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We determine the local geometric structure of two-dimensional metric spaces with curvature bounded
above as the union of finitely many properly embedded/branched immersed Lipschitz disks. As a result,
we obtain a graph structure of the topological singular point set of such a singular surface.
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1 Introduction

Let X be a locally compact, geodesically complete Alexandrov space with curvature bounded above. In
this paper, we are concerned with the local structure of X . In general X may have very complicated local
geometry. For instance,X may have no polyhedral structure even in local. There is such a two-dimensional
space constructed by Kleiner; see also Nagano [21]. In the present paper, we completely describe the
local geometry of such spaces in dimension two.

The study of metric spaces with curvature bounded above began with the work of Alexandrov [2]. For
the dimensions of such spaces X , Kleiner [15] proved that the topological dimension coincides with
the maximal dimension of topological manifolds embedded in X . For geodesically complete metric
spaces X with curvature bounded above, Otsu and Tanoue [25] implicitly showed that the topological
dimension coincides with the Hausdorff dimension. This has been verified via a different method by
recent work due to Lytchak and Nagano [17], which has also clarified that the local geometric properties
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3024 Koichi Nagano, Takashi Shioya and Takao Yamaguchi

of geodesically complete metric spaces X with curvature bounded above have a lot of analogues to those
of Alexandrov spaces with curvature bounded below; see also Remarks 1.5 and 1.7 below. Lytchak and
Stadler [19] have recently proved that for every convex open ball in a CAT.�/–space there exists a complete
CAT.�1/–metric on the ball that is locally bi-Lipschitz to the original CAT.�/–metric; in particular, in
local considerations on topological properties of CAT.�/–spaces, we may assume � to be �1.

For basic textbooks in this subject, there are several general references, and we refer to Ballmann [8],
Bridson and Haefliger [10], Burago, Burago and Ivanov [11] and Alexander, Kapovitch and Petrunin [5].

Now let us consider our main concern, the two-dimensional such spaces. The study in this particular
dimension began with a classical deep work due to Alexandrov and Zalgaller [3] on two-dimensional
topological manifolds with more general curvature bound, called the bounded curvature. They con-
structed the curvature measure on such surfaces and established the Gauss–Bonnet theorem. See also
Reshetnyak [28] for the work from an analytic point of view. Generalizing [3] and following the works of
Ballmann and Buyalo [9] and Arsinova and Buyalo [7], Burago and Buyalo [12] established the theory of
two-dimensional polyhedra with curvature bounded above.

Here it should be emphasized that there were no general results determining local structure even in
dimension two. The purpose of this paper is to determine the general local geometric structure of
two-dimensional geodesically complete metric spaces with curvature bounded above.

Let X be a two-dimensional locally compact, geodesically complete metric space with curvature � � for
a constant �. For every p 2X , the space of directions †p D†p.X/ is the disjoint union of finitely many
points and connected finite graphs. Since we are interested in the local structure, we assume the most
essential case when †p is a connected graph, called a CAT(1)–graph; see Section 2. We shall determine
the geometry of the closed r–ball B.p; r/ around p for small enough r > 0 as follows.

Let S.X/ denote the set of all topological singular points in X . For ` � 2� and r > 0, we denote by
D2.`I r/ the closed disk of radius r around the vertex O in the Euclidean cone over the circle of length `.
A map f WD2.`I r/!B.p; r/ is called proper if f �1.@B.p; r//D@D2.`I r/. Let �p.r/ denote a function
depending on p and r satisfying limr!0 �p.r/D 0. Let S.p; r/ denote the metric sphere @B.p; r/.

The main result in this paper is stated as follows.

Theorem 1.1 For every p 2X such that †p is a connected graph , there exists a positive number r0 such
that for every 0< r � r0, B.p; r/ is a union of images Imfi of finitely many proper Lipschitz immersions
fi W D

2.`i I r/! B.p; r/ for some `i � 2� , possibly with branch point f �1i .p/ D fOg satisfying the
following:

(1) With respect to the length metric induced from X , Imfi are CAT.�/–spaces.

(2) Either fi is an embedding , or else fi .@D2.`i I r// is the union of two circles of length � 2�r
connected by an arc , which could be a point. In the latter case , `i � 4� .
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(3) The bi-Lipschitz constant of fi is less than 1C �p.r/ when fi is an embedding. If fi is a branched
immersion , the local bi-Lipschitz constant of fi except at fOg is less than 1C �p.r/.

Moreover , S.X/\B.p; r/ consists of finitely many simple Lipschitz arcs starting from p and reaching
S.p; r/.

Remark 1.2 One might ask if it is possible to fill the ball B.p; r/ with those Imfi that are convex
in X or properly embedded disks. However, both are impossible in general. For example, take the
Euclidean cone X over the union of two circles of length 2� joined by an arc. No metric ball around the
vertex of X can be written as a union of properly embedded disks as described in Theorem 1.1. For an
example showing the impossibility of filling the ball via convex properly embedded CAT.�/–disks, see
Example 4.5.

From the proof of Theorem 1.1, we actually have the following.

Corollary 1.3 Let r D rp be sufficiently small as in Theorem 1.1. Then for any locally injective
continuous map � W Œa; b�!†p.X/, there is a closed subset E of X containing p such that

(1) E is a CAT.�/–space with respect to the length metric ,

(2) †p.E/D Im.�/,

(3) @E � S.p; r/, except possibly the segments from p directing to the endpoints of �. Here @E
denotes the set of points of E where local geodesically completeness of E fails.

The set E is the image of a locally almost isometric, branched immersion, except at the branch locus fpg,
from the closed disk of radius r around the vertex in the Euclidean cone over the interval of length L.�/.
When � is surjective in addition, this provides another description of B.p; r/.

Using Theorem 1.1, we can define a metric graph structure on S.X/ in a generalized sense (Definition 6.7),
and we have:

Corollary 1.4 Suppose that †p is a connected graph for every p 2X . Then with respect to the induced
length structure , S.X/ is isometric to a metric graph having .possibly locally uncountably many vertices ,
but/ the vertices of locally finite order.

Remark 1.5 In the general dimension, Lytchak and Nagano [17] characterized the singular set in the
k–dimensional part as a countably .k�1/–rectifiable set. Corollary 1.4 gives a refinement of this result in
dimension two.

Recall that a compact metric graph † is a CAT.�/–graph (� > 0) if every noncontractible loop in † has
length � 2�=

p
�.

Geometry & Topology, Volume 28 (2024)



3026 Koichi Nagano, Takashi Shioya and Takao Yamaguchi

Corollary 1.6 For a given p 2X such that †p is a connected graph , there exists a positive number rp
such that for every 0 < r � rp, S.p; r/ with the interior metric is a CAT.��.r//–graph having the same
homotopy type as †p, where ��.r/ is given by the sharp constant

��.r/D

8̂̂̂̂
<̂
ˆ̂̂:

�
sin
p
�r

p
�

��2
if � > 0;

r�2 if � D 0;�
sinh
p
��r

p
��

��2
if � < 0:

Remark 1.7 A result in [17] shows that for every small r , S.p; r/ has the same homotopy type as †p
in the general dimension. Corollary 1.6 gives a refinement of this result in dimension two.

Remark 1.8 All the results in this paper are local. Therefore they are also valid under the assumption of
local geodesic completeness of X .

The idea of the proof of the main result is as follows. We know the structure of the space †p of directions
at p, which is completely characterized as a CAT.1/–graph without endpoints. If we rescale the metric
of X by the factor 1=r , then ..1=r/X; p/ converges to the tangent cone .Kp; op/ at p as r ! 0 with
respect to the pointed Gromov–Hausdorff topology. Let †sing

p be a small neighborhood of the vertices
of the graph †p, and †reg

p the complement of †sing
p . Now the convergence theorem (see Nagano [23])

applied to the unit cone K1.†
reg
p / over †reg

p yields the existence of a Lipschitz domain B reg.p; r/ of
B.p; r/ consisting of finitely many sectors corresponding to sectors of K1.†

reg
p /. One can consider

B reg.p; r/ as a regular part of B.p; r/. The main problem is to determine the structure of the singular part
Bsing.p; r/, the complement of B reg.p; r/ in B.p; r/. To carry out this, we consider finitely many thin
ruled surfaces, say Sij here, and fill Bsing.p; r/ using them. A key is to show that those ruled surfaces
are CAT.�/–spaces with respect to the interior metrics and are homeomorphic to a disk. According to
Alexandrov’s result in [1], every ruled surface in a CAT.�/–space is also a CAT.�/–space with respect to
the pullback metric. Obviously, the interior metric and the pullback metric are completely different from
each other in general. Therefore we have to show that in our thin ruled surfaces, pullback metrics coincide
with the interior metrics. After achieving this, it turns out that the topological singular point set S.X/
locally arises from the intersections of those thin ruled surfaces Sij . We investigate how those ruled
surfaces meet each other to get the structure of S.X/\B.p; r/ as the union of finitely many Lipschitz
curves. Combining the structures of both B reg.p; r/ and Bsing.p; r/ and considering the graph structure
of †p, we define the embeddings or the branched immersions fi WD2.`i I r/! B.p; r/ as described in
Theorem 1.1.

As related studies on ruled surfaces, Petrunin-Stadler [26] have proved that for metric minimizing disks in
CAT(0)–spaces, the pullback metrics on the disks are CAT(0), which is a generalization of Alexandrov’s
result [1] on ruled surfaces in the CAT(0)–setting. According to Stadler [29, Theorem 2], for any Jordan
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Two-dimensional metric spaces with curvature bounded above, I 3027

triangle in a CAT(0)–space, every minimal disk filling of the triangle is an embedded disk that is CAT(0)
with respect to the interior metric.

The organization of the paper is as follows.

In Section 2, we recall and verify basic results for locally compact, geodesically complete Alexandrov
spaces with curvature bounded above.

In Section 3, we give basic properties of a ruled surface S in a CAT.�/–space. We discuss the pullback
metric, the induced metric, the interior metric of S and their relations. In the original argument in
Alexandrov [1], there are several unclear points for the authors — for instance, there is no description of
quasicontinuous monotone representations. We make clear all these points.

In Section 4, which is a key section, we investigate a thin ruled surface S in a two-dimensional space,
and prove that S actually admits the induced metric and therefore becomes a CAT.�/–space with respect
to the interior metric. Then we obtain the crucial property that S is homeomorphic to a disk.

In Section 5, we fill B.p; r/ via those embedded/branched immersed disks using thin ruled surfaces
essentially. We prove Theorem 1.1(1)–(3), with the exception of (1) for branched immersed disks.

In Section 6, we describe S.X/\B.p; r/ as a union of finitely many Lipschitz curves starting from p

and reaching points of S.p; r/. The structure of generalized metric graph of S.X/ is also discussed there.

In Section 7, we provide the proof of Theorem 1.1(1) for branched immersed disks as well as Corollary 1.3.

In the appendix, following the basic idea of [1], we give the proof of Alexandrov’s result on ruled surfaces
in CAT.�/–spaces based on the results proved in Section 3.

Burago and Buyalo [12] gave a complete characterization of two-dimensional polyhedra of curvature
bounded above. In the second part [24] of our work, we show the following:

(a) We provide sufficient conditions for two-dimensional metric spaces to have curvature bounded
above, which shows that the results in this paper completely characterize the local structure of
two-dimensional metric spaces with curvature bounded above.

(b) Every pointed two-dimensional geodesically complete locally CAT.�/–space .X; p/ can be ap-
proximated by a sequence of two-dimensional pointed geodesically complete, polyhedral locally
CAT.�/–spaces .Xn; pn/ having the same homotopy type asX with respect to the pointed Gromov–
Hausdorff topology. This solves a problem raised by Burago and Buyalo [12].

(c) We establish a Gauss–Bonnet type theorem for two-dimensional geodesically complete locally
CAT.�/–spaces.

Most results in the present paper were announced in [31].

Geometry & Topology, Volume 28 (2024)
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2 Basic properties of CAT.�/–spaces

For some basic results in this section, we refer to Bridson and Haefliger [10] and Burago, Burago and
Ivanov [11].

The distance between two points x and y in a metric spaceX is denoted by jx; yj or jx; yjX , and sometimes
d.x; y/ or dX .x; y/. The metric r–ball around p is denoted by B.p; r/. We sometimes use BX .p; r/ to
emphasize the metric ball in X . Let X be a locally compact, complete geodesic space with curvature � �.
By definition, for each point p 2X , there exists a positive number r > 0 with r � �=2

p
� when � > 0

such that the ball B.p; r/ is convex and has the following properties: Let M 2
� be the simply connected

complete surface of constant curvature �, called the �–plane for short. For any geodesic triangle 4xyz
in B.p; r/ with vertices x; y and z, we denote by z4xyz a comparison triangle in M 2

� having the same
side lengths as 4xyz. Then the natural mapping z4xyz!4xyz is nonexpanding. A convex domain
with this property is called a CAT.�/–domain. Such a space X with curvature � � is called a locally
CAT.�/–space, and X is called a CAT.�/–space if X itself is a CAT.�/–domain. Although all geodesics
have constant speed by definition, most geodesics are assumed to have unit speed unless otherwise stated.
For arbitrary x and y in B.p; r/, let x;y W Œ0; jx; yj�!X denote a unique minimal geodesic joining x
to y. We say that a curve is shortest if its length is minimal among all curves joining the endpoints.
The angle between the geodesics y;x and y;z is denoted by †xyz, and the corresponding angle of
z4xyz by z†xyz. The space of directions and the tangent cone of X at p are denoted by †p D†p.X/
and Kp DKp.X/, respectively. We shall occasionally use the identification †p D†p � f1g �Kp. We
denote by Px;y.0/ or "yx the direction at x defined by x;y . For every � 2†p.X/, � denotes a geodesic
with P�.0/D �. For a path-connected subset S � X and x; y 2 S , we denote by Sx;y a shortest curve
in S joining x to y if it exists. Occasionally, we identify a geodesic with its image, and write x 2  for
instance. The length metric of S induced from X is denoted by dS or j ; jS .

Geometry & Topology, Volume 28 (2024)



Two-dimensional metric spaces with curvature bounded above, I 3029

For a closed subset A of X and for an accumulation point p of A, the set of all directions � 2 †p.X/
such that there is a sequence ai in A n fpg satisfying ai ! p and Pp;ai .0/! � is denoted by †p.A/ and
called the space of directions of A at p.

The upper semicontinuity of angle is fundamental in the geometry of spaces with curvature bounded
above.

Lemma 2.1 Suppose that sequences pi , qi and ri converge to p, q and r , respectively, in a CAT.�/–
domain. Then we have lim supi!1†piqiri �†pqr .

Next we briefly discuss the connectivity of a small neighborhood of a given point in X . For each point
p 2 X , the set of components of †p are in one-to-one correspondence with the set of components of
B.p; r/ n fpg if B.p; r/ is a CAT.�/–domain; see [16]. We call the number of components of †p.X/
the order of p.

Now we state the gluing theorem proved by [27], which is convenient to construct spaces with curvature
bounded above. The proof is also found in [10, page 347].

Theorem 2.2 LetDi for i D 1; 2 be a closed convex subset in an Alexandrov spaceXi with curvature� �.
If there is an isometry f WD1!D2, then the identification space X1[f X2 is an Alexandrov space with
curvature � � with respect to the natural length metric.

From now, we assume X to be geodesically complete. That is, every geodesic segment in X can be
extended to a geodesic defined on R.

The following lemma follows from [17, Corollary 13.3].

Lemma 2.3 For a point p 2X , suppose that †p.X/ has no isolated points. Then there exists a positive
number r such that every point x in B.p; r/ n fpg has order one.

Let dp denote the distance function from p. For every x ¤ p, let us denote by .rdp/.x/ the set of all
directions � 2†x.X/ such that †.�;"px /D � . For simplicity, we set �.rdp/.x/D"

p
x . The following

lemma, which describes local geometry around a given point, is basic in our study of local structure of
surfaces with curvature bounded above.

Let �p.�1; : : : ; �k/ be a function depending on p and �1; : : : ; �k such that lim�1;:::;�k!0 �p.�1; : : : ; �k/D0.

Lemma 2.4 For every p 2X , there exists a positive number r0 such that for every r with 0 < r � r0, the
ball B.p; r/ satisfies the following:

(1) diam..rdp/.x// < �p.r/ for every x 2 B.p; r/ n fpg.

(2) For any two geodesics 1 and 2 starting at p with angle � , and for every s 2 Œ0; r�, the geo-
desic �s.t/ joining 1.s/ to 2.s/ satisfiesˇ̌

†
�
�.rdp/.�s.t//; P�s.t/

�
�
1
2
�
ˇ̌
< �p.�; s/:

Geometry & Topology, Volume 28 (2024)
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Proof (1) is due to [25]; see also [17, Proposition 7.3]. (2) easily follows from (1), and hence the proof
is omitted.

The following lemma is fundamental, and plays an important role as in the case of Alexandrov space
with curvature bounded below [13]. For the proof, see [23, Lemma 3.6].

Lemma 2.5 (Jack lemma) For every p 2X , there is a positive number r0 such that if x ¤ y 2 B.p; r0/
and q satisfy that z†pxq > � � � and jx; yj< �minfjp; xj; jq; xjg, then we have

j†pxy � z†pxyj< �p.jp; xj; �/:

In the study of spaces of curvature bounded below, the theory of the Gromov–Hausdorff convergence has
been useful. We apply it in our case of curvature bounded above.

We denote by Hn the n–dimensional Hausdorff measure, and set !n WDHn.Sn.1//, where Sn.1/ is the
unit n–sphere.

Theorem 2.6 ([23], compare [30]) For each positive integer n, there is a positive number �n satisfying
the following: Let Xi for i D 1; 2; : : : and X be n–dimensional locally compact , geodesically complete ,
pointed Alexandrov spaces with curvature � �, and suppose that a compact CAT.�/–domain Ui of Xi
converges to a compact CAT.�/–domain U of X with respect to the Gromov–Hausdorff distance. Then
for every compact domain V in intU satisfying Hn�1.†x.X// < !n�1C � with � � �n for all x 2 V,
there are a compact domain Vi in intUi and a �.�; 1=i/–almost isometry 'i W Vi ! V in the sense thatˇ̌̌̌

j'i .x/; 'i .y/j

jx; yj
� 1

ˇ̌̌̌
< �

�
�;
1

i

�
for all x; y 2 Vi :

Lemma 2.7 For every p 2X and arbitrary x; y 2 B.p; r/ we have

(2-1) z†xpy �†xpy < �p.r/; z†pxy �†pxy < �p.r/; z†pyx�†pyx < �p.r/:

Proof For the proof, it suffices to show that for every � > 0 there is an r such that for arbitrary
x; y 2 B.p; r/ we have (2-1) for � in place of �p.r/. Fix a constant C � 1.

Case 1 C�1 � jp; xj=jp; yj � C .

We show (2-1) for �D �p;C .r/, where �p;C . � / is a function depending on p, C with limr!0 �p;C .r/D 0.
Suppose jx; yj< �jp; xj for � > 0. Then Lemma 2.5 implies

z†pxy �†pxy < �p.r; �/ and z†pyx�†pyx < �p.r; �/:

Since z†xpy<�.�/, (2-1) holds when r� r0 and �� �0 for some r0 and �0. Next, suppose jx; yj� �0jp; xj.
We proceed by contradiction. Suppose the lemma does not hold in this case. Then there are xn; yn! p

Geometry & Topology, Volume 28 (2024)
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with jxn; ynj � �0jp; xnj. Choose zn such that xn 2 p;zn and jzn; xnj D jp; xnj. Consider the rescaling
limit �

1

jp; xnj
X;p

�
! .Kp; op/:

Since limn!1.†pxnynC†znxnyn/D � , we have

lim
n!1

†pxnyn D†opx1y1 D lim
n!1

z†pxnyn;

where x1 and y1 are the limits of xn and yn. Similarly, we have limn!1†pynxnD limn!1 z†pynxn:
Since obviously we have

lim
n!1

†xnpyn D†x1opy1 D lim
n!1

z†xnpyn;

we derive a contradiction.

Case 2 jp; xj< C�1jp; yj.

We show (2-1) for � D �p.r/C �.C�1/. First note that

(2-2) z†pyx < �.C�1/:

Thus considering large C , we only have to consider the angles at p and x. Take z with x 2 p;z and
jz; pj D jy; pj. Then we have

(2-3) z†ypz � z†ypx �†ypx:

From Case 1, we have

(2-4) z†ypz�†ypx < �p;1.r/:

Combining (2-3) and (2-4), we certainly have

(2-5) z†ypx�†ypx < �p;1.r/:

From jp; xj< C�1jp; yj, we have

(2-6) j z†xyz� z†pyzj< �.C�1/ and j z†xzy � z†pzyj< �.C�1/:

From (2-5) and (2-4), we have
j z†xpy � z†zpyj< �p;1.r/:

From (2-2) and the first inequality in (2-6), we have

j z†pyxC z†xyz� z†pyzj< �.C�1/:

Now consider the quadrangle zpzxzz zy on M 2
� which is the union of the triangles z4pxy and z4xyz glued

along the edge zx zy corresponding to xy. We estimate the deviation of the angle of the quadrangle zpzxzz zy
at zx from � . Combining the last two inequalities and the second inequality in (2-6), we have

j z†pxyC z†yxz��j< �p;1.r/C �.C
�1/:

Since
j†pxyC†yxz��j< �p.r/;

the last two inequalities yield z†pxy �†pxy < �p.r/C �.C�1/, as required.

Geometry & Topology, Volume 28 (2024)



3032 Koichi Nagano, Takashi Shioya and Takao Yamaguchi

A point p in X is called a topological singular point of X if any neighborhood of p is not homeomorphic
to a disk, and the set of all topological singular point of X is denoted by S.X/. It is proved in [17] that if
dimX D n, then dimH S.X/� n� 1. In particular X nS.X/ has full measure with respect to Hn [25].

Two-dimensional case By a result of Otsu-Tanoue [25], the Hausdorff dimension of every relatively
compact open domain of X is an integer. See [17] for a different proof. It is also known that †p.X/ is a
compact geodesically complete CAT.1/–space for every p 2X .

Obviously, if X is 1–dimensional, then it is a locally finite graph without endpoints. Now we assume X
has dimension 2. Then any component† of†p has dimension � 1. If dim†D 1, then† has the structure
of a finite graph without endpoints. Furthermore † is a so called CAT.1/–graph without endpoints in
the sense that each simple closed curve in † has length at least 2� . If dim† D 0, then † is a point
and the component of B.p; r/ n fpg corresponding to † is an arc for any small enough r . Thus, a small
neighborhood of any point p 2X is the gluing at p of several purely 2–dimensional spaces with all links
connected graphs and a ball around the vertex in the cone over finitely many points. Therefore the study
of local structure around p reduces to the case when †p is a connected CAT.1/–graph without endpoints.

Lemma 2.8 A neighborhood of p 2X is homeomorphic to a two-dimensional disk if and only if †p.X/
is a circle.

Proof This follows from [22, Proposition 3.1, Remark 3.4].

