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A nonexistence result for wing-like mean curvature flows in R4

KYEONGSU CHOI

ROBERT HASLHOFER

OR HERSHKOVITS

Some of the most worrisome potential singularity models for the mean curvature flow of three-dimensional
hypersurfaces in R4 are noncollapsed wing-like flows, ie noncollapsed flows that are asymptotic to a
wedge. We rule out this potential scenario, not just among self-similarly translating singularity models,
but in fact among all ancient noncollapsed flows in R4. Specifically, we prove that for any ancient
noncollapsed mean curvature flow Mt D @Kt in R4 the blowdown lim�!0 � �Kt0 is always a point,
halfline, line, halfplane, plane or hyperplane, but never a wedge. In our proof we introduce a fine bubble-
sheet analysis, which generalizes the fine neck analysis that has played a major role in many recent papers.
Our result is also a key first step towards the classification of ancient noncollapsed flows in R4, which we
will address in a series of subsequent papers.
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1 Introduction

The mean curvature flow of mean-convex surfaces in R3, and also of 2–convex hypersurfaces in RnC1,
is by now well understood. In particular, White [30; 31] proved that the evolving surfaces are smooth
away from a small set of times, and Huisken and Sinestrari [22], Brendle and Huisken [8] and Haslhofer
and Kleiner [18] constructed a flow with surgery. More recently, in significant work by Angenent,
Daskalopoulos and Sesum [3; 4] and Brendle and Choi [6; 7] a complete classification of all possible
singularity models for such flows has been obtained (these classification results have in turn be generalized
in our recent proof of the mean-convex neighborhood conjecture [10; 11]).

Some important results are of course valid in arbitrary dimensions. In particular, tangent flows, ie blowup
limits centered at some fixed space-time point, are always self-similarly shrinking thanks to Huisken’s
monotonicity formula [20]. By fundamental results of Huisken [21] and Colding and Minicozzi [13] the
only mean-convex shrinkers (and also the only stable shrinkers) are round spheres and cylinders. This of
course is an important ingredient in the above quoted regularity theory for mean-convex flows due to
White. More recently, Colding and Minicozzi [14] proved uniqueness of cylindrical tangent flows, and
applied this in [15] to obtain refined information about the structure of the singular set in flows that only
encounter stable singularities. On the other hand, general blowup limits, ie blowup limits along arbitrary
sequences of space-time points, are much less understood already for the flow of three-dimensional
hypersurfaces in R4. In particular, one of the most worrisome potential scenarios is that one encounters
so-called wing-like flows as blowup limits, ie flows that are asymptotic to a wedge.

To explain the background, let us first discuss the situation of two-dimensional flows in R3, and in fact let
us restrict the discussion even further to the case of strictly convex, graphical, self-similarly translating
solutions. The most well known such solution is the translating bowl soliton of Altschuler and Wu [1],
which is given by a rotationally symmetric entire graph. However, in addition to the bowl there is also
a one-parameter family of solutions defined over strip regions .�b; b/�R for every b > �=2. These
solutions have been constructed by Ilmanen (unpublished) and Wang [29], and have been classified in
recent work by Hoffman, Ilmanen, Martin and White [19], building also on important prior work by
Spruck and Xiao [28]. Ilmanen called them �–wings, capturing their shape. They are asymptotic to a
wedge with its sides modeled on the grim-reaper times R.

The two-dimensional �–wings do not cause any deep concerns for the singularity analysis of mean
curvature flow. This is because they are collapsed. In fact, it is known that collapsed solutions cannot
arise as blowup limit of any mean-convex flow [30; 31] (see also Sheng and Wang [27], Andrews [2] and
Haslhofer and Kleiner [17]), and conjectured that they cannot arise as blowup limit of any embedded
flow; see Ilmanen [23]. We recall that a mean-convex flow is called noncollapsed, if there is some ˛ > 0
such that every point admits interior and exterior balls of radius at least ˛=H.p/.

However, the situation changes dramatically when one moves one dimension higher. This is because
the grim-reaper is collapsed, but the bowl is noncollapsed. Hence, one has to worry about the potential
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Figure 1: One of the most worrisome potential singularity models would be a three-dimensional
noncollapsed wing-like flow in R4 with its sides modeled on the two-dimensional bowl times R.

scenario that a blowup limit could be a wing-like translator with its sides modeled on the two-dimensional
bowl times R. This is illustrated in Figure 1. More generally, this leads to the question:

Question 1.1 (noncollapsed wing-like translators) Do there exist any noncollapsed wing-like translators
in R4?

Here, by “wing-like” we mean any solution that is asymptotic to a wedge, ie a two-dimensional convex
cone with angle strictly less than � . Such solutions would cause a major complication for understanding
the flow through singularities in R4, and would also be a major obstacle for the construction of a flow with
surgery. More generally, one also has to worry about blowup limits that are not necessarily self-similar:

Question 1.2 (noncollapsed wing-like ancient flows) Do there exist any noncollapsed wing-like ancient
flows in R4?

1.1 Main results

To address Questions 1.1 and 1.2 (and even to properly define the notion of wing-like), we study the
blowdown of the time slices. To this end, let Mt D @Kt �R4 be a noncollapsed ancient solution of the
mean curvature flow. We recall that such flows are always convex thanks to [17, Theorem 1.10].

Definition 1.3 (blowdown) Given any time t0, the blowdown of Kt0 is defined by

(1) {Kt0 WD lim
�!0

� �Kt0 :

For example, if the flow is a three-dimensional bowl soliton, then its blowdown is a halfline. On the other
hand, if the flow is a two-dimensional bowl soliton times R, then its blowdown is a two-dimensional
halfplane. The scenario of a wing-like flow would correspond to the case where the blowdown is a wedge,
ie a two-dimensional convex cone with angle strictly less than � .

Geometry & Topology, Volume 28 (2024)



3098 Kyeongsu Choi, Robert Haslhofer and Or Hershkovits

Our main theorem completely classifies all possible blowdowns of noncollapsed flows in R4:

Theorem 1.4 (blowdown of noncollapsed flows in R4) LetMt D @Kt be an ancient noncollapsed mean
curvature flow in R4. Then its blowdown is time-independent and is

� either a point (which only happens if the solution is compact),

� or a halfline ,

� or a line (which only happens for S2 �R or oval times R),

� or a two-dimensional halfplane (which only happens if the solution is a two-dimensional bowl
soliton times R),

� or a two-dimensional plane (which only happens for S1 �R2),

� or a three-dimensional hyperplane (which only happens for flat R3).

In particular , the blowdown can never be a wedge.

Theorem 1.4 shows that the asymptotic structure of noncollapsed flows, ie the flows that are actually
relevant for singularity analysis, is much more rigid than the asymptotic structure of arbitrary convex
flows. In fact, the example of the �–wings illustrates that even for two-dimensional translators in R3

one can get the wedge of any angle less than � as blowdown. In R4 there is a zoo of collapsed ancient
convex solutions, see eg Wang [29] and Hoffman, Ilmanen, Martín and White [19], whose blowdown can
be much more arbitrary than the ones in Theorem 1.4.

As an immediate corollary, we can answer Question 1.2. Namely, since the blowdown can never be a
wedge, we can rule out the potential scenario of noncollapsed wing-like ancient flows in R4:

Corollary 1.5 (nonexistence of wing-like noncollapsed flows) Wing-like noncollapsed ancient flows
in R4 do not exist.

In particular, this also answers Question 1.1:

Corollary 1.6 (nonexistence of wing-like noncollapsed translators) Wing-like noncollapsed translators
in R4 do not exist.

Corollaries 1.5 and 1.6 rule out some of the most worrisome potential singularity models for the mean
curvature flow of three-dimensional mean-convex hypersurfaces in R4 (and more generally also for
mean-convex flows in 4–manifolds, since after blowup the ambient manifold always becomes Euclidean).

1.2 Outline and further results

Let us now outline our approach. Let Mt D @Kt be an ancient noncollapsed mean curvature flow in R4.
We can assume that the solution is noncompact and nonflat, as otherwise the blowdown would simply be
a point or a three-dimensional hyperplane, respectively.

Geometry & Topology, Volume 28 (2024)
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As we explain in Section 2, it follows from the general theory of noncollapsed flows (see Haslhofer and
Kleiner [17]) that the blowdown

(2) {K WD lim
�!0

� �Kt0

always is a convex cone of dimension at most 2 (also, this limit is in fact independent of t0). If {K splits
off a line, then so does the flow Mt D @Kt , and we are done by the classification of two-dimensional
noncollapsed flows in R3 by Brendle and Choi [6] and Angenent, Daskalopoulos and Sesum [4]. After
these reductions, the task is thus to rule out the scenario where {K is wedge.

We next consider the tangent flow at �1. Flows with a neck-tangent flow at �1, ie with

(3) lim
�!0

�M��2t DR�S2.
p
�4t/;

have already been classified by Brendle and Choi [7]. We can thus assume that we have a bubble-sheet
tangent flow at �1, ie that

(4) lim
�!0

�M��2t DR2 �S1.
p
�2t/:

In Section 3, to facilitate various calibration and barrier arguments, we build a foliation for flows close to
a bubble sheet in R4. We do this by shifting and rotating the two-dimensional shrinker foliation in R3

from Angenent, Daskalopoulos and Sesum [3].

In Section 4, we set up the fine bubble-sheet analysis, which generalizes the fine neck-analysis that played
a major role in Angenent, Daskalopoulos and Sesum [3; 4], Brendle and Choi [6; 7], Choi, Haslhofer and
Hershkovits [10] and Choi, Haslhofer, Hershkovits and White [11]. Given any space-time point X0, we
consider the renormalized flow

(5) M � D e
�=2.Mt0�e�� � x0/:

Then, the hypersurfaces M � converge for � !�1 to the cylinder

(6) � DR2 �S1.
p
2/:

In particular,M � can be written as the graph of a function uDuX0. � ; �/ with small norm over �\B2�.�/,
where �.�/!1 as � !�1. The goal is then to derive a sharp asymptotic expansion for the graph
function u.

The analysis over � is governed by the Ornstein–Uhlenbeck operator

(7) LD
@2

@x21
C

@2

@x22
C
1

2

@2

@�2
�
1

2
x1

@

@x1
�
1

2
x2

@

@x2
C 1:

The operator L has 5 unstable eigenfunctions, namely

(8) 1; cos �; sin �; x1; x2;

Geometry & Topology, Volume 28 (2024)



3100 Kyeongsu Choi, Robert Haslhofer and Or Hershkovits

and 7 neutral eigenfunctions, namely

(9) x1 cos �; x1 sin �; x2 cos �; x2 sin �; x21 � 2; x
2
2 � 2; x1x2:

Using the ODE lemma from Merle and Zaag [26], we show that for � !�1 either the unstable mode is
dominant or the neutral mode is dominant. Furthermore, considering instead an expansion for

(10) zM� D S.�/M � ;

where the fine-tuning rotation S.�/ 2 SO.4/ is obtained via the implicit function theorem, we can assume
that in the neutral mode case the truncated function yu is orthogonal to the �–dependent functions from (9).

