g TN TT

g i O T

Qg 7;. G T
G6G97TT

Geometry &
Topology

Volume 28 (2024)

Orbit closures of unipotent flows for hyperbolic manifolds
with Fuchsian ends

MINJU LEE
HEE OH

:.msp






Geometry & Topology 28:7 (2024) 3373-3473
:'msp pOI: 10.2140/gt.2024.28.3373
Published: 25 November 2024

Orbit closures of unipotent flows for hyperbolic manifolds
with Fuchsian ends

MINJU LEE
HEE OH

We establish an analogue of Ratner’s orbit closure theorem for any connected closed subgroup generated by
unipotent elements in SO(d, 1) acting on the space I'\SO(d, 1), assuming that the associated hyperbolic
manifold M = I'\H¥ is a convex cocompact manifold with Fuchsian ends. For d = 3, this was proved
earlier by McMullen, Mohammadi and Oh. In a higher-dimensional case, the possibility of accumulation
on closed orbits of intermediate subgroups causes serious issues, but, in the end, all orbit closures of
unipotent flows are relatively homogeneous. Our results imply the following: for any k > 1,

(1) the closure of any k—horosphere in J is a properly immersed submanifold;

(2) the closure of any geodesic (k+1)—plane in J is a properly immersed submanifold;

(3) an infinite sequence of maximal properly immersed geodesic (k+1)—planes intersecting core Al
becomes dense in .
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1 Introduction

Let G be a connected simple linear Lie group and I' < G be a discrete subgroup. An element g € G is
called unipotent if all of its eigenvalues are one, and a closed subgroup of G is called unipotent if all
of its elements are unipotent. Let U be a connected unipotent subgroup of G or, more generally, any
connected closed subgroup of G generated by unipotent elements in it. We are interested in the action
of U on the homogeneous space I'\G by right translations.

If the volume of the homogeneous space '\ G is finite, i.e. if I is a lattice in G, then Moore’s ergodicity
theorem [1966] says that, for almost all x € '\ G, xU is dense in I'\G. While this theorem does not
provide any information for a given point x, the celebrated Ratner’s orbit closure theorem [1991b], which
was a conjecture of Raghunathan, states that

(1-1) the closure of every U-orbit is homogeneous,

that is, for any x € I'\G, xU = xL for some connected closed subgroup L < G containing U. Ratner’s
proof is based on her classification [1991a] of all U—-invariant ergodic probability measures and the work
of Dani and Margulis [1991] on the nondivergence of unipotent flow. Prior to her work, some important
special cases of (1-1) were established in [Margulis 1989; Dani and Margulis 1989; 1990; Shah 1994;
1991a] by topological methods. This theorem is a fundamental result with numerous applications.

It is natural to ask if there exists a family of homogeneous spaces of infinite volume where an analogous
orbit closure theorem holds. When the volume of I'\ G is infinite, the geometry of the associated locally
symmetric space turns out to play an important role in this question. The first orbit closure theorem in the
infinite-volume case was established by McMullen, Mohammadi and Oh [McMullen et al. 2017; 2016]
for a class of homogeneous spaces I'\SO(3, 1) which arise as the frame bundles of convex cocompact

hyperbolic 3-manifolds with Fuchsian ends.

Our goal in this paper is to show that a similar type of orbit closure theorem holds in the higher-dimensional
analogues of these manifolds. We present a complete hyperbolic d-manifold /M = F\Hd as the quotient

of the hyperbolic space by the action of a discrete subgroup
I <G =S0°d,1) ~Isom™ (HY),
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Figure 1: A convex cocompact hyperbolic manifold with nonempty Fuchsian ends.

where SO°(d, 1) denotes the identity component of SO(d, 1). The geometric boundary of H? can be
identified with the sphere S?=1. The limit set A C S¢~! of T is the set of all accumulation points of an
orbit I'x in the compactification H¢ U S~ for x € H¥.

The convex core of .l is a submanifold of .l given by the quotient
core Ml = T\ hull(A),
where hull(A) C H4 is the smallest convex subset containing all geodesics in HA connecting points in A.

When core Jl is compact, L is called convex cocompact.

Convex cocompact manifolds with Fuchsian ends

Following the terminology introduced in [Kerckhoff and Storm 2012], we define:

Definition 1.1 A convex cocompact hyperbolic d—-manifold .t is said to have Fuchsian ends if core /it
has nonempty interior and has totally geodesic boundary.

The term Fuchsian ends reflects the fact that each component of the boundary of core M is a (d—1)—
dimensional closed hyperbolic manifold, and each component of the complement .l — core Jl is diffeo-
morphic to the product S x (0, co) for some closed hyperbolic (d —1)-manifold S (see Figure 1).

Convex cocompact hyperbolic d—manifolds with nonempty Fuchsian ends can also be characterized as
convex cocompact hyperbolic manifolds whose limit sets satisfy

o0
Sd-1_A = U B:.

i=1

Geometry & Topology, Volume 28 (2024)
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Figure 2: Limit set of a convex cocompact hyperbolic 4-manifold with nonempty Fuchsian ends.

where the B; are round balls with mutually disjoint closures (see Figure 2). Hence, for d = 2, any
nonelementary convex cocompact hyperbolic surface has Fuchsian ends. The double of the core of a convex
cocompact hyperbolic d-manifold with nonempty Fuchsian ends is a closed hyperbolic d-manifold.

Any convex cocompact hyperbolic manifold with nonempty Fuchsian ends is constructed in the following
way. Begin with a closed hyperbolic d—manifold N with a fixed collection of finitely many, mutually
disjoint, properly embedded totally geodesic hypersurfaces. Cut Ny along those hypersurfaces to obtain
a compact hyperbolic manifold W with totally geodesic boundary hypersurfaces. There is a canonical
procedure for extending each boundary hypersurface to a Fuchsian end, which results in a convex
cocompact hyperbolic manifold Jl (with Fuchsian ends) which is diffeomorphic to the interior of W.

By the Mostow rigidity theorem, there are only countably infinitely many convex cocompact hyperbolic
manifolds with Fuchsian ends of dimension at least 3. On the other hand, for a fixed closed hyperbolic d—
manifold N¢ with infinitely many properly immersed geodesic hypersurfaces,! one can produce infinitely
many nonisometric convex compact hyperbolic d—manifolds with nonempty Fuchsian ends; for each
properly immersed geodesic hypersurface f; (H4~!) for a totally geodesic immersion f;: H¢~! — Ny,
there is a finite covering N; of Ng such that f; lifts to H=1 - N; with image S; properly embedded
in N; [Maclachlan and Reid 2003]. Cutting and pasting N; along S; as described above produces a
hyperbolic manifold M; with Fuchsian ends. When the volumes of the S; are distinct, the Jl; are not
isometric to each other.

Orbit closures

In the rest of the introduction, we assume that, for d > 2,

Al is a convex cocompact hyperbolic d—manifold with Fuchsian ends.

1 Any closed arithmetic hyperbolic manifold has infinitely many properly immersed geodesic hypersurfaces provided it has at
least one. This is due to the presence of Hecke operators [Reid 1991].

Geometry & Topology, Volume 28 (2024)
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The homogeneous space I'\G can be regarded as the bundle Fil of oriented frames over .. Let
A ={a; : t € R} < G denote the one-parameter subgroup of diagonalizable elements whose right
translation actions on I'\G correspond to the frame flow. Let N ~ R4~! denote the contracting
horospherical subgroup

N={geG:a_;ga; — e ast — +00}.
We denote by RF Jl the renormalized frame bundle of J:

RF M := {x € T\G : xA is bounded},

and also set
RF, M :={x e '\G : xA" is bounded},

where AT = {a; : t > 0}. When Vol(M) < oo, we have
RFl = RE4 A = T\G.

In general, RF Jl projects into core Jit (but not surjective in general) and RF4 Al projects onto /il under
the basepoint projection I'\G — . The sets RF.l and RF Jl are precisely nonwandering sets for the
actions of A and N, respectively [Winter 2015].

For a connected closed subgroup U < N, we denote by H(U) the smallest closed simple Lie subgroup
of G which contains both U and A. If U ~ R¥, then H(U) ~ SO°(k + 1,1). A connected closed
subgroup of G generated by one-parameter unipotent subgroups is, up to conjugation, of the form U < N
or H(U) for some U < N (Corollary 3.8).

We set Fy ) := RF4 - H(U), which is a closed subset. It is easy to see that if x ¢ RF Jl (resp.
x & Fg)), then xU (resp. xH(U)) is closed in I"\ G. On the other hand, for almost all x € RF M, xU
is dense in RF J, with respect to a unique N—invariant locally finite measure on RF .l, called the
Burger—Roblin measure; this was shown in [Mohammadi and Oh 2015] for d = 3 and in [Maucourant
and Schapira 2019] for general d > 3 (see Section 12).

Orbit closures are relatively homogeneous

We define the collection of closed connected subgroups of G
Py :={L = H(U)C : for some z € RF M, zL is closed in I'\G and Staby (z) is Zariski-dense in L},
where U < U < N and C is a closed subgroup of the centralizer of H (l’j ). We also define

9y :={vLv ':Le%PyandveN}.

In view of the previous discussion, the following theorem gives a classification of orbit closures for all
connected closed subgroups of G generated by unipotent one-parameter subgroups:

Geometry & Topology, Volume 28 (2024)
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Theorem 1.2 Let Al = I'\H? be a convex cocompact hyperbolic manifold with Fuchsian ends, and let
U < N be a nontrivial connected closed subgroup.

(1) H(U)-orbit closures For any x € REJM - H(U),
xHWU)=xLnN Fraw).
where x L is a closed orbit of some L € $Ly.

(2) U-orbit closures For any x € RF1 M,
xU = xL NRF4 M,

where x L is a closed orbit of some L € .

(3) Equidistributions Let x; L; be a sequence of closed orbits intersecting RF A, where x; € RF4 M
and L; € 9y . Assume that no infinite subsequence of x; L; is contained in a subset of the form
yoLoD, where yg L is a closed orbit of Ly € £y withdim Lo < dim G and D is a compact subset
of the normalizer N(U) of U. Then?

hm xiLi N RF+ M= RF+ M.
1 —>00
Remark 1.3 (1) If x € Fg)—RF.l- H(U), then xH(U) is contained in an end component of .l
under the projection I'\G — J, and its closure is not relatively homogeneous in Fg(y7). More

precisely,
xHU)=xLVTHU)
for some L € %y, and some one-parameter semigroup VT < N (see Theorem 11.5).

(2) If M has empty ends, i.e. if Jl is compact, Theorem 1.2(1) and (2) are special cases of Ratner’s
theorem [1991b], also proved by Shah (unpublished notes, 1992) independently, and Theorem 1.2(3)
follows from the Mozes—Shah equidistribution theorem [1995].

Theorem 1.2(1)—(2) can also be presented as follows in a unified manner:

Corollary 1.4 Let H < G be a connected closed subgroup generated by unipotent elements in it. Assume
that H is normalized by A. For any x € RF /M, the closure of x H is homogeneous in RF /L, that is,

(1-2) xH NRF .M = xL NRF M,

where xL is a closed orbit of some L € Qgnn.

Remark 1.5 If I is contained in G(Q) for some Q-structure of G, and [g]L is a closed orbit appearing

-1

in Corollary 1.4, then L is defined by the condition that gLg™" is the smallest connected Q—subgroup

of G containing gHg™!.

2For a sequence of subsets Yy in a topological space X such that Y = limsup,, ¥, = liminf Yy, we write ¥ = limy o0 Y,
where limsup,, ¥, =, ﬂmzn Yy and liminf, Y, =), Umz” Y.
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Generic points

Denote by 4(U) the set of all points x € RF Jil such that x is not contained in any closed orbit of a
proper reductive algebraic subgroup of G containing U. Theorem 1.2(2) implies that, for any x € 4(U),

xU = RF, J.
Geodesic planes, horospheres and spheres

We state implications of our main theorems on the closures of geodesic planes and horospheres of the
manifold J(, as well as on the I'—orbit closures of spheres in se-1.

A geodesic k—plane P in J is the image of a totally geodesic immersion f': H* — A or, equivalently,
the image of a geodesic k—subspace of H4 under the covering map H? — (. If f factors through the
covering map Hf — I'O\Hk for a convex cocompact hyperbolic k—manifold with Fuchsian ends, we call
P = f(H¥) a convex cocompact geodesic k—plane with Fuchsian ends.

Theorem 1.6 Let Ml = F\Hd be a convex cocompact hyperbolic manifold with Fuchsian ends, and let
P be a geodesic k—plane of M for some k > 2.

(1) If P intersects core [, then P is a properly immersed convex cocompact geodesic m—plane with
Fuchsian ends for some m > k.

(2) Otherwise, P is contained in some Fuchsian end E = S x (0, 00) of /M, and either P is properly
immersed or P is diffeomorphic to the product S x [0, o) for a closed geodesic m—plane S of S
forsomek <m <d —1.

In particular, the closure of a geodesic plane of dimension at least 2 is a properly immersed submanifold
of M (possibly with boundary).

We also obtain:

Theorem 1.7 (1) Any infinite sequence of maximal properly immersed geodesic planes P; of
dim P; > 2 intersecting core A becomes dense in JL, i.e.

Tim P; =,
1—>00

where the limit is taken in the Hausdorff topology on the space of all closed subsets in JL.

(2) There are only countably many properly immersed geodesic planes of dimension at least 2 inter-
secting core JL.

(3) If Vol(M) = oo, there are only finitely many maximal properly immersed bounded geodesic planes
of dimension at least 2.

In fact, Theorem 1.7(3) holds for any convex cocompact hyperbolic d—manifold (see Remark 18.3).

A k-horosphere in H? is a Euclidean sphere of dimension k which is tangent to a point in S¢~!. A k—
horosphere in .l is simply the image of a k—horosphere in H under the covering map H? — it = '\ H¥.

Geometry & Topology, Volume 28 (2024)
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Theorem 1.8 Let y be a k—horosphere of M for k > 1. Then either
(1) x is properly immersed; or

(2) x is a properly immersed m—dimensional submanifold, parallel to a convex cocompact geodesic
m—plane of M with Fuchsian ends for some m > k + 1.

By abuse of notation, let 7z denote both basepoint projection maps G — H¢ and I'\G — M, where we
consider an element g € G as an oriented frame over H?. Let H' = SO°(k + 1, 1) SO(d —k — 1) with
1 <k <d —2. The quotient space G/H’ parametrizes all oriented k—spheres in S¢~!, which we denote
by ¥ . For each H'—orbit gH’ C G, the image 7(gH’) C H? is an oriented geodesic (k+1)—plane and
the boundary d((gH’)) € S?~1 is an oriented k—sphere. Passing to the quotient space I'\ G, this gives
bijections among

(1) the space of all closed H'—orbits xH’ C T'\G for x € RF.;

(2) the space of all oriented properly immersed geodesic (k-+1)—planes P in .l intersecting core J;

(3) the space of all closed I'-orbits of oriented k—spheres C € ¢k with #C N A > 2.
If U := H’ N N, then any k-horosphere in .l is given by 7 (xU) for some x € I'\G.

In view of these correspondences, Theorems 1.6, 1.7 and 1.8 follow from Theorems 1.2 and 11.5 and
Corollary 5.8.

We also obtain the following description of I'—orbits of spheres of any positive dimension:

Corollary 1.9 Let1 <k <d —2.
(1) Let C €€k with #C N A > 2. Then there exists a sphere S € €™ such that T'S is closed in €™ and
[C={De¢*:DNA+#2, DCTS}.

(2) LetC; € ¢k be an infinite sequence of spheres with #C; N A > 2 such that I'C; is closed in @k.
Assume that T'C; is maximal in the sense that there is no proper sphere S C S¢~! which properly
contains C; and that T'S is closed. Then, asi — oo,

lim TG ={D e¢*: DA #2},

1—>00
where the limit is taken in the Hausdorff topology on the space of all closed subsets in @k,

(3) IfA #S%~1 there are only finitely many maximal closed T —orbits of spheres of positive dimension
contained in A.

Remark 1.10 (1) The main results of this paper for d = 3 were proved in [McMullen et al. 2017,
2016]. We refer to [McMullen et al. 2017] for counterexamples to Theorem 1.2 for a certain family
of quasi-Fuchsian 3—manifolds.

Geometry & Topology, Volume 28 (2024)
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(2) A convex cocompact hyperbolic 3—-manifold with Fuchsian ends (which was referred to as a rigid
acylindrical hyperbolic 3—-manifold in [McMullen et al. 2017]) has a huge deformation space
parametrized by the product of the Teichmiiller spaces of the boundary components of core Jit (see
[Marden 2016]). Any convex cocompact acylindrical hyperbolic 3—manifold is a quasiconformal
conjugation of a rigid acylindrical hyperbolic 3—manifold [McMullen 1990]. An analogue of
Theorem 1.2(1) was obtained for all convex cocompact acylindrical hyperbolic 3—-manifolds in
[McMullen et al. 2022] and for all geometrically finite acylindrical hyperbolic 3—manifolds in
[Benoist and Oh 2022].

(3) For d > 4, Kerckhoff and Storm [2012] showed that a convex cocompact hyperbolic manifold
M=T \Hd with nonempty Fuchsian ends does not allow any nontrivial deformation, in the sense
that the representation of I" into G is infinitesimally rigid.

Remark 1.11 We discuss an implication of Theorem 1.2(2) on the classification question on U —invariant
ergodic locally finite measures on RF Jl. There exists a canonical geometric U —invariant measure on
each closed orbit xL in Theorem 1.2(2): We write L = v~ ' H (17 )Cv. As v centralizes U, let’s assume
v = e without loss of generality. Denoting by p: L — H ((7 ) the canonical projection, the subgroup
p(Staby,(x)) is a convex cocompact Zariski-dense subgroup of H (ﬁ ), and hence there exists a unique
U—invariant locally finite measure on p(Staby, (x))\ H (fj ), called the Burger—Roblin measure [Burger
1990; Roblin 2003; Oh and Shah 2013; Winter 2015]. Now its C—invariant lift to (L N Staby, (x))\L
defines a unique U C—invariant locally finite measure, say mEE, whose support is equal to xL N RF4 Jl.
Moreover, mBE is U—ergodic (see Section 12). A natural question is the following:

Is every ergodic U —invariant locally finite Borel measure in RF_ Jil proportional to some mEE ?

An affirmative answer would provide an analogue of Ratner’s measure classification [1991a] in this setup.

Theorem 1.2(2) implies that the answer is yes, at least in terms of the support of the measure.

Acknowledgements We would like to thank Nimish Shah for making his unpublished notes, containing
most of his proof of Theorem 1.2(1)—(2) for the finite-volume case, available to us. We would also like to
thank Gregory Margulis, Curt McMullen and Amir Mohammadi for useful conversations. Finally, Oh
would like to thank Joy Kim for her encouragement.

Oh was supported in part by NSF grant #1900101.

2 Outline of the proof

We will explain the strategy of our proof of Theorem 1.2 with an emphasis on the difference between
the finite- and infinite-volume cases and the difference between the dimension 3 and higher-dimensional
cases.
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Thick recurrence of unipotent flows

Let Up = {u; : t € R} be a one-parameter subgroup of N. The main obstacle of carrying out unipotent
dynamics in a homogeneous space of infinite volume is the scarcity of recurrence of unipotent flow. In a
compact homogeneous space, every Up—orbit stays in a compact set for the obvious reason. Already in a
noncompact homogeneous space of finite volume, understanding the recurrence of Up—orbit is a nontrivial
issue. Margulis [1975] showed that any Up—orbit is recurrent to a compact subset, and Dani and Margulis
[1991] showed that, for any x € '\ G and for any & > 0, there exists a compact subset & C I'\ G such that

Lt el0,T]:xu; €eQ}>(1—-¢6)T

for all large 7' >> 1, where £ denotes the Lebesgue measure on R. This nondivergence of unipotent flows
is an important ingredient of Ratner’s orbit closure theorem [1991b].

In contrast, when I'\ G has infinite volume, for any compact subset 2 C I'\G and for almost all x (with
respect to any Borel measure i on R),

uf{t €0, T]: xu; € 2} =0(T)
for all 7 > 1 [Aaronson 1997].

Nonetheless, the pivotal reason that we can work with convex cocompact hyperbolic manifolds of
nonempty Fuchsian ends is the following thick recurrence property that they possess: there exists k > 1,
depending only on the systole of the double of core Jit, such that, for any x € RF Jl, the return time

T(x):={t €eR:xu; e RF.M}
is k—thick, in the sense that, for any A > 0,
2-1) Tx)N([—kA,—A]U[A,kA]) # 2.

This recurrence property was first observed in [McMullen et al. 2017] in the case of dimension 3 in order
to get an additional invariance of a relative Up—minimal subset with respect to RF Jl by studying the
polynomial divergence property of Up—orbits of two nearby RF .{—points.

Beyond d =3

In a higher-dimensional case, the possible presence of closed orbits of intermediate subgroups introduces
a variety of serious hurdles. Roughly speaking, calling the collection of all such closed orbits the singular
set and its complement the generic set, one of the main new ingredients of this paper is the avoidance
of the singular set along the k—thick recurrence of Up—orbits to RF .l for a sequence of RF Jl—points
limiting at a generic point. Its analogue in the finite-volume case was proved by Dani and Margulis [1993]
and also independently by Shah [1991b] based on linearization methods.

Geometry & Topology, Volume 28 (2024)
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Road map for induction

Roughly speaking,® Theorem 1.2 is proved by induction on the codimension of U in N. For each
i =1,2,3, let us say that (i), holds if Theorem 1.2(i) is true for all U satisfying codimy (U) < m. We
show that the validity of (2),, and (3),, implies that of (1),+1; the validity of (1)m+1, (2)m and (3),
implies that of (2);,+1; and the validity of (1),;,+1, (2)m+1 and (3),, implies that of (3),,+1. In order to
give an outline of the proof of (1);,+1, we suppose that codimy (U) <m + 1. Let

F:=RF,. M-HU), F*:=Interior(F) and O0F :=F —F"*.
Let x € F* NRF ., and consider
X:=xH{U)CF.
The strategy in proving (1),,+1 for X consists of two steps:

(1) Find Find a closed L—orbit xoL with xo € F* NRFJl such that xoL N F contained in X for
some L € Ly.

(2) Enlarge If X ¢ xoL C(H(U)),* then enlarge xoL to a bigger closed orbit x1 Lsothatx;LNF C
X, where x; € F* NRFl and L € £ for some U<N containing L N N properly.

The enlargement process must end after finitely many steps for dimension reasons. Finding a closed orbit
as in (1) is based on the study of the relative U—-minimal sets and the unipotent blowup argument using
the polynomial divergence of U—orbits of nearby RF Jl—points. To explain the enlargement step, suppose
that we are given an intermediate closed L—orbit with xoL N F' C X by step (1), and a one-parameter
subgroup Uy = {u;} of U such that xoUjy is dense in xo L N RF4 Jl. As L is reductive, the Lie algebra
of G can be decomposed into the Ad(L)—invariant subspaces [ @ [, where [ denotes the Lie algebra of L.
Suppose that we could arrange a sequence xgg; — Xo in X for some g; — e such that, writing g; = £;r;
with £; € L and r; € exp(I1), the following conditions are satisfied:

e xof; e RFM.

e r;i ¢ N(Up).
Then the k—thick return property of xof; € RFJl along Up would yield a sequence u;; € Up such that

xoliugy; — x1 e REMNxoL and ut_[lriu,i —v
for some element v € N — L, giving us a point
x1v € X.

3T0A be precise,A we need to carry out induction on the codimension of U in L N N whenever xU is contained in a closed orbit
xoL for some L € Ly, as formulated in Theorem 14.1.

4The notation C(S) denotes the identity component of the centralizer of .
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If we could guarantee that
2-2) X1 Is a generic point for U in x¢L,

then x; U would be equal to xoL N RF4 Jl by induction hypothesis (2),,, since the codimension of U
inside L N N is at most m. Then

x1vU =x;Uv =xoLvNRFL M C X.

Using the A—invariance of X and the fact that the double coset AvA contains a one-parameter unipotent
subsemigroup V', we can put xo LV N F inside X.

Assuming that
2-3) X0 € F*n RF+ M,

we can promote V¥ to a one-parameter subgroup V, and find an orbit of a bigger unipotent subgroup
U:= (LNN)V inside X. This enables us to use the induction hypothesis (2),, to complete the enlargement
step. Note that, if x; is not generic for U in xoL, the closure of x1U may be stuck in a smaller closed
orbit inside x¢L, in which case x; U v may not be bigger than xo L in terms of the dimension, resulting
in no progress.

We now explain how we establish (2-2).°2

Avoidance of the singular set along the thick return time

Let Up = {u;} be a one-parameter subgroup of U. We denote by .%(Up) the union of all closed orbits x L,
where x € RF4 [l and L € 9y, is a proper subgroup of G. This set is called the singular set for Up. Its
complement in RF Al is denoted by ¢(Uj), and called the set of generic elements of Uy. We have

Z(Uo) = | T\TX(H, Uj),
Heor
where 7 is the countable collection of all proper connected closed subgroups H of G containing
a unipotent element such that '\I'H is closed and H N I" is Zariski-dense in H, and X(H, Up) :=
{g € G : gUpg™' C H} (Proposition 5.10). We define ¢ = €y, to be the collection of all subsets
of .#(Uy) which are of the form

| JT\TH; D; NRF.L,

where H; € 5 is a finite collection and D; is a compact subset of X(H;, Uy). The following avoidance
theorem is one of the main ingredients of our proof; let k be as given by (2-1) for M4 =T \Hd :

5For dimension d = 3, L is either the entire SO°(3, 1), in which case we are done, or L = H(U) = SO°(2, 1). In the latter case,
(2-2) is automatic as U is a horocyclic subgroup of L.
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Theorem 2.1 (avoidance theorem) There exists a sequence of compact subsets E1 C E, C--- in €
with 00
7 (Ug) NRFM = | ] E;

j=1
satisfying the following: for each j € N and for any compact subset F' C RF .Ml — E; 11, there exists an
open neighborhood O; = 0;(F) of E; such that, for any x € F, the set

(2-4) {teR:xu, e RFM—-0;}
is 2k —thick.

It is crucial that the thickness of the set (2-4), which is given by 2k here, can be controlled independently
of the compact subsets E; for applications in the orbit closure theorem. If £; does not intersect any
closed orbit of a proper subgroup of G, then obtaining E;+1 and O; is much simpler. In general, £; may
intersect infinitely many intermediate closed orbits, and our proof is based on a careful analysis on the
graded intersections of those closed orbits and a combinatorial argument, which we call an inductive
search argument. This process is quite delicate compared to the finite-volume case treated in [Dani and
Margulis 1993; Shah 1991b], in which the set {¢ : xu, € RF L}, being equal to R, possesses the Lebesgue
measure which can be used to measure the time outside of a neighborhood of the E;.

We deduce the following from Theorem 2.1:
Theorem 2.2 (accumulation on a generic point) Suppose that (2),, and (3);, hold in Theorem 1.2.
Then the following holds for any connected closed subgroup U < N with codimy (U) = m + 1: Let

Uop = {u; : t € R} be a one-parameter subgroup of U, and let x; € RF Ml be a sequence converging to

xo € 9(Uy) as i — oo. Then, for any given sequence T; — 00,

(2-5) limsup{x;u;, e REM : T; < |t;| <2kT;}
i—>00

contains a sequence {y; : j =1,2,...} such that limsup;_, ., y;U contains a point in 4(Up).%

Again, it is important that 2k is independent of x; here. We prove two independent but related versions
of Theorem 2.2 in Section 15, depending on the relative location of x; for the set RF . l; we use
Proposition 15.1 for the proof of (1),,+1 and Proposition 15.2 for the proofs of (2),+1 and (3)m+1-

Comparison with the finite-volume case

If '\ G is compact, the approach of [Dani and Margulis 1993] shows that, if x; converges to x € ¢4 (Uy),
then, for any ¢ > 0, we can find a sequence of compact subsets £1 C E» C -+ in € and neighborhoods
0; of Ej such that #(Uo) = U Ej, xi ¢ U;<; 41 0; and, foralli > j and T > 0,

&
@{t € [0, T] L XijUy € ©j} < ET
®Here we allow a constant sequence yj =y, in which case limsup;_, , y; U is understood as yU and hence y € 4(Up).
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This implies that, for all i > 1,
(2-6) e{z €0, T]: xur € | @j} <¢T.
j=<i
In particular, the limsup set in (2-5) always contains an element of ¢ (Up), without using the induction
hypothesis. This is the reason why (3),, is not needed in obtaining (1),,+1 and (2);,+1 in Theorem A.1

for the finite-volume case.”

In comparison, we are able to get a generic point in Theorem 2.2 only with the help of the induction
hypotheses (2),, and (3),, and after taking the limsup of the U—orbits of all accumulating points from
the 2k—thick sets obtained in Theorem 2.1.

Generic points in F* as limits of RF J/(—points

In the inductive argument, it is important to find a closed orbit x¢ L based at a point xo € F* in order to
promote a semigroup V' T to a group V as described following (2-3). Another reason why this is critical is
the following: implementing Theorem 2.2 (more precisely, its versions Theorems 15.1 and 15.2) requires
having a sequence of RF MM—points of X accumulating on a generic point of xo L with respect to Up.

The advantage of having a closed orbit xo L with xo € F* NRF MMN¥ (Up) is that x¢ can be approximated
by a sequence of RF M—points in F* N X (Lemmas 8.3 and 8.7).

We also point out that we use the ergodicity theorem obtained in [Mohammadi and Oh 2015; Maucourant
and Schapira 2019] to guarantee that there are many Up—generic points in any closed orbit xo L as above.

