
G G G
G
G
G
G

GGGG
G
G
G
GGG T TT

T
T
TT

TTTTT
T
T
TT

T

Geometry &
Topology

msp

Volume 28 (2024)

Moduli spaces of residueless meromorphic differentials
and the KP hierarchy

ALEXANDR BURYAK

PAOLO ROSSI

DIMITRI ZVONKINE



msp

Geometry & Topology 28:6 (2024) 2793–2824
DOI: 10.2140/gt.2024.28.2793

Published: 21 October 2024

Moduli spaces of residueless meromorphic differentials
and the KP hierarchy

ALEXANDR BURYAK

PAOLO ROSSI

DIMITRI ZVONKINE

We prove that the cohomology classes of the moduli spaces of residueless meromorphic differentials,
ie the closures, in the moduli space of stable curves, of the loci of smooth curves whose marked points are
the zeros and poles of prescribed orders of a meromorphic differential with vanishing residues, form a
partial cohomological field theory (CohFT) of infinite rank. To this partial CohFT we apply the double
ramification hierarchy construction to produce a Hamiltonian system of evolutionary PDEs. We prove
that its reduction to the case of differentials with exactly two zeros and any number of poles coincides
with the KP hierarchy up to a change of variables.
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Introduction

In recent years several constructions of moduli spaces of meromorphic differentials on smooth Riemann
surfaces, where both the differential and the curve are allowed to vary, have appeared in the literature. In
particular, Bainbridge, Chen, Gendron, Grushevsky and Möller [4; 5] and Sauvaget [25] constructed, with
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different techniques, smooth Deligne–Mumford moduli stacks parametrizing families of stable curves of
genus g and with n markings, together with a meromorphic differential with poles and zeros of prescribed
orders a1; : : : ; an 2 Z with

Pn
iD1 ai D 2g� 2 on their n marked points, and studied their geometry and

topology. Such families have a natural univocal definition as long as the underlying curve is smooth,
in which case their moduli stack, up to projectivization with respect to the multiplicative C�–action
on the differential, can be seen as a substack Hg.a1; : : : ; an/ inside Mg;n. The above constructions
provide different compactifications and all possess natural forgetful maps to the moduli space of stable
curves Mg;n with respect to which their image, which is pure dimensional, but in general not irreducible,
is simply the closure Hg.a1; : : : ; an/ of Hg.a1; : : : ; an/ inside Mg;n. This is in contrast, for instance,
with Farkas and Pandharipande [18], who construct a closed pure-dimensional substack zHg.a1; : : : ; an/

of Mg;n as a proper moduli space of twisted canonical divisors containing Hg.a1; : : : ; an/ as an open
subset, but having in general irreducible components that do not lie in Hg.a1; : : : ; an/. In the strictly
meromorphic case, ie when there exists an ai < 0, the moduli space zHg.a1; : : : ; an/ carries a natural
weighted fundamental class Hg.a1; : : : ; an/, which was shown in Bae, Holmes, Pandharipande, Schmitt
and Schwarz [3] to equal Pixton’s 1–twisted double ramification (DR) cycle DR1

g.a1; : : : ; an/, defined in
Janda, Pandharipande, Pixton and Zvonkine [21] as an explicit sum over stable graphs of tautological
classes.

While Pixton’s formula is expected to provide the weighted fundamental classes Hg.a1; : : : ; an/ with
the structure of an infinite rank partial cohomological field theory (CohFT), as already proven for the
(untwisted) DR cycle in Buryak and Rossi [12] (see also their paper [11]), we cannot expect the same
from the fundamental classes of Hg.a1; : : : ; an/, simply for dimensional reasons, as Hg.a1; : : : ; an/ has
codimension g� 1 inside Mg;n in the holomorphic case, and codimension g otherwise. The situation
however improves if we demand that all residues of the meromorphic differentials vanish. The correspond-
ing moduli stacks and compactifications were constructed in Sauvaget [25] and Costantini, Möller and
Zachhuber [14], and the corresponding substack of Mg;n is denoted by Hres

g .a1; : : : ; an/. Its codimension
is g� 1CNaŒn� , where NaŒn� denotes the number of poles.

Our first result is that the fundamental classes of Hres
g .a1; : : : ; an/, with ai ¤ �1 for all 1 � i � n, do

indeed form an infinite-rank partial CohFT. We show this in Section 1, after introducing the necessary
geometric notions and results from the aforementioned papers.

At this point the possibility of employing integrable systems techniques to study the intersection theory
of Hres

g .a1; : : : ; an/ arises. In Section 2 we define the corresponding DR hierarchy and prove some of its
properties, including homogeneity with respect to the appropriate grading.

Finally, our main result is found in Section 3, where we prove that a reduction of the DR hierarchy
corresponding to moduli spaces of meromorphic differentials with exactly two zeros and any number
of poles with no residues coincides with the celebrated Kadomtsev–Petviashvili (KP) hierarchy up to a
Miura transformation.
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Moduli spaces of residueless meromorphic differentials and the KP hierarchy 2795

The precise identification of the aforementioned reduction of the DR hierarchy for residueless meromorphic
differentials with the KP hierarchy constructed via Lax operators is achieved thanks to a reconstruction
theorem, also proved in Section 3, which is of independent interest: the KP hierarchy can be uniquely
reconstructed, using the properties of commutativity of the flows, homogeneity, tau-symmetry and
compatibility with spatial translations, from exactly three coefficients in each component of the first
nontrivial flow together with the linear terms in the dispersionless limit of all other flows.

Natural future developments include the identification of the full DR hierarchy for the spaces of residueless
meromorphic differentials and the investigation of the Dubrovin–Zhang [16] side of the correspondence
of this partial cohomological field theory with integrable systems, guided by the DR/DZ equivalence
conjecture (see Buryak [6] and Buryak, Dubrovin, Guéré and Rossi [7]), which predicts that the KP
hierarchy and its parent hierarchy for differentials with any number of zeros should compute all intersection
numbers of Hres

g .a1; : : : ; an/ with any monomial in the psi classes. This is material for future work.

Notation and conventions

� Throughout the text we use the Einstein summation convention for repeated upper and lower Greek
indices.

� When it doesn’t lead to confusion, we use the symbol � to indicate any value, in the appropriate
range, of a sub- or superscript.

� For a topological space X , let H�.X / denote the cohomology ring of X with coefficients in C.

� For n� 0, let Œn� WD f1; : : : ; ng.

Acknowledgements The work of Buryak (Sections 3.3 and 3.4) is supported by the Russian Science
Foundation (project 20-71-10110), which funds his work at P G Demidov Yaroslavl State University.
Zvonkine is partly supported by the ANR-18-CE40-0009 ENUMGEOM grant.

We would like to thank Matteo Costantini, Adrien Sauvaget and Johannes Schmitt for useful discussions
and guidance on the literature on moduli spaces of meromorphic differentials. We would also like to
thank Michael Finkelberg for valuable comments related to the proof of Proposition 1.8.

1 Moduli spaces of meromorphic differentials with residue conditions

For two nonnegative integers g; n such that 2g � 2C n > 0, let Mg;n be the moduli space of stable
curves of genus g with n marked points, Mg;n its open locus of smooth curves, and Mct

g;n the partial
compactification of Mg;n by curves of compact type, ie stable curves whose dual stable graph is a tree.
Naturally, Mg;n �Mct

g;n �Mg;n.

Geometry & Topology, Volume 28 (2024)
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1.1 Meromorphic differentials with residue conditions

For integers g; n;m; k � 0 such that 2g�2CnCmCk > 0, fix integers a1; : : : ; an � 0, b1; : : : ; bm � 1

and c1; : : : ; ck � 2. The space of projectivized meromorphic differentials with vanishing residues at the
last k points is the subset

Hg.a1; : : : ; an;�b1; : : : ;�bmI �c1; : : : ;�ck/�Mg;nCmCk

of smooth marked curves ŒC Ix1; : : : ;xnCmCk � on which there exists a meromorphic differential ! whose
associated divisor is .!/D

Pn
jD1 aj xj�

Pm
jD1 bj xnCj�

Pk
jD1 cj xnCmCj and such that resxnCmCj

!D0

for 1� j � k. We denote its closure in Mg;nCmCk by

Hg.a1; : : : ; an;�b1; : : : ;�bmI �c1; : : : ;�ck/�Mg;nCmCk :

Hg.a1; : : : ; an;�b1; : : : ;�bmI �c1; : : : ;�ck/ is a closed substack of Mg;nCmCk of codimension gCk if
m� 1, and of codimension g�1Ck if mD 0. It is empty unless

Pn
jD1 aj�

Pm
jD1 bj�

Pk
jD1 cj D 2g�2.

Notice that if m D 1 and ŒC Ix1; : : : ;xnC1Ck � 2 Hg.a1; : : : ; an;�b1I �c1; : : : ;�ck/, then the residue
theorem implies that the meromorphic differential ! on C satisfies resxnC1

! D 0 and hence

Hg.a1; : : : ; an;�b1I �c1; : : : ;�ck/DHg.a1; : : : ; anI �b1;�c1; : : : ;�ck/;

so the case mD 1 effectively reduces to mD 0.

In the k D 0 and mD 0 cases, the notation can be simplified as follows.

Definition 1.1 Given a1; : : : ; an 2 Z, let us introduce the following notation:

(1) Denote by Hg.a1; : : : ; an/ � Mg;n the space of projectivized meromorphic differentials, ie the
locus in Mg;n of smooth curves ŒC Ix1; : : : ;xn� on which there exists a meromorphic differential !
whose associated divisor is .!/ D

Pn
jD1 aixi . Denote moreover by Hg.a1; : : : ; an/ its closure

in Mg;n.

(2) Similarly, denote by Hres
g .a1; : : : ; an/�Mg;n the space of projectivized meromorphic differentials

with everywhere vanishing residues, ie the locus in Mg;n of smooth curves ŒC Ix1; : : : ;xn� on
which there exists a meromorphic differential ! whose associated divisor is .!/D

Pn
jD1 aixi and

whose residues vanish at all poles. Denote moreover by Hres
g .a1; : : : ; an/ its closure in Mg;n.

Notice that Hres
g .a1; : : : ; an/ is empty if ai D �1 for some 1 � i � n and unless

Pn
iD1 ai D 2g � 2.

For an index set I of finite cardinality jI j � 0 and an jI j–tuple of integers aI D .ai/i2I 2 ZjI j, let
NaI
WD jfi 2 I j ai < 0gj be the number of negative entries of aI . Then

(1-1) codim Hres
g .a1; : : : ; an/D g� 1CNaŒn� :

We call the homology class ŒHres
g .a1; : : : ; an/� 2H2.2g�2Cn�NaŒn�

/.Mg;n/ the cycle of residueless mero-
morphic differentials and, by abuse of language, we will use the same name and notation for its Poincaré
dual cohomology class ŒHres

g .a1; : : : ; an/� 2H
2.g�1CNaŒn�

/
.Mg;n/.

