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We study rational curves on smooth complex Calabi–Yau 3–folds via noncommutative algebra. By the
general theory of derived noncommutative deformations due to Efimov, Lunts and Orlov, the structure
sheaf of a rational curve in a smooth CY 3–fold Y is pro-represented by a nonpositively graded dg
algebra � . The curve is called nc rigid if H 0� is finite-dimensional. When C is contractible, H 0� is
isomorphic to the contraction algebra defined by Donovan and Wemyss. More generally, one can show
that there exists a � pro-representing the (derived) multipointed deformation (defined by Kawamata) of a
collection of rational curves C1; : : : ; Ct with dim.HomY .OCi ;OCj //D ıij . The collection is called nc
rigid if H 0� is finite-dimensional. We prove that � is a homologically smooth bimodule 3–CY algebra.
As a consequence, we define a (2–CY) cluster category C� for such a collection of rational curves in Y.
It has finite-dimensional morphism spaces if and only if the collection is nc rigid. When

St
iD1 Ci is

(formally) contractible by a morphism yY ! yX, then C� is equivalent to the singularity category of yX
and thus categorifies the contraction algebra of Donovan and Wemyss. The Calabi–Yau structure on Y
determines a canonical class Œw� (defined up to right equivalence) in the zeroth Hochschild homology
of H 0� . Using our previous work on the noncommutative Mather–Yau theorem and singular Hochschild
cohomology, we prove that the singularities underlying a 3–dimensional smooth flopping contraction are
classified by the derived equivalence class of the pair .H 0�; Œw�/. We also give a new necessary condition
for contractibility of rational curves in terms of � .
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2570 Zheng Hua and Bernhard Keller

1 Introduction

The study of rational curves in algebraic varieties lies at the core of birational geometry. A smooth
rational curve C in a quasiprojective variety Y is called rigid if the component of the Hilbert scheme
of curves containing C is a finite scheme. Note that this is weaker than the notion of infinitesimally
rigid, which says that Ext1Y .OC ;OC /D 0. If a curve is not rigid then we call it movable. When Y is a
smooth projective surface, a smooth rational curve C � Y is rigid if and only if its normal bundle NC=Y
is negative. And, if C is rigid, then it is contractible, ie for the formal completion yY of Y along C
there exists a birational morphism f W yY ! yX to a normal surface yX that contracts C. The definition of
contractibility in general can be found in Definition 2.9.

Here we will focus on the case when Y is a smooth complex Calabi–Yau threefold, ie !Y is trivial. The
situation is much more complicated than the surface case. We call a rational curve C � Y type .a; b/
if it has normal bundle O.a/˚ O.b/. By the adjunction formula, we have aC b D �2. A .�1;�1/–
curve is contractible. The underlying singular variety yX is equivalent to the singular hypersurface
x2Cy2Cu2Cv2D 0. There exists a different resolution yY C! yX and the birational map yYÜ yY C is
called the Atiyah flop. Reid [1983] proves that a .0;�2/–curve is either contractible or movable. The
contractible case corresponds to the Pagoda flops. Laufer proves that a contractible curve is of type
.�1;�1/, .0;�2/ or .1;�3/ (see [Pinkham 1983]). Katz and Morrison [1992] show that any simple
flopping contraction (see the definition in Section 2.5) can be constructed as base change of a universal
contraction. In general, it is not true that all rigid curves are contractible. A counterexample was
constructed by Clemens [1989].

We study the contractibility of rational curves in Calabi–Yau 3–folds via noncommutative methods. In
general, given a rational curve C � Y the problem is two-fold:

(1) Find infinitesimal criteria for the contractibility of C.

(2) If C is contractible, determine the underlying singularity of the contraction.

Our research is motivated by a remarkable paper of Donovan and Wemyss [2016], who considered the
algebra ƒ that represents the noncommutative deformation functor of OC for a contractible rational
curve C � Y. They prove that ƒ is finite-dimensional and call it the contraction algebra. Indeed, the
contraction algebra can be defined in a more general context where Y may be neither CY nor smooth, and
the birational morphism may contract a divisor containing C. However, we will focus on the special case
when Y is a smooth CY 3–fold and the contraction is not divisorial. Donovan and Wemyss conjectured
that the 3–dimensional simple flops are classified by the isomorphism types of the contraction algebras
(see Conjecture 5.10).

In order to deal with the case of general flops where the exceptional fiber can have multiple irreducible
components, Kawamata proposes to study the multipointed noncommutative deformation of a semisimple
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collection (see the definition in Section 2)1 of sheaves E1; : : : ;Et . A case of special interest is when the
collection is OC1 ; : : : ;OCt , where the Ci are irreducible components of the reduced exceptional fiber of a
contraction (see [Kawamata 2018, Example 6.5]). We consider the derived noncommutative deformation
theory of E WD

Lt
iD1 Ei for a semisimple collection of sheaves fEigtiD1 on a smooth CY 3–fold Y. By

a result of Efimov, Lunts and Orlov (see Theorem 2.2), such deformation functor is pro-represented
by a nonpositively graded dg algebra � . We call � the derived deformation algebra of the semisimple
collection fEigtiD1. We call a semisimple collection fEigtiD1 nc rigid (“nc” stands for noncommutative)
if H 0� is finite-dimensional. Given a collection of smooth rational curve C1; : : : ; Ct such that fOCi g

t
iD1

form a semisimple collection, we call fCigtiD1 an nc rigid collection of rational curves if H 0� is finite-
dimensional. If t D 1 and C D C1 is nc rigid rational curve, then the abelianization of H 0� represents
the commutative deformation functor of OC . Therefore, an nc rigid curve is in particular rigid. Our first
result is:

Theorem A (Proposition 3.9) Let C1; : : : ; Ct be a collection of rational curves in a smooth quasipro-
jective Calabi–Yau 3–fold Y such that fOCi g

t
iD1 form a semisimple collection. The derived deformation

algebra � of
Lt
iD1 OCi is a nonpositive pseudocompact dg algebra that is

(1) homologically smooth ;

(2) bimodule 3–CY.

Moreover , � is exact 3–CY in either one of the following cases:

(a) Y is projective.

(b) There is a (formal ) contraction Of W yY ! yX such that Ex. Of /D
St
iD1 Ci , where Ex. Of / stands for

the reduced exceptional fiber of Of.

This theorem establishes a link between birational geometry and the theory of cluster categories. We
consider the triangle quotient C� WD per.�/=Dfd.�/ (see Section 3.3). It is Hom–finite if and only if
fCig

t
iD1 is nc rigid. By a result of Amiot [2009], it is then a 2–CY category. When C is contractible

by a morphism yY ! yX, then H 0� is isomorphic to the contraction algebra ƒ defined in [Donovan and
Wemyss 2016] and C� is equivalent to the singularity category of yX and thus categorifies the contraction
algebra of Donovan and Wemyss. If � is exact 3–CY, Van den Bergh proved that it is quasi-isomorphic
to a (complete) Ginzburg algebra D.Q;w/ for some finite quiver Q and a potential w. If we fix the CY
structure on Y, then there is a canonical class Œw�, defined up to right equivalence, in the zeroth Hochschild
homology of H 0� (see Proposition 4.8). The class Œw� can be viewed as the “classical shadow” of the
Calabi–Yau structure on Y. Our second result is:

Theorem B (Theorem 5.11) Let Of W yY ! yX and Of 0 W yY 0! yX 0 be two formal flopping contractions
with reduced exceptional fibers Ex. Of /D

St
iD1 Ci and Ex. Of 0/D

Ss
iD1 C

0
i . Denote respectively by �

1Kawamata calls it a simple collection.
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2572 Zheng Hua and Bernhard Keller

and � 0 the derived deformation algebras of
Lt
iD1 OCi and

Ls
iD1 OC 0

i
, and by Œw� 2 HH0.H 0�/ and

Œw0� 2 HH0.H 0� 0/ the canonical classes. Suppose there is a triangle equivalence

‹˝L
H0�

Z WD.H 0�/ ��!D.H 0� 0/

given by a dg bimoduleZ such that HH0.Z/ (defined in [Keller 1998]) takes Œw� to Œw0� in HH0.H 0� 0/D

HH0.� 0/. Then yX is isomorphic to yX 0. In particular , s is equal to t .

For general (nonsimple) flopping contractions, there exist derived equivalent algebrasH 0� andH 0� 0 that
are nonisomorphic. August [2020a, Theorem 1.4] proves that the isomorphism classes of such algebras in
a fixed derived equivalence class of H 0� are precisely the contraction algebras for the iterated flops of yY.
Different contraction algebras in the same derived equivalence class are related by the iterated mutations
of the tilting objects. The mutations are the homological counterpart of flops between different minimal
models. We refer to [Wemyss 2018; 2023] for the general framework of the homological minimal model
program.

Theorem B says that the underlying singularity type of the smooth minimal models is determined by the
derived equivalence class of the pair .H 0�; Œw�/. We sketch the idea of the proof. From 3–dimensional
birational geometry we know that the underlying (isolated) singularity of a smooth flopping contraction
is a hypersurface (see Section 2.5). It is a classical theorem of Mather and Yau that, up to isomorphism,
a germ of isolated hypersurface singularity is determined by its Tyurina algebra (see [Mather and Yau
1982] for the analytic case and [Greuel and Pham 2017] for the formal case). Next we prove that the
derived equivalence class of H 0� together with the canonical class Œw� recovers the Tyurina algebra of
the singularity. We solve this problem in two steps. First, we prove that the Tyurina algebra, and therefore
the isomorphism class of the hypersurface singularity, can be recovered from the (Z–graded dg enhanced)
cluster category C� . This result, proved in Section 5, should have independent interest. Secondly, we
show that the isomorphism class of the Ginzburg algebra D.Q;w/ that is quasi-isomorphic to � can
be recovered from the data .H 0�; Œw�/. The proof uses a result of Hua and Gui-song Zhou [2023] in
noncommutative differential calculus of potentials with finite-dimensional Jacobi algebras. Finally, we
prove (in Sections 4.4 and 4.5) that any derived Morita equivalence D.H 0�/'D.H 0� 0/ preserving the
canonical class yields a derived Morita equivalence per.�/' per.� 0/.

Note that Hua and Toda [2018] gave an alternative definition of the contraction algebra associated to
a flopping contraction using the category of matrix factorizations. In this definition, the contraction
algebra carries an additional (compared with the definition in [Donovan and Wemyss 2016]) Z=2–graded
A1–structure. Hua [2018] proved that the Tyurina algebra of the singularity can be recovered from
the Z=2–graded A1–structure. Our proof of Theorem B shows that the Z=2–graded A1–structure on
the contraction algebra can be recovered from the class Œw�. Theorem B without the condition on the
preservation of the canonical class is precisely the generalization of the conjecture by Donovan and
Wemyss stated by August [2020a, Conjecture 1.3]. See Conjecture 5.10 for the original conjecture of
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Donovan and Wemyss, which is for simple flopping contractions. The generalized form of the conjecture
has recently been proved in [Jasso and Muro 2022, Appendix A] — see also [Jasso et al. 2024] — by
combining the derived Auslander–Iyama correspondence of [Jasso and Muro 2022] with our Theorem 5.8.
The geometric meaning of the class Œw� remains to be understood. It is believed that the vanishing of Œw�
is closely related to the condition that yX is quasihomogeneous.

Our third result is a necessary condition on the contractibility of an nc rigid rational curve in a smooth
CY 3–fold. Let u be a variable of degree 2.

Theorem C (Proposition 6.9) Let C be an nc rigid rational curve in a smooth CY 3–fold Y. If C is
contractible , then its derived deformation algebra � is kŒu�1�–enhanced (see the definition in Section 6).
Moreover , H 0� is a symmetric Frobenius algebra.

We conjecture that an nc rigid rational curve C is contractible if and only if � is kŒu�1�–enhanced (see
Conjecture 6.8).

The paper is organized as follows. In Section 2 we review basics on derived noncommutative deformation
theory, noncommutative crepant resolutions and flopping contractions. Concerning derived deformations,
we complement the results of Efimov, Lunts and Orlov [Efimov et al. 2010] by explaining the link to
classical deformations in abelian categories in Section 2.3. In Section 3, we discuss various notions of
Calabi–Yau structures in geometry and algebra and prove Theorem A. The notion of cluster category is
introduced in Section 3.3. When the curve is contractible, there are two cluster categories associated to
it: one via derived deformation and the other via the NCCR. We prove that these two cluster categories
are algebraically equivalent. In Section 4, we recall the definition of Ginzburg algebras and several
results in noncommutative differential calculus, including the noncommutative Mather–Yau theorem
and noncommutative Saito theorem. We further show that, for a contractible curve in a CY 3–fold,
there exists a Ginzburg algebra weakly equivalent to the derived deformation algebra whose potential is
canonically defined up to right equivalence. Then we establish a relation between the silting theory of a
nonpositive dg algebra and the silting theory of its zeroth homology. In Section 5, we study the relation
between the cluster category associated to the contractible curves and their underlying singularities via
Hochschild cohomology. In particular, Theorem B is proved. In Section 6, we introduce the notion of
kŒu�1�–enhancement of dg algebras. For derived deformation algebra, we establish a link between the
existence of kŒu�1�–enhancement and contractibility of rational curve and prove Theorem C.

Acknowledgments Hua wishes to thank Yujiro Kawamata, Mikhail Kapranov, Sheldon Katz and Gui-
song Zhou for inspiring discussions, and Aron Heleodoro for the help on understanding [Gaitsgory and
Rozenblyum 2017]. Keller thanks Akishi Ikeda for kindly explaining the details of [Ikeda and Qiu 2023,
Section 3.5] and Gustavo Jasso for help with Section A.2. He is grateful to Zhengfang Wang for inspiring
discussions on singular Hochschild cohomology and for providing the reference [Guccione et al. 1992].
We want to thank Michael Wemyss for many valuable comments and suggestions, in particular for drawing
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our attention to the work of August [2020a; 2020b]. We are greatly indebted to a referee for reading
previous versions of the manuscript with great care, pointing out numerous local errors and inaccuracies
and helping to improve the readability of the paper. The research of Hua was supported by RGC General
Research Fund grants 17330316 and 17308017.

2 Preliminaries

2.1 Notation and conventions

Throughout k will be a ground field unless stated otherwise. Unadorned tensor products are over k. Let
V be a k–vector space. We denote its dual vector space by DV. When V is graded, DV is understood
as the dual in the category of graded vector spaces. For a subspace V 0 of a complete topological vector
space V, we denote the closure of V 0 in V by .V 0/c . By definition, a pseudocompact k–vector space is a
linear topological vector space which is complete and whose topology is generated by subspaces of finite
codimension. Following [Van den Bergh 2015], we will denote the corresponding category by PC.k/.
We have inverse dualities

D WMod.k/! PC.k/op; V 7! Homk.V; k/;

D W PC.k/!Mod.k/op; W 7! HomPC.k/.W; k/;

where we recall that, for V 2Mod.k/, the topology on DV is generated by the kernels of DV !DV 0,
where V 0 runs through the finite-dimensional subspaces of V. Similarly, if V is graded then D is understood
in the graded sense. For the definition of Hom–space and tensor product in PC.k/, we refer to [Van den
Bergh 2015, Section 4]. Using the tensor product in PC.k/, we define the pseudocompact dg algebras,
modules and bimodules to be the corresponding objects in the category of graded objects of PC.k/. Let
A be a pseudocompact dg k–algebra. Denote by PC.Ae/ the category of pseudocompact A–bimodules.
We will sometimes take a finite-dimensional separable k–algebra l to be the ground ring. The definition
of the duality functor D on PC.le/ requires some extra care due to the noncommutativity of l . We refer
to [Van den Bergh 2015, Section 5] for detailed discussion.

Denote by PCAlgc.l/ the category of augmented pseudocompact dg algebras A whose underlying
graded algebras have their augmentation ideal equal to their Jacobson radical (see [Van den Bergh 2015,
Proposition 4.3 and Section 6]). Our main interest is in the case when l Š ke1�ke2�� � ��ken for central
orthogonal idempotents .ei /i . For an object A 2 PCAlgc.l/, we use Hom–spaces and tensor products in
PC.le/ to define the Hochschild and cyclic (co)homology. For details, we refer to [Van den Bergh 2015,
Section 7 and Appendix A]. If A is an l–algebra in PCAlgc.l/, we use HH�.A/, HH�.A/ and HC�.A/
to denote the continuous Hochschild homology, cohomology and cyclic homology of A. Because for a
pseudocompact dg algebra we will only consider continuous Hochschild homology, cohomology and
cyclic homology, there is no risk of confusion. By an abuse of notation, for A 2 PCAlgc.l/ we denote
by D.A/ the pseudocompact derived category of A. Its subcategories per.A/ and Dfd.A/ are defined as
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the thick subcategory generated by the free A–module A and as the full subcategory of all objects with
homology of finite total dimension. Similar to the algebraic case, the notion of homological smoothness
can be defined in the pseudocompact setting. We refer to [Keller and Yang 2011, Appendix] for a careful
treatment. For the bar–cobar formalism and Koszul duality of pseudocompact dg algebras, we refer to
[Van den Bergh 2008, Appendices A and D].

2.2 Derived deformation theory

We briefly recall the setup of derived noncommutative deformation theory of [Efimov et al. 2010]. In this
section, we fix a field k. We refer to [Keller 2006] for foundational material on dg categories. For a dg
category A, we denote by D.A/ the derived category of right dg A–modules. Fix a positive integer n
and let l be the separable k–algebra ke1 � � � � � ken. An l–algebra A is a k–algebra together with a
morphism of k–algebras l ! A (note that l is not necessarily central in A). An equivalent datum is
that of the k–category with n objects 1; : : : ; n whose morphism space from i to j is given by ejAei .
An l–augmented (dg) algebra is a (dg) l–algebra R together with an l–algebra morphism R! l such
that the composition l ! R! l is the identity morphism. Its augmentation ideal is the kernel of the
augmentation morphism R! l . An artinian l–algebra is an augmented l–algebra whose augmentation
ideal is finite-dimensional and nilpotent. A dg l–algebra is artinian if it is an augmented dg l–algebra
whose augmentation ideal is finite-dimensional and nilpotent. Denote by Artl and cArtl the categories of
artinian l–algebras and of commutative artinian l–algebras. Denote by dgArtl the category of artinian dg
algebras and by dgArt�l the subcategory of dgArtl consisting of dg algebras concentrated in nonpositive
degrees.

Fix a dg category A and a dg A–module E with a decomposition E DE1˚ � � �˚En. We view E as an
lop˝A–module in the natural way. The dg endomorphism l–algebra of E is the dg endomorphism algebra
over A of the sum E viewed as an l–algebra in the natural way. We are going to define a pseudofunctor
Def.E/ from dgArtl to the category Gpd of groupoids. This pseudofunctor assigns to an artinian dg
l–algebra R the groupoid DefR.E/ of R–deformations of E in the derived category D.A/. We will
mostly follow the notation of [Efimov et al. 2009] and identify R with the dg category with n objects
1; : : : ; n, where the morphism complex from i to j is given by ejRei . Denote the dg category Rop˝A

by AR. The augmentation " WR! l yields the functor of extension of scalars "� taking a dg R–module S
to the dg lop˝A–module

"�.S/D l ˝L
R S:

Definition 2.1 [Efimov et al. 2009, Definition 10.1] Fix an artinian augmented dg l–algebra R. An
object of the groupoid DefR.E/ is a pair .S; �/, where S is an object of D.AR/ and

� W "�.S/!E
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is an isomorphism in D.lop˝A/. A morphism f W .S; �/! .T; �/ between two R–deformations of E is
an isomorphism f W S ! T in D.AR/ such that

� ı "�.f /D �:

This defines the groupoid DefR.E/. A homomorphism of augmented artinian dg l–algebras � WR! Q

induces the functor
�� W DefR.E/! DefQ.E/

given by Q˝L
R ‹. Thus we obtain a pseudofunctor

Def.E/ W dgArtl !Gpd:

We call Def.E/ the pseudofunctor of derived deformations of E. We denote by Def�.E/ the restrictions
of the pseudofunctor Def.E/ to the subcategory dgArt�l .

The category of augmented dg l–algebras can be naturally enhanced to a weak 2–category. We refer to
[Efimov et al. 2010, Definition 11.1] for the precise definition of the 2–category structure. In particular,
we denote the corresponding 2–categorical enhancements of dgArtl , dgArt�l and Artl by 2–dgArtl ,
2–dgArt�l and 2–Artl (in [Efimov et al. 2010], they are denoted by 20–dgArtl etc). By [Efimov et al.
2010, Proposition 11.4], there exists a pseudofunctor DEF.E/ from 2–dgArtl to Gpd and which is an
extension to 2–dgArtl of the pseudofunctor Def.E/. Similarly, there exists a pseudofunctor DEF�.E/
extending Def�.E/.

