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Reeb flows transverse to foliations

JONATHAN ZUNG

Let F be a cooriented C 2 foliation on a closed, oriented 3–manifold. We show that TF can be perturbed
to a contact structure with Reeb flow transverse to F if and only if F does not support an invariant
transverse measure. The resulting Reeb flow has no contractible orbits. This answers a question of Colin
and Honda. The main technical tool in our proof is leafwise Brownian motion which we use to construct
good transverse measures for F ; this gives a new perspective on the Eliashberg–Thurston theorem.

57K33, 57R30

1 Introduction

In their seminal work, Eliashberg and Thurston [1998] proved that a C 2 foliation of a closed, oriented
3–manifold not homeomorphic to S1 � S2 may be C 0 approximated by positive or negative contact
structures. When the foliation is taut, the approximating contact structures are universally tight and weakly
symplectically fillable. This theorem, along with its subsequent generalizations [Kazez and Roberts 2017;
Bowden 2016a], serves as a bridge between contact topology and the theory of foliations. In one direction,
one can export genus detection results from Gabai’s theory [1983] of sutured manifolds to the world of
Floer homology [Ozsváth and Szabó 2004]. In the other direction, a uniqueness result of Vogel [2016] for
the approximating contact structure implies that invariants of the approximating contact structure become
invariants of the deformation class of the foliation [Bowden 2016b].

Colin and Honda asked when the approximating contact structure can be chosen so that its Reeb flow is
transverse to the foliation. When this is the case, the foliation can be used to control the Reeb dynamics. In
particular, a transverse Reeb flow can have no contractible Reeb orbits. A contact form with this property
is called hypertight. The hypertight condition is useful for defining and computing pseudoholomorphic
curve invariants. A motivating example for us is cylindrical contact homology, an invariant of contact
structures that is well-defined when the contact structure supports at least one hypertight contact form
[Bao and Honda 2018; Hutchings and Nelson 2016; 2022].

Colin and Honda [2005] constructed such transverse Reeb flows for sutured hierarchies. They recently
extended their methods to finite-depth foliations on closed 3–manifolds [Colin and Honda 2022]. In
this setting, although the Reeb flow cannot be made transverse to the closed leaf, it is transverse to a
related essential lamination and hence has no contractible orbits. The goal of the present paper is to give
a complete answer to the existence question for transverse Reeb flows for all C 2 foliations.

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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3662 Jonathan Zung

A closed leaf is an obstruction to a transverse Reeb flow. Suppose that † is a closed, oriented surface and
˛ is the 1–form representing a contact structure �. By Stokes’ theorem,

R
† d˛ D 0, and it follows that

d˛ D 0 at some point on †. The Reeb flow must be tangent to † at this point. In particular, this implies
that foliations with transverse Reeb flows have no compact leaves, and hence are taut.

More generally, an invariant transverse measure for F is an obstruction to a transverse Reeb flow. We
prove that, for C 2 foliations, this is the only obstruction.

Theorem 1 Let F be a coorientable C 2 foliation on a closed , oriented 3–manifold M. Then TF can
be perturbed to a contact structure with Reeb flow transverse to F if and only if F does not support an
invariant transverse measure.

When F is taut, an invariant transverse measure gives rise to a nontrivial class in H 1.M;R/. Therefore,
we have the following corollary (cf Conjecture 1.5 from [Colin and Honda 2005]):

Corollary 2 IfM is a closed , oriented 3–manifold with a cooriented C 2 taut foliation andM © S1�S2,
then M supports a hypertight contact structure.

Proof If H 1.M;R/D 0, then the foliation has no invariant transverse measure and Theorem 1 applies.
Otherwise, M supports a finite-depth taut foliation. In this case, Theorem 3.14 of [Colin and Honda
2022] gives the desired hypertight contact structure.

One should think of invariant transverse measures as exceptional. In fact, under some conditions, it
follows from a result of Bonatti–Firmo that nonexistence of invariant transverse measures is generic for
C1 foliations.

Corollary 3 Suppose that M is a closed , oriented , atoroidal 3–manifold. Then any C1 taut foliation
on M is C 0 close to a hypertight contact structure.

Corollary 4 Cylindrical contact homology is an invariant of the taut deformation class of C1 taut
foliations on closed , oriented , atoroidal 3–manifolds.

We defer explanations of the last two corollaries to Section 3.5.

Our method contrasts with prior constructions of contact approximations. The strategy of Eliashberg
and Thurston begins with identifying some closed curves in leaves of F with attracting holonomy. They
produce a contact perturbation in the neighborhood of these curves, and then “flow” the contactness to
the rest of the 3–manifold. It is not clear how to control the Reeb vector field during this flow operation.
In the case of sutured hierarchies, Colin and Honda give an explicit inductive construction of the contact
perturbation. At each step of the sutured hierarchy, they can ensure that the Reeb flow has a good standard
form near the boundary compatible with the sutures.

Geometry & Topology, Volume 28 (2024)



Reeb flows transverse to foliations 3663

Our construction begins with an arbitrary transverse measure for F and smooths it out by logarithmic
diffusion. This process is similar to the leafwise heat flow studied by Garnett [1983]. The advantage
of our diffusion process is that we can show that in finite time, the transverse measure becomes log
superharmonic. Roughly speaking, this means that the transverse distance between two nearby leaves is
the exponential of a superharmonic function. This gives a global picture of the holonomy of F. Finally,
we show that there is a canonical way to deform a log superharmonic transverse measure into a contact
structure. Since this perturbation is done in one shot, we have full control over the Reeb flow.
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2 Examples

In this section, we give some concrete examples of foliations and how one may deform them to contact struc-
tures. The reader should keep these examples in mind while reading the rest of the paper. We expect that
this section can be read with minimal background, but the reader may wish to review Sections 3.1 and 3.3
for definitions of foliations and contact structures, and Sections 3.4 and 3.6 for a discussion of holonomy.

Example 5 (creating contact regions using holonomy) Consider R3 foliated by planes z D const and
endowed with the Riemannian metric g D dx2C dy2C 2�2x dz2. This is a local model for a foliation
with holonomy. One may produce a contact structure by rotating the tangent planes to the foliation
by a Riemannian angle of " around an axis parallel to the x–axis. Any line parallel to the x–axis is a
Legendrian. Traveling along such a Legendrian in the positive x–direction, the Riemannian angles are
constant, so the Euclidean angles are increasing. This twisting of contact planes along a Legendrian is the
hallmark of a contact structure.

In equations, the contact form is ˛ WD 2�x dzC " dy and

d˛ D�2�x dx ^ dz:

In this case, the Reeb flow is not transverse to the foliation but points in the y–direction. This construction
may equally well be done in the quotient of R3 by the isometry .x; y; z/ 7! .xC 1; y; 2z/. Here we have
seen the general rule that “Legendrians (in the characteristic foliation on a leaf of the foliation) flow in
the direction of contracting holonomy”.

This kind of construction is visualized in Figure 1. Three boxes are shown, each equipped with both a
product foliation transverse to the z–direction and an approximating contact structure. The top and bottom

Geometry & Topology, Volume 28 (2024)
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Figure 1

faces of each box are leaves. The red dotted lines show the characteristic foliation of the contact structure
on some of the boxes’ faces. Observe that in the first box, the slope of the characteristic foliation on the
left face is greater than the slope on the right face. These ever-increasing slopes are unsustainable in a
closed manifold. The second and third boxes (corresponding with Examples 5 and 6) are diffeomorphic
to the first, but we have introduced some contraction of the leaves of the foliation. Now the slopes on the
left and right faces can be made identical, facilitating gluing up to a closed manifold.

Example 6 (Anosov flows) Example 5 can be modified so that the Reeb flow is transverse to the leaves.
The Legendrian flow will be Anosov, ie spreading out in the y–direction as well as contracting in the
z–direction. The relevant metric is g D dx2C 22x dy2C 2�2x dz2 with the flow parallel to the x–axis.

It is instructive to write this example in different coordinates. Let

HD f.x; y/ j y > 0g

be the upper half-plane. Consider the manifold H�R, foliated by planes of the form H� fptg. Endow
the manifold H�R with coordinates x; y; t , where x and y correspond with the coordinates on H and t
parametrizes the R–factor. Let f .x; y; t/D y. The 1–form f dt defines the horizontal foliation and is
an example of a harmonic transverse measure. The flow parallel to the y–axis oriented in the negative
y–direction is an Anosov flow. The 1–form ˛ D f dt � " ? d logf is a contact perturbation of our
foliation. Indeed,

˛ D y dt C "
1

y
dx;

˛^ d˛ D "
�
2
1

y
dx ^ dy ^ dt

�
CO."2/:

This time, the Reeb flow is transverse to the foliation since d˛ evaluates positively on F. The moral here
is that “spreading of the Legendrians” in the characteristic foliation can contribute to contactness, and
also help to make the Reeb flow transverse to the foliation.

More generally, the stable/unstable foliations of Anosov flows have no invariant transverse measures,
and so are candidates for the application of Theorem 1. However, these stable/unstable foliations are in
general only C 1 so our theorem does not directly apply.
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Figure 2: This is a foliation by saddles of the solid torus with four longitudinal sutures. The
S1–direction is vertical. The limiting annular boundary leaves are added on the right. The red
dotted lines denote the characteristic foliation of an approximating contact structure.

Example 7 (a coarsely harmonic transverse measure) Here is an example of a foliation with holonomy
that one can keep in mind while reading the rest of the paper. Let P be a pair of pants with boundary
components a, b, and c. Let ' be a diffeomorphism of P exchanging b and c. Let M ı be the mapping
torus of '. The manifold M ı has a foliation by parallel copies of P. It has two toroidal boundary
components, each with a horizontal foliation and one “twice as long” as the other. Glue these boundary
components together by a map � 7! 2� , where � parametrizes the direction transverse to P. Call the
resulting foliated manifold M.

Now let f be a function on P which takes the value 1 on b and c and the value 2 on a. We can further
arrange that f is invariant under ' and has only a single critical point. Then f pulls back to M ı. After
some smoothing near the cuffs, the 1–form f d� is a smooth transverse measure on M. With respect to
this transverse measure, the manifold has contracting holonomy along paths from a to b or a to c.

We will return to the contact perturbation in this case in Example 35 in Section 5.