Geometry & Topology, Volume 28 (2024)
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Remark 1.2 In the strictly meromorphic case, ie when there exists an i 2 Œn� such that ai < 0, a closed
substack zHg.a1; : : : ; an/�Mg;n containing Hg.a1; : : : ; an/ was constructed in [18] as a proper moduli
space of twisted canonical divisors, carrying a natural weighted fundamental class Hg.a1; : : : ; an/ 2

H 2g.Mg;n/. As proven in [3], Hg.a1; : : : ; an/ equals Pixton’s 1–twisted double ramification (DR) cycle
DR1

g.a1; : : : ; an/, which is defined in [21] as an explicit sum over stable graphs of tautological classes.

1.2 Multiscale differentials with residue conditions

Let us briefly review the definition and properties of the moduli space Hres
g .a1; : : : ; an/ from the point of

view of multiscale differentials with residue conditions as treated in [14].

In [14, Sections 3 and 4.1] (see also [5, Section 2]) the authors identify the space Hres
g .a1; : : : ; an/ with

the corresponding stratum Bres
g .a1; : : : ; an/ inside the projectivized twisted Hodge bundle

P

�
��!

�
�

X
i2Œn�jai<0

aixi

��
;

where ! is the relative dualizing sheaf of the universal curve over Mg;n, via its projection to Mg;n. Then
they construct a proper smooth Deligne–Mumford stack Bres

g .a1; : : : ; an/ containing Bres
g .a1; : : : ; an/ as

an open dense substack whose complement is a normal crossing divisor. The stack Bres
g .a1; : : : ; an/ is a

moduli stack for families of equivalence classes of multiscale differentials with residue conditions. Let us
recall their definition.

In what follows, given a stable curve C with associated stable graph �C , we will denote its irreducible
components by Cv for v 2 V .�C / and we will use the same notation for the marked points of C and the
corresponding legs of the associated stable graph �C , for nodes of C and the corresponding edges of �C ,
and for branches of nodes on irreducible components Cv of C and the corresponding half-edges of �C .
Given a leg xi 2L.�C / or a half-edge h 2H.�C /, we denote by v.xi/ or v.h/ the vertex to which they
are attached.

Firstly, an enhanced level graph is a stable graph � of genus g with a set L.�/ of n marked legs together
with:

(1) A total preorder1 on the set V .�/ of vertices. We describe this preorder by a surjective level
function ` W V .�/! f0;�1; : : : ;�Lg. An edge is called horizontal if it is attached to vertices on
the same level and vertical otherwise.

(2) A function � WE.�/! Z�0 assigning a nonnegative integer �e to each edge e 2E.�/, such that
�e D 0 if and only if e is horizontal.

1A preorder relation � is reflexive and transitive, but x � y and y � x do not necessarily imply x D y.

Geometry & Topology, Volume 28 (2024)
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For every level 0 � j � �L, let C.j/ be the (possibly disconnected) stable curve obtained from C by
removing all irreducible components whose level is not j , and let C.>j/ be the (possibly disconnected)
stable curve obtained from C by removing all irreducible components whose level is smaller than or
equal to j .

Secondly, given a meromorphic differential ! on a smooth curve C and a point p 2 C , if ! has order
ordp ! D a¤�1 at p, then for a local coordinate z in a neighborhood of p such that z.p/D 0 we have,
locally, ! D .czaCO.zaC1// dz for some c 2C�. Then the k D jaC 1j roots � such that �aC1 D c�1

determine k projectivized vectors � @=@zjp2 TpC=R>0 (if a� 0) or �� @=@zjp2 TpC=R>0 (if a< �1)
which are called outgoing or incoming prongs of !, respectively. The set of outgoing (resp. incoming)
prongs at p is denoted by P out

p (resp. P in
p ).

Thirdly, a multiscale differential of profile .a1; : : : ; an/2Zn, with
Pn

iD1 ai D 2g�2, on a stable curve C

of genus g with n marked points x1; : : : ;xn and with zero residues at x1; : : : ;xn 2 C consists of:

(1) A structure of enhanced level graph .�C ; `; �/ on the dual graph �C of C (where a node is said to
be vertical or horizontal if the corresponding edge is).

(2) A collection of meromorphic differentials !v, one on each irreducible component Cv of C

for v 2 V .�C /, holomorphic and nonvanishing outside of marked points and nodes, such that
the following conditions are satisfied:

(i) For 1� i � n, ordxi
!v.xi / D ai .

(ii) For 1� i � n, resxi
!v.xi / D 0.

(iii) If q1 2 Cv1
and q2 2 Cv2

with v1; v2 2 V .�C / form a node e 2E.�C /, then

ordq1
!v1
C ordq2

!v2
D�2:

(iv) If q1 2 Cv1
and q2 2 Cv2

with v1; v2 2 V .�C / form a node e 2E.�C /, then `.v1/� `.v2/ if
and only if ordq1

!v1
��1. Together with the previous property, this implies that `.v1/D `.v2/

if and only if ordq1
!v1
D�1.

(v) If q1 2 Cv1
and q2 2 Cv2

with v1; v2 2 V .�C / form a horizontal node e 2E.�C / (ie �e D 0),
then

(1-2) resq1
!v1
C resq2

!v2
D 0:

(vi) For every level �1� j � �L of �C and for every connected component Y of C.>j/,

(1-3)
X

q2Y\C.j /

resq� !v.q�/ D 0;

where qC 2 Y and q� 2 C.j/ form the vertical node q 2 Y \C.j/.

(3) A cyclic order-reversing bijection �q W P
in
qC
! P out

q� for each vertical node q formed by identifying
qC on the upper level with q� on the lower level, where �q D jP

in
qC
j D jP out

q� j.

Geometry & Topology, Volume 28 (2024)
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Remark 1.3 Using notation from [14, Section 4.1], condition (2)(vi) is a reformulation of the R–global
residue condition in the particular case when � is the partition of Hp in one-element subsets and �R D �.

Lastly, there is an action of the universal cover of the torus CL ! .C�/L on multiscale residueless
differentials by rescaling the differentials with strictly negative levels and rotating the prong matchings
between levels accordingly, producing fractional Dehn twists. The stabilizer of this action is called the
twist group of the enhanced level graph and denoted by Tw� . Two multiscale residueless differentials
are defined to be equivalent if they differ by the action of T� WD CL=Tw� . By further quotienting by
the action of C�–rescaling the differentials on all levels and leaving all prong-matchings untouched, we
obtain equivalence classes of projectivized multiscale residueless differentials.

As a special case of [14, Proposition 4.2] (corresponding to the choice of R described in Remark 1.3),
we have the following result.

Proposition 1.4 [14] (1) Given a1; : : : ; an 2 Z, there is a proper smooth Deligne–Mumford stack
Bres

g .a1; : : : ; an/ containing Bres
g .a1; : : : ; an/ as an open dense substack whose complement is a

normal crossing divisor. Bres
g .a1; : : : ; an/ is a moduli stack for families of equivalence classes of

projectivized multiscale residueless differentials. Its dimension is

dim Bres
g .a1; : : : ; an/D 2g� 2C n�NaŒn� :

(2) We denote the closure of the stratum parametrizing multiscale differentials whose enhanced level
graph is .�; `; �/ by D.�;`;�/ or simply by D� . Then D� is a proper smooth closed substack of
Bres

g .a1; : : : ; an/ of codimension

codim D� D hCL;

where h is the number of horizontal edges in .�; `; �/ and LC 1 is the number of levels.

There is a forgetful map p WBres
g .a1; : : : ; an/!Mg;n associating to a projectivized multiscale differential

on a stable curve C the stable curve itself. It restricts to an isomorphism of Deligne–Mumford stacks
p W Bres

g .a1; : : : ; an/!Hres
g .a1; : : : ; an/�Mg;n and, clearly,

ŒHres
g .a1; : : : ; an/�D p�ŒB

res
g .a1; : : : ; an/�:

We will use the above description of the boundary stratification of Bres
g .a1; : : : ; an/ to understand the

intersection of ŒHres
g .a1; : : : ; an/� with the boundary stratum of stable curves with one separating node.

1.3 The class ŒHres
g .a1; : : : ; an/� as a partial cohomological field theory

Recall the following generalization from Liu, Ruan and Zhang [23] of the notion of cohomological field
theory (CohFT) from Kontsevich and Manin [22].

Geometry & Topology, Volume 28 (2024)
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Definition 1.5 A partial CohFT is a system of linear maps cg;n W V
˝n!H even.Mg;n/, for all pairs of

nonnegative integers .g; n/ in the stable range 2g� 2Cn> 0, where V is an arbitrary finite dimensional
C–vector space, called the phase space, together with a special element e1 2 V , called the unit, and
a symmetric nondegenerate bilinear form � 2 .V �/˝2, called the metric, such that, chosen any basis
fe˛g˛2A of V , where jAj D dim V , the following axioms are satisfied:

(i) The maps cg;n are equivariant with respect to the Sn–action permuting the n copies of V in V ˝n

and the n marked points in Mg;n, respectively.

(ii) One has ��cg;n

�Nn
iD1 e˛i

�
D cg;nC1

�Nn
iD1 e˛i

˝ e1
�

for ˛1; : : : ; ˛n 2 A, where � WMg;nC1!

Mg;n is the map that forgets the last marked point. Moreover, c0;3.e˛˝eˇ˝e1/D�.e˛˝eˇ/DW�˛ˇ

for ˛; ˇ 2A, where we identify H�.M0;3/DH�.pt/DC.

(iii) One has gl�cg1Cg2;n1Cn2

�Nn
iD1 e˛i

�
D cg1;n1C1

�N
i2I e˛i

˝ e�
�
���cg2;n2C1

�N
j2J e

j̨
˝ e�

�
for 2g1�1Cn1 > 0, 2g2�1Cn2 > 0 and ˛1; : : : ; ˛n 2A, where I tJ D Œn�, jI j D n1, jJ j D n2

and gl WMg1;n1C1 �Mg2;n2C1!Mg1Cg2;n1Cn2
is the corresponding gluing map, and where �˛ˇ

is defined by �˛���ˇ D ı˛ˇ for ˛; ˇ 2A.

Definition 1.6 A CohFT is a partial CohFT cg;n W V
˝n!H even.Mg;n/ such that the following extra

axiom is satisfied:

(iv) One has gl�cgC1;n

�Nn
iD1 e˛i

�
D cg;nC2

�Nn
iD1 e˛i

˝ e�˝ e�
�
��� , where gl WMg;nC2!MgC1;n

is the gluing map, which increases the genus by identifying the last two marked points.

