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We prove a surface embedding theorem for 4–manifolds with good fundamental group in the presence
of dual spheres, with no restriction on the normal bundles. The new obstruction is a Kervaire–Milnor
invariant for surfaces and we give a combinatorial formula for its computation. For this we introduce the
notion of band characteristic surfaces.
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1 Introduction

We study whether a given map of a surface to a topological 4–manifold is homotopic to an embedding.
Here and throughout the article, embeddings and immersions in the topological category are by definition
locally flat, meaning they are locally modelled on linear inclusions R2 ,!R4 or R2

C ,!R4.

Even for maps of 2–spheres, this question has only been completely addressed in a handful of simple
manifolds, such as S4, CP2 [Tristram 1969, page 264] and S2�S2 [Tristram 1969, Theorem 4.5; Kervaire
and Milnor 1961, Corollary 1; [Freedman 1982, Corollary 1.1]]. Lee and Wilczyński [1990; 1997] and
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2400 Daniel Kasprowski, Mark Powell, Arunima Ray and Peter Teichner

Hambleton and Kreck [1993] described the minimal genus of an embedded surface in a fixed homology
class, in any given simply connected, closed 4–manifold, assuming that the fundamental group of the
complement is abelian. This was recently extended by [Feller et al. 2021] to knot traces. In the relative
setting even the simplest case is open: which knots in S3 bound a (locally flat) embedded disc in D4?

The main available tool for proving positive results is Freedman’s embedding theorem (Theorem 4.3),
which shows that maps of discs and spheres to a 4–manifold with good fundamental group, with vanishing
intersection and self-intersection numbers, and with framed algebraically dual spheres, are regularly
homotopic to embeddings [Freedman 1982; Freedman and Quinn 1990, Corollary 5.1B]; see also [Powell
et al. 2020; Behrens et al. 2021]. Surgery and the s–cobordism theorem for topological 4–manifolds with
good fundamental group are consequences of this theorem [Quinn 1982; Freedman and Quinn 1990]. Our
aim, realised in Theorems 1.2 and 1.6 below, is to extend Freedman’s theorem to all compact surfaces with
algebraically dual spheres, in any connected 4–manifold with good fundamental group. In Section 1.4,
we explain how to apply this to the question from the opening paragraph of whether a given homotopy
class contains an embedding. In Section 1.5, we give some applications to knot theory. In particular, we
show that every knot bounds an embedded surface of genus one in M n VD4 for every simply connected
closed 4–manifold M not homeomorphic to S4. Recall that, for M D S4, this does not hold because the
slice genera of knots can be arbitrary large.

Throughout the paper, we will work in the following setting unless otherwise specified.

Convention 1.1 We assume that M is a connected, topological 4–manifold and that † is a nonempty
compact surface with connected components f†ig

m
iD1

. The notation F D ffig
m
iD1
W .†; @†/# .M; @M /

represents a generic immersion (Definition 2.3) with components fi W .†i ; @†i/# .M; @M /.

By assumption, the map F restricts to an embedding on @† and F�1.@M /D @†, where @† and @M
are permitted to be empty. There is no requirement for † or M to be orientable, and M could be
noncompact. Weakening the hypotheses of Freedman’s theorem to allow for the algebraically dual
spheres to be unframed introduces an additional obstruction, the Kervaire–Milnor invariant km.F / 2Z=2

(Definition 1.4), which vanishes in the presence of framed algebraically dual spheres.

Theorem 1.2 (Surface embedding theorem) Let FDffig
m
iD1
W .†; @†/# .M; @M / be as in Convention

1.1. Suppose that �1.M / is good and that F has algebraically dual spheres G D fŒgi �g
m
iD1
� �2.M /.

Then the following statements are equivalent :

(i) The intersection numbers �.fi ; fj / for all i < j, the self-intersection numbers �.fi/ for all i , and
the Kervaire–Milnor invariant km.F / 2 Z=2 all vanish.

(ii) There is an embedding FDf Nfig
m
iD1
W .†; @†/ ,! .M; @M /, regularly homotopic to F relative to @†,

with geometrically dual spheres G D f Ngi W S
2#M gm

iD1
such that Œ Ngi �D Œgi � 2 �2.M / for all i .

Equivariant intersection and self-intersection numbers of immersed discs and spheres have a long history
(see eg [Wall 1970]). In the theorem above, we consider generalised versions for arbitrary compact surfaces,
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lying in quotients of the group ring ZŒ�1.M /�, which we denote by �fi ;fj
3 �.fi ; fj / for the intersection

numbers and �fi
3 �.fi/ for the self-intersection numbers. We describe these quotients in detail in

Sections 2.2 and 2.3. As in the simply connected case, these invariants require based maps (Definition 2.11)
but their vanishing as in Theorem 1.2(i) does not depend on the choice of basing. Vanishing of all the
�.fi ; fj / for i < j and all the �.fi/ is equivalent to the vanishing of the self-intersection number �.F /,
which is defined as follows.

Definition 1.3 Let F Dffig
m
iD1
W .†; @†/# .M; @M / be as in Convention 1.1. Assume in addition that

M and † are based and that F is a based map. The self-intersection number of this possibly disconnected
immersed surface is given by counting all double points of F, as follows:

�.F / WD
X
i<j

�.fi ; fj /C
X

i

�.fi/ 2
M
i<j

�fi ;fj
˚

M
i

�fi
:

The self-intersection number �.F / is a regular homotopy invariant that vanishes if and only if there is
a collection of Whitney discs that pair all double points of F (Corollary 2.30), just like for connected
surfaces. The Whitney discs may be chosen to form a convenient collection, meaning that all Whitney
discs have disjointly embedded boundaries, are framed and have interiors transverse to F (Definition 2.31).

Definition 1.4 Let F W .†; @†/# .M; @M / be as in Convention 1.1. By definition, km.F / 2 Z=2

vanishes if and only if, after finitely many finger moves taking F to some F 0, there is a convenient
collection of Whitney discs pairing all the double points of F 0 and whose interiors are disjoint from F 0.

We think of �.F / as the primary embedding obstruction, and km.F / as the secondary embedding
obstruction. Note that km.F /D 0 implies �.F /D 0 but km.F / is always defined even if �.F /¤ 0. In
Section 1.1, we will give a combinatorial description of km.F / in the case that �.F /D 0.

The Kervaire–Milnor invariant is named in homage to [Kervaire and Milnor 1961], in which the authors
defined an embedding obstruction and used it to give the first proof that the Whitney trick fails in
dimension 4. Section 3 gives details on the connection of our Kervaire–Milnor invariant to the original
obstruction and other secondary embedding obstructions in the literature.

A group is said to be good if it satisfies the �1–null disc property [Freedman and Teichner 1995] (see also
[Kim et al. 2021]); we shall not repeat the definition. In practice, it suffices to know that virtually solvable
groups and groups of subexponential growth are good, and that the class of good groups is closed under
taking subgroups, quotients, extensions and colimits [Freedman and Teichner 1995; Krushkal and Quinn
2000].

If† is a union of discs or spheres, Theorem 1.2 follows from [Freedman and Quinn 1990, Theorem 10.5(1)].
The latter theorem contained an error found by Stong [1994] (see Theorem 5.7), but this is not relevant to
Theorem 1.2 because of the way we defined the Kervaire–Milnor invariant. It is, however, very relevant
to how to compute the Kervaire–Milnor invariant, and Stong’s correction will be one of the ingredients in
our results (see Section 1.1).

Geometry & Topology, Volume 28 (2024)



2402 Daniel Kasprowski, Mark Powell, Arunima Ray and Peter Teichner

For an arbitrary †, one could try to prove Theorem 1.2 by using general position to embed the 0–
and 1–handles of † (relative to @†) and removing a small open neighbourhood thereof from M. This
gives a new connected 4–manifold M0 with the same fundamental group as M, and only the 2–handles
fhi W .D

2;S1/# .M0; @M0/g, one for each component †i of †, remain to be embedded. One then
hopes to apply [Freedman and Quinn 1990, Theorem 10.5(1)] (ie Theorem 1.2 for † a union of discs) to
these maps of 2–handles to produce the desired embedded surface. The original algebraically dual spheres
fgig for the ffig perform the same role for the fhig in M0. The intersection and self-intersection numbers
� and � remain unchanged; hence, they also vanish for fhig. However, the Kervaire–Milnor invariant
may behave differently. That is, it may become nonzero for the embedding problem for the discs fhig,
whereas it was trivial for the original F. We show that this phenomenon can occur in Example 9.3. This
difference stems from the fact that, in applying [Freedman and Quinn 1990, Theorem 10.5(1)], we fix
an embedding of the 1–skeleton of † and try to extend it across the 2–handles. As usual in obstruction
theory, it might be advantageous to go back and change the solution of the problem on the 1–skeleton.

1.1 Computing the Kervaire–Milnor invariant

The strength of Theorem 1.2 versus the above strategy using [Freedman and Quinn 1990, Theorem 10.5(1)]
lies in our computation of the Kervaire–Milnor invariant for arbitrary compact surfaces. In the case of
discs and spheres, Stong showed that the Kervaire–Milnor invariant vanishes in more situations than
claimed by Freedman and Quinn, due to the ambiguity arising from sheet choices when pairing up
double points by Whitney discs, when the associated fundamental group element has order two. As
we recall in Theorem 5.7, Stong [1994] introduced the notion of an r–characteristic surface, short for
RP2–characteristic surface (Definition 5.5), to give a criterion, in terms of copies of RP2 immersed in
the ambient manifold M, to decide whether the sheet changing move is viable. Combined with the work
of Freedman and Quinn, this enabled the computation of the Kervaire–Milnor invariant, and therefore
answered the embedding problem for every finite union of discs or spheres with algebraically dual spheres,
in an ambient 4–manifold with good fundamental group (see Remark 5.8 for more details).

In order to compute the Kervaire–Milnor invariant km.F / for general surfaces, we extend the no-
tion of r–characteristic surfaces to a notion of b–characteristic surfaces, short for band characteristic
(Definition 5.17), defined using bands (annuli and Möbius bands) immersed in M. The next theorem is a
generalisation of Stong’s computation of km.F / to arbitrary compact surfaces.

Definition 1.5 Let F D ffig
m
iD1
W .†; @†/# .M; @M / be as in Convention 1.1 with �.F /D 0. Choose

a convenient collection WD fWlg of Whitney discs that pair all double points of F and define

t.F;W/ WD
X
l;i

jInt Wl t fi j mod 2:

In other words, t.F;W/ is the mod 2 count of transverse intersections between F and the interiors of the
Whitney discs in W.

Geometry & Topology, Volume 28 (2024)
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We will often apply this definition to the restriction F of F D ff1; : : : ; fmg to the subsurface † �†,
which includes a component†i of† precisely if its image does not admit a framed immersion gi WS

2#M

with �.fj ;gi/D ıij for all j D 1; : : : ;m (Definition 5.1). The main result of the article is as follows.

Theorem 1.6 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that �.F /D 0 and that F

has algebraically dual spheres. If F is not b–characteristic then km.F /D 0. If F is b–characteristic ,
then the secondary embedding obstruction satisfies

km.F /D t.F ;W / 2 Z=2

for every convenient collection of Whitney discs W pairing all the double points of F .

The main novelty in this theorem lies in finding the right condition on F that makes the combinatorial
formula t.F ;W / independent of the choice of Whitney discs, namely that F is b–characteristic. Note
that, if �1.M / is good, then, for km.F /D 0 in the previous theorem, Theorem 1.2 gives an embedding
regularly homotopic to F. In practice, it can often be easy to determine if a given surface is b–characteristic,
as demonstrated by the following corollaries, derived in Section 9 as consequences of the more general
Proposition 9.1.

Corollary 1.7 If M is a simply connected 4–manifold and † is a connected , oriented surface with
positive genus , then any generic immersion F W .†; @†/# .M; @M / with vanishing self-intersection
number is not b–characteristic. Thus , if F has an algebraically dual sphere , then km.F /D 0, and , since
�1.M / is good , the map F is regularly homotopic , relative to @†, to an embedding.

This corollary in particular implies that, for every simply connected 4–manifold M with boundary
a disjoint union of homology spheres, every primitive class in H2.M IZ/ can be represented by an
embedded torus. This recovers [Lee and Wilczyński 1997, Theorem 1.1] in the case of divisibility d D 1.
We also have the following extension to the case of arbitrary 4–manifolds.

Corollary 1.8 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0 and † connected.
If F 0 is obtained from F by an ambient connected sum with an embedding S1�S1 ,! S4, then F 0 is not
b–characteristic. Thus , if F has an algebraically dual sphere , then km.F 0/D 0, and if �1.M / is good ,
then F 0 is regularly homotopic , relative to @†, to an embedding.

See Corollaries 1.13 and 1.14 for the nonorientable analogues of these two results. In particular, the latter
concerns the case where we replace the embedded torus in Corollary 1.8 by an embedded RP2.

1.2 Band characteristic maps

We briefly explain how the notion of a map being b–characteristic arises in the context of embedding
general surfaces. Given F W†#M as in Convention 1.1, assume that its double points are paired by a
convenient collection of Whitney discs W. Then the interiors of the discs in W could be tubed into spheres

Geometry & Topology, Volume 28 (2024)
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F F 0

F F 0

B WB

Figure 1: Two portions of the immersion F and part of a band B are shown on the left. A finger
move produces F 0 with two new double points, paired by WB .

in M, potentially changing the count t from Theorem 1.6. The condition that F is s–characteristic, short
for spherically characteristic (Definition 5.2), precisely ensures that the count is preserved under this
move.

Similarly, consider a band, ie an annulus or Möbius band, immersed in M with boundary lying on F.†/

minus the double points, as in Figure 1. Then, as shown in the figure, we may perform a finger move
on F along a fibre of the band, creating F 0 with two new intersections, paired by a new Whitney disc WB

arising from the band B (see Figure 1). We call this move the band fibre finger move and give further
details in Construction 7.2. Adding WB to W might in principle change the count t , but the requirement
that F is b–characteristic ensures it does not. In the case that † has only simply connected components,
the boundary of the band is null-homotopic in †, and therefore the band can be closed off by discs to
produce either a sphere (from an annulus) or an RP2 (from a Möbius band). Thus in this case it suffices
to consider r–characteristic maps.

However, for general † there may exist a band in M with a boundary curve that is nontrivial in �1.†/.
This necessitates the new notion of b–characteristic maps, which by definition requires that a function
‚ W B.F /! Z=2 vanishes (Definitions 5.12 and 5.14), where B.F / consists of the homology classes
in H2.M; †IZ=2/ that can be represented by certain immersed bands in M with boundary on †
(Definition 5.9). These additional conditions on the bands have to do with the first Stiefel–Whitney classes
of M and †; when both are oriented, B.F / consists precisely of the classes in H2.M; †IZ=2/ that are
represented by maps of annuli and Möbius bands. Roughly speaking, the vanishing of ‚ means that
every band with boundary on † intersects † evenly many times in its interior. Intersections among the
boundary components of the bands and a relative Euler number also play a role; see Sections 5 and 3.7
for details. If ‚ � 0, then, for every band B, adding WB does not change the t–count, and in fact t

is well defined if and only if F is b–characteristic (Lemma 7.3). See Example 9.3 for a map which is
r–characteristic but not b–characteristic.

The first step for deciding whether F is b–characteristic is to determine the subset B.F /. In general this
could be difficult, but in practice it is often soluble. If this can be done, then, as shown in Figure 2, by
computing �†j@B.F / and ‚ WB.F /! Z=2, we can decide whether F is b–characteristic. Both of these
are functions on a finite group, so in principle these computations are manageable.

Geometry & Topology, Volume 28 (2024)
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a generic immersion
F W † # M

(Convention 1.1)

�.F /D 0?

�†j@B.F / ¤ 0?
(Definition 5.9, Lemma 5.11)

‚ WB.F /! Z=2 nontrivial?
(Definitions 5.12 and 5.14, Lemma 5.16)

F is b–characteristic
(Definition 5.17)

t.F ;W /D 0 2 Z=2?
(Definition 1.5)

no conclusion
F regularly

homotopic, rel @†,
to an embedding

F not regularly
homotopic, rel @†,
to an embedding

km.F /D 1

(Definition 1.4)

km.F /D 0

(Definition 1.4)
algebraically dual spheres?

(Definition 4.1)

F not b–characteristic
(Definition 5.17)

�1.M / good?

Yes

No

No Yes

No

Yes

No

Theorem 1.9

Yes

Yes

Theorem 1.6

No

Yes
Theorem 1.2

No

Figure 2: A flowchart deciding whether a generic immersion F is regularly homotopic, relative
to the boundary, to an embedding.

1.3 An embedding obstruction without dual spheres

Irrespective of whether F has algebraically dual spheres, we obtain a secondary embedding obstruction
in the b–characteristic case.

Geometry & Topology, Volume 28 (2024)
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Theorem 1.9 Let F W .†; @†/# .M; @M / be as in Convention 1.1 with �.F / D 0. Let W be a
convenient collection of Whitney discs for the double points of F. Then F is b–characteristic if and only
if , for every F 0 regularly homotopic to F and convenient collection W0 for the double points of F 0, we
have t.F;W/D t.F 0;W0/.

For b–characteristic F, we denote the resulting regular homotopy invariant by t.F / 2 Z=2. Then , if
km.F /D 0 — for instance , if F is an embedding — then t.F /D 0.

Note that, in particular, if F is b–characteristic and a map H is regularly homotopic to F, then H is
b–characteristic (Lemma 5.19). If F is not b–characteristic, it is still possible that some restriction F 0

of F to a union of connected components †0 � † is b–characteristic. Then we obtain an obstruction
to embedding F 0, and as a consequence to embedding F. A frequent example of this phenomenon is
F 0 D F from Theorem 1.6. Note that, by Lemma 5.3, if F is b–characteristic then F D F .

As part of our analysis of the obstruction t , in Section 9 we shall prove the following additivity properties.

Proposition 1.10 Let M1 and M2 be oriented 4–manifolds. Let F1 W .†1; @†1/# .M1; @M1/ and
F2 W .†2; @†2/# .M2; @M2/ be generic immersions of connected , compact , oriented surfaces , each
with vanishing self-intersection number. If Fi is b–characteristic for each i , then both the disjoint union

F1 tF2 W†1 t†2#M1 # M2

and any interior connected sum
F1 # F2 W†1 #†2#M1 # M2

are b–characteristic , and satisfy

t.F1 tF2/D t.F1 # F2/D t.F1/C t.F2/:

Theorem 1.9 and Proposition 1.10 imply the following corollary.

Corollary 1.11 For any g, there exists a smooth , closed 4–manifold Mg, a closed , connected , oriented
surface †g of genus g, and a smooth , b–characteristic , generic immersion F W†g#Mg with t.F /¤ 0,
and therefore km.F /¤ 0.

By contrast, we show in Example 9.5 that every map of a closed surface to S1 � S3 is homotopic to
an embedding. One could ask whether there exists a 4–manifold M and immersions †g #M with
nontrivial Kervaire–Milnor invariant, for every g. However, as a partial negative answer we will show
in Proposition 9.7 that a b–characteristic generic immersion F W†#M from a closed surface † to a
compact 4–manifold M with abelian fundamental group with n generators must satisfy �.†/� �2n.

1.4 Homotopy versus regular homotopy

Theorems 1.2, 1.9 and 1.6 together give a framework for deciding whether or not an immersed surface is
regularly homotopic to an embedding, as illustrated by the flowchart in Figure 2. However, in the first
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sentence of the article, we began by considering whether a given continuous map is homotopic to an
embedding. We explain now how to extend the framework of Figure 2 to decide this, for maps of surfaces
that admit algebraically dual spheres.

For a map f from a connected surface to a 4–manifold, we will show in Theorem 2.32 that there are
either infinitely many or precisely two regular homotopy classes in the homotopy class of f, according to
whether f �.w1.M // is trivial or nontrivial, respectively. Our strategy is to make a judicious choice of
regular homotopy class to which we apply our previous theory.

Begin with a continuous map F W†!M that restricts to an embedding on @† and satisfies F�1.@M /D@†,
where† and M are as in Convention 1.1. Denote the components of F by fi W .†i ; @†i/! .M; @M /, and
suppose that F has algebraically dual spheres. Note that homotopies preserve the intersection numbers
�.fi ; fj /, but might not preserve the self-intersection number �.fi/, since adding a local cusp in fi

changes �.fi/1, the coefficient of 1 2 �1.M /, by ˙1. Depending on the behaviour of the orientation
characters of M and †, the coefficient �.fi/1 lies in either Z or Z=2, and is preserved under regular
homotopy (see Lemma 2.24 and Proposition 2.25).

Now, in order to decide whether F is homotopic to an embedding, we will either find a generic immersion
in the homotopy class of F which is regularly homotopic to an embedding, or show that this is impossible.
First, by performing a homotopy we may assume without loss of generality that F is a generic immersion
such that �.fi/1D 0 for every component fi of F. If �.F /¤ 0, then F is not homotopic to an embedding.
On the other hand, if �.F /D 0, we have the two following cases. Below, .fi/� is the map induced on
fundamental groups by fi using some choice of path connecting fi.†i/ to the basepoint of M.

Case 1 w1.†/jker.fi /� is trivial for every fi 2 F .

By Theorem 2.32, the regular homotopy class of F is uniquely determined by the condition that
�.fi/1D 0 for each i with fi 2F . Run the analysis in Figure 2 on F to determine whether it is regularly
homotopic to an embedding. Note that the outcome of this analysis only depends on the regular homotopy
class of F , rather than all of F. In particular, if �1.M / is good, then F is homotopic to an embedding if
and only if F is regularly homotopic to an embedding.

Case 2 There exists fi 2 F with w1.†/jker.fi /� nontrivial.

In this case we use the following theorem, which we prove in Section 6.

Theorem 1.12 Let F D ffig
m
iD1
W .†; @†/ # .M; @M / be as in Convention 1.1 with �.F / D 0.

Suppose that there is at least one fi 2 F with w1.†/jker.fi /� nontrivial. Then there exists a generic
immersion F 0 homotopic to F with �.F 0/D 0, and a convenient collection of Whitney discs W0 such
that t..F 0/ ; .W0/ /D 0. Thus , if F 0 has algebraically dual spheres , then km.F 0/D 0, and if moreover
�1.M / is good , then F 0 is regularly homotopic , relative to @†, to an embedding.
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Using this theorem, we can immediately conclude that our F as in Case 2 is homotopic to an embedding,
as long as �1.M / is good. Notably, it is not relevant in this case whether F is b–characteristic. This
completes the analysis of whether a given continuous map of a surface into a 4–manifold is homotopic to
an embedding.

We now sketch the proof of Theorem 1.12. By the vanishing of �.F /, there is a convenient collection
of Whitney discs W for F and therefore for F . When t.F ;W / D 0, the proof is completed by
setting F 0 D F. When t.F ;W /D 1, we use Construction 6.1 to find another generic immersion F 0

homotopic to F. Briefly, Construction 6.1 involves creating four new double points in the component fi

with nontrivial w1.†/jker.fi /� using local cusps, and then cancelling them using a suitable choice of
Whitney arcs and discs. For further details on the proof, see Section 6.

Theorem 1.12 also has the following immediate corollaries. These are the nonorientable analogues of
Corollaries 1.7 and 1.8. They provide homotopies to embeddings rather than regular homotopies, and
again it is not relevant whether F is b–characteristic.

Corollary 1.13 If M is a simply connected 4–manifold and † is a connected , nonorientable surface ,
then a generic immersion F W .†; @†/# .M; @M / with vanishing self-intersection number and an
algebraically dual sphere is homotopic , relative to @†, to an embedding.

Corollary 1.14 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with † connected and �1.M /

good. Suppose that F has vanishing self-intersection number and an algebraically dual sphere. If F 0 is
obtained from F by an ambient connected sum with any embedding RP2 ,! S4, then F 0 is homotopic ,
relative to @†, to an embedding.

As in our analysis for the embedding problem up to regular homotopy, our techniques are primarily
applicable in the presence of algebraically dual spheres and good fundamental group of the ambient space.
It is however sometimes possible to conclude that a map without algebraically dual spheres is homotopic
to an embedding. For example, we show in Example 9.5 that every map of a closed surface to S1�S3 is
homotopic to an embedding.

1.5 Applications to knot theory

Theorem 1.2 can be applied to the problem of finding embedded surfaces in general 4–manifolds bounded
by knots in their boundary. Given a closed 4–manifold M, let M ı denote the punctured manifold M n VD4.
The M –genus of a knot K � S3 D @M ı, denoted by gM .K/, is the minimal genus of an embedded
orientable surface bounding K in M ı. If M is smooth, we also consider the smooth M –genus, denoted
by gDiff

M
.K/, the minimal genus of a smoothly embedded orientable surface with boundary K. The

quantities gS4 and gDiff
S4 coincide with the topological and smooth slice genus of knots in D4, respectively.

Note that gM .K/D gM .K/, so (2) and (3) below imply the corresponding results for CP2 and �CP2,
respectively.
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Corollary 1.15 For every knot K � S3,

(1) gM .K/ D 0 for every simply connected 4–manifold M not homeomorphic to one of S4, CP2

or �CP2;

(2) gCP2.K/� 1 and gCP2

�
#3

T .2; 3/
�
D 1; and

(3) g
�CP2.K/� 1 and g

�CP2

�
#2

T .2; 3/
�
D 1.

See Section 9 for the proof. The smooth CP2–genus has been studied by [Yasuhara 1991; 1992; Aït Nouh
2009; Pichelmeyer 2020; Marengon et al. 2024], and differs dramatically from the topological result in
Corollary 1.15(2); in particular, it can be arbitrarily high [Marengon et al. 2024].

Corollary 1.15(1) is straightforward to prove if M topologically splits as a connected sum with S2 �S2

or S2 z�S2, because gS2�S2.K/D gS2z�S2.K/D 0 for all K by the Norman trick [1969, Corollary 3,
Remark]. For the K3 surface, this implies that gK3.K/D 0 for all knots K. On the other hand, it is an
open question whether there exists a K with gDiff

K3
.K/¤ 0 [Manolescu et al. 2024, Question 6.1].

Given a knot K � S3 and an integer n 2 Z, we build the n–trace Xn.K/ by attaching a 2–handle
D4 along K with framing n. The minimal genus of an embedded surface representing a generator of
H2.Xn.K/IZ/ is called the n–shake genus of K, denoted by gsh

n .K/. Similarly, the smooth n–shake
genus of K is denoted by g

sh;Diff
n .K/. We recover the following result of [Feller et al. 2021].

Corollary 1.16 [Feller et al. 2021, Proposition 8.7] For any knot K � S3, gsh
˙1
.K/D Arf.K/ 2 f0; 1g.

By contrast, the smooth ˙1–shake genus of a knot can be arbitrarily high. For example, for q � 5 we
have that g

sh;Diff
˙1

.T .2; q//� 1
2
.qC1/, by the slice-Bennequin inequality [Lisca and Matić 1998; Cochran

and Ray 2016, Corollary 5.2].