Example 8 (sutured manifold) The foliation in Example 7 has every leaf dense, but we will also need
to consider foliations whose leaves accumulate on sublaminations. The example to keep in mind is a
taut sutured manifold [Gabai 1983]. One of the simplest sutured manifolds is the solid torus Tn with
2n longitudinal sutures, n� 2. It is foliated by a stack of monkey saddles, each of which accumulates on
the boundary leaves. For a natural choice of Riemannian metric, the foliation has contracting holonomy
along every path to infinity in a leaf. This foliation may be perturbed into a contact structure whose
characteristic foliation on each leaf consists of radial lines emanating from a single elliptic singularity
to infinity. See Figure 2. Notice that the curves in the characteristic foliation travel in the direction of
contracting holonomy. The Reeb flow has a single periodic orbit along the core of the solid torus; every
other orbit enters along a positively oriented boundary leaf and leaves along a negatively oriented one.

Geometry & Topology, Volume 28 (2024)
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3 Preliminaries

3.1 Foliations and their regularity

A foliation on a 3–manifold M is a decomposition of M into surfaces, locally modeled on R2 �R.
A foliation is specified by a covering of M by charts such that their transition maps preserve the
decomposition of R3 into horizontal planes. The surfaces in the decomposition are called leaves. A
foliation is oriented if the transition maps preserve the orientations of the leaves and cooriented if the
transition maps preserve the orientation of the transverse R–factor.

For k� l , we say that a foliation is C k;l if the mixed partial derivatives of the transition maps up to order l
in the transverse direction and up to order k in total exist and are continuous. Calegari [2001] showed that
a C 1;0 foliation can be improved to a C1;0 foliation by a topological isotopy. His method extends to show
that a C l;l foliation can be improved to a C1;l foliation by a C l isotopy. (His Lemma 3.2 holds for C l;l

foliations, so one need only check that Lemma 3.3 in [Calegari 2001] works using C l isotopies.) However,
it might not be possible to improve the transverse regularity class of a foliation; the holonomy maps of a
C k;0 foliation are C 0 functions which might not be conjugate to smooth functions. A foliation is called C l

when it is C l;l. We will also use the notation C k;l to denote the regularity class of functions on M.

In this paper, all manifolds are closed and oriented. All foliations are oriented and cooriented. In light of
Calegari’s result, we will assume from now on that our foliations are C1;2 unless stated otherwise.

3.2 Taut foliations

An oriented C1;2 foliation F on an oriented 3–manifold M is taut if any of the following equivalent
conditions hold:

(1) For each point x 2M, there is a closed curve transverse to F passing through x.

(2) There is a volume-preserving flow transverse to F.

(3) There is a closed 2–form ! evaluating positively on TF.

Taut foliations enjoy a number of good properties:

(1) Loops transverse to F are not contractible.

(2) Leaves of F are �1–injective.

If we exclude the exceptional case M Š S1 �S2, we can say more:

(1) M is irreducible.

(2) The universal cover zM is R3.

(3) Leaves of zF are properly embedded planes in zM.

If a foliation has no compact leaves, then it is taut.

Geometry & Topology, Volume 28 (2024)
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3.3 Contact structures

A contact structure on an oriented 3–manifold M is a plane field � such that there exists a 1–form ˛ with
� D ker.˛/ and ˛ ^ d˛ > 0. The Reeb flow of ˛ is a vector field R uniquely defined by the following
properties:

d˛.R;�/D 0;

˛.R/D 1:

The Reeb flow is always transverse to � , and moreover is transverse to any tangent plane on which d˛ > 0.
The Reeb flow preserves ˛. In particular, it preserves the volume form ˛^d˛. Compare this with the second
definition of taut foliation above; it follows that a foliation with a transverse Reeb flow is taut. If �Dker.˛/
for some ˛ whose corresponding Reeb flow has no contractible closed orbits, we say that � is hypertight.

Given a surface †�M, the characteristic foliation of � on † is the singular codimension–1 foliation
on † defined by the intersection of � with †.

3.4 Transverse measures

A transversal to a foliation F is a smooth closed arc positively transverse to F. When M is endowed with
a Riemannian metric, we define an orthogonal transversal to be a transversal which is orthogonal to F.

A transverse measure � is an assignment of a nonnegative real number to each transversal to F. We ask
that the assignment be countably additive under concatenation of arcs.

Suppose that I1 and I2 are two transversals. We say that I1 and I2 are homotopic if there is a homotopy
H W Œ0; 1� � Œ0; 1� ! M between them such that H jŒ0;1��f0g D I1, H jŒ0;1��f1g D I2, H jf0g�Œ0;1� is
contained in a leaf of F, and H jf1g�Œ0;1� is contained in a leaf of F.

We say � is an invariant transverse measure if �.I1/D �.I2/ whenever I1 and I2 are homotopic and � is
not the zero transverse measure.

A compact leaf � gives rise to an invariant transverse measure which assigns to each transverse arc the
number of intersections with �. We will generally be concerned with C k;l transverse measures of full
support. By this we mean a transverse measure which can be encoded as a nowhere-vanishing C k;l

1–form � with ker.�/D TF. Note that a C1;k foliation always admits a C1;k�1 transverse measure of
full support. In a foliation chart with coordinates x; y; z, one may take the transverse measure to be g dz,
where g is any positive C1;k�1 function.

3.5 Perturbing away transverse measures

The following lemma was observed by Bowden and documented in [Zhang 2022, Lemma 7.2]:

Lemma 9 Let M be an atoroidal 3–manifold and F a C1 taut foliation on M. Then F can be
C 0 approximated by a C1 taut foliation F 0 such that either F 0 has no transverse invariant measure or the
pair .M;F 0/ is homeomorphic to a surface bundle over S1 foliated by the fibers.

Geometry & Topology, Volume 28 (2024)
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Proof sketch On C 2 foliations, invariant transverse measures are either supported on compact leaves or
have full support. This is a consequence of Sacksteder’s theorem [1965]; see also [Candel and Conlon
2000, Theorem 8.2.1]. In the former case, if F is C1, a result of Bonatti and Firmo [1994] allows us to
perturb away compact leaves of genus � 2. In the latter case, Tischler [1970] showed that .Y;F / is a
deformation of a fibration. See [Zhang 2022, Lemma 7.2] for more details.

Proof of Corollary 3 Given a C1 taut foliation F on an atoroidal manifold M, Lemma 9 yields a new
foliation F 0 which is C 0 close to F that either has no invariant transverse measure or is a surface bundle
over S1. If F 0 has no invariant transverse measure, then Theorem 1 applies. Suppose instead that F 0
is a surface bundle over S1. Since M is atoroidal, the fiber genus is at least 2 and the monodromy is
pseudo-Anosov. By [Colin and Honda 2022, Theorem 3.17], the (unique) contact perturbation of F 0 is
hypertight.

Proof of Corollary 4 Vogel proved that if F is a C 2 taut foliation on an atoroidal 3–manifold, all
contact structures in a C 0 neighborhood of TF are isotopic. Moreover, pairs of taut foliations which
are homotopic through taut foliations have isotopic contact approximations [Vogel 2016, Theorem 9.3].
By Corollary 3, this contact approximation is hypertight and hence has well-defined cylindrical contact
homology.

3.6 Holonomy

Let M be an oriented 3–manifold with a taut, cooriented C 2 foliation, F.

Let  W Œ0; T �!M be a path which is contained in a leaf of F and supported in a single foliation chart U.
Choose I0; IT , two transversals to F contained in U and passing through .0/; .T / respectively. We
define the holonomy map h W I0! IT to be the map which preserves the transverse coordinate of the
foliation chart; ie for all x 2 I0, x and h .x/ lie on the same leaf in U. If  0 is another path in the same
leaf of U and is homotopic rel endpoints to  , then h D h 0 . The holonomy map can be defined for
arbitrary paths  tangent to F by composing holonomy maps for short subpaths. As  grows in length,
the domain of h tends to shrink. From our perspective, we are usually just concerned with the germ at 0
of h , so this shrinking of the domain does not matter.

Since F is a C 2 foliation, h is C 2. Thus, we may take its derivative at .0/, which we call

h0 W T.0/.I0/! T.T /.IT /:

The embedding of I0 in M gives an identification of T.0/.I0/ with T?
.0/

F, and likewise an identification
of T.T /IT with T?

.T /
F. Via this identification, we may regard h0 as a map from T?

.0/
F to T?

.T /
F.

This map depends only on  and not on the choice of I0 and IT . Moreover, if  and  0 are two paths in
the same leaf of F and are homotopic rel endpoints, then

(1) h0 D h
0
 0 :
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Suppose now that F is equipped with aC1;1 transverse measure � , encoded as a 1–form with ker.�/DTF
and which evaluates positively on transversals to F. Then we define

jh0 j� D
�.h0 .v//

�.v/
;

where v is any nonzero vector in T?
.0/

F. In other words, jh0 j� is the factor by which holonomy along 
stretches �–lengths. Note that this norm does not depend heavily on the choice of � . Indeed, given any
two such differentiable transverse measures �; �, we have � D g� for some strictly positive function g
on M. Then for any path  in a leaf of F, one can verify that

inf
M
g2 �

jh0 j�

jh0 j�
� sup

M

g2:

Given a leaf �, let Q� be the universal cover of �. At this point, we are thinking of Q�, not as embedded
in zM. Choose a basepoint b in Q�. We define the Radon–Nikodym derivative of � to be the function
f�;�;b W Q�!R determined by the formula

f�;�;b.x/D jh
0
 j� ;

where  is a path in � which lifts to a path Q in Q� from b to x. By the homotopy invariance property
observed in (1), this definition is independent of the choice of the path  . One should think of f�;�;b as
the transverse distance to a nearby leaf as measured by � . Different choices of basepoint yield the same
function f�;�;b up to a constant factor. To be more precise, if b1 and b2 are two choices of basepoint
on Q� and  is a path in � which lifts to a path in Q� from b1 to b2, then

f�;�;b1 D jh
0
 j�f�;�;b2 :

When there is no danger of ambiguity, we abbreviate f�;�;b to f� .

Remark 10 In a foliation chart with coordinates x; y; z and leaves z D const, one may write any C1;1

transverse measure � as g dz for some C1;1 function g. The restriction of g to any given leaf � agrees
with f�;�;b up to multiplication by a constant depending only on the choice of basepoint. It follows that
f�;�;b is C1 on each leaf.

