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We give a new proof for the parabolic Verlinde formula in all ranks based on a comparison of wall-
crossings in geometric invariant theory and certain iterated residue functionals. On the way, we develop a
tautological variant of Hecke correspondences, calculate the Hilbert polynomials of the moduli spaces,
and present a new, transparent, local approach to the �–shift problem of the theory.
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1 Introduction

1.1 The Verlinde formula

The Verlinde formula [31] is a strikingly beautiful statement in enumerative geometry motivated by
quantum physics. Our focus in this paper will be the more difficult, parabolic variant, which we briefly
describe below.

Let C be a smooth, complex projective curve of genus g � 1, and fix an auxiliary point p 2 C . We will
call a vector c D .c1 > c2 > � � �> cr/ 2Rr satisfying

P
ci D 0 and c1� cr < 1 regular if no nontrivial

subset of its coordinates sums to an integer. For such a c 2Rr , there exists a smooth projective moduli
space P0.c/ (see Seshadri [21], Mehta and Seshadri [15] and Bhosle [4]), whose points are in one-to-one
correspondence with the equivalence classes of pairs .W; F�/, where W ! C is a vector bundle of
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2260 András Szenes and Olga Trapeznikova

rank r on C with trivial determinant, F� is a full flag of the fiber Wp, and the pair satisfies a certain
parabolic stability condition depending on c; see Section 2.1. This condition roughly states that for
a proper subbundle W 0 � W , the degree deg.W 0/ is strictly smaller than the sum of a subset of the
coordinates of c depending on the position of W 0p with respect to F�.

There is a natural way to associate to a positive integer k and an integer vector � 2 Zr satisfying
�1C � � �C�r D 0 a line bundle L.kI�/ on P0.c/, in such a way that if c D �=k, then L.kI�/ is ample.
The parabolic Verlinde formula is the following expression for the Euler characteristic of the ample line
bundle L.kI�/: assume c D �=k is regular; then

(1) �.P0.c/;L.kI�//DNr;k �
X .�i/.

r
2/ exp.2�iy� � x/Q

i<j .2 sin�.xi � xj //2g�1
;

where Nr;k D r.r.kC r/r�1/g�1, y�D �C 1
2
.r �1; r �3; : : : ; 1� r/, and the sum is taken over the finite

set of those points in the interior of the parallelopiped

fx D .x1; x2; : : : ; xr D 0/ j 0 < xi � xiC1 < 1 for i D 1; : : : ; r � 1g;

which satisfy the conditions

� .kC r/x 2 Zr , and

� xi � xj … Z for 1� i < j < r .

Remark 1.1 This finite set is a set of lattice points in the interior of .r � 1/Š identical simplices. (These
are the orange-colored points in the rhombus on Figure 1.) By symmetrizing with respect to the group of
permutations of the r coordinates, one obtains the same function on each of these simplices. Using the
Weyl character formula, this allows one to rewrite (1) in a more familiar form as

�.P0.c/;L.kI�//D .r.kC r/
r�1/g�1 �

X ��.x/Q
i<j .2 sin�.xi � xj //2g�2

;

where �� is the character of the irreducible SU.r/–representation of highest weight �, and the sum
is now taken over the lattice points of the form .k C r/x 2 Zr in the interior of a single simplex
fx D .1 > x1 > x2 > � � �> xr�1 > xr D 0/g.

Remark 1.2 Equality (1) remains valid in greater generality, for certain cases when �=k is nonregular.
This slightly more technical statement will be given in Theorems 4.7 and 4.8.

Notation We denote the discrete sum in (1) depending on k; �; r and g by Ver.k; �/. In what follows,
the shift 1

2
.r � 1; r � 3; : : : ; 1� r/ will be denoted by �, and thus we have y�D �C �.

Equality (1), the parabolic Verlinde formula, has attracted a lot of attention over the years, and there are a
number of different proofs. There is a generalization of this formula associated to a simply connected
compact Lie group, and the form presented here corresponds to the case of the group SU.r/.

Geometry & Topology, Volume 28 (2024)



The parabolic Verlinde formula: iterated residues and wall-crossings 2261

.0; 1;�1/.1;�1; 0/

.0; 0; 0/

.2; 2;�4/.4;�2;�2/

.0; 0; 0/

.1; 0; 0/ .1; 1; 0/

.2; 1; 0/

Figure 1: The set of � vectors, left, and the finite set from (1), right, for k D 6, r D 3.

In this article, we give a novel proof of this result, which stands out with its technical simplicity. We
believe the methods and ideas described in the paper will have other applications in geometric invariant
theory and the study of moduli spaces.

Below, we give a quick sketch of the strategy of the proof, treating the example of the case of rank 3 in
Sections 1.2–1.4. Next, in Section 1.5, we give a short guide to the contents of the paper.

Our work has a close relationship with several earlier approaches, and we describe these links in Section 1.6

Acknowledgements The authors gratefully acknowledge the help and insights of Michael Thaddeus
at several stages of this work, as well as the advice and encouragement of Tamás Hausel and Michèle
Vergne. We had useful discussions with Frances Kirwan, Eckhard Meinrenken, Gábor Tardos and Chris
Woodward. This research was supported by SNF grant 175799, and the NCCR SwissMAP.

1.2 The residue formula

The proof is based on 3 ideas. We will follow the arguments below for the case r D 3. We thus fix an
integer k > 1 and an integer vector �D .�1 > �2 > �3/ such that �1C�2C�3 D 0 and �1��r < k.

We start with the study of the right-hand side of (1), which, for r D 3, may be written in the somewhat
simplified form

Ver.k; �/DN3;k
X

0<n2<n1<kC3

�2 sin 2�
.�1C 1/n1C�2n2

kC 3�
8 sin�

n1�n2

kC 3
sin�

n2

kC 3
sin�

n1

kC 3

�2g�1 ;
where n1 and n2 are integers.

Remark 1.3 This is essentially the form of the formula given in Remark 1.1. Since we are considering
representations with trivial central character, in this case, �� is 3 identical sine terms, and this factor of 3
is hidden in N3;k .

Geometry & Topology, Volume 28 (2024)



2262 András Szenes and Olga Trapeznikova

Using Theorem 4.7 and Remark 4.6 one can show that

Ver.k; �/D
�
pC.kI�/ if �2 > 0;
p�.kI�/ if �2 < 0;

where pC and p� are two polynomials, given by the right-hand sides of the expressions of Example 4.11
on page 2278. We note two properties of p˙.k; �/:

(A) The wall-crossing difference p��pC has a relatively simple form (cf Example 4.15 with �1C�3
replaced by ��2):

p�.kI�/�pC.kI�/D Res
yD0

Res
xD0

.�3.kC 3/2/g � e.�1C1/x��2y

.1� ex.kC3//wˆ.x; y/2g�1
dx dy;

where wˆ.x; y/D 2 sinh
�
1
2
x
�
� 2 sinh

�
1
2
y
�
� 2 sinh

�
1
2
.xCy/

�
.

(B) An easy calculation via substitution shows that for any permutation on three elements � 2†3, our
polynomials have the symmetries

pC.kI � ��C �1Œk�/D .�1/
�pC.kI�C �1Œk�/;(2)

p�.kI � ��C ��1Œk�/D .�1/
�p�.kI�C ��1Œk�/;(3)

where

�1Œk�D
1
3
k.1; 1;�2/C .0; 1;�1/ and ��1Œk�D

1
3
k.2;�1;�1/C .1;�1; 0/:

1.3 Wall-crossings in moduli spaces

Now consider the left-hand side of (1). It is easy to check that the set of isomorphism classes of parabolic
bundles in P0.c/ remains unchanged as long as c2 does not change sign. Hence, effectively, we have two
moduli spaces P0.>/ and P0.</, corresponding to the two chambers separated by the red (c2 D 0) line
in Figure 1. Introduce the notation

qC.kI�/D �.P0.>/;L.kI�// and q�.kI�/D �.P0.</;L.kI�//

for the generalized Hilbert polynomials of these two spaces.

In Section 5, we derive a simple formula (31) for the wall-crossing difference in geometric invariant theory.
The formula has the form of a residue of an equivariant integral, taken with respect to the equivariant
parameter. In our case, the space on which we integrate is the space of rank-3 parabolic bundles which
split into a direct sum of a rank-2 and a rank-1 bundle. This equivariant integral may be evaluated using
induction on the rank (cf the detailed calculation in Example 6.15 on page 2295), and the result is

(4) q�.kI�/� qC.kI�/D Res
uD0

Res
zD0

.�3.kC 3/2/g � e�1zC�2uCz

�wˆ.z;�u/2g�1.1� e.kC3/z/
dz du;

where u plays the role of the equivariant parameter, the generator of H�C�.pt/. This iterated residue
coincides with the expression above after changing .z; u/ to .x;�y/, and thus we have

(5) pC�p� D qC� q�:

Geometry & Topology, Volume 28 (2024)



The parabolic Verlinde formula: iterated residues and wall-crossings 2263

1.4 Hecke correspondences, Serre duality and the symmetry argument

Hecke correspondences between moduli spaces of bundles of different degrees were introduced by
Narasimhan and Ramanan in [19]. In Section 7 of our paper, we describe a “tautological” variant of
this construction, which identifies the same space with several moduli spaces of parabolic bundles with
different degrees and weights. Using this construction we can fiber our two moduli spaces, P0.>/ and
P0.</ over the moduli spaces of stable bundles (without parabolic structure) of degrees 1 and �1:

Flag3! P0.</!N�1 and N1 P0.>/ Flag3;

where the fibers are full flags of 3–dimensional vector spaces. Serre duality applied to a Flag3–bundle
implies a †3–antisymmetry of the Euler characteristics of line bundles on this space, and after careful
identification of these bundles, we derive the same symmetry properties for the functions q˙ as we did
for the polynomials p˙: qC.kI�/ satisfies (2), while q�.kI�/ satisfies (3).

The final argument is elegant: we can rearrange equation (5) describing the equality of wall-crossings as

pC� qC D p�� q�;

and we introduce the notation ‚.kI�/ for this polynomial. Then ‚ satisfies both (2) and (3), and thus it
is anti-invariant with respect to an affine Weyl group action in the plane for each fixed k. This implies
that ‚.kI�/ vanishes and this completes the proof.

1.5 Contents of the paper

There are a number of complications which arise when r > 3. We will highlight these in this section, and
also give a brief guide to the contents of the paper.

We start with a quick introduction into the theory of parabolic bundles in Section 2. Here we describe the
line bundles we are considering, as well as the chamber structure of the space of parabolic weights induced
by the stability condition. The combinatorics of the iterated residue formulas mentioned in Section 1.2
above is considerably more complicated in the higher rank case, and is best treated using the notion of
diagonal bases of hyperplane arrangements introduced in Szenes [23]; we review this construction in the
special case of the Ar root arrangement in Section 3.

Using this notion, in Section 4, we present a residue formula for the Verlinde sums on the right-hand side
of (1) obtained in Szenes [24] (Theorems 4.4 and 4.7). It turns out that because of a standard �–shift type
effect in the theory, this residue formula does not have a manifestly polynomial form on our chambers,
and thus, we formulate our main result, Theorem 4.8 in two parts: in part (I) we state the equality of the
Euler characteristics of line bundles with a modified residue formula, which is manifestly polynomial
on our chambers, and in part (II) we state the equality of the modified formula with the original residue
formula from [24]. Part (II) is proved in Section 10, while the proof of part (I) takes up the rest of the
paper.

Geometry & Topology, Volume 28 (2024)



2264 András Szenes and Olga Trapeznikova

At the end of Section 4, we present our wall-crossing formula for Verlinde sums in Proposition 4.18,
which uses in an essential manner the yoga of diagonal bases; cf property (A) above for the case of r D 3.

The geometric part of our work starts in Section 5, where we derive a simple general result, formula (31),
for wall-crossings in GIT. We apply this result to parabolic moduli spaces in Section 6 and, using induction
on the rank, obtain Theorem 6.13, the higher-rank version of formula (4) above.

It is downhill from here: in Section 7 we describe the tautological Hecke correspondences we need in
several places in the paper, and in Section 8 we derive the Weyl-symmetries of the polynomials q˙, and
finish the proof along the lines sketched above.

We are essentially done, but we hit a snag when checking the beginning of our induction on the rank: our
argument does not work for r D 2. Roughly, the reason for this is that we need our simplex of parabolic
weights to have at least two regular vertices, and for r D 2, we have only one. The way out is to consider
the moduli space with two punctures and then all the pieces fall in place. This argument is carried out in
Section 9.

1.6 Historical remarks

There is a long list of proofs of the Verlinde formula, and we cannot do justice to all the approaches in
this short introduction. We will thus focus on the historical lineage of our paper, and the works that are
closest in spirit to what we do; see Sorger [22] for a more comprehensive overview.

The proofs of the Verlinde formula fall in two categories: proofs of the fusion rules and proofs that find
some interpretation of the “Fourier-transformed” discrete sum on the right-hand side of (1); our work
belongs to this second group. Another line of division concerns the model which one uses for the moduli
spaces: via the Narasimhan–Seshadri correspondence, the moduli spaces of vector bundles may equally
be presented as symplectic manifolds of certain types of flat connections on punctured Riemann surfaces,
and this opens the way of using the methods of symplectic geometry. While these symplectic approaches
lead to results equivalent to the ones coming out of the algebrogeometric setup, the fields of applications
of the two approaches seem to be very different.

The idea of proving the Verlinde formula via wall-crossings appeared in the seminal paper of Michael
Thaddeus [27]. He used a geometric approach and managed to prove the Verlinde formula in rank 2 by
crossing walls in the moduli of stable pairs. The master space construction, which plays a central role in
our paper, also first appeared in his work [28]. In a sense, our paper may be thought of as the completion
of his program.

A paper closely related to our work is that of Jeffrey and Kirwan [13], which approaches the problem
from a symplectic/cohomological point of view (see also Jeffrey and Kirwan [12]), and has a somewhat
different angle form ours. This paper also uses the residue calculus introduced in [23; 24], but not quite as
consistently as our work, and the parabolic case was not resolved from this point of view; see Jeffrey [11].
The geometric model used in [13] to represent the moduli spaces as quotients is rather complicated.

Geometry & Topology, Volume 28 (2024)



The parabolic Verlinde formula: iterated residues and wall-crossings 2265

In a comprehensive paper covering the case of all compact groups, Bismut and Labourie [5] used a
differential-geometric approach to find the generating function for the parabolic Verlinde formula. This
work was the motivation for the residue formula in [24], which is also used in the present paper.

In a remarkable series of papers Alekseev, Meinrenken and Woodward [1], again approaching the subject
from the symplectic point of view, gave a direct proof of (1), using reduction in infinite dimensions. A
general approach related to twisted K-theory was introduced by Meinrenken in [16]. We should also
mention recent work by Loizides and Meinrenken in [14], which employs the residue techniques of [24].

Finally, we drew motivation from the paper of Teleman and Woodward [26], where the Verlinde formula
is put in the framework of localization in K-theory of stacks. This very impressive work is probably
accessible to a small number of experts only. In the present article we demonstrate, in particular, that the
sophisticated tools employed in [26], at least in this instance, may be replaced by a simple combinatorial
device.

In summary, the virtues of this article are:

� A proof of the parabolic Verlinde formula which needs as background only the basics of GIT.

� The discrete sum, and the generating function giving the coefficients of the Hilbert polynomial are
treated at the same time, and the �–shift is dealt with explicitly.

� A few technical innovations, such as an efficient wall-crossing formula in GIT (Theorem 5.7) and the
tautological Hecke correspondences, keep the arguments simple, and the technical difficulties related
to infinite-dimensional quotients or singularities, in our approach, are absorbed by a combinatorial
device: the theory of iterated residues.

2 Parabolic bundles

2.1 Definitions

Let C be a smooth complex projective curve of genus g � 2, and fix a point p 2 C .