Outline of the paper

In Section 2, we describe the primary embedding obstructions arising from the theory of equivariant
intersection numbers for surfaces in 4–manifolds. In Section 3, we define the Kervaire–Milnor invariant
carefully. We prove Theorem 1.2 in Section 4. In Section 5, we explain our combinatorial method for
computing the Kervaire–Milnor invariant, and define b–characteristic surfaces, postponing almost all
proofs to Section 7. In Section 6, we give the proof of Theorem 1.12. In Section 8, we prove Theorems
1.6 and 1.9. Finally, in Section 9, we prove Corollaries 1.7, 1.8, 1.11, 1.15 and 1.16 and Proposition 1.10,
and we give further applications and examples.

Acknowledgements

We are grateful to Rob Schneiderman and the referee for several insightful comments on a previous
version, and to Allison N Miller and Andrew Nicas for helpful conversations. Much of this research
was conducted at the Max Planck Institute for Mathematics. Kasprowski was supported by the Deutsche

Geometry & Topology, Volume 28 (2024)



2410 Daniel Kasprowski, Mark Powell, Arunima Ray and Peter Teichner

Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy —
GZ 2047/1, Projekt-ID 390685813. Powell was partially supported by EPSRC New Investigator grant
EP/T028335/2 and EPSRC New Horizons grant EP/V04821X/2.

2 Generic immersions and intersection numbers

In Section 2.1, we carefully define and study generic immersions of surfaces in 4–manifolds in the
topological category. We show they admit well-behaved normal bundles, and introduce generic homotopies
and ambient isotopies between them.

In Sections 2.2 and 2.3, we study equivariant intersection and self-intersection numbers of generically
immersed surfaces. In the case of immersions of spheres and discs, these have a long history, in particular
in surgery theory (see eg [Wall 1970]). For the first time in the literature, as far as we are aware, we give
a careful account of intersection and self-intersection numbers in full generality for compact surfaces
and for any possible combination of orientation characters. The specific groups in which these numbers
live depend on the input surfaces, and it is somewhat subtle to describe them. A preliminary version
for orientable surfaces was considered in eg [Cochran et al. 2003, Section 7], and the self-intersection
number for annuli was considered in [Schneiderman 2003].

In Section 2.4, we discuss Whitney discs, which arise if the intersection and self-intersection numbers
vanish. We define the important notion of a convenient collection of Whitney discs. In Section 2.5,
Theorem 2.32 explains the difference between homotopy and regular homotopy of generic immersions of
surfaces, in terms of the Euler number of the normal bundle or the self-intersection number.

2.1 Topological generic immersions

We start with the definition of an immersion of manifolds in the topological setting. For m � 0, let
Rm
C WD f.x1; : : : ;xm/ 2Rm j x1 � 0g. For k � n, we consider the standard inclusions

� WRk
D Rk

� f0g ,! Rk
�Rn�k

DRn;

�C WR
k
C DRk

C � f0g ,! Rk
�Rn�k

DRn;

�CC WR
k
C DRk

C � f0g ,!Rk
C �Rn�k

DRn
C:

Definition 2.1 A continuous map F W†k !M n between topological manifolds of dimensions k � n is
an immersion if locally it is a flat embedding, that is, if, for each point p 2†, there is a chart ' around p

and a chart ‰ around F.p/ fitting into one of the commutative diagrams

(2-1)

Rk �
//

'

��

Rn

‰
��

†
F
// M

Rk
C

�C
//

'

��

Rn

‰

��

†
F
// M

Rk
C

�CC
//

'

��

Rn
C

‰

��

†
F
// M
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The first diagram is for p 2 Int† and F.p/ 2 Int M, the second diagram is for p 2 @† and F.p/ 2 Int M,
and the third is for p 2 @† and F.p/ 2 @M. In particular, F is required to map interior points of † to
interior points of M.

Some authors prefer to call this notion a locally flat immersion.

Definition 2.2 A (linear) normal bundle for an immersion F W †k !M n is an .n�k/–dimensional
real vector bundle � W �F !†, together with an immersion zF W �F !M that restricts to F on the zero
section s0, ie zF ı s0 D F, and such that each point p 2† has a neighbourhood U such that zF j��1.U / is
an embedding.

We now restrict to the relevant dimensions for this paper, k D 2 and nD 4, and take M to be a connected
topological 4–manifold as in Convention 1.1. The singular set of an immersion F W†!M is the set

S.F / WD fm 2M W jF�1.m/j � 2g:

Recall that a continuous map is said to be proper if the inverse image of every compact set in the codomain
is compact.

Definition 2.3 Let † be a surface, possibly noncompact. A continuous, proper map F W†!M is said
to be a (topological) generic immersion, denoted by F W†#M, if it is an immersion and the singular set
is a closed, discrete subset of M consisting only of transverse double points, each of whose preimages
lies in the interior of †. In particular, whenever m 2 S.F /, there are exactly two points p1;p2 2† with
F.pi/Dm, and there are disjoint charts 'i around pi for i D 1; 2, where '1 is as in the leftmost diagram
of (2-1) and '2 is the same, with respect to the same chart ‰ around m, but with � replaced by

�0 WR2
D f0g �R2 ,!R2

�R2
DR4:

Theorem 2.4 A generic immersion F W †# M, for possibly noncompact †, has a normal bundle
as in Definition 2.2 with the additional property that zF is an embedding outside a neighbourhood of
F�1.S.F //, and near the double points zF plumbs two coordinate regions ��1.'i.R2//Š 'i.R2/�R2

for i D 1; 2 together , ie zF ı .'1.x/;y/D zF ı .'2.y/;x/.

Proof Let @1† � @† denote the union of the components of @† mapped to @M. Then, since F j@1†

is an embedding of a 1–manifold in a 3–manifold, it has a normal bundle. We extend this to a collar
neighbourhood of F.@1†/ contained in a collar neighbourhood of @M. To do this, first note that, since
@M is closed in M, S.F / is closed and contained in Int.M /, and manifolds are normal, it follows that
there is an open neighbourhood of @M disjoint from S.F /. Then argue as in Connelly’s proof [1971]
that boundaries of manifolds have collars, to obtain a homeomorphism of pairs

G W .M;F.†// Š�!
�
M [ .@M � Œ0; 1�/;F.†/[ .F.@1†/� Œ0; 1�/

�
:

The normal bundle over the boundary extends to a collar in the codomain; hence, its pullback extends to
a collar in the domain.
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Next, let @2†� @† denote the union of the components of @† mapped to Int M . We see that F.@2†/

has a normal bundle by [Freedman and Quinn 1990, Theorem 9.3], as a submanifold of M. Let zF be the
embedding of the total space, as in Definition 2.2. By using the inward-pointing normal for @2† in †, we
obtain an orthogonal decomposition of each fibre as �@2†,!†˚V, where V is a 2–dimensional subspace.
Then translates of V in the direction of the inward-pointing normal give rise to a normal bundle on the
intersection of a collar of @2† with the image of the normal bundle of @2† under zF.

Now we want to extend the normal bundle that we have just constructed on a neighbourhood of @† to the
rest of †. First we will produce a normal bundle in a neighbourhood of both preimages of each double
point, and then finally we will extend the normal bundle to the rest of the interior of †.

Let m 2 S.F / be a double point of F, so that there exist p1;p2 2 † with F.pi/Dm for i D 1; 2. By
the definition of a generic immersion, there is a chart ‰ for M at m, and charts 'i around pi , such that
F ı'1.x/D‰.x; 0/ and F ı'2.y/D‰.0;y/. We assume that F.†/\‰.R4/DF.'1.R

2//[F.'2.R
2//,

and moreover that the images of the charts for different elements of S.F / do not overlap one another, and
also are disjoint from the images of the normal bundles already constructed close to @†. Then we take a
trivial R2–bundle over each 'i.R2/, and we define the map zF on '1.R

2/�R2 and '2.R
2/�R2 by setting

zF .'1.x/;y/D‰.x;y/ and zF .'2.x/;y/D‰.y;x/. Then zF ı .'2.y/;x/D‰.x;y/D zF ı .'1.x/;y/,
as needed.

Let U m
1

and U m
2

be open neighbourhoods in † of p1 and p2, contained within the images of '1 and '2

above, respectively. Define†0 WD†n
S

m2S.F /.U
m
1
[U m

2
/. Then the restriction of F gives an embedding

of †0 in M. We already have a normal bundle defined on a neighbourhood of @†0. Apply [Freedman and
Quinn 1990, Theorem 9.3A] to extend the given normal bundle on U m

1
[U m

2
and @† to all of †0 and

therefore we have a normal bundle on all of †.

Remark 2.5 Freedman and Quinn [1990, Theorem 9.3] produce an extendable normal bundle for every
submanifold of a 4–manifold. The extendibility condition is technical with an important consequence:
extendable normal bundles are unique up to isotopy. One can always find an extendable normal bundle
embedded in the total space of any given normal bundle.

The proof of Theorem 2.4 also applies in the more general setting where @2† is not embedded in M, but
F j@2† factors as a composition of generic immersions @2†# S#M for some surface S. We will use
this case in the definition of b–characteristic maps in Section 5, so we introduce nomenclature.

Definition 2.6 Let g W S#M be a generic immersion of a surface in a 4–manifold M. Let .B;Z/ be a
pair consisting of a surface B and a collection Z � @B of connected components of its boundary. A map
H W B!M is called a generic immersion of pairs if H.Z/� g.S/ and

(i) H jBnZ is a generic immersion that is transverse to g and has image disjoint from H.Z/;

(ii) H.B/ is disjoint from the double points of g, which implies there is a unique map h WZ! S with
g ı hDH jZ ;

Geometry & Topology, Volume 28 (2024)



Embedding surfaces in 4–manifolds 2413

(iii) the map h is a generic immersion; and

(iv) there is a collar N of Z in B with H.N nZ/�M ng.S/.

We denote such maps by H W .B;Z/# .M;S/, and sometimes identify h with H jZ .

Corollary 2.7 Let g W S # M be a generic immersion of a surface in a 4–manifold M and let
H W .B;Z/# .M;S/ be a generic immersion of pairs. Then H admits a normal bundle , ie a normal
bundle for B in M such that the restriction to Z contains a normal bundle for Z in S.

Proof Note that Z has a normal bundle in S, and then the sum of this with the normal bundle of S in M

guaranteed by Theorem 2.4 gives rise to a normal bundle for Z in M. The rest of the proof proceeds as
before.

Observe that smooth generic immersions are topological immersions. Next we show that when both
notions make sense they coincide, which justifies the terminology.

Theorem 2.8 Consider a smooth compact surface † and a .topological/ generic immersion F W†#M.
If M is noncompact then let M 0 WD M, and if M is compact then choose p 2 M n F.†/ and set
M 0 WDM n fpg. Then F is a smooth generic immersion in some smooth structure on M 0.

We know that M 0 has a smooth structure by [Freedman and Quinn 1990, Theorem 8.2; Quinn 1982,
Corollary 2.2.3].

Proof Fix a smooth structure on @M such that the generic immersion F restricted to those connected
components of @† that map to @M is a smooth embedding. To find such a smooth structure, first use the
standard smooth structure on the normal bundle of F j@†, and then extend this to a smooth structure on
all of @M. Since any two smooth structures on a 3–manifold are isotopic, this could also be arranged by
an isotopy of @†, but our aim is to use the given map without isotoping it.

By Theorem 2.4, there is a normal bundle .�F ; zF / for F. Let D.�F /!† be the (closed) disc bundle.
This yields a regular neighbourhood N.F / WD zF .D.�F // of F.†/, a codimension zero submanifold
of M 0. The regular neighbourhood N.F / can be identified with a smooth manifold obtained from D.�F /

after the requisite plumbing operations and smoothing corners. Use such an identification to fix a smooth
structure on N.F /�M. With respect to this smooth structure, the map †!N.F / is a smooth generic
immersion.

Now, the boundary of N.F / inherits a smooth structure. The complement of Int N.F /[ .N.F /\ @M 0/

in M 0 is a connected, noncompact 4–manifold with a prescribed smooth structure on its boundary. Then
the interior has a compatible smooth structure by [Freedman and Quinn 1990, Theorem 8.2; Quinn 1982,
Corollary 2.2.3], giving rise to a smooth structure on all of M 0. Since the smooth structure on N.F / is
unaltered, F become a smooth generic immersion, as desired.
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Recall that an isotopy of homeomorphisms of a manifold M is a map H WM � Œ0; 1�!M such that the
track M � Œ0; 1�!M � Œ0; 1� given by .m; t/ 7! .H.m; t/; t/ is a homeomorphism.

Definition 2.9 An ambient isotopy between generic immersions F;G W†#M consists of two isotopies
H† W†� Œ0; 1�!† and HM WM � Œ0; 1�!M such that

(1) H†.�; 0/ and HM .�; 0/ are both the identity; and

(2) G.x/DHM

�
F.H†.x; 1//; 1

�
for all x 2†.

This is motivated by the smooth result which states that two generic immersions are ambiently isotopic
(in the sense of Definition 2.9 but with homeomorphism replaced by diffeomorphism in the definition of
an isotopy) if and only if they are connected by a path in the space of generic immersions [Golubitsky and
Guillemin 1973, Chapter III, Theorem 3.11]. Note that for embeddings one does not need the isotopy H†.

Mirroring the smooth notion, a generic homotopy between generically immersed surfaces in a 4–manifold
is by definition a sequence of ambient isotopies, finger moves, Whitney moves and cusp homotopies.
The moves in question are defined in local coordinates exactly as in the smooth setting. A regular
homotopy between generically immersed surfaces in a 4–manifold is by definition a sequence of ambient
isotopies, finger moves and Whitney moves. The following proposition explains that maps of surfaces in
a 4–manifold can be assumed to be generic immersions, and homotopies between generic immersions
may be assumed to be generic as well.

Proposition 2.10 [Powell et al. 2020, Proposition 3.1] Let † be a compact surface and let M be a
topological 4–manifold.

(1) Every map .†; @†/! .M; @M / is homotopic (relative to the embedded boundary) to a generic
immersion.

(2) Every homotopy .†; @†/� Œ0; 1�! .M; @M / that restricts to a generic immersion on †�f0; 1g is
homotopic (relative to the boundary) to a generic homotopy.

Briefly, the proposition is proven as follows. Homotope the maps away from a point of M using cellular
approximation, remove that point, choose a smooth structure on the complement of the point, and then
apply the smooth theory of generic immersions, combining [Hirsch 1976, Theorems 2.2.6 and 2.2.12]
with [Golubitsky and Guillemin 1973, Chapter III, Corollary 3.3].

2.2 Intersection numbers

We define intersection numbers between compact, connected surfaces in 4–manifolds. In order to
accommodate the fundamental group in equivariant intersection numbers, we need to use basings.
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Definition 2.11 We call a manifold X based if it is equipped with basepoints pi 2Xi for each connected
component Xi �X, together with a local orientation at each pi . A generic immersion F WX !Y between
based manifolds with Y connected is said to be based if it is equipped with whiskers, ie paths in Y from
the basepoint of Y to F.pi/ for each basepoint pi of X.

For the remainder of this section, let M be a connected, based 4–manifold and let † and †0 be based,
compact, connected surfaces, unless specified otherwise.

Let f W †!M and g W †0!M be based maps that are transverse, ie around each intersection point
f .s/D g.s0/ with s 2† and s0 2†0, there are coordinates that make f and g (in a neighbourhood of s

in † and a neighbourhood of s0 in †0) resemble the standard inclusions R2 � f0g and f0g �R2 into R4,
respectively, as in (2-1). We assume that these intersections are the only singularities between f and g

and that f .@†/ and g.@†0/ are disjoint.

Let vf and vg be whiskers for f and g. The intersection number �.f;g/ is the sum of signed fundamental
group elements

�.f;g/ WD
X

p2ftg

".p/ � �.p/

as follows. A priori this is the formal sum of a list of elements of the set f˙1g��1.M /. It will ultimately
give rise to an element of a quotient of ZŒ�1.M /�, given in Definition 2.12, after we factor out the effect
of finger and Whitney moves and the effect of the choice of the paths 
p

f
and 
p

g in the first bullet point
below.

Fix p 2 f t g. Next we define ".p/ 2 f˙1g and �.p/ 2 �1.M /. We use � to denote concatenation of
paths.

� Let 
p

f
be a path in † from the basepoint to f �1.p/ and let 
p

g be a path in †0 from the basepoint
to g�1.p/.

� The sign ".p/2 f˙1g is determined as follows. Transport the local orientation of† at the basepoint
to f �1.p/ along 
p

f
, and the local orientation of †0 at the basepoint to g�1.p/ along 
p

g . This
induces a local orientation at p, by ordering f before g. Another local orientation is obtained
by transporting the local orientation at the basepoint of M to p along the concatenated path
vg � .g ı


p
g /. We define ".p/DC1 when the two local orientations match at p, and �1 otherwise.

� The element �.p/ 2 �1.M / is by definition the concatenation vf � .f ı 

p

f
/� .g ı 


p
g /
�1 � v�1

g .

For a generic immersion f W †#M, we define �.f; f / WD �.f; f C/, where f C is a push-off of f
along a section of its normal bundle transverse to the zero section. If the embedding f j@† is equipped
with a specified framing for its normal bundle, then f C is defined to be a push-off of f along a section
restricting to the first vector of that framing on @†.
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If ft is a homotopy of f that is transverse to g for all t then �.ft ;g/ is independent of t as a set of
signed fundamental group elements, assuming the above choices of 
p

ft
are made carefully. However, if

ft describes a finger move of f into g, there is a single time t0 at which ft0
and g are not transverse,

because there is a tangency. After the tangency, two new intersection points p and q arise. These have
the same group element �.p/D �.q/ and opposite signs ".p/D�".q/, with appropriate choices of 
p

ft

and 
 q

ft
. Similarly, a Whitney move reduces the intersections between f and g by such a pair. To get a

regular homotopy invariant notion, it is thus important to specify the home of �.f;g/ carefully.

For † and †0 simply connected, the sum �.f;g/ is usually considered as an element of ZŒ�1.M /� and is
independent of the choice of f
p

f
gp and f
p

g gp . In the abelian group ZŒ�1.M /� the relations �aCaD 0

for each a 2 �1.M / are built in, and if one identifies the sign ".p/ with the inverse in this abelian group
then finger moves and Whitney moves do not change �.f;g/ as an element in the group ring.

For nonsimply connected† and†0, the homotopy class of 
p

f
and 
p

g may be changed by wrapping around
nontrivial elements in �1.†/ or �1.†

0/. This wrapping may also change the induced local orientations
at the intersection points of f and g. We describe this in more detail next. Let wM W �1.M /! f˙1g,
w† W �1.†/! f˙1g and w†

0

W �1.†
0/! f˙1g denote the orientation characters.

Definition 2.12 Let �f;g be the abelian group generated by the elements of �1.M / and with relators

(2-2) 
 �w†.˛/w†
0

.ˇ/wM .g�.ˇ// �f�.˛/� 
 �g�.ˇ/;

for all ˛2�1.†/; ˇ2�1.†
0/; 
 2�1.M /. Here f�.˛/ WDvf �.f ı˛/�v�1

f
and g�.ˇ/ WDvg�.gıˇ/�v

�1
g

are elements of �1.M /.

For transverse f W†!M and g W†0!M, the intersection number �.f;g/ 2 �f;g is well defined. The
relations precisely account for wrapping around elements of �1.†/ or �1.†

0/ as described above. We
will show in Proposition 2.18 that this target also makes �.f;g/ a homotopy invariant.

Remark 2.13 In the case that M, † and †0 are all oriented,

�f;g Š ZŒf�.�1.†//n�1.M /=g�.�1.†
0//�;

the free abelian group generated by the double coset quotient of �1.M / by left and right multiplication
by the images of loops in † and †0, respectively.

In general, due to the signs introduced by the orientation characters, there may be torsion in �f;g. For
example, consider f W RP2#M with f�.RP1/D 1, without any assumption on M. Then, for every
g W†0!M, the group

�f;g Š .Z=2/Œ�1.M /=g�.�1.†
0//�

is 2–torsion, due to the relations 
 D wRP2

.RP1/ � f�.RP1/ � 
 D �
 for every 
 2 �1.M /, arising
from setting ˛ WDRP1 and ˇ WD 1 in (2-2).
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To understand �f;g better, we introduce some notation. Write ˙�1.M / WD f˙1g ��1.M /. There is a
natural inclusion ˙�1.M /! ZŒ�1.M /� given by .˙1; 
 / 7! ˙
 . Write Œa� 2 �f;g for the equivalence
class of a2ZŒ�1.M /�, and let� denote the equivalence relation on˙�1.M / induced by the composition
˙�1.M / ,! ZŒ�1.M /�� �f;g, ie for a; b 2 ˙�1.M /, a � b if and only if the images of a and b

in �f;g coincide. The following lemma is immediate from the definitions.

Lemma 2.14 Let 
1; 
2 2 �1.M /. One of the relations Œ
1� D ˙Œ
2� 2 �f;g holds if and only if 
1

and 
2 represent the same element in the double coset f�.�1.†//n�1.M /=g�.�1.†
0//.

Let pm W ˙�1.M /=�� f��1.†/n�1.M /=g��1.†
0/ be the map sending˙
 to the class of 
 . We write

j
 j WD pm.
 /. Here one should think that pm stands for dividing out “plus–minus”. Note that pm has
fibres of order 1 or 2 and we can decompose the double coset as a disjoint union B1 tB2 according to
this distinction, where pm gives a bijection pm�1.B1/$ B1 while pm�1.B2/! B2 is two-to-one.

Remark 2.15 We give examples in the cases from Remark 2.13. In the case that M, † and †0 are
all oriented, B1 D ∅ and B2 D f�.�1.†//n�1.M /=g�.�1.†

0//. If we have f W RP2 # M with
f�.RP1/D 1, and g W†0!M is arbitrary, then B1 D �1.M /=g�.�1.†

0// and B2 D∅.

Choose a section s of pm. For each s.b/2 pm�1.B2/, we denote the other element of pm�1.b/ by �s.b/.
Their images in �f;g are indeed inverse to one another, which motivates the notation.

Lemma 2.16 Fix a section s for pm as above. The abelian group �f;g is a direct sum �f;g D FA˚V of
a free abelian group FA on the set s.B2/ �˙�1.M /=� � �f;g and a Z=2–vector space V with basis
s.B1/D pm�1.B1/�˙�1.M /=�.

Reading off the coefficients in this decomposition gives homomorphisms cs.b/ W �f;g!Z for each b 2B2,
and cb W �f;g! Z=2 for each b 2 B1, yielding a decomposition of �f;g as a direct sum of copies of Z

and Z=2.

In particular, the homomorphisms cs.b/ and cb determine the isomorphisms displayed in Remark 2.13.

Proof Starting with the free abelian group with basis �1.M /, a relator in (2-2) does one of the following
three things:

(1) It identifies two distinct basis elements 
1 and 
2 if and only if 
2 D f�.˛/� 
1 �g�.ˇ/ 2 �1.M /

and w†.˛/w†
0

.ˇ/wM .g�.ˇ//D 1 for some ˛ 2 �1.†/ and ˇ 2 �1.†
0/.

(2) It identifies a basis element 
1 with the inverse �
2 of another basis element 
2¤ 
1 if and only if

2D f�.˛/�
1�g�.ˇ/ and w†.˛/w†

0

.ˇ/wM .g�.ˇ//D�1 for some ˛ 2�1.†/ and ˇ 2�1.†
0/.

(3) It identifies a basis element 
 with its inverse �
 if and only if


 D f�.˛/� 
 �g�.ˇ/ and w†.˛/w†
0

.ˇ/wM .g�.ˇ//D�1

for some ˛ 2 �1.†/ and ˇ 2 �1.†
0/.
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The first two types of relators reduce the basis to the double coset

f��1.†/n�1.M /=g��1.†
0/:

The third type adds the relations 2Œ
 �D 0 to the fundamental group elements 
 in question, which then
generate V, because these are exactly the 
 such that �Œ
 �D Œ
 �, ie where #pm�1.j
 j/D 1. Those 

where #pm�1.j
 j/D 2 remain of infinite order and generate FA. Note that the second type of relator
forces us to choose the section s in order to write down a consistent basis for FA.

The subgroup V and its basis clearly do not depend on our choice of section, but the basis of FA depends
on this choice. If we change the section s at a point b 2B2 to s0 so that s0.b/D�s.b/, the associated basis
element changes to its inverse. It follows that the subgroup FA of �f;g does not depend on the choice of s.
It also follows that the coefficient maps cs.b/ only depend on s up to sign and satisfy c�s.b/ D�cs.b/.

For a given a 2 ˙�1.M /=�, we can choose a section s as above with s.pm.a// WD a and hence
we get a coefficient map ca that is independent of the other values of s. For example, we can take
a WD Œ
 � 2 ˙�1.M /=� with 
 2 �1.M / to get c
 .

Definition 2.17 For 
 2�1.M /, write �.f;g/
 WDc
 .�.f;g//. This quantity lies in Z (respectively Z=2)
when j
 j lies in B2 (respectively B1), or equivalently when Œ
 � has infinite order (respectively order 2)
in �f;g. The values do not depend on the choice of s and satisfy c
1

D�c
2
whenever Œ
1�D�Œ
2�.

The following can be proven using Proposition 2.10 (see eg [Freedman and Quinn 1990, Section 1.7;
Powell and Ray 2021b] for the case of discs and spheres).

Proposition 2.18 Let f W †!M and g W †0!M be based maps that are transverse to one another.
The intersection number �.f;g/ is preserved by homotopies that are ambient isotopies near @†t @†0.

Remark 2.19 The geometric definition of � given above has a well-known algebraic version in the
case that f and g correspond to classes in H2.M; @M IZŒ�1.M /�/. This extends to the case of positive
genus, as we now sketch. We restrict ourselves to the case that M, † and †0 are closed and oriented for
convenience.

Choose a basepoint in the universal cover of M, lifting the basepoint of M. The maps f and g lift
uniquely (with respect to this choice of basepoint) to covers �M and �M 0, corresponding to the subgroups
f�.�1.†// and g�.�1.†

0//, respectively. These lifts represent classes

Œf � 2H2. �M IZ/ŠH2

�
M IZŒ�1.M /=f��1.†/�

�
and

Œg� 2H2. �M 0
IZ/ŠH2

�
M IZŒ�1.M /=g��1.†

0/�
�
:

Then we have

PD�1.Œf �/ ^ PD�1.Œg�/ 2H 4
�
M IZŒ�1.M /=f��1.†/�˝Z ZŒ�1.M /=g��1.†

0/�
�
:
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By Poincaré duality, this yields an element in

H0

�
M IZŒ�1.M /=f��1.†/�˝Z ZŒ�1.M /=g��1.†

0/�
�
;

which is isomorphic as an abelian group to

ZŒf��1.†/n�1.M /�˝ZŒ�1.M /�ZŒ�1.M /=g��1.†
0/�:

Here ZŒf�.�1.†//n�1.M /� denotes ZŒ�1.M /=f��1.†/� considered as a right ZŒ�1.M /�–module.

Finally, we have the isomorphism

ZŒf��1.†/n�1.M /�˝ZŒ�1.M /�ZŒ�1.M /=g��1.†
0/�! ZŒf��1.†/n�1.M /=g��1.†

0/�;

Œa�˝ Œb� 7! Œab� for a; b 2 �1.M /:

We shall not prove that this formulation agrees with the geometric definition.