Lemma 2.9 Let p 2 S.X/. Then†p.S.X// coincides with the set V.†p.X// of all vertices of the graph
†p.X/.

Proof For every v 2 †p.S.X//, take a sequence xi in S.X/ converging to p which is such that
limi!1†. Pp;xi .0/; v/D 0. If v is not a vertex of †p.X/, choose � > 0 such that the �–neighborhood
of v contains no vertices of †p.X/. Let ıi WD jxi ; pj. Theorem 2.6 applied to the convergence�

1

ıi
X; xi

�
! .Kp.X/; v/

yields that a small neighborhood of xi is almost isometric to a neighborhood in R2. This is a contradiction.

Conversely, suppose there is v 2 V.†p.X// that is not contained in †p.S.X//. Choose �0 >0 and ı0 >0
such that the cone neighborhood

(2-7) C.v; ı0; �0/ WD fx j †."
x
p ; v/� ı0; jp; xj � �0g

is included in R.X/. Take three distinct directions �1; �2; �3 2†p.X/ having angle ı0=2 with v, and set
xi .�/ WD �i .�/, where � � �0, 1� i � 3. Note that the geodesic Œx1.�/; x2.�/� converges to the geodesic
Œ�1; �2� in Kp.X/ under the convergence�

1

�
X; p

�
! .Kp.X/; op/ as �! 0:
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Let y.�/ be a nearest point of Œx1.�/; x2.�/� from x3.�/. Since y.�/ 2R.X/, †y.�/.X/ must be a circle
of length almost equal to 2� with †.rdp.y.�//;�rdp.y.�///D� . However, Lemma 2.4 shows that the
angle†.rdp.y.�//; �i .�// is almost �=2, where �i WD"

xi .�/

y.�/
for 1� i �3, which implies†.�1.�/; �2.�//

is almost equal to 0. This is a contradiction since †.�1.�/; �2.�//D � .

Remark 2.10 In place of the above geometric argument of the second half of the proof of Lemma 2.9,
we can also use more general topological result in [14, Theorem 2.1].

Lemma 2.11 Let p 2 S.X/. For any x 2 S.X/ \ .B.p; r/ n fpg/, V.†x.X// is contained in the
�p.r/–neighborhood of f.�rdp/.x/; .rdp/.x/g.

Therefore there is a positive integer m� 3 such that the Gromov–Hausdorff distance between †x.X/ and
the spherical suspension over m points is less than �p.r/.

Proof This follows from [17, Proposition 6.6, Corollary 13.3].

As an immediate consequence of Lemmas 2.9 and 2.11, we have

Corollary 2.12 Let p 2 S.X/. For every x 2 S.X/ \ .B.p; r/ n fpg/, †x.S.X// is contained in a
�p.r/–neighborhood of f.�rdp/.x/; .rdp/.x/g.

Finally in this subsection, we shortly discuss the cardinality of singular points in a two-dimensional
manifoldX with curvature��. Let � >0. We say that x 2X is an �–singular point ifL.†x.X//�2�C�.
We also say that x is a singular point if it is �–singular for some � > 0.

Lemma 2.13 (see [3] and [12, Proposition 4.5]) For a domain D of a two-dimensional manifold X
with curvature � �, the set of all singular points contained in D is at most countable.

Proof By Lemma 2.4(1), the set of all �–singular points contained in a bounded set is finite for every
� > 0, which immediately yields the conclusion of the lemma.

3 Basic properties of ruled surfaces

We recall the notion of ruled surfaces in metric spaces introduced by Alexandrov [1]. The metric on a
ruled surface discussed in [1] is the pullback metric defined below, although an explicit definition was
not given in [1]. See also Remark 3.4. In this section, we provide some fundamental properties of the
pullback metric, most of which are not contained in [1]. These are used in the proof of Alexandrov’s
result (Theorem 3.17), which is presented in the appendix. There are related results in [26, Section 2].

For our purpose, it is sufficient to consider ruled surfaces in spaces with curvature bounded above.
Throughout this section, let X be a locally compact, complete geodesic space with curvature � � with
metric dX , where we do not need the dimension restriction, nor geodesic completeness.

We fix a rectangle R WD Œ0; `�� Œ0; 1� in this section.
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Ruled surfaces

Definition 3.1 A continuous map � WR!X is called a ruled surface in X if

(1) for every s 2 Œ0; `� the t–curve �s W Œ0; 1�!X of � defined as �s.t/ WD �.s; t/ is a minimal geodesic
in X from �.s; 0/ to �.s; 1/, and

(2) for some continuous function � W Œ0; `�! Œ0; 1�, the curve †.s/D �.s; �.s//, where 0� s � `, is
rectifiable with respect to dX .

As usual, the subset S of X defined as S WD �.R/ is also called a ruled surface in X . For each s 2 Œ0; `�,
the minimal geodesic �s W Œ0; 1�!X is called a generator of � , or a ruling geodesic of � .

For each t 2 Œ0; 1�, the curve �t W Œ0; `�!X is called a directrix of � at t .

Pullback metrics and induced metrics on ruled surfaces

Let � WR!X be a ruled surface in X defined as above. We denote by Sing.�/ (resp. by Reg.�/) the set
of all s 2 Œ0; `� such that �s are constant (resp. nonconstant). For s 2 Œ0; `�, we set

Is WD fsg � Œ0; 1��R:

Definition 3.2 We say that a (not necessarily continuous) map c W Œa; b�!R is monotone

� if p1 ı c is monotone nondecreasing or monotone nonincreasing, where p1 W R ! Œ0; `� is the
projection to the first factor, and

� if p1 ı c.t/D p1 ı c.t 0/D s with t < t 0, then p2 ı cjŒt;t 0� is monotone, where p2 WR! Œ0; 1� is the
projection to the second factor.

Similarly, c is said to be strictly monotone if p1 ı c is strictly monotone.

We say that a monotone map c W Œa; b�!R is a quasicontinuous curve if the following hold:

(1) p1 ı c.Œa; b�/ is a closed interval, and

(2) c is continuous on the set of all t with p1 ı c.t/ 2 Reg.�/[ int Sing.�/.

We define the pullback metric e� on R induced from � as

(3-1) e� .u; u
0/ WD inf

c
L.� ı c/;

where c runs over all quasicontinuous curves in R from u to u0, and L denotes the length of curves with
respect to dX . Note that the metric e� is certainly finite since our ruled surface � has the rectifiable
curve †.

We denote by R� the quotient metric space

.R�; e� / WD .R; e� /=fe� D 0g:

Let � WR!R� be the projection.
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Example 3.3 Let �k W Œ0; 1=��!R2 for k D 0; 1 be the curve defined by

�0.s/D
�
s;�

ˇ̌̌
s cos 1

s

ˇ̌̌�
and �1.s/D

�
s;
ˇ̌̌
s sin 1

s

ˇ̌̌�
:

For R WD Œ0; 1=��� Œ0; 1�, define the ruled surface � WR!R2 as in the above definition, where we have
Sing.�/D f0g. For uD .0; 0/, u0 D .1=�; 0/, consider the map c W Œ0; 1=��!R defined by

c.s/D

�
��1.s; 0/ if 0 < s � 1=�;
.0; 0/ if s D 0:

Since c oscillates infinitely many times near f0g � Œ0; 1�, it is quasicontinuous, but realizes the distance
e� .u; u

0/.

We remark that there is no continuous curve realizing e� .u; u0/ in Example 3.3. Note also that � ı c is
always continuous for every quasicontinuous curve c. These are the reasons why we employ the notion
of quasicontinuous curves in the definition (3-1) of the pullback metric e� .

Obviously, e� .u; u0/D 0 implies �.u/D �.u0/. Therefore, we can define a map �� WR�!X such that
� D �� ı� . Note that �� WR�!X is continuous. The properties of the projection � WR!R� depend
on those of the end s–curves �0 and �1. If �0 and �1 are Lipschitz continuous, then so is � , and hence
� WR!R� is continuous. However, in the general case, � WR!R� is not necessarily continuous; see
Example 3.5 below.

Remark 3.4 Comparing the conditions of ruled surfaces given in [1] and ours:

(1) Some ruling geodesics �s of � may be constant geodesics for all s in an interval of Œ0; `�. This
case was excluded in [1] as the conditions of ruled surfaces defined there.

(2) The existence of continuous arc in the preimage of any point of R� by � , which is a more restrictive
property than the existence of quasicontinuous curve given in Corollary 3.8, was assumed in [1] as
one of the conditions of the metric on the ruled surface under consideration.

Example 3.5 Let �1.s/, where 0 � s � `, be a continuous parametrization of a Koch curve on the
unit sphere S2.1/ � R3. Letting �0.s/ D O , we define the ruled surface � W Œ0; `� � Œ0; 1� ! R3 by
�.s; t/D t�1.s/. Note that

e� ..s; t/; .s
0; t 0//D

�
jt � t 0j if s D s0;
t C t 0 if s ¤ s0:

Note also that � WR!R� is continuous only at ft D 0g.

For s 2 Œ0; `�, we set
I�s WD �.Is/:

For a continuous curve c� W Œa0; b0�!R� (resp.  W Œa0; b0�! S ), we simply say that a quasicontinuous
curve c W Œa; b�!R is a lift of c� (resp. of  ) if c�D� ıc (resp.  D� ıc) up to monotone parametrization.
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From now, we fix arbitrary u; u0 2 R with u D .s0; t0/; u0 D .s00; t
0
0/ and s0 < s00. Take a sequence of

quasicontinuous curves cn W Œ0; 1�!R from u to u0 such that e� .u; u0/D limn!1L.� ı cn/, where we
may assume that cn is monotone. By the Arzelà–Ascoli theorem, passing to a subsequence we may
assume that a Lipschitz parametrization n of � ı cn converges to a Lipschitz curve  in S from �.u/

to �.u0/. Note that

(3-2) L./� e� .u; u
0/:

We set
J WD Œs0; s

0
0�; Jreg WD J \Reg.�/; Jsing WD J \Sing.�/:

In the following proposition, we show the equality in (3-2).

Proposition 3.6 Under the above situation , there is a lift c of  in R from u to u0.

In particular , � ı c provides a (continuous) shortest curve c� in R� from �.u/ to �.u0/, and we have

L.c�/D L./D e� .�.u/; �.u
0//:

Example 3.7 Let  W Œ0; 1�!X be a minimal geodesic between distinct two points in a CAT.�/–space.
Consider the ruled surface � W Œ0; 1�� Œ0; 1�!X defined as �.s; t/D .t/. Then e� ..0; 0/; .1; 1//DL./.
Note that any curve c.t/D .x.t/; y.t// such that x.t/ and y.t/ are monotone from 0 to 1 is a lift of 
from .0; 0/ to .1; 1/.

The above simple example suggests that in Proposition 3.6, one cannot construct a lift of the limit  only
from  , and one needs to take a subsequence of cn properly to obtain a limit, which is expected as a lift
of  . In the proof of Proposition 3.6 below, we proceed in this way.

Proof of Proposition 3.6 We show that the monotone curve cn converges to a monotone quasicontinuous
curve c, up to monotone parametrization, except on Sing.�/� Œ0; 1�. By the Arzelà–Ascoli theorem, this
is obvious if the length of cnjJreg�Œ0;1� is uniformly bounded. However, when one of the end curves �0.s/
and �1.s/ is not rectifiable, one cannot expect that the length of cnjJreg�Œ0;1� is even finite.

In the argument below, we use the idea of the proof of the Arzelà–Ascoli theorem taking the monotonicity
of cn into account. Since each cn is continuous, for any s2J there is tn.s/2 Œ0; 1� satisfying cn.tn.s//2Is .
Let J0 be a countable dense subset of J . Take a subsequence fmg � fng such that cm.tm.s// converges
to a point x.s/ 2 Is for every s 2 J0.

Roughly speaking, the limit curve c is defined via the limit set of the sequence fIm.cm/gm. For every
s 2 Jreg, let us consider the subset Es � Is defined as the set of all points x 2 Is with limi!1 cmi .ti /D x
for a subsequence fmig � fmg and ti 2 Œ0; 1�. We set

Jreg;1 WD fs 2 Jreg j Es is a single pointg; Jreg;2 WD Jreg nJreg;1;

J 0reg;1 WD Jreg;1\J0 J 0reg;2 WD Jreg;2\J0:
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For s 2 Jreg;1, we define x.s/ by
Es D fx.s/g:

Note also that J 0reg;1 or J 0reg;2 may be empty.

(1) We first show that x.s/ is continuous on Jreg;1.

This is obvious since if si 2 Jreg;1 converges to s 2 Jreg;1, then any limit of fx.si /g must belong to
Es D fx.s/g.

(2) Next we show that Es is an interval for every s 2 Jreg;2.

For arbitrary y; y0 2 Es , choose subsequences fmig and fmi 0g of fmg such that cmi .ti / ! y and
cmi0 .t

0
i /! y0 as i; i 0!1 for some ti ; t 0i 2 Œ0; 1�. Take sj 2 J 0reg with s < sj converging to s. Note that

x.sj /D limi!1 cmi .tmi .sj //D limi 0!1 cmi0 .tmi0 .sj //. Passing to a subsequence, we may assume that
x.sj / converges to a point z 2Es as j !1. As i; i 0!1 and then j !1, the arcs cmi .Œti ; tmi .sj /�/
and cmi0 .Œti 0 ; tmi0 .sj /�/ converge to Œy; z� and Œy0; z�, respectively. Since Œy; z�[ Œy0; z��Es , we obtain
Œy; y0��Es .

(3) For si < s (resp. si > s) with si 2 Jreg, s 2 Jreg;2, let si converge to s. In what follows, we show that
x.si / converges to an endpoint of Es (resp. the other endpoint of Es).

Let fy; y0g D @Es .

(a) We assume si < s. The other case is similar. Suppose that x.sik / converges to an interior point v
of Es as k!1, for a subsequence fikg of fig. We also have subsequences fm`g and fm`0g of fmg such
that cm`.t`/! y and cm`0 .t`0/! y0 for some t`; t`0 2 Œ0; 1�. As `; `0!1 and then k!1, the arcs
cm`.Œtm`.sik /; t`�/ and cm`0 .Œtm`0 .sik /; t`0 �/ converge to the subarcs Œv; y� and Œv; y0�, respectively. Now
take a sequence s˛ 2 J 0reg with s˛ > s such that x.s˛/ converges to a point w 2 Is as ˛!1. Note that

x.s˛/D lim
`!1

cm`.tm`.s˛//D lim
`0!1

cm`0 .tm`0 .s˛//:

We see that as `; `0!1 and then k!1, the arcs cm`.Œtm`.sik /; tm`.s˛/�/ and cm`0 .Œtm`0 .sik /; tm`0 .s˛/�/
converge to the unions Œv; y�[ Œy; w� and Œv; y0�[ Œy0; w�, respectively. However, considering � ı cm` or
� ı cm`0 , we have a contradiction since � ı cm is a sequence minimizing e� .u; u0/.

(b) We show that as s˛ < s converges to s, then x.s˛/ converges to a unique endpoint of Es . Suppose
that for subsequences si ! s and si 0! s with si ; si 0 < s, x.si / (resp. x.si 0/) converges to y (resp. to y0).
Choose large i and i 0 D i 0.i/ with i 0� i . Then as m!1, the arc cm.Œtm.si /; tm.si 0/�/ oscillates many
times near Es , which implies limm!1L.� ı cm/D1. This is a contradiction.

(c) We show that as si! s and si 0! s with si <s<si 0 , if x.si / converges to y, then x.si 0/ converges to y0.
Otherwise, as m!1 and i; i 0!1, the arc cm.Œtm.si /; tm.si 0/�/ converges to the union Œy; y0�[ Œy0; y�,
which is a contradiction to the hypothesis that � ı cm is a minimizing sequence.
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(4) We show that Jreg;2 is at most countable, andX
s2Jreg;2

L.�.Es//� L./:

For an arbitrary finite set s1 < s2 < � � �< sk of Jreg;2, the argument in (3c) shows that some subarcs of cm
are so close to the union Es1 [ � � � [Esk for any large m. Thus, �.Es1/[ � � � [ �.Esk / is the union of
finite subarcs of  . Therefore we have

kX
iD1

L.�.Es// < L./:

The conclusion follows immediately.

(5) For s 2 Jsing, let x.s/ WD .s; a/ 2 Is for any fixed constant a 2 Œ0; 1�, for instance. Let L0 be
the total sum of L.�.Es// for all s 2 Jreg;2. Now we consider the collection C consisting of points
fx.s/ j s 2 Jsing [ Jreg;1g and the intervals Es for all s 2 Jreg;2. In view of (1)–(4), it is possible to
parametrize C as a quasicontinuous curve c W Œs0; s00CL0�!R from u to u0. For details, see (2) in the
proof of Proposition 3.14.

From construction, we see that c is a lift of  .

The second half of the assertion of the proposition is immediate, completing the proof of Proposition 3.6.

As an immediate consequence of Proposition 3.6, we have:

Corollary 3.8 If e� .u; u0/D 0, then there is a strictly monotone quasicontinuous curve c W Œ0; 1�! R

joining u to u0 such that �.c/D �.u/D �.u0/.

In particular , if Sing.�/ is empty, ��1.�.u// is a strictly monotone (continuous) curve.

The following example shows that it is impossible to take a monotone (continuous) curve c in Corollary 3.8
as well as in Proposition 3.6.

Example 3.9 Let X be the one-point union of two copies, say R20 and R21, of R2 at the origin O . Let
�k.u/ be straight lines on R2

k
with �k.0/ D O for k D 0; 1. Consider strictly monotone continuous

parametrizations �k.'k.s// of �k.t/ with 'k.0/D 0. Joining �0.'0.s// and �1.'1.s// by the minimal
geodesics, we define a ruled surface � WR� Œ0; 1�!X . Note that Sing.�/D f0g. For each s 2R n f0g,
let t .s/ 2 .0; 1/ be such that �s.t.s//DO . Thus we have

��1.O/D f.s; t.s// j s 2R n f0gg[ I0:

Now choosing the two parameters '0.s/ and '1.s/ properly, we can let the function t .s/ oscillate as
s! 0. In that case, for arbitrary u; u0 2R� Œ0; 1� with �.u/D �.u0/DO and p1.u/ < 0 < p1.u0/, there
is no continuous curve in ��1.O/ joining u and u0 but quasicontinuous one.

Next, using the procedure in the proof of Proposition 3.6, we provide a condition for a curve c� in R� to
have a lift c in R.

Geometry & Topology, Volume 28 (2024)



Two-dimensional metric spaces with curvature bounded above, I 3039

Definition 3.10 For x 2R�, we set

s.x/ WD fs 2 Œ0; `� j x 2 I�s g D p1.�
�1.x//; smin.x/ WDmin s.x/; smax.x/ WDmax s.x/:

Write s.x/ < s.y/ when smax.x/ < smin.y/, and write s.A/ WD fs 2 Œ0; `� jA\ I�s ¤∅g/D p1.��1.A//
for a subset A of R�.

Lemma 3.11 For any continuous curve c� W Œa; b�!R�, s.c�.Œa; b�// is connected.

Proof Choose u 2 ��1.c�.a// and u0 2 ��1.c�.b//. We may assume p1.u/ < p1.u0/. Let  WD �� ıc�.
Since��1.c�.Œa; b�//D��1..Œa; b�//, p1.��1.c�.Œa; b�/// is closed. Suppose thatp1.��1.c�.Œa; b�///
is not connected. Then there are some s� < sC in Œp1.u/; p1.u0/� satisfying

��1.c�.Œa; b�//� Œ0; s��� Œ0; 1�[ ŒsC; `�� Œ0; 1�:

Set R� WD Œ0; s�� � Œ0; 1� and RC WD ŒsC; `� � Œ0; 1�. In view of Corollary 3.8, we may assume that
��1.c�.a//�R� and ��1.c�.b//�RC. Let us consider

t� WD supft j ��1.c�.Œa; t �//�R�g:

Note that ��1.c�.t�//�R�. Take tn > t� with tn! t� such that ��1.c�.tn//�RC. Choose a point
xn 2 �

�1.c�.tn//. Passing to a subsequence, we may assume that xn converges to a point x1 2 RC.
This is a contradiction since x1 2 ��1.c�.t�//.

Definition 3.12 For a continuous curve c� in R�, we say that a subset A�� I�s is c�–convex if whenever
c�.t/; c�.t

0/ 2 A� with t � t 0, then c�.Œt; t 0�/ � A�. For a continuous curve  in S , the notion of
–convexity of a subset ƒ� �s is similarly defined.

Let c� W Œa; b�! .R�; e� / be a continuous curve from �.u/ to �.u0/, and put s0 D p1.u/, s00 D p1.u
0/.

For any s 2 Œs0; s00�, we consider
E�s WD I

�
s \ c�.Œa; b�/;

which is nonempty by Lemma 3.11.

Lemma 3.13 For a continuous curve c� W Œa; b�! .R�; e� / with smin.c�.a// � smax.c�.b//, suppose
that E�s is c�–convex for every s 2 p1.c�.Œa; b�//. Then we have the monotonicity for all t < t 0 in Œa; b�,

smin.c�.t//� smax.c�.t
0//:

Proof Suppose that there are t1 < t2 such that smin.c�.t1// > smax.c�.t2//. If smax.c�.b//� smin.c�.t1//,
then Lemma 3.11 shows the existence of t3 2 Œt2; b� such that s.c�.t3// meets s.c�.t1//. This contradicts
the c�–convexity of I�s for s 2 s.c�.t1// \ s.c�.t3//, since c�.t1/; c�.t3/ 2 I�s and c�.t2/ … I�s . If
smax.c�.b//< smin.c�.t1//, then we have s.c�.b//< s.c�.t1// with smin.c�.a//� smax.c�.b//. Therefore
similarly, we have a contradiction.
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Proposition 3.14 Let c� W Œa; b�! .R�; e� / be a continuous curve with L.c�/ <1 from �.u/ to �.u0/.
We assume that for each s 2 s.c�.Œa; b�//,

(1) E�s is c�–convex , and

(2) the restriction c�jE�s is monotone for every E�s that is an interval.

Then there is a lift of c� in R from u to u0.

Proof (1) Since we only need to construct a lift c on Reg.�/� Œ0; 1�, we may assume Sing.�/ is empty.
If s.c�.a// meets s.c�.b//, then c� is a geodesic subarc of I�s for s 2 s.c�.a//\ s.c�.b//, and hence
certainly has a lift in R by Corollary 3.8.

Thus we may assume s.c�.a// < s.c�.b//. We denote by E�
C

(resp. E�0 ) the collection of all E�s having
positive length (resp. zero length, that is, points). Since L.c�/ <1, the set E�

C
is at most countable, and

L0 WD
X

E�s 2E�C

L.E�s /� L.c�/:

For each E�s 2 E�0 , by Corollary 3.8, ��1.E�s / is a continuous strictly monotone arc, denoted by cE�s .

