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We establish an analogue of Ratner’s orbit closure theorem for any connected closed subgroup generated by
unipotent elements in SO.d; 1/ acting on the space �nSO.d; 1/, assuming that the associated hyperbolic
manifold MD �nHd is a convex cocompact manifold with Fuchsian ends. For d D 3, this was proved
earlier by McMullen, Mohammadi and Oh. In a higher-dimensional case, the possibility of accumulation
on closed orbits of intermediate subgroups causes serious issues, but, in the end, all orbit closures of
unipotent flows are relatively homogeneous. Our results imply the following: for any k � 1,

(1) the closure of any k–horosphere in M is a properly immersed submanifold;
(2) the closure of any geodesic .kC1/–plane in M is a properly immersed submanifold;
(3) an infinite sequence of maximal properly immersed geodesic .kC1/–planes intersecting core M

becomes dense in M.
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1 Introduction

Let G be a connected simple linear Lie group and � < G be a discrete subgroup. An element g 2G is
called unipotent if all of its eigenvalues are one, and a closed subgroup of G is called unipotent if all
of its elements are unipotent. Let U be a connected unipotent subgroup of G or, more generally, any
connected closed subgroup of G generated by unipotent elements in it. We are interested in the action
of U on the homogeneous space �nG by right translations.

If the volume of the homogeneous space �nG is finite, i.e. if � is a lattice in G, then Moore’s ergodicity
theorem [1966] says that, for almost all x 2 �nG, xU is dense in �nG. While this theorem does not
provide any information for a given point x, the celebrated Ratner’s orbit closure theorem [1991b], which
was a conjecture of Raghunathan, states that

(1-1) the closure of every U –orbit is homogeneous,

that is, for any x 2 �nG, xU D xL for some connected closed subgroup L<G containing U. Ratner’s
proof is based on her classification [1991a] of all U –invariant ergodic probability measures and the work
of Dani and Margulis [1991] on the nondivergence of unipotent flow. Prior to her work, some important
special cases of (1-1) were established in [Margulis 1989; Dani and Margulis 1989; 1990; Shah 1994;
1991a] by topological methods. This theorem is a fundamental result with numerous applications.

It is natural to ask if there exists a family of homogeneous spaces of infinite volume where an analogous
orbit closure theorem holds. When the volume of �nG is infinite, the geometry of the associated locally
symmetric space turns out to play an important role in this question. The first orbit closure theorem in the
infinite-volume case was established by McMullen, Mohammadi and Oh [McMullen et al. 2017; 2016]
for a class of homogeneous spaces �nSO.3; 1/ which arise as the frame bundles of convex cocompact
hyperbolic 3–manifolds with Fuchsian ends.

Our goal in this paper is to show that a similar type of orbit closure theorem holds in the higher-dimensional
analogues of these manifolds. We present a complete hyperbolic d–manifold MD �nHd as the quotient
of the hyperbolic space by the action of a discrete subgroup

� < G D SOı.d; 1/' IsomC.Hd /;

Geometry & Topology, Volume 28 (2024)
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convex core

Fuchsian end Fuchsian end

S2 � .0;1/ S1 � .0;1/

Figure 1: A convex cocompact hyperbolic manifold with nonempty Fuchsian ends.

where SOı.d; 1/ denotes the identity component of SO.d; 1/. The geometric boundary of Hd can be
identified with the sphere Sd�1. The limit set ƒ� Sd�1 of � is the set of all accumulation points of an
orbit �x in the compactification Hd [Sd�1 for x 2Hd .

The convex core of M is a submanifold of M given by the quotient

core MD �n hull.ƒ/;

where hull.ƒ/�Hd is the smallest convex subset containing all geodesics in Hd connecting points in ƒ.
When core M is compact, M is called convex cocompact.

Convex cocompact manifolds with Fuchsian ends

Following the terminology introduced in [Kerckhoff and Storm 2012], we define:

Definition 1.1 A convex cocompact hyperbolic d–manifold M is said to have Fuchsian ends if core M

has nonempty interior and has totally geodesic boundary.

The term Fuchsian ends reflects the fact that each component of the boundary of core M is a .d�1/–
dimensional closed hyperbolic manifold, and each component of the complement M� core M is diffeo-
morphic to the product S � .0;1/ for some closed hyperbolic .d�1/–manifold S (see Figure 1).

Convex cocompact hyperbolic d–manifolds with nonempty Fuchsian ends can also be characterized as
convex cocompact hyperbolic manifolds whose limit sets satisfy

Sd�1�ƒD
1[
iD1

Bi ;

Geometry & Topology, Volume 28 (2024)
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Figure 2: Limit set of a convex cocompact hyperbolic 4–manifold with nonempty Fuchsian ends.

where the Bi are round balls with mutually disjoint closures (see Figure 2). Hence, for d D 2, any
nonelementary convex cocompact hyperbolic surface has Fuchsian ends. The double of the core of a convex
cocompact hyperbolic d–manifold with nonempty Fuchsian ends is a closed hyperbolic d–manifold.

Any convex cocompact hyperbolic manifold with nonempty Fuchsian ends is constructed in the following
way. Begin with a closed hyperbolic d–manifold N0 with a fixed collection of finitely many, mutually
disjoint, properly embedded totally geodesic hypersurfaces. Cut N0 along those hypersurfaces to obtain
a compact hyperbolic manifold W with totally geodesic boundary hypersurfaces. There is a canonical
procedure for extending each boundary hypersurface to a Fuchsian end, which results in a convex
cocompact hyperbolic manifold M (with Fuchsian ends) which is diffeomorphic to the interior of W.

By the Mostow rigidity theorem, there are only countably infinitely many convex cocompact hyperbolic
manifolds with Fuchsian ends of dimension at least 3. On the other hand, for a fixed closed hyperbolic d–
manifold N0 with infinitely many properly immersed geodesic hypersurfaces,1 one can produce infinitely
many nonisometric convex compact hyperbolic d–manifolds with nonempty Fuchsian ends; for each
properly immersed geodesic hypersurface fi .Hd�1/ for a totally geodesic immersion fi WHd�1!N0,
there is a finite covering Ni of N0 such that fi lifts to Hd�1! Ni with image Si properly embedded
in Ni [Maclachlan and Reid 2003]. Cutting and pasting Ni along Si as described above produces a
hyperbolic manifold Mi with Fuchsian ends. When the volumes of the Si are distinct, the Mi are not
isometric to each other.

Orbit closures

In the rest of the introduction, we assume that, for d � 2,

M is a convex cocompact hyperbolic d–manifold with Fuchsian ends.

1Any closed arithmetic hyperbolic manifold has infinitely many properly immersed geodesic hypersurfaces provided it has at
least one. This is due to the presence of Hecke operators [Reid 1991].

Geometry & Topology, Volume 28 (2024)
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The homogeneous space �nG can be regarded as the bundle FM of oriented frames over M. Let
A D fat W t 2 Rg < G denote the one-parameter subgroup of diagonalizable elements whose right
translation actions on �nG correspond to the frame flow. Let N ' Rd�1 denote the contracting
horospherical subgroup

N D fg 2G W a�tgat ! e as t !C1g:

We denote by RF M the renormalized frame bundle of M:

RF M WD fx 2 �nG W xA is boundedg;

and also set

RFCM WD fx 2 �nG W xAC is boundedg;

where AC D fat W t � 0g. When Vol.M/ <1, we have

RF MD RFCMD �nG:

In general, RF M projects into core M (but not surjective in general) and RFCM projects onto M under
the basepoint projection �nG!M. The sets RF M and RFCM are precisely nonwandering sets for the
actions of A and N, respectively [Winter 2015].

For a connected closed subgroup U <N, we denote by H.U / the smallest closed simple Lie subgroup
of G which contains both U and A. If U ' Rk , then H.U / ' SOı.k C 1; 1/. A connected closed
subgroup of G generated by one-parameter unipotent subgroups is, up to conjugation, of the form U <N

or H.U / for some U <N (Corollary 3.8).

We set FH.U/ WD RFCM �H.U /, which is a closed subset. It is easy to see that if x … RFCM (resp.
x …FH.U/), then xU (resp. xH.U /) is closed in �nG. On the other hand, for almost all x 2RFCM, xU
is dense in RFCM, with respect to a unique N–invariant locally finite measure on RFCM, called the
Burger–Roblin measure; this was shown in [Mohammadi and Oh 2015] for d D 3 and in [Maucourant
and Schapira 2019] for general d � 3 (see Section 12).

Orbit closures are relatively homogeneous

We define the collection of closed connected subgroups of G

LU WD fLDH. yU/C W for some z 2 RFCM, zL is closed in �nG and StabL.z/ is Zariski-dense in Lg;

where U < yU <N and C is a closed subgroup of the centralizer of H. yU/. We also define

QU WD fvLv
�1
W L 2 LU and v 2N g:

In view of the previous discussion, the following theorem gives a classification of orbit closures for all
connected closed subgroups of G generated by unipotent one-parameter subgroups:

Geometry & Topology, Volume 28 (2024)
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Theorem 1.2 Let MD �nHd be a convex cocompact hyperbolic manifold with Fuchsian ends , and let
U <N be a nontrivial connected closed subgroup.

(1) H.U /–orbit closures For any x 2 RF M �H.U /,

xH.U /D xL\FH.U/;

where xL is a closed orbit of some L 2 LU .

(2) U –orbit closures For any x 2 RFCM,

xU D xL\RFCM;

where xL is a closed orbit of some L 2 QU .

(3) Equidistributions Let xiLi be a sequence of closed orbits intersecting RF M, where xi 2 RFCM

and Li 2 QU . Assume that no infinite subsequence of xiLi is contained in a subset of the form
y0L0D, where y0L0 is a closed orbit of L0 2LU with dimL0< dimG andD is a compact subset
of the normalizer N.U / of U. Then2

lim
i!1

xiLi \RFCMD RFCM:

Remark 1.3 (1) If x 2 FH.U/�RF M �H.U /, then xH.U / is contained in an end component of M

under the projection �nG!M, and its closure is not relatively homogeneous in FH.U/. More
precisely,

xH.U /D xLV CH.U /

for some L 2 LU , and some one-parameter semigroup V C <N (see Theorem 11.5).

(2) If M has empty ends, i.e. if M is compact, Theorem 1.2(1) and (2) are special cases of Ratner’s
theorem [1991b], also proved by Shah (unpublished notes, 1992) independently, and Theorem 1.2(3)
follows from the Mozes–Shah equidistribution theorem [1995].

Theorem 1.2(1)–(2) can also be presented as follows in a unified manner:

Corollary 1.4 LetH <G be a connected closed subgroup generated by unipotent elements in it. Assume
that H is normalized by A. For any x 2 RF M, the closure of xH is homogeneous in RF M, that is ,

(1-2) xH \RF MD xL\RF M;

where xL is a closed orbit of some L 2 QH\N .

Remark 1.5 If � is contained in G.Q/ for some Q–structure of G, and Œg�L is a closed orbit appearing
in Corollary 1.4, then L is defined by the condition that gLg�1 is the smallest connected Q–subgroup
of G containing gHg�1.

2For a sequence of subsets Yn in a topological space X such that Y D lim supn Yn D lim infYn, we write Y D limn!1 Yn,
where lim supn Yn D

S
n

T
m�n Ym and lim infn Yn D

T
n

S
m�n Ym.
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Generic points

Denote by G .U / the set of all points x 2 RFCM such that x is not contained in any closed orbit of a
proper reductive algebraic subgroup of G containing U. Theorem 1.2(2) implies that, for any x 2 G .U /,

xU D RFCM:

Geodesic planes, horospheres and spheres

We state implications of our main theorems on the closures of geodesic planes and horospheres of the
manifold M, as well as on the �–orbit closures of spheres in Sd�1.

A geodesic k–plane P in M is the image of a totally geodesic immersion f WHk!M or, equivalently,
the image of a geodesic k–subspace of Hd under the covering map Hd !M. If f factors through the
covering map Hk! �0nHk for a convex cocompact hyperbolic k–manifold with Fuchsian ends, we call
P D f .Hk/ a convex cocompact geodesic k–plane with Fuchsian ends.

Theorem 1.6 Let MD �nHd be a convex cocompact hyperbolic manifold with Fuchsian ends , and let
P be a geodesic k–plane of M for some k � 2.

(1) If P intersects core M, then P is a properly immersed convex cocompact geodesic m–plane with
Fuchsian ends for some m� k.

(2) Otherwise , P is contained in some Fuchsian end E D S0 � .0;1/ of M, and either P is properly
immersed or P is diffeomorphic to the product S � Œ0;1/ for a closed geodesic m–plane S of S0
for some k �m� d � 1.

In particular , the closure of a geodesic plane of dimension at least 2 is a properly immersed submanifold
of M (possibly with boundary).

We also obtain:

Theorem 1.7 (1) Any infinite sequence of maximal properly immersed geodesic planes Pi of
dimPi � 2 intersecting core M becomes dense in M, i.e.

lim
i!1

Pi DM;

where the limit is taken in the Hausdorff topology on the space of all closed subsets in M.

(2) There are only countably many properly immersed geodesic planes of dimension at least 2 inter-
secting core M.

(3) If Vol.M/D1, there are only finitely many maximal properly immersed bounded geodesic planes
of dimension at least 2.

In fact, Theorem 1.7(3) holds for any convex cocompact hyperbolic d–manifold (see Remark 18.3).

A k–horosphere in Hd is a Euclidean sphere of dimension k which is tangent to a point in Sd�1. A k–
horosphere in M is simply the image of a k–horosphere in Hd under the covering map Hd!MD�nHd .

Geometry & Topology, Volume 28 (2024)
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Theorem 1.8 Let � be a k–horosphere of M for k � 1. Then either

(1) � is properly immersed ; or

(2) x� is a properly immersed m–dimensional submanifold , parallel to a convex cocompact geodesic
m–plane of M with Fuchsian ends for some m� kC 1.

By abuse of notation, let � denote both basepoint projection maps G!Hd and �nG!M, where we
consider an element g 2G as an oriented frame over Hd . Let H 0 D SOı.kC 1; 1/SO.d � k� 1/ with
1� k � d � 2. The quotient space G=H 0 parametrizes all oriented k–spheres in Sd�1, which we denote
by Ck . For each H 0–orbit gH 0 �G, the image �.gH 0/�Hd is an oriented geodesic .kC1/–plane and
the boundary @.�.gH 0//� Sd�1 is an oriented k–sphere. Passing to the quotient space �nG, this gives
bijections among

(1) the space of all closed H 0–orbits xH 0 � �nG for x 2 RF M;

(2) the space of all oriented properly immersed geodesic .kC1/–planes P in M intersecting core M;

(3) the space of all closed �–orbits of oriented k–spheres C 2 Ck with #C \ƒ� 2.

If U WDH 0\N, then any k–horosphere in M is given by �.xU / for some x 2 �nG.

In view of these correspondences, Theorems 1.6, 1.7 and 1.8 follow from Theorems 1.2 and 11.5 and
Corollary 5.8.

We also obtain the following description of �–orbits of spheres of any positive dimension:

Corollary 1.9 Let 1� k � d � 2.

(1) Let C 2Ck with #C \ƒ� 2. Then there exists a sphere S 2Cm such that �S is closed in Cm and

�C D fD 2 Ck WD\ƒ¤∅; D � �Sg:

(2) Let Ci 2 Ck be an infinite sequence of spheres with #Ci \ƒ � 2 such that �Ci is closed in Ck .
Assume that �Ci is maximal in the sense that there is no proper sphere S � Sd�1 which properly
contains Ci and that �S is closed. Then , as i !1,

lim
i!1

�Ci D fD 2 Ck WD\ƒ¤∅g;

where the limit is taken in the Hausdorff topology on the space of all closed subsets in Ck .

(3) Ifƒ¤Sd�1, there are only finitely many maximal closed �–orbits of spheres of positive dimension
contained in ƒ.

Remark 1.10 (1) The main results of this paper for d D 3 were proved in [McMullen et al. 2017;
2016]. We refer to [McMullen et al. 2017] for counterexamples to Theorem 1.2 for a certain family
of quasi-Fuchsian 3–manifolds.

Geometry & Topology, Volume 28 (2024)
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(2) A convex cocompact hyperbolic 3–manifold with Fuchsian ends (which was referred to as a rigid
acylindrical hyperbolic 3–manifold in [McMullen et al. 2017]) has a huge deformation space
parametrized by the product of the Teichmüller spaces of the boundary components of core M (see
[Marden 2016]). Any convex cocompact acylindrical hyperbolic 3–manifold is a quasiconformal
conjugation of a rigid acylindrical hyperbolic 3–manifold [McMullen 1990]. An analogue of
Theorem 1.2(1) was obtained for all convex cocompact acylindrical hyperbolic 3–manifolds in
[McMullen et al. 2022] and for all geometrically finite acylindrical hyperbolic 3–manifolds in
[Benoist and Oh 2022].

(3) For d � 4, Kerckhoff and Storm [2012] showed that a convex cocompact hyperbolic manifold
MD �nHd with nonempty Fuchsian ends does not allow any nontrivial deformation, in the sense
that the representation of � into G is infinitesimally rigid.

Remark 1.11 We discuss an implication of Theorem 1.2(2) on the classification question on U –invariant
ergodic locally finite measures on RFCM. There exists a canonical geometric U –invariant measure on
each closed orbit xL in Theorem 1.2(2): We write LD v�1H. yU/Cv. As v centralizes U, let’s assume
v D e without loss of generality. Denoting by p W L! H. yU/ the canonical projection, the subgroup
p.StabL.x// is a convex cocompact Zariski-dense subgroup of H. yU/, and hence there exists a unique
yU –invariant locally finite measure on p.StabL.x//nH. yU/, called the Burger–Roblin measure [Burger

1990; Roblin 2003; Oh and Shah 2013; Winter 2015]. Now its C–invariant lift to .L\ StabL.x//nL
defines a unique yUC–invariant locally finite measure, say mBR

xL, whose support is equal to xL\RFCM.
Moreover, mBR

xL is U –ergodic (see Section 12). A natural question is the following:

Is every ergodicU –invariant locally finite Borel measure in RFCM proportional to somemBR
xL?

An affirmative answer would provide an analogue of Ratner’s measure classification [1991a] in this setup.
Theorem 1.2(2) implies that the answer is yes, at least in terms of the support of the measure.

Acknowledgements We would like to thank Nimish Shah for making his unpublished notes, containing
most of his proof of Theorem 1.2(1)–(2) for the finite-volume case, available to us. We would also like to
thank Gregory Margulis, Curt McMullen and Amir Mohammadi for useful conversations. Finally, Oh
would like to thank Joy Kim for her encouragement.

Oh was supported in part by NSF grant #1900101.

2 Outline of the proof

We will explain the strategy of our proof of Theorem 1.2 with an emphasis on the difference between
the finite- and infinite-volume cases and the difference between the dimension 3 and higher-dimensional
cases.
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Thick recurrence of unipotent flows

Let U0 D fut W t 2Rg be a one-parameter subgroup of N. The main obstacle of carrying out unipotent
dynamics in a homogeneous space of infinite volume is the scarcity of recurrence of unipotent flow. In a
compact homogeneous space, every U0–orbit stays in a compact set for the obvious reason. Already in a
noncompact homogeneous space of finite volume, understanding the recurrence of U0–orbit is a nontrivial
issue. Margulis [1975] showed that any U0–orbit is recurrent to a compact subset, and Dani and Margulis
[1991] showed that, for any x 2 �nG and for any " > 0, there exists a compact subset �� �nG such that

`ft 2 Œ0; T � W xut 2�g � .1� "/T

for all large T � 1, where ` denotes the Lebesgue measure on R. This nondivergence of unipotent flows
is an important ingredient of Ratner’s orbit closure theorem [1991b].

In contrast, when �nG has infinite volume, for any compact subset �� �nG and for almost all x (with
respect to any Borel measure � on R),

�ft 2 Œ0; T � W xut 2�g D o.T /

for all T � 1 [Aaronson 1997].

Nonetheless, the pivotal reason that we can work with convex cocompact hyperbolic manifolds of
nonempty Fuchsian ends is the following thick recurrence property that they possess: there exists k > 1,
depending only on the systole of the double of core M, such that, for any x 2 RF M, the return time

T.x/ WD ft 2R W xut 2 RF Mg

is k–thick, in the sense that, for any � > 0,

(2-1) T.x/\ .Œ�k�;���[ Œ�; k��/¤∅:

This recurrence property was first observed in [McMullen et al. 2017] in the case of dimension 3 in order
to get an additional invariance of a relative U0–minimal subset with respect to RF M by studying the
polynomial divergence property of U0–orbits of two nearby RF M–points.

Beyond d D 3

In a higher-dimensional case, the possible presence of closed orbits of intermediate subgroups introduces
a variety of serious hurdles. Roughly speaking, calling the collection of all such closed orbits the singular
set and its complement the generic set, one of the main new ingredients of this paper is the avoidance
of the singular set along the k–thick recurrence of U0–orbits to RF M for a sequence of RF M–points
limiting at a generic point. Its analogue in the finite-volume case was proved by Dani and Margulis [1993]
and also independently by Shah [1991b] based on linearization methods.

Geometry & Topology, Volume 28 (2024)
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Road map for induction

Roughly speaking,3 Theorem 1.2 is proved by induction on the codimension of U in N. For each
i D 1; 2; 3, let us say that .i/m holds if Theorem 1.2.i/ is true for all U satisfying codimN .U /�m. We
show that the validity of .2/m and .3/m implies that of .1/mC1; the validity of .1/mC1, .2/m and .3/m
implies that of .2/mC1; and the validity of .1/mC1, .2/mC1 and .3/m implies that of .3/mC1. In order to
give an outline of the proof of .1/mC1, we suppose that codimN .U /�mC 1. Let

F WD RFCM �H.U /; F � WD Interior.F / and @F WD F �F �:

Let x 2 F �\RF M, and consider

X WD xH.U /� F:

The strategy in proving .1/mC1 for X consists of two steps:

(1) Find Find a closed L–orbit x0L with x0 2 F � \RF M such that x0L\F contained in X for
some L 2 LU .

(2) Enlarge If X š x0LC.H.U //,4 then enlarge x0L to a bigger closed orbit x1 yL so that x1 yL\F �
X, where x1 2 F �\RF M and yL 2 L yU for some yU <N containing L\N properly.

The enlargement process must end after finitely many steps for dimension reasons. Finding a closed orbit
as in (1) is based on the study of the relative U –minimal sets and the unipotent blowup argument using
the polynomial divergence of U –orbits of nearby RF M–points. To explain the enlargement step, suppose
that we are given an intermediate closed L–orbit with x0L\F � X by step (1), and a one-parameter
subgroup U0 D futg of U such that x0U0 is dense in x0L\RFCM. As L is reductive, the Lie algebra
of G can be decomposed into the Ad.L/–invariant subspaces l˚ l?, where l denotes the Lie algebra of L.
Suppose that we could arrange a sequence x0gi ! x0 in X for some gi ! e such that, writing gi D `iri
with `i 2 L and ri 2 exp.l?/, the following conditions are satisfied:

� x0`i 2 RF M.

� ri … N.U0/.

Then the k–thick return property of x0`i 2 RF M along U0 would yield a sequence uti 2 U0 such that

x0`iuti ! x1 2 RF M\ x0L and u�1ti riuti ! v

for some element v 2N �L, giving us a point

x1v 2X:

3To be precise, we need to carry out induction on the codimension of U in yL\N whenever xU is contained in a closed orbit
x0 yL for some yL 2 LU , as formulated in Theorem 14.1.
4The notation C.S/ denotes the identity component of the centralizer of S.
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If we could guarantee that

(2-2) x1 is a generic point for U in x0L,

then x1U would be equal to x0L\RFCM by induction hypothesis .2/m, since the codimension of U
inside L\N is at most m. Then

x1vU D x1Uv D x0Lv\RFCM�X:

Using the A–invariance of X and the fact that the double coset AvA contains a one-parameter unipotent
subsemigroup V C, we can put x0LV C\F inside X.

Assuming that

(2-3) x0 2 F
�
\RFCM,

we can promote V C to a one-parameter subgroup V, and find an orbit of a bigger unipotent subgroup
yU WD .L\N/V insideX. This enables us to use the induction hypothesis .2/m to complete the enlargement
step. Note that, if x1 is not generic for U in x0L, the closure of x1U may be stuck in a smaller closed
orbit inside x0L, in which case x1Uv may not be bigger than x0L in terms of the dimension, resulting
in no progress.

We now explain how we establish (2-2).5

Avoidance of the singular set along the thick return time

Let U0D futg be a one-parameter subgroup of U. We denote by S .U0/ the union of all closed orbits xL,
where x 2 RFCM and L 2 QU0 is a proper subgroup of G. This set is called the singular set for U0. Its
complement in RFCM is denoted by G .U0/, and called the set of generic elements of U0. We have

S .U0/D
[
H2H

�n�X.H;U0/;

where H is the countable collection of all proper connected closed subgroups H of G containing
a unipotent element such that �n�H is closed and H \ � is Zariski-dense in H, and X.H;U0/ WD
fg 2 G W gU0g

�1 � H g (Proposition 5.10). We define E D EU0 to be the collection of all subsets
of S .U0/ which are of the form [

�n�HiDi \RF M;

where Hi 2H is a finite collection and Di is a compact subset of X.Hi ; U0/. The following avoidance
theorem is one of the main ingredients of our proof; let k be as given by (2-1) for MD �nHd :

5For dimension d D 3, L is either the entire SOı.3; 1/, in which case we are done, or LDH.U /D SOı.2; 1/. In the latter case,
(2-2) is automatic as U is a horocyclic subgroup of L.
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Theorem 2.1 (avoidance theorem) There exists a sequence of compact subsets E1 � E2 � � � � in E

with
S .U0/\RF MD

1[
jD1

Ej

satisfying the following: for each j 2N and for any compact subset F � RF M�EjC1, there exists an
open neighborhood Oj D Oj .F / of Ej such that , for any x 2 F, the set

(2-4) ft 2R W xut 2 RF M�Oj g

is 2k–thick.

It is crucial that the thickness of the set (2-4), which is given by 2k here, can be controlled independently
of the compact subsets Ej for applications in the orbit closure theorem. If Ej does not intersect any
closed orbit of a proper subgroup of G, then obtaining EjC1 and Oj is much simpler. In general, Ej may
intersect infinitely many intermediate closed orbits, and our proof is based on a careful analysis on the
graded intersections of those closed orbits and a combinatorial argument, which we call an inductive
search argument. This process is quite delicate compared to the finite-volume case treated in [Dani and
Margulis 1993; Shah 1991b], in which the set ft W xut 2RF Mg, being equal to R, possesses the Lebesgue
measure which can be used to measure the time outside of a neighborhood of the Ej .

We deduce the following from Theorem 2.1:

Theorem 2.2 (accumulation on a generic point) Suppose that .2/m and .3/m hold in Theorem 1.2.
Then the following holds for any connected closed subgroup U < N with codimN .U / D mC 1: Let
U0 D fut W t 2 Rg be a one-parameter subgroup of U, and let xi 2 RF M be a sequence converging to
x0 2 G .U0/ as i !1. Then , for any given sequence Ti !1,

(2-5) lim sup
i!1

fxiuti 2 RF M W Ti � jti j � 2kTig

contains a sequence fyj W j D 1; 2; : : : g such that lim supj!1 yjU contains a point in G .U0/.6

Again, it is important that 2k is independent of xi here. We prove two independent but related versions
of Theorem 2.2 in Section 15, depending on the relative location of xi for the set RF M; we use
Proposition 15.1 for the proof of .1/mC1 and Proposition 15.2 for the proofs of .2/mC1 and .3/mC1.

Comparison with the finite-volume case

If �nG is compact, the approach of [Dani and Margulis 1993] shows that, if xi converges to x 2 G .U0/,
then, for any " > 0, we can find a sequence of compact subsets E1 �E2 � � � � in E and neighborhoods
Oj of Ej such that S .U0/D

S
Ej , xi …

S
j�iC1 Oj and, for all i � j and T > 0,

`ft 2 Œ0; T � W xiut 2 Oj g �
"

2i
T:

6Here we allow a constant sequence yj D y, in which case lim supj!1 yjU is understood as yU and hence y 2 G .U0/.
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This implies that, for all i > 1,

(2-6) `
n
t 2 Œ0; T � W xiut 2

S
j�i

Oj

o
� "T:

In particular, the limsup set in (2-5) always contains an element of G .U0/, without using the induction
hypothesis. This is the reason why .3/m is not needed in obtaining .1/mC1 and .2/mC1 in Theorem A.1
for the finite-volume case.7

In comparison, we are able to get a generic point in Theorem 2.2 only with the help of the induction
hypotheses .2/m and .3/m and after taking the limsup of the U –orbits of all accumulating points from
the 2k–thick sets obtained in Theorem 2.1.

Generic points in F � as limits of RF M–points

In the inductive argument, it is important to find a closed orbit x0L based at a point x0 2 F � in order to
promote a semigroup V C to a group V as described following (2-3). Another reason why this is critical is
the following: implementing Theorem 2.2 (more precisely, its versions Theorems 15.1 and 15.2) requires
having a sequence of RF M–points of X accumulating on a generic point of x0L with respect to U0.

The advantage of having a closed orbit x0Lwith x0 2F �\RFCM\G .U0/ is that x0 can be approximated
by a sequence of RF M–points in F �\X (Lemmas 8.3 and 8.7).

We also point out that we use the ergodicity theorem obtained in [Mohammadi and Oh 2015; Maucourant
and Schapira 2019] to guarantee that there are many U0–generic points in any closed orbit x0L as above.

Existence of a compact orbit in any noncompact closed orbit

In our setting, �nG always contains a closed orbit xL for some x 2RF M and a proper subgroup L2LU ;
namely those compact orbits of SOı.d � 1; 1/ over the boundary of core M. Moreover, if x0 yL is a
noncompact closed orbit for some x0 2RF M and dim.yL\N/� 2, then x0 yL contains a compact orbit xL
of some L 2LU (Proposition 5.16). This fact was crucially used in deducing .2/mC1 from .1/mC1; .2/m

and .3/m in Theorem 1.2 (more precisely, in Theorem 14.1).

Organization of the paper

In Section 3, we set up notation for certain Lie subgroups of G, review some basic facts and gather
preliminaries about them and geodesic planes of M.

In Section 4, for each unipotent subgroup U of G, we define the minimal H.U /–invariant closed subset
FH.U/ � �nG containing RFCM and study its properties for a convex cocompact hyperbolic manifold
of nonempty Fuchsian ends.

7We give a summary of our proof for the case when �nG is compact and has at least one SOı.d�1; 1/–closed orbit in the
appendix to help readers understand the whole scheme of the proof.
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In Section 5, we define the singular set S .U; x0L/ for a closed orbit x0L� �nG, and prove a structure
theorem and a countability theorem for a general convex cocompact manifold.

In Section 6, we prove Proposition 6.3, based on a combinatorial lemma, Lemma 6.4, called an inductive
search lemma. This proposition is used in the proof of Theorem 7.13 (avoidance theorem).

In Section 7, we construct families of triples of intervals which satisfy the hypotheses of Proposition 6.3,
by making a careful analysis of the graded intersections of the singular set and the linearization, and
prove Theorem 7.13, from which Theorem 2.1 is deduced.

In Section 8, we prove several geometric lemmas which are needed to modify a sequence limiting on a
generic point to a sequence of RF M–points which still converges to a generic point.

In Section 9, we study the unipotent blowup lemmas using quasiregular maps and properties of thick
subsets.