2.3 Self-intersection numbers

Next we turn to the self-intersection number for a based generic immersion f W†#M of a connected
surface †, with whisker vf . The definition of �, given below, is similar to that of � in the previous
subsection, except that there is no longer a clear choice of which sheet to consider first at a given double
point. Consequently, the values of � lie in a further quotient of the group �f;f from Definition 2.12.

We write f t f �M for the set of double points of f. We record the self-intersections of f by the sum
of signed group elements

�.f / WD
X

p2ftf

".p/ � �.p/

as follows:

� For p D f .x1/D f .x2/ for x1 ¤ x2 2†, let 
p
1

and 
p
2

be paths in † from the basepoint to x1

and x2, respectively.

� The sign ".p/ 2 f˙1g is defined as follows. Transport the local orientation of † at the basepoint
to x1 along 
p

1
, and along 
p

2
to x2. This induces a local orientation at p. Another local orientation

is obtained by transporting the local orientation at the basepoint of M to p along the concatenated
path vf � .f ı 


p
2
/. We define ".p/ D 1 when the two local orientations match at p, and �1

otherwise.

� The element �.p/ 2 �1.M / is given by the concatenation vf � .f ı 

p
1
/� .f ı 


p
2
/�1 � v�1

f
.

There is a similar discussion about homotopy invariance of �.f / as for �.f;g/ earlier: homotopies ft

that are generic immersions for all t preserve the formal sum of signed elements but finger moves and
Whitney moves (of f with itself) create pairs ��.p/C �.p/, so it is convenient to use abelian groups.
This takes care of regular homotopies of f but there is an additional subtlety for cusp homotopies ft ,
where there is exactly one time t0 for which ft0

is not an immersion. These issues will be discussed
carefully below.
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For simply connected †, the self-intersection invariant �.f / is well defined in the quotient (as an abelian
group) of ZŒ�1.M /� obtained by introducing the relators


 �wM .
 / � 
�1

for all 
 2 �1.M /. For general †, the quantity �.f / is well defined in the abelian group

(2-3) �f WD �f;f =h
 �w
M .
 / � 
�1

i;

ie in this quotient of �f;f from Definition 2.12. Here, as above, wM W �1.M /! f˙1g is the orientation
character.

We now change our notation slightly from the discussion of �.f;g/ in order to work in this further
quotient. Let � denote the equivalence relation on ˙�1.M / induced by the composition

˙�1.M / ,! ZŒ�1.M /�� �f

sending a 7! Œa� and let j�1.M /j be the quotient of˙�1.M / obtained by identifying 
1 and 
2 whenever
Œ
1�D˙Œ
2� 2 �f . Then we obtain the following analogues of Lemmas 2.14 and 2.16.

Lemma 2.20 Let 
1; 
2 2 �1.M /. One of the relations Œ
1� D ˙Œ
2� holds if and only if 
1 and 
2

represent the same element in the quotient of the double coset by inversion. In other words , the identity
map induces a bijection

j�1.M /j $ .f��1.†/n�1.M /=f��1.†//=�;

where� is the equivalence relation identifying 
 and 
�1 for all 
 2 �1.M /.

We write j
 j WD pm.
 / for the quotient map pm W ˙�1.M /=�� j�1.M /j. Again, pm has fibres of
order 1 or 2 and we decompose j�1.M /j as a disjoint union B1tB2 according to this distinction as before.
Choose a section s W j�1.M /j ! ˙�1.M /=� of pm. As before, for b 2 B2 we denote the elements of
the fibre by pm�1.b/D fs.b/;�s.b/g.

Lemma 2.21 The abelian group �f is a direct sum �f D FA˚V of a free abelian group FA on the set
s.B2/�˙�1.M /=�� �f and a Z=2–vector space V with basis s.B1/D pm�1.B1/�˙�1.M /=�.

Reading off the coefficients in this decomposition gives homomorphisms cs.b/ W �f ! Z for b 2 B2, and
cb W �f ! Z=2 for b 2 B1, leading to a decomposition of �f as a direct sum of copies of Z and Z=2.

Proof The proof is analogous to that of Lemma 2.16.

Remark 2.22 If M and † are oriented, then

�f Š ZŒf��1.†/n�1.M /=f��1.†/�=h
 � 

�1
i D ZŒ.f��1.†/n�1.M /=f��1.†//=��

is free abelian. In this case, B1 D ∅ and B2 D j�1.M /j D .f��1.†/n�1.M /=f��1.†//=� by
Lemma 2.20.
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Consider instead f WRP2#M with f�.RP1/D 1, without any assumption on M. Then

�f Š .Z=2/Œ�1.M /�=h
 �wM .
 / � 
�1
i D .Z=2/Œ�1.M /=��:

As in Remark 2.13, this is 2–torsion due to the relations 
 D wRP2

.RP1/ � f�.RP1/� 
 D�
 . In this
case, B1 D j�1.M /j D �1.M /=� and B2 D∅.

As before, the subgroups FA and V of �f do not depend on the choice of s; only the basis of FA does.
As a consequence, the coefficient maps cs.b/ only depend on s up to sign and satisfy c�s.b/ D �cs.b/.
Given a 2˙�1.M /=�, we may again take s.pm.a// WD a to get ca and, in particular, c
 for 
 2 �1.M /

independent of the choice of s at other points. This gives the following definition.

Definition 2.23 For 
 2�1.M /, we write�.f /
 WD c
 .�.f //. This quantity lies in Z (respectively Z=2)
when j
 j lies in B2 (respectively B1), or equivalently when Œ
 � has infinite order (respectively order 2)
in �f . The values do not depend on the choice of s and satisfy c
1

D�c
2
whenever Œ
1�D�Œ
2�.

We focus on �.f /1, which plays an important role in the distinction between the homotopy class and
regular homotopy class of f, as we will discuss in the next subsection. In the usual case, where † is
simply connected, �.f /1 2 Z. However, in general, �.f /1 may lie in either Z or Z=2. The following
lemma gives the precise conditions determining the home of �.f /1.

Lemma 2.24 Let f W †#M be a based , generic immersion , with whisker v. Recall that the map
f� W �1.†/! �1.M / is given by ˛ 7! v � .f ı˛/� v�1.

If w† is trivial on ker.f�/ and wM is trivial on Im.f�/, then Œ1�2�f has infinite order and thus�.f /12Z.
Otherwise , Œ1� has order 2 and �.f /1 2 Z=2.

Proof By definition, for 1 2 �1.M /, we know that Œ1� 2 �f;f has order 2 precisely if

(i) there exists ˛; ˇ 2�1.†/ such that f�.˛/�f�.ˇ/Df�.˛�ˇ/D 1 and w†.˛/w†.ˇ/wM .f�.ˇ//D

w†.˛ �ˇ/wM .f�.ˇ//D�1, or

(ii) there exists ı � 1 where ı has order two in �1.M / and wM .ı/D�1.

Suppose that w† is trivial on ker.f�/ and wM is trivial on Im.f�/. Then the first case (i) cannot happen
since, if f�.˛ �ˇ/D 1, then ˛ �ˇ 2 ker.f�/ so w†.˛ �ˇ/wM .f�.ˇ//D 1 � 1D 1. Similarly, (ii) cannot
happen: suppose ı has order two in �1.M / and ı�1. Then, by definition, ıDf�.˛/�1�f�.ˇ/Df�.˛�ˇ/
in �1.M /, for some ˛; ˇ 2 �1.M /. In particular, ı 2 Im.f�/, and so again wM .ı/D 1 by hypothesis,
contradicting (ii). Therefore, Œ1� has infinite order, as claimed.

Now suppose there is some ˛ 2 �1.†/ with wM .f�.˛//D�1. Then we have f�.˛�1/� 1�f�.˛/D 1

and w†.˛�1/w†.˛/wM .f�.˛//D�1, so Œ1���Œ1� and Œ1� has order two.

Finally, suppose that there is some ˛ 2 ker.f�/ with w†.˛/D�1. Then we have f�.˛/� 1�f�.1†/D 1

and w†.˛/w†.1†/wM .f�.1†//D�1, where 1† denotes the trivial element in �1.†/. Then, again, we
have Œ1���Œ1� and Œ1� has order two.
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As with Proposition 2.18, the proof of the following proposition is virtually identical to the case of discs
and spheres using Proposition 2.10 (see eg [Powell and Ray 2021b]), and we leave it for the interested
reader.

Proposition 2.25 Let f W†#M be a based generic immersion. The self-intersection number �.f / is
preserved under regular homotopies that are ambient isotopies near @†.

In this and the previous subsection, we have considered intersection and self-intersection numbers of
connected surfaces. By combining these invariants, we can define the conglomerate notion of self-
intersection number for disconnected surfaces F D ffig

m
iD1
W†!M, as considered in Definition 1.3:

�.F / WD
X
i<j

�.fi ; fj /C
X

i

�.fi/ 2
M
i<j

�fi ;fj
˚

M
i

�fi
:

Propositions 2.18 and 2.25 imply that �.F / is preserved under regular homotopies of F that are ambient
isotopies near @†.

2.4 Whitney discs

A Whitney move cancels a pair of double points of a generic immersion F W†#M as in Convention 1.1,
provided all the assumptions on the guiding Whitney disc are satisfied. In our setting, where † and M

need be neither simply connected nor orientable, this requires some care. We start with the notion of arcs A

and A0 pairing double points p and q, and the corresponding notion of .p; q;A;A0/ having opposite sign.

Definition 2.26 Let f W †!M and g W †0!M be based maps that either intersect transversely, or
f D g and f is a generic immersion. We say that two points p; q 2 f t g �M are paired by arcs if we
equip them with the extra data of an arc A W Œ0; 1�!† from f �1.p/ to f �1.q/ and an arc A0 in †0 from
g�1.q/ to g�1.p/. In the case that f D g, we require that each point in f �1.p/ and in f �1.q/ is the
endpoint of precisely one of the arcs A and A0, ie A and A0 lie in distinct sheets at both p and q.

With the extra data of the arcs A and A0, we can make sense of whether two intersection points that are
paired by arcs have opposite sign.

Definition 2.27 Let f W †!M and g W †0!M be based maps that either intersect transversely, or
f D g and f is a generic immersion. Two intersection points p; q 2 f t g �M paired by arcs A in †
and A0 in †0 have opposite sign if the following holds. Fix local orientations of † at f �1.p/ and of †0

at g�1.p/. This choice induces a local orientation of M at p. Transport the local orientation of † from
f �1.p/ to f �1.q/ along A, and the local orientation of †0 from g�1.p/ to g�1.q/ along A0. This gives
a local orientation of M at the point q. Compare this with the local orientation on M at q induced by
transporting the local orientation from p to q along the arc f ıA. If these orientations disagree, then the
points p and q are said to have opposite sign (with respect to A and A0), and otherwise they are said to
have the same sign. The dependence on the choice of arcs A and A0 is sometimes neglected.
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Note that double points having the same sign could be “paired” by an embedded disc, but this does not
mean that a Whitney move using this disc is possible, because the required section of the normal bundle of
the disc is not available; in this case, any rank one subbundle of the normal bundle of the disc, restricted
to the boundary, that is tangent to one sheet of † and normal to the other sheet turns out to be a Möbius
bundle. So one does not study such discs and assumes that a Whitney disc always pairs two double points
of opposite sign.

In the setting of based transverse maps f ¤ g, with † and †0 connected, recall from Section 2.2 that
�.f;g/ is a sum of terms ".p/ � �.p/, one for each double point p 2 f t g, with �.p/ 2 �1.M /

and ".p/ 2 f˙1g. This sum is well defined in the abelian group �f;g and each signed group element
a 2 ˙�1.M / represents a unique element Œa� 2 �f;g. The same proof as in the case of simply connected
surfaces [Powell and Ray 2021b, Proposition 11.10] yields the following result.

Lemma 2.28 Let † and †0 be compact connected surfaces and let f W †!M and g W †0!M be
based maps with transverse double points p; q 2 f t g �M. Then Œ".p/ � �.p/C ".q/ � �.q/�D 0 2 �f;g

if and only if p and q can be paired by arcs A�† and A0 �†0 such that

(i) the closed loop f ıA[p;q g ıA0 is null-homotopic in M, and

(ii) the points p and q have opposite sign with respect to the arcs A and A0.

If (i) and (ii) are satisfied for p and q, we say that W WD2!M is a (map of a) Whitney disc pairing p

and q if its boundary is the closed loop in (i), the union of its two Whitney arcs f ıA and g ıA0. We
leave it to the reader to formulate the analogous notion for a pair of transverse self-intersection points of
f W†!M. This gives rise to the following corollary to Lemma 2.28.

Corollary 2.29 Let † and †0 be compact connected surfaces and let f W†!M and g W†0!M be
transverse based maps. Then �.f;g/D 0 if and only if all intersection points between f and g can be
paired by maps of Whitney discs.

Moreover , a based generic immersion f W†#M satisfies �.f /D 0 if and only if all self-intersection
points of f can be paired by maps of Whitney discs.

Note that, by the geometric Casson lemma (Lemma 4.2), the vanishing of �.f;g/ is equivalent to the
existence of a regular homotopy of f and g that makes their images disjoint, at the cost of introducing
self-intersections in f and g. There is no analogue of this argument if �.f /D 0 by the failure of the
Whitney trick in dimension 4, as for example exhibited by the secondary embedding obstruction km.f /
(see Section 3).

By the geometric characterisation in Corollary 2.29, it is meaningful to refer to f and g having trivial
intersection number, and to f having trivial self-intersection number, without using a basing.
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The analogue of the characterisation in the second part of Corollary 2.29 holds for generic immersions
F D ffig

m
iD1
W†#M from Convention 1.1, ie for compact but possibly disconnected domains, if we

use Definition 1.3 from the introduction for the self-intersection number �.F /.

Corollary 2.30 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Then �.F /D 0 if and only if the
double points of F can be paired by maps of Whitney discs.

Proof This is a direct consequence of Propositions 2.18 and 2.25 and Corollary 2.29 because every double
point of F is either a self-intersection point of a component fi or an intersection point between distinct
components fi and fj (where we can assume that i < j ). Note that both cases represent self-intersection
points of F.

Collections of Whitney discs as above may be assumed to be convenient in the following sense (see eg
[Freedman and Quinn 1990, Section 1.4; Powell and Ray 2021b]).

Definition 2.31 Let F W .†; @†/# .M; @M / be as in Convention 1.1. A convenient collection of
Whitney discs for F is a collection of framed, generically immersed Whitney discs pairing all the double
points of F, with interiors transverse to F and with disjointly embedded boundaries. A collection of arcs
in F.†/ is called a collection of Whitney arcs if the union of the arcs is the boundary of a convenient
collection of Whitney discs.

By pushing double points of a convenient collection across the boundaries of Whitney discs [Powell
and Ray 2021b, Figure 11.4], we may further assume that all Whitney discs are pairwise disjoint and
embedded. However, the (resulting and preexisting) intersections between the original surface F and the
Whitney discs can in general not be removed, as detected by the secondary invariant km.F /.

2.5 Homotopy versus regular homotopy of generic immersions

Let f W†#M be a generic immersion. Local orientations of M and † determine a local orientation
of �f. Hence, given a framing of f j@†, one can define a relative Euler class of the normal bundle �f
in H 2.†; @†IZw1.�f //. If f �.w1.M // D w1.�f /C w1.T†/ D 0 then the local orientation of †
determines a Poincaré duality isomorphism from this twisted cohomology group to Z, and we denote the
resulting integer by e.�f /. Note that e.�f / does not depend on the local orientation of † but only on the
local orientation of M. If f �.w1.M //¤ 0 then there is still a mod 2 normal Euler number, which we
also denote by e.�f / 2 Z=2.

A useful interpretation of e.�f / is as follows. A vector in R2 together with the framing of f j@† determines
a nonvanishing section of �f on f .@†/. Extend this to a section of �f over all of f .†/, transverse
to the zero section. Then e.�f / counts, with sign, the number of zeros of the section, in Z or Z=2 as
appropriate.
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Next we give an extension of [Powell et al. 2020, Theorem 1.2] from the simply connected to the general
setting, restricting ourselves to the case of connected † for convenience. We note that [Powell et al. 2020,
Theorem 1.2] was based on [Freedman and Quinn 1990, Lemma 1.2 and Proposition 1.6], but that the
latter proposition was not proven in [Freedman and Quinn 1990].

By the following theorem, in some cases, for example when M is orientable, e.�f / 2 Z is an additional
invariant of regular homotopy classes of immersions. It changes by ˙2 during a cusp homotopy (see eg
[Conant et al. 2012b, Figure 19]) and hence there can be infinitely many regular homotopy classes of
immersions, all of which are homotopic as continuous maps.

In Theorem 2.32, in the case that † has nontrivial boundary, we fix a framing on the embedding f j@†, in
order to define the relative Euler number e.� Qf / for Qf any generic immersion homotopic to f.

Theorem 2.32 Let † be a compact , connected surface and let M be a 4–manifold. Then the inclusion
of the subspace of generic immersions Imm.†;M / in the space of all continuous maps induces a map

Imm.†;M /

fregular homotopyg
i
�! Œ†;M �@;

where Œ†;M �@ denotes the set of homotopy classes of continuous maps that restrict on @† to embeddings
disjoint from the image of the interior of †.

(1) i is surjective.

(2) The fibres of i are related by cusp homotopies. More precisely, suppose that f and g are homotopic
generic immersions. Then we can add cusps to f and g, to obtain f 0 and g0, respectively, such
that f 0 and g0 are regularly homotopic.

(3) For every f 2 Œ†;M �@, there is a bijection

i�1.f /Š

8<:
2Z if f �.w1.M //D 0 and w2.� Qf /D 0;

2ZC 1 if f �.w1.M //D 0 and w2.� Qf /D 1;

Z=2 otherwise ,

where � Qf is a normal bundle for Qf, a generic immersion in i�1.f /. When f �.w1.M //D 0, the
bijection is given by

Qf 7! e.� Qf /:

Otherwise , the bijection is given by

Qf 7! �. Qf /1 2 Z=2:

(4) If f �.w1.M // D 0 and w1.†/jker.f�/ D 0 for Qf a generic immersion in i�1.f /, the quantities
�. Qf /1 and e.� Qf / are related by the formula

�. Qf ; Qf /1 D 2�. Qf /1C e.� Qf / 2 Z

and so �. Qf /1 2 Z also detects the regular homotopy class of Qf 2 i�1.f /.
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While we prefer the upcoming direct argument analysing singularities, Theorem 2.32 could in principle
also be proven via Smale–Hirsch immersion theory, which has a version in the topological category. The
main novelty of the theorem is that we give precise conditions in terms of the Stiefel–Whitney classes to
control how large the fibres of i are, and which invariants detect them.

Proof By Proposition 2.10(1), the map is surjective. That is, every homotopy class contains a generic
immersion. This proves (1).

For (2), note that, if f and g are homotopic generic immersions, then, by Proposition 2.10(2), there exists
a generic homotopy H between them, which by definition is a sequence of ambient isotopies, finger moves,
Whitney moves and cusp homotopies. We can modify H so that there are real numbers t1 < t2 2 Œ0; 1�

such that the singularities of H in Œ0; t1� only consist of cusp homotopies that create double points, the
singularities in Œt1; t2� only consist of finger moves and Whitney moves, and those in Œt2; 1� only consist of
cusp homotopies that remove double points. The statement then follows by taking f 0 WDHt1

and g0 WDHt2
.

To achieve this modification, note that we can bring all the creating cusp singularities forward, so that they
occur earlier, and we can delay all the removing cusps. To arrange for a creating cusp to be rearranged
earlier than a finger or Whitney move, choose an arc in the image of H starting from Ht .†/ for some
t 2 .0; t1/, and ending at the cusp, which intersects each level in a point and is disjoint from all Whitney
arcs and double points. The homotopy can then be altered in a neighbourhood of this arc so that the cusp
singularity occurs at time t . Delaying a removing cusp is the same procedure but with the direction of
time reversed. This completes the proof of (2).

The proof of (3) splits naturally into two cases.

Case 1 f �.w1.M //D 0.

As noted in Section 2, the sign of an intersection point is not always well defined. Nevertheless, in
the case that f �.w1.M // D 0, the sign of a cusp homotopy is well defined. The key point is that a
cusp not only specifies a double point p but also an arc between the preimages of p. In the case that
f �.w1.M // D 0, using this path, the sign of the double point p is well defined, independent of the
choice of path transporting the local orientation at the basepoint to the double point. Thus in this setting
we define the sign of a cusp to be the sign of the double point it creates or removes. We will use the
terminology of creating cusps for cusps that create a double point and removing cusps for those that
remove a double point.

Since f �.w1.M //D 0, e.� Qf / is defined in Z for any generic immersion Qf homotopic to f. Recall that
w2.� Qf /� e.� Qf / mod 2. Since regularly homotopic generic immersions have equal Euler numbers, the
map in the theorem statement is well defined on equivalence classes in the domain of i . Note that a cusp
homotopy changes e.� Qf / by 2 or �2, depending on the sign of the cusp and whether it is a creating or a
removing cusp. So every element of 2Z or 2ZC 1, depending on w2.� Qf /, can be realised as the Euler
number of a generic immersion in i�1.f /.
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t t

t

(a) (b)

(c)

Figure 3: A schematic picture showing how a removing cusp singularity and creating cusp
singularity with the same sign can be cancelled. In each of (a), (b) and (c), a homotopy is traced
out in the direction of t . At every time t , except the times of the cusp singularities, we depict an
arc of a generic immersion homotopic to f. (a) Two cusp singularities are shown: a removing
cusp occurring first, followed by a creating cusp of the same sign. (b) Modify the homotopy,
delaying the removing cusp until it coincides with the creating cusp. This involves choosing an
arc in † joining the two cusp points. (c) A further local modification removes the two cusps.

To complete the proof when f �.w1.M //D 0, it remains to show injectivity. We will show that, given a
generic homotopy between generic immersions with equal Euler numbers, we can modify the homotopy
to cancel cusps, until we are left with a regular homotopy.

First note that, when we have a removing cusp, and later in the homotopy we have a creating cusp with
the same sign, we can cancel these two cusps along a level-preserving path in the homotopy, as indicated
in Figure 3.

However, this is not sufficient. We also have to show that we can also cancel cusps given

(i) two creating cusps of opposite sign, or two removing cusps of opposite sign; or

(ii) a creating cusp paired with a later removing cusp, both of the same sign.

Suppose that we have a generic homotopy H between generic immersions with equal Euler numbers
consisting of two creating cusp homotopies of opposite sign, as in (i). Create a self-homotopy H0 of the
starting immersion, ie the immersion at tD0, consisting of a trivial finger move together with two removing
cusps for the double points created by the finger move, as shown in Figure 4. Then concatenate H0 with
the original homotopy H. The new homotopy can be modified as in Figure 3 to cancel the removing
cusps in H0 and the creating cusps in H, leaving only the finger move behind. An analogous argument
shows how to cancel two removing cusps of opposite sign, this time concatenating at the end of H.

Similarly, for the situation in (ii), suppose that we have a generic homotopy H between generic immersions
with equal Euler numbers consisting of a creating cusp and a later removing cusp of the same sign. Again
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t

Figure 4: A schematic picture showing a self-homotopy consisting of a trivial self-finger move
followed by two removing cusps. The homotopy is traced out in the direction of t . At every
time t , except at the times of the cusp and finger move singularities, we depict an arc of a generic
immersion homotopic to f. In red we show the arc of self-intersections of f ; note that it starts at
one cusp singularity and ends at the other.

we construct the self-homotopy H0 and concatenate with H. In the result, we use the procedure from
Figure 3 to cancel the creating cusp in H with one of the removing cusps in H0. This entire operation has
so far replaced a cusp with a cusp of opposite sign and direction. As before we can repeat the operation at
the end of the homotopy to replace the removing cusp with a creating one, also with the opposite sign. Thus
when we have a creating cusp with a later removing cusp of the same sign, we can replace both by cusps of
opposite sign and direction. Since now the removing cusp happens before the creating cusp, the two can be
cancelled and we are done with case (ii). This completes the proof of (3) in the case that f �.w1.M //D 0.

Case 2 f �.w1.M //¤ 0.

Note that a cusp homotopy changes �. Qf /1 2 Z=2 by one. So both values of Z=2 can be realised within
the homotopy class. To show injectivity in this case, we have to show that we can cancel cusps in a
homotopy in arbitrary pairs. First use the trading argument above to get all the removing cusps before the
creating cusps in the homotopy. Then, for any pair of cusps, one removing and one creating, choose some
level-preserving path in the homotopy between the first and the second cusp, and restrict to a small disc
containing the path. If they have the same sign with respect to this disc, cancel the two cusps as before.

If they have opposite signs, change the choice of the arc to arrange that the union of the new arc and
the old arc maps nontrivially under w1.M /. Such an arc exists since f �.w1.M // is nontrivial and † is
connected. With this new choice, the signs of the cusps in the disc become the same and we can again
cancel the cusps. This completes the proof of both halves of (3).

Finally, for (4), note that, if f �.w1.M // D 0 and w1.†/jker.f�/ D 0, then, by Lemma 2.24, �. Qf /1 is
well defined in Z. By the discussion above the statement of the theorem, e.� Qf / is also well defined in Z.
In this case, the formula

�. Qf ; Qf /1 D 2�. Qf /1C e.� Qf / 2 Z

holds by the proof of the corresponding fact for discs and spheres (see eg [Powell and Ray 2021b,
Proposition 11.8]). Any cusp homotopy leaves �. Qf ; Qf /1 unchanged, while it changes �. Qf /1 by ˙1. By
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the formula, it changes e.� Qf / by �2. Thus, if Qf and Qf 0 are generic immersions homotopic to f, then
e.� Qf /D e.� Qf 0/ if and only if �. Qf /1 D �. Qf 0/1. Hence, (4) follows from (3).

3 Secondary embedding obstructions

The Whitney trick implies that every map F W Sn!M 2n is homotopic to an embedding whenever M is
a simply connected 2n–dimensional manifold and n > 2. In order to prove the failure of the Whitney
trick in dimension 4, Kervaire and Milnor [1961] devised an obstruction that gave counterexamples to the
above statement for nD 2. They showed that the homotopy class of 3 �CP1 is not represented by an
embedded sphere in CP2. In a smooth, oriented, closed 4–manifold M, consider the formula

(3-1) �.c/ WD 1
8
.c � c � �.M // mod 2;

where the Z=2–reduction of c 2H2.M IZ/ is Poincaré dual to w2.M / and �.M / is the signature of the
intersection form .x;y/ 7! x �y on H2.M IZ/. In this setting, if c is represented by an embedded sphere,
then �.c/ D 0. Recall that, for a unimodular form ` and a characteristic element c, ie one satisfying
`.c;x/� `.x;x/ mod 2, the difference `.c; c/� �.`/ is always divisible by 8. The condition on c being
dual to w2.M / is stronger than being characteristic for the intersection form since the mod 2 intersection
condition holds for all x 2H2.M IZ=2/, not just for integral homology classes. For example, if M is
the Enriques surface (double covered by the K3 surface), then �.0/¤ 0, so 0 cannot be dual to w2.M /,
even though the intersection form on H2.M IZ/ is even.