For E�s 2 E�
C

with endpoints c�.t/ and c�.t 0/ with t < t 0, from the convexity condition together with
Lemma 3.13, we have

(3-3) smin.c�.t//� smax.c�.t
0//:

Let a.t/ and b.t 0/ be the endpoints of Es WD ��1.E�s /\ Is corresponding to c�.t/ and c�.t 0/, respec-
tively. Let amin.t/ 2 �

�1.c�.t// and bmax.t
0/ 2 ��1.c�.t

0// be such that p1.amin.t//D smin.c�.t// and
p1.bmax.t

0// D smax.c�.t
0//. Then let us denote by cE�s the union of the subarc of ��1.c�.t// from

amin.t/ to a.t/, E�s and the subarc of ��1.c�.t 0// from b.t 0/ to bmax.t
0/.

Let E� be the union of the collections E�0 and E�
C

. Note that from construction, the family of p1–images
fp1.cE�s / jEs 2 E�g is pairwise disjoint, and all the union coincides with Œs0; s00�. In particular, we can
define the natural order on the set E�.

(2) We are now ready to parametrize the union of all those arcs cE�s for E�s 2 E� to construct a lift
c W Œs0; s

0
0CL0�!R of c�. For each E�s 2 E�, let E�

C
.s/ denote the set of all E�s0 2 E�C with E�s0 <E

�
s .

We set
`.E�s / WD

X
E�
s0
2E�
C
.s/

L.E�s0/:

For E�s 2 E�0 , let a; b be the endpoints of the arc cE�s with p1.a/ � p1.b/. We parametrize cE�s on
Œ`.E�s /Cp1.a/; `.E

�
s /Cp1.b/� by the condition

p1.cE�s .`.E
�
s /C t //D t for t 2 Œp1.a/; p1.b/�:
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ForE�s 2E�C with endpoints c�.t/; c�.t 0/with t < t 0, define a.t/; b.t 0/2@E�s and amin.t/; bmax.t
0/ as in the

previous paragraph. Then we parametrize cE�s on Œ`.E�s /Cp1.amin.t//; `.E
�
s /CL.E

�
s /Cp1.bmax.t//�

by the conditions that

p1.cE�s .`.E
�
s /C t //D t

for t 2 Œp1.amin.t//; p1.a.t//�[ ŒL.E
�
s /Cp1.b.t

0//; L.E�s /Cp1.bmax.t
0//�, and

cE�s .`.E
�
s /Cp1.a.t//C t /DE

�
s .t/

for t 2 Œ0; L.E�s /�, where E�s .t/ is the arclength parameter from a.t/ to b.t 0/.

Finally we observe the continuity of the family fcE�s jE
�
s 2 E�g in the following sense: Let fE�si g 2 E

�
0

be a Cauchy sequence in R� satisfying E�si <E
�
s (resp. E�si >E

�
s ) such that its limit meets E�s . Let a

and b be the initial and terminal points of cE�s , respectively. Then cE�si converges to a (resp. to b). This
follows from the conditions (1), (2) and (3-3), and the details are omitted here.

Thus we can define the curve c W Œs0; s0CL0�!R as the union of all cE�s with E�s 2 E�. It is easy to see
that c is a continuous and monotone lift of c�. This completes the proof.

Remark 3.15 To consider the problem of lifting a curve  in S , we need an extra condition on � or  ,
which will be discussed later in Proposition 3.24.

By Proposition 3.14, we immediately have the following.

Proposition 3.16 Let c� W Œa; b�! .R�; e� / be a shortest curve from �.u/ to �.u0/. Then there is a lift c
of c� from u to u0.

Alexandrov proved the following result, which plays a crucial role in the present paper.

Theorem 3.17 [1, Theorem 2] Let S be a ruled surface in a CAT.�/–space X with parametrization
� WR!X . Then .R�; e� / is a CAT.�/–space.

The proof of Theorem 3.17 is deferred to the appendix.

One might expect to define the induced “metric” d� on S along � as

d� .x; y/ WD inffe� .u; v/ j �.u/D x and �.v/D yg:

However, d� does not necessarily satisfy the triangle inequality. See Remark 4.3. Even if .S; d� / becomes
a metric space in certain cases, it could be far from the notion of “induced metric”, as described in the
following example.
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Example 3.18 Let us consider the curve ˛ W Œ0; 5��!C on C DR2 defined as

˛.s/D

8̂̂̂<̂
ˆ̂:
e
p
�1s if 0� s � �=2;

.0; 2s=�/ if �=2� s � �;

.0; 4� 2s=�/ if � � s � 3�=2;
e
p
�1.s��/ if 3�=2� s � 5�:

We define the ruled surface � W Œ0; 5��� Œ0; 1�!R3 by �.s; t/D .˛.s/; t/. In this case, d� is a distance
on the image S of � . Actually d� coincides with the interior metric of S defined in Definition 3.23.

On the other hand, if we consider the restriction � 0 of � to Œ0; 3��� Œ0; 1�, then d� 0 is not the distance on
the ruled surface S 0 defined by � 0.

Lemma 3.19 Suppose that we have for all u; v 2R,

(3-4) �.u/D �.v/ () e� .u; v/D 0:

Then .S; d� / is a metric space , and �� W .R�; e� /! .S; d� / is an isometry.

Proof First note that e� .u; u0/D 0 implies �.u/D �.v/. Suppose (3-4) holds for all u; v 2R. Then we
have d� .x; y/D e� .u; v/ for all x; y 2 S and u 2 ��1.x/, v 2 ��1.y/. This implies that d� is a metric
on S . It is also obvious that �� W .R�; e� /! .S; d� / is an isometry.

Definition 3.20 We say that S has the induced metric from � if �� WR�! S is injective. This is the case
when (3-4) holds for all u; v 2R, and therefore �� W .R�; e� /! .S; d� / is an isometry by Lemma 3.19.
In this case, d� is called the induced metric from � .

Corollary 3.21 Let S be a ruled surface in a CAT.�/–space X with parametrization � W R!X . If S
has the induced metric from � , then .S; d� / is a CAT.�/–space.

From now, in the rest of this section, we consider curves  in S with respect to the topology of S induced
from X .

Lemma 3.22 If S has the induced metric from � , then s..Œa; b�// is an interval for any continuous
curve  W Œa; b�! S .

Proof Let J WD Œa; b�. If the conclusion does not hold, we have s� < sC in s..J // such that .s�; sC/
does not meet s..J //. Set R� WD Œ0; s�� � Œ0; 1� and RC WD ŒsC; `� � Œ0; 1�. Let JC and J� be the
set of all t 2 J such that the arc ��1..t// is contained in R� and RC, respectively. Since S has
the induced metric from � , Corollary 3.8 implies that J D JC [ J�. We show that J� and JC are
open, yielding a contradiction. Suppose J� is not open, for instance, and choose t 2 J� n intJ� and a
sequence tn in JC converging to t . Choose any xn 2 ��1..tn// converging to a point x1 2RC. Since
�.xn/D .tn/! �.x1/ as n!1, we have .t/D �.x1/. It turns out that ��1..t// 2RC. This is a
contradiction to t 2R�.
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Interior metrics on ruled surfaces

Let S be a ruled surface in X with parametrization � WR!X .

Definition 3.23 We denote by dS the interior metric on S associated with dX defined as

dS .x0; x1/ WD inffL./ j  is a curve in S from x0 to x1g:

Due to the Arzelà–Ascoli theorem, .S; dS / is a geodesic space.

We discuss the problem of lifting curves in S . For a subset A� S , we set

s.A/ WD fs j �s \A¤∅g:

Note that s.A/ D p1.��1.A//. In particular, for every x 2 S , we define s.x/, smax.x/, smin.x/ in this
way as in Definition 3.10.

Proposition 3.24 Let  W Œa; b�! S be a continuous curve of finite length from �.u/ to �.u0/ with
p1.u/ < p1.u

0/. Set J WD Œp1.u/; p1.u0/�, and

ƒ�s WD �
�1
� ..Œa; b�//\ I�s for s 2 J:

We assume the following:

(1) For arbitrary t < t 0 in Œa; b�, s..Œt; t 0�// is connected.

(2) ��.ƒ
�
s / is –convex for each s 2 J .

(3)  is monotone on ��.ƒ�s / that is an interval.

Then there is a lift of  in R from u to u0.

Lemma 3.25 For a continuous curve  W Œa; b�! S with smin..a//� smax..b//, suppose assumptions
(1) and (2) of Proposition 3.24 hold for  . Then we have monotonicity for all t < t 0 in Œa; b�,

smin..t//� smax..t
0//:

Proof Using condition (1) of Proposition 3.24 in place of Lemma 3.11, we can proceed in the same
manner as the proof of Lemma 3.13 in our setting, to get the conclusion.

Proof of Proposition 3.24 In view of conditions (2) and (3) and Lemma 3.25, using ƒ�s in place
of E�s , we construct the family of continuous arcs cƒ�s in the same manner as in Proposition 3.14. Then
parametrize them and take the union of those arcs to obtain a lift of  in R. Since the procedure is the
same, we omit the details.
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Theorem 3.26 Let S be a ruled surface in a CAT.�/–space X with parametrization � WR!X . If S has
the induced metric from � , then we have dS D d� , and .S; dS / is a CAT.�/–space.

Proof Since dS � d� , to see dS D d� it suffices to show dS .x; x
0/� d� .x; x

0/ for arbitrary x; x0 2 S .
Take a dS–shortest curve  W Œa; b�! S from x to x0. Since  is dS–shortest, the conditions (2) and (3)
in Proposition 3.24 certainly hold for  . By Lemma 3.22, s..Œt1; t2�// is an interval, and condition (1)
in Proposition 3.24 holds too. Therefore by Proposition 3.24, we have a lift of  in R. Thus we have
dS .x; x

0/D L./� d� .x; x
0/. Finally Corollary 3.21 implies that .S; dS / is a CAT.�/–space.

4 Thin ruled surfaces

Let X be a locally compact, geodesically complete two-dimensional space with curvature � �, and fix
p 2X . It is known that †p.X/ is a finite metric graph without endpoints. For a vertex v of †p.X/, take
�1; �2 2†p.X/ with equal distance to v such that †.�1; v/C†.v; �2/D†.�1; �2/ and v is the unique
vertex contained in the shortest geodesic joining �1 and �2 in †p.X/. We set

(4-1) ı WD †.�1; v/D†.�2; v/;

where ı is assumed to be small enough and will be determined later on in Section 4. Let ˛i W Œ0; `�!X be
geodesics in the directions �i for i D 1; 2. Joining ˛1.s/ to ˛2.s/ by the minimal geodesic �s W Œ0; 1�!X ,
we have a ruled surface S in X . Let B.p; r/ be a small ball, and we assume `D 2r . Set RD Œ0; `�� Œ0; 1�.
Let � WR! S be the map that defines S :

�.s; t/D �s.t/:

See Figure 1.

We define the boundary and the interior of S as

(4-2) @S WD ˛1[˛2[�` and intS WD S n @S:

The purpose of this section is to prove the following:

Theorem 4.1 There exists an rp > 0 such that for every r 2 .0; rp�, S with length metric is a CAT.�/–
space homeomorphic to a two-disk.

p

˛1.s/

˛2.s/

�s

�`�.s; t/

�1

�2

v

Figure 1

Geometry & Topology, Volume 28 (2024)



Two-dimensional metric spaces with curvature bounded above, I 3045

p

o
q1

q2

˛1

˛2

K.J /

S.˛1; ˛2/

X

Figure 2

The proof of Theorem 4.1 is completed in Section 4.4. As shown in the following example, Theorem 4.1
does not hold for a general ruled surface even in a two-dimensional ambient space.

Example 4.2 For any 0 < a < �=2, let X0 be the complement of the domain f.x; y/ j jyj< .tan a/xg
on the xy–plane. For b with

(4-3) a < b < aC 1
4
�;

consider the Euclidean cone K.I/ over a closed interval I of length 2b. Let X1 be the gluing of X0 and
K.I/ along their boundaries, where the origin o of X0 is identified with the vertex of K.I/. Let � be
the midpoint of I and let � denote the geodesic ray of X1 from o in the direction �. Next consider the
Euclidean cone K.J / over an interval J of length � with �� .b�a/� � < � . Let X be the gluing of X1
and K.J / in such a way that @K.J / is identified with � and L WD f.x; 0/ j x � 0g �X0 in the obvious
way. It is easy to see that X is a locally compact, geodesically complete, two-dimensional CAT.0/–space.
Let p D .0;�10/ 2 X0 � X , and let �C (resp. ��) be the geodesic ray starting from o defined by the
ray y D .tan a/x (resp. by the ray y D �.tan a/x). Note that the geodesic in X joining p and �C.1/
intersects ��nfog because of (4-3). Let ` WD 2d.p; �C.1//, and let ˛1 W Œ0; `�!X be the geodesic starting
from p through �C.1/. Let q1 be the intersection point of ˛1 with � . Let q2 be the point of L such that
d.p; q1/D d.p; q2/. Letting ˛2 W Œ0; `�! X be the geodesic starting from p through q2, consider the
ruled surface S DS.˛1; ˛2/ in X . Let�1 (resp.�2) be the geodesic triangle region in X1 (resp. inK.J /)
with vertices p, ˛1.`/ and ˛2.`/ (resp. o, q1 and q2). Obviously, S is the gluing of �1 and �2 along the
geodesic segments oq1 and oq2. In particular S is not homeomorphic to a disk. See Figure 2.

Remark 4.3 (1) In Example 4.2 we have diam..rdp/.o// D � , which never happens in a small
neighborhood of p by Lemma 2.4. This suggests the validity of Theorem 4.1, which is verified in the
argument below.

(2) In Example 4.2, take two points x and y from the distinct components of S n�2, respectively. Then
if x and y are sufficiently close to the point o, we have d� .x; y/ > d� .x; o/Cd� .o; y/. Thus d� is not a
distance for Example 4.2.
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4.1 Behavior of ruling geodesics

In this subsection, we start the study of the behavior of ruling geodesics of S . We begin with two examples,
which help us to understand the argument in the rest of the paper.

Example 4.4 (Kleiner; cf Nagano [23]) First consider a smooth nonnegative function f W R! RC
such that ff D 0g D f1=n j n D 1; 2; : : : g [ Œ1;1/[ .�1; 0�. Let � WD f.x; y/ j jyj � f .x/; x 2 Rg,
equipped with the natural length metric induced from that of R2. We set

ICn WD
n
.x;Cf .x//

ˇ̌ 1

nC1
� x �

1

n

o
; I�n WD

n
.x;�f .x//

ˇ̌ 1

nC1
� x �

1

n

o
;

LC WD f.x; 0/ j x � 1g; L� WD f.x; 0/ j x � 0g:

Let `n denote the length of I˙n , and let �n be the maximum of absolute geodesic curvature of I˙n . We
choose f satisfying

(4-4)
X

`n <1 and
X

�n`n < 2�:

By these conditions, one can take a closed domain H in R2 such that:

(1) @H is smooth, connected and concave in the sense that the geodesic curvature is nonpositive
everywhere.

(2) There are consecutive points p1; p2; : : : on @H such that the subarc Kn between pn and pnC1 of
@H has length equal to `n.

(3) If we denote by p1 the limit of pn, the closure of the complement of the arc between p1 and p1
in @H consists of two geodesic rays, say RC and R�, in R2 with p1 2RC and p1 2R�.

(4) The absolute geodesic curvature of Kn is greater than or equal to �n everywhere.

Take four copies H1; : : : ;H4 of H , and for 1� ˛ � 4 let K.˛/n and R.˛/
˙

denote the respective copies of
Kn; R˙ � @H˛. We put

@C� WD

� 1[
nD1

ICn

�
[LC[L� and @�� WD

� 1[
nD1

I�n

�
[LC[L�:

Now glue H1, H2 and � along their boundaries @H1, @H2 and @C� in such a way that In, LC and L�
are respectively glued with K.˛/n , R.˛/

C
and R.˛/� for ˛ D 1; 2 in an obvious way. Similarly glue H3, H4

and � along their boundaries @H3, @H4 and @��. See Figure 3.

LetX be the result of these gluings equipped with natural length metric, which is a two-dimensional locally
compact, geodesically complete space. Let � W�!X be the natural inclusion, and let O D .0; 0/ 2�.
Note that no neighborhood of p WD �.O/ in X has a triangulation. Approximating f by functions fk for
kD 1; 2; : : : that are 0 near 0, we have polyhedral spaces Xk in a similar way which approximate X in the
sense of Gromov–Hausdorff distance. Applying a result in [12], we see that Xk are CAT.0/–spaces. Thus
the limit space X is also a CAT.0/–space. Note that S.X/ consists of the two curves �.@C�/ and �.@��/.
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ICn

I�n

LCL�

H1

H2

H3

H4

Figure 3

Example 4.5 This example is based on Example 4.4. The point is we perform different gluings. This
time we glue H1;H2;H3;H4 and � along their boundaries as follows:

(1) K
.1/
n is glued with ICn for all n.

(2) K
.2/
n is glued with ICn if n 6� 2 .mod 4/ and with I�n if n� 2 .mod 4/.

(3) K
.3/
n is glued with ICn if n� 0; 1 .mod 4/ and with I�n if n� 2; 3 .mod 4/.

(4) K
.4/
n is glued with ICn if n� 3 .mod 4/ and with I�n if n 6� 3 .mod 4/.

Here, R˛
C

and R˛� for 1� ˛� 4 are glued with LC and L�, respectively, in those gluings. The result Y of
these gluings equipped with the natural length metric is a two-dimensional locally compact, geodesically
complete CAT.0/–space. Let � W

�F4
iD1Hi

�
t�! Y be the identification map. Note that

(4-5) for all 1� ˛ ¤ ˇ � 4; �.K˛n /D �.K
ˇ
n / for some n:

Let p WD �.O/, where O is the origin of �, and let v denote the direction at p defined by the union of
all I˙n for nD 1; 2; : : : . For small � > 0, take sufficiently small r > 0 and choose ai 2 S.p; r/\ �.Hi /,
for 1 � i � 4, such that †. Pp;ai .0/; v/D �. Let S.ai ; aj / be the ruled surface defined by the geodesic
segments p;ai and p;aj . Then it follows from (4-5) that S.ai ; aj / are not convex in Y for all i ¤ j .

Remark 4.6 (1) In Example 4.4, if we take ai in a way similar to Example 4.5, then S.ai ; aj / for
i D 1; 2 and j D 3; 4 are convex in X , while S.a1; a2/ and S.a3; a4/ are not convex. Considering the
other vertex of †p.X/, it is possible to fill a neighborhood of the singular set B.p; r/\ S via those
convex ruled surfaces. This is not the case of Example 4.5.

(2) In Example 4.5, it is impossible to fill the ball B.p; r/ for any r > 0 via properly embedded convex
disks. More strongly, there is no such convex disk properly embedded in B.p; r/. If there were such
a convex disk D, from the convexity of D we could take some ai ¤ aj in @D. The convexity of D
would also imply that S.ai ; aj /�D, and hence S.ai ; aj / must be convex. However this is impossible,
as indicated in Example 4.5.
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�s.1/
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Figure 4

For x 2 S with x D �s.t/, from Lemma 2.4, we have

(4-6) j†.˙P�s.t/; .rdp/.x//��=2j< �p.jp; xj; ı/:

For x 2 S , let †x.S/ denote the set of all directions � 2 †x.X/ such that � D limi!1 "
xi
x for some

sequence xi 2 S with jx; xi jX ! 0, as in Section 2. We call †x.S/ the extrinsic space of directions of S
at x. See Figure 4.

In this paper, we use the following terminology. We call a direction � 2†x.X/

� horizontal if †.�;˙.rdp/.x//� 3�=10,

� vertical if †.�;˙.rdp/.x//� �=5,

� medial if it is horizontal and vertical.

We also call a direction � 2†x.X/

� negative if †.�;�.rdp/.x// < �=2,

� positive if †.�; .rdp/.x// < �=2.

We say that an open subset � � †x.X/ is in the positive side (resp. negative side) of †x.X/ if every
element of � is positive (resp. negative).

Assume that a Lipschitz curve c W Œa; b�! B.p; r/ n fpg has the right and left directions PcC.t/ and Pc�.t/
respectively at every t 2 Œa; b�. We say that such a curve c is vertical (resp. horizontal or medial ) if both
PcC.t/ and Pc�.t/ are vertical (resp. horizontal or medial) for every t 2 Œa; b�.

Recall that for every x 2 S ,

s.x/D fs 2 Œ0; `� j x 2 �sg; smax.x/Dmax s.x/; smin.x/Dmin s.x/:

For every x 2 intS , we set

CP�.x/ WD f"�s.1/x j s 2 s.x/g and � P�.x/ WD f"�s.0/x j s 2 s.x/g:

We show that s.x/ is a closed interval later in Lemma 4.28.
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x"
p
x
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˛2.smin.x// ˛2.smax.x//
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Figure 5

Lemma 4.7 For every x 2 intS , we have

(1) diam.s.x//=jp; xj< �p.jp; xj/,

(2) diam.˙P�.x// < �p.jp; xj//.

Proof Suppose that the conclusion does not hold. Then we have a sequence xi 2 intS and a positive
constant c such that one of the following holds:

(i) diam s.xi /=jp; xi j � c, or

(ii) diam.˙P�.xi //� c.

Let xi D �si .ti /. Note that 0 < ti < `.

We may assume ti D minfti ; 1 � tig, since the other case is similar. For any other s0i 2 s.xi /, from
jxi ; pj ! 0, we have

lim
i!1

†xi�si .0/p D
1
2
� � ı and lim

i!1
†xi�s0

i
.0/p D 1

2
� � ı:

We may assume that s0i < si without loss of generality. Note also that

lim
i!1

†xi�s0
i
.0/�si .0/D

1
2
� C ı;

lim
i!1

�
z†�si .0/xi�s0i

.0/C z†xi�si .0/�s0i
.0/C z†�si .0/�s0i

.0/xi
�
D �:

It follows that

lim
i!1

†�si .0/xi�s0i
.0/� lim

i!1

z†�si .0/xi�s0i
.0/D lim

i!1
.� � z†xi�si .0/�s0i

.0/� z†�si .0/�s0i
.0/xi /D 0:

Thus we conclude that diam.�P�.xi //! 0. Therefore the assumption (ii) does not hold. Note that

jsi � s
0
i j � jp; xi jti

z†�si .0/xi�s0i
.0/;

Therefore, from limi!1 z†�si .0/xi�s0i .0/D 0, we see that the assumption (i) does not hold either.
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Now, for any x 2 S and s 2 .0; `/ with x … �s , let y 2 �s be such that jx; yj D jx; �sj. By Lemma 2.4,
we have either

†."xy ;�rdp/ < �p.ı; r/ or †."xy ;rdp/ < �p.ı; r/:

Remark 4.8 From the proof of Lemma 4.7 by contradiction, one might think the function �p. � / depends
also on S . However, the number of possible S at p is finite. Therefore it is possible to find such a function
depending only on p. From now on, we use this convention.

Lemma 4.9 Under the above situation , if †."xy ;�rdp/ < �p.ı; r/ (resp. †."xy ;rdp/ < �p.ı; r/), then
we have

†."yx ;rdp/ < �p.ı; r/ (resp. †."yx ;�rdp/ < �p.ı; r/).