Definition 1.7 A partial CohFT cg;n W V
˝n ! H even.Mg;n/ is called homogeneous if V is a graded

vector space with a homogeneous basis fe˛g˛2A, with q˛ WD deg e˛ , the metric � on V , seen as the map
� W V ˝2!C, is homogeneous with ı WD �deg �, deg e1 D 0 and complex constants r˛ for ˛ 2A and 
exist such that the following condition is satisfied:

(1-4) Deg cg;n

� nO
iD1

e˛i

�
C��cg;nC1

� nO
iD1

e˛i
˝ r˛e˛

�
D

� nX
iD1

q˛i
C g� ı

�
cg;n

� nO
iD1

e˛i

�
;

where Deg WH�.Mg;n/!H�.Mg;n/ is the operator that acts on H i.Mg;n/ by multiplication by i=2, and
� WMg;nC1!Mg;n forgets the last marked point. The constant  is called the conformal dimension of
our partial CohFT.

When a homogeneous partial CohFT is a CohFT, the loop axiom enforces the condition  D ı.

As remarked in [11, Section 3], a sufficient condition for the definition of a partial CohFT to make sense
when V is countably generated, say V WD span.fe˛g˛2Z/, ie AD Z in the above definition, is that the
set

˚
˛n 2 Zjcg;n

�Nn
iD1 e˛i

�
¤ 0

	
is finite for every g; n in the stable range and ˛1; : : : ; ˛n�1 2 Z, and

that �˛ˇ has a unique two-sided inverse �˛ˇ.

Let us introduce the notation Z? WD Z n f�1g.

Geometry & Topology, Volume 28 (2024)
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Proposition 1.8 Let V WD span.fe˛g˛2Z?/ and let � be the nondegenerate symmetric bilinear form
on V given by �˛ˇ D �.e˛˝ eˇ/ WD ı˛Cˇ;�2. The classes cg;n W V

˝n!H even.Mg;n/ with g; n� 0 and
2g� 2C n> 0, defined by

(1-5) cg;n.e˛1
˝ � � �˝ e˛n

/ WD ŒHres
g .˛1; : : : ; ˛n/� 2H

2.g�1CN˛Œn� /.Mg;n/ for ˛1; : : : ; ˛n 2 Z?;

form an infinite-rank homogeneous partial CohFT with unit e0, metric � and , with the notation of
Definition 1.7,

� q˛ D 0 if ˛ � 0, and q˛ D 1 if ˛ � �2,

� r˛ D 0 for all ˛ 2 Z?,

�  D ı D 1.

Proof For fixed g, n in the stable range and ˛1; : : : ; ˛n�1 2Z�, the set
˚
˛n 2Z? j cg;n

�Nn
iD1 e˛i

�
¤ 0

	
is indeed finite (actually composed of one element) thanks to the fact that ŒHres

g .˛1; : : : ; ˛n/�D 0 unlessPn
iD1 ˛i D 2g� 2. Further, �˛ˇ D ı˛Cˇ;�2 has a unique two-sided inverse, namely �˛ˇ D ı˛Cˇ;�2.

Sn–equivariance of the linear maps cg;n is clear from the definition.

On the marked curve .CP1I 0;1; 1/, a (unique up to a multiplicative constant) meromorphic differential,
whose divisor is ˛Œ0�CˇŒ1�C 0Œ1� if ˇ D�˛� 2, exists and is given by ! D z˛ dz, which shows that
c0;3.e˛˝eˇ˝e0/D ı˛Cˇ;�2. Let us compute cg;nC1

�Nn
iD1 e˛i

˝e0

�
when 2g�2Cn> 0. Consider the

lift z� WBres
g .˛1; : : : ; ˛n; 0/!Bres

g .˛1; : : : ; ˛n/ of� WMg;nC1!Mg;n through p WBres
g .˛1; : : : ; ˛n/!Mg;n.

Since Bres
g .˛1; : : : ; ˛n; 0/ is the moduli stack of projectivized multiscale differentials where the last marked

point is unconstrained (neither a zero nor a pole), we have that z� is faithfully flat. Consider then the
fiber product X of Bres

g .˛1; : : : ; ˛n/ and Mg;nC1 over Mg;n, denoting the two projections by a and b,
respectively. Since � is faithfully flat and p is proper, then a is faithfully flat and b is proper and we have
��p� D b�a

� in the Chow group. Moreover the maps z� and p induce a proper birational morphism
f W Bres

g .˛1; : : : ; ˛n; 0/! X with p D bf and z� D af . Now, always working in the Chow group, we
have z��ŒBres

g .˛1; : : : ; ˛n/�D ŒB
res
g .˛1; : : : ; ˛n; 0/� and a�ŒBres

g .˛1; : : : ; ˛n/�D ŒX � by faithful flatness of
z� and a, while f�ŒBres

g .˛1; : : : ; ˛n; 0/�D ŒX � by birationality of f . Then we conclude that

cg;nC1

� nO
iD1

e˛i
˝ e0

�
D p�ŒB

res
g .˛1; : : : ; ˛n; 0/�D p�z�

�ŒBres
g .˛1; : : : ; ˛n/�

D b�f�z�
�ŒBres

g .˛1; : : : ; ˛n/�D b�a
�ŒBres

g .˛1; : : : ; ˛n/�

D ��p�ŒB
res
g .˛1; : : : ; ˛n/�D �

�cg;n

� nO
iD1

e˛i

�
in Chow and hence in cohomology.
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Next, we are interested in ��cg;n

�Nn
iD1 e˛i

�
, where � W Mg1;jI jC1 �Mg2;jJ jC1! Mg;n is the natural

boundary map with g1 C g2 D g and I t J D Œn�. As explained in Proposition 1.4, the preimage
p�1.�.Mg1;jI jC1 �Mg2;jJ jC1// is a normal crossing divisor of Bres

g .˛1; : : : ; ˛n/, which is the union of
strata of the form D� with � being an enhanced level graph whose underlying stable graph is (possibly
a degeneration of) the connected graph with two vertices and one edge describing the aforementioned
gluing map � WMg1;jI jC1 �Mg2;jJ jC1!Mg;n. As prescribed by Proposition 1.4(2), in order for D� to
be a divisor inside Bres

g .˛1; : : : ; ˛n/, � has to be either a one-level connected graph with two vertices
and one horizontal edge, a two-level connected graph with one vertex per level, one vertical edge and no
horizontal edges, or a two-level connected graph with at least two vertices on at least one of the levels
and no horizontal edges.

In the first case, D� is actually empty: horizontal nodes correspond to simple poles and these are forbidden
by the residue theorem, since all other poles are at marked points, where residues are set to zero.

In the third case, the stratum D� projects to a stratum of Hres
g .˛1; : : : ; ˛n/ of codimension at least 2

because the fibers of pjD� are of dimension at least 1 (given a multiscale differential whose underlying
level graph has at least two vertices on the same level not connected by horizontal nodes, one can always
rescale the meromorphic differential on one vertex relative to the ones on vertices of the same level
without changing the underlying stable curve).

In the second case, notice that if D� ¤∅, then for the only edge e 2E.�/ identifying the two points
q� 2 C.�1/ and qC 2 C.0/, we have �e D

ˇ̌
2g1 � 1 �

P
i2I ˛i

ˇ̌
D
ˇ̌
2g2 � 1 �

P
j2J j̨

ˇ̌
¤ 0 and

resq� !v.q�/ D 0, and moreover 2g1� 1�
P

i2I ˛i is positive if and only if the vertex of � of level 0

is incident to the legs marked by I . Since T� D C� in this case, this shows that there is a morphism
z� W Bres

g1

�
˛I ; 2g1� 2�

P
i2I ˛i

�
�Bres

g2

�
˛J ; 2g2� 2�

P
j2J j̨

�
! Bres

g .˛1; : : : ; ˛n/ lifting � , which is
an isomorphism onto its image D� , and therefore

��1
�
Hres

g .˛1; : : : ; ˛n/
�
DHres

g1

�
˛I ; 2g1� 2�

X
i2I

˛i

�
�Hres

g2

�
˛J ; 2g2� 2�

X
j2J

j̨

�
:

The above considerations show that, writing � WD 2g1� 1�
P

i2I ai , we have

��cg;n

� nO
iD1

e˛i

�
D

�
0 if � D 0;

m cg1;jI jC1

� N
i2I

e˛i
˝ e��1

�
cg2;jJ jC1

� N
j2J

e
j̨
˝ e���1

�
if � ¤ 0;

and the fact that mD 1 in the second case is equivalent to the fact that the intersection of Hres
g .˛1; : : : ; ˛n/

with the image of � along Hres
g1
.˛I ; � � 1/�Hres

g2
.˛J ;�� � 1/ is generically transversal.

Denote by S1 and S2 the smooth parts of Hres
g1
.˛I ; � � 1/ and Hres

g2
.˛J ;�� � 1/, respectively. Write

S WDHres
g .˛1; : : : ; ˛n/ for brevity. Let us show that the intersection of S with the image of � is transversal

along S1 �S2.
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Pick points p1 2 S1 and p2 2 S2. Denote by p 2 Mg;n the point �.p1;p2/. By the smoothness of
stratum S1, we can choose local coordinates U1 �V1 on Mg1;jI jC1 in the neighborhood of p1 such that
S1DU1�f0g. We choose local coordinates U2�V2 in the neighborhood of p2 in Mg2;jJ jC1 in the same
way. Denote by��C the unit disc. We claim that we can choose local coordinates U1�V1�U2�V2��

on Mg;n in the neighborhood of p so that the stratum S is U1�f0g�U2�f0g�� and the image of � is
U1 �V1 �U2 �V2 � f0g. The transversality of the intersection is then obvious. So let us describe the
choice of local coordinates.

Every curve C1 in U1�f0g carries a residueless meromorphic differential. It is unique up to a multiplicative
constant. Choose this constant in some way over U1 and denote the meromorphic differential by ˛.
Similarly, denote by ˇ the meromorphic differential on a curve C2 of U2�f0g. At the marked points to be
glued into a node there is a local coordinate z on C1 and w on C2 such that ˛ D d.zk/ and ˇ D d.w�k/.
The choice of such local coordinates is unique up to the multiplication by a kth root of unity; we fix one
uniform choice over all of U1 and U2. We extend the local coordinates z and w to curves in U1�V1 and
U2 �V2 in an arbitrary way. Now, to a curve C1 2 U1 �V1, a curve C2 2 U2 �V2, and a number " 2�
we assign the curve obtained by removing the neighborhoods of the marked points z D 0 and w D 0

and gluing in the “waist” zw D ". In the case when C1 2 U1 � f0g and C2 2 U2 � f0g, the curve thus
obtained does carry a residueless meromorphic differential, because ˛ and "kˇ agree on the waist. Thus
the stratum S is indeed given by U1 � f0g �U2 � f0g ��, while the image of � is f"D 0g.

We conclude that ��cg;n

�Nn
iD1 e˛i

�
D
P
˛2Z? cg1;jI jC1

�N
i2I e˛i

˝e˛
�
cg2;jJ jC1

�N
j2J e

j̨
˝e�˛�2

�
,

as required.

