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1 Introduction

The weak convergence and measure-valued tensor used in the following theorem are defined in the next
section; a more precise formulation is given in Theorem 2.6.

Main theorem 1.1 Let My, M, ... be a sequence of complete m—dimensional Riemannian manifolds
with sectional curvature bounded below by k. Assume that the sequence M,, Gromov—Hausdorff converges
to an Alexandrov space A of the same dimension. Then the curvature tensors of M, weakly converge to a
measure-valued tensor on A.
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3870 Nina Lebedeva and AP

Note that from the theorem we get that the limit tensor of the sequence depends only on A and does not
depend on the choice of the sequence M. Indeed, suppose another sequence M,, satisfies the assumptions
of the theorem. If the limit tensor is different, then a contradiction would occur for the alternated sequence
M, M 1’ , My, M. 2’ .... In particular, if the limit space is Riemannian, then the limit curvature tensor is
the curvature tensor of the limit space. The latter statement was announced by the second author [21].

Analogous statements about metric tensor and Levi-Civita connection were essentially proved by Perelman
[18], we only had to tie his argument with an appropriate convergence. This part is discussed in Section 7.
It provides a technique that could be useful elsewhere as well. For curvature tensor (which has a
higher order of derivative), this argument cannot be extended directly; we found a way around applying
Bochner-type formulas as in [23].

The following statement looks like a direct corollary of the main theorem, and indeed, it follows from its
proof but strictly speaking, it cannot be deduced directly from the main theorem alone. We will denote by
Sc the scalar curvature and vol” the m—dimensional volume; that is, m—dimensional Hausdorff measure
calibrated so that the unit m—dimensional cube has unit measure.

Corollary 1.2 In the assumption of the main theorem, the measures Sc - vol”* on M, weakly converge to
a locally finite signed measure m on A.

The following subcorollary requires no new definitions.

Subcorollary 1.3 In the assumption of the main theorem, suppose A is compact. Then the sequence
Sp = / Sc-vol™

The main theorem in [23] implies that if a sequence of complete 71—dimensional Riemannian manifolds

converges.

M,, has uniformly bounded diameter and uniform lower curvature bound, then the corresponding sequence
Sy 1s bounded; in particular, it has a converging subsequence. However, if M}, is collapsing, then this
sequence may not converge. For example, an alternating sequence of flat 2—tori and round 2—spheres
might collapse to the one-point space; in this case, the sequence s, is 0,4-7,0,4-7,....

From the main theorem (and the definition of weak convergence) we get the following.
Corollary 1.4 Let R be a convex closed subset of curvature tensors on R such that all sectional

curvatures of tensors in R are at least —1. Assume that £ is invariant with respect to the rotations of R".
(For example, one can take as R the set of all curvature tensors with nonnegative curvature operator.)

Suppose M, is a sequence of complete m—dimensional Riemannian manifolds that converges to a
Riemannian manifold M of the same dimension. Assume that for any n, all curvature tensors of M,
belong to K. Then the same holds for the curvature tensors of M.
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Remarks The limit measure m in Corollary 1.2 has some specific properties; let us describe a couple of
them:

¢ The measure m vanishes on any subset of A with a vanishing (m—2)—dimensional Hausdorff measure.
In particular, m vanishes on the set of singularities of codimension 3. This is an easy corollary of [23].

¢ The measure can be explicitly described on the set of singularities of codimension 2. Namely, suppose
A’ C A denotes the set of all points x with tangent space Ty 4 = R”~2 x Cone (), where Cone(#) is a
2—dimensional cone with the total angle 8 = 8(x) < 2-m. Then

m|y = Q-7 —6)-vol™ 2.
This statement follows from Proposition 4.2.

The geometric meaning of our curvature tensor is not quite clear. In particular, we do not see a solution
to the following problem; compare to Gigli’s conjecture [7, 1.1].

Problem 1.5 Suppose that the limit curvature tensor of Alexandrov space A as in the main theorem
has sectional curvature bounded below by K > k. Show that A is an Alexandrov space with curvature
bounded below by K.

The theorem makes it possible to define a curvature tensor for every smoothable Alexandrov space. It is
expected that the same can be done for general Alexandrov space; so the following problem has to have a
solution:

Problem 1.6 Extend the definition of the measure-valued curvature tensor to general Alexandrov spaces.

If this is the case, then one may expect to have a generalization of the Gauss formula for the curvature of a
convex hypersurface, which in turn might lead to a solution of the following open problems in Alexandrov
geometry. This conjecture is open even for convex sets in smoothable Alexandrov space.

Conjecture 1.7 The boundary of an Alexandrov space equipped with its intrinsic metric is an Alexandrov
space with the same lower curvature bound.

More importantly, a solution to Problem 1.6 might provide nontrivial ways to deform Alexandrov space;
see [22, Section 9].

Related results The result of the main theorem in dimension 2 is well known; see the book of Alexandr
Alexandov and Viktor Zalgaller [1, VII Section 13].

The construction of harmonic coordinates at regular points of RCD space (in particular, Alexandrov

space) given by Elia Brue, Aaron Naber, and Daniele Semola [4] might help to solve Problem 1.6.

The problem of introducing Ricci tensor was studied in far more general settings; see works of Gigli [6],
Han [9], Lott [14] and Sturm [27]. Curvature tensor for RCD spaces was defined by Nicola Gigli [7]; it
works for a more general class of spaces, but this approach does not see the curvature of singularities. It
is expected that our definitions agree on the regular locus.
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About the proof As it was stated, the 2—dimensional case is proved in [1, VII Section 13]. The
3—dimensional case is the main step in the proof; the higher-dimensional case requires only minor
modifications.

We subdivide the limit space A into three subsets: A°—the subset of regular points, A’ — points
with singularities of codimension 2, A” — singularities of higher codimension. These sets are treated
independently.

First, we show that limit curvature vanishes on A”; this part is an easy application of the main result
in [23].

The A’—case is reduced to its partial case when the limit is isometric to the product of the real line and a
two-dimensional cone. The proof uses a Bochner-type formula (Theorem 6.1) and Theorem 4.3, which is
a more exact version of the following problem from [24].

Problem 1.8 (convex-lens) Let D and D’ be two smooth discs with a common

D
boundary that bound a convex set (a lens) L in a positively curved 3—dimensional 6
Riemannian manifold M. Assume that the discs meet at a small angle. Show that the
integral |, p k1 ko is small; here ky and k, denote the principal curvatures of D. D’

The A°—case is proved by induction. The base is the 2—dimensional case. Further, we apply the induction
hypothesis to level sets of special concave functions. By the Gauss formula, these level sets have the same
lower curvature bound. In the proof, we use the Bochner-type formula together with the DC-calculus
developed in [18]. The first step in the induction is slightly simpler.

As a rule, the calculus is done in the approximating sequence of Riemannian manifolds.
Acknowledgments We wish to thank Sergei Ivanov for pointing out a gap in a preliminary version
of this paper, John Lott for expressing his interest in a written version for many years, and Alexander

Lytchak for helping us to write this paper in a more readable way. Our very special thanks to a referee
who suggested several dozens of refinements.

Nina Lebedeva was partially supported by the Russian Foundation for Basic Research grant 20-01-00070.
Anton Petrunin was partially supported by the National Science Foundation grant DMS-2005279 and the
Ministry of Education and Science of the Russian Federation, grant 075-15-2022-289.

2 Formulations

In this section, we give the necessary definitions for a precise formulation of the main theorem. For
simplicity we will always assume that the lower curvature bound is —1; applying rescaling, we can get
the general case.

We denote by Alex™ the class of m—dimensional Alexandrov’s spaces with curvature = —1.

Geometry & Topology, Volume 28 (2024)
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Suppose A4, Ay, A, ... € AlexX™ and A, YT A. That is, A, converges to A in the sense of Gromov—
Hausdorff; since A € Alex™, we have no collapse. Denote by a,: A, — A the corresponding Hausdorff
approximations. If 4 is compact, then by Perelman’s stability theorem [10; 16] we can (and will) assume
that a, is a homeomorphism for every sufficiently large n. In the case of noncompact limit, we assume
that for any R, the restriction of a, to an R—neighborhood of the marked point is a homeomorphism to
its image for every sufficiently large n.

We say that 4 € Alex™ is smoothable if it can be presented as a Gromov—Hausdorff limit of a noncollapsing
sequence of Riemannian manifolds M, with sec M, = —1; here sec stands for sectional curvature. Given
a smoothable Alexandrov space A4, a sequence of complete Riemannian manifolds A}, as above together
with a sequence of approximations a,: M, — A will be called smoothing of A (briefly, M, — A, or
M, %2> A). By Perelman’s stability theorem, any smoothable Alexandrov space is a topological manifold
without boundary.

2A Weak convergence of measures

In this subsection, we define weak convergence of measures. For more detailed definitions and terminology,
we refer to [8].

Let X be a Hausdorff topological space. Denote by 91(X) the space of signed Radon measures on X .
Further, denote by C.(X) the space of continuous functions on X with a compact support.

We denote by (m| /) the value of m € 91(X) on f € C.(X). We say that measures m,, € MM (X) weakly
converge to m € M(X) (briefly m, — m) if (m,| ) — (m|f) for any f € C.(X).

Suppose A, YTl A with Hausdorff approximations a,: A, — A and m, is a measure on A,. We say that
my, weakly converges to a measure m on A (briefly m;, — m) if the pushforwards m), of m, to 4 by the
Hausdorff approximations a,, : A, — A weakly converge to m. If the condition (m/,| /') — (m| /) holds only
for functions f* with support in an open subset 2 C A4, then we say that m, weakly converges to m in 2.

Equivalently, the weak convergence can be defined using the uniform convergence of functions. We say
that a sequence f;, € C.(Ay) uniformly converges to f € C.(A) if their supports are uniformly bounded
and

sup { | fu(x) — foan(x)|} — 0.

xX€Ay,

Then m, — m if for any sequence f;, € C.(A4,) with uniformly bounded supports and uniformly converging
to f € Cc.(A) we have (my| f,) — (m| f).

2B Test functions

In this subsection, we introduce a class of test functions and define their convergence.

