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We provide an explicit computation over the integers of the bar version HM� of the monopole Floer
homology of a three-manifold in terms of a new invariant associated to its triple cup product, called ex-
tended cup homology. This refines previous computations over fields of characteristic zero by Kronheimer
and Mrowka, who established a relationship to Atiyah and Segal’s twisted de Rham cohomology, and
characteristic two by Lidman using surgery techniques in Heegaard Floer theory.

In order to do so, we first develop a general framework to study the homotopical properties of the
cohomology of a dga twisted with respect a particular kind of Maurer–Cartan element called a twisting
sequence. Then, for dgas equipped with the additional structure of a Hirsch algebra (which consists
of certain higher operations that measure the failure of strict commutativity and related associativity
properties), we develop a product on twisting sequences and a theory of rational characteristic classes.
These are inspired by Kraines’ classical construction of higher Massey products and may be of independent
interest.

We then compute the most important infinite family of such higher operations explicitly for the minimal
cubical realization of the torus. Building on the work of Kronheimer and Mrowka, the determination
of HM� follows from these computations and certain functoriality properties of the rational characteristic
classes.
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Introduction

Results in monopole Floer homology Kronheimer and Mrowka [2007] use Seiberg–Witten theory to
define several invariants of three-manifolds, collectively referred to as monopole Floer homology groups.
Among these, the simplest version assigns to each three-manifold Y equipped with a spinc structure s the
invariant HM�.Y; s/, read HM-bar.

While this invariant vanishes when s is not torsion, it is much more interesting in the case of a torsion
spinc structure. In that case, HM�.Y; s/ is a finitely generated relatively Z–graded module over the
ring of Laurent polynomials ZŒU�1;U � in a variable U of degree �2. Kronheimer and Mrowka [2007,
Chapter 35] prove several fundamental results, which we briefly summarize:

(i) The invariant HM�.Y; s/ only depends on the cohomology ring of Y, and in particular on the triple
cup product

ƒ3H 1.Y IZ/! Z; ˛1 ^˛2 ^˛3 7! h˛1[˛2[˛3; ŒY �i;

which we denote by [3
Y
2 .ƒ3H 1.Y IZ//�.

(ii) There exists a spectral sequence .Er ; dr / converging to HM�.Y; s/ for which

E3
Dƒ�H 1.Y IZ/˝ZŒU�1;U �

and the differential d3 is given by

(0-1) d3.!˝U n/D �
[3

Y
!˝U n�1;

where �
[3

Y
is the contraction with the triple cup product [3

Y
sending ˛1 ^ � � � ^˛k toX

i1<i2<i3

.�1/i1Ci2Ci3h˛i1
[˛i2

[˛i3
; ŒY �i �˛1 ^ � � � ^ y̨i1

^ � � � ^ y̨i2
^ � � � ^ y̨i3

^ � � � ^˛k :

Up to signs, �
[3

Y
is Poincaré dual to cup product with the 3–form [3

Y
. The differential d3 has

degree �1 once we declare the elements of H 1.Y IZ/ to have degree 1.

(iii) After tensoring with R (or any field with characteristic zero), the spectral sequence collapses at the
E4–page.

Using the last point, the authors were able to conclude that the invariant HM�.Y; s/ is nonvanishing
when s is torsion (and in fact an infinite rank Z–module). This provided a fundamental step in Taubes’
celebrated proof [2007] of the Weinstein conjecture in dimension three.

The main goal of the present paper is to refine the results of [Kronheimer and Mrowka 2007] by providing
a computation of HM�.Y; s/ over Z, or more generally with local coefficients (over any ring). We will
refer to the E4–page of the spectral sequence in .ii/ as the cup homology of Y. This was introduced and
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Monopoles, twisted integral homology, and Hirsch algebras 3699

thoroughly studied in [Mark 2008], where it is denoted by HC1� .Y /; in this notation, Kronheimer and
Mrowka’s result is that

HM�.Y; s/˝QD HC1� .Y /˝Q:

Our main theorem gives an isomorphism over Z from HM�.Y; s/ to a more intricate variant of the cup
homology groups. To state it, suppose a 2 ƒ3.Zn/ may be written as a sum of basis monomials as
a D

P
IDfi<j<kg aI eiej ek ; it will be useful to write eI D eiej ek . Associated to a are odd-degree

classes called its insertion powers, defined precisely in Definition 5.6. We content ourselves with a precise
definition of the first here:

aı2 D�
X
I;J

jI\J jD1

aI aJ eI0 ^ eJ
^ eI1 2ƒ5.Zn/;

where I0 and I1 are the (possibly empty) substrings of I appearing before and after the element I \J,
respectively. In words, if the (unordered) pair I;J meets at exactly one point, we insert J where they
meet, and otherwise ignore it. One has, for instance,

.e123
C e245/ı2 D�e12453; .e123

C e345
C e567/ı2 D�e12345

� e34567:

The higher insertion powers aık 2ƒ2kC1.Zn/ essentially iterate this process; we have, for example,

.e123
C e345

C e567/ı3 DCe1234567
2ƒ7.Zn/;

the plus sign arising from two canceling minus signs. Choose a basis for H 1.Y / D Zn so that [3
Y

is identified with a class a 2 ƒ3.Zn/. Via duality, one then identifies �
[3

Y
D �a; the latter naturally

generalizes to the contractions �aık with the classes aık 2ƒ2kC1.Zn/. In this notation, the cup homology
HC1� .Y / is isomorphic to the homology of ƒ�.Zn/ŒU;U�1� with respect to the differential given by
x˝U n 7! �a.x/˝U n�1.

Definition The extended cup homology HC1� .Y / of Y with respect to the given basis is the homology
of ƒ�.Zn/ŒU;U�1� with respect to the degree �1 differential given by

x˝U n
7! �a.x/˝U n�1

C �aı2.x/˝U n�2
C �aı3.x/˝U n�3

C � � � ;

where aD[3
Y
2ƒ3.Zn/.

Remark The natural filtration ofƒ�.Zn/ by degree gives rise to a spectral sequence abutting to HC1� .Y /
with E4–page HC1� .Y /; the higher differentials can be described in terms of a in a purely algebraic
fashion.

Our main result is the following completely explicit computation of HM� over the integers:

Theorem A If s is a torsion spinc structure , the monopole Floer homology group HM�.Y; s/ is isomor-
phic to the extended cup homology HC1� .Y / as relatively Z–graded ZŒU;U�1�–modules.
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Remark For the reader more familiar with Heegaard Floer homology, our result directly translates to a
computation of the group HF1.Y; s/ over the integers for a torsion spinc structure via the isomorphism
between the theories (see [Kutluhan et al. 2020; Colin et al. 2011] and subsequent papers). In that setting,
Lidman [2012] showed using surgery techniques that the invariant coincides with the usual cup homology
over F2.

Our main result is somewhat curious, especially given the fact that there exists an isomorphism to the usual
cup homology HC1 when the ground ring is F2 or Q. This follows from the aforementioned computations
of the invariants with those coefficients, due to Lidman, and Kronheimer and Mrowka, respectively. One
can show (using ideas related to the content of the paper) that this implies that the spectral sequence with
E4 D HC1 and converging to HC1 has d5 D 0 after tensoring with any field, but, for example, leaves
open the possibility that d7 is nonzero even after tensoring with a field of characteristic 3.

To determine whether the nonvanishing of some higher differential was plausible, we computed both
HC1 and HC1 for n � 12 and about 1000 random choices of a, where a was given as a sum of 30

monomials with random coefficients at most 10. In all cases, the underlying Z–graded abelian groups
were isomorphic. This leads us to the following completely algebraic question:

Question B Let a 2 ƒ3.Zn/. Are the extended cup homology HC1 and the cup homology HC1

associated to a isomorphic (possibly noncanonically) as ZŒU;U�1�–modules?

Remark Because both cup homology and its extended version have lots of integral torsion, a positive
answer to this question would be strictly stronger than the vanishing of the differentials in the spectral
sequence; the analogue of the latter in Heegaard Floer homology was conjectured to hold by Ozsváth and
Szabó [2003]. Also, classical work of Sullivan [1975] shows that any a 2ƒ3.Zn/ can be realized as the
triple cup product of some three-manifold; therefore the question above asks whether HC1.Y /ŠHC1.Y /
for all Y.

Remark The extended cup complex depends on the choice of basis in an essential way; it is only clear
that the resulting homology groups are independent of basis as a result of the isomorphism to HM�.Y I s/.
As discussed in the final section of this introduction, the choice of basis arises naturally in the course of
the proof, yet cup homology itself has no such dependence on basis, nor does HM�. In this light, the
dependence of the extended cup complex on a choice of basis appears rather strange.

The monopole Floer homology group HM�.Y; s/ vanishes for a nontorsion spinc structure. A more
interesting version, denoted by HM�.Y; s; cb/, arises by looking at the equations perturbed by a balanced
nonexact perturbation cb [Kronheimer and Mrowka 2007, Chapter 30]. This invariant is only relatively
Z=2N Z–graded, where

N D 1
2

gcdfha[ c1.s/; ŒY �i W a 2H 1.Y IZ/g;
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and corresponds in Heegaard Floer homology to the group HF1.Y; s/ under the isomorphism between
the theories. In direct analogy to Theorem A, we will provide a complete computation of this invariant
in terms of suitable “twisted” extended cup homology groups; see Section 6.2 for the exact statement.
In fact, our approach readily generalizes also to compute the invariants twisted by a local coefficient
system �0 in the blown-up configuration space [Kronheimer and Mrowka 2007, Section 3:7] for both
torsion and nontorsion spinc structures.

Remark The proof of Theorem A may be phrased in terms of either homology or cohomology. In our
discussion we prefer the latter, so that we may focus our discussion on algebras (as opposed to algebras
and their modules). In particular, in the proof of Theorem A we will mostly focus on the cohomological
version of the invariant HM�.Y; s/. When we deal with local systems and nontorsion spinc structures,
and are forced to use modules, we return to the homological version.

Coupled Morse theory and relations with twisted de Rham cohomology Kronheimer and Mrowka
[2007, Chapter 33] introduce the coupled Morse complex CMC�.M;L/ for a compact smooth manifold M

with a Morse function f and a family of self-adjoint Fredholm operators L over M, classified (up to
homotopy) by a map �L WM ! SU.1/. Its cohomology is a module over ZŒU;U�1�. Furthermore,
Kronheimer and Mrowka [2007, Section 35:1] prove that, when L is the family of Dirac operators fDBg

parametrized by the torus T DT .Y; s/ of flat spinc connections of a torsion spinc structure s, the coupled
Morse cohomology CMH�.T ;DB/ recovers the Floer cohomology group HM�.Y; s/, together with its
module structure over ZŒU;U�1�.

Our proof will build on the simplicial model constructed in [Kronheimer and Mrowka 2007, Section 34:3]
for the coupled Morse cohomology complex C �.M;L/ of a family of self-adjoint operators L on a
smooth manifold M classified (up to homotopy) by a map

� WM ! SU.2/:

The authors show that, for a sufficiently fine�–complex structure on M, there is a simplicial 3–cocycle x3

for which the chain complex

(0-2) C �tw.M Ix3/D C ��.M /˝ZŒT �1;T �

equipped with the differential

(0-3) � 7! d� C .x3[ �/T;

is quasi-isomorphic to CMC�.M;L/. Here T is a formal variable of degree �2; this quasi-isomorphism
sends the action of U�1 in coupled Morse cohomology to T in twisted singular homology. The two
variables are related in a more complicated way when one allows � to factor through U.2/ instead, and
the exact relationship remains open; see Section 6 for more details.
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We will refer to this model as the simplicial cohomology of M twisted by the 3–cocycle �3, and denote it
by H�tw.M I �3/. Notice that it is implicit in the construction that �2

3
D 0 at the cochain level, as otherwise

(0-3) does not square to zero. We call such cocycles twisting 3–cycles. The class Œ�3� 2H 3.M IZ/ is
the pullback via the classifying map � of the generator of H 3.SU.2/IZ/D Z. In the case of the family
of Dirac operators associated to .Y; s/, the corresponding element in H 3.T IZ/ D .ƒ3H 1.Y IZ//� is
naturally identified with [3

Y
, the triple cup product of Y [Kronheimer and Mrowka 2007, Lemma 35:1:2].

Kronheimer and Mrowka [2007] then show that, after tensoring with R, this construction is equivalent to
a version of Atiyah and Segal’s twisted de Rham cohomology [2006], where the twisting is provided by a
closed 3–form representing Œx3� in de Rham cohomology. The result in (iii) then follows immediately from
the formality of the de Rham complex of the torus. Furthermore, this shows that, when L WM ! SU.1/
factors through SU.2/, the coupled Morse cohomology with real coefficients CMH�.M;LIR/ only
depends on the real cohomology class ��

L
ŒSU.2/�.

Integral twisted cohomology By contrast, the analogous story is significantly more complicated over the
integers. The final remark of [Kronheimer and Mrowka 2007, Section 34:3] points out that cohomologous
twisting 3–cycles x3 and x0

3
might lead to nonisomorphic twisted cohomology groups, but do not provide

explicit examples of this phenomenon.

In fact, already in the simplest case, in which Œx3� D 0 2 H 3.M IZ/, the twisted cohomology group
H�tw.M Ix3/ might differ from H�tw.M I 0/DH�.M /˝ZŒT �1;T �. Indeed, if dh2C x3 D 0, x3 [ h2

defines a cohomology class in H 5.M IZ/ as x2
3
D 0, and one shows that the E5–page of the spectral

sequence associated to the grading filtration is equivalent to the chain complex with the same underlying
group H�.M /˝ZŒT �1;T � and differential

(0-4) � 7! .Œx3[ h2�[ �/T
2:

In some cases of interest, we will see that Œx3[h2� is a possibly nonvanishing 2–torsion class, so that,
while the differential d3 of the associated spectral sequence vanishes as Œx3�D 0, the differential d5 might
be nonzero. We give an explicit example where this occurs in Section 2 below, and prove the following
result (providing a concrete example of the possible phenomenon described in [Kronheimer and Mrowka
2007, Section 34:3]) as a consequence:

Theorem C There exists a closed smooth manifold M equipped with two families of self-adjoint
operators Li (i D 0; 1) with nonisomorphic coupled Morse homologies which are classified by maps
�i WM ! SU.2/ for which ��

0
ŒSU.2/�D ��

1
ŒSU.2/� 2H 3.M IZ/.

This discussion suggests that, even if we are only interested in studying the cohomology twisted by a
square-zero 3–cocycle, higher-degree cochains (such as x3[h2) necessarily enter the theory. In fact, the
latter provide a more natural and invariant framework to deal with twisted cohomology from the point of
view of homotopy theory, and naturally lead to the following definition:
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Definition Let A be a dg-algebra. A twisting sequence for A is a sequence x� D .x3;x5; : : : / of
odd-degree cochains satisfying the relation

dx2nC1C

X
nDiCj
i;j�1

x2iC1[x2jC1 D 0:

The twisting sequence x� defines the differential on AŒŒT;T �1� given by

� 7! d� C
X
i�1

.x2iC1[ �/T
i ;

and we denote the corresponding twisted cohomology group by H�tw.AIx�/. When A is bounded above
in degree, we may use Laurent polynomials AŒT;T �1� instead of Laurent series as above.

A 3–cocycle x3 with x2
3
D 0 naturally defines a twisting sequence, namely .x3; 0; 0; : : : /; we will call

the latter the twisting sequence associated to x3.

Remark The notions of twisting sequence and twisted cohomology make sense in much more general
contexts, where they are known under the name twisting cochain, twisting element or sometimes Maurer–
Cartan element. These first appeared in [Brown 1959] in a description of the cochain algebra of a fiber
bundle as a twisted tensor product, twisted by such a twisting cochain. The above is essentially the special
case of a Maurer–Cartan element in AŒŒT �� contained in TAŒŒT ��. One might then denote the set of twisting
sequences by MCC.AŒŒT ��/; this is rather a mouthful, and we will later use the notation TS.A/.

While some of our algebraic results might hold in more general contexts, we only pursue them in the
level of generality relevant to our main application.

Twisting sequences and Hirsch algebras Twisting sequences enjoy a notion of homotopy, so that,
if f W A! B is a quasi-isomorphism of dg-algebras, it induces a bijection between homotopy classes
of twisting sequences (see Proposition 1.9); furthermore, homotopic twisting sequences give rise to
isomorphic twisted (co)homology groups. Because Kronheimer and Mrowka’s result computes that
HM�.Y; s/ is isomorphic to a twisted cohomology group of the algebra C �

�
.T / with respect to an

appropriate twisting sequence �KM D .�3; 0; : : : /, our goal is to transfer this twisting sequence to the
exterior algebra H�.T / by using the fact that cochains on the torus give a formal dga: there is a zigzag
of quasi-isomorphisms from C �.T / to H�.T /.

Unfortunately, this transferred twisting sequence is completely inexplicit, because the proof that quasi-
isomorphisms induce a bijection on homotopy classes of twisting sequence is inexplicit. We need
something stronger to determine what twisting sequence �KM is transferred to. Observe that, if x� is
a twisting sequence, Œx3� gives a cohomology class which is homotopy invariant and natural under
pushforward of twisting sequences. Therefore, in the above transfer process, we can at least recover Œx3�.
Ideally we would now say that Œx5�, Œx7� and so on play the same role in higher degrees. But x5 is not a
cycle, so does not define a cohomology class! Indeed, we have dx5 D�x2

3
. If we want to construct a

homology class using x5, we will need a canonical reason that x2
3

is null-homotopic.
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This leads us to study Hirsch algebras (see [Saneblidze 2016]) in Section 2. These are dgas equipped
with an operation

E1;1 WA
p
˝Aq

!ApCq�1

which demonstrates that the product on A is homotopy-commutative (playing the same role as Steenrod’s
cup-1 product on simplicial cochains), together with additional operations Ep;q which assert that the
operation E1;1 is associative up to coherent homotopy and gives a derivation of the cup product up to
coherent homotopy. These are relevant because dE1;1.x3;x3/D�2x2

3
. Much of Section 4 is devoted to

giving explicit constructions of Hirsch structures in two cases of interest, simplicial and cubical cochains
C �
�

and C �� of simplicial/cubical sets, using recent work of Medina and Mardones [2020] on E1–operads
but attempting to remain as explicit as possible (which is necessary for our later explicit computations on
the minimal torus).

In a Hirsch algebra A, we will define rational characteristic classes for a twisting sequence x�,

Fn.x�/ 2H 2nC1.A/Q;

which are homotopy invariants and natural under maps of Hirsch algebras. When A has torsion-free
cohomology, these characteristic classes are enough to recover the original twisting sequence up to
homotopy (Theorem 3.7). They are exactly what we need to compute the transferred twisting sequence
in H�.T / above.

We construct these characteristic classes via two constructions, valid for arbitrary Hirsch algebras A

and possibly of independent interest. The inspiration for both of these is the fact (Proposition 3.3) that
elements of AŒŒT �� with dxC x2 D 0 correspond bijectively to elements g.x/ of the bar construction
BAŒŒT �� which are both

� grouplike, ie �g.x/D g.x/˝g.x/, and

� cocycles, ie dBAg.x/D 0.

The reason a Hirsch algebra structure is relevant is that it gives rise to a product � W BA˝BA! BA, so
BA becomes a (possibly nonassociative) dg-bialgebra. Then products of grouplike cocycles are again
grouplike cocycles, and we have the following result (Corollary 3.4):

Theorem D Let A be a Hirsch algebra. Then the set TS.A/ of twisting sequences in A has an explicit
unital product � W TS.A/�TS.A/! TS.A/, which is natural for Hirsch algebra maps. Writing ts.A/ for
the set of homotopy classes of twisting sequences , this descends to a product h� W ts.A/� ts.A/! ts.A/.

Remark It seems likely that h� is associative (though the map � W BA˝BA! BA need not be, it
seems plausible that one should be able to choose a homotopy equivalent model in which it is indeed
associative).

Our second construction is inspired by the construction of [Kraines 1966, Lemma 16] and its extension to
Hirsch algebras in [Saneblidze 2016, Section 3.3].
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Theorem E Let A be a Hirsch algebra. For each odd cocycle a2Z.A/2nC1, there is a canonical twisting
sequence K.a/ in AQ with K.a/2iC1 D 0 for i < n and K.a/2nC1 D a. These twisting sequences are
natural for Hirsch algebra maps.

Putting these together, for any twisting sequence x� in a Hirsch algebra A, we can construct a canonical
approximation K.n/.x�/ in AQ which agrees with x� through degree 2n� 1; the nth characteristic class
is given by

Fn.x�/D Œx2nC1�K.n/.x�/2nC1�;

and may be understood as the first obstruction to finding a homotopy from x� to K.n/.x�/. Let us point
out that the theory of characteristic classes is significantly simpler in the case in which AD C �

�
.X /; this

is because all higher operations Ep;q with p � 2 vanish.1 On the other hand, we will need the more
general machinery because we will work with cubical cochains, for which the analogue of the classical
Hirsch formula [1955] only holds up to homotopy (rather than on the nose as in the simplicial case).

Computations on the minimal torus To apply the machinery of the previous subsection to our problem,
we need to find a zigzag of Hirsch algebra quasi-isomorphisms from C �

�
.T / to H�.T /. The most obvious

approach is to use combinations of the classical Eilenberg–Zilber and Alexander–Whitney maps to reduce
this to a tensor product of circles, but these maps are not Hirsch algebra maps in an obvious way.

Instead, we observe that there is a geometric model for T whose cochain algebra is isomorphic to H�.T /

and carries the structure of a Hirsch algebra. This is not possible simplicially: the minimal triangulation
of T n certainly requires more than one n–simplex, and the standard small triangulation has n! of them.
Instead, we use a cubical model T n

1
, which we call the minimal torus. This is a cubical set obtained as a

quotient of the standard cube �n by pasting together opposite sides.

There is a zigzag of comparison maps between H�.T n/D C ��.T
n
1
/ and the simplicial cochain algebra

C �
�
.T /, all of which are Hirsch algebra quasi-isomorphisms. Choosing such a zigzag is essentially

equivalent to choosing a basis for H 1.T IZ/, which is why the definition of the extended cup complex
depends on a choice of basis.. The twisting sequence we are interested in — �KM D .�3; 0; : : : /— is
pulled back to C �

�
.T / from C �

�
.SU2/ by a simplicial map. By naturality, the characteristic classes have

Fn.�KM/D 0 for all n> 1, while F1.�KM/D Œ�3�D[
3
Y

is known to be the triple cup product.

The twisted cohomology of C �
�
.T / with respect to �KM is isomorphic to the twisted cohomology of

H�.T n/Dƒ�.Zn/ with respect to an appropriate transferred twisting sequence z��KM. This transferred
twisting sequence must have F1.z��KM/D[

3
Y

and Fn.z��KM/D0 for n>1. We will see that the canonical
the twisting sequence K.[3

Y
/ associated to [3

Y
in Theorem E has these properties (see Theorem 3.7

below); because the torus has bounded and torsion-free cohomology, this must be homotopic to z��KM

(and therefore equal because the notion of homotopy degenerates on any algebra with trivial differential).

