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We prove a homological mirror symmetry result for maximally degenerating families of hypersurfaces in
(C*)" (B-model) and their mirror toric Landau-Ginzburg A—models. The main technical ingredient of
our construction is a “fiberwise wrapped” version of the Fukaya category of a toric Landau—Ginzburg
model. With the definition in hand, we construct a fibered admissible Lagrangian submanifold whose
fiberwise wrapped Floer cohomology is isomorphic to the ring of regular functions of the hypersurface. It
follows that the derived category of coherent sheaves of the hypersurface quasiembeds into the fiberwise
wrapped Fukaya category of the mirror. We also discuss an extension to complete intersections.
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1 Introduction

The range of settings in which mirror symmetry is expected to hold has steadily expanded since the mirror
conjectures were first formulated for projective Calabi—Yau varieties, and there are now candidate mirror
constructions in a wide range of settings. Outside of the Calabi—Yau setting, the mirrors are in general
Landau-Ginzburg models, ie pairs (Y, W) where Y is a quasiprojective variety and W € O(Y') is a regular
function (the superpotential).

We focus on the case of hypersurfaces in (C*)” (or rather hypersurfaces defined over the nonarchimedean
Novikov field K = A, which arise from maximally degenerating families of hypersurfaces near the tropical
limit). These have mirror Landau—Ginzburg models which consist of a noncompact toric Calabi—Yau
variety Y of dimension n + 1, equipped with a superpotential W which is a toric monomial vanishing to
order 1 on each irreducible toric divisor of Y. The construction is summarized in Section 2, following
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2826 Mohammed Abouzaid and Denis Auroux

the description given in Abouzaid, Auroux and Katzarkov [3], which arrives at these mirrors from the
perspective of SYZ mirror symmetry; see also Hori and Vafa [26], Clarke [13], Chan, Lau and Leung [11]
and Gross, Katzarkov and Ruddat [22] for other viewpoints.

To be specific, consider a degenerating family of complex hypersurfaces defined by a Laurent polynomial
of the form

(1-1) f — Z aat2nv(a)xa’

axePy
where Py is a finite subset of Z”, the exponents v(«) € R are assumed to satisfy a convexity condition
which ensures that equation (1-1) is a sufficiently generic degeneration, and the coefficients ay are complex
numbers in the simplest situations, but will in general be given by elements of A of vanishing valuation;
see Section 2. The space Y which we associate to these data is the Kéhler toric variety determined by the

polytope
(1-2) Ay ={EnInze®}CcR"®R,

where the piecewise linear function ¢ : R” — R is the tropicalization of f,
@(&) = max {{a, §) —v(a)},
a€Py

and the superpotential W = —7(0:-,0,1) jg (up to sign) the toric monomial associated to the last coordinate
of the ambient space R” @R in equation (1-2). The regular fibers of W:Y — C are isomorphic to (C*)",
while the unique singular fiber Z = W~1(0) = |, Z is a union of toric varieties (the irreducible toric
divisors of Y, which are in one-to-one correspondence with the monomials appearing in f).

In the simplest example, the hypersurface H is the higher-dimensional pair of pants
{(x1,....xn) | 1+ x1+---+x, =0} C (C*)"

with mirror the Landau—-Ginzburg model (Y = C**!, W = —z; ---z,41), whose singular fiber is the
union of the coordinate hyperplanes in C”*1; however in most cases Y is not affine and depends on the
choice of degeneration.

In one direction, homological mirror symmetry predicts that the wrapped Fukaya category of a hypersurface
H C (C*)" is equivalent to the derived category of singularities of the mirror Landau—-Ginzburg model,
ng(Y, W) = DPCoh(Z)/Perf(Z). This was first verified for the wrapped Fukaya categories of open
Riemann surfaces in (C*)? and the derived categories of singularities of their mirror Landau—-Ginzburg
models; see Abouzaid, Auroux, Efimov, Katzarkov and Orlov [2] and Lee [27]. See also Lekili and
Polishchuk [28], where the algebraic side is rather the derived category of coherent sheaves of a stacky
nodal curve (equivalent to the Landau—Ginzburg model (Y, W) via Orlov’s derived Knorrer periodicity).
In higher dimensions, the result was first verified for higher-dimensional pairs of pants by Gammage and
Nadler [14] and Lekili and Polishchuk [29]; in the first of these, the wrapped Fukaya category is replaced
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by the category of wrapped microlocal sheaves, but the two were subsequently shown to be equivalent by
Ganatra, Pardon and Shende [17]. Finally, the case of general hypersurfaces in (C*)” was established by
Gammage and Shende [15], also using wrapped microlocal sheaves.

Here we consider the other direction of mirror symmetry, comparing coherent sheaves on the family of
hypersurfaces H; defined by f to a suitable version of the Fukaya category of the Landau—Ginzburg
model (Y, W), where Y is equipped with a suitable toric Kihler form in the class [wy] € H?(Y,R)
determined by the polytope Ay, and also a bulk deformation class (or B—field) b € H?(Y, Aso) (the
subscript > 0 indicates that we only consider elements of nonnegative valuation). This direction has been
much less studied; in fact, at the start of our project there wasn’t even a candidate definition yet for the
appropriate Fukaya category, because the initial formulation required that Y be affine and that W have
isolated nondegenerate singularities; see Seidel [35].

1.1 Fiberwise wrapped Fukaya categories

The first step in our approach is to define the fiberwise wrapped Fukaya category W (Y, W) of a toric
Landau—Ginzburg model. The objects of W(Y, W) are properly embedded Lagrangian submanifolds
L C Y which satisfy two different types of geometric requirements:

(1) In the base direction, we require that L is fibered at infinity, ie that outside of a compact subset of
C the image of L under W:Y — C is a union of embedded arcs, which are further required to be
disjoint from the negative real axis and along which the distance from the origin increases strictly.

(2) We require L to be fiberwise “flat” at infinity with respect to a weakly plurisubharmonic fiberwise
“height” function i: Y — [0, 00), ie the restriction of d€h to L is required to vanish outside of a
bounded subset of each fiber of W.

We call such Lagrangians admissible; see Definition 3.5. The Lagrangians we consider are also required
to be tautologically unobstructed (in the sense of not bounding any holomorphic disc with respect to a
prescribed almost complex structure), and are equipped with the grading data and local systems needed
to construct Floer complexes.

Morphism spaces in W (Y, W) are defined as direct limits of Floer complexes for the images of admissible
Lagrangians under a suitable geometric flow, which combines

(1) in the base direction, admissible isotopies acting on the complex plane by positive rotations without
crossing the negative real axis (as in the more familiar setting of Fukaya categories of Lefschetz
fibrations), and

(2) in the fiber direction, the flow of a Hamiltonian H : Y — R which preserves the fibers of W and
whose restriction to each fiber is a linear-growth wrapping Hamiltonian (hence the name “fiberwise
wrapped”).
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The details of the construction are given in Section 3.

In the toric case, the fiberwise behavior of our admissible Lagrangians is enforced by fixing a collection of
monomials z¥ € 0(Y) and open subsets Cy, of Y, and requiring arg(z?) to be locally constant over L N Cy.
This amounts to a fiberwise version of the notion of monomial admissibility considered in Andrew
Hanlon’s thesis [24]; in fact, even though we treat the monomial W separately, the condition we impose
in the base direction could also be reformulated in the language of monomial admissibility.

Since our Lagrangians are required to be both fibered with respect to W : Y — C and fiberwise monomially
admissible within the fibers, our setup requires symplectic parallel transport between smooth fibers of W
to be compatible with monomial admissibility. This compatibility is easy to achieve for parallel transport
along radial lines in the complex plane by using elementary toric geometry (or by directly imposing
monomial admissibility in the total space Y). However, the explicit calculation of Floer complexes and
differentials at the heart of our verification of homological mirror symmetry requires us to consider
Lagrangians that are everywhere fibered over U-shaped arcs in the complex plane. Achieving fiberwise
monomial admissibility for such Lagrangians requires some extra care in the choice of the toric Kihler
form wy on Y within the given cohomology class; see Section 4 for details.

Remark 1.1 The several years elapsed since our results were first announced have brought forth key
advances and new viewpoints on Fukaya categories of Landau—Ginzburg models, which suggest other
possible approaches.

For example, partially wrapped Floer theory for Liouville domains with stops (see Sylvan [37]) and sectors
(see Ganatra, Pardon and Shende [16]) has led to considerable progress in the exact setting. However, it is
not clear that viewing (Y, W) as a nonexact sector would yield any simplification to our setup and main
calculation, as the alternative description in terms of wrapped microlocal sheaves used by Nadler [32] in
the case of higher-dimensional pairs of pants would not be applicable outside of the exact setting, and
direct calculation by counting holomorphic discs would likely be no easier than the approach taken here.

Monomial admissibility, as used by Hanlon to revisit mirror symmetry for toric varieties [24], is much
more directly suited to our goals, and in fact we use this viewpoint to constrain the fiberwise behavior of
our Lagrangians and to arrive at a maximum principle. Defining W (Y, W) directly in the language of
monomial admissibility (adding W itself to the list of monomials z¥ whose arguments we constrain at
infinity) would be fairly straightforward, but the explicit calculation of Floer cohomology would likely
still require the Lagrangian to be everywhere fibered with respect to the projection W: Y — C (not just
near infinity), making the setup essentially identical to that considered here.

One can alternatively attempt to replace monomial admissibility with a variant of Groman’s formulation
for Floer theory on open manifolds [20], adapted to the setting of Landau—Ginzburg models. Early drafts
of this text pursued a related approach based on geometric estimates on parallel transport and monotonicity
type arguments, but the relevant estimates turned out to be quite challenging.
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1.2 A Floer cohomology calculation

The main protagonist of our argument is a specific admissible Lagrangian L in the toric Landau—Ginzburg
model (Y, W), which is expected to generate the fiberwise wrapped Fukaya category.

Consider a Laurent polynomial f € K[xftl, e ,x,jtl] defining a maximally degenerating family of
hypersurfaces H; as above, and let (Y, W) be the toric Landau—Ginzburg model constructed in Section 2,
equipped with the toric Kihler form wy constructed in Section 4 and a bulk deformation! b€ H2(Y, A>o).
Since the fiber W~1(—1) C Y is isomorphic to (C*)", it contains a distinguished Lagrangian £y = (R )"
along which the toric monomials z? are all real positive. The parallel transport of £( over a U-shaped
arc in the complex plane connecting —1 to +o0 around the origin yields an admissible Lagrangian
submanifold L in (Y, W). Our main result is:

Theorem 1.2 For a suitable choice of bulk deformation class b € H?(Y, Asy), the fiberwise wrapped
Floer cohomology ring HW?*(Lg, L) is isomorphic to the quotient K[xf—Ll, ..., x;F1/(f) of the ring of
Laurent polynomials by the ideal generated by f, the defining equation of the family of hypersurfaces H;.

Remark 1.3 We refer the reader to Remark 5.31 for a discussion of the relationship between the bulk
class appearing in the statement of the above theorem and the expression of the mirror map in terms of
Gromov—Witten theory.

In other terms, HW™* (L, L) is isomorphic to the ring of functions of the nonarchimedean hypersurface ¢
defined by f over K:

(1-3) HW*(Lo, Lo) ~ K[xifL, ..., xE1/(f) ~ H(%. 05%) = Hom(Oy, Oy).

Since this ring is supported in degree O, it is intrinsically formal, so we conclude that the Floer algebra
W*(Lg, Lo) is Aco equivalent to the ring of functions on . On the other hand, since ¥ is affine, its
derived category is generated by the structure sheaf Oy, and by mapping a twisted complex built from
copies of Oy to the corresponding twisted complex built from L inside W(Y, W), we arrive at:

Corollary 1.4 The derived category of coherent sheaves of ¥ admits a fully faithful quasiembedding
into WY, W).

One can then return from the nonarchimedean setting to the complex hypersurfaces H; by observing that,
when f is of the form (1-1) with ay € C*, the outcome of our calculation is manifestly convergent over
complex numbers and we can treat ¢ as an actual parameter rather than a formal variable.

IIn the literature, one usually considers bulk classes of strictly positive valuation; the O—valuation part of b corresponds to

(a logarithm of) what is sometimes called a background class, which in our case is valued in C*, but is usually considered with
Z, coefficients, and modifies Floer theory by changing the sign contributions of discs.
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The calculation of HW™* (Lo, Lo) involves counts of holomorphic sections of the fibration W:Y — C
over domains in the complex plane, with boundary in fibered Lagrangians, and the argument is essentially
within the realm of the “Seidel TQFT” [35] even though W is not a Lefschetz fibration; see Section 5.
Our approach is concrete and explicit, but a more conceptual interpretation can be given in terms of the
Orlov cup functor; see below.

Remark 1.5 The object L is expected to generate the category W (Y, W), which would imply that the
embedding of Corollary 1.4 is an equivalence. Stop removal (wrapping past the negative real axis in
the base direction) yields an acceleration functor from W (Y, W) to a suitable version of the wrapped
Fukaya category of Y, under which L maps to the zero object; see Abouzaid and Seidel [5]. The stop
removal results of Sylvan [37] and Ganatra, Pardon and Shende [16] (to the extent that they hold in our
setup) should imply that W(Y') is precisely the quotient of W (Y, W) by the full subcategory generated
by Lo. The generation statement is then equivalent to the vanishing of W (Y). This argument can be
made precise in the case of the pair of pants, where ¥ = C"*! is a subcritical Liouville manifold and its
wrapped Fukaya category vanishes. However, given that a complete argument in the general case where
Y is not exact would involve several pieces of machinery that have not yet been developed in that setting,
we do not investigate this question further in this paper.

1.3 A functorial perspective

The fiberwise wrapped Fukaya category is the target of a functor
U: W({(CH™) - WY, W)

(the Orlov cup functor), which is given on objects by parallel transport of admissible Lagrangian subman-
ifolds of W~1(—1) ~ (C*)" along a U-shaped arc in the complex plane, and on morphisms by observing
that the portions of the fiberwise wrapped Floer complexes which live in the fiber over —1 are closed
under all Aso—operations. In this language, the computation at the heart of the proof of Theorem 1.2
gives a commutative diagram of functors

Perf((K*)") ——— Perf(3¢)

(1-4) :l

W(C*)) —L— W (Y, W)

where the restriction functor i* and the cup functor U intertwine mirror symmetry for the ambient
torus (K*)” and the hypersurface . The core of our argument amounts to a verification of this statement
for the structure sheaves on the algebraic side, and the admissible Lagrangians {9 = (R4)"” and Lo = U{y
on the symplectic side.

To continue further in this direction, the functor U has an adjoint functor N: W (Y, W) — Perf W ((C*)")
(“restriction to the fiber at +00”), under which a fibered Lagrangian L = U£ maps to a twisted complex
built from the fiberwise Lagrangians at the two ends of the U-shaped arc, with a connecting differential sg
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which counts holomorphic sections of W :Y — C bounded by L over the region enclosed by the U-shaped
arc. After choosing a suitable identification of the fiber near +o00 with (C*)”, we find that the image of £
under the composite functor NU is isomorphic to a cone

1o S0
NUE~ {ue) 25 0,

1

where 1™ is the clockwise monodromy of the fibration W around the origin, acting on the wrapped

1

Fukaya category of the fiber (in our case =" ~ id), and sg is a count of sections. This is part of an exact

put s id
D
nu

acting on W ((C*)™), originating in Seidel’s work [34] on Dehn twists, and which has been the subject of

triangle of functors

some recent work; see for instance Abouzaid and Ganatra [4], Abouzaid and Smith [6, Appendix A], and
Sylvan [38, Theorem 1.3].

Our calculation of the fiberwise wrapped Floer complex of Ly = U{g can then be rewritten as
0

N
W vy (Ulo, Ulg) = W gy (Lo, N U Lo) ~ Cone{ HW* (Lo, w™ (Lo)) —% HW* (Lo, Lo)}
which, after verifying that the section-counting natural transformation sgo amounts to multiplication by
the Laurent polynomial f, corresponds on the algebraic side to

Homse(O. Os¢) ~ Homg +yn (0, ixi *0) ~ Cone{Hom(0, 0) -1 Hom(0, 0)}.
1.4 Complete intersections and compactifications

Our results admit extensions in at least two directions. The first one, which we briefly discuss in Section 6,
concerns complete intersections. The mirror of a codimension k complete intersection in (C*)" (or
rather, of a family of complete intersections degenerating to a tropical limit) is a Calabi—Yau toric Kéhler
manifold Y of complex dimension n + k, equipped with a superpotential which is a sum of k toric
monomials Wy, ..., Wi € O(Y); taken together these determine a holomorphic map W:Y — C k, whose
fibers over (C*)¥ are again isomorphic to (C*)"; see Abouzaid, Auroux and Katzarkov [3, Section 11].
We then define a version of the fiberwise wrapped Fukaya category W' (Y, W) whose objects are Lagrangian
submanifolds which are simultaneously admissible for each of the projections W7, ..., Wy ; the morphisms
are direct limits of Floer complexes under a combination of admissible isotopies acting on each factor of
ck by positive rotations without crossing the negative real axis and wrapping in the fibers of W. The key
object Lg under consideration is now obtained by parallel transport of (R4)" C (C*)" over a product of
U-shaped arcs inside C k. By an argument similar to our main calculation, its fiberwise wrapped Floer
complex is isomorphic to the Koszul resolution of the ring of functions of the complete intersection;
the upshot is that the obvious analogues of Theorem 1.2 and Corollary 1.4 continue to hold in this setting.
See Section 6 and Theorem 6.7.
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Another extension is to hypersurfaces (and complete intersections) in toric varieties. Namely, a Lau-
rent polynomial of the form (1-1) defines not only hypersurfaces in (C*)” or (K*)” but also (partial)
compactifications in suitable toric varieties or stacks — for example, the projective toric variety or stack
V' whose moment polytope is the convex hull of Pz. Following [3], the mirror to H C V is the same
Calabi—Yau toric variety Y as in our main construction, now equipped with a superpotential W which is
the sum of the previously encountered monomial Wy = —2(0:-0.1) apd extra terms consisting of one
monomial for each of the irreducible toric divisors of V. The latter turn out to be exactly the collection of
monomials z? we consider in Definition 4.14. Consequently, we can define the Fukaya category %(Y, W)
by considering exactly the same admissible Lagrangian submanifolds of Y as in the construction of
W(Y, Wp): namely, Lagrangians which are fibered at infinity with respect to Wy: Y — C, and within the
fibers of Wy, monomially admissible for the collection of monomials z¥. However, we now consider
colimits under perturbations which only increase the argument of each monomial z? within a small
bounded interval, rather than by an unbounded amount of fiberwise wrapping. Starting from monomially
admissible Lagrangian sections £, ¢’ C (C*)" such as those considered in [24], which are mirrors to line
bundles £, %’ on the toric variety V', we now find an isomorphism

Homg, y 77, (UL, UL") = Cone{Homg:((cyn zvy) (€, 1~ (') == Homg(coyn,(zop) (€, £)}.

1

After checking that the action of the monodromy .~ on monomially admissible Lagrangian sections is

-1

mirror to the functor — ® O(—H) and that the natural transformation s: ;1 ~! — id still corresponds to

multiplication by the defining section f of H, this corresponds on the algebraic side to the isomorphism
Hom g (%7, % ;) ~ Cone{Homy (£, ¥’ ® 6(~H)) L Homy (£, #)}.

This in turn implies cohomology-level mirror symmetry statements for restrictions of ample line bundles
(compare with Cannizzo [10], which establishes analogous results in a different setting). A more detailed
account of this will appear elsewhere (work in progress).

1.5 Related works

In the time elapsed since our results were first announced, at least two papers have appeared establishing
conceptually similar homological mirror symmetry results relating coherent sheaves on hypersurfaces to
the symplectic geometry of mirror Landau—Ginzburg models.

On one hand, Nadler [32] introduced the category of wrapped microlocal sheaves and gave an explicit
computation for the Landau-Ginzburg model (C”, z; - - - z;), which is mirror to the (n—2)—dimensional
pair of pants. (Wrapped microlocal sheaves were subsequently shown by Ganatra, Pardon and Shende [17]
to be equivalent to the Fukaya category of the corresponding Liouville sector.) Nadler’s paper showcases
the remarkable computational power of microlocal sheaves in the exact setting, and also identifies structural
properties which are closely related to those described in Section 1.3 above.
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On the other hand, Cannizzo’s thesis work [10] considers the case of a genus 2 curve embedded in a
principally polarized abelian surface (its Jacobian) and the mirror Landau—Ginzburg model. The approach
is fairly similar to ours, but avoids the need to discuss fiberwise admissibility because the mirror is
proper (the generic fibers are 7#). However, the monodromy is topologically nontrivial, and involves a
twist mirror to the defining section of the genus 2 curve, so that the objects of interest are a sequence
of admissible Lagrangians mirror to powers of the canonical bundle of the genus 2 curve (somewhat
similarly to the toric variety case outlined above). Another notable difference with our setting is that,
despite the nonexact nature of the mirror and the presence of rational curves in the zero fiber, no bulk
deformation is required as the instanton corrections only result in a rescaling of the section-counting
natural transformation; see [10].

Plan of the paper

The first part of this paper is concerned with the definition of the fiberwise wrapped Fukaya category
WY, W). After reviewing the construction of the Landau—Ginzburg model (Y, W) in Section 2, we
develop the foundations of fiberwise wrapped Fukaya categories in Section 3, while Section 4 is devoted to
the construction of the appropriate toric Kéhler form and verification of the required geometric properties.
The heart of the paper is then Section 5, which is devoted to the calculation of the fiberwise wrapped Floer
cohomology of Lo and the proof of Theorem 1.2. Finally, in Section 6 we briefly discuss the extension to
complete intersections and prove Theorem 6.7.
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DMS-1564172, and DMS-2103805, and by Stanford University through a Poincaré visiting professorship.
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DMS-2202984. Both authors were supported by the Simons Foundation collaboration grant Homological
mirror symmetry and applications (awards 385571 and 385573).
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mirror symmetry community for its collective patience with the long delay between the announcement of
our results and the completion of this text. Finally, we thank the referee for their careful comments on the
previous version of this paper.

2 The mirror Landau-Ginzburg model

2.1 The main construction

Consider a Laurent polynomial with complex coefficients
2-1) f= aax*
aeZn
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and denote the corresponding hypersurface by
(2-2) H=[710) c(CH".

The construction of a mirror for H depends on a choice of degeneration; we specifically consider a
maximal degeneration to a tropical limit, and assume that the corresponding tropical variety is smooth in
the sense we explain now.

Let P denote the Newton polytope of f, and Pz its integral points. For simplicity, we assume that the
interior of P is nonempty (ie P has positive volume); otherwise we can always reduce to this case by
splitting off some C* factors.

A tropically smooth maximal degeneration of H is induced by the choice of a strictly convex piecewise
linear function

(2-3) v: P >R,

whose domains of linearity determine a subdivision P of P into standard integral simplices, ie simplices
that are equivalent by an integral affine transformation to the simplex spanned by the origin and the unit
coordinate vectors in Z"; this condition ensures that the mirror toric variety we construct below is smooth.
The corresponding degeneration is then

(2-4) fr= 3 a0,
aePy

We can associate to f, either a family of hypersurfaces parametrized by ¢ € C, or a variety % over the
Novikov field K = A of power series in the formal variable ¢ with real exponents. The second point
of view is more natural for the purpose of proving the well-definedness and invariance of the Fukaya

category, and providing clear formulations of homological mirror symmetry.

Denote by ¢: R" — R the tropicalization of f,, ie the piecewise linear function

(2-5) ¢(§) = max{(a,§) —v(a) @ € Pz}.
Let Y be the (noncompact) Kihler toric manifold defined by the moment polytope
(2-6) Ay ={¢.neR"@R|n= ¢}

The polytope Ay determines a Kihler class [wy] € HZ(Y,R). In Section 4, we shall specify an explicit
Kéhler form wy, obtained by Hamiltonian reduction from a vector space, which will be particularly

well-adapted to our Floer-theoretic constructions.
Dually, Y can also be described by the fan
(2-7) Yy =Rso- (P x{1}) CR"M =R" @R,

whose rays are generated by the integer vectors (—c, 1) for o € Py, and which is obtained as the union
of the cones on polyhedra appearing in the subdivision %. Since we have assumed that this subdivision
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(-2,0,1) (—1,0,1) (0,0, 1)

Figure 1: Constructing the mirror: f(x1,x2) =14 x1 +x2 + 127 x x5 + t4”x12.

is maximal, all such cones are simplicial, and since the simplices are further assumed to be congruent to
the standard one, it follows that Y is a smooth toric manifold. It is in fact a smooth toric Calabi—Yau,
since the defining equation of its toric anticanonical divisor is a regular function (see below); in particular,
its canonical bundle is trivial, ie ¢1(Y) = 0, which will allow us to introduce Z-gradings in Floer theory
(and also simplify our discussion of sphere bubbling).

Denote by z(©:0-1) ¢ 0(Y) the toric monomial with weight (0, ..., 0, 1). Equip ¥ with the superpotential
(2-8) W=—z0-0D:y .

The toric Landau—Ginzburg model (Y, W) has been constructed as a candidate mirror to H from various
perspectives; see in particular [3, Theorem 1.4].

The level set W ~1(0) is the union of the toric divisors in ¥ (each with multiplicity one), while the other
level sets of W are smooth and isomorphic to (C*)". (The fact that the toric anticanonical divisor is
defined by a regular function, namely W, verifies the above claim that Y is Calabi—Yau).

Example 2.1 As a running example to illustrate the construction, we consider the Laurent polynomial
F(x1,x2) = 1+ x1+x2+12Fxpx + 147 x% (which defines a degenerating family of genus O curves with
5 punctures in (C*)?). The tropicalization of f is given by ¢(£1, £2) = max{0, 1, &>, &1 + &, — 1,261 —2}.
The domains of linearity of ¢, which also correspond to the facets of the polytope Ay “seen from above”,
are depicted in Figure 1, along with the fan Xy, whose generators (—c, 1) for « € Pz give the primitive
(inward) normal vectors to the facets of Ay.

2.2 Construction as a Hamiltonian reduction

We have a surjective map
(2-9) 7tz 5 7" 9 7,
which assigns to a lattice point o« € P the pair (—«, 1); the kernel is a lattice, which we denote by M.
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We shall consider the reduction of CPZ (equipped with a suitable toric Kihler form, described in
Section 4.1) by the Hamiltonian action of the torus

(2-10) Ty =M Q[R/Z)c TPz,
Fixing a regular value A for the moment map

.cP —
(2-11) pu:C*% — Hom(M,R) = My,

the quotient ;=1 (1)/ Ty inherits a canonical symplectic form w;. By the Kempf-Ness theorem, this
quotient can be naturally identified with the quotient of an open subset of C *Z by a complex torus, and
the symplectic form w), is Kihler with respect to the induced complex structure. Thus, 1~ 1(1)/Tyy is
naturally equipped with a toric Kihler form (induced by that constructed in Section 4.1 on C%); see
also [23].

We now explain how the choice of level set A corresponds to the integral affine function in equation (2-3).
Dualizing (2-9) we obtain a short exact sequence

(2-12) 0—R*" L RP2 Z, ppx s,

where the first map is given explicitly by

(2_13) i(gl,---’gn’n) = (—((X,g) +7l)aePZ.
Viewing the piecewise linear function v: P — R as an element of RPZ, we set
A =m(v).

Then the image of the moment map for the action of T”*1 ~ T Pz /Ty, on =1 (1)/ Ty is the intersection
of 7~1(1) with the nonnegative orthant in R¥Z ie the set of all (£,7) € R"T! =R” @R such that all the
components of i (£, ) + v are nonnegative. Comparing with (2-6), this moment polytope is precisely Ay .

This yields a Hamiltonian quotient description of Y equipped with the toric Kihler form wy. Moreover,
the function

(2-14) Wo = —[lgep, Za: CP2 > C

descends to the toric potential W:Y — C. (Note that both are toric monomials vanishing to order 1
on each toric divisor.) Setting N = |Pyz]|, we can thus view the Landau—Ginzburg model (Y, W) as a
Hamiltonian reduction (by Ty ) of the “standard” Landau—Ginzburg model (CN ,Wo = —]_[1N=1 Zi).

Example 2.2 In Example 2.1, the kernel of the map (2-9), ie the space of linear relations among the
(—a;, 1) (the generators of the fan Xy, shown in Figure 1, right) is a rank 2 lattice M, spanned by
elements corresponding to the linear relations o1 — o2 — 3 + @4 = 0 and o1 — 202 + a5 = 0 among
the elements of Pz. Thus, we can realize the toric 3—fold Y as the quotient of C> by a 2—dimensional
torus Tps whose generators act with weights (1,—1,—1,1,0) and (1,—2,0,0,1). The moment map
of the Tps—action is obtained from the moment map of the standard action of T> by the projection
w(hyy ..., hs) = (1 — U2 — U3 + a, 1 — 242 + us), where (11, ..., (45) take values in the standard
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moment polytope of C?, ie the nonnegative orthant. However, since the toric Kihler form on C> we will

construct in Section 4.1 differs from the standard one, it will not be the case that y; = %|z,~ 2.