Test functions form a narrow class of functions defined via a formula. It is just one possible choice of a
class containing sufficiently smooth DC functions; see the remarks in the next section.
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Recall that the distance between points x, y in a metric space is denoted by |x — y|; we will denote by
disty the distance function disty: y — |x — y|.

Suppose Ay, A € Alex™ and 4, <> A- Then any distance function dist,: A — R can be lified to Ap; it
means that we can choose a convergent sequence p, — p and take the sequence distp,,.

Choose r > 0 and p € A. Let us define smoothed distance function as the average:

dist, , = ¢ dist, dx.
B(p,r)
We can lift this function to distp, ,: 4, — [0, 00) by choosing some sequence A, > p, — p € A.
We say that [ is a test function if it can be expressed by the formula

f= Qﬁ(ai\sltpl,rl’ cee ’ai\sltpNJN)’

where ¢ : (0, 00)N — R is a C2—smooth function with compact support. If for some sequences of points
Apn > pin — pi € A and C2=smooth functions ¢, that C?~converge to ¢ with compact support we have

Jn = ‘pn((ﬁpl,n,rl’ s cFﬁ\ST}’N,n,"zv)’
test

then we say that f, is test-converging to f (briefly, f, — f).

Remarks Note that test functions form an algebra.

Let M be a Riemannian manifold. Note that for any open cover of M, there is a subordinate partition
of unity of test functions. Further, around any point of M one can take a smoothed distance coordinate
chart. One can express any C2—smooth function in these coordinates, and then apply partition of unity
for a covering by charts. This way, we get:

Claim 2.1 On a smooth complete Riemannian manifold, test functions include all C%>-smooth functions
with compact support.

2C C'-delta convergence

Here we introduce C!—delta convergence. It will be necessary to formulate the main theorem in an
invariant way, but, except for Section 5B, everywhere in the proofs, we will use test convergence and
occasionally DC convergence instead. (As claimed in Claim 2.3 test convergence implies C!—delta
convergence.) By that reason, it would be wise to skip this section for the first reading.

The C'—delta convergence will be used together with other delta convergences introduced in Section SA.

Convergence of vectors Let A be an Alexandrov space, we denote by TA the set of all tangent vectors
at all points. So far TA is a disjoint union of all tangent cones; let us define a convergence on it.
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We will use gradient exponent gexp: TA — A which is defined in [3]. Given a vector V' € TA, it defines
its radial curve yyp : ¢ — gexp(z - V). We say that a sequence of vectors V,, € TA convergesto V € TA
(briefly, V,, = V) if yy;, converges to yp pointwise. Since the radial curve yy is |V|-Lipschitz, we get
that any bounded sequence of vectors with base points in a bounded set has a converging subsequence
of yy,. Further, the pointwise limit of such curves is a radial curve as well. Therefore, any bounded
sequence of tangent vectors with base points in a bounded set has a converging sequence.

In a similar fashion, we can define the convergence of tangent vectors to sequences of Alexandrov spaces
Ay that converge to A. That is, if V;, € TA, is a bounded sequence of tangent vectors at points on a
bounded distance to the base points, then it has a subsequence that converges to some vector V' € TA.

Note that
|V | < liminf |V,
n—oo
and the inequality might be strict.
Recall that if V' € T, is the unit vector in the direction of [pg], then yy is a unit-speed parametrization

of [pq]. Using this we get the following observation; it provides a way to apply the convergence.

Observation 2.2 Let My —> A be a smoothing, py,qn € My, and p, — p, gn — q as n — co. Denote
by Vy € Tp, and V € T, the directions of geodesics [pnqn) and [pq]. Suppose that there is a unique
geodesic [pq] in A. Then V;, — V.

C 1_delta smoothness Given a function f:A— R anda vector V € TA, set
Vf=(forw®)]i=o
Note that V f is defined for all DC functions and, in particular, all test functions.
Two vectors V, W € T, A will be called §—opposite if
1-§<|V|I<1, 1-§<|W|<I1, and [{X,V)+(X, W) <6

for any unit vector X € T, A. We say that V, W € T, 4 are opposite if they are §—opposite for any § > 0;
in this case, they are both unit vectors and make angle & to each other.

A function f: A — R is called C'—delta smooth if for any compact set K C A and & > 0 there is § > 0
such that any sequence of points p, — p € K and unit vectors V, € Tp, A that converges to a vector
V €Ty A that has a —opposite vector we have

|Vf— lim V, f]|<e,
n—o0
where “lim” stands for an arbitrary partial limit.

Suppose M,, — A. A sequence of C'=smooth functions f;,: M, — R is called C'—delta converging to
f:A— R (briefly, f; s, [ if f, converges to f pointwise and for any compact set K C A and any
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e > 0 there is § > 0 such that if a sequence of unit vectors V, € T, M, converges to a vector V € T, 4
such that p € K and V' has a §—opposite vector, then we have

VS — lim V, fn] <e.
n—o0
Claim 2.3 Any test function is C ! —delta smooth. Moreover, for any smoothing M,, — A, sequence of
test functions f,: M,, — R, and test function f: A — R, we have

test c}

Proof Let V' and W be §—opposite vectors in T, A. Note that for almost all points ¢ € 4, we have

|V disty +W disty | < 6.
It follows that

(2-1) |Vdisty,, + Wdisty, | <§
forany g € A and r > 0.

Suppose V} is a sequence of unit tangent vectors on M, such that V;,, — V; that is, yy, — yp as n — oo.
By monotonicity of radial curves [3, 16.32], we get

V disty < liminf V,, disty,
n—oo
if g — ¢q. Integrating, we get

Vdisty,» <liminf Vydisty, ,.
n—o0

Suppose V has a §—opposite vector W. We can assume that W is a unit geodesic vector; that is, there is a
geodesic [ ps] in the direction of W. Moreover, we can assume that [ps] is a unique geodesic from p to s.
Choose points s, and pj, that converge to s and p respectively. By Observation 2.2, the directions W, of
[ pnsn] converge to W. Note that W, is §—opposite to V;, for all large n.

Repeating the above argument, we get
Wdisty,, < liminf Wydisty,, ,.
n—oo

Applying (2-1) we get C ! —delta convergence of ai\s'tqn,r and, in particular, C '—delta smoothness of ai\s’tq,r.
Applying the definition of test function, we get the result. |

Recall (Section 2B) that for any smoothing M, —> A and test function f/: 4 — R there are test functions
fn: My — R such that f, o f.

Corollary 2.4 Given a smoothing M, — A ang a test function f: A — R, there is a sequence of
C
C'—smooth functions f,: M, — R such that f,, —%> f.

Geometry & Topology, Volume 28 (2024)
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Remarks In the next section, we define measure-valued tensor as a functional on an array of test
functions. Note that, one test function might have very different presentations that lead to different
test convergences. Thus to prove the invariance of measure-valued curvature tensor we need to use
the C!—delta convergence which is more general than test convergence. We could use other classes of
functions as well. For example, a subclass of DC( functions (see Section 7) or a subclass of C 1_delta
function (see Section 2C). Of course, we have to have an analog of Corollary 2.4 for the chosen class.
We hope a more natural setting will be found eventually.

2D Tensors

In this subsection, we define measure-valued tensors on Alexandrov spaces. Basically, we reuse the
derivation approach to vector fields in classical differential geometry. This definition will be used in
Claim 2.9 that reduces the main theorem to Proposition 2.10 and will not show up ever after.

Let A € Alex™. Recall that 91(A) denotes the space of signed Radon measures on A. A measure-valued
vector field v on A is a linear map that takes a test function, spits a measure in 9J1(A), and satisfies the
chain rule: for any collection of test functions f7,..., fx and a C2—smooth function ¢: RF > R, we
have "
0(@(f1. - S)) =D _@i@)(f1.- - fu) 0 (f5).
i=1

In the same way, we define (contravariant) measure-valued tensor fields. Namely, a measure-valued
tensor field t of valence k on A is a multilinear map that takes a k—array of test functions, spits a measure
in 91(A), and satisfies the chain rule in each of its arguments.

Suppose that x4, ..., X are local coordinates in an m—dimensional Riemannian manifold M. Then a
measure-valued vector field v on M can be described by m components, (v(x1),...,0(xy)), which are
measures. These components transform by contravariant rule under change of coordinates.

By the definition of a measure-valued vector field, we get

o(f) =0 [ 0(xi).

Similarly, for arbitrary &, a measure-valued tensor field of valence k is defined by m* components
t(xilﬂ .. ’xlk); namely,

Wi iD= D0 B fiee i Sie vy xi,)-
i1 eensi
Note that if 7" is a smooth contravariant tensor field then t = 7 - vol is a measure-valued tensor field. In
other words, usual tensor fields might be considered as a subspace of measure-valued tensor fields.

Definition 2.5 Let M, —> A be a smoothing. Assume that t; is a sequence of measure-valued tensor
fields on M), and t is a measure-valued tensor field on A, all of the same valence k. We say that t, weakly
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converges to t (briefly t;, — t) if

cl o .
Jin =5 fi foralli = tu(fin. ... fin) = t(f1.- o0 Jio)

for arbitrary k sequences f1 4, ..., fx.n of C'-smooth functions and test functions fi,..., fx: 4 — R.

2E Dual curvature tensor

The curvature of Riemannian manifold M is usually described by a tensor of valence 4 that will be
denoted by Rm. We will use a dual curvature tensor — a curvature tensor written in a dual form that will
be denoted by Qm; it is a tensor field of valence 2 - (m — 2) defined the by

Qm(Xl, ey Xm—2,Y1,..., Ym—Z) = Rm(*(Xl /\"'/\Xm_z), *(Yl VARREIAN Ym_z)),

where X;, Y; are vector fields on M and x*: (/\m_zT)M — (/\2T)M is the Hodge star operator. This
definition will be used further mostly for gradient vector fields of semiconcave functions.

In addition, we will need a measure-valued version of Qm denoted by qm; it will be called dual measure-

valued curvature tensor. Namely, we define

qm(fl’---’fm—Z’gla~-"gm—2)
as the measure with density

Am(Vfi,....Vfmu—2,Vgi,....,.Vgn_2): M — R.
Remarks Note that
Qm(Xl,---,Xm—2,X1»---»Xm—2) = |X1 /\"'/\Xm—le'Ka,

where K, is the sectional curvature of M on a plane o orthogonal to (m—2)—vector X1 A--- A Xpp—s.
Hence, the sectional curvatures of M and therefore its curvature tensor Rm can be computed from gm.
By the symmetry

qm(fl’---’fm—2vg1v---vgm—2):qm(glv-~-vgm—2,f1’~--»fm—2)7

the density of qm is defined by the sectional curvature. Therefore measure-valued tensor gm gives an
equivalent description of the curvature of Riemannian manifolds.

