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We prove that a topological 4–manifold of globally nonpositive curvature is homeomorphic to Euclidean
space.
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1 Introduction

1.1 Main result

This paper concerns the topology of CAT.0/ manifolds. These are synthetic generalizations of complete
simply connected Riemannian manifolds of nonpositive sectional curvature. By the classical theorem of
Cartan and Hadamard, any such Riemannian manifold is diffeomorphic to the Euclidean space Rn. In his
seminal paper, Gromov [1981], asked if there exist simply connected topological manifolds other than
Euclidean space which admit a metric of nonpositive curvature in a synthetic sense. (See Section 1.6
for further discussion.) The most important synthetic notion of nonpositive curvature is the one due
to Alexandrov. The corresponding spaces were named CAT.0/ by Gromov. Any CAT.0/ space is
contractible, thus any CAT.0/ 2–manifold is homeomorphic to R2 by the classification of surfaces. In
dimensions strictly greater than two, contractible manifolds are Euclidean precisely when they are simply
connected at infinity, thanks to classical topological results [Freedman 1982; Husch and Price 1970;
Stallings 1962]. In dimension three, CAT.0/ manifolds are indeed Euclidean [Brown 1961; Rolfsen 1968;
Thurston 1996b]. In dimensions strictly greater than four, Davis and Januszkiewicz [1991] constructed
examples of non-Euclidean CAT.0/ manifolds. We deal with the remaining open case:

Theorem 1.1 Let X be a CAT.0/ space which is topologically a 4–dimensional manifold. Then X is
homeomorphic to R4.

This theorem also answers the first question in [Davis et al. 2012, Section 6].

1.2 Related statements: the simplicial case

Examples of Davis and Januszkiewicz [1991] mentioned above are simplicial complexes with piecewise
Euclidean metrics. On the other hand, Stone [1976] verified that a PL n–manifold which is CAT.0/ with
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respect to a piecewise Euclidean metric is homeomorphic to the Euclidean space Rn. By the resolution
of the Poincaré conjecture, any simplicial complex homeomorphic to a 4–manifold is a PL–manifold.
Consequently, any CAT.0/ 4–manifold with a piecewise Euclidean metric is homeomorphic to R4.

In higher dimensions there exist a large supply of exotic CAT.0/ manifolds. Ancel and Guilbault [1997]
have shown that the interior of every compact contractible PL n–manifold (for n� 5) supports a complete
geodesic metric of strictly negative curvature. They also point out that their result continues to hold
without the PL assumption in dimensions strictly larger than 5. The question as to which manifolds carry
a piecewise Euclidean CAT.0/ metric has been further investigated in [Adiprasito and Benedetti 2020;
Adiprasito and Funar 2015]. Motivated by Gromov’s question, it is natural to ask the following; compare
[Adiprasito and Funar 2015, Question 3]:

Question 1.2 Are there CAT.0/ topological manifolds which do not carry a piecewise Euclidean
CAT.0/ metric?

Question 1.3 What are necessary and sufficient conditions for the existence of a CAT.0/ metric on a
contractible manifold?

1.3 Related statements: the cocompact case

Gromov’s question has been thoroughly studied in the cocompact setting. (Recall that universal coverings
of locally CAT.0/ spaces are CAT.0/ [Alexander and Bishop 1990]). By [Davis and Januszkiewicz 1991,
Theorem 5b.1], in all dimensions strictly greater than four, there exist compact locally CAT.0/ manifolds
whose universal coverings are not Euclidean; see also [Ancel et al. 1997]. Moreover, in such dimensions
there exist compact locally CAT.0/ manifolds which have no PL structure at all [Davis and Januszkiewicz
1991, Section 5a]. We refer to [Davis et al. 2012, Section 3] for an overview of further similar results.

In dimension four, several classes of smoothable compact topological manifolds carrying a locally CAT.0/
metric, yet not admitting a smooth metric of nonpositive curvature, have been constructed in [Davis et al.
2012; Sathaye 2017; Stadler 2015]. In these examples, the universal covering is homeomorphic to R4

(as follows from our main theorem), and identifying the obstructions to the existence of smooth metrics
relies on an intricate analysis of the group actions involved.

1.4 Distance spheres

Our proof depends upon an important contribution by Thurston [1996b]. He showed that if all distance
spheres to some fixed point o 2X of a 4–dimensional CAT.0/ manifold X are topological 3–manifolds,
then X is homeomorphic to R4. Using a finer analysis of the metric structure of the space, we verify this
condition in the more general setting of homology 4–manifolds; see Sections 1.5 and 3.4 for the relevant
definition and properties.

Theorem 1.4 Let X be a CAT.0/ space which is a homology 4–manifold. Let o 2 X and R > 0 be
arbitrary. Then the distance sphere SR.o/ of radius R around o is a topological 3–manifold.
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We remark that this result does not hold true in dimensions n� 5, even for piecewise Euclidean topological
n–manifolds. Indeed, this can be seen in the aforementioned examples of Davis and Januszkiewicz;
compare [Davis and Januszkiewicz 1991, Proposition 3d.3].

If X is a CAT.0/ 4–manifold (and not just a homology 4–manifold), then the resolution of the Poincaré
conjecture together with [Thurston 1996b] implies that all distance spheres are homeomorphic to S3.
Moreover, the homeomorphism in Theorem 1.1 is not completely abstract, but rather has the following
geometric feature:

Corollary 1.5 Let X be a 4–dimensional CAT.0/ manifold and let o 2X be an arbitrary point. Then
the distance function do WX n fog ! .0;1/ is a trivial fiber bundle with fiber S3.

On the other hand, for a general CAT.0/ homology 4–manifold, the topology of the distance spheres may
depend on the radius, despite the fact that all of the spheres involved are manifolds. This can already
be seen in the Euclidean cone X D C.†/ over the Poincaré homology sphere †. The fine topological
analysis of [Thurston 1996b], using the fact that the ambient space is a manifold, is therefore indispensable
for the conclusion of our main theorem.

Corollary 1.5 extends to the ideal boundary @1X and the natural compactification X WDX [@1X of X ;
see [Bridson and Haefliger 1999, Section II.8] for the definition and properties of ideal boundaries. In
dimensions n� 5, there are CAT.0/ spaces homeomorphic to Rn with ideal boundary different from Sn�1

[Davis and Januszkiewicz 1991, Theorem 5c.1]. In dimension four we show:

Corollary 1.6 Let X be a 4–dimensional topological manifold with a CAT.0/ metric. Then the ideal
boundary @1X of X is homeomorphic to S3 and the canonical compactification X D X [ @1X is
homeomorphic to the closed unit ball in R4.

1.5 Related statements: homology manifolds

A homology n–manifold (without boundary) is a locally compact metric space X of finite topological
dimension such that, for all x 2X , the local homology H�.X;X n fxg/ equals H�.Rn;Rn n f0g/. The
structure theory of homology manifolds has been a central topic in geometric topology for many decades
and is of fundamental importance in topological manifold recognition [Cannon 1978; Cavicchioli et al.
2016; Repovš 1994].

