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Orbifold and logarithmic structures provide independent routes to the virtual enumeration of curves
with tangency orders for a simple normal crossings pair .X jD/. The theories do not coincide and their
relationship has remained mysterious. We prove that the genus-zero orbifold theories of multiroot stacks of
strata blowups of .X jD/ converge to the corresponding logarithmic theory of .X jD/. With fixed numerical
data, there is an explicit combinatorial criterion that guarantees when a blowup is sufficiently refined for
the theories to coincide. The result identifies birational invariance as the crucial property distinguishing
the logarithmic and orbifold theories. There are two key ideas in the proof. The first is the construction
of a naive Gromov–Witten theory, which serves as an intermediary between roots and logarithms. The
second is a smoothing theorem for tropical stable maps; the geometric theorem then follows via virtual
intersection theory relative to the universal target. The results import a new set of computational tools
into logarithmic Gromov–Witten theory. As an application, we show that the genus-zero logarithmic
Gromov–Witten theory of a pair is determined by the absolute Gromov–Witten theories of its strata.
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Introduction

0.1 Overview

Gromov–Witten theory for a pair .X jD/ of a projective manifold and a simple normal crossings divisor
models the enumerative geometry of curves in X with prescribed tangency along D. Two approaches to
this problem of significant recent interest proceed via logarithmic structures and via root constructions

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/gt.2024.28.3309
http://www.ams.org/mathscinet/search/mscdoc.html?code=14A21, 14N35
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


3310 Luca Battistella, Navid Nabijou and Dhruv Ranganathan

along the divisor; see [Abramovich and Chen 2014; Chen 2014; Gross and Siebert 2013] and [Abramovich
and Vistoli 2002; Cadman 2007; Cadman and Chen 2008; Abramovich et al. 2017; Tseng and You 2023a].
In both, the idealised object is a map of pairs from a smooth curve

.C jp1C � � �Cpn/! .X jD DD1C � � �CDk/;

where the tangency of pi along Dj is a fixed nonnegative integer cij . The approaches above yield two
paths to a proper moduli space with a virtual fundamental class. In both, the degenerate objects in the
moduli space parametrise stable maps with additional structure.

In the orbifold approach, the map is required to lift to a representable map of stacks, obtained from root
constructions along the divisors Dj and the markings pi . The tangency is recorded by the morphisms on
isotropy groups, but the orbifold structure along D is not canonical and provides an auxiliary choice —
the rooting parameter(s).

In the logarithmic approach, one demands that the map can be enhanced to a logarithmic one, with
tangency orders encoded in the logarithmic structure sheaves.

The two theories are very different in nature, provide complementary computational tools, and offer
different insights into enumerative geometry. We compare them. There are two orthogonal sources
of complexity:

(i) source complexity, the genus of the source curve, where the problem breaks naturally into the cases
of genus zero and positive genus, and

(ii) target complexity, the logarithmic rank of the target, where the problem breaks naturally into the
cases of logarithmic rank 1, where the divisor is smooth, and arbitrary rank.

When the logarithmic rank is 1 there is a complete picture. Once the rooting parameter r is sufficiently
high, the theories coincide in genus zero by work of Abramovich, Cadman, Marcus, and Wise [Abramovich
et al. 2014; 2017], following calculations of Cadman and Chen [2008]. In higher genus, Maulik showed
that the orbifold theory depends on the rooting parameter r . Work of Janda, Pandharipande, Pixton, and
Zvonkine [Janda et al. 2017; 2020] asserts that the contribution to the Gromov–Witten theory that is local
to the divisor D is polynomial in r , and the r–free term is the logarithmic theory. Finally, Tseng and
You [2020] used the compatibility of these statements with degeneration to deduce that the r–free term of
the orbifold theory of .X jD/ is the logarithmic theory.

We study the complementary situation of the genus-zero theory in arbitrary logarithmic rank. Examples
from [Nabijou and Ranganathan 2022, Section 1] show that even in genus zero the theories do not
coincide. We offer an explanation: the logarithmic theory is invariant under logarithmic modifications of
the boundary divisor [Abramovich and Wise 2018], whereas the orbifold theory is not. We show that the
invariant part of the latter is the logarithmic theory.

Geometry & Topology, Volume 28 (2024)
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0.2 Main results

Let .X jD/ be a simple normal crossings pair with components D1; : : : ;Dk . We fix numerical data ƒ for
the enumerative problem, which is a tuple .g; ˇ; n; Œcij �/, where g is the genus of the source curve, ˇ is
the curve class, n is the number of marked points, and cij is the tangency order at the i th marking with
respect to Dj . The collection of iterated blowups

.X�jD�/! .X jD/

along the strata of D forms an inverse system. In Section 4 we introduce a property of such blowups
called ƒ–sensitivity, and observe that blowups with this property always exist. Moreover, this condition
is stable under taking further blowups.

For the first result, we fix the genus to be zero. Given any iterated blowup .X�jD�/! .X jD/ along
logarithmic strata, there is a canonical lifting of the numerical data ƒ to .X�jD�/, obtained by formally
computing the strict transform of a stable map; see Section 3.5.

Theorem X Let .X�jD�/! .X jD/ be a ƒ–sensitive blowup. The genus-zero logarithmic Gromov–
Witten invariants of .X jD/ with numerical data ƒ agree with the orbifold Gromov–Witten invariants of
.X�jD�/ with the same numerical data.

The result is proved on the level of virtual cycles; see Section 0.3 for details. In particular, the result
implies that the multiroot orbifold theories of strata blowups eventually stabilise, which appears to be a
nonobvious consequence.

Combining this with results on the Gromov–Witten theory of root stacks [Tseng and You 2016; Chen
et al. 2020], gerbes [Andreini et al. 2015], projective bundles, and blowups [Fan 2021], we obtain the
following reconstruction principle for logarithmic Gromov–Witten invariants:

Corollary Y The genus-zero logarithmic Gromov–Witten theory of .X jD/ can be uniquely reconstructed
from the absolute Gromov–Witten theories of all the logarithmic strata of .X jD/.

In genus zero, this result generalises a well-known theorem from relative Gromov–Witten theory due
to Maulik and Pandharipande [2006, Theorem 2]. The authors are not aware of a purely logarithmic
argument that yields this result. Although it may be possible to use the degeneration formula to deduce
it [Ranganathan 2022], the result illustrates the type of consequences that can be extracted from our
theorem.

0.3 Naive theory

The route to Theorem X passes through a new version of logarithmic Gromov–Witten theory, referred
to as the naive theory. This appeared in an early form in [Nabijou 2018, Chapter 3; Nabijou and
Ranganathan 2022]. Here we construct the theory in full generality: in arbitrary genus and without
positivity assumptions on the divisor.

Geometry & Topology, Volume 28 (2024)
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Let Logƒ.X jD/ denote the moduli space of logarithmic stable maps to a pair .X jD/, and Mƒ.X/ the
space of absolute stable maps; the symbol ƒ records the numerical data. Given .X jD/, each divisor
component Di determines a smooth pair .X jDi /, and a logarithmic stable map to .X jD/ induces
one to each .X jDi /. The geometry of the interior of the space Logƒ.X jD/ suggests an alternative
compactification that we call the moduli space of naive stable maps:

Nƒ.X jD/ WD Logƒ.X jD1/�Mƒ.X/ � � � �Mƒ.X/ Logƒ.X jDk/:

The fibre product is taken in the category of algebraic stacks, disregarding the logarithmic structures. The
following theorem holds for arbitrary genus:

Theorem Z The moduli space Nƒ.X jD/ of naive stable maps is equipped with natural evaluation
morphisms to the strata of .X jD/, and a virtual fundamental class whose virtual dimension coincides
with the virtual dimension of the corresponding space of logarithmic stable maps.

In genus zero the resulting system of naive Gromov–Witten invariants agrees with the orbifold theory , as
follows: there is a diagram of moduli spaces equipped with virtual fundamental classes

Orbƒ.X jD/ NLogOrbƒ.X jD/

NOrbƒ.X jD/ Nƒ.X jD/

with each arrow identifying virtual fundamental classes via proper pushforward.

The spaces appearing in the diagram above will be defined in Section 2. In simple terms, there is no
direct morphism from Orbƒ.X jD/ to Nƒ.X jD/, but a map exists after introducing appropriate root
constructions; see for instance [Abramovich et al. 2014; 2017]. The intermediate spaces give an explicit
moduli-theoretic factorisation of these root constructions. Product formulas in orbifold Gromov–Witten
theory play an important role in Theorem Z; see [Andreini et al. 2016; Battistella et al. 2023]. The fact
that logarithmic Gromov–Witten theory does not satisfy product-type formulas can be seen as an instance
of the phenomena that we encounter here; see [Ranganathan 2019; Nabijou and Ranganathan 2022].

Theorem X can now be phrased as stating that the natural map

Logƒ.X
�
jD�/! Nƒ.X�jD�/

is virtually birational for any ƒ–sensitive blowup .X�jD�/! .X jD/. In Section 5 this is proved by
reducing to a tropical smoothing problem, which we solve by exploiting the combinatorics of ƒ–sensitive
blowups. The solution identifies the main component of the naive moduli space.

0.4 Context

The enumerative geometry of orbifolds obtained by roots along a simple normal crossings divisor was
considered in Cadman’s foundational paper [2007, Section 2], and its systematic study was initiated by
Tseng and You [2023a]. They observed that the theory satisfies a number of remarkable properties, owing
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to the structural similarities between ordinary and orbifold Gromov–Witten theory. They ask about the
relationship with logarithmic Gromov–Witten theory, and our main theorem answers this question in
genus zero.

In recent years, a number of results have appeared in the logarithmic geometry literature asserting that
natural geometric claims are true after sufficiently blowing up; see for instance [Holmes et al. 2019;
Nabijou and Ranganathan 2022; Ranganathan 2019; 2022]. However our results do not fit into this general
principle. In our work the moduli space of stable maps is never directly blown up, but rather only the
target is, leading to a much stronger conclusion. In the cited works, once the moduli spaces of curves
or of maps is blown up, the canon of intersection theory methods, including localisation, do not apply.
These methods remain accessible for us, leading to conclusions such as Corollary Y. In short, we only
blow up the target, while earlier results blow up the moduli space.

The comparison between logarithmic and orbifold Gromov–Witten theory should also be contrasted
with those relating different models within logarithmic Gromov–Witten theory, including [Abramovich
et al. 2014; Abramovich and Wise 2018; Ranganathan 2022]. While the latter statements are essentially
uniform, the comparison we obtain is more subtle and only true after appropriate invariance properties
are forced.

The main result has consequences for the types of computational techniques which are available. Compu-
tations in logarithmic enumerative geometry have been achieved via tropical correspondences [Mandel
and Ruddat 2020; Nishinou and Siebert 2006], degeneration formulas [Abramovich et al. 2020a; 2020b;
Ranganathan 2022; Wu 2024], and scattering diagrams [Argüz and Gross 2022; Gross et al. 2010]. These
methods rely on tropical geometry in an essential fashion.

The orbifold theory is equipped with a different set of computational techniques, including torus localisa-
tion, Givental formalism, and universal relations such as WDVV and Virasoro constraints; see [Tseng
and You 2023a]. None of these are available in logarithmic geometry. The difference in computational
techniques illustrates the different nature of the two sides, and is a notable feature of Theorem X. As
a coarse consequence, the main result, together with virtual localisation, determines the genus-zero
logarithmic Gromov–Witten theory of a pair .X jD/ for X toric and D a subset of the toric boundary
in terms of known calculations [Liu 2013, Section 9]. In a different way, once the problem has been
moved out of logarithmic geometry, quasimap wall-crossing and enumerative mirror symmetry techniques
become available [Battistella and Nabijou 2021; Cheong et al. 2015]. It seems plausible that mirror
transformations may help to further clarify the relationship between the logarithmic and orbifold theories;
see for instance [Shafi 2024; You 2022].

The process of taking the r–free term of the higher-genus orbifold theory can also be seen as a way of
forcing an invariance property in the orbifold theory [Janda et al. 2017; 2020; Tseng and You 2023a].
Together with the main result here, it suggests that invariance under roots and blowups are precisely what
distinguishes the orbifold theory from the logarithmic theory.

