �uL. By (3-5), we have

�. NuL/D 2.1CuL.v1/ �uL/:

As �. NuL/D 2 (as it has area 1 by Lemma 3.23, and L is monotone) we have uL.v1/ �uL D 0.
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Assuming that v2 D .a2; b2/ is sufficiently small, we can deform the building G to obtain a new building
G .v2/ with top level curves

fvL.v2/; v.v2/;uL1;1
; v1.v2/; : : : ; vd .v2/; v1; : : : ; vd�1g:

Let xG .v2/ W S
2! S2 �S2 be the compactification of G .v2/. Again we can deform xG .v2/, arbitrarily

close to L.v2/, to get a smooth map G DG.v2/ W S
2! S2 �S2 such that

G �ED xG .v2/ �E DG .v2/ �uV
L ;

G � Nr� D xG .v2/ � Nr� DG .v2/ � r� for � D 0;1:

Arguing as in the proof of Lemma 3.33 we get the following.

Lemma 3.34 Consider V D f0; v1; v2g D f.0; 0/; .a1; b1/; .a2; b2/g such that a2 is negative , and b1

and b2 are nonzero. Suppose that ja2j is sufficiently small with respect to jb2j.

If b2 > 0, then
G �ED 
0C vL.v2/ �uV

L ; G � Nr0 D 0 and G � Nr1 D 1:

If b2 < 0, then

G �ED d � 
0C vL.v2/ �uV
L ; G � Nr0 D 1 and G � Nr1 D 0:

The term vL.v2/ �uV
L is not necessarily equal to zero. Instead we have the following identity.

Lemma 3.35 For V D f0; v1; v2g D f.0; 0/; .a1; b1/; .a2; b2/g, where b1 and b2 have opposite signs ,
and a1 and a2 are sufficiently small relative to b1 and b2, we have

vL.v2/ �uV
L D vL.v2/ �uL.v1/:

Proof First we consider the case when a1 D a2 D 0. The image of the map vL.v2/ projects to A0

and its boundary lies in L.v2/. Hence, using our assumption on sign, the family of Lagrangians L.tv1/

for 0 � t � 1 are disjoint from the compactification of vL.v2/. It then follows from the proof of
Lemma 3.27 that the compactification of uL is connected to that of uL.v1/ by a path of smooth maps
ut W .D

2;S1/! .S2 �S2;L.tv1//. Therefore we have, as required,

vL.v2/ �uL D vL.v2/ �uL.v1/:

For the general case we use the fact that the maps vary continuously with the parameters and so the
intersection numbers remain unchanged for a1 and a2 sufficiently small.

When v1 and v2 are distinct, with b1 ¤ b2 and a1 ¤ a2 sufficiently small, the intersection numbers of
the top level curves of F .v1/ and G .v2/ are also well defined. The following results concerning these
intersections will be useful.
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Lemma 3.36 For v1D .a1; b1/ and v2D .a2; b2/, suppose that a1< a2< 0, with a1 and a2 sufficiently
small.

If b1 > b2, then
ui.v1/ � vL.v2/D 1 for i D 1; : : : ; ˛0;

vi.v2/ �u.v1/D 1 for i D 
0C 1; : : : ; d:

If b1 < b2, then
ui.v1/ � vL.v2/D 1 for i D ˛0C 1; : : : ; d � 1;

vi.v2/ �u.v1/D 1 for i D 1; : : : ; 
0:

Moreover , all the intersection points here project to A0.

Proof Since the curves u.v1/ and vL.v2/ are essential with respect to F, they intersect a leaf of the
foliation either once or not at all. Hence it suffices to detect a single intersection of the relevant pairs
of curves listed. We detect an intersection for the first type of pair above and leave the other cases to
the reader. For 1 � i � ˛0 the planes ui.v1/ intersect U.L/ in annuli fP1 D a1;Q1 D �;P2 < b1g.
As vL..0; b2// is asymptotic to L..0; b2// D fP1 D 0;P2 D b2g it intersects ui.v1/ provided a1 is
sufficiently small (since the boundary of vL..0; b2// intersects all annuli fP1D 0;Q1D �;P2< b1g). For
a2 sufficiently small, the plane vL.v2/ is a deformation of vL..0; b2// and so the intersection persists. As
vL.v2/ intersects fibers at most once, the intersection number is equal to 1. Since a1 < 0, the intersection
point projects to A0.

Corollary 3.37 For v1 D .a1; b1/ and v2 D .a2; b2/, suppose that a1 < a2 < 0, with a1 and a2

sufficiently small.

If b1 > b2, then F \G contains at least ˛0C d � 
0 points in U.L/ that project to A0.

If b1 < b2, then F \G contains at least d � 1�˛0C 
0 points in U.L/ that project to A0.

Remark 3.38 It follows from Lemma 3.35 that any excess intersection points between F and G in
p�1.A0/, that is, more than described by Corollary 3.37, correspond to intersection points between G

and E, at least if the bi have opposite sign and the ai are sufficiently small.