� A parabolic bundle on C is a vector bundle W of rank r with a full flag F� in the fiber over p,

Wp D Fr © � � �© F1 © F0 D 0;

and parabolic weights c D .c1; : : : ; cr/ assigned to Fr ; Fr�1; : : : ; F1, satisfying the conditions

c1 > c2 > � � �> cr and c1� cr < 1:

� The parabolic degree1 and the parabolic slope of W are defined as

par degW D degW �
rX
iD1

ci and par slopeW D
par degW

rankW
:

1For technical reasons, we have chosen a sign convention opposite to that in the majority of treatments in the literature.

Geometry & Topology, Volume 28 (2024)



2266 András Szenes and Olga Trapeznikova

� A morphism f WW !W 0 of parabolic bundles is a morphism of vector bundles satisfying fp.Fi /�
F 0j�1 if cr�iC1 < c0r�jC1. In particular, an endomorphism of a parabolic bundle W is a vector
bundle endomorphism preserving the flag F�.

� Denote by ParHom.W;W 0/ the sheaf of parabolic morphisms from W to W 0. Then there is a short
exact sequence of sheaves

(6) 0! ParHom.W;W 0/! Hom.W;W 0/! Tp! 0;

where Tp is a torsion sheaf supported at p. The rank of Tp is the number of pairs .i; j /, such that
ci < c

0
j ; cf Boden and Hu [6].

If W 0 � W is a subbundle of W , then both W 0 and the quotient W=W 0 inherit a parabolic structure
from W in a natural way; cf Mehta and Seshadri [15, Definition 1.7].

� A parabolic bundleW is stable of weight c if any proper subbundleW 0�W satisfies par slope.W 0/<
par slope.W /; and W is semistable of weight c, if the inequality is not strict.

Remark 2.1 The parabolic stability condition depends on the parabolic weights only up to adding the
same constant to all weights ci .

2.2 Construction of the moduli spaces

We start with a quick review of the construction of Mehta and Seshadri [15] of the moduli space of stable
parabolic bundles. It follows from Remark 2.1 that, without loss of generality, we can assume that the
parabolic weights of a rank-r degree-d bundle belong to the simplex

�d D

�
.c1; c2; : : : ; cr/

ˇ̌̌
c1 > c2 > � � �> cr ; c1� cr < 1;

X
i

ci D d

�
:

Definition 2.2 We will call a vector c D .c1; : : : ; cr/ 2 Rr such that
P
i ci 2 Z regular if for any

nontrivial subset ‰ � f1; 2; : : : ; rg, we have
P
i2‰ ci … Z.

Now choose an integer d � 0 such that H 1.W / D 0 and W is generated by global sections for any
rank-r degree-d semistable parabolic bundle W of parabolic degree 0. Put N D r.1�g/C d .

� Consider the Grothendieck quot scheme Quot.N; r/ [9] parametrizing quotients ON�W , where
W is a coherent sheaf of degree d and rank r .

� This space is endowed with a universal bundle UQ, and a generically free action of the group
G D PSL.N / which does not, however, lift to UQ.

� Let LFQuot� Quot.N; r/ be the open subscheme consisting of locally free quotients W such that
the induced map H 0.ON /!H 0.W / is an isomorphism.

Geometry & Topology, Volume 28 (2024)
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� Denote by XQ the total space of the flag bundle Flag.UQp/ on LFQuot�p. This space is endowed
with the flag of vector bundles Fl1 � � � � � Flr�1 � Flr D UQp.

� Let k 2 Z and .�1; : : : ; �r/ 2 Zr be such that
Pr
iD1 �i D kd , and consider the line bundle

L.kI�/D det.UQp/
k.1�g/

˝ det.��UQ/�k˝ .Flr=Flr�1/�1 ˝ � � �˝ .Fl1/�r

on XQ, which does carry a G–linearization (lift of the G–action from XQ).

� Finally, assume c 2�d is regular (cf Definition 2.2 above) and define zPd .c/, the moduli space of
stable parabolic weight-c vector bundles on C , as the GIT quotient XQ==cG of XQ with respect
to any linearization L.kI�/ such that �=k D c.

Theorem 2.3 [21] Assume that c 2�d is a regular weight vector. Then the moduli space zPd .c/ is a
smooth projective variety of dimension r2.g�1/C

�
r
2

�
C1, whose points are in one-to-one correspondence

with the set of isomorphism classes of stable parabolic bundles of weight c (cf Section 2.1).

Remark 2.4 Via the determinant map, the moduli space zPd .c/ fibers over the Jacobian of degree-d line
bundles with isomorphic fibers, and in this paper, we will focus on the moduli space

Pd .c/D fW 2 zPd .c/ j detW ' O.dp/g;

which is smooth, projective and has dimension .r2� 1/.g� 1/C
�
r
2

�
.

Remark 2.5 Tensoring with the line bundle O.mp/ induces an isomorphism

˝O.mp/ W Pd .c/! PdCrm.c/;

so the moduli spaces Pd .c/, essentially, depend only on d modulo r .

2.3 The Picard group of Pd.c/

For a regular c 2�d , there exist universal bundles U over Pd .c/�C endowed with a flag F1 � � � � �

Fr�1�Fr DUp , and satisfying the obvious tautological properties. In general, such universal bundles U ,
and hence the flag line bundles FiC1=Fi , are unique only up to tensoring by the pullback of a line bundle
from Pd .c/. Nevertheless, we have the following statement.

Lemma 2.6 For k 2 Z and �D .�1; : : : ; �r/ 2 Zr such that
Pr
iD1 �i D kd , the line bundle

(7) Ld .kI�/D det.Up/k.1�g/˝ det.��U/�k˝ .Fr=Fr�1/
�1 ˝ � � �˝ .F1/

�r

on Pd .c/ is independent of the choice of the universal bundle U .

Proof Note that tensoring U with a pullback ��L of a line bundle L on P0.c/ changes det.Up/ by Lr

and det.��U/ by Ld�r.g�1/.

Remark 2.7 The line bundle L.kI�/ defined in Section 2.2 descends to the line bundle Ld .kI�/ on the
GIT quotient Pd .c/.

Geometry & Topology, Volume 28 (2024)



2268 András Szenes and Olga Trapeznikova

Notation We will say that U is normalized if the line subbundle F1 � Up is trivial. The parameter k is
often called the level.

Let ! 2H 2.C / be the fundamental class of our curve C , and e1; : : : ; e2g a basis of H 1.C / such that
eieiCg D ! for 1� i � g, and all other intersection numbers eiej equal 0. For a class ı 2H�.P �C/
of a product, we introduce notation for its Künneth components (cf [32]):

(8) ı D ı.0/˝ 1C
X
i

ı.ei /˝ ei C ı.2/˝! 2

2M
iD0

H��i .P /˝H i .C /:

We will need the following formula.

Lemma 2.8 The equality 2 c1.Ld .r I d; : : : ; d // D c2.End0.Ud //.2/ holds , where End0 stands for
traceless endomorphisms.

Proof Taking the first Chern class on both sides of (7), we obtain

c1.Ld .r I d; : : : ; d //D r.1�g/c1.Ud /.0/� rc1.��.Ud //C dc1.Ud /.0/;

where we evaluate the middle term using the Grothendieck–Riemann–Roch theorem, and c1.Ud /.2/ D d :

c1.��.Ud //D ch1.�Š.Ud //D �� ch2.Ud /� .g� 1/c1.Ud /.0/

D c1.Ud /.0/d � c2.Ud /.2/� .g� 1/c1.Ud /.0/:

This leads to the formula

c1.Ld .r I d; : : : ; d //D�d.r � 1/c1.Ud /.0/C rc2.Ud /.2/;

which is easily seen to equal 1
2
c2.End0.U0//.2/.

2.4 Walls and chambers

The central question we address in this paper is how the moduli space of stable parabolic bundles depends
on the choice of parabolic weights. Let W be a vector bundle of degree d with a fixed full flag F� of the
fiber Wp , and let us try to determine the structure of the set of parabolic weights c 2�d for which W is
stable. Clearly, for this we need to study the set of parabolic weights c D .c1; c2; : : : cr/ for which one
can find a proper subbundle W 0 �W such that

(9) par slope.W 0/D par slope.W /D 0:

A subbundle W 0 �W determines a short exact sequence of parabolic bundles

0!W 0!W !W 00! 0;

and the position of W 0p with respect to F� gives rise to a nontrivial partition of the set f1; 2; : : : ; rg into
two sets, …0 and …00, cf [15, Definition 1.7]; the parabolic weights of W 0 and W 00 are then c0 D .ci /i2…0
and c00D .ci /i2…00 , correspondingly. The slope condition (9) translates into a pair of equivalent equalities

(10) d 0 D
X
i2…00

ci and d 00 D
X
i2…00

ci ;
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.0; 0; 0/

�
2
3
;�1

3
;�1

3

� �
1
3
; 1
3
;�2

3

�
P0.>/P0.</

Figure 2: The space of admissible parabolic weights for rank r D 3.

where d 0 and d 00 D d � d 0 are the degrees of W 0 and W 00, respectively. This means that the critical
values of c 2�d for which (9) is possible lie on the union of affine hyperplanes (or walls) defined by the
equations X

i2…0

ci D l; where l 2 Z, and …0 � f1; 2; : : : ; rg is nontrivial.

As only finitely many of these walls intersect the simplex �d , their complement is a finite union of open
polyhedral chambers. It is easy to verify that as we vary c inside one of these chambers, the stability
condition, and thus the moduli space Pd .c/, does not change.

Example 2.9 Consider the case of rank-3 degree-0 stable parabolic bundles with parabolic weights
c D .c1; c2; c3/ 2�0. The set �0 is an open triangle with vertices .0; 0; 0/;

�
2
3
;�1

3
;�1

3

�
and

�
1
3
; 1
3
;�2

3

�
(see Figure 2), and there exist only two essentially different stability conditions. The wall separating the
two regimes is given by the condition c2 D 0. We write P0.>/ for the moduli space P0.c1; c2; c3/ with
c2 > 0, and P0.</ for P0.c1; c2; c3/ with c2 < 0.

3 Wall-crossing in the Verlinde formula

A key component of our approach is the notion of diagonal basis and the associated generalized Bernoulli
polynomials introduced for general hyperplane arrangements in [23]. Using this formalism, we will be
able to formulate our main result, Theorem 4.8.

3.1 Notation

We begin by setting up some extra notation for the space of parabolic weights introduced in Section 2.1.

� Let V DRr=R.1; 1; : : : ; 1/ be the .r�1/–dimensional vector space, obtained as the quotient of Rr .
The dual space V � is then naturally represented as

V � D faD .a1; : : : ; ar/ 2Rr j a1C � � �C ar D 0g:

Let x1; x2; : : : ; xr be the coordinates on Rr ; given a 2 V �, we will write ha; xi for the linear
function

P
i aixi on V . We will sometimes identify this linear function with the vector a itself.
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� The vector space V � is endowed with a lattice ƒ of full rank:

ƒD f�D .�1; : : : ; �r/ 2 Zr j �1C � � �C�r D 0g:

In particular, for 1� i ¤ j � r , we can define the element ˛ij D xi � xj in ƒ.

� Our arrangement is the set of hyperplanes fxi D xj g � V , with 1� i < j � r . It will be convenient
for us to think about this set as the set of roots of the Ar�1 root system with the opposite roots
identified:

ˆD f ˙˛ij j 1� i < j � rg:

Note that V � carries a natural action of the permutation group †r , permuting the coordinates xj
for j D 1; : : : ; r , and this action restricts to an action on ˆ as well.

� The basic object of the theory is an ordered linear basis B of V � consisting of the elements of ˆ.
Let us denote the set of these objects by B:

BD fB D .ˇŒ1�; : : : ; ˇŒr�1�/ 2ˆr�1 jB a basis of V �g:

� For B 2B, we will write Fl.B/ for the full flag

ŒV � D hˇŒ1�; ˇŒ2�; : : : ; ˇŒr�1�ilin; : : : ; hˇ
Œr�1�; ˇŒr�2�ilin; hˇ

Œr�1�
ilin�;

where h � ilin stands for linear span.

3.2 Diagonal bases

Definition 3.1 � For � 2†r�1 and B 2B, we will write B 	 � for the permuted sequence

.ˇŒ�.1/�; ˇŒ�.2/�; : : : ; ˇŒ�.r�1/�/:

� For two elements B;C 2B we will write B aC if for any � 2†r�1, we have Fl.B	 �/¤ Fl.C /.

� A subset D�B of .r � 1/Š elements is called a diagonal basis if for any two different elements
B;C 2 D, we have B a C .

Remark 3.2 This definition is motivated by a construction in [23], which associates to each diagonal
basis D a pair of dual bases of the middle homology and the cohomology of the complexified hyperplane
arrangement on V ˝R C defined by ˆ. The dimension of these (co)homology spaces is .r � 1/Š.

3.3 Combinatorial interpretation

This notion has the following purely combinatorial form.

� We can think of ˆ as the edges of the complete graph on r vertices.

� Then the set B may be thought of as the set of spanning trees of this graph with edges enumerated
from 1 to r � 1. We will introduce the notation

B 7! Tree.B/
for this ordered tree.
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1

2

3

1 2

4 3

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Figure 3: B D .˛1;3; ˛1;2; ˛3;4/.

� In this language, the flag Fl.B/ corresponds to a sequence of r nested partitions of the vertices
(starting with the total partition into one-element sets and ending with the trivial partition) associated
to Tree.B/, the j th partition being the one induced by the first j � 1 edges. For example, the
ordered tree Œ.2; 4/.1; 3/; .1; 2/� induces the same sequence of partitions as Œ.1; 4/; .2; 3/; .1; 2/�;
see Figure 3.

� A diagonal basis D is then a set of .r � 1/Š ordered trees such that the .r � 1/Š partition sequences
obtained by reordering the edges of any one of the ordered trees are different from .r � 1/Š� 1

sequences of partitions obtained from the remaining elements of D.

3.4 Examples

There are essentially two known constructions of diagonal bases [23].

I. The Hamiltonian basis For each permutation � 2†r , we can define

(11) �.B/D .˛�.r�1/;�.r/; ˛�.r�2/;�.r�1/; : : : ; ˛�.1/;�.2// 2B:

The set Hm D f�.B/ j � 2†r ; �.1/Dmg is then a diagonal basis. In the combinatorial description, this
diagonal basis corresponds to the set of Hamiltonian paths starting at vertex m, and endowed with the
reversed natural ordering of edges.

Example 3.3 Here are some examples of Hamiltonian bases:

� For r D 3: H1 D f.˛
2;3; ˛1;2/; .˛3;2; ˛1;3/g.

� For r D 4: H1 D
˚
.˛3;4; ˛2;3; ˛1;2/; .˛2;4; ˛3;2; ˛1;3/; .˛4;3; ˛2;4; ˛1;2/; .˛3;2; ˛4;3; ˛1;4/,

.˛4;2; ˛3;4; ˛1;3/; .˛2;3; ˛4;2; ˛1;4/
	
.

II. The no-broken-circuit (nbc) bases Let � W
˚
1; : : : ; 1

2
r.r�1/

	
!ˆ be a total ordering, which we will

represent as an order relation
�
< on ˆ. To this ordering, one can associate the so-called noncommutative

no-broken-circuit diagonal basis [23]

DŒ��D
˚
.ˇŒ1�; : : : ; ˇŒr�1�/ 2B j ˇŒ1�

�
< � � �

�
<ˇŒr�1�; and

˛ij
�
<ˇŒm� D) .˛ij ; ˇŒm�; : : : ; ˇŒr�1�/ linearly independent

	
:
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Example 3.4 Let ˛1;3
�
<˛1;4

�
<˛2;3

�
<˛2;4

�
<˛1;2

�
<˛3;4 be the ordering of the positive roots for rank

r D 4. Then

DŒ��D
˚
.˛1;3; ˛1;2; ˛3;4/; .˛1;3; ˛1;4; ˛2;3/; .˛1;3; ˛1;4; ˛2;4/; .˛1;3; ˛1;4; ˛1;2/;

.˛1;3; ˛2;3; ˛3;4/; .˛1;3; ˛2;3; ˛2;4/
	

is the corresponding no-broken-circuit diagonal basis.

Remark 3.5 The hyperplane arrangement induced by ˆ is invariant under the natural action of †r on
the vector space V . It follows easily from the definition that if D is a diagonal basis and � 2 †r is a
permutation, then �.D/ is also a diagonal basis.