Setting A = (v) = (1,2), we find that £ ~!(1) C C? is the set of points whose moment map coordinates
for the T>—-action satisfy

(2-15) M1—H2—p3+pa=1 and w1 —2uz+ps=2.
The moment polytope of the toric variety ;=1 (1)/Tyy is then the intersection of the nonnegative orthant

with the affine subspace determined by (2-15), identified with Ay = {(£1,£2,1) € R3 | n > ¢(£1, £2)}
via the affine embedding

i61,62.m+v=mn—=61.n—6.,n—§61—E+1,n1—28 +2).

Remark 2.3 There is a uniform way of producing all the examples that we consider from a universal
construction: (CN, Wp) is mirror to an (N —2)—-dimensional pair of pants, ie the intersection of the
hyperplane Xo + - -+ Xy _; = 0 with the open stratum (K*)~~1 in PV~ The embedding of (K*)"
into the open stratum of P (K*Z) defined by

(X1,...,xn) > (atatzjw(o‘)x"‘)0!61,,Z

defines an algebraic subtorus, whose intersection with the pair of pants is the hypersurface #. Thus,
the mirror pairs we consider can be viewed as “reductions” of the mirror pair consisting of the (N —2)—
dimensional pair of pants and the Landau—Ginzburg model (C¥, Wy): namely, % is the intersection of
the pair of pants with an algebraic subtorus, while its mirror (Y, W) is the quotient of (CV, Wy) by the
complementary subtorus.

However, the graph of the projection u~!(1) — Y, viewed as a Lagrangian correspondence in CV x Y,
bounds nontrivial families of holomorphic discs; this causes a discrepancy between moduli spaces of
discs in Y with boundary on given Lagrangian submanifolds of ¥, and moduli spaces of discs in CV
with boundary on the lifts of these Lagrangians to s~ !(1). The instanton corrections that arise out of
this are responsible for the presence of the bulk deformation class b € H?(Y, Ap) in the statement of
Theorem 1.2, as we shall see in Section 5.

3 The Fukaya category of a Landau—Ginzburg model

3.1 Landau-Ginzburg models
Let (Y, w) be a symplectic manifold, and
(3-1) wW.:Y - C

a map which is a symplectic fibration outside a compact subset of C. We shall define a Fukaya category
associated to the pair (Y, W), subject to additional auxiliary choices:

(i) A compatible almost complex structure J making W holomorphic outside a compact subset of C.
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(ii) A continuous function /: Y — [0, co) which is weakly J—plurisubharmonic.

(ii1)) A nonnegative wrapping Hamiltonian
(3-2) H:Y > R.

(iv) A closed subset Y™ C Y, whose intersection with every fiber of W is a (compact) sublevel set

of h; more precisely, we take Y™ to be the set of points where & < r(|W|), where r(|W|) is a
nondecreasing function of |W|, constant over [0, Rg] for some Ry.

We require these data to be compatible as follows:

(1) The restrictions of & and H to every fiber of W are proper.
(2) The Hamiltonian flow of H preserves the fibers of W, and outside of Y it preserves the level sets
of h:
(3-3) dW(Xg)=0 and dh(Xg) =0 outside Y™

Also, horizontal parallel transport preserves H everywhere, as well as / outside of Y. By this we
mean that, if E# is the horizontal lift of a vector on C, then

(3-4) dH(EH =0 and  dh(") =0 outside Y.

This in turn guarantees that horizontal parallel transport is well-defined (except at critical points)
despite the noncompactness of the fibers, since horizontal lifts are contained in the level sets of H

which is fiberwise proper.
(3) Outside of Y™, the 1-form d°h = —dh o J vanishes on the symplectic orthogonal to the fibers
of W, ie if £* is the horizontal lift of a vector on C, we have

(3-5) dh(E*) = 0.

Moreover, d€h is preserved by (i) parallel transport and (ii) the Hamiltonian flow Xz, ie the Lie
derivative with respect to Xz and to the horizontal pullback of a vector field £ on C both vanish:

(3-6) Pxpdh=ZLedh =0.

(4) The function & grows along —J X outside of Y'™", ie
(3-7) 0<d°h(Xp).
Remark 3.1 Condition (2) essentially states that W, H and & Poisson commute outside of Y. Moreover,
the fact that W is holomorphic outside of a compact subset implies that the horizontal subspace is J—
invariant, and hence the vanishings of dh and d€h on the horizontal distribution are equivalent to each

other. On the other hand, the condition £x,, d “h = 0 is particularly strong, and is analogous to considering
only linear Hamiltonians in the situation of a manifold with contact boundary.

Remark 3.2 By the Cartan formula, given (3-5) the condition £¢+d“h = 0 is equivalent to requiring
that tg#d d“h = 0 for every horizontal vector & #,
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Remark 3.3 In our main examples, the requirements concerning the behavior of / along the horizontal
distribution (d/(§") = d°h (&%) = 0 and £¢+d“h = 0) only hold outside of Y™™ U W~1(A’), where A’
is a small neighborhood of crit(W) = {0} in the complex plane. We will see that this weakening of the
assumptions is not problematic as long as the Lagrangians we consider remain outside of W ~1(A’) and
the isotopies of the complex plane whose lifts we consider are supported outside of A’.

Definition 3.4 An admissible arc is a properly embedded arc y: [0, 00) — C that is disjoint from the
critical values of W and from the negative real axis, and along which distance from the origin is strictly
increasing outside of the disc of radius Ry.

Definition 3.5 An admissible Lagrangian with respect to the above data is a properly embedded
Lagrangian L C Y such that

(i) the image W(L) C C agrees outside of a compact subset A with a finite union of admissible arcs
which do not reenter A; and

(ii) the restriction of d€h to L vanishes outside of Y™,

The main examples we consider below are in fact fibered over properly embedded arcs in C which avoid
the critical values of W and are asymptotic to radial straight lines at infinity. In this case we can take A
to be a single basepoint on the arc.

Given an admissible Lagrangian L C Y and an isotopy p’ of the complex plane, pointwise preserving
A U crit(W) (or the slightly larger set A U A’) and setwise preserving the negative real axis, there exists
a unique Lagrangian isotopy, which we denote by p’ (L), with the following properties:

() p'(L)=Lin W~I(A), and
(i) outside of W™1(A), p’(L) fibers over the collection of arcs which is the image of W(L) under p’.

We say that the lifted isotopy p’(L) is admissible if the images of the arcs under p’ are admissible.
The Lagrangian p’(L) can be constructed by intersecting L with W ~1(A) and parallel transporting its
boundary along the images of the arcs under p’.

Remark 3.6 If the symplectic connection on W: Y — C has vanishing curvature outside of A then
o' can be directly constructed as the horizontal lift of the isotopy of the base. However, the geometric
models required for our applications do not naturally satisfy this condition.

Lemma 3.7 The set of admissible Lagrangians is invariant under compositions of

(i) Hamiltonian isotopies supported in Y™ that preserve the fibers of W outside of a compact subset,
(i) the Hamiltonian flow of H, and

(iii) admissible lifted isotopies p* (L) as defined above.
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Proof The first statement is obvious from the definition. The Hamiltonian flow of H preserves admissi-
bility because we have required that d W(Xg) = 0, so that the projection to the base is preserved, and
£x,;d°h =0, so that dh vanishes on a Lagrangian if and only if it vanishes on its image under the flow.
The third statement follows from the observation that parallel transport along an admissible arc preserves
Y™ and preserves the vanishing of d¢h outside Y™ by (3-5) and (3-6). O

We also note that admissible lifted isotopies commute with the Hamiltonian flow of H, so the two

operations can be performed in either order.

It will be useful for us to have a more explicit description of lifted admissible isotopies as Hamiltonian
flows.

Lemma 3.8 Given an admissible arc y : [0, 00) — C and a vector field v on the complex plane which
vanishes at y(0) and generates an admissible isotopy of arcs y; = p'(y), we define a Hamiltonian
Kyew € CO(W™1(y1), R) by

e K,y = 0 everywhere in the fiber W ~1(y,(0)),

e the derivative of Ky, along the horizontal lift of y; is
(3-8) dKyio (7)) = (7 0.
where v* is the horizontal lift of v.
Denote by " the Hamiltonian flow generated by (an arbitrary extension of) Ky .

Then, for any point p € W~1(y(0)), ¥’ maps the horizontal lift of y through p to the horizontal lift of
vy through p. In particular, if L is an admissible Lagrangian which fibers over y, then ¥ (L) = p’(L).

Moreover, at every point of W~!(y,) which lies outside of Y™, the Hamiltonian vector field X
generated by K, ; ,, satisfies

(3-9) dh(Xy10) = d°h(Xy0) =0 and 1x,,,dd°h =0,

Remark 3.9 The ambiguity in extending Ky, to a neighborhood of W=1(y,) affects X ytv by a
multiple of y¥, which does not affect the conclusions of the lemma, but implies that the isotopy ¥’ that we
construct does not in general lift the isotopy p; in the sense that the W oy! = p;. By appropriately choosing
the extension of the Hamiltonian, we may arrange to have such a lift for a fixed point p € W~1(y(0)), but
the curvature of the symplectic connection on W: Y — C prevents the existence of a lift simultaneously
for all p.

We note for future reference that K, can be extended to a smooth Hamiltonian whose support is
contained in a small neighborhood of W~!(y;) and such that the corresponding vector field satisfies
(3-9) everywhere outside of Y. The simplest way to do this is to foliate a neighborhood of y in the
complex plane by a family of admissible arcs y*, t € (—19, 7o), and consider a Hamiltonian which equals
x () Ky 1, over the preimage of p’(y7), where y(7) is a cut-off function with compact support.
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Proof of Lemma 3.8 Since (3-8) can be rewritten as (y, Xy.1.,) = w(y¥, v*), the vector field X, », —v*
is symplectically orthogonal to y¥, hence tangent to W~1(y,). It follows that the flow ¥ maps W~1(y)
to W(yy).

Since ¥ is a Hamiltonian diffeomorphism, it maps Lagrangian submanifolds of ¥ which fiber over y to
Lagrangian submanifolds which fiber over y;. Moreover, since v vanishes at * = y(0), the Hamiltonian
Ky.+v and its first derivative both vanish along W1 (), hence X, = 0 everywhere in W ~1(x). In
particular, given a Lagrangian £ C W™1(x), the flow ¥/ maps the parallel transport of £ over y to the
parallel transport of £ over y,. Now consider two small Lagrangian discs £1, {, C W ™! (x) which intersect
transversely at a given point p. The parallel transports of £1 and £, over y intersect cleanly along the
horizontal lift of y through p, and are mapped by v/ to the parallel transports of £1 and £, over y;, which
intersect along the horizontal lift of y; through p. Thus, ¥ maps horizontal lifts of y to horizontal lifts
of y;.

In order to prove (3-9), we consider the map u: W™1(x) x [0, 00) x [0, 9] — Y such that u(p, s, t) is
the point of W ~1(y,(s)) obtained by parallel transport of p over y;. In other words, u(p,0,0) = p and
asu == )}f.

Since the flow ¥* maps u({p} x [0, 00) x {0}) to u({p} x [0, 00) x {¢}) for all p, the vector field Xy
lies in the span of d;u and dsu. On the other hand, dsu = y} lies in the kernel of d°h and dd°h by (3-5)
and (3-6).

The 2—form u™d dh vanishes on 0y, so it can be written in the form
u*dd®h =dt Ana(s,t) + B(s, 1),

where (s, ¢) and B(s, t) are forms on W1 (x). Since d,u = 0 whenever s = 0, we find that «(0,7) = 0,
and B(0,7) = dd hjp—1(y) is independent of 7. On the other hand, u*dd“h is closed, so & and f are
necessarily independent of s, ie (s, 7) = 0 and B(s, 1) = Bo = dd “hjy—1(x). We conclude that the span
of d5 and 0, lies in the kernel of u*dd“h, and hence X, , lies in the kernel of dd“h.

Similarly, u*d¢h vanishes on dg, so it can be written in the form
u*dh = f(s,t)dt +n(s,t)

for n(s,t) a I-form on W~1(x). Using again the fact that 9,u = 0 for s = 0, we find that £(0,7) =0
and (0, ¢) is independent of . Moreover, since u*d d¢h vanishes on the span of ds and d;, we have
ds f =0, so that f(s,¢) = 0. This in turn implies that u*d“h vanishes on the span of ds and d;, and
hence d°h(Xy,v) = 0.

Finally, the vanishing of dh(X, ) is a direct consequence of the assumption that horizontal parallel
transport preserves the levels of 4 outside of Y™ O
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3.2 Maximum principle and energy estimates

Our construction of the Fukaya category of a Landau—Ginzburg model involves not only structure maps
for Lagrangian Floer theory with boundary on admissible Lagrangians, but also natural morphisms and
continuation maps associated to certain isotopies of admissible Lagrangians. In this section we establish
the results needed to prove compactness of the corresponding moduli spaces.

Let X be the complement of finitely many boundary marked points on a compact Riemann surface with
boundary, and A a moving family of admissible Lagrangian boundary conditions on 3, ie a smoothly
varying family of admissible Lagrangian submanifolds of Y, constant near the ends of each component
of dX. The manner in which A varies along the boundary of X can be described by a compactly supported
I-form on 9% with values in vector fields.

We assume that A varies along each boundary component by a combination of

(i) a multiple of the flow of the wrapping Hamiltonian H, namely Xg ® n for n a 1-form on 9%, and

(ii) the lift of an admissible isotopy of the complex plane supported away from A U A’, where
A’ D crit(W) (cf Remark 3.3).

We note that Lemma 3.7 asserts the invariance of the class of admissible Lagrangians under this class of
isotopies. We shall impose the following (semi)positivity assumption on the isotopy:

¢ In the fiber direction, we require:
(3-10) The total fiberwise wrapping is nonpositive, ie [ an N =0.

¢ In the base direction, denote by I" the family of admissible arcs in the complex plane to which A
projects outside of A. We assume:

(3-11) There exists an isotopy p’ of the complex plane rel AU A’, and a function r € C*°(Z, R) which
is constant near the punctures, such that along each component of 9% the arcs p*(I") vary by an
admissible isotopy that moves in the clockwise direction outside of a compact set.

For example, if I" only moves in the clockwise direction outside of a compact set (or does not move at all)
then we can take the isotopy p’ to be trivial, and T = 0.

Condition (3-10) implies the existence of a 1-form « on ¥ with the following two properties:

(3-12) « is subclosed, ie da < 0,
(3-13) |y > 1 pointwise along 9.

(As is customary for Floer theory, a|5x and da should also be compactly supported.) For instance, if 7 is
pointwise nonpositive, then we can take o = 0.
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We consider maps u: ¥ — Y with boundary conditions given by A (ie u(z) € A, for all z € 9X¥) and
subject to a convergence condition (see (3-16) below), satisfying the perturbed pseudoholomorphic curve
equation

(3-14) (du—XgQa+ (E)*"®dr)®! =0,

where £’ is the vector field on the complex plane which generates the isotopy p’ in (3-11), and (£%)* is its
horizontal lift to Y. The expression (3-14) takes values in the space of (0, 1)—forms on X with values in
u*TY ,ie complex antilinear maps from 7% to u*T'Y. (We only need to consider smooth maps, but as
usual in Lagrangian Floer theory, the functional analysis setup involves an extension to a space of maps of
suitable Sobolev regularity; see eg [35, Chapter 8].) We will also consider modifications of this equation

by further adding a compactly supported inhomogeneous perturbation term for transversality purposes.

The inhomogeneous term Xg ® o in (3-14) is the same type of Hamiltonian perturbation that commonly
appears in the construction of continuation maps (and other operations) in (ordinary or wrapped) La-
grangian Floer theory, and the term (£§7)* ® dt plays a similar role in the horizontal direction. In the
presence of moving boundary conditions, one frequently requires that the restriction of the inhomogeneous
perturbation term to 3 generates the isotopy by which A varies; see eg [35, Section 8k]. However, when
the variation of A is pointwise nonpositive everywhere along 9% the maximum principle readily holds
without the need for inhomogeneous terms; our setup encompasses both cases.

The vanishing of &’ inside A’ ensures that, even if the compatibility of / with the horizontal distribution is
relaxed over W~1(A’) as in Remark 3.3, the quantities dh((£%)*), d°h((£")*) and Lgryrd d € h still vanish
identically outside of Y™

We only ever consider finite-energy solutions to (3-14), in the sense that the geometric energy
(3-15) Egcom (1) :=/ ldu —Xg @ a + (£9)* @ dt|? dvolyg
)

is finite. The norm in the above integral is taken with respect to the metric induced by w and J on Y, and
any j—compatible metric on X (the integrand is conformally invariant). By the usual decay estimates for
solutions of Floer’s equation on strips, this is equivalent to the condition that:

(3-16) Near each puncture of X, u converges to a generator of the appropriate Floer complex; ie when
the perturbation term is compactly supported over X, an intersection point between the boundary
conditions A on either side of the puncture.

Proposition 3.10 Assuming (3-11), solutions to (3-14) satisfy the maximum principle with respect to
the quantity |p* o W| (outside of a compact subset of C).

Proof Outside of a compact subset of C, W is J—holomorphic, so w = W o u solves the perturbed
Cauchy—-Riemann equation

(3-17) (dw+E*®dr)% =0.
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Hence, w = p* ow: ¥ — C solves an unperturbed Cauchy—Riemann equation with respect to the

domain-dependent complex structure (p%)«j on the complex plane:

(3-18) (dD) e, ; =0,

and the maximum principle holds at interior points. Along % we use a variant of the maximum principle
with Neumann boundary conditions. Namely, pick local coordinates z = s 4 i¢ which locally identify X
with the upper half-plane. If || has a local maximum, then necessarily

ds|]w| =0 and d;|w| <O.
It follows that d arg(w) > 0, since otherwise d; w would point clockwise from ds, contradicting (3-18).

On the other hand, recall that the boundary conditions for @ are given by the family of admissible
arcs p*(I"), along which the distance from the origin is strictly increasing. Thus, at a boundary maximum,
dsW points counterclockwise from the tangent vector to p*(I'). This contradicts the assumption (3-11),
and we conclude that || has no local maxima. |

Proposition 3.11 Solutions to (3-14) satisfy the maximum principle with respect to h (outside of Y'™).

Proof The argument is similar to other instances of the maximum principle in Floer theory: since 4 is
weakly plurisubharmonic, its values along a holomorphic curve satisfy the maximum principle at interior
points, and also at the boundary under the assumption that d“/ vanishes there; the conditions (3-5)—(3-7),
which govern the behavior of d€h along the directions of the inhomogeneous terms appearing in (3-14),
ensure that the maximum principle continues to hold for solutions of the perturbed Cauchy—Riemann
equation, as we now show by an explicit calculation.

We begin by showing that the maximum principle for / o u holds at interior points. Let z = x + iy be
coordinates near a point in X. Since /4 is weakly plurisubharmonic, we have

(3-19) 0<ddh(dxu— Xpg®a(dx) + 0x7- (), J(dxu — Xg®a(0x) + 0x7 - (§9)))
=ddh(dxu — Xg®a(dyx) + 0x7 - (§9)*, dyu — Xpg®a(dy) + dy7 - (§9))
= (u*(ddh) — o Au™(x,; ddh) + dt Au™(1gryrddh)) Oy, dy).

By the Cartan formula, we have

(3-20) d(ix,dh) = —ix,dd°h+ Lx,,dh,

where the second term vanishes by assumption (3-6), whereas (gzy*dd“h = 0 by Remark 3.2, so we
conclude that

(3-21) 0<u*(ddh)—du*d°h(Xg)) N,
where the right-hand side is considered as a 2—form on X. The Leibniz rule implies that
(3-22) du*d°h(Xpg)-a) =du*d°h(Xg)) na +u*d°h(Xg)-da,

Geometry & Topology, Volume 28 (2024)



Homological mirror symmetry for hypersurfaces in (C*)" 2845

so we derive the inequality

(3-23) 0<u*(dd‘h)—du*d°h(Xg)-a)+u*d°h(Xg)-do.

The assumptions that 0 < dh(Xg) and that « is subclosed imply that

(3-24) 0<u*(ddh)—du*d°h(Xg)- ).

We claim that the right-hand side is the Laplacian of /4 o u. Indeed, since dh(Xg) = dh((£%)*) =0 and

d¢h((£%)*) = 0 by assumption, we compute that

(3-25) d°(hou)=—dhoduoj=—dho(duoj—XgQaoj+E)®dro))
=—dho(Jodu—JXg ®@a+ JE) @dT)
=u*(dh)—u*d°h(Xg) -a+u*d°h((E)") -dt
=u*(d°h)—u*dh(Xg)-a.

Hence,

(3-26) dd®(hou) =u*(dd°h) —du*d“h(Xg)-a),

and comparing with (3-24), we conclude that

(3-27) dd€(hou)>0.

Thus, the maximum principle holds at interior points.

Along 0¥ we use the maximum principle with Neumann boundary conditions. For this, we need to check
that, in local coordinates z = s 4 it which locally identify 3 with the upper half-plane, the inequality
d(hou)(d;) > 0 holds, or equivalently, d€(h ou)(ds) < 0. We have computed above that

(3-28) d(hou) =u™(dh)—u*d°h(Xg)-«a,
and we now need to check that the restriction of this 1-form to X is everywhere nonpositive.

The vanishing of dh on each admissible Lagrangian A, by Definition 3.5, and on the vector fields
which generate lifted admissible isotopies, by Lemma 3.8, imply that the only contribution to “|*82:(d ¢h)
comes from the fiberwise wrapping term Xz ® n in the moving boundary condition, so

d°(hou)ps =u*dh(Xg)-n—u*d°h(Xg)-aps.
The nonpositivity of this quantity is now immediate, since d“h(Xg) > 0 and o5 > 1 pointwise by

assumption. O

Remark 3.12 In our setting, rather than being smooth, /& will be given by the maximum of a finite
collection of smooth plurisubharmonic functions %,, where for each v the 1-form d€h, satisfies all the
required properties wherever /1, achieves the maximum (ie 4, = &) outside of Y. The above argument
gives the maximum principle for all /4, which achieve the maximum, and hence a fortiori for 4 = max{h,}.
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The next result asserts the existence of a bound of the geometric energy of solutions to (3-14): such a
bound is necessary to appeal to any version of Gromov’s compactness theorem, and requires fixing a
homotopy class 8 of maps from (X, 0X) to (¥, A) with fixed asymptotic conditions, given by generators
of the Floer complexes, at the punctures of %. The key point is that Propositions 3.10 and 3.11 provide
maximum principles for the solutions of (3-14) in both base and fiber directions, so that solutions which
converge to given generators at the punctures of ¥ remain within a fixed compact subset of Y. It thus
suffices to bound the difference between the topological and geometric energy for solutions to a perturbed
Cauchy-Riemann equation with image lying in a bounded region; this goes back all the way to Gromov’s
original paper [21] which established compactness for perturbed equations, and is standard for Hamiltonian
perturbations. We nonetheless provide a detailed proof because of the (nonstandard) appearance of the
horizontal lift in our equation.

Proposition 3.13 There is a constant En.x(8) such that all solutions u to (3-14) in the homotopy class f3
satisfy the a priori bound

(3_29) Egeom(u) S Emax(ﬂ)

Proof Let z = x + iy be coordinates near a point of X. Since du — Xy ® o + (£§%)* d t is complex
linear with respect to j and J, the integrand in (3-29) is equal to

 (dxu — X ®a(dx) + dx (§1)*, dyu — Xg ®a(dy) + dy7 (§1)).
Since X is tangent to the fibers of W and (£%)* is horizontal, w(X g, (§%)*) = 0, and so
(3-30) Egeom (1) = / o —a Aut(x, o) +dt AUt (Eopo).
=

This quantity is not invariant under deformations of the map u relative to the boundary condition A. On
the other hand, the variation of A along the boundary of X is described by a vector field valued 1-form
on 0% of the form

Xag®n+ Xk ®9,

where K is a family of Hamiltonians (dependent on the point of dX) generating the lifted isotopy, as in
Lemma 3.8. Then the variation of | s u*w along a vector field v (tangent to A at the boundary) is equal to

/w(v,asu)ds=/ w(v,XH)r]—I—w(v,XK)l?:/ dH(v)n+dK(v) 9,
X X 0x

so the topological energy

(3-31) Etop([u]):/ u*a)—/ u*H-n—/ u* K-
z X X

depends only on the relative homotopy class [u] of the map u.

Returning to equation (3-30), Stokes’ theorem expresses the second term as

/—a/\u*(tXHa))=—/u*dH/\a=—/ u*H-oz—i—/u*H-da.
) b)) 0 x
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Putting this together with equation (3-31), we conclude that

(3-32) Egeom(u)zEtop([u])JF/ u*H~(n—a|ag)+/ u*H'da—I—[ u*K~z9+/ dT AU (1gryr o).
D> b 9 b

b))
The first two integrals on the right-hand side of (3-32) are nonpositive, since H > 0 by assumption and
« is required to satisfy (3-12) and (3-13).

The existence of a compact subset 2 C Y which a priori contains the image of u (as a consequence of
Propositions 3.10 and 3.11) provides a bound for the last two terms as follows: The third integral can be
bounded by (supg |K|)||[?11(55), which depends only on the size of €2 and the geometric bounds on
the lifted isotopy of the boundary condition A within the compact subset €2. Finally, the last integral can
be rewritten as

(3-33) /dr/\(t(gz)#a)odu)=/ d‘[/\(t(i:r)#a)o(du—XH ®a+(§r)#®dr)).
) )

Since the vector field £7 vanishes at the critical values of W, the norm of its horizontal lift (£7)* is
bounded everywhere in €2, and we can bound (3-33) by

(sup [E DlId 2w [du = Xt @+ ¢ @ d ] o5,
Combining these bounds, we find that

(3-34) Egeom(1t) < Eop([u]) + (Slslzp KDL + (Slslzp [ED* ) Id 7|2 Egeom @)/,

This implies a bound on Egeom (1) in terms of the other quantities appearing in (3-34). |

Remark 3.14 Proposition 3.13 continues to hold if (3-14) is further modified by a compactly supported
(hence uniformly bounded) inhomogeneous perturbation term.

Remark 3.15 In the next sections we will define Floer-theoretic operations in terms of certain moduli
spaces of solutions to (compactly supported perturbations of) (3-14). In each case we will make specific
choices for the parameters o and t, but we note that, since the set of allowable choices is contractible and
hence connected, the operations we define are independent of these up to homotopy, and likewise for
other auxiliary data such as compactly supported inhomogeneous perturbation terms or deformations of
the almost complex structure.

3.3 Definition of the directed category

We fix a collection L of admissible Lagrangians in Y, for which the subset A appearing in Definition 3.5
is always the same, and whose images in C agree near infinity with a fixed finite collection of radial
straight lines. (In our case A will be the single point {—1}). Also fix a subset A’ D crit(W); in our case
A’ will be a small disc centered at the origin.
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Let p be an autonomous flow on C which fixes A U A" and the negative real axis, maps radial lines to
radial lines away from a compact set, and moves all radial lines other than the negative real axis in the
counterclockwise direction. This isotopy preserves the admissibility of the arcs over which the objects
of L fiber outside of A. We define

(3-35) L(t):=¢'p' (L),

where ¢’ is the flow of the wrapping Hamiltonian H, and p’ is the lifted admissible isotopy generated
by p. Since ¢’ and p’ commute, we can think of this as an autonomous flow on Y; in particular,
(L)) =L(t+1).

By construction, the admissible arcs over which L(¢ + 1) and L’(¢) fiber outside of A are asymptotic
to different straight lines for all but finitely many values of A. We will essentially require that, in the
fiberwise direction, these Lagrangians also go to infinity in different directions for generic A, so that their
intersections are contained in a compact subset. More precisely, we assume:

(3-36) There exists an open (or Baire) dense set U C R such that, for all L and L' in L and A € U,
L(A) N L' is contained in a compact subset of Y. (The same then holds for L(z + A) N L’(¢) for
allt eR.)

(In our case it will be possible to choose the compact subset in (3-36) to be independent of L, L’ and A,

but there is no reason to require this in general.)

In addition, we impose the following conditions on elements L € L:

(3-37) Forallt € R, L(¢) does not bound any (unperturbed) holomorphic discs.

(3-38) L is equipped with a spin structure and with a grading (ie after choosing a holomorphic volume
form €2 on Y, a lift of the phase map arg(£2|7) to R).

Condition (3-37), which may be replaced by unobstructedness, ensures that Floer homology is well-

defined; while (3-38) ensures that it is Z—graded and can be constructed over a field of characteristic

Z€10.

We will also on occasion equip Lagrangians in L with local systems; since this will only come up in
specific places, we omit local systems from the notation for now.

Lemma 3.16 There are arbitrarily small values of € > 0 such that, for each pair of Lagrangians
Lo, L1 € L, and for all integers ko # ki,

(3-39) the images of Lg(eko) and L1(ek1) under W are asymptotic to different radial straight lines
in C, and Lo(eko) N L1(eky) is compact.