Adding deformations near L1;1 To completely resolve the intersections of F and G we must also
apply deformations in the Weinstein neighborhood

U.L1;1/D fjp1j< �; jp2j< �g:

Here we consider nearby Lagrangian tori of the form

L1;1.w/ WD fp1 D c;p2 D dg for wD .c; d/ 2 .��; �/� .��; �/:

The space of almost complex structures that are adapted to collections of these translated Lagrangian tori
near L1;1, with respect to  1;1, is defined analogously to JU.L/ and is denoted by JU.L1;1/.
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Given nontrivial collections

V D fv1; : : : ; vkg D f.a1; b1/; : : : ; .ak ; bk/g and W D fw1; : : : ;wlg D f.c1; d1/; : : : ; .cl ; dl/g;

set X D fV ;W g. Let JX denote the corresponding (doubly) adapted almost complex structures in
JU.L/\JU.L1;1/.

Lemma 3.27 generalizes to this setting as follows.

Lemma 3.39 Let u be a regular J–holomorphic curve with k � 0 ends on L and l � 0 ends on L1;1.
For all x D fv;wg D f.a; b/; .c; d/g with kxk sufficiently small , there is a Jx–holomorphic curve u.x/

that represents the class in �2.S
2 � S2;L.v/ [ L1;1.w// and which corresponds to the class Œu� in

�2.S
2 �S2;L[L1;1/ under the obvious identification. The curve u.x/ has k ends on L.v/ and these

represent the identical classes in H
 .v/
1

.LIZ/ as do those of u in H
 
1
.LIZ/. The curve also has l ends on

L1;1.w/ which represent the identical classes in H
 1;1.w/

1
.L1;1IZ/ as do those of u in H

 1;1

1
.L1;1IZ/.

Corollary 3.32 generalizes as follows.

Lemma 3.40 Let uL and uL1;1
be the essential curves of a building F as in Proposition 3.20. Let

X D fV ;W g, where

V D f.0; 0/; .a1; b1/; .a2; b2/g and W D f.0; 0/; .c1; d1/; .c2; d2/g:

If b1, b2, d1 and d2 are in .��; �/ and a1, a2, c1 and c2 are in .�ı; ı/, then for all sufficiently small ı
there is a JX –holomorphic curve

uX
L WC! S2

�S2
n .L.V /[L1;1.W //

in the class of uL such that uX
L is disjoint from the region fP1 > 0g, the closure of the image of

p ı uX
L is A0, and uX

L intersects , exactly once , the leaves of F.X/ that pass through the planes
fP1 D c < 0; Q1 D �g.

There is also a JX –holomorphic curve

uX
L1;1
WC! S2

�S2
n .L.V /[L1;1.W //

in the class of uL1;1
such that uX

L1;1
is disjoint from the region fp1 < 0g, the closure of the image of

p ı uX
L1;1

is A1, and uX
L1;1

intersects , exactly once , the leaves of F.X/ that pass through the planes
fp1 D c > 0; q1 D �g.

Completion of the proof of Proposition 3.24 Let F be a building as in Proposition 3.20 and let G be a
building as in Proposition 3.22. Set

x1 D fv1;w1g D f.a1; b1/; .c1; d1/g; x2 D fv2;w2g D f.a2; b2/; .c2; d2/g;

V D f0; v1; v2g D f.0; 0/; .a1; b1/; .a2; b2/g; W D f0;w1;w2g D f.0; 0/; .c1; d1/; .c2; d2/g;

and set
X D fV ;W g:
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We assume that kx1k and kx2k are small enough for Lemma 3.39 to yield the deformed buildings
F .x1/ and G .x2/. We also assume that ja1j

2C ja2j
2C jc1j

2C jc2j
2 is small enough with respect to

jb1j
2Cjb2j

2Cjd1j
2Cjd2j

2 for Lemma 3.40 to yield the deformations uX
L and uX

L1;1
.

Let E W .D2;S1/! .S2�S2;L/ be the compactification of uX
L , and E1;1 W .D

2;S1/! .S2�S2;L1;1/

be the compactification of uX
L1;1

. Since the homology classes represented by the ends of uX
L and uX

L1;1

are identical to those of the essential curves uL and uL1;1
, the maps E and E1;1 satisfy conditions (2)

and (3) of Proposition 3.24.

Consider compactifications xF .x1/ W S
2 ! S2 � S2 of F .x1/, and xG .x2/ W S

2 ! S2 � S2 of G .x2/.
Arguing as before, we can perturb these maps, arbitrarily close to the Lagrangians L.v1/, L1;1.w1/,
L.v2/ and L1;1.w2/, to obtain smooth spheres F and G such that condition (1) of Proposition 3.24 holds.

It remains to verify the conditions (4) through (9) of Proposition 3.24, which involve intersections.

In the current setting, Lemma 3.33 holds as stated and the proof is unchanged.

Lemma 3.41 Suppose a1 is negative , and b1 and b2 are nonzero. Suppose that ja1j is sufficiently small
with respect to jb1j.

If b1 > 0, then F � Nr0 D 0, F � Nr1 D 1 and F �ED ˛0.

If b1 < 0, then F � Nr0 D 1, F � Nr1 D 0 and F �ED d � 1�˛0:

Lemmas 3.34 and 3.35 and Corollary 3.37 change only in notation, and yield the following.