In Section 5, we consider the case where the neutral mode is dominant. By the reductions from above we
can assume that the blowdown {K is a convex cone that does not contain any line. Furthermore, rotating
coordinates, we can arrange that {K contains the positive x1–axis, namely

(11) f�e1 j �� 0g � {K:

In this setting, we have:

Theorem 1.7 (blowdown in neutral mode) If the neutral mode is dominant , then its blowdown is a
halfline , namely

(12) {K D f�e1 j �� 0g:

Moreover ,

(13) lim
�!�1

yu. � ; �/

kyu. � ; �/k
D �c.x22 � 2/;

where c > 0.

To prove this, remembering (9) and the fine-tuning, we first show that along a subsequence we have

(14) lim
�im!�1

yu. � ; �im/

kyu. � ; �im/k
D q11.x

2
1 � 2/C q22.x

2
2 � 2/C 2q12x1x2:

Using Brunn’s concavity principle, we show that QD fqij g is a nontrivial seminegative definite 2� 2–
matrix.

The crucial step is then to relate the algebra of the quadratic formQ with the geometry of the blowdown {K.
Specifically, we show that

(15) {K � kerQ:

The basic idea for this is that in directions v … kerQ we have an inwards quadratic bending, which implies
that v is a “short” direction, ie v … {K. This can be made precise using again Brunn’s concavity principle.
Once (15) is established, Theorem 1.7 follows easily. In fact, our argument also gives a quantitative
estimate for the diameter of the short directions:

Geometry & Topology, Volume 28 (2024)
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Corollary 1.8 (diameter of level sets) If Mt D @Kt is as above , then for any ı > 0 we have

M � \fx1 D 0g � Beıj�j.0/ for � � 0:

In Section 6, we consider the case where the unstable mode is dominant. Our main technical result for
such flows is the following:

Theorem 1.9 (fine bubble-sheet theorem) Let fMtg be an ancient noncollapsed flow in R4, with a
bubble sheet tangent flow at �1, whose unstable mode is dominant. Then there exist universal constants
a1 and a2 such that , for everyX , after suitable recentering in the x3x4–plane , the truncated graph function
{uX . � ; �/ of the renormalized flow MX

� satisfies

(16) {uX D e�=2 .a1x1C a2x2/C o.e
�=2/

for � � 0 depending only on an upper bound on the bubble-sheet scale Z.X/. Moreover , the expansion
parameters satisfy

(17) ja1jC ja2j> 0:

Theorem 1.9 shows that the bubble-sheet increases its bubble-size slightly, in a precisely described way,
as one moves in direction of the vector .a1; a2/. The constants a1 and a2 are genuine constants of the
flow. For example, if Mt is R times a two-dimensional bowl translating in x2–direction, then a1 D 0 and
a2 is proportional to the reciprocal of the speed of translation.

The fine-bubble sheet theorem (Theorem 1.9) generalizes the fine-neck theorem from our prior work
[10; 11]. To prove it, we follow the scheme from our prior work with the necessary modifications. In
particular, we now expand in terms of the unstable eigenfunctions from (8), and we use the new foliation
from Section 3. Another new step is to show that the unstable mode is dominant even after removing the
fine-tuning rotation.

In Section 7, we play the following end game. Let Mt D @Kt be a noncompact ancient noncollapsed flow
in R4, with bubble-sheet tangent flow at �1, whose unstable mode is dominant, and suppose towards a
contradiction that its blowdown is a wedge. Then taking suitable limits along the sides, we see R times a
two-dimensional bowl translating soliton. As observed above, the vector .a1; a2/ points in the translation
direction. However, since the limits obtained along the two different sides of the wedge translate in
different directions this gives the desired contradiction. In fact, the argument also works for a degenerate
wedge (ie a halfline) and thus proves:

Theorem 1.10 (classification in unstable mode) The only noncompact ancient noncollapsed flow in R4,
with bubble-sheet tangent flow at �1, whose unstable mode is dominant , is R� 2d–bowl.

Theorem 1.10, in addition to ruling out the wedge blowdown, in fact completes the classification of
noncompact ancient noncollapsed flows in R4 in case the unstable mode is dominant. We will address
the neutral mode case in subsequent work, based on Theorem 1.7 and Corollary 1.8.
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2 Coarse properties of ancient noncollapsed flows

Recall that by [17, Theorem 1.14] and [14], if Mt D @Kt is an ancient noncollapsed1 mean curvature
flow in R4, that is noncompact and nonflat, then, up to rotation, either

(18) lim
�!0

�K��2t DR�D3.
p
�4t/

or

(19) lim
�!0

�K��2t DR2 �D2.
p
�2t/:

In the case (18) we say that Mt has a neck tangent flow at �1, whereas in case (19) we say that Mt has
a bubble-sheet tangent flow at �1.

In the neck tangent case, it follows from Brendle and Choi [7] (or alternatively from Choi, Haslhofer,
Hershkovits and White [11]) that Mt is either a round shrinking S2 �R or a three-dimensional bowl.
Hence, we can focus on the bubble-sheet case.

2.1 The blowdown of time slices

In this section, we establish several elementary properties of the blowdown of time slices (Definition 1.3).

Proposition 2.1 (basic properties of blowdown) For any ancient noncollapsed mean curvature flow
Mt D @Kt in R4, that is noncompact and nonflat , the blowdown {Kt0 is a convex cone of dimension at
most 2.

Proof Assume t0 D 0 and 0 2M0 for ease of notation. By convexity (see [17, Theorem 1.10]), we have
� �K0 � � �K0 whenever �� �. Hence,

(20) {K0 WD lim
�!0

� �K0 D
\
�>0

� �K0

exists and is convex. Since K0 is noncompact, {K0 contains a halfline. Clearly, we have � � {K0 D {K0 for
any � > 0, ie {K0 is a cone.

1By [5] and [16] we can always take ˛ D 1 as noncollapsing constant.
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As the flow is moving inwards, for every t < 0 we have

(21) �K0 � �K��2t :

Thus,

(22) {K0 D lim
�!0

�K0 � lim
�!0

�K��2t ;

where the limit on the right-hand side is described (after suitable rotation) either by (18) or by (19). In
either case, we infer that

(23) {K0 �R2 � f0g;

so {K0 is at most two-dimensional. This proves the proposition.

Proposition 2.2 (dimension reduction) Let Mt D @Kt be an ancient noncollapsed mean curvature flow
in R4. If {Kt0 contains a line , then Mt is either a static hyperplane , a round shrinking R�S2, a round
shrinking R2 �S1, a two-dimensional bowl times R, or a two-dimensional ancient oval times R.

Proof If {Kt0 contains a line, then so does Kt0 . Hence, the flow Mt D @Kt splits off an R–factor. By the
classification of two-dimensional noncollapsed flows in R3 by Angenent, Daskalopoulos and Sesum [3]
and Brendle and Choi [6], this implies the assertion.

We will now show that the blowdown {Kt0 is independent of t0 < Text.M/, where Text.M/ denotes the
extinction time of our flow. To show this, we need the following lemma (we write � for the outward unit
normal).

Lemma 2.3 (interior balls) For every �0 > 0 and H0 <1 there exists some ı D ı.H0; �0/ > 0 with
the following significance: If p 2Mt0 is such that H.p/ �H0 and h��.p/; vi � �0 for every v 2 {Kt0
with jvj D 1, then we have B.pC v; ı/�Kt0 for every v 2 {Kt0 with jvj � 1.

Proof First, note that as lim�!0 �Kt0 D lim�!0 �.Kt0 �p/, we have pC sv 2Kt0 for every v 2 {Kt0
with jvjD1 and every s�0. The convexity ofKt0 implies that the function .0;1/3 s 7!dist.pCsv;Mt0/

is concave and positive on Kt0 , and thus, nondecreasing. Taking an interior tangent ball at p of radius
˛=H0 yields the desired result.

Proposition 2.4 (time-independence of blowdown) The blowdown {Kt0 is independent of t0 < Text.M/.

Proof It suffices to prove this in case Mt D @Kt in R4 is noncompact and strictly convex. Fix some t0
and consider the set I of all t 2 Œt0; Text.M// such that {Kt0 D {Kt . Since Kt2 � Kt1 for t2 � t1 we
clearly have that {Kt2 � {Kt1 for t2 � t1, so I is a (potentially degenerate) subinterval of Œt0; Text.M// that
contains t0. Letting t1 2 I , and taking any p 2 @Kt1 , strict convexity implies that

(24) inf
v2 {Kt1�f0g

�
��.p/;

v

jvj

�
> 0:
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By the lemma above, there exists some ı > 0 such that for every jvj � 1, B.pC v; ı/�Kt1 . Therefore,
by avoidance, pC v 2Kt for all t with jt � t1j � ı2=6, so all such t are also in I .

Thus, if I ¤ Œt0; Text.M// then I D Œt0; t1/ for some t1 <Text.M/. We want to show that this is impossible.
Suppose, for the sake of contradiction, that there exists some v 2 {Kt0 n {Kt1 . Given any p 2 Mt1 ,
by smoothness, we can find t 2 I arbitrarily close to t1 and pt 2 Mt such pt ! p and such that
H.pt /�H.p/C 1. As above, Lemma 2.3 and avoidance imply that

(25) h�.pt /; vi ! 0;

so v 2 TpMt1 . But since p 2Mt1 was arbitrary, this implies that Mt1 splits a line in the direction v,
contradicting the strict convexity of Mt1 .

We end this section by giving a (well-known) description of the blowdown in terms of graphical directions:

Proposition 2.5 (alternative description of blowdown) Let Kt D @Mt be a noncollapsed strictly convex
flow. Then

(26) {Kt0 D f! 2RnC1 such that h�.p/; !i< 0 for every p 2Mt0g[ f0g:

Proof Let�Df! 2RnC1 such that h�.p/; !i<0 for every p 2Mt0g. The containment {Kt0 ��[f0g
is clear, as for every p 2Mt0 and v 2 {Kt0 we have pCsv 2Kt0 for every positive s. Conversely, if v 2�,
for every p 2Mt0 we have that pC sv 2 Kt0 for small values of s. Thus, if pC s0v 2Mt0 for some
s0 > 0 then for s > s0 with s� s0 sufficiently small, pC sv 2Kt0 , which contradicts the concavity of the
distance to the boundary. Thus, the entire line fpC sv j s 2 Œ0;1/g is contained in Kt0 , so v 2 {Kt0 .