A theme in what follows is that for the best transverse measures, f�;�;b has no local minima. Fix a
Riemannian metric on M. Each leaf inherits a Riemannian metric from the Riemannian metric we chose
on M. If f�;�;b is a harmonic function on Q� for every choice of leaf �, we say that � is a harmonic
transverse measure. By Theorem 1c of [Garnett 1983], this is equivalent to more traditional notions of
harmonic transverse measure using the leafwise Laplacian operator, at least for differentiable transverse
measures like � . See also [Candel 2003; Deroin and Kleptsyn 2007] for more discussion of harmonic
transverse measures. When logf�;�;b is superharmonic (resp strictly superharmonic) on each leaf Q�, we
say that � is log superharmonic (resp strictly log superharmonic). Since log is a concave function, every
harmonic transverse measure is also log superharmonic.
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While f� is defined on Q� and makes sense only up to constant factors for each leaf, several related objects
descend to M. The 1–form d logf� is a well-defined section of T �F. It measures the infinitesimal rate
of contraction or expansion of leaves in directions tangent to F. The function � logf� , where � denotes
the leafwise Laplace–Beltrami operator, is consequently also defined on M. Finally, the leafwise level
sets of f� descend to a singular codimension–2 foliation on M.

Proposition 11 Suppose � is a C1;1 transverse measure of full support. Choose a vector field v
transverse to F with �.v/D 1. Then �vd� D�d logf� .v/ as sections of T �F.

Proof Choose a foliation chart with coordinates x, y, z, where F D ker.dz/. We may further arrange
that v is parallel to the z–axis. In this coordinate system, � D g dz for some C1;1 function g.

Now

(2) �vd� D �v.dg^ dz/D dg.v/ dz� dz.v/ dg

D dg.v/ dz�
1

g
dg (since �.v/D 1)

D dg.v/ dz� d logg:

As noted in Remark 10, g agrees with f� on each leaf up to a constant factor, so d logg D d logf� on
each leaf. When we restrict (2) to any given leaf �, the term dg.v/ dz vanishes and we are left with
�d logf� as desired.

3.7 Leafwise Brownian motion and diffusion

We provide here a summary of the main properties of Brownian motion that we will use. We direct
the reader to [Mörters and Peres 2010] for a comprehensive introduction to Brownian motion on Rn.
Chapters 3 and 4 of [Hsu 2002] provide a treatment of the Riemannian case. One may also consult [Deroin
and Kleptsyn 2007], which specializes to the leafwise Brownian motion that we will consider in this paper.

Let � be a complete Riemannian manifold with bounded geometry and let x be a point on �. As suggested
by the notation, the Riemannian manifold we consider will usually be a leaf of F with a Riemannian
metric inherited from one on M. Such a surface always has bounded geometry because M is compact.
Let �x be the space of all continuous paths  W Œ0;1/! � satisfying .0/D x. We equip �x with the
uniform topology on compact sets of Œ0;1/ and will use the induced Borel �–algebra.

On �x there is a probability measure Wx called the Wiener measure. We will often refer to a path drawn
from Wx as a Brownian path. For any function f on �, we define its time t diffusion Dt .f / by

Dt .f /.x/D E�Wx Œf ..t//�:

Let � be the Laplace–Beltrami operator on �. The Wiener measure satisfies the following properties:

(1) Markov property Suppose  is drawn from Wx . Fix some t0 � 0 and any y 2 �. Then after
conditioning on .t0/D y,  jŒt0;1/ is distributed like Wy . This implies that, for any t; t 0 � 0,

DtCt
0

DDt ıDt
0

:

Geometry & Topology, Volume 28 (2024)



Reeb flows transverse to foliations 3671

(2) Adapted to the metric For a real-valued C 2 function f0 on �,
@

@t
Dtf0

ˇ̌̌
tD0
D��f0:

In other words, Dt .f / is the time–t solution to the heat equation
@f

@t
D��f;

with initial condition f0.

Combining these two properties with linearity of expectation, we find that � commutes with diffusion
when applied to a C 2 function f :

�Dt
0

f D�
@

@t
DtDt

0

f
ˇ̌̌
tD0

(3)

D�Dt
0 @

@t
Dtf

ˇ̌̌
tD0

(4)

DDt
0

�f:(5)

Remark 12 The hypothesis of bounded geometry allows us to disregard paths that leave the manifold in
finite time.

In the course of the paper, we will define another diffusion operator DT;R;S acting on transverse measures.
It should not be confused with Dt.

3.8 Forms and currents

In the rest of the paper, we will use the language of currents carried by foliations. We refer the reader
to [Sullivan 1976; Dinh and Sibony 2005] for more background on currents and foliations. Informally,
an i–current on a manifold M is an oriented i–dimensional submanifold of M (possibly disconnected,
possibly with boundary), or a weak limit of such submanifolds. Similarly, a 2–current carried by a
codimension–1 foliation F on a 3–manifold is informally a weak limit of surfaces contained in leaves of F.

Let us define the relevant spaces more carefully and with some attention to regularity. Let U be a foliation
chart. Let x; y; t be local coordinates for U, where x and y are coordinates for tangential directions and
t is the transverse coordinate. Let A be a subset of fdx; dy; dtg, and let f be a C k;l function on U.
Let � be the indicator function for the subset A. Then we say that the differential form f

V
ˇ2A ˇ has

adjusted regularity .kCjAj; lC�.dt//. For example, if f is C k;l, then f dx^dt has adjusted regularity
.kC2; lC1/. The adjusted regularity of a sum of such differential forms is the minimum of the adjusted
regularities of its summands. The adjusted regularity of a differential form on M is .k; l/ if has adjusted
regularity .k; l/ in each foliation chart. With this definition, the exterior derivative preserves adjusted
regularity.

In Section 5, it will be more convenient to work in a Sobolev space. If the function f is in the Sobolev
space of functions with L2 norms on any partial derivatives with order at most l in the transverse direction
and total order at most k, then we say that f has Sobolev adjusted regularity .k; l/. Similarly, we say
that f

V
ˇ2A ˇ has Sobolev adjusted regularity .kCjAj; l C�.dt//.
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Now let �i .M/ denote the space of i–forms of adjusted regularity C1;2. Note that
L
i �

i .M/ is a chain
complex. We define the i–currents to be elements of the topological dual space to �i .M/. We usually
use @ to denote the differential on the dual complex. A 2–current carried by F is a 2–current which lies
in the closure of the set of 2–currents represented by subsurfaces of leaves of F.

Note that i–currents behave like i–dimensional submanifolds; one can evaluate i–forms on them, their
boundaries are .i�1/–currents, and Stokes’ theorem holds.

3.9 Smoothness of heat kernels

In this section, we prove the following proposition which will be useful in the proof of Lemma 23.

Proposition 13 Let � be the unit disk in Rd . Let fg"g"2.�1;1/ be a 1–parameter family of metrics on
a neighborhood of �. Let k".x; y; t/ W ���� .0;1/! R be the heat kernel for the metric g" with
Dirichlet boundary condition 0. Then for any fixed t > 0, the derivatives of k".x; y; t/ with respect to "
exist and are continuous as long as the corresponding derivatives of g" exist and are continuous.

Before beginning with the proof of Proposition 13, we set up some notation.

Let X be the space of smooth functions on Œ0;1/ �� which vanish on @�. Let Y be the space of
smooth functions on ���� Œ0;1/ which extend smoothly to a neighborhood of �. The Œ0;1/–factor
represents time. We will write g for g" and use the shorthand

p
g D
p

detgij . We will use Einstein
summation notation throughout this section. The coordinates of vectors will be written with upper indices.
Given a vector x, we use x˝n;i:::j to denote the nth tensor power of x with indices i; : : : ; j . For example,
if x is a vector, then x˝2;ij is the tensor square of x with indices i and j . We will use j � j to denote
distance in the standard Euclidean metric.

Let h be a positive number strictly smaller than the smallest eigenvalue of gij .x/ for all x 2�. For any
x 2 � at Euclidean distance less than

p
h to @�, there is a unique closest point to x on @�. Call the

reflection of x through this closest point Nx. Here, “closest” and “reflection” are taken not with respect to
the Euclidean metric, nor with respect to the Riemannian metric gij , but with respect to the flat metric
induced by the inner product gij .x/.

Given a smooth function k W���� .0;1/!R, we say that k is Gaussian-type if k can be written as

(6) k.x; y; t/D c.x; y; t/
.x�y/˝a

td=2Cb
exp

�
�
gij .x/.x�y/

˝2;ij

4t

�
or

(7) k.x; y; t/D c.x; y; t/
. Nx�y/˝a

td=2Cb
exp

�
�
gij .x/. Nx�y/

˝2;ij

4t

�
for some nonnegative integers a and b and a smooth function c.x; y; t/ in Y .

We say that the order of k is a� 2bC 1. A Gaussian-type function of high order has a relatively mild
singularity at x D y, t D 0.
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Proposition 14 If f is a Gaussian-type function of order k, then @tf is Gaussian-type of order k � 2
and @xf and @yf are Gaussian-type of order k� 1. The derivative of f with respect to g is of order k.

Proposition 15 If k.x; y; t/ is Gaussian-type of nonnegative order and f is a bounded function , thenˇ̌̌̌Z
�

k.x; y; t/f .t; x/ dx

ˇ̌̌̌
�
C
p
t

for some constant C .

Proof Suppose k has the form of (6). Let C be an upper bound for jc.x; y; t/j over � �� � Œ0; t �.
Recall that h is a small enough constant that gij � hI is positive definite everywhere. Let F be an upper
bound for jf j. We will make the substitution r D jx�yj in the integral below:ˇ̌̌̌Z

�

k.x; y; t/f .t; x/ dx

ˇ̌̌̌
�

Z
�

CF
jx�yja

td=2Cb
exp

�
�
hjx�yj2

4t

�
dx

<

Z 1
0

CF
raCd�1

td=2Cb
exp

�
�
hr2

4t

�
dr

/ ta=2�b:

If the order of k is nonnegative, then a
2
� b � �1

2
as desired. In performing the integral over r , we used

the Gaussian integral Z 1
0

rk exp
�
�
r2

t

�
dr / t .kC1/=2;

where the constant of proportionality depends only on k. The same argument works for Gaussian-type
functions of the second kind.