4 The residue formula and the main result

In this section, we recall the residue formula from [23] for Ver.k; �/, the discrete Verlinde sum on the
right-hand side of (1). The key feature of this formula is that it exposes the piecewise polynomial nature
of Ver.k; �/, which is key for our wall-crossing analysis. While the objects are relatively simple, the
formalism is heavy with notation, so we begin by describing the one-dimensional case.

4.1 The residue formula in dimension 1

The story begins with the Fourier series

(12)
1

.2�i/m

X
n2Zn0

exp.2�ian/
nm

for m� 2, which is a periodic, piecewise polynomial function given by the formula

Res
xD0

exp.fagx/
1� exp.x/

dx

xm
;

where fag is the fractional part of the real number a. The polynomial functions thus obtained on the
interval Œ0; 1� are called Bernoulli polynomials. The polynomial on the interval containing the real number
c 2R nZ is given by

Res
xD0

exp..a� Œc�/x/
1� exp.x/

dx

xm
;

where Œc� is the integer part of c.

Now we pass to a trigonometric version of this formula, calculating finite sums of values of rational
trigonometric functions over rational points with denominators equal to an integer k.

We thus replace the rational function x�m by the (hyperbolic) trigonometric function

f .x/D
�
2 sinh

�
1
2
x
���2m

;
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and introduce an integer parameter � related to a via ka D �. We consider the sum of values of the
function f over a finite set of rational points in analogy with (12),

k�1X
nD1

exp.2�i�n=k/
.2 sin.�n=k//2m

;

where �; k 2 Z. This sum is again periodic in � mod k, and for m� 2 we can evaluate it via the residue
theorem as

.�1/m Res
zD1

zkf�=kg

.z1=2� z�1=2/2m
�

k dz

z.1� zk/

zDexp.x=k/
D .�1/m Res

xD0

exp.f�=kg � x/
1� exp.x/

�f
�
x

k

�
dx:

Again, this is a piecewise polynomial function in the pair .k; �/, which is polynomial in the cones bounded
by the lines �D qk for q 2 Z.

Note that in these calculations, a key role is played by the Bernoulli operator

(13) f 7! BerŒf �.a/D
f .x/ exp.ax/ dx
1� exp.x/

;

which transforms meromorphic functions in the variable x into polynomials in a, and plays the role of a
generalized Fourier operator.

4.2 The multidimensional case

We return to the setup of Section 3 with the vector space V endowed with the hyperplane arrangement ˆ.
We introduce the notation Fˆ for the space of meromorphic functions defined in a neighborhood of 0 in
V ˝R C with poles on the union of hyperplanes[

1�i<j�r

fx j h˛ij ; xi D 0g:

In particular, the function
wˆ D

Y
i<j

�
2 sinh.�.xi � xj //

�
is an element of Fˆ.

To write down our residue formula, we need a multidimensional generalization of the notions of integer
and fractional parts. Given a basis B D .ˇŒ1�; : : : ; ˇŒr�1�/ 2B of V �, and an element a 2 V �, we define
Œa�B and fagB to be the unique elements of V � satisfying

Œa�B D a�fagB 2ƒ and fagB 2

r�1X
jD1

Œ0; 1/ˇŒj �:

This notion naturally induces a chamber structure on V �: we will call a 2 V � regular if a is a point of
continuity for the functions a 7! Œa�B ; fagB for all B 2B, ie when fagB 2

Pr�1
jD1.0; 1/ˇ

Œj �. Now, for
regular a and b we define the equivalence relation

(14) a � b when Œa�B D Œb�B for all B 2B:

The equivalence classes for this relation form a ƒ–periodic system of chambers in V �.
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S
.f
2
g
;f
1
;3
g
/;
0 S

.f1;2g;f3g/;1S .f1
g;f
2;3
g/;
1

.0; 0; 0/

.0; 1;�1/.1;�1; 0/

.1; 0;�1/

P0.>/P0.</

S .f1
g;f
2;3
g/;
0

S
.f1;2g;f3g/;0

Figure 4: Chambers for rank r D 3.

Convention We will think of a partition… of f1; 2; : : : ; rg into two nonempty sets as an ordered partition
…D .…0;…00/ such that r 2…00, and we will call these objects nontrivial partitions for short.

The following statement is straightforward.

Lemma 4.1 The equivalence classes of the relation � are precisely the chambers in V � created by the
walls parametrized by a nontrivial partition …D .…0;…00/ of the first r positive integers , and an integer l :

(15) S…;l D

�
c 2 V �

ˇ̌̌ X
j2…0

cj D l

�
:

Remark 4.2 The walls given in (10) are precisely the same as the ones given in (10) for the case
d D 0, where they play the role of walls separating the chambers of parabolic weights c in which the
parabolic moduli spaces P0.c/ are naturally the same. This “coincidence” is precisely what we need for
our comparative wall-crossing strategy. There is a small terminological issue here: the “chambers” in
Section 2.4 are the intersections of the equivalence classes of � defined above with the open simplex
�0

def
D �, where the parabolic weights live; see Figures 2 and 4. We will use the term “chamber” in both

cases if this causes no confusion.

Each element B D .ˇŒ1�; : : : ; ˇŒr�1�/ 2B defines an iterated version of the Bernoulli operator (13) on
the space of functions Fˆ: interpreting the elements a; ˇŒj � 2 V � as linear functions on V , we define

(16) iBer
B
Œf .x/�.a/D

1

.2�i/r�1

Z
Z.B/

f .x/ expha; xi d hˇŒ1�; xi ^ � � � ^ d hˇŒr�1�; xi
.1� exp.hˇŒ1�; xi// � � � .1� exp.hˇŒr�1�; xi//

;

where the naturally oriented cycle ZB is defined by

ZB D fv 2 V ˝R C j jhˇŒj �; xij D "j for j D 1; : : : ; r � 1g � V ˝R C n fwˆ.x/D 0g;

with real constants "j satisfying 0 � "r�1 � � � � � "1. Thus again, iBerB is a linear operator which
associates to a function in Fˆ a polynomial on V �.
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Remark 4.3 Let us make a small remark about the computational aspects of the operator iBerB. Denoting
the coordinate hˇŒj �; xi by yj for j D1; : : : ; r�1, and writing f and a in these coordinates: f .x/D yf .y/,
ha; xi D hya; yi, we can rewrite (16) as

iBer
B
Œf .x/�.a/D Res

y1D0
� � � Res
yr�1D0

yf .y/ exphya; yi dy1 ^ � � � ^ dyr�1
.1� exp.y1// � � � .1� exp.yr�1//

;

where iterating the residues here means that we keep the variables with lower indices as unknown
constants, and then use geometric series expansions of the type

1

1� exp.y1�y2/
D

y1�y2

1� exp.y1�y2/
�

1

y1�y2
D

y1�y2

1� exp.y1�y2/
�

1X
nD0

yn2

ynC11

:

4.3 Invariance of diagonal bases and the main results

Diagonal bases have the following key invariance property.

Theorem 4.4 [23] Let f 2 Fˆ, and c 2 V � be regular; let D be a diagonal basis of ˆ. Then the
functional

f 7!
X
B2D

iBer
B
Œf .x/�.a� Œc�B/

(see (16) above) transforming a meromorphic function f 2Fˆ into a polynomial in the variable a 2 V �

is independent of the choice of the diagonal basis D. In particular , for regular a 2 V �, the functional

(17) f 7!
X
B2D

iBer
B
Œf .x/�.fagB/

transforms f into a well-defined piecewise polynomial function on V �, which is polynomial in each
chamber.

As this functional is invariantly defined, it is not surprising that it is equivariant with respect to the
symmetries of our hyperplane arrangement. For � 2†r , we define, as usual

(18) � �f .x/D f .��1x/:

This convention is consistent with (11).

Lemma 4.5 Let f 2 Fˆ and � 2†r , and pick any diagonal basis D. ThenX
B2D

iBer
B
Œf .x/�.� � a� Œ� � c�B/D

X
B2D

iBer
B
Œ��1 �f .x/�.a� Œc�B/:

Proof Indeed, recall that � 2† takes a diagonal basis to another diagonal basis (see Remark 3.5), soX
B2D

iBer
B
Œf .x/�.� � a� Œ� � c�B/D

X
B2D

iBer
�B

Œf .x/�.� � a� Œ� � c��B/:
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Now we perform the linear substitution x D �.y/, and obtainX
B2D

iBer
�B

Œf .x/�.� � a� Œ� � c��B/D
X
B2D

iBer
B
Œ��1 �f .y/�.a� Œc�B/:

Remark 4.6 By picking the Hamiltonian diagonal basis H1 D f� �B0 j � 2 Stab.1;†r/g, we can turn
the argument in the proof above around, and obtain the formulaX
B2H1

iBer
B
Œf .x/�.a�Œc�B/D

X
�2Stab.1;†r /

iBer
B0
Œ� �f .x/�.� �a�Œ� �c�B/

D Res
y1D0

� � � Res
yr�1D0

X
�2Stab.1;†r /

� �f .y/ exph� �a�Œ� �c�B ; yi dy1^� � �^dyr�1
.1�exp.y1// � � � .1�exp.yr�1//

;

where
B0 D .y1 D xr�1� xr ; : : : ; yr�2 D x2� x3; yr�1 D x1� x2/ 2B:

Now we are ready to write down the residue formula for the Verlinde sums proved in [24, Theorem 4.2].
Recall that we denoted by Ver.k; �/ the finite sum on the right-hand side of (1).

Theorem 4.7 Let g � 1, k 2Z>0, � 2ƒ, and let D be any diagonal basis of ˆ. Introducing the notation
yk D kC r and y�D �C �, we have

(19) Ver.k; �/D zNr;k
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œyc̨�B/;

where zNr;k D .�1/.
r
2/.g�1/Nr;k (see (1)) and yc̨ 2 V � is a regular point in a chamber that contains y�=yk in

its closure.

Now, if we look at our main goal (1): proving the equality

(20) Ver.k; �/D �.P0.�=k/;L0.kI�//;

we discover a rather embarrassing mismatch. Both sides are piecewise polynomial functions; however,

� according to the HRR theorem, �.P.�=k/;L0.kI�// is polynomial on the cones over the equiva-
lence classes (see (14)) of �=k, while

� according to (19), Ver.k; �/ is polynomial on the cones over the equivalence classes of y�=yk,

and these conic partitions of f.k; �/ j �=k 2�g could clearly be different; see Figure 5 for a sketch of
this problem.

Thus for (1) to be true, some miracle needs to occur, and these miracles are well-known in the area of
“quantization commutes with reduction” [17; 29; 30; 25]. We will return to this problem in Section 10,
but for now, we will be satisfied to use (19) to write down a (conjectural for the moment) formula for
�.P0.�=k/;L0.kI�//, which is manifestly polynomial on the cones where �=k is in a fixed equivalence
class.
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�

k

1

�r

�r C 1

.0; 0/

� y�

�

k

y�

yk

Figure 5: The vector �=k is in the orange chamber, while y�=yk is in the green chamber.

Let us fix a regular c 2 � marking a particular chamber in �. The two cones f.kI�/ j �=k � cg and
f.kI�/ j y�=yk � cg intersect along an open cone (this cone is shaded in orange in Figure 5), and on this
intersection, the expression

(21)
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œ�=k�B/

coincides with the right-hand side of (19). As (21) is manifestly polynomial on each cone where �=k is
in a particular chamber in �, this expression will be then our main candidate for �.P0.�=k/;L0.kI�//.

Our plan is thus to split the proof of (20) into three parts: the first is equality (19), and the other two are
given in our main theorem below. We formulated all our statements in a manner that allows us to treat the
cases when �=k or y�=yk are on a boundary separating two of our chambers in �.

Theorem 4.8 Let � 2 ƒ and k 2 Z>0 be such that �=k 2 �. Let c̨ and yc̨ 2 � be regular elements ,
specifying two chambers in �, which contain �=k and y�=yk in their closures , correspondingly. Then for
any diagonal basis D, the following two equalities hold :

�.P0.c̨/;L.kI�//D zNr;k
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œc̨�B/;(I)

X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�4y�=yk� Œc̨�B/D

X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œyc̨�B/:(II)

Remark 4.9 Part (I) of the theorem implies that if �=k 2� is not regular, then

�.P0.c
C/;L.kI�//D �.P0.c

�/;L.kI�//

for regular c˙ 2� in two neighboring chambers that contain �=k in their closure; see Proposition 10.1
and Remark 10.4.
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Before we proceed, we formulate a mild generalization of part (I) of our theorem. As observed above, if
we fix a generic c 2�, and vary .�; k/ in such a way that �=k � c, then both sides of the equality (I) are
manifestly polynomial, and thus we can extend the validity of this equality as follows.

Corollary 4.10 Let c 2� be a regular element , which thus specifies a chamber in � and a parabolic
moduli space P0.c/ as well. Then for a diagonal basis D, an arbitrary weight � 2 ƒ, and a positive
integer k, we have

(22) �.P0.c/;L.kI�//D zNr;k
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œc�B/:

Example 4.11 Let us write down these formulas in case of r D 3 explicitly. Let D be the diagonal basis
from Example 3.3; then using Remark 4.6, we obtain

�.P0.</;L.kI�//D .�1/
g�1.3.kC 3/2/g Res

yD0
Res
xD0

e�1xC.�1C�2/yCxCy � e�1xC.�1C�3/yCx

.1� ex.kC3//.1� ey.kC3//wˆ.x; y/2g�1
dx dy;

�.P0.>/;L.kI�//D

.�1/g�1.3.kC 3/2/g Res
yD0

Res
xD0

e�1xC.�1C�2/yCxCy � e�1xC.�1C�3/yCxCy.kC3/

.1� ex.kC3//.1� ey.kC3//wˆ.x; y/2g�1
dx dy;

where wˆ.x; y/D 2 sinh
�
1
2
x
�
2 sinh

�
1
2
y
�
2 sinh

�
1
2
.xCy/

�
.

4.4 The walls

Our first step is to identify the wall-crossing terms of the residue formula (22), which originate in the dis-
continuities of the function c 7! fcgB . These discontinuities occur on “walls”: the affine hyperplanes (15).
The following is straightforward:

Lemma 4.12 Let S…;l be the wall defined by (15), and B D .ˇŒ1�; : : : ; ˇŒr�1�/ 2 B an ordered basis
of V �. Then , as a function of c, the fractional part function fcgB has a discontinuity at a generic point
of the wall S…;l exactly when Tree.B/ (see page 2270) is a union of a tree on …0, a tree on …00 (the
enumeration of the edges is irrelevant here) and a single edge (which we will call the link ) connecting …0

and …00.

Notation We will denote the element of B corresponding to this edge by ˇlink; this vector thus depends
on B and the partition ….

Proof We fix B, and note that for our purposes, c 2 S…;l will be considered generic if it belongs to only
this one wall in �; this is equivalent to the condition that the only nontrivial subsets of coordinates of c
which sum up to an integer are …0 and …00.

Note that an element

c D

r�1X
jD1

bjˇ
Œj �
2�

is a point of discontinuity of the fractional part function f � gB if and only if bj 2Z for some 1� j � r�1.

Geometry & Topology, Volume 28 (2024)



The parabolic Verlinde formula: iterated residues and wall-crossings 2279

Next, we express the coefficient bj via the coordinates of c: we show that for all 1� j � r � 1 we have

(23) bj D
X
i2‰j

ci for some subset ‰j � f1; : : : ; rg:

Now we orient the edges of Tree.B/ in such way that they are all directed “away” from the root vertex r ,
and, without loss of generality (recall that

P
ci D 0), we can assume that this orientation agrees with the

signs of the elements ˇŒj � 2B. It is easy to verify then that the subset

‰j D
˚
k 2 f1; : : : ; rg j the unique directed path in Tree.B/ from r to k contains the edge

corresponding to ˇŒj �
	

satisfies (23).

Hence we can conclude that if c 2 S…;l is generic and the coefficient bj is an integer, then necessarily
‰j D …

0, and thus …00 D f1; : : : ; rg n‰j , and cutting the edge corresponding to ˇŒj � from Tree.B/
results in two disjoint trees, on …0 and on …00, respectively.

