Download this article
 Download this article For screen
For printing
Recent Issues

Volume 29, 1 issue

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Limits of manifolds with a Kato bound on the Ricci curvature

Gilles Carron, Ilaria Mondello and David Tewodrose

Geometry & Topology 28 (2024) 2635–2745
Abstract

We study the structure of Gromov–Hausdorff limits of sequences of Riemannian manifolds {(Mαn,gα)}αA whose Ricci curvature satisfies a uniform Kato bound. We first obtain Mosco convergence of the Dirichlet energies to the Cheeger energy, and show that tangent cones of such limits satisfy the RCD (0,n) condition. Under a noncollapsing assumption, we introduce a new family of monotone quantities, which allows us to prove that tangent cones are also metric cones. We then show the existence of a well-defined stratification in terms of splittings of tangent cones. We finally prove volume convergence to the Hausdorff n–measure.

Keywords
Gromov–Hausdorff convergence, Ricci curvature, Kato class, volume convergence
Mathematical Subject Classification
Primary: 53C21
Secondary: 53C23, 31C25, 58J35
References
Publication
Received: 24 April 2021
Revised: 14 September 2022
Accepted: 10 December 2022
Published: 21 October 2024
Proposed: Tobias H Colding
Seconded: Urs Lang, Gang Tian
Authors
Gilles Carron
Laboratoire de Mathématiques Jean Leray, UMR 6629
Université de Nantes
Nantes
France
Ilaria Mondello
Laboratoire d’Analyse et Mathématiques Appliquées, UMR CNRS 8050
Université Paris Est Créteil
Créteil
France
David Tewodrose
Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629
Université de Nantes
Nantes
France

Open Access made possible by participating institutions via Subscribe to Open.