Geometry & Topology, Volume 28 (2024)
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0.5 Future work

Two directions for theoretical generalisation are available. The first is the higher-genus comparison
problem. As discussed earlier, if the logarithmic rank is 1, the invariants are known to become polynomial
in the rooting parameter, with the r–free term being the logarithmic theory. The polynomiality result is
known to hold for simple normal crossings divisors [Tseng and You 2023a]: the invariants are polynomial
in variables r1; : : : ; rk corresponding to the rooting parameters for divisors D1; : : : ;Dk . It is natural
to conjecture:

Conjecture W For each choice of numerical data ƒ in arbitrary genus , there is a sufficiently refined
blowup .X�jD�/! .X jD/ such that the constant-term orbifold Gromov–Witten invariants of .X�jD�/
agree with the logarithmic Gromov–Witten invariants of .X jD/.

The result appears plausible, but it seems likely that new input coming from higher double ramification
cycles will be necessary, going beyond [Holmes et al. 2019; Holmes and Schwarz 2022; Molcho and
Ranganathan 2024].

The second direction is to incorporate negative tangency. In the logarithmic theory this is the subject of
[Abramovich et al. 2020b], while in the orbifold theory, it can be extracted by studying invariants of fixed
coage [Fan et al. 2020; 2021]. The latter papers investigate the comparison between logarithmic and
orbifold geometries in logarithmic rank 1 with negative contact orders and establish a comparison, albeit
using a different model, for the logarithmic negative contact theory via localisation and graph summation
on the normal cone of D. Negative contact orders are the key input in the construction of intrinsic mirrors,
via degree-zero relative quantum cohomology for pairs [Gross and Siebert 2019]. The associativity of this
ring, which is the main result of [loc. cit.], is shown via a remarkable calculation. Our results offer the
possibility of deducing the associativity from the simpler associativity of orbifold quantum cohomology,
which also offers a route to a logarithmic quantum cohomology for pairs [Tseng and You 2023a].

0.6 Strategy

A simplified overview is as follows: Given a pair .X jD/, each smooth pair .X jDi / determines a cycle
in the space M.X/ of absolute maps. The intersection of these cycles is the image of the naive moduli
space of maps in M.X/. We equip it with a virtual class that is compatible with its presentation as an
intersection. The orbifold geometry attached to .X jD/ is the fibre product of those attached to .X jDi /,
over X . The Gromov–Witten cycles for the orbifold theory and, by definition, the naive theory both
satisfy a product rule in M.X/. Once they are equated, we dispense with the orbifold theory. In the main
text, this is refined to work on the naive spaces themselves rather than their images in M.X/.

A map to X lifts to a logarithmic map to .X jDi / if and only if it satisfies an intersection-theoretic criterion
due to Gathmann [2002]. However, the existence of lifts to all .X jDi / does not guarantee a lift to .X jD/.
The obstruction is tropical: a logarithmic map determines a combinatorial type of a tropical map, and
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when X is replaced with the universal simple normal crossings pair ŒAk=Gk
m�, the tropical data essentially

determines the logarithmic data. However, these tropical data are not compatible with the natural product
decomposition of ŒAk=Gk

m�. Concretely, assembling two rank-1 tropical types to a single type of rank 2
is a subtle problem.

However, explicit polyhedral geometry arguments show that the obstructions vanish after a sufficiently
fine subdivision of the tropical target. This yields a universal version of the main theorem. Combined
with techniques from virtual intersection theory, we deduce the main result.

Conventions and notation We work over an algebraically closed field of characteristic zero. We
assume familiarity with toroidal, logarithmic, and tropical geometry, and the role they play in logarithmic
Gromov–Witten theory. An overview is provided in Section 1.

We will work with various flavours of stable maps throughout the paper. To reduce clutter, we adopt the
simplified notation

Mƒ.X/; Logƒ.X jD/; and Orbƒ.X jD/

for the absolute, logarithmic, and orbifold moduli spaces. A number of auxiliary moduli spaces will be
introduced at various points and denoted similarly, as will the corresponding spaces of prestable maps to
the universal targets.
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1 Tropical essentials

We provide a review of the crucial aspects of logarithmic and tropical geometry that we require. The
treatment strives for brevity, but we provide detailed references.
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1.1 Cone complexes and Artin fans

Let .X jD/ be a simple normal crossings pair with components D1; : : : ;Dk . A stratum of .X jD/ is
a connected component of an intersection of some of the Dj (this includes the empty intersection X).
All strata are smooth. We momentarily make the simplifying assumption that every intersection of Dj
is connected.

Let A denote the stack ŒA1=Gm�. A morphism from X to A is precisely the data of a line bundle–section
pair, referred to here as a generalised Cartier divisor. Each Dj furnishes a morphism X!A. Combining
these, the divisor D induces a smooth morphism

X !Ak :

Let AX be the minimal open substack of Ak through which the map from X factors. It has one point for
each stratum. Let DX be the complement of the dense open point. Consider the sequence of maps

X !AX ,!Ak :

Each space is a logarithmic algebraic stack, with logarithmic structure induced by the natural simple
normal crossings divisor. Each arrow is strict. The stack AX is called the Artin fan of X ; see [Abramovich
and Wise 2018, Section 2] for the original construction and [Abramovich et al. 2016, Section 5] for
further exposition.

The datum .X jD/ determines a cone complex with integral structure, also called the tropicalisation of
.X jD/. It is denoted by †X , with D suppressed from notation, and is constructed as follows. It has k
distinct rays �1; : : : ; �k . For each nonempty subset I � f1; : : : ; kg we write DI for the intersection of
the corresponding Di . If nonempty, the intersection is closed of codimension equal to the size of I . For
each nonempty DI , the complex †X contains a copy of the cone �I , generated by the rays �i for i in I .
There is a natural identification of �I as a face of �J whenever J contains I . Define

Trop.X jD/ WD†X WD lim
��!
I

�I

as the colimit under these identifications. It comes with a canonical set of integral points, denoted by
†X .N/. The construction first appeared in a more general form in [Kempf et al. 1973, Chapter II]. An
exposition may be found in [Abramovich et al. 2016, Section 2] or [Cavalieri et al. 2020, Section 2].

Remark 1.1 The partially ordered set of faces of †X can be equipped with its Alexandrov topology,
and this coincides with the underlying topological space of AX .

Remark 1.2 If the intersectionsDI are not connected, both the Artin fan and cone complex constructions
generalise in a natural way. Following the construction above, the map from X to Ak has disconnected
fibres. By replacing the AX above with a nonseparated cover, we can guarantee connectedness of the
fibres; see [Abramovich and Wise 2018]. The cone complex construction can also be generalised by
taking one cone for each connected component in the intersection.
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1.2 Tropical curves and tropical maps

The tropical curves we consider will have genus zero. The dual graph � of a stable genus-zero curve C
has vertices in bijection with the irreducible components of C , and the set of edges connecting two
vertices is in bijection with the set of nodes connecting the corresponding components. If C is marked by
smooth points p1; : : : ; pn, this determines a map to the vertex set

m W f1; : : : ; ng ! V.�/:

A tropical curve is an enhancement of � obtained by assigning a positive real length to each edge

` WE.�/!R>0:

The triple .�;m; `/ determines a metric graph enhancing � in two steps. First, identify an edge e of �
with an interval of length `.e/. Second, for each marking i , attach a copy of R�0 to this metric graph by
identifying 0 2R�0 with the vertex m.i/.

The notion of a family of tropical curves is defined as follows. Fix a sharp toric monoid Q and let � be
the dual cone. Given a marked dual graph, a family of tropical curves over � is determined by a map

(1) ` WE.�/!Q n f0g:

Each point of � is a homomorphism from Q to R�0, and by applying this homomorphism to the edge
assignment above, each edge e acquires a length. On the interior of � , this is a tropical curve in the
previous sense. Fixing the data (1), there is a cone complex @ together with a map

@! �

whose fibre over a point in the interior is a tropical curve as previously discussed. The boundary
parametrises tropical curves where a subset of edges have been contracted. The total space @ is a cone
complex of relative dimension 1 over � and its cones correspond to the faces of the underlying dual
graph � . We typically work with this total space @, with the labelling of the graph � implicit; see
[Cavalieri et al. 2020, Section 3] for details and generalisations.

Let @! � be a family of tropical curves and let † be a cone complex. A tropical map from @ to † is a
map of cone complexes

@!†:

The fibres over � can be viewed as tropical curves equipped with a piecewise linear map to †. When
†DR�0 we will refer to this as a piecewise linear function on @.

Remark 1.3 (Slice picture) In order to speak of a single tropical curve, as opposed to a family, formally
one takes the monoidQ above to be N. In reality, this produces a family of tropical curves @!�DR�0. In
combinatorial arguments it is traditional to slice this map of cone complexes and take the fibre over the point
1 in � . The family can be uniquely reconstructed from this slice by taking the cone over the tropical curve.

Geometry & Topology, Volume 28 (2024)
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1.3 Tropicalisation of curves

Let .Spec k;Q/ denote a closed point equipped with the logarithmic structure associated to a toric
monoid Q. Let � be the dual cone of Q. Given a logarithmic curve

C! .Spec k;Q/;

there is an associated tropical curve @! � . Let � be the dual graph of C. The étale local structure of
logarithmic curves was determined by Kato [2000], and associates an element of Q to each edge of �;
see [Cavalieri et al. 2020, Section 7.2] for a tropical perspective. The tropicalisation of C! .Spec k;Q/

is the associated family of tropical curves @! � . We denote the tropicalisation by Trop.C/ or @.

Remark 1.4 The construction globalises to relate the moduli space of logarithmic curves and the moduli
space of tropical curves; see [Cavalieri et al. 2020]. We will not require this generality.

1.4 Line bundles and blowups

We will use two combinatorial dictionaries. First, if C is a logarithmic curve over a geometric point
.Spec k;Q/, then a piecewise linear function on the tropicalisation @ determines a generalised Cartier
divisor on C. The construction generalises the toric dictionary between toric Cartier divisors and piecewise
linear functions on the fan.

If ˛ W @!R�0 is a piecewise linear function, it can be identified with an element of H 0.C;M gp
C /. The

line bundle OC.˛/ is the image of �˛ in H 1.C;O?C / under the coboundary map induced by

0!O?C !M
gp
C !M

gp
C ! 0:

The logarithmic structure map MC!OC furnishes a section of this bundle; see eg [Ranganathan et al.
2019, Section 2]. The resulting generalised Cartier divisor is denoted by .OC.˛/; s˛/. A piecewise linear
function on †X similarly determines a divisor on X supported along D.

The second construction is related to birational modifications. A morphism of cone complexes †0!†X

(see Section 1.1 and [Kempf et al. 1973, Chapter II]) is a subdivision if it is a bijection on the underlying
sets. The most basic type of subdivision is the stellar subdivision of a simplicial cone. Given a simplicial
cone � with primitive generators u1; : : : ; uk , the stellar subdivision at � is the unique cone complex
that refines †X and has precisely one more ray, namely the one spanned by

Pk
iD1 ui . A subdivision

†0 ! †X induces a birational modification X 0 ! X which modifies X along the boundary D. The
stellar subdivision at a cone � is the blowup of X at the smooth stratum dual to � . Further combinatorial
details can be found in the text on toric geometry [Cox et al. 2011, Section 3.3]. The generalisation to the
context of simple normal crossings pairs is detailed in [Kempf et al. 1973].

A more general version will also be used. If .Spec k;Q/ is a geometric point, then a subdivision of �
gives rise to a logarithmic modification of Spec k. We can identify this logarithmic point with a point in
the closed orbit of the toric variety with coordinate ring kŒQ�, equipped with the pullback logarithmic
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structure. The subdivision of � birationally modifies this toric variety. The corresponding modification of
Spec k is obtained by pullback along the inclusion; see [Kato 1994, Section 9] for a detailed study.

