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Holomorphic 1–forms on the moduli space of curves
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Since the 1960s it has been well known that there are no nontrivial closed holomorphic 1–forms on the
moduli space Mg of smooth projective curves of genus g > 2. We strengthen this result, proving that
for g � 5 there are no nontrivial holomorphic 1–forms. With this aim, we prove an extension result for
sections of locally free sheaves F on a projective variety X. More precisely, we give a characterization for
the surjectivity of the restriction map �D WH

0.F/!H 0.FjD/ for divisors D in the linear system of a
sufficiently large multiple of a big and semiample line bundle L. Then we apply this to the line bundle L

given by the Hodge class on the Deligne–Mumford compactification of Mg.

14H15; 32L10

Introduction

Let X be a n–dimensional smooth irreducible projective variety defined over an algebraically closed
field k. We will say that a vector bundle F over X is liftable with respect to a line bundle L (or L–liftable
in short) if there exists a positive integer m0 such that the restriction map

�D WH
0.F/!H 0.FjD/

is an isomorphism for any divisor D 2 jLmj and for m � m0 (see Definition 1.2). Surjectivity for m

large enough is not guaranteed in general: further positivity assumptions on L are needed. For instance,
F is L–liftable as soon as L is ample, by Serre’s criteria of vanishing and duality. One can furthermore
relax this up to .n�2/–ampleness (see [Sommese 1978b, Definition 1.3]). The first intent of this paper
is to characterize L–liftability for big and semiample line bundles. We recall that L is semiample if,
for some suitable d > 0, 'jLd j W X ! PH 0.Ld /� D PN is a morphism. Furthermore, L semiample is
.n�2/–ample if it has no divisors contracted to points by 'jLd j. We will show that, in the general case,
the divisors contracted to points play a crucial role in Theorem 1.3, which can be stated as:

Theorem A Let L be a big and semiample line bundle on X and let E be the divisor of X contracted to
points by 'jLd j for d large enough. Then a locally free sheaf F on X is L–liftable if and only if , for all
m> 0, the maps H 0.F/!H 0.F.mE// are surjective.
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The proof uses the theorem of formal functions [Hartshorne 1977, III.11]. This theorem holds for an
algebraically closed field, while the other result that we will present from Section 2 onward will essentially
be over the complex numbers. It is not surprising then that in the classical case, that is, when k is the
field of complex numbers, the above statement translates into a sort of concavity result. We borrow
the terminology from complex analysis and geometry (see for example [Andreotti 1963; Andreotti and
Grauert 1962; Sommese 1978a]) and say that F is L–concave if, for any divisor D 2 jLaj with a� 1 and
any open connected neighborhood U of D, the restriction map

�U WH
0.F/!H 0.FjU /

is surjective and therefore an isomorphism (see Definition 1.6). The open subset U, indeed, behaves in a
similar way to that of a concave set in an analytic space [Andreotti 1963].

We have the following (see Theorem 1.7):

Theorem B Let X be a smooth complex projective variety and let L be a big and semiample line bundle
on X. Then a vector bundle F on X is L–liftable if and only if it is L–concave.

In Section 2 we give examples of surfaces to add value to the above results. We investigate more precisely
the cotangent bundle �1

S
of a smooth projective surface S and show that such a sheaf can be either

L–concave or not with respect to a big and semiample line bundle L. We furthermore raise some questions
about surfaces in the Noether–Lefschetz locus of P3 (see Question 2.5). The importance of the cotangent
bundle in this paper is much deeper and will appear evident in a moment.

We are aware, also in view of the results of [Totaro 2013; Ottem 2012], that it could be really interesting
to drop the assumption of semiampleness. This seems to us technically difficult at the moment and not
necessary to tackle the problem that motivated all these studies.

Let us introduce our motivating problem. Let � W C! B be a smooth holomorphic family of compact
Riemann surfaces of genus g. During the preparation of [Biswas et al. 2021], Indranil Biswas explained
to the second author of this article that C1–families of projective structures on Ct D �

�1.t/, with t 2 B,
are in one-to-one correspondence with x@–closed C1 .1; 1/–forms on B with fixed cohomology class,
modulo holomorphic .1; 0/–forms of B. For details, see [Biswas et al. 2021, Section 3]. He then raised
the problem of the existence of global holomorphic forms on Mg, the moduli space of compact Riemann
surfaces, that is, of smooth complex projective curves, of genus g.

It is well known, at least since [Mumford 1967], that there are no closed holomorphic 1–forms on Mg,
and a proof of this will be outlined in Section 3. We could not find any result in the literature concerning
nonclosed holomorphic forms. Our result, which can be seen as a concavity result, is the following (see
Theorem 3.1):

Theorem C Let Mo
g �Mg be the smooth locus. Then , for g � 5, Mo

g has no holomorphic 1–forms; that
is , H 0.�1

Mo
g
/D 0.
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Holomorphic 1–forms on the moduli space of curves 3003

The proof of this uses the Deligne–Mumford compactification MDM
g and the Satake map x� WMDM

g !ASat
g .

Since MSat
g WD x�.M

DM
g / is a projective variety, we intersect MSat

g with 3g � 5 and 3g � 4 suitably general
hyperplanes, respectively. By taking the inverse image on MDM

g , we reduce our problem to curves and
surfaces in MDM

g . We call these, respectively, H–surfaces and H–curves. It is easy to show that, for g > 3,
the general H–curve is contained in Mo

g and a general H–surface intersects the boundary of MDM
g only

on �1, the locus of stable curves with an elliptic tail. We apply Theorem 1.3 to a general H–surface S

and LD OS .C /, with C a general H–curve contained in S. Using the fact that the contracted divisor is
exactly E D�1\S, we show that �1

S
is L–liftable and H 0.�1

S
/D 0.

We strengthen the above result by proving the following theorem, which has the flavor of a concavity
result (see Theorem 3.10):

Theorem D Let C be a H–curve and let U � Mo
g be a connected open neighborhood of C for the

classical topology. Then , for g � 5, H 0.�1
U
/D 0.

Our last result, contained in Section 3.4, is an extension of Theorem 3.1 to the case of moduli of marked
curves. More precisely, if Mo

g;n is the smooth locus of Mg;n, we have the following (see Theorem 3.11):

Theorem E Let g � 5. Then H 0.�1
Mo

g;n
/D 0, for all n� 0.

The proof of Theorem E is straightforward, but uses the extra ingredient of the infinitesimal variation of
Hodge structures. We would also like to mention that the existence of possibly nonclosed holomorphic
forms in a neighborhood of a compact curve plays a subtle role in the infinitesimal variation of its periods
[Pirola and Torelli 2020; González-Alonso et al. 2019; González-Alonso and Torelli 2021; Favale and
Torelli 2017]. Similar results should hold at least for many families of curves; for instance, the case of
smooth plane curves is treated implicitly in [Favale et al. 2018; Pirola and Torelli 2020].