The main theorem of [Efimov et al. 2010] is:

Theorem 2.2 [Efimov et al. 2010, Theorems 15.1 and 15.2] Let E1; : : : ; En be a collection of objects
in D.A/. Let E be the direct sum of the Ei and C the extension algebra Ext�A.E;E/ considered as a
graded l–algebra. Assume that

(a) Cp D 0 for all p < 0;

(b) C 0 D l ;

(c) dimk Cp <1 for all p and dimk Cp D 0 for all p� 0.

Denote by C the dg endomorphism l–algebra of E. Let A be a strictly unital minimal model of C. Then
the pseudofunctor DEF�.E/ is pro-representable by the dg l–algebra � D DBA, where B denotes the
bar construction. That is , there exists an equivalence of pseudofunctors DEF�.E/' h� from 2–dgArt�l
to Gpd, where h� denotes the groupoid of 1–morphisms 1–Hom.�; ‹/.

In the case where the dg category A is given by an algebra A concentrated in degree 0 and E is a
1–dimensional A–module, Booth [2018, Theorem 3.5.9] obtains an analogous pro-representability result
for the set-valued framed deformation functor Deffr;�0

A .E/ without having to impose the finiteness
condition (c).
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Let Y be a smooth algebraic variety. A collection of compactly supported coherent sheaves E1; : : : ;Et

on Y is called semisimple if HomY .Ei ;Ei / Š k for all i and HomY .Ei ;Ej / D 0 for all i ¤ j. The
finiteness assumption in Theorem 2.2 is satisfied by any semisimple collection. Let E be the direct sum
of such a collection of coherent sheaves on Y. We may denote the completion of Y along the support
of E by yY.

Corollary 2.3 Given a semisimple collection fEigtiD1 in Db.coh yY /, denote by C the dg endomorphism
l–algebra of E WD

Lt
iD1 Ei . Let A be a strictly unital minimal model of C and � DDBA. Then there is

an equivalence
DEF�.E/' h� :

We call � the derived deformation algebra of the collection fEigtiD1 in Y. When we want to emphasize
the dependence on Y and fEigtiD1, � is replaced by �YE . The semisimple collection fEigtiD1 is called nc
rigid if dimkH 0.�YE / <1. We are mainly interested in the case when fEigtiD1 is (the structure sheaves
of) a collection of smooth rational curves C1; : : : ; Ct that satisfies the condition that HomY .OCi ;OCj /D 0
for i ¤ j. For such a collection of rational curves C WD fCigniD1, where we write �YC for �Y

fOCi g
t
iD1

.

In the context of classical noncommutative deformation theory, the representability of noncommutative
deformations of contractible rational curves was proved by Donovan and Wemyss:

Theorem 2.4 [Donovan and Wemyss 2016, Proposition 3.1 and Corollary 3.3] Let f W Y ! X be
a simple flopping contraction of 3–folds (see the definition in Section 2.5) and let C be the reduced
exceptional fiber of f. The functor

�0.Defcl.OC // W Artk! Set

is representable. The artinian algebra ƒ representing it is called the contraction algebra associated to
f W Y !X.

The definition of the classical deformation functor Defcl is recalled in the next section (see [Donovan
and Wemyss 2016, Section 2]). If � is the derived deformation algebra of C (with t D 1), it follows
from the above theorem and Theorem 2.5 below that the contraction algebra ƒ is isomorphic to H 0� .
Indeed, they both represent the same deformation functor and this determines them up to (nonunique)
isomorphism (see [Segal 2008, Proof of Theorem 2.14]).

2.3 Link to classical deformations

Let A be a dg category. Let H � D.A/ be the heart of a t–structure on D.A/. We assume that H is
faithful, ie the higher extension groups computed in H are canonically isomorphic to those computed
in D.A/.

Geometry & Topology, Volume 28 (2024)



2578 Zheng Hua and Bernhard Keller

Let R be an augmented artinian l–algebra. By an R–module in H, we mean an object M of H endowed
with an algebra homomorphism R! End.M/. Given such an R–module, we denote by ‹˝R M the
unique right exact functor mod R! H extending the obvious additive functor proj R! H taking R

to M. Here we denote by proj R the category of finitely generated projective (right) R–modules and by
mod R the category of finitely generated R–modules. Notice that ‹˝R is a left Kan extension and thus
unique up to unique isomorphism and functorial in M. It can be computed using projective resolutions. It
is obvious how to define morphisms of R–modules in H.

Let E be the direct sum of a collection of n objects E1; : : : ; En of H. We view E as an l–module in H

in the natural way. For an augmented artinian l–algebra R, we define the groupoid Defcl
R.E/ of classical

deformations of E as follows: Its objects are pairs .M;�/ where M is an R–module in H such that the
functor ‹˝R M is exact and � W l ˝R M

��! E is an isomorphism of l–modules in H. A morphism
.L; �/! .M;�/ is an isomorphism f W L!M of R–modules in H such that � ı .l ˝R f /D �.

For an augmented l–algebra A and an augmented artinian l–algebra R, we define G.A;R/ to be the
groupoid whose objects are the morphisms A! R of augmented l–algebras and whose morphisms
�1! �2 are the invertible elements r of R such that �2.a/D r�1.a/r�1 for all a in A.

Theorem 2.5 Suppose that , in addition to the above assumptions , E satisfies the hypotheses of
Theorem 2.2. Let � be the pseudocompact dg l–algebra defined there. Let R be an augmented artinian
l–algebra. Then H 0� represents the classical deformations of E in the sense that there is an equivalence
of groupoids

Defcl
R.E/

��!G.H 0�;R/:

Proof By Theorem 2.2, we have an equivalence of groupoids

DEF�.E/.R/ ��! 1–Hom.�;R/;

where 1–Hom denotes the groupoid of 1–morphisms in 2–dgArt. We will show that DEF�.E/.R/
is equivalent to Defcl

R.E/ and 1–Hom.�;R/ is equivalent to G.H 0�;R/. We start with the second
equivalence. By [Efimov et al. 2010, Definition 11.1], an object of 1–Hom.�;R/ is a pair .M; �/
consisting of

� a dg bimodule M in D.�op˝R/ such that the restriction to R of M is isomorphic to R in D.R/
and

� an isomorphism � WM ˝L
R l! l in D.�op/.

A 2–morphism f W .M1; �1/! .M2; �2/ is an isomorphism f W M1 ! M2 in D.�op ˝R/ such that
�2ı.f ˝

L
R l/D �1. We define a functor F WG.H 0�;R/! 1–Hom.�;R/ as follows: Let � WH 0.�/!R

be a morphism of augmented l–algebras. Since � is concentrated in degrees � 0, we have a canonical
algebra morphism �!H 0.�/. By composing it with � we get a morphism of augmented dg l–algebras
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�!R. It defines a structure of dg bimodule M on R. We put F� D .M; �/, where � WR˝L
R l! l is the

canonical isomorphism. Now let �1 and �2 be two morphisms of augmented algebras H 0.�/!R. Put
.Mi ; �i /DF�i for i D 1; 2. Let r an be an invertible element of R such that �2.a/D r�1.a/r�1 for all a
in H 0.�/. Then it is clear that left multiplication with r defines an isomorphism of bimodules M1!M2

compatible with the �i . Recall that �op˝R is concentrated in degrees � 0, so its derived category has a
canonical t–structure. Since the Mi live in the heart of this t–structure on D.�op˝R/, it is also clear
that F is fully faithful. It remains to be checked that F is essentially surjective. So let .M; �/ be given.
Since M is quasi-isomorphic to R when restricted to R, its homology is concentrated in degree 0. We
can therefore replace M with H 0.M/, which is an ordinary H 0.�/–R–bimodule isomorphic to R as a
right R–module (we also consider it as a left �–module via the canonical morphism �!H 0.�/). In
particular, M is right projective and so M ˝L

R ‹DM ˝R ‹. We choose an isomorphism f WM ��!R of
right R–modules. After multiplying f with an invertible element of l , we may assume that f ˝R l D � .
The left �–module structure on M yields an algebra morphism

� WH 0.�/! EndR.M/ ��! EndR.R/DR:

It is clear that f yields an isomorphism between .M; �/ and F�.

We now construct an equivalence from DEF�.E/.R/ to Defcl
R.E/. Recall from [Efimov et al. 2010,

Proposition 11.4] that the groupoid DEF�.E/.R/ equals the groupoid DefR.E/ of Definition 2.1 (but
DEF� has enhanced 2–functoriality). Let P ! E be a cofibrant resolution of E. Since the graded
algebra Ext�.E;E/ has vanishing components in degree �1 and in all sufficiently high degrees, we can
apply [Efimov et al. 2010, Theorem 11.8] to conclude that the groupoid DefR.E/ is equivalent to the
groupoid DefhR.P / of homotopy deformations of [Efimov et al. 2009, Definition 4.1]. We now construct
an equivalence F from DefhR.P / to Defcl

R.E/. Let .S; �/ be an object of DefhR.P /. We may assume
that S DR˝l P as a graded bimodule and that � is the canonical isomorphism l ˝R .R˝P /

��! P.
Let I denote the augmentation ideal of R. Then S has a finite filtration by the dg submodules IpS for
p � 0, and each subquotient is isomorphic to a summand of a finite sum of copies of l ˝R S D P. Thus,
the underlying dg A–module M of S is isomorphic in D.A/ to a finite iterated extension of objects of
add.E/, the subcategory of direct factors of finite direct sums of copies of E. Therefore, M still lies in the
heart H. Note that, as shown in [Efimov et al. 2010, Proof of Theorem 11.8], S is cofibrant over Rop˝A.
Therefore, M is cofibrant over A. The left R–module structure on S yields an algebra homomorphism
R! End.M/. Since each object of mod R is a finite iterated extension of 1–dimensional l–modules, the
functor ‹˝RS WD.R/!D.A/ takes mod R to H. Since ‹˝RS is a triangle functor, the induced functor
mod R!H is exact. Clearly it restricts to the natural functor proj R!H and is therefore isomorphic to
‹˝RM Wmod R!H. Finally, the isomorphism l˝RS

��!E yields an isomorphism � W l˝RM
��!E.

In this way, to an object .S; �/ of DefhR.P /, we have associated an object F.S; �/D .M;�/ of Defcl
R.E/.

Notice that, by what we have just shown, we may also describe M 2H as the zeroth homology H 0
H.S/

with respect to the t–structure associated with H, that we have an isomorphism l˝RM
��!H 0

H.l˝
L
R S/

and that the isomorphism � W l ˝R M
��! E is induced by � W l ˝L

R S
��! E. Recall that a morphism
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.S1; �1/! .S2; �2/ of DefhR.P / is a class of isomorphisms S1! S2 of dg Rop˝A–modules compatible
with the �i modulo homotopies compatible with the �i . Since the functor DefhR.P / ! DefR.E/ is
an equivalence, these morphisms are in bijection with the isomorphisms S1 ! S2 of D.Rop ˝ A/

compatible with the �i . Clearly each such morphism induces an isomorphism .M1; �1/! .M2; �2/,
where .Mi ; �i / D F.Si ; �i / for i D 1; 2. It follows from Lemma 2.6 below that this assignment is a
bijection. It remains to be shown that F W DefhR.P /! Defcl

R.E/ is essentially surjective. Since we have
an equivalence DefhR.P /

��! DefR.E/, it suffices to lift a given object .M;�/ of Defcl
R.E/ to an object

.S; �/ of DefR.E/. Let A denote the dg endomorphism l–algebra RHomA.M;M/. Then M becomes
canonically an object of D.Aop˝A/. Now, since M is in the heart of a t–structure, its negative self-
extension groups vanish and we have a quasi-isomorphism ��0A

��! EndH.M/. Thus, in the homotopy
category of dg l–algebras, we have a morphism

R! EndH.M/ ��! ��0A! A:

By tensoring with A we obtain a morphism Rop˝A!Aop˝A in the homotopy category of dg categories.
The associated restriction functor D.Aop˝A/!D.Rop˝A/ sends M to an object S of D.Rop˝A/.
By construction, the restriction of S to A is isomorphic to M in D.A/ and the left action of R on S
induces the given algebra morphism R! EndH.M/. Since H is the heart of a t–structure, we have
a canonical realization functor Db.H/! D.A/ extending the inclusion H! D.A/; see [Beı̆linson
et al. 1982, Section 3.1.10] or [Keller and Vossieck 1987, Section 3.2]. Moreover, since H is faithful,
the realization functor is fully faithful. Since we only know how to compare tensor functors, we use
a different construction to extend the inclusion H!D.A/ to a triangle functor Db.H/!D.A/. Let
Hdg be the full subcategory of the dg category of right A–modules formed by cofibrant resolutions of
the objects of H. We have an equivalence of k–categories H ��! H 0.Hdg/. Since H is the heart of
a t–structure, the homology of the dg category Hdg is concentrated in degrees � 0. Thus, we have
quasiequivalences ��0Hdg

��!H 0.Hdg/
��!H. Therefore, in the homotopy category of dg categories,

we obtain a morphism
H! ��0.Hdg/!Hdg!Ddg.A/;

where Ddg.A/ denotes the dg category of cofibrant dg A–modules. It gives rise to an H–A–bimodule R.
Let Hb.H/ denote the category modulo homotopy of bounded complexes of objects of H. Using the
fact that short exact sequences of H give rise to triangles in D.A/, one checks that the induced functor
‹˝HR WH

b.H/!D.A/ vanishes on the bounded acyclic complexes and therefore induces a triangle
functor Db.H/! D.A/, still denoted by ‹˝H R. Since H is a faithful heart, one obtains that this
triangle functor is fully faithful. We claim that we have a square of triangle functors, commutative up to
isomorphism,

Db.mod R/
‹˝RM

//

��

Db.H/

‹˝HR

��

D.R/
‹˝L

AS
// D.A/
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To check this, one has to check that the bimodules S and M ˝H R are isomorphic in D.Rop ˝A/.
This is easy using Lemma 2.6 below. Since ‹˝R M W mod R! H is exact, the given isomorphism
l˝RM

��!E yields an isomorphism l˝L
RM

��!E inDb.H/ and thus an isomorphism � W l˝L
RS

��!E

in D.A/. It is now clear that we can recover M as H 0
R.S/ and that � W l ˝RM

��!E is the morphism
induced by � W l ˝L

R S
��! E in H 0

R. By the description of F given above, this shows that we do have
F.S; �/ ��! .M;�/.

Let A be a dg category and B an ordinary k–algebra. Let X and Y be objects of D.Bop˝A/ and let
res.X/ be the restriction of X to A. The left action of B on X defines an algebra morphism

˛X W B! EndD.A/.res.X//:

Let M.X; Y / be the space of all morphisms f W res.X/! res.Y / in D.A/ such that

f ı˛X .b/D ˛Y .b/ ıf

for all b 2 B. The restriction functor induces a natural map

ˆ W HomD.Bop˝A/.X; Y /!M.X; Y /:

Lemma 2.6 If
HomD.A/.res.X/;†�nres.Y //D 0

for all n > 0, the map ˆ is bijective.

Proof We adapt the argument of [Keller 2000, Section 5]. We may suppose that X is cofibrant over
Bop˝A and in particular cofibrant over A. Then the sum total dg module of the bar resolution

� � � ! B˝B˝p˝X ! � � � ! B˝B˝X ! B˝X ! 0

is still cofibrant over Bop˝A and quasi-isomorphic to X. We use it to compute HomD.Bop˝A/.X; Y /.
By applying HomBop˝A.‹; Y / to the bar resolution, we get a double complex D of the form

HomA.X; Y /! HomA.B˝X; Y /! � � � ! HomA.B
˝p
˝X; Y /! � � � :

We have to computeH 0 of the product total complex Tot…D. LetD�0 be the double complex obtained by
applying the intelligent truncation functor ��0 to each column of D. Let D<0 be the kernel of D!D�0.
We claim that the product total complex of D<0 is acyclic. Indeed, the homology of the pth column
of D<0 in degree �q is isomorphic to

HomD.A/.B
˝p
˝X;†�qY /:

It vanishes for �q < 0 by our assumption. To show that the product total complex of D<0 is acyclic, we
consider the column filtration FpD<0. Then D<0 is the inverse limit of the FpD<0. By induction on p,
each FpD<0 has an acyclic total complex. Moreover, the transition maps FpC1D<0! FpD<0 induce
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componentwise surjections in the total complexes. It follows that the inverse limit of the total complexes
of the FpD<0 is still acyclic and this inverse limit is the product total complex of D<0. So it is enough
to compute H 0 of Tot…D�0. For this, let us denote by

Hom0A.X; Y /

the quotient of Hom0A.X; Y / by the nullhomotopic morphisms and similarly for Hom0A.B˝X; Y /. The
space we have to compute is the homology in degree 0 of the total complex of the double complex

Hom1A.X; Y / // Hom1A.B˝X; Y /

Hom0A.X; Y /

OO

// Hom0A.B˝X; Y /

OO

where the lower left corner is in bidegree .0; 0/. This equals the intersection of the kernels of the maps
from bidegree .0; 0/ to bidegrees .0; 1/ and .1; 0/. The kernels of the vertical maps are respectively
HomD.A/.X; Y / and HomD.A/.B ˝X; Y / and the space we have to compute thus identifies with the
kernel of the map

HomD.A/.X; Y /! HomD.A/.B˝X; Y /;

which is easily seen to take f W X ! Y to f ı ˛X � ˛Y ı f. Thus, the homology to be computed is
isomorphic to M.X; Y /.

2.4 Noncommutative crepant resolutions

Definition 2.7 Let .R;m/ be a complete commutative noetherian local Gorenstein k–algebra of Krull
dimension n with isolated singularity and with residue field k. Denote the category of maximal Cohen–
Macaulay (MCM) modules by CMR and its stable category by CMR. Let N0 DR;N1; N2; : : : ; Nt be
pairwise nonisomorphic indecomposables in CMR and A WD EndR

�Lt
iD0Ni

�
. We call A a noncommuta-

tive resolution (NCR) of R if it has finite global dimension. An NCR is called a noncommutative crepant
resolution (NCCR) if A further satisfies that

(a) A 2 CMR,

(b) gldim.A/D n.

If A is an NCCR, we call
Lt
iD0Ni a tilting module. Under the above conditions, Iyama shows thatLt

iD1Ni is a cluster tilting object (see the definition in Section 3.3) in CMR. Denote Nl for A=radA
and e0 for the idempotent given by the projection R˚

Lt
iD1Ni !R. Let S0; S1; : : : ; St be the simple

A–modules with S0 corresponding to the summand R of R˚
Lt
iD1Ni . De Thanhoffer de Völcsey and

Van den Bergh prove that CMR admits an explicit dg model in this case:
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Theorem 2.8 [de Thanhoffer de Völcsey and Van den Bergh 2016, Theorem 1.1] There exists a finite-
dimensional graded Nl–bimodule V and a minimal model . yT NlV; d/

��! A for A, where yT NlV is the graded
completion of the ordinary tensor algebra T NlV with respect to the two-sided ideal generated by V. Put
� D yT NlV=

yT NlVe0
yT NlV. Then

CMR Š per.�/=thick.S1; : : : ; St /

and , furthermore , � has the following properties:

(1) � has finite-dimensional cohomology in each degree.

(2) � is concentrated in negative degrees.

(3) H 0� D A=Ae0A.

(4) As a graded algebra , � is of the form yTlV 0 for V 0 D .1� e0/V .1� e0/ with l WD Nl=ke0.

2.5 Flopping contraction

Definition 2.9 A smooth rational curve C in a normal variety Y is called contractible if there exists an
open subscheme Y ı � Y containing C and a proper birational morphism f ı W Y ı!Xı such that

(1) Xı is normal,

(2) the exceptional locus Ex.f ı/ contains C,

(3) f ı is an isomorphism in codimension 1.

The above definition of contractibility is more restrictive than the standard one since it rules out the
divisorial contraction (by the last condition). If Y is a 3–fold (which is our main interest), then Ex.f /
must have dimension 1 by condition (3). However, it may contain other components besides C. If C is a
contractible curve in Y, denote by yX the formal completion of Xı along the exceptional subscheme, ie
where f ı is not an isomorphism. Consider the Cartesian diagram

yY

Of
��

// Y ı

f ı

��

yX // Xı

where yY is the fiber product. We call Of W yY ! yX the formal contraction associate to the contraction
f ı W Y ı!Xı.

The following definition is a special case of [Kollár and Mori 1998, Definition 6.10]:

Definition 2.10 Let Y be a normal variety of dimension 3. A flopping contraction is a proper birational
morphism f W Y !X to a normal variety Y such that f is an isomorphism in codimension 1, and KY is
f –trivial. If Y is smooth, then we call f a smooth flopping contraction.
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In this paper, we only consider smooth flopping contractions unless stated otherwise. Given a 3–
dimensional flopping contraction f W Y !X, let D be a divisor on Y such that �.KY CD/ is f –ample.
By [Kollár and Mori 1998, Theorem 6.14], there exists aD–flop f C WY C!X. To be more precise, f C is
a proper birational morphism that is an isomorphism in codimension 1, and KYC CD

C is f C–ample,
where DC is the birational transform of D on Y C. In particular, X is Gorenstein terminal. Without
loss of generality, we may work locally near the exceptional fiber of f. By the classification theorem
of 3–dimensional terminal singularities, X has an isolated cDV singularity (see [Kollár and Mori 1998,
Corollary 5.38]). Recall that a 3–fold singularity .X; 0/ is called cDV if a generic hypersurface section
02H �X is a Du Val singularity. Because H has embedded dimension 3, X has embedded dimension 4,
ie X is a hypersurface.

