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Holomorphic anomaly equations
for the Hilbert scheme of points of a K3 surface

GEORG OBERDIECK

We conjecture that the generating series of Gromov–Witten invariants of the Hilbert schemes of n points
on a K3 surface are quasi-Jacobi forms and satisfy a holomorphic anomaly equation. We prove the
conjecture in genus 0 and for at most three markings — for all Hilbert schemes and for arbitrary curve
classes. In particular, for fixed n, the reduced quantum cohomologies of all hyperkähler varieties of
K3Œn�–type are determined up to finitely many coefficients.

As an application we show that the generating series of 2–point Gromov–Witten classes are vector-valued
Jacobi forms of weight �10, and that the fiberwise Donaldson–Thomas partition functions of an order-2
CHL Calabi–Yau threefold are Jacobi forms.
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1 Introduction

1.1 Overview

An irreducible hyperkähler variety is a simply connected smooth projective varietyX such thatH 0.X;�2X /

is generated by a holomorphic–symplectic form [Beauville 1983]. A topological classification of these
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3780 Georg Oberdieck

varieties is unknown so far. However, among the four families of examples which are known, the most
studied case is the Hilbert schemes of points on a K3 surface and their deformations, which are called
K3Œn�–type. We study the Gromov–Witten theory (the intersection theory of the moduli space of stable
maps) with target a hyperkähler variety of K3Œn�–type. We state two new fundamental conjectures: finite
generation by quasi-Jacobi forms, and holomorphic anomaly equations. We prove this conjecture for
the case of most interest: in genus 0 and for up to three markings, with no restriction on the curve
class. As a corollary, the reduced quantum cohomology of a K3Œn�–hyperkähler variety is determined
up to finitely many coefficients. We also find that the series of 2–point Gromov–Witten classes define
vector-valued Jacobi forms of weight �10. This implies that the Donaldson–Thomas partition functions
of CHL Calabi–Yau threefolds are Jacobi forms, proving conjectures of Bryan and Oberdieck [2020].

Together with the multiple cover conjecture [Oberdieck 2022; 2024b] we obtain a complete conjectural
picture of the Gromov–Witten theory of K3Œn�–hyperkähler varieties, which is proven for genus 0 and up
to three markings.

1.2 Gromov–Witten theory

Let S Œn� be the Hilbert scheme of n points on a smooth projective K3 surface S . Let

M g;N .S
Œn�; ˇC rA/

be the moduli space of N–marked genus-g stable maps to S Œn� of nonzero degree

ˇC rA 2H2.S
Œn�;Z/ŠH2.S;Z/˚ZA;

where A is the exceptional curve class. Because S Œn� is irreducible hyperkähler, the virtual fundamental
class of the moduli space of stable maps in the sense of [Li and Tian 1998; Behrend and Fantechi
1997] vanishes. Instead Gromov–Witten theory is defined by the reduced virtual class [Maulik and
Pandharipande 2013; Bryan and Leung 2000; Kool and Thomas 2014; Kiem and Li 2013]:

ŒM g;N .S
Œn�; ˇC rA/�vir

2 Avd.M g;N .S
Œn�; ˇC rA//; where vdD 2n.1�g/CN C 1:

The first values of the virtual dimension vd are listed in Table 1.

If 2g� 2CN > 0, let � WM g;N .S
Œn�; ˇC rA/!M g;N be the forgetful morphism to the moduli space

of stable curves. Consider the pullback of a tautological class [Faber and Pandharipande 2005]

taut WD ��.˛/ for ˛ 2R�.M g;N /:

In the unstable cases 2g� 2CN � 0 we always set taut WD 1. Given cohomology classes 
i 2H�.S Œn�/,
the reduced Gromov–Witten invariants of S Œn� are defined by

htautI 
1; : : : ; 
N iS
Œn�

g;ˇCrA D

Z
ŒMg;n.S Œn�;ˇCrA/�vir

taut[
NY
iD1

ev�i .
i /:
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Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface 3781

genus g 0 1 2 3 4 5 6

S Œ1� 0 1 2 3 4 5 6

S Œ2� 2 1 0

S Œ3� 4 1

S Œ4� 6 1

S Œ5� 8 1

S Œ6� 10 1

Table 1: The first nonnegative values of the (reduced) virtual dimension of M g;0.S
Œn�; ˇC rA/.

If a field is empty, all Gromov–Witten invariants in this genus vanish. Hence for S Œn� with n > 1
the most interesting case is genus 0.

1.3 Generating series

Consider an elliptic K3 surface � W S ! P1 with a section, and let

B;F 2H2.S;Z/

be the class of the section and a fiber of � , respectively.

By [Oberdieck 2022, Corollary 2] (based on the global Torelli theorem [Verbitsky 2013; Huybrechts
2012]), for any hyperkähler variety of K3Œn�–type X and for any effective curve class 
 2 H2.X;Z/,
there exists an l � 1 and a deformation

.X; 
/ .S Œn�; lBC dF C rA/ for d � 0 and r 2 Z

such that 
 is kept of Hodge type along the deformation. If 
 is primitive, we can choose l D 1. By
deformation invariance, it follows that all Gromov–Witten invariants of K3Œn�–type hyperkähler varieties
are determined by the generating series:

(1) F S
Œn�

g;l .tautI 
1; : : : ; 
N /D
1X

dD�l

X
r2Z

htautI 
1; : : : ; 
N iS
Œn�

g;l.BCF /CdFCrAq
d .�p/r :

By convention we assume here that r D 0 when nD 1. We will always assume that n� 1.

The series (1) and in particular its modular properties are our main topic. To state our main conjectures
and results we require the Looijenga–Lunts–Verbitsky (LLV) Lie algebra and quasi-Jacobi forms.

1.4 Looijenga–Lunts–Verbitsky Lie algebra

The LLV algebra [Looijenga and Lunts 1997; Verbitsky 1996] of the hyperkähler variety S Œn� is the
Lie subalgebra

act W g.S Œn�/ ,! EndH�.S Œn�/

Geometry & Topology, Volume 28 (2024)



3782 Georg Oberdieck

generated by the operators of cup product with classes in H 2.S Œn�;Q/ as well as their Lefschetz duals (if
they exist); see Section 3.4. Concretely, we have an isomorphism

g.S Œn�/Š
V2
.V ˚UQ/;

where UQ is the hyperbolic lattice with basis fe; f g and intersection form
�
0
1
1
0

�
, and

V DH 2.S Œn�;Q/ŠH 2.S;Q/˚?Qı; .ı; ı/D 2� 2n;

is endowed with the Beauville–Bogomolov–Fujiki quadratic form.

We require the operators

(2) U D act.F ^f /; T˛ D act.˛^F /; ˛ 2 fB;F g? � V and WtD act.e^f CB ^F /:

The weight operator Wt 2 EndH�.S Œn�/ is semisimple and defines a grading:

Wt.
/D wt.
/
 for wt.
/ 2 f�n; : : : ; ng:

For a class 
 2H 2i .S Œn�/, the complex cohomological degree of 
 is denoted by deg.
/D i .

1.5 Quasi-Jacobi forms

Jacobi forms are holomorphic functions f WC�H!C which satisfy a transformation law under the Jacobi
group � ËZ2, where � � SL2.Z/ is a congruence subgroup [Eichler and Zagier 1985]. Quasi-Jacobi
forms are constant terms of almost-holomorphic Jacobi forms; see Section 2. The algebra of quasi-Jacobi
forms is bigraded by weight k and index m:

QJac.�/D
M
m�0

M
k2Z

QJac.�/k;m:

The graded summands QJac.�/k;m are finite-dimensional. We usually identify a quasi-Jacobi form with
its Fourier expansion in the variables

p D e2�ix and q D e2�i� for .x; �/ 2C �H:

Recall that the algebra of quasimodular forms QMod.�/ is a free polynomial ring over the subalgebra of
its modular forms,

QMod.�/DMod.�/ŒG2�;

where we used the second Eisenstein series

G2.�/D�
1
24
C

X
n�1

X
d jn

dqn:

Similarly, for quasi-Jacobi forms we always have an embedding

QJac.�/� Jac.�/ŒG2;A�;

where Jac.�/ is the algebra of weak Jacobi forms and A is the logarithmic derivative

A.p; q/D p
d

dp
log‚.p; q/

Geometry & Topology, Volume 28 (2024)
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of the classical Jacobi theta function

‚.p; q/D .p1=2�p�1=2/
Y
m�1

.1�pqm/.1�p�1qm/

.1� qm/2
:

Since the generators G2 and A are free over Jac, one obtains anomaly operators

d

dG2
W QJac.�/k;m! QJac.�/k�2;m;

d

dA
W QJac.�/k;m! QJac.�/k�1;m

which control the transformation behavior of any quasi-Jacobi form under the Jacobi group.

1.6 Main conjectures

We state three fundamental conjectural properties of the series Fg;l . The first expresses Fg;l in terms of
the series of primitive invariants Fg;1. Consider the l th formal Hecke operator of weight k, which acts on
power series f D

P
d;r c.d; r/q

dpr by

Tk;lf D
X
n;r

� X
a j .l;n;r/

ak�1c

�
ln

a2
;
r

a

��
qnpr :

For i 2 f1; : : : ; N g let 
i 2H�.S Œn�/ be .wt; deg/–bihomogeneous classes.

Conjecture A (multiple cover conjecture, [Oberdieck 2022, Section 2.6]) For all l > 0 we have

(3) F S
Œn�

g;l .tautI 
1; : : : ; 
N /D l
P
i .deg.
i /�n�wt.
i //Tk;lF

S Œn�

g;1 .tautI 
1; : : : ; 
N /;

where k D n.2g� 2CN/C
P
i wt.
i /.

The second conjecture concerns the modular behavior. Define the modular discriminant

�.q/D q
Y
n�1

.1� qn/24;

which is a modular form for SL2.Z/ of weight 12, and the congruence subgroup

�0.l/D

��
a b

c d

�
2 SL2.Z/

ˇ̌̌
c � 0 mod l

�
:

Conjecture B (quasi-Jacobi form property) For all l > 0

F S
Œn�

g;l .tautI 
1; : : : ; 
N / 2
1

�.q/l
QJackC12l;l.n�1/.�0.l//;

where k D n.2g� 2CN/C
P
i wt.
i /� 10.

The difference in the values of k in Conjectures A and B was explained in [Oberdieck and Pixton 2019,
Section 7.3]. It is responsible for the appearance of the congruence subgroup �0.l/, and also leads to the
unusual fourth term in the holomorphic anomaly equation for d=dG2 below.

Geometry & Topology, Volume 28 (2024)



3784 Georg Oberdieck

Conjecture B would determine any Fg;l.� � �/ up to finitely many coefficients. However, in order to know
their transformation property under the Jacobi group and also to make them depend on substantially fewer
coefficients, we will conjecture their dependence on the quasi-Jacobi generators G2 and A:

For 2g� 2CN > 0 define the degree 0 Gromov–Witten invariants

F S
Œn�;std

g .tautI 
1; : : : ; 
N / WD
Z
ŒMg;N .S Œn�;0/�std

��.taut/
NY
iD1

ev�i .
i /;

where we let Œ� � � �std denote the standard (nonreduced!) virtual class in the sense of [Li and Tian 1998;
Behrend and Fantechi 1997]. Explicit formulas are given in (67).

Conjecture C (holomorphic anomaly equation) Assume Conjecture B. We have

d

dG2
F S

Œn�

g;l .tautI 
1; : : : ; 
N /

D F S
Œn�

g�1;l.taut0I 
1; : : : ; 
N ; U /C 2
X

gDg1Cg2
f1;:::;N gDAtB

F S
Œn�

g1;l
.taut1I 
A; U1/F S

Œn�;std
g2

.taut2I 
B ; U2/

�2

NX
iD1

F S
Œn�

g;l . i tautI
1; : : : ; 
i�1;U
i ; 
iC1; : : : ; 
N /�
1

l

X
a;b

.g�1/abTeaTebF
S Œn�

g;l .tautI
1; : : : ; 
N /

and
d

dA
F S

Œn�

g;l .tautI 
1; : : : ; 
N /D TıF
S Œn�

g;l .tautI 
1; : : : ; 
N /;

where:

� We have identified the operator U 2 EndH�.S Œn�/ with the class

U 2H�.S Œn�˝S Œn�/

using Poincaré duality and the conventions of Section 1.13.

� U1 and U2 stand for summing over the Künneth decomposition of U 2H�..S Œn�/2/.

� The ea form a basis of fF;Bg? �H 2.S;Q/ and gab D hea; ebi is the pairing matrix.

� For any ˛ 2 fB;F g? � V we set

(4) T˛F
S Œn�

g;l .tautI 
1; : : : ; 
N / WD
NX
iD1

F S
Œn�

g;l .tautI 
1; : : : ; 
i�1; T˛
i ; 
iC1; : : : ; 
N /:

� In the stable case , where tautD ��.˛/, we let taut0 WD ����.˛/ where � WM g�1;NC2!M g;N is
the gluing map; in the unstable case , where tautD 1, we set taut0 WD 1.

� taut1 and taut2 stand for summing over the Künneth decomposition of ��.taut/, where � is the
gluing map

� WM g1;jAjC1.S
Œn�; ˇC rA/�M g2;jBjC1!M g;N .S

Œn�; ˇC rA/:

� We let  i 2H 2.M g;N .S
Œn�; ˇC rA// be the cotangent line class at the i th marking.

Geometry & Topology, Volume 28 (2024)
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Conjecture C determines any Fg;l up to a finite list of coefficients, where the list is sufficiently short for
this to be actually useful in applications. For example, the conjecture determines all Gromov–Witten
invariants of S Œ2� from seven elementary computations; see [Cao et al. 2024] where this leads to a
Yau–Zaslow type formula for the counts of genus-2 curves on hyperkähler fourfolds of K3Œ2�–type.

For K3 surfaces (the case of the Hilbert scheme of nD 1 points) the above conjectures are well known.
In this case, Conjecture A was made in [Oberdieck and Pandharipande 2016], and Conjecture B reduces
to the prediction of Maulik, Pandharipande and Thomas that the series Fg;l are quasimodular forms
for �0.l/; see [Maulik et al. 2010]. The holomorphic anomaly equation (Conjecture C) was proven in
[Oberdieck and Pixton 2018] for l D 1 and then conjectured in [Bae and Buelles 2021] for arbitrary l .
There is also sufficient evidence for the following:

Theorem 1.1 [Maulik et al. 2010; Oberdieck and Pixton 2018; Bae and Buelles 2021] For S Œ1� Š S ,
the above conjectures hold for all g, N and l 2 f1; 2g.

For Hilbert schemes of points S Œn� with n > 1, Conjecture A was proposed in [Oberdieck 2022] based on
computations using Noether–Lefschetz theory. Since then the following strong evidence for all n � 1
was given:

Theorem 1.2 [Oberdieck 2024b, Theorem 1.4] Conjecture A holds for g D 0 and N � 3 markings.

The quasi-Jacobi form property (Conjecture B) appeared in an early form already in [Oberdieck 2018a,
Conjecture J], where it was stated in genus 0 for primitive classes. On the other hand, the holomorphic
anomaly equation (Conjecture C) is new, and one of our main results.

Holomorphic anomaly equations are predicted for the Gromov–Witten theory of Calabi–Yau manifolds
by string theory [Bershadsky et al. 1993]. In recent years, this structure was proven in various geometries,
such as for elliptic orbifold projective lines [Milanov et al. 2018], elliptic curves [Oberdieck and Pixton
2018], formal elliptic curves [Wang 2019], local P2 [Lho and Pandharipande 2018; Coates and Iritani
2021], local P1 �P1 [Lho 2021; Wang 2023] relative .P2; E/ [Bousseau et al. 2021], C3=Z3 [Lho and
Pandharipande 2019a; Coates and Iritani 2021], toric Calabi–Yau 3–folds [Eynard et al. 2007; Eynard
and Orantin 2015; Fang et al. 2020; 2019], the formal quintic 3–fold [Lho and Pandharipande 2019b],
the quintic 3–fold [Guo et al. 2018; Chang et al. 2018], (partially) elliptic fibrations [Oberdieck and
Pixton 2019] and K3 fibrations [Lho 2019]. Conjecture C is maybe the first instance where a general
holomorphic anomaly equation is considered in higher dimensions. The interaction here with the LLV
Lie algebra is a new phenomenon that needs further exploration. Eg are there connections with the Lie
algebra which appears in [Alim et al. 2016]?

1.7 Main results

Theorem 1.3 For all Hilbert schemes of points S Œn� (ie any n� 1), Conjectures B and C hold for g D 0
and N � 3 markings.

Geometry & Topology, Volume 28 (2024)



3786 Georg Oberdieck

In particular, this result shows that for fixed n, computing finitely many Gromov–Witten invariants of S Œn�,
where S is the elliptic K3 surface, determines all 3–pointed genus-0 invariants of all Hilbert schemes
of n points on K3 surfaces. This shows the following qualitative result (see [Oberdieck 2018a] for the
definition of reduced quantum cohomology):

Corollary 1.4 For any n� 1, the reduced quantum cohomologies of QH�.X/ of all hyperkähler varieties
of K3Œn�–type X can be effectively reconstructed from finitely many Gromov–Witten invariants of S Œn�,
where S ! P1 is the elliptic K3 surface with section.

Example 1.5 Let L 2H 2n.S Œn�/ be the class of a fiber of the Lagrangian fibration S Œn�! Pn. An easy
computation1 shows wt.L/D�n. Hence by the theorem we find

(5) F S
Œn�

gD0;1.1IL;L/ 2
1

�.q/
QJac2�2n;n�1 :

The space QJac2�2n;n�1 is 1–dimensional spanned by ‚.p; q/2n�2, so (5) is determined up to a single
constant. The class of a line in the section Pn� S Œn� is B� .n�1/A. Since there is a unique line through
any two points in Pn, we have

h1IL;LiS Œn�0;B�.n�1/A D 1:

This yields the explicit evaluation

(6) F S
Œn�

0;1 .1IL;L/D .�1/n�1
‚.p; q/2n�2

�.q/
:

This evaluation was previously obtained (with hard work) in [Oberdieck 2018a, Theorem 1].

We give a more fundamental example, where the holomorphic anomaly equation determines the transfor-
mation law of the quasi-Jacobi form. Consider the generating series of 2–point Gromov–Witten classes

zZS
Œn�

.p; q/D

1X
dD�1

X
r2Z

qd .�p/r.ev1 � ev2/�.ŒM 0;2.S
Œn�; BC .d C 1/F C rA/�vir/

which is an element of H�.S Œn�/˝2˝ q�1C..p//ŒŒq��. Add a quasi-Jacobi correction term

(7) ZS
Œn�

.p; q/ WD zZS
Œn�

.p; q/�
G .p; q/n

‚.p; q/2�.q/
�S Œn� ;

where �S Œn� is the class of the diagonal in .S Œn�/2, and

G .p; q/D�‚.p; q/2
�
p
d

dp

�2
log.‚.p; q//:

We have the following corollary:

1In the Nakajima basis of Section 3.2 we have LD q1.F /
nv¿, which implies the claim.
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Corollary 1.6 Under the variable change p D e2�ix and q D e2�i� , the function

ZS
Œn�

WC �H!H�.S Œn� �S Œn�;C/; .x; �/ 7!ZS
Œn�

.x; �/

is a vector-valued Jacobi form of weight �10 and index n� 1 with double poles at lattice points. In
particular , we have the transformation laws

ZS
Œn�

�
x

c� C d
;
a� C b

c� C d

�
D .c� C d/�10�Wte

�
c.n� 1/x2

c� C d

�
� exp

�
�

c

c� C d

�
1

4�i

X
˛;ˇ

. Qg�1/˛ˇT˛Tˇ C xTı

��
ZS

Œn�

.x; �/;

ZS
Œn�

.xC�� C�; �/D e.�.n� 1/�2� � 2�.n� 1/x/ exp.�Tı/Z
S Œn�.x; �/;

for all
�
a
c
b
d

�
2 SL2.Z/ and �;� 2 Z, where we have written e.x/D e2�ix for x 2C.

We refer to Section 11.1 for the precise definitions and conventions that we use here. A formula for the
series ZS

Œn�

.p; q/ was conjectured in [Oberdieck 2018a] and then refined to an explicit conjecture in
[van Ittersum et al. 2021]. The above corollary yields strong evidence for this conjecture.

The cycleZS
Œn�

.p; q/ also appears naturally in the Pandharipande–Thomas theory of the relative threefold
.S �P1; S0;1/. Indeed, by Denis Nesterov’s quasimap wall crossing [2021; 2024] and the computation
of the wall-crossing term in [Oberdieck 2024b], one has

ZS
Œn�

.p; q/D
X
d;r

qd .�p/r.ev0 � ev1/�ŒP�r;.BC.dC1/F;n/.S �P1; S0;1/�
vir;

where the moduli space on the right parametrizes stable pairs .F; s/ on the relative rubber target
.S � P1; S0;1/� with Chern character ch3.F / D r . Consider the Pandharipande–Thomas theory of
S �E, where E is an elliptic curve. By using the evaluation in [Oberdieck and Pixton 2018] and by
degenerating the elliptic curve [Oberdieck and Pandharipande 2016], one obtains the closed formula

1X
nD0

Qqn�1
Z
S Œn��S Œn�

ZS
Œn�

.p; q/[�S Œn� D�
1

�10.p; q; Qq/
;

where �10 is the weight-10 Igusa cusp form (as in [Oberdieck and Pandharipande 2016]). Because Fourier
coefficients of Siegel modular forms are Jacobi forms, this matches nicely with Corollary 1.6.

1.8 An application: CHL Calabi–Yau threefolds

Let S! P1 be an elliptic K3 surface with section B and fiber class F , and let g W S! S be a symplectic
involution such that

Pic.S/D
�
�2 1

1 0

�
˚E8.�2/;

Geometry & Topology, Volume 28 (2024)



3788 Georg Oberdieck

where the first summand is generated by B and F , and the second summand is the anti-invariant part.2

Let E be an elliptic curve and let � WE!E be translation by a 2–torsion point. The Chaudhuri–Hockney–
Lykken (CHL) Calabi–Yau threefold associated to .g; �/ is the quotient

X D .S �E/=hg� �i:

The group of algebraic 1–cycles on X is

N1.X/Š SpanZ.B; F /˚ZŒE 0�;

where the second summand records the degree over the elliptic curve E 0 DE=h�i.

Define the Donaldson–Thomas partition function

DTn.X/D
X
d��1

X
r2Z

DTr;.BCdF;n/ q
d�1; .�p/r

where we used the reduced Donaldson–Thomas invariants (see [Bryan and Oberdieck 2020])

DTr;ˇ D
Z
ŒHilbr;ˇ.X/=E�vir

1:

Theorem 1.7 Every DTn.X/ is a Jacobi form of weight �6 and index n, that is

DTn.X/ 2
1

‚.p; q/2�.�/
Jac4;n.�0.2//:

The rank-1 Donaldson–Thomas invariants of X in arbitrary curve classes are determined from the series
DTn by the multiple cover formula of [Oberdieck 2024b] and a degeneration argument [Bryan and
Oberdieck 2020]. Hence Theorem 1.7 puts strong constraints on the full rank-1 Donaldson–Thomas
theory of X . For an explicit conjectural formula for the DTn, see [Bryan and Oberdieck 2020].

Our methods can apply also to arbitrary CHL Calabi–Yau threefolds which are associated to symplectic
automorphism of K3 surfaces of any finite order. The above is just the simplest case notationwise,
and chosen here to illustrate the method. The Donaldson–Thomas theory of general CHL Calabi–Yau
threefolds will be studied at a later time.

1.9 Fiber classes and Lagrangian fibrations

Assume that we are in the stable case 2g� 2CN > 0. Consider the generating series of Gromov–Witten
invariants in fiber classes of the Lagrangian fibration S Œn�! Pn:

F S
Œn�

g;0 .tautI 
1; : : : ; 
N / WD
X
d�0

X
k2Z

.d;k/¤0

htautI 
1; : : : ; 
N iS
Œn�

g;dFCrAq
d .�p/r :

2These K3 surfaces arise as follows: Let R! P1 be a generic rational elliptic surface, and let P1! P1 be a double cover,
branched away from the discriminant. Then consider the K3 surface S DR�P1 P1 and let g be the composition of the covering
involutions with the fiberwise multiplication by .�1/. This involution is symplectic and has the desired properties; see [Bryan
and Oberdieck 2020, Section 5.1].
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We have to exclude here the term .d; r/ D .0; 0/, because reduced Gromov–Witten invariants are not
defined for a vanishing curve class. The price that we pay for this unnatural definition is that we work
modulo the constant term below. Given power series f; g 2C..p//ŒŒq�� we write f � g if they are equal
in C..p//ŒŒq��=C, or equivalently if f D gCc for a constant c 2C. In the unstable cases 2g�2CN � 0
we define

F S
Œn�

g;0 .tautI 
1; : : : ; 
N /D 0:

We first state the conjectural quasi-Jacobi property and holomorphic anomaly equation:

Conjecture D Assume that 2g� 2CN > 0. We have the following:

(i) Quasi-Jacobi form property Up to a constant term , F S
Œn�

g;0 .tautI 
1; : : : ; 
N / is a meromorphic
quasi-Jacobi form of weight k D n.2g � 2CN/C

P
i wt.
i / and index 0 with poles at torsion

points z D a� C b, a; b 2Q.

(ii) Holomorphic anomaly equations Modulo constants , ie in C..p//ŒŒq��=C, we have

d

dG2
F S

Œn�

g;0 .tautI 
1; : : : ; 
N /

� F S
Œn�

g�1;0.taut0I 
1; : : : ; 
N ; U /C 2
X

gDg1Cg2
f1;:::;N gDAtB

F S
Œn�

g1;0
.taut1I 
A; U1/F S

Œn�;std
g2

.taut2I 
B ; U2/

� 2

NX
iD1

F S
Œn�

g;0 .�
�. i /tautI 
1; : : : ; 
i�1; U
i ; 
iC1; : : : ; 
N /;

where  i 2H 2.M g;N / is the cotangent line class , and

d

dA
F S

Œn�

g;0 .tautI 
1; : : : ; 
N /�
NX
iD1

F S
Œn�

g;0 .tautI 
1; : : : ; Tı
i ; : : : ; 
N /:

Theorem 1.8 Conjecture D holds for

(i) the K3 surface S (ie if nD 1) and for all g and N ,

(ii) all Hilbert schemes S Œn� (that is for arbitrary n), if .g;N /D .0; 3/.

We refer to Theorem 10.2 for the precise form which the quasi-Jacobi forms described in (i) have. The
multiple cover conjecture (Conjecture A) was proven for the K3 surface S in fiber classes dF in [Bae
and Buelles 2021]. The observation that the corresponding generating series is quasimodular and satisfies
a holomorphic anomaly equation appears to be new (but follows easily from the known methods). The
case of the Hilbert scheme of points also follows from the multiple cover conjecture, together with some
subtle vanishing arguments.