As a remarkable consequence, Theorems C and E solve the corresponding problems at the level of moduli
stack of curves (possibly with marked points), by interpreting Mo

g;n as an open subset of the stack.

Corollary For g � 5, the moduli stack of curves with n� 0 marked points has no holomorphic 1–forms.

To conclude, the most interesting problem arising from our result would probably be to consider holomor-
phic p–forms on the moduli space of curves. The methods used for 1–forms seem to us insufficient at the
moment to deal with these more general cases.
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1 Surjectivity of restriction maps

Throughout this section, X will be a smooth projective variety of dimension n� 2 over an algebraically
closed field k. For any big and semiample line bundle L on X, let d0 2N be a positive integer such that,
for any d � d0, the morphism

 jLd j WX ! PH 0.Ld /� D PNd

is birational onto its image and the map jLd j WX! jLd j.X / does not depend on d . We set Y D jLd j.X /,
 WX ! Y the induced morphism, E �X the divisor contracted to points and Ei the connected divisor
contracted to the point pi . Notice that, in particular, the divisor E does not depend on d .

Remark 1.1 Notice that LD  �.L0/, where L0 is an ample line bundle on Y. Indeed, by assumption,
the map induced by Ld and LdC1 are the same and so Ld D  �OPNd .1/jY for any d � d0. Therefore,
LD LdC1˝L�d D  �.OPNdC1 .1/jY ˝OPNd .1/

�1jY /, as claimed.

Let F be a locally free sheaf on X. For a large enough, consider Da 2 jL
aj and take the short exact

sequence induced by OX .�Da/� OX twisted with F,

(1) 0! F.�Da/! F! FjDa
! 0:

Definition 1.2 We say that F is L–liftable if the map

(2) �a WH
0.F/!H 0.FjDa

/

induced by (1) is an isomorphism for all a large enough and any Da 2 jL
aj.

Consider also the short exact sequence

(3) 0! F! F.mE/! F.mE/j
mE
! 0:

This section is dedicated to proving the following theorem:

Theorem 1.3 F is L–liftable if and only if , for m � 0, the map �m WH
0.F/!H 0.F.mE// induced

by (3) is surjective.
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Observe that injectivity holds as soon as a is large enough since H 0.F.�Da//D 0. Hence, L–liftability
is a property concerning the surjectivity of that map. We thus have to study the injectivity of the
map H 1.F.�Da//!H 1.F/, which is equivalent, by Serre duality, to the surjectivity of H n�1.E/!

H n�1.E˝La/, where we write ED F�˝!X . We first compute H n�1.E˝La/.

Lemma 1.4 For a large enough , H n�1.E˝La/'H 0.Rn�1 �E/. Moreover , GDRn�1 �E is a sum
of skyscraper sheaves Gi supported on the images pi of the divisors Ei contracted to points by  .

Proof Recall that L D  �.L0/ with L0 ample, as observed in Remark 1.1. Applying the projection
formula, we have

Rp �.E˝La/DRp �.E˝ 
�.L0/a/DRp �.E/˝ .L

0/a:

As a is large enough, we can apply Serre’s criterion to obtain

H i.Rp �.E˝La//DH i.Rp �.E/˝ .L
0/a/D 0

for i>0 and any p. Then all terms in the Leray spectral sequence are zero except for H 0.Rn�1 �.E˝La//,
which is mapped to zero by the differential. So we get the isomorphism

H n�1.E˝La/'H 0.Rn�1 �.E˝La//:

Consider the sheaf G D Rn�1 �.E˝La/. If y 2 Y is different from pi for all i , then the fiber of  
over y is a subvariety of X of codimension at least 2. Hence, the stalk of G in y is 0. This proves also that
G is a sum of skyscraper sheaves Gi with support on the points pi . But now LjEi

D . �L0/jEi
D OEi

,
so GDRn�1 �.E˝La/DRn�1 �E.

Observe now that, for a�d0, for all Da2jL
ajwe have F.mE/jDa

'FjDa
. Indeed, every Da is the inverse

image of a hyperplane and so the general Da is disjoint from E. Therefore, ODa
.mE/' ODa

. Notice
that we can conclude the same for all Da by the seesaw theorem. Thus, using the map OX .�mE/ ,! OX ,
the short exact sequence (1) and its twist by OX .mE/ for m� 0 fit into the commutative diagram

(4)

0 // F˝L�a //
� _

��

F
�a

//
� _

��

FjDa

'

��

// 0

0 // F.mE/˝L�a // F.mE/ // FjDa
// 0

which induces in cohomology

(5)

H 0.F˝L�a/
� � //

� _

��

H 0.F/
�a
//

� _

�m

��

H 0.FjDa
/ //

'

��

H 1.F˝L�a/
�a
// H 1.F/

H 0.F.mE/˝L�a/
� � // H 0.F.mE//

�0a
// H 0.FjDa

/
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Let ��m and ��a be the maps obtained from �m and �a by Serre duality, respectively. Then ��m fits into the
following exact sequence induced by OX .�mE/ ,! OX twisted by E:

(6) � � � !H n�1.E/
ım
�!H n�1.EjmE/!H n.E.�mE//

��m�!H n.E/! � � � :

We summarize two results which stem from the above discussion in the following lemma:

Lemma 1.5 The following equivalent conditions hold :

(1) The surjectivity of �a is equivalent to the surjectivity of ��a WH
n�1.E/!H n�1.E˝La/.

(2) The surjectivity of �m is equivalent to the surjectivity of ım WH n�1.E/!H n�1.EjmE/.

Proof of Theorem 1.3 Assume first that �a is surjective for a� 0. We prove that �m is surjective for
any m> 0. By diagram (5),

H 0.F/

�m

��

�a
// H 0.FjDa

/

'

��

H 0.F.mE/˝L�a/
� � // H 0.F.mE//

�0a
// H 0.FjDa

/

As �a is surjective, also �0a ı �m is surjective. But now the kernel of �0a is H 0.F.mE/˝L�a/ and it is
trivial for a large enough. Hence �m is surjective.

Let us now prove the other implication. Assume that �m is surjective for any m> 0. We prove that �a is
surjective for a�0. Equivalently, by Lemma 1.5, it is enough to prove that ��a WH

n�1.E/!H n�1.E˝La/

is surjective. By Lemma 1.4, we can write H n�1.E˝La/DH 0.Rn�1 �E/D
L

i H 0..Rn�1 �E/pi
/

because .Rn�1 �E/pi
is a skyscraper supported on the points pi that are images of contracted divisors

and so the map ��a from Lemma 1.5, up to isomorphism, is

(7) ��a WH
n�1.E/!

M
i

H 0..Rn�1 �E/pi
/:

To prove the surjectivity of (7), we use the machinery of inverse limits and the theorem of formal functions
(see [Grothendieck 1961, (4.1.5), (4.2.1); Hartshorne 1977, III, Theorem 11.1]). This theorem gives the
isomorphisms

.Rn�1 �E/bpi
' lim
 ��

H n�1.EjkEi
/

and defines then a map

(8) y��a WH
n�1.E/!