Existence of a compact orbit in any noncompact closed orbit

In our setting, '\ G always contains a closed orbit x L for some x € RF /l and a proper subgroup L € Ly;;
namely those compact orbits of SO°(d — 1, 1) over the boundary of core.l. Moreover, if xoL is a
noncompact closed orbit for some x¢ € RF .M and dim(z NN) > 2, then xoz contains a compact orbit x L
of some L € £y (Proposition 5.16). This fact was crucially used in deducing (2),;,+1 from (1);+1, (2)m
and (3),, in Theorem 1.2 (more precisely, in Theorem 14.1).

Organization of the paper
In Section 3, we set up notation for certain Lie subgroups of G, review some basic facts and gather
preliminaries about them and geodesic planes of JL.

In Section 4, for each unipotent subgroup U of G, we define the minimal H (U )—invariant closed subset
Fr@wy C '\G containing RF .t and study its properties for a convex cocompact hyperbolic manifold
of nonempty Fuchsian ends.

TWe give a summary of our proof for the case when I'\G is compact and has at least one SO°(d—1, 1)—closed orbit in the
appendix to help readers understand the whole scheme of the proof.
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In Section 5, we define the singular set .7 (U, x¢ L) for a closed orbit xo L C I'\G, and prove a structure
theorem and a countability theorem for a general convex cocompact manifold.

In Section 6, we prove Proposition 6.3, based on a combinatorial lemma, Lemma 6.4, called an inductive
search lemma. This proposition is used in the proof of Theorem 7.13 (avoidance theorem).

In Section 7, we construct families of triples of intervals which satisfy the hypotheses of Proposition 6.3,
by making a careful analysis of the graded intersections of the singular set and the linearization, and
prove Theorem 7.13, from which Theorem 2.1 is deduced.

In Section 8, we prove several geometric lemmas which are needed to modify a sequence limiting on a
generic point to a sequence of RF Jl—points which still converges to a generic point.

In Section 9, we study the unipotent blowup lemmas using quasiregular maps and properties of thick
subsets.

In Section 10, we study the translates of relative U—minimal sets Y into the orbit closure of an RF Ml
point; the results in this section are used in the step of finding a closed orbit in a given H (U )—orbit
closure.

In Section 11, we describe closures of orbits contained in the boundary of Fg(y).

In Section 12, we review the ergodicity theorem of [Mohammadi and Oh 2015; Maucourant and Schapira
2019] and deduce the density of almost all orbits of a connected unipotent subgroup in RF 4 /L.

In Section 13, the minimality of a horospherical subgroup action is obtained in the presence of compact
factors.

In Section 14, we begin to prove Theorem 1.2; the base case m = 0 is addressed and the orbit closure of
a singular U—-orbit is classified under the induction hypothesis.

In Section 15 we prove two propositions on how to get an additional invariance from Theorem 7.13;
the results in this section are used in the step of enlarging a closed orbit to a larger one inside a given
U —invariant orbit closure in the proof of Theorem 1.2.

We prove (1)m+1, (2)m+1 and (3);,+1, respectively, in Sections 16, 17 and 18.

In the appendix, we give an outline of our proof in the case when I'\G is compact with at least one
SO°(d—1, 1)—closed orbit.

3 Lie subgroups and geodesic planes

Let G denote the connected simple Lie group SO°(d, 1) for d > 2. In this section, we fix notation and
recall some background about Lie subgroups of G and geodesic planes of a hyperbolic d—manifold.
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As a Lie group, we have G ~ Isom™ (H¢). In order to present a family of subgroups of G explicitly,
we fix a quadratic form Q(x1,...,X441) = 2X1X4+4+1 + x% + x% 4+ 4 x(zl, and identify G = SO°(Q).
The Lie algebra of G is then given as

so(d,1)={X €sly;1(R): X'Q + QX =0},

where
0 0 1
0=101d;_; O
1 0 O
A subset S C G is said to be Zariski-closed if it is the zero set {(x;;) € G : p1(x;;) == p;(x;;) = 0} for

a finite collection of polynomials with real coefficients in variables (x;;) € M1 (R). The Zariski-closure
of a subset S C G means the smallest Zariski-closed subset of G containing S. A connected subgroup
L < G is algebraic if L is equal to the identity component of its Zariski-closure.

Subgroups of G

Inside G, we have the subgroups

K={geG:g'g=1d441}~SO(d),

ef 0 0
A=4qas=]0 Idgj_; 0 |:seRy,
0 0 e

M = the centralizer of A in K >~ SO(d — 1),
N~ ={expu~(x):x e R},
NT ={expuT(x):x e Rd_l},

where
0x" 0 0 00
u (x)={0 0 —x and ut(x)=|x 0 0
00 O 0 —x' 0

The Lie algebra of M consists of matrices of the form
000
m(C)=(10C 0]},
000
where C € M;z_; (R) is a skew-symmetric matrix, i.e. C' = —C.

The subgroups N~ and N are respectively the contracting and expanding horospherical subgroups
of G for the action of A. We have the Iwasawa decomposition G = KAN*. As we will be using the
subgroup N~ frequently, we simply write N = N~. We often identify the subgroup N+ with R¢~1
via the map exp u™ (x) — x. For a connected closed subgroup U < N, we use the notation U~ for the
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orthogonal complement of U in N as a vector subgroup of N, and U’ = U™ for the transpose of U.
We use the notation By (r) to denote the ball of radius r centered at 0 in U for the Euclidean metric on
N =R4-1,

We consider the upper half-space model of H? =Rt x R4~ 50 that its boundary is given by Sé-1 =
{00} U ({0} x R4~1). Set 0 = (1,0,...,0), and fix a standard basis eq, e1, ..., eg_; at To(H?). The
map

gives an identification of G with the oriented frame bundle FH. The stabilizer of 0 and eg in G are
equal to K and M, respectively, and hence the map (3-1) induces the identifications of the hyperbolic
space H¥ and the unit tangent bundle T'H? with G/K and G/ M, respectively. The action of G on the
hyperbolic space H? = G/K extends continuously to the compactification S¢~! U H¥.

If g € G corresponds to a frame (v, ...,vg7_1) € FH4, we define g1, g~ € S9~! to be the forward and
backward endpoints of the directed geodesic tangent to vg, respectively. The right translation action of A
on G = FH? defines the frame flow and we have

gt = lim n(gay),

t—>=to0
where 7: G = FHY — H¥ is the basepoint projection.
For the identity element e = Id;4; € G, note that e = 0o and e~ = 0, and hence g™ = g(c0) and

g~ = g(0). The subgroup M A fixes both points 0 and oo, and the horospherical subgroup N fixes oo,
and the restriction of the map g + g(0) to N defines an isomorphism N — R4-! given by u™ (x) — x.

For each nontrivial connected subgroup U < N, we denote by H(U) the smallest simple closed Lie
subgroup of G containing A and U. It is generated by U and the transpose of U.

For a subset S C G, we denote by Ng(S) and Cg(S) the normalizer of S and the centralizer of S,
respectively. We denote by N(S) and C(S) the identity components of Ng () and Cg(S), respectively.

Example 3.1 Fix the standard basis ey, ...,eg_1 of R4~!, For 1 <k <d — 1, define Uy to be the
connected subgroup of N spanned by ey, ..., eg.

The following can be checked directly:
H(Uy) = (U, U{) ~SO°(k + 1, 1),
C(H(Uy)) ~SO(d —k —1),
Ng(H(Uy)) ~O(k +1,1)O0(d —k—-1)NG,
N(H(Uy)) ~SO°(k +1,1)SO(d —k —1).
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We set
H'(U):=N(H(U)) = HU)C(H(U)),

which is a connected reductive algebraic subgroup of G with compact center.

The adjoint action of M on N corresponds to the standard action of SO(d — 1) on R¢~!. It follows
that any connected closed subgroup U < N is conjugate to Uy and H(U) is conjugate to H(Uy) by an
element of M, where k = dim(U).

We set
(3-2) C1(U):=C(H(U))=MNCU) and Co(U):=MNCU™Y) c H).
Lemma 3.2 We have

N(U) = NAC;(U)Co(U) and C(U)= N Cy(U).

Proof For the first claim, it suffices to show that, for U = Uy, N(U) = NASO(k) SO(d — 1 — k).
It is easy to check that Q := NAC{(U)C,(U) normalizes U. Let g € N(U). We claim that g € Q.
Using the decomposition G = KAN, we may assume that g € K. Then Ug(oo) = gU(oc0) = g(00)
since U(00) = oo. Since oo € S?71 is the unique fixed point of U, it follows that g(co) = co. As
M = Stabg (00), we get g € M. Now gU(0) = Ug(0) = U(0). As U(0) = R¥, gR¥ = R¥. Therefore,
as g € M, we also have gR?~17% = R4=1-k and consequently g € O(k) O(d — 1 — k). This shows
that NASO(k) SO(d —1—k) CN(U) C NAO(k) O(d — 1 —k). As N(U) is connected, this implies the
claim.

For the second claim, note first that N C;(U) < C(U). Now let g € C(U). Since C(U) < N(U) =
AN C1{(U)C,(U), we can write g = acanc; € ACo(U)N C1(U). Since nc; commutes with U, it
follows that ac, € C(U). Now observe that the adjoint action of ¢ on U is a dilation and the adjoint
action of ¢ on U is a multiplication by an orthogonal matrix. Therefore we get a = c; =e. |

Denote by g = Lie(G) the Lie algebra of G. By a one-parameter subsemigroup of G, we mean a set of
the form {exp(t£) € G : ¢t > 0} for some nonzero £ € g. Note that the product AU+ C,(U) is a subgroup
of G.

Lemma 3.3 An unbounded one-parameter subsemigroup S of AU~ Cy(U) is one of the form
{exp(t€a) exp(téc) 11 = 0}, {(vexp(t€a)v™!)exp(téc) 11 =0} or {exp(téy)exp(téc):t >0}

for some &4 € Lie(A) — {0}, éc € Lie(Ca(U)), v e UL —{e} and &y € Lie(UL) — {0}.

Proof Let £ € Lie(AU+ C,(U)) be such that S = {exp(t£) : t > 0}. Write £ = & + &c, where

£o € Lie(AU L) and &¢ € Lie(C2(U)). Since AU commutes with Co(U), exp(t€) = exp(t&o) exp(téc)
for any ¢ € R. Hence we only need to show that either &y € Lie(UL) or

(3-3) {exp(t&o) i1 = 0} = {vexp(tE4)v ™! 11 > 0}

Geometry & Topology, Volume 28 (2024)



Orbit closures of unipotent flows for hyperbolic manifolds with Fuchsian ends 3391

for some v € UL and &4 € Lie(A). Now, if & ¢ Lie(U~), then, writing

a xt 0
go=10 0,1 —x | eLie(4UY)
0 0 —a

with a # 0, a direct computation shows that £y = vEqv™!, where

0 —x'/a 0 a 0 0
logv=0 04_1 x/a and & =]100,_1, O],
0 0 0 0 0 -—a
proving (3-3). a

Lemma 3.4 If v; — oo in UL, then lim SUpP; 00 Vi AV ! contains a one-parameter subgroup of U~

Proof Writing v; =expu™ (x;) for x; € R4~1, we have

e (1-e)x] 41> —e ) |2
viasvl-_lz 0 Idy_; (1—e7%)x;
0 0 e’ *

Passing to a subsequence, Xx; /||x; || converges to some unit vector xg as i — oco. For any r € R, if we
set s; := log(1 —r||x;| 1), then the sequence v;ay, vl._1 converges to expu~ (rxg). Therefore the set
V :={expu~(rxp):r € R} < UL gives the desired subgroup. a

The complementary subspaces [)%; and hL If L is a reductive Lie subgroup of G with [ = Lie(L),
the restriction of the adjoint representation of G to L is completely reducible, and hence there exists an
Ad(L)—invariant complementary subspace [ such that

g=[@[l.

It follows from the inverse function theorem that the map L x [ — G given by (g, X) — gexp X is a
local diffeomorphism onto an open neighborhood of e in G.

Let U = Uy. Denote by hy C g the Lie algebra of H(U), by ut the subspace Lie(UL), and by (ul)’
its transpose. Then h{} can be given explicitly as

(3-4) by =u™ @ uh)' @mo,
where mg is given by

0 Y
{m(C) :C = (—Y’ Z)’ ZeMg_1k(R), Z' ==Z,Y € Mix(a-1-k)(R) ¢

to see this, it is enough to check that dim(g) = dim(hy) + dim(thj) and that hﬁ is Ad(H (U))-invariant,
which can be done by direct computation.
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Similarly, setting b := Lie(H'(U)), bl is given by

(3-5) ht =ut @ wh) ®mg,

my = gm(C):C = (_;)t I(;)}

Lemma 3.5 If r; — e in expht — C(H(U)), then either r; ¢ N(U) for all i, or r; ¢ N(U™) for all i,
by passing to a subsequence.

where

Proof By Lemma 3.2 and (3-5), there exists a neighborhood O of 0 in g such that

NU)NNU ') Nnexp(ht NO) c C(HU)). O
Reductive subgroups of G

Definition 3.6 For a connected reductive algebraic subgroup L < G, we denote by L, the maximal
connected normal semisimple subgroup of L with no compact factors.

A connected reductive algebraic subgroup L of G is an almost direct product
(3-6) L =L,CT,

where C is a connected semisimple compact normal subgroup of L and T is the central torus of L. If L
contains a unipotent element, then L, is nontrivial, and simple, containing a conjugate of A, and the
center of L is compact.

Proposition 3.7 If L < G is a connected reductive algebraic subgroup normalized by A and containing a

unipotent element, then
L=HU)C,

where U < N is a nontrivial connected subgroup and C is a closed subgroup of C(H (U)). In particular,
Ly and N(L,.) are equal to H(U) and H'(U), respectively.

Proof If L is normalized by A, then so is L. Therefore it suffices to prove that a connected noncompact
simple Lie subgroup H < G normalized by A is of the form H = H(U), where U < N is a nontrivial
connected subgroup.

First, consider the case when A < H. Let h be the Lie algebra of H, and a be the Lie algebra of A. Since
h is simple, its root-space decomposition for the adjoint action of a is of the form h = 3(a) But u~,

where u®

are the sum of all positive and negative root subspaces, respectively, and 3(a) is the centralizer
of a. Since the sum of all negative root subspaces for the adjoint action of a on g is Lie(N ™), it follows

that U :=exp(u”) <N~ and H = H(U).
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Now, for the general case, H contains a conjugate gAg ™! for some g € G. Hence g~ 'Hg = H(U).
Since H(U) contains both A and g~—! Ag, they must be conjugate within H(U), so A =h"1g=1 Agh for
some h € H(U). Hence gh € Ng(A) = AM. Therefore H = gH(U)g~! is equal to mH(U)m™! for
some m € M. Since m normalizes N and mH(U)m™! = H(mUm™"), the claim follows. a

Corollary 3.8 Any connected closed subgroup L of G generated by unipotent elements is conjugate to
either U or H(U) for some nontrivial connected subgroup U < N.

Proof The subgroup S admits a Levi decomposition L = SV, where § is a connected semisimple
subgroup with no compact factors and V' is the unipotent radical of S [Shah 1991b, Lemma 2.9]. If S
is trivial, the claim follows since any connected unipotent subgroup can be conjugate into N. Suppose
that S is not trivial. Then S = H(U) for some nontrivial U < N by Proposition 3.7. Unless V is trivial,
the normalizer of V' is contained in a conjugate of NAM ; in particular, it cannot contain H(U). Hence
V ={e}. a

Totally geodesic immersed planes

Let I' be a discrete, torsion-free, nonelementary subgroup of G, and consider the associated hyperbolic
manifold
M=T\H? =T\G/K.

We refer to [Ratcliffe 1994] for basic properties of hyperbolic manifolds. As in the introduction, we
denote by A the limit set of I" and by core Jl the convex core of .. Note that core Jl contains all bounded
geodesics in JL.

We denote by FAl >~ I'\ G the bundle of all oriented orthonormal frames over Jl. We denote by
3-7) 7:T\G - M=T\G/K

the basepoint projection. By abuse of notation, we also denote by

(3-8) n:G—>H?=G/K

the basepoint projection. For g € G, [g] denotes its image under the covering map G — I'\G.
Fix 1 <k <d —2 and let

(3-9) H=HU;)~S0%k+1,1) and H'= H(U)~SO°k +1,1)-SO(d —k —1).

Let Co := R¥ U {oo} denote the unique oriented k—sphere in S¢~! stabilized by H’. Then So:= hull(Cp)
is the unique oriented totally geodesic subspace of H? stabilized by H’, and 3So = Co. We note that H'
(resp. H) consists of all oriented frames (vg,...,v4—1) € G (resp. (vo, ..., Vk,€k41,---,€4—1) € G)
such that the k—tuple (vo, ..., vg) is tangent to So, compatible with the orientation of So. The group G
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acts transitively on the space of all oriented k spheres in S~ giving rise to the isomorphisms of G/H’
with

6k = the space of all oriented k—spheres in sé-1

and with

the space of all oriented totally geodesic (k+ 1)—planes of He.

We discuss the fundamental group of an immersed geodesic k—plane S C Jl. Choose a totally geodesic
subspace S of H? which covers S. Then § = g§o for some g € G, and the stabilizer of SinG is equal
to gH'g~!. We have

F§={yeF:y§=§}=FﬂgH/g_l

and get an immersion f : F§\§ — JM with image S. Consider the projection map
(3-10) p:gH'g7' > gHg .

Then p is injective on I's and
s\ ~ p(To)\S

! acts trivially on S. Hence f gives an immersion

is an isomorphism, since g C(H)g™
(3-11) fip(TH\S — M

with image S. We say S is properly immersed if f is a proper map.

Proposition 3.9 Let x € I'\G, and set S := 7w (xH’) C M. Then
(1) xH'isclosed in T\G if and only if S is properly immersed in L.
(2) If M is convex cocompact and S is properly immersed, then S is convex cocompact and
SN A = A(p(T))

for any geodesic subspace S c H? which covers S.

Proof Choose a representative g € G of x and consider the totally geodesic subspace S = g§0. Then
S =Im(f)asis f given by (3-11). Now the closedness of xH’ in I'\G is equivalent to the properness of
the map (H'Ng~'T'g)\H’ — I'\G induced from map % > xh. This in turn is equivalent to the properness
of the induced map (H' N g~ 'T'g)\H'/(H' N K) — I'\G/K. If A is the image of H' N g~ 'T"g under
the projection map H' — H, then the natural injective map A\H/HNK — (H'Ng 'Tg)\H'/H' N K
is an isomorphism. Since

p(T\S = p(Tg)\gH/(H N K) ~ A\H/(H N K),
the first claim follows. The second claim follows from [Oh and Shah 2013, Theorem 4.7]. O
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4 Hyperbolic manifolds with Fuchsian ends and thick return time

In this section, we study the closed H (U )-invariant subset Fg () := RF4 /- H(U) when M = r\H4
is a convex cocompact manifold with Fuchsian ends. At the end of the section, we address the global
thickness of the return time of any one-parameter subgroup of N to RF /M.

Definition 4.1 A convex cocompact hyperbolic manifold At = T'\H? is said to have nonempty Fuchsian
ends if one of the following equivalent conditions holds:

(1) Its convex core has nonempty interior and nonempty totally geodesic boundary.

(2) The domain of discontinuity of I",

o0
Q:=s""1-A=]B,

i=1

is a dense union of infinitely many round balls with mutually disjoint closures.
In this section, let Jl be a convex cocompact hyperbolic manifold of nonempty Fuchsian ends.

Renormalized frame bundle

The renormalized frame bundle RF /M C FM is defined as the A M —invariant subset
RFE.M = {[g] e T\G : g% € A} = {x € ['\G : x4 is bounded},

i.e. the closed set consisting of all oriented frames (vy,...,vz_1) such that the complete geodesic
through vy is contained in core /.

Unless mentioned otherwise,® we set AT = {a, : ¢ > 0}. We define

RF; M ={[g]eT\G:g" e A} ={xeI'\G:xA" is bounded},
which is a closed NAM —invariant subset. As w(xNA) = n(xG) = JM for any x € T'\G, we have
7 (RF4 M) = M.

Lemma 4.2 For x € RF; M, x AT meets RF Al.

Proof Take any sequence a; — oo in AT. Since xA™ is bounded, xa; converges to some xo €
xA+ by passing to a subsequence. On the other hand, as A = liminf al._lAJr, we have xpA C
lim sup(xa,-)(ai_lA"') C xA*. Since x € RF; M, x A7 is bounded, whence so is xoA. Hence xo € RF L,
as desired. |

8 At certain places, we use notation A for any subsemigroup of A
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H (U)—-invariant subsets: Fgw), F and oF g(v)

*
HU)
Fix a nontrivial connected subgroup U < N, and consider the associated subgroups H(U) and H'(U) as
defined in Section 3.

We define
(4-1) FH(U) = RF+ MH(U)

We denote by F ;I(U) the interior of Fg(y) and by d Fg(y) the boundary of Fg (7). When there is no
room for confusion, we will omit the subscript H(U) and simply write F, F* and 0F.

If C ¢ S~ denotes the oriented k—sphere stabilized by H(U), then g € F, H) ifand only if gCNA # @.
Therefore the closedness of Fg(rr) follows from the compactness of A. The set Fg () is also H'(U)-
invariant, since RF M is M—invariant and C(H(U)) is contained in M. For g € G, we denote by
Cs = Couw) C S9=1 the sphere given by the boundary of the geodesic plane 7w (gH(U)). Then
hull C = w(g(H(U))) and Cg = gH(U)" = gH(U)~, where H(U)* = {h* : h € H(U)}. It follows
that

Lemma 4.3 Fix x = [g] € ['\G. Let L be a closed subgroup of G such that the closure of w(gL) in

H? U S4~! does not meet A. Then the map L — xL C T'\G given by £ > x{ is a proper map, and
hence xL is closed.

Proof Suppose that x¢; converges to some [go] € I'\G for some sequence £; — oo in L. Then there
exist y; € I' such that d(y; w(g¥i), w(go)) = d(m(gli), yim(go)) = 0 asi — co. As gf; — oo, yim(go)
converges to a limit point £ € A, after passing to a subsequence. Hence w(gL) N A # . |

This lemma implies that, if x ¢ RF L (resp. x ¢ Fy(y)), then xU (resp. xH(U)) is closed for any

closed subgroup U < N.

Lemma 4.4 If Ml is a convex cocompact hyperbolic manifold of nonempty Fuchsian ends, then
Faw)=1{x € '\G : n(xH(U)) Ncore Ml # &}.

Proof Denote by Q the subset on the right-hand side of the above equality. To show Fg ) C Q, let

x € Fg). By modifying it using an element of H(U), we may assume that x € RF .l. By Lemma 4.2,
xAT contains x¢ € RF .. Since xoA4 is bounded, 7 (xA) is a bounded geodesic, and hence

w(xpA) C w(xH(U)) Ncore M

because core .l contains all bounded geodesics. Therefore x € Q. To show the other inclusion Q C Fy(v),
we use the hypothesis on Jl. Suppose x = [g] ¢ Fy). Then Cg N A = &, and hence Cg must be
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contained in a connected component, say B;, of 2. Hence n(gH(U)) = hull(Cy) is contained in
the interior of hull(B;), which is disjoint from hull(A), by the convexity of B;. Therefore the orbit
Cr(gH(U)) is a closed subset of H?, disjoint from hull(A). Hence x ¢ Q, proving the claim. O
Note also that

4-3) REM-HU)={[g] e T\G :#Ce N A >2} ={x e '\G : a(xH(U)) Ncore M # &}.

This can be seen using the fact that, for any two distinct points £, &~ € Cy, there exists & € H(U) such
that gh(oo) = £T and gh(0) = £ ; this fact is clear if H(U) = H(Uy) for some k, and the general case
follows since H(U) = mH(U)m™" for some m € M, and M fixes both 0 and oo.

Denote by .L* the interior of the core of il and by F :I(U) the interior of Fg(y). Then
F;;,(U) ={xe\G:x(xHU))NM* # &}.
To see this, note that the right-hand side is equal to
(4-4) {lg] € Fa) : hull Cg NInterior(hull(A)) # @} = {[g] € Fpw): Cg & B; for any i},

which can then be seen to be equal to F :I(U) in view of (4-2). Note that (4-4) implies that, for [g] € F I?(U)’
#Cg N A > 2 and hence

(4-5) F;‘I(U) CRF.M-H(U).
In particular, RF AL+ H(U) is dense in Fg(y).
Lemma 4.5 We have

Proof Lety e RF4 N F:I(U)' We need to show that yU NRF .Ml # &. Choose g € G so that [g] = y.

Asy €RFy M, g7 = g(00) € A, and hence Cg N A # @. If #Cy N A = 1, then Cg must be contained
in B; for some i, which implies [g] ¢ FIfI(U)' Therefore #Cg N A > 2. We note that gU(0) U{g(c0)} = Cy;
this is clear when U = Uy, for some k > 1 and g = e, to which the general case is reduced. Hence, there
exists u € U such that gu(0) € A. Since gu(oco) = g(o0) € A, we have yu = [g]u € RF /. O
We denote by d Fgy(yy the boundary of Fg(y); that is,

BFH(U) = FH(U) — FI;(U) = {[g] € FH(U) : Cg C Ei for some i}.
When there is no room for confusion, we will omit the subscript H(U) and simply write F, F* and 0F.

We call an oriented frame g = (vg,...,v47_1) € FM = G a boundary frame if the first d — 1 vectors
Vg, ..., V4_p are tangent to the boundary of core J/l. Set

H:= H(U;_y) =S0°(d —1,1),
and denote by V the one-dimensional subgroup Rey_; of N = R4~ note that V = (I-VI NN)*.
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We denote by BF Jl the set of all boundary frames of J; it is a union of compact H—orbits

k
(4-6) BF.l = U i H
i=1

such that 7 (z; H ) = I'\I" hull(B;) for some component B; of €.

The boundary 0F gy for U < HnN Suppose that U is contained in H NN =R?2, Then there
exists a one-parameter semigroup V+ of V such that

dF =BF.M- V. H'(U).
We use the notation V™~ = v l:ve I7+}. Note that
4-7) OF NRFM =BFM-C(H(U)) and oF NRF{ .M =BF.- 1 -C(H(U)).
For a general proper connected closed subgroup U < N, mUm™! C H N N for some m € M, and
OF NRFM =BF.M-m-C(H(U)),

where BF /L - m is now a union of finitely many m ™! H m—compact orbits.
Lemma4.6 LetU < HNN,z€BFMand v eV —{e}. If zv € RF., then zv € F*.

Proof Letz = [g]| € BF.l. Then a(n(gﬁ)) = 0B, for some j. Letv € 1% —{e} be such that zv € RF .
Suppose zv € 0Fg ). Then Cgy C B, for some i. Since the sphere Cgv = {gvh(oo):he H{U)}
contains g(oo) which belongs to B;, we have i = j, as the B; are mutually disjoint. As zv € RF M,
Cgy C OB;. Hence gvH(U)™ C gl—T". It follows that gvH(U) C gI-VI, and hence vH(U) N H #* O,
which is a contradiction since v ¢ H, and H U) c H. |

Properly immersed geodesic planes

Let H = H(Uy) and H' = H'(Uy) be as in (3-9), and p be the map in (3-10). In (3-11), if p(Fg)\§ isa
convex cocompact hyperbolic k—manifold with Fuchsian ends and f is proper, then the image S = Im( f)
is referred to as a properly immersed convex cocompact geodesic k—plane of Fuchsian ends.

Proposition 4.7 If xH’ is closed for x € RF ., then S = w(xH') is a properly immersed convex
cocompact geodesic plane with (possibly empty) Fuchsian ends.

Proof Choose g € G so that x = [g]. Let S and ['s be as in Proposition 3.9. Set C = 3S. By
Proposition 3.9, S is properly immersed, and C N A = A(p(I')). Write

(4-8) c—(na)=]JcnBy,
iel
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where [ is the collection of all i such that C N B; # @. If C N A contains a nonempty open subset
of C, then the limit set of p(I's) is equal to C. Since p(Is) is convex cocompact by Proposition 3.9,

1

it is a uniform lattice in gH g™ ", and hence S is compact. In the other case, / is an infinite set and

U;es(C N B;)isdensein C;so S is a convex cocompact hyperbolic submanifold with Fuchsian ends by
Definition 4.1(2). O

Lemma 4.8 For any sphere C in S~ with #C N A > 2, the intersection C N A is Zariski-dense in C.

Proof The claim is clear if C N A contains a nonempty open subset of C. If not, C N A contains infinitely
many of the C N dB;, each of which is an irreducible codimension one real subvariety of C. It follows
that the Zariski-closure of C N A has dimension strictly greater than dim C — 1, hence is equal to C. O

We let

(4-9) m:H — H and m:H — C(H)

denote the canonical projections.

Proposition 4.9 Suppose that x H' is closed for x = [g] € RFM, and set "' := g~ 'T"g N H'. Then
(4-10) xH =xHC,

where C = m,(I"") and HC is equal to the identity component of the Zariski-closure of T".

Proof Without loss of generality, we may assume g = e. As H' is a direct product H x C(H ), we write
an element of H' as (h,c) with h € H and ¢ € C(H). For all y € T,

xH ={(e.e)]H = [(e. m2(y))|H = [(e. e)| Hm2(y)
and hence xH = x Hmo(I''). It follows that xHC C xH.