Proof We assume †."xy ;�rdp/ < �p.ı; r/. The proof of the other case is similar. By Lemma 2.4, we
have †pyx < �p.ı; r/. Since †xpy < 2ı, it follows from Lemma 2.7 that †pxy > � � �p.ı; r/, which
implies †."yx ;rdp/ < �p.ı; r/.

Lemma 4.10 For x 2 intS , fix s0 and t0 with x D �s0.t0/. Then for every u 2†x.S/ with

(4-7) †.u;˙P�s0.t0//�
1
3
�;

there exists a shortest path �1 W Œ�1; 1�!†x.X/ satisfying

(4-8)

8<:
u 2 �1.Œ�1; 1�/;

†X .�1.˙1/;˙P�s0.t0// < �p.r/;

�1.Œ�1; 1�/�†x.S/:

See Figure 6 below. We need a sublemma.

x

�s0.1/

�s0.0/

"
p
x

u 2†x.S/

�1

�1.1/

�1.�1/

†x.X/

Figure 6
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Sublemma 4.11 There is a uniform positive constant c satisfying the following: For any x 2 S and any
horizontal direction � 2†x.S/, let yi 2 S be a sequence such that yi ! x and "yix ! �. There is an i0
such that if �si meets yi for some i � i0, then we have

jx; �si j � cjx; yi j:

Proof Note that �si does not pass through x for any large enough i since otherwise � would be a
direction tangent to �si at x, which is a contradiction. Take zi 2 �si such that jx; zi j D jx; �si j. By
Lemmas 2.4 and 2.11, we have

j†xziyi �
1
2
�j< �p.ı; r/:

It follows that †."xzi ; .�rdp// < �p.ı; r/ or †."xzi ;rdp/ < �p.ı; r/. We assume the former since the
latter case is similar. It follows from Lemma 4.9 that †."zix ;rdp/ < �p.ı; r/. Lemma 2.5 implies that

(4-9) j z†pziyi �
1
2
�j< �p.ı; r/:

By Lemma 2.7, we have

(4-10) z†pzix < �p.ı; r/:

Let xi be the point on the geodesic zip satisfying jzi ; xi j D jzi ; xj. By (4-9), we have j z†xiziyi ��=2j<
�p.ı; r/. It follows from (4-10) that

(4-11) j z†xziyi �
1
2
�j< �p.ı; r/:

Now let us consider the convergence�
1

jx; zi j
X; x

�
! .Kx.X/; ox/

as i!1. Let z1 2†x �Kx.X/ be the limit of zi under this convergence. Since†.z1;rdp/< �p.ı; r/
and since "yix ! v, the limit y1 of yi under the above convergence certainly exists, and we have

(4-12) †y1oxz1 <
1
2
� � 1

3
� C �p.ı; r/ <

1
5
�:

By (4-11), we also have

(4-13) j†oxz1y1�
1
2
�j< �p.ı; r/;

and (4-12) and (4-13) imply that jox; z1j � cjox; y1j for some uniform constant c > 0. This yields the
conclusion of the lemma via contradiction.

Proof of Lemma 4.10 Let yi 2 S be such that jx; yi jX ! 0 and "yix converges to u. Take si 2 .0; `/,
ti 2 .0; 1/ such that yi D �si .ti /. Let �i WD jx; yi jX , and consider the convergence�

1

�i
X; x

�
! .Kx.X/; ox/ as i !1:

Geometry & Topology, Volume 28 (2024)



3052 Koichi Nagano, Takashi Shioya and Takao Yamaguchi

Note that the minimal geodesic y�si .t/ WD �si .ti C �i t /, where �ti=�i < t < .1� ti /=�i , has a uniformly
bounded speed for .1=�i /X independent of i . Therefore, passing to a subsequence, we may assume that
y�si .t/ converges to a minimal geodesic y�1.t/ in Kx.X/ defined on .�1;1/, where this convergence
is uniform on every bounded interval. Note that y�1.0/ D u. From Sublemma 4.11 and (4-7), the
geodesic y�1 does not pass through ox . Consider the curve

(4-14) y�1.t/ WD
y�1.t/

jy�1.t/j
:

Obviously, y�1 is a shortest path in †x.X/, and y�..�1;1//�†x.S/. Let �1 W Œ�1; 1�!†x.S/ be a
reparametrization of the extension L�1 W Œ�1;1�!†x.S/ of y�1.

Take an arbitrarywC2.rdp/.x/ and setw�D�.rdp/.x/. Consider the sets fwC; P�s0.t0/;w�;�P�s0.t0/g
and fwC; �1.1/; w�; �1.�1/g. They are on a circle C in †x.X/, in these orders, where

(4-15) jL.C/� 2�j< �p.r/:

Since j†.˙w; �1.˙1//��=2j < �p.ı; r/ and j†.˙w;˙P�s0.t0//��=2j < �p.ı; r/, we have the con-
clusion (4-8).

A direction � 2†x.X/ is called regular if � … S.†x.X//.

Lemma 4.12 For x 2 intS , let �1; �2 2 †x.S/ be positively horizontal (resp. negatively horizontal ).
Assume that �1 is regular. Take an X–geodesic 1 such that P1.0/ D �1, and a sequence xi 2 S such
that jx; xi jX ! 0 and "xix ! �2. Then for s0 with x 2 �s0 , there exists an � > 0 such that if some ruling
geodesic �s with js� s0j< � passes through xi for a sufficiently large i , then it passes through 1, too.

See Figure 7.

Proof Suppose that the conclusion does not hold. Then there exists a sequence si ! s0 such that �si
meets xi while �si does not pass through 1. Applying Lemma 4.10 to x D �s0.t0/ and �2, we have
a shortest arc �1 W Œ�1; 1�! †x.X/ joining two points close to ˙P�s0.t0/ such that �2 2 �1.Œ�1; 1�/.
Similarly, applying Lemma 4.10 to �1, we have a shortest arc x�1 W .Œ�1; 1�/!†x.X/ joining two points
close to ˙P�s0.t0/ such that �1 2 x�1.Œ�1; 1�/.

x

�s0 �s

"
p
x

�2

�1
1

†x.X/

xi

Figure 7
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Note that both �1 and x�1 pass through the positive side of †x.X/ and connect points close to ˙P�s0.t0/.
From construction, �1 and x�1 pass through horizontal directions �2 and �1 respectively. Furthermore,
both intersections �1.Œ�1;�1C �1�/ \ x�1.Œ�1;�1C x�1�/ and �1.Œ1 � �2; 1�/ \ x�1.Œ1 � x�2; 1�/ are
not empty for some small �i ; x�i > 0 for i D 1; 2, since they are in the regular parts of †x.X/ by
Corollary 2.12. Therefore by the uniqueness of geodesics in the CAT.1/–space †x.X/, we conclude that
�1.Œ�1C �3; 1� �3�/D x�1.Œ�1Cx�3; 1�x�3�/ for some small �3; x�3 > 0, and in particular �1 and x�1
pass through both �1 and �2.

Take �3; �4 2†x.X/ close to �1 such that every element of the arc Œ�3; �4� in †x.X/ is regular and �1 is
the midpoint of Œ�3; �4�. Let i W Œ0; ��! X be X–geodesics with P.0/ D �i for i D 3; 4, and 5 the
X–minimal geodesic joining 3.�/ to 4.�/. If � > 0 is small enough, then the triangle 4.3; 4; 5/
bounds a domain in X homeomorphic to a two-disk D. Let intD denote the interior of the disk D. Note
that intD is open in X and that 1.Œ0; �1�/�D for a small �1 < �. Since intD is open in X and since �1
is constructed by (4-14), �si really passes through 1 for large i , which is a contradiction. This completes
the proof.

4.2 Canonical balls

In this subsection, we introduce the notion of canonical balls, which turns out to be useful to have better
understanding of the behavior of ruling geodesics of S .

We denote by R.X/ the set of topological regular points, R.X/DX nS.X/.

Definition 4.13 For x 2 B.p; r/, a ball B.x; �/ is called canonical if for every y 2 B.x; �/ n fxg with
vertical "yx , we have y 2R.X/.

Lemma 4.14 There exists an r D rp > 0 such that there is a canonical ball around every point in
B.p; r/ n fpg.

Lemma 4.14 is a direct consequence of the following Lemma 4.15, which is immediate from Corollary 2.12.

Lemma 4.15 For every x 2 S.X/\B.p; r/ n fpg, we have

supf†.�;rdp/ j � 2†x.S.X// is positiveg< �p.jp; xj/;

supf†.�;�rdp/ j � 2†x.S.X// is negativeg< �p.jp; xj/:

Definition 4.16 For x 2 intS , let B.x; �/ be a canonical ball. We set

UC.x; �/ WD fy 2 B.x; �/ j †."
y
x ;
P�.x// < 1

4
�g;

U�.x; �/ WD fy 2 B.x; �/ j †."
y
x ;�
P�.x// < 1

4
�g:

Note that both UC.x; �/ and U�.x; �/ are convex in X for small � > 0.

In Lemma 4.21, we show that U˙.x; �/� S for a small � > 0.
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x

�s0

"
p
x

UC.x; �/

U�.x; �/

B.x; �/

Figure 8: A canonical ball around x.

We denote by jAj the cardinality of a set A.

Lemma 4.17 Let  W Œ0; 1�!X be a vertical X–geodesic in B.p; r/. Then we have j \S.X/j<1

Proof Suppose that the lemma does not hold. Then we would have an accumulation point x D .t0/
of  \ S.X/. It turns out that either P.t0/ or � P.t0/ is in †x.S.X//, which is a contradiction to the
existence of a canonical ball around x.

Remark 4.18 At this stage, we do not know yet a uniform bound on j \ S.X/j for all the vertical
geodesics  . In Section 6, we give a uniform bound (see Sublemma 6.8).

The following is a key lemma.

Lemma 4.19 (no-return lemma) For every s0, there exists an � > 0 such that for any s1 2 .s0� �; s0/
(resp. any s1 2 .s0; s0 C �/), there are no t0; t1 2 Œ0; 1� satisfying that "

�s1 .t1/

�s0 .t0/
is positively horizontal

(resp. negatively horizontal ) of †�s0 .t0/.X/.

Proof Suppose the conclusion does not hold. Then we have some sequence si < s0 with limi!1 si D s0
such that

(4-16) "
�si .ui /

�s0 .ti /
is positively horizontal for some ti ; ui 2 .0; 1/:

See Figure 9. We show that both �si ..0; ui // and �si ..ui ; 1// meet �s0 , which yields a contradiction to
the minimality of �s0 .

From Lemmas 4.14 and 4.17, it is possible to cover �s0 by finitely many canonical balls B.x˛; �˛/, with
1� ˛ �N , where x˛ D �s0.t˛/ and t˛ < t˛C1. Taking smaller �˛ if necessary, we may further assume
that for any large i ,

(1) �si �
SN
˛D1B.x˛; �˛/,

(2) B.x˛; �˛/\B.x˛C1; �˛C1/\�si � UC.x˛; �˛/\U�.x˛C1; �˛C1/ for each ˛.
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�s0�si

�si .ui /�s0.ti /

Figure 9: "
�si .ui /

�s0 .ti /
is positively horizontal.

Note that �s0\SX �fx˛gN˛D1, and that UC.x˛; �˛/\U�.x˛C1; �˛C1/ is convex inX and homeomorphic
to a disk. Suppose that �si ..0; ui // does not meet �s0 . Take a maximal interval I i˛ in Œ0; 1� such that
�s0.I

i
˛/� B.x˛; �˛/, and set

� i˛.t/ WD"
�si .t/
x˛ for t 2 I i˛:

From the assumption, � i˛.I
i
˛/ is in either the negative side or the positive side of †x˛ .X/. Note that

� i1.I
i
1/ is in the negative side of †x1.X/. Let ˛0 D ˛0.i/ be such that �s0.ti / 2 B.x˛0 ; �˛0/. From

(4-16), � i˛0.I
i
˛0
/ is in the positive side of †x˛0 .X/. Therefore for some ˛ � ˛0, � i˛�1.I

i
˛�1/ is in the

negative side of †x˛�1.X/ and � i˛.I
i
˛/ is in the positive side of †x˛ .X/. Now �s0 divides the disk

domain UC.x˛�1; �˛�1/\U�.x˛; �˛/ into two disk domains D� and DC, where we may assume that
�si .t�/ 2D� and �si .tC/ 2DC for some t� 2 I˛�1 and tC 2 I˛. Thus �si .Œt�; tC�/ must meet �s0 .

Similarly, we would have another intersection point of �si ..ui ; 1// and �s0 . This completes the proof.

The following lemma is a global version of Lemma 4.19.

Lemma 4.20 For arbitrary s1 < s2, there are no t1; t2 2 Œ0; 1� such that "
�s2 .t2/

�s1 .t1/
(resp. "

�s1 .t1/

�s2 .t2/
) is

negatively horizontal in †�s1 .t1/.X/ (resp. positively horizontal in †�s2 .t2/.X/).

Proof Let I.s1/ be the set of all s 2 .s1; s2� such that there are no t1; t 2 Œ0; 1� such that "�s.t/
�s1 .t1/

is
negatively horizontal in †�s1 .t1/.X/. By Lemma 4.19, .s1; s0/� I.s1/ for some s0 2 .s1; s2/. Let u be
the supremum of those s0. From the continuity of the map � WR! S , .s1; s2� n I.s1/ is open in .s1; s2�.
It follows that u 2 I.s1/. Suppose that u < s2. Then we have a sequence of positive numbers �i with
�i ! 0 such that ui WD uC �i … I.s1/. Namely we have sequences ti and t 0i satisfying that "

�ui .t
0
i
/

�s1 .ti /
is

negatively horizontal in †�s1 .ti /.X/. Set xi WD �ui .t
0
i /, and let yi WD �s1.ti /. Take zi 2 �ui and wi 2 �u

such that
jyi ; zi j D jyi ; �ui j and jzi ; wi j D jzi ; �uj:

Since "xiyi is horizontal, we have yi ¤ zi . By (4-6), we obtain

†."yizi ;rdp/ < �p.ı; r/ or †."yizi ;�rdp/ < �p.ı; r/:
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We show that

(4-17) †."yizi ;rdp/ < �p.ı; r/:

Otherwise, we have †."yizi ;�rdp/ < �p.ı; r/. In view of Lemma 4.9, it turns out that

†xiyizi >
2
3
� � �p.ı; r/;

and hence
†xiziyi < � �†xiyizi �†yixizi C �p.r/ <

1
3
� C �p.ı; r/:

This is a contradiction to the choice of zi .

Next note that wi ¤ zi . Because if wi D zi , then "wiyi must be negatively horizontal by (4-17), which
contradicts u2 I.s1/. Now by Lemma 4.19, "ziwi is positively horizontal. In view of Lemma 4.9, we have

(4-18) †."wizi ;�rdp/ < �p.ı; r/:

It follows from (4-17) and (4-18) that †yiziwi > � � �p.ı; r/, which implies †."wiyi ;�rdp/ < �p.ı; r/.
In particular "wiyi is negatively horizontal. This contradicts u 2 I.s1/. Thus we conclude uD s2.

Similarly we see that there are no t1; t2 satisfying that "
�s1 .t1/

�s2 .t2/
is positively horizontal. This completes

the proof.

Lemma 4.21 For every x 2 intS , there exists an � > 0 such that

UC.x; �/� S and U�.x; �/� S:

Proof Let B.x; �0/ be a canonical ball. Take the positively horizontal vC 2 †x.X/ (resp. negatively
horizontal v� 2 †x.X/) such that †.v˙; P�.x// D �=4. Let ˙ be X–geodesics starting from x with
P˙.0/D v˙.

Sublemma 4.22 For any 0 < � < �0, there are s� 2 .0; smin.x// and sC 2 .smax.x/; r/ such that �s˙
pass through ˙..0; ��/, respectively.

See Figure 10.

x

�sC�s�

"
p
x

C�

Figure 10
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Proof Suppose that there is no such s� < smin.x/. Then we have a sequence si < smin.x/ converging
to smin.x/ such that �si does not pass through �..0; ��/ for some � > 0 and all i . As in the proof of
Lemma 4.10 together with Lemma 4.19, the curves �i .t/ D"

�si .t/
x , where t 2 Œ0; 1�, in †x.X/ pass

through P�.0/ for all i . This shows in particular that P�.0/ 2†x.S/. Since P�.0/ is regular, it follows
from Lemma 4.12 that �si meets �..0; ��/ for every large enough i . This is a contradiction.

Similarly, we see that �s meets C..0; ��/ for any s > sC sufficiently close to sC.

Take a sufficiently small 0 < �1 < �0 such that

(4-19) the triangle �C.�1/x�.�1/ spans a disk domain in X .

Let s˙ be as in Sublemma 4.22 for �1, and set I WD Œs�; sC� and �1 D C.Œ0; �1�/[�.Œ0; �1�/. It follows
from the continuity of � , Lemma 4.19 and (4-19) that �s meets �1 for all s 2 I . Now define ' W I ! �1
by '.s/D �s\�1 . Let ˙.�˙/ WD '.s˙/. Since ' is continuous, the intermediate-value theorem implies
that

�2 � Im' � S;

where �2 WDminf�C; ��g.

For any 0 < � � �2, let �� be the X–geodesic joining �.�/ to C.�/. Put

y�;�2 WD �.Œ�; �2�/[�� [ C.Œ�; �2�/:

Similarly, we can define the map  W I ! y�;�2 by  .s/D �s \ y�;�2 . Again, since  is continuous, the
intermediate-value theorem implies that  is surjective, and hence �� � S . Now we can take �C3 > 0
such that

UC.x; �
C
3 /�

[
0���e2

�� � S:

Similarly we have U�.x; ��3 /� S for some ��3 > 0. This completes the proof of Lemma 4.21.

4.3 Spaces of directions

In this subsection, we determine the structure of the space of directions of S at each point of S .

Lemma 4.23 For every x 2 S , let � 2 †x.S/ be regular in †x.X/, and let  be an X–geodesic with
P.0/D � . Then .Œ0; ��/� S for a small � > 0. Furthermore , � can be taken locally uniformly for � .

Proof First assume x 2 intS , and let xD�s.t/. From Lemma 4.21, we may assume †.�;˙P�s.t//� 1
3
� .

If � is positive, Lemmas 4.12 and 4.19 imply that for some s1 > smax.x/, �s meets  at, say, .t.s//
for every s 2 Œsmax.x/; s1�. Since � is horizontal, t .s/ is unique and continuous in s, and t .s/ > 0 if
s > smax.x/. Therefore .Œ0; t.s1/�/� S . From this argument, the local uniformity of t .s1/ for � is clear.
The case when � is negative is similar. If x 2 @S n fpg, the proof is similar.

Geometry & Topology, Volume 28 (2024)



3058 Koichi Nagano, Takashi Shioya and Takao Yamaguchi

Finally we consider the case x D p. For small enough � > 0, let �˙ 2†p.X/ be such that

†.�C; ��/D†.�C; �/C†.�; ��/D 2†.�C; �/D 2�;

and let ˙ be X–geodesics with P˙.0/D �˙. For a small � > 0, let U.�/ denote the domain bounded
by ˙ and S.p; �/. If � is small enough, then U.�/ is homeomorphic to a disk. Take xi 2 S with xi ! p

such that "xip ! �. Then for a large N , we have xi 2 U.�/ for all i � N . If xi D �si .ti /, �si must
meet ˙. The intermediate-value theorem then yields that the subdomain of U.�/ bounded by ˙ and
�sN is contained in S . In particular, .Œ0; �1�/� S for small �1 > 0.

Remark 4.24 If � 2†x.S/ is singular in†x.X/, Lemma 4.23 does not hold in general. See Examples 4.4
and 4.5.

Lemma 4.25 Let x 2 S .

(1) If x 2 intS , then †x.S/ is a circle of length < 2� C �p.r/.

(2) If x 2 @S , then †x.S/ is an arc.

Proof (1) First we show that †x.S/ contains a circle C . Take an s0 2 s.x/ and t0 with x D �s0.t0/.
Obviously

C0 WD f� 2†x.X/ j †.˙P�s0.t0/; �/�
1
3
�g

consists of two arcs in the regular part of †x.X/. It follows from Lemma 4.21 that C0 is contained in
†x.S/. For a positively horizontal direction vC 2 †x.S/, we apply Lemma 4.10 to obtain a minimal
arc CC in †x.S/ joining two points close to ˙P�s0.t0/ and containing vC. Similarly, for a negatively
horizontal direction v� 2†x.S/, we apply Lemma 4.10 to obtain a minimal arc C� in †x.S/ joining
two points close to˙P�s0.t0/ and containing v�. Obviously the union of C0, CC and C� forms a circle C
in †x.S/. It follows from Lemma 4.7 and (4-8) that

jL.C˙/��j< �p.r/ and L.C n .CC[C�// < �p.r/;

which implies jL.C/� 2�j< �p.r/.

Suppose next that †x.S/nC is not empty, and take a w in †x.S/nC . Since †.w;˙P�s0.t0//�
1
3
� , we

can apply Lemma 4.10 to obtain a minimal arc C1 in †x.S/ joining two points close to ˙P�s0.t0/ and
containing w. Note that the complement C 01 of a small neighborhood of ˙P�s0.t0/ in C1 is contained
in C , and w must be contained in C 01, which is a contradiction.

(2) If xD �s.0/ with 0 < s < ` (resp. sD `), then †x.S/ is an arc with endpoints˙ P̨1.s/ (resp. � P̨1.`/
and P�`.0/) through P�s.0/ (recall (4-2)). The case x D �s.1/ with 0 < s � ` is similar. Next consider
the case x D p. Let v and �1; �2 be as in (4-1). We show that †p.S/ coincides with the arc Œ�1; �2� in
†p.X/. Let �i be any interior point of Œ�i ; v�, and let �i be X–geodesics with P�i .0/D �i . If s > 0 is
small enough, then �s meets both �1 and �2. This implies that Œ�1; �1�[ Œ�2; �2� is contained in †p.S/.
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Letting �1; �2! v, we obtain that Œ�1; �2��†p.S/. Conversely, for any � 2†p.S/, take xi 2 S with
jp; xi j! 0 and "xip ! � . Since xi can be written as xi D�si .ti / with si! 0, it is obvious that � 2 Œ�1; �2�.
Thus we have †p.S/D Œ�1; �2�.

Definition 4.26 For x 2 S , let †x.S int/ denote the intrinsic space of directions of S at x, which is
defined as the completion of the set of all equivalence classes of S–geodesics starting from x equipped
with the upper angle †S for the induced interior metric of S .

Lemma 4.27 †x.S/ is isometric to †x.S int/.

Proof First assume x 2 intS . Let

� WD†x.S/\S.†x.X//:

Note that j�j <1. We first show that each component † of †x.S/ n� is isometrically embedded in
†x.S

int/. Take �1 and �2 from† with j�1; �2j<� . Let �i W Œ0; ��!X be an X–geodesic with P�i .0/D �i .
Then for small �, we have from Lemma 4.23 that

(1) �i � S , and

(2) every X–geodesic joining �1.t/ and �2.t/ is contained in S for every t 2 Œ0; ��.