1More precisely, our characteristic classes rely heavily on the operations E1;p ; one may obtain characteristic classes which
only depend on the cup-1 product if one sets up the theory with the operations Ep;1 instead. This is discussed in more detail in
Remark 3.3.
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We thus have an isomorphism from HM�.Y; s/ to the twisted cohomology of H�.T n/ with respect
to K.[3

Y
/. What we need to do is determine this twisting sequence. We carry this out in Section 5.1

by giving a complete calculation of the operations E1;p for the minimal torus, where we show that,
in H�.T n/, K.a/ D .a; aı2; aı3; : : : /, as in Theorem A. This is not a full calculation of the Hirsch
algebra structure on the minimal torus — for instance, the operation E2;2 is nonzero. However, these
higher operations are irrelevant to our calculations. Finally, in Section 5.4, we explain why this result
also implies an isomorphism with respect to various local systems, and in Section 6.2 we carefully state
the version of our main theorem in the setting of local systems and nontorsion spinc structures.
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1 Twisting sequences for general dg-algebras

The first part of this section deals with definitions as well as functoriality and invariance properties of
twisting sequences and the associated twisted cohomology. In the second part, we discuss an obstruction
theory for twisting sequences and its consequences.

1.1 Generalities on twisting sequences

In this section we discuss the notion of integral twisted (co)homology. This is inspired by Atiyah and
Segal’s twisted de Rham cohomology [2006]. In the de Rham setting, wedge squares of odd-degree forms
are automatically zero, and, given a closed odd-degree form !, the map

.d Cm!/.�/D d�C! ^ �

is a square-zero operator, with respect to which we can take cohomology.

Working integrally, we have no such luck, because the cup product does not commute on the nose: in
fact, if x is an odd-degree cycle, x2 might even define a nonzero (2–torsion) class in cohomology. To
prevent this, we should ask that there be a chain y with dyCx2 D 0, which we then need to incorporate
into our twisted differential. We then need additional chains to cancel out the contribution from xyCyx

and y2, and so on.

Starting with a degree 3 cycle as our basic twist, this leads us to the definition of twisting sequence for
a dg-algebra. First, let us set conventions. In what follows, all dg-algebras are graded over Z and the
differential has degree C1, satisfying d.ab/D .da/bC .�1/jaja.db/.
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Definition 1.1 A cohomological dg-module is a Z–graded chain complex M with differential of
degree C1, together with an action A˝M !M satisfying a.bm/ D .ab/m, jamj D jaj C jmj and
d.am/D .da/mC .�1/jaja.dm/.

A homological dg-module is a Z–graded chain complex M with differential of degree�1, together with an
action A˝M !M satisfying b.am/D .ab/m, jamjD jmj�jaj and d.am/D .�1/jaj.a.dm/�.da/m/.

The standard example of a cohomological dg-module is C �.X IZ/ as a module over itself with the
cup product action. The standard example of a homological dg-module is C�.X IZ/ as a module over
C �.X IZ/ with the cap product action.

Henceforth, we will almost exclusively work with cohomological dg-modules to avoid writing two nearly
identical proofs. All of the results below still apply for homological dg-modules, with the same signs.
We discuss the distinction in the rare occasions it is important. Furthermore, we will also assume that
all dg-algebras and modules are free as Z–modules and have finitely generated cohomology in each
dimension.

Definition 1.2 Let A be a dg-algebra. A twisting sequence x� in A is a sequence

x� D .x2nC1/ 2
Y
n�1

A2nC1.X IZ/

of odd-degree elements of A such that

dx2nC1C

X
iCjDn
i;j�1

x2iC1x2jC1 D 0

for all n. When x2iC1 D 0 for all i ¤ n, we say that x2nC1 is a twisting .2nC1/–cycle, or simply a
square-zero cocycle.

We write the set of twisting sequences in A as TS.A/.

This is precisely what is needed to define a (generalized) twisted cohomology group.

Definition 1.3 Consider a dg-algebra A with twisting sequence x�. For a dg-module M over A, we
define the twisted chain complex of M as

C �tw.M Ix�/D .M ˝ZŒŒT;T �1�; d CL3T CL5T 2
C � � � /;

where
L2nC1mD x2nC1 �m;

the formal variable T has degree �2, and ZŒŒT;T �1� denotes the Laurent series in T. When M is bounded
above in degree, this is identical to M ˝ZŒT;T �1�, and we may use Laurent polynomials instead.2

2This is the version we are interested in when studying HM�, in particular when we study local systems.
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We say that the resulting homology group H�tw.M Ix�/, considered as a module over ZŒŒT;T �1�, is the
twisted cohomology of .M Ix�/.

Remark 1.1 In proving Theorem A, we will only need to take ADM, and our algebras will be various
cubical and simplicial cochain algebras of a space (or simplicial/cubical set) X. In this case, we write
the twisted cochain complex as C �tw.X Ix�/. To study the monopole Floer homology for a torsion spinc

structure s with coefficients in a local system �0 on B� .Y; s/, it is natural to choose M to be the simplicial
or cubical chains with coefficients in �0, which we denote by C�

� .X I�0/ and C �
� .X I�0/, respectively.

Finally, when studying nontorsion spinc structures, we will replace M ˝ZŒT;T �1� by a twisted version
in order to take into account monodromies that act as multiplying by T n.

It is readily checked that the differential above indeed squares to zero:

.d CL3T C � � � /2mD d2mC

1X
nD1

�
dL2nC1CL2nC1d C

X
iCjDn

L2iC1L2jC1

�
mT n

D

1X
nD1

�
d.x2nC1m/Cx2nC1dmC

X
iCjDn

x2iC1x2jC1m

�
T n

D

1X
nD1

�
.dx2nC1/mC

X
iCjDn

x2iC1x2jC1m

�
T n

D

1X
nD1

�
dx2nC1C

X
iCjDn

x2iC1x2jC1

�
mT n

D 0:

The twisted differential has degree C1, so the twisted cohomology group is naturally Z–graded. Further-
more, it breaks up into a sum of terms L2nC1T n, where L2nC1 increases the M –degree by 2nC 1. It is
thus compatible with the filtration on M ŒŒT;T �1�, so Fp is the set of Laurent series

P
i�p miT

i , and
gives rise to a spectral sequence

H�.M /ŒŒT;T �1�)H�tw.M Ix�/

whose d3–differential is multiplication by Œx3�T. If

x3 D � � � D x2n�1 D 0

as chains, then the first possibly nonzero differential of this spectral sequence is d2nC1, which is given
by multiplication by Œx2nC1�T

n.

As before, when M is bounded above in degree, Laurent series simplify here to being Laurent polynomials.

Because the filtration by T is complete, this spectral sequence is strongly convergent, which means
that H�tw.M Ix�/ has associated graded group isomorphic to the E1–page of the spectral sequence;
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furthermore, filtered maps between these complexes which induce an isomorphism on the E2–page induce
an isomorphism on homology.

The fundamental notion for our purposes is the following:

Definition 1.4 Consider a dg-algebra A. Two twisting sequences x� and y� in A are homotopic if there
is a sequence

h� D .h2n/ 2
Y
n�1

A2n

such that the identity

y2nC1�x2nC1C dh2nC

X
iCjDn

.y2jC1h2i � h2ix2jC1/D 0

holds for all n� 1. We write ts.A/ for the set of homotopy classes of twisting sequences on A.

Remark 1.2 It is not obvious from the definition that being homotopic is an equivalence relation on
twisting sequences; this will be shown in the next subsection.

The relevance of the notion of homotopic twisting sequences is the following:

Lemma 1.5 Consider two homotopic twisting sequences x� and y� in a dg-algebra A. Then , for every
dg-module M over A, the twisted cohomologies H�tw.M;x�/ and H�tw.M;y�/ are isomorphic.

Proof Consider the map
h�tw W C

�
tw.M Ix�/! C �tw.M Iy�/

given by
h�tw.m˝T j /Dm˝T j

C

X
n�1

h2n �m˝T jCn:

It is easily verified that h�tw is a chain map if and only if h� is a homotopy of twisting sequences. Further,
it is a filtered isomorphism, because it is a filtered map (with respect to the complete filtration described
above) whose associated graded map is the identity.

Of course, the isomorphism between H�tw.M Ix�/ and H�tw.M Iy�/ might depend in general on the choice
of homotopy h�.

If we want to understand functoriality properties for twisted cohomology, we must use twisting sequences
themselves (as opposed to twisting sequences considered up to homotopy), as follows.

Suppose one is given a dg-algebra homomorphism f WA!B, and suppose that M and N are dg-modules
over A and B, respectively, either both homological or both cohomological. The definition of a module
map depends on whether

(a) cohomological module maps over f are chain maps g WM !N with g.am/D f .a/g.m/;

(b) homological module maps over f are chain maps g WN !M with g.f .a/n/D ag.n/.
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The key examples to have in mind are the following. Suppose we have a commutative diagram of
simplicial complexes

X Y

K L

p

q

If we consider AD C �
�
.L/, B D C �

�
.K/ and f D q�, then the maps

p� W C ��.Y /! C ��.X /; p� W C
�
� .X /! C�

� .Y /

are cohomological and homological module maps, respectively. This language will be especially useful
when dealing with local coefficients.

We have the following functoriality properties:

Lemma 1.6 In the setting above , consider a twisting sequence x� for A. Then:

(a) If g WM !N is a cohomological module map , there is an induced map

gtw WH
�
tw.M Ix�/!H�tw.N If .x�//:

(b) If g WN !M is a homological module map , there is an induced map

gtw WH
�
tw.N If .x�//!H�tw.M Ix�/:

In both cases , if g is a quasi-isomorphism , then gtw is an isomorphism.

Proof That such maps induce chain maps on the corresponding twisted chain complexes follows from
the given formulas; these chain maps are filtered maps, which induce g� W H�.M / ! H�.N / and
g� WH

�.N /!H�.M / on the E2–page of the corresponding spectral sequence. Because the twisted
cohomology spectral sequence converges, if g� (resp. g�) is an isomorphism, so is gtw.

Remark 1.3 It may be surprising to some that our definition of twisting sequence starts in degree 3
rather than degree 1. In fact, this is essential for several reasons:

� If x1 ¤ 0, then the E1–page of the spectral sequence abutting to H�tw.M / is now .M; d CL1/,
and we do not have simple tools to compute its homology.

� In the next section we will use inductive arguments to show that quasi-isomorphisms induce
bijections on homotopy classes of twisting sequences. If we allow x1 ¤ 0, the base case in these
inductive arguments fails, and indeed the claim is no longer true.

� The definition of characteristic classes we introduce in Section 4 would also fail to introduce even
a zeroth class F0.x�/.
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Remark 1.4 There is a space (or rather a simplicial set) UT such that maps X !UT of simplicial sets
correspond to twisting sequences in C �

�
.X IZ/, and homotopies between maps correspond to homotopies

between twisting sequences. In fact, taking X D�n, this gives a formula for the n–cycles of this simplicial
set. Similar simplicial models are discussed in [Brumfiel and Morgan 2016, Section 1.5].

One may think of twisted singular homology as being a parametrized homology theory over UT in the
sense of [May and Sigurdsson 2006, Section 20.1]. One can show that this space has

(1-1) �i.UT /D

�
Z if i � 3 is odd,
0 otherwise.

Furthermore, one can interpret each relation dx2nC1C
P

iCjDn x2iC1x2jC1D0 as giving the k–invariant
for the next stage in the Postnikov tower of UT . In particular, the first k–invariant is nonzero.

The computation in (1-1) suggests a comparison to two spaces: the product K D
Q

n�1 K.Z; 2nC 1/

and the special unitary group SU. However, UT is equivalent to neither: the first k–invariant of UT is
nonzero and its second k–invariant has order 3, while the k–invariants of K are trivial and the second
k–invariant of SU has order 6.

1.2 Obstruction theory for twisting sequences and homotopies

In what follows, we will need to know that, given a quasi-isomorphism f W A! B, the induced map
ts.f / W ts.A/! ts.B/ on homotopy classes of twisting sequences is a bijection.

In our argument we will want to extend partially defined twisting sequences, as well as extend partially
defined homotopies. Before doing so we should define the obstruction classes of partially defined twisting
sequences and homotopies, and check that these classes are themselves well defined up to homotopy.

Definition 1.7 A twisting n–sequence in A is a sequence

.x3; : : : ;x2n�1/ 2

n�1Y
iD1

A2iC1

satisfying the relations dx2mC1C
P

iCjDm x2iC1x2jC1 D 0 for all m < n. The obstruction class to
extending this to a twisting .nC1/–sequence is

on.x�/D

� X
iCjDn

x2iC1x2jC1

�
2H 2nC2.A/:

An n–homotopy h� W x�! y� between twisting n–sequences x� and y� is a sequence .h2; : : : ; h2n�2/

with

dh2mCy2mC1�x2mC1C

X
iCjDm
i;j�1

y2iC1h2j � h2j x2iC1 D 0
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for all m<n. If x� and y� are extended to twisting .nC1/–sequences, the obstruction class to extending h�

to an .nC1/–homotopy is

on.h�/D on.h�Ix�;y�/D Œy2nC1�x2nC1C

X
iCjDn

y2iC1h2j � h2j x2iC1� 2H 2nC1.A/:

Finally, an n–modification between two homotopies h�; h
0
�
W x�! y� is a sequence .z1; : : : ; z2n�3/ in A

with

dz2m�1C h2m� h02mC

X
iCjDm

z2i�1x2jC1Cy2jC1z2i�1 D 0

for all m< n.

The latter two concepts are nearly special cases of the first. An n–homotopy h� between twisting
n–sequences x� and y� is the same data as a twisting n–sequence

Nh2mC1 D e0
˝y2mC1C eI

˝ h2mC e1
˝x2mC1

on I ˝A. Here I is the algebra of simplicial cochains on the 1–simplex, where we denote the generators
by e0, e1 and eI, respectively. Write r0 W I !ZŒ0� for the map with r0.e

0/D 1 and r0.e
I /D r0.e

1/D 0,
and similarly for r1; these maps are dg-algebra maps and quasi-isomorphisms, and r D .r0; r1/ is surjective
onto Z2. The above construction amounts to saying that an n–homotopy h� between twisting n–sequences
is equivalent to the data of a twisting n–sequence Nh� on I ˝A with r0. Nh�/D y� and r1. Nh�/D x�.

Given homotopies h� and h0
�
, and passing to the associated twisting sequences Nh� and Nh0

�
on I ˝A, the

notion of a modification is precisely a relative homotopy between these twisting sequences: a homotopy
which vanishes on the boundary @I ˝A. One may also view z� as arising from the twisting sequence on
I ˝ I ˝A given by

Nz2mC1D e0
1e0

2y2mC1Ce0
1e1

2y2mC1Ce1
1e0

2x2mC1Ce1
1e1

2x2mC1CeI
1 e0

2h02mCeI
1 e1

2h2mCeI
1 eI

2 z2m�1:

Write i W ZŒ0�! I for the map i.1/D e0C e1; we will denote the induced map A! I �A by the same
letter. One further useful perspective arising from the explicit formula here is that an n–modification
between two homotopies h; h0 W x�! y� is the same data as a homotopy Oz� W i.x/�! i.y/� such that

r0.Oz�/D h0
�
W x�! y�

and, similarly,

r1.Oz�/D h� W x�! y�:

That is, one may understand an n–modification as a relative homotopy between two homotopies.

The definition of twisting n–sequence is exactly the same as that of a defining sequence for the Massey
power hx3i

n as in [Kraines 1966]; one says that hx3i
n is the set of all cohomology classes produced

as on.x�/, where x� is a twisting n–sequence beginning with x3.
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The fact that Massey powers are well defined and vanish rationally — and thus the obstruction to extending
a twisting sequence is rationally always zero — is one of the main inspirations for the results of this
article. The obstruction class associated to a homotopy and to a modification are relative versions of these
constructions. These, plus naturality properties of obstruction classes, give us the following result:

Lemma 1.8 If x� and y� are homotopic twisting n–sequences , then on.x�/D on.y�/. Similarly, if there
exists a modification z� between two n–homotopies h�; h

0
�
W x�! y�, the associated obstruction classes

are equal :
on.h�/D on.h

0
�
/:

Proof It is clear that, if f WA! B is a dg-algebra homomorphism and x is a twisting n–sequence in A,
then on.f .x�//D f�on.x�/. Now, if x and y are n–homotopic by a homotopy h, consider the twisting
n–sequence Nh on I ˝A. By naturality,

on.x�/D .r1/�on. Nh�/D .r0/�on. Nh�/D on.y�/;

where the middle equality holds because r0 and r1 induce the same map on cohomology.

A similar naturality property holds for the obstruction class of a homotopy; we suppress bullets from
notation for legibility. If f W A! B is a dg-algebra homomorphism and h W x! y is an n–homotopy
in A, then f .h/ W f .x/! f .y/ is an n–homotopy in B and

f�on.hIx;y/D on.f .h/If .x/; f .y//:

As discussed above, a modification z gives a homotopy Oz� between i.x/ and i.y/. Then

on.hIx;y/D .r1/�o.OzI i.x/; i.y//D .r0/�o.OzI i.x/; i.y//D on.h
0
Ix;y/:

The outer two equalities hold because r0 Oz D h and r1 Oz D h0, while the maps r0i D r1i are both
equal to the identity. Using once more that r0 and r1 induce the same maps in homology, we have
on.hIx;y/D on.h

0Ix;y/, as desired.

These in hand, we can finally explain why homotopy classes of twisting sequences are quasi-isomorphism
invariants.

Proposition 1.9 Let f W A! B be a dg-algebra homomorphism which induces an isomorphism on
homology. Then the induced map on homotopy classes of twisting sequence ts.A/! ts.B/ is a bijection.

Proof We will prove both directions by induction.

First we show surjectivity. Suppose b� D .b3; : : : / is a twisting sequence in B. Our goal is to construct a
twisting n–sequence a� in A and an n–homotopy f .a�/! b� via induction on n; doing so for all n gives
us the desired lift-up-to-homotopy.

For the base step, use that f is a quasi-isomorphism to choose a3 2A and h2 2B with dh2D f .a3/�b3.
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Inductively, suppose we have a twisting n–sequence a� D .a3; : : : ; a2n�1/ in A and an n–homotopy
.h2; : : : ; h2n�2/ from f .a�/ to b�. The obstruction to extending a� is given by o.a�/. We know

f�o.a�/D o.f .a�//D o.b�/;

because the two twisting n–sequences are homotopic. But b� is a twisting sequence, defined for all n; there
is no obstruction to extending it. Thus f�o.a�/D 0, and, because f is a quasi-isomorphism, o.a�/D 0.
Thus we may choose an element a0

2nC1
2A extending a� to a twisting .nC1/–sequence. However, after

choosing such an extension, it may be the case that the obstruction to extending the homotopy

o.h�I a
0
�
; b�/D

�
f .a02nC1/� b2nC1C

X
iCjDn

h2jf .a2iC1/� b2iC1h2j

�
is nonzero. If so, pick a cocycle c 2 A so that f .c/ is homologous to this obstruction class, and set
a2nC1 D a0

2nC1
� c. Because c is a cocycle it is clear this is still a twisting .nC1/–sequence, and, by the

explicit formula for the obstruction class, the obstruction class has

o.h�I a�; b�/D o.h�I a
0
�
; b�/� Œc�D 0;

so there is no obstruction to extending the homotopy. Choosing an appropriate h2n, this completes the
induction.

Injectivity falls to a similar argument: one supposes x� and y� are twisting sequences in A, that b� is
a homotopy between f .x�/ and f .y�/, and inductively constructs a homotopy b0

�
from x� to y� and a

modification z� W f .b
0
�
/! b�. The only novelty is that we use modifications between homotopies, instead

of homotopies between twisting sequences.

It is important to point out that, even though f induces a bijection on homotopy classes of twisting
sequences, the bijection is not explicit, and it does not preserve the property of being representable by a
twisting 3–cycle .x3; 0; : : : /. In Section 2 we will see an example of a zigzag of quasi-isomorphisms such
that a twisting 3–cycle .�3; 0; : : : / with Œ�3�D 0 is transferred to a twisting 5–cycle .0; �0

5
; 0; : : : / with

Œ�0
5
�¤ 0. This is a 2–torsion phenomenon, as �0

5
is necessarily a 2–torsion class. In Section 3, our rational

characteristic classes — only valid for Hirsch algebras A — will be used to control this phenomenon.

We conclude this section by reformulating the homotopy relation. As stated, it is not even clear that
this relation is either reflexive or transitive: in the former case the issue is that there is no algebra map
I ! I which “swaps the endpoints” of the interval, and in the latter case, if one has a pair of homotopies
h1 W x! y and h2 W y! z, these define a twisting sequence on the algebra I2˝A (where I2 is the algebra
of cochains on the simplicial interval with two edges), but there is no clear way to induce from this a
homotopy from x to z.

To remedy these, we show that the notion of “homotopy” may be defined with respect to any algebra
which behaves sufficiently well, like cochains on the interval, and that this agrees with our original notion
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of homotopy. This will quickly show that homotopy of twisting sequences is an equivalence relation. It
will be important later that, rationally, I may be replaced with a commutative algebra. First we describe a
suitable class of algebras which can be used in place of I ; in Remark 1.5 we show that a commutative
example exists over the rationals, which is used in the proof of Theorem 3.7.

Definition 1.10 An interval algebra J is a torsion-free, nonnegatively graded, unital dg-algebra equipped
with two dg-algebra quasi-isomorphisms r0; r1 W J ! ZŒ0� such that

r D .r0; r1/ W J ! Z2

is surjective and such that the ri induce the same map in homology.

A homomorphism of interval algebras is a dg-algebra homomorphism f W J ! J 0 such that r 0f D r ;
a quasi-isomorphism of interval algebras is a homomorphism of interval algebras which induces an
isomorphism in homology.

Finally, given an interval algebra J and a dg-algebra A, a J–homotopy between twisting sequences x�

and y� on A is a twisting sequence Nh� on J ˝A such that r0. Nh�/D y� and r1. Nh�/D x�.

If x� and y� are J–homotopic, we write x� �J y�.

Example 1.1 The algebra I D C �
�
.�1/ is the standard and simplest interval algebra; an I–homotopy is

simply a homotopy between twisting sequences.

The algebra IN D C �
�
.�1

N
/, the simplicial cochain algebra of the simplicial interval with N edges, is an

interval algebra when equipped with ri , the restriction maps to fig. An IN –homotopy between twisting
sequences is a sequence of N composable homotopies x�! x1

�
! � � � ! xn�1

�
! y�.

One may also take Ising, the singular cochain algebra of the unit interval, or even the singular cochain
algebra of any acyclic space equipped with two distinct points. An Ising–homotopy is hard to describe in
terms of A itself.

Using the same ideas as the last argument, we can now prove that J–homotopy is independent of the
choice of J. We do this in two steps: first we show that the notion of J–homotopy is independent of J

up to quasi-isomorphism, and then we give a zigzag of interval algebra quasi-isomorphisms between any
two interval algebras.

Lemma 1.11 Let A be a dg-algebra. If x� and y� are twisting sequences in A, and f W J ! J 0 is a
quasi-isomorphism of interval algebras (so r 0if D ri), then x� �J y� if and only if x� �J 0 y�.

Proof If x��J y�, then (by definition) there exists a twisting sequence Nh� on J˝A such that r0. Nh�/Dy�

and r1. Nh�/D x�. Then, because r 0f D r , we see that f . Nh�/ is a J 0–homotopy between these twisting
sequences such that x� �J 0 y�.
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The other direction is more difficult. We are in the situation of the diagram
Nh�? J ˝A

.x�;y�/

Nh0
�

J 0˝A A2

rA

r 0
A

f˝1

We have twisting sequences x� and y� on A, and a twisting sequence Nh0
�

which restricts to these on
J 0˝A, and our goal is to inductively construct a twisting sequence Nh� on J ˝A and a relative homotopy
z� W f . Nh�/! Nh

0
�
, as in the injectivity part of Proposition 1.9.