To show the other inclusion, let (g, co) € H C(H) be arbitrary. If [(hg,co)] € xH = [(e, e)]H, then
there exist sequences y; € IV and h; € H such that y; (h;,e) — (hg,co) in H as i — oo. In particular,
72 (yi) = ¢o in C(H) as i — oo and hence cg € C = m»(I'). This finishes the proof of (4-10). Let W
denote the identity component of the Zariski-closure of I'” in H'. Since any proper algebraic subgroup
of G stabilizes either a point, or a proper sphere in S~ it follows from Proposition 3.9 and Lemma 4.8
that 7r1 (T"") is Zariski-dense in H; so 1(W) = H. So the quotient W\ H' is compact. This implies that
W contains a maximal real-split connected solvable subgroup, say, P of H. Now H N W is a normal
subgroup of H, as w1 (W) = H. Since P < H N W and H is simple, we conclude that H N W = H,
i.e. H <W. Hence W = Hmp(W). As any compact linear group is algebraic, C is algebraic and hence
C = m2(W) = m5(T"). Therefore W = HC. o
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Global thickness of the return time to RF .t

We recall the various notions of thick subsets of R, following [McMullen et al. 2017; 2022].

Definition 4.10 Fix k > 1.
e A closed subset T C R is locally k—thick at ¢ if, for any A > 0,
TN L£[A kA]) # 2.
e A closed subset T C R is k—thick if T is locally k—thick at 0.
e A closed subset T C R is k—thick at oo if

TN (£[A kA]) # 2
for all sufficiently large A >> 1.
e A closed subset T C R is globally k—thick if T # @ and T is locally k—thick at every 7 € T.

We will frequently use the fact that, if T; is a sequence of k—thick subsets, then lim sup T; is also k—thick,
and that, if T is k—thick, so is —T.

The following proposition shows that RF Jl has a thick return property under the action of any one-

dimensional subgroup U of N:

Proposition 4.11 There exists a constant k > 1, depending only on the systole of the double of core Jl,
such that, for any one-parameter subgroup U = {u; :t € R} of N* and any y € RF.,

T(y):={teR:yu;, e RFM}
is globally k—thick.
Proof Let > 0 be the systole of the hyperbolic double of core /M, which is a closed hyperbolic manifold.
Let k > 1 be given by
4-11) d(hull([—k,—1]),hull([1,k])) = %n,
where d is the hyperbolic distance in the upper half-plane H?.
Note that
(4-12) ii;élg d(hullB;, hullB;) > %n
as the geodesic realizing this distance is either a closed geodesic or half of a closed geodesic in the double
of core M.

We first prove the case when U < N. Let s € T(y) be arbitrary. To show that T(y) is locally k—thick at s,
we may assume that s = 0, by replacing y with yu; € RF .M. We may also assume that y = [g], where
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g(00) = o0 and g(0) = 0. As y € RF A, this implies that 0, 00 € A. Since gu;(co0) = g(co0) € A, we
have
T(y)={t € R:gu;(0) € A}.

Suppose that T(y) is not locally k—thick at 0. Then there exist w € U and ¢ > 0 such that
([kt,—t]-wU[t,kt]-w)NA =2.

Since each component of €2 is convex and 0 ¢ €2, it follows that [—k#, —¢]-w and [¢, k] - w lie in distinct

components of €2, say B; and B; with i # j. But this yields

(4-13) dy (hull([—k 7, —t]- w), hull([t, k¢]- w)) > d(hull B;, hull B;) > %n,

where dy, denotes the hyperbolic distance of the plane above the line Rw. Observe that the distance in
(4-13) is independent of w € R4~ and 7 > 0, because both the dilation centered at 0 and the (d-2)-
dimensional rotation with respect to the vertical axis above 0 are hyperbolic isometries. Therefore, we get
a contradiction to (4-11). The case of U < N T is proved similarly, just replacing the role of g* and g~
in the above arguments. |

Remark 4.12 It follows from the proof that k is explicitly given by (4-11) or, equivalently, k +k~! =
e 4 2eM/8 _ 1, where n > 0 is the systole of the double of core .

5 Structure of singular sets

Let I' < G = SO°(d, 1) be a convex, cocompact, torsion-free, Zariski-dense subgroup. Let U < G be
a connected closed subgroup of G generated by unipotent elements in it. In this section, we define the
singular set .“(U) associated to U and study its structural properties. The singular set .(U) is defined
so that it contains all closed orbits of intermediate subgroups between U and G.

Definition 5.1 (singular set) We set

LU) = {x € I'\G : there exists a proper connected closed subgroup W D U
such that x W is closed and Staby (x) is Zariski-dense in W}.

Definition 5.2 (definition of #) We denote by .7# the collection of all proper connected closed
subgroups H < G containing a unipotent element such that

e I'\I'H is closed, and
e H NT is Zariski-dense in H.

Proposition 5.3 If H € 7, then H is a reductive subgroup of G, and hence is of the form gH(U)Cg™!
for some connected subgroup U < N, a closed subgroup C < C(H(U)) and g € G such that [g] € RF .M.
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Proof In order to prove that H is reductive, suppose not. Then its unipotent radical is nontrivial, which
we can assume to be a subgroup U of N, up to a conjugation. Now we write H = H,CT U, where C
is a connected semisimple compact subgroup and 7 is a torus centralizing H,.C. As H is contained
in N(U) = NAC(U) C,(U), which does not contain any noncompact simple Lie subgroup, it follows
that H,. is trivial. Now if 7" were compact, then H N I" would consist of parabolic elements, which
is a contradiction as I' is convex cocompact. Hence 7" is noncompact. Write 7" = TS, where S is a
split torus and T is compact. Then Ty is equal to a conjugate of A, say, g~ ! Ag for some g € G. As
To normalizes U, and N(U) fixes co, we deduce that g(o0) is either oo or 0. Since Stabg (c0) = NAM,
g(00) = oo implies g € NAM, and g(oco) = 0 implies jg € NAM, where j € G is an element of order 2
such that j(0) = oo. In either case, Tp = v~! Av for some v € N. By replacing H with vHv™!, we may
assume that 7o = A. Since CS is a compact subgroup commuting with A, CS C M. Therefore H is of the
form MyAU, where My is a closed subgroup of M NN(U); note that we used the fact that v commutes
with U. Now the commutator subgroup [H, H] is equal to [My, My]U. Since [H NT', H N T'] must be
Zariski-dense in [H, H], we deduce that I" contains an element mou € MoU with u nontrivial. Since
mou is a parabolic element of I', this is a contradiction to the assumption that I' is convex cocompact.
This proves that H is reductive.

By Proposition 3.7, H is of the form gH(U)Cg ™! for some g € G and C < C(H(U)). For some m € M
and 1 <k <d -2, HU) = mH(U;)m~'. Hence I'\I'gmH (Uy)Cy is closed, where Co = m~'Cm.
By Proposition 3.9, the boundary of the geodesic plane 7 (gm H (U )) contains uncountably many points
of A, since (gm)H (Uy)Co(gm)~ ' NT is Zariski-dense in (gm)H (Uy)Co(gm)~!. Using two such limit
points, we can find an element & € H(Uy) such that (gmh)® € A. Since (gmhm™")* = (gmh)* and
mhm~1 € H(U), it follows that [g] H(U) NRF Al # @, and hence we can take [g] € RF .l by modifying
it with an element of H(U) if necessary. a

Therefore, for each H € /%, the noncompact semisimple part H,. of H is well defined.

Proposition 5.4 If H € 77, then

e H NT is finitely generated;
e [Ng(Hp)NT:HNT] < o00.

Proof Let p denote the projection map Ng (Hy) — Hpc. Note that p is an injective map on Ng (Hpe) NI,
as I is torsion-free and the kernel of p is a compact subgroup. It follows from Proposition 5.3 that H
is cocompact in Ng(Hye). Since H € 7, the orbit [e] H is closed and hence [e] Ng (Hp) is closed. It
follows that both p(H NT") and p(Ng(Hye) N IT") are convex cocompact Zariski-dense subgroups of Hp
by Proposition 3.9. As any convex cocompact subgroup is finitely generated [Bowditch 1993], p(H NT)
is finitely generated. Hence H N T is finitely generated by the injectivity of p|gnr.
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Since p(H NT') is a normal subgroup of p(Ng(Hy) NT), it follows that p(H N I") has finite index in
p(NG(Hy) NT') by Lemma 5.5 below. Since p|n,; (H,.)nr is injective, it follows that H N T" has finite
index in Ng(Hyp) N T. O

Lemma 5.5 Let I and I, be nonelementary convex cocompact subgroups of G. If I3 is a normal
subgroup of T, then [I : [3] < oo.

Proof Let A; be the limit set of I fori = 1, 2. Since [, < I, Ap C A;. As I3 is normalized by I7,
A is I'—invariant. Since I is nonelementary, A is a minimal Ij—invariant closed subset. Hence
A1 = As. Let M; := I;\H?. Then the convex core of J; is equal to I} \ hull(A,) and covered by
core Ay = I3\ hull(A3). Since core Jl, is compact, it follows that [I7 : [3] < oo. O

Definition 5.6 (definition of J#*) We define
(5-1) H* :={Ng(Hy): H € 5#}.

Corollary 5.7 (countability) The collection S is countable, and the map H — Ng(H,.) defines a
bijection between ¢ and J*.

Proof As I' is convex cocompact, it is finitely generated. Therefore there are only countably many
finitely generated subgroups of I'. By Proposition 5.4, there are only countably many possible H N T" for
H € 7. Since H is determined by H N ", being its Zariski-closure, the first claim follows.

Since H N T has finite index in Ng(Hye) N T by Proposition 5.4, H is determined as the identity
component of the Zariski-closure of Ng (Hy) N I'. This proves the second claim. O

In the case of a convex cocompact hyperbolic manifold of Fuchsian ends, there is a one-to-one corre-
spondence between . and the collection of all closed H'(U)-orbits of points in RFM for U < N:
if H € o, then H = gH(U)Cg™! for some U < N and g € G with [g] € RFEM and [g]H'(U) is
closed. Conversely, if [g]H'(U) is closed for some [g] € RF.L, then the identity component of the
Zariski-closure of TN gH'(U)g ™! is given by gH(U)C g~ for some closed subgroup C < C(H(U)) by
Proposition 4.9, and hence gH (U)Cg~! € #. Moreover, since the normalizer of H(U)C is contained
in H'(U). if 1 HU)Cgi' = g2H(U)Cg;" then g3'g1 € H'(U), so [¢1]H'(U) = [g2]H' (V).
Therefore Corollary 5.7 implies the following corollary by Propositions 3.9 and 4.9:

Corollary 5.8 Let M be a convex cocompact hyperbolic manifold with Fuchsian ends. Then:

(1) There are only countably many properly immersed geodesic planes of dimension at least 2 inter-
secting core JL.

(2) Foreach 1 <m < d — 2, there are only countably many spheres S C S4=1 of dimension m such
that #S N A > 2 and T'S is closed in the space €.

Remark 5.9 In (2), we may replace the condition #5 N A > 2 with #S N A > 1, because if #S NA =1,
then I' S is not closed (see Remark 11.6).
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For a subgroup H < G, define

(5-2) X(H,U):={geG:gUg ' Cc H}.
Note that X(H, U) is left Ng (H )— and right Ng (U )—invariant, and, for any g € G,
(5-3) X(gHg™ ' U) = gX(H.,U).

For H € s# and any connected unipotent subgroup U < G, observe that
(5-4) X(H,U)=X(Hp.,U) = X(Ng(Hype),U);
this follows since any unipotent element of Ng (Hyc) is contained in Hy.

Proposition 5.10 We have
sU)= | J T\I'X(H.U).
Hex™*

Proof If x = [g] € #(U), then there exists a proper connected closed subgroup W of G containing U
such that [g]W is closed and Staby (x) is Zariski-dense in W. This means H := gWg~! € . and
g€ X(H,U). Since X(H,U) = X(Ng(Hy),U), and Ng (H,.) € #*, this proves the inclusion C.
Conversely, let g € X(Ng (Hy), U) for some H € . Set W := g~ 'Hg. Then U C W, [g]W =THg
is closed and Staby ([g]) = g~ (I' N H)g is Zariski-dense in W. Hence [g] € .7 (U). |

Singular subset of a closed orbit
Let L < G be a connected reductive subgroup of G containing unipotent elements. For a closed orbit
xoL of xo € RF., and a connected subgroup Uy < L N N, we define the singular set .(Up, xo L) by
5-5) LUy, xol) = {x € xoL : there exists a connected closed subgroup W < L containing Uy
such that dim W, < dim L., xW 1is closed
and Stabyy (x) is Zariski-dense in W }.

It follows from Propositions 5.10 and 5.3 that the subgroup W in Definition 5.1 is conjugate to H ((7 )C for
some U < N. Hence W being a proper subgroup of G is same as requiring dim W, < dim G. Therefore
y(Uo) = y(U(), F\G) and
Uy, xoL) = xoL N U C\X(H, Uy),

where the union is taken over all subgroups H € s#* such that H is a subgroup of goLg, 1 with
dim H,,; < dim L, and x¢ = [go]. Equivalently,
(5-6) S (Uo.xoL) =] xo(LNX(W.Uyp)),

We‘}f;c*oL

where j@’(‘) 1, consists of all subgroups of the form W = g 1Hgo N L for some H € 2* and dim W, <
dim L. Then the generic set 4(Uy, xoL) is defined by

(5-7) 94Uy, xoL) := (xoL NRF4+ M) — % (Up, xoL).

Geometry & Topology, Volume 28 (2024)



Orbit closures of unipotent flows for hyperbolic manifolds with Fuchsian ends 3405

Definition of £y and 2y

Fix a nontrivial connected closed subgroup U < N. We define the collection £y of all subgroups of the
form H(U)C, where U < U < N and C is a closed subgroup of C(H(l?)) satisfying

(5-8) Py :={L=H(U)C :for some [g] € RF M, [g]L is closed in T\G
and L N g~ 'I'g is Zariski-dense in L}.

Observe that, for L = H (17 )C # G, the condition L € Ly with [g]L closed is equivalent to the condition
that

glg™lewn.

Lemma 5.11 Let L1 and L, be members of £y such that xL1 and xL, are closed for some x € RF J.
If (L1)ne = (L2)ne, then Ly = Lj.

Proof If L; or L, is equal to G, then the claim is trivial. Suppose that both L and L, are proper

1

subgroups of G. If x = [g], then both subgroups H; := gL1g ! and H, := gL,g~ ! belong to 7. Since

(H1)ne = (H2)ne, we have Hy = H, by Corollary 5.7. Hence L1 = L5. O
We also define
(5-9) 9y :={vLv 'L e Ly, veNU).

Since N(U) = AN C1(U) C2(U) by Lemma 3.2, and the collection £ is invariant under a conjugation
by an element of AU C;(U) C,(U), we have

(5-10) Ay ={wLlv ' :LePy, veUt).

Lemma 5.12 For Uy < U < N, we have

X(H(U).Up) =Ng(H(U)) Ng (Vo).

Proof Without loss of generality, we may assume U = Uy, and Up = U; with 1 <] <m <d — 1. Set
H =HUy,). If m =d —1, then H = G, and the statement is trivial. Assume m < d — 2 below. We
will prove the inclusion X(H, Up) C Ng(H) Ng(Up), as the other one is clear. Let g € X(H, Up) be
arbitrary. By multiplying g by an element of Ng (H ) on the left as well as by an element of Ng(Up) on
the right, we will reduce g to an element of Ng (Up), which implies the claim. In view of the Iwasawa
decomposition G = KAN, since AN < Ng(Up), we may assume that g = k € K. As k € X(H, Uy),
we have kUpk~! C H. Since K N H is a maximal compact subgroup of H, any maximal horospherical
subgroups of H are conjugate to each other by an element of K N H. Hence there exists w € K N H
such that kUpk ™! = wUpw™!.
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Since w™ 'k Uy = Upw ™'k, we deduce w1k (c0) = Up(w ™1k (00)). Since oo € S~ is the unique fixed
point of Uy, w™'k(c0) = co. Hence w™'k € KN(MAN) = M. Since w € H, we may now assume that
k € M. From kUy C Hk, we get kUyp(0) C Hk(0) = H(0) and hence (key,...,ke;) C(e1,...,em). By

considering the action of H N K on space of /—tuples of orthonormal vectors in the subspace (eq, ..., en),
we may assume key; = ey, ..., kej_1 = ej_1, and ke; = Le;. This implies that k € C1(Up), or
kw € C1(Up), where @ € M is an involution which fixes all e; fori # 1,/ + 1 and w(e;) = —e; for
i =1,141. As Ng(Up) contains C;(Up) and w, the proof is complete. a

Proposition 5.13 Consider a closed orbit xoL for L € 9y and xg € RFAM. If x € .#(Uy, xoL) for a
connected closed subgroup Ug < U, then there exists a subgroup Q € 9y, such that

e dim Qpc < dim Ly;

e xQ is closed,

e xUpCxQ.

Proof If x = [g] € #(Up, xoL), then g € X(H, Up) for some H € 57 such that dim Hy. < dim L.
Then xUy C x(g~'Hg). By Proposition 5.3, H = qH((/]\)Cq_1 for some Uy < U < L N N and some
[4] € RF M. Note that g~'g € X(H(U), Up). By Lemma 5.12, we have

¢~'g €Ng(H(0))Ng (Uo).

Hence g7 'Hg = vH(lA])Cv_1 for some v € Ng(Up), and xUy C va(ﬁ)Cv_l. It suffices to set
0= vH(l?)Cv_l. |

Lemma 5.14 let L = H (17 )C for a connected closed subgroup U < N and closed subgroup C <
C(H(ﬁ)). LetW = g_lH(ﬁ)Cog be a subgroup of L, where g € L, U isa proper connected closed
subgroup of U, and Cy is a closed subgroup of H (l7 ). Then, for any nontrivial closed connected subgroup
U<U, (LN X(W,U))H(U) is a nowhere-dense subset of L.

Proof Write g =hce H ((7 )C. Note that

LNX(W,U)=LNX(g 'HO)g U)y=LnXh"HU)hU)=h(LNX(H®O),U))

=h(HO)NX(H(0),U))C.

Hence it suffices to show that (H(ﬁ) N X(H(l7), U))H(U) is a nowhere-dense subset of H((?). Without
loss of generality, we may now assume H (ﬁ ) = G. We observe that, using Lemma 5.12,

X(H(U).U)H(U) = Ng(H(0))Ng(U)H(U) = H(U) C(U)AN C1(U) C2(U)H(U)

= (KNHU)U+H'(U).

LetdimU = m and dimU = k. If k > m, then X(W,U) = &. Hence we may assume that 1 <k <m <
d —1 =dim N. Now, if we view the subset (K N H(U))UL+H’(U)/H'(U) in the space ¢ = G/H'(U),
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this set is contained in the set of all spheres C € ¥ which are tangent to the m—sphere given by
So:= (KN H(U))(c0). Since m < d —1, it follows that X(H(U), U)H(U)/H’(U) is a nowhere-dense
subset of ¢¥, and hence X(H(U), U)H(U) is a nowhere-dense subset of G. |

Recall from (4-1) that F = RF4 M- H(U).

Lemma 5.15 Let xoL be a closed orbit of L € Ly with xg € REJM. If U is a proper subgroup of LNN,
then .7 (U, xoi) -H(U) N Fyu) is a proper subset of xoL N Faw)-

Proof Choose go € G so that xg = [go]. Let p: G — T'\G be the canonical projection map. Then
p N7 (U, xof,) - H(U)) is a countable unioAn ygg(z NXW,U)H(U), where y e I"and W € jf;’(’)z
by (5-6). Hence, by Lemma 5.14, (U, xoL) - H(U) is a countable union of nowhere-dense subsets
of xoL. Since F :I(U) NxoL is an open subset of xoL, it follows from the Baire category theorem that

Firan N xoL ¢ #(U,xoL)- HU). 0

The following geometric property of a convex cocompact hyperbolic manifold with Fuchsian ends is one
of its key features which is needed in the proof of our main theorems stated in the introduction:

Proposition 5.16 Let Jil be a convex cocompact hyperbolic manifold with Fuchsian ends. Let xoL be a
closed orbit of L € Py with x¢ € RF M and with dim(i N N) > 2. Either xoi is compact or . (U, xoi)
contains a compact orbit zLo with Lo € Ly .

Proof Write L = H (fj )C for a connected closed subgroup U < U < N. Since xoL is closed, 7 (xo IZ) =
w(xoH’ (17 )) is a properly immersed convex cocompact geodesic plane of dimension at least 3 with
Fuchsian ends by Proposition 4.7. Suppose that xq L is not compact. Then 7 (x¢ L) has nonempty Fuchsian
ends. This means that there exist a codimension one subgroup Uy of U and z € L such that zH’ (Up) is
compact and 7 (zH'(Up)) is a component of the core of 7 (xg Z). By Proposition 4.9, there exists a closed
subgroup Co < C(H (Up)) N L such that H(Up)Co € Ly, and zH (Up)Cyp is compact. Let m € M N L
be an element such that U C m~'Uym. Then zm(m~' H(Uy)Com) is a compact orbit contained in
(U, xoL) and m™ Y H(Up)Com € Ly . 0

6 Inductive search lemma

In this section, we prove a combinatorial lemma, Lemma 6.4, which we call an inductive search lemma,
and use it to prove Proposition 6.3 on the thickness of a certain subset of R, constructed by the intersection
of a global thick subset T and finite families of triples of subsets of R with controlled regularity, degree
and the multiplicity with respect to T. This proposition will be used in the proof of the avoidance theorem,
Theorem 7.13, in the next section.
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Definition 6.1 Let J* C I be a pair of open subsets of R.

e The degree of (I, J*) is defined to be the minimal § € N U {oo} such that, for each connected
component [ ° of I, the number of connected components of J* contained in I° is bounded by §.

e For 8 > 0, the pair (I, J*) is said to be S—regular if, for any connected component /° of I and
any component J° of J*N1°,

JexB-|J°|CI®,
where |J°| denotes the length of J°.

Definition 6.2 Let ¥ be a family of countably many triples (I, J*, J’) of open subsets of R such that
ID>J*DJ.
e Given 8 >0 and § € N, we say that & is B—regular of degree § if, for every triple (I, J*,J’) € ¥,
the pair (1, J*) is f—regular with degree at most §.

e Given a subset T C R, we say that & is of T—multiplicity free if, for any two distinct triples
(I1.J{, J{) and (I2, J, J}) of &, we have

LNJ,NT=2.

For a family & = {(1;, J", J}) : A € A}, we will use the notation

1@):=Jn. 7@:=\JJ ad J@:=]J;.

A€A A€EA A€A
The goal of this section is to prove:

Proposition 6.3 (thickness of T — J'(¥)) Given n,k,§ € N, there exists a positive number By =
Bo(n, k, ) for which the following holds: Let T C R be a globally k—thick set, and let ¥y, ..., %; with
| < n be Bo-regular families of degree § and of T—multiplicity free. Let ¥ = Ule Xi. If0eT—1(%X),
then

T-J'(%)
is a 2k —thick set.

We prove Proposition 6.3 using the inductive search lemma, Lemma 6.4. The case of n =1 and § = 1
is easy. As the formulation of the lemma is rather complicated in the general case, we first explain the
simpler case of n =2 and § = 1 in order to motivate the statement.

For simplicity, let us show that T — (J'(¥1) U J'(¥5)) is 4k—thick instead of 2k—thick, given that %1 and
%, are 8k2-regular families of degree 1, and of T-multiplicity free. For any r > 0, we need to find a
point

t € £(r,4kr)N(T=J' (%)),
where & = %1 U ¥5; see Figure 3.
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First, we know that there exists 711 € £(2r, 2kr) N T, as T is locally k—thick at 0. If t; ¢ J'(¥1) U J'(¥>3),
then we are done. So we assume that 7; € J'(¥1). Our strategy is then to search for a sequence in T of
length at most 4, starting with ¢1, say (¢1, 2, £3, t4), such that

|ti—1] 3 .
7 <|ti| < ¥2|ti—1| foreachi =2,3,4,

and the last element 74 does not belong to J'(%¥). This will imply %|t1| < |t4] < 2|t1| and hence
t:=t4 € x(r,4kr)N(T=J" (%)),
as desired, because 2r < |t1| < 2kr.

We next sketch how we find 7, from 77 and so on. Let 11 € J{, where (I, Jl*, Jl’) € ¥1. Since T is locally
k—thick at ¢, there exists

(6-1) e £(J7LEIN)NT.

We will refer to 1 as a pivot for searching #, in (6-1), as #, was found in a symmetric interval around ?;.
Note that 1, € I1 — J|* as (I, J{") is k-regular. This implies that t, ¢ J'(%1) as the family & is of
T—multiplicity free. Now we will assume #, € Jz/ for some triple (I, Jz*, Jz/) € ¥, since otherwise
tr ¢ J'(¥) and we are done.

To search for the next point 3 € T, we choose our pivot between two candidates #; and #, as follows: we
will choose #1 if |J{*| > | /)|, and ¢, otherwise. Without loss of generality, we will assume |J{*| > | /.
Since T is locally k—thick at ¢1, we can find

13 € (t1 £2k(|J] | k|JFD) NT.

Note that 73 € I1 — J;* as the pair (1, J}*) is 2k?-regular. This implies 73 ¢ J'(%1) as %1 is of
T—-multiplicity free. Now we can assume that 73 € Jé for some (13, J3* , Jé) € %, otherwise we are
done. One can check that J} cannot coincide with JJ'. We claim that |J;*| > |JJ|. Suppose not, i.e.
|J5| > |J{|. Then we would have |, — 11| < k|J| and |1y — 13| < 2k?|J§|, which implies that 7, € I3,
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as the pair (13, J3) is (2k?+k)-regular. This is a contradiction as %5 is T-multiplicity free and hence
J 2/ NIzNT=a.

Finally, we will choose #3 as a pivot and search for z4. By the local k—thickness of T at ¢3, we can find
ts € (3£ (51 kIIS))NT.

Since the pair (I3, J5) is k-regular, we have 74 € I3 — J. From the fact that the pair (11, J{") is
(2k?+k)-regular, one can check that z4 € Iy — J;. As aresult, t4 € (I; — J;*) U (I3 — J) and hence
ta & J'(%).

It remains to check that |t;_1|/¥/2 < |t;| < ¥/2|t;_1| for each i = 2,3, 4. This does not necessarily hold
for the current sequence, but will hold after passing to a subsequence where ;1 becomes a pivot for
searching #; for all i. In the previous case, (1, t3, #4) will be such a subsequence, as f, was not a pivot
for searching 73.

It follows from the B := 8k2-regularity of (/;_1, J* ) that [t; 1] — 8k2|Jl.*_1| >0,astj—1 € J* | and
0 ¢ I;—1. On the other hand, observe that

tietiag =Ci(|J5 Lkl DNT
for some C; < 2k?2. This gives us the desired upper bound for |t;/t;_1], as
4] < |tio1| 4+ Cil 7] < (14 Ci(8k%) ™|t

and 14 C;(8k%)~1 < /2. The lower bound is obtained similarly, completing the proof for n = 2 and
§=1.

The general case reduces to the case of § = 1, by replacing n by nd. Roughly speaking, the following
lemma gives an inductive argument for the search of a sequence of the #; which is almost geometric in a
sense that the ratio |£;|/|f;—1]| is coarsely a constant and which lands on T — J/(%) in a time controlled
by n:

Lemma 6.4 (inductive search lemma) Let k > 1, n € N and 0 < ¢ < 1 be fixed. There exists
B = B(n,k,e) >0 for which the following holds: Let T C R be a globally k—thick set, and let ¥, ..., %,
be B—regular families of countably many triples (I, J )", J )’L) with degree 1, and of T—multiplicity free.
Set ¥ =%, U---U%Xy, and assume 0 ¢ I[(X). Foranyt € TN J'(¥) and any 1 < r < n, we can find
distinct triples (I, J{. J{),.... Um=1.J,_1, Jp,_y) € X with2 < m < 2", and a sequence of pivots

t=t€TNJ{, LeTNJy, ..., twaa€TNJ,_|, tm€T
which satisfy the following conditions:

(1) Either ty, ¢ J'(%), or ty, € J,, for some (I, Jpy,, J,,) € &, which is distinct from (I;, J*, J!) for
all 1 <i <m—1, and the collection {(I;, J;*, J/) : 1 <i < m} intersects at least r + 1 of the &;.
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(2) Forall1 <i <j <m,
. r *|.
lti —tj] <2((4k)" — Dk 151;2?_1 |5 1;

(3) Foreachl <i <m,
(=) Nnl < |l <A +e) M.

In particular, for any t € TN J'(¥), there exists t' € T — J'(¥) such that

(1—e)?" el < '] < (1 +e)%" 7.

Proof We set
(6-2) B=pBn k)= 4k)"Tle L,
Consider the increasing sequence Q(r) := (4k)" — 1 for r € N. Note that
O(1)>2 and Q(r+1)>40(r)k+1.

Moreover, we check that

B > max((Q(n) +4Q((n—1))k, Q(n)ks_l).
We proceed by induction on r. First consider the case when r = 1. There exists (/1, J 1* J 1’ ) € ¥ such
that 11 :=¢ € J{ NT. As T is globally k—thick, we can choose
(6-3) e (£ QMIFLAIIFD)NT.

We claim that 1,1, is our desired sequence with m = 2. In the case when 1, € J'(¥X), there exists
(I2,J5, J;) € ¥ such that t, € J;. We check:
(1) If t; € J'(%), then 1, € J, — J; implies that J;* and JJ are distinct. Hence (I, J;*, J{) and
(I2, J5, J}) are distinct as well. Since B > Q(1)k, by the f—regularity of (11, J;*), we have t, € I;. By
the T-multiplicity free condition, (/1, J 1* ,J 1’ ) and (15, J2* , JZ/) don’t belong to the same family, that is,
{(I. J{, J]). (I, J, J5)} intersects two of the &;.
(2) By (6-3), [t1 — 12| < Q(Dk|J['| = (4k — Dk|JY|.
(3) Note that 0 ¢ Iy, since 0 ¢ 1(X). By the S—regularity of (I, J;*), we have t; £ B|J[*| C I. Since
0¢ I, and B > e~ 1 Q(1)k, we have
11l =~ Q(Dk|JT| > 0.