Finally, from formula (1-1) we obtain Deg cg;n

�Nn
iD1 e˛i

�
D .g � 1CN˛Œn�/cg;n

�Nn
iD1 e˛i

�
, which

shows that with the constants q˛ D 0 if ˛ � 0 and q˛ D 1 if ˛ ��2, and  D ıD 1, which are compatible
with deg e0 D 0 and deg �D�ı, equation (1-4) is satisfied, thus completing the proof.

2 The DR hierarchy for the cycle of residueless meromorphic differentials

Here we briefly review the notion of double ramification (DR) hierarchy for a partial CohFT and then
apply this construction to the partial CohFT formed by the cycles of residueless meromorphic differentials.

In [6], the first author introduced a construction associating an integrable Hamiltonian system of evolution-
ary PDEs to a given CohFT. In [7] it was proved that the same construction also works for partial CohFTs
and, in [11], the first example of DR hierarchy associated to an infinite rank partial CohFT was computed.
Finally, in [10; 1], the construction was generalized to associate an integrable system of evolutionary
PDEs to any F-CohFT (a generalization of the notion of partial CohFT introduced in [10] and further
studied in [2]). Although this last generalization will not be needed in this paper, it has several points in
common with a reduction of the DR hierarchy associated to the infinite rank partial CohFT (1-5) (the
reduction corresponding to only considering the spaces of meromorphic differentials with exactly two
zeros), which we will study in Section 3.
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Let  i 2H 2.Mg;n/ be the i th psi class, ie the first Chern class of the tautological line bundle over Mg;n

whose fiber at a stable curve is the cotangent line at its i th marked point. Let �j 2H 2j .Mg;n/ be the j th

Hodge class, ie the j th Chern class of the Hodge bundle E, which is the rank g vector bundle over Mg;n

whose fiber at a stable curve is its space of holomorphic one-forms.

For any a1; : : : ; an 2 Z such that
Pn

iD1 ai D 0, let DRg.a1; : : : ; an/ 2 H 2g.Mg;n/ be the (untwisted)
double ramification (DR) cycle. The DR cycle is the pushforward, through the forgetful map to Mg;n,
of the virtual fundamental class of the moduli space of projectivized stable maps to CP1 relative to 0

and 1, with ramification profile a1; : : : ; an at the marked points; see eg [13] for more details. More
precisely, the pushforward itself lies in H2.2g�3Cn/.Mg;n/, while its Poincaré dual cohomology class
lies in H 2g.Mg;n/. By abuse of notation, we will denote both the pushforward and its Poincaré dual by
DRg.a1; : : : ; an/.

The restriction DRg.a1; : : : ; an/jMct
g;n

, where we recall that Mct
g;n is the moduli space of stable curves of

compact type, is a homogeneous polynomial in a1; : : : ; an of degree 2g with the coefficients in H 2g.Mct
g;n/;

see eg [21]. The polynomiality of the DR cycle on Mct
g;n together with the fact that �g vanishes on

Mg;n nMct
g;n (see eg [17, Section 0.4]) implies that the cohomology class �g DRg

�Pn
jD1 aj ; a1; : : : ; an

�
2

H 4g.Mg;nC1/ is a degree 2g homogeneous polynomial in the coefficients a1; : : : ; an.

We define the spaces yAA and yƒA of differential polynomials and local functionals in formal variables u˛
k

with ˛ 2A and k � 0, and ", where A is an index set (as above, finite or countable). In the case of finite A,
the definitions and the notation can be taken from the paper [24, Section 2.1]. However, since a minor
adjustment is needed in order to include the case of countable A in our considerations, we restate all
definitions in the general form here. Let the ring CŒŒu���� be graded by the grading deg@x

u˛
k
WD k (which

we refer to as differential grading), and the degree d part of it be denoted by A
Œd �
A

. We then define

AA WD ˚d�0A
Œd �
A
; yAA WDAAŒŒ"�� and yƒA WD

yAA=.@x
yAA˚CŒŒ"��/;

where @x WD
P

k�0 u˛
kC1

@=@u˛
k

. We denote the image of f 2 yAA through the natural projection to yƒA by
xf D

R
f dx. Assigning deg@x

" WD �1, the degree d parts of yAA and yƒA are denoted by yAŒd �
A

and yƒŒd �
A

,
respectively.

Remark 2.1 In the case of finite A we have yAADCŒŒu���Œu�
>0
�ŒŒ"��, where u˛ WDu˛

0
, which is the standard

way to introduce the space of differential polynomials, but for countable A we have yAA¤CŒŒu���Œu�
>0
�ŒŒ"��.

Given a partial CohFT cg;n W V
˝n!H even.Mg;n/ with V D span.fe˛g˛2A/, unit e1 and metric �, the

Hamiltonian densities for the associated DR hierarchy are the generating series [9] in yAŒ0�
A

,

(2-1) g˛;d WDX
g;n�0

2g�1Cn>0

"2g

n!

X
k1;:::;kn�0

Coef
a

k1
1
���a

kn
n

�Z
DRg.�

Pn
iD1 ai ;a1;:::;an/

�g 
d
1 cg;nC1

�
e˛˝

nO
iD1

e˛i

�� nY
iD1

u
˛i

ki
;
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where ˛ 2A and d 2 Z�0. To this definition one can add g˛;�1 WD �˛�u� for ˛ 2A. The Hamiltonians
of the DR hierarchy are the local functionals xg˛;d 2 yƒ

Œ0�
A

for ˛ 2A and d � �1. By a result of [6], the
Hamiltonians of the DR hierarchy are in involution with respect to the Poisson brackets on yƒA defined by

f xf ; xgg D

Z �
ı xf

ıu˛
�˛ˇ@x

ıxg

ıuˇ

�
dx

for any two local functionals xf ; xg 2 yƒA, that is, fxg˛1;d1
; xg˛2;d2

g D 0 for all ˛1; ˛2 2A and d1; d2 ��1.

This implies that the infinite system of evolutionary PDEs, called the DR hierarchy,

(2-2)
@u˛

@t
ˇ

d

D �˛�@x

ıxgˇ;d

ıu�
for ˛; ˇ 2A and d � 0;

where, for any xf 2 yƒA,
ı xf

ıu˛
WD

X
k�0

.�@x/
k @f

@u˛
k

for ˛ 2A

satisfies the compatibility conditions

@

@t
ˇ2

d2

@u˛

@t
ˇ1

d1

D
@

@t
ˇ1

d1

@u˛

@t
ˇ2

d2

for all ˛; ˇ1; ˇ2 2A and d1; d2 � 0:

In [9; 7; 8] the authors showed that the DR hierarchy of a partial CohFT is a hierarchy of DR type, which
means in particular that it is a tau-symmetric Hamiltonian system and its Hamiltonian densities can be
reconstructed uniquely from the Hamiltonian xg1;1 only, via a universal recursion equation.

If the partial CohFT cg;n W V
˝n ! H even.Mg;n/ is homogeneous, with notation as in Definition 1.7,

consider the Euler differential operator on yAA

yE WD
X
k�0

..1� q˛/u
˛
k C ık;0r˛/

@

@u˛
k

C
1� 

2
"
@

@"
:

Then it follows easily from dimension counting in the integral appearing in equation (2-1) that

(2-3) yE.g˛;d /D .d C 2C q˛ � ı/g˛;d C r�c˛�� g�;d�1 for ˛ 2A and d � 0;

where c˛�� WD �
˛ˇ�� c0;3.e�˝ eˇ˝ e / 2C for all �; ˛; � 2A.

Let us apply the DR hierarchy construction to the partial CohFT of Proposition 1.8.

Proposition 2.2 Let us endow the ring yAZ? with the triple grading

(2-4) deg u˛k WD

�
(k; 1;�˛/ if ˛ � 0;

(k; 0;�˛/ if ˛ � �2;
deg " WD .�1; 0; 1/:

Then the Hamiltonian densities of the DR hierarchy associated to the homogeneous partial CohFT of
Proposition 1.8 satisfy, for d � �1,

(2-5) deg g˛;d D

�
(0; d C 1; ˛C 2/ if ˛ � 0;

(0; d C 2; ˛C 2/ if ˛ � �2:
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Proof The first entry in the triple degree deg coincides with deg@x
. The three entries in the triple degree

of equation (2-5) follow easily from the fact that g˛;d 2 yA
Œ0�
Z? , from equation (2-3), and from the fact that

cg;n

�
e˛˝

Nn
iD1 e˛i

�
D 0 unless �

Pn
iD1 ˛i C 2g D ˛C 2, respectively.

3 A reduction to meromorphic differentials with two zeros and the KP
hierarchy

In this section we describe a reduction of the DR hierarchy for the cycles of residueless meromorphic
differentials. As we will see, this reduction does not respect the Poisson structure, in the sense that it is
only defined at the level of vector fields. As the main result of the paper, we will prove that the reduction
coincides with the KP hierarchy up to a Miura transformation.

3.1 A reduction of the DR hierarchy

Consider the DR hierarchy for the partial CohFT formed by the cycles of residueless meromorphic
differentials with

@u˛

@t
ˇ

d

D @x

ıxgˇ;d

ıu�˛�2
for ˛; ˇ 2 Z? and d � 0:(3-1)

Proposition 3.1 The subset of flows of the DR hierarchy (3-1)

(3-2)
@u˛

@t
ˇ
0

D @x

ıxgˇ;0

ıu�˛�2
for ˛ 2 Z? and ˇ � 0

preserves the submanifold fu˛
k
D 0; ˛; k � 0g.

Proof The statement is equivalent to

@u˛

@t
ˇ
0

ˇ̌̌̌
u�0
� D0

D @x

ıxgˇ;0

ıu�˛�2

ˇ̌̌̌
u�0
� D0

D 0 for ˛; ˇ � 0:

Since, by (2-5), deg gˇ;0 D .0; 1; ˇC 2/ for ˇ � 0 and, by (2-4), deg u�˛�2
k

D .k; 0; ˛C 2/ for ˛ � 0,
we have

deg
@gˇ;0

@u�˛�2
k

D .�k; 1; ˇ�˛/ for ˛; ˇ � 0:

But, again, deg u


k
D .k; 0;� / for  � �2, which implies

@gˇ;0

@u�˛�2
k

ˇ̌̌̌
u�0
� D0

D 0 for ˛; ˇ � 0:

This implies
ıxgˇ;0

ıu�˛�2

ˇ̌̌̌
u�0
� D0

D 0 for ˛; ˇ � 0;

as desired.
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Let us summarize our considerations regarding the above reduction and also introduce more convenient
notation.

Let u
.k/
˛ WD u�˛�1

k
, u˛ WD u

.0/
˛ and t˛ WD t˛�1

0
, for ˛ � 1 k � 0. In particular, u

.k/
˛ D @

k
xu˛. Consider

the ring Ru WDCŒu.�/� � and the following three gradings on it:

� The differential grading deg@x
u
.k/
˛ WD k. The corresponding homogeneous component of Ru of

degree d will be denoted by R
Œd �
u .