Lemma 3.42 Suppose that a2 is negative , b1 and b2 are nonzero , and ja2j is sufficiently small with
respect to jb2j.

If b2 > 0, then G � Nr0 D 0, G � Nr1 D 1 and

G �ED 
0C vL.x2/ �uX
L :

If b2 < 0, then G � Nr0 D 1, G � Nr1 D 0 and

G �ED d � 
0C vL.x2/ �uX
L :

Lemma 3.43 If b1 and b2 have opposite sign , and a1 and a2 are sufficiently small , then

vL.x2/ �uX
L D vL.x2/ �uL.x1/:

Lemma 3.44 Suppose that a1 < a2 < 0, and a1 and a2 are sufficiently small.

If b1 > b2, then F \G contains at least ˛0C d � 
0 points in U.L/ that project to A0.

If b1 < b2, then F \G \U.L/ contains at least d � 1�˛0C 
0 points in U.L/ that project to A0.

The following analogous results follow from similar arguments.
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Lemma 3.45 Suppose c1 is positive , d1 and d2 are nonzero , and jc1j is sufficiently small with respect
to jd1j.

If d1 > 0, then F � Ns0 D 0, F � Ns1 D 1 and F �E1;1 D ˇ0.

If d1 < 0, then F � Ns0 D 1, F � Ns1 D 0 and F �E1;1 D d �ˇ0.

Lemma 3.46 Suppose c2 is positive , d1 and d2 are nonzero , and jc2j is sufficiently small with respect
to jd2j.

If d2 > 0, then G � Ns0 D 0, G � Ns1 D 1 and

G �E1;1 D ı0C vL1;1
.x2/ �uX

L1;1
:

If d2 < 0, then G � Ns0 D 1, G � Ns1 D 0 and

G �E1;1 D d � 1� ı0C vL1;1
.x2/ �uX

L1;1
:

Lemma 3.47 If d1 and d2 have opposite sign , and c1 and c2 are sufficiently small , then

vL1;1
.x2/ �uX

L1;1
D vL1;1

.x2/ �uL1;1
.x1/:

Lemma 3.48 Suppose that c1 > c2 > 0, and c1 and c2 are sufficiently small.

If d1 > d2, then F \G contains at least ˇ0C d � 1� ı0 points in U.L1;1/ that project to A1.

If d1 < d2, then F \G contains at least d �ˇ0C ı0 points in U.L1;1/ that project to A1.

With F and G fixed as above, the remaining analysis can be organized using the following two alternatives:

� Alternative 1 Either ˛0 � 
0 or 
0 � ˛0C 1.

� Alternative 2 Either ˇ0 � ı0C 1 or ı0 � ˇ0.

Case 1 (˛0 � 
0 and ˇ0 � ı0C 1) In this case, we choose our translations so that

a1 < a2 < 0; b2 < 0< b1; 0< c2 < c1; d2 < 0< d1:

For these conditions on b1 and b2, Lemmas 3.41 and 3.42 yield F � r0 D 0, F � r1 D 1, G � r0 D 1 and
G � r1 D 0. This implies condition (4) of Proposition 3.24.

Similarly, for these conditions on d1 and d2, Lemmas 3.45 and 3.46 imply that F � s0 D 0, F � s1 D 1,
G � s0 D 1 and G � s1 D 0. This gives condition (5) of Proposition 3.24.

The maps F and G both represent the class .1; d/ in H2.S
2 �S2IZ/, so F �G D .1; d/ � .1; d/D 2d .

On the other hand, for the choices above, Lemmas 3.44 and 3.48 imply that

F �G � .˛0C d � 
0/C .ˇ0C d � 1� ı0/:
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In the current case, with ˛0 � 
0 and ˇ0 � ı0C 1, these two summands are each at least d , and so we
must have

˛0 D 
0;(3-6)

ˇ0 D 1C ı0:(3-7)

It follows that F \G consists of exactly 2d points, d of which are contained in U.L/ and project to A0,
and d of which are contained in U.L1;1/ and project to A1. This yields conditions (8) and (9) of
Proposition 3.24.

Since F �G D F .x1/ �G .x2/, it follows from the equalities above that there can be no intersections
between the essential curves of F .x1/ and those of G .x2/. In particular, we must have

vL.x2/ �uL.x1/D 0;(3-8)

vL1;1
.x2/ �uL1;1

.x1/D 0:(3-9)

Equation (3-8) and Lemma 3.43 imply that

vL.x2/ �uX
L D 0:

By Lemmas 3.41 and 3.42 and equation (3-6), we then have

F �ECG �ED ˛0C d � 
0 D d;

which yields condition (6) of Proposition 3.24.

Similarly, Lemmas 3.45, 3.46 and 3.47, together with equations (3-7) and (3-9), imply that

F �E1;1CG �E1;1 D d

and hence condition (7) of Proposition 3.24. This completes the proof of Proposition 3.24 in the present
case.