A homology n–manifold for n� 2 is always a topological n–manifold by a theorem of Moore [Wilder
1949, Chapter IX]. On the other hand, in dimensions n� 3, a homology n–manifold may not have any
manifold points at all [Daverman and Walsh 1981]. While there are deep and rather robust results allowing
one to recognize when a homology manifold is a manifold in dimensions five and up, much less is known in
dimensions three and four [Repovš 1994]. Even though the tools of algebraic topology allow us to recognize
homology manifolds in many instances, in particular, in the situation of Theorem 1.4 (in all dimensions),
passing from homology manifolds to topological manifolds is difficult and requires some geometric insight.
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In the situation of Theorem 1.4, we achieve the needed local control of the topology of large spheres
by slicing them and verifying that slices are 2–dimensional spheres. Subsequently, these slices can be
controlled uniformly with the help of Jordan’s curve theorem. The control of the slices allows us to
recover the local topology.

In contrast to the situation for general homology n–manifolds, CAT.0/ homology n–manifolds are not too
far from being manifolds. More precisely, a CAT.0/ homology n–manifold is a topological n–manifold
on the complement of a discrete subset [Lytchak and Nagano 2022, Theorem 1.2]; see [Wu 1997] for
corresponding statements on spaces with lower curvature bounds.

We mention in passing a question of Busemann [1955; Berestovsky et al. 2011], which is related in spirit
to the origins of this paper:

Question 1.7 Let X be a locally compact geodesic metric space. Assume that X is geodesically complete
and that there are no branching geodesics. Does X have finite dimension? Is any such finite-dimensional X

a topological manifold?

If such a space X has finite dimension n then X is a homology n–manifold, and if n � 4 then X is
a manifold [Busemann 1955; Krakus 1968; Thurston 1996a; Berestovsky et al. 2011]. For n � 5, the
question remains open. Finally, we mention that an answer to Busemann’s question would follow from a
purely topological conjecture of Bing and Borsuk [Halverson and Repovš 2008].

1.6 Minor generalizations

An application of [Lytchak and Stadler 2020, Theorem 1.1] extends Theorem 1.1 and Corollary 1.5 to
other curvature bounds:

Corollary 1.8 Let X be a 4–dimensional topological manifold which is a CAT.�/ space. Let R> 0 be
a real number with R < �=.2

p
�/ if � > 0. Then , for any o 2 X , the open ball BR.o/, the closed ball

BR.o/ and the distance sphere SR.o/ are homeomorphic to the open unit ball in R4, to the closed unit
ball in R4 and to S3, respectively.

There are several notions of nonpositive curvature for metric spaces. In all works cited above, Gromov’s
question has been studied for CAT.0/ spaces, even though the original question was posed for Busemann
convex spaces, that is, geodesic spaces with a convex distance function. Any CAT.0/ space is Busemann
convex. Conversely, examples of Busemann convex spaces that are neither CAT.0/ nor normed spaces
are extremely rare; compare [Ivanov and Lytchak 2019]. Our ideas will apply to this more general setting,
once some structural results developed in [Lytchak and Nagano 2019] for CAT.0/ spaces are generalized
to Busemann convex spaces.
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BR.o/\Ss.p/

o p
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Figure 1

1.7 Comment on strategy and technique

Our proof relies on the structural theory of geodesically complete spaces with upper curvature bounds
developed in [Lytchak and Nagano 2019; 2022]. Since any CAT.0/manifold is geodesically complete, this
theory applies to the present situation. So-called “strainer maps”, first appearing in [Burago et al. 1992] and
defined by distance functions to points, are particularly useful. It has been verified [Lytchak and Nagano
2022] that for any point o 2 X as in Theorem 1.4, all sufficiently small distance spheres around o are
(pairwise homeomorphic) 3–manifolds. In order to get sufficient control of remote spheres, an extension
of the theory of strainer maps by one additional “orthogonal but nonstraining” coordinate is required.
This extension may be useful beyond the present work. We refer the reader to Sections 5 and 7 for more
details. Here, we only formulate a special case of Proposition 5.5, essential for the proof of Theorem 1.4:

Theorem 1.9 Let X be a locally compact geodesically complete CAT.0/ space , let o 2X and let p 2X

be at distance R > 0 from o. Then there exists � > 0 such that for all 0 < s < �, the intersection of the
distance sphere Ss.p/ with the closed ball BR.o/ is contractible.

Acknowledgments Lytchak and Stadler were supported by DFG grant SPP 2026. Nagano is supported
by JSPS KAKENHI grant 20K03603. The authors are grateful to Ronan Conlon for useful comments and
to Tadeusz Januskiewicz for helpful suggestions including Corollary 1.6. The authors would also like to
thank the referee for valuable comments.

2 Preliminaries

2.1 Metric spaces

We refer the reader to [Alexander et al. 2024; Burago et al. 2001; Bridson and Haefliger 1999] for general
background. We denote by d the distance in a metric space X . For x 2X , we denote by dx the distance
function dx. � /D d.x; � /. For x 2 X and r > 0, we denote by Br .x/ and Br .x/ the open and closed
r–balls around x, respectively. Similarly, Br .A/ denotes the open r–neighborhood of a subset A�X .

Geometry & Topology, Volume 28 (2024)
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Moreover, Sr .x/ denotes the r–sphere around x and by PBr .x/we denote the punctured r–ball Br .x/nfxg.
For �> 0, we denote by � �X the metric space resulting from X by rescaling the metric by �. A geodesic
is an isometric embedding of an interval. A triangle is a union of three geodesics connecting three points.
X is a geodesic metric space if any pair of points of X is connected by a geodesic. It is geodesically
complete if every isometric embedding of an interval extends to a locally isometric embedding of R.

A map F W X ! Y between metric spaces is called L–Lipschitz if d.F.x/;F. Nx// � Ld.x; Nx/, for all
x; Nx 2X .

The map F is called L–open if, for any x 2X and any r > 0 such that the closed ball BLr .x/ is complete,
Br .F.x//� F.BLr .x//.

An ANR will denote an absolute neighborhood retract. For finite-dimensional metric spaces, the only
case relevant here, being an ANR is equivalent to being locally contractible [Hu 1965].

2.2 Spaces with an upper curvature bound

For � 2 R, let R� 2 .0;1� be the diameter of the complete simply connected surface M 2
� of constant

curvature �. A complete metric space is called a CAT.�) space if any pair of its points with distance <R�

is connected by a geodesic and if all triangles with perimeter < 2R� are not thicker than the comparison
triangle in M 2

� . A metric space is called a space with curvature bounded above by � if any point has a
CAT.�) neighborhood. We refer to [Alexander et al. 2024; Burago et al. 2001; Bridson and Haefliger
1999] for basic facts about such spaces.

For any CAT.�) space X , the angle between each pair of geodesics starting at the same point is well
defined. The space of directions †xX at x 2X , equipped with the angle metric, is a CAT.1/ space. The
Euclidean cone over †x is a CAT.0/ space. It is denoted by TxX and called the tangent space at x of X .
Its tip will be denoted by ox .

Let x, y and z be three points at pairwise distance <R� in a CAT.�) space X . Whenever x ¤ y, the
geodesic between x and y is unique and will be denoted by xy. For y; z ¤ x, the angle at x between xy

and xz will be denoted by †yxz.

In a CAT.�) space X , all balls of radius smaller 1
2
R� are convex, and hence X is locally contractible. In

fact, X is an ANR [Kramer 2011, Theorem 3.2].

3 Geometric topology

3.1 Homology manifolds

Denote by Dn the closed unit ball in Rn.