Deformation invariance and similar methods as in our proof should show that for any Lagrangian fibration
� WX ! Pn of a K3Œn�–hyperkähler with a section, the generating series of Gromov–Witten invariants in
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fiber classes is a (lattice index) quasi-Jacobi form and satisfies a holomorphic anomaly equation. This
raises the following question:

Question 1.9 Consider any Lagrangian fibration X ! B with section of a holomorphic–symplectic
variety X . Are the generating series of Gromov–Witten invariants in fiber classes quasi-Jacobi forms , and
do they satisfy a holomorphic anomaly equation?

The answer is very likely “yes”. More interestingly, we can ask this for cases where X is quasiprojective
hyperkähler. A prototypical example to consider is the Hitchin map MC;n!

L
i H

0.C;KiC / from the
moduli space of rank-n Higgs bundles on a curve C . Evidence for a positive answer will be given in the
genus-1 case (more precisely, for the Hilbert scheme of points on E �C) in [Oberdieck and Pixton 2023].

1.10 Strategy of the proof

Hilbert schemes of points on K3 surfaces lie in the intersection of two very special classes of varieties:
(irreducible) hyperkähler varieties and Hilbert schemes of points on surfaces. The geometry of both of
these classes will imply a modular constraint on the generating series of Gromov–Witten invariants. We
will show that these two constraints are precisely the two modular transformation equations that a Jacobi
form has to satisfy.

From hyperkähler geometry we use the global Torelli theorem [Verbitsky 2013; Huybrechts 2012] and
the description of the monodromy in [Markman 2008]. The locus parametrizing Hilbert schemes of
points S Œn� on K3 surfaces is a divisor in the moduli space of all hyperkähler varieties of K3Œn�–type. In
particular, there are deformations of S Œn� which do not arise from deformations of the underlying K3
surface S (these deformation may be thought of as deforming the K3 surface S in a noncommutative way).
Utilizing these extra deformations yields precisely one of the transformation properties that we need.

The other ingredient follows from the Hilbert scheme side. Given a surface S there is a correspondence
between three different counting theories:

(i) quantum cohomology (ie .g;N /D .0; 3/ Gromov–Witten theory) of S Œn�,

(ii) Pandharipande–Thomas theory of the relative threefold .S �P1; S0;1;1/,

(iii) Gromov–Witten theory of the relative threefold .S �P1; S0;1;1/.

This correspondence is often represented in the triangle

Gromov–Witten theory of S �P1

quantum cohomology of Hilb.S/

Pandharipande–Thomas theory of S �P1

The GW/PT correspondence (meaning the correspondence between (ii) and (iii)) was proposed in [Maulik
et al. 2006a; 2006b] and has since been proven in many instances in [Maulik et al. 2011; Pandharipande
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and Pixton 2014; 2017]. For K3�P1 it was recently established in [Oberdieck 2024a] for curve classes
which are primitive over the surface. The Hilb/PT correspondence (between (i) and (ii)) was recently
established in full generality by Nesterov [2021]. For C2 and resolutions of An singularities, the triangle
of correspondences was worked out previously in [Okounkov and Pandharipande 2010b; Bryan and
Pandharipande 2008; Okounkov and Pandharipande 2010a; Maulik and Oblomkov 2009a; 2009b; Maulik
2009; Liu 2021].

In the case of K3 surfaces the above correspondences take the simplest form: they are straight equalities,
without wallcrossing corrections; see Theorem 7.6 and [Nesterov 2024]. By expressing invariants of the
Hilbert schemes in terms of invariants of S�P1 and then applying the product formula in Gromov–Witten
theory, we hence have expressed the Gromov–Witten invariants of the Hilbert scheme in terms of those of
the K3 surface. This allows us to lift modular properties which are known for K3 surfaces to the Hilbert
scheme of points. Altogether, this provides precisely the other half of the modularity that we were missing.

This leads to the proof of Theorem 1.3 for primitive classes .l D 1/. To deduce the arbitrary case we
use the proven case of the multiple cover conjecture [Oberdieck 2024b] and check the compatibility of
our conjectures under the formal Hecke operator. Except for working out the required compatibility on
quasi-Jacobi forms, this last step is not difficult.

1.11 History

The Gromov–Witten theory of the Hilbert schemes of points of K3 surfaces was first studied by the
author in his PhD thesis [Oberdieck 2015]. Many ideas behind the current work were already anticipated
then. For example, the potential role of the monodromy was discussed in [loc. cit., Section 6.3], and the
quasi-Jacobi form property was conjectured in a simple case in [loc. cit., Section 5.1.3]. Interestingly, the
simplest evaluation on the Hilbert scheme from a weight point of view, given in (6), is precisely also the
case where the moduli space of stable maps is the simplest to describe, and indeed this case was the first
to be computed back then.

1.12 Outline

In Section 2 we review the definition of quasi-Jacobi forms and prove basic properties regarding their
z–expansions, their anomaly operators and how they interact with Hecke operators. In Section 3 we
introduce the LLV algebra on the cohomology of the Hilbert scheme and then describe explicitly the
two monodromy operators that we need for constraints of the Gromov–Witten generating series (see
Sections 3.6.3 and 3.6.3). In Section 4 we use these two monodromies and obtain our first structure
result for the generating series of the Hilbert scheme in Proposition 4.1, essentially proving the elliptic
transformation law.

Then we turn to the part on GW/PT/Hilb correspondences: In Section 5 we discuss several basic structures
in relative Gromov–Witten theory. The main new technical result here is a formula for the restriction of
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relative Gromov–Witten classes to the nonseparating boundary divisor in the moduli space of curves, which
is of independent interest. In Section 6 we specialize to .K3�C;K3z/ for a curve C , state the GW/Hilb
correspondence (Theorem 6.2) and the reduced degeneration formula, and make some preliminary explicit
computations of invariants. The goal of Section 7 is to use the product formula and results about the K3
surface to show that the Gromov–Witten invariants of .K3�C;K3z/ are quasimodular forms and satisfy
a holomorphic anomaly equation (Theorem 7.6). This is our second main structure result.

Section 8 is the heart of the paper. Here we combine the two structure results we obtained before
(Proposition 4.1 and Theorem 7.6) and match the holomorphic anomaly equation on the Hilbert scheme
with the holomorphic anomaly equation for .K3�C;K3z/ under the GW/Hilb correspondence. This
proves Theorem 1.3 when l D 1. The case l > 1 follows then in Section 9 by a formal argument using
Hecke operators. Section 10 deals with the fiber classes, proving Theorem 1.8 by a combination of the
GW/Hilb correspondence and known cases of the multiple cover conjecture. Section 11 discusses the
applications to the 2–point function and the CHL Calabi–Yau threefolds.

1.13 Conventions

Let X be a smooth projective variety. Given a cohomology class 
 2Hk.X/ we let deg.
/D 1
2
k denote

its complex degree. We will use the identification H�.X �X/Š EndH�.X/ which is given by sending
a class � 2H�.X �X/ to the operator

� WH�.X/!H�.X/; 
 7! �2�.�
�
1 .
/�/;

where �1 and �2 are the projections of X2 to the factors. Given a function Z W H�.X/! Q we will
often write Z.�1/Z.�2/ and say that �1 and �2 stand for summing over the Künneth decomposition of
the class � 2H�.X �X/. By this we mean

Z.�1/Z.�2/ WD
X
i

Z.�i /Z.�
_
i ; /

where � D
P
i �i ˝�

_
i 2H

�.X �X/ is a Künneth decomposition. A curve class on X is any homology
class ˇ 2 H2.X;Z/. It is effective if there exists a nonempty algebraic curve C � X with ŒC � D ˇ.
In particular, any effective class ˇ is nonzero. An effective class ˇ is primitive if it is not divisible
in H2.X;Z/.
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2 Quasi-Jacobi forms

2.1 Overview

Jacobi forms are two-variable generalizations of classical modular forms. Quasi-Jacobi forms are constant
terms of almost-holomorphic Jacobi forms. We introduce here the basic facts we need on quasi-Jacobi
forms and refer to [Libgober 2011; Oberdieck and Pixton 2019, Section 1; van Ittersum et al. 2021] for more
detailed discussions. The topics we cover are the generators of the ring of quasi-Jacobi forms, differential
and anomaly operators, and the Fourier and Taylor expansion of quasi-Jacobi forms. Conversely, we give
criteria on two-variable generating series to be Taylor or Fourier expansions of quasi-Jacobi forms. In
Section 2.8 we discuss Hecke operators on quasi-Jacobi forms, and in Section 2.9 we consider their action
on forms of the wrong weight. In Section 2.10 we discuss a classical series of meromorphic quasi-Jacobi
forms which will appear for fiber classes of Lagrangian fibrations in Section 10.

2.2 Definition

Let HD f� 2 C j Im.�/ > 0g be the upper half-plane, q D e2�i� , x 2 C and p D e2�ix . We will also
frequently use the variable

z D 2�ix:

We often write f .p/ or f .z/ for a function f .x/ under the above variable change. Consider the real-
analytic functions

� D
1

8�=.�/
and ˛ D

=.x/

=.�/
:

An almost-holomorphic function on C �H is a function of the form

(8) ˆD
X
i;j�0

�i;j .x; �/�
i˛j

such that each of the finitely many nonzero functions �i;j is holomorphic and admits a Fourier expansion
of the form

P
n�0

P
r2Z c.n; r/q

npr in the region jqj< 1.

Consider a congruence subgroup
� � SL2.Z/

and write e.x/D e2�ix for x 2C.

Definition 2.1 An almost-holomorphic weak Jacobi form of weight k and index m for the group � is a
function ˆ.x; �/ WC �H!C which

(i) satisfies the transformation laws

(9)
ˆ

�
x

c� C d
;
a� C b

c� C d

�
D .c� C d/ke

�
cmx2

c� C d

�
ˆ.x; �/;

ˆ.xC�� C�; �/D e.�m�2� � 2�mx/ˆ.x; �/;

for all
�
a
c
b
d

�
2 � and �;� 2 Z, and
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(ii) such that

.c� C d/�ke

�
�
cmx2

c� C d

�
ˆ

�
x

c� C d
;
a� C b

c� C d

�
is an almost-holomorphic function for all

�
a
c
b
d

�
2 SL2.Z/.

Remark 2.2 By taking
�
a
c
b
d

�
to be the identity in (ii), we see that any almost-holomorphic weak Jacobi

form is an almost-holomorphic function, and hence has an expansion (8). Condition (i) implies that (ii)
only needs to be checked for a set of representatives of �nSL2.Z/. In particular, if � D SL2.Z/ the
condition (ii) simply says that ˆ is an almost-holomorphic function.

An almost-holomorphic weak Jacobi formˆ, which is as a functionˆ WC�H!C holomorphic, is called
a weak Jacobi form. More generally, we can consider the holomorphic part of an almost-holomorphic
weak Jacobi form:

Definition 2.3 A quasi-Jacobi form of weight k and index m for � is a function �.x; �/ on C �H such
that there exists an almost-holomorphic weak Jacobi form

P
i;j �i;j �

i˛j of weight k and index m with
�0;0 D �.

We let AHJack;m.�/ (resp. QJack;m.�/, resp. Jack;m.�/) be the vector space of almost-holomorphic
weak (resp. quasi-, resp. weak) Jacobi forms of weight k and index m for the group � . We write

QJac.�/D
M
m�0

M
k2Z

QJac.�/k;m

for the bigraded C–algebra of quasi-Jacobi forms, and similar for AHJac.�/ and Jac.�/.

Lemma 2.4 The constant term map

AHJac.�/k;m! QJac.�/k;m;
X
i;j

�i;j �
i˛j 7! �0;0

is well-defined and an isomorphism.

Proof This is proven in [Libgober 2011].

A quasimodular form of weight k for the congruence subgroup � is a quasi-Jacobi form of weight k and
index 0 for � . The algebra of quasimodular forms is denoted by

QMod.�/D
M
k

QMod.�/k; QMod.�/k D QJac.�/k;0:

Remark 2.5 (i) If � is the full modular group SL2.Z/, we will usually omit � from our notation, eg

QJacD QJac.SL2.Z//:

(ii) In what follows, we will often identify a quasi-Jacobi form f .x; �/ 2 QJack;m with its power series
in p and q. We will also often write f .p; q/ instead of f .x; �/.
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2.3 Presentation by generators: quasimodular forms

For all even k > 0 consider the Eisenstein series

Gk.�/D�
Bk

2k
C

X
n�1

X
d jn

dk�1qn:

Set also Gk D 0 for all odd k > 0. Then Gk is a modular form of weight k for k > 2, and G2 is
quasimodular. By [Kaneko and Zagier 1995; Bloch and Okounkov 2000] the algebra of quasimodular
forms is a free polynomial ring in G2 over Mod.�/, ie the ring of modular forms for the group �:

QMod.�/DMod.�/ŒG2�:

For the full modular group � D SL2.Z/ we have

QModDCŒG2; G4; G6�:

2.4 Presentation by generators: quasi-Jacobi forms

Consider the odd (renormalized) Jacobi theta function3

‚.x; �/D .p1=2�p�1=2/
Y
m�1

.1�pqm/.1�p�1qm/

.1� qm/2
:

Consider the derivative operator p.d=dp/D 1=.2�i/.d=dx/D d=dz and consider also the series

A.x; �/D
p.d=dp/‚.x; �/

‚.x; �/
D�

1

2
�

X
m¤0

pm

1� qm
:

By the same argument as in [Kaneko and Zagier 1995; Bloch and Okounkov 2000], G2 and A are free
generators:

Lemma 2.6 QJac.�/� Jac.�/ŒG2;A�:

As in the case of quasimodular forms, for the full modular group, the algebra of quasi-Jacobi forms can
be embedded in a polynomial algebra. Consider the classical Weierstrass elliptic function

}.x; �/D
1

12
C

p

.1�p/2
C

X
d�1

X
k jd

k.pk � 2Cp�k/qd :

We write }0.x; �/D p.d=dp/}.x; �/ for its derivative with respect to the first variable. Consider the
polynomial algebra

MQJacDCŒ‚;A; G2; }; }
0; G4�:

Proposition 2.7 [van Ittersum et al. 2021] MQJac is a free polynomial ring on its generators , and QJac
is equal to the subring of all polynomials which define holomorphic functions C �H!H.

3We have ‚.x; �/ D #1.x; �/=�3.�/, where #1.x; �/ D
P
�2ZC1=2.�1/

b�cp�q�
2=2 is the odd Jacobi theta function, ie the

unique section on the elliptic curve Cx=.ZC�Z/ which vanishes at the origin, and �.�/D q1=24
Q
n�1.1�q

n/ is the Dedekind
eta function.
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The generators of MQJac are quasi-Jacobi forms (with poles and character [loc. cit.]) of weight and index
given in the following table. The algebra QJac is a graded subring of MQJac.

generator weight index

‚ �1 1
2

A 1 0

G2 2 0

} 2 0

}0 3 0

G4 4 0

Remark 2.8 By the well-known equation

}0.x/2� 4}.x/3C 20}.x/G4.�/C
7
3
G6.�/D 0;

the generator G6 is not needed as a generator of MQJac.

2.5 Differential and anomaly operators

As explained in [Oberdieck and Pixton 2019, Section 2] the algebra QJac.�/ is closed under the derivative
operators

D� D
1

2�i

d

d�
D q

d

dq
and Dx D

1

2�i

d

dx
D
d

dz
D p

d

dp
:

More precisely, these operators act by

D� W QJack;m.�/! QJackC2;m.�/ and Dx W QJack;m.�/! QJackC1;m.�/:

Similarly, we have anomaly operators. These can be defined most directly as follows. By Lemma 2.6 every
quasi-Jacobi form f .x; �/ can be uniquely written as a polynomial in A and G2 with coefficients weak
Jacobi-forms. We hence can take the formal derivative at these generators, giving functions .d=dG2/f
and .d=dA/f . If F D

P
i;j fi;j �

i˛j is the almost-holomorphic function with f0;0Df , then by [loc. cit.,
Section 2] one has

d

dG2
f D f1;0 and d

dA
f D f0;1:

This can be used to show that d=dG2 and d=dA preserve the algebra of quasi-Jacobi forms. Precisely:

Lemma 2.9 [loc. cit., Section 2] The formal derivation with respect to A and G2 defines operators

d

dG2
W QJack;m.�/! QJack�2;m.�/ and d

dA
W QJack;m.�/! QJack�1;m.�/:

Then we have the commutative diagrams

QJack;m AHJack;m QJack;m AHJack;m

QJack�2;m AHJack�2;m QJack�1;m AHJack�1;m

d=dG2

Š

d=d� d=dA

Š

d=d˛

Š Š

where the horizontal maps are the “constant term” maps of Lemma 2.4.
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Let wt and ind be the operators which act on QJack;m.�/ by multiplication by the weight k and the
index m, respectively. By [loc. cit., (12)] we have the commutation relations

(10)
h
d

dG2
;D�

i
D�2wt;

h
d

dA
;Dx

i
D 2 ind

h
d

dG2
;Dx

i
D�2

d

dA
and

h
d

dA
;D�

i
DDx :

Remark 2.10 These commutation relations are proven by checking them for almost-holomorphic Jacobi
forms, where they follow by a straightforward computation of commutators between derivative operators
and operators of multiplication by variables. In particular, the argument is not sensitive to the precise
holomorphicity conditions we put on Jacobi forms; for example, the commutation relations (10) hold also
for MQJac or any other ring of meromorphic quasi-Jacobi forms.

As explained in [loc. cit.], knowing the holomorphic-anomaly equations of a quasi-Jacobi form is
equivalent to knowing their transformation properties under the Jacobi group. Concretely:

Lemma 2.11 [loc. cit.] For any �.x; �/ 2 QJack;m.�/ we have

�

�
x

c� C d
;
a� C b

c� C d

�
D .c� C d/ke

�
cmx2

c� C d

�
exp

�
�
c.d=dG2/

4�i.c� C d/
C
cx.d=dA/

c� C d

�
�.x; �/;

�.xC�� C�; �/D e.�m�2� � 2�mx/ exp
�
��

d

dA

�
�.x; �/;

for all
�
a
c
b
d

�
2 � and �;� 2 Z.

2.6 Elliptic transformation law

Recall from Lemma 2.11 the elliptic transformation law of quasi-Jacobi forms:

Lemma 2.12 For any f .p; q/ 2 QJack;m and � 2 Z we have

f .pq�; q/D q��
2mp�2�me��.d=dA/f .p; q/:

In particular, if we are given f .p; q/ 2 QJack;m such that .d=dA/f D 0, and we let

f .p; q/D
X
d�0

X
k2Z

c.d; k/qdpk

be its Fourier expansion, then

c.d ��kCm�2; k� 2�m/D c.d; k/:

Moreover, since f .p�1; q/D .�1/kf .p; q/ where k is the weight of f , we have

c.d; k/D .�1/kc.d;�k/:

We prove the following two useful lemmas, which serve as a partial converse:
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Lemma 2.13 Let m � 0 and let f .p; q/D
P
n�0

P
k2Z c.d; k/q

dpk be a formal power series such
that the following holds for all d , k and � 2 Z:

c.d ��kCm�2; k� 2�m/D c.d; k/;(11)

c.d; k/D c.d;�k/:(12)

Then there exists power series fi .q/ 2CŒŒq�� such that

f .p; q/D‚2m.p; q/

mX
iD0

fi .q/}.p; q/
m�i :

Proof A similar argument has appeared in [Oberdieck and Shen 2020, Section 4.2] but we recall it here
for completeness. The vector space of Laurent polynomials g.p/ such that g.p�1/D g.p/ has a basis
given by the set of polynomials

.p1=2�p�1=2/2k for k � 0:

Moreover, by the expansions of ‚ and } for every i 2 f0; : : : ; mg, there exist j̨ (all 0 except for finitely
many) such that

}.p; q/m�i‚.p; q/2m D .p1=2�p�1=2/2i C
X
j>i

j̨ .p
1=2
�p�1=2/2j CO.q/:

By an induction argument we can hence find fi .q/ 2CŒŒq�� such that the function

F.p; q/ WD f .p; q/�‚2m.p; q/

mX
iD0

fi .q/}.p; q/
m�i

has the following property: for all d � 0 the qd coefficient of F satisfies

(13) Fd .p/ WD ŒF .p; q/�qd D
X
l>m

bd;l.p
1=2
�p�1=2/2l :

Let a.d; k/ be the coefficient of qdpk in F.p; q/. Since ‚2m}m�i is a (quasi-) Jacobi form of index m,
its Fourier-coefficients satisfy (11). Moreover, if the Fourier coefficients of a power series h.p; q/
satisfy (11), then the same holds for the Fourier coefficients of h.p; q/r.q/ for any power series in q.
This implies

(14) a.d; k/D a.d ��kCm�2; k� 2�m/

for all d; k; � 2 Z. Assume F.p; q/ is nonzero and let d be the smallest integer such that Fd .p/ is
nonzero. Since the sum in (13) starts at l DmC 1, we have

a.d; k/¤ 0

for some k �mC 1� 0. But then by (14) with �D 1, we obtain

a.d; k/D a.d � kCm; k� 2m/¤ 0:

Since d � kCm< d this contradicts the choice of d .
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Lemma 2.14 Let m � 0 and let f .p; q/D
P
n�0

P
k2Z c.d; k/q

dpk be a formal power series such
that the following holds for all d , k and � 2 Z:

c.d ��kCm�2; k� 2�m/D c.d; k/ and c.d; k/D�c.d;�k/:

Then there exists power series fi .q/ 2CŒŒq�� such that

f .p; q/D‚2m.p; q/}0.p; q/

mX
iD2

fi .q/}.p; q/
m�i :

Proof The vector space of Laurent polynomials g.p/ such that g.p�1/D g.p/ has the basis

.p�p�1/.p1=2�p�1=2/2k for k � 0:

Moreover, for i �m we have the expansions

‚2m}0}m�i D .p�p�1/

�
.p1=2�p�1=2/2i�4C

X
j>i�2

j̨ .p
1=2
�p�1=2/2j

�
CO.q/

for some j̨ , of which all but finitely many are 0. By induction we conclude that there exists fi .q/
such that

F.p; q/D f .p; q/�‚2m.p; q/}0.p; q/

mX
iD2

fi .q/}.p; q/
m�i

for all d � 0 satisfies

(15) Fd .p/ WD ŒF .p; q/�qd D .p�p
�1/

X
l>m�2

bd;l.p
1=2
�p�1=2/2l :

We argue now as before: Let a.d; k/ be the coefficient of qdpk in F.p; q/. We then still have (14) as
well as

a.d; k/D�a.d;�k/:

Assume F.p; q/ is nonzero and let d be the smallest integer such that Fd .p/ is nonzero. Since the sum in
(15) starts at l Dm�1, we have a.d; k/¤ 0 for some k �m� 0. But then by (14) with �D 1, we obtain

a.d; k/D a.d � kCm; k� 2m/¤ 0:

If k > m this yields a contradiction as before, and if k Dm we obtain a.d; k/D a.d;�k/, but since we
also have a.d; k/D�a.d; k/ this gives the contradiction a.d; k/D 0.

2.7 The expansion in z

Recall that we have set z D 2�ix, where x 2C is the elliptic parameter. To stress the dependence on z,
we usually write f .z/ for a function f .x/ under this variable change. We study here the z–expansions of
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quasi-Jacobi forms for the full modular group SL2.Z/. For that purpose, recall the well-known expansion
of the generators of MQJac in z; see eg [van Ittersum et al. 2021]:

‚.z/D z exp
�
�2

X
k�1

Gk.�/
zk

kŠ

�
; A.z/D

1

z
� 2

X
k�1

Gk.�/
zk�1

.k� 1/Š
;

}.z/D
1

z2
C 2

X
k�4

Gk.�/
zk�2

.k� 2/Š
:

Consider the operator that takes the formal derivative with respect to G2 factorwise,�
d

dG2

�
z
W QMod..z//! QMod..z//:

That is, for f D
P
r fr.�/z

r with fr 2 QMod, we let�
d

dG2

�
z
f D

X
r

dfr

dG2
zr :

Consider the decomposition of MQJac according to weight k and index m,

MQJacD
M
k;m

MQJack;m :

Then the following is immediate from the expansions above:

Lemma 2.15 The coefficient of zr of any series f 2MQJack;m is a quasimodular form of weight rCk.
Moreover ,

(16)
�
d

dG2

�
z
f D

d

dG2
f � 2z

d

dA
f � 2z2mf:

We prove the following partial converses:

Lemma 2.16 Let fi .q/ 2CŒŒq�� be power series such that every zr–coefficient of

f .p; q/D‚2m.p; q/

mX
iD0

fi .q/}.p; q/
m�i

is a quasimodular form of weight zrCs . Then every fi .q/ is quasimodular of weight sC 2i .

Proof We have ‚2m}m�i D z2i CO.z2iC2/, so we can write fi .q/ as a linear combination of the
zr–coefficients of f .p; q/ with coefficients quasimodular forms (of the correct weight).

Lemma 2.17 Let fi .q/ 2CŒŒq�� be power series such that every zr–coefficient of

f .p; q/D‚2m.p; q/}0.p; q/

mX
iD2

fi .q/}.p; q/
m�i

is a quasimodular form of weight zrCs . Then every fi .q/ is quasimodular of weight sC 2i � 3.