As you will see further, the described dual form of curvature tensor behaves better in the limit; in particular,
it makes it possible to formulate Proposition 4.2.

In the 2—-dimensional case, the valence of qm is 0; in this case, gqm coincides with the curvature measure —
the standard way to describe the curvature of surfaces [1; 25]. For a smooth surface, the density of this
curvature measure with respect to the area is its Gauss curvature. In this case, it is known that curvature
measures are stable under smoothing [1, VII §13]; in other words, our main theorem is known in the
two-dimensional case.
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2F Formulation and plan

Theorem 2.6 (main theorem) Consider a smoothing M, — A. Denote by qm,, the dual measure-valued

curvature tensor on My. Then there is a measure-valued tensor qm on A such that qm,, — qm.

Let A be an m—dimensional Alexandrov space without boundary. Let us partition A into three subsets
A°, A, and A”:

o A° is the set of regular points in A4; that is, the set of points with tangent cone isometric to the
Euclidean space.

o A’ —the set of points in A\ A° with an isometric copy of R”~2 in their tangent space; in other words,
for any p € A’, the tangent space T, is isometric to the product Cone(6) x R™~2 where Cone(#) denotes
a two-dimensional cone with the total angle 6 = 0(p) < 2- 7.

o A" — the remaining set; this is the set of points with tangent space that does nor contain an isometric
copy of R™=2,

According to [13], A" is countably (m—2)-rectifiable, and A” is countably (m—3)-rectifiable.

Observe that the set of regular points A° can be presented as

A° = ﬂA5,

§>0

where A% denotes the set of §—strained points of A.

Let M be an m—dimensional Riemannian manifold. Denote by Kax(x) the maximal sectional curvature
at x € M. The following statement is a direct corollary of the main result in [23]:

Corollary 2.7 Given an integer m = 0, there is a constant const(m) such that the following holds:

Let M be an m—dimensional Riemannian manifold (possibly noncomplete) with sectional curvature
bounded below by —1. If for some r < 1 the closed ball B(p,2-r)ar is compact, then

/ Kmax < const(m) - r™™2.
B(p,r)m
Observation 2.8 There is another constant const’ (m) such that

|Qm(X1» o »Xm—Z» Yl, cee Ym—2)| < COIlSt/(Wl) : Kmax : |X1 ARRRRA Xm—2| ' |Y1 ARRRRA Ym—2|-
Note that Corollary 2.7 and Observation 2.8 imply:

Claim 2.9 Given a smoothing M, T>1A, test functions f;: A — R, and sequences of C'—smooth
functions f;i : M, — R such that f; , =% f;, the sequence of measures qm,(f n. ..., f2.m—a.n) has a
weakly converging subsequence.
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Moreover, the subsequence can be chosen simultaneously for several choices of function arrays so that it
meets the chain rule. More precisely, choose i; fix all functions fi . ..., f2.m—an €xcept fin; suppose
q?ni,n (fl,n) = qmn(fl,m ceey f2-m—4,n)-

1

. C . .
Assume hj: My — R are C!'—smooth functions such that hj, —%> hj, each h; is a test function, and

hO,n = ‘/’(hl,na ces ,hk,n)
for a fixed C2—function ¢ : R¥ — R. Then the sequence of measure arrays qm; ,(hon). - .., qm; , (hg p)
has a partial limit qm; (hy), .. ., qm; (hy), and
k
ain; (ho) = Y _(@9)(hi. ... i) - qin; (h)).

j=1
By Perelman’s stability theorem, the space A in the claim is a topological manifold. In particular, 4 has

no boundary; in other words, the singular set in A has codimension at least 2. Together with the claim, it
implies that Theorem 2.6 follows from the next statement.

Proposition 2.10 Let M, — A and dim A = m. Suppose h1, o hm—o are test functions on A and
hin,....hm—2n are C'—smooth functions on My, such that h; , —%> h; for eachi. Letm; and m, be two
measures on A that are weak partial limits of the sequence of measures qm,(h1 n,....hmp. B n, .. hm,n)
on M. Then the following statements hold:

(i) myl4r =mylgr =0.
(i) mylg =my|g.

(ii)) my|g0 =my|go.

The three parts of the proposition will be proved below in Sections 3, 4, and 5, respectively.

Proofs

3 Singularities of codimension 3

Proof of Proposition 2.10(i) According to [5, 10.6], A” has a vanishing (m—2)—dimensional Hausdorff
measure; that is, A” can be covered by a countable family of balls B(x;, r;) such that ) rl.m_2 is arbitrarily
small. Therefore, Observation 2.8 and Corollary 2.7 imply the statement. O

4 Singularities of codimension 2

The following lemma will be proved in Section 8.

Lemmad4.1 Let A be an m—dimensional Alexandrov space without boundary. Then the subset A’ C A can
be covered by a countable set of compact sets Q; that each admit a bi-Lipschitz embedding into R™~2.
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Let h: A — R¥ be a Lipschitz map defined on an m—dimensional Alexandrov space without boundary.
Suppose Q C A is a closed subset such that there is a bi-Lipschitz embedding s: Q — R¥. By the
generalized Rademacher theorem, the metric differential of s~! is defined almost everywhere in the
domain of definition of s~!. Moreover, the metric differential is defined by a bilinear form; its determinant
is the Jacobian of s~ !, briefly jac s~!. The same way we can define jac(hos™!) (we can apply the standard
Rademacher theorem this time). Further, set jac(h|g) = jac(h o s71)/jacs™!. Tt is straightforward to
check that this definition is vol¥ —almost-everywhere independent of the choice of s.

Consider the function
m—1
vol p
volm—1 §m—1"

where X, denotes the space of directions at p. According to [5, 7.14], 8: A — R is lower-semicontinuous.

(4-1) O(p)=2-m-

Note that 6 is identically 2 -7 on A°. Further note that for any point p € A’, its tangent cone is isometric
to the product space Cone(#) x R”~2, where 6 = 6(p) < 2- . Since vol”2(A4”) = 0, the measure
(2 — @) - vol™2 vanishes on A”.

Note that Proposition 2.10(ii) follows from Lemma 4.1 and the following statement; it will be proved in
Sections 4C—4D.

Proposition 4.2 Let m be one of two limit measures m; in Proposition 2.10 and
h=y, ... °hpy): A—R"2

be an array of test functions. Suppose that Q C A is a compact subset that admits a bi-Lipschitz embedding
into R™~2. Then

m|g = (2-7 —0) - (jac(h|g))* - vol" 2.

4A Gauss and mean curvature estimates

Theorem 4.3 Let [, h be a pair of strongly convex smooth 1-Lipschitz functions defined on an open set
of a 3—dimensional Riemannian manifold. Suppose that
(i) |Vf|=1and

IV(f + M) <e-|Vf]

1.

for some fixed positive & < 5;

(ii) for some a,b € R, the set

Wap={ipeM| f(p)=a, h(p) <b}

is compact.
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Denote by k1(p) <k (p), H(p) =ki1(p) + ka(p) and G(p) = k1(p) - ko(p), the principal, mean, and
Gauss curvatures of W, p, at p. Then

4-2) / G <100-¢
Wa.b
and
(4-3) [ H <10- /e -length(dW, ).
Wa,b

The proof is based on the 2—dimensional case of the following statement, which is the integral Bochner
formula with Dirichlet boundary condition.

Proposition 4.4 Assume €2 is a compact domain with smooth boundary 02 in a Riemannian manifold
and f is a smooth function that vanishes on 2. Then

/ (IAf]2 | Hess /17 — (Ric(V/). Vf)) = / H-|V/P
IR

Q

where H denotes the mean curvature of 0€2.

Proof of Theorem 4.3 Equip W, ; with unit normal vector field n = % Let
Sp:TpWap = TpWap
be the corresponding shape operator, so Sp,: v+ Vyn. Since f is strongly convex, we have that
(Sp(v),v) = 8- [v]?
for a fixed value § > 0 and any tangent vector v € T, W, p.
Note that the restriction u = &y, , is strongly convex. Moreover,

(4-4) Hessp u(v,v) = (1 —¢)- (S, (v), v)

for any p € W, 5 and v € T, W, . Indeed, consider the geodesic y in W, j, such y(0) = p and y’(0) = v.
Set w = y”(¢). Note that

w=—(Sp(v),v)-n,

Since 4 is strongly convex, Hess, & = 0; therefore

(Vph,Vp /)

(Hessp u) (v, v) = (Hessp h) (v, v) + (Vph, w) = — 7]

(Sp().v) = (1 =) [Vp f]-(Sp(v). v).
Since |Vf]| = 1, (4-4) follows.
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Since (Sp(v),v) = 0and ¢ < % the inequality (4-4) implies that

4-5) 4 -det(Hessp u) = G(p)
and
(4-6) —2-Au = H(p)

for any p € W, p.
Denote by A1 (p), A2(p) the eigenvalues of Hess), u, so
trace(Hess u) = Au = Ay + Ay, |Hessu|*> = )»% + A2, det(Hessu) = A; - Aa,
and hence
2-det(Hess u) = |Au|* — | Hess u|?.

Since W, p is two-dimensional, by Proposition 4.4 we get that

/2-det(Hessu)= / K-|Vul® + / K- |Vul|?,

Wab Wa.b Wb

where k = 0 is the geodesic curvature of W, ; and K is the curvature of W, p.

Since u is a convex function that vanishes on the boundary of W, p, it has a unique critical point, which is
its minimum. By the Morse lemma, W, j is a disc. Therefore, by the Gauss—Bonnet formula, we get that

/K—i— / Kk=2-m.
Wa,b

W, p

Whence,
[det(Hessu)Sﬂ- sup |Vpu|2.
W,
Wa.b peWab

Note that Vj,u is the projection of Vi to T, W, 5. Therefore,
\Vpul® = |Vph|* = (Vph,n)? <1—(1—¢)? <2-e.
It follows that
/ det(Hessu) <2-m-e.
Wa.p
Applying (4-5), we obtain (4-2).