On the other hand, by (6-3),

2 —t1] = QK| < eltr].

In particular,
o] < |t1] + |2 —t1] < t1] + Q(DK|J]| < (1 + &) |tal,

2] = |t1] — |2 —t1] > |t1] — Q(Dk|J[| > (1 —¢)|t1].

This proves the base case of r = 1.
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Next, assume the induction hypothesis for r. Hence we have a sequence
n(=t)el{, nely, ..., tme1€J,_; and fip

in T with m < 2" together with {(/;, J*, J/) : 1 <i < m — 1} satisfying the three conditions listed in

i v
the lemma. If 7, ¢ J'(X), the same sequence would satisfy the hypothesis for r + 1 and we are done.
Now we assume that t,,, € J,, for some (I, J,,, J;,,) € %, and that {(1;, J*, J/) : 1 <i < m} intersect at
least r + 1 of the &;. We may assume that they intersect exactly r+1 of the &;, which we may label as
*1,...,%r4+1, since if they intersect more than r 4 1 of them, we are already done. Choose a largest

interval J l* among J*, ..., J,. Again using the global k—thickness of T, we can choose
(6-4) s1€ (£ Q0+ D(JSLEkIJFD)NT.

First, consider the case when 51 ¢ J'(¥). We will show that the points 71, ..., f;,s; give the desired
sequence. Indeed, the condition (1) is immediate. For (2), observe that, by the induction hypothesis for 7,

we have
Is1 —ti| < st =4l + 1t — 1] < (Q(r + Dk +20(r)k)|J]"|

for all 1 <i < m. The conclusion follows as Q(r + 1) > 2Q(r). To show (3), since B > ¢ 1 Q(r + 1)k
and 0 ¢ I;, by applying the f-regularity to the pair ({;, J;*), we have

lt)| — e~ Q(r + Dk|JF| > 0.
It follows that
Isil < ltl+ st —ul <lul+ Q(r + Dk|J| < (1 +e)|t| < (1 +¢)" |ta],
Isil = [l —Ist =t > |l = Q(r + Dk > (1 —e)lty| = (1 —&)" |ta].
This proves (3).

For the rest of the proof, we now assume that s; € J/(¥). Apply the induction hypothesis for r to
s1 € TN J'(%) to obtain a sequence {(I;, fj*, J~Jf) eX:1<j<m'—1}withm' <2" and

s1eJ]NT, s,eljnT, ..., sm/_lef,’n,_lﬂT and s, €T.
Set go to be the smallest 1 < g < m’— 1 satisfying
(6-5) (. JF T 1<j<qb g% U UZr gy
if it exists, and go := m’ otherwise. We claim that the sequence
(6'6) tl,...,tm,Sl,...,SqO

of length m + go < 2" F! satisfies the conditions of the lemma for r + 1.

Claim We have

(6-7) || = max (17, 177].

1<i<m,1<j=<qo—
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Recall that |J;*| was chosen to be maximal among |J*|, ..., [J/,;|. Hence, if the claim does not hold, then
we can take j to be the least number such that |J:*| > |J/*|. Then, by the induction hypothesis for (2),

IU—%|<M—WM+B1—%I<QO“%DH%|+2QU% HMX|J|<(QU+4)+2QUDH%I

X, J]) 1 <i <mjintersects r + 1 families ¥y, ..., %4 and (fj, f*, J')
belongs to one of these families, as j < go— 1. Hence there exists a triple (/;, Jl*, J}) that belongs to the

Now the collection {(I;, J*

same family as (I~j, J~j*, J~]f ). Recall that the induction hypothesis for f1, . .., gives us
|t —1:] <20(r)k|J .
Since B > (Q(r + 1) +4Q(r))k, we have
i —sj| < |ti —t1] + |t — 551 < (Q(r + 1) +4Q(M)k|J}*| < BT}
Applying the S-regularity to the pair (fj, fj*), we conclude that
tel;NJ/NT.

Since (fj, ]}*, ];f ) and (I;, J*, J/) belong to the same family which is T-multiplicity free, they are equal
to each other. This is a contradiction since |.J * ; | > [J;*| = |J;*|, proving the claim (6-7).

We next prove that (;, J*, J/) and (fj, fj*, .7]4) are distinct forall 1 <i <mand 1 <j <go—1. It
suffices to check that J* and J~j* are distinct. Note that we have

max |t; —t;| <20(r)k|J;"| and max |s; —s;| <20 (r)k|J}|

1<i,j<m 1<i,j=qo0

by the induction hypothesis together with claim (6-7). Now, for#; € J*(1 <i <m) and s; € J:.* (1<j <qo),
we estimate

(6-8) lsj —ti| = |s1—t7| = |ti —t;] —|s1 —s;|
> O(r + DI =20k|J} | —20(r)k| T}

=(Q(r+1)—40(Mk)|J|
> |J].

This in particular means that s; ¢ J;* and #; ¢ J:* Hence J;* # fj*
We now begin checking the conditions (1), (2) and (3).
(1) If s4, ¢ J'(%), there is nothing to check.

Now assume that s, € féo for some (Iy,. J; JgoIq J! o) € X. If go < m’, then again there is nothing to prove,

as the union
(6-9) (i, I3 T 1 <i <my UL, TF, T) 11 </ < qo)
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intersects a family other than %1, ..., %¥,+1. Hence we will assume go = m’. By the induction hypothesis
for r on the sequence (s1, ..., Sy), the family {(fj, J:."‘, f]’ ): 1 <j <m'} consists of pairwise distinct
triples intersecting at least » + 1 of the &;. Observe that in the estimate (6-8), there is no harm in allowing
J = qo in addition to j < go. This shows that .7’;, is also distinct from all the J;*. Hence the triples
in (6-9) are all distinct.

Now, unless the inclusion
(6-10) (TP Il < j =m'y Co U Uy,

holds, we are done. Suppose that (6-10) holds. We will deduce a contradiction. Without loss of generality,
we assume that
(Il, Jl*, Jl,) € %r+1

We now claim that
(6-11) (LTIl <j=m'yc o u---Ug,.

Note that this gives the desired contradiction, since {(Tj, .7;‘, J~]’ ) : 1 < j <m’} must intersect at least
r + 1 of the &; by the induction hypothesis. In order to prove the inclusion (6-11), suppose on the contrary
that (fj, jj*» fj’) € ¥r41 for some 1 < j <m’. Using B > (Q(r + 1) +2Q(r))k and (6-7), we deduce

= sj| < |t = s1l+Is1 =] < Q(r + DT + 20 (M| < BII[],

where we used the induction hypothesis for the sequence (s1, ..., S»’) in the second inequality to estimate
the term [s1 —s;]|.

Next, applying the S-regularity to the pair (7, J;*), we conclude that s; € 1;. Since s; € ];f , it follows that
N fjf N T # . This contradicts the condition that &, is of T-multiplicity free, as both (fj, J;-*, J! )
and (17, J l*’ J l/ ) belong to the same family &, 1. This completes the proof of (1).

(2) Forl1 <i<mand1 < j <gqo, observe that
|ti —s;| < |ti =t | +[tr—s1|+[s1—5;| 20 (k| I |+ Q(r + Dk [+20(r)k|J] | <20 (r + Dk|J ]|
as Q(r +1) > 40(r). Hence we get the desired result by (6-7).
(3) We already have observed that the inequality 8 > ¢~ Q(r 4 1)k implies that
(1—&)"|t| = Is1] = (1 + &) |11 ].
Combining this with the induction hypothesis, we deduce that

(1 =)™ ) < |si] < (1 4+ &)1y

for all 1 <i < gqp.

Finally, the last statement of the lemma is obtained from the case r = n, since there are only n of the ¥;;
hence the second possibility of (1) cannot arise for r = n. |
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Proof of Proposition 6.3 We may assume that the &; are all of degree 1, by replacing each of the &;
with § of the families associated to it.

We set
Bo(n.k.1) = (4k)" 1!,

where ¢ satisfies ((1+¢€)/(1 —¢))2"~1 < 2. Note that Bo(n, k, 1) is equal to the number given in (6-2).
We may assume x = 0 without loss of generality. Let A > 0. We need to find a point

(6-12) 1" € ([=2kA, —AJU[A,2kA]) N (T— g J’(%i)).
i€A
Choose s > 0 such that
(6-13) (1—e) " Dp<s <201+~ @D,
Since T is globally k—thick, there exists
t € ([—ks,—s]U[s,ks)NT.

If t ¢ J'—, J'(%i), then, by choosing ' = ¢, we are done. Now suppose ¢ € | J/_; J/(%;). Since
0 ¢ Uj—; (%), by applying Lemma 6.4 to t € TN (U=, J'(¥;)), we obtain ¢’ € T — Jj_; J'(%;)
such that
(1= e <) < A +&)* e,
Note that
1< (14> el < (1 +8)* ks < 2kA.
Similarly, we have
1= (1= | = (1—e)*" ' = A

This completes the proof since ¢’ satisfies (6-12). O

7 Avoidance of the singular set

Let I' < G be a convex cocompact nonelementary subgroup and let
U= {ut} <N

be a one-parameter subgroup. Let .7(U), 4(U), X(H,U) and s#* be as defined in Section 5. In
particular, . (U) is a countable union
sU)= |J T\I'X(H.U).
Hex*
The main goal of this section is to prove the avoidance theorem, Theorem 7.13, for any convex cocompact
hyperbolic manifold with Fuchsian ends. For this, we extend the linearization method developed by
Dani and Margulis [1993] to our setting. Via a careful analysis of the graded self-intersections of the
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union (_J; T\I'H; D; NRF J for finitely many groups H; € 7* and compact subsets D; C X(H;,U),
we construct families of triples of subsets of R satisfying the conditions of Proposition 6.3 relative to the
global k—thick subset of the return time to RF Al under U given in Proposition 4.11.

Linearization

Let H € s#*. Then H is reductive, algebraic, and is equal to Ng (H) by Proposition 5.3 and 3.1. There
exists an R-regular representation pgy : G — GL(Vg) with a point pg € Vg such that H = Stabg (py)
and the orbit py G is Zariski-closed [Borel and Harish-Chandra 1962, Theorem 3.5]. Since '\I'H is
closed, it follows that

2:2%
is a closed (and hence discrete) subset of V.
Let ng : G — Vg denote the orbit map defined by

nu(g) = pgg forall g €G.

As H and U are algebraic subgroups, the set X(H,U) = {g € G : gUg™! C H} is Zariski-closed in G.
Since ppy G is Zariski-closed in Vg, it follows that Ay := pyg X(H, U) is Zariski-closed in Vg and
X(H.U) =g (An).

Following [Kleinbock and Margulis 1998], for given C > 0 and « > 0, a function f: R — R is called
(C, a)-good if, for any interval / C R and & > 0, we have

o
e
rel:|f@t) <e) SC~(—) (1),
sup;ey |/ (0]

where £ is a Lebesgue measure on R.

Lemma 7.1 For given C > 1 and o > 0, consider continuous functions p1, pa, ..., pr: R — R satistying
the (C, a)—good property. For 0 < § < 1, set

I ={teR:max|p;(t)] <1} and J(6)={t € R:max|p;(t)| <4}
l l

For any B > 1, there exists § = §(C, «, B) > 0 such that the pair (I, J(8)) is f—regular (see Definition 6.2).
Proof We prove that the conclusion holds for § := ((1 + )C)~/®. First, note that the function
q(t) :== max; | p; (¢)| also has the (C, a)-good property. Let J' = (a, b) be a component of J(§), and I’

be the component of / containing J'. Note that /” is an open interval and (a, c0) N I’ = (a, ¢) for some
b <c¢ < o0o. We claim

(7-1) J'+BlJ | C(a,o0)nl’Cl'.

We may assume that ¢ < oo; otherwise the inclusion is trivial. We claim that g(¢) = 1. Since
{t e R : q(t) < 1} is open and c is the boundary point of I’, we have g(c) > 1. If g(c) were strictly
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bigger than 1, since {t € R : ¢(t) > 1} is open, I’ would be disjoint from an open interval around c,
which is impossible. Hence ¢(c¢) = 1. Now that sup{g(¢) : t € (a,00) N I'} = q(c) = 1, by applying the
(C, a)—good property of ¢ on the interval (a, o0) N I, we get

LJ) <tte(@oo)nNI’:|qt) <8} <C8*-L((a,00)NT’).

Now, as J' = (a, b) and (a, 00) N I’ are nested intervals with one common endpoint, it follows from the
equality C6% = 1/(1 + B) that
J +BlJ | clac0)nl’Cl,

proving (7-1). Similarly, applying the (C, «)-good property of ¢ on (—oo, b) N I, we deduce that
J =Bl crl'.
This proves that (1, J(§)) is f—regular. |

Proposition 7.2 Let V be a finite-dimensional real vector space, 6 € R[V] be a polynomial and
A ={v eV :0()=0}. Then, for any compact subset D C A and any B > 0, there exists a compact
neighborhood D' C A of D which has a f—regular size with respect to D in the following sense: for any
neighborhood ® of D', there exists a neighborhood ¥ C ® of D such that, for any g € V — ® and for any
one-parameter unipotent subgroup {u;} C GL(V), the pair (I(q), J(q)) is B-regular, where

I(g)={teR:qu;, e d} and J(q)={t € R:qu, € V}.
Furthermore, the degree of (I1(q), J(g)) is at most (deg 6 4+ 2) -dim V.

Proof Choose a norm on V so that || - |? is a polynomial function on V. Since D is compact, we can
find R > 0 such that
D Cc{veV: |v| <R}
Then we set
D'={eV:0w)=0|v|<R/VS},

where 0 < § < 1 is to be specified later. Note that, if ® is a neighborhood of D’, there exists 0 <7 < 1
such that
{veV:0v)<nlvll <(R+n/VE C®.
We will take W to be
U={veV:0w)<nd|v|<(R+n)}
Set
I(q)={t eR:0(qus) <n.llquell < (R+n)/VE}.

Since I(gq) C I(q) for 0 <§ < 1, it suffices to find § (and hence D’ and W) such that the pair (I(q).J(q))
is B-regular. If we set

0
V1 (t) i = (qus)

||61ut||~/3)2

and wz(t):z( R+ 1

then
I(q) ={t e R:max(y1(1). y2(t)) <1}, J(g) = {t € R:max(y1(t), ¥2(1)) < 8}
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As Y1 and Y, are polynomials, they have the (C, a)—property for an appropriate choice of C and «.
Therefore, by applying Lemma 7.1, by choosing § small enough, we can make the pair (I(¢), J(¢))
B-regular for any 8 > 0. Note that the degrees of yr; and 1, are bounded by deg 6 -dim V' and 2dim V,
respectively. Therefore J(¢g) cannot have more than (deg 6 + 2) - dim V' components. a

Collection ¢y

Recall the collection #* and the singular set
sU)= |J T\I'X(H.U).
Hex™*

Definition 7.3 We define € = €y to be the collection of all compact subsets of .”(U) N RF Al which
can be written as
(7-2) E = U I'\I'H; D; NRE A,

i€A
where { H; € 2™ :i € A} is a finite collection and D; C X(H;, U) is a compact subset. In this expression,

we always use the minimal index set A for E. When E is of the form (7-2), we will say that E is
associated to the family {H; :i € A}.

Remark 7.4 We note that £ can also be expressed as UieA I'\T'H; D; NRF M, where H; € 57 is a
finite collection and D; C X(H;, U) is a compact subset which is left C(H;)—invariant.

Lemma 7.5 In the expression (7-2) for E € €, the collection { H; :i € A} is not redundant, in the sense
that:

e NoyH;y~!isequal to H; for all triples (i, j,y) € A x A x " except for the trivial cases of i = j
and y € H;.

Proof Observe that, if yH; y~! = H; for some y € T, then TH ;D =T'"H;yD;, and hence, by replacing
D; by D;UyD; C X(H;,U), we may remove j from the index subset A. This contradicts the minimality
of A. |

Observe that, for any subgroups H; and H, of G and g € G,
X(HiNgHag™ ', U) = X(Hy,U) N X(gH2¢g™",U) = X(H1,U) N gX(H2,U).

Note that, for D; C X(H;,U) and y € T, the intersection Hy D1 N yH, D5 only depends on the
('NHyp, I'N Hy)—double coset of y.

Proposition 7.6 Let Hy, Hy € 5#*. Then, for any compact subset D; C X(H;,U) fori = 1,2 and a
compact subset K C I'\G, there exists a finite set A C (Hy N T")\I'/(H, N T') such that

{KNT\I'(H1D1NyHyD3)}yer ={KNT\I'(H1 D1 NyH2D3)}yen,

where the latter set consists of distinct elements.
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Moreover, for each y € A, there exists a compact subset Co C HiD1 NyHyD, C X(H1 N j/Hz)/_l, U)
such that
KNI\I'(H{D1NyHyD,) =T'\I'Cy.

Proof For simplicity, write ng, = n; and p; = py,. Let Ko C G be a compact set such that K = I'\I'K.
We fix y € T, and define, for any y’ € T,

Ky ={geKo:y'ge H D NyH Dy}

We check that

KNT\['(H; D, NyH,D;) = F\F( g Ky/).
y’el

If this set is nonempty, then K, # & for some y’ € I' and

pY'gepiDi, pay 'Y'g€paDs
for some g € Ky. In particular,

(7-3) p1y € ;DK pay~'e paDKyty T

As p1T is discrete and py D1 Ky Lis compact, the first condition of (7-3) implies that there exists a finite
set A9 C G such that Y’ € (H1 NT")Ag. Writing y’ = h8y, where h € Hy N T and 8¢ € Ay, the second
condition of (7-3) implies

pay the p2D2K0_1561.
As paD2 Kyt Ayt is compact and p,T is discrete, there exists a finite set A C G such that y~'h €
(H>,NT)A. Hence, if KNT\T'(H1D1NyHyD5) # @, then y € (H; NT)A(H, NT). This completes
the proof of the first claim.

For the second claim, it suffices to set Co := Uy,e A Ky O

Proposition 7.7 Let Hy, H, € 5#* be such that H, N H, contains a unipotent element. Then there exists
a unique smallest connected closed subgroup, say Hy, of Hy N H, containing all unipotent elements of
Hy N Hy such that I'\T"Hy is closed. Moreover, Hy € .

Proof The orbit I'\I'(H N H>) is closed [Shah 1991b, Lemma 2.2]. Hence such Hj exists. We need
to show that I' N Hy is Zariski-dense in Hy. Let L be the subgroup of Hy generated by all unipotent
elements in Hy. Note that L is a normal subgroup of Hy and hence (Ho N I")L is a subgroup of Hy.
If F is the identity component of the closure of (Hy N T")L, then T\T'F is closed. By the minimality

assumption on Hy, we have F = Hy. Hence (HoNT)L = Hy; so [e]L = [e]Hp. We can then apply
[Shah 1991b, Corollary 2.12] and deduce the Zariski-density of Ho N I" in Hy. a

Corollary 7.8 Let Hy, Hy € #* and y € I be satistying that X(Hy N yH,y™',U) # @. Then there
exists a subgroup H € 2¢* contained in Hy NyH,y ™! such that, for any compact subsets D; C X(H;,U)
for i =1, 2 there exists a compact subset Do C X(H, U) such that

KNT\T(H,D,NyH,D,) = KNT\THDy.
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Proof Let F € s be as given by Proposition 7.7 for the subgroup Hy N yH,y~!. Set H :=
Ng (Fye) € #*. Note that X(H, NyH,y~',U) = X(H, U). Hence, by the second claim of Proposition
7.6, there exists a compact subset Do C Hy D1 N yH» D5 such that

(7-4) K NT\I'(H; D1 NyHyD5) = T\I'Dy.

We claim that
INI'Dy= KNIT\I'HDy.

The inclusion C is clear. Let g := hd € HDgy with h € H and d € Dy, and [g] € K. Then, by the
condition on Dy, we have g € H; D and y_lg € Hy D;. Therefore g € Hy D1 NyH> D,. By (7-4), this
proves the inclusion D. |
Definition 7.9 (self-intersection operator on €;y) We define an operator

s: €y U{g} — €y U{g}
as follows: We set s(@) = &. For any

(7-5) E = U '\I'H; D; NRF M € ¢y,
i€A
we define
s(E):= | J | T\T'(H:DiNyi;H;D;) NRF.ML,
i,jEAy;; €T
where y;; € I' ranges over all elements of I" satisfying

dim(H; Ny;; Hjy;; ne < min{dim(H; )ne. dim(H;)nc}.
By Proposition 7.6 and Corollary 7.8, we have:

Corollary 7.10 (1) For E € €y, we haves(E) € €y .
(2) For Eq, E>, €€y, we have E1 N E, € €.

Hence, for E € €y as in (7-5), s(E) is of the form
s(E) = | J I'\T'H; D; NRF.L,
ieN
where A’ is a (minimal) finite-index set, H; € 2# with X(H;,U) # @ and
max{dim(H;)nc :i € N} < max{dim(H; )y :i € A}.
Hence, s maps €y to €y U {@} and, for any E € €y,

SdirnG(E) -
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Definition 7.11 For a compact subset K C I'\G and E € €y, we say that K does not have any
self-intersection point of E, or simply say that K is E—self-intersection-free, if

KNs(E)=2.

Proposition 7.12 Let E = | J;cp I'\I'H; D; NRF A € €, where D; C X(H;,U) is a compact subset
and A is a finite subset. Let K C RF Al be a compact subset which is E—self-intersection-free. Then there
exists a collection of open neighborhoods Q; of D; for i € A such that, for 0 := | ;5 I'\I'H; Q;, the
compact subset K is O—self-intersection-free, in the sense that, if dim H; = dim H; and

KNT\I'(H;Q2; NyH;Qj) # @

for some (i, j,y) e AxAxT,theni =jandy e H;NT.

Proof Foreach k € N andi € A, let Q; (k) be the 1/k-neighborhood of the compact subset D;. Since
A is finite, if the proposition does not hold, by passing to a subsequence, there exist i, j € A with
dim H; = dim H; and a sequence y € I' such that

K NT\T(HiQi (k) Ny H; Q5 (k) # 2

and

(7-6) (. J.vi) g1G.0,y) i€ A,y e HiNT}.

Hence there exist g = hywy € H;Q;(k) and g, = hjw;, € H;Qj(k) such that g = yrg), where
[gx] € K. Now, as k — oo, we have wy — w € D; and w; — w' € D;. There exists §; € I' such that
01 gk € K, where K is a compact subset of G such that K = I'\T" K, so the sequence 8; g converges to go
as k — oo. Since I'H; and I"H; are closed, we have 8y i — Soh; and S yih) — 8yh;, where 8o, 8y € T,
hi € H; and hj € H;. As I'[H;] and I'[H;] are discrete in the spaces G/H; and G/H, respectively, we
have

(7-7) 5615]{ € H; and (86)_18k)/k € Hj

for all sufficiently large k. Therefore go = Soh;w = 8phjw’ € 8o(H; D; N 858y H; D) and [go] € K.
Hence

KNT\T'(H;D; N8y 84 H; D)) # 2.
Set§:=8,18; €T.

Since K Ns(E) = &, this implies that REM NT\I'(H; D; N8H; D;) ¢ s(E). By the definition of s(E),
dim(H; N8H;8™ ) pe = min{dim(H; ), dim(H; )nc}-

Since H; =Ng(H;) = Ng ((H;)nc), and similarly for H;, we have H; N 8Hj8_1 is either H; or 5Hj5_1.
Since dim H; = dim H;, §H;8~' = H; or H; = §H;§~!.

Geometry & Topology, Volume 28 (2024)



3422 Minju Lee and Hee Oh

By Lemma 7.5, this implies that i = j and § € Ng(H;) N T. It follows from (7-7) that
vk ENg(Hi)NT'=H; NI’

for all large k. This is a contradiction to (7-6). O

In the rest of this section, we assume that Al = T'\H? is a convex cocompact hyperbolic manifold with
Fuchsian ends, and let k be as given by Proposition 4.11.

Theorem 7.13 (avoidance theoremI) LetU = {u;} < N be a one-parameter subgroup. For any E € €y,
there exists E’ € €y such that the following holds: if F C RF L is a compact set disjoint from E’, then
there exists a neighborhood 0° of E such that, for all x € F, the set

{t eR:xu; e RFM—0°}

is 2k—thick. Moreover, if E is associated to { H; : i € A}, then E’ is also associated to the same family
{H; :i € A} in the sense of Definition 7.3.

Proof The constant B9 We write 7#* = {H,}. For simplicity, set V; = Vg, and p; = pg.. Since Ag,
is real algebraic, we can find a single polynomial 6; whose zero locus coincides with Ag; ; namely, if

the finitely generated ideal of polynomials vanishing on Ag; is given by ( f1,..., fs), then we can set
b= f7 4t SR
Set

m:=dim(G)? and §:= max (deg6; +2)dimV;.
H;exr*

Note that, if H; is conjugate to H;, then 6; and 6; have same degree and dim V; = dim V. Since there
are only finitely many conjugacy classes in #* by Proposition 5.3, the constant § is finite. Now let

Bo:= Po(md. k. 1) = (4k)"** 16!
be given as in Proposition 6.3, where ¢ = ¢,,5 satisfies ((1 +¢)/(1 — e))zm_1 <2.
Definition of E, and E; We write
E= | J I'\I'H;D; NRF.i
i€Ao

for some finite minimal set Ag. Set

[ := max dim(H; )pc.
i€eAo

We define E,, E; € €y for all 1 <n </ inductively as follows: Set
El :=F and Al = Ayp.
For each i € A;, let D] be a compact subset of X(H;, U) containing D; such that p; D’ has a fo-regular
size with respect to p; D;, as in Proposition 7.2. Set
Ej:= | ) T\I'H; D] NRF L.
i€eA;
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Suppose that £, 41, E,/l_i_1 € €y are given for n > 1. Then define
En:=ENs(E, ).
Then, by Corollary 7.10, E, belongs to €y and hence can be written as
E,= | J T\I'H;D; NRF L.
ieA,
where D; is a compact subset of X(H;, U) and A, is a minimal index set. For each i € Ay, let le be a
compact subset of X(H;,U) containing D; such that p; D] has a fo—regular size with respect to p; D;
as in Proposition 7.2. Set
E,:= | J I'\TH; D] NRF.L.
ieA,
Hence we get a sequence of compact (possibly empty) subsets of E:
E\,E,....,E;_1,E;=E,
and a sequence of compact sets
Ei’Eé’---szl_pEz/ =E'.
Note that s(E) = s(E) = & for dimension reasons.’
Outline of the plan Let F C RF .l be a compact set disjoint from E’. For x € F, we set
T(x):={t €eR:xu; e RFM}
which is a globally k—thick set by Proposition 4.11. We will construct

e aneighborhood 0’ of E’ disjoint from F, and
e aneighborhood 0° of E
such that, for any x € RF .Ml — 0, we have
{teR:xu; e RFM—0°}DT(x)—J" (%),

where ¥ = ¥(x) is the union of at most m So-regular families ¥; of triples (I(g), J*(q).J'(q)) of
subsets of R with degree § and of T(x)-multiplicity free. Once we do that, the theorem is a consequence
of Proposition 6.3. Construction of such 0’ and 0° requires an inductive process on the Ej,.

Inductive construction of K,, 0 Op+1 and @,’: +1 Let

4

n+1’°
K() := RF M.

For each i € A1, there exists a neighborhood €2} of D] such that, for

0):= | J N"T'H;Q;.
i€eN|

%In fact £;_; = @ foralli > d — 1, but we won’t use this information.
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the compact subset Ko is 0 —self-intersection-free by Proposition 7.12, since s(E}) = &. By Proposition
7.2, there exists a neighborhood ; of D; such that the pair (1(g), J(¢)) is Bo—regular forall g € V; — p; Q,
where

(7-8) I(qg)={teR:qu; e p;iQ;} and J(g)={r €R:qu; € p;Q}.

Set
0y:= | N\T'H;Q;.
ieA;
Since E| = UieA1 I'\I'H; D; NRF M, Oy is a neighborhood of E; = s(E}) N E. Now the compact
subset s(E}) — Oy is contained in s(E}) — E, which is relatively open in s(E}). Therefore we can take a
neighborhood 07 of s(E}) — 0y such that

0} NE =2.
We will now define the quadruple K, 0, 4+1-0n+1and 0, foreach 1 <n <[ —1 inductively:
e acompact subset K, = K,—1 — (0, UO;;) C RF L,
* aneighborhood 0, ; of E, _,,
e aneighborhood 0, of E,+1, and

* aneighborhood 0}, , | of s(E,’H_Z) — 0y 41 such that

0 NE=2.

Assume that the sets K,—1, 0, 0, and O} are defined. We define

n
Ky :=Kn—1 — (0, UCy) =RFM—|_] (©; UO)).
i=1
For each i € Ap+1, let Q; be a neighborhood of D; in G such that, for 0}, ; := UieAn+1 I\TH;Q,
K, is 0], 4 1—self-intersection-free. Since 0, U 0, is a neighborhood of s(E), +1)» which is the set of all

/

self-intersection points of E , ;, such a collection of Q! fori € A,y exists by Proposition 7.12.