Other cases The proofs in the other cases follow along identical lines. For the sake of completeness we
list the inequalities for the components of the translations that lead to the desired intersection patterns of
Proposition 3.24, in the remaining scenarios. For the case ˛0 � 
0 and ı0 � ˇ0, we choose

a1 < a2 < 0; b2 < 0< b1; 0< c2 < c1; d1 < 0< d2:

For 
0 � ˛0C 1 and ˇ0 � ı0C 1, we choose

a1 < a2 < 0; b1 < 0< b2; 0< c2 < c1; d2 < 0< d1:

Finally, for the case 
0 � ˛0C 1 and ı0 � ˇ0, we choose

a1 < a2 < 0; b1 < 0< b2; 0< c2 < c1; d1 < 0< d2:

To complete the proof of Proposition 3.24, we remark that the smoothings F and G can be replaced by
smooth symplectic spheres without changing the various intersection numbers. To do this, it is enough
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to replace F and G by symplectic spheres which coincide with F and G away from neighborhoods of
L.v1/ and L1;1.w1/, respectively L.v2/ and L1;1.w2/; that is, the new spheres differ only away from
all intersection points.

Now, we know that the asymptotic ends of the top level curves of F .x1/ and G .x2/ are simply covered,
either because the curves are essential, or for covers of leaves by applying Lemma 3.23. Generically the
asymptotic limits are distinct. Then, for small perturbations, we may assume that the top level curves
restricted to a neighborhood of the Lagrangians are symplectically isotopic to the corresponding top level
curves of our original buildings F and G . (In the case of F .x1/ the isotopy maps L.v1/ and L1;1.w1/

to L and L1;1, respectively.) Finally, recall that the buildings F and G are limits of sequences of smooth
embedded holomorphic spheres as our almost complex structures are stretched along the Lagrangians.
Therefore, after a small perturbation, we may assume the top level curves of these buildings restricted
to a compact subset of the complement of L[L1;1 extend to smooth symplectic spheres in S2 �S2.
Combining the isotopies and these extensions gives our symplectic spheres as required.

3.9 Scene change

Consider .S2�S2; ��
1
!C��

2
!/ with our disjoint Lagrangian tori L and L1;1 and the various symplectic

spheres and disks constructed in Proposition 3.24: F , G, E and E1;1.

To prepare for the proof of our main theorem, we specify our choice of almost complex structure. Near
their various intersection points, the listed spheres and disks are already complex for a suitable almost
complex structure. We can correct this almost complex structure, without perturbing F or G, to an
almost complex structure J which is compatible with our symplectic form at the intersection points (not
just tame) and extends to make our symplectic spheres and planes (the interiors of the disks) complex.
Also we may assume J remains adapted to the parametrizations  and  1;1 of L and L1;1, respectively.
As the spheres and planes from Proposition 3.24 were already holomorphic near the axes T0, T1, S0

and S1, and also near the broken planes in r0, r1, s0 and s1, we may assume that these curves all
remain complex. In other words the only correction from the J used in Proposition 3.24 occurs near the
intersection points to ensure compatibility, and near the regions where the F and G are symplectic but
not complex.

Given this choice of J we have an associated foliation F and projection p W S2 � S2 ! S1. As the
broken curves are the same as in Proposition 3.24, the subsets A0, B and A1 of S1 are the same as in
the proposition, and in particular property (9) continues to hold.

Let H be a sphere of F which is disjoint from F \G, and Hi for 1� i � 2d the spheres of F intersecting
the 2d points fp1; : : : ;p2dg of F \G. We note that these Hi are distinct since F and G both represent
a homology class .1; d/ and so intersect fibers of F each in a single point.

One other small perturbation is required. We may choose Darboux charts about each pi mapping an open
set Bi to the round open ball about the 0 of capacity � in R4 D C2, such that J is pushed forward to
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F G E E1;1 H

F 2d

G 2d 2d

E k d � k �

E1;1 l d � l 0 �

H 1 1 � � 0

��1!C�
�
2
!–area

F 2C 2d

G 2C 2d

E 1
E1;1 1
H 2

Table 1: Initial intersection numbers, left, and initial symplectic areas, right.

the standard complex structure at 0 (this requires compatibility of J ). We may assume these charts are
disjoint from H . In these charts, F , G and Hi intersect the origin and are tangent to distinct complex
planes. Making � smaller if necessary, we are able to perturb our symplectic spheres so that they actually
coincide with their tangent plane in the open chart. Finally we adjust J so that it is pushed forward to the
standard structure on the whole ball, while F , G and Hi remain complex.

Given this, we proceed with the main proof. We start with the intersection pattern and area profile in
Table 1.

For pairs of distinct curves the intersection numbers here just denote a signed count of intersection points
with multiplicity. The self intersection number of closed spheres are defined as usual. The asterisks
denote undefined quantities. The numbers come from the fact that F and G represent the class .1; d/, and
from the properties listed in Proposition 3.24. The integers 0� k � d and 0� l � d are undetermined.

We now alter .S2 � S2; ��
1
! C ��

2
!/, away from L and L1;1, to obtain a new ambient symplectic

manifold in which the disjointness of these Lagrangians is a contradiction.

Step 1 Blow up the balls Bi of capacity � around each of the 2d points pi in F \G.