Let M be a locally compact separable metric space of finite topological dimension. We say that M is
a homology n–manifold with boundary if for any p 2M we have a point x 2 Dn such that the local
homology H�.M;M nfpg/ at p is isomorphic to H�.D

n;Dn nfxg/. The boundary @M of M is defined
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as the set of all points at which the nth local homologies are trivial. In the case where the boundary of M

is empty, we simply say that M is a homology n–manifold.

If M is a homology n–manifold with boundary then @M is a closed subset of M and it is a homology
.n�1/–manifold by [Mitchell 1990].

Any homology n–manifold (with boundary) has dimension n. For n� 2, we have the following theorem
of Moore [Wilder 1949, Chapter IX]:

Theorem 3.1 Any homology n–manifold with n� 2 is a topological manifold.

A homology n–sphere is a homology n–manifold X with the homology of the n–sphere: H�.X /DH�.Sn/.

3.2 Uniform local contractibility

A function � W Œ0; r0/! Œ0;1/ is called a contractibility function if it is continuous at 0 with �.0/D 0

and �.t/� t holds for all t 2 Œ0; r0/ [Petersen 1993].

Definition 3.2 We say that a family F of metric spaces is uniformly locally contractible if there exists a
contractibility function � W Œ0; r0/! Œ0;1/ such that, for any space X in the family F , any point x 2X

and any 0< r < r0, the ball Br .x/ is contractible within the ball B�.r/.x/.

For example, the family of all CAT.�/ spaces is uniformly locally contractible with � W Œ0; �=
p
�/! Œ0;1/

being the identity map.

Here is a special case of [Petersen 1990, Theorem A; 1993, Theorem 9]:

Theorem 3.3 For any natural number n and any family F of uniformly locally contractible metric
spaces of dimension at most n, there exists some ı > 0 such that any pair of spaces X;Y 2 F with
Gromov–Hausdorff distance at most ı is homotopy equivalent.

The homotopy equivalences and the corresponding homotopies in Theorem 3.3 can be chosen arbitrarily
close to the identity [Petersen 1993].

When dealing with a family of fibers of some map, we will use the following more convenient variant of
Definition 3.2 [Ungar 1969]:

Definition 3.4 Let F W X ! Y be a map between metric spaces. We say that F has uniformly locally
contractible fibers if the following condition holds true for any point x 2X and every neighborhood U

of x in X : there exists a neighborhood V � U of x in X such that for any fiber F�1.y/ with nonempty
intersection F�1.y/\V , this intersection is contractible in F�1.y/\U .

For X compact, a map F WX ! Y has uniformly locally contractible fibers in the sense of Definition 3.4
if and only if the family of the fibers is uniformly locally contractible in the sense of Definition 3.2.
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3.3 Fibrations and fiber bundles

A map F WX ! Y between metric spaces is called a Hurewicz fibration if it satisfies the homotopy lifting
property with respect to all spaces [Hatcher 2002, Section 4.2; Ungar 1969].

The map F is called open if the images of open sets are open.

We will use the following result to recognize Hurewicz fibrations:

Theorem 3.5 [Ferry 1978, Theorem 2; Ungar 1969, Theorem 1] Let X and Y be finite-dimensional ,
compact metric spaces and let Y be an ANR. Let F WX ! Y be an open surjective map with uniformly
locally contractible fibers. Then X is an ANR and F is a Hurewicz fibration.

In some situations, Hurewicz fibrations turn out to be fiber bundles. We will rely on the following:

Theorem 3.6 [Ferry 1991, Theorems 1.1–1.4; Raymond 1965, Theorem 2] Let X and Y be finite-
dimensional locally compact ANRs. Let F WX ! Y be a Hurewicz fibration. If all fibers of F are closed
n–manifolds then F is a locally trivial fiber bundle.

3.4 CAT.0/ (homology) manifolds

Following [Lytchak and Nagano 2019], we will abbreviate a locally compact locally geodesically complete
separable space with an upper curvature bound as GCBA. Here we are concerned with CAT.0/ spaces
which are homeomorphic to (homology) manifolds. We will call such spaces CAT.0/ homology manifolds
and CAT.0/ manifolds, respectively. Every CAT.0/ homology manifold is geodesically complete [Lytchak
and Schroeder 2007, Theorem 1.5] and therefore GCBA. Hence, we can rely on the results from [Lytchak
and Nagano 2019; 2022]. For the local arguments of [Lytchak and Nagano 2019; 2022], the notion of a
tiny ball played a role. We point out that in a CAT.0/ homology manifold, a tiny ball is any ball of radius
at most 1. After rescaling, the bound of 1 becomes irrelevant.

From [Lytchak and Nagano 2022, Lemma 3.1, Corollary 3.4 and Theorem 6.4] we infer:

Proposition 3.7 Let X be a CAT.0/ homology n–manifold. Then any space of directions †xX is a
homology .n�1/–sphere. If n� 4, then †xX is a topological manifold.

Any CAT.0/ homology n–manifold is a topological n–manifold on the complement of a discrete subset
[Lytchak and Nagano 2022, Theorem 1.2]. For n � 3, a CAT.0/ homology n–manifold is a manifold
homeomorphic to Rn [Lytchak and Nagano 2022, Theorem 6.4; Thurston 1996b]. The Euclidean cone
over the Poincaré sphere is a CAT.0/ homology 4–manifold which is not a manifold.

Any CAT.0/ homology n–manifold is locally bi-Lipschitz equivalent to Rn away from a closed set
of Hausdorff dimension at most n� 2, as follows from [Lytchak and Nagano 2019, Theorem 1.2 and
Section 10.2].
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4 Strainer maps

We recall the definition and basic properties of strainer maps in the framework of CAT.0/ spaces from
[Lytchak and Nagano 2019; 2022]. Originally, strainer maps were introduced in [Burago et al. 1992] to
study Alexandrov spaces with curvature bounded below.

Throughout this section X will denote a locally compact and geodesically complete CAT.0/ space.

4.1 Almost spherical directions

Let v be a direction at a point x 2 X . An antipode of v is a direction Ov 2 †xX at distance at least �
from v. If v has a unique antipode Ov, then †xX splits isometrically as a spherical join †xX Š fv; Ovg�Z.
More generally, the subset †0 of points with unique antipodes in †xX is isometric to Sk , for some k,
and †0 is a spherical join factor of †xX [Lytchak 2005, Corollary 4.4].

A quantitative version is provided by the notion of ı–spherical points and tuples. The direction v 2†xX

is called ı–spherical if there exists some Nv 2†xX such that for any w 2†xX ,

d.v; w/C d.w; Nv/ < � C ı:

Moreover, we say that v and Nv are opposite ı–spherical points. A ı–spherical direction v has a set of
antipodes of diameter at most 2ı [Lytchak and Nagano 2019, Lemma 6.3]. Therefore, if ı is small, this
“almost leads to a splitting” of †xX [loc. cit., Proposition 6.6].

A k–tuple .v1; : : : ; vk/ of points in†xX is called ı–spherical if there exists another k–tuple . Nvi/ in†xX

with the following two properties:

� For 1� i � k, the directions vi and Nvi are opposite ı–spherical.

� For 1� i ¤ j � k, the distances d.vi ; Nvj /, d.vi ; vj / and d. Nvi ; Nvj / are less than 1
2
� C ı.

