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This paper unites the gauge-theoretic and hyperbolic-geometric perspectives on the asymptotic geometry
of the character variety of SL.2;C/ representations of a surface group. Specifically, we find an asymptotic
correspondence between the analytically defined limiting configuration of a sequence of solutions to the
SU.2/ self-duality equations on a closed Riemann surface constructed by Mazzeo, Swoboda, Weiß and
Witt, and the geometric topological shear-bend parameters of equivariant pleated surfaces in hyperbolic
three-space due to Bonahon and Thurston. The geometric link comes from the nonabelian Hodge
correspondence and a study of high-energy degenerations of harmonic maps. Our result has several
applications. We prove: (1) the local invariance of the partial compactification of the moduli space of
solutions to the self-duality equations by limiting configurations; (2) a refinement of the harmonic maps
characterization of the Morgan–Shalen compactification of the character variety; and (3) a comparison
between the family of complex projective structures defined by a quadratic differential and the realizations
of the corresponding flat connections as Higgs bundles, as well as a determination of the asymptotic
shear-bend cocycle of Thurston’s pleated surface.
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1 Introduction

The purpose of this paper is to bring together two perspectives on the asymptotic structure of the SL.2;C/
character variety of a surface group: the complex-analytic perspective from algebraic geometry and
nonlinear analysis, and the synthetic perspective from hyperbolic geometry and low-dimensional topology.
The former finds its incarnation in a gauge-theoretic partial compactification of the moduli space of
rank two Higgs bundles on a closed Riemann surface, via decouplings of the self-duality equations. The
latter is understood in terms of equivariant pleated surfaces in hyperbolic three-space.

As a means of studying the asymptotics of the character variety, the analytic and the synthetic perspectives
each have advantages and disadvantages. The complex-analytic perspective presents the character variety
as a fibration over a .6g�6/–dimensional vector space of holomorphic differentials, and so presents the
compactification as a fibration over a real projective space of just one less dimension. Now, the emphasis
here is holomorphic invariants, and so there is a built-in reference to a fixed Riemann surface. This
dependence of the compactification on an arbitrarily chosen Riemann surface renders the compactification
unnatural from the point of view of the mapping class group action on the character variety. On the other
hand, the synthetic perspective relies on a choice of lamination and so avoids issues of naturality, but
the most celebrated compactification from this setting, the Morgan–Shalen compactification, has the far
larger codimension 6g� 5, so entails a substantial loss of information.

By uniting the perspectives, we provide a partial compactification that retains attractive features from
both perspectives: it is topological, so that any dependence on an original choice of base surface has
vanished by the frontier of the character variety, but it remains codimension-one and so captures some
of the nuance of the fibration. Along the way, we explain the hyperbolic geometry of the gauge theory
perspective, at least asymptotically. This relationship further allows us to locate the family of projective
structures on a Riemann surface, again asymptotically, as a collection of nearly linear flows on the fibers
at infinity.

The duality between the analytic and synthetic perspective on the SL.2;C/ character variety has its roots in
the identification of SL.2;C/— or rather its adjoint group PSL.2;C/D SL.2;C/=˙1 — as the oriented
isometry group of hyperbolic three-space. The nonabelian Hodge correspondence gives a homeomorphism
between the associated moduli spaces, and an important and long-standing direction of research is the
study of how different geometric properties on both sides are related under this identification. In this sense,
the present work describes the asymptotics of the nonabelian Hodge correspondence from a geometric
point of view.

Let us now explain some of the structures of the moduli space in more detail. The first is that of an
algebraically completely integrable system, where a Higgs bundle is determined by a point in the Prym
variety of the spectral curve associated to a holomorphic quadratic differential on the surface. The second
is in terms of solutions to the self-duality equations. Recent work proves asymptotic convergence, as the
norm of the Higgs field diverges, to solutions of a decoupled equation called a limiting configuration. The
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Higgs bundles, harmonic maps and pleated surfaces 3137

data describing a limiting configuration is also a quadratic differential and a choice of Prym differential.
The third aspect of the moduli space is the link between solutions to the self-duality equations and flat
SL.2;C/ connections that is obtained from the existence of equivariant harmonic maps to H3. Here, the
quadratic differential appears as the Hopf differential of the map. Asymptotics of harmonic maps are
well understood. While the relationship between spectral data and the Prym differential of the limiting
configuration is transparent, it is perhaps not so clear how to recover this information from the asymptotic
behavior of the harmonic map. This is where the fourth perspective intervenes; that of hyperbolic geometry
and methods of Thurston. The new ingredient linking harmonic maps to limiting configurations is the
notion of an (equivariant) pleated surface. Pleated surfaces, and their monodromy representations, can be
parametrized by shear-bend cocycles with respect to a maximal geodesic lamination on the surface. This
shear-bend dichotomy is parallel to the asymptotic decoupling of the self-duality equations which gives
rise to limiting configurations, and a major goal of this paper is to make this similarity more concrete.

Roughly speaking, our main result proves an asymptotic correspondence between shear-bend coordinates
and limiting configurations via periods of Prym differentials. More precisely, we prove the following.
First, the energy of equivariant harmonic maps diverges for a sequence �n of PSL.2;C/–representations
that leaves all compact sets in the character variety. We shall show that for sufficiently large n, there
exist �n–equivariant pleated surfaces in H3 where the bending lamination is asymptotically close to the
lamination associated to the horizontal foliation of the Hopf differentials of the harmonic maps. The
image of the harmonic map is itself close to this equivariant pleated surface, in an appropriate sense.
Moreover, the shearing cocycle of the pleated surface is approximated projectively by the intersection
number with the vertical foliation of the Hopf differential, and the asymptotic limit of the bending cocycle
of the equivariant pleated surface is determined by the periods of the Prym differential associated to the
limiting configuration, as described above. This analysis has several applications. First, we find that a
small change in the base Riemann surface used to define the moduli space of Higgs bundles changes the
data of the limiting configurations in the boundary associated to a sequence of representations by parallel
transport via the Gaus–Manin connection. In other words, the analytically defined limiting configurations
are topological. Next, we obtain a partial refinement of the Morgan–Shalen compactification of the
character variety. Ideal points of this compactification are defined by the projective length functions of
isometric actions of the surface group on R–trees. The refinement decorates a tree in a portion of the
compactification with a bending cocycle which provides more precise information on the relationship
between the limiting length functions and dual trees of measured foliations. Finally, we determine the
asymptotic shear-bend cocycles of the equivariant pleated surfaces that Thurston associates to complex
projective structures (or opers). The result states that these cocycles are asymptotic to the ones defined by
the “Seiberg–Witten differential” on the spectral curve, which itself is an important device that figures
prominently in the WKB analysis of the differential equation defining the projective structure.

Before formulating the precise statements of these results in Section 1.2 below, we first provide some
notation and important terminology.
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1.1 Preliminaries

1.1.1 Notation Throughout this paper, † will be a fixed closed, oriented surface of genus g > 2 with
fundamental group �1D�1.†;p0/, where p0 2† is a fixed basepoint. We will typically denote a marked
Riemann surface structure on † by X, and a marked hyperbolic structure on † by S . The almost complex
structure on X appears as J . Universal covers are denoted by z†, etc, and zp0 will indicate a fixed lift
of p0 to z†. The two- and three-dimensional real hyperbolic spaces are written H2 and H3, respectively.
Notice that H2 (resp. H3) carries a left SL.2;R/ (resp. SL.2;C/) action by isometries, which factors
through PSL.2;R/D SL.2;R/=f˙1g (resp. PSL.2;C/D SL.2;C/=f˙1g/. The canonical bundle of X

is indicated by KX. We denote by QD.X / the space of holomorphic quadratic differentials on X, and
by QD�.X / � QD.X / the cone of differentials with only simple zeroes. We let SQD.X / � QD.X /
denote the unit differentials with respect to some norm, and SQD�.X / D SQD.X /\QD�.X /. The
Teichmüller space T .X / of X will sometimes be labeled by T .†/ when identifying it with the Fricke
space of discrete PSL.2;R/ representations.

1.1.2 Moduli spaces Define the Betti moduli space

(1-1) MB.†/ WD Hom.�1;SL.2;C// ==SL.2;C/

parametrizing conjugacy classes of semisimple representations of the fundamental group of †. The
choice of SL.2;C/ rather than PSL.2;C/ is really a matter of convenience. For simplicity we work with
SL.2;C/, but we caution that it will be important at several points to track the distinction between the
special and projective groups. Hence, let us also define the character variety

(1-2) R.†/ WD Hom.�1;PSL.2;C// ==PSL.2;C/:

We shall be interested in the connected component of the trivial representation, Ro.†/, consisting of
representations that lift to SL.2;C/. This can be realized as a quotient Ro.†/DMB.†/=J2.†/, where
J2.†/ WD Hom.�1; f˙1g/. The results of this paper apply with little change to the other component of
R.†/ consisting of representations that do not lift to SL.2;C/.

Let MDR.†/ denote the de Rham moduli space of completely reducible flat SL.2;C/ connections on †.
Since dimC X D 1, a holomorphic connection on a vector bundle on X is automatically flat, and so
we have a canonical identification of MDR.†/ with MDR.X /, the moduli space of rank 2 holomorphic
connections. We will sometimes confuse the two when the Riemann surface structure is understood. The
Riemann–Hilbert correspondence gives a homeomorphism

(1-3) RH WMDR.†/
�
�!MB.†/;

obtained by associating to a flat connection r its monodromy representation �. Gauge equivalent
connections give conjugate representations.

Let MH.X / denote the Hitchin moduli space of rank 2 Higgs bundles consisting of isomorphism classes
of pairs .E ; ˆ/, where E!X is a rank 2 holomorphic vector bundle on X with fixed trivial determinant,
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and ˆ is a holomorphic Higgs field. The nonabelian Hodge correspondence gives a homeomorphism

(1-4) NAH WMDR.X /
�
�!MH.X /:

This map is described in more detail in Section 2.3.

There is a proper holomorphic map H WMH.X /!QD.X /. The fiber H �1.q/, q 2QD�.X / may be
identified with the Prym variety Prym. yXq;X /, where yXq!X is a double cover branched at the zeroes
of q called the spectral curve. This realizes MH.X / as a smooth torus fibration over this locus; see
Section 2.2. A choice of spin structure K

1=2
X

gives a section of H called the Hitchin section, and its image
is called a Hitchin component. This realizes T .X /�MH.X /. One direction in the identification (1-4) goes
as follows: Given a flat connection with monodromy Œ�� 2MB.†/ there is a �–equivariant harmonic map
u W zX !H3. The Hopf differential of u descends to X as a holomorphic quadratic differential. Restricted
to a lift of the Fricke space to SL.2;R/, this gives a diffeomorphism QD.X / ' T .†/ �MB.†/; see
Hitchin [29] and Wolf [58]. Under this identification the harmonic maps parametrization of T .†/ and
Hitchin section T .X / agree.

1.1.3 Self-duality equations and limiting configurations The gauge-theoretical perspective on MH.X /

is in terms of solutions of Hitchin’s self-duality equations for a pair .A; ‰/ consisting of an SU.2/–
connection A and a hermitian Higgs field ‰. The proper setup for these will be introduced in detail in
Section 2.1.1. The Kobayashi–Hitchin correspondence yields a bijection between MH.X / and the space
of unitary gauge equivalence classes of solutions of the self-duality equations. We will not distinguish the
notation between MH.X / and the latter space, and therefore we write Œ.A; ‰/� 2MH.X / if .A; ‰/ is an
irreducible solution of equations (2-4). There is a partial compactification of MH.X / in terms of limiting
configurations, which we shall present in Section 2.1.3. Briefly, a limiting configuration Œ.A1; ‰1/�
associated to a differential q 2 SQD�.X / is a solution of the decoupled self-duality equations (2-8) on the
punctured surface X�DX nq�1.0/ that has a singularity of a specific type in each zero of q. Furthermore,
2q D tr.‰1˝‰1/2;0. Such limiting configurations have a natural interpretation in terms of parabolic
Higgs bundles. For our purposes it will be important that the set of unitary gauge equivalence classes of
limiting configurations associated with any q as above is a real torus of dimension 6g� 6, and that the
Hitchin map H extends continuously to a map H1 from the space of limiting configurations to SQD�.X /.
The fiber H �1

1 may be identified with a torus of Prym differentials on yXq; see Proposition 2.11. The
Liouville form restricts to a natural Prym differential �SW called the Seiberg–Witten differential, and this
will play an important role in the paper.

1.1.4 Pleated surfaces By a pleated surface we mean a 4–tuple P D .S; f;ƒ; �/, where S is a
hyperbolic structure on†; ƒ is a maximal geodesic lamination on S called the pleating locus; f W zS!H3

is a continuous map from the lift zS to H3 that is totally geodesic on the components of zS n zƒ, maps
leaves of zƒ to geodesics, and is equivariant with respect to a representation � W �1! PSL.2;C/. We
sometimes abbreviate the 4–tuple P as f W zS !H3 when context provides the other data.
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Remark What is defined here might be called an equivariant or abstract pleated surface to distinguish
it from the more standard, nonequivariant situation; cf Canary, Epstein and Green [8]. Following
Bonahon [5], we will simply use the term pleated surface in the equivariant case as well.

Let H.ƒ;R/ and H.ƒ;S1/ denote the spaces of shearing and bending cocycles, respectively; see
Section 4.1.1. We further set Ho.ƒ;S1/ � H.ƒ;S1/ to be the connected component of the identity.
Then H.ƒ;R/ (resp. Ho.ƒ;S1/) is a .6g�6/–dimensional vector space (resp. torus). Bonahon proves
that there is an injective map

(1-5) Bƒ W C.ƒ/�
p
�1Ho.ƒ;S1/!Ro.†/

that is a biholomorphism onto its image [5, Theorem D]. Here, C.ƒ/ � H.ƒ;R/ is an open convex
polyhedral cone that is naturally identified with T .†/. In fact, Œ�� D Bƒ.� ;ˇ/ is constructed via a
pleated surface f W zS ! H3 that is �–equivariant and has pleating locus ƒ. The complex cocycle
� C iˇ 2H.ƒ;C=2� iZ/ is called the shear-bend cocycle of the pleated surface.

In this paper we will be interested in the special case whereƒ is determined by the geodesic laminationƒh
q

associated to the horizontal measured foliation Fh
q of a quadratic differential q that is holomorphic for a

marked Riemann surface structure X on †. We shall always demand that q have simple zeroes. If in
addition q has no (horizontal) saddle connections, then ƒDƒh

q . When q does have saddle connections
the situation is more complicated to formulate, but the fundamental picture described below is unchanged;
see Section 2.4.3. In any case, there is a canonical transverse cocycle � can

q 2H.ƒ;R/ for ƒ related to
the transverse measure to the vertical foliation defined by q; see Example 4.10.

1.2 Results

1.2.1 Statement of the main theorem The result below gives an asymptotic comparison between
Bonahon’s parametrization of the character variety in terms of shear-bend cocycles (1-5), and the limiting
configurations of solutions to the self-duality equations. Consider the following set-up.

Let Œ�n� be an unbounded sequence in Ro.†/, by which we mean it leaves every compact subset. Assume
that the Hopf differentials of the �n–equivariant harmonic maps un W

zX ! H3 are of the form 4t2
n qn,

with tn ! C1 and qn ! q 2 SQD�.X /. We will assume that for some fixed hyperbolic structure
on † we have chosen maximal laminations ƒn, ƒ containing ƒh

qn
and ƒh

q , respectively, and such that
ƒn!ƒ in the Hausdorff sense. In this case, there is a notion of convergence of cocycles in H.ƒn;R/

and H.ƒn;S
1/; see Definition 4.1.

Lift Œ�n� 2Ro.†/ to Œz�n� 2MB.†/, and let

(1-6) Œ.An; ‰n/�D NAH ıRH�1.Œz�n�/

be the associated solutions to the self-duality equations. Let Œ.A1; ‰1/� be any subsequential limiting
configuration of the sequence Œ.An; ‰n/�.
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To normalize bending cocycles, we adopt the convention that a pleated surface for a Fuchsian representation
has a bending cocycle equal to zero; cf [5, Proposition 27]. This will allow us to compare the bending
cocycles of pleated surfaces with the same underlying hyperbolic metric and pleating lamination. In
Section 4.2 we shall describe an explicit realization of elements of H.ƒ;R/ and Ho.ƒ;S1/ in terms
of periods of Prym differentials. Combining this with the characterization of limiting configurations
mentioned at the end of Section 1.1.3, we show that there is a 22g–sheeted covering homomorphism

(1-7) H �1
1 .q/!Ho.ƒ;S1/:

Given the above we can now make the following statement.

Main Theorem After passing to a subsequence , there is N > 1 such that the following hold :

(i) For all n>N, Œ�n�D Bƒn
.�n;ˇn/ for some shearing and bending cocycles �n and ˇn.

(ii) The �n–equivariant pleated surfaces fn W
zSn!H3 from (i) are asymptotic to the �n–equivariant

harmonic maps un W
zX !H3 in the sense of Definition 4.14.

(iii) As n!1, the shearing cocycles satisfy .2tn/
�1�n! � can

q .

(iv) As n!1, the bending cocycles satisfy ˇn!ˇ , where ˇ 2Ho.ƒ;S1/ is the image of the limiting
configuration .A1; ‰1/ under the map (1-7).

There are a number of ways to parse this statement; we roughly describe a somewhat constructive
perspective. First, fix a base Riemann surface X, a holomorphic quadratic differential q 2 SQD�.X / and
thus a ray ftqg � SQD�.X / (we restrict ourselves to rays to simplify this particular exposition). The
quadratic differential has a measured horizontal foliation, and that measured foliation has an associated
measured lamination; say �. The main theorem says that a family of Higgs bundles lying over that ray
has harmonic maps whose images are well-approximated by pleated surfaces bent along �. Of course,
those Higgs bundles also converge to a limiting configuration. The Prym differential associated to that
limiting configuration then predicts the bending of that approximating pleated surface.

Thus, the analytic data of the X –dependent fibration of limiting configurations and Prym differentials over
SQD�.X / may be alternatively described in terms of the hyperbolic-geometric perspective of laminations
and bending measures. The key conclusion then is that this latter description that has emerged no longer
references the base Riemann surface X : we display the space of limiting configurations defined by X as
actually independent of the choice of X.

1.2.2 Invariance with respect to the base Riemann surface We turn now to the motivation we framed
at the outset of the paper. As we just noted, the space of limiting configurations depends for its definition
on the choice of a base Riemann surface X. The space of pleated surfaces has no such dependence,
so we expect some consequence of the asymptotic result in the Main Theorem that we may define a
compactification of the moduli space MB.†/ or MH.X / that is natural in the sense of having some
invariance with respect to the choice of base Riemann surface X. We describe that, and the level of
invariance that is presently evident, in this subsection.
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Now, a key assumption above and in the work of Mazzeo, Swoboda, Weiß and Witt [42] is that quadratic
differentials have simple zeroes. For this reason, limiting configurations give only a partial compactification
of MH.X /, and we are unable to make a uniform statement about the topological invariance of these limit
points. We therefore content ourselves here with proving the local invariance with respect to the Riemann
surface structure X.

To make this precise, let q0 2 SQD�.X0/, and let Fvq0
denote the associated vertical measured foliation.

Let zU � T .†/ be the set of all equivalence classes of Riemann surfaces X such that the Hubbard–Masur
differential qX of the pair .X;Fvq0

/ has simple zeroes. Then for a contractible open subset U0 �
zU

containing X0, and X 2 U0, the Gaus–Manin connection gives an identification of the Prym varieties of
X and X0, and this in turn induces an identification of bending cocycles for the horizontal laminations
associated to qX and q0 through (1-7). As mentioned above, a complication, described in more detail in
Section 2.4.3, is that the laminations ƒh

q0
and ƒh

qX
may not be maximal.

Corollary 1.1 The partial compactification by limiting configurations is locally independent of the base
Riemann surface in the following sense. Suppose Œ�n� is a divergent sequence in Ro.†/, and lift Œ�n� to
Œz�n� 2MB.†/. For X 2 U0, define Œ.An; ‰n/X � and Œ.An; ‰n/X0

� as in (1-6). We assume Œ.An; ‰n/X0
�

has a well-defined limiting configuration , which we suppose lies in the fiber .H X0
1 /�1.q0/. Let Œy�X0

� be
the associated Prym differential (as mentioned above; see Proposition 2.11 for the precise statement), and
qX 2 SQD�.X / chosen as above to share the projective class of vertical measured foliations with qX0

.

Then Œ.An; ‰n/X � has a well-defined limiting configuration in the fiber .H X
1 /
�1.qX /. Moreover , if Œy�X �

is the associated Prym differential for the bending cocycle of this limiting configuration , then Œy�X � and
Œy�X0

� are identified by parallel translation by the Gaus–Manin connection.

Here is an interpretation of this result. For q 2 SQD�.X / there is a natural identification of the fibers
H �1.tq/ for all t > 0. This gives a partial compactification of MH .X /, and hence via NAH and RH,
also of MB.†/. A priori, this depends on the choice of base Riemann surface structure X. Corollary 1.1
states that (locally) this partial compactification is independent of X.

1.2.3 Relation to the Morgan–Shalen compactification There is a mapping class group invariant
compactification of R.†/ due to Morgan and Shalen [49]. The ideal points of this compactification are
generalized length functions on �1, which turn out to be the translation length functions for an isometric
action of �1 on an R–tree; see Section 2.6.2. A harmonic maps description of this compactification was
partially described in Daskalopoulos, Dostoglou and Wentworth [12], which was an attempt to mirror the
result of Wolf [58] for the Thurston compactification of T .†/. A consequence of Wolf [60] is that the
R–trees appearing in the limit of a sequence of Fuchsian representations are obtained as the leaf space of
the vertical foliation Fvq of the rescaled Hopf differential q on zX. This is called the dual tree Tq to q. In
the case of R.†/, sequences of representations that are not discrete embeddings may give rise to trees
that are foldings of Tq . The harmonic maps point of view gives some information about this: A folding
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cannot occur if q has simple zeroes and Fvq has no saddle connections. It has been an open question
how to describe this process completely in terms of harmonic maps. Using the Main Theorem, we can
obtain a criterion ruling out folding in the case of simple zeroes, as well as a partial refinement of the
Morgan–Shalen compactification by classes of limiting configurations.

Corollary 1.2 Let Œ�n� 2 Ro.†/ be as in the Main Theorem. Suppose that the periods of the Prym
differential associated to the limiting configuration .A1; ‰1/ are bounded away from � on every
cycle defined by a saddle connection of the vertical foliation of q. Then the R–tree defined by the
Morgan–Shalen limit of any subsequence of Œ�n� is �1–equivariantly isometric to the dual tree Tq .

1.2.4 Limits of complex projective structures The subset of Ro.†/ consisting of monodromies of
complex projective structures on † with underlying Riemann surface X is naturally an affine space
modeled on QD.X /. The corresponding local systems are called SL.2;C/-opers. A basepoint is given
by the Fuchsian projective structure QX. More precisely, uniformization gives rise to an isomorphism
u W zX !H2, equivariant with respect to �1 and a Fuchsian representation of �1! IsoC.H2/, and the
Schwarzian derivative of u gives a projective connection QX on X. Any other projective connection is of
the form Q.q/DQX � 2q, for q 2QD.X /, and we obtain an embedding P WQD.X / ,!Ro.†/ from
the monodromy of the oper defined by the following differential equation on X :

(1-8) y00C 1
2
Q.q/y D 0;

where y is a local section of K
�1=2
X

. Thurston associates to every projective structure a pleated surface
f W zS.q/!H3 that is equivariant with respect to P.q/ and has pleating locus along some measured
lamination ƒ.q/; see [36].1 Choosing a lift of the Fuchsian representation to MB.†/ gives a lift
zP.q/ 2MB.†/. Let

(1-9) Op.q/D NAH ıRH�1. zP.q// 2MH.X /:

The next application compares the limiting behavior of Op.q/ for q large and the geometry of Thurston’s
pleated surface. By work of Dumas [16], the measured laminations ƒ.q/ converge projectively to ƒh

q .
This allows us to compare bending cocycles. Combined with the Main Theorem, we prove the following.

Corollary 1.3 Let q 2 SQD�.X /.

(i) limt!C1 t�2H .Op.t2q//D 1
4
q.

(ii) Under the correspondence between Prym differentials and points in the Prym variety , the spectral
data Œy�t � of Op.t2q/ satisfies

lim
t!C1

Œy�t � i t Im�SW�D 0 in Prym. yXq;X /=J2.X /;

where �SW is the Seiberg–Witten differential on yXq .

1Strictly speaking, ƒ.q/ need not be maximal, but this possibility will not play any role in the result.
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(iii) (Dumas) If �t D�tCiˇt is the shear-bend cocycle of Thurston’s pleated surface for the projective
connection Q.t2q/ in (1-8), then

lim
t!C1

t�1�t D �SW;

where �SW is the complex cocycle determined by the periods of �SW; see Definition 4.13.

In part (ii) of the corollary, J2.X / denotes the 2–torsion points of the Jacobian variety of X. Its appearance
in the statement of part (ii) is due to the ambiguity in the choice of the square root of KX. Part (iii) also
follows from the results of Dumas in [16; 15].

We refine Corollary 1.3(i) with an error estimate t�2H .Op.t2q//� q=4DO.t�1/ in Proposition 6.10.

1.3 Further comments

1.3.1 Discussion of the main results The Hitchin parametrization of (an open set in) MH.X / gives
it the structure of a torus fibration over QD�.X / which, via the Hopf differential of the harmonic
diffeomorphism from X to a hyperbolic surface S , can be identified with Teichmüller space T .†/.
Similarly, in the presence of a maximal lamination, Bonahon also parametrizes (an open set in) Ro.†/ as
a torus fibration over T .†/. The nonabelian Hodge correspondence is a transcendental homeomorphism
between these two pictures. The asymptotic decoupling of the Hitchin equations reflects the conclusion
of this paper that these two torus fibrations are essentially asymptotically equivalent.

Previous work on the asymptotics of equivariant harmonic maps focused on the behavior of divergent
length functions corresponding to shearing cocycles, and this is well understood. The novelty of the
present work is to extract information on the complex length, which involves bending. Perhaps not
surprisingly, through the nonabelian Hodge correspondence, bending turns out in the gauge theory picture
to involve the unitary part of the flat connection.

An important subtlety happens when the quadratic differentials have saddle connections. These may occur
in either the horizontal or vertical foliations, or both, and they play different roles. Saddle connections
in the vertical foliation give rise to the possibility of folding in the image of harmonic maps. This will
be discussed more explicitly in Section 1.2.3 below. More relevant are the saddle connections that appear
in the horizontal foliation. In this case, geodesic straightening of the leaves does not produce a maximal
lamination, and so a choice of maximalization is required; see Section 2.4. Unlike the complicated wall-
crossing phenomena that emerge from this situation in other contexts, here in the asymptotic limit the choice
of maximalization is a technical tool that amounts to a change of coordinates in the identification (1-7).

In terms of the consequences of the Main Theorem, let us elaborate on the discussion in the introductory
paragraphs. The work of [43] analytically describes the frontier of MH.X0/ as a torus fibration over
SQD�.X0/ for a chosen Riemann surface X0; the elements of a fiber are equivalence classes of Prym
differentials defined in terms of q 2 SQD�.X0/. It is not apparent how this parametrization of limiting
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configurations in terms of the Riemann surface X0 relates to the one defined in terms of a nearby Riemann
surface X. To clarify the question, imagine a pair of sequences of representations f�Cn ; �

�
n g � Ro.†/

where the associated solutions to the self-duality equations have distinct limiting configurations in a
particular torus fiber over q0 2 SQD�.X0/. If we then change the original choice of Riemann surface
from X0 to X and consider the partial bordification of MH.X /, will the solutions of (2-8) for f�Cn ; �

�
n g

on the new surface X still have limiting configurations in a torus fiber over a single quadratic differential
q 2 SQD�.X /, or will they accumulate over different fibers? Corollary 1.1 asserts that an entire limiting
torus, defined in terms of either Riemann surface, projects to a single point in the Morgan–Shalen
compactification, which is defined only in terms of the topologically defined projective vertical measured
foliation of q. Thus the tori of limiting configurations defined by X or X0 are either disjoint or coincide.
Moreover, and this property is more subtle, the elements of each torus fiber may be identified by periods of a
differential corresponding to the limiting bending cocycle of a sequence of pleated surfaces. These periods
are therefore also topologically defined. Turning this discussion around, we thus see that Corollaries 1.1
and 1.2 provide a partial refinement of the Morgan–Shalen compactification, an apparently topological
result, via a construction that is geometric-analytical.