Now choose two regular elements cC; c� 2 V � in two neighboring chambers separated by the wall S…;l ,
in such a way that

(24) ŒcC…0 �D l and Œc�…0 �D l � 1;

where
c…0

def
D

X
i2…0

ci ;

and, as usual, Œq� stands for the integer part of the real number q. Now introduce the notation

p˙.kI�/D zNr;k
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œc˙�B/

for the two polynomial functions in .k; �/ corresponding to cC and c�, respectively. We define the
wall-crossing term in our residue formula (22) as the difference between these two polynomials:

pC.kI�/�p�.kI�/:

Using Lemma 4.1 and (24), we obtain the following simple residue formula for this difference.

Lemma 4.13 Let .…; l/, cC and c� be as above , and let us fix a diagonal basis D�B. Denote by Dj…

the subset of those elements of D, which satisfy the condition described in Lemma 4.12. Then

(25) pC.k; �/�p�.k; �/D zNr;k
X

B2Dj…

iBer
B

��
1� exp.ˇlink.x//

�
w
1�2g
ˆ .x=yk/

�
.�=yk� ŒcC�B/;

where ˇlink is the “link” element of B (depending on … and B) defined after Lemma 4.12.

Remark 4.14 The multiplication by 1� exp.ˇlink.x// in (25) has the effect of canceling one of the
factors in the denominator in the definition (16) of the operation iBer.
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Example 4.15 Calculating the difference of two polynomials from Example 4.11, we obtain the wall-
crossing term for the rank-3 case:

p�.kI�/�pC.kI�/D .�3.kC 3/
2/g Res

yD0
Res
xD0

e�1xC.�1C�3/yCx

.1� ex.kC3//wˆ.x; y/2g�1
dx dy:

4.5 Wall-crossing and diagonal bases

Now we pass to the study of the combinatorial object Dj… defined in Lemma 4.13. One thing we will
discover is that even though each diagonal basis consists of .r � 1/Š elements and the right-hand side
of (25) does not depend on the choice of D, the number of elements in Dj… might vary with D.

First we look at the case of the Hamiltonian basis H1. Form now on, we will use the notation j…0j D r 0

and j…00j D r 00 for a nontrivial partition …D .…0;…00/— recall the convention r 2…00. The following
statement is easy to verify.

Lemma 4.16 Let …D .…0;…00/ be a nontrivial partition such that 1 2…0 (the other case is analogous).
Then

H1j…D f�.B/ j �.1/D 1 and �.…0/ 2…0g:

In particular ,
ˇ̌
H1j…

ˇ̌
D .r 0� 1/Š � r 00Š.

It turns out that for our geometric applications, instead of H1, we will need to choose a particular nbc basis,
where the ordering is chosen to be consistent with ….

To simplify our terminology, we will use the language of graphs and edges introduced in Section 3.3,
and we will think of ˛ij 2ˆ as an edge in the complete graph on r vertices. To define the ordering � ,
we need to choose an edge between …0;…00; the choice is immaterial, but for simplicity we settle for
m

def
D maxfi 2…0g and r 2…00, and set ˇlink D ˛

m;r to be the smallest element according to � .

The �–ordered list of edges thus starts with ˇlink, and then continues with the remaining r 0 � r 00� 1 edges
connecting …0 and …00. Next we list the 1

2
r 0.r 0� 1/ edges connecting vertices in …0 in any order, and

finally, we list the remaining edges, those connecting vertices in …00.

Notation We introduce the natural notation ˆ0 and ˆ00 for the Ar 0 and Ar 00 root systems corresponding
to …0 and …00, and we denote by DŒ��, D0Œ�� and D00Œ�� the diagonal nbc bases induced by the ordering �
on ˆ, ˆ0 and ˆ00, respectively.

The following is easy to verify.

Lemma 4.17 Given elements B 0 2 D0Œ�� and B 00 2 D00Œ��, we can define an element of DŒ�� as follows:
we start with ˇlink, then append B 0, and then continue with B 00. This construction creates a one-to-one
correspondence

(26) D0Œ���D00Œ��! DŒ��j…:

In particular ,
ˇ̌
DŒ��j…

ˇ̌
D .r 0� 1/Š � .r 00� 1/Š.
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Finally, putting Lemmas 4.13 and 4.17 together, we arrive at the following elegant statement.

Proposition 4.18 Let .…; l/, cC and c� be as in Lemma 4.13, and let D0 and D00 be diagonal bases of
ˆ0 and ˆ00, correspondingly. Then

(27) pC.kI�/�p�.kI�/D.kCr/ zNr;k
X

B02D0

X
B002D00

Res
ˇlinkD0

iBer
B0

iBer
B00

Œw
1�2g
ˆ .x=yk/�.y�=yk�ŒcC�B/ dˇlink;

where ResˇlinkD0 iBerB0 iBerB00 dˇlink is simply iBerB (see (16)) with B obtained by appending B 0, and
then B 00 to ˇlink, and with the factor .1� exphˇlink; xi/ removed from the denominator.

Remark 4.19 The expression

Res
ˇlinkD0

iBer
B0

iBer
B00

Œw
1�2g
ˆ .x=yk/�.y�=yk� ŒcC�B/ dˇlink

may equally be interpreted as follows. We write

ƒ 3 y�=yk� ŒcC�B DmlinkˇlinkCn
0
Cn00

according to the splitting of B, think of w.x=yk/ as a function in Fˆ00 with some fixed values of the
parameters from B 0 and ˇlink, and then calculate

iBer
B00

Œw
1�2g
ˆ .x=yk/�.n00/:

The result will be a rational function Q in the variables from B 0 and ˇlink, and we proceed to calculate
iBerB0 ŒQ�.n

0/ to obtain a function F in the variable ˇlink, and finally the answer is

Res
ˇlinkD0

exp.ˇlink/F.ˇlink/ dˇlink:

We observe that since the trees Tree.B 0/ and Tree.B 00/ are disjoint, the order of the application of the
operations iBerB0 and iBerB00 is immaterial.

5 Wall-crossing in master space

Master spaces were introduced by Thaddeus in [28] in order to understand the dependence of GIT
quotients on their linearizations. Following his footsteps, in this section we describe a simple but very
effective method to control the changes in the Euler characteristics of line bundles when crossing a wall
in the space of linearizations. (Similar results appeared in [8].)

5.1 Wall-crossing and holomorphic Euler characteristics

We begin by recalling the basic notions of geometric invariant theory.

Let X be a smooth projective variety over C, and G a reductive group acting on X . A linearization
of this action is a line bundle L on X with a lifting of the G–action to a linear action on L. An ample
linearization is G–effective if Ln has a nonzero G–invariant section for some n > 0; the space of such
linearizations ConeG.X/ is called the G–effective ample cone.
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For L 2 ConeG.X/, we define the invariant-theoretic quotient ML DX==
LG as the Proj of the graded

ring of invariant sections of the powers of L:

ML D Proj
M
n

H 0.X;Ln/G :

According to Mumford’s geometric invariant theory [18], there is a partition of X (depending on L)

(28) X DX sŒL�[X sssŒL�[XusŒL�

into the set of stable, strictly semistable, and unstable points such that there is a surjective map

.X sŒL�[X sssŒL�/=G!ML:

When X sssŒL� is empty, this map is a bijection, and the quotient ML DX
sŒL�=G is a smooth orbifold.

In [7], Dolgachev and Hu studied the dependence of the GIT quotient ML DX==
LG on L. They showed

that ConeG.X/ is divided by hyperplanes, called walls, into finitely many convex chambers such that
when L varies within a chamber, the partition (28) and thus the GIT quotient ML remains unchanged.
Moreover, an ample effective linearization lies on a wall precisely when it possesses a strictly semistable
point.

Now let us consider two neighboring chambers, with smooth GIT quotients MC and M�. We pick an
arbitrary linearization L of the G–action on X , which descends to MC and M�. This last condition
means that if S �G is the stabilizer of a generic point in X , then S acts trivially on the fibers of L. We
will call such linearizations descending.

Thus, given such a descending linearization L of the G–action on X , we obtain two line bundles: one
onMC and one onM�, which, by abuse of notation, we will denote by the same letter L. Via taking Chern
classes, this construction creates a correspondence between classes in H 2.MC;Z/ and H 2.M�;Z/,
which we will assume to be an isomorphism of free Z–modules. We will thus identify these lattices, and
introduce the notation � for them:

� DH 2.MC;Z/'H
2.M�;Z/:

The walls mentioned above can be thought of as hyperplanes in �R D �˝Z R.

Our goal in this section is to compare the holomorphic Euler characteristics �.MC;L/ and �.M�;L/,
which are given by the Hirzebruch–Riemann–Roch theorem:

�.M˙;L/D

Z
M˙

exp.c1.L//Todd.M˙/:

As this expression is manifestly polynomial in c1.L/, we obtain thus two polynomials on � , and our goal
is to calculate their difference, the wall-crossing term

(29) �.MC;L/��.M�;L/:
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5.2 The master space construction

To simplify our setup, we will make some additional assumptions.

Assumptions 5.1 (a) The generic stabilizer of X is trivial.

(b) Let LC and L� be two ample linearizations of the G–action on X from the adjacent chambers
corresponding to the quotients MC and M�. Without loss of generality, we can assume that the
linearization L0 D LC˝L� lies on the single wall separating the two chambers, and that the
interval connecting c1.LC/ and c1.L�/ in �R D �˝Z R does not intersect any other walls.

(c) Let X0 be the set of those semistable points x 2X ssŒL0� which are not stable for L˙:

X0 WDX ssŒL0� n .X
sŒLC�[X

sŒL��/

We assume that X0 is smooth, and that for x 2X0 the stabilizer subgroup Gx �G is isomorphic
to C�.

(d) Assume that there is a linearization EL of the G–action on X such that LC D L�˝ ELn for some
positive integer n, and such that for each x 2X0, the stabilizer subgroup Gx acts freely on ELx n 0.

Now we introduce the master space construction of Thaddeus [28]. Consider the variety Y D P .O˚ EL/,
which is a P1–bundle over X endowed with the additional C�–action .1; t�1/. As Y is a projectivization
of a vector bundle on X , it comes equipped with O.1/, which is the standard G �C�–equivariant line
bundle. To simplify our notation, we will denote the same way the linearizations of the G–action on X
and their pullbacks (with tautological G–action) to Y .

The master space Z then is the GIT quotient of Y with respect to the linearization L�.n/D L�˝O.n/:

Z D Y ==L�.n/G;

which inherits a C�–action from Y . Some additional notation:

� We denote this copy of C� by T .

� We denote the projection Y !X by � , and the quotient map Y s!Z by  .

� Introduce the notation Y.0 W � / and Y. � W 0/ for the two copies of X in Y , corresponding to the two
poles of the projective line; then Y is partitioned into three sets

Y D Y.0 W � /tY. � W 0/t ELı;

where ELı is the line bundle EL with the zero-section removed. We will write �ı for the restriction
of � to ELı. We collect our maps in the following diagram:

(30)
ELı Y D P .O˚ EL/� Y s Z

X

�ı
�
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Proposition 5.2 (i) There are embeddings

�� WM�!Z and �C WMC!Z

obtained as the quotients Y s\Y. � W 0/=G and Y s\Y.0 W � /=G, correspondingly.

(ii) The strictly semistable locus of Y with respect to the linearization L�.n/ is empty, and the GIT
quotient Z D Y s=G is smooth.

(iii) There is an embedding �0 W X0=G! Z, obtained via  .�ı�1.X0//. We denote the image of �0
by Z0.

(iv) The fixed point locus ZT is the disjoint union of �C.MC/, ��.M�/ and Z0.

Proof Statements (i)–(iii) follow from [28, 4.2, 4.3]. To prove (iv), first note that Y. � W 0/ and Y.0 W � /
are fixed by T , so we immediately obtain that M˙ �Z are fixed components. Also the G–action on Y
commutes with the T –action, so a point  .y/ 2  .��1ı .X// is fixed by T if and only if the T –orbit
T �y � ��1ı .X/ is contained in the G–orbit G �y � ��1ı .X/. Since T �y � ��1ı .x/ for some x 2X , we
need y 2 ��1ı .X0/. Moreover, for any y 2 ��1ı .x/ � ��1ı .X0/, T � y D ��1ı .x/ D Gx � y, so a point
 .y/ 2  .��1ı .X// is fixed by T if and only if  .y/ 2  .��1ı .X0//DZ0.

Construction Given a G–equivariant vector bundle E on X , we can construct a T –equivariant vector
bundle �.E/!Z on Z by first pulling E back from X to Y , and endowing the resulting bundle ��E
with the trivial action of T , and the action of G pulled back from X . We then obtain �.E/! Z by
descending ��E to Z.

Before we formulate our wall-crossing formula, we need one more ingredient: the identification of the
normal bundles of the fixed-point components of Z.

Lemma 5.3 (i) The normal bundle on the component MC of ZT is �. EL�1/jMC , and the normal
bundle of M� is �. EL/jM� .

(ii) Let x 2 X0, denote by Gx the stabilizer of x in the group G, and consider the point �0.x/ 2 Z0

(see Proposition 5.2(iii)). Then the normal vector space of Z0 �Z at the point �0.x/ is canonically
T –equivariantly isomorphic to the T –vector space ELıx�GxNxX

0, where NxX0 is the vector space
normal to X0 �X at x, and the T 'C�–action is induced by left multiplication by t�1 on ELx .

Proof Part (i) immediately follows from the formula for the tangent space of the projective line:
TP .V /'Hom.S;Q/, where S! V !Q is the tautological sequence on P .V /, the projectivization of
the vector space V .

For part (ii), consider diagram (30); our goal is to identify the descent to Z0 of the normal bundle N��1ı X0

to ��1ı X0 in ELı. We only need to observe that this bundle may be identified with the pullback ��ıNX
0

of the normal bundle to X0 in X , endowed with the natural G–action and a T –action, which is trivial on
the fibers.
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Remark 5.4 Restricting the operator � to X0, we can construct a T –equivariant vector bundle on Z0

from a G–equivariant vector bundle on X0. Then the normal bundle NZ0 of Z0 � Z may be also
described as �j

X0
.NX0/. The T –weights of the action may be computed by fixing x 2X0, identifying

the stabilizer subgroup Gx � G with T via its action on the fiber ELx , and then considering the action
of Gx on NxX0.

Lemma 5.5 The restriction of the line bundle �. EL/ to Z0 is trivial with T –weight 1.

Proof Note that ��ı EL admits a G–equivariant tautological nonvanishing section. For calculating the
weight, we observe that while T acts on ELx with weight �1, the T –weight of ELıx �Gx EL is C1.

Definition 5.6 Given a T –vector bundle V on a manifold on which T acts trivially, the T –equivariant
K-theoretical Euler class of V �, which we denote by Et .V /, may be described as follows: let x1; : : : ; xn
be the Chern roots of V , and l1; : : : ln 2 Z be the corresponding T –weights. Then

Et .V /D

nY
jD1

.1� t�lj exp.�xj //:

Now we are ready to write down our wall-crossing formula for (29). A key role will be played by the
following notion: given a rational differential one-form on the Riemann sphere, let us denote taking the
sum of residues at 0 and at infinity by � 7! RestD0;1 �:

Res
tD0;1

def
D Res

tD0
C Res
tD1

:

Theorem 5.7 Let L be a linearization of the G–action on X and denote by �.L/, as above , the T –
equivariant line bundle on Z obtained by pullback to Y and descent to Z. If Assumptions 5.1 hold , then

(31) �.MC;L/��.M�;L/D Res
tD0;1

Z
Z0

cht .�.L/jZ0/

Et .NZ0/
Todd.Z0/dt

t
;

where NZ0 is the T –equivariant bundle on Z0 described in Lemma 5.3, cht is the T –equivariant Chern
character , and Et .NZ0/ is the K-theoretical Euler class of N �

Z0
.