Before we can carry out this induction, we need to mention some algebraic preliminaries. First, the map
f ˝ 1 is a quasi-isomorphism because J and J 0 are both torsion-free, hence Z–flat; this guarantees that
f ˝1 is a quasi-isomorphism as soon as f is, by a spectral sequence argument as in [Kříž and May 1995,
Part II, Lemma 2.2] (the key point is that submodules of Z–flat modules are Z–flat).

Next, the map f ˝ 1 W ker.rA/! ker.r 0
A
/ is also a quasi-isomorphism. This is because rA and r 0

A
are

surjective, so induce long exact triangles relating the cohomology of ker.rA/;J ˝ A, and A2. The
map f induces a map between these long exact triangles; the map A2!A2 is the identity, and the map
J ˝A! J 0˝A is f ˝ 1, both of which induce isomorphisms on cohomology. The claim now follows
from the five lemma.

We are now prepared to set up our induction. For the base case, arbitrarily choose a cycle Nh3 2 J ˝A and
a chain z2 2 J 0˝A so that rA. Nh3/D .x3;y3/ and dz2 D f . Nh3/� Nh

0
3
, while r 0

A
.z2/D 0. Both of these

steps require some justification:

� Because f ˝1 is a quasi-isomorphism and r 0
A
. Nh0

3
/D .x3;y3/, there exists some cycle H3 2 J ˝A

such that r.H3/ is homologous to .x3;y3/; let’s say rA.H3/CdwD .x3;y3/. Now, because rA is
surjective, there exists some W 2 J ˝A with rA.W /Dw. It follows that Nh3DH3CdW satisfies
the desired properties.

� Now, f . Nh3/� Nh
0
3

is a cycle in ker.r 0
A
/; because

f ˝ 1 W ker.rA/! ker.r 0A/

is a quasi-isomorphism, we may find a cochain `2 ker.rA/ such that f . Nh3C`/� Nh
0
3

is a coboundary
in ker.r 0

A
/. Thusa, replacing Nh3 with Nh3C `, we may choose z2 with the desired properties.

The induction step is similar. Suppose we have chosen a twisting n–sequence Nh� on J ˝A and a relative
n–homotopy f . Nh�/

z�
�! Nh0

�
.

Then the obstruction to extending Nh� to a twisting .nC1/–sequence (which restricts to the desired twisting
sequences via r0 and r1) is a relative cohomology class o. Nh�I r/ 2 H�.ker.rA//. There are similar
obstructions o.f . Nh�/I r

0/ and o. Nh0
�
I r 0/ in H�.ker.r 0

A
//. The latter obstruction vanishes (because this
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sequence is extendable), and the former obstruction is equal to the latter obstruction because the two
twisting n–sequences f . Nh�/ and Nh0

�
are homotopic relative to r 0. Because f is a quasi-isomorphism and

f�o. Nh�I r/D o.f Nh�I r
0/D o. Nh0

�
I r 0/D 0;

we see that o. Nh�I r/D 0, and we may extend our twisting n–sequence Nh� to a twisting .nC1/–sequence
which still has the desired restrictions.

Now we must extend the homotopy. Just as before, the obstruction to doing so may be adjusted arbitrarily
by changing the newly constructed Nh2nC1 by adding a cocycle in ker.rA/; doing so if necessary, we may
extend the homotopy. This completes the induction.

Now let J and J 0 be two arbitrary interval algebras. Then J ˝ J 0 is again an interval algebra, with
endpoint maps r0˝ r 0

0
and r1˝ r 0

1
. Furthermore, the maps i W J ! J ˝ J 0 and i 0 W J 0! J ˝ J 0, given

by i.x/D x˝ 1 and i 0.y/D 1˝y, are maps of interval algebras and quasi-isomorphisms by the same
argument as for f ˝ 1 above.

It follows that, given any interval algebra, there is a zigzag of quasi-isomorphisms of interval algebras
between the standard interval algebra I D C �

�
.�1/ and J. This gives us the following statement:

Corollary 1.12 Given two twisting sequences x� and y� in A, the following are equivalent :

� x� and y� are homotopic.

� There exists an interval algebra J such that x� and y� are J–homotopic.

� For all interval algebras J, the twisting sequences x� and y� are J–homotopic.

Corollary 1.13 The homotopy relation x� � y� on twisting sequences is in fact an equivalence relation.

Proof Reflexivity is clear (set h2n D 0 for all n).

For symmetry, choose an interval algebra J for which there exists a dg-algebra automorphism f W J ! J

such that r1f D r0 and r0f D r1. Then, if x� �J y� via a twisting sequence Nh� on J ˝A, it follows that
y� �J x� via the twisting sequence f . Nh�/. As an example of such a J one may take C �sing.Œ0; 1�/, with f
induced by the continuous map t 7! 1� t .

For transitivity, observe that, if a�
h�
�! b�

j�
�! c� are a pair of homotopies between twisting sequences,

then these define a twisting sequence

Nh2nC1 D e0c2nC1C e1=2b2nC1C e1a2nC1C eŒ0;1=2�j2nC eŒ1=2;1�h2n

on the algebra
I2 D C ��.�

1
2/;
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where �1
2

denotes the simplicial structure on the unit interval with two edges and three vertices. This is
again an interval algebra with r0 given by restriction to f0g and r1 given by restriction to f1g, and Nh� has
r0. Nh�/D c� and r1. Nh�/D a�.

Thus, if a� � b� and b� � c�, then a� �I2
c� (essentially by definition). By the previous corollary, it

follows that a� � c�, as desired.

Remark 1.5 So far we have implicitly worked with algebras over the ground ring Z. If one works over
the rationals Q, then in fact there is a commutative interval algebra, given by the rational polynomial
differential forms on an interval, QŒt; dt �=.dt/2 with d.tn/D ntn�1 and jt j D 1, with restriction maps
given by restricting these differential forms to f0g and f1g, respectively (so that r0.p.t/Cq.t/ dt/Dp.0/

gives the constant term of the 0–form term, and r1.p.t/C q.t/ dt/D p.1/ sums the coefficients of the
0–form term).

This construction does not work integrally: the algebra ZŒt; dt �=.dt/2 is not acyclic, and, if one takes a
divided power algebra Z

�
t; 1

2
t2; 1

6
t3; : : : ; dt

�
=.dt2/, then the second evaluation map lands in the rationals,

not the integers. It seems unlikely to the authors that there is a commutative interval algebra over the
integers.

We conclude with a technical lemma which will be useful later.

Lemma 1.14 Let A be a dg-algebra. Given a twisting sequence x� in A and a coboundary dzDa2A2sC1,
there is a twisting sequence x0

�
homotopic to x� with x2iC1 D x0

2iC1
for i < s, while x2sC1 D x0

2sC1
Ca.

Proof Construct x0
�

and the homotopy by induction. For the base case, we have x0
�

in degrees up to x2sC1,
and may choose h2i D 0 for i < s and h2s D z (so that dh2s D x2sC1�x0

2sC1
).

Inductively, we have an m–sequence x0
�

with the desired properties and an m–homotopy h� from x� to x0
�
,

and we want to extend these to mC 1. The obstruction theory argument is now exactly the same as in
Proposition 1.9: the obstruction to extending x0

�
is identified with the obstruction to extending x�, and

hence is zero; choosing x0
2mC1

, the obstruction to extending h� is possibly nonzero, but may be made
zero by adjusting x0

2mC1
by a cocycle if necessary.

2 Some higher differentials in SU.2/–coupled Morse homology

As a brief aside, in this section we answer a question of Kronheimer and Mrowka by showing that in
general, the integral coupled Morse homology for a family .M;L/ classified by � WM ! SU.2/ is not
determined by the cohomology class ��ŒSU.2/� 2H 3.M IZ/.

Explicitly, we show that there exists such a map such that ��ŒSU.2/� D 0, but the d5 differential on
the twisted homology spectral sequence (equivalently, the coupled Morse homology spectral sequence)
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is nonzero. This will also give us an example of a phenomenon discussed in the previous section:
the existence of a twisting sequence .�3; 0; 0; : : : / in an algebra B such that Œ�3� D 0 but there is a
quasi-isomorphism f W A! B that pulls the sequence back to one of the form .0; �0

5
; 0; : : : / with Œ�0

5
�

nonzero.

In proving Theorem C, we will interpret the differential on the E5–page in terms of a mod 2 Hopf
invariant for the map M ! SU.2/. This Hopf invariant is precisely the cohomology class Œ�0

5
� discussed

above.

We will mostly work in the simplicial model, and comment on the equivalence with the Morse model
at the end of the section. In this section all (co)homology is taken with Z coefficients unless specified
otherwise.

Definition 2.1 Let X be a simplicial complex equipped with a simplicial map

� WX ! SU.2/D S3

which has �� D 0 on third cohomology; write C� for the mapping cone of �. Let x� be any class
in H 3.C�/ such that, under the map i W S3! C� ,

i�x� D 1 2 ZŠH 3.S3/:

The graded-commutativity of cup the product implies that x2
�

is 2–torsion. Consider the composite
isomorphism

H 6.C�/
.p�/�1

�����!H 6.†X / S
�!H 5.X /;

where p W C� ! †X is the collapse map and S is the suspension isomorphism. We define the mod 2

Hopf invariant h.�/ to be the 2–torsion class S.p�x2
�
/ 2H 5.X IZ/.

The Hopf invariant h.�/ is readily seen to be an invariant of the homotopy class of �, because x2
�

is
independent of the choice of lift x� . Indeed, if i�y� D i�x� , then

y2
� �x2

� D .y� �x�/.y� Cx�/:

Now y� �x� represents an element of H 3.C� ;S
3/ŠH 3.†X /, and all cup products

H 3.C� ;S
3/�H 3.C�/!H 6.C� ;S

3/

are zero (the usual proof that cup products of a suspension vanish applies); hence, the cohomology class
y2
�
�x2

�
is zero.

Write x0
3

for a simplicial cocycle on S3 giving the oriented generator of third cohomology. Because
C 6
�
.S3/D 0, we tautologically have that x0

3
is a twisting 3–cycle. We write �3 for the twisting 3–cycle

��x3 on X.
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Lemma 2.2 Let X be a finite-dimensional simplicial complex with a simplicial map � WX ! S3 such
that the induced map �� is zero on third cohomology. Then the spectral sequence for H�tw.X I�3/ has
differential d3 D 0, but differential d5 given by

d5.Œa�˝ 1/D h.�/[ Œa�˝T 2
2H 5.X IZ/˝ZŒT;T �1�;

so that , in particular , d5.1/D h.�/T 2.

Remark 2.1 One should understand this Hopf invariant h.�/ as being the second obstruction to null-
homotoping a twisting sequence .�3; 0; 0; : : : / with Œ�3�D 0. It follows that h.�/ depends on the map
� WX ! S3 only through the homotopy class of the twisting 3–cycle �3 (or, equivalently, the homotopy
class of the composite map to the universal space X ! S3!UT ; see Remark 1.4).

Proof The differential d3 is zero by the assumption that Œ�3�D 0. This means that there is a cochain h2

with dh2C�3 D 0. Following the notation of [McCleary 2001, Theorem 2.6], the class

Œa�˝ 1 2H�.X /˝ZŒT;T �1�DE
�;�
5

is represented by the cochain a˝ 1C h2a˝T. The differential d CL3T, applied to this chain, gives
�3h2a˝T 2. It follows that

d5.Œa�˝ 1/D Œ�3h2a�˝T 2:

We will identify the cohomology class Œ�3h2� with the Hopf invariant h.�/. Notice that C� is naturally a
simplicial set (though not a simplicial complex if � is not injective). For this reason, we will work with
the subcomplex C� of the singular chain complex C

sing
� .C�/ consisting of simplices on S3 and linear

cones on simplices in X, together with an extra vertex to serve as the cone point.3 The linear cone is
ordered so that the cone point is the last point in the simplex, while the ordering on the earlier vertices
coincides with that of X. Then, if � is one of the simplices listed above, for every i the front face �Œ0;i�
and the back face �Œi;k� are simplices in the list too.

It follows that there is a well-defined cup product on the dual C � D Hom.C�;Z/, so the restriction map
C �sing.C�/! C � is a dg-algebra quasi-isomorphism. We may thus compute our x2

�
in

C � Š C ��1
� .X /˚C ��.S

3/;

where the differential is the mapping cone differential

Nd� D

�
dX � .�1/j� jC1���

0 dS3�

�
and the cup product is

.Cx;y/ � .Cx0;y0/D .C.��y [X x0/;y [S3 y0/:

We use our chosen cochain with dh2C �3 D 0, and set x� D .C.h2/;x
0
3
/; this is a cocycle such that

i�x� D 1 2H 3.S3/. Then x2
�
D .C.�3h2/; 0/. The Hopf invariant is obtained by pulling this back under

the maps C 5.X /! C 6.†X /!H 6.C�/; doing so, we obtain the desired result that Œ�3h2�D h.�/.

3Equivalently, C� is the normalized simplicial chain complex C�� .C�/ on the simplicial mapping cone.
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Using this, we can provide an example of the phenomenon described in Theorem C in the category of
simplicial complexes.

Proposition 2.3 The 5–dimensional complex X D†3RP2 has a map � WX ! S3 such that h.�/¤ 0.
In particular , as

H�.X IZ/D ZŒ0�˚ .Z=2/Œ5�;

from the spectral sequence for twisted cohomology it follows that

H�tw.X I�3/Š ZŒT;T �1�©H�.X IZ/ŒT;T �1�ŠH�tw.X I 0/;

even though Œ�3�D 0.

Proof Consider the set of homotopy classes ŒX;S3�, which we write as �3.X /. This set has a group
structure, coming from the group structure on S3 D SU.2/; maps X ! Y induce group homomorphisms
between the mapping sets �3.Y /! �3.X /. Whenever X is a suspension, this group is abelian.

Thinking of RP2 as the mapping cone of z2 W S1! S1, we get a long cofibration sequence

S1
! S1

!RP2
! S2

! S2
!†RP2

! � � � ;

where the first map is the squaring map of degree 2, and all further maps Sn! Sn are suspensions of
this (so also of degree 2).This gives rise to an exact sequence of mapping sets

� � � ! �3.S5/! �3.S5/! �3.†3RP2/! �3.S4/! �3.S4/! � � � :

The groups �3.S4/D �4.S
3/ and �3.S5/D �5.S

3/ are both isomorphic to Z=2. The outer maps are
the maps induced by the map Sn! Sn of degree 2, hence induce multiplication by 2 (so, zero) on the
above homotopy groups. We thus get a short exact sequence

0! Z=2! �3.X /! Z=2! 0;

so, in particular, there exists a � 2 �3.X / which restricts to the suspension of the Hopf map †� D
f W S4! S3.

Now the mapping cone C� has a CW structure with a single cell of each dimension 0, 3, 5, 6. The 5–cell
is attached along †�D �jS4 2 �4.S

3/; in particular, the 5–skeleton is homotopy equivalent to †CP2.
By the suspension invariance and naturality of Steenrod squares, it follows that

Sq2
WH 3.C� IZ=2/!H 5.C� IZ=2/

is an isomorphism (see for example [Hatcher 2002, Section 4.L]).

Further, there is a collapse map C� ! †4RP2 which is an isomorphism on the cohomology groups
of degrees 5 and 6 (regardless of coefficients); because the integral Bockstein x̌W H 1.RP2

IZ=2/!

H 2.RP2
IZ/ is an isomorphism, the same is true for the integral Bockstein

x̌WH 5.C� IZ=2/!H 6.C� IZ/:
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Thus the integral Steenrod square

Sq3
D x̌ıSq2

ı r WH 3.C� IZ/!H 6.C� IZ/;

where r is the reduction mod 2, is given by

H 3.C� IZ/Š Z mod 2
���! Z=2ŠH 6.C� IZ/:

Thus, if x� 2H 3.C�/ has i�.x�/D 1 2 ZŠH 3.S3/, we have

x2
� D Sq3x� ¤ 0 2H 6.C� IZ/;

as x� is a degree 3 class and Sq2nC1.x/ D x2 for any class x of degree 2nC 1. To see this, write
Nx for the cocycle x taken mod 2. Then, by Steenrod’s original definition via cup-i products (see for
example [Mosher and Tangora 1968, Chapter 2]), when x has degree 2nC1, we have Sq2nŒ Nx�D Œ Nx[1 Nx�.
To calculate the integral Bockstein, observe that we have an integral lift given by x [1 x and that
d.x[1 x/D�2x2; the Bockstein is half the boundary of an integral lift, and hence

Sq2nC1x WD x̌Sq2n
Nx D�x2

D x2;

as x2 is a 2–torsion cohomology class. Finally, because the mod 2 Hopf invariant is given by the image
of x2

�
under the inverse of the isomorphisms

H 5.X /!H 6.†X /!H 6.C�/;

it follows that h.�/¤ 0.

Remark 2.2 The example above is the minimal possible example because a twisting sequence on a 4–
dimensional simplicial complex is zero in degrees 5 and above for degree reasons, hence null-homotopic if
and only if Œx3�D 0. It was found with the observation that a map X !S3 which is trivial in cohomology
factors through the homotopy fiber ��4S3 of the map S3!K.Z; 3/ picking out a generator of its top
cohomology. The 5–skeleton of a minimal cell structure on the space ��4S3 is precisely †3RP2.

To see the connection with twisting sequences, let us point out the following:

Proposition 2.4 There exists a zigzag of dga quasi-isomorphisms between zC �
�
.†3RP2/ and its homology

.Z=2/Œ5�.

Now, this zigzag must transfer .�3; 0; : : : / to some .0; �0
5
; 0; : : : / (because the only degree which could

possibly be nonzero is degree 5). Because the twisted cohomology with respect to this twisting sequence
disagrees with the untwisted homology, it follows that Œ�0

5
� ¤ 0. This is well defined up to homotopy

because in .Z=2/Œ5� there is no differential. We thus have proved the following:

Corollary 2.5 There is a zigzag of dga quasi-isomorphisms for which the homotopy class of some
twisting 3–cycle does not correspond (under the natural bijection) to a class represented by a twisting
3–cycle.
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Proof of Proposition 2.4 We begin by making some simplifications to the cochain complex of a
suspension. In the following, if A is a nonnegatively graded dg-algebra, write †A for the algebra with
.†A/n DAn�1, differential d†A D�dA, and identically zero product.

For any simplicial set X, there exists a dg-algebra quasi-isomorphism

†� W zC ��.†X /!† zC ��.X /;

where the latter is equipped with trivial product and negative the differential on C �
�
.X /. If one prefers to

work with unital algebras, there is a corresponding homomorphism C �
�
.†X /! ZŒ0�˚†C �

�
.X /, with

trivial product on the codomain except that 1 2 ZŒ0� acts as a unit.

If X is a simplicial set and I D Œ0; 1� the 1–simplex, give I�X the product simplicial structure and x 2X0

a chosen 0–simplex. Then the quotient †X of Œ0; 1��X, obtained by collapsing f0; 1g�X [I �fxg to a
point, is again naturally a simplicial set.

Consider the composite map

zC ��.†X /
p�
�! C ��.I �X; @I �X [ I � fxg/ EZ�

��! C ��.I; @I/˝C ��.X;x/Š†C ��.X;x/Š
z†C ��.X /:

The first map is induced by the simplicial map of pairs

p W .I �X; @I �X [ I � fxg/! .†X; †x/;

hence is a dg-algebra map; in fact, it is a dg-algebra isomorphism (not merely quasi-isomorphism). The
second is the dual of the Eilenberg–Zilber map (sending �i ˝�j to a triangulation of �i ��j ). Giving
the tensor product the differential d.a˝ b/D da˝ bC .�1/jaja˝ db and product

.a˝ b/.a0˝ b0/D .�1/ja
0jjbjaa0˝ bb0;

EZ� is a dg-algebra map and a quasi-isomorphism, as computed in [Eilenberg and Moore 1966, Assertion
(17.6)].

Now C �
�
.I; @I/ Š ZŒ1� is a 1–dimension algebra with generator eI in degree 1 and trivial product.

The second-to-last isomorphism simplifies to ZŒ1�˝ A D †A, and the final isomorphism is simply
C �.X;x/Š zC �.X /. Every map given above is a dg-algebra quasi-isomorphism; hence, the composite is
as well.

To prove the result, set A D zC �
�
.†3RP2/. By the above discussion, there exists a dg-algebra quasi-

isomorphism zC �
�
.†3RP2/!† zC �

�
.†2RP2/, where the codomain is equipped with the trivial product.

Now†2RP2 has reduced homology Z=2 in degree 3 and zero otherwise. Choose a simplicial generator x3

and an element x4 with dx4D�2x3. Shifting up one in degree, write AR DZŒ4�˚ZŒ5� with differential
dy5 D 2y4 and trivial product; there is a dg-algebra quasi-isomorphism AR!† zC �

�
.†2RP2/, given by

sending y4 to x3Œ1� and y5 to x4Œ1�.
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Finally, there is a dg-algebra quasi-isomorphism AR ! .Z=2/Œ5�. We have thus constructed a zigzag
of quasi-isomorphisms between zC �

�
.†3RP2/ and its homology .Z=2/Œ5�; passing to unital versions of

the previous constructions, we have a zigzag of dg-algebra quasi-isomorphisms from C �.†3RP2/ to
ZŒ0�˚ .Z=2/Œ5�DH�.†3RP2/.

Proof of Theorem C Going back to coupled Morse theory, we can consider M0 to be a smooth manifold
with boundary, homotopy equivalent to †3RP2 (eg the regular neighborhood of some embedding
†3RP2 ,!Rn for n� 11); the definitions and constructions in [Kronheimer and Mrowka 2007] readily
generalize to the case of manifolds with boundary, and provide examples of the desired phenomenon in
this setting.

To obtain a closed example, we can simply take the double manifold DM0, using the fact that the map
� WM0 ! SU.2/ naturally extends to x� W DM0 ! SU.2/. It follows quickly from the cohomological
description of the Hopf invariant above that it is natural under pullback: if f W X ! S3 is zero in
cohomology and g WY !X is a map, then h.fg/Dg�h.f /. Because we have an inclusion i W†3RP2

!

DM0 and � D x� ı i , it follows that i�h.x�/D h.�/ is nontrivial, so, in particular, h.x�/ is nontrivial. It
follows from Lemma 2.2 that the E5–page of the twisted cohomology spectral sequence for .DM0; x�/

has nonzero differential.

Notice that the above examples show that the coupled Morse cohomology spectral sequence has a nontrivial
differential even though d3 D 0. But the smooth manifold .DM0; x�/ also provides an example where the
homology spectral sequence has a nontrivial higher differential but d3 D 0, because the Poincaré duality
map C �.DM0/!C�.DM0/ given by x 7! x\ ŒDM0� is a quasi-isomorphism (by Poincaré duality) and
a module map (by elementary properties of the cap product). It follows that the twisted (co)homology
spectral sequences also satisfy Poincaré duality, and, in particular, d5 is also nonvanishing in the twisted
homology spectral sequence.

3 Hirsch algebras and higher structure on twisting sequences

Given a dga map f W A! B, we will want to understand the induced map ts.f / W ts.A/! ts.B/ on
homotopy classes of twisting sequences. One traditional way to understand such maps is to produce
characteristic classes, elements Fn.x�/ in cohomology associated to each homotopy class of twisting
sequence which are natural under dga maps.

One of these is easy to produce; because dx3 D 0, we may take F1.x�/D Œx3�. This is certainly natural
for dga maps, as F1.f .x�//D Œf .x3/�D f�Œx3�. In degree 5, this is not so easy; now dx5 D�x2

3
, and

to produce some natural cocycle we would need a canonical element e.x3/ with de.x3/D�x2
3

.