In Section 10, we study the translates of relative U –minimal sets Y into the orbit closure of an RF M

point; the results in this section are used in the step of finding a closed orbit in a given H.U /–orbit
closure.

In Section 11, we describe closures of orbits contained in the boundary of FH.U/.

In Section 12, we review the ergodicity theorem of [Mohammadi and Oh 2015; Maucourant and Schapira
2019] and deduce the density of almost all orbits of a connected unipotent subgroup in RFCM.

In Section 13, the minimality of a horospherical subgroup action is obtained in the presence of compact
factors.

In Section 14, we begin to prove Theorem 1.2; the base case mD 0 is addressed and the orbit closure of
a singular U –orbit is classified under the induction hypothesis.

In Section 15 we prove two propositions on how to get an additional invariance from Theorem 7.13;
the results in this section are used in the step of enlarging a closed orbit to a larger one inside a given
U –invariant orbit closure in the proof of Theorem 1.2.

We prove .1/mC1, .2/mC1 and .3/mC1, respectively, in Sections 16, 17 and 18.

In the appendix, we give an outline of our proof in the case when �nG is compact with at least one
SOı.d�1; 1/–closed orbit.

3 Lie subgroups and geodesic planes

Let G denote the connected simple Lie group SOı.d; 1/ for d � 2. In this section, we fix notation and
recall some background about Lie subgroups of G and geodesic planes of a hyperbolic d–manifold.
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As a Lie group, we have G ' IsomC.Hd /. In order to present a family of subgroups of G explicitly,
we fix a quadratic form Q.x1; : : : ; xdC1/D 2x1xdC1C x

2
2 C x

2
3 C � � �C x

2
d

, and identify G D SOı.Q/.
The Lie algebra of G is then given as

so.d; 1/D fX 2 sldC1.R/ WX
tQCQX D 0g;

where

QD

0@0 0 1

0 Idd�1 0
1 0 0

1A :
A subset S �G is said to be Zariski-closed if it is the zero set f.xij /2G Wp1.xij /D� � �Dpl.xij /D 0g for
a finite collection of polynomials with real coefficients in variables .xij /2MdC1.R/. The Zariski-closure
of a subset S �G means the smallest Zariski-closed subset of G containing S. A connected subgroup
L<G is algebraic if L is equal to the identity component of its Zariski-closure.

Subgroups of G

Inside G, we have the subgroups

K D fg 2G W gtg D IddC1g ' SO.d/;

AD

8<:as D
0@es 0 0

0 Idd�1 0

0 0 e�s

1A W s 2R

9=;;
M D the centralizer of A in K ' SO.d � 1/;

N� D fexpu�.x/ W x 2Rd�1g;

NC D fexpuC.x/ W x 2Rd�1g;

where

u�.x/D

0@0 xt 0

0 0 �x

0 0 0

1A and uC.x/D

0@0 0 0

x 0 0

0 �xt 0

1A :
The Lie algebra of M consists of matrices of the form

m.C/D

0@0 0 0

0 C 0

0 0 0

1A ;
where C 2Md�1.R/ is a skew-symmetric matrix, i.e. C t D�C.

The subgroups N� and NC are respectively the contracting and expanding horospherical subgroups
of G for the action of A. We have the Iwasawa decomposition G DKAN˙. As we will be using the
subgroup N� frequently, we simply write N D N�. We often identify the subgroup N˙ with Rd�1

via the map expu˙.x/ 7! x. For a connected closed subgroup U <N, we use the notation U? for the
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orthogonal complement of U in N as a vector subgroup of N, and U t D UC for the transpose of U.
We use the notation BU .r/ to denote the ball of radius r centered at 0 in U for the Euclidean metric on
N DRd�1.

We consider the upper half-space model of Hd DRC �Rd�1, so that its boundary is given by Sd�1 D

f1g[ .f0g �Rd�1/. Set o D .1; 0; : : : ; 0/, and fix a standard basis e0; e1; : : : ; ed�1 at To.Hd /. The
map

(3-1) g 7! .ge0; : : : ; ged�1/g.o/

gives an identification of G with the oriented frame bundle FHd . The stabilizer of o and e0 in G are
equal to K and M, respectively, and hence the map (3-1) induces the identifications of the hyperbolic
space Hd and the unit tangent bundle T1Hd with G=K and G=M, respectively. The action of G on the
hyperbolic space Hd DG=K extends continuously to the compactification Sd�1[Hd .

If g 2G corresponds to a frame .v0; : : : ; vd�1/ 2 FHd , we define gC; g� 2 Sd�1 to be the forward and
backward endpoints of the directed geodesic tangent to v0, respectively. The right translation action of A
on G D FHd defines the frame flow and we have

g˙ D lim
t!˙1

�.gat /;

where � WG D FHd !Hd is the basepoint projection.

For the identity element e D IddC1 2 G, note that eC D1 and e� D 0, and hence gC D g.1/ and
g� D g.0/. The subgroup MA fixes both points 0 and1, and the horospherical subgroup N fixes1,
and the restriction of the map g 7! g.0/ to N defines an isomorphism N !Rd�1 given by u�.x/ 7! x.

For each nontrivial connected subgroup U < N, we denote by H.U / the smallest simple closed Lie
subgroup of G containing A and U. It is generated by U and the transpose of U.

For a subset S � G, we denote by NG.S/ and CG.S/ the normalizer of S and the centralizer of S,
respectively. We denote by N.S/ and C.S/ the identity components of NG.S/ and CG.S/, respectively.

Example 3.1 Fix the standard basis e1; : : : ; ed�1 of Rd�1. For 1 � k � d � 1, define Uk to be the
connected subgroup of N spanned by e1; : : : ; ek .

The following can be checked directly:

H.Uk/D hUk; U
t
ki ' SOı.kC 1; 1/;

C.H.Uk//' SO.d � k� 1/;

NG.H.Uk//' O.kC 1; 1/O.d � k� 1/\G;

N.H.Uk//' SOı.kC 1; 1/SO.d � k� 1/:
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We set
H 0.U / WD N.H.U //DH.U /C.H.U //;

which is a connected reductive algebraic subgroup of G with compact center.

The adjoint action of M on N corresponds to the standard action of SO.d � 1/ on Rd�1. It follows
that any connected closed subgroup U <N is conjugate to Uk and H.U / is conjugate to H.Uk/ by an
element of M, where k D dim.U /.

We set

(3-2) C1.U / WD C.H.U //DM \C.U / and C2.U / WDM \C.U?/�H.U /:

Lemma 3.2 We have

N.U /DNAC1.U /C2.U / and C.U /DN C1.U /:

Proof For the first claim, it suffices to show that, for U D Uk , N.U / D NASO.k/SO.d � 1 � k/.
It is easy to check that Q WD NAC1.U /C2.U / normalizes U. Let g 2 N.U /. We claim that g 2 Q.
Using the decomposition G D KAN, we may assume that g 2 K. Then Ug.1/ D gU.1/ D g.1/
since U.1/ D 1. Since 1 2 Sd�1 is the unique fixed point of U, it follows that g.1/ D 1. As
M D StabK.1/, we get g 2M. Now gU.0/D Ug.0/D U.0/. As U.0/DRk , gRk DRk . Therefore,
as g 2M, we also have gRd�1�k D Rd�1�k , and consequently g 2 O.k/O.d � 1� k/. This shows
that NASO.k/SO.d �1�k/�N.U /�NAO.k/O.d �1�k/. As N.U / is connected, this implies the
claim.

For the second claim, note first that N C1.U / < C.U /. Now let g 2 C.U /. Since C.U / < N.U / D
AN C1.U /C2.U /, we can write g D ac2nc1 2 AC2.U /N C1.U /. Since nc1 commutes with U, it
follows that ac2 2 C.U /. Now observe that the adjoint action of a on U is a dilation and the adjoint
action of c2 on U is a multiplication by an orthogonal matrix. Therefore we get aD c2 D e.

Denote by gD Lie.G/ the Lie algebra of G. By a one-parameter subsemigroup of G, we mean a set of
the form fexp.t�/ 2G W t � 0g for some nonzero � 2 g. Note that the product AU? C2.U / is a subgroup
of G.

Lemma 3.3 An unbounded one-parameter subsemigroup S of AU? C2.U / is one of the form

fexp.t�A/ exp.t�C / W t � 0g; f.v exp.t�A/v�1/ exp.t�C / W t � 0g or fexp.t�V / exp.t�C / W t � 0g

for some �A 2 Lie.A/�f0g, �C 2 Lie.C2.U //, v 2 U?�feg and �V 2 Lie.U?/�f0g.

Proof Let � 2 Lie.AU? C2.U // be such that S D fexp.t�/ W t � 0g. Write � D �0 C �C , where
�0 2 Lie.AU?/ and �C 2 Lie.C2.U //. Since AU? commutes with C2.U /, exp.t�/D exp.t�0/ exp.t�C /
for any t 2R. Hence we only need to show that either �0 2 Lie.U?/ or

(3-3) fexp.t�0/ W t � 0g D fv exp.t�A/v�1 W t � 0g
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for some v 2 U? and �A 2 Lie.A/. Now, if �0 … Lie.U?/, then, writing

�0 D

0@a xt 0

0 0d�1 �x

0 0 �a

1A 2 Lie.AU?/

with a¤ 0, a direct computation shows that �0 D v�Av�1, where

log v D

0@0 �xt=a 0

0 0d�1 x=a

0 0 0

1A and �A D

0@a 0 0

0 0d�1 0

0 0 �a

1A ;
proving (3-3).

Lemma 3.4 If vi !1 in U?, then lim supi!1 viAv
�1
i contains a one-parameter subgroup of U?.

Proof Writing vi D expu�.xi / for xi 2Rd�1, we have

viasv
�1
i D

0@es .1� es/xti �12k.es=2� e�s=2/xik20 Idd�1 .1� e�s/xi
0 0 e�s

1A :
Passing to a subsequence, xi=kxik converges to some unit vector x0 as i !1. For any r 2 R, if we
set si WD log.1� rkxik�1/, then the sequence viasiv

�1
i converges to expu�.rx0/. Therefore the set

V WD fexpu�.rx0/ W r 2Rg< U? gives the desired subgroup.

The complementary subspaces h?
U

and h? If L is a reductive Lie subgroup of G with lD Lie.L/,
the restriction of the adjoint representation of G to L is completely reducible, and hence there exists an
Ad.L/–invariant complementary subspace l? such that

gD l˚ l?:

It follows from the inverse function theorem that the map L� l?!G given by .g;X/ 7! g expX is a
local diffeomorphism onto an open neighborhood of e in G.

Let U D Uk . Denote by hU � g the Lie algebra of H.U /, by u? the subspace Lie.U?/, and by .u?/t

its transpose. Then h?U can be given explicitly as

(3-4) h?U D u?˚ .u?/t ˚m0;

where m0 is given by�
m.C/ W C D

�
0 Y

�Y t Z

�
; Z 2Md�1�k.R/; Z

t
D�Z; Y 2Mk�.d�1�k/.R/

�
I

to see this, it is enough to check that dim.g/D dim.hU /C dim.h?U / and that h?U is Ad.H.U //–invariant,
which can be done by direct computation.
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Similarly, setting h WD Lie.H 0.U //, h? is given by

(3-5) h? D u?˚ .u?/t ˚m00;

where
m00 WD

�
m.C/ W C D

�
0 Y

�Y t 0

��
:

Lemma 3.5 If ri ! e in exp h?�C.H.U //, then either ri … N.U / for all i , or ri … N.UC/ for all i ,
by passing to a subsequence.

Proof By Lemma 3.2 and (3-5), there exists a neighborhood O of 0 in g such that

N.U /\N.UC/\ exp.h?\O/� C.H.U //:

Reductive subgroups of G

Definition 3.6 For a connected reductive algebraic subgroup L < G, we denote by Lnc the maximal
connected normal semisimple subgroup of L with no compact factors.

A connected reductive algebraic subgroup L of G is an almost direct product

(3-6) LD LncCT;

where C is a connected semisimple compact normal subgroup of L and T is the central torus of L. If L
contains a unipotent element, then Lnc is nontrivial, and simple, containing a conjugate of A, and the
center of L is compact.

Proposition 3.7 If L<G is a connected reductive algebraic subgroup normalized by A and containing a
unipotent element , then

LDH.U /C;

where U <N is a nontrivial connected subgroup and C is a closed subgroup of C.H.U //. In particular ,
Lnc and N.Lnc/ are equal to H.U / and H 0.U /, respectively.

Proof If L is normalized by A, then so is Lnc. Therefore it suffices to prove that a connected noncompact
simple Lie subgroup H <G normalized by A is of the form H DH.U /, where U <N is a nontrivial
connected subgroup.

First, consider the case when A<H. Let h be the Lie algebra of H, and a be the Lie algebra of A. Since
h is simple, its root-space decomposition for the adjoint action of a is of the form hD z.a/˚ uC˚ u�,
where u˙ are the sum of all positive and negative root subspaces, respectively, and z.a/ is the centralizer
of a. Since the sum of all negative root subspaces for the adjoint action of a on g is Lie.N�/, it follows
that U WD exp.u�/ < N� and H DH.U /.
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Now, for the general case, H contains a conjugate gAg�1 for some g 2 G. Hence g�1Hg D H.U /.
Since H.U / contains both A and g�1Ag, they must be conjugate within H.U /, so AD h�1g�1Agh for
some h 2H.U /. Hence gh 2 NG.A/D AM. Therefore H D gH.U /g�1 is equal to mH.U /m�1 for
some m 2M. Since m normalizes N and mH.U /m�1 DH.mUm�1/, the claim follows.

Corollary 3.8 Any connected closed subgroup L of G generated by unipotent elements is conjugate to
either U or H.U / for some nontrivial connected subgroup U <N.

Proof The subgroup S admits a Levi decomposition L D SV, where S is a connected semisimple
subgroup with no compact factors and V is the unipotent radical of S [Shah 1991b, Lemma 2.9]. If S
is trivial, the claim follows since any connected unipotent subgroup can be conjugate into N. Suppose
that S is not trivial. Then S DH.U / for some nontrivial U <N by Proposition 3.7. Unless V is trivial,
the normalizer of V is contained in a conjugate of NAM ; in particular, it cannot contain H.U /. Hence
V D feg.

Totally geodesic immersed planes

Let � be a discrete, torsion-free, nonelementary subgroup of G, and consider the associated hyperbolic
manifold

MD �nHd
D �nG=K:

We refer to [Ratcliffe 1994] for basic properties of hyperbolic manifolds. As in the introduction, we
denote by ƒ the limit set of � and by core M the convex core of M. Note that core M contains all bounded
geodesics in M.

We denote by FM' �nG the bundle of all oriented orthonormal frames over M. We denote by

(3-7) � W �nG!MD �nG=K

the basepoint projection. By abuse of notation, we also denote by

(3-8) � WG!Hd
DG=K

the basepoint projection. For g 2G, Œg� denotes its image under the covering map G! �nG.

Fix 1� k � d � 2 and let

(3-9) H DH.Uk/' SOı.kC 1; 1/ and H 0 DH.Uk/' SOı.kC 1; 1/ �SO.d � k� 1/:

Let C0 WDRk[f1g denote the unique oriented k–sphere in Sd�1 stabilized by H 0. Then zS0 WD hull.C0/
is the unique oriented totally geodesic subspace of Hd stabilized by H 0, and @ zS0 D C0. We note that H 0

(resp. H ) consists of all oriented frames .v0; : : : ; vd�1/ 2 G (resp. .v0; : : : ; vk; ekC1; : : : ; ed�1/ 2 G)
such that the k–tuple .v0; : : : ; vk/ is tangent to zS0, compatible with the orientation of zS0. The group G

Geometry & Topology, Volume 28 (2024)



3394 Minju Lee and Hee Oh

acts transitively on the space of all oriented k spheres in Sd�1 giving rise to the isomorphisms of G=H 0

with

Ck D the space of all oriented k–spheres in Sd�1

and with

the space of all oriented totally geodesic .kC1/–planes of Hd .

We discuss the fundamental group of an immersed geodesic k–plane S �M. Choose a totally geodesic
subspace zS of Hd which covers S. Then zS D g zS0 for some g 2G, and the stabilizer of zS in G is equal
to gH 0g�1. We have

�zS D f 2 � W 
zS D zSg D � \gH 0g�1

and get an immersion Qf W �zSn zS !M with image S. Consider the projection map

(3-10) p W gH 0g�1! gHg�1:

Then p is injective on �zS and

�zSn
zS ' p.�zS /n

zS

is an isomorphism, since g C.H/g�1 acts trivially on zS. Hence Qf gives an immersion

(3-11) f W p.�zS /n
zS !M

with image S. We say S is properly immersed if f is a proper map.

Proposition 3.9 Let x 2 �nG, and set S WD �.xH 0/�M. Then

(1) xH 0 is closed in �nG if and only if S is properly immersed in M.

(2) If M is convex cocompact and S is properly immersed , then S is convex cocompact and

@ zS \ƒDƒ.p.�zS //

for any geodesic subspace zS �Hd which covers S.

Proof Choose a representative g 2G of x and consider the totally geodesic subspace zS WD g zS0. Then
S D Im.f / as is f given by (3-11). Now the closedness of xH 0 in �nG is equivalent to the properness of
the map .H 0\g�1�g/nH 0!�nG induced from map h 7!xh. This in turn is equivalent to the properness
of the induced map .H 0\g�1�g/nH 0=.H 0\K/! �nG=K. If � is the image of H 0\g�1�g under
the projection map H 0!H, then the natural injective map �nH=H \K! .H 0\g�1�g/nH 0=H 0\K

is an isomorphism. Since

p.�zS /n
zS D p.�zS /ngH=.H \K/'�nH=.H \K/;

the first claim follows. The second claim follows from [Oh and Shah 2013, Theorem 4.7].

Geometry & Topology, Volume 28 (2024)



Orbit closures of unipotent flows for hyperbolic manifolds with Fuchsian ends 3395

4 Hyperbolic manifolds with Fuchsian ends and thick return time

In this section, we study the closed H.U /–invariant subset FH.U/ WD RFCM �H.U / when MD �nHd

is a convex cocompact manifold with Fuchsian ends. At the end of the section, we address the global
thickness of the return time of any one-parameter subgroup of N to RF M.

Definition 4.1 A convex cocompact hyperbolic manifold MD �nHd is said to have nonempty Fuchsian
ends if one of the following equivalent conditions holds:

(1) Its convex core has nonempty interior and nonempty totally geodesic boundary.

(2) The domain of discontinuity of � ,

� WD Sd�1�ƒD
1[
iD1

Bi ;

is a dense union of infinitely many round balls with mutually disjoint closures.

In this section, let M be a convex cocompact hyperbolic manifold of nonempty Fuchsian ends.

Renormalized frame bundle

The renormalized frame bundle RF M� FM is defined as the AM–invariant subset

RF MD fŒg� 2 �nG W g˙ 2ƒg D fx 2 �nG W xA is boundedg;

i.e. the closed set consisting of all oriented frames .v0; : : : ; vd�1/ such that the complete geodesic
through v0 is contained in core M.

Unless mentioned otherwise,8 we set AC D fat W t � 0g. We define

RFCMD fŒg� 2 �nG W gC 2ƒg D fx 2 �nG W xAC is boundedg;

which is a closed NAM–invariant subset. As �.xNA/ D �.xG/ D M for any x 2 �nG, we have
�.RFCM/DM.

Lemma 4.2 For x 2 RFCM, xAC meets RF M.

Proof Take any sequence ai ! 1 in AC. Since xAC is bounded, xai converges to some x0 2
xAC by passing to a subsequence. On the other hand, as A D lim inf a�1i AC, we have x0A �
lim sup.xai /.a�1i AC/� xAC. Since x 2RFCM, xAC is bounded, whence so is x0A. Hence x0 2RF M,
as desired.

8At certain places, we use notation AC for any subsemigroup of A
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H.U /–invariant subsets: FH.U /, F �H.U /
and @FH.U /

Fix a nontrivial connected subgroup U <N, and consider the associated subgroups H.U / and H 0.U / as
defined in Section 3.

We define

(4-1) FH.U/ WD RFCM �H.U /:

We denote by F �
H.U/

the interior of FH.U/ and by @FH.U/ the boundary of FH.U/. When there is no
room for confusion, we will omit the subscript H.U / and simply write F, F � and @F.

If C �Sd�1 denotes the oriented k–sphere stabilized byH.U /, then g2FH.U/ if and only if gC\ƒ¤∅.
Therefore the closedness of FH.U/ follows from the compactness of ƒ. The set FH.U/ is also H 0.U /–
invariant, since RFCM is M–invariant and C.H.U // is contained in M. For g 2 G, we denote by
Cg D CgH.U/ � Sd�1 the sphere given by the boundary of the geodesic plane �.gH.U //. Then
hullCg D �.g.H.U /// and Cg D gH.U /C D gH.U /�, where H.U /˙ D fh˙ W h 2H.U /g. It follows
that

(4-2) FH.U/ D fŒg� 2 �nG W Cg \ƒ¤∅g:

Lemma 4.3 Fix x D Œg� 2 �nG. Let L be a closed subgroup of G such that the closure of �.gL/ in
Hd [ Sd�1 does not meet ƒ. Then the map L! xL � �nG given by ` 7! x` is a proper map , and
hence xL is closed.

Proof Suppose that x`i converges to some Œg0� 2 �nG for some sequence `i !1 in L. Then there
exist i 2 � such that d.i�.g`i /; �.g0//D d.�.g`i /; i�.g0//! 0 as i!1. As g`i !1, i�.g0/
converges to a limit point � 2ƒ, after passing to a subsequence. Hence �.gL/\ƒ¤∅.

This lemma implies that, if x … RFCM (resp. x … FH.U/), then xU (resp. xH.U /) is closed for any
closed subgroup U <N.

Lemma 4.4 If M is a convex cocompact hyperbolic manifold of nonempty Fuchsian ends , then

FH.U/ D fx 2 �nG W �.xH.U //\ core M¤∅g:

Proof Denote by Q the subset on the right-hand side of the above equality. To show FH.U/ �Q, let
x 2FH.U/. By modifying it using an element of H.U /, we may assume that x 2RFCM. By Lemma 4.2,
xAC contains x0 2 RF M. Since x0A is bounded, �.x0A/ is a bounded geodesic, and hence

�.x0A/� �.xH.U //\ core M

because core M contains all bounded geodesics. Therefore x 2Q. To show the other inclusionQ�FH.U/,
we use the hypothesis on M. Suppose x D Œg� … FH.U/. Then Cg \ƒ D ∅, and hence Cg must be

Geometry & Topology, Volume 28 (2024)



Orbit closures of unipotent flows for hyperbolic manifolds with Fuchsian ends 3397

contained in a connected component, say Bi , of �. Hence �.gH.U // D hull.Cg/ is contained in
the interior of hull.Bi /, which is disjoint from hull.ƒ/, by the convexity of Bi . Therefore the orbit
��.gH.U // is a closed subset of Hd , disjoint from hull.ƒ/. Hence x …Q, proving the claim.

Note also that

(4-3) RF M �H.U /D fŒg� 2 �nG W #Cg \ƒ� 2g D fx 2 �nG W �.xH.U //\ core M¤∅g:

This can be seen using the fact that, for any two distinct points �C; �� 2 Cg , there exists h 2H.U / such
that gh.1/D �C and gh.0/D ��; this fact is clear if H.U /DH.Uk/ for some k, and the general case
follows since H.U /DmH.Uk/m�1 for some m 2M, and M fixes both 0 and1.

Denote by M� the interior of the core of M and by F �
H.U/

the interior of FH.U/. Then

F �H.U/ D fx 2 �nG W �.xH.U //\M� ¤∅g:

To see this, note that the right-hand side is equal to

(4-4) fŒg� 2 FH.U/ W hullCg \ Interior.hull.ƒ//¤∅g D fŒg� 2 FH.U/ W Cg š Bi for any ig;

which can then be seen to be equal to F �
H.U/

in view of (4-2). Note that (4-4) implies that, for Œg�2F �
H.U/

,
#Cg \ƒ� 2 and hence

(4-5) F �H.U/ � RF M �H.U /:

In particular, RF M �H.U / is dense in FH.U/.

Lemma 4.5 We have
RFCM\F �H.U/ � RF M �U:

Proof Let y 2 RFCM\F �
H.U/

. We need to show that yU \RF M¤∅. Choose g 2G so that Œg�D y.
As y 2 RFCM, gC D g.1/ 2ƒ, and hence Cg \ƒ¤∅. If #Cg \ƒD 1, then Cg must be contained
inBi for some i , which implies Œg�…F �

H.U/
. Therefore #Cg\ƒ�2. We note that gU.0/[fg.1/gDCg ;

this is clear when U D Uk for some k � 1 and g D e, to which the general case is reduced. Hence, there
exists u 2 U such that gu.0/ 2ƒ. Since gu.1/D g.1/ 2ƒ, we have yuD Œg�u 2 RF M.

We denote by @FH.U/ the boundary of FH.U/; that is,

@FH.U/ D FH.U/�F
�
H.U/ D fŒg� 2 FH.U/ W Cg � Bi for some ig:

When there is no room for confusion, we will omit the subscript H.U / and simply write F, F � and @F.

We call an oriented frame g D .v0; : : : ; vd�1/ 2 FM D G a boundary frame if the first d � 1 vectors
v0; : : : ; vd�2 are tangent to the boundary of core M. Set

{H WDH.Ud�2/D SOı.d � 1; 1/;

and denote by {V the one-dimensional subgroup Red�1 of N DRd�1; note that {V D . {H \N/?.
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We denote by BF M the set of all boundary frames of M; it is a union of compact {H–orbits

(4-6) BF MD

k[
iD1

zi {H

such that �.zi {H/D �n� hull.Bi / for some component Bi of �.

The boundary @FH.U / for U < {H \N Suppose that U is contained in {H \N DRd�2. Then there
exists a one-parameter semigroup {V C of {V such that

@F D BF M � {V C �H 0.U /:

We use the notation {V � D fv�1 W v 2 {V Cg. Note that

(4-7) @F \RF MD BF M �C.H.U // and @F \RFCMD BF M � {V C �C.H.U //:

For a general proper connected closed subgroup U <N, mUm�1 � {H \N for some m 2M, and

@F \RF MD BF M �m �C.H.U //;

where BF M �m is now a union of finitely many m�1 {Hm–compact orbits.

Lemma 4.6 Let U < {H \N, z 2 BF M and v 2 {V �feg. If zv 2 RF M, then zv 2 F �.

Proof Let z D Œg� 2 BF M. Then @.�.g {H//D @Bj for some j. Let v 2 {V �feg be such that zv 2 RF M.
Suppose zv 2 @FH.U/. Then Cgv � Bi for some i . Since the sphere Cgv D fgvh.1/ W h 2 H.U /g
contains g.1/ which belongs to @Bj , we have i D j, as the Bi are mutually disjoint. As zv 2 RF M,
Cgv � @Bj . Hence gvH.U /C � g {HC. It follows that gvH.U / � g {H, and hence vH.U /\ {H ¤ ∅,
which is a contradiction since v … {H, and H.U /� {H.

Properly immersed geodesic planes

Let H DH.Uk/ and H 0DH 0.Uk/ be as in (3-9), and p be the map in (3-10). In (3-11), if p.�zS /n zS is a
convex cocompact hyperbolic k–manifold with Fuchsian ends and f is proper, then the image S D Im.f /
is referred to as a properly immersed convex cocompact geodesic k–plane of Fuchsian ends.

Proposition 4.7 If xH 0 is closed for x 2 RF M, then S D �.xH 0/ is a properly immersed convex
cocompact geodesic plane with (possibly empty) Fuchsian ends.

Proof Choose g 2 G so that x D Œg�. Let zS and �zS be as in Proposition 3.9. Set C D @ zS. By
Proposition 3.9, S is properly immersed, and C \ƒDƒ.p.�zS //. Write

(4-8) C � .C \ƒ/D
[
i2I

.C \Bi /;
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where I is the collection of all i such that C \Bi ¤ ∅. If C \ƒ contains a nonempty open subset
of C, then the limit set of p.�zS / is equal to C. Since p.�zS / is convex cocompact by Proposition 3.9,
it is a uniform lattice in gHg�1, and hence S is compact. In the other case, I is an infinite set andS
i2I .C \Bi / is dense in C ; so S is a convex cocompact hyperbolic submanifold with Fuchsian ends by

Definition 4.1(2).

Lemma 4.8 For any sphere C in Sd�1 with #C \ƒ� 2, the intersection C \ƒ is Zariski-dense in C.

Proof The claim is clear if C \ƒ contains a nonempty open subset of C. If not, C \ƒ contains infinitely
many of the C \ @Bi , each of which is an irreducible codimension one real subvariety of C. It follows
that the Zariski-closure of C \ƒ has dimension strictly greater than dimC � 1, hence is equal to C.

We let

(4-9) �1 WH
0
!H and �2 WH

0
! C.H/

denote the canonical projections.

Proposition 4.9 Suppose that xH 0 is closed for x D Œg� 2 RF M, and set � 0 WD g�1�g\H 0. Then

(4-10) xH D xHC;

where C D �2.� 0/ and HC is equal to the identity component of the Zariski-closure of � 0.

Proof Without loss of generality, we may assume gD e. As H 0 is a direct product H �C.H/, we write
an element of H 0 as .h; c/ with h 2H and c 2 C.H/. For all  2 � 0,

xH D Œ.e; e/�H D Œ.e; �2.//�H D Œ.e; e/�H�2./

and hence xH D xH�2.� 0/. It follows that xHC � xH .

To show the other inclusion, let .h0; c0/ 2 H C.H/ be arbitrary. If Œ.h0; c0/� 2 xH D Œ.e; e/�H , then
there exist sequences i 2 � 0 and hi 2H such that i .hi ; e/! .h0; c0/ in H 0 as i !1. In particular,
�2.i /! c0 in C.H/ as i !1 and hence c0 2 C D �2.� 0/. This finishes the proof of (4-10). Let W
denote the identity component of the Zariski-closure of � 0 in H 0. Since any proper algebraic subgroup
of G stabilizes either a point, or a proper sphere in Sd�1, it follows from Proposition 3.9 and Lemma 4.8
that �1.� 0/ is Zariski-dense in H ; so �1.W /DH. So the quotient W nH 0 is compact. This implies that
W contains a maximal real-split connected solvable subgroup, say, P of H 0. Now H \W is a normal
subgroup of H, as �1.W / D H. Since P < H \W and H is simple, we conclude that H \W D H,
i.e. H <W. Hence W DH�2.W /. As any compact linear group is algebraic, C is algebraic and hence
C D �2.W /D �2.� 0/. Therefore W DHC.
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Global thickness of the return time to RF M

We recall the various notions of thick subsets of R, following [McMullen et al. 2017; 2022].

Definition 4.10 Fix k > 1.

� A closed subset T�R is locally k–thick at t if, for any � > 0,

T\ .t ˙ Œ�; k��/¤∅:

� A closed subset T�R is k–thick if T is locally k–thick at 0.

� A closed subset T�R is k–thick at1 if

T\ .˙Œ�; k��/¤∅
for all sufficiently large �� 1.

� A closed subset T�R is globally k–thick if T¤∅ and T is locally k–thick at every t 2 T.

We will frequently use the fact that, if Ti is a sequence of k–thick subsets, then lim supTi is also k–thick,
and that, if T is k–thick, so is �T.