Denote by Ex.f / the reduced exceptional fiber of f. It is well known that Ex.f / is a tree of rational
curves

Ex.f /D
t[
iD1

Ci

with normal crossings such that Ci Š P1 (see [Van den Bergh 2004, Lemma 3.4.1]). We call a 3–
dimensional flopping contraction f W Y ! X simple if Ex.f /Š P1. Let p be the singular point of X.
By the remark above, R WD yOX;p is a complete local ring of the form kŒŒx; y; u; v��=.g/. Now we set
yX WD SpecR and yY WD yX �X Y and denote by Of the base change of f. We call the triple . yY ; Of ;R/ the

formal contraction associated to the flopping contraction f W Y !X. Note that yY is Calabi–Yau.

Let . yY ; Of ;R/ be a formal flopping contraction. Now we consider the NCCR associated to a 3–dimensional
flopping contraction Of W yY ! yX constructed as follows. For i D 1; : : : ; t , let yLi be a line bundle on yY
such that degCj

yLi D ıij . Define yNi to be given by the maximal extension

(2-1) 0! yL�1i !
yNi ! O

L
ri
yY
! 0

associated to a minimal set of ri generators of H 1. yY ; yL�1i /. Set Ni WDRf� yNi D f� yNi for i D 1; : : : ; t .
We set

(2-2) A WD End yY .O yY ˚
yN1˚ � � �˚ yNt /Š EndR.R˚N1˚ � � �˚Nt /:

The second isomorphism can be proved as follows. It is clear that the natural morphism from A to
EndR.R˚N1˚� � �˚Nt / is an isomorphism away from the exceptional locus, which has codimension 3.
Since both are reflexive R–modules, it must be an isomorphism.

For simplicity, we denote by yN the direct sum
Lt
iD1
yNi and denote by N the direct sum

Lt
iD1Ni .

Theorem 2.11 [Van den Bergh 2004, Corollary 3.2.10] The functor yF WDRHom yY .O yY ˚
yN;�/ defines

a triangle equivalence betweenDb.coh yY / andDb.ModA/, with quasi-inverse F�1 WD .�/˝A .O yY ˚
yN/.

In addition , A is itself Cohen–Macaulay.

It follows that A is an NCCR.
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Corollary 2.12 Let . yY ; Of ;R/ be a 3–dimensional formal flopping contraction. Then:

(1) The structure sheaves of the irreducible components fCigtiD1 of Ex. Of / form a semisimple collection
in coh. yY /.

(2) The derived deformation algebra � yYC of the collectionC WDfCigtiD1 is linked by quasi-isomorphisms
to � in Theorem 2.8.

(3) For any i D 1; : : : ; t , Ci is nc rigid.

Proof To prove that Hom yY .OCi ;OCj /D 0 for i ¤ j, we simply need to use the condition that Ex. Of / is
a tree of rational curves with normal crossings.

For any iD1; : : : ; t , it is easy to check that Si Š yF .†OCi .�1//. Note that
�Lt

iD1 OCi
�
˝
�Nt

iD1 L�1i
�
ŠLt

iD1 OCi .�1/. By Theorem 2.11, yF induces an isomorphism of A1–algebras

(2-3) Ext�
yY

� tM
iD1

OCi ;

tM
iD1

OCi

�
Š Ext�A

� tM
iD1

Si ;

tM
iD1

Si

�
:

Let NlDA=rad.A/ and lD Nl=ke0. Then there is a natural isomorphism of A–modules lŠ
Lt
iD0 Si , where

S0 is the simple A–module that corresponds to the summand R of R˚
Lt
iD1Ni . By [de Thanhoffer

de Völcsey and Van den Bergh 2016, Lemma 4.1], the vector space V in Theorem 2.8 can be chosen
as D.†Ext�1A . Nl ; Nl//. Therefore, � WD yT NlV= yT NlVe0 yT NlV ŠDB.Ext�A.l; l// represents the noncommutative
deformations of semisimple collection fSigtiD12D

b.modA/. Part .2/ follows from the isomorphism (2-3).
Denote by � yYCi the derived deformation algebra of OCi . We have

�
yY
Ci
Š �

.X
j¤i

�ej� and H 0�
yY
Ci
ŠH 0�

.X
j¤i

H 0�ejH
0�:

Then part .3/ follows from Theorem 2.8(1).

3 Calabi–Yau structure and cluster category

In this section, we first review several notions of Calabi–Yau property for triangulated categories, for
homologically smooth dg algebras and for proper dg algebras. Then we recall geometric versions of the
Calabi–Yau property and translate them into algebraic notions for endomorphism algebras of generators
and for derived deformation algebras. Finally, we classify Calabi–Yau structures for 3–dimensional
flopping contractions and review the cluster category.

3.1 CY structures

3.1.1 CY triangulated categories Let T be a Hom–finite k–linear triangulated category.
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Definition 3.1 A right Serre functor for T is a triangle functor S WT!T such that there are bifunctorial
isomorphisms

T.Y; SX/!DT.X; Y /

for all X; Y 2 T. It is a Serre functor if it is an autoequivalence.

One can show that a right Serre functor exists if and only if, for each object X of T, the functor DT.X; ‹/

is representable and, in this case, the right Serre functor is unique up to canonical isomorphism of triangle
functors [Bondal and Kapranov 1989; Van den Bergh 2008]. Let d be an integer. The triangulated
category T is d–Calabi–Yau if it admits a Serre functor isomorphic to †d .

3.1.2 CY smooth dg algebras A dg k–algebra � is called homologically smooth if � is perfect
in D.�e/. Then one checks that Dfd.�/, the subcategory of D.�/ consisting of the modules whose
homology is of finite total dimension, is contained in the perfect derived category per.�/. Put

‚� DRHom�e .�; �e/:

Then we have a canonical isomorphism

HHd .�/ ��! HomD.�e/.‚� ; †
�d�/:

Definition 3.2 The dg algebra � is called bimodule d–CY if it is homologically smooth and there is an
isomorphism, in D.�e/,

� W‚�
��!†�d�:

A class � 2 HHd .�/ is called a d–CY structure if the corresponding morphism � W‚� ! †�d� is an
isomorphism in D.�e/. A d–CY structure � is called exact if there exists a class � 2 HCd�1.�/ such
that B� D �, where B is the Connes morphism. A choice of � will be called an exact lifting of the d–CY
structure �. We call a bimodule d–CY algebra � an exact d–CY algebra if the d–CY structure is exact
in addition.

Definition 3.3 The dg algebra � is said to satisfy the relative d–CY property if, for L 2Dfd.�/ and
M 2 per.�/, we have a bifunctorial isomorphism

DRHomD.�/.L;M/'RHomD.�/.M;†
dL/:

Remark 3.4 If � is a topologically homologically smooth pseudocompact dg algebra in PCAlgc.l/, we
call � a bimodule d–CY if � is an isomorphism in the pseudocompact derived category of bimodules.
The isomorphism � represents a class in the continuous Hochschild homology HHd .�/. Exactness is
defined similarly by taking the continuous cyclic homology. We call a bimodule d–CY pseudocompact dg
algebra � in PCAlgc.l/ an exact d–CY algebra if the d–CY structure is exact in addition. Similarly, for a
pseudocompact algebra � in PCAlgc.l/, the relative d–CY property is defined by replacingD.�/; per.�/
and Dfd.�/ with their pseudocompact counterparts.
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Given a homologically smooth dg algebra � , it follows from [Keller 2011, Lemma 3.4] that

� is bimodule d–CY D) � satisfies the relative d–CY property

D) Dfd.�/ is a Hom–finite d–CY triangulated category:

A similar chain of implications holds in the pseudocompact case.

3.1.3 CY proper dg algebras Let A be a dg algebra. Suppose that A is proper, ie that its homology
is of finite total dimension. Then the category per.A/ is Hom–finite. The proper dg algebra A is called
perfectly d–CY if there is an isomorphism

DA ��!†dA

in D.Ae/. By Lemma 3.6 below, the triangulated category per.A/ is then d–CY.

Definition 3.5 Let k be a field of characteristic zero. Given a finite-dimensional A1–algebra A, a cyclic
A1–structure of degree d on A is a nondegenerate symmetric bilinear form

.‹; ‹/ W A�A!†dA

of degree d such that

.mn.a1; : : : ; an/; anC1/D .�1/
n.�1/ja1j.ja2jC���CjanC1j/.mn.a2; : : : ; anC1/; a1/:

In this case, we have in particular an isomorphism DA ��!†dA in the derived category of A–bimodules.
Thus, if a dg algebra is quasi-isomorphic to an A1–algebra admitting a cyclic A1–structure of degree d ,
then it is perfectly d–CY.

Lemma 3.6 Let T � 1 be an integer , l a product of t copies of k and A a dg algebra augmented
over l and such that A belongs to the triangulated subcategory of D.A˝Aop/ generated by l ˝ lop (in
particular , the dg algebra A is proper). Let � be the pseudocompact dg algebra DBA, where B denotes
the bar construction over l . Then � is topologically homologically smooth. Moreover , if A is perfectly
d–Calabi–Yau, then � is bimodule d–Calabi–Yau.

Proof We refer to [Keller 2003] for a brief summary of the bar–cobar formalism that we are going to
use and to [Lefèvre-Hasegawa 2003; Van den Bergh 2015, Appendix A] for in-depth treatments. Let C
be the augmented dg coalgebra BA and � W C ! A the canonical twisting cochain. Since � is acyclic, the
canonical morphism

C ! C ˝� A˝� C

is a weak equivalence of dg C–bicomodules (see [Keller 2003]). Recall (for example from [Van den
Bergh 2015, Appendix A]) that a dg comodule is fibrant if its underlying graded comodule is cofree.
Clearly, this holds for C ˝� A˝� C. Since A belongs to the triangulated subcategory of the derived
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category of A˝Aop generated by l ˝ l , the dg bicomodule C ˝� A˝� C belongs to the triangulated
subcategory of the coderived category of C ˝C op generated by C ˝C op. By applying the duality D, we
obtain that the morphism

(3-1) �˝� DA˝� �! �

is a weak equivalence and that the object on the left is cofibrant. Moreover, we see that � belongs to the
perfect derived category of � ˝�op. This means that � is topologically homologically smooth. Now
suppose that A is perfectly d–Calabi–Yau. Since A is proper, it is weakly equivalent to its pseudocompact
completion yA. By the Calabi–Yau property, we have an isomorphism DA ��!†d yA in the pseudocompact
derived category of dg yA–bimodules. Now we compute the inverse dualizing complex of � using the
resolution (3-1). We have isomorphisms in the pseudocompact derived category of �–bimodules

RHom�e .�; �e/D Hom�e .�˝� DA˝� �; �
e/D Hom�;�psc.DA;�

e/D Hom�;�psc.†
d yA;�e/

D†�d�˝� DA˝� � D†
�d�:

Here Hom�;�psc denotes the space of morphisms in the category of pseudocompact vector spaces twisted
twice by � . This shows that � is topologically homologically bimodule d–Calabi–Yau.

3.1.4 CY structures in geometry, algebraic consequences We let k D C be the field of complex
numbers unless specified otherwise.

Definition 3.7 Let Y be a d–dimensional smooth quasiprojective C–variety. We call Y a d–dimensional
Calabi–Yau variety if there is an isomorphism !Y WD �

d
Y Š OY , ie there exists a nowhere-vanishing

d–form. We call a nowhere-vanishing section � W OY ! !Y a d–CY structure on Y. We call the d–CY
structure exact if the d–form � is exact, ie there exists a .d�1/–form � 2 �d�1Y such that d� D �. A
choice of � will be called an exact lifting of the d–CY structure �. If yY is a smooth formal scheme,
we may define d–CY structure in a similar way by considering the de Rham complex of the formal
scheme ��

yY
.

Given a smooth quasiprojective variety Y of dimension d and a bounded complex of coherent sheavesL on
Y whose cohomology has proper support, the derived endomorphism algebra A WDRHomD.QcohY /.L;L/

is a proper dga. We will show that A is perfectly d–CY if Y is d–Calabi–Yau.

Lemma 3.8 Let Y be a quasiprojective smooth CY d–fold with a fixed CY structure. Let L2Dbc .cohY /
be a bounded complex of coherent sheaves with proper support. Then

ADRHomD.QcohY /.L;L/

is perfectly d–Calabi–Yau.
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Proof Since we work over a field of characteristic zero, there exists Y, a smooth projective variety that
compactifies Y. Denote by i W Y ! Y the canonical embedding. Since i is an open immersion and L has
proper support on Y, RHomD.QcohY /.i�L; i�L/ is quasi-isomorphic to A as dg algebras.

From now on, we simply assume that A D RHomD.QcohY /.i�L; i�L/. We adopt the notation of the
appendix to write Qcoh.Y / for the dg category of (fibrant replacements of) unbounded complexes of
quasicoherent sheaves and coh.Y / for its full dg subcategory of complexes with coherent cohomology
and bounded cohomological amplitude. By Theorem A.1, there is a bifunctorial quasi-isomorphism

DHomdg
coh.Y /

.M;N /' Homdg
coh.Y /

.N;M ˝!Y Œd �/:

Now let M DN D i�L. Then M ˝!Y Š i�.L˝!Y /Š i�L using the Calabi–Yau structure on Y. By
the bifunctoriality, this is an isomorphism in D.Ae/.

Proposition 3.9 Let fEigtiD1 be a semisimple collection of compactly supported sheaves in a smooth
quasiprojective CY d–fold Y. Write � WD �YE for the derived deformation algebra of E WD

Lt
iD1 Ei .

Then � is topologically homologically smooth and bimodule d–Calabi–Yau.

Proof Let A be the derived endomorphism algebra of E. Since Y is smooth and E has compact support,
A is proper. Moreover, it can be chosen augmented. Clearly, it has its homology concentrated in
nonnegative degrees and H 0.A/ is isomorphic to a product of t copies of k, which is l . By [Keller and
Nicolás 2013, Corollary 4.1], the dg algebra A belongs to the triangulated subcategory of its derived
category generated by the semisimple object l . We know that � is quasi-isomorphic to DBA. Thus,
by Lemma 3.6, � is topologically homologically smooth. Since Y is smooth and d–Calabi–Yau, A is
perfectly d–Calabi–Yau by Lemma 3.8. Hence, � is bimodule d–Calabi–Yau by Lemma 3.6.

Remark 3.10 If Y is smooth and projective, then one can show that Ext�Y .E;E/ is a cyclic A1–algebra.
This can be proved by reducing to the analytic case and applying the holomorphic Chern–Simons theory
(see [Kontsevich and Soibelman 2009, Example 10.2.7]). An algebraic proof of the case when Y is a
projective Gorenstein CY curve can be found in [Polishchuk 2020].

Proposition 3.11 Let fEigtiD1 be a semisimple collection of sheaves in a smooth projective CY d–fold Y.
Write � WD �YE for the derived deformation algebra of E WD

Lt
iD1 Ei . Then � is an exact d–CY algebra.

Proof As in the proof of Proposition 3.9, we see that � is topologically homologically smooth and
bimodule d–CY. The exactness of the CY structure follows from [Van den Bergh 2015, Theorem 12.1]
and the remark above.

Theorem 3.12 (Iyama and Reiten) Let R be an equicodimensional Gorenstein normal domain of
dimension d over an algebraically closed field k, and let A be an NCCR. Then A satisfies the relative
d–CY property. Moreover , if R is complete local , then A is bimodule d–CY.
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Proof The fact thatA satisfies the relative d–CY property is proved in [Wemyss 2012, Theorem 4.23]. We
haveADEndR.R˚N/ for the Cohen–Macaulay moduleN D

Lt
iD1Ni withN1; : : : ; Nt indecomposable.

Denote by Nl the algebra ktC1. By [de Thanhoffer de Völcsey and Van den Bergh 2016, Theorem 1.1],
the algebra A is quasi-isomorphic to a pseudocompact dg algebra z� WD . yT Nl.V /; d/ in PCAlgc.l/ for a
finite-dimensional graded Nl–bimodule V concentrated in degrees � 0 and a differential d taking V into
the square of the kernel of the augmentation yT Nl.V /!

Nl . Since A is of finite global dimension, z� is
homologically smooth and, by the first part, we have bifunctorial isomorphisms

Hom
D.z�/

.M;P /DDHom
D.z�/

.P;†dM/

for M in Dfd.z�/ and P in per.z�/. Let

‚DRHomz�e .z�; z�
e/

be the inverse dualizing complex of z� . By [Keller 2008, Lemma 4.1], we have bifunctorial isomorphisms

Hom
D.z�/

.L˝L
z�
‚;M/DDHom

D.z�/
.M;L/

for M in Dfd.z�/ and an arbitrary object L of D.z�/. By combining these with the previous isomorphisms,
we find

Hom
D.z�/

.P ˝L
z�
‚;M/D Hom

D.z�/
.†�dP;M/

for P in per.z�/ and M in Dfd.z�/. Since an object L of D.z�/ is perfect if and only if Hom
D.z�/

.L;M/

is finite-dimensional for each M in Dfd.z�/, we see that P ˝L
z�
‚ is perfect for each perfect P. Now, by

taking P D z� and M D†nSi , where n 2Z and Si is one of the tC1 simple z�–modules, we see that, as
a right z�–module, ‚ is quasi-isomorphic to †�d z� . For the rest of the argument, let us replace z� by the
quasi-isomorphic pseudocompact algebra G DH 0.z�/, which is isomorphic to the original algebra A.
SinceG and z� have canonically equivalent derived categories and derived categories of bimodules, we can
view ‚ as a G–bimodule complex concentrated in degree d . After replacing it with a quasi-isomorphic
bimodule complex, we may assume that it is an actual G–bimodule concentrated in degree d . Moreover,
we know that, as a right module, it is isomorphic to G. Thus, there is an automorphism � of G such that
†d‚ is isomorphic to �G as a bimodule. Since each object L of Dfd.G/ is perfect, we have

HomD.G/.L� ;M/D HomD.G/.L;M/

for all L and M in Dfd.G/, which shows that there is a functorial isomorphism L ��! L� for each L
in Dfd.G/. In particular, for L, we can take the finite-dimensional quotients of G. We deduce that, in
each finite-dimensional quotient of G, the automorphism � induces an inner automorphism. Thus, � itself
is inner and �G is isomorphic to G as a bimodule. This shows that ‚ is quasi-isomorphic to †�d z� as a
bimodule.

Corollary 3.13 Let R be a local complete equicodimensional Gorenstein normal domain of dimension d
over an algebraically closed field k of characteristic zero , and let A be an NCCR. Let � be the dg algebra
constructed in Theorem 2.8. Then � is topologically homologically smooth and bimodule d–CY.
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3.2 Classification of CY structures for 3–dimensional flopping contractions

If . yY ; Of ;R/ is a 3–dimensional formal flopping contraction, then R is a hypersurface. The natural
isomorphism Of�! yY Š !R identifies a CY structure � on yY with a nonzero section Of .�/ of !R. By the
Gorenstein property, Of .�/ defines an isomorphism RŠ !R.

Theorem 3.14 Let . yY ; Of ;R/ be a 3–dimensional formal flopping contraction. The space of 3–CY
structures can be identified with R�. Moreover , every Calabi–Yau structure on yY is exact. The space of
all exact liftings of a 3–CY structure can be identified with the cohomology group H 1. yY ;�1

yY
/.

Proof Assume that C WD Ex.f / has t irreducible components C1; : : : ; Ct . Because R has rational
singularities, H 0. yY ;�3

yY
/ Š H 0. yY ;O yY / Š R. Then the first claim follows. The Hodge-to-de Rham

spectral sequence with E1 term
E
pq
1 DH

q. yY ;�
p

yY
/

converges to HpCq
DR . yY ;C/. We claim that H 1.�1

yY
/ Š Ct . Because the first Chern classes of yLi for

i D 1; : : : ; t are linearly independent, dimC H
1.�1

yY
/� t . We write yX WD SpecR. By the Leray spectral

sequence
Hp. yX;Rq Of��

1/)HpCq. yY ;�1/;

we have an exact sequence

0!H 0. yX;R1f��
1/!H 1. yY ;�1/!H 1. yX; f��

1/! 0:

The rightmost term vanishes since yX is affine. Since yY is a small resolution of 3–dimensional Gorenstein
singularities, the normal bundle of Ci is O.a/˚O.b/ with .a; b/Df.�1;�1/; .0;�2/; .1;�3/g [Pinkham
1983, Theorem 4]. By the exact sequence

0! O.�a/˚O.�b/!�1jCi ! O.�2/! 0;

we have H 1.Ci ; �
1jCi /ŠH

1.Ci ;O.�2//DC. By the normal crossing condition, there is a short exact
sequence of sheaves

0!�1jC !�1jC1 ˚�
1
jSt
iD2Ci

!�1jp! 0;

where p D C1\
�St

iD2 Ci
�
. Then we get a surjection

H 1.C;�1jC /!H 1.C1; �
1
jC1/˚H

1

� t[
iD2

Ci ; �
1St
iD2Ci

�
:

By induction, dimC H
1.C;�1jC /� t . Then the conclusion follows from the formal function theorem

and the Leray spectral sequence.

