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Weak del Pezzo surfaces with global vector fields

GEBHARD MARTIN

CLAUDIA STADLMAYR

We classify smooth weak del Pezzo surfaces with global vector fields over an arbitrary algebraically
closed field k of arbitrary characteristic p � 0. We give a complete description of the configuration of
.�1/– and .�2/–curves on these surfaces and calculate the identity component of their automorphism
schemes. It turns out that there are 53 distinct families of such surfaces if p ¤ 2; 3, while there are 61
such families if p D 3 and 75 such families if p D 2. Each of these families has at most one moduli. As a
byproduct of our classification, it follows that weak del Pezzo surfaces with nonreduced automorphism
schemes exist over k if and only if p 2 f2; 3g.

14E07, 14J26, 14J50, 14L15

1 Introduction

Recall that a weak del Pezzo surface over an algebraically closed field k is a smooth projective surface X
with anticanonical divisor class �KX big and nef, or, equivalently, X is P1 �P1, the second Hirzebruch
surface F2, or the blowup of at most eight points in P2 in almost general position. More classically, weak
del Pezzo surfaces appear as the minimal resolution of surfaces of degree d in Pd which are neither
cones nor projections of surfaces of minimal degree d in PdC1; see Dolgachev [4, Definition 8.1.5].

By a result of Matsumura and Oort [9], the automorphism functor AutX of a proper variety X over
k is representable by a group scheme locally of finite type over k. Since AutX is well known for
surfaces of minimal degree (that is, for quadric surfaces, the Veronese surface and rational normal scrolls
[4, Corollary 8.1.2]), weak del Pezzo surfaces form the first class of smooth projective surfaces for which
the study of AutX is interesting. We are concerned here with the identity component Aut0X of AutX ,
which can be nonreduced in positive characteristic.

While this nonreducedness phenomenon does not occur for smooth projective curves, we will see that it
appears for one of the first nontrivial classes of smooth projective surfaces, namely for weak del Pezzo
surfaces (see also Neuman [10]), at least in characteristic 2 and 3. This means that for a weak del Pezzo
surface X in characteristic 2 and 3 we may have h0.X; TX / > dim Aut0X ; that is, X may have more global
vector fields than expected.

More classically, automorphisms of (weak) del Pezzo surfaces are being studied in the context of the
plane Cremona group, ie the group of birational automorphisms of P2. The main reason for this is that
automorphisms of (weak) del Pezzo surfaces yield birational automorphisms of P2 that do not necessarily
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3566 Gebhard Martin and Claudia Stadlmayr

extend to biregular automorphisms. For the action of Aut0X on a weak del Pezzo surface X , the situation
is very different, since this action always descends to an action on the whole minimal model of X by
Blanchard’s lemma (Lemma 2.10).

This special feature of the connected automorphism scheme Aut0X will enable us to calculate it explicitly
for all weak del Pezzo surfaces that are blowups of P2 in terms of stabilizers as a subgroup scheme of
PGL3. Using this, we will classify all weak del Pezzo surfaces X with nontrivial Aut0X and determine
their configurations of .�2/– and .�1/–curves, as well as their number of moduli:

Main Theorem Let X be a weak del Pezzo surface over an algebraically closed field. If h0.X; TX /¤ 0,
then X is one of the surfaces in Tables 1, 2, 3, 4, 5 or 6. All cases exist and have an irreducible moduli
space of the stated dimension.

In Tables 1, 3, 4, 5 and 6, the figure describing the configuration of .�2/– and .�1/–curves (lines) on
these surfaces is given in column 2. In these figures, a thick curve denotes a .�2/–curve, while a thin
curve denotes a .�1/–curve. The intersection multiplicity of two such curves is no more than 3 at every
point; intersection multiplicities 1 and 2 will be clear from the picture, whereas we write a small 3 next to
the point of intersection if the intersection multiplicity is 3. Recall that the dual graph of all .�2/–curves
on a weak del Pezzo surface is a union of Dynkin diagrams of types An;Dn and En. This graph can be
read off from the corresponding figure, but for ease of reference we give its Dynkin type in column 3.
For the same reason, in column 4 we list the number of .�1/–curves on these surfaces. In column 5
we describe a general S–valued point of Aut0X , where S is a k–scheme. In particular, the dimension
of H 0.X; TX / D Aut0X .kŒ��=.�

2// can be read off from this description and is listed in column 6 for
the convenience of the reader. Comparing this with the dimension of Aut0X , it can be checked whether
Aut0X is smooth or not. This is done in column 7. If there is more than one weak del Pezzo surface with
the configuration of curves and with the automorphism scheme as in the previous columns, we give the
dimension of a modular family of such surfaces in column 8. If, instead, there is a unique surface of this
type, we write “fptg” in column 8 in order to emphasize that the surface is unique. Finally, in column 9,
we give the characteristic(s) in which the respective surface(s) exist(s).

In particular, our classification also gives a complete list of weak del Pezzo surfaces with nonreduced
automorphism schemes. In the following corollary, we list the characteristics p and degrees d for which
every weak del Pezzo surface of degree d in characteristic p has reduced automorphism scheme.

Corollary 1.1 Let k be an algebraically closed field of characteristic p � 0. Then every weak del Pezzo
surface X of degree d over k has reduced automorphism scheme if and only if one of the following three
conditions holds:

(1) p ¤ 2; 3,

(2) p D 3 and d � 4,
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Weak del Pezzo surfaces with global vector fields 3567

(3) p D 2 and d � 5.

Moreover , if AutX is nonreduced , then the number of .�2/–curves on X is at least 7� d .

In particular, the above corollary recovers the result that the automorphism scheme of every del Pezzo
surface (where �KX is ample) is smooth, which is in fact easier to prove and has already been observed
by Dolgachev and Duncan (see [5, Theorem 2.4.]).

case figure .�2/–curves #flinesg Aut0X �PGL3 h0.X; TX / Aut0X smooth? moduli char.k/

degree 9
9A ∅ 0 PGL3 8 X fptg any

degree 8

8A 2 ∅ 1

�
1 b c
e f
h i

�
6 X fptg any

degree 7

7A 1 ∅ 3
�
1 c
e f
i

�
4 X fptg any

7B 9 A1 2
�
1 b c
e f
i

�
5 X fptg any

degree 6

6A 1 ∅ 6
�
1
e
i

�
2 X fptg any

6B 8 A1 4
�
1 c
e
i

�
3 X fptg any

6C 1 A1 3
�
1 c
1 f
i

�
3 X fptg any

6D 8 2A1 2
�
1 c
e f
i

�
4 X fptg any

6E 21 A2 2

�
1 b c
e f

e2

�
4 X fptg any

6F 21 A2CA1 1
�
1 b c
e f
i

�
5 X fptg any

degree 5

5A 1 A1 7
�
1
1
i

�
1 X fptg any

5B 8 2A1 5
�
1
e
i

�
2 X fptg any

5C 6 A2 4
�
1 c
1
i

�
2 X fptg any

5D 8 A2CA1 3
�
1
e f
i

�
3 X fptg any

5E 21 A3 2

�
1 c
e f

e2

�
3 X fptg any

5F 26 A4 1

�
1 b c
e f

e3

�
4 X fptg any

Table 1: Weak del Pezzo surfaces of degree � 5 that are blowups of P2.
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3568 Gebhard Martin and Claudia Stadlmayr

case .�2/–curves #flinesg Aut0X h0.X; TX / Aut0X smooth? moduli char.k/

P1�P1 ∅ 0 PGL2 �PGL2 6 X fptg any

F2 A1 0 .AutP.1;1;2//redD.G3
aÌGL2/=�2 7 X fptg any

Table 2: Weak del Pezzo surfaces of degree 8 that are not blowups of P2.

Remark 1.2 Since every Jacobian rational (quasi)elliptic surface X 0 is the blowup of a weak del Pezzo
surface X of degree 1 in the unique basepoint of its anticanonical linear system, Lemma 2.11 yields an
isomorphism Aut0X 0 Š Aut0X . In particular, our Main Theorem gives a complete classification of Jacobian
rational (quasi)elliptic surfaces with global vector fields. The non-Jacobian case is more involved and
will be treated by the second-named author in an upcoming article.

case figure .�2/–curves #flinesg Aut0X �PGL3 h0.X; TX / Aut0X smooth? moduli char.k/

4A 4 2A1 8
�
1
1
i

�
1 X 1 dim any

4B 5 3A1 6
�
1
1
i

�
1 X fptg any

4C 5 A2CA1 6
�
1
1
i

�
1 X fptg any

4D 6 A3 5
�
1
1
i

�
1 X fptg any

4E 17 A3 4
�
1 c
1
1

�
1 X fptg ¤ 2

4F 7 4A1 4
�
1
e
i

�
2 X fptg any

4G 7 A2C2A1 4
�
1
e
i

�
2 X fptg any

4H 17 A3CA1 3
�
1 c
1
i

�
2 X fptg any

4I 20 A4 3

�
1
e f

e2

�
2 X fptg any

4J 25 D4 2
�
1 c
e

e2

�
2 X fptg ¤ 2

4K 20 A3C2A1 2
�
1
e f
i

�
3 X fptg any

4L 28 D5 1

�
1 c
e f

e3

�
3 X fptg ¤ 2

4M 17 A3 4
�
1 c
1
i

�
; i2D 1 2 � fptg D 2

4N 25 D4 2
�
1 c
1 f
1

�
2 X fptg D 2

4O 25 D4 2

�
1 c
e f

e2

�
3 X fptg D 2

4P 28 D5 1
�
1 b c
1 f
1

�
3 X fptg D 2

4Q 28 D5 1

�
1 b c
e f

e3

�
4 X fptg D 2

Table 3: Weak del Pezzo surfaces of degree 4.
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case figure .�2/–curves #flinesg Aut0X �PGL3 h0.X; TX / Aut0X smooth? moduli char.k/

3A 4 2A2 7
�
1
1
i

�
1 X 1 dim any

3B 6 D4 6
�
1
1
i

�
1 X fptg any

3C 4 2A2CA1 5
�
1
1
i

�
1 X fptg any

3D 4 A3C2A1 5
�
1
1
i

�
1 X fptg any

3E 16 A4CA1 4
�
1
1
i

�
1 X fptg any

3F 19 A5 3
�
1
1 f
1

�
1 X fptg ¤ 3

3G 25 D5 3
�
1
e

e2

�
1 X fptg ¤ 2

3H 7 3A2 3
�
1
e
i

�
2 X fptg any

3I 19 A5CA1 2

�
1
e f

e2

�
2 X fptg any

3J 29 E6 1
�
1 c
e

e3

�
2 X fptg ¤ 2; 3

3K 19 A5 3

�
1
e f

e2

�
; e3D 1 2 � fptg D 3

3L 29 E6 1
�
1 c
1 f
1

�
2 X fptg D 3

3M 29 E6 1

�
1 c
e f

e3

�
3 X fptg D 3

3N 13 A4 6
�
1
1
i

�
; i2D 1 1 � fptg D 2

3O 25 D5 3
�
1
1 f
1

�
1 X fptg D 2

3P 25 D5 3

�
1
e f

e2

�
2 X fptg D 2

3Q 29 E6 1

�
1 b c

1 b2Cb
1

�
2 X fptg D 2

3R 29 E6 1

�
1 b c

e b2e

e3

�
3 X fptg D 2

Table 4: Weak del Pezzo surfaces of degree 3.

Remark 1.3 Independently, shortly after the upload of this article to arXiv and using a completely
different approach, Cheltsov and Prokhorov [2] classified RDP del Pezzo surfaces Y over an algebraically
closed field k of characteristic 0 such that AutY .k/ is infinite. Now, AutY .k/ is infinite if and only if
Aut0Y .k/ is infinite, which holds if and only if Aut0X .k/ is infinite, where X is the weak del Pezzo surface
that is the minimal resolution of Y . Since Aut0X is always smooth in characteristic 0 by Cartier’s theorem
(see eg Perrin [11, Corollaire 4.2.8]), Aut0X .k/ is infinite if and only if X admits global vector fields. So,
the classification in [2] is equivalent to the characteristic-0 part of our Main Theorem.
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3570 Gebhard Martin and Claudia Stadlmayr

case figure .�2/–curves #flinesg Aut0X �PGL3 h0.X; TX / Aut0X smooth? moduli char.k/

2A 3 2A3 6
�
1
1
i

�
1 X 1 dim any

2B 15 D5CA1 5
�
1
1
i

�
1 X fptg any

2C 27 E6 4
�
1
e

e2

�
1 X fptg ¤ 2

2D 3 2A3CA1 4
�
1
1
i

�
1 X fptg any

2E 3 D4C3A1 4
�
1
1
i

�
1 X fptg any

2F 16 A5CA2 3
�
1
1
i

�
1 X fptg any

2G 24 D6CA1 2
�
1
e

e2

�
1 X fptg ¤ 2

2H 24 A7 2
�
1
1 f
1

�
1 X fptg ¤ 2

2I 30 E7 1
�
1
e

e3

�
1 X fptg ¤ 2; 3

2J 18 A6 4
�
1
e

e2

�
; e3D 1 1 � fptg D 3

2K 23 D6 3
�
1
e

e2

�
; e3D 1 1 � fptg D 3

2L 30 E7 1
�
1
1 f
1

�
1 X fptg D 3

2M 30 E7 1

�
1
e f

e3

�
2 X fptg D 3

2N 11 A5 7
�
1
1
i

�
; i2D 1 1 � 1 dim D 2

2O 15 D5 8
�
1
1
i

�
; i2D 1 1 � fptg D 2

2P 12 A5CA1 6
�
1
1
i

�
; i2D 1 1 � fptg D 2

2Q 11 A5CA1 5
�
1
1
i

�
; i2D 1 1 � fptg D 2

2R 23 D6 3
�
1
1 f
1

�
1 X 1 dim D 2

2S 27 E6 4

�
1
e f

e2

�
; f 2D 0 2 � fptg D 2

2T 24 D6CA1 2
�
1
1 f
1

�
1 X fptg D 2

2U 24 D6CA1 2

�
1
e f

e2

�
2 X fptg D 2

2V 24 A7 2

�
1
e f

e2

�
; e4D 1 2 � fptg D 2

2W 30 E7 1
�
1 c
1
1

�
1 X fptg D 2

2X 30 E7 1

�
1 b c

1 b2

1

�
2 X fptg D 2

2Y 30 E7 1

�
1 b c

e b2e

e3

�
3 X fptg D 2

Table 5: Weak del Pezzo surfaces of degree 2.
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case figure .�2/–curves #flinesg Aut0X �PGL3 h0.X; TX / Aut0X smooth? moduli char.k/

1A 2 2D4 5
�
1
1
i

�
1 X 1 dim any

1B 15 E6CA2 4
�
1
1
i

�
1 X fptg any

1C 27 E7CA1 3
�
1
e

e2

�
1 X fptg ¤ 2

1D 31 E8 1
�
1
e

e3

�
1 X fptg ¤ 2; 3

1E 22 D7 5
�
1
1
i

�
; i3D 1 1 � fptg D 3

1F 26 E7 5
�
1
e

e2

�
; e3D 1 1 � fptg D 3

1G 17 A8 3
�
1
e

e2

�
; e3D 1 1 � fptg D 3

1H 31 E8 1
�
1
1 f
1

�
1 X fptg D 3

1I 31 E8 1

�
1
e f

e3

�
2 X fptg D 3

1J 13 E6 13
�
1
1
i

�
; i2D 1 1 � 1 dim D 2

1K 13 E6CA1 8
�
1
1
i

�
; i2D 1 1 � fptg D 2

1L 10 A7 8
�
1
1
i

�
; i2D 1 1 � 1 dim D 2

1M 26 E7 5
�
1
1 f
1

�
; f 2D 0 1 � fptg D 2

1N 10 D6C2A1 6
�
1
1
i

�
; i2D 1 1 � fptg D 2

1O 10 A7CA1 5
�
1
1
i

�
; i2D 1 1 � fptg D 2

1P 27 E7CA1 3

�
1
e f

e2

�
; f 2D 0 2 � fptg D 2

1Q 24 D8 2
�
1
1 f
1

�
1 X 1 dim D 2

1R 24 D8 2

�
1
e f

e2

�
; e4D 1 2 � fptg D 2

1S 31 E8 1
�
1 c
1
1

�
1 X fptg D 2

1T 31 E8 1

�
1 b c

e b2e

e3

�
; b4D 0 3 � fptg D 2

Table 6: Weak del Pezzo surfaces of degree 1.
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2 Generalities

This section provides the necessary background on our two main topics: weak del Pezzo surfaces and
automorphism schemes. Throughout, we will be working over an algebraically closed field k.

2.1 Geometry of weak del Pezzo surfaces and their “height”

We recall that every weak del Pezzo surface X (except X D P1 �P1 and the second Hirzebruch surface
X D F2) is a successive blowup of P2 satisfying certain properties (see Lemmas 2.5 and 2.7), and we
define the notion of “height”, which is a measure for the complexity of X . We describe the set of all
.�2/– and .�1/–curves on X in terms of a realization of X as a blowup of P2.

Definition 2.1 A weak del Pezzo surface is a smooth projective surface X with nef and big anticanonical
class �KX . The number deg.X/DK2X is called the degree of X .