Corollary 1.3 provides an appealing picture of the space of complex projective structures. The classical
Schwarzian view of the space of complex projective structures is as an affine bundle over Teichmüller
space: the fibers over a point X 2 T .†/ is the space QD.X / of quadratic differentials on X, and we can
focus our attention on a ray ftq; t > 0g �QD.X / of Schwarzian derivatives on X. A basic question is to
describe the image of this ray in the fibration MH.X /.

In Corollary 1.3 we see the end of such a ray, when seen as a family in MH.X /, shadows a linear flow on
one of the torus boundary fibers. Different rays over a common point X in Teichmüller space shadow flows
over distinct tori, depending on the vertical foliation of the common (projective) Schwarzian derivative.
In short, the rays over a single Riemann surface have ends accumulating in each fiber of the partial
compactification of MH.X /. On the other hand, rays over distinct Riemann surfaces, whose Schwarzians
have a common projective vertical measured foliation, shadow flows over a common torus fiber in the
partial compactification of MH.X /. Here the direction vectors of the flows reflect the underlying Riemann
surface of the family of complex projective structures, through the horizontal foliation of the Schwarzians.

Finally, in the context of this last corollary, we provide a small bit of intuition for these claims, effectively
due to Dumas in this setting. A family of complex projective structures over X with proportional
Schwarzians tq for t� 0 may be seen as the “graftings” of a family of surfaces X D gr�t

.Xt /.2 Here the
lamination ƒt is the bending lamination for a pleated surface whose underlying hyperbolic surface is Xt ,

2We provide a quick informal introduction to grafting. A complex projective structure will develop as a domain over complex
projective space CP1. We can regard CP1 as @H3. Then given a pleated surface .S; f;ƒ; �/ in H3, we can imagine
exponentiating in the normal direction from the image f .S/ of that pleated surface. The limiting image of a totally geodesic
plaque under this flow will inject onto a domain in CP1 bounded by circular arcs. The image of the bending lamination ƒ is
more complicated, reflecting the complicated nature of a geodesic lamination, but can be imagined as (limits of) thin crescents
that connect the images of plaques: for example, if ƒ were only a single simple closed curve 
 with bending measure � , then
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and obviously the bending measure grows with t . Of course, the result of the grafting is a fixed Riemann
surface X, and so the pruned surface Xt reflects the increased bending by growing thin and long in
the direction of the bending lamination. But the representation Œ�t � 2Ro.†/ of the pleated surface Xt

is what we focus on in this paper. We see then that translation lengths for this representation must be
growing long, roughly parallel the stretched lamination ƒt . Passing from these synthetic constructions to
geometric analysis by considering the shape of the �t –equivariant energy minimizing map ut W

zX !H3,
the Hopf differential qt 2QD�.X / of ut will have horizontal foliation in the direction of the maximal
stretch of the map, which in this case will be forced to be along the very stretched lamination ƒt . Indeed,
ut will crowd much of its image near the maximally stretched lamination ƒt . The regions complementary
to those mapping near ƒt will be stretched to efficiently connect components of ƒt , and they will thus
lie near portions of totally geodesic hyperbolic planes in H3. Taken together, these heuristics imply that
the image of ut will itself approximate the pleated surface f W zS.qt /!H3.

Now, on the one hand, the analysis of [43] tells us, as a starting point, that �t will have a limiting
configuration in the fiber defined by the limit of normalized Hopf differentials. The Main Theorem works
by recognizing the gauge-theoretic endomorphism that represents such a limit point as an infinitesimal
rotation in H3 about the geodesic tangent to the image of a horizontal leaf.

Ignoring for now the issue of how the harmonic map is bending near ƒt , we note that near the preimages
of ƒt , the harmonic map is well-approximated by the very simple harmonic map C!H3 which takes
horizontal lines in the plane to a geodesic with a parametrization proportional to arc length. As that simple
model map has Hopf differential dz2, we see that we can expect the vertical foliation of the �t harmonic
map to predict the length spectrum of the representation of �t , at least up to its leading terms. As the
length spectrum of a representation is independent of the choice X of the background Riemann surface,
we find evidence for Corollaries 1.1 and 1.2. Finally, Dumas [15] and [16] makes the deep observation
that ƒt is well-approximated by the horizontal lamination of the Schwarzian, and thus the underlying
geometric lamination for the bending lamination ƒt becomes increasingly fixed as t increases, even as
the amount of bending grows linearly with the measure of the horizontal foliation, ie linearly with t .
That linear change in the complex translation lengths of the dominant elements of the holonomy for �t ,
coupled with the just mentioned relationship of the gauge theory to hyperbolic geometry, suggests the
linear flow in Corollary 1.3.

1.3.2 Relation with other work The literature on Hitchin systems, solutions to differential equations
on Riemann surfaces, and their asymptotic properties is vast, and the Main Theorem in this paper may be
viewed in that context.

Asymptotic decoupling of the self-duality equations has been studied in Taubes [57], Mazzeo, Swoboda,
Weiss and Witt [43; 44], Mochizuki [48] and Fredrickson [23]. This idea is also central to the work of

each lift of 
 would force the inclusion of a “lune” of width � . Thurston observed that each complex projective structure admitted
a unique description as a hyperbolic structure S as above, together with the insertion of flat lunes corresponding to the bending
lamination. We might call S the “pruning” of the complex projective structure.
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Gaiotto, Moore and Neitzke [25] and the conjectural structure of the hyperkähler metric on MH.X /; see
Dumas and Neitzke [17] and Fredrickson [24]. The idea of “nonabelianization” also arises from this work
and is related to Fock–Goncharov cluster coordinates and the Bonahon parametrization. This has been
investigated by Hollands and Neitzke [30; 31] and Fenyes [22].

Corollary 1.3 is a kind of zeroth-order analog of the much more extensive results from the exact WKB
analysis of Schrödinger equations (see Kawai and Takei [37]) where t D 1=„. In particular, the period
map

(1-10) Z.
 /D

Z



�SW;

for 
 representing an odd homology class on yXq , plays a central role in Gaiotto, Moore and Neitzke [25].
For some recent work, see Iwaki and Nakanishi [33] and Allegretti [1; 2].

1.3.3 Outline of the paper This paper is organized as follows. In Section 2 we have provided a rather
large amount of background material in order to make the rest of the paper accessible to a wide readership.
The main topics are the moduli space of solutions to the self-duality equations, limiting configurations
and their relation to spectral data and Prym differentials. We also provide details on equivariant harmonic
maps and their high-energy properties. The section concludes with background on laminations, measured
foliations, train tracks and R–trees, which will be useful in the sequel.

These preliminaries are followed in Section 3 by a discussion of “bending”. We first introduce a naive
geometric notion of how to measure the bending of an immersive map to hyperbolic space in terms of
dihedral angles of intersecting tangent planes. In the context of the equivariant maps that appear in the
nonabelian Hodge correspondence, we compare this notion to an alternative definition of bending coming
from parallel translation in bundles with connections. When Higgs pairs approach a limiting configuration,
the gauge-theoretic bending is shown to be determined by the periods of Prym differentials.

In Section 4 we review the notion of a transverse cocycle to a geodesic lamination, as well as Bonahon’s
parametrization of the character variety R.†/. In Lemma 4.4 we show that under certain assumptions on
the pleating locus the bending cocycle can be related to the geometric notion of bending introduced in
Section 3. We use this property to derive the bending cocycle of a pleated surface from the gauge-theoretic
notion of bending, under the assumption that the pleated surface and the image of the equivariant harmonic
map are appropriately close.

The existence of a pleated surface with the properties just mentioned is proven in Section 5. The required
asymptotic results for high-energy harmonic maps are largely due to Minsky. The key idea is to compare
an arrangement of geodesics in H3 obtained from the image of horizontal leaves of the foliation by
an equivariant harmonic map to the geodesic lamination on the hyperbolic surface corresponding to a
harmonic diffeomorphism with the same Hopf differential. We show that by perturbing this hyperbolic
structure slightly, the geodesic configuration in H3 extends to a pleated surface.

Finally, in Section 6 we give the proofs of the Main Theorem and its corollaries.
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2 Background material

2.1 Higgs bundles

2.1.1 The self-duality equations We introduce the setup for Hitchin’s self-duality equations for a
topologically trivial rank 2 complex vector bundle E in a form that will be useful later on.

Fix a choice of spin structure K
1=2
X

as in Section 1.1.2 and consider

(2-1) E DK
�1=2
X

˚K
1=2
X

:

A choice of conformal metric ds2 Dm.z/jdzj2 on X induces a hermitian metric hD .m1=2;m�1=2/ on
E which will be fixed throughout. Notice that the determinant line bundle det E with its induced metric
from h is canonically trivial. Let gE be the vector bundle of traceless skew-hermitian endomorphisms
of E, and gC

E
its complexification consisting of all traceless endomorphisms. We will also often use

p
�1gE , the bundle of traceless hermitian endomorphisms. The hermitian metric h on E induces a

hermitian metric on the associated endomorphism bundle gC
E

which is given by

hA;Bi D 1
2

tr.AB�h/ for A;B 2 �.gC
E/:
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On the subbundle of traceless hermitian endomorphisms this metric reads hA;Bi D 1
2

tr.AB/.

Denote by A.E; h/ the space of smooth connections on E that are unitary with respect to h and which
induce the trivial connection on det E. This is an affine space modeled on �1.X; gE/. A x@–operator x@E

on E defines a holomorphic bundle E which we will often denote by E D .E; x@E/. There is a connection
AD .x@E ; h/ 2A.E; h/ called the Chern connection that is uniquely determined by the requirement

x@A WD .dA/
0;1
D x@E :

In this way, A.E; h/ is identified with the space of x@–operators on E. Similarly, there is a real linear
isomorphism

(2-2) �1.X;
p
�1gE/

�
�!�1;0.X; gC

E/; ‰ 7!ˆD‰1;0;

with inverse

(2-3) ‰ DˆCˆ�h :

We shall often use this convention, ˆ$‰, for the isomorphism (2-2).

A Higgs bundle is a pair .x@E ; ˆ/, where x@Eˆ D 0. The Higgs field ˆ may either be regarded as a
holomorphic one-form valued in the sheaf End0E of traceless endomorphisms of E , or as a holomorphic
section of End0E ˝KX. The context throughout will make clear which interpretation applies.

For a pair .A; ‰/ 2A.E; h/��1.X;
p
�1gE/, the system of PDEs

(2-4)

8<:
FAC Œ‰^‰�D 0;

dA‰ D 0;

dA.�‰/D 0;

is called the self-duality equations. A solution .A; ‰/ gives a Higgs bundle .x@A; ˆ/. The holomorphicity
of ˆ follows from the last two equations in (2-4). Conversely, Hitchin shows that for a polystable
Higgs bundle .x@E ; ˆ/ there is a complex gauge transformation g such that the Chern connection and ‰
associated to g � .x@E ; ˆ/ give a solution to (2-4). Polystability will not play a role in this paper, so we
omit its definition. We frequently refer to a solution .A; ‰/ of (2-4) as a Higgs pair.

Let MH.X / denote the moduli space of unitary gauge equivalence classes of solutions of (2-4). Then
MH.X / is a quasiprojective variety of dimension 6g� 6. By a slight abuse of notation, when .x@E ; ˆ/

is polystable and .A; ‰/ the associated solution to (2-4) as in the previous paragraph, we shall write
Œ.x@E ; ˆ/� to mean the gauge equivalence class Œ.A; ‰/� 2MH.X /.

A very important fact used in this paper is the following: If .A; ‰/ is a solution to (2-4) then the
SL.2;C/–connection

(2-5) r WD dAC‰

is flat. This follows from the first two equations of (2-4).
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2.1.2 Quadratic differentials Recall the notation QD.X /, QD�.X /, SQD.X / and SQD�.X / from
Section 1.1.1. We define a norm on QD.X / by

kqk1 WD

Z
X

jq.z/j
i

2
dz ^ dxz;

where q D q.z/dz2 in local conformal coordinates, and we let Z.q/ denote the set of zeroes of q.

The map

(2-6) H WMH.X /!QD.X /; Œ.A; ‰/� 7! 1
2

tr.‰˝‰/2;0 D�detˆ;

is holomorphic, proper and surjective. Its restriction to M �
H .X / WDH �1.QD�.X // is a fibration with

fibers consisting of half-dimensional complex tori; see Section 2.2 below.

As shown in [29], the Hitchin fibration H has a global section described as follows. The bundle E has a
distinguished holomorphic structure x@0 coming from the splitting (2-1) and the holomorphic structure
on K

˙1=2
X

. Let A0 be the Chern connection associated to .x@0; h/. Then the section is given by

(2-7) SH WQD.X /!MH.X /; q 7!

��
x@A0

; ˆD

�
0 1

q 0

���
(recall the convention concerning the notation Œ.x@E ; ˆ/� from the previous section).

2.1.3 The partial compactification by limiting configurations Properness of the Hitchin fibration
implies that every sequence .An; ‰n/, with n 2N, of solutions of equation (2-4) such that the sequence
qn D �detˆn (recall ˆ D ‰1;0) is bounded has a subsequence that converges smoothly modulo the
action of unitary gauge transformations. Conversely, a sequence .An; ‰n/ diverges if the sequence qn of
holomorphic quadratic differentials diverges, ie kqnk1!1 as n!1. Notice that the latter is equivalent
to k‰nk2!1 as n!1 (here the subscript refers to the L2–norm).

By the results in [43] (see also [57]), the open and dense region M �
H .X / of MH.X / admits a bordification

by the set @M �
H .X / of so-called limiting configurations, as we explain next. To this end, we introduce

the decoupled self-duality equations

(2-8)

8<:
FA D 0; Œ‰^‰�D 0;

dA‰ D 0;

dA.�‰/D 0;

for a Higgs field ‰ and a unitary connection A.

Definition 2.1 Let q 2 QD�.X /. A pair .A; ‰/ is called a limiting configuration for q if detˆD �q

and .A; ‰/ is a smooth solution of (2-8) on the punctured surface X�q WDX nZ.q/.

This definition only applies to solutions for differentials q 2QD�.X /. We refer to [48] for the definition
and description of limiting configurations for points q 2QD.X / nQD�.X /.
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Example 2.2 Recall the connection A0 from (2-7). For q 2QD�.X /, we define

(2-9)

A0
1.q/DA0C

1
2
.Im x@ log kqk/

�
�i 0

0 i

�
;

ˆ1.q/D

�
0 kqk1=2

kqk�1=2q 0

�
;

‰1.q/Dˆ1.q/Cˆ
�h
1 .q/;

where kqkmeans the (pointwise) norm with respect to the conformal metric ds2. The pair .A0
1.q/;‰1.q//

is a limiting configuration for q. It will later become important as the limiting configuration corresponding
to a pleated surface with zero bending cocycle. We therefore call it the Fuchsian limiting configuration
associated to q.

We shall often write .A0
1; ‰1/, where the quadratic differential is understood. More generally, any other

limiting configuration .A1; ‰1/ representing a point in the fiber H �1.q/ is of the form

(2-10) A1 DA0
1C �; Œ�^‰1�D 0 and dA0

1
�D 0;

where � 2�1.X�q ; gE/. The group G D G.E; h/ of unitary gauge transformations of E acts on the space
of solutions .A1; ‰1/ to equation (2-8), and we define the moduli space

@M �
H .X /D fall solutions to (2-8) for q 2QD�.X /g=G �RC:

Here we follow the original definition of limiting configurations in [43], where each .A1; ‰1/ is assumed
to take a particular normal form in disks Dp around each zero of q. This normal form is given on each Dp

by the Fuchsian limiting configuration .A0
1.q/; ˆ1.q// and identically vanishing �� 0. In particular,

it can be assumed that � extends over the points q 2QD.X / nQD�.X / and therefore is an element of
�1.Xq; gE/. With this restriction, we divide out by unitary gauge transformations that are the identity
near each Dp; cf [44].

Second, since there is an equivalence up to positive real multiples of‰, it is natural to define the projection

(2-11) H1 W @M
�
H .X /! SQD�.X /

defined by mapping .A1; ‰1/ 7! q=kqk1, where q D�detˆ1.

We now describe the structure of the set @M �
H .X / of limiting configurations more closely, summarizing

the results in [43, Section 4.4]. For .A1; ‰1/ 2H �1
1 .q/, define the real line bundle Lq!X�q by

(2-12) Lq D f� 2 gE j Œˆ1 ^ ��D 0g:

Let LC
q DLq˝R C denote the complexification. Then Lq and LC

q are dA1–invariant line subbundles
of gE and gC

E
, real and complex, respectively. Notice that the second component ˆ1 of a limiting

configuration is completely determined modulo unitary gauge by the holomorphic quadratic differential q.
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Hence, the flat bundle Lq also only depends on q, which justifies the notation. The ungauged vertical
deformation space at .A1; ˆ1/ is identified with

Z1.X�q ILq/ WD f� 2�
1.X�q ;Lq/ j dA0

1
�D 0g:

Next consider the subgroup Stabˆ1 of unitary gauge transformations which stabilize ˆ1. If g 2 Stabˆ1
lifts to a section of Lq , ie g D exp.
 /, with 
 2 �0.X�q ;Lq/, then g acts on A1 D A0

1 C �, for
� 2�1.X�q ;Lq/, by

g.A1/D g�1�gCg�1.dA1g/D �C dA0
1

:

(Recall that Lq is an A1–parallel line subbundle of gE , so g�1�gD � and dA1 exp.
 /D exp.
 /dA1
 .)
Hence the infinitesimal vertical deformation space is

H 1.X�q ILq/DZ1.X�q ILq/=B
1.X�q ILq/; where B1.X�q ILq/ WD fdA1
 j 
 2�

0.X�q ;Lq/g:

If all zeroes of q are simple, then

dimR H 1.X�q ILq/D 6g� 6;

where g is the genus of †. To obtain the moduli space, we must also divide the infinitesimal deformation
space by the residual action of the component group �0.Stabˆ1/. Under the correspondence above, this
consists of an integral lattice H 1

Z.X
�
q ;Lq/ under the exponential map.

Proposition 2.3 The moduli space of limiting configurations with a fixed q 2QD�.X / is

H �1
1 .q/DH 1.X�q ;Lq/=H

1
Z.X

�
q ;Lq/:

This is a torus of real dimension 6g� 6.

2.1.4 Approximate solutions Following [43, Section 3.2], for suitable functions f , h and � to be
specified below, we define the family of approximate solutions S

app
t .q/ WD .A

app
t .q/C �; t ‰

app
t .q// by

(2-13)

A
app
t .q/ WDA0C

�
1
2
C�.kqk/

�
4ft .kqk/�

1
2

��
Im x@ log kqk

�
�i 0

0 i

�
;

ˆ
app
t .q/ WD

�
0 kqk1=2e�.kqk/ht .kqk/

kqk�1=2e��.kqk/ht .kqk/q 0

�
;

‰
app
t .q/ WDˆ

app
t .q/C .ˆ

app
t .q//�h :

Regarding the formula for‰app
t , we follow our convention thatˆD‰1;0; cf the beginning of Section 2.1.3.

We may view these approximate solutions as desingularizations of the limiting configurations introduced
before. Indeed, as t !1 there is smooth local convergence A

app
t .q/!A0

1.q/ and ˆapp
t .q/!ˆ1.q/

on X�q . Here the one-form � satisfies (2-10) and is considered as an element of �1.Xq; gE/.

We now turn to a more detailed explanation of the functions used to define the approximate solution in
(2-13). Here ht .r/ is the unique solution to .r@r /

2ht D 8t2r3 sinh.2ht / on RC with specific asymptotic
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properties at 0 and 1, and ft WD
1
8
C

1
4
r @r ht . Further, � W RC ! Œ0; 1� is a suitable cutoff-function.

The parameter t can be removed from the equation for ht by substituting � D 8
3
t r3=2; thus if we set

ht .r/D  .�/ and note that r@r D
3
2
�@�, then

.�@�/
2 D 1

2
�2 sinh.2 /:

This is a Painlevé III equation; there exists a unique solution which decays exponentially as �!1 and
with asymptotics as �! 0 ensuring that A

app
t and ˆapp

t are regular at r D 0. More specifically,

�  .�/��log.�1=3
�P1

jD0 aj�
4j=3

�
as � # 0,

�  .�/�K0.�/� �
�1=2e��

P1
jD0 bj�

�j as � "1,

�  .�/ is monotonically decreasing (and strictly positive) for � > 0.

These are asymptotic expansions in the classical sense, ie the difference between the function and the
first N terms decays like the next term in the series, and there are corresponding expansions for each
derivative. The function K0.�/ is the Bessel function of imaginary argument of order 0.

In the following result, any constant C which appears in an estimate is assumed to be independent of t .

Lemma 2.4 [43, Lemma 3.4] The functions ft .r/ and ht .r/ have the following properties:

(i) As a function of r , ft has a double zero at r D 0 and increases monotonically from ft .0/D 0 to
the limiting value 1

8
as r "1. In particular , 06 ft 6 1

8
.

(ii) As a function of t , ft is also monotone increasing. Further , limt"1 ft D f1 �
1
8

uniformly in
C1 on any half-line Œr0;1/, for r0 > 0.

(iii) There are estimates

sup
r>0

r�1ft .r/6 C t2=3 and sup
r>0

r�2ft .r/6 C t4=3:

(iv) When t is fixed and r # 0, then ht .r/��
1
2

log r C b0C � � � , where b0 is an explicit constant. On
the other hand , jht .r/j6 C exp

�
�

1
8
t r3=2

�
=.t r3=2/1=2 for t > t0 > 0 and r > r0 > 0.

(v) Finally ,

sup
r2.0;1/

r1=2e˙ht .r/ 6 C for t > 1:

It follows from the results in [43] that the approximate solution S
app
t satisfies the self-duality equations

up to an exponentially decaying error as t !1 (which is uniform on the closed surface X ), and there is
an exact solution .At ; tˆt / in its complex gauge orbit (unique up to real gauge transformations) which is
no further than Ce�ˇt pointwise away (with respect to any C `–norm) for some ˇ > 0.
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2.1.5 Converging families of Higgs pairs For a holomorphic quadratic differential q 2QD�.X /, recall
the fiber H �1.q/, where H is the Hitchin map (2-6).

Definition 2.5 Consider a family Œ.At ; t‰t /� 2 H �1.t2 qt /, where qt 2 SQD�.X / and qt ! q 2

SQD�.X /. Then Œ.At ; t‰t /� is said to converge to Œ.A1; ‰1/� 2H �1
1 .q/ as t !1 if, after passing to

a subsequence and modifying by unitary gauge transformations (which we suppress from the notation),
the family of pairs .At ; ‰t / satisfies the following:

� Convergence The sequence .At ; ‰t / converges to .A1; ‰1/ as t ! 1 in Lp.X / for all
16 p < 2, locally in C `.X�q / for all `> 0 at an exponential rate in t .

� Singularities For every zero p 2Z.qt /, locally on the punctured disk D�p (equipped with polar
coordinates .r; �/) the connections At are in radial gauge,

At D Ft

�
�i 0

0 i

�
d�;

for some uniformly C 0–bounded family of smooth functions Ft W Dp! R such that Ft ! F1

pointwise for some smooth function F1 W Dp!R as t !1.

� Approximation For every integer `� 0 there exist constants ˇ;C > 0, not depending on t , and a
one-form �t 2�

1.X; gE/ satisfying Œˆ1.qt /; �t �D 0 and dA1.qt /�t D 0 such that

k.At ; ‰t /� .A
app
t .qt /C �t ; ‰

app
t .qt //kC `.X / 6 Ce�ˇt

for all t > 0.

Theorem 2.6 [43] Every family Œ.At ; t ‰t /� 2 H �1.t2 qt / with qt 2 K � SQD�.X /, where K is
any compact subset , subconverges to a limiting pair Œ.A1; ‰1/� 2H �1

1 .q1/ as t !1 in the sense of
Definition 2.5. Conversely, every limiting configuration arises in this way.

Proof By compactness of the set K, one has subconvergence qt ! q1 for some q1 2K. The main
part of the assertion follows from [43, Theorem 6.6] and its proof, which yields the (Approximation)
axiom for any such family of Higgs pairs. There, only a polynomial bound for the C `–norm of the
difference .Aapp

t .qt /C �t ; ˆ
app
t .qt //� .At ; ˆt / is stated, but the proof shows that it can be improved to

an exponential bound. The other two axioms then follow, since they are satisfied by the approximating
family .Aapp

t .qt /C �t ; t ˆ
app
t .qt // (again by the construction in [43]), and therefore also by Œ.At ; t ˆt /�.

The last statement is contained in [43, Theorem 1.2].

2.2 Spectral curves

2.2.1 The BNR correspondence Let � W jKX j !X be the projection from the total space jKX j of KX.
There is a tautological section � of the holomorphic line bundle ��KX ! jKX j. Given q 2 QD�.X /,
the pullback ��q is a section of ��K2

X
! jKX j. Let

(2-14) yXq D fyx 2 jKX j j �
2.yx/D ��q.yx/g � jKX j:
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Then yXq is a compact Riemann surface called the spectral curve associated to q (nonsingular, since
q 2QD�.X / has simple zeroes). The restriction of the projection, � W yXq!X, realizes yXq as a ramified
double covering of X with simple branch points at the zeroes Z.q/ of q. By the Riemann–Hurwitz
formula, yXq has genus 4g� 3. Moreover, yXq admits an involution yx 7! �yx, which we denote by � .

Recall that the Prym variety associated to the covering is

Prym. yXq;X /D fL 2 Pic. yXq/ j �
�L' L�g:

Theorem 2.7 [3, Proposition 3.6] There is a one-to-one correspondence between points in Prym. yXq;X /

and isomorphism classes of Higgs bundles .E ; ˆ/ with detˆD�q.

The association in Theorem 2.7 goes as follows; see also [44, Section 2.2]. Recall that we have fixed
a square root K

1=2
X

. Given L 2 Prym. yXq;X /, let U D L˝ ��.K1=2
X

/. Then E D ��.U/ is a rank 2

holomorphic bundle on X with trivial determinant, and multiplication by � gives a map

ˆ W E D ��.U/ �
�! ��.U ˝��.KX //D E ˝KX ;

with detˆD�q. In the other direction, given a Higgs bundle .E ; ˆ/, U is defined (cf [3, Remark 3.7])
by the exact sequence

(2-15) 0! U ˝ IZ ! ��.E/ ���
�ˆ

����! ��.E ˝KX /! U ˝��.KX /! 0;

where IZ is the ideal sheaf of ZDZ.q/ and we regard ��ˆ as a holomorphic section of ��.End0E˝KX /.
Since the details of this will be important in the sequel, we briefly elaborate equation (2-15). The first
thing to note is that we have an exact sequence

(2-16) 0! ��.E/! U ˚ ��.U/! U ˝OZ ! 0:

The last map is given by mapping sections .u; v/ 2 U ˚ ��.U/ to u.p/� v.p/, for p 2Z. To prove this
statement, let A� yXq be an open set. Then by definition, as OA–modules,

��.E/.A/D ��.U/.�.A//˝O�.A/ OA D U.��1�.A//˝OA D U.A[ �.A//˝OA:

Now, as an OA–module, U.�.A//D ��.U/.A/. Hence, local sections of ��.E/ are sections of U˚��.U/
that agree at Z; thus, (2-16).