The following proposition shows that RF M has a thick return property under the action of any one-
dimensional subgroup U of N :

Proposition 4.11 There exists a constant k > 1, depending only on the systole of the double of core M,
such that , for any one-parameter subgroup U D fut W t 2Rg of N˙ and any y 2 RF M,

T.y/ WD ft 2R W yut 2 RF Mg

is globally k–thick.

Proof Let �> 0 be the systole of the hyperbolic double of core M, which is a closed hyperbolic manifold.
Let k > 1 be given by

(4-11) d
�
hull.Œ�k;�1�/; hull.Œ1; k�/

�
D

1
4
�;

where d is the hyperbolic distance in the upper half-plane H2.

Note that

(4-12) inf
i¤j

d.hullBi ; hullBj /� 1
2
�

as the geodesic realizing this distance is either a closed geodesic or half of a closed geodesic in the double
of core M.

We first prove the case when U <N. Let s 2 T.y/ be arbitrary. To show that T.y/ is locally k–thick at s,
we may assume that s D 0, by replacing y with yus 2 RF M. We may also assume that y D Œg�, where
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g.1/D1 and g.0/D 0. As y 2 RF M, this implies that 0;12 ƒ. Since gut .1/D g.1/ 2 ƒ, we
have

T.y/D ft 2R W gut .0/ 2ƒg:

Suppose that T.y/ is not locally k–thick at 0. Then there exist w 2 U and t > 0 such that

.Œ�kt;�t � �w[ Œt; kt � �w/\ƒD∅:

Since each component of � is convex and 0 …�, it follows that Œ�kt;�t � �w and Œt; kt � �w lie in distinct
components of �, say Bi and Bj with i ¤ j. But this yields

(4-13) dw
�
hull.Œ�kt;�t � �w/; hull.Œt; kt � �w/

�
� d.hullBi ; hullBj /� 1

2
�;

where dw denotes the hyperbolic distance of the plane above the line Rw. Observe that the distance in
(4-13) is independent of w 2 Rd�1 and t > 0, because both the dilation centered at 0 and the .d�2/–
dimensional rotation with respect to the vertical axis above 0 are hyperbolic isometries. Therefore, we get
a contradiction to (4-11). The case of U <NC is proved similarly, just replacing the role of gC and g�

in the above arguments.

Remark 4.12 It follows from the proof that k is explicitly given by (4-11) or, equivalently, kC k�1 D
e�=4C 2e�=8� 1, where � > 0 is the systole of the double of core M.

5 Structure of singular sets

Let � < G D SOı.d; 1/ be a convex, cocompact, torsion-free, Zariski-dense subgroup. Let U < G be
a connected closed subgroup of G generated by unipotent elements in it. In this section, we define the
singular set S .U / associated to U and study its structural properties. The singular set S .U / is defined
so that it contains all closed orbits of intermediate subgroups between U and G.

Definition 5.1 (singular set) We set

S .U /D
˚
x 2 �nG W there exists a proper connected closed subgroup W � U

such that xW is closed and StabW .x/ is Zariski-dense in W
	
:

Definition 5.2 (definition of H ) We denote by H the collection of all proper connected closed
subgroups H <G containing a unipotent element such that

� �n�H is closed, and

� H \� is Zariski-dense in H.

Proposition 5.3 If H 2H , then H is a reductive subgroup of G, and hence is of the form gH.U /Cg�1

for some connected subgroup U <N, a closed subgroup C < C.H.U // and g 2G such that Œg� 2 RF M.
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Proof In order to prove that H is reductive, suppose not. Then its unipotent radical is nontrivial, which
we can assume to be a subgroup U of N, up to a conjugation. Now we write H DHncCT U, where C
is a connected semisimple compact subgroup and T is a torus centralizing HncC. As H is contained
in N.U /DNAC1.U /C2.U /, which does not contain any noncompact simple Lie subgroup, it follows
that Hnc is trivial. Now if T were compact, then H \ � would consist of parabolic elements, which
is a contradiction as � is convex cocompact. Hence T is noncompact. Write T D T0S, where S is a
split torus and T0 is compact. Then T0 is equal to a conjugate of A, say, g�1Ag for some g 2 G. As
T0 normalizes U, and N.U / fixes1, we deduce that g.1/ is either1 or 0. Since StabG.1/DNAM,
g.1/D1 implies g 2NAM, and g.1/D 0 implies jg 2NAM, where j 2G is an element of order 2
such that j.0/D1. In either case, T0 D v�1Av for some v 2N. By replacing H with vHv�1, we may
assume that T0DA. Since CS is a compact subgroup commuting with A, CS �M. ThereforeH is of the
form M0AU, where M0 is a closed subgroup of M \N.U /; note that we used the fact that v commutes
with U. Now the commutator subgroup ŒH;H� is equal to ŒM0;M0�U. Since ŒH \�;H \�� must be
Zariski-dense in ŒH;H�, we deduce that � contains an element m0u 2M0U with u nontrivial. Since
m0u is a parabolic element of � , this is a contradiction to the assumption that � is convex cocompact.
This proves that H is reductive.

By Proposition 3.7, H is of the form gH.U /Cg�1 for some g 2G and C <C.H.U //. For some m2M
and 1 � k � d � 2, H.U /D mH.Uk/m�1. Hence �n�gmH.Uk/C0 is closed, where C0 D m�1Cm.
By Proposition 3.9, the boundary of the geodesic plane �.gmH.Uk// contains uncountably many points
ofƒ, since .gm/H.Uk/C0.gm/�1\� is Zariski-dense in .gm/H.Uk/C0.gm/�1. Using two such limit
points, we can find an element h 2H.Uk/ such that .gmh/˙ 2ƒ. Since .gmhm�1/˙ D .gmh/˙ and
mhm�1 2H.U /, it follows that Œg�H.U /\RF M¤∅, and hence we can take Œg� 2 RF M by modifying
it with an element of H.U / if necessary.

Therefore, for each H 2H , the noncompact semisimple part Hnc of H is well defined.

Proposition 5.4 If H 2H , then

� H \� is finitely generated ;

� ŒNG.Hnc/\� WH \�� <1.

Proof Let p denote the projection map NG.Hnc/!Hnc. Note that p is an injective map on NG.Hnc/\� ,
as � is torsion-free and the kernel of p is a compact subgroup. It follows from Proposition 5.3 that Hnc

is cocompact in NG.Hnc/. Since H 2H , the orbit Œe�H is closed and hence Œe�NG.Hnc/ is closed. It
follows that both p.H \�/ and p.NG.Hnc/\�/ are convex cocompact Zariski-dense subgroups of Hnc

by Proposition 3.9. As any convex cocompact subgroup is finitely generated [Bowditch 1993], p.H \�/
is finitely generated. Hence H \� is finitely generated by the injectivity of pjH\� .
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Since p.H \�/ is a normal subgroup of p.NG.Hnc/\�/, it follows that p.H \�/ has finite index in
p.NG.Hnc/\�/ by Lemma 5.5 below. Since pjNG.Hnc/\� is injective, it follows that H \� has finite
index in NG.Hnc/\� .

Lemma 5.5 Let �1 and �2 be nonelementary convex cocompact subgroups of G. If �2 is a normal
subgroup of �1, then Œ�1 W�2� <1.

Proof Let ƒi be the limit set of �i for i D 1; 2. Since �2 < �1, ƒ2 �ƒ1. As �2 is normalized by �1,
ƒ2 is �1–invariant. Since �1 is nonelementary, ƒ1 is a minimal �1–invariant closed subset. Hence
ƒ1 D ƒ2. Let Mi WD �inHd . Then the convex core of M1 is equal to �1n hull.ƒ2/ and covered by
core M2 D �2n hull.ƒ2/. Since core M2 is compact, it follows that Œ�1 W�2� <1.

Definition 5.6 (definition of H ?) We define

(5-1) H ?
WD fNG.Hnc/ WH 2H g:

Corollary 5.7 (countability) The collection H is countable , and the map H ! NG.Hnc/ defines a
bijection between H and H ?.

Proof As � is convex cocompact, it is finitely generated. Therefore there are only countably many
finitely generated subgroups of � . By Proposition 5.4, there are only countably many possible H \� for
H 2H . Since H is determined by H \� , being its Zariski-closure, the first claim follows.

Since H \ � has finite index in NG.Hnc/ \ � by Proposition 5.4, H is determined as the identity
component of the Zariski-closure of NG.Hnc/\� . This proves the second claim.

In the case of a convex cocompact hyperbolic manifold of Fuchsian ends, there is a one-to-one corre-
spondence between H and the collection of all closed H 0.U /–orbits of points in RF M for U < N :
if H 2 H , then H D gH.U /Cg�1 for some U < N and g 2 G with Œg� 2 RF M and Œg�H 0.U / is
closed. Conversely, if Œg�H 0.U / is closed for some Œg� 2 RF M, then the identity component of the
Zariski-closure of �\gH 0.U /g�1 is given by gH.U /Cg�1 for some closed subgroup C <C.H.U // by
Proposition 4.9, and hence gH.U /Cg�1 2H . Moreover, since the normalizer of H.U /C is contained
in H 0.U /, if g1H.U /Cg�11 D g2H.U /Cg

�1
2 , then g�12 g1 2 H

0.U /, so Œg1�H 0.U / D Œg2�H
0.U /.

Therefore Corollary 5.7 implies the following corollary by Propositions 3.9 and 4.9:

Corollary 5.8 Let M be a convex cocompact hyperbolic manifold with Fuchsian ends. Then:

(1) There are only countably many properly immersed geodesic planes of dimension at least 2 inter-
secting core M.

(2) For each 1�m� d � 2, there are only countably many spheres S � Sd�1 of dimension m such
that #S \ƒ� 2 and �S is closed in the space Cm.

Remark 5.9 In (2), we may replace the condition #S \ƒ� 2 with #S \ƒ� 1, because if #S \ƒD 1,
then �S is not closed (see Remark 11.6).
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For a subgroup H <G, define

(5-2) X.H;U / WD fg 2G W gUg�1 �H g:

Note that X.H;U / is left NG.H/– and right NG.U /–invariant, and, for any g 2G,

(5-3) X.gHg�1; U /D gX.H;U /:

For H 2H and any connected unipotent subgroup U <G, observe that

(5-4) X.H;U /DX.Hnc; U /DX.NG.Hnc/; U /I

this follows since any unipotent element of NG.Hnc/ is contained in Hnc.

Proposition 5.10 We have
S .U /D

[
H2H ?

�n�X.H;U /:

Proof If x D Œg� 2S .U /, then there exists a proper connected closed subgroup W of G containing U
such that Œg�W is closed and StabW .x/ is Zariski-dense in W. This means H WD gWg�1 2 H and
g 2 X.H;U /. Since X.H;U / D X.NG.Hnc/; U /, and NG.Hnc/ 2 H ?, this proves the inclusion �.
Conversely, let g 2X.NG.Hnc/; U / for some H 2H . Set W WD g�1Hg. Then U �W, Œg�W D �Hg
is closed and StabW .Œg�/D g�1.� \H/g is Zariski-dense in W. Hence Œg� 2S .U /.

Singular subset of a closed orbit

Let L < G be a connected reductive subgroup of G containing unipotent elements. For a closed orbit
x0L of x0 2 RF M, and a connected subgroup U0 <L\N, we define the singular set S .U0; x0L/ by

(5-5) S .U0; x0L/D
˚
x 2 x0L W there exists a connected closed subgroup W <L containing U0

such that dimWnc < dimLnc, xW is closed

and StabW .x/ is Zariski-dense in W
	
:

It follows from Propositions 5.10 and 5.3 that the subgroupW in Definition 5.1 is conjugate toH. yU/C for
some yU <N. Hence W being a proper subgroup of G is same as requiring dimWnc < dimG. Therefore
S .U0/DS .U0; �nG/ and

S .U0; x0L/D x0L\
[
�n�X.H;U0/;

where the union is taken over all subgroups H 2 H ? such that H is a subgroup of g0Lg�10 with
dimHnc < dimLnc and x0 D Œg0�. Equivalently,

(5-6) S .U0; x0L/D
[

W 2H ?
x0L

x0.L\X.W;U0//;

where H ?
x0L

consists of all subgroups of the form W D g�10 Hg0\L for some H 2H ? and dimWnc <

dimLnc. Then the generic set G .U0; x0L/ is defined by

(5-7) G .U0; x0L/ WD .x0L\RFCM/�S .U0; x0L/:
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Definition of LU and QU

Fix a nontrivial connected closed subgroup U <N. We define the collection LU of all subgroups of the
form H. yU/C, where U < yU <N and C is a closed subgroup of C.H. yU// satisfying

(5-8) LU WD
˚
LDH. yU/C W for some Œg� 2 RFCM, Œg�L is closed in �nG

and L\g�1�g is Zariski-dense in L
	
:

Observe that, for LDH. yU/C ¤G, the condition L 2LU with Œg�L closed is equivalent to the condition
that

gLg�1 2H :

Lemma 5.11 Let L1 and L2 be members of LU such that xL1 and xL2 are closed for some x 2 RF M.
If .L1/nc D .L2/nc, then L1 D L2.

Proof If L1 or L2 is equal to G, then the claim is trivial. Suppose that both L1 and L2 are proper
subgroups of G. If xD Œg�, then both subgroups H1 WD gL1g�1 and H2 WD gL2g�1 belong to H . Since
.H1/nc D .H2/nc, we have H1 DH2 by Corollary 5.7. Hence L1 D L2.

We also define

(5-9) QU WD fvLv
�1
W L 2 LU ; v 2 N.U /g:

Since N.U /D AN C1.U /C2.U / by Lemma 3.2, and the collection LU is invariant under a conjugation
by an element of AU C1.U /C2.U /, we have

(5-10) QU D fvLv
�1
W L 2 LU ; v 2 U

?
g:

Lemma 5.12 For U0 < U <N, we have

X.H.U /; U0/D NG.H.U //NG.U0/:

Proof Without loss of generality, we may assume U D Um and U0 D Ul with 1� l �m� d � 1. Set
H DH.Um/. If mD d � 1, then H D G, and the statement is trivial. Assume m � d � 2 below. We
will prove the inclusion X.H;U0/ � NG.H/NG.U0/, as the other one is clear. Let g 2 X.H;U0/ be
arbitrary. By multiplying g by an element of NG.H/ on the left as well as by an element of NG.U0/ on
the right, we will reduce g to an element of NG.U0/, which implies the claim. In view of the Iwasawa
decomposition G D KAN, since AN < NG.U0/, we may assume that g D k 2 K. As k 2 X.H;U0/,
we have kU0k�1 �H. Since K \H is a maximal compact subgroup of H, any maximal horospherical
subgroups of H are conjugate to each other by an element of K \H. Hence there exists w 2 K \H
such that kU0k�1 D wU0w�1.
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Since w�1kU0DU0w�1k, we deduce w�1k.1/DU0.w�1k.1//. Since12Sd�1 is the unique fixed
point of U0, w�1k.1/D1. Hence w�1k 2K\ .MAN/DM. Since w 2H, we may now assume that
k 2M. From kU0�Hk, we get kU0.0/�Hk.0/DH.0/ and hence hke1; : : : ; keli � he1; : : : ; emi. By
considering the action ofH \K on space of l–tuples of orthonormal vectors in the subspace he1; : : : ; emi,
we may assume ke1 D e1, : : : , kel�1 D el�1, and kel D ˙el . This implies that k 2 C1.U0/, or
k! 2 C1.U0/, where ! 2M is an involution which fixes all ei for i ¤ l; l C 1 and !.ei / D �ei for
i D l; l C 1. As NG.U0/ contains C1.U0/ and !, the proof is complete.

Proposition 5.13 Consider a closed orbit x0L for L 2 QU and x0 2 RF M. If x 2 S .U0; x0L/ for a
connected closed subgroup U0 < U, then there exists a subgroup Q 2 QU0 such that

� dimQnc < dimLnc;

� xQ is closed ;

� xU0 � xQ.

Proof If x D Œg� 2 S .U0; x0L/, then g 2 X.H;U0/ for some H 2H such that dimHnc < dimLnc.
Then xU0 � x.g�1Hg/. By Proposition 5.3, H D qH. yU/Cq�1 for some U0 < yU < L\N and some
Œq� 2 RF M. Note that q�1g 2X.H. yU/; U0/. By Lemma 5.12, we have

q�1g 2 NG.H. yU//NG.U0/:

Hence g�1Hg D vH. yU/Cv�1 for some v 2 NG.U0/, and xU0 � xvH. yU/Cv�1. It suffices to set
Q WD vH. yU/Cv�1.

Lemma 5.14 Let L D H. yU/C for a connected closed subgroup yU < N and closed subgroup C <

C.H. yU//. Let W D g�1H. zU/C0g be a subgroup of L, where g 2 L, zU is a proper connected closed
subgroup of yU, and C0 is a closed subgroup ofH. zU/. Then , for any nontrivial closed connected subgroup
U < yU, .L\X.W;U //H.U / is a nowhere-dense subset of L.

Proof Write g D hc 2H. yU/C. Note that

L\X.W;U /D L\X.g�1H. zU/g; U /D L\X.h�1H. zU/h; U /D h
�
L\X.H. zU/; U /

�
D h

�
H. yU/\X.H. zU/; U /

�
C:

Hence it suffices to show that
�
H. yU/\X.H. zU/; U /

�
H.U / is a nowhere-dense subset ofH. yU/. Without

loss of generality, we may now assume H. yU/DG. We observe that, using Lemma 5.12,

X.H. zU/; U /H.U /D NG.H. zU//NG.U /H.U /DH. zU/C1. zU/AN C1.U /C2.U /H.U /

D .K \H. zU//U?H 0.U /:

Let dim zU Dm and dimU D k. If k �m, then X.W;U /D∅. Hence we may assume that 1� k �m<
d �1D dimN. Now, if we view the subset .K\H. zU//U?H 0.U /=H 0.U / in the space Ck DG=H 0.U /,
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this set is contained in the set of all spheres C 2 Ck which are tangent to the m–sphere given by
S0 WD .K\H. zU//.1/. Since m<d �1, it follows that X.H. zU/; U /H.U /=H 0.U / is a nowhere-dense
subset of Ck , and hence X.H. zU/; U /H.U / is a nowhere-dense subset of G.

Recall from (4-1) that F D RFCM �H.U /.

Lemma 5.15 Let x0 yL be a closed orbit of yL 2LU with x0 2 RF M. If U is a proper subgroup of yL\N,
then S .U; x0 yL/ �H.U /\FH.U/ is a proper subset of x0 yL\FH.U/.

Proof Choose g0 2 G so that x0 D Œg0�. Let p W G ! �nG be the canonical projection map. Then
p�1.S .U; x0 yL/ �H.U // is a countable union g0.yL\X.W;U //H.U /, where  2 � and W 2H ?

x0 yL
by (5-6). Hence, by Lemma 5.14, S .U; x0 yL/ �H.U / is a countable union of nowhere-dense subsets
of x0L. Since F �

H.U/
\ x0 yL is an open subset of x0 yL, it follows from the Baire category theorem that

F �
H.U/

\ x0 yLšS .U; x0 yL/ �H.U /.

The following geometric property of a convex cocompact hyperbolic manifold with Fuchsian ends is one
of its key features which is needed in the proof of our main theorems stated in the introduction:

Proposition 5.16 Let M be a convex cocompact hyperbolic manifold with Fuchsian ends. Let x0 yL be a
closed orbit of yL 2LU with x0 2 RF M and with dim.yL\N/� 2. Either x0 yL is compact or S .U; x0 yL/

contains a compact orbit zL0 with L0 2 LU .

Proof Write yLDH. yU/C for a connected closed subgroup U < yU <N. Since x0 yL is closed, �.x0 yL/D
�.x0H

0. yU// is a properly immersed convex cocompact geodesic plane of dimension at least 3 with
Fuchsian ends by Proposition 4.7. Suppose that x0L is not compact. Then �.x0L/ has nonempty Fuchsian
ends. This means that there exist a codimension one subgroup U0 of yU and z 2 yL such that zH 0.U0/ is
compact and �.zH 0.U0// is a component of the core of �.x0 yL/. By Proposition 4.9, there exists a closed
subgroup C0 < C.H.U0//\ yL such that H.U0/C0 2 LU0 and zH.U0/C0 is compact. Let m 2M \ yL
be an element such that U � m�1U0m. Then zm.m�1H.U0/C0m/ is a compact orbit contained in
S .U; x0 yL/ and m�1H.U0/C0m 2 LU .

6 Inductive search lemma

In this section, we prove a combinatorial lemma, Lemma 6.4, which we call an inductive search lemma,
and use it to prove Proposition 6.3 on the thickness of a certain subset of R, constructed by the intersection
of a global thick subset T and finite families of triples of subsets of R with controlled regularity, degree
and the multiplicity with respect to T. This proposition will be used in the proof of the avoidance theorem,
Theorem 7.13, in the next section.
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Definition 6.1 Let J � � I be a pair of open subsets of R.

� The degree of .I; J �/ is defined to be the minimal ı 2 N [ f1g such that, for each connected
component I ı of I, the number of connected components of J � contained in I ı is bounded by ı.

� For ˇ > 0, the pair .I; J �/ is said to be ˇ–regular if, for any connected component I ı of I and
any component J ı of J �\ I ı,

J ı˙ˇ � jJ ıj � I ı;

where jJ ıj denotes the length of J ı.

Definition 6.2 Let X be a family of countably many triples .I; J �; J 0/ of open subsets of R such that
I � J � � J 0.

� Given ˇ > 0 and ı 2N, we say that X is ˇ–regular of degree ı if, for every triple .I; J �; J 0/ 2 X,
the pair .I; J �/ is ˇ–regular with degree at most ı.

� Given a subset T � R, we say that X is of T–multiplicity free if, for any two distinct triples
.I1; J

�
1 ; J

0
1/ and .I2; J �2 ; J

0
2/ of X, we have

I1\J
0
2\TD∅:

For a family XD f.I�; J
�
�
; J 0
�
/ W � 2ƒg, we will use the notation

I.X/ WD
[
�2ƒ

I�; J �.X/ WD
[
�2ƒ

J �� and J 0.X/ WD
[
�2ƒ

J 0�:

The goal of this section is to prove:

Proposition 6.3 (thickness of T � J 0.X/) Given n; k; ı 2 N, there exists a positive number ˇ0 D
ˇ0.n; k; ı/ for which the following holds: Let T�R be a globally k–thick set , and let X1; : : : ;Xl with
l � n be ˇ0–regular families of degree ı and of T–multiplicity free. Let XD

Sl
iD1 Xi . If 0 2 T� I.X/,

then
T�J 0.X/

is a 2k–thick set.

We prove Proposition 6.3 using the inductive search lemma, Lemma 6.4. The case of nD 1 and ı D 1
is easy. As the formulation of the lemma is rather complicated in the general case, we first explain the
simpler case of nD 2 and ı D 1 in order to motivate the statement.

For simplicity, let us show that T� .J 0.X1/[J 0.X2// is 4k–thick instead of 2k–thick, given that X1 and
X2 are 8k2–regular families of degree 1, and of T–multiplicity free. For any r > 0, we need to find a
point

t 2 ˙.r; 4kr/\ .T�J 0.X//;

where XD X1[X2; see Figure 3.
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X1

X2

<kjJ �1 j
<2k2jJ �1 j

<kjJ �1 j

J �1
I �1

J �2
I �2 J �3

I �3

t2 t1 t3 t4

Figure 3

First, we know that there exists t1 2˙.2r; 2kr/\T, as T is locally k–thick at 0. If t1 … J 0.X1/[J 0.X2/,
then we are done. So we assume that t1 2 J 0.X1/. Our strategy is then to search for a sequence in T of
length at most 4, starting with t1, say .t1; t2; t3; t4/, such that

jti�1j
3
p
2
� jti j �

3
p
2jti�1j for each i D 2; 3; 4,

and the last element t4 does not belong to J 0.X/. This will imply 1
2
jt1j � jt4j � 2jt1j and hence

t WD t4 2 ˙.r; 4kr/\ .T�J
0.X//;

as desired, because 2r � jt1j � 2kr .

We next sketch how we find t2 from t1 and so on. Let t1 2 J 01, where .I1; J �1 ; J
0
1/ 2X1. Since T is locally

k–thick at t1, there exists

(6-1) t2 2 .t1˙ .jJ
�
1 j; kjJ

�
1 j//\T:

We will refer to t1 as a pivot for searching t2 in (6-1), as t2 was found in a symmetric interval around t1.
Note that t2 2 I1 � J �1 as .I1; J �1 / is k–regular. This implies that t2 … J 0.X1/ as the family X1 is of
T–multiplicity free. Now we will assume t2 2 J 02 for some triple .I2; J �2 ; J

0
2/ 2 X2, since otherwise

t2 … J
0.X/ and we are done.

To search for the next point t3 2 T, we choose our pivot between two candidates t1 and t2 as follows: we
will choose t1 if jJ �1 j � jJ

�
2 j, and t2 otherwise. Without loss of generality, we will assume jJ �1 j � jJ

�
2 j.

Since T is locally k–thick at t1, we can find

t3 2
�
t1˙ 2k.jJ

�
1 j; kjJ

�
1 j/
�
\T:

Note that t3 2 I1 � J �1 as the pair .I1; J �1 / is 2k2–regular. This implies t3 … J 0.X1/ as X1 is of
T–multiplicity free. Now we can assume that t3 2 J 03 for some .I3; J �3 ; J

0
3/ 2 X2, otherwise we are

done. One can check that J �3 cannot coincide with J �2 . We claim that jJ �1 j � jJ
�
3 j. Suppose not, i.e.

jJ �3 j> jJ
�
1 j. Then we would have jt2� t1j< kjJ �3 j and jt1� t3j< 2k2jJ �3 j, which implies that t2 2 I3,
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as the pair .I3; J �3 / is .2k2Ck/–regular. This is a contradiction as X2 is T–multiplicity free and hence
J 02\ I3\TD∅.

Finally, we will choose t3 as a pivot and search for t4. By the local k–thickness of T at t3, we can find

t4 2 .t3˙ .jJ
�
3 j; kjJ

�
3 j//\T:

Since the pair .I3; J �3 / is k–regular, we have t4 2 I3 � J �3 . From the fact that the pair .I1; J �1 / is
.2k2Ck/–regular, one can check that t4 2 I1 � J �1 . As a result, t4 2 .I1 � J �1 /[ .I3 � J

�
3 / and hence

t4 … J
0.X/.

It remains to check that jti�1j=
3
p
2� jti j �

3
p
2jti�1j for each i D 2; 3; 4. This does not necessarily hold

for the current sequence, but will hold after passing to a subsequence where ti�1 becomes a pivot for
searching ti for all i . In the previous case, .t1; t3; t4/ will be such a subsequence, as t2 was not a pivot
for searching t3.

It follows from the ˇ WD 8k2–regularity of .Ii�1; J �i�1/ that jti�1j � 8k2jJ �i�1j> 0, as ti�1 2 J �i�1 and
0 … Ii�1. On the other hand, observe that

ti 2 ti�1˙Ci .jJ
�
i�1j; kjJ

�
i�1j/\T

for some Ci � 2k2. This gives us the desired upper bound for jti=ti�1j, as

jti j< jti�1jCCi jJ
�
i�1j � .1CCi .8k

2/�1/jti�1j

and 1CCi .8k2/�1 �
3
p
2. The lower bound is obtained similarly, completing the proof for nD 2 and

ı D 1.

The general case reduces to the case of ı D 1, by replacing n by nı. Roughly speaking, the following
lemma gives an inductive argument for the search of a sequence of the ti which is almost geometric in a
sense that the ratio jti j=jti�1j is coarsely a constant and which lands on T�J 0.X/ in a time controlled
by n:

Lemma 6.4 (inductive search lemma) Let k > 1, n 2 N and 0 < " < 1 be fixed. There exists
ˇDˇ.n; k; "/> 0 for which the following holds: Let T�R be a globally k–thick set , and let X1; : : : ;Xn

be ˇ–regular families of countably many triples .I�; J �� ; J
0
�
/ with degree 1, and of T–multiplicity free.

Set X D X1 [ � � � [Xn, and assume 0 … I.X/. For any t 2 T\ J 0.X/ and any 1 � r � n, we can find
distinct triples .I1; J �1 ; J

0
1/; : : : ; .Im�1; J

�
m�1; J

0
m�1/ 2 X with 2�m� 2r , and a sequence of pivots

t D t1 2 T\J
0
1; t2 2 T\J

0
2; : : : ; tm�1 2 T\J

0
m�1; tm 2 T

which satisfy the following conditions:

(1) Either tm … J 0.X/, or tm 2 J 0m for some .Im; J �m; J
0
m/ 2 X, which is distinct from .Ii ; J

�
i ; J

0
i / for

all 1� i �m� 1, and the collection f.Ii ; J �i ; J
0
i / W 1� i �mg intersects at least r C 1 of the Xi .
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(2) For all 1� i � j �m,

jti � tj j � 2..4k/
r
� 1/k max

1�p�j�1
jJ �p jI

(3) For each 1� i �m,
.1� "/i�1jt1j � jti j � .1C "/

i�1
jt1j:

In particular , for any t 2 T\J 0.X/, there exists t 0 2 T�J 0.X/ such that

.1� "/2
n�1
jt j � jt 0j � .1C "/2

n�1
jt j:

Proof We set

(6-2) ˇ D ˇ.n; k; "/D .4k/nC1"�1:

Consider the increasing sequence Q.r/ WD .4k/r � 1 for r 2N. Note that

Q.1/� 2 and Q.r C 1/� 4Q.r/kC 1:

Moreover, we check that

ˇ >max
�
.Q.n/C 4Q.n� 1//k;Q.n/k"�1

�
:

We proceed by induction on r . First consider the case when r D 1. There exists .I1; J �1 ; J
0
1/ 2 X such

that t1 WD t 2 J 01\T. As T is globally k–thick, we can choose

(6-3) t2 2
�
t1˙Q.1/.jJ

�
1 j; kjJ

�
1 j/
�
\T:

We claim that t1; t2 is our desired sequence with m D 2. In the case when t2 2 J 0.X/, there exists
.I2; J

�
2 ; J

0
2/ 2 X such that t2 2 J 02. We check:

(1) If t2 2 J 0.X/, then t2 2 J 02 � J
�
1 implies that J �1 and J �2 are distinct. Hence .I1; J �1 ; J

0
1/ and

.I2; J
�
2 ; J

0
2/ are distinct as well. Since ˇ >Q.1/k, by the ˇ–regularity of .I1; J �1 /, we have t2 2 I1. By

the T–multiplicity free condition, .I1; J �1 ; J
0
1/ and .I2; J �2 ; J

0
2/ don’t belong to the same family, that is,

f.I1; J
�
1 ; J

0
1/; .I2; J

�
2 ; J

0
2/g intersects two of the Xi .

(2) By (6-3), jt1� t2j<Q.1/kjJ �1 j D .4k� 1/kjJ
�
1 j.