Suppose A is homotopy commutative; this means that A is equipped with an operator [1 which gives
a null-homotopy of the graded commutator Œx;y�D xy � .�1/jxjjyjyx. The original such product was
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Steenrod’s product [1947] on simplicial cochains. Given such an operation, d.x3[1 x3/D 2x2
3

, and one
may take (with rational coefficients) e.x3/D�

1
2
x3[1 x3.

To extend this to higher degrees, one needs a compatibility relation between the cup-1 product and the
product, called a Hirsch formula. A left Hirsch formula [1955] holds for simplicial cochains, but the
corresponding right Hirsch formula fails. On the other hand, neither Hirsch formula holds for cubical
cochains. A suitable setting for higher characteristic classes is given by Hirsch algebras, which include a
cup-1 product and coherent homotopies correcting for the failure of the Hirsch formula.

3.1 Definitions

The following definition is from [Saneblidze 2016]:

Definition 3.1 A Hirsch algebra is an associative differential-graded algebra A equipped with the
additional structure of maps

Ep;q WA
˝p
˝A˝q

!A

of degree 1 � p � q for each p; q � 0 with p C q � 1; we demand that E1;0 D E0;1 D Id, while
E0;p DEp;0 D 0 for p > 1, and we also demand that

dEp;q.a1; : : : ; apI b1; : : : ; bq/

D

X
1�i�p

.�1/�
a
i�1Ep;q.a1; : : : ; dai ; : : : ; apI b1; : : : ; bq/

C

X
1�j�q

.�1/�
a
pC�

b
j�1Ep;q.a1; : : : ; apI b1; : : : ; dbj ; : : : ; bq/

C

X
1�i<p

.�1/�
a
i Ep�1;q.a1; : : : ; aiaiC1; : : : ; apI b1; : : : ; bq/

C

X
1�j<q

.�1/�
a
pC�

b
j Ep;q�1.a1; : : : ; apI b1; : : : ; bj bjC1; : : : ; bq/

C

X
0�i�p
0�j�q

.i;j/¤.0;0/

.�1/�i;j Ei;j .a1; : : : ; ai I b1; : : : ; bj / �Ep�i;q�j .aiC1; : : : ; apI bjC1; : : : ; bq/;

where �x
i D jx1jC� � �Cjxi jC i and �i;j D �

a
i C�

b
j C.�

a
i C�

a
p/�

b
j C1, where all appearances of �a

i and �b
j

above refer to the strings .a1; : : : ; ap/ and .b1; : : : ; bq/. Here jaj refers to the degree in A, not the degree
in AŒ�1�.4

The two main examples are the simplicial and cubical cochain algebras. We describe explicitly these
operations in Section 4 using the operadic technology of [Medina-Mardones 2020]; the reader might find

4If one instead preferred to write this in terms of the degree of Œa� as an element of AŒ�1�, given by jaj�1 D jaj � 1, one could
simplify the expression to �a

i D ja1j�1C � � �C jai j�1.
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it enlightening to get familiar with these before looking at the discussion of twisting sequences later in
this section.

There are two useful ways of understanding this structure. First, it asserts that the product on A is
homotopy commutative in a way which is homotopy-coherently associative. The operation E1;1 satisfies

(3-1) dE1;1.aI b/�E1;1.daI b/C .�1/jajE1;1.aI db/D .�1/jajab� .�1/jaj.jbjC1/baI

hence, it defines a homotopy between the two maps A˝A! A given by .a; b/ 7! ab and .a; b/ 7!
.�1/jajjbjba. In the simplicial world, E1;1 behaves up to an overall sign (depending on the grading of
the entries) as Steenrod’s cup-1 product. Steenrod’s cup-1 product satisfies a useful additional property,
the left Hirsch formula [1955],

.ab/[1 c D a.b[1 c/C .�1/jbj.jcjC1/.a[1 c/b:

This formula does not hold for E1;1 in general, and in particular fails in the setting of cubical cochains,
which we will need below.

However, E2;1 is a homotopy between the two sides of the given equation, while E1;2 is a homotopy
which demonstrates that a similar right Hirsch formula (which does not hold in the simplicial setting) at
least holds up to homotopy. Very explicitly, we have the homotopy Hirsch formulas

dE2;1.a; bI c/DE2;1.da; bI c/� .�1/jajE2;1.a; dbI c/C .�1/jajCjbjE2;1.a; bI dc/

� .�1/jajE1;1.abI c/C .�1/jajCjbj.jcjC1/E1;1.aI c/bC .�1/jajaE1;1.bI c/

and

dE1;2.aI b; c/DE1;2.daI b; c/� .�1/jajE1;2.aI db; c/C .�1/jajCjbjE1;2.aI b; dc/

C .�1/jajCjbjE1;1.aI bc/� .�1/jajCjbjE1;1.aI b/c � .�1/jaj.jbjC1/bE1;1.aI c/:

The operations Ep;q encode the higher homotopy-associativity of these operations.

A second more algebraic perspective on Hirsch algebras will be very useful to us below: it is the structure
of a dg-bialgebra (to be defined below) on the bar construction BA. We shall make this explicit.

Given a graded abelian group A, the bar construction is given as

BAD
M
n�0

AŒ�1�˝n:

We write a generic element of this space as Œa1 j � � � j an�, and write 1D Œ � for the empty string. The bar
construction BA is a coalgebra with comultiplication

�Œa1 j � � � j an�D
X

0�i�n

Œa1 j � � � j ai �˝ ŒaiC1 j � � � j an�:

This is coassociative and counital. It will be sometimes convenient to write .BA/n DAŒ�1�˝n for the
summand corresponding to the tensor product of n copies of A.
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When A is also given the structure of a differential graded algebra, BA then inherits a differential making
it into a dg-coalgebra, given as

d Œa1 j � � � j an�D�
X

1�i�n

.�1/�
a
i�1 Œa1 j � � � j dai j � � � j an��

X
1�i�n�1

.�1/�
a
i Œa1 j � � � j aiaiC1 j � � � j an�;

where the signs � are those from Definition 3.1, with the same conventions.

In fact, the structure of “a differential on BA giving it the structure of a dg-coalgebra” is equivalent the
structure of an A1–algebra on A; up to an overall sign one may recover the nth structure operation mn

among the A1–operations as the component

A˝nŒ�n�D .BA/n! .BA/1 DAŒ�1�

of d W BA! BA. All of our examples will be dg-algebras, so we restrict to that setting. The crucial
observation for us is that a Hirsch algebra takes this one level further.

Theorem 3.2 Let A be an associative dg-algebra , so that BA carries the structure of a dg-coalgebra.

Then the data of a Hirsch algebra structure on A is equivalent to the data of a choice of multiplication
� W BA˝BA! BA making it into a dg-bialgebra with not necessarily associative product and for
which Œ � is a unit.

Given such a multiplication �, one may recover the operations Ep;q as

Ep;q.a1; : : : ; apI b1; : : : ; bq/D �
1.Œa1 j � � � j ap �; Œb1 j � � � j bq �/;

where �1 is the composite BA˝BA! BA
p1
�!A, where the final map projects to .BA/1 and follows

the degree �1 isomorphism .BA/1 ŠA.

This is proved, among other places, in [Voronov 2000, Section 2]. In fact, Voronov discusses a mild
generalization: a “B1 structure”, which precisely corresponds to the structure of a dg-bialgebra on BA

extending its natural coalgebra structure. This amounts to saying that A is an A1–algebra and carries a
set of operations Ep;q satisfying a mild modification of those written above for Hirsch algebras. Voronov
furthermore determines when this map � is associative, but we will not need associativity and so do not
discuss it further.

The demand that this is a dg-bialgebra means that � W BA˝BA! BA is a chain map, and that the
following diagram commutes:

.BA˝BA/˝ .BA˝BA/ .BA˝BA/˝ .BA˝BA/

BA˝BA BA˝BA

BA

1˝�˝1

�˝� �˝�

� �

Here � W BA˝BA! BA˝BA sends x˝y 7! .�1/jxjjyjy˝x.
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The fact that this is a dg-bialgebra allows us to compute the component �k W .BA˝ BA/! .BA/k

from �1, as follows. We define

rk W .BA˝BA/! .BA˝BA/˝k

inductively as follows. Set r1 D Id and let r2 DrBA˝BA be the coproduct given by

rBA˝BA D .1˝ � ˝ 1/.�˝�/;

where the map � is the swap map given by �.x˝y/D .�1/jxjjyjy˝x. Then define

rkC1 D .r2˝ 1.BA/˝2k / ırk :

Then the component �k W .BA˝BA/! .BA/k ŠA˝k is given by the composite .�1/˝k ırk .

3.2 Twisting sequences in Hirsch algebras

Now that we have seen the relationship between dg-algebra and Hirsch algebra structures on A to various
structures on BA, we can exploit that structure to get new results on twisting sequences. Recall that
g 2 BA is grouplike if �g D g˝g.

Proposition 3.3 Let A be a dg-algebra , and say a twisting element of A is a degree 1 element with
dxCx2 D 0. There is a canonical bijection from the set of twisting elements in A to the set of (degree 0)
grouplike cocycles in BA whose .BA/0 component is 1.

If A is a dg-algebra , twisting sequences in A are twisting elements of AŒŒT �� of the form x3TCx5T 2C� � � ;
that is , they are twisting elements which lie in TAŒŒT ��. Here jT j D �2.

Then the above construction gives a bijection between TS.A/ and grouplike elements of B.AŒŒT ��/ lying
in 1CTBAŒŒT �� whose .BA/0 component is 1.

If one is being careful, one should interpret the expression B.AŒŒT ��/ as the bar construction in the category
of ZŒŒT ��–algebras; it is the sum M

n�0

A˝nŒŒT ��Œ�1�I

we allow ourselves to distribute T across tensor summands.

Proof For any graded abelian group A, there is a canonical bijection between grouplike elements of BA

with first term 1 and elements of A. For, if a 2A, then

g.a/D 1C Œa�C Œa j a�C � � �

is grouplike; on the other hand, suppose g is a grouplike element with lowest term 1. Inductively assume
that

g D 1C Œa�C � � �C Œa j � � � j a�C

NX
iD1

Œai
1 j � � � j a

i
n�C � � � ;
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where we have written the term with n tensor factors as a sum of as few elementary tensors as possible.
Computing �g and comparing its part with n tensor summands to g˝g, we see that

Œa�˝ Œa j � � � j a�D

NX
iD1

Œai
1�˝ Œa

i
2 j � � � j a

i
n�:

Because the right-hand side is written as a sum of as few elementary tensors as possible, but the left-hand
side is a single elementary tensor, we see that in fact N D 1 and Œai

1
j � � � j ai

n�D Œa j � � � j a�. By induction,
every grouplike element with first term 1 arises as g.a/ for some unique a.

Next we investigate the condition that dg.a/D 0. It is straightforward to see that

dg.a/D�Œda�� Œa2�� Œda j a�� Œa j da�� Œa2
j a�� Œa j a2�C � � � I

from this, we see immediately that, if dg.a/D 0, we have daC a2 D 0 (because the .BA/1 component
of dg.a/ is, up to sign, daCa2), while, conversely, if daCa2D 0, one may see explicitly that dg.a/D 0.

It is now easy to see that the condition

d.x3T Cx5T 2
C � � � /C .x3T Cx5T 2

C � � � /2 D 0

gives, for each power of T, the conditions dx3 D 0, dx5Cx2
3
D 0; : : : , which define twisting sequences,

giving the stated relationship between twisting sequences in A and twisting elements of AŒŒT ��.

To conclude, observe that the condition that our twisting sequence take the form x3T C x5T 2 C � � �

corresponds to asking our grouplike cocycle in BAŒŒT �� to be of the form

1C Œx3�T C .Œx5�C Œx3 jx3�/T
2
C � � �

as an element in 1CTBAŒŒT ��.

Proposition 3.3 is quite surprising because there is no obvious product operation on twisting sequences.
However, given any dg-bialgebra, there is a product operation on its grouplike cocycles: if g and h are
grouplike cocycles (of degree 0), then

d�.g; h/D �.d Œg˝ h�/D �.0; 0/D 0;

while
��.g; h/D .�˝�/.1˝ � ˝ 1/.�˝�/.g; h/

D .�˝�/.1˝ � ˝ 1/.g˝g˝ h˝ h/

D .�˝�/.g˝ h˝g˝ h/

D �.g; h/˝�.g; h/;

so the product of grouplike elements is also again grouplike. Applying this to the previous proposition and
using the explicit formula for the .BA/1 component of �.g.x/;g.y//, we immediately get the following
corollary:
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Corollary 3.4 For any Hirsch algebra A, there is a product operation � WTS.A/�TS.A/!TS.A/ which
gives rise to a functor from the category of Hirsch algebras to the category of unital magmas.

Explicitly, if x� and y� are twisting sequences , suppose y2iC1 D 0 for all i < n. Then �.x�;y�/2iC1 D

x2iC1 for i < n and �.x�;y�/2nC1 D x2nC1Cy2nC1. In general ,

�.x�;y�/2kC1 D

X
(m;n/>.0;0/

i1;:::;im;j1;:::;jn�1
i1C���CimCj1C���CjnDk

Em;n.x2i1C1; : : : ;x2imC1Iy2j1C1; : : : ;y2jnC1/:

In particular , �.0;x�/D x� D �.x�; 0/.

Recall here that, for a Hirsch algebra A, the product on BA need not be associative, so this does not
promote TS.A/ into a monoid. When A D C �.X IZ/, the product � on BA is indeed associative, so
TS.A/ has an associative and unital product, but for our purposes below we will need to work with cubical
cochains, where � is certainly not associative.

Remark 3.1 In fact, this product descends to a well-defined product on homotopy classes

h� W ts.A/� ts.A/! ts.A/

To see why this is true, one needs to prove that there is a B1–algebra modeling the unit interval I, with
two B1–maps to Z with trivial B1 structure, and further that there is a suitable notion of B1–tensor
product structure on I ˝A. Because a homotopy between twisting sequences is a twisting sequence
on I ˝A extending the two, the claim follows.

Further, it should be true that every B1–algebra may be strictified to one with associative product; this
would imply that, for any B1–algebra A, the homotopy classes of twisting sequences ts.A/ inherit the
structure of an associative monoid. Lastly, it should also be true that every element of ts.A/ is invertible,
by using the product � to iteratively kill off the first nonzero term in a twisting sequence. It takes some
effort to give a careful proof of this fact, including a proof that there is a meaningful notion of limit of
elements of ts.A/ (coming from an appropriate complete Hausdorff filtration). Therefore ts.A/ should
actually be a group for an arbitrary B1–algebra A. Because we will not make use of these in our
arguments below, we are content to leave these as remarks.

The last general result we will make use of is the following, which asserts that, in a rational Hirsch algebra,
there is no obstruction to extending a given cocycle a 2Z.A/2nC1 to a twisting sequence beginning at a.
In fact, there is a canonical such extension.

Proposition 3.5 (the Kraines construction) Let A be a Hirsch Q–algebra; write

Z.A/odd
D

G
n�1

Z.A/2nC1

for the set of homogeneous odd-degree cocycles of degree at least 3. Then there is a canonical map

K WZ.A/odd
! TS.A/
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such that , if a 2Z.A/2nC1, then K.a/2iC1 D 0 for i < n and K.a/2nC1 D a. The function K is natural
under Hirsch algebra maps.

Proof We take the perspective of grouplike cocycles in BAŒŒT ��. The element a 2A2nC1 corresponds to
an element Œa�T n in BAŒŒT ��. Define even-degree elements am inductively by iterated left multiplication
by Œa�. Precisely, set a0 D 1 and am D �.Œa�; am�1/ (so in particular a1 D Œa�). Then define

exp.a/D 1C

1X
mD1

am

m!
T nm:

We suppress T from the notation in what follows. To get a sense for these ai , observe that one can
explicitly compute the first couple of ai directly from the definition of the operation � (and in particular
the components �k):

a2 D 2Œa j a�C ŒE1;1.aI a/�;

a3 D 6Œa j a j a�C 2ŒE1;1.aI a/ j a�C 2Œa jE1;1.aI a/�C 2ŒE1;2.aI a; a/�C ŒE1;1.aIE1;1.aI a//�:

Lemma 3.6 below gives a formula for am in general; for the purposes of this argument, we need not be
so explicit.

Let us show that exp.a/ is a grouplike cocycle. To argue this, we will inductively compute dam D 0 and
�amD

Pm
iD0

�
m
i

�
ai˝am�i . For the first, note that d Œa�D0 and d�.x;y/D�.dx;y/C.�1/jxj�.x; dy/,

so d�.Œa�; am�1/D �.0; am�1/˙�.Œa�; 0/D 0 by induction.

For the second fact, we have �a0 D a0˝ a0 by definition, and, by induction,

��.Œa�; am�1/D .�˝�/.1˝ � ˝ 1/.�˝�/.Œa�˝ am�1/

D .�˝�/.1˝ � ˝ 1/
�
.1˝ Œa�C Œa�˝ 1/˝

�X�m�1

i

�
ai ˝ am�i�1

��
D .�˝�/

�m�1X
iD0

�m�1

i

�
.1˝ ai/˝ .Œa�˝ am�i�1/C .Œa�˝ ai/˝ .1˝ am�i�1/

�

D

m�1X
iD0

�m�1

i

�
.ai ˝ am�i C aiC1˝ am�i�1/

D

mX
iD0

��m�1

i

�
C

�m�1

i�1

��
ai ˝ am�i :

Combining this with the recurrence relation
�
m�1
i�1

�
C
�
m�1

i

�
D
�
m
i

�
, this reduces to

�am D

mX
iD0

�m

i

�
ai ˝ am�i ;

completing the desired induction.
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This in hand, we see that

� exp.a/D
1X

mD0

�.am/

m!
D

1X
mD0

Pm
iD0

�
m
i

�
ai ˝ am�i

m!

D

X
i;j�0

1

.i C j /!

� iCj

i

�
ai ˝ aj

D

X
i;j�0

ai ˝ aj

i !j !

D exp.a/˝ exp.a/;

so exp.a/ is indeed a grouplike cocycle, as desired. Now we define K.a/ to be the twisting with
exp.a/D g.K.a//; equivalently, take K.a/ to be the .BA/1 component of exp.a/.

Because the only tool used in this construction is the product � on BA (given to us by the Hirsch structure
on A), it is clear that K is natural for maps of Hirsch algebras.

Remark 3.2 One can show that K descends to a map from odd cohomology to ts.A/. However, it
does not seem to be a group homomorphism in general on any H 2nC1.A/; it seems that one needs to
assume some further homotopy-commutativity of A (more precisely, the operation E1;1 should itself be
homotopy-commutative, in a way which is associative up to higher homotopies). This will not be relevant
to us and so we do not explore it further.

Remark 3.3 When AD C �
�
.X IZ/ for a simplicial set X, the definition of K.a/ simplifies if one uses

right multiplication instead of left multiplication. This is because the relevant higher operations Em;1 are
all zero on C �

�
.X /.

When these higher operations vanish and we define K.a/ using right multiplication, write E1;1.a; b/D

a[1 b. Then K.a/ has the form K.a/2nC1 D a, K.a/4nC1 D
1
2
a[1 a, and

K.a/6nC1 D
1
6
.a[1 a/[1 a;

and so on; all higher terms are given by iterated cup-1 products. All other K.a/2iC1 are zero.

This construction via right multiplication appears in the proof of [Kraines 1966, Lemma 16], and this
argument led (directly or indirectly) to many of the ideas of this paper. We call the class K.a/ the
Kraines construction on a in reference to this lemma, though it might rightfully be called the Kraines–
Saneblidze construction: the extension to Hirsch algebras described above first appears in [Saneblidze
2016, Section 3.3].

In our application, it will be more convenient to use left-bracketed multiplication, which is why we prefer
that convention.
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The general formula for the higher terms in K.a/ is complicated, because the formula for the multiplication
� is complicated. It is given as a sum over iterated applications of the operations p!E1;p to copies of a,
where the term after the semicolon is always a; for instance,

2E1;2.aIE1;1.aI a/;E1;1.aI a//

appears in K.a/10nC1. It is difficult to make all of this explicit. Instead of proving the above (which is
not the most useful way to phrase it), we will extract exactly what will be useful for us later.

The following lemma is quite tedious and technical. A reader may prefer to skip it for now and return
later when we find use for it in studying the minimal torus.

Lemma 3.6 Let A be a Hirsch algebra. Define �n WA
˝n! BA recursively, by �1.a/D Œa� and

�n.a1; : : : ; an/D �.Œa1�; �n�1.a2; : : : ; an//:

Denote by
�k

n WA
˝n
! .BA/k ŠA˝k

the k th component of this map. Suppose a1; : : : ; an are all odd-degree elements in A. Then

�k
n.a1; : : : ; an/D

X
partitions of f1;:::;ng

into an ordered list of k nonempty sets
I1;:::;Ik�f1;:::;ng

Œ�1.aI1
/ j � � � j�1.aIk

/�:

Here , if Ij D fi1 < � � �< img, then one interprets �1.aIk
/D �1

m.ai1
; : : : ; aim

/ with �1
m WA

˝m!A.

Remark 3.4 In general, if not all ai are odd-degree elements, there are some additional signs.

Notice that, for instance, if nD 3, this includes the entire symmetric expression

Œa1 j a2 j a3�C Œa1 j a3 j a2�C Œa2 j a1 j a3�C Œa2 j a3 j a1�C Œa3 j a1 j a2�C Œa3 j a2 j a1�I

this is implicit in the statement “ordered list of k nonempty sets”, which means we know the order we
list the subsets .I1; : : : ; Ik/.

Proof The map �k
n is defined (inductively) as the composition

A˝n
DA˝A˝.n�1/ s˝�n�1

�����! BA˝BA �k

�! .BA/k DA˝k

with s.a/D Œa� and �k the component of � WBA˝BA!BA landing in .BA/k . Recall from the end of
Section 3.1 that the component �k W .BA˝BA/! .BA/k ŠA˝k is given by the composite .�1/˝k ırk ,
where rk is an iterated composite of the coproduct on BA˝ BA. There is a sign appearing in the
definition of rk via the swap symmetry, but in the case we are interested in all terms which appear have
even degree in BA, so the sign in the swap symmetry is completely irrelevant to us.
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Writing EaD Œa1 j � � � j am� and Eb D Œb1 j � � � j bn�, we have the explicit formula

rk.Ea˝ Eb/D
X

0�i1�����ik�m
0�j1�����jk�n

.EaŒ1;i1�˝
EbŒ1;j1�/˝ � � �˝ .EaŒikC1;m�˝

EbŒjkC1;n�/:

Here we write EaŒi;j � D Œai j aiC1 j � � � j aj �, interpreting this as the unit 1 2 .BA/0 when i D j C 1. In the
special case of interest, this becomes

rk.Œa1�; Œa2 j � � � j an�/D
X

1�i1�����ik�n
0�j�k

.1˝ EaŒ2;i1�/˝ � � �˝ .Œa1�˝ EaŒijC1;ijC1�/˝ � � �˝ .1˝ EaŒikC1;n�/:

That is, we break the second vector into k sequential pieces, and insert Œa1� next to one of them (leaving
1 next to everything else).