Thus we conclude that †X .�1; �2/D†S .�1; �2/.

Next, for any v 2�, take �3; �4 2†x.S/n� close to v such that �3; v and �4 are in this order on the circle
†x.S/. Take X–geodesics i , for i D 3; 4, in the direction �i . By Lemma 4.12, we can find a sequence si
such that si ! s0 2 s.x/ and �si meets both 3 and 4. This implies that †X .�3; �4/D†S .�3; �4/. This
completes the proof for this case.

The case x 2 @S is similar, and hence we omit the proof.

4.4 Proof of Theorem 4.1

In this subsection, we first prove Theorem 4.1. Then we control the difference between the geometries
of S and X .

Lemma 4.28 For every x 2 S , we have that

(1) s.x/ is either a point or a closed interval , and

(2) ��1.x/ is a strictly monotone arc in R.

Proof Suppose that the conclusion (1) does not hold. Then we would have s� < sC such that s˙ 2 s.x/
and .s�; sC/ does not meet s.x/. By Lemma 2.4, we may assume x ¤ p. Choose an S–geodesic
 W Œ0; a/! S starting from x such that P.0/ is a positive, horizontal and regular direction. Let us write

I D fs 2 .s�; sC/ j �s passes through  n fxgg:
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From Lemmas 4.19 and 4.12, there is �0 > 0 such that .s�; s�C �/ � I for every 0 < � � �0. Since
x 2 �sC , this is a contradiction to Lemma 4.20.

Conclusion (2) follows immediately from (1) and the injectivity of � jIs for each s 2 .0; `�.

Proof of Theorem 4.1 By Lemma 4.28, we have (3-4) for all u; v 2R. Thus S has the induced metric
from � . Theorem 3.26 then implies that .S; dS / is a CAT.�/–space.

We set S int WD .S; dS /.

Lemma 4.29 The set intS int is locally geodesically complete.

Proof This is immediate from Lemma 4.25 in a straightforward way. See [10, Proposition II.5.12] and
[18, Theorem 1.5] together with [16, Theorem A] for general considerations.

We prove that S int is a topological two-manifold with boundary. In view of Lemmas 2.8, 4.25, 4.27 and
4.29, it suffices to show that a small S–ball around any point x 2 @S is homeomorphic to a half-disk.
Suppose x D p. The other cases are similar. The argument is standard. Logically, we proceed as follows.
For a positive integer m with m� Œ�=2ı�C1, gluing m copies of S in order around p, we have a sector T
with sector angle � � at p, which is a CAT.�/–space by Theorem 2.2. Glue two copies of T along their
edges to obtain a CAT.�/–space W for which L.†p.W //� 2� . Then Lemma 2.8 shows that p has an
open disk neighborhood, which implies that p has a half-disk neighborhood in S .

Finally, from the CAT.�/–property of S , the contractibility of S is immediate since we may assume
that the diameter of S for the metric dS is less than �=

p
� when � > 0. This completes the proof of

Theorem 4.1.

In the rest of this section, we present a few results that control the difference between the geometries
of X and S . These will be needed in Sections 5 and 7.

Lemma 4.30 For arbitrary distinct x; y 2 S , let .�rSdx/.y/ denote PSy;x.0/, where Sy;x is the S–
geodesic from y to x. Then we have

(1) †. PSx;y.0/; P
X
x;y.0// < �x.jx; yjX /, and

(2) †..�rSdx/.y/; .�rdx/.y// < �x.jx; yjX /.

For the proof, we need a sublemma.

Sublemma 4.31 For every x 2 S , we have

sup
y2BS .x;s/nfxg

jx; yjS

jx; yjX
< 1C �x.s/:

When x 2 S nS.X/, Sublemma 4.31 and Lemma 4.30 are clear.
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Proof of Sublemma 4.31 If the sublemma does not hold, there would exist a sequence xn in S converging
to x such that

(4-20)
jx; xnjS

jx; xnjX
> 1C c > 1

for some constant c > 0 independent of n. Passing to a subsequence, we may assume that "xnx converges
to a direction v 2†x.X/. It is easily seen from (4-20) that v is a vertex of †x.X/. Take a small enough
� > 0 compared with c and an sn 2 s.xn/. Let yn be an element of �sn with jxn; ynj D �jx; xnjX . From
Lemma 4.25, the X–geodesic joining x and yn is contained in S for any large n. It follows from the
triangle inequality that

jx; xnjS

jx; xnjX
�
jx; ynjS Cjyn; xnjS

jx; xnjX
�
jx; xnjX C 2jyn; xnjX

jx; xnjX
D 1C 2� < 1C c;

which is a contradiction.

Proof of Lemma 4.30 If the lemma did not hold, there would be a sequence xi of S converging to x
such that

(4-21) †. PSx;xi .0/; P
X
x;xi

.0// > c > 0

or

(4-22) †..�rSdx/.xi /; .�rdx/.xi // > c > 0;

where c is a uniform positive constant. From now, we assume x 2 intS . The other case is similar. We
may assume that �Xi WD P

X
x;xi

.0/ and �Si WD P
S
x;xi

.0/ converge to �X 2†x.X/ and �S 2†x.S/�†x.X/
respectively. Note that �X 2†x.S/.

(1) First we assume (4-21). Then we have †.�X ; �S /� c. We show �X 2†x.S/\V.†x.X//. Actually,
by Lemma 4.23, if �X 2†x.S/ nV.†x.X//, we have � > 0 such that X�X

i
.Œ0; ��/� S for any large i . It

turns out that Xx;xi � S , which is a contradiction to (4-21). Similarly, we have �S 2†x.S/\V.†x.X//.
Since †x.S/\V.†x.X// is a point, it follows that �X D �S . This is a contradiction.

(2) Next assume (4-22). We set � WD �X D �S , and † WD†x.S/. From the above argument of (1) and
(4-22), we have � 2†\V.†x.X//. Letting tXi WD jxi ; xjX , consider the convergence�

1

tXi
X; xi

�
! .Kx.X/; �

X /:

Similarly, letting tSi WD jxi ; xjS , from Lemma 4.27, we have the convergence�
1

tSi
S; xi

�
! .K.†/; �S /:

Let �1; �2 be elements of†nV.†x.X// near � such that � is in the interior of the shortest arc between �1
and �2. Take any si 2 s.xi /, and let yi and zi be the intersections of �si with �1 and �2 , respectively.
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Let y1 2K.†/ and z1 2K.†/ be the respective limits of yi and zi under the above rescaling limit. By
Lemma 2.1, we have

lim sup
i!1

†
Xyixix �†y1�ox; lim sup

i!1

†
Xzixix �†z1�ox;

lim sup
i!1

†
Syixix �†y1�ox; lim sup

i!1

†
Szixix �†z1�ox :

It follows from

†
XyixixC†

Xzixix � �; †
SyixixC†

Szixix � � and †y1�oxC†z1�ox D �

that

(4-23)
lim
i!1

†
Xyixix D†y1�ox D lim

i!1
†
Syixix;

lim
i!1

†
Xzixix D†z1�ox D lim

i!1
†
Szixix:

Now let wi 2 †xi .S/ be the nearest point of †xi .S/ from PXxi ;x.0/. If PXxi ;x.0/ 2 †xi .S/, then (4-23)
implies that †. PXxi ;x.0/; P

S
xi ;x

.0//! 0 as i !1. This contradicts (4-22). Suppose PXxi ;x.0/ …†xi .S/.
Then wi 2V.†xi .X//. It follows from Lemma 2.11 that †. PXxi ;x.0/; wi / < �x.jx; xi jX /. In what follows,
we may assume that †. Pxi ;yi .0/; wi /�†. Pxi ;yi .0/; P

S
xi ;x

.0// without loss of generality by replacing yi
by zi if necessary. Then using Lemma 4.25 and (4-23), we obtain

†. PXxi ;x.0/; P
S
xi ;x

.0//D†. PXxi ;x.0/; wi /C†.wi ; P
S
xi ;x

.0//

D†. PXxi ;x.0/; wi /C†.wi ; Pxi ;yi .0//�†. P
S
xi ;x

.0/; Pxi ;yi .0//

� 2†. PXxi ;x.0/; wi /C†. P
X
xi ;x

.0/; Pxi ;yi .0//�†. P
S
xi ;x

.0/; Pxi ;yi .0//

< �x.jx; xi jX /C oi ;

where limi!1 oi D 0. This is a contradiction to (4-22).

Lemma 4.32 For x; y 2 S , suppose that the S–geodesic Sx;y W Œ0; 1�! S from x to y is vertical. Then
Sx;y is an X–geodesic.

Proof For any t 2 Œ0; 1�, let � > 0 be chosen as in Lemma 4.21 for z WD Sx;y.t/. Choose tn! t , and set
zn WD 

S
x;y.tn/. Let Xn be the X–geodesic from z to zn. In view of Lemmas 4.25 and 4.21, we have

Xn � U˙.z; �/� S:

Thus Xn must be a subarc of Sx;y , and hence Sx;y is an X–geodesic.

Lemma 4.33 For x; y 2 S with x 2 ˛1 and y 2 ˛2 satisfyingˇ̌
jp; xjX � jp; yjX

ˇ̌
< 1
100
jx; yjX ;

the S–geodesic joining x and y is an X–geodesic.
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Proof It follows from the assumption thatˇ̌
jp; xjS � jp; yjS

ˇ̌
< 1
100
jx; yjX �

1
100
jx; yjS :

Using Lemma 2.5 in S , we have

j†pSx;y.t/x��=2j<
1
3
� and j†pSx;y.t/y �

1
2
�j< 1

3
�

for all t 2 .0; 1/, where Sx;y W Œ0; 1�! S is the S–geodesic joining x to y. This implies that Sx;y is
vertical. The lemma then follows from Lemma 4.32.

In a way similar to Lemma 4.33, we have the following.

Lemma 4.34 For arbitrary x; y 2 S such thatˇ̌
jp; xjS � jp; yjS

ˇ̌
< 1
100
jx; yjS ;

the S–geodesic joining x and y is an X–geodesic.

5 Filling via CAT.�/–disks

Let v be a vertex of †p of order N , and let �1; : : : ; �N be the set of all points of †p with d.�i ; v/D ı
for a sufficiently small positive number ı. Take a small enough r > 0 and points a1; : : : ; aN of S.p; 2r/
with Pp;ai .0/D �i and r � rp. For simplicity, we denote by S.ai ; aj / the ruled surface S.p;ai ; p;aj /
spanned by p;ai and p;aj . Let V.†p/ be the set of all vertices of the graph †p. Since V.†p/ is finite,
we have a positive number rp such that for any 0 < r � rp, all the S.ai ; aj /, when v runs over V.†p/,
satisfy the conclusion of Theorem 4.1. Then obviously S.X/\B.p; r/ is contained in the union of all
S.ai ; aj / when v runs over V.†p/.

Sector correspondence We fix S WD S.ai ; aj / for a moment, and set

�.S; r/X WD BX .p; r/\S and CX WD SX .p; r/\S:

From here on, we use the symbols BX .p; r/ and SX .p; r/ to emphasize the metric ball and the metric
circle in X . Note that �.S; r/X is bounded by the two geodesics p;ai , p;aj and CX .

To show Theorem 1.1(3), we need the following lemma.

Lemma 5.1 For any small enough r � rp, the sector �.S; r/X is �p.r/–almost isometric to a Euclidean
sector.
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Proof By Lemma 4.30, †. PXx;p.0/; P
S
x;p.0// < �p.r/ for every x 2 CX . Since †. PXx;p.0/; PC

X /D 1
2
� ,

it follows that

(5-1)
ˇ̌
†. PSx;p.0/;

PCX /� 1
2
�
ˇ̌
< �p.r/:

Consider the rescaling limit of the CAT.�/–space: ..1=r/S; p/! .Kp.S/; op/ as r! 0. By Theorem 2.6,
we have a �p.r/–almost isometry ' W�.S; r/X ! image.'/�R2. It suffices to show that image.'/ is
�p.r/–almost isometric to a Euclidean sector. Although the argument below is elementary and standard,
we present a proof for completeness since we do not find a reference.

We may assume '.p/D .0; 0/DO . For k D 1; 2, let Lk be the line segment from O to '.k.r//. We
express Lk in the polar coordinates as

Lk.x/D .x; �k/ for 0� x � xk.r/;

where �k is a constant and xk.r/ WD j'.k.r//; Oj. Let �0 be the direction representing the midpoint of
PL1.0/ and PL2.0/. We may assume that �1 < �0 D 0 < �2, and let L0 be the line segment from O in the
direction �0: L0.x/D .x; 0/. Let '.CX / intersect L0 with .r0; 0/. Set qk WD Lk.xk.r//.

Let Uk (resp. Dk) be the domain bounded by L0, '.k/ and '.CX / (resp. by L0, Lk and '.CX / ). Let
�.L1; L2I r/ denote the Euclidean sector bounded by the rays in the directions L1, L2 and the circle of
radius r . In the first step, we deform image.'/D U1[U2 to D1[D2 via a �p.r/–almost isometry. In
the second step, we deform D1[D2 to �.L1; L2I r/ via a �p.r/–almost isometry.

Step 1 Choose a point q0 2 L0 such that †1
4
� � Oqkq0 �

1
3
� for k D 1; 2. Note that Œqk; q0� � Uk .

Let Jk denote the union ŒO; q0�[ Œq0; qk�. Let yUk (resp. yDk) be the domain bounded by L0, '.k/ and
Œqk; q0� (resp. by L0, Lk and Œqk; q0�). We first show that yUk is �p.r/–almost isometric to yDk .

Let Jk.x/ for 0� x �L.Jk/ be the arclength parameter of Jk with Jk.0/DO . For every x 2 Œ0; L.Jk/�,
let �k.x; s/ for 0� s � 2 be the segment such that

� �k.x; 0/D Jk.x/ and �k.x; 1/ 2 Lk ,

� jO; �k.x; s/j D jO; �k.x; 0/j for all s 2 Œ0; 2�,

� s 7! �k.x; s/ is proportional to arclength.

Then �k.x; s/ with 0� x �L.Jk/ and 0� s � 1 defines a parametrization of yDk , and it is differentiable
except at x D x0, where Jk.x0/D q0. Take a unique tk.x/ 2 .0; 2/ such that

�k.x; tk.x// 2 Im.'k ı k/:

Now, we define  k W yUk! yDk for k D 1; 2 by

 k.�k.x; s// WD �k

�
x;

s

tk.x/

�
:

Obviously, tk.x/ is locally Lipschitz, and hence differentiable on a set �� Œ0; L.Jk/� with full measure
since �k.x; s/ defines a locally bi-Lipschitz embedding. See Figure 11.
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O D '.p/

' ı 2

' ı 1

L0

L1

L2

'.CX /

�2

�1

q1 D '.1.r//

q2 D '.2.r//

r0q0

q0

yD1

yD2

Figure 11

Sublemma 5.2 Each  k W yUk! yDk is a �p.r/–almost isometry.

Proof In the expression  k.x; s/ WD  k ı �k.x; s/D �k.x; s=tk.x//, we have on �� Œ0; 1�

(5-2)
@ k

@s
D

1

tk.x/

@�k

@s
and

@ k

@x
D
@�k

@x
C

�
�st 0

k
.x/

tk.x/
2

�
@�k

@s
:

It is easily checked that for some uniform positive constants c1; : : : ; c4,

(5-3)

8̂̂<̂
:̂
0 < c1 <

ˇ̌̌̌
@�k

@x

ˇ̌̌̌
< c2;

0 < c3 <†

�
@�k

@s
;
@�k

@x

�
< � � c4:

Note also that

(5-4) jtk.x/� 1j< �p.r/.

By the property of ', we see that any tangent vector to 'ık is �p.r/–almost parallel to the radial direction.
Now consider the curve �k.x/D �k.x; tk.x// parametrizing ' ı k . It follows from the expression

d�k

dx
.x/D

@�k

@x
.x; tk.x//C

@�k

@s
.x; tk.x//t

0
k.x/

that

(5-5)
ˇ̌̌̌
@�k

@s
.x; s/t 0k.x/

ˇ̌̌̌
< �p.r/:

Let

v WD
@�k

@x
; V WD d k.v/ and w WD

ˇ̌̌̌
@�k

@s

ˇ̌̌̌�1
@�k

@s
; W WD d k.w/:

Combining (5-2)–(5-5), we haveˇ̌
jV j � jvj

ˇ̌
< �p.r/;

ˇ̌
jW j � jwj

ˇ̌
< �p.r/; jhV;W i � hv;wij< �p.r/:

Together with (5-3), this implies
ˇ̌
jd k.u/j�1

ˇ̌
< �p.r/ for each unit tangent vector u on �� Œ0; 1�. This

completes the proof of Sublemma 5.2.
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Obviously, the �p.r/–almost isometry  k W yUk! yDk extends to a �p.r/–almost isometry  k W Uk!Dk .
Combining  1 and  2, we obtain a �p.r/–almost isometry  between the image of ' and D1[D2:

 W Im.'/!D1[D2 �R2:

Step 2 Finally we deform D1[D2 to the Euclidean sector �.L1; L2I r/. Let '.CX / be parametrized
as '.CX /D .r.t/; �.t// for 0� t � 1. For every 0� r 0 � r.t/, let us define

�.r 0; �.t//D

�
r

r.t/
r 0; �.t/

�
;

which defines a �p.r/–almost isometry

� WD1[D2!�.L1; L2I r/:

Thus the composition � ı ı' W�.S; r/X !�.L1; L2I r/ is a �p.r/–almost isometry. This completes
the proof of Lemma 5.1.

Lemma 5.3 S \B.p; r/ is a CAT.�/–space with respect to the interior metric.

Proof It suffices to show that every point q 2 S\S.p; r/ has a neighborhood U in S\B.p; r/ such that
any S–geodesic triangle region whose vertices are in U is contained in S \B.p; r/. To achieve this, we
only have to show that S \B.p; r/ is boundary convex, in the sense that for arbitrary x; y 2 S \S.p; r/,
any S–minimal geodesic Sx;y joining them is contained in S \B.p; r/. We may assume that Sx;y is
vertical, and therefore it is an X–geodesic (see also Lemma 6.3). Hence the conclusion follows from the
X–convexity of B.p; r/.

Filling ball

Now we fill the ball B.p; r/ via properly embedded/branched immersed CAT.�/–disks. For a vertex v of
†p of order N , let �1; : : : ; �N and a1; : : : ; aN be as in the beginning of Section 5. For every pair .i; j /
with 1� i < j �N , we want to take a simple loop in †p.X/ passing through �i , v and �j . Since this is
not possible in general, we consider the two cases.

Case I There is a simple loop � in †p.X/ through �i , v and �j .

Consider the ruled surface S.ai ; aj / as well as the other ruled surfaces defined around other points
of � which are vertices of †p.X/ (if they exist). By Lemma 5.1, considering the regular part of � as
well, we can define a proper Lipschitz embedding f vij WD

2.`I r/! B.p; r/ with f vij .O/D p satisfying
†p.Im.f vij //D �, where ` is the length of �.

Proof of Theorem 1.1(1) for embedded disks Lemma 5.3 together with the gluing procedure as
discussed after Lemma 4.29 implies that Im.f vij / is a CAT.�/–space. Note that f vij has bi-Lipschitz
constant < 1C �p.r/.
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Case II There are no simple loops in †p.X/ containing �i , v and �j .

Claim 5.4 There is an immersion g W S1!†p.X/ such that :

(1) If W is the set of multiple points of g, then g�1.W / consists of two arcs W1 and W2 (they may be
points), and each restriction gjWa WWa!W for aD 1; 2 is injective.

(2) There is an arc I of S1 such that g.I / coincides with the arc between �i and �j containing v.

Proof In view of the present case, there are noncontractible loops Ci and Cj at v, freely homotopic to
a circle, such that �i 2 Ci , �j 2 Cj , �j … Ci and �i … Cj . If both Ci and Cj are simple, we can define
a desired immersion g W S1 ! †p.X/ with W D fvg. Suppose Ci is not simple. Then Ci contains a
simple loop zCi at a point ui such that Ci is the union of zCi and the arc Œv; ui �. If Cj is also not simple,
then we consider the union of simple loops zCi , zCj and the arc Œui ; uj �. If only Ci is not simple, then
we consider the union of simple loops zCi , Cj and the arc Œui ; v�. This observation provides a desired
immersion g W S1!†p.X/ with W D Œui ; uj � or W D Œui ; v�.

First suppose W D fvg and find �k 2Ci and �` 2Cj with 1� k; `�N and k; `¤ i; j . Chasing on g.I /
in the order

�i ! v! �j ! �`! v! �k! �i ;

we consider the ruled surfaces S.ai ; aj / and S.ak; a`/ as well as the other ruled surfaces defined around
other points of g.I / which are vertices of †p.X/ (if they exist). By Lemma 5.1, considering the regular
part of g.I / as well, we can define a proper Lipschitz immersion f vij WD

2.`I r/!B.p; r/ with branched
point .f vij /

�1.p/ D fOg satisfying †p.Im.f vij // D g.S1/, in a way similar to Case I. Note that any
multiple point q 2 Imf vij lies in a direction close to v.

Next suppose W D Œui ; v� and find �` 2 Cj with 1� `�N and `¤ i; j . Chasing on g.I / in the order

�i ! v! �j ! �`! v! �i ! ui ! zCi ! �i ;

we similarly consider the ruled surfaces S.ai ; aj /, S.aj ; a`/ as well as the other ruled surfaces defined
around other points of g.I / which are vertices of †p.X/ (if they exist). In a way similar to the previous
case, we can define a desired proper Lipschitz immersion f vij WD

2.`I r/! B.p; r/ branched at the point
.f vij /

�1.p/D fOg satisfying †p.Im.f vij //D g.S
1/.

The other case is similar, and hence omitted.

Note that f vij has bi-Lipschitz constant (resp. local bi-Lipschitz constant except the origin) less than
1C �p.r/ in Case I (resp. in Case II).

Lemma 5.5 B.p; r/D
[

v2V.†p.X//

� [
1�i<j�N

Imf vij

�
.

Proof First note that from construction, †p.X/ coincides with all the union of †p.Imf vij /. Suppose
there is a point x 2 B.p; r/ which is not contained in any image Imf vij . Let � WD"xp . Take some Imf vij
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such that � 2†p.Imf vij /. We may assume that � is close to the vertex v, since if � is far from any vertex
of †p.X/, then x D �.jp; xjX / is certainly contained in the union of all the images Imf vij , which is a
contradiction.

Let  be a geodesic in Imf vij starting from p in the direction �. Note that  reaches the metric sphere
S.p; r/; see also Sublemma 4.31. Let x0 be the point of � such that jp; x0jX D jp; xjX . Consider the
geodesic Xx;x0 . If we extend Xx;x0 through x0, it meets p;ak for some k. Similarly, if we extend Xx;x0
through x, it meets p;a` for some `. Lemma 4.33 yields that x 2 S.ak; aj /. This is a contradiction.