Let .u; v/ 2 ��.E/ � U ˚ ��.U/. Now ˆ acts by multiplication by �. Since ��� D ��, we have
��ˆ.u; v/D .�u;��v/. Therefore, .u; v/ 2 ker.����ˆ/ if and only if v D 0. The condition in (2-16)
forces the image to consist of sections u of U that vanish at Z, which is the first term in (2-15). Similarly,
the image of ����ˆ consists of local sections of the form .0; 2�v/, ie sections of ��.U/˝IZ˝�

�.KX /.
This is precisely the kernel of the projection ��.E/˝��.KX /! U ˝��.KX / given by projection onto
the first factor. This proves exactness of (2-15).
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Remark 2.8 The following will be important.

(i) For t > 0 there is a natural biholomorphism ft W
yXq!

yXt2q , and pulling back line bundles gives
an isomorphism Prym. yXt2q;X /

�
�! Prym. yXq;X /. Under this correspondence and Theorem 2.7,

.E ; tˆ/ 7! .E ; ˆ/.
(ii) Note that d� is a holomorphic section of K yXq

˝ ��K�1
X

with simple zeroes at Z.q/. Since
� 2H 0. yXq; �

�KX / also vanishes at Z.q/, it follows that K yXq
D ��K2

X
.

2.2.2 Prym differentials Let � W yXq!X D yXq=� be as in the previous section. Recall the exponential
sequence

0! 2� iZ!O yXq

exp
�!O�

yXq

! 1;

and associated long exact sequence in cohomology

0!H 1. yXq; 2� iZ/!H 1. yXq;O yXq
/!H 1. yXq;O�yXq

/
2�ic1
���!H 2. yXq; 2� iZ/! 0:

This gives an identification

p WH 1. yXq;O yXq
/=H 1. yXq; 2� iZ/ ��! Pic0. yXq/ WD ker c1 �H 1. yXq;O�yXq

/:

Via the Dolbeault isomorphism, we obtain an isomorphism

(2-17) ı WH
0;1
x@
. yXq/=H

1. yXq; 2� iZ/ ��!H 1. yXq;O yXq
/=H 1. yXq; 2� iZ/:

Now, consider a x@–operator x@L D
x@C˛ on a trivial complex line bundle L, where ˛ 2�0;1. yXq/. Let L

denote the associated holomorphic bundle. Then ˛ defines a class Œ˛� 2H
0;1
x@
. yXq/=H

1. yXq; 2� iZ/, and
L defines a class ŒL� 2 Pic0. yXq/. We have the following well-known result.

Lemma 2.9 p ı ı.�Œ˛�/D ŒL�.

The map ˛ 7! ˛� x̨ gives a real isomorphism H
0;1
x@
. yXq/'H 1. yXq; iR/. Combined with the Lemma 2.9

we have

(2-18) Pic0. yXq/'H 1. yXq; iR/=H
1. yXq; 2� iZ/:

The involution � acts on H 1. yXq; iR/, giving a decomposition into even and odd cohomology

H 1. yXq; iR/DH 1
ev.
yXq; iR/˚H 1

odd.
yXq; iR/:

Clearly, H 1
ev.
yXq; iR/'H 1.X; iR/. Let

(2-19) H 1
odd.
yXq; 2� iZ/ WDH 1. yXq; 2� iZ/\H 1

odd.
yXq; iR/:

Using (2-18), we see that there is an isomorphism

(2-20) Prym. yXq;X /'H 1
odd.
yXq; iR/=H

1
odd.
yXq; 2� iZ/:
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Canonical representatives of elements of H 1
odd.
yXq; iR/ are given by odd, imaginary, harmonic forms, and

the space of such will be denoted by H1
odd.
yXq; iR/. We call H1

odd.
yXq;C/ the space of harmonic Prym

differentials. Let H 0
odd.
yXq;K yXq

/ denote the space of holomorphic differentials on yXq that are odd with
respect to the involution. We shall call H 0

odd.
yXq;K yXq

/ the space of holomorphic Prym differentials.3 We
have an isomorphism

(2-21) H1
odd.
yXq; iR/

�
�!H 0

odd.
yXq;K yXq

/; y� 7! y�1;0:

There is a distinguished nontrivial holomorphic Prym differential associated to the Liouville form on jKX j.
The dual of the tangent sequence associated to � gives

0! ��KX
.d�/t
��! T �jKX j ! ��K�1

X ! 0:

The (holomorphic) Liouville 1–form on jKX j is by definition .d�/t ı �D � ı d� (where ı means the
dual pairing). Its restriction to yXq is a holomorphic one-form on yXq that is odd with respect to the
involution. We call this the Seiberg–Witten differential �SW. Viewing the restriction of d� as a section of
T � yXq˝�

�TX, we have

(2-22) �SW WD �˝ d�:

We shall see in Corollary 1.3 that the spectral data in Prym. yXq;X / associated to the Seiberg–Witten
differential are closely related to complex projective structures.

Remark 2.10 It is customary in the literature to suppress d� from the notation in (2-22) and denote the
form �SW on yXq simply by �. Note that the latter is a section of ��KX and not K yXq

' ��K2
X

. Since
both of these differentials will figure prominently below, we prefer to keep the notational distinction.

2.2.3 Prym differentials and limiting configurations Continue with the notation of the previous
section. Let us introduce

(2-23) W2 D

�
0 ��1k�k

�k�k�1 0

�
2 End.��E/:

Then we may write

(2-24) ��ˆ1 D �SW˝W2;

where ˆ1 is defined in (2-9), �SW in (2-22), and we emphasize that here we regard ��ˆ as the pullback
of an endomorphism valued one-form. It follows that W2 lies in ��LC

q . Moreover, W2 is hermitian, and
by a direct computation (cf the proof of Proposition 3.3) we have that d yA0

1
W2 D 0.

Let y�2H1
odd.
yXq; iR/. Then, because y�˝W2 commutes withˆ1 we see that �Dy�˝W22�

1. yX�q ; �
�Lq/

is invariant with respect to � , and so � descends to X. By the flatness of W2, the form � is also
dA0
1

–harmonic. Hence, it defines a class in H 1.X�;Lq/. Notice that k�k is bounded, and therefore,

3The terminology we use here is somewhat nonstandard: Prym differentials as odd classes are usually defined for unramified
covers; see [28; 51]. Here we follow [21, page 86].
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in L2. Conversely, suppose � is a dA0
1

–harmonic form in �1.X�;Lq/ that is in L2. Then we can write
���D y�˝W2, for y� a pure imaginary form on yX�q that is anti-invariant with respect to � . Moreover,
since � is harmonic and in L2, the form y� satisfies dy�D d�y�D 0 weakly, and so by elliptic regularity
it is a smooth harmonic Prym differential. This leads to the following identification of harmonic Prym
differentials with the space of limiting configurations.

Proposition 2.11 The maps yX�q ,! yXq , and y� 7! � where ���D y�˝W2, induce isomorphisms

(2-25) H1
odd.
yXq; iR/ŠH 1

odd.
yX�q I iR/ŠH 1.X�ILq/;

which send the integral lattices H1
odd.
yXq; 2� iZ/ to H 1

Z.X
�;Lq/. Hence , combined with (2-20), this

gives an identification

(2-26) Prym. yXq;X /'H �1
1 .q/;

which is natural with respect to scaling by t > 0.

Proof The first isomorphism in (2-25) was shown in [44], and the second holds by the above discussion.
It remains to show that under these identifications the lattices H1

odd.
yXq; 2� iZ/ and H 1

Z.X
�;Lq/ are

preserved. Indeed, suppose Œy�� 2H 1
odd.
yXq; 2� iZ/, and choose a representative y� that is odd. Choose a

basepoint w0 2Z � yXq , and for w 2 yXq , let

g.w/D exp
�Z w

w0

y�˝W2.w/

�
:

Since y� has 2� iZ periods, and

(2-27) exp.2� ikW2.w//D I for k 2 Z;

one sees that g.w/ is well defined and independent of the path of integration from w0 to w. Moreover,
notice that

(2-28)
Z �.w/

w0

y�D

Z w

w0

��y�D�

Z w

w0

y� mod 2� iZ:

Therefore,

g.�.w//g.w/�1
D exp

�Z �.w/

w0

y�˝W2.�.w//�

Z w

w0

y�˝W2.w/

�
D exp

�
�

�Z �.w/

w0

y�C

Z w

w0

y�

�
˝W2.w/

�
since W2.�.w//D�W2.w/

D I by (2-28) and (2-27).

Hence, g is a well-defined U.1/–gauge transformation on X�, and y�˝W2 D g�1 dg. Conversely,
as mentioned in the discussion prior to Proposition 2.3, the group H 1

Z.X
�;Lq/ of components of the

stabilizer of ˆ1 is generated by global gauge transformations of this form.
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The final statement holds since if �t W
yXtq!X, � W yXq!X, ft W

yXq!
yXtq is given by multiplication

by t1=2, then writing
��t �D y�t ˝W2 and ���D y�˝W2;

it is easy to see that f �t y�t D y�.

2.2.4 Limiting configurations and spectral data Recall the sequence (2-15). In the case where
U D ��.K1=2

X
/, we have E DK

�1=2
X

˚K
1=2
X

, and ��.U/D U . The isomorphism between the description
of ��.E/ in (2-16) and the pullback of this bundle is given by

.u; v/ 7!
�

1
2
��1.u� v/; 1

2
.uC v/

�
:

Note that the first factor on the right-hand side above is regular because u� v vanishes at the zeroes of �.

In fact, the correspondence in (2-26) occurs at the level of spectral data as well, in a manner we now
describe. The image of the map

(2-29) ��.K
1=2
X

/˝ IZ ! ��E; s 7! .k�k1=2��1s; k�k�1=2s/;

is the kernel of ����ˆ1. This is a holomorphic embedding for a limiting configuration dA1 D dA0
1
C�

if and only if as a holomorphic bundle, U D L˝ ��.K1=2
X

/, and L is the trivial bundle on yXq with
x@–operator determined by the .0; 1/ part of y�.

Thus, the correspondence in Proposition 2.11 is between limiting configurations and “limiting spectral
data”. To make sense of the latter, consider the following situation. Let qn! q 2 SQD�.X /, and let
B � SQD�.X / be a neighborhood of q. Then there is a smooth holomorphic fibration p W yX ! B of
complex manifolds, where for b 2B, p�1.b/ is the branched covering yXb!X. For j large, qn 2B, and
the Gauss–Manin connection on yX gives an identification of Prym differentials on yXqn

and yXq which
preserves the integral lattice; and hence also an identification of spectral data. With this understood, we
have the following.

Theorem 2.12 Suppose y�n is a sequence of imaginary harmonic Prym differentials on yXqn
converging

to a differential y� on yXq , in the sense of the paragraph above. Let tn!C1. Let .En; tnˆn/ be the Higgs
bundles associated to y�n via the identification (2-20) and Theorem 2.7 (see also Remark 2.8(i )), and let
.An; ‰n/ be the corresponding solutions to the self-duality equations. Then any accumulation point of the
sequence .An; ‰n/ in the space of limiting configurations is gauge equivalent to .A0

1C �;‰1/, where
���D y�˝W2.

Proof Suppose without loss of generality that .An; ‰n/ converges to a limiting configuration .A1; ‰1/.
Then .A1; ‰1/ is in the fiber H �1

1 .q/, and A1 is gauge equivalent to a connection of the form
A0
1C �0, where ���0 D y�0˝W2 for some y�0 2 Prym. yXq;X /. We must show Œy�0�D Œy��. For this, it

suffices to show that y�0 and y� have the same periods on the homology H odd
1
. yXq/, modulo integers. For

any class Œy
 � 2H odd
1
. yXq/, we may choose a representative y
 � yX�q . The pullback connections ��An

converge to ��A1 in C1loc on yX�q with respect to the fibration yX introduced above. On the other hand,
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as discussed above, the class Œy�n� of the spectral data for .En; tnˆn/ is determined by the restriction of
��An to the line subbundle in the embedding (2-29), and the same is true for Œy�0�. Hence, convergence
of the connections away from the branching locus implies the periods of y� and y�0 agree.

Theorem 2.12 states that the partial compactification of H �1.SQD�.X // via spectral data mentioned in
the comment following Corollary 1.1 is compatible, via Proposition 2.11, with the description of ideal
points in terms of limiting configurations.

2.3 Equivariant harmonic maps

The goal of this section is to relate the Riemannian geometry of the hyperbolic space H3 to the gauge
theory of Higgs bundles. The main result is Theorem 2.14 below. All of this material is standard and is
explicitly or implicitly described in Hitchin [29] and Donaldson [14], and more generally in Corlette [10],
Jost and Yau [35] and Labourie [40]. Nevertheless, in order to make the exposition here self-contained
and to get the correct normalizations, we wish to reformulate the general description to suit the purposes
of this paper.

2.3.1 Statement of the result With a choice of lift zp0 2
zX of p0 2 X, the fundamental group �1 D

�1.X;p0/ acts by deck transformations on zX. Given � W �1! SL.2;C/, we say that a map u W zX !H3

is �–equivariant if u.
 z/D �.
 /u.z/ for all z 2 zX and 
 2 �1. If u is C 2, we say that u is harmonic
if d�
rLCdu D 0. Here, we let du 2 �1. zX ;u�T H3/ denote the differential of the map u, and rLC the

Levi-Civita connection on H3. The key existence result is stated here.

Theorem 2.13 [10; 14; 35; 40] Suppose that the representation � W �1 ! SL.2;C/ is completely
reducible. Then there exists a �–equivariant harmonic map u W zX !H3. If � is irreducible , then u is
unique.

The Hopf differential of a map u W zX !H3 is defined as the .2; 0/–part of the pullback of the metric
tensor of H3,

(2-30) Hopf.u/D .u�ds2
H3/

2;0:

A very important and classical fact is that Hopf.u/ is a holomorphic quadratic differential if u is harmonic.

As before, let E ! X be a hermitian rank 2 vector bundle and recall that gE and
p
�1gE denote

the bundles of traceless skew-hermitian and hermitian endomorphisms of E, respectively. A central
construction used in this paper is the following.

Theorem 2.14 Let .A; ‰/ be an irreducible solution of the self-duality equations (2-4). Choose p0 2X

and zp0 2
zX as above and a unitary frame of the fiber Ep0

of E at p0. Let � W �1.X;p0/! SL.2;C/ be
the holonomy representation of the flat connection r D dAC‰. Then the unique �–equivariant harmonic
map from Theorem 2.13 satisfies the following properties.
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(i) The pullback u�T H3 descends to a bundle on X that is isometrically isomorphic to
p
�1gE .

Under this identification:

(ii) The orthogonal connection dA on
p
�1gE corresponds to the pullback of the Levi-Civita connection

rLC on H3.

(iii) The hermitian 1–form �2‰ 2�1.X;
p
�1gE/ corresponds to the differential du2�1.X;u�T H3/.

(iv) The Higgs field ‰ and the harmonic map u determine the same quadratic differential in the sense
that Hopf.u/D 2 tr.‰˝‰/2;0.

Remark 2.15 Indeed, while our focus in this paper is on harmonic maps, Theorem 2.14 holds for general
�–equivariant maps u W zX !H3, as will become clear from the discussion below.

The remainder of Section 2.3 is devoted to the proof of Theorem 2.14.

2.3.2 The matrix model of H3 We view the hyperbolic space H3 as the homogeneous space

SL.2;C/=SU.2/:

The latter may in turn be identified with

D D fh 2Mat2�2.C/ j hD h�; det hD 1; h> 0g;

where the identification maps the coset Œg� 7! gg�. Note that the left action by SL.2;C/ then corresponds
to g � hD ghg�, and that D has a distinguished point corresponding to hD id.

The tangent space is given by

(2-31) ThH3
' ThD D fH 2Mat2�2.C/ jH DH�; tr.Hh�1/D 0g:

It will be useful to have another description of the tangent space as

(2-32) ThH3
' fK 2Mat2�2.C/ j .Kh/� DKh; tr.K/D 0g:

The correspondence between the two descriptions is given by H 7!K DHh�1. We shall refer to (2-31)
as the hermitian model and to (2-32) as the traceless model. The traceless model gives a trivialization of
the complexification T H3˝C ŠH3 �C3, and the fiber is identified with the space of traceless 2� 2

complex matrices. The real bundle T H3 is recovered as the fixed-point set of the complex antilinear map
� D �h given by

(2-33) �h.M /D hM �h�1:

The invariant constant curvature �1 Riemannian metric on H3 is defined by

(2-34) hH1;H2iH3;h D
1
2

tr.H1h�1H2h�1/
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for Hi 2 ThH3 in the hermitian model. If we define the hermitian structure on T H3˝C by

(2-35) hM1;M2iH3;h D
1
2

tr.M1hM �
2 h�1/;

then the map H 7!K between models is a real isometry for the induced metric on the fixed-point set
of � .

Lemma 2.16 In the traceless model the Levi-Civita connection of H3 is given by

(2-36) r
LCK D dK� 1

2
Œdhh�1;K�:

Proof On [14, page 129] it is shown that the connection in the hermitian model is given by

(2-37) r
LCH D dH � 1

2
.dhh�1H CHh�1dh/;

for H 2 ThH3. Pulling back this connection to the traceless model means computing rLC.Kh/h�1, and
this gives (2-36).

2.3.3 Flat bundles on H3 We define a rank 2 hermitian bundle V !H3 using the homogeneous space
description. More precisely, endow SU.2/ with a right action on C2, given by v � hD h�1v for v 2C2

and h 2 SU.2/, and then define
V D .SL.2;C/�C2/=SU.2/

for the diagonal action. Smooth sections of V then correspond to functions s W SL.2;C/!C2 satisfying
s.gh/ D h�1s.g/ for h 2 SU.2/. A hermitian structure on V is then derived from the standard inner
product on C2. We define a connection on V as follows: .yrs/.g/D ds.g/Cg�1dg � s.g/. One easily
verifies that this connection is well-defined and flat.

Now consider the bundle End0V ! H3 of traceless endomorphisms of V , with its flat connection yr
induced from the connection on V described in the previous paragraph. This is a rank 3 complex vector
bundle. Recall from the previous section that the trivial bundle T H3 ˝C is also a rank 3 complex
hermitian bundle. We endow it with the trivial connection rCM WD dM .

Proposition 2.17 There is a bundle isometry End0V �
�!T H3˝C which intertwines the flat connections

yr and rC .

Proof Endomorphisms T of V are given by functions T W SL.2;C/! End0C2 such that .T s/.g/D

T .g/s.g/ on sections s. Equivariance with respect to SU.2/ implies .T s/.gh/D h�1.T s/.g/, or

h�1T .g/s.g/D T .gh/s.gh/D T .gh/h�1s.g/:

Since the section is arbitrary, it follows that we must have T .gh/D h�1T .g/h. In particular,

(2-38) M.h/D gT .g/g�1; where hD gg�;
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is a well-defined traceless 2�2–matrix valued function on H3, and so this defines the map above. This is
an isometry, since the hermitian structures are given by

hT1;T2i D
1
2

tr.T1T �2 /D
1
2

tr.g�1M1g.g�1M2g/�/D 1
2

tr.M1hM �
2 h�1/D hM1;M2ih:

The induced connection on the endomorphism bundle End0V is

yrT D dT C Œg�1dg;T �:

On the other hand,

r
CM D d.gTg�1/D gdTg�1

CgŒg�1dg;T �g�1
D g.yrT /g�1;

which via (2-38) proves that the connections are intertwined.

The main result of this subsection is now the following.

Proposition 2.18 Recall that rC is the trivial connection on T H3˝C. With respect to its hermitian
structure , rC D dAC‰, where ‰.h/D 1

2
Œdhh�1; � � is a hermitian endomorphism valued one-form and

dA is unitary. The real structure � is flat with respect to dA, and dA induces the Levi-Civita connection rLC

on the fixed-point set of � , which is isomorphic to T H3.

Proof We calculate the hermitian part of the connection ‰. From (2-35),

dhM1;M2ih D hdM1;M2ihChM1; dM2ihChŒM1; dhh�1�;M2ih;

0D 2h‰hM1;M2ihChŒM1; dhh�1�;M2ih;

which implies ‰ has the form in the statement above. Hence,

(2-39) dA D d � 1
2
Œdhh�1; � �:

Next, from (2-33),

.dA�/.M / WD dA.�.M //��.dAM /

D d.hM �h�1/�1
2
Œdhh�1; hM �h�1��h.dM�1

2
Œdhh�1;M �/�h�1

D hdM �h�1
CŒdhh�1; hM �h�1��1

2
Œdhh�1; hM �h�1��hdM �h�1

�
1
2
hŒh�1dh;M ��h�1

D 0:

Hence, � is flat with respect to dA, and so dA induces an SO.3/ connection on T H3. Comparing (2-39)
with (2-36), we see that this is the Levi-Civita connection.

2.3.4 Flat connections and equivariant maps Recall from the previous paragraph the definition of the
flat bundle V !H3. Sections of the dual bundle V � are functions s� W SL.2;C/! .C2/� satisfying the
condition s�.gh/D s�.g/ ı h for all h 2 SU.2/. Moreover, the flat connection on V induces one on V �,
which we denote with the same notation yr. In terms of this description of sections, yrs�Dds��s�ıg�1dg.
Fix a unitary frame fv1; v2g for C2, and let fv�

1
; v�

2
g be the dual frame. We express the matrix elements

of g 2 SL.2;C/ as gij .
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Proposition 2.19 The functions s�i .g/D
P2

jD1 gijv
�
j give global parallel sections of V �. Moreover ,

s�i .g1g2/D .g1/ij s�j .g2/.

Proof We have ds�i .vk/D dgik . Similarly,

s�i ıg�1dg.vk/D s�i ı .g
�1/jmdgmkvj D gij .g

�1/jmdgmk D dgik :

The second statement is clear.

We now present the general construction. Let E!X be a hermitian vector bundle, and let r be a flat
SL.2;C/ connection on E. The pullback of E and r to the universal cover zX ! X will be denoted
with the same notation. Choose a basepoint p0 2 X, and a lift zp0 2

zX. Fix a unitary frame fe1; e2g

of the fiber Ep0
(and therefore also E zp0

). We have a uniquely determined global frame fze1; ze2g for
E! zX that is parallel with respect to r and which agrees with fe1; e2g at zp0. Let uij be the hermitian
matrix uij .p/D hzei ; zej i.p/. Then uij is hermitian and positive. We claim that det uD 1. Indeed, write
r D dAC‰, where dA is a unitary connection on E and ‰ a 1–form with values in

p
�1gE . Let fye1; ye2g

be a unitary frame at p, zei.p/D gij yej , ‰.p/yei D‰ij yej . Then at the point p,

(2-40) duij D hdAzei ; zej iC hzei ; dAzej i D �2h‰.p/zei ; zej i D �2.g‰g�/ij :

At the same time, uij .p/D hzei ; zej i.p/D .gg�/ij . Hence,

d log det uD tr.u�1du/D�2 tr
�
.gg�/�1.g‰g�/

�
D�2 tr‰ D 0;

since ‰ij is traceless. Therefore, det u.p/D det u. zp0/D 1 for all p 2 zX. Hence, u.p/ 2D , and we have
therefore defined a map u W zX !H3 which sends the point zp0 to the basepoint of D . We also note for
future reference that from (2-40),

(2-41) du u�1
D�2g‰g�1:

Let � W �1 ! SL.2;C/ be the holonomy representation of r with respect to the frame fe1; e2g. Via
the choice of basepoint zp0 we may view �1 as acting on zX by deck transformations. By definition, if
�.
 /D .gij /, then zei.
p/D gij zej .p/ for any p 2H2. Therefore,

uij .
p/D hgikzek.p/;gjmzem.p/i D gikukm.p/g
�
mj ;

or u.
p/D �.
 /u.p/.�.
 //�. Thus, u is equivariant with respect to the action of the holonomy repre-
sentation � on H3.

Proposition 2.20 There is a �1–equivariant isometry u�V � ��!E that intertwines the flat connections
u� yr and r.

Proof Recall the sections of V � from Proposition 2.19. Then the bundle isomorphism is defined by
identifying Œg; s�i .g/� 7! zei.p/, where u.p/D gg�. By the second statement of Proposition 2.19, this
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identification is equivariant with respect to the action of �1. Since the identification is between flat
sections, the connections are manifestly intertwined. It remains to check that this is an isometry. But

hs�i ; s
�
j i.u.p//D gikgjmhv

�
k ; v
�
mi D gikgjk D uij .p/D hzei ; zej i.p/:

This completes the proof.

The next proposition is the main consequence of the discussion above.

Proposition 2.21 Let E! X be a hermitian rank 2 vector bundle with a flat SL.2;C/ connection r
and holonomy representation � W �1! SL.2;C/. Write r D dAC‰, where dA is a unitary connection
on E and ‰ is a 1–form with values in

p
�1gE . Let u W zX !H3 be the �–equivariant map described

above. Then
p
�1gE may be isometrically identified with u�T H3. Under this identification the induced

connection dA corresponds to the pullback of the Levi-Civita connection on H3, and the 1–form �2‰

corresponds to the differential du of the map u.

Proof By Proposition 2.20, the connection on E pulls back from the one on V �. The induced connection
on End0E is therefore the pullback of the one on End0V . Since these bundles are isometric, the subbundle
p
�1gE identifies with the bundle of traceless hermitian endomorphisms of V . By Propositions 2.17

and 2.18, the latter is isometric to T H3, and the induced connection is the Levi-Civita connection. The
computation in (2-41) shows du u�1 D�2g‰g�1. Combined with the identification (2-38) this yields
the claimed relation between ‰ and the differential of the map u in the traceless model.

Proof of Theorem 2.14 The proof of (i)–(iii) follow from Proposition 2.21 . For (iv), use (2-41) and
definition of the metric (2-34) to compute

Hopf.u/D 1
2

tr.duu�1
˝ duu�1/2;0 D 2 tr.‰˝‰/2;0:

This completes the proof of the theorem.

Remark 2.22 The construction above is natural with respect to the action of unitary gauge transformations
on pairs .A; ‰/. Namely, modifying .A; ‰/ to g�.A; ‰/, where g 2 G is a unitary gauge transformation
results in conjugating the representation � and the map u by some element in SU.2/.

2.3.5 The self-duality equations and harmonic maps Up to this point, the choice of hermitian metric
on the bundle E was arbitrary and not related to the holonomy representation � determined by the flat
SL.2;C/ connection r. For this reason, the pair .A; ‰/ resulting from the decomposition of r into its
unitary and hermitian part as in Proposition 2.21 will in general not satisfy any equation apart from the
flatness of r, which is equivalent to the first two equations of (2-4). Likewise, the construction of the
�–equivariant map u depends on the hermitian metric on E and hence this map will in general not enjoy
any special properties. The link to the extra structure is provided by the following.

Geometry & Topology, Volume 28 (2024)



3166 Andreas Ott, Jan Swoboda, Richard Wentworth and Michael Wolf

Proposition 2.23 [14] Let E!X be a rank 2 vector bundle with hermitian metric h and a flat SL.2;C/
connection r and corresponding holonomy representation � W �1! SL.2;C/. Denote by r D dAC‰

the unique decomposition of r into a unitary connection dA on .E; h/ and a one-form ‰ with values in
p
�1gE . Let moreover u W zX !H3 be a �–equivariant smooth map as in Proposition 2.21. Then the pair

.A; ‰/ satisfies the self-duality equations (2-4) if and only if the map u is harmonic.

Remark 2.24 A hermitian metric h on the bundle E such that the corresponding �–equivariant map u is
harmonic is called a harmonic metric. If � is irreducible, the solution .A; ‰/ of the self-duality equation
resulting from Theorem 2.13 is also irreducible. In this paper, we consider monodromies associated to
pleated surfaces, and the representations are therefore automatically irreducible; cf [5, page 36].

