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2748 Yifei Chen and Constantin Shramov

1 Introduction

Birational automorphism groups of algebraic varieties sometimes have extremely complicated structure.
Also, their finite subgroups may be hard to classify explicitly. To obtain an approach to the description of
finite subgroups, the following definition was introduced by V Popov [60, Definition 2.1].

Definition 1.1 A group � is called Jordan (alternatively, one says that � has the Jordan property) if
there exists a constant J D J.�/, depending only on � , such that any finite subgroup of � contains a
normal abelian subgroup of index at most J .

A classical theorem of C Jordan [36, Section 40] asserts that the general linear group, and thus also every
linear algebraic group, over a field of characteristic zero is Jordan; see also Bieberbach [3], Frobenius [24],
Curtis and Reiner [17, Theorem 36.13], Robinson [68, Theorem A], Tao [80, Section 4], Breuillard [12],
Breuillard and Green [13, Section 2], Mundet i Riera [58, Section 3], or Serre [71, Theorem 9.9]. Serre
proved in [70, Theorem 5.3] that the same property holds for the Cremona group of rank 2, that is, for
the group Bir.P2/ of birational automorphisms of the projective plane, over fields of characteristic zero.
Popov classified in [60, Theorem 2.32] all surfaces over fields of characteristic zero whose birational
automorphism group is Jordan. Sh Meng and D-Q Zhang proved in [53, Theorem 1.6] that the Jordan
property holds for automorphism groups of projective varieties over fields of characteristic zero.

However, all this fails miserably over fields of positive characteristic. Indeed, let p be a prime number, let
Fpk denote the field of pk elements, and let xFp be the algebraic closure of the field Fp . Then the group
PGL2. xFp/ contains the groups PSL2.Fpk / for all positive integers k; the latter finite groups are simple
apart from a (small) finite number of exceptions; see Wilson [84, Section 3.3.1]. This means that the
group PGL2. xFp/ not only fails to be Jordan, but moreover, its finite subgroups cannot contain any proper
subgroups of bounded index. In particular, no straightforward generalizations of the Jordan property,
like the nilpotent Jordan property (see Guld [27]) or the solvable Jordan property (see Prokhorov and
Shramov [62, Section 8]), can hold in this case.

The above observation naturally leads to the following definitions.

Definition 1.2 (Hu [32, Definition 1.2]) Let p be a prime number. A group � is called generalized
p–Jordan if there is a constant J.�/, depending only on � , such that every finite subgroup G of � whose
order is not divisible by p contains a normal abelian subgroup of index at most J.�/.

Definition 1.3 (Hu [32, Definition 1.6] and Brauer and Feit [11]) Let p be a prime number. A group �
is called p–Jordan if there exist constants J.�/ and e.�/, depending only on � , such that every finite
subgroup G of � contains a normal abelian subgroup which has order coprime to p and index at most
J.�/ � jGpj

e.�/, where Gp is a p–Sylow subgroup of G.

Note that every Jordan group is p–Jordan (see Corollary 2.6), and every p–Jordan group is generalized
p–Jordan, but the converse statements do not hold. It was proved in [70, Theorem 5.3] that the Cremona
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group of rank 2 over a field of characteristic p > 0 is generalized p–Jordan. As for the p–Jordan property,
the following analog of the theorem of Jordan is known.

Theorem 1.4 (Brauer and Feit [11] and Larsen and Pink [42, Theorem 0.4]) Let n be a positive integer.
Then there exists a constant J.n/ such that for every prime p and every field k of characteristic p, every
finite subgroup G of GLn.k/ contains a normal abelian subgroup of order coprime to p and index at
most J.n/ � jGpj

3, where Gp is a p–Sylow subgroup of G. In particular , for every field k of characteristic
p > 0, the group GLn.k/ is p–Jordan.

It immediately follows from Theorem 1.4 that (the group of k–points of) every linear algebraic group
over a field k of characteristic p > 0 is p–Jordan.

It appears that the p–Jordan property is useful to study automorphism groups and birational automorphism
groups of algebraic varieties (by which we mean geometrically reduced separated schemes of finite
type) over fields of positive characteristic. The following analog of a theorem of Meng and Zhang
[53, Theorem 1.6] was proved by F Hu.

Theorem 1.5 [32, Theorem 1.10] Let k be a field of characteristic p > 0, and let X be a projective
variety over k. Then the automorphism group Aut.X / is p–Jordan.

The purpose of this paper is to initiate a systematic study of p–Jordan and generalized p–Jordan properties
for groups of birational automorphisms of varieties over fields of positive characteristic, and to generalize
to this setting the relevant results for surfaces over fields of characteristic zero (as usual, by a surface we
mean a variety of dimension 2). Our first goal is to prove an analog of [70, Theorem 5.3].

Theorem 1.6 There exists a constant J such that for every prime p and every field k of characteristic p,
every finite subgroup G of the birational automorphism group Bir.P2/ contains a normal abelian subgroup
of order coprime to p and index at most J � jGpj

3, where Gp is a p–Sylow subgroup of G. In particular ,
for every field k of characteristic p > 0, the group Bir.P2/ is p–Jordan.

Moreover, we obtain an analog of [60, Theorem 2.32]; see also Prokhorov and Shramov [66, Theorem 1.7].

Theorem 1.7 Let k be an algebraically closed field of characteristic p > 0, and let S be an irreducible
algebraic surface over k. The following assertions hold.

(i) If S is birational to a product E � P1 for some elliptic curve E, then the group Bir.S/ is not
generalized p–Jordan.

(ii) If the Kodaira dimension of S is negative but S is not birational to a product E�P1 for any elliptic
curve E, then the group Bir.S/ is p–Jordan but not Jordan.

(iii) If the Kodaira dimension of S is nonnegative , then the group Bir.S/ is Jordan.

Geometry & Topology, Volume 28 (2024)



2750 Yifei Chen and Constantin Shramov

In the proof of Theorem 1.7 we use the following assertion, which makes Theorem 1.5 more precise in
one important particular case.

Proposition 1.8 Let k be an arbitrary field , and let X be a smooth geometrically irreducible projective
variety of nonnegative Kodaira dimension over k. Then the group Aut.X / is Jordan.

Our next result is an analog of Prokhorov and Shramov [65, Proposition 1.6]. It can be regarded as (a
slightly more precise version of) a particular subcase of Theorem 1.7(iii).

Proposition 1.9 There exists a constant J such that for every field k and every geometrically irreducible
algebraic surface S of Kodaira dimension 0 over k, every finite subgroup of Bir.S/ contains a normal
abelian subgroup of index at most J .

Using the terminology of [62, Definition 1.6], one can reformulate Proposition 1.9 by saying that the set
of automorphism groups of all geometrically irreducible algebraic surfaces of Kodaira dimension 0 over
all fields is uniformly Jordan.

Given a variety X and a point P 2X , we denote by Aut.X IP / the stabilizer of P in the group Aut.X /.
The following result is an analog of [65, Proposition 1.3].

Proposition 1.10 There exists a constant B such that for every field k, every smooth geometrically
irreducible projective surface S of Kodaira dimension 0 over k, every k–point P 2 S , and every finite
subgroup G � Aut.S IP / the order of the group G is at most B.

We point out that the assertion of Proposition 1.10 fails in general for stabilizers of closed points on
varieties over algebraically nonclosed fields which are not k–points; see Example 6.7. However, it holds if
one replaces the stabilizers by the inertia groups; see Corollary 11.5. Also, there is the following (partial)
generalization of Proposition 1.10, which holds for varieties of arbitrary dimension over arbitrary fields.
It is an analog of [65, Theorem 1.5].

Theorem 1.11 Let k be a field , and let X be a smooth geometrically irreducible projective variety of
nonnegative Kodaira dimension over k. Then there exists a constant B DB.X / such that for every closed
point P 2X and every finite subgroup G � Aut.X IP / the order of the group G is at most B.

Since some of the birational automorphism groups are not Jordan, one can weaken it by considering
nilpotent subgroups instead of abelian ones in Definition 1.1. Recall that a group G is said to be nilpotent
of class at most c if its upper central series has length at most c; see [34, Section 1D] for details. In
particular, nilpotent groups of class at most 1 are exactly abelian groups, and the only nilpotent group of
class at most 0 is the trivial group. This leads to the notion of nilpotently Jordan groups.

Definition 1.12 [27, Definition 1] A group � is nilpotently Jordan of class at most c if there exists a
constant J.�/, depending only on � , such that any finite subgroup of � contains a normal subgroup N

of index at most J.�/, where N is nilpotent of class at most c.
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We introduce the analogs of this definition suitable for automorphism groups of varieties over fields of
positive characteristic.

Definition 1.13 Let p be a prime number. A group � is generalized nilpotently p–Jordan of class at
most c if there is a constant J.�/, depending only on � , such that every finite subgroup of � whose order
is not divisible by p contains a normal subgroup N of index at most J.�/, where N is nilpotent of class
at most c.

Definition 1.14 Let p be a prime number. A group � is nilpotently p–Jordan of class at most c if there
exist constants J.�/ and e.�/, depending only on � , such that every finite subgroup G of � contains a
normal subgroup N of order coprime to p and index at most J.�/ � jGpj

e.�/, where N is nilpotent of
class at most c, and Gp denotes a p–Sylow subgroup of G.

Similarly to the situation with the usual Jordan property, every nilpotently Jordan group of class at most c

is nilpotently p–Jordan of class at most c (see Corollary 2.6), and every nilpotently p–Jordan group of
class at most c is generalized nilpotently p–Jordan of class at most c, while the converse statements do
not hold. Note also that a group is generalized nilpotently p–Jordan of class at most 1 (resp. nilpotently
p–Jordan group of class at most 1) if and only if it is generalized p–Jordan (resp. p–Jordan).

According to [27, Theorem 2], the birational automorphism group of any (geometrically irreducible)
variety over a field of characteristic zero is nilpotently Jordan of class at most 2. We prove an analog of
this assertion for surfaces over fields of positive characteristic.

Theorem 1.15 Let k be a field of characteristic p > 0. Let S be a geometrically irreducible algebraic
surface over k. Then the group Bir.S/ is nilpotently p–Jordan of class at most 2.

The plan of our paper is as follows. In Section 2 we collect some elementary assertions about groups
and lattices used in the rest of the paper. In Section 3 we recall the basic concepts and facts concerning
automorphism groups and schemes of projective varieties. In Section 4 we discuss the group of connected
components of the automorphism group scheme of a projective variety following [53]. In Section 5 we re-
call the basics of the Minimal Model Program in dimension 2, including some theorems from its equivariant
version. In Section 6 we collect auxiliary facts about automorphism groups of abelian varieties. In Section 7
we make some observations on automorphism groups of varieties of nonnegative Kodaira dimension and
prove Proposition 1.8. In Section 8 we discuss automorphism groups of smooth projective curves. In
Section 9 we prove Theorem 1.6. In Section 10 we prove Theorem 1.7. In Section 11 we study automor-
phism groups of surfaces of zero Kodaira dimension and prove Propositions 1.9 and 1.10. In Section 12
we prove Theorem 1.11. In Section 13 we prove Theorem 1.15. In Section 14 we discuss some open
questions concerning (birational) automorphism groups of varieties over fields of positive characteristic.

In some cases, the proofs of our main results go along the same lines as the proofs of the corresponding
results in characteristic 0. This applies to Propositions 1.9 and 1.10, Theorem 1.11 and, to a certain
extent, to Theorem 1.7. The proof of Theorem 1.6 mostly follows the proof of [70, Theorem 5.3] but

Geometry & Topology, Volume 28 (2024)



2752 Yifei Chen and Constantin Shramov

contains additional arguments needed to treat finite subgroups of Bir.P2/ whose orders are divisible by the
characteristic of the field. Proposition 1.8 and its proof look new in the context of positive characteristic.
Theorem 1.15 (as well as the accompanying Definitions 1.13 and 1.14) and its proof are also entirely
new; we point out that the proof does not follow the ideas of [27], but is rather inspired by the approach
of Serre [70, Theorem 5.3]. Many statements collected in the preliminary sections of our paper are well
known to experts and are widely used at least over fields of characteristic zero, but are not readily available
in the literature in the positive characteristic setup. Since one of the goals of our paper is to provide a
survey of the methods of studying finite groups of birational automorphisms in arbitrary characteristic, in
such cases we take the opportunity to spell out the details of the proofs. This allows us either to emphasize
that the proofs do not depend on the characteristic of the base field, see eg Lemmas 3.6 and 4.1 and
Corollary 7.4; or to be able to mention the (minor) differences in the proofs appearing in the case of
positive characteristic; see eg Theorem 3.7.

Throughout the paper, we use the following standard notation. Given a field k, we denote by xk its
algebraic closure. If k�K is a field extension, and X is a scheme defined over k, we denote by XK the
extension of scalars of X to K. By a k–point of a scheme X over k we mean its closed point of degree 1;
the set of all k–points of X is denoted by X.k/.