Proof After removing a finite set of values u from the set U in condition (3-36), we can assume that for
A € U the images of L(tr + A) and L’(t) under W are asymptotic to different radial straight lines in C.
Now the desired properties hold whenever € lies in the intersection of the sets k~!- U C R for all positive
integers k. This is a countable intersection of Baire sets and hence dense as well. O
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Choose 0 < € such that condition (3-39) holds for all pairs of objects.

We construct a directed category O with objects LX := L(—¢k) for all k € Z and L € L, and morphisms

CF*(Lo(—¢€ko), L1(—€ky1)) if ko <ki,
(3-40) o(Lke, L¥y = {K id if ko =ky and Lo = L,

0 otherwise.
The A structure is obtained by counting solutions to pseudoholomorphic curve equations (for suitable J,
see Remark 3.18) with compactly supported inhomogeneous perturbation terms (when the integers
ko, k1, ... form a strictly increasing sequence —in all other cases the structure maps are defined tau-
tologically). The compactly supported perturbations are used to achieve transversality, and are chosen
in a consistent manner; see eg [35]. Since we work over the Novikov field, the count of solutions in
each homotopy class is weighted by (topological) energy (as well as the bulk deformation class, and
holonomies of local systems along the boundary of the disc when applicable).

The key compactness property required for this construction is a direct consequence of the maximum
principle:

Lemma 3.17 Given any sequence of Lagrangians Ly, ..., L, € L and integers ko < ky <--- <k, there
exists a bounded subset of Y which contains the images of all J—holomorphic discs with boundary on
Lo(—€kg) U---U L,(—€k;,). The same property also holds in the presence of a compactly supported
inhomogeneous perturbation.

Proof This follows immediately from Propositions 3.10 and 3.11, in the special case where the Lagrangian
boundary condition remains constant along each component of 0% and there are no perturbation terms. O

Remark 3.18 Disc bubbling is excluded by assumption (3-37), but sphere bubbling can happen in our
setting, so the regularity of the moduli spaces we consider is not immediate.

To deal with sphere bubbling, we assume that J is chosen generically within a suitable class of com-
patible almost-complex structures, so that simple J—holomorphic spheres are regular, and evaluation
maps at interior points for somewhere injective J—holomorphic curves are mutually transverse — see
[31, Theorem 3.4.1] for the closed case; the argument works similarly for discs. For our main example
the standard complex structure is not regular, but all holomorphic spheres lie inside W ~1(0), so it is
enough to perturb J in a neighborhood of W ~1(0), or, in fact, its intersection with the bounded subset
provided by Lemma 3.17, so that the conditions we have set in Section 3.1 on the geometry at infinity are
not affected.

With this understood, bubbling of simple J—-holomorphic spheres is a real codimension 2 phenomenon,
and does not affect our ability to count solutions to Floer’s equations in zero-dimensional moduli spaces,
or to compare counts of solutions by considering one-dimensional moduli spaces. Moreover, since
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c1(Y) = 0 we need not worry about multiply covered sphere bubbles either. Indeed, regularity for
simple spheres implies that for generic J the union of the images of all pseudoholomorphic spheres
in Y has real codimension 4. By transversality of evaluation maps, it is therefore disjoint from the
images of holomorphic discs (or solutions to Floer’s equation) in (a fixed countable collection of) zero-
or one-dimensional moduli spaces.

3.4 Quasiunits and continuation maps

The next ingredient in the construction of the fiberwise wrapped category W' (Y, W) is a distinguished
collection of morphisms

(3-41) e;x € HFO(LF, LK+
forall L € L and k € Z, called quasiunits.

The quasiunit e, « is the image of the identity in H°(L) under a PSS-type homomorphism from H *(L)
to HF (Lk LK *1) which can be constructed exactly as in [8] (see below for the specific case at hand);
note however that the reverse map from HF(L¥, Lk¥*1) to H*(L) is not well-defined in our setting, as
it involves Floer data for which the analytic estimates of Section 3.2 do not hold. (Nonetheless, given that
our Lagrangians do not bound any holomorphic discs, the PSS map often turns out to be an isomorphism
for small enough e, under additional geometric assumptions which ensure that L*¥+1 is contained within
a Weinstein tubular neighborhood of Lk this is the case in our main example, by Proposition 5.11.)

Chain-level quasiunits can be constructed by counting solutions to a Cauchy—Riemann equation with
moving boundary condition, whose domain ¥ is a disc with a single boundary puncture which we consider
as an output, and where the boundary condition A is given by the isotopy L! = L(—e€f), € [k, k + 1],
parametrized using some choice of monotonically increasing smooth function from 9% to [k, k + 1] which
is constant near the ends. Since the isotopy along dX moves the complex plane in the clockwise direction
and wraps fiberwise in the negative direction only, we can apply the results of Section 3.2, with ¢ =0
and t = 0, to control the behavior of solutions. We denote again by

(3-42) e x € CFO(L(—€k), L(—e(k + 1))) = O(L¥, LF*1)

the chain-level quasiunit constructed in this manner. While e; x depends on auxiliary choices (eg of a
function from 0% to [k, k + 1]), the chain-level quasiunits constructed using different choices only differ
by an explicit homotopy, and can be used interchangeably.

Let Z denote the collection of all such morphisms. The fiberwise wrapped category W (Y, W) is the
localization of O with respect to these morphisms:

(3-43) WY, w):=2z"to,

ie the quotient of O by the cones of the morphisms in Z, in the sense of Lyubashenko and Ovsienko [30];
see also [16, Section 3.1.3], as well as Section 3.5 below. We shall use a concrete model of the morphisms
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in W(Y, W), introduced in the next section, in which they are expressed as homotopy colimits (ie direct
limits) of morphism spaces in 0. In order to compute these morphism spaces explicitly in terms of Floer
theory, we shall introduce continuation maps

(3-44) Fpi i O(LE. L) — O(LgT L],

These are defined by counting solutions to a perturbed Cauchy—Riemann equation, with domain ¥ =
R x [0, 1], and where the boundary conditions are given by Ag o = L](§+X(s) = Lo(—€(k 4+ x(s))) along
R x {0} and As,1 = L{+X(S) = Li(—€(j + x(s))) along R x {1}. Here y: R — [0, 1] is a monotonically
decreasing smooth function, constant near the ends, so that the boundary conditions are (Lk , L{ ) at the
’ L{-H

input end s — 400, and (L]g"'1 ) at the output end s — —o0.

We use the setup of Section 3.2, with a fiberwise wrapping perturbation given by o = —e y'(s) ds (so
that do = 0 and |35, = 1), and a horizontal perturbation given by the autonomous flow p and 7 = € x(s)
(so p* exactly cancels the horizontal isotopy of the boundary condition). Propositions 3.10, 3.11 and 3.13
then imply that the counts of index O solutions to (3-14) (weighted by topological energy) can be used to
define FLg,L{.

Despite the slight differences in technical setup, these continuation maps have all the usual properties of
continuation maps associated to symplectic isotopies in Lagrangian Floer theory: they are quasiisomor-
phisms, and extend to an Axe—functor F: 0 — O, which acts on objects by L¥ — Lk*1. Since we shall
not need these properties, we omit the proofs.

Lemma 3.19 The quasiunits are natural with respect to continuation maps, in the sense that both triangles
in the diagram

i e’ ) i+1
O(LET L) Lottt
Frk 7J
(3-45) 12 (- erk) o7 12 (- erk)
. 2(er 7 ,- i
o(Lk. L) T ok L)t

are commutative up to homotopy.

Proof We start with the upper triangle, ie the homotopy between F(u2(-,e Lk)) and u?(e L’,-). The
argument relies on comparing a series of moduli spaces of perturbed holomorphic curves, presented
pictorially on Figure 2, where the thick edges correspond to regions where the Lagrangian boundary
condition is moving, and the shaded areas correspond to the support of the inhomogeneous perturbation
terms in (3-14).

The main protagonists in the homotopy are a family of perturbed holomorphic strips with domain
¥ =R x[0, 1], depicted on the right-hand side of Figure 2. Fix two disjoint compact intervals /1, I C R,
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1 , L] L./+1 Ll L]
L{ L{/ 1 1 1 1
k k
kAT T \ ) Lkt Lk I pk+1
0 0
Lk
L+ 0 I
L{il/l'“j Ly Li* Ly
il %

Jj+1 J
Ly Ly

I, Lkte I, [k+1
0 0
Lk+1 ~
k+1
LO

k+1
LO

Figure 2: A homotopy between uz(eLj ,)and F(u?(-, €Lk )).
1

with 17 to the left of I, as well as two smooth monotonic functions y1, y2: R — [0, 1] such that y;
equals 1 to the left of 71 and O to its right, while y» equals 0 to the left of /5 and 1 to its right; we arrange
that the “profiles” of these functions are identical to those used in the construction of the continuation
maps and quasiunits. Also fix a parameter p € [0, 1], and define

kp(s) =k +p+(1—p)x1(s)+ (1—p)x2(s),
Jo(&)=j+p+0=p)x1(s)—px2(s).

Along R x {0} we consider the moving boundary condition Ags = ng” (S), while along R x {1} we use

A= L{" ) . While the boundary condition A ¢ always moves in the negative direction as s decreases
(jp is a monotonic function of s), the boundary condition Ay moves in the positive direction over /1.
Accordingly, we set & = —e(1 — p) ¥ (s) ds, and T = €(1 — p) x1(s), for the perturbation terms in (3-14).

By Section 3.2 the solutions to (3-14) with these boundary conditions and perturbations satisfy maximum
principles and energy estimates, so we can define operations

®f, 1,1 OLETL LTy > oLk, LIt

by counting rigid (index 0) solutions. These operations are chain maps, since the ends of the moduli spaces
of index 1 solutions for fixed /1, I> and p are in bijection with the broken trajectories which contribute to
do®y, 1, and @y, 1, , 0 0; and they are all homotopic to each other, with explicit homotopies given
by counts of index —1 solutions that may arise as the parameters /1, /> and p vary, as can be seen by
considering the ends of moduli spaces of index 0 solutions for a one-parameter family of choices of
I1, I, and p. (These are standard arguments in Lagrangian Floer theory, so we omit the details; see eg
[9, Section 2], [35, Section 17] or [8] for similar proofs.)
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Jj+1 41 '
Liv ) Lt Lite L Lt
Cu - - oL
k k+ k k
Lﬁ\ Ly L™ Ly Lo\...j

k
Lk Lg

Figure 3: A homotopy between p*(e, ;,-) and p*(F(-), eL’(g)'
1

For p = 0, the boundary conditions and perturbations near /; are identical to those used to define the
continuation map, while along 7 x {0} the boundary condition Ag s varies from ng to ng *1 (top right
diagram in Figure 2). Moving I; towards —oo and shrinking /5 to a point then causes the solutions to
converge to limit configurations consisting of (typically) three components (upper left diagram in Figure 2).
The “main” component is an unperturbed holomorphic disc with two inputs, corresponding to the Floer
product p?, while at s = —oo we have a strip with moving boundary conditions and inhomogeneous
perturbations, corresponding to the continuation map F, and the rescaling limit near I x {0} gives a
half-plane with a moving boundary condition, which corresponds to the quasiunit. Thus, the operations
®y, . 1,,p are homotopic to F(u2(~,eL16)).

On the other hand, for p = 1, there are no perturbations near /1, and along /5 x {1} the boundary
condition A ¢ varies from L{ to L{*'. Shrinking I, to a point then causes a holomorphic half-plane
with moving boundary condition to break off (lower left diagram in Figure 2), showing that ®7, 1, , is

also homotopic to u?(e L, -).

The commutativity up to homotopy of the lower triangle in (3-45) is proved in exactly the same manner,
by considering a family of perturbed holomorphic strips depicted in Figure 3. The construction is identical,
except that the roles of the two regions /1 and I, are now reversed. By considering the limit configurations
as p becomes 0 or 1 while the leftmost interval is degenerated to a point and the rightmost interval escapes
towards s = +o0, this yields a homotopy between 1% (e L7, ) (Figure 3, left) and W (F(-),e k) (Figure 3,
right). |

Remark 3.20 Lemma 3.19 can be strengthened to show that the quasiunits form the leading-order term
of a natural transformation e from the identity to the Aso—functor F. The next (order 1) term in the
natural transformation is precisely the homotopy between 2 (F(-), e Lk) and w?(e L. -) that arises in
the proof of Lemma 3.19, ie it can be defined by counting index —1 solutions that come up in the family
of perturbed Cauchy—Riemann equations depicted in Figure 3. The construction of the higher-order terms
of the natural transformation is technically more involved, and we do not discuss it here since we will not
be needing it.

Since the localization at all quasiunits amounts to making the natural transformation e invertible up to
homotopy, the localized category W (Y, W) is also sometimes denoted by O[e™!]; this notation is also
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suggestive of the fact that the localization effectively enlarges morphism spaces by inverting all quasiunits
(up to homotopy).

Remark 3.21 It is natural to ask to what extent the category W (Y, W) depends on the choice of the
collection of Lagrangians L and on the parameter € (the time-step with respect to which we consider
quasiunits). Here we do not address the first question, which relates to the existence of generation criteria
for W(Y, W); we simply assume that we have a collection L satisfying the required hypotheses, and if
this collection is too small the category we construct might only be a subcategory of the one we would
obtain from a larger collection of objects.

On the other hand, the algebraic properties of quasiunits imply that the choice of the parameter €
does not affect the outcome of our construction. The key observation is that we can define quasiunits
eLa)y—L@) € HFO(L(t"), L(1)) for all # > ¢ such that L(') N L(¢) is contained in a compact subset
of Y, and an argument similar to the proof of Lemma 3.19 shows that, for t” > ¢’ > ¢, these satisfy

€L(t")—>L(¢) €Lt")—~>L({") = €L(")—~>L(z)

(in cohomology, or up to homotopy). Assume that L(¢") and L(z) are both objects of O for some ¢’ > ¢, and
let n be such that ne >t'—t. Since ey (;4-ne)— L(¢) is the product of the quasiunits ez, (4 ke)— L (t+(k—1)¢) for
1 <k <n, itis a quasiisomorphism in the localized category, hence admits a quasiinverse f7,(;)—L(t+ne);
similarly for ey ;) .('—ne)> Whose quasiinverse we denote by f7,('—ne)—L(r)- Thenin H 09 we have

eLa)—L(t) " (€L@+ne)>L@") " JL@t)—~L(t+ne) =1dL(r),

(fL(t'=ne)—L(t") - €L(t)—>L(t'—ne)) * CL(t")—L(t) = 1dL (")
giving left and right inverses for ey, (;/)— 1. (+) up to homotopy and proving that it is a quasiisomorphism.
Hence, localizing with respect to quasiunits for a fixed step size € actually inverts all quasiunits; and L (¢)

and L(t') are quasiisomorphic in the localized category whenever they belong to the set of objects. This
implies that up to quasiequivalence the category we construct does not depend on the choice of €.

3.5 Fiberwise wrapped category via colimits

Our goal in this section is to construct the fiberwise wrapped Fukaya category as a subcategory of the
category of modules over O. This approach is adapted from unpublished work [5] of the first author with
Seidel, where the starting point is the more abstract formalism of localization of categories, and the point
of view which we take here is used as a computational tool.

The basic idea is that we seek an As—category where morphism spaces between Lagrangians are taken
after passing to a limit with respect to positive wrapping. We implement this by assigning to each
Lagrangian L an object of the category of modules over O given as a homotopy colimit (or direct limit)
(3-46) Yoo = hocolim Y «,

k——+o0
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where Y, « is the Yoneda module
(3-47) X > 0(X, L),

and the connecting maps ¥y« — Y r+1 are given by composition with the quasiunits e; ». We take as
model for the homotopy colimit the mapping telescope

o0 o
(3-48) cOne( Py - P OyLk),
k=0 k=0

where the arrow is the direct sum of the differences id — ey «.

We write W for the full subcategory of modules over O with these objects, ie objects are admissible
Lagrangians in L, and morphisms between L and L; given by

(3-49) W(Lo, L1) =Homo(Ypge, Ypso).

The first computation we need is:

Lemma 3.22 There is a natural quasiisomorphism

(3-50) holimhocolim@(Lk, L{) — W(Lo, L1).

k—oco Jj—oo

Proof The cone of the complex

o o0
(3-51) Hom@(@ong,cyLTo)%Hom@(@@l‘g,@wo)
k=0 k=0

maps quasiisomorphically to the space of morphisms from % L to Y2, and is isomorphic to the cone

of the map
o0 o0
(3-52) I1 Homo (¥ 5. Vpge) — I1 Homo (Y 4. Yp50).
k=0 k=0
which is a model for
(3-53) hollcim Homg (@)Lg , Ochl><>).

On the other hand, the Yoneda map induces a quasiisomorphism

(3-54) hocolim @(Lk, L{) — hocolim Homg (¥ «, %Y, ;) = Home(Y . @L?o).
J—=o0 J—>00 0 1 0
The desired map follows by composition. a

The next result reduces the computation of morphisms in W' to a direct limit.
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Lemma 3.23 For all Ly, L1 and k, the map
(3-55) Hom@(OyL§+1 , OyL?O) — Hom@(@Lg,@Lr)

induced by multiplication by quasiunits is a quasiisomorphism.

Proof The Yoneda lemma reduces the problem to the statement that the map
(3-56) hocolim O(LK*!, L7) — hocolim O(LE, L7)
J—00 J—00

induces an isomorphism on cohomology. Since direct limits commute with passing to cohomology, it
suffices to show that the map of cohomology groups
(3-57) colim HF*(LK*1 L7y — colim HF*(L¥, L])

Jj—00 Jj—00
is an isomorphism, where we use the fact that the morphisms in O are given by Floer cochains whenever
j is sufficiently large. We claim that the continuation maps from equation (3-44) provide an inverse.
Indeed, by taking the cohomology of diagram (3-45) we obtain a commutative diagram

. 20, j . .
HF*(LET' L) wilert,) HF*(LET! LIt
(3-58) W2 erk) "o W2 erf)
n?(ery,")

HF*(LE, L)) HF*(Lk, L]

in which the horizontal maps are those used to define the direct limits, while the vertical maps assemble
into the map (3-57).

To show that (3-57) is injective, note that every element of the left-hand side is represented by an
element of HF *(L’g +h L{) for some j. The above diagram implies that the image of this element in
HF* (L’S +h L{ +1) agrees with the image under our proposed inverse (the continuation map Frk r7)
of its image under the map of direct limits (3-57). By definition of the direct limit, this implies that the
continuation map is a left inverse to (3-57), and injectivity follows.

Considering the composition in the other order yields surjectivity: every element of the right-hand side of
(3-57) is represented by an element of HF*(LX, L{) for some j, whose image in HF*(Lk, L{H) is
also the image under (3-57) of its image under the continuation map, so the continuation map is a right
inverse. |

Corollary 3.24 For each pair L’g and L of objects of O, there is a natural isomorphism

(3-59) colim HF* (LK, L7) — HW (Lo, Ly).

Jj—>00
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Proof The above lemma implies that bonding maps in the inverse system appearing in equation (3-50)
are quasiisomorphisms. In particular, the Mittag-Leffler condition is satisfied, and for each integer k the
projection map
(3-60) holim hocolim O(LE, L7) — hocolim O(LE, L7)

k—o0 j—o00 j—o00
induces an isomorphism on cohomology. Inverting this map, and composing with the one induced by
equation (3-50) on cohomology yields the desired isomorphism. a

Remark 3.25 The most straightforward way to compare our construction with the approach of [5] is
to consider the localization functor from O—modules to O[¢~!]-modules. By the universal property of
localization, the images of the Yoneda objects L¥ are equivalent, hence the image of the colimit Yz 0o
under localization is equivalent to these Yoneda modules. Lemma 3.23 can be restated as the fact that the
modules Y lie in the e—local subcategory of O—modules, which is quasiisomorphic to the category of
Ole~!]-modules. We therefore conclude that the category generated by the modules ¥« is equivalent
to the localization of O, which is the point of view taken by [5].

4 Kihler forms and admissibility

In this section, we study the geometry of parallel transport in toric Landau—Ginzburg models, and construct
suitable Kahler forms for which fiberwise monomial admissibility is preserved by parallel transport; we
then show that the technical assumptions we have made in the previous section follow from this property.

Definition 4.1 A fiberwise monomial subdivision for the toric Landau—Ginzburg model W:Y — C
consists of a finite collection of toric monomials z¥, v € ¥ C Z"+1, weights d(v) € Z~¢, open subsets
C, C Y, and a closed subset 2 C Y, such that

(1) z¥ €0(Y) forall v €V, and z > (z%)yey defines a proper map ¥ — C V1,

(2) the restriction of W to Q is a proper map,

3) QUUyey Co =7, and

(4) forz e ¥ \Q,if |z%0|1/4®0) = max{|z?|/4®) | y €V} then z € Cy,-

Definition 4.2 Given a fiberwise monomial subdivision, a Lagrangian submanifold £ C W ~!(c) = (C*)*
is monomially admissible with phase angles {@y, v € ¥} if, outside of the compact subset W~1(c) N Q,
arg(z¥) = ¢y at every point of £ N Cy.

A Lagrangian submanifold L C Y is fiberwise monomially admissible with phase angles {¢, } if, outside
of Q, arg(z?) = ¢y at every point of L N Cy.

2An inverse system A < Ay <— A3 < --- is said to satisfy the Mittag-Leffler condition if for each k, there exists j > k such
that, for all i > j, the maps A; — Ay and A; — Ay have the same image; this condition implies vanishing of the first derived
functor of the inverse limit, and that inverse limits are well-behaved with respect to cohomology; see eg [39, Definition 3.5.6].

Geometry & Topology, Volume 28 (2024)



2858 Mohammed Abouzaid and Denis Auroux

Example 4.3 We can define a fiberwise monomial subdivision for the toric Landau—Ginzburg model
((CN o =—]] Zj) as follows (the construction below will be a slight modification of this example).
Take the collection of monomials to be the coordinate functions z;, 1 < j < N (ie the exponent vectors
v; are the standard basis of ZN); take d (v j) = 1forall j, and let Cy, be the set of points of CN where
|zj| > K |Wo|Y/N for some constant K > 1, and = cM\U Cy, =1z € CN |max(|z;]) <K |Wo|V/N .

Condition (2) holds since the coordinates of points of €2 are bounded by K |W0|1/ N and condition
(4) holds since if |z;| = max(|z1],...,|zn]) > K |W0|1/N then z € Cy;. A Lagrangian submanifold
L c CV is then fiberwise monomially admissible with phase angles ¢, . .., @ if, at every point of L

/N one has arg(z ) = ;. For instance, the real positive locus (R4)N satisfies this

where |z;| > K|Wy|
condition with all phase angles equal to zero. We shall see below how to build more interesting examples

under the assumption that the toric Kiihler form on C¥ is chosen suitably; see Section 4.1.

The notions of monomial subdivision and monomial admissibility for Lagrangians in (C*)" already
appear in Andrew Hanlon’s thesis [24]. One technical difference is that we consider a fiberwise version
of monomial admissibility and its compatibility with parallel transport between the fibers of W. The more
important difference is philosophical: we use monomial admissibility merely as a technical tool to ensure
the flatness condition of Definition 3.5(ii), rather than as a geometric way of restricting the fiberwise
wrapping by introducing additional stops (though we will do so in a sequel (work in progress) for mirrors
of hypersurfaces in toric varieties).

4.1 A toric Kihler form on CV

We first consider the case of CV equipped with a complete toric Kihler form o = dd¢® (for ® a
T M-invariant Kihler potential) and the superpotential Wy = —[] z;. Writing z; = exp(p; +i6;), we have

dd°®=>" PO o ndb
W= = pi 3

— opidp;
In particular, @ is a Kéhler form if and only if the potential is a strictly convex function of the
p—coordinates, ie the Hessian matrix ¥ = (92®/dp;dp;);; is positive definite. The moment map
w=(t1,....,;un): C¥ - RN is given by the partial derivatives of ®:

pj = 0®/dp;.

The horizontal distribution, ie the symplectic orthogonal to the level sets of Wy, is spanned (over C)
by the Hamiltonian vector field generated by log [Wp| = ) p;. We can express d log |Wp| as a linear
combination of the differentials of the moment maps,

4-1) dlog |Wy| = dej = Z)&jduj, where (Aq,...,Ax)=U"1(1,...,1).
J J
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Angular parallel transport (ie along circles centered at the origin in the base of the fibration given by W)
is then given by rotating each coordinate at a rate proportional to A;, so that the horizontal lifts of the
angular and radial vector fields are given by

=7 and (rd,)" =—i(0y)" = =——=.
oA 2 A

One checks that the quantities jt; — j; are conserved by parallel transport, as expected (since parallel

(4-2) (99)* =

transport is equivariant with respect to the standard Hamiltonian T ~!—action on the fibers of Wp).

Example 4.4 For the standard Kihler form on C¥, with potential ® = %Z lzj|> = %Zez"f , the
moment map is given by u; = %|Zj |2, and W is diagonal with entries |z;|?, so that A; = |z;|~2, and
(0g)* = (1/X Iz; |_2) > lzj |_239j. Thus, when |z;| — oo for |Wp| fixed, the rate of change of arg(z;)
under angular parallel transport tends to zero. This in turn implies that a weaker form of asymptotic
admissibility (only requiring arguments of monomials to converge to prescribed limit values at infinity) is
preserved under parallel transport, and it should be possible to carry out the whole construction using
the standard Kihler form. However, the stronger admissibility requirement that we impose is necessary
for the maximum principle of Proposition 3.11; thus we will need to ensure that arg(z;) remains strictly
constant (rather than approximately constant) under parallel transport, and this in turn motivates the

introduction of a different Kéhler form.
Our choice of Kéhler form involves smooth approximations of the maximum function:

Definition 4.5 Given a constant § > 0, denote by M : R> — R a smooth convex function such tha:
(1) M(u,v) =max(u,v) whenever |[u —v| > 8,
2) Mu+a,v+a)=M(u,v)+a forall u,v,a €R, and
(3) M(u,v) = M(v,u).

These conditions imply that M is monotonically increasing with either variable, and
oM

d
max(u,v)fM(u,v)fmaX(u,U)‘i‘S, 058_51’ 058_51
u v

We then define M : Rzzo — R>¢ by

MU, V)=expM(logU,logV) for U,V >0,
M(U,0)=M(©0,U)=U,

and note that M is continuous, smooth everywhere except at the origin, and M (U, V) =max(U, V)
whenever U/ V ¢ (e~%, %).

In fact, the second condition above implies that M is determined by a smoothing, near the origin, of the
absolute value function on R.
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Definition 4.6 Choosing some small & > 0, we equip C with w = dd¢®, where
N

N
@3) o=y dt(e [T 0P 1) P

i=1 j=1,j#i

Remark 4.7 The only purpose of taking M (e,...) is that otherwise w would be degenerate (and
nonsmooth) along the coordinate axes. In fact,

~ W 2
[TMziP 12 ) = [ [ max(zi]?. |2 P) = — [Wol > [Wo2N-D/N
. . .. mln{|21|2v"'v|ZN|2}
J#i J#i
so we have the simpler expression
N
(4-4) o= Z( 1_[ M (|zi |, |Zj|2))|2i|2 whenever |Wp|? > (868)N/(N—1).

i=1"j#i
Since we will only consider Lagrangian submanifolds which stay away from the preimage of a small
disc under W), choosing ¢ and § sufficiently small we can always work with the simpler formula (4-4) to

study the geometry of admissible Lagrangians.
Lemma 4.8 This w is a toric Kihler form on C¥

Proof & is obviously T —invariant, and we will momentarily check that outside of the coordinate axes it
is strictly convex as a function of the variables p; = log |z;|. Meanwhile, smoothness and nondegeneracy
of the Hessian near z; = 0 follow from the observation that the coefficient M (e,...)in the i term of
(4-3) is bounded below by & > 0.

To prove the strict convexity of ® outside of the coordinate axes, we observe that each term in the sum
(4-3) is log-convex as a function of p; = log|z;|, ie its logarithm is convex. Indeed, using the convexity
of M and the fact that the composition of a convex monotonically increasing function with a convex
function is itself convex, we find that

0i(p1.....pN) =M (log £y M(Zpi,2pj)) +2pi
J#
is a convex function. Since the exponential function is strictly increasing and strictly convex, we conclude
that
i(pr..... px) = ¥ PP = M(s, [T #1212 |2>) 2o
J#i

is a convex function, and that its Hessian is nondegenerate on all tangent vectors which are transverse to
the level sets of ¢;, ie d?>®; (v, v) > 0 whenever dg; (v) # 0.

Thus, in order to conclude that ® = ) ®; is strictly convex, it suffices to show that doy,...,doN
are everywhere linearly independent. Equivalently, we need to show that the matrix A with entries
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aij = 0g; /dp; is invertible. We only do this in the region where ¢; = >, .; M(2p;,2p;) + 2p; for
simplicity; in light of Remark 4.7 this is the only case of genuine interest to us.