M
i

lim
 ��

H n�1.EjkEi
/:

We will prove that y��a is surjective and that this implies that ��a is surjective.

To be more explicit, consider the following two inverse systems of k–vector spaces B and C. The first
one, BD .Bk/k2N , is the constant inverse system with Bk DH n�1.E/ and maps bk D id WBk !Bk�1

Geometry & Topology, Volume 28 (2024)



Holomorphic 1–forms on the moduli space of curves 3007

for all k. In order to define the second one, CD .Ck/k2N , we set Ck DH n�1.EjkE/ and we construct
the maps ck W Ck ! Ck�1 as follows. Consider for any k � 1 the commutative diagram

(9)

0 // E.�kE/ //
� _

��

E //

id
��

EjkE
//

c0
k

��

0

0 // E.�.k � 1/E/ //

����

E // Ej.k�1/E
// 0

E.�.k � 1/E/jE

where the two rows are defined by OX .�lE/� OX twisted with E for l D k and l D k � 1, respectively,
the first column is given by OX .�E/� OX , the second column by the identity and the map c0

k
in the third

column is that one that makes the diagram commutative. As the vertical arrow in the first column is an
injection and that in the second column is the identity, c0

k
is surjective and its kernel is isomorphic to

E.�.k � 1/E/jE . Hence, the last column induces the exact sequence

(10) � � � !H n�1
�
E.�.k � 1/E/jE

�
!H n�1.EjkE/

ck
�!H n�1.Ej.k�1/E/! 0;

where the last 0 follows as E.�.k � 1/E/jE is supported on a divisor. So the maps ck are epimorphisms.

Now we want to prove that there is a surjection between the limits of the inverse systems B and C induced
by the morphism ı D .ım/m2N WB! C, where

(11) ım WH
n�1.E/!H n�1.EjmE/

is the morphism in Lemma 1.5. These are surjective for m � 0 by Lemma 1.5, since, by assumption,
�m WH

0.F/!H 0.F.mE// is surjective for m� 0. In particular, we have a surjective map between the
limits

(12) H n�1.E/D lim
 ��

B � lim
 ��

CD lim
 ��

H n�1.EjkE/:

Observe that lim
 ��

H n�1.EjkE/D
L

i lim
 ��

H n�1.EjkEi
/. By [Hartshorne 1977, III, Proposition 8.5 and

Theorem 11.1], the vector space H n�1.EjkEi
/ has a natural structure of an OY;pi

–module, which is
compatible with the structure of a k–vector space. Thus we can apply the theorem of formal functions
(see [Grothendieck 1961, (4.1.5),(4.2.1); Hartshorne 1977, III, Theorem 11.1]) to Rn�1 �E to conclude
that

(13) .Rn�1 �E/bpi
D lim
 ��

H n�1.EjkEi
/D lim
 ��

C:

Using (12) and (13), one can define the morphism

y��a WH
n�1.E/!

M
i

.Rn�1 �E/bpi

in (8), which is surjective by construction.
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3008 Filippo Francesco Favale, Gian Pietro Pirola and Sara Torelli

In order to conclude that

��a WH
n�1.E/!

M
i

H 0..Rn�1 �E/pi
/

is surjective, notice that .Rn�1 �E/bpi
is naturally isomorphic to H 0..Rn�1 �E/pi

/. Indeed, one has

.Rn�1 �E/bpi
D .Rn�1 �E/pi

˝yOpi
D .Rn�1 �E/pi

˝Opi
D .Rn�1 �E/pi

DH 0..Rn�1 �E/pi
/;

where the second equality follows from the isomorphism yOpi
' Opi

(which holds since Opi
is Artinian)

and the last equality follows since the sheaf is supported on the point.

1.1 A concavity result

From now on we assume kDC. We will prove a result, which is of an analytic kind, by applying the
algebraic results stated in Theorem 1.3. Let L be a line bundle on a smooth projective variety X of
dimension n. Motivated by the classical notion of concavity (see [Andreotti 1963; Andreotti and Grauert
1962; Sommese 1978a]), we give the following definition:

Definition 1.6 We say that a locally free sheaf F on X is L–concave if, for any D 2 jLaj with a� 1

and any open connected neighborhood U of D with respect to the analytical topology, the restriction map
gives the equality H 0.F/DH 0.FjU /.

Theorem 1.7 Let L be a big and semiample line bundle. Then a locally free sheaf F is L–liftable if and
only if F is L–concave.

Proof Assume first that F is L–liftable. Take D 2 jLaj and let U be an open connected neighborhood
of D with respect to the analytical topology. Since F is L–liftable, there is m0 2N such that the restriction
map induces the isomorphism H 0.F/'H 0.FjmD/ for all m �m0. In particular, the restriction map
induces isomorphisms H 0.Fjm0D/'H 0.Fj.m0Ck/D/ for k � 0. We have to show that the restriction
H 0.F/!H 0.FjU / is surjective. Fix a section ! 2H 0.FjU / and let !m 2H 0.FjmD/ be its restriction.
If ˛ 2H 0.F/ is the lift of !m0

, then, for all m�m0, ˛jU �! 2H 0.FjU / restricts to zero in H 0.FjmD/.
Thus, the series expansion of ˛jU � ! in a local coordinate neighborhood of the generic point of U

vanishes. Therefore, since U is connected, ˛jU �! D 0.

Now assume that F is not L–liftable. Since L is big and semiample, by Theorem 1.3 there is a nonzero
effective divisor E contracted by 'jLd j for d � 0, and a section ˛ 2 H 0.F.mE// nH 0.F/ for some
integer m > 0. Set U D X nE and D 2 jLd j such that D \E D ∅. Then U is an open connected
neighborhood of D. By construction, the restriction ˛jU defines a section of H 0.FjU / that cannot be
extended to H 0.F/.
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2 Examples in dimension two

In this section we analyze Theorem 1.3 when the variety is a surface S over an algebraically closed field
of characteristic 0 and FD�1

S
is its cotangent bundle. Theorem 1.3, in this framework, can be restated

here as follows:

Let S be as surface and let L, and E be as in Theorem 1.3. Then �1
S

is not L–liftable if
and only if there exists m> 0 such that h0.�1

S
.mE// > h0.�1

S
/.

We will give examples of surfaces S for which �1
S

is L–liftable and cases for which it is not.

