Download this article
 Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
Orbit closures of unipotent flows for hyperbolic manifolds with Fuchsian ends

Minju Lee and Hee Oh

Geometry & Topology 28 (2024) 3373–3473
Bibliography
1 J Aaronson, An introduction to infinite ergodic theory, 50, Amer. Math. Soc. (1997) MR1450400
2 Y Benoist, H Oh, Geodesic planes in geometrically finite acylindrical 3–manifolds, Ergodic Theory Dynam. Systems 42 (2022) 514 MR4362901
3 Y Benoist, J F Quint, Random walks on projective spaces, Compos. Math. 150 (2014) 1579 MR3260142
4 A Borel, Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. 75 (1962) 485 MR0147566
5 B H Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245 MR1218098
6 M Burger, Horocycle flow on geometrically finite surfaces, Duke Math. J. 61 (1990) 779 MR1084459
7 F Dalbo, J P Otal, M Peigné, Séries de Poincaré des groupes géométriquement finis, Israel J. Math. 118 (2000) 109 MR1776078
8 S G Dani, G A Margulis, Values of quadratic forms at primitive integral points, Invent. Math. 98 (1989) 405 MR1016271
9 S G Dani, G A Margulis, Orbit closures of generic unipotent flows on homogeneous spaces of SL(3, ), Math. Ann. 286 (1990) 101 MR1032925
10 S G Dani, G A Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci. 101 (1991) 1 MR1101994
11 S G Dani, G A Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, I, from: "I M Gelfand Seminar" (editors S Gelfand, S Gindikin), Adv. Soviet Math. 16, Amer. Math. Soc. (1993) 91 MR1237827
12 N Değirmenci, Ş Koçak, Existence of a dense orbit and topological transitivity: when are they equivalent?, Acta Math. Hungar. 99 (2003) 185 MR1973093
13 S P Kerckhoff, P A Storm, Local rigidity of hyperbolic manifolds with geodesic boundary, J. Topol. 5 (2012) 757 MR3001312
14 D Y Kleinbock, G A Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. 148 (1998) 339 MR1652916
15 C Maclachlan, A W Reid, The arithmetic of hyperbolic 3–manifolds, 219, Springer (2003) MR1937957
16 A Marden, Hyperbolic manifolds : an introduction in 2 and 3 dimensions, Cambridge Univ. Press (2016) MR3586015
17 G A Margulis, On the action of unipotent groups in the space of lattices, from: "Lie groups and their representations" (editor I M Gelfand), Halsted (1975) 365 MR0470140
18 G A Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces, from: "Dynamical systems and ergodic theory" (editor K Krzyzewski), Banach Center Publ. 23, PWN (1989) 399 MR1102736
19 G A Margulis, G M Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math. 116 (1994) 347 MR1253197
20 F Maucourant, B Schapira, On topological and measurable dynamics of unipotent frame flows for hyperbolic manifolds, Duke Math. J. 168 (2019) 697 MR3916066
21 C McMullen, Iteration on Teichmüller space, Invent. Math. 99 (1990) 425 MR1031909
22 C T McMullen, A Mohammadi, H Oh, Horocycles in hyperbolic 3–manifolds, Geom. Funct. Anal. 26 (2016) 961 MR3540458
23 C T McMullen, A Mohammadi, H Oh, Geodesic planes in hyperbolic 3–manifolds, Invent. Math. 209 (2017) 425 MR3674219
24 C T McMullen, A Mohammadi, H Oh, Geodesic planes in the convex core of an acylindrical 3–manifold, Duke Math. J. 171 (2022) 1029 MR4402699
25 A Mohammadi, H Oh, Ergodicity of unipotent flows and Kleinian groups, J. Amer. Math. Soc. 28 (2015) 531 MR3300701
26 C C Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966) 154 MR0193188
27 S Mozes, N Shah, On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems 15 (1995) 149 MR1314973
28 H Oh, N A Shah, Equidistribution and counting for orbits of geometrically finite hyperbolic groups, J. Amer. Math. Soc. 26 (2013) 511 MR3011420
29 J G Ratcliffe, Foundations of hyperbolic manifolds, 149, Springer (1994) MR1299730
30 M Ratner, On Raghunathan’s measure conjecture, Ann. of Math. 134 (1991) 545 MR1135878
31 M Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991) 235 MR1106945
32 A W Reid, Totally geodesic surfaces in hyperbolic 3–manifolds, Proc. Edinburgh Math. Soc. 34 (1991) 77 MR1093177
33 T Roblin, Ergodicité et équidistribution en courbure négative, 95, Soc. Math. France (2003) MR2057305
34 N A Shah, Closures of totally geodesic immersions in manifolds of constant negative curvature, from: "Group theory from a geometrical viewpoint" (editors É Ghys, A Haefliger, A Verjovsky), World Sci. (1991) 718 MR1170382
35 N A Shah, Uniformly distributed orbits of certain flows on homogeneous spaces, Math. Ann. 289 (1991) 315 MR1092178
36 N A Shah, Unipotent flows on homogeneous spaces, PhD thesis, Tata Institute of Fundamental Research (1994)
37 D Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 171 MR0556586
38 D Winter, Mixing of frame flow for rank one locally symmetric spaces and measure classification, Israel J. Math. 210 (2015) 467 MR3430281
39 R J Zimmer, Ergodic theory and semisimple groups, 81, Birkhäuser (1984) MR0776417