2.2 The bubble-sheet scale

Let M be an ancient mean curvature flow, with a bubble-sheet tangent flow at �1. Given a point
X D .x; t/ 2M and a scale r > 0, we consider the flow

(27) MX;r D D1=r.M�X/

which is obtained from M by translating X to the space-time origin and parabolically rescaling by 1=r .
Here, D�.x; t/D .�x; �

2t /.

Definition 2.6 ("–cylindrical) We say that M is "–cylindrical around X at scale r if MX;r is "–close in
C b1="c in B.0; 1="/� Œ�2;�1� to the evolution of a round shrinking bubble-sheet cylinder with radius
r.t/D

p
�2t and axis through the origin.

Note that in [10] and [11], being "–cylindrical is defined by closeness to the evolution of a neck, rather
than the evolution of a bubble-sheet. We hope that the benefits of the analogies coming from overloading
the term outweigh the potential confusion. In any case, throughout the present paper "–cylindrical is
always meant in the sense of Definition 2.6.
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Given any point X D .x; t/ 2M, we analyze the solution around X at the dyadic scales rj D 2j , where
j 2 Z.

Theorem 2.7 For any small enough " > 0, there is a positive integer N DN."/ <1 with the following
significance. If M is an ancient flow asymptotic to a bubble-sheet , which is not the round shrinking
bubble-sheet cylinder , then for every X 2M there exists an integer J.X/ 2 Z such that

(28) M is not "–cylindrical around X at scale rj for all j < J.X/

and

(29) M is 1
2
"–cylindrical around X at scale rj for all j � J.X/CN:

Proof The proof, based on quantitative differentiation (cf [9]), is identical to that of [10, Theorem 2.7].

We fix a small enough parameter " > 0 quantifying the quality of the bubble-sheet for the rest of the paper.

Definition 2.8 (bubble-sheet scale) The bubble-sheet scale of X 2M is defined by

(30) Z.X/D 2J.X/:

3 Foliations and barriers

The proof of Theorem 1.4 relies on the spectral analysis of the equation describing the evolution by mean
curvature flow of a graph over the cylinder. Importantly, the flow is not an entire graph over a cylinder,
but rather, a graph over a large portion of it. Thus, one needs to introduce some truncation, and control
the error introduced by it. Moreover, one needs quantitative bounds on the graphical radius — the radius
in which the flow is a small graph over the cylinder. In the neck-singularity setting, both of these goals
are achieved in [3] by using a foliation whose leaves are fixed points of the rescaled MCF. In this section,
we construct analogues of that foliation which are suited for the analysis over the bubble-sheet cylinder
R2 �S1.

We recall from Angenent, Daskalopoulos and Sesum that there exists some L0 > 1 such that for every
a � L0 and b > 0 there are self-shrinkers

(31)
†a D fsurface of revolution with profile r D ua.x1/; where 0� x1 � ag;

z†b D fsurface of revolution with profile r D zub.x1/; where 0� x1 <1g;

as illustrated in [3, Figure 1]; see also [24]. We will refer to these shrinkers as ADS-shrinkers and
KM-shrinkers, respectively. Here, the parameter a captures where the concave functions ua meet the
x1–axis, namely ua.a/ D 0, and the parameter b is the asymptotic slope of the convex functions zub ,
namely limx1!1 zu

0
b
.x1/D b. A detailed description of these shrinkers can be found in [3, Section 8].

We recall:
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Lemma 3.1 [3, Lemmas 4.9 and 4.10] There exists some b0 > 0 such that the self-shrinkers †a, z†b
and the cylinder † WD fx22 C x

2
3 D 2g �R3 foliate the region

(32) f.x1; x2; x3/ 2R3 j x22 C x
2
3 � b

2
0x
2
1 and x1 � L0g:

Moreover , denoting by �fol the outward unit normal of this family, we have that

(33) div.e�x
2=4�fol/D 0;

ie the shrinker family forms a calibration for the Gaussian area.

We will now shift and rotate this foliation to construct a suitable foliation in R4:

Definition 3.2 (bubble-sheet foliation) For every a � L0, we denote by �a the doubly-rotationally
symmetric hypersurface in R4 given by

(34) �a D f.r cos �; r sin �; x3; x4/ 2R4 j � 2 Œ0; 2�/; .r � 1; x3; x4/ 2†ag:

Similarly, for each b > 0 we denote by z�b the doubly-rotationally symmetric hypersurface in R4 given by

(35) z�b D f.r cos �; r sin �; x3; x4/ 2R4 j � 2 Œ0; 2�/; .r � 1; x3; x4/ 2 z†bg:

Lemma 3.3 (foliation lemma) There exist b0 > 0 and L1 � 3 such that the hypersurfaces �a, z�b and
the cylinder � WDR2 �S1.

p
2/ foliate the domain

(36) � WD f.x1; x2; x3; x4/ 2R4 j x23 C x
2
4 � b

2
0.x

2
1 C x

2
2/ and x21 C x

2
2 � L

2
1g:

Moreover , denoting by �fol the outward pointing unit normal of this foliation , we have that

div.�fole
�jxj2=4/� 0 inside the cylinder;(37)

div.�fole
�jxj2=4/� 0 outside the cylinder:(38)

Proof Let b0 be as in Lemma 3.1, and set L1 D L0C 1. The fact that �a, z�b and � foliate � follows
from Lemma 3.1 and Definition 3.2.

Now, observe that for every element �� in the foliation of � we have

(39) div.�fole
�jxj2=4/D

�
H�� �

1
2
hx; �foli

�
e�jxj

2=4:

Hence, (37) is equivalent to the condition

(40) H�� �
1
2
hx; �foli:

To show (40), note that by symmetry, it suffices to compute the curvatures H�� of �� in the region
fx2D 0; x1>0g, where we can identify points and unit normals in �� with the corresponding ones in †�,

Geometry & Topology, Volume 28 (2024)



A nonexistence result for wing-like mean curvature flows in R4 3107

by disregarding the x2–component. The relation between the mean curvature of a surface †� �R3 and
its (unshifted) rotation �� �R4 on points with x2 D 0 and x1 > 0 is given by

(41) H�� DH†� C
1

x1
he1; �i; where e1 D .1; 0; 0/:

For the ADS-shrinkers, the concavity of ua implies he1; �foli � 0, so using (41) and the shrinker equation
we infer that

(42) H�a D
1
2
hx� e1; �foliC

1

x1� 1
he1; �foli �

1
2
hx; �foli;

as in �\fx2 D 0; x1 > 0g, we have x1 � L1 � 3.

For the KM-shrinkers, the convexity of zub implies that he1; �foli� 0, so by a similar calculation as in (42),

(43) Hz�b
�
1
2
hx; �foli:

Corollary 3.4 (inner barriers) The hypersurfaces �a are inner barriers for the renormalized mean
curvature flow , in the following sense: Assume fK�g�2Œ�1;�2� are compact domains , the boundary of
which evolve by renormalized mean curvature flow. Assume further thatK� for every � 2 Œ�1; �2� contains
the region bounded by �a and x21 C x

2
2 D L

2
1, and that @K� \�a D∅ for all � < �2. Then

(44) @K�2 \�a � @�a:

Proof Lemma 3.3 implies that the vector EH C 1
2
x? points outwards of �a. The result now follows from

the maximum principle.

Remark 3.5 (outer barriers) Although this is not needed in the convex case, the hypersurfaces z�b are
evidently outer barriers for the renormalized mean curvature flow.

4 Setting up the fine bubble-sheet analysis

Throughout this section, let M be a noncollapsed ancient flow in R4 whose tangent flow for t!�1 is a
bubble-sheet. Assume further that M is not self-similarly shrinking. Given any space-time point X0, we
consider the renormalized flow

(45) MX0
� D e

�=2.Mt0�e�� � x0/:

Then MX0
� converges to the cylinder

(46) � DR2 �S1.
p
2/ as � !�1:

Since the renormalized MCF is invariant under rotations, the corresponding rotation vector fields appear
as Jacobi fields in its linearization. Therefore, to obtain a useful geometric information from the spectral
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analysis in the case where the neutral mode is dominant, one needs to make sure that those rotation vector
fields are not the dominant ones. There are two ways that have been successfully employed in doing that:

(i) using a neck-improvement theorem to show that the rotations are nondominant (cf [10, Section 4.3]),
or

(ii) rotating the evolution in such a way that the graphs are orthogonal to all rotations (cf [6, Section 2]).

The difference between the two methods, in terms of the argument, is where those rotations are dealt with:
in the latter approach, the labor lies in showing that the modes of the linearization dominate the evolution
even after one rotates the surfaces. In the former approach, the analysis in the neutral mode case is harder.

In our current setting, we have found it easier to use the second alternative, as in [6].

After normalizing we can assume that Z.X0/� 1, and we can find a universal function �.�/ > 0 with

(47) lim
�!�1

�.�/D1 and � �.�/� �0.�/� 0;

such that for every S 2 SO.4/ with ^.S.�/; �/ < 1
100
�.�/�3, the rotated surface S.MX0

� / is the graph
of a function uD uS . � ; �/ over � \B2�.�/.0/, namely

(48) fxCu.x; �/��.x/ j x 2 � \B2�.�/.0/g � S.M
X0
� /;

where �� denotes the outward pointing unit normal to � , such that

(49) ku. � ; �/kC4.�\B2�.�/.0// � �.�/
�2:

For later use, let us also arrange that in the special case where the rotation matrix is the identity, we have
the better decay

(50) kuI . � ; �/kC4.�\B2�.�/.0// � �.�/
�4:

We fix a nonnegative smooth cutoff function � satisfying �.s/D 1 for jsj � 1
2

and �.s/D 0 for jsj � 1.
We consider the truncated function

(51) yu.x; �/ WD u.x; �/�

�
r

�.�/

�
;

where

(52) r.x/ WD

q
x21 C x

2
2 :

Proposition 4.1 (orthogonality) There exists a differentiable function S.�/ WD SX0.�/2 SO.4/, defined
for � sufficiently negative , such that , setting u WD uSX0 .�/, we have

(53)
Z
�\B�.�/.0/

hAx; ��iyu.x; �/e
�jxj2=4

D 0;

for everyA2o.4/. Moreover , the matrixA.�/DS 0.�/S.�/�12o.4/ satisfiesA12.�/D0 andA34.�/D0
for all � � 0.
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Proof Let Gr.2;R4/ be the space of two-dimensional planes through the origin in R4. The rotation
group O.4/ acts transitively on Gr.2;R4/ with stabilizer O.2/�O.2/, and hence the Grassmannian can
be expressed as homogeneous space

(54) Gr.2;R4/D
O.4/

O.2/�O.2/
:

In particular, dim Gr.2;R4/D 6� 2D 4. Let us select an explicit choice of fibration

(55) p WO.4/! Gr.2;R4/;

by declaring that p maps each rotation matrix to the span of its first two column vectors.