We are grateful to Yi Gu, Yuri Prokhorov, Dmitry Timashev, Vadim Vologodsky and Jinsong Xu for
useful discussions. Chen was partially supported by NSFC grants 11688101 and 11771426. The work of
Shramov was performed at the Steklov International Mathematical Center and supported by the Ministry of
Science and Higher Education of the Russian Federation agreement 075-15-2022-265. Shramov was also
supported by the HSE University Basic Research Program, Russian Academic Excellence Project “5-100”,
and by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.

2 Preliminaries

In this section we collect auxiliary facts about groups and lattices.

Group theory Recall that a subgroup of a group G is called characteristic if it is preserved by all
automorphisms of G.

Example 2.1 Let G be a finite group that has a normal p–Sylow subgroup Gp . Then Gp is characteristic
in G. Indeed, it consists of all elements of G whose order is a power of p.

Example 2.2 Let GŠG0ÌG00 be a finite group. Suppose that the orders of G0 and G00 are coprime. Then
G0 is a characteristic subgroup of G. Indeed, it consists of all elements of G whose order divides jG0j.

Example 2.3 Let H be an abelian group generated by its elements h1; : : : ; hk , and let r be a positive
integer. Then the subgroup H 0 generated by hr

1
; : : : ; hr

k
coincides with the subgroups that consists of r th

powers of elements of H . Therefore, H 0 is a characteristic subgroup of index at most rk in H .
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Remark 2.4 Let G be a group, let H be its normal subgroup, and let F be a normal subgroup of H .
Then F is not necessarily normal in G. However, if F is characteristic in H , then it is normal in G.

It appears that the Jordan property implies the p–Jordan property for every p. To see this, we make an
auxiliary observation.

Lemma 2.5 Let p be a prime number , let J be a positive integer , and let G be a finite group. Let zA be a
normal subgroup of index at most J in G. Suppose that zA is abelian (resp. nilpotently Jordan of class at
most c). Then G contains a normal subgroup A such that the minimal number of elements that generate A

does not exceed that of zA, the order of A is coprime to p, the index of A in G is at most J � jGpj, where
Gp is a p–Sylow subgroup of G, and A is abelian (resp. nilpotently Jordan of class at most c).

Proof Let zAp be the p–Sylow subgroup of zA. Then

zAŠ zAp �A;

where the group A is isomorphic to the product of the q–Sylow subgroups of zA for all prime numbers q

different from p; see [34, Theorem 1.26]. In particular, the group A is abelian (resp. nilpotent of class
at most c), and its order is coprime to p. Also, if zA can be generated by the elements za1; : : : ; zar , then
the projections of these elements to A generate A. Note that A is a characteristic subgroup of zA by
Example 2.2. Thus, A is normal in G. Finally, one can see that the index of A in G is at most

J � j zApj6 J � jGpj:

Corollary 2.6 Let p be a prime number , and let � be a group. Suppose that � is Jordan (resp. nilpotently
Jordan of class at most c). Then � is p–Jordan (resp. nilpotently p–Jordan of class at most c).

Proof Let G be a finite subgroup of � . Then G contains a normal subgroup zA such that its index is
bounded by some constant J D J.�/ independent of G, and zA is abelian (resp. nilpotent of class at
most c). Therefore, the assertion follows from Lemma 2.5.

The following fact is standard.

Lemma 2.7 Let G be a finite group , and let G0 be its normal subgroup. Let A0 �G0 be a subgroup that
is normal in G0. Denote by B the index of G0 in G, and by J the index of A0 in G0. Then A0 contains a
subgroup A such that A is normal in G, and the index of A in G is at most BJ B .

Proof The group G acts on G0 by conjugation, and the conjugation by the elements of G0 preserve A0.
Let A0

1
DA0; : : : ;A0r be the orbit of A0 under this action. Then r 6 jG=G0j6 B, so that the index of the

intersection
AD

r\
iD1

A0i

in G0 is at most J r 6 J B . Thus, A is a normal subgroup of index at most BJ B in G.
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2754 Yifei Chen and Constantin Shramov

Lemma 2.7 can be applied to find normal subgroups of a given group with the properties that are inherited
by subgroups, like the properties of being abelian or nilpotent. Moreover, if under the assumptions of
Lemma 2.7 the group A0 is abelian, then one can find a normal abelian subgroup A in G such that the
index of A in G is at most BJ 2; see [34, Theorem 1.41]. However, as is pointed out in [32, Remark 3.1],
in the latter case we cannot guarantee that A is contained in A0, and thus have no control on divisibility
properties of the order of A (which is essential for the notions of a p–Jordan group or a nilpotently
p–Jordan group).

One says that a group � has bounded finite subgroups if there exists a constant B DB.�/ such that every
finite subgroup of � has order at most B. The next lemma allows one to check Jordan-type properties for
certain extensions of groups.

Lemma 2.8 (cf [60, Lemma 2.11]) Let p be a prime number , and let

1! � 0! �! � 00

be an exact sequence of groups. Suppose that � 00 has bounded finite subgroups. Suppose also that
the group � 0 is Jordan (resp. p–Jordan , generalized p–Jordan , nilpotently Jordan of class at most c,
nilpotently p–Jordan of class at most c, generalized nilpotently p–Jordan of class at most c). Then the
group � is Jordan (resp. p–Jordan , generalized p–Jordan , nilpotently Jordan of class at most c, nilpotently
p–Jordan of class at most c, generalized nilpotently p–Jordan of class at most c).

Proof By assumption, we know that there exists a constant B such that every finite subgroup of � 00 has
order at most B. Let G be a finite subgroup of � , and let G0 DG \� 0. Then the index of G0 in G is at
most B.

Suppose that � 0 is Jordan, or that � 0 is generalized p–Jordan and the order of G is coprime to p. Then
G0 contains a normal abelian subgroup of index at most J for some constant J D J.� 0/ that does not
depend on G0. Therefore, G contains a normal abelian subgroup of index at most BJ B by Lemma 2.7.

Similarly, suppose that � 0 is nilpotently Jordan of class at most c, or that � 0 is generalized nilpotently
p–Jordan of class at most c, and the order of G is coprime to p. Then G0 contains a normal nilpotent
subgroup of class at most c that has index at most J for some constant J D J.� 0/. Therefore, G contains
a normal nilpotent subgroup of class at most c that has index at most BJ B by Lemma 2.7.

Now suppose that � 0 is p–Jordan (resp. nilpotently p–Jordan of class at most c). Let Gp and G0p be
p–Sylow subgroups of G and G0. The group G0 contains a normal subgroup A0 of order coprime to p and
index at most J � jG0pj

e for some constants J DJ.� 0/ and eD e.� 0/ such that A0 is abelian (resp. nilpotent
of class at most c). Applying Lemma 2.7, we find a normal subgroup A in G such that A is abelian
(resp. nilpotent of class at most c), its order is coprime to p, and its index in G is at most

B � .J � jG0pj
e/B D BJ B

� jG0pj
Be 6 BJ B

� jGpj
Be:
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The next results are partial analogs of [62, Lemma 2.8] for p–Jordan groups.

Lemma 2.9 Let p be a prime number , and let

1! F !H ! xH ! 1

be an exact sequence of finite groups such that xH is abelian and generated by r elements. Suppose that
jF j6 B � jFpj

e for some positive constants B and e, where Fp is a p–Sylow subgroup of F , and suppose
that F is generated by s elements. Then H contains a characteristic abelian subgroup of order coprime
to p and index at most BrCs � jHpj

e.rCs/C1, where Hp is a p–Sylow subgroup of H .

Proof First, let us bound the index of the center Z of the group H . Let K � H be the commutator
subgroup. Since xH is abelian, we see that K is contained in F . For every element x 2 H , denote by
Z.x/ the centralizer of x in H , and by K.x/ the set of elements of the form hxh�1x�1 for various
h 2H . Then the index of Z.x/ does not exceed jK.x/j6 jKj.

By assumption, one can choose r C s elements x1; : : : ;xrCs generating H . Thus

Z DZ.x1/\ � � � \Z.xrCs/:

Hence
ŒH WZ�6 ŒH WZ.x1/� � � � ŒH WZ.xrCs/�6 jK.x1/j � � � jK.xrCs/j

6 jKjrCs 6 jF jrCs 6 BrCs
� jFpj

e.rCs/:

Now let Z0 be the maximal subgroup in Z whose order is coprime to p. Then Z0 is a characteristic
abelian subgroup of H , and the index of Z0 in Z equals the order of the p–Sylow subgroup Zp of Z.
Therefore, we have

ŒH WZ0�D ŒH WZ� � ŒZ WZ0�6 .BrCs
� jFpj

e.rCs// � jZpj

6 BrCs
� jFpj

e.rCs/
� jHpj6 BrCs

� jHpj
e.rCs/C1:

Corollary 2.10 Let p be a prime number , and let

1! � 0! �! � 00

be an exact sequence of groups. Suppose that � 00 is p–Jordan , and that there exist positive constants r , B,
e and s such that

� every finite abelian subgroup of � 00 whose order is coprime to p is generated by at most r elements ,

� for every finite subgroup F of � 0, one has jF j6 B � jFpj
e, where Fp is a p–Sylow subgroup of F ,

and F is generated by at most s elements.

Then the group � is p–Jordan.
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Proof Let G be a finite subgroup of � . Then G fits into an exact sequence

1! F !G! xG! 1;

where F � � 0 and xG � � 00. By assumption, there exist positive constants xB and xe that do not depend
on xG such that xG contains a normal abelian subgroup xH whose order is coprime to p and whose index
is bounded by xB � j xGpj

xe, where xGp is a p–Sylow subgroup of xG. Moreover, xH can be generated by
r elements. Let H be the preimage of xH in G. According to Lemma 2.9, there is a characteristic abelian
subgroup A in H whose order is coprime to p and whose index is at most BrCs � jHpj

e.rCs/C1, where
Hp is a p–Sylow subgroup of H . Therefore, A is a normal abelian subgroup of G of index at most

. xB � j xGpj
xe/ � .BrCs

� jHpj
e.rCs/C1/6 xBBrCs

� jGpj
xeCe.rCs/C1;

where Gp is a p–Sylow subgroup of G.

We will use the following general fact.

Lemma 2.11 Let p be a prime number , and let m be a nonnegative integer. Let F be a group containing a
normal subgroup F 0Š .Z=pZ/m, and let g be an element of F . Then for some positive integer t 6 pm�1,
the element gt commutes with F 0.

Proof Let L� F be the subgroup generated by g. The action of L on F 0 defines a homomorphism

� WL! Aut.F 0/Š GLm.Fp/:

It is known that the order of any element in GLm.Fp/ does not exceed pm� 1; see eg [18, Corollary 2].
Therefore, gt is contained in the kernel of � for some t 6 pm� 1, and the required assertion follows.

Lemma 2.11 allows us to obtain a version of Lemma 2.9 that is applicable for a certain class of groups
without a bound on the number of generators.

Lemma 2.12 Let p be a prime number , and let

1! F !H ! xH ! 1

be an exact sequence of finite groups such that xH is abelian and is generated by r elements. Suppose that
the p–Sylow subgroup Fp of F is normal in F , and Fp Š .Z=pZ/m for some nonnegative integer m.
Furthermore , suppose that jF j 6 B � jFpj

e for some positive constants B and e, and suppose that F is
generated by Fp and s additional elements. Then H contains a characteristic abelian subgroup of order
coprime to p and index at most BrCsC1 � jHpj

e.rCsC1/CrC1, where Hp is a p–Sylow subgroup of H .

Proof Let us use the notation of the proof of Lemma 2.9. We are going to estimate the index of the
center Z of H , and its maximal subgroup Z0 of order coprime to p.

Let x1; : : : ;xr be the elements of H such that their images in xH generate xH , and let y1; : : : ;ys be the
elements of F such that Fp and y1; : : : ;ys generate F . Set

RDZ.x1/\ � � � \Z.xr /\Z.y1/\ � � � \Z.ys/:
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Then

ŒH WR�6 jK.x1/j � � � jK.xr /j � jK.y1/j � � � jK.ys/j6 jKjrCs 6 jF jrCs 6 BrCs
� jFpj

e.rCs/:

Let xR be the image of R in xH . Being a subgroup of an abelian group generated by r elements, xR can
be generated by r elements as well. Let z1; : : : ; zr be elements of R whose images in xH generate xR.
Then z1; : : : ; zr normalize the group Fp by Example 2.1. According to Lemma 2.11, there exist positive
integers ti 6 pm�1, 1 6 i 6 r , such that the elements z

ti

i commute with the subgroup Fp . Therefore, the
group R0 generated by z

ti

i , 1 6 i 6 r , is contained in the center Z of H . On the other hand, the image xR0

of R0 in xH is a subgroup of index at most t1 � � � tr in xR, which implies that

ŒR WR0�6 t1 � � � tr � jF j< pmr
�B � jFpj

e
D B � jFpj

eCr :

Finally, as in the proof of Lemma 2.9, we have

ŒH WZ0�D ŒH WZ� � ŒZ WZ0�6 ŒH WR0� � ŒZ WZ0�D ŒH WR� � ŒR WR0� � ŒZ WZ0�

6 .BrCs
� jFpj

e.rCs// � .B � jFpj
eCr / � jHpj

6 BrCsC1
� jHpj

e.rCsC1/CrC1:

Automorphisms of lattices Given a prime number `, we denote by Z` the ring of `–adic integers. The
following assertion is well known, and is proved similarly to the classical theorem of H Minkowski
[54, Section 1]; see also Serre [69, Lemma 1] or [71, Theorem 9.9].