The term E302 of the Hodge-to-de Rham spectral sequence is the quotient H 0. yY ;�3/=dH 0. yY ;�2/.
Recall that H 1. yY ;�1/ admits a C–basis by c1 of the line bundles yLi with i D 1; : : : ; t . Because .1; 1/
classes are d–closed, the differential H 1. yY ;�1/!H 0. yY ;�3/=dH 0. yY ;�2/ is zero. Moreover, since
H 2.O yY /D 0, we have E30r DE

30
2 for r � 2. Because H 3

DR.
yY ;C/ŠH 3

DR.C;C/D 0, E302 must vanish.
Therefore, all 3–forms are exact.
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Denote by ��i
yY

the stupid truncation ��i��yY of the de Rham complex. There is a long exact sequence of
hypercohomology

� � �
B
�!H i�n. yY ;�i

yY
/
I
�!H2i�n. yY ;�

�i
yY
/
S
�!H2i�n. yY ;�

�i�1
yY

/
B
�!H i�nC1. yY ;�i

yY
/! � � � :

Take i D 3 and nD 4. The leftmost term vanishes and H2. yY ;�
�3
yY
/DH 2

DR.
yY /ŠH 1. yY ;�1

yY
/. So the

last claim is proved.

Corollary 3.15 Let R be a complete local equicodimensional Gorenstein normal domain of dimension d
over an algebraically closed field of characteristic zero , and letA be an NCCR. Then every d–CY structure
on A is exact.

Proof This is an immediate consequence of Theorems 3.12 and 2.11 and [Van den Bergh 2015,
Corollary 9.3].

The following proposition follows immediately from the Hochschild–Kostant–Rosenberg theorem:

Proposition 3.16 Let . yY ; Of ;R/ be a 3–dimensional formal flopping contraction. Let ADEndR.R˚N/
be the corresponding NCCR. Then there is a bijective correspondence between the space of 3–CY
structures (resp. exact 3–CY structures) on yY and that of A.

3.3 Cluster category

Let � be a dg k–algebra. Suppose that � has the following properties:

(1) � is homologically smooth, ie � is a perfect �e–module.

(2) For each p > 0, the space Hp� vanishes.

(3) H 0� is finite-dimensional.

(4) � satisfies the relative 3–CY property.

By property .1/, Dfd.�/ is a subcategory of the perfect derived category per.�/. The generalized cluster
category C� is defined to be the triangle quotient per.�/=Dfd.�/. We denote by � the canonical projection
functor � W per.�/! C� . For simplicity, we will omit the adjective “generalized” and call C� the cluster
category associated to � . An object T 2 C� is called a cluster-tilting object if:

(1) Ext1C� .T; T /D 0.

(2) For any object X such that Ext1C� .T;X/D 0, one has X 2 add.T /.

Amiot [2009, Theorem 2.1] has proved that �.�/ is a cluster-tilting object in C� .

We call H 0� the CY tilted algebra associated to the cluster category C� ; see [Reiten 2010].
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Remark 3.17 If � is a pseudocompact dg l–algebra in PCAlgc.l/, we may define a continuous version
of cluster category. Condition .1/ is replaced by

.10/ � is topologically homologically smooth,

and the topological cluster category C� is defined to be the triangle quotient per.�/=Dfd.�/, where
per.�/ and Dfd.�/ are considered as subcategories of the pseudocompact derived category. We refer to
[Keller and Yang 2011, Appendix] for the details.

Remark 3.18 If we drop the assumption that H 0� is finite-dimensional, the quotient category C� D

per.�/=Dfd.�/ is no longer Hom–finite. The Calabi–Yau property only holds when one restricts to
suitable subcategories; see [Plamondon 2011, Proposition 2.16].

Theorem 3.19 [Amiot 2009, Theorem 2.1]2 Let � be a dg k–algebra with the above properties. Then
the cluster category C� is Hom–finite and 2–CY as a triangulated category. Moreover , the object �.�/ is
a cluster tilting object. Its endomorphism algebra is isomorphic to H 0� .

Definition 3.20 Let fCigtiD1 be a collection of smooth rational curves in a smooth quasiprojective CY
3–fold Y with fixed CY structure � W OY ��! !Y such that fOCi g form a semisimple collection. Denote
by C.Y; fCig

t
iD1; �/ for the (topological) cluster category associated to the derived deformation algebra

of
Lt
iD1 OCi . We call C.Y; fCig

t
iD1; �/ the cluster category associated to the triple .Y; �; fCigtiD1/.

Definition 3.21 Let R be a complete local equicodimensional Gorenstein normal domain of dimension 3
over an algebraically closed field k of characteristic zero, and letA be the NCCR associated to the collection
of indecomposables R;N1; : : : ; Nt . Fix a 3–CY structure � 2 HH3.A;A/. Denote by C.R; fNig

t
iD1; �/

the cluster category associated to the dg algebra � constructed in Theorem 2.8, and call it the cluster
category associated to the triple .R; fNigtiD1; �/.

A priori, the dg algebra � constructed in Theorem 2.8 is pseudocompact. However, if D.�/ denotes
the ordinary derived category and Dpc.�/ the pseudocompact derived category, then the natural functor
Dpc.�/ ! D.�/ induces equivalences in the perfect derived categories and in the subcategories of
objects with finite-dimensional total homology. Therefore, the two candidates for the cluster category are
equivalent.

The following result is an immediate consequence of Corollary 2.12:

Corollary 3.22 Let . yY ; Of ;R/ be a 3–dimensional formal flopping contraction , and let A be the NCCR
associated to the collection of indecomposables R;N1; : : : ; Nt constructed in Section 2.5. Fix a 3–CY
structure � on yY and denote its counterpart on A by the same symbol. Then there is a triangle equivalence
between the cluster categories

C.Y; fCig
t
iD1; �/' C.R; fNig

t
iD1; �/:

2The original statement of [Amiot 2009] assumed that � is bimodule 3–CY. However, the proof is still valid under the weaker
assumption that � satisfies the relative 3–CY property.
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4 Ginzburg algebras

In this section we introduce the notion of Ginzburg (dg) algebra and prove several properties of it.
The cluster category can be defined via the Ginzburg algebra, which provides an effective tool to do
computations.

4.1 Definitions

Fix a commutative ring k. Let Q be a finite quiver, possibly with loops and 2–cycles. Denote by Q0
and Q1 the set of nodes and arrows of Q, respectively. Denote by kQ the path algebra and by bkQ the
complete path algebra with respect to the two-sided ideal generated by arrows. For each a 2Q1, we
define the cyclic derivative Da with respect to a as the unique linear map

Da W kQ=ŒkQ; kQ�! kQ

which takes the class of a path p to the sum
P
pDuav vu taken over all decompositions of the path p. The

definition extends to bkQcyc WDbkQ=ŒbkQ;bkQ�c , where the superscript c stands for the completion with
respect to the adic topology defined above. An element w in bkQ=ŒbkQ;bkQ�c is called a potential on Q.
It is given by a (possibly infinite) linear combination of cycles in Q.

Definition 4.1 (Ginzburg) Let Q be a finite quiver and w a potential on Q. Let Q be the graded quiver
with the same vertices as Q and whose arrows are

� the arrows of Q (of degree 0),

� an arrow a� W j ! i of degree �1 for each arrow a W i ! j of Q,

� a loop ti W i ! i of degree �2 for each vertex i of Q.

The (complete) Ginzburg (dg) algebra D.Q;w/ is the dg k–algebra whose underlying graded algebra
is the completion (in the category of graded vector spaces) of the graded path algebra kQ with respect
to the two-sided ideal generated by the arrows of Q. Its differential is the unique linear endomorphism
homogeneous of degree 1 satisfying the Leibniz rule, and which takes the following values on the arrows
of Q:

� daD 0 for a 2Q1;

� d.a�/DDaw for a 2Q1;

� d.ti /D ei
�P

a2Q1
Œa; a��

�
ei for i 2Q0, where ei is the idempotent associated to i .

Denote by l the product
Q
i2Q0

kei . Then bkQ is isomorphic to the complete tensor algebra yTlV with V
being the vector space spanned by arrows of Q.

Remark 4.2 In most references, the above definition corresponds to the complete Ginzburg algebra
while the algebra without taking the graded completion is called the Ginzburg algebra. The complete
Ginzburg algebra D.Q;w/ is considered as an object of PCAlgc.l/. Because we only consider complete
Ginzburg algebra in this paper, we will call it the Ginzburg algebra for simplicity.
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Definition 4.3 Let Q be a finite quiver and w a potential on Q. The Jacobi algebra ƒ.Q;w/ is the
zeroth homology of D.Q;w/, which is the quotient algebra

bkQ=..Daw j a 2Q1//c ;
where ..Daw j a 2Q1//c is the closed two-sided ideal generated by Daw. A Ginzburg algebra D.Q;w/

is called Jacobi-finite if dimk ƒ.Q;w/ <1.

Theorem 4.4 (Van den Bergh [Keller 2011, Appendix]) Let Q be a finite quiver and w be a potential.
Then D.Q;w/ is topologically homologically smooth and bimodule 3–CY.

The above theorem was first proved in the algebraic setting, but the same proof can be adapted to the
pseudocompact case (see [Van den Bergh 2015]). Given a Jacobi-finite Ginzburg algebra � WDD.Q;w/,
there is an associated cluster category C� WD per.�/=Dfd.�/.

Remark 4.5 There exists a canonical exact CY structure on � DD.Q;w/. We follow the notation of
[Van den Bergh 2015] to writeMl WDM=Œl;M � for a l–bimoduleM. Because the reduced cyclic homology
of � is equal to the homology of .�=l C Œ�; ��/l (see [Van den Bergh 2008, Proof of Theorem 11.2.1]),
a class of HC2.�; �/ is represented by a degree �2 element � of � such that d� 2 l C Œ�; ��. By the
definition of d of � , � WD

P
i2Q0

ti represents a class in HCred
2 .�; �/. Because � is cofibrant, by [Van den

Bergh 2008, Proposition 7.2.1], the Hochschild chain complex of � is quasi-isomorphic to the mapping
cone of

�1l �=Œ�;�
1
l ��

@1
�! �=Œl; ��

with differential defined by @1.aDb/ D Œa; b�, where Db D 1˝ b � b˝ 1. In other words, a class in
HH3.�; �/ is represented by a pair of elements .!; a/ of degree .�2;�3/ satisfying @1.!/ D da and
d! D 0. Because d and D commute, .D�; 0/ represents a class in HH3.�; �/, which is the image of �
under the Connes map. In [Van den Bergh 2008], a class in HHd .�; �/ is called nondegenerate if the
corresponding morphism ‚� !†�d� is an isomorphism. By [Van den Bergh 2008, Lemma 11.1.2],
.D�; 0/ is nondegenerate.

For a Ginzburg algebra � D D.Q;w/, denote ƒ.Q;w/ by ƒ for short. The image of w under the
canonical map HH0.bkQ;bkQ/ DbkQcyc ! HH0.ƒ;ƒ/ D ƒcyc, denoted by Œw�, is a canonical class
associated to the Ginzburg algebra D.Q;w/. Therefore, we see that, starting from a Ginzburg algebra
� DD.Q;w/, we get not only a triangulated category C� but an additional piece of information that is a
canonical class Œw� in the zeroth Hochschild homology of the CY tilted algebra. We will show in the next
section that this class is determined by the CY structure up to right equivalences.

4.2 Existence and uniqueness of potential

The definition of Ginzburg algebra is not homotopically invariant. It is important to know when a bimodule
3–CY dg algebra admits a model given by a Ginzburg algebra.
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Theorem 4.6 [Van den Bergh 2015, Theorem 10.2.2] Let k be a field and l be a finite-dimensional
commutative separable k–algebra. Assume that � is a pseudocompact dg l–algebra in PCAlgc.l/
concentrated in nonpositive degrees. Then the following are equivalent :

(1) � is exact 3–CY.

(2) � is weakly equivalent to a Ginzburg algebra D.Q;w/ for some finite quiver Q with w containing
only cubic terms and higher.

The following result provides a lot of examples of dg algebras whose 3–CY structures can be lifted to
exact ones:

Theorem 4.7 [Van den Bergh 2015, Corollary 9.3] Assume that k has characteristic zero and let � be
a pseudocompact dg algebra in PCAlgc.l/ concentrated in degree 0. Then � is bimodule d–CY if and
only if it is exact d–CY.

By putting the above two theorems together, we see that, if � is a pseudocompact dg l–algebra in
PCAlgc.l/ concentrated in degree 0 that is bimodule 3–CY, then it is quasi-isomorphic to a Ginzburg
algebra D.Q;w/ for some finite quiver Q and potential w.

Given a pseudocompact l–algebra A, two classes Œw� and Œw0� in A=ŒA;A�c are called right equivalent
if there exists an automorphism  of A such that �Œw�D Œw0�. Now we assume that a bimodule 3–CY
dg algebra � in PCAlgc.l/ is exact. So it admits a model given by D.Q;w/. Note that being bimodule
CY and exact CY are homotopically invariant properties. The next proposition shows that the right
equivalence class of Œw� in HH0.ƒ.Q;w// for such a dg algebra is indeed a homotopy invariant. The
proof is implicitly contained in Van den Bergh’s proof of Theorem 4.6 (see [Van den Bergh 2015, Proof
of Theorem 11.2.1]). We recall it for completeness. See Remark 4.9 for a conceptional explanation of
Van den Bergh’s result.

Proposition 4.8 (Van den Bergh) Let k be a field of characteristic zero and l D ke1 � � � � � ken. Let �
be a pseudocompact 3–CY dg l–algebra in PCAlgc.l/ with a fixed exact 3–CY structure � 2 HH3.�; �/.
Suppose there are two pairs .Q;w/ and .Q0; w0/ such that � is quasi-isomorphic to D.Q;w/ and
D.Q0; w0/, respectively. Assume that , under these quasi-isomorphisms , we have B� and B�0 identified
with � , where � and �0 are the canonical classes in HC2 defined in Remark 4.5. Then QDQ0 and w is
right equivalent to w0. In particular , the classes Œw�; Œw0� 2H 0�=ŒH 0�;H 0��c are right equivalent.

Proof Van den Bergh [2008, Theorem 11.2.1] proved that there is a weak equivalence . yTlV; d/! � ,
where V D†�1.DExt��.l; l//�0, such that:

(1) V D Vc C lz with Vc D †�1.DExt1�.l; l/˚DExt2�.l; l// and z being an l–central element of
degree �2.

Geometry & Topology, Volume 28 (2024)



Cluster categories and rational curves 2597

(2) dz D � 0�� 00 with � 2 .Vc ˝l Vc/l being a nondegenerate and antisymmetric element. Here
� 0˝ � 00 2 l ˝k l is the Casimir element that corresponds to the trace l! k (see [Van den Bergh
2008, Section 5]).

Since Q and Q0 depend only on the l–bimodule structure on Ext1�.l; l/ (see [Van den Bergh 2004,
Section 10.3]), we have QDQ0. Note that the perfect pairing on Vc is determined by the bimodule 3–CY
structure � but does not depend on the exact lifting. Using the perfect pairing, any nondegenerate and
antisymmetric element in .Vc˝l Vc/l can be reduced to a canonical form by choosing an appropriate basis
on Ext1�.l; l/. The element � defines a bisymplectic form !� of degree �1 on yTlV (see the definition in
[Van den Bergh 2008, Section 10.1]). By [Van den Bergh 2008, Lemma 11.3.1], there exists a potential
w 2 yTlV=Œ yTlV; yTlV � of degree 0 such that, for any f 2 yTlV,

df D fw; f g!� ;

where f�;�g!� is the Poisson bracket associated to the bisymplectic form !�. Since w does not have
constant terms, it is uniquely determined by the derivation d D fw;�g!� . In other words, any two
potentials w and w0 without constant terms satisfying the above equation differ by an automorphism
yTlV ! yTlV. Moreover, since w and w0 are of degree 0, and therefore do not involve variables in
Ext�2� .l; l/, this automorphism is precisely a formal change of variables on Ext1�.l; l/. Such a formal
change of variables induces an isomorphism from D.Q;w/ to D.Q;w0/ (see [Hua and Zhou 2023,
Theorem 4.3]), and therefore an automorphism of the complete path algebra of Q and an automorphism
of H 0� .

Remark 4.9 Theorem 11.2.1 of [Van den Bergh 2008] can be viewed as a Darboux–Weinstein theorem in
noncommutative formal symplectic geometry. On Ext��.l; l/, the cyclic A1–structure can be interpreted
as a symplectic structure. The symplectic structure restricts to the truncation Ext1�.l; l/˚Ext2�.l; l/ so
that Ext1�.l; l/ is a (graded) Lagrangian. Then [Van den Bergh 2008, Theorem 11.2.1] says that there
exists a coordinate on Ext1�.l; l/ under which the symplectic form can be normalized so that it has constant
coefficients, which is in particular exact. The differential d of � can be interpreted as a homological
vector field of degree 1. Then the contraction of the normalized symplectic form by d is the exterior
derivation of a potential w of degree 0. Note that a different choice of Darboux coordinates can only
differ by a change of variables on Ext1�.l; l/, which leads to the above proposition.

Corollary 4.10 Let . yY ; Of ;R/ be a 3–dimensional formal flopping contraction with reduced exceptional
fiber Ex.f /D

St
iD1 Ci , and let AD EndR

�Lt
iD1Ni ˚R

�
be the NCCR associated to it. Fix a 3–CY

structure � on yY, and therefore onA. Denote the CY tilted algebra of C.Y; fCig
t
iD1; �/'C.R; fNig

t
iD1; �/

by ƒ. Then there exists a canonical class , defined up to right equivalence , on HH0.ƒ/ D ƒ=Œƒ;ƒ�c

represented by a potential.

The canonical class Œw� in the zeroth Hochschild homology of H 0� is part of the “classical shadow”
of the CY structure. The class plays a crucial role in the geometric applications. When � is weakly
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equivalent to a Jacobi-finite Ginzburg algebra D. yF ;w/ for a complete free algebra yF D khhx1; : : : ; xnii,
this class vanishes if and only if w is right equivalent to a weighted-homogeneous noncommutative
polynomial (see Theorem 4.16). Therefore, the quasihomogeneity of a potential is indeed a homotopy
invariant of the CY algebra. This motivates the following definition:

Definition 4.11 Let k be a field and l be a finite-dimensional commutative separable k–algebra, and let
� be a pseudocompact dg l–algebra in PCAlgc.l/ concentrated in nonpositive degrees. Assume that � is
exact 3–CY. Then � is called quasihomogeneous if the canonical class Œw� is (right equivalent to) zero.

The notion of quasihomogeneity is expected to be independent of choices of CY structure. In the
case of simple flopping contractions, the first author and Gui-song Zhou have conjectured that this
notion of quasihomogeneity is indeed equivalent to the quasihomogeneity of the underlying hypersurface
singularity R (see [Hua and Zhou 2023, Conjecture 4.18]).

4.3 Properties of Jacobi-finite Ginzburg algebras

In this section, we collect several results about Jacobi-finite Ginzburg algebras. We take k to be the field
of complex numbers, though some of the results are valid more generally.

Theorem 4.12 [Hua and Zhou 2023, Theorem 3.16] Let Q be a finite quiver and w be a potential in
bCQcyc. Assume that the Jacobi algebra ƒ.Q;w/ is finite-dimensional. Then w is right equivalent to a
formal series with only finitely many nonzero terms.

As a consequence, we may assume the potential is a noncommutative polynomial to begin with if the
Jacobi algebra is known to be finite-dimensional.

Theorem 4.13 (noncommutative Mather–Yau theorem [Hua and Zhou 2023, Theorem 3.5]) Let Q be a
finite quiver and let w;w0 2bCQcyc be two potentials with only cubic terms and higher. Suppose that the
Jacobi algebras ƒ.Q;w/ and ƒ.Q;w0/ are both finite-dimensional. Then the following two statements
are equivalent :

(1) There is an algebra isomorphism  Wƒ.Q;w/Šƒ.Q;w0/ such that �.Œw�/D Œw0� inƒ.Q;w0/cyc.

(2) w and w0 are right equivalent in bCQcyc.

The noncommutative Mather–Yau theorem has an immediate application to Ginzburg algebras.