Similarly, by the divergence theorem, we get that

- [ au= [ v

Wa,b aWa,b
Whence (4-6) implies

/ H <10 /e -length(dW, p). m|
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4B Curvature of level sets

Let M be a 3—dimensional Riemannian manifold. Choose a smooth function f: M — R. Consider its
level sets

Le={xeM| f(x)=c}.
If the level set L. is a smooth surface in a neighborhood of x € L., then denote by k1(x) < k,(x) the
principal curvatures of L. at x. In this case, set

G(x) =ki(x)-ka(x), H(x)=ki(x)+ka(x);
that is, G(x) and H (x) are Gauss and mean curvature of L. at x.

Recall that Cone(#) denotes a 2—dimensional cone with the total angle 6.

Theorem 4.5 Let M, —> Cone(f) xR and f;,: M,, — R be a sequence of strongly concave smooth
1-Lipschitz functions. Suppose that sec My, = —% for each n, and f, converges as n — oo to the R—
coordinate f: (x,t) — t on Cone(f) x R. Then G, and Hy, (the Gauss and mean curvatures of the level

sets of f) weakly converge to zero.

Proof Choose p € Cone(6) x R; seta = f(p).

By the theorem of Artem Nepechiy [15], there is a (—2)—concave function o defined in an »—neighborhood
of p such that o(x) = —|p — x|? + o(| p — x|?). Moreover, the function o is liftable; that is, there is a
sequence of (—2)—concave o, : M, — R that converges to @.

Consider a point ¢ € Cone(6) xR above p; that is, its R—coordinate is larger, and its Cone(#)—coordinate
is the same. If the R—coordinate of ¢ is large, then dist; + /" is A—concave for small A > 0 and it has a
nonstrict minimum at p. Therefore, given A > 0, we can find ¢ so that the sum s = f 4 dist; +A -0 is

(—X)—concave and has a strict maximum at p. Moreover

1 2 — 3 —x|?
-2 “A-lp _x|cone(9)xR =z s(x)—s(p) = 2 A-lp x|C0ne(9)><R
and therefore

4-7) [Vas| < 10-A-|p — X|cone(@)xR

if | p — X|cone(a)xR is sufficiently small; say if | p — X |cone(9)xR < Tg-

Choose a sequence of points g, € M, that converges to q. Let us apply the Green—Wu smoothing procedure
to distg,, +A-0x; denote by /,, the obtained function; we can assume that |, —disty, —A-0,| — 0. Observe
that (4-7) implies that the first condition in Theorem 4.3 is met for all large » in an %—neighborhood

of p, with ¢ = 10- A - r. Moreover, one can choose b so that the second condition is satisfied and
By = B(pn,r/10)N L, C W, . Applying Theorem 4.3, we get that for any § > 0, we have

/Gn<8, and /H,,<5.

By, By
for all large n. It remains to integrate the obtained inequalities by ¢ and pass to a limitas n — oco. O
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For a product R”~2 x Cone(#), denote by 'V the vol™ ~>—measure on the vertical line R”*~2 x {0}. Further,
consider the curvature measure

w=02-7—-0)-V
on R”~2 x Cone(9).

Corollary 4.6 Suppose that M, ——> Cone(6) xR and f;,: M;, — R be as in Theorem 4.5. Set u, = Izj:’ll .
Then: '

(1) (Ricuy,u,) weakly converges to zero.
(i) Letv, and w, be sequences of uniformly bounded, continuous vector fields on M. Suppose that
(v, un) and (wy, u,) converge uniformly as n — oo to some constants a and b respectively. Then

Qm(vy, wy) —~a-b-w,

where w is the measure on Cone(6) x R described above.

Proof (i) Passing to a subsequence if necessary, we can assume weak convergence of (Ric uy, i) - vol>
to a measure m on Cone(8) x R. Since sec M, = —%, we have that m = 0. Therefore it is sufficient to
show that m < 0.

By Theorem 6.1 we have that

/@n'(Ric“n,uﬂ :/[(pn'Gn+Hn'<un»v90n)_(V(Pnavunun)]
Q Q

holds for any function ¢, with compact support on M,,, assuming that all expressions in the formula have

sense.

It remains to find a sequence of nonnegative functions ¢, : M, — R with compact support that converges
to a ¢: Cone(f) x R — R such that (1) ¢ is unit in a neighborhood of a given point p € Cone(f) x R
and (2) we have control on the three terms on the right-hand side of the formula; the latter means that we
have the weak convergences

(4-8) 0n-Gn—0, Hy-(up, Vo) =0, (Vo Vun un) — 0.

For the first convergence, it is sufficient to choose the sequence ¢, so that in addition it is universally
bounded. Indeed, since |Vf;| — 1, we have that Theorem 4.5 implies the first convergence in (4-8).

Similarly, to prove the second convergence in (4-8), it is sufficient to assume in addition that |V¢;| is
universally bounded and apply Theorem 4.5.

To prove the last convergence in (4-8), note that |V, u,| — 0 away from the singular locus. The latter
follows from Lemmas 5.3 and 5.4. Indeed, V,,u, can be written in a common chart away from the
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singular locus. The lemmas imply that its components converge to the components of V,u in the limit
space. By assumption u is parallel in the limit space; in particular V,u = 0.

This observation will be used to control the term (Vgy,, V,,, 1) at the points far from the singular locus
of Cone(0) x R. To do this we only need to assume that |V¢,| is bounded. Next, we describe how to
control it near the singularity.

Since |u,| =1, we have V,,u, L Vf,. Therefore if Vg, is proportional to
Vfn at some point, then (Vg,, V,,, u,) = 0 at this point. This observation
makes it possible to choose ¢, so that the term (Vg,, V,,u,) vanish
around the singular locus of Cone(f) x R. Namely, in addition to the
above conditions on ¢, we have to assume that the identity ¢, = ¥ o fj

holds at the points of M), that are sufficiently close to the singular locus
of Cone(6) x R.

Finally, observe that the needed sequence exists. Indeed, one can take

on = (0 odistp,) - (¥ o fn)

for appropriately chosen fixed mollifiers o, ¥ : R — R and M, > p, — p.

(i) Since G, — 0, we get that the curvature measure of level sets of f;,, weakly converges to the curvature
of Cone(6). It follows that

Qm(uy, up) — .
Suppose v}, L u, for all n. Part (i) implies that Qm(v},, v;,) — 0.

Fix ¢ € R. Since the lower bound on sectional curvature of M, converges to 0, any partial weak limit of
Qm(v), +1 - wy, v), + 1t - wy) is nonnegative. It follows that

Qm(v,,, wy) =0
for any sequence of fields v),, w, such that v}, L u,.
Consider the vector fields v;,, w), such that
v Lup, vy =an-un -+,
wy, Lup, wy =by-uy+w,.
Since Qm is bilinear, we get that
Qv 1) = Q). W)+t - [Qm(t. W) + by Qo 1))

By assumption, a, = (uy, v,) and b, = (u,, w,) uniformly converge to a and b respectively. Whence
the statement follows. O
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4C Three-dimensional case

Proof of the 3—dimensional case in Proposition 4.2 Suppose M,, — A4 and dim A = 3. Choose a set
QO C A that admits a bi-Lipschitz embedding into R.

+

Let us split m into negative and positive parts m = m™ —m™; that is,

mT(X) :=sup{tm(Y)|Y C X}.

Since the sectional curvature of M, is bounded below, we get that m™ has bounded density; in other
words, m™ is a regular measure with respect to vol® on 4. Since Q has zero volume, we get m~(Q) = 0.

Set n = m|g; from above we have n = 0. By [23], n is regular with respect to vol! on Q. Therefore it is
sufficient to show that

(27 —6) - (ac(h|g))?
is the vol'—density of n at vol'—almost all p € Q.

Choose a bi-Lipschitz embedding s: Q@ — R; set K = s(Q). Since s~! and /1 o s~! are Lipschitz, by

1

Rademacher’s theorem, we can assume that s~! and / o s~1 are differentiable at almost all x € K.

Moreover, we can assume that dxs~!(») = (A - »,0) € R x Cone(f) = T, and the vol!—density of n at
p = s~ (x) is defined.

Shifting and scaling the interval K, we may assume that x = 0 and A = 1. In this case, | jac, (h]g)| =
|do(hos™1)|.

Note that we can choose a sequence of points p, € M, and a sequence of factors ¢, — oo such that
(¢n - My, pn) converges to the tangent space T, = R x Cone(0).

Applying Perelman’s construction [22, 7.1.1 and 7.2.3] for a horizontal vector in T, = R x Cone(0),
we can choose a sequence of functions f: ¢, - M, — R satisfying the assumptions in Theorem 4.5; let
un = Viu/|Vful. Consider the sequence of functions hp: cn+ My — R defined by

hn(x) = cn - (hu(xX) = hu(pn)).

Since A = 1, we have that |(Vfln u,)| uniformly converges to |do(/ o s~1)|. By Corollary 4.6(ii), the
sequence of measures qm(/y, i,) on ¢, - M, — R weakly converges to |dg(hos™1)|? “Wone()xR - Recall
that vol'!—density of ®cone(9)xR ON the singular line is 2- 7 — 6(p).

Observe that
qu(n, hn)[B(pu» Vey-nt, ] = €n - ahin, hn)[B(pns 1/ en)ar, ]

Whence (2-7 —6(p)) - (jac, (h|Q))2 is the vol'—density of n at p as required. O

Geometry & Topology, Volume 28 (2024)



3888 Nina Lebedeva and AP
4D Higher-dimensional case

Suppose M, —> Cone(6) x R™~2, where Cone(6) denotes a two-dimensional cone with the total
angle 6 < 2. . First, we will show that the curvatures of M, in the vertical sectional directions of
Cone(#) x R™~2 weakly converge to zero; an exact statement is given in the following proposition. By
combining this result with the 3—dimensional case we get Proposition 4.2 in all dimensions.