Denote by U� the open set of all R 2O.4/ satisfying ^.R.�/; �/ < 1
100
�.�/�3. Now, given any � � 0

and R 2 U� we can write R.M � / as a graph of a function uR.x; �/ over � \B2�.�/.0/. Observe that the
expression

(56)
Z
�\B�.�/.0/

e�jxj
2=4u2R.x; �/�

�
r

�.�/

�
;

as well as the relation

(57)
Z
�\B�.�/.0/

e�jxj
2=4
hAx; ��iuR.x; �/�

�
r

�.�/

�
D 0 for all A 2 o.4/;

is constant along the fibers of p. Set V� WD p.U� /, and observe that this is an open neighborhood of
Œx1x2� 2 Gr.2;R4/.

Claim 4.2 Possibly after decreasing U� , for every � � 0 there exists a unique �.�/ 2 V� such that

(58)
Z
�\B�.�/.0/

e�jxj
2=4
hAx; ��iuz�.�/.x; �/�

�
r

�.�/

�
D 0 for all A 2 o.4/;

where z�.�/ denotes some lift of �.�/ to O.4/. Moreover , the function � 7! �.�/ is smooth.

Proof of the claim We will use the quantitative version of the implicit function theorem.

In order to first construct the required approximate solution, we consider the functional

(59) H.�; �/D
1

2

Z
�\B�.�/.0/

e�jxj
2=4u2�.x; �/�

�
r

�.�/

�
:

M � is a small graph over the cylinder with axis given by the 2–plane Œx1x2�2Gr.2;R4/, so for every ��0

there is a minimizer �.�/ for H in a small neighborhood of Œx1x2�, and we have H.�; �.�//� C=�.�/4.
Here, using (50) it is not hard to see that the minimum is indeed attained (well inside) the open set V� .

Fix some �� 0 and abbreviate z� WD z�.�/. Now, let R.�/2 SO.4/ be a one-parameter family of rotations
with R.0/D z� and R0.0/D Az� , where A 2 o.4/. Note that

(60) R.�/�1.xCuR.�/.x; �/��.x// 2M � :
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Taking .d=d�/j�D0 of this expression, observing the resulting vector is of course orthogonal to �.xC
uz���/, and using the condition ^.z�.�/; �/ < 1

100
�.�/�3, we infer that

(61)
d

d�

ˇ̌̌
�D0

uR.�/.x; �/D hAx; ��iCO

�
1Cjxj

�.�/2

�
:

Using this, we obtain that the Euler–Lagrange equation for H reads

(62) rAH D
Z
�\B�.�/.0/

e�jxj
2=4u�.x; �/hAx; ��i�

�
r

�.�/

�
CO

�
1

�.�/4

�
D 0 for all A 2 o.4/:

Thus, our minimizer �.�/ is an approximate solution of (58).

Now, to show existence and uniqueness of solutions to (58), as well as smooth dependence, let A1; : : : A4

be the standard basis of

(63) A WD fA 2 so.4/ j A12 D A34 D 0g;

and define a map F W f.�; �/ j � � �0; � 2 V�g !R4 by

(64) F.�; �/i D

Z
�\B�.�/.0/

e�jxj
2=4
hAix; ��iu�.x; �/�

�
r

�.�/

�
for i D 1; : : : ; 4:

Then, computing similarly as above we obtain

(65) rAiFj D

Z
�\B�.�/.0/

e�jxj
2=4
hAix; ��ihA

jx; ��i�

�
r

�.�/

�
CO

�
1

�.�/2

�
:

Since the only antisymmetric matrix in A 2A such that hAx; ��i � 0 on � is 0, we see that the form
rAiFj is positive definite for � � 0, and so is in particular invertible.

Note that equation (65) holds in an �.�/�3=100 neighborhood of Œx1x2� with uniform constants. Thus by
the quantitative version of the inverse function theorem, in light of (62) and (65), there is a neighborhood
of our fixed time � such that the function �. � / can be chosen in it to satisfy (58). Finally, since by the
above, F is uniformly bounded in spatial C 1, the size of that neighborhood can be taken to be independent
of � . This finishes the proof of the claim.

Now, we can take a lift S.�/ of �.�/ to SO.4/. Moreover, by post-composing with two SO.2/ rotations,
of the first two variables, and of the last two variables, we can further arrange that AD S 0S�1 satisfies
A12 D A34 D 0. This finishes the proof of the proposition.

We now set

(66) zMX0
� D S

X0.�/MX0
� ;

where SX0.�/ 2 SO.4/ if from Proposition 4.1 (orthogonality), and set

(67) u WD uSX0 .�/;
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so u describes zMX0
� as a graph over the cylinder � . Recall that we defined

(68) yu.x; �/D u.x; �/�

�
r

�.�/

�
:

Our next task it to show that, despite of the truncation and the rotation, the function yu evolves by the
linearization of the rescaled MCF equation over the cylinder, up to a small error. Set

(69) er WD rr D
.x1; x2; 0; 0/

r
:

Let �� D�C� [�
�
� be the region bounded by zM� and � . Here, �C� denotes the region that is outside

of � and inside of zM� , and ��� denotes the region that is inside of � outside of zM� .

Proposition 4.3 (Gaussian area) For all L 2 ŒL1; �.�/� and � � 0 we have the Gaussian area estimate

(70)
Z
zM�\fr�Lg

e�jxj
2=4
�

Z
�\fr�Lg

e�jxj
2=4
� �

Z
��\frDLg

e�jxj
2=4
jher ; �folij:

Proof Let zMC� (respectively zM�� ) be the part of zM� that lies outside (respectively inside) the cylinder.
As above, let �˙� be the corresponding parts of �� , and let �˙ D�˙� \� .

Considering the foliation of � from Lemma 3.3, since div.e�jxj
2=4�fol/ � 0 in �C� \ fr � Lg, the

divergence theorem yields that for every R > L we have

(71)
Z
zM
C
� \fL�r�Rg

e�jxj
2=4
h�; �foli �

Z
�C\fL�r�Rg

e�jxj
2=4

� �

Z
�
C
� \frDLg

e�jxj
2=4
jher ; �folij �

Z
�
C
� \frDRg

e�jxj
2=4
jher ; �folij:

Similarly, since div.e�jxj
2=4�fol/� 0 in ��� \fr � Lg, the divergence theorem yields

(72)
Z
��\fL�r�Rg

e�jxj
2=4
�

Z
zM�� \fL�r�Rg

e�jxj
2=4
h�; �foli

�

Z
��� \frDLg

e�jxj
2=4
jher ; �folijC

Z
��� \frDRg

e�jxj
2=4
jher ; �folij:

Putting these together, we get

(73)
Z
zM�\fL�r�Rg

e�jxj
2=4
h�; �foli �

Z
�\fL�r�Rg

e�jxj
2=4

� �

Z
��\frDLg

e�jxj
2=4
jher ; �folij �

Z
��\frDRg

e�jxj
2=4
jher ; �folij:

Using jh�; �folij � 1 and j�� \fr DRgj � CR3 and passing R!1, we conclude that

(74)

Z
zM�\fr�Lg

e�jxj
2=4
�

Z
�\fr�Lg

e�jxj
2=4
� �

Z
��\frDLg

e�jxj
2=4
jher ; �folij:
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Next, we have an inverse Poincaré inequality:

Proposition 4.4 (inverse Poincaré inequality) The graph function u satisfies the integral estimatesZ
�\fjrj�Lg

e�jxj
2=4
jru.x; �/j2 � C

Z
�\fjrj�L=2g

e�jxj
2=4u.x; �/2;(75) Z

�\fL=2�jrj�Lg

e�jxj
2=4u.x; �/2 �

C

L2

Z
�\fjrj�L=2g

e�jxj
2=4u.x; �/2;(76)

for all L 2 ŒL1; �.�/� and � � 0, where C <1 is a numerical constant.

Proof The proof is quite similar to that of [6, Proposition 2.3]. Since jher ; �folij � CL
�1 jx23 C x

2
4 � 2j

by [3, Lemma 4.11], we infer that

(77)
Z
��\frDLg

e�jxj
2=4
jher ; �folij � CL

�1

Z
�\frDLg

e�jxj
2=4u2:

Thus, Proposition 4.3 (Gaussian area) implies

(78)
Z
zM�\fr�Lg

e�jxj
2=4
�

Z
�\fr�Lg

e�jxj
2=4
� �CL�1

Z
�\frDLg

e�jxj
2=4u2:

On the other hand, we have

(79)
Z
zM�\fr�Lg

e�jxj
2=4
�

Z
�\fr�Lg

e�jxj
2=4
�

Z
fr�Lg

Z 2�

0

e�r
2=4

�
�Cu2C

1

C
jr
�uj2

�
d� dA;

where C < 1 is a numerical constant. Hence, we can do the same computation as in the proof of
[6, Proposition 2.3] to obtain the desired result.

Recall that zM� is expressed as graph of a function u.x; �/ over �\B2�.�/.0/ satisfying the estimate (49).
Using that M � D S.�/

�1 zM� moves by rescaled mean curvature flow, one obtains:

Lemma 4.5 (evolution of graph function) The function u.x; �/ satisfies

(80) @�uD LuCEChA.�/x; ��i;

where AD S 0S�1 and L is the linear operator on � defined by

(81) Lf D�f � 1
2
hxtan;rf iCf;

and where the error term can be estimated by

(82) jEj � C�.�/�1.jujC jrujC jA.�/j/ for � � 0:

Proof The proof is identical to the proof of [6, Lemma 2.4].
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Denote by H the Hilbert space of all functions f on � such that

(83) kf k2H D

Z
�

1

.4�/3=2
e�jxj

2=4 f 2 <1:

Proposition 4.6 (evolution of the truncated graph function) The truncated graph function yu.x; �/D
u.x; �/�.r=�.�// satisfies

(84) @� yuD LyuC yEChA.�/x; ��i�

�
r

�.�/

�
;

where

(85) k yEkH � C�
�1.kyukHCjA.�/j/ for � � 0:

Proof We compute

(86) @� yuD LyuC yEChA.�/x; ��i�
� r

�.�/

�
;

where

(87) yE DE�

�
r

�.�/

�
�

2

�.�/

@u

@r
�0
�

r

�.�/

�
�

1

�.�/2
u�00

�
r

�.�/

�
C

r

2�.�/
u�0

�
r

�.�/

�
�
r�0.�/

�.�/2
u�0

�
r

�.�/

�
:

Using Lemma 4.5 (evolution of graph function), we deduce that

j yEj � C�.�/�1.jujC jr�ujC jA.�/j/ for r � 1
2
�.�/:

Moreover, since j�0.�/j � �.�/ and �.�/!1, we obtain

j yEj � C jujCC��1.jr�ujC jA.�/j/ for 1
2
�.�/� r � �.�/:

Thus, we can obtain the desired result as in the proof of [6, Lemma 2.5].