Corollary 4.14 [Hua and Zhou 2023, Theorem 4.3] Fix a finite quiver Q. Let w;w0 2bCQcyc be two
potentials , with only cubic terms and higher , such that the Jacobi algebras ƒ.Q;w/ and ƒ.Q;w0/ are
both finite-dimensional. Assume there is an algebra isomorphism  W ƒ.Q;w/! ƒ.Q;w0/ such that
�.Œw�/D Œw

0�. Then there exists a dg algebra isomorphism

ˇ WD.Q;w/ Š�!D.Q;w0/

such that ˇ.ti /D ti for any i 2Q0.
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Definition 4.15 Fix yF to be the complete free associative algebra Chhx1; : : : ; xnii. Let .r1; : : : ; rn/ be a
tuple of rational numbers. A potential w 2 yFcyc WD yF=Œ yF ; yF �

c is said to be weighted-homogeneous of
type .r1; : : : ; rn/ if it has a representative which is a linear combination of monomials xi1xi2 � � � xip such
that ri1 C ri2 C � � �C rip D 1.

Theorem 4.16 (noncommutative Saito theorem [Hua and Zhou 2021, Theorem 1.2]) Let w 2 yFcyc

be a potential with only cubic terms and higher such that the Jacobi algebra associated to w is finite-
dimensional. Then Œw�D 0 if and only if w is right equivalent to a weighted-homogenous potential of
type .r1; : : : ; rn/ for some rational numbers r1; : : : ; rn which lie strictly between 0 and 1

2
. Moreover , in

this case , all such types .r1; : : : ; rn/ agree with each other up to permutations on the indices 1; : : : ; n.

Recall that C� is constructed as the Verdier quotient of the perfect derived category of � by its full
subcategory of dg modules whose homology is of finite total dimension. The category of perfect dg
�–modules has a canonical dg enhancement and we obtain a natural dg enhancement .C�/dg for C�

using the Drinfeld quotient of the dg category of strictly perfect dg �–modules by its full subcategory on
the dg modules whose homology is of finite total dimension.

Theorem 4.17 Let Q be a finite quiver and w a Jacobi-finite potential on Q. Let � be the complete
Ginzburg algebra associated with .Q;w/. Denote by ƒdg the dg endomorphism algebra of � in the
canonical dg enhancement of the cluster category C� . Then there is a canonical isomorphism in the
homotopy category of dg algebras

� ��! ��0ƒdg:

Proof There is a canonical morphism

� DRHom�.�; �/! .C�/dg.�; �/Dƒdg;

where the right-hand side denotes the dg endomorphism algebra of � in the canonical dg enhancement
.C�/dg of C� . It suffices to show that the canonical map

H�p.�/D Homper.�/.�;†
�p�/! HomC� .�;†

�p�/

is invertible for p � 0. By [Amiot 2009, Proposition 2.8],

HomC� .�;†
�p�/D colim

n
Homper.�/.��n�; ��n.†

�p�//:

We have
Homper.�/.��n�; ��n.†

�p�//D Homper.�/.��n�;†
�p�/:

Consider the canonical triangle

��n�! �! �>n�!†.��n�/:
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Recall that, by [Amiot 2009, Lemma 2.5], the spaces Hp.�/ are finite-dimensional for all p 2 Z.
Therefore, the object �>n� belongs to Dfd.�/ and †�p� belongs to per.�/.

By the 3–Calabi–Yau property,

Homper.�/.†
�1�>n�;†

�p�/DDHomper.�/.�;†
pC2�>n�//;

which vanishes because �>n� has no homology in degrees > 0. Similarly,

Homper.�/.�>n�;†
�p�/DDHomper.�/.�;†

pC3.�>n�//;

which vanishes for the same reason. Thus,

Homper.�/.��n�;†
�p�/D Homper.�/.�;†

�p�/:

Corollary 4.18 Let Q be a quiver with one node and arbitrary number of loops and � DD.Q;w/ a
Jacobi-finite Ginzburg algebra. Then H 0� is self-injective and there is an isomorphism

†2� ��! ���1�

in the derived category of dg �–modules. In particular , H i .�/D 0 for odd i and H i .�/ŠH 0.�/ for
even i � 0.

Proof By [Amiot 2009], the cluster category C� is a Hom–finite 2–Calabi–Yau category and the image
T of � in C� is a cluster-tilting object in C� . By [Adachi et al. 2014, Theorem 4.1], the cluster-tilting
objects of C� are in bijection with the support �–tilting modules over End.T /. Since End.T /DH 0.�/

is local, the only support �–tilting modules over End.T / are 0 and End.T /, by [loc. cit., Example 6.1].
Thus, the only cluster-tilting objects of C� are T and †T. In particular, †2T has to be isomorphic to T
(since Hom.†T;†2T /D 0 and †2T must be a cluster-tilting object). This implies that H 0� D End.T /
is self-injective, since, by the 2–Calabi–Yau property, we have an isomorphism of right End.T /–modules

DHom.T; T /D Hom.T;†2T /D Hom.T; T /:

Let � W†2�! � be a lift of an isomorphism †2T ! T in C� . Let p � 2. In the commutative square

Homper.�/.†
p�;†2�/

��

// HomC� .†
pT;†2T /

��

��

Homper.�/.†
p�; �/ // HomC� .†

pT; T /

the horizontal arrows are isomorphisms by Theorem 4.17 and the right vertical arrow �� is an isomorphism.
Thus, the morphism � W †2� ! � induces isomorphisms in H i for i � �2. Moreover, H�1.�/ D
Hom.T;†�1T / D Hom.T;†T / D 0 since †�1T is isomorphic to †T. It follows that � induces an
isomorphism

†2� ��! ���1�:
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Remark 4.19 For the pair .Q;w/ associated to 3–dimensional flopping contractions, one can show
that H 0� is indeed symmetric (see Proposition 6.5). In the context of a general contraction with
1–dimensional fiber, Kawamata [2018, Proposition 6.3] has proved that the classical (multipointed)
deformation algebra of the reduced exceptional fiber is always self-injective. So, in particular, it is
Gorenstein. This result overlaps with the above corollary in the case of simple flopping contractions.
For a general finite quiver Q, the zeroth homology of a Jacobi-finite Ginzburg algebra D.Q;w/ is not
self-injective. Moreover, Kawamata [2020, Corollary 6.3] proves that the deformation algebra is always
isomorphic to its opposite algebra.

Corollary 4.20 Let � be the Ginzburg algebra of a Jacobi-finite quiver with potential. Let T be the
image of � in the cluster category C� .

(a) H 0� is selfinjective if and only if H�1� vanishes if and only if T is isomorphic to †2T in C� .

(b) If the identity functor of C� is isomorphic to †2, then H 0� is symmetric and there is an isomor-
phism of graded algebras H 0.�/˝ kŒu�1� ��!H�.�/, where u is of degree 2.

Proof (a) By Theorem 4.17, the space H�1� is isomorphic to C�.T;†
�1T / and H 0� is isomorphic

to the endomorphism algebra of T. By [Iyama and Oppermann 2013, Proposition 3.6], the endomorphism
algebra is selfinjective if and only if C�.T;†

�1T / vanishes if and only if T is isomorphic to †2T in C� .

(b) By combining the functorial isomorphism from T to †2T with the Calabi–Yau property we get an
isomorphism of bimodules over the endomorphism algebra of T

C�.T; T /
��! C�.T;†

2T / ��!DC�.T; T /:

Since H 0� is in particular selfinjective, the space H�1� vanishes by (a). We get an isomorphism of
graded algebras

kŒu; u�1�˝k C�.T; T /
��!

M
p2Z

C�.T;†
pT /;

where u is of degree 2, by sending u to the functorial isomorphism T ��!†2T. Thanks to Theorem 4.17,
by truncation, we get an isomorphism of graded algebras

kŒu�1�˝kH
0� ��!H��:

4.4 Silting theory for a nonpositive dg algebra and its zeroth homology

Let T be a triangulated category. Recall that a tilting object for T is a classical generator T of T such
that T.T;†pT / vanishes for all p ¤ 0. A silting object [Keller and Vossieck 1988] for T is a classical
generator T of T such that T.T;†pT / vanishes for all p > 0. The advantage of silting objects over
tilting objects is that (under suitable finiteness assumptions) they are stable under mutation [Aihara and
Iyama 2012].
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We recall fundamental definitions and results from [Aihara and Iyama 2012]. Assume from now on that
T is k–linear and Hom–finite and has split idempotents. In particular, it is a Krull–Schmidt category, ie
indecomposables have local endomorphism rings and each object is a finite direct sum of indecomposables
(which are then unique up to isomorphism and permutation). An object of T is basic if it is a direct sum
of pairwise nonisomorphic indecomposables. If X is an object of T and U a full additive subcategory
stable under retracts, a left U–approximation of X is a morphism f W X ! U to an object of U such
that each morphism X ! V to an object of U factors through f W X ! U. It is minimal if each
endomorphism g W U ! U such that g ıf D f is an isomorphism. Notice that the morphism f WX! U

is a minimal left U–approximation if and only if the morphism f � WU.U; ‹/! T.X; ‹/jU is a projective
cover in the category of left U–modules. In particular, minimal left approximations are unique up to
nonunique isomorphism when they exist. Existence is automatic if U has finitely many indecomposables
U1; : : : ; Un (which is the case in our applications) because then the functor T.X; ‹/jU corresponds to a
finite-dimensional left module over the finite-dimensional endomorphism algebra of the sum of the Ui . A
(minimal) right U–approximation is defined dually. For an object X of T, we denote by addX the full
subcategory formed by all direct factors of finite direct sums of copies of X.

Let M be a basic silting object of T and X an indecomposable direct summand of M. Denote by M=X
the object such that M Š X ˚M=X. By definition, the left mutation �X .M/ of M at X is the silting
object M=X ˚Y, where Y is defined by a triangle

X !E! Y !†X

and X ! E is a minimal left add.M=X/–approximation. It is not hard to show that then E! Y is a
minimal right add.M=X/–approximation, which implies that Y is indecomposable. Indeed, let us recall
the argument: Let M 0 DM=X. Since M is silting, we have an exact sequence of End.M 0/–modules

Hom.M 0; E/! Hom.M 0; Y /! 0;

where Hom.M 0; E/ is projective over End.M 0/. Saying that E ! Y is a minimal right add.M=X/–
approximation is equivalent to saying that Hom.M 0; E/! Hom.M 0; Y / is a projective cover. If Y was
decomposable, the morphism Hom.M 0; E/! Hom.M 0; Y / would therefore split into a direct sum of
two surjective morphisms and this splitting would be induced by a splitting of the morphism E! Y as a
direct sum of two nontrivial morphisms E 0! Y 0 and E 00! Y 00. But then X would be decomposable,
a contradiction. The right mutation ��X .M/ is defined dually. The right mutation of �X .M/ at Y is
isomorphic to M.

Example 4.21 Suppose that � is a Jacobi-finite Ginzburg algebra associated with a finite quiver and a
potential not containing cycles of length� 2. Then AD� satisfies our assumptions and � is a basic silting
object in per.�/. Let M be a silting object in per.�/ and � 0 the derived endomorphism algebra of M.
Then the homologies Hp.� 0/ are finite-dimensional and vanish in degrees p > 0. Since M generates
per.�/, the � 0–�–bimodule M yields an algebraic triangle equivalence D.� 0/ ��!D.�/. Conversely, if
we start from a dg algebra � 0 whose homologies are finite-dimensional and vanish in degrees>0 and from
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an algebraic triangle equivalence D.� 0/ ��!D.�/, then the image M of � 0 in per.�/ is a silting object.
In any case, the dg algebra � 0 is an exact bimodule 3–Calabi–Yau and has its homology concentrated in
degrees � 0. By Van den Bergh’s theorem [2015], the dg algebra � 0 is again a Jacobi-finite Ginzburg
algebra (up to weak equivalence). In particular, for M we can take the mutation M 0 D �X� , where
X D ei� for a vertex i of the quiver of � . We define the associated Ginzburg algebra � 0 to be the left
mutation of � at i . Notice that, by construction, we have a canonical derived equivalence from � 0 to � .
In the same way, we can define the right mutation � 00 of � at i using the right mutation M 00 D ��X .�/
of � at X. The right mutation � 00 turns out to be quasi-isomorphic to the left mutation � 0. Indeed, by
Theorem 4.17, these algebras are the ��0–truncations of the derived endomorphism algebras of the images
�.M 0/ and �.M 00/ in the cluster category C� . Now we have �.M 0/Š �.M 00/ because they are the left
and right mutations in the sense of [Iyama and Yoshino 2008] of the cluster-tilting object �.�/ at �.X/
and, for cluster-tilting objects in 2–Calabi–Yau triangulated categories, right and left mutation coincide
up to isomorphism.

Now let A be a dg k–algebra whose homologies HpA vanish in all degrees p > 0. An object of per.A/
is called 2–term if it is the cone over a morphism of add.A/. We write 2–per.A/ for the full subcategory
of per.A/ formed by the 2–term objects. We write 2silt.A/ for the set of isomorphism classes of 2–
term silting objects. Our aim is to compare 2silt.A/ with 2silt.H 0A/. Note that, by our assumption
on A, we have a canonical morphism A! H 0A in the homotopy category of dg algebras. We write
F W per.A/! per.H 0A/ for the derived tensor product over A with H 0A.

Proposition 4.22 (a) [Brüstle and Yang 2013] The functor F induces a bijection 2silt.A/ ��!
2silt.H 0A/.

(b) Suppose that H�1.A/D 0. Then the functor F restricts to an equivalence

2–per.A/ ��! 2–per.H 0A/:

In particular , for each 2–term object T, the functor F induces an isomorphism

EndA.T / ��! EndH0A.F T /:

Proof Part (a) is [Brüstle and Yang 2013, Proposition A.3]. For part (b), using the assumption and the
five lemma, we check successively that F induces the following bijections:

(1) For P;Q 2 add.A/ and p � �1,

Hom.P;†pQ/ ��! Hom.FP;†pFQ/:

(2) For P 2 add.A/, M 2 2–per.A/ and p 2 f�1; 0g,

Hom.P;†pM/ ��! Hom.FP;†pFM/:

(3) For M;M 0 2 2–per.A/,

Hom.M;M 0/ ��! Hom.FM;FM 0/:
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Now let A be a pseudocompact dg algebra in PCAlgc.l/ strictly concentrated in degrees � 0. Let e be an
idempotent of H 0A and A0 the derived endomorphism algebra of the image of A in the Verdier quotient
of per.A/ by the thick subcategory generated by eA. Then A0 is concentrated in degrees � 0 and we have
a canonical morphism A! A0 in the homotopy category of PCAlgc.l/. If A is of the form . yTl.V /; d/

for a pseudocompact l–bimodule V concentrated in degrees � 0, where yTl.V / is the completed tensor
algebra, then A0 is quasi-isomorphic to the quotient of A by the two-sided closed ideal generated by e
(see [Braun et al. 2018]). Put A0 DH 0A0; so we have a canonical morphism p W A! A0. Let B and
B0 be pseudocompact dg algebras in PCAlgc.l/, and X 2 D.Aop ˝ B/ such that XB is perfect and
Q 2D.Bop˝B0/ such that QB0 is perfect.

Proposition 4.23 Suppose that eX ˝L
B Q vanishes and that the object X ˝L

B Q of D.B0/ has no
selfextensions in degrees p < 0. Then there is an object Y of D.Aop

0 ˝B0/, unique up to isomorphism ,
such that we have an isomorphism

X ˝L
B Q

��! A0˝
L
A0
Y

in D.Aop˝B0/. Thus , the square

D.A/

A0

��

X
// D.B/

Q

��

D.A0/
Y
// D.B0/

is commutative up to isomorphism , where we write dg bimodules instead of derived tensor products by dg
bimodules.

Remark 4.24 In our applications in this article, the idempotent e will be 0. We state and prove the
proposition in the general case because it provides an alternative approach to the problem of relating
the tilting theory of maximal modification algebras [Wemyss 2018] to that of the associated contraction
algebras as treated by August [2020b]. Let R be a complete local cDV singularity and M a maximal basic
rigid object in the category of Cohen–Macaulay modules over R containing R as a direct summand. We
can take AD EndR.M/ and e the idempotent corresponding to the projection on R. Then A0 DH 0A0

is isomorphic to the stable endomorphism algebra of M, ie the contraction algebra associated with M.
Let N be another maximal basic rigid object containing R as a direct summand, B its endomorphism
algebra and B0 the associated contraction algebra. Then X DHomR.N;M/ yields a derived equivalence
‹˝L

A X WD.A/
��!D.B/ taking eA to eB. Moreover, the complex X˝L

B B0 is a 2–term silting object of
per.B0/ (as follows from silting reduction [Aihara and Iyama 2012] combined with Proposition 4.22(a))
and hence a tilting object since B0 is symmetric. Thus, the hypotheses of the proposition hold and there
is a canonical two-sided tilting complex Y in D.Aop

0 ˝B0/. Clearly, the construction is compatible with
compositions via derived tensor products.
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Proof of Proposition 4.23 Put U D X ˝L
B Q viewed as an object in D.Aop ˝B0/. The morphism

A! A0 induces the Verdier quotient

per.A/! per.A0/D per.A/=thick.eA/

and is therefore a dg quotient. By the universal property of the dg quotient, there is an object Z in
D.A0

op
˝B0/, unique up to isomorphism, such that the restriction of Z along Aop˝B0! A0

op
˝B0

is isomorphic to U in D.Aop˝B0/. We have a canonical morphism in the homotopy category of dg
algebras

A0!RHomB0.Z;Z/:

Since, by assumption, RHomB0.Z;Z/ is concentrated in degrees�0 andA0 in degrees�0, this morphism
factors uniquely through a morphism

A0 DH
0A0!RHomB0.Z;Z/

in the homotopy category of dg algebras. Let us show how to refine this argument so as to obtain an
object Y of D.Aop

0 ˝B0/ which restricts to Z 2 D.A0op ˝B0/. We may and will assume that A0 is
cofibrant and strictly concentrated in degrees � 0. We may and will also assume that Z is cofibrant as a
dg A0–B0–bimodule. The left A0–module structure on Z then yields a morphism of dg algebras

A0! HomB0.Z;Z/:

Since A0 is strictly concentrated in nonpositive degrees, it factors uniquely through a morphism of dg
algebras

A0! ��0 HomB0.Z;Z/:

Since ZB0 has no negative selfextensions, we have a surjective quasi-isomorphism of dg algebras

��0 HomB0.Z;Z/!H 0 HomB0.Z;Z/:

The composition

A0! ��0 HomB0.Z;Z/!H 0 HomB0.Z;Z/

uniquely factors through an algebra morphism A0 DH
0.A0/!H 0 HomB0.Z;Z/. We thus obtain a

commutative square of dg algebra morphisms

A0

��

//

''

HomB0.Z;Z/

��0 HomB0.Z;Z/

OO

��

A0 DH
0.A0/ // H 0 HomB0.Z;Z/
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We factor the morphism A0 ! A0 as the composition A0 ! zA0 ! A0 of an acyclic fibration with a
cofibration. We consider the diagram

A0

��

//

''

HomB0.Z;Z/

zA0

��

// ��0 HomB0.Z;Z/

OO

��

A0 DH
0.A0/ // H 0 HomB0.Z;Z/

Here the morphism represented by a dotted arrow exists, so the diagram becomes commutative because
A0! zA0 is a cofibration and ��0 HomB0.Z;Z/!H 0 HomB0.Z;Z/ is an acyclic fibration. Thus, we
obtain a structure of a dg zA0–B0–bimodule on Z which restricts to the given structure of a dg A0–B0–
bimodule. Since we have the quasi-isomorphism zA0! A0, we can find a bimodule Y in D.Aop

0 ˝B0/

unique up to isomorphism and which restricts (up to isomorphism) to Z in D.A0op
˝B0/.

Now consider a second object Y 0 in D.Aop
0 ˝B0/ which becomes isomorphic to Z in D.A0op

˝H 0B/.
We have a chain of isomorphisms

HomD.A0op˝B0/.Y; Y
0/D HomD.A0e/.A

0;RHomB0.Y; Y
0//

D HomD.A0e/.H
0A0;H 0RHomB0.Y; Y

0//

D HomH0.A0/e .H
0A0;H 0RHomB0.Y; Y

0//

D HomD.Ae0/.A0;H
0RHomB0.Y; Y

0//

D HomD.Ae0/.A0;RHomB0.Y; Y
0//

D HomD.Aop
0 ˝B0/

.Y; Y 0/:

Clearly, the composition

HomD.Aop
0 ˝B0/

.Y; Y 0/ ��! HomD.A0op˝B0/.Y; Y
0/

of these isomorphisms is given by the restriction-of-scalars functor

D.A0˝H 0B/!D.A0˝H 0B/:

Now any restriction-of-scalars functor reflects isomorphisms because it is compatible with the forgetful
functors to the derived category of vector spaces. Thus, isomorphisms are preserved. This shows the
uniqueness.

Let B be a dg k–algebra whose homologies are finite-dimensional and vanish in degrees > 0. Let C be a
finite-dimensional basic k–algebra (ie C is basic as a right module over itself) and let Z be an object of
D.C op˝H 0B/ such that

‹˝L
C Z WD.C/!D.H 0B/
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is an equivalence. Notice that ZH0B is a tilting object in per.H 0B/ and in particular a silting object,
which is basic by our assumption on C.