For X,Y € Tp, denote by K(X AY) the curvature in the sectional direction of X A Y. A function
f: Cone(A) x R"~2 — R will be called a vertical affine function if f can be obtained as a composition
of the projection to R”*~2 and an affine function on R”~2,

Proposition 4.7 Let M, —> Cone(6) x R™~2 and f,, h,: M, — R be sequences of strongly concave
smooth Lipschitz functions. Suppose that sec M, = —% for each n, and we have pointwise convergences
fu— f and h, — h, where f and h are vertical affine functions on R™~2 x Cone(6). Then

K(Vfy AVhy)-vol™ — 0.

Let ¥ be a convex hypersurface in an m—dimensional Riemannian manifold M. Suppose x is a smooth
point of ¥; that is, the tangent hyperplane H, of ¥ is defined at x; denote by e, . . ., e;,,—1 an orthonormal
basis of Hy. Set

Zex(x) = Z K(e;i nej).

i,j
In other words,
Zcy = Sc—2-Ric(nyg, ny),

where ny, is the unit normal vector to X.

Since tangent hyperplanes are defined at almost all points of convex hypersurfaces, Zcy (x) is defined
almost everywhere on X.

Lemma 4.8 Let X be a strongly convex hypersurface in an m—dimensional Riemannian manifold M
with curvature > —1. Suppose that for some point p € ¥ and r < 1 the closed ball B(p,2-r) in the
intrinsic metric of ¥ is compact.
Then,
Zex (x) -vol™ ' < (m—1)- (m —2) - const(m — 1) - r™ ™3,
x€B(p,r)

where const(m — 1) is the constant in Corollary 2.7.

Proof If X is smooth, then the inequality follows from Corollary 2.7, and the fact that curvature cannot
decrease when we pass to a convex hypersurface.
In the general case, the surface ¥ can be approximated by a smooth convex surface; this can be done by

applying the Green—Wu smoothing procedure; compare to [2].
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It remains to pass to the limit. More precisely, suppose X, is a sequence of smooth strongly convex
hypersurfaces that converges to . For each n, choose a point p, € ¥, such that p, — p. By [20,
Theorem 1.2], (X, pn) converges to (X, p) as in the pointed Gromov—Hausdorff convergence.

Recall that vol,,—; on X, weakly converges to vol,,,—; on X (see [5, 10.8]). Further, since M is smooth,

Zcy,, is bounded in B(py,1)s,,. Therefore,

[ Zes, (x)-vol™ ™1 — / Zes(x)-vol™™ 1 asn — oo
X€B(pn,r)z, x€B(p,r)x
follows if for almost all x € X we have that for any ¢ > 0 there is § > 0 such that if x, € X, and
|xn — x| < 8 for large n, then

| Zes, (xn) —Zes(¥)] <e.

This condition holds if the tangent plane H, is defined. Whence the nonsmooth case follows. |

Proof of Proposition 4.7 Passing to a subsequence, we can assume that
K(Vfu AVhy)-vol™ =~ m
for some measure m on R”~2 x Cone(6).

First, let us show that m is supported on the singular locus. If p is not singular, then it has a flat
neighborhood. Therefore by a local version of Key lemma 5.5 (see also Section 9) we get that m vanishes
in a neighborhood U > p. Indeed, we can include copies of U (which is flat) in the approximating
sequence U, C M, of U and argue as in the introduction.

Let p be a singular point on Cone(#) x R”~2; let us denote its liftings by p, € M,,. We can assume
that p corresponds to the origin of R”~2. Choose points Alps - Am—21 D1y Dy—z p in My such
that the functions f; , = disty, , —|@;n — p| and —h; , = —disty, , +|b;n — p| converge to i™ vertical
coordinate function on Cone(#) x R™~2. Further, choose points ¢q ,, C2 », €3, SO that the functions
gin = diste; , —|ci,n— p| converge to Busemann functions for different horizontal rays in Cone(6) x R™—2
emerging from p. Note that the latter implies that the angles Z( Pn g’]’;) are bounded away from zero for
all large n.

By [22, Lemma 7.2.1], there is an increasing concave function ¢ defined in
a neighborhood of zero in R such that ¢’ is close to 1 and for any & > 0 and

Rm42

i # j the function

Sijn =¢0&int@ogjnt Z[‘P(S *Jin) +@(e-hipn)]
i
p
is strongly concave in B(py, R) for fixed R > 0 and every large n.

Denote by s;; : Cone(8) x R™~2 — R the limits of sij,n- Note that given w > 0,

we can take small ¢ > 0 so that for all i # j the set sl.;l [—w, w] covers the
singular locus in B(p, R).
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Note that we can choose g9 > 0 so that for almost all points x € B(py. R) the differential dys;j,» is
linear and |dxS;ij,n| > €0 > 0 for some i and j. Indeed, these differentials are linear outside cutlocuses of
Qi n, bin, and ¢; »; in particular, they are linear at almost any point x, € M,,. Further, if the differential
dx, S12,n is very close to zero, then the directions of [x,, ¢1 ,] and [xy, 3 ,] are nearly opposite. Since xj
is close to py, we get that for large n the angles £[x, ?/l:z ] is bounded away from zero, we get |dx, 513 1]
is bounded away from zero as well.

Since f, and &, are converging to vertical affine functions, we get that for large n their gradients are
nearly orthogonal to Vy, g; , at almost all x,, € M},. Suppose dxs;j,, is linear and |dxsij | > €9 > 0.
Then gradients Vy, f, and Vy, h, are nearly orthogonal to Vys;j ».

Set Xijjn = Zijn(c) ={x € My | sijn(x) = c}. The argument above implies that for almost all points
X € B(pn, R) one of the sectional directions of the tangent directions o of X;; 5 is close to the sectional
direction Vf, A Vh,. In particular, given § > 0, we have

K(VfuANVhp)(x) < K(0) +6 - [ Kmax (x)]
for all large n (Kpnax is defined in Corollary 2.7).

By Lemma 4.8 and the coarea formula, the sum of integral curvatures of M, in the directions of X;; , at
Xp at the subsets where |dx,, sij n| > &¢ is bounded by const-w. By Corollary 2.7, the same holds for the
integral of K(Vf, A Vhy) if n is large. The proposition follows since w can be taken arbitrarily small. O

Proof of the general case of Proposition 4.2 Choose m — 2 sequences of strongly concave functions
Sins s fm—2.n: M — R that converge to vertical affine functions fi, ..., f—2 on Cone(0) x R™—2
with orthonormal gradients. It is done using Perelman’s construction [22, 7.1.1 and 7.2.3] for the
corresponding vertical vectors in Cone(6) x R™~2,

Note that the fields ey , = Vi 4, ..., eém—2,n = Vfm—2,, are nearly orthonormal; in particular, they are
linearly independent for all large n. Let us add two fields e¢;,—1 , and e, so that eq 5, ..., e, , form a
nearly orthonormal frame in My,; thatis, (€; n,ej,») — 0 fori # j and (e; ,, €; ) — 1 forany i as n — oo.

Observe that Proposition 4.7 implies that K(e; Aej)-vol = 0if i, j <m —2.

Let us show that K(e; Aej)-vol = 0 fori <m —2and j = m — 1. The 3—-dimensional case is done
already; it is used as a base of induction. Let us apply the induction hypothesis to the level surfaces of f} ;.
(Formally speaking, we apply the local version of the induction hypothesis described in Section 9.) Since
the curvature of convex hypersurfaces is larger than the curvature of the ambient manifold in the same
direction, we get the statement for i # 1. Applying the same argument for the level surfaces of f3 ,, we
get the claim.

Now let us show that K(ep—1 A em) - VOI'™ — wcope(g)xrm—2- Consider the level sets L, defined by
(4-9) fl,n =C1, ..., fm—z,n =Cm-2.

Geometry & Topology, Volume 28 (2024)



Curvature tensor of smoothable Alexandrov spaces 3891

Note that L, ——> Cone(6). Applying the 2—dimensional case to L, and the coarea formula, we get that
curvatures of L, weakly converge to ®cope(g)xrm—2- It remains to show that the extra term in the Gauss
formula for the curvature of L, weakly converges to zero; in other words, the difference between the
curvature of L, and sectional curvature of M), in the direction tangent to L, weakly converges to zero.

The 3—dimensional case is done already. To prove the general case, we apply the 3—dimensional case to
the 3—dimensional level sets defined by m — 3 equations from the m — 2 equations in (4-9). (The same
argument is used in the proof of Key lemma 5.5, and it is written with more details.)

Note that for 8 = 0, the last argument implies:
Claim 4.9 Let M,, — A. If A has a flat open set U, then | Kuax| - vol, = 0 on U.

In particular, the weak limit of dual curvature tensor has support on the singularity of Cone(#) x R~2,

The same argument as in Corollary 4.6 shows that (Rm(e;, ej)eq, e,) - vol”" — 0 if at least one of the
indices i, j, ¢, r is at most m — 2. The latter statement implies the result. |

5 Regular points

5A Common chart and delta-convergence

Choose a smoothing M, —> A of an m—dimensional Alexandrov space A. Let p € A be a point of
rank m; that is, there are m + 1 points ag, ..., am € A such that Z(p Z;) > Z foralli # j.

Recall [22, Sec. 7] that we can choose small » > 0, finite set of points @; near @;, and a smooth concave
increasing real-to-real function ¢ defined on an open interval such that
fi= Z % O(ii\;tx,r
xea;

is strongly a concave function that is defined in a neighborhood U > p; it will be called smoothed distance
chart.

Since r is small, and all points in a; are near a; we get that the functions fy,..., f;; are tight in U; see
the definition in [22]. In particular, the map U — R defined by x > ( f1(x), ..., fm(x)) is a coordinate
system in U.

The presented construction can be lifted to Mj. As a result, we obtain a chart of an open set U,, C M,,.
Passing to smaller sets we may assume that U and each U, is mapped to a fixed open set 2 C R™ for all
large n. Further, we assume that it holds for all #; it could be achieved by cutting off the beginning of the
sequence M.

The obtained collection of charts x,: U, — 2 and x: U — Q will be called a common chart at p.
It will be used to identify points of €2, M}, and A; in addition, we will use it to identify the tangent
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spaces T M, and TA with R™. For example, we will use the same notation for function M, — R and its
composition 2 — R with the inverse of the chart U,, — 2. We will use index » or skip it to indicate that
the calculations are performed in M, or A respectively. For example, given a function f: Q2 — R, we
denote by V, f and Vf the gradients of f ox, in M, and f ox in A respectively.