1.5 Moduli of curves with fixed tropicalisation

Let C be genus-zero prestable curve over Spec k. Choose an identification of the dual graph of C with
a labelled graph � , and let �� denote the smooth cone Hom.NE.�/;R�0/. Points of �� correspond to
choices of edge lengths, ie metric enhancements of � . This gives rise to a universal family of tropical
curves @� ! �� . Choose a rational ray

� � ��

whose interior is contained in the interior of �� , and let v be the primitive integral generator of �. We
describe the set of all logarithmic curves C over the standard logarithmic point .Spec k;N/ such that
the underlying curve is C , the dual graph is identified with � , and the tropicalisation is given by the
restriction of @�! � of the universal tropical family to �.

The moduli space of logarithmic curves with such fixed tropicalisation is described by [Cavalieri et al.
2020, Theorem 4] and the formalism surrounding it. As we have chosen an identification of the dual
graph with a fixed copy of � and only require the case where the underlying base is a geometric point,
the stack-theoretic subtleties in [loc. cit.] do not arise, and the formalism simplifies.

This moduli space is an algebraic torus, which can be identified with the parameter space of logarithmic
morphisms

.Spec k;N/! .Spec k;NE.�//

whose tropicalisation is � ,! �� . Indeed, a logarithmic lift is given by specifying the image of every
generator

.1; ei / 2 k�˚NE.�/

in k�˚N. The discrete part is determined by the dual of � ,! �� , but the continuous part is free.

A geometric view is provided below. A closely related concept in tropical geometry is the initial
degeneration; see [Maclagan and Sturmfels 2015, Chapters 2–3].

Construction 1.5 Given � � �� , choose a subdivision of �� that includes � as a face. Let zU be the
associated logarithmic modification of .Spec k;NE.�//. Define

M.�/� zU

to be the locally closed stratum of codimension 1 which is dual to �.

Each point of M.�/ gives rise to a logarithmic curve C over a logarithmic point .Spec k;N/ enhancing C
whose tropicalisation is @�! �, and which is compatible with the fixed identification of the dual graph
with � . In fact, M.�/ is precisely the moduli space of such data.
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More generally, if we choose any rational cone � � �� with Q the dual monoid of � , we can ask for
logarithmic enhancements of C over .Spec k;Q/, again with a fixed identification of the dual graph
with � . The moduli space of such enhancements is constructed similarly.

1.6 Logarithmic maps to Artin fans

We will use the following method for constructing logarithmic maps to Artin fans. Given an Artin fan
.AX jDX / and a logarithmic curve C! .Spec k;Q/, the data of a logarithmic map

C! .AX jDX /

is equivalent to the data of a map of cone complexes

(2) Trop C D @!†D Trop.AX jDX /:

See [Abramovich et al. 2020a, Proposition 2.10]. Here

Trop C D @! � D Hom.Q;R�0/

is the tropicalisation of C! .Spec k;Q/.

Typically we start with a scheme-theoretic curve C , and proceed by first constructing an appropriate
tropical curve @! � and accompanying map @!†. Once this has been done, it remains to construct
any logarithmic enhancement of C which tropicalises to the given tropical curve, which is achieved via
the process outlined in Section 1.5.

2 Naive–orbifold comparisons

A naive stable map to a simple normal crossings pair .X jD/ is a stable map to X together with a
logarithmic lift to each pair .X jDi /. The theory was studied under positivity assumptions in genus zero
in [Nabijou 2018; Nabijou and Ranganathan 2022]. The spaces were introduced as part of a framework
to reduce questions in logarithmic Gromov–Witten theory to questions in the simpler relative theory. It
was later realised that both the geometry of these spaces and their enumerative invariants closely mirror
the orbifold theory [Battistella et al. 2023, Theorem B].

We now construct naive Gromov–Witten theory for simple normal crossings pairs without positivity or
genus restrictions. In genus zero, we equate the naive invariants with the orbifold invariants, removing
the spurious assumptions in [Battistella et al. 2023, Theorem B]. In higher genus, we conjecture that the
naive invariants coincide with the constant-term orbifold invariants described in [Tseng and You 2023a].

A reader less familiar with orbifold geometry may wish to examine the definition of naive Gromov–Witten
theory, take the equality with the orbifold theory as a given, and skip to the later sections where the
orbifold theory is dispensed with.
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2.1 Setup

Consider a simple normal crossings pair .X jD/. We equip X with the divisorial logarithmic structure
corresponding to D. Fix numerical data ƒ for a moduli space of logarithmic stable maps to .X jD/. This
consists of a genus g, a labelling set f1; : : : ; ng for the marked points, a curve class ˇ 2 A1.X/, and
tangency orders to D at each marked point. The tangency orders are encoded by a list of integral points

˛1; : : : ; ˛n 2†X .N/:

Let D1; : : : ;Dk be the smooth components of the divisor. The tangency conditions are equivalently given
by nonnegative integers cij for 1� i � k and 1� j � n. If wi is the primitive lattice vector generating
the ray corresponding to Di , then for each j we have

j̨ D

X
1�i�k

cijwi :

Remark 2.1 If every intersection of divisor components
T
i2I Di is connected, then the data cij ranging

over all i are equivalent to j̨ . Connectivity of strata intersections can always be achieved after additional
blowups. If the intersections are disconnected, then j̨ contains more information than the cij : it specifies
which connected component of the intersection contains pj .

Remark 2.2 The numerical data satisfies the global balancing condition with respect to each divisor
component if

(3)
X
1�j�n

cij DDi �ˇ:

If the global balancing condition is not satisfied, the relevant moduli spaces of maps will be empty. We
therefore impose it from the outset.

The data ƒ induces numerical data for a moduli space of logarithmic stable maps to any pair .X jE/ with
E �D (including E D∅). The inclusion E �D determines a map

Trop.X jD/! Trop.X jE/

obtained by projecting away from the coordinates corresponding to divisors not contained in E. Given
an integral vector j̨ in Trop.X jD/, its image in Trop.X jE/ determines the contact data for the new
pair. We abuse notation and denote the compatible numerical data by the same symbol ƒ. Spaces of
logarithmic stable maps are denoted by

Logƒ.X jD/:

The numerical data ƒ induces numerical data for a moduli of twisted1 stable maps [Abramovich and
Vistoli 2002; Cadman 2007]. We consider the multiroot stack [Cadman 2007; Tseng and You 2023a]

X DXD;Er ;
1For readers less familiar with orbifold Gromov–Witten theory, the lectures of Abramovich [2008] may prove helpful.
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where Er D .r1; : : : ; rk/ is a vector of rooting parameters. The moduli problem considers representable
maps from twisted curves, namely 1–dimensional Deligne–Mumford stacks with stack structure imposed
at nodes and markings. Let C be a twisted curve, and consider

f W C! X :

Let Di=ri in X denote the substack lying over Di in X . The pullback f ?OX .Di=ri /jpj
is a character

of the isotropy group at pj . If the order of the stabiliser at pj is sj , then this character is an integer kj
lying between 0 and sj � 1. The age of f ?OX .Di=ri /jpj

is

kj =sj 2 Œ0; 1/\Q:

The age is related to the tangency order cij via the formula

cij D ri � .kj =sj /:

See [Cadman and Chen 2008, (2.1.4)]. The same applies for any E �D. Spaces of twisted stable maps
to X will be denoted by

Orbƒ.X jD/;

with the auxiliary rooting parameters understood to be arbitrarily large.

Finally, for our comparison arguments we will make use of the following hybrid version of the previous
two moduli spaces:

Definition 2.3 We denote by LogOrbƒ.X jD/ the moduli space parametrising

(i) a logarithmic twisted curve C in the sense of Olsson [2007], and

(ii) a commuting diagram of representable logarithmic morphisms

.C;MC/ .X ;D/

.C;MC / .X;D/

Denoting the coarse moduli map by � W C ! C , the twisting is encoded in a Kummer extension of
logarithmic structures

��MC !MC :

It is by now standard to verify that this problem is represented by a proper Deligne–Mumford stack with
logarithmic structure. Its virtual fundamental class is discussed in the proof of Theorem 2.9. This moduli
space admits forgetful morphisms to both Logƒ.X jD/ and Orbƒ.X jD/.
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2.2 Naive invariants

The naive space Nƒ.X jD/ is defined as the fibre product of logarithmic mapping spaces with respect to
the smooth divisor components

(4)
Nƒ.X jD/

Qk
iD1 Logƒ.X jDi /

Mƒ.X/ Mƒ.X/
k

�

Crucially, the above fibre product is taken in the category of algebraic stacks, and not in the category of
fine and saturated logarithmic algebraic stacks.

We now manipulate this cartesian diagram in order to highlight the existence and role of the universal
naive space. This will allow us to endow every (geometric) naive space with a virtual fundamental class,
and to define naive Gromov–Witten invariants in all genera.

Let A D ŒA1=Gm� and D D Œ0=Gm� � A so that .AjD/ is the universal smooth pair. We shall denote
by M.A/ the moduli space of prestable curves endowed with a line bundle–section pair (or generalised
Cartier divisor). We shall denote by Log.AjD/ the moduli space of logarithmic prestable maps to .AjD/,
ie logarithmically smooth curves together with a line bundle–section pair such that the section is a
logarithmic morphism, where the line bundle is endowed with the sum of the logarithmic structure pulled
back from the curve and the logarithmic structure induced by the zero section. This space is known to
admit a minimal logarithmic structure. Since

Trop.AjD/DR�0;

tropicalising a logarithmic prestable map to .AjD/ produces a tropical curve equipped with a piecewise
linear function.

For each smooth divisor componentDi there is a cartesian square [Abramovich et al. 2014, Lemma A(iv)]

(5)

Logƒ.X jDi / Log.AjD/

Mƒ.X/ M.A/
�

where the morphism Mƒ.X/!M.A/ performs postcomposition with the map X ! A induced by
Di �X . We obtain

Nƒ.X jD/ Log.AjD/k

Mƒ.X/ M.A/k
�
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and this square fits into the commutative diagram

(6)

Nƒ.X jD/ Log.AjD/k �Mk M Log.AjD/k

Mƒ.X/ M.A/k �Mk M M.A/k

M Mk

A B

p

C

�

The squares C and BCC are cartesian, and therefore B is cartesian. Since ACB is cartesian, it follows
that A is cartesian. Finally, M.A/k �Mk MDM.Ak/, and so we obtain the desired square

(7)

Nƒ.X jD/ Log.AjD/k �Mk M

Mƒ.X/ M.Ak/
�

p

Definition 2.4 The naive space for the universal target is the stack

NLog.Akj@Ak/ WD Log.AjD/k �Mk M:

Remark 2.5 A diagram chase shows that the naive space for the universal target is equivalently given by
any of the three fibre products

Log.AjD/k �Mk MD Log.AjD/k �M.A/k M.Ak/D
kY
iD1

Log.AkjDi /�M.Ak/k M.Ak/;

where Di �Ak is the i th coordinate hyperplane. The third description is closest to the definition of the
naive space for geometric targets. The first description is the most useful for proofs.

We claim that p WMƒ.X/!M.Ak/ has a relative perfect obstruction theory. If f denotes the universal
stable map and � is the universal curve, the obstruction theory is the dual of

(8) R��?f
?T

log
X jD

:

When k D 1 the result is [Abramovich et al. 2014, Proposition 3.1.1]. The general case has the same
proof, noting that when X is equipped with the divisorial logarithmic structure from D, we have

�X=Log D�X=Ak D�
log
X jD

:

The relative obstruction theory (8) for p induces a virtual pullback pŠv on Chow groups [Manolache 2012].

The naive space for the universal target is typically not pure dimensional when k > 1 (see Remark 2.8).
Nevertheless, its presentation as an intersection of Artin stacks as above endows it with a class of
the expected dimension, by Fulton–Kresch intersection theory [Kresch 1999]. Fixing the numerical
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data, each factor Log.AjD/ is irreducible and carries a fundamental class [Abramovich and Wise 2018,
Proposition 1.6.1]. The virtual class for the naive space is therefore defined as

ŒNƒ.X jD/�vir
WD pŠv�

Š
�
ŒLog.AjD/�� � � � � ŒLog.AjD/�

�
:

Unusually, this virtual class arises via virtual pullback pŠv from a reducible base. On the other hand, the
composition pŠv�

Š of pullbacks can be viewed as endowing Nƒ.X jD/ with a perfect obstruction theory
over the irreducible Log.AjD/k .

