Download this article
 Download this article For screen
For printing
Recent Issues

Volume 29
Issue 7, 3345–3919
Issue 6, 2783–3343
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
Reeb flows transverse to foliations

Jonathan Zung

Geometry & Topology 28 (2024) 3661–3695
Bibliography
1 E Bao, K Honda, Definition of cylindrical contact homology in dimension three, J. Topol. 11 (2018) 1002 MR3989436
2 C Bonatti, S Firmo, Feuilles compactes d’un feuilletage générique en codimension 1, Ann. Sci. École Norm. Sup. 27 (1994) 407 MR1290395
3 J Bowden, Approximating C0–foliations by contact structures, Geom. Funct. Anal. 26 (2016) 1255 MR3568032
4 J Bowden, Contact structures, deformations and taut foliations, Geom. Topol. 20 (2016) 697 MR3493095
5 D Calegari, Leafwise smoothing laminations, Algebr. Geom. Topol. 1 (2001) 579 MR1875608
6 D Calegari, Foliations and the geometry of 3–manifolds, Oxford Univ. Press (2007) MR2327361
7 A Candel, The harmonic measures of Lucy Garnett, Adv. Math. 176 (2003) 187 MR1982882
8 A Candel, L Conlon, Foliations, I, 23, Amer. Math. Soc. (2000) MR1732868
9 A Candel, L Conlon, Foliations, II, 60, Amer. Math. Soc. (2003) MR1994394
10 S Y Cheng, P Li, S T Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981) 1021 MR630777
11 V Colin, K Honda, Constructions contrôlées de champs de Reeb et applications, Geom. Topol. 9 (2005) 2193 MR2209370
12 V Colin, K Honda, Foliations, contact structures and their interactions in dimension three, from: "Surveys in 3–manifold topology and geometry" (editors I Agol, D Gabai), Surv. Differ. Geom. 25, International (2022) 71 MR4479750
13 B Deroin, V Kleptsyn, Random conformal dynamical systems, Geom. Funct. Anal. 17 (2007) 1043 MR2373011
14 T C Dinh, N Sibony, Introduction to the theory of currents, lecture notes (2005)
15 D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445 MR723813
16 L Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983) 285 MR703080
17 S E Goodman, J F Plante, Holonomy and averaging in foliated sets, J. Differential Geom. 14 (1979) 401 MR0594710
18 E P Hsu, Stochastic analysis on manifolds, 38, Amer. Math. Soc. (2002) MR1882015
19 I Ishii, M Ishikawa, Y Koda, H Naoe, Positive flow-spines and contact 3–manifolds, Ann. Mat. Pura Appl. 202 (2023) 2091 MR4634260
20 W H Kazez, R Roberts, C0 approximations of foliations, Geom. Topol. 21 (2017) 3601 MR3693573
21 T Li, Laminar branched surfaces in 3–manifolds, Geom. Topol. 6 (2002) 153 MR1914567
22 P Mörters, Y Peres, Brownian motion, 30, Cambridge Univ. Press (2010) MR2604525
23 D Ruelle, D Sullivan, Currents, flows and diffeomorphisms, Topology 14 (1975) 319 MR0415679
24 R Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965) 79 MR174061
25 D Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math. 36 (1976) 225 MR433464
26 D Tischler, On fibering certain foliated manifolds over S1, Topology 9 (1970) 153 MR256413
27 T Vogel, On the uniqueness of the contact structure approximating a foliation, Geom. Topol. 20 (2016) 2439 MR3556346
28 B Zhang, Monopoles and foliations without holonomy-invariant transverse measure, J. Symplectic Geom. 20 (2022) 191 MR4518251