Recall that every birational morphism � WX 0!X of smooth projective surfaces can be factored as

� WX 0
'
�!X 0.n/

�.n�1/

����!X 0.n�1/
�.n�2/

����! � � �
�.1/

���!X 0.1/
�.0/

���!X 0.0/ DX;

where ' is an isomorphism and each �.i/ WX 0.iC1/!X 0.i/ is the blowup of a number of distinct closed
points on X 0.i/. The isomorphism ' can be neglected by identifying X 0 with X 0.n/ via '. Then the above
factorization becomes unique (up to unique isomorphism for every n� i � 1) if in each step we blow up
the maximal number of distinct closed points of X 0.i/. In this case, we call the above factorization of �
minimal.

Definition 2.2 Let X and X 0 be two smooth projective surfaces.

� For every birational morphism � WX 0!X , let �D�.0/ı� � �ı� � ��.n�1/ be its minimal factorization.
The height of � is defined as

ht.�/ WD n:

� If X 0 admits some birational morphism to X , we define the height of X 0 over X as

ht.X 0=X/ WD min
� WX 0!X

fht.�/g;

where the minimum is taken over all birational morphisms � WX 0!X .

� If X is a weak del Pezzo surface which is a successive blowup of P2, then we define

ht.X/ WD ht.X=P2/;

and if X is not a blowup of P2, we set ht.X/D 0.

Remark 2.3 The reader should compare our notion of height with the height function on the bubble
space of X considered in [4, Section 7.3.2].
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Notation 2.4 Let � WX ! P2 be a birational morphism of height n, and let � D �.0/ ı � � � ı�.n�1/ be
its minimal factorization. Then we fix the following notation:

� For each 0� i < n, we let p1;i ; : : : ; pni ;i 2X
.i/ be the points blown up under �.i/.

� The exceptional divisor .�.i//�1.pj;i /�X .iC1/ over a closed point pj;i 2X .i/ will be denoted
by Ej;i for j D 1; : : : ; ni .

� For every 0 � i � k � n, the strict transform of a curve C � X .i/ along �.i/ ı � � � ı �.k�1/ is
denoted by C .k/.

Using this notation, we can now state a necessary and sufficient criterion for a successive blowup of P2

to be a weak del Pezzo surface.

Lemma 2.5 [3; 4, Section 8.1.3] With Notation 2.4, let � W X ! P2 be a birational morphism of
height n. Then X is a weak del Pezzo surface if and only if the following three conditions hold :

� On each Ej;i there is at most one pk;iC1.

� For every line `� P2 there are at most three pj;i with pj;i 2 `.i/, where i ranges over 0; : : : ; n� 1.

� For every irreducible conic Q� P2 there are at most six pj;i with pj;i 2Q.i/, where i ranges over
0; : : : ; n� 1.

Notation 2.6 By Lemma 2.5, there is at most one pk;iC1 on each Ej;i . Therefore, it makes sense to
rename the pk;iC1 so that pk;iC1 lies on Ek;i . We will adopt this convention from now on.

If the above three conditions of Lemma 2.5 are satisfied, we say that the points pj;i are in almost general
position. Using this terminology, there is the following well-known characterization of weak del Pezzo
surfaces:

Lemma 2.7 [4, Section 8.1.3] If X is a weak del Pezzo surface , then

(i) X Š P1 �P1, or

(ii) X Š F2, the second Hirzebruch surface , or

(iii) X is the successive blowup of P2 in n� 8 points in almost general position.

In particular , 1� deg.X/� 9, and ht.X/D 0 if and only if X 2 fP2;P1 �P1;F2g.

All classes of .�2/– and .�1/–curves in the odd unimodular lattice Pic.X/D I1;9�deg.X/ of signature
.1; 9�deg.X// are well known and described in [4, Proposition 8.2.7; 6, Definition 23.7, Proposition 26.1].
This lattice-theoretic description can be translated into geometry (see [6, Theorem 26.2(ii)] for the case of
del Pezzo surfaces). A straightforward adaption of Manin’s approach to our situation of weak del Pezzo
surfaces yields the following description of .�2/– and .�1/–curves on X :
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Lemma 2.8 Let X be a weak del Pezzo surface and let � WX DX .n/! P2 be a birational morphism of
height n.

(i) A curve on X is a .�2/–curve if and only if it is of one of the following four types:
� the strict transform E

.n/
j;i of an exceptional curve such that there is exactly one pj;iC1 on Ej;i ,

� the strict transform `.n/ of a line `� P2 such that there are exactly three pj;i with pj;i 2 `.i/,
� the strict transform C .n/ of an irreducible conic C � P2 such that there are exactly six pj;i

with pj;i 2 C .i/, or
� the strict transform C .n/ of an irreducible singular cubic C � P2 such that there are exactly

eight pj;i with pj;i 2 C .i/, and such that one of the pj;0 is the singular point of C .

(ii) A curve on X is a .�1/–curve if and only if it is of one of the following seven types:
� the strict transform E

.n/
j;i of an exceptional curve such that there is no pk;iC1 on Ej;i ,

� the strict transform `.n/ of a line `� P2 such that there are exactly two pj;i with pj;i 2 `.i/,
� the strict transform C .n/ of an irreducible conic C � P2 such that there are exactly five pj;i

with pj;i 2 C .i/,
� the strict transform C .n/ of an irreducible singular cubic C � P2 such that there are exactly

seven pj;i with pj;i 2 C .i/, and such that one of the pj;0 is the singular point of C ,
� the strict transform C .n/ of an irreducible singular quartic C � P2 such that there are exactly

eight pj;i with pj;i 2 C .i/, and such that exactly three of the pj;i are double points of C .i/,
� the strict transform C .n/ of an irreducible singular quintic C � P2 such that there are exactly

eight pj;i with pj;i 2 C .i/, and such that exactly six of the pj;i are double points of C .i/, or
� the strict transform C .n/ of an irreducible singular sextic C � P2 such that there are exactly

eight pj;i with pj;i 2 C .i/, and such that exactly seven of the pj;i are double points of C .i/

and exactly one of the pj;0 is a triple point of C .

Remark 2.9 The criterion given in Lemma 2.5 simply tells us that a successive blowup of P2 in at most
eight points is a weak del Pezzo surface if and only if we have never blown up a point on a .�2/–curve.

2.2 Automorphism schemes of blowups of smooth surfaces

By a result of Matsumura and Oort [9], the automorphism functor Aut0X of a proper variety over k
is representable, and it is well known that the tangent space of Aut0X can be identified naturally with
H 0.X; TX /. The main tool in our study of automorphism schemes of weak del Pezzo surfaces is the
following lemma of Blanchard (see [1, Theorem 7.2.1]):

Lemma 2.10 (Blanchard’s lemma) Let f W Y ! X be a morphism of proper schemes over k with
f�OY DOX . Then f induces a homomorphism of group schemes f� W Aut0Y ! Aut0X . If f is birational ,
then f� is a closed immersion.
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Thus, if f is birational, we can and will identify Aut0Y with its image under f� in the following. If f
is the blowup of a smooth surface X in a closed point p, it is possible to describe the image of f�; see
[7, Proposition 2.7; 10, Lemma 1.1].

Lemma 2.11 Let f W Y ! X be the blowup of a smooth projective surface X in n distinct points
p1; : : : ; pn 2X . Then Aut0Y D

�Tn
iD1 Stab0pi

�0.

Proof We prove the claim by induction on n with the case n D 0 being trivial. For the inductive
step, let Y 0 be the blowup of X in p1; : : : ; pn�1. Then f 0 W Y ! Y 0 is the blowup in pn and we have
Aut0Y 0 D

�Tn�1
iD1 Stab0pi

�0 by the induction hypothesis. Note that the identity component of the stabilizer
of pn 2 Y 0, with respect to the action of Aut0Y 0 , is precisely

�Tn
iD1 Stab0pi

�0. By [7, Remark 2.8], the
Aut0Y –action on Y preserves the exceptional divisor of f 0, hence Aut0Y , being connected, is contained in�Tn

iD1 Stab0pi

�0. Conversely, by [7, Proposition 2.7], the
�Tn

iD1 Stab0pi

�0–action on Y 0 lifts to Y , and
since

�Tn
iD1 Stab0pi

�0 is connected, it actually lifts to a subgroup scheme of Aut0Y .

Let � WX 0.n/!X be a birational morphism of smooth projective surfaces X and X 0.n/. Let E �X 0.n/

be a �–exceptional irreducible curve. Recall that the left-action of Aut0X on HilbX is given on S–valued
points by

Aut0X .S/�HilbX .S/
�.S/
���! HilbX .S/; .g WXS !XS ; � WZ ,!XS / 7! .Z ��;XS ;g�1 XS ,!XS /;

where XS WD X � S , and this induces a natural action � of Aut0
X 0.n/ � Aut0X on HilbX . For a pencil

(that is, a 1–dimensional linear system) f W C! P1 � HilbX of curves on X , we will identify a point
p 2 P1.S/ with its fiber Cp under f . Let V � P1 be an open subset such that any two fibers Cp and Cq
with p; q 2 V (as well as their strict transforms in all the X 0.i/) have the same multiplicity at the pj;i .
Then the rational map

(2-1) P1 � V!HilbE ; p 7! C.n/p \E;

can be extended to a morphism ' from P1, since every irreducible component of HilbE is proper.

Definition 2.12 Let � WX 0.n/!X be a birational morphism of smooth projective surfaces X and X 0.n/.
Let E �X 0.n/ be a �–exceptional irreducible curve. A pencil of curves f W C! P1 is called adapted to
E and � (or E–adapted), if the morphism ' of (2-1) factors through an isomorphism P1

Š
�!E � HilbE .

For an adapted pencil C! P1, we can transfer the Aut0
X 0.n/–action on E via ' to an action on the pencil.

Over V , we can describe this action explicitly on S–valued points as follows. For Cp 2 V.S/� P1.S/

with embedding � W Cp! XS , an element g 2 AutX 0.n/.S/ sends Cp to the unique curve Cg.p/ 2 P1.S/

such that .Cp��;XS ;g�1 XS /
.n/\ES D '.Cg.p//. The action of Aut0

X 0.n/ transferred from E to the pencil
is the unique extension of the above action from V to P1. In particular, orbits and stabilizers of the
Aut0

X 0.n/–action on E can be calculated on P1, which we exploit throughout.

Remark 2.13 In most of the cases occurring in our classification we can choose the adapted pencil
C! P1 to be stable under the natural action of Aut0

X 0.n/ on HilbX . In this case, Cg.p/D Cp��;XS ;g�1XS .
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Example 2.14 Aut0
X 0.n/–stable adapted pencils do not always exist, even for blowups of P2:

Consider the morphism � W X 0.2/ ! P2 of height 2 given by blowing up the points p1;0 D Œ1 W 0 W 0�,
p2;0 D Œ0 W 1 W 0�, p3;0 D Œ1 W 1 W 0� and p1;1 WD `

.1/
y \E1;0, where `y D V.y/. Then X 0.2/ is surface 5C in

Table 1. In the classification in Section 4 (see Case 5C), we use an E1;1–adapted pencil which is not
Aut0

X 0.2/–stable to show that

Aut0
X 0.2/.R/D

8<:
0@1 c

1

i

1A 2 PGL3.R/

9=;
acts on E1;1 as Œ� W�� 7! Œ� W i2��. For this morphism � , there is no E1;1–adapted pencil which is also
Aut0

X 0.2/–stable.

Indeed, seeking a contradiction, assume that there exists such a pencil whose fiber over Œ� W�� 2 P1 is
C�;� D V.�f1C�f2/ with f1 and f2 homogeneous of the same degree. By the previous paragraph, the
subgroup scheme Ga�Aut0

X 0.2/ of automorphisms with i D 1 acts trivially on E1;1. By Remark 2.13, this
implies that every C�;� is stable under this Ga–action. In particular, every C�;� is a union of orbits of
the Ga–action on P2. The closures of the Ga–orbits are the lines through Œ1 W0 W0� except V.z/, and every
point on V.z/. Therefore, each C�;� is a union of lines through Œ1 W0 W0�, hence '.C�;�/D n.`

.2/
y \E1;1/

for some n� 0, and thus the pencil is not E1;1–adapted, contradicting our assumption.

Remark/Notation 2.15 If X D P2, and f1 and f2 are homogeneous equations of the same degree, we
say that �f1C�f2 is adapted (to � and E) if the pencil spanned by C1 D V.f1/ and C2 D V.f2/ is
adapted to � and E and if, in addition, we identified C1 and C2 with Œ1 W 0� and Œ0 W 1� in P1, respectively.
We will use this choice of coordinates to determine the orbits and stabilizers of the Aut0

X 0.n/–action on E
explicitly by reducing it to a calculation on the pencil Œ� W��.

3 Strategy of proof

For the proof of our Main Theorem we argue inductively by going through all possible weak del Pezzo
surfaces with nontrivial connected automorphism scheme in the order given by their height. We start
with del Pezzo surfaces of height 0, which are P2;P1 �P1 and F2. Then, by Lemma 2.7, to study del
Pezzo surfaces of height 1 we have to study blowups of P2 in a number of distinct “honest” points. After
that, for height 2, we have to consider del Pezzo surfaces that arise as blowups of points on exceptional
divisors of blowups of points in P2 (sometimes we will also refer to such points as infinitely near points
of the first order, as was introduced in [4, Section 7.3.2, page 307]). Continuing this pattern, increasing
the height by 1 means that we have to study those surfaces that arise as blowups of points on the “latest
exceptional divisor”.

In this subsection, we further specify our strategy of proof and explain why the classification of weak del
Pezzo surfaces with nontrivial vector fields obtained via our inductive procedure is indeed complete.
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3.1 Inductive strategy

Assume we have a complete set Li D fXkgk2Ki
, for some index set Ki , of representatives of weak

del Pezzo surfaces of height i that are blowups of P2 with H 0.Xk; TXk
/¤ 0, where for every Xk we

have fixed a birational morphism  k W Xk ! P2 of height i . Further assume that we have calculated
. k/�.Aut0Xk

/� PGL3 (see Lemma 2.11) for every k. If i D 0, such a list is given by L0 D fP2g with
Aut0

P2 D PGL3. Using the list Li , we produce a list LiC1 as follows:

Procedure 3.1 Step 1 Choose X 2 Li with  WX ! P2 and let

 WX
 .i�1/

����!X .i�1/
 .i�2/

����! � � �
 .0/

���!X .0/ D P2

be the minimal factorization of  .

Step 2 If i D 0, let E WDX D P2. Otherwise, let

E WD

�
Exc. .i�1//�

i�2[
jD0

Exc. .j //
�
�D;

whereD is the union of all .�2/–curves on X . Note that, if i > 0, then E is the set of points on the “latest”
exceptional divisors that do not lie on .�2/–curves. Using the description of Aut0X as a subgroup scheme
of PGL3, we calculate the orbits and stabilizers of the action of Aut0X on E using Ej;i�1–adapted pencils.

Step 3 Choose a set of points fp1;i ; : : : ; pni ;ig �E such that
�Tni

jD1 Stab0pj;i

�0 is nontrivial and such
that the blowup  0 W X 0! X in these points is still a weak del Pezzo surface (see the criterion given
in Lemma 2.8). In particular, since there is at most one of the pj;i on every exceptional curve, we may
assume that pj;i 2Ej;i�1. Note that we obtain isomorphic surfaces if we replace a point pj;i by a point
in the same orbit under the action of

T
k¤j Stabpk;i

� AutX .

Step 4 If X 0 is isomorphic to a surface already contained in Lj for some j � i C 1, discard this case.
Otherwise, add X 0 to LiC1, choose the blowup realization  ı 0 WX 0! P2, and calculate

. ı 0/�.Aut0X 0/D . �/
� ni\
jD1

Stab0pj;i

�0
� PGL3 :

We do this by describing the group Aut0X 0.R/ for an arbitrary local k–algebra R (see Section 3.2).

Step 5 Repeat Steps 3 and 4 for all possible point combinations fp1;i ; : : : ; pni ;ig.

Step 6 Repeat Steps 1–5 for all X 2 Li .

Lemma 3.2 For every i , Procedure 3.1 yields a complete set LiC1 D fXkgk2KiC1
of representatives of

isomorphism classes of weak del Pezzo surfaces of height i C 1 with nontrivial global vector fields that
are blowups of P2.

Proof We prove the claim by induction on the height i . The case i D 0 with L0 D fP2g is clear by
Lemma 2.11. Therefore, assume that the claim holds for i � 1� 0 and that we have a list Li .
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Let X 0 be a weak del Pezzo surface of height i C 1 with h0.X 0; TX 0/¤ 0. Choose a birational morphism
� WX 0! P2 with minimal factorization

� WX 0 DX 0.iC1/ �
.i/

��!X 0.i/ �
.i�1/

����! � � �
�.0/

���!X 0.0/ D P2

such that, for every birational morphism � 0 WX 0! P2, the number of exceptional curves for � 0.i/ is at
least as great as the number of exceptional curves for �.i/, ie such that the number of points blown up by
the last step �.i/ is minimal. By Lemma 2.10, there is an inclusion

.�.i//�.Aut0X 0/� Aut0
X 0.i/ :

In particular, h0.X 0.i/; TX 0.i//¤ 0, since Aut0X 0 ¤ fidg and .�.i//� is a closed immersion. Hence, by the
induction hypothesis, there is X 2 Li such that there exists an isomorphism � WX 0.i/!X and X comes
with a birational morphism  WX ! P2.