Proof The proof is similar.
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2.8 Hecke operators

Let m� 1 and recall that the mth Hecke operator acts on Jacobi forms �.x; �/ of weight k and index m by

(17) .T.k;m/;lf /.x; �/D l
k�1

X
AD
�
a
c
b
d

�
2SL2.Z/nMl

.c� C d/�ke

�
ml
�cx2

c� C d

�
f

�
lx

c� C d
;
a� C b

c� C d

�
;

where A runs over a set of representatives of the SL2.Z/–left cosets of the set

Ml D

��
a b

c d

� ˇ̌̌
a; b; c; d 2 Z; ad � bc D l

�
:

As shown in [Eichler and Zagier 1985, I.4], the action of T.k;m/;l is well defined (ie independent of a set
of representatives) and defines an operator4

T.k;m/;l W Jack;m! Jack;ml :

Since the argument in [loc. cit.] only involves the compatibilities of the slash-operators of the Jacobi
forms, the proof carries over identically to almost-holomorphic weak Jacobi forms. Hence using (17) we
also obtain a well-defined operator:

T.k;m/;l W AHJack;m! AHJack;ml2 ; F 7! T.k;m/;lF:

Transporting to quasi-Jacobi forms using the “constant term” map of Lemma 2.4 we hence obtain a Hecke
operator on quasi-Jacobi forms

T.k;m/;l W QJack;m! QJack;ml ;

defined by the commutativity of the diagram

QJack;m AHJack;m

QJack;ml AHJack;ml

T.k;m/;l

Š

T.k;m/;l

Š

The Hecke operator on quasi-Jacobi forms satisfies the following:

Proposition 2.18 If f D
P
n;r c.n; r/q

npr is the Fourier expansion of a quasi-Jacobi form of weight k
and index m, then

(18) T.k;m/;lf D
X
n;r

� X
a j .l;n;r/

ak�1c

�
ln

a2
;
r

a

��
qnpr :

Moreover ,

(19) d

dG2
Tk;lf D lTk�2;m

d

dG2
f and d

dA
Tk;lf D lTk�1;m

d

dA
f;

where we write Tk;l WD T.k;m/;l since T.k;m/;l does not depend on m.
4We only require Hecke operators for the full modular group, so we restrict to � D SL2.Z/ here, ie omit � from the notation.
This section generalizes to arbitrary congruence subgroups.
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Proof For
�
a
c
b
d

�
2Ml we have the transformation properties

�

�
a� C b

c� C d

�
D
1

l
�.�/jc� C d j2 D

1

l

�
.c� C d/2�.�/C

c.c� C d/

4�i

�
;

˛

�
lx

c� C d
;
a� C b

c� C d

�
D .c� C d/˛.x; �/� cx:

Consider the weight-k index-m almost-holomorphic weak Jacobi form

F D
X
i;j

fi;j �
i˛j

with f0;0 D f . With J D c� C d and Qc D c=4�i we obtain

(20) .T.k;m/;lF /.x; �/D l
k�1

X
A;r;s

J�ke

�
ml
�cx2

c�Cd

�
fr;s

�
lx

c�Cd
;
a�Cb

c�Cd

��
J.J �CQc/

l

�r
.J˛�cz/s:

We specialize A now to run over the set of representatives of SL2.Z/nMl given by�
a b

0 d

�
for l D ad and b D 0; : : : ; d � 1:

Then (20) becomes

.T.k;m/;lF /.x; �/D l
k�1

X
r;s�0

�r˛s
�
1

lr

X
lDad

bD0;:::;d�1

d�kC2rCsfr;s

�
az;

a� C b

d

��
:

Taking the �0˛0 coefficient and inserting f D
P
n;r c.n; r/q

npr yields

T.k;m/;lf D Coeff�0˛0.T.k;m/;lF /D l
k�1

X
lDad

d�k
d�1X
bD0

f .az; .a� C b/=d/

D

X
lDad

ak�1
X
n;r

n�0 mod d

c.n; r/parqna=d :

This gives the first claim. The compatibility with the anomaly operators follows from

d

dG2
Tk;lf D Coeff�1˛0.T.k;m/;lF /D l

X
lDad

ak�3
X
n;r

n�0 mod d

c0.n; r/parqna=d ;

d

dA
Tk;lf D Coeff�0˛1.T.k;m/;lF /D l

X
lDad

ak�2
X
n;r

n�0 mod d

c00.n; r/parqna=d ;

where c0 and c00 are the Fourier coefficients of f1;0 and f0;1, respectively.

By a straightforward computation using (18), one finds that for f 2 QJack;m,

(21) TkC2;lD�f D lD�Tk;lf and TkC1;lDzf DDzTk;lf:

Then (19) and (21) are compatible with the commutation relations (10).
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2.9 Wrong-weight Hecke operators

For a formal power series f D
P
d;r c.d; r/q

dpr we can formally define the l th Hecke operator of
weight k by

(22) Tk;lf D
X
n;r

� X
a j .l;n;r/

ak�1c

�
ln

a2
;
r

a

��
qnpr :

In Proposition 2.18 we have seen that Tk;l defines an operator

Tk;l W QJack;m! QJack;ml :

More generally, we can ask: what happens if we apply Tk;l to quasi-Jacobi forms f of a weight k0

different from k? This is answered by the next proposition.

Consider the congruence subgroup

�0.l/D

��
a b

c d

�
2 SL2.Z/

ˇ̌̌
c � 0 mod l

�
:

Proposition 2.19 For any k, k0 and m, the l th formal Hecke operator defines a morphism

Tk;l W QJack0;m! QJack0;ml.�0.l//:

Moreover , for any f 2 QJack0;m.SL2.Z// we have

(23) d

dG2
Tk;lf D lTk�2;m

d

dG2
f and d

dA
Tk;lf D lTk�1;m

d

dA
f:

For the proof we will decompose the “wrong-weight Hecke operator” into ordinary Hecke operators and
the scaling operators BN for N � 1 defined on functions f WC �H!C by

.BNf /.x; �/D f .Nx;N�/:

Lemma 2.20 If f 2 QJack;m then BNf 2 QJack;mN .�0.N //, and moreover

d

dG2
BNf D

1

N
BN

d

dG2
f and d

dA
BNf D

1

N
BN

d

dA
f:

Proof Let F.x; �/ be a almost-holomorphic weak Jacobi form of weight k and index m. Set

yF .x; �/D .BNF /.x; �/D F.Nx;N�/:

Then for
�
a
c
b
d

�
2 �0.N / and with c D c0N , we have

yF

�
x

c�Cd
;
a�Cb

c�Cd

�
DF

�
Nx

c�Cd
;
aN�CNb

c�Cd

�
DF

�
Nx

c0.N�/Cd
;
aN�CNb

c0.N�/Cd

�
D.c0.N�/Cd/ke

�
mc0.Nx/2

c0.N�/Cd

�
F.Nx;N�/D.c�Cd/ke

�
.mN/cx2

c�Cd

�
yF .x; �/;
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where we have used that
�
a
c0
Nb
d

�
2 SL2.Z/. Similarly, one proves that

yF .xC��; �/D e.�mN.�2� C 2�x// Of .x; �/:

So yF 2 AHJack;mN .�0.N //, and by taking the constant coefficient also BNf 2 QJack;mN .�0.N //. To
show the compatibility with the anomaly operators write

F.x; �/D
X
i;j

fi;j �
i˛j :

Since �.N�/D �.�/=N , we get

BNF.x; �/D
X
i;j

1

N i
fi;j .Nx;N�/�

i˛j :

Hence if f D f0;0,

d

dG2
BNf D Coeff�1˛0.BNF.x; �//D

1

N
f1;0.Nx;N� /D

1

N
BN

d

dG2
f:

The case for d=dA is similar.

Proof of Proposition 2.19 We follow ideas of [Bae and Buelles 2021, Lemma 12]. Given a power series
f D

P
d;r c.d; r/q

dpr define the formal operator

Ubf D
X
n;r

c.bn; r/qnpr :

A direct calculation starting from (22) shows that

Tk;l D
X
abDl

ak�1BaUb:

Recall the Möbius function

�.n/D

�
.�1/g if nD p1 � � �pg for distinct primes pi ;
0 else;

which satisfies
P
d jn;d>0 �.d/ D ın1. For s 2 Z let Ids be the function Ids.a/ D as . For functions

g and h define the Dirichlet convolution .g � h/.l/ D
P
lDab g.a/h.b/ and the pointwise product

.gh/.a/D g.a/h.a/. Both of these are associative operations. We then have

.� Idk0�1/� Idk0�1.a/D ıa1;
and thus

.Idk�1 �.� Idk0�1/� Idk0�1/.a/D Idk�1 :
After setting

ck;k0.e/D .Idk�1 �.� Idk0�1//.e/
this yields

(24) Tk;l D
X
abDl

.Idk�1 �.� Idk0�1/� Idk0�1/.a/BaUb D
X
abDl

X
e ja

ck;k0.e/
�
a

e

�k0�1
BaUb

D

X
edDl

ck;k0.e/Be
X
dDbb0

.b0/k
0�1Bb0Ub D

X
edDl

ck;k0.e/BeTk0;d ;

where we used Ba D BeBa=e.
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Given f 2 QJack0;m we have Tk0;df 2 QJack0;md by Proposition 2.18, and hence

(25) BeTk0;df 2 QJack0;md 2 QJack0;mde.�0.e//

by Lemma 2.20. Since for e j l we have

QJac.�0.e//� QJac.�0.l//;

we obtain that
Tk;lf D

X
edDl

ck;k0.e/BeTk0;df 2 QJac.�0.l//:

For the second part, observe that

ck;k0.e/D
X
abDe

ak�1bk
0�1�.b/D e2ck�2;k0�2.e/:

Hence by the second parts of Proposition 2.18 and Lemma 2.20, we have

d

dG2
Tk;lf D

X
edDl

ck;k0.e/
d

e
BeTk0;d

d

dG2
f D l

X
edDl

ck�2;k0�2.e/BeTk0;d
d

dG2
f D Tk�2;l

d

dG2
f:

Example 2.21 Recall that Mod2.�0.2// is 1–dimensional and is generated by

F2.�/D 1C 24
X
d jn
d odd

dqn:

Hence QMod2.�0.2// has the basis given by F2 and G2. One computes that

Tk;2G2.�/D 2
k�1B2G2CU2G2 D 2

k�1
�
�
1
48
F2C

1
2
G2
�
C
�
1
24
F2C 2G2

�
:

Hence as predicted by Proposition 2.19 we get

d

dG2
Tk;2G2.�/D 2.1C 2

k�3/D 2Tk�2;2.1/:

In applications below we will consider quasi-Jacobi forms with a pole at � D i1, ie which are of the form

f .x; �/D
�.x; �/

�.�/r

for a quasi-Jacobi form � and some m� 1. Since the argument used to prove Proposition 2.19 also works
when there are poles, the results of Proposition 2.19 remain valid for these quasi-Jacobi forms as well.
The only modification concerns the order of poles:

Proposition 2.22 For any k, k0 and m the l th formal Hecke operator acts by

Tk;l W
1

�.�/
QJack0C12;m!

1

�.�/l
QJack0C12l;ml.�0.l//:

The relations (23) hold identically.
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Proof If f .x; �/D �.x; �/=�.�/ is a weight-k index-m quasi-Jacobi for the group SL2.Z/, then the
“correct weight” Hecke transform Tk;lf is also quasi-Jacobi for the full group SL2.Z/. The poles of
Tk;lf are located at the single cusp � D i1, and here (22) shows that the pole order is increased by l .
So �.�/lTk;lf is holomorphic quasi-Jacobi, ie it lies in QJackC12l;ml . Hence the claim holds if k D k0.
In the general case we use again the decomposition (24), the fact that BN is a ring homomorphism and
that for any N � 1 (see eg [Koblitz 1993, Proposition 17(a)])

BN

� 1

�.�/

�
2

1

�.�/N
Mod12.N�1/.�0.N //:

2.10 Index-0 meromorphic Jacobi forms

Consider the algebra of index-0 Jacobi forms,

MQJac0 WD
M
k�0

MQJack;0 DCŒA; G2; }; }
0; G4�:

The algebra MQJac0 is precisely the ring of index-0 meromorphic Jacobi forms with poles only at lattice
points x D a� C b for a; b 2 Z; see [Libgober 2011].

Consider once more the Jacobi theta function

‚.z/D .p1=2�p�1=2/
Y
m�1

.1�pqm/.1�p�1qm/

.1� qm/2
;

which we view in this section as a function of z D 2�ix (and drop � from notation). Define functions
An.z; �/ for all n 2 Z by the expansion

(26)
‚.zCw/

‚.z/‚.w/
D

X
n�0

An.z; �/

nŠ
wn�1:

In particular A0D 1 and A1D A. The function ‚.zCw/=.‚.z/‚.w// is a meromorphic Jacobi of lattice
index

�
0
1=2

1=2
0

�
, which leads to the proof of the following:

Theorem 2.23 [Zagier 1991; Libgober 2011] (a) For all n we have An 2MQJac0;n and

d

dG2
An D 0;

d

dA
An D nAn�1:

(b ) For all n� 0 we have the expansion

An.z; �/D BnC ın;1
1

2

p1=2Cp�1=2

p1=2�p�1=2
�n

X
k;d�1

dn�1.pkC .�1/np�k/qkd ;

where the Bernoulli numbers Bn are defined by 1
2

coth
�
1
2
z
�
D
P
n�0.Bn=nŠ/z

n�1.

Proof The first part follows immediately from the transformation properties given in the theorem of
[Zagier 1991, Section 3], but see also [Libgober 2011] for why the An lie in MQJac, and [Oberdieck
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2012, Lemmata 5 and 6] for the holomorphic anomaly equation (the functions An were called Jn in
[loc. cit.]). Part (b) follows from the expansion proven in [Zagier 1991, Section 3]

‚.zCw/

‚.z/‚.w/
D

1
2

�
coth 1

2
wC coth 1

2
z
�
� 2

1X
nD1

�X
d jn

sinh
�
dwC

n

d
z
��
qn:

Remark 2.24 (historical remark) The function (26) already centrally appeared in work of Eisenstein
on elliptic functions in the 1850s; see [Weil 1976] for a historical account,

3 Cohomology and monodromy of the Hilbert scheme

3.1 Overview

Let S be a K3 surface and let S Œn� be the Hilbert scheme of n points on S . There are two basic structures
on the cohomology of the Hilbert scheme. The first is the Nakajima Heisenberg action (Section 3.2), which
gives a natural additive basis of the cohomology and allows us to identify the curve classes on the Hilbert
scheme (Section 3.3). The second is the Looijenga–Lunts–Verbitsky (LLV) Lie algebra (Section 3.4),
which will appear in the statement of the holomorphic anomaly equations. In Section 3.5 we use the LLV
algebra to define several gradings on the cohomology. In Section 3.6 we recall work of Markman on how
the LLV algebra controls the monodromy. Two particular monodromy operators are of special importance
to us because they lead to the elliptic transformation property of the generating series. These are discussed
in detail in Sections 3.6.3 and 3.6.4. In particular, we describe how they act on the Nakajima basis.

3.2 Nakajima operators

We follow the work [Nakajima 1997]; see also [Grojnowski 1996]. For any n; k 2N, consider the closed
subscheme

S Œn;nCk� D f.I � I 0/ j I=I 0 is supported at a single x 2 Sg � S Œn� �S ŒnCk�

endowed with projection maps

(27)
S Œn;nCk�

S Œn� S S ŒnCk�

p�
pS

pC

which remember I , x and I 0, respectively. For ˛ 2H�.S/ and k > 0 we define the kth Nakajima operator
by letting S Œn;nCk� act as a correspondence; that is we define

qk.˛/ WH
�.S Œn�/!H�.S ŒnCk�/; qk.˛/
 D pC�.p

�
�.
/p

�
S .˛//:

Similarly, we can go the other way and define q�k.˛/ WH
�.S ŒnCk�/!H�.S Œn�/ by

q�k.˛/
 D .�1/
kp��.p

�
C.
/p

�
S .˛//:

We also set q0.
/D 0 for all 
 .
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Consider the direct sum
H�.Hilb/D

M
n�0

H�.S Œn�/:

Because the correspondences above are defined for all n, we obtain operators

qi .˛/ WH
�.Hilb/!H�.Hilb/:

By the main result of [Nakajima 1997] we have the commutation relations of the Heisenberg algebra

(28) Œqk.˛/; ql.ˇ/�D k.˛; ˇ/ IdHilb :

Moreover, H�.Hilb/ is generated by the operators qk.˛/ for k > 0 from the vacuum vector

v¿ 2H
�.S Œ0�/DQ:

In particular, the set of classes
q�1.
i1/ � � � q�`.�/.
i`.�//v¿;

where �D .�j ; 
ij / runs over all partitions of size n weighted by cohomology classes from a fixed basis
f
ig

24
iD1 of H�.S/, forms a basis of H�.S Œn�;Q/.

For homogeneous ˛i 2H�.S/, the degree of a Nakajima cycle is

(29) deg.qk1.˛1/ � � � qkl .˛l/v¿/D n� l C
X
i

deg.˛i /:

The length of a Nakajima cycle is defined to be the number of Nakajima factors:

(30) l.qk1.˛1/ � � � qkl .˛l/v¿/D l:

3.3 Curve classes

For n � 2, the fiber of the Hilbert–Chow morphism S Œn� ! Symn.S/ over a generic point in the
discriminant is isomorphic to P1 and has (co)homology class

AD q2.p/q1.p/
n�2v¿ 2H2.S

Œn�;Z/;

where p 2H 4.S;Z/ is the class of a point. Similarly, given a class ˇ 2H2.S;Z/ we have an associated
class on the Hilbert scheme given by

ˇŒn� WD q1.ˇ/q1.p/
n�1v¿ 2H2.S

Œn�;Z/:

If ˇ is the class of a curve C � S , then ˇŒn� is the class of the curve parametrizing subschemes consisting
of n� 1 distinct fixed points away from C and a single free point on C .

By Nakajima’s theorem [1997] (discussed in the last section), we have an isomorphism:

(31) H2.S
Œn�;Z/ŠH 2.S;Z/˚ZA; ˇŒn�C rA 7!.ˇ; r/:

Usually we simply write ˇC rA for the class associated to .ˇ; r/ on the Hilbert scheme. If n� 1, we set
AD 0 and always assume that r D 0; if nD 0 we also assume that ˇ D 0.
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3.4 The Looijenga–Lunts–Verbitsky algebra

Let X be an (irreducible) hyperkähler variety of dimension 2n. The lattice H 2.X;Z/ is equipped with an
integral and nondegenerate quadratic form, called the Beauville–Bogomolov–Fujiki form [Fujiki 1987].
We will also view H�.X;Z/ as a lattice using the Poincaré pairing. Both pairings are extended to the
C–valued cohomology groups by linearity.

The Looijenga–Lunts–Verbitsky Lie algebra of X is defined as follows; see [Looijenga and Lunts 1997;
Verbitsky 1996]. For any a 2H 2.X;Q/ such that .a; a/¤ 0, consider the operator on cohomology which
takes the cup product with a,

ea WH
�.X;Q/!H�.X;Q/; x 7! a[ x:

Let h be the Lefschetz grading operator which acts on H 2i .X;Z/ by multiplication by i �n. Then there
exists a unique operator

fa WH
�.X;Z/!H�.X;Z/

such that the sl2 commutation relations are satisfied:

Œea; fa�D h; Œh; ea�D ea; Œh; fa�D�fa:

The LLV Lie algebra g.X/ is defined as the Lie subalgebra of EndH�.X;Q/ generated by ea, fa and h
for all a 2H 2.X;Q/ as above. By the central result of [Verbitsky 1996] one has

g.X/D so.H 2.X;Q/˚UQ/;

where U D
�
0
1
1
0

�
is the hyperbolic plane.

The degree-0 part of g.X/ decomposes as

g.X/0 D so.H 2.X;Q//˚Qh:

The summand so.H 2.X;Q// is also called the reduced LLV algebra. Base changing to C and integrating
this yields the LLV representation:

(32) �LLV W SO.H 2.X;C//! GL.H�.X;C//:

The LLV representation acts by degree-preserving orthogonal ring isomorphisms [Looijenga and Lunts
1997, Proposition 4.4(ii)], where orthogonal means with respect to the Poincaré pairing.

The Hilbert scheme of points S Œn� on a K3 surface are irreducible hyperkähler varieties [Beauville 1983].
The LLV algebra we use here was described explicitly in the Nakajima basis in [Oberdieck 2021]. We
recall the explicit formulas, using the conventions of [Neguţ et al. 2021]. First recall the isomorphism

(33) V DH 2.S Œn�/ŠH 2.S/˚Qı;

which can be obtained by dualizing (31). In particular, ı is �1
2

times the class of the locus of nonreduced
subschemes and satisfies ıA D 1. Moreover, for ˛ 2 H 2.S;Q/ the associated divisor on the Hilbert
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scheme is .1=.n� 1/Š/q1.˛/q1.1/n�1v¿. The Beauville–Bogomolov–Fujiki form is then the form on V
which extends the intersection form on H 2.S/ and satisfies

.ı; ı/D 2� 2n and .ı; A1.S//D 0:

The LLV algebra is given by
g.S Œn�/D

V2
.V ˚UQ/;

where the Lie bracket is defined for all a; b; c; d 2 V ˚UQ by

Œa^ b; c ^ d�D .a; d/b ^ c � .a; c/b ^ d � .b; d/a^ cC .b; c/a^ d:

Consider for all ˛ 2H 2.S;Q/ the following operators:

(34)

e˛D�
X
n>0

qnq�n.��˛/; eıD�
1

6

X
iCjCkD0

Wqiqj qk.�123/W; Qf˛D�
X
n>0

1

n2
qnq�n.˛1C˛2/;

Qfı D�
1

6

X
iCjCkD0

Wqiqj qk

�
1

k2
�12C

1

j 2
�13C

1

i2
�23C

2

jk
c1C

2

ik
c2C

2

ij
c3

�
W:

Here W�W is the normal ordered product defined by

Wqi1 � � � qik W D qi�.1/ � � � qi�.k/ ;

where � is any permutation such that i�.1/ � � � � � i�.k/. We define operators e˛ and Qf˛ for general ˛ 2 V
by linearity in ˛. By [Lehn 1999], e˛ is precisely the operator of the cup product with ˛. By [Oberdieck
2021], if .˛; ˛/¤ 0, the multiple Qf˛=.˛; ˛/ acts on cohomology as the Lefschetz dual of e˛. Then, as
shown in [loc. cit.], the assignment

(35) act W g.S Œn�/! EndH�.S Œn�/; 8˛ 2 V; act.e^˛/D e˛ and act.˛^f /D Qf˛

induces a Lie algebra homomorphism, which is precisely the action of the LLV algebra. The element
e^f acts by the Lefschetz grading operator

(36) hD act.e^f /D
X
k>0

1

k
qkq�k.p2� p1/:

3.5 Weight grading

With the notation of the previous section, consider vectors W;F 2H 2.S;Z/ which span a hyperbolic
lattice, that is, which have intersection form

�
0
1
1
0

�
. We associate three operators on H�.S Œn�/ to this pair:

(i) the Lefschetz dual operator (which will appear in the holomorphic anomaly equation for d=dG2),

U D QfF D act.F ^f /D�
X
n>0

1

n2
qnq�n.F1CF2/

(ii) for any ˛ 2 V with ˛ ? fW;F g, the degree-preserving operator

T˛ D Œe˛; U �D act.˛^F /;

where for the class ı 2 V we have explicitly

(37) Tı D
1

2

X
iCjCkD0

1

i
Wqiqj qk..F1CF2/�23/W;
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(iii) the weight grading operator

(38) WtD ŒeW ; U �D act.e^f CW ^F /D
X
k>0

1

k
qkq�k.p2� p1CW2F1�W1F2/:

The action of xD e^f CW ^F on H 2.X;Q/˚UQ is semisimple, so x is a semisimple element of the
LLV algebra. Hence H�.S Œn�/ decomposes into eigenspaces under Wt. We can describe the eigenspaces
quite explicitly: Define a weight grading on H�.S/ by

wt.˛/D

8<:
1 if ˛ 2 fW; pg;
�1 if ˛ 2 fF; 1g;
0 if ˛ 2 fF;W; 1; pg?:

This induces a grading of H�.S Œn�/ by setting

(39) wt.
/D
X
i

wt.˛i / for all 
 D
Y
i

qki .˛i /v¿;

so that all ˛i are wt–homogeneous. By the explicit formula (38), a direct check shows that

Wt.
/D wt.
/


for a wt–homogeneous element 
 2H�.S Œn�/.

Lemma 3.1 The action of Wt on H�.S Œn�/ is semisimple with eigenspace decomposition

H�.S Œn�/D

nM
dD�n
d2Z

Vd ; Wt jVd D d idVd :

The operators T˛ (for ˛ ? fW;F g) and U act with respect to this grading with weights �1 and �2,
respectively; that is ,

T˛ W Vd ! Vd�1 and U W Vd ! Vd�2:

Proof The first claim follows since wt.
/ takes values in f�n; : : : ; ng. The second claim follows from

ŒWt; T˛�D act.Œe^f CW ^F; ˛^F �/D act.F ^˛/D�T˛;

ŒWt; U �D act.Œe^f CW ^F;F ^f �/D act.f ^F �F ^f /D�2U:

We have the following weight computation for the class

U 2H�.S Œn� �S Œn�/

associated to the operator U according to the conventions of Section 1.13:

Lemma 3.2 Consider a Künneth decomposition U D
P
i ai ˝ bi 2H

�.S Œn�/˝2 with ai and bi homo-
geneous with respect to wt. Then for all i we have

wt.ai /Cwt.bi /D�2:
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Proof This follows from

.id˝WtCWt˝id/.U /DWt ıU CU ıWtt DWt ıU �U ıWtD ŒWt; U �D�2U:

The weight grading also interacts nicely with the cup product:

Lemma 3.3 The product 
1 � � � 
k of any wt–homogeneous classes 
i is again wt–homogeneous , and
has weight

wt.
1 � � � 
k/D .k� 1/nC
X
i

wt.
i /:

Proof The grading operator QhD hCn id is multiplicative, ie Qh.xy/D Qh.x/yCx Qh.y/. Moreover, since
the LLV representation (32) acts by ring isomorphisms,

hWF WD act.W ^F /D d

dt

ˇ̌
tD0

�LLV.e
t.W^F //

is multiplicative. Hence fWt WD WtCn id D QhC hWF is multiplicative. If we use this to compute
Wt.
1 � � � 
k/, we obtain the claim.

Remark 3.4 For 
 2H�.S Œn�/, the modified degree function deg.
/ of [Oberdieck 2022, Section 2.6]
is related to the weight wt.
/ defined above by deg.
/D nCwt.
/.

3.6 Monodromy

3.6.1 Monodromy group Let X D S Œn�. Let Mon.X/ be the subgroup of O.H�.X;Z// generated by
all monodromy operators, and let Mon2.X/ be its image in O.H 2.X;Z//. We let

mon WMon.X/!O.H�.X;Z//

denote the monodromy representation.

By results of Markman [2011, Theorem 1.3; 2021, Lemma 2.1]

(40) Mon.X/ŠMon2.X/D zOC.H 2.X;Z//;

where the first isomorphism is the restriction map and zOC.H 2.X;Z// is the subgroup of O.H 2.X;Z//

of orientation-preserving lattice automorphisms which act by ˙1 on the discriminant.5 If g 2Mon2.X/,
we let �.g/ 2 f˙1g be the sign by which g acts on the discriminant lattice. This defines a character

� WMon2.X/! Z2:

3.6.2 Zariski closure By [Markman 2008, Lemma 4.11], if n� 3 the Zariski closure of the subgroup
Mon.X/�O.H�.X;C// is O.H 2.X;C//�Z2. The inclusion yields the representation

(41) � WO.H 2.X;C//�Z2!O.H�.X;C//;

5Let C D fx 2 H2.X;R/ j hx; xi > 0g be the positive cone. Then C is homotopy equivalent to S2. An automorphism is
orientation preserving if it acts byC1 on H2.C/D Z.
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which acts by degree-preserving orthogonal ring isomorphism. There is a natural embedding

zOC.H 2.X;Z//!O.H 2.X;C//�Z2; g 7! .g; �.g//

under which � restricts to the monodromy representation; that is,

(42) mon.g/D �.g; �.g// for all g 2Mon.X/:

If n 2 f1; 2g the Zariski closure of Mon.X/ is O.H 2.X;C//. In this case, we define the representation
(41) by projection to O.H 2.X;C// followed by the natural inclusion.