Lemma 2.13 Let n be a positive integer , let ` be a prime , and let G be a finite subgroup of GLn.Z`/.
Then G is isomorphic to a subgroup of GLn.Z=`Z/ if `¤ 2, and to a subgroup of GLn.Z=4Z/ if `D 2.
In particular , the group GLn.Z`/ has bounded finite subgroups.

Proof First assume that `¤ 2. Let
� W GLn.Z`/! GLn.Z=`Z/

be the natural homomorphism. We claim that its kernel does not contain nontrivial elements of finite
order. Indeed, denote by 1 the identity matrix in GLn.Z`/, and suppose that

M D 1C`M 0

is an element of GLn.Z`/ such that M r D 1 for some positive integer r . Set

(2-1) log M D `M 0
�
.`M 0/2

2
C � � �C .�1/k�1 .`M

0/k

k
C � � � :

It is easy to see that the series on the right-hand side of (2-1) converges in GLn.Z`/, and so log M is a
well-defined element of GLn.Z`/; also, we see that log M is divisible by ` in GLn.Z`/. Now let L be
an arbitrary element divisible by ` in GLn.Z`/. Set

(2-2) exp LD 1CLC � � �C
Lk

k!
C � � � :
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Note that the `–adic valuation of Lk is at least k, while the `–adic valuation of k! equals�
k

`

�
C

�
k

`2

�
C � � � 6 k

�
1

`
C

1

`2
C � � �

�
D

k

`� 1
6 k

2
:

Thus the series on the right-hand side of (2-2) converges in GLn.Z`/, and so exp L is a well-defined
element of GLn.Z`/. We conclude that

exp log M DM and r log M D log M r
D 0:

Hence log M D 0 and M D 1.

Now assume that `D 2. Arguing as above, one shows that the kernel of the natural homomorphism

� W GLn.Z2/! GLn.Z=4Z/

does not contain nontrivial elements of finite order.

Lemma 2.13 allows us to deduce more traditional versions of Minkowski’s theorem.

Corollary 2.14 Let ƒ be a finitely generated abelian group. Then the group Aut.ƒ/ has bounded finite
subgroups.

Proof There is an exact sequence of groups

1! .ƒtors/
�n
�Aut.ƒtors/! Aut.ƒ/! GLn.Z/! 1;

where ƒtors is the torsion subgroup of ƒ, and n is the rank of the free abelian group ƒ=ƒtors. The group
GLn.Z/ is a subgroup of GLn.Z`/ for any prime `. Thus, it has bounded finite subgroups by Lemma 2.13.
On the other hand, the group Aut.ƒtors/ is finite, and the required assertion follows.

Corollary 2.15 (cf [23, Theorem F]) For every positive integer n, the group GLn.Q/ has bounded finite
subgroups.

Proof If G is a finite subgroup of GLn.Q/, then it acts by automorphisms of some sublattice Zn �Qn.
This means that G is isomorphic to a subgroup of GLn.Z/, and thus GLn.Q/ has bounded finite by
Corollary 2.14.

Projective general linear groups We conclude this section by an easy consequence of Theorem 1.4.

Corollary 2.16 Let n be a positive integer. Then there exists a constant JPGL.n/ such that every finite
subgroup G of PGLn.k/, where k is an arbitrary field of characteristic p > 0, contains a normal abelian
subgroup of order coprime to p and index at most JPGL.n/ � jGpj

3, where Gp is a p–Sylow subgroup
of G.

Proof The adjoint representation embeds the group PGLn.k/ into GLn2.k/, so Theorem 1.4 applies.
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3 Automorphism groups

In this section we recall the basic concepts and facts about varieties and their automorphisms.

General settings The following terminology is standard (although not universally accepted); see for
example [10, Chapters AG.12 and I.1], and compare [14, Definition 2.1.5].

Definition 3.1 An algebraic group over a field k is a geometrically reduced group scheme of finite type
over k.

In other words, an algebraic group is a variety with a structure of a group scheme. Note that any algebraic
group is smooth; see for instance [14, Proposition 2.1.12].

If X is an arbitrary algebraic variety over a field k, then its automorphisms form a group, which we
denote by Aut.X /. If K � k is a field extension, and XK is the extension of scalars of X to K, then
every automorphism of X defines an automorphism of XK ; in other words, one has

Aut.X /� Aut.XK /:

If X is irreducible, then one can consider its birational automorphism group Bir.X /; one has a natural
embedding Aut.X /� Bir.X /. If XK is still irreducible, then Bir.X /� Bir.XK /. In this paper, we will
not be interested in any additional structures on the group Bir.X /; the reader can find a discussion of
these in some particular cases over fields of characteristic zero in [29] and [30]; see also [7]. However,
we will need some structure related to the automorphism group.

Let X be a projective variety over a field k. Then the automorphism functor of X is represented by
the automorphism group scheme AutX which is locally of finite type; see eg [14, Theorem 7.1.1]. The
automorphism group Aut.X / is just the group of k–points of AutX , that is,

Aut.X /D AutX .k/:

Let Aut0
X be the neutral component of AutX ; then Aut0

X is a connected group scheme of finite type over k,
but it may be nonreduced, even if k is algebraically closed and X is smooth; see eg [14, Example 7.1.5].
Let Aut0

X ;red be the maximal reduced subscheme of Aut0
X . If the field k is perfect, then Aut0

X ;red is a
group scheme; see [14, Section 2.5]. (Note that over a nonperfect field the maximal reduced subscheme
of a group scheme is not necessarily a group scheme itself [14, Example 2.5.3].) Furthermore, in this case
the fact that Aut0

X ;red is reduced implies that it is geometrically reduced, and thus Aut0
X ;red is an algebraic

group; in particular, this means that Aut0
X ;red is smooth. We set

Aut0.X /D Aut0
X ;red.k/D Aut0

X .k/:

Note that Aut0.X / always has a group structure, regardless of whether the field k is perfect or not.
Anyway, in this paper we will need to deal with the group Aut0.X / and the group scheme Aut0

X only in
the case when the base field is algebraically closed.

The reader is referred to the surveys [14, Section 7.1] and [15, Section 2.1] for more details on automor-
phism groups and automorphism group schemes.
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Resolution of singularities and regularization of birational maps Resolution of singularities is
available in arbitrary dimension over fields of characteristic 0, and in small dimensions over fields of
positive characteristic. We will need it in the classical case of surfaces.

Theorem 3.2 [46, Theorem; 45, Corollary 27.3] Let S be a geometrically irreducible algebraic surface
over a field k. Then there exists a minimal resolution of singularities of S . More precisely , there exists a
regular surface zS over k with a proper birational morphism � W zS ! S such that any proper birational
morphism from a regular projective surface to S factors through � . In particular , if the field k is perfect ,
then the surface zS is smooth.

Remark 3.3 If in the notation of Theorem 3.2 the surface S is projective, then the surface zS is projective
as well. Indeed, zS is complete and regular. Hence zSxk is projective according to [39, Corollary IV.2.4],
which implies that zS is projective; see eg [25, Corollaire 9.1.5].

In particular, Theorem 3.2 and Remark 3.3 tell us that every geometrically irreducible algebraic surface
has a regular projective birational model.

Corollary 3.4 Let S be a geometrically irreducible algebraic surface over a field k. Then there exists a
regular projective surface zS over k birational to S . In particular , if the field k is perfect , then the surface
zS is smooth.

Proof Replace S by its affine open subset, then replace the latter by a projective completion, and take a
resolution of singularities.

The factorization property provided by Theorem 3.2 implies that the minimal resolution of singularities
behaves well with respect to the automorphism group.

Corollary 3.5 Let S be a geometrically irreducible algebraic surface , and let � W zS ! S be the minimal
resolution of singularities. Then there is an action of the group Aut.S/ on zS such that the morphism � is
Aut.S/–equivariant.

The following version of Corollary 3.4 taking into account a birational action of a finite group is classical
and widely used, at least in the case of zero characteristic; see eg [20, Lemma 3.5] or [62, Lemma–
Definition 3.1]; cf [83; 16]. We recall its proof for the convenience of the reader.

Lemma 3.6 Let S be a geometrically irreducible algebraic surface over a field k, and let G � Bir.S/
be a finite group. Then there exists a regular projective surface zS with a biregular action of G and a
G–equivariant birational map zS Ü S . In particular , if the field k is perfect , then the surface zS is smooth.

Proof Let yV be a normal projective model of the field of invariants k.S/G , and let yS be the normalization
of yV in the field k.S/. Then there is a regular action of G on yS and a G–equivariant birational
map � W yS Ü S .
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Let � W zS ! yS be the minimal resolution of singularities provided by Theorem 3.2. Then zS is a regular
geometrically irreducible surface; also, zS is projective by Remark 3.3. According to Corollary 3.5, the
action of G lifts to zS so that the morphism � is G–equivariant. Therefore, we obtain a G–equivariant
birational map � ı� W zS Ü S .

Stabilizer of a point Let us recall an auxiliary result on fixed points of automorphisms of finite order
which is well known and widely used (especially in characteristic 0). We provide its proof to be self-
contained. Given an algebraic variety X over a field k and a k–point P 2 X , denote by TP .X / the
Zariski tangent space to X at P .

Theorem 3.7 Let X be an irreducible algebraic variety over a field k of characteristic p. Let G be a
finite group acting on X with a fixed k–point P . Suppose that jGj is not divisible by p. Then the natural
representation

d WG! GL.TP .X //

is an embedding.

Proof Suppose that d is not an embedding. Replacing G by the kernel of d , we may assume that G acts
trivially on TP .X /. So G acts trivially on

mP=m
2
P Š TP .X /

_;

where mP � OP is the maximal ideal in the local ring of the point P on X . The quotient morphism
OP ! OP=mP Š k admits a natural section, which gives a G–invariant decomposition OP Š k˚mP

into a direct sum of vector subspaces.

Consider the G–invariant filtration
mP �m2

P �m3
P � � � � :

Recall that mP is generated by elements of degree 1, ie generated by a collection of elements whose
images form a basis in mP=m

2
P

. Hence G acts trivially on mn
P
=mnC1

P
for every positive integer n. Since

the order of G is not divisible by p, every representation of G is completely reducible. Therefore, we
have an isomorphism of G–representations

mP Š

1M
nD1

mn
P=m

nC1
P

:

Thus, the action of G on mP and OP is trivial.

Let U � X be an affine open subset containing the point P . Then U 0 D �.U / is also an affine open
subset of X containing P . Let R and R0 be the coordinate rings of U and U 0, respectively. Then R

and R0 are subalgebras of OP , and one has ��R0DR. Since the action of � on OP is trivial, we conclude
that R D R0, and � acts trivially on R. This means that U is �–invariant, and � acts trivially on U .
Finally, since X is irreducible, U is dense in X ; hence � acts trivially on the whole X .
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4 Group of connected components

In this section we recall the following assertion established in [53, Lemma 2.5]; compare with the proof
of [32, Theorem 1.9].

Lemma 4.1 Let X be a (possibly reducible) projective variety. Then the group Aut.X /=Aut0.X / has
bounded finite subgroups.

We provide the proof of Lemma 4.1 for the reader’s convenience. The argument below is mostly taken
from [53, Remark 2.6]. Let us start with a simple observation.

Lemma 4.2 Let X be a projective variety over a field k. Then there is an embedding

� W Aut.X /=Aut0.X / ,! Aut.Xxk/=Aut0.Xxk/:

Proof Let yg be an element of the quotient group Aut.X /=Aut0.X /, and let g be its preimage in Aut.X /.
Thus, g is a k–point of the group scheme AutX . Considering it as a xk–point of AutX , we obtain the
map � .

To show that � is injective, suppose that yg is a nontrivial element, so that g is not contained in Aut0.X /.
In other words, the corresponding k–point of AutX is not contained in the closed subgroup Aut0

X , which
is also defined over k. Therefore, g is not contained in the set of xk–points of Aut0

X , which means that it
defines a nontrivial element of the quotient group Aut.Xxk/=Aut0.Xxk/ as well.

To prove Lemma 4.1, we will use the following standard fact.

Theorem 4.3 [39, Theorem II.2.1] Let X be a projective variety over an algebraically closed field. Let
F be a coherent sheaf , and let G be a numerically trivial line bundle on X . Then the Euler characteristic
of F equals the Euler characteristic of F˝G.

Given a projective variety X over an algebraically closed field k, let NS.X / denote Neron–Severi group
of line bundles on X modulo algebraic equivalence. Recall from [40, Théorème 5.1] that NS.X / is a
finitely generated abelian group. If L is a line bundle on X , we define the group scheme AutX IŒL� as
the stabilizer in AutX of the class of L in NS.X /. Obviously, one has Aut0

X � AutX IŒL�; this means
that Aut0

X is the neutral component of AutX IŒL�.