To prove the claim, it suffices to show that � ı�.i/ is the blowup of X in a set of points p1;i ; : : : ; pni ;i

on E, defined as in Procedure 3.1. Indeed, once we prove this, it will follow from Lemma 2.11 and the
assumption h0.X 0; TX 0/¤ 0 that Aut0X 0 D

�Tni

jD1 Stab0pj;i

�0 is nontrivial.

Now, note that the condition that the pj;i lie on E is equivalent to � ı �.i/ being the first step in the
minimal factorization of

 0 WD  ı� ı�.i/ WX 0!X 0.i/!X ! P2:

Thus, we take the minimal factorization of  0 and let  0.i/ WX 0!X 00 be the first morphism in the minimal
factorization of  0. Since X has height i , the morphism � ı�.i/ WX 0!X factors through  0.i/, which
means there is a morphism f WX 00!X such that f ı 0.i/D � ı�.i/. In particular, the number of points
blown up under  0.i/ is at most the number of points blown up under �.i/. As we chose the number of
points blown up under �.i/ to be minimal, this shows that f is an isomorphism. In fact, since f is an
isomorphism over P2, this isomorphism is unique, and we can identify X 00 with X .

One technical question that arises in Procedure 3.1 is how one checks, in Step 4, whether X 0 is isomorphic
to a surface in one of our lists Lj with j � i C 1. Clearly a necessary condition for this is that X 0 has the
same configuration of negative curves as one of the surfaces Xk 2 Lj for some j � iC1. By Lemma 3.2,
we have the following converse:

Corollary 3.3 Let X 0 be a weak del Pezzo surface with nontrivial global vector fields that arises in
Step 3 of Procedure 3.1. Assume that X 0 has the same configuration of negative curves as a surface in Lj
for some j < i C 1. Then X 0 is isomorphic to a surface already contained in Lj .

Proof If X 0 has the same configuration as a surface in Lj , then there is a sequence of contractions of
.�1/–curves on X 0 that realizes X 0 as a weak del Pezzo surface of height j < iC1, and then Lemma 3.2
shows that X 0 is isomorphic to a surface in Lj .
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Remark 3.4 If, instead, X 0 has the same configuration of negative curves as a surface in LiC1, then we
cannot immediately use Lemma 3.2, since the list LiC1 is not yet complete at that point. Whenever this
happens in Section 4, we will describe an explicit way of blowing down X 0 to a surface with the same
configuration as (hence, by Lemma 3.2, isomorphic to) some Xk 2 Li in such a way that the image of the
exceptional locus lies in the set E �Xk . If Steps 1–5 of Procedure 3.1 have already been carried out for
Xk 2 Li , this implies that X 0 is isomorphic to a surface already contained in LiC1.

Since we distinguish the families of weak del Pezzo surfaces with global vector fields according to their
configuration of negative curves and automorphism schemes, once we know that X 0 is isomorphic to a
surface in Lj , we can determine the family to which it belongs by describing its configuration of negative
curves and by computing its automorphism scheme.

3.2 On the calculation of stabilizers

Before starting our classification, let us explain how to calculate the scheme-theoretic stabilizers of the
points pj;i 2Ej;i�1 occurring in Step 4 of Procedure 3.1. First, recall the definition of the scheme-theoretic
stabilizer:

Definition 3.5 Let � W G �X ! X be an action of a group scheme G on a scheme X over k. Let
p W Spec k!X be a k–valued point. The stabilizer Stabp �G of p with respect to � is defined as

Stabp W .Sch=k/! .Sets/; S 7! fg 2G.S/ j g.pS /D pSg;

where pS W S ! Spec k!X .

The stabilizer Stabp �G is a closed subgroup scheme of G. As mentioned in Step 4 of Procedure 3.1,
we will describe only the R–valued points of the stabilizers occurring in our classification, where R is a
local k–algebra. This is sufficient, since in each case — all the conditions on the matrices in PGL3.R/
of Tables 1 and 3–6 being given by polynomial equations which respect the group structure on PGL3 —
there will be an obvious closed subgroup scheme G of PGL3 that admits the same R–valued points as
the given stabilizer. The group scheme G will then be equal to the stabilizer because of the following
well-known lemma:

Lemma 3.6 Let Z1; Z2 � X be two closed subschemes of a scheme X over a field k. If Z1.R/ D
Z2.R/�X.R/ for all local k–algebras R, then Z1 DZ2 as closed subschemes of X .

The advantage of only considering R–valued points of PGLn lies in the fact that R–valued points Pn are
simply given by .nC1/–tuples of elements in R, up to units in R, such that at least one of the elements
in the .nC1/–tuple is a unit. This allows us to describe the action of Aut0X .R/ on Ej;i�1.R/Š P1.R/

explicitly using adapted pencils, so that the calculation of the scheme-theoretic stabilizer of a k–valued
point pj;i 2 Ej;i�1 becomes straightforward (by Lemma 3.6). Thus, R will denote a local k–algebra
from now on.
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4 Proof of Main Theorem: classification

In this section, we will carry out Procedure 3.1 to obtain the classification of weak del Pezzo surfaces
with global regular vector fields and prove our Main Theorem.

Firstly, note that there are two weak del Pezzo surfaces which do not fit into the framework of Procedure 3.1,
namely those which are not blowups of P2. By Lemma 2.7, these are P1�P1 and F2. As is well known,
AutP1�P1 D PGL2 �PGL2. As for AutF2

, we make use of the fact that this group scheme is smooth and
connected by [8, Theorem 1 and Lemma 10]. An explicit description of this group scheme is given in [8].
Alternatively, one can blow down the unique .�2/–curve on F2 to obtain the weighted projective plane
P .1; 1; 2/ and use the fact that .AutP.1;1;2//red fixes the unique singular point on P .1; 1; 2/. Hence, this
action lifts to F2 and we get AutF2

D .AutP.1;1;2//red. These results are summarized in Table 2.

For the remaining cases we can apply Procedure 3.1, and we will subdivide the proof into subsections
according to the height of our weak del Pezzo surfaces. Throughout, we write f̀ WD V.f / for the line
given by f D 0 in P2. Recall that in the following figures a thick curve denotes a .�2/–curve, while a
thin curve denotes a .�1/–curve. The intersection multiplicity of two such curves is at most 3 at every
point; intersection multiplicities 1 and 2 will be clear from the picture, whereas we write a small 3 next
to the point of intersection if the intersection multiplicity is 3.

4.1 Height 0

We have L0 D fX9Ag, where X9A WD P2 with AutP2 D PGL3.

4.2 Height 1

Case 9A In this case, X D P2 and  D id. We have E D P2, and the action of Aut0X D PGL3 on E is
transitive. Now, note that if p1;0; : : : ; pn0;0 2 P2 are points such that at least four of them are in general
position, then

Aut0X 0 D
� n0\
jD1

Stab0pj;0

�
D f�g:

On the other hand, according to Lemma 2.5, to guarantee thatX 0 is a weak del Pezzo surface, no more than
three of the pj;0 may be on a line. Up to isomorphism, this leaves five possibilities for p1;0; : : : ; pn0;0:

(1) n D 4, and p1;0, p2;0 and p4;0 are on a line ` with p3;0 … `. Using the action of PGL3, we may
assume that p1;0 D Œ1 W 0 W 0�, p2;0 D Œ0 W 1 W 0�, p3;0 D Œ0 W 0 W 1�, p4;0 D Œ1 W 1 W 0� and `D `z .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.
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5A 6C 6A 7A

Figure 1

� We have a .�2/–curve `.1/z and .�1/–curves E1;0, E2;0, E3;0, E4;0, `.1/x , `.1/y and `.1/x�y , with
configuration as in 5A of Figure 1.

This is case 5A.

(2) n D 3 and all points are on a line `. We may assume that p1;0 D Œ1 W 0 W 0�, p2;0 D Œ0 W 1 W 0�,
p3;0 D Œ1 W 1 W 0� and `D `z .

� Aut0X 0.R/D

8<:
0@1 c

1 f

i

1A 2 PGL3.R/

9=;.

� We have a .�2/–curve `.1/z and .�1/–curves E1;0, E2;0 and E3;0, with configuration as in 6C of
Figure 1.

This is case 6C.

(3) nD 3 and not all points are on a line. We may assume that p1;0 D Œ1 W 0 W 0�, p2;0 D Œ0 W 1 W 0� and
p3;0 D Œ0 W 0 W 1�.

� Aut0X 0.R/D

8<:
0@1 e

i

1A 2 PGL3.R/

9=;.

� We have no .�2/–curves and .�1/–curves E1;0, E2;0, E3;0, `.1/x , `.1/y and `.1/z , with configuration
as in 6A of Figure 1.

This is case 6A.

(4) nD 2. We may assume that p1;0 D Œ1 W 0 W 0� and p2;0 D Œ0 W 1 W 0�.

� Aut0X 0.R/D

8<:
0@1 c

e f

i

1A 2 PGL3.R/

9=;.

� We have no .�2/–curves and .�1/–curves E1;0, E2;0 and `.1/z , with configuration as in 7A of
Figure 1.

This is case 7A.
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8A 1A

Figure 2

(5) nD 1. We may assume that p1;0 D Œ1 W 0 W 0�.

� Aut0X 0.R/D

8<:
0@1 b c

e f

h i

1A 2 PGL3.R/

9=;.

� We have no .�2/–curves and .�1/–curve E1;0, with configuration as in 8A of Figure 2.

This is case 8A.

Summarizing, we obtain L1 D fX5A; X6C ; X6A; X7A; X8Ag.

4.3 Height 2

Case 5A We have E D
�S4

jD1Ej;0
�
� `

.1/
z . Recall that the R–valued points of Aut0X are given by

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
We calculate the action of Aut0X on the Ej;0 using adapted pencils:

� �yC�z is E1;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

� �xC�z is E2;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

� �xC�y is E3;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W��.

� �.x�y/C�z is E4;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

In particular, there is one unique point with nontrivial stabilizer on each of E \E1;0, E \E2;0 and
E \E4;0. Since p1;0, p2;0 and p4;0 can be interchanged by automorphisms of P2 preserving p3;0, we
have ten possibilities for p1;1; : : : ; pn;1:

(1) p1;1DE1;0\`
.1/
y , p2;1DE2;0\`

.1/
x , p3;1DE3;0\`

.1/
xC˛y with ˛…f0;�1g and p4;1DE4;0\`

.1/
x�y .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0, E.2/3;0, E.2/4;0, `.2/x , `.2/y , `.2/z and `.2/x�y and .�1/–curves E1;1,
E2;1, E3;1, E4;1 and `.2/xC˛y , with configuration as in 1A of Figure 2.
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2A 2D 2E

Figure 3

This is case 1A and we see that we get a 1–dimensional family of such surfaces X1A;˛ depending on the
parameter ˛.

(2) p1;1 DE1;0\ `
.1/
y , p2;1 DE2;0\ `

.1/
x and p3;1 DE3;0\ `

.1/
xC˛y with ˛ … f0;�1g.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0, E.2/3;0, `.2/x , `.2/y and `.2/z and .�1/–curves E1;1, E2;1, E3;1, E.2/4;0,
`
.2/
x�y and `.2/xC˛y , with configuration as in 2A of Figure 3.

This is case 2A and we see that we get a 1–dimensional family of such surfaces X2A;˛ depending on the
parameter ˛.

(3) p1;1 DE1;0\ `
.1/
y , p2;1 DE2;0\ `

.1/
x and p3;1 DE3;0\ `

.1/
x�y .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0, E.2/3;0, `.2/x , `.2/y , `.2/z and `.2/x�y and .�1/–curves E1;1, E2;1,
E3;1 and E.2/4;0, with configuration as in 2D of Figure 3.

This is case 2D.

(4) p1;1 DE1;0\ `
.1/
y , p2;1 DE2;0\ `

.1/
x and p4;1 DE4;0\ `

.1/
x�y .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0, E.2/4;0, `.2/x , `.2/y , `.2/z and `.2/x�y and .�1/–curves E1;1, E2;1,
E4;1 and E.2/3;0, with configuration as in 2E of Figure 3.

This is case 2E.

(5) p1;1 DE1;0\ `
.1/
y and p3;1 DE3;0\ `

.1/
xC˛y with ˛ … f0;�1g.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.
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3A 3C 3D 4A

Figure 4

� We have .�2/–curves E.2/1;0, E.2/3;0, `.2/y and `.2/z and .�1/–curves E1;1, E3;1, E.2/2;0, E.2/4;0, `.2/x ,
`
.2/
x�y and `.2/xC˛y , with configuration as in 3A of Figure 4.

This is case 3A and we see that we get a 1–dimensional family of such surfaces X3A;˛ depending on the
parameter ˛.

(6) p1;1 DE1;0\ `
.1/
y and p3;1 DE3;0\ `

.1/
x .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/3;0, `.2/x , `.2/y and `.2/z and .�1/–curves E1;1, E3;1, E.2/2;0, E.2/4;0
and `.2/x�y , with configuration as in 3C of Figure 4.

This is case 3C.

(7) p1;1 DE1;0\ `
.1/
y and p2;1 DE2;0\ `

.1/
x .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0, `.2/x , `.2/y and `.2/z and .�1/–curves E1;1, E2;1, E.2/3;0, E.2/4;0
and `.2/x�y , with configuration as in 3D of Figure 4.

This is case 3D.

(8) p3;1 DE3;0\ `
.1/
xC˛y with ˛ … f0;�1g.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/3;0 and `.2/z and .�1/–curves E3;1, E.2/1;0, E.2/2;0, E.2/4;0, `.2/x , `.2/y , `.2/x�y
and `.2/xC˛y , with configuration as in 4A of Figure 4.

This is case 4A and we see that we get a 1–dimensional family of such surfaces X4A;˛ depending on the
parameter ˛.
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4B 4C

Figure 5

(9) p3;1 DE3;0\ `
.1/
y .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/3;0, `.2/y and `.2/z and .�1/–curves E3;1, E.2/1;0, E.2/2;0, E.2/4;0, `.2/x and `.2/x�y ,
with configuration as in 4B of Figure 5.

This is case 4B.

(10) p1;1 DE1;0\ `
.1/
y .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, `.2/y and `.2/z and .�1/–curves E1;1, E.2/2;0, E.2/3;0, E.2/4;0, `.2/x and `.2/x�y ,
with configuration as in 4C of Figure 5.

This is case 4C.

Case 6C We have E D
�S3

jD1Ej;0
�
� `

.1/
z and

Aut0X .R/D

8<:
0@1 c

1 f

i

1A 2 PGL3.R/

9=; :
� �yC�z is E1;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i�Cf ��.

� �xC�z is E2;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i�C c��.

� �.x�y/C�z is E3;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i�C .c �f /��.

Since p1;0, p2;0 and p3;0 can be interchanged by automorphisms of P2 and the action of Aut0X is transitive
on every E \Ei;0, we have three possibilities for p1;1; : : : ; pn;1:

(1) p1;1 DE1;0\ `
.1/
y , p2;1 DE2;0\ `

.1/
x and p3;1 DE3;0\ `

.1/
x�y .
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3B 4D 5C

Figure 6

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0, E.2/3;0 and `.2/z and .�1/–curves E1;1, E2;1, E3;1, `.2/x , `.2/y
and `.2/x�y , with configuration as in 3B of Figure 6.

This is case 3B.

(2) p1;1 DE1;0\ `
.1/
y and p2;1 DE2;0\ `

.1/
x .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0 and `.2/z and .�1/–curves E1;1, E2;1, E.2/3;0, `.2/x and `.2/y , with
configuration as in 4D of Figure 6.

This is case 4D.

(3) p1;1 DE1;0\ `
.1/
y .

� Aut0X 0.R/D

8<:
0@1 c

1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0 and `.2/z and .�1/–curves E1;1, E.2/2;0, E.2/3;0 and `.2/y , with configuration
as in 5C of Figure 6.

This is case 5C.

Case 6A We have E D
S3
jD0Ej;0 and

Aut0X .R/D

8<:
0@1 e

i

1A 2 PGL3.R/

9=; :
� �yC�z is E1;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe� W i��.

� �xC�z is E2;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

� �xC�y is E3;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e��.
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Since p1;0; p2;0 and p3;0 can be permuted arbitrarily by automorphisms of P2, we have nine possibilities
for p1;1; : : : ; pn;1:

(1) p1;1 DE1;0\ `
.1/
y�z , p2;1 DE2;0\ `

.1/
z and p3;1 DE3;0\ `

.1/
x .

� Aut0X 0.R/D

8<:
0@1 e

e

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0, E.2/3;0, `.2/x and `.2/z and .�1/–curves E1;1, E2;1, E3;1, `.2/y
and `.2/y�z , with configuration as in Figure 4, case 3C.

Blowing down the two right-most .�1/–curves in Figure 4 (3C), we see that X 0 arises as a blowup of
X5A in two points on E and X 0 ŠX3C by Remark 3.4.

(2) p1;1 DE1;0\ `
.1/
y�z , p2;1 DE2;0\ `

.1/
z and p3;1 DE3;0\ `

.1/
y .

� Aut0X 0.R/D

8<:
0@1 e

e

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0, E.2/3;0, `.2/y and `.2/z and .�1/–curves E1;1, E2;1, E3;1, `.2/x
and `.1/y�z , with configuration as in Figure 4, case 3D.

Blowing down the two .�1/–curves in Figure 4 (3D) that are not adjacent to any other .�1/–curve, we
see that X 0 arises as a blowup of X5A in two points on E and X 0 ŠX3D by Remark 3.4.