Remark 2.6 We verify that Kresch’s hypotheses are satisfied in our case. The stabilisers in M are affine,
and hence by [Kresch 1999, Proposition 3.5.9] the stack admits a stratification by global quotients. Since
it is also smooth, by [Kresch 1999, page 530] it admits a refined intersection product; see also [Bae and
Schmitt 2022, Section 3.1] for a discussion of these issues in a similar context.

We now define numerical naive Gromov–Witten invariants. The space Nƒ.X jD/ admits a map

Nƒ.X jD/!Mƒ.X/;

and by composing with the evaluation maps evi WMƒ.X/!X we obtain evaluation maps to X . Fix a
marked point pi and let Wi be the intersection of divisor components Dj with respect to which pi has
positive contact order. By definition of the naive space, the evaluation morphism at pi on Nƒ.X jD/
factors through this intersection. We obtain

evi W Nƒ.X jD/!Wi :

Definition 2.7 Naive Gromov–Witten invariants of .X jD/ with numerical data ƒ are defined as tauto-
logical integrals over the naive virtual class,

h�a1
.1/; : : : ; �an

.n/i
N.X jD/
ƒ D

Z
ŒNƒ.X jD/�vir

nY
iD1

 
ai

i ev?i .i /;

where Wi � X is the stratum of X determined by the marked point pi , the class i is in the Chow
cohomology of Wi , and the  –classes are pulled back from Mƒ.X/.

Remark 2.8 The stack NLog.Akj@Ak/ is a fibre product of toroidal, ie logarithmically smooth, stacks.
This fibre product is not transverse along certain boundary strata, and may consist of several irreducible
components. The failure of transversality can be detected from the tropicalisations [Abramovich and Karu
2000; Molcho 2021]. The fact that there are many irreducible components can be seen from the examples
in [Nabijou and Ranganathan 2022, Section 1]. These examples consider the space of naive and logarithmic
maps to P2 relative to two lines; for brevity we call it the geometric naive space. The examples imply the
lack of irreducibility in the universal setting. Indeed, this geometric target is logarithmically convex, and
therefore the space of logarithmic maps to this target is smooth over the space of logarithmic maps to the
Artin fan. Similarly, by the description of the obstruction theory above, the map from this geometric naive
space to the universal one is smooth. The examples in [Nabijou and Ranganathan 2022] identify points
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in the geometric naive space of P2 that do not lie in the closure of the locus of nondegenerate maps. It
follows that there exist naive maps to the Artin fan that cannot be deformed to nondegenerate maps.

The strata of the geometric and universal naive spaces can be understood as fibre products of strata of the
geometric and universal spaces of maps to smooth pairs. The relationship between the strata of these
latter spaces can be understood, for example, using [Kennedy-Hunt et al. 2022, Section 1.1].

2.3 Naive–orbifold correspondence

We now restrict our attention to genus zero. We show that naive invariants and orbifold invariants coincide
in this case. This removes the convexity hypothesis of [Battistella et al. 2023, Theorem B].

Theorem 2.9 There is a diagram of spaces connected by virtually birational morphisms

Orbƒ.X jD/! NOrbƒ.X jD/ NLogOrbƒ.X jD/! Nƒ.X jD/:

This means that every space in the above diagram is endowed with a virtual fundamental class, and these
classes coincide under pushforward along the proper morphisms in the diagram. The auxiliary spaces
NOrbƒ.X jD/ and NLogOrbƒ.X jD/ will be defined below.

Corollary 2.10 The naive and orbifold invariants coincide:

h�a1
.1/; : : : ; �an

.n/i
N.X jD/
ƒ D h�a1

.1/; : : : ; �an
.n/i

Orb.X jD/
ƒ :

Proof This follows immediately from the previous theorem and the projection formula

Proof of Theorem 2.9 We start with the case of a smooth pair. This is a minor modification of the main
results of [Abramovich et al. 2017]. For a fixed rooting index r , the morphism

Ar !A
will denote the morphism ŒA1=Gm�! ŒA1=Gm� given by t 7! tr . This is the universal r th root construction.
While Ar is abstractly isomorphic to A, we retain the subscript to indicate that the morphism Ar !A is
not the identity.

Consider the moduli stack Orb.Ar/ parametrising representable maps C!Ar from a prestable twisted
curve, ie the data of a generalised Cartier divisor .L; s/ on C such that, for every point p in C at which
s.p/ D 0, the induced action �r.p/ Õ Lp is faithful, where the integer r.p/ is the twisting index.
Furthermore, the twisting index is required to divide r , so that the r th tensor power of L is pulled back
from the coarse curve of C.

On the other hand, we define a moduli stack LogOrb.Ar jDr/ whose objects consist of the following data:

(i) a logarithmic twisted curve C,

(ii) a representable generalised Cartier divisor .L; s/ on C, and

(iii) an enhancement of the section to a logarithmic morphism s W C! L, where L is equipped with the
sum of the logarithmic structure induced by the pullback of the logarithmic structure on C and the
divisorial logarithmic structure corresponding to the zero section.
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It is not hard to see that this moduli space admits a minimal logarithmic structure too. The last condition
above ensures that taking the r th power of .L; s/ and forgetting the Kummer extension of the logarithmic
structure defines a morphism LogOrb.Ar jDr/!Log.AjD/. On the other hand, forgetting the logarithmic
structure in toto, we obtain a morphism LogOrb.Ar jDr/!Orb.Ar/.

We have thus produced a roof

(9) Orb.Ar/ LogOrb.Ar jDr/! Log.AjD/:

As is typical when dealing with an Artin stack which is not of finite type, we must pass to an appropriate
open substack which contains the image of the geometric moduli space under consideration. In our
context this has been discussed carefully in [Abramovich et al. 2017], where primed superscripts are
used to indicate the chosen open substacks. From now on we replace each of the entries in (9) by the
appropriate open substack.

With this replacement, minor modifications of the arguments of Abramovich, Cadman, and Wise then
show that the morphisms in (9) are birational. The passage from universal to geometric targets is then
achieved using the following cartesian squares:

Logƒ.X jD/ Mƒ.X/

Log.AjD/ M.A/
�

Orbƒ.X jD/ Mƒ.X/

Orb.Ar/ M.A/
�

LogOrbƒ.X jD/ Mƒ.X/

LogOrb.Ar jDr/ M.A/
�

The first square is cartesian by [Abramovich et al. 2014, Lemma A(iv)]. Using the definition of the root
stack as X �A Ar , it is easy to see that the second square is cartesian. The third square is taken as the
definition of LogOrbƒ.X jD/.

In each case, the virtual fundamental class is the pullback of the fundamental class of the universal
moduli space, using the virtual pullback morphism induced by the perfect obstruction theory for the
map Mƒ.X/!M.A/ constructed in the previous section. For the first square, this follows by a direct
comparison of obstruction theories. For the second square, it follows by the identity

(10) p?T
log
X jD
D T

log
X jD;

where p W X !X is the morphism from the root stack to its coarse moduli space. This holds because p is
logarithmically étale. Finally, for the third square this is taken as the definition of the virtual class on
LogOrbƒ.X jD/.

From this, it follows that the birational diagram (9) pulls back to a virtually birational diagram

Orbƒ.X jD/ LogOrbƒ.X jD/! Logƒ.X jD/:

This completes the discussion of smooth pairs. Now let D DD1C � � �CDk be simple normal crossings.
Each of the three enumerative theories for smooth pairs considered above defines a corresponding naive
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theory for simple normal crossings pairs. To accompany Definition 2.4, we set forth some naturally
defined universal naive spaces

NOrb.Akj@Ak/ WD
kY
iD1

Orb.Ari
/�Mk M; NLogOrb.Akj@Ak/ WD

kY
iD1

LogOrb.Ari
jDri

/�Mk M:

While even the universal naive spaces may be badly behaved beyond the base case of a smooth pair,
each carries a virtual fundamental class obtained by capping the product of fundamental classes of the
factors with the diagonal in the space of curves. Since for smooth pairs the morphisms in (9) preserve the
fundamental classes, a diagram chase gives a virtually birational diagram

NOrb.Akj@Ak/ NLogOrb.Akj@Ak/!NLog.Akj@Ak/:

The geometric naive spaces are defined by fibring the universal naive spaces over the map

Mƒ.X/!M.A/k �Mk MDM.Ak/:

Their virtual classes are pulled back from the virtual classes of the universal spaces, and the standard
comparison of obstruction theories gives a virtually birational diagram

NOrbƒ.X jD/ NLogOrbƒ.X jD/! NLogƒ.X jD/D Nƒ.X jD/:

It remains to show that the naive orbifold theory coincides with the orbifold theory. We will show that
there is a virtually birational morphism

Orbƒ.X jD/! NOrbƒ.X jD/:

This is a generalised form of the relative product formula for orbifold invariants established in [Battistella
et al. 2023, Theorem 3.1]. Consider the diagram

Orbƒ.X jD/ NOrbƒ.X jD/ Mƒ.X/

Orb
�Qk

iD1Ari

�
NOrb.Akj@Ak/ M.Ak/

A B

'

The morphism ' is obtained by projecting C!
Qk
iD1Ari

onto each factor of the target and taking the
minimal partial coarsening of C which ensures that the composed map is representable. This partial
coarsening is discussed in [Abramovich and Vistoli 2002, Section 9; Abramovich et al. 2011, Theorem 3.1],
where it is referred to as the “relative coarse moduli space”.

The square B is cartesian by definition, and ACB is clearly cartesian. It follows that A is cartesian.
The vertical arrows in A are equipped with perfect obstruction theories, which are compatible by the
identity (10). The bases of both vertical arrows in A are equipped with virtual classes, recalled below.
These virtual classes virtually pull back to the virtual classes on the top row of A. By Manolache’s
formalism [2012, Theorem 4.1], in order to show that Orbƒ.X jD/!NOrbƒ.X jD/ is virtually birational
it suffices to show that ' identifies virtual classes.
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We first recall the virtual classes on the bottom row of A. The space Orb
�Qk

iD1Ari

�
is equipped with a

virtual class by a construction of Abramovich, Cadman, and Wise. The forgetful morphism to the moduli
stack Mtw of twisted curves factors as

Orb

� kY
iD1

Ari

�
!Orb.BGk

m/!Mtw:

The first arrow takes a tuple of line bundles and sections and forgets the sections. The second arrow then
forgets the line bundles. By [Abramovich et al. 2017, Section 5.2] the morphism

Orb

� kY
iD1

Ari

�
!Orb.BGk

m/

is virtually smooth and equips the universal orbifold space Orb
�Qk

iD1Ari

�
with a virtual class. It

coincides with the standard virtual class construction in orbifold Gromov–Witten theory.

On the other hand, the virtual class on NOrb.Akj@Ak/ is defined via diagonal pullback, analogously to
the virtual class of NLog.Akj@Ak/ defined in Section 2.2. The orbifold product formula for the targetQk
iD1Ari

then shows that the morphism

' WOrb

� kY
iD1

Ari

�
!NOrb.Akj@Ak/

identifies virtual classes [Andreini et al. 2016; Behrend 1999]. Note that the product formula is typically
stated for schematic or Deligne–Mumford targets and over stable curves, but the arguments apply without
change in this setting.

Remark 2.11 In higher genus, we conjecture (Conjecture W) that the naive invariants coincide with the
constant-term orbifold invariants of [Tseng and You 2023a]. The missing step is a universal formulation
of the higher-genus smooth divisor logarithmic-orbifold correspondence [Janda et al. 2020; Tseng and
You 2020]. We will return to this in future work.

3 Geometry of the naive space

We henceforth restrict to genus zero. In Theorem 2.9 we proved that orbifold and naive invariants coincide.
We now begin a study of the more delicate relationship between naive and logarithmic invariants.

3.1 Numerical criteria

Consider the finite morphism from the naive space to the absolute mapping space

Nƒ.X jD/!Mƒ.X/:

The geometric points of the image have an elementary characterisation, extending an insight originally due
to Gathmann. In practice this allows one to explore the geography of the naive space with relative ease.
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Gathmann’s condition [Gathmann 2002, Remark 1.4] For each divisor component Di , consider a
connected component Z of the subscheme f �1.Di /� C . Then:

(i) If Z is zero-dimensional, it must be supported at a marked point pj and have length cij .