Recall that A% denotes the set of §—strained points in A. For a fixed common chart x we will use the
notation Ag for the image x (4%) C Q.

Part (iii) of Proposition 2.10 will follow from certain estimates in one common chart.

Definitions 5.1 Let M, — A, dim A = m; choose a common chart with range Q2 C R™.

A sequence of measures n, defined on 2 is called weakly delta-converging if the following conditions
hold:

¢ Every subsequence of n, has a weak partial limit.

¢ For any € > 0 there is § > 0 such that for any two weak partial limits m; and m, of (n,) we have
|(my —my)(S)| <e

for any Borel set S C A‘gz.

A sequence of bounded functions f; on 2 is called weakly delta-converging if the measures fj, - vol, are
weakly delta-converging.

A sequence of functions f;, defined on 2 is called uniformly delta-converging if the following conditions
hold:

¢ For any ¢ > 0 there is § > 0 such that such that

lim sup{ f(x)} — hm 1nf{fn (x)}<e

n—>o0

8
for any x € Ag,.

Observation 5.2 If f, is uniformly delta-converging and n, is weakly delta-converging, then fy -n, is
weakly delta-converging.

5B Convergences

Lemma 5.3 Let M, — A,dim A =m; choose a common chart with range Q@ C R™. Let f,: M, — R
be a sequence of C ! —functions such that fy, —> f: A — R. Let us denote by 01, ..., ds, the partial
derivatives on Q C R™. Denote by g;; » and g,, the components of the metric tensors on M,,. Then:
(1) fu uniformly converges to f on .
(ii) 0; f, are uniformly delta-converging.
(iii) gij,n and g,i,j are uniformly delta-converging for all i, j; moreover, det g;;,, is bounded away from
zero.

(iv) |Vp fu| uniformly delta-converges on 2.
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Proof Part (i) is trivial.

(i) Suppose ag,ay,...,anm struts p (see the definition in [3]), and the geodesics [pa;] are uniquely
defined. In this case, for any sequence of points a; ,, pn € My such that a; , — a;, and p, — p as

n — oo, we have
. Ai.n i
lim £[pnq;h]= £lpgil

n—>oo

If T, is Euclidean, then (n+1)—point comparison implies that equality holds in the last inequality.

Note that the angles £[py, Z’]'r’l ] for all 7, j > 0 completely describe the metric tensor at pj, in the basis
Vin, -+ Vi, where V; , is the unit vector in the direction of [py, a; u).

If 1, C—51> S, then Vi, f, completely describes Vp,, f, in the basis Vj , ..., Vin,,. From above, we can ex-
press |Vp, fu| in terms of V; , f, and the angles £[p, Z’]’;] Whence we get convergence |V, fu| = |V f|
and therefore

(Vo Jus Vpuhn) = (Vp [, Vph)
if Ay, C—81> h; the latter follows by the identity 4- B(x, y) = B(x + y,x + y) — B(x — y, x — y) for any
bilinear form B.

Note that the partial derivatives 0; f, at a regular point p can be expressed in terms of (d, fn, dpXj), and
(dpxj,dpxy)n, where X1, ..., xp are the coordinate functions of the chart. Therefore, we get that all
d; f» converge at any regular point.

Finally, observe that if p is a §—strained point for sufficiently small § > 0, then the calculations above go
thru with a small error. Whence the statement follows.

(iii) This part follows from the proof of (ii) since gf,j = (dpxi,dpxj)n and g;jj , can be expressed
thru g/ .

(iv) Note that |V, f;| can be expressed from gf,j and 9; f,. Since these quantities are delta-converging,
s0 is |V, ful m|

The following lemma relies on the DC-calculus which is discussed in Section 7; this section includes
the definition of DC and DCy functions, as well as DC convergence. Since test convergence implies DC
convergence (see Observation 7.1), the lemma also holds for test-converging sequences of functions.

Lemma 5.4 Let M,, — A. Choose a common chart x,,: U, C M,, > Q andx: U C A — Q with
range Q C R™. Let f;,: M, — R be a sequence of smooth functions that DC converges to a DCy function
f:A—R. Letus denote by 01, ..., 0, the partial derivatives on  C R™. Denote by g;; » and gi,j the
components of the metric tensors on M. Then the partial derivatives 0 gij,n, Ok g,if , 0j0; fu, as well as
their products to uniformly delta-converging functions, are weakly converging.

Proof The weak convergence of 0 gij,n, 0k gf,j ,and 0;0; f, follows from Theorem 7.4. Products of these
partial derivatives with uniformly delta-converging sequences of functions are weakly delta-converging,
by Observation 5.2.
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Let s, : M, — R be a uniformly delta-converging sequence. Note that its limit is well defined in A4°;
denote it by /; let us extend it by 0 to the whole A.

Denote by m, one of the measures on 2 with the density xgij,n, Ok gf,j , or 0;0; fu. Let m be the
corresponding limit measure dy g;j, 0k g ord i0; /. We need to show that

(5-1) /(hnoxn_l)~<p~mn—>/(hox_1)-¢-m as n— 0o
Q Q

for any continuous function ¢:  — R with compact support.

Choose & > 0; let § > 0 be as in Definitions 5.1 (for /,). The set S& = \ A‘gz is a closed subset of 2.
By Proposition 7.3, |m|(Sé2) = 0. Therefore we can choose an open neighborhood N C €2 of ng such
that |m|(N) < &. Choose two nonnegative continuous functions ¢g and ¢; such that

@ =¢o+¢1, suppgo C N, suppg; C A =Q\S.

Note that the sequence a, = [q (hy © x; 1) @0 - my converges with error &g = &+ ¢ -max{ |p| }, where
¢ is a bound on |/1,|. In other words, the upper and lower limits of @, differ by at most &¢. Similarly,
by = [o(hn ox, 1)@y -my, converges with error £; = - |m|-c-max{ |p| }. Since & > 0 is arbitrary, we
get (5-1). O

5C Proof modulo a key lemma

Key lemma 5.5 Choose a common chart with range 2 C R™ for a smoothing M,, —> A. Choose
a component Rm;jg,, of the curvature tensor of M, in Q. Then Rm;js,, - vol) is a weakly delta-
converging sequence of measures.

The proof of the key lemma will take the remaining part of this section; in the current subsection, we
show that it implies Proposition 2.10(iii).

Proof of Proposition 2.10(iii) modulo Key lemma 5.5 Recall that components of qm,, can be expressed
from the components of Rm,,. Therefore, the key lemma implies delta-convergence of components of qm,,.

Choose sequences of test functions fi ,,..., fu—2.1 Nin,--., hiw—2,n o0 M, that test-converge to
Sireeos fm—2,h1,..., hjn—2: A—R. By Lemma 5.3, we have delta-convergence of the partial derivatives
0i fjn and 0;h j , to 0; fj and 0;h;, respectively. The measures qm,(f1,n. -+ fm—2.n P05 - hm—2.n)
can be expressed as a linear combination of the components of qm,, with coefficients expressed in terms
of d; fj,n. By Observation 5.2, it follows that the sequence of measures

m,; = qmn(fl,nv cees fm—2,nvh1,n, ) hm—Z,n)

is delta-converging.
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Finally, recall that

4° = 4%

§>0
Therefore delta-convergence of qm,, (1. ..., fm—2.n- 1, -, hm—2 n) implies Proposition 2.10(iii). O

5D Strange curvature

Suppose M is a 3—dimensional Riemannian manifold. Strange curvature tensor Str on M is a bilinear
form that is uniquely defined by

Str(w, w) = Sc-|w|? — Ric(w, w)
for w € TM. Note that Str completely describes the Ricci curvature tensor Ric. Further, since M is
3—dimensional, Str completely describes the curvature tensor Rm of M.

In Riemannian manifolds, we can (and will) use the metric tensor to identify tangent and cotangent
bundles. Therefore the tensor Str can be applied to vector fields and forms; in particular, for any smooth
function f we have

Str(df, df) = Ste(Vf, V).
Proposition 5.6 Let M, —> A and dim A = 3; choose a common chart with range Q C R3. Suppose
that f is a convex combination of coordinate functions of the chart. Then the measures
my, = Str,(df, df) - vol}

are weakly delta-converging in 2.

The definition of strange curvature tensor is motivated by the following integral expression from
Theorem 6.1:

(5-2) o-Str(u,u) = [ ¢-Int+ | [H-(u,Vo)—(Vo, V,u)],
[ [ome]
where
o u=Vf/IVf],

o H(x) is the mean curvature of the level set f~1( f(x)),

o Int(x) is the scalar curvature of /~1(f(x)).

This formula is the main tool in the proof of the proposition. It reduces the proposition to the following
two lemmas; each lemma provides the convergence of an integral term in the right-hand side of (5-2).

Lemma 5.7 In the assumptions of Proposition 5.6, Inty, -Volfl is a delta-converging sequence of measures
on 2.

The proof of this lemma uses the convergence of curvature measures Int,, - vol? on the 2—dimensional
level sets of concave functions f and the coarea formula. Recall that the sequence |V, f'| is only weakly
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delta-convergent (see Lemma 5.3(iv)). Since the factor |V, f| appears in the coarea formula, we get that
Int, -V01,3, is only weakly delta-convergent.

Proof Recall that any point in an Alexandrov space 4 has a convex neighborhood [22]. This construction
can be lifted to the smoothing sequence (My). Let V C A be an open convex neighborhood of x and
V. C M, be open convex sets such that 17,, Y V.

Set _
Lin=f"YO)NVy, Cin=f"t.00)NV,,

Li=f'onv, C=fltoo)nV.
For every ¢ and n, the set Cy 5, is a convex subset in Alexandrov space and hence is an Alexandrov space

with curvature = —1. Note that Cy 5, Y C;. Let us equip the boundaries dC; , and dC; with the induced
inner metrics. By [20, Theorem 1.2], dC; , converges to dC; as n — oo.

By [2], 0C; 5 is an Alexandrov space with curvature > —1; hence, so is the limit dC;.