Using these formulas, let us prove the desired claim by induction on n. For nD 1 and any k, the formula
holds tautologically. Suppose the given formula holds for all �k

m for all m< n and all k. We will verify
the formula for �k

n . For sake of space we make two further notational simplifications: if

I D fi1 < � � �< ikg � f1; : : : ; ng;

we write
�1.I/D �1.aI /D �

1.ai1
; : : : ; aik

/:

Further, if I1; : : : ; Im � f1; : : : ; ng is a list of subsets, we write

�1.I1 j � � � j Im/D Œ�
1.I1/ j � � � j�

1.Im/�:

Our inductive hypothesis gives that

�n�1.a2; : : : ; an/D
X

partitions of f2;:::;ng
into an ordered list of nonempty sets

I1;:::;Ik�f2;:::;ng

�1.I1 j � � � j Ik/;

where here we sum over all k. To compute the k th component of �.Œa1�; �n�1.a2; : : : ; an//, we must
first compute

rk.Œa1�˝�n�1.a2; : : : ; an//:

By the descriptions of rk above and the inductive formula for �n�1, this is given by

rk.Œa1�˝�n�1/

Drk

� X
partitions of f2;:::;ng

into an ordered list of nonempty sets
I1;:::;Im�f2;:::;ng

Œa1�˝�
1.I1 j � � � j Im/

�

D

X
m�1

I1;:::;Im as above
0�i1�����ik�m

0�j�k

.1˝�1.I1 j� � �jIi1
//˝� � �˝.Œa1�˝�

1.IijC1 j� � �jIijC1
//˝� � �˝.1˝�1.IikC1 j� � �jIm//:
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Finally, applying .�1/˝k does nothing to most of these components. Any component 1˝ 1 is sent to
zero (so we may reindex the sum over 0 < i1 < � � � < ik <m); any component 1˝ a is sent to a. The
remaining interesting component is the one with a1. Renaming the sets IijC1; : : : ; IijC1

to J1; : : : ;Jk

for convenience, write J D J1[ � � � [Jk . ConsiderX
partitions of J

into an ordered list of nonempty subsets
J 0

1
;:::;J 0m

�.Œa1�; �m.J
0
1 j � � � jJ

0
m//:

By the inductive hypothesis, this is precisely �.Œa1�; �
1.J //, and by the recursive definition of � this is

precisely what we call �1.f1g[J /. Setting

m0 Dm� .ijC1� 1� ij /

and

I 0k D

8<:
Ik if k � ij ;

f1g[ IijC1[ � � � [ IijC1
if k D ij C 1;

IkCijC1�1�ij if k > ij C 1;

we may thus reindex the above sum as X
partitions of f1;:::;ng

into an ordered list of nonempty subsets
I 0

1
;:::;I 0

m0

�1.I 01 j � � � j I
0
m0/:

This completes the induction.

3.3 Characteristic classes of twisting sequences

By combining the previous sections, we are able to construct characteristic classes of twisting sequences
which completely characterize their homotopy classes — so long as the algebra has torsion-free co-
homology. In the case of spaces, these should be intuitively thought of as the pullbacks of certain
odd-degree elements in the rational cohomology of the classifying space UT in (1-1), whence the name.

Theorem 3.7 Let A be a Hirsch algebra. There are maps Fn W ts.A/!H 2nC1.A/˝Q which are natural
for Hirsch algebra maps f WA! B. These satisfy the following properties:

(1) If x2iC1 D 0 for all i < n, then Fn.x�/D Œx2nC1�.

(2) If a 2A2nC1 is a cocycle , then FnK.a/D Œa� and FmK.a/D 0 for all m¤ n.

(3) If A has torsion-free cohomology and Fi.x�/ D Fi.y�/ for all i � n, then x� is homotopic to a
twisting sequence x0

�
with x0

2iC1
D y2iC1 for all i � n. If the cohomology of A is torsion-free ,

supported in bounded degrees , and Fn.x�/D Fn.y�/ for all n, then x� is homotopic to y�.
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Proof We will outline a construction of Fn.x/ given a twisting sequence x; this construction will only
use the operations given by a Hirsch algebra structure, and so will transparently be natural. It will remain
to show that these are homotopy invariants satisfying the given properties.

Given a twisting sequence x�, we will iteratively construct twisting sequences K.n/.x�/ in AQ with
K.n/.x�/2iC1 D x2iC1 for all i < n. These will be called the Kraines approximations to x�.

The element c2nC1 D x2nC1�K.n/.x�/2nC1 is a cocycle, because

dc2nC1 D�

X
iCjDn
i;j�1

x2iC1x2jC1C

X
iCjDn
i;j�1

K.n/.x�/2iC1K.n/.x�/2jC1 D 0;

because x2iC1 DK.n/.x�/2iC1 for i < n. We will set

Fn.x�/D Œc2nC1�D Œx2nC1�K.n/.x�/2nC1�:

That is, each characteristic class is the obstruction to finding a homotopy x�!K.n/.x�/.

As for the construction, set K.1/.x�/D 0, so that F1.x�/D Œx3�. Inductively, using the product operation
of Corollary 3.4, set

K.nC1/.x�/D �.K.c2nC1/;K.n/.x�//:

The twisting sequences K.nC1/.x�/ and K.n/.x�/ agree through degree 2n�1 because K.c2nC1/2iC1D 0

for i < n, but is equal to
K.n/.x�/2nC1C c2nC1 D x2nC1

in degree 2nC 1, the equality following by definition of c2nC1. It follows that K.nC1/.x�/2iC1 D x2iC1

for i � n.

Therefore, we have constructed K.n/.x�/ with the desired properties, and thus we have also constructed
the characteristic classes of twisting sequences.

Notice that, because the Kraines construction K.a/ is natural for Hirsch algebra maps f WA! B, and
the product � of twisting sequences is natural for Hirsch algebra maps, these characteristic classes are
also natural for Hirsch algebra maps f WA! B.

To see that these are homotopy invariants, first observe that, because this construction factors through AQ,
it suffices to show that they are homotopy invariants for rational Hirsch algebras. Over the rationals, we
exhibited a commutative interval algebra in Remark 1.5; recall that this is QŒt; dt �=.dt/2, where jt j D 0

and jdt j D 1 and d.tn/D ntn�1 dt . It then suffices to observe that, if A is a rational Hirsch algebra, so is
A˝QŒt; dt �=.dt/2. Explicitly,

Ep;q.a1tn1.dt/m1 ; : : : ; aptnp .dt/mp I b1tn0
1.dt/m

0
1 ; : : : ; bqtn0q .dt/m

0
q /

D˙Ep;q.a1; : : : ; apI b1; : : : ; bq/t
P

nCn0.dt/
P

mCm0 :
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The signs arise from the Koszul sign rule when commuting the single nonzero copy of dt to the right-hand
side of the expression (if two appear, the whole expression is zero). A straightforward but tedious
computation shows that this defines a Hirsch algebra structure on AŒt; dt �=.dt/2. Two twisting sequences
in A are homotopic if and only if there is a twisting sequence on AŒt; dt �=.dt/2 restricting to the two. It
follows from naturality that, if x and y are homotopic, then Fn.x/D Fn.y/ for all n.

Now we move on to verifying the three claimed properties.

(1) If x2iC1 D 0 for all i < n, then the first stages of this construction are given by multiplication with
K.0/D 0, which changes nothing; so K.n/.x�/D 0. It follows that Fn.x/D Œx2nC1� 0�D Œx2nC1�, as
claimed.

(2) If a 2 A2nC1 is an odd cocycle, then the first n Kraines approximations have K.n/K.a/ D 0, so
FmK.a/D 0 for m< n and FnK.a/D Œa� 0�D Œa�. On the other hand,

K.nC1/.K.a// WD �.K.a/;K.n/.K.a//D �.K.a/; 0/DK.a/:

Because K.a/DK.nC1/K.a/, this approximation is perfect, and there are no obstructions to finding a
homotopy between these. All higher characteristic classes are zero.

(3) We will prove the final claim by induction. It is tautologous for the case n D 0. Inductively,
suppose that Fi.x�/D Fi.y�/ for all i � n and that x� is homotopic to a twisting sequence x0

�
such that

x0
2iC1

D y2iC1 for all i < n; because the Fi are homotopy invariants, Fi.x
0
�
/D Fi.y�/ for all i � n as

well.

Because Fn.x�/D Œx2nC1C terms with smaller indices�, and the lower-degree terms of x0
�

and y� agree,
it follows that

Fn.x
0
�
/�Fn.y�/D Œx

0
2nC1�y2nC1�Q:

But, by hypothesis, Fn.x
0
�
/DFn.y�/, so x0

2nC1
�y2nC1 represents zero in rational cohomology. Because

A has torsion-free cohomology, the map

H�.A/!H�.A/˝Q

is injective. It follows that y2nC1�x0
2nC1

is a coboundary in A; say dh2nCx0
2nC1

D y2nC1. Now apply
Lemma 1.14 to see that we may find a new twisting sequence x00 which agrees with y through degree
2nC 1, so x0 is homotopic to x00. This completes the induction. When A has bounded cohomology, if x

is always homotopic to some x0 which agrees with y through degree 2nC 1, then x is in fact homotopic
to y; simply choose n so large that x0 agrees with y except possibly in degrees where the cohomology
of A is zero.

Then one may construct a homotopy from x0 to y inductively; choose h2i D 0 for i < n. The obstruction
to extending this homotopy at each stage m lies in some cohomology group H 2mC2.A/, but we are in the
range where these are zero, so there is no obstruction to extending the homotopy. Thus x is homotopic
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to x0, which is homotopic to y; because homotopy is an equivalence relation, x is homotopic to y, as
desired.

Remark 3.5 In fact, the final statement should hold without the assumption that A has nonzero co-
homology in bounded degrees; we will not use this more general statement.

The first handful of these characteristic classes can be defined explicitly. For instance,

F2.x�/D
�
x5�

1
2
x3[1 x3

�
;

where here a[1 b DE1;1.a; b/, and

F3.x�/D
�
x7�x5[1 x3C

1
3
x3[1 .x3[1 x3/�

1
3
E1;2.x3Ix3;x3/

�
:

The formulas are much more complicated for F4, because one must define this by comparing to
K
�
x3;x5�

1
2
x3[1 x3

�
, and this twisting sequence has a very complicated formula (albeit one which is

natural for Hirsch algebra maps).

Remark 3.6 If one clears denominators on the formulas for Fn.x�/, one obtains integral cohomology
classes. A more intricate version of the above argument establishes that these are still homotopy invariants,
and in fact the mod 2 Hopf invariant of Definition 2.1 is the integral cohomology class defined by 2F2.
To argue that these are homotopy invariants, one needs to know that our construction extends to twisting
sequences in B1–algebras, that there is a B1–interval algebra over Z, and that tensor products of
B1–algebras carry a natural B1 structure (defined inexplicitly using an acyclic carrier argument). This is
necessary because it is not at all clear how to give the tensor product of two Hirsch algebras the structure
of a Hirsch algebra. We avoid this by using the commutative interval algebra QŒt; dt �=.dt/2; when B is
Hirsch and A is commutative, A˝B has a canonical Hirsch algebra structure once more.

4 Examples of Hirsch algebras

In this section we describe the two key examples of Hirsch algebras we will be interested in, namely
simplicial and cubical cochains. While explicit formulas of such structures can be found in the literature
(see [Kadeishvili and Saneblidze 2015] for the cubical case and [Baues 1981] for the simplicial case), we
will provide a description in terms of the recent framework of [Medina-Mardones 2020; Kaufmann and
Medina-Mardones 2022]. This allows both for explicit computations and for a straightforward comparison
between the cubical and simplicial worlds.

The structure operations Ep;q are defined on the cochain algebras of an arbitrary simplicial or cubical set.
To define them, one simply needs to define these operations on the basic algebras C �

�
.�n/ and C ��.I

n/

and verify that they restrict appropriately to subsimplices or subcubes; that is, one needs to verify that the
Hirsch algebra structures we construct are natural for the various face and degeneracy maps.
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Kaufmann and Medina-Mardones [2022] construct a great many operations on simplicial and cubical
cochains (giving what is called an E1 structure on cochain algebras). They are defined as particular
composites of two basic input operations, � and �; their boundary relations also involve an operation �.

Not all of these composites are sufficiently natural and so do not define operations on the cochains of an
arbitrary simplicial/cubical set (for instance, the join operation � is only well defined on cochains on In,
not on arbitrary cubical sets).

However, by representing these operations as particularly simple trivalent graphs, the authors determine
when composites of these operations do give well-defined operations on all cubical cochain algebras.
This will be the case for the operations Ep;q we aim to construct.

Remark 4.1 It is not a priori clear whether the Hirsch algebra structure we describe below for simplicial
and cubical complexes is exactly the one appearing in the literature; this will not be important for our
purposes.

Remark 4.2 The signs in what follows (especially in regards to duals and tensor products) can be
rather intricate. The authors found [Lawson 2013] useful in keeping these straight and understanding the
conceptual origin of the various sign conventions.

4.1 Simplicial and cubical cochains as Hirsch algebras

To begin with, we recall the definitions of the basic operations in both the simplicial and cubical settings.
In both cases, we need to define the basic operations � (which we call the diagonal or coproduct),
� (which we call the join or degree 1 product) and � (which we call the augmentation), and verify some
simple relations between them.

Simplicial setup In the case of simplicial chains, � is given by the classical Alexander–Whitney map

�Œv0; : : : ; vq �D

qX
iD0

Œv0; : : : ; vi �˝ ŒviC1; : : : ; vq �I

the join � is the usual join of simplices given by the Eilenberg–Zilber shuffle product

Œv0; : : : ; vi �� ŒviC1; : : : ; vp �D

�
.�1/iCj�jŒv�.0/; : : : ; v�.p/� if vi ¤ vj for i ¤ j ;

0 otherwise;

where here � is the unique permutation such that the above list of vertices is in increasing order, and
.�1/j�j is the sign of this permutation. Lastly, the augmentation is given by

"Œv0; : : : ; vq �D

�
1 if q D 0;

0 otherwise.

Cubical setup For our purposes we will be interested in cubical chains first introduced by Serre [1951]
(with slightly different conventions from ours); see [Massey 1980] for an in-depth treatment of the singular
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version. A cubical set has a set �k.X / of k-cubes in X for all k; these come equipped with a collection
of degeneracy operations and a collection of pairs of face operators (front face and back face). The cubical
cochains C k

�.X / on a cubical set X are the set of functions�k.X /!Z which vanish on degenerate cubes.

If the cubical set in question is X� D Sing�.X / for some topological space X, this gives precisely the
singular cubical cochain complex defined in Massey’s book. Chains in C

��sing
� .X / consist of continuous

maps In!X ; a chain is degenerate if it factors through a projection to a face In! In�1!X, and the
normalized cubical chains are obtained by quotienting the complex of cubical chains by the degenerate
ones. Dually, cubical cochains are functions which assign to each continuous map In!X an integer,
and assign zero to any map which factors through a projection In! In�1.

To give explicit formulas for operations on C ��.I
n/, we will use the following basis for the predual space

of chains C �
� .I

n/. The basis elements are length n strings in the alphabet f0; 1; Ig; these correspond
geometrically to faces of the cube In, where 0 and 1 indicate that the given coordinate is fixed, while I

indicates that the given coordinate is free. For instance, 0I denotes the left vertical edge on the standard
unit square, while I1 corresponds to the top horizontal edge. The degree of a string is given by the
number of I ’s in it (so II has degree 2, while I0I10I has degree 3).

If x is a basis vector for C �
� .I

n/, we will write ex for the dual basis vector in C ��.I
n/; for instance,

e0I evaluates to 1 on 0I and to zero on all other strings.

The operation � is the Cartan–Serre diagonal, which we now define. First, on the 1–cube I we define

�.0/D 0˝ 0 �.1/D 1˝ 1 �.I/D 0˝ I C I ˝ 1:

In general we write
�.xi/D

X
x
.1/
i ˝x

.2/
i

using Sweedler’s notation for coproducts, where we leave the index of summation ambiguous; experience
shows this causes no real trouble.

We then define
�.x1 � � �xn/D

X
˙.x

.1/
1
� � �x.1/n /˝ .x

.2/
1
� � �x.2/n /;

where the sign is determined by the Koszul convention: whenever we swap two consecutive elements a

and b, the sign .�1/jajjbj is introduced. For example, on I2,

�.II/D 00˝ II C I0˝ 1I � 0I ˝ I1C II ˝ 11:

Taking duals, this corresponds to a description of the cup product of two cochains on the square. Explicitly,

e00
[ eII

D eI0
[ e1I

D�e0I
[ eI1

D eII
[ e11

D eII ;

and these are the only products of monomials which evaluate to eII . As in the case of simplicial chains,
the coproduct � is coassociative; dually, the cup product on cubical cochains makes C ��.X / into an
associative dg-algebra.
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The augmentation � evaluates on a string x D x1 � � �xn as

�.x1 � � �xn/D

�
0 if xi D I for some i;

1 otherwise.
That is, it sends all positive-degree strings to zero and sends each zero-degree string to 1.

The join map (which has degree C1 on chains) is defined as follows. On the 1–cube I, the only nonzero
values are

0� 1D I; 1� 0D�I:

In general, given strings x and y, we define their join to be

.x1 � � �xn/� .y1 � � �yn/D .�1/jxj
nX

iD1

".y<i/".x>i/x<i.xi �yi/y>i :

Here x<i.xi �yi/y>i should be understood as concatenation of strings, where, as strings,

x<i D x1 � � �xi�1; x>i D xiC1 � � �xn;

and we interpret x<1 D x>n to be the empty string; and similarly for y<i and y>i . For example, on the
square, 00� 1I D II while 00� I1 is zero.

Remark 4.3 The join operation is not associative on the nose. For example,

.00� 10/� 11D I0� 11D�II; 00� .10� 11/D 00� 1I D II:

However, as seen in this example, the join is associative up to a global sign. This is sometimes called
antiassociativity or graded-associativity, and it is a phenomenon forced on us by the use of the Koszul
sign convention because the join operation has odd degree. Precisely, given strings x, y and z, we have

.x �y/� z D .�1/jxjC1x � .y � z/:

In fact, up to the overall sign depending on the degrees of x and y, both iterated joins are given byX
1�i<j�n

".x>i/".y<i/".y>j /".z<j /x<i.xi �yi/yi<j .xj �yj /z>j ;

where yi<j D yiC1 � � �yj�1. This is because the coefficients on all other terms vanish; for instance, in
computing .x �y/�z, if the next join appears at a position j � i , then ".x �y/>j D 0 because this string
includes xi � yi , which is either ˙I or 0. In what follows, we will always perform the join operation
starting from the left to avoid confusion with signs.

The operations Ep;q We will now discuss how to use the operations � and � to construct the Hirsch
algebra structure operations Ep;q . Indeed, we will define these to be dual to certain compositions of �
and � on singular chains.

These are easiest to describe in a pictorial fashion using the framework of [Medina-Mardones 2020],
which represents the basic operations �, � and " as graphs as in Figure 1. Our operations will be obtained
by combining the first two; the third one will naturally appear in certain differentials. As a general fact
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Figure 1: The basic operations �, � and ". We use a square instead of a dot in the case of ".

about operads generated by some basic operations, we may visualize composites of these operations
as immersed trivalent graphs with monotonically decreasing edges, considered up to homotopy through
immersions which fix the endpoints and the cyclic ordering of edges around each vertex. (That is, the
product and coproduct are not commutative: one may not flip the order of their inputs.)

Remark 4.4 Not all such graphs descend to well-defined operations at the level of cochains. Indeed, the
join operation is not well defined for general simplicial or cubical sets (for example, the one obtained
from the interval I by identifying the endpoints). On the other hand, the operations associated with graphs
with only one incoming end always determine a well-defined operation on both simplicial and cubical
complexes [Medina-Mardones 2020; Kaufmann and Medina-Mardones 2022, Theorem 5].

The operations we construct are defined first on chains, and come with a different sign than the one
desired in Definition 3.1 (only depending on the degree of the inputs). To avoid confusion, we will denote
these chain operations by ep;q W C ! C˝.pCq/; before discussing the graphical calculus, we need to
discuss the conventions for boundaries of operations and their duals.

The differentials of the basic operations �, � and " as elements in Hom complexes Hom.V;W / are
described in Figure 2; the only nontrivial computation is the middle one (see [Medina-Mardones 2020]
for the simplicial case and [Kaufmann and Medina-Mardones 2022, Lemma 4] for the cubical case).

Recall that the differential in Hom.V;W / is defined to be

(4-1) .@f /.v/D @.f .v//� .�1/jf jf .@v/:

In particular, in V � D Hom.V;Z/, the differential is

.ı'/.v/D�.�1/j'j'.@v/:

In the Koszul sign convention we also have

(4-2) .f ˝g/.a˝ b/D .�1/jgjjajf .a/g.b/:

D 0@@ D 0 @ D �

Figure 2: The differentials (in the Hom complex) of the basic operations.
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D D D 0 D D

Figure 3: Some simple relations (in the Hom complex) among the basic operations.

Observe that there is a chain map

(4-3) Hom.V;W /! Hom.W �;V �/; f 7! f �; where .f �'/.v/D .�1/jf jj'j'.f v/:

That this is a chain map amounts to the claim that ıf � D .df /�, which is a straightforward calculation.
Whenever we have an operation ep;q W C ! C˝p˝C˝q , we define

ep;q D .e
p;q/�

to be the dual operation, including the sign in (4-3). The fact that passing to the dual map commutes with
the differential shows that any relation we find for the boundary of the ep;q–operations will translate with
no sign change to a relation for the boundary of the ep;q–operations.

Next, we should set up the graphical calculus. Some straightforward relations between the basic chain
operations �, � , � and � can be found in Figure 3. Specifically, Figure 3, left, asserts coassociativity
of �; the middle relation is a consequence of the facts that the join of two elements has positive degree
(as the augmentation sends positive-degree terms to zero) and that ��D 0; and the right follows from
the simple computation that, for positive-degree x,

�x D x0˝xCx˝x00C
X

x.1/˝x.2/;

where ".x0/D ".x
0
0
/D 1 (so that, in particular, x0 and x0

0
have degree zero) and each x.1/ and x.2/ has

positive degree.

For convenience we will also depict its iterated n–fold composition with a “rake” with n outgoing ends
as in Figure 4.

We are now ready to describe the graphs which define the operations ep;q . We begin with the operation e1;1,
whose corresponding graph can be found in Figure 5. We compute the differential of the operation e1;1

as an element in Hom.C;C˝2/ in Figure 6, using the relations of Figure 2. Here recall that (4-1) implies
that, for a composition of Hom elements,

(4-4) @.f ıg/D .@f / ıgC .�1/jf jf ı .@g/:

WD

Figure 4: The definition of the rake; note that the order of splitting is irrelevant in cubical and
singular chains, because the coproduct is associative on the nose.
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Figure 5: The operation e1;1. This is a graphical encoding of a composite of basic operations and
a swap map, .�˝ 1/.1˝ �/.�˝ 1/�. For clarity, we will in general depict in black the strands
that will end up in the first p positions and in gray the strands that end up in the last q positions.

To go to the second row, we use the last identity in Figure 3. We now dualize to obtain an identity for e1;1,
which reads

.@e1;1/.a˝ b/D�a � bC .�1/jajjbjb � a:

(See Figure 6.) Recalling that the Koszul convention for the differential of a tensor product has

@.a˝ b/D @a˝ bC .�1/jaja˝ @b;

this, together with identity (4-1), means

@e1;1.aI b/C e1;1.daI b/C .�1/jaje1;1.aI db/D�a � bC .�1/jajjbjb � a:

We then see that, if we set
E1;1.aI b/D .�1/jajC1e1;1.aI b/;

the identity (3-1) holds.

Let us describe now in detail the operations e1;2 and e2;1; these will measure the failure of the right and
left Hirsch formulas, respectively. They are described by the graphs in Figure 7. The differential of e1;2

is described in Figure 8.