Moreover, . Nvi/ and .vi/ are called opposite ı–spherical k–tuples.

4.2 Strainers and strainer maps

A k–tuple .p1; : : : ;pk/ is called a .k; ı/–strainer at a point x 2X nfp1; : : : ;pkg if the starting directions
vi 2†xX of the geodesics xpi constitute a ı–spherical k–tuple in †xX .

Two .k; ı/–strainers .pi/ and .qi/ at x are opposite if the corresponding ı–spherical k–tuples .vi/

and .wi/ are opposite in †xX .

A k–tuple .pi/ in X is a .k; ı/–strainer in A � X n fp1; : : : ;pkg if .pi/ is a .k; ı/–strainer at every
point x 2A.

The set of all points U � X n fp1; : : : ;pkg at which .pi/ is a .k; ı/–strainer is open in X [loc. cit.,
Corollary 7.9].

Each k–tuple .pi/ yields a distance map F WX !Rk via F D .dp1
; : : : ; dpk

/. If .pi/ is a .k; ı/–strainer
on a subset A�X , then the associated distance map F is called a .k; ı/–strainer map on A.
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4.3 Properties of strainer maps

For ı � 1=.4k/ and L D 2
p

k, every .k; ı/–strainer map F W U ! Rk on an open subset U � Rk is
L–open and L–Lipschitz [loc. cit., Lemma 8.2].

Two observations form the building blocks for straining maps. Recall the definition of a punctured distance
ball PBr .x/ WD Br .x/ n fxg. First, for any ı > 0 and any x 2 X , the function dx W

PBr .x/! .0; r/ is a
.1; ı/–strainer map if r is chosen small enough [loc. cit., Proposition 7.3]. Second, let F W U !Rk be a
.k; ı/–strainer map and let p be a point in a fiber … of F . Then there exists r > 0 and a neighborhood W

of PBr .p/\… in U such that the map yF D .F; dp/ WW !RkC1 is a .kC1; 4ı/–strainer map [loc. cit.,
Proposition 9.4].

Any .k; ı/–strainer map on an open subset of a k–dimensional CAT.0/ space X provides a bi-Lipschitz
chart [loc. cit., Corollary 11.2]. In general, we have the following topological structure:

Theorem 4.1 [Lytchak and Nagano 2022, Theorem 5.1 and Corollary 5.2] Let U be an open subset of
a GCBA space X . Let F WU !Rk be a .k; ı/–strainer map for some k and some ı < 1=.20k/. Then any
x 2 U has arbitrarily small open contractible neighborhoods V such that the restriction F W V ! F.V / is
a Hurewicz fibration with contractible fibers.

If a fiber F�1.b/ is compact , then there exists an open neighborhood V of F�1.b/ in U such that
F W V ! F.V / is a Hurewicz fibration.

If U is a homology n–manifold , then any fiber F�1.b/ is a homology .n�k/–manifold.

5 Extended strainer maps

5.1 Definition and basic properties

Throughout this section, X will denote a locally compact and geodesically complete CAT.0/ space.

Let .p1; : : : ;pk/ be a k–tuple in X and let q 2X be an additional point. We say that .p1; : : : ;pk ; q/ is
an extended .k; ı/–strainer in a subset A�X n fp1; : : : ;pk ; qg if the following holds true for all x 2A:

The k–tuple .pi/ is a .k; ı/–strainer at x and any continuation qq0 of the geodesic qx beyond x is such
that, for all 1� i � k,

†qxpi <
1
2
� C ı and †q0xpi <

1
2
� C ı:

By the semicontinuity of angles, the set U of all points at which .p1; : : : ;pk ; q/ is an extended .k; ı/–
strainer is open in X n fp1; : : : ;pk ; qg [Lytchak and Nagano 2019, Section 3.3 and Corollary 7.9].

Let .p1; : : : ;pk ; q/ be an extended .k; ı/–strainer in an open set U �X . Then we call the map

yF D .dp1
; : : : ; dpk

; dq/D .F; dq/ W U ! .0;1/kC1

an extended .k; ı/–strainer map.
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By definition, an extended .k; ı/–strainer map yF W U !RkC1 is also an extended .k; ı0/–strainer map
for any 0< ı0 < ı.

5.2 Basic properties

Let .p1; : : : ;pk ; q/ be an extended .k; ı/–strainer at a point x 2 X and let qq0 be an extension of the
geodesic qx. Since †qxq0 D � , for 1� i � k, we have

†pixq > 1
2
� � ı and †pixq0 > 1

2
� � ı:

We fix an opposite .k; ı/–strainer .p0
1
; : : : ;p0

k
/ to .pi/ at the point x. The definition of opposite strainers

implies
†p0ixq < 1

2
� C 2ı and †p0ixq0 < 1

2
� C 2ı:

Therefore
†p0ixq > 1

2
� � 2ı and †p0ixq0 > 1

2
� � 2ı:

Applying [loc. cit., Lemma 8.1] (compare [loc. cit., Lemma 8.2]) we get:

Lemma 5.1 For ı � 1=.20k/ and LD 2
p

kC 1, any extended .k; ı/–strainer map yF W U ! RkC1 is
L–Lipschitz and L–open.

Remark 5.2 The argument in [loc. cit., Lemma 8.3] allows us to choose the constant L above arbitrarily
close to 1 if ı is sufficiently small.

By definition, any point q is an extended .0; ı/–strainer in X nfqg for any ı > 0 and the distance function
dq WX n fqg ! .0;1/ is an extended .0; ı/–strainer map. We are interested in distance spheres, and thus
in fibers of such .0; ı/–strainer maps. As in [Burago et al. 1992; Lytchak and Nagano 2019], we approach
the structure of these fibers by finding more strainers:

Lemma 5.3 Let yF D .dp1
; : : : ; dpk

; dq/ WU !RkC1 be an extended .k; ı/–strainer map for some k � 0

and ı < 1=.20k/. Let p 2 U be arbitrary and let y…p WD
yF�1. yF .p// be the fiber of yF through p.

Then there exists r > 0 such that .p;p1; : : : ;pk ; q/ is an extended .kC1; 4ı/–strainer in the intersection
of y…p and the punctured ball PBr .p/.

Proof We apply [Lytchak and Nagano 2019, Proposition 9.4] and find some r>0 such that .p;p1; : : : ;pk/

is a .kC1; 4ı/–strainer in y…p \
PBr .p/.

For any x 2 y…p\
PBr .p/, the points x and p are at equal distance to q, and hence †pxq< 1

2
� . It remains

to prove that, for sufficiently small r > 0, †pxq0 < 1
2
� C ı, for all x 2 y…p \

PBr .p/ and all points q0

with †qxq0 D � . Suppose for the sake of contradiction that we find xi 2
y…p n fpg converging to p and

points q0i lying on extensions of the geodesics qxi such that †pxiq
0
i �

1
2
� C ı. We may assume that

d.xi ; q
0
i/D 1 and that the q0i converge to a point q01. Using geodesic completeness, we extend xip to a

geodesic xipi of length 1 such that

†pipq01 D � �†q01pxi �
1
2
�:
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q xi

p

pi

q0i

q01

�
�
2

Figure 2

Taking a subsequence, we may assume that pi converges to a point p1. Hence, †p1pq01 �
1
2
� . But,

by semicontinuity of angles,

†p1pq01 � lim sup
i!1

†pixiq
0
i �

1
2
� C ı:

This contradiction finishes the proof.