Proposition 16 Let

Z.n/D

Z
0�t0�����tnD1

n�1Y
˛D0

�
1

p
t˛C1�t˛

�
dt0 � � �dtn�1:

The integral converges and the explicit bound

Z.n/ <
10n
p
nŠ

holds.

Proof We work by induction. The case nD 0 holds trivially. Note that Z.n/ has the following scaling
property: Z

0�t0�����tnDT

n�1Y
˛D0

�
1

p
t˛C1� t˛

�
dt0 � � � dtn�1 D

p
T nZ.n/:

This is because the measure scales like T n and the integrand scales like 1=
p
T n.
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Now assume that the result holds for Z.n/. We now separate integration over the final variable tn from
integration over the remaining variables in the expression for Z.nC 1/:

Z.nC 1/D

Z 1

0

1
p
1� tn

�Z
0�t0�����tn

n�1Y
˛D0

�
1

p
t˛C1� t˛

�
dt0 � � � dtn�1

�
dtn

D

Z 1

0

1
p
1� tn

� .
p
tn/

nZ.n/ dtn

<
10n
p
nŠ

Z 1

0

tn=2p
.1� t /

dt (by the induction hypothesis)

D
10n
p
nŠ

�Z 1�1=n

0

tn=2p
.1� t /

dt C

Z 1

1�1=n

tn=2p
.1� t /

dt

�
<
10n
p
nŠ

�Z 1�1=n

0

tn=2p
1=n

dt C

Z 1

1�1=n

1p
.1� t /

dt

�
<
10n
p
nŠ

�Z 1

0

p
ntn=2 dt C

Z 1

1�1=n

1p
.1� t /

dt

�
<
10n
p
nŠ

�
10

p
nC 1

�
<

10nC1p
.nC 1/Š

:

This completes the induction.

Proof of Proposition 13 Our first step is to construct a reasonable approximation to the heat kernel. To
do this, we use the method of images.

Given a source at a point x 2�, we add a sink at Nx. The solution to the heat equation on Rd with this
source and sink will be approximately zero on @�, and therefore is approximately a solution to the heat
equation on � with Dirichlet boundary condition 0. Let us make this more quantitative. Let � W�!R

be a smooth function satisfying �.x/D 0 when x is at Euclidean distance �
p
h from @� and �.x/D 1

when x is at Euclidean distance �
p
h=2 from @�. Thus, Nx is well-defined whenever �.x/¤ 0. Let

k0.x; y; t/D

p
g.x/

.4�t/d=2
exp

�
�
gij .x/.x�y/

˝2;ij

4t

�
and

k1.x; y; t/D �.x/

p
g.x/

.4�t/d=2
exp

�
�
gij .x/. Nx�y/

˝2;ij

4t

�
:

Thanks to the cutoff function � , we know k1 is smooth and well-defined at all x 2�, y 2Rd, and t > 0.
Our first approximation to the heat kernel is k0� k1. By symmetry, k0� k1 vanishes along a hyperplane
tangent to @�. Although k0 � k1 does not vanish for y 2 @� as required by the Dirichlet boundary
condition, we have the following bound:
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Lemma 17 For x 2� and y 2 @�,

k0.x; y; t/� k1.x; y; t/D c.x; y; t/ijk
.x�y/˝3;ijk

td=2C1
exp

�
�
gij .x/.x�y/

˝2;ij

4t

�
;

where c is some smooth tensor-valued function each of whose components is in Y .

Proof Start by comparing k0.x; y; t/� k1.x; y; t/ to the desired form

(8) c.x; y; t/ijk.x�y/
˝3;ijkl

D
k0.x; y; t/� k1.x; y; t/

t�.d=2C1/ exp.�gij .x/. Nx�y/˝2;ij =.4t//

D
t
p
g.x/

.4�/d=2
� �.x/

t
p
g.x/

.4�/d=2
exp

�
�
gij .x/. Nx�y/

˝2;ij �gij .x/.x�y/
˝2;ij

4t

�
:

Since Nx is a reflection of x in @� and � is convex (with respect to the flat metric gij .x/), we have

gij .x/. Nx�y/
˝2;ij > gij .x/.x�y/

˝2;ij :

Therefore, the exponential term on the right side of (8) is bounded. In the regime in which jx � yj is
large, say �

p
h=2, we may use (8) to choose a smooth candidate for c.x; y; t/.

Now consider the remaining regime where jx � yj is less than
p
h=2. Since y 2 @�, the Euclidean

distance between x and @� is less than
p
h=2. Therefore, � D 1 and the expression in (8) reduces to

(9) c.x; y; t/ijk.x�y/
˝3;ijkl

D
t
p
g.x/

.4�/d=2

�
1� exp

�
�
gij .x/. Nx�y/

˝2;ij �gij .x/.x�y/
˝2;ij

4t

��
:

It will now be convenient to make a linear change of coordinates so that the midpoint of x and Nx is at the
origin, x lies on the first coordinate axis, and the hyperplane tangent to @� at the origin is spanned by the
remaining coordinate axes. In this coordinate system, g1i D 0 for i ¤ 1. By symmetry, k0� k1 vanishes
whenever y lies on this hyperplane. In this coordinate system, we have

gij .x/. Nx�y/
˝2;ij

�gij .x/.x�y/
˝2;ij

D g11. Nx
1
�y1/2�g11.x

1
�y1/2

D g11.�x
1
�y1/2�g11.x

1
�y1/2

D 4g11x
1y1

DO.jx�yj3/:

In the last line we used the constraint that y 2@�, which implies the geometrical facts that x1DO.jx�yj/
and y1 DO.jy � 0j2/DO.jx�yj2/. See Figure 3. Substituting back into (9), we find

k0.x; y; t/� k1.x; y; t/

t�.d=2C1/ exp.�gij .x/.x�y/˝2;ij =.4t//
D
t
p
g.x/

.4�/d=2

�
1� exp

�
�
O.jx�yj3/

4t

��
(10)

D

p
g.x/

.4�/d=2
O.jx�yj3/:(11)

Thus, this equation defines the desired smooth function c.x; y; t/ when y 2 @�.
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@�

x

y

Nx

Figure 3: The dotted line is the hyperplane tangent to @� at the origin.

By the Whitney extension theorem applied to the function c.x; y; t/ constructed in Lemma 17, we can
find a Gaussian-type function k2.x; y; t/ of order � 2 such that k2.x; y; t/ D k0.x; y; t/� k1.x; y; t/
whenever y 2 @�. Now define

kapprox.x; y; t/D k0.x; y; t/� k1.x; y; t/� k2.x; y; t/:

By construction, kapprox.x; y; t/D 0 whenever y 2 @�. We will use kapprox as our first approximation to
the heat kernel.

Now we will write down a formal series for the heat kernel. We will then show that the series converges,
as do its derivatives with respect to ". Finally we will check that the series satisfies the Dirichlet boundary
condition.

Define the operator Kapprox W X ! X by

Kapproxf .t; y/D

Z
0�t0�t
x2�

kapprox.x; y; t0/ dt0 dx:

Kapprox should be thought of as a first approximation to the heat kernel operator. Let �g be the Laplace–
Beltrami operator on � for the metric g. In coordinates, the Laplace–Beltrami operator has the form

�guD�
1
p
g
@i
p
ggij @j :

Now we define the operator E which measures the failure of Kapprox to be the true heat kernel operator:

(12) E D Id� .@t ��g/Kapprox:

Rearranging (12), we have
.@t ��g/Kapprox.Id� E/�1 D Id:

Thus,

(13) K WDKapprox.IdC E C E2C � � � /

is a formal series for the heat kernel operator. We now show that the terms KapproxEn are small enough
that the sum converges. In what follows, we will use the notation poly.: : : / to represent an unspecified
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polynomial in its arguments. When the arguments are tensors, poly.: : : / may be tensor-valued. This
polynomial will be allowed to change from line to line as it absorbs constants and the like. The degree
and coefficients of this polynomial will crucially not depend on n. We have

@tk0.x;y; t/D

p
g.x/

.4�/d=2

�
g.x/ij .x�y/

˝2;ij

4td=2C2
�

d

2td=2C1

�
exp

�
�
gij .x/.x�y/

˝2;ij

4t

�
Cı.y�x; t/;

@tk1.x;y; t/D�.x/

�p
g.x/

.4�/d=2

�
g.x/ij . Nx�y/

˝2;ij

4td=2C2
�

d

2td=2C1

�
exp

�
�
gij .x/. Nx�y/

˝2;ij

4t

�
Cı.y� Nx; t/

�
:

Here we are taking distributional derivatives, and ı.y � x; t/ and ı.y � Nx; t/ are delta distributions.

Now we apply the Laplace–Beltrami operator in the y–coordinate:

�gk0.x;y; t/D
1p
g.y/

@k
p
g.y/g.y/kl@l

p
g.x/

.4�t/d=2
exp

�
�
gij .x/.x�y/

˝2;ij

4t

�
D

� p
g.y/

.4�/d=2

�
g.y/klg.x/kl

2td=2C1
�
g.x/ij .x�y/

˝ij

td=2C2

�
C

poly.g;@g;@@g/
td=2

C
.xi�yi /poly.g;@g;@@g;x�y/i

td=2C1

C
.x�y/˝ijkpoly.g;@g;@@g;x�y/ijk

td=2C2

�
exp

�
�
gij .x/.x�y/

˝2;ij

4t

�
;

�gk1.x;y; t/D
1p
g.y/

@k
p
g.y/g.y/kl@l�.x/

p
g.x/

.4�t/d=2
exp

�
�
g.x/ij . Nx�y/

˝ij

4t

�
D �.x/

� p
g.x/

.4�/d=2

�
g.y/klg.x/kl

2td=2C1
�
g.x/ij . Nx�y

i /˝ij

td=2C2

�
C

poly.g;@g;@@g/
td=2

C
. Nxi�yi /poly.g;@g;@@g; Nx�y/i

td=2C1

C
. Nx�y/˝ijkpoly.g;@g;@@g; Nx�y/ijk

td=2C2

�
exp

�
�
gij .x/. Nx�y/

˝2;ij

4t

�
:

The terms p
g.x/

.4�/d=2

�
g.y/klg.x/kl

2td=2C1
�
g.x/ij .x�y/

˝2;ij

td=2C2

�
and �

g.y/klg.x/kl

2td=2C1
�
g.x/ij . Nx�y

i /˝ij

td=2C2

�
come from the terms where the derivatives hit only x � y and not g.y/. Note that all of the terms are
Gaussian-type, and all have nonnegative order.