2.4 Laminations

In this section, we briefly review some of the topological objects that will be used in our description of
the images of high-energy harmonic maps.

2.4.1 Measured foliations and laminations A measured foliation on a surface† is a partial foliation F
of the surface with a finite number of k–pronged singularities, equipped with a measure on transverse
arcs. The examples we consider in this paper are the horizontal and vertical foliations of a holomorphic
quadratic differential q with simple zeroes, q 2QD�.X /, which we denote by Fh

q and Fvq , respectively.
In the notation of Section 2.2, these can be defined as follows. At each point of the spectral curve yX�q ,
consider a (real) unit tangent vector yu with Im.�SW.yu//D 0. Then the flow lines of yu integrate locally to
give a foliation independent of the choice of sign of yu and invariant under the involution � . It therefore
projects to a foliation on X�, and this is Fh

q , the horizontal foliation of q. The vertical foliation of q, Fvq ,
is transverse to Fh

q , and is defined similarly using the real part. We let zFh
q and zFvq denote the lifts of the

foliations to the universal cover zX .

A critical leaf of Fh
q is a segment of a horizontal leaf terminating at a zero of q. A saddle connection of

the horizontal (resp. vertical) foliation is a horizontal (resp. vertical) leaf joining two zeroes. Following
[41, Section 3], when we refer to a path in zFh

q as a horizontal leaf, we implicitly mean that it either
contains no zeroes of zq, or when it meets critical points it either turns consistently to the right or to the
left with respect to the cyclic ordering on the critical leaves terminating at a give zero. Saddle connections
will play an important technical role in this paper, but there is a distinction between vertical and horizontal
saddles, as discussed in the introduction.

The foliations Fh
q and Fvq come equipped with transverse measures. If k is a C 1 arc transverse to Fh

q ,
we can lift k to a parametrized arc yk in yXq in such a way that4 Im.�SW.

Pyk// < 0 at all points of yk.
The measure of k is then the integral of �Im�SW along yk. We will say that a piecewise C 1 arc k is

4The negativity is dictated in order to agree with Bonahon’s convention; see [5, 2] and Section 4.1.3 below.
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quasitransverse to Fh
q if it is a finite union of C 1 arcs in X nZ.q/, and if it admits a piecewise C 1 lift yk

in yXq in such a way that Im.�SW.
Pyk//6 0 at all points of yk. The definition of a path quasitransverse to

Fvq is defined similarly using the real part.

A measured geodesic laminationƒ on a hyperbolic surface S is a partial foliation of the surface by simple
(not necessarily closed) geodesics, together with a measure on transverse arcs. A measured foliation may
be “straightened” to a measured lamination. For example, given F , each bi-infinite leaf of zF � zS 'H2

defines a unique pair of distinct points in the circle at infinity, and hence a unique geodesic in H2. The
collection of geodesics thus obtained are noninterlacing and form a closed set, and so define a lamination
zƒ of H2. The construction is equivariant with respect to the action of the fundamental group, and so there
is a well-defined quotient ƒ� S . The transverse measure on Fh

q may then be transported to a measure
on arcs transverse to ƒh

q . For more details on this construction, see [41]. We will denote the measured
laminations associated to Fh

q and Fvq by ƒh
q and ƒvq , respectively.

The Hubbard–Masur theorem [32] gives a converse to this construction. Given a measured foliation F
(resp. measured lamination ƒ) there is a unique nonzero q 2QD.X / such that F is measure equivalent
to Fh

q (resp. ƒ to ƒh
q). We shall denote this differential by �HF.F/ (resp. �HF.ƒ/). (See [61] for a proof

closer to the perspective in this paper.)

For a lamination ƒ� S , the components of H2 n zƒ are called plaques, and we denote the set of such by
P.ƒ/. When all the plaques are ideal triangles, we say that ƒ is maximal. If Fh

q has saddle connections,
then ƒh

q will not be a maximal lamination, and we describe this in more detail in Section 2.4.3. For a
distinct pair P;Q 2 P.ƒ/, we say that R 2 P.ƒ/ separates P and Q if any path from P to Q in H2

intersects R.

We end this section with two clarifying remarks. First, while a simple example of a measured lamination
is a multicurve equipped with atomic transverse measures, a more typical example (obtained as a limit of
multicurve examples) will meet any transverse arc in a Cantor set. Second, while geodesic laminations
appear to depend on the hyperbolic structure of the surface, using the idea of straightening curves, a
geodesic lamination ƒ in any marked hyperbolic structure S on † induces a unique geodesic lamination
in any other marked hyperbolic surface S 0 on †. See [5, page 7]. We will often denote these ƒ without
reference to the hyperbolic structure.

2.4.2 Train tracks An ingenious construction of Thurston provides for a way to organize nearby
measured foliations/laminations as data on a geometric object. A train track on a surface † is an
embedded finite complex � of C 1–arcs (called branches) on † meeting at vertices (called switches) with
a well-defined common tangency. We can and will assume the switches are always trivalent. Then one
branch at a switch is incoming and two are outgoing; see [54, page 11]. Let G D R or S1 ' R=2�Z.
A weight on a train track � is an assignment of an element of G to each branch that obeys the switch
conditions: the weight on the incoming branch equals the sum of the weights on the outgoing branches.
We denote by H.�;G/ the set of G–weights on � .
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long branch
L R

R L

right splitting left splitting

Figure 1: Splitting of train tracks.

One way to construct a train track is to consider a small � neighborhood of a measured geodesic lamination,
foliate that neighborhood by leaves transverse to the lamination, and then collapse the neighborhood to
the leaf space of the foliation. If the resulting branches are weighted by the measure of arcs that cross the
neighborhood, a measured train track that carries the lamination results; see [54, page 73].

A useful operation on train tracks is the right and left splitting; see [54, page 119]. As one chooses an
increasingly small parameter � in the construction above the train tracks obtained are related by splitting.
Let us define splitting carefully. Recall that a branch between two switches is called long if it is incoming
at both ends; see [54, page 118]. The orientation of † then orders the outgoing branches at the switches
on each end of a long branch, and we label them left (L) and right (R) accordingly. A right splitting is
then obtained by modifying the train track locally by replacing the long branch with two branches joining
left and right at each switch, and then adding a third branch between them at whose switches the branches
labeled L are incoming. The left splitting adds a branch so that the right branches are incoming. See
Figure 1.

2.4.3 Maximalizations As mentioned above, in the case of horizontal saddle connections the lam-
ination ƒh

q is not maximal. A maximal lamination can be obtained by adding finitely many leaves
to ƒh

q [8, page 76]. Here we describe this mechanism precisely in terms of the foliation Fh
q . Consider a

connected configuration S � Fh
q of saddle connections (along with their external critical leaves). We can

make a train track �S out of S by replacing each zero with a triangle, each of whose sides is outgoing.

Definition 2.25 A maximalization of S is a choice of left or right splitting y�S of each branch in �S
corresponding to a saddle connection, in such a way that the resulting train track y�S contains no long
branches; see Figure 2. A maximalization of Fh

q is a choice of maximalization of every maximal connected
configuration of saddle connections.

Note that maximalizations always exist: for example, one may choose right splittings for all the saddle
connections. The terminology is justified by the following.

Lemma 2.26 A maximalization of Fh
q uniquely determines a maximal lamination ƒ containing ƒh

q as a
sublamination.
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�p

saddle connections train track

`

splitting

Figure 2: Maximalization.

Proof Let S be a maximal connected component of saddle connections, and let c be a saddle connection.
There are two cases:

(1) c is part of a closed loop 
 of saddle connections,

(2) there is a zero p of q at one end of c, one of whose critical leaves is in the complement of S (call
this an external zero).

In case (1), ƒ contains a closed geodesic x
 homotopic to 
 . The splitting now determines a train path
from the critical leaf of one end point of c that is not part of 
 to x
 . This corresponds to a leaf of ƒ
that spirals into x
 . In case (2), the splitting of the saddle connection c selects one of the other critical
leaves of p; namely, the one which is incoming with respect to the switches created in the splitting.
Denote this leaf by ` � Fh

q . By maximality of the component S, the lift z̀ of ` determines a geodesic
half ray g in H2 that is asymptotic to a leaf of zƒh

q on one end. Viewing ` as a train path in y�S , there is
a unique continuation to a path (still denoted by `) that crosses the split saddle connection which ends
at p, and then either exits through a branch of another external zero, or spirals around a closed branch
homotopic to a closed loop of saddle connections. Uniqueness follows because all further switches the
path encounters are outgoing by assumption. Thus the lift of ` determines a bi-infinite geodesic that is
asymptotic to different leaves of zƒh

q on either side. By the condition that there are no long branches
in y�S , the geodesics added in this way are disjoint, and since the interior complementary regions of y�S are
triangles, the resulting lamination is maximal.

Remark 2.27 Given a maximalization of Fh
q as in Definition 2.25 with lamination ƒ as in Lemma 2.26:

(i) The leaves ƒ nƒh
q may be represented by paths that are quasitransverse to Fvq , consisting of

horizontal leaves coming into and exiting a neighborhood of S, with a small vertical arc cutting
one saddle connection of Fh

q (we shall refer to these as additional leaves of Fh
q or ƒ).

(ii) There is a one-to-one correspondence between zeroes zZ.q/�H2 and the plaques of H2 n zƒ.

The lift yƒ to yXq can be oriented. For convenience, we always choose this so that the oriented leaves ofƒh
q

have ReƒSW > 0. This then gives an orientation to the homology classes in H odd
1
. yXq;Z/ corresponding

to the saddle connections. Suppose there is a saddle connection c from p to q. Then we can change c

to an arc consisting of a vertical leaf emanating from p, followed by a horizontal leaf shadowing the
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saddle connection, and then another vertical leaf terminating at q. Indeed, there are two such ways of
constructing such a path. However, the orientation of zƒ chooses one of these: namely, the one whose lift
intersects zƒ positively. Notice that these paths are not quasitransverse with respect to Fvq . We shall call
such arcs modified saddle connections.

2.5 High-energy harmonic maps

This paper focuses on asymptotics of the PSL.2;C/ character variety for �1, especially as reflected in the
associated classes of Higgs bundles. The previous sections related these bundles to equivariant harmonic
maps u W zX ! H3, and it will turn out that one leaves all compacta in the character variety (and the
associated moduli spaces of Higgs bundles) exactly when the energy of the associated harmonic maps
grows without bound. In this section, we collect some of the basic analytic estimates on the geometry of
harmonic maps whose energies are tending to infinity. These will be used throughout the paper.

2.5.1 Minsky’s results The following result due to Minsky plays a crucial role in the subsequent
qualitative estimates involving high-energy harmonic maps. It will later also be needed in Section 5.1.

Let un W
zX ! H3 be a sequence of �n–equivariant harmonic maps with Hopf differentials t2

n qn, with
qn! q, in SQD�.X /. Recall that Z.qn/ is the set of zeroes of qn, which we assume to be simple. For a
parameter sn, let �sn

.p/ be a hexagonal domain for each p 2Z.qn/. The sn will be chosen so that these
domains are disjoint for distinct zeroes of qn. Set

(2-42) Qn D

[
p2Z.qn/

�sn
.p/:

We also assume that the boundary of each hexagon �sn
.p/ is formed from alternating horizontal and

vertical edges. We let zZ.qn/ (resp. zQn) denote the preimage of the set Z.qn/ (resp. Qn) under the
projection map � W zX !X.

Proposition 2.28 (cf [46, Theorem 4.2]) There are constants A, c0 and C0, all independent of n, and
an integer N such that the following hold. For n > N and sn 6 c0, there is a �n–equivariant map …�,
from the leaves of zFh

qn
in the complement of zQn to a collection zƒh;�

n of geodesics in H3, which factors
through un. Moreover , for any p 2 zX n zQn,

dH3.un.p/;…
�.p//6A exp.�tnC0/;

and the derivative along the horizontal leaf through p (in the jqnj metric) isˇ̌
jd…�j � 2

ˇ̌
6A exp.�tnC0/:

Proposition 2.28 is proven in [46] in the context of harmonic maps from surfaces to complete hyperbolic
3–manifolds, but the arguments apply equally well in the equivariant case. One important simplification
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in the situation here is that the domain Riemann surface X is fixed. As a consequence, the technical
issues of “thin flat cylinders” that are dealt with in [46] do not play a role here. In particular, the set PR

in that reference may be taken to be equal to Qn defined in (2-42).

The proposition is a consequence of the following construction. For sn chosen sufficiently small and
n sufficiently large, there is a train track �n � X nQn and "n > 0, "n! 0 as n!C1, satisfying the
following.

(i) Let z�n �
zX be the preimage of �n, and set z��n D un.�n/. Then the branches of z��n have length

O.tn/ and geodesic curvature O."n/.

(ii) The images by un of the leaves of the horizontal foliation zFh
qn

in the complement zX n zQn can be
straightened to give a lamination zƒh;�

n �H3.

(iii) The lamination zƒh;�
n is C 1

"n
–carried by z��n ; cf [54, page 73].

In the case where Fh
qn

has saddle connections and we have chosen a maximalization in the sense of

Definition 2.25, we can enlarge the quotient ƒh;�
n of zƒh;�

n to a lamination ƒ�n as follows. By Remark 2.27,
the maximalization gives rise to finitely many quasitransverse paths in X, which we may assume to lie
in the complement of Qn. (A technical point is that Minsky creates his track by extending components
of Qn to “slice” through long rectangles of vertical trajectories; it is straightforward to check that this
slicing can be done in a way corresponding to the maximalization discussed here.) The image by un of
the lifts of these can be straightened to geodesics that are asymptotic on one side to leaves in ƒh;�

n . The
map …� in Proposition 2.28 can be extended to a map on these leaves satisfying the same estimates.

We next choose coordinates, which we refer to as (canonical) qn–coordinates, that are adapted to qn and
hence to the map un. To this end, note that, away from the zeroes of qn, we may choose coordinates
zn D xn C iyn in a patch so that, in those coordinates, the quadratic differential qn is expressed as
qn D dz2

n . These are useful because the horizontal lines in this coordinates are both the leaves of the
horizontal foliation of qn, and also integrate the directions of the maximal stretch (eigendirection) of
the tangent map dun. Naturally, both the domain and the pullback metric diagonalizes with respect to
these coordinates. Following Minsky [46, equation (3.1)], the pullback metric u�n ds2

H3 with respect to
the harmonic map un as above can be written in terms of qn–coordinates .xn;yn/ as

(2-43) u�n ds2
H3 D 2t2

n .coshGnC 1/ dx2
n C 2t2

n .coshGn� 1/ dy2
n ;

where Gn D sinh�1.2Jn/ and Jn is the Jacobian determinant of the map un. The factor t2
n enters since

the harmonic map un has Hopf differential t2
n qn.

Proposition 2.29 The pullback metric by un in terms of canonical coordinates for qn satisfies

(2-44) u�s ds2
H3 D 4t2

n dx2
CO.exp.�2ctn//

in C k for some constant c > 0.
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Proof As shown in [46, Lemma 3.4], there is a constant B such the quantity Gn satisfies the pointwise
estimate

Gn.p/ <
B

cosh d

for every point p at t2
n qn–distance at least d > 0 to the zero set of qn. Since we are here considering

points outside some fixed neighborhood of the zero set of qn, this distance is bounded below by ctn for
some constant c > 0. It follows that

Gn.p/ < 2Be�ctn ;

and consequently
coshGn.p/ < 1C 4B2e�2ctn :

Inserting this last estimate into (2-43) implies the claim.

This last estimate implies the following properties away from the zeroes of the Hopf differential: the
images of the horizontal trajectories under a high-energy map un are stretched by the factor tn, up to a
small and rapidly decaying error; the images by un of those trajectories have exponentially small geodesic
curvature; and the images by un of the vertical trajectories have lengths exponentially decaying in tn.

2.5.2 High-energy harmonic maps near the zeroes of q We continue with the notation of the previous
section. Let Du.p/ denote the oriented totally geodesic plane in H3 tangent to the image of du.p/.

Proposition 2.30 For every fixed " > 0 there exists a constant N such that the following holds. There is
an ideal hyperbolic triangle ��H3 such that for every n >N the distance between the tangent plane
Dun.p/ �H3 to � is less than ", for every point p 2 zZ.qn/.

An analogous statement for two-dimensional targets is the main theorem of [59]. The present version is a
reflection for harmonic maps of aspects of the approximate solutions constructions in Section 2.1.4.

Proof For each fixed n and p 2Z.qn/, consider a lift z�sn
.p/ of the hexagon �sn

.p/�X to zX. Let h1,
h2 and h3 denote the three horizontal edges of�sn

.p/, which we parametrize in an orientation-preserving
way by a parameter 06 s 6 1. Proposition 2.28 shows the existence of geodesics ci W Œ0; 1�!H3 such that
the distance between un.hi.s// and ci.s/ is less than A exp.�tnC0/ for all 06 s 6 1. By Proposition 2.29
the length of each ci is of order tn. Furthermore, the distance between each consecutive pair of endpoints
un.hi.1// and un.hiC1.0// satisfies an exponentially small bound. It follows from elementary hyperbolic
geometry that there is an ideal hyperbolic triangle � �H3 which is at distance at most " to the lines
un.hi/. Since un. z�sn

.p// is contained in the convex hull of these lines, it follows that� and un. z�sn
.p//

have at most distance ", for all sufficiently large n. To see that also the tangent plane Dun.p/ lies "–close
to �, we compare the harmonic map un with the harmonic map vn which maps �sn

.p/ to H3 and has
boundary values the edges of �. Its image is contained in � and, since the boundary values of un and vn

differ by at most ", it follows by standard estimates on harmonic maps that both are C 1–close in the
interior of �sn

.p/. This implies the assertion.
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2.6 Harmonic maps to R–trees

2.6.1 Definitions An R–tree is a complete length space T such that any two points can be joined by a
unique path parametrized by arc length. This path is called the geodesic between the points, say p; q,
and it is denoted by pq. We shall be interested in trees admitting isometric actions of �1, and we will
always assume the action is minimal in the sense that there is no proper �1–invariant subset of T. In such
a situation, we obtain a length function

`T W �1!R>0; Œ
 � 7! inf
p2T

dT .p; 
p/:

Scaling the metric (and hence `T ) by positive constants defines a projective class of length functions;
see [9].

Examples of R–trees come from the following construction. Let F be a measured foliation on † with
transverse measure �. Define the dual tree TF to the foliation as follows: if zF is the lift to the universal
cover, define a pseudodistance zd by

zd.p; q/D inffz�.c/ j c is a rectifiable path between p and qg:

Then the Hausdorffication of .z†; zd/ is an R–tree with an isometric action of �1; see [7, Corollary 2.6],
and also [50; 52]. In the case of a nonzero holomorphic quadratic differential q on a Riemann surface X,
we set Tq WD TFvq .

A morphism of R–trees is a continuous map f W T ! T 0 such that given any segment e � T , either f is
constant on e or e decomposes into a finite union of subsegments e1[ � � � [ ek such that f restricted to
each ei is an isometry onto its image. It is a fact that in the latter case f is either an isometry on e or a
folding, meaning that it identifies two or more subsegments.

Trees are examples of nonpositively curved metric spaces (NPC). Following ideas of Gromov [26],
Korevaar and Schoen [38; 39] and, independently, Jost [34], developed a theory of energy-minimizing
maps from Riemannian domains to NPC spaces. The fourth author [60; 61] studied the case of maps to
R–trees, which is the one relevant to this paper. We will need only very little from these results, and we
package a summary statement as follows; see [13] for more details.

Theorem 2.31 Let q be a nonzero holomorphic quadratic differential on a Riemann surface X. Then the
leaf space projection map u W zX ! Tq is an equivariant harmonic map. In general , let T be an R–tree
with an isometric action of �1, and let v W zX ! T be an equivariant harmonic map. Then:

(i) The map v is uniformly Lipschitz with constant proportional to E.u/1=2 (the constant depends on
the choice of conformal metric on X ).

(ii) The Hopf differential Hopf.v/D 4q is well-defined , and is a holomorphic quadratic differential
that is nonzero unless v is constant and the action is trivial.

(iii) We have v D p ıu, where u W zX ! Tq is projection as above , and p W Tq! T is a folding.
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We shall also need a version of the Korevaar–Schoen strong compactness theorem, stated here in
the limited context that we require. For positive constants tn ! C1, let Hn denote the hyperbolic
space H3, but where the metric has been rescaled: dsHn

D t�1
n dsH3 . For the following result, see also

[11, Theorems 2.2 and 3.1].

Theorem 2.32 [39, Proposition 3.7 and Theorem 3.9] Suppose that un W
zX ! Hn is a sequence of

�n–equivariant continuous finite-energy maps , and assume that un have a uniform modulus of continuity:
for each z there is a monotone function !.z;R/ such that limR#0 !.z;R/D 0 and

max
w2BR.z/

d.un.z/;un.w//6 !.z;R/:

Then there is an R–tree T with an isometric action of � such that the convex hulls of the images of the
un converge in the Gromov–Hausdorff sense to T . Moreover:

(i) The un converge to a continuous finite energy map u W zX ! T that is equivariant for this action.

(ii) If limk!1E.uk/¤ 0, then u is nonconstant.

(iii) If the un are equivariant harmonic maps , then so is u; and in this case , if qn (resp. q) is the Hopf
differential of un (resp. u), then t�2

n qn! q.

We refer to the limiting tree T as a Korevaar–Schoen limit. By Theorem 2.31, T is a folding of Tq .

2.6.2 The Morgan–Shalen compactification There is a compactification of R.†/ that restricts on the
Fricke space to Thurston’s compactification of Teichmüller space. The ideal points are given by projective
classes of nontrivial isometric actions of �1 on R–trees.

Given Œ�� 2R.†/, define

`� W �1!R>0; Œ
 � 7! inf
x2H3

dH3.x; �.
 /x/:

Theorem 2.33 [49] Consider a sequence Œ�n� 2R.†/. Then , up to passing to subsequences , one of the
following occurs:

(i) There is a Œ�� such that Œ�n�! Œ�� 2R0.†/.

(ii) There is a minimal nontrivial action of �1 by isometries on an R–tree T , and numbers "n # 0, such
that for all 
 2 �1,

lim
n!1

"n`�n
.
 /D `T .
 /:

For the next result we refer to [11, Theorem 3.2], and we note that in the proof of that result harmonicity
is not used.
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Theorem 2.34 Suppose that there is a constant C > 0 such that the rescalings tn in Theorem 2.32 satisfy

C�1E1=2
n 6 tn 6 CE1=2

n ;

where En is the energy of the �n–equivariant harmonic map. Then the length function of the action of �1

on the Korevaar–Schoen limit appearing in Theorem 2.32 is in the projective class of the Morgan–Shalen
limit of the sequence Œ�n�.

3 Bending

In this section we introduce a geometric notion of bending along �–equivariant maps u W zX !H3, and of
pairs .A; ‰/. When .A; ‰/ is a Higgs pair, the connection r D dAC‰ has monodromy �, and u is the
�–equivariant harmonic map from Theorem 2.14, then we prove that these notions coincide asymptotically
at high energy; see Theorem 3.11.

3.1 Bending of maps and connections

3.1.1 Bending of maps We begin with a definition.

Definition 3.1 A tent T in H3 is a pair of totally geodesic compatibly oriented half planes meeting
along a geodesic; see Figure 3. The geodesic is called the crease and is denoted by 
T . By “compatibility
of the orientations” we will mean the induced orientation on 
T from the two half planes is opposite.
The dihedral angle ˇT 2 .��; �� of the two planes is called the angle of the tent. This is the angle
obtained by rotating the outward normal of one plane (call it A) to the inward normal of the other plane B,
counterclockwise in the plane orthogonal to 
T , with the orientation of this orthogonal plane being
induced by the orientation of 
T coming from plane A. Note that one obtains the same angle going from
B to A. By convention, if the union of the half planes forms a totally geodesic plane, then ˇT D 0; if the
half planes coincide (necessarily with opposite orientations), then ˇT D � .

We will use the following intrinsic way of measuring the angle of a tent. A crossing of a tent T is a
continuous path c W Œ0;L�! T �H3 satisfying the following conditions:

(i) The points c.0/ and c.L/ lie in different components of T n 
T , say T� and TC, respectively.

(ii) There is 0<L1 <L such that c restricted to the interval Œ0;L1� is a C 1 curve in T� meeting 
T

at c.L1/ transversely.

(iii) There is L1 6L2 <L such that c restricted to the interval ŒL2;L� is a C 1 curve in TC meeting

T at c.L2/ transversely.

(iv) The path c restricted to ŒL1;L2� is a portion of 
T .
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Figure 3: Tents.

The orientation of the tent gives a choice of tangent N.L1/ to 
T at the crease where a crossing intersects
c.L1/. More precisely, N.L1/ is oriented to the left with respect to limt"L1

c0.t/. Let N.t/ be the
parallel translate of N.L1/ along c. Let n0 and nL denote the unit normals to T� and TC, compatible
with the orientations. Let zn.t/ denote the parallel translation of n0 along c. Then zn.L/ and nL lie in
the plane orthogonal to N.L/. This plane inherits an orientation from N.L/ and the orientation on H3.
Then ˇT is the angle from nL to zn.L/ with respect to this orientation.

Let u W zX !H3 be a continuous �–equivariant map, and fix zp; zq 2 zX.

Assumption 1 The map u is smooth at both zp and zq, and du has maximal rank there.

Definition 3.2 The bending‚u. zp; zq/ 2R=2�Z of u from zp to zq is defined as follows. Recall that Du. zp/

and Du.zq/ denote the oriented totally geodesic planes in H3 tangent to the images of du.p/ and du.q/.

(i) If Du. zp/ and Du.zq/ meet along a geodesic 
T , let ˇT be the dihedral angle of the tent constructed
from the two half-planes in Du. zp/ n 
T and Du.zq/ n 
T which contain u. zp/ and u.zq/, respectively,
and where the orientation of the tent comes from the orientation on Du. zp/. Then set ‚u. zp; zq/

equal to ˇT if the orientation of Du.zq/ is compatible with the orientation of the tent in the sense of
Definition 3.1, and to � CˇT if the orientation is incompatible.

(ii) If Du. zp/ and Du.zq/ do not intersect, let c be the geodesic between the planes, oriented at one
endpoint to agree with the normal of Du. zp/. If this orientation of c agrees with the normal to Du.zq/

at the other end point, set ‚u. zp; zq/D 0. If the orientation is opposite, set ‚u. zp; zq/D � .

(iii) If Du. zp/ and Du.zq/ coincide, set ‚u. zp; zq/D 0 if they have the same orientation, and ‚u. zp; zq/D�

if they have opposite orientations.

By �–equivariance of u we clearly have

‚u.g zp;gzq/D‚u. zp; zq/

for all zp; zq satisfying Assumption 1, and all g 2 �1. It is also clear that

‚u. zp; zq/D‚u.zq; zp/:
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3.1.2 Bending of connections Let dA be a unitary connection on E, inducing a connection (also
denoted by dA) on the bundle

p
�1gE of traceless hermitian endomorphisms of E. Fix a one-form

‰ 2�1.X;
p
�1gE/. We will suppose that the connection r D dAC‰ is flat with monodromy �. Let

k W Œ0;L�!X be a piecewise C 1 curve.

Assumption 2 The linear map

‰.k.�// W Tk.�/X !
p
�1gE;k.�/

has maximal rank at � D 0;L.