Since F C RF M is compact and disjoint from E’, we can also assume I'\I'H; Q] is disjoint from F, by
shrinking €2} if necessary. More precisely, writing F = F\Fﬁ for some compact subset F C G, this
can be achieved by choosing a neighborhood 2} of D so that p; 2} is disjoint from piFﬁ ; and this is
possible since p; ['F is a closed set disjoint from a compact subset p; D}. After choosing Q] for each
i € Apy1, define the following neighborhood of E; 1t
0= |J DN\THQj.
i€Nn41
We will next define 0, 1. By Proposition 7.2, there exists a neighborhood €2; of D; such that the pair
(I(q). J(q)) is Bo—regular for all ¢ € V; — p; Q}, where

I(q)={teR:qu; € piQ;} and J(g) ={r €R:qu; € piQ}.

Geometry & Topology, Volume 28 (2024)



Orbit closures of unipotent flows for hyperbolic manifolds with Fuchsian ends 3425
We then define the following neighborhood of E, 11 = s(E,, )NE:

Ons1:= |J T\I'H;Q;.
i€Ay1

Since the compact subset s(E; +2) —On41 is contained in the set s(E), 42) — E, which is relatively open
inside s(E, _, ,), we can take a neighborhood O}, of s(E},_, ,) — 041 such that

0:  NE=02.

This finishes the inductive construction.

Definition of 0’ and 0° We define

l 1 l
=[]0, o0=J0. 0 =[]0
n=1 n=1 n=1

Note that 0" and O are neighborhoods of E’ and E, respectively. Since E N0* = &, the following defines

S ot

a neighborhood of E:
(7-9) 0°:=0-0".

Construction of B¢-regular families of T (x)-multiplicity free Fix x € F C RF.l — 0" Choose a
representative g € G of x. We write each A, as the disjoint union

An = U An,j,

J€bn
where Ay j ={i € Ay :dim H; = j}and 6, = {j : A,,; # @}. Note that #8, < dim G.
Fix 1 <n <!, jeb,andi € A, ;. Foreach g € p;I"g, we define the following subsets of R:
o I(q):=1{t:qu; € piQ}.
o J(q):=1{r:qu: € pi%}.

In general, the /(g) have high multiplicity among ¢’s in |, ¢ An; Pi g, but the following subsets I'(q)
will be multiplicity free, and this is why we defined K,,—; as carefully as above:

e I'(q):={t:[t,t +a] C I(q) and xu;s44 € K,—1 for some a > 0}.

 J¥q):=1'(9)NJ(q);
o J(g):=1{t€J(q):xus € Kn1}.

Observe that I'(g) and J*(g) are unions of finitely many intervals, J'(¢) C T(x) and that
J'(q) € J*(q) C I'(q).
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Now, for each 1 <n </ and j € 6y, define the family

(7-10) s = {1@). 7" @). T @) g€ U pTgf.

l'GAn'j
We claim that each &, ; is a Bo-regular family with degree at most 6 and of T (x)-multiplicity free.
Note that, for each ¢ € p; I'g, the number of connected components of J*(g) is less than or equal to that

of J(q). Now that J*(q) C J(q) and all the pairs (/(g), J(q)) are Bo—regular pairs of degree at most &,
it follows that the &, ; are Bo-regular families with degree at most §.

We now claim that &, ; is of T(x)-multiplicity free, that is, for any distinct indices g1, g2 € |, ¢ A Pi I'g
Of %ny] 5

I(q)NJ (q2) = 2.
We first show that

I'(q)N1'(q2) = 2.

Suppose not. Then there exists t € I'(q1) N I'(q2) for some ¢ = piy1g and q2 = pry»g, where
i,k € Ay,j. Then, for some a > 0, we have [t,7 +a] C I(g1) N I(g2) and xu;14 € Ky—1. In particular,

Xurtq € D\T(yy " Hi QN y3 " He Q) N Koy
Since K, is 0] —self-intersection-free, and dim H; = dim Hy = j, we deduce from Proposition 7.12
that this may happen only when i =k and y1y; 1 e H; NT. Hence we have
q1 = 4q2.

This shows that the I’(g) are pairwise disjoint. Now suppose that there exists an element ¢ € I(g1)NJ'(¢2).
Then, by the disjointness of 1'(g1) and 1'(g2), it follows that

t€(I(q1)—1'(q1) NI (g2).

By the definition of 1'(g1), we have xu; ¢ K,—1. This contradicts the assumption that € J'(g2).

Completing the proof Let % :=J;, 1,je6, %n.j. In view of Proposition 6.3, it remains to check that
the condition ¢ € T(x) — J/(¥) implies that xu, ¢ 0°, where O° is as given in (7-9).

Suppose that there exists € T(x) — J'(¥) such that xu; € 0°. Write the neighborhood G° as the disjoint

union ;

0° = U(@n—( U @iu@*)).

n=1 i<n—1

n—1
xu; €0, — ( U 0; u@*).

i=1

Let n <[ be such that
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Since t € T(x) — J/(¥), we have xu; € REM — K, 1. Since K;,—; = RF.M — U:’;ll (0; UOY),
n—1
XU; € U 0; UO;.

i=1

This is a contradiction, since Uf=1 0r C 0. O

As ##* is countable and X (H;, U) is o—compact, the intersection ./(U) N RF .l can be exhausted by
the union of the increasing sequence E; € €y . Therefore, we deduce:

Corollary 7.14 There exists an increasing sequence of compact subsets E1 C E, C --- in €y with
SL(U)NRFM = Ujoil E; which satisfies the following: Let x; € RF.l be a sequence converging to
x € 9(U)NRF M. Then, for each j € N, there exist a neighborhood O; of E; and i; > 1 such that

{teR:xju, eRFM—-0;}
is 2k—thick for all i > i;.

Proof For each j > 1, we may assume E; 1 D E ]’., where E ]’ is as given by Theorem 7.13. For each
J =1, there exists i; € N such that x; ¢ E; 1 forall i >i;. Applying Theorem 7.13 to a compact subset
F ={x; :i > 1i;} of RF.Jl, we obtain a neighborhood 0; of E; such that

{t eR:xju; GRFJI/L—@J'}
is 2k—thick for all i > i;. O

Indeed we will apply Corollary 7.14 for the sequence {x;} contained in a closed orbit x¢ L of a proper
connected closed subgroup L < G, which can be proved in the same way:

Theorem 7.15 (avoidance theorem II) Consider a closed orbit xoL for some xg € REFM and L € 9.
There exists an increasing sequence of compact subsets E1 C E» C --- in€y with (U, xoL) NRFM =
U]O'il E;, which satisfies the following: if x; — x in REM N xoL with x € 4(U, xoL), then, for each
J €N, there exist i; > 1 and an open neighborhood 0; C xoL of E; such that

{teR:xju, eRFM—-0;}
is a 2k—thick set for all i > i;.

8 Limits of RF .il—-points in F* and generic points

Let M = I'\H? be a convex cocompact hyperbolic manifold with Fuchsian ends. Recall that A C sa-1
denotes the limit set of I". In this section, we collect some geometric lemmas which are needed in
modifying a sequence limiting on an RF .l point (resp. limiting on a point in RF.M N ¥(U)) to a
sequence of RF JM—points (resp. whose limit still remains inside ¢(U)). Recall from Definition 4.1 that
Q=S9"1-A.
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Lemma 8.1 Let C, — C be a sequence of convergent circles in S4~1. If C ¢ B for any component B
of €2, then
#limsupCp, N A > 2.
n—oo

Proof Without loss of generality, we may assume that co ¢ A and hence consider A as a subset of the
Euclidean space R4~1. Note that there is one component, say Bp, of  which contains co and all other
components of 2 are contained in the complement of By, which is a (bounded) round ball in R4,
Since Bf has a finite Lebesgue measure, there are only finitely many components of £ whose diameters
are bounded from below by a fixed positive number.

Let § = 0.5diam(C), so that we may assume diam(C,) > § for all sufficiently large n > 1. It suffices
to show that there exists &9 > 0 such that C, N A contains &,, &, with d(&,, £),) > &¢ for all sufficiently
large n. Suppose not. Then, for any ¢ > 0, there exists an interval I,, C C, such that diam(/,) < ¢ and
C, — I, C 2 for some infinite sequence of n’s. Since C, — I, is connected, there exists a component
By, of Q such that C, C N¢(By), where N¢(By) denotes the e—neighborhood of B,,. In particular, we
have diam(By,) + ¢ > §. Taking ¢ smaller than 0.5, this means that diam(B,) > 0.5§. On the other hand,
there are only finitely many components of €2 whose diameters are greater than 0.5, say By, ..., B;. Let
g0 > 0 be such that Ng (B1), ..., Ng,(B;) are all disjoint. Then, by passing to a subsequence, there exists
B; such that C,, C N (B;) for all small 0 < & < &g and all n > 1; hence C C N¢(B;). Since this holds for
all sufficiently small & > 0, we get that C C B;, yielding a contradiction to the hypothesis on C. O

In the next two lemmas, we set U” = U and Ut = U?.

Lemma 8.2 LetU < N be a connected closed subgroup. Let [g]L be a closed orbit for some L € Ly
and [g] € RF M. Let So and S* denote the boundaries of w(gH(U)) and 7 (gL), respectively. If S is a
sphere such that Sy C S € §* and T'S is closed, then [g] € #(U®, [g]L).

Proof Write L = H (17 )C € Ly. Since Sy C S € S*, there exists a connected proper subgroup U of U,
containing U, such that S is the boundary of 7 (gH (17 )). Since 'S is closed, [g]H’ (l7 ) is closed by
Proposition 3.9. Now the claim follows from Proposition 4.9 and the definition of . (U *, [g]L). O

Lemma 8.3 Let U < N be a connected closed subgroup with dimension m > 1, and let U (1), R Uj(cm)
be one-parameter subgroups generating U*. Consider a closed orbit yL, where L € ¥y and

m
Y € Fyyy NREMN (49U yL).
i=1

If x, — y in yL, then, by passing to a subsequence, there exists a sequence h, — h in H(U) such that

m
Xphp e RFMNyL and yheRFMﬂm%(Uil),yL).
i=1
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Proof Recall from Section 3 that € denotes the space of all oriented k—spheres in S¢~1. Let gg € G be
such that y = [go] and S* denote the boundary of (goL). Let 2 be the collection of all spheres S & S*
such that S N A # @ and T'S is closed in €%™S_ By Corollary 5.8 and Remark 5.9, 9 is countable.
Choose a sequence g, — go in G as n — oo such that x, = [g,]. Let Sy, and S¢ denote the boundaries
of w(gn H(U)) and 7(go H(U)), respectively, so that S, — So in €™ as n — oo.

We will choose a circle Co C Sp and a sequence of circles C, C S;, so that C;; — Cg and lim sup(C, N A)
contains two distinct points outside of | gy S. If m = 1, we set Cy = Sp. When m > 2, we choose
a circle Co C Sy as follows. Note that Sy is not contained in any sphere in 2 by the assumption on y
and Lemma 8.2. Hence, for any S € 2, So N S is a proper subsphere of Sp. Since y € F ;I(U), for any
component B; of Q, So ¢ B; and hence So N dB; is a proper subsphere of Sp. Choose a circle Cy C So
such that {g(")", 8oy CCoNA,Co ¢ S forany S €2, and Co ¢ dB; N Sy for all i. This is possible, since
9 is countable. Since S, — So, we can find a sequence of circles C,, C Sy, such that C,, — Cy. We claim
that lim sup,,(C, N A) is uncountable. Since #Cp N A > 2 and Co ¢ 0B;, Co ¢ B; for all i. Therefore,
by Lemma 8.1, for any infinite subsequence C,, of Cy,

#limsup(Cp, NA) > 2.
k

By passing to a subsequence, we can find two distinct points &,, £, € C, N A which converge to two
distinct points & and &’ of Cy N A, respectively, as n — oco. Choose a sequence p, — p € G such
that p;t = &,, p, =&, pt =& and p~ = &’ Let (u;) < N be a one-parameter subgroup such that
pnu; = Cy —{&,}. By Proposition 4.11, T, = {t : [pn]u; € RFJ} is a global k—thick subset, and
hence J := limsup,, T, is a global k—thick subset contained in the set {¢ : [pJu; € RF}. Then C, N A
converges, in the Hausdorff topology, to a compact subset L. C Cp N A homeomorphic to the one-point

compactification of J. Therefore L is uncountable, so is lim sup,, (C, N A), proving the claim.

Let W :=|Jgey CoN S, i.e. the union of all possible intersection points of Cy and spheres in Q. Since
Co ¢ S forany S € 9, #Cp NS < 2. Hence VW is countable, and hence limsup, (C, N A) — W is
uncountable. Note that this works for any infinite subsequence of the C,. Therefore we can choose
sequences &, , &, € C, N A converging to distinct points £, £ of (Co N A) — W, respectively, by passing
to a subsequence. As £, £ € Co and Cy C Sy, there exists a frame goh = (vg, ..., vz—1) € goH(U)
whose first vector vy is tangent to the geodesic [£~, £T]. Setting g := goh, we claim that

gle 2. yL).

Suppose that [g] € Jﬂ(Uj(:i), yL) for some i. We will assume [g] € .#(UD, yL), as the case when
[g]le (UJ(:), yL) can be dealt with similarly, by changing the role of g~ and g+ below. For simplicity,
set UD :=UD Now, by Proposition 5.13, there exist Lo € ;) and o € N N L such that (Lo)nc < Lnc
and [g]aLg is closed. Let S denote the boundary of w(gaLg). Since « € N N L, we have (ga)™ =
gt =6t eSNANCy. Since S € S*, SNA # @ and 'S is closed, we have S € 9. It follows that
£T € W, contradicting the choice of £T. This proves the claim.
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Now choose a vector v(()") which is tangent to the geodesic [§,,, €,7]. We then extend v(()") to a frame

gnhn € gn H(U) such that g, h, converges to g = goh as n — o0o. Since {é,fc} C A, wehave [g,h,] €RF M.
O

We will need the following lemma later:

Lemma 8.4 Let k > 1. Let y be a k—horosphere in HXt1 resting at p € 9HK+!, and P be the geodesic
k—plane in HK+1. Let £ € 3%, § be the geodesic joining & and p, and ¢ = § N y. There exists Ry > 1
such that, for any R > Ry, if d(x,%) < R—1, thend(q, %) < R.

Proof For k = 1, this is shown in [McMullen et al. 2016, Lemma 4.2]. Now let £k > 2. Consider a
geodesic plane H2 c H¥+! which passes through ¢ and is orthogonal to %. Then y N H2 and % N H?
are a horocycle and a geodesic in H?, respectively. As dpyx+1(x,P) = dyz(x N H2, P N H?) and
dyk+1(q. P) = dy2 (g, P N H?2), the conclusion follows from the case k = 1. ad

Recall the definition of H = H (Ug—>) from Section 4.

Lemma 8.5 LetU < H N N be a nontrivial connected closed subgroup. If the boundary of w(gH(U))
is contained in 0B for some component B of €2, then [g] € BFM-C(H (U)).

Proof As U is equal to mUpm ™! for some m € HNMand1 <k <d—2,the general case is easily
reduced to the case when U = Uy. Since g = (vy, ..., vg) has its first k 4 1 vectors tangent to the geodesic
(k+1)—plane (g H (Uy)) and 8(m (g H (Ug))) C B, we can use an element ¢ € C(H (Uy)) =SO(d —k—2)
to modify the next d — k — 2 vectors so that gc¢ has its first d — 1 vectors tangent to hull(0B). Then
[gc] € BFA. |

Lemma 8.6 LetU < H N N be a nontrivial connected closed subgroup. If x, € RFM-U is a sequence
converging to some x € RF M, then, passing to a subsequence, there exists u, € U such that x,u, € RF
and at least one of the following holds:

(1) u, — e and hence x,u, — x, or

(2) x = zc for some z € BF M with ¢ € C(H(U)), and x,u,, accumulates on zHec.

Proof If x, belongs to RF .l for infinitely many n, we simply take u, = e. So assume that x, ¢ RF .l
for all n. Choose a sequence g, — go in G so that x,, = [g,] and x = [go]. As x € RF.M, we have
{20(0), go(c0)} C A. As x,, e RFL M—RF M, we have g, (c0) € A and g5, (0) € Q. For each n, choose an
element u, € U so that 0 < o, := ||up|| < co is the minimum of ||u|| for all ¥ € U satisfying g,u(0) € A.
Set

o ;= limsup oy,
n
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If « = 0, then we are in case (1). Hence we will assume 0 < o < oco. Let C, denote the boundary of
7(gn H(U)) and Cg the boundary of 7(go H(U)). Then C,, — Cg in €4™ U Recall that By (r) denotes
the ball of radius r centered at O inside U. Set

Bn = gnBu(an)(0) and Bo := goBy (a)(0).

Then B, C C, N 2, and d%B, N A # & by the choice of u,. By passing to a subsequence, we have
o, — o and B;, — B as n — oo and hence the diameter of 9B, in S9-1 is bounded below by some
positive number. Hence, passing to a subsequence, we may assume that %, are all contained in the same
component, say B of Q. Consequently, By C B.

We claim that #%B¢ N 0B > 2. First note that go(0) € A. If & = oo, then g,u,(0) — go(c0) € A N By.
If « < oo, then u, converges to some u € U, passing to a subsequence, and u # e, as « > 0. Now,
gnttn(0) — gou(0) € A NBy. Since A N B C B, this proves the claim.

Therefore % is contained in 9B, and hence so is Cp. By Lemma 8.5, this implies that x = z¢ for some
ze€BF M and ¢ € C(H(U)). We proceed to show that x,u, accumulates on zHe. Since ¢ € C(H(U)),

we may assume ¢ = e by replacing x with xc~!, and x, with x,c™!.

We claim that the distance between 7(g,u,) and the plane ﬂ(gol-vl ) tends to 0 as n — oo. Since
xH = [go]I-VI is compact, g,u, € g,,I—VI and Jr(g,,I-VI ) is a geodesic plane nearly parallel to Jr(gofvl ) for
all large n, this claim implies that [g,]u, accumulates on zH, completing the proof.

Now, to prove the claim, let D,, := C, N 3B, and P, :=hull(Dy). Let k = dim U. Since C,, is a k—sphere
meeting the (d—2)—sphere B C S¢~!, and C, ¢ 3B, it follows that D, is a (k—1)—sphere. We set
¥, = hull(Cy), #o := hull(Cp) and ¥ := hull(dB) = Jr(gohvl). Then %, N = P,,. Let ¢ > 0 be
arbitrary, and N¢(%) denote the e—neighborhood of % in H¥. Letting dy, (-,-) denote the hyperbolic
distance in #,, we may write

Ne(H)NHy ={p € Hpn :dy,(p,Pn) < Rn}

for some R, > 0. This is because N¢(#) N ¥, is convex and invariant under family of isometries, whose
axes of translation and rotation are contained in #,. As C,, — Co C dB as n — oo, it follows that
R, —>ocoasn — o00. Let y, :=7m(g,U), and yo := m(goU), which are k—horospheres contained in ¥,
and ¥, respectively.

We next show that there is a uniform upper bound for dy,, (P, x») for n € N. To see this, we only need
to consider those %, which are disjoint from y,, as dy, (P, x») = 0 otherwise. Since y, — xo and
Cn — Cp as n — o0, it suffices to check that the diameters of D, with respect to the spherical metric
on S9! have a uniform positive lower bound. Let us write C;, — D, = E, U E;, where E,, is a connected
component of C,, — D,, meeting B, and E), is the other component. Since C,, — Co as n — 0o, a uniform
lower bound for both diam(E,) and diam(E},) will give a uniform upper bound for diam(D,). Since
Bn C Ep, diam(E,) > % diam (%) for all sufficiently large n. On the other hand, note that y, C %, is a
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horosphere resting at a point in E;,. Since x, converges to y, the condition that %, N y, = & implies
that diam(E))) is also bounded below by some positive constant. Since R, — oo, we conclude that
doe, (Pn, xn) < Ry —1 for all sufficiently large n. Applying Lemma 8.4 to HAH = %, X=xnP =Py,
£ =gt and ¢ = w(gnuy), we have

dye, (m(gnitn). Pn) < Rp

and hence w(gnuy) € N (%) N ¥, for all sufficiently large n. As & > 0 was arbitrary, this proves that
7w (gnun) goes arbitrarily close to 7 (go I-VI) as n — oo. O

Lemma 8.7 Let U < N be a nontrivial connected closed subgroup. If x, — x in F* N RF4 J, and
x € F* N RF MM, then there exists u, — e in U such that x,u, € RF.; in particular, x,u, — X in
F*NRF M.

Proof The general case easily reduces to the case when U < H N N. Then the claim follows from
Lemmas 8.6 and 4.5. |

Obtaining limits in F*

For ¢ > 0, we set

(8-1) coreg (M) :={x € I'\G : w(x) € core M and d (7 (x), d core M) > &}.

We note that core. () is a compact of F* for all sufficiently large £ > 0. In the rest of the section, let
U<N

denote a nontrivial connected closed subgroup.

Lemma 8.8 Let x eRFJ, and V ={v;:t e R} < N be a one-parameter subgroup. If w(xV') ¢ d core J,
and xvy; € RFJl for some sequence t; — +o00, then there exists a sequence s; — +00 such that xvy;
converges to a point in F*.

Proof It suffices to show that there exists a sequence s; — +o00 such that xvs, € core;;3(M), where
1 is as given in (4-12). Let x = [g], and set 0 = (1,0,...,0) € H? = RT x R4~!. We may assume
g = (eg,...,e4-1)o € FH?, where the e; are standard basis vectors in T,H? ~ R?. Note that, for
Vt ={v, :t >0}, gVT is a translation of the frame g along a horizontal ray emanating from o
along the V t—direction. By the definition of 7, the %n—neighborhoods of the hull B; are mutually
disjoint. For each i, set s; := t; if xv;, € corey/3(M). Otherwise, there exists a unique j such that
d(m(gvy ), hull Bj) < %n. If 7(gV]s;,00)) Were contained in the %n—neighborhood of hull B;, then the
unique geodesic 2—plane which contains 7 (g V;; o)) must lie in d hull B;, and hence 7 (x V') C d core .;
this contradicts the hypothesis. Therefore there exists #; <s; < oo such that d(w(gvs, ), hull B;) = %n.
The sequence s; satisfies the claim. O
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Lemma 8.9 Let x, L, v, be a sequence of closed orbits with x, e RF+ M, L, € Ly and v, € (LyN N)J-,
Suppose that either

(1) x, € F* forall n; or
(2) xpLpv, NRFL M N F* # & forall n.

Then
F* Nlimsup(x, Lyv, NRF4+ M) # @.
n

Proof We claim that, if x,, € F*, then x, L, v, "NRF4+ N F* # &, that is, the hypothesis (1) implies (2).
Suppose not. Then, since A C Ly, (x, Av,ANRFL M) C RF M — F*. Since the set RF M — F* is
a closed A—invariant set and e € Av, A, we would have x, € RFy Al — F*, yielding a contradiction. It
follows from the claim that there exists z, € x, L, NRF M such that 7w (zyv,U) ¢ d core M for all n. In
particular, there exists u, € U such that z,v,u, € core,;3(M). Since core,/3(M) is a compact subset
of F*, zyvputy, = zZpU, vy, converges to a point in F*. |

Lemma 8.10 Let xoL be a closed orbit with xo € RF M and L € L. Suppose that E is a closed
U —invariant subset containing xo Lv, N RF M for some sequence v,, — oo in (L N N)J-. If xo € F*
or xoLv, NRF 4 M N F* # & for all n, then there exist y € REM N F* and a one-parameter subgroup

V C (LN N)* such that
EDy(LNN)V.

Proof Note that
(xoLvy NREL M) (v, ' Av,) C E.
By Lemma 8.9, there exists
y € F* Nlimsup(xoLv, NRF4 ).

n—>0o0
Since y € F* NRF4 M C RF .l - U, we may assume y € F* N RF.l by modifying y using an ele-
ment of U. Note that liminf, o (xoLv, N RF4+ M) D y(L N N), passing to a subsequence. Since
lim sup,,_, o, (v, ! Av,) contains a one-parameter subgroup V C (L N N )L by Lemma 3.4, we obtain that
y(LNN)V CE. |

Lemma 8.11 If yLvg NRFM N F* # & for some vy € N and L € Ly, then yLvN F* NRFM # &
forall v e AvgA.

Proof Let yg := ylvg € yLvg N F* NRF.M, and v = avgh € AvgA. Then (yla=)v = ylvgh €
F*NRF.Al as F* NRF . is A—invariant. Since yfa~'v € yLv, the claim is proved. ad

Lemma 8.12 Let xoL be a closed orbit with xo € RFJl and L € £y. Suppose that E is a closed
AU —invariant subset containing xo Lv \RF . .l for some nontrivial element v € (LN N)*. If xg € F* or
xoLv NREM N F* # @, then there exist y € F* NRF AL and a one-parameter subgroup V C (L N N)=+

such that
ED>y(LNN)VA.
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Proof Since X is A—invariant, we get
(xoL NRF4+ M)AvA C E.

Choose a sequence v, := apva, e AvA tending to co. Note that either xo € F* or, for all n,
xoLvy, NREM N F* # & by Lemma 8.11. Therefore the claim follows from Lemma 8.10. O

9 Limits of unipotent blowups

Let Jl be a convex cocompact hyperbolic manifold with Fuchsian ends and fix £ > 1 as given by
Proposition 4.11. In this section, we fix a nontrivial connected subgroup U < N. For a given sequence
gi — e, and a sequence of k—thick subsets T; of a one-parameter subgroup Uy < U, we study the set

limsupT;g; U

under certain conditions on the sequence g;. The basic tool used here is the so-called quasiregular map
associated to the sequence g; introduced in the work of Margulis and Tomanov [1994] to study the
object lim sup Upg; U in the finite-volume case. For our application, we need somewhat more precise
information on the shape of the set lim sup Upg; U as well as limsup T; g; U than discussed in [Margulis
and Tomanov 1994].

Let U~ denote the orthogonal complement of U in N ~ R?~1 a5 defined in Section 3. Recall from (3-2)
that
N(U) = AN C,1(U) C2(U),

where C1(U) = C(H(U)) and Co(U) = H(U)N M NC(U~L). Since N(U) is the identity component
of Ng (U), for a sequence g; — e, the condition g; € Ng(U) means g; € N(U) for all sufficiently large
i > 1. Note that the product AUL C5(U) is a connected subgroup of G, since C»(U) commutes with UL,
and A normalizes UL C,(U).

Lemma 9.1 For a given sequence g; — e in G —N(U), there exists a one-parameter subgroup Uy < U
such that the following holds: for any given sequence of k—thick subsets T; C Uy, there exist sequences
t;i € T; and u; € U such that, asi — 00,

uigiuy — o
for some nontrivial element o € AU+ C,(U) — C,(U). Moreover, a can be made arbitrarily close to e.
Proof Set L := AU-MN ™. Note that

NU)NL = AU*C1(U) Co(U)

and that the product map from U x L to G is a diffeomorphism onto a Zariski-open neighborhood of e
in G.
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Following [Margulis and Tomanov 1994], we will construct a quasiregular map
Yv:U—->NU)NL

associated to the sequence g;. Except for a Zariski-closed subset of U, the product g;u can be written as
an element of UL in a unique way. We denote by v; (1) € L its L—component, so that

giu € Uy (u).

By Chevalley’s theorem, there exists an R—regular representation G — GL(W') with a distinguished point
p € W such that U = Stabg (p). Then pG is locally closed, and

Ng(U)={geG:pgu=pgforallueclU}.
For each i, the map 5,- : U — W defined by
$i(u) = pgiu
is a polynomial map in U = R"™ of degree uniformly bounded, and q~5,- (e) converges to p as i — co. As

gi ¢ Ng(U), ¢; is nonconstant. Denote by B(p, r) the ball of radius r centered at p, fixing a norm || - |
on W. Since pG is open in its closure, we can find Ao > 0 such that

O-1) B(p.%0) N pG C pG.
Without loss of generality, we may assume that Ao = 2 by renormalizing the norm. Now define

Aii=sup{A = 0: ¢ (Bu() C B(p.2)}.
Note that A; < co as ¢; is nonconstant, and A; — o0 as i — 00, as g; — e. We define ¢; : U — W by

i (u) := i (M)
This forms an equicontinuous family of polynomials on U. Therefore, after passing to a subsequence,
¢; converges to a nonconstant polynomial ¢ uniformly on every compact subset of U. Moreover,
sup{|[¢(u) — p|l:u € By(1)} =1, ¢(By (1)) C pL and ¢(0) = p. Now the following map  defines a
nonconstant rational map defined on a Zariski-open dense neighborhood of U of e in U:
yi=p o¢.
where py, is the restriction to L of the orbit map g — p.g. We have /(e) = e and
¥ () =limy; (;u),

where the convergence is uniform on compact subsets of U and

Y(u) e LNNU) = AUL C1(U) C2(U).

Since ¥ is nonconstant, there exists a one-parameter subgroup Uy < U such that v/ |y, is nonconstant.
Now let T; be a sequence of k—thick sets in Uy >~ R. Then T;/A; is also a k—thick set, and so is
Too :=limsup(T;/A;) C Up.
i—00
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Finally, for all # € T, there exists a sequence #; € T; such that ¢; /A; — t as i — oo (by passing to a
subsequence). Since 1; o A; — ¥ uniformly on compact subsets,

V(1) = lim (Y; 0 A;) (& /Ai) = Lim v;(1;).
1—>00 I—>00
By the definition of ;, this means that there exists ©; € U such that
V() = lim uigiuy,.
1 —>00

Since Y|y, is a nonconstant continuous map, and an uncountable set T, accumulates on 0, the image
¥ (Too) contains a nontrivial element o of AU C;(U) Co(U) which can be taken arbitrarily close to e.