2.1 The nonliftable case: projective bundles over curves and coverings

We will use well-known results about projective bundles. The reader can refer to [Hartshorne 1977,
Section V.2] for details. Let B be a smooth projective curve of genus g � 2. We fix a globally generated
line bundle M of degree d > 0 with h1.M / > 0. Then one has 0 < d � 2g� 2 and d D 2g� 2 if and
only if M D !B . We can consider the vector bundle VD OB˚M�1 on B. It is the only decomposable
normalized1 vector bundle of rank 2 on B such that c1.V/DM�1. Let S D P .V/ f

�! B and consider
the section � W B! S induced by V � M�1. Its image is an effective curve E which is isomorphic
to B via � . Moreover, by construction, if N is a line bundles on B, then f �.N/jE corresponds to N via
� . In particular,

OE.E/D f
�.M�1/jE

and so E2D�d . Set LD OS .E/˝f
�M and take H 2 jLj. Notice that, by construction, OE.H /D OE ,

so H �E D 0.

Proposition 2.1 The line bundle L is big and jLj is basepoint-free. Moreover , E is contracted by 'jLj
and �1

S
is not L–liftable.

Proof Let p 2 S. Since jM j is basepoint-free by assumption and ECjf �M j is a subsystem of jLj, if
p is a basepoint of jLj, then necessarily p 2E. On the other hand, by the projection formula,

f�.OS .E//D V; f�.OS .H �E//DM; f�.OS .H //D V˝M;

so

H 0.OS .H �E//DH 0.f �M /'H 0.M /; H 0.OS .H //'H 0.V˝M /'H 0.OB/˚H 0.M /:

Hence, from the exact sequence

(14) 0!H 0.OS .H �E//!H 0.OS .H // ˛
�!H 0.OE.H //!H 1.OS .H �E//! � � � ;

1Recall that a vector bundle E on a curve B is normalized if h0.E/ ¤ 0 and, for all line bundle M of negative degree,
h0.E˝M /D 0.
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one has that ˛ is surjective since we have shown that H 0.OS .H �E// has codimension 1 in H 0.OS .H //

and H 0.OE.H //DH 0.OE/ is 1–dimensional. This also shows that there exists a section s of LDOS .H /

that is not zero at any point of E. Hence jLj is basepoint-free, as claimed. This also shows that H is nef
and, since H 2 D d > 0, we have that H is big. As observed before, H �E D 0, so the morphism 'jLj

contracts E.

We have R1f�OS D 0 since the fibers of f are projective lines. Since S is ruled, h0.�1
S
/D g. Hence, in

order to show that �1
S

is not L–liftable, it is enough to show that h0.�1
S
.E// > g. Consider the relative

cotangent sheaf �1
S=B

. It is a line bundle on S such that

�1
S=B D !S ˝f

�!�1
B D OS .�2E/˝f �M�1

D OS .�H �E/:

If we twist the cotangent sequence by E, we obtain

0!H 0.OS .E/˝f
�!B/!H 0.�1

S .E//!H 0.�1
S=B.E//DH 0.OS .�H //D 0

and so H 0.�1
S
.E//'H 0.OS .E/˝f

�!B/. Then, as f�OS .E/D V, we can write

h0.�1
S .E//D h0.!B/C h0.!B˝M�1/D gC h1.M /:

As h1.M / > 0 by assumption, we have proved the claim.

Now we want to produce other examples for which the liftability property of the cotangent sheaf does not
hold. Let S be as before and consider a generically finite projective morphism � W yS ! S such that the
branch divisor D is smooth and different from E. Set yE D ��E, yH D ��H and yLD ��L.

Proposition 2.2 The line bundle yL is big , jyLj is basepoint-free and '
jyLj

contracts yE. Moreover , �1
yS

is
not yL–liftable.

Proof Since � is surjective and generically finite, yL is big and the linear system jyLj is basepoint-free.
Since �� commutes with the intersection product, 0D ��.H �E/D ��.H / ���.E/D yH � yE, so yE is
contracted by '

jyLj
. As the branch divisor of � is different from E, if � 2H 0.�1

S
.E// nH 0.�1

S
/, then

��� 2H 0.�1
yS
.E// nH 0.�1

yS
/. This proves that �1

yS
is not yL–liftable.

We conclude this subsection by constructing examples of cyclic covering of any S as before. These give
elliptic fibrations and surfaces of general type. We will use some results about cyclic coverings which
can be found in [Barth et al. 1984, Section I.17].

Recall that L is basepoint-free. Then, for each n� 1, there exists a smooth irreducible curve Cn 2 jL
nj

by Bertini’s theorem (see [Lazarsfeld 2004, Theorem 3.3.1]) and using that 'jLj.S/ has dimension 2.
Hence, for all n� 1, we can construct a cyclic covering � W yS! S of degree n with branch Cn. Since Cn

is smooth and it does not intersect E for all n, we can apply Proposition 2.2 in order to prove that �1
yS

is
not yL–liftable.
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Proposition 2.3 Consider the cyclic coverings above with branch Cn. Then:

(a) For all n� 1, Of D f ı� is a fibration.

(b) The general fiber of Of is smooth of genus 1
2
.n� 1/.n� 2/.

(c) yS is an elliptic fibration for nD 3 and is canonically polarized for n� 4.

Proof (a) The line bundle L restricted to the fibers of f has positive degree (more precisely, H �F D 1)
and

Of�O yS D f�.��O yS /D f�

� n�1M
kD0

L�k

�
D

n�1M
kD0

f�.L
�k/D f�OS D OB:

Hence Of is proper and surjective and has connected fibers as well, ie it is a fibration.

(b) The general fiber F of S intersects Cn transversally in nH �FDnE �FDn points, so yFD��1.F / is a
covering of F totally ramified on n points and unramified outside these n points. From Riemann–Hurwitz,
we obtain that the genus of the general fiber yF of Of is

g. yF /D 1
2
.n� 1/.n� 2/:

Notice, in particular, that g. yF /D 1 if nD 3.

(c) By (b), yS is an elliptic fibration for nD 3. Assume now n� 4. We want to show that ! yS is ample.
As yS is a cyclic covering of S of order n, we have ! yS D �

�.!S ˝Ln�1/. Since

!S ˝Ln�1
D OS ..n� 3/E/˝f �.!B˝M n�2/;

by [Hartshorne 1977, Section V.2, Proposition 2.20] we have that !S ˝Ln�1 is ample as soon as n� 4.
Then, since � is finite and surjective, ! yS is ample and yS is canonically polarized.

2.2 The liftable case: surfaces in the Noether–Lefschetz locus

For this example we restrict to the case k D C. We analyze some surfaces S in P3 with �1
S

that is
L–liftable for a suitable big and semiample line bundle L. In order to find interesting examples one needs
to consider surfaces in the Noether–Lefschetz locus as, otherwise, all big line bundles on S would be
multiples of the hyperplane class (see [Voisin 2003, Chapter I, Section 3.3; Lopez 1991] for details).