The representation � is determined by and has the following properties:

Property 0 For any .g; �/ 2O.H 2.X;C//�Z2 we have

�.g; �/jH2.X;C/ D g:

Property 1 The restriction of � to SO.H 2.X;C//�f1g is the integrated action of the Looijenga–Lunts–
Verbitsky algebra [Looijenga and Lunts 1997; Verbitsky 1996],

�jSO.H2.X;C//�f0g D �LLV:

Property 2 We have
�.1;�1/DD ı �.�idH2.X;C/; 1/;

where D acts on H 2i .X;C/ by multiplication by .�1/i .

Property 3 The action is equivariant with respect to the Nakajima operators: For any g 2O.H 2.X;C//

such that g.ı/D ı, let Qg D gjH2.S;C/˚ idH0.S;Z/˚H4.S;Z/. Then

�.g; 1/

�Y
i

qki .˛i /1

�
D

Y
i

qki . Qg˛i /1:

Property 1 follows by [Markman 2008, Lemma 4.13]. Property 3 follows since the Nakajima operator is
naturally equivariant with respect to the action of the monodromy group Mon.S/DO.H 2.S;Z//C (of
deformations of the K3 surfaces), and this group is Zariski dense in O.H 2.X;C//ı . Property 0 follows
by construction. Property 2 is implicit in [loc. cit., Section 4]; compare also with [loc. cit., Section 1.1.2].

3.6.3 Example 1: involution The element g 2 zOC.H 2.X;Z// given under the isomorphism (33) by

gjH2.S;Z/ D id; g.ı/D�ı

is orientation preserving (it fixes a slice of the positive cone) and acts by �1 on the discriminant lattice.
We want to describe the action of the corresponding monodromy operator of X defined by (40).

By Property 2,
mon.g/DD ı �.�g; 1/:

Since �g fixes ı, we obtain the equivariance with respect to the Nakajima operators in the sense of
Property 3; that is, if we let

Qg D idH0˚H4 ˚�idH2.S;Z/

Geometry & Topology, Volume 28 (2024)



3814 Georg Oberdieck

then
�.�g; 1/

�Y
i

qki .˛i /1

�
D

Y
i

qki . Qg˛i /1:

In particular, if all ˛i are homogeneous, we see that

�.�g; 1/.qk1.˛1/ � � � qkl .˛l/v¿/D .�1/
Qlqk1.˛1/ � � � qkl .˛l/v¿;

where Ql D jfi j ˛i 2H 2.S;Q/gj. Using (29), we conclude that

mon.g/.qk1.˛1/ � � � qkl .˛l/v¿/D .�1/
nClqk1.˛1/ � � � qkl .˛l/v¿:

3.6.4 Example 2: shift The element ı^F acts on H 2.X;Z/ by

W 7! ı; ı 7! .2n� 2/F; F 7! 0 and .ı^F /jfW;F;ıg? D 0:

Let Tı D act.ı^F / as before, and for any � 2 Z consider the operator

e�Tı WH�.X;Z/!H�.X;Z/:

By a direct check, the operator e�.ı^F / W H 2.X;Z/! H 2.X;Z/ is an isometry which is orientation
preserving, acts with C1 on the discriminant and has determinant C1. By (40) it hence defines a
monodromy operator of X . Moreover, by (42) and Property 1 we have

mon.e�.ı^F //D �LLV.e
�.ı^F //D e�Tı :

In particular, e�Tı is a monodromy operator.

The action of Tı is compatible with the identification of H 2.X;Q/ and H2.X;Q/ under the Beauville–
Bogomolov form. So using ıD .2�2n/A under this identification, one finds that Tı acts on H2.X;Z/ by

W 7! .2� 2n/A; A 7! �F and F 7! 0:

We conclude that

e�Tı .W C dF C rA/DW C .d � r�C�2.n� 1//F C .r � 2�.n� 1//A:

3.7 Monodromies preserving the Hodge type of a curve class

The Gromov–Witten invariants of S Œn� in an effective curve class ˛ 2 H2.S Œn�/ are invariant under
deformations which preserve the Hodge type of ˛. Consider two classes ˛; ˛0 2H2.S Œn�/ which are of
Hodge type .2n� 1; 2n� 1/ and which pair positively with a Kähler class. If there is a monodromy
operator ' 2Mon.S Œn�/ such that h˛D˛0, then by the global Torelli theorem [Verbitsky 2013; Huybrechts
2012] there exists a monodromy of S Œn� which induces ' and which preserves the Hodge type of ˛ along
the deformation. In this case we conclude that

htautI 
1; : : : ; 
N iS
Œn�

g;˛ D htautI'.
1/; : : : ; '.
N /iS
Œn�

g;'.˛/:

Remark 3.5 The condition that ˛ and '.˛/ both pair positively with a Kähler class is necessary. For
example, the monodromy operator of Section 3.6.3 sends A to �A, but obviously does not preserve the
Gromov–Witten invariants (since �A is not effective).
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4 Constraints from the monodromy

4.1 Overview

Let S be an elliptic K3 surface with section B and fiber class F , and define the class

W D BCF:

Let n� 2 and consider the generating series of Gromov–Witten invariants of S Œn�:

(43) F S
Œn�

g .tautI 
1; : : : ; 
N /D
X
d��1

X
r2Z

htautI 
1; : : : ; 
N iS
Œn�

g;WCdFCrAq
d .�p/r :

Our goal in this section is to prove the following:

Proposition 4.1 There exist unique power series fi;j;s.q/ 2QŒŒq�� such that

F S
Œn�

g .tautI 
1; : : : ; 
N /D
‚.p; q/2n�2

�.q/

2nX
iD0

n�1X
jD0

X
s2f0;1g

fi;j;s.q/A.p; q/
i}.p; q/j}0.p; q/s:

Moreover , we have the following properties:

(a) In the ring .1=�.q//QŒŒq��ŒA; }; }0; ‚� we have

d

dA
F S

Œn�

g .tautI 
1; : : : ; 
N /D TıF
S Œn�

g .tautI 
1; : : : ; 
N /;

where the right-hand side is defined as in (4).

(b) The series F S
Œn�

g .tautI 
1; : : : ; 
N / is a power series in q with coefficients which are Laurent
polynomials in p.

(c) If the 
i are written in the Nakajima basis (of length l.
i / as defined in (30)), then

F S
Œn�

g .tautI 
1; : : : ; 
N /.p�1/D .�1/NnC
P
i l.
i /F S

Œn�

g .tautI 
1; : : : ; 
N /:

The idea of the proof of Sections 4.1 is not difficult: The monodromy operators described in Section 3.6.3
and 3.6.4 together with the invariance of Gromov–Witten invariants under deformations (which preserve the
Hodge type of the curve class) yield two basic identities on the generating series F S

Œn�

g .tautI 
1; : : : ; 
N /.
Up to correction terms coming from insertions of lower weight, these identities are precisely the conditions
given in Lemmata 2.13 and 2.14, and hence up to the correction term force an expression of the series as
a certain polynomial in }, ‚ and }0. To control the correction term, we argue by an induction on the
order of the weight. The correction term is then controlled by the A–holomorphic anomaly equation, and
the claim follows by a formal argument.

4.2 Proof of Proposition 4.1

We split the proof in two parts:
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Step 1 (the p 7!p�1 symmetry) We first prove (b) and (c). By Section 3.6.3 there exists a monodromy
mon.g/ of S Œn� which acts on cohomology by

qk1.˛1/ � � � qkl .˛l/v¿ 7! .�1/nClqk1.˛1/ � � � qkl .˛l/v¿:

In particular, it acts on H2.S Œn�;Z/ by the identity on H2.S;Z/ and sends A to �A. By deformation
invariance of the Gromov–Witten invariants we obtain that

htautI 
1; : : : ; 
N iS
Œn�

g;WCdFCrA D htautImon.g/
1; : : : ;mon.g/
N iS
Œn�

g;mon.g/.WCdFCrA/

D .�1/NnCl1C���ClN htautI 
1; : : : ; 
N iS
Œn�

g;WCdF�rA:

For any curve class ˇ 2H2.S;Z/ there exists an integer rˇ such that for all r � rˇ there are no curves in
S Œn� of class ˇ� rA 2H2.S Œn�/. Hence this equality proves (b) and (c).

Step 2 (the p 7!pq� symmetry) We apply the deformation invariance with respect to the monodromy
considered in Section 3.6.4. It yields

htautI 
1; : : : ; 
N iS
Œn�

g;WCdFCrA D htautI e�Tı
1; : : : ; e�Tı
N iS
Œn�

g;WC.d�r�C�2.n�1//FC.r�2�.n�1//A
:

By multiplying with .�p/r�2�mqd�r�C�
2m, summing over r and d and replacing � by ��, we obtain

(44) F S
Œn�

g .tautI 
1; : : : ; 
N /.pq�; q/D p�2�mq��
2mF S

Œn�

g .tautI e��Tı
1; : : : ; e��Tı
N /:

We proceed by induction on the total weight of the insertionsX
i

wt.
i /D L:

Assume that the claim of the proposition holds for all insertions 
 0i with
P
i wt.
 0i / <L. (Since we always

have wt.
i /��n, the statement is true for L<�nN . This provides the base of the induction.) Since Tı
decreases the weight by one (see Lemma 3.1), the series

(45)
NX
iD1

F S
Œn�

g .tautI 
1; : : : ; 
i�1; Tı
i ; 
iC1; : : : ; 
N /

satisfies the induction hypothesis, and hence has all the desired properties. In particular, it is equal to
‚2n�2�.q/�1 times a polynomial in A, } and }0 with coefficients power series in q. Consider the
integral with respect to A

zF D

NX
iD1

Z
F S

Œn�

g .tautI 
1; : : : ; 
i�1; Tı
i ; 
iC1; : : : ; 
N /dA;

which is defined here formally as the right inverse to d=dA with constant term in A to be 0. (In other
words,

R
AidAD AiC1=.i C 1/.) By Lemma 2.12 and using the induction hypothesis to calculate d=dA,

we obtain the transformation property:

p2�mq�
2m zF .pq�; q/D e��.d=dA/ zF .p; q/D zF .p; q/��

d

dA
zF C 1

2
�2
�
d

dA

�2
zF C � � �

D zF .p; q/�F S
Œn�

g .tautI 
1; : : : ; 
N /CF S
Œn�

g .tautI e��Tı
1; : : : ; e��Tı
N /:
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Using this equation and (44) we conclude that

F.p; q/D F S
Œn�

g .tautI 
1; : : : ; 
N /� zF .p; q/

satisfies
p2�mq�

2mF.pq�; q/D F.p; q/:

Since Tı is a cubic in Nakajima operators (see (37)) its action on a cohomology class changes the parity
of the number of Nakajima factors in which it is written. In particular, if r D NnC

P
i l.
i / is even,

then the function (45) is odd in p by Step 1, and, since A.p; q/ is odd in p, its integration with respect to
A is again even in p. Similar arguments apply if r is odd. We obtain that

F.p�1; q/D .�1/NnC
P
i l.
i /F.p; q/:

Using Lemmata 2.13 and 2.14 (depending on the parity of NnC
P
i li ) we conclude that

(46) F.p; q/D

�
�.q/�1‚2m.p; q/}0.p; q/

Pm
iD2 fi .q/}.p; q/

m�i if NnC
P
i l.
i / is even;

�.q/�1‚2m.p; q/
Pm
iD0 fi .q/}.p; q/

m�i if NnC
P
i l.
i / is odd;

for some power series fi .q/ 2CŒŒq��. This proves the main claim.

Since F.p; q/ is written without any A, we have

0D
d

dA
F.p; q/D

d

dA
F S

Œn�

g .tautI 
1; : : : ; 
N /�
d

dA
zF .p; q/

D
d

dA
F S

Œn�

g .tautI 
1; : : : ; 
N /�
NX
iD1

F S
Œn�

g .tautI 
1; : : : ; 
i�1; Tı
i ; 
iC1; : : : ; 
N /;

that is, we also have the holomorphic anomaly equation (a) with respect to A.

The argument in Step 1 of the proof more generally shows the following:

Lemma 4.2 For any K3 surface S and effective curve class ˇ 2H2.S;Z/, the series

ZS
Œn�

g;ˇ .tautI 
1; : : : ; 
N / WD
X
r2Z

htautI 
1; : : : ; 
N iS
Œn�

g;ˇCrA.�p/
r

is a Laurent polynomial in p, and if the 
i are in the Nakajima basis , then

ZS
Œn�

g;ˇ .tautI 
1; : : : ; 
N /.p�1/D .�1/NnC
P
i l.
i /ZS

Œn�

g;ˇ .tautI 
1; : : : ; 
N /:

5 Relative Gromov–Witten theory

5.1 Overview

Let X be a smooth projective divisor and let D � X be a smooth divisor with connected components
Di for i D 1; : : : ; N . In this section we consider the relative Gromov–Witten theory of the pair .X;D/
introduced by Li [2001; 2002], see also [Argüz et al. 2023; Oberdieck 2024a] for introductions. In
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the first part we introduce the basic structures of the theory: moduli spaces, evaluation maps, psi
classes, and rubber moduli spaces. Then, we recall three basic equations that will be needed later on:
a splitting formula for the relative diagonal, proven recently in [Argüz et al. 2023] (Proposition 5.2); a
splitting formula for relative psi-classes (Proposition 5.3), and finally we prove a new formula for the
restriction of relative Gromov–Witten classes to the nonseparating boundary divisor in the moduli space
of curves (Proposition 5.4).

5.2 Moduli space

Let ˇ2H2.X;Z/ be a curve class and let E�D .E�1; : : : ; E�N / be a tuple of ordered partitions �i D .�i;j /ljD1
of size and length

jE�i j D
X
j

�i;j DDiˇ and `.�i /D l:

Consider the moduli space of r–pointed genus-g degree-ˇ relative stable maps from connected curves to
the pair .X;D/ with ordered ramification profile E�i along the divisor Di ,

M g;r;ˇ ..X;D/; E�/:

By definition, an element of the moduli space is a map f WC !XŒk� where XŒk� is a target degeneration
of X along D which satisfies a list of conditions (finite automorphism, predeformability, no components
mapping entirely mapped to the singular fibers, relative multiplicities as specified). The degree of the
map is ��f�ŒC �D ˇ where � WXŒk�!X is the canonical map that contracts the expansion.

5.3 Evaluation maps

For every boundary divisor Di we have relative evaluation maps

evrel
i;j WM g;r;ˇ ..X;D/; E�/!Di for j D 1; : : : ; `.E�i /

which send a stable map to the j th intersection point with the divisor Di .

We also have an interior evaluation map

ev WM g;r;ˇ ..X;D/; E�/! .X;D/r

which takes values in the (smooth projective) moduli space .X;D/r of (ordered) tuples of r points on the
relative geometry .X;D/; see [Kim and Sato 2009] for a construction. For example, as a variety .X;D/1

is isomorphic to X , and .X;D/2 is the blowup BlF
i Di�Di

.X �X/. We refer to [Pandharipande and
Pixton 2017; Argüz et al. 2023, Section 3.4] for beautiful self-explaining figures illustrating the situation.
By forgetting points we have, for any I � f1; : : : ; rg, contraction maps pI W .X;D/r ! .X;D/jI j. We
can hence view classes on

Q
i .X;D/

ai with
P
i ai D r (such as Xr ) as defining cohomology classes on

.X;D/r via pullback by the projections. We write evI D pI ı ev.

The class of the locus in .X;D/2 of incident points (the relative diagonal) is denoted by

�rel
.X;D/ �H

�..X;D/2/:
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5.4 Psi-classes

There are cotangent line bundles at both interior and relative markings. We let their first Chern classes be
denoted, respectively, by

 i for i D 1; : : : ; r and  rel
i;j for i D 1; : : : ; N and j D 1; : : : ; `.�i /:

Let also LDi be the cotangent line bundle associated to Di on the stack of target expansions T as defined
in [Maulik and Pandharipande 2006, 1.5.2]. The line bundle LDi has a section which vanishes precisely
at expansions corresponding to bubbling at Di . Let ‰Di D c1.LDi / and let

q WM g;r;ˇ ..X;D/; E�/! T

be the classifying map corresponding to the universal target over the moduli space. The relative  –classes
then satisfy the following well-known lemma:

Lemma 5.1 �i;j 
rel
i;j D q�.‰i /� evrel�

i;j .c1.NDi=X //:

Proof See for example [Oberdieck and Pixton 2019, Proof of Lemma 12].

5.5 Cohomology-weighted partitions

Consider a H�.Di /–weighted partition �

(47) ..�1; ı1/; : : : ; .�l ; ıl// for ıj 2H�.Di / and �1 � � � � � �l � 1:

We write l D `.�/ for the length and j�j D
P
i �i for the size of the partition. The partition underlying �

is the ordered partition
E�D .�1; : : : ; �l/:

While the ıi are arbitrary cohomology classes on Di , we often take them to be elements of a fixed basis
B of H�.Di /. In this case we say � is B–weighted. Given a B–weighted partition �, the automorphism
group Aut.�/ consists of the permutation symmetries of �.

5.6 Gromov–Witten invariants

For i 2 f1; : : : ; N g consider H�.Di /–weighted partitions

�i D ..�i;j ; ıi;j //
`.�i /
jD1

and let E�i be the partition underlying �i . Fix also a class


 2H�..X;D/n/:

We define relative Gromov–Witten invariants by integration over the virtual fundamental class [Li 2002]
of the moduli space:

h�1; : : : ; �N j 
i
.X;D/

g;ˇ
WD

Z
ŒMg;r;ˇ..X;D/;E�/�vir

ev�.
/
NY
iD1

`.�i /Y
jD1

evrel
i;j .ıi;j /:
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We will also sometimes need to include  –classes in the integral. A more general definition is hence the
following. Let ai;j and bi be arbitrary nonnegative integers. Then

(48)
��
�i

`.�i /Y
jD1

. rel
i;j /

aij

�N
iD1

ˇ̌̌
.�b1 � � � �br /.
/

�.X;D/
g;ˇ

WD

Z
ŒMg;r;ˇ..X;D/;E�/�vir

rY
iD1

 
bi
i ev�.
/

NY
iD1

`.�i /Y
jD1

. rel
i;j /

aij evrel
i;j .ıi;j /:

If all bi D 0 we will simply write 
 instead of �b1 � � � �br .
/.

The discussion above also works when we allow the source curve of our relative stable map to be
disconnected. More precisely, we let

M
�

g;r;ˇ ..X;D/;
E�/

denote the moduli space of relative stable maps to .X;D/ as above except that we allow disconnected
domain curves and require the following condition:

(�) For any stable map f W †! .S �C/Œl� to a target expansion of the pair .S �C; Sz/, the stable
map f has nonzero degree on each of its connected components.

We define Gromov–Witten invariants in the disconnected case completely parallel to (48). The brackets
on the left-hand side will be denoted by a superscript �, as in h�i.X;D/;�.

5.7 Rubber moduli space

For any of the divisors E 2 fD1; : : : ;DN g consider the projective bundle

P D P .NE=X ˚OE /!E:

The projection has two canonical sections E0; E1 � P , called the zero and infinite sections, with normal
bundles NE=P ŠN_E=X and NE=X , respectively. Let

(49) M
�

g;r;˛..P ; E0 tE1/; E�/

be the moduli space of genus-g degree-˛ 2 H2.E;Z/ rubber stable maps with target .P ; E0 tE1/.
Elements of the moduli space are maps f W C ! Pl , where Pl is a chain of l copies of P with zero
sections glued along infinite section of the next components, satisfying a list of conditions. The degree
of a rubber stable map is fixed here to be �E�f�ŒC �D ˛, where �E W Pl !E is the natural projection.
In the definition of (49) we let the source curve be connected. If we allow disconnected domains and
require condition (�), we decorate the moduli space (and the invariants below) with the superscript �. As
before, we have evaluation maps at the relative markings denoted by evrel

i;j . By evaluating the composition
�E ıf at the interior marked points we also have a well-defined interior evaluation map:

ev WM
�

g;r;˛..P ; E0 tE1/; E�/!Er :
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Given H�.E/–weighted partitions � and �, and 
 2H�.Er/, we define:

h�;� j 
i.P ;E0tE1/;�g;˛ D

Z
ŒM
�

g;r;˛..P ;E0tE1/;E�/�
vir

ev�.
/
NY
iD1

`.�i /Y
jD1

evrel
i;j .ıi;j /:

5.8 Splitting formulas

We state two splitting formulas that we will need later on. Let � WD!X denote the inclusion. We begin
with the splitting of the relative diagonal:

Proposition 5.2 We have

h�1; : : : ; �N j�
rel
.X;D/i

.X;D/;�

g;ˇ

Dh�1; : : : ; �N j�X i
.X;D/;�

g;ˇ

�

NX
iD1

X
�

X
g1Cg2DgC1�`.�/

��˛Cˇ
0Dˇ

Q
i �i

jAut.�/j
h�1; : : : ; �g

i th

; : : : ; �N i
.X;D/;�

g1;ˇ 0
h�i ; �

_
j�Di

.P ;Di;0tDi;1/;�;�
g2;˛ :

In the above formula , � runs over all cohomology weighted partitions �D f.�i ; 
si /g of size ˇDi , with
weights from a fixed basis f
ig of H�.Di /. Moreover , we let �_D f.�i ; 
_si /g be the dual partition , with
weights from the basis f
_i g which is dual to f
ig.

Proof This is a special case of [Argüz et al. 2023, Theorem 3.10].

Next we explain how to remove the relative  –classes. Again we only need a special case (the general case
is similar), and without loss of generality we can consider relative  –classes for the first component D1.

Proposition 5.3 For any j 2 f1; : : : ; `.�1/g,

�1;j h 
rel
1;j�1; : : : ; �N i

.X;D/;�

g;ˇ

D�hO�1; �2; : : : ; �N i
.X;D/;�

g;ˇ

C

X
�

X
g1Cg2DgC1�`.�/

��˛Cˇ
0Dˇ

Q
i �i

jAut.�/j
h�1; : : : ; �g

i th

; : : : ; �N i
.X;D/;�

g1;ˇ 0
h�i ; �

_
i
.P ;D1;0tD1;1/;�;�
g2;˛ ;

where O�1 is the weighted partition �1 but with j th cohomology weight ı1j replaced by ı1j [ c1.ND1=X /.
Moreover , � runs over the same data as in Proposition 5.2.

Proof This follows from Lemma 5.1 and [Li 2002]; compare [Oberdieck and Pixton 2019, Lemma 12].
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5.9 Boundary restriction

We will also require the restriction of relative Gromov–Witten classes to the boundary. Consider the class
in H�.M g;r;ˇ ..X;D/// defined by

(50) J
.X;D/

g;ˇ
.� j 
/D ev�.
/

NY
iD1

`.�i /Y
jD1

evrel
i;j .ıi;j /ŒM g;r;ˇ ..X;D/; E�/�

vir:

If there exists a forgetful morphism

� WM g;r;ˇ ..X;D/; E�/!M g;n;

where nD r C
P
i `.
E�i /, consider also the pushforward

(51) I
.X;D/

g;ˇ
.� j 
/D ��

�
ev�.
/

NY
iD1

`.�i /Y
jD1

evrel
i;j .ıi;j /ŒM g;r;ˇ ..X;D/; E�/�

vir
�
:

Let u WM g�1;nC1!M g;n be the natural gluing morphism.

Proposition 5.4 We have

u�I
.X;D/

g;ˇ
.�1; : : : ; �N /

D I
.X;D/

g�1;ˇ
.�1; : : : ; �N j�

rel
.X;D//C

NX
iD1

X
m�0

gDg1Cg2Cm
ˇDˇ 0C��˛

X
b;b1;:::;bm
l;l1;:::;lm

Qm
iD1 bi

mŠ

n
��j
�
h
J
.X;D/;�

g1;ˇ 0

�
�1; : : : ; �i�1; ..b;�Di ;l/„ ƒ‚ …

.nC1/th

; .bj ; �Di ;lj /
m
jD1/; �iC1; : : : ; �N

�
�J .P ;Di;0tDi;1/;�;�g2;˛

�
..b;�_Di ;l/„ ƒ‚ …
.nC2/th

; .bj ; �
_
Di ;lj

/mjD1/; �i
�i

C ��j
�
h
J
.X;D/;�

g1;ˇ 0

�
�1; : : : ; �i�1; ..b;�Di ;l/„ ƒ‚ …

.nC2/th

; .bj ; �Di ;lj /
m
jD1/; �iC1; : : : ; �N

�
�J .P ;Di;0tDi;1/;�;�g2;˛

�
..b;�_Di ;l/„ ƒ‚ …
.nC1/th

; .bj ; �
_
Di ;lj

/mjD1/; �i
�io
;

where

� .nC1/th stands for labeling the corresponding marked points by nC 1,

� b; b1; : : : ; bm run over all positive integers such that bC
P
j bj D ˇDi ,

� �D D
P
l �D;l ˝�

_
D;l

is a Künneth decomposition of the diagonal of D.

Moreover , j is the embedding of the (closed and open) component

U �M g1;ˇ 0..X;D/; .
E� n E�i ; .b; b1; : : : ; bm//�M

�;�

g2;˛
..P ;Di;0 tDi;1/; E�i ; .b; b1; : : : ; bm//
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parametrizing pairs .f1 W C1!XŒk�; pi / and .f2 W C2! Pl ; p
0
i / such that the curve , which is obtained

by gluing C1 to C2 pairwise along the m markings labeled by bi , is connected. And we let

� W U !M g�1;nC2

be the map that forgets the maps f1 and f2, glues together the curves C1 and C2 pairwise along the
markings labeled by bi , and then contracts unstable components.

A related formula for the restriction of the double ramification cycle to the divisor M g�1;nC2!M g;n

was given (only with a sketch) by Zvonkine [2015].

Proof Let Mg;n be the Artin stack of prestable curves, where n D
P
i `.�i /. We refer to [Bae and

Schmitt 2022] for an introduction to the stack Mg;n. The map � factors as a morphism Q� to Mg;n

followed by the stabilization map st WMg;n!M g;n. Form the fiber diagram

M1 M2 M g;r;ˇ ..X;D/; E�/

Mg�1;nC2 W Mg;n

M g�1;nC2 M g;n

q

� � Q�

Qq u0

st st

u

Consider also the gluing map on prestable curves

QuD u0 ı Qq WMg�1;nC2!Mg;n:

We want to apply Proposition 5.6. Observe the following:

� Mg;n is smooth, and by [Bae and Schmitt 2022, Example 4] has a good filtration by quotient stacks.

� Since u0 WW !Mg;n is representable and Mg;n has affine stabilizers at geometric points [loc. cit.,
Proposition 3.1], by [Kresch 1999, Propositions 3.5.5 and 3.5.9] W has affine stabilizers at geometric
points.

� The gluing maps u WM g�1;nC2!M g;n and Qu WMg�1;nC2!Mg;n are both representable [Bae and
Schmitt 2022, Lemma 2.2].