By analogy to the bending of maps in the previous section, we let N.0/ and N.L/ be endomorphisms
that are a positive multiple of ‰.J. Pk.0// and ‰.J. Pk.L//. We define the bending angle ‚k.A; ‰/ of the
pair .A; ‰/ along k using parallel translation with respect to A in place of the Levi-Civita connection.
Namely, consider any endomorphism field V .�/ along k that is a positive multiple of the endomorphism
field � 7! ‰. Pk.�//. If k is C 1 on subintervals Œ�i�1; �i � for i D 1; : : : ;m, let …k;A

� denote parallel
transport in

p
�1gE along k with respect to A. Then for � 2 Œ�i�1; �i � let

(3-1) zn.�/ WD…k;A
� …k;A

�i�1
� � �…k;A

�1
n.0/

be the total parallel transport, where n.0/ denotes the endomorphism
p
�1ŒN.0/;V .0/�. Denote by

P .L/ �
p
�1gE;k.�/ the orthogonal complement to N.L/, and use N.L/ and the orientation of

p
�1gE;k.L/ to give P .L/ an orientation. Now define the bending of the pair .A; ‰/ along the path k,

‚k.A; ‰/ 2R=2�Z;

to be the angle from
p
�1ŒN.L/;V .L/� to the orthogonal projection of the endomorphism zn.L/ to P .L/

when the latter is nonzero (otherwise bending is undefined).

It is immediate from this definition that the bending ‚k.A; ‰/ is invariant under the action of unitary
gauge transformations on .A; ‰/. We may therefore write ‚k.Œ.A; ‰/�/ for the bending of the gauge
equivalence class of the pair .A; ‰/.

3.2 Asymptotic bending of Higgs pairs

In this section we relate the total bending in connections to periods of Prym differentials on the spectral
curve.

3.2.1 Horizontal lifts for limiting connections Recall the definition of the spectral curve � W yXq!X

associated to q 2QD�.X / in (2-14). Our first goal here is to compute the parallel transport in the bundle
p
�1gE of hermitian endomorphisms with respect to the (singular) flat connection dA1 from (2-10).

The connection A1 induces a unitary connection on the pullback bundle ��E, which we denote by yA1.
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After pulling back to the spectral curve, the calculation of the parallel transport can be carried out in
terms of a suitably chosen oriented frame which we define (cf (2-23)) as

(3-2) W1 D

�
0 �i��1k�k

i�k�k�1 0

�
; W2D

�
0 ��1k�k

�k�k�1 0

�
; W3 D

�
�1 0

0 1

�
;

with commutation relations

(3-3) ŒWi ;Wj �D 2i sgn.ij k/Wk :

From (2-24) we have

(3-4) ��‰1 D �
�ˆ1C�

�ˆ�1 D 2 Re.�SW/˝W2:

Proposition 3.3 The following hold :

(i) The hermitian endomorphism W2 lies in ��LC
ˆ1

.

(ii) The collection fW1;W2;W3g gives an yA0
1–parallel oriented orthonormal frame for the bundle

p
�1g yE .

Proof The proof is a straightforward calculation. We only check that d yA0
1

W1 D 0. For this we use that
one can locally express � as q1=2, so that

d.��1
k�k/D d.q�1=4

xq1=4/D 1
4
q�1=4

xq�3=4x@xq� 1
4
q�5=4

xq1=4@q D 1
4
q�1=4

xq1=4.x@ log xq� @ log q/;

using that x@q D 0. On the other hand, recall from (2-9) that

A0
1 DA0C

1
2
.Im x@ log kqk/

�
�i 0

0 i

�
DA0C

1
8
.x@ log xq� @ log q/

�
�1 0

0 1

�
;

where A0 denotes the Chern connection. Now with d yA0
1

W1DdW1CŒ yA
0
1^W1�, the last two calculations

show that the upper-right entry of d yA0
1

W1 vanishes, and similarly for the other entries.

For the following, we make the same assumptions on the path k as in Section 3.2.2.

Proposition 3.4 Let A1 be the unitary connection associated to a limiting configuration in H �1
1 .q/, and

write A1 DA0
1C �, where �D y�˝W2, for y� a harmonic Prym differential ; see Section 2.2.3. Define

the function # W Œ0;L�!R by

(3-5) #.�/ WD �2i �

Z
yk.Œ0;��/

y�:

Then for j 2 f1; 2; 3g, the parallel transport of the hermitian endomorphisms Wi.yk0/ of ��Eyk.0/ along
the path yk with respect to the connection d yA1 is given , for 0� � �L, by

(3-6)

…
yk; yA1
� W2.yk.0//DW2.yk.�//;

…
yk; yA1
� W1.yk.0//D cos.#.�// �W1.yk.�//� sin.#.�/ �W3.yk.�//;

…
yk; yA1
� W3.yk.0//D sin.#.�/ �W1.yk.�//C cos.#.�/ �W3.yk.�//:
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Proof The first line of (3-6) is clear, since W2 is parallel and commutes with �. For the rest, using (3-3),

d yA1W1 D y�˝ ŒW2;W1�D�2iy�˝W3;

d yA1W3 D y�˝ ŒW2;W3�D 2iy�˝W1:

Writing
zW1 D cos# �W1� sin# �W3 and zW3D sin# �W1C cos# �W3;

we see that d yA1
zW i D 0 if the derivative P# D�2iy�. The result follows.

3.2.2 Quasitransverse paths with vertical ends Let q 2 SQD�.X / be a fixed holomorphic quadratic
differential, and consider a piecewise C 1 path k W Œ0;L�! X that is quasitransverse to the horizontal
foliation Fh

q and meets the zeroes of q precisely at its endpoints. In particular, this means that the
parameter interval of k admits a subdivision 0 D �0 < �1 < � � � < �m D L such that k restricted to
Œ�i�1; �i � alternates between vertical and horizontal paths. We say that k has vertical ends if the following
conditions are satisfied:

(i) The limits lim�#0
Pk.�/ and lim�"L

Pk.�/ are both nonzero.

(ii) The restrictions kjŒ0;�1� and kjŒ�m�1;L� are both vertical.

We will denote by @k the section of k�.K�1
X
/ induced by the derivative Pk of k. The quadratic differential q

may be viewed as a section of Sym2.KX /, and so it defines a function on Sym2.K�1
X
/. We will denote

this function applied to @k˝ @k by q.@k; @k/. In local coordinates where q D q.z/ dz2, this is simply
q.@k; @k/.�/D q.z.�//.Pz.�//2. With this understood, if k is parametrized by arc length locally near
� D 0;L, condition (ii) above implies that

(3-7)
q.@k; @k/.�/

kqk.k.�//
D�1

for � in Œ0; �1� or Œ�m�1;L�. Recall from Section 2.4.1 that since k is assumed to be quasitransverse, we

may find a lift yk W Œ0;L�! yXq of the path k to the spectral curve such that Im.�SW.
Pyk//6 0. The path yk

is piecewise C 1 and meets the zeroes of �SW precisely at its endpoints. Using condition (ii) above, it is
easy to show that the endomorphisms Wi.yk.�// in (3-2) extend continuously to the closed interval Œ0;L�.

In the following we suppose that t > t0 is sufficiently large. Let .At ; ‰t / be a solution to the self-duality
equations and consider a nearby approximate solution .Aapp

t ; ‰
app
t / such that the difference between these

two pairs is exponentially small in t ; cf Section 2.1.4. We indicate with a hat the respective pullbacks of
‰t and ‰app

t to
p
�1g yE–valued differential forms along yk on the spectral curve, ie we set

y‰t WD �
�‰t 2�

1. yXq;
p
�1g yE/;

and similarly for ‰app
t .
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Proposition 3.5 Fix a piecewise C 1 path k W Œ0;L�!X that is quasitransverse to the horizontal folia-
tion Fh

q with vertical ends and meets the zeroes of q precisely at its endpoints. Then for � D 0;L, we
have that

y‰
app
t .@yk.�//DW1.yk.�// and y‰

app
t .J ı @yk.�//DW2.yk.�//:

Proof Recall that near the zeroes of q,

ˆ
app
t D

�
0 eht .kqk/ kqk1=2

e�ht .kqk/ kqk�1=2 q 0

�
:

In terms of the tautological section, ��q D �2, the pullback of ˆapp
t to the spectral curve can be written

in the form

(3-8) ŷ app
t D

 
0 eht .k�k

2/k�k��1

e�ht .k�k
2/k�k�1� 0

!
˝�SW:

Similarly,

(3-9) . ŷ
app
t /� D

 
0 e�ht .k�k

2/k�k��1

eht .k�k
2/k�k�1� 0

!
˝�SW:

Now we calculate
�SW.@yk/D �.yk/˝�

�.@k/;

.�SW.@yk//
2
D .��q/.yk/˝��.@k/2 D ��.q.@k; @k//:

Since k is assumed to be quasitransverse with vertical ends, by the condition (3-7) it follows that, locally
near � D 0;L, �

�SW.@yk/

k�k ı yk

�2

D ��
�

q.@k; @k/

kqk ı k

�
D�1;

and so by the choice of lift we have

(3-10)
�SW.@yk/

k�k ı yk
D�i:

Similarly,

(3-11)
�SW.J ı @yk/

k�k ı yk
D 1:

Inserting @yk into (3-8) and rearranging the resulting terms slightly yields along yk the endomorphism field

ŷ app
t .@yk/D

 
0 eht .k�k

2/ k�k2��1

e�ht .k�k
2/� 0

!
�SW.@yk/

k�k
;

and similarly

. ŷ
app
t /�.@yk/D

 
0 e�ht .k�k

2/k�k2��1

eht .k�k
2/� 0

!
�SW.@yk/

k�k
:
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By Lemma 2.4(iv), exp.˙ht .k�k
2// � k�k�1 for k�k small. Together with (3-10) this implies the

convergence
y‰

app
t .@yk/!

�
0 �ik�k��1

ik�k�1� 0

�
DW1 as k�k! 0:

In a completely analogous way one obtains that along yk,

y‰
app
t .J ı @yk/!

�
0 k�k��1

k�k�1� 0

�
DW2 as k�k! 0:

This proves the proposition.

3.2.3 Limit of bending for connections We relate the limit as t !1 of the bending ‚k.At ; ‰t /

defined in Section 3.1.2 to periods of Prym differentials on the spectral curve. This is the key result of
this section.

Proposition 3.6 Fix a holomorphic quadratic differential q 2 SQD�.X /. Let k W Œ0;L� ! X be a
piecewise C 1 path , and fix a lift yk W Œ0;L�! yXq to the spectral curve such that � ı yk D k. Assume that k

is quasitransverse to the horizontal foliation Fh
q with vertical ends , and meets the zeroes of q precisely at

its endpoints. Consider a family Œ.At ; t ‰t /� 2H �1.t2qt / for qt 2 SQD�.X /. Letting t !1, suppose
that qt ! q and that Œ.At ; t ‰t /� converges to Œ.A1; ‰1/� 2 H �1

1 .q/ in the sense of Definition 2.5.
Write A1 DA0

1C � with a unique one-form � 2H1.X�q ;Lq/ as in Proposition 3.4. Then

(3-12) lim
t!1

‚k.Œ.At ; ‰t /�/D�2i

Z
yk

y� mod 2�Z;

where y� 2H1
odd.
yXq; iR/ is the Prym differential corresponding to � from Proposition 2.11.

Proof The proof is in seven steps.

Step 1 By Definition 2.5 (Approximation), there exists a family of one-forms �t 2 �
1.X; gE/ as in

equation (2-10) such that the difference .Aapp
t .qt /C �t ; ‰

app
t .qt //� .At ; ‰t / satisfies an exponentially

decaying C ` bound in the parameter t . Hence the difference of the holonomies along the path k in (3-1)
corresponding to the connections A

app
t .qt /C �t and At tends to zero as t !1. We conclude that it

suffices to prove the claim with the family .At ; ‰t / replaced by the family .Aapp
t .qt /C �t ; ‰

app
t .qt //.

Step 2 Recall from Section 3.2.2 that by our assumptions on the path k, the parameter interval of k

admits a subdivision 0 D �0 < �1 < � � � < �m D L such that k restricted to the subintervals Œ�i�1; �i �

alternates between vertical and horizontal paths. Since qt ! q as t!1, and hence also the zeroes of qt

converge to the zeroes of q, we may choose a family kt W Œ0;L�! X of piecewise C 1 paths with the
following properties:

(i) kt meets the zeroes of qt precisely at its endpoints,

(ii) kt is quasitransverse to the horizontal foliation Fh
qt

with vertical ends, and

(iii) kt ! k in C 1 as t !1 on each subinterval Œ�i�1; �i � for 1� i �m.

For each t , we then fix a lift ykt W Œ0;L�! yXqt
to the spectral curve �t W

yXqt
!X such that �t ı

yk D k.
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Step 3 For each fixed parameter t consider the family .Aapp
s .qt /C �t ; ‰

app
s .qt // for s > 0. We recall

from Section 3.1.2 the definition of bending, and apply it to the pair .Aapp
s .qt /C �t ; ‰

app
s .qt // and the

path kt .

We shall be working on the spectral curve yXqt
. After applying a unitary gauge transformation to

.A
app
s .qt /C �t ; ‰

app
s .qt // we may assume that its pullback along the projection �t W

yXqt
!X is the pair

. yA
app
s .qt /C y�t ; y‰

app
s .qt //, where y�t 2H1

odd.
yXqt ; iR/ is a Prym differential as in Section 2.2.2. We also

fix a lift ykt W Œ0;L�! yXqt
of kt such that � ı ykt D kt . Keeping � D 0;L fixed, by Proposition 3.5 we

may define the endomorphisms

yVt .�/ WD y‰
app
s .qt /.@ykt .�//DW1.yk t .�// and yNt .�/ WD y‰

app
s .qt /.J ı @yk t .�//DW2.yk t .�//:

Note that these do not depend on s. Using the commutation relations from (3-3) it follows that
p
�1Œ yNt .�/; yVt .�/�D

p
�1ŒW2.yk t .�//;W1.yk t .�//�D 2 W3.yk t .�//:

Next we define the endomorphism

ynt .0/ WD
p
�1Œ yNt .0/; yVt .0/�D 2 W3.yk t .0//

and consider its parallel transport

(3-13) znt;s.L/ WD…
ykt ; yA

app
s .qt /Cy�t

L
ynt .0/

in
p
�1gE along the path yk t with respect to the connection yAapp

s .qt /C y�t . Let yPt .L/�
p
�1 yg

E;ykt .L/

be the orthogonal complement to yNt .L/DW2.yk t .L//. By Proposition 3.3, a frame for this complement
is determined by W1.yk t .L// and W3.yk t .L//. We use this ordering of the frame to define an orientation
on the plane yPt .L/. The bending

(3-14) ‚k.A
app
s .qt /C �t ; ‰

app
s .qt // 2R=2�Z

is then given by the angle from
p
�1Œ yNt .L/; yVt .L/�D 2 W3.yk t .L// to the orthogonal projection of the

endomorphism znt;s.L/ to yPt .L/ with respect to this orientation.

Step 4 Recall from Section 2.1.4 that A
app
s .qt /!A0

1.qt / as s!1 in C1 locally on compact subsets
of X�qt

, where A0
1.qt / is the Fuchsian connection from (2-9). Then clearly we also have the local

C1 convergence A
app
s .qt /C �t ! A0

1.qt /C �t as s!1. In preparation for Step 5, we now prove
that there exists t0 D t0.q/ > 0 such that the following holds: For every " > 0 and ` > 0 there exists
s0 D s0."; q; `/> t0 such that

(3-15) kk�t .A
app
s .qt /C �t /� k�t .A

0
1.qt /C �t /kC `.Œ0;L�/ < "

for all s > s0 and every t > t0. Here k�t .A
app
s .qt /C �t / denotes the pullback of the connection A

app
s .qt /

along the path kt W Œ0;L�!X, and likewise for k�t .A
0
1.qt /C �t /.
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Locally on each punctured disk D�p endowed with polar coordinates .r; �/, the connection A
app
s .qt / takes

the form

(3-16) A
app
s .qt /.r; �/D fs.r/

�
�i 0

0 i

�
d�;

with a smooth function fs W Œ0;1/ ! R as in Section 2.1.4. Hence, writing the radial and angular
components of the path � 7! kt .�/ as kt .�/D .r.�/; �.�//, it follows that

(3-17) k�t A
app
s .qt /.�/D fs.r.�//

�
�i 0

0 i

�
P�.�/ d�:

Since by assumption kt has vertical ends and meets the zeroes of qt precisely at its endpoints, we see that
P�.�/ and hence k�t A

app
s .qt / vanishes identically outside some proper subinterval ŒL1;L2�� Œ0;L�. This

subinterval may be chosen independently of t . Definition 2.5(iii) implies that (after shrinking the disk Dp

slightly if necessary, so that kt .ŒL1;L2�/ lies outside Dp) the family of functions s 7! fs ı r converges in
C `.ŒL1;L2�/ to the function f1 ı r as s!1. This proves the claim.

Step 5 Keep the constant t0 D t0.q/ > 0 from Step 4. We consider the bending in (3-14) for large s, and
prove that for every " > 0 there exists s0 D s0."; q/> t0 such that

(3-18)
ˇ̌̌̌
‚k.A

app
s .qt /C �t ; ‰

app
s .qt //�

�
�2i

Z
ykt

y�t mod 2�Z

�ˇ̌̌̌
< "

for all s > s0 and every t > t0.

To see this, first note that after passing to the spectral curve yXqt
, by Step 3 we have the estimate

(3-19) kyk
�

t
yA

app
s .qt /� yk

�
t
yA0
1.qt /kLp.Œ0;L�/ < "

for all s > s0 and every t > t0, where yA0
1.qt / denotes the pullback of A0

1.qt / along the projection
� W yXqt

!X. Let us now compare the parallel transports

znt;s.L/D�2…
ykt ; yA

app
s .qt /Cy�t

L
W3.yk t .0//

from (3-13) with the parallel transport

znt;1.L/ WD �2…
ykt ; yA

0
1.qt /Cy�t

L
W3.yk t .0//:

It follows from (3-19) that there is some constant C > 0 such that

(3-20) jznt;s.L/� znt;1.L/j< C "

for all s > s0 and every t > t0. Now by Proposition 3.4, we have

znt;1.L/D sin.#t .L// �W1.ykt .L//C cos.#t .L// �W3.ykt .L//; where #t .L/D�2i �

Z
ykt

y�t :

Observe that the endomorphism znt;1.L/ is contained in the plane yPt .L/ defined in Step 2, and that the
angle from

p
�1Œ yNt .L/; yVt .L/�D 2 W3.ykt .L// to znt;1.L/ with respect to the orientation on Pt .L/ is

given by #t .L/.
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The estimate in (3-18) now follows from (3-20) and the definition of bending in Step 2.

Step 6 By assumption and Steps 1 and 2, letting t !1 we have that qt ! q, �t ! � and kt ! k,
which immediately implies that

(3-21) lim
t!1

Z
ykt

y�t D

Z
yk

y�:

Step 7 Combining Steps 5 and 6 we infer that in the estimateˇ̌̌̌
‚k.A

app
t .qt /C �t ; ‰

app
t .qt //�

�
�2i

Z
yk

y� mod 2�Z

�ˇ̌̌̌
6
ˇ̌̌̌
‚k.A

app
t .qt /C �t ; ‰

app
t .qt //�

�
�2i

Z
ykt

y�t mod 2�Z

�ˇ̌̌̌
C

ˇ̌̌̌�
�2i

Z
ykt

y�t

�
�

�
�2i

Z
yk

y�

�ˇ̌̌̌
;

both terms on the right-hand side tend to zero as t !1. The proposition is proved.

Remark 3.7 Proposition 3.6 and equation (3-12) apply equally well to the modified saddle connections
(which are not quasitransverse).

3.3 Comparison of bending

In this section we show that for large energy, the bending of equivariant harmonic maps defined in
Section 3.1.1 nearly coincides with the bending of the associated Higgs pair along quasitransverse paths.
The main result is Theorem 3.11 below. First, we need a somewhat standard preliminary result on parallel
translation, which we provide in the next subsection.

3.3.1 Parallel translation for C 1–close curves Let c and c0 be piecewise C 1 curves Œ0;L�!H3. Fix
" > 0. We say that c and c0 are C 0

" –close if

(3-22) max
06t6L

dH3.c.t/; c0.t// < ":

Let us view c and c0 as curves in the hermitian model D of H3; see Section 2.3.2. Recall the metric on
T H3˝C defined in (2-35) for the trace model. A C 0–bound on the distance in H3 between c and c0

induces one on the pointwise norms of .1� cc�1
0
/ and .1� c0c�1/. Using this fact it is easy to prove the

following.

Lemma 3.8 There are constants C."/> 1, for which lim"!0 C."/D 1, with the following significance.
If c and c0 are C 0

" –close , then for all M 2 T H3˝C, and all t 2 Œ0;L�,

C."/�1
kM kc.t/ 6 kM kc0.t/ 6 C."/kM kc.t/:

Definition 3.9 Let c and c0 be as above. Fix " > 0. We say that c and c0 are C 1
" –close if they are

C 0
" –close, and

max
06t6L

kPcc�1
� Pc0c�1

0 kc0.t/ < ":
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We emphasize that here we view Pcc�1 and Pc0c�1
0

as sections of the trivial bundle T H3˝C 'H3 �C3,
and using this trivialization we compare vectors at arbitrary fibers. Note that because of Lemma 3.8, the
relationship of being C 1–close is symmetric (after possibly multiplying " by a distortion that is nearly 1).
The curves are not assumed to be parametrized by arc length.

Lemma 3.10 Let c and c0 be curves in H3. Suppose v.0/ 2 Tc.0/H
3 and v0.0/ 2 Tc0.0/H

3 are unit
vectors , and let v.t/ and v0.t/ denote parallel translation along c.t/ and c0.t/, respectively. If c and c0

are C 1
" –close with 0< "6 1=4L, then

max
06t6L

kv.t/� v0.t/kc0.t/ 6 2kv.0/� v0.0/kc0.0/C 4L":

Proof By (2-36) we have

Pv.t/D 1
2
Œ Pcc�1; v.t/� and Pv0.t/D

1
2
Œ Pc0c�1

0 ; v0.t/�:

Write
v.t/D v0.t/CR.t/ and Pcc�1

D Pc0c�1
0 C r.t/

for traceless matrix valued functions R.t/ and r.t/. Hence,

(3-23) 2 PR.t/D Œr.t/; v0.t/CR.t/�C Œ Pc0c�1
0 ;R.t/�:

Now
d

dt
kR.t/k2c0

D
d

dt
tr.Rc0R�c�1

0 /

D tr. PRc0R�c�1
0 /C tr.Rc0

PR�c�1
0 /C tr.R Pc0R�c�1

0 /� tr.Rc0R�c�1
0 Pc0c�1

0 /:

One can see that the last two terms on the right-hand side of the equation above are canceled by the last
term on the right-hand side of (3-23) (and the similar equation for the adjoint). Thus we are left with

d

dt
tr.Rc0R�c�1

0 /D 1
2

tr.Œr; v0CR�c0R�c�1
0 /C 1

2
tr.Rc0Œv

�
0 CR�; r��c�1

0 /:

Since the norm of r is less than ", and v0.t/ is a unit vector, we see that

(3-24) d

dt
kR.t/k2c0

6 2".kR.t/k2c0
CkR.t/kc0

/:

Let 06 tm 6L be the point at which kR.t/k2c0
attains it maximum. Then from (3-24) we have

(3-25) kR.tm/k
2
c0
�kR.0/k2c0

D

Z tm

0

d

dt
kR.t/k2c0

dt 6 2"

Z tm

0

.kR.t/k2c0
CkR.t/kc0

/ dt

6 2L".kR.tm/k
2
c0
CkR.tm/kc0

/:

Since we assume "6 1=4L, it follows from (3-25) that

kR.tm/kc0
6 2.kR.0/kc0

C 2L"/:

This completes the proof.
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3.3.2 Asymptotic equivalence of bending

Theorem 3.11 Let K � QD�.X / be a cone on a compact subset of SQD�.X /, and fix ı > 0. Let
u W zX !H3 be a �–equivariant harmonic map , r D dAC‰ a Higgs pair. Let Hopf.u/D�q 2K, and
let zp� and zpC be lifts of zeroes p� and pC of q. Let k be a quasitransverse path (or modified saddle
connection) from p� to pC that lifts to a path zk from zp� to zpC. Assume k has small vertical ends and
meets the zeroes of q only at p� and pC. Then if kqk1 is sufficiently large (depending on K; "; k), we have

j‚u. zp
�; zpC/�‚k.A; ‰/j< ı:

Proof Write 0D �0<�1< � � �<�mDL, so that k restricted to Œ�i�1; �i � alternates between C 1 vertical
and horizontal paths. By assumption, kjŒ0;�1� and kjŒ�m�1;L� are vertical. Let T be the tent with crease 
T

associated to the totally geodesic planes Du. zp�/ and Du. zpC/. By Proposition 2.30, the images by u of
sufficiently small hexagonal domains � zp� and � zpC are C 1–close to the planes Du. zp�/ and Du. zpC/.
By Proposition 2.29 it follows that the image of kjŒ�1;�m�1� is C 1

" –close to 
T . By Proposition 3.5, for
sufficiently small vertical ends, the normal vector to Du. zp�/ is close to the vector n.0/ in Section 3.1.2,
and similarly at Du. zpC/. Hence, by Lemma 3.10, parallel translation of the normal vector to �u. zp�/

along 
T is close to the parallel translation zn along k. The result now follows from Theorem 2.14(i)
and (ii), and the discussion in Section 3.1.1.

4 Pleated surfaces

In this section we review the notion of a transverse cocycle for a lamination. The key results are

� Lemma 4.4, where we relate the bending cocycle of a pleated surface to its geometric bending in
the sense of Section 3.1.1,

� Theorem 4.5, where we relate the group of bending cocycles to the torus of Prym differentials, and

� Theorem 4.16, where we show that the limit of a bending cocycle is determined by the periods of a
Prym differential.

4.1 Transverse cocycles

4.1.1 Definitions Let ƒ be a maximal geodesic lamination on a hyperbolic surface S with underlying
smooth surface †. Recall from Section 2.4.1 that P.ƒ/ denotes the set of plaques in H2 n zƒ, and note
that there is a free action of �1 on P.ƒ/ with finite quotient. Let G denote an abelian group that is either
R or S1'R=2�Z. A G–valued transverse cocycle for ƒ is a map ˛ which sends every arc k transverse
to ƒ to an element ˛.k/ 2G, and which satisfies the following two properties. First, for k D k1[ k2 a
decomposition of k into two subarcs with disjoint interiors, we have ˛.k/D ˛.k1/C˛.k2/. Second,
˛ is invariant under ƒ–transverse homotopies, in the sense that if k can be taken to k 0 by a homotopy
of S that preserves ƒ, then ˛.k/D ˛.k 0/. In particular (see [5, page 7]), a G–valued transverse cocycle
may be taken to be a function ˛ W P.ƒ/�P.ƒ/!G satisfying:
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(i) Equivariance ˛.gP;gQ/D ˛.P;Q/ for all g 2 � .

(ii) Symmetry ˛.P;Q/D ˛.Q;P /.

(iii) Additivity ˛.P;Q/D ˛.P;R/C˛.R;Q/, if R separates P from Q.

We shall henceforth denote transverse cocycles by � for G D R and ˇ for G D S1, and in the latter
case we will continue to use additive notation in (iii). Denote by H.ƒ;G/ the space of transverse
cocycles. For G D R, this is a real vector space of dimension 6g � 6; see [6, page 119]. We refer to
elements � 2H.ƒ;R/ as shearing cocycles. The space H.ƒ;S1/ has two components, each of which is
a .6g�6/–dimensional torus. We denote by Ho.ƒ;S1/ the component containing the identity cocycle:
ˇ.P;Q/D 0 for all P;Q. We refer to elements ˇ 2Ho.ƒ;S1/ as bending cocycles. We will sometimes
make reference to a norm k � k on H.ƒ;R/, which is fixed once and for all.