The third element in the first row vanishes because of the second relation in Figure 3. Applying the last
identity of Figure 3 and an isotopy, we finally reach the final form in the last row. After dualizing, this

@ D �

D �

D �

Figure 6: The differential in the Hom complex of the operation e1;1. In the second identity, we
use the fact (which directly follows from the definition of ") that we can drag an edge ending with
a square past any other edge.
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Figure 7: The operations e1;2 and e2;1.

reads
.@e1;2/.aI b; c/D�.�1/.jajC1/jbjb � e1;1.aI c/C e1;1.aI bc/� e1;1.aI b/ � c;

where in the first term the jajC 1 appears because � is an operation of degree 1; see Figure 9.

Using that e1;2 has degree 2, so .@e1;2/.a˝ b˝ c/D @e1;2.a; bI c/� e1;2.@.a˝ b˝ c//, we see

@e1;2.aI b; c/D e1;2.@aI b; c/C .�1/jaje1;2.aI @b; c/C .�1/jajCjbje1;2.aI b; @c/

� .�1/.jajC1/jbjb � e1;1.aI c/C e1;1.aI bc/� e1;1.aI b/c:

It follows that e1;2 measures the failure of the left Hirsch formula to hold, and that the operation

E1;2.aI b; c/D .�1/jbjC1e1;2.aI b; c/

satisfies the identities of Definition 3.1.

The differential of e2;1 is described in Figure 10. The first term vanishes because of the middle relation
in Figure 3 (recall that � is coassociative, so we can drag the bottom � to the top of the diagram). Again

@ D�

 !
C

 !
� �

D� C �

Figure 8: The differential of the operation e1;2. The signs are introduced because of convention
(4-4). Here we think of the homological operation, so the figure is to be read from top to bottom.
The convention (4-4) means that the sign of the differential depends on the degree of the operation
to be computed below the place we added a dot, and joins are the only basic operation of odd
degree.
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a1 a2

a b

Figure 9: The braiding introduces a sign of .�1/ja1jjbjCja2jjbj D .�1/.jajC1/jbj because the join
has odd degree. Moving the gray strand below the join changes this sign by a factor of .�1/jbj.

after some manipulations we obtain

.@e2;1/.a; bI c/D .�1/jaja � e1;1.bI c/C .�1/jbjjcje1;1.aI c/ � b� e1;1.abI c/:

Here, the .�1/jaj in front of the first term on the right-hand side comes from the relation (4-2), because
the join operation � has degree 1.

We see that e2;1 measures the failure of the right Hirsch identity, and that it corresponds to

e2;1.a; bI c/D .�1/jbjC1E2;1.a; bI c/:

We now describe a recursive way to determine all the (combinations) of graphs corresponding to the
operations ep;q . Consider an immersed downward-flowing graph G with one incoming end and pC q

outgoing ends, corresponding to a composition of the two basic operations � and �. We define the
upper and lower .p; q/–descendants of G to be the graphs described in Figure 11, which have pC qC 1

outgoing ends. For each, we add two new strands, one which is fed back into another strand and one
which gives rise to a new output. These descendants are called “upper” or “lower” depending on whether
the new output strand begins its life above or below G.

@ D�

 
�

!
C

 
�

!

D C �

Figure 10: The differential in the Hom complex of the operation e2;1. Here, the first term in the
right-hand side of the first row vanishes because, by coassociativity, we can move the bottom �

all the way to the top vertex; we then see that our graph contains a “square” (coming from the two
rightmost edges) as in the middle relation of Figure 3.
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G

� �

G

�
�

G

�

�

Figure 11: The lower and upper descendants of a graph G (on the left and right, respectively)
with p black and q gray outgoing edges.

Notice that the graphs of e2;1 and e1;2 are respectively the upper and the lower .1; 1/–descendants of the
graph of e1;1. In general, we have the following:

Definition 4.1 The operation ep;q is defined recursively to correspond to the signed sum over graphs
obtained by taking the union of the upper descendants of the graphs in ep;q�1 and the lower descendants of
the graphs in ep�1;q , the latter with an extra sign of .�1/q�1. See Figure 12 for the cases with pCq � 4.

�

e1;1

e1;2e2;1

e1;3e2;2e3;1

Figure 12: The descendant operations on the graphs of ep;q with pC q � 4.
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Up to an overall change of sign (only depending on the degrees of the entries), these new operations
satisfy the relations of a Hirsch algebra.

Proposition 4.2 The operation corresponding to the sum of graphs ep;q satisfies , up to an overall sign
change depending on the gradings of the inputs , the relations of the Ep;q . More precisely, one sets

(4-5) Ep;q.x1; : : : ;xpCq/D .�1/�
x
p;q � ep;q.x1; : : : ;xpCq/;

where
�x
p;q D

1
2
.pC q/.pC q� 1/CjxpCq�1jC jxpCq�3jC � � � I

here , the quantity 1
2
.pC q/.pC q � 1/ only depends on pC q modulo 4, and the sum ends at jx1j for

pC q even and at jx2j for pC q odd.

We carry out the proof in the next section; the techniques needed in the proof will not be relevant elsewhere
in the article.

4.2 Proof of the main relation

Before moving on to the general case, let us discuss very explicitly the case of e1;q (see Figure 13, left),
as it is the case we will be interested in for the actual computations. In this case, the extra complications
mentioned below do not arise, and, generalizing the computation for e1;1 and e1;2 above, we obtain

.@e1;q/.aI b1; : : : ; bq/D�e1;q�1.aI b1; : : : ; bq�1/ �bqC.�1/.jajCq�1/�jb1jCq�1b1 �e1;q�1.aI b2; : : : ; bq/

C

q�1X
iD1

.�1/iC.q�1/e1;q�1.aI b1; : : : ; bi � biC1; : : : ; bq/:

Counting the q join operations in the graph from the top, the first term in the first row corresponds to
deleting the right strand in the bottom join, while the second corresponds to deleting the left strand in the
top join (see Figure 13, middle). Here the sign .�1/.jajCq�1/�jb1j comes from the analogue of Figure 9,
while the extra .�1/q�1 comes from the Koszul sign convention for differentials of compositions (4-4).

Figure 13: Left: the graph corresponding to the operation e1;q for q D 4. More generally, the
operation starts with a rake with 2qC 1 outgoing edges. The edges in odd positions are black, and all
merge together. Middle: the graphs corresponding to the first row of the formula for @e1;q . The terms
in the last row are obtained by removing the interior edges; the case i D 2 is depicted on the right.
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f

�
�

f

Â

�

f

�
�

g

�

Figure 14: Some new operations.

The terms in the last row are obtained by deleting the right strand in the first q� 1 joins (see Figure 13,
right). It is tedious but straightforward to directly check that after the performing the indicated change of
sign we obtain exactly the relations that E1;q satisfies.

To keep the proof of the general case readable, for the rest of the section we will work without keeping
track of signs. These can be recovered in the same way as in the concrete examples we have discussed.
In particular, one should be careful of signs introduced when braiding (as in Figure 9), and of signs
introduced by (4-2) when taking joins between strands which are not the two leftmost (as in the case of
the computation for e2;1); see also the definition of f �g below.

Remark 4.5 These signs do not appear in our case of interest e1;p , because this operation always takes
the join of the two leftmost strands.

Because Ep;q and ep;q only differ by a sign, we only need to prove the analogous recurrence relation for
the differentials of the ep;q as elements of the relevant Hom complexes. To state the relation, it is helpful
to name some operations one can carry out on these Hom complexes.

We say a map
f D fp;q W C ! C˝p

˝C˝q

is a .p; q/–operation; the relevant operations for us are represented by trivalent graphs as in the previous
section. Given a .p; q/–operation f, there are a handful of relevant ways of producing new operations
(see Figure 14):
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� Suppose p � 1. For 1� i � p, we write fmi for the .pC1; q/–operation whose dual is defined by

.fmi/
�.x1; : : : ;xpC1Iy1; : : : ;yq/D f

�.x1; : : : ;xixiC1; : : : ;xpC1Iy1; : : : ;yq/I

pictorially, this is obtained by adding in the bottom of the picture for f a coproduct on the i th

black strand.

� Suppose q � 1. For 1� j � q, we write f nj for the .p; qC1/–operation whose dual is defined by

.f nj /
�.x1; : : : ;xpIy1; : : : ;yqC1/D f

�.x1; : : : ;xpIy1; : : : ;yj yjC1; : : : ;yqC1/I

pictorially, this is obtained by adding in the bottom of the picture for f a coproduct on the j th

gray strand.

� Suppose f is a .p; q/–operation and g is an .r; s/–operation for p; q; r; s � 0. We write f �g for
the .pCr; qCs/–operation whose dual is defined by5

.f �g/�.x1; : : : ;xpCr Iy1; : : : ;yqCs/

D .�1/�f �.x1; : : : ;xpIy1; : : : ;yq/ �g
�.xpC1; : : : ;xpCr IyqC1; : : : ;yqCs/;

where

� D

� pCrX
iDpC1

jxpCi j

�� qX
jD1

jyj j

�
Cjgj

� pX
iD1

jxi jC

qX
jD1

jyj j

�
is the sign of moving .xpC1; : : : ;xpCr / across .y1; : : : ;yq/ together with the Koszul sign from
applying f ˝g. Pictorially, this is obtained by placing the pictures of f and g next to each other,
and braiding the strands in the bottom.

Finally, if f is a .p; q/–operation for p�1, we denote the operations corresponding to the upper and lower
descendants by f u and f l ; these are respectively .p; qC1/– and .pC1; q/–operations. For example,
e1;1 D eu

1;0
. The operation el

1;0
is also defined, but it is zero as it contains a bigon. We define ep;q for

.p; q/� .1; 1/ via the recursion relation

ep;q D eu
p;q�1C el

p�1;qI

see Figure 15 (recall that we are suppressing signs for simplicity).

Proposition 4.2 then follows from the following:

Proposition 4.3 The boundary of the operation ep;q in Hom satisfies the recurrence relation

dep;q D

p�1X
iD1

ep�1;qmi C

q�1X
jD1

ep;q�1nj C

X
.p;q/>.i;j/>.0;0/

ep�i;q�j � ei;j ;

where we suppress signs for simplicity.

We will prove this by induction. To set up the inductive analysis, we will need to understand the behavior
of some the different operations with respect to taking upper and lower descendants.

5We spell out here the sign for the interested reader, but will suppress it from now on.
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ep�1;q

�
�

ep;q�1

�

� Â

Figure 15: The recursive definition of ep;q in terms of ep�1;q and ep;q�1; the operation ep;q is the
sum of the operations corresponding to the depicted graphs. Recall that each of ep�1;q and ep;q�1

corresponds to a sum of graphs itself.

Lemma 4.4 We have the following standard relations:

(1) d.eu
p;q�1

/D ep;q�1 � e0;1C .dep;q�1/
u.

(2) d.el
p�1;q

/D ep�1;q � e1;0C ep�1;qmp�1C .dep�1;q/
l .

(3) For 1� i � p� 2, we have eu
p�1;q�1

mi D .ep�1;q�1mi/
u and el

p�2;q
mi D .ep�2;qmi/

l .

(4) For 1 � j � q � 2, we have eu
p;q�2

nj D .ep;q�2nj /
u. For 1 � j � q � 1, we have el

p�1;q�1
nj D

.ep�1;q�1nj /
l .

(5) For i > 0 and j � 1� 0, we have .ep�i;q�j � ei;j�1/
u D ep�i;q�j � e

u
i;j�1

.

(6) For i > 1 and j � 0, we have .ep�i;q�j � ei�1;j /
l D ep�i;q�j � e

l
i�1;j

.

ep�1;q

�
�

ep;q�1

�

� Â

ep�1;q

�
�

ep;q�1

�

� Â

Figure 16: The terms in the differential of Figure 15 obtained by resolving the join outside the box.
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ep�1;q

�
�

ep�1;q

�
�

ep;q�1

�

� Â

Figure 17: Simplifying the terms appearing in Figure 16.

We also have the following “edge” cases:

(a) .ep�1;q�1mp�1/
u D .ep�1;q�1 � e0;1/

l .

(b) .ep;q�2 � e0;1/
u D eu

p;q�2
nq�1.

Let us discuss how these identities can be proved pictorially. Regarding .1/ and .2/, when taking
differentials, one either resolves joins inside the box, or the new one introduced by taking the descendant.
The former correspond to the descendants of the differential of the operation in the box, ie .dep;q�1/

u

and .dep�1;q/
l , respectively. The latter are identified with the claimed terms in Figures 16 and 17.

The identity .3/ is proved via Figure 18 by moving the coproduct in the box to the bottom of the picture;
notice that, for the second, when i D p� 2 one also uses coassociativity of the rake.

Identity .4/ is proved in the same way via Figure 19.

Identity .5/ and .6/ are proved via Figure 20.

Finally, the relations (a) and (b) are obtained by inspecting Figures 21 and 22, respectively.

Proof of Proposition 4.3 We prove this by induction on .p; q/. The claims for .p; q/D .1; 1/; .2; 1/,
and .1; 2/ were shown in the preceding discussion. We will first establish the claim for ep;1 and e1;q ,

ep�2;q

�
�

ep�1;q�1

�

� Â
� �

Figure 18: Left: .ep�1;q�1mi/
u. Right: .ep�2;qmi/

l .
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ep�1;q�1

�
�

ep;q�2

�

� Â� �

Figure 19: Left: .ep;q�2nj /
u. Right: .ep�1;q�1nj /

l . The identity is proved by moving the
coproduct in the box to the bottom.

then ep;q for p; q � 2. Because it is straightforward to include signs but they obscure the argument, we
suppress them.

For ep;1 with p � 3, we have by Lemma 4.4(2) that

(4-6) dep;1 D d.el
p�1;1/D ep�1;1 � e1;0C ep�1;1mp�1C .dep�1;1/

l :

Using the inductive hypothesis, we may write

.dep�1;1/
l
D

p�2X
iD1

.ep�2;1mi/
l
C .ep�2;1 � e1;0/

l
C .e1;0 � ep�2;1/

l :

ep�i;q�j ei;j�1

ep�i;q�j ei;j�1

ep�i;q�j ei�1;j

ep�i;q�j ei�1;j

Figure 20: Left: .ep�i;q�j � ei;j�1/
u D ep�i;q�j � e

u
i;j�1

. Right: .ep�i;q�j � ei�1;j /
l D ep�i;q�j � e

l
i�1;j

.
The empty boxes represent the braiding as in Figure 14, bottom. The identity is proved by moving the
relevant part across the empty box.
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ep�1;q�1

�
�

Figure 21: This picture can be interpreted as both .ep�1;q�1mp�1/
u and .ep�1;q�1 � e0;1/

l .

Applying Lemma 4.4(3) and (6) and the assumption p � 3, we obtain

p�2X
iD1

el
p�2;1mi C ep�2;1 � e

l
1;0C e1;0 � e

l
p�2;1:

The second term contains a bigon, hence vanishes; the others simplify to
Pp�2

iD1
ep�1;1mi C e1;0 � ep�1;1.

Substituting this into (4-6), we obtain the desired relation for dep;1.

The argument for e1;q when q � 3 is similar, and in any case was discussed with signs in the previous
section. Now suppose .p; q/� .2; 2/, and the boundary relation for dei;j is known for all .i; j / < .p; q/
(meaning i � p and j � q and at least one of those inequalities is strict).

By Lemma 4.4(1)–(2) and the definition ep;q D eu
p;q�1

C el
p�1;q

,

dep;q D deu
p;q�1C .�1/q�1del

p�1;q

D ep;q�1 � e0;1C ep�1;q � e1;0C .�1/qep�1;qmp�1C .dep;q�1/
u
C .dep�1;q/

l :

Using the inductive hypothesis, recall that

dep;q�1 D

p�1X
iD1

ep�1;q�1mi C

q�2X
jD1

ep;q�2nj C

X
.p;q�1/>.i;j�1/>.0;0/

ep�i;q�j � ei;j�1

ep;q�2

�

� Â

ep;q�2

�

� Â

Figure 22: The pictures of .ep;q�2 � e0;1/
unq�1 and eu

p;q�2nq�1.
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and

dep�1;q D

p�2X
iD1

ep�2;qmi C

q�1X
jD1

ep�1;q�1nj C

X
.p�1;q/>.i�1;j/>.0;0/

ep�i;q�j � ei�1;j :

Applying Lemma 4.4(3)–(4), the first terms of .dep;q�1/
uC .dep�1;q/

l simplify to

.ep�1;q�1mp�1/
u
C

p�2X
iD1

.eu
p�1;q�1mi C el

p�2;qmi/D .ep�1;q�1mp�1/
u
C

p�2X
iD1

ep�1;qmi ;

while the second terms simplify to

el
p�1;q�1nq�1C

q�2X
jD1

.eu
p;q�2nj C el

p�1;q�1nj /D el
p�1;q�1nq�1C

q�2X
jD1

ep;q�1nj :

This gives almost precisely the terms in the first two parts of the desired relation (there is an extraneous
.ep�1;q�1mp�1/

u, a missing ep�1;qmp�1, and a missing eu
p;q�2

nq�1; but notice that ep�1;qmp�1 arose
elsewhere in the differential of dep;q itself).

Now apply Lemma 4.4(5)–(6) to the upper and lower descendants of the last terms. We obtain

.ep;q�2 � e0;1/
u
C .ep�1;q�1 � e0;1/

l
C

X
.p;q�1/>.i;j�1/�.1;0/

ep�i;q�j � e
u
i;j�1

C

X
.p�1;q/>.i�1;j/�.1;0/

ep�i;q�j � e
l
i�1;j :

We investigate the terms contributing to ep�i;q�j � ei;j from this sum. Because whether or not ei;j is
defined in terms of one descendant or both depends on whether or not i; j � 2, we have to do some case
analysis:

� When .p; q/ > .i; j /� .2; 2/, the expression ep�i;q�j � .e
u
i;j�1

C el
i�1;j

/D ep�i;q�j � ei;j appears
in the sum above.

� For .i; j /D .1; j / and j � 1, we have e1;j D eu
1;j�1

and only this term appears in the sum above.

� For .i; j /D .i; 1/ and i � 2, we have ei;1D el
i�1;1

, but there are in principle two terms contributing
to ep�i;q�1 � ei;1 in the sum above, which contains ep�i;q�1 � .e

u
i;0
C el

i�1;1
/. However, because

i � 2, we have ei;0 D 0 and thus the first term is zero.

� Neither ep�1;q � e1;0 nor ep;q�1 � e0;1 arise from the expressions in the larger sums.

Thus this large sum simplifies to
P
.p;q/>.i;j/�.1;1/ ep�i;q�j � ei;j . Further, recall from the expression for

dep;q at the beginning of the argument that ep;q�1 �e0;1 and ep�1;q �e1;0 arise elsewhere in the differential
of dep;q , accounting for all remaining .i; j / > .0; 0/. We have shown so far that

dep;q D

p�1X
iD1

ep�1;qmi C

q�2X
jD1

ep;q�1nj C

X
.p;q/>.i;j/>.0;0/

ep�i;q�j � ei;j C .ep�1;q�1mp�1/
u

C el
p�1;q�1nq�1C .ep;q�2 � e0;1/

u
C .ep�1;q�1 � e0;1/

l :
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Now apply Lemma 4.4(a)–(b) to see that the first and last terms cancel out, while the second and third
terms sum to give ep;q�1nq�1. Thus this gives us the desired relation

dep;q D

p�1X
iD1

ep�1;qmi C

q�1X
jD1

ep;q�1nj C

X
.p;q/>.i;j/>.0;0/

ep�i;q�j � ei;j :

This completes the induction.

4.3 Some explicit computations in the cubical setting

In this section we give an explicit combinatorial interpretation of the operations E1;p in the case of
cubical sets; this will be needed in Section 5.2 when discussing the Kraines construction in the cubical
cochains on the torus.

To get first some concrete understanding, let us begin by computing the operations E1;1 and E1;2 in
the case of the square. It will be useful to refer back to Figures 5 and 7, which include diagrammatic
representations of both of these operations. Recall that

�.II/D 00 j II � 0I j I1C I0 j 1I C II j 11I

here we write bars between tensor factors instead of ˝ to save space.

Computing the diagonal on the first term again we obtain

.�˝ Id/ ı�.II/D 00 j 00 j II � 00 j 0I j I1� 0I j 01 j I1C 00 j I0 j 1I C I0 j 10 j 1I C 00 j II j 11

� 0I j I1 j 11C I0 j 1I j 11C II j 11 j 11:

The underlined terms are the only ones for which the join of the first and third terms is nontrivial; the
result of the operation associated to the graph of Figure 5 is then

(4-7) e1;1.II/D .0I C I1/ j II � II j .I0C 1I/:

Here the extra minus sign for II j I0 is introduced because in order to compute the operation we need
first to swap the second and third terms, and for 00 jI0 j1I a sign is introduced as both are odd. Recalling
now that e1;1 is the dual of e1;1, and we use exponentials to denote the dual basis, we see from (4-3) that

e1;1.e
0I ; eII /.II/D�.e0I

˝ eII /.e1;1.II//D � .e0I
˝ eII /.0I ˝ II/D�1;

so e1;1.e
0I ; eII /D�eII . Here the minus sign in the first equality arises because je1;1j � .je

0I jC jeII j/

is odd, and no sign introduced in the second equality by (4-2). An analogous computation shows

e1;1.e
0I
I eII /D e1;1.e

I1
I eII /D�eII ; e1;1.e

II
I eI0/D e1;1.e

II
I e1I /D eII :

Recalling the sign discrepancy E1;1.aI b/ D .�1/jajC1e1;1.aI b/, we obtain that the only nontrivial
E1;1–operations on the square with degree 2 output are

E1;1.e
0I
I eII /DE1;1.e

I1
I eII /DE1;1.e

II
I eI0/DE1;1.e

II
I e1I /D�eII :
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Similarly, one can compute the effect of the graph associated to e1;2 on II ; there are many terms appearing
after applying� five times, but the only term for which the iterated join of the first, third and fifth elements
is nontrivial is

00 j I0 j 10 j 1I j 11:

This corresponds to the output

e1;2.II/D�II j I0 j 1I;

where we use the computation

.00� 10/� 11D I0� 11D�II;

and no extra sign is introduced when permuting the elements. This in turn means

e1;2.e
II
I eI0; e1I /D eII ;

where we use that e1;2 has even degree and that there is an extra minus sign coming from (4-2); because
of the sign discrepancy E1;2.aI b; c/D .�1/jbjC1e1;2.aI b; c/, we have E1;2.e

II I eI0; e1I /D eII .

To perform more involved computations it will be necessary to have a concrete understanding of these
iterated coproducts in general. In what follows, to describe a basis element of C �

� .I
n/ we will pass freely

between the geometric language of faces of the cube In and length n strings in 0; I; 1; a k–dimensional
face corresponds to a string with k appearances of I. Given a face F corresponding to a string x, we say

min.x/Dmin.x1/ � � �min.xn/;

and similarly for max.x/, where

min.0/Dmax.0/D 0; min.1/Dmax.1/D 1; min.I/D 0; max.I/D 1:

For instance,

min.0I1I/D 0010; max.0I1I/D 0111:

The following result is a direct consequence of the explicit formula for the coproduct by induction on k:

Lemma 4.5 On the n–cube , the k–fold iterated coproduct of In is given by the signed sum of all
sequences of faces F1 j � � � jFk for which :

� min F0 D 0n and max Fk D 1n.

� max Fi Dmin FiC1 for i D 1; : : : ; k � 1.

For each j, the j th coordinate is equal to I in exactly one of the Fi . Therefore we may associate a
permutation � W f1; : : : ; ng! f1; : : : ; ng such that �.1/ is the position of the first I in F1, through �.jF1j/

the final I in F1; then �.jF1jC1/ is the position of the first I in F2, and so on. Then F1 j � � � jFk appears
with sign .�1/j�j, the sign of the above permutation.
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I0

1I0I

I1

I00

1I0

11I

00I

0I1

I11

Figure 23: The front (solid) and back (dashed) edges for the square and the cube.