We now claim that if « is sufficiently close to e, then it belongs to AU C,(U). Consider H'(U) :=
H(U)C;(U), and let h denote its Lie algebra. Now, for all i large enough, using the decomposition
g =bh @bt in (3-5), we can write g; = c;d;r;, where ¢; € C1(U), d; € H(U) and r; € exphL. Since ¢;
commutes with U, we can write

-1 -1
uigivy; = (Wiug)ci(uy, divg )y riug).
On the other hand, we have
. . -1 -1
himpuigiu,i = hlmpci(u,i di“ti)(”t,- riug) = po.

Since ¢; — e, uy, dl-ut_il € H(U) and uy; riut_il € exp f)l, it follows that both sequences u;, di“t_,-l and
Ug, riu,_l,1 must converge, say to 1 € H(U) and to ¢ € exp hT, respectively. Hence o = hg by replacing
h by uh for some u € U. On the other hand, we can write @ = avcicy € AUJ-Cl(U) C,(U). So
hq = avcyca. Note that ¢ := c1cp € C(H(U))H(U) = H'(U). We get

9-2) (@ the™Y(ege™H) = v.

Now, when « is sufficiently close to e, all elements appearing in (9-2) are also close to e. Recall that
the map H'(U) x h+ — G given by (1', X) — h’ exp X is a local diffeomorphism onto a neighborhood

1

of e. Since (a™'hc¢™') € H'(U), and cqc™, v e expbh®, we have a 1he™! = e and cqgc™! = v for «

sufficiently small. In particular,
a 'hes' =c7 e HU)NC(H(U)) = {e}.
Hence ¢; = e. It follows that « € AUL C,(U), as desired.

We further claim that we can choose « outside of C»(U). As Co(U) is a compact subgroup, we can
choose a C, (U )—invariant Euclidean norm || - || on W. If @« = ¥ (¢) € C2(U) for some ¢ € Too C Uy, then
t is one of finitely many solutions of the polynomial equation ||¢(¢)||> = || p||?>. Therefore, except for
finitely many ¢ € Too, @ = ¥ (t) € AUL Co(U) —Co(U). a

The following lemma is similar to Lemma 9.1, but here we consider the case when U is the whole
horospherical subgroup N. In this restrictive case, the limiting element can be taken inside A.
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Lemma 9.2 Let T; C N be a sequence of k—thick subsets in the sense that, for any one-parameter
subgroup Uy < N, T; N Uy is a k—thick subset of Uy >~ R. For any sequence g; — ¢ in G —Ng(N), there
exist t; — oo in T; and u; € N such that

Ujgiy; — a
for some nontrivial element a € A. Moreover, a can be chosen to be arbitrarily close to e.
Proof We first consider the case when g; belongs to the opposite horospherical subgroup N *. We will
use the notation u™ and u~ defined in Section 3. Write g; = expu ™ (w;) for some w; € R4~ For

x € R4 set uy :=expu~(x) € N. Let &€ > 0 be arbitrary. Since T; is a k—thick subset of N, there
exists o; € R such that o;w; € T; and

& < Slai|wi]* < ke.

Setting uy; := Ug;w; € T; and y; := —o; w; (1 + %ai [|w; ||2)_1, we compute
-2
(1+ i |will?) 0 0
21
uy; gitlx; = | (1+ S |wi %) wy li—1 0
2
—1jw; |12 —(14 Saillwi [Z)w! (1 + Foi|wi]|?)

The condition for the size of «; guarantees that, by passing to a subsequence, the sequence uy; g;uy,
converges to an element

diag(er, Iy_j.a ) e A for ae[(1—e) 2, (1—ke)2JU[(1 +ke) 2, (1+¢)7?]
as i — oo. This proves the claim when g; ¢ N*.

Since the product map A x M x N x N — G is a diffeomorphism onto a Zariski-open neighborhood of e
in G, we can write g; = al-ml-ul?Lui_ for some a; € A, m; € M, ulJr e NT and u; € N all of which converge
to e as i — o0o. By the previous case, we can find u;, € T; and u; € N such that u,-u?'ut[ converges
to a nontrivial element a € A. Let ii; := (a;m;)u;(ajm;)~' € N. Then Ui giuy, = aimiuiu;rui_uti =

aimi(u,-u;rut,.)ui_ —a asi — oo. O

Lemma 9.3 Let L be any connected reductive subgroup of G normalized by A. Let Uy be a one-
parameter subgroup of L N N. Let T; C Uy be a sequence of k—thick subsets. For a given sequence
ri — e inexp(I+) —N(Uyp), there exists a sequence t; € T; such that, asi — oo,

Uy, Tillgy; —>V

for some nontrivial element v € (L N N)L, and v can be chosen arbitrarily close to e. Moreover, for all n
large enough, we can choose v so that

n < |v| <2k3n.
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Proof Without loss of generality, by Proposition 3.7, we may assume that L. = H(U) for U = Uy, = R¥
for some k > 1 and Uy := Rey. We write r; = exp(q; ), where ¢; — 0 in [, Using the notation introduced
in Section 3 and setting ul = Lie(U1) = R?~17% we can write

gi =u” (xi) +ut(yi) + m(Cy),

_( Ok Bi
“@= (—Bi’ Ai)

is a skew-symmetric matrix, all of which converge to 0 as i — oo. We consider Uy = Re; as
{us = se; € R4~} and define the map v¥; : R — [+ by

where x; € ut, y; € (ul)? and

Yi(s) = us_lqius for all s € R;
this is well defined since [ is Ad(L)-invariant. Then a direct computation shows
(9-3) vi(s) =u"(xi +sBler + 3sy;) +ut (yi) + m(Ci),
where 5,- is a skew-symmetric matrix of the form
51':( t Op ; B,~+se1yf)'
—B; —syie] Aj
Since r; ¢ N(Up), it follows that either y; # 0, or y; = 0 and B/e; # 0. Hence v; is a nonconstant
polynomial of degree at most 2, and ¥; (0) — 0. Let A; € R be defined by

A = supid > 0: [y [A, Al < 1}

Then 0 < A; < oo and A; — co. Now the rescaled polynomials ¢; = 1; oA; : R — [ form an equicontinuous
family of polynomials of degree at most 2 and lim; _, ¢ ¢; (0) = 0. Therefore ¢; converges to a polynomial
¢: R — [+ uniformly on compact subsets. Since ¢(0) = 0 and sup{|¢p(A)| : A e [-1,1]} =1, ¢ isa
nonconstant polynomial. From (9-3), it can be easily seen that Im(¢) is contained in Lie(N) N [+, by
considering the two cases of y; # 0, and y; = 0 and Bl.’ e1 # 0 separately. For a given sequence T; of
k—thick subsets of Uj, set
Too := limsup(T;/A;),
1—>00

which is also a k—thick subset of Ujy.

Let s € Too. By passing to a subsequence, there exists #; € T; such that t; /A; — s as i — 00. As ¢; — ¢
uniformly on compact subsets, it follows that

¢(s) = lim ¥;(A;-1;/A;) = lim u;'qiuy,.
1 —>00 1 —>00
Since Too accumulates on 0, so does ¢ (T o). Taking the exponential map to each side of the above, the
first part of the lemma follows.

The second part of the lemma holds by applying Lemma 9.4 below for the nonconstant polynomial
p(s) = ||¢(s)||? of degree at most 4. |
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Lemma 9.4 If p € R]s] is a polynomial of degree § > 1 and T C R is a k—thick subset, then p(T) is
2k® —thick at co.

Proof Let C be the coefficient of s term of the polynomial p. Then there exists so > 1 such that
% <|p(s)|/ICs%| < /2 forall |s| > so. Let r > |C|sg/\/§. Since T is k—thick, there exists # € T such
that (v/2r/|C)Y8 < |t| < k(/2r/|C|)}/3. We compute that r < |p(¢)| < 2k%r. O

10 Translates of relative U —minimal sets

Assume that J is a convex cocompact hyperbolic manifold with Fuchsian ends and fix k > 1 as given by
Proposition 4.11. In this section, we fix a nontrivial connected closed subgroup U < N. Unless mentioned
otherwise, we let R be a compact A—invariant subset of RF Jl such that, for every x € R and for any
one-parameter subgroup Uy = {u;} of U, the set

{teR:xu; € R}

is k—thick. In practice, R will be either RF .l or a compact subset of the form RF.M N F}; ... N X for a

H(U)
closed H (U )—invariant subset X.

The main aim of this section is to prove Propositions 10.6 and 10.9 using the results of Section 9. The
results in this section are needed in the step of finding a closed orbit in a given H (U )-orbit closure of an
RF /M—point.

Definition 10.1 e A U-invariant closed subset Y C I'\G is U-minimal if yU is dense in Y for
any y € Y.
e A U-invariant closed subset Y C I'\G is U-minimal with respect to R if Y N R # & and, for any
yeYNR,yU isdensein Y.

A U-minimal subset may not exist, but a U—minimal subset with respect to a compact subset R always
exists by Zorn’s lemma. In this section, we study how to find an additional invariance of ¥ beyond U
under certain conditions.

Lemma 10.2 Let Y C I'\G be a U-minimal subset with respect to R. For any y € Y N R, there exists a
sequence u, — oo in U such that yu, — y.

Proof The set Z :={z €Y : yu, — z for some u, — oo in U} is U—invariant and closed. By the
assumption on R, there exists u,, — oo in U such that yu, € Y NR. Since ¥ N R is compact, yu, converges
to some z € Y N R, by passing to a subsequence. Hence Z intersects ¥ M R nontrivially. Therefore
Z =Y, by the U-minimality of Y with respect to R. |

A subset S of a topological space is said to be locally closed if S is open in its closure S.

Lemma 10.3 Let Y be a U-minimal subset of I'\G with respect to R, and S be a closed subgroup of
N(U) containing U. For any yo € Y N R, the orbit yoS is not locally closed.
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Proof Suppose that yoS is locally closed for some yg € ¥ N R. Since Y is U—minimal with respect
to R, there exists u, — oo in U such that you, — yo by Lemma 10.2. We may assume that yy = [e]
without loss of generality. Since y¢S is locally closed, y¢.S is homeomorphic to (S NT")\S (see [Zimmer
1984, Theorem 2.1.14]). Therefore there exists 6, € S N I" such that §,u,;, — e as n — oo. Since
N(U) = AN C1(U)C,(U), writing 8, = anry fora, € A and r, € N C;(U) Co(U), it follows that
an — e. On the other hand, note that a, is nontrivial as I" does not contain any elliptic or parabolic
element. This is a contradiction, as there exists a positive lower bound for the translation lengths of
elements of I', which is given by the minimal length of a closed geodesic in M. |

In the rest of this section, we use the notation

H=HU). H'=HU). F*=Fjq,.

Lemma 10.4 For every U-minimal subset Y C I'\G with respect to RF M such that Y N F*NRF M # &
and, for any yo € Y N F*NRF ., there exists a sequence g, — e in G—N(U) such that yog, € Y NRF .M
for all n.

Proof Let yo €Y N F*NRF.. AsY = yoU, Y C RF4 .. Using Lemma 4.5 and the fact that F* is
open, we get that there exists an open neighborhood O of e such that

(10-1) yoONY CYNF*CYNRFAM-U.

Without loss of generality, we may assume that the map g — yog € I'\G is injective on O, by shrinking
O if necessary. We claim that there exists g, — ¢ in G —N(U) such that yog, € Y N F*. Suppose not.
Then there exists a neighborhood 0’ C O of e such that

(10-2) y00'NY C yoN(U).
Set
S:={geNU):Yg=7Y},
which is a closed subgroup of N(U) containing U. We will show that y¢.S is locally closed; this contradicts
Lemma 10.3. We first claim that
(10-3) y()@/ NY C ypS.

If g € O is such that yog € Y, then g € N(U). Therefore yogU = yoUg = Yg C Y. Moreover,
Yg NRFJM # @ by (10-1). Hence Yg =Y, proving that g € S. Now, (10-3) implies that y¢.S is open
in Y. On the other hand, since U C S, we get Y =¢ S. Therefore, yoS is locally closed.

Hence we have g, — e in G —N(U) such that yog, € Y N F*. Since yog, € F* NRF4 Al converges
to yo € F* NRF .M, by Lemma 8.7, there exists a sequence u,, — e in U such that yog,u, € RF .M.
Therefore, by replacing g, with g,u,, this finishes the proof. |
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Lemma 10.5 Let Y be a U-minimal subset with respect to R, and let W be a connected closed subgroup
of N(U). Suppose that there exists a sequence «; — e in W such that Yo; C Y. Then there exists a
one-parameter subsemigroup S < W such that YS C Y.

Moreover, it Wy is a compact Lie subgroup of W and a; € W — Wy for all i, then S can be taken such
that S ¢ Wy.

Proof The set So = {g € W :Yg C Y} is aclosed subsemigroup of W. Write o; = exp&; for some
g € Lie(W). Then the sequence v; := ||| 7' of unit vectors has a limit, say, v. It suffices to note
that S := {exp(tv) : t > 0} is contained in the closure of the subsemigroup generated by the «;. Now
suppose that o; € W — Wy. Set My := {g € Wp : Yg = Y}. This is a closed Lie subgroup of Wj.
Write Lie W = mg @ m(J)-, where mg = Lie My. By modifying «; by elements of My, we may assume
a; =expé&; for§ — 0in m(J)-. Letting v € m(J)- be a limit of & /||&; ||, it remains to check v ¢ Wj. Suppose
not. Since W is compact, we have {exptv :¢ > 0} = exp Rv. Hence, forall t >0, Y exptv C Y as well

as Y exp(—tv) C Y. Therefore Y exptv =Y. Hence exp v € My. This is a contradiction, since v € mé-. |

Proposition 10.6 (translate of Y inside of Y) Let Y be a U-minimal set of I'\G with respect to RF
such that Y N F* NRF M # &. Then there exists an unbounded one-parameter subsemigroup S inside

the subgroup AU~ C,(U) such that
Yscy.

Proof Choose ygp € Y NRFM N F*. By Lemma 10.4, there exists g; — e in G — N(U) such that
yogi € Y NRF M. Let Up = {u,} be a one-parameter subgroup of U as given by Lemma 9.1, with respect
to the sequence g;.

Let
Ti:={u; € Up: yogius € Y NRF M},
which is a k—thick subset of Up. By Lemma 9.1, there exist sequences u;, — oo in T; and u; € U such that
uigiuy —> o

for some element & € AULC,(U) — Co(U). Note that Yogiuy € Y N RF.Ul converges to some
y1 € Y NRF M by passing to a subsequence. Hence, as i — oo,

you; ' = yogiuy (uigiug) "t — yra .

So yja~! € Y, and hence Ya~! C Y, since y; € Y NRF.Al. Since a can be made arbitrarily close to e

in Lemma 9.1, the claim follows from Lemma 10.5. O

Proposition 10.7 (translate of Y inside of X) Let X be a closed H'~invariant set such that X N R # .
Let Y C X be a U-minimal subset with respect to R, and assume that there exists y € Y N R and a sequence
gn — e in G — H' such that yg, € X for all n. Then there exists some nontrivial v € UL such that

YvCX.
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Proof Let b denote the Lie algebra of H. We may write g, = r,h,, where h, € H' and r;, € exp f)J-.
By replacing g, with gnhijl, we may assume g, =1,. lf r, €U L for some n, then the claim follows
since yor, € X and hence Yr, C X. Hence we assume that r, ¢ U L for all n. We have, from (3-5),

bt NLie(N(U)) =Lie U~.

Hence r, ¢ N(U) for all n. Therefore there exists a one-parameter subgroup Uy = {us} < U such that
rn & N(Up). Let
T={teR:yu; € R}

Since y € R, it follows that T is a k—thick subset of R by the assumption on R. Hence, by Lemma 9.3,
there exists t, € T such that u,‘n1 Uy, — v for some nontrivial v € U L. Observe

(Vug,) (g rauy,) = yraug, € X.

Passing to a subsequence, yu,, — yo for some yp € Y N R, and hence yov € X. It follows that Yv C X. O

For a one-parameter subgroup V = {v; : t € R} and a subset / C R, the notation V; means the subset
{'Ut it e I}

Lemma 10.8 Let X be a closed AU —invariant set of T\ G, and V be a one-parameter subgroup of U~
Assume that R := X NRF.MN F* is nonempty and compact. If xoV; C X for some xo € R and a closed
interval I containing 0, then X contains a V —orbit of a point in R.

Proof Choose a sequence a, € A such that liminf, . ap V1a;1 contains a subsemigroup VT of V as
n — oo. Then

(xoa,jl)(an Vm;l) = xoVIa;1 C X.

1

By passing to a subsequence, we have that xoa;, ! converges to some x; € RF.{(; so x1 V' C X. Since R

is compact, so is xoA N F*, which implies that x; € xg4 N F*. Since x1 belongs to the open set F*, it
follows that xvs € F* for all sufficiently small s € R. By Lemma 4.5, this implies that x; v;U NRF M # &
for some s > 0 with vy € V1. Note that

(xlvsU)(vs_lV+) =x UVt CX.

Choose x2 € x1v;U NRFM C X NRFMN F*. Then x2(v; V1) C X. Similarly as before, let a, € A be
a sequence such that liminf;, o a,,(vs_1 V"')a; I — ¥ and such that Xaa, 1 converges to some x3 € R.
From

(x2a, DYanvy'Wra )y = xu;'Wra C X,
we conclude that x3V C X. O
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Proposition 10.9 Let X be a closed H'—invariant set. Assume that R := X N F* NRF . is a nonempty
compact set, and let Y C X be a U-minimal subset with respect to R. Suppose that there exists y € Y N R
such that X — yH’ is not closed. Then there exist an element z € R and a nontrivial connected closed
subgroup V < U+ such that

zUV C X.

Proof Since X — yH’ is not closed, there exists a sequence g, — ¢ in G — H' such that yg, € X for
all n > 1. By Lemma 10.8, it suffices to find xo € R and a one-parameter subgroup V < U~ such that
xoV C X for some interval / < R containing 0. It follows from Propositions 10.6 and 10.7 that

YvoCX and YSCY,

where vg € UL —{e} and S is an unbounded one-parameter subsemigroup of AU+ C,(U). By Lemma 3.3,
S is either of the form

(1) S ={exp(téy)exp(téc):t >0}, or
2) S ={(vexp(téa)v~")exp(téc):1 > 0}
for some £4 € Lie(A) — {0}, ¢ € Lie(Ca(U)), &y € Lie(V)— {0} and v e U~L.

Case (1) Since X is H'(U)—invariant and C»(U) C H'(U), we may assume Y S C X with §¢ =0, so
the claim follows.

Case (2) Set
Yo :=Y G (U).

It is easy to check that Yy is a U C(U)—minimal subset of X with respect to R. First suppose that
v=ce.Let AT := {exp(t&4) : t > 0}. Since Y'S C Y and &¢ € Lie(C,(U)), it follows that Yo AT C Y.
Choose y € Y N R, and let a, — oo be a sequence in AT. Since R is compact and A—invariant,
ya, converges to some zg € R by passing to a subsequence. Since YoA™ C Yy, we have zg € Yo N R.
Since liminfa_, AT = A, we get zgA C Yy. Since zgAU Co(U) = zoU C5(U)A, and Yy is U Co(U)-
minimal with respect to R, we obtain Yo A C Y. Since vg commutes with C,(U), we also get Yovo C X.
Therefore Yo Avg C Yovg C X. By the A—invariance of X, it follows that Yo(AvgA) C X. Since AvgA
contains some V1, the claim follows.

Next suppose v # e. Since C2(U) commutes with v, it follows that

Y()UA+U_1 C Y.
Since X is A-invariant, we get
Yo(wATv™HA c Ypd C X.

Set V :=exp R(log v). Since vATv~! 4 contains V; for some interval I containing O for any subsemigroup
AT of A. we get YoV; C X. O
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11 Closures of orbits inside dF and nonhomogeneity

Let M = I'\H¢ be a convex cocompact hyperbolic manifold with nonempty Fuchsian ends. Let U be a
connected closed subgroup of HNN,H:=H (U) and BF .l be as in (4-6). Then

9F =BFM-VT-H'(U) and 9F NRE.M =BFM-C(H(U)).

In this section, we classify closures of x H(U) and x AU for x € dF —RF M (Theorem 11.5); they are
never homogeneous.

Theorem 11.1 If x =zc € BFM-C(H(U)) withz € BFAM and ¢ € C(H(U)). Then:

(1) xU = xL for some L € 9y contained in ¢ 'He.
(2) xH(U) = xL for some L € Ly contained in ¢ 'He and, for any y € 9(U,xL), yU = xL.
(3) xAU =xH(U).

Proof Since x is contained in the compact homogeneous space xc¢ ! He, claims (1) and (2) are special
cases of Ratner’s theorem [1991b], which were also proved by Shah (unpublished, 1992) independently.
So we only need to discuss the proof of (3). We show that xAU = xL, where L is as given by (2). If
U = L N N, then the claim follows from Theorem 13.1. Suppose that U is a proper subgroup of L N N.
Since xAU (K N H(U)) = xH(U) = xL and .#(U, xL) - (K N H(U)) is a proper subset of xL (see
Lemma 5.15), there exists y € xAU N¥(U, xL). Hence (3) follows from (2). O

Lemma 11.2 Let V™ C N be a one-parameter subsemigroup which is not contained in H. Then
VT H(U) is a closed subset of G.

Proof Since the product map A x N — AN is a diffeomorphism and AN is closed, the product subset
AW is closed in G for any closed subset W of N. Hence AUV T is a closed subset of AN. We use
Iwasawa decompositions H(U) = UA(K N H(U)), and the fact that AVt = VT 4 in order to write
VtH(U) = AUV*(K N H(U)). Hence the conclusion follows from compactness of K N H(U). O

Lemma 11.3 Let VT C N beasinLemma 11.2. If g; € Hisa sequence such that g;v;h; converges
for some v; € V* and h; € H(U) as i — oo, then, after passing to a subsequence, there exists p; € AU
such that g; p; converges to an element of H asi — oo.

Proof We write g; = k;d;ifi; € (KN H)A(N N H) and h; = uja;k; € UA(K N H(U)). Since K N H
and K N H(U) are compact, we may assume without loss of generality that k; = k; = e for all i. Observe
that

. ~ —1x -1
givihi = ainjviu;a; = a;a;(a; nju;a;)(a; "via;),
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where a;a; € A, ai_lﬁiuiai € NN H and ai_lviai e V. Since givih; converges as i — oo and the
product map A x (N N H )x V't — G is an injective proper map, it follows that all three sequences @;a;,
ai_lﬁiuiai and ai_lviai are convergent as i — oco. Noting that

~ ~ ~ —1~
giuja; = a;nju;a; = a;a;(a; nju;a;),

it remains to set p; :=u;a; € AU to finish the proof. O

For z € BF (M, n(ZI:/II\;"'I-VI) = n(zl—?ﬁ"‘) is the closure of a Fuchsian end, of the form Sy x [0, 00),
where Sy = JT(ZI-VI).

Lemma 11.4 Let z € BF L. Let zL be a closed orbit contained in BF Al for some L € ¥y contained in
H, and V't C N be a one-parameter subsemigroup such that HV ™ = HV . Then both zLV+ H(U)
and zLV ™ are closed.

Proof Without loss of generality, we assume z = [e]. Let B denote the component of 2 such that
hull(dB) = (H) for the projection map 7: G — H¢. Since HVt = HV™, we have n(HV 1T H) =
hull B. Note that, if y(hull(B)) Nhull(B) # @ for y € T', then y € HNT = Stabr (B).

Suppose that y;£;v; h; converges to some element g € G, where y; € I', {; € L,v; € V' and h; € H(U).
Since 7 (y;£;jvih;) € Thull B, and T hull B is a closed subset of H?, we have 7(g) € I hull B. Without
loss of generality, we may assume 77(g) € hull B by replacing y; by yy; for some y € I' if necessary.

We claim that, by passing to a subsequence,
Vi € HNT.
Let O be a neighborhood of 7 (g) such that
ONT hull B C hull B;

such O exists since d(hull(yB), hull(B)) > nforall y e I' — (I—7 NT), where n > 0 is as given in (4-12).
By passing to a subsequence, we may assume that 7 (y; £;v;h;) € 0. Since 7(£;v;h;) € hull B for all i, it
follows that 7w (y;£;v; h;) € hull B for all n. Therefore y; € HNT. Applying Lemma 11.3 to the sequence
(vili)vih; — g, there exists p; € AU such that y;¢; p; — h in H as i — oco. Since 'L is closed, we
have h € I'L.

Since p; 'vihj € AUVTH(U)=V*tH(U) and

(11-1) lim p;lvih; =h7lg,

1—>00
we have h~!g € VT H(U) by Lemma 11.2. Therefore, g = h(h~'g) e TLV T H(U). This proves that
I'LVTH(U) is closed. Note that, in the above argument, if #; = e for all i, then h~1g = lim pl._lvi €
AUV Hence g =h(h~'g) e TLAUVT =TLV ™. This proves that TLV T is closed. m|
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Note that x € RF4 M —RF AL - H(U) if and only if x € (RF4+ M N 0Fgg)) —BFM-C(H(U)).

Theorem 11.5 Let x € RF; M —RF M - H(U). Then there exist a compact orbit zL. C BF Al with
L € Py, an element ¢ € C(H(U)) and a one-parameter subsemigroup V* C N with HV*t =HV*
such that

(1) xHU)=zLVTHU)c;
(2) xAU =zLV*e.

Moreover, the closure of the geodesic plane w(x H(U)) is diffeomorphic to a properly immersed sub-
manifold S x [0, 00), where S = w(zL) is a compact geodesic plane inside BF JL.

Proof We claim that we can write x = zguc for some nontrivial v € VT, zg € BEM and ¢ € C(H(U)).

Let k = dim U and C C S¢~! denote the k—dimensional sphere stabilized by H(U), and g € G be such
that x = [g].

In view of the identification I'\G ~ FAl induced from (3-1), the hypothesis x € RFy M —RF .M - H(U)
implies that there exists a component B; of € such that gC C B; and gC is tangent to dB;. Let S C B; be
the unique (d —2)—dimensional sphere tangent to dB; containing C. Considering g = (v1,...,v,) as an
orthonormal frame in H¢, we can obtain a frame tangent to hull(S) by rotating the last d — (dim(U) + 1)
vectors of g. Since any frame tangent to hull(S) can be written as zv for some z € BF Jl and a nontrivial
v e VT, and the process of rotating the last d — (dim(U) + 1) coordinates corresponds to a right
multiplication in I'\ G by an element of ¢ € C(H(U)), this proves the claim.

Without loss of generality, we may assume ¢ = e. By Theorem 11.1, zgU = ZovalLvo, where L € Ly
is contained in H and vo € H N N. Hence xH(U) contains zL (vov)H(U) for z := ngal € BF M. Set
V.= {expt(log(vvg)):t >0}

Note that VT is contained in A(vov)A U {e}, and hence
zLUzLvovH(U) =zLVTH(U)
and HVt = HV ™ since v #e.

Since xH(U) C zL U zL(vov)H(U), and zL lies in the closure of zL (vov) H(U), claim (1) follows
since zZLV T H(U) is closed by Lemma 11.4. For claim (2), note that xAU D zoUvA = zLVT. By
Lemma 11.4, zLV ™ is AU—invariant and closed. Since x € zLV T, we conclude xAU = zLV .

To see the last claim, observe that 7 (zLV T H(U)) =n(zLVTAU) = (zLV ") since VT AU = AUV T,
and AU < L. Since HVT = HV™*, and 7(zL) is a compact geodesic plane (without boundary) in
n(zI—vI), we get JT(ZI-VI V)~ n(zI-VI) x [0,00) and w(zLV 1) ~ n(zL) x [0, 00). |

Remark 11.6 An immediate consequence of Theorem 11.5 is that, if P C Jl is a geodesic plane such
that P Ncore.l = @& but P Ncore.ll # &, then P is not properly immersed in .l and P is a properly
immersed submanifold with nonempty boundary.
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12 Density of almost all U-orbits

Let I' < G = S0O°(d, 1) be a Zariski-dense convex cocompact subgroup. The action of N on RF4 .t
is minimal, and hence any N—orbit is dense in RF M [Winter 2015]. Given a nontrivial connected
closed subgroup U of N, there exists a dense U—orbit in RF; Jl [Maucourant and Schapira 2019]. In
this section, we deduce from [Mohammadi and Oh 2015; Maucourant and Schapira 2019] that almost
every U—-orbit is dense in RF Jl with respect to the Burger—Roblin measure in the case of a convex
cocompact hyperbolic manifold with Fuchsian ends (Corollary 12.4).

The critical exponent § = ér of I' is defined to be the infimum s > 0 such that the Poincaré series
2 yer e3d070) converges for any o € H. It is known that & is equal to the Hausdorff dimension of
the limit set A and § = d — 1 if and only if I" is a lattice in G [Sullivan 1979].

Denote by mBR the N—invariant Burger—Roblin measure supported on RF J(; it is characterized as a
unique locally finite Borel measure supported on RF [l (up to a scaling) by [Burger 1990; Roblin 2003;
Winter 2015]. We won’t give an explicit formula of this measure as we will only use the fact that its
support is equal to RF (M, together with the following theorem; recall that a locally finite U —invariant
measure u is ergodic if every U—invariant measurable subset has either zero measure or zero comeasure,
and is conservative if, for any measurable subset S with positive measure, [;; 1s(xu)du = oo for
pu—almost all x, where du denotes the Haar measure on U.

Theorem 12.1 [Mohammadi and Oh 2015; Maucourant and Schapira 2019] Let U < N be a connected
closed subgroup, and let T' be a convex cocompact Zariski-dense subgroup of G. Then mBR is U —ergodic
and conservative if § > codimy (U).

Lemma 12.2 Suppose that I7 < I are convex cocompact subgroups of G with [T} : I3] = co. Then
51‘1 < 81"2.