(3) p1;1 DE1;0\ `
.1/
z , p2;1 DE2;0\ `

.1/
x and p3;1 DE3;0\ `

.1/
y .

� Aut0X 0.R/D

8<:
0@1 e

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0, E.2/3;0, `.2/x , `.2/y and `.2/z and .�1/–curves E1;1, E2;1 and E3;1,
with configuration as in 3H of Figure 7.

This is case 3H.

(4) p1;1 DE1;0\ `
.1/
y�z and p2;1 DE2;0\ `

.1/
z .

� Aut0X 0.R/D

8<:
0@1 e

e

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0 and `.2/z and .�1/–curves E1;1, E2;1, E.2/3;0, `.2/x , `.2/y and `.2/y�z ,
with configuration as in Figure 5, case 4C.

Blowing down the .�1/–curve in Figure 5 (4C) that is not adjacent to any other .�1/–curve, we see that
X 0 arises as a blowup of X5A in one point on E and hence X 0 ŠX4C by Remark 3.4.
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3H 4G 4F

Figure 7

(5) p1;1 DE1;0\ `
.1/
y�z and p2;1 DE2;0\ `

.1/
x .

� Aut0X 0.R/D

8<:
0@1 e

e

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0 and `.2/x and .�1/–curves E1;1, E2;1, E.2/3;0, `.2/y , `.2/z and `.2/y�z ,
with configuration as in Figure 5, case 4B.

Blowing down one of the .�1/–curves in Figure 5 (4B) that is not adjacent to any other .�1/–curve, we
see that X 0 arises as a blowup of X5A in one point on E and X 0 ŠX4B by Remark 3.4.

(6) p1;1 DE1;0\ `
.1/
z and p2;1 DE2;0\ `

.1/
x .

� Aut0X 0.R/D

8<:
0@1 e

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0, `.2/x and `.2/z and .�1/–curves E1;1, E2;1, E.2/3;0 and `.2/y , with
configuration as in 4G of Figure 7.

This is case 4G.

(7) p1;1 DE1;0\ `
.1/
y and p2;1 DE2;0\ `

.1/
x .

� Aut0X 0.R/D

8<:
0@1 e

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0, `.2/x and `.2/y and .�1/–curves E1;1, E2;1, E.2/3;0 and `.2/z , with
configuration as in 4F of Figure 7.

This is case 4F.

(8) p1;1 DE1;0\ `
.1/
y�z .

� Aut0X 0.R/D

8<:
0@1 e

e

1A 2 PGL3.R/

9=;.
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� We have a .�2/–curve E.2/1;0 and .�1/–curves E1;1, E.2/2;0, E.2/3;0, `.2/x , `.2/y , `.2/z and `.2/y�z , with
configuration as in Figure 1, case 5A.

By Corollary 3.3, we have X 0 ŠX5A.

(9) p1;1 DE1;0\ `
.1/
z .

� Aut0X 0.R/D

8<:
0@1 e

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0 and `.2/z and .�1/–curves E1;1, E.2/2;0, E.2/3;0, `.2/x and `.2/y , with config-
uration as in 5B of Figure 8.

This is case 5B.

Case 7A We have E DE1;0[E2;0 and

Aut0X .R/D

8<:
0@1 c

e f

i

1A 2 PGL3.R/

9=; :
� �yC�z is E1;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe� W i�Cf ��.

� �xC�z is E2;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i�C c��.

Since p1;0 and p2;0 can be interchanged by an automorphism of P2, we have four possibilities for
p1;1; : : : ; pn;1:

(1) p1;1 DE1;0\ `
.1/
y and p2;1 DE2;0\ `

.1/
x .

� Aut0X 0.R/D

8<:
0@1 e

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0 and E.2/2;0 and .�1/–curves E1;1, E2;1, `.2/x , `.2/y and `.2/z , with config-
uration as in Figure 8, case 5B.

Blowing down the .�1/–curve in Figure 8 (5B) that is not adjacent to any other .�1/–curve, we see that
X 0 arises as a blowup of X6A in one point on E and X 0 ŠX5B by Remark 3.4.

(2) p1;1 DE1;0\ `
.1/
z and p2;1 DE2;0\ `

.1/
x .

� Aut0X 0.R/D

8<:
0@1 e f

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0, E.2/2;0 and `.2/z and .�1/–curves E1;1, E2;1 and `.2/x , with configuration
as in 5D of Figure 8.

This is case 5D.
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5B 5D 6B 6D

Figure 8

(3) p1;1 DE1;0\ `
.1/
y .

� Aut0X 0.R/D

8<:
0@1 c

e

i

1A 2 PGL3.R/

9=;.

� We have a .�2/–curve E.2/1;0 and .�1/–curves E1;1, E.2/2;0, `.2/y and `.2/z , with configuration as in
6B of Figure 8.

This is case 6B.

(4) p1;1 DE1;0\ `
.1/
z .

� Aut0X 0.R/D

8<:
0@1 c

e f

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.2/1;0 and `.2/z and .�1/–curves E1;1 and E.2/2;0, with configuration as in 6D
of Figure 8.

This is case 6D.

Case 8A We have E DE1;0 and

Aut0X .R/D

8<:
0@1 b c

e f

h i

1A 2 PGL3.R/

9=; :
� �yC�z is E1;0–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe�C h� W i�Cf ��.

Therefore, there is a unique possibility for p1;1; : : : ; pn;1 up to isomorphism:

(1) p1;1 DE1;0\ `
.1/
z .

� Aut0X 0.R/D

8<:
0@1 b c

e f

i

1A 2 PGL3.R/

9=;.
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7B

Figure 9

� We have a .�2/–curve E.2/1;0 and .�1/–curves E1;1 and `.2/z , with configuration as in 7B of Figure 9.

This is case 7B.

Summarizing, we obtain

L2 D fX1A;˛; X2A;˛; X2D; X2E ; X3A;˛; X3C ; X3D; X4A;˛; X4B ; X4C ; X3B ; X4D; X5C ; X3H ;
X4G ; X4F ; X5B ; X5D; X6B ; X6D; X7Bg:

4.4 Height 3

Case 2A We have E D
S3
jD1Ej;1�

�S3
jD1E

.2/
j;0 [ `

.2/
x [ `

.2/
y

�
and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �xyC�z2 is E1;1–adapted and E2;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.

� �y2C�.xC˛y/z is E3;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

Note that X has degree 2. Therefore we are only allowed to blow up one more point, pj;2. Moreover, the
involution x$ ˛y of P2 lifts to an involution of X interchanging E1;1 and E2;1, thus we may assume
without loss of generality that j D 1 or j D 3. Finally, if j D 3, then the stabilizer of p3;2 2E \E3;1 is
trivial unless p3;2 lies on the strict transform of `xC˛y . Moreover, Aut0X acts transitively on E \E1;1.
Hence, we have two possibilities:

(1) p3;2 DE3;1\ `
.2/
xC˛y with ˛ … f0;�1g.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/3;0, E.3/3;1, `.3/x , `.3/y , `.3/z and `.3/xC˛y and .�1/–curves E3;2,
E
.3/
1;1, E.3/2;1, E.3/4;0 and `.3/x�y , with configuration as in Figure 2, case 1A.

By Corollary 3.3, we have X 0 ŠX1A;˛0 for some ˛0.
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(2) p1;2 DE1;1\C
.2/
1 with C1 D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/3;0, E.3/1;1, `.3/x , `.3/y and `.3/z and .�1/–curves E1;2, E.3/2;1, E.3/3;1,
E
.3/
4;0, `.3/x�y , `.3/xC˛y , C .3/1 and C .3/2 with ˛ … f0;�1g and C2 D V.x3yC xy3C x2z2C˛2y2z2/,

with configuration as in 1L of Figure 10.

This is case 1L and we see that we get a 1–dimensional family of such surfaces X1L;˛ depending on the
parameter ˛.

Case 2D We have E D
S3
jD1Ej;1�

�S3
jD1E

.2/
j;0 [ `

.2/
x [ `

.2/
y [ `

.2/
x�y

�
and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �xyC�z2 is E1;1–adapted and E2;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.

� �y2C�.x�y/z is E3;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

Note that X has degree 2, thus we are only allowed to blow up one more point, pj;2. Next, note that the
stabilizer of every point on E\E3;1 is trivial, and hence we may assume j D 1 or j D 2. Similar to Case
2A, the involution x$ y of P2 lifts to an involution of X interchanging E1;1 and E2;1, thus we may
assume without loss of generality that j D 1. Hence, there is a unique choice for pj;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/3;0, E.3/1;1, `.3/x , `.3/y , `.3/z and `.3/x�y and .�1/–curves E1;2,
E
.3/
2;1, E.3/3;1, E.3/4;0 and C .3/, with configuration as in 1O of Figure 10.

This is case 1O.
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3

1L 1O 1N

Figure 10

Case 2E We have E D .E1;1[E2;1[E4;1/� .E
.2/
1;0 [E

.2/
2;0[E

.2/
4;0[ `

.2/
x [ `

.2/
y [ `

.2/
x�y/ and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �xyC�z2 is E1;1–adapted and E2;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.

� �.x�y/xC�z2 is E4;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.

Note that X has degree 2, thus we are only allowed to blow up one more point, pj;2. Next, the
automorphisms of P2 interchanging p1;0, p2;0 and p4;0 and preserving p3;0 lift to X and interchange
E1;1, E2;1 and E4;1, thus we may assume j D 1. Finally, Aut0X acts transitively on E \E1;1, and hence
we have a unique choice for pj;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/
1 with C1 D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/4;0, E.3/1;1, `.3/x , `.3/y , `.3/z and `.3/x�y and .�1/–curves E1;2,
E
.3/
2;1, E.3/4;1, E.3/3;0, C .3/1 and C .3/2 with C2 D V.xy C y2 C z2/, with configuration as in 1N of

Figure 10.

This is case 1N.

Case 3A We have E D .E1;1[E3;1/� .E
.2/
1;0 [E

.2/
3;0 [ `

.2/
y / and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
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� �xyC�z2 is E1;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.

� �y2C�.xC˛y/z is E3;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

Note that there is one unique point with nontrivial stabilizer on E \E3;1, while Aut0X acts transitively on
E \E1;1. Hence, we have three choices up to isomorphism:

(1) p1;2 DE1;1\C
.2/
1 and p3;2 DE3;1\ `

.2/
xC˛y with C1 D V.xyC z2/ and ˛ … f0;�1g.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/3;0, E.3/1;1, E.3/3;1, `.3/y , `.3/z and `.3/xC˛y and .�1/–curves E1;2, E3;2,
E
.3/
2;0, E.3/4;0, `.3/x , `.3/x�y , C .3/2 and C .3/3 with

C2 D V.x2yC xz2C˛yz2/ and C3 D V.x2yC xz2C˛yz2Cy3/;

with configuration as in Figure 10, case 1L.

Blowing down the right-most .�1/–curve in Figure 10 (1L), we see that X 0 is the blowup of some X2A;˛
in one point on E and X 0 ŠX1L;˛0 for some ˛0 by Remark 3.4.

(2) p3;2 DE3;1\ `
.2/
xC˛y with ˛ … f0;�1g.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/3;0, E.3/3;1, `.3/y , `.3/z and `.3/xC˛y and .�1/–curves E3;2, E.3/1;1, E.3/2;0,
E
.3/
4;0, `.3/x and `.3/x�y , with configuration as in Figure 3, case 2A.

By Corollary 3.3, we have X 0 ŠX2A;˛0 for some ˛0.

(3) p1;2 DE1;1\C
.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/3;0, E.3/1;1, `.3/y and `.3/z and .�1/–curves E1;2, E.3/3;1, E.3/2;0, E.3/4;0,
`
.3/
x , `.3/x�y and `.3/xC˛y with ˛ … f0;�1g, with configuration as in 2N of Figure 11.

This is case 2N and we see that we get a 1–dimensional family of such surfaces X2N;˛ depending on the
parameter ˛.
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2N 2Q

Figure 11

Case 3C We have E D .E1;1[E3;1/� .E
.2/
1;0 [E

.2/
3;0 [ `

.2/
y [ `

.2/
x / and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �xyC�z2 is E1;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.

� �xzC�y2 is E3;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œi� W��.

Note that the stabilizer of every point in E \E3;1 is trivial while Aut0X acts transitively on E \E1;1.
Hence, we have a unique choice for p1;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/3;0, E.3/1;1, `.3/x , `.3/y and `.3/z and .�1/–curves E1;2, E.3/3;1, E.3/2;0, E.3/4;0
and `.3/x�y , with configuration as in 2Q of Figure 11.

This is case 2Q.

Case 3D We have E D .E1;1[E2;1/� .E
.2/
1;0 [E

.2/
2;0[ `

.2/
y [ `

.2/
x / and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �xyC�z2 is E1;1–adapted and E2;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.
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Note that the involution x$ y of P2 lifts to an involution of X interchanging E1;1 and E2;1. Moreover,
Aut0X acts transitively and with finite stabilizers on both E \E1;1 and E \E2;1. Hence, we have three
possibilities for p1;2; : : : ; pn;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/ and p2;2 DE2;1\C

.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, E.3/2;1, `.3/x , `.3/y , `.3/z and C .3/ and .�1/–curves E1;2,
E2;2, E.3/3;0, E.3/4;0 and `.3/x�y , with configuration as in Figure 10, case 1O.

Blowing down the left-most .�1/–curve in Figure 10 (1O), we see that X 0 is a blowup of X2D in one
point on E and X 0 ŠX1O by Remark 3.4.

(2) p1;2DE1;1\C
.2/
1 and p2;2DE2;1\C

.2/
2 with C1DV.xyCz2/, C2DV.xyC˛z2/ and ˛ … f0; 1g.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curvesE.3/1;0, E.3/2;0, E.3/1;1, E.3/2;1, `.3/x , `.3/y and `.3/z and .�1/–curvesE1;2, E2;2, E.3/3;0,
E
.3/
4;0, `.3/x�y , C .3/1 , C .3/2 and C .3/3 with C3 D V.x3y2Cx2y3Cxz4C˛2yz4/, with configuration

as in Figure 10, case 1L.

Blowing down the right-most .�1/–curve in Figure 10 (1L), we see that X 0 is the blowup of some X2A;˛
in one point on E and X 0 ŠX1L;˛0 for some ˛0 by Remark 3.4.

(3) p1;2 DE1;1\C
.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 28̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.
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2P

Figure 12

� We have .�2/–curvesE.3/1;0, E.3/2;0, E.3/1;1, `.3/x , `.3/y and `.3/z and .�1/–curvesE1;2, E.3/2;1, E.3/3;0, E.3/4;0,
`
.3/
x�y and C .3/, with configuration as in 2P of Figure 12.

This is case 2P.

Case 4A We have E DE3;1�E
.2/
3;0 and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �y2C�.xC˛y/z is E3;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

Note that there is one unique point onE\E3;1 with nontrivial stabilizer, leading to a unique choice for p3;2:

(1) p3;2 DE3;1\ `
.2/
xC˛y with ˛ … f0;�1g.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/3;0, E.3/3;1, `.3/z and `.3/xC˛y and .�1/–curves E3;2, E.3/1;0, E.3/2;0, E.3/4;0, `.3/x ,
`
.3/
y and `.3/x�y , with configuration as in Figure 4, case 3A.

By Corollary 3.3, we have X 0 ŠX3A;˛0 for some ˛0.

Case 4B We have E DE3;1� .E
.2/
3;0 [ `

.2/
y / and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �x2C�yz is E3;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

There is no point on E \E3;1 with nontrivial stabilizer, so we get no new cases by further blowing up X .
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Case 4C We have E DE1;1� .E
.2/
1;0 [ `

.2/
y / and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �xyC�z2 is E1;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.

In particular, Aut0X acts transitively on E \E1;1. We get a unique choice for p1;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/1;1, `.3/y and `.3/z and .�1/–curves E1;2, E.3/2;0, E.3/3;0, E.3/4;0, `.3/x and
`
.3/
x�y , with configuration as in 3N of Figure 13.

This is case 3N.

Case 3B We have E D
S3
jD1Ej;1�

S3
jD1E

.2/
j;0 and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �xyC�z2 is E1;1–adapted and E2;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.

� �.x�y/xC�z2 is E3;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.

Note that automorphisms of P2 fixing Œ0 W 0 W 1� and interchanging the pj;0 lift to automorphisms of X
interchanging the Ej;1. Moreover, since X has degree 3, we are only allowed to blow up two more points.
Finally, on every E \Ej;1, the action of Aut0X has two orbits and one of them is a fixed point. Hence, we
get six possibilities for p1;2; : : : ; p3;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/
1 and p2;2 DE2;1\C

.2/
1 with C1 D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 28̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.
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3N 1K 1J

Figure 13

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/3;0, E.3/1;1, E.3/2;1, `.3/z and C .3/1 and .�1/–curves E1;2, E2;2,
E
.3/
3;1, `.3/x , `.3/y , `.3/x�y , C .3/2 and C .3/3 with C2 D V.xy C y2C z2/ and C3 D V.xy C x2C z2/,

with configuration as in 1K of Figure 13.

This is case 1K.