� By [loc. cit., Proposition 3.13] the map

Qq WMg�1;nC2!W DMg;n �Mg;n
M g�1;nC2

is proper and birational. Since Qu is representable, Qq is representable.

� Since the domain and target of Qu are smooth, Qu is lci.

� By [Behrend 1997, Proposition 3], st WMg;n!M g;n is flat. Since u WM g�1;nC2!M g;n is lci, and
this is preserved by flat base change (see [Stacks 2005–, Tag 069I]), u0 is also lci.

� The map a WM g;r;ˇ ..X;D/; E�/!Mg;n is representable, since it is injective on stabilizers: the group
of automorphisms of .C !XŒk�; pi / is a subgroup of the group of automorphisms of .C; pi /.
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By the above, Qu and u are proper representable, so M1 and M2 are proper DM stacks.

By Proposition 5.6 we obtain that

.�0/Š D q�Q�
Š
W A�.M g;r;ˇ ..X;D/; E�//! A��1.M2/:

Consider the class
J WD J

.X;D/

g;ˇ
.�/:

We obtain

u�I
.X;D/

g;ˇ
.�/D .st ı �/�uŠJ D .st ı �/�.u0/ŠJ D .st ı �/�q� QuŠJ /D .q ı st ı �/� QuŠJ D �� QuŠJ;

where
� D q ı st ı � WMg�1;nC2 �Mg;n

M g;r;ˇ ..X;D/; E�/!M g;nC2:

Hence we need to compute the refined pullback QuŠJ .

The stack
Mg�1;nC2 �Mg;n

M g;r;ˇ ..X;D/; E�/

parametrizes relative stable maps .f WC !XŒk�; p1; : : : ; pr/ together with a chosen nonseparating nodal
point p 2 C and two markings pn1 and pnC2 on the partial normalization zC ! C at p. By [Argüz et al.
2023, Section 1.5] we have a disjoint union (with both components open and closed)

Mg�1;nC2 �Mg;n
M g;r;ˇ ..X;D/; E�/D Pg;r;ˇ ..X;D/; E�/tNg;r;ˇ ..X;D/; E�/:

The component Pg;r;ˇ ..X;D/; E�/ parametrizes relative stable maps where the marked point p maps to a
nonsingular point on some expanded degeneration XŒk� of .X;D/. By [Argüz et al. 2023, Theorem 3.2]
we then have

��. Qu
Š.J /jPg;r;ˇ..X;D/;E�/

/D I
.X;D/

g�1;ˇ
.�1; : : : ; �N j�

rel
.X;D//:

The other component Ng;r;ˇ ..X;D/; E�/ parametrizes maps where p maps to the singular locus, and
hence forces a splitting of the source curve C ,

C D C1[C2;

where f jC1 W C1 ! XŒa� is a relative stable map to .X;D/ and f jC2 W C2 ! Pl maps entirely into a
bubble of Di for some i . The marked points pnC1 and pnC2 have to lie on different components Ci ,
and hence there are two choices: pnC1 can lie on C1 and pnC2 on C2, or vice versa. The curve C is
obtained by gluing C1 and C2 along pnC1 and pnC2, as well as along “secondary” markings qi 2 C1
and q0i 2 C2 for i D 1; : : : ; m. These markings are called “secondary” because they will be forgotten by
pushforward along � to M g�1;nC2. Let b be the contact order of f with the divisor at pnC1, and let bi
be the contact order at the qi .

We consider the local structure of the component Ng;r;ˇ ..X;D/; E�/. A local versal family for the gluing
nodes of C is given by xyD s and xiyi D si for iD1; : : : ; m. Let t be étale locally the coordinate defining
the bubble splitting XŒa�[ Pl . The coordinate t is pulled back from the stack of target degeneration.
Then the local analysis of [Li 2002, Section 4.4] shows that t D sb and t D sbii . Hence Ng;r;ˇ ..X;D/; E�/,
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which is cut out by s D 0, is given by the equations fs D 0; sbii D 0g. On the other hand, the image stack
of the gluing morphism

(52) M g1;ˇ 0
�
.X;D/; .E� n E�i ; .b; b1; : : : ; bm//

�
�DmC1M

�;�

g2;˛
..P ;Di;0 tDi;1/; E�i ; .b; b1; : : : ; bm//

�
�!Ng;r;ˇ ..X;D/; E�/

is given by fs D 0; si D 0g. Since the gluing morphism is finite of degree jAut.�/j, by the argu-
ments in [Li 2002], especially Lemma 3.12, one obtains that the virtual class of Ng;r;ˇ ..X;D/; E�/ isQm
iD1 bi=jAut.b1; : : : ; bm/j times the pushforward by � of the natural virtual class on the domain of the

map (52).6 In total one obtains:

(53) . QuŠŒM g;r;ˇ .X;D/�
vir/jNg;r;ˇ..X;D/;E�/

D

NX
iD1

X
m�0

gDg1Cg2Cm
ˇ 0C��˛

X
bIb1;:::;bm

Qm
iD1 bi

mŠ
���

Š
DmC1

j �

�
�
ŒM g1;ˇ 0..X;D/;

E�nE�i ; .bg
nC1

;b1; : : : ;bm//�
vir
�ŒM

�;�

g2;˛
..P ;Di;0tDi;1/; E�i ; .bg

nC2

;b1; : : : ;bm//�
vir�

C(same term with the roles of .nC1/ and .nC2/ interchanged):

Here we have viewed .b1; : : : ; bm/ as a list of numbers and not as a partition, so that the factor
1=jAut.b1; : : : ; bm/j has to be replaced by 1=mŠ to compensate for overcounting.

Pushing forward (53) by � completes the proof.

Example 5.5 We adapt a basic example from [Li 2004] which illustrates the local analysis in the last
step of the proof above in the case of a universal target .A;D/D .A1=Gm; 0=Gm/. The universal target
was introduced in [Abramovich et al. 2017]; see also [Argüz et al. 2023, Proof of Theorem 3.2]. We let
w0 be the coordinate on the chart A1!A. Let T 1 DA1=Gm be the stack of 1–step target expansion of
.A;D/. The universal family of targets over T 1 is

AA1Œ1�D Bl0.A1 �A1/!A1;

modulo a quotient by G3
m. Explicitly, if t is the coordinate on A1 (the chart of T 1), then

AA1Œ1�D Bl0.A1 �A1/D V.w0z1 D tw1/�A1w0 �P1 �A1t ;

where w1 and z1 are the homogeneous coordinates on P1.

6The more modern viewpoint is to work relative to the moduli space of stable maps to the universal target .A1=Gm; 0=Gm/ as
proposed in [Abramovich et al. 2017]. The moduli space Mg;n;d .A

1=C�; 0=Gm/ is pure of expected dimension, and the virtual
class on Mg;r;ˇ .X;D/ is the virtual pullback of the fundamental class on Mg;n;d .A

1=C�; 0=Gm/. The local argument above
proves an equality of codimension-1 classes in Mg;n;d .A

1=C�; 0=Gm/. The equality (53) of virtual classes on Mg;r;ˇ .X;D/

follows from this by virtual pullback (after matching the relative perfect obstruction theories). See [Argüz et al. 2023, Proof of
Theorem 3.2] for a similar case. I thank P Bousseau for discussions related to this point.
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Consider a family of degenerating curves C D A2! A1s given by .x; y/ 7! s D xy, and consider the
commutative diagram

C A2w0;Z �
AA1Œ1�

A1s A1t

f

where we let A2w0;Z be the affine chart Spec.CŒw0; Z�/ � AA1Œ1� for Z D z1=w1, and the map f is
described by x 7! wr and y 7! Zr . Then the lower horizontal map is given by t 7! sr , that is the
coordinate defining the bubble t corresponds to the r th power of the coordinate defining the node of C .

Proposition 5.6 (Schmitt) Consider the following data:

� Let X , Y and Z be algebraic stacks locally of finite type over C of pure dimension , and assume
that Y has affine stabilizers at geometric points , and that Z is smooth and has a good filtration by
finite-type substacks.7

� Let g WX ! Y be proper birational of DM type , let f W Y !Z be representable and lci of relative
dimension k, and assume that hD g ıf WX !Z is representable and lci.

� Let W be a finite-type DM stack and let a WW !Z be a representable morphism.

Consider the fiber diagram
U V W

X Y Z

Qg Qf

a

h

g f

Then we have
f Š D Qg�h

Š
W A�.W /! A�Ck.V /:

Proof We work with the Chow groups as introduced in [Bae and Schmitt 2022, Appendix A; Kresch
1999]. In particular, for any locally finite-type algebraic stack X over C we define

A�.X /D lim
 ��
i

A�.Ui /;

where .Ui /i2I is a directed system of finite-type open substacks of X whose union is all of X , and
the Chow groups A�.Ui / are taken with Q–coefficients in the sense of Kresch [1999]. If X is pure
dimensional and admits a good filtration .Um/m2N by finite-type substacks then

Adim.X /�d .X /D Adim.X /�d .Um/ for all m> d:

In this case all functionalities of Kresch’s Chow groups also apply to A�.X /.
7In the sense of [Bae and Schmitt 2022, Definition A.2] or [Oesinghaus 2019, Definition 5], ie there exists a collection .Um/m2N
of open substacks of finite type of Z with Um � Ul for m� l and such that dim.Z nUm/ < dim.Z/�m.
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Kresch defines only a projective pushforward. A proper pushforward along proper morphisms of DM type
has been defined in [Bae and Schmitt 2022, Theorem B.17], assuming that the target has affine stabilizers
at geometric points, or equivalently is stratified by quotient stacks [Kresch 1999, Theorem 2.1.12]. In
particular, by our assumptions on Y there exists a proper pushforward g�.

Assume first that W is a smooth finite-type scheme. Then since the source and target of a are smooth, a
is lci. By the commutativity of refined pullbacks [Kresch 1999], and the compatibility [Bae and Schmitt
2022, Proposition B.18] of proper pushforward (along the DM-type morphism g) and refined Gysin
pullback (along the representable morphism a), we then have

(54) f ŠŒW �Df ŠaŠŒZ�DaŠf ŠŒZ�DaŠŒY �
.�/
D aŠg�ŒX�D Qg�a

ŠŒX�D Qg�a
ŠhŠŒZ�D Qg�h

ŠaŠŒZ�D Qg�h
ŠŒX�;

where (�) follows since g is birational and hence of degree 1; compare [Bae et al. 2023, Proposition 25].

In the general case, the Chow group ofW is generated by ��Œ zW �, where zW are smooth finite-type schemes
and � W zW !W is proper and representable. Form the fiber diagram

zU zV zW

U V W

X Y Z

QQg

�00

QQf

�0 �

Qg Qf

a

h

g f

With (54), and using again the compatibility [Bae and Schmitt 2022, Proposition B.18] of proper
pushforward and refined Gysin pullback (along the representable morphisms f; h), we find:

f Š��Œ zW �D �
0
�f

ŠŒ zW �D �0� QQg�h
ŠŒ zW �D Qg��

00
�h
ŠŒ zW �D Qg�h

Š��Œ zW �:

6 Relative Gromov–Witten theory of .K3�C; K3z/

6.1 Overview

Let S be a smooth projective K3 surface, let C be a smooth curve and let z D .z1; : : : ; zN / be a tuple of
distinct points zi 2 C . We specialize here to the relative Gromov–Witten theory of the pair

(55) .S �C; Sz/; Sz D
G
S � fzig:

After introducing our notation for the relative Gromov–Witten invariants in Section 6.2, we state in
Section 6.3 our main input: the correspondence between relative invariants of .S � C; Sz/ and the
invariants of the Hilbert scheme of S (Theorem 6.2).

Then we discuss further preliminaries. In Section 6.4 we state the reduced degeneration formula. In
Sections 6.6 and 6.7 we give basic evaluations of nonreduced invariants and reduced rubber invariants.
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The curve classes on S �C will be denoted throughout by

.ˇ; n/D ��ˇCnŒC � 2H2.S �C;Z/ŠH2.S;Z/˚ZŒC �:

6.2 Definition

For i 2 f1; : : : ; N g, consider H�.S/–weighted partitions

�i D ..�i;j ; ıi;j //
`.�i /
jD1

of size n with underlying partition E�i . Let 
 2H�..S �C; Sz/r/ be a cohomology class. If ˇ¤ 0, define
the partition function of reduced Gromov–Witten invariants

(56) Z
.S�C;Sz/

GW;.ˇ;n/ .�1; : : : ; �N j .�k1 � � � �kr /.
//

D .�1/.1�g.C/�N/nC
P
i `.�i /z.2�2g.C/�N/nC

P
i `.�i /

�

X
g2Z

.�1/g�1z2g�2h�1; : : : ; �N j .�k1 � � � �kr /.
/i
.S�C;Sz/;�

g;.ˇ;n/
;

where the invariants on the right-hand side are defined by integration over the reduced virtual fundamental
class of the moduli space which is obtained by cosection localization [Kiem and Li 2013] from the
surjective cosection constructed in [Maulik and Pandharipande 2013; Maulik et al. 2010]. If all ki D 0,
we often just write 
 instead of �k1 � � � �kr .
/. Sometimes we will also include psi classes  rel

i;j at the
relative markings where we follow the notation of (48). If ˇ D 0, the series (56) is defined to vanish.

For any .ˇ;m/ the moduli space M
�

g;r;.ˇ;n/..S � C; Sz/;
E�/ also carries the ordinary or standard (ie

nonreduced) virtual class. By the existence of the nontrivial cosection it vanishes for all ˇ ¤ 0, so it
is only interesting for ˇ D 0. In case ˇ D 0 we denote it by Œ��std. If we integrate over the “standard”
virtual class, we decorate the corresponding Gromov–Witten bracket and the partition function Z with a
superscript std. The rest of the notation is unchanged.

We can associate to every H�.S/–weighted partition a class on the Hilbert scheme:

Definition 6.1 The class in H�.S Œn�/ associated to a H�.S/–weighted partition �D f.�i ; ıi /g of size n
is defined by

(57) �D
1Q
i �i

Y
i

q�i .ıi /v¿:

We extend the Gromov–Witten bracket (48) for .S�C; Sz/, and the partition functionsZ.�/ by multilinear-
ity in the entries �i . Since the Gromov–Witten bracket is invariant under permutations of relative markings
that preserve the ramification profile (ie under Aut.E�i /), the partition function Z.S�C;Sz/GW;.ˇ;n/ .�1; : : : ; �N j 
/

only depends on the associated class �i 2H�.S Œn�/. Hence we obtain a morphism:

Z
.S�C;Sz/

GW;.ˇ;n/ .�; : : : ;� j 
/ WH
�.S Œn�/˝N !Q..z//:
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6.3 Hilb/GW correspondence

Assume that 2g.C /� 2CN > 0 so that .C; z1; : : : ; zN / is a marked stable curve,

� D Œ.C; z1; : : : ; zN /� 2M g;N :

Given classes �1; : : : ; �k 2H�.S Œn�/ we define the generating series

(58) Z
.S�C;Sz/

Hilb;.ˇ;n/ .�1; : : : ; �N /D
X
r2Z

.�p/r
Z
ŒMg.C/;N .S Œn�;ˇCrA/�vir

��.Œ��/
Y
i

ev�i .�i /:

By Lemma 4.2 the series (58) is a Laurent polynomial in p.

Theorem 6.2 [Nesterov 2021; 2024; Oberdieck 2024a] If ˇ 2H2.S;Z/ is primitive , then

Z
.S�C;Sz/

Hilb;.ˇ;n/ .�1; : : : ; �N /DZ
.S�C;Sz/

GW;.ˇ;n/ .�1; : : : ; �N /

under the variable change p D ez .

Proof Nesterov [2021; 2024] showed that the left-hand side is equal to a partition function of relative
Pandharipande–Thomas invariants of .S �C; Sz); see in particular [Nesterov 2024, Corollary 4.5]. The
statement then follows from the GW/PT correspondence for .S �C; Sz/ proven in [Oberdieck 2024a,
Theorem 1.2] whenever ˇ is primitive.

Remark 6.3 If the multiple cover conjecture [Oberdieck and Pandharipande 2016, C2] holds for an
effective curve class ˇ 2H2.S;Z/ then Theorem 6.2 also holds for ˇ [Oberdieck 2024a, Proposition
1.4].

6.4 Degeneration formula

We recall the reduced degeneration formula for reduced invariants. Let C  C1[x C2 be a degeneration
of C . Let

f1; : : : ; N g D A1 tA2

be a partition of the index set of relative divisors, and write z.Ai /D fzj j j 2 Aig. We choose that the
points in Ai specialize to the curve Ci disjoint from x. Recall also the Künneth decomposition of the
diagonal of the Hilbert scheme in the Nakajima basis:

Lemma 6.4 In H�.S Œn� �S Œn�/ we have

(59) �S Œn� D
X
�

.�1/n�`.�/
Q
i �i

jAut.�/j
���_;

where � runs over all cohomology-weighted partitions �D f.�i ; 
si /g with weights from a fixed basis
B D .
1; : : : ; 
24/ of H�.S/, and �_ D f.�i ; 
_si /g is the dual partition.

Proof For B–weighted partitions � and � one has
R
Sn� ��

_ D ı��.�1/
nC`.�/jAut.�/j=

Q
i �i .
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Proposition 6.5 For any ˛i 2H�.S �C/ we have

Z
.S�C;Sz/

GW;.ˇ;n/

�
�1; : : : ; �N

ˇ̌̌ Y
i

�ki .˛i /

�

D

X
f1;:::;rgDB1tB2

 
Z
.S�C1;Sz.A1/;x/

.ˇ;n/

� Y
i2A1

�i ; �1

ˇ̌̌ Y
i2B1

�ki .˛i /

�
Z
.S�C2;Sz.A2/;x/;std
.0;n/

�

� Y
i2A2

�i ; �2

ˇ̌̌ Y
i2B2

�ki .˛i /

�

CZ
.S�C1;Sz.A1/;x/;std
.0;n/

� Y
i2A1

�i ; �1

ˇ̌̌ Y
i2B1

�ki .˛i /

�
Z
.S�C2;Sz.A2/;x/

.ˇ;n/

�

� Y
i2A2

�i ; �2

ˇ̌̌ Y
i2B2

�ki .˛i /

�!
;

where .�1; �2/ stands for summing over the Künneth decomposition of the diagonal (59).

Proof The required modifications to the usual degeneration formula of Li [2001; 2002] needed in the
reduced case are discussed in [Maulik et al. 2010]. We refer also to [Oberdieck 2024a, Section 5.3]
for a discussion of the matching of signs and exponents, and to [loc. cit., Section 8.1] for a conceptual
explanation for the form of the equation.

6.5 Rubber invariants

We will also need generating series of rubber invariants. For any ˛i 2H�.S/ define

Z
.S�P1;S0;1/;�
GW;.ˇ;n/

�
�;�

ˇ̌̌ Y
i

�ki .˛i /

�
D .�1/�nC`.�/C`.�/z`.�/C`.�/

X
g2Z

.�1/g�1z2g�2
�
�;�

ˇ̌̌ Y
i

�ki .˛i /

�.S�P1;S0;1/;�;�

g;.ˇ;n/

;

where the brackets on the right-hand side are defined by integrating over the reduced virtual class of
the moduli space of rubber stable maps to .S �P1; S � f0;1g/. The rubber invariants for the standard
(nonreduced) virtual class are denoted by std.

6.6 Nonreduced invariants

We state two explicit evaluations of nonreduced relative invariants:

Proposition 6.6 [Bryan and Pandharipande 2008] For any cohomology-weighted partitions �1; : : : ; �N
of size n,

Z
.S�P1;Sz/;std
GW;.0;n/ .�1; : : : ; �N /D

Z
S Œn�

�1[ � � � [�N :
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Recall the class ı 2H 2.S Œn�/ from Section 3.

Proposition 6.7 Z
�;std
GW;.0;n/.�; �/D z

Z
S Œn�

ı[�[�:

Proof Consider first the connected rubber invariants h�;�i�
g;.0;n/

(the lack of � means it is connected).
By the stability of the moduli space 2g� 2C `.�/C `.�/ > 0. Hence we can apply the product formula,
which shows that the invariant vanishes for g � 2. If g D 1 all the cohomology weights of � and � have
to be of degree 0, and hence deg.�/C deg.�/� 2n� 2. Since the moduli space is of virtual dimension
2n� 1, the integral vanishes. This leaves g D 0. Let �D .�i ; 
i / and �D .�i ; 
 0i /. We findX

i

deg.
i /C
X
i

degi .

0
i /D 2:

On the other hand, by (29) we have

deg.�/D n� `.�/C
X
i

deg.
i / and deg.�/D n� `.�/C
X
i

deg.
 0i /;

and moreover we can assume the dimension constraint:

deg.�/C deg.�/D 2n� 1:

Substituting, we find `.�/C `.�/ D 3. If we assume that � D ..�a; 
a/.�b; 
b// and � D ..�c ; 
 0c//,
then by the product formula we obtain

h�;�i�g;.0;n/ D ıg0

Z
ŒM0;3.S;0/�std

��.DR0.�a; �b;��c// ev�1.
a/ ev�2.
b/ ev�3.

0
c/D ıg0

Z
S


a
b

0
c ;

where DRg.a/ is the double ramification cycle and we used that it is equal to 1 in genus 0.

For the disconnected case, recall that all connected nonrubber invariants of .S �P1; S0;1/ with only
relative insertions vanish (see eg [Oberdieck and Pixton 2018, Lemma 2]), except for the tube evaluationZ

ŒM
�

g.S�P1=S0;1;.0;n/;..n/;.n///�vir
ev�1.
/ ev�2.


0/D ı0g
1

n

Z
S



 0:

(This also proves Proposition 6.6 in the case N D 2.) Moreover, in the disconnected series, we have one
rubber term and the remaining terms are nonrubber.

We conclude that we must have `.�/ D `.�/˙ 1, otherwise all invariants vanish. We assume that
`.�/D `.�/C 1; the other case is parallel. We find that

Z
�;std
GW;.0;n/.�; �/D

X
g2Z

.�1/g�1.�1/�nC`.�/C`.�/z2g�2C`.�/C`.�/h�;�i
�;�
g;.0;n/

D

X
g2Z

.�1/g�1.�1/�nC`.�/C`.�/z2g�2C`.�/C`.�/
X

1�a;b�`.�/
a¤b

1�c�`.�/

�
ıgC`.�0/;0

Z
S


a
b

0
c

�

�

�
.�1/j�

0jC`.�0/ 1Q
i¤a;b �i

Q
i¤c �i

Z
S Œj�
0j�

Y
i¤a;b

q�i .
i /v¿[

Y
i¤c

q�i .

0
i /v¿

�
;
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where �0 is the partition � without the parts .�a; 
a/ and .�b; 
b/. Since it is of length `.�0/D `.�/� 2,
we obtain

Z
�;std
GW;.0;n/.�; �/D

zQ
i �i

Q
i �i

X
1�a;b�`.�/

a¤b
1�c�`.�/

.�1/�aC�b�a�b�c

�Z
S


a
b

0
c

�

�

Z
S Œn��a��b�

Y
i¤a;b

q�i .
i /v¿[

Y
i¤c

q�i .

0
i /v¿:

On the other side, recall that the operator of cup product with ı can be explicitly described as a cubic in
Nakajima operators (34). For i D j C k, one obtains

.qi .
i /; eıqj .
j /qk.
k/v¿/D .�1/
jCkijk

Z
S


i
j 
k;

where we write .�;�/ for the intersection pairing on S Œn�. One finds that
R
S Œn� ı[�[� vanishes unless

`.�/D `.�/˙ 1. Assuming that `.�/D `.�/C 1, we compute:Z
S Œn�

ı[�[�

D
1Q

i �i
Q
i �i

X
1�a;b�`.�/

a¤b
1�c�`.�/

.�1/�aC�b
�Z

S


a
b

0
c

�Z
S Œn��a��b�

Y
i¤a;b

q�i .
i /v¿[

Y
i¤c

q�i .

0
i /:

The claim follows by comparison.

6.7 Reduced rubber invariants

The reduced rubber invariants can be expressed in terms of the nonreduced ones by rigidification. This is
the K3 surface analogue of [Maulik 2009, Proposition 4.4]:

Proposition 6.8 For any D 2H 2.S/ and ˇ ¤ 0 we have

.Dˇ/Z
.S�P1;S0;1/;�
GW;.ˇ;n/ .�; �/DZ

.S�P1;S0;1;1/
GW;.ˇ;n/ .�; �;D/C

�Z
S Œn�

��

�
Z
.S�P1;S0/
GW;.ˇ;n/ ..1; p/

n
j �0.!D//;

where D D .1=.n� 1/Š/..1;D/.1; 1/n�1/.

Proof Rigidification of the rubber as discussed in [Maulik 2009, Proposition 4.3] (or [Maulik and
Pandharipande 2006] or [Oberdieck 2024a, Proposition 3.12]) implies

.ˇD/h�;�i
.S�P1;S0;1/;�
g;.ˇ;n/

D h�0.D/ j �;�i
.S�P1;S0;1/;�
g;.ˇ;n/

D h�0.!D/ j �;�i
.S�P1;S0;1/
g;.ˇ;n/

:
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For the disconnected rubber invariants we hence obtain that

.ˇ;D/Z
.S�P1;S0;1/;�
GW;.ˇ;n/ .�; �/

D

X
g2Z

.�1/g�1.�1/�nC`.�/C`.�/z2g�2C`.�/C`.�/
X

�D�0t�00

�D�0t�00

h�0.!D/ j �
00; �00i

.S�P1;S0;1/
gC`.�0/;.ˇ;n/

�

�
.�1/j�

0jC`.�0/ 1Q
�i2�0

�i
Q
i2�0 �i

Z
S Œj�
0j�

Y
�i2�0

q�i .
i /v¿[

Y
�i2�0

q�i .

0
i /v¿

�
DZ

.S�P1;S0;1/
GW;.ˇ;n/ .�0.!D/ j �;�/:

We now apply the degeneration formula, which gives

(60) Z
.S�P1;S0;1/
GW;.ˇ;n/ .�0.!D/ j �;�/

D

X
�

Z
.S�P1;S0;1;1/
GW;.ˇ;n/ .�; �; �/.�1/j�jC`.�/

Q
i �i

jAut.�/j
Z
.S�P1;S0/;std
GW;.0;n/ .�0.!D/ j �

_/

C

X
�

Z
.S�P1;S0;1;1/;std
GW;.0;n/ .�; �; �/.�1/j�jC`.�/

Q
i �i

jAut.�/j
Z
.S�P1;S0/
GW;.ˇ;n/ .�0.!D/ j �

_/:

We have the straightforward evaluation

Z
.S�P1;S0/;std
GW;.0;n/ .�0.!D/ j �

_/D

�R
S 
D if � D .1; 
/.1; p/n�1;
0 if � D .2; p/.1; p/n�2;

which gives usX
�

.�1/j�jC`.�/
Q
i �i

jAut.�/j
Z
.S�P1;S0/;std
GW;.0;n/ .�0.!D/ j �

_/� D
1

.n� 1/Š
..1;D/.1; 1/n�1/DD:

Moreover, in the second summand on the right of (60) we must have � D .1; 1/n for dimension reasons.
Using Proposition 6.6 the claim follows.