Note that L, , with induced inner metric is isometric to its image in dC; . Since dC; is an extremal
subset of C;, the inner metric of dC; is bi-Lipschitz to the metric restricted from A. It follows that we
can take r sufficiently small such that for all # and U; , = L, N B(xy,, r) we will have

hn < {g - dist(Us,n, 8Cr.n \ Len),

where /1, denotes the intrinsic diameter of U; ,. Then the local version of the 2—dimensional case of the
main theorem can be applied to Uy p; it implies weak convergence of measures Int, -Volﬁ onL;y.

Choose a smooth function ¢: B(x,,r) — R with a compact support in A‘Ez. Applying the coarea formula,
we get

h
(5-3) /Intn(s)-w(s)-vol,i:/dt- / %-Imn(s)-volz.

SEQ —h seU; p

Note that V,, /" is bounded away from zero. By Lemma 5.3(iv), 1/|V, f(s)| is uniformly delta-converging.
Recall that Int,, -vol? are weakly converging measures on L, [1, VII §13]. Therefore Observation 5.2
implies that Int, -v01,3, are weakly delta-converging measures on M. a

The following lemma is related to the convergence of the second integral in (5-2), the proof uses the DC
calculus in a common chart; see Section 7.

Lemma 5.8 In the assumptions of Proposition 5.6, suppose ¢ : 2 — R is a smooth function with compact
support. Then

(5-4) /[Hn . (un, Vn(.())n - <vun Up, vn(l))n] . V01,31
Q
converges, where H, and u,, as in (5-2).
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Proof Note that H, = div u,. Let us rewrite the first term of (5-4) in coordinates:
/[Z(a,u; + %uﬁ, - 0; logdetg,,)} . [Z ul - 8i<p] -y/det g, - dx!dx? dx3.
Q | iJj

We also have

y = Y87-0;f
n— - .
N LI,

Taking the derivatives, we see under the integral a sum of products the following two types of expressions:

the first a partial derivative 0x g;j,n, Ok gflj ,or 9;0; f, and the second is an expression made from g;;,»,
g, 0; f, dip. Applying Lemmas 5.3 and 5.4, we get that the integral converges.

Further, for the second term in (5-4) we have

/(V(pn, Vi, Un) -V01,3,

My
= /a’x1 dx?dx3 - Z ul - dpg - \/det gy - (Biu,lj + %u{, -Z(aig,-s,n + 0 gsijn — 058ijn) -g,ll”).
Q ij.k s
The convergence follows by the same argument. a

Proof of Proposition 5.6 By (5-2) and Lemmas 5.7, and 5.8 we get that Stry, (1, uy) - V01,31 is a weakly
delta-converging sequence of measures. It remains to apply Lemma 5.3(iv) and Observation 5.2. |

S5E Three-dimensional case

In this section, we prove Key lemma 5.5 in the 3—dimensional case.

Vectors wy, ..., Wyn+1)/2 € R™ are said to be in general position if the vectors w; ® w; form a basis in
R™ (m+1)/2 __ the symmetric square of R”. In this case, any quadratic form Q on R™ can be computed
from the m(m + 1)/2 values

Q(wl’wl)’ EIR) Q(wm(m+1)/2»wm(m+l)/2)-

More precisely, there are rational functions s, ..., Spm+1)/2 that take m(m + 1)/2 vectors in R and
return a quadratic form on R™ such that

m(m+1)/2
(5-5) 0= Y skWi .. Wneniny2) - Q(we, wp).
k=1
Note that the vectors wq, ..., Wy (m+1)/2 € R™ are in general position if and only if sz (w1, ..., Wp@n+1)/2)

are finite for all k. Since s, are rational functions, we get:

Observation 5.9 Suppose that vectors wy, ..., Wpym+1)/2 € R™ are in general position. Then the
functions sy, . .., Sm(m+1)/2 are Lipschitz in a neighborhood of (w1, ..., Wy@m+1)/2) € (RMymim+1)/2,
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Proof of the 3—dimensional case of Key lemma 5.5 Choose a common chart
M,oU,—Q, and ADU — Q.
Let us use it to identify tangent spaces of M, and 4 with R3.

Choose 6 sequences of convex combinations of coordinate functions f7,..., fg, such that Vfi,..., Vfg
are in general position at p € 2. We can assume that €2 is a small neighborhood of p, so by Proposition 5.6
the measures Str, (Vy, f&, Va f) - vol,3, weakly delta-converges on A‘gz fork=1,...,6.

By Observation 5.9, the functions s; are Lipschitz in a neighborhood of (Vf1, ..., Vfs) € (R3)%. Applying
(5-5), we get that

6
Str=">" st (VaSi.-- . VuSs) - St (Vi fic. Vi fi)-
k=1
Hence the measure Stry, (dx;, dx;) - V01,3, are weakly delta-converging for all i and j, where x{, x;, X3 is

the standard coordinates in R3.

By Lemma 5.3, the sequence of metric tensors g, of Mj, on €2 is uniformly delta-converging. Since the
following equality
Tr Str,, = Z gij.n - Strp(dx;, dx;j)
iﬁj
holds almost everywhere, we get that the sequence of measures Tr Str, -V01,31 is weakly delta-converging.
Note that for 3—dimensional manifolds we have
(5-6) Qm,(V, V) = Stry (V. V) — % - |V|*-TrStr, .

Hence the measures Qm,, (dx;, dx;j) -V01,31 are weakly delta-converging for all i and ;.

Finally, according to Lemma 5.3(ii), the components o ,, of Vy, fj are uniformly delta-converging. The
result follows since

am(fie: Si) = D ik Xl - GMXi, X;). O
ij

SF Higher-dimensional case

Observation 5.10 Choose a common chart with the range 2 C R™ for a smoothing M, —> A. Consider
the sequence of coordinate level sets Q2 = Ly, O Ly—1 D --- D Lg, where L;i = Li(¢j+1,...,Cm) IS
defined by setting the last m —i coordinates to be ¢;+1, . . ., cm, respectively. Then each level set L; is a
smooth convex hypersurface in L; 41 in each My; in particular, each L; has sectional curvature bounded
below by —1.

Moreover, there is an open set O in the space of linear transformations of R” such that the same holds
after applying any linear transformation T' € O to €2.
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Proof of Key lemma 5.5 Let us use notations as in the observation. By Key lemma 5.5 in dimensions 2
and 3, we get weak delta-convergence of curvature tensors on L, and Lj3. (Again, we apply the local
version of these statements as described in Section 9.) In particular, applying the coarea formula, we get
convergence of sectional curvatures of L3 in the directions of L, as well as the sectional curvature of L,
for all values c3, ..., ¢;. The difference between these curvatures is the Gauss curvature G, of L, as a
submanifold in Lj. Therefore, G, is weakly delta-converging as well.

Consider a linear transformation of €2 that preserves the direction of L,. By the last statement in
Observation 5.10, the above argument shows weak delta-convergence of G, (w), where the direction w
of L3 on L, can be chosen in an open set of R”~2 — the space transversal to L,. In particular, we
may choose directions wy, ..., Wm—2).n—1)/2 N R2 that form a generic set (see the definition in
Section 5E).

Denote by G, the term in the Gauss formula for L, in M,; that is, G, is the difference between the
curvature of L, and the sectional curvature of M, in the same direction. Denote by g, the Riemannian
metric of M} in 2. Note that

Grj_ = Z Ui Gn(wg),

where the coefficients ay , depend continuously on wy, ..., Wu—2).gn—1)/2, and the components of gj.
It follows that weak delta-convergence of G, (wy) implies weak delta-convergence of G, as n — oc.
Since the curvature of L, is weakly delta-converging, it implies weak delta-convergence of sectional
curvature in the direction of L,.

By the second statement in the observation, the above argument can be repeated after applying a linear
transformation of 2 that changes the direction of L, slightly. It follows that sectional curvatures converge
for a generic array of simple bivectors in R”. Note that the curvature tensor can be expressed from these
sectional curvatures and the metric tensor. Hence, the weak delta-convergence of components of curvature
tensor and therefore dual curvature tensor follows. |

Details

6 Bochner formula

Let M be a Riemannian m-manifold and f: M — R be a smooth function without critical points on an
open domain 2 C M. Set u = Vf/|Vf|. Let us define Ints(x) (or just Int) to be scalar curvature of the
level set Ly = f~1(f(x))atx € Ly C M. Set

(1) x1(x) <kz(x) <--- < kpy—1(x), as the principal curvatures of Ly at x;
(2) H = Hf(x) =Ky +Kp+ -+ Kkmu—1, the mean curvature of Ly at x;

3) G=Gr(x)=2- ZKJ- Ki - Kj, the extrinsic term in the Gauss formula for Ints(x).
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Recall that the strange curvature Str is defined as
Str(u) = Sc —(Ric(u), u),
where Sc and Ric denote scalar and Ricci curvature respectively.

Theorem 6.1 (Bochner’s formula) Let M be an m—dimensional Riemannian manifold, f: M — R
be a smooth function without critical points on an open domain Q C M, and u = Vf/|Vf|. Assume
¢: Q2 — R is a smooth function with compact support. Then

6-1) [ o @icuw) = [l + H-tw. V)~ (9. V]

and 8

(6-2) /(p-Str(u) = /[H- (u, Vo) — (Vo, V,u)] + / @ -Inty .
Q Q Q

The following calculations are based on [11, Chapter II]. The Dirac operator will be denoted by D. We
use the Riemannian metric to identify differential forms and multivector fields on M. Therefore the
statement about differential forms can be also formulated in terms of multivector fields and the other way

around.
Proof of Theorem 6.1 Assume by, ..., by, is an orthonormal frame such that b,, = u. Then
Sc—2- (Ric(u),u) =2+ Y sec(b; Abj).
i<j<m

Therefore the Gauss formula can be written as
(6-3) Int = G + Sc—2- (Ric(u), u) = G + Str(u) — (Ric(u), u).