Let A= A+ AT, with entries dij =a;j+aj; =0¢;/0p; +0d¢;/dp;. Fori # j, it follows from property (2)
of Definition 4.5 that 9 9
aijj = —M2p;,2p;) + —MQ2pi,2p;) =2.
aij =5 (2pi,2pj) + %0, (2pi. 2p))

i

Meanwhile, @;; = 2 d¢; /dp; > 4. Thus, given any nonzero vector v € R,

N 2

(U,AU)I Z ?z,-jv,-vj =2(Zvi) +Z(?zl-,-—2)vi2>0,
i,j=1 i i

and it follows that (v, Av) = %(v, Av) is positive as well, which implies that A is invertible, and hence

® is strictly convex. |

The key feature of the Kdhler form @ which makes it possible for fibered Lagrangians to be fiberwise
monomially admissible is that all “large” coordinates are preserved under parallel transport. We first
make the notion of “large” coordinate more precise.

Definition 4.9 A partition {1,..., N} = K U J into two nonempty subsets is called a §—gap at a point
(z1,...,zn) € CN if inf{|z;|? | i € J} > €% sup{|zi|* | i € K}. We say that zj lies above a §—gap if there
exists a 6—gap {1,...,N} = KU J with j € J.

Lemma 4.10 If |z;| > e%(N_1)8|W0|1/N, orif |zg| > e2(NV=18 pin |z;|, then z4 lies above a 6—gap.

Proof Assume z; does not lie above any §—gap. Then listing all |z;|? in decreasing order, the entry just
after |z¢|? (if there is one) is bounded below by e~%|z;|2, the next one is bounded below by e~28|z,|2,
and so on, whereas the entries preceding |z;|? are bounded below by |zy|?. Thus, we conclude that
min |z; |2 > e= V=08 |2,12 and |Wp|2 = [T, |zi|? > e 2V =132, 12N Taking the square root and

the 2N'" root of both sides of these respective inequalities, we obtain a contradiction. |

Lemma 4.11 Assume that |Wy|? > (¢e%)N/N=1) and that z, lies above a §—gap. Then the coordinate z;
is (locally) invariant under parallel transport.

Before giving the proof, we provide some intuition by briefly considering the case N = 2: when
|z2|> = €%|z1|2, our Kihler potential is ® = |z1|?|z2|> + |z2]*, and o is locally a product Kihler
form when expressed in the coordinates (Wp, z2), which readily implies that parallel transport for Wy
preserves z,. Alternatively, the first component of the moment map is ;1 = 0®/dp; = 2|Wp|?, as is
also the case more generally whenever z; is the smallest coordinate and separated from z5,...,zy5 by a
d—gap. Since d log | Wy | is proportional to djt1, comparing (4-1) and (4-2) we conclude that only z; varies
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along the horizontal distribution, while z3, ..., zy are preserved. (However, as parallel transport towards
|[Wo| — oo proceeds by varying z; while z5, ..., zy remain fixed, eventually |z1| becomes large enough
to “close” the §—gap and the statement no longer holds.) The argument in the general case is less explicit
but similarly involves the vanishing of certain coefficients in (4-1).

Proof Let{l,...,N}= KU J bead-gap with £ € J. Recall that the Kihler potential is given by (4-4),
ied = ZIN=1 e¥, where ¢; = Zj £i M (2p;,2p;) + 2p;. Property (1) of Definition 4.5 implies that, for
i€Jandk € K, dp; /dpr =0, whereas fori € K and j € J, dg; /dp; = 2. Thus, fork € K and j € J,

Z(a% 8@3%) Zz oo
i=

4-5) Vi =
/ doj0pr  Opj ok =

3/0/ 8,0k
which is independent of j. We denote this quantity by cy.

Next, property (2) of Definition 4.5 implies that for all i we have Zz=1 0¢; /0pm = 2N, and fori € K
we have ) g 0¢; /0pm = 2N —2|J| = 2|K|. Thus,

9 _ > ;)ﬁe“’i =2|K| ) e?.

0
mek “Pm imek M iek

Differentiating with respect to p; for k € K, we find that

(4-6) X K| > mk—Zz—e“’l = c.

mekK ieK

The nondegeneracy of @ implies that the symmetric matrix W is positive definite, and in particular its
restriction W|g to the coordinates labeled by elements of K is also nondegenerate. For k € K, denote
by Aj the components of (\IJ|K)_1(1, ..., 1), ie by definition ) ;g WixAr =1 forall i € K. Averaging
over i € K and using (4-6), we also have ) ; cx ckAx = 1. Thus, using (4-5) we find that

> Wydg=1 foralli=1,....N.

keK
Setting A; = 0 for j € J, we conclude that U1, ., 1) = (A1,...,AN), ie (A1,...,AN) are the
coefficients which appear in (4-1) and (4-2).

For j € J, the vanishing of A; implies that the j ™ components of (39)* and (rd,)* are zero, and thus,
parallel transport preserves z;. This is true, in particular, for j = £. O

We conclude this section with some estimates for the moment map, which will be used to establish the
analogue of Lemma 4.11 for Kihler forms obtained from w by symplectic reduction. Since the formula
for the moment map is obviously equivariant under permutation of the variables, it suffices to consider
the case where |z1| <|z2| <--- <|zn]|.
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Lemma 4.12 Assume that |Wy|? > (¢e%)N/N =1 and that |z1| < |z2| <--- < |zn|. Then:

(1) O<py Sp2=<---=<un,
Hj
(2) 2< —N
|Zj|2] Hi=j+1 |Zi|2
\1/(2N) . 1/2
3) (2N)‘1/(2N)e‘5(“—’) <l oy, N"”(“’) forall 1 <k <j <N.
Mk |zk| Mk
Proof Recall that, by (4-4), ® = e% with ¢; = stél- M2p;,2p;) + 2p;. Thus,

<4Ne2NS forall 1 < j <N,

a0 oM (2p;,2p; 4 4 .
Z Yo =3 (20i-20)) (01 1 o915y 1 209
i=1 9o i#j %;

We first establish the inequality (1). For j < k, we have |z;| < |zx| by assumption, and using the

(4-7) = ap
J

monotonicity of M we immediately deduce that ¢; < @x. Moreover, for i ¢ {j, k}, the convexity of M
implies that 0 < dM (2p;,2p;)/0p; < OIM(2p;,2px)/9pk, and hence
IM(2pi,2p;) (¥ + %) < OM (2p; . 2 1)
Ip; Pk
Properties (2) and (3) of Definition 4.5 and the convexity of M imply that dM (2p;,2p)/0p; <1 <
dM (207 2p1)/ k. 50
OM (2p;, 2px) (% + o) +26% < M (2p;,2pk)
dp; Pk
Combining these inequalities we conclude that p; < ug, which proves (1).

(e‘pi + e(ak)'

(e(Pj + e‘pk) + 2%k

To establish (2), we first observe that |z;,|? < ]\2(|Z,~1 1%, |zi, %) < el |zi,|? for iy < i,. Therefore,

122 [T 2 < ¥ = (H Wz, |z,~|2>)|z,-|2 < M|z T 1=
i>] i#] i>j
Since p; >2e% by (4-7), the lower bound on e%/ immediately yields the lower bound in (2). Meanwhile,
to obtain an upper bound on p; we observe that in the sum (4-7) the terms corresponding to i such that
|2;|> > €®|z;|? vanish identically, since for such i we have M (2p;,2p;) = 2p;. Otherwise, the inequality
2p; <2p; + & implies that ¢; < ¢; + N§. Meanwhile, 0M (2p;,2p;)/dp; < 2. Thus,
wnj < Z 2(e% +e%) 4+ 2e% < (2N 4+ 2(N — 1)eN¥)e? < 4Ne2N5|Zj|2j l_[ |z 2.
i#),20i<2p;+§ i>j
This establishes the upper bound in (2). Finally, (3) is a direct consequence of (2) using the observation that
(@)2 |Z,|21 Hz Lt |zi |2 (@)% 11_[—1 1z 2 <(@)2j—2
|2k | 2k 2R TT g 122 Nzl 22 1zl 7 Uz ’

k+1

which in turn implies that
i TN i TN
(|Zj|2/ Hi=j+1 |z,~|2)1/(2N) - |z | < (|2j|2/ Hi=j+1 |Zi|2)1/2

N - - N
|Zk|2k Hi:k+1 |z |2k | |Zk|2k Hi=k+1 |zi|?

Geometry & Topology, Volume 28 (2024)




2864 Mohammed Abouzaid and Denis Auroux

4.2 Symplectic reduction and monomial admissibility

Recall that the toric variety ¥ described in Section 2 is the symplectic reduction of C*Z by a subtorus
Ty € TPZ, ie Y = u=1(X)/Tyy, and the superpotential Wy € O(CF2z) descends to W € 0(Y). We
equip CPZ with the toric Kihler form constructed in the previous section, and the reduced space ¥ with
the induced toric Kéhler form.

Our goal in this section is to show that symplectic reduction preserves the compatibility of parallel
transport with fiberwise monomial admissibility, ie to establish an analogue of Lemma 4.11 for symplectic
parallel transport between the fibers of W:Y — C. Our starting point is the observation that “parallel
transport commutes with reduction”:

Lemma 4.13 The horizontal vector fields (39)* and (rd,)* described by (4-2), which span the symplectic
orthogonal to the fibers of Wy: C*Z — C, are Tps—equivariant and tangent to =" (1). Their images
under the projection from j1~'(1) to u~1(1)/Tpy =Y span the symplectic orthogonal to the fibers of
W:Y — C with respect to the reduced Kihler form, and in fact they are the horizontal lifts to Y of dg
and ro,. O

To take advantage of this property, we need a criterion to determine when a Tjs—invariant monomial
on CPZ involves only coordinates to which Lemma 4.11 applies.

Recall that the moment polytope Ay of Y, given by (2-6), arises as the intersection of an affine linear
subspace of RPZ (expressing the condition & = A) with the nonnegative orthant (the moment polytope
for CP2). Embedding Ay into RZ in this way, the coordinate hyperplanes correspond to the facets
of Ay, and the ambient coordinates (ie the components of the moment map for C %) are given by the
affine distances to the facets of Ay. Thus, in terms of the description (2-6), the point (§,7) € Ay CR" @R
corresponds to a T” 1 —orbit in ¥ whose preimage in =1 (1) C C®Z is the T PZ—orbit whose moment
map coordinates ((y)aep, are given by

(4-8) o =n—{a, &Y +v(a) forall o € Pg.

Given a vector v = (v, v°) € Z" @ Z, the toric monomial z? defines a regular function on Y if and only if
it pairs nonnegatively with the inward normal vector to each facet of Ay, ie

(4-9) v* = (—a,1)-v=0"—a-9>0 forall @ € Py.

The monomial z? vanishes to order v along the toric divisor of Y corresponding to @ € Pz. Moreover,
the monomial [[,cp, z2* € 0(CP2) is invariant under the Tps—action and descends to z¥ € O(Y) under
reduction. With a slight abuse of notation, we will therefore write
(4-10) =] 2"

acPy

The vectors v satisfying (4-9) are the integer points of a polyhedral convex cone, whose extremal rays are
in one-to-one correspondence with the facets of P.
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Definition 4.14 Given a facet of the polytope P with primitive outward normal vector ¥, contained in
the affine hyperplane (U, -) = v°, the corresponding extremal vector is v = (v, v°); we denote the set of
these vectors by V.

The elements of %" can be characterized equivalently as the primitive inward normal vectors to the
n—dimensional cones which lie on the boundary of the fan Xy, or as the primitive tangent vectors to the
unbounded edges of the moment polytope Ay.

For v € V" we denote by Ay the set of all @ € Pz which lie on the corresponding facet of P, ie those o

0

for which « - v = v", or equivalently, the quantity v¥ defined by (4-9) vanishes. These correspond exactly

to the facets of Ay to which v is parallel.

Given a small positive constant y > 0 and v = (v, v%) € ¥, we define

(4-11) Svy ={§ €R" [{a.§) —v(@) <) —y§] foralla € Pz \ 4y},

where || - || is an arbitrary norm (eg the Euclidean norm) on R”. In other terms, recalling that ¢(§) =
max{(c, §) —v(a) |« € Pz}, Sy,y is the set of points where the maximum is achieved by some o € Ay,
and no o ¢ Ay comes close to the maximum. We also define Cy,,, C Y to be the inverse image of Sy, xR

under the moment map.

Denote by A, the polyhedral subset of R” where o achieves the maximum in ¢ (which is also the
projection to R” of the corresponding facet of Ay). Then Sy, is a retract of |y 4, Aq, Obtained by
removing those points which are too close (within distance of the order of y||&]|) to some other A,,. Thus,
for sufficiently small y, the subsets Sy, for v € V" cover the complement of a compact subset of R”.

Example 4.15 Consider f(x1,x2) = 1 + x1 4+ x2 + t*Tx1x + t4”xf (as in Example 2.1) and
its tropicalization ¢(£1,&) = max{0,&1,&2,&1 + & — 1,261 — 2}, The convex hull P of Pz =
{(0,0),(1,0),(0,1),(1,1),(2,0)} is a trapezoid with primitive outward normal vectors v; = (0, —1),
Uy =(1,1),v3=(0, 1) and v4 = (—1,0), and we find that V' consists of the four elements v; = (0, —1,0),
vy =(1,1,2),v3 =(0,1,1) and vq4 = (-1, 0, 0), which are indeed the tangent vectors to the unbounded
edges of the moment polytope Ay = {(£1,&2,1) | n > ¢(&1, &2)}, shown “from above” in Figure 4.

For v; = (0,—1,0), the elements of Pz which lie on the facet of P with outward normal vector
v1 = (0,—1) are @3 = (0,0), a2 = (1,0) and s = (2, 0), whereas Pz \ Ay, consists of 3 = (0, 1) and
as=(1,1),s0

Sory ={E=(61.52) €R? | &2 <@(§) —ylI§] and &1 + & — 1 <€) —ylIE]}

is the set of points where the two terms &, and &1 + &, — 1 are sufficiently far from achieving the maximum
in ¢(&1,§2); see Figure 4. This is a retract of the region Ay, U Ay, U Ay where the maximum is achieved
by one of the three other terms. Similarly for the other regions Sy, ;. O
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Figure 4: The extremal vectors v € V" and the regions S, ,, for f(x1,x2) =1+ x; +x2 +
127 x1 x5 + 147 x2; cf Example 4.15.

For ¢ € C*, the fiber W™1(c) of W:Y — C is T"—invariant, and its image under the moment map is
the graph {(§,7) e R" ® R | n = f.(§)} of a piecewise smooth function f,:R"” — R (with f.(§) > ¢(§)
everywhere). We now show that, outside of a bounded subset of W ~1(c) (whose size depends on c), the
monomial z? is locally preserved by parallel transport at all points of Cy,y .

Proposition 4.16 Let z € W~1(c)N Cy,y CY for some v €V and y > 0, with moment map coordinates
(&.n) for £ € Sy,. Assume that |c|? > (ee®)N/ V=D and ||&]| > R = R(c, y) := 8N2eNWV+3)3y, 112,
where N = | Pz|, and ¢ and § are the same constants as in Section 4.1. Then the monomial z° € O(Y') is
locally invariant under parallel transport.

Example 4.17 Continuing with Example 4.15, consider the case of v; = (0, —1,0), for which the
quantities v* defined by (4-9) are 0,0, 1, 1,0 for a1, ..., as, respectively. Thus, z’! € O(Y) arises by
toric reduction from the monomial z3z4 € O(C¥2), which is indeed invariant under the action of the
two-dimensional torus Tps described in Example 2.2. By Lemma 4.11, the monomial z3z4 is invariant
under parallel transport for Wy: CFZ — C wherever z3 and z4 lie above a §—gap. The main ingredient of
the proof is therefore to prove that such a gap exists whenever § € Sy, and ||§|| is sufficiently large; the
key point being that, by (4-8), when & € Sy, ,, the moment map coordinates (tq; and jLq, are bounded
below by min(u,) + 7 [l

Proof Denote by (z4)acp, the coordinates of a lift of z € Y to wY(A) c CPz, and let ag € Pz
be such that § € Ay,. Then by (4-8) the smallest moment map coordinate is min(iy) = Ha, =
n—@(&) = fe(§) —9(§). On the other hand, Lemma 4.12(2) gives a bound on the ratio between 4, and
|Wo(2)|? = |c|?>. We conclude that

(4-12) 20¢? < phay = fe(€) — () < 4NeNc|?,
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On the other hand, since & € Sy, and ||£]| > R, for all @ ¢ A, we have
pa = fe(§) = (@.) +v(@) = pag +7[E]l = yR = 8NZNNFI)e2 = aNeNNEDT

Hence, by Lemma 4.12(3),

1/2N
zal _ (ON)-1/2N =5 (ﬂ) S ((N-18/2.

Y Hag
By Lemma 4.10, we conclude that z,, lies above a §—gap for all « ¢ A,. Hence, by Lemma 4.11 the
coordinates z, for o ¢ A, are locally invariant under parallel transport in CPZ . Using the fact that the
exponents v* in (4-10) vanish for all @ € A, (by definition of A,) and the compatibility of parallel
transport with reduction (Lemma 4.13), we conclude that z? is locally preserved under parallel transport
inY. O

Finally, we show that, at every point where | &|| is sufficiently large, Proposition 4.16 applies to the largest
(in a suitably renormalized sense) among the monomials z¥ where v € V. More precisely, for v € V" and
v¥ as in (4-9), we set

(4-13) dv)= Y v*

aePy

Proposition 4.18 There exist positive constants Yo and Ko, depending only on the polytope Ay
(and on N, ¢ and §) with the following property. Let z € W™l(c) C Y be a point with moment
map coordinates (£, 1), where |¢|? > (£¢5)N/NV=1 and ||&|| = Ko|c|?. Let vo € ¥ be such that

|20 |1/d®0) — max{|z?|V/4®) |y V).
Then § € Sy, y, and z € Cy,y,-
Proof Let (zq)qep, bealiftof z €Y to u=1 (1) C CPz . Recall from (4-12) that the smallest moment
map coordinate /Ly, corresponds to g € Pz such that§ € Ay, and jiq, is bounded by 4N e2N8|¢|2. On the
other hand, let o € Pz be such that |zy, | = max{|zy| | @ € Pz}, or equivalently, iy, = max{iq | @ € Pz}.

By (4-8), ta; — Moy = (@0 — o1, &) + v(o1) — v(ap), so there exist positive constants ¢y, ¢ depending
only on Ay such that

(4-14) May < Moo + c1||Ell +c2.

On the other hand, since P is assumed to have nonempty interior, the quantity max{(«—a’, ) |«, @’ € Pz}
is bounded below by a positive constant times ||£]|, and there are positive constants c7, ¢, depending only
on Ay such that

(4-15) Moy = Pag +C1lIE =5
Assume that £ € S, , for some v € ¥ and y > 0. Then for all « ¢ A, we have
(4-16) pa = fe(§) — (o, §) +v(@) = pay + 7 [I§]-
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Thus, assuming some lower bound on ||£|| (eg [|£]| > 1), the upper bound on jiq, implies the existence
of a constant c3 > 0 (still depending only on Ay) such that, for all @ ¢ Ay, e > c3YMa,. Using
Lemma 4.12(3), this in turn yields the inequality

4-17) |z | > (2N)_1/26_N5c;/2)/1/2|ZO,1 | forall o ¢ Ay.
Taking a weighted geometric mean (and recalling that v* = 0 for « € Ay), we get
(4-18) 221140 = @N) T 2e N 2y 1 g, ).
Conversely, if § ¢ Sy, then (o, §) —v(a) > @(§) — y||€]| for some o ¢ Ay, hence

fa = fe(§) — (. §) +v(@) < ptag + 7 €]

2N§

When ||| is sufficiently large, namely ||&|| > max(2c5/c}, 4Ne*N°y~1|c|?), we have gy <2y €| and

Koy > %ci ||€]|. Therefore, 1 < cYita,, Where ¢y = 4(c})~!. Using Lemma 4.12(3), this in turn yields
the inequality

(4-19) 2| < @N)VEN B (12N 12N 7 .

Since a ¢ Ay, by definition the exponent v* of zy in the expression for z? is at least 1. Since the other
coordinates which appear in the expression for z¥ are all bounded by |z, |, we obtain

(4_20) |ZU|1/d(1’) E eS/d(v) (2N ng)l/(ZNd(v))|Zal |

With the necessary estimates in hand, we now proceed with the proof. First, there exists y; > 0 depending
only on Ay such that the subsets Sy ;,, cover all but a bounded subset of R”, ie for some constant K1 > 0
(depending only on Ay), every point with ||£]| > K belongs to some Sy, . Thus, whenever ||£] > K,
the estimate (4-18) implies that

(4-21) max{|z°|V/¢4® |y eV} > (2N)_1/2e_NSc;/zyll/2 max{|zy| | @ € Pz}.
Let @ = {d(v) | v € ¥} — a finite set of positive integers. We now choose yq so that
(4-22) e84 (2Nchyo)VOND < aN) V2 N8 12,12 forall d € B,
and choose K so that
Ko > 4Ne*Neyil and  Ko(ee®)M V=D > max(K;,2¢5/c}).
Assume |c|? > ()N V=D and ||€|| = Ko|c|?, and let vy be such that
|290|1/4(®0) = max{|?|V/4®) | y e V).
If £ ¢ Sy,,y,, then (4-20) and (4-22) give
|Zv0|1/d(vo) < 85/d(v0)(2N ngO)l/(ZNd(vo)) max{|z¢| | o € Pz}
< (2N)_1/2e_N‘gc;/z)/ll/2 max{|zq| | ¢ € Pz},
which contradicts (4-21). Thus § € Sy,,y,, or equivalently, z € Cy - ad
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Propositions 4.16 and 4.18 imply the following.

Corollary 4.19 The extremal monomials z¥ for v € V' introduced in Definition 4. 14, the weights d (v)
defined in (4-13), the open subsets Cy = Cy,y,,, and the closed subset

Q= {zeY ||§ll = Komax(1,|W[*)},

where K = max(8N 2oN(N+3)8 Yo 1 Ky), define a fiberwise monomial subdivision on the toric Landau—
Ginzburg model (Y, W, w).

Moreover, with respect to this subdivision, fiberwise monomial admissibility (with fixed phase angles) is
preserved by parallel transport between the fibers of W over any path y: [0, 1] — C such that |y(0)|*> >
(ee®)N/N=1) and |y(¢)| is nondecreasing.

Proof The fact that the collection of extremal monomials (z?)yey defines a proper map is a classical
fact of toric geometry, but can also be seen directly from the lower bound (4-21). Properties (2) and (3)
of Definition 4.1 are clear from the construction, and property (4) follows from Proposition 4.18.

When |W|? > (¢e3)N/(N=1)_Proposition 4.16 implies that z? is invariant under parallel transport at
every point of C, which lies outside of 2. Thus, the property that arg(z?) = ¢, is preserved under
parallel transport. The reason we require |y(¢)| to be nondecreasing with respect to ¢ is to ensure that
Cy \ (Cy N Q) is preserved under parallel transport (using the fact that & is preserved under parallel
transport). O

4.3 The wrapping Hamiltonian

We now define a Hamiltonian H : Y — R whose flow preserves both the fibers of W and monomial admis-
sibility within them. This Hamiltonian is constructed by reduction from the case of C. The construction
involves a smooth approximation of the minimum function, conceptually similar to Definition 4.5 but
with N variables.

Definition 4.20 Given a constant §’ > 0, denote by m: RY — R a smooth concave function with the

following properties:

(1) Letting I = {i |u; <min(uy,...,uy)~+6}, locally m(uy, ..., uy) depends only on (u;);cs, and
it I ={io}, thenm(uy,...,uy) =u;, =min(uy,..., un).

2) m(uy+a,...,uy+a)=m(uy,...,uy)+aforallaeR.

(3) m is symmetric, ie m(Ug(1), ..., Ug)) =mU1,...,uy) forallo € Sy.

These conditions imply that 7 is monotonically increasing in all variables, and
min(uy,...,uy)—38 <m(uy,...,uny) <min(uy,...,un).
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For instance, for ' > N§ we can take

1
mUuy,...,uy) = N M(—ua(l), M( s M(~ug(N—1), —Us(N)) ))
‘oeGN
Denoting pt1, ..., 4n the moment map coordinates for the chosen toric Kihler form on CcN , the Hamil-
tonian we consider is
N
(4-23) Ho=Y wi—Nm(ui.....un).

i=1
Setting N = | Pz| and viewing Y as a symplectic reduction of C ©Z recall that the moment map coordinates
M1, ..., un descend to functions (it )eep, On the moment polytope Ay, given by (4-8). We then define
the Hamiltonian H on Y via reduction:

Definition 4.21 Given a point of ¥ with moment map coordinates (&, ) € Ay, set uo = n—{a, &) +v ()
for all @ € Pz as before. Then we define H:Y — R by

(4-24) H= Y ja—|Pzlm{patacr,)-
aePy
Proposition 4.22 H only depends on the moment map coordinates (£1, . ..,&,), and as a function of

these variables it is proper, convex, and grows linearly at infinity. In particular, the flow of H preserves
the fibers of W, and the restriction of H to every fiber of W is proper.

Proof Clearly H is a function of the moment map coordinates (£; ..., &,,n). Since duy/dn = 1 for
all o € Pz, property (2) of Definition 4.20 implies that dH /dn = 0, ie H only depends on (&1, ..., &,).
This in turns implies that Xz is everywhere in the linear span of the generators of the T"”—action and
preserves the fibers of W.

Since the coordinates (i are affine linear functions of (§1,. .., &y, 1), the convexity of H as a function of
these variables (and hence of (£1, ..., &,)) follows from the concavity of m. Meanwhile, the properness
of H follows from our assumption that P has nonempty interior, which yields the lower bound (4-15) on
max{iLy } —min{uy }; the linear growth is manifest. m|

Proposition 4.23 The flow of H preserves monomial admissibility with respect to the fiberwise mono-
mial subdivision of Corollary 4.19. More precisely, if { C W™!(c) is monomially admissible with phase
angles {¢y | v € V'}, then its image under the time t flow is monomially admissible at infinity with phase
angles {@y +1 d(v) | v €V}, where d(v) € Z 4 is given by (4-13).

Proof On C¥ the Hamiltonian Hy defined by (4-23) is a function of the moment map coordinates
U1,...,pun. Letting I = {i | u; < min(iy, ..., un) + 8’} as in Definition 4.20(1), we observe that
dHy/op; = 1 for all i ¢ I. Thus, the flow of Hy rotates the coordinates z; uniformly at unit speed
for all i ¢ I. Moreover, this flow is Tps—equivariant, preserves u ' (1) C C¥, and descends to Y =
w~1(1)/ T as the Hamiltonian flow generated by H .
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Using the same notations as in the previous section, fix v € ¥, and consider a point of Cy = Cy,;,, C Y with
moment map coordinates (&, n) such that ||£]| >y 1§’. (Choosing &’ sufficiently small in Definition 4.20,
we can ensure that every point outside of 2 satisfies this inequality.) Write [ty, = min{uq}. By (4-16),
for a ¢ Ay we have o > flay + Voll§ll = pay + 8. Thus, m({jte }aecp,) only depends on (Ua)acd,
and the flow generated by H rotates all the other coordinates (z4, o ¢ Ay) at unit speed. Recalling that
2 =1, Zga with v* = 0 whenever @ € A,, we conclude that the flow of X rotates z? uniformly at a

rate of ), v* = d(v) at every point of Cy which lies outside of €2. The result follows. m|

Remark 4.24 Essentially any Hamiltonian satisfying the conditions of Propositions 4.22 and 4.23
(possibly with different values of the phase shifts d(v), as long as these remain positive) would be equally
suitable for our purposes; see eg Hanlon’s work [24] for another construction. The Hamiltonian of
Definition 4.21 is particularly natural from the perspective of symplectic reduction from C¥ to Y, but the
category W (Y, W) is, up to equivalence, independent of the choice, as will be clear from the arguments
in Section 5.

5 Computation of fiberwise wrapped Floer cohomology

5.1 Geometric setup

We now fix the geometric data needed for our construction of the admissible Lagrangian Lo € W(Y, W),
besides the Kihler forms and wrapping Hamiltonians defined in Section 4, and check that the various
conditions imposed in Section 3 are satisfied.

Let (Y, W = —z(0-0.1)) pe the Landau—Ginzburg model constructed in Section 2, equipped with the
toric Kihler form  which is the result of symplectic reduction by Ty of the Kihler form on C Pz
introduced in Definition 4.6. Let ¥ C Z" ! be the set of extremal vectors of Definition 4.14, d(v) the
positive integers given by (4-13), and the subsets C, and 2 of Y as in Corollary 4.19. We consider the
height function

(5-1) h=max{hy |veV}:Y —[0,00), where hy = |Z”|1/d(”)’
and the wrapping Hamiltonian H introduced in Definition 4.21.