For the proof that � is an embedding obstruction, Kervaire and Milnor added 1� ŒF � � ŒF � copies of
.CP2;CP1/ to a proposed characteristic pair .M;F W S2 ,!M /, with F assumed to be an embedding,
to obtain an embedded sphere with self-intersection number 1. Then they blow down that characteristic
sphere to arrive at a spin manifold M 0 with �.M 0/ D �.M /C .1� ŒF � � ŒF �/� 1 D �.M /� ŒF � � ŒF �.
Rokhlin’s theorem [1952] — that the signature of a smooth, closed, spin 4–manifold is divisible by 16 —
is equivalent to the original condition �.ŒF �/D 0 in M.

The Kervaire–Milnor result also has consequences for spin manifolds, where it says that any (characteristic)
homology class c D 2b that is represented by an embedded sphere must satisfy b � b � 0 mod 4. For
example, 2� 2 �2.S

2 �S2/ is not represented by an embedding for � the diagonal 2–sphere.

For about a decade, it remained an open problem to find a combinatorial formula for �.c/ in terms of
geometric representatives for c.

3.1 Combinatorial formulas: Rokhlin’s Arf invariant

Rokhlin [1972] picked an embedded representative F W† ,!M for c 2H2.M IZ/ as above and assumed
that H1.M IZ=2/ vanishes. Any simple closed curve r in (the image of) F then bounds a compact
surface R in M. The reader should think of R as an “unoriented cap” and check that it has a relative Euler
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number, just like a Whitney disc or an ordinary cap. Rokhlin then asserted that setting qF .r/ WD jInt RtF j

for R with vanishing relative Euler number defines a quadratic enhancement

qF WH1.†IZ=2/! Z=2

that refines the mod 2 intersection form on †. Independence from the choice of R follows from F being
dual tow2.M /, in this setting using intersections of F with all classes of the form ŒR[R0�2H2.M IZ=2/.
Rokhlin stated that the Arf invariant Arf.qF / is equal to �.c/ D �.ŒF �/. A nice consequence of this
equality is that Arf.qF /D �.c/ vanishes whenever c can be represented by an embedded sphere, because
qF is then defined on the zero vector space.

3.2 Combinatorial formulas: Freedman and Kirby’s characteristic bordism

Using the same definitions, Freedman and Kirby [1978] proved Rokhlin’s claims from above, on their
way to a geometric proof of Rokhlin’s original theorem. They worked with an arbitrary smooth, closed,
oriented 4–manifold M, but before computing qF they performed surgery on circles in M to arrange
that H1.M IZ=2/D 0; alternatively, they could have made M simply connected and used discs for R,
ie ordinary caps. They showed that Arf.qF / is invariant under “characteristic bordism”, implying
independence from the choice of surgeries, as well as establishing the equality Arf.qF / D �.ŒF �/ by
checking it on the generators of �char

4
. A different proof of Arf.qF /D �.ŒF �/ was given in [Matsumoto

1986].

On a historical note, Freedman and Kirby wrote that they learnt these results from Casson and that
they only heard of Rokhlin’s results after finishing their paper. The Rokhlin method was extended to
nonorientable characteristic surfaces in closed 4–manifolds in [Guillou and Marin 1980; Kirby and Taylor
2001].

3.3 Combinatorial formulas: Matsumoto’s t–invariant

Matsumoto [1978], in the same proceedings as [Freedman and Kirby 1978], started with a spherical class
c 2 �2.M / and represented it by a generic immersion F W S2#M with 2g algebraically cancelling
double points. He assumed that H1.M IZ/ D 0, using this condition to find “Whitney surfaces”, ie
oriented surfaces R1; : : : ;Rg bounded by pairs of Whitney arcs in F. Again there is a relative Euler
number and we may assume that every Ri has vanishing relative Euler number. Matsumoto proved that,
if ŒF � 2H2.M IZ/ is characteristic, then

(3-2) Arf.qF /D

gX
iD1

jInt Ri t F j DW t.F / 2 Z=2

by adding g tubes based at pairs of double points of F to turn it into an embedding of a surface † of
genus g, where qF is the quadratic enhancement defined above. The new surface has pairs of framed
caps .Di ;Ri/, where Di is a meridional disc of the i th tube and hence has one interior intersection with
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F, so qF .@Di/D 1. Since the boundaries of these caps form a hyperbolic basis of H1.†IZ=2/, the result
follows from the usual formula

Arf.qF /D

gX
iD1

qF .@Di/ � qF .@Ri/D

gX
iD1

qF .@Ri/D

gX
iD1

jInt Ri t F j:

3.4 Summary of the secondary embedding obstructions from the 1970s

Given ŒF � 2 �2.M / such that its Hurewicz image in H2.M IZ=2/ is Poincaré dual to w2.M /, the above
results show that

�.ŒF �/D Arf.qF /D t.F / 2 Z=2

is an obstruction to representing ŒF � by an embedding F W S2 ,!M. Note that � only depends on the
homology class h.ŒF �/ 2H2.M IZ/ by definition, whereas that is not clear for the other two invariants.

An attractive aspect of Matsumoto’s t.F / is that it can be computed combinatorially from a generic
immersion F W S2#M. One argues directly that t.F / is an obstruction to representing ŒF � 2 �2.M / by
an embedded sphere and independence of the choice of Ri comes from ŒF � being characteristic.

Matsumoto’s formula was extended in a number of ways. For example, in recent work of Kasprowski, Land,
Powell and Teichner [Kasprowski et al. 2017; 2021b; 2020] on the stable diffeomorphism classification
of spin 4–manifolds, a version of Matsumoto’s t–invariant was used to compute the relevant Arf invariant.
We describe further extensions presently.

It follows from topological transversality [Freedman and Quinn 1990, Section 9.5] that, in a smooth,
closed, oriented 4–manifold M, the quantity �.c/ is also an obstruction to representing an element c as
before by a topological — ie locally flat — embedding F W S2 ,!M. If M is not smooth, one adds the
Kirby–Siebenmann invariant and then the formula

�TOP.c/ WD �.c/C ks.M /

defines such an obstruction; see [Conant et al. 2012a, Introduction] for details. For example, it follows that
the generator of �2.�CP2/ is not represented by an embedding. Historically speaking, these applications
were not known at the time of publication of [Rokhlin 1972; Freedman and Kirby 1978; Matsumoto 1978].

In the following, we will return to considering topological manifolds and obstructions to topological
embeddings.

3.5 Secondary obstructions to embedding genus zero surfaces with dual spheres

If † is a union of discs or spheres and F W .†; @†/# .M; @M / has algebraically dual spheres, then
Freedman and Quinn [1990, Definition 10.8A] gave a version of Matsumoto’s t–invariant, calling it the
Kervaire–Milnor invariant. Rather than restricting H1.M IZ/ as in the discussions above, they assumed
that �.F / D 0, ie that all double points of F can be paired by Whitney discs. They used the same
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formula as in (3-2), but counted intersections with F , restricting to the Whitney discs in a convenient
collection W that pair double points of F . They claimed that this mod 2 count, t.F ;W / from
Definition 1.5, is a secondary obstruction to representing F by an embedding. However, this is only true
if F is r–characteristic (Definition 5.5), as Stong’s correction [1994] showed. Stong noticed that the
choice of sheets for double points whose group elements have order 2 is related to immersed RP2s in M.
If F is dual to w2.M / then F is also r–characteristic, but not vice versa, so this obstruction is more
generally defined than �.ŒF �/.

The embedding theorem for unions of discs and spheres [Freedman and Quinn 1990, Theorem 10.5], as
corrected by Stong, says, in our notation, that, for good fundamental group �1.M /, such an F is homotopic
to a topological embedding if and only if there exists a convenient collection of Whitney discs W for the
double points of F such that t.F ;W /D 0. We give more details about the Freedman–Quinn–Stong
embedding result in Section 5.

3.6 Secondary obstructions to embedding unions of spheres

Matsumoto’s invariant t.F / from (3-2) was extended to a secondary embedding obstruction in [Schneider-
man and Teichner 2001] for F Dffig

m
iD1

, not assuming dual spheres, where each fi WS
2#M is a generic

immersion and assuming �.F /D 0 and that M is oriented. By counting interior intersections of F with a
convenient collection W of Whitney discs pairing the double points of F, and remembering group elements,
signs and components of F, the authors defined an intersection count �.F;W/ 2 T.�1.M /;m/. Here
T.�1.M /;m/ is the abelian group given by the direct sum of mC

�
m
2

�
C
�
m
3

�
copies of ZŒ�1.M /��1.M /�.

To obtain a secondary embedding obstruction, Schneiderman and Teichner [2001, Section 8] gave a list of
relations such that the subgroup R.M;F /� T.�1.M /;m/ generated by these relations has the property
that

�.f1; : : : ; fm/D �.F / WD Œ�.F;W/� 2 T.�1.M /;m/=R.M;F /

does not depend on the choice of convenient collection W. In our current language, the main result of
that paper is that �.F /D 0 if and only if km.F /D 0 as in Definition 1.4. In the absence of dual spheres,
�.F /D 0 does not imply that F is homotopic to an embedding. For example, there are obstructions from
higher-order Whitney towers.

If F is r–characteristic then the augmentation map E W T.�1.M /;m/ ! Z=2, summing all possible
coefficients, takes R.M;F / to zero and �.F / to Matsumoto’s t.f1 # � � � # fm/, for an arbitrary choice
of interior connected sum of the ffig

m
iD1

. Moreover, if F has algebraic dual spheres then E induces
an isomorphism of T.�1.M /;m/=R.M;F / with either Z=2 or 0, depending on whether F is r–
characteristic or not. This gives the relationship to Section 3.5.

3.7 Secondary embedding obstructions for arbitrary compact surfaces

It is likely possible to extend the invariant � from Section 3.6 to arbitrary immersed compact surfaces,
not just spheres. However, determining the analogue of R.M;F / would be a formidable task. In this
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paper we take the first step, namely by defining the right notion of b–characteristic surfaces for which
Matsumoto’s invariant extends from spheres to a secondary embedding obstruction for arbitrary compact
surfaces. We also generalise the work of Freedman, Quinn and Stong to all compact surfaces in the
presence of algebraically dual spheres.

Recall from Definition 1.4 that, for F W .†; @†/# .M; @M / as in Convention 1.1, by definition the
Kervaire–Milnor invariant km.F / 2 Z=2 vanishes if and only if, after finitely many finger moves on
the interior of F, taking F to some F 0, there is a convenient collection of Whitney discs, with interiors
disjoint from F 0, pairing all the double points of F 0.

The finger moves in this definition are relevant because finger moves can add relations to the fundamental
group �1.M XF /, making it easier to find (Whitney) discs in the complement of F.

We could have allowed arbitrary regular homotopies, from F to F 0, in the definition of km. However, this
is not needed, as the following result shows. Note that a nonregular homotopy can change km.F /; see
Corollary 6.3.

Proposition 3.1 Let † and M be as in Convention 1.1. If F1;F2 W †#M are regularly homotopic
generic immersions , then km.F1/D km.F2/ 2 Z=2.

Proof To show that km.F1/ D km.F2/, by symmetry it suffices to show that km.F1/ D 0 implies
km.F2/D 0. Suppose that km.F1/D 0, and let F 0

1
be obtained from F1 by finger moves such that the

intersections of F 0
1

can be paired up by Whitney discs fWig as in Definition 1.4. Since F 0
1

and F2 are
regularly homotopic, there is a generic immersion F3 such that F3 can be obtained from both F 0

1
and F2

by finger moves and ambient isotopies. Since F3 is obtained from F 0
1

by finger moves and ambient
isotopies and the finger moves can be assumed to be disjoint from fWig, all the double points of F3 can
also be paired up by Whitney discs with interiors disjoint from F3, as in Definition 1.4. Since F3 is
obtained from F2 by finger moves, by taking F 0

2
WD F3 it follows that km.F2/D 0.

Definition 1.4 is optimised for the proof of Theorem 1.2, as we will see shortly, but is difficult to use in
practice. In particular, while one may fortuitously detect specific finger moves and Whitney discs to show
km.F /D 0, without a combinatorial description it appears, for a given F, to be hard to prove that the
required finger moves from F to some F 0, together with Whitney discs for F 0, do not exist. We provide
precisely such a combinatorial reformulation in Theorem 1.9, generalising Matsumoto’s invariant to our
formula for t.F / for b–characteristic F. In the proof of Theorem 1.6 we will show that in the presence of
dual spheres this agrees with Definition 1.4.

4 The proof of the surface embedding theorem

The surface embedding theorem (Theorem 1.2) can be deduced using the proof of [Freedman and
Quinn 1990, Theorem 10.5(1)], combined with an observation in [Powell et al. 2020, Theorem A and
Lemma 6.5] for the condition on the homotopy class of G, using our definition of the Kervaire–Milnor
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invariant (Definition 1.4). Since the surface embedding theorem does not follow directly from the
statement of [Freedman and Quinn 1990, Theorem 10.5(1)], as previously discussed, and also since the
latter requires a correction by Stong [1994], it can be hard for the uninitiated to piece together a correct
proof. Therefore we provide one in this section.

Further, the statement of [Freedman and Quinn 1990, Theorem 10.5(1)] is itself quite complicated, and
our version, focussed on the surface embedding problem, may be useful for those looking to apply the
technology of Freedman–Quinn without delving into the details.

4.1 Ingredients

The statement of the surface embedding theorem uses the notions of algebraically and geometrically dual
spheres. We recall the definitions.

Definition 4.1 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with components ffig
m
iD1

.

(1) A collection G D fgi W S
2#M gm

iD1
of generic immersions is said to be algebraically dual to F

if F tG is a generic immersion and �.fi ;gj /D Œıij � 2 �fi ;gj
for all i and j for some choice of

basings for F and G.

(2) A collection G D f Ngi W S
2#M gm

iD1
of generic immersions is geometrically dual to F if F tG

is a generic immersion and the geometric count of intersections satisfies jfi t Ngj j D ıij for all i

and j.

We will need the following lemma, the idea behind which is due to Casson [1986]; see also [Freedman
1982, Section 3]. The formulation we give here is from [Powell et al. 2020, Lemma 5.1].

Lemma 4.2 (Geometric Casson lemma) Let F and G be transversely intersecting generic immersions
of compact surfaces in a connected 4–manifold M. Assume that the intersection points fp; qg � F tG

are paired by a Whitney disc W. Then there is a regular homotopy from F [G to F [G such that
F tGD .F tG/nfp; qg. That is , the two paired intersections have been removed. The regular homotopy
may create many new self-intersections of F and G; however , these are algebraically cancelling.

The proof of the surface embedding theorem also relies on Freedman’s disc embedding theorem, whose
statement we recall.

Theorem 4.3 (Disc embedding theorem [Freedman 1982; Freedman and Quinn 1990; Powell et al. 2020];
see also [Behrens et al. 2021]) Let M be a connected topological 4–manifold with good fundamental
group , and let

F D ffig
m
iD1 W .D

2
t � � � tD2;S1

t � � � tS1/# .M; @M /

be a generic immersion of finitely many discs. Assume that F has framed algebraically dual spheres
G D fŒgi �g

m
iD1
� �2.M / such that �.gi ;gj /D 0D �.gi/ for all i ¤ j. Then there is a flat embedding
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F D f Nfig
m
iD1
W
�F

D2;
F

S1
�
,! .M; @M /, which is equipped with geometrically dual spheres G D

f Ngig
m
iD1

, such that F and F have the same framed boundary and Œ Ngi �D Œgi � 2 �2.M / for all i .

We will also freely use standard constructions such as symmetric contraction, boundary twisting and
interior twisting (ie adding local cusps). See [Freedman and Quinn 1990, Chapters 1–2; Powell and Ray
2021a] for further details.

4.2 Proof of the surface embedding theorem

We recall the statement for the convenience of the reader.

Theorem 1.2 (Surface embedding theorem) Let FDffig
m
iD1
W .†; @†/# .M; @M / be as in Convention

1.1. Suppose that �1.M / is good and that F has algebraically dual spheres G D fŒgi �g
m
iD1
� �2.M /.

Then the following statements are equivalent :

(i) The self-intersection number �.F / and the Kervaire–Milnor invariant km.F / 2 Z=2 vanish.

(ii) There is an embedding FDf Nfig
m
iD1
W .†; @†/ ,! .M; @M /, regularly homotopic to F relative to @†,

with geometrically dual spheres G D f Ngi W S
2#M gm

iD1
such that Œ Ngi �D Œgi � 2 �2.M / for all i .

Proof The direction (ii)D) (i) follows from the fact that the intersection and self-intersection numbers,
as well as the Kervaire–Milnor invariant, are invariant under regular homotopy (relative to the boundary)
by Propositions 2.18, 2.25 and 3.1, respectively.

The proof of the direction (i)D) (ii) reduces to the disc embedding theorem (Theorem 4.3) as follows.
The argument is similar to the proof of [Freedman and Quinn 1990, Corollary 5.1B] (see also the proof
of [Powell et al. 2020, Theorem 8.1]).

Apply the geometric Casson lemma (Lemma 4.2) to upgrade GDfgig from algebraically to geometrically
dual spheres G0 D fg0ig, changing F to F 0 by a regular homotopy in the process. The intersection and
self-intersection numbers, and the Kervaire–Milnor invariant, vanish for F. So they also vanish for F 0,
since all three quantities are preserved under regular homotopy relative to the boundary by Propositions
2.18, 2.25 and 3.1.

Then, by the definition of the Kervaire–Milnor invariant (Definition 1.4), after further finger moves
changing F 0 to some F 00, we can find a convenient collection of Whitney discs WD fWlg for F 00 whose
interiors are disjoint from F 00. Moreover, F 00 and G0 are still geometrically dual, since the finger moves
may be assumed to miss G0.

We shall apply the disc embedding theorem (Theorem 4.3) to the collection of generically immersed
discs W in the 4–manifold M n �F 00, so we verify that the hypotheses are satisfied. The Whitney
discs W have framed algebraically dual spheres as follows. The Clifford tori at the double points of F 00

are geometrically dual to W. Symmetrically contract half of these tori, one per Whitney disc, using
meridional discs for F 00 tubed into the geometrically dual spheres G0 D fg0ig. The resulting spheres
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are only algebraically dual to W since the components of W and G0 may intersect arbitrarily; however,
they have vanishing intersection and self-intersection numbers since they were produced by symmetric
contraction. They are also framed, as we argue briefly now. If a sphere gi in G0 is not framed, then the
symmetric contraction uses incorrectly framed caps. However, in the symmetric contraction process, each
cap is used twice, with opposite orientations, and so any framing discrepancies cancel out. Since F 00 has
geometrically dual spheres, �1.M n �F

00/Š �1.M / and is thus good. This verifies the hypotheses of the
disc embedding theorem (Theorem 4.3) for W, as desired.

Apply the disc embedding theorem to the Whitney discs W in M n �F 00 to obtain disjointly embedded,
flat, framed Whitney discs fWlg for the double points of F 00, with interiors still disjoint from F 00, along
with a collection of geometrically dual spheres for the fWlg in M n �F 00.

Tube any intersections of G0 with fWlg into the geometrically dual spheres for fWlg, giving a new
collection of spheres G D f Ngig disjoint from fWlg. Now we have that the interiors of fWlg lie in the
complement of F 00[G, and moreover F 00 and G are geometrically dual. Perform Whitney moves on F 00

along fWlg to arrive at an embedding F, as claimed. By construction, F and G are geometrically dual.
That Œ Ngi �D Œgi � 2 �2.M / for each i follows from [Powell et al. 2020, Lemma 6.5].

4.3 The �1–negligible surface embedding theorem

Recall that a map F WX!Y is called �1–negligible if the inclusion Y nF.X /�Y induces an isomorphism
on �1 for all basepoints. Here is a reformulation of the surface embedding theorem.

Corollary 4.4 (The �1–negligible surface embedding theorem) Let F W .†; @†/ # .M; @M / be
as in Convention 1.1. Suppose that F is �1–negligible and that �1.M / is good. Then �.F / and
the Kervaire–Milnor invariant of F both vanish if and only if there exists a �1–negligible embedding
F W .†; @†/ ,! .M; @M / regularly homotopic to F, relative to the boundary.

This corollary follows from the surface embedding theorem and the fact that a generic immersion F W†#
M is �1–negligible if and only if F admits geometrically dual spheres, which can be seen as follows. For
the forward direction, the meridional circles are null-homotopic in M, so by �1–negligibility they are null-
homotopic in M nF.†/. The union of null-homotopies with meridional discs gives geometrically dual
spheres. For the reverse direction, first note that, by general position, the homomorphism �1.M nF.†//!

�1.M / is surjective. The kernel is normally generated by a collection consisting of one meridional
circle for each connected component of †. Since geometrically dual spheres provide null-homotopies for
these meridians, the assertion follows. By the geometric Casson lemma (Lemma 4.2), the map F in the
statement of the surface embedding theorem (Theorem 1.2) is regularly homotopic to a �1–negligible
map, due to the existence of the algebraically dual spheres G. Indeed, this is the first step of the proof
of the surface embedding theorem. Note that Theorem 1.2 also controls the homotopy class of the dual
spheres, and so is slightly stronger than Corollary 4.4.
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5 Band characteristic maps and the combinatorial formula

In this section we define b–characteristic surfaces (Definition 5.17) and motivate the combinatorial formula
for the Kervaire–Milnor invariant (Definition 1.5). We postpone many of the proofs to Section 7. We hope
this will help the reader to assimilate the overall structure more easily. We work towards the definition
of b–characteristic surfaces by first defining the related notions of s–characteristic and r–characteristic
surfaces, mirroring the historical development. These latter definitions are simpler to state and serve to
motivate the more complicated definition of b–characteristic surfaces.

A sphere g W S2#M in a topological 4–manifold M is said to be twisted if the Euler number of the
normal bundle is odd. We say g is framed if the normal bundle is trivial. To coincide with the usual
meaning of framed, one can also implicitly choose a trivialisation, although we will not make use of
such a choice. Observe that, if the normal bundle of g has even Euler number, then it is homotopic to a
generically immersed sphere with trivial normal bundle, via adding local cusps.

Definition 5.1 Let F Dff1; : : : ; fmgW .†; @†/# .M; @M / be as in Convention 1.1. We define† �†
so that, for i 2 f1; : : : ;mg, the component †i �† if and only if there is no framed immersed sphere gi

with �.fj ;gi/D ıij for all j D 1; : : : ;m. Then we use

F D ffi W†i !M g

to denote the restriction of F to † . Note that, if an fi does not admit an algebraically dual sphere at all,
then it belongs to F .

Recall that x2H2.M; @M IZ=2/ is said to be characteristic if x�aDa�a2Z=2 for every a2H2.M IZ=2/,
where ��� denotes the intersection pairing H2.M IZ=2/�H2.M; @M IZ=2/!Z=2. The next definition
gives a weaker notion.

Definition 5.2 Let F W .†; @†/# .M; @M / be as in Convention 1.1. The map F is called spherically
characteristic (or s–characteristic for short) if F � aD a � a 2 Z=2 for all a 2 �2.M /, considered as an
element of H2.M IZ=2/.

We will show in Lemma 5.18 that b–characteristic maps are s–characteristic.

Lemma 5.3 Let F W .†; @†/# .M; @M / be as in Convention 1.1.

(i) If F is s–characteristic , then F D F .

(ii) If F has algebraically dual spheres , then F is s–characteristic or empty.

Proof To prove (i), suppose F is not equal to F ; then there exists a component †i of † with a framed
dual sphere gi , ie with �.fj ;gi/D ıij for all j ¤ i . This leads to the contradiction

1D fi �gi D fi �gi C

X
j¤i

fj �gi D F �gi D gi �gi D 0 2 Z=2;

where the second-to-last equality follows from F being s–characteristic.
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To prove (ii), suppose that F has algebraically dual spheres. Note that the dual spheres for F � F are
necessarily twisted. Assume that F neither s–characteristic nor empty. Then there exists a2�2.M / such
that F �a¤ a �a 2Z=2. By tubing into a dual sphere to a component of F if necessary, we can assume
that a is untwisted, ie a �a is zero and that F �aD 1. Choose some component fj of F such that at fj

is nonempty. Except for one of the intersections between fj and a, tube all the intersections of a and F

into the corresponding dual spheres to F . Call the resulting sphere a0j . Since F � aD 1, we tubed into
an even number of dual spheres, so a0j �a

0
j D a �aD 0 2Z=2. Via adding local cusps, we may assume that

a0j is framed. We also have that �.fi ; a
0
j /D ıij for all i and j. This contradicts the definition of F .

Recall that a convenient collection of Whitney discs W for the intersections within F consists of framed,
generically immersed Whitney discs with interiors transverse to F, and with disjointly embedded bound-
aries. Recall the invariant t from Definition 1.5 appearing in Theorem 1.6, where t.F;W/ is the mod 2

count of transverse intersections between F and the interiors of the Whitney discs in W.

If F is not s–characteristic, then we can change t.F;W/ as follows. Given a 2 �2.M / with F � a odd
but a � a even, one can tube a framed Whitney disc W for F into a framed representative Qa W S2#M,
keeping the new Whitney disc framed but adding an odd number of interior intersections with F. If F � a

is even and a � a is odd, one can tube W into a representative Qa and also add an odd number of boundary
twists to keep the new Whitney disc framed but again adding an odd number of interior intersections
with F. Using Lemma 5.3, this is one reason for the appearance of F in the following statements.

The following lemma is also used in the proof of Theorem 1.6, and shows that the vanishing of t for a
given collection of Whitney discs implies the vanishing of km.

Lemma 5.4 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that F admits algebraically
dual spheres , and that all double points of F are paired by a convenient collection W of Whitney discs.
Let W �W denote the subcollection of Whitney discs for the intersections within F , where F is as in
Definition 5.1. If t.F ;W /D 0, then km.F /D 0.

We wish to find practically verifiable conditions on F that guarantee that t.F ;W / is independent of the
collection of Whitney discs W . More precisely, the value of t.F ;W / should be independent of the
pairing of double points, the Whitney arcs joining the paired double points (which includes the choice of
sheets at each double point), and finally the Whitney discs. In the case that each †i is simply connected,
t.F ;W / agrees with [Freedman and Quinn 1990, Definition 10.8A]. However, Freedman and Quinn
claim in their Lemma 10.8B that, for simply connected †, the quantity t.F ;W / only depends on F ,
and not on the Whitney discs, as long as F is s–characteristic. This is not true in general, as pointed out
and corrected by Stong [1994]. Further, again with �1.†i/D 1 for all i , Stong established that the value
of t does not depend on the choice of W using the notion of r–characteristic discs and spheres. Here is
our generalisation of his notion.
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Definition 5.5 Let † and M be as in Convention 1.1. A map F W .†; @†/! .M; @M / is called RP2–
characteristic (or simply r–characteristic) if F �RDR �R2Z=2 for every map R WRP2

!M satisfying
R�w1.M /D 0.

Remark 5.6 A map c WRP2
!S2 of odd degree (eg a collapse map) composed with elements of �2.M /

can be used to show that r–characteristic maps are s–characteristic. Indeed, given F and a 2 �2.M /, we
obtain a ı c WRP2

!M, and we have 0D F � .a ı c/C .a ı c/ � .a ı c/D F � aC a � a 2 Z=2, where the
second equality uses that c has odd degree.