The last statement can also be rephrased as follows: for each face Fi , consider the ordered string Ii of
the positions at which I appears; then the sign of F1 j � � � jFk in the iterated coproduct is the sign of the
concatenation of the strings .I1; : : : ; Ik/, thought of as a permutation of f1; : : : ; ng.

Joins can be described in terms of faces in the following way. For a k–dimensional face F (corresponding
to a string x1; : : : ;xn with k entries equal to I ), we define its back edges to be the edges obtained by
substituting to the substring of I ’s a string of zeroes, followed by exactly one I, followed by ones. For
example, the back edges of the cube I3 are 00I, 0I1 and I11; see Figure 23. Similarly, we define its
front edges to be the edges obtained by substituting to the substring of I ’s a string of ones, followed by
exactly one I, followed by zeroes. For example, the front edges of III are I00, 1I0 and 11I.

We may give a description of the join of two faces as follows (for instance, by induction on n):

Lemma 4.6 Consider two faces F0;F1 of In for which max F0 � min F1. When this is the case ,
F0 �F1 D

P
.�1/jF0jG, where the sum is taken over every face G of dimension jF0j C jF1j C 1 such

that :

� min F0 �min G.

� max G �max F1.

� If F is the unique face with max F0 Dmin F and max F Dmin F1, then G \F is an edge , which
is a back edge of F and a front edge of G.

We are now prepared to give a completely explicit description of the operations E1;p.

Proposition 4.7 Given faces G0;G1; : : : ;Gp of In, we have that E1;p.e
G0 I eG1 ; : : : ; eGp /D˙eII ���I

if and only if the following hold :

(1) max Gi �min GiC1 for i D 1; : : : ;p� 1.

(2) For each i D 1; : : : ;p, G0\Gi is either empty or one-dimensional ; if it is nonempty, it is an edge
which is a front edge for G0 and a back edge for Gi .

(3) For each i � 1, there is exactly one position ki such that both strings F0 and Gi have ki
th entry I,

and furthermore the sequence k1; : : : ; kp is increasing.
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(4) If 1� i < j, Gi and Gj do not have an entry I at the same position. Furthermore , for each k, there
is a face Gi (possibly i D 0) whose k th position is I.

Provided that the faces G0;G1 : : : ;Gp are odd-dimensional , the sign is given by

.�1/p � sign.�/;

where � is the permutation of f1; : : : ; ng obtained by replacing , in the string of positions of the I ’s in G0,
the position ki with the string of positions of the I ’s in Gi for all i � 1. For example , if G0 has string of
positions 2345 while G1 and G2 have strings of positions 267 and 1489, then sign.�/ is the sign of the
permutation .267314895/.

Remark 4.6 The computation of the operations Ep;1 leads to a similar result with the roles of back and
front reversed. This symmetry (up to sign) is rather surprising because the graphs of Ep;1 and E1;p are
very different. Indeed, it does not at all hold in general Hirsch algebras; in simplicial cochains, ep;q D 0

for all p > 1, while the e1;q are in general nonzero.

The proof is best elucidated by working out some more involved concrete examples on I3 first. Let us
focus on the nontrivial products E1;2.aI b; c/ with jaj D 2, jbj D 1 and jcj D 2. One can see that these
arise from two terms in the iterated diagonal, namely

000 j I00 j 100 j 1II j 111;

for which the iterated join is

.000� 100/� 111D I00� 111D�II1� I0I

and corresponds after dualizing to the products

e1;2.e
II1
I eI00; e1II /D e1;2.e

I0I
I eI00; e1II /D�eIII

I

hence,
E1;2.e

II1
I eI00; e1II /DE1;2.e

I0I
I eI00; e1II /D�eIII ;

and
�000 j 0I0 j 010 j I1I j 111;

for which the iterated join is

.000� 010/� 111D 0I0� 111D�0II

corresponding to e1;2.e
0II I e0I0; eI1I /D eIII ; hence,

E1;2.e
0II
I e0I0; eI1I /D eIII :

For the sign computation, notice that e1;2 has even degree and no sign is introduced when permuting
terms or evaluating as in (4-2). See Figure 24 for a visualization of such products in terms of front and
back edges.
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Figure 24: The nontrivial operations E1;2.aI b; c/ with faces jaj D 2 (the lightly shaded square)
and jbj D 1 and jcj D 2 (the dark edge and square, respectively). When the lightly shaded square
and a dark face intersect, the intersection is a front edge for the lightly shaded square and a back
edge for the dark face.

Proof of Proposition 4.7 Recall that the operation E1;p corresponds up to an overall sign to the graph
obtained by taking a rake with 2pC 1 outputs, and taking joins (in increasing order) of the elements in
the odd positions.

We will show that the stated conditions are necessary; sufficiency follows from a similar analysis. Notice
that the image of In under the .2pC1/–fold iterated diagonal is the sum over all sequences of 2pC 1

faces G0;F1;G1;F2;G2; : : : ;Fp;Gp for which:

� max Fi Dmin Gi and max Gi Dmin FiCi .

� min G0 D 0n.

� max Gp D 1n.

We need then to take (up to signs) the iterated joins of the Gi . From this .1/ readily follows; notice also
that the sequence of the Fi determines the whole sequence of faces. For .2/, the main observation is that,
because max Gi�1 D min Fi and max Fi D min Gi , by Lemma 4.6 each face G of the join Gi�1 �Gi

intersects Fi in a face which is in the front for G and in the back for Fi . Inductively, taking the iterated
join with the following GiC1 will either preserve this intersection property, or make the intersection empty
(see Remark 4.3). To see that .3/ and .4/ hold, notice first that, for each k, there is exactly one of the
Gi or Fi whose k th element is I ; the uniqueness of the intersection index ki follows from the previous
discussion, and the fact that the sequence is increasing follows from the fact that the iterated join of the
Gi is nonzero.

To see that the sign of the output is the claimed one, we need to be very explicit about all the signs that are
introduced. First, suppose E1;p.e

G0 I eG1 ; : : : ; eGp /D˙eII �I . Reversing this, we may write e1;p.In/

as follows. First we take the iterated coproduct �2pC1In, which givesX
.�1/�1 ŒF0 jG1 j � � � jGp jFp �:

Write Ik and Jk for the string of I ’s in Fk and Gk , respectively; then �1 is the sign of the permutation
needed to put .I0;J1; : : : ;Jp; Ip/ in order (where each Ik and Jk is already listed in its natural order).

Next we braid the entries to send this to .�1/�1C�2 ŒF0 j � � � jFp jG1 j � � � jGp �. Because each Gi is assumed
to have odd degree, this costs a sign of �2 D

Pp
iD1

i jFi j.
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Next we take the iterated join of the first factors. Because each join costs a sign equal to the degree of the
first input and we are iterating this procedure, this produces .�1/�1C�2C�3 ŒG0 jG1 j � � � jGp �, where

�3 D jF0jC .jF0jC jF1jC 1/C � � �C .jF0jC � � �C jFp�1jCp� 1/D 1
2
p.p� 1/C

p�1X
jD0

.p� j /jFj j:

Further, by the assumption that this iterated join is nonzero, I0 < fj1g< � � �< fjpg< Ip , where the string
of positions of G0 is I0 [ fj1g [ � � � [ fjpg [ Ip and each ji 2 Ji . Thus .�1/�1 is precisely the term
sign.�/ appearing in the statement of the proposition. Next,

�2C �3 D
1
2
p.p� 1/C

pX
iD0

.pjFi j/:

By the assumption that jG0j has odd degree, we know that jG0j D p C
P
jFi j is odd, so

P
jFi j �

p� 1 mod 2; thus this expression simplifies to 1
2
p.p� 1/Cp.p� 1/� 1

2
p.p� 1/.

We have justified that e1;p.In/ gives a signed sum over terms ŒG0 j G1 j � � � j Gp �, where the sign is
.�1/p.p�1/=2 sign.�/ when all of the jGi j are odd. We should now pass to the dual operation. We have

Œe1;p.e
G0 I eG1 ; : : : ; eGp /�.In/D .�1/�4.eG0 ˝ eG1 ˝ � � �˝ eGp /.e1;p.In//

D .�1/�4Cp.p�1/=2
� sign.�/.eG0 ˝ � � �˝ eGp /.G0˝ � � �˝Gp/:

Here �4D p.jG0jC jG1jC � � �C jGpj/D p.pC1/� 0 is introduced by the Koszul sign rule for the dual
operation. Using the Koszul sign rule for applying tensor products of operators (4-2), we find that this
simplifies to

.�1/p.p�1/=2C�5 � sign.�/eG0.G0/ � � � e
Gp .Gp/;

where (because all the jGi j are odd) �5D
Pp

iD1
i D 1

2
p.pC1/. This leaves us with precisely the claimed

sign .�1/p � sign.�/.

4.4 Comparing simplicial and cubical cochains

We conclude by discussing how our two main examples, simplicial and cubical cochains, are related.
This will be important because simplicial techniques are much more flexible geometrically (a simplicial
approximation theorem holds, while a cubical approximation theorem is at the very least much more
subtle), whereas cubical techniques provide the perfect setting for a minimal model of cochains on the
torus.

Consider the cellular collapse map

� W In
!�n; .x1; : : : ;xn/ 7! .x1;x1x2;x1x2x3; : : : ;x1x2 � � �xn/:

Here we consider the model for�n given by the elements .y1; : : : ;yn/2 In for which y1� y2� � � � � yn.
This induces the so-called [Eilenberg and MacLane 1953] Cartan–Serre comparison map

�� W C
��sing
� .X /! C

��sing
� .X /; � 7! � ı �:
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We will be interested in its dual map

�� W C ���sing.X /! C ���sing.X /:

By [Kaufmann and Medina-Mardones 2022, Theorem 15] or [Serre 1951], this is a quasi-isomorphism of
algebras. They also prove that �� preserves the operations coming from “shuffle graphs”. We can use this
to prove the following statement:

Theorem 4.8 The dual Cartan–Serre comparison map �� is a quasi-isomorphism of Hirsch algebras ,
where the Hirsch algebra structure is given by the operations Ep;q described in the previous sections.

Proof This is essentially proved by Kaufmann and Medina-Mardones [2022, Section 5:6], who show
that those operations which correspond to shuffle graphs are preserved by ��, and thus their composites
do as well. The key point in their argument is that, even though the Cartan–Serre collapse map � does not
preserve joins of faces in general [loc. cit., Section 5:4], we at least have that ��.x �y/D ��.x/� ��.y/

whenever x � y, where � is the partial order on the faces induced (via tensor product) by 0< I < 1 [loc.
cit., Lemma 11]. In particular, this implies that, in our notation,

��.F �G/D ��.F /� ��.G/ if max F �min G:

Now the graphs which define our operations ep;q are in general not shuffle graphs, nor are they in general
composites of shuffle graphs; for instance, e2;1 is not given by a composite of shuffle graphs. Nevertheless,
these operations only involve taking joins of faces F and G with max F �min G; this follows via the
observations about maxima and minima in Lemmas 4.5 and 4.6 from the fact that, for our graphs, the
black subgraph (which is the only part involving joins) is embedded.

5 Twisting sequences on the torus

In this section, we specialize our construction to the case of the simplest cubical realization of the torus.
Our machinery will then allow us to compute certain twisted cohomology groups of the torus in a purely
combinatorial way.

5.1 A Hirsch structure on the exterior algebra

What we would like to assert is that the torus is formal. If we have a zigzag of algebra quasi-isomorphisms
from C �

�
.T / to its cohomologyƒ�Zb for some simplicial torus T, then we may transfer twisting sequences

along this zigzag. If all the relevant maps are Hirsch algebra maps, we can determine what the given
class is transferred to.

Unfortunately, the most obvious choice of zigzag (coming from the Künneth theorem) consists of dg-
algebra quasi-isomorphisms which are not Hirsch algebra maps. It follows from our results below that
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there cannot be a zigzag of Hirsch algebra maps from C �
�
.T / to ƒ�.Zb/ unless the last term has a

nontrivial Hirsch structure (the cup-1 product, for instance, must be nonzero).

Instead of seeking some ad hoc sequence of Hirsch algebra maps, our philosophy is that there should
be a zigzag of Hirsch algebra quasi-isomorphisms between any two models for cochains on the torus.
Furthermore, there is a reasonable model for the torus whose cochains have zero differential, so return
the exterior algebra itself.

Definition 5.1 We write T b
1

for the cubical set obtained by pasting together opposing faces of the
cube �b by the identity map. This cubical set has

�
b
k

�
k–cubes, which are in bijection with k–element

subsets of f1; : : : ; bg; in particular, it has a single vertex and single top face. We call T b
1

the minimal torus.

Notice that the algebra C ��.T
b
1
/ is canonically isomorphic, as a dg-algebra, to ƒ�.Zb/. However, being

the normalized cubical cochains on a cubical set, this carries significantly more structure: as discussed in
Section 4, this cochain algebra is naturally a Hirsch algebra.

In this section, we will describe parts of the Hirsch structure explicitly, as well as define some combinatorial
operations which turn out to be related. In the next section we will explain the relationship.

Let ƒ�.Zb/ be the exterior algebra on n elements e1; : : : ; eb . Identify a basis for this algebra with
expressions of the form eI, where I � f1; : : : ; bg is a subset; if I D fi1; : : : ; ikg with i1 < � � �< ik , then

eI
D ei1 ^ � � � ^ eik :

Under the identification, we have the following:

Proposition 5.2 The Hirsch algebra operation E1;p on ƒ�.Zb/ is given as follows: the operation
E1;p.e

J I eI1 ; : : : ; eIp / is nonzero if and only if

� Ij \ Ik D¿ for all j ¤ k;

� the intersection J \ Ik D fjkg is a singleton for all k and j1 < � � �< jp.

In this case , the output is˙eJ[I1[���[Ip . To be more precise about the sign , assume that jIi j is odd for
all i and write J D J0 < fj1g< J1 < � � �< fjpg< Jp. Then

E1;p.e
J
I eI1 ; : : : ; eIp /D .�1/peJ0 ^ eI1 ^ eJ1 � � � ^ eIp ^ eJp :

That is , one replaces each jk with the set Ik , together with an overall sign of .�1/p.

Proof This directly follows from the computations for cubes in Proposition 4.7. For example, the
configurations in Figure 24 correspond to

E1;2.e
12
I e1; e23/DE1;2.e

13
I e1; e23/D�E1;2.e

23
I e2; e13/D�e123:
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Going from the cube to the minimal torus, one essentially forgets about the entries 0 and 1 of faces and
only keeps track of the position of the I ’s. The result then follows from the observation that, for each
sequence of subsets Ii and J as above, there is exactly one choice of faces Fi and F0 of the cube for
which I is at the right position and which satisfy the relations in Proposition 4.7.

In the operations E1;p, the first input plays a very different role from the remaining p. On the other
hand, it turns out that there is a symmetric operation — which we will call the insertion product — which
captures the behavior of all of the E1;p and their composites. This insertion product and its properties are
then crucial to our analysis of the Kraines construction K.a/ on an element a 2ƒ3.Zb/, as K.a/2nC1 is
obtained by summing over all possible iterates of the operations E1;p (with appropriate scalar factors).
To define this, we must make a brief diversion into combinatorics of subsets of f1; : : : ; ng.

Definition 5.3 Let fI1; : : : ; Img be a collection of subsets of f1; : : : ; bg. Write the elements of Ij as
fx1

j < � � �<x
ij
j g. We say the graph realization R.I1; : : : ; Im/ is the following graph: each Ij is associated

to the connected graph with jIj j vertices (labeled by fx1
j ; : : : ;x

ij
j g) and jIj j � 1 edges (connecting xk

j

and xkC1
j ); if Ij \ Ik is nonempty, we identify the corresponding vertices in the associated graphs.

Notice that in R.I1; : : : ; Im/ a pair of vertices might be joined by multiple edges. The conditions in the
definition of E1;p amount to saying that R.J; I1; : : : ; Ip/ is a tree which is obtained by pasting disjoint
line segments (corresponding to the Ik) at various distinct points of a base line segment (corresponding
to J ), as well as a condition to guarantee that only one ordering of I1; : : : ; Ip gives a nonzero output.
This leads us to the following definitions:

Definition 5.4 Let fI1; : : : ; Img be an unordered family of subsets Ij � f1; : : : ; bg. We say that this
family is 1–regular if R.I1; : : : ; Im/ is a tree.

The condition of 1–regularity essentially means that there is some reordering of this tuple such that the
iterated cup-1 product of eI1 ; : : : ; eIm is nonzero. Whether or not a family of subsets is 1–regular can be
determined by a greedy algorithm. At each stage we have chosen k distinct elements from this set so that
Il1
; : : : ; Ilk

are 1–regular; we next determine if there is some IlkC1
which intersects the union of these

exactly once. If not, the family is not 1–regular. If so, continue the algorithm.

Definition 5.5 We define the insertion products to be the symmetric multilinear maps

jm Wƒ
�.Zb/˝m

!ƒ�.Zb/

of degree 1�m such that

jm.e
I1 ; : : : ; eIm/D

�
˙eI1[���[Im if .I1; : : : ; Im/ is 1–regular;
0 otherwise:

To be explicit about the sign, one may reorder the Ij so that this is computed as an iterated E1;1 product,
with the signs of Proposition 5.2; the result is independent of the choice of order.
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Remark 5.1 One may also define the sign inductively: Suppose R.I2; : : : ; Im/ consists of k components

R.I2; : : : ; Im/DR.I1;1; : : : ; I1;i1
/[ � � � [R.Ik;1; : : : ;RIk;ik

/:

The sign on the insertion product of these k terms is already defined, by induction; after reordering them
so that their intersections with I1 are increasing,

jm.e
I1 ; : : : ; eIm/DE1;k.e

I1 I ji1
.eI1;1 ; : : : ; eI1;i1 /; : : : ; jik

.eIk;1 ; : : : ; eIk;ik //

using the higher operations in Proposition 5.2.

It follows from multilinearity that, if aD
P

I aI eI, we have

jm.a; : : : ; a/D
X

.I1;:::;Im/ 1–regular
Ij¤Ik for all j¤k

aI1
� � � aIm

jm.e
I1 ; : : : ; eIm/:

Here the sum is over all ordered sequences. If .I1; : : : ; Im/ is 1–regular, any permutation of this family
of sets is again 1–regular and is distinct from the original family, because each Ij labels a distinct subset
of f1; : : : ; bg. Because jm is symmetric, it follows that we may rewrite this as

jm.a; : : : ; a/Dm!
X

fI1;:::;Img 1–regular

aI1
� � � aIm

jm.e
I1 ; : : : ; eIm/;

where the sum runs over unordered sequences. In particular, jm.a; : : : ; a/=m! is always defined over the
integers. It is worth giving a name to this operation.

Definition 5.6 Let a 2ƒ�.Zb/ be an odd class. We say that the insertion powers of a are

aım D
jm.a; : : : ; a/

m!
:

Explicitly, if aD
P

aI eI, we have

aım D
X

fI1;:::;Img 1–regular

aI1
� � � aIm

jm.e
I1 ; : : : ; eIm/:

5.2 The Kraines construction and the insertion product

For the duration of this section, we write ƒ�.Zb/, together with its Hirsch algebra structure, as ƒ, which
we constructed in Section 4. It follows that the bar construction Bƒ carries a product � WBƒ˝Bƒ!Bƒ

(see Theorem 3.2). From this, and the inclusion ƒŠ .Bƒ/1 ,!Bƒ, we defined in Lemma 3.6 operations
corresponding to iterated multiplication. In our case of interest these operations turn out to be symmetric
in their inputs, and in fact equal to the insertion product of the previous section.

For convenience, we state all results in the following theorem for odd classes. They hold for arbitrary
elements ofƒ with suitable signs, but we do not need them. The main result of this section is the following
characterization of iterated multiplication in Bƒ. We give an explicit formula for the repeated product,
and prove that it is both symmetric and associative.
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Theorem 5.7 Define the map �n Wƒ
˝n! Bƒ by iterated left multiplication with the operation �; that

is , �3.a1; a2; a3/D �.Œa1�; �.Œa2�; Œa3�//. Then the component

�1
n W .ƒ

odd/˝n
!ƒŠ .Bƒ/1

on odd-degree inputs is precisely the insertion product jn.

Proof We prove this by induction on m. The claim is tautological for m D 1, where �1
1
.a/ D a and

j1.a/D a.

Supposing the claim is true for �1
m for all m<n, we will prove the claim for �1

n. Because �n is multilinear,
it suffices to verify it on basis elements eI for I � f1; : : : ; bg a subset. We write aj D eIj for 1� j � n.

The key point is Lemma 3.6. To recall notation, if J D fj1 < � � �< jkg � f2; : : : ; ng, we write

�1.J /D �1
k.aj1

; : : : ; ajk
/I

if J1; : : : ;Jk is a list of subsets, then we write �1.J1 j � � � jJk/D Œ�
1.J1/ j � � � j�

1.Jk/�. In this notation,
Lemma 3.6 tells us that

�n�1.a2; : : : ; an/D
X

J1;:::;Jk�f2;:::;ng
J1[���[JkDf2;:::;ng
Ji\JjD¿ for i¤j

�1.J1 j � � � jJk/:

Next, our inductive hypothesis tells us what each expression �1.Ji/ is. Each Ji parametrizes a set of
monomials eIk ; we may compute their insertion product, and �1.Ji/D j .Ji/ by the inductive hypothesis.
So we may write the above sum as

�n�1.a2; : : : ; an/D
X

J1;:::;Jk�f2;:::;ng
J1[���[JkDf2;:::;ng
Ji\JjD¿ for i¤j

Œj .J1/ j � � � j j .Jk/�:

Next, if a1 D eI, when we apply �.Œa1�; �n�1/ we obtain

�1
n.a1; a2; : : : ; an/D

X
J1;:::;Jk�f2;:::;ng

J1[���[JkDf2;:::;ng
Ji\JjD¿ for i¤j

E1;k.e
I
I j .J1/; : : : ; j .Jk//:

Here j .Ji/ is the insertion product of the elements eIk for k 2 Ji . This is given by ˙e
S

Ji , whereS
Ji D

S
k2Ji

Ik .

By Proposition 5.2, if the above expression is nonzero, then the subsets
S

J1; : : : ;
S

Jk are necessarily
disjoint with I meeting each of them exactly once, so the graph realization

R.I2; : : : ; In/DR.J1; : : : ;Jk/

must be a forest of exactly k trees, and I meets each tree exactly once — so R.I; I2; : : : ; In/ is a tree
and the family is 1–regular. Further, E1;p is precisely given by the insertion product.
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Therefore, if a summand in the above expression is nonzero, the family .I; I2; : : : ; In/ is 1–regular and
that summand is the insertion product. The only way such a summand can be nonzero is if the Ji each
correspond to the components of R.I2; : : : ; In/ and, further, the intersections fjig D I \ .[Ji/ have
j1 < � � � < jk . Hence exactly one such summand is nonzero: the one with partition given as above,
and with the unique ordering in which the above inequality holds. Thus the expression evaluates to
j .I; I2; : : : ; In/, as desired. This completes the induction.

This immediately gives us an explicit formula for the Kraines construction K.a/ on the minimal torus.

Corollary 5.8 Let a 2 ƒ3.Zn/ be any element of degree 3. Writing aın for the insertion powers of
Definition 5.6, the Kraines construction on a is the twisting sequence with K.a/2nC1 D aın for all n� 1;
this is defined as a twisting sequence over ƒ (without rationalizing).

A modified statement is true for elements of any odd degree (or, if one is more careful with signs, for
arbitrary elements).