Convergence of transverse cocycles for families of laminations may be defined in a weak sense as
functions on pairs of plaques. More precisely, recall from Remark 2.27 that there is a one-to-one
correspondence between the lifts of zeroes of q and the plaques P.ƒ/ of any maximalization ƒ of ƒh

q . If
qn! q 2QD�.X /, thenƒh

qn
converges in the Hausdorff sense to a lamination withƒh

q as a sublamination.
For maximalizations ƒn, we define convergence ƒn!ƒ again in the Hausdorff sense. In this case, for
n sufficiently large we have bijections

rƒƒn
W P.ƒ/ ��! P.ƒn/:

Definition 4.1 With the notation above, suppose ƒn!ƒ. Let ˛n (resp. ˛) be either shearing or bending
cocycles for ƒn (resp. ƒ). We say that ˛n converges to ˛ (and write ˛n! ˛) if

lim
n!1

˛n.r
ƒ
ƒn
.P /; rƒƒn

.Q//D ˛.P;Q/ for all P;Q 2 P.ƒ/:

We note for clarification that rƒ
ƒn

does not, in general, preserve the separation relations of plaques, so the
pullback ˛n ı rƒ

ƒn
of a cocycle ˛n on ƒn will not necessarily satisfy the additivity condition on P.ƒ/.

We will also need the following elementary properties of cocycles (recall the definition of H.�;G/ from
Section 2.4.2).

Proposition 4.2 Let q 2QD�.X / and let ƒ be a maximalization of ƒh
q .

(i) There is a finite set P 0 � P.ƒ/ such that if ˛ 2 H.ƒ;G/ vanishes on P 0 � P 0, then ˛ vanishes
identically.

(ii) There is a complete train track � carrying ƒh
q , and a bijection H.�;G/'H.ƒ;G/.

Proof Assertion (i) follows by finite-dimensionality. More precisely, let � 0 be a train track that snugly
carriesƒ in the sense of [6, page 114]. Then by [6, Theorem 11], H.ƒ;G/'H.� 0;G/. The identification
assigns weights to branches of � 0 that are equal to the value of the cocycle on the plaques defined by the
complementary regions. Since there are only finitely many of these, the claim follows. For assertion (ii),
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the existence of � follows from [54]. A train track � 00 that snugly carries ƒ can be obtained by splitting
� along branches corresponding to saddle connections. Hence, H.ƒ;G/'H.� 00;G/ as above. On the
other hand, H.� 00;G/'H.�;G/ from properties of splittings. This completes the proof.

4.1.2 Shearing cocycles Given a marked hyperbolic surface S with maximal geodesic lamination ƒ,
there is a uniquely defined transverse cocycle � 2 H.ƒ;R/ called the shearing cocycle of S . For the
precise definition see [5, page 10]. We will need the following formula for � .

Let P;Q 2 P.ƒ/, and choose an arc k from P to Q in zS that is transverse to zƒ. For each component d

of k n zƒ disjoint from P and Q, let xC
d

and x�
d

be the positive and negative endpoints, respectively, of
the (oriented) segment d . We let d� D P \ k and dC DQ\ k. Define xC

d�
to be the positive endpoint

of d�, and x�dC the negative endpoint of dC. Denote the leaves of zƒ passing through x˙
d

by g˙
d

, and
similarly for xd˙

. For each component d , d˙, let h W g˙
d
!R denote the (signed) distance from the foot5

determined by viewing the geodesics as boundaries of the ideal triangle corresponding to the component d .
With this understood, we have the following expression for the shearing cocycle of S (see [5, Lemma 7]):

(4-1) � .P;Q/D h.xC
d�
/� h.x�dC/C

X
d¤dC;d�

.h.xC
d
/� h.x�d //:

We also note the following:

(i) If � is the shearing cocycle of a hyperbolic surface S and ˛ 2H.ƒ;R/ with k˛k sufficiently small,
then � C ˛ is the shearing cocycle of some hyperbolic surface [5, Proposition 13]. This is the
generalization of Thurston’s earthquake map.

(ii) The map T .†/!H.ƒ;R/ which associates the shearing cocycle to a hyperbolic metric is injective
onto an open convex polyhedral cone C.ƒ/; see [5, Corollary 21].

4.1.3 Bending cocycles Recall from the introduction that a pleated surface PD .S; f;ƒ; �/ consists
of a marked hyperbolic surface S , a maximal geodesic lamination ƒ�†, and a map f W zS !H3 that
is totally geodesic on the components of zS n zƒ, maps leaves of zƒ isometrically to geodesics, and is
�–equivariant for a representation � W �1 ! PSL.2;C/. Such a �, which in this paper we take to be
in Ro.†/, is necessarily irreducible; see [5, page 36]. We sometimes denote pleated surfaces by just
f W zS !H3 when context provides the other data.

In addition to the shearing cocycle for the hyperbolic surface S , there is a uniquely defined bending
cocycle ˇ 2H0.ƒ;S1/. As in the previous section, we will need a particular formula for this, which we
describe below.

Choose a �–equivariant differentiable vector field v on H3 “transverse to the image” f .zƒ/ of zƒ under f .
For the existence of such we refer to [6, Section 11]. As in Section 4.1.2, let k be an arc transverse to zƒ

5The foot of an edge of an ideal triangle is the point of intersection with the orthogonal geodesic from the opposing vertex.
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from plaque P to Q. At each endpoint x˙
d

we have two vectors: the ambient vector field v restricted
to x˙

d
, and the vector n which is normal to the plane containing the plaque R of zS n zƒ which contains

d . Here the orientation of n is such that the induced orientation of f .R/ by f followed by n is the
orientation of H3. Orient these leaves of ƒ (thought of here as a leaf of zƒ�H3) so that its orientation
is from right to left with respect to k. The final geometric object we need is the normal plane N to the
image f .g˙

d
/, which inherits an orientation from f .g˙

d
/ and the orientation of H3.

Set an;v.x
˙
d
/ to be the angle from the projection of v onto the normal plane N to n 2N . Then we have

the following expression for the bending cocycle (see [6, Lemma 36]):

(4-2) ˇ.P;Q/D an;v.x
C

d�
/� an;v.x

�
dC
/C

X
d¤dC;d�

Œan;v.x
C

d
/� an;v.x

�
d /� 2R=2�Z:

We will use some of the details behind this expression. By [6, Lemmas 4 and 5] there are constants K,
A and B, depending only on k, such that the number of components d of k nƒ with divergence radius
r.d/D r 2N is at most K, and the length `.d/ of any such component is bounded by Be�Ar.d/. Write
the sum in (4-2) as

(4-3)
X

d¤dC;d�

Œan;v.x
C

d
/� an;v.x

�
d /�D

1X
rD0

X
d¤dC;d�I r.d/Dr

Œan;v.x
C

d
/� an;v.x

�
d /�:

Since v is Lipschitz, there is a constant c0 > 0 such that

jan;v.x
C

d
/� an;v.x

�
d /j6 c0`.d/6 coBe�Ar.d/:

Hence, the tail in the sum (4-3) is estimated by

(4-4)
ˇ̌̌̌ 1X

rDR

X
d¤dC;d�I r.d/Dr

Œan;v.x
C

d
/� an;v.x

�
d /�

ˇ̌̌̌
6 c0KB

1X
rDR

e�Ar 6 c0KB

A
e�AR:

Bonahon proves that given a bending cocycle ˇ 2 Ho.ƒ;S1/ and a hyperbolic surface S , there is an
equivariant map f W zS !H3, well-defined up to isometries, totally geodesic on the plaques and pleated
along the lamination ƒ, and with bending cocycle ˇ . The map f is by construction equivariant with
respect to some representation whose conjugacy class Œ�� 2 Ro.†/ depends only on the isomorphism
class of the marked hyperbolic surface S , the lamination ƒ, and the bending cocycle ˇ . Indeed, this
construction gives a parametrization of (a portion of) Ro.†/. Set Œ��DBƒ.� ;ˇ/, where � 2 C.ƒ/ is the
shearing cocycle of S . Then we have:

Theorem 4.3 [5, Theorem D] The map (1-5) is a biholomorphism onto an open subset.

4.1.4 Bending cocycles and geometric bending The following result will be crucial for the analysis
later on. It provides a relationship between the bending cocycle discussed here and the geometric bending
introduced in Section 3.1.1.
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Lemma 4.4 Fix ı > 0 and some positive integer M . There is "0 > 0, depending only on ı, M and ƒ,
with the following property. Let f W zS !H3 be a pleated surface with pleating lamination ƒ. Further ,
given P;Q2P.ƒ/ and a transverse arc k from P to Q, suppose k can be written as a union k1[� � �[km,
where m6M , and for each i the pointed geodesics bounding the plaques intersecting ki are C 1

" –close
for " 6 "0 at their intersections with ki . Then there is a finite collection fPig

N
iD0

of plaques separating
P and Q, with P0 D P and PN DQ, such that for any choice of points zpi 2 Pi in the interiors of the
plaques ,

(4-5)
ˇ̌̌̌
ˇ.P;Q/�

NX
iD1

‚f . zpi�1; zpi/

ˇ̌̌̌
< ı:

Proof Recall that ˇ.P;Q/D ˇ.k/. By the estimate in (4-4), we may find plaques Pi as in the statement
of the lemma so that if we set di D k \Pi , then

(4-6)
ˇ̌̌̌
ˇ.k/�

NX
iD1

Œan;v.x
C

di�1
/� an;v.x

�
di
/�

ˇ̌̌̌
< 1

2
ı:

We also assume, after a possible further subdivision, the leaves gC
i�1

and g�i of ƒ through xC
di�1

and x�
di

are C 1
" –close for every i D 1; : : : ;N (where " is to be determined). This does not affect (4-6). It suffices

to show that for " sufficiently small,

(4-7) jan;v.x
C

di�1
/� an;v.x

�
di
/�‚f .x

C

di�1
;x�di

/j<
ı

2N
:

Here we have extended the definition of ‚f .x
C

di�1
;x�

di
/ from that of ‚f .pi�1;pi/ by using the tangent

planes to the plaques containing xC
di�1

and x�
di

to determine the dihedral angles. To simplify notation, set

�i WD an;v.x
C

di�1
/� an;v.x

�
di
/ and ‚i WD‚f .x

C

di�1
;x�di

/;

and let Di denote the totally geodesic plane containing the plaque Pi . Equation (4-7) follows from simple
estimates in H3. The idea is that either both �i and ‚i are close to 0, close to � , or the points xC

di�1

and x�
di

are close to the intersection 
T WDDi�1\Di . If the latter holds, then parallel translation of the
vector v to the crease of the tent formed by Di�1 and Di only changes v by a small amount, and so the
difference �i of angles of the parallel translates is nearly the dihedral angle of the tent.

Step 1 Let yi�1 be the endpoint of the geodesic A from x�
di

to the plane Di�1. Define an;v.yi�1/ to
be the angle from the projection of v to the normal to Di�1, where the projection is onto the parallel
translation of the normal plane to the leaf gC

i�1
from xC

di�1
to yi�1. By the hypothesis that gC

i�1
and g�i

are C 1
" close at their basepoints xC

di�1
and x�

di
, we see that xC

di�1
and yi�1 are at most a distance 2" apart;

then since v is continuous, we have that an;v.yi�1/ and an;v.x
C

di�1
/ are equal up to an error comparable

to �. Let jAj denote the length of A, and note that the normal to Di�1 is tangent to the segment A at
the point yi�1. Let us denote the normals to the planes Di�1 at yi�1 and Di at x�

di
by ni�1 and ni ,

respectively.
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Step 2 Let zi�1 2Di�1 be the endpoint of the geodesic segment from Di and Di�1, in the case where
the planes do not intersect, and when they do intersect zi�1 2 
T is the endpoint of the geodesic from
yi�1 to 
T . In either case, let B be the geodesic from yi�1 to zi�1. The points fyi�1;x

�
di
; zi�1g give a

geodesic triangle in H3 with sides A, B, and a third geodesic C from x�
di

to zi�1 with length jC j. Let
˛, ˇ and 
 D �=2 be the corresponding angles of this right-angled geodesic triangle.

Step 3 Suppose that j‚i j > ı=4N , and j‚i ��j > ı=4N . By Definition 3.2, this means in particular
that Di and Di�1 intersect along a geodesic 
T .

Now A is orthogonal to Di�1, so its parallel translate along B is orthogonal to 
T at B \ 
T . As B is
also orthogonal there to 
T , we see that 
T meets the triangle ABC orthogonally, and hence C also
meets 
T orthogonally. Thus, ˛D‚i �� , so the assumption implies j˛j> ı=4N . By the hyperbolic law
of sines,

sinh jBj D sinh jAj �
sinˇ
sin˛

;

which implies that jBj and jC j are of the order of jAj D O."/. Thus, 
T is within O."/ of the points
yi�1 and x�

di
. Moreover, since the dihedral angle is bounded away from 0 and � , 
T must be C 1

" –close
to the leaves gC

i�1
and g�i . In particular, the normal planes to all three are close. The quantity �i can

then be computed by parallel translation along B and C . By Lemma 3.10, it follows that �i and ‚i are
close; in particular, less than ı=2N for " sufficiently small.

Step 4 Suppose that j�i j > ı=4N , and j�i ��j > ı=4N . Then ˇ is bounded away from �=2. For a
general right-angled hyperbolic triangle one has the relation

tanh jBj D sinh jAj � tanˇ:

Since cosˇ is bounded away from zero, one arrives at an estimate of the form: tanh jBj6 c0 sinh jAj for
some constant c0 depending on this bound. It again follows that 
T is close to the points xC

di�1
to x�

di
,

and therefore arguing as in the previous step, �i and ‚i are close.

Step 5 Suppose that neither of the assumptions of Step 3 or 4 hold. If j�i ��j< ı=4N , for example,
then since v is continuous it follows that the orientations of Di�1 and Di are compatible. Since the
assumption of Step 3 fails, this forces j‚i ��j< ı=4N . A similar argument holds if j�i j< ı=4N , and
so in either case j�i �‚i j< ı=2N .

4.2 Cocycles and Prym differentials

In this section we relate the notion of a bending cocycle to the spectral data parametrization of Higgs
bundles discussed in Section 2.2. Let q 2 QD�.X /, and choose any maximal geodesic lamination ƒ
containing ƒh

q as a sublamination. Thus, if the horizontal foliation of q has no saddle connections, then
ƒDƒh

q . Let yXq!X be the spectral curve associated to q. Recall that the Prym variety Prym. yXq;X /

contains J2.X / as a subgroup. The goal is to prove the following.
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Theorem 4.5 There is a group isomorphism ,

Ho.ƒ;S1/' Prym. yXq;X /=J2.X /:

This result is essentially contained in [54, Section 3.2] and [5, page 13]. The idea is to view a bending
cocycle in terms of periods of a Prym differential. The choice of sign is fixed by a choice of orientation
of the lift of the lamination on the spectral curve. Since this correspondence is so central to the present
paper, we present the details below.

As mentioned in the introduction, there is a nice interpretation of Theorem 4.5, which goes as follows:
the space Prym. yXq;X /=J2.X / is the fiber over q of the Hitchin fibration for (a component of) the
moduli space of PSL.2;C/–Higgs bundles, whereas Ho.ƒ;S1/ is a torus fiber over C.ƒ/ in Bonahon’s
parametrization of the character variety R.†/. Via the nonabelian Hodge correspondence, QD.X /'C.ƒ/,
and the moduli space of Higgs bundles is homeomorphic to R.†/.

4.2.1 Homology of branched covers Here we digress to make precise the construction of a homology
basis for the spectral curve. Consider the general case of a closed, oriented surface †. Suppose p W y†!†

is a connected branched double cover of † with branching set B and involution � , and let p� denote
the induced map H1.y†/!H1.†/ on homology. Let g; yg be the genera of †; y†. Recall by the Hurwitz
formula that 2yg D 2gC .2gC #B � 2/, where we have split the sum to indicate the dimensions of the
even and odd homology of y† under the involution � .

Proposition 4.6 There is an exact sequence

(4-8) 0! Z!H1.†;B/
�
�!H1.y†/

p�
�!H1.†/! 0;

where the map � is surjective onto the odd homology of y†.

Proof A topological model for the branched cover is given by decomposing B into pairs and introducing
branch cuts. In this setting, generators of the homology of y† are given as follows. First, choose generators
c1; : : : ; c2g for H1.†/. Let yc1; : : : ; yc2g be lifts in H1.y†/, ie p�.yck/D ck . We set �.ck/D yck � �.yck/.
Set N D #B=2. Now choose generators fai ; bj g for i D 1; : : : ;N and j D 1; : : : ;N �1 of H1.†;B/ as
in the diagram below. Define closed curves yai , ybi on y† as follows: choose lifts y̨i , y̌i of ai , bi , and set
yai D y̨i � �.y̨i/, ybi D

y̌
i � �. y̌i/. Then yai D �.ai/, ybj D �.bj /. With the orientation indicated, there is

a single relation:
PN

iD1 yai D 0. The collection fyai ; ybj ; yck ; �.yck/g generate H1.y†/. See Figure 4.

Note that with the appropriate choice of orientations we have the following intersection numbers:

yai � yaj D
ybi �
ybj D 0; yai �

ybi DC1; yaiC1 �
ybi D�1; yai �

ybj D 0 otherwise:

These are compatible with the relation. The intersection numbers of the fyckg and f�.yck/g are the same as
those of fckg on †, with the additional relations

(4-9) yai � yck D
ybj � yck D yck � �.yc`/D 0 for all i; j ; k; `:
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�

� � � � ��
a1 b1 a2 b2 a3

ya1

yb1

ya2

yb2

ya3

Figure 4: Branched surface.

By construction, p� ı � D 0. We show that � is surjective onto the odd homology, which will prove
exactness of the second part of the sequence. Indeed, for y
 2H1.y†/, write

y
 D
NP

iD1

riyai C

N�1P
jD1

sj
ybj C

2gP
kD1

mkyck C

2gP
kD1

nk�.yck/:

If y
 is odd then since yai and ybj are also odd, we have

�y
 D �.y
 /D�
NP

iD1

riyai �

N�1P
jD1

sj
ybj C

2gP
kD1

mk�.yck/C
2gP

kD1

nkyck :

So nk D�mk , and

(4-10) y
 D
NP

iD1

riyai C

N�1P
jD1

sj
ybj C

2gP
kD1

mk.yck � �.yck//D �
� NP

iD1

riai C

N�1P
jD1

sj bj C

2gP
kD1

mkck

�
:

Let us verify that ker� ' Z. Suppose 
 2 ker�. We can write


 D
NP

iD1

riai C

N�1P
jD1

sj bj C

2gP
kD1

mkck ;

0D �.
 /D
NP

iD1

riyai C

N�1P
jD1

sj
ybj C

2gP
kD1

mk.yck � �.yck//:

Taking intersections with appropriate elements yck and �.yck/, and using (4-9), it is easy to see that mk D 0

for all k. Now
0D �.
 / � yai D

N�1P
jD1

sj
ybj � yai D) 0D si�1� si ;

which implies sj D 0 for all j . Similarly,

0D �.
 / � ybj D

NP
iD1

riyai � bj D rj � rjC1;

which implies rj is a fixed constant for all j . Hence, 
 is a multiple of the class
PN

iD1 ai . This completes
the proof of (4-8).
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Remark 4.7 The map � is not canonically determined but depends rather on the choices of lifts of the
cycles ai ; bi ; ci .

4.2.2 Periods of Prym differentials Let us ignore the hyperbolic structure and consider ƒ�† (recall
the discussion at the end of Section 2.4.1). Because ƒ is maximal, if we choose a collection B of points,
one in each component of †nƒ, we may define a double cover y†!† branched at B. The preimage yƒ is
now orientable and we fix such once and for all. Recall the result of the previous section. In this case, the
map � in (4-8) is actually determined uniquely; see Remark 4.7. Indeed, we may assume representatives
for the cycles ai ; bi ; ci are transverse to ƒ. Then choose the lifts to y† to be positively oriented with
respect to the orientation of yƒ. This determines a choice of lifts: the only possible ambiguity would be
the existence of cycles not meeting ƒ, but this is ruled out by maximality.

Notice that we have an identification of the �1–orbits of plaques with the set B; let us denote this
�1–invariant map by p W P.ƒ/! B. Let z
 be a transverse C 1 curve from plaques P and Q in z†, and
let 
 be the projection from corresponding points p to q in B. As in the previous paragraph, there is a
unique lift y
 that is positively oriented transverse to yƒ, ie the lamination is oriented to the left at a point
of intersection of y
 \ yƒ. Now given a closed one-form y̨, with Œy̨� 2H 1

odd.
y†;R/, define

(4-11) �y̨.P;Q/ WD 2

Z
y


y̨:

The factor of 2 is added here for convenience; see Remark 4.9 below.

We first note that �y̨ is well-defined. First, it is independent of the choice of z
 ; for a relative homotopy
of z
 induces one on 
 , and therefore y
 , and this does not affect the integral of the closed form y̨. Second,
it is independent of choice of representative y̨. Any other choice can be written as y̨ C df , for an odd
R–valued function f , and since the endpoints of y
 lie on the fixed-point set of � , this contributes nothing
to the integral.

With this understood, we prove the following:

Proposition 4.8 The function �y̨ in (4-11) defines a transverse cocycle depending only on the class of y̨.

Proof Equivariance is clear, since the path z
 and gz
 define the same curve 
 on X. If the plaque R

separates P and Q, let z
 W Œa; b�!H, with z
 .a/D P and z
 .b/DQ. Then there exist a < t1 < t2 < b

such that z
 .t1/; z
 .t2/ 2 @R, and z
 Œa; t1/\R D z
 .t2; b�\R D ∅. After a homotopy, we may assume
z
 .t1; t2/ � R, and after a further homotopy we may assume there is t1 < c < t2 such that z
 .c/ is the
point in B associated to R. It follows that z
 can be written as a sum of quasitransverse paths from P

to R, and R to Q. The additivity then follows from the additivity of the integral in (4-11). It remains to
prove symmetry. Let x
 denote the curve 
 with the reverse orientation. Then we note that

(4-12) yx
 D �.y
 /:
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Indeed, �.y
 / is negatively oriented with respect to yƒ, and so both sides of (4-12) are positively oriented
lifts of x
 . Using (4-12), we have

(4-13) 1
2
�y̨.Q;P /D

Z
yx


y̨ D

Z
�.y
/

y̨ D �

Z
�.y
/

y̨ D �

Z
y


�� y̨ D

Z
y


y̨ D
1
2
�y̨.P;Q/:

This completes the proof.

Remark 4.9 Note that �y̨.P;Q/ is equal to a period of the differential y̨. Indeed, from the discussion
above, the curve y
PQ D y
 [ yx
 is a closed oriented curve on yXq , and by (4-13),

2�y̨.P;Q/D �y̨.P;Q/C �y̨.Q;P /D 2

Z
y


y̨ C 2

Z
yx


y̨ D 2

Z
y
PQ

y̨:

Conversely, by Proposition 4.6, every element of H odd
1
.y†;Z/ is represented by a linear combination of

oriented curves of the form y
PQ, for some lifts P , Q of some points p; q 2B. It follows that the periods
of y̨, and hence Œy̨� itself, are determined by �y̨.

We now return to the case where † has a Riemann surface structure X and the lamination comes from a
holomorphic quadratic differential.

Example 4.10 Let q 2QD�.X /, and let ƒ be a maximalization of ƒh
q in the sense of Lemma 2.26. The

Seiberg–Witten differential �SW from (2-22) is a holomorphic Prym differential on yXq . We can orient
the lift yƒh

q by the condition Re�SW > 0. The harmonic Prym differential Re�SW defines a canonical
transverse cocycle � can

q . By the previous remark, � can
q is determined by the real parts of the periods

of (1-10).

By Proposition 4.8, we have a map

(4-14) T WH 1
odd.
yXq;R/!H.ƒ;R/; Œy̨� 7! �y̨:

We can do a similar construction for bending cocycles. If Œy�� 2H 1
odd.
yXq; iR/, set

(4-15) ˇy�.P;Q/ WD �2i

Z
y


y� mod 2�:

By Remark 4.9, ˇy� only depends on the class of Œy�� modulo the lattice

(4-16) LDL. yXq/ WD Hom.H odd
1 . yXq;Z/; 2� iZ/:

Hence, we have a map

(4-17) B WH 1
odd.
yXq; iR/=L!Ho.ƒ;R=2�Z/; Œy�� 7! ˇy�:

Clearly, T is linear. By Remark 4.9, it is also injective. For if �y� � 0, then the periods of y� must all
vanish; hence, Œy��D 0. By [5, Proposition 1], the dimensions of the two sides of (4-14) agree. In the case
of the map B, notice that the lattices on either side are isomorphic under the map T . This proves the
following result.

Corollary 4.11 The maps T and B in (4-14) and (4-17) are isomorphisms.
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We observe the following:

Lemma 4.12 The inclusion induces an exact sequence:

0!H 1
odd.
yXq; 2� iZ/!L! J2.X /! 0:

Proof This is most easily seen in terms of the explicit generators in Section 4.2.1. Let y̨j , y̌j and yıj
be Poincaré duals of yaj , ybj and ycj , respectively. Then ıj WD � i.yıj � �

�yıj / 2ƒ for j D 1; : : : ; 2g is not
2� i–integral, but 2ıj 2H 1

odd.
yXq; 2� iZ/. It is easily seen that L is generated by H 1

odd.
yXq; 2� iZ/ and

all such elements ıj . This proves the result.

Proof of Theorem 4.5 Immediate from Corollary 4.11, Lemma 4.12 and equation (2-20).

Definition 4.13 The complex cocycle �SW 2Ho.ƒ;RC iR=2�Z/ is the one determined as in Corollary
4.11 by the periods of the real and imaginary parts of �SW.

4.3 Approximation by pleated surfaces

In this section, we define what it means for a family of harmonic maps and a family of pleated surfaces to
be asymptotic, and we relate the corresponding notions of bending. The intuition behind the definition
below may be summarized as follows: the image of a pleated surface f W zS !H3, for a representation
outside a large compact set, consists of a configuration of plaques sheared far apart from one another and
related by long leaves of the lamination. At the same time, the image of a harmonic map in a neighborhood
of the zeroes of a quadratic differential is nearly planar, whereas leaves of the horizontal foliation are
nearly geodesic. The approximation requires these planes and approximate geodesics to be close to the
plaques and leaves of the lamination of the pleated surface.

We furthermore assume that we have chosen maximal laminationsƒn (resp.ƒ) containingƒh
qn

(resp.ƒh
q),

and that ƒn!ƒ in the Hausdorff sense.

If there exists a pleated surface Pn D .Sn; fn; ƒn; �n/, then by the discussion in Section 2.4 there is a
bijective correspondence between the zeroes zZ.q/ and plaques of zƒn, and each bi-infinite leaf in Fh

qn

determines a leaf inƒh
qn

. The choice of maximalizationƒn is determined by a finite choice of “additional”
leaves; see Section 2.4.3. We also recall from Section 2.5.2 the definition of the hexagonal sets Qn and zQn.
With this understood, we make the following definition.

Definition 4.14 A sequence of pleated surfaces Pn D .Sn; fn; ƒn; �n/ is asymptotic to un if for any
" > 0 there is N so that if n>N , the following holds.

(i) The images by un of the horizontal leaves in zX n zQn are C 1
" –close to the corresponding leaves in zƒn.

(ii) If zp 2 zZ.qn/, then un. zp/ is "–close to the image by fn of the corresponding plaque P in zSn.
Moreover, the parallel translation of the tangent plane to the image of un at un. zp/ along the geodesic
to fn.P / makes an angle less than " with the totally geodesic subspace containing fn.P /.
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With this definition we are in a position to compare the notion of bending for sequences of harmonic
maps and of pleated surfaces that are asymptotic to each other.