Stong’s key observation [1994] was that, in some instances involving elements of order two in �1.M /, one
can change the choice of sheets at two double points of F , and hence the Whitney arcs and corresponding
Whitney disc, with a resulting change in the value of t.F ;W / by one. The restriction to r–characteristic
maps removes this source of indeterminacy. To summarise, Stong showed the following theorem.

Theorem 5.7 [Stong 1994] Let F W .†; @†/# .M; @M / be as in Convention 1.1, with † a union
of discs or spheres. Suppose �.F / D 0 and that F admits algebraically dual spheres. If F is not
r–characteristic , then km.F /D 0, and if F is r–characteristic , then km.F /D t.F ;W / for any choice
of Whitney discs W for the intersections within F .

Remark 5.8 Combining Theorems 2.32 and 5.7 with Theorem 1.2 gives the complete answer to the
embedding problem for spheres and discs with algebraically dual spheres for good fundamental groups,
due to Freedman, Quinn and Stong. Theorem 2.32 allows one to fix the regular homotopy class of
generic immersions within the homotopy class to be that with �.�/1 D 0, Theorem 5.7 computes the
Kervaire–Milnor invariant, and then one applies Theorem 1.2 to conclude whether or not there is a regular
homotopy to an embedding.

Our contribution in the present paper extends this solution to the case that the components of † are not
all simply connected. In this case there is a further source of indeterminacy coming from the choice of
Whitney arcs on †. For this reason we need a stronger restriction on F .

Definition 5.9 A band refers to either of the two D1–bundles over S1, ie a band is either an annulus or
a Möbius band. Let F W .†; @†/# .M; @M / be as in Convention 1.1. Let MF be the mapping cylinder
of F. Write B.F / � H2.M; †IZ=2/ WD H2.MF ; †IZ=2/ for the subset of elements of the relative
homology group that can be represented by a square

@B †

B M

h

� F

g

where B is a band and � W @B ,! B is the inclusion such that

(5-1) hw1.M /;g.C /iC hw1.†/; h.@B/i D 0 2 Z=2;

where C is the core curve of B.
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F.†/

C

B

F.†/

Figure 5: An annular band B (blue) is shown with boundary on F (black). One of the boundary
components of B is nonorientable on F and one is orientable, so hw1.†/; h.@B/i D 1. Therefore,
in order for this to be an element of B.F /, we must have hw1.M /;g.C /i D 1, where M is the
ambient 4–manifold and C is the core curve of the annulus, shown in blue.

See Figure 5 for an example of a band. Note that every element of B.F / can be represented by a
generic immersion of pairs .B; @B/# .M; †/ (Definition 2.6). Writing H2.M; †IZ=2/ in place of
H2.MF ; †IZ=2/ is a slight but standard abuse of notation. The pair .g; h/ induces a relative homology
class since the map

gt .h� IdŒ0;1�/ W B t .@B � Œ0; 1�/!M t .†� Œ0; 1�/

descends to a map M� ! MF . The mapping cylinder M� is homeomorphic to B, and so we obtain a
map .B; @B/! .MF ; †/. The image of the relative fundamental class ŒB; @B� in H2.MF ; †IZ=2/ is
an element of B.F /. From now on, since MF 'M, to simplify the notation we will not mention the
mapping cylinder and refer to B.F /�H2.M; †IZ=2/.

F.†/

S B

(a) (b)

Figure 6: (a) An immersed surface S (blue) in the ambient manifold M, and the image (black)
of a generic immersion F W .†; @†/# .M; @M /. (b) A thin tube is added, with one boundary
component on † and one on S. The surface B (blue) is obtained by cutting out a disc on S and
gluing in the tube. Note that, compared to S, the surface B has a new boundary component lying
on †.
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We will see in Lemma 7.7 that, given a generic immersion F W .†; @†/# .M; @M / as in Convention 1.1,
every element of H2.M; †IZ=2/ can be represented by an immersion of some compact surface S into M,
with interior transverse to F, and with boundary generically immersed in F.†/ away from the double
points. The subset B.F / consists of those homology classes for which S can be chosen to be a band
satisfying condition (5-1).

We use the notation
@ WH2.M; †IZ=2/!H1.†IZ=2/

for the connecting homomorphism from the long exact sequence of the pair. A class represented by a
compact surface S is mapped to its boundary @S under the map @. Then @B.F /�H1.†IZ=2/ consists
of (the homology classes of) those closed 1–manifolds immersed in † whose images under F bound
bands in M satisfying (5-1).

Construction 5.10 Given a generic immersion F W .†; @†/# .M; @M / as in Convention 1.1, suppose
we have a generically immersed surface S in M with boundary on †, ie admitting maps satisfying

@S †

S M

h

� F

g

where possibly @S is empty. Then the tubing procedure shown in Figure 6 can be used to create a band ,
as follows. If S is a disc , the procedure gives an annulus B with boundary lying on †. This annulus
satisfies (5-1), and therefore lies in B.F /, if and only if hw1.†/; h.@S/i D 0 2 Z=2, since the core of B

is null-homotopic in M and the newly created boundary component of B is null-homotopic in †.

In the case that S is a sphere , we can perform the tubing procedure of Figure 6 to S twice. In this case ,
both boundary components of the annulus created are null-homotopic on †, so we always produce an
element of B.F /.

Finally, if S is an RP2, the tubing procedure creates a Möbius band with boundary on †, which lies
in B.F / if and only if hw1.M /;g.RP1/i D 0 2 Z=2, where RP1

�RP2.

When defining b–characteristic surfaces, we will restrict to the case that the Z=2–valued intersection
form �† is trivial on @B.F /. We can restrict in this way because of the following lemma.

Lemma 5.11 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. If the Z=2–valued
intersection form �† on H1.†IZ=2/ is nontrivial on @B.F /, then we can change F by a regular homotopy
to F 0 such that there are convenient collections of Whitney discs W and W0 for the double points of F

and F 0, respectively, such that t.F;W/¤ t.F 0;W0/.

Moreover , if F has dual spheres and the Z=2–valued intersection form �† on H1.† IZ=2/ is nontrivial
on @B.F / then km.F /D 0.
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In the case that �†j@B.F / is trivial, we define an invariant ‚ on the set B.F /. We will need the following
notions:

(1) For Z a closed 1–manifold generically immersed in †, the self-intersection number �†.Z/ 2Z=2

of Z counts the number of double points, which we assume without loss of generality to be disjoint
from the double points of F. As usual, this is not invariant under homotopies of Z in †, only under
regular homotopies.

(2) Let S be a compact surface, with a generic immersion of pairs .S; @S/# .M; †/. Suppose that
w1.†/ is trivial on each component of @S, eg if † is orientable. Then the normal bundle of @S
in † is trivial and we can pick a nowhere-vanishing section (if S is closed, this is an empty choice).
Extend this section to the normal bundle of S in M (such a normal bundle exists by Corollary 2.7)
such that the extension is transverse to the zero section. Then we define the Euler number e.S/

to be the number of zeros of this section modulo 2. Observe that this is analogous to how one
measures the twisting of a Whitney disc with respect to the Whitney framing. For S a closed
surface, this coincides with the usual definition of the Euler number.

Here is the definition of ‚.S/ in the case that w1.†/ is trivial on every component of @S.

Definition 5.12 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F / D 0. Let A be a
choice of Whitney arcs pairing the double points of F. Let S be a compact surface in M with a generic
immersion of pairs .S; @S/# .M; †/ such that @S is transverse to A and w1.†/ is trivial on every
component of @S. Define

(5-2) ‚A.S/ WD �†.@S/Cj@S tAjC jInt S t F jC e.S/ mod 2:

For closed S we have ‚A.S/� jInt S t F jC e.S/ mod 2, and thus ‚A.S/ vanishes for all closed S if
and only if F is characteristic in the traditional sense. In the proof of Theorem 1.6, we will only use the
definition of ‚A for bands. But the case of general surfaces will be useful for our proof that, in the cases
relevant to us, ‚A does not depend on the choice of A (see Lemma 5.16 below).

Remark 5.13 Definition 5.12 suffices in the case of orientable †. The reader only interested in this case
may safely skip ahead to Lemma 5.16.

If a component of @S is orientation-reversing in †, then its normal bundle in † is nontrivial and hence
we may not use it to choose a nowhere-vanishing section of the normal bundle of S on its boundary
as before to define the Euler number. However, bands with such boundaries may exist in the ambient
4–manifold and must be considered. When w1.†/ is nontrivial on precisely one component of @S, eg
when @S is connected, we know �†.@S; @S/D 1. Then, by Lemma 5.11, if a band with such boundary
exists, then km.F /D 0, and there is no need to define ‚. In particular, note that this means that we need
not consider the case of a Möbius band whose boundary consists of a curve on which w1.†/ is nontrivial.
There is one final case of relevant bands left to consider, which we do next.
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F.†/

F.†/

B
D

F.†/

F.†/

yB

F 0.†0/

F 0.†0/

�

(a) (b) (c)

Figure 7: (a) A band B (blue) is shown for F (black). Both boundary components of B are
nonorientable on †. A vertical arc D is shown in orange. (b) By cutting along the arc D we
obtain a disc yB. We show how to choose a nowhere-vanishing section of the normal bundle of @ yB
in M. (c) Adding a tube to F guided by D splits the band into a disc �, and changes † to a
surface †0. We show how to choose a section of the normal bundle of @� in F 0.

Definition 5.14 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. Let A be a choice
of Whitney arcs pairing the double points of F. Let B be an annulus with a generic immersion of pairs
.B; @B/# .M; †/, such that @B transverse to A and w1.†/ is nontrivial on both components of @B. Pick
an embedded arc D in B connecting the two boundary components, disjoint from the self-intersections
of B and the intersections of B with F. Let yB be the result of cutting B open along D. There is a
canonical quotient map 
 W yB! B.

Let �M
B

denote the normal bundle of B in M. Pick a nowhere-vanishing section of 
 ��M
B

on @ yB as
follows. On each part of @ yB that maps to @B, use the normal bundle of @B in F to define the section
locally. For this we require that, on @D, the two vectors for the two components agree up to multiplication
by ˙1. On the part of @ yB that maps to D, pick a section so that, on every pair of points that map to the
same point in D, the vectors agree up to multiplication by ˙1. See Figure 7(b). We define

(5-3) ‚A.B;D/ WD �†.@B/Cj@B tAjC jInt B t F jC e. yB/ mod 2:

Remark 5.15 An alternative definition of ‚A.B;D/ would use the arc D to add a tube to F.†/ in
such a way that the tube intersects the band B in two parallel copies of D. More precisely, we perform
an ambient surgery on F.†/. This requires choosing a 2–dimensional subbundle of the normal bundle
of D in M — the tube itself consists of the circle bundle for this subbundle, considered within a tubular
neighbourhood of D. We build the required subbundle by first choosing a section lying in the normal
bundle of D in B, denoted by �B

D
. The second section can be chosen freely. Let F 0 denote the immersion

constructed by the tubing procedure. Observe that the domain of F 0, denoted by †0, is obtained from the
abstract surface † by adding a 1–handle. Depending on the choice of the second section above, this may
be an orientation-reversing or orientation-preserving 1–handle, but this will not matter for us.
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Adding the tube changes the band B to a disc �, by removing a thin strip neighbourhood of D. The
disc � has boundary lying on †0. Observe that @� is orientation-preserving on †0, since it is the result
of banding together two orientation-reversing curves. Since no new intersection points were added, the
collection A is a collection of Whitney arcs for the intersection points of F 0. As a result, we may define

‚A.B;D/ WD‚A.�/;

where the latter is computed as in Definition 5.12. In order to see that this agrees with Definition 5.14,
we need only check that the definition of the Euler number terms agree, assuming we choose the tube to
be thin enough to miss any double points. For this compare Figure 7(b)–(c) to see that the sections at
the boundary in both cases are the same and hence also the Euler numbers coincide. When comparing
the pictures, the choice of the second section of the 2–dimensional subbundle which determines the tube
corresponds to the choice of the section of 
 ��M

B
on the part of @ yB that maps to D.

Note that we did not prove that e. yB/ is independent of the choice of D. This will follow from the
upcoming proof of Lemma 5.16(ii) below, which states that ‚A.B;D/ depends only on the homology
class of B. The following lemma, whose proof is again deferred to Section 7, shows that ‚ is well
defined in all required cases. As a reminder, the case of orientable † does not require the notion of
‚A.B;D/ from Definition 5.14, so parts (ii) and (iii) of the following lemma may be skipped by anyone
only interested in that case.

Lemma 5.16 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. Let A be a choice
of Whitney arcs pairing the double points of F.

(i) Let S be a compact surface with a generic immersion of pairs .S; @S/# .M; †/ such that @S is
transverse to A and w1.†/ is trivial on every component of @S. Then ‚A.S/ 2 Z=2 depends only
on the homology class of S in H2.M; †IZ=2/.

(ii) Let B be an annulus with a generic immersion of pairs .B; @B/# .M; †/ such that @B is transverse
to A and w1.†/ is nontrivial on both components of @B. Pick an embedded arc D in B connecting
the components of @B and disjoint from all double points. Then ‚A.B;D/ 2 Z=2 depends only
on the homology class of B in H2.M; †IZ=2/. In particular , ‚A.B;D/ does not depend on D, so
we write ‚A.B/.

(iii) Let S be a surface as in (i) and let B be an annulus as in (ii) such that ŒS �D ŒB� 2H2.M; †IZ=2/.
Then ‚A.S/D‚A.B/ 2 Z=2.

(iv) If �†j@B.F / D 0, the restriction of ‚A to B.F / is independent of the choice of A, giving a
well-defined map ‚ WB.F /! Z=2.

Finally, we are ready to define the required generalisation of r–characteristic maps, called b–characteristic
maps.
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Definition 5.17 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F / D 0. We say F is
band characteristic (or b–characteristic for short) if �†j@B.F / D 0 and ‚ WB.F /! Z=2 is trivial.

Lemma 5.18 Every b–characteristic map is r–characteristic. Moreover , the two notions agree for unions
of discs or spheres.

Proof Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. Let R WRP2
!M be a

generic immersion which is transverse to F and such that R�w1.M /D 0. We apply Construction 5.10.
In other words, take a small disc on F.†/ away from R t F, and tube into the image of R. This creates
a Möbius band B with boundary on †. Here @B is homotopically trivial in †, so hw1.†/; @Bi D 0. The
core C of B corresponds to RP1 within the original immersed RP2. Therefore, since R�w1.M /D 0, we
have that hw1.M /;C i D 0. So B 2B.F /. Note that ‚ WB.F /!Z=2 is well defined by Lemma 5.16(iv)
since F is b–characteristic. Further, ‚.B/ D ‚.R/ D F �RCR �R 2 Z=2 by Lemma 5.16(i) since
ŒB�D ŒR� 2H2.M; †IZ=2/. But this vanishes since F is b–characteristic. Hence, F is r–characteristic.

For the second sentence, suppose that † is a union of discs or spheres and is r–characteristic. Let
B 2 B.F / be a band. Since † is simply connected, the boundary of B is null-homotopic in F.†/.
Therefore, B can be closed up using a codimension zero submanifold of † to either a sphere or an
RP2 immersed in M. The resulting closed surface R again satisfies ‚.B/D F �RCR �R 2 Z=2 by
Lemma 5.16(i). Here �†j@B.F / D 0 since † is simply connected and so ‚ WB.F /! Z=2 is again well
defined by Lemma 5.16(iv). Once again, since null-homotopic circles on†must be orientation-preserving,
hw1.†/; @Bi D 0 and so (5-1) implies that R�w1.M / D 0. So ‚.B/ D 0 since F is r–characteristic.
Thus, F is b–characteristic. It follows that the notions of b–characteristic and r–characteristic coincide,
as claimed.

Recall that, if F is b–characteristic, then Theorem 1.6 states that km.F /D t.F ;W /, so we have a
combinatorial description of km.F /. Moreover, since ‚ only depends on the homology class of a band in
H2.M; †IZ=2/, we can in principle determine whether or not F is b–characteristic by computing ‚ on
finitely many homology classes. Having said that, as mentioned in the introduction, in practice deciding
precisely which homology classes can be represented by maps of bands may be tricky.

Lemma 5.19 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. If G is regularly
homotopic to F and F is b–characteristic , then G is b–characteristic.

Proof By definition, a regular homotopy can be decomposed into a sequence of ambient isotopies, finger
moves and Whitney moves. None of these affect which classes of H1.†IZ=2/ bound a band. In particular,
�†j@B.F /D �†j@B.G/. Assume that G is not b–characteristic. Then either �†j@B.G/ is nontrivial or there
is a band in B.G/ on which ‚ is nonvanishing. In the former case, �†j@B.F / D �†j@B.G/ implies that F

is not b–characteristic.
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For the latter case, let B in B.G/ be such that ‚.B/D 1. It suffices to show that such a band still exists
after an ambient isotopy, a finger move or a Whitney move. This is obvious for ambient isotopy. Recall
that ‚ only depends on the homology class of the band by Lemma 5.16. Hence, we can assume that the
boundary of B is away from the singularity of the finger move. Then we can still consider the band B as
a band for the surface after the finger move and ‚ is unchanged. The argument in the case of a Whitney
move is similar. We first let B undergo a homotopy to arrange that it is disjoint from the boundary of the
Whitney disc W along which the Whitney move is performed. Then we can again consider the same
band B for the new surface. The Whitney move leaves all terms in the definition of ‚ except jInt B t F j

unchanged. Since the Whitney move uses two copies of the Whitney disc, the change in jInt B t F j is
twice jInt B tW j. As ‚ takes values in Z=2, ‚.B/ is unchanged, as claimed. Thus, we have a band B

in B.F / with ‚.B/D 1, and so again F is not b–characteristic. We have shown the contrapositive of the
desired statement.

Remark 5.20 As a counterpoint to Lemma 5.19, there exist maps that are homotopic to each other
but where one is b–characteristic and the other is not. For example, let † be the Klein bottle. Then
an embedding f W † ,! R4 must have normal Euler number e.�f / 2 f�4; 0; 4g by [Massey 1969]. It
can be verified, as we do presently, that the embeddings with e.�f /D 0 are precisely those which are
b–characteristic. Hence, the b–characteristic notion is not invariant under homotopy.

To see that f is b characteristic if and only if e.�f /D 0, think of †ŠRP2 # RP2, with a corresponding
isomorphism H1.†IZ=2/ Š Z=2˚Z=2. There is a standard embedding of RP2 in R4 with normal
Euler number ˙2, and there are essentially three ways to take connected sums of these embeddings,
realising the three options e.�f / 2 f�4; 0; 4g. With e.�f / fixed, these embeddings are unique up to
regular homotopy by Theorem 2.32.

We explicitly construct the standard embeddings, as follows. Take two disjoint, unlinked, unknotted
Möbius bands M1 and M2 in R3, with an "i 2 f˙1g signed half-twist for i D 1; 2. Take the boundary
connected sum M1 \M2 ambiently to obtain a punctured Klein bottle in R3 with boundary an unknot.
Cap this unknot off with a standard slice disc in R4

�0
to obtain a standard embedding f with normal Euler

number�2."1C"2/. We do not justify the sign, which depends on conventions that are not important for us.

By Lemma 5.19, it suffices to check whether the three standard embeddings above are b–characteristic,
which we do next. First one computes that �†j@B.f / D 0 in all three cases, as follows. We have

B.f /�H2.R
4; †IZ=2/ Š�!

@
H1.†IZ=2/Š Z=2˚Z=2:

By (5-1), in order to have B 2 B.f /, we need hw1.†/; h.@B/i D 0. Hence, @B 2 H1.†IZ=2/ Š

Z=2˚Z=2 is either .0; 0/ or .1; 1/. To see that .x;x/ for x 2 f0; 1g can be realised as the boundary of
a band, pick a simple closed curve Z on † representing the homology class .x;x/ and a generically
immersed disc D bounded by Z in R4. Then add a tube from D to † to turn D into an annulus B, using
Construction 5.10 (see Figure 6). Thus, @B.f /D f.0; 0/; .1; 1/g, on which �† vanishes.
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Hence, whether or not the given standard embedding of † is b–characteristic is decided by ‚.B/, where
B is a band with boundary .1; 1/ 2H1.†IZ=2/. For the standard embeddings constructed above, such a
band can be constructed explicitly, as follows. Take the core curves of M1 and M2, and connect sum
them inside M1 \M2. This gives an unknot representing .1; 1/, which bounds a standard slice disc D

in R4
�0

. Construction 5.10 converts D to a band B.

Since ‚ only depends on the class of a band in H2.M; †IZ=2/, we can use the band B from the previous
paragraph. We shall compute that ‚.B/ D 0 for this band if and only if e.�f / D 0, that is, if the
embedding of † arises from the connected sum of the standard embeddings of RP2 with opposite normal
Euler numbers. The curve @B is orientation-preserving on †, so we use (5-2) to compute ‚.B/. Most of
the terms in this definition are trivial in this case, since we are working with an embedding of † and @B
is itself embedded. Also D has interior disjoint from the image of f, and therefore so does B. Only the
relative Euler number term remains, which can be computed from the twists in M1 and M2. It follows
that ‚.B/� 1

2
."1C "2/ 2 Z=2, which vanishes if and only if "1 D�"2, which in turn holds if and only

if e.�f /D 0.

6 Homotopy versus regular homotopy

In this short section, we describe Construction 6.1 and apply it to prove Theorem 1.12, which we used in
Section 1.4 to compare homotopy and regular homotopy of maps. Note that the results in this section
require that the surface † from Convention 1.1 is nonorientable.

If we are interested in finding an embedding in a given homotopy class, rather than a regular homotopy
class, we may use the construction below to replace a given map by a homotopic map for which the
invariant t is trivial. In particular, the construction is applicable in the cases from Theorem 2.32 in which
there are infinitely many regular homotopy classes with �.�/1 D 0 in a given homotopy class.

Construction 6.1 Let F D ffig
m
iD1
W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. Let

W denote a convenient collection of Whitney discs for the double points of F. Suppose that there exists fi

with w1.†/jker.fi /� nontrivial.

Let N �†i be a Möbius band with fi jN �1–trivial. In a small disc in N introduce four double points
with the same sign by cusp homotopies and call the resulting immersion f 0i . Let F 0 denote the map given
by ffj gj¤i [ ff

0
i g. Then there is a convenient collection of Whitney discs W0 for all the double points

of F 0 such that
t.F 0;W0/� t.F;W/C 1 mod 2:

While we have created four double points with the same sign, we will use in the proof that the Möbius
band is nonorientable to change the sign of two of the double points, in order to then be able to find new
Whitney discs.

Geometry & Topology, Volume 28 (2024)



2448 Daniel Kasprowski, Mark Powell, Arunima Ray and Peter Teichner

Proof We will pair up the two new pairs of double points with new Whitney discs. Pick any pair of
the four new double points and pair them by arcs in the small disc, as in Definition 2.26, such that the
resulting circle is null-homotopic in M. For one of the arcs perform a connected sum in the interior with
the core ˛ of N. With this new pair of arcs, the double points have opposite sign, and by our choice of N

the resulting Whitney circle bounds a Whitney disc W1 in M with embedded boundary. By boundary
twisting, arrange that W1 is framed, and, by pushing off, ensure there is no intersection between the
boundary of W1 and the boundaries of the components of W. For this we push the boundary arc of W1

over the end of the boundary arc for the Whitney disc in W. This way t.F;W/ remains unchanged. Do
the same for the remaining two new double points in f 0i , namely pair them by a Whitney disc W2, which
by definition is a parallel copy of W1.

Since �N .˛; ˛/D1, the boundaries of W1 and W2 intersect an odd number of times. To turn W[fW1;W2g

into a convenient collection of Whitney discs we have to remove any intersections between their boundaries.
For such an intersection, push the Whitney arc of W1 over the end of the Whitney arc of W2. This will
in turn change the number of intersections between the interior of W1 and f 0i by one mod 2; that is,
jInt W1 t F j � jInt W2 t F jC 1 mod 2. Let W0 be the resulting collection of Whitney discs. We have

t.F 0;W0/� t.F;W/CjInt W1 t F jC jInt W2 t F j � t.F;W/C 1 mod 2:

With the above construction in hand, we can now prove Theorem 1.12 from the introduction.

Theorem 1.12 Let F D ffig
m
iD1
W .†; @†/ # .M; @M / be as in Convention 1.1 with �.F / D 0.

Suppose that there is at least one fi 2 F with w1.†/jker.fi /� nontrivial. Then there exists a generic
immersion F 0 homotopic to F with �.F 0/D 0, and a convenient collection of Whitney discs W0 such
that t..F 0/ ; .W0/ /D 0. Thus , if F 0 has algebraically dual spheres , then km.F 0/D 0, and if moreover
�1.M / is good , then F 0 is regularly homotopic , relative to @†, to an embedding.

Proof By the vanishing of the intersection and self-intersection numbers, there is a convenient collection
of Whitney discs W for F and therefore for F . If t.F ;W / D 0, set F 0 D F. If t.F ;W / D 1,
use Construction 6.1 to find a generic immersion F 0 homotopic to F, with t..F 0/ ; .W 0/ /D 0. If F 0

has algebraically dual spheres, then km.F 0/D 0 by Theorem 1.6 since either F 0 is not b–characteristic
or km.F 0/D t..F 0/ ; .W 0/ /D 0. If in addition �1.M / is good, apply Theorem 1.2 to see that F 0 is
regularly homotopic, relative to @†, to an embedding.

We end this section by giving another pair of applications of Construction 6.1.

Proposition 6.2 Let f W .†; @†/# .M; @M / be a generic immersion as in Convention 1.1. Assume that
† is connected , �.f /D 0 and w1.†/jkerf� is nontrivial while f �.w1.M // is trivial. If f 0 is a generic
immersion homotopic to f, both f and f 0 are b–characteristic , and e.�f /� e.�f 0/D˙8, then

t.f 0/� t.f /C 1 mod 2:
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Proof Since f �.w1.M // is trivial, regular homotopy classes of generic immersions homotopic to f are
detected by the Euler number of the normal bundle by Theorem 2.32. Further, since e.�f /�e.�f 0/D˙8,
we may add four cusps (of the same sign) to f to obtain a map f 00 which is regularly homotopic to f 0.

The map f is b–characteristic by assumption, while the map f 00 is b–characteristic since f 0 is, by
Lemma 5.19. By Lemma 2.24, �.f /1 2 Z=2, so, by construction, �.f /D �.f 00/D �.f 0/D 0. So the
quantities t.f / and t.f 00/ are defined and, further, t.f 00/D t.f 0/. Apply Construction 6.1 to see that
t.f 00/� t.f /C 1 mod 2.

Applying Proposition 6.2 to immersions of RP2 into R4, we obtain the following corollary, obstructing
generic immersions of RP2 in R4 with e.f / ¤ ˙2 mod 16 from being regularly homotopic to an
embedding and thus partially recovering the result, due to Massey [1969], that every embedding of RP2

in R4 must have Euler number ˙2. Massey stated the result for smooth embeddings, since he used the
G–signature theorem. But the G–signature theorem was later extended to the topological category by
[Wall 1970, Chapter 14B], so Massey’s result also holds for locally flat embeddings of RP2 in R4.