Proof Note that a convex cocompact subgroup is of divergent type [Sullivan 1979; Roblin 2003]. Hence,
the claim follows from [Dalbo et al. 2000, Proposition 9] if we check that A, # Ar,.

If A := A, = Ar,, then their convex hulls are the same, and hence the convex core of the manifold I; \Hd
is equal to I3 \hull(A), which is compact. Since we have a covering map I'1 \hull(A) — I3\ hull(A), it
follows that [I7 : 3] < oc. |

Lemma 12.3 If I'\H? is a convex cocompact hyperbolic manifold with Fuchsian ends, then § > d — 2.

Proof IfIisalattice, then A =S? ! and § =d —1. If [\ H¥ is a convex cocompact hyperbolic manifold
with nonempty Fuchsian ends, then I" contains a cocompact lattice Iy in a conjugate of SO(d — 1, 1)
whose limit set is equal to dB; for some i. Now [I":Tj] = oo; otherwise, A = dB;. Hence § > dr, =d —2
by Lemma 12.2. |
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Corollary 12.4 Let M = I'\H? be a convex cocompact hyperbolic manifold with Fuchsian ends. Let
U < N be any nontrivial connected closed subgroup. Then, for mBR—almost every x € RF .,

xU = RF M.

Proof Without loss of generality, we may assume that U = {u;} is a one-parameter subgroup. By
Lemma 12.3 and Theorem 12.1, mBR is U—ergodic and conservative. Since RF Jl is second countable
and the U-action on it is continuous, the claim follows. O

Since F I?(U) NRF4 Jl is a nonempty open subset, it follows that almost all U —orbits in F"

vy VREL A

are dense in RF Jl.

13 Horospherical action in the presence of a compact factor

Let M = F\Hd be a convex cocompact hyperbolic manifold with Fuchsian ends and fix a nontrivial
connected closed subgroup U of N. Consider a closed orbit xL for x € RF.M, where L € 9y and
U = L N N. The subgroup U is a horospherical subgroup of L, which is known to act minimally on
xL NRF M provided L = L. In this section, we extend the U—minimality on xL in the case when L
has a compact factor.

Theorem 13.1 Let X := xL be a closed orbit where x € RF_ M, and L € 9. Let U := L N N. Then
the following hold:

(1) X NRF4+ M is U—minimal.

(2) X is Ly.—minimal.

(3) If L € £y and x € RF M, then X N RF A contains a dense A—orbit.

or any nontrivial connected closed subgrou 0 < U, for my " —almost all x € X,
(4) For any jvial d closed subgroup Uy < U, for m¥R-al Il x € X

xUp = X NRF4 .

The subgroup L € 9y is of the form v=! H(U)Cv, where H(U)C € %y and v € N. The general case
can be easily reduced to the case where L € L. In the following, we assume L = H(U)C € Ly. As
before, we set
H=HU), H' =H'(U) and F*= F:I(U)

and let w1 : H' — H and m: H' — C(H) be the canonical projections. In order to define m;}R, choose
g € G so that [g] = x. If we identify H ~ SO°(k, 1), then, by Proposition 4.9, S := (g~ 'T'gNHC)\H*
is a convex cocompact hyperbolic manifold with Fuchsian ends. Now 71(g~'I'g N HC)\ H is the frame
bundle of S, on which there exists the Burger—Roblin measure as discussed in Section 12. In the above
statement, the notation m?}R means the C—invariant lift of this measure to X = xHC.

We first prove the following, which is a more concrete version of Proposition 10.6 in the case at hand:
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Proposition 13.2 Let X be as in Theorem 13.1. Any U—minimal set Y of X with respect to RF M such
that Y N F* NRF M # & is A—invariant.

Proof LetY be a U-minimal set of X with respect to RF.l. Let yo € Y N F* NRF . By Lemma 10.4,
there exists a sequence g; — e in HC —N(U) such that yog; € Y NRF M forall i > 1.

Since U is a horospherical subgroup of H and C commutes with H, we can apply Lemma 9.2 to the
sequence g; 1 and the sequence of k—thick sets T; := {u € U : yogiu € Y NRF .} of U. This gives us
sequences Uy, — oo in T; and u; € U such that, as i — oo,

ut_il giu; —>a
for some nontrivial element a € A. Since you, converges to some y; € ¥ N RF.l by passing to a
subsequence, we have
yia =lim(youy,)(uy' giui) €Y.
Since 1U =Y, we get Ya C Y. Since a can be made arbitrarily close to ¢ by Lemma 9.2, there exists a

subsemigroup A4 of A such that YA C Y by Lemma 10.5. Moreover, for any a € Ay, YaNRF M # @
as RF .l is A—invariant. Therefore, Ya = Y. It follows that Ya—! =Y as well. Hence Y is A—invariant. O

We now present:

Proof of Theorem 13.1 First suppose that xL N F* # &. We may then assume x € F* NRF .. Let
Y be a U-minimal set of X with respect to RF L. If Y were contained in 0F, then Y C dF N RF M.
Since Staby, (x) is Zariski-dense in L by the definition of £, it follows from [Benoist and Quint 2014,
Lemma 4.13] that X N RF Al is AU-minimal. Therefore we have

YA=XNRF4 .M

and hence X has to be contained in the closed A—invariant subset dF N RF.l as well, yielding a

contradiction. Therefore,
YNF*NRFM # @.

Hence, by Proposition 13.2, Y is A—invariant. Therefore, claim (1) follows from the AU —-minimality of
X NRF4 M if x € F*. Now suppose xL C dF. In this case, it suffices to consider the case when U is
a proper subgroup of N; otherwise L = G and has no compact factor. Hence we may assume without
loss of generality that U C H N N. As xL is closed, Theorem 11.5 implies that x. C BFJl-C(H(U)).
Hence by modifying x by an element of C(H(U)), we may assume that X is contained in a compact
homogeneous space of H =S0° (d — 1, 1), which is the frame bundle of a convex cocompact hyperbolic
manifold with empty Fuchsian ends. Therefore, claim (1) follows from the previous case of x € F*, since
F* = RF M in the finite-volume case.

Claim (2) follows from (1) since RF1 Jl - H is closed, and X C RF, Jl- H.
For (3), it suffices to show that the A-action on X N RF Jl is topologically transitive (see [Degirmenci
and Kogak 2003]). Let x, y € X NRF.JL be arbitrary and O and 0’ be open neighborhoods of e in H. The
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set UU' A(M N H) is a Zariski-open neighborhood of e in H, where U’ is the expanding horospherical
subgroup of H for the action of A. Choose an open neighborhood Qg of e in U, and an open neighborhood
Po of e in U' A(M N H) such that Qo Py C O.

We claim that xQ¢A N y0’ # &, which implies x0A N y0’ # &. Suppose that this is not true. Then
xQoA CT\G —y0',

where the latter is a closed set. Now, choose a sequence a, € A such that a, Qoa;l — U asn — o0,

and observe

xa; Y (anQoa, ) = xQpa,; ! CT\G —y0'.
Passing to a subsequence, xa,, 1 5 x¢ for some x¢ € RF .M, and we obtain that xoU is contained in the
closed subset I'\G — y0". This contradicts the U-minimality of X N RF4 ., which is claim (1). This

proves (3).

For (4), note that, by Corollary 12.4, almost all Up—orbits in 71 (g~ 'T'g N HC)\ H are dense in the
corresponding RF Jil—set. It follows that, for almost all x, the closure xUy contains a U—orbit of X.
Hence, (4) follows from (1). O

14 Orbit closure theorems: beginning of the induction

In the rest of the paper, let Ml = T° \Hd be a convex cocompact hyperbolic d—manifold with Fuchsian
ends, and G = SO°(d, 1). Let U < N be a nontrivial connected proper closed subgroup, and H(U) be
its associated simple Lie subgroup of G.

Let £y and 2y be as defined in (5-8) and (5-9). The remainder of the paper is devoted to the proof of
the next theorem, from which Theorem 1.2 follows:
Theorem 14.1 (1) For any x € RFJ,
xHWU)=xLnN Faw),
where x L is a closed orbit of some L € L.

(2) Let xoi be a closed orbit for some L € Fu and x¢ € RF M.
(a) Forany x € xoz NRF4+ M,

xU = xL NRF4 .,

where xL is a closed orbit of some L € 9.
(b) For any x € xoz NRF JM,

xAU = xL NRF M,
where x L is a closed orbit of some L € L.
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(3) Let xoz be a closed orbit for some L € %y and xg € RFM. Let x;L; C xolA, be a sequence
of closed orbits intersecting RF M, where x; € RF+ M and L; € Qy. Assume that no infinite
subsequence of x; L; is contained in a subset of the form yo LoD, where yo Ly is a closed orbit of
Lo € £y withdim Lo < dim LandD C N(U) is a compact subset. Then

lim (x; L; NRF4 M) = xoL NRF, M.

1 —>00
We will prove (1), (2) and (3) of Theorem 14.1 by induction on the codimension of U in N and the
codimension of U in L N N, respectively.

For simplicity, let us say (1), holds if (1) is true for all U satisfying codimy (U) < m. We will say (2),,
(resp. (22)m, (2b)y,) holds if (2) (resp. (2)(a), (2)(b)) is true for all U and L satisfying codimy (U) <m
and similarly for (3),.

Base case of m =0

Note that the bases cases (1)g, and (3)¢ are trivial, and that (2)¢ follows from Theorem 13.1.
We will deduce (1);41 from (2),, and (3),, in Section 16; deduce (2),41 from (1),,41, (2);m and (3),
in Section 17; and finally deduce (3)4+1 from (1)p+1, (2)m+1 and (3),, in Section 18.

Remark 14.2 When codim+

iay W) =1and L ey, we may assume without loss of generality that

UcLONNNH

by replacing U and L by their conjugates using an element m € M.

Remark 14.3 1In the case when x € 0F HU)> Theorem 14.1(1)—(2) follow from Theorem 11.1, and,
if xo € OF HU), (3) follows from the work of Mozes and Shah [2019]. So the main new cases of

Theorem 14.1 are when x, xqg € F;(U).

We will use the following observation:

Singular U —orbits under the induction hypothesis

Recall the notation . (U, xZ) and ¢ (U, xZ) from (5-7).

Lemma 14.4 Suppose that (2a),, is true and that, for x € RF M, xU is contained in a closed orbit xL
for some L € Lu.
(1) If codimz 5 (U) <m + 1, then, for any xo € 7 (U, xf,) NRF4 M,
xoU = xoL NRF A,

where x¢ L is a closed orbit of some subgroup L < L contained in 9y satisfying dim L. < dim L.
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Q) If codimsz(U) < m, then, for any x¢ € 4(U, xZ),
xoU = xoL NRF, M.
Proof Suppose that codimy ,(U) <m + 1 and that xo € (U, xZ) N RF4 Jt. By Proposition 5.13,

we get
xoU C )C()Q

for some closed orbit xo O, where Q € 9y satisfies dim Q. < dim Zm.
Now Q = vLov~! for some Lo € Ly and v € UL. We have xoUv = xovU C xguLg. Since
codimynr,(U) = codimyng(U) < m, by applying (2),, we get
xovU = xouL NRF .l
for some closed orbit xgvL, where L € 9 is contained in L. Therefore
xoU = )cova_1 NRF4 M.
AsvLv~! €9y and dim L, < dim One <dim ch, claim (1) is proved.

To prove (2), note that by (2a),,, we get xoU = xoL N RF4 Al for some closed orbit xo L with L € 9y
such that L C L. Since X0 €9 (U, xi), we have dim L, = dim ch.

Since LCL,LNN isa horospherical subgroup of L. By Theorem 13.1, L N N acts minimally on xL,
and hence L = L. |

15 Generic points, uniform recurrence and additional invariance

The primary goal of this section is to prove Propositions 15.1 and 15.2 in obtaining additional invariances
using a sequence converging to a generic point of an intermediate closed orbit; the main ingredient is
Theorem 7.15 (avoidance theorem II). The results in this section are main tools in the enlargement steps
of the proof of Theorem 14.1.

In this section, we let U < N be a nontrivial connected closed subgroup. We suppose that
e (2);, and (3),, are true;
e xL is a closed orbit for some x € RF M, and Le Lu;
e codimj\(U) <m+1.

We let {U )} be a finite collection of one-parameter subgroups generating U. In the next two propositions,
we let X be a closed U—invariant subset of xoi such that

X DOxLNRFy M
for some closed orbit xL, where L € Oy is a proper subgroup of L and

xe(9WU®D xL)NRF L.
i
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Proposition 15.1 (additional invariance I) Suppose that there exists a sequence x; — x in X, where
x; = x{;r; withx{; € xL NRF M and r; € exp (- —N(U).

Then there exists a sequence v, — oo in (L N N )< such that

xLv, NRFL M C X.

Proof Since r; ¢ N(U), we can fix a one-parameter subgroup Uy = {u; : t € R} in the family {U )}
such that r; ¢ N(Up) by passing to a subsequence.

Let E; for j € N be a sequence of compact subsets in .#(Ug, xL) N RF Jl as given by Theorem 7.15.
Set z; :== x{; e xL NRF M. Fix j € N and n > 1. Since z; — x and x € 4(Up, xL), there exist i; > 1
and an open neighborhood O; of E; such that, for each i > i;, the set

Ti={teR:zju;, e RFM—-0;}
is 2k—thick by Theorem 7.15. We apply Lemma 9.3 to the sequence T;. We can find a sequence
ti =tj(n) € T; fori >i; and elements y; = y;(n), v; = v;(n) satisfying that, as i — oo,
* ziuy — y; € RFMNxL)—0y;
. ut_ilr,-utl. —v; (LN N)* withn < lvjll < (2k?)n.
So, as i — oo,
XiUy = ZiTjuy —> yjv; in X.
Note that, since L is a proper subgroup of L, we have codimynn(U) <m by Lemma 5.11.
If y; belongs to ¢(U, xL), then y;Uv; = xL NRF4 Jl by Lemma 14.4(2), and hence
X D yjv;U =y;Uvj = xLv; NRF4 .
Hence, the claim follows if y; (n) € (U, xL) for an infinite subsequence of n’s.
Now we may suppose that, foralln > 1 and j > 1, y;(n) € (U, xL) N RF A, after passing to a
subsequence. Fix n, and set y; = y;(n) and v; = v, (n). Then, since dimzny U < m, by (2)», we have
(15-1) y;U=y;L; NRF4

for some closed y; L;, where L; € 9 is contained in L and dim(L )pc <dim ch. Write L; = wj_lL} w;
for L} €efyandw; €U L. We claim that the sequence y L=y, wj_lL} w; satisfies the hypothesis (3).
It follows from the condition y; € (RF./M N xL)—0; for all j that no infinite subsequence of y; L; is
contained in a subset of the form yo LoD C (U, xL), where yoLyg is closed, Ly C 2y and D C N(U)
is a compact subset. Hence, by (3),,, we have
limsup y; L; NRF4 M = xL NRF4 M.
J
Therefore, for each fixed n > 1 and y; = y;(n),

lim sup yJ_U =xL NRF M.
J
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By passing to a subsequence, there exists u; € U such that y;u; converges to x. As n < ||v; (n)| < (2k?)n,
the sequence v; (n) converges to some v, € (LNN )1 as j — oo, after passing to a subsequence. Therefore
limsup y;(n)v; (n)U =limsup y; (n)Uv;(n) D xUv, = xLv, NRF4 (l,

J J

where the last equality follows from Lemma 14.4(2), since codimzny (U) < m. O

Note that, in the above proposition, y; = x¥;r; is not necessarily in RF /M, and hence we cannot apply the
avoidance theorem, Theorem 7.15, to the sequence y; directly. We instead applied it to the sequence x/;.

In the proposition below, we will consider a sequence x; — y inside RF Jit, and apply Theorem 7.15 to
the sequence Xx;.

Proposition 15.2 (additional invariance II) Suppose there exists a sequence x; € X NRF M —xL -N(U)
converging to x as i — oo. Then there exists a sequence v; — oo in (N N L)~ such that

xLv;NRFL M CX and xLv; NRFM # @.

The same works for a sequence x; € RF M — xL -N(U) such that limsup x; U C X.

Proof Let x; € RFM —xL -N(U) be a sequence converging to x such that limsup x; U C X. Write
x; =xg; for gi —> e in L. Since L is reductive, we can write g; = £;r;, where {; > e in L and r; — ¢
in exp I as i — co. By the assumption on x;, there exists a one-parameter subgroup Uy = {u; : t € R}
among U @ such that r; ¢ N(Up) by passing to a subsequence.

For R > 0, we set B(R) :={ve (LNN)*+ NL: |v|| < R}. Fix j and n € N. Let E; and O; be as given
by Theorem 7.15 for x L with respect to Ug. Then E; is of the form
Ej = | T\TH;D; NRF M,
iEAj
where H; € »* satisfies dim(H;)y. < dim L. and D; is a compact subset of X(H;,Up) N L. As
B(2k?n) C C(Up), we have DJ*-‘ := D;j B(2k?n) is a compact subset of X(H;, Up). Hence, the set

Ej:= | J "'\I'H; D} NRF M
i€A;
belongs to €y, and is associated to the family {H; :i € A}, as defined in 7.3.

Let £ ]’ € €y, be a compact subset as gi}/en by Theorem 7.13, which is also associated to the same family
{H;:i¢€ Aj};Note that for any z € EJ/ the closure zUy is contained in I'\I'H; D for some i € A ;.
In particular, E]’ isa compaci subset disjoint from ¢ (Up, xL). Since x; — x and x € ¥4 (Uy, xé), theze
exists i; > 1 such that x; ¢ E J/ for all i > i;. By Theorem 7.13, there exists a neighborhood O; of E;
such that, for each i > i;, the set

T, ={t eR:xju; ERFA/L—ﬁj}
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is 2k—thick. Applying Lemma 9.3 to T; and r; — e, we can find ; = ¢;(n) € T; such that ut_ilriuti — v
for some v; =v;(n) € (LN N)L, withn < vl < 2k? -n. Passing to a subsequence, XjUyz; converges to
some X;(n) € REM —0; as i — oo. Set
zi:=x{; and O;:= 6jB(2k2n) NxL.
Since x;uys; = zjuy (u,‘ilriuti), we have
ziug; — yj € RFL MNxL)—0;,
where y; = y;(n) 1= )?j(n)vj_l.

We check that £; C O; as B(2k?n) B(2k?n) contains e. It follows that y; ¢ E;. Since X;(n) € y;Uv; C X,
we have yj_Uv i NRF M # &. Given these, we can now repeat verbatim the proof of Proposition 15.1 to

complete the proof. a
Theorem 2.2 can be proved similarly to the proof of Proposition 15.1:

Proof of Theorem 2.2 Let E; for j € N be a sequence of compact subsets of .#(Up) NRF .l as given
by Theorem 7.15. Fix j € N. Then there exist i; > 1 and a neighborhood O; of E; such that

{t eR:xju; GRFJI/L—@J'}

is 2k—thick for all i > i;. Hence we can find a sequence #; € [-2kT;,—T;] U [T;, 2kT;] such that
xiuy, € RFJM —O; for all i > i;. Hence, by passing to a subsequence, x;u; converges to some
yi € RFM —0; asi — oo. If y; € 4(U) for some j, then (2),, and Lemma 14.4(2) imply that
yj_U = RF4 M, proving the claim.

Now we assume that y; € (U, xZ) for all j. Then, by (2),, and Lemma 14.4(1), we have
yjU=yjL;j NRF+ M

for some closed y; L;, where L; € 9 is a proper subgroup of G. Similarly to the proof of Proposition 15.1,
we can show that the sequence y;L; satisfies the hypothesis (3),,. Hence, by applying (3),, to the
sequence y; L, we get

limsup(y; L; NRF4 M) = RF 4 M.

Therefore limsup y; U = lim supyj_U = RF4; Jl. This, together with Theorem 13.1(4), finishes the
proof. |

16 H(U)-orbit closures: proof of (1),

We fix a nontrivial connected proper subgroup U < N. Without loss of generality, we may assume
U<NNH
using a conjugation by an element of M. We set

HIH(U), H/IH,(U), FIFH(U), F* :F;}(U) and BF:BFH(U).
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By the assumption U < N N H, we have
OF NRFM =BFJM-C(H).

We will be using the following observation:

Lemma 16.1 Let x1L1 and x, L, be closed orbits, where x1,x2 € REM, L1 € Qy and L, € Ly . If
x1L1 NRFM C x3L,, then L1 C Ly and x1L1 C x3L5.

Proof Since L, contains H, we get that x; L1 NRF M- H C x3L5. Suppose that x; L1 N F* # &. We
may assume x; € F*. Recall from (4-5) that F* C RF.l- H. Hence, we have x1 L1 N F* C xL5. Since
F* is open, there exist g1, g2 € G such that [g;] = x;, and g1 L1 N0 C g5 L, for some open neighborhood
O of g;. It follows that Ly N g710 C g7 'g2L>. Since e € g7 g2L2, we have g7 'g2Ls = L,. Since
L is topologically generated by L; N gl_l@, we deduce L1 C Lj. Since x1L1 Nx3L, # @, it follows
that x;1 L1 C x5 Lo».

Now consider the case when x1 L1 N F* = &. In this case, x;1 L1 "RF M C RF MNJF. By Theorem 13.1(4),
we can assume that x;U = x1L1 N RF; M. As x; is contained in BF M - C(H), so is x1U. Tt follows
that x; L is compact and hence is contained in RF /(. Hence, the hypothesis implies that x; L1 C x2L»,
which then implies L; C L, by the same argument as in the previous case. O

Lemma 16.2 Let y; L and y, Ly be closed orbits, where y1 e RF M, y, eRFL M, L1 €9y and L, €Ly .
If yiL1 C y2 L, D for some subset D C N(U), then there exists d € D such that Ly C d~'L,d and
y1ili Cyalod.

Proof By Theorem 13.1(4), we may assume y; U = y; L1 NRF1 /. By the assumption, y; = y»£»d
for some ¢, € L, and d € D. Since y2, = y;d ' and N(U) preserves RF4 M, y,¢, € RF4 L. Hence
we may replace y, by y»£5, and hence assume that y; = y,d. Since

(16-1) yiLi NRFL M = y,dU = y,Ud C yaLod
and F* CRFy M- H, we get yiL1d ' NF*C y,L,.

If yyL1d ' N F* # @, using the openness of F*, the conclusion follows as in the first part of the proof
of Lemma 16.1. Now consider the case when ylle_l N F* = @. In particular, y, = y]d_1 belongs to

RF, Ml — F* C BFAL-N(U)

by (4-7). It follows from Theorem 11.1 that y,U = yzL/2 for some L/2 € 9y contained in L. In view
of (16-1), we get y1 L1 NRF4+ M = yld_lL’zd. Therefore d_lL/zd C Ly. Since y1L1 NRF4 M is
A(L1 N N)-invariant, it follows that d_lL’zd e ¥y and d_lL/zd NN =LiNN. Asaresult, (L1)n =
d_l(L/z)nCd. By Lemma 5.11, we get that L = d_lL’zd Ccd 'Lod and yL; = y2Lhd CyaLad. O
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The following proposition says that the classification of H’—orbit closures yields the classification of
H —orbit closures:

Proposition 16.3 Let x € RF M, and assume that there exists U < U < N such that xH' (17 ) is closed,
and

xH' =xH(U)-C(H)NF.
Then there exists a closed subgroup C < C(H(U)) such that
xH =xH({U)CNF.
Proof By Proposition 4.9 and Theorem 13.1(2), there exists a closed subgroup C < C(H (17 )) such that

H(ﬁ)C €%y and X = xH(ﬁ)C is a closed H(ﬁ)—minimal subset. In particular, xH C X N F. Now,
by Theorem 13.1(3), there exists y € X such that y4 = X NRF M. Since C is contained in C(H) and

xH-C(H)=xH' =xH(U)-C(H)NF,
there exists co € C(H) such that yco € xH. Since yAco = ycoA C xH and ¢ € C(H), it follows that
Xco NRFM C xH C X. Applying Lemma 16.1, we get Xco = xH = X. a
In the rest of this section, fix m € N U {0} and assume that
1 <codimy(U) =m + 1.
In order to describe the closure of x H(U), in view of Theorem 11.1, we assume that
x € F*NRF M.
By Proposition 16.3, it suffices to show that
(16-2) xH' =xLC(H)NF
for some closed orbit xL for some L € L.
In the rest of this section, we set X := xH’ and assume that x H' is not closed, i.e. X # xH'.
We also assume that (2),, holds in the entire section.
Lemma 16.4 (moving from 27 to £yy) If xo LNRF M C X for some closed orbit xo L with xo € RF J,

and L € 9y — %y, then
x1LNRF4 M C X

for some closed orbit xli with x1 € RF M, and Le Py with dim(z N N) > dim(L N N). Moreover, x1
can be taken to be any element of the set lim sup,_, , ., Xoua—; for any u € U.
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Proof By (5-10), we can write L = v~ Lv for some L € Fyandv € (Z NN)Lt. As L ¢ Py, we have
v # e. Set U := L N N. Note that xov_lﬁAv C xoL NRF4 M, as UA < L. Since X is A-invariant,

ov U AvA C X. Let VT be the unipotent one-parameter subsemigroup contained in AvA, and let V
be the one-parameter subgroup containing V+. Then xov ! V+U C X. Since x0A C RF .M and RF M
is compact, limsup,_, ., Xoa— is not empty. Now let x; be any limit of xoua—;, for some sequence
tn — oo and u € U. Since vV 7T is an open neighborhood of e in V, liminf, a,nv_1V+a_tn =V.
Note that, as u € U,

Xoua_y, (atnv_lUV+a_tn) = xov_lUV+a_tn C X.

As a result, we obtain that x; UV C X and hence X1 UVA C X. Since codimy (0 V) < m, the claim
follows from (2a)y,. O

Proposition 16.5 If R := X N F* NRF .l accumulates on 0F, i.e. there exists x, € R converging to a

point in JF, then
X D xoL NRF4 M

for some closed orbit xo L with xg € F* NRF M and L € Ly such that dim(L N N) > dim U.

Proof There exist x, € R which converge to some z € BFJl - C(H) as n — co. We may assume
z € BF M without loss of generality, since R is C(H )—invariant. We claim that R C X contains z;v,
where z; € BF M and v € V- {e}. Write x,, = zhy,r, for some h, € H and I'n € epol, where HJ-
denotes the Ad(ﬁ )—complementary subspace to Lie(ﬁ ) in g. Since x, € F* and z € BF ., it follows
that r, ¢ C(H) for all large n. By Lemma 3.2 and (3-5), we have

N(U) Nexp(h N0O) C V C(H)

for a small neighborhood O of 0 in g. Therefore, if r,, € N(U) for some n, then the I\//—component of ry
should be nontrivial. Hence, by Theorem 11.1, X D W rn = zhy, Lry, for some L € 9y contained
in H. Note that Xp = zhyr, € F* and that rn_lLrn €9y — Py, since ry, € V- {e}. Hence the claim
follows from Lemma 16.4.

Now suppose that r,, ¢ N(U) for all n. Then there exists a one-parameter subgroup Uy = {u;} < U such
that r,, ¢ N(Up). Applying Lemma 9.3, with a sequence of k—thick subsets

T(xp):={t € R:x,u; € RFAM},

we get a sequence f, € T(xy) such that ug, Ly 1, converges to nontrivial element v € V. Since zhyuy, € zH
and z H is compact, the sequence zh,u,, converges to some zj € z H, after passing to a subsequence.
Then

(16-3) Z1v = lim(zhnut”)(ut_nlrnutn) € X NRF M.

Since z; e BFM and v € vV {e}, zyv € RF .l implies that z;v € F*, and hence z1v € R. This proves
the claim.

Geometry & Topology, Volume 28 (2024)



Orbit closures of unipotent flows for hyperbolic manifolds with Fuchsian ends 3459

Now, by Theorem 11.1, 21_U = z1 L for some L € 9 contained in ﬁ, and hence
X D> z1vU =z;0v = (z1v) (v Lv).

Since v e V — {e}, v 1Lv ¢ $y. Therefore, by Lemma 16.4, it suffices to prove that there exists u € U
such that

(16-4) (F* NRF.t) Nlim sup zyuva—; # 2.

t—>+o00

Let g1 € G be such that z; = [g1], and set A(_oo,—] :={a—s:5 >t} fort > 0. Since z;v € F* NRF MM,
the sphere (gvU)~ U g™ intersects A — U; B; nontrivially. Let u € U be an element such that (gvu)~ €
A-U; B;. As zyvu € RF M, w(zuvA) C core M. Take & > 0 small enough that the s—neighborhoods of the
hull B; are mutually disjoint. If (16-4) does not hold for zjuv, then there exists 7 > 1 such that the geodesic
ray 7w(z1vuA(—00,—s]) is contained in the e—neighborhood of d core M (see the proof of Lemma 8.8).
As m(g1uvA(—c0,—¢]) is connected, there exists B; such that 7 (g1uvA(_oo,—]) is contained in the e
neighborhood of hull B;. This implies that (g;uv)™ € dB;, yielding a contradiction. This proves (16-4). O

Proposition 16.6 The orbit x H' is not closed in F*.

Proof Suppose that xH' is closed in F*. Since we are assuming that x H’ is not closed in F, xH’
contains some point y € dF. Since dF = BF.MV+ C(H), we may assume y € BFAL- V. Write y = zv,
where z e BE Ml and v € V. If v + e, zvH' intersects BF Il by Theorem 11.5. Therefore x H' always
contains a point of BF L, say z. Let x, € xH' be a sequence converging to a point z. Since xH' C F*,
there exist k,, € H N K converging to some k € H N K such that x,k, € xH' NRF4 M and x,k, — zk.
Then zk € BFAM - H' = BFM C(H). Since x,k, € RFAL-U by Lemma 4.5, there exists u, € U such
that x, k,u, belongs to RF .l and converges to a point in dF by Lemma 8.6. Hence X N F* NRF .
accumulates on dF. Now the claim follows from Proposition 16.5. O

This proposition implies that
(16-5) (X —xH)N(F*NRF.M) # 2.