� A grading deg, given by deg u
.k/
˛ WD ˛C 1C k.

� A grading edeg, given by edeg u
.k/
˛ WD 1. The corresponding homogeneous component of Ru of

degree d will be denoted by RuId . We will also use the notation RuI�l WD
L

d�l RuId .

Let Rev
u WD

L
d�0 R

Œ2d �
u . We extend the three gradings to the ring yRu WDRuŒ"� by

deg@x
" WD �1; deg " WD 0; edeg " WD 0:

Let yRev
u WDRev

u Œ"�.

For instance, the ring yRevIŒ0�
uI�1

, which appears in the theorem below is the ring of polynomials with complex
coefficients in the variables u

.k/
˛ for ˛ � 1 and k � 0, and ", such that each monomial has at least one

u–variable, an even number of x–derivatives and a matching even power of the variable "; see Example 3.8
for some instances of polynomials of this type.

Theorem 3.2 For two integers ˛; ˇ � 1, consider the generating series

(3-3) P˛ˇ WDX
g�0;n�1

"2g

n!

X
k1;:::;kn�0

nY
iD1

u.ki /
˛i

�Coef
a

k1
1
:::a

kn
n

�Z
DRg.�

Pn
iD1 ai ;0;a1;:::;an/

�gŒH
res
g .˛�1; ˇ�1;�˛1�1; : : : ;�˛n�1/�

�
:

Then P˛ˇ 2 yR
evIŒ0�
uI�1

with deg P˛ˇ D ˛Cˇ and the system of equations

(3-4)
@u˛

@tˇ
D @xP˛ˇ for ˛; ˇ � 1

satisfies the compatibility condition

@

@tˇ2

@u˛

@tˇ1
D

@

@tˇ1

@u˛

@tˇ2
for all ˛; ˇ1; ˇ2 � 1:

Moreover , the polynomials P˛ˇ satisfy the property

(3-5) P1;ˇ �uˇ 2 Im.@2
x/;
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Proof The system (3-4) is just the restriction of the system (3-2) to the submanifold fu˛
k
D 0; ˛; k � 0g,

expressed in the new variables u
.k/
˛ for ˛ � 1 and k � 0, which form a system of coordinates on it.

Compatibility and degree conditions follow from those for the DR hierarchy via the change of coordinates.
In particular the degree conditions guarantee that for all ˛; ˇ � 1, P˛ˇ belongs to the subring yRevIŒ0�

uI�1
of

the ring CŒŒu.�/� ��ŒŒ"��.

Equation (3-5) follows from (3-3) where, for ˛ D 1 and unless g D 0 and nD 1, we haveZ
DRg.�

Pn
iD1 ai ;0;a1;:::;an/

�gŒH
res
g .0; ˇ� 1;�˛1� 1; : : : ;�˛n� 1/�

D

Z
�� DRg.�

Pn
iD1 ai ;0;a1;:::;an/

�gŒH
res
g .ˇ� 1;�˛1� 1; : : : ;�˛n� 1/�;

where � WMg;nC2!Mg;nC1 forgets the first marked point, and from the fact, proven in [7, Lemma 5.1],
that �g��DRg

�
�
Pn

iD1 ai ; 0; a1; : : : ; an

�
is a polynomial in the variables a1; : : : ; an which is divisible

by
�Pn

iD1 ai

�2.

3.2 The Miura transformation

The degree condition deg P1;˛ D ˛ C 1 together with the property (3-5) implies that the difference
P1;˛ � u˛ depends only on the variables u

.�/

ˇ
with ˇ � ˛ � 2 and on ". Therefore, the polynomial

change of variables u˛ 7! v˛.u
.�/
� ; "/ WD P1;˛ is invertible. We refer to this change of variables as Miura

transformation, following the terminology of [16].

Since P1;˛ �u˛ 2 Im.@x/, the system (3-4) in the new variables v˛, ˛ � 1 has the form

(3-6)
@v˛

@tˇ
D @xQ˛ˇ;

where, by the theorem,

(3-7) Q˛ˇ 2
yR

evIŒ0�
vI�1

; deg Q˛ˇ D ˛Cˇ; Q˛;1 DQ1;˛ D v˛; Q˛ˇ DQˇ˛:

3.3 The KP hierarchy

Let us briefly recall the construction of the KP hierarchy and some of its properties. A more detailed
introduction can be found, for example, in [15].

Consider formal variables f .j/i for i � 1 and j � 0, and the associated ring Rf D CŒf .�/� �; here and
in what follows we use the notation and gradings introduced in Section 3.1 for the ring Ru in the
variables u

.�/
� and apply it to differently named formal variables whose indices have the same ranges. A

pseudodifferential operator A is a Laurent series

AD

mX
nD�1

an@
n
x; with m 2 Z and an 2Rf :
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Let AC WD
Pm

nD0 an@
n
x and res A WD a�1. The product of pseudodifferential operators is defined by the

commutation rule

@k
x ı a WD

1X
lD0

k.k � 1/ � � � .k � l C 1/

l !
.@l

xa/@k�l
x for a 2Rf and k 2 Z;

which endows the space of pseudodifferential operators with the structure of an associative algebra.

Let
L WD @xC

X
i�1

fi@
�i
x :

The KP hierarchy is the system of evolutionary PDEs with dependent variables fi defined by

@L

@Tn
D Œ.Ln/C;L� for n� 1:

Example 3.3 Using that

L2
D @2

xC 2f1C .2f2Cf
.1/

1
/@�1

x C .2f3Cf
2

1 Cf
.1/

2
/@�2

x C � � � ;

we compute
@f1

@T2

D 2f
.1/

2
Cf

.2/
1

and
@f2

@T2

D 2f
.1/

3
C 2f1f

.1/
1
Cf

.2/
2
:

We can extend the grading deg from the ring Rf to the ring of pseudodifferential operators by assign-
ing deg @x WD 1. We then obtain deg LD 1 and therefore deg Lk D k and degŒLk

C;L�D kC 1, which
implies that the equations of the KP hierarchy have the form

@fi

@Tk

D Si;k with Si;k 2Rf I�1;

where deg Si;k D i C kC 1.

We also see that deg res Lk D kC 1 for k � 1, and

@

@fk

res Lk
D

X
aCbDk�1

res.La
ı @�k

x ıLb/D k:

Therefore, res Lk � kfk depends only on the variables f .l/a with a � k � 1, which implies that the
polynomial change of variables f˛ 7! w˛.f

.�/
� / WD res L˛ for ˛ � 1 is invertible. Note also thatZ

@

@Tn
res La dx D

Z
res
�
@

@Tn
La

�
dx D

Z
resŒ.Ln/C;L

a� dx D 0;

where the last equality follows from the fact that
R

resŒA;B� dx D 0 for any two pseudodifferential
operators A and B. As a result we obtain that the KP hierarchy written in the variables w˛, with ˛ � 1,
has the form

(3-8)
@w˛

@Tˇ
D @xR˛ˇ;
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where

R˛ˇ 2RwI�1;(3-9)

deg R˛ˇ D ˛Cˇ;(3-10)

R˛;1 DR1;˛ D w˛;(3-11)

R˛ˇ DRˇ˛:(3-12)

Example 3.4 Using Example 3.3 we compute

w1Df1; w2D2f2Cf
.1/

1
; w3D3f3C3f 2

1 C3f
.1/

2
Cf

.2/
1

and
@w2

@T2

D@x

�
4
3
w3�2w2

1�
1
3
w
.2/
1

�
:

3.4 The main result

Note that putting "D 1 gives an isomorphism yRŒ0�
v
Š�!Rv . Therefore, putting "D 1 in the system (3-6),

we don’t lose any information about the equations.

Theorem 3.5 Consider the reduction of the DR hierarchy from Theorem 3.2 written in the variables va

(the system (3-6)) and the KP hierarchy written in the variables wa (the system (3-8)). If we put "D 1,
then these two systems are related by the change of variables

(3-13) v˛ D�
1

˛
w˛ and tˇ D ˇTˇ:

The proof of the theorem is split into three steps.

3.4.1 Step 1 of the proof: more properties of the DR hierarchy

Lemma 3.6 The polynomials P˛ˇ satisfy the following properties for ˛; ˇ � 1:

P˛;1 D u˛;(3-14)

P˛ˇ D u˛Cˇ�1C
zP˛ˇ.u

.�/

�˛Cˇ�3
; "/ for some zP˛ˇ 2 yR

evIŒ0�
uI�1

;(3-15)

P1;˛ D u˛C "
2˛.˛� 2/

24
u
.2/
˛�2
C "2P 01;˛.u

.�/
�˛�3

; "/ for some P 01;˛ 2
yR

evIŒ2�
uI�1

;(3-16)

P˛;2 D u˛C1C
u1u˛�1

1C ı˛;2
C
"2

24
u
.2/
˛�1
CP 0˛;2.u

.�/
�˛�2

; "/ for some P 0˛;2 2
yR

evIŒ0�
uI�1

;(3-17)

where we adopt the convention u
.�/
i WD 0 for i � 0.

Proof Equation (3-14) follows from (3-3) where, for ˇ D 1, all the cycles involved in the integral
over Mg;nC2, are pullbacks via the morphism � WMg;nC2!Mg;nC1 forgetting the second marked point,
unless g D 0 and nD 1, in which case the integral is over M0;3 and all the nontrivial cycles involved
equal 1.
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Equation (3-15) follows from the fact that, on M0;3, all the nontrivial cycles involved in (3-3) equal 1.

To prove equations (3-16) and (3-17), we have to check thatZ
M0;4

ŒHres
0 .˛� 1; 1;�2;�˛/�D 1 for ˛ � 2;(3-18) Z

DR1.a;0;�a/

�1ŒH
res
1 .0; ˛� 1;�˛C 1/�D a2˛.˛� 2/

24
for ˛ � 3;Z

DR1.a;0;�a/

�1ŒH
res
1 .˛� 1; 1;�˛/�D

a2

24
for ˛ � 2:(3-19)

Note that the second equation is equivalent to

(3-20)
Z

M1;2

�1ŒH
res
1 .˛� 1;�˛C 1/�D

˛.˛� 2/

24
for ˛ � 3;

where we have used that

ŒHres
1 .0; ˛� 1;�˛C 1/�D ��ŒHres

1 .˛� 1;�˛C 1/� and ��.�1 DR1.a; 0;�a//D a2�1;

where � WM1;3!M1;2 forgets the first marked point; see eg [7, Lemma 5.4].

We have two substantially different proofs of equations (3-18), (3-19), (3-20), and we think that it is
instructive to present both of them.