Corollary 6.3 Let f WRP2#R4 be a generic immersion with �.f /D 0. Then t.f /D 0 if and only if
e.�f /D˙2 mod 16.

Proof Recall that there exist embeddings g˙ WRP2 ,!R4 with Euler number ˙2. First we prove that
e.�f /� 2 mod 4. By Lemma 2.24, we know that �.f /1 2 Z=2. Then �.gC/D 0, and so �.gC/1 D 0.
Since f is homotopic to gC and �.f /D 0, it follows from Theorem 2.32 that e.�f /� e.�gC/� 2 mod 4.
(The same argument would have applied with g�.)

Note that any generic immersion of RP2 into R4, and in particular the map f, is b–characteristic since
H2.R

4;RP2
IZ=2/Š Z=2 and the nontrivial element does not satisfy condition (5-1) in Definition 5.9.

We have t.g˙/D 0 since t vanishes for embeddings. Since e.�f /� 2 mod 4, it differs from one of ˙2

by a multiple of 8. Let k 2 Z be such that e.�f /D˙2C 8k D e.�g˙/C 8k. By Proposition 6.2,

t.f /� t.g˙/C k � k mod 2:

Thus, t.f /D 0 if and only if k is even, which is the case precisely when e.�f / differs from e.�g˙/D˙2

by a multiple of 16.

7 Proofs of statements from Section 5

In this section, we provide the proofs we skipped in Section 5. The following transfer move will be useful
for arranging that algebraically cancelling intersection points occur on the same Whitney disc.

Construction 7.1 (Transfer move) Let † and M be as in Convention 1.1 and let H W .†; @†/ !

.M; @M / be a generic immersion , with components fhi W†i!M g. Assume the double points within H

are paired by a convenient collection W of Whitney discs.
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Let W1 and W2 be components of W with Int W1 t H ¤ ∅ ¤ Int W2 t H. We can perform three
finger moves on H, so that the resulting generic immersion H 0 has six new double points , paired
by three framed , embedded Whitney discs fV;U1;U2g, each of which has two intersections with H 0,
such that the boundaries of fV;U1;U2g are mutually disjoint and embedded. Moreover , the collection
W0 WDW[fV;U1;U2g is a convenient collection of Whitney discs for H 0 and we have

jInt W1 tH 0j D jInt W1 tH j � 1 and jInt W2 tH 0j D jInt W2 tH j � 1:

Proof Suppose that W1 pairs intersections of ha and hb while W2 pairs intersections of hc and hd ,
where repetition within a, b, c and d is allowed. Perform a finger move between ha and hc , creating two
new double points paired by a corresponding framed, embedded Whitney disc V. Note that the interior
of V is disjoint from the image of H. The operation depicted in Figure 8 gives a further regular homotopy,
involving a finger move pushing he through ha, and a finger move pushing hf through hc . We call the
outcome of all three finger moves H 0. The procedure creates six new intersections within H 0 compared
with H. The four intersections created by the he – ha and hf – hc finger moves are paired by Whitney
discs U1 and U2. A preliminary version of these are shown in Figure 8(ii); the final versions are those
arising after the boundary push-off operations indicated by the bottom panel. Overall, the move transfers
an intersection of H with W1, as well as an intersection of H with W2, on to V, so that jInt V tH 0j D 2.
By construction, each Ui intersects H 0 twice.

Now we prove Lemma 5.4, whose statement we recall.

Lemma 5.4 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that F admits algebraically
dual spheres , and that all double points of F are paired by a convenient collection W of Whitney discs.
Let W �W denote the subcollection of Whitney discs for the intersections within F , where F is as in
Definition 5.1. If t.F ;W /D 0, then km.F /D 0.

Proof By applying the geometric Casson lemma (Lemma 4.2) and Propositions 2.18, 2.25 and 3.1, we
may arrange by a regular homotopy that F and G become geometrically dual. By definition,

(7-1) t.F ;W /D
X
l;i

jInt Wl t fi j D 0 2 Z=2:

We modify the collection of Whitney discs, as follows, so that each has an even number of intersections
with F . Since the count in (7-1) is zero, the number of Whitney discs with odd intersection with F is
even, so we may pair them up (arbitrarily). For each such pair, apply Construction 7.1. This changes F

by finger moves to some F 0, whose double points are paired by a convenient collection of Whitney discs
W0 WD fW 0

l
g such that each element of W0 has an even number of intersections with .F 0/ . Note that the

new Whitney discs created by the application of Construction 7.1 have been added to the collection.

For each intersection of some W 0
l

with .F 0/ , tube W 0
l

into the corresponding geometrically dual sphere.
Note that each sphere being tubed into is necessarily twisted, but since we tube an even number of times,
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Figure 8: The transfer move. (i) Whitney discs W1 and W2 pairing intersections between ha

and hb , and between hc and hd , respectively. (ii) A finger move between ha and hc creates
a new pair of intersections, paired by a Whitney disc V, shown on both panels. Depicted in
the left panel, an intersection between W1 and he is pushed down into ha and then one of the
resulting intersection points is pushed across to V. In the right panel, we see this new intersection
between V and he . Further, an intersection between W2 and hf is pushed down to hc and one
of the resulting intersection points is pushed over to V. These last three moves form a regular
homotopy of H, with result H 0. Each Wi has one fewer intersection with H 0 than with H, at the
expense of creating two new intersections within H 0, paired by Whitney discs U1 and U2, both
shaded grey. Additionally, V has two intersections with H 0. The result of a boundary push-off
operation making the Whitney arcs for the Ui (purple) disjoint from the Whitney arcs for Wi

and V is shown in (iii). This operation creates two intersections of each Ui with H 0.

the total change in the framing of W 0
l

is even. Do this for each element of W0. The resulting family of
Whitney discs may still intersect F 0, but not .F 0/ . For each such intersection with F 0, again tube into the
appropriate geometrically dual sphere. Now the spheres are not twisted, so the framing of the Whitney
discs changes by an even number. Arrange for all the Whitney discs to be framed by adding local cusps in
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the interior. We may do this because the framing coefficient of each of the Whitney discs is even. We have
now produced the desired convenient collection of Whitney discs for the intersections within F 0, whose
interiors lie in the complement of F 0. This shows that km.F 0/D 0, and therefore km.F /D 0, as desired.

Before giving the proof of Lemma 5.11, we explain the key new construction in this paper, which we
already mentioned in Section 1.2. Briefly, given a band B with boundary lying on an immersed surface, a
finger move along a fibre of the band produces two new double points paired by a Whitney disc arising
from B.

Construction 7.2 (Band fibre finger move) Let F W .†; @†/# .M; @M / be as in Convention 1.1.
Suppose that �.F /D 0 and that the self-intersections of F are paired by a convenient collection WDfWlg

of Whitney discs with boundary arcs A.

Consider B 2B.F / as a D1–bundle. Then we can do a finger move along a fibre of B, with endpoints
missing A, as depicted in Figure 1. We call this fibre the finger arc , and denote it by D. We assume that
D misses all double points of B and all intersections between Int B and F.

A finger move depends on a choice of 2–dimensional subbundle of the normal bundle to the finger arc
(the proof of Lemma 7.3 will give further details). We use a subbundle that lies in the tangent bundle TF

at one end of the arc , contains �B
D

along D, and intersects TF in the line bundle �B
D

at the other end of the
arc. Here �B

D
is the normal bundle of D in B.

Call the immersion resulting for the above finger move F 0. We will check in the next paragraph that the
remainder of B, ie the complement in B of a tubular neighbourhood of D, gives a Whitney disc for the
new pair of double points. Make the boundary embedded and disjoint from A, by boundary push-off
operations , and then boundary twist if necessary, to obtain a framed Whitney disc WB for the new double
points. Then W0 WDW[fWBg is a convenient collection of Whitney discs pairing the double points of F 0.
Note that both F 0 and WB depend on the choice of finger arc D and the 2–dimensional subbundle of its
normal bundle mentioned above.

Now , as promised , we check that WB is a Whitney disc. The finger move creates a trivial Whitney disc
and we refer to the corresponding Whitney arcs as the trivial arcs. The double points are also paired by the
arcs A1;A2 � @B, where A1[A2 D @WB . The existence of the disc WB implies that the group elements
of the double points agree with respect to the arcs A1 and A2. It remains only to see that the double points
have opposite signs with respect to the arcs A1 and A2 (see Definition 2.27). The case that both M and
† are orientable is straightforward. The general case follows from the w1 condition in the definition of a
band , (5-1), as we now check.

First we consider the case that B is an annulus. Let @1B and @2B denote the two components of @B. Then
A1 and A2 differ from the trivial arcs joining the new double points by @1B and @2B, respectively. By
Definition 2.27, the double points have opposite sign precisely when hw1.†/; @BiC hw1.M /; @1Bi D 0,
which matches (5-1) since @1B is homotopic in M to the core of B.
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Now suppose that B is a Möbius band. Then the union of A1 and A2 and the trivial pair of arcs is the
circle @B �†. Moreover , the union of the image of A1 and either one of the trivial arcs forms a circle
in M homotopic to the core C of B. As before , the double points have opposite sign precisely when
hw1.†/; @BiC hw1.M /;C i D 0, which again matches (5-1).

The following lemma explains how Construction 7.2 changes the value of t . In the proof we will also
carefully explain how to make suitable choices of 2–dimensional subbundles, as required for the finger
move in Construction 7.2.

Lemma 7.3 Let F W .†; @†/# .M; @M / be as in Convention 1.1.

(i) Suppose that F 0 and W0 are obtained from F and W by a single application of Construction 7.2
with respect to a band B 2B.F /, where w1.†/ restricted to every component of @B is trivial. Let
A denote the Whitney arcs corresponding to W. Then

t.F 0;W0/D t.F;W/C‚A.B/ 2 Z=2:

(ii) Suppose that F 0 and W0 are obtained from F and W by a single application of Construction 7.2
with respect to a band B 2B.F / and an arc D � B, where B is an annulus with w1.†/ nontrivial
on both boundary components and D � B connects the two boundary components. Let A denote
the Whitney arcs corresponding to W. Then

t.F 0;W0/D t.F;W/C‚A.B;D/ 2 Z=2:

For the proof it will be advantageous to refrain from applying boundary twists and removing intersections
involving @WB , and to instead use the following alternative definition of t.F;W/, using a slightly
weaker restriction on collections of Whitney discs, as in [Stong 1994]; see [Freedman and Quinn 1990,
Section 10.8A].

Definition 7.4 Let F W .†; @†/# .M; @M / be as in Convention 1.1. A weak collection of Whitney discs
for F is a collection W of Whitney discs pairing all the double points of F, with generically immersed
interiors transverse to F, and with Whitney arcs whose interiors are generically immersed in F.†/ minus
the double points of F.

In particular, compared to the definition of a convenient collection of Whitney discs (Definition 2.31),
we allow the boundaries of Whitney discs to be generically immersed on † and to intersect one another
transversely. We also allow the Whitney discs to be twisted, ie for the framing of the normal bundle
restricted to the boundary to disagree with the Whitney framing. Each of the discs in a weak collection of
Whitney discs admits a normal bundle. The proof is the same as for a generic immersion of pairs, but
with a preliminary step that one has to first fix the normal bundle in neighbourhoods of the two double
points being paired.
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Definition 7.5 Given a weak collection of Whitney discs W WD fWlg for the double points of a generic
immersion F as in Convention 1.1, fix an ordering on the indexing set for W and define

talt.F;W/ WD
X

l

�
�†.@Wl/C

X
k>l

j@Wl t @Wk jC

X
i

jInt Wl t fi jC e.Wl/

�
2 Z=2;

where e.Wl/ is the relative Euler number of the normal bundle with respect to the Whitney framing
on @Wl .

Note that, if W is a convenient collection of Whitney discs for F, then talt.F;W/ D t.F;W/ (see
Definition 1.5). In particular, since a convenient collection of Whitney discs comprises framed Whitney
discs and has embedded and disjoint Whitney arcs, a majority of terms in the definition of talt vanish. The
following lemma shows that talt can be used as a proxy for t in general.

Lemma 7.6 Given a weak collection of Whitney discs W WD fWlg
n
lD1

for the double points of a generic
immersion F as in Convention 1.1, there exists a convenient collection of Whitney discs W0 such that
t.F;W0/D talt.F;W/.

Proof For each Whitney disc Wl with e.Wl/¤ 0, add boundary twists to obtain Wl with e.Wl/D 0.
Each boundary twist changes the Euler number by ˙1 and introduces an intersection of the Whitney disc
with F. We have X

i

jInt Wl t fi j �

X
i

jInt Wl t fi jC e.Wl/ mod 2;

and also �†.@Wl/D �†.@Wl/ and j@Wl t @Wk j D j@Wl t @Wk j for each k ¤ l .

Next we will remove intersections between Whitney arcs as well as self-intersections of Whitney arcs,
at the expense of adding intersections between F and the Whitney discs. We will use the procedure
described in [Powell and Ray 2021a, Section 15.2.3]. For an intersection between @Wl and @Wk , where
possibly k D l , the procedure pushes the intersection off one of the endpoints of one of the Whitney arcs
of @Wl , ie a double point of F, moving a neighbourhood of @Wk and creating an intersection between Wk

and F. This new intersection point is created in a small neighbourhood of the double point of F chosen
for the pushing-off procedure. If several Whitney arcs intersect the given Whitney arc of @Wl , push off in
order of proximity to the endpoint. This avoids extraneous intersections between Whitney arcs being
created. Perform this pushing-off procedure on both arcs of @Wl . For each of the two arcs in @Wl , push
towards one of the two double points of F paired by Wl ; choose these double points so that we use one
double point for each arc. This ensures that the new intersections between Whitney discs and F arise in
disjoint neighbourhoods in the ambient manifold.

Apply the move described in the previous paragraph to the Whitney arcs of fWlg in order, beginning
with l D n. In other words, in the i th step, we push off the intersections of @Wk with @Wn�iC1 for
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k � n� i C 1. After the nth step, we produce a convenient collection W0 WD fW 0
l
g, where each W 0

l
is the

result of applying the above procedure to Wl . This yields, for each l ,X
i

jInt W 0l t fi j �

X
i

jInt Wl t fi jC�†.@Wl/C
X
k>l

j@Wl t @Wk j mod 2

�

X
i

jInt Wl t fi jC e.Wl/C�†.@Wl/C
X
k>l

j@Wl t @Wk j mod 2:

In the above expression, the term
P

k>l j@Wl t @Wk j arises since the arcs in @Wl are moved, to create a
new intersection point of Wl with F, precisely once for each intersection of @Wl with

S
k>l @Wk .

Sum over l to obtain that t.F;W0/D talt.F;W/ 2 Z=2, as claimed.

Proof of Lemma 7.3 By Lemma 7.6, it will suffice to show that, in case (i),

talt.F
0;W0/D talt.F;W/C‚A.B/ 2 Z=2;

and, in case (ii),
talt.F

0;W0/D talt.F;W/C‚A.B;D/ 2 Z=2:

The proof splits into three cases.

Case 1 The band B is an annulus as in (i).

Recall that
‚A.B/ WD �†.@B/Cj@B tAjC jInt B t F jC e.B/ mod 2:

By the construction of F 0 and W0, we have

talt.F
0;W0/� t.F;W/C�†.@WB/Cj@WB tAjC jInt WB t F jC e.WB/ mod 2:

Every self-intersection of @B and each intersection @B tA will contribute one intersection of @WB and
between @WB and A, respectively, while each intersection Int B t F will contribute one intersection
between Int WB and F. Thus it remains to show that the framing e.B/ appearing in the definition of‚A.B/

agrees with the framing e.WB/. For this it will be helpful to pick the finger arc and the 2–dimensional
subbundle for its normal bundle needed for the finger move more carefully, which we do next.

Let @iB denote the connected components of @B � †. Consider the following decomposition of the
tangent bundle of M restricted to @iB:

(7-2) TM j@i B Š T .@iB/˚ �
†
@i B˚ �

B
@i B˚ .�

M
† j@i B \ �

M
B j@i B/:

As shown in Figure 9, choose a section s of the normal bundle of B that is nonvanishing on the finger
arc. In both boundary components @iB, we assume that this section lies in �†

@i B
. Now rotate the section

near the top boundary component, as shown in Figure 9, middle, to obtain a section s0, so that on the top
component s0 lies in .�M

†
j@i B \ �

M
B
j@i B/. For the finger move, by definition, we use the 2–dimensional

subbundle of �M
D

determined by s0 and T .@iB/, as shown in Figure 9, right.
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F

B

F

WB

Figure 9: Left: we see a model annulus B (blue) connecting two sheets of F (black), and a finger
arc D D fptg �D1 � S1 �D1 Š B (orange). We also see the surface framing on @B and the
section s along the finger arc of the normal bundle of B in M. Recall the section is defined over
all of B, but we only show it on a subset. Middle: in the top half of B, we rotate the section so
that it lies in .�M

†
j@i B\�

M
B
j@i B/, ie in the time direction, on the top boundary component (dotted

green). The modified section is called s0. Right: after performing the finger move, s0 gives the
Whitney framing for the new Whitney disc WB .

Now consider the Whitney disc WB obtained from B after performing the finger move along D using
the above 2–dimensional subbundle of its normal bundle. By definition, e.WB/ equals the number of
zeros of s0jWB

, since on the boundary Whitney arcs it is normal to one sheet and tangent to the other.
On the other hand, the number of zeros of s0jWB

equals the number of zeros of s, since s0 was obtained
from s by a rotation, and neither section vanishes near the finger arc. Finally, by definition, e.B/ counts
the zeros of s. Therefore we see that e.B/D e.WB/.

Case 2 The band B is an annulus such that w1.†/ restricted to both components of @B is nontrivial, as
in (ii).

Assume that a finger arc D has been chosen. To define‚A.B;D/, we pick a section s as in Definition 5.14
on yB, which is by definition the result of cutting B open along D. Recall that

‚A.B;D/ WD �†.@B/Cj@B tAjC jInt B t F jC e. yB/ mod 2:

As in Case 1, we need only check that the term e. yB/ in ‚A.B;D/ agrees with the term e.WB/ in talt.
Again as in Case 1, we rotate the section near the top boundary component to obtain a section s0, so that
on the top component s0 lies in .�M

†
j@i B \ �

M
B
j@i B/. For the finger move, we use the 2–dimensional

subbundle determined by s0 and T .@iB/. Note that, just like s, the section s0 is not defined on all of B,
but only on yB; see Figure 10. Nevertheless, on points that map to the same point in D, the section s0

agrees up to a sign and thus still determines a 1–dimensional subbundle. The section s0 restricts to a
section of the normal bundle of the Whitney disc WB obtained from B. As in Case 1, the quantities e.B/

and e.WB/ coincide.

Case 3 The band B is a Möbius band with w1.†/ restricted to @B trivial, as in (i).
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F 0

F 0

WB

F

F

yB

Figure 10: Left: the section s0 on D (orange), and on a parallel copy of D; see Figure 7(b). Close
to the top boundary the section extends into the time direction (teal and dotted green). Right: the
section s0 on the boundary of the new Whitney disc WB .

As in Case 1, we only need to show that the term e.B/ in ‚A.B/ agrees with the term e.WB/ in
talt. Let D denote a properly embedded arc on B along which we wish to perform the finger move.
Identify B with the quotient of the square S WD Œ�1; 1�� Œ�1; 1� as usual, ie .�1;x/ � .1;�x/ for all
x 2 Œ�1; 1�, with D corresponding to the arc f�1g � Œ�1; 1�� f1g � Œ�1; 1� (see Figure 11). Pull back
the normal bundle �M

B
of B in M to S via the quotient map � W S ! B and then pick a trivialisation

��.�M
B
/ Š S �R2 so that, on the horizontal boundary H WD Œ�1; 1� � f�1; 1g, we have that ���†

@B

coincides with H �R� f0g � S �R�R.

Then we pick a section s of �M
B

such that sj@B lies in �†
@B

. Note that sj@B is nowhere-vanishing but the
section s might have zeros. Without loss of generality we assume that any zeros of s do not lie in the
strip .Œ�1;�1C "�[ Œ1� "; 1�/� Œ�1; 1� for some " 2

�
0; 1

4

�
.

Next we modify the section s. Choose a “necklace” region, ie a subsquare N with two opposite edges
coinciding with Œ�1;�1C"��f1g and Œ1�"; 1��f1g, and otherwise lying in the interior of S WD Œ�1; 1�2.

(a) (b) (c)

D DN

S�

SC

Figure 11: (a) The necklace region N � S is shown in grey. The dotted black lines indicate the
boundary of the region where the finger move occurs. The solid black lines indicate where the
band is attached to the surface F. The arc D is shown in orange. (b) The section s is shown in
blue. (c) The section s0 is indicated. Note that on S�, the sections s and s0 agree. On SC, the
section s0 (green) is obtained by rotating s by 90 degrees. In the necklace region, the section
rotates continuously (teal), interpolating between the values on SC and S�. Note that the section
on the arc D has not changed, but it has been modified on part of the dotted lines.
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We consider the pullback of s to S, where we have a trivialisation. Modify this pullback so that it remains
unchanged in the lower component S� of S nN and is rotated by 90 degrees on the upper component SC.
On the region N, the section rotates continuously, interpolating between the values on SC and S�. Push
this forward to get a modified section s0 on B. Since the modification is produced by a continuous rotation,
the number of zeros of this modification agrees with the number of zeros of the original s.

Recall that we wish to perform a finger move guided by the arc D D f�1g � Œ�1; 1�. Without loss of
generality, we assume that the “width” of the finger move is 2". More precisely, to perform a finger
move we need a 2–dimensional subbundle of �M

D
. We require that this contains �B

D
to ensure that the

finger move cuts B open into a Whitney disc, as desired. Fix an identification of the total space of the
normal bundle �M

D
with D�R3. We choose an embedding � W �M

D
,!M restricting to the inclusion of D

on D � f0g, with the following properties:

(i) We assume the first R1 factor of D�R3 corresponds to �B
D

and that � identifies D�f˙1g�f0g�f0g

with the arcs f�1C "; 1� "g � Œ�1; 1�. This is what was meant by the width of the finger move.

(ii) We also require that � identifies D�ftg�f1g�f0g with s0
�
�.D�ftg�f0g�f0g/

�
for t � 0, and with

s0
�
�.D � ftg � f0g � f0g/

�
rotated by 90 degrees for t � �1. (Here we also implicitly identify �M

B

with its image in M.)

Now do the finger move using D�S1�f0g according to this parametrisation, where S1 is the unit circle
in the R2 factor, along with a finger tip. The choices above imply that s0j@WB

is a Whitney framing, where
WB denotes the new Whitney disc created according to Construction 7.2. Specifically, let F 0 denote the
result of the finger move. By our choice of the 2–dimensional subbundle for the finger move above, the
section s0 is normal to F 0 along half of @WB , and tangent along the other half; see Figure 12.

As previously mentioned, we need to check that the relative Euler number e.B/ in ‚A.B/ agrees with
the twisting number e.WB/ in talt. The relative Euler number e.B/ is given by the number of zeros of
the section s on the interior of B. As mentioned before, this coincides with the number of zeros of the
section s0. Since s0j@WB

is a Whitney framing, this further coincides with the twisting number e.WB/, as
desired, since we assumed there are no zeros of s within the strip .Œ�1;�1C "�[ Œ1� "; 1�/� Œ�1; 1��B

used for the finger move.

Next we prove Lemma 5.11. Here is the statement for the convenience of the reader.

Lemma 5.11 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. If the Z=2–valued
intersection form �† on H1.†IZ=2/ is nontrivial on @B.F /, then we can change F by a regular homotopy
to F 0 such that there are convenient collections of Whitney discs W and W0 for the double points of F

and F 0, respectively, such that t.F;W/¤ t.F 0;W0/.

Moreover , if F has dual spheres and the Z=2–valued intersection form �† on H1.† IZ=2/ is nontrivial
on @B.F /, then km.F /D 0.
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(a) (b)

(c) (d)

D S�

F

F 0

SC

NB

Figure 12: (a) The surface F is shown in black, and the Möbius band B in blue. Note this picture
is entirely in R3. The necklace region N is in grey, and splits B into two components SC and S�.
The finger arc D is in orange, and the width of the finger move is shown with dotted lines. (b)
We show the section s in blue. Note that, while there is a rotation along D, there are no zeros
of s in the strip between the dotted lines. (c) The modified section s0. Note the section coincides
with s on S� and has been rotated (green) on SC. (d) The section s0 on the Whitney disc WB

formed after the band fibre finger move. By the construction of the 2–dimensional subbundle of
the normal bundle of D used to guide the finger move, the section s0 is tangent to F 0 along the
right edge of the finger (corresponding to the right dotted line in (c), where the finger contains
part of a Whitney arc of WB), and s0 is normal to F 0 along the left edge of the finger.

Proof We first prove the statement (without using dual spheres) about t.F;W/ depending on the choice
of W under our assumption. By hypothesis, F is a generic immersion whose double points can be paired
by a convenient collection WD fWlg of Whitney discs (Corollary 2.30). By hypothesis, �† is nontrivial
on @B.F /, meaning that there are bands B1 and B2 with boundary on F.†/ minus double points such
that �†.@B1; @B2/ ¤ 0 2 Z=2. Here it is possible that B2 is a parallel push-off of B1. Using Bi and
Construction 7.2, perform a finger move and obtain a new framed Whitney disc, calling the resulting
convenient collection of Whitney discs Wi , for i D 1; 2, and the resulting map Fi

If t.Fi ;Wi/¤ t.F;W/ for some i D 1; 2, we can set F 0 D Fi and W0 DWi . Otherwise, use Lemma 7.3
twice, for B1 and B2 simultaneously, and let W0 denote the resulting convenient collection of Whitney
discs for the resulting map F 0. Then the change in t.F;W/ is as before, except that there is an additional
contribution from the odd number of intersections between the boundary arcs for the new Whitney discs
coming from B1 and B2. Specifically, removing these by pushing one Whitney arc off the end of the
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other (as part of Construction 7.2) introduces an odd number of intersections between the Whitney discs
and F. Therefore, t.F 0;W0/¤ t.F;W/, as needed.

For the second statement, apply the above argument to the subcollection W of W pairing the intersections
within F . It follows that we may find W such that t.F ;W /D 0, possibly after a regular homotopy
of F . Then km.F /D 0 follows from Lemma 5.4.

For the proof of Lemma 5.16, we will need the following Lemmas 7.7, 7.8, 7.9 and 7.10.

Lemma 7.7 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Every element of H2.M; †IZ=2/

can be represented by an immersion of some compact surface into M, with interior transverse to F, and
with boundary generically immersed in F.†/ away from the double points.

Proof Let Nk.M; †/ denote the k–dimensional unoriented bordism group over .M; †/, and let Nk

denote the k–dimensional unoriented bordism group over a point. Using topological transversality, it
suffices to show that every element of H2.M; †IZ=2/ can be represented by a map .S; @S/! .M; †/ for
some surface S. To show this, it suffices to see that the edge homomorphism N2.M; †/!H2.M; †IZ=2/

from the Atiyah–Hirzebruch spectral sequence is onto.