(3) Note that 0 … I1, since 0 … I.X/. By the ˇ–regularity of .I1; J �1 /, we have t1˙ˇjJ �1 j � I1. Since
0 … I1 and ˇ > "�1Q.1/k, we have

jt1j � "
�1Q.1/kjJ �1 j> 0:

On the other hand, by (6-3),
jt2� t1j �Q.1/kjJ

�
1 j � "jt1j:

In particular,
jt2j � jt1jC jt2� t1j< jt1jCQ.1/kjJ

�
1 j< .1C "/jt1j;

jt2j � jt1j � jt2� t1j > jt1j �Q.1/kjJ
�
1 j > .1� "/jt1j:

This proves the base case of r D 1.
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Next, assume the induction hypothesis for r . Hence we have a sequence

t1.D t / 2 J
0
1; t2 2 J

0
2; : : : ; tm�1 2 J

0
m�1 and tm

in T with m � 2r together with f.Ii ; J �i ; J
0
i / W 1 � i � m� 1g satisfying the three conditions listed in

the lemma. If tm … J 0.X/, the same sequence would satisfy the hypothesis for r C 1 and we are done.
Now we assume that tm 2 J 0m for some .Im; J �m; J

0
m/ 2 X, and that f.Ii ; J �i ; J

0
i / W 1� i �mg intersect at

least r C 1 of the Xi . We may assume that they intersect exactly rC1 of the Xi , which we may label as
X1; : : : ;XrC1, since if they intersect more than r C 1 of them, we are already done. Choose a largest
interval J �

l
among J �1 ; : : : ; J

�
m. Again using the global k–thickness of T, we can choose

(6-4) s1 2
�
tl ˙Q.r C 1/.jJ

�
l j; kjJ

�
l j/
�
\T:

First, consider the case when s1 … J 0.X/. We will show that the points t1; : : : ; tm; s1 give the desired
sequence. Indeed, the condition (1) is immediate. For (2), observe that, by the induction hypothesis for r ,
we have

js1� ti j � js1� tl jC jtl � ti j � .Q.r C 1/kC 2Q.r/k/jJ
�
l j

for all 1� i �m. The conclusion follows as Q.r C 1/ > 2Q.r/. To show (3), since ˇ > "�1Q.r C 1/k
and 0 … Il , by applying the ˇ–regularity to the pair .Il ; J �l /, we have

jtl j � "
�1Q.r C 1/kjJ �l j> 0:

It follows that

js1j � jtl jC js1� tl j< jtl jCQ.r C 1/kjJ
�
l j< .1C "/jtl j � .1C "/

m
jt1j;

js1j � jtl j � js1� tl j> jtl j �Q.r C 1/kjJ
�
l j> .1� "/jtl j � .1� "/

m
jt1j:

This proves (3).

For the rest of the proof, we now assume that s1 2 J 0.X/. Apply the induction hypothesis for r to
s1 2 T\J

0.X/ to obtain a sequence f. zIj ; zJ �j ; zJ
0
j / 2 X W 1� j �m0� 1g with m0 � 2r and

s1 2 zJ
0
1\T; s2 2 zJ

0
2\T; : : : ; sm0�1 2 zJ

0
m0�1\T and sm0 2 T:

Set q0 to be the smallest 1� q �m0� 1 satisfying

(6-5) f. zIj ; zJ
�
j ;
zJ 0j / W 1� j � qg š X1[ � � � [XrC1

if it exists, and q0 WDm0 otherwise. We claim that the sequence

(6-6) t1; : : : ; tm; s1; : : : ; sq0

of length mC q0 � 2rC1 satisfies the conditions of the lemma for r C 1.

Claim We have

(6-7) jJ �l j D max
1�i�m;1�j�q0�1

.jJ �i j; j
zJ �j j/:
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Recall that jJ �
l
j was chosen to be maximal among jJ �1 j; : : : ; jJ

�
mj. Hence, if the claim does not hold, then

we can take j to be the least number such that j zJ �j j> jJ
�
l
j. Then, by the induction hypothesis for (2),

jtl � sj j � jtl � s1jC js1� sj j �Q.r C 1/kjJ
�
l jC 2Q.r/k max

1�i�j�1
j zJ �i j � .Q.r C 1/C 2Q.r//kjJ

�
l j:

Now the collection f.Ii ; J �i ; J
0
i / W 1 � i � mg intersects r C 1 families X1; : : : ;XrC1 and . zIj ; zJ �j ; zJ

0
j /

belongs to one of these families, as j � q0�1. Hence there exists a triple .Ii ; J �i ; J
0
i / that belongs to the

same family as . zIj ; zJ �j ; zJ
0
j /. Recall that the induction hypothesis for t1; : : : ; tm gives us

jtl � ti j � 2Q.r/kjJ
�
l j:

Since ˇ > .Q.r C 1/C 4Q.r//k, we have

jti � sj j � jti � tl jC jtl � sj j � .Q.r C 1/C 4Q.r//kjJ
�
l j< ˇj

zJ �j j:

Applying the ˇ–regularity to the pair . zIj ; zJ �j /, we conclude that

ti 2 zIj \J
0
i \T:

Since . zIj ; zJ �j ; zJ
0
j / and .Ii ; J �i ; J

0
i / belong to the same family which is T–multiplicity free, they are equal

to each other. This is a contradiction since j zJ �j j> jJ
�
l
j � jJ �i j, proving the claim (6-7).

We next prove that .Ii ; J �i ; J
0
i / and . zIj ; zJ �j ; zJ

0
j / are distinct for all 1 � i � m and 1 � j � q0 � 1. It

suffices to check that J �i and zJ �j are distinct. Note that we have

max
1�i;j�m

jti � tj j< 2Q.r/kjJ
�
l j and max

1�i;j�q0
jsi � sj j< 2Q.r/kjJ

�
l j

by the induction hypothesis together with claim (6-7). Now, for ti 2J �i .1� i�m/ and sj 2 zJ �j .1�j <q0/,
we estimate

(6-8) jsj � ti j � js1� tl j � jti � tl j � js1� sj j

>Q.r C 1/jJ �l j � 2Q.r/kjJ
�
l j � 2Q.r/kj

zJ �l j

D .Q.r C 1/� 4Q.r/k/jJ �l j

� jJ �l j:

This in particular means that sj … J �i and ti … zJ �j . Hence J �i ¤ zJ
�
j .

We now begin checking the conditions .1/, .2/ and .3/.

(1) If sq0 … J
0.X/, there is nothing to check.

Now assume that sq0 2 zJ
0
q0

for some . zIq0 ; zJ
�
q0
; zJ 0q0/ 2 X. If q0 <m0, then again there is nothing to prove,

as the union

(6-9) f.Ii ; J
�
i ; J

0
i / W 1� i �mg[ f.

zIj ; zJ
�
j ;
zJ 0j / W 1� j � q0g
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intersects a family other than X1; : : : ;XrC1. Hence we will assume q0Dm0. By the induction hypothesis
for r on the sequence .s1; : : : ; sm0/, the family f. zIj ; zJ �j ; zJ

0
j / W 1� j �m

0g consists of pairwise distinct
triples intersecting at least rC1 of the Xi . Observe that in the estimate (6-8), there is no harm in allowing
j D q0 in addition to j < q0. This shows that zJ �m0 is also distinct from all the J �i . Hence the triples
in (6-9) are all distinct.

Now, unless the inclusion

(6-10) f. zIj ; zJ
�
j ;
zJ 0j / W 1� j �m

0
g � X1[ � � � [XrC1;

holds, we are done. Suppose that (6-10) holds. We will deduce a contradiction. Without loss of generality,
we assume that

.Il ; J
�
l ; J

0
l / 2 XrC1:

We now claim that

(6-11) f. zIj ; zJ
�
j ;
zJ 0j / W 1� j �m

0
g � X1[ � � � [Xr :

Note that this gives the desired contradiction, since f. zIj ; zJ �j ; zJ
0
j / W 1 � j � m

0g must intersect at least
rC1 of the Xi by the induction hypothesis. In order to prove the inclusion (6-11), suppose on the contrary
that . zIj ; zJ �j ; zJ

0
j / 2 XrC1 for some 1� j �m0. Using ˇ > .Q.r C 1/C 2Q.r//k and (6-7), we deduce

jtl � sj j � jtl � s1jC js1� sj j �Q.r C 1/kjJ
�
l jC 2Q.r/kjJ

�
l j< ˇjJ

�
l j;

where we used the induction hypothesis for the sequence .s1; : : : ; sm0/ in the second inequality to estimate
the term js1� sj j.

Next, applying the ˇ–regularity to the pair .Il ; J �l /, we conclude that sj 2 Il . Since sj 2 zJ 0j , it follows that
Il \ zJ

0
j \T¤∅. This contradicts the condition that XrC1 is of T–multiplicity free, as both . zIj ; zJ �j ; zJ

0
j /

and .Il ; J �l ; J
0
l
/ belong to the same family XrC1. This completes the proof of (1).

(2) For 1� i �m and 1� j � q0, observe that

jti�sj j � jti�tl jCjtl�s1jCjs1�sj j � 2Q.r/kjJ
�
l jCQ.rC1/kjJ

�
l jC2Q.r/kjJ

�
l j<2Q.rC1/kjJ

�
l j

as Q.r C 1/ > 4Q.r/. Hence we get the desired result by (6-7).

(3) We already have observed that the inequality ˇ > "�1Q.r C 1/k implies that

.1� "/mjt1j � js1j � .1C "/
m
jt1j:

Combining this with the induction hypothesis, we deduce that

.1� "/mCi�1jt1j � jsi j � .1C "/
mCi�1

jt1j

for all 1� i � q0.

Finally, the last statement of the lemma is obtained from the case r D n, since there are only n of the Xi ;
hence the second possibility of (1) cannot arise for r D n.
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Proof of Proposition 6.3 We may assume that the Xi are all of degree 1, by replacing each of the Xi

with ı of the families associated to it.

We set
ˇ0.n; k; 1/D .4k/

nC1"�1;

where " satisfies ..1C "/=.1� "//2
n�1 � 2. Note that ˇ0.n; k; 1/ is equal to the number given in (6-2).

We may assume x D 0 without loss of generality. Let � > 0. We need to find a point

(6-12) t 0 2 .Œ�2k�;���[ Œ�; 2k��/\

�
T�

[
i2ƒ

J 0.Xi /

�
:

Choose s > 0 such that

(6-13) .1� "/�.2
n�1/�� s � 2.1C "/�.2

n�1/�:

Since T is globally k–thick, there exists

t 2 .Œ�ks;�s�[ Œs; ks�/\T:

If t …
Sn
iD1 J

0.Xi /, then, by choosing t 0 D t , we are done. Now suppose t 2
Sn
iD1 J

0.Xi /. Since
0 …

Sn
iD1 I.Xi /, by applying Lemma 6.4 to t 2 T\

�Sn
iD1 J

0.Xi /
�
, we obtain t 0 2 T�

Sn
iD1 J

0.Xi /

such that
.1� "/2

n�1
jt j � jt 0j � .1C "/2

n�1
jt j:

Note that
jt 0j � .1C "/2

n�1
jt j � .1C "/2

n�1ks � 2k�:

Similarly, we have
jt 0j � .1� "/2

n�1
jt j � .1� "/2

n�1s � �:

This completes the proof since t 0 satisfies (6-12).

7 Avoidance of the singular set

Let � < G be a convex cocompact nonelementary subgroup and let

U D futg<N

be a one-parameter subgroup. Let S .U /, G .U /, X.H;U / and H ? be as defined in Section 5. In
particular, S .U / is a countable union

S .U /D
[

H2H ?

�n�X.H;U /:

The main goal of this section is to prove the avoidance theorem, Theorem 7.13, for any convex cocompact
hyperbolic manifold with Fuchsian ends. For this, we extend the linearization method developed by
Dani and Margulis [1993] to our setting. Via a careful analysis of the graded self-intersections of the
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union
S
i �n�HiDi \RF M for finitely many groups Hi 2H ? and compact subsets Di �X.Hi ; U /,

we construct families of triples of subsets of R satisfying the conditions of Proposition 6.3 relative to the
global k–thick subset of the return time to RF M under U given in Proposition 4.11.

Linearization

Let H 2H ?. Then H is reductive, algebraic, and is equal to NG.H/ by Proposition 5.3 and 3.1. There
exists an R–regular representation �H WG! GL.VH / with a point pH 2 VH such that H D StabG.pH /
and the orbit pHG is Zariski-closed [Borel and Harish-Chandra 1962, Theorem 3.5]. Since �n�H is
closed, it follows that

pH�

is a closed (and hence discrete) subset of VH .

Let �H WG! VH denote the orbit map defined by

�H .g/D pHg for all g 2G:

As H and U are algebraic subgroups, the set X.H;U /D fg 2G W gUg�1 �H g is Zariski-closed in G.
Since pHG is Zariski-closed in VH , it follows that AH WD pHX.H;U / is Zariski-closed in VH and
X.H;U /D ��1H .AH /.

Following [Kleinbock and Margulis 1998], for given C > 0 and ˛ > 0, a function f WR!R is called
.C; ˛/–good if, for any interval I �R and " > 0, we have

`ft 2 I W jf .t/j � "g � C �

�
"

supt2I jf .t/j

�̨
� `.I /;

where ` is a Lebesgue measure on R.

Lemma 7.1 For given C >1 and ˛>0, consider continuous functions p1; p2; : : : ; pk WR!R satisfying
the .C; ˛/–good property. For 0 < ı < 1, set

I D ft 2R Wmax
i
jpi .t/j< 1g and J.ı/D ft 2R Wmax

i
jpi .t/j< ıg:

For any ˇ > 1, there exists ıD ı.C; ˛; ˇ/ > 0 such that the pair .I; J.ı// is ˇ–regular (see Definition 6.2).

Proof We prove that the conclusion holds for ı WD ..1 C ˇ/C /�1=˛. First, note that the function
q.t/ WDmaxi jpi .t/j also has the .C; ˛/–good property. Let J 0 D .a; b/ be a component of J.ı/, and I 0

be the component of I containing J 0. Note that I 0 is an open interval and .a;1/\ I 0 D .a; c/ for some
b � c �1. We claim

(7-1) J 0CˇjJ 0j � .a;1/\ I 0 � I 0:

We may assume that c < 1; otherwise the inclusion is trivial. We claim that q.c/ D 1. Since
ft 2 R W q.t/ < 1g is open and c is the boundary point of I 0, we have q.c/ � 1. If q.c/ were strictly
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bigger than 1, since ft 2 R W q.t/ > 1g is open, I 0 would be disjoint from an open interval around c,
which is impossible. Hence q.c/D 1. Now that supfq.t/ W t 2 .a;1/\ I 0g D q.c/D 1, by applying the
.C; ˛/–good property of q on the interval .a;1/\ I 0, we get

`.J 0/� `ft 2 .a;1/\ I 0 W jq.t/j � ıg � Cı˛ � `..a;1/\ I 0/:

Now, as J 0 D .a; b/ and .a;1/\ I 0 are nested intervals with one common endpoint, it follows from the
equality Cı˛ D 1=.1Cˇ/ that

J 0CˇjJ 0j � .a;1/\ I 0 � I 0;

proving (7-1). Similarly, applying the .C; ˛/–good property of q on .�1; b/\ I 0, we deduce that

J 0�ˇjJ 0j � I 0:

This proves that .I; J.ı// is ˇ–regular.

Proposition 7.2 Let V be a finite-dimensional real vector space , � 2 RŒV � be a polynomial and
A D fv 2 V W �.v/ D 0g. Then , for any compact subset D � A and any ˇ > 0, there exists a compact
neighborhood D0 � A of D which has a ˇ–regular size with respect to D in the following sense: for any
neighborhood ˆ of D0, there exists a neighborhood ‰ �ˆ of D such that , for any q 2 V �ˆ and for any
one-parameter unipotent subgroup futg � GL.V /, the pair .I.q/; J.q// is ˇ–regular , where

I.q/D ft 2R W qut 2ˆg and J.q/D ft 2R W qut 2‰g:

Furthermore , the degree of .I.q/; J.q// is at most .deg � C 2/ � dimV.

Proof Choose a norm on V so that k � k2 is a polynomial function on V. Since D is compact, we can
find R > 0 such that

D � fv 2 V W kvk<Rg:

Then we set
D0 D fv 2 V W �.v/D 0;kvk<R=

p
ıg;

where 0 < ı < 1 is to be specified later. Note that, if ˆ is a neighborhood of D0, there exists 0 < � < 1
such that

fv 2 V W �.v/ < �;kvk< .RC �/=
p
ıg �ˆ:

We will take ‰ to be
‰ D fv 2 V W �.v/ < �ı;kvk< .RC �/g:

Set
zI .q/D ft 2R W �.qut / < �;kqutk< .RC �/=

p
ıg:

Since zI .q/� I.q/ for 0 < ı < 1, it suffices to find ı (and hence D0 and ‰) such that the pair . zI .q/; J.q//
is ˇ–regular. If we set

 1.t/ WD
�.qut /

�
and  2.t/ WD

�
kqutk

p
ı

RC �

�2
;

then
zI .q/D ft 2R Wmax. 1.t/;  2.t// < 1g; J.q/D ft 2R Wmax. 1.t/;  2.t// < ıg:
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As  1 and  2 are polynomials, they have the .C; ˛/–property for an appropriate choice of C and ˛.
Therefore, by applying Lemma 7.1, by choosing ı small enough, we can make the pair . zI .q/; J.q//
ˇ–regular for any ˇ > 0. Note that the degrees of  1 and  2 are bounded by deg � � dimV and 2 dimV,
respectively. Therefore J.q/ cannot have more than .deg � C 2/ � dimV components.

Collection EU

Recall the collection H ? and the singular set

S .U /D
[

H2H ?

�n�X.H;U /:

Definition 7.3 We define ED EU to be the collection of all compact subsets of S .U /\RF M which
can be written as

(7-2) E D
[
i2ƒ

�n�HiDi \RF M;

where fHi 2H ? W i 2ƒg is a finite collection andDi �X.Hi ; U / is a compact subset. In this expression,
we always use the minimal index set ƒ for E. When E is of the form (7-2), we will say that E is
associated to the family fHi W i 2ƒg.

Remark 7.4 We note that E can also be expressed as
S
i2ƒ �n�HiDi \RF M, where Hi 2H is a

finite collection and Di �X.Hi ; U / is a compact subset which is left C.Hi /–invariant.

Lemma 7.5 In the expression (7-2) for E 2 E, the collection fHi W i 2ƒg is not redundant , in the sense
that :

� No Hj �1 is equal to Hi for all triples .i; j; / 2ƒ�ƒ�� except for the trivial cases of i D j
and  2Hi .

Proof Observe that, if Hj �1DHi for some  2� , then �HjDj D�HiDj , and hence, by replacing
Di byDi[Dj �X.Hi ; U /, we may remove j from the index subsetƒ. This contradicts the minimality
of ƒ.

Observe that, for any subgroups H1 and H2 of G and g 2G,

X.H1\gH2g
�1; U /DX.H1; U /\X.gH2g

�1; U /DX.H1; U /\gX.H2; U /:

Note that, for Di � X.Hi ; U / and  2 � , the intersection H1D1 \ H2D2 only depends on the
.�\H1; �\H2/–double coset of  .

Proposition 7.6 Let H1;H2 2H ?. Then , for any compact subset Di � X.Hi ; U / for i D 1; 2 and a
compact subset K � �nG, there exists a finite set �� .H1\�/n�=.H2\�/ such that

fK \�n�.H1D1\ H2D2/g2� D fK \�n�.H1D1\ H2D2/g2�;

where the latter set consists of distinct elements.
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Moreover , for each  2�, there exists a compact subset C0 �H1D1\ H2D2 �X.H1\ H2�1; U /
such that

K \�n�.H1D1\ H2D2/D �n�C0:

Proof For simplicity, write �Hi D �i and pi DpHi . LetK0�G be a compact set such thatKD�n�K0.
We fix  2 � , and define, for any  0 2 � ,

K 0 D fg 2K0 W 
0g 2H1D1\ H1D2g:

We check that
K \�n�.H1D1\ H2D2/D �n�

� [
 02�

K 0

�
:

If this set is nonempty, then K 0 ¤∅ for some  0 2 � and

p1
0g 2 p1D1; p2

�1 0g 2 p2D2

for some g 2K0. In particular,

(7-3) p1
0
2 p1DK

�1
0 ; p2

�1
2 p2DK

�1
0  0�1:

As p1� is discrete and p1D1K�10 is compact, the first condition of (7-3) implies that there exists a finite
set �0 �G such that  0 2 .H1\�/�0. Writing  0 D hı0, where h 2H1\� and ı0 2�0, the second
condition of (7-3) implies

p2
�1h 2 p2D2K

�1
0 ı�10 :

As p2D2K�10 ��10 is compact and p2� is discrete, there exists a finite set � � G such that �1h 2
.H2\�/�. Hence, if K \�n�.H1D1\ H2D2/¤∅, then  2 .H1\�/�.H2\�/. This completes
the proof of the first claim.

For the second claim, it suffices to set C0 WD
S
 02�K 0 .

Proposition 7.7 LetH1;H2 2H ? be such thatH1\H2 contains a unipotent element. Then there exists
a unique smallest connected closed subgroup , say H0, of H1\H2 containing all unipotent elements of
H1\H2 such that �n�H0 is closed. Moreover , H0 2H .

Proof The orbit �n�.H1\H2/ is closed [Shah 1991b, Lemma 2.2]. Hence such H0 exists. We need
to show that � \H0 is Zariski-dense in H0. Let L be the subgroup of H0 generated by all unipotent
elements in H0. Note that L is a normal subgroup of H0 and hence .H0 \�/L is a subgroup of H0.
If F is the identity component of the closure of .H0 \�/L, then �n�F is closed. By the minimality
assumption on H0, we have F DH0. Hence .H0\�/LDH0; so Œe�LD Œe�H0. We can then apply
[Shah 1991b, Corollary 2.12] and deduce the Zariski-density of H0\� in H0.

Corollary 7.8 Let H1;H2 2H ? and  2 � be satisfying that X.H1\ H2�1; U /¤∅. Then there
exists a subgroupH 2H ? contained inH1\H2�1 such that , for any compact subsetsDi �X.Hi ; U /
for i D 1; 2 there exists a compact subset D0 �X.H;U / such that

K \�n�.H1D1\ H2D2/DK \�n�HD0:

Geometry & Topology, Volume 28 (2024)



3420 Minju Lee and Hee Oh

Proof Let F 2 H be as given by Proposition 7.7 for the subgroup H1 \ H2
�1. Set H WD

NG.Fnc/ 2H ?. Note that X.H1\H2�1; U /DX.H;U /. Hence, by the second claim of Proposition
7.6, there exists a compact subset D0 �H1D1\ H2D2 such that

(7-4) K \�n�.H1D1\ H2D2/D �n�D0:

We claim that
�n�D0 DK \�n�HD0:

The inclusion � is clear. Let g WD hd 2 HD0 with h 2 H and d 2 D0, and Œg� 2 K. Then, by the
condition on D0, we have g 2H1D1 and �1g 2H2D2. Therefore g 2H1D1\H2D2. By (7-4), this
proves the inclusion �.

Definition 7.9 (self-intersection operator on EU ) We define an operator

s W EU [f∅g ! EU [f∅g

as follows: We set s.∅/D∅. For any

(7-5) E D
[
i2ƒ

�n�HiDi \RF M 2 EU ;

we define
s.E/ WD

[
i;j2ƒ

[
ij2�

�n�.HiDi \ ijHjDj /\RF M;

where ij 2 � ranges over all elements of � satisfying

dim.Hi \ ijHj �1ij /nc <minfdim.Hi /nc; dim.Hj /ncg:

By Proposition 7.6 and Corollary 7.8, we have:

Corollary 7.10 (1) For E 2 EU , we have s.E/ 2 EU .

(2) For E1; E2 2 EU , we have E1\E2 2 EU .

Hence, for E 2 EU as in (7-5), s.E/ is of the form

s.E/D
[
i2ƒ0

�n�HiDi \RF M;

where ƒ0 is a (minimal) finite-index set, Hi 2H with X.Hi ; U /¤∅ and

maxfdim.Hi /nc W i 2ƒ
0
g<maxfdim.Hi /nc W i 2ƒg:

Hence, s maps EU to EU [f∅g and, for any E 2 EU ,

sdimG.E/D∅:
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Definition 7.11 For a compact subset K � �nG and E 2 EU , we say that K does not have any
self-intersection point of E, or simply say that K is E–self-intersection-free, if

K \ s.E/D∅:

Proposition 7.12 Let E D
S
i2ƒ �n�HiDi \RF M 2 E, where Di � X.Hi ; U / is a compact subset

and ƒ is a finite subset. Let K � RF M be a compact subset which is E–self-intersection-free. Then there
exists a collection of open neighborhoods �i of Di for i 2ƒ such that , for O WD

S
i2ƒ �n�Hi�i , the

compact subset K is O–self-intersection-free , in the sense that , if dimHi D dimHj and

K \�n�.Hi�i \ Hj�j /¤∅

for some .i; j; / 2ƒ�ƒ�� , then i D j and  2Hi \� .

Proof For each k 2N and i 2ƒ, let �i .k/ be the 1=k–neighborhood of the compact subset Di . Since
ƒ is finite, if the proposition does not hold, by passing to a subsequence, there exist i; j 2 ƒ with
dimHi D dimHj and a sequence k 2 � such that

K \�n�.Hi�i .k/\ kHj�j .k//¤∅

and

(7-6) .i; j; k/ … f.i; i; / W i 2ƒ;  2Hi \�g:

Hence there exist gk D hkwk 2 Hi�i .k/ and g0
k
D h0

k
w0
k
2 Hj�j .k/ such that gk D kg0k , where

Œgk� 2K. Now, as k!1, we have wk ! w 2Di and w0
k
! w0 2Dj . There exists ık 2 � such that

ıkgk 2 zK, where zK is a compact subset of G such thatKD�n� zK, so the sequence ıkgk converges to g0
as k!1. Since �Hi and �Hj are closed, we have ıkhk! ı0hi and ıkkh0k! ı00hj , where ı0; ı00 2� ,
hi 2Hi and hj 2Hj . As �ŒHi � and �ŒHj � are discrete in the spaces G=Hi and G=Hj , respectively, we
have

(7-7) ı�10 ık 2Hi and .ı00/
�1ıkk 2Hj

for all sufficiently large k. Therefore g0 D ı0hiw D ı00hjw
0 2 ı0.HiDi \ ı

�1
0 ı00HjDj / and Œg0� 2 K.

Hence
K \�n�.HiDi \ ı

�1
0 ı00HjDj /¤∅:

Set ı WD ı�10 ı00 2 � .

Since K \ s.E/D∅, this implies that RF M\�n�.HiDi \ ıHjDj /š s.E/. By the definition of s.E/,

dim.Hi \ ıHj ı�1/nc Dminfdim.Hi /nc; dim.Hj /ncg:

Since Hi DNG.Hi /DNG..Hi /nc/, and similarly for Hj , we have Hi \ıHj ı�1 is either Hi or ıHj ı�1.
Since dimHi D dimHj , ıHj ı�1 DHi or Hi D ıHj ı�1.
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By Lemma 7.5, this implies that i D j and ı 2 NG.Hi /\� . It follows from (7-7) that

k 2 NG.Hi /\� DHi \�

for all large k. This is a contradiction to (7-6).

In the rest of this section, we assume that MD �nHd is a convex cocompact hyperbolic manifold with
Fuchsian ends, and let k be as given by Proposition 4.11.

Theorem 7.13 (avoidance theorem I) Let U Dfutg<N be a one-parameter subgroup. For anyE 2EU ,
there exists E 0 2 EU such that the following holds: if F � RF M is a compact set disjoint from E 0, then
there exists a neighborhood O˘ of E such that , for all x 2 F, the set

ft 2R W xut 2 RF M�O˘g

is 2k–thick. Moreover , if E is associated to fHi W i 2ƒg, then E 0 is also associated to the same family
fHi W i 2ƒg in the sense of Definition 7.3.

Proof The constant ˇ0 We write H ?D fHig. For simplicity, set Vi D VHi and pi D pHi . Since AHi
is real algebraic, we can find a single polynomial �i whose zero locus coincides with AHi ; namely, if
the finitely generated ideal of polynomials vanishing on AHi is given by hf1; : : : ; fsi, then we can set
�i D f

2
1 C � � �Cf

2
s .

Set
m WD dim.G/2 and ı WD max

Hi2H ?
.deg �i C 2/ dimVi :

Note that, if Hi is conjugate to Hj , then �i and �j have same degree and dimVi D dimVj . Since there
are only finitely many conjugacy classes in H ? by Proposition 5.3, the constant ı is finite. Now let

ˇ0 WD ˇ0.mı; k; 1/D .4k/
mıC1"�1

be given as in Proposition 6.3, where "D "mı satisfies ..1C "/=.1� "//2
mı�1 � 2.

Definition of En and E 0n We write

E D
[
i2ƒ0

�n�HiDi \RF M

for some finite minimal set ƒ0. Set
l WD max

i2ƒ0
dim.Hi /nc:

We define En; E 0n 2 EU for all 1� n� l inductively as follows: Set

El WDE and ƒl WDƒ0:

For each i 2ƒl , let D0i be a compact subset of X.Hi ; U / containing Di such that piD0i has a ˇ0–regular
size with respect to piDi , as in Proposition 7.2. Set

E 0l WD
[
i2ƒl

�n�HiD
0
i \RF M:
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Suppose that EnC1; E 0nC1 2 EU are given for n� 1. Then define

En WDE \ s.E 0nC1/:

Then, by Corollary 7.10, En belongs to EU and hence can be written as

En D
[
i2ƒn

�n�HiDi \RF M;

where Di is a compact subset of X.Hi ; U / and ƒn is a minimal index set. For each i 2ƒn, let D0i be a
compact subset of X.Hi ; U / containing Di such that piD0i has a ˇ0–regular size with respect to piDi
as in Proposition 7.2. Set

E 0n WD
[
i2ƒn

�n�HiD
0
i \RF M:

Hence we get a sequence of compact (possibly empty) subsets of E:

E1; E2; : : : ; El�1; El DE;

and a sequence of compact sets
E 01; E

0
2; : : : ; E

0
l�1; E

0
l DE

0:

Note that s.E1/D s.E 01/D∅ for dimension reasons.9

Outline of the plan Let F � RF M be a compact set disjoint from E 0. For x 2 F, we set

T.x/ WD ft 2R W xut 2 RF Mg

which is a globally k–thick set by Proposition 4.11. We will construct

� a neighborhood O0 of E 0 disjoint from F, and

� a neighborhood O˘ of E

such that, for any x 2 RF M�O0, we have

ft 2R W xut 2 RF M�O˘g � T.x/�J 0.X/;

where X D X.x/ is the union of at most m ˇ0–regular families Xi of triples .I.q/; J �.q/; J 0.q// of
subsets of R with degree ı and of T.x/–multiplicity free. Once we do that, the theorem is a consequence
of Proposition 6.3. Construction of such O0 and O˘ requires an inductive process on the En.