(2) p1;2DE1;1\C
.2/
1 and p2;2DE2;1\C

.2/
2 with C1DV.xyCz2/, C2DV.xyC˛z2/ and ˛ … f0; 1g

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 28̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/3;0, E.3/1;1, E.3/2;1 and `.3/z and .�1/–curves E1;2, E2;2, E.3/3;1,
`
.3/
x , `.3/y , `.3/x�y , C .3/1 , C .3/2 , C .3/3 , C .3/4 , C .3/5 , C .3/6 and C .3/7 with C3 D V.xy C y2 C z2/,
C4DV.xyCx2C˛z2/, C5DV.x2y2Cxy3C˛y2z2Cz4/, C6DV.x2y2Cx3yCx2z2C˛2z4/
and C7 D V.x3y2C x2y3C xz4C˛2yz4/, with configuration as in 1J of Figure 13.

This is case 1J and we see that we get a 1–dimensional family of such surfaces X1J;˛ depending on the
parameter ˛.

Remark 4.1 Figure 13 (1J) is by far the most complicated configuration that occurs in our classification.
To make Figure 13 (1J) easier to digest for the reader, we will now break our habit of describing the curve
configuration only via an intuitive picture, and also describe the dual graph of the configuration. Each white
vertex in the dual graph corresponds to a .�1/–curve and each black vertex corresponds to a .�2/–curve.
The number of edges between two vertices corresponding to curves C1 and C2 is equal to the intersection
number of C1 and C2. With these conventions, the dual graph of Figure 13 (1J) is given in Figure 14.

In general, a dual graph carries less information than the nondual picture. In our case, we see from
Figure 13 (1J) that every simply laced triangle of vertices in Figure 14 corresponds to three curves
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Figure 14: Dual graph of Figure 13 (1J).

meeting in a single point, every double edge corresponds to two curves meeting in a single point with
multiplicity 2, and every triple edge corresponds to two curves meeting in two distinct points with
multiplicities 2 and 1. While the symmetry group of Figure 14 is the dihedral group D12 of order 12, the
interested reader can use the additional information from Figure 13 (1J) to check that the only involution
in D12 that can actually come from an automorphism of X is the unique central involution. And indeed,
the pencil of cubic curves through the eight points pi;j contains the curve V.z3/ and the smooth curve
V.z3Cz2xC˛z2yCx2yCxy2/, and hence it is an elliptic pencil and the inverse in the group structure
on the generic fiber of the associated rational elliptic surface (classically called the “Bertini involution”
associated to the points pi;j ) induces the central Z=2Z–symmetry of the graph in Figure 14.

(3) p1;2 DE1;1\C
.2/
1 and p2;2 DE2;1\ `

.2/
x with C1 D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/3;0, E.3/1;1, E.3/2;1, `.3/x and `.3/z and .�1/–curves E1;2, E2;2,
E
.3/
3;1, `.3/y , `.3/x�y , C .3/1 , C .3/2 and C .3/3 with C2DV.xyCy2Cz2/ and C .3/3 DV.x2y2Cxy3Cz4/,

with configuration as in Figure 13, case 1K.

Blowing down the left-most and the right-most .�1/–curve in Figure 13 (1K), we see that X 0 is a blowup
of X3B in two points on E which do not lie on the intersection of E with the other .�1/–curves on X3B
and X 0 ŠX1K by Remark 3.4.

(4) p1;2 DE1;1\ `
.2/
y and p2;2 DE2;1\ `

.2/
x .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.
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1B 2O 2B

Figure 15

� We have .�2/–curvesE.3/1;0, E.3/2;0, E.3/3;0, E.3/1;1, E.3/2;1, `.3/x , `.3/y and `.3/z and .�1/–curvesE1;2, E2;2,
E
.3/
3;1 and `.3/x�y , with configuration as in 1B of Figure 15.

This is case 1B.

(5) p1;2 DE1;1\C
.2/
1 with C1 D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/3;0, E.3/1;1 and `.3/z and .�1/–curves E1;2, E.3/2;1, E.3/3;1, `.3/x ,
`
.3/
y , `.3/x�y , C .3/1 and C .3/2 with C2 D V.xyCy2C z2/, with configuration as in 2O of Figure 15.

This is case 2O.

(6) p1;2 DE1;1\ `
.2/
y .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/3;0, E.3/1;1, `.3/y and `.3/z and .�1/–curves E1;2, E.3/2;1, E.3/3;1,
`
.3/
x and `.3/x�y , with configuration as in 2B of Figure 15.

This is case 2B.

Case 4D We have E D
S2
jD1Ej;1�

S2
jD1E

.2/
j;0 and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �xyC�z2 is E1;1–adapted and E2;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.
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Note that automorphisms of P2 fixing Œ0 W 0 W 1� and interchanging p1;0 and p2;0 lift to automorphisms
of X interchanging E1;1 and E2;1. Moreover, Aut0X has two orbits on each E \Ej;1, one of which is a
fixed point. Hence, we get six possibilities for p1;2; p2;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/ and p2;2 DE2;1\C

.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, E.3/2;1, `.3/z and C .3/ and .�1/–curves E1;2, E2;2, E.3/3;0,
`
.3/
x and `.3/y , with configuration as in Figure 11, case 2Q.

Blowing down the right-most .�1/–curve in Figure 11 (2Q), we see that X 0 is a blowup of X3C in one
point on E and X 0 ŠX2Q by Remark 3.4.

(2) p1;2DE1;1\C
.2/
1 and p2;2DE2;1\C

.2/
2 with C1DV.xyCz2/, C2DV.xyC˛z2/ and ˛ … f0; 1g.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, E.3/2;1 and `.3/z and .�1/–curves E1;2, E2;2, E.3/3;0, `.3/x ,
`
.3/
y , C .3/1 and C .3/2 , with configuration as in Figure 11, case 2N.

Blowing down the right-most .�1/–curve in Figure 11 (2N), we see that X 0 is a blowup of some X3A;˛
in one point on E and X 0 ŠX2N;˛0 for some ˛0 by Remark 3.4.

(3) p1;2 DE1;1\C
.2/ and p2;2 DE2;1\ `

.2/
x with C D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, E.3/2;1, `.3/x and `.3/z and .�1/–curves E1;2, E2;2, E.3/3;0,
`
.3/
y and C .3/, with configuration as in Figure 11, case 2Q.
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2F 3E

Figure 16

Blowing down the right-most .�1/–curve in Figure 11 (2Q), we see that X 0 is a blowup of X3C in one
point on E and X 0 ŠX2Q by Remark 3.4.

(4) p1;2 DE1;1\ `
.2/
y and p2;2 DE2;1\ `

.2/
x .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, E.3/2;1, `.3/x , `.3/y and `.3/z and .�1/–curves E1;2, E2;2
and E.3/3;0, with configuration as in 2F of Figure 16.

This is case 2F.

(5) p1;2 DE1;1\C
.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 28̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1 and `.3/z and .�1/–curves E1;2, E.3/2;1, E.3/3;0, `.3/x , `.3/y
and C .3/, with configuration as in Figure 13, case 3N.

Blowing down the right-most .�1/–curve in Figure 13 (3N), we see that X 0 is a blowup of X4C in one
point on E and X 0 ŠX3N by Remark 3.4.

(6) p1;2 DE1;1\ `
.2/
y .

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, `.3/y and `.3/z and .�1/–curves E1;2, E.3/2;1, E.3/3;0 and `.3/x ,
with configuration as in 3E of Figure 16.

This is case 3E.
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Case 5C We have E DE1;1�E
.2/
1;0 and

Aut0X .R/D

8<:
0@1 c

1

i

1A 2 PGL3.R/

9=; :
� �xyC�z2 is E1;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i2��.

Note that this is the first case in which there exists no Aut0X–stableE1;1–adapted pencil (see Example 2.14).
We remind the reader that we explained how to calculate the Aut0X–action on exceptional curves using not
necessarily Aut0X–stable adapted pencils after Definition 2.12. From now on, we will no longer explicitly
point out when a non-Aut0X–stable adapted pencil is used and assume that the reader is familiar with the
techniques explained in Section 2.2.

Since Aut0X has two orbits on E \E1;1, we get two possibilities for p1;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

8̂<̂
:
0B@1 c

1

1

1CA 2 PGL3.R/

9>=>; if p ¤ 2;

8̂<̂
:
0B@1 c

1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9>=>; if p D 2:

We describe the configurations of negative curves on X 0 for p ¤ 2 and p D 2 simultaneously:

� We have .�2/–curves E.3/1;0, E.3/1;1 and `.3/z and .�1/–curves E1;2, E.3/2;0, E.3/3;0 and `.3/y , with
configuration as in 4E and 4M of Figure 17.

This is case 4E if p ¤ 2, and case 4M if p D 2.

(2) p1;2 DE1;1\ `
.2/
y .

� Aut0X 0.R/D

8<:
0@1 c

1

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/1;1, `.3/y and `.3/z and .�1/–curves E1;2, E.3/2;0 and E.3/3;0, with
configuration as in 4H of Figure 17.

This is case 4H.

Case 3H We have E D
S3
jD1Ej;1�

�S3
jD1E

.2/
j;0 [ `

.2/
x [ `

.2/
y [ `

.2/
z

�
and

Aut0X .R/D

8<:
0@1 e

i

1A 2 PGL3.R/

9=; :
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4E and 4M 4H 1G

Figure 17

� �xzC�y2 is E1;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œi� W e2��.

� �xyC�z2 is E2;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe� W i2��.

� �yzC�x2 is E3;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œei� W��.

Note that all automorphisms of P2 inducing cyclic permutations of p1;0, p2;0, and p3;0 lift to automor-
phisms of X , and since X has degree 3, we can only blow up two additional points. Moreover, Aut0X acts
transitively on every E \Ej;1. Hence, we get two possibilities for p1;2; : : : ; p3;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/
1 and p2;2 DE2;1\C

.2/
2 with C1 D V.xzCy2/ and C2 D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 3;8̂<̂
:
0B@1 e

e2

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9>=>; if p D 3:

Hence, X 0 has global vector fields only if p D 3. Therefore, we assume p D 3 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/3;0, E.3/1;1, E.3/2;1, `.3/x , `.3/y and `.3/z and .�1/–curves E1;2, E2;2
and E.3/3;1, with configuration as in 1G of Figure 17.

This is case 1G.

(2) p1;2 DE1;1\C
.2/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/3;0, E.3/1;1, `.3/x , `.3/y and `.3/z and .�1/–curves E1;2, E.3/2;1 and
E
.3/
3;1, with configuration as in Figure 16, case 2F.

Blowing down the left-most and the right-most .�1/–curve in Figure 16 (2F), we see that X 0 is a blowup
of X4D in two points on E and X 0 ŠX2F by Remark 3.4.
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2J

Figure 18

Case 4G We have E D
S2
jD1Ej;1�

�S2
jD1E

.2/
j;0 [ `

.2/
z [ `

.2/
x

�
and

Aut0X .R/D

8<:
0@1 e

i

1A 2 PGL3.R/

9=; :
� �xzC�y2 is E1;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œi� W e2��.

� �xyC�z2 is E2;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe� W i2��.

Since Aut0X acts transitively on every E \Ej;1, we get the following three possibilities for p1;2; p2;2 up
to isomorphism:

(1) p1;2 DE1;1\C
.2/
1 and p2;2 DE2;1\C

.2/
2 with C1 D V.xzCy2/ and C2 D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 3;8̂<̂
:
0B@1 e

e2

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9>=>; if p D 3:

Hence, X 0 has global vector fields only if p D 3. Therefore, we assume p D 3 when describing
the configuration of negative curves.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, E.3/2;1, `.3/x and `.3/z and .�1/–curves E1;2, E2;2, E.3/3;0 and
`
.3/
y , with configuration as in 2J of Figure 18.

This is case 2J.

(2) p2;2 DE2;1\C
.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 i2

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/2;1, `.3/x and `.3/z and .�1/–curves E2;2, E.3/1;1, E.3/3;0 and `.3/y ,
with configuration as in Figure 16, case 3E.
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Blowing down the left-most .�1/–curve in Figure 16 (3E), we see that X 0 is a blowup of X4D in one
point on E and X 0 ŠX3E by Remark 3.4.

(3) p1;2 DE1;1\C
.2/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, `.3/x and `.3/z and .�1/–curves E1;2, E.3/2;1, E.3/3;0 and `.3/y ,
with configuration as in Figure 16, case 3E.

Blowing down the left-most .�1/–curve in Figure 16 (3E), we see that X 0 is a blowup of X4D in one
point on E and X 0 ŠX3E by Remark 3.4.

Case 4F We have E D .E1;1[E2;1/� .E
.2/
1;0 [E

.2/
2;0[ `

.2/
x [ `

.2/
y / and

Aut0X .R/D

8<:
0@1 e

i

1A 2 PGL3.R/

9=; :
� �xyC�z2 is E1;1–adapted and E2;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe� W i2��.

Note that the involution x$ y of P2 lifts to an involution of X interchanging E1;1 and E2;1. Moreover,
Aut0X acts transitively on both E \E1;1 and E \E2;1, but the stabilizer of every point on E \E1;1 acts
trivially on E \E2;1. Hence, we have three possibilities up to isomorphism:

(1) p1;2 DE1;1\C
.2/ and p2;2 DE2;1\C

.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 i2

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, E.3/2;1, `.3/x , `.3/y and C .3/ and .�1/–curves E1;2, E2;2,
E
.3/
3;0 and `.3/z , with configuration as in Figure 3, case 2D.

By Corollary 3.3, we have X 0 ŠX2D .

(2) p1;2DE1;1\C
.2/
1 and p2;2DE2;1\C

.2/
2 with C1DV.xyCz2/, C2DV.xyC˛z2/ and ˛ … f0; 1g.

� Aut0X 0.R/D

8<:
0@1 i2

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, E.3/2;1, `.3/x and `.3/y and .�1/–curves E1;2, E2;2, E.3/3;0,
`
.3/
z , C .3/1 and C .3/2 , with configuration as in Figure 3, case 2A.

By Corollary 3.3, we have X 0 ŠX2A;˛0 for some ˛0.
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(3) p1;2 DE1;1\C
.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 i2

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, `.3/x and `.3/y and .�1/–curves E1;2, E.3/2;1, E.3/3;0, `.3/z
and C .3/, with configuration as in Figure 4, case 3D.

By Corollary 3.3, we have X 0 ŠX3D .

Case 5B We have E DE1;1� .E
.2/
1;0 [ `

.2/
z / and

Aut0X .R/D

8<:
0@1 e

i

1A 2 PGL3.R/

9=; :
� �xzC�y2 is E1;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œi� W e2��.

Since Aut0X acts transitively on E \E1;1, we have a unique choice for p1;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/1;1 and `.3/z and .�1/–curves E1;2, E.3/2;0, E.3/3;0, `.3/x and `.3/y , with
configuration as in Figure 6, case 4D.

By Corollary 3.3, we have X 0 ŠX4D .

Case 5D We have E D
S2
jD1Ej;1�

�S2
jD1E

.2/
j;0 [ `

.2/
z

�
and

Aut0X .R/D

8<:
0@1 e f

i

1A 2 PGL3.R/

9=; :
� �xzC�y2 is E1;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œi� W e2��.

� �xyC�z2 is E2;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe� W i2��.

Note that Aut0X acts transitively on E \E1;1, and with two orbits, one of which is a fixed point, on
E \E2;1. Hence, we have five choices for p1;2 and p2;2 up to isomorphism:
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3F and 3K 3I

Figure 19

(1) p1;2 DE1;1\C
.2/
1 and p2;2 DE2;1\C

.2/
2 with C1 D V.xzCy2/ and C2 D V.xyC z2/.

� Aut0X 0.R/D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

8̂<̂
:
0B@1 1 f

1

1CA 2 PGL3.R/

9>=>; if p ¤ 3;

8̂<̂
:
0B@1 e f

e2

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9>=>; if p D 3:

We describe the configurations of negative curves on X 0 for p ¤ 3 and p D 3 simultaneously:

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, E.3/2;1 and `.3/z and .�1/–curves E1;2, E2;2 and `.3/x , with
configuration as in 3F and 3K of Figure 19.

This is case 3F if p ¤ 3, and case 3K if p D 3.

(2) p1;2 DE1;1\C
.2/ and p2;2 DE2;1\ `

.2/
x with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1, E.3/2;1, `.3/x and `.3/z and .�1/–curves E1;2 and E2;2, with
configuration as in 3I of Figure 19.

This is case 3I.

(3) p2;2 DE2;1\C
.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 i2 f

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/2;1 and `.3/z and .�1/–curves E2;2, E.3/1;1 and `.3/x , with
configuration as in Figure 17, case 4H.

Blowing down the .�1/–curve in the middle of Figure 17 (4H), we see that X 0 is a blowup of X5C in
one point on E and X 0 ŠX4H by Remark 3.4.
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4K 4I

Figure 20

(4) p2;2 DE2;1\ `
.2/
x .

� Aut0X 0.R/D

8<:
0@1 e f

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/2;1, `.3/x and `.3/z and .�1/–curves E2;2 and E.3/1;1, with
configuration as in 4K of Figure 20.

This is case 4K.

(5) p1;2 DE1;1\C
.2/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/2;0, E.3/1;1 and `.3/z and .�1/–curves E1;2, E.3/2;1 and `.3/x , with
configuration as in 4I of Figure 20.

This is case 4I.

Case 6B We have E DE1;1�E
.2/
1;0 and

Aut0X .R/D

8<:
0@1 c

e

i

1A 2 PGL3.R/

9=; :
� �xyC�z2 is E1;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe� W i2��.