Combining Lemma 5.5 and the above discussion, we complete the proof of Theorem 1.1(1)–(3) except
for (1) for the branched immersed disks that occur from the above Case II.

The proof of Theorem 1.1(1) for the branched immersed disks is deferred to Section 7.

6 Graph structure of singular set

Our next step is to characterize S.X/\B.p; r/ as a union of finitely many Lipschitz curves.

For a subset A of X , we denote by @A the complement in xA of the set of all points a of A such that there
is a neighborhood of a homeomorphic to an open disk and contained in A.

For distinct 1� i; j; k �N , we set

Cij Ik WD .@.S.ai ; aj /�S.aj ; ak//� @S.ai ; aj //\B.p; r/:

Lemma 6.1 Cij Ik is a simple Lipschitz arc in S.X/ such that

(1) it starts from p and reaches a point of @B.p; r/,

(2) its length is less than .1C �p.r//r , and

(3) each point of †x.Cij Ik/ is a vertex of †x.X/ for every x 2 Cij Ik . In particular , Cij Ik has definite
directions everywhere , and

jdp.x/� dp.y/j

jx; yjX
� 1� �p.r/ for all x; y 2 Cij Ik :

Proof For each s 2 Œ0; 2r�, consider the ruling geodesic �s.t/ with 0 � t � 1 of S.ak; aj / joining
p;ak .s/ to p;aj .s/ in X . Let t0 2 .0; 1/ be the first parameter at which �s meets S.ai ; aj /.

We claim that

(6-1) �s.Œt0; 1�/� S.ai ; aj /:

Since zs WD �s.t0/ is a topological singular point of X , by Lemma 4.25 we can take a direction �0 in
†zs .S.ai ; aj // with †.�0; �0s.t0// D � . A geodesic �0 in S.ai ; aj / with direction �0 reaches p;ai .
Take �1 2 †zs .S.ai ; aj // with †.�0; �1/D � . Similarly, a geodesic �1 in S.ai ; aj / with direction �1
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reaches p;aj . It follows from Lemma 4.34 that �0 and �1 form a geodesic in X . In particular, �0 is a
geodesic in X , and therefore �0 and �s.Œt0; 1�/ form a geodesic, say  , in X , Lemma 4.33 implies that 
is contained in S.ai ; aj /, and so is �s.Œt0; 1�/.

Since the curve c.s/ WD zs is continuous, its image coincides with Cij Ik . By Corollary 2.12, we have

†..rdp/.c.s//; †c.s/;C.Cij Ik// < �p.r/ and †..�rdp/.c.s//; †c.s/;�.Cij Ik// < �p.r/;

where†c.s/;C.Cij Ik/ (resp.†c.s/;�.Cij Ik/) denotes the space of directions of Cij Ik at c.s/ in the positive
direction (resp. negative direction).

Now we take another parametrization '.s/ of Cij Ik defined as '.s/ D Cij Ik \ S.p; s/, where S.p; s/
denotes the metric circle of radius s with respect to dX . If s0 is close enough to s, then we have
†."

'.s0/

'.s/
;rdp.'.s/// < �p.r/, which implies that

(6-2) lim
s0!s

j'.s/; '.s0/jX

js� s0j
� 1C �p.r/:

Thus ' is Lipschitz with Lipschitz constant�1C�p.r/, therefore of lengthL.'/DL.Cij Ik/� .1C�p.r//r .
Equation (6-2) also implies the inequality in (3).

Lemma 6.1 claims that the closure of S.aj ; ak/�S.ai ; aj / “transversally” intersects S.ai ; aj / with the
Lipschitz curve Cij Ik . In particular, we have:

Lemma 6.2 Cij Ik D Cj i Ik D CjkIi .

In view of Lemma 6.2, we use the notation

Cijk WD Cij Ik :

Using the discussion in the proof of Lemma 6.1, we show the following refined version of Lemma 4.33,
which is not a direct consequence of Lemma 4.34.

Lemma 6.3 For arbitrary x; y 2 S D S.ai ; aj / such thatˇ̌
jp; xjX � jp; yjX

ˇ̌
< 1
1000
jx; yjX ;

the X–geodesic joining x and y is an S–geodesic.

Proof Consider the geodesic Xx;y and extend it in both directions until it reaches p;ak and p;a` for
some k; ` at wk 2 p;ak and w` 2 p;a` respectively. That is,

Œwk; w`�X D Œwk; x�X [ Œx; y�X [ Œy; w`�X :

Let z (resp. u) be the first point at which Œwk; x� (resp. Œw`; y�) meets R.ai ; aj /. As in the proof of
Lemma 6.1, we have points wi 2 p;ai and wj 2 p;aj such that

Œwi ; wj �X D Œwi ; z�X [ Œz; x�X [ Œx; y�X [ Œy; wj �X :

Geometry & Topology, Volume 28 (2024)



3070 Koichi Nagano, Takashi Shioya and Takao Yamaguchi

From the hypothesis, we have
ˇ̌
jp;wi j�jp;wj j

ˇ̌
< 1
100
jwi ; wj jX . Lemma 4.33 then implies that Œwi ; wj �X

is an S–geodesic. Thus we conclude that Œx; y�X is an S–geodesic, as required.

For a vertex v of †p.X/, suppose that a1; : : : ; aN 2 S.p; 2r/ are as in Section 5, where N DNv. Let
S.a1; : : : ; aN I r/ be the closed domain of B.p; r/ bounded by p;ai for 1 � i � N , and S.p; r/. Note
that S.a1; : : : ; aN I r/ is the union of all the ruled surfaces S.ai ; aj / and B.p; r/.

Corollary 6.4 For a vertex v of †p.X/, the union of all Cijk coincides with S.X/\S.a1; : : : ; aN I r/.

Proof Since every element of S.X/\S.a1; : : : ; aN I r/ comes from the intersection of some S.ai ; aj /
and S.ak; a`/, it suffices to show that @.S.ai ; aj /\S.ak; a`//nS.p; r/ is contained in Cijk [Cij`. For
every x 2 @.S.ai ; aj /\S.ak; a`//, take an s such that the ruling geodesic �s joining p;ai .s/ to p;aj .s/
goes through x, say at �s.t0/ D x. Since x 2 S.X/, Lemma 2.4(2), Theorem 4.1 and Corollary 2.12
imply the existence of a direction � 2†x.S.ak; a`// such that †.�; �0s.t0//D � . Then a geodesic � in
S.ak; a`/ with direction � must reach p;ak or p;a` . Suppose it reaches p;ak for instance: �.t1/2 p;ak
for some t1 > 0. An argument similar to that in the proof of Lemma 6.1 then implies that �.Œ0; t0�/ does
not meet S.ai ; aj / except for x, and that the union �.Œ0; t0�/[�s.Œt0; 1�/ forms a geodesic in S.ak; aj /.
This shows x 2 Cijk .

Proof of the second half of Theorem 1.1 It is now an immediate consequence of Lemma 6.1 and
Corollary 6.4.

We call a curve C in S.X/ a singular curve.

Remark 6.5 Each singular curve C contained in S.a1; : : : ; aN I r/ has the direction v at p. From now on,
we always consider the case when dp is strictly increasing along C . In that case, for each interior point q
of C , C has definite directions †q.C / consisting of two vertices of †q.X/.

Structure of metric circles

Next we discuss the structure of S.p; r/.

Let bi WD p;ai .r/. For 0 < t � r , set

S.vI t / WD

� [
1�i<j�N

S.ai ; aj /

�
\SX .p; t/:

Lemma 6.6 For each 0 < t � r , S.vI t / is a tree with endpoints p;ai .t/ for 1� i �N .

Proof For 3� k �N , put

Sk.vI t / WD

� [
1�i<j�k

S.ai ; aj /

�
\SX .p; t/:
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Inductively we show that Sk.vI t / is a tree for every 3� k �N . This is certainly true for k D 3. Assume
that Sk�1.vI t / is a tree. Set

S.ai ; ak/.t/ WD S.ai ; ak/\S
X .p; t/:

Let pk.t/ WD p;ak .t/. Let q.t/ be the point of Sk�1.v; t/ where the arc starting from pk.t/ in Sk.v; t/
first meets Sk�1.v; t/. For every 1� i ¤ j � k� 1 with q.t/ 2 S.ai ; aj /.t/, equation (6-1) implies that

(6-3) S.ai ; ak/.t/ n Œpk.t/; q.t/�� S.ai ; aj /;

where Œpk.t/; q.t/� denotes the arc between pk.t/ and q.t/ in Sk.v; t/. Equation (6-3) implies that
Sk.v; t/D Sk�1.v; t/[ Œpk.t/; q.t/�. Thus Sk.v; t/ is a tree.

Proof of Corollary 1.6 Let rp � r > 0 be as in Theorem 1.1. By Lemma 6.6, for every vertex v
of †p.X/, S.vI r/ is a tree with endpoints bi for 1� i �N . Therefore S.p; r/ has the same homotopy
type as †p.X/.

Let ˛ be any noncontractible simple closed loop in S.p; r/. From the discussion in Case I and the
proof of Theorem 1.1(1) in Section 5, there is a noncontractible simple closed loop � in †p.X/ of
length, say, ` � 2� , and a properly embedded CAT.�/–disk f WD2.`I r/! B.p; r/ associated with �
such that †p.Im.f // D � and f .@D2.`I r// D ˛. For v 2 � \ V.†p.X//, let �i ; �j 2 � be points
near v such that v is the midpoint of the arc Œ�i ; �j �. Let Sij be the ruled surface defined by �i and �j .
Note that BSij .p; r/ � Sij \ BX .p; r/. Since we may assume r < �=2

p
�, the nearest-point map

Sij \ S
X .p; r/ ! SSij .p; r/ is distance nonincreasing. Let zSij be a sector in the model M 2

� with
vertex zp bounded by two geodesics of length r and S. zp; r/ such that the sector angle at zp is equal to
†.�1; �2/. From the curvature condition, we have

L.SSij .p; r//� L. zSij \S. zp; r//D†.�1; �2/=
p
�.�; r/;

yielding L.Sij \SX .p; r//�†.�1; �2/=
p
�.�; r/. Applying a similar argument to the other parts of ˛

and �, we conclude that
L.˛/� L.�/=

p
�.�; r/� 2�=

p
�.�; r/:

This completes the proof.

Now we define a metric graph structure of S.X/ in a generalized sense as follows.

Definition 6.7 We consider the relative topology of S.X/ with length metric. Let I be an open set
of S.X/. We call I an open arc in S.X/ if it is open in S.X/ and is isometric to an open interval.
A maximal open arc I with respect to the inclusion is called an open edge of S.X/. We denote by
E.S.X// (resp. jE.S.X//j) the set (resp. the union) of all open edges in S.X/. We call each element of
S.X/njE.S.X//j a vertex of S.X/. We denote by V.S.X// the set of all vertices of S.X/. Let us denote
by V�.S.X//� V.S.X// the set of all accumulation points of V.S.X//. The case V�.S.X//D V.S.X//
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or H1.V�.S.X/// > 0 may happen; see Example 6.9. As usual, two vertices v1 and v2 of S.X/ are
adjacent if there is at least one open edge joining them. The order of a vertex v is defined as the limit of
the number of components of BS.X/.v; �/ n fvg as �! 0.

Proof of Corollary 1.4 First note that by Theorem 1.1, S.X/ is locally path-connected. For a given
point p 2 S.X/ and v 2 V.†p.X//, let N DNv be the branching number of v in †p.X/, and take r D rp
as in Theorem 1.1. For ı > 0 with ı�minf†.v; v0/ j v ¤ v0 2 V.†p.X//g, let 1; : : : ; N be geodesics
from p with †. Pi .0/; v/D ı and †. Pi .0/; Pj .0//D 2ı for 1� i ¤ j �Nv. By Corollary 6.4, we have

S.X/\U.v/D
[

1�i<j<k�N

Cijk;

where U.v/ WD C.v; ı; r/ is the cone neighborhood around v; see (2-7). By Lemma 6.1(3), the distance
function dp is strictly monotone on each Cijk . It follows from Corollary 6.4 that V.S.X// has locally
finite order.

In what follows, we give an explicit sharp bound on the orders at the vertices in S.X/\B.p; r/.

Sublemma 6.8 S.X/\U.v/ can be written as the union of at most Nv � 2 singular curves C starting
from p in the direction v, and reaching S.p; r/ such that dp is strictly increasing along C .

Proof By Corollary 6.4, S.X/\U.v/ coincides with the set of all topological singular points resulting
from the intersections of distinct ruled surfaces Sij and Si 0j 0 for all 1� i < j �N and 1� i 0 < j 0 �N
with .i; j /¤ .i 0; j 0/. For 2� k �N , let Ek be the union of all Sij with 1� i < j � k. We inductively
define singular curves Cj for 2 � j � N � 1 as the set of all points of Ej where geodesics almost
perpendicularly starting from points of jC1 intersect Ej for the first time. Then it is obvious to see that
S.X/\U.v/D C2[ � � � [CN�1. From Lemma 6.1, dp is strictly increasing along C .

Let � WD S.X/\B.p; r/. It follows from Sublemma 6.8 that

� the order at the vertex p of the graph � \U.v/ is at most Nv � 2,

� the order at any vertex y in � \U.v/ n fpg is at most 2.Nv � 2/.

Therefore the maximum of orders of vertices contained in � is at most

max
� X
v2V.†p.X//

.Nv � 2/; max
v2V.†p.X//

2.Nv � 2/

�
:

This completes the proof of Corollary 1.4.

We exhibit the following example, which is another version of Example 4.4. Here we use the notion
of �–Cantor set (see [6]) to produce a two-dimensional CAT.0/–space X such that V�.S.X// is one-
dimensional. A similar construction for a boundary singular set of a limit space of manifolds with
boundary was made in [32].
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Example 6.9 For any 0 < � < 1, set ı WD 1� �. We define the so-called �–Cantor set of Œ0; 1� inductively
as follows: We start with I0 WD Œ0; 1�, and remove from I0 the open interval of length ı=2 around the
center of I0. We denote by I1 the result of this removing. Note that I1 consists of 21 disjoint closed
intervals I1;j for j D 1; 2 having the same length and that L.I1/ D 1� ı=2. Suppose that we have
constructed Ik consisting of 2k disjoint closed intervals Ik;j with 1� j � 2k of the same length such
that L.Ik/D 1� ı=2� � � � � ı=2k . Remove from each Ik;j the open interval of length ı=22kC1 around
the center of Ik;j . We denote by IkC1 the result of this removing. Thus, inductively we have constructed
In for every n. Finally we set

I1 WD

1\
nD0

In; Jn WD Œ0; 1� n In; J1 WD

1[
nD0

Jn D Œ0; 1� n I1:

Note that H1.I1/D limn!1L.In/D 1� ı D �. The set I1 is called an �–Cantor set.

Next, inductively we define smooth functions fn WR! Œ0; 1� for n 2N such that

� supp.fn/D Jn,

� fn D fn�1 on Jn�1,

� if we set yJ˙n WD f.x;˙fn.x// j x 2 Jng, then the length `n and the maximum �n of absolute
geodesic curvature of yJ˙n satisfy (4-4).

Now we define the limit f WD limn!1 fn W R! Œ0; 1�, which satisfies supp.f / D J1. Using f , we
define the closed subset � of R2 by

� WD f.x; y/ j jyj � f .x/; x 2Rg;

equipped with the length metric. Set

@˙� WD f.x; y/ j y D˙f .x/; x 2Rg:

Take closed concave domains H˙ in R2 homeomorphic to the half plane such that for certain isometries
g˙ W @˙� ! @H˙ the absolute geodesic curvature of g˙.J˙n / is greater than �n. Take two copies
H 1
˙
;H 2
˙

of H˙, and make a gluing of H 1
C
;H 2
C
;H 1
�;H

2
� and � along their boundaries via g˙ as in

Example 4.4 to get a two-dimensional locally compact, geodesically complete CAT.0/–space X . Note
that V�.S.X//D V.S.X//D I1 and therefore H1.V�.S.X///D � > 0.

7 Approximations by polyhedral spaces

In this section, we give the proof of Theorem 1.1(1) for branched immersed disks. We need to recall
the notion of turn, which was first defined in the context of surfaces with bounded curvature in [3];
see also [28].
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Definition 7.1 For a moment, let X be a surface with bounded curvature. In X, we have the notion of
angles between geodesics starting from a point, and use the same notation for spaces of directions, etc;
see [3, Theorem II.10].

Let F be a domain inX with boundary C . For an open arc e of C , we assume that e has definite directions
at the endpoints a; b and the spaces of directions of F at a and b have positive lengths. Then the turn
(rotation) �F .e/ of e (see [3, Chapter VI]) from the side of F is defined as follows: Let n be a broken
geodesic in F n e except for the endpoints, joining a and b and converging to e as n!1. Let �n be the
domain bounded by e and n. We denote by ˛n and ˇn the sector angle of �n at a and b, respectively.
Let �ni for 1� i �Nn denote the sector angle at the break points of n, viewed from F n�n. Let

z�F .n/ WD

NnX
iD1

.� � �ni /C˛nCˇn:

Then the turn �F .e/ is defined as

�F .e/ WD lim
n!1

z�F .n/;

where the existence of the above limit is shown in [3, Theorem VI.2].

For an interior point c of e having definite two directions †c.e/, the turn of e at c from the side F is
defined as

�F .c/ WD � �L.†c.F //:

We now assume the following additional conditions for all c 2 e:

(1) L.†c.F // > 0,

(2) e has definite two directions †c.e/.

Consider the constant �F .e/ 2 Œ0;1� defined by

(7-1) �F .e/ WD sup
fai g

n�1X
iD1

j�F ..ai ; aiC1//jC

n�1X
iD2

j�F .ai /j;

where faig D faigiD1;:::;n runs over all the consecutive points on e. The constant �F .e/ is called the turn
variation of e from the side F , and e has finite turn variation when �F .e/ <1. For general treatments
of curves with finite turn variation in CAT.�/–spaces, see for instance [4].

Let e be a simple arc on X . One can define the notion of sides FC and F� of e. Under the corresponding
assumptions, we define the turns �FC.e/ and �F�.e/ of e from FC and F� respectively, as above. Similarly,
we define the turn variations �FC.e/ and �F�.e/ from FC and F�. We say e has finite turn variation if
�FC.e/ <1 and �F�.e/ <1 (actually, both are finite if one is [3, Lemma IX.1]). When e has finite
turn variation, �FC and �F� provide signed Borel measures on e; see [3, Theorem IX.1].

Geometry & Topology, Volume 28 (2024)



Two-dimensional metric spaces with curvature bounded above, I 3075

The structure of the union of ruled surfaces

Letp2S.X/, and rDrp>0 be as in Theorem 1.1. From now, we work onB.p; r/. Fix any v2V.†p.X//,
and let N DNv be the branching number of †p.X/ at v. For small enough ıp > 0, let 1; : : : ; N be the
geodesics from p with †. Pi .0/; v/D ıp and †. Pi .0/; Pj .0//D 2ıp for 1� i ¤ j �N . For 2� k �N ,
we define Ek as the union of ruled surfaces Sij determined by i and j for all 1� i ¤ j � k.

Let C denote the union of all singular curves Cij` for 1� i < j < `� k. By Corollary 6.4, C coincides
with the set of all topological singular points resulting from the intersections of distinct ruled surfaces Sij
and Si 0j 0 for all 1� i < j � k, 1� i 0 < j 0 � k with .i; j /¤ .i 0; j 0/.

Note that a singular curve in the direction v not included in C might meet Ek . We consider the graph
structure of C inherited from that of S.X/, which is not the one of C itself introduced as in Definition 6.7.
Thus we set

E.C/ WD C \E.S.X//; V .C / WD C \V.S.X//; V�.C / WD C \V�.S.X//;

and call E.C/ and V.C / the set of edges and the set of vertices of C respectively. Remember that all
edges are assumed to be open (Definition 6.7).

Definition 7.2 We say that a vertex point x 2 V.C / is singular if either x 2 V�.C / or there are two
singular curves C1, C2 in C starting from x such that

(1) †x.C1; C2/D 0,

(2) C1 and C2 have no intersections near x other than x.

The direction v 2†x.C / determined by the above C1 and C2 as well as v D limi!1 "
xi
x with V.C / 3

xi ! x is also called singular. The set of singular vertices of C is denoted by Vsing.C /. The set of
singular directions at x 2 Vsing.C / is denoted by †sing

x .C /.

We set r.x/ WD dp.x/ for simplicity.

For x 2 C n fpg, let †x;C.C / WD †x.C n intB.p; r.x/// and †x;�.C / WD †x.C \ B.p; r.x///. By
Lemma 2.11, we may assume that for all x 2 C n fpg,

(7-2)
�
†.rdp.x/;†x;C.C // < 10

�10; diam.†x;C.C // < 10�10;

†.�rdp.x/;†x;�.C // < 10
�10; diam.†x;�.C // < 10�10:

The following lemma is clear.

Lemma 7.3 For every x 2 C n fpg, †x.Ek/.�†x.X// coincides with the union of all circles †x.Sij /
such that x 2 Sij �Ek , where the circles †x.Sij / are attached at the points of †x;˙.C /.

The following is the main result of this section.

Theorem 7.4 Ek is a CAT.�/–space.
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Remark 7.5 Recently, we learned that Theorem 7.4 is a direct consequence of the main result of Lytchak
and Stadler [20]. However, in what follows, we present our original proof, which provides deep insights
on the local geometry of X , and will also be used in [24] as one of key methods.

The basic strategy of the proof of Theorem 7.4 is to use the results [12, Theorems 0.5 and 0.6] on the
characterizations for polyhedral spaces to be CAT.�/–spaces.

Let F� be the family of two-dimensional polyhedral locally CAT.�/–spaces F possibly with boundary @F
such that any edge of @F has finite turn variation. For a collection fFig of F� , let X be the polyhedron
resulting from certain gluing of fFig along their edges. We always consider the intrinsic metric of X
induced from those of Fi . We consider the following two conditions:

(A) For any Borel subset B of an arbitrary edge e of X , and arbitrary faces Fi and Fj adjacent to e,
we have

�Fi .B/C �Fj .B/� 0:

(B) For any vertex x of X , †x.X/ is CAT.1/.

Theorem 7.6 [12, Theorem 0.5] A polyhedron X resulting from a certain gluing of fFig � F� along
their edges belongs to F� if and only if the conditions (A) and (B) are satisfied.

Theorem 7.7 [12, Theorem 0.6] Each polyhedron X in F� can be glued from the faces fFig contained
in F� along their edges in such a way that the conditions (A) and (B) are satisfied.

In particular , each edge of S.X/ has finite turn variation.

Note that Ek is not a polyhedral space in general. Even in that case, we have some difficulty mentioned
below. From these reasons, we shall do surgeries to get a polyhedral space zEk which approximates Ek in
the Gromov–Hausdorff sense. The point is, we can apply Theorems 7.6 and 7.7 to zEk to conclude that it
is CAT.�/. Finally taking the limit, we will obtain the conclusion.