Lemma 4.4 Let X be a projective variety over an algebraically closed field , and let L be an ample line
bundle on X . Then AutX IŒL� is a group scheme of finite type.

Proof One can identify AutX with an open subscheme of the Hilbert scheme Hilb.X �X / by associating
with each automorphism f its graph �f � X �X ; see [22, Theorem 5.23], and the exercise after this
theorem. Set

LX�X D p�1L˝p�2L;
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where p1;p2 WX �X !X are the projections to the first and the second factor, respectively. Then LX�X

is an ample line bundle on X �X . Its restriction to �f (identified with X via the projection p1) is the
line bundle

Lf ŠL˝f �L:

If f preserves the class ŒL� 2 NS.X /, then Lf is algebraically equivalent to L2; in particular, these
line bundles are numerically equivalent. Therefore, by Theorem 4.3 the Hilbert polynomial of �f (with
respect to the ample line bundle LX�X on X ) is independent of f provided that f 2 AutX IŒL�.

Let P be this polynomial. Then AutX IŒL� is contained in the Hilbert scheme HilbP .X �X /. Recall that
HilbP .X �X / is projective; see for instance [41, Theorem I.1.4]. Set

AutP
X D AutX \HilbP .X �X /� Hilb.X �X /:

Then AutP
X is an open subscheme of HilbP .X �X /, and so it is quasiprojective. Furthermore, AutX IŒL�

is a closed subscheme of AutP
X . Hence, AutX IŒL� is quasiprojective as well, thus it is of finite type.

Denote by AutŒL�.X / the group of k–points of AutX IŒL�. The following assertion is implied by Lemma 4.4.

Corollary 4.5 Let X be a projective variety over an algebraically closed field k, and let L be an ample
line bundle on X . Then AutŒL�.X /=Aut0.X / is a finite group.

Proof It follows from Lemma 4.4 that AutX IŒL�=Aut0
X is a finite group scheme. Therefore, its group of

k–points
.AutX IŒL�=Aut0

X /.k/Š AutŒL�.X /=Aut0.X /

is finite.

Proof of Lemma 4.1 By Lemma 4.2, we may assume that X is defined over an algebraically closed
field. Choose an ample line bundle L on X . Let G be a finite subgroup of the group Aut.X /=Aut0.X /.
Since Aut0.X / acts trivially on the Neron–Severi group NS.X /, there is a natural action of G on NS.X /.
One has an exact sequence of groups

1!K!G! xG! 1;

where xG is the image of the representation of G in NS.X /, and K is the kernel of this representation.
Since NS.X / is a finitely generated abelian group, by Corollary 2.14 there is a constant M DM.X /

such that every finite subgroup of Aut.NS.X // has order at most M ; in particular, one has j xGj6 M . On
the other hand, the group K preserves the ample divisor class ŒL� 2 NS.X /, and hence

K � AutŒL�.X /=Aut0.X /:

By Corollary 4.5 the group AutŒL�.X /=Aut0.X / is finite. Therefore, we have

jGj D j xGj � jKj6 M � jAutŒL�.X /=Aut0.X /j:
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To conclude this section, let us make the following remark. For every projective variety X defined over a
field k, there exists a natural embedding of groups

Aut.X /=Aut0.X / ,! .AutX =Aut0
X /.k/:

However, over an algebraically nonclosed field this embedding may fail to be an isomorphism.

Example 4.6 Let kDQ.!/, where ! is a nontrivial cubic root of unity. Let E be the curve given in P2

with homogeneous coordinates x, y and z by equation

y2z D x3
C z3;

and choose .0 W 1 W 0/ to be the marked point on E. Then E is an elliptic curve such that

AutE Š Aut0
E Ì Z=6Z;

and all six xk–points of the group scheme AutE=Aut0
E are defined over k. Note that all the 2–torsion

xk–points of Aut0
E are also defined over k; let � be one of the nontrivial 2–torsion k–points of Aut0

E .
Choose an auxiliary quadratic extension K of k, say, KDk.

p
7/. Let � be the 1–cocycle corresponding to

the homomorphism Gal.K=k/! Aut.E/ that sends the generator of Gal.K=k/Š Z=2Z to � 2 Aut.E/.
Let E0 be the twist of E by �. Then E0 is a smooth geometrically irreducible projective curve of genus 1

over k. One can check that E0.k/D¿. Moreover, the Jacobian J.E0/ is the twist of the Jacobian J.E/

by the same cocycle �. However, � acts trivially on J.E/, and thus J.E0/ Š J.E/. Since E has a
k–point, we also have an isomorphism J.E/ŠE.

Now observe that the group scheme AutE0 acts on the curve E Š J.E0/, and Aut0
E0 is contained in the

kernel of this action. This gives rise to a homomorphism

AutE0=Aut0
E0 ! AutE=Aut0

E ;

which becomes an isomorphism after the extension of scalars to xk. Thus, this homomorphism is actually
an isomorphism. Since AutE=Aut0

E has six k–points, we conclude that AutE0=Aut0
E0 has six k–points

as well. On the other hand, the group Aut.E0/=Aut0.E0/ does not contain elements of order 6. Indeed, it
follows from the Lefschetz fixed-point formula that any preimage of such an element in Aut.E0/ would
have a unique fixed point on E0

xk
ŠExk, and so this point would be defined over k.

5 Minimal models

In this section, we recall the notion of the Kodaira dimension, and discuss some facts concerning
classification of surfaces and the Minimal Model Program in dimension 2.

Kodaira dimension One of the most important birational invariants of projective varieties is the Kodaira
dimension. Given a smooth geometrically irreducible projective variety, we will denote by !X the
canonical sheaf on X , and by KX the canonical class of X , ie the class of !X in Pic.X /.
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Definition 5.1 [1, Definition 5.6] Let X be a smooth irreducible projective variety over an algebraically
closed field. The Kodaira dimension �.X / of X is defined by

�.X /D

(
tr deg

�L1
nD0 H 0.X; !˝n

X
/
�
� 1 if tr deg

�L1
nD0 H 0.X; !˝n

X
/
�
> 0;

�1 if H 0.X; !˝n
X
/D 0 for all n > 1:

Remark 5.2 Alternatively, one can define �.X / as the maximal dimension of an image of X with respect
to the rational map given by the pluricanonical linear systems jmKX j for all m > 1; see [33, Section 10.5].

For an arbitrary field k, we define the Kodaira dimension �.X / of a smooth geometrically irreducible
projective variety X as the Kodaira dimension of Xxk. One has

�16 �.X /6 dim X I

see eg [1, Lemma 5.5]. Kodaira dimension is a birational invariant for smooth geometrically irreducible
projective varieties; see [33, Section 10.5]. Moreover, the following assertion holds.

Lemma 5.3 [41, Corollary IV.1.11] Let X be a smooth geometrically irreducible projective variety.
Suppose X is birational to Y �P1, where Y is a (possibly singular) algebraic variety. Then �.X /D�1.

In the case of surfaces (and in other cases when the resolution of singularities is available) one can extend
the definition of Kodaira dimension a little further. Namely, for an irreducible algebraic surface S over
an algebraically closed field, the Kodaira dimension of S is defined as the Kodaira dimension of (any)
smooth projective birational model of S (which exists by Corollary 3.4). Note that due to birational
invariance of Kodaira dimension, this definition does not depend on the choice of a birational model. If S

is a geometrically irreducible algebraic surface over an arbitrary field k, we set �.S/D �.Sxk/.

Minimal surfaces Among all smooth projective surfaces, there is a special class of the so-called minimal
surfaces. They are the most important ones for studying automorphism groups.

Definition 5.4 [1, Definition 6.1] Let S be a smooth geometrically irreducible projective surface. We
say that S is minimal if every birational morphism S ! Y , where Y is a smooth projective surface, is an
isomorphism.

Example 5.5 Let S be a smooth geometrically irreducible projective surface over a field k. Suppose that
the canonical class KS is numerically trivial. Then S is minimal. Indeed, if S is not minimal, then Sxk
contains a smooth rational curve with self-intersection �1; see eg [72, Theorem IV.3.4.5] or [1, Section 6].
On the other hand, computing the self-intersection by adjunction formula, we see that such a curve cannot
exist on Sxk.

Minimal surfaces are representatives of the birational equivalent classes of all smooth geometrically
irreducible projective surfaces. Indeed, since every birational morphism between smooth projective
surfaces over an algebraically closed field is a composition of contractions of smooth rational curves with
self-intersection �1 (see [72, Theorem IV.3.4.5]), the number of such consecutive contractions from a
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given surface S is bounded by the Picard rank of S . Thus, we can replace every smooth geometrically
irreducible projective surface S over an arbitrary field by a minimal surface S 0 such that there exists a
birational morphism from S to S 0.

Birational automorphism groups of minimal surfaces of nonnegative Kodaira dimension are easy to study
due to the following well known result.

Lemma 5.6 [1, Corollary 10.22, Theorem 10.21] Let S be a minimal surface such that �.S/> 0. Then
S is the unique minimal surface in its birational equivalence class , and Bir.S/D Aut.S/.

Remark 5.7 In [1], the proof of Lemma 5.6 is given over an algebraically closed field. However, the
general case easily follows from this.

Similarly to the case of characteristic zero, over fields of positive characteristic there exists a Kodaira–
Enriques classification of minimal surfaces due to E Bombieri and D Mumford [56; 9; 8]; see also [1]
and [44]. We recall its part that will be used in this paper. The definitions of the particular classes of
surfaces can be found for instance in [44, Sections 6 and 7].

Theorem 5.8 Let S be a smooth irreducible projective surface over an algebraically closed field. The
following assertions hold.

(i) If �.S/D�1, then S is birational either to P2, or to C �P1, where C is a (irreducible smooth
projective) curve of positive genus.

(ii) If �.S/D 0 and S is minimal , then S is either a K3 surface , or an Enriques surface , or an abelian
surface , or a hyperelliptic surface , or a quasihyperelliptic surface.

G –minimal surfaces There exists a version of the Minimal Model Program that takes into account an
action of a group. Below we recall some of its implications in the case of geometrically rational surfaces.

Definition 5.9 A smooth geometrically irreducible projective surface S with an action of a group G is
called G–minimal if every G–equivariant birational morphism S!T , where T is a smooth geometrically
irreducible projective surface with an action of G, is an isomorphism.

Similarly to the case of the trivial group action, for every smooth geometrically irreducible projective
surface with an action of a group G there is a G–equivariant birational morphism to a G–minimal surface.
Thus, it is interesting to know the properties of G–minimal surfaces.

Definition 5.10 Let S be a smooth geometrically irreducible projective surface, and let � W S ! C be a
surjective morphism to a smooth curve. One says that � (or S) is a conic bundle, if the fiber of � over
the scheme-theoretic generic point of C is smooth and geometrically irreducible, and the anticanonical
line bundle !�1

S
is very ample over C .
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Remark 5.11 Let S be a smooth geometrically irreducible projective surface, and let � W S ! C be
a conic bundle. Denote by S� the fiber of � over the scheme-theoretic generic point of C . Then S� is
smooth and geometrically irreducible. Moreover, the anticanonical line bundle !�1

S�
is very ample. This

implies that S� is a smooth conic over the field k.C / of rational functions on C .

Example 5.12 Let k be an algebraically closed field of characteristic 2. Consider the surface SŠP1�P1,
and let �0 W S ! P1 be the projection to the second factor. Then �0 is a conic bundle. On the other hand,
let � W S ! P1 be the composition of �0 with an inseparable double cover P1! P1. Then � is not a
conic bundle. Indeed, its scheme-theoretic generic fiber S� is not smooth over the field k.P1/. Moreover,
for every point P of S�, the scheme S� is regular at P , but fails to be smooth at this point, because S� is
not geometrically reduced (although it is reduced over k). Note that � satisfies the second requirement of
Definition 5.10, ie the anticanonical sheaf !�1

S
is very ample over P1; also, each geometric fiber of � is

isomorphic to a nonreduced conic in P2.

Recall that a del Pezzo surface is a smooth geometrically irreducible projective surface S with ample
anticanonical class. For the following result, we refer the reader to [35, Theorem 1G] or [55, Theorem 2.7];
compare also with [1, Corollary 7.3].

Theorem 5.13 Let G be a finite group , and let S be a geometrically rational G–minimal surface. Then S

is either a del Pezzo surface , or a G–equivariant conic bundle over a smooth curve of genus zero.

If the base field is perfect, one can use Lemma 3.6 together with Theorem 5.13 to produce nice regular-
izations of birational actions of finite groups on geometrically rational surfaces (note however that we
will use this only over algebraically closed fields in our paper).

Theorem 5.14 Let S be a geometrically rational algebraic surface over a perfect field. Let G be a finite
subgroup of Bir.S/. Then there exists a smooth geometrically irreducible projective surface S 0 with a
regular action of G and a G–equivariant map S Ü S 0, such that S 0 is either a del Pezzo surface , or a
G–equivariant conic bundle over a curve of genus zero.