Since Aut0X has two orbits on E \E1;1, we have two choices for p1;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/ with C D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 c

i2

i

1A 2 PGL3.R/

9=;.
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� We have .�2/–curves E.3/1;0 and E.3/1;1 and .�1/–curves E1;2, E.3/2;0, `.3/y and `.3/z , with configuration
as in Figure 6, case 5C.

By Corollary 3.3, we have X 0 ŠX5C .

(2) p1;2 DE1;1\ `
.2/
y .

� Aut0X 0.R/D

8<:
0@1 c

e

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/1;1 and `.3/y and .�1/–curves E1;2, E.3/2;0 and `.3/z , with configuration
as in Figure 8, case 5D.

By Corollary 3.3, we have X 0 ŠX5D .

Case 6D We have E DE1;1� .E
.2/
1;0 [ `

.2/
z / and

Aut0X .R/D

8<:
0@1 c

e f

i

1A 2 PGL3.R/

9=; :
� �xzC�y2 is E1;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œi� W e2��.

Since Aut0X acts transitively on E \E1;1, there is only one choice for p1;2 up to isomorphism:

(1) p1;2 DE1;1\C
.2/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 c

e f

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/1;1 and `.3/z and .�1/–curves E1;2 and E.3/2;0, with configuration as
in 5E of Figure 21.

This is case 5E.

Case 7B We have E DE1;1�E
.2/
1;0 and

Aut0X .R/D

8<:
0@1 b c

e f

i

1A 2 PGL3.R/

9=; :
� �xzC�y2 is E1;1–adapted and Aut0X .R/ acts as Œ� W�� 7! Œi� W e2��.

Since Aut0X has two orbits on E \E1;1, there are two choices for p1;2 up to isomorphism:
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5E 6E 6F

Figure 21

(1) p1;2 DE1;1\C
.2/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 b c

e f

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0 and E.3/1;1 and .�1/–curves E1;2 and `.3/z , with configuration as in 6E
of Figure 21.

This is case 6E.

(2) p1;2 DE1;1\ `
.2/
z .

� Aut0X 0.R/D

8<:
0@1 b c

e f

i

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.3/1;0, E.3/1;1 and `.3/z and .�1/–curve E1;2, with configuration as in 6F of
Figure 21.

This is case 6F.

Summarizing, we obtain

L3 D fX1L;˛; X1O ; X1N ; X2N;˛; X2Q; X2P ; X3N ; X1K ; X1J;˛; X1B ; X2O ; X2B ; X2F ; X3E ;
X4E ; X4M ; X4H ; X1G ; X2J ; X3F ; X3K ; X3I ; X4K ; X4I ; X5E ; X6E ; X6F g:

4.5 Height 4

Case 2N This case exists only if p D 2. We have E DE1;2�E
.3/
1;1 and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=; :
� �.x2yC xz2/C�z3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

Note that there is only one point on E \E1;2 with nontrivial stabilizer, hence we have a unique choice
for p1;3:
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(1) p1;3 DE1;2\C
.3/
1 with C1 D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=;.

� We have .�2/–curves E.4/1;0, E.4/3;0, E.4/1;1, E.4/1;2, `.4/y and `.4/z and .�1/–curves E1;3, E.4/3;1, E.4/2;0,
E
.4/
4;0, `.4/x , `.4/x�y , `.4/xC˛y , C .4/1 , C .4/2 , C .4/3 , C .4/4 , C .4/5 and C .4/6 with C2DV.xyCy2Cz2/, C3D

V.x2yCxz2C˛yz2/, C4DV.x2yCxz2Cy3C˛yz2/, C5DV.x2y2Cx2z2Cx3yC˛2y2z2/,
C6 D V.xy3C x2z2C x3yC˛2y2z2/ and ˛ … f0;�1g, with configuration as in Figure 13, case
1J.

By Corollary 3.3, we have X 0 ŠX1J;˛0 for some ˛0.

Case 2Q This case exists only if p D 2. We have E DE1;2�E
.3/
1;1 and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=; :
� �.x2yC xz2/C�z3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

Note that there is only one point on E \E1;2 with nontrivial stabilizer, hence we have a unique choice
for p1;3:

(1) p1;3 DE1;2\C
.3/
1 with C1 D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=;.

� We have .�2/–curves E.4/1;0, E.4/3;0, E.4/1;1, E.4/1;2, `.4/x , `.4/y and `.4/z and .�1/–curves E1;3, E.4/3;1,
E
.4/
2;0, E.4/4;0, `.4/x�y , C .4/1 , C .4/2 and C .4/3 with C2D V.xyCy2Cz2/ and C3D V.xz2Cx2yCy3/,

with configuration as in Figure 13, case 1K.

By Corollary 3.3, we have X 0 ŠX1K .

Case 2P This case exists only if p D 2. We have E DE1;2�E
.3/
1;1 and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=; :
� �.x2yC xz2/C�z3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œi� W��.

Note that there is only one point on E \E1;2 with nontrivial stabilizer, hence we have the following
unique choice for p1;3:
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(1) p1;3 DE1;2\C
.3/
1 with C1 D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=;.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/1;2, `.4/x , `.4/y , `.4/z and C .4/1 and .�1/–curves E1;3,
E
.4/
2;1, E.4/3;0, E.4/4;0, `.4/x�y and C .4/2 with C2 D V.xyCy2C z2/, with configuration as in Figure 10,

case 1N.

By Corollary 3.3, we have X 0 ŠX1N .

Case 3N This case exists only if p D 2. We have E DE1;2�E
.3/
1;1 and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=; :
� �.x2yC xz2/C�z3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

Note that there is only one point on E \E1;2 with nontrivial stabilizer, hence we have the following
unique choice for p1;3:

(1) p1;3 DE1;2\C
.3/
1 with C1 D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=;.

� We have .�2/–curves E.4/1;0, E.4/1;1, E.4/1;2, `.4/y and `.4/z and .�1/–curves E1;3, E.4/2;0, E.4/3;0, E.4/4;0,
`
.4/
x , `.4/x�y , C .4/1 and C .4/2 with C2D V.xyCy2Cz2/, with configuration as in Figure 15, case 2O.

By Corollary 3.3, we have X 0 ŠX2O .

Case 2O This case exists only if p D 2. We have E DE1;2�E
.3/
1;1 and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=; :
� �.x2yC xz2/C�z3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i��.

Note that there is only one point on E \E1;2 with nontrivial stabilizer, hence we have a unique choice
for p1;3:

(1) p1;3 DE1;2\C
.3/
1 with C1 D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=;.
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1E

Figure 22

� We have .�2/–curvesE.4/1;0,E.4/2;0,E.4/3;0,E.4/1;1,E.4/1;2, `.4/z , C .4/1 and C .4/2 with C2DV.xyCy2Cz2/
and .�1/–curves E1;3, E.4/2;1, E.4/3;1, `.4/x , `.4/y and `.4/x�y , with configuration as in Figure 10, case 1N.

By Corollary 3.3, we have X 0 ŠX1N .

Case 2B We have E DE1;2� .E
.3/
1;1 [ `

.3/
y / and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �x2yC�z3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i3��.

Hence, we have the following unique choice for p1;3 up to isomorphism:

(1) p1;3 DE1;2\C
.3/ with C D V.x2yC z3/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 3;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i3 D 1

9>=>; if p D 3:

Hence, X 0 has global vector fields only if p D 3. Therefore, we assume p D 3 when describing
the configuration of negative curves.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/3;0, E.4/1;1, E.4/1;2, `.4/y and `.4/z and .�1/–curves E1;3, E.4/2;1,
E
.4/
3;1, `.4/x and `.4/x�y , with configuration as in 1E of Figure 22.

This is case 1E.

Case 2F We have E D .E1;2[E2;2/� .E
.3/
1;1 [E

.3/
2;1[ `

.3/
x [ `

.3/
y / and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �x2yC�z3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i3��.

� �xy2C�z3 is E2;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i3��.
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Note that the involution x $ y of P2 lifts to an automorphism of X interchanging E1;2 and E2;2.
Moreover, since X has degree 2, we are only allowed to blow up one more point. Hence, we have a
unique choice for p1;3 and p2;3 up to isomorphism:

(1) p1;3 DE1;2\C
.3/ with C D V.x2yC z3/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 3;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i3 D 1

9>=>; if p D 3:

Hence, X 0 has global vector fields only if p D 3. Therefore, we assume p D 3 when describing
the configuration of negative curves.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/1;2, `.4/x , `.4/y and `.4/z and .�1/–curves E1;3, E.4/2;2
and E.4/3;0, with configuration as in Figure 17, case 1G.

By Corollary 3.3, we have X 0 ŠX1G .

Case 3E We have E DE1;2� .E
.3/
1;1 [ `

.3/
y / and

Aut0X .R/D

8<:
0@1 1

i

1A 2 PGL3.R/

9=; :
� �x2yC�z3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i3��.

Hence, we have a unique choice for p1;3 up to isomorphism:

(1) p1;3 DE1;2\C
.3/ with C D V.x2yC z3/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 3;8̂<̂
:
0B@1 1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i3 D 1

9>=>; if p D 3:

Hence, X 0 has global vector fields only if p D 3. Therefore, we assume p D 3 when describing
the configuration of negative curves.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/1;2, `.4/y and `.4/z and .�1/–curves E1;3, E.4/2;1, E.4/3;0
and `.4/x , with configuration as in Figure 18, case 2J.

By Corollary 3.3, we have X 0 ŠX2J .

Case 4E This case exists only if p ¤ 2. We have E DE1;2�E
.3/
1;1 and

Aut0X .R/D

8<:
0@1 c

1

1

1A 2 PGL3.R/

9=; :
� �.x2yC xz2/C�z3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W�� c��.
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In particular, the stabilizer of every point on E \E1;2 is trivial, and hence this case does not lead to
additional weak del Pezzo surfaces with global vector fields.

Case 4M This case exists only if p D 2. We have E DE1;2�E
.3/
1;1 and

Aut0X .R/D

8<:
0@1 c

1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=; :
� �.x2yC xz2/C�z3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i�C c��.

In particular, Aut0X acts transitively onE\E1;2, so there is a unique possibility for p1;3 up to isomorphism:

(1) p1;3 DE1;2\C
.3/
1 with C1 D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 1

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ i2 D 1

9=;.

� We have .�2/–curves E.4/1;0, E.4/1;1, E.4/1;2 and `.4/z and .�1/–curves E1;3, E.4/2;0, E.4/3;0, `.4/y , C .4/1 and
C
.4/
2 with C2 D V.xyCy2C z2/, with configuration as in Figure 13, case 3N.

By Corollary 3.3, we have X 0 ŠX3N .

Case 4H We have E DE1;2� .E
.3/
1;1 [ `

.3/
y / and

Aut0X .R/D

8<:
0@1 c

1

i

1A 2 PGL3.R/

9=; :
� �x2yC�z3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W i3��.

Since Aut0X acts transitively on E \E1;2, there is a unique possibility for p1;3 up to isomorphism:

(1) p1;3 DE1;2\C
.3/ with C D V.x2yC z3/.

� Aut0X 0.R/D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

8̂<̂
:
0B@1 c

1

1

1CA 2 PGL3.R/

9>=>; if p ¤ 3;

8̂<̂
:
0B@1 c

1

i

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ i3 D 1

9>=>; if p D 3:

We describe the configurations of negative curves on X 0 for p ¤ 3 and p D 3 simultaneously:

� We have .�2/–curves E.4/1;0, E.4/1;1, E.4/1;2, `.4/y and `.4/z and .�1/–curves E1;3, E.4/2;0 and E.4/3;0, with
configuration as in Figure 19, case 3F or 3K.

By Corollary 3.3, we have X 0 ŠX3F if p ¤ 3, and X 0 ŠX3K if p D 3.
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Case 2J This case exists only if p D 3. We have E D .E1;2[E2;2/� .E
.3/
1;1 [E

.3/
2;1/ and

Aut0X .R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9=; :
� �.x2zC xy2/C�y3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W��.

� �.xy2Cyz2/C�z3 is E2;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W��.

Note that X has degree 2, and hence we are only allowed to blow up one more point. Moreover, there is a
unique point on E\E1;2 and on E\E2;2 with nontrivial stabilizer. Therefore, we have two possibilities
for p1;3 and p2;3:

(1) p2;3 DE2;2\C
.3/ with C D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9=;.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/2;2, `.4/x and `.4/z and .�1/–curves E2;3, E.4/1;2,
E
.4/
3;0, `.4/y and C .4/, with configuration as in Figure 22, case 1E.

Blowing down the .�1/–curve in Figure 22 (1E) that is not adjacent to any other .�1/–curve, we see that
X 0 is a blowup of X2B in one point on E and X 0 ŠX1E by Remark 3.4.

(2) p1;3 DE1;2\C
.3/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9=;.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/1;2, `.4/x and `.4/z and .�1/–curves E1;3, E.4/2;2,
E
.4/
3;0, `.4/y and C .4/, with configuration as in Figure 22, case 1E.

Blowing down the .�1/–curve in Figure 22 (1E) that is not adjacent to any other .�1/–curve, we see that
X 0 is a blowup of X2B in one point on E and X 0 ŠX1E by Remark 3.4.

Case 3F This case exists only if p ¤ 3. We have E D .E1;2[E2;2/� .E
.3/
1;1 [E

.3/
2;1/ and

Aut0X .R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

9=; :
� �.x2zC xy2/C�y3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W�� 2f ��.

� �.xy2Cyz2/C�z3 is E2;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W��f ��.

If p ¤ 2, then Aut0X acts simply transitively on both E \E1;2 and E \E2;2, and hence we cannot blow
up X any further and still obtain a weak del Pezzo surface with global vector fields. If p D 2, then Aut0X
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2K and 2R

Figure 23

still acts transitively on E \E2;2, but now it acts trivially on E \E1;2. This leads to the following
possibilities for p1;3:

(1) p1;3 DE1;2\C
.3/ with C D V.x2zC xy2C˛y3/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2; 3;8̂<̂
:
0B@1 1 f

1

1CA 2 PGL3.R/

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/1;2 and `.4/z and .�1/–curves E1;3, E.4/2;2 and `.4/x ,
with configuration as in 2R of Figure 23.

This is case 2R and we see that we get a 1–dimensional family of such surfaces X2R;˛ depending on the
parameter ˛.

Case 3K This case exists only if p D 3. We have E D .E1;2[E2;2/� .E
.3/
1;1 [E

.3/
2;1/ and

Aut0X .R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9=; :
� �.x2zC xy2/C�y3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W�� 2ef ��.

� �.xy2Cyz2/C�z3 is E2;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W�� ef ��.

Note that Aut0X acts transitively on both E\E1;2 and E\E2;2. The stabilizer of every point on E\E1;2
is isomorphic to �3, and this �3 has a unique fixed point on E \E2;2. This leads to three possibilities
for p1;3 and p2;3 up to isomorphism:

(1) p1;3 DE1;2\C
.3/
1 and p2;3 DE2;2\C

.2/
2 with C1 D V.xzCy2/ and C2 D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9=;.
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� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/1;2, E.4/2;2 and `.4/z and .�1/–curves E1;3, E2;3,
`
.4/
x , C .4/2 and C .4/3 with C3 D V.x2y2C x3zC z4/, with configuration as in Figure 22, case 1E.

Blowing down the .�1/–curve in Figure 22 (1E) that is not adjacent to any other .�1/–curve, we see that
X 0 is a blowup of X2B in one point on E and X 0 ŠX1E by Remark 3.4.

(2) p2;3 DE2;2\C
.3/ with C D V.xyC z2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9=;.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/2;2 and `.4/z and .�1/–curves E2;3, E.4/1;2, `.4/x
and C .4/, with configuration as in Figure 18, case 2J.

By Corollary 3.3, we have X 0 ŠX2J .

(3) p1;3 DE1;2\C
.3/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9=;.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/1;2 and `.4/z and .�1/–curves E1;3, E.4/2;2 and `.4/x ,
with configuration as in 2K of Figure 23.

This is case 2K.

Case 3I We have E D .E1;2[E2;2/� .E
.3/
1;1 [E

.3/
2;1[ `

.3/
x / and

Aut0X .R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

9=; :
� �.x2zC xy2/C�y3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W e3�� 2ef ��.

� �xy2C�z3 is E2;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W e6��.

Note that Aut0X acts transitively on E \E2;2. If p ¤ 2 (resp. p D 2), then Aut0X acts transitively (resp.
with two orbits) on E \E1;2. We have five possibilities for p1;3; p2;3 up to isomorphism:

(1) p1;3 D E1;2 \C
.3/
1 and p2;3 D E2;2 \C

.3/
2 with C1 D V.x2zC xy2C y3/, C2 D V.xy2C ˛z3/

and ˛ ¤ 0.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 1 f

1

1CA 2 PGL3.R/

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.
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� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/1;2, E.4/2;2, `.4/x and `.4/z and .�1/–curves E1;3
and E2;3, with configuration as in 1Q of Figure 24.

This is case 1Q and we see that we get a 1–dimensional family of such surfaces X1Q;˛ depending on the
parameter ˛.