From now on, we set E WDEk for simplicity. We need some preliminary argument on the local geometry
of E.

Lemma 7.8 For every x 2 E, †x.E/ is isometric to the intrinsic space of directions †x.E int/ in the
sense of Definition 4.26.

Proof The basic idea of the proof is the same as that of Lemma 4.27. Obviously, we may assume x 2 C .
We only consider the case x¤p. We first show that each component† of†x.E/n†x.C / is isometrically
embedded in †x.E int/. For �1; �2 2 † with j�1; �2j < � , let �n be an X–geodesic with P�n.0/ D �n
for n D 1; 2. Then for small �, we have �1.Œ0; ��/ � Sij and �2.Œ0; ��/ � Sk` for some Sij ; Sk` in E.
Note that the X–geodesic X

�1.t/;�2.t/
joining �1.t/ and �2.t/ does not meet C , and hence X�1.t/;�2.t/

is contained in the same ruled surface Sij D Sk` � E. This implies that †X .�1; �2/ D †Sij .�1; �2/.
From †X � †E � †Sij , we conclude that †X .�1; �2/D†E .�1; �2/ and the existence of an isometric
embedding � W†!†x.E

int/.
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Next, for any v 2†x.C /, take �3; �4 2†x.E/n†x.C / close to v such that the segment Œ�3; �4� in†x.E/
meets †x.C / only at v. Take X–geodesics ˛3; ˛4 in the directions �3; �4, and choose Sij ; Si 0j 0 in E such
that ˛3.t/� Sij and ˛4.t/� Si 0j 0 . Let ˛ W Œ0; 1�!X be the X–geodesic from ˛3.t/ to ˛4.t/. By (7-2),
˛ is vertical. We extend ˛ until it reaches @E. We can choose such an extension that ˛.t�/ 2 ` and
˛.tC/ 2 

0
`

with ` 2 fi; j g and `0 2 fi 0; j 0g for some t� < 0 < 1 < tC. Thus, we have ˛.Œt�; tC�/� S``0 .

By Lemma 4.12, we can find a sequence sn such that the ruling geodesics �sn of S``0 meets both ˛3 and ˛4,
and �sn converges to a ruling geodesic through x as n!1. This implies that †X .�3; �4/D†Sij .�3; �4/,
and hence †X .�3; �4/D†E .�3; �4/. This completes the proof.

Lemma 7.9 For arbitrary x; y 2E, let  WD Ex;y W Œ0; jx; yjE �!E be an E–shortest curve between x
and y. Suppose that the set of accumulation points of  \S.X/ is finite. Then  is an X–geodesic.

Proof Set � WD  \S.X/. We only have to consider the case when � has a unique accumulation point
.u/ with � D f.ti /; .sj /; .u/ j i; j D 1; 2; : : :g with 0 � t1 < t2 < � � � < ti < � � � < u < � � � < sj <
� � �< s2 < s1 � jx; yjE and limi!1 ti D limj!1 sj D u.

For each i and any small enough � >0, .Œti�1C�; ti���/ is contained in the surfaceX nS.X/. Therefore
 jŒti�1C�;ti��� is locally X–minimizing, and hence X–minimizing. Thus,  jŒti�1;ti � is X–minimizing.

By Lemma 7.8, we have

†
X . PE.ti /;.ti�1/; P

E
.ti /;.tiC1/

/D†E . PE.ti /;.ti�1/; P
E
.ti /;.tiC1/

/D �:

Hence  jŒti�1;tiC1� is an X–geodesic, which implies that  jŒ0;u� is an X–geodesic. Similarly,  jŒu;jx;yjE �
is an X–geodesic. In a way similar to the above, we have †X . PE

.u/;.0/
.0/; PE

.u/;.jx;yjE/
.0//D � . It

follows that  is an X–geodesic.

Remark 7.10 Lemma 7.9 does not hold in case a subarc of  is contained in S.X/; see Example 4.4.

Lemma 7.11 For a fixed x 2E, we have for every y 2E with y ¤ x,

jx; yjE

jx; yjX
< 1C �x.jx; yjX /:

Proof We may assume x 2E \S.X/. Suppose the conclusion does not hold. Then we have a sequence
yn 2E converging to x such that jx; ynjE=jx; ynjX > 1C c for some positive constant c. Passing to a
subsequence, we may assume that all yn 2 Sij for some Sij . This is a contradiction to Sublemma 4.31
since jx; ynjE � jx; ynjSij .

Proof of Theorem 7.4 For each edge e 2E.C/, let Di for 1� i �m.e/ be open half-disks in X with
@Di D e such that

(7-3)
m.e/[
iD1

Di is an open neighborhood of e in X .
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Let �Di be the turn of e from the side Di . We want to apply Theorem 7.7 to the completion of the
components ofEnC . LetA be such a completion containing someDi . However here are some difficulties:
The domain Amight be too thin to define �Di .e/ because of the presence of singular vertices. In particular,
we do not know if e has finite turn variation in A. We also have to care about V�.C /. To overcome these
difficulties, we do surgeries around points of Vsing.C /. At this moment, we can apply Theorem 7.7 to e
locally. Each point of e has a convex neighborhood P in

Sm.e/
iD1 Di such that @P consists of broken

geodesics joining the endpoints of e\P . It follows from Theorem 7.7 that we have

(7-4) �Di .e\P /C �Dj .e\P /� 0 for all 1� i ¤ j �m.e/;

and e has locally finite turn variation in Di .

Let �0 be any positive number. For x 2 Vsing.C /, we assume that the singularity of x occurs from the
positive direction. Namely, there is v 2 †sing

x;C.C /. The other case v 2 †sing
x;�.C / is similarly discussed.

Let C.v/ denote the union of singular curves in C starting at x in the direction v.

Choose ı D ıx > 0 and � D �x > 0 with ı; � � �0 and �� ı such that

the fB†x.X/.v; 2ı/g for v 2†sing
x .C / are mutually disjoint,(7-5)

C.v; ı; 2�/ (see (2-7)) covers C.v/\BC.x; 2�/,(7-6)

E \S.p; r.x/C �/ does not meet V.C /,(7-7)

where BC.x; �/ WD B.x; �/ n intB.p; r.x//. By Lemma 6.6, C.v; ı; �/\E \ S.p; ı.x/C �/ is a tree,
say yT .x; v/. Replacing each edge of yT .x; v/ by the X–geodesic between the endpoints, we obtain a
geodesic tree T .x; v/. By Lemma 4.32, we have T .x; v/ � E. Let K.x; v/ be a closed domain of E
bounded by T .x; v/ and the X–geodesic segments between x and the endpoints of the tree T .x; v/. Note
that such X–geodesics between x and the endpoints of T .x; v/ are contained in E. Taking smaller ı
and � if necessary, we may assume

(7-8) z†
Xyxy0 < �0 for all y; y0 2 T .x; v/:

For each vertex y 2V.T .x; v//, take theX–geodesic Xx;y between x and y. For each edge e2E.T .x; v//
with endpoints y and y0, let 4Xe denote the X–geodesic triangle consisting of Xx;y [ 

X
x;y0 [ 

X
y;y0 .

Let zNXe be the triangular region bounded by z4Xe . Gluing fzNXe j e 2E.T .x; v//g properly, we obtain a
polyhedral space zK.x; v/ corresponding to K.x; v/. See Figure 12.

We provide a relation between K.x; v/ and zK.x; v/.

Lemma 7.12 (1) Let y and y0 be arbitrary endpoints of T .x; v/. For arbitrary z 2 Xx;y D 
E
x;y and

z0 2 Xx;y0 D 
E
x;y0 , assuming jx; zjX � jx; z0jX , we haveˇ̌

jz; z0jE � jzz; zz
0
j
ˇ̌
< �.�0/jx; zjX ;

where zz; zz0 2 @ zK.x; v/ are the points corresponding to z and z0, respectively.
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x

y

T .x; v/

K.x; v/

zx

zy

zT .x; v/

zK.x; v/

Figure 12

(2) For arbitrary y 2 T .x; v/ and z 2 @K.x; v/, we haveˇ̌
jy; zjE � jzy; zzj

ˇ̌
< �.�0/jx; yjX ;

where zy and zz are the points of @ zK.x; v/ corresponding to y and z.

Proof (1) Let yz 2 Xx;z0 be the point such that jx; yzjX D jx; zjX . Note that X
z;yz

is vertical, and therefore
contained in E. By triangle inequality, we have

ˇ̌
jz; z0jE � jz

0; yzjE
ˇ̌
� jyz; zjE D jyz; zjX . Equation (7-8)

implies z†Xzxyz <�0, and hence jz; yzjX <�.�0/jx; zjX . In view of Xx;yD 
E
x;y and Xx;y0D 

E
x;y0 , we haveˇ̌

jz; z0jE � .jx; z
0
jX � jx; zjX /

ˇ̌
� �.�0/jx; zjX :

Since †zzzxzz0 < �.�0/, similarly we have
ˇ̌
jzz; zz0j � .jx; z0jX � jx; zjX /

ˇ̌
� �.�0/jx; zjX . Combining the

last two inequalities, we obtain the required inequality.

(2) Choose w 2 @T .x; v/ such that z 2 Xx;w . From (7-8), we have jy;wjE D jy;wjX < �.�0/jx; yjX .
Therefore by triangle inequality, we obtain

ˇ̌
jy; zjE�jz; wjE

ˇ̌
�jy;wjE <�.�0/jx; yjX . Since†zyzxzz<�0,

by a similar consideration on the triangle 4zyzxzz in M 2
� , we have

ˇ̌
j zy; zzj � jzz; zwj

ˇ̌
< �.�0/jx; yjX , where

zw is the point of @ zT .x; v/ corresponding to w. Since jz; wjE D jz; wjX D jzz; zwj, combining the last two
inequalities, we obtain the required inequality.

In E, we do surgeries by removing K.x; v/ from E, and gluing E nK.x; v/ and zK.x; v/ along their
isometric boundaries to get a new space, say zEx;v.

Proposition 7.13 For each vertex zy of zK.x; v/, †zy. zEx;v/ is CAT.1/.

We begin with:

Lemma 7.14 For each vertex y 2 V.T .x; v//, †zy. zEx;v/ is CAT.1/, where zy 2 V. zT .x; v// is the vertex
corresponding to y.

Proof The lemma is clear when y is an endpoint of T .x; v/. From now, we assume that y is an interior
vertex of T .x; v/. Let us consider

†�y WD†y.K.x; v//�†y.X/; †Cy WD†y.E n intK.x; v//�†y.X/; z†�y WD†zy.
zK.x; v//:
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Note that †y.E/D†�y [†
C
y is a subgraph of †y.X/ without endpoints, and hence it is CAT.1/. Since

†zy. zEx;v/D z†
�
y [†

C
y , it suffices to show:

Claim 7.15 There is an expanding map †�y ! z†
�
y .

Proof Let  WD Xy;x W Œ0; jy; xjX �!X , and set u WD P.0/. Choose any � 2†y.T .x; v//�†�y , and let
w 2†�y be the direction of C . Let z� and zu be the directions in z†�y corresponding to � and u, respectively.

Case (i) u 2†�y .

Since X is locally CAT.�/, we have †X .�; u/�†.z�; zu/. Therefore the correspondence �! z�, u! zu
gives rise to the desired expanding map †�y ! z†

�
zy

.

Case (ii) u …†�y .

This is the case when  leaves E after y D .0/ at least for a short time. From (7-7), y is contained in an
open edge in E.C/. Therefore, for small enough t > 0, the X–geodesic starting from .t/ to �.t/ must
meet C . This implies

(7-9) †
X .�; w/�†X .�; u/�†.z�; zu/:

Therefore the correspondence �! z�, w! zu gives rise to the desired expanding map †�y ! z†
�
zy

. Note
that by (7-3), †y.X/ is homeomorphic to the suspension with vertices †x.C /, from which (7-9) also
follows.

This completes the proof of Lemma 7.14.

For the proof of Proposition 7.13, it suffices to show the following.

Lemma 7.16 †zx. zEx;v/ is CAT.1/.

Proof Let �i for 1� i �m be the X–geodesics joining x to the points of @T .x; v/, and set �i WD P�i .0/
for 1� i �m. Remember that †x.K.x; v// consists of m segments from the vertex v to �i of length ı.
Since †x.X/ is CAT.1/, it suffices to show

(7-10) †.z�i ; z�j /� 2ı for all 1� i ¤ j �m;

where z�i denotes the direction at zx corresponding to �i .

For arbitrary y; y0 2Vint.T .x; v// adjacent to @T .x; v/, assume z1; : : : ; z` 2 @T .x; v/ (resp. z10 ; : : : ; zn0 2
@T .x; v/ with 10 < � � �<n0) are the set of @T .x; v/ adjacent to y (resp. to y0) with zi 2 �i (resp. zi 0 2 �i 0).
Set vy WD PXx;y.0/ and zvy WD Pzx;zy.0/ 2 V.†zx. zK.x; v///. Using the angle comparison for 4Xe , we have
for any 1� i ¤ j � `,

†.z�i ; z�j /D†.z�i ; zvy/C†.zvy ; z�j /�†
X .�i ; vy/C†

X .vy ; �j /D 2ı:
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Let
Sk
˛D1Œy˛�1; y˛� be the shortest path from y to y0 in T .x; v/ with yDy0, y0Dyk , y˛ 2Vint.T .x; v//

and Œy˛�1; y˛� 2E.T .x; v//. Then for arbitrary 1� i � ` and 10 � j 0 � n0, we have

†.z�i ; z�j 0/D†.z�i ; zvy/C

kX
˛D1

†.zvy˛�1 ; zvy˛ /C†.zvy0 ; z�j 0/

�†
X .�i ; vy/C

kX
˛D1

†
X .vy˛�1 ; vy˛ /C†

X .vy0 ; �j 0/� 2ı:

This completes the proof of Lemma 7.16.

Note that in zEx;v , the subarc Œx; y� of C is replaced by the geodesic Œzx; zy� WD zx;zy . On the singular locus
zC.x; v/ of zEx;v, we consider the graph structure inherited from C (and hence from S.X/), except that
zx; zy 2 V. zC.x; v// and .zx; zy/ 2E. zC.x; v//.

After all the surgeries at x possibly in the both positive and negative singular directions, we obtain a new
space, denoted by zEx . Note that the point zx 2 zEx replacing x is no longer singular in the graph structure
of the new singular locus zC.x/� zEx .

In what follows, we shall perform such surgeries finitely many times consistently in the directions of
†

sing
x .X/ at points x 2 Vsing.C / so that the surgery parts cover Vsing.C /.

First take �D �p > 0 satisfying (7-5)–(7-8) for x D p, and set ı0D �p . Remember that S.p; ı0/ does not
meet V.C /. We enlarge the radius of the ball B.p; ı0/, and choose r1 > ı0 such that during the enlarging,
S.p; r1/ first meets Vsing.C /, say at x, after S.p; ı0/. We call r1 a critical radius in the surgeries. Now
we do the above surgery at x, either in the negative direction �rdp.x/, where the surgeries should be
carried out inside the annulus A.p; ı0; r1/D B.p; r1/ n intB.p; ı0/, or in the positive direction rdp.x/
to resolve the singularity at x.

We again perform such surgeries at all points x 2 S.p; r1/\Vsing.C /. Here, taking the smallest constant
� D �x among all x and all singular directions there, we may assume that those surgeries are carried
out based on a common metric sphere around p. More precisely, for some 0 < ı1 < r1 � ı0, we have
V.T .x; v// � S.p; r1 C ı1/ (resp. V.T .x; v// � S.p; r1 � ı1)) for all x 2 S.p; r1/ \ Vsing.C / and
v 2†

sing
x;C.C / (resp. v 2†sing

x;�.C /). We call ı1 (resp. ı0) the surgery radius at S.p; r1/ (resp. at p).

Then we again enlarge the radius ofB.p; r1Cı1/ until the next critical radius r2. Repeating this procedure,
we have a possibly infinite sequence of critical radii ri ,

0 < r1 < r2 < � � �< ri < � � � ;

and surgery radii ıi at S.p; ri / with

ri C ıi < riC1� ıiC1

such that the X–annulus AX .p; ri C ıi ; riC1� ıiC1/ does not meet Vsing.C /. Note also that the number
of surgeries at points of S.p; ıi / is bounded by the uniform constant Nv � 2.
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We show that one can cover Vsing.C / after performing surgeries as above finitely many times. Suppose
r� D limi!1 ri < r . From construction, S.p; r�/ meets Vsing.C /. We again do surgeries at points
of S.p; r�/\ Vsing.C /. For the surgeries in the negative direction at those points, we can make them
consistent with the previous surgeries since our procedure is done based on metric spheres around p.
This shows that after finitely many such surgeries, we can resolve all singular vertices in V.C /. Let
0 < r1 < r2 < � � � < rJ < r be critical radii, and ıi for 0 � i � J surgery radii, where we may assume
that A.p; rJ C ıJ ; r/ does not meet Vsing.C / by taking slightly larger r if necessary.

Let K WD fKn;i WD K.xn; vn;i / j 1 � n � M; 1 � i � Lng be the set of all conelike domains in E
constructed as above for xn 2 Vsing.C / and vn;i 2 †

sing
x .C / which arise in the course of the surgeries.

Set I0 WD Œ0; ı0�, Ij WD Œrj � ıj ; rj C ıj � and Aj WD d�1p .Ij / for 1� j � J . From construction, we have
the following for every Kn 2 K:

� Kn 2 K is convex in E.

� Kn is contained in some Aj .

� Kn and Kn0 do not have intersection in their interiors for all n¤ n0.

� The number of Kn contained in Aj is at most Nv � 2 for each 1� j � J .

Let zE be the result of those surgeries, and let zC be the singular locus of zE, with graph structure V. zC/,
E. zC/ defined as above. Note that V. zC/ is finite and Vsing. zC/ is empty.

Lemma 7.17 zE is a CAT.�/–space.

Proof From the construction and Proposition 7.13, we have

� for every edge e of E. zC/, the condition (A) holds and e has finite turn variation, and

� †zy. zE/ is CAT.1/ for every zy 2 V. zC/.

Consider any triangulation of zE extending V. zC/ and E. zC/ by adding geodesic edges if necessary. Now,
we are ready to apply Theorem 7.6 to this triangulation to conclude that zE is CAT.�/.

Now we are going to show the Gromov–Hausdorff convergence zE!E as �0! 0.

For each K.xn; vn;i / 2 K, we fix any element yn;i 2 V.T .xn; vn;i //, and let n;i W Œ0; jxn; yn;i jE �! E

be an E–geodesic from xn to yn;i .

Define ' W zE!E as follows. Let ' be identical outside the surgery part. For every zz 2 int zK.xn; vn;i /,
we let

'.zz/ WD n;i .jzxn; zzj/:

Since diam.K.xn; vn;i // < �.�0/, the image of ' is �.�0/–dense in E.
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For arbitrary zz; zz0 2 zE, set z D '.zz/, z0 D '.zz0/, and choose an E–shortest curve  W Œ0; jz; z0jE �! E

between z and z0. Suppose first that dp..t// takes a local minimum or local maximum. Then we see
that  is vertical, and hence an X–geodesic. Moreover,  intersects C almost perpendicularly with at
most Nv � 2 points (Sublemma 6.8). This implies that  meets at most Nv � 2 elements of K. Therefore
from Lemma 7.12, we have ˇ̌

jz; z0jE � jzz; zz
0
j
ˇ̌
< �.�0/.r CNv � 2/:

Now we assume that dp..t// is strictly monotone. Let K be set of all K.xn; vn;i / 2 K meeting  . For
simplicity, we renumber elements of K as K D fKi j 1 � i � I g. Let Kj be the set of all Kn 2 K
contained in Aj . If  meets Kn 2 Kj with fzn; z0ng D  \ @Kn, then from Lemma 7.12 we have

j'�1.zn/; '
�1.z0n/j zE � jzn; z

0
njE j< 2�.�0/ıj :

It follows that ˇ̌
jz; z0jE � jzz; zz

0
j
ˇ̌
< 2r.Nv � 1/�.�0/:

In this way, we conclude that zE converges to E as �0! 0 with respect to the Gromov–Hausdorff distance,
which yields that E is a CAT.�/–space. This completes the proof of Theorem 7.4.

Proof of Theorem 1.1(1) in Case II We consider Case II in the subsection of filling ball of Section 5.
We only have to apply Theorem 7.4 for k D 4 to Case II. The rest of the argument is similar to that in
Case I given in Section 5, and hence omitted.

The proof of Corollary 1.3 is similar to that of Theorem 1.1(1) in Case II, and hence omitted.

Using Theorem 7.4, we also have the following.

Theorem 7.18 In Theorem 1.1, every union Imfi1 [ � � � [ Imfik is a CAT.�/–space.

Proof The basic idea of the proof of Theorem 7.18 is the same as that of Theorem 1.1(1) for branched
immersed disks. Set †p;ij WD †p.Im.fij // for 1 � j � k, and consider † WD †p;i1 [ � � � [†p;ik . For
each v 2 V.†p.X// contained in †, we construct a ruled surface S for which we may assume CAT.�/
by taking smaller r . Let S.v/ denote the union of all such ruled surfaces S . By Theorem 7.4, S.v/ is
CAT.�/. The rest of the argument is the same as before, and hence omitted.

Appendix Alexandrov’s result on ruled surfaces

Following the ideas of Alexandrov in [1], we prove Theorem 3.17. As mentioned in Section 1, it also
follows from [26] in the CAT(0)–setting.

We denote by D� the diameter of M 2
� . Recall that a CAT.�/–space is defined as a D�–geodesic space

in which every triangle with perimeter < 2D� is not thicker than its comparison triangle in M 2
� with

the same side lengths, where a D�–geodesic space means a metric space in which any two points with
distance <D� can be joined by a minimal geodesic. Throughout this appendix, let X be a CAT.�/–space.
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A.1 Finite sequences of ruling geodesics

Let S be a ruled surface in X with parametrization � WR!X , where RD Œ0; `�� Œ0; 1�. Let � WR!R�

and p1 WR! Œ0; `� be as in Section 3.

We give an explicit formulation of the pullback metric e� . For uD .s0; t0/ and u0 D .s00; t
0
0/ with s0 < s00

inR, let� W s0� s1�� � �� snD s00 be a decomposition of Œs0; s00�, and set j�jDmaxfjsi�si�1j j1� i �ng.
We consider

e�� .�.u/; �.u
0// WD inf

� nX
iD1

jxi�1; xi j
ˇ̌̌
x0 D �.u/; xn D �.u

0/; xi 2 �si

�
:

Choose a sequence fxigiD0;1;:::;n in X such that x0D �.u/, xnD �.u0/, xi 2�si for all i 2 f1; : : : ; n�1g,
and

e�� .�.u/; �.u
0//D

nX
iD1

jxi�1; xi j:

We call such a sequence fxigiD0;1;:::;n a �–minimizing chain along S from �.u/ to �.u0/. Notice that
possibly we have xi�1D xi for some i 2 f1; : : : ; ng. We set � WD

S
xi�1xi , and call it a �–minimizing

broken geodesic in X from �.u/ to �.u0/, which realizes L.�/D e�� .�.u/; �.u
0//.