Proof The Atiyah–Bott fixed-point formula [2] applied to the line bundle L on our master space Z
yields

(32) �t .Z;L/D
X
F�ZT

Z
F

cht .�.L/jF /
Et .NF /

Todd.F /;

where the sum is taken over the connected components of the fixed-point locus ZT .
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In Proposition 5.2, we identified these components as MC;M� and Z0. Lemma 5.3 identifies the
equivariant normal bundles of MC and M�, and thus the corresponding contributions areZ

MC

ch.L/Todd.MC/

1� t�1 exp.c1. EL//
and

Z
M�

ch.L/Todd.M�/

1� t exp.�c1. EL//
:

We observe that �t .Z;L/ is a Laurent polynomial in t since it is the alternating sum of T –characters of
finite-dimensional vector spaces. Thus, as a function of t , �t .Z;L/ has poles only at t D 0;1, and by
the residue theorem, we have

Res
tD0;1

�t .Z;L/
dt

t
D 0:

On the other hand, since

Res
tD0;1

A

1� t�1B

dt

t
D�A and Res

tD0;1

A

1� tB

dt

t
D A;

we have
Res
tD0;1

Z
MC

ch.L/Todd.MC/

1� t�1 exp.c1. EL//
dt

t
D��.MC; L/;

Res
tD0;1

Z
M�

ch.L/Todd.M�/

1� t exp.�c1. EL//
dt

t
D �.M�; L/:

Now, applying the functional RestD0;1 to the two sides of (32) multiplied by dt=t , we obtain the desired
result (31).

6 Wall-crossings in parabolic moduli spaces

In this section, we apply Theorem 5.7 to wall-crossings in the moduli space of parabolic bundles.

From now on, we assume that d D 0, and we write � for the corresponding set of admissible parabolic
weights �0. Recall from Section 2.2 that for regular c 2 �, the moduli space of stable parabolic
bundles P0.c/ is the GIT quotient XQ==cPSL.�/, where XQ is a subspace of the total space of a flag
bundle over the Quot scheme. Let us fix a partition …D .…0;…00/ and an integer l , and introduce the
notation �0

l
and �00

�l
for the simplices of parabolic weights of …0 and …00. Let � 2 †r be the unique

permutation which sends f1; : : : ; r 0g to …0 preserving the order of the first r 0 and the last r 00 elements.
We choose c0 D .c01 ; : : : ; c

0
r / 2 S�;l and two regular elements cC; c� 2� in two neighboring chambers

separated by the wall S…;l , such that

c˙ D c0˙ �.: : : ; 0; 1; 0; : : : ; 0;�1/

for some positive � 2Q, where 1 and �1 are on the �.r 0/th and r th places, respectively. Let

c0 D
X
i2…0

c0i xi 2�
0
l and c00 D

X
i2…00

c0i xi 2�
00
�l :

For .k; �/ 2 Z�ƒ, consider the polynomials

q˙.k; �/D �.P0.c
˙/;L0.kI�//:
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Our goal is to calculate the difference of these two polynomials.

Notation To simplify our notation, from now on, we omit the index t from the symbols for equivariant
characteristic classes.

6.1 The master space construction

We construct the master space Z from Section 5.2 using the following data:

� A smooth variety X DXQ; see Section 2.2.

� Linearizations L˙ D L.kI�˙/ of the G–action on X (see Section 2.2) such that �˙=k D c˙.

� The linearization ELD L.0I x�.r 0/� xr/ of the G–action on X .

The following statement is easy to verify.

Lemma 6.1 [6, Section 3.2] The subset X0 � X is the set of points representing vector bundles W
on C such that W splits as a direct sum W 0˚W 00, where W 0 and W 00 are , respectively , c0– and c00–stable
parabolic bundles. Therefore , we have the following description of the locus Z0:

Z0 D fW DW 0˚W 00 jW 0 2 zPl.c
0/; W 00 2 zP�l.c

00/; det.W /' Og:

Remark 6.2 The locus Z0 is fibered over Jacl with fiber Pl.c0/� P�l.c00/ by the determinant map
zPl.c
0/! Jacl , and

(33) H�.Z0;Q/'H�.Pl.c
0/�P�l.c

00/;Q/˝H�.Jacl ;Q/:

Remark 6.3 If the rank of the vector bundle W 2 zPl.c/ is 1, then c D l and zPl.l/ is isomorphic to Jacl ,
while Pl.l/ is a point.

Now we need to verify the hypotheses of Theorem 5.7. Note that in our present construction X is not
projective; however, it contains all semisimple points of the flag bundle over the open subscheme of
the Quot scheme parametrizing locally free quotients (see Section 2.2) for all possible polarizations,
and hence the missing points of the Quot scheme have no effect on any of our constructions (a similar
argument appeared in [28]).

Assumptions 5.1(a)–(b) are trivially satisfied, so we study the action of the stabilizer Gx � PSL.N / of
point x 2X on the fiber ELx n 0.

� For a general point x 2X the stabilizer of x is the center ZN � SL.N /, which acts trivially on the
fiber ELx n 0.
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� For x 2 X0, any element of the stabilizer of x induces an automorphism of the corresponding
vector bundle W DW 0˚W 00, so the stabilizer of x in GL.N / is isomorphic to C��C��GL.N /.
An element .t1; t2/ 2 C� �C� is in SL.N / if and only if tN

0

1 tN
00

2 D 1, where N 0 D �.W 0/ and
N 00 D �.W 00/. Note that .t1; t2/ acts on ELx as t1t�12 , and we need t1 D t2 (hence tN1 D 1) for this
action to be trivial, so the stabilizer of any point in ELx n 0 is the center ZN � SL.N /.

Then the action of G D PSL.N / is free on Y n .Y.0 W � /[Y. � W 0//, and the action of Gx � PSL.N / on
ELx n 0 induces an isomorphism Gx 'C� ' T .

Now by Theorem 5.7, the wall-crossing polynomial q�.kI�/� qC.kI�/ is equal to

Res
tD0;1

Z
Z0

ch.L0.kI�/jZ0/

E.NZ0/
Todd.Z0/ dt

t
:(34)

Note that in our case, the T –action on Z is free outside the fixed locus ZT , so as a function in t 2 T , the
integral in (34) may have poles only at t D 0; 1;1. Then, using the residue theorem and substituting
t D eu, we conclude that (34) equals

(35) �Res
uD0

Z
Z0

ch.L0.kI�/jZ0/

E.NZ0/
Todd.Z0/ du;

and thus our goal is to calculate this integral.

Our first step is to identify the characteristic classes under the integral sign; see Proposition 6.11 for the
result.

We start with the study of the restriction of the line bundle L0.kI�/ to the fixed locus Z0 �Z. First, we
describe a parametrization of the factor H�.Jacl ;Q/ in (33). Let J be the Poincaré bundle over Jac�C
such that c1.J/.0/ D 0; define � 2H 2.Jac/ by .

P
i c1.J/.ei /˝ ei /

2 D�2�˝! (see Section 2.3), then
(see [33]) for any m 2 Z,

(36)
Z

Jac
e�m Dmg :

As Z0 is a connected component of the fixed locus of the T –action on Z, its equivariant cohomology
factors: H�T .Z

0/'H�.Z0/˝CŒu�. In particular, there are canonical embeddings H�.Z0/ ,!H�T .Z
0/

and CŒu� ,!H�T .Z
0/.

Remark 6.4 It follows from Lemma 5.5 that c1.�. EL/jZ0/D u.

Recall that for a parabolic weight c D .c1; : : : ; cr/ 2�, we have set c…0 D
P
i2…0 ci .

Lemma 6.5 Let �D .�1; : : : ; �r/ 2 ƒ, k 2 Z>0 and let …D .…0;…00/ be a nontrivial partition with
r 2…00. Let

�0 D
X
i2…0

�ixi and �00 D
X
i2…00

�ixi ;
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and define ı by .�=k/…0 D l C ı. Then

ch.L0.kI�/jZ0/D e
kıu exp

�
�k

r 0
C
�k

r 00

�
ch.Ll.kI�

0
1; : : : ; �

0
r 0 � kı/�L�l.kI�

00
1; : : : ; �

00
r 00 C kı//;

where � denotes the external tensor product of line bundles on Pl.c0/�P�l.c00/.

Proof First, note that

ch.L0.0I�/jZ0/D e
k.lCı/u ch.Ll.0I�

0
1; : : : ; �

0
r 0 � kl � kı/�L�l.0I�

00
1; : : : ; �

00
r 00 C kl C kı//;

and thus it will be sufficient to identify the restriction of L.kI 0/. It follows from Lemma 2.8 that

c1.L0.kI 0//D
k

2r
c2.End0.U //.2/:

Note that
c2.End0.U //.2/ D�k ch2.U /.2/C c

2
1.U /.2/ D�k ch2.U /.2/;

and thus
c1.L0.kI 0//D�k ch2.U /.2/:

Denote by zU 0 and zU 00 the normalized (see Section 2.3) universal bundles over zPl.c0/�C and zP�l.c00/�C ,
respectively. Since

ch2.U jZ0/.2/ D ch2. zU 0˝ �. EL/jZ0/.2/C ch2. zU 00jZ0/.2/;

we have (see Remark 6.4)

(37) c1.L0.kI 0/jZ0/D�k ch2. zU 0/.2/� k u c1. zU
0/.2/� k ch2. zU 00/.2/

D
k

2r 0
c2. zU

0/.2/�
k

2r 0
c21.
zU 0/.2/C

k

2r 00
c2. zU

00/.2/�
k

2r 00
c21.
zU 00/.2/� klu:

Now, since
c21.
zU 0/.2/ D 2l c1.U

0/� 2� and c21.
zU 00/.2/ D�2l c1.U

00/� 2�;

by Lemma 2.8 we have

c1.L0.kI 0/jZ0/D
k

r 0
c1.Ll.r

0
I l; : : : ; l//�

kl

r 0
c1.U

0/C �
k

r 0
C
k

r 00
c1.L�l.r

0
I �l; : : : ;�l//

C
kl

r 00
c1.U

00/C �
k

r 00
� klu

D c1
�
Ll.kI .0; : : : ; 0; kl//

�
C c1

�
L�l.kI .0; : : : ; 0;�kl//

�
C �

�
k

r 0
C
k

r 00

�
� klu;

and this completes the proof.

Lemma 6.6 Denote by zU 0 and zU 00 the normalized (see Section 2.3) universal bundles over zPl.c0/�C
and zP�l.c00/�C , and denote by � the projections along C . Then the T –equivariant normal bundle to the
fixed locus Z0 �Z is

(38) NZ0 DR
1
T��.ParHom. zU 0; zU 00//˚R1T��.ParHom. zU 00; zU 0//;

where the T 'C�–action has weights �1 and C1 on the two summands , respectively.
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Remark 6.7 As we are working with fixed determinant moduli spaces, the pushforwards in (38) are to be
taken along the curve C in the part of zPl.c0/� zP�l.c00/�C , where det.W 0/ det.W 00/'O; see Lemma 6.1.

Proof According to Lemma 5.3, for any point x 2X0, the normal bundle NZ0 at the point �0.x/ 2Z0

may be identified with the T –vector space ELıx �Gx NxX
0, where NxX0 is the normal bundle to X0 �X

at x, with the T –action induced by left multiplication by t�1 on ELx .

Denote by UQ the universal bundle over X , which descends to the normalized universal bundles on
P0.c

˙/. Recall that any point x 2 X0 represents a vector bundle which splits as a direct sum of two
subbundles, hence we have UQx D UCx ˚U

�
x , and

NxX
0
DH 1.C;ParHom.UCx ; U

�
x //˚H

1.C;ParHom.U�x ; U
C
x //:

(See [20, Proposition 1.13] for the description of the deformation space of parabolic bundles.) A simple
calculation (see Remark 5.4 and Lemma 5.5) shows we have a T –module isomorphism

ELıx �Gx H
1.C;ParHom.UCx ; U

�
x //'

ELx˝H
1.C;ParHom.UCx ; U

�
x //

with T –weight �1 induced by multiplication on ELx and trivial action on UCx and U�x ; applying the
projection formula we obtain that

ELx˝H
1.C;ParHom.UCx ; U

�
x //'H

1
T .C;ParHom.UCx ˝ EL

�1
x ; U�x //:

Similarly, we have

ELıx �Gx H
1.C;ParHom.U�x ; U

C
x //'

EL�1x ˝H
1.C;ParHom.U�x ; U

C
x //

'H 1
T .C;ParHom.U�x ; U

C
x ˝

EL�1x //

with T –action of weight 1.

Finally, we observe that according to our normalizations, the bundles UC˝ EL�1 and U� descend to
the normalized universal bundles zU 0 and zU 00 over zPl.c0/�C and zP�l.c00/�C , respectively, and this
completes the proof.

6.2 Calculation of the characteristic classes of NZ0

Before we calculate the equivariant K-theoretical Euler class of the conormal bundle N �
Z0

, we need to
introduce some notation. Recall that for 1� i; j � r , the differences xi � xj 2 V � are linear functions
on V , and the function xi � xj corresponds to the linearization L0.0I xi � xj / on X , which descends to
the line bundle L0.0I xi � xj / on the moduli space P0.c/; see Section 2.2. As in Section 5.2, we denote
by �.L0.0I xi �xj // the line bundle on Z obtained by the pullback and then descent. This way, we obtain
a correspondence between the linear functions xi � xj and the T –equivariant line bundles on Z.
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Recall the definition of the permutation � 2†r given at the beginning of this chapter: � takes the first r 0

numbers to …0, preserving the order of the first r 0 and the last r 00 elements. We introduce the symbols

(39)

z0i � z
0
j D c1

�
�.L0.0I x�.i/� x�.j ///jZ0

�
for 1� i; j � r 0;

z00i � z
00
j D c1

�
�.L0.0I x�.r 0Ci/� x�.r 0Cj ///jZ0

�
for 1� i; j � r 00;

uD .z0r 0 � z
00
r /D c1

�
�.L0.0I x�.r 0/� xr//jZ0

�
for the equivariant cohomology classes in H 2

T .Z
0/. The last equalities are consistent with Lemma 5.5.