(2) p1;3 DE1;2\C
.3/
1 and p2;3 DE2;2\C

.3/
2 with C1 D V.xzCy2/ and C2 D V.xy2C z3/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2;8̂<̂
:
0B@1 e f

e2

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ e4 D 1

9>=>; if p D 2:

Hence, X 0 has global vector fields only if p D 2. Therefore, we assume p D 2 when describing
the configuration of negative curves.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/1;2, E.4/2;2, `.4/x and `.4/z and .�1/–curves E1;3
and E2;3, with configuration as in 1R of Figure 24.

This is case 1R.

(3) p2;3 DE2;2\C
.3/ with C D V.xy2C z3/.

� Aut0X 0.R/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

8̂<̂
:
0B@1 1 f

1

1CA 2 PGL3.R/

9>=>; if p ¤ 2;

8̂<̂
:
0B@1 e f

e2

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ e4 D 1

9>=>; if p D 2:

We describe the configurations of negative curves on X 0 for p ¤ 2 and p D 2 simultaneously:

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/2;2, `.4/x and `.4/z and .�1/–curves E2;3 and E.4/1;2,
with configuration as in 2H and 2V of Figure 24.

This is case 2H if p ¤ 2, and case 2V if p D 2.

(4) p1;3 DE1;2\C
.3/ with C D V.xzCy2/.

� Aut0X 0.R/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

8̂<̂
:
0B@1 e

e2

1CA 2 PGL3.R/

9>=>; if p ¤ 2;

8̂<̂
:
0B@1 e f

e2

1CA 2 PGL3.R/

9>=>; if p D 2:

We describe the configurations of negative curves on X 0 for p ¤ 2 and p D 2 simultaneously:
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1Q and 1R 2H and 2V 2G, 2T and 2U

Figure 24

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/1;2, `.4/x and `.4/z and .�1/–curves E1;3 and E.4/2;2,
with configuration as in 2G and 2U of Figure 24.

This is case 2G if p ¤ 2, and case 2U if p D 2.

(5) p D 2 and p1;3 DE1;2\C
.3/ with C D V.x2zC xy2Cy3/.

� Aut0X 0.R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/2;1, E.4/1;2, `.4/x and `.4/z and .�1/–curves E1;3 and E.4/2;2,
with configuration as in 2T of Figure 24.

This is case 2T.

Case 4K We have E DE2;2� .E
.3/
2;1[ `

.3/
x / and

Aut0X .R/D

8<:
0@1 e f

i

1A 2 PGL3.R/

9=; :
� �xy2C�z3 is E2;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W i3��.

Since Aut0X acts transitively on E \E2;2, there is a unique possibility for p2;3 up to isomorphism:

(1) p2;3 DE2;2\C
.3/ with C D V.xy2C z3/.

� Aut0X 0.R/D

8<:
0@1 e f

i

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e2 D i3

9=;.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/2;1, E.4/2;2, `.4/x and `.4/z and .�1/–curves E2;3 and E.4/1;1, with
configuration as in Figure 19, case 3I.

By Corollary 3.3, we have X 0 ŠX3I .
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Case 4I We have E DE1;2�E
.3/
1;1 and

Aut0X .R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

9=; :
� �.x2zC xy2/C�y3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W e3�� 2ef ��.

If p ¤ 2, then Aut0X acts transitively on E \E1;2, while if p D 2, then Aut0X has two orbits on E \E1;2.
Hence, if p D 2, there is only one possibility for p1;3 and if p D 2, there are two possibilities up to
isomorphism:

(1) p1;3 DE1;2\C
.3/ with C D V.xzCy2/.

� Aut0X 0.R/D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

8̂<̂
:
0B@1 e

e2

1CA 2 PGL3.R/

9>=>; if p ¤ 2;

8̂<̂
:
0B@1 e f

e2

1CA 2 PGL3.R/

9>=>; if p D 2:

We describe the configurations of negative curves on X 0 for p ¤ 2 and p D 2 simultaneously:

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/1;2 and `.4/z and .�1/–curves E1;3, E.4/2;1 and `.4/x , with
configuration as in 3G and 3P of Figure 25.

This is case 3G if p ¤ 2, and case 3P if p D 2.

(2) p D 2 and p1;3 DE1;2\C
.3/ with C D V.x2zC xy2Cy3/.

� Aut0X 0.R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.4/1;0, E.4/2;0, E.4/1;1, E.4/1;2 and `.4/z and .�1/–curves E1;3, E.4/2;1 and `.4/x , with
configuration as in 3O of Figure 25.

This is case 3O.

Case 5E We have E DE1;2�E
.3/
1;1 and

Aut0X .R/D

8<:
0@1 c

e f

e2

1A 2 PGL3.R/

9=; :
� �.x2zC xy2/C�y3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W e3�� 2ef ��.

As in the previous case, if p ¤ 2, there is only one possibility for p1;3 up to isomorphism, and if p D 2,
there are two possibilities up to isomorphism:
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3G, 3O and 3P 4J, 4N and 4O

Figure 25

(1) p1;3 DE1;2\C
.3/ with C D V.xzCy2/.

� Aut0X 0.R/D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

8̂<̂
:
0B@1 c

e

e2

1CA 2 PGL3.R/

9>=>; if p ¤ 2;

8̂<̂
:
0B@1 c

e f

e2

1CA 2 PGL3.R/

9>=>; if p D 2:

We describe the configurations of negative curves on X 0 for p ¤ 2 and p D 2 simultaneously:

� We have .�2/–curvesE.4/1;0, E.4/1;1, E.4/1;2 and `.4/z and .�1/–curvesE1;3 andE.4/2;0, with configuration
as in 4J and 4O of Figure 25.

This is case 4J if p ¤ 2, and case 4O if p D 2.

(2) p D 2 and p1;3 DE1;2\C
.3/ with C D V.x2zC xy2Cy3/.

� Aut0X 0.R/D

8<:
0@1 c

1 f

1

1A 2 PGL3.R/

9=;.

� We have .�2/–curvesE.4/1;0, E.4/1;1, E.4/1;2 and `.4/z and .�1/–curvesE1;3 andE.4/2;0, with configuration
as in 4N of Figure 25.

This is case 4N.

Case 6E We have E DE1;2�E
.3/
1;1 and

Aut0X .R/D

8<:
0@1 b c

e f

e2

1A 2 PGL3.R/

9=; :
� �.x2zC xy2/C�y3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W e3�� be2�� 2ef ��.

Since Aut0X acts transitively on E \E1;2, there is a unique possibility for p1;3 up to isomorphism:
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(1) p1;3 DE1;2\C
.3/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 �2fe�1 c

e f

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.4/1;0, E.4/1;1 and E.4/1;2 and .�1/–curves E1;3 and `.4/z , with configuration as
in Figure 21, case 5E.

By Corollary 3.3, we have X 0 ŠX5E .

Case 6F We have E DE1;2� .E
.3/
1;1 [ `

.3/
z / and

Aut0X .R/D

8<:
0@1 b c

e f

i

1A 2 PGL3.R/

9=; :
� �x2zC�y3 is E1;2–adapted and Aut0X .R/ acts as Œ� W�� 7! Œi� W e3��.

Since Aut0X acts transitively on E \E1;2, there is a unique possibility for p1;3 up to isomorphism:

(1) p1;3 DE1;2\C
.3/ with C D V.x2zCy3/.

� Aut0X 0.R/D

8<:
0@1 b c

e f

e3

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.4/1;0, E.4/1;1, E.4/1;2 and `.4/z and .�1/–curve E1;3, with configuration as in 5F
of Figure 26.

This is case 5F.

Summarizing, we obtain

L4 D fX1E ; X2R;˛; X2K ; X1Q;˛; X1R; X2H ; X2V ; X2G ; X2U ; X2T ; X3G ; X3P ; X3O ;
X4J ; X4O ; X4N ; X5F g:

4.6 Height 5

Case 2R This case exists only if p D 2. We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

9=; :
� �.xC˛y/2.xzCy2C˛yz/C�y4 is E1;3–adapted and Aut0X .R/ acts as

Œ� W�� 7! Œ� W�C . f̨ Cf 2/��:
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3
3

5F 1M 1F

Figure 26

Therefore, if ˛ ¤ 0, then the identity component of the stabilizer of every point on E \E1;3 is trivial,
hence there is no way of further blowing up X and still obtaining a weak del Pezzo surface with global
vector fields. If ˛ D 0, then there is the following unique possibility for p1;4 up to isomorphism:

(1) p1;4 DE1;3\C
.4/
1 with C1 D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

ˇ̌̌̌
ˇ f 2 D 0

9=;.

� We have .�2/–curves E.5/1;0, E.5/2;0, E.5/1;1, E.5/2;1, E.5/1;2, E.5/1;3 and `.5/z and .�1/–curves E1;4, E.5/2;2,
`
.5/
x , C .5/1 and C .5/2 with C2 D V.x2y2C x3zC z4/, with configuration as in 1M of Figure 26.

This is case 1M.

Case 2K This case exists only if p D 3. We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9=; :
� �x2.xzCy2/C�y4 is E1;3–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W e��.

Note that there is a unique point on E \E1;3 with nontrivial stabilizer. This leads to a unique possibility
for p1;4:

(1) p1;4 DE1;3\C
.4/
1 with C1 D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9=;.

� We have .�2/–curves E.5/1;0, E.5/2;0, E.5/1;1, E.5/2;1, E.5/1;2, E.5/1;3 and `.5/z and .�1/–curves E1;4, E.5/2;2,
`
.5/
x C

.5/
1 and C .5/2 with C2 D V.x2y2 C x3z C z4 C 2xyz2/, with configuration as in 1F of

Figure 26.

This is case 1F.
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Case 2H This case exists only if p ¤ 2. We have E DE2;3�E
.4/
2;2 and

Aut0X .R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

9=; :
� �y.xy2C z3/C�z4 is E2;3–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W�� 2f ��.

In particular, since p ¤ 2, the stabilizer of every point on E \E2;3 is trivial, and hence there is no way
of further blowing up X and obtaining a weak del Pezzo surface with global vector fields.

Case 2V This case exists only if p D 2. We have E DE2;3�E
.4/
2;2 and

Aut0X .R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e4 D 1

9=; :
� �y.xy2C z3/C�z4 is E2;3–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe3� W��.

This leads to two possibilities for p1;4:

(1) p2;4 DE2;3\C
.4/ with C D V.xy3Cyz3C˛z4/ and ˛ ¤ 0.

� Aut0X 0.R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.5/1;0, E.5/2;0, E.5/1;1, E.5/2;1, E.5/2;2, E.5/2;3, `.5/x and `.5/z and .�1/–curves E2;4 and
E
.5/
1;2, with configuration as in Figure 24, case 1Q.

By Corollary 3.3, we have X 0 ŠX1Q;˛0 for some ˛0.

(2) p2;4 DE2;3\C
.4/ with C D V.xy2C z3/.

� Aut0X 0.R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ e4 D 1

9=;.

� We have .�2/–curves E.5/1;0, E.5/2;0, E.5/1;1, E.5/2;1, E.5/2;2, E.5/2;3, `.5/x and `.5/z and .�1/–curves E2;4 and
E
.5/
1;2, with configuration as in Figure 24, case 1R.

By Corollary 3.3, we have X 0 ŠX1R.

Case 2G This case exists only if p ¤ 2. We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

9=; :
� �x2.xzCy2/C�y4 is E1;3–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e2��.
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Since p ¤ 2, there is a unique point on E \E1;3 such that the identity component of its stabilizer is
nontrivial. This leads to a unique possibility for p1;4:

(1) p1;4 DE1;3\C
.4/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.5/1;0, E.5/2;0, E.5/1;1, E.5/2;1, E.5/1;2, E.5/1;3, `.5/x and `.5/z and .�1/–curves E1;4,
E
.5/
2;2 and C .5/, with configuration as in 1C of Figure 27.

This is case 1C.

Case 2U This case exists only if p D 2. We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

9=; :
� �x2.xzCy2/C�y4 is E1;3–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W e4�Cf 2��.

Since Aut0X acts transitively on E \E1;3, there is a unique possibility for p1;4 up to isomorphism:

(1) p1;4 DE1;3\C
.4/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ f 2 D 0

9=;.

� We have .�2/–curves E.5/1;0, E.5/2;0, E.5/1;1, E.5/2;1, E.5/1;2, E.5/1;3, `.5/x and `.5/z and .�1/–curves E1;4,
E
.5/
2;2 and C .5/, with configuration as in 1P of Figure 27.

This is case 1P.

Case 2T This case exists only if p D 2. We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

9=; :
� �.x C y/.x2z C xy2 C y3 C y2z/ C �y4 is E1;3–adapted and Aut0X .R/ acts as Œ� W �� 7!
Œ� W�C .f Cf 2/��.

Note that the identity component of the stabilizer of every point on E \E1;3 is trivial, hence we cannot
blow up further and still obtain a weak del Pezzo surface with global vector fields.
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1C and 1P 2C and 2S

Figure 27

Case 3G This case exists only if p ¤ 2. We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

9=; :
� �x2.xzCy2/C�y4 is E1;3–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e2��.

Since p ¤ 2, there is a unique point on E \E1;3 for which the identity component of the stabilizer is
nontrivial. This leads to a unique possibility for p1;4:

(1) p1;4 DE1;3\C
.4/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.5/1;0, E.5/2;0, E.5/1;1, E.5/1;2, E.5/1;3 and `.5/z and .�1/–curves E1;4, E.5/2;1, `.5/x
and C .5/, with configuration as in 2C of Figure 27.

This is case 2C.

Case 3P This case exists only if p D 2. We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

9=; :
� �x2.xzCy2/C�y4 is E1;3–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W e4�Cf 2��.

Since Aut0X acts transitively on E \E1;3, there is a unique possibility for p1;4 up to isomorphism:

(1) p1;4 DE1;3\C
.4/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ f 2 D 0

9=;.
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� We have .�2/–curves E.5/1;0, E.5/2;0, E.5/1;1, E.5/1;2, E.5/1;3 and `.5/z and .�1/–curves E1;4, E.5/2;1, `.5/x
and C .5/, with configuration as in 2S of Figure 27.

This is case 2S.

Case 3O This case exists only if p D 2. We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

9=; :
� �.x C y/.x2z C xy2 C y3 C y2z/ C �y4 is E1;3–adapted and Aut0X .R/ acts as Œ� W �� 7!
Œ� W�C .f Cf 2/��.

In particular, the identity component of the stabilizer of every point on E \E1;3 is trivial, hence we
cannot blow up further.

Case 4J This case exists only if p ¤ 2. We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 c

e

e2

1A 2 PGL3.R/

9=; :
� �x2.xzCy2/C�y4 is E1;3–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e2�C c��.

Since Aut0X acts transitively on E \E1;3, we have a unique possibility for p1;4 up to isomorphism:

(1) p1;4 DE1;3\C
.4/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.5/1;0, E.5/1;1, E.5/1;2, E.5/1;3 and `.5/z and .�1/–curves E1;4, E.5/2;0 and C .5/, with
configuration as in Figure 25, case 3G.

By Corollary 3.3, we have X 0 ŠX3G .

Case 4O This case exists only if p D 2. We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 c

e f

e2

1A 2 PGL3.R/

9=; :
� �x2.xzCy2/C�y4 is E1;3–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe2� W e4�C .ce2Cf 2/��.

Since Aut0X acts transitively on E \E1;3, we have a unique possibility for p1;4 up to isomorphism:
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(1) p1;4 DE1;3\C
.4/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 f 2e�2

e f

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.5/1;0, E.5/1;1, E.5/1;2, E.5/1;3 and `.5/z and .�1/–curves E1;4, E.5/2;0 and C .5/, with
configuration as in Figure 25, case 3P.

By Corollary 3.3, we have X 0 ŠX3P .

Case 4N This case exists only if p D 2. We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 c

1 f

1

1A 2 PGL3.R/

9=; :
� �.x C y/.x2z C xy2 C y3 C y2z/ C �y4 is E1;3–adapted and Aut0X .R/ acts as Œ� W �� 7!
Œ� W�C .cCf Cf 2/��.

Since Aut0X acts transitively on E \E1;3, we have a unique possibility for p1;4 up to isomorphism:

(1) p1;4 DE1;3\C
.4/
1 with C1 D V.x2zC xy2Cy3/.

� Aut0X 0.R/D

8<:
0@1 f Cf 2

1 f

1

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.5/1;0, E.5/1;1, E.5/1;2, E.5/1;3 and `.5/z and .�1/–curves E1;4, E.5/2;0 and C .5/2 with
C2 D V.xzCyzCy2/, with configuration as in Figure 25, case 3O.

By Corollary 3.3, we have X 0 ŠX3O .

Case 5F We have E DE1;3�E
.4/
1;2 and

Aut0X .R/D

8<:
0@1 b c

e f

e3

1A 2 PGL3.R/

9=; :
� �x.x2zCy3/C�y4 is E1;3–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e�� 2b��.

Therefore, if p ¤ 2, we have one unique possibility for p1;4 2E \E1;3, while if p D 2, there are two
possibilities:
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4L, 4P and 4Q

Figure 28

(1) p1;4 DE1;3\C
.4/ with C D V.x2zCy3/.

� Aut0X 0.R/D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

8̂<̂
:
0B@1 c

e f

e3

1CA 2 PGL3.R/

9>=>; if p ¤ 2;

8̂<̂
:
0B@1 b c

e f

e3

1CA 2 PGL3.R/

9>=>; if p D 2:

We describe the configurations of negative curves on X 0 for p ¤ 2 and p D 2 simultaneously:

� We have .�2/–curves E.5/1;0, E.5/1;1, E.5/1;2, E.5/1;3 and `.5/z and .�1/–curve E1;4, with configuration as
in 4L and 4Q of Figure 28.