More precisely, S will be a very general surface in the Noether–Lefschetz locus of sextic surfaces which
contains a general quartic plane curve E. These surfaces have Picard rank 2 and NS.S/ ' Pic.S/ is
spanned by the hyperplane class H and E (see [Lopez 1991]). An extremal ray for the cone of effective
curves on S is E itself as E2 D �4 whereas the other one is the residual intersection R in S of the
hyperplane containing E. By construction, R is a conic with self-intersection R2 D�6. It is easy to see
that OS .H CE/ and OS .4H �E/ (contracting E and R, respectively) are, up to multiples, the only line
bundles which are big and semiample (actually, globally generated) but not ample. Moreover, the classes
of H CE and 4H �E span the nef cone of S.
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Proposition 2.4 The cotangent bundle �1
S

is L–liftable for L equal to OS .H CE/ or OS .4H �E/.

Proof We will prove L–liftability of �1
S

for LD OS .H CE/. With the same techniques, one can prove
the result for OS .4H �E/.

Since E is a general plane curve and S is assumed to be very general, the morphism 'jLj cannot
contract other curves besides E (since the effective cone is spanned by E and R). As h0.�1

S
/ D 0,

by Theorem 1.3, we have to show that h0.�1
S
.mE// D 0 for all m � 0. Notice that the sequence

fh0.�1
S
.mE//gm�0 is nondecreasing. We claim that it is stationary from m D 1 onwards. To see

this we consider the cotangent bundle sequence of E in S and twist it with mE, ie the sequence
0! OE..m� 1/E/!�1

S
.mE/jE! !E.mE/! 0. This yields

0!H 0
�
OE..m� 1/E/

�
!H 0.�1

S .mE/jE/!H 0.!E.mE//! � � � :

For m � 2, both degE..m� 1/E/ and degE.!E.mE// are negative, so h0.�1
S
.mE/jE/ D 0. Hence,

from the exact sequence

0! OS ..m� 1/E/! OS .mE/! OE.mE/! 0

twisted by �1
S

, we get h0.�1
S
.E// D h0.�1

S
.mE// for all m � 1. Hence, it is enough to show that

h0.�1
S
.E//D 0.

The restriction of the Euler sequence on P3 to S twisted by E yields an exact sequence

0!H 0.�1
P3.E/jS /!H 0.OS .�H CE//˚4

!H 0.OS .E//! � � � ;

which gives us h0.�1
P3.E/jS / D 0 as �H CE D �R is not effective. If we denote by N �

S=P3 the
conormal bundle of S in P3, we can write the cotangent sequence of S in P3 twisted by OS .E/ as

0!N �
S=P3.E/!�1

P3.E/jS !�1
S .E/! 0:

As h0.�1
P3.E/jS /D 0, this gives an injection H 0.�1

S
.E// ,!H 1.N �

S=P3.E//. Hence, we are done if
we prove that H 1.N �

S=P3.E/
/D 0. Notice that

H 1.N �
S=P3.E//DH 1.OS .�6H CE//:

The divisor 6H�E is ample since it is in the interior of the nef cone, which is spanned, as observed before,
by H CE and 4H �E. Hence, by Kodaira vanishing, H 1.N �

S=P3.E//DH 1.OS .�6H CE//D 0, as
desired.

Besides the sextic surfaces containing a plane quartic, we have studied other components of the Noether–
Lefschetz locus. We could not find any pair .S;L/ for which �1

S
is not L–liftable. Motivated by this, we

pose the following question:

Question 2.5 Is there any surface S in P3 with a big and semiample line bundle L for which �1
S

is not
L–liftable?
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3 Holomorphic one forms on Mo
g

Let Mg be the coarse moduli space of smooth complex projective curves of genus g� 2. We will use some
classical results about Mg and its compactifications. The reader can refer to [Arbarello et al. 2011; Harris
and Morrison 1998]. The variety Mg is quasiprojective and it is singular on points parametrizing curves
with nontrivial automorphism group for g � 4. We denote by Mo

g �Mg the locus of points parametrizing
curves with trivial automorphism group, which coincides with the smooth locus for g � 4. Furthermore,
the singular locus M

sing
g DMg nMo

g has codimension g�2, since its largest subvariety is the hyperelliptic
locus.

We are interested in studying the cotangent bundle �1
Mo

g
. Our result is the following:

Theorem 3.1 For g � 5, Mo
g has no holomorphic forms; that is , H 0.�1

Mo
g
/D 0.

It is well known (see [Mumford 1967]) that Mo
g has no closed holomorphic 1–forms with respect to the de

Rham differential. For completeness, we will briefly recall this in Theorem 3.4. Nevertheless, H 0.�1
Mo

g
/

could still be nonzero since Mo
g is not compact and so holomorphic forms are not automatically closed.

To prove the result, we need to use two classical compactifications of Mg that we recall now. The first one
is the Deligne–Mumford compactification MDM

g (see [Harris and Morrison 1998; Arbarello et al. 2011]),
which is defined as the coarse moduli space of stable curves of genus g. It is a projective variety and the
boundary @MDM

g DMDM
g nMg is

�D�0[�1[�2[ � � � [�Œg=2�:

It is built up as union of divisors �i for i D 0; 1; : : : ;
�

1
2
g
�
, characterized as follows. The generic point

of �0 represents the class of an irreducible nodal curve with a single node and arithmetic genus g. The
generic point of �i with i � 1 represents the class of a nodal curve with two smooth components of
genus i and g� i , respectively, meeting at a single node. Let � be the Hodge class and recall that �1 is
divisible by 2 in the Picard group of MDM

g .

The canonical divisor of MDM
g can be written (see [Harris and Morrison 1998, page 160, equation (3.113)])

as

KMDM
g
D 13�� 3

2
�1� 2�0� 2

Œg=2�X
iD2

�i D 13�� 2�C 1
2
�1:

Remark 3.2 Recall that the canonical divisor KMDM
g

of the coarse moduli space is related to the canonical
divisor K of the moduli stack by the formula ��KMDM

g
DKC ı1, where � denotes the projection from

the moduli stack to the coarse moduli space and ı1 is the class of the divisor �1 in the moduli stack.
For a general point ŒC � 2�1, we have in fact that the versal deformation space of C is a two-sheeted
cover onto its image in MDM

g , ramified over �1. So in the language of stacks the morphism � is ramified
over �1 and therefore �1 is 2–divisible. For a complete explanation, see [Harris and Morrison 1998,
page 160].
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The second compactification we are interested in is the Satake compactification MSat
g . It is constructed by

considering the Satake compactification ASat
g of Ag (see [Satake 1956; Baily and Borel 1966; Igusa 1967])

and the morphism x� WMDM
g !ASat

g , defined set-theoretically by sending a stable curve to the Jacobian of
its normalization. Then MSat

g is defined as the image of x� and it is projective since ASat
g is projective (see

[Baily and Borel 1966; Igusa 1967]). Let H Sat be the ample class on ASat
g giving the Satake embedding

and consider its pullback H on MDM
g , which is therefore big and semiample since the Torelli morphism is

given by a multiple of �.

Furthermore, x� is a birational morphism that is injective on Mg by the Torelli theorem and contracts the
divisor �1 to a subvariety of MSat

g of codimension 2, whereas, if i ¤ 1, �i is contracted to a subvariety
having codimension 3.