Inductive construction of Kn, O0
nC1

, OnC1 and O?
nC1

Let

K0 WD RF M:

For each i 2ƒ1, there exists a neighborhood �0i of D0i such that, for

O01 WD
[
i2ƒ1

�n�Hi�
0
i ;

9In fact El�i D∅ for all i � d � 1, but we won’t use this information.
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the compact subset K0 is O01–self-intersection-free by Proposition 7.12, since s.E 01/D∅. By Proposition
7.2, there exists a neighborhood�i ofDi such that the pair .I.q/; J.q// is ˇ0–regular for all q2Vi�pi�0i ,
where

(7-8) I.q/D ft 2R W qut 2 pi�
0
ig and J.q/D ft 2R W qut 2 pi�ig:

Set
O1 WD

[
i2ƒ1

�n�Hi�i :

Since E1 D
S
i2ƒ1

�n�HiDi \ RF M, O1 is a neighborhood of E1 D s.E 02/\E. Now the compact
subset s.E 02/�O1 is contained in s.E 02/�E, which is relatively open in s.E 02/. Therefore we can take a
neighborhood O?1 of s.E 02/�O1 such that

O?1 \E D∅:

We will now define the quadruple Kn;O0nC1;OnC1 and O?nC1 for each 1� n� l � 1 inductively:

� a compact subset Kn DKn�1� .On[O?n/� RF M,

� a neighborhood O0nC1 of E 0nC1,

� a neighborhood OnC1 of EnC1, and

� a neighborhood O?nC1 of s.E 0nC2/�OnC1 such that

O?nC1\E D∅:

Assume that the sets Kn�1, O0n, On and O?n are defined. We define

Kn WDKn�1� .On[O?n/D RF M�

n[
iD1

.Oi [O?i /:

For each i 2ƒnC1, let �0i be a neighborhood of D0i in G such that, for O0nC1 WD
S
i2ƒnC1

�n�Hi�
0
i ,

Kn is O0nC1–self-intersection-free. Since On[O?n is a neighborhood of s.E 0nC1/, which is the set of all
self-intersection points of E 0nC1, such a collection of �0i for i 2ƒnC1 exists by Proposition 7.12.

Since F � RF M is compact and disjoint from E 0, we can also assume �n�Hi�0i is disjoint from F, by
shrinking �0i if necessary. More precisely, writing F D �n� zF for some compact subset zF � G, this
can be achieved by choosing a neighborhood �0i of D0i so that pi�0i is disjoint from pi� zF ; and this is
possible since pi� zF is a closed set disjoint from a compact subset piD0i . After choosing �0i for each
i 2ƒnC1, define the following neighborhood of E 0nC1:

O0nC1 WD
[

i2ƒnC1

�n�Hi�
0
i :

We will next define OnC1. By Proposition 7.2, there exists a neighborhood �i of Di such that the pair
.I.q/; J.q// is ˇ0–regular for all q 2 Vi �pi�0i , where

I.q/D ft 2R W qut 2 pi�
0
ig and J.q/D ft 2R W qut 2 pi�ig:
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We then define the following neighborhood of EnC1 D s.E 0nC2/\E:

OnC1 WD
[

i2ƒnC1

�n�Hi�i :

Since the compact subset s.E 0nC2/�OnC1 is contained in the set s.E 0nC2/�E, which is relatively open
inside s.E 0nC2/, we can take a neighborhood O?nC1 of s.E 0nC2/�OnC1 such that

O?nC1\E D∅:

This finishes the inductive construction.

Definition of O0 and O˘ We define

O0 WD

l[
nD1

O0n; O WD

l[
nD1

On; O? WD

l[
nD1

O?n:

Note that O0 and O are neighborhoods of E 0 and E, respectively. Since E\O?D∅, the following defines
a neighborhood of E:

(7-9) O˘ WD O�O?:

Construction of ˇ0–regular families of T.x/–multiplicity free Fix x 2 F � RF M� O0. Choose a
representative g 2G of x. We write each ƒn as the disjoint union

ƒn D
[
j2�n

ƒn;j ;

where ƒn;j D fi 2ƒn W dimHi D j g and �n D fj Wƒn;j ¤∅g. Note that #�n < dimG.

Fix 1� n� l , j 2 �n and i 2ƒn;j . For each q 2 pi�g, we define the following subsets of R:

� I.q/ WD ft W qut 2 pi�
0
ig.

� J.q/ WD ft W qut 2 pi�ig.

In general, the I.q/ have high multiplicity among q’s in
S
i2ƒn;j

pi�g, but the following subsets I 0.q/
will be multiplicity free, and this is why we defined Kn�1 as carefully as above:

� I 0.q/ WD ft W Œt; t C a�� I.q/ and xutCa 2Kn�1 for some a � 0g.

� J �.q/ WD I 0.q/\J.q/;

� J 0.q/ WD ft 2 J.q/ W xut 2Kn�1g.

Observe that I 0.q/ and J �.q/ are unions of finitely many intervals, J 0.q/� T.x/ and that

J 0.q/� J �.q/� I 0.q/:
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Now, for each 1� n� l and j 2 �n, define the family

(7-10) Xn;j D
n
.I.q/; J �.q/; J 0.q// W q 2

S
i2ƒn;j

pi�g
o
:

We claim that each Xn;j is a ˇ0–regular family with degree at most ı and of T.x/–multiplicity free.

Note that, for each q 2 pi�g, the number of connected components of J �.q/ is less than or equal to that
of J.q/. Now that J �.q/� J.q/ and all the pairs .I.q/; J.q// are ˇ0–regular pairs of degree at most ı,
it follows that the Xn;j are ˇ0–regular families with degree at most ı.

We now claim that Xn;j is of T.x/–multiplicity free, that is, for any distinct indices q1; q22
S
i2ƒn;j

pi�g

of Xn;j ,

I.q1/\J
0.q2/D∅:

We first show that

I 0.q1/\ I
0.q2/D∅:

Suppose not. Then there exists t 2 I 0.q1/ \ I 0.q2/ for some q1 D pi1g and q2 D pk2g, where
i; k 2ƒn;j . Then, for some a � 0, we have Œt; t C a�� I.q1/\ I.q2/ and xutCa 2Kn�1. In particular,

xutCa 2 �n�.
�1
1 Hi�

0
i \ 

�1
2 Hk�

0
k/\Kn�1:

Since Kn�1 is O0n–self-intersection-free, and dimHi D dimHk D j, we deduce from Proposition 7.12
that this may happen only when i D k and 1�12 2Hi \� . Hence we have

q1 D q2:

This shows that the I 0.q/ are pairwise disjoint. Now suppose that there exists an element t 2I.q1/\J 0.q2/.
Then, by the disjointness of I 0.q1/ and I 0.q2/, it follows that

t 2 .I.q1/� I
0.q1//\J

0.q2/:

By the definition of I 0.q1/, we have xut …Kn�1. This contradicts the assumption that t 2 J 0.q2/.

Completing the proof Let X WD
S
1�i�l;j2�n

Xn;j . In view of Proposition 6.3, it remains to check that
the condition t 2 T.x/�J 0.X/ implies that xut … O˘, where O˘ is as given in (7-9).

Suppose that there exists t 2 T.x/�J 0.X/ such that xut 2 O˘. Write the neighborhood O˘ as the disjoint
union

O˘ D

l[
nD1

�
On�

� [
i�n�1

Oi [O?
��
:

Let n� l be such that

xut 2 On�

� n�1[
iD1

Oi [O?
�
:
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Since t 2 T.x/�J 0.X/, we have xut 2 RF M�Kn�1. Since Kn�1 D RF M�
Sn�1
iD1 .Oi [O?i /,

xut 2

n�1[
iD1

Oi [O?i :

This is a contradiction, since
Sl
iD1 O?i � O?.

As H ? is countable and X.Hi ; U / is �–compact, the intersection S .U /\RF M can be exhausted by
the union of the increasing sequence Ej 2 EU . Therefore, we deduce:

Corollary 7.14 There exists an increasing sequence of compact subsets E1 � E2 � � � � in EU with
S .U /\RF MD

S1
jD1Ej which satisfies the following: Let xi 2 RF M be a sequence converging to

x 2 G .U /\RF M. Then , for each j 2N, there exist a neighborhood Oj of Ej and ij � 1 such that

ft 2R W xiut 2 RF M�Oj g

is 2k–thick for all i � ij .

Proof For each j � 1, we may assume EjC1 �E 0j , where E 0j is as given by Theorem 7.13. For each
j � 1, there exists ij 2N such that xi …EjC1 for all i � ij . Applying Theorem 7.13 to a compact subset
F D fxi W i � ij g of RF M, we obtain a neighborhood Oj of Ej such that

ft 2R W xiut 2 RF M�Oj g

is 2k–thick for all i � ij .

Indeed we will apply Corollary 7.14 for the sequence fxig contained in a closed orbit x0L of a proper
connected closed subgroup L<G, which can be proved in the same way:

Theorem 7.15 (avoidance theorem II) Consider a closed orbit x0L for some x0 2 RF M and L 2 QU .
There exists an increasing sequence of compact subsets E1 �E2 � � � � in EU with S .U; x0L/\RF MDS1
jD1Ej , which satisfies the following: if xi ! x in RF M\ x0L with x 2 G .U; x0L/, then , for each

j 2N, there exist ij � 1 and an open neighborhood Oj � x0L of Ej such that

ft 2R W xiut 2 RF M�Oj g

is a 2k–thick set for all i � ij .

8 Limits of RF M–points in F � and generic points

Let MD �nHd be a convex cocompact hyperbolic manifold with Fuchsian ends. Recall that ƒ� Sd�1

denotes the limit set of � . In this section, we collect some geometric lemmas which are needed in
modifying a sequence limiting on an RF M point (resp. limiting on a point in RF M \ G .U /) to a
sequence of RF M–points (resp. whose limit still remains inside G .U /). Recall from Definition 4.1 that
�D Sd�1�ƒ.

Geometry & Topology, Volume 28 (2024)



3428 Minju Lee and Hee Oh

Lemma 8.1 Let Cn! C be a sequence of convergent circles in Sd�1. If C š B for any component B
of �, then

# lim sup
n!1

Cn\ƒ� 2:

Proof Without loss of generality, we may assume that1…ƒ and hence consider ƒ as a subset of the
Euclidean space Rd�1. Note that there is one component, say B1, of � which contains1 and all other
components of � are contained in the complement of B1, which is a (bounded) round ball in Rd�1.
Since Bc1 has a finite Lebesgue measure, there are only finitely many components of � whose diameters
are bounded from below by a fixed positive number.

Let ı D 0:5 diam.C /, so that we may assume diam.Cn/ > ı for all sufficiently large n� 1. It suffices
to show that there exists "0 > 0 such that Cn\ƒ contains �n; � 0n with d.�n; � 0n/� "0 for all sufficiently
large n. Suppose not. Then, for any " > 0, there exists an interval In � Cn such that diam.In/� " and
Cn � In �� for some infinite sequence of n’s. Since Cn � In is connected, there exists a component
Bn of � such that Cn � N".Bn/, where N".Bn/ denotes the "–neighborhood of Bn. In particular, we
have diam.Bn/C " > ı. Taking " smaller than 0:5ı, this means that diam.Bn/ > 0:5ı. On the other hand,
there are only finitely many components of � whose diameters are greater than 0:5ı, say B1; : : : ; Bl . Let
"0 >0 be such that N"0.B1/; : : : ;N"0.Bl/ are all disjoint. Then, by passing to a subsequence, there exists
Bi such that Cn �N".Bi / for all small 0 < " < "0 and all n� 1; hence C �N".Bi /. Since this holds for
all sufficiently small " > 0, we get that C � Bi , yielding a contradiction to the hypothesis on C.

In the next two lemmas, we set U� D U and UC D U t .

Lemma 8.2 Let U <N be a connected closed subgroup. Let Œg�L be a closed orbit for some L 2 LU

and Œg� 2 RF M. Let S0 and S� denote the boundaries of �.gH.U // and �.gL/, respectively. If S is a
sphere such that S0 � S ¨ S� and �S is closed , then Œg� 2S .U˙; Œg�L/.

Proof Write LDH. yU/C 2LU . Since S0 � S ¨ S�, there exists a connected proper subgroup zU of yU,
containing U, such that S is the boundary of �.gH. zU//. Since �S is closed, Œg�H 0. zU/ is closed by
Proposition 3.9. Now the claim follows from Proposition 4.9 and the definition of S .U˙; Œg�L/.

Lemma 8.3 Let U <N be a connected closed subgroup with dimension m� 1, and let U .1/
˙
; : : : ; U

.m/
˙

be one-parameter subgroups generating U˙. Consider a closed orbit yL, where L 2 LU and

y 2 F �H.U/\RF M\

m\
iD1

G .U
.i/
˙
; yL/:

If xn! y in yL, then , by passing to a subsequence , there exists a sequence hn! h in H.U / such that

xnhn 2 RF M\yL and yh 2 RF M\

m\
iD1

G .U
.i/
˙
; yL/:
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Proof Recall from Section 3 that Ck denotes the space of all oriented k–spheres in Sd�1. Let g0 2G be
such that y D Œg0� and S� denote the boundary of �.g0L/. Let Q be the collection of all spheres S ¨ S�

such that S \ƒ ¤ ∅ and �S is closed in CdimS . By Corollary 5.8 and Remark 5.9, Q is countable.
Choose a sequence gn! g0 in G as n!1 such that xn D Œgn�. Let Sn and S0 denote the boundaries
of �.gnH.U // and �.g0H.U //, respectively, so that Sn! S0 in Cm as n!1.

We will choose a circle C0� S0 and a sequence of circles Cn� Sn so that Cn!C0 and lim sup.Cn\ƒ/
contains two distinct points outside of

S
S2Q S. If m D 1, we set C0 D S0. When m � 2, we choose

a circle C0 � S0 as follows. Note that S0 is not contained in any sphere in Q by the assumption on y
and Lemma 8.2. Hence, for any S 2 Q, S0 \S is a proper subsphere of S0. Since y 2 F �

H.U/
, for any

component Bi of �, S0 š Bi and hence S0\ @Bi is a proper subsphere of S0. Choose a circle C0 � S0
such that fgC0 ; g

�
0 g � C0\ƒ, C0 š S for any S 2 Q, and C0 š @Bi \S0 for all i . This is possible, since

Q is countable. Since Sn! S0, we can find a sequence of circles Cn � Sn such that Cn! C0. We claim
that lim supn.Cn\ƒ/ is uncountable. Since #C0\ƒ� 2 and C0 š @Bi , C0 š Bi for all i . Therefore,
by Lemma 8.1, for any infinite subsequence Cnk of Cn,

# lim sup
k

.Cnk \ƒ/� 2:

By passing to a subsequence, we can find two distinct points �n; � 0n 2 Cn \ƒ which converge to two
distinct points � and � 0 of C0 \ƒ, respectively, as n! 1. Choose a sequence pn ! p 2 G such
that pCn D �n, p�n D �

0
n, pC D � and p� D � 0. Let hut i < N be a one-parameter subgroup such that

pnu
�
t D Cn � f�ng. By Proposition 4.11, Tn D ft W Œpn�ut 2 RF Mg is a global k–thick subset, and

hence T WD lim supn Tn is a global k–thick subset contained in the set ft W Œp�ut 2 RF Mg. Then Cn\ƒ
converges, in the Hausdorff topology, to a compact subset L� C0\ƒ homeomorphic to the one-point
compactification of T. Therefore L is uncountable, so is lim supn.Cn\ƒ/, proving the claim.

Let ‰ WD
S
S2Q C0\S, i.e. the union of all possible intersection points of C0 and spheres in Q. Since

C0 š S for any S 2 Q, #C0 \ S � 2. Hence ‰ is countable, and hence lim supn.Cn \ ƒ/ � ‰ is
uncountable. Note that this works for any infinite subsequence of the Cn. Therefore we can choose
sequences ��n ; �

C
n 2Cn\ƒ converging to distinct points ��; �C of .C0\ƒ/�‰, respectively, by passing

to a subsequence. As ��; �C 2 C0 and C0 � S0, there exists a frame g0hD .v0; : : : ; vd�1/ 2 g0H.U /
whose first vector v0 is tangent to the geodesic Œ��; �C�. Setting g WD g0h, we claim that

Œg� 2
\
i

G .U
.i/
˙
; yL/:

Suppose that Œg� 2 S .U
.i/
˙
; yL/ for some i . We will assume Œg� 2 S .U .i/� ; yL/, as the case when

Œg� 2S .U
.i/
C
; yL/ can be dealt with similarly, by changing the role of g� and gC below. For simplicity,

set U .i/ WDU .i/� . Now, by Proposition 5.13, there exist L0 2LU .i/ and ˛ 2N \L such that .L0/nc ŒLnc

and Œg�˛L0 is closed. Let S denote the boundary of �.g˛L0/. Since ˛ 2 N \L, we have .g˛/C D
gC D �C 2 S \ƒ\C0. Since S ¨ S�, S \ƒ¤ ∅ and �S is closed, we have S 2 Q. It follows that
�C 2‰, contradicting the choice of �C. This proves the claim.
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Now choose a vector v.n/0 which is tangent to the geodesic Œ��n ; �
C
n �. We then extend v.n/0 to a frame

gnhn2gnH.U / such that gnhn converges to gDg0h as n!1. Since f�˙n g�ƒ, we have Œgnhn�2RF M.

We will need the following lemma later:

Lemma 8.4 Let k � 1. Let � be a k–horosphere in HkC1 resting at p 2 @HkC1, and P be the geodesic
k–plane in HkC1. Let � 2 @P, ı be the geodesic joining � and p, and q D ı \�. There exists R0 > 1
such that , for any R >R0, if d.�;P/ < R� 1, then d.q;P/ < R.

Proof For k D 1, this is shown in [McMullen et al. 2016, Lemma 4.2]. Now let k � 2. Consider a
geodesic plane H2 �HkC1 which passes through q and is orthogonal to P. Then �\H2 and P\H2

are a horocycle and a geodesic in H2, respectively. As dHkC1.�;P/ D dH2.� \H2;P \H2/ and
dHkC1.q;P/D dH2.q;P\H2/, the conclusion follows from the case k D 1.

Recall the definition of {H DH.Ud�2/ from Section 4.

Lemma 8.5 Let U < {H \N be a nontrivial connected closed subgroup. If the boundary of �.gH.U //
is contained in @B for some component B of �, then Œg� 2 BF M �C.H.U //.

Proof As U is equal to mUkm�1 for some m 2 {H \M and 1� k � d � 2, the general case is easily
reduced to the case when U DUk . Since gD .v0; : : : ; vd / has its first kC1 vectors tangent to the geodesic
.kC1/–plane �.gH.Uk// and @

�
�.gH.Uk//

�
�@B, we can use an element c2C.H.Uk//DSO.d�k�2/

to modify the next d � k � 2 vectors so that gc has its first d � 1 vectors tangent to hull.@B/. Then
Œgc� 2 BF M.

Lemma 8.6 Let U < {H \N be a nontrivial connected closed subgroup. If xn 2 RF M �U is a sequence
converging to some x 2RF M, then , passing to a subsequence , there exists un 2U such that xnun 2RF M

and at least one of the following holds:

(1) un! e and hence xnun! x, or

(2) x D zc for some z 2 BF M with c 2 C.H.U //, and xnun accumulates on z {Hc.

Proof If xn belongs to RF M for infinitely many n, we simply take un D e. So assume that xn … RF M

for all n. Choose a sequence gn ! g0 in G so that xn D Œgn� and x D Œg0�. As x 2 RF M, we have
fg0.0/; g0.1/g�ƒ. As xn 2RFCM�RF M, we have gn.1/2ƒ and gn.0/2�. For each n, choose an
element un 2U so that 0 < ˛n WD kunk �1 is the minimum of kuk for all u 2U satisfying gnu.0/ 2ƒ.
Set

˛ WD lim sup
n

˛n:
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If ˛ D 0, then we are in case (1). Hence we will assume 0 < ˛ �1. Let Cn denote the boundary of
�.gnH.U // and C0 the boundary of �.g0H.U //. Then Cn! C0 in CdimU . Recall that BU .r/ denotes
the ball of radius r centered at 0 inside U. Set

Bn WD gnBU .˛n/.0/ and B0 WD g0BU .˛/.0/:

Then Bn � Cn \�, and @Bn \ƒ ¤ ∅ by the choice of un. By passing to a subsequence, we have
˛n! ˛ and Bn! B0 as n!1 and hence the diameter of Bn in Sd�1 is bounded below by some
positive number. Hence, passing to a subsequence, we may assume that Bn are all contained in the same
component, say B of �. Consequently, B0 � B.

We claim that #B0 \ @B � 2. First note that g0.0/ 2ƒ. If ˛ D1, then gnun.0/! g0.1/ 2ƒ\B0.
If ˛ <1, then un converges to some u 2 U, passing to a subsequence, and u ¤ e, as ˛ > 0. Now,
gnun.0/! g0u.0/ 2ƒ\B0. Since ƒ\B � @B, this proves the claim.

Therefore B0 is contained in @B, and hence so is C0. By Lemma 8.5, this implies that x D zc for some
z 2 BF M and c 2 C.H.U //. We proceed to show that xnun accumulates on z {Hc. Since c 2 C.H.U //,
we may assume c D e by replacing x with xc�1, and xn with xnc�1.

We claim that the distance between �.gnun/ and the plane �.g0 {H/ tends to 0 as n ! 1. Since
x {H D Œg0� {H is compact, gnun 2 gn {H and �.gn {H/ is a geodesic plane nearly parallel to �.g0 {H/ for
all large n, this claim implies that Œgn�un accumulates on z {H, completing the proof.

Now, to prove the claim, let Dn WDCn\@B, and Pn WD hull.Dn/. Let kD dimU. Since Cn is a k–sphere
meeting the .d�2/–sphere @B � Sd�1, and Cn š @B, it follows that Dn is a .k�1/–sphere. We set
Hn WD hull.Cn/, H0 WD hull.C0/ and H WD hull.@B/ D �.g0 {H/. Then Hn \H D Pn. Let " > 0 be
arbitrary, and N".H/ denote the "–neighborhood of H in Hd . Letting dHn. � ; � / denote the hyperbolic
distance in Hn, we may write

N".H/\Hn D fp 2Hn W dHn.p;Pn/ < Rng

for some Rn > 0. This is because N".H/\Hn is convex and invariant under family of isometries, whose
axes of translation and rotation are contained in Pn. As Cn ! C0 � @B as n!1, it follows that
Rn!1 as n!1. Let �n WD �.gnU/, and �0 WD �.g0U/, which are k–horospheres contained in Hn

and H0, respectively.

We next show that there is a uniform upper bound for dHn.Pn; �n/ for n 2N. To see this, we only need
to consider those Pn which are disjoint from �n, as dHn.Pn; �n/D 0 otherwise. Since �n! �0 and
Cn! C0 as n!1, it suffices to check that the diameters of Dn with respect to the spherical metric
on Sd�1 have a uniform positive lower bound. Let us write Cn�DnDEn[E 0n, where En is a connected
component of Cn�Dn meeting B, and E 0n is the other component. Since Cn!C0 as n!1, a uniform
lower bound for both diam.En/ and diam.E 0n/ will give a uniform upper bound for diam.Dn/. Since
Bn �En, diam.En/ > 1

2
diam.B0/ for all sufficiently large n. On the other hand, note that �n �Hn is a
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horosphere resting at a point in E 0n. Since �n converges to �, the condition that Pn\�n D∅ implies
that diam.E 0n/ is also bounded below by some positive constant. Since Rn !1, we conclude that
dHn.Pn; �n/ <Rn�1 for all sufficiently large n. Applying Lemma 8.4 to HkC1DHn, �D �n, PDPn,
� D gCn and q D �.gnun/, we have

dHn.�.gnun/;Pn/ < Rn

and hence �.gnun/ 2 N".H/\Hn for all sufficiently large n. As " > 0 was arbitrary, this proves that
�.gnun/ goes arbitrarily close to �.g0 {H/ as n!1.

Lemma 8.7 Let U < N be a nontrivial connected closed subgroup. If xn! x in F � \RFCM, and
x 2 F � \ RF M, then there exists un ! e in U such that xnun 2 RF M; in particular , xnun ! x in
F �\RF M.

Proof The general case easily reduces to the case when U < {H \N. Then the claim follows from
Lemmas 8.6 and 4.5.

Obtaining limits in F �

For " > 0, we set

(8-1) core".M/ WD fx 2 �nG W �.x/ 2 core M and d.�.x/; @ core M/� "g:

We note that core".M/ is a compact of F � for all sufficiently large " > 0. In the rest of the section, let

U <N

denote a nontrivial connected closed subgroup.

Lemma 8.8 Let x 2RF M, and V Dfvt W t 2Rg<N be a one-parameter subgroup. If �.xV /š@ core M,
and xvti 2 RF M for some sequence ti !C1, then there exists a sequence si !C1 such that xvsi
converges to a point in F �.

Proof It suffices to show that there exists a sequence si !C1 such that xvsi 2 core�=3.M/, where
� is as given in (4-12). Let x D Œg�, and set o D .1; 0; : : : ; 0/ 2 Hd D RC �Rd�1. We may assume
g D .e0; : : : ; ed�1/o 2 FHd , where the ei are standard basis vectors in ToHd ' Rd . Note that, for
V C D fvt W t > 0g, gV C is a translation of the frame g along a horizontal ray emanating from o

along the V C–direction. By the definition of �, the 1
3
�–neighborhoods of the hullBi are mutually

disjoint. For each i , set si WD ti if xvti 2 core�=3.M/. Otherwise, there exists a unique j such that
d.�.gvti /; hullBj / < 1

3
�. If �.gVŒti ;1// were contained in the 1

3
�–neighborhood of hullBj , then the

unique geodesic 2–plane which contains �.gVŒti ;1// must lie in @ hullBj , and hence �.xV /� @ core M;
this contradicts the hypothesis. Therefore there exists ti < si <1 such that d.�.gvsi /; hullBj /D 1

3
�.

The sequence si satisfies the claim.
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Lemma 8.9 Let xnLnvn be a sequence of closed orbits with xn 2RFCM, Ln 2LU and vn 2 .Ln\N/?.
Suppose that either

(1) xn 2 F
� for all n; or

(2) xnLnvn\RFCM\F � ¤∅ for all n.

Then
F �\ lim sup

n
.xnLnvn\RFCM/¤∅:

Proof We claim that, if xn 2F �, then xnLnvn\RFCM\F �¤∅, that is, the hypothesis (1) implies (2).
Suppose not. Then, since A� Ln, .xnAvnA\RFCM/� RFCM�F �. Since the set RFCM�F � is
a closed A–invariant set and e 2 AvnA, we would have xn 2 RFCM�F �, yielding a contradiction. It
follows from the claim that there exists zn 2 xnLn\RFCM such that �.znvnU/š @ core M for all n. In
particular, there exists un 2 U such that znvnun 2 core�=3.M/. Since core�=3.M/ is a compact subset
of F �, znvnun D znunvn converges to a point in F �.

Lemma 8.10 Let x0L be a closed orbit with x0 2 RF M and L 2 LU . Suppose that E is a closed
U –invariant subset containing x0Lvn \RFCM for some sequence vn!1 in .L\N/?. If x0 2 F �

or x0Lvn\RFCM\F � ¤∅ for all n, then there exist y 2 RF M\F � and a one-parameter subgroup
V � .L\N/? such that

E � y.L\N/V:

Proof Note that
.x0Lvn\RFCM/.v�1n Avn/�E:

By Lemma 8.9, there exists
y 2 F �\ lim sup

n!1
.x0Lvn\RFCM/:

Since y 2 F � \ RFCM � RF M � U, we may assume y 2 F � \ RF M by modifying y using an ele-
ment of U. Note that lim infn!1.x0Lvn \ RFCM/ � y.L \ N/, passing to a subsequence. Since
lim supn!1.v

�1
n Avn/ contains a one-parameter subgroup V � .L\N/? by Lemma 3.4, we obtain that

y.L\N/V �E.

Lemma 8.11 If yLv0\RF M\F � ¤∅ for some v0 2N and L 2 LU , then yLv\F �\RF M¤∅
for all v 2 Av0A.

Proof Let y0 WD y`v0 2 yLv0 \ F
� \ RF M, and v D av0b 2 Av0A. Then .y`a�1/v D y`v0b 2

F �\RF M as F �\RF M is A–invariant. Since y`a�1v 2 yLv, the claim is proved.

Lemma 8.12 Let x0L be a closed orbit with x0 2 RF M and L 2 LU . Suppose that E is a closed
AU –invariant subset containing x0Lv\RFCM for some nontrivial element v 2 .L\N/?. If x0 2F � or
x0Lv\RF M\F � ¤∅, then there exist y 2 F �\RF M and a one-parameter subgroup V � .L\N/?

such that
E � y.L\N/VA:
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Proof Since X is A–invariant, we get

.x0L\RFCM/AvA�E:

Choose a sequence vn WD anva
�1
n 2 AvA tending to 1. Note that either x0 2 F � or, for all n,

x0Lvn\RF M\F � ¤∅ by Lemma 8.11. Therefore the claim follows from Lemma 8.10.

9 Limits of unipotent blowups

Let M be a convex cocompact hyperbolic manifold with Fuchsian ends and fix k > 1 as given by
Proposition 4.11. In this section, we fix a nontrivial connected subgroup U <N. For a given sequence
gi ! e, and a sequence of k–thick subsets Ti of a one-parameter subgroup U0 < U, we study the set

lim supTigiU

under certain conditions on the sequence gi . The basic tool used here is the so-called quasiregular map
associated to the sequence gi introduced in the work of Margulis and Tomanov [1994] to study the
object lim supU0giU in the finite-volume case. For our application, we need somewhat more precise
information on the shape of the set lim supU0giU as well as lim supTigiU than discussed in [Margulis
and Tomanov 1994].

Let U? denote the orthogonal complement of U in N 'Rd�1 as defined in Section 3. Recall from (3-2)
that

N.U /D AN C1.U /C2.U /;

where C1.U /D C.H.U // and C2.U /DH.U /\M \C.U?/. Since N.U / is the identity component
of NG.U /, for a sequence gi ! e, the condition gi 2 NG.U / means gi 2 N.U / for all sufficiently large
i� 1. Note that the product AU? C2.U / is a connected subgroup of G, since C2.U / commutes with U?,
and A normalizes U? C2.U /.

Lemma 9.1 For a given sequence gi ! e in G �N.U /, there exists a one-parameter subgroup U0 < U
such that the following holds: for any given sequence of k–thick subsets Ti � U0, there exist sequences
ti 2 Ti and ui 2 U such that , as i !1,

uigiuti ! ˛

for some nontrivial element ˛ 2 AU? C2.U /�C2.U /. Moreover , ˛ can be made arbitrarily close to e.

Proof Set L WD AU?MNC. Note that

N.U /\LD AU? C1.U /C2.U /

and that the product map from U �L to G is a diffeomorphism onto a Zariski-open neighborhood of e
in G.
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Following [Margulis and Tomanov 1994], we will construct a quasiregular map

 W U ! N.U /\L

associated to the sequence gi . Except for a Zariski-closed subset of U, the product giu can be written as
an element of UL in a unique way. We denote by  i .u/ 2 L its L–component, so that

giu 2 U i .u/:

By Chevalley’s theorem, there exists an R–regular representation G!GL.W / with a distinguished point
p 2W such that U D StabG.p/. Then pG is locally closed, and

NG.U /D fg 2G W pguD pg for all u 2 U g:

For each i , the map z�i W U !W defined by

z�i .u/D pgiu

is a polynomial map in U DRm of degree uniformly bounded, and z�i .e/ converges to p as i !1. As
gi … NG.U /, z�i is nonconstant. Denote by B.p; r/ the ball of radius r centered at p, fixing a norm k � k
on W. Since pG is open in its closure, we can find �0 > 0 such that

(9-1) B.p; �0/\pG � pG:

Without loss of generality, we may assume that �0 D 2 by renormalizing the norm. Now define

�i WD supf�� 0 W z�i .BU .�//� B.p; 2/g:

Note that �i <1 as �i is nonconstant, and �i !1 as i !1, as gi ! e. We define �i W U !W by

�i .u/ WD z�i .�iu/:

This forms an equicontinuous family of polynomials on U. Therefore, after passing to a subsequence,
�i converges to a nonconstant polynomial � uniformly on every compact subset of U. Moreover,
supfk�.u/�pk W u 2 BU .1/g D 1, �.BU .1//� pL and �.0/D p. Now the following map  defines a
nonconstant rational map defined on a Zariski-open dense neighborhood of U of e in U :

 WD ��1L ı�;

where �L is the restriction to L of the orbit map g 7! p:g. We have  .e/D e and

 .u/D lim
i
 i .�iu/;

where the convergence is uniform on compact subsets of U and

 .u/ 2 L\N.U /D AU? C1.U /C2.U /:

Since  is nonconstant, there exists a one-parameter subgroup U0 < U such that  jU0 is nonconstant.
Now let Ti be a sequence of k–thick sets in U0 'R. Then Ti=�i is also a k–thick set, and so is

T1 WD lim sup
i!1

.Ti=�i /� U0:
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Finally, for all t 2 T1, there exists a sequence ti 2 Ti such that ti=�i ! t as i !1 (by passing to a
subsequence). Since  i ı�i !  uniformly on compact subsets,

 .t/D lim
i!1

. i ı�i /.ti=�i /D lim
i!1

 i .ti /:

By the definition of  i , this means that there exists ui 2 U such that

 .t/D lim
i!1

uigiuti :

Since  jU0 is a nonconstant continuous map, and an uncountable set T1 accumulates on 0, the image
 .T1/ contains a nontrivial element ˛ of AU? C1.U /C2.U / which can be taken arbitrarily close to e.