This is case 4L if p ¤ 2, and case 4Q if p D 2.

(2) p D 2 and p1;4 DE1;3\C
.4/ with C D V.x3zC xy3Cy4/.

� Aut0X 0.R/D

8<:
0@1 b c

1 f

1

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.5/1;0, E.5/1;1, E.5/1;2, E.5/1;3 and `.5/z and .�1/–curve E1;4, with configuration as
in 4P of Figure 28.

This is case 4P.

Summarizing, we obtain

L5 D fX1M ; X1F ; X1C ; X1P ; X2C ; X2S ; X4L; X4Q; X4P g:

4.7 Height 6

Case 2C This case exists only if p ¤ 2. We have E DE1;4�E
.5/
1;3 and

Aut0X .R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

9=; :
� �x3.xzCy2/C�y5 is E1;4–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e3��.
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Note that if p¤3, then there is a unique point onE\E1;4 such that the identity component of its stabilizer
is nontrivial. If p D 3, this identity component is nontrivial for every point. In all characteristics, the
action of Aut0X on E \E1;4 has two orbits. Hence, we have two possibilities for p1;5 up to isomorphism:

(1) p1;5 DE1;4\C
.5/
1 with C1 D V.x4zC x3y2Cy5/.

� Aut0X 0.R/D

8̂̂̂<̂
ˆ̂:
fidg if p ¤ 2; 3;8̂<̂
:
0B@1 e

e2

1CA 2 PGL3.R/

ˇ̌̌̌
ˇ e3 D 1

9>=>; if p D 3:

Hence, X 0 has global vector fields only if p D 3. Therefore, we assume p D 3 when describing
the configuration of negative curves.

� We have .�2/–curves E.6/1;0, E.6/2;0, E.6/1;1, E.6/1;2, E.6/1;3, E.6/1;4 and `.6/z and .�1/–curves E1;5, E.6/2;1,
`
.6/
x , C .6/2 and C .6/3 with C2D V.xzCy2/ and C3D V.xy4�xyz3�x2y2zCx3z2�y3z2�z5/,

with configuration as in Figure 26, case 1F.

By Corollary 3.3, we have X 0 ŠX1F .

(2) p1;5 DE1;4\C
.5/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e

e2

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.6/1;0, E.6/2;0, E.6/1;1, E.6/1;2, E.6/1;3, E.6/1;4, `.6/z and C .6/ and .�1/–curves E1;5,
E
.6/
2;1 and `.6/x , with configuration as in Figure 27, case 1C.

By Corollary 3.3, we have X 0 ŠX1C .

Case 2S This case exists only if p D 2. We have E DE1;4�E
.5/
1;3 and

Aut0X .R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ f 2 D 0

9=; :
� �x3.xzCy2/C�y5 is E1;4–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e3��.

Since Aut0X acts on E \E1;4 with two orbits, we have two possibilities for p1;5 up to isomorphism:

(1) p1;5 DE1;4\C
.5/
1 with C1 D V.x4zC x3y2Cy5/.

� Aut0X 0.R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

ˇ̌̌̌
ˇ f 2 D 0

9=;.
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� We have .�2/–curves E.6/1;0, E.6/2;0, E.6/1;1, E.6/1;2, E.6/1;3, E.6/1;4 and `.6/z and .�1/–curves E1;5, E.6/2;1,
`
.6/
x , C .6/2 and C .6/3 with C2 D V.xzCy2/ and C3 D V.xy4C x3z2C z5/, with configuration as

in Figure 26, case 1M.

By Corollary 3.3, we have X 0 ŠX1M .

(2) p1;5 DE1;4\C
.5/ with C D V.xzCy2/.

� Aut0X 0.R/D

8<:
0@1 e f

e2

1A 2 PGL3.R/

ˇ̌̌̌
ˇ f 2 D 0

9=;.

� We have .�2/–curves E.6/1;0, E.6/2;0, E.6/1;1, E.6/1;2, E.6/1;3, E.6/1;4, `.6/z and C .6/ and .�1/–curves E1;5,
E
.6/
2;1 and `.6/x , with configuration as in Figure 27, case 1P.

By Corollary 3.3, we have X 0 ŠX1P .

Case 4L This case exists only if p ¤ 2. We have E DE1;4�E
.5/
1;3 and

Aut0X .R/D

8<:
0@1 c

e f

e3

1A 2 PGL3.R/

9=; :
� �x2.x2zCy3/C�y5 is E1;4–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe� W e3�� 3f ��.

In particular, if p ¤ 3, then Aut0X acts transitively on E \E1;4 and we have only one choice for p1;5 up
to isomorphism, and if p D 3, then Aut0X acts with two orbits on E \E1;4. Hence we have two choices
up to isomorphism:

(1) p1;5 DE1;4\C
.5/ with C D V.x2zCy3/.

� Aut0X 0.R/D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

8̂<̂
:
0B@1 c

e

e3

1CA 2 PGL3.R/

9>=>; if p ¤ 2; 3;

8̂<̂
:
0B@1 c

e f

e3

1CA 2 PGL3.R/

9>=>; if p D 3:

We describe the configurations of negative curves on X 0 for p ¤ 2; 3 and p D 3 simultaneously:

� We have .�2/–curves E.6/1;0, E.6/1;1, E.6/1;2, E.6/1;3, E.6/1;4 and `.6/z and .�1/–curve E1;5, with configura-
tion as in 3J and 3M of Figure 29.

This is case 3J if p ¤ 2; 3, and case 3M if p D 3.

(2) Let p D 3 and p1;5 DE1;4\C
.5/ with C D V.x4zC x2y3Cy5/.

� Aut0X 0.R/D

8<:
0@1 c

1 f

1

1A 2 PGL3.R/

9=;.
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3J, 3L, 3M, 3Q and 3R

Figure 29

� We have .�2/–curves E.6/1;0, E.6/1;1, E.6/1;2, E.6/1;3, E.6/1;4 and `.6/z and .�1/–curve E1;5, with configura-
tion as in 3L of Figure 29.

This is case 3L.

Case 4Q This case exists only if p D 2. We have E DE1;4�E
.5/
1;3 and

Aut0X .R/D

8<:
0@1 b c

e f

e3

1A 2 PGL3.R/

9=; :
� �x2.x2zCy3/C�y5 is E1;4–adapted and Aut0X .R/ acts as Œ� W�� 7! Œe� W e3�C .b2eCf /��.

Since Aut0X acts transitively on E \E1;4, there is a unique choice for p1;5 up to isomorphism:

(1) p1;5 DE1;4\C
.5/ with C D V.x2zCy3/.

� Aut0X 0.R/D

8<:
0@1 b c

e b2e

e3

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.6/1;0, E.6/1;1, E.6/1;2, E.6/1;3, E.6/1;4 and `.6/z and .�1/–curve E1;5, with configura-
tion as in 3R of Figure 29.

This is case 3R.

Case 4P This case exists only if p D 2. We have E DE1;4�E
.5/
1;3 and

Aut0X .R/D

8<:
0@1 b c

1 f

1

1A 2 PGL3.R/

9=; :
� �x.x3zCxy3Cy4/C�y5 is E1;4–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W�C.bCb2Cf /��.

Since Aut0X acts transitively on E \E1;4, we have a unique choice for p1;5 up to isomorphism:

(1) p1;5 DE1;4\C
.5/ with C D V.x3zC xy3Cy4/.

� Aut0X 0.R/D

8<:
0@1 b c

1 b2C b

1

1A 2 PGL3.R/

9=;.
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2I, 2L, 2M, 2W, 2X and 2Y

Figure 30

� We have .�2/–curves E.6/1;0, E.6/1;1, E.6/1;2, E.6/1;3, E.6/1;4 and `.6/z and .�1/–curve E1;5, with configura-
tion as in 3Q of Figure 29.

This is case 3Q.

Summarizing, we obtain
L6 D fX3J ; X3M ; X3L; X3R; X3Qg:

4.8 Height 7

Case 3J This case exists only if p ¤ 2; 3. We have E DE1;5�E
.6/
1;4 and

Aut0X .R/D

8<:
0@1 c

e

e3

1A 2 PGL3.R/

9=; :
� �x3.x2zCy3/C�y6 is E1;5–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e3�C 2c�].

Since p ¤ 2, Aut0X acts transitively on E \E1;5, so there is a unique choice for p1;6 up to isomorphism:

(1) p1;6 DE1;5\C
.6/ with C D V.x2zCy3/.

� Aut0X 0.R/D

8<:
0@1 e

e3

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.7/1;0, E.7/1;1, E.7/1;2, E.7/1;3, E.7/1;4, E.7/1;5 and `.7/z and .�1/–curve E1;6, with
configuration as in 2I of Figure 30.

This is case 2I.

Case 3M This case exists only if p D 3. We have E DE1;5�E
.6/
1;4 and

Aut0X .R/D

8<:
0@1 c

e f

e3

1A 2 PGL3.R/

9=; :
� �x3.x2zCy3/C�y6 is E1;5–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e3�C 2c��.

As in the previous case, there is a unique choice for p1;6 up to isomorphism:
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(1) p1;6 DE1;5\C
.6/ with C D V.x2zCy3/.

� Aut0X 0.R/D

8<:
0@1 e f

e3

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.7/1;0, E.7/1;1, E.7/1;2, E.7/1;3, E.7/1;4, E.7/1;5 and `.7/z and .�1/–curve E1;6, with
configuration as in 2M of Figure 30.

This is case 2M.

Case 3L This case exists only if p D 3. We have E DE1;5�E
.6/
1;4 and

Aut0X .R/D

8<:
0@1 c

1 f

1

1A 2 PGL3.R/

9=; :
� �x.x4zC x2y3Cy5/C�y6 is E1;5–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W�C 2c��.

As in the previous case, there is a unique choice for p1;6 up to isomorphism:

(1) p1;6 DE1;5\C
.6/ with C D V.x4zC x2y3Cy5/.

� Aut0X 0.R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.7/1;0, E.7/1;1, E.7/1;2, E.7/1;3, E.7/1;4, E.7/1;5 and `.7/z and .�1/–curve E1;6, with
configuration as in 2L of Figure 30.

This is case 2L.

Case 3R This case exists only if p D 2. We have E DE1;5�E
.6/
1;4 and

Aut0X .R/D

8<:
0@1 b c

e b2e

e3

1A 2 PGL3.R/

9=; :
� �x3.x2zCy3/C�y6 is E1;5–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e3��.

Since Aut0X has two orbits on E \E1;5, we have two choices for p1;6 up to isomorphism:

(1) p1;6 DE1;5\C
.6/ with C D V.x5zC x3y3Cy6/.

� Aut0X 0.R/D

8<:
0@1 b c

1 b2

1

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.7/1;0, E.7/1;1, E.7/1;2, E.7/1;3, E.7/1;4, E.7/1;5 and `.7/z and .�1/–curve E1;6, with
configuration as in 2X of Figure 30.

This is case 2X.

Geometry & Topology, Volume 28 (2024)



3638 Gebhard Martin and Claudia Stadlmayr

(2) p1;6 DE1;5\C
.6/ with C D V.x2zCy3/.

� Aut0X 0.R/D

8<:
0@1 b c

e b2e

e3

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.7/1;0, E.7/1;1, E.7/1;2, E.7/1;3, E.7/1;4, E.7/1;5 and `.7/z and .�1/–curve E1;6, with
configuration as in 2Y of Figure 30.

This is case 2Y.

Case 3Q This case exists only if p D 2. We have E DE1;5�E
.6/
1;4 and

Aut0X .R/D

8<:
0@1 b c

1 b2C b

1

1A 2 PGL3.R/

9=; :
� �x2.x3zC xy3Cy4/C�y6 is E1;5–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W�C .b2C b/��.

Since Aut0X acts transitively on E \E1;5, we have a unique choice for p1;6 up to isomorphism:

(1) p1;6 DE1;5\C
.6/ with C D V.x3zC xy3Cy4/.

� Aut0X 0.R/D

8<:
0@1 c

1

1

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.7/1;0, E.7/1;1, E.7/1;2, E.7/1;3, E.7/1;4, E.7/1;5 and `.7/z and .�1/–curve E1;6, with
configuration as in 2W of Figure 30.

This is case 2W.

Summarizing, we obtain
L7 D fX2I ; X2M ; X2L; X2X ; X2Y ; X2W g:

4.9 Height 8

Case 2I This case exists only if p ¤ 2; 3. We have E DE1;6�E
.7/
1;5 and

Aut0X .R/D

8<:
0@1 e

e3

1A 2 PGL3.R/

9=; :
� �x4.x2zCy3/C�y7 is E1;6–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e4�].

Since p¤ 2, there is a unique point on E\E1;6 whose stabilizer has nontrivial identity component. This
leads to a unique choice for p1;7 up to isomorphism:
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1D, 1H, 1I, 1S and 1T

Figure 31

(1) p1;7 DE1;6\C
.7/ with C D V.x2zCy3/.

� Aut0X 0.R/D

8<:
0@1 e

e3

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.8/1;0, E.8/1;1, E.8/1;2, E.8/1;3, E.8/1;4, E.8/1;5, E.8/1;6 and `.8/z and .�1/–curve E1;7,
with configuration as in 1D of Figure 31.

This is case 1D.

Case 2M This case exists only if p D 3. We have E DE1;6�E
.7/
1;5 and

Aut0X .R/D

8<:
0@1 e f

e3

1A 2 PGL3.R/

9=; :
� �x4.x2zCy3/C�y7 is E1;6–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e4�].

Since Aut0X acts with two orbits on E \E1;6, we have two choices for p1;7 up to isomorphism:

(1) p1;7 DE1;6\C
.7/ with C D V.x6zC x4y3Cy7/.

� Aut0X 0.R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.8/1;0, E.8/1;1, E.8/1;2, E.8/1;3, E.8/1;4, E.8/1;5, E.8/1;6 and `.8/z and .�1/–curve E1;7,
with configuration as in 1H of Figure 31.

This is case 1H.

(2) p1;7 DE1;6\C
.7/ with C D V.x2zCy3/.

� Aut0X 0.R/D

8<:
0@1 e f

e3

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.8/1;0, E.8/1;1, E.8/1;2, E.8/1;3, E.8/1;4, E.8/1;5, E.8/1;6 and `.8/z and .�1/–curve E1;7,
with configuration as in 1I of Figure 31.

This is case 1I.
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Case 2L This case exists only if p D 3. We have E DE1;6�E
.7/
1;5 and

Aut0X .R/D

8<:
0@1 1 f

1

1A 2 PGL3.R/

9=; :
� �x2.x4zC x2y3Cy5/C�y7 is E1;6–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W�Cf �].

Hence, the stabilizer of every point on E \E1;6 is trivial, therefore we cannot blow up X further and
still obtain a weak del Pezzo surface with global vector fields.

Case 2X This case exists only if p D 2. We have E DE1;6�E
.7/
1;5 and

Aut0X .R/D

8<:
0@1 b c

1 b2

1

1A 2 PGL3.R/

9=; :
� �x.x5zCx3y3Cy6/C�y7 is E1;6–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W�C .bC b4/�].

Since Aut0X acts transitively on E \E1;6, there is a unique choice for p1;7 up to isomorphism:

(1) p1;7 DE1;6\C
.7/ with C D V.x5zC x3y3Cy6/.

� Aut0X 0.R/D

8<:
0@1 c

1

1

1A 2 PGL3.R/

9=;.

� We have .�2/–curves E.8/1;0, E.8/1;1, E.8/1;2, E.8/1;3, E.8/1;4, E.8/1;5, E.8/1;6 and `.8/z and .�1/–curve E1;7,
with configuration as in 1S of Figure 31.

This is case 1S.

Case 2Y This case exists only if p D 2. We have E DE1;6�E
.7/
1;5 and

Aut0X .R/D

8<:
0@1 b c

e b2e

e3

1A 2 PGL3.R/

9=; :
� �x4.x2zCy3/C�y7 is E1;6–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W e4�C b4�].

Since Aut0X acts transitively on E \E1;6, there is a unique choice for p1;7 up to isomorphism:

(1) p1;7 DE1;6\C
.7/ with C D V.x2zCy3/.

� Aut0X 0.R/D

8<:
0@1 b c

e b2e

e3

1A 2 PGL3.R/

ˇ̌̌̌
ˇ b4 D 0

9=;.

� We have .�2/–curves E.8/1;0, E.8/1;1, E.8/1;2, E.8/1;3, E.8/1;4, E.8/1;5, E.8/1;6 and `.8/z and .�1/–curve E1;7,
with configuration as in 1T of Figure 31.

This is case 1T.
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Case 2W This case exists only if p D 2. We have E DE1;6�E
.7/
1;5 and

Aut0X .R/D

8<:
0@1 c

1

1

1A 2 PGL3.R/

9=; :
� �x3.x3zC xy3Cy4/C�y7 is E1;6–adapted and Aut0X .R/ acts as Œ� W�� 7! Œ� W�C c�].

In particular, the identity component of the stabilizer of every point on E \E1;6 is trivial, hence we
cannot blow up further and still obtain a weak del Pezzo surface with global vector fields.

Summarizing, we obtain
L8 D fX1D; X1H ; X1I ; X1S ; X1T g:
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