Combining the above, we have

Ef .t; y/

D f .t; y/� .@t ��g/

Z
0�t0�t
x2�

.k0.x; y; t/� k1.x; y; t/� k2.x; y; t//f .t0; x/ dt0 dx
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D

Z
0�t0�t
x2�

� p
g.x/

.4�/d=2

g.x/ijg.y/
ij � d

2.t � t0/d=2
C

poly.g; @g; @@g/
.t � t0/d=2

C
.xi �yi /poly.g; @g; @@g; x�y/i

.t � t0/d=2C1
C
.x�y/˝3poly.g; @g; @@g; x�y/

.t � t0/d=2C2

�
� exp

�
�
g.x/ij .x�y/

˝2;ij

4.t� t0/

�
f .t0; x/

C �.d.x; @�//

� p
g.x/

.4�/d=2

g.x/ijg.y/
ij � d

2.t � t0/d=2
C

poly.g; @g; @@g/
.t � t0/d=2

C
. Nxi �yi /poly.g; @g; @@g; Nx�y/i

.t � t0/d=2C1
C
. Nx�y/˝3poly.g; @g; @@g; Nx�y/

.t � t0/d=2C2

�
� exp

�
�
g.x/ij .x�y/

˝2;ij

4.t� t0/

�
f .t0; x/C .@t ��g/k2.x; y; t/f .t0; x/ dt0 dx:

In the line above, we used thatZ
0�t0�t
x2�

ı.x�y; t � t0/f .t0; x/ dx dt0 D f .t; y/

and Z
0�t0�t
x2�

ı. Nx�y; t � t0/f .t0; x/D 0:

The second equality holds because the delta function can only be nonzero when x and y lie on @�, but f
vanishes on @�.

We define e.x; y; t/ to be the integral kernel for E appearing above, so that

Ef .y; t/D
Z
0�t0�t
x2�

e.x; y; t � t0/f .t0; x/ dt0 dx:

Now we claim that each term appearing in e.x; y; t/ is bounded in absolute value by a Gaussian type of
nonnegative order. For the termp

g.x/

.4�/d=2

g.x/ijg.y/
ij � d

2.t � t0/d=2
exp

�
�
gij .x/.x�y/

˝2;ij

4t

�
;

observe that g.x/ijg.y/ij � d vanishes at x D y. Since the partial derivatives of g are bounded,
g.x/ijg.y/

ij �d DO.x�y/ so the term has nonnegative order. We can use the same trick to show that
the other term involving g.x/ijg.y/ij has nonnegative order:ˇ̌̌̌ p

g.x/

.4�/d=2

g.x/ijg.y/
ij � d

2.t � t0/d=2
exp

�
�
gij .x/. Nx�y/

˝2;ij

4t

�ˇ̌̌̌
D

ˇ̌̌̌ p
g.x/

.4�/d=2

O.x�y/

2.t � t0/d=2
exp

�
�
gij .x/. Nx�y/

˝2;ij

4t

�ˇ̌̌̌

�

ˇ̌̌̌ p
g.x/

.4�/d=2

O. Nx�y/

2.t � t0/d=2
exp

�
�
gij .x/. Nx�y/

˝2;ij

4t

�ˇ̌̌̌
:
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In the last line, we used that jx�yj<cj Nx�yj for some constant c independent of x and y. Finally, we apply
Proposition 14 to the term involving k2. Since we constructed k2 to have order 2, .@t ��g/k2.x; y; t/
is Gaussian-type of order 0 as desired. Let F be an upper bound for f on �� Œ0; t �. By Proposition 15,
we have

jEf .t; y/j � CFp
t

for some constant C independent of y and t .

Now we are equipped to handle the more complicated analysis of KapproxEn. For notational simplicity,
set xnC1 D y. We have

jKapproxEnf .t; y/j D
ˇ̌̌̌Z
0�t0�����tn�t
x0;:::;xn2�

kapprox.xn; y; t � tn/

�n�1Y
˛D0

e.x˛; x˛C1; t˛C1� t˛/

�
�f .t0; x0/ dx0 � � � dxn dt0 � � � dtn

ˇ̌̌̌
�

Z
0�t0�����tn�t

C1

� nY
˛D0

C2
p
t˛C1� t˛

�
F dt0 � � � dtn(14)

�
C n
p
nŠ

(15)

for a large enough constant C possibly depending on d , g, f , and t , but not on n. In (14), we used
Proposition 15 on both kapprox and e. In (15), we used Proposition 16. It follows that the formal series
(13) converges uniformly and is indeed the heat kernel operator. The Dirichlet boundary condition is
satisfied since kapprox.x; y; t/ vanishes whenever y 2 @�.

Finally, we need to check that the derivatives ofKapprox.1CECE2C� � � /with respect to variations of g exist.
Recall from Proposition 15 that differentiating a Gaussian-type function with respect to g does not change
its order. Therefore, the derivatives of KapproxEnf with respect to g have the same form as in (14) except
that kapprox and e are replaced with new Gaussian-type functions of the same order. Therefore, a similar
bound applies and the series for the derivatives ofKapprox.1CECE2C� � � / converges. The corresponding
integral kernels are the desired derivatives of the heat kernel with respect to variations of g.

3.10 Assorted notation

Given points x; y on the universal cover of a leaf �, let d.x; y/ denote the leafwise Riemannian distance
between x and y in Q�. We use ?2 to mean the leafwise Hodge star operator acting on ƒ�.T �F /.

4 Existence of transverse Reeb flows

In this section, we prove Theorem 1. For the rest of this section, we fix a closed, oriented 3–manifold M
with a cooriented C 2 foliation F. As discussed in Section 3.1, we can assume that F is C1;2. We also
fix a Riemannian metric on M.

Geometry & Topology, Volume 28 (2024)



3680 Jonathan Zung

First we explain the claim from the Introduction that an invariant transverse measure is an obstruction to
a transverse Reeb flow. Suppose F supports an invariant transverse measure. As discussed in [Ruelle and
Sullivan 1975], M then has a nontrivial closed 2–current † carried by F. Suppose that ˛ is a contact
form on M with Reeb flow transverse to F. Then d˛ > 0 on TF. Using Stokes’ theorem for 2–currents
(see for example [Dinh and Sibony 2005] or [Sullivan 1976]), we then have

0 >

Z
†

d˛ D

Z
@†

˛ D 0:

This is the desired contradiction.

For the rest of the section, we consider the case that F supports no transverse invariant measure. In
particular, this implies that F is taut. Our plan is to start with a choice of C1;1 transverse measure � ,
and then use a diffusion operator to convert � into a log superharmonic transverse measure. The diffusion
operator depends on our choice of background Riemannian metric. Finally, we will give a recipe to write
down a linear perturbation of a log superharmonic transverse measure into a contact structure with Reeb
flow transverse to F.

4.1 Structure theorem for C 2 foliations

Deroin and Kleptsyn gave a precise picture of the long-term dynamics of leafwise Brownian motion and
the holonomy along such paths. We state their main theorem here for reference:

Theorem 18 [Deroin and Kleptsyn 2007] Let F be a C 1 foliation of a closed 3–manifold M. Then
either F supports an invariant transverse measure , or F has a finite number of minimal sets M1; : : : ;Mk

equipped with probability measures �1; : : : ; �k , and there exists a real � > 0 such that :

(1) Contraction For every point x 2M and almost every leafwise Brownian path  starting at x, there
is an orthogonal transversal I at x and a constant C� > 0 such that , for every t > 0, the holonomy
map h jŒ0;t� is defined on I and

jh jŒ0;t�.I /j � C exp.��t/:

(2) Distribution For every point x 2M and almost every leafwise Brownian path  starting at x, the
path  tends to one of the minimal sets , Mj , and is distributed with respect to �j , in the sense that

lim
t!1

1

t
� lebŒ0;t� D �j ;

where lebŒ0;t� is the standard Lebesgue measure on Œ0; t �.

(3) Attraction The probability pj .x/ that a leafwise Brownian path starting at a point x of M tends to
Mj is a continuous leafwise harmonic function (which equals 1 on Mj ).

(4) Diffusion When t goes to infinity, the diffusions Dt of a continuous function f WM !R converge
uniformly to the function

P
j cjpj , where cj D

R
f d�j . In particular , the functions pj form a base in

the space of continuous leafwise harmonic functions.
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Remark 19 It might be surprising that holonomy is contracting in almost every direction. It is instructive
to verify Theorem 18 for the foliation in Example 7. A point undertaking Brownian motion in a pair
of pants in F has three options for a cuff through which to exit. Two of these options have contracting
holonomy and one has expanding holonomy. Therefore, with overwhelming probability, holonomy along
a leafwise Brownian path is exponentially contracting. In this case, there is only one minimal set M1DM.
The ergodicity statement reduces to the ergodicity of the associated dynamical system on the S1–factor
transverse to the leaves of M ı defined by

z 7!

� p
z; with probability 1

2
;

�
p
z; with probability 1

2
;

where S1 is identified with the unit circle in C.

Remark 20 The nonexistence of an invariant transverse measure is equivalent to an isoperimetric
inequality for subsurfaces of leaves, ie the existence of a Cheeger constant h > 0 such that j@S j=jS j � h
for any compact subsurface S of the leaves of F [Goodman and Plante 1979; Calegari 2007, Example 7.6].
Therefore, the theorem above may be regarded as an analogue of the Cheeger inequality for foliations: if F
has a nonzero Cheeger constant, then leafwise random walks converge quickly to a stationary distribution.

Our foliations are C 2, so we can upgrade the contraction result to an infinitesimal version:

Proposition 21 Let F be a C 2 foliation of a closed 3–manifold M. Suppose further that F does not
support an invariant transverse measure. Then there exists a real number � > 0 such that , for every point
x 2M and almost every leafwise Brownian path  starting at x, there is a constant C > 0 such that , for
every time t > 0, the holonomy map h jŒ0;t� satisfies

(16) jh0 jŒ0;t� j � C exp.��t/:

Moreover , C can be chosen to be a Wiener measurable function of  .

Remark 22 We don’t need to specify a transverse measure for the norm j � j since C can absorb constant
factors.