First proof of equations (3-18)–(3-20) To prove equation (3-18), let us explicitly describe the set
Hres

0
.˛� 1; 1;�2;�˛/�M0;4. The moduli space M0;4 is isomorphic to C n f0; 1g, with an isomorphism

sending a point t 2Cnf0; 1g to the isomorphism class of the marked curve .CP1I 1; t; 0;1/. A unique, up
to a multiplicative constant, meromorphic differential on CP1, whose divisor is .˛�1/Œ1�CŒt ��2Œ0��˛Œ1�,
is given by

! D
.z� 1/˛�1.z� t/

z2
dz:

Its residue at 0 is equal to .�1/˛�1.1 C .˛ � 1/t/. Thus, the differential ! is residueless if and
only if t D �1=.˛ � 1/. We conclude that Hres

0
.˛ � 1; 1;�2;�˛/ � M0;4 is a point. It follows that

Hres
0
.˛� 1; 1;�2;�˛/�M0;4 is also a point, which proves (3-18).

The proof of equations (3-19) and (3-20) is based on the following lemma.

Lemma 3.7 For a� 1, we have Z
M1;2

 1ŒH
res
1 .a;�a/�D

a2� 1

24
:

Proof Consider an arbitrary smooth elliptic curve C with two marked points x1 and x2. Since C carries
a nowhere vanishing holomorphic differential, the fact that there exists a meromorphic differential ! on C

with .!/D aŒx1�� aŒx2� is equivalent to the fact that there exists a meromorphic function f on C with
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.f /D aŒx1�� aŒx2�. Therefore, ŒHres
1
.a;�a/� coincides with the version of the double ramification cycle

defined using admissible coverings rather than relative stable maps (see eg [13, Section 2.3] and [20]),
which we denote by DRadm

1 .a;�a/. The fact
R

M1;2
 1ŒDRadm

1 .a;�a/�D .a2�1/=24 follows, for example,
from [13, Theorem 6].

For I � Œn� and 0 � h � g, denote by ıI
h
2H 2.Mg;n/ the class of the closure of the substack of stable

curves from Mg;n having exactly one node separating a genus h component carrying the points marked
by I and the genus g� h component carrying the points marked by Œn� n I .

For (3-20) we computeZ
M1;2

�1ŒH
res
1 .˛� 1;�˛C 1/�D

Z
M1;2

. 1� ı
f1;2g
0

/ŒHres
1 .˛� 1;�˛C 1/�

D
˛.˛� 2/

24
�

�Z
M1;1

ŒHres
1 .0/�

��Z
M0;3

ŒHres
0 .�2; ˛� 1;�˛C 1/�

�
D
˛.˛� 2/

24
;

where the second equality follows from Lemma 3.7 and Proposition 1.8, and both integrals in the product
in the second line vanish because of degree reasons.

To prove equation (3-19) we use Hain’s formula [19, Theorem 11.1]

DR1.a;�a/jMct
1;2
D a2

�
1
2
�1C ı

f1;2g
0

�
;

which, together with the fact �2
1
D 0, gives

(3-21)
Z

DR1.a;0;�a/

�1ŒH
res
1 .˛� 1; 1;�˛/�D a2

Z
M1;3

�1.ı
f1;3g
0
C ı
f1;2;3g
0

/ŒHres
1 .˛� 1; 1;�˛/�

D a2

�Z
M1;1

�1ŒH
res
1 .0/�

��Z
M0;4

ŒHres
0 .�2; ˛� 1; 1;�˛/�

�
;

where the second equality holds by Proposition 1.8. Since any smooth elliptic curve carries a nowhere
vanishing holomorphic differential, we have Hres

1
.0/ D M1;1 and therefore ŒHres

1
.0/� D 1 2 H 0.M1;1/.

Since
R

M1;1
�1 D

1
24

, the expression in line (3-21) is equal to 1
24

a2
R

M0;4
ŒHres

0
.�2; ˛� 1; 1;�˛/�D 1

24
a2

by (3-18).

Second proof of equations (3-18)–(3-20) Equation (3-18) follows from [14, Propositions 8.2 and 8.3],
based in turn on [25, Theorem 6(1),(3)], where, for g; n; k � 0 and m� 2 such that 2g�2CnCmCk > 0,
and integers a1; : : : ; an � 0, b1; : : : ; bm � 1, c1; : : : ; ck � 2, the authors computed the class of the moduli
stack

Hg.a1; : : : ; an;�b1; : : : ;�bmI �c1; : : : ;�ck/

inside the moduli stack of projectivized meromorphic differentials with one less residue condition,

Hg.a1; : : : ; an;�b1; : : : ;�bm�1I �bm;�c1; : : : ;�ck/;
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as a linear combination of psi classes and boundary divisors. According to that formula,

ŒHres
0 .˛� 1; 1;�2;�˛/�D .˛� 1/ 4� .˛� 2/ı

f1;3g
0
D  4;

which immediately yields the desired result.

Equations (3-19) and (3-20) follow from [18, equation (31)], which, for a1; : : : ; an 2 Z with at least
one negative entry, computes the discrepancy between the class ŒHg.a1; : : : ; an/� and the weighted
fundamental class Hg.a1 : : : ; an/ of the moduli space of twisted canonical divisors zHg.a1; : : : ; an/. By
the results of [3], Hg.a1 : : : ; an/ equals the 1–twisted DR cycle DR1

g.a1; : : : ; an/ of [21], so in particular
one obtains

ŒH1.˛� 1;�˛C 1/�D DR1
1.˛� 1;�˛C 1/� ı

f1;2g
0

for ˛ � 3;

ŒH1.˛� 1; 1;�˛/�D DR1
1.˛� 1; 1;�˛/� ı

f1;2;3g
0

for ˛ � 2:

Since the 1–twisted DR cycle DR1
1.a1; : : : ; an/ equals the untwisted DR cycle DR1.a1; : : : ; an/ in genus 1

via geometric arguments, a simple application of Hain’s formula yields both desired results.

Example 3.8 The lemma fully determines several polynomials P˛ˇ:

P1;2 D u2; P1;3 D u3C
1
8
"2u

.2/
1
; P2;2 D u3C

1
2
u2

1C
1

24
"2u

.2/
1
:

Recall that the polynomials Q˛ˇ satisfy the properties

Q˛ˇ 2
yR

evIŒ0�
vI�1

;(3-22)

deg Q˛ˇ D ˛Cˇ;(3-23)

Q˛;1 DQ1;˛ D v˛;(3-24)

Q˛ˇ DQˇ˛:(3-25)

The lemma implies that we also have

Q˛ˇ D v˛Cˇ�1C
zQ˛ˇ.v

.�/

�˛Cˇ�3
; "/; with zQ˛ˇ 2

yR
evIŒ0�
vI�1

;(3-26)

Q˛;2 D v˛C1C
v1v˛�1

1C ı˛;2
�
˛� 1

12
v
.2/
˛�1

"2
CQ0˛;2.v

.�/
�˛�2

; "/; with Q0˛;2 2
yR

evIŒ0�
vI�1

:(3-27)

3.4.2 Step 2 of the proof: more properties of the KP hierarchy

Lemma 3.9 R˛ˇ 2Rev
wI�1

.

Proof There is an involution on the space of pseudodifferential operators given by� mX
nD�1

an@
n
x

�|

WD

mX
nD�1

.�@x/
n
ı an:

It satisfies the properties .AıB/|DB|ıA| and res A|D�res A for any two pseudodifferential operators
A and B.
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Consider the change of variables fi 7!
zfi.f

.�/
� / given by

LD @xC

X
i�1

fi @
�i
x 7! zLD @xC

X
i�1

zfi.f
.�/
� / @�i

x

WD �L|
D @xCf1 @

�1
x C.�f2�f

.1/
1
/ @�2

x C.f3C2f
.1/

2
Cf

.2/
1
/ @�3

x C� � � :

It is clearly invertible and it induces a change of variables w˛ 7! zw˛.w
.�/
� /, for which we compute

zw˛.w
.�/
� /D res zLa

D .�1/a res.L|/a D .�1/a res.La/| D .�1/aC1 res La
D .�1/aC1wa:

Therefore, the KP hierarchy written in the variables zw˛ has the form

(3-28)
@ zw˛

@Tˇ
D @x

zR˛ˇ; where zR˛ˇ D .�1/˛C1R˛ˇj
w
.k/
 D.�1/C1 zw

.k/


2R zwI�1:

On the other hand, we compute

@ zL

@Tˇ
D�

�
@L

@Tˇ

�|

D�Œ.Lˇ/C;L�
|
D Œ..L|/ˇ/C;L

|�D .�1/ˇC1Œ. zLˇ/C; zL�;

and therefore @ zw˛=@Tˇ D .�1/ˇC1 resŒ. zLˇ/C; zL˛ �. Hence, zR˛ˇ D .�1/ˇC1R˛ˇjw.k/ Dzw
.k/


. Combining
this with (3-28) we obtain .�1/˛CˇR˛ˇjw.k/ 7!.�1/C1w

.k/

D R˛ˇ, which, together with the property

deg R˛ˇ D ˛Cˇ, implies that R˛ˇj
w
.k/
 7!.�1/kw

.k/


DR˛ˇ, giving R˛ˇ 2Rev
w , as required.

Lemma 3.10 Let k � 1.

(1) The coefficients of the pseudodifferential operator

Lk
� @k

x �

X
i�1

k�1X
lD0

�k

l

�
f
.k�1�l/

i @�iCl
x

belong to the ring Rf I�2.

(2) For i � 1,

Si;k D

kX
jD1

�k

j

�
f
.j/

iCk�j
C zSi;k.f

.�/

�iCk�3
/;

where zSi;k 2Rf I�2.

(3) The formula

wk.f
.�/
� /D

k�1X
iD0

� k

k�1�i

�
f
.i/

k�i
C

k.k � 1/

1C ık;3
f1fk�2CTk.f

.�/

�k�3
/

holds , where Tk 2Rf I�2.

Geometry & Topology, Volume 28 (2024)



Moduli spaces of residueless meromorphic differentials and the KP hierarchy 2815

(4) With Bj denoting the Bernoulli numbers ,

fk.w
.�/
� /D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1

k

k�1X
jD0

�k

j

�
Bjw

.j/

k�j
if k � 2;

1

k

k�1X
jD0

�k

j

�
Bjw

.j/

k�j
�

1

1C ık;3

k � 1

k � 2
w1wk�2CKk.w

.�/

�k�3
/ if k � 3;

where Kk 2RwI�2.

Proof (1) This can be easily proved by induction.

(2) Using the first part we see that, up to terms from Rf I�2, for i � 1 the coefficient of @�i
x in Œ.Lk/C;L�

is equal to the coefficient of @�i
x in Œ@k

x;
P

j�1 fj@
�j
x �, from which we get the required formula for Si;k .

(3) The formula for the linear part of wk.f
.�/
� /D res Lk immediately follows from the first part of the

lemma. In order to determine the coefficient of f1fk�2 for k � 3, we compute

@ res Lk

@fk�2

D

X
aCbDk�1

res.La
ı @�kC2

x ıLb/D k.k � 1/f1:

(4) The formula for the linear part of fk.w
.�/
� / follows from the previous part and the standard property

of the Bernoulli numbers:
aX

jD0

�aC1

j

�
Bj D ıa;0;

where a� 0. The coefficient of w1wk�2 is found from the previous part by an elementary computation.