Roughly speaking, our strategy in proving (1), is first to find a closed L—orbit xo L such that xoL N F
is contained in X for some L € Ly . If X # xoL C(H) N F, then we enlarge xo L to a bigger closed orbit
x1L for some L € L, for some U properly containing U, such that x1L N F is contained in X.

It is in the enlargement step where Proposition 15.1 (additional invariance 1) is a crucial ingredient of
the arguments. In order to find a sequence x; accumulating on a generic point of xoL satisfying the
hypotheses of the proposition, we find a closed orbit xo L with a basepoint x¢ in F* NRF ., and enlarge
it to a bigger closed orbit, again based at a point in F* N RF.Il. The advantage of having a closed orbit
xL with x € F* NRF J is that any Up—generic point in xL N RF .l can be approximated by a sequence
of RF M~points in F* N xL by Lemma 8.3. The enlargement process must end after finitely many steps
for dimension reasons.
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Finding a closed orbit of L € ¥y in X

Proposition 16.7 There exists a closed orbit xoL with xg € F* NRF M and L € Ly such that

xoL NRFL M C X.

Proof Let R:= X N F*NRF.. If R is noncompact, the claim follows from Proposition 16.5. Now
suppose that R is compact. By (2a),, it is enough to show that X contains an orbit zU, and hence zU A,
for some U < N properly containing U and z € R. By Proposition 10.9, it suffices to find a U—-minimal
subset Y C X with respect to R and a point y € ¥ N R such that X — yH’ is not closed.

If xH’ is not locally closed, then take any U-minimal subset Y of X with respectto R. If Y N R C xH'’,
then choose any y € Y N R. Then X — yH’ = X —xH' cannot be closed, as x H' is not locally closed. If
Y N R ¢ xH’, then choose y € (Y N R) —xH'. Then X — yH’ contains x H' and hence cannot be closed.

If xH' is locally closed, then X —xH’ is a closed H’—invariant subset which intersects R nontrivially. So
we can take a U-minimal subset Y C X — x H’ with respect to R. Take any y € Y N R. Then X — yH'
is not closed. |

Enlarging a closed orbit of L € ¥y in X

Proposition 16.8 Assume that (3),, holds as well. Suppose that there exists a closed orbit xo L for some
xo € F*NRFM and L € ¥ such that

(16-6) xoLNRFy M C X and X # xoL-C(H)NF.

Then there exists a closed orbit xlz for some x1 € F* N RF M and Le $0 for some U < N with
dim U > dim(L N N) such that
x1L NRFL M C X.

Proof Note that, if X C xoL-C(H), then X = xoL-C(H)N F. Indeed, this can be seen from the identity
xoL-C(H)N F = (xoL NRF M) C(H). Therefore we assume that X ¢ xoL - C(H). First note that
the hypotheses imply that L # G, and hence codimynn (U) <m. Let UD ..., U®D be one-parameter
subgroups generating U. Similarly, let U_f_l), ey U_f_l) be one-parameter subgroups generating U ™. By

Theorem 13.1, ﬂll-=1 9 (Uj(ci), xoL) # &. Therefore, without loss of generality, we can assume

l
(16-7) xo € (WU xoL).

i=1

Let us write L = H(l~])C for some U < N and a closed subgroup C of C(H(ﬁ)). Note from the
hypotheses that we have
(xoLNRF4 M) -H' C X.
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Observe that (16-6) implies that x ¢ xoL - H' = xoL - C(H). Since C < C(H), we have x ¢ xoH(O).
Now choose a sequence w; € H' such that xw; — x¢, as i — oo. Write xw; = xog;, where g; — ¢ in
G — LH'. Let us write g; = £;r;, where {; € L and r; € exp (+. In particular, r; ¢ C(H). Let x; = xof;,
so that x;r; € X.

We claim that we can assume that x; € RFJM N xoL, r; ¢ C(H) and x;r; € X. Since xg € F*, by
Lemma 8.3, we can find w; — w’ € H such that xof; w; € RF M, and xow’ € ﬂﬁzl %(U(Z), xoL); hence
xow'U = xoL NRF4+ .

Writing x] = xof; w; and r/ = wlf_lri w;, we have

xl{rl-/ =xw,~wl{ € X,
where x] — xow’ in xoL NRF.(L, and r/ — e in exp (L. Since F* is H'—invariant, we have xow’ € F*.
Since F* is open and xow’ € F*, it follows that x; € X NRF L N F* for sufficiently large i. Note that
r{ ¢ C(H), as r; ¢ C(H). This proves the claim.

We may assume r; ¢ N(U) for all i, up to switching the roles of U and U™, by Lemma 3.5. Note that
x; — x¢o in RFJM N xoL and x¢ satisfies (16-7). As we are assuming (2),, and (3),,, we may now apply
Proposition 15.1 to the sequence xof;r; — x¢ to obtain a nontrivial element v € UL such that

xoLvNRFL M C X.

Since xg € F* NRF M, it follows from Lemma 8.12 that there exist x, € F* NRF .M and a connected
closed subgroup U<N properly containing L N N such that

xzﬁ ACX.
Since codim N(ﬁ ) < m, it remains to apply (2a),, to finish the proof of the proposition. O
Proof of (1),,41 Combining Propositions 16.7 and 16.8, we now prove:
Theorem 16.9 If (2),, and (3),, are true, then (1),+1 is true.

Proof Recall that we only need to consider the case X = xH’, where x € F* and xH’ is not closed
in F*. By Proposition 16.7, there exists xo € F* NRF M and L € Ly such that x¢L is closed and

xoLNRFL M C X.
Since X is H’—invariant, it follows that
(16-8) (xoLNRF4 M)-H' C X.

Note that (xoL NRF M)- H' = xoL-C(H) N F is a closed set. We may assume the inclusion in (16-8)
is proper, otherwise we have nothing further to prove. Then, by Proposition 16.8, there exists Le Lo
for some U < N properly containing L N N and a closed orbit x1L with x; € F* NRF A such that

xiLNRFy M CX.If
(leﬂRF_|_./‘/L)-C(H) 75 X,
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then we can apply Proposition 16.8 on
x1L NRF4 M C X,

as £5 C Ly. Continuing in this fashion, the process terminates in a finite step for dimension reasons,
and hence

X = LNRFM)-H =x1L-C(H)NF
for some L € Lu. O

17 U-and A U-orbit closures: proof of (2),,,1

In this section, we fix a closed orbit xoi for xo € F* and Le Py. Let U < L N N be a connected

closed subgroup with codimy -\, U <m + 1. By replacing U and L by their conjugates using an element

m € M, we may assume that
UcLnHNN.

We keep the same notation H, F, dF, F* etc from Section 16. If x € RF MNIF (resp. if x e RFMNIF),
then (2a) (resp. (2b)) follows from Theorem 11.1.

We fix x € REM N xgL N F*, and set
(17-1) X :=xU

and assume that X # xoL N RF4 M. This assumption implies that U is a proper connected closed
subgroup of LN N and hence dim(Z NN)>dimU > 1.

By Proposition 5.16, either xoz is compact or . (U, x¢ Z) contains a compact orbit zL¢ with Lg € Ly .
If xoz is compact, then (2),,+1 follows from Theorem 11.1. Therefore we assume in the rest of the
section that

17-2) (U, xOZ) contains a compact orbit zLg with Lo € L.

Lemma 17.1 Assume that (1);,4+1 and (2),, hold. Then

xAU N7 (U, xoz) #+ .

Proof Since (1),,+1 is true, we have
xH=xQNF

for some Q € Ly such that xQ is closed. By Lemma 16.1, 0 < L. It follows from Lemma 5.11 that
either Q = L or dim(Q NN) < dim(z N N). Suppose that Q = L. By (17-2), there exists a compact
orbit zLo C (U, xOZ) for some Lo € L. On the other hand, xoLNF=xH = xAU (K N H). Hence,
for some k € KN H, zk € xAU. Since H C Ly, zk € zL¢. So xAU intersects z L, proving the claim.
If dim(Q N N) < dim(L N N), then XAU C xQ C #(U, xoL). O
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Lemma 17.2 Assume that (1);;,+1 and (2),, hold. Then

xUN.7 (U, xoL) # @.
Proof Since
(17-3) (xoL NRF4 M) — F* C (U, xoL),

it suffices to consider the case when X :=xU C F*. Let Y C X be a U—minimal set with respect to RF (L.
Since Y C F*, by Proposition 10.6, there exists an unbounded one-parameter subsemigroup S inside
AUL CL(U)N L such that YS C Y. In view of Lemma 3.3, we could remove the C,(U)—component
of § so that S is either of

o v 1A% for a one-parameter semigroup AT C Aandv e UL N L, or

o VT for a one-parameter semigroup VT c UL N L,

and
YS C X(C2(U)NL).

Since .7 (U, xof,) is invariant by N C,(U) N L, it suffices to show that
X(N Co(U)NL)YN.#(U,xoL) # 2.

If S =v 'A%v, then Yo~ 14T Cc Xv~ 1 (Co(U)N Z). Choose y € Y. We may assume that yv~! € F*

by (17-3). Then, replacing y with an element in yU if necessary, we may assume yv~— ' € REl N F*.

1

Choose a sequence a, — oo in AT. Then yv~'a, converges to some yo € RF.Il by passing to a

subsequence. Since liminfa, ' AT = A, and

(v lan) (@, AT) c Xo N (C(U) N L),
we obtain that
yoA C Xv™ N (Co(U) N L).

Since ygAU C Xv~1(Co(U)N Z) and yoAU meets .7 (U, xoi) by Lemma 17.1, the claim follows.

Next, assume that S = VT, sothat Y VT C X Co(U) N L. Let v, — 00 be a sequence in V. We have
Yv, C X C F*. Together with the fact that Y v, is U—invariant, this implies Y v, meets RF /(. Note that

Yu, (v, V) C X(CL(U)NL).

Choose y, € Yv, NRF M. As RFl is compact, y, converges to some yg € RF.l, by passing to a
subsequence, and hence
yoUV C X(Co(U)NL).

Since codimy (U V') < m, the conclusion follows from (2),. |
Lemma 17.3 Assume that (1);;,+1 and (2),, hold. Then
xUNZU,xoL)NF* # 2.
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Proof By Lemma 17.2, there exists y € xU N.7(U, xof,). Hence, by (2),
yU = yLNRFy M C xU

for some L € 9y properly contained in L. Consider the collection of all subgroups L € 9y such that
yL C xU for some y € RF4 .. Choose L from this collection so that L N N has maximal dimension. If
yL N F* # &, then the claim follows.

Now suppose that yL C dF. As y € RF4 M N JF, we have

Y =ZVoCo

for some z € BF M, vg € V+ and co € C(H). Since y € xU, there exists u; € U such that xu; converges
to y as n — oo. Set

Zj :=xu,-c0_1v61 exUcylvg?,

50 zj — z. As vg € VT and hence val € V™ and xu; € F*, we have z; € F* NRF4 M CRFM-U. By
Lemma 8.6, we may modify z; by elements of U so that z; € RF .M and z; converges to some zg € zH.
Write z; = zgl;r; for some {; € H and ri € exp HJ- converging to e. Since z; € F* and zo{; € 0F, we

have r; # e. By Theorem 11.1, we have zol; U = zo¥; L; for some L; € 9y contained in H.

Casel (r; e N(U) for some i) Then

xU = zolirivocoU = zol; U (rivoco) = zofi Li(rivoco).
As xU # xoL by the hypotheses, it follows that x € .7 (U, xoL) N F*, proving the claim.

Case2 (r; ¢ N(U) for all i) Then there exists a one-parameter subgroup Uy < U such that r; ¢ N(Up)
for all 7, by passing to a subsequence.

By Lemma 9.3, we can find u;, — oo in Up such that z;u;; € RF .l and ut_il Iiuy; converges to a nontrivial
element v € V, whose size is strictly bigger than ||vg||. As zof;u;, is contained in the compact subset zg H,
we may assume that zo{;u;, converges to some z’ € zo H. Hence

ziuy, = zoliuy, (ut_ilr,-utl.) — /v eRFMNxUcy vy .
Since z/ € BF.Al and z’v € RF.{l, we have v € V™.
By Theorem 11.1, z’U = 2z’ Q; for some Q1 € Q. Since z'vvgco € XU, we get
xU Dz 01(vvo)co.

Since the size of v is larger than the size of vg, vvg is a nontrivial element of V. Since z’ 01 CBF MM,
the closed orbit z’ Q1 (vvg)co meets F*. O

Theorem 17.4 Assume that (1)1, (2)m and (3)y, are true. Then (2)y,+1 is true.

Proof We first show (2a),,+1 holds for X = xU. By Lemma 17.3 and (2),,, there exists a closed orbit
yL with y € F* and L € 9y such that

xU D yL NRF4 .l

Geometry & Topology, Volume 28 (2024)



Orbit closures of unipotent flows for hyperbolic manifolds with Fuchsian ends 3465

and LN N # LN N. We choose L € 2y so that dim(L N N) is maximal. Note that codimzny U < m.
By Theorem 13.1, we can assume that

[
(17-4) ye(9WP, yLyn F* NRF.L,

i=1

where UV ... U®D are one-parameter subgroups generating U. As y € xU, there exists u; € U such
that xu; — y as i — oo. Since y € F*, we can assume xu; € RF.l, after possibly modifying u;, by
Lemma 8.6. We will write xu; = y{;r;, where £; € L and r; € exp LNnL.

Casel (r; e N(U) for some i) Then y¢; € RF4 M and X = xu; U = y£;Ur;. Since y£; U C yL, and
codimy,~n (U) < m, we have
X =yliUri = yﬁ,'L’r,' NRF4 M

for some L' € 9y, proving the claim.

Case2 (r; ¢ N(U) foralli) By (17-4), we can apply Proposition 15.2 to the sequence xu; — y and
obtain a sequence v; — oo in (LN N )1 such that

yLv; NRFy M C X.

Since y € F*, by Lemma 8.10, there exists a one-parameter subgroup V C (L N N)T such that
y1(LNN)V C X for some y; € F* NRF .. Hence, by (2),,, we get a contradiction to the maximality
of L N N; this proves (2a),;41.

Now we show (2b),, 41 for the closure xAU. By (1);+1, we have xH = xL N F for some L € Ly
contained in L. Hence XAU C xL N RF J. It suffices to show that

(17-5) xAU = xL NRF4 M.

If U = LN N, then xU = xL NRF4 .l by Theorem 13.1, which implies (17-5). So suppose that U is a
proper closed subgroup of L N N. Since xAU (K N H) = xH = xL N F, it follows from Lemma 5.15
that we can choose y € xAU N¥ (U, xL). By (2a),,+1 and Lemma 14.4, we have yU = xL NRF; (. O

18 Topological equidistribution: proof of (3),,+1

In this section, we prove (3),+1. Let U < N be a nontrivial connected closed subgroup. Let xoL be
a closed orbit for xo € F* NRF M and L € %y such that codim v (U) = m + 1. As before, we may
assume that U ¢ LN H N N.

Let x;L; C xoz be a sequence of closed orbits intersecting RF Jil, where x; € RF+ M and L; € 9. We
write x; L; as y; L;v;, where y; e RF4 M, L; € Ly and v; € (L; N N)J- N L. Assume that no infinite
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subsequence of y; L;v; is contained in a subset of the form yoLoD C 7 (U, xof,), where ygLg is a
closed orbit for some Ly € £y and D C N(U) is a compact subset. Let

E =limsup(y; L;v; N RF4+ M).

i—00
Note that liminf; oo (y; Liv; N RF4 M) coincides with lim sup(y;, Li, vi, N RF4 M) for all infinite
subsequences {i; : k € N} of N. If the hypothesis (3),,+1 holds for a given sequence y; L;v;, then it
also holds for all subsequences. Hence, to prove (3);+1, it suffices to show that

E =RF4 M NxoL.

We note that, by (3),,, we may assume that
LiNnN=U forall i.

This in particular implies that each y; L;v; N RF4 Al is U-minimal by Theorem 13.1.
Lemma 18.1 Assume that (1),+1, (2)m+1 and (3),, are true. Then there exist y € F* NRF M and
L € 9y withdim(L N N) > dim U such that yL is closed and

E D yLNRF4 M.
Proof By (2),,, it suffices to show that there exist yg € F* NRF Al and U<N properly containing U

such that
EDyoU.

Suppose that y; L;v; C oF for infinitely many i. Since y; L;v; NRF M # &, we may assume y;v; €
Z,'ﬁ C(H) for some z; € BE.Ml by (4-7). Since L; N N = U, we get y;L;v; = y;U C Z,-ﬁ C(H) by
Theorem 11.1. This contradicts the hypothesis on the y; L;v;.

Therefore, by passing to a subsequence, for all i,
yiLivi NRF4 M N F* # .
Since AU < L; for all i, it follows that

E = limsup(y; L;v; N RF4 M) (v; ' AUv)).
i—00
By Lemma 8.9, there exists yo € lim sup; (y; L;v; NRF4 ) N F*. Hence
(18-1) yo limsup(v; ' AUv;) C E,
i—>00

after passing to a subsequence.
If v; — oo, then lim sup; (vl._lAle-) contains AU for some U properly containing U by Lemma 3.4.
Therefore, we get the conclusion yoﬁ C E from (18-1). Now suppose that, by passing to a subsequence,
v; converges to some v € N N L. Then (18-1) gives

yov_lAUv C E.
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Then, by (2)m+1, yov~ L AU is of the form yov ™! Lo N RF Jl for some Lo € $y. Hence,
(18-2) E D yoL NRF4 M,

where L :=v "' Lov. If LN N contains U properly, this proves the claim. So we suppose that LN N = U.
By Theorem 13.1, we can assume that yg € ﬂll-=1 %(U(i), yoL) N F* NRF M, where U . UD are
one-parameter subgroups generating U. By replacing y; by an element of y; L N RF Jl, we may assume
that y; v; — yo. Furthermore, as yg € F* NRF JL, for all i sufficiently large, y;v; € F*NRF4+ M CRFM-U
(as F* is open). Hence we can also assume y;v; € RF .l by Lemma 8.7. Therefore we may write

yivi = yoliri
for some £; — e in L and nontrivial r; — e in exp (.
Suppose that r; belongs to N(U) for infinitely many i. Then
yiLivi NRF4 M = y;v;U = yol;Urj = yoLri NRF4 AL.

Hence y; Ljv;r; ~1 N RF4 M = yoL NRF4 L. In particular, yiLivir; 1' N RF.Jl is nonempty (as it
contains yg) and is contained in ygL. By Lemma 16.1, this implies that viLiv; C yoLri. Asr; — e,
this contradicts the hypothesis on the y; L;v;.

Therefore r; ¢ N(U) for all but finitely many i. We may now apply Proposition 15.2 and Lemma 8.10
to deduce that E contains an orbit zoU for some U < L N N containing U properly and for some
zo € RF4 M N F*. O

Theorem 18.2 If (1),,41, (2)m+1 and (3)y, are true, then (3),,,+1 IS true.

Proof We claim that

(18-3) xoL NRF4 M = E.

By Lemma 18.1, we can take a maximal U such that E O y(7 for some y € F* NRF M. By (2),, we
get a closed orbit yL for some L € 95 such that

(18-4) YyLNRFL M CE.

If L = L, then the claim (18-3) is clear. Now suppose that L is a proper subgroup of L. This implies
that L N N is a proper subgroup of LN N,since LN N acts minimally on xoL N RF; M as Le u.
By Theorem 13.1, we can assume that y € ﬂ5=1 gU®, yL)yn F* NRFM, where UMD ... UD
are one-parameter subgroups generating U. As y € E, there exists a sequence x; € y; L;v; N RF4 M
converging to y, by passing to a subsequence. Since U = vi_lL,-v,' N N, we have x; € RF.l-U. By
Lemma 8.7, by replacing x; with x;u; for some u; — e in U, we may assume x; € RF L.

We claim that
xi ¢ yLN(U).
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Suppose not, i.e. x; = y€;r; for some ¢; € L and r; € N(U). Then
yiLivi NRF4 M = x;U = yliUri C yLr;.
By the assumption on the y; L;v;, this cannot happen as the r; are bounded.

On the other hand, dim(L; N N) is strictly smaller than dim(L N N), since L; NN = U and U<LNN,
yielding a contradiction. Hence x; ¢ yL N(U).

We can now apply Proposition 15.2 and Lemma 8.10 and deduce that E contains ylﬁ V for some
y1 € F* NRF .. This is a contradiction to the maximality assumption on dim U. a

Proof of Theorem 1.7 We explain how to deduce this theorem from Theorem 14.1(3). For (1), we
may first assume that P; have all same dimension, so that, for some fixed connected closed subgroup
U<N, P, =n(x;H'(U)), where x; H'(U) is a closed orbit of some x; € RF.l. Then there exists
L; € %y such that x; L; is closed and P; = m(x; L;) by Proposition 4.9. We claim that the sequence
x; L; satisfies the hypotheses of Theorem 14.1(3). Suppose not. Then there exist a closed orbit yg L with
Lo € £y and Lo # G and a compact subset D C N(U) such that x; L; C yg LoD for infinitely many i.
By Lemma 16.2, this can happen only when L; C di_lLodi and x; L; C yoLod; for some d; € D. Since
D CNWU) C Lo(LoN N)J-M, we may assume that d; € (Lo N N)J-M. Since AC L; C di_lLodl-, we
have d; € M. This implies that P; = w(x; L;) C w(yoLodi) = w(yoLo). By the maximality assumption
on the P;, it follows that P; is a constant sequence, yielding a contradiction. Hence, by Theorem 14.1(3),
lim(x; L; NRF4 M) = RF4+ M. Since w(RF4+ M) = F\Hd, the claim follows.

(2) follows from Corollary 5.8.

For (3), if there are infinitely many bounded properly immersed P;, then lim P; = M by (1). On the
other hand, P; C core ., because any bounded H’(U )-orbit should be inside RF L. Since core [l is a
proper closed subset of M, as Vol(.it) = oo, this gives a contradiction. |

Remark 18.3 In fact, when Jl is any convex cocompact hyperbolic manifold of infinite volume, there
are only finitely many bounded maximal closed H'(U )-orbits, and hence only finitely many maximal
properly immersed bounded geodesic planes. The reason is that, if not, we would have infinitely many
maximal closed orbits x; L; contained in RF M for some L; € ¥y, and, for any U—invariant subset
E contained in RF M, the 1-thickness for points in E holds for any one-parameter subgroup of U for
the trivial reason, which makes our proof of Theorem 14.1 work with little modification (in fact, much
simpler) for a general JiL.

Appendix Orbit closures for I' \ G, compact case

In this section we give an outline of the proof of the orbit closure theorem for the actions of H(U) and U,
assuming that I'\ G is compact and that there exists at least one closed orbit of SO°(d — 1, 1). We hope
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that giving an outline of the proof of Theorem 14.1 in this special case will help readers understand the
whole scheme of the proof better and see the differences with the infinite-volume case more clearly.

Note that, in the case at hand,

Without loss of generality, we assume that U € SO°(d —1,1) N N.

Theorem A.1 Let x € I'\G.

(1) There exists L € Ly such that
xHU)=xL.

(2) There exists L. € 9y such that
xU =xL.

The base case (2)¢ follows from a special case of Theorem 13.1. For m > 0, we will show that (2),,
implies (1);+1, and that (1),+1 and (2),, together imply (2),,+1.

We note that, when '\ G is compact, we don’t need the topological equidistribution statement, which is
Theorem 14.1(3), to run the induction argument, thanks to (2-6). In order to prove (1),,+1, it suffices to
use (2),, only when the ambient space is '\ G; in the proof of Theorem 14.1, we needed to use (2),
whenever codim,, 7+ U < m for any closed orbit xoz containing xU (this was needed in order to use
the results in Section 15).

Remark A.2 Theorem A.l was proved by Shah (unpublished, 1992) by topological arguments. Our
proof presented in this appendix is somewhat different from Shah’s in that we prove that (1),, implies
(2)m using the existence of a closed SO°(d —1, 1)—orbit, while he shows that (2),, implies (1),.

Proof of (1),,4+1 We assume that 1 < codimy U = m + 1. By Proposition 16.3, it suffices to show that
X :=xH'(U)=xLC(H(U)) for some L € L. Assume that x H'(U) is not closed in the following.

Step 1: find a closed orbit inside X We claim that X contains a U-minimal subset Y such that X —yH’
is not closed for some y € Y (see the case when R is compact in the proof of Proposition 16.7). If
xH'(U) is not locally closed, then any U-minimal subset Y C X does the job. If xH'(U) is locally
closed, then any U-minimal subset Y of X —xH’(U) does the job; note that the set X —xH'(U) is a
compact H'(U)-invariant subset and hence contains a U-minimal subset.

Hence, by Proposition 10.9, X contains an orbit xoU with dim U > dim U. By (2);; and Lemma 16.4, X
contains a closed orbit zL for some L € £y7. We may assume that X # zL C(H(U)); otherwise, we are
done.
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Step 2: enlarge a closed orbit inside X Since zL is compact, by Theorem 13.1, we can assume
that ZU:E) is dense in zL, where Uj(cl), cees Uj(ck) are one-parameter subgroups of U* generating U+,
Note that there exists g; — ¢ in G — L C(H(U)) such that zg; € X. We can write g; = {;r;, where
ri eexpltand ¢; € L. Thenr; ¢ C(H(U)). Since ﬂle (N(Uf)) NN(UD)) Nexp [+ is locally contained
in C(H(U)), we have r; ¢ N(Up), where Uy is one of the subgroups Uj(ti). If Ug € {UJ(:)}, then replace
UbyUT.

Fix any k& > 1. Applying (2-6) to the sequence z; := z{; — z, the set
i
(A-1) T(zi) := {teR:ziu,eF\G— U ©j}
ji=1

is a k—thick subset (take 0 < ¢ < 1 —1/k). By Lemma 9.3, there exists #; € T(z;) such that ut_l,lriu,l.
converges to a nontrivial element v € (L N N)+. Now the sequence Ziuy; converges to zg € 4(Up, zL).
Since zg;u;, converges to zov, we deduce

zLv=2z9vUp C X andhence zLV™T CzL(AvA)C X,

where V' is the one-parameter unipotent subsemigroup contained in AvA. Take any sequence v; — 00
in V't such that zv; converges to some xo. Then xoV C lim sup(z v;)(v;” 1y +) c X and hence X contains
xo(L N N)V. By the induction hypothesis (2),, and Lemma 16.4, X contains a closed orbit of L for
some L € & - This process of enlargement must end after finitely many steps.

Proof of (2),,4+1 Set X := xU. We assume that X # I'\G. Since the codimension of U in N is at
least 1, we may assume without loss of generality that U < N N'SO°(d — 1, 1) using conjugation by an
element of M.

Step 1: find a closed orbit inside X By the hypothesis on the existence of a closed L := SO°(d—1, 1)-
orbit, .7(U) # @. It follows from (1)m+1, (2)m and the cocompactness of AU in H'(U) that any
AU —orbit closure intersects .7 (U) (see the proof of Lemma 17.1).

We claim that X intersects (U ). Since . (U) is N Cp(U )—invariant, it suffices to show that XN C,(U)
intersects .(U). Let Y C X be a U-minimal subset. Then there exists a one-parameter subgroup
S < AU+ C,(U) such that Yg =Y for all g € S by Proposition 10.6. Strictly speaking, the cited result
gives Yg C Y for g in a semigroup S, but, in the case at hand, Yg C Y implies Yg = Y, since Yg
is U-minimal again, and hence Yg~! = Y as well. In view of Lemma 3.3, we get YA C XN C(U)
or YvA C XN C,(U) for some v € N. In either case, XN C»(U) contains an AU—orbit and hence
intersects . (U ). So the claim follows. Since X intersects . (U), by applying (2),,, X contains a closed
orbit zL for some L € 9.

Step 2: enlarge a closed orbit inside X Suppose L # G and X # zL. It suffices to show that X
contains a closed orbit of L for some L € L for some U properly containing L N N. We may assume
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X ¢ zL C(H(U)); otherwise, the claim follows from (2),,. We may assume z € ﬂle gU®, yL),
where the U are one-parameter generating subgroups of U. Take a sequence xu; — z, where u; € U,
and write xu; = z{;r;, where {; € L and r; € exp(I+). The case of r; € N(U) for some i follows
from (2),, (see the proof of Theorem 17.4). Hence we may assume r; ¢ N(U), and, by passing to a
subsequence, r; ¢ N(Up) for some Uy € {U D},

Fix any k > 1. Then T(z;) as in (A-1) is a k—thick subset. We now repeat the same argument of a step in
the proof of (1),+1. By Lemma 9.3, there exists #; € T(z;) such that ut_l.l riuy, converges to a nontrivial
element v € UL, Now the sequence z; Uy, converges to zg € 4(Up, zL). Hence X D Z()(L—ﬂN)v =zLv.
Moreover, by Lemma 9.3, such a v can be made of arbitrarily large size, so we get X D zLv; for a
sequence v; € (LN N )1 tending to co. The set lim sup i 00 vj_lAv j contains a one-parameter subgroup
V C (LN N)L by Lemma 3.4. Passing to a subsequence, there exists y € liminfzLv ; and hence
X D limsup(zLv;) D y(L N N) limsup(v; ' Av;) D y(LON)V.
j—o00 J—>00

Hence X contains y(L N N)V, and hence the claim follows from (2),.
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