5.3 Halfspaces

Let yF D .F; do/ be an extended strainer map on an open set U . We denote the F–fiber and yF–fiber
through a point x by …x and y…x , respectively. We define the yF–halfspace through x by

y…Cx D fy 2…x j do.y/� do.x/g:

The proof of our main results will rely on the following structural results about the fibers and halfspaces
of extended strainer maps. The proofs of these results are postponed to Section 7.

The first result generalizes [Thurston 1996b, Proposition 2.7; Lytchak and Nagano 2022, Corollary 5.2]:

Proposition 5.4 Let U be an open subset of X . Then for any extended .k; ı/–strainer map yF WU!RkC1

with ı < 1=.64k/, the following holds true for any x 2 U :

(1) The halfspace y…Cx is an ANR.

(2) If U is a homology n–manifold , then y…Cx is a homology .n�k/–manifold with boundary y…x . The
fiber y…x is a homology .n�k�1/–manifold without boundary.

The second statement is an extension of Theorem 1.9 which constitutes the special case where k D 0 and
y D x. In the proof of our main results we will only need the cases k D 0 and k D 1.

Proposition 5.5 For every relatively compact set V �X there exists ı0 > 0 with the following property.
Let yF WX !RkC1 be a distance map which is an extended .k; ı0/–strainer map at a point x 2 V . Then
there exist �0; s0 > 0 such that , for any 0< � < �0 and any point y with d.x;y/ < s0�, the “hemisphere”
S�.x/\ y…

C
y is contractible and locally contractible.

Geometry & Topology, Volume 28 (2024)



CAT.0/ 4–manifolds are Euclidean 3297

6 Proof of the main theorem

6.1 Topology of intersecting spheres

Fix a CAT.0/ homology 4–manifold X , a point o 2 X and some radius R > 0. We denote by S the
distance sphere S D SR.o/, and we are going to verify that S is a topological 3–manifold.

We fix an arbitrary p 2 S for the rest of the proof. We need to find a neighborhood of p in S which
is homeomorphic to R3. For this we aim to show that the restriction of dp to S is a fiber bundle on a
punctured neighborhood of p in S . The proof boils down to understanding how distance spheres intersect
in our CAT.0/ homology 4–manifold X .

We apply Proposition 5.5 to the relatively compact set V WD B2R.o/. Note that yF WD do W V !R is an
extended .0; ı/–strainer map for any ı > 0. The halfspace y…Cp is exactly the ball BR.o/ and y…p D S .

Corollary 6.1 There exists a radius rp > 0 such that Sr .p/ \ S is homeomorphic to S2 for every
0< r � rp.

Proof By [Lytchak and Nagano 2019, Proposition 9.4] and Lemma 5.3, we can choose rp such that p

is a .1; ı/–strainer in PBr0
.p/ and .p; o/ is an extended .1; ı/–strainer on PBr0

.p/\S . In addition, we
choose rp smaller than the constant �0 D �0.p/ from Proposition 5.5. Then by Propositions 5.4 and 5.5,
Sr .p/\BR.o/ is a contractible homology 3–manifold with boundary Sr .p/\S , for all r < rp. Thus,
Sr .p/\S is a homology 2–manifold and therefore a 2–manifold by Theorem 3.1. By Poincaré duality,
Sr .p/\S is a homology 2–sphere; see [Thurston 1996b, Proposition 2.8]. Due to the classification of
surfaces, Sr .p/\S is homeomorphic to S2.

Lemma 6.2 There exists r0 D r0.p/ > 0 such that the distance function dp W
PBr0
.p/\S ! .0; r0/ has

uniformly locally contractible fibers.

Proof Let ı0 be the constant from Proposition 5.5 and set ı D 1
4
ı0. Let rp be as in Corollary 6.1. By

[Lytchak and Nagano 2019, Proposition 9.4] and Lemma 5.3, we can choose r0 < rp such that p is a
.1; ı/–strainer in PBr0

.p/ and .p; o/ is an extended .1; ı/–strainer on PBr0
.p/\S .

We fix an arbitrary x 2 PBr0
.p/\S and set t0 WD dp.x/. In addition, we fix a positive number �0 < r0� t0.

Sublemma There exists a positive �0 < �0 and a positive s0 < 1 such that for all t with jt � t0j< s0�0

the intersection of spheres S�0
.x/\St .p/\S is homeomorphic to S1.

Proof We apply [Lytchak and Nagano 2019, Proposition 9.4] and Lemma 5.3 and find �0 < �0 small
enough that .p;x/ is a .2; ı0/–strainer in PB2�0

.x/\St0
.p/ and .p;x; o/ is an extended .2; ı0/–strainer

in PB2�0
.x/\St0

.p/\S .

Using the openness of the strainer property, we find some small s0>0 such that for all t with jt�t0j< s0�0,
the pair .p;x/ is a .2; ı0/–strainer in PB2�0

.x/\ St .p/ and the triple .p;x; o/ is an extended .2; ı0/–
strainer in PB2�0

.x/\St .p/\S .
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We apply Proposition 5.4 and deduce that for all such t the intersection S�0
.x/ \ St .p/ \ BR.o/ is

a homology 2–manifold with boundary S�0
.x/ \ St .p/ \ S . By Theorem 3.1, these intersections

S�0
.x/\St .p/\BR.o/ are 2–manifolds with boundary S�0

.x/\St .p/\S .

By our choice of ı0 D 4ı, we may apply Proposition 5.5. By possibly making �0 and s0 even smaller, we
deduce that all intersections S�0

.x/\St .p/\BR.o/ are contractible and therefore homeomorphic to
closed discs. Hence their boundaries S�0

.x/\St .p/\S are circles.

Now we can easily finish the proof of the lemma. By the choice of r0 and �0, and Corollary 6.1, any
fiber St .p/\S is homeomorphic to S2.

In order to verify the uniform local contractibility of the fibers of the restriction of dp , we will argue that
for every t with jt � t0j< s0�0, the set B�0

.x/\St .p/\S is contractible inside B�0
.x/\St .p/\S .

In the same parameter range as above, B�0
.x/\St .p/\S is an open subset of the 2–sphere St .p/\S

whose topological boundary inside St .p/\S is contained in the circle S�0
.x/\St .p/\S . Therefore,

by the Jordan curve theorem, B�0
.x/\St .p/\S is either a topological disc or all of St .p/\S . In both

cases, B�0
.x/\St .p/\S is contractible inside B�0

.x/\St .p/\S . Therefore B�0
.x/\St .p/\S is

contractible inside the larger set B�0
.x/\St .p/\S .

6.2 The main results

Proof of Theorem 1.4 Let p 2 S D SR.o/ be arbitrary. Choose rp as in Corollary 6.1 and r0 < rp as in
Lemma 6.2. The distance function dp W

PBr0
.p/\S ! .0; r0/ has uniformly locally contractible fibers

homeomorphic to S2 by Corollary 6.1 and Lemma 6.2. By Lemma 5.1 and Theorem 3.5, dp is a fiber
bundle. Hence PBr0

.p/\S is homeomorphic to S2
�.0; r0/. Therefore Br0

.p/\S is homeomorphic to
a 3–ball. Since p was arbitrary, S D SR.o/ is a 3–manifold, as required.