The last two lemmas imply that

R˛ˇ D
˛ˇ

˛Cˇ� 1
w˛Cˇ�1C

zR˛ˇ.w
.�/

�˛Cˇ�3
/;

where zR˛ˇ 2Rev
wI�1

.

Lemma 3.11 (1) For k � 1 we have

Sk;2 D 2f
.1/

kC1
Cf

.2/

k
C 2.k � 1/fk�1f

.1/
1
CS 0k;2.f

.�/

�k�2
/;

where S 0
k;2
2Rf I�2.

(2) For k � 2 we have

Rk;2 D
2k

kC 1
wkC1�

1

1C ık;2

2k

k � 1
w1wk�1�

k

6
w
.2/

k�1
CR0k;2.w

.�/

�k�2
/;

where R0
k;2
2Rev

wI�1
.

Geometry & Topology, Volume 28 (2024)



2816 Alexandr Buryak, Paolo Rossi and Dimitri Zvonkine

Proof (1) From Lemma 3.10 and the property deg Sk;2 D kC 2 we conclude that

Sk;2 D 2f
.1/

kC1
Cf

.2/

k
C f̨1f

.1/

k�1
C f̌

.1/
1
fk�1CS 0k;2.f

.�/

�k�2
/; where S 0k;2 2Rf I�2:

In order to determine ˛ and ˇ we compute, for k � 2,

@Sk;2

@f1

D Coef@�k
x

@

@f1

ŒL2
C;L� D Coef@�k

x
Œ@2

xC 2f1; @
�1
x � D 2.�1/kf

.k�1/
1

;

@Sk;2

@fk�1

D Coef@�k
x

@

@fk�1

ŒL2
C;L�D Coef@�k

x
Œ@2

xC 2f1; @
�.k�1/
x �D 2.k � 1/f

.1/
1
;

which implies the required formula for Sk;2.

(2) This is an elementary computation based on the first part and Lemma 3.10.

Summarizing our computations with the KP hierarchy, we have the properties

R˛ˇ 2Rev
wI�1;(3-29)

deg R˛ˇ D ˛Cˇ;(3-30)

R˛;1 DR1;˛ D w˛;(3-31)

R˛ˇ DRˇ˛;(3-32)

as well as

(3-33) R˛ˇ D
˛ˇ

˛Cˇ� 1
w˛Cˇ�1C

zR˛ˇ.w
.�/

�˛Cˇ�3
/;

with zR˛ˇ 2Rev
wI�1

, and

(3-34) R˛;2 D
2˛ w˛C1

˛C 1
�

2˛

˛� 1

w1w˛�1

1C ı˛;2
�
˛

6
w
.2/
˛�1

"2
CR0˛;2.w

.�/
�˛�2

/

for ˛ � 2, with R0
˛;2
2Rev

wI�1
.

3.4.3 Step 3 of the proof: a limited amount of data determines the hierarchies uniquely It is clear
that the change of variables (3-13) (together with putting "D 1) transforms the properties (3-22)–(3-27) of
the system (3-6) exactly to the properties (3-29)–(3-34) of the system (3-8). Thus, the following theorem
will complete the proof of Theorem 3.5.

Theorem 3.12 The commutativity of the flows @=@t˛ together with properties (3-22)–(3-27) determines
all the polynomials Q˛ˇ uniquely.

Proof We start with the following lemma.
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Lemma 3.13 For any ˛; ˇ � 1 we have the relation

(3-35) @xQ˛C1;ˇ D @xQ˛Cˇ�1;2C

˛Cˇ�3X
iD1

X
j�0

@ zQ˛ˇ

@v
.j/
i

@jC1
x Qi;2�

˛�1X
iD1

X
j�0

@ zQ˛;2

@v
.j/
i

@jC1
x Qi;ˇ:

Proof The relation
@

@t2

@v˛

@tˇ
D

@

@tˇ

@v˛

@t2

gives
@

@t2
.v
.1/

˛Cˇ�1
C @x

zQ˛ˇ/D
@

@tˇ
.v
.1/
˛C1
C @x

zQ˛;2/;

which immediately implies (3-35).

Note that if ˛C ˇC 1 D d , then the right-hand side of (3-35) contains only the polynomial Qd�2;2

together with the polynomials Qı with  C ı � d � 1. Therefore, relation (3-35) recursively determines
all the polynomials Q˛ˇ with ˛; ˇ � 3, starting from the polynomials Q;2.

We now have to show how to reconstruct the polynomials Q˛;2, ˛� 2, starting from the polynomial Q2;2,
which, by (3-27), is equal to

(3-36) Q2;2 D v3C
1
2
v2

1 �
1

12
"2v

.2/
1
:

Let ˇ � 4. Then relation (3-35) for ˛ D 2 is

@xQ3;ˇ D @xQˇC1;2C

ˇ�1X
iD1

X
j�0

@ zQ2;ˇ

@v
.j/
i

@jC1
x Qi;2�

X
j�0

@ zQ2;2

@v
.j/
1

v
.jC1/

ˇ
;

which by (3-36) becomes

(3-37) @xQ3;ˇ D @xQˇC1;2C

ˇ�1X
iD1

X
j�0

@ zQ2;ˇ

@v
.j/
i

@jC1
x Qi;2� v1v

.1/

ˇ
C
"2

12
v
.3/

ˇ
:

On the other hand, relation (3-35) also gives

@xQˇ;3 D @xQˇC1;2C

ˇ�1X
iD1

X
j�0

@ zQˇ�1;3

@v
.j/
i

@jC1
x Qi;2�

ˇ�2X
iD1

X
j�0

@ zQˇ�1;2

@v
.j/
i

@jC1
x Qi;3:(3-38)

Equating the right-hand sides of equations (3-37) and (3-38), and canceling the terms @xQˇC1;2, we obtain

ˇ�1X
iD1

X
j�0

@ zQ2;ˇ

@v
.j/
i

@jC1
x Qi;2�v1v

.1/

ˇ
C
"2

12
v
.3/

ˇ
D

ˇ�1X
iD1

X
j�0

@ zQˇ�1;3

@v
.j/
i

@jC1
x Qi;2�

ˇ�2X
iD1

X
j�0

@ zQˇ�1;2

@v
.j/
i

@jC1
x Qi;3:
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Again using relation (3-37) to express zQˇ�1;3 D
zQ3;ˇ�1 and Qi;3 DQ3;i in terms of the differential

polynomials Q;2, we obtain

ˇ�1X
iD1

X
j�0

@ zQ2;ˇ

@v
.j/
i

@jC1
x Qi;2� v1v

.1/

ˇ
C
"2

12
v
.3/

ˇ

D @�1
x

� ˇ�1X
iD1

X
j�0

@

@v
.j/
i

�
@x
zQˇ;2C

ˇ�2X
kD1

X
l�0

@ zQ2;ˇ�1

@v
.l/

k

@lC1
x Qk;2� v1v

.1/

ˇ�1
C
"2

12
v
.3/

ˇ�1

�
@jC1

x Qi;2

�

�

ˇ�2X
iD1

X
j�0

@ zQˇ�1;2

@v
.j/
i

@j
x

�
@xQiC1;2C

i�1X
kD1

X
l�0

@ zQ2;i

@v
.l/

k

@lC1
x Qk;2� v1v

.1/
i C

"2

12
v
.3/
i

�
;

which, canceling the underlined terms and using (3-24), is equivalent to

�v1v
.1/

ˇ
C
"2

12
v
.3/

ˇ
D

@�1
x

� ˇ�1X
iD1

ˇ�2X
kD1

X
j ;l�0

@

@v
.j/
i

�
@ zQ2;ˇ�1

@v
.l/

k

@lC1
x Qk;2

�
@jC1

x Qi;2�v
.1/
2
v
.1/

ˇ�1
�v1@

2
xQˇ�1;2C

"2

12
@4

xQˇ�1;2

�

�

ˇ�2X
iD1

X
j�0

@ zQˇ�1;2

@v
.j/
i

@j
x

�
@xQiC1;2C

i�1X
kD1

X
l�0

@ zQ2;i

@v
.l/

k

@lC1
x Qk;2�v1v

.1/
i C

"2

12
v
.3/
i

�
:

Splitting the two summations over i and collecting

1
12
"2v

.3/

ˇ
�

1
12
"2 @3

xQˇ�1;2 D�
1

12
"2 @3

x
zQˇ�1;2;

we obtain

�v1v
.1/

ˇ
�
"2

12
@3

x
zQˇ�1;2 D

@�1
x

� ˇ�2X
i;kD1

X
j ;l�0

@

@v
.j/
i

�
@ zQ2;ˇ�1

@v
.l/

k

@lC1
x Qk;2

�
@jC1

x Qi;2

C

ˇ�2X
kD1

X
j ;l�0

@

@v
.j/

ˇ�1

�
@ zQ2;ˇ�1

@v
.l/

k

@lC1
x Qk;2

�
@jC1

x Qˇ�1;2„ ƒ‚ …
EWD

�v
.1/
2
v
.1/

ˇ�1
� v1@

2
xQˇ�1;2

�

�

ˇ�3X
iD1

X
j�0

@ zQˇ�1;2

@v
.j/
i

@j
x

�
@xQiC1;2C

i�1X
kD1

X
l�0

@ zQ2;i

@v
.l/

k

@lC1
x Qk;2� v1v

.1/
i C

"2

12
v
.3/
i

�

�

X
j�0

@ zQˇ�1;2

@v
.j/

ˇ�2

@j
x

�
@xQˇ�1;2C

ˇ�3X
kD1

X
l�0

@ zQ2;ˇ�2

@v
.l/

k

@lC1
x Qk;2� v1v

.1/

ˇ�2
C
"2

12
v
.3/

ˇ�2

�
„ ƒ‚ …

F WD

:
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From this, computing E and F using formula (3-27),

E D

ˇ�2X
kD1

X
j ;l�0

@ zQ2;ˇ�1

@v
.l/

k

@.@lC1
x Qk;2/

@v
.j/

ˇ�1

@jC1
x Qˇ�1;2 D

X
l�0

@ zQ2;ˇ�1

@v
.l/

ˇ�2

@lC2
x Qˇ�1;2

D v1@
2
xQˇ�1;2� "

2ˇ� 2

12
@4

xQˇ�1;2;

F D v1

�
@xQˇ�1;2C

ˇ�3X
kD1

X
l�0

@ zQ2;ˇ�2

@v
.l/

k

@lC1
x Qk;2� v1v

.1/

ˇ�2
C
"2

12
v
.3/

ˇ�2

�

� "2ˇ� 2

12
@2

x

�
@xQˇ�1;2C

ˇ�3X
kD1

X
l�0

@ zQ2;ˇ�2

@v
.l/

k

@lC1
x Qk;2� v1v

.1/

ˇ�2
C
"2

12
v
.3/

ˇ�2

�
;

we obtain

(3-39) 0D @�1
x

� ˇ�2X
i;kD1

X
j ;l�0

@

@v
.j/
i

�
@ zQ2;ˇ�1

@v
.l/

k

@lC1
x Qk;2

�
@jC1

x Qi;2�v
.1/
2
v
.1/

ˇ�1

�

�

ˇ�3X
iD1

X
j�0

@ zQˇ�1;2

@v
.j/
i

@j
x

�
@xQiC1;2C

i�1X
kD1

X
l�0

@ zQ2;i

@v
.l/

k

@lC1
x Qk;2�v1v

.1/
i C

"2

12
v
.3/
i

�

�v1

�
@xQˇ�1;2C

ˇ�3X
kD1

X
l�0

@ zQ2;ˇ�2

@v
.l/

k

@lC1
x Qk;2�v1v

.1/

ˇ�2
C
"2

12
v
.3/

ˇ�2

�

C"2ˇ�2

12
@2

x

� ˇ�3X
kD1

X
l�0

@ zQ2;ˇ�2

@v
.l/

k

@lC1
x Qk;2�v1v

.1/

ˇ�2
C
"2

12
v
.3/

ˇ�2

�
Cv1v

.1/

ˇ
C
"2

12
@3

x
zQˇ�1;2:

In the rest of the proof, we will show how to use this relation in order to determine all the polynomials
Q;2 for  � 1.