Theorem 4.25 Assume that ZH0B is a 2–term silting object and H�1.B/ D 0. Then there is a dg
algebra A whose homologiesHpA are finite-dimensional and whose components vanish in degrees p > 0,
a derived equivalence ‹˝L

A X W D.A/
��! D.B/, an isomorphism of algebras � W H 0A ��! C and an

isomorphism

�Z
��!X ˝L

B H
0B

inD.Aop˝H 0B/, where the leftA–module structure on �Z is defined via the compositionA!H 0A!C.
In particular , we have a diagram , commutative up to isomorphism ,

D.A/

H0A

yy

X
// D.B/

H0B
��

D.H 0A/
�C
// D.C/

Z
// D.H 0B/

where we write dg bimodules instead of derived tensor products by dg bimodules.

Proof By Proposition 4.22(a), there is a 2–term silting object M of per.B/ such that M ˝L
B H

0B is
isomorphic toZH0B . SinceM is silting, its derived endomorphism algebra has its homology concentrated
in nonpositive degrees and we define

AD ��0RHom.M;M/:

We let X 2 D.Aop ˝ B/ be the dg bimodule given by M with its canonical left A–action. Since
X ˝L

B H
0B is isomorphic to the tilting object ZH0B , it has no self-extensions in degree < 0. Therefore,

Proposition 4.23 yields an object Y of D.H 0.A/op˝H 0.B// and an isomorphism

 WX ˝L
B H

0B ��! Y jAop˝H0B

in D.Aop ˝ H 0B/, where the left A–module structure on Y comes from the canonical morphism
A! H 0.A/. By Proposition 4.22(b), we have an isomorphism End.M/ ��! End.M ˝L

B H
0B/. By

construction, we have an isomorphism H 0A ��! End.M/ or equivalently H 0A ��! End.XB/. Thus, the
composition of ‹˝L

B H
0B with ‹˝L

A X induces an isomorphism

H 0A ��! EndD.H0B/.X ˝
L
B H

0B/:

Via  , we get an isomorphism

H 0A ��! EndD.H0B/.Y /
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given by the left action of H 0A on Y. We choose an isomorphism YH0B
��! ZH0B in D.H 0B/ and

define � WH 0A ��! C so as to make the following square commutative:

H 0A //

�

��

End.YH0B/

��

C // End.ZH0B/

By Lemma 2.6, the chosen isomorphism YH0B
��! ZH0B lifts to an isomorphism Y ��! �Z in

D.H 0.A/op˝H 0.B//, whence a composed isomorphism

X ˝L
B H

0B ��! Y jAop˝H0B
��! �ZjAop˝H0B :

4.5 Cyclic homology and preservation of the canonical class

Let k be a field of characteristic 0 and l a finite product of copies of k. Let V be a pseudocompact
l–bimodule and d a continuous differential on the completed tensor algebra yTl.V /. Put AD . yTl.V /; d/.
We define �lA by the short exact sequence

0!�1A! A˝l A
�
�! A! 0;

where � is the multiplication of A. Then the morphism

A˝l V ˝l A!�1A

taking a˝ v ˝ b to av ˝ b � a˝ vb is an isomorphism of graded l–bimodules; see [Quillen 1989,
Example 3.10]. We can describe the induced differential on A˝l V ˝l A as follows (see [Keller 2011,
Proposition 3.7]): Let D WA!A˝l V ˝l A be the unique continuous bimodule derivation which restricts
to the map v 7! 1˝ v˝ 1 on V. We have

D.v1 � � � vn/D 1˝ v1˝ .v2 � � � vn/C

n�1X
iD2

v1 � � � vi�1˝ vi ˝ viC1 � � � vnC .v1 � � � vn�1/˝ vn˝ 1:

Then the induced differential on A˝l V ˝l A sends a˝ v˝ b to

.�1/jajaD.dv/bC .da/˝ v˝ bC .�1/jvjCjaja˝ v˝ .db/:

For an l–bimodule M, we write Ml for the coinvariant module M=Œl;M �. For an A–bimodule M, we let
M\ be the coinvariant module M=ŒA;M�. We have an isomorphism of graded A–modules

.A˝l V ˝l A/\
��! .V ˝l A/l

taking a˝ v˝ b to .�1/jaj.jvjCjbj/v˝ ba. The induced differential on the right-hand side is given as
follows: if D.dv/D

P
i ai ˝ vi ˝ bi , then

d.v˝ a/D .�1/jvjv˝ .da/C
X
i

.�1/jai j.jvi jCjbi jCjaj/vi ˝ biaai :
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Following [Quillen 1989, Section 3], we define morphisms of complexes

@1 W .V ˝l A/l ! Al and @0 W Al ! .V ˝l A/l

as follows: @1 sends v˝ a to va� .�1/jvjjajav and @0 sends v1 � � � vn toX
i

˙vi ˝ viC1 � � � vnv1 � � � vi�1;

where the sign is determined by the Koszul sign rule. We then have @0@1 D 0D @1@0.

The (continuous) Hochschild homology of A is computed by the total complex of

.V ˝l A/l
@1
�! Al

and the (continuous) cyclic homology of A is computed by the product total complex of

� � � ! .V ˝l A/l
@1
�! Al

@0
�! .V ˝l A/l

@1
�! Al :

Since k is of characteristic 0, the morphism Al !A=.ŒA;A�C l/ induces a quasi-isomorphism from this
complex to A=.ŒA;A�C l/. The ISB sequence

� � � ! HHn
I
�! HCn

S
�! HCn�2

B
�! HHn�1! � � �

is induced by the sequence

� � � // 0

��

// 0

��

// .V ˝l A/l
@1
// Al

� � � // .V ˝l A/l
@1

// Al
@0

// .V ˝l A/l

��

@1
// Al

��

� � � // .V ˝l A/l

��

@1
// Al

@0
��

// 0

��

// 0

��

� � � // 0 // .V ˝l A/l
@1

// Al // 0

Notice that the first three rows form a short exact sequence and that the composition of the last vertical
morphism with the second-last vertical morphism is only homotopic to zero.

Now let Q be a finite quiver, l the product over the kei , where i runs through the vertices of Q, w a
potential on Q and AD � the associated complete Ginzburg algebra with generators the arrows ˛ of Q
in degree 0, the reversed arrows ˛� in degree �1 and the loops ti in degree �2. Then A is of the form
. yTl.V /; d/, where V is the l–bimodule with basis given by the arrows ˛, ˛� and ti . Let t be the sum of
the ti . By definition,

d.t/D
X
˛

Œ˛; ˛��:

Thus, t defines an element in HC2.A/.
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Lemma 4.26 The image of the class of t under S W HC2.A/! HC0.A/ is the canonical class Œw�, ie the
image of w under the projection HC0.TlV /! HC0.A/.

Proof We compute S.t/ using the above description of S. We need to lift t to an element of the total
complex computing cyclic homology. We have

d.t/D @1

�X
˛

˛˝˛�
�
:

We have
d

�X
˛

˛˝˛�
�
D

X
˛

˛˝ d.˛�/D
X
˛

˛˝D˛.w/:

Thus,
d

�X
˛

˛˝˛�
�
D @0.w/

and S.t/ is the image of w in H 0
�
A=.ŒA;A�C l/

�
D HC0.�/. Notice that BS.t/D B.w/ is indeed a

boundary in the Hochschild complex: it is the differential ofX
˛

˛˝˛�� t:

Corollary 4.27 Let � 0 D �.Q0; w0/ be a Ginzburg algebra and A a pseudocompact dg algebra in
PCAlgc.l/ concentrated in degrees � 0. Let X be a dg A–� 0–bimodule such that ‹˝L

A X W D.A/!

D.� 0/ is an equivalence. Then there is a quiver with potential .Q00; w00/ and a weak equivalence
s W �.Q00; w00/! A such that , for the restriction sX along s, the isomorphism HC0.sX/ takes the class
Œw00� to Œw0�.

Proof We know that the class Œt 0� 2HC2.� 0/ is nondegenerate in the sense that BŒt 0� 2HH3.� 0/ defines
an isomorphism †3‚� 0

��! � 0 in D.� 0e/, where ‚� 0 is the inverse dualizing complex. Thus, the
image � of Œt 0� under HC2.X/�1 is a nondegenerate element of HC2.A/. The proof of [Van den Bergh
2015, Theorem 10.2.2] then shows that there is a quiver Q00, a potential w00 and a weak equivalence
s W �.Q00; w00/! A which takes Œt 00� to � . Thus, the composition HC2.X/ ıHC2.s/D HC2.sX/ takes
Œt 00� to Œt 0� and the isomorphism HC0.sX/ takes Œw00�D SŒt 0� to Œw0�D SŒt 0�.

5 CY tilted algebras and singularities

5.1 Basics on Hochschild cohomology

Let k be a commutative ring and A be a unital k–algebra projective over k. Denote by xA the quotient
A=k �1. Define the normalized bar complex associated to A to be the complex BkA WDA˝k T† xA˝k A
with differential

Pn�1
iD0.�1/

ibi W A˝ xA
˝n�1˝A! A˝ xA˝n�2˝A given by

bi .a0; : : : ; an/D .a0; : : : ; aiaiC1; : : : ; an/:
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It is a projective bimodule resolution of A. Let M be an A–bimodule. The Hochschild cochain complex
with coefficients in the bimodule M is defined to be the complex C �.A;M/ WDHomAe .Bk.A/;M/ with
differential

ı.f /D�.�1/nf ı b

for f W A˝ xA˝n˝A!M. The i th Hochschild cohomology of the algebra A with coefficients in the
bimodule M is defined to be HHi .A;M/ WDH i .C �.A;M/; ı/.

Let A be an augmented dg k–algebra. Denote by xA the kernel of the augmentation. Then the bar
complex BkA is equipped with a second differential induced from the differential dA on A. Given an
A–bimodule M, the Hochschild cochain complex C �.A;M/ is equipped with a second differential d
induced by dA and the internal differential dM on M. The i th Hochschild cohomology of the dg algebra A
with coefficients in the bimodule M is defined to be HHi .A;M/ WDH i .C �.A;M/; d C ı/.

It is well known that HHi .A;M/ is isomorphic to ExtiAe .A;M/. When A is a smooth commutative
k–algebra, HH�.A;A/ is isomorphic to the polyvector fields on SpecA by the Hochschild–Kostant–
Rosenberg theorem. For nonsmooth algebras, there exist different variants of Hochschild cohomology.

Let A be an associative k–algebra projective over k. Define the module of Kähler differentials �A to be
the kernel of the multiplication map � WA˝A!A. Clearly, �A inherits a bimodule structure from A˝A.
It is easy to show that �A is generated as a bimodule by the elements of the form x dy WD xy˝1�x˝y.
The left and right module structures are given by

a.x dy/D .ax/ dy; .x dy/aD x d.ya/� xy da:

Define the module of n–forms to be the n–fold tensor product

�nA WD�A˝A�A˝ � � �˝A�A:

Using the above identities, one can check that �nA is generated as a bimodule by the elements of the form
a0 da1 da2 � � � dan. There is an isomorphism of bimodules �nA Š A˝k xA

˝n defined by

a0 da1 da2 � � � dan 7! a0˝ a1˝ � � �˝ an:

Set �0A D A and �1A D�A. Write ��A for
L
n�0�

n
A. The bimodule structure on �A naturally extends

to an associative algebra structure on ��A. The obvious differential

D W a0 da1 da2 � � � dan 7! da0 da1 da2 � � � dan

makes ��A into a differential graded algebra.

For m 2 Z,
Cm.A;†n�nA/D Homk. xA

˝.nCm/; A˝k xA
˝n/:

Consider the chain maps �n W C �.A;†n�nA/! C �.A;†nC1�nC1A / between the Hochschild cochain
complexes defined by f 7! f ˝ Id† xA.
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Definition 5.1 Let A be an associative k–algebra. Then the singular Hochschild cochain complex
of A, denoted by C �sg.A;A/, is defined as the colimit of the inductive system in the category of cochain
complexes of k–modules

0! C �.A;A/
�0
�! C �.A;†�1A/

�1
�! � � � ! C �.A;†n�nA/

�n
�! � � � :

Namely, C �sg.A;A/ WD colimn C �.A;†n�nA/. Its cohomology groups are denoted by HH�sg.A;A/.

By construction, we have a natural chain morphism from C �.A;A/ to C �sg.A;A/, which induces a natural
morphism from HH�.A;A/ to HH�sg.A;A/.

Let A be a noetherian k–algebra. Define Dsg.A/ to be the Verdier quotient of Db.A/ by the subcategory
per.A/. We denote the extension group in Dsg.A/ by ExtiA.‹; ‹/. The singular Hochschild cohomology
groups are related to the extension groups in Dsg.A

e/.

Proposition 5.2 [Wang 2021, Theorem 3.6] Let A be a noetherian k–algebra. Then there exists a
natural isomorphism

HH�sg.A;A/
��! Ext�Ae .A;A/

such that the following diagram commutes:

Ext�Ae .A;A/ // Ext�Ae .A;A/

HH�.A;A/

Š

OO

// HH�sg.A;A/

Š

OO

From Wang’s result, we see that the singular Hochschild cohomology admits a structure of a graded
commutative algebra. Notice that this is not immediate from generalities about monoidal triangulated
categories because the singularities category of Ae does not have any obvious monoidal structure.

5.2 Hochschild cohomology of Gorenstein algebras

A (not necessarily commutative) noetherian ring A is called Gorenstein if it has finite injective dimension
both as a left and rightA–module. As in the commutative case, we denote by CMA the category of maximal
Cohen–Macaulay (left) A–modules and denote by CMA its stable category. Buchweitz proved that if A is
Gorenstein, then CMA is equipped with a structure of triangulated category and CMA ŠDsg.A/.

We recall a fundamental result on extension groups in the stable category over Gorenstein rings due to
Buchweitz.

Proposition 5.3 [Buchweitz 1986, Corollary 6.3.4] Let A be a Gorenstein ring and let X and Y be
objects in Db.A/. There exists a positive integer m, depending on A, X and Y, such that the natural
morphism ExtiA.X; Y /! ExtiA.X; Y / is surjective for i Dm and is an isomorphism for i > m.

Geometry & Topology, Volume 28 (2024)



Cluster categories and rational curves 2613

Combining Propositions 5.2 and 5.3, we obtain the following result:

Corollary 5.4 Let R be a commutative noetherian Gorenstein k–algebra. If R˝R is noetherian , there
exists a positive integer m such that , for i > m, the natural morphism

HHi .R;R/! HHisg.R;R/

is an isomorphism.

Proof By Definition 5.1, we have a morphism HHi .R;R/! HHisg.R;R/ for all i . In order to apply
Proposition 5.3 to show that it is an isomorphism, we need to check that R˝R is noetherian. This follows
from [Tousi and Yassemi 2003, Theorem 1.6].

A commutative local complete Gorenstein k–algebra yR is called a hypersurface algebra if

yRŠ kŒŒx1; : : : ; xn��=.g/:

We say that yR is a hypersurface algebra with isolated singularities if g has an isolated critical point.

Theorem 5.5 [Guccione et al. 1992, Theorem 3.2.7] Let RD kŒx1; : : : ; xn�=.g/ be a hypersurface alge-
bra with isolated singularities. Denote by Mg the Milnor algebra kŒx1; : : : ; xn�=.@g=@x1; : : : ; @g=@xn/,
and by Kg and Tg the kernel and cokernel of the endomorphism of Mg defined by multiplication with g.
Then , for r � n, there is an isomorphism of R–modules

HHr.R;R/Š
�
Tg if r is even;
Kg if r is odd:

Proof The proof in [Guccione et al. 1992] shows that, in degrees r � n, the Hochschild cohomology
HHr.R;R/ is isomorphic to the homology in degree r of the complex

kŒu�˝K

�
R;

@g

@x1
; : : : ;

@g

@xn

�
;

where u is of degree 2 and K denotes the Koszul complex. Put P D kŒx1; : : : ; xn�. Since R is quasi-
isomorphic to K.P; g/ and the @g=@xi form a regular sequence in P, the Koszul complex is quasi-
isomorphic to K.Mg ; g/.

Note that Tg is the Tyurina algebra kŒx1; : : : ; xn�=.g; @g=@x1; : : : ; @g=@xn/. Since Kg is the kernel of
the multiplication map g WMg !Mg , it is a module over Tg .

Lemma 5.6 Let A be a commutative k–algebra such that A and Ae are noetherian. Let S � A be a
multiplicative subset. If M is a finitely generated A–module and L an A–module , we have a canonical
isomorphism

RHomAe .L;M/S
��!RHomAeS .LS ;MS /:
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Proof Since L is finitely generated over A, it is finitely generated over Ae. Since Ae is noetherian,
we have a projective resolution P ! L with finitely generated components. This implies that we have
isomorphisms

RHomAe .L;M/S D HomAe .P;M/S D HomAe .P;MS /:

Since AS ˝A P ˝AAS ! LS is a projective resolution over AeS , we find

HomAe .P;MS /D HomAeS .AS ˝A P ˝AAS ;MS /DRHomAeS .LS ;MS /:

Remark 5.7 In the setting of Theorem 5.5, assume that g has isolated singularities and that the origin
is a singular point of the vanishing locus of g. If we denote by m the maximal ideal .x1; : : : ; xn/ �
kŒx1; : : : ; xn�, then g 2 m. Denote by Mg;m, Tg;m and Kg;m the localizations of Mg , Tg and Kg . It
follows from the lemma that Theorem 5.5 still holds if one replaces R by Rm WD kŒx1; : : : ; xn�m=.g/ and
replaces Tg and Kg by Tg;m and Kg;m.

For a noetherian k–algebra A, the derived category of singularities Dsg.A/ is equipped with a canonical
dg enhancement, obtained from its construction as a Verdier quotient of two canonically enhanced
triangulated categories [Keller 1999; Drinfeld 2004]. Instead of HH�sg.A;A/, one may also consider the
Hochschild cohomology of the dg category Dsg.A/, which we will denote by HH�.Dsg.A//.

Theorem 5.8 [Keller 2018] There is a canonical morphism of graded algebras

HH�sg.A;A/! HH�.Dsg.A//:

It is invertible if Dbdg.modA/ is smooth.

Now we establish the main result of the subsection.

Theorem 5.9 Let yRD kŒŒx1; : : : ; xn��=.g/ be a hypersurface algebra with isolated singularity. Denote
by yTg the Tyurina algebra of g. Then there is an isomorphism of k–algebras

HH0.Dsg. yR//Š yTg :

Moreover , if yR0 D kŒŒx1; : : : ; xn��=.g0/ is another hypersurface algebra with isolated singularity such that
Dsg. yR

0/ is quasiequivalent with Dsg. yR/ as dg categories , then yR0 is isomorphic to yR.

Proof Because g has an isolated critical point, we may assume that g is a polynomial without loss of
generality. Denote by R the algebra kŒx1; : : : ; xn�m=.g/. Notice that R has an isolated singularity at the
origin and that its completion identifies with yR. By [Dyckerhoff 2011, Theorem 5.7], the triangulated cate-
gory Dsg. yR/ is the Karoubi envelope of Dsg.R/. Therefore, the two dg categories have equivalent derived
categories and there is a natural isomorphism HH�.Dsg.R//

��!HH�.Dsg. yR//. Orlov [2004] proved that
Dsg.R/ is triangle equivalent with the homotopy category of matrix factorizations MF.kŒx1; : : : ; xn�m; g/.
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The triangle equivalence is lifted to an equivalence of dg categories by the work of Blanc, Robalo, Toën
and Vezzosi [Blanc et al. 2018]. Therefore, the dg category Dsg.R/ is 2–periodic and so is its Hochschild
cohomology. So there exists a natural isomorphism of yR–modules

HH0.Dsg.R//
��! HH2r.Dsg.R//

for all r 2 Z. By [Elagin et al. 2020, Theorem B], the bounded dg derived category Dbdg.modR/ is
smooth. Thus, by Theorem 5.8,

HH2r.Dsg.R//
��! HH2rsg .R;R/:

By Corollary 5.4, for r � 0,
HH2r.R;R/ ��! HH2rsg .R;R/;

and, by Theorem 5.5 and Remark 5.7,

HH2r.R;R/ ��! Tg :

Because g has an isolated critical point, there is an isomorphism

yTg Š Tg :

Then the first claim follows. The second claim follows from the formal version of the Mather–Yau
theorem (see [Greuel and Pham 2017, Theorem 1.1]).

5.3 Classification of 3–dimensional smooth flops

Let . yY ; Of ;R/ be a 3–dimensional formal flopping contraction with Ex.f / D
St
iD1 Ci , and let A D

EndR
�Lt

iD1Ni ˚R
�

be the NCCR associated to it. We have associated to it an exact 3–CY algebra: the
derived deformation algebra � of the semisimple collection OC1 ; : : : ;OCt , and the cluster category C� .
There are two relaxations of the above context.