In other words, the morphism induced by a suitable multiple of H factors as in the diagram

MDM
g

x�
%% %%

x�
//

'jdH j

''

ASat
g
� �

'jdH Satj

// PN

MSat
g

?�

OO

We give the following definition:

Definition 3.3 Let 'jdH j WM
DM
g ! PN be the map introduced above and let L� PN be a linear subspace

of codimension c. We set XL D '
�1
jdH j

.L/ and say that XL is an H–variety if dim XL D 3g� 3� c. In
particular, for c D 3g� 5, XL is an H–surface, and for c D 3g� 4 it is an H–curve.

3.1 Closed holomorphic forms on Mo
g

We denote by �i
Mo

g;c
the kernel of d W�i

Mo
g
!�iC1

Mo
g

, where d is the holomorphic de Rham differential.
Hence �i

Mo
g;c

is just the sheaf of d–closed holomorphic 1–forms on Mo
g.

Theorem 3.4 If g � 4, then H 0.OMo
g
/DC, H 1.Mo

g;C/D 0 and H 0.�1
M o

g ;c
/D 0.

Proof We first prove H 0.OMo
g
/DC. Consider a point p 2Mo

g; then we can cut out a smooth projective
curve Cq in Mo

g passing through it and a general point q 2Mo
g by using hyperplanes of Mo

g �MDM
g . This

can be done since we are assuming g � 4 and so the complement of Mo
g inside MDM

g has codimension at
least 2. Then, for any f 2H 0.OMo

g
/, since Cq is projective, f jCq

is constant. Then f .p/D f .q/, so f
is constant on Mo

g.

Let Tg be the Teichmüller space of Riemann surfaces of genus g and consider the mapping class group �g.
The proof that H 1.Mo

g;C/D 0 relies on the result about the abelianization of the mapping class group �g;
it is trivial as soon as g � 3 (see [Mumford 1967; Harer 1983]). We recall that Tg is contractible and that
�g acts properly discontinuously on Tg with quotient Mg. Let � WTg!Tg=�g DMg be the quotient
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map. Set To
g D �

�1.Mo
g/, and let �o W To

g!Mo
g be the restriction of � . The action of �g on Mo

g is free,
and, for g� 4, TgnTo

g has codimension in Tg equal to g�2� 2. Therefore the fundamental groups of To
g

and of Tg are isomorphic. It follows that �o is the universal covering of Mo
g. Then …1.M

o
g;x0/' �g

and H1.M
o
g;C/'H 1.Mo

g;C/D 0.

Let � be a closed holomorphic form on Mo
g. Then, by the above result, � is also exact; that is, there

exists f such that �D df. Since � is holomorphic, f is a holomorphic function and thus it is constant.
Consequently, �D 0.

Corollary 3.5 Let � W M 0 ! MDM
g be a resolution of singularities such that ��1.Mo

g/ ' Mo
g. Then

H 0.�1
M 0
/D 0, H 1.OM 0/D 0 and H 1.M 0;C/D 0.

Proof Let �2H 0.�1
M 0
/. Since M 0 is projective, then � is d–closed and so its restriction �j��1.Mo

g/
D�jMo

g

to Mo
g is d–closed; that is, �jMo

g
2H 0.�1

M o
g ;c
/. By Theorem 3.4, �jMo

g
D 0 and then �D 0. Since M 0 is

smooth, we have also H 1.OM 0/DH 0.�1
M 0
/D 0.

3.2 H –surfaces

From now on S will be a general H–surface in MDM
g , ie it is a general complete intersection of 3g� 5

hypersurfaces whose classes are suitable multiples of H. This surface S will play a central role in the
proof of Theorem 3.1. We now give a list of properties of S :

Proposition 3.6 For g � 5, a general H–surface S satisfies the following properties:

(a) S is smooth and contained in the open set of smooth points of MDM
g . Moreover , OS .n�/' OS .H /

for suitable n> 0, where � denotes the restriction of the Hodge class to S.

(b) We have S \�i D∅ for i ¤ 1 and E D S \�1 is an effective divisor which is a disjoint union of
smooth curves of genus g� 1.

(c) The canonical sheaf of S is !S D OS

�
k�C 3

2
E
�

for some suitable k > 0.

(d) We have H 0.�1
S
/D 0.

(e) The morphism x� jS is birational , contracts E to a finite number of points , is an isomorphism
outside E, and H �E D 0.

(f) Fix a general point p 2Mo
g and a general vector v 2 Tp Mo

g. Then there exists an H–surface S such
that v 2 TpS.

In particular , S is a smooth regular surface in .Mo
g[�1/ nSing.MDM

g /.

Proof We recall that dim x�.�i/D 3g�6 for i ¤ 1 and dim x�.�1/D 3g�5. The general point of �1 is
a curve B with one node and two smooth components given by an elliptic curve D and a smooth curve C

of genus g�1� 4 that we can take without nontrivial automorphisms. Then x�.B/DD�JC and the fiber
of x� over this point, by Torelli’s theorem, is described as the curves obtained by gluing D and C at a point.
Because of the translations on D, the fiber over D �JC has dimension 1 and can be identified with C.
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Consider the locus �1;s of singular points of MDM
g lying in �1, ie �1;s D Sing.MDM

g /\�1, and set

Y D x�.�0[�1;s [�2[ � � � [�Œg=2�[Sing.Mg//:

We claim now that, under the assumption g � 5, Y has codimension 3 in MSat
g . It is enough to show that

the image of zY D
�
�1;s n

S
i¤1�i

�
has codimension 3. Moreover, we can restrict to the subspace of zY

represented by curves with at most two nodes (since curves with more than two nodes define loci of
dimension 3g� 6). If B is one such curve, we have three possible cases:

(1) B is a curve which is the union of a smooth curve C of genus g� 1 and an elliptic curve meeting
at a point P. We distinguish two subcases:

(1.a) StabAut.C /.P /¤ fidg.

(1.b) StabAut.D/.P /¤ f˙idg.

(2) B is a curve which is the union of a smooth curve C of genus g�2 and two disjoint elliptic curves
E1 and E2 such that Ei \C DQi is a point.

We denote by zY.1:a/, zY.1:b/ and zY.2/ the corresponding loci in MDM
g . First of all, notice that x�. zY.2// has

dimension 3g� 7. The locus zY.1:a/ has dimension at most 2g� 2 (which is the dimension of the locus of
hyperelliptic curves of genus g� 1 plus the dimension of the moduli of elliptic curves) and so x�. zY.1:a//
has codimension more than 3. Finally, notice that zY.1:b/ has dimension 3g� 5 but it is also true that all
the fibers of x� of points of zY.1:b/ are contained in zY.1:b/, so x�. zY.1:b// has dimension 3g� 6.