For any  � 1, introduce a polynomial r .v1; : : : ; v�1/ 2Rv, with edeg r D 2, defined by

Q;2 D vC1C r C .monomials of edeg� 3/CO."2/:

Lemma 3.14 r D
1

2

X
iCkD

vivk .

Proof We already know this for  D 1; 2, so we need to prove it for  � 3. Consider equation (3-39),
where we recall that ˇ � 4. Let

ri;k WD
@2Qˇ�1;2

@vi@vk

ˇ̌̌̌
v�D0

:
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Note that ri;k D rk;i , and that ri;k D 0 unless i C k D ˇ� 1. We know that r1;ˇ�2 D 1. Equation (3-39)
in particular means thatZ � ˇ�2X

i;kD1

X
j ;l�0

@

@v
.j/
i

�
@ zQ2;ˇ�1

@v
.l/

k

@lC1
x Qk;2

�
@jC1

x Qi;2� v
.1/
2
v
.1/

ˇ�1

�
dx D 0;

which implies Z � ˇ�2X
i;kD1

X
j�0

@

@v
.j/
i

�
@rˇ�1

@vk

v
.1/

kC1

�
v
.jC1/
iC1

� v
.1/
2
v
.1/

ˇ�1

�
dx D 0:

The last integral is equal toZ � ˇ�2X
i;kD1

@2rˇ�1

@vi@vk

v
.1/
iC1

v
.1/

kC1
C

ˇ�3X
kD1

@rˇ�1

@vk

v
.2/

kC2
� v

.1/
2
v
.1/

ˇ�1

�
dx

D

Z � ˇ�2X
iD1

ˇ�3X
kD1

ri;k.v
.1/
iC1

v
.1/

kC1
� v

.1/
i v

.1/

kC2
/

�
dx:

Note that if for a quadratic polynomial p in the variables v.1/
1
; : : : ; v

.1/

ˇ�2
we have

R
p dxD 0, then pD 0.

Therefore, we have

0D

ˇ�2X
iD1

ˇ�3X
kD1

ri;k.v
.1/
iC1

v
.1/

kC1
�v

.1/
i v

.1/

kC2
/D

ˇ�3X
i;kD2

.ri;k�riC1;k�1/v
.1/
iC1

v
.1/

kC1
C.rˇ�2;1�r2;ˇ�3/v

.1/
2
v
.1/

ˇ�1
;

which implies

r1;ˇ�2 D r2;ˇ�3; riC1;k�1C ri�1;kC1 D 2ri;k for 2� i; k � ˇ� 3 such that i C k D ˇ� 1:

Since r1;ˇ�2 D 1, this immediately gives that ri;k D 1 for i C k D ˇ� 1, as required.

Consider relation (3-39) and suppose that we know the polynomials Q;2 for  � ˇ � 2. Then (3-39)
can be considered as a linear equation for the polynomial Qˇ�1;2. Let us show that it has a unique
solution (assuming of course that the properties (3-22)–(3-27) are satisfied). This would determine all the
polynomials Q;2 step by step, starting from Q2;2 D v3C

1
2
v2

1
�

1
12
"2v

.2/
1

. Suppose that equation (3-39)
has two solutions, Qˇ�1;2 ¤

yQˇ�1;2. Then, if we write R WDQˇ�1;2�
yQˇ�1;2 ¤ 0, the expression

(3-40)
� ˇ�2X

i;kD1

X
j ;l�0

@

@v
.j/
i

�
@R

@v
.l/

k

@lC1
x Qk;2

�
@jC1

x Qi;2

�

C @x

�
�

ˇ�3X
iD1

X
j�0

@R

@v
.j/
i

@j
x

�
@xQiC1;2C

i�1X
kD1

X
l�0

@ zQ2;i

@v
.l/

k

@lC1
x Qk;2� v1v

.1/
i C

"2

12
v
.3/
i

�
� v1@xRC

"2

12
@3

xR

�
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vanishes. Let us decompose
RDR2g"

2g
CO."2gC2/;

where g � 0 and R2g ¤ 0. Let us further decompose

R2g DACB;

where A¤ 0, edeg AD d � 1 and B 2RvI�dC1.

Case 1 (d D 1) Since Qˇ�1;2 and yQˇ�1;2 have the form (3-27), we have g � 2. Let us express the
polynomial R as

RD .�v
.2g/

ˇ�2g
C�C .monomials of edeg� 3//"2g

CO."2gC2/

with ˇ � 2gC 1 and �¤ 0, and

�D
1

2

ˇ�2g�2X
iD1

2gX
jD0

!i;jv
.j/
i v

.2g�j/

ˇ�2g�1�i
;

where !i;j D !ˇ�2g�1�i;2g�j .

Then the expression (3-40) has the form "2g.C CD/CO."2gC2/, where C 2RvI2 is given by

ˇ�2X
i;kD1

X
j ;l�0

@2�

@v
.j/
i @v

.l/

k

.v
.jC1/
iC1

v
.lC1/

kC1
� v

.jC1/
i v

.lC1/

kC2
/

C�

� ˇ�2X
iD1

X
j�0

@

@v
.j/
i

.@2gC1
x rˇ�2g/v

.jC1/
iC1

C

ˇ�2X
iD1

X
j�0

@

@v
.j/
i

.v
.2gC1/

ˇ�2gC1
/@jC1

x ri

�

��@2gC1
x

�
@xrˇ�2gC1C

ˇ�2g�1X
kD1

@rˇ�2g

@vk

v
.1/

kC1
� v1v

.1/

ˇ�2g

�
��@x.v1v

.2gC1/

ˇ�2g
/;

and D 2RvI�3. Since (3-40) is equal to zero, we have C D 0. The underlined terms cancel each other.
Using the identity X

j�0

@.@xP /

@v
.j/
i

@j
xQD @x

�X
j�0

@P

@v
.j/
i

@j
xQ

�
for P;Q 2Rv and i � 1, we also compute

ˇ�2X
iD1

X
j�0

@

@v
.j/
i

.@2gC1
x rˇ�2g/v

.jC1/
iC1

D @2gC1
x

� ˇ�2X
iD1

@rˇ�2g

@vi
v
.1/
iC1

�
:

As a result,

C D

ˇ�2X
i;kD1

X
j ;l�0

@2�

@v
.j/
i @v

.l/

k

.v
.jC1/
iC1

v
.lC1/

kC1
� v

.jC1/
i v

.lC1/

kC2
/C�

�
@2gC1

x .v1v
.1/

ˇ�2g
/� @x.v1v

.2gC1/

ˇ�2g
/
�
;
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which, setting  WD ˇ� 2g � 1, we write as

�2X
iD1

2gX
jD0

!i;j .v
.jC1/
iC1

v
.2g�jC1/
�i � v

.jC1/
i v

.2g�jC1/
C1�i

/C�.@2gC1
x .v1v

.1/
 /� @x.v1v

.2gC1/
 //

D

�2X
iD1

2gX
jD0

.!i;j �!iC1;j /v
.jC1/
iC1

v
.2g�jC1/
�i �

2gX
jD0

!1;jv
.jC1/
1

v.2g�jC1/


C�.@2gC1
x .v1v

.1/
 /� @x.v1v

.2gC1/
 //

D
1

2

�2X
iD1

2gX
jD0

.2!i;j �!iC1;j �!i�1;j /v
.jC1/
iC1

v
.2g�jC1/
�i(3-41)

�

2gX
jD0

!1;jv
.jC1/
1

v.2g�jC1/
 C�.@2gC1

x .v1v
.1/
 /� @x.v1v

.2gC1/
 //;(3-42)

where we adopt the convention !i;j WD 0 if i � 0 or i �  � 1.

The expression in line (3-41) doesn’t contain monomials of the form v
.i/
1
v
.j/
 and, therefore, the expressions

in lines (3-41) and (3-42) vanish:

2!i;j �!iC1;j �!i�1;j D 0 for 1� i �  � 2 and 0� j � 2g;(3-43)

!1;j D

(
2g� if j D 0;�2gC1

jC1

�
� if 1� j � 2g:

(3-44)

If  D1 or  D2, then�D0, and from (3-44) we immediately get �D0, which contradicts the assumption
�¤ 0. Suppose  � 3. Solving relations (3-43) step by step for i D 1; 2; : : : ; �3, we obtain !i;j D i!1;j

for 1� i �  �2. Then for i D  �2 relation (3-43) says that 0D 2!�2;j�!�3;j D . �1/!1;j , which
gives !1;j D 0 and hence all !i;j D 0. From relation (3-44) we then obtain �D 0, which contradicts
the assumption �¤ 0.

Case 2 (d � 2) The expression (3-40) has the form "2g.C CD/CO."2gC2/, where

(3-45) C D

ˇ�2X
i;kD1

X
j ;l�0

@2A

@v
.j/
i @v

.l/

k

v
.jC1/
iC1

v
.lC1/

kC1
�

ˇ�2X
kD1

X
l�0

@x

�
@A

@v
.l/

k

�
v
.lC1/

kC2
2RvId ;

and D 2 RvI�dC1. Since (3-40) is equal to zero, we have C D 0. Let k0 be the largest k such that
@A=@v

.l/

k
¤ 0 for some l D l0. Then from (3-45) it is clear that

@C

@v
.l0C1/

k0C2

D�@x
@A

@v
.l0/

k0

¤ 0;

which contradicts the fact that C D 0.
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