For primitive ˇ the second term on the right of the proposition is known:

Proposition 6.9 [Oberdieck 2019] If ˇ 2H2.S;Z/ is primitive , then

Z
.S�P1;S0/
GW;.ˇ;n/ ..1; p/

n
j �0.!D//D .ˇ;D/Coeff

qˇ
2=2

�
Gn.z; q/

‚2.z; q/�.q/

�
;

where G .z; q/D�‚.z; �/2D2z log.‚.z; �// with Dz D d=dz and q D e2�i� .

7 Holomorphic anomaly equations: .K3�C; K3z/

7.1 Overview

In this section we prove that the natural generating series of Gromov–Witten invariants of .S �C;K3z/
for an elliptic K3 surface S in primitive classes are quasimodular forms and satisfy a holomorphic anomaly
equation (Theorem 7.6). The idea is straightforward: we apply the product formula in Gromov–Witten
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theory and use the corresponding results from the Gromov–Witten theory of K3 surfaces which were
proven in [Maulik et al. 2010; Oberdieck and Pixton 2018].

The details require some work: First in Section 7.2 we introduce a special set of disconnected invariants
labeled by ] which is well adapted to the holomorphic anomaly equation. In Sections 7.3 and 7.4 we
recall the quasimodularity and holomorphic anomaly equations for K3 surfaces in this convention. In
Section 7.5 we then state and prove Theorem 7.6 using the product formula, and by a careful application
of the splitting formulas and the new boundary restriction formulas introduced in Section 5.

7.2 Preliminaries

To state the holomorphic anomaly equations we will need another convention for disconnected Gromov–
Witten invariants. Let � WX ! B be an elliptic fibration and let

M
]

g;n.X; ˇ/

be the moduli space of stable maps f W C !X from possibly disconnected curves of genus g in class ˇ,
with the following requirement:

(]) For every connected component C 0 � C at least one of the following holds:

(i) � ıf jC 0 is nonconstant, or

(ii) C 0 has genus g0 and carries n0 markings with 2g0� 2Cn0 > 0.

Parallel definitions apply to relative targets .X;D/ admitting an elliptic fibration to a pair .B;A/, moduli
spaces of rubber stable maps, etc. We will denote the invariants defined from moduli satisfying condition
(]) by a superscript ].

7.3 Quasimodularity

Let � WS!BŠP1 be an elliptic K3 surface with a section, letB and F denote the class of the section and
a fiber, respectively, and set W DBCF . For any tautological class taut 2 ��R�.M g;n/— or tautD 1 in
the unstable cases 2g�2CN � 0— and 
i 2H�.S/, consider (or recall from (43)) the generating series

F Sg .tautI 
1; : : : ; 
N /D
X
d��1

htautI 
1; : : : ; 
N iSg;WCdF q
d :

Theorem 7.1 [Maulik et al. 2010; Bryan et al. 2018, Section 4.6] For wt–homogeneous classes

i 2H

�.S/, we have
F Sg .tautI 
1; : : : ; 
N / 2

1

�.q/
QMods

for s D 2gCN C
P
i wt.
i /.

Consider the generating series of disconnected invariants (for the ]–condition)

F S;]g .tautI 
1; : : : ; 
N /D
X
d��1

qd
Z
ŒM

]

g;N .S;WCdF /�
vir
��.taut/

NY
iD1

ev�i .
i /:
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Corollary 7.2 For wt–homogeneous classes 
i 2H�.S/, we have

F S;]g .tautI 
1; : : : ; 
N / 2
1

�.q/
QMods

for s D 2gCN C
P
i wt.
i /.

Proof Recall that the standard virtual class satisfies

ŒM g;n.S; 0/�
std
D

8<:
ŒM 0;n �S� if g D 0;
c2.S/\ ŒM 1;n �S� if g D 1;
0 if g � 2:

If an invariant Z
ŒMg;n.S;0/�std

��.taut/
Y
i

ev�i .
i /

is to contribute, we must have

� g D 0 and
P
i wt.
i /D 2�n,

� g D 1 and
P
i wt.
i /D�n.

In both cases
�2C 2gCnC

X
i

wt.
i /D 0:

Now, if a connected components of M
]

g;N .S; ˇ/ contributes nontrivially to the disconnected Gromov–
Witten invariant, then by a second-cosection argument the component must parametrize stable maps
f W C ! S which are nonconstant only on one component C 0. Let g0 and N 0 be the genus and number of
markings on C 0. The above computation shows that

2gCN C

NX
iD1

wt.
i /D 2g0CN 0C
N 0X
jD1

wt.
ij /;

where ij are the indices of marked points on C 0. The claim hence follows from Theorem 7.1.

7.4 Holomorphic anomaly equation

We state the holomorphic anomaly equation for K3 surfaces in primitive classes:

Theorem 7.3 [Oberdieck and Pixton 2018] We have
d

dG2
F Sg .tautI 
1; : : : ; 
r/

D F Sg�1.taut0I 
1; : : : ; 
r ; �B/C 2
X

gDg1Cg2
f1;:::;rgDAtB

F Sg1.taut1I 
A; �B;1/F S;std
g2

.taut2I 
B ; �B;2/

� 2

rX
iD1

F Sg . i tautI 
1; : : : ; 
i�1; ����
i ; 
iC1; : : : ; 
r/�
X
a;b

.g�1/abTeaTebF
S
g .tautI 
1; : : : ; 
r/;

where we follow the notation of Conjecture C, and moreover:
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� �B;1; �B;2 stands for summing over the Künneth decomposition of the diagonal class �B 2
H�.B �B/, and we have suppressed the pullback to S �S .

This immediately yields the following for the series of disconnected invariants (compare with [Oberdieck
and Pixton 2019, Section 3.2] for a similar case):

Corollary 7.4 We have

d

dG2
F S;]g .tautI 
1; : : : ; 
r/

D F
S;]
g�1.taut0I 
1; : : : ; 
r ; �B/� 2

rX
iD1

F S;]g . i tautI 
1; : : : ; 
i�1; ����
i ; 
iC1; : : : ; 
r/

�

X
a;b

.g�1/abTeaTebF
S;]
g .tautI 
1; : : : ; 
r/:

Example 7.5 Instead of the proof (which is straightforward) let us consider a concrete example that
highlights all the main points. Consider the series

F S0 .W; F; F /D F
S;]
0 .W; F; F /D q

d

dq

1

�.q/
:

We compute in three different ways the G2–derivative. First directly:

d

dG2
F S0 .W; F; F /D

h
d

dG2
; q
d

dq

i
1

�.q/
D�2.�12/

1

�.q/
D 24

1

�.q/
:

Second, by the holomorphic anomaly equations for the connected series:

d

dG2
F S0 .W; F; F /D 2 � 2 �F

S
0 .F; U1/F

S;std
0 .U2; W; F /C 20F

S
0 .F; F; F /D 24

1

�.q/
:

Here the extra factor 2 comes from choosing which of the two F ’s goes to the two factors. Third, by the
disconnected holomorphic anomaly equation:

d

dG2
F
S;]
0 .W; F; F /DF

S;]
�1 .W; F; F;�B/�2F

S;]
0 . �1; F; F /C20F

S;]
0 .F; F; F /D .6�2C20/

1

�.q/
:

Here we have used that

F
S;]
�1 .W; F; F;�B/D 2F

S;]
�1 .W; F; F; F; 1/D 6F

S
0 .F; F /F

std
0 .W; F; 1/D 6

1

�.q/
;

�2F
S;]
0 . � 1; F; F /D�2

�
24

Z
M1;1

 1

�
F S0 .F; F /:

7.5 Relative geometry .S �C; Sz/

Consider the relative geometry

(61) .S �C; Sz/ for z D .z1; : : : ; zN / and Sz D
G
i

S � fzig;
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where we assume that the pair .C; z1; : : : ; zN / is stable, ie 2g� 2CN > 0. Define the generating series
of relative invariants satisfying the ] condition

F .S�C;Sz/;]g .�1; : : : ; �N j 
/D
X
d��1

qd h�1; : : : ; �N j 
i
.S�C;Sz/;]

g;.WCdF;n/
;

where �i areH�.S/–weighted partitions and 
 2H�..S�C; Sz/r/. Similarly, we have the corresponding
series of reduced rubber invariants; see Section 6.

We also require the nonreduced invariants:

F .S�C;Sz/;];std
g .�1; : : : ; �N j 
/D h�1; : : : ; �N j 
i

.S�C;Sz/;];std
g;.0;n/

:

Theorem 7.6 (a) For cohomology-weighted partitions �i D .�i;j ; ıi;j / where ıi;j 2 H�.S/ are wt–
homogeneous , we have

F .S�C;Sz/;]g .�1; : : : ; �N / 2
1

�.q/
QMods;

where s D 2gC
PN
iD1 `.�i /C

P
i;j wt.ıi;j /.

(b ) We have the holomorphic anomaly equation

d

dG2
F .S�C;Sz/;]g .�1; : : : ; �N /

D F
.S�C;Sz/;]
g�1 .�1; : : : ; �N j�

rel
.B�C;Bz/

/C 2

NX
iD1

X
m�0

gDg1Cg2Cm

X
b;b1;:::;bm
l;l1;:::;lm

Qm
iD1 bi

mŠ

�

�
F
.S�P1;S0;1/;�;];std
g1

�
�i ; ..b;�B;l/; .bi ; �S;li /

m
iD1/

�
�F .S�C;Sz/;]g2

�
�1; : : : ; �i�1; ..b;�

_
B;l/; .bi ; �

_
S;li

/miD1/; �iC1; : : : ; �N
�

CF
.S�P1;S0;1/;�;]
g1

�
�i ; ..b;�B;l/; .bi ; �S;li /

m
iD1/

�
�F .S�C;Sz/;];std
g2

�
�1; : : : ; �i�1; ..b;�

_
B;l/; .bi ; �

_
S;li

/miD1/; �iC1; : : : ; �N
��

� 2

NX
iD1

`.�i /X
jD1

F .S�C;Sz/;]g .�1; : : : ; �i�1;  
rel
i;j�

.j /
i ; �iC1; : : : ; �N /

�

X
a;b

.g�1/abTeaTebF
.S�C;Sz/;]
g .�1; : : : ; �N /:

Here the b; b1; : : : ; bm run over all positive integers such that bC
P
i bi D n, and the l and li run over

the splitting of the diagonals of B and S , respectively:

�B D
X
l

�B;l ˝�
_
B;l ; 8i; �S D

X
li

�S;li ˝�
_
S;li

:

Moreover , �.j /i is the weighted partition �i but with j th weight ıij replaced by ����.ıij /.
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Proof Consider a stable map f W†! .S �C/Œk� parametrized by M
]

g;.WCdF;n/..S �C; Sz/;
E�/. In

order for the connected component of the moduli space containing f to contribute nontrivially to the
Gromov–Witten invariant, there must be precisely one connected component †0 � † where f is of
nonzero degree over the K3 surface S . Moreover, we claim that f j†0 in this case is also of nonzero
degree over C . Indeed if not, then the remaining components yield a factor of

h�1; : : : ; �N i
.S�C;Sz/;];std
g 0;.0;n/

;

which have to vanish for dimension reasons (since the standard virtual class is dimension one less than the
reduced virtual class and the degree of the insertions �1, �2 and �3 are chosen to sum up to the degree
of the reduced virtual class). Since .C; z/ is stable, it follows that †0 satisfies 2g.†0/� 2Cn.†0/ > 0,
so its stabilization is well defined. Similarly, if †0 � † is a connected component whose degree over
the K3 surface S is trivial, then either 2g.†0/� 2Cn.†/ > 0 by assumption of the moduli space, or the
degree over C is nontrivial. In the latter case by the stability of .C; z/ we have that †0 has again at least
N special points and genus � g.C /; hence †0 and its markings defines a stable curve. Note also since
we have no interior markings, there are no contributions from contracted genus-g � 2 components. Let
M
];contr
g;.WCdF;n/..S�C; Sz/;

E�/ be the union of connected components which have a nontrivial contribution,
where we have written E�D .E�1; : : : ; E�N /. We have shown that there exists a commutative diagram

M
];contr
g;.WCdF;n/..S �C; Sz/;

E�/ M
]

g;
P
i `.�i /

.S;W C dF /

M
0

g;n..C; z/;
E�/ M

0

g;n

q

�

where M
0

g;n.X;D/ is the moduli space of disconnected relative stable maps where each connected
component of the source is stable, and M

0

g;n is simply the moduli space of disconnected stable curves
(where each connected component is stable).

Recall from (51) the class

I .C;z/;0g;n .E� j 
/D ��.ev�.
/ŒM g;r;ˇ ..C; z/; E�/�
vir/:

Then applying the product formula of [Behrend 1999; Lee and Qu 2018] we conclude that

F .S�C;Sz/;]g .�1; : : : ; �N /D F
S;]
g

�
I .C;z/;0g;n .E�/I

`.�i /Y
iD1

Y
j

ıi;j

�
:

The first claim hence follows from Corollary 7.2.

For the second claim we apply the holomorphic anomaly equation of Corollary 7.4. Let

� WM
0

g�1;nC2!M
0

g;n
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be the morphism that glues the .nC1/th and .nC2/th marked points. By an application of Proposition 5.4
we then have

��I .C;z/;0g;n .E�/D I
.C;z/;0

g�1;ˇ
.E� j�rel

.C;z//C

NX
iD1

X
m�0

gDg1Cg2Cm

X
b;b1;:::;bm
l;l1;:::;lm

Qm
iD1 bi

mŠ

�

n
��j
�
h
J
.C;z/;�

g1;ˇ 0
.�1; : : : ; �i�1; .b; b1; : : : ; bm/; �iC1; : : : ; �N /

�J .P
1;f0;zi g/;�;�

g2;˛
..b; b1; : : : ; bm/; �i /

i
C .reversed/

o
;

where (reversed) stands for the same term as before but with the role of the markings .nC1/ and .nC2/
reversed, and the rest of the notation is as in Proposition 5.4 (except that we do not require the glued curve
to be connected). Since only the .nC1; nC2/th marked points are not glued, we exclude precisely those
components of the moduli space where there is a totally ramified morphism from a genus-0 component to
rubber .P1; 0t1/which is ramified over 0 by some relative marking �i;j and over1 by b (corresponding
to the marking labeled nC 1 or nC 2). Applying the product formula in reverse, we hence find that

F
S;]
g�1

�
��I .C;z/;0g;n .E�/I

`.�i /Y
iD1

Y
j

ıi;j

�
accounts for precisely the first two terms on the right of Theorem 7.6(b), except for the components where
we have a contribution from a totally ramified map to a bubble attached to the marking b.

The second term on the right of Corollary 7.4 is

�2

rX
iD1

F S;]g .I .C;z/;�g;n .E�/I 
1; : : : ; 
j�1;  i�
���
j ; 
jC1; : : : ; 
r/;

where we write .
1; : : : ; 
r/D .ıij /i;j . Again we apply the product formula in reverse. For that we need
to compare the psi-classes  i on the domain and target of the morphism:

M
];contr
g;.WCdF;n/..S �C; Sz/;

E�/
q
�!M

]

g;
P
i `.�i /

.S;W C dF /:

Precisely,
q�. i;j /D  

rel
i;j �D;

where D is the virtual boundary divisor parametrizing splittings of maps f WC !XŒk� where the relative
marking �i;j lies on a genus-0 component mapping entirely into the bubble such that the underlying
curve is contracting after forgetting the map to .C; z/. We hence obtain precisely the third term in part
(b) of the claim, plus the contribution we were missing in the first two terms.

Finally, the third term in Corollary 7.4 yields precisely part (b) in our claim.

Remark 7.7 The holomorphic anomaly equation of Theorem 7.6 is a version (for reduced virtual classes)
of the holomorphic anomaly equation conjectured for the relative Gromov–Witten theory of elliptic
fibrations in [Oberdieck and Pixton 2019, Conjecture D]. The form in [loc. cit.] is more natural, but
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requires more notation (for one thing, it is defined on the cycle level). Theorem 7.6 is then a special case of
the following statement: if the holomorphic anomaly equation (in the form of [loc. cit., Conjecture B]) holds
for an elliptic fibration S!B , then for any relative pair .X;D/ the holomorphic anomaly equation holds
for the elliptic fibration S�X!B�X relative to S�D!B�D (in the form of [loc. cit., Conjecture D]).

8 Holomorphic anomaly equations: primitive case

8.1 Overview

Let S ! B be an elliptic K3 surface and recall the generating series

F S
Œn�

g .tautI 
1; : : : ; 
N /D
X
d��1

X
r2Z

htautI 
1; : : : ; 
N iS
Œn�

g;WCdFCrAq
d .�p/r ;

where W D B C F , and B and F are the section and fiber class. The following are the conjectural
quasi-Jacobi form property and holomorphic anomaly equation in the special case of primitive classes.
We follow parallel notation as in Conjecture C.

Conjecture E (a) For wt–homogeneous classes 
i , we have

F S
Œn�

g .tautI 
1; : : : ; 
N / 2
1

�.q/
QJack;n�1;

where k D n.2g� 2CN/C 2C
P
i wt.
i /.

(b ) Assuming part (a), we have

d

dG2
F S

Œn�

g .tautI 
1; : : : ; 
N /

D F S
Œn�

g�1 .taut0I 
1; : : : ; 
N ; U /C 2
X

gDg1Cg2
f1;:::;N gDAtB

F S
Œn�

g1
.taut1I 
A; U1/F S

Œn�;std
g2

.taut2I 
B ; U2/

� 2

NX
iD1

F S
Œn�

g . i tautI 
1; : : : ; 
i�1; U.
i /; 
iC1; : : : ; 
N /

�

X
a;b

.g�1/abTeaTebF
S Œn�

g .tautI 
1; : : : ; 
N /:

In this section we prove the following:

Theorem 8.1 Conjecture E holds when g D 0 and N � 3.

The proof below proceeds in three steps. After reducing to N D 3 and tautD 1, the GW/Hilb correspon-
dence (Theorem 6.2) implies the following basic statement (see (62))

F S
Œn�

0 .�1; �2; �3/D
X
g2Z

z2g�2�nC
P
i l.�i /.�1/g�1C

P
i l.�i /F

.S�P1;S0;1;1/;]
g .�1; �2; �3/
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under the variable change p D ez . By Theorem 7.6 we know that each F .S�P1;S0;1;1/;]
g .�1; �2; �3/ is

a quasimodular form satisfying a holomorphic anomaly equation. Moreover, the Hilbert scheme series
F S

Œn�

0 .�1; �2; �3/ on the left satisfies the structure described in Proposition 4.1. Our main work is then
to turn these two inputs into the quasi-Jacobi form property and the holomorphic anomaly equation for
quasi-Jacobi forms for the Hilbert scheme series. In Section 8.2 we first discuss that the left-hand side is
a quasi-Jacobi form. Then in Section 8.3 we reduce the holomorphic anomaly equation for the left-hand
side to an identity of the corresponding z–series. This is done by using Lemma 2.15 on the comparison
of the G2–holomorphic anomaly equation for quasi-Jacobi forms with the factorwise G2–holomorphic
anomaly equation on the z–expansion. Finally, the required identity is checked in Section 8.4 in a longer
and technical 4–step argument.

8.2 Quasi-Jacobi form property

We start with the quasi-Jacobi form part of Theorem 8.1:

Proposition 8.2 Assume that g D 0 and N � 3. For wt–homogeneous classes 
i we have

F S
Œn�

g .tautI 
1; : : : ; 
N / 2
1

�.q/
QJacs;n�1;

where s D n.2g� 2CN/C 2C
P
i wt.
i /.

Proof For gD0 andN �3 we can take tautD1. By using the divisor equation the claim forN 2f0; 1; 2g
reduces to N D 3. Consider three H�.S/–weighted partitions,

�i D .�ij ; ıij /j for i D 1; 2; 3:

We argue in three steps:

Step 1 Under the variable change p D ez the zr coefficient in �.q/F S
Œn�

0 .�1; �2; �3/ is a quasimodular
form of weight r CnC 2C

P
i wt.�i /.

Proof of Step 1 By Theorem 6.2 under the variable change p D ez we have

F S
Œn�

0 .�1; �2; �3/D
X
d��1

Z
.S�P1;S0;1;1/
GW;.WCdF;n/ .�1; �2; �3/q

d :

Since .P1; 0; 1;1/ is stable and there are no interior markings, we have the inclusion

M
]

g;.WCdF;n/..S �P1; S0;1;1/; E�/�M
�

g;.WCdF;n/..S �P1; S0;1;1/; E�/;

and moreover, every connected component in the complement does not contribute to the Gromov–Witten
invariant since the obstruction theory will admit an extra cosection coming from stable maps with two
components of the domain curve of nontrivial degree over S . Hence

(62) F S
Œn�

0 .�1; �2; �3/D
X
g2Z

z2g�2�nC
P
i l.�i /.�1/g�1C

P
i l.�i /F

.S�P1;S0;1;1/;]
g .�1; �2; �3/:
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By Theorem 7.6(a) the series �.q/F .S�P1;S0;1;1/;]
g .�1; �2; �3/ is a quasimodular form of weight

2gC

3X
iD1

`.�i /C
X
i;j

wt.ıi;j /:

Hence under p D ez the zr coefficient of �.q/F S
Œn�

0 .�1; �2; �3/ is a quasimodular form of weight
r C s where

s D

�
2gC

X
i

`.�i /C
X
i;j

wt.ıij /
�
�

�
2g� 2�nC

X
i

`.�i /

�
D nC 2C

X
i

wt.�i /:

Step 2 �.q/F S
Œn�

0 .�1; �2; �3/ 2MQJacs;n�1, where s D nC 2C
P
i wt.�i /.

Proof of Step 2 We argue by induction on the total weight of the insertionsX
i

wt.�i /D L:

We assume that the claim holds for all insertions �0i with
P
i wt.�0i / < L. By induction and Lemma 3.1

we have
3X
iD1

F S
Œn�

0 .�1; : : : ; �i�1; Tı�i ; �iC1; : : : ; �3/ 2MQJacs�1;n�1 :

As in Step 2 of the proof of Proposition 4.1, we consider the integral with respect to A

zF D

3X
iD1

Z
F S

Œn�

0 .�1; : : : ; �i�1; Tı�i ; �iC1; : : : ; �3/dA;

which lies in MQJacs;n�1. Consider also the difference

F.p; q/D F S
Œn�

0 .�1; �2; �3/� zF .p; q/:

Then as shown in (46) there exists power series fi .q/ 2QŒŒq�� such that

F.p; q/D

�
��1.q/‚2m.p; q/}0.p; q/

Pm
iD2 fi .q/}.p; q/

m�i if 3nC
P3
iD1 `.�i / is even;

��1.q/‚2m.p; q/
Pm
iD0 fi .q/}.p; q/

m�i if 3nC
P3
iD1 `.�i / is odd:

By Step 1 (for the term F S
Œn�

0 .�1; �2; �3/) and by Lemma 2.15 (for zF 2MQJacs;n�1) every zr coefficient
of F.p; q/ is a quasimodular form of weight r C s. By Lemma 2.16 or Lemma 2.17 (depending on the
parity of 3nC

P3
iD1 `.�i /) the claim follows.

Step 3 �.q/F S0 .�1; �2; �3/ 2 QJacs;n�1, where s D nC 2C
P
i wt.�i /.

Proof of Step 3 The functionF.z; �/D�.q/F S0 .�1; �2; �3/ defines a meromorphic function C�H!C

which is holomorphic away from the lattice points z=.2�i/D �� C� for all �;� 2 Z.

By Proposition 4.1(b) the expansion of z around z D 0 takes the form

F.z; �/D
X
k�0

fk.�/z
k;
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where fk.�/ are quasimodular forms. This shows that F.z; �/ is holomorphic at z D 0.

To check the other lattice points we apply Lemma 2.12, which yields the transformation

F.zC 2�i.�� C�/; �/D q��
2mp�2�me��.d=dA/F.z; �/:

By Proposition 4.1(a) (the behavior under d=dA) this equals

q��
2mp�2�m�.q/F S0 .tautI e��Tı�1; e��Tı�2; e��Tı�3/:

Since T is nilpotent there are only finitely many terms on the right-hand side. Hence by Proposition 4.1(b)
again, the right-hand side is holomorphic at z D 0.

8.3 Reduction

Recall the operator that takes the G2–derivative of a power series in z with coefficients quasimodular
forms factorwise: �

d

dG2

�
z
W QMod..z//! QMod..z//:

After having shown Conjecture E(a) we now reduce part (b) to a statement about the z–series of the
3–point function:

Proposition 8.3 Conjecture E(b ) holds for gD 0 and N � 3 if , for any cohomology-weighted partitions
�1, �2 and �3, we have

(63)
�
d

dG2

�
z
F S

Œn�

0 .�1; �2; �3/

D 2
�
F S

Œn�

0 .�1; U.�2�3//�F
S Œn�

0 .U�1; �2�3/CF
S Œn�

0 .�2; U.�1�3//�F
S Œn�

0 .U�2; �1�3/

CF S
Œn�

0 .�3; U.�1�2//�F
S Œn�

0 .U�3; �1�2/
�

�

X
a;b

.G�1/abTeaTebF
S Œn�

0 .�1; �2; �3/

� 2z.F S
Œn�

0 .Tı�1; �2; �3/CF
S Œn�

0 .�1; Tı�2; �3/CF
S Œn�

0 .�1; �2; Tı�3//

� 2.n� 1/z2F S
Œn�

0 .�1; �2; �3/:

Proof Part (b) states that Conjecture E is compatible under the divisor equations, string equation and
restriction to boundary. This can be proven parallel to [Oberdieck and Pixton 2018, Section 2] or [Bae
and Buelles 2021, Section 3]. Hence it suffices to consider the case ˛ D 1, g D 0 and N D 3, ie to prove
the holomorphic anomaly equation for F S

Œn�

0 .�1; �2; �3/.