Lemma 4.7 (estimate for rotation function) The rotation can be estimated by

(88) jA.�/j � C��1kukH:

In particular , we have

(89) kyu� �LyukH � C�
�1
kyukH:

Proof The proof is similar to the one of [6, Lemma 2.6]. The conditions A12.�/D A34.�/D 0 imply

(90) jA.�/j2 � C

Z
�

e�jxj
2=4
hA.�/x; ��i

2�

�
r

�.�/

�
:
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Indeed, since nonzero antisymmetric matrices A with A12 D A34 D 0 are the velocity fields of rotations
which change the axis of the cylinder, the bilinear form

(91) .A;B/ WD

Z
�

e�jxj
2=4
hAx; ��ihBx; ��i�

�
r

�.�/

�
is uniformly positive definite on such matrices.

Proposition 4.1 (orthogonality) implies that yu, hence also @� yu, is orthogonal to all hAx; �i for each
antisymmetric A. Also Lyu is orthogonal to hAx; �i, as the latter is in the kernel of L. Thus, hAx; �i is
orthogonal to @� yu�LyuD yEChA.�/x; ��i�.r=�.�//. From this and (90), we get

jA.�/j2 � C

Z
�

e�jxj
2=4
j yEjjhA.�/x; ��ij� Ck yEkHjA.�/j � C�

�1
kyukHjA.�/jCC�

�1
jA.�/j2;

where in the last step we have used Proposition 4.6. Consequently,

(92) jA.�/j � C��1kyukH:

Using Proposition 4.6 once more, we get (89) as well.

The operator L is explicitly given by

(93) LD
@2

@x21
f C

@2

@x22
f C

1

2

@2

@�2
f �

1

2
x1

@

@x1
f �

1

2
x2

@

@x2
f Cf:

Analyzing the spectrum of L, the Hilbert space H from (83) can be decomposed as

(94) HDHC˚H0˚H�;

where

HC D spanf1; cos �; sin �; x1; x2g;(95)

H0 D spanfx1 cos �; x1 sin �; x2 cos �; x2 sin �; x21 � 2; x
2
2 � 2; x1x2g:(96)

We have

(97)

hLf; f iH �
1
2
kf k2H for f 2HC;

hLf; f iH D 0 for f 2H0;

hLf; f iH � �
1
2
kf k2H for f 2H�:

Consider the functions

(98) UC.�/ WD kPCyu. � ; �/k
2
H; U0.�/ WD kP0yu. � ; �/k

2
H; U�.�/ WD kP�yu. � ; �/k

2
H;

where PC, P0 and P� denote the orthogonal projections to HC, H0 and H�, respectively.
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Theorem 4.8 (Merle–Zaag alternative) For � !�1 either the neutral mode is dominant , ie

(99) U�CUC D o.U0/;

or the unstable mode is dominant , ie

(100) U�CU0 � C�
�1UC:

Proof Using Proposition 4.6 (evolution of the truncated graph function) and Lemma 4.7 (estimate for
the rotation function) we obtain

(101)

d

d�
UC.�/� UC.�/�C�

�1 .UC.�/CU0.�/CU�.�//;ˇ̌̌̌
d

d�
U0.�/

ˇ̌̌̌
� C��1 .UC.�/CU0.�/CU�.�//;

d

d�
U�.�/� �U�.�/CC�

�1 .UC.�/CU0.�/CU�.�//:

Hence, the Merle–Zaag ODE lemma (Lemma B.1) implies the assertion.

5 Bubble-sheet analysis in the neutral mode

In this section, we prove Theorem 1.4 in the case where the neutral mode is dominant. Namely, throughout
this section we consider a noncompact ancient noncollapsed flow in R4 whose truncated graph function
yu. � ; �/ satisfies

(102) U�CUC D o.U0/:

The following lemma gives a rough bound, showing that for � !�1 the function U0 decays slower
than any exponential.

Lemma 5.1 (rough decay estimate) For any ı > 0 we have

(103) U0.�/� e
ı�

for sufficiently large �� .

Proof Given any ı > 0, the inequality (101) together with the assumption U�CUC D o.U0/ implies

(104)
ˇ̌̌̌
d

d�
U0.�/

ˇ̌̌̌
�
1
2
ıU0

for sufficiently large �� . Rewriting this as

(105)
ˇ̌̌̌
d

d�
logU0.�/

ˇ̌̌̌
�
1
2
ı;

integration gives logU0.�/� �C C 1
2
ı� . This yields the desired result.
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Proposition 5.2 Every sequence f�ig converging to �1 has a subsequence f�img such that

(106) lim
�im!�1

yu. � ; �im/

kyu. � ; �im/kH
D q11.x

2
1 � 2/C q22.x

2
2 � 2/C 2q12x1x2

in H–norm , where fqij g is a nontrivial seminegative definite 2� 2–matrix.

Proof By Proposition 4.1 (orthogonality), we have

(107) P0yu 2 spanfx21 � 2; x
2
2 � 2; x1x2g �H0:

Therefore, every sequence �i !�1 has a subsequence f�img such that

(108) lim
�im!�1

yu. � ; �im/

kyu. � ; �im/kH
D Q.x1; x2/;

with respect to the H–norm, where

(109) Q.x1; x2/D q11.x
2
1 � 2/C q22.x

2
2 � 2/C 2q12x1x2

for some nontrivial matrix QD fqij g. After an orthogonal change of coordinates in the x1x2–plane we
can assume that q12 D 0. Let us show that q11 � 0 (the same argument yields q22 � 0).

We denote by zK� the region enclosed by zM� and denote by A.x01; x
0
2; �/ the area of the cross-section

zK� \f.x1; x2/D .x
0
1; x
0
2/g. Explicitly, for x21 C x

2
2 � �.�/

2 we have

(110) A.x1; x2; �/D
1

2

Z 2�

0

�p
2Cu.�; x1; x2; �/

�2
d�

D 2� C
p
2

Z 2�

0

u.�; x1; x2; �/ d� C
1

2

Z 2�

0

u.�; x1; x2; �/
2 d�:

By Brunn’s concavity principle, the function

(111) .x1; x2/ 7!
p

A.x1; x2; �/

is concave. In particular, we have

(112)
p

A.x1; x2; �/�
1
2

p
A.x1� 2; x2; �/C

1
2

p
A.x1C 2; x2; �/:

This implies

(113) 3

Z 1

�1

Z 1

�1

p
A dx2 dx1 �

Z 3

�3

Z 1

�1

p
A dx2 dx1:

Hence, for sufficiently large ��im , combining (108), (110) and (113) yields

(114) .3C o.1//kyukH

Z 1

�1

Z 1

�1

Q dx2 dx1 � .1� o.1//kyukH

Z 3

�3

Z 1

�1

Q dx2 dx1�O.kyuk
2
H/:
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Indeed, given any compact intervals I1; I2 �R setting um D yu. � ; �im/, we can compute

(115)
Z
I1

Z
I2

.
p

A�
p
2�/ dx2 dx1 D

1˙ o.1/

2
p
�

Z
I1

Z
I2

Z 2�

0

um d� dx2 dx1

D .1˙ o.1//
p
�kumkH

Z
I1

Z
I2

Q dx2 dx1˙ o.1/kumkH;

which readily implies (114). Now, since kyukH > 0 and kyukH! 0, taking the limit as m!1, we obtain

(116) 3

Z 1

�1

Z 1

�1

Q dx2 dx1 �

Z 3

�3

Z 1

�1

Q dx2 dx1:

This implies

(117) 3q11

Z 1

�1

Z 1

�1

.x21 � 2/ dx2 dx1 � q11

Z 3

�3

Z 1

�1

.x21 � 2/ dx2 dx1:

Since the integral of the left-hand side is negative, while the integral on the right-hand side is positive, we
conclude that q11 � 0. This proves the proposition.

Recall that in this section Mt D @Kt denotes an ancient noncollapsed flow in R4 with dominant neutral
mode, ie (102) holds. Now, by the reduction from Section 2, we can assume that its blowdown {K � {Kt0
is a convex cone that does not contain any line. Furthermore, rotating coordinates, we can arrange that {K
contains the positive x1–axis, namely

(118) f�e1 j �� 0g � {K:

Theorem 5.3 (blowdown in neutral mode) If Mt D @Kt is as above , then its blowdown is a halfline ,
namely

(119) {K D f�e1 j �� 0g:

Moreover ,

(120) lim
�!�1

yu. � ; �/

kyu. � ; �/kH
D�c.x22 � 2/

in H–norm , where c D jx22 � 2j
�1
H .

Proof By Proposition 5.2 given any sequence converging to �1 we can find a subsequence �m such
that

(121) lim
�m!�1

yu. � ; �im/

kyu. � ; �m/kH
D q11.x

2
1 � 2/C q22.x

2
2 � 2/C 2q12x1x2

in H–norm, where QD fqij g is a nontrivial seminegative definite 2�2–matrix. We will show that

(122) {K � kerQ:
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To this end, observe that if v is a unit vector in the x1x2–plane, denoting by w the unit vector that is
obtained from v by a �=2–rotation, then

(123)
Z 1

0

Z 1

0

Q.rvC sw/ dr ds D�5
3

tr.Q/C 1
2
wTQv � �tr.Q/ > 0:

On the other hand, if v … kerQ, we see that for sufficiently large d D d.^.v; kerQ//, we have

(124)
Z 1

0

Z dC1

d

Q.rvC sw/ dr ds � 1
2
d2vTQv < 0:

Let zK� be, as before, the region enclosed by zM� . Defining A as in (110), similarly as in the previous
proof we have

(125)
Z 1

0

Z b

a

p
A.rvC sw; �m/�

p
2�

jyujH
dr ds!

p
�

Z 1

0

Z b

a

Q.rvC sw/ dr ds

as m!1. Combining (123), (124) and (125) we see that for every m sufficiently large, there exists
rm; sm 2 Œ0; 1� such that

(126) A.rmvC smw; �m/ >A..rmC d/vC smw; �m/:

Now, suppose towards a contradiction there is some ! 2 {K n kerQ. Since S.�/! I as � !�1, for all
�� sufficiently large we have

(127) ^.P12.S.�/!/; kerQ/ > 1
2
^.!; kerQ/;

where P12 denotes the projection to the spanfe1; e2g. Set

(128) vm WD
P12.S.�m/!/

jP12.S.�m/!/j
:

Take v D vm in the previous discussion (and let wm be its �=2–rotation). It follows from Proposition 2.5
(alternative description of blowdown) that for any x 2 zK� and ! 2 {K we have xC �S.�/! 2 zK� for
every � 2 Œ0;1/. Therefore, since rmvmC smwm 2 zK�m , we see that

(129) rmvmC smwmC�S.�m/! 2 zK�m for every � 2 Œ0;1/:

On the other hand, thanks to Brunn’s concavity principle, the function

(130) r 7!
p

A.rvmC smwm; �/

is concave, for as long as it does not vanish. Together with (126) this implies that for all m sufficiently
large, the area of the cross-sections is decreasing for r > rm, and vanishes at some finite r�. This
contradicts (129), as the ray would have nowhere to go. This proves (122).