Proof Given an orientation-preserving homeomorphism g between two intervals I0 and I1, we define
the distortion of g by

distortion.g/D sup
a;b;c;d2I0

�
a� b

c � d

��
g.a/�g.b/

g.c/�g.d/

��1
:

The distortion is equal to 1 if and only if g is linear. It is submultiplicative with respect to composition of
functions. If g is C 2, then there is a bound on the distortion in terms of g00:

distortion.g/D
supx2I0 g

0.x/

infx2I0 g0.x/
(17)

� 1C
jI0j supx2I0 jg

00.x/j

infx2I0 jg0.x/j
:(18)
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Let " be small enough that holonomy maps over leafwise paths of length � 1 are defined on all orthogonal
transversals of length � ". Let A be an upper bound for the quotient

supx2I0 jg
00.x/j

infx2I0 jg0.x/j

over all holonomy maps g for orthogonal transversals of length � " along paths of length � 1.

Let us now consider a leafwise Brownian path  starting at a point x 2M. By Theorem 18, it is almost
surely possible to choose a short orthogonal transversal I through x such that holonomy of I along 
exists for all time, and moreover that there exists a constant E permitting the inequality

(19) jh jŒ0;t�.I /j<E � exp.��t/

for all t > 0. Shortening I if necessary, we may further assume that

(20) jh jŒ0;t�.I /j< "

for all t > 0.

Break the holonomy h jŒ0;t� into a composition

(21) h jŒ0;t� D h jŒbtc;t� ı � � � ıh jŒ1;2� ı h jŒ0;1� :

Let Vi be the Riemannian leafwise distance between .i/ and .i C 1/. Since Vi has bounded moments
(in particular, bounded second moment), there exists a constant c depending only on the foliation such
that PrŒVi > i�� c=i2. Thus,

(22)
X
i

PrŒVi > i� <
X
i

c

i2
<1:

It follows from the Borel–Cantelli lemma that with probability 1, all but finitely many of the Vi satisfy
Vi < i . So there exists i0 depending on  so that Vi < i for all i > i0.

The following sequence of inequalities holds with probability 1:

distortion.h jŒ0;t�/ <
btcY
iD0

distortion.h jŒi;min.iC1;t/�/(23)

<

btcY
iD0

.1CAjh jŒ0;i�.I /j/
dVie(24)

<

btcY
iD0

.1CA �E exp.��i//dVie(25)

<

� i0Y
iD0

.1CA �E exp.��i//dVie
�� btcY

iDi0C1

.1CA �E exp.��i//i
�

(26)

< B ;(27)
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where B is a constant which can be chosen independent of t . In (23) we invoked submultiplicativity
of distortion. In (24), we used the fact that  jŒi;iC1� is homotopic rel endpoints to the concatenation of
at most dVie paths of length at most 1 and invoked (18). We also used (20) to guarantee that the bound
involving A applies.

Now we can estimate h0
 jŒ0;t�

using our bound on the distortion of h jŒ0;t� combined with the macroscopic
bound given by Theorem 18:

(28) jh0 jŒ0;t� j< B jh jŒ0;t�.I /j< B �E exp.��t/:

So we may take the constant in (16) to be BE .

It remains to check that we can make the choice of C a Wiener measurable function of  . Define the ı
neighborhood of  , denoted by Nı./, to be the set of paths

Nı./D f1 j d.1.t/; .t// < ı for all tg:

Set ı Dmin.1; R=10/ where R is a lower bound for the injectivity radius of leaves of F. Then, for any
1 2 Nı./, 1 is homotopic rel endpoints to a concatenation 2 ı  , where 2 has length less than 1.
For any t > 0, if

jh0 jŒ0;t� j � C exp.��t/;

then for any 1 2Nı./ we have

jh01jŒ0;t� j � jh
0
2
jjh0 jŒ0;t� j(29)

� ABE exp.��t/:(30)

Therefore, ABE is a uniform choice for C1 that makes (16) work for any 1 2Nı./.

Let � be a countable set of paths such that the sets Nı./ for  2 � constitute a cover of the path space.
Observe that Nı./ is a Wiener measurable set. Define

C1 D sup
2�

12Nı./

ABE :

This choice of C1 satisfies (16) and is Wiener measurable as a countable supremum of Wiener measurable
functions.

4.2 Logarithmic diffusion

In this subsection, x will be a point in M and � will be the leaf containing x. Since we assumed F to be
taut and not equal to the foliation of S1 �S2 by spheres, the universal cover Q� is a properly embedded
plane in zM. We will abbreviate f�;�;b to f� when there is no danger of ambiguity. Recall that Wx is
defined to be the distribution of leafwise Brownian paths starting at a point x. Given a time T > 0, we
define a diffusion operator DT acting on C1;1 transverse measures of full support by

DT .�/jx D exp
�
E�Wx Œlogjh0 jŒ0;T � j� �

�
�
ˇ̌
x
:
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Here, E�Wx means that we are taking the expectation over paths  sampled from Wx . Also recall that
jh0
 jŒ0;T �

j is the infinitesimal holonomy along  from .0/ to .T /.

In other words, the DT .�/ length of an infinitesimal transverse arc through x is the geometric mean of
the � lengths obtained by holonomy transport along time–T leafwise random walks. For an individual
leaf �, the function logf�;�;b on Q� evolves according to the standard heat flow. If the geometric mean
were to be replaced with an arithmetic mean, we would obtain the leafwise heat flow defined in [Garnett
1983]. Unlike the heat flow operator, our diffusion operator does not conserve mass. Its advantage is
that it gives greater weight to the well-behaved smaller holonomies, and therefore allows us to prove a
quantitative convergence result.

The main result of this subsection is Proposition 30, which asserts that at some large but finite time T, the
Radon–Nikodym derivatives of the diffused transverse measure are exponentials of strictly superharmonic
functions. This implies, for example, that the distance to a nearby leaf, as measured by the diffused
transverse measure, never has local minima.

As written, it is hard to prove any transverse regularity for the diffused measure. One cannot compare the
diffused transverse measure at two nearby points on distinct leaves because holonomy of a transversal
connecting these two points typically blows up in finite time along some long paths. We resolve this by
introducing a cutoff function 'R;S . We set

DT;R;S .�/jx D exp
�
E�Wx Œlogjh0 jŒ0;T � j�'R;S .x; .tfar//�

�
�
ˇ̌
x
;

where tfar 2 Œ0; T � is the time minimizing 'R;S .x; .tfar// and 'R;S .x;�/ is a smooth cutoff function
defined on Q� satisfying the following conditions:

� 'R;S .x; y/D 1 when d.x; y/ < R.

� 'R;S .x; y/D 0 when d.x; y/ > SR.

� ' has all derivatives bounded in absolute value by 10=S .

� The superlevel sets of '.x;�/ on Q� are topological disks.

The reader may now proceed to the proof of Proposition 30 and refer to the technical lemmas below as
needed.

Lemma 23 If � is a C1;1 transverse measure , then DT;R;S .�/ is a C1;1 transverse measure for all
T;R; S .

Proof This is where the cutoff comes in handy. Let x be a point on a leaf �. In zM, choose a neighbor-
hood U of the radius SR disk in Q� centered at x which is skinny enough in the transverse direction that it
is foliated as a product. In a neighborhood of x, the values of DT;R;S .�/ depend only on information
in U. If we were to ignore the dependence of tfar on  , then the smoothness of DT;R;S .�/ would follow
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from standard results regarding the smoothness of heat kernels with respect to compact variations of the
metric. The dependence of tfar on  can indeed be trivialized, as we now detail.

Suppose x."/ is a smooth path in U with x.0/D x. To show that DT;R;S .�/ is once differentiable at x,
we need to show that

@

@"
.DT;R;S .�/.v/ jx."//

exists for any smooth vector field v.

Let Q�" � U be the leaf containing x."/. Let  " W R2 ! Q�" be a smooth family of diffeomorphisms
parametrized by " such that  ".0/D x."/ and that  �" .'.x."/;�// is a standard, rotationally symmetric
function on R2 independent of ". Call this standard cutoff function '0 W R2 ! R. We suppress the
parameters R and S in this notation since we can take them as constant in the proof of this lemma.

Let
g" D  

�
" .g/;

f "� D  
�
" .f�;�";x."//;

where g is the Riemannian metric on zM. With this definition, f "� is a C1;1 function on R2˚R, where
the R–factor is parametrized by ". Now we may write

DT;R;S .�/.v/ jx."/D exp
�
E�Wx."/ Œlogjh0 jŒ0;T � j�'R;S .x;.tfar//�

�
�.v/

ˇ̌
x."/

(31)

D exp
�
E�Wx."/ Œlogf�;�";x."/..T //'R;S .x;.tfar//�

�
�.v/

ˇ̌
x."/

(32)

D exp
�Z 1

0

E�Wx."/ Œlogf�;�";x."/..T //
ˇ̌
'R;S .x;.tfar//> a�da

�
�.v/

ˇ̌̌̌
x."/

(33)

D exp
�Z 1

0

Z
�.a/

k";�.a/.0;x;T / logf "� .y/dx da
�
�.v/

ˇ̌̌̌
x."/

;(34)

where �.a/ is the compact disk fx 2R2 j '0.x/� ag and

(35) k";�.a/.x; y; t/ W�.a/��.a/� .0;1/!R

is the heat kernel on �.a/ for the metric g" with zero boundary condition. By Proposition 13, the
partial derivative of k";�.a/.0; x; T / with respect to " exists and is continuous because @g

@"
exists and is

continuous. Moreover, by another application of Proposition 13, @
@"
k";�.a/.0; x; T / varies continuously

as we vary a. Thus, the partial derivative of (34) with respect to " exists and is continuous.

A similar argument for higher partial derivatives shows that DT;R;S .�/ has as much regularity as do g"
and f "� , which is to say C1;1.

Lemma 24 For any fixed T; S ,

lim
R!1

E�Wx Œlogf� ..T //'R;S .x; .tfar//�D lim
R!1

E�Wx Œlogf� ..T //'R;S .x; .T //�(36)

D E�Wx Œlogf� ..T //�(37)
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and the convergence for either limit is uniform over x 2M and over S . In other words , tail events from
abnormally long paths do not contribute much to the expectation. In particular , the right side exists and is
continuous.