Proof First, there exists a regular projective surface zS with an action of G and a G–equivariant birational
map zS Ü S ; see Lemma 3.6. Since the base field is perfect, zS is actually smooth. Thus there exists a
G–minimal surface S 0 that is G–equivariantly birational to zS (and thus to S). Now the assertion about
the geometrically rational case follows from Theorem 5.13.

The next fact is well known.

Theorem 5.15 Let S be a del Pezzo surface over a field k. Then the linear system j�3KS j defines an
embedding S ,! PN , where N 6 54.

Proof The divisor �3KS is very ample; see [41, Proposition III.3.4.2]. Thus it defines an embedding
S ,! PN , where

N D h0.S;OS .�3KS //� 1:
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On the other hand, one has 1 6 K2
S

6 9; see eg [48, Theorem IV.2.5] or [41, Exercise III.3.9]. Hence

h0.S;OS .�3KS //� 1D 6K2
S 6 54

by [41, Corollary III.3.2.5].

Nonrational ruled surfaces Birational automorphism groups of nonrational surfaces covered by rational
curves have simpler structure than those of geometrically rational surfaces.

Definition 5.16 Given a morphism � WX ! Y between varieties X and Y , and an automorphism (or a
birational automorphism) g of X , we will say that g is fiberwise with respect to � if it maps every point
of X to a point in the same fiber of � (provided that g is well defined at this point). The action of a
subgroup � of Aut.X / or Bir.X / is fiberwise with respect to � if every element of � is fiberwise with
respect to �.

Lemma 5.17 Let k be a field. Let C be a smooth geometrically irreducible projective curve of positive
genus over k, and set S D C �P1. Then there is an exact sequence of groups

(5-1) 1! Bir.S/�! Bir.S/! �;

where Bir.S/� � PGL2.k.C // and � � Aut.C /.

Proof Consider the projection � W S ! C . If g 2 Bir.S/, and F Š P1 is a general fiber of �, then the
map

� ıg W F ! C

is either surjective, or maps F to a point. The former option is impossible, because a rational curve cannot
dominate a curve of positive genus; see for instance [31, Corollary IV.2.4] and [31, Proposition IV.2.5].
This means that an image of F under g is again a fiber of �, so that � is equivariant with respect to the
whole group Bir.S/.

Hence there is an exact sequence (5-1), where the action of the group Bir.S/� is fiberwise with respect
to �, and � is a subgroup of Bir.C /DAut.C /. Thus, the group Bir.S/� is a subgroup of Bir.S�/, where
S� is the scheme-theoretic generic fiber of the map �. Since S� is isomorphic to the projective line over
the field k.C /, we have

Bir.S�/D Aut.S�/Š PGL2.k.C //:

6 Abelian varieties

In this section we collect auxiliary facts about automorphism groups of abelian varieties. The latter groups
are usually infinite, but are rather easy to understand. Here we regard an abelian variety just as a variety,
and do not take the group structure into account. Also, if the base field is not algebraically closed, it is
not necessary for us to assume that an abelian variety has a point.
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Theorem 6.1 Let k be an algebraically closed field of characteristic p > 0, and let `¤ p be a prime
number. Let X be an n–dimensional abelian variety over k. Then

(6-1) Aut.X /ŠX.k/Ì Aut.X IP /;

where X.k/ is the group of k–points of X , and Aut.X IP / is the stabilizer of a k–point P 2X in Aut.X /.
Furthermore , Aut.X IP / is isomorphic to a subgroup of GL2n.Z`/.

Proof The isomorphism (6-1) is obvious. Note that Aut.X IP / can be identified with the group of
automorphisms that preserve the group structure of X .

Let T`.X /Š Z2n
`

be the Tate module of X ; see [57, Section 18] for the definition. Let Hom.X;X / be
the Z–algebra of endomorphisms of the abelian variety X . According to [57, Section 19, Theorem 3],
there is an injective homomorphism

Hom.X;X / ,! HomZ`.T`.X /;T`.X //:

The group Aut.X IP / is the multiplicative group of invertible elements in Hom.X;X /. Thus, it embeds
into the group of invertible elements in HomZ`.T`.X /;T`.X //, which is

AutZ`.T`.X /;T`.X //Š GL2n.Z`/:

Remark 6.2 In the notation of Theorem 6.1, if the characteristic of the field k is zero, one can check
that Aut.X IP / is a subgroup of GL2n.Z/. It is well known that this also holds if X is a complex
torus of dimension n; see eg [66, Theorem 8.4]. However, one can produce an example of an elliptic
curve X over a field of characteristic 2 such that the stabilizer of a point on X is a group of order 24; see
[75, Exercise A.1(b)]. Such a group cannot be embedded into GL2.Z/; see [79, Section 1].

The next two results are consequences of Theorem 6.1. To formulate them, we set

(6-2) JA.n/D jGL2n.Z=4Z/j D .24n
� 22n/ � .24n

� 22nC1/ � � � .24n
� 24n�1/:

Note that
JA.n/ > .3

2n
� 1/ � .32n

� 3/ � � � .32n
� 32n�1/D jGL2n.Z=3Z/j

for every positive integer n.

Corollary 6.3 Let n be a positive integer. For every field k, every abelian variety X of dimension n

over k, every finite subgroup G � Aut.X / contains a normal abelian subgroup of index at most JA.n/

that can be generated by at most 2n elements. In particular , for every abelian variety X the group Aut.X /
is Jordan.

Proof Let X be an abelian variety over a field k of characteristic p > 0, and let G be a finite subgroup
of Aut.X /. It is enough to consider the case when k is algebraically closed. Set `D 2 if p¤ 2, and `D 3

if p D 2. Note that the intersection GX of G with the subgroup X.k/ � Aut.X / of k–points of X is
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abelian and normal in G. Moreover, GX can be generated by at most 2n elements; see eg [57, Section 15].
On the other hand, by Theorem 6.1 the quotient G=GX is isomorphic to a subgroup of GL2n.Z`/. Thus,
by Lemma 2.13 the order of G=GX does not exceed

maxfjGL2n.Z=3Z/j; jGL2n.Z=4Z/jg D JA.n/:

Applying Corollary 6.3 together with Lemma 2.5, we obtain:

Corollary 6.4 Let p be a prime number , and let n be a positive integer. For every field k, every
abelian variety X of dimension n over k, every finite subgroup G � Aut.X / contains a normal abelian
subgroup A such that A can be generated by at most 2n elements , the order of A is coprime to p, and the
index of A in G is at most JA.n/ � jGpj, where Gp is a p–Sylow subgroup of G.

Arguing as in the proof of Corollary 6.3, we can obtain restrictions on stabilizers of points on abelian
varieties.

Corollary 6.5 Let n be a positive integer. For every algebraically closed field k, every abelian variety X

of dimension n over k, every k–point P on X , and every finite subgroup G of the stabilizer Aut.X IP /
of P , the order of G is at most JA.n/.

Proof Let k be an algebraically closed field of characteristic p >0, and let X be an n–dimensional abelian
variety over k. Set `D 2 if p ¤ 2, and `D 3 if p D 2. According to Theorem 6.1, the group Aut.X IP /
is isomorphic to a subgroup of GL2n.Z`/. Therefore, the assertion follows from Lemma 2.13.

Remark 6.6 In the notation of Corollaries 6.3, 6.4 and 6.5, one can replace the constant JA.1/ by 24; see
[75, Theorem III.10.1] and [75, Proposition A.1.2(c)] — actually, in this case the whole group Aut.X IP /
is finite. This bound is stronger than the bound given by Corollaries 6.3, 6.4 and 6.5.

The assertion of Corollary 6.5 does not hold for stabilizers of closed points over algebraically nonclosed
fields, as shown by the following example.

Example 6.7 Let k be an algebraically closed field of characteristic p > 0, let A be a positive-dimensional
abelian variety over k (with a chosen group structure), and let m be a positive integer not divisible by p.
Choose a primitive mth root of unity � 2 k, and a point c 2 A.k/ whose order m in the group A.k/

equals m. Consider the action of the group � Š Z=mZ on A1 �A such that the generator of � acts by
the transformation

.t; a/ 7! .�t; aC c/;

where t is a coordinate on A1, and a 2A. Set XD .A1 �A/=� . Then there is a morphism

� W X!A1
Š Spec kŒtm�
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that fits into the commutative diagram
A1 �A //

��

X

�
��

A1 // A1

Let X be the scheme-theoretic generic fiber of �. Then X is an abelian variety over the field KD k.tm/.
Let Q be a k–point of A, and let P be the closed point of X corresponding to the image of the
section A1�fQg of the projection A1�A!A1; thus, P is not a K–point of X if m> 1. The translation
by c defines a faithful action of the group Z=mZ on X , and this action preserves the point P . Taking m

arbitrarily large, we obtain a series of varieties and their closed points preserved by automorphisms of
arbitrarily large finite orders.

7 Varieties of nonnegative Kodaira dimension

In this section we make some general observations on automorphism groups of varieties of nonnegative
Kodaira dimension and prove Proposition 1.8. The following assertions (and the arguments that prove
them) are well known to experts. We provide their proofs to be self-contained.

Theorem 7.1 (cf [43, Section 2.2]) Let X be a smooth geometrically irreducible projective variety such
that �.X /D dim X . Then for some positive integer n, the rational map defined by the linear system jnKX j

is birational onto its image.

Proof Since �.X /D dim X , there exists a positive integer m such that dimˆm.X /D dim X , where
ˆm WX Ü PN is the rational map given by the linear system jmKX j. By elimination of indeterminacy
(see for instance [31, Example II.7.17.3]), there is a commutative diagram

zX

�

��

ẑ
m

  

X
ˆm

// PN

Here � is the blow-up of the indeterminacy locus of ˆm. Let E � zX be the exceptional divisor of the
morphism � . Then E is an effective Cartier divisor, and

��.mKX /� ẑ
�
mH CE;

where H is a hyperplane in PN.

Let W D ẑm. zX /. Since ẑm is surjective, we conclude that ẑ�m induces an injective map

H 0.W;OW .H jW // ,!H 0. zX ;O zX .
ẑ�

mH //:

Therefore, one has

h0.X;OX .mKX //D h0
�
zX ;O zX .�

�.mKX //
�

> h0. zX ;O zX .
ẑ�

mH //> h0.W;OW .H jW //:
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Write r D dim W D dim X D dim zX . Since h0.W;OW .m
0H jW // is a polynomial in m0 for m0 � 0,

there exists a positive constant C such that

h0.W;OW .m
0H jW //> C.m0/r :

Hence for m0� 0 we have

(7-1) h0.X;OX .m
0mKX //> C.m0/r :

Let A be a very ample divisor on X . Consider the exact sequence

0! OX .�A/! OX ! OA! 0:

It gives the exact sequence

0! OX .m
0mKX �A/! OX .m

0mKX /! OA.m
0mKX jA/! 0:

Since dim AD r �1, we know that h0.X;OA.m
0mKX jA// grows as a polynomial of degree at most r �1

in m0. Therefore, from (7-1) we get

h0.X;OX .m
0mKX �A//¤ 0 for m0� 0:

Let F 2 jm0mKX � Aj be an effective divisor, so that m0mKX � A C F . Over the open subset
U D X nF � X , the linear system jAj can be viewed as a linear subsystem of jm0mKX j, where the
embedding is given by L 7!LCF for L 2 jAj. By assumption, A is very ample, so the rational map
ˆm0m induced by jm0mKX j is an embedding on U . Therefore, the map ˆm0m is birational.

Lemma 7.2 Let � be a nontrivial connected linear algebraic group over an algebraically closed field.
Then � contains a subgroup isomorphic either to Gm or to Ga.

Proof Let R be the radical of � , ie a maximal closed, connected, normal, solvable subgroup of � . First,
suppose that R is nontrivial. If R is not a torus, then it contains a subgroup isomorphic to Ga by [76,
Lemma 6.3.4]. If R is a torus, then it contains a subgroup isomorphic to Gm. Thus, we may assume that
R is trivial, so that � is semisimple. In this case � is generated by its maximal torus T and a certain
collection fU˛g of subgroups isomorphic to Ga; see [76, Proposition 8.1.1]. Since � is nontrivial, we
conclude that either the torus T is positive-dimensional, or the collection fU˛g is nonempty. Thus, one
finds a subgroup of � isomorphic to Gm or to Ga, respectively.

Proposition 7.3 (cf [81, Theorem 14.1] and [14, Proposition 7.1.4]) Suppose that X is a smooth
geometrically irreducible projective variety of nonnegative Kodaira dimension over a field k. Then the
group scheme AutX does not contain nontrivial connected linear algebraic subgroups.

Proof Since a connected algebraic group is geometrically connected, we may assume that the field k is
algebraically closed. Suppose that AutX contains a nontrivial connected linear algebraic group. Then
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it contains a linear algebraic group G isomorphic either to Gm or to Ga; see Lemma 7.2. Hence X is
birational to Y �P1, where Y is the geometric quotient of some open subset of X by the action of G;
see [61] or [73, Lemma A.5]. By Lemma 5.3 one has

�.X /D�1;

which contradicts our assumptions.