(ii) Otherwise, Zred D C0 � C is a subcurve. In this case, let C1; : : : ; Cr denote the irreducible
components of C adjacent to C0 and let q1; : : : ; qr be the connecting nodes. For 1 � j � r let
mj 2N be the contact order of f jCj

to Di at the point qj in Cj . Then we must haveX
pj2C0

cij �
X
1�j�r

mj DDi �f?ŒC0�D degf ?OX .Di /jC0
:

Gathmann’s condition is closely related, though not identical, to the tropical balancing condition, which
we now recall:

Balancing condition Consider the logarithmic scheme SD .Spec k;Q/with monoidQ and let f WC!X

be a logarithmic stable map over S . The tropicalisation of C! S is a family of tropical curves

@! �;

and tropicalising f gives a morphism of cone complexes

f W @!†:

A piecewise linear function on @ (or on †) gives rise to a generalised Cartier divisor on C (or on X ); see
Section 1.4. We can now state the balancing condition [Gross and Siebert 2013, Section 1.4].

Let f W C!X be as above and fix a piecewise linear function ˛ W†!R. There are two ways to produce
a line bundle on C: take the line bundle f ?OX .˛/ where OX .˛/ is the line bundle on X associated to ˛,
or take the line bundle OC.f?˛/ on C associated to the piecewise linear function

f?˛ W @ f�!† ˛�!R:

The logarithmic morphism f encodes an isomorphism OC.f?˛/Š f ?OX .˛/. The balancing condition
is the coarser statement that for every irreducible component C 0 � C we have

(11) degOC.f?˛/jC 0 D degf ?OX .˛/jC 0 :

Lemma 3.1 A stable map in Mƒ.X/ belongs to the image of Nƒ.X jD/ if and only if it satisfies
Gathmann’s condition with respect to every divisor component Di .

Proof Assume thatD is smooth and fix a stable map f WC!X which admits a logarithmic enhancement.
Its tropicalisation satisfies the balancing condition, and we will use this to deduce Gathmann’s condition.

Consider the identity piecewise linear function on †DR�0. The associated line bundle is OX .D/. On
the other hand, this piecewise linear function pulls back to the piecewise linear function on @ with slopes
along the edges determined by the tropical map f W @! †. By the balancing condition these two line
bundles have the same multidegree. Summing the degrees over all irreducible components of a given
C0 � f

�1.D/, we obtain Gathmann’s condition.
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For the converse, consider the commuting diagram of moduli spaces

Kimƒ.X jD/

Logƒ.X jD/ Liƒ.X jD/

Mƒ.X/

where Liƒ.X jD/ is Li’s space [2001; 2002] of relative stable maps to expansions, and Kimƒ.X jD/ is
Kim’s space [2010] of logarithmic stable maps to expansions.

Fix a stable map f W C ! X satisfying Gathmann’s condition. This guarantees the existence of a
meromorphic section of f ?OX .D/ on each irreducible component of f �1.D/ with specified zero and
pole locus. These can be assembled to produce a relative stable map to the expanded target; see [Gathmann
2003, Lemma 5.1.12]. It follows that our given stable map admits a lift to Liƒ.X jD/.

It is a direct consequence of Li’s original construction that the morphism Kimƒ.X jD/! Liƒ.X jD/ is
surjective, the difference being given by saturation; see [Abramovich et al. 2014, Lemma 4.2.2; Gross and
Siebert 2013, Section 6]. It follows that the given stable map admits a lift to Kimƒ.X jD/, and hence, by
commutativity of the diagram, lies in the image of Logƒ.X jD/!Mƒ.X/.

This completes the proof in the smooth divisor case. The general case follows from the definition (4) of
the naive space, which implies that the image of Nƒ.X jD/!Mƒ.X/ is the intersection of the images
of Logƒ.X jDi /!Mƒ.X/ for 1� i � k.

3.2 The data structure of combinatorial types

A logarithmic map C ! .X jD/ over the logarithmic point .Spec k;Q/ produces a family of tropical
maps @! † over the dual cone � . The combinatorics of this tropical map enhances the dual graph
of the source curve with data recording the vanishing orders of the divisor equations at generic points
of components, and at marked and singular points. This data is referred to as the combinatorial type
[Abramovich et al. 2020a, Section 2.5].

As we now explain, a naive map also has a combinatorial type, which can be packaged in the same data
structure. Recall that the cones of a cone complex form a poset, where �1 � �2 if �1 is a face of �2.

Definition 3.2 A combinatorial type of tropical stable map to † consists of the following data:

(i) a finite graph � consisting of vertices, finite edges, and semi-infinite legs, where each leg ` in L.�/
carries a marking label j` 2 f1; : : : ; ng, and each vertex v in V.�/ carries genus and degree labels

gv 2N and ˇv 2 A1.X/;

Geometry & Topology, Volume 28 (2024)



3332 Luca Battistella, Navid Nabijou and Dhruv Ranganathan

(ii) cones of † associated to every vertex, edge, and leg of �

v �v; e �e; and ` �`;

such that if v � e then �v � �e for every vertex v and adjacent edge or leg e,

(iii) for every oriented edge or leg Ee an associated slope mEe 2N�e
satisfying mEe D�m Ee.

3.3 Combinatorial type of a naive map

We will associate a combinatorial type to each naive map. It will record the dual graph of the curve, its
interaction with the target stratification, and the tangency orders at the special points.

Remark 3.3 The combinatorial type of a naive map fits into the same data structure as the combinatorial
type of a logarithmic map. However, there will exist naive types that do not arise from logarithmic maps,
or equivalently, naive types that are not the underlying combinatorial type of a tropical map. The latter
are said to be smoothable. The detection of smoothable types among naive types is the main issue at play
in Section 5.

Fix a genus-zero naive stable map f W C ! .X jD/.

Step I (Labelled graph) The graph � is the dual graph of C , with vertices corresponding to irreducible
components, finite edges to nodes, and semi-infinite legs to markings. The leg and vertex labels are
determined in the obvious way. Since we work in genus zero, all gv D 0.

Step II (Associated cones) Let Cv � C be an irreducible component. Let Xv � X be the unique
minimal stratum of .X jD/ through which the map Cv!X factors. This corresponds to a cone �v �†
which is defined to be the cone associated to v. The cones �e and �` are defined similarly.

Step III (Slopes along legs) The slopes along the legs are part of the input data, corresponding to the
specified tangencies at the markings. In the notation of Section 2.1, we have

m ÈD j̨.`/ 2†.N/;

where È is oriented to point away from its supporting vertex. Gathmann’s condition implies that

m È 2 �`.N/�N�`
:

Step IV (Slopes along edges) The slopesmEe along the finite edges are determined by formally imposing
the balancing condition at every vertex. Fix a divisor componentDi . For each vertex v of � , the balancing
equation gives

(12)
X
pj2Cv

cij C
X
v�e

.mEe/i DDi �ˇv;

where every edge is oriented to point away from v. The .mEe/i are unknown integers to be solved for. The
first term is a sum over markings pj in Cv , or equivalently legs j̀ containing v. The tangency order cij
is equal to the component of j̨ in the direction corresponding to Di .

Geometry & Topology, Volume 28 (2024)



Gromov–Witten theory via roots and logarithms 3333

The system of equations (12) will appear repeatedly in this section, and will be referred to as the balancing
equations.

Lemma 3.4 The system of balancing equations (12) has a unique solution in the .mEe/i .

Proof There are #V.�/ balancing equations (12), and a single linear dependency; summing all the
equations, the .mEe/i cancel and we are left with the global balancing constraint

(13)
X
1�j�n

cij DDi �ˇ;

which holds by assumption; see Remark 2.2. We obtain #V.�/� 1 linearly independent equations. Since
� has genus zero, #V.�/� 1D #E.�/, which coincides with the number of unknowns. Hence there is a
unique solution for the .mEe/i .

The uniqueness may be deduced constructively. Select a root vertex and orient the edges of � to point
towards the root. Place a level structure on � which respects the orientation, ie an assignments of heights
h.v/ 2 R such that h.v1/ < h.v2/ if there is an oriented edge Ee connecting v1 to v2. Iterate along �
towards the root, from the lowest level to the highest. At each step, the vertex encountered has several
incoming edges whose .mEe/i have previously been determined, and a single outgoing edge whose .mEe/i
is currently unknown. The latter is determined uniquely by solving the balancing equation at the current
vertex. This process terminates at the root vertex, where the global balancing constraint (13) ensures that
the balancing equation at the root vertex is satisfied.

By the above lemma, (12) has a solution for each Di , and this produces integers .mEe/i for all Ee and i .
We now use the assumption that f W C ! .X jD/ is a naive map to assemble these integers into slope
vectors mEe 2N�e

.

Fix an oriented edge Ee and let wi1 ; : : : ; wic be the primitive generators of the cone �e , corresponding to
divisor components Di1 ; : : : ;Dic .

Lemma 3.5 We have .mEe/i D 0 for i … fi1; : : : ; icg.

Once this is proved, we can define the slope along Ee as

(14) mEe WD .mEe/i1wi1 C � � �C .mEe/icwic 2N�e
;

which completes the construction.

It remains to establish Lemma 3.5. This follows from the more general Lemma 3.8, which asserts that the
formal tangency orders .mEe/i constructed above coincide with the geometric tangency orders, provided
the latter can be defined. This makes crucial use Gathmann’s condition.

Definition 3.6 A node q in C has well-defined geometric tangency with respect to Di if there exists a
neighbourhood U of q such that f .U /ªDi .
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Equivalently, a point q in C has well-defined geometric tangency if f .C1/ªDi or f .C2/ªDi , where
C1; C2 � C are the irreducible components adjacent to q.

Definition 3.7 For every node q with well-defined geometric tangency, let e inE.�/ be the corresponding
edge and denote the geometric tangency by

.mEe/
0
i 2N:

Here if f .C1/ªDi and f .C2/�Di , we orient e to point from v1 to v2. If neither component is mapped
into Di then Gathmann’s condition, combined with the global balancing constraint (3), implies that f .qe/
does not lie in Di and so the geometric tangency is zero.

Lemma 3.8 If q in C is a node with well-defined geometric tangency and e inE.�/ is the corresponding
edge , then

.mEe/i D .mEe/
0
i :

Proof Consider the collection of geometric tangencies .mEe/
0
i and formal tangencies .m È/i for each

leg `. Note that the latter satisfy the global balancing constraint (13). For all remaining edges, introduce
unknowns .mEe/

0
i and consider the resulting system of balancing equations, as in the preceding discussion.

The system coincides with the one in (12), with a minor difference: the .mEe/
0
i corresponding to nodes

with well-defined tangency are specified at the start. As such, there are fewer unknowns.

There are also more linear dependencies. In fact, the system of equations decomposes into a sum of
systems of equations with independent sets of variables, one for each maximal subcurve C0 � f �1.Di /.
The same argument we have used previously, applied to each of these independent systems, guarantees a
unique solution for the .mEe/

0
i . Thus we have two solutions for the balancing equations: the .mEe/i and

the .mEe/
0
i . By uniqueness they coincide, so the formal tangency orders .mEe/i coincide with the geometric

tangency orders .mEe/
0
i whenever the latter are defined.

Proof of Lemma 3.5 Fix an index i … fi1; : : : ; icg. By the definition of �e we have f .qe/ …Di . Let
C1 and C2 be the irreducible components of C adjacent to qe. Certainly either f .C1/ or f .C2/ is not
contained in Di , so qe has well-defined tangency. Since f .qe/ does not lie in Di this geometric tangency
is zero, so .mEe/i D 0 as claimed.

This completes the construction of the combinatorial type associated to a naive stable map.