Remark 6.8 Letting F0i and F00i denote the flag bundles (see Section 2.3) on P0.c0/ and P0.c00/, corre-
spondingly, we have (see Remark 6.2)

z0i � z
0
j D c1.F

0
r�iC1=F0r�i ˝ .F

0
r�jC1=F0r�j /

�/ 2H 2.Pl.c
0//;

z00i � z
00
j D c1.F

00
r�iC1=F00r�i ˝ .F

00
r�jC1=F00r�j /

�/ 2H 2.P�l.c
00//:

Taking into account these identifications, functions on V give rise to equivariant cohomology classes
on Z0. To make the splitting H�T .Z

0/'H�.Z0/˝CŒu�, explicit, however, we will write these classes
in the form fu.z

0; z00/, thinking of them as functions of the differences of the z0i s and the differences of
the z00i , depending on the parameter u. With this convention, we introduce the notation

w�u .z
0; z00/D

Y
i;j

�.i/<�.r 0Cj /

2 sinh.z0i � z
00
j /

Y
i;j

�.r 0Cj /<�.i/

2 sinh.z00j � z
0
i /;

��u .z
0; z00/D

1

2

X
i;j

�.i/<�.r 0Cj /

.z0i � z
00
j /C

1

2

X
i;j

�.r 0Cj /<�.i/

.z00j � z
0
i /;

where, according to (39),

z0i � z
00
j D .z

0
i � z

0
r 0/Cu� .z

00
j � z

00
r /D c1

�
�.L0.0I x�.i/� x�.r 0Cj ///jZ0

�
2H 2

T .Z
0/:

Proposition 6.9 The K-theoretical Euler class E.NZ0/ (see Definition 5.6 with t D eu) is given by the
formula

E.NZ0/
�1
D .�1/lrCr

0r 00.g�1/e�rlu exp
�
�r

r 0
C
�r

r 00

�
w�u .z

0; z00/1�2g exp.��u .z
0; z00//

� ch.Ll.r
00
I �l; : : : ;�l;�l C rl/�L�l.r

0
I l; : : : ; l; l � rl//:

Proof It follows from the short exact sequence (6) for parabolic morphisms that

ch
�
��Š.ParHom. zU 00; zU 0//

�
D�ch

�
�Š.Hom. zU 00; zU 0//

�
C

X
i;j

�.i/<�.r 0Cj /

ez
0
i
�z00
j ;

ch
�
��Š.ParHom. zU 0; zU 00//

�
D�ch

�
�Š.Hom. zU 0; zU 00//

�
C

X
i;j

�.r 0Cj /<�.i/

ez
00
j
�z0
i ;
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so by Lemma 6.6,

(40) ch.NZ0/D

ch
�
��Š.Hom. zU 00; zU 0//˚��Š.Hom. zU 00; zU 0/�/

�
C

X
i;j

�.i/<�.r 0Cj /

ez
0
i
�z00
j C

X
i;j

�.r 0Cj /<�.i/

ez
00
j
�z0
i :

Let f .x/ be a power series in one variable, and W a vector bundle of rank r with (equivariant) Chern
roots y1; : : : ; yr . Then we denote by Œf .x/�W the multiplicative (equivariant) characteristic class of W
given by the function f .x/ in Chern roots of W :

Œf .x/�W D

rY
jD1

f .yj /:

Lemma 6.10 Let P be a smooth variety , and let S be a T –vector bundle on P �C with T –weight 1;
pick a point p 2 C and denote by � W P �C ! P the projection along the curve. Then

E.��ŠS ˚��ŠS
�/�1 D .�1/rk.��ŠS/

exp.�ch2.S/.2//��
2 sinh

�
1
2
x
��2g�2�Sp :

Proof Note that

E.��ŠS/
�1
D

�
1

1� t�1e�x

���ŠS
D

�
�tex

1� tex

���ŠS
;

E.��ŠS
�/�1 D

�
1

1� te�x

���ŠS�
D

�
1

1� tex

�.��ŠS�/�
:

Applying Serre duality and the Grothendieck–Riemann–Roch theorem we obtain

ch.��ŠS/Cch..��ŠS�/�/D ch.��ŠS/Cch.�Š.S˝KC //D ch.��ŠS/C��.ch.S˝KC /Todd.C //

D ch.��ŠS/Cch.�ŠS/C.2g�2/ ch.Sp/D .2g�2/ ch.Sp/;

where KC is the canonical sheaf on the curve C , hence�
1

1� tex

���ŠS˚.��ŠS�/�
D

�
1

.1� tex/2g�2

�Sp
D

exp.�c1.Sp/.g� 1//��
2 sinh

�
1
2
x
��2g�2�Sp :

Since
Œ�tex���ŠS D .�1/rk.��ŠS/ exp.c1.��ŠS//;

and, by the Grothendieck–Riemann–Roch theorem,

ch1.��ŠS/D ch1.Sp/.g� 1/� ch2.S/.2/;

we conclude that

Œ�tex���ŠS D .�1/rk.��ŠS/ exp.c1.Sp/.g� 1// exp.� ch2.S/.2//;

which finishes the proof of Lemma 6.10.
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Note that the last two terms in (40) are the sums of Chern characters of line bundles, so they contribute
the multiplicative factor

exp.��u .z
0; z00//

w�u .z
0; z00/

to the equivariant class E.NZ0/
�1; and using Lemma 6.10 with S D Hom. zU 00; zU 0/, we obtain that the

inverse of the K-theoretical Euler class of the first term in (40) is

.�1/lrCr
0r 00.g�1/w�u .z

0; z00/2�2g exp
�
�ch2.Hom. zU 00; zU 0//.2/

�
:

Note that

�ch2.Hom. zU 00; zU 0//.2/ D 1
2
c2.End0. zU 0˚ zU 00//.2/� 1

2
c2.End0. zU 0//.2/� 1

2
c2.End0. zU 00//.2/

D c1.L.r I 0/jZ0 ˝Ll.�r
0
I �l; : : : ;�l/�L�l.�r

00
I l; : : : ; l//:

The latter equality follows from Lemma 2.8. Finally, using Lemma 6.5 to calculate the Chern character
of L.r I 0/j

Z0
, we obtain the formula for the class E.NZ0/

�1, and the proof of the lemma is complete.

6.3 The wall-crossing formula

Putting Lemma 6.5 and Proposition 6.9 together, we obtain the following.

Proposition 6.11 The wall-crossing term (35) is equal to

K Res
uD0

e.kı�rl/u
Z
Pl .c0/�P�l .c00/

�
.w�u .z

0; z00//1�2g exp.��u .z
0; z00//

� ch
�
Ll.kC r

00
I�01� l; : : : ; �

0
r 0�1� l; �

0
r 0 � l � kıC rl/

�L�l.kC r
0
I�001C l; : : : ; �

00
r 00�1C l; �

00
r 00 C l C kı� rl/

�
Todd.Pl.c

0/�P�l.c
00//

�
du;

where ı is a parameter depending on � and the wall S…;l (see Lemma 6.5) and K is the constant

.�1/lrCr
0r 00.g�1/ .r.kC r//

g

.r 0r 00/g
:

Now all that is left to do is to perform the integral, using an induction on the rank based on Corollary 4.10.
We will begin with the case lD0, as it is simpler. For lD0, the integral from Proposition 6.11 has the form

(41)
Z
P0.c0/�P0.c00/

�
w�u .z

0;z00/1�2ge�
�
u .z
0;z00/Todd.P0.c0//Todd.P0.c00//

� ch.L0.kC r 00I�01; : : : ;�
0
r 0�1;�

0
r 0 � kı/�L0.kC r

0
I�001; : : : ;�

00
r 00�1;�

00
r 00 C kı//

�
:

The inductive hypothesis (22) may be cast in the form

(42)
Z
P0.c/

ch.L0.kI�//Todd.P0.c//D zNr;k
X
B2D

iBer
B
Œexph�; x=yki �wˆ.x=yk/1�2g �.�=yk� Œc�B/:
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Now let us fix k, and allow � to vary. We can extend this equality by linearity to arbitrary linear
combinations of Chern characters of line bundles of the formX

i

ch.L0.kI�i //D ch.L0.kI 0// �
X
i

ch.L0.0I�i //:

Since any polynomial on V up to a fixed degree may be represented as a linear combination of exponential
functions of the form exph�; x=yki, formula (42) may be generalized in the following way.

Lemma 6.12 Let G.x/ be a formal power series on V , and denote by G.z/ the characteristic class in
H�.P0.c// obtained by the identification of functions on V and cohomology classes of P0.c/, described
before the equation (39). Then we have

(43)
Z
P0.c/

ch.L0.kI 0//G.z/Todd.P0.c//D zNr;k
X
B2D

iBer
B
ŒG.x=yk/ �w

1�2g
ˆ .x=yk/�.�=yk� Œc�B/:

Finally, let D0 and D00 be Hamiltonian bases (see Section 4.5). Since

wˆ0.x=yk/wˆ00.x=yk/w
�
u .x=

yk/D wˆ.x=yk/ and �0.x=yk/�00.x=yk/��u .x=
yk/D �.x=yk/;

where wˆ0 ; wˆ00 and �0; �00 are naturally defined for the root systems ˆ0 and ˆ00 (see Section 4.5), the
integral (41) is equal to

zNr 0;kCr 00 zNr 00;kCr 0

�

X
B02D0

X
B002D00

iBer
B0

iBer
B00

Œwˆ.x=yk/
1�2ge�.x=

yk/�

� ..�01; : : : ; �
0
r 0�1; �

0
r 0 � kı/=

yk� Œc0�B0 C .�
00
1; : : : ; �

00
r 00�1; �

00
r 00 C kı/=

yk� Œc00�B00/:

Identifying u (see (39)) with the “link” element of the diagonal basis DD .˛�.r
0/;r D0D00/ (see Section 4.5),

and moving the factor ekıu from Proposition 6.11 inside the argument of iBer, we obtain the proof of the
following theorem for l D 0.

Theorem 6.13 Let c˙ 2� be in the neighboring chambers; then the wall-crossing term

�.P0.c
C/;L0.kI�//��.P0.c

�/;L0.kI�//

is equal to

.kC r/ zNr;k
X

B02D0

X
B002D00

Res
˛�.r

0/;rD0
iBer
B0

iBer
B00

Œwˆ.x=yk/
1�2g �.y�=yk� ŒcC�B/ d˛

�.r 0/;r ;

where D0 and D00 are the diagonal bases of ˆ0 and ˆ00 (see Section 4.5) correspondingly.

Remark 6.14 This wall-crossing term coincides with the one from Proposition 4.18.

Geometry & Topology, Volume 28 (2024)



The parabolic Verlinde formula: iterated residues and wall-crossings 2295

Example 6.15 It follows from Example 2.9 that in case of rank 3, the permutation � 2†3 sends .1; 2; 3/
to .1; 3; 2/. Then uD c1.F01˝F001

�
/ and let z D z001 � z

00
2 D c1.F

00
2=F001˝F001

�
/. Then the inverse of the

K-theoretical Euler class of the conormal bundle is (see Proposition 6.9)

ch.L/e9�=2ez=2
�
2 sinh

�
1
2
u
�
2 sinh

�
1
2
.z�u/

��1�2g
;

where LDL0.2I 0; 0/ is a line bundle on the moduli space P0 of rank-2 degree-0 stable parabolic bundles.
The Chern character of the restriction of the line bundle L0.kI�1; �2; �3/ to † is

e3k�=2 ch.Lk0/e
�1zC�2u:

Hence the wall-crossing term

�.P0.</;L0.k; �//��.P0.>/;L0.k; �//

is equal to

�
�
3
2
.kC 3/

�g Res
uD0

e�2u�
2 sinh

�
1
2
u
��2g�1 � Z

P0

ch
�
L0
�
kC 1I�1C

1
2
;��1�

1
2

���
2 sinh

�
1
2
.z�u/

��2g�1 Todd.P0/ du:

The integral is the Euler characteristics of a line bundle on a moduli space of degree-0 rank-2 stable
parabolic bundles, so we can calculate it using the induction by rank. It is equal to

.�1/g�1.2.kC 3//g Res
zD0

e.�1C1/z�
2 sinh

�
1
2
.z�u/

�
2 sinh

�
1
2
z
��2g�1

.1� e.kC3/z/
dz;

so the wall-crossing term is

.�3.kC 3/2/g Res
uD0

Res
zD0

e�1zC�2uCz

zw�.z; u/2g�1.1� e.kC3/z/
dz du;

where zw�.z; u/D 2 sinh
�
1
2
.z�u/

�
2 sinh

�
1
2
u
�
2 sinh

�
1
2
z
�
. Note that this is exactly the same polynomial

as in Example 4.15, after changing .z; u/ to .x;�y/.

7 Tautological Hecke correspondences

If l ¤ 0, then we need one more step in our proof, which uses the Hecke correspondence to calculate the
wall-crossing term (35).

7.1 The Hecke correspondence

Given a rank-r degree-d vector bundle W with a full flag 0¨ F1 ¨ � � �¨ Fr DWp at p, one can obtain
a rank-r degree-.d�1/ vector bundle W 0 with a full flag 0¨G1 ¨ � � �¨Gr DW 0p using the tautological
Hecke correspondence construction as follows.
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The evaluation map W !Wp induces the short exact sequence of the associated sheaves of sections

(44) 0!W0
z̨
�!W!Wp=Fr�1! 0

on curve C . Since W0 is a kernel of z̨, it is a locally free sheaf, thus gives a rank-r vector bundle W 0

over C with det.W 0/' det.W /˝ O.�p/. The image of the associated morphism of vector bundles ˛
at the point p is Fr�1 � Wp, so p̨ W W

0
p ! Wp has a one-dimensional kernel G1 � W 0p. Moreover,

compositions of p̨ with the quotient morphisms Fr�1!Fr�1=Fi induce a full flag of the corresponding
kernels G1 ¨ � � �¨Gr�1 ¨Gr DW 0p in W 0p.

Denote this operator between the sets of isomorphism classes of degree-d and d � 1 vector bundles with
a flag at p by

H W .W; F�/ 7! .W 0; G�/:

Similarly, for any m � 0, one can define the operator Hm between the sets of isomorphism classes of
degree-d and d �m vector bundles with a flag at the point p by iterating the above construction m times.
Clearly, these maps are independent of the parabolic weights.

Proposition 7.1 Let c 2 � be a regular (see page 2266) point. Then the operator H induces an
isomorphism between the moduli spaces Pd .c1; : : : ; cr/ and Pd�1.c2; : : : ; cr ; c1� 1/.

Proof First, we need to show that if W 2 Pd .c1; : : : ; cr/ is a parabolic stable bundle with parabolic
weights .c1; : : : ; cr/, then W 0, its image under the Hecke operator H, is parabolic stable with respect to
parabolic weights .c2; : : : ; cr ; c1�1/. For this, consider the subbundle V 0 �W 0 and let ˛.V 0/D V �W
(see (44)) be its image. Since W is parabolic stable,

par slope.V / < par slope.W /D par slope.W 0/:

We need to prove that par slope.V 0/ < par slope.W 0/. There are two possible cases:

� If ˛ maps V 0 to V isomorphically, then deg.V 0/D deg.V / and Vp � Fr�1, hence par slope.V 0/D
par slope.V / < par slope.W 0/.

� Otherwise, deg.V 0/D deg.V /�1, and Vp is not contained in Fr�1, so one of the parabolic weights
of V 0 is c1� 1. Then, as in the previous case, par slope.V 0/D par slope.V /, and the result follows.

To show that the map H is an isomorphism, note that Hr maps

(45) Pd .c1; c2; : : : ; cr/! Pd�r.c1� 1; c2� 1; ; : : : ; cr � 1/:

It is easy to check that given W and iterating the associated morphism of locally free sheaves of sections (44)
r times, we obtain a subsheaf W0 �W of sections of W which vanishes at the point p. So the map (45)
is just tensoring by O.�p/, and hence it is an isomorphism.
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Now we can define an operator Hm for any m 2 Z, taking the inverse map if necessary. We will need the
following statement, which follows from Proposition 7.1 and the construction of Hm.

Corollary 7.2 Let m � 0. Then under the isomorphism Hm the line bundle Ld .kI�1; : : : ; �r/ corre-
sponds to the line bundle Ld�m.kI�r�mC1; : : : ; �r ; �1� k; : : : ; �r�m� k/.