We fix a properly embedded U-shaped arc yo: R — C such that yo(0) = —1; |yo(s)| passes through a
minimum at s = 0 and increases monotonically as a function of |s|; arg yo(s) increases monotonically
as a function of s; arg yo(s) = p for s < 0 and arg yo(s) = 2w — g for s > 0, for some positive angle
0 < 6y < /2. (Thus, yg intersects the negative real axis transversely at —1, remains at distance at least 1
from the origin, and outside of a compact subset it coincides with the rays eti0R )

Given a monomially admissible Lagrangian submanifold £ C W~1(=1) = (C*)" (in the sense of
Definition 4.2), with all phase angles equal to zero, we denote by L = U{ the fibered Lagrangian
submanifold of ¥ obtained from £ by parallel transport in the fibers of W over the arc yp. It follows from
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Corollary 4.19 that L is fiberwise monomially admissible, with all phase angles equal to zero. We will in
particular consider the case where £ = £ is the real positive locus of W ~1(—1), ie the set of points where
all toric monomials are real positive and z(0:-20.1) — 1 "and denote its parallel transport by Lo = U¥y.

As in Section 3.3, we choose an autonomous flow p’ in the complex plane which fixes the negative
real axis pointwise as well as a small neighborhood of the origin, specifically the disc A" of radius
(se‘g )N /@N=2) (jp particular p’ fixes the points —1 and 0), maps radial lines to radial lines outside of
a compact subset, and moves all radial lines other than the negative real axis in the counterclockwise
direction. We will furthermore assume that the flow rotates the tangent vector to yo at —1 (the imaginary
axis) counterclockwise, so that

(1) fort #0, y; = p'(yo) intersects yq transversely at —1,

(2) yoNy: = {—1} for |t] € (0, 19), where 1y is the value of ¢ for which p’ pushes the ray e %R
past ¢!%R |, and

(3) for |t| > 9, yo and y; intersect transversely in exactly two points (—1 and one other intersection).

(These requirements on yo N y; are natural and easy to achieve given the other requirements on p’; see
Figure 5.)

Since the arcs y; are strictly radial outside of a bounded subset, their mutual intersections, and the bounded
polygonal regions they delimit in the complex plane are all contained within a bounded subset, say the disc
of radius Rg. For R € R>¢, let r(R) be the maximum of / on the compact subset Q N{|W | <max(R, Ro)}
of Y. Then r is a nondecreasing function, constant over [0, Ro], and we take the closed subset Y C Y
appearing in Section 3.1 to be the set of points of ¥ where /& < r(|W|). This ensures that Y™™ contains 2.

Finally, we take the almost-complex structure J to be the standard complex structure of ¥ outside of the
bounded subset

(5-2) YN {W| < e}

for some € < 1 (smaller than the radius of A’), and a generic small perturbation of the standard complex
structure inside that subset. This ensures that simple J—holomorphic spheres which intersect this subset
are regular, and evaluation maps for rigid somewhere injective discs and spheres are mutually transverse,
as explained in Remark 3.18.

Proposition 5.1 The above geometric data on Y satisty the requirements listed in Section 3.1, and the
Lagrangian submanifolds Lo(t) = ¢' p’(L¢) are admissible in the sense of Definition 3.5.

Proof We start with the geometric conditions in Section 3.1. First, the properness of 4 = max{|z?|1/4®)}
follows from that of the map (z?)yey: Y — cl (item (1) in Definition 4.1). Next, we have already
seen in Proposition 4.22 that H is proper on every fiber of W, and its Hamiltonian flow preserves the
fibers of W, ie d W(Xpg) = 0. Thus, H Poisson commutes with the real and imaginary parts of W, whose
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(t’>0)

Figure 5: The Lagrangians Lg and L (1) = ¢’ p’ (Lg) for ¢t < 0.

Hamiltonian vector fields span the horizontal distribution; it follows that d H vanishes on horizontal
vector fields. Moreover, since H is a function of the moment map coordinates only, Xz is in the span of
the vector fields generating the toric action, hence its flow preserves the norms of all toric monomials,
and so dh(Xg) =0.

Next we consider the behavior of & along the horizontal distribution — or more precisely, by Remark 3.12,
the behavior of the term(s) %, that achieve the maximum in 7 = max{h,}. By Proposition 4.16, for
each v € ¥, and at every point of C, which lies outside of Y™ U W~1(A’), the monomial z? is invariant
under parallel transport. Therefore, dhy, = (1/d(v))hy d log|z®| and d€hy = (1/d(v))hy d arg(z?) both
vanish on horizontal vectors, and their Lie derivatives along horizontal vector fields also vanish. It then
follows from Proposition 4.18 that, everywhere outside of Y U W1 (A’), these properties hold for
any h, that achieves the maximum in 7 = max{h,}.

Finally, Proposition 4.23 implies that the flow of X rotates z¥ uniformly at a rate of d(v) at every point
of C, which lies outside of Y™™, Therefore,

1
dhy(Xg) =0, d°hy(Xp) = th darg(z’)(Xg) =hy >0, £x,,(dhy) =0.

As before, these properties hold everywhere in Y \ Y for any %, that achieves the maximum in /. This
completes the verification of the requirements listed in Section 3.1.

Next we prove the admissibility of Lg in the sense of Definition 3.5. The construction of the U-shaped arc
yo ensures that its two halves connecting —1 to infinity are admissible arcs in the sense of Definition 3.4.
The monomial admissibility of £9 = (R4+)" C W~!(—1) and the compatibility of parallel transport with
fiberwise monomial admissibility (Corollary 4.19) imply that Lg is fiberwise monomially admissible;
therefore, arg(z?) vanishes identically on the portion of Lo which lies in Cy \ (C, N Y'™"), which in
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turn implies the vanishing of dhy, = (1/d(v))hyd arg(z?). Tt follows that the restriction of d€h to Ly
vanishes outside of Y™ (wherever /4 is differentiable, and otherwise in the sense of Remark 3.12).

Since Lo (1) = ¢* p* (L) is obtained from the admissible Lagrangian L by the admissible lifted isotopy p’
and the flow of the wrapping Hamiltonian H, it is also admissible by Lemma 3.7. (Alternatively,
Lo(t) = @' (Lo) € W~ L(=1) is monomially admissible by Proposition 4.23, and the two portions of the
arc ¥y = p'(yo) connecting —1 to infinity are admissible in the sense of Definition 3.4; since Lo (t)
is obtained by parallel transport of £¢(¢) over y;, its admissibility follows from the same argument as
above.) O

5.2 The Floer complex CF*(L¢(t"), L¢o(?))

Recall that Lg(?) is fibered over y;, and fiberwise monomially admissible with phase angles ¢, = d(v)?
(by Proposition 4.23). Thus, the asymptotic directions of the noncompact ends of L¢(¢) and Lo(¢’) are
disjoint whenever t' —t € U = R\ ({10} U (27/dy)Z), where we denote by d the least common
multiple of the positive integers dy, v € V. Since the arcs y; are strictly radial outside of the disc of
radius R, and monomial admissibility precludes the existence of intersections outside of Y when the
phase angles are distinct, for ¢’ —¢ € U all the intersections of Lo(7) and Lo(¢") lie within the compact
subset YI" N {|W| < Ry}.

The intersections of Lg(¢) and Lo(¢’) are concentrated in the fibers of W above the intersection points
of y; and y;/; we will now see that Lagrangian Floer theory for these submanifolds can be expressed in
terms of the fiberwise Floer complexes in those fibers and counts of holomorphic sections of W:Y — C
over regions of the complex plane delimited by the arcs y; and y;’.

Because our construction of the wrapping Hamiltonian does not guarantee that Lo(¢') and Lg(¢) intersect
transversely, we will allow ourselves to modify our Lagrangians by small Hamiltonian isotopies supported
inside Y™ (and preserving the fibers of W, so that admissibility is not affected) in order to achieve
transversality of intersections; we will see in the next sections that our main calculation reduces to
a cohomology-level argument, so we do not specify the exact choice of perturbation involved in the
definition of the Floer complex.

For t' —t € Ry N U, we denote by Cy(¢',¢) the portion of the Floer complex CF*(Lo(t"), Lo(2))
generated by intersection points which lie in the fiber W ~1(—1), ie the Floer complex of the monomially
admissible Lagrangian submanifolds £o(z") = ¢* (£o) and £o(1) = ¢ (Lo) inside W1 (—=1) ~ (C*)"
(possibly after a small compactly supported perturbation to achieve transversality). We similarly denote
by C1 (¢, t) the portion of the Floer complex generated by intersection points which lie in the fiber above
the other intersection point ¢,/ ; of y; and y; for t' —t > fo; this amounts to the Floer complex of the
monomially admissible Lagrangian submanifolds £_(¢") and £ (t) of W~!(c; ;) obtained by parallel
transport of £o(¢’) and £o(¢) along the portions of y;/ and y; which run from —1 to ¢, (clockwise on yy,
and counterclockwise on y;/). For t' —t < tg we set C1(¢',1) = 0.
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The choice of a grading (for instance the usual one) on £y = (R4+)"” C (C*)” and on the arc yg in the
complex plane induces a grading on the admissible Lagrangian L, and also, by following the various iso-
topies, on the monomially admissible Lagrangians £¢(¢) and their images under parallel transport, as well
as Lo(1). We view Co(t',t) and C1(¢’, t) as the Floer complexes of the monomially admissible Lagrangian
submanifolds £o(¢"), £o(¢) and £—(t"), L4 (t) of W~1(—1) and W1 (¢ ), respectively, with the grading
induced by that of £o; in the case of Cy(¢’, ) this coincides with the grading of CF*(Lo(¢’), Lo(t)), but
in the case of C1(¢’, t) the grading in CF*(Lg(t'), Lo(¢)) is one less than the fiberwise degree, due to
the phase angles of the arcs y;, y; at ¢ differing by an amount in the interval (7, 277) for t’ —t > to;
see Figure 5. Thus,

(5-3)  CF*(Lo(1"), Lo(r)) = Co(t',1) & C1(t', 1)[1]
_ (CF*(o(t), Lo(1)) ® CF*(E—(t"), L4-(t)[1] ift'—1 > 1o,
| CF*(Lo(t'), Lo (1)) ifO <t —t <t

Since the almost-complex structure J coincides with the standard one outside of the subset Y ™" N {|W| < €}
introduced in (5-2), J-holomorphic curves satisfy the open mapping principle with respect to the projection
W:Y — C and intersect positively with the fibers of W outside of the disc of radius €. (However, this
fails near the origin.) This implies immediately that J—holomorphic discs with boundary on a union of
fibered Lagrangian submanifolds (disjoint from the region where |W| < €) are either contained in the
fibers of W, or behave (away from the zero fiber) like sections or multisections of W :Y — C over regions
of the complex plane delimited by the arcs over which the Lagrangians fiber. By abuse of terminology,
we call such J-holomorphic discs “sections” when their intersection number with the fibers is one, even
though they need not be genuine sections over the disc of radius €.

The fibers of W outside of the origin are isomorphic to (C*)”, and the monomially admissible Lagrangians
£o(¢) and their images under parallel transport do not bound any holomorphic discs inside the fibers
of W (eg because they are contractible and hence exact). It follows that Lo (¢) does not bound any
J-holomorphic discs.

Moreover, our choice of J ensures that we can also avoid sphere bubbling by arguing as in Remark 3.18.
Since the intersections of Lo (t") and L¢(¢) lie within the region of Y where |W| < Rg and & < r(Ry),
the maximum principles for W and /& (Propositions 3.10 and 3.11) imply that the J—holomorphic discs
contributing to the Floer differential (and later on, to continuation maps or product operations) also remain
within Y™ N {|W| < Ry}. Since the fibers of W away from the origin are aspherical, the only possible
sphere bubbles are configurations contained in the region where |W | < ¢, at least one component of which
must pass within Y N {|W| < €}. The choice of a generic perturbation of the standard complex structure
within this subset ensures that the underlying simple spheres are disjoint from all J—holomorphic discs in
the 0— or 1-dimensional moduli spaces we consider, and hence that no sphere bubbles can form.

We can now state and prove the main result of this section, which describes the structure of the Floer
differential on CF*(Lo(t"), Lo(t)).
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Proposition 5.2 For 0 <t' —1t < tg, the Floer complex CF*(Lq(t"), Lo(t)) in Y is isomorphic to the
Floer complex CF*(Lo(t"), £o(t)) in W™1(=1) =~ (C*)".

Fort' —t > tg, CF*(Lo(t"), Lo(t)) is isomorphic to the mapping cone

(54) CF* (€o(t'). Lo(t)) & CF*(L—(t"), L+ (O)1]. 0= (‘2)0 N ) ,
1
where the diagonal entries are the Floer differentials on the fiberwise Floer complexes, and the off-diagonal
term
(5-5) $ = Spprat CFT (1), £4(1)) = CF* (Lo(t"). £o (1))

is a chain map defined by a (weighted) count of J—holomorphic sections of W :Y — C over the bounded
region of the complex plane delimited by y; and Yy (see Figure 5).

Proof The open mapping principle implies that the J—holomorphic discs that contribute to the Floer
differential on CF*(Lg(t’), Lo(t)) are either contained within the fibers of W, or (for ’ —¢ > t¢) sections
of W over the bounded region of the complex plane delimited by y; and y;/. The contributions of discs
contained within W~!(—1) and W ~!(c,;) correspond exactly to the Floer differentials on the fiberwise
Floer complexes Co(t',t) = CF*(Lo(t'), Lo(¢)) and Cy(¢',1) = CF*(£—(t), £+(¢)), while the sections
contribute the off-diagonal term s. The fact that s is a chain map follows directly from the vanishing of
the square of the Floer differential. |

It follows that the Floer cohomology group HF*(Lq(t"), Lo(¢)) is isomorphic to HF*(£y(t'), £o(¢)) for
0 <t'—1t <y, while for t' —t > t¢ it is determined by the map induced by s on cohomology, which we
again denote by

(5-6) s =g 0t HF (- ("), €4(2)) = HF*(Lo(t"), Lo(1)).

Even though the Floer complexes and the chain map (5-5) depend on the choices made in the construction,
the maps constructed from different choices are related by homotopies, so that the cohomology-level map
(5-6) is independent of choices.

Indeed, deformations of Floer data among the set of choices which satisfy our technical requirements
(eg compactly supported fiberwise Hamiltonian isotopies, modifications of J near W~1(0), or even
admissible isotopies of the arcs y; and y, which preserve transversality at all times) induce continuation
quasiisomorphisms on the Floer complexes (5-4). In every instance, by considering the projection
W:Y — C one shows that continuation trajectories, just like contributions to the Floer differential, can
map generators in W ! (¢y+) to generators in W~1(—1) but not vice-versa. Thus, our continuation ho-
momorphisms are upper-triangular with respect to the decomposition (5-4) and induce quasiisomorphisms
on the summands Co = CF*(£o(t),£o(t)) and C; = CF*(£—(t"),£+(t)). Denoting by Cy and C; the
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two summands in (5-4) with respect to one set of choices, and C(; and C 1’ the two summands for the other

set of choices, we obtain a diagram
C 1 ;) C()

(5-7) flj X Jfo

N
¢l —— G

where fo, f1 and & are the components of the continuation homomorphism, and fo: (Co, dg) — (Cg. 9y)
and f1:(Cy,01) — (Cj, d}) are quasiisomorphisms.

The fact that the continuation homomorphism is a chain map implies that
foos+hod; =50 fq +860h.

Therefore foos and s’ o f1 are homotopic, and so the cohomology level maps induced by s and s’
coincide under the isomorphisms H*(Cy,d1) >~ H*(Cy,9}) and H*(Cy, d9) > H*(Cy, d;)) induced
by f1 and fp. In this sense, the map (5-6) is independent of the choices made in the construction and
invariant under admissible isotopies.

To put this in proper context, the map s is part of the “Seidel TQFT” (cf [35]) associated to the symplectic
fibration W:Y — C. As a general principle, counts of J—holomorphic sections over given domains in
the complex plane with boundary on given fibered Lagrangian submanifolds give rise to maps between
the respective fiberwise Floer complexes which are independent of choices up to homotopy and satisfy
algebraic relations that can be understood in terms of gluing axioms (we shall not elaborate on the latter
point here; see [35] for details).

5.3 Floer cohomology for monomially admissible Lagrangians in (C*)”

To proceed further, we need to discuss Floer theory for monomially admissible Lagrangian submanifolds
in the fibers of W, which we identify with (C*)" by considering the toric monomials zq,...,z, on
the open stratum of Y whose weights correspond to first n basis vectors. (So, for each v = (v, v°) =
(v1,...,vp, vo) € V', the monomial z? restricts to W_l(c) as (—c)”ozf1 ...zp".) The material in this
section closely parallels Hanlon’s work [24, Section 3.4].

The moment map for the standard T”—action on W~1(c) ~ (C*)" is given by the first n coordinates
(£1,...,&,) of the moment map of Y, and for each v € ¥ the intersection of C, with W~1(c) is the
inverse image under the moment map of the subset Sy = Sy,, C R” defined by (4-11) (for an appropriate
value of the constant y > 0, matching that used for Cy at the beginning of Section 5.1).

We consider Lagrangian submanifolds of (C*)” which are sections over the moment map projection;
any such Lagrangian is the graph of the differential of a function K = K(£): R” — R, ie the arguments
arg(z;) = 0; are determined as functions of the moment map variables (§1,...,§,) by 6, = 0K/0§;.
(For a given Lagrangian, K is unique up to an affine function whose gradient is 27 times an integer
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vector.) The monomial admissibility condition can then be expressed in terms of the gradient of K: the
graph £ = I'yx € W l(c) ~ (C*)"* is monomially admissible with phase angles {¢,} if and only if,
outside of a compact subset,

(5-8) (VK(£), ) = gy —v° arg(—c) mod 27Z forall £ € S, and all v = (7,0°) € V.

Definition 5.3 The slope of the monomially admissible Lagrangian section £ = I'yg is the tuple
o (K) = (0y(K))yer € RIVI, where 0, (K) = (VK (). ),

When K is a convex function, we associate to its slope 0 = o (K) the polytope

(5-9) P(o) ={u eR" | (u,?) <oy forall v=(3,v°) eV}.

Recall that the vectors v appearing in (5-9) are the primitive normal vectors to the facets of the Newton
polytope P associated to the Laurent polynomial f; see Definition 4.14. Given any vertex o € Pz
of P, the subsets S, associated to the various facets of P which meet at ¢ have a nonempty and
unbounded intersection U, (comprising most of the region of R” where o achieves the maximum in the
tropicalization of f; see Figure 4). Over Uy, the value of VK is fully constrained by the slope 0 = o (K),
since (VK, v) = o, whenever v is the normal vector to a facet of P containing «. This corresponds to
the equality case in the inequalities (5-9) for a maximal collection of linearly independent v, ie a vertex
of the polytope P (o). From this and standard facts about convex functions we deduce:

Lemma 5.4 If K is convex with slope o, then P (o) is a convex polytope with the same normal vectors
and normal fan as P, and the range of values taken by the gradient VK is exactly P (o).

Example 5.5 The monomially admissible section £o(t) = ¢*(£g) C W~1(—1) is the graph of d(tH),
so by Proposition 4.23 and (5-8) its slope is

(5-10) oo(t) :=0(tH) = (0y(1H))vey = (t d(v))vev.

Moreover, for t' — ¢ > tg, parallel transport of £o(t) and £o(t') from W~1(—1) to W~1(c,,) along
the relevant portions of y; and y; preserves the phase angles ¢, =t d(v), so by (5-8) the monomially
admissible Lagrangian sections £_(¢") and £ (t) in W~1(c, ;) have slopes

(5-11) o-(t") = (t'd(v) —v° (arg(cs 1) + 7)),
(5-12) o1 (1) = (td(v) —v° (arg(cr 1) — 7))vev,

where we take arg(c;’ ;) € (—m, ); the values of arg(—c, ) in these two formulas differ by 27 because
we consider parallel transport from —1 to ¢,/ ; clockwise around the origin for £ (#) and counterclockwise
for £_(1').
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Let £ and £’ be two monomially admissible Lagrangian sections, expressed as the graphs of dK and dK'.
If the slopes of K and K’ differ by amounts that aren’t multiples of 27, then the intersections of £ and £’
remain within a compact subset of (C*)", and their Floer cohomology is well-defined. We claim that
HF*({,£) only depends on the slopes. (As we shall see in the argument below, this is an instance of the
invariance of Floer cohomology under Hamiltonian isotopies which preserve admissibility and disjointness
at infinity, and follows from the existence of well-defined continuation maps; see [16, Lemma 3.21] for
the analogous result in the setting of Liouville sectors.)

Proposition 5.6 Let{ = T'yx and {' = 'y be two monomially admissible Lagrangian sections, with
slopes 0(K) = o and 0(K') = o', and assume that 0y, — 0, ¢ 2nZ Vv € V. Then HF*({', {) only
depends on the slopes o and o’ of K and K’'. Moreover, if K’ — K is convex, then the Floer cohomology
is concentrated in degree zero, and

(5-13) HF°(l', 0) ~ P K- 9,.
pEP(0’'—0)NRrZ)"

Proof First we prove invariance. Given any two Hamiltonians Ky, K1 with 0(Kp) = 0(K;) = o,
the convex combinations Ky = (1 —s)Ko + sK also have slope o, and the graphs {; = [y, are
monomially admissible Lagrangian sections. Similarly, given K, K| with o(K() = 0(K}) = o', we set
K; = (1—-s)Ky+sK| and {5 = Tyg;. We then define continuation maps

CD()liCF*(ﬁ/ ,60) — CF*(Z/ ,61) and ®jp: CF*(E/ ,El) — CF*(E/ ,60)

by counting index zero J-holomorphic strips u: R x [0, 1] — (C*)" with moving boundary conditions
given by £} (for s a suitable function of the real coordinate) along R x 0 and €4 along R x 1.

Since the slopes of K1 — Ko and K| — K, are all zero, the Hamiltonian vector fields X = Xg, _x,
and X' = X K|—K), (which generate the isotopies of the moving boundary conditions £ and £}) satisfy
d°h(X) = d°h(X') = 0 outside of a compact subset (recalling that # = max{/h,} = max{|z?|/4®)}).
More precisely, the vanishing of (V(K; — Ko), v) and (V(K — K{), v) implies the invariance of the
monomial z? under the flows of X and X’ at all points of C, N W~!(c) which lie outside of Y, and
hence the vanishing of dhy(X) = (1/d(v))hyd arg(z®)(X) and d€hy(X').

This in turn implies that J—holomorphic strips with moving boundary conditions £5 and £} satisfy the
maximum principle with respect to the proper function / outside of a compact subset of (C*)”, and hence
that the continuation maps ®¢; and ®1¢ are well-defined. The argument is similar to the last part of
the proof of Proposition 3.11: the vanishing of d“h on the tangent spaces to the monomially admissible
Lagrangians £, and ¢} and on the vector fields X and X’ along which these boundary conditions move
implies that the restriction of d€(h ou) to the boundary of the strip R x [0, 1] vanishes identically (outside
of u~1(Y")), and the result then follows from the maximum principle with Neumann boundary conditions.

The usual argument for Floer continuation maps then shows that ®¢; and ®1¢ are chain maps, and that
®p1 0 1o and Py o Py are homotopic to identity; it follows that HF* (£}, Lo) >~ HF*({, {y).
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We now turn to the second part of the statement. Assume that K’ — K is convex, and observe that the
generators of CF* (¢, ) correspond to points where dK’ and dK differ by an integer multiple of 27,
ie V(K' — K) € 2nZ)". By Lemma 5.4, the set of possible values of V(K’' — K) is P(¢’ — o). For each
p € P(o’—0)N(2rZ)", the function K'(§)— K (§)—(p, &) is convex; up to a small perturbation (preserving
convexity) we can assume that its critical points are nondegenerate. Convexity then ensures that the critical
point (guaranteed to exist by Lemma 5.4) is unique and a minimum, so that it contributes a single generator
to CFO(¢’, £), which (up to a suitable rescaling, see below) we denote by ¥p. Taking the direct sum over
all p, we find that the Floer complex CF*(¢',£) = span{d,, | p € P(6' —0) N (2nZ)"} is concentrated
in degree zero, which in turn implies the vanishing of the Floer differential, and (5-13) follows. |

As a general convention, we rescale all generators of the Floer complexes for monomially admissible
Lagrangian sections by their action (suitably defined, see below), using the exactness of these Lagrangians
to eliminate geometrically irrelevant powers of the Novikov variable and ensure that continuation isomor-
phisms map generators to generators. In the setting of Proposition 5.6, given £ = I'yg and £’ = T’y with
K’ — K convex and p € P(0' —0) N (2w Z)", and denoting by &, the critical point of K’ — K —(p,-),
we define the acrion of this intersection point to be the associated critical value of K’ — K — (p, - ), and
the generator we denote by ¥, is actually 1K' €p)=K(E)=(P:£0) times the standard generator associated
to the intersection point. (Of note: our basis depends not only on the Lagrangians £ and £’ but also on
the normalizations of K and K’; different choices yield differently scaled bases, which can be related
explicitly by isomorphisms mapping each generator to a power of ¢ times a generator.)

Proposition 5.7 Let { = T'yg,{' = T'yxr and {” = T yg~ be three monomially admissible Lagrangian
sections such that none of the pairwise differences of their slopes o, o’ and ¢” is a multiple of 27w.
Assume moreover that K" — K’ and K’ — K are convex. Then for any p € P(¢' — o) N (2nZ)" and
p' € P(6” —o’)N (2nZ)", the Floer product of ¥, € HF°(¢', £) and ¥,y € HF°({",{') is given by

(5_14) ﬁp . ﬁp/ = ﬁp—{—p’ S HFO(ZN,Z).

Proof We lift £, £ and ¢” to the universal cover T*R” of (C*)" by considering the graphs , £’ and ¢”
of d(K + (p,-)), dK’ and d(K" — (p’,-)), respectively. By construction, the generator ¥, lifts to an
intersection point of Cand ¢, and similarly 9, lifts to an intersection of ' with £”. Thus, any holomorphic
disc in (C*)" contributing to the Floer product of ¥, and 9,/ lifts to a disc in the universal cover with
boundary on €, 7 and £”. 1t follows that the output of the disc corresponds to an intersection of  with £",
ie a critical point of K” — K — (p + p’,-); hence ¥ - ¥, is a multiple of ¥, .

The critical points of the convex functions K’ — K — (p,-), K" — K'—(p’,-)and K" — K —(p + p’,-)
will be denoted by &, &,/ and &, ,» € R”, respectively. By Stokes’ theorem, the symplectic area of any
holomorphic triangle contributing to the coefficient of ¥, ,/ in ¥, - ¥,/ is equal to the difference of the
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actions of the input and output generators, ie

(5-15) (K”(Ep—i-p’) —KEptp)—(p+ 2 Ep+p') — (K,(Ep) —K(p) —(p.5p)

— (K" (&) = K'(§p) — (P §p')).
Thus, since our chosen bases of the Floer complexes are already rescaled by action, the powers of ¢ cancel
out and each holomorphic disc contributes £1.

It remains to show that the overall count of discs is +1. Since our calculation is at the level of Floer
cohomology, the count we consider is homotopy invariant and we can deform the Lagrangian submanifolds
¢, 7 and £" to simplify the problem. We use the same trick as [24, Proposition 3.22], and replace K and
K” by modified functions K and K" such that

(K'=K)§) = (K'=K)E+&) and (K" —K)(E) = (K"~ K)(E+&).

This modification ensures that K’ — K and K” — K’ remain convex and have the same slopes at infinity
as K’ — K and K" — K, but the critical points of K'— K — (p,-) and K” — K’ — (p’,-) now lie at the
origin; considering their sum, the critical point of K'—K-— (p+ p’,-) also lies at the origin. (A note
of caution: modifying K’ — K and K” — K’ by translations in the §—coordinate in this manner doesn’t
quite preserve monomial admissibility, as the control over arg(z?) is now achieved over a slightly smaller
subset of (C*)"; since the collection of these modified subsets still covers the complement of a compact
subset, this does not affect in any significant manner the maximum principle arguments we use to control
holomorphic curves.) Thus we have reduced the problem to the case where ¢, ¢ and ¢” all intersect
(transversely) in a single point (near which they are the graphs of the differentials of functions whose
differences have nondegenerate minima). The formula (5-15) now shows that any holomorphic disc
contributing to the Floer product must have area zero, ie the only contribution is from the constant map.
By linearization and reduction to a product setting, the constant disc is easily checked to be regular and
contribute 41 to the count (using the preferred trivializations of the orientation lines at even-degree
generators and the sign conventions from [35, Section 13c]). O

Next, we consider continuation elements (quasiunits) for the action of the wrapping Hamiltonian A on
monomially admissible Lagrangian sections in W ~1(—1) ~ (C*)". Recall that H is proper and convex
by Proposition 4.22; to simplify normalizations, we assume that its minimum value is zero (otherwise the
formula below should be corrected by a factor of ¢7™in ),

Proposition 5.8 Let { = I'jx be a monomially admissible Lagrangian section in (C*)", and denote by
0" = ¢*({) = Tg(k+cm) its image under the time t flow of the wrapping Hamiltonian H for t > 0,
chosen so that td(v) ¢ 2rnZ for all v € V. Then the quasiunit e = ey 4 € HFO(¢',¢) is the generator
e = Uy corresponding to the minimum of H .