Remark 3.9 Given a naive stable map f W C ! .X jD/ the preceding construction assigns formal
tangency vectors mEe along the finite edges of the dual graph. Lemma 3.8 can be restated as follows:

Consider a vertex v of � and an edge or leg e of � containing v, and orient e to point away from v.
Suppose that Di is a divisor component which contains the stratum Xe DX�e

but does not contain the
larger stratum Xv DX�v

. Then the component .mEe/i 2 Z of the vector mEe 2N�e
must agree with the

geometric tangency order of f jCv
to Di at the special point qe in Cv. The geometric tangency order is

well defined because f .Cv/ªDi . Note in particular that we must have .mEe/i > 0.
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Example 3.10 Let X D P2 with D D L1CL2 the sum of two lines. Consider a degree 4 stable map
with the following dual graph:

v3
0

�
3

3

�
v1
2

�
1

0

�
e1

v2
2 �

0

1

�e2

The numbers give the degree of the stable map on each component, and the column vectors give the
tangency orders at the marked points. Orienting the edges as above, the system of balancing equations at
the vertices is

v1W mEe1
C

�
1

0

�
D

�
2

2

�
; v2W mEe2

C

�
0

1

�
D

�
2

2

�
; and v3W �mEe1

�mEe2
C

�
3

3

�
D

�
0

0

�
;

to which there is a unique solution, namely

mEe1
D

�
1

2

�
and mEe2

D

�
2

1

�
:

3.4 Naive types vs logarithmic types

We briefly address the combinatorial question of how the naive and logarithmic types differ. Although
this discussion is not logically necessary, it provides context for the arguments of Section 5.

Definition 3.11 A combinatorial type of tropical stable map is smoothable if there exist assignments of
edge lengths metrising the graph �

`e 2R>0;

and a continuous map f W �!† such that

(i) every vertex, edge, and leg p of � is mapped into the interior of the cone �p, and

(ii) on every edge or leg e, the map fje W e! �e is affine with slope equal to mEe.

The positivity of the `e and the fact that faces of � must map to the interiors of their cones is crucial.
Without it, every combinatorial type is smoothable for trivial reasons. The following rephrases [Gross
and Siebert 2013, Remark 1.21] and the surrounding discussion. The proof is omitted.

Proposition 3.12 Let f W C ! .X jD/ be a logarithmic map over a geometric point. The combinatorial
type of f is smoothable.

The next example shows that naive combinatorial types are not always smoothable:
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Example 3.13 Consider Example 3.10 above, and suppose that the associated cones are

�v1
D �v2

D 0 and �v3
DR2�0:

There is then no smoothing, because a distance-preserving map f would impose the simultaneous equations
on the edge lengths

`.e1/D 2`.e2/ and 2`.e1/D `.e2/;

which are only satisfied when `.e1/D `.e2/D 0.

The following purely combinatorial question arises:

Question 3.14 Which combinatorial types of naive stable maps are smoothable?

In fact, the answer to this combinatorial question dictates the entire comparison between logarithmic and
orbifold Gromov–Witten theory. In Section 5 we prove that after performing suitably many blowups of
the target, every combinatorial type of naive stable map is smoothable.

3.5 Naive maps and target blowups

We examine the behaviour of naive maps under target blowups and describe the associated transformation
on combinatorial types.

A simple blowup of a simple normal crossings pair is the blowup along a stratum. The reduced preimage
of the boundary divisor is again simple normal crossings. We examine an iteration of such simple blowups

� W .X�jD�/! .X jD/:

It is often useful to note that the strata of a simple normal crossings pair are regularly embedded, with
canonically split normal bundles, and that � is a local complete intersection morphism. Since � is a
logarithmic modification, it corresponds to a subdivision of cone complexes

†�!†:

Consider numerical data ƒ for a moduli space of stable maps to .X jD/. The data ƒ lifts uniquely to
numerical data for maps to .X�jD�/, as follows. The genus and marking set are unchanged. For 1� i � n
we use the identification of integral lattice points of the tropicalisation to lift the tangency data at the
marked point pi :

˛i 2†.N/D†
�.N/:

It remains to lift the curve class. We show how to do this in the case where � is a single blowup; the
general case follows by induction. Suppose then that we have

� WX� D BlZ X !X;

a blowup along Z �X with exceptional divisor E �X�. Consider the projection

pE W†�!R�0
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corresponding to the forgetful logarithmic morphism .X�jD�/! .X�jE/. Alternatively, this is the
piecewise linear function corresponding to the Cartier divisor E. Let

dE WD

nX
iD1

pE .˛i / 2N:

Let L2A1.X�/ be the class of a line in a fibre of the projective bundle E!Z, and note that E �LD�1.
We define

ˇ� WD �?ˇ� dEL:

The global balancing constraint (3) is clearly satisfied, and �?ˇ� D ˇ. These define the lifted numerical
data ƒ for .X�jD�/.

Remark 3.15 Suppose each ˛i in†.N/ lies on a ray of†. Geometrically, each marking carries tangency
to at most one irreducible component of the divisor, and we refer to this as the disjoint case. Then ˇ�D�?ˇ.
We may always reduce to the disjoint case by performing finitely many initial blowups of the target.

The next task is to explain how combinatorial types behave under blowups. A geometric point s of
Nƒ.X jD/ has a combinatorial type. By the discussion of Section 3.3 this type is determined by the
numerical data ƒ, and the image of s in Mƒ.X/.

Proposition 3.16 Consider the diagram of mapping spaces with compatible numerical data

Nƒ.X�jD�/ Nƒ.X jD/

Mƒ.X
�/ Mƒ.X/

�� �

'

Let s be a geometric point of Nƒ.X�jD�/. Then the set

��1.' ı ��.s//

is nonempty and finite , and every element has the same combinatorial type.

The following lemma will be key to the proof. Let C be an n–pointed curve, and fix tangency orders
c1; : : : ; cn in N for a map to a smooth pair. A morphism f W C !A admits a logarithmic lift if f is the
underlying map of a logarithmic map with these tangency orders.

Lemma 3.17 Let C be an n–marked nodal curve over Spec k, and let

f1; f2 W C !A
be two morphisms with .L1; s1/ and .L2; s2/ the associated generalised Cartier divisors. Let

h W C !A
be the morphism determined by .L1˝L2; s1˝ s2/. Suppose f1 and f2 admit logarithmic lifts , where
fi has contact order cij at the marked point pj . Then h also admits a logarithmic lift with contact order
c1j C c2j at pj .
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Proof Since f1 and f2 admit logarithmic enhancements, we may consider the combinatorial types of
tropical maps to R�0 of these enhancements. We first predict the combinatorial type of h. The graph �
is the dual graph of C . If p is a vertex, edge, or leg of � define the target cone by the following rule:
�p D 0 if and only if p is assigned the cone 0 in the types of both f1 and f2. If Ee is a directed edge of � ,
we let mi

Ee
denote the slope along this directed edge in the combinatorial type of fi , viewed as an element

in N�e
. We then define

mEe WDm
1
Ee
Cm2

Ee
2N�e

:

The parallel definition is taken at the legs, as demanded by the lemma. This gives a well-defined
combinatorial type for a map to R�0.

Since all types of tropical maps to R�0 are smoothable, we can find a logarithmic structure on Spec k

with monoid Q and dual cone � , an enhancement of C to a logarithmic curve C, and a map from the
associated family of tropical curves

@ R�0

�

As discussed in Section 1.6 we deduce that there is a logarithmic morphism

Qh W C!A:

Now, the map Qh satisfies all the demands placed on h in the statement of the lemma, so we need only
show that h is isomorphic to the underlying morphism of Qh. Both h and Qh produce a generalised Cartier
divisor, and we must show that these are isomorphic.

At each vertex v of � , the line bundle associated to fi is given by a divisor, specifically the sum of
distinguished points of Cv weighted by the slopes of the associated piecewise linear function; see eg
[Ranganathan et al. 2019, Proposition 2.4.1]. The line bundle associated to their tensor product is the
line bundle associated to the sum of these divisors. It follows immediately from the definition that the
line bundles associated to h and Qh are isomorphic. It is also easy to see that the isomorphism preserves
the sections.

Proof of Proposition 3.16 It follows from Section 3.3 that the fibres of both vertical morphisms in the
proposition parametrise maps with the same combinatorial type. The finiteness follows from [Wise 2019,
Corollary 1.2]. The main work is to demonstrate nonemptiness.

Consider a single blowup along a smooth stratum

.X�jD�/! .X jD/:

Let D1; : : : ;Dk be the divisor components of D. Let zD1; : : : ; zDk denote their strict transforms and E
the exceptional divisor. The pullback of Di is either zDi or zDi CE.

Geometry & Topology, Volume 28 (2024)



Gromov–Witten theory via roots and logarithms 3339

Let C ! .X�jD�/ be a naive stable map and consider the map

f W C !X�!X

obtained by composition, without stabilising. We verify that for each Di , f admits a logarithmic lift
fi W Ci ! .X jDi /. By (7) we may equivalently check that the generalised Cartier divisor

.f ?OX .Di /; sDi
/

admits a logarithmic lift, when viewed as a map to A. If Di pulls back to zDi then there is nothing to
prove. If it pulls back to zDi CE then the result follows from Lemma 3.17 by taking L1 D f ?OX . zDi /
and L2 D f ?OX .E/ so that L1˝L2 D f ?OX .Di /. Since the stabilisation of a logarithmic stable map
carries a natural logarithmic structure [Abramovich et al. 2014, Appendix B], the claim follows.

Remark 3.18 Proposition 3.16 gives a multivalued map between naive spaces, which is a weak form of
functoriality. In case it may be useful in future work, we record here that the proof shows that the arrow '

restricts to a morphism between the loci of stable maps that admit a naive lift. In fact, if we use spaces
of fine but not necessarily saturated logarithmic maps, as introduced by Chen [2014, Lemma 3.7.4] and
advocated by Wise [2019], then the multivalued map above becomes a morphism.

Construction 3.19 (Pushforward of types) As a consequence of the above proposition, although we
have not produced a morphism between naive spaces, there is a morphism between their images in the
mapping spaces. Let

� W .X�jD�/! .X jD/

be an iterated blowup along strata. Given a combinatorial type for a naive map to .X�jD�/, the induced
type of the map to .X jD/ is obtained as follows. The blowup is given by a subdivision

p W†�!†:

The labelled source graph � is replaced by its stabilisation, obtained by deleting bivalent or univalent
vertices whose curve classes are exceptional. For every vertex, edge, or leg p of � we replace the cone
�p � †

� by the minimal cone x�p � † containing the image of �p. Finally, for every oriented edge or
leg Ee, we replace mEe by its image

p.mEe/ 2Nx�e
:

4 Slope-sensitivity

The present section contains our main polyhedral arguments. We introduce the notion of a slope-sensitive
subdivision. The term “slope” here refers to the edge directions in the combinatorial types of naive stable
maps. Once the numerical data is fixed, these form a finite set of directions in the cone complex †.
After subdividing †, we show that the combinatorial types of naive maps become tightly constrained. In
Section 5 we use this to establish the main theorem.
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4.1 Rank 2

The rank of a normal crossings pair .X jD/ is the dimension of the tropicalisation. The pair .X jD/ is
of rank 1 if and only if D is smooth, and is of rank 2 if and only if it contains double but not triple
intersection points. We first define slope-sensitivity in the rank-2 case.

Consider the space of naive stable maps to .X jD/ of classƒ. The set of combinatorial types of such maps
is finite. For each combinatorial type, consider the set of slopes mEe in N�e

which additionally lie in the
positive quadrant �e\N�e

�N�e
. Enumerate these slopes, running over all combinatorial types, as follows:

m1; : : : ; mh 2†.N/:

A smooth subdivision of† which includes amongst its cones the rays generated bym1; : : : ; mh is referred
to as ƒ–sensitive. We will also use the term slope-sensitive when ƒ is unambiguous. Such subdivisions
always exist, and form a cofinal subset in the inverse system of smooth subdivisions. We refer to the
induced logarithmic modification as a ƒ–sensitive modification.

The set of slopes mEe appearing in combinatorial types of class ƒ is unchanged by subdividing the target,
as this operation does not alter the support of † (see also Section 3.5). This ensures that ƒ–sensitive
subdivisions always exist. Since †� is required to be smooth, there is typically more than one minimal
choice.

Note that while mEe 2†.N/ does not change, the minimal cone �e �† containing the edge e can. This
will alter the expression of mEe in terms of the ray generators of �e . This fact is important for motivating
the results of Section 4.4.