The following corollary of Theorem 7.1 and Proposition 7.3 will be used only in dimensions 1 and 2 in
this paper. However, we state it for arbitrary dimension because its proof is essentially the same.

Corollary 7.4 (see [51] and [49, Corollaire 4]; cf [81, Corollary 14.3]) Let X be a smooth geometrically
irreducible projective variety over a field k such that �.X /D dim X . Then AutX is a finite group scheme ,
and Aut.X / is a finite group.

Proof We may assume that the field k is algebraically closed. For some m> 0, the rational map

�m WX Ü Z � Pn

defined by the linear system jmKX j is birational; see Theorem 7.1. This realizes the group scheme AutX
as the stabilizer of Z in the linear algebraic group PGLnC1. Therefore, AutX is a group scheme of finite
type, and the reduced neutral component Aut0

X ;red of AutX is a linear algebraic group. Moreover, Aut0
X ;red

is trivial by Proposition 7.3. This implies that AutX is a finite group scheme, and in particular Aut.X / is
a finite group.

We will need the following general fact concerning algebraic groups.

Theorem 7.5 [14, Lemma 4.3.1] Let � be a connected algebraic group. Suppose that � does not
contain nontrivial connected linear algebraic subgroups. Then � is an abelian variety.

Corollary 7.6 Let X be a smooth geometrically irreducible projective variety over a perfect field.
Suppose that �.X /> 0. Then Aut0

X ;red is an abelian variety.

Proof The connected algebraic group Aut0
X ;red does not contain nontrivial connected linear algebraic

subgroups by Proposition 7.3. Therefore, the required assertion follows from Theorem 7.5.

Now we are ready to prove Proposition 1.8.

Proof of Proposition 1.8 We may assume that X is defined over an algebraically closed field. Then the
group Aut0.X / is the group of points of some abelian variety by Corollary 7.6. In particular, it is abelian,
On the other hand, the quotient group Aut.X /=Aut0.X / has bounded finite subgroups by Lemma 4.1.
Hence the group Aut.X / is Jordan by Lemma 2.8.
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8 Jordan property for curves

In this section we describe the Jordan properties for automorphism groups of smooth projective curves.

Lemma 8.1 Let k be a field of characteristic p > 0, and let C be a smooth geometrically irreducible
projective curve of genus g over k. The following assertions hold.

(i) If g D 0, then the group Aut.C / is p–Jordan.

(ii) If g D 1, then the group Aut.C / is Jordan.

(iii) If the g > 2, then the group Aut.C / is finite.

Proof We may assume that k is algebraically closed. Now assertion (i) follows from Theorem 1.5.
Assertion (ii) is given by Corollary 6.3. Assertion (iii) is given by Corollary 7.4.

Similarly to the Hurwitz bound over fields of characteristic zero, there exists a bound on the order of the
automorphism group of a curve of genus g > 2 over a field of positive characteristic that depends only
on g, but not on the characteristic of the field; see [78]. In the case of elliptic curves, the constant arising
in Lemma 8.1(ii) is always bounded by 24; see Remark 6.6. For a more explicit version of Lemma 8.1(i),
one can use a classification of finite groups acting on P1.

Theorem 8.2 [19, Theorem 2.1] Let k be a field of characteristic p > 0, let G � PGL2.k/ be a finite
group , and let Gp be a p–Sylow subgroup of G. Then G is one of the following groups:

(i) A dihedral group of order 2n, where n> 1 is coprime to p.

(ii) One of the groups A4, S4 or A5.

(iii) The group PSL2.Fpk / for some k > 1.

(iv) The group PGL2.Fpk / for some k > 1.

(v) A group of the form Gp Ì Z=nZ, where n > 1 is coprime to p, and Gp is a p–subgroup of the
additive group of k.

Remark 8.3 Let k be a field of characteristic p > 0, and let g 2 PGL2.k/ be a nontrivial element
of finite order n coprime to p. Then g is semisimple, and thus is contained in some algebraic torus
T � PGL2.k/. Moreover, if n > 3, then the centralizer of g coincides with T . In particular, every finite
group that commutes with g is cyclic. Moreover, the order of such a group is coprime to p, because an
algebraic torus over k does not contain elements of order p. This provides additional restrictions for the
possible structure of the groups of type (v) in Theorem 8.2.

Remark 8.4 Any group of one of types (i)–(iv) in the notation of Theorem 8.2 can be generated by
two elements. Indeed, this clearly holds for a dihedral group. Also, it is well known that the symmetric
group on n elements is generated by a cycle of length 2 and a cycle of length n. Furthermore, any

Geometry & Topology, Volume 28 (2024)



Automorphisms of surfaces over fields of positive characteristic 2775

nonabelian finite simple group is generated by two elements; see eg [38]. In particular, this holds for
an alternating group A5. A similar assertion for the group A4 can be checked directly. The groups
PSL2.Fpk / are simple except for PSL2.F2/ŠS3 and PSL2.F3/Š A4; see [84, Section 3.3.1]. Thus,
any group of this type can be generated by two elements. Finally, for the group PGL2.Fpk /, the required
assertion follows from [82].

Now we can give an explicit bound for the index of a normal abelian subgroup in a finite group acting
on P1.

Lemma 8.5 For every prime p and every field k of characteristic p, every finite subgroup

G � Aut.P1/Š PGL2.k/

contains a characteristic cyclic subgroup of order coprime to p and index at most 60jGpj
3, where Gp is a

p–Sylow subgroup of G.

Proof Let k be a field of characteristic p > 0, let G � PGL2.k/ be a finite group, and let Gp be a
p–Sylow subgroup of G. Then G is a group of one of types (i)–(v) in the notation of Theorem 8.2.

If G is a dihedral group of type (i), then the commutator subgroup of G is a characteristic cyclic subgroup
of index at most 4 in G, and its order is coprime to p. If G is one of the groups A4, S4 or A5, then the
trivial subgroup has index at most 60 in G. If G Š PSL2.Fpk / and p ¤ 2, then the trivial subgroup of G

has index
jGj D 1

2
jSL2.Fpk /j D 1

2
pk.p2k

� 1/ < p3k
D jGpj

3:

If G Š PSL2.F2k /, then the trivial subgroup of G has index

jGj D jSL2.F2k /j D 2k.22k
� 1/ < 23k

D jG2j
3:

If G Š PGL2.Fpk /, then the trivial subgroup of G has index

jGj D pk.p2k
� 1/ < p3k

D jGpj
3:

Now suppose that G is of type (v). Then G contains a cyclic group LŠ Z=nZ such that G ŠGp Ì L,
and Gp Š .Z=pZ/m for some positive integer m. Let L0 be the centralizer of Gp in L. By Lemma 2.11,
the index of L0 in L is at most pm� 1. Thus, L0 is a cyclic subgroup of G of index at most

jGpj.p
m
� 1/ < jGpj

2;

and the order of L0 is coprime to p.

We claim that L0 is a characteristic subgroup of G. Indeed, Gp is characteristic in G by Example 2.2.
Thus its centralizer C.Gp/ in G is also a characteristic subgroup of G. On the other hand, one has

C.Gp/ŠGp �L0:

Therefore, L0 is characteristic in C.Gp/ (cf Example 2.2), and hence also characteristic in G.
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9 Cremona group

In this section we prove Theorem 1.6. Our proof is (nearly) identical to that presented in [70].

We start by recalling the assertion proved in [70, Lemma 5.2]. We provide its detailed proof for the
convenience of the reader.

Lemma 9.1 Let n be a positive integer , and let k be a field of characteristic p such that p does not
divide n and k contains a primitive nth root of 1. Let S be a smooth geometrically irreducible projective
surface over k, and let H � Aut.S/ be a finite group. Suppose that there exists an H–equivariant conic
bundle � W S!C . Denote by F the subgroup of H that consists of automorphisms that are fiberwise with
respect to �; see Definition 5.16. Let R� F be a cyclic group of order n, and let ˛ 2H be an element
normalizing R. Then ˛2 commutes with R.

Proof Let S� be the fiber of � over the scheme-theoretic generic point � of C . Then S� is a smooth
conic over the field KD k.C /. The group F can be considered as a subgroup of Aut.S�/� PGL2.xK/.
Thus, the cyclic group R has exactly two fixed xK–points on the conic S�;xK Š P1

xK
. Denote them by PC

and P�. Recall that the action of R in the Zariski tangent spaces TP˙
.S�;xK/ is faithful by Theorem 3.7.

Thus, there is a primitive nth root � of 1 such that a generator g of R acts on TP˙
.S�;xK/Š

xK by �˙1.
For any positive integer r , the element gr acts on TP˙

.S�;xK/ by �˙r ; thus, an element of R is uniquely
defined by its action in any of these two Zariski tangent spaces.

One can consider ˛ as an automorphism of the scheme S�;xK (of nonfinite type) over the field k. Write
˛g˛�1 D gr . Since the fixed points of gr on S�;xK are PC and P�, we see that ˛.PC/ 2 fPC;P�g.
Hence ˛2.PC/D PC, and

gr2

D ˛2g˛�2

acts on TPC.S�;xK/ by �r2

D x̨2.�/, where x̨ is the automorphism of the field K over k induced by ˛.
However, � is contained in k, so x̨.�/D �. Therefore, we see that r2 is congruent to 1 modulo n, which
means that ˛2 commutes with g.

The next lemma allows one to deal with finite groups acting on surfaces with conic bundle structure. It
also provides an additional observation concerning the number of generators of abelian subgroups in such
groups.

Lemma 9.2 Let k be a field of characteristic p > 0, and let S be a smooth geometrically rational
projective surface over k. Let G � Aut.S/ be a finite group , and let � W S ! C be a G–equivariant conic
bundle. Then G contains a normal abelian subgroup generated by at most two elements that has order
coprime to p and index at most 7200jGpj

3, where Gp is a p–Sylow subgroup of G.

Proof We can assume that the field k is algebraically closed; in particular, one has C Š P1.

There is an exact sequence of groups

1! F !G! xG! 1;
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where the action of F is fiberwise with respect to �, while xG acts faithfully on P1. By Lemma 8.5
there exists a normal cyclic subgroup xH in xG of order coprime to p whose index in xG does not exceed
60j xGpj

3, where xGp is a p–Sylow subgroup of xG. Let H be the preimage of xH in G, so that there is an
exact sequence of groups

1! F !H ! xH ! 1:

In particular, H is a normal subgroup of G.

By Lemma 8.5 there exists a characteristic cyclic subgroup R of order coprime to p and index at most
60jFpj

3 in F , where Fp is a p–Sylow subgroup of F . The group H acts on F by conjugation, and this
action preserves the characteristic subgroup R.

Pick an element ˛ of H such that its image x̨ in xH generates xH . Since j xH j is coprime to p, the element x̨p

generates xH as well. Hence, replacing ˛ by its appropriate power, we may assume that the order of ˛
is coprime to p. Since ˛ normalizes the subgroup R, and the (algebraically closed) field k contains a
primitive root of 1 or degree jRj, by Lemma 9.1 the element ˛2 commutes with R. Let zA be the subgroup
of H generated by R and ˛2. Then zA is abelian, and its order is coprime to p. Note that the subgroup
xHx̨2 � xH generated by x̨2 either coincides with xH , or has index 2 in xH .

The subgroup R is characteristic in F , and hence normal in G. Also, the subgroup xHx̨2 is characteristic
in xH , because the cyclic group xH contains at most one subgroup of given order; cf Example 2.3. Hence
xHx̨2 is normal in xG. Still we cannot conclude from this that zA is normal in G. However, let A be the

intersection of all subgroups of G conjugate to zA. Then A is an abelian group of order coprime to p, and
it is normal in G. Since zA is generated by two elements, the same holds for A. Also, we know that A

contains the subgroup R, because R is normal in G. Similarly, the image of A in xH coincides with xHx̨2 ,
because xHx̨2 is normal in xG. Therefore, the index of A in G is

jGj

jAj
D
j xGj

j xHx̨2 j
�
jF j

jA\F j
6 2
j xGj

j xH j
�
jF j

jRj
6 7200 j xGpj

3
� jFpj

3
D 7200 jGpj

3:

Finally, we are ready to prove our main result.

Proof of Theorem 1.6 Let k be a field of characteristic p > 0. We may assume that k is algebraically
closed. Let G be a finite subgroup of Bir.P2/. By Theorem 5.14 there exists a surface S with a faithful
regular action of G, such that S is either a del Pezzo surface or a G–equivariant conic bundle.

Suppose that S is a del Pezzo surface. By Theorem 5.15 the linear system j�3KS j defines an embedding
� W S ,! PN , where N 6 54. Since the linear system j�3KS j is G–invariant, we see that the map � is
G–equivariant, and thus G can be realized as a subgroup of PGL55.k/. By Corollary 2.16 there exists
a constant JdP, independent of p, k and G, such that G contains a normal abelian subgroup of order
coprime to p and index at most JdP � jGpj

3, where Gp is a p–Sylow subgroup of G.

Now we are left with the case when S is a G–equivariant conic bundle, which is covered by Lemma 9.2.
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10 Jordan property for surfaces

In this section we prove Theorem 1.7. The proof of the following assertion is identical to that in [86].