Now the main result of [Thurston 1996b] implies Theorem 1.1.

Before turning to Corollaries 1.5 and 1.6, we recall some notation. We fix a CAT.0/ 4–manifold X and a
point o 2X .

For R> r > 0 we have a canonical geodesic contraction map

cR;r W SR.o/! Sr .o/

defined by sending y 2 SR.o/ to the point of intersection of the geodesic oy with Sr .o/.

The ideal boundary @1X is canonically identified with the inverse limit for the bonding maps cR;r

[Bridson and Haefliger 1999, Section II.8.5; Fujiwara et al. 2004, page 872]:

@1X D lim
 ��

Sr .o/:

The canonical map c1;r W @1X ! Sr .o/, the inverse limit of the bonding maps cR;r , sends a point
� 2 @1X to the intersection with Sr .o/ of the ray starting in o and determined by � [Bridson and Haefliger
1999, Section II.8].
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We recall in a special case the notions of cell-like mappings, referring to [Mitchell and Repovš 1988;
Thurston 1996b] for details. A compact subset K of a 3–manifold M is called cell-like if K is contractible
in any neighborhood of K in M . A map f WM !N between 3–manifolds is called a cell-like map if
the preimage of any point is cell-like.

The following result is a combination of [Mitchell and Repovš 1988, Theorem 1.2 and Corollary 1.4;
McMillan 1967, Corollary 2.2]:

Theorem 6.3 Let M be a compact 3–manifold and f WM !M be a surjective cell-like map. Then f
is a uniform limit of homeomorphisms. For any open subset U �M , the restriction f W f �1.U /! U is
a homotopy equivalence.

Now we turn to the proof of Corollary 1.5, which is essentially contained in the proof of [Thurston 1996b,
Theorem 4.3].

Proof of Corollary 1.5 By Theorems 1.1 and 1.4 and [Thurston 1996b, Theorem 4.3] all distance
spheres SR.o/ are homotopy equivalent to R4 n fog, and hence to S3. By Theorem 1.4 and the resolution
of the Poincaré conjecture, any sphere SR.o/ is homeomorphic to S3.

Hence, for any geodesic contraction cR;r W SR.o/! Sr .o/ the preimage of any point is contained in a
subset homeomorphic to R3. Combining [Thurston 1996b, Corollary 2.10 and Theorem 2.13] and the
subsequent remark, we deduce that cR;r are cell-like maps.

By Theorem 6.3, for any open contractible set W �Sr .o/, the preimages c�1
R;r
.W / are contractible for all

R> r . This implies that the map do WX nfog! .0;1/ has uniformly locally contractible fibers. Indeed, for
any t >�> 0 and any x 2St .o/, consider the point zD ct;t��.x/. Find an open contractible neighborhood
W of diameter less than � around x in the manifold St .o/. Then �W WDSt��<s<tC� c�1

s;tC�.W / is an
open neighborhood of x in X of diameter at most 4�. As we have seen above, the intersection of �W with
any fiber of the function do is contractible. Hence, do has uniformly locally contractible fibers.

Therefore an application of Theorem 3.6 completes the proof.

In the proof of Corollary 1.6 below we assume some knowledge of the ideal boundary, its cone topology
and the canonical compactification X DX [ @1X of a CAT.0/ space X .

Proof of Corollary 1.6 We fix a point o in the CAT.0/ 4–manifold X . By Corollary 1.5, every distance
sphere SR.o/ is homeomorphic to S3.

As we have seen in the proof of Corollary 1.5 above, all geodesic contractions cR;r W SR.o/! Sr .o/ are
cell-like maps. Hence, due to Theorem 6.3, the map cR;r is a uniform limit of homeomorphisms. Thus,
an application of the main result of [Brown 1960] implies that the ideal boundary @1X is homeomorphic
to S3. Moreover, the proof in [Brown 1960] shows that the canonical projection

c1;r W @1X ! Sr .o/

is a uniform limit of homeomorphisms.

Geometry & Topology, Volume 28 (2024)



3300 Alexander Lytchak, Koichi Nagano and Stephan Stadler

Consider the map f WX ! .0; 1� which sends @1X to 1 and is defined as

f .x/ WD
do.x/

1C do.x/

on X . The map f is continuous on X and coincides on X with do up to a homeomorphism of the image
interval. Hence f is a fiber bundle on X n fog. We claim that f is also a fiber bundle on all of X n fog.

All fibers of f are 3–spheres. Moreover, for any open contractible W in any sphere Sr .o/ the preimages
c�1

R;r
.W / are contractible, for all R 2 Œr;1�, since all geodesic contractions including c1;r are cell-like.

This implies that f has uniformly locally contractible fibers.

Theorem 3.6 implies the claim. Therefore, X nfog is homeomorphic to S3� .0; 1�. Thus X , the one-point
compactification of this space, is homeomorphic to the 4–ball.

7 Structure of fibers of extended strainer maps

7.1 Generalized distance functions

In this final section, we want to use information on limits of distance maps to conclude topological
properties of their fibers. This requires a slight generalization of the notion of distance functions and
strainer maps. For this purpose we make the following definitions; see also [Nagano 2022, Section 5].
Recall that a convex function on a CAT.0/ space attains its minimal value on a closed convex set or
doesn’t attain a minimum at all. A generalized distance function on a CAT.0/ space X is a convex
function b WX !R whose (negative) gradient has unit norm on the complement of its minimal set:

krx.�b/k WDmax
�

0; lim sup
y!x

b.x/� b.y/

d.x;y/

�
� 1:

This definition unifies the concept of distance functions to convex subsets and Busemann functions.
Adding a constant to a generalized distance function results in a generalized distance function. On every
bounded open set, a generalized distance function equals the distance function to a convex set up to a
constant. In particular, the integral curves of the “negative gradient” of a generalized distance function
are geodesics and the negative gradient rx.�b/ 2†xX is well defined.

A map F WX !Rk will be called a generalized distance map if all coordinates fi of F are generalized
distance functions.

A generalized distance map F WX !Rk with components fi will be called a generalized .k; ı/–strainer
map in a subset A�X if the minimum sets of any fi are disjoint from A and, for any x 2A, the negative
gradients rx.�fi/ 2†xX form a ı–spherical k–tuple of directions in †xX .

Two generalized distance maps F;F W X ! Rk with coordinates fi and Nfi are opposite generalized
.k; ı/–strainer maps on A� X if, for all x 2 A, the corresponding k–tuples of negative gradients are
opposite .k; ı/–strainers.
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As for (nongeneralized) distance maps, the set of points x 2 X at which a generalized distance map
F WX !Rk is a generalized .k; ı/–strainer map is open. Similarly, the set of points at which a pair of
distance maps F and F are opposite generalized .k; ı/–strainers is open.

Let F WX !Rk be a generalized distance map with coordinates fi and denote by b another generalized
distance function. Suppose that F is a generalized .k; ı/–strainer map on a subset A � X and b does
not attain its minimum on A. Then the map yF D .F; b/ W X ! RkC1 is called a generalized extended
.k; ı/–strainer map on A if, at all points x 2 A and for every antipode wx 2 †xX of rx.�b/, the
following holds for all 1� i � k:

†x.rx.�b/;rx.�fi// <
1
2
� C ı and †x.wx;rx.�fi// <

1
2
� C ı:

The set of points where a given generalized distance map is a generalized extended .k; ı/–strainer map is
open, again due to the semicontinuity of angles.