4.2 Higher rank

Write D DD1C � � �CDk . For a subset of size two

I D fi1; i2g � f1; : : : ; kg;

we let DI D Di1 CDi2 � D be the corresponding divisor. Note that †I D Trop.X jDI / is either
1–dimensional or 2–dimensional, depending on whether Di1 \Di2 is empty or nonempty. There is a
logarithmic morphism

.X jD/! .X jDI /

inducing a tropical projection
pI W†!†I :

For each I we choose a ƒ–sensitive subdivision †�I of the rank-2 tropical target †I . This induces
a subdivision

p�1I .†
�
I /!†:

A smooth subdivision †� ! † is then declared to be ƒ–sensitive if it refines all the subdivisions
p�1I .†

�
I / simultaneously. Again, ƒ–sensitive subdivisions always exist and are cofinal in the system of

smooth subdivisions.
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4.3 Iterated blowups

The system of iterated stellar subdivisions of a smooth fan is cofinal in the system of all refinements
of that fan; see for instance [Botero 2019, Remark 2.13]. We may therefore assume, by passing to a
further refinement, that †�!† is an iterated stellar subdivision, so that X�!X is an iterated blowup
in smooth logarithmic strata. Summarising:

Lemma 4.1 Fix numerical data ƒ. Then there exists an iterated strata blowup

.X�jD�/! .X jD/

such that .X�jD�/ is ƒ–sensitive with respect to the lifted numerical data ƒ. Moreover any smooth
logarithmic modification of .X�jD�/ is also ƒ–sensitive.

4.4 Properties: small jumping and slope negativity

Fix a ƒ–sensitive modification
.X�jD�/! .X jD/:

By Section 3.5 the numerical data lifts uniquely to data for maps to .X�jD�/, also denoted by ƒ. Fix
a naive map C ! .X�jD�/ with numerical data ƒ and consider the associated combinatorial type of
tropical stable map to †� as in Section 3.3.

Proposition 4.2 Given an oriented edge Ee of the dual graph , label the generators of the associated cone by

�e D Cone.u1; : : : ; uc/�†�

and express the slope along Ee as

mEe D

cX
iD1

aiui 2N�e
:

Then for all 1� i ¤ j � c, the pair .ai ; aj / is not contained in Z2>0 nor in Z2<0.

Proof After relabelling the coordinates, we suppose for a contradiction that .a1; a2/ 2 Z2>0. Consider
the minimal cone x�e � † containing the image of �e � †� under the subdivision †�! †. Label its
generators as

x�e D Cone.v1; : : : ; vs/:

We claim that there exist indices 1� i ¤ j � s such that the image of the composition

Cone.u1; u2/! �e! x�e! Cone.vi ; vj /

is 2–dimensional. Otherwise, u1 and u2 must map to the same ray in every Cone.vi ; vj / and must
therefore map to the same ray in Cone.v1; : : : ; vs/. Since �e! x�e is injective, it follows that u1 and u2
are proportional, a contradiction. By relabelling again, assume that the induced map

Cone.u1; u2/! Cone.v1; v2/
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has 2–dimensional image. Consider the commutative diagram of cones

�e D Cone.u1; : : : ; uc/ Cone.u1; u2/

x�e D Cone.v1; : : : ; vs/ Cone.v1; v2/

p

f g

q

The naive map to .X�jD�/ induces a naive map to .X jD/; see Construction 3.19. The combinatorial
type of this map has slope along Ee given by f.mEe/ in Nx�e

. By commutativity of the square we have

q ı f.mEe/D g ı p.mEe/:

Now p.mEe/D .a1; a2/ 2 Z2>0 by assumption. Since g has 2–dimensional image, it maps the interior of
the source cone to the interior of the target cone, so

g ı p.mEe/ 2 Z2>0:

Every ƒ–sensitive subdivision of .X jDv1
CDv2

/ therefore includes the ray generated by g ı p.mEe/.
Consequently every ƒ–sensitive subdivision of .X jD/ must contain the preimage of this ray in �e D
Cone.u1; : : : ; uc/ as a union of cones. But this preimage is a hyperplane in the interior of �e , so we have
a contradiction.

Corollary 4.3 (Small jumping) For every flag consisting of a vertex v incident to an edge e in the
graph � ,

0� dim �e � dim �v � 1:

Proof We have �e � �v , and so dim �e � dim �v � 0 is immediate. For the other inequality, assume for
a contradiction that dim �e � dim �vC 2. Order the generators of the cones so that

�e D Cone.w1; : : : ; ws; u1; : : : ; uc/ and �v D Cone.u1; : : : ; uc/;

with s � 2. Orient e to point away from v and express the slope mEe 2N�e
in terms of the above basis:

mEe D

sX
iD1

biwi C

cX
iD1

aiui :

Using the equality of formal and geometric tangency orders explained in Lemma 3.8 and Remark 3.9, we
have bi > 0 for 1� i � s. Since s � 2 this contradicts Proposition 4.2.

Corollary 4.4 (Slope negativity) Consider a flag of a vertex v and incident edge e such that dim �e D

dim �vC 1. Order the generators of the cones so that

�e D Cone.u0; u1; : : : ; uc/ and �v D Cone.u1; : : : ; uc/:

Orient e to point away from v and express the slope mEe in terms of the above basis:

mEe D a0u0C

cX
iD1

aiui :

Then a0 > 0 and ai � 0 for all 1� i � c.
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Proof The fact that a0 > 0 follows from Lemma 3.8 and Remark 3.9. The second statement then follows
from Proposition 4.2.

5 Logarithmic–naive comparisons

We establish the main comparison result. To ease notation, we replace the initial simple normal crossings
pair with a slope-sensitive modification, which we continue to denote by .X jD/.

We will equate the logarithmic and orbifold theories of .X jD/. By Theorem 2.9, it suffices to equate the
logarithmic and naive theories. Theorem X is thus reduced to the following:

Theorem 5.1 Let ƒ be numerical data for a space of genus-zero logarithmic stable maps to .X jD/.
Replace .X jD/ with a ƒ–sensitive modification. Then the natural morphism

� W Logƒ.X jD/! Nƒ.X jD/

is virtually birational , ie
�?ŒLogƒ.X jD/�

vir
D ŒNƒ.X jD/�vir:

The proof is given in two parts. In Section 5.1 we establish the theorem on the tropical level. We show
that every combinatorial type of naive stable map is smoothable, thus identifying the logarithmic and
naive tropical moduli spaces. In Section 5.2 we then use the geometry of the universal target to conclude
the algebrogeometric Theorem 5.1 from its tropical counterpart.

5.1 Tropical lifting

Let AX be the Artin fan of the pair .X jD/ with divisor DX . As in Section 2.2 let A be the Artin fan of a
smooth pair, with universal divisor DD BGm. For each 1� i � k there is a well-defined projection

.AX jDX /! .AjD/

obtained by equipping the stack AX with the Cartier divisor associated to each component of DX . In
Section 2.2 the universal naive space was defined as

NLog.Akj@Ak/ WD Log.AjD/k �Mk M:

Consider a naive map C ! .AX jDX / over a geometric point. By definition, we have logarithmic maps
Ci ! .AjD/ for each 1� i � k. Each gives a family of tropical maps

@i R�0

�i
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where �i is the corresponding tropical moduli space of edge lengths and target offsets, dual to the base
monoid of Ci . Setting �� D

Q
e2E.�/R�0 where � is the dual graph of C , there is a universal family of

tropical curves (see Sections 1.2 and 1.5)
@� ! �� :

For each 1� i � k there is a natural morphism �i ! �� and @i is the pullback of @� .

As discussed in Section 3.3, the naive map produces a combinatorial type of tropical stable map to †.
The following tropical lifting theorem shows that this combinatorial type is smoothable in the sense
of Definition 3.11. The theorem only holds after passing to a slope-sensitive subdivision; see the
counterexample given in Section 3.4.

Theorem 5.2 The fibre product of the �i over �� contains a 1–dimensional cone

� �

kY
iD1

�i ��k
�
��

such that the interior of � is contained in the interior of the fibre product cone. This satisfies the following
properties. Let @! � denote the pullback of @� ! �� . Then there is a tropical map

@ †

�

whose combinatorial type agrees with the combinatorial type of the given naive stable map. Moreover , for
each 1� i � k, the composition @!†!R�0, where †!R�0 is the projection corresponding to the
logarithmic morphism .X jD/! .X jDi /, coincides with the pullback of

@i R�0

�i
along the morphism �! �i .

Proof It suffices to construct a single tropical map to † with all tropical parameters — edge lengths and
target positions — nonzero; we then obtain a 1–parameter family by scaling. We will find strictly positive
real edge lengths `e giving rise to a tropical curve @, and a tropical map

f W @!†

such that for each vertex v the image f.v/ is contained in Int �v.

We construct f by iterating along � . The first step consists of choosing a vertex v of � and letting f.v/ be
an arbitrary interior point of �v . For the induction step, we traverse along an edge e connecting v1 to v2.
We assume that f.v1/ in Int �v1

has already been constructed, and show that there exists a choice `e > 0
of edge length such that if we define f.v2/ WD f.v1/C `emEe then f.v2/ is contained in Int �v2

. Since �
has genus zero, there are no loops to potentially cause inconsistencies.
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For the induction step, there are several cases to consider. The most difficult is moving from a larger to a
smaller cone, ie

�v1
D �e � �v2

:

By Corollary 4.3 we know that �v2
is a facet of �v1

. Label the generators as follows:

�v1
D Cone.u0; u1; : : : ; uc/ and �v2

D Cone.u1; : : : ; uc/:

Then f.v1/ in Int �v1
can be written as

f.v1/D �0u0C
cX
iD1

�iui ;

with all �i > 0. We orient the edge e from v2 to v1 and write the slope mEe as

mEe D a0u0C

cX
iD1

aiui :

We have a0 > 0 by Lemma 3.8 and Remark 3.9. By Corollary 4.4 it follows that ai � 0 for all 1� i � c.
We define

`e WD �0=a0 2R>0:

This gives

f.v2/D f.v1/� `emEe D
cX
iD1

.�i ��0ai=a0/ui :

The negative sign arises from the choice of orientation for e. Since �i > 0 and �0ai=a0 � 0, we conclude
that f.v2/ lies in Int �v2

, as required.

This deals with the difficult case. Now suppose that �v1
� �v2

. In this case we are moving from a smaller
to a larger cone, and any sufficiently small `e > 0 will suffice. Note that this includes the case �v1

D �v2
.

The final case is where �v1
and �v2

are distinct facets of �e:

�v1
� �e � �v2

:

We subdivide the edge e by introducing an additional bivalent vertex v0, and assign �v0
D �e. We then

apply the previous two cases to construct the map. The vertex v0 may now be deleted, and we conclude
the result.

5.2 Geometric lifting

We now use the geometry of the universal target to reduce Theorem 5.1 to the tropical lifting theorem
(Theorem 5.2) proved above. Consider the following diagram:

Logƒ.X jD/ Nƒ.X jD/ Mƒ.X/

Log.AX jDX / NLog.Akj@Ak/ M.Ak/

p A q B
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We note that AX is the open substack of Ak corresponding to the subcomplex inclusion2

†�Rk�0:

It follows that the outer square ACB is cartesian. On the other hand, we saw in (7) that the square B is
cartesian. We conclude that A is cartesian.

The morphisms p and q are equipped with compatible perfect obstruction theories; see Section 2.2. By
the Costello–Herr–Wise comparison theorem [Costello 2006; Herr and Wise 2023], Theorem 5.1 follows
if we show that  is proper and birational [Herr and Wise 2023, Remark 2.6].

The arguments of [Wise 2019] apply equally when the target is a logarithmic algebraic stack. They imply
that Log.AX jDX /!M.Ak/ is finite over its image, and hence proper. From Remark 2.5 we see that
the morphism NLog.Akj@Ak/!M.Ak/ is the base change of a proper morphism, and hence a fortiori
separated. We conclude that  is proper.