7.2 The effect of the Hecke correspondence on the integral

Recall that our goal is to calculate the wall-crossing term from Proposition 6.11. For simplicity, we
assume that l is positive (the other case is analogous). We apply the Hecke operators Hl and H�l to the
moduli spaces Pl.c0/ and P�l.c00/ to obtain

P 00 D P0.c
0
lC1; : : : ; c

0
r 0 ; c
0
1� 1; : : : ; c

0
l � 1/' Pl.c

0/;

P 000 D P0.c
00
r 00�lC1C 1; : : : ; c

00
r 00 C 1; c

00
1 ; : : : ; c

00
r 00�l/' P�l.c

00/:

Recall (see page 2270) that there is a natural action of the group †r on V �, and hence (see page 2291)
on H 2.Pl.c

0/�P�l.c
00//. Let � 0 2†r 0 and � 00 2†r 00 be the cyclic permutations defined by

� 0 � .c01� 1; : : : ; c
0
l � 1; c

0
lC1; : : : ; c

0
r 0/D .c

0
lC1; : : : ; c

0
r 0 ; c
0
1� 1; : : : ; c

0
l � 1/;

� 00 � .c001 ; : : : ; c
00
r 00�l ; c

00
r 00�lC1C 1; : : : ; c

00
r C 1/D .c

00
r 00�lC1C 1; : : : ; c

00
r 00 C 1; c

00
1 ; : : : ; c

00
r 00�l/:

Now set � D .� 0; � 00/ 2†r 0 �†r 00 �†r . Note that

� 0 �.�lCr 0; : : : ;�lCr 0;�l; : : : ;�l/D � 0 ��0��0 and � 00 �.l; : : : ; l; l�r 00; : : : ; l�r 00/D � 00 ��00��00;

so applying the Hecke operator Hl �H�l to the wall-crossing term from Proposition 6.11 and using
Corollary 7.2, we obtain that the wall-crossing term (35) is equal to

(46) K Res
uD0

e.kı�rl/u
Z
P 00�P

00
0

�
� �w�u .z

0;z00/1�2ge� ��
�
u .z
0;z00/

�ch
�
L0.kCr

00
I� 0�.�01�

yk; : : : ;�0l�
yk;�0lC1; : : : ;�

0
r 0�1;�

0
r 0�kıCrl//

�
�ch
�
L0.kCr

0
I� 00�.�001; : : : ;�

00
r 0�l ;�

00
r 00�lC1C

yk; : : : ;�00r 00C
ykCkı�rl//

�
e�
00��00.z0;z00/��00.z0;z00/e�

0��0.z0;z00/��0.z0;z00/Todd.P 00/Todd.P 000 /
�
du:

As in Section 6.3, according to Lemma 6.12, we can calculate this integral using the induction on rank. Let
D0 and D00 be two Hamiltonian diagonal bases. Then � 0.D0/ and � 00.D00/ are also Hamiltonian diagonal
bases (see Remark 3.5) and the integral in (46) is equal to

(47) .�1/lr zNr 0;kCr 00 zNr 00;kCr 0X
B02� 0.D0/

B002� 00.D00/

iBer
B0

iBer
B00

Œ� �w�u .x=
yk/1�2g.wˆ0.x=yk/wˆ00.x=yk//

1�2ge� ��.x=
yk/��

� 0 � .�01�
yk; : : : ; �0l �

yk; �0lC1; : : : ; �
0
r 0�1; �

0
r 0 � kıC rl/=

yk

� Œ� 0 � .c01� 1; : : : ; c
0
l � 1; c

0
lC1; : : : ; c

0
r 0/�B0

C � 00 � .�001; : : : ; �
00
r 0�l ; �

00
r 00�lC1C

yk; : : : ; �00r 00�1C
yk; �00r 00 C

ykC kı� rl/=yk

� Œ� 00 � .c001 ; : : : ; c
00
r 0�l ; c

00
r 00�lC1C 1; : : : ; c

00
r 00 C 1/�B00

�
:
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To arrive at Theorem 6.13, we need to make additional transformations of formula (47): first, we shift �0

and �00, and then we apply Lemma 4.5 to eliminate the cyclic permutation � .

Note that given an ordered basis B 2B and an element v 2 V � such that fvgB D 0, for any weight � 2ƒ
and positive integer k we have

(48) .�C ykv/=yk� ŒcC v�B D �=yk� Œc�B :

In particular, to perform the shift of �0 in (47), we use the following equality for any B 0 2 D0:

(49) .�01�
yk; : : : ; �0l �

yk; �0lC1; : : : ; �
0
r 0�1; �

0
r 0 � kıC rl/=

yk

� Œ.c01; : : : ; c
0
r 0�1; c

0
r 0 � l/� .1; : : : ; 1; 0; : : : 0;�l/�B0

D .�01; : : : ; �
0
r 0�1; �

0
r 0 � kıC rl � l

yk/=yk� Œ.c01; : : : ; c
0
r 0�1; c

0
r 0 � l/�B0 ;

which clearly remains true after changing D0 to � 0.D0/ and applying � 0 to both sides of the equation.
Similarly, shifting the last terms of (47) by � 00.0; : : : ; 0;�1; � � � � 1;�1C l/, we can rewrite (47) as

(50) .�1/lr zNr 0;kCr 00 zNr 00;kCr 0X
B02� 0.D0/

B002� 00.D00/

iBer
B0

iBer
B00

Œ� �w�u .x=
yk/1�2g.wˆ0.x=yk/wˆ00.x=yk//

1�2ge� ��.x=
yk/�

�
�
� 0 � .�01; : : : ; �

0
r 0�1; �

0
r 0 � kıC rl � l

yk/=yk� Œ� 0 � .c01; : : : ; c
0
r 0�1; c

0
r 0 � l/�B0

C � 00 � .�001; : : : ; �
00
r 00�1; �

00
r 00 C kı� rl C l

yk/=yk� Œ� 00 � .c001 ; : : : ; c
00
r 00�1; c

00
r 00 C l/�B00

�
:

Finally, identifying u (see (39)) with the “link” element of the diagonal basis

�.D/D .˛��.r
0/;�.r/� 0.D0/� 00.D00//

(see Section 4.5) and

� moving the factor e.kı�rl/u from (46) inside the argument of iBerB , where

B D .˛��.r
0/;�.r/B 0B 00/;

� applying (48) with B D .˛��.r
0/;�.r/B 0B 00/ and v D l˛��.r

0/;�.r/,

� applying Lemma 4.5, and

� using the fact that

��1 � .wˆ0.x=yk/wˆ00.x=yk//D .�1/
lrwˆ0.x=yk/wˆ00.x=yk/;

we obtain the formula of Theorem 6.13 for arbitrary l 2 Z.

8 Affine Weyl symmetry and the proof of Theorem 4.8(I)

In this section, we prove certain symmetry properties of our Hilbert polynomials on the left-hand side of
equation (1), and we finish the proof of Theorem 4.8(I). We start with the basic instance of symmetry of
Hilbert polynomials: relative Serre duality.
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8.1 Serre duality

Proposition 8.1 Let E!X be a rank-2 vector bundle over a smooth variety X , let � W Y D P .E/!X

be its projectivization and !X=Y the relative cotangent line bundle. Then

�.Y; ��L˝!mX=Y /D��.Y; �
�L˝!�mC1

X=Y
/

for any line bundle L 2 Pic.X/.

Proof By Serre duality for families of curves [10, Chapter III, Sections 7–8], for any integer n,

(51) �.Y; ��L˝O.n//D��.Y; ��.L˝ .^2E/nC1/˝O.�n� 2//:

Denote by �X=Y the sheaf of relative differentials on Y ; the short exact sequence

0!�X=Y ˝OX ! ��E.�1/! OX ! 0

implies that

!X=Y D^
2.��E.�1//D ��.^2E/˝O.�2/:

Then the statement follows from (51) by substituting nD�2m.

Now we can generalize this statement to the case of flag bundles.

Proposition 8.2 Let � W Y D Flag.E/!X be a rank-r flag bundle over X . Let L be a line bundle on X ,
and F1, F2=F1; : : : ;Fr=Fr�1 the standard flag line bundles on Y . For k 2Z and �D .�1; : : : ; �r/2ƒ,
write

L.kI�/D .��L/k˝ .Fr=Fr�1/
�1 ˝ .Fr�1=Fr�2/

�2 ˝ � � �˝F�r1 :

Consider the polynomial

q.kI�1; �2; : : : ; �r/D �.Y;L.kI�1; �2; : : : ; �r//

in .k; �/ 2 Z�ƒ, and extend this definition to R� V �. Then q.kI�� �/ is anti-invariant under the
permutations of �1; �2; : : : ; �r .

Proof For 1� k < r , let Flagyk.E/!X be the flag bundle over X obtained from Y by forgetting the
k–dimensional subspace. Then Y ' P .FkC1=Fk�1/! Flagyk.E/ is a P1–bundle over Flagyk.E/, and
thus applying Proposition 8.1 we obtain

�.Y;L.kI�1; : : : ; �r�k; �r�kC1; : : : ; �r//D��.Y;L.kI�1; : : : ; �r�kC1� 1; �r�kC 1; : : : ; �r//;

and the result follows.
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8.2 The Weyl antisymmetry of the functions q1 and q�1

Armed with this statement, we are ready to take on the symmetries of the Hilbert polynomial of our
parabolic moduli spaces. We note that the two sets �˙1 of weights for degree-˙1 stable parabolic
bundles are simplices with one of their vertices at .1=r; : : : ; 1=r/ and .�1=r; : : : ;�1=r/, correspondingly;
see Section 2.2.

Denote by N˙1 the moduli spaces of rank-r degree-˙1 stable vector bundles and by UN any universal
bundle over N˙1 �C ; see eg [3].

Lemma 8.3 Let c D .c1; : : : ; cr/ be a parabolic weight from the chamber in �1, which has as one of
its vertices the (regular) point .1=r; : : : ; 1=r/. Then the moduli space P1.c/ of rank-r degree-1 stable
parabolic bundles is isomorphic to the flag bundle Flag.UNp/ over N1. An analogous statement holds in
the case of degree �1 and the point .�1=r; : : : ;�1=r/ 2��1.

Proof A simple calculation shows that a point .c1; : : : ; cr/ 2 �1 such that all ci > 0 lies inside the
chamber in �1 with the vertex .1=r; : : : ; 1=r/. Hence it is enough to prove the first statement for the
moduli space P1.c1; : : : ; cr/ with positive parabolic weights.

Moreover, it is sufficient to show that if .W; F�/ is a parabolic stable vector bundle which represents
a point in P1.c1; : : : ; cr/, then W is stable as an ordinary bundle. Assume that W admits a proper
subbundle W 0 with slope.W 0/� slope.W /D 1=r , then deg.W 0/� 1. Since all parabolic weights of W
are positive, this implies that par slope.W 0/ > 0D par slope.W /, and therefore W is parabolic unstable.
The proof for degree-(�1) bundles is analogous.

Denote the moduli spaces described above by P1.>/ and P�1.</, correspondingly, and their images
under the Hecke isomorphisms H and H�1 by P0.>/ and P0.</.

The following statement is straightforward; see Lemma 2.8.

Lemma 8.4 The line bundles L1.r I 1; : : : ; 1/ and L�1.r I �1; : : : ;�1/ on P1.>/ and P�1.</ defined
in Lemma 2.6 may be obtained as pullbacks of the ample generators of the Picard groups Pic.N˙1/.

Example 8.5 In the case of rank-3 parabolic bundles the moduli spaceP1.c1; c2; c3/with 2c3>c1Cc2�1
is a flag bundle over N1 and it is isomorphic to the moduli space P0.>/ from Example 2.9, while the
moduli space P�1.c1; c2; c3/ with 2c1 < c2 C c3 C 1 is a flag bundle over N�1 and it is isomorphic
to P0.</.

Now we establish the Weyl antisymmetry of the polynomials

q�1.kI�1; : : : ; �r/D �.P0.</;L0.kI�1; : : : ; �r//;

q1.kI�1; : : : ; �r/D �.P0.>/;L0.kI�1; : : : ; �r//;
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defined on R�ƒ, as in Proposition 8.2. Let � 2†r be the cyclic permutation such that � � .c1; : : : ; cr/D
.c2; : : : ; cr ; c1/, and consider two points in V �:

�1Œk�D
kCr

r
� .1; 1; : : : ; 1/� .kC r/xr � �D � �

�
k

r
� k;

k

r
; : : : ;

k

r

�
� � � .�/

D

�
k

r
�
1
2
.r � 1/C 1;

k

r
�
1
2
.r � 1/C 2; : : : ;

k

r
�
1
2
.r � 1/C r � 1;�kC

k

r
�
1
2
.r � 1/

�
;

��1Œk�D�
kCr

r
� .1; 1; : : : ; 1/C .kC r/x1� �D �

�1
�

�
�
k

r
; : : : ;�

k

r
;�
k

r
C k

�
� ��1 � .�/

D

�
k�

k

r
C
1
2
.r � 1/;�

k

r
�
1
2
.r � 1/;�

k

r
�
1
2
.r � 1/C 1; : : : ;�

k

r
�
1
2
.r � 1/C r � 2

�
:

Proposition 8.6 The polynomials q1.kI�C �1Œk�/ and q�1.kI�C ��1Œk�/ are anti-invariant under the
action of the Weyl group by permutations of �1; : : : ; �r .

Proof Recall that the moduli space P0.>/ is isomorphic to the flag bundle P1.>/ over N1 under the
Hecke isomorphism H�1. Then using Corollary 7.2, Proposition 8.2 and Lemma 8.4, for any permutation
� 2†r we obtain

q1.kI � ��C �1Œk�/
def
D �

�
P0.>/;L0.kI � ��C �1Œk�/

�
D �

�
P1.>/;L1

�
kI ��1 � � ��C

�
k

r
; : : : ;

k

r

�
� �

��
D .�1/��

�
P1.>/;L1

�
kI ��1 ��C

�
k

r
; : : : ;

k

r

�
� �

��
D .�1/��

�
P0.>/;L0.kI�C �1Œk�/

�
def
D .�1/�q1.kI�C �1Œk�/;

where the second and fourth equalities hold by Corollary 7.2, and the third equality follows from
Proposition 8.2 and Lemma 8.4. The proof for q�1 is similar.

The two group actions in Proposition 8.6 may be combined in the following manner. For k � 0, we define
an action of the affine Weyl group †Ìƒ on ƒ�Z, which acts trivially on the second factor, the level,
and the action at level k is given by setting

�:�D � � .�C �/� � and :�D �C .kC r/ for � 2†;  2ƒ:

We denote the resulting group of affine-linear transformations of V � by z†Œk�, and note that the action is
defined in such a way that

(52) �:�C �D � � .�C �/ and .:�C �/=yk D  C .�C �/=yk:

It is easy to verify that the stabilizer subgroup

†Cr
def
D Stab.�1Œk�; z†Œk�/� z†Œk�
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is generated by the transpositions si;iC1 for 1� i � r � 2, and the reflection ˛r�1;r ı sr�1;r ; similarly,

†�r
def
D Stab.��1Œk�; z†Œk�/� z†Œk�

is generated by si;iC1 for 2� i � r � 1, and the reflection ˛1;2 ı s1;2.

Then Proposition 8.6 maybe recast in the following form: the polynomial q1.kI�/ is anti-invariant with
respect to the copy †Cr of the symmetric group †r , while q�1.kI�/ is anti-invariant with respect to the
copy †�r of the symmetric group †r .

The following statement is straightforward:

Lemma 8.7 Both subgroups †˙r are isomorphic to †r , and for r > 2, the two subgroups generate the
affine Weyl group z†Œk�.

8.3 The Weyl antisymmetry of the polynomials p1 and p�1

Following (22), we define the two polynomials

p˙1.kI�/D
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œ�˙1�B/;

where
�1 D

1

r
� .1; 1; : : : ; 1/� xr and ��1 D�

1

r
� .1; 1; : : : ; 1/C x1:

Proposition 8.8 The polynomial p1.kI�/ is anti-invariant with respect to †Cr , and p�1.kI�/ is anti-
invariant with respect to †�r .

Proof The points �˙1Œk� are the fixed points of the actions of†˙, and clearly limk!1 �˙1Œk�=kD �˙1.
This means that we can fix a small open ball D � V � centered at �1 such that

(53) �=k 2D D) .�:�C �/=yk � �1 for all � 2†C:

Then for �=k 2D we have

p1.kI�/D
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.fy�=ykgB/:

Now let us consider a generator of †C of the type � D si;iC1 for some 1 � i � r � 2. Using (52) and
Lemma 4.5, and the fact that � �wˆ D�wˆ, we obtain

p1.kI �:�/D
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.� �fy�=ykgB/D

X
B2D

iBer
B
Œ.�w�/

1�2g.x=yk/�.fy�=ykgB/D�p1.kI�/:

The case of the last generator ˛r�1;r ı sr�1;r is similar, but after the substitution we need to use the
equality f˛r�1;r Cy�=ykgB D fy�=ykgB to obtain p1.kI yk˛r�1;r C sr�1;r :�/D�p1.kI�/.
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8.4 Proof of Theorem 4.8(I)

Recall that in Lemma 4.1 we introduced a chamber structure on �� V � created by the walls S…;l , where
…D .…0;…00/ is a nontrivial partition, and l 2 Z. Before we proceed, we introduce some extra notation.
Denote by

{�D f.kI a/ j a=k 2�g �R>0 �V �

the cone over �� V �, and let

{�reg
D f.kI a/ j a=k 2� is regularg � {�

be the set of its regular points. Denote by {S…;l � {� the cone over the wall S…;l � �; then {�reg is
the complement of the union of walls {S…;l in {�. Finally, denote by {�reg

ƒ the intersection of the lattice
Z>0 �ƒ with {�reg.

By substituting c̨D �=k, we can consider the left-hand side and the right-hand side of formula (I) of
Theorem 4.8 as functions in .k; �/ 2 {�reg

ƒ . We denote by q.kI�/ and p.kI�/ the left-hand side and the
right-hand side, correspondingly.