First we take Y a CY 3–fold with a semisimple collection of rational curves OC1 ; : : : ;OCt . We may still
define the derived deformation algebra � and the cluster category C� . However, in general, � is only
bimodule CY and C� may not be Hom–finite. If we assume that Y is projective, then � will be exact.
However, most yY are not expected to have CY compactifications. The second relaxation is to take a
3–dimensional hypersurface ring R with isolated singularities. Associated to it is the derived category of
singularities Dsg.R/. This is a Hom–finite CY category. One may ask when is it possible to express it as
a cluster category of a CY algebra.

In the case of flopping contractions, these two relaxations are related by Theorem 2.8. By [Van den Bergh
2004], yY admits a tilting bundle, and � is exact and has finite-dimensional cohomology. By Corollary 2.12
and Theorems 4.6 and 4.7, � is weakly equivalent to a Ginzburg algebra D.Q;w/ with t nodes. On
the other hand, if R admits an NCCR A, then Dsg.R/ is equivalent to C� for the CY algebra � . By
Theorem 2.8, A admits a minimal model . yT OlV; d/ with the dual space of †�1Ext�1A

�Lt
iD0 Si ;

Lt
iD0 Si

�
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(see [de Thanhoffer de Völcsey and Van den Bergh 2016, Section 4]). Since A is Calabi–Yau, d can
be derived from a potential, ie . yT OlV; d/ is a Ginzburg algebra (see [de Thanhoffer de Völcsey and Van
den Bergh 2016, Proposition 1.2]). By the derived equivalence, Theorem 2.11, of Van den Bergh, the
derived deformation algebra of the semisimple collection OC1 ; : : : ;OCt is isomorphic to the quotient
yT NlV=

yT NlVe0
yT NlV in Theorem 2.8. It is natural to expect that the deformation theory of the exceptional

curves and the singularity theory of R should determine each other since both are governed by the CY
algebra � .

Recall that the CY tilted algebra ƒ WDH 0� is isomorphic to EndC� .�.�// (see Theorem 3.19). Donovan
and Wemyss conjectured that ƒ alone can already determine the analytic type of R:

Conjecture 5.10 Let . yY ; Of ;R/ and . yY 0; Of 0; R0/ be two 3–dimensional simple formal flopping contrac-
tions with associated CY tilted algebras ƒ and ƒ0. Then the following are equivalent :

(1) R is isomorphic to R0.

(2) ƒ is isomorphic to ƒ0.

Donovan and Wemyss have extended this conjecture to the case of not necessarily simple formal flopping
contractions by replacing (2) with

(20) ƒ is derived equivalent to ƒ0;

see [August 2020a, Conjecture 1.3]. In this situation, the implication from (1) to (2) is known to be true
by iterating a construction of Dugas [2015]. The implication from (20) to (1) is one of the main open
problems in the homological minimal model program for 3–folds. In this section, we will prove a slightly
weaker version of this implication.

The exactness of � poses a strong constraint onƒ, ie the relations ofƒ can be written as cyclic derivatives
of a potential w by Theorem 4.6. If we fix the exact CY structure, then w is uniquely determined up to
right equivalences (Proposition 4.8).

Theorem 5.11 Let . yY ; Of ;R/ and . yY 0; Of 0; R0/ be formal flopping contractions. Given exact CY struc-
tures � and �0 on yY and yY 0, respectively, denote by .ƒ; Œw�/ and .ƒ0; Œw0�/ the associated CY tilted
algebras and the canonical classes of potentials. If there exists a derived equivalence fromƒ toƒ0 given by
a bimodule complex Z such that the induced map HH0.Z/ takes Œw� to Œw0�, then R is isomorphic to R0.

The proof of this theorem will take up the rest of the section. Here we highlight the major components of
the proof. First we prove that the cluster category C� is dg equivalent to the Dsg.R/ with its canonical
Z–graded dg structure (Lemma 5.12). The second step is to establish that the analytic type of a isolated
hypersurface singularity (with fixed embedded dimension) is determined by its Z–graded dg category of
singularities (Theorem 5.9). In the last step, we prove that � can be reconstructed from the CY tilted
algebra ƒ together with the class Œw� 2 HH0.ƒ/ represented by the potential.
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Let .R;m/ be a complete commutative noetherian local Gorenstein k–algebra of Krull dimension n with
isolated singularity and with residue field k. Suppose that R admits an NCCR; then Dsg.R/ has another
dg model via the triangle equivalence Dsg.R/' C� (see Theorem 2.8). We first prove that these two
models are dg quasiequivalent.

Lemma 5.12 In the homotopy category of dg categories , there is an isomorphism between C� D

per.�/=Dfd.�/ and the category of singularities Dsg.R/ D D
b.R/=Kb.proj.R//, both equipped with

their canonical dg enhancements.

Proof Let A and B be two pretriangulated dg categories. We call a triangle functor F WH 0.A/!H 0.B/

algebraic if there is a dg A–B–bimodule X such that we have a square of triangle functors, commutative
up to isomorphism,

H 0.A/
F
//

��

H 0.B/

��

D.A/
‹˝L

AX
// D.B/

where the vertical arrows are induced by the Yoneda functors. We know from [Toën 2007] that morphisms
A! B in the homotopy category of dg categories are in bijection with isomorphism classes of right
quasirepresentable A–B–bimodules in the derived category of bimodules. Thus, it suffices to show
that the triangle equivalence C�

��!Dsg.R/ is algebraic. We use the notation of Section 2.4 and put
N DN1˚ � � �˚Nt . Let F denote the thick triangulated subcategory of per.A/ generated by the simples
S1, . . . , St . Let us recall from [Palu 2009, Proposition 3] that we have a diagram of triangle functors,
commutative up to isomorphism and whose rows and columns are exact sequences of triangulated
categories,

0 0

0 // F // per.A/=per.R/

OO

// CMR

OO

// 0

0 // F // per.A/

OO

// Db.CMR/

OO

// 0

per.R/

OO

per.R/

OO

0

OO

0

OO

Here the category Db.CMR/ is the bounded derived category of the exact category CMR, the functor
per.R/!Db.CMR/ is induced by the inclusion proj.R/! CMR, the functor per.A/!Db.CMR/ is
induced by ‹˝L

A .R˚N/, and per.R/! per.A/ is induced by the inclusion

add.R/! add.R˚N/D proj.A/;
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where the categories add.R/ and add.R˚N/ are full subcategories of CMR and the last equality denotes
the equivalence given by the functor Hom.R˚N; ‹/. We endow per.A/=per.R/ with the dg enhancement
given by the dg quotient [Keller 1999; Drinfeld 2004]. It is then clear that the triangle functors of the
middle row and of the middle column are algebraic. Let us show that the functor Db.CMR/! CMR is
algebraic. The canonical dg enhancement of CMR is given by the triangle equivalence from the homotopy
category H 0.A/ of the dg category A of acyclic complexes over proj.R/ to CMR taking an acyclic
complex P to its zero cycles Z0.P /. Let B be the dg enhanced derived category Dbdg.CMR/. We define
a B–A–bimodule X by putting

X.P;M/D Hom.P;†M/;

where P is an acyclic complex of finitely generated projective R–modules and M a bounded complex
over CMR. For M 2 B, denote by M^ the representable dg functor B.‹;M/. We have M^˝B X D

X.‹;M/. If M is concentrated in degree 0, we have canonical isomorphisms

H 0X.P;M/D HomCMR.Z
0.P /;M/ and HpX.P;M/D HomCMR.Z

0.P /;†pM/;

which shows that X.‹;M/ is quasirepresentable by a complete resolution of M. By dévissage, X.‹;M/

is quasirepresentable for any bounded complex M and one checks easily that the (derived D nonderived)
tensor product with X induces the canonical triangle functor Db.CMR/! CMR. It follows that, at the
level of dg categories, CMR identifies with the dg quotient of Db.CMR/ by per.R/. In other words, the
canonical equivalence

Db.CMR/=per.R/ ��! CMR

is algebraic. Therefore, the induced functor per.A/=per.R/ ! CMR is algebraic. Thus, the whole
diagram is made up of algebraic functors. Now notice that the inclusion CMR �modR induces algebraic
equivalences Db.CMR/

��!Db.modR/, so we get algebraic equivalences

CMR
� �Db.CMR/=per.R/ ��!Db.modR/=per.R/:

Thus, it will suffice to prove that the equivalence between the cluster category of � and the stable category
CMR is algebraic.

Now, using the notation of Theorem 2.8, put z� D . yTlV; d/, so we have a quasi-isomorphism z� ��! A. It
induces an algebraic equivalence per.z�/ ��! per.A/. This equivalence induces an algebraic equivalence
tria.e0z�/! per.R/, where tria.e0z�/ is the triangulated subcategory generated by the z�–module e0z� .
The quotient map z� ! � induces an algebraic triangle functor per.z�/! per.�/ and we know from
[Kalck and Yang 2018, Lemma 7.2] that it is a localization with kernel tria.e0z�/. We obtain a diagram of
triangle functors, commutative up to isomorphism, whose vertical arrows are equivalences and whose
rows are exact:

0 // tria.e0z�/ //

��

per.z�/

��

// per.�/

��

// 0

0 // per.R/ // per.A/ // per.A/=per.R/ // 0
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By passage to the dg quotient, the rightmost vertical arrow is an algebraic triangle equivalence. By
composing the algebraic inclusion F! per.A/=per.R/ with a quasi-inverse of the algebraic equivalence
per.�/ ��! per.A/=per.R/, we obtain an algebraic inclusion F! per.�/ whose image identifies with the
thick subcategory of per.�/ generated by the simple H 0.�/–modules. This subcategory equals Dfd.�/.
Indeed, clearly it is contained in Dfd.�/ and, conversely, it contains the category modH 0.�/ of finite-
dimensional H 0.�/–modules since H 0.�/ is finite-dimensional, so every finite-dimensional H 0.�/–
module is a finite iterated extension of simples. Since modH 0.�/ is the heart of a bounded t–structure
on Dfd.�/, the image of F equals Dfd.�/. This yields the first row of the following diagram with exact
rows, whose vertical arrows are equivalences:

0 // F // per.�/

��

// C� //

��

0

0 // F // per.A/=per.R/ // CMR
// 0

Again by passage to the dg quotient, the rightmost vertical arrow is an algebraic triangle equivalence.

Proof of Theorem 5.11 Let .Q;w/ and .Q0; w0/ be the quivers with potential constructed from the
formal flopping contractions and � and � 0 the associated Ginzburg dg algebras. Let ƒDH 0.�/ and
ƒ0 DH 0.� 0/ be the associated contraction algebras. Recall that these algebras are symmetric, so tilting
objects coincide with silting objects in their derived categories. We will construct a quiver with potential
.Q00; w00/ with associated Ginzburg algebra � 00, a dg � 00–� 0–bimodule zZ and an isomorphism  from
ƒ00 DH 0.� 00/ to C such that the square

� 00
zZ
//

ƒ00

��

� 0

ƒ0

��

ƒ00
 Z
// ƒ0

is commutative and the isomorphism HC0. zZ/ takes the class Œw00� to Œw0�. Here we write dg bimodules
instead of derived tensor products, algebras instead of their derived categories, and the top and bottom
arrows are equivalences. Notice that, by [Keller 1998], Hochschild homology is functorial with respect to
right perfect dg bimodules, so the notation HC0. zZ/ does make sense.

To construct the above square, we may assume that Z is a 2–term silting object since, by [August 2020b,
Theorem 7.2(3)], the standard derived equivalence given by Z is the composition of equivalences given by
2–term tilting complexes and their inverses. Let A be the dg algebra obtained by applying Theorem 4.25
to B D � 0, H 0.B/Dƒ0, C Dƒ and ZDZ. Its homologies Hp.A/ are finite-dimensional and vanish for
p > 0. Thus, it is quasi-isomorphic to a dg algebra of the form . yTlV; d/, where V is a graded bimodule
whose components vanish in degrees > 0 and are finite-dimensional in all degrees � 0. So we may
assume that A is in PCAlgc.l/. By Theorem 4.25, there is moreover a dg A–� 0–bimodule X yielding
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an equivalence ‹˝L
A X W D.A/

��! D.� 0/ and an isomorphism � W H 0.A/! ƒ such that we have an
isomorphism

�Z
��!X ˝L

� 0 ƒ
0

in the derived category D.Aop˝ƒ0/ and in particular a square, commutative up to isomorphism,

A
X

//

H0A
��

� 0

ƒ0

��

H 0.A/
�

�
// ƒ

Z
// ƒ0

By Corollary 4.27, there is a quiver with potential .Q00; w00/ and a weak equivalence s W � 00!A from the
associated Ginzburg algebra � 00 to A such that the isomorphism HC0.sX/ takes the class Œw00� to Œw0�.
We define zZ D sX and  D � ıH 0.s/ to obtain the diagram

� 00

��

s
// A

X
//

H0A
��

� 0

ƒ0

��

H 0.� 00/
�

H0s

// H 0.A/
�

�
// ƒ

Z
// ƒ0

So, by construction, the isomorphism HH0.sX/ D HH0. Z/ takes Œw00� to Œw0�. We may assume all
potentials contain no cycles of length � 2 and then it follows that  D � ıH 0.s/ induces an isomorphism
of quivers Q00 ��!Q. Indeed, it induces an isomorphism in the Jacobian algebras and the vertices i of
the quiver Q are in bijection with the isomorphism classes of simple modules Si of the pseudocompact
algebraƒDH 0.�/ and the number of arrows from i to j equals the dimension of the space of extensions
Ext1ƒ.Sj ; Si /. By Corollary 4.14, there is an isomorphism ˇ W � 00! � . The dg bimodule sˇ�1X yields
an algebraic triangle equivalence per.�/ ��! per.� 0/. Such an equivalence induces an equivalence
between the subcategories of dg modules with finite-dimensional homologies because their objects M are
characterized as those for which Hom.P;M/ is finite-dimensional for any object P. Thus, the algebraic
triangle equivalence per.�/ ��! per.� 0/ induces an algebraic triangle equivalence in the cluster categories.
Hence, by Lemma 5.12, it induces an algebraic triangle equivalenceDsg.R/

��!Dsg.R
0/ and therefore an

algebra isomorphism HH0.Dsg.R//ŠHH0.Dsg.R
0//. By Theorem 5.9, we get an isomorphismRŠR0.

6 Contractibility of rational curve

6.1 Dg kŒu�1�–algebras

In this section, we define dg kŒu�1�–algebras and study their properties. All the definitions and results
can be adapted to the pseudocompact case, with objects appropriately replaced by their pseudocompact
counterparts.
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Definition 6.1 Let S be a commutative dg algebra. Denote by C .S/ the category of complexes of
S–modules with the monoidal structure given by the tensor product over S. A dg S–algebra is an algebra
in C .S/, ie a dg S–module with an S–bilinear multiplication and a unit.

Let k be a field, S a commutative dg k–algebra and � a dg S–algebra. By restriction, each dg �–module
becomes a dg S–module and the morphism complexes between dg �–modules are naturally dg S–modules.
Thus, the derived category D.�/ is naturally enriched over D.S/.

Definition 6.2 Let S D kŒu�1� be the commutative dg algebra with deg.u/D 2; deg.u�1/D �2 and
zero differential. We call a dg k–algebra A kŒu�1�–enhanced if A is isomorphic to a dg kŒu�1�–algebra
in the homotopy category of dg k–algebras.

Let us put S D kŒu�1� and K D kŒu; u�1�. For a dg S–module M, we have a canonical isomorphism

H�.M ˝S K/DH
�.M/˝S K:

We call M a torsion module if M ˝S K is acyclic. This happens if and only if H�.M/ is a torsion
module, ie for each m in H�.M/, there exists a p� 0 such that mu�p D 0.

Let A be a dg S–algebra. The functor taking a dg A–module M to the dg A˝SK–module M ˝S K
preserves quasi-isomorphisms. Thus, it induces a functor ‹˝S K WD.A/!D.A˝S K/. The kernel of
this functor consists of the dg A–modules which are torsion as dg S–modules. We write D.A/u�1–tor for
the kernel and per.A/u�1–tor for its intersection with the perfect derived category per.A/.

Lemma 6.3 We have exact sequences of triangulated categories

0!D.A/u�1–tor!D.A/!D.A˝S K/! 0

and
0! per.A/u�1–tor! per.A/! per.A˝S K/! 0:

Proof The restriction along A! A˝S K induces a fully faithful right adjoint to ‹˝S K W D.A/!
D.A˝S K/. Thus, the latter functor is a localization functor. By definition, its kernel is D.A/u�1–tor,
so we obtain the first sequence. To deduce the second one, it suffices to show that the kernel of
D.A/!D.A˝S K/ is compactly generated. Indeed, let P be the cone over the morphism

A!†�2A

given by multiplication by u�1. Clearly P is compact and we claim that it generates the kernel. For
this, it suffices to show that the right orthogonal of P in the kernel vanishes. Indeed, let M be in the
kernel. If RHomA.P;M/ vanishes, then the morphism †2M !M given by multiplication by u�1 is a
quasi-isomorphism. Thus, u�1 acts in H�.M/ by an isomorphism. But, on the other hand, H�.M/ is
torsion. So H�.M/ vanishes and M is acyclic, as was to be shown.

A dg S–algebra A concentrated in nonpositive degrees is nondegenerate if the morphism A!†�2A

given by multiplication by u�1 induces isomorphisms Hn.A/ ��!Hn�2.A/ for all n� 0.
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Lemma 6.4 Let A be a dg k–algebra concentrated in nonpositive degrees. Assume that A is homo-
logically smooth , that Hn.A/ is finite-dimensional for each n 2 Z and that A admits a nondegenerate
kŒu�1�–enhancement. Then the subcategory Dfd.A/� per.A/ coincides with per.A/u�1–tor.

Proof Since A is homologically smooth, Dfd.A/ is contained in per.A/ and clearly it consists of torsion
modules. Conversely, we know from the proof of Lemma 6.3 that per.A/u�1–tor is the thick subcategory
of D.A/ generated by the cone P over the morphism A!†�2A given by multiplication by u�1. Since
A is nondegenerate, the object P lies in Dfd.A/.

Proposition 6.5 Let Q be a finite quiver with potential w such that the associated Ginzburg algebra
� DD.Q;w/ has finite-dimensional Jacobi algebra. Assume that � is equipped with a nondegenerate
kŒu�1�–enhancement. Then C� is a Z=2–graded 0–CY triangulated category, equivalent with the category
of perfect modules over �˝kŒu�1� kŒu; u

�1� as kŒu; u�1�–enhanced triangulated categories. In particular ,
the Jacobi algebra H 0.�/ is a symmetric Frobenius algebra.

Proof We may assume that � itself is a differential graded kŒu�1�–algebra. Multiplication by u�1 yields
a functorial morphism Id!†�2 of triangle functors D.�/!D.�/ and per.�/! per.�/. This induces
a functorial morphism of triangle functors Id! †�2 in the cluster category C� . To check that it is
invertible, it is enough to check that its action on the cluster-tilting object � 2 C� is invertible (since C�

equals its thick subcategory generated by �). Now, by our assumption, the morphism u�1 W†2�! �

induces isomorphisms inHn for n��2 and the 0–map for n��1. Thus, it induces a quasi-isomorphism
†2� ! ���2� . We claim that the canonical morphism ���2� ! � becomes invertible in the cluster
category. Indeed, the homology of its cone is of finite total dimension since Hp� is of finite dimension
for all integers p by [Amiot 2009, Lemma 2.5]. It follows that u induces an isomorphism †2� ��! �

in C� . The rest follows because we have isomorphisms of H 0.�/–bimodules

H 0.�/ ��! C�.�; �/
��! C�.�;†

2�/ ��!DC�.�; �/:

6.2 kŒu�1�–structures on Ginzburg algebras associated to contractible curves

Recall that, for a Jacobi-finite Ginzburg algebra � WD D.Q;w/ associated to the quiver Q with only
one vertex (and multiple loops), H 0.�/ is self-injective. On the other hand, if � is nondegenerately
kŒu�1�–enhanced, then H 0.�/ is symmetric.

The simplest case is when � D kŒt � with zero differential. It is kŒu�1�–enhanced by setting u�1 D t .
This is the derived deformation algebra for OC of a .�1;�1/–curve, which is always contractible.

Proposition 6.6 Let F D khhxii be the complete free algebra of one generator and w 2 F be an element
with no constant term. Then � WDD.F;w/ is kŒu�1�–enhanced.