Using the inclusion (122), since kerQ is one-dimensional, we infer that {K is one-dimensional. Hence

{K D f�e1 j �� 0g;(131)

kerQD fx1–axisg:(132)
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Finally, since a normalized seminegative 2�2–matrix is uniquely characterized by its one-dimensional
kernel, we see that subsequential convergence in (121) in fact entails full convergence, and

(133) lim
�!�1

yu. � ; �/

kyu. � ; �/kH
D�c.x22 � 2/;

where c D jx22 � 2j
�1
H . This proves the theorem.

Corollary 5.4 (diameter of level sets) If Mt D @Kt is as above , then given any X and ı > 0, assuming
that the neutral mode dominates , we have

MX
� \fx1 D 0g � Be�ı� .0/

for sufficiently large �� .

Proof By Theorem 5.3 we have

(134) lim
�!�1

yu. � ; �/

kyu. � ; �/kH
D�

.x22 � 2/

jx22 � 2jH
:

Hence, arguing similarly as above, for sufficiently large �� we obtain

(135)
Z 2

1

Z 1

�1

p
A dx2 dx1� sup

s2Œ�1;1�

Z 2Cs

1Cs

Z 11

9

p
A dx2 dx1 � .cC o.1//kyukH;

where c > 0 is a numerical constant. Moreover, by Lemma 5.1 (rough decay estimate) we know that

(136) kyukH � e
ı� :

Therefore, there is some aC.�/ 2 .1; 2/� .�1; 1/ such that

(137)
p

A.aC.�/; �/� sup
s2Œ�1;1�

p
A.aC.�/C se1C 10e2; �/� ce

ı� :

In particular, for all � sufficiently negative this implies that

(138)
p

A.aC.�/; �/�
q

A.aC.�/C 10he2; S.�/e2i�1S.�/e2; �/� ce
ı� :

Hence, the concavity of .x1; x2/ 7!
p

A.x1; x2; �/ yields

(139) A.aC.�/CCe
�ı�S.�/e2; �/D 0

for some constant C < 1. Finally, recall that zMX
� is a convex graph with respect to the height

function S.�/e1, and that the level sets of a convex graph monotonically increase. Observing also
that haC.�/; S.�/e1i � 0 we infer that

(140) A.Ce�ı�S.�/e2; �/D 0:

Similarly, we can show A.�Ce�ı�S.�/e2; �/D 0. This proves the corollary.
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6 Bubble-sheet analysis in the unstable mode

In this section, we consider ancient noncollapsed flows with a bubble sheet tangent flow at �1, whose
unstable mode is dominant. We will show that each such flow has some nonvanishing expansion parameters
associated to it. This is the content of the fine bubble-sheet theorem (Theorem 6.7) and the nonvanishing
expansion theorem (Theorem 6.9).

More precisely, throughout this section we assume the tilted rescaled flow zM
X0
� around some point X0

has a dominant unstable mode, ie

(141) U0CU� � C�
�1UC:

6.1 Analysis of the untilted flow

When dealing with the unstable mode case, it is convenient to work with the renormalized flow M
X0
�

itself, and not with its tilted version zMX0
� . Our first task is to show that when dealing with the untilted

renormalized flow around any point X , the unstable mode is still the dominant one.

Given any point X , for � � 0 (depending only on Z.X/) we can write MX
� as a graph of a function

xu. � ; �/ over � \B2�.�/.0/, where �D �X . � ; �/, which satisfies (47) and (49). We will work with the
truncated function

(142) {uD xu�

�
r

�.�/

�
:

Proposition 6.1 (evolution of truncated graph function) There exists some universal constant C <1
such that

(143) k.@� �L/{ukH � C�
�1
k{ukH for � � 0:

Proof This follows from repeating the argument in Lemma 4.5 and Proposition 4.6 with A.�/D 0.

Now, the functions

{UC.�/ WD kPC{u. � ; �/k
2
H;

{U0.�/ WD kP0{u. � ; �/k
2
H;

{U�.�/ WD kP�{u. � ; �/k
2
H;

satisfy the evolution inequalities (101). Applying the Merle–Zaag ODE lemma (Lemma B.1), we infer
that there are universal constants C0; R <1 (where we can assume that R > 103) such that for every X ,
either

(144) {UCC {U� D o. {U0/;

or

(145) {U0C {U� � C0�
�1 {UC whenever � �R:
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Proposition 6.2 (dominant mode) The unstable mode is dominant for the untilted flow. More precisely,
the inequality (145) holds for every X .

Proof Let us first show that the statement hold forX DX0. By assumption, the tilted flow with centerX0
has dominant unstable mode, ie

(146) U0CU� � C�
�1UC:

Together with the evolution inequalities (101) this also implies

(147)
d

d�
UC.�/� .1�C�

�1/UC:

Note that (147) implies

(148)
d

d�
e�

9
10
�UC.�/� 0

for sufficiently large �� . Hence,

(149) ku. � ; �/k2H D .1C o.1//UC � Ce
9
10
� :

Therefore, Lemma 4.7 yields that

(150) jSX0.�/� I j � Ce
9
20
� :

Recall that

(151) ku. � ; �/k2H D
1

.4�/3=2

Z
�

yuSX0 .�/. � ; �/
2e�jxj

2=4;

and note that for X DX0 we have {uD yuI , hence

(152) k{u. � ; �/k2H D
1

.4�/3=2

Z
�

yuI . � ; �/
2e�jxj

2=4:

Combining (149) and (150) we thus infer that the untilted flow satisfies

(153) k{u. � ; �/k2H � Ce
9
20
� :

On the other hand, if we had {UC C {U� D o. {U0/, then arguing as in Lemma 5.1 we would see that
k{u. � ; �/k2H � e

ı� for every ı > 0 and �� sufficiently large, which is inconsistent with (153). Thus, for
X DX0, we indeed get

(154) {U0C {U� � C�
�1 {UC:

Finally, any neck centered at a general point X merges with the neck centered at X0 as � !�1. Thus,
(145) holds for every X .
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Recapping, for any center X we therefore have

(155) {U0C {U� � C0�
�1 {UC

and, thanks to the evolution inequalities (101), also

(156)
d

d�
{UC � .1�C0�

�1/ {UC

whenever � �R, where R � 103 and C0 are some universal constants. Increasing R further, we can also
assume that R � 10C0.

6.2 Graphical radius

The goal of this section is to prove Proposition 6.4, which gives a lower bound for the optimal graphical
radius.

We now fix some " < 1=R in the definition of the bubble-sheet scale (Definition 2.6). In what follows,
C <1 and T> �1 will denote constants that are allowed to change from line to line, but depend only
on an upper bound of Z.X/. In particular, our initial choice of graphical radius satisfies �X .�/�R for
� 2 .�1;T� and (155) and (156) hold for all � 2 .�1;T�.

Lemma 6.3 (decay estimate) There exists some constant C <1, depending only on an upper bound
for Z.X/, such that for � � T,

k{u. � ; �/kH � Ce
9
20
� ;(157)

k{u. � ; �/kC10.fr�100g/ � Ce
9
20
� :(158)

Proof Since MX
T is an "–graph over � \B2�X .0/, we get k{u. � ;T/kH � 1. Note that (156) implies

.d=d�/.e�
9
10
� {UC/� 0 for � � T. Hence,

(159) e�
9
10
� {UC � e

� 9
10

T
k{u. � ;T/k2H � C:

This gives the first inequality (157). The second inequality (158) follows from (157) by parabolic estimates.
Indeed, one can first establish an L1–bound via De Giorgi–Nash–Moser iteration (more precisely, one
can apply Theorem A.1 with k D 0), and then upgrade this to a C 10–bound via standard Schauder
theory.

Proposition 6.4 (improved graphical radius) There exists some T> �1, depending only on an upper
bound for Z.X/, such that

(160) x�.�/D e�
1
9
�

is a graphical radius function satisfying (47) and (49) for � � T.
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Proof We recall from [3, Theorem 8.2] that the profile function ua of the ADS-barriers satisfies

(161) ua.x/�
p
2

�
1�

x2

a2

�
on the interval 0� x � a, and

(162) ua.x/�
p
2

�
1�

x2� 10

1000a2

�
on the interval 8� x � 100, provided that a is large enough.

The upper bound for ua and Lemma 6.3 (decay estimate) imply that fr D 10g\�a is enclosed by MX
�

for a2 � .1=C /e�
9
20
� . Since �a is enclosed by MX

� for � � 0, the maximum principle guarantees that

(163) MX
� encloses fr � 10g\�a for a2 � Ce�

9
20
� .

Hence, by the estimate (158), the convexity of MX
� and the lower bound for ua, it follows that MX

� is
graphical over the cylinder up to a radius .1=C /e�

9
60
� , with C 0–norm less than Ce

9
60
� .

We will now upgrade this C 0–estimate to a bound for the regularity scale by arguing similarly as in the
proof of [10, Proposition 4.10]. Specifically, for any X 0 D .x0; t 0/ 2M denote by R.X 0/ the maximal
radius r such that jAj � 1=r in the parabolic pall P.X 0; r/. Suppose towards a contradiction that
R.X 0/�

p
�t 0 for some X 0 in the unrenormalized flow in the region under consideration. Consider

Huisken’s monotone quantity‚X 0.rj / from [20] centered atX 0 at scales rj D2jR.X 0/. Given any ı>0 by
quantitative differentiation [9] there exists some j 2 f1; : : : ; d2=ıeg such that‚X 0.rjC1/�‚X 0.rj�1/< ı,
and consequently the flow must be "–close to a self-shrinker at scale rj centered at X 0, where ".ı/! 0

for ı! 0. Fixing ı > 0 small enough we can arrange that "� 1 and rj �
p
�t 0. However, since in our

noncollapsed setting the only self-shrinkers are round spheres, necks and bubble-sheets, this contradicts
our graphical C 0–estimate.