Denote the new manifold by .W; �1/. It follows from the analysis of the blow-up procedure from [15],
see also Proposition 9.3.3 of [16], that .W; �1/ contains 2d exceptional divisors Ei each of area �. Since
the Hi intersect the balls Bi in J–holomorphic planes, .W; �1/ also contains the proper transforms of
the Hi . These are denoted here by yHi and are symplectic spheres of area 2� �. By property (9) of
Proposition 3.24, d of the yHi intersect E once, and the other d of the yHi intersect E1;1 once.

Again, since they intersect the Bi in planes, the proper transforms of F and G, denoted by yF and yG, are
also well defined. These are spheres of area 2d C 2� 2d� which are now disjoint. The sphere H of F is
disjoint from the balls, but we denote its image in the blow up by yH , which remains of area 2. After this,
the relevant intersection numbers and areas are as in Table 2.

Step 2 Inflate both yF and yG by adding a tubular neighborhood of capacity d .

Here we recall that since yF and yG are symplectic spheres of self intersection 0 they have tubular
neighborhoods which can be identified symplectically with S2 �D2.ı/, where S2 is a sphere of area
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yF yG E E1;1
yH Ei

yHi

yF 0

yG 0 0

E k d � k �

E1;1 l d � l 0 �

yH 1 1 � � 0

fEig 2d 2d 0 0 0 �1

f yHig 0 0 d d 0 1 �1

�1–area

yF 2C 2d � 2d�

yG 2C 2d � 2d�

E 1

E1;1 1

yH 2

Ei �

yHi 2� �

Table 2: Intersection numbers after Step 1, left, and areas after Step 1, right.

2C 2d � 2d� and D2.ı/ a disk of area ı. In this case inflation means replacing the symplectic form �1

on this neighborhood by another one, �2, such that �2��1 is a compactly supported area form of total
area d on the disk factor, D2.ı/.

Applying the inflation result from [12], we may assume, by Lemma 3.1 in [14], that J is also tame with
respect to �2. This means that all of our J–holomorphic curves which intersect yF and yG, namely E,
E1;1, yH and Ei , remain J–holomorphic and, in particular, symplectic.

The inflation procedure does not change the intersection pattern, and the �2–area of curves increases,
from the previous step, by d times the sum of the intersection numbers with yF and yG leaving us with the
area profile in Table 3, left.

Step 3 Apply the negative inflation procedure from [2], of size �, to each Ei .

This negative inflation procedure yields a new symplectic form, �3, such that the �3–area of each Ei

is less than its �2–area by �. That is, the �3–area of each Ei is 2d . One way to visualize this is to
blow-down the Ei giving balls of capacity �C 2d and then blow-up slightly smaller balls of capacity 2d .

Negative inflation by � also increases the area of homology classes by � times the sum of the intersection
numbers with the Ei . The �3 area profile is given in Table 3, right.

�2–area

yF 2C 2d � 2d�

yG 2C 2d � 2d�

E 1C d2

E1;1 1C d2

yH 2C 2d

Ei �C 2d

yHi 2� �

�3–area

yF 2C 2d

yG 2C 2d

E 1C d2

E1;1 1C d2

yH 2C 2d

Ei 2d

yHi 2

Table 3
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yF yG EX EX
1;1

yH Hi

yF 0

yG 0 0

EX k d � k �

EX
1;1 l d � l 0 �

yH 1 1 � � 0

fHig 2d 2d d d 0 0

�–area

yF 2C 2d

yG 2C 2d

EX 1C d2C 2d

EX
1;1

1C d2C 2d

yH 2C 2d

Hi 2C 2d

Table 4: Intersection numbers after Step 4, left, and areas after Step 4, right.

Step 4 Blow down each yHi .

We denote the symplectic manifold resulting from this final step by .X; �/. Each of the exceptional
divisors Ei in .W; �3/ is transformed, by Step 4, into a sphere Hi in X which has �–area equal to
2d C 2 and now lies in the same class as yH . The disks E and E1;1 each intersect d of the yHi and so are
transformed by Step 4 into disks EX and EX

1;1
, whose symplectic areas have each been increased by 2d .

See Table 4.

Lemma 3.49 .X; �/ is symplectomorphic to

.S2
�S2; .d C 1/!˚ .d C 1/!/:

Proof The presence of the embedded symplectic spheres yF and yH , with the same �–area and satisfying

yF � yF D yH � yH D 0 and yF � yH D 1;

implies that either .X; !/ is symplectomorphic to

.S2
�S2; .d C 1/!˚ .d C 1/!/;

or there are finitely many symplectically embedded spheres with self-intersection number �1 in the
complement of yF and yH in X , and X can be blown down to a copy of S2 �S2. This follows from the
proof of Theorem 9.4.7 of [16]. As a consequence, if H2.X IZ/ has rank 2 then X is symplectomorphic
to S2 �S2.

A simple analysis of the construction of .X; �/ from .S2 �S2; ��
1
!C��

2
!/ allows us to compute this

rank. The 2d blow ups in Step 1 imply that the rank of H2.W IZ/ is 2C 2d . The subsequent 2d blow
down operations in Step 4 imply that the rank of H2.X IZ/ is 2, as required.