Lemma 10.1 Let k be an algebraically closed field of characteristic p > 0. Let A be an abelian variety
of positive dimension n over k, and let S DA�P1. Then the group Bir.S/ is not generalized p–Jordan.

Proof Choose a prime number `¤ p. Fix a k–point O 2A to define a group structure on A. For every
k–point x 2A, let tx WA!A be the translation by x.

Let L0 be an ample line bundle on A, and set L DL˝`
0

. Let K.L / denote the group of k–points x 2A

such that t�xL ŠL , and let K.L /` be its subgroup that consists of all elements whose order is a power
of `. According to [57, Section 23, Theorem 3], the group K.L / contains all the `–torsion k–points of A.
Since `¤ p, the group of `–torsion k–points of A is isomorphic to .Z=`Z/2n; see eg [57, Section 6].
Thus, the group K.L /` is nontrivial. Furthermore, since L is ample, the groups K.L / and K.L /` are
finite by [57, Section 23, Theorem 4].

Let Tot.L / be the total space of L . For every x 2K.L /, there exists a (nonunique) fiberwise linear
isomorphism zt�x W Tot.L /! Tot.L / that fits into a commutative diagram

Tot.L /

��

zt�x
// Tot.L /

��

A
tx

// A

Moreover, there exists an exact sequence of groups

1! k�! G .L /!K.L /! 1;

where G .L / is a central extension of K.L / acting by automorphisms of Tot.L / of the form zt�x . The
preimage of K.L /` in G .L / contains a finite group H` that is a central extension of K.L /` by a cyclic
group Z of order `k for some nonnegative integer k.

For every two elements x;y 2K.L /`, let .x;y/ be their commutator pairing; in other words, write

zx zyzx�1
zy�1
D .x;y/z;

where zx and zy are (arbitrary) preimages of x and y in H`, and z is a generator of the cyclic group Z�H`.
According to [57, Section 23, Theorem 4], the commutator pairing is nontrivial on K.L /`. Hence H` is
a nonabelian group whose order is a power of the prime number `. Thus every abelian subgroup of H`

has index at least ` in H`.

It remains to notice that the A1–bundle Tot.L /!A is birational to S DA�P1. Therefore, the group
Bir.S/ contains a group H` for every prime `¤ p, and the required assertion follows.
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Lemma 10.2 Let k be an algebraically closed field of characteristic p > 0. Let C be a smooth
geometrically irreducible projective curve of genus at least 2 over k, and set S D C � P1. Then the
group Bir.S/ is p–Jordan.

Proof According to Lemma 5.17, the group Bir.S/ fits into the exact sequence

1! Bir.S/�! Bir.S/! �;

where Bir.S/� � PGL2.k.C // and � � Aut.C /. Since the genus of C is at least 2, the group � is
finite by Lemma 8.1(iii). On the other hand, the group PGL2.k.C //, and thus also the group Bir.S/� , is
p–Jordan by Corollary 2.16. Therefore, the required assertion follows from Lemma 2.8.

Now we can prove the main result of this section.

Proof of Theorem 1.7 Assertion (i) is given by Lemma 10.1. In the rest of the proof we may assume that
S is smooth and projective by Corollary 3.4. If �.S/D�1, then S is birational to a product C �P1 for
some irreducible smooth projective curve C ; see Theorem 5.8(i). Therefore, if C is not an elliptic curve,
then it is either rational, or has genus at least 2, and so the group Bir.S/ is p–Jordan by Theorem 1.6
and Lemma 10.2. On the other hand, in each of these cases Bir.S/ is not Jordan because it contains
a subgroup isomorphic to Aut.P1/ Š PGL2.k/ which is not Jordan. This proves assertion (ii). Thus,
we may assume that the Kodaira dimension of S is nonnegative, and replace S by its minimal model.
Then Bir.S/D Aut.S/ by Lemma 5.6, so that assertion (iii) follows from Proposition 1.8.

Remark 10.3 There are alternative ways that do not use Proposition 1.8 to prove Theorem 1.7(iii)
for many birational classes of surfaces appearing in the Kodaira–Enriques classification. For �.S/D 0

the assertion follows from Proposition 1.9 (which we will prove later in Section 11 independently of
Theorem 1.7). For elliptic surfaces with �.S/D 1, the assertion is given by [26, Corollary 1.6]. It was
communicated to us by Yi Gu that a result similar to [26, Corollary 1.6] can be established also for
quasielliptic surfaces with �.S/D 1. Finally, for � D 2 the assertion follows from Corollary 7.4.

11 Surfaces of zero Kodaira dimension

In this section we study automorphism groups of surfaces of zero Kodaira dimension and prove Propositions
1.9 and 1.10. We start with the case of K3 and Enriques surfaces.

Lemma 11.1 There exists a constant BK3 such that for every algebraically closed field k, every surface S

over k such that S is either a K3 surface or an Enriques surface , and for every finite subgroup G�Aut.S/,
the order of G is at most BK3.

Proof Let S be either a K3 surface or an Enriques surface over a field k of characteristic p. By
[65, Corollary 2.8] we may assume that p > 0. Set `D 2 if p ¤ 2, and `D 3 if p D 2. Set

H.S/DH 2
ét.S;Z`/=T;
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where T is the torsion subgroup of H 2
ét.S;Z`/; note that T is trivial in the K3 case. Then H.S/Š Zb

`
,

where b D 22 if S is a K3 surface (see [44, Section 7.2]), and b D 10 if S is an Enriques surface (see
[44, Section 7.3]).

Consider the representation
� W Aut.S/! GL

�
H.S/

�
:

By Lemma 2.13, the order of every finite subgroup in the image of � is bounded by the constant JA.11/;
see (6-2). On the other hand, the kernel of the homomorphism � is trivial in the case when S is a K3

surface; see [37, Theorem 1.4]; cf [59, Corollary 2.5]. This kernel has order at most 4 if S is an Enriques
surface; see [21, Theorem].

Next, we deal with hyperelliptic and quasihyperelliptic surfaces. Recall that a minimal surface S over an
algebraically closed field k (of arbitrary characteristic) is called hyperelliptic, if �.S/D 0, and the fibers
of the Albanese map of S are smooth elliptic curves. Similarly, S is called quasihyperelliptic if �.S/D 0

and the fibers of the Albanese map of S are singular rational curves. The latter case is possible only if
the characteristic of k equals 2 or 3.

Lemma 11.2 There exists a constant Bhyp with the following property. Let k be an algebraically closed
field , let S be a hyperelliptic or a quasihyperelliptic surface over k, and let G be a (possibly infinite)
subgroup of Aut.S/. Then the following assertions hold.

(i) The group G contains a normal abelian subgroup of index at most Bhyp.

(ii) If G fixes a k–point on S , then jGj6 Bhyp.

Proof Let S be a hyperelliptic or a quasihyperelliptic surface over an algebraically closed field k. The
Albanese morphism � W S ! C maps S to an elliptic curve C ; see [1, Theorem 8.6]. Furthermore, there
exists an elliptic curve E, a curve F that is either an elliptic curve or a cuspidal rational curve, and a
finite group scheme � acting faithfully on E by translations and acting faithfully on F , such that S is
included in the commutative diagram

E �F //

��

S

�
��

E // C

We refer the reader to [9, Section 3] and [8, Section 2] for details. In particular, this construction implies
that the group C.k/ of k–points of the elliptic curve C ŠE=� is a normal subgroup of Aut.S/, and its
action on S agrees with the action of C.k/ on C by translations.

By the classification of automorphism groups of hyperelliptic and quasihyperelliptic surfaces provided
in [50], there is a constant Bhyp independent of k and S such that the index of C.k/ in Aut.S/ does not
exceed Bhyp. This means that every subgroup G of Aut.S/ has a normal abelian subgroup of index at
most Bhyp, which gives assertion (i).
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Now suppose that a subgroup G � Aut.S/ fixes a k–point on S . Since � is equivariant with respect to
Aut.S/, we conclude that G acts on C with a fixed k–point. Therefore, the intersection of G with C.k/

is trivial. Hence jGj6 Bhyp, which proves assertion (ii).

Proof of Proposition 1.9 Let S be a geometrically irreducible algebraic surface of Kodaira dimension 0

over a field k of characteristic p. We may assume that k is algebraically closed. By Corollary 3.4 we
can also assume that S is smooth and projective. Furthermore, by [65, Proposition 1.6] it is enough to
consider the case when p > 0.

We can replace S by its minimal model, so that Bir.S/D Aut.S/ by Lemma 5.6. By Theorem 5.8(ii),
we need to provide bounds for the indices of normal abelian subgroups of Aut.S/ in the cases when S

is a K3 surface, an Enriques surface, an abelian surface, a hyperelliptic surface, or a quasihyperelliptic
surface. In the first two cases this is done by Lemma 11.1. In the third case this is done by Corollary 6.3.
In the last two cases this is done by Lemma 11.2(i).

Proof of Proposition 1.10 Let S be a smooth irreducible projective surface of Kodaira dimension 0 over
a field k of characteristic p, and let P be a k–point on S . Replacing the surface S by the surface Sxk, and
the k–point P by the xk–point Pxk of Sxk, we may assume that the field k is algebraically closed. By [65,
Proposition 1.3] it is enough to deal with the case when p > 0.

Consider the minimal model S 0 of the surface S . Then Aut.S/� Bir.S 0/; hence by Lemma 5.6 there
is an embedding Aut.S/� Aut.S 0/. Consider the birational morphism � W S ! S 0. Since the minimal
model S 0 is unique by Lemma 5.6, the morphism � is equivariant with respect to the group Aut.S/.
Therefore, the image �.P / of the point P is invariant under the group Aut.S IP /. Thus we can assume
from the very beginning that the surface S is minimal. By Theorem 5.8(ii), we need to provide bounds
for the order of Aut.S IP / in the cases when S is a K3 surface, an Enriques surface, an abelian surface,
a hyperelliptic surface, or a quasihyperelliptic surface. In the first two cases this is done by Lemma 11.1.
In the third case this is done by Corollary 6.5. In the last two cases this is done by Lemma 11.2(ii).

There is a partial analog of Proposition 1.10 that is valid over arbitrary fields, suggested to us by Yi Gu.

Definition 11.3 Let X be an algebraic variety over a field k, and let P be a closed point of X . The inertia
group Ine.X IP / of P is the kernel of the action of the stabilizer Aut.X IP / on the residue field k.P /.

Lemma 11.4 Let X be an algebraic variety over a field k, and let P be a closed point of X . Let P1 be
one of the xk–points of Pxk. Then Ine.X IP /� Aut.XxkIP1/.

Proof The action of Ine.X IP /� Aut.Xxk/ on

Pxk Š Spec.k.P /˝k
xk/

is trivial.
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Corollary 11.5 There exists a constant B such that for every field k, every smooth geometrically
irreducible projective surface S of Kodaira dimension 0 over k, every closed point P 2 S , and every
finite subgroup G � Ine.S IP / the order of the group G is at most B.

Proof Apply Proposition 1.10 together with Lemma 11.4.

12 Fixed points in arbitrary dimension

In this section we prove Theorem 1.11. We start by recalling the rigidity theorem for projective varieties;
see [72, Section III.4.3] or [14, Lemma 3.3.3].

Theorem 12.1 Let U , V and W be varieties over an algebraically closed field k. Suppose that U is
irreducible , and V is irreducible and projective. Let

f W U �V !W

be a morphism. Suppose that for some k–point u0 2 U the subvariety

fu0g �V � U �V

is mapped to a point by f . Then for every k–point u 2 U , the subvariety fug �V is also mapped to a
point.

Corollary 12.2 Let X be a geometrically irreducible projective variety over a field k, and let A�AutX
be a positive-dimensional abelian variety. Then A has no fixed (closed ) points on X .

Proof Suppose that A acts on X with a fixed closed point P . Since A is (geometrically) connected, and
Pxk is a finite union of xk–points, one can see that Axk acts on Xxk with a fixed point as well. Hence, we
may assume that the field k is algebraically closed.

The action of A on X is given by a morphism

‰ WA�X !X:

The image ‰.A � fPg/ is a point. On the other hand, since the action of A on X is nontrivial, for
a general k–point Q 2 X the image ‰.A� fQg/ is not a point. This is impossible by Theorem 12.1
because A is projective.

We will need the following simple but convenient fact.

Lemma 12.3 Let Z and X be projective schemes over a field k, and let � WZ!X be a morphism such
that every fiber of � is finite. Then there is a constant C D C.Z;X; �/ such that the number of k–points
in every fiber of � is at most C .
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Proof The number of irreducible components of Z is finite, so to bound the number of k–points
in the fibers we may replace Z by its irreducible component. Furthermore, we can assume that Z

and X are reduced (so that they are projective varieties). Since Z is projective, the morphism � is
projective; see eg [47, Corollary 3.3.32(e)]. Thus we conclude that � is a finite morphism; see for instance
[47, Corollary 4.4.7]. By generic flatness (see for instance [77, Tag 052B]), there exists a dense open
subset X 0 �X such that the restriction �0 of � to Z0 D ��1.X 0/ is flat. Thus the number of k–points
in the fibers of �0 is bounded by the degree of �0; see [31, Corollary III.9.10]. Replacing Z and X by
Z nZ0 and X nX 0 and proceeding by Noetherian induction, we obtain the assertion of the lemma.