We now claim that if ˛ is sufficiently close to e, then it belongs to AU? C2.U /. Consider H 0.U / WD
H.U /C1.U /, and let h denote its Lie algebra. Now, for all i large enough, using the decomposition
gD h˚ h? in (3-5), we can write gi D cidiri , where ci 2 C1.U /, di 2H.U / and ri 2 exp h?. Since ci
commutes with U, we can write

uigiuti D .uiuti /ci .u
�1
ti
diuti /.u

�1
ti
riuti /:

On the other hand, we have

lim
i
puigiuti D lim

i
pci .u

�1
ti
diuti /.u

�1
ti
riuti /D p˛:

Since ci ! e, utidiu
�1
ti
2H.U / and uti riu

�1
ti
2 exp h?, it follows that both sequences utidiu

�1
ti

and
uti riu

�1
ti

must converge, say to h 2H.U / and to q 2 exp h?, respectively. Hence ˛ D hq by replacing
h by uh for some u 2 U. On the other hand, we can write ˛ D avc1c2 2 AU

? C1.U /C2.U /. So
hq D avc1c2. Note that c WD c1c2 2 C.H.U //H.U /DH 0.U /. We get

(9-2) .a�1hc�1/.cqc�1/D v:

Now, when ˛ is sufficiently close to e, all elements appearing in (9-2) are also close to e. Recall that
the map H 0.U /� h?!G given by .h0; X/! h0 expX is a local diffeomorphism onto a neighborhood
of e. Since .a�1hc�1/ 2H 0.U /, and cqc�1; v 2 exp h?, we have a�1hc�1 D e and cqc�1 D v for ˛
sufficiently small. In particular,

a�1hc�12 D c
�1
1 2H.U /\C.H.U //D feg:

Hence c1 D e. It follows that ˛ 2 AU? C2.U /, as desired.

We further claim that we can choose ˛ outside of C2.U /. As C2.U / is a compact subgroup, we can
choose a C2.U /–invariant Euclidean norm k � k on W. If ˛D .t/ 2 C2.U / for some t 2 T1 � U0, then
t is one of finitely many solutions of the polynomial equation k�.t/k2 D kpk2. Therefore, except for
finitely many t 2 T1, ˛ D  .t/ 2 AU? C2.U /�C2.U /.

The following lemma is similar to Lemma 9.1, but here we consider the case when U is the whole
horospherical subgroup N. In this restrictive case, the limiting element can be taken inside A.
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Lemma 9.2 Let Ti � N be a sequence of k–thick subsets in the sense that , for any one-parameter
subgroup U0 <N, Ti \U0 is a k–thick subset of U0'R. For any sequence gi ! e in G�NG.N /, there
exist ti !1 in Ti and ui 2N such that

uigiuti ! a

for some nontrivial element a 2 A. Moreover , a can be chosen to be arbitrarily close to e.

Proof We first consider the case when gi belongs to the opposite horospherical subgroup NC. We will
use the notation uC and u� defined in Section 3. Write gi D expuC.wi / for some wi 2 Rd�1. For
x 2 Rd�1, set ux WD expu�.x/ 2 N. Let " > 0 be arbitrary. Since Ti is a k–thick subset of N, there
exists ˛i 2R such that ˛iwi 2 Ti and

" < 1
2
j˛i jkwik

2 < k":

Setting uxi WD u˛iwi 2 Ti and yi WD �˛iwi
�
1C 1

2
˛ikwik

2
��1, we compute

uyigiuxi D

0B@
�
1C 1

2
˛ikwik

2
��2

0 0�
1C 1

2
˛ikwik

2
��1

wi Id�1 0

�
1
2
kwik

2 �
�
1C 1

2
˛ikwik

2
�
wti

�
1C 1

2
˛ikwik

2
�2
1CA :

The condition for the size of ˛i guarantees that, by passing to a subsequence, the sequence uxigiuyi
converges to an element

diag.˛; Id�1; ˛
�1/ 2 A for ˛ 2 Œ.1� "/�2; .1� k"/�2�[ Œ.1C k"/�2; .1C "/�2�

as i !1. This proves the claim when gi 2NC.

Since the product map A�M �NC�N !G is a diffeomorphism onto a Zariski-open neighborhood of e
inG, we can write gi DaimiuCi u

�
i for some ai 2A,mi 2M, uCi 2N

C and u�i 2N all of which converge
to e as i !1. By the previous case, we can find uti 2 Ti and ui 2 N such that uiuCi uti converges
to a nontrivial element a 2 A. Let Qui WD .aimi /ui .aimi /�1 2 N. Then Quigiuti D aimiuiu

C
i u
�
i uti D

aimi .uiu
C
i uti /u

�
i ! a as i !1.

Lemma 9.3 Let L be any connected reductive subgroup of G normalized by A. Let U0 be a one-
parameter subgroup of L\N. Let Ti � U0 be a sequence of k–thick subsets. For a given sequence
ri ! e in exp.l?/�N.U0/, there exists a sequence ti 2 Ti such that , as i !1,

u�1ti riuti ! v

for some nontrivial element v 2 .L\N/?, and v can be chosen arbitrarily close to e. Moreover , for all n
large enough , we can choose v so that

n� kvk � 2k2n:
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Proof Without loss of generality, by Proposition 3.7, we may assume that LncDH.U / for U DUkDRk

for some k� 1 and U0 WDRe1. We write ri D exp.qi /, where qi! 0 in l?. Using the notation introduced
in Section 3 and setting u? D Lie.U?/DRd�1�k , we can write

qi D u
�.xi /Cu

C.yi /Cm.Ci /;

where xi 2 u?, yi 2 .u?/t and

Ci D

�
0k Bi
�B ti Ai

�
is a skew-symmetric matrix, all of which converge to 0 as i ! 1. We consider U0 D Re1 as
fus D se1 2Rd�1g and define the map  i WR! l? by

 i .s/D u
�1
s qius for all s 2RI

this is well defined since l? is Ad.L/–invariant. Then a direct computation shows

(9-3)  i .s/D u
�
�
xi C sB

t
i e1C

1
2
s2yi

�
CuC.yi /Cm. zCi /;

where zCi is a skew-symmetric matrix of the form

zCi D

�
0k Bi C se1y

t
i

�B ti � syie
t
1 Ai

�
:

Since ri … N.U0/, it follows that either yi ¤ 0, or yi D 0 and B ti e1 ¤ 0. Hence  i is a nonconstant
polynomial of degree at most 2, and  i .0/! 0. Let �i 2R be defined by

�i D supf� > 0 W j i Œ��; ��j � 1g:

Then 0<�i <1 and �i!1. Now the rescaled polynomials �iD iı�i WR! l? form an equicontinuous
family of polynomials of degree at most 2 and limi!1 �i .0/D 0. Therefore �i converges to a polynomial
� W R! l? uniformly on compact subsets. Since �.0/ D 0 and supfj�.�/j W � 2 Œ�1; 1�g D 1, � is a
nonconstant polynomial. From (9-3), it can be easily seen that Im.�/ is contained in Lie.N /\ l?, by
considering the two cases of yi ¤ 0, and yi D 0 and B ti e1 ¤ 0 separately. For a given sequence Ti of
k–thick subsets of U0, set

T1 WD lim sup
i!1

.Ti=�i /;

which is also a k–thick subset of U0.

Let s 2 T1. By passing to a subsequence, there exists ti 2 Ti such that ti=�i ! s as i!1. As �i ! �

uniformly on compact subsets, it follows that

�.s/D lim
i!1

 i .�i � ti=�i /D lim
i!1

u�1ti qiuti :

Since T1 accumulates on 0, so does �.T1/. Taking the exponential map to each side of the above, the
first part of the lemma follows.

The second part of the lemma holds by applying Lemma 9.4 below for the nonconstant polynomial
p.s/D k�.s/k2 of degree at most 4.
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Lemma 9.4 If p 2 RŒs� is a polynomial of degree ı � 1 and T � R is a k–thick subset , then p.T/ is
2kı–thick at 1.

Proof Let C be the coefficient of sı term of the polynomial p. Then there exists s0 > 1 such that
1p
2
� jp.s/j=jCsı j �

p
2 for all jsj> s0. Let r > jC jsı0=

p
2. Since T is k–thick, there exists t 2 T such

that .
p
2r=jC j/1=ı < jt j< k.

p
2r=jC j/1=ı . We compute that r � jp.t/j � 2kır .

10 Translates of relative U –minimal sets

Assume that M is a convex cocompact hyperbolic manifold with Fuchsian ends and fix k > 1 as given by
Proposition 4.11. In this section, we fix a nontrivial connected closed subgroup U <N. Unless mentioned
otherwise, we let R be a compact A–invariant subset of RF M such that, for every x 2 R and for any
one-parameter subgroup U0 D futg of U, the set

ft 2R W xut 2Rg

is k–thick. In practice, R will be either RF M or a compact subset of the form RF M\F �
H.U/

\X for a
closed H.U /–invariant subset X.

The main aim of this section is to prove Propositions 10.6 and 10.9 using the results of Section 9. The
results in this section are needed in the step of finding a closed orbit in a given H.U /–orbit closure of an
RF M–point.

Definition 10.1 � A U –invariant closed subset Y � �nG is U –minimal if yU is dense in Y for
any y 2 Y.

� A U –invariant closed subset Y � �nG is U –minimal with respect to R if Y \R¤∅ and, for any
y 2 Y \R, yU is dense in Y.

A U –minimal subset may not exist, but a U –minimal subset with respect to a compact subset R always
exists by Zorn’s lemma. In this section, we study how to find an additional invariance of Y beyond U
under certain conditions.

Lemma 10.2 Let Y � �nG be a U –minimal subset with respect to R. For any y 2 Y \R, there exists a
sequence un!1 in U such that yun! y.

Proof The set Z WD fz 2 Y W yun ! z for some un!1 in U g is U –invariant and closed. By the
assumption onR, there exists un!1 inU such that yun2Y \R. Since Y \R is compact, yun converges
to some z 2 Y \R, by passing to a subsequence. Hence Z intersects Y \R nontrivially. Therefore
Z D Y, by the U –minimality of Y with respect to R.

A subset S of a topological space is said to be locally closed if S is open in its closure S.

Lemma 10.3 Let Y be a U –minimal subset of �nG with respect to R, and S be a closed subgroup of
N.U / containing U. For any y0 2 Y \R, the orbit y0S is not locally closed.
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Proof Suppose that y0S is locally closed for some y0 2 Y \R. Since Y is U –minimal with respect
to R, there exists un!1 in U such that y0un! y0 by Lemma 10.2. We may assume that y0 D Œe�
without loss of generality. Since y0S is locally closed, y0S is homeomorphic to .S \�/nS (see [Zimmer
1984, Theorem 2.1.14]). Therefore there exists ın 2 S \ � such that ınun ! e as n ! 1. Since
N.U / D AN C1.U /C2.U /, writing ın D anrn for an 2 A and rn 2 N C1.U /C2.U /, it follows that
an ! e. On the other hand, note that an is nontrivial as � does not contain any elliptic or parabolic
element. This is a contradiction, as there exists a positive lower bound for the translation lengths of
elements of � , which is given by the minimal length of a closed geodesic in M.

In the rest of this section, we use the notation

H DH.U /; H 0 DH 0.U /; F � D F �H.U/:

Lemma 10.4 For every U –minimal subset Y ��nG with respect to RF M such that Y \F �\RF M¤∅
and , for any y0 2Y \F �\RF M, there exists a sequence gn! e inG�N.U / such that y0gn 2Y \RF M

for all n.

Proof Let y0 2 Y \F �\RF M. As Y D y0U , Y � RFCM. Using Lemma 4.5 and the fact that F � is
open, we get that there exists an open neighborhood O of e such that

(10-1) y0O\Y � Y \F � � Y \RF M �U:

Without loss of generality, we may assume that the map g 7! y0g 2 �nG is injective on O, by shrinking
O if necessary. We claim that there exists gn! e in G �N.U / such that y0gn 2 Y \F �. Suppose not.
Then there exists a neighborhood O0 � O of e such that

(10-2) y0O0\Y � y0 N.U /:

Set
S WD fg 2 N.U / W Yg D Y g;

which is a closed subgroup of N.U / containing U. We will show that y0S is locally closed; this contradicts
Lemma 10.3. We first claim that

(10-3) y0O0\Y � y0S:

If g 2 O0 is such that y0g 2 Y, then g 2 N.U /. Therefore y0gU D y0Ug D Yg � Y. Moreover,
Yg\RF M¤ ∅ by (10-1). Hence Yg D Y, proving that g 2 S. Now, (10-3) implies that y0S is open
in Y. On the other hand, since U � S, we get Y D0 S . Therefore, y0S is locally closed.

Hence we have gn! e in G �N.U / such that y0gn 2 Y \F �. Since y0gn 2 F �\RFCM converges
to y0 2 F � \ RF M, by Lemma 8.7, there exists a sequence un ! e in U such that y0gnun 2 RF M.
Therefore, by replacing gn with gnun, this finishes the proof.
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Lemma 10.5 Let Y be a U –minimal subset with respect to R, and let W be a connected closed subgroup
of N.U /. Suppose that there exists a sequence ˛i ! e in W such that Y˛i � Y. Then there exists a
one-parameter subsemigroup S <W such that YS � Y.

Moreover , if W0 is a compact Lie subgroup of W and ˛i 2W �W0 for all i , then S can be taken such
that S šW0.

Proof The set S0 D fg 2 W W Yg � Y g is a closed subsemigroup of W. Write ˛i D exp �i for some
�i 2 Lie.W /. Then the sequence vi WD k�ik�1�i of unit vectors has a limit, say, v. It suffices to note
that S WD fexp.tv/ W t � 0g is contained in the closure of the subsemigroup generated by the ˛i . Now
suppose that ˛i 2 W �W0. Set M0 WD fg 2 W0 W Yg D Y g. This is a closed Lie subgroup of W0.
Write LieW Dm0˚m?0 , where m0 D LieM0. By modifying ˛i by elements of M0, we may assume
˛i D exp �i for �i ! 0 in m?0 . Letting v 2m?0 be a limit of �i=k�ik, it remains to check v …W0. Suppose
not. Since W0 is compact, we have fexp tv W t � 0g D exp Rv. Hence, for all t � 0, Y exp tv � Y as well
as Y exp.�tv/� Y. Therefore Y exp tvD Y. Hence exp v 2M0. This is a contradiction, since v 2m?0 .

Proposition 10.6 (translate of Y inside of Y ) Let Y be a U –minimal set of �nG with respect to RF M

such that Y \F �\RF M¤∅. Then there exists an unbounded one-parameter subsemigroup S inside
the subgroup AU? C2.U / such that

YS � Y:

Proof Choose y0 2 Y \ RF M \ F �. By Lemma 10.4, there exists gi ! e in G �N.U / such that
y0gi 2 Y \RF M. Let U0Dfutg be a one-parameter subgroup of U as given by Lemma 9.1, with respect
to the sequence gi .

Let
Ti WD fut 2 U0 W y0giut 2 Y \RF Mg;

which is a k–thick subset of U0. By Lemma 9.1, there exist sequences uti!1 in Ti and ui 2U such that

uigiuti ! ˛

for some element ˛ 2 AU? C2.U / � C2.U /. Note that y0giuti 2 Y \ RF M converges to some
y1 2 Y \RF M by passing to a subsequence. Hence, as i !1,

y0u
�1
i D y0giuti .uigiuti /

�1
! y1˛

�1:

So y1˛�1 2 Y, and hence Y˛�1 � Y, since y1 2 Y \RF M. Since ˛ can be made arbitrarily close to e
in Lemma 9.1, the claim follows from Lemma 10.5.

Proposition 10.7 (translate of Y inside of X ) Let X be a closedH 0–invariant set such that X \R¤∅.
Let Y �X be aU –minimal subset with respect toR, and assume that there exists y 2Y \R and a sequence
gn! e in G �H 0 such that ygn 2X for all n. Then there exists some nontrivial v 2 U? such that

Yv �X:
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Proof Let h denote the Lie algebra of H 0. We may write gn D rnhn, where hn 2H 0 and rn 2 exp h?.
By replacing gn with gnh�1h , we may assume gn D rn. If rn 2 U? for some n, then the claim follows
since y0rn 2X and hence Y rn �X. Hence we assume that rn … U? for all n. We have, from (3-5),

h?\Lie.N.U //D LieU?:

Hence rn … N.U / for all n. Therefore there exists a one-parameter subgroup U0 D futg< U such that
rn … N.U0/. Let

TD ft 2R W yut 2Rg:

Since y 2R, it follows that T is a k–thick subset of R by the assumption on R. Hence, by Lemma 9.3,
there exists tn 2 T such that u�1tn rnutn ! v for some nontrivial v 2 U?. Observe

.yutn/.u
�1
tn
rnutn/D yrnutn 2X:

Passing to a subsequence, yutn! y0 for some y0 2 Y \R, and hence y0v 2X. It follows that Yv�X.

For a one-parameter subgroup V D fvt W t 2Rg and a subset I �R, the notation VI means the subset
fvt W t 2 I g.

Lemma 10.8 Let X be a closed AU –invariant set of �nG, and V be a one-parameter subgroup of U?.
Assume that R WDX \RF M\F � is nonempty and compact. If x0VI �X for some x0 2R and a closed
interval I containing 0, then X contains a V –orbit of a point in R.

Proof Choose a sequence an 2 A such that lim infn!1 anVIa�1n contains a subsemigroup V C of V as
n!1. Then

.x0a
�1
n /.anVIa

�1
n /D x0VIa

�1
n �X:

By passing to a subsequence, we have that x0a�1n converges to some x1 2 RF M; so x1V C �X. Since R
is compact, so is x0A\F �, which implies that x1 2 x0A\F �. Since x1 belongs to the open set F �, it
follows that x1vs 2F � for all sufficiently small s2R. By Lemma 4.5, this implies that x1vsU\RF M¤∅
for some s > 0 with vs 2 V C. Note that

.x1vsU/.v
�1
s V C/D x1UV

C
�X:

Choose x2 2 x1vsU \RF M�X\RF M\F �. Then x2.v�1s V C/�X. Similarly as before, let an 2A be
a sequence such that lim infn!1 an.v�1s V C/a�1n D V and such that x2a�1n converges to some x3 2R.
From

.x2a
�1
n /.anv

�1
s V Ca�1n /D x2v

�1
s V Ca�1n �X;

we conclude that x3V �X.
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Proposition 10.9 Let X be a closed H 0–invariant set. Assume that R WDX \F �\RF M is a nonempty
compact set , and let Y �X be a U –minimal subset with respect to R. Suppose that there exists y 2 Y \R
such that X � yH 0 is not closed. Then there exist an element z 2 R and a nontrivial connected closed
subgroup V < U? such that

zUV �X:

Proof Since X �yH 0 is not closed, there exists a sequence gn! e in G �H 0 such that ygn 2X for
all n� 1. By Lemma 10.8, it suffices to find x0 2R and a one-parameter subgroup V < U? such that
x0VI �X for some interval I <R containing 0. It follows from Propositions 10.6 and 10.7 that

Yv0 �X and YS � Y;

where v0 2U?�feg and S is an unbounded one-parameter subsemigroup ofAU? C2.U /. By Lemma 3.3,
S is either of the form

(1) S D fexp.t�V / exp.t�C / W t � 0g, or

(2) S D f.v exp.t�A/v�1/ exp.t�C / W t � 0g

for some �A 2 Lie.A/�f0g; �C 2 Lie.C2.U //; �V 2 Lie.V /�f0g and v 2 U?.

Case (1) Since X is H 0.U /–invariant and C2.U /�H 0.U /, we may assume YS �X with �C D 0, so
the claim follows.

Case (2) Set
Y0 WD Y C2.U /:

It is easy to check that Y0 is a U C2.U /–minimal subset of X with respect to R. First suppose that
v D e. Let AC WD fexp.t�A/ W t � 0g. Since YS � Y and �C 2 Lie.C2.U //, it follows that Y0AC � Y0.
Choose y 2 Y \ R, and let an ! 1 be a sequence in AC. Since R is compact and A–invariant,
yan converges to some z0 2 R by passing to a subsequence. Since Y0AC � Y0, we have z0 2 Y0 \R.
Since lim inf a�nAC D A, we get z0A� Y0. Since z0AU C2.U /D z0U C2.U /A, and Y0 is U C2.U /–
minimal with respect to R, we obtain Y0A� Y0. Since v0 commutes with C2.U /, we also get Y0v0 �X.
Therefore Y0Av0 � Y0v0 � X. By the A–invariance of X, it follows that Y0.Av0A/� X. Since Av0A
contains some V C, the claim follows.

Next suppose v ¤ e. Since C2.U / commutes with v, it follows that

Y0vA
Cv�1 � Y0:

Since X is A–invariant, we get
Y0.vA

Cv�1/A� Y0A�X:

Set V WDexp R.log v/. Since vACv�1A contains VI for some interval I containing 0 for any subsemigroup
AC of A. we get Y0VI �X.
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11 Closures of orbits inside @F and nonhomogeneity

Let MD �nHd be a convex cocompact hyperbolic manifold with nonempty Fuchsian ends. Let U be a
connected closed subgroup of {H \N, H WDH.U / and BF M be as in (4-6). Then

@F D BF M � {V C �H 0.U / and @F \RF MD BF M �C.H.U //:

In this section, we classify closures of xH.U / and xAU for x 2 @F �RF M (Theorem 11.5); they are
never homogeneous.

Theorem 11.1 If x D zc 2 BF M �C.H.U // with z 2 BF M and c 2 C.H.U //. Then:

(1) xU D xL for some L 2 QU contained in c�1 {Hc.

(2) xH.U /D xL for some L 2 LU contained in c�1 {Hc and , for any y 2 G .U; xL/, yU D xL.

(3) xAU D xH.U /.

Proof Since x is contained in the compact homogeneous space xc�1 {Hc, claims (1) and (2) are special
cases of Ratner’s theorem [1991b], which were also proved by Shah (unpublished, 1992) independently.
So we only need to discuss the proof of .3/. We show that xAU D xL, where L is as given by (2). If
U D L\N, then the claim follows from Theorem 13.1. Suppose that U is a proper subgroup of L\N.
Since xAU .K \H.U // D xH.U / D xL and S .U; xL/ � .K \H.U // is a proper subset of xL (see
Lemma 5.15), there exists y 2 xAU \G .U; xL/. Hence (3) follows from (2).

Lemma 11.2 Let V C � N be a one-parameter subsemigroup which is not contained in {H. Then
V CH.U / is a closed subset of G.

Proof Since the product map A�N ! AN is a diffeomorphism and AN is closed, the product subset
AW is closed in G for any closed subset W of N. Hence AUV C is a closed subset of AN. We use
Iwasawa decompositions H.U / D UA.K \H.U //, and the fact that AV C D V CA in order to write
V CH.U /D AUV C.K \H.U //. Hence the conclusion follows from compactness of K \H.U /.

Lemma 11.3 Let V C �N be as in Lemma 11.2. If gi 2 {H is a sequence such that givihi converges
for some vi 2 V C and hi 2H.U / as i !1, then , after passing to a subsequence , there exists pi 2 AU
such that gipi converges to an element of {H as i !1.

Proof We write gi D Qki Qai Qni 2 .K \ {H/A.N \ {H/ and hi D uiaiki 2 UA.K \H.U //. Since K \ {H
and K\H.U / are compact, we may assume without loss of generality that Qki D ki D e for all i . Observe
that

givihi D Qai Qniviuiai D Qaiai .a
�1
i Qniuiai /.a

�1
i viai /;
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where Qaiai 2 A, a�1i Qniuiai 2 N \ {H and a�1i viai 2 V
C. Since givihi converges as i !1 and the

product map A� .N \ {H/�V C!G is an injective proper map, it follows that all three sequences Qaiai ,
a�1i Qniuiai and a�1i viai are convergent as i !1. Noting that

giuiai D Qai Qniuiai D Qaiai .a
�1
i Qniuiai /;

it remains to set pi WD uiai 2 AU to finish the proof.

For z 2 BF M, �.z {H {V C {H/ D �.z {H {V C/ is the closure of a Fuchsian end, of the form S0 � Œ0;1/,
where S0 D �.z {H/.

Lemma 11.4 Let z 2 BF M. Let zL be a closed orbit contained in BF M for some L 2LU contained in
{H, and V C � N be a one-parameter subsemigroup such that {HV C D {H {V C. Then both zLV CH.U /

and zLV C are closed.

Proof Without loss of generality, we assume z D Œe�. Let B denote the component of � such that
hull.@B/D �. {H/ for the projection map � W G!Hd . Since {HV C D {H {V C, we have �. {HV C {H/D
hullB. Note that, if .hull.B//\ hull.B/¤∅ for  2 � , then  2 {H \� D Stab�.B/.

Suppose that i`ivihi converges to some element g 2G, where i 2 � , `i 2L, vi 2 V C and hi 2H.U /.
Since �.i`ivihi / 2 � hullB, and � hullB is a closed subset of Hd , we have �.g/ 2 � hullB. Without
loss of generality, we may assume �.g/ 2 hullB by replacing i by i for some  2 � if necessary.

We claim that, by passing to a subsequence,

i 2 {H \�:

Let O be a neighborhood of �.g/ such that

O\� hullB � hullBI

such O exists since d.hull.B/; hull.B//� � for all  2 � � . {H \�/, where � > 0 is as given in (4-12).
By passing to a subsequence, we may assume that �.i`ivihi / 2 O. Since �.`ivihi / 2 hullB for all i , it
follows that �.i`ivihi /2 hullB for all n. Therefore i 2 {H \� . Applying Lemma 11.3 to the sequence
.i`i /vihi ! g, there exists pi 2 AU such that i`ipi ! h in {H as i !1. Since �L is closed, we
have h 2 �L.

Since p�1i vihi 2 AUV
CH.U /D V CH.U / and

(11-1) lim
i!1

p�1i vihi D h
�1g;

we have h�1g 2 V CH.U / by Lemma 11.2. Therefore, g D h.h�1g/ 2 �LV CH.U /. This proves that
�LV CH.U / is closed. Note that, in the above argument, if hi D e for all i , then h�1g D limp�1i vi 2

AUV C. Hence g D h.h�1g/ 2 �LAUV C D �LV C. This proves that �LV C is closed.
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Note that x 2 RFCM�RF M �H.U / if and only if x 2 .RFCM\ @FH.U//�BF M �C.H.U //.

Theorem 11.5 Let x 2 RFCM � RF M �H.U /. Then there exist a compact orbit zL � BF M with
L 2 LU , an element c 2 C.H.U // and a one-parameter subsemigroup V C � N with {HV C D {H {V C

such that

(1) xH.U /D zLV CH.U /c;

(2) xAU D zLV Cc.

Moreover , the closure of the geodesic plane �.xH.U // is diffeomorphic to a properly immersed sub-
manifold S � Œ0;1/, where S D �.zL/ is a compact geodesic plane inside BF M.

Proof We claim that we can write x D z0vc for some nontrivial v 2 {V C, z0 2 BF M and c 2 C.H.U //.

Let k D dimU and C � Sd�1 denote the k–dimensional sphere stabilized by H.U /, and g 2G be such
that x D Œg�.

In view of the identification �nG ' FM induced from (3-1), the hypothesis x 2 RFCM�RF M �H.U /

implies that there exists a component Bi of� such that gC �Bi and gC is tangent to @Bi . Let S �Bi be
the unique .d�2/–dimensional sphere tangent to @Bi containing C. Considering g D .v1; : : : ; vd / as an
orthonormal frame in Hd , we can obtain a frame tangent to hull.S/ by rotating the last d � .dim.U /C1/
vectors of g. Since any frame tangent to hull.S/ can be written as zv for some z 2 BF M and a nontrivial
v 2 {V C, and the process of rotating the last d � .dim.U / C 1/ coordinates corresponds to a right
multiplication in �nG by an element of c 2 C.H.U //, this proves the claim.

Without loss of generality, we may assume c D e. By Theorem 11.1, z0U D z0v�10 Lv0, where L 2LU

is contained in {H and v0 2 {H \N. Hence xH.U / contains zL.v0v/H.U / for z WD z0v�10 2 BF M. Set
V C WD fexp t .log.vv0// W t � 0g.

Note that V C is contained in A.v0v/A[feg, and hence

zL[ zLv0vH.U /D zLV
CH.U /

and {HV C D {H {V C since v ¤ e.

Since xH.U / � zL[ zL.v0v/H.U /, and zL lies in the closure of zL.v0v/H.U /, claim (1) follows
since zLV CH.U / is closed by Lemma 11.4. For claim (2), note that xAU � z0UvA D zLV C. By
Lemma 11.4, zLV C is AU –invariant and closed. Since x 2 zLV C, we conclude xAU D zLV C.

To see the last claim, observe that �.zLV CH.U //D�.zLV CAU/D�.zLV C/ since V CAU DAUV C,
and AU < L. Since {HV C D {H {V C, and �.zL/ is a compact geodesic plane (without boundary) in
�.z {H/, we get �.z {HV C/' �.z {H/� Œ0;1/ and �.zLV C/' �.zL/� Œ0;1/.

Remark 11.6 An immediate consequence of Theorem 11.5 is that, if P �M is a geodesic plane such
that P \ core MD ∅ but P \ core M¤ ∅, then P is not properly immersed in M and P is a properly
immersed submanifold with nonempty boundary.
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12 Density of almost all U –orbits

Let � < G D SOı.d; 1/ be a Zariski-dense convex cocompact subgroup. The action of N on RFCM

is minimal, and hence any N–orbit is dense in RFCM [Winter 2015]. Given a nontrivial connected
closed subgroup U of N, there exists a dense U –orbit in RFCM [Maucourant and Schapira 2019]. In
this section, we deduce from [Mohammadi and Oh 2015; Maucourant and Schapira 2019] that almost
every U –orbit is dense in RFCM with respect to the Burger–Roblin measure in the case of a convex
cocompact hyperbolic manifold with Fuchsian ends (Corollary 12.4).

The critical exponent ı D ı� of � is defined to be the infimum s � 0 such that the Poincaré seriesP
2� e

�sd.o;.o// converges for any o 2Hd . It is known that ı is equal to the Hausdorff dimension of
the limit set ƒ and ı D d � 1 if and only if � is a lattice in G [Sullivan 1979].