We showed that q.kI�/ and p.kI�/ are polynomials on the cone over each chamber in�; see Theorem 4.4,
Section 2.4. We proved that the wall-crossing terms — ie the differences between polynomials on
neighboring chambers — for q.kI�/ (see Theorem 6.13) and for p.kI�/ (see Proposition 4.18) coincide,
hence there exists a polynomial ‚.kI�/ on Z>0 �ƒ such that the restriction of ‚.kI�/ to {�reg

ƒ is equal
to the difference p.kI�/� q.kI�/.

Now for r > 2, we can conclude that

‚.kI�/D p1.kI�/� q1.kI�/D p�1.kI�/� q�1.kI�/;

where p˙1.kI�/ and q˙1.kI�/ are the restrictions of p.kI�/ and q.kI�/ to two specific chambers
defined in Sections 8.3 and 8.2. Then, according to Propositions 8.6 and 8.8, the polynomial ‚.kI�/ is
anti-invariant with respect to the action of the subgroups †˙r , and hence by Lemma 8.7, it is anti-invariant
under the action of the entire affine Weyl group z†Œk�. It is easy to see that any such polynomial function
has to vanish, and thus p.kI�/D q.kI�/, and this completes the proof of part (I) of Theorem 4.8 for the
case when �=k 2� is regular.

As in Corollary 4.10, we can extend p.kI�/ from the interior of each chamber to its boundary by
polynomiality. Clearly, to prove part (I) of Theorem 4.8 for the cases when �=k is not regular, it is
sufficient to show that these extensions from the chambers containing �=k in their closure give the same
value on .kI�/. It follows from Remark 10.4 that this is the case, and this completes the proof of part (I)
of Theorem 4.8; see Remark 4.9.
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9 Rank 2, two points

Unfortunately, the argument above does not work for r D 2 because in this case, �1Œk� D ��1Œk�, the
groups †�r and †Cr coincide, and thus they do not generate the entire affine Weyl group. The way out is
to pass to the 2–punctured case.

9.1 Wall-crossing

We will thus fix two points p; s 2 C , and study the moduli space of rank-2, stable parabolic bundles W
with fixed determinant isomorphic to O.pd/, with parabolic structure given by a line F1 � Wp with
weight .c;�c/, and a line G1 �Ws with weight .a;�a/.

Now we need to repeat the analysis of our work so far in this somewhat simpler case; some details will
thus be omitted.

Set d D 0; then the space of admissible weights (see Figure 6) is a square

�D f.c; a/ j 1 > 2c > 0; 1 > 2a > 0g;

which has two adjacent chambers defined by the conditions

c > a and c < a:

Denote the corresponding moduli spaces by P0.c > a/ and P0.c < a/. Again, we have universal bundles
over P0.c > a/�C and P0.c < a/�C , which we will denote by the same symbol U ; this bundle is
endowed with two flags, F1 � F2 D Up and G1 � G2 D Us . For �; � 2 Z, we introduce the line bundle

L.kI�;�/D det.Up/k.1�g/˝ det.��.U //�k˝ .F2=F1/
�
˝ .F1/

��
˝ .G2=G1/

�
˝ .G1/

��:

We repeat the construction of the master space from Section 5.2, choosing a point .c0; c0/ on the wall
and two points

.c; a/˙ D .c0; c0/˙ �.1; 0/ 2�; where � 2Q>0;

from the adjacent chambers. We can identify the fixed-point set Z0 as follows.

P0.c < a/

P0.c > a/

.0; 0/
�
1
2
; 0
�

�
0; 1
2

� �
1
2
; 1
2

�

Figure 6: The space of admissible weights in the case of rank r D 2, two points.
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Lemma 9.1 The locus Z0 defined in Proposition 5.2 is

Z0 ' Jac0 ' fV D L˚L�1 j Lp D F1; L�1s DG1g:

As in Section 6.1, denote by J the universal bundle over Jac0 �C normalized in such a way that
c1.J/.0/ D 0; see (8). Define

� 2H 2.Jac/ by
�X

i

c1.J/.ei /˝ ei

�2
D�2�˝!:

We have then
R

Jac e
�m Dmg for m 2 Z.

Let � W Jac0 �C ! Jac0 be the projection and NZ0 the equivariant normal bundle to Z0 in Z. Then, as
in Lemma 6.6, Proposition 6.9 and Lemma 6.5, we obtain the identifications

� NZ0 DR
1
T��.ParHom.J;J�1//˚R1T��.ParHom.J�1;J//, where T 'C�–action has weights

.�1; 1/,

� E.NZ0/
�1 D .�1/g

�
2 sinh

�
1
2
u
���2g exp.4�/,

� chT .L.kI�;�/jZ0/D exp.2k�/ exp.u.���//.

Now we define the polynomials

h>.kI�;�/
def
D �.P0.c > a/;L.kI�;�// and h<.kI�;�/

def
D �.P0.c < a/;L.kI�;�//:

Applying Theorem 5.7, we obtain the following expression for their difference.

Lemma 9.2 The wall-crossing term equals

h>.kI�;�/� h<.kI�;�/D .�1/g.2kC 4/g Res
uD0

exp.u.���//�
2 sinh

�
1
2
u
��2g du:

9.2 Symmetry

Denote by P�1.c > a/ the image of the moduli space P0.c > a/ under the Hecke isomorphism H

(see Section 7) at the point p, and by P�1.c < a/ the image of the moduli space P0.c < a/ under the
Hecke isomorphism H at the point s.

We have the following analogue of Lemma 8.3.

Lemma 9.3 Denote by N�1 the moduli space of rank-2 degree-(�1) stable bundles on C , and by UN
any universal bundle over N�1 �C . Then the moduli spaces P�1.c > a/ and P�1.c < a/ are isomorphic
to the bundle P .UNp/�P .UNs/ over N�1.

Denote by TŒp� and TŒs� the vertical tangent lines of P .UNp/ and P .UNs/, respectively, and by L�1

the pullback of the ample generator of the Picard group of N�1 to P .UNp/�P .UNs/; see Lemma 8.4.
Then a simple calculation shows the following.
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P0.c < a/

P0.c > a/

.0; 0/ .2; 0/

.0; 2/ .2; 2/

�2Œ4�

�1Œ4�

Figure 7: The space of admissible weights in the case of k D 4, r D 2, two points.

Lemma 9.4 Under the Hecke isomorphism H at p, the line bundle L.2kI�;�/ on P0.c >a/ corresponds
to the line bundle Lk

�1˝TŒp���Ck˝TŒs�� on P�1.c > a/.

Under the Hecke isomorphism H at the point s, L.2kI�;�/ on P0.c < a/ corresponds to the line bundle
Lk
�1˝TŒp��˝TŒs���Ck on P�1.c < a/.

As in Section 8.2, applying Serre duality for families of curves (see Proposition 8.2) to the line bundles
on the two P1 �P1 bundles over N�1, we obtain that the polynomials h>.kI�;�/ and h<.kI�;�/ are
anti-invariant under the action of the Weyl group †2�†2 with the center at �1Œk�D

�
1
2
.kC 1/;�1

2

�
and

�2Œk� D
�
�
1
2
; 1
2
.kC 1/

�
, correspondingly; see Figure 7. In other words, we obtain the following four

identities.

Lemma 9.5 h>.kI�;�/D�h>.kI�;��� 1/D�h>.kI ��C kC 1; �/;

h<.kI�;�/D�h<.kI ��� 1; �/ D�h<.kI�;��C kC 1/:

Now define the polynomials

zh>.kI�;�/D .�1/
g�1.2kC 4/g Res

uD0

exp.u.�C�C 1//� exp.u.���//�
2 sinh

�
1
2
u
��2g

.1� eu.kC2//
du;

zh<.kI�;�/D .�1/
g�1.2kC 4/g Res

uD0

exp.u.�C�C 1//� exp.u.���C kC 2//�
2 sinh

�
1
2
u
��2g

.1� eu.kC2//
du;

and from here we can follow the logic of the proof of part (I) of Theorem 4.8.

Proposition 9.6 The polynomials introduced above , in fact , coincide:

h>.kI�;�/D zh>.kI�;�/ and h<.kI�;�/D zh<.kI�;�/:

Proof It is a simple exercise to show that zh>.kI�;�/ and zh<.kI�;�/ satisfy the identities appearing in
Lemmas 9.2 and 9.5, and hence the polynomial

‚.kI�;�/D h>.kI�;�/� zh>.kI�;�/D h<.kI�;�/� zh<.kI�;�/
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satisfies all four †2–symmetries listed in Lemma 9.5. These groups together generate a double action of
the affine Weyl group z† in � and � separately, and this implies the vanishing of ‚.

As P0.c >a/ is a P1–bundle over the moduli space of rank-2 degree-0 stable parabolic bundles P0.c;�c/,
substituting �D 0 in zh>, we obtain the Verlinde formula for rank 2.

Corollary 9.7 �.P0.c;�c/;L0.kI�//D .�1/
g�1.2kC4/g ResuD0

exp
�
u
�
�C1

2

���
2 sinh

�
1
2
u
��2g�1

.1�eu.kC2//
du:

10 The combinatorics of the ŒQ; R� D 0

In this section, we give a proof of the second part of Theorem 4.8. Let �=k 2�, and fix a regular element
c̨ 2� in a chamber containing �=k in its closure, and another regular element yc̨ 2� containing y�=yk in
its closure. Our goal is to prove the equality pc̨.kI�/D pyc̨.kI�/, where we define

(54) pc.kI�/D zNr;k
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œc�B/

for a regular c 2� and diagonal basis D. This is a subtle statement, which is a combinatorial-geometric
projection of the idea of quantization commutes with reduction (or ŒQ;R�D 0 for short; see [17; 25]).

If �=k � y�=yk, ie when �=k and y�=yk are regular elements in the same chamber in �, then pc̨.kI�/D

pyc̨.kI�/ is a tautology. We assume thus that this is not the case, and denote by S.k; �/ the set of walls
separating c̨ and yc̨, or containing either �=k or y�=yk or both. Equivalently, the wall S…;l belongs to
S.k; �/ if

.�=k/…0 � l � .y�=yk/…0 or .�=k/…0 � l � .y�=yk/…0 ;

where c…0 D
P
i2…0 ci for an element c D .c1; : : : ; cr/ 2 V �. Clearly, there is a path in � connecting c̨

and yc̨, which intersects only walls from S.k; �/ in a generic points. Then to prove the equality pc̨.kI�/D

pyc̨.kI�/, it is enough to show the following, at first sight somewhat surprising, fact.

Proposition 10.1 Assume g � 1, �=k 2 �, S…;l 2 S.k; �/ and let c˙ 2 � be two points in two
neighboring chambers separated by the wall S…;l . Then

(55) pcC.kI�/D pc�.kI�/:

Proof The difference of the two sides of (55) is expressed as a residue in (34). The integral in (34)
is a rational expression in the variable t , and our plan is to show by degree count in t and t�1 that its
residues at zero and at1 vanish. We define the degree of the quotient of two polynomials RD P=Q of
the variable t as degt .R/D degt .P /� degt .Q/, and we set degt�1.R/D degt .R.t

�1//. Then, clearly,

degt .R/ < 0 D) Res
tD1

R
dt

t
D 0 and degt�1.R/ < 0 D) Res

tD0
R
dt

t
D 0:
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A convenient expression for (34) will be (46), where we change variables via t D eu. In what follows, we
will always tacitly assume this substitution, and we will write, for example, degt˙1.1=.e

u� e�u//D�1.
We thus obtain a formula of the form RestD0;1 f .t/ dt=t , and to show that this is zero, it is sufficient to
show that degt .f / < 0 and degt�1.f / < 0.

Now we observe that the variable u occurs only in the first line of (46), and thus, calculating the degrees
in t and t�1 separately, we obtain the formula

(56) degt˙1.f /D˙.kı� rl/C .1� 2g/ degt˙1.� �w
�
u /C degt˙1.exp.� � ��u //:

Recall that here, ı represents the distance of �=k from the wall S…;l , while w�u and ��u , represent the
parts of the Weyl denominator and the �–shift corresponding to roots connecting …0 and …00, respectively.

We begin the study of this expression with some simple remarks. We recall that the permutation �
preserves the partition …D .…0;…00/, and thus we have

degt˙1.� �w
�
u /D degt˙1.w

�
u /D

1
2
r 0r 00:

Using, in addition, that ��u is linear in u, we obtain

degt .exp.� � ��u //D�degt�1.exp.� � ��u //D degt .exp.��u //:

Combining these equalities, and assuming g � 1, we arrive at the following conclusion.

Lemma 10.2 The inequality

(57) j.kı� rl/C degt .exp.��u //j<
1
2
r 0r 00

implies the vanishing of the wall-crossing term: equality (55).

Before we proceed, we introduce some notation. Denote by

Inv.…/D f.i; j / j…0 3 i > j 2…00g

the set of “inverted” pairs of elements of the partition …. The number of these pairs jInv.…/j coincides
with the standard notion of length of the shuffle permutation � 2†r introduced in Section 6.

Each pair .i; j / which is not inverted contributes C1
2
u to ��u , while each inverted pair contributes �1

2
u,

and thus we have

(58) degt .exp.��u //D
1
2
r 0r 00� jInv.…/j:

Also, recall the notation c…0 D
P
i2…0 ci for an element c D .c1; : : : ; cr/ 2 V �; in particular, we have

.�=k/…0 D l C ı and
�…0 D

X
i2…0

1
2
.r C 1/� i:

The following is a simple exercise, whose proof will be omitted:

(59) degt .exp.��u //D �…0 :
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Now we come to a key point of our argument.

Lemma 10.3 If the intersection of the wall S…;l with � is nonempty, then

(60) �
1
2
r 0r 00 < lr � �…0 <

1
2
r 0r 00:

Proof Pick a point c D .c1; : : : ; cr/ in the intersection S…;l \�, and recall that for any 1� i < j � r ,
we have 0 < ci � cj < 1, and X

i2…0

ci D�
X
i2…00

ci D l:

Then
�jInv.…/j<

X
.i;j /2Inv.…/

.ci � cj /�
X
i2…0

X
j2…00

.ci � cj /;

and, similarly, X
i2…0

X
j2…00

.ci � cj / < r
0r 00� jInv.…/j:

Now, since X
i2…0

X
j2…00

.ci � cj /D r
00
X
i2…0

ci � r
0
X
j2…00

cj D lr;

we can conclude
�jInv.…/j< lr < r 0r 00� jInv.…/j:

In view of (58) and (59), these inequalities are equivalent to (60), and this completes the proof.

Now we are ready to prove (55). The condition S…;l 2 S.k; �/, ie that S…;l separates �=k and y�=yk or
contains �=k or y�=yk, may occur in two ways.

� .�=k/…0 � l � .y�=yk/…0 , which is equivalent to the two inequalities ı � 0 and lkC lr � �…0C�…0 .
After canceling lk and reordering the terms, we can rewrite these as

(61) 0� kı� lr C �…0 � �…0 � lr:

Using Lemma 10.3 then we can conclude that

0� kı� lr C �…0 > �
1
2
r 0r 00;

which, in view of the equality (59), implies the necessary estimate (57).

� The second case is similar: .�=k/…0 � l � .y�=yk/…0 is equivalent to ı� 0 and lkC lr � �…0C�…0 .
This leads to

(62) 0� kı� lr C �…0 � �…0 � lr;

which, in turn, implies
0� kı� lr C �…0 <

1
2
r 0r 00;

and hence (57).
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This completes the proof of Proposition 10.1: indeed, a simple calculation shows that if �=k 2� then
y�=yk 2�; so the conditions of Lemma 10.3 hold. We have just shown that this implies (57), and according
to Lemma 10.2, we can conclude the vanishing of the wall-crossing term (55).

Remark 10.4 If �=k 2 � is nonregular, then it belongs to some wall from the set S.k; �/. Hence
Proposition 10.1 implies that the right-hand side of formula (I) of Theorem 4.8 is a well-defined function
on the cone over �:

f.k; �/ 2 Z>0 �ƒ j �=k 2�g:
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