Proof of Theorem 1.11 The proof is identical to that of [65, Theorem 1.5]. The reduced neutral
component Aut0

X ;red of the group scheme AutX is an abelian variety by Corollary 7.6. Let Aut0
X IP be the

stabilizer of P in Aut0
X ;red. Then Aut0

X IP is a group scheme of finite type over k (note however that it
may be nonreduced and not connected). Denote by Aut0.X IP / the group of k–points of Aut0

X IP , so that
Aut0.X IP / is the stabilizer of P in Aut0.X /.

We claim that the group scheme Aut0
X IP is finite. Indeed, suppose that Aut0

X IP is infinite. Then it contains
some positive-dimensional abelian variety A. Thus A acts on X with the fixed point P . This is impossible
by Corollary 12.2.

Now we know that the group scheme Aut0
X IP is finite. We claim that the order of the group Aut0.X IP /

is bounded by some constant C.X / that does not depend on P . Consider the incidence relation

Z D f.�;Q/ j �.Q/DQg � Aut0
X ;red �X;

and denote by � WZ!X the projection to the second factor. Then Z is a projective scheme, and a fiber
of � over a point Q is exactly the group scheme Aut0

X IQ. Thus, the fibers of � are finite. Therefore,
according to Lemma 12.3, the number of k–points in the fibers of � , ie the order of the groups Aut0.X IQ/,
is bounded by a constant C.X /.

Finally, we recall from Lemma 4.1 that the quotient Aut.X /=Aut0.X / has bounded finite subgroups.
Hence the orders of the finite subgroups of the group

Aut.X IP /=Aut0.X IP /� Aut.X /=Aut0.X /

are bounded by some constant B.X / that does not depend on P . This implies the required assertion
about the group Aut.X IP /.

13 Nilpotent groups

In this section we study finite nilpotent subgroups of birational automorphism groups and prove Theorem
1.15. Let us start with the case of ruled surfaces over elliptic curves.
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Lemma 13.1 Let k be a field of characteristic p > 0, and let S be a geometrically irreducible algebraic
surface over k birational to E �P1, where E is an elliptic curve. Let G � Bir.S/ be a finite subgroup ,
and let Gp denote a p–Sylow subgroup of G. Then G contains either a normal abelian subgroup of order
coprime to p and index at most 215 � 35 � 54 � jGpj

15, or a normal nilpotent subgroup of class at most 2,
order coprime to p, and index at most 29 � 32 � 5 � jGpj

3.

Proof We may assume that k is algebraically closed. According to Lemma 5.17, the group Bir.S/ fits
into the exact sequence

1! Bir.S/�! Bir.S/! �;

where Bir.S/� � PGL2.k.E// and � � Aut.E/. Thus, we obtain an exact sequence of finite groups

1! F !G! xG! 1;

where F is a subgroup of PGL2.k.E//, and xG acts faithfully on E. By Corollary 6.4 and Remark 6.6
there exists a normal subgroup xH in xG such that xH is generated by at most two elements, the order of
xH is coprime to p, and the index of xH in xG does not exceed 24j xGpj, where xGp is a p–Sylow subgroup

of xG. Let H be the preimage of xH in G, so that there is an exact sequence of groups

1! F !H ! xH ! 1:

In particular, H is a normal subgroup of G. By Lemma 8.5 there exists a characteristic cyclic subgroup R

of order n coprime to p and index at most 60jFpj
3 in F , where Fp is a p–Sylow subgroup of F .

Suppose that n 6 2. Then jF j 6 120jFpj
3. If F is a group of one of types (i)–(iv) in the notation

of Theorem 8.2, then it is generated by at most two elements by Remark 8.4. Hence H contains a
characteristic abelian subgroup A of order coprime to p and index at most 1204 � jHpj

13 by Lemma 2.9.
Thus A is normal in G, and its index in G is at most

24 � 1204
� j xGpj � jHpj

13 6 215
� 35
� 54
� jGpj

13 6 215
� 35
� 54
� jGpj

15:

If F is a group of type (v) in the notation of Theorem 8.2, then H contains a characteristic abelian
subgroup A of order coprime to p and index at most 1204 � jHpj

15 by Lemma 2.12. Thus A is normal
in G, and its index in G is at most

24 � 1204
� j xGpj � jHpj

15 6 215
� 35
� 54
� jGpj

15:

Therefore, we can assume that n > 3. The group H acts on F by conjugation, and this action preserves
the characteristic subgroup R. Pick two elements ˛1 and ˛2 of H such that their images x̨1 and x̨2 in xH
generate xH . Since each of the elements ˛i normalizes the subgroup R, and the (algebraically closed)
field k contains a primitive root of 1 or degree nD jRj, by Lemma 9.1 the elements ˛2

i commute with R.

Let A be the subgroup of H generated by ˛2
1

and ˛2
2

. Then AF DA\F is contained in the centralizer
of R. Since n > 3, the group AF is cyclic and has order coprime to p by Remark 8.3. In particular,
this means that the order of A is coprime to p. Furthermore, since AF is normalized by ˛2

i , we can use
Lemma 9.1 once again and conclude that AF commutes with ˛4

1
and ˛4

2
.
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Denote by A0 the subgroup of H generated by ˛4
1

and ˛4
2

, and set A0
F
DA0\F . Then A0

F
�AF . Hence

A0
F

is a cyclic central subgroup of A0. Thus A0 is a central extension of an abelian group, which implies
that it is a nilpotent group of class at most 2. Let zN be the subgroup of H generated by A0 and R. Since R

is abelian and commutes with A0, we see that zN is a nilpotent group of class at most 2. Moreover, its
order is coprime to p. We want to replace zN by a subgroup with similar properties that is normal in G.

The subgroup R is characteristic in F , and hence normal in G. Also, the subgroup xHx̨4
1
;x̨4

2
generated

by x̨4
1

and x̨4
1

is characteristic in xH , and its index in xH is at most 16; see Example 2.3. Thus xHx̨4
1
;x̨4

2
is

normal in xG. Let N be the intersection of all subgroups of G conjugate to zN . Then N is a nilpotent
group of class at most 2; moreover, its order is coprime to p, and it is normal in G. Also, we know
that N contains the subgroup R, because R is normal in G. Similarly, the image of N in xH coincides
with xH

x̨4
1
;x̨4

2
, because xH

x̨4
1
;x̨4

2
is normal in xG. Therefore, the index of N in G is

jGj

jN j
D

j xGj

j xHx̨4
1
;x̨4

2
j
�
jF j

jN \F j
6 16

j xGj

j xH j
�
jF j

jRj
6 16�.24�j xGpj

3/�.60�jFpj
3/D 29

�32
�5�jFpj

3
�j xGpj

3

D 29
�32
�5�jGpj

3:

Proof of Theorem 1.15 We may assume that the field k is algebraically closed. If S is not birational to
the product E �P1, where E is an elliptic curve, then the group Bir.S/ is p–Jordan by Theorem 1.7; in
particular, this means that Bir.S/ is nilpotently p–Jordan of class at most 2. On the other hand, if S is
birational to such a product, then Bir.S/ is nilpotently p–Jordan of class at most 2 by Lemma 13.1.

14 Conclusion

In this section we discuss some open questions concerning birational automorphism groups of varieties
over fields of positive characteristic.

Cremona groups of higher rank In [70, 6.1] Serre asked whether the groups Bir.Pn/ over a field of
characteristic p are generalized p–Jordan for arbitrary n. Fei Hu [32, Question 1.11] strengthened this
question by asking whether these groups are actually p–Jordan. The answer to both questions is not
known, but Theorem 1.6 gives a hope that it should be positive. Over fields of characteristic zero, we
know from [63] that all the groups Bir.Pn/— and more generally, all birational automorphism groups of
rationally connected varieties — are Jordan. However, the proof of this fact given in [63] relies on several
theorems that are not known to hold in positive characteristic. Most importantly (except for resolution of
singularities, which people are used to routinely assume), it uses boundedness of terminal Fano varieties,
which is a particular case of the result of C Birkar [5]. Except for this, the proof uses the Minimal Model
Program, which is available only up to dimension 3 over fields of characteristic p > 5 (see [28; 4; 6]), and
some properties of minimal centers of log canonical singularities. It may be interesting to try to generalize
this proof to the case of positive characteristic assuming resolution of singularities, boundedness of Fanos,
and the Minimal Model Program. Even in this setup we expect it to be a complicated problem.
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Nonuniruled varieties The case of nonuniruled varieties looks much more accessible. Based on
[62, Theorem 1.8(ii)], we ask the following.

Question 14.1 Let X be a nonuniruled geometrically irreducible algebraic variety over a field of
characteristic p > 0. Is it true that the group Bir.X / is p–Jordan?

Note that the approach to birational automorphism groups of nonuniruled varieties over fields of char-
acteristic zero used in [62] does not require boundedness of Fanos, and also does not use much of the
Minimal Model Program (that is, does not require termination of flips). Therefore, we expect that the
answer to Question 14.1 may be obtained using the method of [62].

Nilpotent groups Based on [27] and Theorem 1.15, one can ask:

Question 14.2 Let X be a geometrically irreducible algebraic variety over a field of characteristic p > 0.
Is it true that the group Bir.X / is nilpotently p–Jordan?

The approach to nilpotent Jordan property used in [27] is based on many features specific to characteristic
zero. In particular, it uses the results of [63], which in turn require boundedness of Fanos etc.

Complete varieties One can wonder if the analog of Theorem 1.5 holds for automorphism groups of
complete algebraic varieties.

Question 14.3 Let X be a complete algebraic variety over a field of characteristic p > 0. Is it true that
the group Aut.X / is p–Jordan?

The difficulty here is that an analog of Lemma 4.1 is not known in this case, even in characteristic 0.
However, according to [52, Corollary 1.2] the answer to an analog of Question 14.3 is positive over fields
of characteristic 0; compare with [67] for an alternative proof in the three-dimensional case.

Quasiprojective varieties Similarly to [60, Question 2.30], one can ask the following.

Question 14.4 Let X be a quasiprojective variety over a field of positive characteristic p. Is it true that
the group Aut.X / is p–Jordan?

Note that the answer to a similar question is known to be positive for quasiprojective surfaces over fields
of zero characteristic; see [2].

Explicit estimates It would be interesting to find the precise value of the constant J appearing in
Theorem 1.6, similarly to what was done in [64, Proposition 1.2.3] and [85]. As in the case of zero
characteristic, this will amount to accurate analysis of finite groups acting on del Pezzo surfaces. Note
that some automorphism groups of del Pezzo surfaces over fields of small positive characteristic do not
appear in large characteristics and characteristic zero; see for instance [19, Lemma 5.1]. Thus it may
happen that the resulting constants are different for small and large values of the characteristic.
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Exponents It would be interesting to find the exact values of the constants e.�/ of Definition 1.3 for
various groups � that enjoy the p–Jordan property. This applies to algebraic groups and automorphism
groups of projective varieties; see [32, Theorems 1.7 and 1.10] and cf [32, Remark 1.8] for a (possibly
nonsharp) upper bound for e.�/ in these cases. Also, this applies to our Theorem 1.7(ii). Similarly, we
do not know the values of the constants e.�/ of Definition 1.14 for birational automorphism groups
of surfaces; see Theorem 1.15. Provided that one understands an analogous bound for Theorem 1.7,
computing or bounding these values will boil down to analyzing the proof of Lemma 13.1. Some of the
progress in this direction may be made by optimizing the bounds provided by Lemmas 2.9 and 2.12.

Generalized p–Jordan property We are not aware of examples of algebraic varieties over a field
of positive characteristic p whose birational automorphism group is not p–Jordan, but is generalized
p–Jordan. Theorem 1.7 shows that there are no such varieties in dimension 2. It would be interesting to
find out if examples of this kind exist in higher dimensions.

Multiplicative bounds In certain cases it is useful to consider multiplicative bounds for indices of
normal abelian subgroups in finite subgroups of a given group (ie the least common multiples of such
indices); see Serre [69; 70], and Shramov and Vologodsky [74, Theorem 1.2(ii)]. We point out that in
the context of p–Jordan groups such bounds fail to exist already in the most simple situations, even if
we consider such numbers up to the powers of p. For instance, if k is an algebraically closed field of
positive characteristic p, the p–Jordan group PGL2.k/ contains a subgroup PSL2.Fpk / for every positive
integer k. The latter group is simple if pk > 3, so that the largest normal abelian subgroup therein is the
trivial group, whose index equals jPSL2.Fpk /jD nkpk . Here nk D

1
2
.p2k�1/ if p > 3, and nk D 22k�1

if p D 2; thus, nk is coprime to p. We see that the numbers nk , k > 1, are unbounded, and so they do
not have a finite common multiple. That being said, it would be interesting to find examples of p–Jordan
groups of geometric origin where the multiplicative bounds for the arising constants do exist.
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