Finally, interpolating the regularity scale estimate and the C 0–estimate, we see that up to a radius of 2e�
1
9
� ,

the hypersurface MX
� is a C 1–graph over the cylinder with norm less than "0e

9
60
� . Hence, using standard

parabolic Schauder estimates for the renormalized flow around any point within that radius e�
1
9
� of the

point X yields the desired result.

From now on, we work with �D x� from Proposition 6.4 (improved graphical radius), and in particular
define {u; {U0; {U˙; : : : with respect to this improved graphical radius. Note that the unstable mode is still
dominant.

Corollary 6.5 (sharp decay estimate) There exist constants C <1 and T> �1, depending only an
upper bound for Z.X/, such that for � � T,

k{ukH � Ce
�=2;(164)

k{u. � ; �/kC10.fr�100g/ � Ce
�=2:(165)
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Proof Combining the evolution inequality (156), Lemma 6.3 (decay estimate) and Proposition 6.4
(improved graphical radius) yields

(166)
d

d�
.e�� {UC/� �Ce

��C 1
9
�C 9

10
�
D�Ce

1
90
�

for all � � T. Thus, {UC � Ce� . Since the unstable mode is dominant, this proves that k{ukH � Ce
�=2.

Moreover, Proposition 6.4 (improved graphical radius), inequality (155) and Proposition 6.1 (evolution of
truncated graph function) then give

(167) {U0C {U�Ck.@� �L/{uk2H � Ce
10
9
� :

Using this, (165) follows from parabolic estimates; see Theorem A.1 for details.

6.3 The fine bubble-sheet theorem

The goal of this section is to prove Theorem 6.7. Recalling the basis of HC from (95) we can write

PC{u
X
D aX0 .�/C a

X
1 .�/x1C a

X
2 .�/x2C a

X
3 .�/ cos � C aX4 .�/ sin �;(168)

where the superscript is to remind us that all these quantities can (a priori) depend on the center point X .

Proposition 6.6 (estimate for coefficients) The coefficients defined in (168) satisfy, for � � T, the
estimates

jaX0 .�/j � Ce
11
18
� ;(169)

4X
iD1

je��=2aXi .�/� xa
X
i j � Ce

1
9
� ;(170)

where xaXi are numbers that might depend on X .

Proof Letting {E WD .@� �L/{u, and using L1D 1, we compute

d

d�
aX0 .�/D

�
e

2�

�1
4

Z
.L{uC {E/

1

4�
e�jxj

2=4
D aX0 .�/C

�
e

2�

�1
4

Z
{E

4�
e�jxj

2=4:(171)

Hence, using Proposition 6.1, Proposition 6.4 and Corollary 6.5, we obtain

(172)
ˇ̌̌̌
d

d�
.e��aX0 .�//

ˇ̌̌̌
� Ce��k {EkH � Ce

��C�=2C�=9
� Ce�

7
18
� :

Integrating this from � to T implies (169).

In a similar manner, using Lxi D
1
2
xi for i D 1; : : : ; 4, we get

(173)
ˇ̌̌̌
d

d�
.e��=2aXi .�//

ˇ̌̌̌
� Ce��=2k {EkH � Ce

�=9;

so integrating from �1 to � yields (170) with

(174) xaXi D lim
�!�1

e��=2aXi .�/:
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Theorem 6.7 (the fine bubble-sheet theorem) Let fMtg be an ancient noncollapsed flow in R4, with a
bubble sheet tangent flow at �1, whose unstable mode is dominant. Then there exists some constants
a1; : : : ; a4, independent of the center point X D .x10 ; x

2
0 ; x

3
0 ; x

4
0 ; t0/, such that

(175) xaX1 D a1; xa
X
2 D a2; xa

X
3 D a3� x

3
0 ; xa

X
4 D a4� x

4
0 :

Moreover , for every center point X , the truncated graph function {uX . � ; �/ of the renormalized flow MX
�

satisfies , for � � T, the estimates

k{uX � e�=2.a1x1C a2x2Cxa
X
3 cos � CxaX4 sin �/kH � Ce

5
9
� ;(176)

k{uX � e�=2.a1x1C a2x2Cxa
X
3 cos � CxaX4 sin �/kL1.fr�100g/ � Ce

19
36
� ;(177)

where C <1 and T> �1 only depend on an upper bound on the bubble sheet scale Z.X/.

Proof Consider the difference

(178) DX WD {uX � e�=2.xaX1 x1Cxa
X
2 x2Cxa

X
3 cos � CxaX4 sin �/:

Using Proposition 6.6 (estimate for coefficients) we see that

(179) jDX j � j{uX �PC{u
X
jCC.jxjC 1/e

11
18
� :

Since by (167) we have {U0C {U� � Ce
10
9
� , it follows that

(180) kDXkH � Ce
5
9
� ;

which proves (176) modulo the claim about the coefficients.

Next, we observe that

(181) kDXkL2.fr�100g/ � CkD
X
kH � Ce

5
9
�

and, using Corollary 6.5 (sharp decay estimate), that

(182) kr
3DXkL2.fr�100g/ � Ckyu

X
kC3.fr�100g/CCe

�=2
� Ce�=2:

Applying Agmon’s inequality, this yields

(183) kDXkL1.fr�100g/ � CkD
X
k
1
2

L2.fr�100g/
kDXk

1
2

H3.fr�100g/
� Ce

19
36
� :

Finally, let us show that the parameters a1; : : : ; a4, defined via (175), are independent of X .

First, let us show that they are independent of time translation. Denote by {uX
0

the function obtained
by considering the renormalized mean curvature flow with center X 0 D .x10 ; x

2
0 ; x

3
0 ; x

4
0 ; 0/. A direct

calculation shows that for � 2 .0; 2�� and x21 C x
2
2 � 100, we have

(184) {uX
�

x1
p
1C t0e�

;
x2

p
1C t0e�

; �; �� log.1C t0e� /
�
D

1
p
1C t0e�

.
p
2C{uX

0

.x1; x2; �; �//�
p
2:
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This implies

(185) k{uX � {uX
0

kL1.fr�100g/ D o.e
�=2/;

and thus together with (183) yields xaXi D xa
X 0

i for every i D 1; : : : ; 4.

Comparing the renormalized flows with center X 0 D .x10 ; x
2
0 ; x

3
0 ; x

4
0 ; 0/ and center X 00 D ..0; 0; 0; 0/; 0/,

we need to relate both the parameters of the functions {uX
0

and {uX
00

which describe the same point in the
original flow, and the distance of such a point from the respective axii. This leads to

(186)
p
2C {uX

0

.x1� x
1
0e
�=2; x2e� x

2
0e
�=2; � CO.e�=2/; �/

D dist
�
.
p
2C {uX

00

.x1; x2; �; �//.cos �; sin �/; e�=2.x30 ; x
4
0/
�
:

By Taylor expansion and Corollary 6.5 we have

(187) dist
�
.
p
2C {uX

00

.x1; x2; �; �//.cos �; sin �/; e�=2.x30 ; x
4
0/
�

D
p
2C {uX

00

.x1; x2; �; �/� x
3
0 cos �e�=2� x40 sin �e�=2C o.e�=2/:

Together with (183), the above formulas imply that

(188) xaX
0

1 D xa
X 00

1 ; xaX
0

2 D xa
X 00

2 ; xaX
0

3 D xa
X 00

3 � x
3
0 ; xa

X 0

4 D xa
X 00

4 � x
4
0 :

This finishes the proof of the theorem.

6.4 The nonvanishing expansion theorem

Our next goal is to show that a1 and a2 cannot simultaneously vanish.

We decompose HC into H1=2 D spanfx1; x2; cos �; sin �g and H1 D spanf1g. Also, we define P1=2
and P1 as the projections to H1=2 and H1, respectively. In addition, we denote {U1=2 D kP1=2{uk2H and
{U1 D kP1{uk

2
H.

Lemma 6.8 (decay if coefficients vanished) If the center X was such that xaX1 D � � � D xa
X
4 D 0, then

there would be a constant K0 > 0 such that

(189) {U1 DK0e
2� .1CO.e

1
9
� //;

and moreover we would have

(190) {U1=2C {U0C {U� � Ce
1
9
� {U1:

Proof Assuming xaX1 D � � � D xa
X
4 D 0, Proposition 6.6 implies

(191) aX0 .�/
2
C � � �C aX4 .�/

2
� Ce

11
9
� ;

hence

(192) {U1C {U1=2 � e
11
9
� :

Moreover, since the unstable mode is dominant, we have

(193) {U0C {U� � Ce
1
9
� . {U1C {U1=2/:
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Now, using Proposition 6.1 we get the evolution inequalitiesˇ̌̌̌
d

d�
{U1=2� {U1=2

ˇ̌̌̌
� Ce

1
9
� . {U1=2C {U1/;(194) ˇ̌̌̌

d

d�
{U1� 2 {U1

ˇ̌̌̌
� Ce

1
9
� . {U1=2C {U1/:(195)

Applying the Merle–Zaag ODE lemma (Lemma B.1) with U0 D e�� {U1=2, U� D 0, and UC D e�� {U1,
we get either {U1 D o. {U1=2/ or {U1=2 � Ce

1
9
� {U1. In the former case, arguing as in Lemma 5.1 we could

infer that e�� yU1=2 � e
1
9
� for every �� sufficiently large, contradicting (192). Hence,

(196) {U1=2 � Ce
1
9
� {U1:

Together with (193) this proves the estimate (190).

Moreover, using (196), our differential inequality takes the form

(197)
ˇ̌̌̌
d

d�
{U1� 2 {U1

ˇ̌̌̌
� Ce

1
9
� {U1;

which can be rewritten as

(198)
ˇ̌̌̌
d

d�
.log.e�2� {U1//

ˇ̌̌̌
� Ce

1
9
� :

Integrating this from �1 to � gives that there exists some constant zK0 such

(199) jlog.e�2� {U1/� zK0j � Ce
1
9
� for all � � T:

Exponentiating both sides and using the approximation ex � 1C x for small x 2 R give (189). In
particular, K0 D e

zK0 > 0.

Theorem 6.9 (the nonvanishing expansion theorem) The coefficients from the fine-bubble sheet theorem
satisfy ja1jC ja2j> 0.