One has thatX
f1;:::;3gDAtB

F S
Œn�

0 .1I�A; U1/F
S Œn�;std
0 .1I�B ; U2/

D F S
Œn�

0 .�1; U.�2�3//CF
S Œn�

0 .�2; U.�1�3//CF
S Œn�

0 .�3; U.�1�2//;
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and by expressing  i as boundary we also get

F S
Œn�

0 . 1IU�1; �2; �3/D F
S Œn�

0 .U�1; �2�3/:

Hence the equation that we need to prove is

(64) d

dG2
F S

Œn�

0 .�1; �2; �3/

D 2
�
F S

Œn�

0 .�1; U.�2�3//�F
S Œn�

0 .U�1; �2�3/CF
S Œn�

0 .�2; U.�1�3//�F
S Œn�

0 .U�2; �1�3/

CF S
Œn�

0 .�3; U.�1�2//�F
S Œn�

0 .U�3; �1�2/
�

�

X
a;b

.G�1/abTeaTebF
S Œn�

0 .�1; �2; �3/:

We now apply the variable change pD ez and view F0.�1; �2; �3/ as a power series in z with coefficients
quasimodular forms. Since F0.�1; �2; �3/ are quasi-Jacobi forms of index n� 1 by Lemma 2.15, we
have the following relation of Jacobi and factorwise G2–derivative:�
d

dG2

�
z
F S

Œn�

0 .�1; �2; �3/

D
d

dG2
F S

Œn�

0 .�1; �2; �3/� 2z
d

dA
F S

Œn�

0 .�1; �2; �3/� 2z
2.n� 1/F S

Œn�

0 .�1; �2; �3/:

By Proposition 4.1 we have that

d

dA
F S

Œn�

0 .�1; �2; �3/D F
S Œn�

0 .Tı�1; �2; �3/CF
S Œn�

0 .�1; Tı�2; �3/CF
S Œn�

0 .�1; �2; Tı�3/:

Expressing the left-hand side in (64) in terms of .d=dG2/z then yields the claim.

8.4 Conclusion

We aim to prove the holomorphic anomaly equation (63), which by Proposition 8.3 gives us the remaining
part of Theorem 8.1. We start with the expression given in (62),

(65) F S
Œn�

0 .�1; �2; �3/D
X
g2Z

z2g�2�nC
P
i l.�i /.�1/g�1C

P
i l.�i /F

.S�P1;S0;1;1/;]
g .�1; �2; �3/:

We will compute the factorwise G2–derivative .d=dG2/z using the holomorphic anomaly equation given
in Theorem 7.6, and then match all the terms with the right-hand side of (63).

We analyze all four terms appearing in the right-hand side of Theorem 7.6 in a sequence of lemmata:

Lemma 8.4 (term 1) We haveX
g2Z

z2g�2�nC
P
i l.�i /.�1/g�1C

P
i l.�i /F

.S�P1;S0;1;1/;]
g�1 .�1; �2; �3 j�

rel
.B�C;Bz/

/

D .2� 2n/z2F S
Œn�

0 .�1; �2; �3/:
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Proof Let ˇ D ˇd DW C dF . By the splitting formula of Proposition 5.2 applied in the reduced case
we have

h�1; �2; �3 j�
rel
.B�C;Bz/

i
.S�P1;S0;1;1/;]
g;.ˇ;n/

D h�1; �2; �3 j�B�C i
.S�P1;S0;1;1/;]
g;.ˇ;n/

�

X
i2f1;2;3g;�

g1Cg2DgC1�`.�/

Q
i �i

jAut.�/j

�
�
h�1; : : : ; �g

i th

; : : : ; �N i
.S�P1;S0;1;1/;];std
g1;.0;n/

h�i ; �
_
j�Di

.S�P1;S0;1/;];�
g2;.ˇ;n/

Ch�1; : : : ; �g

i th

; : : : ; �N i
.S�P1;S0;1;1/;]
g1;.ˇ;n/

h�i ; �
_
j�Di

.S�P1;S0;1/;];�;std
g2;.0;n/

�
To analyze the first term above we now use the Künneth decomposition

�B�C D�B�C D .!1C!2/.F1CF2/:

The moduli space M 1;1;.0;0/..S �P1; S0;1;1/;¿/ is naturally isomorphic to M 1;1�S �P1 with virtual
class given by

e
�
H 1.†; f �.T

log
.S�P1;S0;1;1/

//
�
D e.T

log
.S�P1;S0;1;1/

/��1c2.T
log
.S�P1;S0;1;1/

/;

where we used the log tangent bundle

T
log
.S�P1;S0;1;1/

D TS ˚T
log
.P1;f0;1;1g/

D TS ˚OP1.�1/:

It follows that
h�0.˛/i

.S�P1;S0;1;1/
gD1;.0;0/

D

�
0 if ˛ 2 f1; F g;
�1 if ˛ D !:

Observe that under the (]) convention we can have genus-1 components that are contracted, but since we
only have two interior markings there can be no contracted genus-0 component. Moreover, genus � 2
contracted component are ruled out since the K3 virtual class vanishes. Hence applying the divisor
equation yields

h�1; �2; �3 j�B�C i
.S�P1;S0;1;1/;]
g;.ˇ;n/

D 2h�1; �2; �3 j F;!i
.S�P1;S0;1;1/;]
g;.ˇ;n/

D 2h�0.!/i
.S�P1;S0;1;1/
gD1;.0;0/

h�1; �2; �3i
.S�P1;S0;1;1/;�
g;.ˇ;n/

C 2

�Z
.ˇ;n/

!

�
h�1; �2; �3i

.S�P1;S0;1;1/;�
g;.ˇ;n/

D .�2C 2n/h�1; �2; �3i
.S�P1;S0;1;1/;�
g;.ˇ;n/

:

On the other hand, �D D F1CF2, so we find

h�i ; �
_
j�Di

.S�P1;S0;1/;];�
g2;.ˇ;n/

D 2h�i ; �
_
j �0.1/�0.F /i

.S�P1;S0;1/;];�
g2;.ˇ;n/

:

If the marked point carrying �0.1/ lies on a component of a curve which remains stable after forgetting
the marking, ie where on the corresponding connected component of the moduli space the morphism
forgetting the marking is well defined, then since the integrand is pulled back from the forgetful morphism,
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the contribution vanishes. Alternatively, �0.1/ lies on a contracted genus-1 component, which yields
the contribution

h�0.1/i
.S�P1;S0;1/;�
gD1;.0;0/

h�i ; �
_
j �0.F /i

.S�P1;S0;1/;�
g;.ˇ;n/

;

where since �0.1/ stabilizes the rubber action, the second factor is nonrubber(!). The first factor is nonzero,
but the second factor vanishes by the product formula and the general vanishing (see eg [Oberdieck and
Pixton 2018, Lemma 2])

��ŒM g;r.P
1; �; �/�vir

D 0

for � the forgetful morphism to M g;rC`.�/C`.n/ whenever 2g�2CrC`.�/C`.�/ > 0. The case where
the rubber carries the standard virtual class is similar.

In summary:

h�1; �2; �3 j�
rel
.B�C;Bz/

i
.S�P1;S0;1;1/;]
g;.ˇ;n/

D 2.n� 1/h�1; �2; �3i
.S�P1;S0;1;1/;�
g;.ˇ;n/

:

Replacing g by g� 1 and summing over the genus then yieldsX
g2Z

z2g�2�nC
P
i l.�i /.�1/g�1C

P
i l.�i /h�1; �2; �3 j�

rel
.B�C;Bz/

i
.S�P1;S0;1;1/;]
g�1;.ˇ;n/

D z2.�1/
X
g2Z

z2.g�1/�2�nC
P
i l.�i /.�1/.g�1/�1C

P
i l.�i /2.n� 1/h�1; �2; �3i

.S�P1;S0;1;1/;�
g;.ˇ;n/

D�2.n� 1/z2Z
.S�P1;S0;1;1/
GW;.ˇ;n/ .�1; �2; �3/D�2.n� 1/z

2Z
.S�P1;S0;1;1/
Hilb;.ˇ;n/ .�1; �2; �3/;

where we used the triangle of correspondences in the last step. Summing over the curve class ˇd completes
the lemma.

For the second term we need first some preparation:

Lemma 8.5 The class U 2H�.S Œn�/ has Künneth decomposition

U D
X
m�0

X
bIb1;:::;bm
lIl1;:::;lm

.�1/mCnC1
Qm
iD1 bi

mŠ
..b;�B;l/; .bi ; �S;li /

m
iD1/� ..b;�

_
B;l/; .bi ; �

_
S;li

/miD1/;

where the b; b1; : : : ; bm run over all positive integers such that bC
P
i bi D n, and the l and li run over

the splitting of the diagonals of B and S , respectively:

�B D
X
l

�B;l ˝�
_
B;l ; 8i; �S D

X
li

�S;li ˝�
_
S;li

:

Proof Let qi and q0i denote the Nakajima operators acting on the first and second copies of S Œj � �S Œj �,
respectively. Then

U D�
X
b>0

1

b2
qbq�b.F1CF2/D�

X
b>0

X
j�jDn�b

1

b2
.�1/bqbq

0
b.F1CF2/�S Œn�b�
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D�

X
b>0

X
j�jDn�b

1

b2
.�1/bqbq

0
b.F1CF2/

.�1/jljC`.�/

jAut.�/j
Q
i �i

q�1q
0
�1
.�S / � � � q�`.�/q

0
�`.�/

.�S /

D

X
m�0

X
bIb1;:::;bm

.�1/nCmC1
1

mŠ

1

b2
1Q
i bi

qbq
0
b.F1CF2/qb1q

0
b1
.�S / � � � qbmq

0
bm
.�S /:

Using Definition 6.1 to rewrite this in terms of weighted partitions yields the claim.

Lemma 8.6 (term 2a) We have

(66) 2
X
g2Z

z2g�2�nC
P
i l.�i /.�1/g�1C

P
i l.�i /

X
m�0

gDg1Cg2Cm

X
bIb1;:::;bm
lIl1;:::;lm

Qm
iDj bj

mŠ

�F�;];std
g1

�
�1; ..b;�B;l/; .bi ;�S;li /

m
iD1/

�
F
.S�P1;S0;1;1/;]
g2

�
..b;�_B;l/; .bi ;�

_
S;li

/miD1/;�2;�3
�

D 2zF S
Œn�

0 .U.ı�1/;�2;�3/:

Proof By Lemma 8.5, via a careful matching of the signs and z factors, and observing that since we
have no interior markings the (]) convention yields the same invariant as the (�) convention, the left-hand
side in (66) equals

2
X
d

qdZ
.S�P1;S0;1/;�;std
.0;n/

.�1; U1/Z
.S�P1;S0;1;1/
.WCdF;n/

.U2; �2; �3/;

where we write U1 and U2 for summing over the Künneth factors of the class U 2H�.S Œn� �S Œn�/. By
Proposition 6.7 and Theorem 6.2 the above then becomes

2
X
d

qdz

�Z
S Œn�

ı�1U1

�
Z
.S�P1;S0;1;1/
.WCdF;n/

.U2; �2; �3/D 2
X
d

qdzZ
.S�P1;S0;1;1/
.WCdF;n/

.U.ıı1/; �2; �3/

D 2zF S
Œn�

0 .U.ı�1/; �2; �3/:

Lemma 8.7 (term 2b) We have

2
X
g2Z

z2g�2�nC
P
i l.�i /.�1/g�1C

P
i l.�i /

X
m�0

gDg1Cg2Cm

X
bIb1;:::;bm
lIl1;:::;lm

Qm
iDj bj

mŠ

�F�;]g1

�
�1; ..b;�B;l/; .bi ; �S;li /

m
iD1/

�
F
.S�P1;S0;1;1/;];std
g2

�
..b;�_B;l/; .bi ; �

_
S;li

/miD1/; �2; �3
�

D 2F S
Œn�

0 .�1; U.�2�3//C 2

�Z
S Œn�

�1U.�2�3/

�
G .p; q/n

‚2.p; q/�.q/
:

Proof With similar reasoning as for term 2a and using Propositions 6.6 and 6.8 this becomes

2
X
d

qdZ
.S�P1;S0;1/;�
.WCdF;n/

.�1; U1/Z
.S�P1;S0;1;1/;std
.0;n/

.U2; �2; �3/

D 2
X
d

qdZ
.S�P1;S0;1/;�
.WCdF;n/

.�1; U1/

Z
S Œn�

U2�2�3 D 2
X
d

qdZ
.S�P1;S0;1/;�
.WCdF;n/

.�1; U.�2�3//:
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Let D.F /D .1=.n� 1/Š/..1; F /.1; 1/n�1/ 2H 2.S Œn�/. Employing Proposition 6.8 and the evaluation
of Proposition 6.9 we get

2
X
d

qdZ
.S�P1;S0;1/;�
.WCdF;n/

.�1; U.�2�3/;D.F //C 2

�Z
S Œn�

�1U.�2�3/

�
G .z; q/n

‚2.z; q/�.q/

D 2F S
Œn�

0 .�1; U.�2�3//C 2

�Z
S Œn�

�1U.�2�3/

�
G .p; q/n

‚2.p; q/�.q/
;

as desired.

Lemma 8.8 (term 3) Let �.j /i be the weighted partition �i but with j th weight ıij replaced by
����.ıij /. Then

�2
X
g2Z

z2g�2�nC
P
i l.�i /.�1/g�1C

P
i l.�i /

`.�1/X
jD1

F
.S�P1;S0;1;1/;]
g . rel

1;j�
.j /
1 ; �2; �3/

D�2zF S
Œn�

0 .ıU.�1/; �2; �3/� 2F
S Œn�

0 .U.�1/; �2�3/� 2

�Z
S Œn�

U.�1/�2�3

�
G .p; q/n

‚2.p; q/�.q/
:

Proof We employ the splitting formula for the relative  –class given in Proposition 5.3. The left-hand
side term becomes

�2
X
d

`.�1/X
jD1

1

�1;i
qdZ

.S�P1;S0;1/;�

.WCdF;n/
.�
.i/
1 ; �1/Z

.S�P1;S0;1;1/;std

.0;n/
.�2; �2; �3/

� 2
X
d

`.�1/X
jD1

1

�1;i
qdZ

.S�P1;S0;1/;�;std

.0;n/
.�
.i/
1 ; �1/Z

.S�P1;S0;1;1/

.WCdF;n/
.�2; �2; �3/;

where �1 and �2 stand for summing over the Künneth decomposition of the diagonal in .S Œn�/2.

Observe that U acts on a H�.S/–weighted partition �D ..�j ; ıj //ljD1 by

U�D

`.�/X
jD1

1

�j

�
.�1; ı1/ � � � .�i ; �

���.
i //„ ƒ‚ …
i th

� � � .�l ; ıl/
�
:

Hence with Propositions 6.6 and 6.7, the above becomes

�2
X
d

qdZ
.S�P1;S0;1/;�
.WCdF;n/

.U.�1/;�1/

Z
S Œn�

�2�2�3

� 2z
X
d

qd
�Z

S Œn�
U.�1/ı�1

�
Z
.S�P1;S0;1;1/
.WCdF;n/

.�2; �2; �3/

D�2
X
d

qdZ
.S�P1;S0;1/;�
.WCdF;n/

.U.�1/; �2�3/� 2z
X
d

qdZ
.S�P1;S0;1;1/
.WCdF;n/

.ıU.�1/; �2; �3/

D�2F S
Œn�

0 .U.�1/; �2�3/� 2

�Z
S Œn�

U.�1/�2�3

�
G .p; q/n

‚2.p; q/�.q/
� 2zF S

Œn�

0 .ıU.�1/; �2; �3/:
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Lemma 8.9 (term 4) We have

�

X
a;b

.G�1/abTeaTebF
.S�P1;S0;1;1/;]
g .�1; �2; �3/D�

X
a;b

.G�1/abTeaTebF
S Œn�

0 .�1; �2; �3/:

Proof Since there are no interior markings, the (]) condition yields the same invariants as the (�)
condition. Hence the claim is just the application of Theorem 6.2.

Proof of Theorem 8.1 Part (a) was proven in Proposition 8.2. For Part (b) it suffices to prove the equality
in Proposition 8.3. We start with (62), and compute .d=dG2/z of the left-hand side of (62) by applying the
holomorphic anomaly equation for .S �P1; S0;1;1/ stated in Theorem 7.6. This holomorphic anomaly
equation produces four terms. These four terms are precisely the terms labeled 1, 2a, 2b, 3 and 4 in the
above lemmata (up to permutation). Summing these four terms together yields�
d

dG2

�
z
F S

Œn�

0 .�1; �2; �3/D .2� 2n/z
2F S

Œn�

0 .�1; �2; �3/C 2zF
S Œn�

0 .U.ı�1/; �2; �3/

C 2F S
Œn�

0 .�1; U.�2�3//C 2

�Z
S Œn�

�1U.�2�3/

�
G .p; q/n

‚2.p; q/�.q/

� 2zF S
Œn�

0 .ıU.�1/; �2; �3/� 2F
S Œn�

0 .U.�1/; �2�3/

� 2

�Z
S Œn�

U.�1/�2�3

�
G .p; q/n

‚2.p; q/�.q/

�

X
a;b

.G�1/abTeaTebF
S Œn�

0 .�1; �2; �3/C .� � �/;

where .� � �/ stands for the terms where the role of �1 is played by �2 and �3 in the four middle terms.
The above is precisely the right-hand side in Proposition 8.3 if we observe two basic facts: First, the
operator U is symmetric (since the adjoint of qn.˛/ is .�1/nq�n.˛/):Z

S Œn�
U.�/�D

Z
S Œn�

�U.�/:

Hence the Gn terms cancel. And second,

Tı D Œeı ; U �; and hence Tı�D ıU.�/�U.ı�/:

9 Holomorphic anomaly equations: nonprimitive case

9.1 Overview

Let g and N be fixed. For the elliptic K3 surface S ! P1 recall the generating series

Fg;l.tautI 
1; : : : ; 
N /D
1X

dD�l

X
r2Z

htautI 
1; : : : ; 
N iS
Œn�

g;lWCdFCrAq
d .�p/r ;

where we have dropped the superscript S Œn� on the left.
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We show that the quasi-Jacobi form property and the holomorphic anomaly equation for the primitive
series Fg;1 (Conjecture E) together with the multiple cover conjecture (Conjecture A) imply both claims
for the general series Fg;l . More precisely:

Proposition 9.1 If Conjectures A and E hold for all g0 and N 0 such that either g0 < g or (g0 D g and
N 0 <N ), then Conjectures B and C hold for g and N .

Using Proposition 9.1 we obtain the proof of our main theorem:

Proof of Theorem 1.3 If g D 0 and N � 3, then Conjecture A holds by Theorem 1.2, and Conjecture E
was proven in Theorem 8.1. Hence the claim follows from Proposition 9.1.

The proof of Proposition 9.1 is purely formal: if the multiple cover formula holds, then Fg;l is obtained
from Fg;1 by applying the Hecke operator. The statement then follows from results about Hecke operators
on quasi-Jacobi forms (Section 2.8) and basic properties of the operators appearing in the holomorphic
anomaly equation.

9.2 Proof

Proof of Proposition 9.1 Recall the formal l th weight k Hecke operator Tk;l defined in (22). If the
multiple cover conjecture holds, then for all l > 0 we have

Fg;l.tautI 
1; : : : ; 
N /D l
P
i .deg.
i /�n�wt.
i //Tk;lFg;1.tautI 
1; : : : ; 
N /;

where k D n.2g� 2CN/C
P
i wt.
i /. Assuming Conjecture E(a), we have

Fg;1.tautI 
1; : : : ; 
N / 2
1

�.�/
QJack0;n�1;

where k0D n.2g�2CN/C
P
i wt.
i /�10. Hence by Proposition 2.22 (describing the action of Hecke

operators of weight k on weight-k0 forms) we find that

Fg;l.tautI 
1; : : : ; 
N / 2
1

�.�/l
QJack0C12l;.n�1/l.�0.l//;

that is Conjecture B holds.

To prove Conjecture C, the multiple cover conjecture and (23) give

d

dG2
Fg;l.tautI 
1; : : : ; 
N /D le.
1;:::;
N /

d

dG2
Tk;lFg;1.tautI 
1; : : : ; 
N /

D le.
1;:::;
N /C1Tk�2;l
d

dG2
Fg;1.tautI 
1; : : : ; 
N /;

where
k D k.g;N; 
1; : : : ; 
N / WD n.2g� 2CN/C

X
i

wt.
i /;

e.
1; : : : ; 
N /D
X
i

.deg.
i /�n�wt.
i //:
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Assuming Conjecture E(b) this equals

le.
1;:::;
N /C1Tk�2;l

�

"
Fg�1;1.tautI 
1; : : : ; 
N ; U /C2

X
gDg1Cg2

f1;:::;N gDAtB

Fg1;1.taut1I 
A; U1/F std
g2
.taut2I 
B ; U2/

�2

NX
iD1

Fg;1. i tautI 
1; : : : ; 
i�1; U
i ; 
iC1; : : : ; 
N /�
X
a;b

.g�1/abTeaTebFg;1.tautI 
1; : : : ; 
N /

#
:

By Lemmata 9.3 and 9.2 we can apply Conjecture A to this term in reverse, eg

le.
1;:::;
N /C1Tk�2;lFg�1;1.tautI 
1; : : : ; 
N ; U /D Fg�1;l.tautI 
1; : : : ; 
N ; U /;

or the exceptional case

le.
1;:::;
N /C1Tk�2;lFg;1.tautI : : : ; Tea
i ; : : : ; Teb
j ; : : :/D
1

l
Fg;l.tautI : : : ; Tea
i ; : : : ; Teb
j ; : : :/;

etc. As a result we obtain precisely the right-hand side for the .d=dG2/–holomorphic anomaly equation
in Conjecture C.

Similarly, by Proposition 4.1 we have
d

dA
Fg;1.tautI 
1; : : : ; 
N /D TıFg;1.tautI 
1; : : : ; 
N /:

Hence by (23) we have
d

dA
Fg;l.tautI 
1; : : : ; 
N /D l

P
i .deg.
i /�n�wt.
i // d

dA
Tk;l

d

dA
Fg;1.tautI 
1; : : : ; 
N /

D l � l
P
i .deg.
i /�n�wt.
i //Tk�1;l

d

dA
Fg;1.tautI 
1; : : : ; 
N /

D l � l
P
i .deg.
i /�n�wt.
i //Tk�1;lTıFg;1.tautI 
1; : : : ; 
N /

D TıFg;l.tautI 
1; : : : ; 
N /;

where we used that Tı is of weight �1 (Lemma 3.1).

Lemma 9.2 If U D
P
i ai ˝ bi is a wt–homogeneous Künneth decomposition of U 2 H�.S Œn�/˝2,

then for every i we have

k.g�1;NC2; 
1; : : : ; 
N ; ai ; bi /Dk.g;N; 
1; : : : ; 
N ; ai ; bi /�2;

k.g1; jAjC1; 
A; ai /Dk.g;N; 
1; : : : ; 
N /�2 if F S
Œn�;std

g2
.taut2I 
B ; bi /¤0;

k.g;N; 
1; : : : ; U.
i /; : : : ; 
N /Dk.g;N; 
1; : : : ; 
N /�2;

k.g;N; 
1; : : : ; Tea
i ; : : : ; Teb
j ; : : : ; 
N /Dk.g;N; 
1; : : : ; 
N /�2:

Proof The first of these equations follows from Lemma 3.2, and the third and fourth follow from
Lemma 3.1. For the second, recall that for X D S Œn� we have

(67) ŒM g;N .X; 0/�
std
D

8<:
ŒM 0;N �X� if g D 0;N � 3;
ŒM 1;N �X��

�
2 .c2n.X// if g D 1;N � 1;

0 if g � 2:
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If F std
g2
.taut2I 
B ; bi /¤ 0, we hence findX

i

F std
g2
.taut2I 
B ; bi /ai D

�Z
Mg2;jBjC1

taut2

��
U
�Q

i2B 
i
�

if g2 D 0;
U
�
c2n.X/

Q
i2B 
i

�
if g2 D 1:

Hence using Lemma 3.3 we get

k.g1; jAjC 1; 
A; ai /D

�
k
�
g; jAjC 1; 
A; U

�Q
i2B 
i

��
if g2 D 0;

k
�
g� 1; jAjC 1; 
A; U

�
c2n.X/

Q
i2B 
i

��
if g2 D 1;

D k.g;N; 
1; : : : ; 
N /;

where we used wt.c2n.X//D n in the last step.

Lemma 9.3 If U D
P
i ai ˝ bi is a wt–homogeneous Künneth decomposition of U 2 H�.S Œn�/˝2,

then for every i we have

e.
1; : : : ; 
N ; ai ; bi /D e.
1; : : : ; 
N /C 1;

e.
A; ai /D e.
/C 1 if F std
g2
.taut2I 
B ; bi /¤ 0 for some g2;

e.
1; : : : ; U.
i /; : : : ; 
N /D e.
1; : : : ; 
N /C 1;

e.
1; : : : ; Tea
i ; : : : ; Teb
j ; : : : ; 
N /D e.
1; : : : ; 
N /C 2:

Proof With the notation of Section 3.5 define hFW WD act.F ^W /, which acts semisimply on H�.S Œn�/.
For an eigenvector 
 , define degFW .
/ to be the eigenvalue of hFW :

hFW .
/D degFW .
/
:

Then because

.deg.
/�n�wt.
//
 D .h�Wt/
 D� act.W ^F /
 D hFW .
/;

we find
e.
1; : : : ; 
N /D

X
i

degFW .
i /:

The claim now follows parallel to Lemma 9.2 (use that hFW D h�Wt, so the corresponding properties
for the grading operator hFW are easily derived).

10 Fiber classes

10.1 Overview

We study the generating series of Gromov–Witten invariants of S Œn� in fiber classes of the Lagrangian
fibration S Œn�! Pn,

Fg;0.tautI 
1; : : : ; 
N /D
X
d�0

X
r2Z

.d;r/¤.0;0/

htautI 
1; : : : ; 
N iS
Œn�

g;dFCrAq
d .�p/r :
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Recall from Theorem 2.23 the weight-n (meromorphic) quasi-Jacobi forms

An.z; �/D BnC ın;1
1

2

p1=2Cp�1=2

p1=2�p�1=2
�n

X
k;d�1

dn�1.pkC .�1/np�k/qkd 2MQJac0;n :

For any .deg;wt/–bihomogeneous class 
 , define the modified degree

degWF .
/D nCwt.
/� deg.
/:

Remark 10.1 Consider the basis of H�.S;Q/ given by B D f1; p; W; F; eag, where feag is a basis of
fW;F g? �H 2.S;Q/. If 
 D

Q
i qni .ıi /v¿ for ıi 2 B, we have

degWF .
/D jfi j ıi DW gj � jfi j ıi D F gj:

By Section 3.5, degWF .
/ is also the eigenvalue of the operator hWF WD act.W ^F /.

The main result of this section is the following:

Theorem 10.2 Fix g and N with 2g� 2CN > 0 such that

(i) the multiple cover conjecture (Conjecture A) holds for this g and N ,

(ii) htautI 
1; : : : ; 
N ig;dFCrA D 0 for all .d; r/¤ .0; 0/, whenever
P
i degWF .
i / < 0.

Let 
i be .wt; deg/–bihomogeneous classes and let

aD 3g� 3CN � deg.taut/ and b D

NX
iD1

degWF .
i /:

If a; b � 0, then in C..p//ŒŒq��=C we have

(68) Fg;0.tautI
1; : : : ;
N /� htautI
1; : : : ;
N iS
Œn�

g;F

X
d;k�1

kadbqkd

C

X
r�1

.�1/rhtautI
1; : : : ;
N iS
Œn�

g;FCrA

�
�1

bC1

�
p
d

dp

�a
AbC1.p;q/

�ˇ̌̌̌
p 7!pr

:

In particular , Fg;0.tautI 
1; : : : ; 
N / is a meromorphic quasi-Jacobi form of weight

k D n.2g� 2CN/C
X
i

wt.
i /

and index 0, with poles at torsion points.