Recall that the N0 is isomorphic to Z=2 while the N1 vanishes. It follows that, in the Atiyah–Hirzebruch
spectral sequence with E2–term Hp.M; †INq/ and converging to NpCq.M; †/, there is no nontrivial
differential going out of H2.M; †IN0/ Š H2.M; †IZ=2/; such a differential would have codomain
H0.M; †IN1/D 0. Thus the edge homomorphism N2.M; †/!H2.M; †IZ=2/ is onto, as desired.

Lemma 7.8 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that �.F / D 0 and let
A be a choice of Whitney arcs pairing the double points of F. Then the function ‚A is quadratic with
respect to the Z=2–valued intersection form �†. That is , let S and S 0 be compact surfaces , with generic
immersions of pairs .S; @S/# .M; †/ and .S 0; @S 0/# .M; †/ such that @S and @S 0 intersect A and
each other transversely, and are such that w1.†/ is trivial on every component of @S and @S 0. Then we
have

‚A.S [S 0/D‚A.S/C‚A.S
0/C�†.@S; @S

0/:

Proof The term e.S/ in Definition 5.12 is defined componentwise and the terms j@S tAj and jInt S tF j

are linear in @S and S, respectively. Hence, the only term that is not linear in S is �F .@S/. This term is
also quadratic in the sense that

�†.@S [ @S
0/D �†.@S/C�†.@S

0/C�†.@S; @S
0/;

which proves the lemma.

Lemma 7.9 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that �.F / D 0 and let
A be a choice of Whitney arcs pairing the double points of F. Let S be a compact surface with a
generic immersion of pairs .S; @S/# .M; †/ such that @S is transverse to A and w1.†/ is trivial
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@S @S @D

@S 0

Figure 13: Adding a disc D to S to remove a self-intersection of @S. Left: the neighbourhood of
a self-intersection of @S before adding the disc D. The section 
S is shown along @S. Middle:
the boundary of the disc D. The section 
D is shown along @D. Right: after the modification; see
Figure 14.

on every component of @S. Then there is another such surface S 0 with a generic immersion of pairs
.S 0; @S 0/# .M; †/ with @S 0 transverse to A such that

(1) ŒS �D ŒS 0� 2H2.M; †IZ=2/;

(2) ‚A.S/D‚A.S
0/; and

(3) @S 0 is embedded in †.

Proof To start, pick a section 
S of the normal bundle �M
S

which on @S is nowhere-vanishing and lies
in �F

@S
as in the definition of ‚A.S/.

The idea of the proof is to remove all intersections of @S by locally adding a twisted disc D as indicated
in Figure 13. More precisely, we add these discs D such that the interiors are disjoint from the interior
of F and the boundary is disjoint from A. Then pick a section 
D of �M

D
such that, along the aligned

(ie parallel) parts of the boundaries, 
D and 
S are opposite. Glue D to S along the aligned parts of
the boundaries and push this part of the boundary off F as indicated in Figure 14. Each of these local
twisted discs has mod 2 Euler number 1, as can be seen from the nontrivial linking in Figure 15. Thus
the resulting surface S 0 has embedded boundary and the mod 2 Euler number of S 0 differs from that
of S by the number of intersections of @S modulo two, ie �†.@S/. Since we have changed neither the

F F F

S D S 0

Figure 14: Glue D to S along the aligned parts of the boundaries and push this part of the
boundary off F.
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F

Figure 15: A twisted band with Euler numberC1 in a movie description. Bottom: an immersed
figure-eight curve (blue) is shown lying on the immersed surface F.†/ (black) away from the
double points. A framing on the normal bundle on the boundary of the band is shown in light
blue. Moving upward/forward in time, we see a simple closed curve shrinking to a point. The
push-off corresponding to the framing induced by † is shown in light blue. For the twisted band
with Euler number �1, we use the other resolution.

number of intersections of the interior with F nor the number of intersections of the boundary with A,
we have ‚A.S/D‚A.S

0/ 2Z=2. As the local discs are trivial in H2.M; †IZ=2/, we furthermore have
ŒS �D ŒS 0� 2H2.M; †IZ=2/, as needed.

Lemma 7.10 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Let Z be a disjoint union of
embedded circles in †. Let † jZ denote † cut along Z, ie the completion of † nZ to a compact
manifold with boundary. Let F D f†ig be the connected components of † j Z and suppose that
ŒZ� D 0 2 H1.†IZ=2/. Then we can pick a subset F0 � F such that each component of Z appears
exactly once as a connected component of the boundary of precisely one †i 2 F0.

Proof Without loss of generality, assume that† is connected. Considering the entire collection FDf†ig,
every component of Z would appear as the boundary of precisely two of the †i , since otherwise Z

would be nontrivial in H1.†IZ=2/. To see this, note that Z can contain homologically essential curves
in H1.†IZ=2/ provided they cancel. However, none of these can be orientation-reversing curves, since
Z is embedded.

The idea of the proof is to take “half” of the components of F. Let x 2† jZ be an arbitrary basepoint
away from Z. For each †i , define p.†i/ 2 Z=2 as follows. Pick a point y 2 Int†i and a path w in †
from x to y which is transverse to Z. Define p.†i/ as the mod 2 intersection number of w and Z.

We show that p.†i/ is independent of the choices of w and y. If w0 is another path from x to y, then the
concatenation w�1 �w0 is a loop in † and we have

j.w�1
�w0/ tZj D �†.Œw

�1
�w0�; ŒZ�/D �†.Œw

�1
�w0�; 0/D 0:

So p.†i/ does not depend on the choice of w. Also, since each †i is connected, p.†i/ does not depend
on y. To see this, let y0 2 Int†i and choose a path z from y to y0 that lies in Int†i . Let w0 be a path
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from x to y0 which is further transverse to Z. Then

jw tZj D j.w � z/ tZj D jw0 tZj:

The first equation uses that z � †i and the second uses independence of the choice of w. Hence,
p.†i/ 2 Z=2 is well defined, as desired.

Now let F0 consist of all the components †i for which p.†i/D 0. This subset is the one we seek, since,
for a fixed component Zj of Z, the two components of F containing a cut-open copy of Zj have different
values of p.

We are now ready for the proof of Lemma 5.16.

Lemma 5.16 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. Let A be a choice
of Whitney arcs pairing the double points of F.

(i) Let S be a compact surface with a generic immersion of pairs .S; @S/# .M; †/ such that @S is
transverse to A and w1.†/ is trivial on every component of @S. Then ‚A.S/ 2 Z=2 depends only
on the homology class of S in H2.M; †IZ=2/.

(ii) Let B be an annulus with a generic immersion of pairs .B; @B/# .M; †/ such that @B is transverse
to A and w1.†/ is nontrivial on both components of @B. Pick an embedded arc D in B connecting
the components of @B and disjoint from all double points. Then ‚A.B;D/ 2 Z=2 depends only
on the homology class of B in H2.M; †IZ=2/. In particular , ‚A.B;D/ does not depend on D, so
we write ‚A.B/.

(iii) Let S be a surface as in (i) and let B be an annulus as in (ii) such that ŒS �D ŒB� 2H2.M; †IZ=2/.
Then ‚A.S/D‚A.B/ 2 Z=2.

(iv) If �†j@B.F / D 0, the restriction of ‚A to B.F / is independent of the choice of A, giving a
well-defined map ‚ WB.F /! Z=2.

Proof To prove (i), assume that S and S 0 are immersed compact surfaces, with w1.†/ trivial on each of
the connected components of the boundaries, representing the same element in H2.M; †IZ=2/. Modulo
isotopy we can assume that S and S 0 intersect transversely in their interiors in M, and their boundaries
intersect transversely on F. In particular, their boundaries @S and @S 0 intersect in an even number of
points. Hence, ‚A.S [S 0/D‚A.S/C‚A.S

0/ by Lemma 7.8. Thus it suffices to show that ‚A.S/D 0

for a compact surface S such that 0D ŒS � 2H2.M; †IZ=2/ and w1.†/ is trivial on @S. In particular,
we know by Lemma 7.7 that every element of H2.M; †IZ=2/— in particular the trivial class — can be
represented by an immersed surface S.

By Lemma 7.9, we can assume that @S is embedded. As 0D ŒS � 2H2.M; †IZ=2/, we also have that
0 D Œ@S � 2 H1.†IZ=2/ since S maps to @S under the map H2.M; †IZ=2/! H1.†IZ=2/. Pick a
set F0 of components of † j @S as in Lemma 7.10. Gluing the Fi 2F0 to S along the common boundary,
we obtain a closed surface N. First note that N represents the same class as S in H2.M; †IZ=2/ since
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it only differs by a subset of F.†/. Hence, 0D ŒN � 2H2.M; †IZ=2/. As N is closed, it also defines an
element in H2.M IZ=2/. Note that we have the pair sequence

� � � !H2.†IZ=2/
F
�!H2.M IZ=2/!H2.M; †IZ=2/! � � � :

Hence, N represents the same class in H2.M IZ=2/ as a subsurface †0 of †. Let �M denote the
Z=2–valued intersection form on H2.M IZ=2/. By hypothesis, we have �M .fj ; fj 0/D 0 for any two
connected components fj and fj 0 of F. Thus,

(7-3) �M .ŒN �; ŒF �/C�M .ŒN �; ŒN �/D 0:

We finish the proof of (i) by showing that ‚A.S/D �M .ŒN �; ŒF �/C�M .ŒN �; ŒN �/.

Recall that we were able to assume that @S is embedded in F.†/ away from the double points and that
�M .ŒN �; ŒN �/D e.�N / mod 2. We claim that this in turn agrees with e.S/C

P
Fi2F0 e.Fi/. Here we

define e.Fi/ as follows. We used F to define a nowhere-vanishing section of �M
S
j@S . Since �M

S
j@S is

2–dimensional, we can pick a linearly independent nonvanishing section. This can be equivalently used
for the definition of e.S/. But this new section now can also be used to define e.Fi/. Combining these
vector fields that are transverse to the zero section defines a vector field on the normal bundle of N, and
hence computes the Euler number of the normal bundle of N. Thus we have shown

�M .ŒN �; ŒN �/D e.S/C
X

Fi2F0

e.Fi/:

Now consider �M .ŒN �; ŒF �/. We can use the vector field used for defining e.Fi/ to make N and F

transverse. Then �M .ŒN �; ŒF �/ is given by the sum of jS t F j,
P

Fi2F0 e.Fi/ and the self-intersection
points of F contained in the Fi 2 F0. As the self-intersection points of F are paired by the Whitney
arcs A, we have that modulo two the number of self-intersection points of F contained inside Fi agrees
with jA t @Fi j. Since the boundary of the Fi is precisely @S, we have

�M .ŒN �; ŒF �/D jInt S t F jC
X

Fi2F0

e.Fi/CjA t @S j:

Therefore,

�M .ŒN �; ŒN �/C�M .ŒN �; ŒF �/D e.S/C
X

Fi2F0

e.Fi/CjInt S t F jC
X

Fi2F0

e.Fi/CjA t @S j

D e.S/CjInt S t F jC jA t @S j
D‚A.S/ 2 Z=2;

where the last equality holds because �S .@S/D 0. Combine this with (7-3) to obtain

‚A.S/D �M .ŒN �; ŒN �/C�M .ŒN �; ŒF �/D 0:

This completes the proof of (i).
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F 0

F 0

�
F

F

zB

Figure 16: A strip, ie half of the tube, added to �.

Before proving (ii) and (iii), we introduce a general construction. Let B be an annulus as in (ii) with an
embedded arc D in B connecting its two boundary components. As in Remark 5.15, add a tube to F.†/

along the arc D. Let d; d 0 denote the two discs removed from F when the tube is added. Adding the tube
changes F to some F 0, an immersion of a surface †0, and changes B to a disc �. As before, observe that
@� is an orientation-preserving curve in †0 and A is now a collection of Whitney arcs pairing the double
points of F 0. By construction, we see that ‚A.B;D/D‚A.�/.

Moreover, suppose there is either some immersed compact surface S in M as in (i) or some immersed
annulus B0 as in (ii), with an embedded arc D0 on B0 connecting its two boundary components, where pos-
sibly BDB0. We may choose the tube in the above construction thin enough that ‚A.S/ and ‚A.B

0;D0/

remain unchanged. In particular, this means we assume, after a small local isotopy, that the discs d and d 0

do not intersect the boundaries of S and B0, so both represent classes in H2.M; †0IZ=2/. We have the
following claim.

Claim 7.11 If ŒB�D ŒS �2H2.M; †IZ=2/, then either Œ��D ŒS �2H2.M; †0IZ=2/ or Œ��D ŒS �C Œd �2
H2.M; †0IZ=2/. Similarly , if ŒB�D ŒB0� 2H2.M; †IZ=2/ then either Œ��D ŒB0� 2H2.M; †0IZ=2/ or
Œ��D ŒB0�C Œd � 2H2.M; †0IZ=2/.

Proof The exact sequence of the triple with Z=2 coefficients yields

.Z=2/2 ŠH2.†;† n . Vd [ Vd 0//!H2.M; † n . Vd [ Vd 0//
j
�!H2.M; †/!H1.†;† n . Vd [ Vd 0//D 0;

so j is surjective with kernel generated by the images of Œd � and Œd 0� from the left-hand group.

Construct a lift zB of � in H2.M; † n . Vd [ Vd 0// by adding a strip along the added tube to �, as shown
in Figure 16. Since zB, S and B0 are mapped by j to B, S and B0 in H2.M; †/, respectively, and the
kernel is generated by Œd � and Œd 0�, we see that the classes of zB, S and B0 differ at most by the classes Œd �
and Œd 0�. The map H2.M; † n . Vd [ Vd 0//!H2.M; †0/ identifies Œd � and Œd 0�, so the claim follows.

We continue now to prove (ii). Let B and B0 be immersed annuli in M as in the statement of (ii). Choose
arcs D in B and D0 in B0 connecting the boundary components of each, and assume that ŒB�D ŒB0�. By
the construction from the proof of Claim 7.11 applied twice, once to B and once to B0, we find discs �
and �0, coming from B and B0, respectively, such that ‚A.B;D/D‚A.�/ and ‚A.B

0;D0/D‚A.�
0/.
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From Claim 7.11, applied twice with the roles of B and B0 reversed, we see that the classes Œ�� and Œ�0�
satisfy

Œ��D ŒB� or Œ��D ŒB�C Œd �;

and
Œ�0�D ŒB0� or Œ�0�D ŒB0�C Œd �:

Since also ŒB�D ŒB0�, it follows that either Œ��D Œ�0� or Œ��D Œ�0�C Œd � in H2.M; †0IZ=2/ for †0 the
surface obtained from applying the construction (twice) to †.

In the first case, Œ��D Œ�0�, the proof of (ii) is completed by appealing to (i), which says that ‚A.�/D

‚A.�
0/, since both� and�0 have w1.†

0/ trivial on the boundary. In the second case, Œ��D Œ�0�C Œd �, we
also appeal to (i), but now for the pair of surfaces � and �0[ d . So we have that ‚A.�/D‚A.�

0[ d/.
It follows directly from the definition that ‚A.�

0 [ d/D‚A.�
0/. This completes the proof of (ii). In

particular, we have proved that ‚A.B;D/ does not depend on the choice of arc D.

The proof of (iii) is similar. Suppose we have an immersed annulus B in M as in the statement of (ii), as
well as an immersed compact surface S in M as in the statement of (i). Choose an embedded arc D �B

connecting the boundary components. Assume that ŒS � D ŒB� 2 H2.M; †IZ=2/. Apply the previous
construction to B, yielding a disc � which, by Claim 7.11, satisfies either Œ��D ŒS � or Œ��D ŒS �C Œd �
in the group H2.M; †0IZ=2/ for the surface †0 obtained from applying the construction to †. Further,
we know that ‚A.B;D/D‚A.�/. Now, in the first case, the proof is completed by appealing to (ii),
which says that ‚A.�/ D ‚A.S/. In the second case, apply (ii) to the pair � and S [ d , to see that
‚A.�/D‚A.S [ d/. It follows directly from the definition that ‚A.S [ d/D‚A.S/.

It remains to prove (iv). Let B denote an element of B.F /. First note that only the term j@B t Aj

of ‚A.B/ depends on the Whitney arcs A. Let A0 denote another collection of Whitney arcs. The
quantities ‚A.B/ and ‚A0.B/ differ by j@B tAjC j@B tA0j, regardless of whether † is orientable or
nonorientable.

Case 1 The collections of Whitney arcs A and A0 correspond to the same choice of pairing up of the
double points of F.

For each pair of double points, we can pick Whitney discs W1 and W2 with boundary in A and A0,
respectively. By adding small strips to the union of W1 and W2 in the neighbourhood of the double points,
we can see that the difference of A and A0 is the boundary of some collection of bands B0. For more
details about this construction, see the upcoming proof of Theorem 1.6. Then we have

j@B tAjC j@B tA0j D j@B t .A[A0/j D j@B t @B0j D �†.@B; @B0/ mod 2;

which vanishes by assumption.

Case 2 The collections of Whitney arcs A and A0 correspond to a different pairing up of the double
points of F.
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W1 W2

V1

V2p1 p2 q1
q2 p1 q2

Figure 17: Left: the Whitney discs W1, W2 and V1, pairing up double points as .p1;p2/, .q1;p2/

and .q1; q2/, respectively. Right: the Whitney disc V2 pairing up .p1; q2/ is obtained as a union
of W1, W2 and V1, by adding small bands at the points p2 and q1 to resolve the singularities, and
pushing the interiors of the bands into the complement of F. Compare with [Stong 1994, Figure 2].

From A we can construct Whitney arcs A00 so that A0 and A00 correspond to the same pairing up of double
points, as in Figure 17. Here are the details. We will define the family A00 iteratively, starting with A. Let
p1, p2, q1 and q2 be double points of F. Suppose that arcs in A pair up p1 and p2, as well as q1 and q2,
while arcs in A0 pair up p2 and q1. Pick Whitney discs W1 and W2 with boundary in A. Let V1 be a
Whitney disc for the points p2 and q1 with boundary away from A. Then, as indicated in Figure 17, we
may choose Whitney arcs, away from the other arcs in A, so that p2 and q1 are also paired by a Whitney
disc V2, obtained as a union of W1, W2 and V1. Modify the family A by removing @W1 and @W2, and
adding in @V1 and @V2. Comparing this new family with A0, we see that we have reduced the number of
mismatches in the pairing up of double points of F. Iterate this process and call the result A00.

Looking more closely at the construction in the previous paragraph, observe that, at each step, the family
of arcs changes by adding in two parallel copies of the boundary of a Whitney disc V1. Since intersection
points are counted modulo 2, ‚A and ‚A00 are equal. By Case 1, we know that ‚A0 and ‚A00 are equal
when restricted to B.F /. Thus, ‚A and ‚A0 are equal when restricted to B.F /, as needed.

8 Proof of Theorems 1.6 and 1.9

First we prove Theorem 1.9 from the introduction, which shows that, for b–characteristic surfaces,
t.F;W/ 2 Z=2 is well defined, ie independent of the Whitney discs W. Note that the theorem has no
assumption about the existence of algebraically dual spheres.

Theorem 1.9 Let F W .†; @†/# .M; @M / be as in Convention 1.1 with �.F / D 0. Let W be a
convenient collection of Whitney discs for the double points of F. Then F is b–characteristic if and only
if , for every F 0 regularly homotopic to F and convenient collection W0 for the double points of F 0, we
have t.F;W/D t.F 0;W0/.

For b–characteristic F, we denote the resulting regular homotopy invariant by t.F / 2 Z=2. Then , if
km.F /D 0 — eg if F is an embedding — then t.F /D 0.

Proof The final sentence, that km.F / D 0 implies t.F / D 0 for b–characteristic F, is an immediate
consequence of the definitions.
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Figure 18: Within † we see the preimages p˙1 and p˙2 , for the double points p1 and p2 of F,
respectively. Blue denotes the Whitney arcs for W1 while red denotes the Whitney arcs for the new
disc V1. On the left, the choice of sheets stays the same, while it changes on the right. Compare
with [Stong 1994, Figure 3].

Now suppose that F is not b–characteristic. Then, by Lemma 5.11, we can assume that �†j@B.F / is trivial,
which implies that the function‚ is well defined on B.F /. Since we assume that F is not b–characteristic,
there exists B 2B.F / such that ‚.B/D 1, so we can apply Construction 7.2 and Lemma 7.3 to find F 0

regularly homotopic to F, and a convenient collection of Whitney discs W0 for the double points of F 0

with t.F;W/¤ t.F 0;W0/.

If F is b–characteristic, by definition �†j@B.F / is trivial and ‚ is trivial on B.F /. As indicated above,
the function ‚, as well as which classes of H2.M; †IZ=2/ can be represented by bands, only depends on
the immersion F up to regular homotopy. We need to show that t.F;W/ does not depend on the choice of
pairing of the double points, the choice of Whitney arcs, nor the choice of Whitney discs; see Figure 18.
Let W be a given initial choice of convenient collection of Whitney discs for the double points of F. Let
A be the corresponding collection of Whitney arcs for the double points of F.

The remainder of the proof is similar to [Stong 1994, pages 1311–1313; Freedman and Quinn 1990,
Section 10.8A]. We will work with weak collections of framed Whitney discs and the alternative count
talt 2 Z=2, as in Definitions 7.4 and 7.5. So the boundaries of our collections of Whitney discs might not
be disjointly embedded, but the Whitney discs will be framed (as can always be arranged by boundary
twisting). We will show that talt.F;W/ does not depend on the choice of weak collection of Whitney
discs W, and then use that talt.F;W/D t.F;W/ for W a convenient collection (Lemma 7.6).

Claim 8.1 Suppose we are given a weak collection of Whitney discs W corresponding to some choice of
pairing up of double points of F ; then , for any other choice of pairing , there exists a weak collection of
Whitney discs V for that choice such that talt.V/D talt.W/.

Proof Let p1, p2, q1 and q2 be double points of F. Suppose that, in the initial choice of data, p1 and p2

are paired by a Whitney disc W1 2W, and q1 and q2 by a Whitney disc W2 2W. Suppose we instead pair
up p1 and q2 by some Whitney disc V1. Then, as indicated in Figure 17, p2 and q1 are also paired by
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Figure 19: Left: two sheets of the surface † and two Whitney discs Wi and Vi between the same
pair of double points. The disc Wi is assumed to be framed, embedded, have interior disjoint
from F and the Whitney discs Ui�1 n fWig, and @Wi disjoint from Ai . One of its Whitney arcs ai

is also labelled. The blue strip to the right of ai is an extension of Wi beyond its boundary, which
is part of the data for the Whitney move. Right: the result of the Whitney move. The strip and the
disc Vi from the previous panel have formed a band B (blue).

a Whitney disc V2, obtained as a union of W1, W2 and V1. Then .W n fW1;W2g/[fV1;V2g is a weak
collection of framed Whitney discs. The contribution of V1 and V2 to talt

�
F; .Wn fW1;W2g/[fV1;V2g

�
counts the intersections of F with each disc W1 and W2 once, while it counts the intersections of F with
the disc V1 twice. Each intersection of @V1 with A n .@W1 [ @W2/ can be paired with an intersection
of @V2 with A n .@W1[ @W2/. Each intersection of @V1 with @W1[ @W2 gives rise to two contributions
to talt: an intersection of @V2 with @V1 and a self-intersection of @V2. Since intersections are counted
mod 2 in the definition of talt, we see that

talt
�
F; .W n fW1;W2g/[fV1;V2g

�
D talt.F;W/ 2 Z=2;

as needed. Iterate this process to complete the proof of Claim 8.1.

Continuing with the proof of Theorem 1.9, next we check that talt is independent of the choice of Whitney
discs. This includes potentially changing the Whitney arcs and the choice of sheets at each double point.
Suppose we are given another weak collection of framed Whitney discs V for the double points of F. By
applying Claim 8.1, we may assume that V corresponds to the same pairing of double points of F as W.
Assume the collections are indexed so that Wl 2W and Vl 2 V correspond to the same pair of double
points. For each i , define the weak collection of Whitney discs

Ui WD fV1;V2; : : : ;Vi ;WiC1;WiC2 : : : ;WN g;

where U0 DW and UN D V. We will show that talt.F;Ui�1/D talt.F;Ui/ 2 Z=2 for each i . Let Ai

denote the collection of Whitney arcs for Ui . First we prove a special case.

Claim 8.2 Suppose the Whitney disc Wi is framed , embedded , with interior disjoint from F and the
Whitney discs Ui�1nfWig, and with @Wi disjoint from Ai , other than the endpoints. Then talt.F;Ui�1/D

talt.F;Ui/ 2 Z=2.

Proof A neighbourhood of Wi is depicted in Figure 19. Note that the two arcs of @Vi lie in Ai and thus,
by hypothesis, only intersect the arcs in @Wi at the endpoints. As described in the figure, we wish to
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perform the Whitney move using Wi pushing towards the Whitney arc ai for Wi . Observe that the union
of Vi with a strip, corresponding to the unit outward-pointing normal vector field of ai � @Wi , is either
an annulus or a Möbius band; this requires a small isotopy of Vi to ensure that the chosen vector field
of ai is compatible with the Whitney arcs of Vi , as shown in Figure 19. Denote the union of Vi and the
strip by B.

We show that B 2B.F /. For this we need to check that condition (5-1) holds. From Figure 19, right, one
sees that @B is homotopic in † to the union of @Vi and @Wi . The core C of B is given by the union of ai

and either of the Whitney arcs of Vi . The Whitney arcs must induce opposite signs at the two double points,
as explained in Definition 2.27. The orientation conditions in the latter definition imply that the condition
in (5-1) holds, as we explain next. Let p1 and p2 denote the double points paired by Wi (and Vi). Let ai

and bi denote the Whitney arcs of Wi , and let ci and di denote those of Vi . Begin by fixing local orientations
of M and both sheets of† at p1, so that the first agrees with the one determined by the latter two. Transport
the local orientations of † to p2 via the Whitney arcs of Wi and form the induced local orientation of M

at p2. By Definition 2.27, this does not agree with the local orientation of M at p2 determined by the one
at p1 by transporting along ai . Continuing with the local orientations at p2 determined in the previous
step, transport the local orientations of † back to p1, this time along the Whitney arcs of Vi . Again by
Definition 2.27, the resulting induced local orientation of M at p1 agrees with the local orientation of M

transported to p1 along ci . In this circuit, we have constructed a new set of local orientations of M and
the two sheets of † at p1. Compared to the initial choice, the local orientation induced by the sheets of †
has changed by hw1.†/; ai[bi[ci[dii D hw1.†/; @Vi[@Wii. On the other hand, the local orientation
of M transported along ai [ ci has changed by hw1.M /; ai [ cii D hw1.M /;C i, where C is the core
of B from above. Since the two orientations must agree, we have hw1.†/; @Vi [ @Wii D hw1.M /;C i,
as needed.

For the band B as above, performing a finger move as in Construction 7.2 creates Wi as the standard
Whitney disc, and Vi as the new Whitney disc arising from the band. Here we used the fact that @Wi

and @Vi only intersect at the endpoints. Since F is b–characteristic, the disc Vi has trivial contribution
to talt.F;Ui/ by Lemma 7.3. So does Wi to talt.F;Ui�1/ since, by hypothesis, @Wi is framed, embedded,
and disjoint from Ai�1nfai ; big�Ai , and the interior of Wi is disjoint from F. Therefore, talt.F;Ui�1/D

talt.F;Ui/ 2 Z=2, as asserted.