(a) To prove that a general S is smooth, we can assume first x�.S/\ Y D ∅. It follows in particular
that S is disjoint from Sing.MDM

g /. Moreover, since H is semiample on MDM
g , the general S does not

have singularities by Bertini’s theorem. In order to see that OS .H / is a positive multiple of OS .�/, it
is enough to observe that S is disjoint from �0. Indeed, this implies that the closure of x�.S n�1/ in
ASat

g is contained in Ag. Then the claim follows since the Picard group of Ag is spanned by the Hodge
class �Ag

(whose pullback is �, by definition).

(b) The argument above shows that for S general, S \ �i D ∅ for i ¤ 1. As H Sat is ample, the
image x�.S/ needs to intersect x�.�1/ in a finite number of points q1; : : : ; qr . Hence, S intersects �1 in
a divisor, which we will denote by E, whose components are a finite number of disjoint smooth curves
of genus g � 1 (again one uses Bertini’s theorem for the restriction x� j�1

). Then, by construction, the
divisor E is 2–divisible, since �1 is 2–divisible, as observed in Remark 3.2.

(c) As S is a complete intersection in the nonsingular locus of MDM
g and since OS .H /D OS .n�/ with

suitable n> 0 (as proved in (a)), by adjunction we have

!S D OS

�
13�� 3

2
�1� 2

Œg=2�X
i¤1

�i CmH

�
D OS

�
k�� 3

2
E
�
;

where m> 0 and k > 0.
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(d) Let � WM 0 ! MDM
g be a desingularization which induces an isomorphism ��1.Mo

g/ ' Mo
g. Then,

by Corollary 3.5, H 1.OM 0/ D 0. Let H 0 be the pullback of H with respect to f. As S is a complete
intersection in .Mo

g[�1/ n Sing.MDM
g /, we can realize S as a complete intersection in M 0 by using

multiples of the big line bundle H 0. The statement follows by this application of the Kawamata–Viehweg
vanishing theorem [Kawamata 1982]:

Let Z be a smooth variety of dimension dim.Z/� 3 with h1.OZ /D 0 and let H be a big and
nef divisor on Z. Then the general element Y 2 jH j is smooth and is such that h1.OY /D 0.

Indeed, starting from M 0 and cutting with multiples of H 0 to obtain S,

h0.�1
S /D h1.OS /D � � � D h1.OM 0\m1H 0/D 0:

(e) The last statement follows immediately by the construction.

(f) Since p and v are generic (in Mo
g and Tp Mo

g, respectively), the general H–surface has the desired
property.

3.3 Concluding the proof of Theorem 3.1

The following result is the main technical tool:

Proposition 3.7 The sheaf �1
S

is OS .H /–liftable.

The proof of this proposition follows directly by applying Theorem 1.3, Proposition 3.6(e) and the
following lemma:

Lemma 3.8 With the above notation , H 0.�1
S
/'H 0.�1

S
.mE//D 0 for all m� 0.

Proof By Proposition 3.6(d), h0.�1
S
/D 0. So we only have to show that H 0.�1

S
/'H 0.�1

S
.mE//

for all m. We perform this in two steps: we prove first that H 0.�1
S
/ ' H 0.�1

S
.E// and then that

H 0.�1
S
.mE//'H 0

�
�1

S
..mC 1/E/

�
for m� 1.

We start with the first claim. Consider the exact sequences

0!�1
S !�1

S .E/!�1
S .E/jE! 0;(I)

0! OE!�1
S .E/jE! !E.E/! 0:(II)

By Proposition 3.6(d), E D
Pk

iD1 Ei , where Ei are smooth disjoint curves of genus g� 1. Since x� jS
contracts Ei , we have H jS �Ei D 0 for all i and so H jS �E D 0. Then, by Proposition 3.6(c) and by
adjunction,

!E D !S ˝OE.E/D OE

�
k�� 3

2
ECE

�
D OE

�
�

1
2
E
�
:
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Since Ei is effective and H jS �Ei D �jS �Ei D 0, by the Hodge index theorem we have E2
i < 0 and

so H 0
�
OEi

�
1
2
Ei

��
D 0. Since Ei and Ej are disjoint, Ei �Ej D 0 and OE D

L
i OEi

. In particular,
!E.E/D

L
i !Ei

.Ei/D
L

i OEi

�
1
2
Ei

�
, so H 0.!E.E//D 0.

Using this and the exact sequence (II),

H 0.OE/
˛
�!H 0.�1

S .E/jE/

is an isomorphism. Consider the sequence

(III) 0!�1
S !�1

S .log.E// res
�! OE! 0;

where �1
S
.log.E// is the bundle of logarithmic differentials with poles along E. We have the following

commutative diagram given by (I), (II) and (III):

0 // H 0.�1
S
/
� � �

// H 0.�1
S
.log E// //

����

H 0.OE/
@

//

˛ '

��

H 1.�1
S
/

0 // H 0.�1
S
/
� � // H 0.�1

S
.E// // H 0.�1

S
.E/jE/

@0
// H 1.�1

S
/

Then we obtain @0 D @ ı ˛. One has to show that @0 is injective or, equivalently, that @ is injective. As
observed above, H 0.OE/D

Lk
i H 0.OEi

/ and we can write

@ W

kM
i

H 0.OEi
/!H 1.�1

S /:

By [Griffiths and Harris 1978, pages 458–459], this is just obtained by the Atiyah–Chern class [Atiyah
1957] via the residues computation

.a1; : : : ; ak/ 7!
X

aic1.Ei/:

The Ei are effective and disjoint divisors with negative self-intersection, as previously observed. It
follows that their first Chern classes are independent and hence that @ is injective. In conclusion,
� WH 0.�1

S
/ ,!H 0.�1

S
.E// given by (I) is an isomorphism and 0D h0.�1

S
/D h0.�1

S
.E//.

We now prove the second part: for m � 1, H 0.�1
S
.mE//'H 0

�
�1

S
..mC 1/E/

�
. Consider the exact

sequences

0!�1
S .mE/!�1

S ..mC 1/E/!�1
S ..mC 1/E/jE! 0;(I0)

0! OE.mE/!�1
S ..mC 1/E/jE! !E..mC 1/E/! 0(II0)

obtained from (I) and (II), respectively. We have seen that !E D OE

�
�

1
2
E
�
, so both !E..mC 1/E/D

OE

��
mC 1

2

�
E
�

and OE.mE/ have negative degree for m� 1. Then H 0
�
�1

S
..mC 1/E/jE

�
D 0. This

yields the desired result from the exact sequence (I0) and induction.

We can now conclude the proof of Theorem 3.1.
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Proof of Theorem 3.1 Let � 2 H 0.�1
Mo

g
/. If � 6� 0, then, for a general point p in Mo

g, �p 2 �
1
Mo

g;p

is not identically zero. Let v be a general element in Tp Mo
g. Hence we can assume �p.v/ ¤ 0. By

Proposition 3.6(f), we can find a general H–surface S which passes through p and is such that v 2 TpS.
Consider the open subset U D S nE. Recall that OS .H / is big and semiample and E �H jS D 0, so
U is an open neighborhood of a general curve in jdH jS . By construction, the restriction �U of � to U

defines a nontrivial element of H 0.�1
S
jU /. But now, by Proposition 3.7, �1

S
is OS .H /–liftable. Then,

by Theorem 1.7, we can conclude that �1
S

is OS .H /–concave, so H 0.�1
S
jU /'H 0.�1

S
/¤ 0. On the

other hand, this yields a contradiction since, by Proposition 3.6(d), H 0.�1
S
jU /D 0.