Here for two power series f .p; q/; g.p; q/2C..p//ŒŒq��, we write f �g if they are equal in C..p//ŒŒq��=C,
that is if there exists a constant c 2C such that f .p; q/D g.p; q/C c.

In (68) the sum over r is finite by Lemma 4.2, and hence the statement of the theorem is well defined. If
a < 0 in Theorem 10.2, then tautD 0, so all Gromov–Witten invariants would vanish. Theorem 10.2(ii)
would follow from a family version of the GW/Hilb correspondence (Section 6.3), where one does
not fix the complex structure of the source curve. Hence (ii) is expected to hold for all g and N with
2g� 2CN > 0. We prove (ii) for .g;N /D .0; 3/ below and obtain the following:
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Theorem 10.3 For any 
1; 
2; 
3 2 H�.S Œn�/ the series FgD0;0.tautI 
1; : : : ; 
N / is a meromorphic
quasi-Jacobi form of weight nC

P
i wt.
i / and index 0 with poles at torsion points (of the form given

in (68)). Moreover , in C..p//ŒŒq��=C we have

(69) d

dG2
F0;0.tautI 
1; 
2; 
3/� 0 and d

dA
F0;0.tautI 
1; 
2; 
3/� TıF0;0.tautI 
1; 
2; 
3/:

10.2 Multiple cover conjecture

We first recall an equivalent form of the multiple cover conjecture (Conjecture A). Let S be any K3
surface with an effective curve class ˇ 2H2.S;Z/. For every divisor k jˇ let Sk be some K3 surface
and consider any real isometry

'k WH
2.S;R/!H 2.Sk;R/

such that 'k.ˇ=k/ 2H2.Sk;Z/ is a primitive effective curve class. We extend 'k to the full cohomology
lattice by 'k.p/D p and 'k.1/D 1. Define an extension to the Hilbert scheme by acting factorwise in
the Nakajima operators:

'k WH
�.S Œn�/!H�.S

Œn�

k
/;

Y
i

qni .ıi /v¿ 7!

Y
i

qni .'k.ıi //v¿:

Conjecture F We have

htautI 
1; : : : ; 
N iS
Œn�

g;ˇCrA

D

X
k j .ˇ;r/

k3g�3CN�deg.taut/.�1/rCr=khtautI'k.
1/; : : : ; 'k.
N /i
S Œn�

g;'k.ˇ=k/C.r=k/A
:

This conjecture is equivalent to the one we have given in the introduction:

Lemma 10.4 [Oberdieck 2022, Lemma 3] Conjecture F is equivalent to Conjecture A.

10.3 Proof of Theorem 10.2

Step 1 (positive part) We apply the multiple cover conjecture (in the form of Conjecture F) to the
following series, where we sum only over curve classes which have positive fiber degree:

FCg;0.tautI 
1; : : : ; 
N /D
X
d�1

X
r2Z

htautI 
1; : : : ; 
N iS
Œn�

g;dFCrAq
d .�p/r :

For any k j .d; r/ let 'k WH 2.S;Q/!H 2.S;Q/ be the isometry defined by

F 7!
k

d
F; W 7!

d

k
W and 'kjfW;F g? D id:

Assuming that all 
i are written in the Nakajima basis with weightings from the fixed basis B (defined in
Remark 10.1), we obtain

FCg;0.tautI 
1; : : : ; 
N /D
X
d�1

X
r2Z

X
k j .d;r/

kb
�
d

k

�a
.�1/r=khtautI 
1; : : : ; 
N iS

Œn�

g;FCrAp
rqd :
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Using the monodromy of Section 3.6.3 we have

htautI 
1; : : : ; 
N iS
Œn�

g;FCrA D .�1/
nNC

P
i l.
i /htautI 
1; : : : ; 
N iS

Œn�

g;F�rA:

Hence we conclude that

FCg;0.tautI 
1; : : : ; 
N /

D htautI 
1; : : : ; 
N iS
Œn�

g;F

X
d;k�1

kadbqkd

C

X
r�1

.�1/rhtautI 
1; : : : ; 
N iS
Œn�

g;FCrA

� X
k;d�1

kadb.pkC .�1/nNC
P
i l.
i /p�k/qkd

�ˇ̌̌̌
p̌ 7!pr

:

We now analyze the second term on the right. Since otherwise all invariants vanish, we can assume the
dimension constraint

vdM g;N .S
Œn�; ˇ/D .2n� 3/.1�g/CN C 1D deg.taut/C

X
i

deg.
i /;

or equivalently,

(70) aD 3g� 3CN � deg.taut/D 2n.g� 1/� 1C
X
i

deg.
i /:

Furthermore, let 
i;j 2 H�.S/ be the cohomology weights of 
i in the Nakajima basis. Let V D
fW;F g? � H 2.S;Z/. Since ev�ŒM g;N .S

Œn�; dF C rA/�vir is invariant under the monodromy group
O.V;Z/, by standard invariant theory for the orthogonal group (eg [Oberdieck 2024a, Section 6.1]) we
can assume that there are an even number of 
ij such that 
ij 2 V . Indeed, otherwise all the invariants
htautI 
1; : : : ; 
N iS

Œn�

g;FCrA vanish and there is nothing to prove. We obtain the following parity result:

Lemma 10.5 aCnN C
X
i

l.
i /� b� 1 mod 2:

Proof Using (29) we have X
i

deg.
i /D nN �
X
i

l.
i /C
X
i;j

deg.
ij /:

Hence by the dimension constraint (70) and modulo 2,

aCnN C
X
i

l.
i /��1C deg.
i /CnN C
X
i

l.
i /��1C
X
i;j

deg.
ij /

��1C
X
i

jfj j 
ij 2H
2.S/gj

.�/
� �1C

X
i

jfj j 
ij 2 fW;F ggj � b� 1;

where in (�) we used that there are an even number of 
ij in fW;F g?.
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So

(71) FCg;0.tautI 
1; : : : ; 
N /

D htautI 
1; : : : ; 
N iS
Œn�

g;F

X
d;k�1

kadbqkd

C

X
r�1

.�1/rhtautI 
1; : : : ; 
N iS
Œn�

g;FCrA

��
p
d

dp

�a X
k;d�1

db.pkC .�1/bC1p�k/qkd
�ˇ̌̌̌
p̌ 7!pr

:

Step 2 (fiber degree-0 part) It remains to compute the degree-0 part

F
.0/
g;0.tautI 
1; : : : ; 
N /D

X
r�1

htautI 
1; : : : ; 
N iS
Œn�

g;rA.�p/
r :

Lemma 10.6 If
P
i degWF .
i /¤ 0, then F .0/g;0.tautI 
1; : : : ; 
N /D 0.

Proof By monodromy invariance, the class

ev�.tautŒM g;N .S
Œn�; rA/�vir/ 2H�.S Œn�/˝N

has weight 0 with respect to the grading operator hWF D act.W ^F /. On the other hand,

hWF .
1˝ � � �˝ 
N /D
X
i


1˝ � � �˝hWF .
i /˝ � � �˝ 
N D

�X
i

degWF .
i /
�

1˝ � � �˝ 
N :

Hence if
P
i degWF .
i /¤ 0, the pairing between these two classes vanishes.

Lemma 10.7 If
P
i degWF .
i /D 0 and under the assumptions of Theorem 10.2, we have

F
.0/
g;0.tautI 
1; : : : ; 
N /D

X
r�1

.�1/rhtautI 
1; : : : ; 
N iS
Œn�

g;FCrA

X
k�1

kapkr :

Proof Recall the monodromy e�Tı from Section 3.6.4 which satisfies e�TıADACF . We conclude that

(72) htautI 
1; : : : ; 
N iS
Œn�

g;rA D htautI e�Tı
1; : : : ; e�Tı
N iS
Œn�

g;rFCrA:

The operator Tı satisfies the commutation relation

ŒhWF ; Tı �D Œact.W ^F /; act.ı^F /�D�Tı ;

and hence degWF .Tı
/D degWF .
/�1. Because we assumed
P
i degWF .
i /D 0 and Theorem 10.2(ii),

only the leading term in e�Tı
i can contribute:

(term in (72))D htautI 
1; : : : ; 
N iS
Œn�

g;rFCrA:

Using the multiple cover formula (Conjecture F) and b D
P
i degWF .
i /D 0 this becomesX

k j r

ka.�1/rCr=khtautI 
1; : : : ; 
N iS
Œn�

g;FC.r=k/A:

The lemma follows by rearranging the sums.
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Step 3 (proof of (68)) If bD
P
i degWF .
i />0, then by Lemma 10.6 the series Fg;0.tautI 
1; : : : ; 
N /

is given by (71), and since ŒAbC1�q0 is a constant in p, the right-hand side of (71) is precisely as claimed
in (68). If b D 0, we add the evaluation of Lemma 10.7 to (71) and use the straightforward identityX

k�1

kapkr D constantC
�
�

�
p
d

dp

�a 1
2

p1=2Cp�1=2

p1=2�p�1=2

�
p 7!pr

:

Step 4 (quasi-Jacobi form property) Since AbC1 2MQJacbC1;0, the derivative p.d=dp/ increases
the weight by 1, and if the operator f .p; q/ 7! f .pr ; q/ sends quasi-Jacobi forms of weight k and
index m to quasi-Jacobi forms of weight k and index mr2 (see [Eichler and Zagier 1985, Theorem I.4.1]),
the second term on the right in (68) is a quasi-Jacobi form of weight

aC bC 1D 2n.g� 1/C
X
i

deg.
i /C
X
i

degWF .
i /D n.2g� 2CN/C
X
i

wt.
i /:

By the monodromy of Section 3.6.3 we have

htautI 
1; : : : ; 
N iS
Œn�

g;F D .�1/
nNCl.
1/C���Cl.
N /htautI 
1; : : : ; 
N iS

Œn�

g;F :

Hence the first term in (68) is even unless nN C l.
1/C � � �C l.
N /, in which case a� bC 1 modulo 2
by Lemma 10.5. If a > b we find in CŒŒq��=C the equalityX

d;k�1

kadbqkd �
�
q
d

dq

�b X
m�1

X
k jm

ka�bqm;

and since this is the q–derivative of an Eisenstein series we get

constantC
X
d;k�1

kadbqkd 2 QModaCbC1 :

The case b > a is parallel.

10.4 Conclusion

We prove Theorem 10.3, and Theorem 1.8 of the introduction.

Proof of Theorem 1.8(i) If there is an index i (let us say i D 1) with 
1 D F z
1, then by using F D ŒE�
for a smooth elliptic fiber � WE ,! S , a straightforward computation gives

(73) F Sg;0.tautI 
1; : : : ; 
N /D
1X
dD1

htaut.�1/g�1�g�1I ��.z
1/; ��.
2/; : : : ; ��.
N /iEg;dŒE�q
d ;

where we used the standard notation for the (ordinary nonreduced) Gromov–Witten invariants of the
elliptic curve E. In this case Conjecture D(i) follows from [Okounkov and Pandharipande 2006a], and
one checks that the holomorphic anomaly equation of [Oberdieck and Pixton 2018] implies the one stated
in Conjecture D(ii).
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If there is no such i , by expressing taut as boundary classes and the splitting formula, as well as using the
divisor equation, we can reduce the claim to the case .g;N /D .0; 3/. This base case holds by inspection
from the explicit evaluation

F Sg;0.1IW;W;W /D hW;W;W i
S
0;F

X
k;d�1

d3qkd D constantC 24G4.q/:

We prove a basic vanishing for the Gromov–Witten theory of the elliptic K3 surface S :

Lemma 10.8 If
P
i degWF .
i / < 0, then htautI 
1; : : : ; 
N iSg;dF D 0 for all d > 0.

Proof We assume 
i 2 B for all i . By Remark 10.1, if
P
i degWF .
i / < 0 there exists at least one

cohomology class with 
i D F . Hence by expressing the invariants of S in terms of the invariants of
the elliptic fiber E as in (73), we see that if 
j D F for some j ¤ i then the invariant vanishes, and
if there are no other cohomology classes with 
i DW then the integrand on M g;N .E; d/ is invariant
under translation by E and hence the integral vanishes; see eg [Okounkov and Pandharipande 2006b,
Section 5.4]. Since we are always in at least one of these cases, this proves the claim.

Proof of Theorem 10.3 If .g;N /D .0; 3/ we can take tautD 1, so aD 0. By Theorem 1.2 the multiple
cover conjecture holds for this .g;N /. Moreover, using the GW/Hilb correspondence (Theorem 6.2),
the product formula for the relative Gromov–Witten theory of .S � P1; S0;1;1/ and Lemma 10.8,
Theorem 10.2(ii) also holds. Hence the first two claims follow directly from Theorem 10.2 and the
.d=dG2/–holomorphic anomaly equation for An proven in Theorem 2.23. It remains to prove (69). This
follows by either using the monodromy of Section 3.6.4 to derive the elliptic transformation law in the
meromorphic case, or by applying the GW/Hilb correspondence (this is possible since the multiple cover
conjecture is proven for fiber classes [Bae and Buelles 2021]; see Remark 6.3) and then using (16) to
calculate the d=dA derivative in terms of the z–expansion (similarly to what was done in Section 8). We
leave the details to the reader.

11 Applications

In this section we prove two applications of the holomorphic anomaly equation for the Hilbert scheme
stated in the introduction. The first considers the 2–point function on the Hilbert scheme (Corollary 1.6)
which is implied by Proposition 11.1. The second concerns the Jacobi form property for CHL Calabi–Yau
threefolds (Theorem 1.7). Here we first prove, by a deformation argument, a version of the holomorphic
anomaly equation for generating series which keep track of curve classes of the form W CdF C˛ where
˛ runs over a lattice E8.�2/ � Pic.S/ orthogonal to W and F (Proposition 11.2). Then Theorem 1.7
follows formally by the degeneration formula and the GW/Hilb correspondence (Theorem 6.2).
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11.1 The 2–point function

Recall the notation of Section 3.5, in particular the LLV algebra

g.S Œn�/D
V2
.V ˚UR/ for V DH 2.S Œn�/:

Extend the definition of the operator T˛ by defining

T˛ WD act.˛^F /

for all ˛ 2 V ˚UR with ˛ ? fW;F g. In particular,

(74) Te D act.e^F /D eF and Tf D act.f ^F /D�U:

For any operator a 2 g.S Œn�/ which is homogeneous of degree deg.a/— ie if deg.a
/D deg.
/Cdeg.a/
for all homogeneous 
 — define the induced operator

(75)

a WH�.S Œn�/˝N !H�.S Œn�/˝N ;

a.
1˝ � � �˝ 
N /D

NX
iD1


1˝ � � �˝ 
i�1˝ ..�1/
i deg.a/a
i /˝ 
iC1˝ � � �˝ 
N :

By the quasi-Jacobi form part of Theorem 1.3, the generating series ZS
Œn�

.p; q/ defined in (7) can be
identified with a vector with entries quasi-Jacobi forms. We prove the following anomaly equation, which
combined with Lemma 2.11 (and using that Wt is antisymmetric) immediately implies Corollary 1.6:

Proposition 11.1 We have

d

dG2
ZS

Œn�

.p; q/D�
X
˛;ˇ

. Qg�1/˛ˇT˛TˇZ
S Œn�.p; q/ and d

dA
ZS

Œn�

.p; q/D�TıZ
S Œn�.p; q/;

where ˛ and ˇ run over a basis of fW;F g? � V ˚UQ with intersection matrix Qgab D h˛; ˇi.

Proof By Theorem 1.3, for any 
1; 
2 2H�.S Œn�/ we have

d

dG2
F S

Œn�

0;1 .
1; 
2/

D2F S
Œn�

0;1 .U.
1[
2//�2F
S Œn�

0;1 . 1IU
1; 
2/�2F0;1. 2I 
1; U
2/�
X
a;b

.g�1/abF
S Œn�

0;1 .TeaTeb .
1˝
2//:

Let pS Œn� D q1.p/
nv¿ be the class of a point on S Œn�. By U.pS Œn�/ D nq1.F /q1.p/

n�1v¿ and the
evaluation [Oberdieck 2018a, Theorem 2], we have

2F S
Œn�

0 .U.
1[ 
2//D 2F
S Œn�

0 .U.p//

Z
S Œn�


1[ 
2 D 2n
G .p; q/n�1

�.q/

Z
S Œn�


1[ 
2:
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Similarly, using the divisor equation with respect to .1=.n� 1/Š/q1.F /q1.1/n�1v¿ to add a marking,
rewriting the  –class in terms of boundary and applying the splitting axiom of Gromov–Witten theory
(see for example [Cao et al. 2024, Section 1.2] for a similar case) yields

F S
Œn�

0;1 . 1IU
1; 
2/D F
S Œn�

0;1 .U
1; eF 
2/�F
S Œn�

0;1 .eFU
1; 
2/:

Rewriting this using (74) and using convention (75) we get

�2F S
Œn�

0;1 . 1IU
1; 
2/� 2F
S Œn�

0;1 . 2I 
1; U
2/D 2F
S Œn�

0;1 .UeF .
1˝ 
2//D�2F
S Œn�

0;1 .TeTf .
1˝ 
2//:

Finally, by the commutation relations (10) we have

d

dG2
G .p; q/D 2‚.p; q/2:

Putting all this together we obtain

d

dG2

Z
S Œn��S Œn�

ZS
Œn�

.p; q/[ .
1˝ 
2/D
d

dG2
F S

Œn�

0;1 .
1˝ 
2/�

�Z
S Œn�


1[ 
2

�
d

dG2

Gn

‚2�.q/

D�

X
˛;ˇ

.G�1/˛ˇT˛TˇZ
S Œn�.p; q/:

The first claim now follows since T˛ is antisymmetric if ˛ 2V , and symmetric if ˛ 2UQ (both orthogonal
to W and F ). The second claim follows from .d=dA/G D 0, the holomorphic anomaly equation for
d=dA (proven in Theorem 1.3), and since Tı is antisymmetric.

11.2 CHL Calabi–Yau threefolds

We work in the setting introduced in Section 1.8. For a general element ˛ 2E8.�2/— where E8.�2/�
Pic.S/ is the anti-invariant part of the symplectic involution g W S! S — and with W DBCF as usual,
consider the curve class

W C dF C˛ 2H2.S;Z/:

Let b1; : : : ; b8 be a fixed integral basis of E8.�2/, and identify wD .w1; : : : ; w8/ 2C8 with
P
i wibi 2

E8.�2/˝C. Given a class ˛ 2E8.�2/, we write

(76) �˛ D exp.hw; ˛i/D
8Y
iD1

e.hbi ; ˛iwi /:

We also refer to [Oberdieck and Pixton 2019, Section 2.1.4] for parallel definitions.

Form the extended generating series

zF S
Œn�

g .tautI 
1; : : : ; 
N /D
1X

dD�1

X
r2Z

X
˛2E8.�2/

htautI 
1; : : : ; 
N iS
Œn�

g;WCdFC˛CrAq
d .�p/r�˛:

Usually we drop the superscript S Œn�. The first step is to prove the following:
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Proposition 11.2 If Conjectures B and C hold for .g;N /, then

zF S
Œn�

g .tautI 
1; : : : ; 
N / 2
1

�.q/
QJackC12;.n�1/˚.1=2/E8.�2/.�0.2/Ë .2Z˚Z//;

where k D n.2g� 2CN/C
P
i wt.
i /� 6 and QJack;L is the vector space of weight-k multivariable

quasi-Jacobi forms of lattice index L as defined in [Oberdieck and Pixton 2019, Section 1], except that
here we work with respect to the Jacobi group �0.2/Ë .2Z˚Z/.8 Moreover ,

(77) d

dG2
zF S

Œn�

g .tautI 
1; : : : ; 
N /

D zF S
Œn�

g�1 .taut0I 
1; : : : ; 
N ; U /C 2
X

gDg1Cg2
f1;:::;N gDAtB

zF S
Œn�

g1
.taut1I 
A; U1/F S

Œn�;std
g2

.taut2I 
B ; U2/

� 2

NX
iD1

zF S
Œn�

g . i tautI 
1; : : : ; 
i�1; U
i ; 
iC1; : : : ; 
N /

�

X
a;b

. Og�1/abTeaTebF
S Œn�

g .tautI 
1; : : : ; 
N /;

where the ea form a basis of .SpanZ.B; F /˚E8.�2//
? � H 2.S;Q/ with intersection matrix Ogab D

hea; ebi, and
d

dA
zF S

Œn�

g .tautI 
1; : : : ; 
N /D Tı zF
S Œn�

g .tautI 
1; : : : ; 
N /:

Proof For ˛ 2E8.�2/ the operator T˛ D act.˛^F / satisfies

e�T˛ .W C dF C rAC˛/DW C
�
d C 1

2
h˛; ˛i

�
F C rA:

Moreover, e�T˛ can either be viewed as a monodromy operator (as in Section 3.6) or identified with the
induced action on the Hilbert schemes coming from the automorphism t�˛ W S ! S given by translation
by the section labeled by �˛; compare [Oberdieck and Pixton 2019, Section 3.4]. In either case, we have
invariance of Gromov–Witten invariants, so

zF S
Œn�

g .tautI
1; : : : ; 
N /D
X
d;r

X
˛2E8.�2/

htautIe�T˛
1; : : : ; e�T˛
N iS
Œn�

g;WC.dC.1=2/h˛;˛i/FCrAq
d .�p/r�˛

D

X
Qd;r

htautIe�T˛
1; : : : ; e�T˛
N iS
Œn�

g;WC QdFCrA
q
Qdq�.1=2/h˛;˛i.�p/r�˛

D

X
˛2E8.�2/

Fg.tautIe�T˛
1; : : : ; e�T˛
N /q�.1=2/h˛;˛i�˛:

Let hij be the inverse matrix of the intersection matrix hbi ; bj i. Then

T˛ D
X
i;j

hij h˛; bi iTbj :

8More explicitly, the quasi-Jacobi forms we consider will simply be linear combinations of derivatives of the theta function of
the E8.2/–lattice; see the proof.
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Moreover, let

(78) ‚E8.2/.�; q/D
X

˛2E8.�2/

q�.1=2/h˛;˛i�˛

be the theta functions of the E8.2/ lattice, which is a Jacobi form of weight 1
2

rkE8.�2/D 4 and lattice
index 1

2
E8.2/ for the Jacobi group �0.2/Ë .2Z�Z/; see [Ziegler 1989, Section 3].9 Similarly, if we

multiply the summand in (78) with products of h˛; bi i, the function becomes derivatives of the theta
functions by the differential operators

Dbi D
1

2�i

d

dwi
:

For example, X
˛2E8.�2/

h˛; bi iq
�.1=2/h˛;˛i�˛ DDbi‚E8.2/.�; q/:

Putting this together, we find that

(79) zF S
Œn�

g .tautI 
1; : : : ; 
N /D Fg.tautI e�
P
i;j h

ijDbi Tbj 
1; : : : ; e
�
P
i;j h

ijDbi Tbj 
N /‚E8.2/.�; q/;

which is understood as expanding all the exponentials and then applying the derivatives Dbi to the theta
function. The operator Dbi preserves the algebra of quasi-Jacobi forms; see [Oberdieck and Pixton
2019]. Moreover, since Dbi increases the weight by 1, and Tbi is of degree �1 with respect to the weight
grading wt on cohomology, we conclude that (79) is a quasi-Jacobi form of weight equal to the weight
of Fg.tautI 
1; : : : ; 
N / plus 4. Finally, the claimed holomorphic anomaly equations also follow from
(79) by a straightforward computation: The terms where d=dG2 does not interact with the derivatives
Dbi are evaluated by Conjecture C. For any ˛ 2 E8.�2/ one has .e�T˛ ˝ e�T˛ /.U /D U (proven by
differentiating with respect to ˛ and then as in Lemma 3.2). Hence one sees that these terms give precisely
the four terms in (77) up to the extra term coming from summing over the basis of E8.�2/ in the last
term. This extra term cancels with the terms coming from interactions of d=dG2 with the Dbi . These
are calculated using the commutation relations [Oberdieck and Pixton 2019, (12)]. Since the E8–theta
function does not depend on p, the d=dA derivative follows directly from the one in Conjecture C.

Proof of Theorem 1.7 By the arguments of [Oberdieck 2018b] we can work with stable pairs invariants
of X . We then use the degeneration formula for the degeneration

.S �E/=Z2 .S �P1/=..s; 0/� .gs;1//;

which was worked out explicitly in [Bryan and Oberdieck 2020, Section 1.6]. This reduces us to invariants
of .S �P1; S0;1/ with relative condition specified with the graph of the automorphism of S Œn� induced
by the involution g W S ! S ,

�g 2H
�.S Œn� �S Œn�/:

9Concretely, the theta function ‚E8.�; z/ for the unimodular lattice E8 is a Jacobi form for the full Jacobi group SL2.Z/ËZ2,
and we replace � by 2� , which introduces the congruence subgroup.
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We then apply Nesterov’s wall-crossing [2021; 2024; Oberdieck 2024b]. Putting all this together yields

(80) DTn.p; q/D
1

2
zF0.�g/j�˛D1

�
1

2

X
˛;d;r

qdpr CoeffqdC.1=2/h˛;˛ipr
�

G .p; q/n

‚.p; q/2�.q/

�Z
S Œn��S Œn�

�S Œn��g

D
1

2
zF0.�g/j�˛D1�

1

2

G .p; q/n

‚2.p; q/�.q/
‚E8.2/.q/Tr.g jH�.S Œn�//;

where ‚E8.2/.q/D
P
˛2E8.�2/

q�.1=2/h˛;˛iDE4.q
2/ is the theta function of the E8–lattice. This shows

that DTn.p; q/ is a quasi-Jacobi form of weight �6 and index n� 1 for �0.2/.

It remains to compute the derivative with respect to G2 and A of the first term (the second is clearly
Jacobi). Since the anomaly operators d=dG2 and d=dA commute with specializing of the variable �
(compare [Oberdieck and Pixton 2019, Section 1.3.5]) we have

d

dG2
. zF0.�g/j�˛D1/D

�
d

dG2
zF0.�g/

�ˇ̌
�˛D1

:

By Proposition 11.2, arguing then as in the proof of Proposition 11.1, and using ŒTea ; g� D 0 for
ea 2E8.�2/

? and ŒU; g�D 0, one finds

d

dG2
zF0.�g/j�˛D1 D 2n

G .p; q/n�1

�.q/
‚E8.2/.q/Tr.g jH�.S Œn�//:

Since this cancels precisely with the G2–derivative of the second term in (80), we get

d

dG2
DTn.p; q/D 0:

The claim .d=dA/DTn.p; q/D 0 follows from Tı.�g/D ŒTı ; g�D 0.
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