Proof Say  is a tail event if d.x; .tfar// > R. In other words,  is a tail event if  ever travels a
distance R away from x before time T. The expectations in (36)–(37) differ only on tail events. In order
to quantify the contribution of tail events to the expectations, we need to bound both how fast logf grows
on Q� and how fast Brownian motion can travel on Q�. Since d logf� is continuous on M, it is bounded
above in norm. Therefore, logf� is L–Lipschitz on Q� for some L. In particular,

(38) jlogf� ..T //j<Ld.x; .T //CC

for some constant C .

Let K be a global upper bound for the absolute value of the Gaussian curvature of leaves in M. By the
heat kernel estimates from [Cheng et al. 1981] or [Candel and Conlon 2003, Theorem B.7.1], we have

(39) PrŒd.x; .tfar// > r� < C0 exp
�
�
c0r

T
p
K

�
for some absolute constants c0 and C0.

Note that

(40) PrŒd.x; .T // > r� < PrŒd.x; .tfar// > r�;

so PrŒd.x; .T // > r� enjoys the same upper bound as in (39).

Combining (38) and (39), the maximum possible contribution of tail events to any of (36)–(37) is bounded
above by

(41)
Z 1
R

.Lr CC/C0 exp
�
�
c0r

T
p
K

�
dr;

where L, C , and K are constants depending only on M, F, and the metric. This integral converges to
zero as R!1.

Remark 25 Here is a heuristic explanation for the bound (39). Brownian motion travels at the usual
square root speed on length scales below 1=

p
K, and in negative curvature travels at linear speed at

length scales above 1=
p
K. This is because a random walk is exponentially unlikely to backtrack in the

presence of negative curvature. A concentration result for the linear speed gives the desired bound.

In what follows, � denotes the leafwise Laplace operator.

Lemma 26 For fixed T,

lim
R;S!1

E�Wx Œ�.logf� .�/'.x;�//..T //�D E�Wx Œ�.logf� /..T //�

and the convergence is uniform over M. In particular , the right side exists and is continuous.
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Proof This follows from an argument parallel to that in the proof of Lemma 24. We just need to check
that �.logf� .�/'.x;�// grows slowly enough on Q�. We have

�.logf� .�/'.x;�//D .� logf� /'.x;�/Chd logf� ; d'.x;�/iC logf��'.x;�/:

The terms � logf� and d logf� are both bounded because they descend to functions on M. The terms
d'.x;�/ and �'.x;�/ are bounded; in fact, they tend to zero as S!1 as arranged in the construction
of '. Finally, logf� is Lipschitz as noted in the proof of Lemma 24. Therefore, we have a bound of the form

�.logf� .�/'.x;�//..T // < Ld.x; .T //CC

for some constants L and C depending only on M, F, and the Riemannian metric. The rest of the proof
carries through as in Lemma 24.

It will be necessary to understand how logf� .x/ behaves as x undergoes Brownian motion. Itô’s lemma
gives the answer:

Lemma 27 (Itô’s lemma) Suppose x evolves according to Brownian motion on a Riemannian manifold �
with diffusion rate � . Then for a differentiable real-valued function g on �, g.x/ follows a drift-diffusion
process with diffusion rate � jrgj and drift rate 1

2
�2�g.

For the reader unfamiliar with the language of Itô calculus, we provide a restatement in our setting for
the case � D 1:

Lemma 28 (Itô’s lemma, reformulated) If g is a real-valued C 2 function on a Riemannian manifold �
and x 2 �, then , for any y 2 � and t0 > 0, we have

lim
t!t

C

0

Var�Wx Œg..t// j .t0/D y�
t � t0

D jrg.y/j;

d

dt
E�Wx Œg..t// j .t0/D y�

ˇ̌̌
tDt0
D
1

2
�g.y/:

For more discussion of Itô’s lemma and drift-diffusion process, we point the reader to [Mörters and Peres
2010, Chapter 7].

Lemma 29 There exists � > 0 such that for each minimal set Mi ,

(42)
Z
Mi

� logf� d�i < ��;

where �i is the probability measure on Mi .

Proof The basic idea is that, by Itô’s lemma, the integral on the left side of (42) dictates the average
drift rate of logf� for long Brownian paths in Mi . This drift rate should be negative in accordance with
Theorem 18. We must take a bit more care because, as written, Theorem 18 doesn’t give bounds on the
expectation of C .
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Let � and C be the constants from Proposition 21. Let g D� logf� . Choose x 2Mi and let  �Wx ,
where Wx is the distribution of leafwise Brownian paths starting at x. Choose C large enough that
Pr�Wx ŒC < C� > 0. Let A be the event that C < C . Let At be the event that, for all s 2 Œ0; t �,

(43) f� ..s// < C exp.��s/:

By definition, AD
T
t At . Since PrŒA� > 0, the conditional probabilities satisfy

lim
i;j!1
i>j

PrŒAi j Aj �D 1:

For any " > 0, Theorem 18 lets us choose a time dt large enough that the time–dt diffused function,
Ddtg, satisfies ˇ̌̌̌

Ddtg�

Z
Mi

g d�i

ˇ̌̌̌
< "

at every point in Mi . For any time t , set t 0 WD bt�dtc. The essential properties of t 0 are that it is (locally)
independent of t , it is a bounded time in the past, and yet is far enough in the past that Brownian motion
has had some time to diffuse.

Now taking the logarithm of the defining constraint (43), we have

��t C logC > EŒlogf� ..t// j At �(44)

D
1

PrŒAt j At 0 �

�
EŒlogf� ..t// j At 0 ��EŒlogf� ..t// j :At \At 0 �PrŒ:At j At 0 �

�
(45)

>
1

PrŒAt j At 0 �

�
EŒlogf� ..t// j At 0 ��EŒlogf� ..t//

� logf� ..t 0//C �t 0� logC j :At \At 0 � �PrŒ:At j At 0 �
�(46)

D
EŒlogf� ..t// j At 0 �

PrŒAt j At 0 �
C o.t/:(47)

Since limt!1 PrŒAt j At 0 �! 1, we conclude that

(48) EŒlogf� ..t// j At 0 � < ��t C o.t/:

Equation (47) requires some justification. By Lemma 24, conditioned on any value of .t 0/, the distribution
of

logf� ..t//� logf� ..t 0//

has a finite expectation. Moreover, Lemma 24 gives a uniform bound on the tails of this distribution
depending only on t � t 0. Since PrŒ:At j At 0 �! 0, the term dropped in (47) is negligible as claimed.

On the other hand, we can compute the growth rate of the left side of (48) using Itô’s lemma:

d EŒlogf� .t/ j At 0 �
dt

D EŒg..t// j At 0 �D EŒDt�t
0

g..t 0// j At 0 � >

Z
Mi

g d�i � ":
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Here, it was critical for the application of Itô’s lemma that At 0 is a piecewise constant function of t so
that .t/ j At 0 is a diffusion process. Comparing with (48), we concludeZ

Mi

g d�i < ��C ":

Taking "! 0 finishes the proof of the lemma.

Now we are ready to prove the main result of this section.

Proposition 30 If T, R and S are chosen sufficiently large , then DT;R;S .�/ is log superharmonic. That
is , on each leaf Q� of zF , the function logfDT;R;S .�/;� is strictly superharmonic.

Proof The function � log.f� / is continuous on M. By Theorem 18, as T !1,

E�Wx Œ� log.f� /..T //�

uniformly tends to a linear combinationX
i

pi

Z
Mi

� logf� d�i ;

where �i is the probability measure on the i th minimal set, Mi , and pi are continuous, leafwise harmonic
functions on M. Choose � satisfying (42) as guaranteed by Lemma 29. For large enough T, we can
guarantee that, for any point x 2M,

(49) E�Wx Œ� log.f� /..T //� < �
�

2
:

Now we are ready to estimate � logfDT;R;S .�/:

lim
R;S!1

� logfDT;R;S .�/ D lim
R;S!1

�E�Wx Œlog.f� ..T //'R;S .x; .tfar///�(50)

D lim
R;S!1

�E�Wx Œlog.f� ..T //'R;S .x; .T ///� (by Lemma 24)(51)

D lim
R;S!1

E�Wx Œ�.log.f� .�//'R;S .x;�//..T //� (by (5))(52)

D E�Wx Œ�.logf� /..T //� (by Lemma 26)(53)

< �
�

2
(by (49)):(54)

In (52), the use of (5) to commute � with leafwise diffusion was valid because f� and ' are leafwise C1

functions; see also Remark 10. Lemmas 24 and 26 further say that the limits above converge uniformly
over x 2M. Therefore, for large enough R and S , logfDT;R;S .�/ is a strictly superharmonic function on
each leaf Q� of zF .

Proof of Theorem 1 Suppose that F supports no invariant transverse measure. Then by Proposition 30,
we can find a log superharmonic transverse measure � . Let ˇ be the section of T �F defined by
ˇD ?2d logf , where ?2 is the Hodge star operator on a leaf. The fact that logf is strictly superharmonic
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can be written as
?2d ?2 d logf > 0:

Therefore dˇ > 0 on TF. Furthermore, ˇ � 0 on ker.d logf� /.

Choose a vector field v transverse to F with �.v/ D 1, and extend ˇ to a 1–form on M by choosing
ˇ.v/D 0. Let � be the unit norm 2–vector tangent to TF. Now consider the 1–form ˛ D � C "ˇ:

˛^ d˛ D .� C "ˇ/^ d.� C "ˇ/

D ".� ^ dˇCˇ^ d�/CO."2/:

Here, � ^ d� vanishes because � defines a foliation. Evaluating both sides on v˝ � , we get

.˛^ d˛/.v˝ �/D "�.v/ dˇ.�/� ".ˇ^ .�vd�//.�/CO."
2/

D "�.v/ dˇ.�/C ".ˇ^ d logf� /.�/CO."2/:

In the last line, we made use of Proposition 11. By construction, dˇ.�/ > 0 and ˇ ^ d logf� � 0.
Therefore, for small enough ", the right side is positive everywhere in M. So ˛ is a contact perturbation
of F.

Moreover, we have
d˛.�/D "dˇ.�/ > 0:

So the Reeb flow of ˛ is transverse to F. Note that ˛ is only C 1; if preferred, we can approximate ˛ with
a C1 1–form having the same properties.