Remark 3.9 The assumption g � 5 is necessary in order to have S smooth. Indeed, if g D 4, the
general S meets the hyperelliptic locus (which has codimension 2 in the moduli space) in a finite number
of points, so the general S has a finite number of nodes as singularities. Nevertheless, the theorem should
follow just by blowing up the points. When g D 2, Mo

g D ∅, and, when g D 3, one has to remove the
hyperelliptic divisor that is ample. The vanishing of all holomorphic forms on the open set of the smooth
locus could still hold. Some analysis of the singularities and of the fixed points for the action of the
mapping class group is however necessary.

We now give a version of Theorem 3.4 for certain open analytic subsets containing an H–curve, which are
not necessarily open for the Zariski topology. In this sense this provides a strengthening of the theorem.

Theorem 3.10 Let g�5 and let C be an H–curve in Mo
g. Let U �Mo

g be a connected open neighborhood
of C for the classical topology. Then H 0.�1

U
/D 0.

Proof Assume by contradiction that H 0.�1
U
/ ¤ 0 and fix � 2 H 0.�1

U
/ with � ¤ 0. Recall that

C is a complete intersection of 3g � 5 general hypersurfaces in jaH j. More precisely, we can find
L 2 G.jaH j; 3g � 5/ general such that '�1

jaH j
.L/ D C. Since being contained in U gives an open

condition in G.jaH j; 3g�5/ (in the analytical topology), by moving L we can find U 0 with C �U 0�U

such that U 0 is covered by H–curves and the tangent vectors of those curves span the tangent space
of U 0 at the general point p 2 U 0. We can then find a general H–curve C 0 � U 0 corresponding to
L0 2G.jaH j; 3g� 5/ such that �C 0 ¤ 0, where �C 0 2H 0.�1

C 0
/ is the restriction of �. Then the general

element of G.jaH j; 3g� 4/ that contains L0 yields a smooth H–surface S that contains C 0. Let US be
the connected component of U \S that contains C 0. The restriction �US

2H 0.�1
US
/ of � is a fortiori

nonzero. But �1
S

is H–liftable and, by Theorem 1.7, H–concave. Since C 0 2 jaH j, by Proposition 3.6
we get 0DH 0.�1

S
/'H 0.�1

US
/. This implies �US

D 0, which gives a contradiction.

3.4 Holomorphic one-forms on moduli spaces of marked curves

In this subsection we extend the result of Theorem 3.1 to the moduli space of marked curves. We
denote by Mg;n the coarse moduli space of n–marked smooth projective curves of genus g. Denote by
Mo

g;n �Mg;n the smooth locus of Mg;n. We prove the following:
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Theorem 3.11 Let g� 5. Then Mo
g;n has no holomorphic 1–forms for any n� 0; that is , H 0.�1

Mo
g;n
/D 0

for any n� 0.

Proof Consider the morphism f n WMg;n!Mg;n�1 that forgets the last marked point, ie

f n
W ŒC;p1; : : : ;pn�1;pn� 7! ŒC;p1; : : : ;pn�1�:

Set Ug;0 DMo
g and Ug;n D .f

n/�1.Ug;n�1/ for any n� 1. Note that Ug;n �Mo
g;n is a Zariski open set

parametrizing marked curves, whose underlying curve has trivial automorphism group. We now prove
that H 0.�1

Ug;n
/D 0 for any n� 0. From this we conclude that H 0.�1

Mo
g;n
/D 0. In fact, Ug;n �Mo

g;n is
an open subset, so any nonvanishing form on Mo

g;n would restrict to the zero form on an open set Ug;n,
which is not possible.

The proof is by induction on n. The case n D 0 is the content of Theorem 3.1. We now assume that
H 0.�1

Ug;n�1
/D 0 and we prove that H 0.�1

Ug;n
/D 0.

For simplicity we define f to be the restriction of f n to Ug;n. Then f WUg;n!Ug;n�1 is a family of
smooth projective curves of genus g over a smooth variety of dimension 3g� 3C .n� 1/. Indeed, the
fiber f �1.ŒC;p1; : : : ;pn�1�/ is naturally isomorphic to the curve C because C has trivial automorphism
group. Consider the short exact sequence of relative differentials

0! f ��1
Ug;n�1

df
�!�1

Ug;n
!�1

Ug;n=Ug;n�1
! 0:

Since f is a fibration, the pushforward and the projection formula give the exact sequence

0!�1
Ug;n�1

df
�! f��

1
Ug;n
! f��

1
Ug;n=Ug;n�1

@
�!R1f�OUg;n

˝�1
Ug;n�1

:

We now show that ker.@/ D 0. Then, by induction, we get 0 D H 0.�1
Ug;n�1

/ ' H 0.f��
1
Ug;n

/ '

H 0.�1
Ug;n

/ for all n� 1, which ends the proof.

Fix x D ŒC;p1; : : : ;pn�1;pn� 2Ug;n. We can describe @x as the homomorphism

@x WH
0.!C /!H 1.OC /˝ .�

1
Ug;n�1

/x D Hom.H 0.!C /; .�
1
Ug;n�1

/x/

since f��1
Ug;n=Ug;n�1

is the Hodge bundle and R1f�OUg;n
is its dual. The forgetful map F WUg;n!Mo

g

induces the sequence

0! F��1
Mo

g

dF
�!�1

Ug;n
!�1

Ug;n=Mo
g
! 0:

In x, we have .�1
Mo

g
/x DH 0.!2

C
/ (see [Arbarello et al. 2011, Chapter XI]). Then we have an inclusion

� WH 0.!2
C
/! .�1

Ug;n�1
/x given by dFx ı.F

�/x . Note that, by construction, points in the fiber of f have
the same image via F, so the Hodge bundle is constant along these fibers. Consider the multiplication map
� W H 0.!C /

˝2! H 0.!2
C
/ and define  W H 0.!C /! Hom.H 0.!C /;H

0.!2
C
// as  .˛/ D �.˛˝�/.
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Then, by construction, @x D � ı , so we have a commutative diagram

H 0.!C /
 

// H 1.OC /˝H 0.!2
C
/

id˝�
��

Hom.H 0.!C /;H
0.!2

C
//

�ı�

��

H 0.!C /
@x

// H 1.OC /˝ .�
1
Ug;n�1

/x Hom.H 0.!C /; .�
1
Ug;n�1

/x/

In particular, since  and � are injective by construction, @x is injective. Then ker.@/D 0, as claimed.
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