Proof As in Section 3.4 (now working in (C*)" rather than in Y'), the quasiunit ey ¢ is defined by
counting solutions to a Cauchy—Riemann equation whose domain X is a disc with a single output boundary
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puncture, with moving boundary condition along d¥ given by the images by £ under the flow generated
by H. Such a disc lifts to the universal cover T*R” as a disc whose output marked point maps to an
intersection of the graphs of dK and d(K + tH); it follows that e is a multiple of .

The count of solutions to the Cauchy—Riemann equation is homotopy invariant, so we modify the setting
slightly from Section 3.4 in order to make it apparent that the only contribution is from the constant
solution at the point of £ where H reaches its minimum. Denote by 7 the 1-form on 9% (vanishing
near the puncture) such that the variation of the boundary condition along 9% is induced by the flow of
XH ®n. Then we consider the perturbed Cauchy—Riemann equation

(5-16) (du—Xg Q)% =0,

where « is a subclosed 1-form on X (da < 0) which vanishes in the output striplike end and satisfies
a3 = 1.

As in [1, Appendix B], the geometric energy
Egeo(u) = / ldu — Xg Qal|*> = / uwo—u*(dH)  Na
= z
of a solution to (5-16) and the topological energy

Fupt) = [ "0 =" (H)0) = Eyeo) = L") do

satisfy 0 < Egeo(u) < Eyop(u) (since H > 0 and do < 0). Denoting by s a coordinate along 3% and by
t(s) the function such that the boundary condition at s is given by ¢’ 6)(g) = Lk 15 (s01(s) decreases
from t to zero along the boundary, and its differential coincides with 1), Stokes’ theorem gives

Ep(u) = /82 —(u*(dK) +t(s)u*(dH)) —u*(H)n = /82 —d(W*K +t(s)u*H) =t Hoy,

where H,y is the value of H at the output marked point, ie zero. Thus any solution has vanishing
geometric and topological energies, ie it is a constant map at the point where H reaches its minimum.
Moreover, the constant map is regular (using the fact that its index equals the degree of the output
generator, ie zero, and the linearized Cauchy—Riemann operator is injective since essentially the same
argument as above shows that the energy of any element of the kernel must be zero); thus the count of
solutions is 1. Since the sign is independent of £ and 7, it follows from the multiplicativity of quasiunits
(egr g = ey g -egr g, see eg [24, Proposition 3.15]) that the sign is 41, and thus e = . O

Finally, we consider the Floer theory of admissible sections with Lagrangian tori, which will allow us in
the next part to reduce Floer-theoretic computations involving noncompact Lagrangians to computations
involving only tori. Given x = (x1,...,X,) € (K*)", we denote by t, the Lagrangian torus {&} x T"
consisting of those points of (C*)” whose moment map coordinates satisfy & = —(1/2m) val(x;) for
alli = 1,...,n, equipped with a rank-one unitary local system over K whose holonomy y; around
the i S factor satisfies x; = ¢~ 278 i !, Given a Lagrangian section £ = I'yg, the Floer complex
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CF* (¢, tx) has rank one, and we denote by ¢, a suitably rescaled generator: namely, we define ey to
be tK®) times the element of the local system at the intersection point (&, dK(£)) obtained by parallel
transport of a fixed element at (£, 0) from the origin to dK(§) along t,.

Proposition 5.9 Let { = 'y and ¢’ = T yg+ be two monomially admissible Lagrangian sections whose
slopes o and ¢’ do not differ by a multiple of 2mr and are such that K’ — K is convex, and let t, be the
Lagrangian torus with local system associated to the point x € (K*)" as above. For p € P(¢'—o)N Q2 Z)",
the Floer product of the generators ¢, € HF°({',£) and ex € HF°({, ty) is given by

(5-17) ex Op =xP ¢,
where p = p/2m € Z", xP =[] xiﬁ[ € K* and &/, is the generator of HF({’, ty) rescaled in the same

manner as €y.

Proof The argument is similar to the proof of Proposition 5.7. We lift £ and ¢’ to T*R" by considering
the graphs Cand ¢ of d (K + (p,-)) and dK’, which intersect at a lift of 9, and lift t, to the cotangent
fiber at § = —(1/2m) val(x). Any holomorphic disc contributing to the Floer product of ¢, and ¢ lifts to
T*R", and its symplectic area can be calculated by integrating d(K’ — K — (p, -)) from &, to &, where
&, is the critical point of K’ — K — (p. - ), which gives

(K'(€) — K(&) — (p.£) — (K'(§p) — K(&p) — (p. §p))

The contribution to the Floer product also involves a holonomy factor, given by the ratio between the
parallel transport of &5 along tx from (£, dK(§) + p) to (§,dK’'(§)) and &.. Given the above choices
of normalizations of the generators ¥,, €, and 8;, we find that the contribution of each holomorphic
disc to the coefficient of &/ in the product of &, and ¥}, is, up to sign, 1~{P:£) times the holonomy of t,
along a closed loop whose lift to the universal cover runs from (£, dK (&) + p) to (&, dK(§)). This loop
represents the homotopy class —p € Z" ~ 7 (T™"); hence, the holonomy can be expressed as y 7, and
one ends up with
1~ (p:E) y P =xP,

It only remains to show that the signed count of holomorphic discs contributing to the Floer product of
ex and ¥, is +1. Since this count is invariant under deformations, it does not depend on the value of &
(the position of the cotangent fiber), and it suffices to determine it for a particular value of £. We take
& = &, when all three intersection points coincide and the only contribution is from the constant map,
which is regular and contributes +1. a

5.4 Floer products on HF *(Ly(t"), Lo(?))

We now return to our main topic, namely the calculation of the Floer cohomology HF*(Lq(t"), Lo(t))
for ¢’ > t and its product operations. As seen in Example 5.5, the slopes of the monomially admissible
Lagrangian sections £o(¢'), £o(t) C W™1(=1) and £—_(t'), L4 (t) C W™ (cyr) (for t' —t > tg) are given
by (5-10)—(5-12).
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Definition 5.10 For 7 > 0, we define
(5-18) 00(t) = (td(®)vey and 01(7) = (td(v) — 270" )yey

and denote by Py(t) and P;(t) the corresponding polytopes defined by (5-9).

Since H is convex by Proposition 4.22, the results of Section 5.3 apply to the pair (£o(¢), £o(¢)) whenever
t'—t > 0. However, because the clockwise monodromy of W :Y — C does not act by a convex Hamiltonian,
there is no similar guarantee for the pair ({—(t’), £+ (¢)); nonetheless, o1(7) is the slope of a convex
Hamiltonian for t = ¢’ — ¢ sufficiently large (larger than some constant 1 > tg), so Propositions 5.6-5.9
apply to the Floer cohomology HF*({—_(t"), £+ (t)) whenevert’' —¢ > t;.

Proposition 5.11 For t =t —t € (0,19) N U, the Floer complex CF*(Lo(t"), Lo(t)) is concentrated in

degree zero, the Floer differential vanishes, and

(5-19) HF®(Lo(1'), Lo(1)) = HF°(Lo(r'), £o (1)) = o, K- 95",
PEPy(t'—t)NQRAZ)"

where the generators 191’;/_” correspond to the intersections of £o(t") and £o(t) inside W —1(—1), rescaled
by action as explained in Section 5.3.

For t =t'—t € (t1, 00) N U, the Floer cohomology HF*(L(t"), Lo(t)) is isomorphic to the cohomology

of the complex

(5-20) {HF°(U_(t"), £4(t)) => HF (Lo ("), Lo (1))}

:{ P K-t s P K-z?;,/_’t},
peEPI(t'—t)NQRrZ)" pPEPy(t'—t)NQRrZ)"
where the generators { g_” (in degree —1) and ﬁlt;_” (in degree zero) correspond to intersections of
€_(t") and €4 (¢) inside W ~!(c, ) and to intersections of £o(t") and £o(t) inside W1 (—1), rescaled by
action within the fibers of W; and s = s?O, it is defined by a weighted count of J—holomorphic sections
of W:Y — C over the bounded region of the complex plane delimited by y; and y;.

Proof This follows immediately from Propositions 5.2 and 5.6. |

Remark 5.12 There are two ways to understand the complex (5-20) and its relation to the Floer complex
CF*(Lo(t"), Lo(2)) fort’ —t > 1.

(1) Perturbing Lo(") or Lo(t) by an admissible Hamiltonian isotopy (preserving the fibers of W, and
preserving fiberwise monomial admissibility) if necessary, we can assume that (suitably perturbed versions
of) the monomially admissible Lagrangian sections £_(¢") and £ (¢) differ by a convex Hamiltonian.
After such a perturbation, both of the Floer complexes CF*(£—(t"),£+(¢)) and CF*(£o(t), Lo(t)) are
concentrated in degree 0 and their differentials vanish, so that CF*(Lg(t"), Lo(¢)) is given by (5-20).
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(2) Alternatively, consider the filtration 0 C CF*(£o(t), £o(t)) C CF*(Lo(t"), Lo(¢)), which is com-
patible with the Floer differential and products, as any holomorphic disc contributes in a manner that
decreases the filtration index by its intersection number with the fibers of W near the origin.® This
filtration gives rise to a spectral sequence computing HF*(Lo(t’), Lo(t)), in which the second page
(after taking the cohomology of the portion of the differential which preserves the filtration index, ie the
contributions of holomorphic discs contained in the fibers of W) is precisely (5-20).

Definition 5.13 We call the complex (5-20) (or (5-19) for ¢’ —t € (0,19)) the vertical Floer complex of
Lo(¢") and Lo(t), and denote it by CF.5 (Lo(t"), Lo(t)).

The vertical Floer complex carries a Floer product operation
(5-21) CFun(Lo(t"), Lo(1)) ® CFy(Lo(t"), Lo(t")) = CF(Lo(t"), Lo(1))

for t” > t’ > t; this can be understood either as the chain-level product u? after suitable fiberwise
perturbations, or as an induced product on the second page of the spectral sequence computing the Floer
cohomology (using the fact that the product operation is compatible with the filtration). It follows from
the algebraic properties of the Floer product that this operation is associative and satisfies the Leibniz
rule with respect to the section-counting differential s.

Proposition 5.14 Assume thatt” >t' > t, and thatt’ —t,t” —t,t” —t’ € U, and label the generators as
in Proposition 5.11. Then the Floer product (5-21) is given by:

e Forpe Py(t' —t)N (2 Z)" and p’ € Py(t" —t") N 2nZ)",

990 = 90 € HEO(Eo(1"). Lo(0)).

e Whent'—t >ty,forpe P1(t' —t)N(2rZ)" and p’ € Py(t" —t") N 2nZ)",

é_;/_)t ‘19;7///—)t/ - Ct//—)t/,t It,/_/}__;g S HFO(Z—(I//)y E“F(I))v

where C_; is a nonzero constant (independent of p and p’).

e Whent"—t' >1ty, for p e Po(t' —t)N(2nZ)" and p’ € P1(t" —t') N 2rZ)",

O L = Cr sy EE 0 € HFO (U (1), 44.1)),

where Cy» 4/—; is a nonzero constant (independent of p and p’).

/ 14 7
e Whent'—t >ty and t" —t' > ty, forall p and p', we have {, ~* ~§‘;,_” =0.
3Reinterpreting Floer generators as Hamiltonian chords on L, their filtration index is their intersection number with the preimage

under W of the real positive axis, making this an instance of the filtration associated to a stop (and its removal) in partially
wrapped Floer theory [37].
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Proof Since the projection W:Y — C is holomorphic away from a neighborhood of the zero fiber,
it follows from the open mapping principle and from degree constraints that all the holomorphic discs
contributing to the Floer product are either contained in the fiber W ~1(—1) or sections over a triangular
region of the complex plane delimited by the arcs y;~, vy and y;; see Figure 5.

When both inputs lie in W~1(—1), the output must also lie in W~!(—1) for degree reasons, and the only
contributions come from discs contained inside W ~!(—1). Given the relative positions of the tangent
lines to y;~, yy and y; at —1, the base of the fibration W: Y — C doesn’t contribute anything to the
index of the Cauchy—Riemann operator, so the product operation agrees with the product on the Floer
complexes of the monomially admissible sections £ ("), £o(¢') and £o(¢) within W =1 (1) >~ (C*)".
Hence, using the same normalization of the generators as in Section 5.3, it follows from Proposition 5.7

t'—t ot"—t' _ qt’"—>t
that 95 1 - 90/~ = 91" >t

Next we consider the case where one input lies in w1 (cyr) (with t' —¢ > t1) and the other one is in
W~1(=1). The output then necessarily lies in W ~!(c;~ ;) for degree reasons, and the contributions to
the Floer product come from holomorphic sections over the triangle J ;7 , delimited by y;~, y,» and y;
with vertices at —1, ¢4 s and ¢;~ ;. Since we are considering cohomology-level operations on the fiberwise
Floer complexes, the count we consider is homotopy invariant under deformations; it is in fact one of the
operations of the cohomology-level “Seidel TQFT” [35] associated to the fibration W: Y — C (in a fairly
simple case, since the region over which we count sections does not contain the critical value 0). Thus,
we can simplify the counting problem either by trivializing the fibration and deforming the symplectic
and complex structures to product ones over J;_,; s, or more simply, by deforming the arc y; (without
crossing the origin) by a compactly supported isotopy in order to bring the intersection points ¢; , and
¢y ¢ to —1 and shrink the triangular region J;7_,; ; to a single point. After this deformation, we are
once again reduced to a calculation of the Floer product for the admissible Lagrangian sections within a
fiber of W, as the horizontal direction does not contribute to the index of the Cauchy—Riemann operator.
Since the slopes of the relevant admissible Lagrangian sections differ by o7 (¢’ —t) at one input and by
oo(t” — ') at the other, it follows again from Proposition 5.7 that, for all p € Py(t' —¢) N (2nZ)" and
p' € Po(t"—1t")N (2 Z)", the product of ¢ 1’,/_” and 19;/,/_” "is equal to I’;;r_;f up to a scaling factor (some
power of the Novikov parameter) coming from the amount of symplectic area swept in the deformation
to a single fiber.

Next we show that, when all the generators are normalized by action within the fibers of W, the coefficient

of g;_;f in the product of ¢% ~*

" and 15‘;)///_”/ depends only on ¢”,¢’, ¢ butnoton p and p’. Let K. :R" — R
(resp. K., K) be such that the intersection of Lo(t) (resp. Lo("), Lo(¢)) with W~1(c) is the graph
of dK. (resp. dK,dK]) for each ¢ € y; (resp. yy, yr»). Normalizing K., K/, K suitably, we can
ensure that they vanish at £ = 0, and that a holomorphic section u of W:Y — C over J;7_,4; which
contributes to the product of ¢ I’)/_” and 191’)/,,_” " lifts to the universal cover of W~1(J,»_,/ ) as a section

with boundary values on the graphs of dK. + p, dK| and dK| — p’ for each ¢ € 0T ;#_; ;. With this
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understood, the holomorphic section u represents the same relative homology class as the chain obtained
by adding together:

e “zero section” o over J;»_4 ¢, consisting of the points with moment map coordinates
(1) The t fWw T , ting of the points with t map dinat
& = 0 and angular coordinates 6; = arg(z;) = 0 in each fiber.

(2) Over each edge of J ;7 ¢, a path in each fiber W_l(c), ¢ € 077y s, connecting the zero
section to the boundary value u(c) of the holomorphic section u by running first along £ = 0 from
the origin to dK.(0) + p, dK.(0) or dK/(0) — p’, and then along the graph of dK. + p, dK|. or
dK]/ — p’ from & = 0 in a straight line to the é&—coordinate of u(c).

(3) Over each vertex of J;7_; 4, a chain in W=1(c), where ¢ € {—1, Ct't, Cy7 ¢}, Which lies over a
straight line path from & = 0 to the £&—coordinate of u(c), and for each £—value runs in a straight
line from dK.(§) to dK(§) — p’ for ¢ = —1, from dK.(€) + p to dK[(§) for ¢ = ¢4/, and from
dK¢(§)+ p to dK[(§) — p’ for ¢ = ¢4 ;.

Denote by A7, the symplectic area of the first part of our chain (the “zero section”), which manifestly
does not depend on p and p’. The second portion of our chain (over the edges of J ;7 ;) runs partly
along the Lagrangians obtained by parallel transport of the torus {§ = O} over y;, vy, ¥s7, and partly
along the Lagrangians Lg(z), Lo(t"), Lo(t"), so its symplectic area vanishes. Finally, the third piece
(over the vertices) contributes at each vertex an area equal to the fiberwise action of the corresponding
Floer generator, given that we have normalized the Hamiltonians K., K., K/ so that they vanish at & = 0.
For instance, the portion which lies in W™!(c, ), over the path from 0 to £ = £, and between the
graphs of dK. + p and dK., has symplectic area given by the integral of dK. — dK. — p from zero
to &p, ie (KL (&p) — Kc(§p) — (P, &p)) — (KL.(0) — K. (0)), which coincides with the fiberwise action for
the generator ¢ l’,/_” within W~1(c;s ;) since the last term vanishes. Similarly at the two other vertices.
Because a rescaling by action is built into the definition of our Floer generators, this implies that the

. 4 . ’ " /.
coefficient of {;hf;f in the product £}, " -191’), =S Cprsyry = tAV—11

The case of the product 19;,/_” ¢ It,///_" " is handled by exactly the same argument, deforming the problem
from a count of sections over a triangular region of the complex plane to a fiberwise Floer product
and appealing to Proposition 5.7. Finally, the product of two degree —1 generators vanishes for degree
reasons. d

For x = (x1,...,xn) € (K*)" and t € R, we denote by Ty (¢) the admissible Lagrangian with local system
obtained by parallel transport over the arc y; of the Lagrangian torus with local system t, introduced in
Section 5.3. To be more specific, we fix a 7" —equivariant structure on the local system of ty, ie a family
of isomorphisms between the local system and its pullbacks under rotations by elements of 7”. (This
can be done for instance by thinking of the local system as a trivial complex line bundle equipped with
a translation-invariant connection.) With this understood, t, is invariant under both parallel transport
between the fibers of W and the action of the wrapping Hamiltonian, and the restriction of T (¢) to the
fiber of W over any point of y; can be identified (as a Lagrangian submanifold with local system) with ty.

Geometry & Topology, Volume 28 (2024)



2888 Mohammed Abouzaid and Denis Auroux

For t’' —t > tg, Lo(t") and Ty (¢) intersect transversely once in W™!(—1) and once in W™1(c;;); we
denote by &£ " € HF(£o(t'). tx) and n', % € HF®({_(t'), t) the corresponding Floer generators,

X
rescaled by action as in Section 5.3. We now consider the Floer product

(5-22) CForn(Lo(t). Tx(1)) ® CFoey(Lo(t"). Lo(t) = CF(Lo(t"). Tx(1)).

Proposition 5.15 Fort' —t > tg, CF(Lo(t"), Tx(t)) = CF*(Lo(t"), Tx(¢)) is given by
(5-23) (K- 7t 255 KL el 2,

X
where the generators nﬁc[—” (in degree —1) and eﬁc[—” (in degree zero) correspond to intersections of
£_(t") and £o(t") with ty inside W~1(c;r;) and W—1(—1), respectively, rescaled by action, and sy is
defined by a weighted count of J—holomorphic sections of W :Y — C over the bounded region of the
complex plane delimited by y; and y;.
Moreover, givent” > t’' >t witht' —t > tg, the Floer product (5-22) is given by:
e Forp=2mpe Py(t"—t)NQ2rZ)",
s;/_’t . 19;//_”/ = xﬁs?_}t € HF°(Lo(t"), ty).
M0y 7 = Corpr g X7 T € HFO(U- (), 1),
e Ifmoreovert” —t’ > ty, then for p =2xp e P1(t" -t )N 2xZ)",
e 0 = Crr g X7 0T € HFO(U- (1) ),

/=t t"—>t' _
& =0.

Here Cg,4r 4 and Cg,r sy are nonzero constants which depend on t”, t" and t, and possibly on
& = —(1/2m) val(x) but not on p.

Proof The proof is identical to that of Proposition 5.14, except after reduction to a Floer product within
the fiber of W we now appeal to Proposition 5.9. The other difference with our previous argument is
that the scaling constant Cg.;»_,4 ; is now determined by the symplectic area of a reference section of W
over I, whose edge along y; lies at the £—value of ty, ie £ = —(1/2x) val(x), rather than at £ =0,
hence it generally depends on &; similarly for Cg.;» 1/ _5;. a

Our next result concerns the quasiunits induced by continuation:
ies ’ e 0 ’ E— /=t _ gt'—t
Proposition 5.16 For t’ > t, the quasiunit e € HF"(Lo(t"), Lo(2)) is given by e =",

Proof It suffices to prove the result for ¢’ —7 € (0, tg), as the general case follows using the multiplicative
property of quasiunits (¢!~ = ¢!’ >t . ¢!" = for t” > t' > t) and Proposition 5.14.

Recall that the quasiunit is defined by counting solutions to a Cauchy—Riemann equation whose domain X
is a disc with a single output boundary puncture, with moving boundary condition given by the Lagrangians
Lo(7) for T varying between ¢ and ¢’. Along 0%, the boundary condition is obtained from the flow of
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Xg ®n for some 1-form 7 on 9% and some Hamiltonian K, namely the sum of a Hamiltonian generating
the admissible lifted isotopy p®, cf Lemma 3.8, which we assume to be supported over a neighborhood V'
of Ure[m,] Yz, and the wrapping Hamiltonian H. The restriction of K to Lo(t) is proper and achieves
its minimum at the point of W ~1(—1) where H has its minimum; we normalize K so that this minimum
value is zero.

As in the proof of Proposition 5.8, we consider solutions to the perturbed Cauchy—Riemann equation
(du—Xg ®a)®! =0, and « is a subclosed 1-form on X whose restriction to 9% agrees with 7. Solutions
to this equation satisfy the open mapping principle with respect to the projection W: Y — C everywhere
outside of V' (where X g is not purely vertical) and a neighborhood of the origin (where W isn’t necessarily
J-holomorphic); this implies that solutions remain within W~1(V), where the Kihler form is exact and
the same energy argument as in the proof of Proposition 5.8 shows that the only solution is the constant

map at the point of W™1(—1) where H reaches its minimum. It follows that e* = = 9§ 7. ]

5.5 The Floer differential

Propositions 5.11-5.16 give all the information needed to determine the fiberwise wrapped Floer coho-
mology HW™*(Ly, L¢) and its ring structure, except for one key piece of data: the differential of the
complex (5-20), ie the section-counting map s = se it CHFO(U_(t)), L4 (1)) = HF (Lo(t'), Lo(t)). We
will first show that this map is given by multiplication with a Laurent polynomial, then show that this
polynomial also controls the section-counting map for the parallel transport of the tori t,.

Fixty >t_withty —t_ > ty, and for p =2np € Po(t4+ —1-)N (2w Z)", denote by c5 € K the coefficients
such that

(5-24) P (T B NS 1/
p
Lemma 5.17 For all t' >t such that t' —t >ty and all p’ € P1(t' —t) N 2nZ)",
(5-25) S0 (E7H=C.0Y epdh L,
p
where C(t', t) is a nonzero constant depending only on t and t’'. Moreover, if c; # 0 then p € Py,

Proof The compatibility of the Floer product with the differential (ie the Leibniz rule), together with the
product formulas of Proposition 5.14, implies that

(5-26) SO t@; ~1). 9 % = Crrrr1 54y 11 (80 T hy)
forall (t” >’ > 1) with ' —t > 11, py € Py (z/ —1)N(2rZ)" and p; € Po(t" —1') N (27 Z)"; and
(5-27) 19;;1—>t 60 t// t/(é't -t ) - Ct”,t’—)t S(”Oo,t//,t (;tlrltjz)

forall (1" >t >1t) witht”" —t' > t1, p1 € Po(t' —t) N (27 Z)" and py € P1(t" —t') N 2nZ)".
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We now deduce the lemma from these two identities. First, choose ¢” > max(¢’, 73.) such that Py (t'—1) C
Po(t” —t4). It follows from (5-26) for (¢ >ty >t_), py = 0 and p, = p’ that

0 /=t \ _ 1 0 ty—>t— /=ty -1 gt >t
Spoera S ) =Crriy 4 Stosty,t— (o )0y =Copy g 2 :Cp Vs pr
P

forall p’ € P1(t' —t) N 2rZ)" C Po(t" —t+) N 2R 7Z)".
Next, considering (5-27) for either (z” > t— > t) or (¢ >t > t_), with p; =0 and p, = p’ again, yields

0 t—t\ _ " _qt''—>t
Storr i Ep ) = C7,1) Z ¢ Vpip
p

for all p’ € P1(t' —t) N (2x7Z)", where C(t”,t) is equal to Cz7’1—>t+ , CoL  ift <t_, oris equal to

C t7,1_)t+,t_ Ctr1—¢_ if t > t_. This is precisely (5-25), except with ¢ everywhere instead of ¢’. Finally,

we use (5-26), now for (t” >t' > t), p1 = p’ and p, = 0, to conclude that
0 t'—t t'—t
Sgy 0 (E57) = Cormspr O 1) Y g 90T
p
which is the desired result.

Moreover, the final step of the calculation implies that p + p’ € Po(t' —t) N (2xZ)" for all p =27 p
such that ¢ # 0 and for all p’ € Py(¢'—t) N (2w Z)". Recall that Py(¢' —1) is defined by the inequalities

(5-28) ({U,) <" =)d(v)
for all v = (v, v%) € ¥, while P;(t' —t) is defined by
(5-29) 0,y <@ —t)d(v) —270°

for all v € ¥, and P is defined by the inequalities (v,-) < v° for all v € ¥; cf Definition 4.14. For
every v € V', we can choose ¢ and ¢’ such that Py (¢’ —¢) N (2w Z)" contains some p’ which realizes the
equality in (5-29). Thus, since p + p’ satisfies (5-28) whenever ¢ # 0, it follows that {p, ¥) < 270",
ie (P, ) < v, whenever ¢ # 0. Since this holds for all v € ¥, it follows that p € P NZ" = Pz. O

Lemma 5.17 implies that the coefficients ¢ € K (p € Pgz) suffice to determine the fiberwise wrapped
Floer cohomology of L. More explicitly:

Proposition 5.18 Let g(x) = Zp (:17)#’7 € K[xftl, .. .,x,jtl], and assume that g is not identically
zero. Then HW*(Lg, L¢) is isomorphic to the quotient K[xlil, .. ,x,jtl]/(g) of the ring of Laurent
polynomials by the ideal generated by g.

Proof By Corollary 3.24, we can calculate HW™*(Lg, Lo) as a colimit of Floer cohomology groups
HF*(Lo(t"), Lo(t)) fort’ —t — oo. Fort’ —t > t1, we use Proposition 5.11 and Lemma 5.17 to identify
CF} . (Lo(t), Lo(t)) with a subcomplex of the chain complex

(5-30) K. oxF £ KixE L xE,
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where in degree 0 we identify 15‘;,/_” with the monomial x? for all p € Po(t' —t) N (27 Z)", and in
degree —1 we identify ZI’,/_” with C(¢/,¢) x? for all p € P1(¢t' —t) N (27 Z)", and the subcomplex
corresponds to those Laurent polynomials whose Newton polytopes are contained inside (1/27) Po(t' —1t)

and (1/27) P1(t' —1t), respectively.

It follows from Proposition 5.14 that, with these identifications, the product operations on these Floer
complexes are given by multiplication of Laurent polynomials; and Proposition 5.16 implies that the
continuation maps as ¢’ — ¢ increases to infinity are given by inclusion. Thus, the naive limit of the
complexes (5-20) as t’ —t — oo is given by (5-30).

Since by assumption g is not zero, multiplication by g is injective, and the cohomology of (5-20) is
concentrated in degree zero; specifically, HF®(Lo(t'), Lo(t)) is the quotient of the space of Laurent
polynomials whose Newton polytope is contained in (1/27) Po(¢' —t) by the subspace of those which are
g times a Laurent polynomial with Newton polytope contained in (1/27) P1(¢t' —t). Taking the colimit
under inclusion maps as ¢’ —t — oo, we conclude that HW™* (L, Lo) is also concentrated in degree zero,
and we have an isomorphism of K—vector spaces

HW(Lo. Lo) ~ K[xF".....xF']/(g).