Now we prove the general case. Denote the double points paired by Wi by p1 and p2. By a small isotopy,
assume that, other than p1 and p2, the arcs of @Wi intersect the arcs in Ai in isolated double points
in the interiors. By performing a suitable finger move near p2, split Wi into new Whitney discs W 0i
and U1, creating two new double points q1 and q2 in the process, paired by a standard trivial Whitney
disc U2, where U1 satisfies the conditions of Claim 8.2. We choose both the base and tip of the finger
arc to be closer to p2 than any intersections of @Wi with arcs in Ai , as well as any self-intersections
of @Wi . See Figure 20. By construction, the points p1 and q1 are paired by W 0i , and the points q2 and p2

are paired by U1. Here U1 is framed, embedded, has interior disjoint from F and the Whitney discs
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p1 Wi p2 p1
W 0

i p2

q1 q2

U2

U1

@Vi

Figure 20: Splitting a Whitney disc Wi into two Whitney discs. One of the new Whitney discs,
U1, pairing p2 and q2, satisfies the hypotheses of Claim 8.2. The other Whitney disc W 0

i intersects
whatever Wi intersected. The trivial Whitney disc U2 pairing the new double points q1 and q2 is
shown in grey. Note that @Wi may intersect @Vi , or more generally other arcs in Ai , or itself.

Ui�1 n fWig. In addition, @U1 is disjoint from Ai , other than at p2, and is disjoint from @W 0i . These
conditions will shortly allow us to apply Claim 8.2 to U1.

Let F 0 denote the result of performing the finger move above to F . Note that

(8-1) talt.F;Ui�1/D talt
�
F 0; .Ui�1 n fWig/[fW

0
i ;U1g

�
by construction. Let V 0i denote the Whitney disc obtained as the union of Vi , W 0i and U2, as in Figure 17.
Observe that the Whitney discs U1 and V 0i pair the same double points, namely q2 and p2. Consider
the two collections of Whitney discs .Ui�1 n fWig/[ fW

0
i ;U1g and .Ui�1 n fWig/[ fW

0
i ;V

0
i g for the

double points of F 0. The two collections differ only in that one contains the disc U1 and the other the
disc V 0i . We will apply Claim 8.2 to change between the two collections. This is permitted since U1 is
framed, embedded, has interior disjoint from F 0 and the Whitney discs .Ui�1 n fWig/[fW

0
i g, and @U1

is disjoint, other than at the endpoints, from the Whitney arcs of .Ui�1 n fWig/[ fW
0

i ;V
0

i g, given by
Ai [ @W

0
i [ @U2.

So, by Claim 8.2,

(8-2) talt
�
F 0; .Ui�1 n fWig/[fW

0
i ;U1g

�
D talt

�
F 0; .Ui�1 n fWig/[fW

0
i ;V

0
i g
�
:

By the proof of Claim 8.1 (see Figure 17),

(8-3) talt
�
F 0; .Ui�1 n fWig/[fW

0
i ;V

0
i g
�
D talt

�
F 0; .Ui�1 n fWig/[fU2;Vig

�
:

Since U2 is trivial, we can use it to undo the Whitney move, and obtain

(8-4) talt
�
F 0; .Ui�1 n fWig/[fU2;Vig

�
D talt

�
F; .Ui�1 n fWig/[fVig

�
D talt.F;Ui/:

The combination of (8-1), (8-2), (8-3) and (8-4) implies talt.F;Ui�1/D talt.F;Ui/. This completes the
proof that talt is independent of the choices of Whitney discs, and therefore completes the proof that talt is
well defined.

Finally, by Lemma 7.6, we know that talt.F;W/D t.F;W/ for W a convenient collection, so t is well
defined for convenient collections W, as desired.
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Next we recall the statement of Theorem 1.6 for the convenience of the reader.

Theorem 1.6 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that �.F /D 0 and that F

has algebraically dual spheres. If F is not b–characteristic , then km.F /D 0. If F is b–characteristic ,
then the secondary embedding obstruction satisfies

km.F /D t.F ;W / 2 Z=2

for every convenient collection of Whitney discs W pairing all the double points of F .

Proof First we show that, if F is not b–characteristic then km.F /D 0. By Lemma 5.11, we reduce to
the case that �† j@B.F / is trivial, which implies that the function ‚ is well defined on B.F /. Since
we assumed that F is not b–characteristic, there exists B 2 B.F / such that ‚.B/ D 1, so we can
apply Construction 7.2 and Lemma 7.3 to find a collection of Whitney discs W for the double points
of F with t.F ;W /D 0. Then, by Lemma 5.4, we know that km.F /D 0.

By Theorem 1.9, if F is b–characteristic, then t.F ;W / is well defined, ie is independent of W . As
in Theorem 1.9, we denote the resulting invariant t.F /. We need to show that km.F /D t.F /.

Recall that b–characteristic implies r–characteristic by Lemma 5.18, and also r–characteristic implies
s–characteristic by Remark 5.6. Therefore Lemma 5.4 applies, which says that, if t.F /D t.F ;W /D 0,
then km.F /D 0. On the other hand, if km.F /D 0, then after a regular homotopy the double points of F

can be paired up by a convenient collection of Whitney discs with interiors disjoint from F. Using these
Whitney discs to calculate t.F /, and regular homotopy invariance of t from Theorem 1.9, it follows that
t.F /D 0.

Thus we have shown that, for F b–characteristic and F with algebraically dual spheres, km.F /D 0 if
and only if t.F /D 0 or, equivalently, km.F /D t.F / 2 Z=2, as desired.

9 Examples and applications

Proposition 9.1 Let F W .†; @†/# .M; @M / be as in Convention 1.1 and assume that �.F /D 0. If
there are two orientation-preserving immersed loops in † that intersect transversely in an odd number of
points and are null-homotopic in M, then F is not b–characteristic.

Proof The two immersed loops in † from the assumption bound immersed discs in M. These discs give
classes in B.F / by Construction 5.10 and, by assumption, �†jB.F / is nontrivial. It follows by definition
that F is not b–characteristic.

This applies to every simply connected target M whenever † has a component of positive genus.
Proposition 9.1 also implies Corollaries 1.7 and 1.8, whose statements we recall, as follows.
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Corollary 1.7 If M is a simply connected 4–manifold and † is a connected , oriented surface with
positive genus , then any generic immersion F W .†; @†/# .M; @M / with vanishing self-intersection
number is not b–characteristic. Thus , if F has an algebraically dual sphere , then km.F /D 0, and , since
�1.M / is good , the map F is regularly homotopic , relative to @†, to an embedding.

Proof As �1.M / is trivial and † has positive genus, F is not b–characteristic by Proposition 9.1. By
Theorem 1.6, it follows that km.F /D 0 if F has an algebraically dual sphere. In this case F is regularly
homotopic, relative to @†, to an embedding, by Theorem 1.2. The theorem applies because �1.M / is
good.

Corollary 1.8 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0 and † connected.
If F 0 is obtained from F by an ambient connected sum with an embedding S1�S1 ,! S4, then F 0 is not
b–characteristic. Thus , if F has an algebraically dual sphere , then km.F 0/D 0, and , if �1.M / is good ,
then F 0 is regularly homotopic , relative to @†, to an embedding.

Proof Since F 0 is obtained from F by an ambient connected sum with an embedding S1�S1 ,!S4, we
can apply Proposition 9.1 to see that F 0 is not b–characteristic. By Theorem 1.6, it follows that km.F 0/D0

if F has an algebraically dual sphere, as this sphere remains algebraically dual to F 0. If in addition �1.M /

is good, then, by Theorem 1.2, F is regularly homotopic, relative to @†, to an embedding.

Example 9.2 To illustrate the difference between r–characteristic and b–characteristic surfaces, we give
an example of a surface that is r–characteristic but not b–characteristic. Consider any r–characteristic
immersed sphere with trivial self-intersection number. Add a single trivial tube to obtain an immersed
torus. As this will not change the intersection number with any closed surface, the new torus is still
r–characteristic. But it fails to be b–characteristic by Corollary 1.8.

Example 9.3 We explain next why our methods allow us to obtain embeddings where [Freedman
and Quinn 1990, Theorem 10.5A(1)] would not produce them (see the discussion directly following
Theorem 1.2).

Let f WS2#M be a generic immersion in a 4–manifold with �1.M / good, equipped with an algebraically
dual sphere and with km.f /D 1, for example a sphere representing a generator of H2.�CP2/. Other such
spheres may be constructed as in [Kasprowski et al. 2021a, Theorem 2]. Let T be a generic immersion of
a torus produced by adding a trivial tube to f, ie by taking the ambient connected sum of f with the
standard embedding S1�S1 ,! S4. Then by Corollary 1.8 we see that km.T /D 0. Thus T is regularly
homotopic to an embedding since �1.M / is good. Fix a 1–skeleton †0 for S1 � S1. Then T is not
regularly homotopic to an embedding relative to †0, since the Kervaire–Milnor invariant for f restricted
to the 2–cell(s) .S1 �S1/ n �†0 considered as a map to M nT .�†0/ equals km.f /D 1.

We emphasise that this holds for every choice of 1–skeleton †0 � S1�S1. In order to apply the strategy
of [Freedman and Quinn 1990, Theorem 10.5A(1)] to find an embedding, one needs to first make a
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judicious choice of finger moves. But, without our theory, there is no clear strategy for finding these
finger moves. To obtain an embedding obstruction in this way, matters are worse, since one would need
to compute the Kervaire–Milnor invariant of the 2–skeleton for every choice of finger moves and for
every choice of 1–skeleton.

Example 9.4 We construct an immersed torus with nontrivial Kervaire–Milnor invariant. In contrast to
Proposition 9.1, the torus in this example is not �1–trivial. Consider an immersion f1 of a 2–sphere in
�CP2 representing a generator of H2.�CP2

IZ/ with trivial self-intersection number. Let K W S1 ,! S3

be an arbitrary knot and consider the embedding of a torus given by the product f2 WDK�Id WS1�S1 ,!

S3 �S1. Let F denote the interior connected sum f1 #f2 W S
1 �S1#W WD �CP2 # .S3 �S1/.

First we claim that F is b–characteristic. To see this, we start by computing H2.W;S1�S1IZ=2/ using
the long exact sequence of the pair with Z=2 coefficients:

H2.S
1 �S1/ H2.W / H2.W;S1 �S1/ H1.S

1 �S1/ H1.W /

Z=2˚Z=2 Z=2

0

Š Š

Therefore, H2.W;S1 �S1IZ=2/Š Z=2 is generated by S � fpg, where S � S3 is a Seifert surface for
the knot K.S1/ and p 2 S1. The intersection form of S1�S1 restricted to @S is trivial. Since ‚ is well
defined on homology classes we can compute it using S. But S has interior disjoint from the image of F,
embedded boundary and trivial relative Euler number, so ‚.S/D 0. If follows that ‚ vanishes on all
of H2.W;S1 �S1IZ=2/, in particular it vanishes on the subset B.F /. Thus F is b–characteristic, as
claimed.

Observe that km.f1/D 1 inside �CP2 (see eg [Freedman and Quinn 1990, Section 10.8]). We can pick
a convenient collection of Whitney discs for f1 in �CP2. Since f2 is an embedding, these constitute a
convenient collection of Whitney discs for F. It follows that km.F /D km.f1/D 1. Note that the choice
of knot K was irrelevant, since, for any two choices, the resulting immersions F are regularly homotopic
and hence have equal Kervaire–Milnor invariant.

Example 9.5 In the previous example we constructed a generically immersed torus in �CP2 #.S1�S3/

with nontrivial Kervaire–Milnor invariant. In particular, this torus is not homotopic to an embedding
(see Section 1.4). Now we show that, in contrast to this, every map f from a closed surface † to
S1 �S3 is homotopic to an embedding. Note that these classes do not have algebraically dual spheres
since �2.S

1 � S3/ D 0. The surfaces in the regular homotopy class with �.f /1 D 0 are either not
b–characteristic or t.f / vanishes.

Since the projection S1�S3! S1 is 3–connected, the induced map Œ†;S1�S3�! Œ†;S1� is bijective.
In particular, the homotopy class of a map f W † ! S1 � S3 is determined by the induced map on
fundamental groups.
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We first consider the case that † is connected. Since �1.S
1 �S3/ Š Z, we can find a generating set

for �1.†/ such that at most one generator is nontrivial in �1.S
1�S3/. Thus there exists a decomposition

†DH #†0, where H is either a sphere, a torus or a Klein bottle, with respect to which f can be written
as an internal connected sum T # f 0, where T is a map on H and f 0 is �1–trivial. In particular, f 0 is
homotopic to an embedding inside a ball D4 � S1 �S3. It remains to show that T is homotopic to an
embedding, which will show that the connected sum is homotopic to an embedding.

If H is a sphere, we are done. If H is a torus, let i W S1 �S1 ,! S3 be an embedding. For each k 2 Z,
define the embedding h0

k
W S1 �S1! S1 � .S1 �S1/ by .s; t/ 7! .sk ; .s; t//. Let hk WD .Id�i/ ı h0

k
.

There exists some k and some identification of H with S1�S1 such that T and hk induce the same map
on fundamental groups and thus are homotopic. If H is a Klein bottle, let p WH ! S1 be a fibre bundle
with fibre S1. For each k 2 Z, there exists an immersion i WH # S3 such that hk.x/ WD .p.x/

k ; i.x//

is an embedding H ,! S1 �S3. As before, there exists some k such that T and hk are homotopic.

The above embeddings can be realised as embeddings into S1�D3�S1�S3. The argument generalises
to disconnected surfaces by picking disjoint copies of S1�D3 in S1�S3 for each connected component.

Next we prove Proposition 1.10 and Corollary 1.11, which we restate for the convenience of the reader.

Proposition 1.10 Let M1 and M2 be oriented 4–manifolds. Let F1 W .†1; @†1/# .M1; @M1/ and
F2 W .†2; @†2/# .M2; @M2/ be generic immersions of connected , compact , oriented surfaces , each
with vanishing self-intersection number. If Fi is b–characteristic for each i , then both the disjoint union

F1 tF2 W†1 t†2#M1 # M2

and any interior connected sum
F1 # F2 W†1 #†2#M1 # M2

are b–characteristic , and satisfy

t.F1 tF2/D t.F1 # F2/D t.F1/C t.F2/:

Proof The vanishing of the self-intersection number of Fi is witnessed by a convenient collection of
Whitney discs Wi in Mi for each i . The union W1 tW2, now considered in M1 # M2, shows that the
intersection and self-intersection numbers of F1 tF2, as well as for F1 # F2, vanish in M1 # M2. Since
the union W1 tW2 pairs all the double points of F1 tF2 (resp. F1 # F2), and since components of Wi

cannot intersect Fj .†j / for all i ¤ j, the claimed relationship t.F1tF2/D t.F1 # F2/D t.F1/C t.F2/

holds as long as F1 tF2 and F # F2 are b–characteristic.

As a preliminary step, note that neither Fi has a framed dual sphere in Mi , since otherwise it would not
be s–characteristic, and therefore not b–characteristic by Lemma 5.18. As a result, †i D†i for i D 1; 2.

Next we consider the immersion F1 t F2 W .†1 t†2; @†1 t @†2/# M1 # M2. Let S � M1 # M2

denote a connected sum 3–sphere. Consider a band ŒB� 2 H2.M1 # M2; †1 t†2/. By (topological)
transversality, we can assume that B is immersed, the double points of B are disjoint from S, and the
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intersection B \ S corresponds to an embedded 1–manifold in the interior of the domain of B, since
@B �†1t†2 � .M1 #M2/nS. The image of this 1–manifold in S is embedded and bounds a collection
of immersed (perhaps intersecting) discs in S. Surger B using two copies each of these discs to produce
B1 �M1 and B2 �M2, where each Bi is an immersed collection of surfaces with @Bi �†i .

Each component of Bi can be replaced by a band as follows. Recall that since each Mi and †i is
oriented, there is no condition on Stiefel–Whitney classes for bands, and we need only arrange that each
component is either a Möbius band or an annulus. By considering the Euler characteristic, we see that
each component is homeomorphic to either a sphere, an RP2, a disc, a Möbius band or an annulus. Then
use the tubing procedure from Construction 5.10 to replace each sphere, RP2 or disc component by a
band. More precisely, choose a small disc on †1 or †2, as appropriate, away from all Whitney arcs and
double points, and tube into the disc, sphere or RP2.

Since each Fi is b–characteristic, �†1
j@B.Fi / is trivial for each i . Therefore, �†1t†2

is trivial on
@B D @B1 [ @B2. It follows by Lemma 5.16(iv) that ‚ W B.F1 t F2/ ! Z=2 is well defined. By
Lemma 7.8, ‚ extends to a linear map hB.F1 tF2/i ! Z=2 on the subspace

hB.F1 tF2/i �H2.M1 # M2; †1 t†2IZ=2/

generated by the bands. Then, since ŒB1 [ B2� D ŒB� 2 H2.M1 # M2; †1 t †2IZ=2/, we see that
‚.B/D‚.B1/C‚.B2/.

For each i , the value of ‚.Bi/ does not depend on whether the ambient manifold is Mi or M1 # M2,
since Bi does not intersect Fj .†j / for all i ¤ j (see Definition 5.12). Since each Fi is b–characteristic,
‚.B/D‚.B1/C‚.B2/D 0C 0D 0 2 Z=2. This completes the proof that F1 tF2 is b–characteristic.

Now we consider the connected sum F1 # F2. Let B 2H2.M1 # M2; †1 #†2/ be a band. As above, we
assume that the intersection B \S corresponds to an embedded 1–manifold in the domain of B. Unlike
above, this may include embedded arcs with endpoints on the boundary. These endpoints are mapped to
the intersection .F1 #F2/.†1 #†2/\S. By connecting the endpoints with arcs on .F1 #F2/.†1 #†2/\S,
we again get a collection of closed circles in S, which bound an immersed collection of discs in S.
Surger using these discs as before to produce collections Bi �Mi . Once again, each component of Bi is
homeomorphic to either a sphere, an RP2, a disc, a Möbius band or an annulus. By Construction 5.10
applied to the sphere, RP2 and disc components, we may arrange that each component is a band. The
argument of the previous paragraph now applies to show that F1 # F2 is b–characteristic.

Corollary 1.11 For any g, there exists a smooth , closed 4–manifold Mg, a closed , connected , oriented
surface †g of genus g, and a smooth , b–characteristic , generic immersion F W†g#Mg with t.F /¤ 0

and therefore km.F /¤ 0.

Proof By the same proof as in Example 9.4, for any knot K the product T WDK�Id WS1�S1!S3�S1

is an embedded b–characteristic torus. Since T is an embedding, t.T /D 0. A computation using the
intersection form shows that a generic immersion S W S2!CP2 representing three times a generator of
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H2.CP2
IZ/ is s–characteristic. Since �1.CP2/ has no 2–torsion, the map S is also r–characteristic

and thus b–characteristic by Lemma 5.18. We will show that km.S/D 1. This was the original example
of Kervaire and Milnor [1961]. To see that km.S/ D 1, represent S in the following way. Take a
cuspidal cubic, which is a smooth embedding of a 2–sphere away from a single singular point. In a
neighbourhood of the singular point we see a cone on the trefoil. Replace a neighbourhood of the
singular point with an immersed disc � in D4 with boundary the trefoil, and two double points that
are paired by a framed Whitney disc that intersects � once. Alternatively, we can compute t.S/ as
1
8
.�.CP2/ � S � S/ D 1

8
.1 � 9/ � 1 mod 2; see Section 3. This gives us the case g D 0. Next, by

Proposition 1.10, for every g 2N,

S # #g
T W†g!CP2 # #g

.S3
�S1/

is a b–characteristic generic immersion of a closed surface of genus g with nontrivial t , and there-
fore km

�
S # #g

T
�
¤ 0. In particular, S # #g

T is not regularly homotopic to an embedding. Note
these examples are smooth, but have no algebraically dual sphere. We could replace .CP2;S/ with�
CP2 # #8 CP2;S 0

�
, where S 0 is a generic immersion representing the class .3; 1; : : : ; 1/ 2 Z9 Š

H2

�
CP2 # #8 CP2

�
, to obtain an example with an algebraically dual sphere and km.S 0/D 1

8
.�7�1/�

1 mod 2.

Remark 9.6 Let M denote the infinite connected sum CP2 # #1.S3�S1/. The proof of Corollary 1.11,
along with the formula from Proposition 1.10, shows that, for every g, there exists a smooth generic
immersion F W†g#M with t.F /¤ 0 and therefore km.F /¤ 0. The following proposition shows that,
if there is such a compact 4–manifold M and such an F, then the 4–manifolds must have nonabelian
fundamental group. In other words, if there is an immersed surface in a 4–manifold with abelian
fundamental group with nontrivial km, then we give a bound on the complexity of that surface.

Proposition 9.7 Let M be a compact 4–manifold such that �1.M / is abelian with n generators. Let
F W†#M be a b–characteristic generic immersion , where † is a closed , connected surface. Then the
Euler characteristic satisfies �.†/� �2n.

Proof Suppose that �.†/ <�2n. Note that † can be written as a connected sum of a genus g orientable
surface †0 for some g > n with zero, one or two copies of RP2. There exists a surjection Zn� �1.M /.
Then the induced map H1.†

0/!H1.M /Š �1.M / admits a lift H1.†
0/! Zn, which has kernel of

rank at least 2g� n> g. So there exist closed curves 
1 and 
2 in †0 n VD2 �† that are null-homotopic
in M and �†.
1; 
2/� 1 mod 2. It follows that F is not b–characteristic.

Next we prove our corollaries on knot theory from Section 1.5.

Corollary 1.15 For every knot K � S3,

(1) gM .K/D 0 for every simply connected 4–manifold M not homeomorphic to one of S4, CP2 or
�CP2;
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(2) gCP2.K/� 1 and gCP2

�
#3

T .2; 3/
�
D 1; and

(3) g
�CP2.K/� 1 and g

�CP2

�
#2

T .2; 3/
�
D 1.

Proof Let K � S3 be an arbitrary knot and let M be an arbitrary closed, simply connected 4–manifold.
Let �0 be a generically immersed disc bounded by K in a collar S3 � Œ0; 1� of @M ı. Since M is simply
connected, every class in H2.M IZ/ Š �2.M / is represented by a generically immersed sphere. By
assumption, M is not homeomorphic to S4 and thus H2.M IZ/ is nontrivial. Since M is closed, every
primitive class ˛ 2H2.M IZ/ has an algebraic dual ˇ 2H2.M IZ/, ie �.˛; ˇ/D 1. Represent ˛ and ˇ
by generically immersed spheres, and tube the interior of �0 into ˇ to obtain �. Add local cusps to
arrange �.�/D 0.

First we prove (1). In this case we claim that in the construction of � we can choose the primitive class ˛
to satisfy �.˛; ˛/2 2Z, as we explain presently. Then the disc � constructed above is not r–characteristic,
since � � ˛ 6� ˛ � ˛ mod 2 (see Remark 5.6). By Theorem 5.7, this implies that km.�/D 0. Since the
disc � has the algebraically dual sphere ˛ and �1.M /D 1 is good, by Theorem 1.2, � is homotopic
rel boundary to an embedding. To see the claim regarding ˛, note that, when M © S4;CP2;�CP2,
the group H2.M IZ/ has rank at least 2 by the classification of closed, simply connected 4–manifolds
up to homeomorphism. Then H2.M IZ/ has a summand isomorphic to Z˚ Z, so the classes x, y

and xCy, for the generators x and y of the Z factors, are primitive, and at least one of �.x;x/, �.y;y/
or �.xCy;xCy/ is even.

In (2) and (3), we have M D CP2 or �CP2. The only primitive classes are ˙ŒCP1�, so we choose
˛ D ˇ D ŒCP1� in the construction of the first paragraph. We construct the disc � as before, but are no
longer able to conclude that it is r–characteristic. However, by Corollary 1.8, we know that the connected
sum of � with an unknotted torus is homotopic to an embedding. This completes the proof of the first
parts of (2) and (3).

Now we prove that gCP2

�
#3

T .2; 3/
�
D 1. Let K WD #3

T .2; 3/. Let gd

CP2.K/ denote the minimal
genus of a surface bounded by K in .CP2/ı in the homology class d 2 Z Š H2.CP2

IZ/. First we
consider d D˙1, where the class is b–characteristic (or equivalently, s–characteristic; see Lemma 5.18).
As before, construct the disc �0 � S3� Œ0; 1�, and tube into CP1 to obtain the disc �. We assume that �0

has trivial self-intersection number, so 1D Arf.K/D t.�0/ by [Matsumoto 1978; Freedman and Kirby
1978; Conant et al. 2014, Lemma 10]. Since CP1 is embedded disjointly from �0, t.�/D 1. Thus, by
Theorem 1.9, � is not homotopic to an embedding and so g˙1

CP2.K/¤ 0.

Next let �d .K/ WD �K .e
� i.d�1/=d /, where �K denotes the Levine–Tristram signature function of K. By

[Gilmer 1981; Viro 1975], for even d ,

2gd

CP2.K/C 1�
ˇ̌

1
2
d2
� 1� �.K/

ˇ̌
;
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while, if d is divisible by an odd prime p, then

2gd

CP2.K/C 1�

ˇ̌̌̌
p2� 1

2p2
d2
� 1� �d .K/

ˇ̌̌̌
:

In our case, �.K/D �d .K/D �6 for all d , and so gd

CP2.K/ � 1 for all d ¤˙1. This completes the
argument that gCP2.K/D 1.

Finally we show that g
�CP2

�
#2

T .2; 3/
�
D 1. Write K WD #2

T .2; 3/ and let gd

�CP2.K/ denote the
minimal genus of a surface bounded by K in .�CP2/ı in the homology class d 2H2.�CP2

IZ/. For
d D˙1, modify the argument above for the case of CP2, using that tubing into a sphere representing
a generator of H2.�CP2

IZ/ to obtain a disc �0 adds 1 to the t count, and so 1D 1CArf.K/D t.�0/.
Therefore, again by Theorem 1.9, g˙1

�CP2.K/¤ 0. Next, for �CP2, the same inequalities from [Gilmer
1981; Viro 1975] hold, and �.K/D �d .K/D�4 for all d . Therefore, applying the inequalities, we see
that gd

�CP2.K/� 1 for all d . It follows that g
�CP2.K/D 1, as asserted.

Corollary 1.16 For any knot K � S3, gsh
˙1
.K/D Arf.K/ 2 f0; 1g.

Proof A generator of H2.X˙1.K/IZ/ can be represented by a generically immersed sphere F which
is b–characteristic (or equivalently s–characteristic; see Lemma 5.18), has trivial �.F /, and has an
algebraically dual sphere. We also recall from [Matsumoto 1978; Freedman and Kirby 1978; Conant
et al. 2014, Lemma 10] that Arf.K/ coincides with the count t.F /. Then, by Theorems 1.6 and 1.9,
the sphere F is homotopic to an embedding if and only if Arf.K/ D 0. We have an embedded torus
representative for both generators by Corollary 1.8.
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