Proof A general element w 2 F is of the form

w D xnC1C higher-order terms:

Geometry & Topology, Volume 28 (2024)



Cluster categories and rational curves 2623

When n D 1, we are in the case of a .�1;�1/–curve. We assume that n � 2. The Jacobi algebra of
D.F;w/ is isomorphic to kŒŒx��=.xn/. It is always finite-dimensional. Because w D xnC1 �u for some
unit u 2 kŒŒx��, Œw�D 0 in kŒŒx��=.xn/. By Theorem 4.16, w is right equivalent to xnC1. Without loss of
generality, we may assume w D xnC1=.nC 1/ to begin with. Then the Ginzburg algebra D.F;w/ is
isomorphic to khhx; �; tii with dt D Œx; �� and d� D xn. It is easy to check that the two-sided differential
ideal .t; Œx; ��/ is acyclic. As a consequence, the quotient morphism

� D .khhx; �; tii; d /! � 0 WD
�
khhx; �; tii=.t; Œx; ��/; d

�
is a quasi-isomorphism of dg algebras. Note that � 0 is isomorphic to the complex

� � � ! kŒŒx���3
d
�! kŒŒx���2

d
�! kŒŒx���

d
�! kŒŒx��! 0;

where
d.�2k/D 0; d.�2kC1/D xn�2k :

Define the action of u�1 on � 0 by multiplication by �2. It is easy to check it makes � 0 a dg kŒu�1�–
algebra.

From the above proposition, we see that the Ginzburg algebras associated to the “one-loop quiver”
are essentially classified by the dimension of their Jacobi algebras. Moreover, they all admit kŒu�1�–
enhancements. If dimk.H 0�/D n for n > 1, then � is equivalent to the derived deformation algebra of a
floppable .0;�2/–curve of width n (see [Reid 1983] for the geometric definition of width). The following
corollary can be viewed as a noncommutative counterpart of the classification theorem of Reid [1983]:

Corollary 6.7 Let C be a rational curve in a quasiprojective smooth CY 3–fold Y with normal bundle
OC ˚OC .�2/. Denote its derived deformation algebra by � . Then:

(1) C is movable if and only if � has infinite-dimensional Jacobi algebra.

(2) If C is rigid , then it is contractible. The dimension of H 0� is equal to n for n > 1 if and only if
the underlying singularity is isomorphic to the germ of the hypersurface x2C y2Cu2C v2n D 0
at the origin.

It is proved by Laufer (see [Pinkham 1983]) that a contractible rational curve in a CY 3–fold must have
normal bundle of type .�1;�1/, .0;�2/ or .1;�3/. Donovan and Wemyss [2019, Example 6.4] give
an example of a rigid rational curve of type .1;�3/ that is not nc rigid. In their example, there exists a
birational morphism that contracts a divisor containing the .1;�3/–curve. Kawamata [2020, Question 6.6]
asked whether it is true that C is contractible if it is nc rigid. We formulate a conjecture in terms of the
derived deformation algebra:

Conjecture 6.8 Let C � Y be an nc rigid rational curve in a smooth quasiprojective CY 3–fold.
Denote its associated derived deformation algebra by �YC . Then C is contractible if and only if �YC is
kŒu�1�–enhanced.
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Note that one direction of the conjecture follows from our Theorem 4.17:

Proposition 6.9 Let C � Y be a contractible rational curve in a smooth quasiprojective CY 3–fold. Then
�YC is kŒu�1�–enhanced.

Proof Denote by R the ring of formal functions on the singularity underlying the contraction. For
simplicity, we denote the derived deformation algebra �YC by � . By Lemma 5.12, C� is quasiequivalent
toDsg.R/ as dg categories. Under the equivalence, the projection image of � is identified with the Cohen–
Macaulay module N 2Dsg.R/Š CMR. By Theorem 4.17, � is isomorphic to ��0ƒdg, where ƒdg is the
dg endomorphism algebra of N in CMR. Because R is a hypersurface ring, the dg category CMR carries
a canonical Z=2–graded structure (equivalently a kŒu; u�1�–structure) by Eisenbud’s theorem [1980].
Therefore, � is kŒu�1�–enhanced.

We have already seen that, in the .�1;�1/ and .0;�2/ cases, the kŒu�1�–structure on � can be computed
explicitly. However, we don’t have any explicit construction for the .1;�3/ case even though we know it
must exist. We do have an explicit formula for the symmetric Frobenius structure on the CY tilted algebra
H 0� in terms of the residue map of matrix factorizations (see [Hua and Toda 2018]).

Appendix Serre duality for sheaves and modules

In this appendix, we give two proofs of the link between the inverse dualizing sheaf on a smooth
quasiprojective variety Y and the inverse dualizing bimodule for the derived endomorphism algebra of
any perfect generator of D.Qcoh.Y //.

The proof in Section A.1 is based on [Gaitsgory 2013; Gaitsgory and Rozenblyum 2017]. The proof in
Section A.2 is essentially taken from [Kinjo and Masuda 2023, Example 2.7]. It combines Grothendieck
duality with the results of Ben-Zvi, Francis and Nadler [Ben-Zvi et al. 2010]. Both proofs rely on the
foundational work of Toën, Joyal, Lurie and many others.

A.1 Dg Serre duality, after Gaitsgory

We recall a result of Gaitsgory and Gaitsgory–Rozenblyum which could be viewed as Serre duality for
the dg category of coherent sheaves. They use the category of ind-coherent sheaves, which behaves better
on singular spaces. Though we only need the smooth case, we recall the basics of ind-coherent sheaves
and their properties. We will follow [Gaitsgory and Rozenblyum 2017; Gaitsgory 2013].

We consider (quasi)coherent sheaves on quasicompact separated noetherian schemes. We write Qcoh for
the dg category of (fibrant replacements of) unbounded complexes of quasicoherent sheaves and coh for its
full dg subcategory of complexes with coherent cohomology and bounded cohomological amplitude. Let
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IndCoh be the ind-completion of coh. Thus, the dg category IndCoh is quasiequivalent to the dg enhanced
derived category of the (essentially) small dg category coh. There is a natural functor ‰ W IndCoh!Qcoh
which commutes with coproducts and, restricted to coh, becomes the inclusion coh! Qcoh. If X is
smooth then ‰X W IndCoh.X/!Qcoh.X/ is an equivalence [Gaitsgory and Rozenblyum 2017, Chapter 4,
Lemma 1.1.3]. Let f W X ! Y be a proper morphism. There exists a continuous pushforward functor
f IndCoh
� W IndCoh.X/! IndCoh.Y / with a commutative diagram

IndCoh.X/
f IndCoh
�

//

‰X
��

IndCoh.Y /

‰Y
��

Qcoh.X/
f�

// Qcoh.Y /

See [Gaitsgory and Rozenblyum 2017, Chapter 4, Proposition 2.1.2]. Moreover, since f is proper,
f IndCoh
� sends coh.X/ to coh.Y /. The above commutative diagram is compatible with tensor products

by quasicoherent complexes [Gaitsgory and Rozenblyum 2017, Chapter 4, Proposition 2.1.4]. The
pushforward functor f IndCoh

� admits a continuous right adjoint functor f Š W IndCoh.Y /! IndCoh.X/
[Gaitsgory and Rozenblyum 2017, Chapter 4, 5.1.5] and it is compatible with the tensor product with
quasicoherent complexes [Gaitsgory and Rozenblyum 2017, Chapter 4, 5.1.7]. To distinguish f Š from
the right adjoint of f� in Qcoh, we denote the latter by f Qcoh;Š. We have the following comparison
theorem between these two functors [Gaitsgory and Rozenblyum 2017, Chapter 4, Lemma 5.1.9]: there
is a commutative diagram

(A-1)

IndCoh.X/C
‰X

// Qcoh.X/C

IndCoh.Y /C

f Š

OO

‰Y
// Qcoh.Y /C

f Qcoh;Š

OO

where the superscript C refers to the subcategory consisting of objects whose cohomological amplitude
is bounded below. Note that the similar diagram with C removed is not commutative (see [Gaitsgory
and Rozenblyum 2017, Chapter 4, Remark 5.1.10]). This result shows that we can compute f ŠE via
f Qcoh;ŠE for E 2 coh.Y /. The left adjoint of f�, denoted by f IndCoh;�, exists. It is compatible with tensor
products by quasicoherent complexes and satisfies a similar commutative diagram as diagram (A-1) with
C removed [Gaitsgory and Rozenblyum 2017, Chapter 4, Proposition 3.1.6].

For a scheme X of finite type, by [Gaitsgory and Rozenblyum 2017, Chapter 5, Theorem 4.2.5], there is
a canonical equivalence

DX W IndCoh.X/_ ' IndCoh.X/

such that
IndCoh.X/__ ' IndCoh.X/_ ' IndCoh.X/:

The dual category C_ of a dualizable dg category C can be identified with the category of continuous dg
functors from C to dgk , where dgk is the category of dg k–modules.
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Theorem A.1 Let X be a smooth and proper k–scheme of dimension d for k D C. Let M and N be
objects of coh.X/. There is a bifunctorial quasi-isomorphism

DHomdg
coh.X/.M;N /' Homdg

coh.X/.N;M ˝!X Œd �/:

Proof We will interpret

M_�N 7!DHomdg
coh.X/.M;N / and M_�N 7! Homdg

coh.X/.N;M ˝!Y Œd �/

as dg functors from coh.X �X/ to dgk and show there is a natural isomorphism between them. By
[Gaitsgory and Rozenblyum 2017, Chapter 3, Proposition 3.1.7], we have an equivalence Qcoh.X�X/'
Qcoh.X/˝Qcoh.X/. Therefore, we obtain a coh.X/op˝coh.X/–module structure by letting M and N
vary in coh.X/.

Let f W X ! X �X be the diagonal map and p W X ! Spec k be the counit map. By [Gaitsgory and
Rozenblyum 2017, Chapter 5, Theorem 4.2.5], there is a commutative diagram of dg functors (both the
upper and the lower square commute; see [Gaitsgory 2013, 9.2.3])

IndCoh.k/_
Dk

// IndCoh.k/

IndCoh.X/_
DX

//

.pŠ/_

OO

IndCoh.X/

p�

OO

IndCoh.X �X/_
DX�X

//

f _�

OO

IndCoh.X �X/

f Š

OO

By [Gaitsgory 2013, Corollary 9.5.9], if we restrict to coh.X/, coh.k/ and coh.X � X/, we get a
commutative diagram

coh.k/op Dk
// coh.k/

coh.X/op DX
//

.p�/
op

OO

coh.X/

p�

OO

coh.X �X/op DX�X
//

.f �/op

OO

coh.X �X/

f Š

OO

Then we have a natural isomorphism

p� ıf
Š
ıDX�X 'Dk ı .p�/

op
ı .f �/op:

Since X is smooth, coherent sheaves are dualizable. In this case,

DX .E/DE
_
˝!X Œd �

for E 2 coh.X/ [Gaitsgory 2013, Lemma 9.5.5].3

3Gaitsgory [2013] denotes by !X the Š–pullback pŠk for p WX! k, which differs from the standard notion of dualizing complex
by Œd �.
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Given an object M_�N in coh.X �X/, we may compute

p� ıf
Š
ıDX�X .M

_�N/Š p�
�
f Š
�
.M ˝!X Œd �/� .N_˝!X Œd �/

��
Š p�.f

�.M �N_/˝!X Œd �/

Š Homdg
coh.X/.N;M ˝!X Œd �/

In the last step, we use the condition that X is smooth and proper. On the other hand,

Dk ı .p�/
op
ı .f �/op.M_�N/ŠDk Homdg

coh.X/.M;N /ŠDHomdg
coh.X/.M;N /:

A.2 Inverse dualizing sheaves and bimodules, after Ben-Zvi, Francis and Nadler

The following proposition is a consequence of [Ben-Zvi et al. 2010, Theorem 4.7 and Corollary 4.8]
combined with Grothendieck duality. The proof we give is an elaboration on [Kinjo and Masuda 2023,
Example 2.7].

Proposition A.2 [Kinjo and Masuda 2023] Let Y be a smooth quasiprojective variety of dimension d .
Let G be a perfect generator ofD.QcohY / and B DRHom.G;G/. Then there is a canonical equivalence

D.Qcoh.Y �Y //!D.B˝Bop/

taking ��.†�d!�1Y / to the inverse dualizing complex ‚B D HomBe .B;Be/ of B and ��.OY / to the
identity bimodule B. In particular , if Y is d–Calabi–Yau, then B is bimodule d–Calabi–Yau.

Remark A.3 One could make further use of the results of [Ben-Zvi et al. 2010] to show more precisely
that the derived endomorphism algebra of G�G_ in D.Y �Y / is quasi-isomorphic to Be and that the
canonical equivalence of the theorem is given by

RHom.G�G_/ WD.Y �Y / ��!D.Be/:

Proof Let k DC. We mostly work in the1–category St of k–linear stable presentable1–categories
whose 1–morphisms are cocontinuous k–linear exact1–functors (or equivalently left adjoints of k–linear
exact 1–functors). We recommend [Kinjo and Masuda 2023, Section 2] for a concise but readable
introduction to this setting. Each (large) pretriangulated dg k–category A such that H 0.A/ has arbitrary
(set-indexed) coproducts and is compactly generated gives rise to an object of St ; each dg functor
F WA!B between two such categories such that H 0.F / commutes with arbitrary coproducts gives rise
to a 1–morphism in St and this 1–morphism is an equivalence if and only if H 0.F / is an equivalence.
To make these statements more precise, let us denote by dgcatpretr;˚

k
the category whose

� objects are the pretriangulated dg categories A such that H 0.A/ has arbitrary coproducts and is
compactly generated, and

� morphisms are the dg functors F such that H 0.F / commutes with arbitrary coproducts.
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We then have a canonical 1–functor (where on the left we write the ordinary category instead of its
nerve)

can W dgcatpretr;˚
k

! St:

Each object X of St has an underlying1–category X1 (obtained by forgetting the k–linear structure).
It is a stable presentable1–category and its 1–categorical truncation �.X1/ is naturally a triangulated
category with arbitrary coproducts; see [Lurie 2017, Section 1.4.4]. Similarly, if f W X! Y is a 1–
morphism of St , then its underlying 1–functor f1 W X1 ! Y1 is exact and cocontinuous and its
1–categorical truncation �.f1/ W �.X1/! �.Y1/ is naturally a triangulated functor and commutes with
arbitrary coproducts. To state these facts more precisely, let us denote by Tria˚ the category whose objects
are the triangulated categories with arbitrary coproducts and whose morphisms are the triangle functors
which commute with arbitrary coproducts; let us denote by PrLst Lurie’s1–category of presentable stable
1–categories whose 1–morphisms are the exact left adjoint1–functors. Then we have1–functors

dgcatpretr;˚
k

can
�! St

‹1
�! PrLst

�
�! Tria˚:

The 1–category PrLst is by definition a subcategory of the 1–category Prst of presentable stable
1–categories whose 1–morphisms are all exact1–functors. We will use the following facts:

(a) If f W X! Y is a 1–morphism of Prst, then the values of f and of �.f / on objects are equal
in �.Y/.

(b) A 1–morphism f W X!Y of Prst belongs to PrLst if and only if its truncation �.f / W �.X/! �.Y/

is a (triangle) functor which commutes with arbitrary coproducts; see [Lurie 2017, Proposition
1.4.4.1(2)].

(c) A 1–morphism f W X ! Y of Prst admits a left adjoint f� W Y ! X in Prst if and only if the
(triangle) functor �.f / admits a left adjoint �.f /�. By definition, in this case, the 1–morphism f�

belongs to PrLst . Moreover, the functor �.f�/ is isomorphic to �.f /� since truncation preserves
adjunctions.

For a dg algebra A, we denote by D.A/ the object of St corresponding to the dg category of K–projective
dg A–modules (ie dg A–modules which are homotopy equivalent to cofibrant dg A–modules). Notice that
D.A/ denotes an object of St whereas D.A/ denotes the ordinary derived category (with its triangulated
structure). The ordinary derived category D.A/ is naturally equivalent to the truncation �.D.A/1/.

Let X be a quasiprojective variety (or, more generally, a quasiprojective separated scheme). Let D.X/

denote the object of St corresponding to the dg category of fibrant complexes of quasicoherent sheaves
on X. Then the truncation �.D.X/1/ identifies with the derived category D.Qcoh.X//. Let T be a
compact generator of the unbounded derived category of quasicoherent sheaves on X. Suppose that
T is a fibrant complex of quasicoherent sheaves and let A D Hom.T; T / be its dg endomorphism
algebra. The homotopy category of fibrant complexes of quasicoherent sheaves on X is compactly
generated by T and so the dg A–module Hom.T; I / is K–projective for all fibrant complexes I of
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quasicoherent sheaves on X. Moreover, the dg functor Hom.T; ‹/ induces a quasiequivalence between the
homotopy categories of fibrant complexes on X and K–projective dg A–modules. Thus, the dg functor
Hom.T; ‹/ induces a 1–morphism D.X/! D.A/ in St . Its truncation �.Hom.T; ‹/1/ identifies with
RHom.T; ‹/ WD.Qcoh.X//!D.Qcoh.Y //, which is an equivalence by our assumption on T. Thus, we
have an equivalence D.X/! D.A/ in St .

As detailed in [Lurie 2017, Section 4.8; Kinjo and Masuda 2023, Section 2.2], the1–category St is
endowed with a symmetric monoidal structure. The unit of the monoidal structure on St is the k–linear
(symmetric monoidal) 1–category D.k/. If A1 and A2 are two dg algebras, then, by [Ben-Zvi et al.
2010, Proposition 4.1(2)], we have a canonical equivalence

D.A1/˝D.A2/
��! D.A1˝A2/

induced by the dg functor taking a pair .L;M/ of cofibrant dg modules to the cofibrant A1˝A2–module
L˝M.

For any dg algebra A, the object D.A/ is dualizable in the monoidal 1–category St and its dual is
equivalent to D.Aop/; see [Ben-Zvi et al. 2010, Proposition 4.3(3)]. More precisely, the duality between
D.A/ and D.Aop/ is given by the evaluation morphism

D.Aop/˝D.A/! D.k/

and the coevaluation morphism
D.k/! D.A/˝D.Aop/:

The composition of the coevaluation morphism with the canonical morphism D.A/ ˝ D.Aop/ ��!

D.A˝Aop/ is the morphism
D.k/! D.A˝Aop/

induced by the dg functor taking a complex V to V ˝A, where A is the identity bimodule. The evaluation
morphism is obtained as the composition

D.Aop/˝D.A/ ��! D.Aop
˝A/

evA
�! D.k/;

where the second morphism is induced by the dg functor taking a cofibrant dg bimodule M to M ˝Ae A.
Let us abbreviate evA1 by EvA. Then the truncation �.EvA/ identifies with the derived functor

‹˝L
Ae A WD.A

op
˝A/!D.k/:

When A is smooth, this functor is isomorphic to RHomAe .‚; ‹/, where ‚D‚A DRHomAe .A;Ae/ is
the inverse dualizing bimodule. Thus, it admits the left adjoint

‹˝‚ WD.k/!D.Aop
˝A/:

Hence, by fact (c) above, the 1–functor EvA admits a left adjoint EvA
�

and �.EvA
�
/ is isomorphic to

‹˝L
Ae ‚. In particular, the left adjoint EvA

�
takes k to ‚ (fact (a) above).
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Let X1 and X2 be quasiprojective varieties (or, more generally, quasicompact, separated schemes). They
are in particular perfect stacks in the sense of [Ben-Zvi et al. 2010]. By [loc. cit., Theorem 4.7], we have
a canonical equivalence

D.X1/˝D.X2/
��! D.X1 �X2/:

Fix a quasiprojective variety X. By [Ben-Zvi et al. 2010, Corollary 4.8] and the first three lines of its
proof, the object D.X/ becomes its own dual and the evaluation morphism is given by a composition

D.X/˝D.X/ ��! D.X �X/
evX
�! D.k/;

where the truncation �.evX1/ identifies with the composition of derived functors

D.X �X/
��
�!D.X/

��
�!D.k/:

The coevaluation morphism is the composition

D.k/! D.X �X/ � � D.X/˝D.X/;

where the first morphism is induced by the dg functor taking a complex V to V ˝I, where I is an injective
resolution of ��.OX /.

Now consider the smooth quasiprojective variety Y of the claim. In this case, by Grothendieck duality, the
functor �� WD.Y �Y /!D.Y / admits the left adjoint ��.‹/˝†�d!�1Y . Thus, the composed functor

D.Y �Y /
��
�!D.Y /

��
�!D.k/

admits the left adjoint

��.�
�.‹/˝†�d!�1Y /;

which takes k to ��.†�d!�1Y /. As above, it follows that the 1–functor EvY D evY1 admits a left
adjoint EvY

�
and that this left adjoint takes k to ��.†�d!�1Y /.

As we have seen above, under our hypotheses, the dg functor taking a fibrant complex of quasicoherent
sheaves C to Hom.G; C / induces an equivalence

D.Y / ��! D.B/:

We deduce an equivalence

D.Y �Y / � � D.Y /˝D.Y / ��! D.Y /˝D.Y /_ ��! D.B/˝D.Bop/ ��! D.B˝Bop/:

The intrinsic descriptions above show that, under the 1–categorical truncation of this equivalence, the object
��.†

�d!�1Y / corresponds to the inverse dualizing complex ‚B D HomBe .B;Be/ of B. Moreover, the
object��.OY / corresponds to the identity bimodule B 2D.Be/, as we see by examining the coevaluation
morphisms. Thus, an isomorphism !Y

��! OY yields an isomorphism ‚ ��!†�dB in D.Be/.
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