All statements about (extended) strainer maps transfer to the generalized setting. For instance, the concept
of “straining radius” introduced in [Lytchak and Nagano 2019, Section 7.5] generalizes as follows.
Let F W X ! Rk be a generalized distance map with coordinates fi . Suppose that F is a generalized
.k; ı/–strainer map at a point x. Then the straining radius is the largest radius �x with the following
property: For every y 2 B�x

.x/ and 1 � i � k let Npi be any point with d.x; Npi/ D 1 and such that
the direction at x of the geodesic x Npi is antipodal to r.�fi/. Then F and F D .d Np1

; : : : ; d Npk
/ are

opposite generalized .k; 2ı/–strainer maps on B�x
.y/. The proof of positivity of �x is identical to

[loc. cit., Lemma 7.10]. Similarly, we define an “extended straining radius”. If yF D .F; b/ is an extended
generalized .k; ı/–strainer map at x, then the extended straining radius is the largest radius O�x � �x such
that for all y 2 B O�x

.x/ the map yF is an extended generalized .k; 2ı/–strainer map on B O�x
.y/.

Let .Xn;xn/ be a sequence of pointed locally compact CAT.0/ spaces converging in the pointed Gromov–
Hausdorff topology to a space .X;x/, Then, for any sequence of generalized distance functions fn WXn!R

with uniformly bounded fn.xn/, we find a subsequence converging to a generalized distance function
f WX !R.

Let Fn W Xn ! Rk be a sequence of generalized distance maps converging to a generalized distance
map F WX !R. The semicontinuity of angles under convergence implies the following, as in [loc. cit.,
Lemma 7.8]: if F is a generalized (extended) .k; ı/–strainer at x then Fn is a generalized (extended)
.k; ı/–strainer at xn, for all n large enough. Moreover, for all n large enough, the (extended) straining
radius �xn

of Fn at xn is bounded from below by half of the (extended) straining radius �x .

7.2 Local topology of halfspaces

The following result on strainer maps translates to the generalized setting as well, but since we only apply
it in the nongeneralized setting, and since this allows us to directly rely on [loc. cit., Theorem 9.1], we
refrained from formulating a generalized version even though proofs extend literally.
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Proposition 7.1 Let yF D .F; do/ WX !Rk be a distance map and ı � 1=.64k/. Suppose that yF is an
extended .k; ı/–strainer map at a point x with extended strainer radius O�x . Denote by W a ball Br .x/

with radius r � O�x . Then there exists a deformation retraction of W onto the halfspace y…Cx \W .

Proof The proof is an adaption of the proof of [loc. cit., Theorem 9.1]. For convenience of the reader, we
stick to the notation used there. Hence .pi/ denotes the strainer defining F , and .qi/ is a k–tuple in X nW

such that x lies on the geodesic piqi and the tuples .pi/ and .qi/ are opposite .k; 2ı/–strainers in W .

Set s0 WD d.o;x/ and define the function M WW !R by

M.z/ WD max
1�i�k

jd.pi ; z/� d.pi ;x/j:

Denote by ˆ WW � Œ0; 1�!W the homotopy which retracts W onto …x \W , provided by [loc. cit.,
Theorem 9.1]. Recall that the length of the path z.t/ WDˆ.z; t/ is at most 8kM.z/. Moreover, z.t/ is an
infinite piecewise geodesic all of whose segments are directed towards one of the points pi or qi . By the
first variation formula, the value of do changes along z.t/with velocity at most 4ı. Hence for all t 2 Œ0; 1�,

(7-1) jdo.z/� do.z.t//j � 4ı � 8k �M.z/� 1
2
M.z/:

Denote by ' WW � Œ0; 1�!W the flow which deformation retracts W onto Bs0
.o/\W . More precisely,

' moves a point z 2W nBs0
.o/ towards o at unit speed until it reaches Ss0

.o/ and then stops. Note that
' does indeed preserve W , by the CAT.0/ property of X . We define a concatenated homotopy ‰ by
setting ‰.z; t/Dˆ.z; 2t/ for t � 1

2
and ‰.z; t/D '.ˆ.z; 1/; 2t � 1/ for t � 1

2
.

By definition, d.o; ‰.z; 1//� s0 for all z 2W and ‰ fixes y…Cx \W .

The length of the ‰–flow line of a general point z 2W is bounded above by 8kM.z/C 2r . However, if
d.o; z/� s0 holds, then the length of the ‰–flow line starting at z is at most .1C 4ı/8kM.z/ by (7-1).

Along the homotopy ', the value of M changes at most with velocity 4ı, due to the first variation formula.
Hence, for any z with d.o; z/� s0, we deduce, using M.ˆ.z; 1//D 0 and (7-1),

M.‰.z; 1//� 2ıM.z/:

To obtain the required deformation retraction, we take a limit of iterated concatenations of ‰. More
precisely, for m� 1 we define homotopies ‰m WW � Œ0; 1�!W as follows. The homotopy ‰m is the
identity on the interval Œ1�2�m; 1� and it equals a rescaling of‰ on any of the intervals Œ1�2�l ; 1�2�l�1�,
for l D 0; : : : ;m� 1.

The above inequalities imply M.‰m.z; 1//� .2ı/
mM.z/, by induction. Moreover, the flow line of ‰m

starting at z 2W has length uniformly bounded above by 2r C 24kM.z/. Therefore .‰m/ converges
uniformly to a homotopy ‰1 WW � Œ0; 1�!W , as required.

Recall that a closed subset … of a topological space Y is called homotopy negligible in Y if for each open
set U of Y the inclusion U n…!U is a homotopy equivalence. If Y is an ANR, this condition is satisfied
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if any point z 2 … has a neighborhood basis Uz of contractible neighborhoods Uz with contractible
complements Uz n… [Eells and Kuiper 1969, Theorem 1]. In our setting, we have:

Corollary 7.2 Let yF D .F; do/ W U ! Rk be an extended .k; ı/–strainer map on an open set U � X

with ı � 1=.64k/. Then , for every x 2 U , the halfspace y…Cx is an ANR and the fiber y…x is homotopy
negligible in y…Cx .

Proof By [Lytchak and Nagano 2019, Theorem 9.1], for all y 2 y…Cx n
y…x the set y…Cx \ Br .y/ is

contractible as a retract of Br .y/, as long as the radius r is less than the straining radius �y and the
difference of levels do.x/� do.y/. Similarly, by Proposition 7.1, for all z 2 y…x , the set y…Cx \Br .z/ is
contractible as a retract of Br .z/ for some radius r < O�z . Hence y…Cx is an ANR. Now for z 2 y…x , set
W DB O�z

.z/ as above. It remains to show that . y…Cx n y…x/\W is contractible. Since it is an ANR as an
open subset of y…Cx , it suffices to verify that all of its homotopy groups vanish [Hu 1965, Corollary VII.8.5].
This will follow once we have shown that, for any compact subset K � . y…Cx n

y…x/\W , the inclusion
map K ,! . y…Cx n

y…x/\W is nullhomotopic. By continuity of the straining radius O�x , given such a
set K, we find a point w 2 . y…Cx n y…x/\W and s � O�w with K � Bs.w/ � W . By Proposition 7.1,
y…Cw \Bs.w/� . y…

C
x n
y…x/\W is contractible and the proof is complete.