To prove Theorem 5.1, it remains to show that  is birational. The source of  is logarithmically smooth,
irreducible, and equal to the closure of the locus where the logarithmic structure is trivial. More explicitly,
this is the locus of nondegenerate maps: the source curve is smooth and its generic point maps to the
interior of AX . Moreover,  induces an isomorphism of this locus onto the same locus of nondegenerate
maps in the codomain. As such, if we prove that  is surjective then it follows that  is birational.
Therefore Theorem 5.1, and hence Theorem X, reduces to the following:

Theorem 5.3 The following morphism is surjective:

 W Log.AX jDX /!NLog.Akj@Ak/:

Proof Choose a geometric point of the codomain. This consists of the following data:

� C a fixed scheme-theoretic source curve,

� Ci ! .Spec k;Qi / a logarithmic enhancement of C , one for each 1� i � k, and

� @i !R�0 a morphism of cone complexes for 1� i � k, where @i ! �i is the family of tropical
curves obtained by tropicalising Ci ! .Spec k;Qi /.

The maps @i !R�0 correspond to logarithmic maps Ci ! .AjD/. Forgetting logarithmic structures, we
obtain a map C ! Ak which factors through AX . We construct a logarithmic enhancement of this by
constructing a strongly transverse map to an expansion of AX , following [Ranganathan 2022]. Strong
transversality means that the map is disjoint from codimension-2 strata and only intersects codimension-1
strata at special points, with balanced tangency orders at nodes.

2Strictly speaking, this is only a subcomplex inclusion if all intersections
T
i2I Di are connected. In general †!Rk

�0 is only
a finite cover of a subcomplex, but in either case the map AX !Ak is open, which is all we require. Alternatively, we can force
the component intersections to be connected by performing further blowups.
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The expansion is produced from the previously constructed tropical lift. In Theorem 5.2 we proved the
existence of a 1–dimensional cone

� �

kY
iD1

�i ��k
�
��

and compatible tropical map @!† metrised by �. Consider the graph map

@!†� �:

Toroidal semistable reduction [Abramovich and Karu 2000] produces a logarithmic modification of
AX �A1 forming a flat and reduced family of expansions of AX . The central fibre EX has irreducible
components EX .v/ indexed by vertices of � which meet along divisors EX .e/ indexed by edges of � .
There is a natural logarithmic collapsing morphism given as the composite EX !AX �A1!AX . We
will construct a strongly transverse lift g W C ! EX of f W C !AX .

For each vertex v of � the restriction of f W C !AX to the curve component Cv factors through

fv W Cv!AX .v/;

where AX .v/�AX is the closed stratum corresponding to �v �†. The collapsing morphism restricts
to a map of closed strata EX .v/! AX .v/. Restricting further to the locally closed strata, we obtain a
principal torus bundle

EıX .v/!AıX .v/
with structure group T�v

DN�v
˝Gm.

Consider the irreducible components of DX containing the stratum AX .v/. Let L1; : : : ; Lk denote the
restrictions to AıX .v/ of their associated line bundles. Then EıX .v/ is precisely the principal bundle
associated to

Lk
iD1Li [Carocci and Nabijou 2022, Proposition 4.3]. Given a map to AıX .v/, a lift to

EıX .v/ is given by specifying nonvanishing sections of the pullbacks of L1; : : : ; Lk .

Denote by x1; : : : ; xr the special points in Cv. For each Li , the combinatorial type of naive map
determines contact orders cij 2 Z for 1� j � r . By the balancing condition, these data satisfy

rX
jD1

cij D degf ?v Li :

Since we work in genus zero, Cv is a marked P1, and so we may choose an isomorphism

(15) OCv

� rX
jD1

cijxj

�
Š f ?v Li :

The standard rational section on the left-hand side produces a rational section of f ?v Li . This section is
both regular and nonvanishing away from the special points, and hence we obtain a map

Cv n fx1; : : : ; xrg ! EıX .v/:
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Passing to the partial compactification EX .v/ of the codomain, the above map extends to all of Cv and
produces a strongly transverse lift

Cv EX .v/

AX .v/
fv

gv

with the desired tangency orders. The set of such lifts forms a torsor under the group T�v
with moduli the

choice of isomorphisms (15). See [Ranganathan 2017, Proposition 3.3.3] for a parallel calculation.

We now argue that the scalar moduli above can be chosen in such a way that the lifts gv W Cv! EX .v/
glue to form a globally defined map g W C ! EX . The following argument uses slope-sensitivity in an
essential way.

Choose a root vertex of � and orient the graph to flow away from the root. We will construct g by
iterating along this flow. At each step, we traverse from v1 to v2 along an oriented edge Ee of the graph,
and assume that we have already constructed a lift

g1 W Cv1
! EX .v1/:

Fix an arbitrary lift g2 W Cv2
! EX .v2/ with the prescribed contact orders. We claim that there exists a

scalar � in T�v2
such that

(16) �.g2.qe//D g1.qe/;

where qe 2 C is the node connecting Cv1
and Cv2

. Note that g2.qe/ is an interior point of the join
divisor EX .e/. This interior is a principal torus bundle over the interior of AX .�e/ with structure group
.N�e

=ZmEe/˝Gm, where mEe 2N�e
is the slope along the oriented edge; see eg [Carocci and Nabijou

2024, Theorem 1.8]. To prove the claim it therefore suffices to show that the composition

(17) N�v2
!N�e

!N�e
=ZmEe

is surjective. By Corollary 4.3 there are two cases to consider: dim �v2
D dim �e and dim �v2

D dim �e�1.
In the first case, (17) is the composition of an isomorphism followed by a surjection and so the claim
holds. In the second case, we have a hyperplane inclusion

N�v2
,!N�e

:

Corollary 4.4 implies that mEe does not belong to the image, and hence the composition (17) is surjective
as claimed. We conclude the existence of a scalar � satisfying (16). Replacing g2 by � ıg2 we obtain a
strongly transverse lift of f2 which glues to g1 along qe.

By iterating, we construct the desired global lift g WC ! EX . Since this lift is strongly transverse, standard
arguments (see eg [Ranganathan 2022, Section 6] or [Abramovich et al. 2020a, Section 4.2]) produce a
logarithmic enhancement C! EX . Composing with the collapsing map produces a logarithmic morphism
C! .AX jDX /, and this completes the proof.
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6 Logarithmic from absolute

The main result of this paper allows for the importation of orbifold techniques into logarithmic Gromov–
Witten theory. As a first application, we establish the following conceptual result:

Theorem 6.1 The genus-zero logarithmic Gromov–Witten theory of .X jD/ is determined algorithmically
from the genus-zero absolute Gromov–Witten theories of all the strata of .X jD/.

Proof Let .X jD/ be a normal crossings pair and fix numerical dataƒ for a specific logarithmic Gromov–
Witten invariant. Choose a ƒ–sensitive modification .X�jD�/! .X jD/. We may additionally assume
that D� �X� is simple normal crossings.

Theorem X equates the logarithmic Gromov–Witten theory of .X jD/ to the orbifold Gromov–Witten
theory of .X�jD�/. The multiroot stack associated to .X�jD�/ may be factored as a sequence of root
stacks with respect to smooth divisors. By iteratively applying [Chen et al. 2020, Theorem 1.9], we
conclude that the orbifold Gromov–Witten theory of .X�jD�/ is determined by the absolute Gromov–
Witten theories of all the strata of .X�jD�/.

It remains to reduce these to the absolute Gromov–Witten theories of the strata of .X jD/. By induction
it is sufficient to consider the case where X�! X is a single blowup along a smooth stratum Z � X .
Every stratum V � �X� is then either a blowup of, or a projective bundle over, a stratum V �X . In the
former case, work of Fan [2021, Theorem B] reduces the theory of V � to the theories of V and V \Z,
both of which are strata in .X jD/.

In the latter case, we observe that the projective bundle V �! V is the projectivisation of a direct sum of
line bundles. This is because the logarithmic structure provides a natural splitting of the normal bundle
of the blowup centre Z. Therefore there is a well-defined big torus acting on the fibres of V � ! V .
Localising with respect to this action reduces the theory of V � to the theory of V (analogously to the proof
of Theorem 6.2). Similar arguments have been employed by others; see eg [Maulik and Pandharipande
2006; Brown 2014].

If we restrict to insertions coming from X , then a slightly weaker form of the statement can be proved in a
direct manner. While weaker, we believe that it transparently illustrates a general theme here, namely that
once the problem has been moved to the orbifold side, more techniques become available to manipulate
the theory. We include this weaker statement to give a sense for this. See also [Tseng and You 2023b]
where similar ideas appear.

As usual fix .X jDDD1C� � �CDk/ a simple normal crossings pair, Er D .r1; : : : ; rk/ a tuple of pairwise
coprime positive integers, and X DXD;Er the associated multiroot stack. For Y D X or Y a stratum of
.X jD/, there is a natural morphism Y !X . The restricted Gromov–Witten theory of Y is the system of
descendant invariants with evaluation classes pulled back from the cohomology of X .
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Theorem 6.2 The genus-zero restricted Gromov–Witten theory of X is determined algorithmically from
the genus-zero restricted absolute Gromov–Witten theories of all the strata of .X jD/.

Proof We recall the projective bundle construction of [Tseng and You 2023b, Section 3.1]. For 1� i � k
let Pi D PX .OX .Di /˚OX /. This contains zero and infinity sections Xi0 and Xi1 satisfying

OPi
.1/jXi0

ŠOX and OPi
.1/jXi1

ŠOX .Di /:

There is a tautological section si 2H 0.Pi ;OPi
.1// and a natural isomorphism of pairs

.V .si /jV.si /\Xi1/D .X jDi /:

From the Pi we construct the following .P1/k–bundle over X :

P WD P1 �X P2 �X � � � �X Pk :

We let pi W P ! Pi be the projection and consider the multiroot stack

P WD
r1
p
.P; p�11 X11/�P � � � �P

rk
p
.P; p�1k Xk1/:

This is a .P .1; r1/� � � � �P .1; rk//–bundle over X . Let p WP!P be the map to the coarse moduli space.
Then the pullbacks of the tautological sections

p?p?i si 2H
0.P; p?p?i OPi

.1//

satisfy
V.p?p?1 s1; : : : ; p

?p?ksk/Š X :

Since each bundle p?p?i OPi
.1/ is positive and pulled back from the coarse moduli space, we may apply

the quantum Lefschetz theorem for orbifolds [Coates et al. 2012]. This reduces the restricted genus-zero
theory of X to the genus-zero theory of P capped with the class

(18)
kY
iD1

e.R��?f
?p?p?i OPi

.1//:

We compute this by localising with respect to the big torus acting on the fibres of P!X . Each fixed
locus ZI � P in the target is indexed by a subset I � f1; : : : ; kg and is isomorphic to a gerbe over X
banded by

Q
i2I �ri

:
ZI D

Y
i2I

ri
p
.X;OX .Di //�XI X:

Now consider a fixed locus in the moduli space Orbƒ.P/. Up to a finite cover, this is a fibre product of
spaces of maps to the gerbes ZI . The fibring is with respect to the evaluation maps to the coarse moduli
space X .

Since OPi
.1/jXi0

ŠOX , it follows that for i … I the class e.R��?f ?p?p?i OPi
.1// is pure weight. On

the other hand, for i 2 I we have

p?p?i OYi
.1/Š s?OX .Di /;
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where s W ZI ! X is the rigidification. Let u W Orbƒ.ZI /!Mƒ.X/ denote the induced morphism on
spaces of stable maps. By the standard comparison of universal curves (see eg Section 2.3) we obtain

e.R��?f
?p?p?i OPi

.1//D u?e.R��?f
?OX .Di //:

Finally, the normal bundle term expands as a power series in equivariant weights and (coarse) psi classes
[Liu 2013]. For a discussion of the comparison between coarse and gerby psi classes see [Abramovich
et al. 2008, Section 8.3].

In summary, the contribution of the fixed locus is a (product of) integrals over Orbƒ.ZI / with insertions
pulled back along u. By the virtual pushforward theorem for root gerbes [Andreini et al. 2015, Theo-
rem 4.3] this can be expressed as an integral over Mƒ.X/. The integrand is a product of equivariant
weights, evaluation classes, psi classes, and an Euler class term. But the Euler class term is simplyY

i2I

e.R��?f
?OX .Di //D �?ŒMƒ.\i2IDi /�

vir;

by the absolute quantum Lefschetz theorem. We have therefore successfully reduced the restricted theory
of X to the restricted theories of the strata

T
i2I Di of .X jD/.
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