Lemma A.1 Under the above situation , the following hold :

(1) We have
e� .�.u/; �.u

0//D sup
�

e�� .�.u/; �.u
0//;

where � runs over all decompositions of Œs0; s00�.

(2) For any sequence �n of decompositions of Œs0; s00� satisfying limn!1 j�nj D 0, we have

e� .�.u/; �.u
0//D lim

n!1
e�n� .�.u/; �.u0//:

Proof By Proposition 3.6, there is a shortest curve c0� W Œ0; 1�! .R�; e� / from �.u/ to �.u0/ together
with its lift c0. Set 0.t/ WD �� ı c0�.t/. For any decomposition �D fsigNiD1 of Œs0; s00�, take ti 2 Œ0; 1�
such that 0.ti / 2 �si . Then in view of Proposition 3.16, we have

e�� .�.u/; �.u
0//�

NX
iD1

j0.ti�1/; 0.ti /j � L.0/D L.c0�/D e� .�.u/; �.u
0//:

Thus we have sup� e
�
� .�.u/; �.u

0//� e� .�.u/; �.u
0//.

Let f�ng be a sequence of decompositions of Œs0; s00� with limn!1 j�nj D 0 such that

lim
n!1

e�n� .�.u/; �.u0//D lim inf
j�j!0

e�� .�.u/; �.u
0//:

Let n W Œ0; 1�!X be a �n–minimizing broken geodesic in X . Passing to a subsequence, we may assume
that n converges to a curve  W Œ0; 1�!X . From j�nj ! 0, it follows that .Œ0; 1�/� S .
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Sublemma A.2 The limit curve  has a lift in R from u to u0.

Proof We may assume Sing.�/ is empty. Let

�n W s0 D sn;0 � sn;1 � � � � � sn;kn D s
0
0;

and n D �n WD
Skn
iD1 xn;i�1xn;i with xn;i 2 �sn;i . Choose an;i 2 Isn;i with �.an;i / D xn;i for

1 � i � kn � 1, and consider the Euclidean broken geodesic cn WD
Skn
iD1 an;i�1an;i . Note that cn is

monotone, and � ı cn also converges to  as n!1. We show that a subsequence of cn converges to a
curve c, which is a lift of  . We do not know if L.� ı cn/ is uniformly bounded or even if it is finite,
which is the only difference from Proposition 3.6.

Since the basic strategy is the same as the proof of Proposition 3.6, we present only an outline. Let J0 be a
countable dense subset of J D Œs0; s00�. For each s 2 J , choose a point cn.tn.s// of cn with cn.tn.s// 2 Is .
Now we have a subsequence fmg of fng such that cm.tm.s// converges to a point x.s/ 2 Is for every
s 2 J0. We consider the limit set, say LS.fcmg/, of the sequence fIm.cm/gm, and set

Es WD LS.fcmg/\ Is;

as in the proof of Proposition 3.6. Then we have the decomposition J D J1[J2, where

J1 D fs 2 J jEs is a single pointg and J2 D J nJ1:

In the same way, we have the conclusions (1)–(4) in the proof of Proposition 3.6. Here it should be
remarked that the following holds as well:X

s2J2

�.Es/� L./:

Thus as before, we obtain a monotone continuous parametrization on the union of points and segments
fEs j s 2 J g, which provides a lift of  from u to u0.

By Sublemma A.2, we conclude that

e� .�.u/; �.u
0//� L./� lim

n!1
L.n/D lim inf

n!1
e�n� .�.u/; �.u0//:

This completes the proof of Lemma A.1.

From the choice of a �–minimizing chain along S , we derive the following:

Lemma A.3 In the setting discussed above , let fxigiD0;1;:::;n be a �–minimizing chain along S from
�.u/ to �.u0/. Then for each i 2 f1; : : : ; n� 1g and for each t 2 f0; 1g, we have

†xi�1xi�si .t/C†�si .t/xixiC1 � �

whenever jxi�1; xi j; jxi ; xiC1j<D� , and the angles †xi�1xi�si .t/ and †�si .t/xixiC1 can be defined.

Geometry & Topology, Volume 28 (2024)



3086 Koichi Nagano, Takashi Shioya and Takao Yamaguchi

Proof First we show the conclusion in the case t D 0. Set

��i WD †xi�1xi�si .0/ and �Ci WD †�si .0/xixiC1:

Take ti 2 .0; 1� with xi D �si .ti /, where we may assume ti ¤ 0. If we put

h.�/ WD j�si .ti � �/; xi�1jC j�si .ti � �/; xiC1j

for small � > 0, then by the first variation formula (see eg [10, Corollary II.3.6]) together with the
�–minimizing property of fxigiD0;1;:::;n, we have

0� lim
�!0C

h.�/� h.0/

�
D�.cos ��i C cos �Ci /:

This implies ��i C �
C
i � � . Similarly, we see the inequality for t D 1.

Let u� WD �.u/; v� WD �.v/; w� WD �.w/ be distinct points in R�. Assume for a while that

p1.u/� p1.v/� p1.w/;

and choose a decomposition �D fsigiD0;1;:::;n of Œp1.u/; p1.w/� such that for some m 2 f1; : : : ; n� 1g
we have p1.v/ D sm. Let �0 WD fsigiD0;1;:::;m be the decomposition of Œp1.u/; p1.v/�, and �00 WD
fsmCigiD0;1;:::;n�m the decomposition of Œp1.v/; p1.w/�. Take a �0–minimizing chain fyigiD0;1;:::;m
along S from �.u/ to �.v/, a �00–minimizing chain fymCigiD0;1;:::;n�m along S from �.v/ to �.w/,
and a �–minimizing chain fzigiD0;1;:::;n along S from �.u/ to �.w/. Assume in addition that we have

e�
0

� .u�; v�/C e
�00

� .v�; w�/C e
�
� .w�; u�/ < 2D� :

Set x WD �.u/, y WD �.v/ and z WD �.w/. Let B�.xy/ be the broken geodesic
Sm
iD1 yi�1yi in X joining

x and y, B�.yz/ the broken geodesic
Sn�m
iD1 ymCi�1ymCi in X joining y and z, and B�.zx/ the broken

geodesic
Sn
iD1 zi�1zi in X joining z and x. We denote by P�.xyz/ the polygon in X defined by

P�.xyz/ WD B�.xy/[B�.yz/[B�.zx/;

and we call P�.xyz/ the �–minimizing chain triple along S . We denote by ��x .y; z/ the angle at x in X
between B�.xy/ and B�.zx/, by ��y .z; x/ the angle at y in X between B�.yz/ and B�.xy/, and by
��z .x; y/ the angle at z in X between B�.zx/ and B�.yz/. See Figure 13.

In the model surface M 2
� , we define a comparison polygon zP�.xyz/ for P�.xyz/ as follows: Let

4zx zy1zz1 and4zyn�1zzn�1zz be comparison triangles inM 2
� for4xy1z1 and for4yn�1zn�1z, respectively.

For each i 2f1; : : : ; n�1g, take comparison triangles4zyi zyiC1zzi and4zyiC1zzizziC1 inM 2
� for4yiyiC1zi

and for 4yiC1ziziC1, respectively, and then glue all the comparison triangles in M 2
� along zyizzi , and

along zyiC1zzi , for all i 2 f1; : : : ; n�1g. Let zB�.xy/ be the broken geodesic
Sm
iD1 zyi�1 zyi in M 2

� joining
zx and zy, zB�.yz/ the broken geodesic

Sn�m
iD1 zymCi�1 zymCi in M 2

� joining zy and zz, zB�.zx/ the broken
geodesic

Sn
iD1 zzi�1zzi in M 2

� joining zz and zx. Then we put

zP�.xyz/ WD zB�.xy/[ zB�.yz/[ zB�.zx/;
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�s0 �s1 �si �sm �sn
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zn�1

zm

Figure 13

and we call zP�.xyz/ a comparison �–minimizing chain triple in M 2
� for P�.xyz/. We denote by

z��x .y; z/ the angle at zx in M 2
� between zB�.xy/ and zB�.zx/, by z��y .z; x/ the angle at zy in M 2

� between
zB�.yz/ and zB�.xy/, and by z��z .x; y/ the angle at zz in M 2

� between zB�.zx/ and zB�.yz/. Note that

��x .y; z/�
z��x .y; z/; ��y .z; x/�

z��y .z; x/; ��z .x; y/�
z��z .x; y/:

From Lemma A.3 we derive the following concavity of zP�.xyz/ except at the vertices zx; zy; zz: namely,
for each i 2 f1; : : : ; n�1g with i ¤m the inner angle at zyi in zP�.xyz/ is at least � ; moreover, for each
i 2 f1; : : : ; n� 1g, the inner angle at zzi in zP�.xyz/ is at least � .

By stretching the comparison �–minimizing chain triple zP�.xyz/ at the concave vertices, we obtain a
triangle 4xx xyxz in M 2

� , whose side-lengths satisfy

jxx; xyj D e�
0

� .u�; v�/; jxy; xzj D e
�00

� .v�; w�/; jxz; xxj D e
�
� .w�; u�/:

We call 4xx xyxz a comparison �–minimizing stretched triangle in M 2
� for P�.xyz/, and we denote it

by xP�.xyz/. We denote by x��x .y; z/ the angle †xyxxxz at xx in M 2
� between xx xy and xzxx, by x��y .z; x/

the angle †xz xyxx at xy in M 2
� between xyxz and xx xy, and by x��z .x; y/ the angle †xxxz xy at xz in M 2

� between
xzxx and xyxz. Let xyi 2 xx xy and xzi 2 xxxz for i 2 f1; : : : ; n � 1g be the points corresponding to zyi and
to zzi , respectively. Since zP�.xyz/ is concave except the vertices, the Alexandrov stretching lemma
(see eg [10, Lemma I.2.16]) leads to the following:

Lemma A.4 Under the setting discussed above , we have

z��x .y; z/�
x��x .y; z/;

z��y .z; x/�
x��y .z; x/;

z��z .x; y/�
x��z .x; y/:

Moreover , for all i 2 f1; : : : ; n� 1g, we have jyi ; zi j � jxyi ; xzi j.

Let yj 2 B�.xy/ n fx; yg be a broken point for j 2 f1; : : : ; m � 1g, yk 2 B�.yz/ n fy; zg a broken
point for k 2 fm C 1; : : : ; n � 1g, and zl 2 B�.zx/ n fz; xg a broken point for l 2 f1; : : : ; n � 1g.
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Assume that the broken points yj , yk , and zl are distinct to each other. Choose four �–minimizing
chain triples P�.xyj zl/, P�.yjyyk/, P�.zlykz/, and P�.yjykzl/ along S , and take comparison
�–minimizing stretched triangles xP�.xyj zl/, xP�.yjyyk/, xP�.zlykz/, and xP�.yjykzl/ in M 2

� for
P�.xyj zl/, P�.yjyyk/, P�.zlykz/, and P�.yjykzl/, respectively.

From Lemma A.4 we derive the following monotonicity:

Lemma A.5 Under the setting discussed above , we have

x��x .yj ; zl/�
x��x .y; z/;

x��y .yk; yj /�
x��y .z; x/;

x��z .zl ; yk/�
x��z .x; y/:

Proof Gluing the triangles xP�.xyj zl/D4xx xyjxzl , xP�.yjyyk/D4xyj xy xyk , xP�.zlykz/D4xzl xykxz, and
xP�.yjykzl/D4xyj xykxzl in M 2

� along the edges xyj xyk , xykxzl , and xzl xyj , we obtain a hexagon xx xyj xy xykxzxzl
in M 2

� whose side-lengths satisfy jxx; xyj jC jxyj ; xyj D e�
0

� .u�; v�/, jxy; xykjC jxyk; xzj D e
�00

� .v�; w�/, and
jxz; xzl jC jxzl ; xxj D e

�
� .w�; u�/. By Lemmas A.3 and A.4, we have

� � ��yj .x; zl/C �
�
yj
.zl ; yk/C �

�
yj
.yk; y/� x�

�
yj
.x; zl/C x�

�
yj
.zl ; yk/C x�

�
yj
.yk; y/:

Similarly, we have

� � x��yk .y; yj /C
x��yk .yj ; zl/C

x��yk .zl ; z/ and � � x��zl .z; yk/C
x��zl .yk; yj /C

x��zl .yj ; x/:

By stretching the hexagon xx xyj xy xykxzxzl at the concave vertices xyj , xyk and xzl , we obtain a comparison
�–minimizing stretched triangle xP�.xyz/ in M 2

� for P�.xyz/. The Alexandrov stretching lemma
(see eg [10, Lemma I.2.16]) leads to the desired inequalities.

From Lemma A.4 we also derive the following:

Lemma A.6 Let u�; u0� 2R� be distinct points. Assuming p1.u/� p1.u0/, we choose a decomposition
� D fsigiD0;1;:::;n of Œp1.u/; p1.u0/�. If e�� .u�; u

0
�/ < D� , then a �–minimizing chain fxigiD0;1;:::;n

along S from �.u/ to �.u0/ is uniquely determined.

Proof Let x WD �.u/ and x0 WD �.u0/, and suppose that two distinct �–minimizing chains fxigiD0;1;:::;n
and fyigiD0;1;:::;n along S from x to x0 satisfy xm ¤ ym for m 2 f1; : : : ; n � 1g. Then for the �–
minimizing chain triple P�.xymx0/ along S we see that a comparison �–minimizing stretched triangle
xP�.xymx

0/ degenerates in M 2
� . Hence we have xxm D xym. On the other hand, Lemma A.4 implies

jxm; ymj � jxxm; xymj. This is a contradiction.

A.2 Curvature bounds on ruled surfaces

Let y4u�v�w� be a geodesic triangle in .R�; e� / with distinct vertices and with perimeter < 2D�

determined by y4u�v�w� D1u�v� [1v�w� [1w�u�, where 1u�v�, 1v�w�, and 1w�u� are the edges of
y4u�v�w�.

We denote by 4 zu� zv� zw� a comparison triangle in M 2
� for y4u�v�w� with the same side-lengths, and by

z�u�.v�; w�/ the angle † zv� zu� zw� at zu� between zu� zv� and zu� zw�.
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To complete the proof of Theorem 3.17, it suffices to show the following; see eg [10, Proposition II.1.7].

Lemma A.7 Every geodesic triangle y4u�v�w� in .R�; e� / as above satisfies the convexity of angle
�–comparison: namely, for all w0� 21u�v� n fu�; v�g, u0� 21v�w� n fv�; w�g and v0� 21w�u� n fw�; u�g,
we have the following monotonicity:

z�u�.v
0
�; w

0
�/�

z�u�.v�; w�/;
z�v�.w

0
�; u
0
�/�

z�v�.w�; u�/;
z�w�.u

0
�; v
0
�/�

z�w�.u�; v�/:

Before proving Lemma A.7, we show the following sublemma. By Proposition 3.16, for every min-
imal geodesic c� in .R�; e� / there exists a monotone curve c in R with � ı c D c� up to monotone
parametrization.

Sublemma A.8 In the same setting as in Lemma A.7, let u� and u0� be distinct points in .R�; e� / with
e� .u�; u

0
�/ < D� , and let c� be a minimal geodesic in .R�; e� / from u� to u0�. Assume p1.u/� p1.u0/,

and choose a sequence f�ngn2N of decompositions �n D fsigiD0;1;:::;n of Œp1.u/; p1.u0/� satisfying
limn!1 j�nj D 0. For n 2N, let fxigiD0;1;:::;n be the �n–minimizing chain along S from x WD �.u/ to
x0 WD �.u0/, and take a sequence fyigiD0;1;:::;n in the image of  WD �� ı c� in such a way that y0 D x,
yn D x

0, and yi 2 �si for all i 2 f1; : : : ; n� 1g. Then the following hold :

(1) We have

e� .u�; u
0
�/D lim

n!1

nX
iD1

jyi�1; yi j:

(2) For every s 2 Œp1.u/; p1.u0/�, and for every sequence fsingn2N converging to s with sin 2 �n,
we have

lim
n!1

jxin ; yin j D 0:

Proof (1) From Lemma 3.19, we derive that e� .u�; u0�/ D limn!1
Pn
iD1 jxi�1; xi j; moreover, we

get e� .u�; u0�/D limn!1
Pn
iD1 jyi�1; yi j. Indeed, we have

e� .u�; u
0
�/D lim

n!1

nX
iD1

jxi�1; xi j � lim inf
n!1

nX
iD1

jyi�1; yi j

� lim sup
n!1

nX
iD1

jyi�1; yi j � lim sup
n!1

nX
iD1

e� .yi�1; yi /D e� .u�; u
0
�/:

(2) For n2N, let PnD
�Sn

iD1 xi�1xi
�
[
�Sn

iD1 yi�1yi
�

be the polygon inX . In the model surfaceM 2
� ,

we construct a comparison .nC 1/–gon xPn for Pn as follows: Let 4zxzx1 zy1 and 4zxn�1 zyn�1zx0 be
comparison triangles in M 2

� for 4xx1y1 and 4xn�1yn�1x0, respectively. For each i 2 f1; : : : ; n� 1g,
take comparison triangles 4zxi zxiC1 zyi and 4zxiC1 zyi zyiC1 in M 2

� for 4xixiC1yi and 4xiC1yiyiC1,
respectively, and then glue all the comparison triangles in M 2

� along zxi zyi , and along zxiC1 zyi , for all
i 2 f1; : : : ; n�1g. Then we put zPn WD

�Sn
iD1 zxi�1zxi

�
[
�Sn

iD1 zyi�1 zyi
�
. From Lemma A.3 it follows that
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for each i 2 f1; : : : ; n� 1g, the inner angle at zxi in zPn is at least � . By stretching the polygon zPn at the
concave vertices, we obtain an .nC1/–gon xPnD xxxx0[

�Sn
iD1 xyi�1xyi

�
in M 2

� whose side-lengths satisfy
jxx; xx0j D e

�n
� .u�; u

0
�/ and jxyi�1; xyi j D jyi�1; yi j for all i 2 f1; : : : ; ng. Let xxi 2 xxxx0 for i 2 f1; : : : ; n�1g

be the points corresponding to zxi . The Alexandrov stretching lemma (see eg [10, Lemma I.2.16]) leads
to jxi ; yi j � jxxi ; xyi j for all i 2 f1; : : : ; n� 1g.

Suppose that the second half of the sublemma is false. Then we find s 2 .p1.u/; p1.u0//, and a sequence
fsingn2N converging to s such that for all n 2N we have sin 2�n, and we have jxin ; yin j � C for some
C > 0. Then for the points xxin ; xyin on the comparison .nC 1/–gon xPn for Pn, we have

C � lim inf
n!1

jxin ; yin j � lim inf
n!1

jxxin ; xyin j:

On the other hand, since

e� .u�; u
0
�/D lim

n!1

nX
iD1

jxi�1; xi j and e� .u�; u
0
�/D lim

n!1

nX
iD1

jyi�1; yi j;

the comparison .nC 1/–gon xPn degenerates in M 2
� as n!1. This yields a contradiction.

Proof of Lemma A.7 Without loss of generality, we may assume that

p1.u/� p1.v/� p1.w/:

For each n 2N, choose a decomposition �n D fsigiD0;1;:::;n of Œp1.u/; p1.w/� with limn!1 j�nj D 0
such that p1.v/D sm for some m 2 f1; : : : ; n� 1g. Let �0n WD fsigiD0;1;:::;m be the decomposition of
Œp1.u/; p1.v/�, and let�00n WD fsmCigiD0;1;:::;n�m be the decomposition of Œp1.v/; p1.w/�. Set x WD�.u/,
y WD �.v/, z WD �.w/ and take the (unique) �0n–minimizing chain fyigiD0;1;:::;m along S from x to y,
and the �00n–minimizing chain fymCigiD0;1;:::;n�m along S from y to z, and the �n–minimizing chain
fzigiD0;1;:::;n along S from x to z.

Let P�n.xyz/ be the �n–minimizing chain triple along S defined by

P�n.xyz/ WD B�n.xy/[B�n.yz/[B�n.zx/;

where B�n.xy/ is the broken geodesic
Sm
iD1 yi�1yi in X joining x and y, B�n.yz/ is the broken

geodesic
Sn�m
iD1 ymCi�1ymCi in X joining y and z, and B�n.zx/ is the broken geodesic

Sn
iD1 zi�1zi

in X joining z and x. Set x0 WD �.u0/, y0 WD �.v0/ and z0 WD �.w0/. By Sublemma A.8, we can take
sequences fyjngn2N , fykngn2N , fzlngn2N of broken points on P�n.xyz/ n fx; y; zg satisfying

lim
n!1

jyjn ; z
0
j D 0; lim

n!1
jykn ; x

0
j D 0; lim

n!1
jzln ; y

0
j D 0;

where jn 2 f1; : : : ; m� 1g, kn 2 fmC 1; : : : ; n� 1g, ln 2 f1; : : : ; n� 1g.

Let xP�n.xyz/D4xx xyxz be a comparison �n–minimizing stretched triangle in M 2
� for P�n.xyz/ whose

side-lengths satisfy

jxx; xyj D e
�0n
� .u�; v�/; jxy; xzj D e

�00n
� .v�; w�/; jxz; xxj D e

�n
� .w�; u�/:
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Set
x��nx .y; z/ WD †xyxxxz; x��ny .z; x/ WD †xz xyxx; x��nz .x; y/ WD †xxxz xy:

Choose the three �n–minimizing chain triples P�n.xyj zl/, P�n.yjyyk/, and P�n.zlykz/ along S ,
and take comparison �n–minimizing chain triangles xP�n.xyj zl/, xP�n.yjyyk/, and xP�n.zlykz/ in
M 2
� for P�n.xyj zl/, P�n.yjyyk/, and P�n.zlykz/, respectively. As shown in Lemma A.5, we have

the monotonicity

x��nx .yj ; zl/� x�
�n
x .y; z/; x��ny .yk; yj /� x�

�n
y .z; x/; x��nz .zl ; yk/� x�

�n
z .x; y/:

From the choices of the sequences fyjngn2N , fykngn2N and fzlngn2N , it follows that xP�n.xyjnzln/,
xP�n.yjnyykn/ and xP�n.zlnyknz/ converge to comparison triangles in M 2

� for triangles y4u�w0�v
0
�,

y4w0�v�u
0
�, and y4v0�u

0
�w� in .R�; e� /, respectively. Notice that xP�n.xyz/ converges to a comparison

triangle in M 2
� for the triangle y4u�v�w�. Therefore we obtain

z�u�.w
0
�; v
0
�/D lim

n!1
x��nx .yjn ; zln/� lim

n!1
x��nx .y; z/D z�u�.v�; w�/:

Similarly, we see z�v�.u
0
�; w

0
�/�

z�v�.w�; u�/ and z�w�.v
0
�; u
0
�/�

z�w�.u�; v�/. Thus y4u�v�w� satisfies
the convexity of angle �–comparison.

From Lemma A.7 we conclude that .R�; e� / is a CAT.�/–space, proving Theorem 3.17.
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