Proof Suppose towards a contradiction that a1 D a2 D 0. Then, we can choose a point X such that
xaX1 D � � � D xa

X
4 D 0. By Lemma 6.8 and parabolic estimates (see Theorem A.1) we get

ku. � ; �/kC4.fr�100g/ � Ce
� ;(200)

x23 C x
2
4 D 2.1CKe

� /C o.e� / on fr � 100g;(201)

where K D .2e=�/1=4K1=20 . Here, we have determined the constant K using the identity

(202) k2�1=2Ke�k2H DK0e
2�
D {U1CO.e

19
9
� /;

which holds since

(203)
Z
†

e�jxj
2=4
D 2

3
2�e�1=2

�Z 1
�1

e�z
2=4 dz

�2
D

�
2�

e

�1
2
.4�/

3
2 :
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Hence, the rescaled flow with the center X 0 DX C .0;K/ satisfies

x23 C x
2
4 D 2C o.e

� /;(204)

uniformly on fr � 100g; see also [3, Lemma 5.11] for a more detailed explanation. Since we re-centered
by shifting only in time direction, the new point X 0 still satisfies xaX

0

1 D � � � D xa
X 0

4 D 0, so Lemma 6.8
gives some K 00 > 0 such that

(205) e�2� {U1 DK
0
0CO.e

1
9
�
/:

Since K 00 ¤ 0, this contradicts (204). This proves the theorem.

7 Conclusion in the unstable mode case

The goal of this section is to prove the following theorem.

Theorem 7.1 (unstable mode) The only noncompact ancient noncollapsed flow in R4, with bubble-sheet
tangent flow at �1, whose unstable mode is dominant , is R� 2d–bowl.

Proof By the reduction from Section 2 it is enough to prove that if the unstable mode is dominant, then
its blowdown contains a line.

So let Mt D @Kt be a noncompact ancient noncollapsed flow in R4, with bubble-sheet tangent flow
at �1, whose unstable mode is dominant, and suppose towards a contradiction that its blowdown {K does
not contain a line. Then the flow is strictly convex, and {K is a halfline or a wedge of angle less than � in
R2 � f0g. Choosing suitable coordinates we can assume that {K is symmetric across the x1–axis, and is
contained in the half space fx1 � 0g. By translating, we may also assume that 0 2M0 is the point in M0

with smallest x1–value. This implies that for every h > 0 there exist a unique point x˙
h
2M0\fx1 D hg

at which x2 is maximized/minimized.

By the fine bubble-sheet theorem (Theorem 6.7) and the nonvanishing expansion theorem (Theorem 6.9)
there exists expansion parameters a1; a2 associated to our flow such that ja1jC ja2j> 0.

Claim 7.2 (bubble-sheet scale) There exists some constant C <1 such that

(206) sup
h

Z.x˙h /� C:

Proof of the claim We will argue as in the proofs of [10, Proposition 5.8] and [11, Proposition 6.2].

Suppose towards a contradiction that Z.x˙
hi
/!1 for some sequence fhig with limi!1 hi D1. Let Mi

be the sequence of flows obtained by shifting x˙
hi

to the origin, and parabolically rescaling by Z.x˙
hi
/�1.
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By [17, Theorem 1.14] we can pass to a subsequential limit M1, which is an ancient noncollapsed flow
that is weakly convex and smooth until it becomes extinct. Note also that M1 has bubble-sheet tangent
flow at �1.

We next observe that, M1 cannot be a round shrinking R2 � S1. Indeed, if such a cylinder became
extinct at time 0 that would contradict the definition of the bubble-sheet scale, and if it became extinct
at some later time that would contradict the fact that M10 \ .R

2 � f0g/ is a strict subset of R2 � f0g by
construction.

Thus, by Theorem 4.8 (Merle–Zaag alternative) for the flow M1 either the neutral mode is dominant or
the unstable mode is dominant. If the neutral mode is dominant, then for large i , this contradicts the fact
that Mi has dominant unstable mode. Indeed, on the one hand by Lemma 5.1 (rough decay estimate) and
Theorem 5.3 (blowdown in neutral mode) the hypersurfaces M1;0� have some definite inwards quadratic
bending, but on the other hand by the fine-bubble sheet theorem (Theorem 6.7) the hypersurfaces M i;0

�

converge exponentially fast to the bubble sheet � . Since M i;0
� converges locally smoothly to M1;0�

this gives the desired contradiction for i large enough. If the unstable mode is dominant, then by the
fine-bubble sheet theorem (Theorem 6.7) and the nonvanishing expansion theorem (Theorem 6.9) the
limit M1 has some expansion parameters a11 ; a

1
2 that do not vanish simultaneously. However, this

contradicts the fact that the expansion parameters of Mi are obtained from the expansion parameters
.a1; a2/ of M by scaling by Z.xC

hi
/�1! 0. This concludes the proof of the claim.

Continuing the proof of Theorem 7.1, let hi !1 and consider the sequence Mi WDM� .xC
hi
; 0/, which

is obtained by translating in space time without rescaling. Taking a subsequential limit, Claim 7.2 implies
that this limit M1 is an ancient noncollapsed flow with a bubble-sheet tangent at �1. Moreover, arguing
as in the proof of Claim 7.2 we see that M1 has a dominant unstable mode, with the same expansion
parameters a1; a2 as M.

On the other hand, by the choice of xC
hi

, we have

(207)
xC
hi

kxC
hi
k
! wC 2 @ {K;

with hwC; e2i � 0. Thus, M1 splits off a line in the direction wC. Therefore, by [6] the limit M1 is
R times a two-dimensional bowl, where the R–factor is in the direction wC, and where the translation
direction vC is the orthogonal complement of wC in R2 � f0g with

(208) hvC; e2i< 0:

As the expansion parameters of M1 are also a1; a2 we see by observation (or by the fine-neck theorem
from [10]) that

(209)
�
a1
a2

�
D 
vC for some 
 > 0:
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Combining this with (208), we get that a2 < 0.

Arguing similarly using x�
hi

gives that a2>0, a contradiction. This completes the proof of Theorem 7.1.

Appendix A Local L1–estimate

In this appendix, we consider the renormalized mean curvature flow given (in some ball) as a graph over
the cylinder � D Rn�d � Sd .

p
2d/, namely our variables are .y;

p
2d !/ 2 � where y 2 Rn�d and

! 2 Sd . Let

(210) LuD��u�
1
2
xtau
� r�uCuD �

�1div.�ru/C 1

2d
�SduCu;

where �.y/ is the Gaussian density given by

(211) �.y/D .4�/�.dC1/=2e�d=2e�jyj
2=4:

Given R� 1, we let �R D f.y; !/ 2 � j jyj � Rg and Q.R/ D �R � Œ�R2; 0�. We consider smooth
solutions u WQ.2R/!R to the equation

(212) u� D LuCE:

Theorem A.1 (cf [25, Theorem 6.17]) Suppose that for some constants C0; k <1, the error E satisfies

(213) jEj � C0.jujC jruj/C k:

Then

(214) sup
Q.R/

juj � C

�
kC

�Z
Q.2R/

u2 dvol� d�
�1
2
�
; where C D C.C0; R; n/ <1:

Proof Instead of u, we consider the function xuD �u which solves

(215) xu� D div
�
�r�.�

�1
xu/
�
C �E:

Since this equation satisfies the conditions of [25, Theorem 6.17], given q > 2 we can obtain the following
inequality as the proof in Lieberman2

(216)
Z
�

xuq�2jrxuj2v˛q�n�2�2 dvol� d� �
Cq2

R2

Z
�

xuqv˛q�n�2dvol� d�;

where

� �DQ.2R/\fxu� kRg,

� � D .1� jxj2=4R2/C.1C t=4R
2/C is a cut-off function,

2The book states a stronger inequality, which is wrong, but easily correctable. Here, we provide the necessary modification of
the argument for convenience of the reader.
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� v D .1� kR=xu/C is in Œ0; 1/, and

� ˛ D .nC 2/=2.

Thus, hD xuv˛ satisfies

(217)
Z
�

jrhj2 � Cq4R�2
Z
�

h2v�2:

Hence, the Sobolev type inequality from Lemma A.2 below yields

(218) Cq4
Z
�

h2v�2 �

�Z
�

jrhj2C

Z
�

jhj2
�
C

Z
�

jhj2

�
1

C

�Z
�

jrhj2Cjhj2
�n=.nC2/�Z

�

h2
�2=.nC2/

�
1

C

�Z
�

h2.nC2/=n
�2=.nC2/

:

Thus, setting

� D .nC2/=n; w D xuv˛ and d�DR�.1� kR=xu/�n�2C dvol� d�

gives

(219)
�Z

�

w�qd�

�1=�q
� C 1=qq4=q

�Z
�

wqd�

�1=q
:

Hence, iterating this process with q D 2�j for j 2N yields the result.

The following lemma has been used in lieu of [25, Theorem 6.9]:

Lemma A.2 Suppose that u2C1.Q.R// is a nonnegative function satisfying uD 0 on @�R� Œ�R2; 0�.
Then , there exists some constant C D C.n;R/ <1 such that

(220)
Z
Q.R/

u2.nC2/=n � C

�Z
Q.R/

u2
�2=n�Z

Q.R/

jruj2Cu2
�
:

Proof The Hölder inequality yields

(221)
Z
Q

u2.nC2/=n �

�Z
Q

u2
�1=n�Z

Q

u2.nC1/=.n�1/
�.n�1/=n

:

Applying the Michael–Simon inequality this implies

(222)
Z
Q

u2.nC2/=n � C

�Z
Q

u2
�1=n�Z

Q

u.nC2/=njDujCu2.nC1/=n
�.n�1/=n

:

Using again Hölder’s inequality we obtain the desired result.
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Appendix B Merle–Zaag ODE lemma

We recall the following variant of the Merle–Zaag ODE lemma [26, Lemma A.1], which has been proved
in [12, Lemma B.1]:

Lemma B.1 U0, UC, U� W .�1; 0�! R are absolutely continuous nonnegative functions satisfying
U0CUCCU� > 0 and

(223) lim inf
s!�1

U�.s/D 0:

Suppose that there exist some constant c0 > 0 and positive increasing function � W .�1; 0�!R such that
lims!�1 �.s/D 0 and the following hold

jU 00j � �.U0CU�CUC/;(224)

U 0� � �c0U�C �.U0CUC/;(225)

U 0C � c0UC� �.U0CU�/:(226)

Then there exists c D c.c0/ > 0 and ı D ı.c0/ > 0 such that if �.s0/ < ı then

(227) U� � c�.U0CUC/ on .�1; s0�;

and either

(228) UC � o.U0/;

or

(229) U0 � c�UC

for all s � s0.
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