Henceforth, we may identify .X; �/ with .S2 �S2; .d C 1/!˚ .d C 1/!/. The Lagrangian tori L and
L1;1 are untouched, as submanifolds, by the four steps above. They remain Lagrangian and disjoint in
.X; �/. Note that L1;1 is not equal to the Clifford torus in .X; �/ with respect to the identification above.
In what follows we denote the Clifford torus in .X; �/ by LX .
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The manifold .X; �/ also inherits an almost complex structure, denoted here by yJ , which equals J

away from the collection f yHig. In particular, yJ is adapted to the original parametrizations  and  1;1

of L and L1;1. As in Section 3.5, yJ determines a straightened foliation yFD F.L;L1;1;  ;  1;1; yJ / of
X n .L[L1;1/. The original collections of planes s0, s1, r0 and r1 still comprise the broken leaves
of this new foliation. The symplectic spheres yF and yG now represent the class .1; 0/ 2 H2.X IZ/ D

H2.S
2 �S2IZ/. As in Proposition 3.24, it is still true that exactly one of yF and yG intersects the planes

of s0 and the other intersects the planes of s1, and exactly one of yF and yG intersects the planes of r0

and the other intersects the planes of r1.

Lemma 3.50 The Lagrangian tori L and L1;1 are both monotone in .X; �/.

Proof Let D1 W .D
2;S1/! .S2�S2;L/ be a compactification of one of the planes of r1. The disk D1

has Maslov index equal to 2 and symplectic area equal to 1 with respect to ��
1
!C��

2
!. The map D1jS1

represents the foliation class ˇL. The image of the map D1 is unaffected by the four steps defining the
passage from .S2 �S2; ��

1
!C��

2
!/ to .X; �/. Viewed as a map from .D2;S1/ to .X;L/, D1 still

has Maslov index 2, and D1jS1 still represents ˇL. The �–area of D1, as a map into .X; �/, is d C 1.
This follows from the fact that exactly one of F and G intersect D1 and so the inflations in Step 2
increase the symplectic area by d .

By assertion (4) of Proposition 3.24, the boundary EjS1 represents a class which, together with ˇL, forms
an integral basis of H1.LIZ/. The same holds for EX jS1 . To prove that L is a monotone Lagrangian
torus in .X; �/ it then suffices, by Lemma 3.1, to prove that the Maslov index of EX W .D2;S1/! .X;L/

is equal to
2

dC1
.1C d2

C 2d/D 2d C 2;

where 1Cd2C2d is the area of EX . This follows from the fact that, in .W; �3/, E has Maslov index 2,
intersects exactly d of the yHi , and each of the corresponding intersection numbers is 1. In blowing down
the yHi , and passing from E to EX , each of these intersection points yields an increase of 2 in the Maslov
index.

The proof that L1;1 is monotone in .X; �/ is identical.

Lemma 3.51 The Lagrangians L and L1;1 are both Hamiltonian isotopic to the Clifford torus LX in
.X; �/.

Proof This follows from the main result of Cieliebak and Schwingenheuer in [4]. In the language of that
paper, the compactification of the straightened foliation yFDF.L;L1;1;  ;  1;1; yJ / yields a fibering of L

and a fibering of L1;1. For the fibering of L, the spheres yF and yG are disjoint sections in the class .1; 0/
and exactly one of them intersects the (compactification of the ) planes of r0 and the other intersects
the those of r1. The main theorem of [4] then implies that L is Hamiltonian isotopic to the Clifford
torus LX in .X; �/. An identical argument holds for L1;1.
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With this, the contradiction to Assumption 2 becomes apparent. Since the Lagrangian Floer homology
of LX is nontrivial by [17], any Lagrangian tori Hamiltonian isotopic to LX must intersect nontrivially.
Hence, L and L1;1 cannot be disjoint in .X; �/.

Remark 3.52 The assumption that L and L1;1 are disjoint is used twice in the proof of Theorem 1.1: at
the very end, and in the proof of Refinement 3 in Section 3.3.

Remark 3.53 The fact that L1;1 is the Clifford torus (and not just another monotone Lagrangian torus)
is crucial (only) in the proof of the existence results in Propositions 3.20 and 3.22.

Remark 3.54 There is an alternative to the argument used at the end of the proof of Theorem 1.1 that
avoids appealing to Lagrangian Floer homology. Instead, one can use the fact that the symplectomorphism
in Lemma 3.49 can be chosen to map yF , yG and the transforms yT0 and yT1 to the axes S2�f0g, S2�f1g,
f0g �S2 and f1g�S2, respectively. The complement of these axes in S2 �S2 can be identified with
a domain in T �T 2 in which the Clifford torus is identified with the zero section. We can check that L

and L1;1 are homologically nontrivial in this copy of T �T 2 and so, by Theorem 3.9, are Hamiltonian
isotopic to constant sections. The monotonicity condition then implies the constant section must be the
zero section. Finally Gromov’s intersection theorem for exact Lagrangians in cotangent bundles, from
Section 2:3:B00

4
of [6], implies that they must intersect.

4 Proof of Theorem 1.2

It suffices to prove the following.

Theorem 4.1 For any � > 0, there is a ı > 0 and a symplectic embedding of the polydisk P .1Cı; 1Cı/

into P .2C �; 2C �/ whose image is disjoint from the product Lagrangians Lk;l for k; l 2 f1; 2g.