Proof of Proposition 5.4 We have already seen in Corollary 7.2 that the halfspace y…Cx is an ANR.

Assume now that U is a homology n–manifold. Since ı < 1=.20k/, Theorem 4.1 implies that the fibers
of F are homology .n�k/–manifolds. The complement of y…x in y…Cx is open in …x and therefore a
homology .n�k/–manifold. By Corollary 7.2, y…x is homotopy negligible in y…Cx . In particular, every
singleton fyg � y…x is homotopy negligible in y…Cx [Toruńczyk 1978, Corollary 2.6]. We conclude that
the local homology groups H�. y…

C
x ;
y…Cx n fyg/ vanish at all points y 2 y…x . By [Mitchell 1990], y…x is

the boundary of a homology manifold and therefore is itself a homology manifold without boundary.

7.3 Contractibility of hemispheres

Proof of Proposition 5.5 Suppose for the sake of contradiction that there is a sequence ıl ! 0 and
distance maps yFl D .Fl ; dql / WX !RkC1 with Fl D .dpl

1
; : : : ; dpl

k
/ which are extended .k; ıl/–strainer

maps at points xl 2 V where the statement fails. Thus we find arbitrarily small “hemispheres” around xl

which are either not contractible or not locally contractible. More precisely, we find sequences �l ! 0,
sl ! 0 and a sequence of points yl 2X with d.xl ;yl/ < sl�l and the following additional properties:

(1) Gromov–Hausdorff close to tangent space

jB�l l.xl/;B�l l.oxl
/jGH <

�l

l
:

(2) Improved strainer The map .dxl
;Fl/ is a .kC1; 4ıl/–strainer map on PB�l l.xl/.

(3) Improved extended strainer The map .dxl
; yFl/ is an extended .kC1; 4ıl/–strainer map on an

open neighborhood Vl of y…xl
\ PB�l l.xl/.
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(4) Large levels minfdpl
1
.xl/; : : : ; dpl

k
.xl/; dql .xl/g � l�l :

(5) Fiber lies in extended domain S�l
.xl/\ y…yl

� Vl :

(6) Noncontractible S�l
.xl/\ y…

C
yl

is either not contractible or not locally contractible.

The first item can be arranged because, in our setting, tangent spaces are Gromov–Hausdorff limits of
rescaled balls around a particular point [Lytchak and Nagano 2019, Corollary 5.7]. The second and third
items follow from [loc. cit., Proposition 9.4] and Lemma 5.3, respectively, by choosing �l small enough.
Similarly, the forth item can be achieved by choosing �l small enough. Finally, the fifth item can be
guaranteed by choosing sl small enough.

We define the shifted strainer mapsˆlD .dpl
1
�dpl

1
.xl/; : : : ; dpl

k
�dpl

k
.xl//, as well as the shifted distance

function bl Ddql �dql .xl/. In particular,ˆl.xl/D 0. Now we rescale space and functions by 1=�l . Since
V is relatively compact, up to passing to subsequences, we can take a pointed Gromov–Hausdorff limit
.X1;x1/D liml!1..1=�l/ �X;xl/ [loc. cit., Proposition 5.10]. We also pass to corresponding limits of
functions ˆ1 D liml!1.1=�l/ˆl and b1 D liml!1.1=�l/bl . Item (4) ensures that all coordinates of
ˆ1, as well as the function b1, are Busemann functions on X1 [Kapovich and Leeb 1997, Lemma 2.3].

By (1), .X1;x1/ is isometric to a pointed Gromov–Hausdorff limit of the sequence of tangent spaces
.Txl

X; oxl
/. In particular, .X1;x1/ is isometric to a Euclidean cone with tip x1. Therefore S1.x1/

is a CAT.1/ space [Berestovsky 1983]. Moreover, the spaces of directions †xl
X converge to S1.x1/

[Lytchak and Nagano 2019, Theorem 13.1]. By assumption, the negative gradients of the components
of ˆl provide a ıl–spherical k–tuple of directions at xl . Then [loc. cit., Proposition 6.6] implies that
S1.x1/ splits isometrically as a spherical join S1.x1/ŠSk�1

�†0; equivalently, X1 splits isometrically
as a direct product X1 ŠRk �X 01. Moreover, the negative gradients of the components of ˆ1 form a
spherical k–tuple inside the Sk�1–factor of S1.x1/.

From the L–openness of .dxl
; yFl/, given by Lemma 5.1, we conclude the Gromov–Hausdorff convergence:

liml!1.1=�l/ � .S�l
.xl/\ y…

C
yl
/D S1.x1/\ y…

C
x1

.

Sublemma The sequence .1=�l/ � .S�l
.xl/\ y…

C
yl
/ is uniformly locally contractible.

Proof By compactness of S1.x1/, we find r > 0 such that the straining radius of ˆ1 satisfies �z > 2r

at all z 2 S1.x1/ \ …x1
and the extended straining radius of .ˆ1; b1/ satisfies O�z > 2r at all

z 2S1.x1/\ y…x1
. Then, for l large enough, the straining radius of Fl and the extended straining radius

of .Fl ; bl/ are larger than r�l on S�l
.xl/\…yl

and S�l
.xl/\ y…yl

, respectively.

Let zl 2 S�l
.xl/\ y…

C
yl

be a point. If the distance from zl to the fiber S�l
.xl/\ y…yl

is at least 1
2
r�l , then

S�l
.xl/\ y…

C
yl
\B.r=2/�l

.zl/ is contractible by [loc. cit., Theorem 9.1]. On the other hand, if the distance
from zl to the fiber S�l

.xl/\ y…yl
is smaller than 1

2
r�l , then S�l

.xl/\ y…
C
yl
\B.r=2/�l

.zl/ is contained in an
ball Br�l

.wl/withwl 2S�l
.xl/\ y…yl

. By Proposition 7.1, the set S�l
.xl/\ y…

C
yl
\Br�l

.wl/ is contractible.
It follows that any 1

2
r–ball in .1=�l/ � .S�l

.xl/\ y…
C
yl
/ is contractible inside its concentric 2r–ball.
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As one consequence, the same local contractibility holds for the hemispheres S1.x1/\ y…
C
x1

[Petersen
1993, Theorem 9]. Moreover, S1.x1/\ y…

C
x1

is homotopy equivalent to S�l
.xl/\ y…

C
yl

, for large enough l .
Hence, to arrive at a contradiction, it remains to show that S1.x1/\ y…

C
x1

is contractible.

Let v 2 S1.x1/ denote the point corresponding to the negative gradient of b1. By semicontinuity of
angles and the splitting S1.x1/ŠSk�1

�†0, we see v 2†0; see Section 5.2. In particular, b1D b01ı�
0,

where � 0 denotes the projection X1 ŠRk �X 01!X 01, and b01 is a Busemann function on X 01. We
infer y…Cx1

Š f0g � fb01 � 0g since ˆ1.x1/D 0. Hence,

S1.x1/\ y…
C
x1
Š†x1

X 01\fb
0
1 � 0g:

But †x1
X 01 \ fb

0
1 � 0g D B�=2.v/ � †x1

X 01 and therefore †x1
X 01 \ fb

0
1 � 0g is contractible,

since †x1
X 01 is CAT.1/. Consequently, the hemisphere S1.x1/\ y…

C
x1

is contractible.
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