5.3 The main computation

Combining the results of the previous two sections, we are now able to prove the following structure
theorem for twisted homology of twisting sequences on the torus. The phrasing, involving simplicial tori,
is intended towards our application in monopole Floer homology; the result may be stated more generally
about any reasonable model for cochains on the torus.

Theorem 5.9 Let T be any finite simplicial complex whose realization is homeomorphic to the b–
dimensional torus T b . Then there is a zigzag of Hirsch algebra quasi-isomorphisms from the simplicial
cochain (Hirsch ) algebra C �

�
.T / to the exterior algebra C ��.T

b
1
/Šƒ�.Zb/ with the following property.

Suppose �� is a twisting sequence in C �
�
.T / with Fn.��/D 0 for all n> 1; write F1.��/D Œ�3� as a 2ƒ3

for convenience. Then under the induced bijection

hT .C ��T /! hT .ƒ�Zn/Dƒ3
˚ƒ5

˚ � � � ;

the element Œ��� is sent to the twisting sequence K.a/. Explicitly, we have K.a/2nC1 given by the nth

insertion power
K.a/2nC1 D aın D

1

n!
jn.a; : : : ; a/

of Definition 5.6.

Proof Fix a homeomorphism jT j Š T b from the realization of the simplicial torus T to the standard
b–dimensional torus, which also has a canonical homeomorphism to the realization of the minimal
torus T n

1
of Section 5.1.

The appropriate zigzag of Hirsch algebras takes the form

C ��.T / C ���sing.T
b/ C ���sing.T

b/! C ��.T
b
1 /Dƒ

�.Zb/:
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The first map is obtained by restricting domain from singular chains to the simplicial chains; it is
represented by a simplicial map T ! Sing� jT j of simplicial sets and hence defines a map on Hirsch
algebras, and similarly with the last map.

The middle map from singular cubical cochains to singular simplicial cochains is the Cartan–Serre
comparison map, which is an isomorphism of Hirsch algebras by Theorem 4.8. Hence this is a zigzag of
Hirsch algebra quasi-isomorphisms.

Because the characteristic classes of twisting sequences on Hirsch algebras are homotopy invariants,
which are natural for Hirsch algebra maps, it follows that Fn.z���/D 0 for all n> 1 and F1.z���/D Œ�3�.
Furthermore, Theorem 3.7 implies that there is exactly one twisting sequence in ƒ�Zb with these
properties, and it must be K.Œ�3�/— which is therefore defined over the integers (though this follows from
our explicit calculation of this element). The given formula for K.a/ was determined in Corollary 5.8.

Applying Lemmas 1.5 and 1.6, we immediately obtain an isomorphism between the twisted cohomology
H�tw.T I ��/ and the (algebraic and concretely computable) twisted homology of ƒ�Zn with respect to the
twisting sequence .a; aı2; aı3; : : : /.

Remark 5.2 If one is careful, one observes that, in Lemmas 1.5 and 1.6, we referred to a version of
the twisted cohomology groups where one uses ZŒT �1;T ��, completing in the T –direction, whereas the
statement above refers to an uncompleted version. The key point is that when the chain complexes we
apply this to are supported in bounded degrees — as is the case for C �

�
.T / and ƒ�.Zn/— this twisted

cohomology is defined via Laurent polynomials for, in a fixed degree d , sufficiently high powers of T

must have coefficient zero).

5.4 The case of local systems

We would now like to extend our calculation of twisted (co)homology of the torus to the setting of local
systems. When applying this to the setting of monopole Floer homology of a spinc three-manifold with
c1.s/ nontorsion, such a local system is most naturally a local system of ZŒT;T �1�–modules.

Let T be a finite simplicial complex whose realization is homeomorphic to the b–dimensional torus, and
suppose T is equipped with a local coefficient system A of ZŒT;T �1�–modules; this is described by
some representation � W �1.T /! Aut.A/, where we take automorphisms as a ZŒT;T �1�–module.

Let �� 2 TS.C �
�

T / be a twisting sequence. We may define the twisted homology with respect to the local
system A as the homology of C�

� .T IA/ with respect to the differential

x 7! @AxC .�3\x/T C .�5\x/T 2
C � � � ;

where @A is the differential with local coefficients (see for example [Davis and Kirk 2001, Chapter 5]).
As C�

� .T / is finite-dimensional, this is a finite sum.
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Theorem 5.10 In the situation above , suppose Fn.��/ D 0 for all n > 1, and Œ�3� D a� 2 ƒ
3.Zn/

after choosing a basis of �1T (and thus an isomorphism of H�T to ƒ�Zb/, then the twisted homol-
ogy H tw

� .T IA; ��/ is isomorphic to the twisted homology of the local system over the minimal torus
C ��.T

b
1
/ŒT;T �1�˝ZŒT �A with respect to the differential

x 7! @AxC .a� \x/T C .aı2� \x/T 2
C � � � :

In this situation , the differential @A is computed explicitly as follows. If x D ei1 ^ � � � ^ eik ˝ a, then

@Ax D
X

1�j�k

ei1 ^ � � � ^ eij�1 ^ eijC1 ^ � � � ^ eik ˝ �.eij /.a/:

Here �.ek/ is �, applied to the k th basis vector of Zb .

Proof The zigzag of Hirsch algebras

C ��.T / C ���sing.T
b/ C ���sing.T

b/! C ��.T
b
1 /Dƒ

�.Zb/

has a corresponding form for chains (valued in any local system)

C�
��.T IA/! C

��sing
�� .T b

IA/! C
��sing
�� .T b

IA/ C �
��.T

b
1 IA/Dƒ

��.Zb/˝A:

The negative degrees appear because our conventions use cohomological gradings. To be clear, the
grading of � ˝ a is given by jaj � j� j.

These maps are all quasi-isomorphisms (they are comparison maps between various types of chains on
the torus) and type (b) module maps (see Lemma 1.6).

We would like to argue as follows: there is a filtration on each of these complexes such that the twisted
differential preserves the filtration, and the associated graded of the twisted homology complex is
precisely the complex C��.T IA/ in its various guises; because the associated graded maps are all quasi-
isomorphisms, and the spectral sequence converges, the maps between the various twisted homology
groups are also quasi-isomorphisms.

The issue is in giving the correct spectral sequence. One should not filter by T –degree in A, as this is not
complete. The most natural choice is by chain degree. If � ˝ a 2 C�p.T IA/— so jaj � j� j D p — we
say that � ˝ a has chain degree �j� j, and we set

FpC��.T IA/D
M
k�p

C�k.T /˝A:

Then, as long as the models for chains on T are bounded in degree, this is a complete filtration, and the
argument above runs through. However, singular chains are unbounded complexes.

To remedy this, observe the following. Suppose A is a nonnegatively graded dg-algebra and M is a
(cohomologically graded) bounded above dg-module with cohomology supported in degrees Œ�n; 0�.
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Then there is an A–module M 0 which is supported in degrees Œ�n� 1; 0� and comes equipped with an
A–module quasi-isomorphism M !M 0; furthermore, this construction is natural in pairs .A;M / of the
above form. One may simply set

M 0
k D

8<:
Mk if k � �n;

M�n�1=Z�n�1 if k D�n� 1;

0 otherwise.

Applying this natural truncation construction, we now have a zigzag

C�
� .T IA/! C

��sing
� .T b

IA/0! C
��sing
� .T b

IA/0 C �
� .T

b
1 IA/Dƒ

�.Zb/˝A;

where each dg-module here has a finite filtration, and all maps are quasi-isomorphisms. Applying the
argument above, we have a zigzag of isomorphisms between the relevant twisted homology groups, as
desired.

Finally, the determination of @A on H�T follows directly from the definitions (see the discussion in
Section 6.2 below).

6 Applications to the monopole Floer homology group HM�

In the first part of this section, we recall precisely what is proved in [Kronheimer and Mrowka 2007],
which we refer to heavily below and henceforth abbreviate to [KM]. Then we will finally prove Theorem A.
We will conclude by discussing and prove generalizations to the case of nontorsion spinc structures and
local systems.

In [KM, Chapters 33 and 34], the authors investigate the monopole Floer homology groups HM�.Y; sI�0/

and compare them to coupled Morse homology groups of the torus of reducible solutions; we write these
groups as

CMH�.TY;s;DBI�0/:

Here �0 is some local system over the torus TY;s, hence an H 1.Y IZ/–module. The complex CMC�.TY;s/

computing this homology group is freely generated by pairs .x; �i/ where x is a critical point of a Morse
function on T and �i labels an eigenspace of the operator Dx , listed so that

� � �< �0 < �1 < �2 < � � � :

Both HM and CMH carry the intrinsic structure of a module over ƒ�.H1Y=tors/ŒU;U�1�, both defined
in similar ways (counting points in moduli spaces cut down by an appropriate cohomology class, either
represented geometrically as a section of a vector bundle or as a Čech cocycle). Notice that, while there is
an obvious degree �2 map on CMC�.TY;s/, given by sending .x; �i/ to .x; �i�1/, this is not necessarily
the same as the action of U, which is defined in [KM, page 657].
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While the proof of [KM, Theorem 35:1:1] gives an isomorphism

rY;s W HM�.Y; sI�0/Š CMH�.TY;s;DBI�0/

as abelian groups, it is straightforward to see rY;s is in fact aƒ.H1Y=tors/ŒU;U�1�–module isomorphism,
because the module structures are defined in essentially the same way. This holds regardless of whether
or not s is torsion or �0 is a local system with nontrivial monodromy and the proof is the same. In
the nontorsion case, the domain is instead HM�.Y; s; cbI�0/, where one uses an appropriate balanced
perturbation to the Seiberg–Witten equations.

They then compare these to appropriate twisted simplicial homology groups via [KM, Proposition 34:2:1]
in the torsion case and [KM, Proposition 34:4:1] in the nontorsion case. While these propositions are
phrased in terms of Čech representatives, there is no difficulty in phrasing their results simplicially, as in
the proof of [KM, Theorem 34:3:1].

What they show, precisely, is that, when T is given a simplicial structure and DB is homotoped to a
simplicial map L W T ! U.2/ for an appropriate simplicial structure on the latter, then one may choose
the Morse function on T so that there is a group isomorphism

'� W CMC�.T ;LI�0/Š C�
� .T I�0/ŒT;T

�1�

given by sending the generator .x; �i/ to xT i , and such that the coupled Morse differential on the domain
is sent to the twisted differential

x 7! d�0
xC .�3\x/T;

where �3 is a simplicial 3–cocycle on T pulled back from the 3–sphere. Here T is a formal variable of
degree 2. This contrasts with the main body of the text above, where we used cohomological grading
conventions, so instead T had degree �2. Restated, '� gives an isomorphism of chain complexes from
CMC to C�

tw.T I �KM/.

Now we should discuss how '� behaves with respect to the additional structure. When L factors through
SU.2/— so s is a torsion spinc structure — the argument of [KM, Proposition 34:2:4] shows that '� has

'�.Ux/D T �1'�.x/:

However, these arguments do not help with the ƒ–module structure. Without further work, all one can
say is that, for example, if ˛ 2H 1.T /, we have

'�.˛\xT i/D ˛\'�.x/T
i
Cx�3T iC1

Cx�5T iC2
C � � � ;

where x and x�.2iC1/ differ in grading by 2i C 1. Furthermore, when s is nontorsion, the arguments
of [KM] only show

'�.Ux/D T �1'�.x/CTy

for some appropriate y D
P

aiyi , where yi are critical points for which grzi
.x;yi/ D 4 for some

homotopy class of paths zi ; see [Cristofaro-Gardiner et al. 2021] for more details. (Notice that this is
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slightly stronger than simply knowing that U is sent to T �1 up to higher filtration.) We summarize the
above discussion in the following proposition:

Proposition 6.1 (Kronheimer and Mrowka) Filter HM�.Y; s; cbI�0/ by powers of U and H�
tw.T I �KM/

by powers of T �1. There is a filtered isomorphism of relatively graded groups

'KM D '� ı rY;s W HM�.Y; s; cbI�0/ŠH�
tw.T I �KM/:

The associated graded map is a ƒ�.H1Y=tors/–module isomorphism sending U to T �1. When s is
torsion , so we consider the usual group HM�.Y; sI�0/, the map 'KM sends U to T �1 even before passing
to the associated graded modules.

It is likely that one can give a completely explicit description of how 'KM intertwines the two ƒ–module
structures on both sides in general, as well as how U relates to T �1; see Section 7. What follows below
builds on Proposition 6.1 and is carried out entirely on the twisted homology side.

6.1 Proof of the main theorem

Let us first recall here the statement for the reader’s convenience:

Theorem 6.2 (Theorem A) If s is a torsion spinc structure , the monopole Floer homology group
HM�.Y; s/ is isomorphic to the extended cup homology HC1� .Y / as relatively Z–graded ZŒU;U�1�–
modules.

Here recall that, after choosing an identification H 1.Y IZ/DZb1.Y /, the extended cup homology HC1� .Y /
is the homology of ƒ�.Zb1/ŒU;U�1� with respect to the differential given by

(6-1) x˝U n
7! .aY \x/U n�1

C .aı2Y \x/U n�2
C .aı3Y \x/U n�3

C � � � ;

where aY 2 ƒ
3Zb1 corresponds to the triple cup product [3

Y
of Y, and the cap products are to be

interpreted via the identification Zb1.Y / DH�.T /.

Proof We need to show that
H�

tw.T I �KM/Š HC1� .Y /

as ZŒT;T �1�–modules. Now �KM D .�3; 0; : : : / is a twisting sequence pulled back from a twisting
sequence �S3 on SU.2/DS3. All the higher characteristic classes Fn.�S3/ vanish because the cohomology
of S3 vanishes in degrees � 4. By functoriality, all characteristic classes Fn.�KM/ 2H 2nC1.T IQ/ also
vanish, and F1.��/ corresponds to the pullback of the generator of H 3.S3IZ/ under the classifying map.

By the index theorem for families [KM, Lemma 35:1:2], the classifying map of such a family pulls back
the generator of H 3.S3IZ/ to the triple cup product

[
3
Y 2 .ƒ

3H 1.Y IZ//� Dƒ3H 1.T IZ/DH 3.T IZ/:
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Theorem 5.9 implies therefore that H�tw.T I �KM/ is the twisted cohomology H�tw.H
�.T /IK.[3

Y
//

of H�.T / (thought of as a dga with trivial differential) with respect to the twisting sequence K.[3
Y
/. To

conclude the homological statement, notice that

HM�.Y; s/Š HM�.�Y; s/ŠH�tw.H
�.T /IK.�[3

Y //ŠH�tw.H
�.T /IK.[3

Y //Š HC1� .Y /;

where the first isomorphism is Poincaré duality in Floer homology; we have [3
�Y
D �[3

Y
. Now the

twisting sequences K.[3
Y
/ and K.�[3

Y
/ differ by a sign in degrees 4nC1, and the corresponding twisted

cohomologies are seen to be isomorphic via the map that acts on H�.T / by multiplying by �1 in degrees
congruent to 0 and 3 mod 4. The last isomorphism is Hodge duality on ƒ�.Zb/, where we use that
wedging with a form is Hodge dual to contraction with it (ie the differential in extended cup homology)
up to a sign that does not affect the resulting homology.

6.2 Local systems and nontorsion spinc structures

Next we discuss the case of a nontorsion spinc structure s; the relevant group for our purposes is the one
associated to balanced nonexact perturbation cb , which is denoted by HM�.Y; s; cb/ [KM, Chapter 30].
The spinc structure determines a homomorphism 's given by

's WH
1.Y IZ/! Z; a 7! 1

2
ha[ c1.s/; ŒY �i:

We know that HM�.Y; s; cbIZ/ can be identified with

H tw
� .T I ��; �s/;

where one uses a local system on the torus T DT .Y; s/ of reducible solutions with fiber ZŒT;T �1� whose
monodromy around the loop a in T is given by multiplication by T 's.a/. Notice that the monodromy map
does not preserve the Z–grading, but only the Z=2N Z–grading, where N is a generator of the image
of 's. A similar isomorphism holds for HM�.Y; s; cbI�0/, where �0 is some additional local system
over T. As discussed in the opening of this section, this identification is a U – andƒ–module isomorphism
on associated graded modules, but more work is necessary to determine how this identification intertwines
the module structures in higher filtration. Henceforth we exclusively discuss the twisted homology group.

Choose an identification T Š .S1/b , where b D b1.Y /. The latter space has a canonical cubical
decomposition, T b

1
, discussed extensively in Section 5; this cubical decomposition has C ��.T

b
1
/Šƒ�.Zb/.

We choose such an identification once and for all.

If �0 is a local system on T, we can define the chain complex with local coefficients C �
� .T

b
1
I�0/ as

follows (see for example [Davis and Kirk 2001, Chapter 5]). The cubical decomposition of T b
1

induces a
cellular decomposition on its universal cover zT b1 ; this is the usual lattice in Rn.

The complex C �
� .
zT b1 IZ/ is naturally a module over the group ring ZŒ�1.T /� via the action given by

deck transformations. If we interpret the local system as a module �0 over ZŒ�1.T /�Š ZŒZb �, we can
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then define

(6-2) C �
� .T

b
1 I�0/D C �

� .
zT b1 IZ/˝ZŒ�1.T/� �0;

equipped with the induced differential.

Similarly, consider the local system on T with fiber ZŒT;T �1� and monodromy around the loop a given
by �.a/˝ T 's.a/; we will denote this by �s. This induces a local system over T b

1
; we use the same

notation for this local system.

The construction above, applied now to the local system �0˝�
s, gives rise to a twisted chain complex

C �
� .T

b
1
I�0˝�

s/. Very explicitly, after unwinding the definition above,

(6-3) C �
� .T I�0˝�

s/D C �
� .T IZ/˝�0˝ZŒT;T �1�

equipped with the differential d1 given by

(6-4) d1.ai1
^ � � � ^ ain

˝ r ˝T k/D

nX
jD1

.�1/j .ai1
^ � � � Oaij � � � ^ ain

/˝ �.aij /r ˝T
kC's.aij

/
;

where
� WH 1.Y IZ/DH1.T IZ/! Aut.�0/

is the monodromy of the local system �0.

With this in mind, we are ready to define the “twisted” version of extended cup homology which is
relevant for our purposes.

Definition 6.3 Suppose .Y; s/ is a closed oriented 3–manifold equipped with a (possibly nontorsion)
spinc structure, and let �0 be a local system on B� .Y; s/ with monodromy �. Denote by T the b1.Y /–
dimensional torus of reducible solutions, with a fixed identification T D .S1/b (and induced cubical
decomposition) as above. The extended cup complex C1� .Y; sI�0/ is the twisted chain complex

C �
� .T

b
1 I�0˝�

s/

in (6-3) equipped with the differential d1C Nd[, where d1 is given in (6-4) and Nd[ is the differential
in (6-1). The extended cup homology HC1� .Y; sI�0/ is, by definition, the homology of this complex.

Notice that, when s is torsion, 's D 0. In this case, if we take the trivial local system, we obtain the
standard cup homology studied earlier. Furthermore, the invariant associated to a balanced perturbation
coincides with the standard one. With this in mind, the following result can be thought as a generalization
of Theorem A:

Theorem 6.4 Let .Y; s/ be a closed oriented spinc 3–manifold and �0 a local system on B� .Y; s/. Then

HM�.Y; s; cbI�0/Š HC1� .Y; sI�0/

as relatively Z=2N Z–graded abelian groups , where N is a generator of Im.'s/� Z. In the torsion case ,
this map is also an isomorphism of ZŒT;T �1� modules.
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Remark 6.1 In the nontorsion case, while we cannot determine the ZŒT;T �1�–module structure, we
can still say that the isomorphism sends U to T �1 up to higher filtration.

Proof Referring to the discussion preceding Proposition 6.1, consider the local system � D �0˝�
s;

recall that it has fiber �0ŒT;T
�1� and monodromy around the loop a given by multiplication by T 's.a/.

Then, for a sufficiently fine simplicial structure on T, there is a 3–cocycle �3 whose cohomology class
represents the triple cup product of Y such that simplicial chains with local coefficients C�

� .T I�/ with
twisted differential

� 7! d�� C .�3\ �/T

have homology groups isomorphic to HM�.Y; s; cbI�0/. In the nontorsion case this isomorphism is only
shown to hold as Z–modules in [KM].

Finally, �3 is pulled back from a 3–cocycle on U.2/; as the latter has vanishing cohomology in degrees� 5,
functoriality implies once more that all characteristic classes Fn.��/ with n> 1 vanish while F1.��/D

Œ�3�D[
3
Y

. The proof then follows as in the previous case, using the computation with local coefficients
in Theorem 5.10.

7 Some open questions

This article answers a specific question in the HM� story. The theory is much richer and many parts of
this story remain open; we collect some interesting questions below.

First, there is the combinatorial algebra question of comparing cup homology to extended cup homology
already mentioned in the introduction.

Question 1 Let a 2 ƒ3.Zb/ be a degree 3 class; we may define its cup homology and extended cup
homology modules as before. Is there an isomorphism of ZŒT;T �1�–modules between the associated cup
homology HC1 and its extended version HC1?

Referring to the discussion at the beginning of Section 6, and in particular Proposition 6.1, we know that
HM�.Y I s/ is also a module over ƒ�.H1.Y IZ/=tors/; from the coupled Morse homology picture, via
the isomorphism of Theorem A this coincides with the natural action by contraction on the right on HC1

only up to lower filtration terms. It is then natural to ask the following:

Question 2 Can one identify the ƒ�.H1.Y IZ/=tors/–action induced on HC1 by the isomorphism in
Theorem A? If the isomorphism in Question 1 holds , can one describe the corresponding action on HC1?

One may also ask the above question when there is the additional structure of a local system, and possibly
a local system of ZŒT;T �1�–modules, as in the case of HM�.Y; s; cb/ when c1.s/ is nontorsion. In the
latter case, it is also unclear how to describe the ZŒU�1;U �–module structure (see also Remark 6.1), so
we ask the following:

Geometry & Topology, Volume 28 (2024)
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Question 3 For a nontorsion spinc structure , can one describe the ZŒU�1;U �–action on HC1 induced
the isomorphism in Theorem 6.4?

Notice that, while Question 1 is purely combinatorial, Questions 2 and 3 require a better understanding
of both the algebraic picture and the description of the invariant in terms of coupled Morse homology;
their answer is not clear even in the algebraically simpler setting of twisted de Rham cohomology.

To conclude, on the side of coupled Morse homology itself, it would be interesting to understand the
coupled Morse homology of families that do not factor through U.2/. If one had the pipe-dream goal
of completely computing the functor HM�.Y; s/ on the cobordism category in some explicit algebraic
fashion, this may be necessary, as it is unlikely there is a coherent way to homotope the classifying maps
DB W T .Y; s/! U.1/ to U.2/ in a way compatible with cobordisms. A starting point for this is the
following:

Question 4 Is there a (simplicial ) twisting sequence .�3; : : : ; �2n�1; 0; : : : / on SU.n/ such that the
following property holds? Whenever Q is a compact manifold and L WQ! SU.n/ is a simplicial map
classifying a family of self-adjoint Fredholm operators , we have an isomorphism

CMH�.Q;L/ŠH tw
� .QIL

���/:

If the answer to this question is positive, then one should also develop the corresponding version with
spectral flow (maps to U.n/). One would then need to answer the analogue of Question 3 in this more
general setting to get a full understanding of the aforementioned functoriality problem. The case nD 3 is
already very interesting as SU.3/ is not the product S3�S5 even though they have the same cohomology
ring (there is a nontrivial Sq2–operation relating the generators in degrees 3 and 5).
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