The desired additional integral Lagrangian torus LC is the one on (the image of) the boundary of
P .1; 1/� P .1C ı; 1C ı/.

4.1 Proof of Theorem 4.1

We will use rescaled polar coordinates �i ;Ri on R4 DC2, where Ri D �jzi j
2 and �i 2R=Z. In these

coordinates the standard symplectic form is

! D

2X
iD1

dRi ^ d�i ;

and Lk;l D f.�1; k; �2; l/g.

4.1.1 A polydisk For � > 0 fixed, choose positive numbers `, w such that

2< ` < 2C �; w < 2;
1

`
C

1

w
< 1:
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Then choose positive constants � and ı such that

`C � < 2C �; wC � < 2;
1Cı

`
C

1Cı

w
< 1:

Set

S D f� <R1 < `C �; � <R2 <wC �g and T D
n
0< �1 <

1Cı

`
; 0< �2 <

1Cı

w

o
:

Note that S �T is a subset of P .2C �; 2C �/ and is symplectomorphic to P .1C ı; 1C ı/. Both L1;1

and L2;1 intersect S �T , while L1;2 and L2;2 do not.

4.1.2 The plan To prove Theorem 4.1 it suffices to find a Hamiltonian diffeomorphism of P .2C�; 2C�/

that displaces S � T from the Lk;l . Equivalently, we construct a Hamiltonian diffeomorphism ‰ of
P .2C �; 2C �/ such that each of the images ‰.Lk;l/ is disjoint from S �T .

To construct ‰ we use Hamiltonian functions which are of the form F.�1; �2/. The Hamiltonian flow �t
F

of such a function preserves �1 and �2 and generates a Hamiltonian vector field parallel to the R1R2–plane.
In particular, the only points of �t

F
.Lk;l/ which could possibly intersect S �T are those whose .�1; �2/

coordinates lie in T .

Since we only need to control the images of the Lk;l , we can cut off autonomous functions like F

in (moving) neighborhoods of �t
F
.Lk;l/ for specific values of k and l . After this cutting off, the new

Hamiltonian will depend on all variables and be time dependent. In general, for a closed subset V , we
denote the function obtained by cutting of F along �t

F
.V / by FŒV �. Note that

�t
FŒV �

.v/D �t
F .v/ for all v 2 V and t 2 Œ0; 1�:

Also, each map �t
FŒV �

is equal to the identity away from an arbitrarily small neighborhood of[
t2Œ0;1�

�t
F .V /:

4.1.3 A diagonal move Let g WR=Z!R be a smooth function such that for some positive real number
c.g/ > 0 we have

g0.s/D c.g/ for s 2
h
0;

1Cı

`
C

1Cı

w

i
;

max.g0/D c.g/, and min.g0/ is less than and arbitrarily close to

�c.g/

0B@ 1Cı

`
C

1Cı

w

1�
1Cı

`
�

1Cı

w

1CA :
Letting G.�1; �2/D g.�1C �2/, we have

(4-1) �t
G.�1;R1; �2;R2/D .�1;R1C tg0.�1C �2/; �2;R2C tg0.�1C �2//:
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The image �1
G
.L1;2/ is well defined as long as

(4-2) c.g/ <
1�

1Cı

`
�

1Cı

w
1Cı

`
C

1Cı

w

;

and is contained in P .2C �; 2C �/ as long as c.g/ < �. Henceforth, we will assume that `, w and ı have
been chosen such that the first constraint on c.g/ implies the second.

It follows from (4-1) and (4-2) that �t
G
.L1;2/ is contained in

fR1 � 1C c.g/g\ fR2 > 1g

for all t 2 Œ0; 1�. Hence, each image �t
G
.L1;2/ is disjoint from the other Lk;l . Since g0 D c.g/ > 0 on T ,

each �t
G
.L1;2/ is also disjoint from S �T .

4.1.4 A vertical move Let h WR=Z!R be a smooth function such that for some positive real number
0< c.h/ < � we have

h0.s/D�.1� c.h// for s 2
h
0;

1Cı

w

i
;

min.h0/D�.1� c.h// and max.h0/ is greater than and arbitrarily close to

.1� c.h//
1Cı

w

1�
1Cı

w

D
1� c.h/
w

1Cı
� 1

;

which is greater than one since wC � < 2 and c.h/ < � .

Letting H.�1; �2/D h.�2/, we have

(4-3) �t
H .�1;R1; �2;R2/D .�1;R1; �2;R2C th0.�2//:

Clearly, L2;1 and L2;2 are disjoint from �t
H
.L1;1/ for all t 2 Œ0; 1�. Moreover, for �2 in Œ0; .1C ı/=w�

we have
�1

H .�1; 1; �2; 1/D .�1; 1; �2; c.h//:

So �1
H
.L1;1/ is disjoint from T �S by our choice of c.h/.

Some points of L1;1, with values of �2 in ..1C ı/=w; 1/, are mapped by �1
H

to points having R2

coordinate greater than and arbitrarily close to

1C
1� c.h/
w

1Cı
� 1

> 2:

Choosing w sufficiently close to 2 and ı sufficiently small ensures that �1
H
.L1;1/ lies in P .2C �; 2C �/.