Proposition 4.15 Let Pn D .Sn; fn; ƒn; �n/ be a sequence of pleated surfaces that is asymptotic to the
sequence un W

zX ! H3 of �n–equivariant harmonic maps in the sense of Definition 4.14. Denote by
ˇn 2Ho.ƒn;S

1/ the bending cocycles of Pn. Fix ı > 0. Then for any P;Q 2 P.ƒ/, there are plaques
fPig

N
iD0

between P and Q, with P0 D P and PN DQ, with centers zpi , such that

lim
n!1

�
ˇn.r

ƒ
ƒn
.P /; rƒƒn

.Q//�

NX
iD1

‚un
. zpi�1; zpi/

�
6 ı:

Proof We shall use the setup of Lemma 4.4. By the convergence ƒn!ƒ, the approximation of the
bending cocycle by sums over finitely many plaques is uniform. By a further subdivision, we may assume
that between any two centers zp.n/

i�1
! zpi�1 and zp.n/i ! zpi there are quasitransverse arcs (or modified

saddle connections) k
.n/
i with small vertical ends that meet the zeroes of the Hopf differentials qn only

at zp.n/
i�1

and zp.n/i . Then the images by un of the horizontal parts of k
.n/
i are C 1

" –close, and therefore by
the asymptotic assumption the same is true for the leaves of ƒn along k

.n/
i . Thus, the hypotheses of

Lemma 4.4 are satisfied for sufficiently large n, and we have

(4-18)
ˇ̌̌̌
ˇn.r

ƒ
ƒn
.P /; rƒƒn

.Q//�

NX
iD1

‚fn
. zp
.n/
i�1
; zp
.n/
i /

ˇ̌̌̌
< 1

2
ı

for large enough n. On the other hand, an argument analogous to the one used in the proof of that lemma
shows that

(4-19) j‚fn
. zp
.n/
i�1
; zp
.n/
i /�‚un

. zp
.n/
i�1
; zp
.n/
i /j6 ı

2N

for large n. Indeed, suppose that not both ‚fn
. zp
.n/
i�1
; zp
.n/
i / and ‚un

. zp
.n/
i�1
; zp
.n/
i / are within ı=4N of � ,

and neither are they both within ı=4N of 0. Then the image by un of the horizontal parts of k
.n/
i is

arbitrarily close to the crease of the tent formed by the totally geodesic planes associated to the plaques
Pi�1 and Pi . By Definition 4.14(ii), these are also close to the planes tangent to the image of un at
pi�1 and pi . The angle ‚fn

. zp
.n/
i�1
; zp
.n/
i / can be computed by parallel translation of the normal vectors

to the plaques, as discussed after Definition 3.1. These normal vectors are close to the normal vectors
to the planes defined by un. By Lemma 3.10, the parallel translations along un.k

.n/
i / are also close to

the parallel translations along the crease. Note that in the statement of that lemma, the term L" is small,
since " is exponentially small compared to the length of un.k

.n/
i / by Proposition 2.29.

Combining (4-19) with (4-18),ˇ̌̌̌
ˇn.r

ƒ
ƒn
.P /; rƒƒn

.Q//�

NX
iD1

‚un
. zp
.n/
i�1
; zp
.n/
i /

ˇ̌̌̌
< ı:

Since this holds for fixed N and ı, and any sufficiently large n, this completes the proof.
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4.3.1 Bending cocycles and periods We now combine the considerations above with the results of
Section 3.

Theorem 4.16 Let Pn D .Sn; fn; ƒn; �n/ be a sequence of pleated surfaces with bending cocycles ˇn.
We assume the following two conditions:

(i) The sequence Pn is asymptotic to the sequence un W
zX !H3 of �n–equivariant harmonic maps in

the sense of Definition 4.14.

(ii) The sequence .An; ‰n/ of Higgs pairs for �n converges to a limiting configuration with associated
Prym differential y�.

Let ˇy� be defined as in (4-15). Then in Ho.ƒ;S1/, limn!1 ˇn D ˇy�.

Proof Let ˇ be any subsequential limit of ˇn. By Proposition 4.15 it suffices to estimate the geometric
bending ‚un

. zpi�1; zpi/. Using the assumption in the proof of that result, we have a quasitransverse
path ki from pi�1 to pi that intersects the zeroes of q only at the endpoints. By Theorem 3.11, it follows
that ˇn.P;Q/ is approximated by the sum of ‚ki

.An; ‰n/. Since the latter is additive, ˇn.P;Q/ is
approximated by ‚k.An; ‰n/, where k is the image of a path from zp to zq. By Proposition 3.6, this
converges as n!1 to the period of y�.

5 Realization of pleated surfaces

The goal of this section is to prove the following result, which is part (i) of the Main Theorem.

Theorem 5.1 Let Œ�n� 2 Ro.†/ be a divergent sequence , un W
zX ! H3 the �n–equivariant harmonic

maps , and t2
n qn the Hopf differentials of un, where qn 2 SQD�.X / and tn !C1. We assume that

qn! q 2 SQD�.X /, and in some (hence any) realization of the associated geodesic laminations , choose
maximal laminations ƒn (resp. ƒ) containing ƒh

qn
(resp. ƒh

q), with ƒn!ƒ. Then there is an N such
that for all n > N , the class Œ�n� is in the image of the map Bƒn

in (1-5), ie there is a pleated surface
Pn D .Sn; fn; ƒn; �n/.

5.1 Realizing laminations

Definition 5.2 (cf [8, Definition I.5.3.4]) Letƒ�S be a geodesic lamination and � W�1.S/!PSL.2;C/.
Then ƒ is realizable if there exists a continuous �–equivariant map ' W zS!H3 that takes the leaves of zƒ
homeomorphically onto geodesics in H3.

The goal of this subsection is to prove the following.

Proposition 5.3 Assume the hypotheses of Theorem 5.1. Then for n sufficiently large , there is a marked
hyperbolic surface ySn such that the geodesic lamination ƒn �

ySn is realizable for �n.
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The proof of Proposition 5.3 will proceed by using the result of Minsky on high-energy harmonic maps
into H3 that we summarized in Section 2.5.1. This will lead to a suitable collection of train tracks carrying
the laminations ƒn.

5.1.1 The companion surface By [58, Theorem 3.1] and [29, Theorem 11.2] there is a marked
hyperbolic surface ySn such that the harmonic diffeomorphism vn WX ! ySn has Hopf differential t2

n qn.
Moreover, the class Œ ySn� 2 T .†/ is uniquely determined by t2

n qn. We let zvn W
zX !H2 denote the lift to

the universal cover. Via vn, the laminations ƒn are realized as geodesic laminations in ySn. As previously,
we continue to use the notation ƒn �

ySn to simplify the notation. Also, denote the lift by zƒn �H2.

Proposition 5.4 [47, Theorem 7.1] For A, c0 and C0 as in Proposition 2.28, and n>N and sn 6 c0,
there is a �1–equivariant map …� from the leaves of zFh

qn
in the complement of Qn to the leaves of

zƒh
n �H2 which factors through vn. Moreover , for any p 2 zX n zQn,

dH2.vn.p/;…�.p//6A exp.�tnC0/;

and the derivative along the horizontal leaf through p (in the jqnj metric) isˇ̌
jd…�j � 2

ˇ̌
6A exp.�tnC0/:

We note that in the case of a maximalization ƒn of ƒh
n, the map …� can be extended to the additional

leaves as remarked in Section 2.5.1.

The train track used in the proof of Proposition 2.28 may be chosen so that for n sufficiently large the
following holds.

(i) Let z�n;� D zvn.z�n/ �H2. Then the branches of z�n;� have length comparable to tn and geodesic
curvature O."n/ and meet tangentially.

(ii) The collection zƒh
n is C 1

"n
–carried by z�n;�.

Let y�n denote the shearing cocycle of ySn with respect to the lamination ƒn. We will need the following
result from [58]. (Stronger estimates are implicit in [18].)

Lemma 5.5 For any ı > 0 there is an N such that for all n>N ,

ky�n� tn� can
qn
k< ıtn:

5.1.2 Proof of Proposition 5.3 We first choose a constant ı > 0 so that there are disjoint arcs ci , one for
each branch bi of �n, such that ci intersects only bi , and this only once. The endpoints of ci lie in exactly
two components of X n �n; see Figure 5. Viewed on ySn, we may assume that the endpoints of ci are in
ySn nN2ı , where Nr is the r neighborhood of �n;�. We furthermore assume ƒn �Nı . These assumptions
are made possible by Proposition 5.4.
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c1

c2 c3

'
�!

Figure 5: Realization of ƒn.

Let g be a leaf of zƒn � H2. Then un ı zvn
�1 produces a well-defined geodesic g� � H3. Namely, if

`� zFh
qn

follows a train path such that the straightening of zvn.`/ is g, then g� is the straightening of un.`/.
For every intersection point p in g\ zci , we map p to the point '.p/D p� given by the nearest-point
projection of un ı zvn

�1.p/ onto g�. Let p1 and p2 be consecutive points on g, in the sense that there is
no other point in g\ zci in the geodesic segment gp1p2

. Extend the map along the segment

' W gp1p2

�
�! g�

p�
1

p�
2

as a homothety. Continuing in this way we obtain a continuous map ' W zƒn ! H3 mapping leaves
homeomorphically to geodesics. Moreover, it is clearly equivariant. Since zƒn is a closed subset, by the
Tietze extension theorem we can extend ' to a continuous map zxNı with the same Lipschitz constant.
Now we use a geodesic homotopy to join un ı zvn

�1 on the complement of zN2ı to this extension. This
defines the map ', and it is equivariant.

5.2 Perturbing the companion surface

For closed 3–manifolds the existence of a realization of a lamination leads to a pleated surface; see
[8, Theorem I.5.3.9]. The goal of this section is to prove the same in the equivariant case that we consider.
The rough idea is that the companion surfaces ySn obey the same asymptotics as the image of the equivariant
harmonic maps un, so the hyperbolic structure on the putative pleated surface should be obtained from a
small perturbation of that on ySn. For a similar construction, see [5, proof of Lemma 30].

5.2.1 The shearing cocycle from the realization We first describe a shearing cocycle associated to the
realization of ƒn obtained in Proposition 5.3. In order to do this, recall the notation of Section 4.1.2.

Let 'n W
zySn!H3 be a realization of ƒn. Let k be a transverse path to ƒn from plaque P to plaque Q,

and let d be a component of k nƒn. Then d corresponds to a plaque R 2 P.ƒn/, and therefore an ideal
triangle (also denoted by R) in H2. (Here R depends on n, but in this passage, the index n will not vary,
so we suppress the notational dependence.) Recall the lamination ƒ�n constructed in Proposition 2.28.
We first observe that under the correspondence between leaves of ƒn and ƒ�n, the geodesics in ƒ�n
associated to the edges of R form an ideal triangle R� �H3. This is because first, two geodesics in ƒ�n
corresponding to a pair of edges of R must be asymptotic on one end, since the map un is Lipschitz.
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Second, if the edges of R do not form a triangle in ƒ�n, then two such geodesics would collapse, and this
is ruled out (for sufficiently large n) by Proposition 2.30.

With this understood, set x
˙;�
d
D '.x˙

d
/. For each d , let hn W g

˙
d
!R denote the signed distance to the

foot of the geodesic, as described in Section 4.1.2. Similarly, define h�n W g
˙;�
d
!R for the corresponding

ideal triangles in H3. We then define

(5-1) �n.P;Q/ WD h�n.x
C;�
d�

/� h�n.x
�;�

dC
/C

X
d¤dC;d�

.h�n.x
C;�
d

/� h�n.x
�;�
d
//:

Lemma 5.6 Equation (5-1) defines a transverse cocycle �n 2H.ƒn;R/.

Proof For each d , the quantity jh�n.x
C;�
d

/ � h�n.x
�;�
d
/j may be bounded by the distance from x

C;�
d

to x
�;�
d

; see [5, proof of Lemma 8]. The map ' is Lipschitz with constant Mn, say, so

(5-2) jh�n.x
C;�
d

/� h�n.x
�;�
d
/j6Mn`.d/;

where `.d/ is the hyperbolic length of d . By the estimate in [5, Lemma 5], the sum in (5-1) converges,
and �n is therefore well-defined. The symmetry and additivity conditions of Section 4.1.1 are clear.

We shall require a more precise relationship between �n and y�n.

Lemma 5.7 Fix a finite set P 0 � P.ƒ/ and ı > 0. Then there is an N such that for all n >N and all
P;Q 2 P 0,

j�n.P;Q/� y�n.P;Q/j6 ıtn:

Proof Let An be the constant defined in [5, Lemma 3] for the hyperbolic structure ySn (this depends
on P and Q), which gives a lower bound on the length of a leaf in ƒn that intersects a transverse arc
from P to Q multiple times. Since the laminations ƒn converge, and since the ySn–length of a leaf of ƒn

is stretched by a factor of tn (see Proposition 2.29), it follows that there is a constant A0 > 0 such that
An >A0tn for all n and all choices of pairs in P 0.
Appealing again to [5, Lemma 5], we have

(5-3) `.d/6 B exp.�tnA0r.d//;

where r.d/ is the divergence radius of d and B is independent of n. Using (5-2) and (5-3), then as in
the proof of Lemma 4.4, there is a sequence of plaques separating P and Q, P D P0;P1; : : : ;PN DQ,
such that

�n.P;Q/D

NX
iD1

.h�n.x
C;�
di�1

/� h�n.x
�;�
di
//CE�n ;

where E�n DO.exp.�C tn// for some C > 0. Similarly, we have

y�n.P;Q/D

NX
iD1

.hn.x
C

di�1
/� hn.x

�
di
//CEn;

where En DO.exp.�C tn//.
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Each component di is associated with a zero pi 2Z.qn/. By Proposition 2.30 applied to the map vn near
the zero pi , there are curves k˙n in Fh

qn
such that the intersection i.Fvqn

; kn/ is uniformly bounded, and

lim
n!1

ft�1
n hn.x

˙
di
/˙ i.Fvqn

; k˙n /g D 0:

From the construction of the map ' in Section 5.1.2, it follows that for the same curves,

lim
n!1

ft�1
n h�n.x

˙;�
di

/˙ i.Fvqn
; k˙n /g D 0:

Since the sums in the expressions for �n and y�n are finite (independent of n), and P and Q range over a
finite set, we can satisfy the desired inequality for any ı > 0 if n is sufficiently large.

Recall the open convex polyhedral cone C.ƒn/ from the end of Section 4.1.2.

Proposition 5.8 For n sufficiently large , �n 2 C.ƒn/. Hence , there is a marked hyperbolic surface Sn

with shearing cocycle �n.

Proof The constant C defined in [5, Lemma 6] only depends on the combinatorics of the train
track supporting the laminations (cf [5, page 26]), and therefore may be taken independent of n. By
Proposition 4.2(i), one can choose a sufficiently large finite set P 0 � P.ƒn/ so that transverse cocycles
are determined by their values on P 0. Then using Lemma 5.7 with ı <A0=2C , we conclude that

k�n� y�nk<
An

2C

for n sufficiently large. The result then follows from [5, Proposition 13] and the proof thereof.

5.2.2 Proof of Theorem 5.1 It remains to prove the existence of a �n–equivariant pleated surface map
zSn!H3. Here we copy a construction in [5]. Let P 0 �P.ƒn/ be a finite collection of plaques. For each
P 2P 0, define fn;P0 on P � zSn nƒn to be the oriented isometry with the corresponding plaque P� �H3.
The complement zSn n

S
P2P0 P consists of a union of wedges. For each wedge †, the boundary consists

of two geodesics g and h belonging to plaques in P 0. Choose (if necessary) a diagonal 
 in † joining
opposite endpoints of g and h, and map 
 to the corresponding geodesic in H3. The diagonal 
 splits
† into two wedges, and there is a unique way to extend fn;P0 across these to make a continuous and
piecewise totally geodesic map zSn!H3, albeit without any equivariance property. Using Lemma 5.7,
as the finite sets P 0 exhaust P.ƒn/, the fn;P0 converge locally uniformly to a map fn. The fact that fn is
�n–equivariant and has shearing cocycle �n follows as in [5, proof of Lemmas 14 and 16].

6 Proofs

6.1 Limiting trees

We begin by proving a general result on “factorization” of equivariant harmonic maps to H2 and H3. Let
Œ�n� 2Ro.†/. Suppose we are given a sequence of pleated surfaces Pn D .Sn; fn; ƒn; �n/, where ƒn
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carries a transverse measure. Let vn W
zX !H2 denote the lift of the degree-one harmonic diffeomorphism

X ! Sn, the hyperbolic surface underlying Pn. We also set wn D fn ı vn W
zX !H3. Note that wn is

�n–equivariant, and since fn is totally geodesic on the complement of ƒn, which has measure zero, wn is
an L2

1
–map with the same energy as vn. Finally, as usual, we let un W

zX !H3 denote the �n–equivariant
harmonic map.

Let qn D Hopf.un/ and  n D Hopf.vn/. We may assume (after passing to a subsequence) that

qn

kqnk1
! q;

 n

k nk1
!  :

Let �HF.ƒn/ denote the Hubbard–Masur differential whose horizontal measured foliation is measure-
equivalent to the one corresponding to the lamination ƒn; see Section 2.4.1.

Proposition 6.1 Suppose the following hold :

(i)  2 SQD�.X /.

(ii) lim
n!1

k4 n��HF.ƒn/k1

k nk1
D 0.

Then
lim

n!1

kqn� nk1

k nk1
D 0:

The rest of this section is devoted to the proof of Proposition 6.1. We begin with the following.

Lemma 6.2 Under assumption (ii) above , there is a constant 0< c 6 1 such that

c �E.vn/6E.un/6E.vn/:

Proof The inequality E.un/6E.vn/ is automatic, since un is an energy minimizer among �n–equivariant
L2

1
–maps, and E.vn/DE.wn/. Choose any conformal metric on X, and induce a metric on zX. By the

uniform Lipschitz property of harmonic maps to NPC targets (cf [55, Theorem 2.2]), there is a constant B

independent of j such that for any points p; q 2 zX,

dH3.un.p/;un.q//6 B d zX .p; q/ �E
1=2.un/:

In particular, for 
 2 �1,

(6-1) �H3.�n.
 //6 B `X .
 / �E
1=2.un/:

By (ii), the laminationsƒn are close toƒh
 n

. By Poincaré recurrence, we may choose a nondegenerate leaf
of Fh

 n
and form a closed loop 
 by adding small segments of the vertical foliation; see [20, Corollary 5.3].

The image by fn of the lift of this loop consists of nearly geodesic segments joined by tiny orthogonal
segments, so the length approximates the translation length of the corresponding element in Iso.H3/. The
high-energy behavior of vn (cf [58] and Proposition 5.4) further implies that this length is approximated
by the transverse measure to Fv

 n
. From this we deduce the existence of a constant c0 > 0 such that

�H3.�n.
 //> c0 � i.
;Fv n=k nk
/E.vn/

1=2:
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We then observe that since 
 may be chosen to be long and nearly along the leaves of Fv
 n

, the X – and
j nj=k nk–lengths of 
 are comparable. The lemma then follows from (6-1).

Let .Cn; dH3/ be the closed convex hull of the image of wn in H3. We now consider the rescaled metric
spaces H2

n WD .H
2; t�1

n dH2/ and Wn WD .Cn; t
�1
n dH3/, where t2

n D E.vn/. By the uniform Lipschitz
property used in the previous proof, vn W

zX ! H2
n has uniform modulus of continuity in the sense of

Theorem 2.32. Since the map fn WH2! Cn is distance nonincreasing, it follows that wn W
zX !Wn has

uniform modulus of continuity as well.

Lemma 6.3 After possibly passing to a subsequence , we have the following properties:

(i) H2
n with the isometric action of �1 converges in the Gromov–Hausdorff sense to the R–tree T dual

to the quadratic differential  , up to scale , and the maps vn converge to a surjective �1–equivariant
harmonic map v W zX ! T .

(ii) Wn with the isometric action of �1 converges in the Gromov–Hausdorff sense to an R–tree T with
�1–action whose projective length function is equivalent to the Morgan–Shalen limit of f�ng. In
particular , the action is minimal. The maps wn converge to an equivariant map w W zX ! T of finite
energy.

(iii) The maps fn WH2
n!Wn converge to a morphism of trees f W T ! T . There is no folding of edges

in T corresponding to adjacent critical leaves of the horizontal foliation of  meeting at a zero.
Moreover , w D f ı v.

Note that the embedding, into the surface, of the graph of critical leaves of the horizontal foliation of  ,
induces a natural notion of adjacency of critical leaves.

Proof The convergence property in item (i) follows from [4; 53], and the harmonicity, surjectivity and
convergence to the map is in [60]. Convergence in (ii) follows by the construction in Theorem 2.32. Note
that the result of Lemma 6.2 guarantees that the length function has a well-defined nonzero limit and
that the resulting map v is nonconstant. The fact that the limiting tree is the Morgan–Shalen (minimal)
tree follows from Theorem 2.34. Item (iii) can be seen by taking the images of leaves of the horizontal
foliation of  and using the fact that the pleated maps fn take leaves of the lamination to geodesics. The
last assertion in (iii) is obvious.

We shall need some further properties of the map w W zX ! T .

Lemma 6.4 Fix z0 2
zX and Q2T . On a sufficiently small disk about z0, the function z 7! dT .w.z/;Q/

is subharmonic. Moreover , the Hopf differential of w is well-defined and equal to  .

Proof We may assume z0 is a point such that the map p folds at v.z0/, since otherwise f is a local
isometry, and the result follows since v is harmonic with Hopf differential  . Choose the disk U such
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that the image v.U / consists of geodesic segments e1; e2; e3 in T meeting at a vertex. Because f is
a folding, we may assume that f maps each ei isometrically onto corresponding geodesic segments xei

in T . Since folding cannot occur on edges, hence not on adjacent edges incident to a vertex, and the zero
in U is trivalent, we see that the xei are distinct.

Either the geodesic segment w.z0/Q intersects each xei in the point w.z0/ (which we call Case 1); or
w.z0/Q intersects some (and hence only one) xei in a nondegenerate segment (which we call Case 2).

Suppose we have Case 1. Then we claim that for lifts zQ of Q to T ,

v.z0/ zQ\ ei D fv.z0/g:

If this were not the case, let R be a nondegenerate segment in one of the intersections above, and set
xRD f .R/� T . Set R� D fv.z0/g, and let RC denote the other endpoint of R. The geodesic 
 in T 

from RC to zQ is disjoint from the interior of R. Hence, its image x
 in T is a path from xRC to Q that is
disjoint from the interior of xR. On the other hand, there is another path from w.z0/ to Q that is disjoint
from the interior of xR. This contradicts the fact that T is a tree.

Since the image of v on U is e1[ e2[ e3, it follows that

dT .v.z/;
zQ/D dT .v.z/; v.z0//C dT .v.z0/; zQ/

D dT .w.z/; w.z0//C dT .v.z0/; zQ/

D dT .w.z/;Q/� dT .w.z0/;Q/C dT .v.z0/; zQ/:

Since dT .v.z/;
zQ/ is subharmonic on U, so is dT .w.z/;Q/.

In Case 2, suppose without loss of generality that w.z0/Q\xe1 D
xR is a nondegenerate segment. Then

for small enough U ,

dT .w.z/;Q/D dT .w.z/; xR
C/C dT . xR

C;Q/:

Now because adjacent edges do not fold,

dT .w.z/; xR
C/D dT .v.z/;R

C/;

and the result follows as above. This proves the first part of the lemma. Taking QD w.z0/, we see that
dT .w.z/; w.z0//D dT .v.z/; v.z0//. Then the energy densities and Hopf differentials of w and v must
coincide; see [38, Sections 1.2 and 2.3]. The lemma is proved.

Again appealing to Theorem 2.34, the rescaled convex hulls of the images of the un converge to give
an equivariant harmonic map u W zX ! T to the Morgan–Shalen limit. Let us emphasize that since the
limiting length function is not abelian, there is a unique R–tree associated to the Morgan–Shalen limit
with the given limiting length function.
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Proof of Proposition 6.1 Applying assumption (ii) provides for the estimates in Lemma 6.2, and hence
the existence of the nontrivial map w in Lemma 6.3. Assumption (i) is used in proof of Lemma 6.4. With
this understood, consider D.z/D dT .u.z/; w.z// for z 2 zX. First, since u and w are equivariant for the
same action, D.z/ descends to a function on X. Next, observe that D.z/ is continuous, since both u and
w are Lipschitz. Let

S D fz 2X jD.z/Dmax
X

Dg:

Then S is closed and nonempty. Let z0 2 S. We may assume D.z0/ > 0, since otherwise u D w and
there is nothing to prove. Let Q 2 T be the midpoint of the geodesic u.z0/w.z0/, and choose an open
disk U about z0 sufficiently small so that u.U /\w.U /D∅. Since T n fQg is disconnected and hence
u.U / and w.U / lie in different components, any path from one image to the other must pass through Q.
In particular,

D.z/D dT .u.z/;Q/C dT .w.z/;Q/ for all z 2 U:

Since distance to a point is a convex function, and harmonic maps pull back convex functions to
subharmonic functions, the first term on the right-hand side is subharmonic. For U sufficiently small, the
second term is also subharmonic by Lemma 6.4. Hence, using the strong maximum principle this implies
that D is constant on U , and so S is open. Hence, D.z/ is a constant function.

We claim that u and w have the same Hopf differentials. Suppose D D D.z/ > 0. Then the claim
will follow (as above using the definition in [38]) by showing that for any z0 there is a small enough
neighborhood U about z0 such that

(6-2) dT .u.z/;u.z0//D dT .w.z/; w.z0// for all z 2 U:

Let R� T denote the edge from u.z0/ to w.z0/. Let

DCu D fz 2 U j u.z/ 62Rg and D�u D fz 2 U j u.z/ 2Rg:

Similarly, we define D˙w . Notice that since D.z/DD is constant, DCw DD�u and D�w DDCu . Hence, for
z 2DCu ,

D D dT .u.z/; w.z//D dT .u.z/;u.z0//C d.u.z0/; w.z//D d.u.z/;u.z0//� dT .w.z/; w.z0//CD;

whereas for z 2D�u ,

D D dT .u.z/; w.z//D dT .w.z/; w.z0//C d.w.z0/;u.z//D d.w.z/; w.z0//� dT .u.z/;u.z0//CD:

In both cases, the equality (6-2) holds. This proves that  D q.

In fact, since the energy densities of u and w agree, w is also energy minimizing. But equivariant
harmonic maps to nontrivial R–trees are unique (see [45]), so that in fact wD u. Choose p¤ p0 2H2 to
lie on a portion of a leaf `� zFh

q away from the zeroes. We assume that the map f W Tq! T maps the
image of ` isometrically onto a geodesic segment in T . By the definition of a folding and the dual tree,
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such an ` can always be found: one simply takes a preimage in a leaf of an arc in a tree and restricts to a
small enough subleaf that is not folded. By Theorems 2.31 and 2.32, we have

(6-3)
E.wn/

�1=2dH3.wn.p/; wn.p
0//DE.vn/

�1=2dH3.vn.p/; vn.p
0//! i.`;Fv /;

E.un/
�1=2dH3.un.p/;un.p

0//! i.`;Fvq /;

and since q D  , the right-hand sides are equal. On the other hand, from Lemma 6.3 and the fact that
w D u,

(6-4) lim
n!1

E.vn/
�1=2

�
dH3.wn.p/; wn.p

0//� dH3.un.p/;un.p
0//
�
D 0

(recall that t2
n DE.vn/). Equations (6-3) and (6-4) force

lim
n!1

E.un/

E.vn/
D 1;

which implies

(6-5) lim
n!1

kqnk1

k nk1
D 1:

Indeed, this follows because the un and vn are harmonic, and the energy converges [39, Theorem 3.9].
Alternatively, for vn we have the inequality

k nk1� 2�.g� 1/6E.vn/6 k nk1C 2�.g� 1/

(see [19]), and so

lim
n!1

E.vn/

k nk1
D 1:

Similarly, using Theorem 2.14(iii) and (iv), equation (2-24), and the asymptotics in Theorem 2.6, we also
have

lim
n!1

E.un/

kqnk1
D 1:

Hence, (6-5). The proposition now follows from the fact that  D q, (6-5), and the algebraic inequality

kqn� nk1

k nk1
6
ˇ̌̌̌
1�
kqnk1

k nk1

ˇ̌̌̌
C





 qn

kqnk1
�

 n

k nk1






1

:

6.2 Limiting configurations and limits of representations

6.2.1 Proof of the Main Theorem Part (i) of the Main Theorem is the content of Theorem 5.1. The
harmonic map estimates in Propositions 2.28 and 2.30 show that the pleated surfaces fn W

zSn!H3 are
asymptotic to the images of the harmonic maps un W

zX !H3 in the sense of Definition 4.14. This is
part (ii) of the theorem. Part (iii) then follows from Lemmas 5.7 and 5.5. Finally, part (iv) is a consequence
of the approximation in Definition 4.14 and Theorem 4.16. This completes the proof.
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6.2.2 Proof of Corollary 1.1 Let us first recast Theorem 4.5 in terms of train tracks. Let q 2QD�.X /.
Let � be a complete train-track (cf [54, pages 27, 175]) carrying the horizontal lamination ƒh

q . Let
Ho.�;S1/ be the connected component of the identity of the space of S1–valued cocycles on � . Then we
have the following.