Denote by mBR the N–invariant Burger–Roblin measure supported on RFCM; it is characterized as a
unique locally finite Borel measure supported on RFCM (up to a scaling) by [Burger 1990; Roblin 2003;
Winter 2015]. We won’t give an explicit formula of this measure as we will only use the fact that its
support is equal to RFCM, together with the following theorem; recall that a locally finite U –invariant
measure � is ergodic if every U –invariant measurable subset has either zero measure or zero comeasure,
and is conservative if, for any measurable subset S with positive measure,

R
U 1S .xu/ du D 1 for

�–almost all x, where du denotes the Haar measure on U.

Theorem 12.1 [Mohammadi and Oh 2015; Maucourant and Schapira 2019] Let U <N be a connected
closed subgroup , and let � be a convex cocompact Zariski-dense subgroup of G. Then mBR is U –ergodic
and conservative if ı > codimN .U /.

Lemma 12.2 Suppose that �1 < �2 are convex cocompact subgroups of G with Œ�1 W�2�D1. Then
ı�1 < ı�2 .

Proof Note that a convex cocompact subgroup is of divergent type [Sullivan 1979; Roblin 2003]. Hence,
the claim follows from [Dalbo et al. 2000, Proposition 9] if we check that ƒ�1 ¤ƒ�2 .

Ifƒ WDƒ�1Dƒ�2 , then their convex hulls are the same, and hence the convex core of the manifold �inHd

is equal to �inhull.ƒ/, which is compact. Since we have a covering map �1nhull.ƒ/! �2nhull.ƒ/, it
follows that Œ�1 W�2� <1.

Lemma 12.3 If �nHd is a convex cocompact hyperbolic manifold with Fuchsian ends , then ı > d � 2.

Proof If � is a lattice, thenƒDSd�1 and ıDd�1. If �nHd is a convex cocompact hyperbolic manifold
with nonempty Fuchsian ends, then � contains a cocompact lattice �0 in a conjugate of SO.d � 1; 1/
whose limit set is equal to @Bi for some i . Now Œ� W�0�D1; otherwise, ƒD @Bi . Hence ı > ı�0 D d �2
by Lemma 12.2.
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Corollary 12.4 Let MD �nHd be a convex cocompact hyperbolic manifold with Fuchsian ends. Let
U <N be any nontrivial connected closed subgroup. Then , for mBR–almost every x 2 RFCM,

xU D RFCM:

Proof Without loss of generality, we may assume that U D futg is a one-parameter subgroup. By
Lemma 12.3 and Theorem 12.1, mBR is U –ergodic and conservative. Since RFCM is second countable
and the U –action on it is continuous, the claim follows.

Since F �
H.U/

\RFCM is a nonempty open subset, it follows that almost all U –orbits in F �
H.U/

\RFCM

are dense in RFCM.

13 Horospherical action in the presence of a compact factor

Let M D �nHd be a convex cocompact hyperbolic manifold with Fuchsian ends and fix a nontrivial
connected closed subgroup U of N. Consider a closed orbit xL for x 2 RF M, where L 2 QU and
U D L\N. The subgroup U is a horospherical subgroup of L, which is known to act minimally on
xL\RFCM provided LD Lnc. In this section, we extend the U –minimality on xL in the case when L
has a compact factor.

Theorem 13.1 Let X WD xL be a closed orbit where x 2 RFCM, and L 2 QU . Let U WD L\N. Then
the following hold :

(1) X \RFCM is U –minimal.

(2) X is Lnc–minimal.

(3) If L 2 LU and x 2 RF M, then X \RF M contains a dense A–orbit.

(4) For any nontrivial connected closed subgroup U0 < U, for mBR
X –almost all x 2X,

xU0 DX \RFCM:

The subgroup L 2 QU is of the form v�1H.U /Cv, where H.U /C 2 LU and v 2N. The general case
can be easily reduced to the case where L 2LU . In the following, we assume LDH.U /C 2LU . As
before, we set

H DH.U /; H 0 DH 0.U / and F � D F �H.U/

and let �1 WH 0!H and �2 WH 0! C.H/ be the canonical projections. In order to define mBR
X , choose

g2G so that Œg�Dx. If we identifyH 'SOı.k; 1/, then, by Proposition 4.9, S WD�1.g�1�g\HC/nHk

is a convex cocompact hyperbolic manifold with Fuchsian ends. Now �1.g
�1�g\HC/nH is the frame

bundle of S, on which there exists the Burger–Roblin measure as discussed in Section 12. In the above
statement, the notation mBR

X means the C–invariant lift of this measure to X D xHC.

We first prove the following, which is a more concrete version of Proposition 10.6 in the case at hand:
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Proposition 13.2 Let X be as in Theorem 13.1. Any U –minimal set Y of X with respect to RF M such
that Y \F �\RF M¤∅ is A–invariant.

Proof Let Y be a U –minimal set of X with respect to RF M. Let y0 2 Y \F �\RF M. By Lemma 10.4,
there exists a sequence gi ! e in HC �N.U / such that y0gi 2 Y \RF M for all i � 1.

Since U is a horospherical subgroup of H and C commutes with H, we can apply Lemma 9.2 to the
sequence g�1i and the sequence of k–thick sets Ti WD fu 2 U W y0giu 2 Y \RF Mg of U. This gives us
sequences uti !1 in Ti and ui 2 U such that, as i !1,

u�1ti giui ! a

for some nontrivial element a 2 A. Since y0uti converges to some y1 2 Y \ RF M by passing to a
subsequence, we have

y1aD lim.y0uti /.u
�1
ti
giui / 2 Y:

Since 1U D Y, we get Ya � Y. Since a can be made arbitrarily close to e by Lemma 9.2, there exists a
subsemigroup AC of A such that YAC � Y by Lemma 10.5. Moreover, for any a 2AC, Ya\RF M¤∅
as RF M is A–invariant. Therefore, YaD Y. It follows that Ya�1D Y as well. Hence Y is A–invariant.

We now present:

Proof of Theorem 13.1 First suppose that xL\F � ¤∅. We may then assume x 2 F �\RF M. Let
Y be a U –minimal set of X with respect to RF M. If Y were contained in @F, then Y � @F \RF M.
Since StabL.x/ is Zariski-dense in L by the definition of LU , it follows from [Benoist and Quint 2014,
Lemma 4.13] that X \RFCM is AU –minimal. Therefore we have

YADX \RFCM

and hence X has to be contained in the closed A–invariant subset @F \ RF M as well, yielding a
contradiction. Therefore,

Y \F �\RF M¤∅:

Hence, by Proposition 13.2, Y is A–invariant. Therefore, claim (1) follows from the AU –minimality of
X \RFCM if x 2 F �. Now suppose xL� @F. In this case, it suffices to consider the case when U is
a proper subgroup of N ; otherwise LDG and has no compact factor. Hence we may assume without
loss of generality that U � {H \N. As xL is closed, Theorem 11.5 implies that xL� BF M �C.H.U //.
Hence by modifying x by an element of C.H.U //, we may assume that X is contained in a compact
homogeneous space of {H D SOı.d � 1; 1/, which is the frame bundle of a convex cocompact hyperbolic
manifold with empty Fuchsian ends. Therefore, claim (1) follows from the previous case of x 2F �, since
F � D RF M in the finite-volume case.

Claim (2) follows from (1) since RFCM �H is closed, and X � RFCM �H.

For (3), it suffices to show that the A–action on X \RF M is topologically transitive (see [Değirmenci
and Koçak 2003]). Let x; y 2X \RF M be arbitrary and O and O0 be open neighborhoods of e in H. The
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set UU tA.M \H/ is a Zariski-open neighborhood of e in H, where U t is the expanding horospherical
subgroup ofH for the action ofA. Choose an open neighborhoodQ0 of e in U, and an open neighborhood
P0 of e in U tA.M \H/ such that Q0P0 � O.

We claim that xQ0A\yO0 ¤∅, which implies xOA\yO0 ¤∅. Suppose that this is not true. Then

xQ0A� �nG �yO0;

where the latter is a closed set. Now, choose a sequence an 2 A such that anQ0a�1n ! U as n!1,
and observe

xa�1n .anQ0a
�1
n /D xQ0a

�1
n � �nG �yO0:

Passing to a subsequence, xa�1n ! x0 for some x0 2 RF M, and we obtain that x0U is contained in the
closed subset �nG � yO0. This contradicts the U –minimality of X \RFCM, which is claim (1). This
proves (3).

For (4), note that, by Corollary 12.4, almost all U0–orbits in �1.g�1�g \HC/nH are dense in the
corresponding RFCM–set. It follows that, for almost all x, the closure xU0 contains a U –orbit of X.
Hence, (4) follows from (1).

14 Orbit closure theorems: beginning of the induction

In the rest of the paper, let MD �nHd be a convex cocompact hyperbolic d–manifold with Fuchsian
ends, and G D SOı.d; 1/. Let U <N be a nontrivial connected proper closed subgroup, and H.U / be
its associated simple Lie subgroup of G.

Let LU and QU be as defined in (5-8) and (5-9). The remainder of the paper is devoted to the proof of
the next theorem, from which Theorem 1.2 follows:

Theorem 14.1 (1) For any x 2 RF M,

xH.U /D xL\FH.U/;

where xL is a closed orbit of some L 2 LU .

(2) Let x0 yL be a closed orbit for some yL 2 LU and x0 2 RF M.

(a) For any x 2 x0 yL\RFCM,

xU D xL\RFCM;

where xL is a closed orbit of some L 2 QU .

(b) For any x 2 x0 yL\RF M,

xAU D xL\RFCM;

where xL is a closed orbit of some L 2 LU .
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(3) Let x0 yL be a closed orbit for some yL 2 LU and x0 2 RF M. Let xiLi � x0 yL be a sequence
of closed orbits intersecting RF M, where xi 2 RFCM and Li 2 QU . Assume that no infinite
subsequence of xiLi is contained in a subset of the form y0L0D, where y0L0 is a closed orbit of
L0 2 LU with dimL0 < dim yL and D � N.U / is a compact subset. Then

lim
i!1

.xiLi \RFCM/D x0 yL\RFCM:

We will prove (1), (2) and (3) of Theorem 14.1 by induction on the codimension of U in N and the
codimension of U in yL\N, respectively.

For simplicity, let us say .1/m holds if .1/ is true for all U satisfying codimN .U /�m. We will say .2/m
(resp. (2a)m, (2b)m) holds if .2/ (resp. (2)(a), (2)(b)) is true for all U and yL satisfying codimyL\N .U /�m
and similarly for .3/m.

Base case ofmD 0

Note that the bases cases .1/0, and .3/0 are trivial, and that .2/0 follows from Theorem 13.1.

We will deduce .1/mC1 from .2/m and .3/m in Section 16; deduce .2/mC1 from .1/mC1, .2/m and .3/m
in Section 17; and finally deduce .3/mC1 from .1/mC1, .2/mC1 and .3/m in Section 18.

Remark 14.2 When codimyL\N .U /� 1 and yL 2 LU , we may assume without loss of generality that

U � yL\N \ {H

by replacing U and yL by their conjugates using an element m 2M.

Remark 14.3 In the case when x 2 @FH.U/, Theorem 14.1(1)–(2) follow from Theorem 11.1, and,
if x0 2 @FH.U/, (3) follows from the work of Mozes and Shah [2019]. So the main new cases of
Theorem 14.1 are when x; x0 2 F �H.U/.

We will use the following observation:

Singular U –orbits under the induction hypothesis

Recall the notation S .U; x yL/ and G .U; x yL/ from (5-7).

Lemma 14.4 Suppose that .2a/m is true and that , for x 2 RF M, xU is contained in a closed orbit x yL
for some yL 2 LU .

(1) If codimyL\N .U /�mC 1, then , for any x0 2S .U; x yL/\RFCM,

x0U D x0L\RFCM;

where x0L is a closed orbit of some subgroup L< yL contained in QU satisfying dimLnc< dim yLnc.
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(2) If codimyL\N .U /�m, then , for any x0 2 G .U; x yL/,

x0U D x0 yL\RFCM:

Proof Suppose that codimyL\N .U / �mC 1 and that x0 2S .U; x yL/\RFCM. By Proposition 5.13,
we get

x0U � x0Q

for some closed orbit x0Q, where Q 2 QU satisfies dimQnc < dim yLnc.

Now Q D vL0v
�1 for some L0 2 LU and v 2 U?. We have x0Uv D x0vU � x0vL0. Since

codimN\L0.U /D codimN\Q.U /�m, by applying .2/m, we get

x0vU D x0vL\RFCM

for some closed orbit x0vL, where L 2 QU is contained in L0. Therefore

x0U D x0vLv
�1
\RFCM:

As vLv�1 2 QU and dimLnc � dimQnc < dim yLnc, claim (1) is proved.

To prove (2), note that by (2a)m, we get x0U D x0L\RFCM for some closed orbit x0L with L 2 QU

such that L� yL. Since x0 2 G .U; x yL/, we have dimLnc D dim yLnc.

Since L� yL, L\N is a horospherical subgroup of yL. By Theorem 13.1, L\N acts minimally on x yL,
and hence LD yL.

15 Generic points, uniform recurrence and additional invariance

The primary goal of this section is to prove Propositions 15.1 and 15.2 in obtaining additional invariances
using a sequence converging to a generic point of an intermediate closed orbit; the main ingredient is
Theorem 7.15 (avoidance theorem II). The results in this section are main tools in the enlargement steps
of the proof of Theorem 14.1.

In this section, we let U <N be a nontrivial connected closed subgroup. We suppose that

� .2/m and .3/m are true;

� x yL is a closed orbit for some x 2 RF M, and yL 2 LU ;

� codimyL\N .U /�mC 1.

We let fU .i/g be a finite collection of one-parameter subgroups generating U. In the next two propositions,
we let X be a closed U –invariant subset of x0 yL such that

X � xL\RFCM

for some closed orbit xL, where L 2 QU is a proper subgroup of yL and

x 2
\
i

G .U .i/; xL/\RF M:
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Proposition 15.1 (additional invariance I) Suppose that there exists a sequence xi ! x in X, where
xi D x`iri with x`i 2 xL\RF M and ri 2 exp l?�N.U /.

Then there exists a sequence vn!1 in .L\N/? such that

xLvn\RFCM�X:

Proof Since ri … N.U /, we can fix a one-parameter subgroup U0 D fut W t 2 Rg in the family fU .i/g
such that ri … N.U0/ by passing to a subsequence.

Let Ej for j 2N be a sequence of compact subsets in S .U0; xL/\RF M as given by Theorem 7.15.
Set zi WD x`i 2 xL\RF M. Fix j 2N and n� 1. Since zi ! x and x 2 G .U0; xL/, there exist ij � 1
and an open neighborhood Oj of Ej such that, for each i � ij , the set

Ti D ft 2R W ziut 2 RF M�Oj g

is 2k–thick by Theorem 7.15. We apply Lemma 9.3 to the sequence Ti . We can find a sequence
ti D ti .n/ 2 Ti for i � ij and elements yj D yj .n/; vj D vj .n/ satisfying that, as i !1,

� ziuti ! yj 2 .RF M\ xL/�Oj ;

� u�1ti riuti ! vj 2 .L\N/
? with n� kvj k � .2k2/n.

So, as i !1,
xiuti D ziriuti ! yj vj in X:

Note that, since L is a proper subgroup of yL, we have codimL\N .U /�m by Lemma 5.11.

If yj belongs to G .U; xL/, then yjUvj D xL\RFCM by Lemma 14.4(2), and hence

X � yj vjU D yjUvj D xLvj \RFCM:

Hence, the claim follows if yj .n/ 2 G .U; xL/ for an infinite subsequence of n’s.

Now we may suppose that, for all n � 1 and j � 1, yj .n/ 2 S .U; xL/\ RFCM, after passing to a
subsequence. Fix n, and set yj D yj .n/ and vj D vj .n/. Then, since dimL\N U �m, by .2/m, we have

(15-1) yjU D yjLj \RFCM

for some closed yjLj , whereLj 2QU is contained in yL and dim.Lj /nc<dim yLnc. WriteLj Dw�1j L0jwj

forL0j 2LU andwj 2U?. We claim that the sequence yjLj Dyjw�1j L0jwj satisfies the hypothesis .3/m.
It follows from the condition yj 2 .RF M\ xL/� Oj for all j that no infinite subsequence of yjLj is
contained in a subset of the form y0L0D �S .U; xL/, where y0L0 is closed, L0 � QU and D � N.U /
is a compact subset. Hence, by .3/m, we have

lim sup
j

yjLj \RFCMD xL\RFCM:

Therefore, for each fixed n� 1 and yj D yj .n/,

lim sup
j

yjU D xL\RFCM:
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By passing to a subsequence, there exists uj 2U such that yjuj converges to x. As n�kvj .n/k� .2k2/n,
the sequence vj .n/ converges to some vn2 .L\N/? as j!1, after passing to a subsequence. Therefore

lim sup
j

yj .n/vj .n/U D lim sup
j

yj .n/U vj .n/� xUvn D xLvn\RFCM;

where the last equality follows from Lemma 14.4(2), since codimL\N .U /�m.

Note that, in the above proposition, yi D x`iri is not necessarily in RF M, and hence we cannot apply the
avoidance theorem, Theorem 7.15, to the sequence yi directly. We instead applied it to the sequence x`i .

In the proposition below, we will consider a sequence xi ! y inside RF M, and apply Theorem 7.15 to
the sequence xi .

Proposition 15.2 (additional invariance II) Suppose there exists a sequence xi 2X\RF M�xL �N.U /
converging to x as i !1. Then there exists a sequence vj !1 in .N \L/? such that

xLvj \RFCM�X and xLvj \RF M¤∅:

The same works for a sequence xi 2 RF M� xL �N.U / such that lim sup xiU �X.

Proof Let xi 2 RF M� xL �N.U / be a sequence converging to x such that lim sup xiU � X. Write
xi D xgi for gi ! e in yL. Since L is reductive, we can write gi D `iri , where `i ! e in L and ri ! e

in exp l? as i !1. By the assumption on xi , there exists a one-parameter subgroup U0 D fut W t 2Rg

among U .i/ such that ri … N.U0/ by passing to a subsequence.

For R > 0, we set B.R/ WD fv 2 .L\N/?\ yL W kvk �Rg. Fix j and n 2N. Let Ej and Oj be as given
by Theorem 7.15 for xL with respect to U0. Then Ej is of the form

Ej D
[
i2ƒj

�n�HiDi \RF M;

where Hi 2 H ? satisfies dim.Hi /nc < dimLnc and Di is a compact subset of X.Hi ; U0/ \ L. As
B.2k2n/� C.U0/, we have D�j WDDjB.2k

2n/ is a compact subset of X.Hi ; U0/. Hence, the set

zEj WD
[
i2ƒj

�n�HiD
�
i \RF M

belongs to EU0 and is associated to the family fHi W i 2ƒj g, as defined in 7.3.

Let zE 0j 2 EU0 be a compact subset as given by Theorem 7.13, which is also associated to the same family
fHi W i 2 ƒj g. Note that for any z 2 zE 0j , the closure zU0 is contained in �n�HiD�i for some i 2 ƒj .
In particular, zE 0j is a compact subset disjoint from G .U0; xL/. Since xi ! x and x 2 G .U0; xL/, there
exists ij � 1 such that xi … zE 0j for all i � ij . By Theorem 7.13, there exists a neighborhood zOj of zEj
such that, for each i � ij , the set

Ti D ft 2R W xiut 2 RF M� zOj g
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is 2k–thick. Applying Lemma 9.3 to Ti and ri ! e, we can find ti D ti .n/ 2 Ti such that u�1ti riuti ! vj

for some vj D vj .n/ 2 .L\N/?, with n� kvj k � 2k2 �n. Passing to a subsequence, xiuti converges to
some Qxj .n/ 2 RF M� zOj as i !1. Set

zi WD x`i and Oj WD zOjB.2k
2n/\ xL:

Since xiuti D ziuti .u
�1
ti
riuti /, we have

ziuti ! yj 2 .RFCM\ xL/�Oj ;

where yj D yj .n/ WD Qxj .n/v�1j .

We check thatEj �Oj asB.2k2n/B.2k2n/ contains e. It follows that yj …Ej . Since Qxj .n/2yjUvj �X;
we have yjUvj \RF M¤∅. Given these, we can now repeat verbatim the proof of Proposition 15.1 to
complete the proof.

Theorem 2.2 can be proved similarly to the proof of Proposition 15.1:

Proof of Theorem 2.2 Let Ej for j 2N be a sequence of compact subsets of S .U0/\RF M as given
by Theorem 7.15. Fix j 2N. Then there exist ij � 1 and a neighborhood Oj of Ej such that

ft 2R W xiut 2 RF M�Oj g

is 2k–thick for all i � ij . Hence we can find a sequence ti 2 Œ�2kTi ;�Ti � [ ŒTi ; 2kTi � such that
xiuti 2 RF M � Oj for all i � ij . Hence, by passing to a subsequence, xiuti converges to some
yj 2 RF M � Oj as i ! 1. If yj 2 G .U / for some j, then .2/m and Lemma 14.4(2) imply that
yjU D RFCM, proving the claim.

Now we assume that yj 2S .U; x yL/ for all j. Then, by .2/m and Lemma 14.4(1), we have

yjU D yjLj \RFCM

for some closed yjLj , whereLj 2QU is a proper subgroup ofG. Similarly to the proof of Proposition 15.1,
we can show that the sequence yjLj satisfies the hypothesis .3/m. Hence, by applying .3/m to the
sequence yjLj , we get

lim sup.yjLj \RFCM/D RFCM:

Therefore lim supyjU D lim supyjU D RFCM. This, together with Theorem 13.1(4), finishes the
proof.

16 H.U /–orbit closures: proof of .1/mC1

We fix a nontrivial connected proper subgroup U <N. Without loss of generality, we may assume

U <N \ {H

using a conjugation by an element of M. We set

H DH.U /; H 0 DH 0.U /; F D FH.U/; F � D F �H.U/ and @F D @FH.U/:
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By the assumption U <N \ {H, we have

@F \RF MD BF M �C.H/:

We will be using the following observation:

Lemma 16.1 Let x1L1 and x2L2 be closed orbits , where x1; x2 2 RF M, L1 2 QU and L2 2 LU . If
x1L1\RF M� x2L2, then L1 � L2 and x1L1 � x2L2.

Proof Since L2 contains H, we get that x1L1\RF M �H � x2L2. Suppose that x1L1\F � ¤∅. We
may assume x1 2 F �. Recall from (4-5) that F � �RF M �H. Hence, we have x1L1\F � � x2L2. Since
F � is open, there exist g1; g2 2G such that Œgi �D xi , and g1L1\O� g2L2 for some open neighborhood
O of g1. It follows that L1 \ g�11 O � g�11 g2L2. Since e 2 g�11 g2L2, we have g�11 g2L2 D L2. Since
L1 is topologically generated by L1\g�11 O, we deduce L1 � L2. Since x1L1\ x2L2 ¤∅, it follows
that x1L1 � x2L2.

Now consider the case when x1L1\F �D∅. In this case, x1L1\RF M�RF M\@F. By Theorem 13.1(4),
we can assume that x1U D x1L1 \RFCM. As x1 is contained in BF M �C.H/, so is x1U . It follows
that x1L1 is compact and hence is contained in RF M. Hence, the hypothesis implies that x1L1 � x2L2,
which then implies L1 � L2 by the same argument as in the previous case.

Lemma 16.2 Let y1L1 and y2L2 be closed orbits , where y12RF M, y22RFCM,L12QU andL22LU .
If y1L1 � y2L2D for some subset D � N.U /, then there exists d 2 D such that L1 � d�1L2d and
y1L1 � y2L2d .

Proof By Theorem 13.1(4), we may assume y1U D y1L1\RFCM. By the assumption, y1 D y2`2d
for some `2 2 L2 and d 2D. Since y2`2 D y1d�1 and N.U / preserves RFCM, y2`2 2 RFCM. Hence
we may replace y2 by y2`2, and hence assume that y1 D y2d . Since

(16-1) y1L1\RFCMD y2dU D y2Ud � y2L2d

and F � � RFCM �H, we get y1L1d�1\F � � y2L2.

If y1L1d�1\F � ¤∅, using the openness of F �, the conclusion follows as in the first part of the proof
of Lemma 16.1. Now consider the case when y1L1d�1\F �D∅. In particular, y2D y1d�1 belongs to

RFCM�F � � BF M �N.U /

by (4-7). It follows from Theorem 11.1 that y2U D y2L02 for some L02 2 QU contained in L2. In view
of (16-1), we get y1L1 \ RFCM D y1d

�1L02d . Therefore d�1L02d � L1. Since y1L1 \ RFCM is
A.L1\N/–invariant, it follows that d�1L02d 2LU and d�1L02d \N DL1\N. As a result, .L1/nc D

d�1.L02/ncd . By Lemma 5.11, we get that L1D d�1L02d � d
�1L2d and y1L1D y2L02d � y2L2d .
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The following proposition says that the classification of H 0–orbit closures yields the classification of
H–orbit closures:

Proposition 16.3 Let x 2 RF M, and assume that there exists U < zU <N such that xH 0. zU/ is closed ,
and

xH 0 D xH. zU/ �C.H/\F:

Then there exists a closed subgroup C < C.H. zU// such that

xH D xH. zU/C \F:

Proof By Proposition 4.9 and Theorem 13.1(2), there exists a closed subgroup C < C.H. zU// such that
H. zU/C 2 LU and X WD xH. zU/C is a closed H. zU/–minimal subset. In particular, xH �X \F. Now,
by Theorem 13.1(3), there exists y 2X such that yADX \RF M. Since C is contained in C.H/ and

xH �C.H/D xH 0 D xH. zU/ �C.H/\F;

there exists c0 2 C.H/ such that yc0 2 xH . Since yAc0 D yc0A� xH and c0 2 C.H/, it follows that
Xc0\RF M� xH �X. Applying Lemma 16.1, we get Xc0 D xH DX.

In the rest of this section, fix m 2N [f0g and assume that

1� codimN .U /DmC 1:

In order to describe the closure of xH.U /, in view of Theorem 11.1, we assume that

x 2 F �\RF M:

By Proposition 16.3, it suffices to show that

(16-2) xH 0 D xLC.H/\F

for some closed orbit xL for some L 2 LU .

In the rest of this section, we set X WD xH 0 and assume that xH 0 is not closed, i.e. X ¤ xH 0.

We also assume that .2/m holds in the entire section.

Lemma 16.4 (moving from QU to LU ) If x0L\RFCM�X for some closed orbit x0Lwith x02RF M,
and L 2 QU �LU , then

x1 yL\RFCM�X

for some closed orbit x1 yL with x1 2 RF M, and yL 2LU with dim.yL\N/ > dim.L\N/. Moreover , x1
can be taken to be any element of the set lim supt!C1 x0ua�t for any u 2 U.
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Proof By (5-10), we can write LD v�1 yLv for some yL 2LU and v 2 .yL\N/?. As L …LU , we have
v ¤ e. Set yU WD yL\N. Note that x0v�1 yUAv � x0L\RFCM, as yUA < yL. Since X is A–invariant,
x0v
�1 yUAvA�X. Let V C be the unipotent one-parameter subsemigroup contained in AvA, and let V

be the one-parameter subgroup containing V C. Then x0v�1V C yU � X. Since x0A� RF M and RF M

is compact, lim supt!C1 x0a�t is not empty. Now let x1 be any limit of x0ua�tn for some sequence
tn!1 and u 2 U. Since v�1V C is an open neighborhood of e in V, lim infn!1 atnv

�1V Ca�tn D V.
Note that, as u 2 yU,

x0ua�tn.atnv
�1 yUV Ca�tn/D x0v

�1 yUV Ca�tn �X:

As a result, we obtain that x1 yUV � X and hence x1 yUVA � X. Since codimN . yUV / � m, the claim
follows from (2a)m.

Proposition 16.5 If R WDX \F �\RF M accumulates on @F, i.e. there exists xn 2R converging to a
point in @F, then

X � x0L\RFCM

for some closed orbit x0L with x0 2 F �\RF M and L 2 LU such that dim.L\N/ > dimU.

Proof There exist xn 2 R which converge to some z 2 BF M � C.H/ as n ! 1. We may assume
z 2 BF M without loss of generality, since R is C.H/–invariant. We claim that R � X contains z1v,
where z1 2 BF M and v 2 {V � feg. Write xn D zhnrn for some hn 2 {H and rn 2 exp {h?, where {h?

denotes the Ad. {H/–complementary subspace to Lie. {H/ in g. Since xn 2 F � and z 2 BF M, it follows
that rn … C.H/ for all large n. By Lemma 3.2 and (3-5), we have

N.U /\ exp.{h?\O/� {V C.H/

for a small neighborhood O of 0 in g. Therefore, if rn 2 N.U / for some n, then the {V –component of rn
should be nontrivial. Hence, by Theorem 11.1, X � zhnUrn D zhnLrn for some L 2 QU contained
in {H. Note that xn D zhnrn 2 F � and that r�1n Lrn 2 QU �LU , since rn 2 {V � feg. Hence the claim
follows from Lemma 16.4.

Now suppose that rn … N.U / for all n. Then there exists a one-parameter subgroup U0 D futg< U such
that rn … N.U0/. Applying Lemma 9.3, with a sequence of k–thick subsets

T.xn/ WD ft 2R W xnut 2 RF Mg;

we get a sequence tn2T.xn/ such that u�1tn rnutn converges to nontrivial element v2 {V. Since zhnutn 2z {H
and z {H is compact, the sequence zhnutn converges to some z1 2 z {H, after passing to a subsequence.
Then

(16-3) z1v D lim.zhnutn/.u
�1
tn
rnutn/ 2X \RF M:

Since z1 2 BF M and v 2 {V �feg, z1v 2 RF M implies that z1v 2 F �, and hence z1v 2R. This proves
the claim.
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Now, by Theorem 11.1, z1U D z1L for some L 2 QU contained in {H, and hence

X � z1vU D z1Uv D .z1v/.v
�1Lv/:

Since v 2 {V �feg, v�1Lv … LU . Therefore, by Lemma 16.4, it suffices to prove that there exists u 2 U
such that

(16-4) .F �\RF M/\ lim sup
t!C1

z1uva�t ¤∅:

Let g1 2G be such that z1 D Œg1�, and set A.�1;�t� WD fa�s W s � tg for t > 0. Since z1v 2 F �\RF M,
the sphere .gvU /�[gC intersects ƒ�

S
i Bi nontrivially. Let u 2U be an element such that .gvu/� 2

ƒ�
S
i Bi . As z1vu2RF M, �.zuvA/�core M. Take ">0 small enough that the "–neighborhoods of the

hullBj are mutually disjoint. If (16-4) does not hold for z1uv, then there exists t >1 such that the geodesic
ray �.z1vuA.�1;�t�/ is contained in the "–neighborhood of @ core M (see the proof of Lemma 8.8).
As �.g1uvA.�1;�t�/ is connected, there exists Bj such that �.g1uvA.�1;�t�/ is contained in the "–
neighborhood of hullBj . This implies that .g1uv/� 2@Bj , yielding a contradiction. This proves (16-4).

Proposition 16.6 The orbit xH 0 is not closed in F �.