This isomorphism is compatible with the ring structure, since by Proposition 5.14 the Floer product
operation corresponds to multiplication of Laurent polynomials. |

Given Proposition 5.18, the proof of Theorem 1.2 reduces to the determination of the Laurent polynomial g.
More precisely, we need to show that, after equipping ¥ with a suitable bulk deformation class, g can be
assumed to coincide with the Laurent polynomial f defining the hypersurface H up to an overall scaling
factor. To this end, we first reinterpret g as a count of holomorphic sections with boundary on the objects
Tx(t) obtained by parallel transport of product tori with rank one local systems. Recalling the calculation
of the vertical Floer complex CF(Lo("), Tx(t)) from Proposition 5.15, we have:

Proposition 5.19 For t'—t > t1, and for x € (K*)", the differential on the complex CF . (Lo(t"), Tx(?))
is given by
SX(r’;—)t) = CE(II’ t) g(X) Sgc_ﬁ,

where Cg(t', ) is a nonzero constant depending only on t, t" and § = —(1/2) val(x).

Proof Fort” >t' + 1, the compatibility of the Floer product (5-22) with the differentials on the vertical
Floer complexes implies that

sx (TN 8o T =0 T gy (86 7T =0
Using Lemma 5.17 and Proposition 5.15, this yields

sx( 70y = 1) Zcﬁ ny 0, T =C" ) Ceyrspr s g(X) 1 T
p
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t'—t t'—t é-t 't

Since sx (n’ 1) is a multiple of &}, !, comparing with the formula for &%, given by Proposition

5.15 we conclude that
Sx(i’);_)t) = C{-'_;tl”,t’—)t C(f//, [/) CS;t”—)t’,t g(X) 8;_".

The result follows, setting Ct,, vy CW' ) Corspr g = Ce(t'1). O

Remark 5.20 Another way to prove Proposition 5.19, still using the Leibniz rule, Lemma 5.17 and
Proposition 5.15, is to argue that, for t” >’ > t with " —¢' > 11,

14 4 ’
Sx(nt —)t) _ Cg: bt Sx(St —>t é-t —>t )

_ t'—t t"—t'
= CS;t”,t’—)t €x Séo (o )
=1 " } : _ />t t’—t’
—_ Cé,t//,t/%tc(l ,t ) CP gx "l}p

4

=Ce(t",1) g(x) 8;”_".

Next we consider the Floer complex CF% . (Tx(t'), Tx(t)) for t —t > ty. The Lagrangian submanifolds
(with local systems) Ty (¢’) and Ty (¢) obtained by parallel transport of t, over the arcs y;s and y; intersect
cleanly along tori within the fibers W1 (—1) and W™!(c ), rather than transversely, so the definition
of their Floer complex requires a bit of care. One approach is to use a small Hamiltonian perturbation
to achieve transversality within the fibers of W; another approach that is better suited to computations
is to use a “Morse—Bott” model. Namely, we choose a Morse function on the n—torus, and consider
holomorphic discs with boundary in Ty (¢') U Ty (¢) together with Morse flow lines (within a component
of T (t") N Tx(¢)) from the boundary marked points of the disc to critical points of the Morse function;
see for example [36, Section 4], with the difference that we only use Morse theory within the fibers of W,
while in the base direction we have usual striplike ends. Equivalently, instead of involving Morse flow
lines, one could simply require the boundary marked points of the holomorphic discs to lie on the stable
or unstable manifolds of the Morse critical points.

Regardless of the chosen approach, the Floer complex is built from two copies of the fiberwise Floer
complex CF*(tx, ty), corresponding to generators and Floer trajectories which lie entirely within each
of the two fibers W1 (—1) and W~1(c, ), together with a connecting differential which counts J—
holomorphic sections of W : Y — C over the region delimited by y; and Y, (with the usual caveat regarding
our use of the word “section”, since J differs from the standard complex structure near W ~1(0)), with
boundary on ty, and satisfying incidence conditions at —1 and at ¢/ 4.

As before, we denote by CFx (Tx(t'), Tx(t)) the “vertical Floer complex” obtained by taking the
cohomology with respect to the contributions to the Floer differential which lie entirely within a fiber
of W. Since t, C (C*)" does not bound any holomorphic discs, the Floer differential on C F* (t, ty) only
involves a classical part, and reduces to the usual cohomology of 7" (with coefficients in endomorphisms
of the local system, which are canonically isomorphic to the ground field K). We claim:
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Proposition 5.21 Fort' —t > to, and for x € (K*)", the vertical Floer complex CF . (Tx(t"), Tx (1)) is
given by

(5-31) {H*(T",K) = H*(T",K)},

where the connecting differential s, which is defined by a weighted count of J—holomorphic sections
of W:Y — C over the region delimited by y; and y;, with incidence conditions on cycles in t, at —1

and ¢y ¢, is given by multiplication by Cé (t',1)g(x) € K for some nonzero constant Cé (t',t) depending
onlyont,t" and § = —(1/2m) val(x).

The first part of the statement is clear from the above description of the Floer complex CF* (T (t'), Tx(t));
the remaining part, namely showing that the differential s, is given by multiplication by g(x), relies on
an algebraic argument similar to the proof of Proposition 5.19 using the Leibniz rule. Thus, we first need
to establish a couple of lemmas (analogous to Propositions 5.14 and 5.15), before providing the proof.

We denote by 6 and 14" respectively the elements which correspond to 1 € H(T",K) in the left
and right summands of (5-31); given « € H*(T", K), the corresponding elements of the left and right
summands of (5-31) are denoted by & 8% =% and & 13, ~*. With this notation, we have:

Lemma 5.22 Assuming t' —t >ty and t"” —t’ > t¢, the Floer product
CFuen(Tx(t"), Tx (1)) ® CFye(Tx(t"), Tx (1)) — CFu(Tx (t"), Tx (1))
is as follows: for all a,a’ € H*(T",K),
@157 (@17 = (@ —a) 177,
(@871 @ 1571 = Clyr g (=) 877,
(@ 1571 (@ 8571 = Clyr gy (@ — ) 871,

(@871 (@' 85 ") =0,

' —t

C/

/
where C £/ 111

fur i g € K* depend only on t,t',t" and &€ = —(1/27) val(x).

Proof The proof is essentially the same as for Proposition 5.14: by considering the projection under
W:Y — C, we find that the only holomorphic discs contributing to the Floer product are either contained
in W~1(—1), or sections over one of the two triangular regions delimited by y;~, y;» and y,; in the latter
case, we use a deformation argument to shrink the triangular region to a single point and reduce to a count
within the fiber of W. Either way, things reduce to the Floer product on HF*(ty,ty) >~ H*(T",K),
which coincides with the ordinary cup product since there are no nonconstant holomorphic discs in (C*)”
—>t/t and Cg/;t”,t’—n
account for the symplectic area of a reference section (now chosen to lie at the same £—value as ty,

with boundary on tx. As in the proof of Proposition 5.14, the constant factors C é o

ie £ = —(1/2m) val(x)) over the appropriate triangular region of the complex plane, which turns out to
coincide with the amount of area swept in the deformation used to reduce to a single fiber. O
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Lemma 5.23 Assumet’ —t > to andt” —t’ > ty. The Floer product
CF(Tx(t"), Tx (1)) ® CFoer(Lo(t"), Tx(t')) = CFo(Lo(t"), Tx (1))

vanishes identically on elements of the form (« lﬁc/ ~1) or (a 8;/_” ) whenever « is a cohomology class of
positive degree, whereas

t'—t 1"t _ 1 t"—t t/—t ">t _ >t
L™y =Cepr e Mx I "Ex =€y ’
t/'—t /=t _ o~ t"—t /=t ">t _
8 ey =l 8y =0,
where Cé;t,,_)t,J, Cé’;t,/’t,_)l € K* depend only on ¢, t',t" and § = —(1/2m) val(x).

Proof The argument is again similar, reducing to the calculation of Floer products within the fiber
W=1(—=1) >~ (C*)", specifically the product

HF*(tx, tx) ® HF*(o(t"), tx) = HF*(Lo(1"), tx).

The vanishing for elements of HF™*(ty,ty) >~ H*(T",K) of positive degree then follows from the fact
that HF*(£o(t"), tx) has rank one and is concentrated in a single degree; whereas 1 € H(T",K) ~
HF(t, ty) acts by identity by cohomological unitality. |

Proof of Proposition 5.21 Given 7 and ¢ with t’—¢ > 1, choose t” so that t”” > ¢’ +¢;. The compatibility
of Floer products and differentials on vertical Floer complexes (the Leibniz rule) implies that

7 14 7 ’ 14 7
Sx(é);—)t)n; —t _8;—>t 'Sx(n; —t ) — 0’

which using Proposition 5.19 and Lemma 5.23 yields
sx (@) T = Gt ) g () 8T e T = Clly Ly, Ce 1) g () T
Using again Lemma 5.23 (and degree constraints), it follows that
528570 = (Cllyr )™ Cligr gy Cel@ 1) g(x) 157

Setting C{(t'.1) = (Cé’;t,,,,,_,,)_1 C;.

f.n sy Ce(t”.17), we rewrite this as
sx(82.71) = Cfl(t/’ 1) gx)1L,™!
whenever t’ —t > t, which is the desired result for the generators of H%(T",K).

To extend the result to higher-degree cohomology classes, we use the product formulas of Lemma 5.22:
given t' > t + tg, and choosing " > t’ + t¢, the Leibniz rule implies that

sr(@ 87 8 = (@8 e (8 ) = G ) g () (@8 1
= Ciyrsp Col",1) g() (@871,
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and hence

5x @87 = Clrpr st Chigryr CLA 1) () (@ 1577) = CL. 1) g (%) (@ 15770),

S -1
where the identity Cé(t’, 1) =Clhyn Cé;t”—)t/,

oa=1. O

e é (t”,1") follows from considering the special case

Given Propositions 5.18 and 5.21, the remaining step in the proof of Theorem 1.2 is a direct calculation
of the differential in (5-31), with the aim of showing that the Laurent polynomials f and g agree up to a
constant scaling factor.

5.6 Holomorphic sections of W with boundary on product tori

We now turn to the problem of explicitly determining the differential on the complex (5-31), ie counting
J—holomorphic sections of W:Y — C over the region delimited by y; and y;~, with boundary in the
product torus t, in each fiber. (In this section we use ¢’ and ¢” instead of ¢ and ¢’ to avoid notation
conflicts with the Novikov parameter).

By Proposition 5.21, the differential s, is given by multiplication by some element of K; thus it is enough
to determine the image of the generator of H%(7",K) (or equivalently, that of H"(T",K)); this amounts
to counting J—holomorphic sections whose boundary passes through some prescribed input point in
W~1(~1) (or output point in W~ (¢, ;) if we consider H" rather than H; or in fact a point anywhere
on the Lagrangian boundary condition, as the end result does not depend on this choice).

While our definitions involve a perturbation of the standard complex structure Jo near W ~1(0) in order to
achieve regularity of moduli spaces, actually counting discs in practice requires one to consider the limit
as J converges to the (nonregular) standard complex structure Jo. Under this limit, the J—holomorphic
discs contributing to the differential sx converge either to holomorphic discs (holomorphic sections of
W:Y — (), or to stable configurations consisting of a holomorphic disc (a section of W) together with one
or more rational curves contained inside the singular fiber W ~1(0). (This is a standard instance of Gromov
compactness for a C ®°—convergent sequence of almost-complex structures, cf [31, Theorem 5.3.1] for
the closed case; as usual when considering sections, it follows from positivity of intersection of the
nonvertical components with the fibers of W that any bubbles arising in the limit must be contained in a
fiber of W, hence in W~1(0).) Thus, the first step is to understand moduli spaces of holomorphic sections
of W bounded by Ty (t"") U Tx(t').

Proposition 5.24 Fort” —t’ > ty and x € (K*)", the homotopy classes of holomorphic sections of
W :Y — C with boundary on Ty (t") U Tx(t') are in one-to-one correspondence with the elements of Py,.
For each such class, the moduli space of sections consists of a single orbit under the action of T", and the
count of sections through any given point of t, C W~1(—1) is equal to one.

Proof Denote by S the region of the complex plane delimited by y;~ and y;. Since S contains the origin,
a holomorphic section of W:Y — C over S has intersection number one with Z = W~1(0) = Us Zas
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which is the union of the irreducible toric divisors of Y. Hence it must intersect exactly one of these,
say Zy for some a € Py, and be disjoint from Z, for all &’ # «. For fixed «, we are thus reduced to
studying holomorphic discs contained in Y, = Y \ Ua,#‘ Zy, the partial compactification of the open
stratum of the toric variety Y obtained by adding the open stratum of Z,.

Y, is biholomorphic to C x (C*)", and we choose such an identification where the first coordinate
is given by W = —z(©-0:1) "and the remaining coordinates (z1,...,z,) € (C*)" are given by toric
monomials, in such a way that product tori in the fibers W~1(c), ¢ € 3S correspond to standard product
tori in {c} x (C*)".

We parametrize holomorphic sections of Wy, : Yo — C over S by the first coordinate (ie W), so that the
domain is S, and we are reduced to finding holomorphic maps S — (C*)", w > (z1(w), ..., zx(w)),
which satisfy the appropriate boundary conditions over dS. Specifically, our boundary condition is
given by product tori in (C*)", ie the value of |z;| is prescribed at every point of the boundary. We
claim that solutions, if they exist, are unique up to the action of 7" on (C*)" by rotations. Indeed, if
zi, Zi : § — C* are both holomorphic and |z; (w)| = |Z; (w)]| for all w € 98, then the ratio Z; (w)/z; (w)
defines a holomorphic map from S to C*, taking values in the unit circle along d.5; the open mapping
principle thus implies that it is constant, ie there exists e’ 9 € ST such that Z; (w) = €' z; (w) forall w € S.
Thus the moduli space of sections in the given class consists of at most one 7" —orbit.

One approach to proving existence is to use complex analysis. For each i € {1,...,n}, the boundary
condition prescribes the value of log |z;| = Re(log z;) at every point of 0.5. Using the Riemann mapping
theorem to identify S with the unit disc, it is a classical result of Schwarz that, up to a pure imaginary
additive constant, there exists a unique analytic function log z; : int(S) — C (given by the Schwarz integral
formula) whose real part has a continuous extension and takes the prescribed values at the boundary of §;
see eg [7, Sections 4.6.3—4.6.4]. Because the given real boundary condition along the unit circle is Holder
continuous (even after pullback from S to the disc, see eg [33, Chapter 3]), the imaginary part Im(log z;)
(the harmonic conjugate of Re(log z;)) also has a (Holder) continuous extension to the boundary, given
by the Hilbert transform of the real part [19, Theorem III.1.3]. Exponentiating, we arrive at the desired
mapping z; : S — C*, and conclude that, up to the action of 7" by rotation of the coordinates of (C*)",
there is a unique continuous map w — (z1(w), ..., z,(w)) from S to (C*)" which is holomorphic over
the interior of S and satisfies the given boundary conditions.

An alternative approach to existence is to use the invariance of the count of holomorphic sections of W
upon deforming the given boundary condition to a product one, given by the same torus (in terms of the
coordinates z;) in all the fibers of W over dS; ie we modify the problem so that the prescribed value
of |z;| is the same at every point of 9§, rather than possibly varying from one point to another. (This
can viewed either as deforming the totally real boundary condition being imposed on the sections of W,
or as keeping the same Lagrangian boundary condition but modifying the coordinates and the complex
structure on Y, by rescaling each of zy, ..., z, by an amount which varies smoothly over S.) After this
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deformation, one is led to look for holomorphic maps from S to (C*)” such that |z;| is equal to a fixed
constant at every point of dS: in other terms, holomorphic discs (parametrized by S) in (C*)" with
boundary on a fixed product torus. By the maximum principle, the only solutions are constant maps, and
these are regular. Thus, in the deformed setting, the moduli space of sections consists of precisely one
T"—orbit, and the count of holomorphic sections through a given point is equal to one. Because of the
homotopy invariance of Floer-theoretic section-counting invariants under deformations, it follows that the
moduli space of sections for our initial problem is also nonempty, consisting of a single 7" —orbit, and
the count of sections through a given point is equal to one. m|

Remark 5.25 The argument can be simplified if we assume that £ = —(1/27) val(x) lies in the intersec-
tion of n of the subsets Sy, ,, v €V, defined by (4-11); since nonempty such intersections always exist,
and our comparison of f and g only requires us to determine the differential sy for x of arbitrary fixed
valuation, this simpler setting would in fact suffice for our purposes. When £ lies in the intersection of n
of the Sy,y, by Proposition 4.16 we can choose the toric monomials z1, ..., z, in the above argument in
such a way that they are all invariant under parallel transport along 95 at all points of t,. This implies
that the radii |z;| of the boundary tori remain constant all along 9., ie the boundary condition consists of
the same product torus in (C*)”" over each point of d.5; we can then directly classify the holomorphic
sections without appealing to complex analysis or to a deformation argument.

Each of the families of holomorphic sections identified in Proposition 5.24, representing a relative homol-
ogy class [Dy] € Ha (Y, Tx(t”) U Tx(t')), contributes to the Floer differential on CF.5. (Tx(¢"), Tx(t"))
with a weight

(5-32) weight([Dy]) = thipar® hol([0Dg]) exp(/ b) € A>o.
[Do]

In this formula, hol([0Dy]) denotes the holonomy of the local system along the boundary of D,
which requires some clarification. Since the local systems on Ty (z) and Ty (¢") are isomorphic over
Tx(t") N Tx(t") (canonically over W~1(—1), and in a preferred manner up to a constant factor over
W~(c;r ) using the T"—equivariant structure of ty), they can be glued into a local system on the
portion of Ty (¢") U Ty (") which fibers over dS. Noting that this subset of Ty (¢') U Tx(¢”) can be
deformed isotopically to a product torus in ¥, we choose the gluing at W~1(c;~ ;) in such a way that
the holonomy of the local system along a loop which deforms to an orbit of the last S'—factor of the
toric action (with moment map 7) is equal to identity. (Meanwhile, the holonomies along the first n circle
factors, within the fibers of W, coincide with those of t,.) With this choice in hand, we define hol([0D])
to be the holonomy of the local system on Ty (¢') U Ty (z”) along the boundary of D. Also, we denote
by b a representative of the bulk deformation class which is supported near W ~1(0) (so its pairing with
[Dg] is well-defined). Specifically, we choose the bulk deformation to be of the form

(5-33) b= > bydz,.
aePy
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where the constants by € A>¢ are coefficients to be determined later, and §z,, is a representative of the
cohomology class Poincaré dual to the divisor Z, supported in a small neighborhood of Z,. Since
[Dyg] has intersection number one with Z, and zero with the other components of W~1(0), we find that

exp(f[Da] b) = exp(by).

Proposition 5.26 Forall t” > t' 4 ty, @ € Pz and x € (K*)", there exists a nonzero constant K¢(t",t")
depending only on t’, t” and § = —(1/2m) val(x) such that the weight of a holomorphic section of
W :Y — C bounded by T (t") U Tx(t") and representing the class [D] is given by

(5-34) weight([Da]) = Ke(t”, 1) 17" @ x® exp(by).

Proof The portion of Ty (t”") U Tx(¢") which fibers over S can be deformed by an isotopy into a product
torus in Y (by deforming S to a disc), so Ha(Y, Ty (t") U Tx(t)) >~ Ho(Y, T"t1) ~ ZPZ (where the
latter isomorphism follows from standard facts in toric geometry). Concretely, this means that relative
homology classes are uniquely determined by their algebraic intersection numbers with each of the toric
divisors Z.

Let 1,0 € Pz be two lattice points which are connected by an edge in the subdivision % of P
determined by the tropicalization of the Laurent polynomial f (see Section 2), ie such that the toric
divisors Zy,, Zg, C Y intersect along an (n—1)—dimensional toric stratum Zy, «,. In terms of the moment
polytope Ay, Zy,q, corresponds to the codimension 2 stratum of points (&, ) where a1 and a2 both
achieve the maximum in the piecewise linear polynomial ¢, and

(5-35) n=e&)=(a,§) —v(ay) = {(a2.§) —v(az).

The stabilizer of the 7" *!—action on Y along Zy,4, is the subtorus spanned by the weights (—aq, 1) and
(—oa2, 1) —the generators of the two rays of the fan Xy which span the cone corresponding to Zg, o, , Or
equivalently, the normal vectors to the face (5-35) of Ay. Thus, we can define a 2—chain Dy, o, in Y, with
boundary in T (¢t") U Tx(t), by considering a path in the complex plane which connects some wy € 9.5
to the origin, and in every fiber of W over this path, a suitably chosen orbit of the S!-action with weight
(0p — a2, 0). We take these S !'—orbits to lie at moment map values which start at £ = —(1/2m) val(x)
over wy € dS (so that the boundary of our 2—chain lies in Ty (") U Tx(¢')), and end at a point (&g, 10)
which satisfies (5-35) over the origin (whence the S!—orbit collapses to a point by our above observation
on the stabilizer along Zy, o, ).

By comparing intersection numbers with the toric divisors of Y, we find that, for a suitable choice of
orientation, [Dy,a,] = [Das] — [De,]- Thus, since the weight formula (5-32) is manifestly multiplicative,
we conclude that

(5-36) weight([Dg,]) = weight([Dgy,a,]) - weight([Dqg, ]).
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On the other hand, the weight of Dy, «, can be calculated explicitly. Parametrizing this disc by a map
u: D? — Y and using polar coordinates p (along the path in the moment polytope Ay) and @ (along the
S1_orbits), and observing that w( -, dgu) = d({a; — a2, £)) by definition of the moment map, we have

1
[ o= [ o@uamndpas =2x [ antar - a0 dp = 2 ez o)
Dozlaz D2 0
Since & satisfies (5-35), {1 — a2, &) = v(a1) — v(az), so
/ o = (o —aq, val(x)) + 2mv (o) — 2mv (o).
DO[]O(2

Denoting by y = (¥1, ..., ¥n) the holonomies of the local system of t, along the various circle factors,
the holonomy along the boundary of Dy, q, is given by y¥! 792, Recalling that x; = pYalxi) Vi 1 we
conclude that the weight of Dy, 15

(5-37) weight([Dg,a,]) = YA flaa—ar,val(x))+27v(@2) =27 v (1) exp(ba, — ba;)

or—aq t2nv(¢x2)—2nv(a1)

exp(bg, — bay)-

In light of (5-36), and using connectedness of the 1-skeleton of the subdivision % (ie any two elements of

=X

Pz can be connected via a sequence of elements of Pz such that the above calculation can be applied to
consecutive terms in the sequence), this implies that for fixed ¢/, ¢”, x, the weight of D, is proportional to

(5-38) X% 2@ exp(by).

This is basically the desired formula (5-34), except we have not yet shown that the scaling constant
depends only on the valuation of x (and ¢, ¢”") rather than on x itself.

To show the constant only depends on & (and 7/, ¢t”"), we observe that for fixed £ = —(1/27) val(x), the only
role played by x is in determining the holonomy of the local system. Recalling that Ty (") U Ty (¢") (after
restriction to 9S) is isotopic to a product torus ty x S ~ T 1 in ¥, and noting that the boundary of Dy,
represents the class (—a, 1) in 71 (T (t”) U T (¢)) =~ w1 (T" 1) ~ Z" 1, we find that hol([0Dg]) = y ¢,
so that the dependence of the weight of Dy on x is indeed as in (5-38), and the scaling factor K¢ @, 1)
does not depend on the holonomy, ie it depends only on § = —(1/2) val(x) and not on x itself. |

We now return to the problem of counting J-holomorphic sections of W:Y — C with boundary on
Tx(t")U Tx(t"). As previously noted, when J converges to the standard complex structure Jy, the J—
holomorphic discs contributing to the differential (5-31) limit to stable curves consisting of a holomorphic
disc, representing one of the classes [D] for some o € Pz (by Proposition 5.24), and a (possibly empty)
configuration of rational curves contained in Z = W ~1(0), representing some homology class 8 € H,(Y)
(with [w] - B > 0 whenever 8 # 0).

Definition 5.27 For fixed ¢/, ” and £, and for each & € Pz and € H,(Y), we denote by n, g the
(signed) count of J-holomorphic sections of W (for generic J close to Jy) whose relative homology
class in Hy(Y, Tx(t') U Tx(t")) is equal to [Dy] + B, passing through a generic point of t, C W=1(—1).
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By considering the limit as J — Jo and using the classification of holomorphic discs in Proposition 5.24,
we see that every J-holomorphic section under consideration is in one of these homology classes, 14,0 =1
for all @ € Pz, and ng g = 0 for all B # 0 such that [w]- B < 0.

Remark 5.28 The invariance of counts of holomorphic sections under deformations of the Lagrangian
boundary condition implies that ny g is independent of ¢’, t” (as long as t” —t' > t9) and &; hence the
notation. However, our argument does not depend on it, so we will not elaborate further.

Since the weight of a section in the class [Dy] + B is given by
weight([Da] + ) = weight([Da]) 1“7 exp((b] - B).

we arrive at:

Proposition 5.29 The Laurent polynomial g of Propositions 5.18-5.21 satisfies

(5-39) cg(t",/)gm=Kg<r”,z/)§;z2””<“>x“exp(ba)(1+ > na,ﬂt[‘”l'ﬂexpab]-ﬂ)).
aEPy, BeH,(Y)
[@]-8>0

Proof This follows directly from a comparison of the weighted counts of sections which determine the
differential on (5-31) (the coefficient of 1% " in s, (8% ~*")) as given by Proposition 5.21 and by direct
calculation of ), g ngy g weight([Dg] + B). O

Corollary 5.30 There exists a constant C € K* such that

(5-40) g)y=C Y 2y exp(ba)(l—i- > ngp P exp([b]- ,8)).

acPy BeH,(Y)
[w]-8>0
Proof The key point is that, for any & € R”, the coefficients of a Laurent polynomial in K[xfﬂ, e, x,:fl]

are determined by its evaluation at points x € (K*)” with fixed valuation val(x) = —27&. Thus, comparing
the left- and right-hand sides of (5-39) for fixed &, t” and ¢/, we find that g(x) and the Laurent polynomial
appearing in the right-hand side coincide up to a constant factor. Incidentally, this also implies that the
ratio CE, (t",1")/Kg(t”,t') is a genuine constant independent of ¢/, ¢ and &, and that the power series
appearing as coefficients in the right-hand side are independent of ¢’, ¢” and &; in general this is slightly
weaker than asserting that the n, g themselves are independent of these choices. |

Remark 5.31 The power series in the right-hand side of (5-40) are also exactly those which appear in
expressions for the instanton-corrected superpotential for product tori in the toric Calabi—Yau variety Y
(cf eg [3; 11]), and more explicitly in terms of Gromov—Witten invariants in [12], where these quantities
are also interpreted as correction terms in the mirror map for the toric variety Y. Indeed, deforming
(a subset of) Ty (1)U Ty (¢") to a product torus in Y, it is apparent that the enumerative geometry problems
we consider here and those discussed in [3; 11; 12] are equivalent.
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Example 5.32 Let f(x) =12"x"!41+x,s0 H = f~1(0) consists of two points. Then Pz = {—1,0, 1},
@(€) = max(—§ — 1,0, §), and Y is isomorphic to the total space of 0(—2) — CP!. In this example,
the term in (5-40) corresponding to o = 0 (ie discs in ¥ which intersect the zero section CIP!) includes
a nontrivial contribution from g = [CP!], with n @=0,[CP'] = 1, whereas all the other ny g are zero;
cfeg [11, Example 5.3.1]. Hence, g(x) is proportional to

eh_|t2nx—1+eb0(1+t2ne[b]~[(C]P’l])+eb|x’

which matches f(x) when b; = b_; = 0 and €% (1 + ¢27¢~2%) = 1. See also [11, Section 5.3] for
examples where infinitely many ny g are nonzero. On the other hand, the coefficients ny g all vanish
when every rational curve in Y is contained in a toric stratum of complex codimension at least two.

Finally, we observe that, as in the above example, it is always possible by a suitable choice of the bulk
deformation class [b] € H2(Y, Ag) to ensure that the right-hand side of (5-40) matches the Laurent
polynomial f used to define the hypersurface H.

Proposition 5.33 Given any collection of unitary (ie valuation zero) elements a, € K* for all « € Py,
there exists a unique collection of unitary elements e®* € K*, with o € Py, such that

(5-41) el (1 + Z Na.,p t[“’]'ﬂe[b]'ﬂ) =ay forall a € Py.

BeH>(Y)

[w]-B>0
Proof We can solve for e’ order by order. Namely, the series > g la, ﬁt[“’]'ﬁ el®T8 consist of terms
whose valuations are positive and bounded below by some constant A > 0 (by Gromov compactness, the
symplectic areas of the rational curves which can appear in these expressions form a discrete set). Thus,
(5-41) implies that et =g, mod % Moreover, once ¢ is determined mod 7%V A for some N € N and
for all @ € Py, the power series appearing in the left-hand side of (5-41) are determined mod (VDA
and thus (5-41) determines e’ mod (VDA for all o € Py. O

Proof of Theorem 1.2 We equip ¥ with the bulk deformation class b = ) by8z,, where the coef-
ficients b, are determined by Proposition 5.33 so that the expression (5-40) agrees with the Laurent
polynomial f in (1-1) up to scaling by a nonzero constant. The result then follows from Proposition 5.18
and Corollary 5.30. |

6 Complete intersections

6.1 Geometric setup

In this section we describe the geometric setup for extending Theorem 1.2 to complete intersections
in (C*)™. Consider k Laurent polynomials

(6-1) fi= > aig i @x® eKxF . xF for 1<i <k,

n
a€P; 7
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where the finite subsets P; 7z C Z", the exponents v; (o) € R, and the coefficients a; o ensure that the
hypersurfaces H; = fi_l (0) satisfy the same “tropical smoothness” conditions as in Section 2, and where
additionally we assume that the tropical hypersurfaces associated to the tropicalizations

(6-2) @i (§) = max{{a, ) —vi(a) |a € Pi 7}

are in generic position relative to each other, ie all intersections between strata are transverse. Following
[3, Section 11], we define Y to be the Kihler toric (n+k)—fold defined by the moment polytope

(6-3) Ay ={E 1, ... ) ER"ORF | g > i (§) foralli =1,... k).