4.1.5 A time delay The Hamiltonian diffeomorphism �1
HŒL1;1�

cannot be used to move L1;1 off of

S � T while leaving L1;2 undisturbed. For, as described in the discussion above, �1
HŒL1;1�

.L1;2/ will
intersect S �T .

Geometry & Topology, Volume 28 (2024)
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The Hamiltonian diffeomorphism
�1

HŒL1;1�
ı�1

GŒL1;2�

has the same problem. By (4-1) and (4-3), the image of .�1; 1; �2; 1/ 2 L1;1 under �t
H

belongs to
�1

G
.L1;2/ if and only if g0.�1C �2/D 0 and th0.�2/D 1. Since max.h0/ > 1, these intersections occur

and so the map above will again push L1;2 into S �T .

We can fix this by adding a time delay. The first intersection between �t
H
.L1;1/ and �1

G
.L1;2/ occurs at

t D .max.h0//�1. Let � be less than and arbitrarily close to .max.h0//�1. Hence, � is also less than and
arbitrarily close to

w

1Cı
� 1

1� c.h/
:

Consider the Hamiltonian diffeomorphism

z‰ D �1��
H
Œ��

H
.L1;1/[�

1
G
.L1;2/�

ı��HŒL1;1�
ı�1

GŒL1;2�
:

It follows from the analysis above that the map z‰ is compactly supported in P .2C �; 2C �/. In fact, it is
supported in an arbitrarily small neighborhood of the subset fR1 � 1C c.g/g. Hence, z‰.L2;1/DL2;1

and z‰.L2;2/DL2;2. By the definitions of � and the cut-off operation, we have z‰.L1;1/D �
1
H
.L1;1/

and thus z‰.L1;1/ is disjoint from S �T . In addition, we now have the following.

Lemma 4.2 The image z‰.L1;2/ is disjoint from S �T when c.h/ is sufficiently close to � and ı is
sufficiently small.

Proof By construction, for .�1; �2/ 2 T we have

z‰.�1; 1; �2; 2/D .�1; 1Cg0.�1C �2/; �2; 2Cg0.�1C �2/C .1� �/h
0.�2//

D
�
�1; 1C c.g/; �2; 2C c.g/� .1� �/.1� c.h//

�
:

It suffices to show that we can choose c.g/ and c.h/ so that

(4-4) 2C c.g/� .1� �/.1� c.h// > wC �:

Since � is less than and arbitrarily close to
w

1Cı
� 1

1� c.h/
;

is also suffices to show that we can choose c.g/ and c.h/ so that

c.g/ > w
�
1�

1

1Cı

�
C .� � c.h//:

The right-hand side can be made arbitrarily small by taking c.h/ to be close to � and ı to be small. Since
the choice of c.g/ is independent of the choice of c.h/ and the constraint (4-2) on c.g/ relaxes as ı goes
to zero, we are done.

Henceforth, we will assume that the conditions of Lemma 4.2 hold.
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4.1.6 A final (horizontal) adjustment The images z‰.L1;1/, z‰.L1;2/ and z‰.L2;2/ are disjoint from
S �T but z‰ still fixes L1;2, which intersects S �T . Since L1;2 is close to the boundary of S �T , we
can make a simple adjustment to obtain the desired map, ‰, which moves L1;2 off of S �T as well.

Let f WR=Z!R be a smooth function such that for some positive real number c.f / greater than and
arbitrarily close to `C � � 2 we have

f 0.s/D c.f / for s 2
h
0;

1Cı

`

i
;

max.f 0/D c.f / and min.f 0/ is less than and arbitrarily close to

�
c.f /

`

1Cı
� 1

:

Setting F.�1; �2/D f .�1/, we have

�t
F .�1;R1; �2;R2/D .�1;R1C tf 0.�1/; �2;R2/:

Our lower bound for c.f / implies that �1
F
.L2;1/ is disjoint from S �T . Looking at the R2–component,

it is clear that �1
F
.L2;1/ is disjoint from L2;2 D

z‰.L2;2/. To prove that �1
F
.L2;1/ is also disjoint from

z‰.L1;1/ and z‰.L1;2/, it suffices to prove the following.

Lemma 4.3 The sets fR1 � 1C c.g/g and �1
F
.L2;1/ are disjoint.

Proof It suffices to prove that
2�

c.f /

`

1Cı
� 1

> 1C c.g/

or, even more, that

1> c.g/C
`C � � 2

`

1Cı
� 1

:

The latter inequality clearly holds for all sufficiently small values of c.g/ and `C � � 2.

The Hamiltonian diffeomorphism

‰ D �1
FŒL2;1�

ı�1��
H
Œ��

H
.L1;1/[�

1
G
.L1;2/�

ı��HŒL1;1�
ı�1

GŒL1;2�

now has all the desired properties. With its construction, the proof of Theorem 4.1 is complete.

Question 4.4 Can ‰, or any other Hamiltonian diffeomorphism which displaces the Lk;l from S �T,
be generated by an autonomous Hamiltonian?
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