Proof Suppose that xH 0 is closed in F �. Since we are assuming that xH 0 is not closed in F, xH 0

contains some point y 2 @F. Since @F D BF M {V C C.H/, we may assume y 2 BF M � {V C. Write y D zv,
where z 2 BF M and v 2 {V C. If v ¤ e, zvH 0 intersects BF M by Theorem 11.5. Therefore xH 0 always
contains a point of BF M, say z. Let xn 2 xH 0 be a sequence converging to a point z. Since xH 0 � F �,
there exist kn 2H \K converging to some k 2H \K such that xnkn 2 xH 0\RFCM and xnkn! zk.
Then zk 2 BF M �H 0 D BF M C.H/. Since xnkn 2 RF M �U by Lemma 4.5, there exists un 2 U such
that xnknun belongs to RF M and converges to a point in @F by Lemma 8.6. Hence X \F � \RF M

accumulates on @F. Now the claim follows from Proposition 16.5.

This proposition implies that

(16-5) .X � xH 0/\ .F �\RF M/¤∅:

Roughly speaking, our strategy in proving .1/mC1 is first to find a closed L–orbit x0L such that x0L\F
is contained in X for some L 2LU . If X ¤ x0LC.H/\F, then we enlarge x0L to a bigger closed orbit
x1 yL for some yL 2 L yU , for some yU properly containing U, such that x1 yL\F is contained in X.

It is in the enlargement step where Proposition 15.1 (additional invariance I) is a crucial ingredient of
the arguments. In order to find a sequence xi accumulating on a generic point of x0L satisfying the
hypotheses of the proposition, we find a closed orbit x0L with a basepoint x0 in F �\RF M, and enlarge
it to a bigger closed orbit, again based at a point in F �\RF M. The advantage of having a closed orbit
xL with x 2 F �\RF M is that any U0–generic point in xL\RF M can be approximated by a sequence
of RF M–points in F �\ xL by Lemma 8.3. The enlargement process must end after finitely many steps
for dimension reasons.
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Finding a closed orbit of L 2 LU in X

Proposition 16.7 There exists a closed orbit x0L with x0 2 F �\RF M and L 2 LU such that

x0L\RFCM�X:

Proof Let R WDX \F �\RF M. If R is noncompact, the claim follows from Proposition 16.5. Now
suppose that R is compact. By (2a)m, it is enough to show that X contains an orbit z yU, and hence z yUA,
for some yU <N properly containing U and z 2R. By Proposition 10.9, it suffices to find a U –minimal
subset Y �X with respect to R and a point y 2 Y \R such that X �yH 0 is not closed.

If xH 0 is not locally closed, then take any U –minimal subset Y of X with respect to R. If Y \R � xH 0,
then choose any y 2 Y \R. Then X �yH 0DX �xH 0 cannot be closed, as xH 0 is not locally closed. If
Y \Rš xH 0, then choose y 2 .Y \R/�xH 0. Then X �yH 0 contains xH 0 and hence cannot be closed.

If xH 0 is locally closed, then X�xH 0 is a closed H 0–invariant subset which intersects R nontrivially. So
we can take a U –minimal subset Y �X � xH 0 with respect to R. Take any y 2 Y \R. Then X �yH 0

is not closed.

Enlarging a closed orbit of L 2 LU in X

Proposition 16.8 Assume that .3/m holds as well. Suppose that there exists a closed orbit x0L for some
x0 2 F

�\RF M and L 2 LU such that

(16-6) x0L\RFCM�X and X ¤ x0L �C.H/\F:

Then there exists a closed orbit x1 yL for some x1 2 F � \ RF M and yL 2 L yU for some yU < N with
dim yU > dim.L\N/ such that

x1 yL\RFCM�X:

Proof Note that, if X � x0L �C.H/, then X D x0L �C.H/\F. Indeed, this can be seen from the identity
x0L �C.H/\F D .x0L\RFCM/C.H/. Therefore we assume that X š x0L �C.H/. First note that
the hypotheses imply that L¤G, and hence codimL\N .U /�m. Let U .1/� ; : : : ; U .l/� be one-parameter
subgroups generating U. Similarly, let U .1/

C
; : : : ; U

.l/
C

be one-parameter subgroups generating UC. By
Theorem 13.1,

Tl
iD1 G .U

.i/
˙
; x0L/¤∅. Therefore, without loss of generality, we can assume

(16-7) x0 2

l\
iD1

G .U
.i/
˙
; x0L/:

Let us write L D H. zU/C for some zU < N and a closed subgroup C of C.H. zU//. Note from the
hypotheses that we have

.x0L\RFCM/ �H 0 �X:
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Observe that (16-6) implies that x … x0L �H 0 D x0L �C.H/. Since C < C.H/, we have x … x0H. zU/.
Now choose a sequence wi 2H 0 such that xwi ! x0, as i !1. Write xwi D x0gi , where gi ! e in
G �LH 0. Let us write gi D `iri , where `i 2 L and ri 2 exp l?. In particular, ri … C.H/. Let xi D x0`i ,
so that xiri 2X.

We claim that we can assume that xi 2 RF M \ x0L, ri … C.H/ and xiri 2 X. Since x0 2 F �, by
Lemma 8.3, we can find w0i !w0 2H such that x0`iw0i 2RF M, and x0w0 2

Tl
iD1 G .U

.i/
˙
; x0L/; hence

x0w0U D x0L\RFCM:

Writing x0i D x0`iw
0
i and r 0i D w

0�1
i riw

0
i , we have

x0ir
0
i D xwiw

0
i 2X;

where x0i ! x0w
0 in x0L\RF M, and r 0i ! e in exp l?. Since F � is H 0–invariant, we have x0w0 2 F �.

Since F � is open and x0w0 2 F �, it follows that x0i 2X \RF M\F � for sufficiently large i . Note that
r 0i … C.H/, as ri … C.H/. This proves the claim.

We may assume ri … N.U / for all i , up to switching the roles of U and UC, by Lemma 3.5. Note that
xi ! x0 in RF M\x0L and x0 satisfies (16-7). As we are assuming .2/m, and .3/m, we may now apply
Proposition 15.1 to the sequence x0`iri ! x0 to obtain a nontrivial element v 2 zU? such that

x0Lv\RFCM�X:

Since x0 2 F �\RF M, it follows from Lemma 8.12 that there exist x2 2 F �\RF M and a connected
closed subgroup yU <N properly containing L\N such that

x2 yUA�X:

Since codimN . yU/�m, it remains to apply (2a)m to finish the proof of the proposition.

Proof of .1/mC1 Combining Propositions 16.7 and 16.8, we now prove:

Theorem 16.9 If .2/m and .3/m are true , then .1/mC1 is true.

Proof Recall that we only need to consider the case X D xH 0, where x 2 F � and xH 0 is not closed
in F �. By Proposition 16.7, there exists x0 2 F �\RF M and L 2 LU such that x0L is closed and

x0L\RFCM�X:

Since X is H 0–invariant, it follows that

(16-8) .x0L\RFCM/ �H 0 �X:

Note that .x0L\RFCM/ �H 0 D x0L �C.H/\F is a closed set. We may assume the inclusion in (16-8)
is proper, otherwise we have nothing further to prove. Then, by Proposition 16.8, there exists yL 2 L yU
for some yU < N properly containing L\N and a closed orbit x1 yL with x1 2 F � \RF M such that
x1 yL\RFCM�X . If

.x1 yL\RFCM/ �C.H/¤X;
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then we can apply Proposition 16.8 on

x1 yL\RFCM�X;

as L yU � LU . Continuing in this fashion, the process terminates in a finite step for dimension reasons,
and hence

X D .x1 zL\RFCM/ �H 0 D x1 zL �C.H/\F

for some zL 2 LU .

17 U – and AU –orbit closures: proof of .2/mC1

In this section, we fix a closed orbit x0 yL for x0 2 F � and yL 2 LU . Let U < yL\N be a connected
closed subgroup with codimyL\N U �mC1. By replacing U and yL by their conjugates using an element
m 2M, we may assume that

U � yL\ {H \N:

We keep the same notationH, F, @F, F � etc from Section 16. If x 2RFCM\@F (resp. if x 2RF M\@F ),
then (2a) (resp. (2b)) follows from Theorem 11.1.

We fix x 2 RF M\ x0 yL\F
�, and set

(17-1) X WD xU

and assume that X ¤ x0 yL \ RFCM. This assumption implies that U is a proper connected closed
subgroup of yL\N and hence dim.yL\N/ > dimU � 1.

By Proposition 5.16, either x0 yL is compact or S .U; x0 yL/ contains a compact orbit zL0 with L0 2 LU .
If x0 yL is compact, then .2/mC1 follows from Theorem 11.1. Therefore we assume in the rest of the
section that

(17-2) S .U; x0 yL/ contains a compact orbit zL0 with L0 2 LU .

Lemma 17.1 Assume that .1/mC1 and .2/m hold. Then

xAU \S .U; x0 yL/¤∅:

Proof Since .1/mC1 is true, we have
xH D xQ\F

for some Q 2 LU such that xQ is closed. By Lemma 16.1, Q < yL. It follows from Lemma 5.11 that
either QD yL or dim.Q\N/ < dim.yL\N/. Suppose that QD yL. By (17-2), there exists a compact
orbit zL0�S .U; x0 yL/ for some L0 2LU . On the other hand, x0 yL\F D xH D xAU .K\H/. Hence,
for some k 2K \H, zk 2 xAU . Since H � L0, zk 2 zL0. So xAU intersects zL0, proving the claim.
If dim.Q\N/ < dim.yL\N/, then xAU � xQ �S .U; x0 yL/.
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Lemma 17.2 Assume that .1/mC1 and .2/m hold. Then

xU \S .U; x0 yL/¤∅:

Proof Since

(17-3) .x0 yL\RFCM/�F � �S .U; x0 yL/;

it suffices to consider the case whenX WDxU �F �. Let Y �X be a U –minimal set with respect to RF M.
Since Y � F �, by Proposition 10.6, there exists an unbounded one-parameter subsemigroup S inside
AU? C2.U /\ yL such that YS � Y. In view of Lemma 3.3, we could remove the C2.U /–component
of S so that S is either of

� v�1ACv for a one-parameter semigroup AC � A and v 2 U?\ yL, or

� V C for a one-parameter semigroup V C � U?\ yL,

and
YS �X.C2.U /\ yL/:

Since S .U; x0 yL/ is invariant by N C2.U /\ yL, it suffices to show that

X.N C2.U /\ yL/\S .U; x0 yL/¤∅:

If S D v�1ACv, then Yv�1AC �Xv�1.C2.U /\ yL/. Choose y 2 Y. We may assume that yv�1 2 F �

by (17-3). Then, replacing y with an element in yU if necessary, we may assume yv�1 2 RF M\F �.
Choose a sequence an ! 1 in AC. Then yv�1an converges to some y0 2 RF M by passing to a
subsequence. Since lim inf a�1n AC D A, and

.yv�1an/.a
�1
n AC/�Xv�1.C2.U /\ yL/;

we obtain that
y0A�Xv

�1.C2.U /\ yL/:

Since y0AU �Xv�1.C2.U /\ yL/ and y0AU meets S .U; x0 yL/ by Lemma 17.1, the claim follows.

Next, assume that S D V C, so that Y V C �X C2.U /\ yL. Let vn!1 be a sequence in V C. We have
Yvn �X � F

�. Together with the fact that Yvn is U –invariant, this implies Yvn meets RF M. Note that

Yvn.v
�1
n V C/�X.C2.U /\ yL/:

Choose yn 2 Yvn \ RF M. As RF M is compact, yn converges to some y0 2 RF M, by passing to a
subsequence, and hence

y0UV �X.C2.U /\ yL/:

Since codimN .UV /�m, the conclusion follows from .2/m.

Lemma 17.3 Assume that .1/mC1 and .2/m hold. Then

xU \S .U; x0 yL/\F
�
¤∅:
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Proof By Lemma 17.2, there exists y 2 xU \S .U; x0 yL/. Hence, by .2/m,

yU D yL\RFCM� xU

for some L 2 QU properly contained in yL. Consider the collection of all subgroups L 2 QU such that
yL� xU for some y 2 RFCM. Choose L from this collection so that L\N has maximal dimension. If
yL\F � ¤∅, then the claim follows.

Now suppose that yL� @F. As y 2 RFCM\ @F, we have

y D zv0c0

for some z 2BF M, v0 2 {V C and c0 2 C.H/. Since y 2 xU , there exists ui 2U such that xui converges
to y as n!1. Set

zi WD xuic
�1
0 v�10 2 xUc

�1
0 v�10 ;

so zi ! z. As v0 2 {V C and hence v�10 2 {V
� and xui 2 F �, we have zi 2 F �\RFCM� RF M �U. By

Lemma 8.6, we may modify zi by elements of U so that zi 2 RF M and zi converges to some z0 2 z {H.
Write zi D z0`iri for some `i 2 {H and ri 2 exp {h? converging to e. Since zi 2 F � and z0`i 2 @F, we
have ri ¤ e. By Theorem 11.1, we have z0`iU D z0`iLi for some Li 2 QU contained in {H.

Case 1 (ri 2 N.U / for some i ) Then

xU D z0`iriv0c0U D z0`iU.riv0c0/D z0`iLi .riv0c0/:

As xU ¤ x0 yL by the hypotheses, it follows that x 2S .U; x0 yL/\F
�, proving the claim.

Case 2 (ri … N.U / for all i ) Then there exists a one-parameter subgroup U0 <U such that ri … N.U0/
for all i , by passing to a subsequence.

By Lemma 9.3, we can find uti !1 in U0 such that ziuti 2RF M and u�1ti riuti converges to a nontrivial
element v 2 {V, whose size is strictly bigger than kv0k. As z0`iuti is contained in the compact subset z0 {H,
we may assume that z0`iuti converges to some z0 2 z0 {H. Hence

ziuti D z0`iuti .u
�1
ti
riuti /! z0v 2 RF M\ xUc�10 v�10 :

Since z0 2 BF M and z0v 2 RF M, we have v 2 {V �.

By Theorem 11.1, z0U D z0Q1 for some Q1 2 QU . Since z0vv0c0 2 xU , we get

xU � z0Q1.vv0/c0:

Since the size of v is larger than the size of v0, vv0 is a nontrivial element of {V �. Since z0Q1 � BF M,
the closed orbit z0Q1.vv0/c0 meets F �.

Theorem 17.4 Assume that .1/mC1, .2/m and .3/m are true. Then .2/mC1 is true.

Proof We first show (2a)mC1 holds for X D xU . By Lemma 17.3 and .2/m, there exists a closed orbit
yL with y 2 F � and L 2 QU such that

xU � yL\RFCM
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and L\N ¤ yL\N. We choose L 2 QU so that dim.L\N/ is maximal. Note that codimL\N U �m.
By Theorem 13.1, we can assume that

(17-4) y 2

l\
iD1

G .U .i/; yL/\F �\RF M;

where U .1/; : : : ; U .l/ are one-parameter subgroups generating U. As y 2 xU , there exists ui 2 U such
that xui ! y as i !1. Since y 2 F �, we can assume xui 2 RF M, after possibly modifying ui , by
Lemma 8.6. We will write xui D y`iri , where `i 2 L and ri 2 exp l?\ yL.

Case 1 (ri 2N.U / for some i ) Then y`i 2 RFCM and X D xuiU D y`iUri . Since y`iU � yL, and
codimL\N .U /�m, we have

X D y`iUri D y`iL
0ri \RFCM

for some L0 2 QU , proving the claim.

Case 2 (ri … N.U / for all i) By (17-4), we can apply Proposition 15.2 to the sequence xui ! y and
obtain a sequence vj !1 in .L\N/? such that

yLvj \RFCM�X:

Since y 2 F �, by Lemma 8.10, there exists a one-parameter subgroup V � .L \ N/? such that
y1.L\N/V �X for some y1 2 F �\RF M. Hence, by .2/m, we get a contradiction to the maximality
of L\N ; this proves (2a)mC1.

Now we show (2b)mC1 for the closure xAU . By .1/mC1, we have xH D xL\F for some L 2 LU

contained in yL. Hence xAU � xL\RFCM. It suffices to show that

(17-5) xAU D xL\RFCM:

If U D L\N, then xU D xL\RFCM by Theorem 13.1, which implies (17-5). So suppose that U is a
proper closed subgroup of L\N. Since xAU .K \H/D xH D xL\F, it follows from Lemma 5.15
that we can choose y 2 xAU \G .U; xL/. By (2a)mC1 and Lemma 14.4, we have yU D xL\RFCM.

18 Topological equidistribution: proof of .3/mC1

In this section, we prove .3/mC1. Let U < N be a nontrivial connected closed subgroup. Let x0 yL be
a closed orbit for x0 2 F �\RF M and yL 2 LU such that codimyL\N .U /DmC 1. As before, we may
assume that U � yL\ {H \N.

Let xiLi � x0 yL be a sequence of closed orbits intersecting RF M, where xi 2 RFCM and Li 2 QU . We
write xiLi as yiLivi , where yi 2 RFCM, Li 2 LU and vi 2 .Li \N/? \ yL. Assume that no infinite
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subsequence of yiLivi is contained in a subset of the form y0L0D � S .U; x0 yL/, where y0L0 is a
closed orbit for some L0 2 LU and D � N.U / is a compact subset. Let

E D lim sup
i!1

.yiLivi \RFCM/:

Note that lim infi!1.yiLivi \ RFCM/ coincides with lim sup.yikLikvik \ RFCM/ for all infinite
subsequences fik W k 2 Ng of N. If the hypothesis .3/mC1 holds for a given sequence yiLivi , then it
also holds for all subsequences. Hence, to prove .3/mC1, it suffices to show that

E D RFCM\ x0 yL:

We note that, by .3/m, we may assume that

Li \N D U for all i:

This in particular implies that each yiLivi \RFCM is U –minimal by Theorem 13.1.

Lemma 18.1 Assume that .1/mC1, .2/mC1 and .3/m are true. Then there exist y 2 F � \RF M and
L 2 QU with dim.L\N/ > dimU such that yL is closed and

E � yL\RFCM:

Proof By .2/m, it suffices to show that there exist y0 2 F �\RF M and yU <N properly containing U
such that

E � y0 yU :

Suppose that yiLivi � @F for infinitely many i . Since yiLivi \RF M ¤ ∅, we may assume yivi 2
zi {H C.H/ for some zi 2 BF M by (4-7). Since Li \N D U, we get yiLivi D yiU � zi {H C.H/ by
Theorem 11.1. This contradicts the hypothesis on the yiLivi .

Therefore, by passing to a subsequence, for all i ,

yiLivi \RFCM\F � ¤∅:

Since AU < Li for all i , it follows that

E D lim sup
i!1

.yiLivi \RFCM/.v�1i AUvi /:

By Lemma 8.9, there exists y0 2 lim supi .yiLivi \RFCM/\F �. Hence

(18-1) y0 lim sup
i!1

.v�1i AUvi /�E;

after passing to a subsequence.

If vi !1, then lim supi .v
�1
i AUvi / contains A yU for some yU properly containing U by Lemma 3.4.

Therefore, we get the conclusion y0 yU �E from (18-1). Now suppose that, by passing to a subsequence,
vi converges to some v 2N \ yL. Then (18-1) gives

y0v
�1AUv �E:
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Then, by .2/mC1, y0v�1AU is of the form y0v
�1L0\RFCM for some L0 2 LU . Hence,

(18-2) E � y0L\RFCM;

where L WD v�1L0v. If L\N contains U properly, this proves the claim. So we suppose that L\N DU.
By Theorem 13.1, we can assume that y0 2

Tl
iD1 G .U .i/; y0L/\F

�\RF M, where U .1/; : : : ; U .l/ are
one-parameter subgroups generating U. By replacing yi by an element of yiL\RFCM, we may assume
that yivi!y0. Furthermore, as y02F �\RF M, for all i sufficiently large, yivi 2F �\RFCM�RF M�U

(as F � is open). Hence we can also assume yivi 2 RF M by Lemma 8.7. Therefore we may write

yivi D y0`iri

for some `i ! e in L and nontrivial ri ! e in exp l?.

Suppose that ri belongs to N.U / for infinitely many i . Then

yiLivi \RFCMD yiviU D y0`iUri D y0Lri \RFCM:

Hence yiLivir�1i \ RFCM D y0L \ RFCM. In particular, yiLivir�1i \ RF M is nonempty (as it
contains y0) and is contained in y0L. By Lemma 16.1, this implies that yiLivi � y0Lri . As ri ! e,
this contradicts the hypothesis on the yiLivi .

Therefore ri … N.U / for all but finitely many i . We may now apply Proposition 15.2 and Lemma 8.10
to deduce that E contains an orbit z0 yU for some yU < yL \ N containing U properly and for some
z0 2 RFCM\F �.

Theorem 18.2 If .1/mC1, .2/mC1 and .3/m are true , then .3/mC1 is true.

Proof We claim that

(18-3) x0 yL\RFCMDE:

By Lemma 18.1, we can take a maximal yU such that E � y yU for some y 2 F �\RF M. By .2/m, we
get a closed orbit yL for some L 2 Q yU such that

(18-4) yL\RFCM�E:

If LD yL, then the claim (18-3) is clear. Now suppose that L is a proper subgroup of yL. This implies
that L\N is a proper subgroup of yL\N, since yL\N acts minimally on x0 yL\RFCM as yL 2 LU .
By Theorem 13.1, we can assume that y 2

Tl
iD1 G .U .i/; yL/ \ F � \ RF M, where U .1/; : : : ; U .l/

are one-parameter subgroups generating U. As y 2 E, there exists a sequence xi 2 yiLivi \RFCM

converging to y, by passing to a subsequence. Since U D v�1i Livi \N, we have xi 2 RF M �U. By
Lemma 8.7, by replacing xi with xiui for some ui ! e in U, we may assume xi 2 RF M.

We claim that
xi … yLN.U /:
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Suppose not, i.e. xi D y`iri for some `i 2 L and ri 2 N.U /. Then

yiLivi \RFCMD xiU D y`iUri � yLri :

By the assumption on the yiLivi , this cannot happen as the ri are bounded.

On the other hand, dim.Li \N/ is strictly smaller than dim.L\N/, since Li \N DU and yU <L\N,
yielding a contradiction. Hence xi … yLN.U /.

We can now apply Proposition 15.2 and Lemma 8.10 and deduce that E contains y1 yUV for some
y1 2 F

�\RF M. This is a contradiction to the maximality assumption on dim yU.

Proof of Theorem 1.7 We explain how to deduce this theorem from Theorem 14.1(3). For (1), we
may first assume that Pi have all same dimension, so that, for some fixed connected closed subgroup
U < N, Pi D �.xiH 0.U //, where xiH 0.U / is a closed orbit of some xi 2 RF M. Then there exists
Li 2 LU such that xiLi is closed and Pi D �.xiLi / by Proposition 4.9. We claim that the sequence
xiLi satisfies the hypotheses of Theorem 14.1(3). Suppose not. Then there exist a closed orbit y0L0 with
L0 2 LU and L0 ¤G and a compact subset D � N.U / such that xiLi � y0L0D for infinitely many i .
By Lemma 16.2, this can happen only when Li � d�1i L0di and xiLi � y0L0di for some di 2D. Since
D � N.U /� L0.L0\N/?M, we may assume that di 2 .L0\N/?M. Since A� Li � d�1i L0di , we
have di 2M. This implies that Pi D �.xiLi /� �.y0L0di /D �.y0L0/. By the maximality assumption
on the Pi , it follows that Pi is a constant sequence, yielding a contradiction. Hence, by Theorem 14.1(3),
lim.xiLi \RFCM/D RFCM. Since �.RFCM/D �nHd , the claim follows.

(2) follows from Corollary 5.8.

For (3), if there are infinitely many bounded properly immersed Pi , then limPi DM by (1). On the
other hand, Pi � core M, because any bounded H 0.U /–orbit should be inside RF M. Since core M is a
proper closed subset of M, as Vol.M/D1, this gives a contradiction.

Remark 18.3 In fact, when M is any convex cocompact hyperbolic manifold of infinite volume, there
are only finitely many bounded maximal closed H 0.U /–orbits, and hence only finitely many maximal
properly immersed bounded geodesic planes. The reason is that, if not, we would have infinitely many
maximal closed orbits xiLi contained in RF M for some Li 2 LU , and, for any U –invariant subset
E contained in RF M, the 1–thickness for points in E holds for any one-parameter subgroup of U for
the trivial reason, which makes our proof of Theorem 14.1 work with little modification (in fact, much
simpler) for a general M.

Appendix Orbit closures for �nG , compact case

In this section we give an outline of the proof of the orbit closure theorem for the actions of H.U / and U,
assuming that �nG is compact and that there exists at least one closed orbit of SOı.d � 1; 1/. We hope
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that giving an outline of the proof of Theorem 14.1 in this special case will help readers understand the
whole scheme of the proof better and see the differences with the infinite-volume case more clearly.

Note that, in the case at hand,

RF MD F �H.U/ D RFCMD �nG:

Without loss of generality, we assume that U � SOı.d � 1; 1/\N.

Theorem A.1 Let x 2 �nG.

(1) There exists L 2 LU such that
xH.U /D xL:

(2) There exists L 2 QU such that
xU D xL:

The base case .2/0 follows from a special case of Theorem 13.1. For m � 0, we will show that .2/m
implies .1/mC1, and that .1/mC1 and .2/m together imply .2/mC1.

We note that, when �nG is compact, we don’t need the topological equidistribution statement, which is
Theorem 14.1(3), to run the induction argument, thanks to (2-6). In order to prove .1/mC1, it suffices to
use .2/m only when the ambient space is �nG; in the proof of Theorem 14.1, we needed to use .2/m
whenever codim

N\yL
U �m for any closed orbit x0 yL containing xU (this was needed in order to use

the results in Section 15).

Remark A.2 Theorem A.1 was proved by Shah (unpublished, 1992) by topological arguments. Our
proof presented in this appendix is somewhat different from Shah’s in that we prove that .1/m implies
.2/m using the existence of a closed SOı.d�1; 1/–orbit, while he shows that .2/m implies .1/m.

Proof of .1/mC1 We assume that 1� codimN U DmC 1. By Proposition 16.3, it suffices to show that
X WD xH 0.U /D xLC.H.U // for some L 2 LU . Assume that xH 0.U / is not closed in the following.

Step 1: find a closed orbit insideX We claim thatX contains a U –minimal subset Y such thatX�yH 0

is not closed for some y 2 Y (see the case when R is compact in the proof of Proposition 16.7). If
xH 0.U / is not locally closed, then any U –minimal subset Y � X does the job. If xH 0.U / is locally
closed, then any U –minimal subset Y of X � xH 0.U / does the job; note that the set X � xH 0.U / is a
compact H 0.U /–invariant subset and hence contains a U –minimal subset.

Hence, by Proposition 10.9, X contains an orbit x0 yU with dim yU > dimU. By .2/m and Lemma 16.4, X
contains a closed orbit zL for some L 2 LU . We may assume that X ¤ zLC.H.U //; otherwise, we are
done.
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Step 2: enlarge a closed orbit inside X Since zL is compact, by Theorem 13.1, we can assume
that zU .i/

˙
is dense in zL, where U .1/

˙
; : : : ; U

.k/
˙

are one-parameter subgroups of U˙ generating U˙.
Note that there exists gi ! e in G �LC.H.U // such that zgi 2 X. We can write gi D `iri , where
ri 2 exp l? and `i 2L. Then ri …C.H.U //. Since

Tk
iD1.N.U

.i/
C
/\N.U .i/� //\exp l? is locally contained

in C.H.U //, we have ri … N.U0/, where U0 is one of the subgroups U .i/
˙

. If U0 2 fU
.i/
C
g, then replace

U by UC.

Fix any k > 1. Applying (2-6) to the sequence zi WD z`i ! z, the set

(A-1) T.zi / WD
n
t 2R W ziut 2 �nG �

iS
jD1

Oj

o
is a k–thick subset (take 0 < " < 1� 1=k). By Lemma 9.3, there exists ti 2 T.zi / such that u�1ti riuti
converges to a nontrivial element v 2 .L\N/?. Now the sequence ziuti converges to z0 2 G .U0; zL/.
Since zgiuti converges to z0v, we deduce

zLv D z0vU0 �X and hence zLV C � zL.AvA/�X;

where V C is the one-parameter unipotent subsemigroup contained in AvA. Take any sequence vi !1
in V C such that zvi converges to some x0. Then x0V � lim sup.zvi /.v�1i V C/�X and henceX contains
x0.L\N/V. By the induction hypothesis .2/m and Lemma 16.4, X contains a closed orbit of yL for
some yL 2 L yU . This process of enlargement must end after finitely many steps.

Proof of .2/mC1 Set X WD xU . We assume that X ¤ �nG. Since the codimension of U in N is at
least 1, we may assume without loss of generality that U <N \ SOı.d � 1; 1/ using conjugation by an
element of M.

Step 1: find a closed orbit insideX By the hypothesis on the existence of a closed L0 WD SOı.d�1; 1/–
orbit, S .U / ¤ ∅. It follows from .1/mC1, .2/m and the cocompactness of AU in H 0.U / that any
AU –orbit closure intersects S .U / (see the proof of Lemma 17.1).

We claim that X intersects S .U /. Since S .U / is N C2.U /–invariant, it suffices to show that XN C2.U /
intersects S .U /. Let Y � X be a U –minimal subset. Then there exists a one-parameter subgroup
S < AU? C2.U / such that Yg D Y for all g 2 S by Proposition 10.6. Strictly speaking, the cited result
gives Yg � Y for g in a semigroup S, but, in the case at hand, Yg � Y implies Yg D Y, since Yg
is U –minimal again, and hence Yg�1 D Y as well. In view of Lemma 3.3, we get YA � XN C2.U /
or YvA � XN C2.U / for some v 2 N. In either case, XN C2.U / contains an AU –orbit and hence
intersects S .U /. So the claim follows. Since X intersects S .U /, by applying .2/m, X contains a closed
orbit zL for some L 2 QU .

Step 2: enlarge a closed orbit inside X Suppose L ¤ G and X ¤ zL. It suffices to show that X
contains a closed orbit of yL for some yL 2 L yU for some yU properly containing L\N. We may assume
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X š zLC.H.U //; otherwise, the claim follows from .2/m. We may assume z 2
Tl
iD1 G .U .i/; yL/,

where the U .i/ are one-parameter generating subgroups of U. Take a sequence xui ! z, where ui 2 U,
and write xui D z`iri , where `i 2 L and ri 2 exp.l?/. The case of ri 2 N.U / for some i follows
from .2/m (see the proof of Theorem 17.4). Hence we may assume ri … N.U /, and, by passing to a
subsequence, ri … N.U0/ for some U0 2 fU .i/g.

Fix any k > 1. Then T.zi / as in (A-1) is a k–thick subset. We now repeat the same argument of a step in
the proof of .1/mC1. By Lemma 9.3, there exists ti 2 T.zi / such that u�1ti riuti converges to a nontrivial
element v 2U?. Now the sequence ziuti converges to z0 2 G .U0; zL/. Hence X � z0.L\N/vD zLv.
Moreover, by Lemma 9.3, such a v can be made of arbitrarily large size, so we get X � zLvj for a
sequence vj 2 .L\N/? tending to1. The set lim supj!1 v

�1
j Avj contains a one-parameter subgroup

V � .L\N/? by Lemma 3.4. Passing to a subsequence, there exists y 2 lim inf zLvj and hence

X � lim sup
j!1

.zLvj /� y.L\N/ lim sup
j!1

.v�1j Avj /� y.L\N/V:

Hence X contains y.L\N/V, and hence the claim follows from .2/m.
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