Dually, Y is also described by a fan £y € R" & R* whose rays are generated by the integer vectors
(—o,e;) forall 1 <i <k and o € P; 7, where eq,..., e is the standard basis of Zk.

For 1 <i <k, we define W;: Y — C to be the negative of the toric monomial with weight (0, ¢;) =
©,...,0,1,0,...,0), where the 1 is in the (n —i—i)th position. (Thus, the zero set of W; is the union of the
toric divisors of Y corresponding to the rays of Xy generated by (—«, e;), @ € P; 7, or equivalently, to the
facets of Ay on which n; = ¢; (£).) The candidate mirror to the complete intersection H = HyN---N Hy,
is then the Landau—Ginzburg model (Y, W; + - - - 4+ Wy ); however, our version of the (fiberwise wrapped)
Fukaya category of this Landau—Ginzburg model will involve Lagrangian submanifolds which are
simultaneously admissible for each of the projections W1, ..., Wx. Accordingly, we view our X monomials
as the components of a (toric) map

W =Wi,....W): Y - Ck.

We call (Y, W) the roric Landau—Ginzburg mirror to the complete intersection H determined by the
Laurent polynomials ( f1,..., fi).

In the course of our argument, we will also consider mirrors of partial intersections determined by a subset
of the Laurent polynomials f7, ..., f¢. Given any subset I C {1,...,k}, let Wy = (W;)jer: Y — CHI
denote the projection of W onto the subset of coordinates associated to 1. We also write I ={1,...,k}—1
for the complement of /.

Proposition 6.1 Given any cy € (C*Yk=11 the submanifold Y; = Wf_l(Cj) C Y equipped with the
restriction of Wy is isomorphic (as a toric Kéhler manifold together with an |I |-tuple of monomials) to
the toric Landau—Ginzburg mirror of the complete intersection determined by ( f;)ic7.

For I = @, this says that the fiber of W over a point of (C*)¥ is isomorphic to (C*)".

Proof Algebraically, W7:Y — C k=11 is a dominant toric morphism, induced by the morphism of fans
from Xy to the fan of C*¥~!!! induced by the linear map from R” @ R* to RK~11 given by projection to the
(n+i)™ coordinates for all i € I; we call these the components indexed by I. Thus, the fibers of Wy over
the points of the open dense orbit (C k=1 are all isomorphic, and described by the fiber of the morphism
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of fans over the trivial cone {0}, ie the intersection of Ty with the subspace R” & R! c R”" @ R¥;
or, dually, the projection of Ay from R” & R¥ onto R" @ RY given by forgetting the components 7;
for i € I. This agrees exactly with the toric variety Y7 obtained by applying our construction to the
complete intersection determined by the Laurent polynomials f; for i € I. Moreover, it is clear that the
monomials W; for i € I restrict from Y to Y7 in the expected manner (the toric weights match after
forgetting the components indexed by the elements of I).

Symplectically, we observe that the moment map py: Y — R” x R for the action of T” x T/ (the
subtorus which preserves the fibers of W) is obtained from the moment map w of the T"+k_action on ¥
by forgetting the components indexed by the elements of 7. The image of /7 is therefore

Ayir =& i)ier) | ni > @i(§) foralli e I} CR" @R’

Moreover, W7 maps every stratum of ¥ on which (C*)i acts freely (ie the strata where n; > ¢; (§) for all
i € I) onto the open stratum (C*yk=H1; this implies that every such stratum intersects WT_ 1(cf). In
particular, WT_ 1(clf) contains points in strata which map to the vertices of Ay|; under py, as well as
strata which map to its unbounded edges. By convexity of the moment map image (and given that there
are no other toric fixed points, hence no additional vertices), this implies that the restriction of py to
Wi_ L 7) is surjective onto Ay ;. Thus the Kihler form on the generic fiber of W7 has moment polytope
equal to Ay|y, as expected. |

Example 6.2 One case where the geometry of (¥, W) is particularly simple is when H is a product of
hypersurfaces in (C*)" fori =1,...,k, ie each Laurent polynomial f; involves a different subset of
the coordinates x1, ..., x,, where n = > _n;. In this case, ¥ ends up being the product of the mirrors
we associate to each hypersurface fi_l (0) C (C*)™, with W1, ..., W the (pullbacks of the) respective
superpotentials. In general Y is not a product, but the above considerations nonetheless make it possible
to argue in terms of subsets of the collection { f1, ..., fx}.

We can also describe the toric Kihler manifold Y in terms of toric reduction, as we have done in Section 2.2
for the case of hypersurfaces. We start from the product ]_[f;l CPiz equipped with the product of the
toric Kédhler forms described in Section 4.1. Denote by M the kernel of the surjective map

k
(6-4) [[2%% -z & 2"
i=1
which maps the generator corresponding to o € P; 7 to the element (—«,e;) of Z" @ Z¥, and by

Ty = M ® (R/Z) the corresponding subtorus of ] TPiz. Dualizing (6-4) we have a short exact

sequence
0—>R"k_L, HRP’FZ T Mg — 0,

where the first map is given by
L(SI’ (RS ) Sl’h Miyeees 77k) = (—(Ol, S) + ni)aeP,-_Z, 1<i<k-
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Viewing the exponents v; («) in (6-1) as an element (vy,...,vg) of [] RPi.z we consider the reduction
of [[CPiz by Ty at the level A = (v, ..., vg), and observe that

p )/ Ty Y,

since the moment polytope for the action of Trt+k ~ (]_[ TP isZ) /Tar on the reduced space is the
intersection of 71 (1) = Im(t) + (v1, ..., vg) with the nonnegative orthant in [T R¥.Z, which is naturally
identified with Ay .

The toric Kéhler manifold Y, its Kihler form wy, and W = (W1, ..., W) are thus obtained by Hamiltonian
reduction from the product of the spaces C¥i-z fori =1, ...k, each equipped with the toric Kéhler
form of Section 4.1 and the functions Wy ; = —[[,¢ P, Zial chiz - C. (More precisely: the pullback

of Wo,i to [] CPiz is Tps—invariant and descends to W;: Y — C.)

This description of (Y, W) as a reduction of the product of k “standard” Landau—Ginzburg models
(CFiz, Wo,i) corresponds to viewing H as the intersection of an n—dimensional algebraic subtorus
of the open stratum of ]_[f;l P (K*i.2) with a product of (| P;,z|—2)—dimensional pairs of pants, as in
Remark 2.3.

6.2 The fiberwise wrapped Fukaya category of (Y, W)

The construction of the partially wrapped Fukaya category W (Y, W) parallels that introduced in Section 3,
except we now consider properly embedded Lagrangian submanifolds of ¥ whose image under each of
the projections W; : Y — C agrees outside of a compact subset with a finite union of admissible arcs in
the complex planes; in fact, we shall only consider Lagrangians which fiber over product of U-shaped
arcs (the same arcs y; as in our main construction) with respectto W:Y — C k.

As before, we control the behavior of holomorphic curves by equipping Y with a compatible almost-
complex structure J making each of Wy, ..., Wi holomorphic outside of a neighborhood of the zero fiber
(as before, J will be taken to agree with the standard complex structure of Y except for a small perturbation
near | J; Wl._1 (0)), and by choosing a continuous weakly plurisubharmonic function z: Y — [0, o) which
is proper on the fibers of W ; in addition, we fix a nonnegative wrapping Hamiltonian H: Y — R. The
functions H and A are required to satisfy the same conditions as in Section 3 with respect to each of
Wi, ..., Wy, ie with respect to the whole horizontal distribution given by the symplectic orthogonals to
the fibers of W : Y — CK | thus ensuring that the maximum principle estimates of Section 3 (with respect
to & and to the various |W;|) continue to hold. Specific choices of & and H satisfying these requirements
are given below.

6.2.1 Parallel transport preserves fiberwise monomial admissibility The function / is again defined
as the maximum of the (rescaled) norms of certain monomials z¥ € G(Y) for v in a set of “extremal”
vectors V" (primitive integer vectors parallel to the unbounded edges of Ay),

(6-5) h = max{|z°|3® | vy e ¥},
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where §(v) is defined below in (6-8). As in the case of hypersurfaces, the key point which ensures that /
has all the required properties is that, at every point outside of a bounded subset of each fiber of W, any
monomial z? which achieves the maximum in (6-5) is invariant under parallel transport between the fibers
of W (Propositions 6.3 and 6.4 below). This property, which amounts to a compatibility of fiberwise
monomial admissibility with parallel transport, is proved similarly to the arguments in Section 4.2.

Given a vector v = (v,v10, ..., vk’o) € 7" @ Z*, the toric monomial z? defines a regular function on Y
if and only if
(6-6) V%= (—a,ej) v =0"0—q-9>0 foralll<i<kandoe Piz.

In fact z? vanishes to order v*® along the toric divisor of ¥ which corresponds to the ray (—«, ;) of the
fan Xy . Next we observe that the monomial

k .
[T TT =8 eo(ric?z)

i=la€P; z

is invariant under the action of Tjs and descends to z” € O(Y) under reduction.

For v € Z"** satisfying (6-6), i € {1,....,k}, and y > 0 small, we define a subset Sv,i,y of R" as in
(4-11), namely we set

(6-7) Sv,iy ={E€R" | (a0, &) —vi(a) < ¢ (§) — y||&]| for all @ € P; 7 such that vH% > 0.

The exact same argument as in the proof of Proposition 4.16 then shows:

Proposition 6.3 Given v € Z" ¥ satistying (6-6) and i € {1, ...k}, the monomial z* € O(Y) is locally
invariant under parallel transport between the fibers of the map W;: Y — C at every point z € Y whose
moment map coordinates (§, n) satisfy § € Sy ;,,, as well as lower bounds on |W;(z)| and on ||£]| as in
Proposition 4.16. O

The first consequence, setting v = (0, ¢;) and observing that S(g,),i,, = R” for all i # j, is that
W; = —z(%:¢/) i jnvariant under parallel transport in the direction of W} for all i # j. (Inspection of the
argument shows that in this case no restriction on |W;(z)| or on ||&|| is needed: the point is that the lift
of Wy to []C Pi.z only involves the variables z 7., all of which are preserved under parallel transport for
the i component.) This ensures that the parallel transports along the different factors in the base of the
fibration W : ¥ — C¥ commute with each other, and that the parallel transport of a Lagrangian in a fiber

of W over a product of arcs in C* is well-defined.

Next, to each U € Z", we associate an element of Z" 1% as follows: set v/-° = max{a -7 |« € P; 7},
and v = (4,00, ..., v50). Denote by Ay ; the set of a € P; z which achieve the maximum in the
definition of v*>?, or equivalently, those o for which v’** as defined by (6-6) is zero. Denoting by Ag,i
the polyhedral subset of R” where « achieves the maximum in ¢;, we observe that Sy ; ,, is nonempty

(for sufficiently small y) and is a retract of | < 4 . Ag,; obtained by removing those points which are

Geometry & Topology, Volume 28 (2024)



2906 Mohammed Abouzaid and Denis Auroux

too close to some other Ay ;, for some o’ ¢ Ay ;. We also note that the Ay,; appearing in this union are
those which are unbounded in the direction of v. Given this, we define ¥ to be the set of all v obtained by
this process from some v € Z" which is the primitive outward normal vector to any facet of the Newton
polytope P; of any of the Laurent polynomials f;, 1 <i < k. Equivalently and much more concisely, the
elements of " are the primitive tangent vectors to the unbounded edges of Ay.

For v € ¥ and v** as in (6-6), we set

k
(6-8) S(v) = Z a;](\;)) where d;(v) = Z v and N; = |Pi.z).
l

i=1 a€P; 7

For sufficiently small y > 0, and for all v € V', Sy, 1= ﬂf;l Sv.i,y 1s nonempty (it is a retract of the
union of those regions of R” delimited by the union of the tropical hypersurfaces of ¢, ..., ¢x which are
unbounded in the direction of v), and the union | J, ¢y Sy, covers the complement of a compact subset
in R”. We have the following analogue of Proposition 4.18:

Proposition 6.4 There exist positive constants Yo and K¢ such that, at every point z € Y at which
|W; (2)|? > (e®)Ni/Ni=1) for all i, and whose moment map coordinates (£, n) satisfy ||&|| > Ko|W (z)|2,
if vo € V" achieves the maximum in (6-5), then § € Sy, y,.

Proof Consider a point z € Y and its lift (z; o) € w ) ] CPiz Foreach i, let ai0.2,1 € Pz
correspond respectively to the smallest and largest |z; | (or equivalently, moment map coordinate ji; )
of all @ € P; 7. By Lemma 4.12(2), up to bounded constant factors, it holds that ; o, , ~ [W; (2)|?, while
Miei 1 ~ |Zi;q |2Vi . Bounding Mi,o; 1 — Mia; o in terms of |[£]] as in the proof of Proposition 4.18, we
find that (t;,q, ; ~ |I§|| and hence |z; o, | | ~ ||§]| 1/@Ni) yp to a bounded factor whenever ||£]| > |W; (z)|?.

We now proceed as in the proof of Proposition 4.18: if £ € Sy, then |z; o| satisfies a lower bound (4-17)

by a constant multiple of |z; 4, , | ~ ||€]| 1/@N0) for all @ € P; z — A; ;; here the constant depends on .

512

Hence, |z?| has a lower bound by a constant multiple of

£ /2N = |1g]5®),

where the constant again depends on y. Applying this for some fixed y = y; > 0 such that | J, ¢ Sv,y
covers the complement of a compact subset in R”, we find that 4(z) = max{|z*|"/*®) | v € ¥} is bounded
from below by a constant ¢(y;) times ||£|| (still assuming that ||£]| > |W|?).

Conversely, if § ¢ Sy, for y > 0 (now chosen much smaller than y1), then there exists some i and

o € Pj 7 — Aj; such that |z; o| satisfies the upper bound (4-19), which implies that |z°| is bounded by a

1/2Ni times ||£°®). Choosing y = yo sufficiently small, so that )/(} /@NiS(®) i¢ much

°]

constant times y

smaller than c(y1), this implies that |z 1/6() cannot achieve the maximum in (6-5). O
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Propositions 6.3 and 6.4 imply that 4 = max{|z?|*/5®) | v € ¥} is invariant under parallel transport
between the fibers of W outside of a compact subset of each fiber. This in turn implies, first, that perturbed
holomorphic curves satisfy maximum principles with respect to | W | and /4 as in Propositions 3.10 and 3.11,
and second, that we can construct admissible Lagrangian submanifolds of ¥ by parallel transport of
(monomially admissible) Lagrangian submanifolds of the fiber of W (ie (C*)™) over products of admissible
arcs.

6.2.2 The wrapping Hamiltonian We define the wrapping Hamiltonian H: Y — R as in Section 4.3:
the moment map coordinates of [] C%7-Z descend to real-valued functions ;4 on Y, fori =1,... .k
and @ € P; 7, given by

i =i — (. §) + vi(a).
We then define H: Y — R by

k
(6-9) H = Z( Z Mia—|Piz] m({m,a}aep,-,z)),

i=1 “a€P;z
where m is a smooth approximation of the minimum function as in Definition 4.20. Propositions 4.22
and 4.23 carry over with essentially the same proofs. To summarize:

Proposition 6.5 The wrapping Hamiltonian H only depends on (&1, ...,&,), and as a function of
these coordinates it is proper and convex. The flow generated by H preserves the fibers of W, and
within each fiber it preserves monomial admissibility with respect to the collection of monomials z%, for
v e€V: if £ C W~Y(c) is monomially admissible with phase angles arg(z®) = @y, for v € V, then its
image under the time t flow is monomially admissible at infinity with phase angles ¢y + t d(v), where

dw)=YF_ di(w) =Y, 4 v O

6.2.3 The fiberwise wrapped category As in Section 3 we first associate to (¥, W) a directed category
whose objects are a given collection of admissible Lagrangian submanifolds of ¥, whose images under
each of the projections W1y, ..., W; agree near infinity with some fixed collection of radial straight lines
in the complex plane, and their images under an autonomous flow L(z) = ¢’ p’ (L), where p’ is the lifted
admissible isotopy generated by applying the same autonomous flow p as in Section 3.3 to each factor
of CK, and ¢! is the flow generated by the wrapping Hamiltonian H . This geometric setup gives rise to
quasiunits and continuation maps with the exact same properties as in Section 3.4, and we again define
W (Y, W) to be the localization of the directed category with respect to the quasiunits.

Remark 6.6 Our construction of W (Y, W) is rather ad hoc, but it can be recast in the language of
monomial admissibility on Y, using the collection of toric monomials {z¥ | v € ¥} U {Wq,..., Wi}.
Indeed, our conditions on objects of W(Y, W) require each of these monomials to have locally constant
argument (equal to a prescribed phase angle, or a pair of possible phase angles in the case of W;) over
each end of the Lagrangian within a suitable subset of Y'; and the flow we consider has the effect of
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increasing the phase angles within the interval (—s, ) for each W;, and in an unbounded manner for z?,
ie we have removed the “stops” that monomial admissibility would normally place at each arg(z¥) = x.

Even though the appropriate notions have yet to be developed outside of the Liouville setting, one also
expects that monomial admissibility can be recast in the language of stops in the sense of [18] (see [25]
for an instance of this), or even better, wrapped Floer theory on a (nonexact) sector with sectorial corners,
in the spirit of [18, Section 12]. A rough candidate for the appropriate sector with corners is the subset
of Y consisting of those points where Re(W;) > —R for alli = 1,...,k, for some R > 0; however,
making the collection of hypersurfaces {Re(W;) = —R} fori =1, ..., k sectorial requires a modification
of the Kidhler form on Y.

6.3 The main theorem

As in Section 5.1, fix a properly embedded U-shaped admissible arc yg in the complex plane which crosses
the real axis at —1, and consider the admissible Lagrangian submanifold Lo C Y obtained by parallel
transport over ygo X - - X yo C CK of the real positive locus £o 2= (Ry)" in W~1(=1,...,—1) = (C*)".

Theorem 6.7 For a suitable choice of bulk deformation class b € H?(Y, Asy), the fiberwise wrapped
Floer cohomology ring HW* (Lo, Lg) is isomorphic to the quotient K[xlil, .. ,x,ﬂfl]/(fl, cos J1)s
ie the ring of functions of the complete intersection H . Hence, the derived category of coherent sheaves
of H admits a fully faithful quasiembedding into W (Y, W).

As in Section 5, the main step to calculate the fiberwise wrapped Floer cohomology HW™*(Lg, Lg) is to
determine the Floer complex of Lo(¢') and Lo(t) = ¢’ p' (Lo) for ¢’ — ¢ sufficiently positive. We start
by observing that L(¢) is obtained from £ () = ¢! (£o) by parallel transport over y; X - -+ X ¥y, where
vt = p’(yo) as in Section 5. Thus, for ¢’ —¢ > fg, the intersections of Lq(¢') and L¢(¢) lie in the fibers
of W above the 2% points (c1, ..., c;) € C¥, where each ¢; belongs to y; Ny = {—=1.co s}

For I C {1,...,k} we denote by c; € C¥ the point with coordinates ¢; = —1if i ¢ I and ¢; = ¢y if
i € I. We then find that, for ¢’ —t > 1o,

(6-10) CF*(Lo(t), Lo) = @ Ci'.ol1]),
Ic{1,...k}

where Cr(¢',t) = CF*(£y,—(t"),£1,+(t)) is the Floer complex of the fiberwise Lagrangians obtained by
intersecting Lo(¢') and Lo(¢) with W ~!(cy), and the grading shift by |/| comes from considering the
grading contributions of the phase angles of the arcs y; and y; in the various factors of C k Moreover, by
considering intersection numbers of holomorphic discs with fibers of W (outside a small neighborhood
of the coordinate planes), we find that the Floer differential maps each summand Cy(¢/, ¢) of (6-10) to
the span of the Cy/(¢',t) for I’ C I.
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Thus, the complex (6-10) carries a natural filtration (by |/ |); we can proceed as in Section 5 and calculate
HF*(Lo(t"), Lo(t)) as the cohomology of a “vertical Floer complex™ built from the fiberwise Floer
cohomology groups

H*(Cy(t',1)) = HF* (L1, —(t"). £1,4(1)),

together with the maps from H*(Cy(¢',1)) to H*(Cy/(¢',t)) for I’ € I induced by the relevant portions
of the Floer differential on (6-10), ie discs which are not contained within the fibers of W.

1o, v¥:0) the restriction of the monomial z to W~ 1(cy, ..., cx) ~

Observing that for each v = (v, v
(C*)™ is given by ]_[l_l( c,)”l 0 vl . z;,)”, the same calculation as in Example 5.5 shows that the

monomially admissible Lagrangian sectlons £7.—(¢") and L7 4 (¢) in W~ 1(cs) have slopes

o7—(t") = (t’d(v) - (Z vh 0) arg(cy ;) + 71)) ,

iel &V
1,40 = (1) = (07 ) areter) )
iel VeV
Because H is convex, for t' — ¢t sufficiently large (larger than some constant 71 > #¢)
(611 71"~ =10 = 1.40) = (=1 d(0) ~27 Y 01
iel VeV

is the slope of a convex Hamiltonian for all / C {1,...,k}, so that the results of Section 5.3 apply
to the Floer cohomology groups HF* ({7 —(¢), €1 +(t)). In particular, these cohomology groups are
concentrated in degree zero; since the differential on the vertical Floer complex has degree one, the only
nonzero connecting maps are those which take H%(Cy(t',t)) to Ho(Cyp/(¢',t)) for I’ C I, |1'| = |I|—1.
Writing 7 = I’ U {i}, we denote by s7; the relevant portion of the differential.

Next, we recall that for ¢’ —¢ >ty and I C {1,... .k}, HF°(¢; _(t"),€; +(t)) has a basis consisting of
action-rescaled Floer generators {} 4 _” , whose elements are indexed by the points of Py (t'—t) N 2z Z)",
where Pj(t' —t) is the polytope associated to the slope o7 (1’ —1) by (5-9). For I = & we also use the
notation ¢!~ = ¢4 >, Hence:

Proposition 6.8 For t’' —t > t1, the Floer cohomology HF*(L(t"), Lo(t)) is isomorphic to the coho-
mology of the vertical Floer complex

(6-12) CFA(Lo(t). Lo@)= @ HF (¢ _(t"). L1 4() ~ & K-¢7,)",

IC{l,..k} IC{1,...k}
peP; (') N2 Z)"

where the generators (! .0 "=t (in degree —|1|) correspond to intersections in W ~1(cy), rescaled by action
within the fiber; together with a differential which is a sum of maps

spit HFO(r—(t), L1+ () = HF(Upr —(t'), £/ 4 (1))
forall  =1'U{i}C{l,... k}.
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Since the projections W1y, ..., Wy : Y — C are holomorphic outside of a small neighborhood of the origin,
the open mapping principle implies that any J-holomorphic disc which contributes to the portion of
the Floer differential mapping Cy(¢',7) to Cy/(¢’,t) (I’ C I) is contained within a single fiber of W;
(over either —1 or ¢;/ ;) whenever i € 1" ori ¢ I, while fori € I —I' it is a section (except possibly near
the origin) of W;: Y — C over the bounded region delimited by y;- and y;.

Thus, in the case at hand, the contributions to the differentials s7 ; correspond to holomorphic discs which
are contained in a level set of Wy = (W), ;. Y — Ck=1. By Proposition 6.1, this fiber ¥;, equipped
with the restriction of W}, is isomorphic to the mirror of the hypersurface H; = fl._1 (0) considered in our
main argument. Moreover, the restrictions of Lo(¢") and Lo(¢) to (Y;, W;) are exactly the same sort of
fibered admissible Lagrangians we have considered in Section 5 — even though for /I’ # & the relevant
fiberwise monomially admissible Lagrangian sections differ from those previously considered by the
monodromy of Wj, around the origin for i’ € I’, as is manifest from the expression (6-11) for the slopes
o7(t’ —1t) and o7/(t' — t). Despite this minor difference, the core calculation of Section 5 applies to this
setting, and implies:

Proposition 6.9 Forall I =1'u{i} C {1,...,k}, the differential
st HFO (g, —(t), 41,4-(0) > HF*(Lpr (1), L1+ (1))
is, up to a nonzero multiplicative constant Cy ; (t', t) € K*, given by multiplication by a Laurent polynomial
gi(x) = Z cijxﬁeK[xfEl,...,x;—Ll]
PEPi 7z
with the same Newton polytope as f;. Namely, for p’ € P;(t' —t) N 2rxZ)",

/7 ’
s =Cri 0) Y gl ianp
DPEPizg

Moreover, equipping ¥ with a bulk deformation class b=, >" Py biadz, ,, where the 6z, , are

ia’

Poincaré dual to the irreducible toric divisors of ¥ and the coefficients b; o € Ao are determined as in
Proposition 5.33, ensures that g; = f; for all i.

Thus, denoting by K[(xl.il)] p the subspace of K[(xiil)] consisting of Laurent polynomials whose Newton

polytope is contained in (1/27) P, we have:

Proposition 6.10 For a suitable choice of bulk deformation class b € H?(Y, A >o), the Floer cohomology
group HF*(Lo(t"), Lo(t)) fort’ —t > t; is concentrated in degree zero and isomorphic as a vector space,
via 191’,/_” > xP, to the quotient

(6-13) K[ D] por—o / (AKIGTED by )+ + SKIGED Py -1 ) -
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The Floer product
(6-14) CFun(Lo(t"), Lo(t) ® CF(Lo(t'). Lo(t)) = CFu(Lo(t"), Lo(1))

can be determined as in Section 5, by observing that any contributing J-holomorphic disc projects under
W;: Y — C to either a single point or a triangular region of the complex plane delimited by y;~, yy
and y; (not enclosing the origin), and reducing to a calculation within the fiber of W. This yields an
analogue of Proposition 5.14:

Proposition 6.11 Fort” —t' > t; and t' —t > t1, the product (6-14) is given by
(6-15) g/t gttt L CLana gy 10T =2,
p2p 0 ifINJ #0,
forall I,J C{l,....k},pe Pr(t'—t)N(2nZ)" and p" € Py(t" —t') N 2nZ)", where Cr,j 7+ Is a
nonzero constant. In particular, for | = J = & we have

t'—>t t"—t’ _ 1" —t
(6-16) O, 70, =V, -
It follows from (6-16) that the cohomology-level product structure corresponds to multiplication of
Laurent polynomials on the quotient spaces (6-13).

Finally, the quasiunit e’ =" € HF®(Lo(t'), Lo(t)) is again given by ¢! ! = 19(’)/_”, by the same argument
as in Proposition 5.16. Thus, computing HW(Lg, Lo) as a colimit of the Floer cohomology groups
HF*(Lo(t"), Lo(2)) as t’ —t — oo amounts to taking the colimit of (6-13) under the naive inclusion
maps, and we arrive at

HW (Lo, Lo) ~K[xit', ... xEN/(fia ... fo),

which completes the proof of Theorem 6.7.

Remark 6.12 It is not a coincidence that the structure of the vertical Floer complex (6-12) matches that
of the Koszul complex which resolves i«O g . This can be understood using the same perspective as in
Section 1.3, given the interpretation of the Landau—Ginzburg models (Y7, Wy) for I C {1, ..., k} provided
by Proposition 6.1 and observing that for I = I’ LI {i } the categories W'(Y7, Wy) and W (Yy,, W;/) are
related to each other by cap and cup functors which correspond under mirror symmetry to the inclusion
and restriction functors between the derived categories of Hy =(");¢; fl._l (0) and Hj-.

Remark 6.13 The object Ly is expected to generate W (Y, W), which would imply that the embedding
of Theorem 6.7 is an equivalence. The argument should proceed by induction on k, using stop removal.
Namely, for / = I’ LI {i} it should follow from a suitable stop removal result (for the stop at W; — —o0)
that W (Y7, W) is the quotient of W (Y7, Wr) by the image of the cup functor from W (Yz/, Wys). On the
other hand, the category W' (Y7, Wj-) is expected to be trivial for I’ a strict subset of I; at least, SYZ
mirror symmetry suggests that (Y7, W) admits a B—side Landau—Ginzburg mirror whose superpotential
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has no critical points [3], which implies the triviality of its derived category of singularities. Thus, one

expects that W (Yy, Wr) is generated by the image under the cup functor of a generator of W (Y, Wy/);

the result then follows by induction on k.
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