Remark 31 We have actually shown that with the hypotheses of Theorem 1, there are 1–forms �; ˇ
such that ker � D TF and � C "ˇ is a contact structure for all sufficiently small ". This is a linear
perturbation in the sense of [Eliashberg and Thurston 1998, Chapter 2]. This gives another proof of
[loc. cit., Theorem 2.1.2].

5 Obstruction 2–currents and Farkas’ lemma

In the proof of Theorem 1, we saw that the desired perturbing 1–form ˇ 2 �.T �F / need only satisfy
dˇ>0 on TF and ˇ�0 on the level sets of f� . When f� is log superharmonic, the 1–form ˇD?2d logf
immediately satisfies these conditions. In this section, we give a more flexible criterion for the existence
of such a ˇ which depends only on the topology of the level sets of f� . It has the advantage that, for
transverse measures one sees in the wild, one can often directly verify the condition and avoid using
logarithmic diffusion. The main observation leading to the criterion is that the constraints on ˇ are linear,
and so can be analyzed via linear programming duality. This idea goes back at least to [Sullivan 1976]
where several similar alternatives are proven: either a solution to a system of linear inequalities on i–forms
exists, or there is an i–current furnishing an obstruction. See for example Sullivan’s Theorems II.1 and II.2.

In this section, it will be more convenient to work with reflexive Banach spaces. In Section 3.8, we
introduced the i–forms of Sobolev adjusted regularity .k; l/. In this section, we fix some large K > 2.
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Our i–forms will be those of Sobolev adjusted regularity .K; 2/, and our currents will be elements of the
corresponding dual spaces.

Let � be an arbitrary nonvanishing C1;1 transverse measure. Such a form has adjusted regularity .1; 2/;
see Section 3.8. Orient the level sets of f� so as to agree with the orientation induced as the boundary of
a superlevel set. An obstruction 2–current for � is a 2–current in M which is carried by and cooriented
with F, and whose boundary consists of level sets for f� with the negative orientation. For example, a
sublevel set near a local minimum for f� is an obstruction 2–current. While an arbitrary sublevel set of f�
in a leaf Q�� zF might appear to be an obstruction 2–current, it typically does not project to a 2–current
in M with finite mass.

Proposition 32 Either there exists a section ˇ of T �F with dˇ > 0 on TF and ˇ � 0 on level sets of f� ,
or there exists an obstruction 2–current for � .

Before giving the proof of Proposition 32, we will recall some background from convex optimization. A
closed, convex cone in a Banach space is proper if it does not contain a line through the origin. We will
need a hybrid version of Farkas’ lemma with allowances for some strict and some nonstrict inequalities.
We include a proof because we couldn’t find the form we require in the literature.

Lemma 33 (Farkas’ lemma) Let X , Y1, Y2 be Banach spaces with X reflexive and separable. Let
B W Y1˚Y2!X� be a continuous linear map. Let h � ; � iW .Y1˚Y2/˝X!R denote the induced pairing.
Let Ci be a closed , convex cone in Yi . Suppose further that C2 is proper and that the images B.C1/ and
B.C2/ are closed. Then exactly one of the following alternatives holds:

(1) There exists x 2X satisfying hx; C1i � 0 and hx; C2 n f0gi> 0.

(2) There exists y1 2 C1 and y2 2 C2 n f0g satisfying hX; .y1; y2/i D 0.

Proof It is clear that the alternatives are mutually exclusive, so we need only prove that at least one of
the alternatives holds. We will use the shorthand B.C/D B.C1/CB.C2/.

Suppose that B.C/ D X�. Choose any nonzero .a1; a2/ 2 .C1; C2/. Then choose .b1; b2/ 2 .C1; C2/
satisfying B..b1; b2//D�B..a1; a2//. The element .y1; y2/D .a1Cb1; a2Cb2/ satisfies alternative (2).
The fact that y2 ¤ 0 follows from properness of C2.

Suppose instead that B.C/ does not contain some point v 2 X�. By the Hahn–Banach hyperplane
separation theorem, there exists a linear functional x 2X�� separating v from B.C/, in the sense that
x.v/ < 0 and x.B�.C //� 0. Since X is reflexive, x may be realized as a point in X .

Let Hx be the hyperplane in X� defined by x. Let A D B.C/ \ �B.C/. Points in A are “corners”
of B.C/. Observe that A�Hx . We will now show that it can be further arranged that Hx \B.C/D A.

If w 2 .Hx \B.C// nA, then another application of the Hahn–Banach theorem gives a linear functional
x0 2X�� separating�w fromB.C/. NowHxCx0\B.C/ is strictly contained inHx\B.C/, and does not
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includew. In effect, we have tiltedHx away fromw. So we have a strategy for removing a single unwanted
point fromHx\B.C/. We will now use Zorn’s lemma to show that we can remove all the unwanted points.

Let S D fHx \B.C/g, where x varies over linear functionals supporting B.C/. The elements of S are
all closed subsets of B.C/. The family S is partially ordered by inclusion. Since X is separable, any
chain in S may be refined to a countable chain. Given a countable chain fHxi \B.C/gi2N , let

Nx D
X
i

1

2ikxik
xi :

With this choice,
H Nx \B.C/D

\
i2N

Hxi \B.C/:

Therefore, every chain in S has a lower bound in S. By Zorn’s lemma, S has a minimal element. By
the discussion in the previous paragraph, such a minimal element must be equal to A.

Now we have a nonzero candidate x 2X solving the nonstrict versions of the inequalities in alternative (1).
This choice of x satisfies hx; .y1; y2/iD 0 if and only if B..y1; y2//2A. If there exists a2 2C2nf0g with
B..0; a2// 2 A, then we may find .b1; b2/ 2 .C1; C2/ satisfying B..b1; b2//D�B..0; a2//. As before,
properness of C2 guarantees that a2C b2 ¤ 0. Thus, the element .b1; a2C b2/ satisfies alternative (2).
Otherwise, alternative (1) holds.

Proof of Proposition 32 Let X be the Sobolev space of sections of T �F with Sobolev adjusted
regularity .K; 2/. Since X is a separable Hilbert space, Farkas’ lemma will apply. For i 2 f1; 2g, let Yi be
the space of i–currents carried by F. Let C1 � Y1 be the closed cone generated by 1–currents contained
in and cooriented with the level sets of f� . Let Y2 be the space of 2–currents tangent to F and let C2� Y2
be the closed cone generated by 2–currents cooriented with F.

Although C1 is not proper, C2 is proper. The lack of properness for C1 occurs near critical points of f� .
At such points, there is a tangent vector v such that both �v and v are limits of oriented subarcs of the
level sets of � . Therefore, v and �v are both elements of C1. On the other hand, if y 2 C2 n f0g, then �y
is a 2–current negatively tangent to F and does not lie in C2.

Define the pairing h � ; � iWX ˝ .Y2˚Y2/!R by

hˇ; .y1; y2/i D

Z
y2

dˇC

Z
y1

ˇ:

By Stokes’ theorem, an element .y1; y2/ 2 Y1˚Y2 satisfies hX; .y1; y2/i D 0 if and only if y1 D�@y2.
So by Farkas’ lemma, either there exists a section of T �F satisfying the desired properties, or there exists
a nonzero 2–current y2 positively tangent to F such that @y2 is negatively tangent to the level sets of f� .
This is exactly an obstruction 2–current.

Proposition 34 If logf� is a strictly superharmonic function on each leaf , then there are no obstruction
2–currents for � .
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Proof This is a generalization of the fact that superharmonic functions have no local minima. Suppose
that S is an obstruction 2–current for � . It is helpful to keep in mind the simplest case of a compact
surface S in a leaf � with boundary a negatively oriented union of level sets of f�;�.

Strict superharmonicity of logf� is equivalent to

?2d ?2 d log.f� / < 0;

where ?2 is the Hodge star operator on a leaf. So by Stokes’ theorem,

0 >

Z
S

d ?2 d logf� D
Z
@S

?2 d logf� � 0:

The last inequality uses the property of obstruction 2–currents that @S is a subcurrent of the level sets
of f� , which are in turn equal to the level sets of logf� . This is a contradiction.

Example 35 (Example 7 revisited) Adopt the notation from Example 7. Let T be the torus in M along
which one can cut to obtain M ı. Let � D f d� . Let us show that � has no obstruction 2–current. Call the
purported obstruction 2–current †. It is possible to modify † so that its boundary lies on T. Then †
is a positive combination of horizontal pairs of pants. A pair of pants has two components which are
positively oriented level sets of f and one that is a negatively oriented level set of f. Therefore, the
positively oriented boundary of † has twice the length of the negatively oriented boundary. Even with
cancellation, the positive boundary cannot be empty. Therefore † cannot be an obstruction 2–current. By
Proposition 32, f d� may be perturbed to a contact structure with Reeb flow transverse to F.

6 Questions

� Can the results of the present paper be extended to C1;1 or even to C1;0 foliations? Many powerful
constructions of foliations proceed by iteratively splitting a branched surface [Li 2002]. The resulting
foliation is typically only C1;0. Kazez and Roberts [2017] and Bowden [2016a] independently showed
that the Eliashberg–Thurston theorem does extend to C1;0 foliations. The difficulty in extending our
approach is that the direction of expanding holonomy is no longer well-defined for C1;0 foliations. One
possible line of attack would be to use [Ishii et al. 2023], which shows that branched surfaces satisfying a
certain handedness condition admit transverse Reeb flows.

� What can be said in higher dimensions? One would like to generalize the Eliashberg–Thurston
theorem to codimension–1 leafwise symplectic foliations in arbitrary dimension. Proposition 30 and
its dependencies all work in arbitrary dimension, giving a log superharmonic transverse measure in
the absence of an invariant transverse measure. When can it be upgraded to a log plurisuperharmonic
transverse measure?

� Is a Reeb flow R transverse to a foliation F product-covered, ie conjugate to the standard flow @
@z

on zM Š R3? This is equivalent to the statement that zM=R is topologically an open disk. Since R is
transverse to a taut foliation, zM=R is a (possibly non-Hausdorff) 2–manifold. The fact that the flow
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of R preserves contact planes prohibits certain types of non-Hausdorff behavior in zM=R. In particular, a
smooth 1–parameter family of flow lines cannot break into two different families. However, as pointed
out to the author by Fenley, there could conceivably still be a sequence of flow lines with more than one
limiting flow line.
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