Theorem 6.5 There is a group isomorphism

Ho.�;S1/' Prym. yXq;X /=J2.X /:

Proof Choose a maximalization of Fh
q in the sense of Definition 2.25. By Lemma 2.26, this gives a

maximalization ƒ of ƒh
q . Now ƒ is carried by the splitting � 0 of � corresponding to the maximalization.

Since there is a natural isomorphism

Ho.�;S1/'Ho.� 0;S1/'Ho.ƒ;S1/;

the result follows from Theorem 4.5. Note that from the construction leading to Corollary 4.11, the
isomorphism is independent of the choice of maximalization.

Fix X0 and q0 2 SQD�.X0/. The train track � may be chosen so that for any X 2 U0, � carries ƒh
q.X /,

where q 2SQD�.X / is the Hubbard–Masur differential for the measured foliation Fvq0
. A maximalization

ƒ.X / of ƒh
q.X / is carried by a splitting of � .

We now continue with the proof of the corollary. Let T be a Morgan–Shalen limit of Œ�n�. As we
have noted before, by Theorem 2.34 there is an equivariant harmonic map u W zX ! T that factorizes
through Tq0

. Note that since q0 has simple zeroes, the action on T is not abelian, and so the tree T is
uniquely (up to scale) associated to the projective length function of the Morgan–Shalen limit.

Consider X 2U0. Then as above, we have an equivariant harmonic map zX ! Tq0
X

v
�! T . We claim that

up to an overall scale, Tq0
X

is equivariantly isometric to Tq0
. From this, it follows that q0

X
D qX. To prove

the claim, let v W zX0! Tq0
X

be the equivariant harmonic map, and set w D f ı v W zX0! T . Then using
exactly the same argument as in Lemma 6.4 and the proof of Proposition 6.1, we conclude that the Hopf
differential of v is also q0. Since the action on Tq0

X
is “small”, it follows that the folding Tq0

! Tq0
X

induced by v from Theorem 2.31(iii) is actually an isometry; see [56, Proposition 3.1]. This proves the
first statement of the corollary.

To prove the statement about bending cocycles, let ySn.X0/ be the companion surfaces as in Section 5.1.1.
Recall the construction of a pleated surface Pn.X0/D .Sn.X0/; zfn;X0

; ƒn.X0/; �n/, where the shearing
cocycle of the hyperbolic surface Sn.X0/ is obtained as a perturbation of the one for ySn.X0/. We
may choose the train track �n;� used in that proof to carry both laminations ƒh

n.X / and ƒh
n.X0/. By

a straightforward energy estimate the scaling factors of the quadratic differentials on X and X0 are
comparable: ie there is a constant C depending only on U0 so that

C�1tn.X0/6 tn.X /6 C tn.X0/:
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Perturbing the shearing cocycle of ySn.X0/ as in (5-1), but now with respect to the lamination ƒn.X /

instead of ƒn.X0/, the argument in Section 5.2.1 carries over to show that there is a �n–equivariant
pleated surface with pleating locus ƒn.X /. By [5, Lemma 29], this must agree (up to isotopy) with the
pleated surface Pn.X /D .Sn.X /; zfn;X ; ƒn.X /; �n/ constructed in Theorem 5.1 with the basepoint X.

Now the complementary regions of the lift z�n;� of the train track to H2 give the identification of the
plaques for Pn.X / and Pn.X0/. Each plaque P is realized in two ways (say PX and PX0

) as an ideal
triangle in H3, and where by the asymptotic estimates on the harmonic maps un (cf Proposition 2.30), the
triples of leaves in ƒn.X / and in ƒn.X0/ bounding P are close over a large hexagonal region of P . For
a pair of plaques P and Q, fix points zp 2 PX, zp0 2 PX0

, zq 2QX and zq0 2QX0
. Then as in the proof of

Lemma 4.4, the proximity of the ideal triangles for Pn.X / and Pn.X0/ when n is large gives an estimate
on j‚ zfn;X

. zp; zq/�‚ zfn;X0
. zp0; zq0/j. From (4-5), we see that the bending cocycles ˇn.X0/ and ˇn.X /

give the same limit as a cocycle in H0.�;S1/. By the Main Theorem, this common limit determines
the periods of �X0

and �X, and therefore identifies their cohomology classes under the Gaus–Manin
connection. This concludes the proof of Corollary 1.1.

6.2.3 Proof of Corollary 1.2 Consider the situation of the Main Theorem. Suppose that the limiting
quadratic differential q has a vertical saddle connection between p;p0 2Z.q/. Let pn and p0n be zeroes
of qn so that pn! p and p0n! p0. If there is a folding in the Morgan–Shalen limit, then the following
must happen: there is some ı0 > 0 such that for all 0< ı 6 ı0, there are points zn and z0n with

(6-6)
t�1
n dH3.p�n ; .p

0
n/
�/! 0; t�1

n dH3.z�n ; .z
0
n/
�/! 0;

t�1
n dH3.z�n ;p

�
n/! ı; t�1

n dH3..z0n/
�; .p0n/

�/! ı:

See Figure 6. The notation here means that p�n D un.pn/, etc. See Theorem 2.33 and the definition of
folding in Section 2.6.1. As in the proof of Lemma 4.4, the planes Dp�n

and D.p0n/� intersect, and the
assumption is that the dihedral angle is bounded away from � . Let An denote the geodesic segment
between z�n and p�n , Bn the geodesic segment between .z0n/

� and p�n , and Cn between z�n and .z0n/
�, and

let ˛n, ˇn and 
n be the corresponding angles of the geodesic triangle thus formed. Then the assumption
implies 
n > " > 0 for some fixed " and n sufficiently large. From (6-6), we may assume jBj > ıtn=2.
But then

sinh jC j> .sin "/ sinh
�

1
2
ıtn
�
;

which contradicts the assumption that t�1
n jC j ! 0. This completes the proof.

6.3 Complex projective structures

The goal of this section is to prove Corollary 1.3. In order to do so, insofar as the pleated surface is
already given by Thurston, it is necessary to in some sense reverse the argument used in Section 5. For
this, we use the result of Section 6.1, which gives criteria to identify the limiting quadratic differential for
equivariant harmonic maps in terms of the lamination of the associated pleated surfaces. In Section 6.3.1,
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� �j j
pnzn p0n z0n folding

�����! � j

Figure 6: Folding.

we review Dumas’ estimates, which show that the criteria just mentioned hold for Thurston’s pleated
surfaces associated to projective structures. In Section 6.3.2, we use facts about opers to derive the
limiting spectral data. Finally, Corollary 1.3 is proven in the last section.

6.3.1 Dumas’ estimates We recall the estimates of Dumas in [16] (see particularly Theorems 1.1
and 14.2) which relate complex projective structures and Hopf differentials. As mentioned in the
Introduction, given q 2 QD.X / the projective connection Op.q/ produces a pleated surface P.q/ D

.S.q/; fq; ƒ.q/;P.q//. Moreover, the bending lamination ƒ.q/ carries a transverse measure. Strictly
speaking, ƒ.q/ may not be maximal; it will turn out that the choice of maximalization of ƒ.q/ will be
immaterial, and so we suppress it from the notation.

The first result compares q with the Hubbard–Masur differential defined by the lamination.6

Theorem 6.6 [16, Theorem 1.1] There is a constant C D C.X / that only depends on the Riemann
surface X such that

(6-7) k4q��HF.ƒ.q//k1 6 C.X /.1Ckqk
1=2
1
/:

The second important result is a comparison of the quadratic differentials parametrizing projective
structures and those in the harmonic maps parametrization of Teichmüller space. More precisely, Dumas
proves the following; see [16, Theorem 14.2 and proof], and also [15].

Theorem 6.7 Fix q 2 SQD.X /, and let  denote the Hopf differential of the harmonic diffeomorphism
X ! S.q/. Then

(6-8) k4 .q/��HF.ƒ.q//k1 6 C.X /.1Ckqk
1=2
1
/:

Recall that P.q/ denotes the monodromy of the projective connection Q.q/. Combining Theorems 6.6
and 6.7 with Proposition 6.1, we have the following.

6Because Dumas uses the Schwarzian, the quadratic differential he uses to parametrize S.q/ differs from the one in (1-8) by a
factor of �2.
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Corollary 6.8 Let q 2 SQD�.X /, and let ut W
zX !H3 be the P.t2q/–equivariant harmonic map with

Hopf differential qt . Then
lim

t!C1
kt�2qt � qk1 D 0:

6.3.2 Spectral data for opers Here we determine the possible limiting bending cocycles of the family
Op.t2q/. The argument we give is based on the identification of limiting configurations with limiting
spectral data, and the classical fact that the underlying holomorphic bundle V of a (lift of a) complex
projective structure is the unique nonsplit extension

0!K
1=2
X
! V!K

�1=2
X

! 0

(cf [27, page 201]). In terms of Higgs pairs, this means that the x@–operator x@ACˆ� must induce the
holomorphic structure on V . Moreover, since V has a flat connection, the holomorphic structure on V can be
uniquely characterized by the fact that it contains K

1=2
X

as a subsheaf, and this is the criterion we shall use.

Before proceeding, it may clarify things to recall again that by Theorem 2.14 and the definition of the
Hitchin map (2-6), if u is the equivariant harmonic map associated to a solution .A; ‰/ of the self-duality
equations, then Hopf.u/D 4H .ŒA; ‰�/. With this understood, we have the following.

Proposition 6.9 Let q and qt be as in the statement of Corollary 6.8. Let Œ.At ; ‰t /�DOp.t2q/, and let �t

be the term appearing in the approximation in Definition 2.5, and y�t the Prym differential corresponding
to �t in Proposition 2.11. Then

Œy�t � i t Im�SW�! 0 in Prym. yXq;X /=J2.X /:

Proof Let yqt D t�2qt . Consider the spectral curves �t W
yXyqt
!X. Denote the Seiberg–Witten differential

(resp. tautological section) on yXyqt
by �SW.t/ (resp. �t ). Since by Corollary 6.8, yqt ! q as t !C1,

it follows that �SW.t/! �SW on yXq , where the convergence is taken with respect to the Gaus–Manin
connection on Prym differentials.

Let ft W
yXyqt
! yXqt=4 be as in the proof of Proposition 2.11. Then f �t �SW D .t=2/�SW.t/.

Now, from the discussion at the beginning of this subsection, there is an injective homomorphism of smooth
bundles, Tt W�

�
t K

1=2
X
!��t E, such that the image is preserved by the pullback x@–operator ��t .x@At

Cˆ�t /,
and the induced x@–operator is isomorphic to the canonical one on ��t K

1=2
X

, up to possibly twisting by a
2–torsion line bundle. As a smooth bundle, we have the splitting ��t E ' ��t K

�1=2
X

˚��t K
1=2
X

; see (2-1).
Let � be a local trivialization of ��t K

1=2
X

, and write Tt .�/D .�
.1/
t ; �

.2/
t /, where � .i/t D �

.i/
t
� for a local

smooth section �.1/t 2 �.�
�
t K�1

X / and smooth function �.2/t . By a straightforward calculation, one finds
the component entries of ��t .x@At

Cˆ�t /Tt to be (after an overall rescaling):

(6-9)
x@.�t�

.1/
t � k�tk

�1=2/C
�
y�00t C

1
2
tx�SW.t/

�
�
.2/
t k�tk

1=2
DR1.t/;

x@.�
.2/
t � k�tk

1=2/C
�
y�00t C

1
2
tx�SW.t/

�
�t�

.1/
t k�tk

�1=2
DR2.t/:
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Here, the remainder terms Ri.t/ are linear combinations of �t�
.1/
t � k�tk

�1=2 and �.2/t k�tk
1=2 with

coefficients that are exponentially small as t ! C1. To obtain (6-9), we use the expression for the
limiting connection in (2-9) to calculate:

��t .
x@A0
1.qt /

C �00t /.Tt .�//�Tt .x@�/D

 
x@�
.1/
t � .

x@ log k�tk
1=2/�

.1/
t C y�

00
t �
�1
t k�tk�

.2/
t

x@�
.2/
t C .

x@ log k�tk
1=2/�

.2/
t C y�

00
t �tk�tk

�1�
.1/
t

!
�:

Similarly,

��t .ˆ
�.qt /.Tt .�//D

1
2
tx�SW.t/

 
��1

t k�tk�
.2/
t

�tk�tk
�1�

.1/
t

!
�:

Multiplying the first entries by �tk�tk
�1=2, and the second entries by k�tk

1=2, we obtain the left-hand
side of (6-9). The error terms come from applying the result in Theorem 2.6.

Now suppose to the contrary that there is a sequence tn!C1 and ˇn, odd harmonic .0; 1/ forms with
periods in 2� iZ, such that

lim
n!1

˚�
�00tn
C

1
2
tnx�SW.tn/

�
�ˇn

	
D ˛;

where the class of ˛ in the Prym variety is nonzero; see Section 2.2.2. Choose an arbitrary basepoint
z0 2

yXq , and redefine

z�.i/n .z/D exp
�
�

Z z

z0

ˇn

�
�
.i/
tn
.z/:

Then (6-9) becomes

(6-10)
x@.�tn

z�.1/n � k�tn
k
�1=2/C

�
y�00tn
C

1
2
tnx�SW.tn/�ˇn

�
z�.2/n k�tn

k
1=2
D zR1.tn/;

x@.z�.2/n � k�tn
k

1=2/C
�
y�00tn
C

1
2
tnx�SW.tn/�ˇn

�
�tn
z�.1/n k�tn

k
�1=2

D zR2.tn/;

and where the remainder terms zRi.tn/ are exponentially small as tn ! C1, and of the order of
�tn
z�
.1/
n k�tn

k�1=2 and z�.2/n k�tn
k1=2.

Fix a conformal metric on yXq with area form dv. Let us now normalize the sequence of homomorphisms
Ttn

so that Z
yXq

k�tn
k.kz�.1/n k

2
Cjz�.2/n j

2/ dv D 1:

Applying elliptic regularity to (6-10), we may assume that �tn
z�
.1/
n k�tn

k�1=2!f1 and z�.2/n k�tn
k1=2!f2,

for functions fi satisfying Z
yXq

.jf1j
2
Cjf2j

2/ dv D 1;

and x@f1C f̨2 D 0, x@f2C f̨1 D 0. This, of course, implies .x@C˛/.f1Cf2/D 0. If f1Cf2 ¤ 0, then
the holomorphic line bundle L defined by ˛ has a nonzero holomorphic section and is therefore trivial. If
f1Cf2 D 0, then f1 is nonzero, and .x@�˛/f1 D 0; so L� is trivial. In either case, this contradicts the
assumption. The proposition is proved.
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6.3.3 Proof of Corollary 1.3 Fix q 2 SQD�.X /. Let zS.t2q/! H3 be Thurston’s pleated surface
associated to the projective connection Q.t2q/ with monodromy P.t2q/, and with bending lamination
ƒ.t2q/. Part (i) of the corollary follows from Corollary 6.8 and Lemma 5.5. Part (ii) is the content of
Proposition 6.9. We now move on to prove part (iii) of the corollary. Let St denote the companion surface
defined by requiring the Hopf differential for the harmonic diffeomorphism X ! St to be t2q.

By Theorem 6.7, ƒ.t2q/ converges to ƒh
q . In particular, for t sufficiently large, ƒ.t2q/ is carried by the

train track �t;� � St constructed in Section 5.1.1. By (i) and arguing as in the proof of Corollary 1.1,
a perturbation of the shearing cocycle of St as described in Section 5.2.1 results in a pleated surface
for P.t2q/ with bending lamination ƒ.t2q/; as before by the uniqueness of pleated surfaces for a fixed
lamination, the pleated surface constructed in this way must coincide with the pleated surface S.t2q/.
Now, by Theorem 6.6 and Corollary 6.8, the bending laminations for the harmonic map ut and the
bending lamination ƒ.t2q/ are close and hence carried by the same track �t;� � St . Thus the plaques
for the associated pleated surfaces are also in proximity, in the sense of the last portion of the proof of
Corollary 1.1; it then follows that their bending cocycles are also close. Thus, by the Main Theorem, the
bending cocycle of either is approximated by the one given by the Prym differential associated to the
limiting configuration of Op.t2q/. The result now follows from Lemma 5.5 and Proposition 6.9. Notice
that since Im�SW has zero periods on saddle connections of the horizontal foliation, the choice of a
possible maximalization of ƒh

q is irrelevant.

6.3.4 Refined estimate In section, we refine the estimate Corollary 6.8 of the previous section and so
prove an improvement of Corollary 1.3. We show the proposition.

Proposition 6.10 Let q 2 SQD�.X /, and let ut W
zX !H3 be the P.t2q/–equivariant harmonic map

with Hopf differential qt D Hopf.ut /. Then

lim
t!C1

kt�2qt � qk1 DO.t�1/:

Proof In outline, the argument begins as previously by using results (Theorems 6.6 and 6.7) of Dumas
in [15] and [16] to show that t2q, Hopf.vt / and �HF.ƒt / are both of order O.t2/ and within an order of
O.t/ of one another. Then, for a properly chosen element Œ
 � 2 �1.†/, we estimate hyperbolic translation
lengths �H3.�t .
 // in two ways: first as a nearly geodesic path on the bent hyperbolic surface S.t2q/,
and next as a nearly geodesic path on the image in H3 of X by the harmonic map ut . In both cases, for
the arcs we will consider, the images of the arcs are controlled well by the intersection numbers of the arcs
with the vertical measured foliations of the Hopf differentials — this is the content of Propositions 2.29
and 2.30 — and some hyperbolic geometry then asserts that the common translation length must then
be predicted by the intersection numbers. This forces that those intersection numbers are close for a
large family of curve classes, which are enough to in turn imply that the Hopf differentials are within a
controlled error of each other.
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The first step is to recall the results of Dumas on the L1 norms of the differences of some quadratic
differentials.

Theorems 6.6 and 6.7, together show that

kHopf.X;S.t2q//� t2qk6O.t/:

In particular, we may begin with the relatively weak estimate kHopf.X;S.t2q//k � t2. On the other
hand, we may use Propositions 2.29 and 2.30 to get good control on the images of a robust set of arcs

 �†. For example, represent Œ
 � 2 �1.†/ by a curve 
 which is quasitransverse to the vertical foliation
of Hopf.X;S.t2q//, as well as (i) piecewise vertical and horizontal with respect to that differential and
also (ii) vertical near the zeroes of that differential: it is routine that this can be accomplished by simply
modifying the geodesic representative of Œ
 � in the flat singular metric defined by jHopf.X;S.t2q//j.
Then Propositions 2.29 and 2.30 assert that the image of a vertical arc through a zero is nearly a geodesic
arc of some fixed positive (and finite) length, and moreover, that the image of 
 is an arc on S.t2q/

comprising those geodesics of uniformly bounded length meeting at images of zeroes of vt and connected
by arcs which have geodesic curvature at most O.e�ct2

/ and have length given by

`S.t2q/.vt .
hor//D i.
;FvHopf.X ;S.t2q//
/CO.e�ct2

/:

Thus, by the Morse lemma in elementary hyperbolic geometry, because on the hyperbolic surface, the
arc vt .
 / comprises long nearly geodesic arcs connected, at angles bounded away from zero, by nearly
geodesic arcs of uniformly bounded length, the S.t2q/–geodesic representative of Œ
 � has length given by

`S.t2q/.Œ
 �/D i.
;FvHopf.X ;S.t2q//
/CO.1/;

and moreover, outside neighborhoods of uniform size of the vt –images of the zeroes, lies exponentially
(in t2) close to the horizontal geodesic lamination defined by Hopf.X;S.t2q//.

Of course, this is the length on a surface, so if we want to promote this estimate to an estimate of the
�t –translation length of Œ
 �, we need to consider the image wt .
 / after the isometry ft . We will need
to worry about curves 
 which are poorly positioned with respect to a fold, so we now restrict to curve
classes Œ
 � which may be represented by polygonal quasitransverse arcs which also contain no vertical
saddle connections; later on, we will see that these represent is a sufficiently diverse collection of elements
of the fundamental group that suffice to determine the relevant Hopf differentials.

Now, by (6-8), we see that the difference kt�2 Hopf.X;S.t2q// � t�2�HF.ƒ.t
2q//k of normalized

differentials is of order O.t�1/. Thus the corresponding laminations make an increasingly shallow
angle with one another, or expressed in a way that is better for our purposes, if � is any sufficiently
split train track that carries ƒ.t2q//, then both vt .
 / and the horizontal geodesic lamination defined by
Hopf.X;S.t2q// meet � at angles comparable to O.t�1/. But that train track has an image under ft that
carries the pleating lamination ƒ.t2q// as the bending lamination for the pleated surface S.t2q//.
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Now, suppose we are focusing on a curve 
 and 
 contains a subarc k � 
 that connects a pair of zeroes
of Hopf.X;S.t2q//: it is possible that that arc k has bending with respect to the bending cocycle that
is not bounded away from � . If such an arc is purely vertical, then the translation length between the
wt –image of its endpoints could be arbitrarily small, and the geodesic in H3 representing the �t –image
of Œ
 � might be far away from the ft –image of vt .
 /. On the other hand, if all of the subarcs connecting
zeroes of Hopf.X;S.t2q// have horizontal segments, then the ft –image of those subarcs, since they
have been sheared by an amount comparable to t2 along a lamination nearly parallel to ƒt , relative
to their endpoint, will then be mapped to arcs in H3 that make only a shallow angle with the bending
lamination ƒt .

Thus, in that case, the vt –image vt .
 / of 
 will, after composition with ft , may be seen to comprise
some nearly geodesic arcs of uniformly bounded length arising from the vertical arcs of 
 near the zeroes
of Hopf.X;S.t2q// together with some very long, nearly geodesic arcs of length i.
;FvHopf.X ;S.t2q///C

O.e�ct2

/, with only some shallow breaks of angle O.t�1/ at points far removed from their endpoints
where they cross the bending lamination ƒt .

Thus, again by hyperbolic geometry and using that the geodesic arcs make only a shallow angle with the
lamination, the �t –geodesic representative of such an arc Œ
 � has length

(6-11) `H3.Œ
 �/D i.
;FvHopf.X ;S.t2q//
/CO.1/:

(This H3–geodesic representative of Œ
 � also closely shadows the wt –images of the Hopf.X;S.t2q//–
horizontal portions of the arc 
 , but we will not need that in the sequel.)

We now turn to the map ut . Again, we can find, for a large collection of curve classes Œ
 �, a representative
of Œ
 � that is well-positioned with respect to Hopf.ut /, ie it is vertical near the zeroes of Hopf.ut /, always
quasitransverse to the vertical foliation of Hopf.ut /, comprising arcs that are alternately horizontal and
vertical, and containing no vertical saddle connections. The image of the lift of this curve is, again by
Propositions 2.29 and 2.30, an arc in H3 comprising images of vertical arcs that are of uniformly bounded
length meeting orthogonally images of horizontal arcs that have exponentially small geodesic curvature
and length given by

`H3.ut .
hor//D i.
;FvHopf.ut /
/CO.e�ct2

/:

Then, again elementary hyperbolic geometry provides that the geodesic representative of ut .Œ
 �/ lies
close the images of the horizontal segments and has length

(6-12) `H3.Œ
 �/D i.
;FvHopf.ut /
/CO.1/:

We next compare equations (6-11) and (6-12) for curves 
 that meet our conditions for both Hopf vt and
Hopf.ut /. We find that the Hopf differentials for vt and ut have intersection numbers, with the curve
classes 
 that we have considered that meet the conditions for both holomorphic differentials, that agree
up to O.1/.
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We next point out that the collection of these curve classes that meet the conditions for both Hopf vt and
Hopf.ut /are sufficient for determining the vertical foliations of Hopf.vt / and Hopf.ut /. Indeed, in the
case of Hopf.vt /, we began the construction of 
 by considering geodesics in the metric jHopf.vt /j, and
then adjusting the paths between zeroes. A subcollection of these initially chosen geodesics provides
enough paths between zeroes to provide a triangulation of the surface †, from which the intersection
numbers with the arcs suffice to determine the vertical measured foliation of, say, Hopf.vt /. When we
exclude some curves that contain vertical saddle connections, we will inevitably lose the immediate
means to find that those arcs have zero intersection number with the vertical foliation. To recover such
information, we begin with such an arc and follow a horizontal leaf on the surface until it returns to
the vertical arc, near its initial point. By either doing surgery on the original curve by adding this
long horizontal segment to vertical arcs that emanate from the original pair of zeroes or, alternatively,
just joining the endpoints of this horizontal arc, we find two simple curves whose intersection numbers,
together with the intersection numbers obtained from the other curves in our distinguished class, determine
the vertical measured foliation of Hopf.vt /. We undertake a similar process for choices of curve classes
for Hopf.ut /.

It remains to compare equations (6-11) and (6-12). There is an obvious issue to address as these equations
apparently refer to collections of curves that are defined independently. On the other hand, it is possible
to find curve classes as in the previous paragraph that are simultaneously in the distinguished classes for
both Hopf.vt / and Hopf.ut /. The easiest cases in which to see this are when Hopf.vt / and Hopf.ut / are
projectively equal, in which case the assertion just follows from the construction in the previous paragraph,
and when they are transverse. In that latter case, we note that it is possible to realize both vertical foliations
as horizontal and vertical foliations of a quadratic differential on the same surface. Then on that surface,
we again triangulate the surface using arcs that are saddle connections for neither foliation, replacing any
original choice of arc with a curve as in the previous paragraph, this time chosen to be at some angle with
respect to both foliations. In particular, for a saddle connection, we remove a small subarc of the saddle
connection and replace it with a long arc from the other foliation: the resulting arc may be replaced by an
arc transverse to both foliations. The result of all these constructions is a collection of arcs which can be
assembled into a collection of curves whose intersection numbers determine both Hopf.vt / and Hopf.ut /.
In the case where the vertical foliations agree on some subsurface and are transverse on another, we apply
the two cases just discussed on each subsurface. In that case, we also replace any vertical subsurface
boundary leaf with pairs of curves with no vertical saddle connections as described earlier.

Comparing equations (6-11) and (6-12) for the common collection of curve classes shows that

i.
;FvHopf.ut /
/D i.
;FvHopf.X ;S.t2q//

/CO.1/:

Thus, since intersection numbers for a quadratic differential are computed as integrals involving
p

q, and
our relation above holds for a class of curves whose intersection numbers may determine the quadratic
differential, we see that the normalized Hopf differentials Hopf.vt / and Hopf.ut / agree up to O(1). Thus,
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applying (6-7) and (6-8), we see that

kHopf.ut /� t2qk6O.t/:
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