We can assume that b; (x) points in the principal directions of Ly for i < mj; so we have Vp,u = k; - b;
at x. We will denote by “e” the Clifford multiplication; recall that b; « 5; = —1. Note that

Du—Zb Vbu—ZK, biebi +ueVyu=—H+ueVy,u.

i<m

Since (Vyu,u) =0, we get H L (1 V,u). Therefore

2
(Du, Du) = (Z /c,-) + lueVyul|?> = H* + |V,ul?.

i<m
On the other hand
Vu = ZKi~bi®bi + VyuQu,
i<m
hence
(Vu,Vu) ZK + | Vyul?.
1<m
Therefore

(Du, Du) — (Vu, Vu) = Z'ZK" kj =G.
i<j
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Following the calculations in [11, I1.5.3], we get

/ ¢-[(Du. Du) — (D*u,u)] = — / (Vo o1, Du) = / [H - (Vo.u)— (Vo. Vuu)).
Q Q Q

Since |u| = 1, we have (Vy,u, u) = 0. Therefore

/(p-[(Vu, Vu) —(V*Vu,u)] = /(Vv(pu,u) =0.
Q Q
By the Bochner formula [11, I1.8.3],

D*u — V*Vu = Ric(u);

in particular,
(6-4) ¢ (D*u,u) —¢- (V*Vu,u) = - (Ric(u), u).

Integrating (6-4) and applying the derived formulas, we get

/(p-G =/¢-[(Du,Du)— (Vu,Vu)] = [@-Ric(u,u)—[[H-(u,Vgo)—(V(p,Vuu)].
Q Q Q Q
It remains to apply the Gauss formula (6-3). O

7 DC-calculus

Let f be a continuous function defined on an open domain of an m—dimensional Alexandrov space 4.
Recall that f is DC if it can be presented locally as a difference between two concave functions. Recall
that for any point p € A there is a (—1)—concave function defined in a neighborhood of p [17, 3.6].
Therefore we can say that f is DC if and only if it can be presented locally as a difference between two

semiconcave functions.

Suppose that a sequence of Alexandrov spaces A4, converges to Alexandrov space A without collapse. Let
Jfn and f be DC functions defined on open domains Dom f,, C 4, and Dom f C A. Suppose that for any
p € Dom f there is a sequence p, € Dom f, and R > 0 such that p, — p and B(py, R)4, C Dom fy,
B(p, R)4 C Dom f and for some fixed A € R, and each large n we have A—concave functions a, and b,
defined in B(py, R)4, and A—concave functions @ and b defined in B(p, R)4 such that f, = a, — by
and f = a — b and the sequences a, and b, converge to functions a and b respectively. In this case, we
say that fy is DC-converging to [ =a—b: A — R asn — oo; briefly f, 52> /-

A DC function f: A — R is called DCy if it is continuously differentiable in A°. More preciously, for any
smoothed distance chart x: U C A — R™ (see Section SA) the restriction f o x| x(4°) 1s continuously
differentiable.
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Observation 7.1 Any test function is DCy. Moreover, test convergence implies DC-convergence.

Proof Choose a test function [ = (p(Cmp LFse e ,cmpn,r). Note that the function ¢ can be presented
locally as a difference between C2—smooth concave functions increasing in each argument; say ¢ = ¥ — x.

For the first part of the observation, it remains to observe that the functions
a:w((mpl’r,...,(mpn,r), b:X((ﬁpl,r,...,(ﬁpn’r)
are semiconcave and continuously differentiable in A°.

Suppose that a sequence of functions ¢; is C >—converging to ¢. Choose x = (x1, ..., X;) in the domain
of definition of ¢. Note that ¢, and its partial derivatives up to order 2 are bounded; fix a bound c.
Then in a neighborhood of (xy,...,x;) we may choose ¥, that is uniquely defined by ¥, (x) = 0,
0iYn(x)=2-c, 0;0;y, =0fori # j, and 8?1//,, = —d for a large constant d. In this case, y, = ¥y —¢n
is concave. Moreover, C2—convergence of ¢, implies convergence of ¥, and x,. Hence, the second
statement follows. d

The definition of DC-convergence extends naturally to sequences of functions defined on a fixed domain
Q C R™. The proof of the following statement is a straightforward modification of [18, Section 3]:

Proposition 7.2 Let M, —> A; choose a common chart x,: U, C M, — Q, x: U C A - Q C R™,

Consider functions fy and f defined on U, and U, respectively. Then

Jn 5>/ if and only if fnox;lwfox_l.

The following statement follows from the lemma in [18, Section 4].

Proposition 7.3 Let A be an m—dimensional Alexandrov space and x : U — R™ — a smoothed chart for
U C A. Denote by g;j components of metric tensors in this chart and by g/ components of the inverse
matrix. Let f: U — R be a DCy function.

Then the partial derivatives dy g;j, dxg", ;0; f are Radon measures on A that vanish on x =1 (4" U A").

Theorem 7.4 Let M,, — A, dim A = m; choose a common chart x,, defined on U,, C M}, x defined on
U C A with a common range 2 C R™. Denote by g;j,» components of metric tensors in this chart and by
g,’;j components of the inverse matrix. Let f;: U, — R be a sequence of DC function that DC-converges
to a DCy function f: U — R. Then partial derivatives 0k gijn. akgf,j, 0;0j fn weakly converge to the

Radon measures 0 g;j, 0xg", 0;0j f described in Proposition 7.3.

By Observation 7.1, the theorem applies to any test-converging sequence f, LN /. In the proof, we will
modify the argument in [18, Section 4] slightly.
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Proof Let’s start with the partial derivatives of metric tensors. In [18, Subsection 4.2], it was shown that
components of metric tensors can be expressed as a rational function of partial derivatives of distance
functions to a finite collection of points. The distance functions are semiconcave, in particular DC.

The base points p; , € M, of these distance functions can be chosen so that they converge to some point
pi € A. In this case, the distance functions are DC-converging. Now, applying Proposition 7.2, we get
the statement.

The case of 9;0; f, is similar. O

8 Bi-Lipschitz covering
In this section we will prove Lemma 4.1. A more general version of the lemma can be proved along the
same lines as Lemma 11.1 in [26].

Note that the lemma follows from the next proposition.

Proposition 8.1 Let A be an m—dimensional Alexandrov space with curvature at least —1 and p € A'.
Then there is a compact set Q such that

(i) O admits a bi-Lipschitz embedding into R™~2 and

(ii) there is a neighborhood U > p and ¢ > 0 such that ¢ € Q for any point ¢ € U N A’ such that

B(q) <6(p)+e.

Let x be a point in an Alexandrov space A with curvature at least —1. Recall that Bishop—Gromov
inequality implies that
vol" B(x, R)4  _ vol™ 1 3,
vol™ B(%, Rygm  vol™ ! §m-1

for any R > 0; here H™ denotes the m—dimensional hyperbolic space. The following lemma makes this
inequality more precise.

Lemma 8.2 Let x be a point in an m—dimensional Alexandrov space A with curvature at least —1.
Suppose y € A is a point such that |x — y| < R and £[y }] < w — ¢ for any point z. Then

where § is a positive number that depends on m, |x — y|, R and ¢.
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Proof To simplify the presentation we will assume that 4 is nonnegatively curved; it is straightforward
to adapt the proof to the general case. In this case, we need to show that

vol™ B(x, R vol™~ 1 3

# <(1-8) — =%
Let us denote by p a vector in Ty that is tangent to a geodesic path y: [0, 1] — A4 from x to p. By
comparison, the map p — p is a distance-noncontracting map.

Since £[y }] < mw — ¢ for any z, the image of the map p +— p does not include points in a cone C behind
y of angle ¢. It follows that

vol" (B(0, R)1, \ C) = vol" (B(x. R)4)
for any R > 0.

Since R > |x — y|, the intersection C N B(0, R)t, includes a ball of a certain
radius » > 0 that can be found in terms of |x — y|, R and ¢. By the Bishop—
Gromov inequality, we get § = 8(m, |x — y|, R, &) > 0 such that

vol™(C N B(0, R)t,)

S.
vol"(BO, R)r,)

Further, observe that
vol”(B(0, R)r,) _ vol" ' %,

Vo (B(0, R)gm)  vol™ 1 gm—1"

whence the lemma. |
Proof of Proposition 8.1 Since the tangent cone at p has R”*~2—factor, we can choose points a1, ...,dm_2,
bi,...,by—7 that are §—strainers of p for arbitrary § > 0. The corresponding distance map

s:xt> (lag—x|, ..., |x —am—2]|)

is an almost submersion of a neighborhood U > p to R™~2. Choose small & > 0 and set
Q' ={xeUnAd|0(x)<0(p)+e}.

Let us show that s|g/ is bi-Lipschitz. Once it is done, passing to the closure Q = Q’ gives the required
set.

Note that for some R > 0 the ball B(p, 10- R) 4 is almost isometric to the ball B(0, 10- R)t, and we can
assume that U C B(p, R)4. By the volume convergence (see [5, 10.8]) and Bishop—Gromov inequality,

we can assume that
vol™ B(x, R)4 > % ~vol” B(0, R)ggm
-TT

for any x € U; here H™ denotes the m—dimensional hyperbolic space.

Assume x and y in Q’. Since ¢ is small, the lemma implies that there is z € A4 such that £[y ¥] is near 7.
It follows that 1) lies very close to the R=2_factor in T,. The same way we can show that 1, lies
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very close to the R”~2—factor in Ty. In other words [xy] lies nearly horizontally with respect to almost
submetry s. In particular,

s(x) = s(P)|Rm—2 S AT |x — y|4

for some constant A > 1. (In fact, we can take A arbitrarily close to 1, but we do not need it.) O

9 Localization

In this section we formulate a local version of the main theorem. This version is more general, but its
proof requires just a slight change of language. A couple of times we had to use this local version in the
proof. In a perfect world, we had to rewire the whole paper using this language. However, this is not a
principle moment, so we decided to keep the paper more readable at the cost of being not fully rigorous.
A more systematic discussion of this topic is given in [12].

First, we need to define Alexandrov region; its main example is an open set in Alexandrov space.

Definition 9.1 Let 4 be a locally compact metric space. We say that a point p € A is e—inner if the
closed ball B(x,2-¢) is compact.

Definition 9.2 We say that a locally compact inner metric space A4 of finite Hausdorff dimension is an

Alexandrov region if any point has a neighborhood where the Alexandrov comparison for curvature > —1
holds.

The comparison radius r.(p) for p € A is defined as the maximal number r such that p is r—inner point
and Alexandrov comparison for curvature = —1 holds in B(x, r).

Any point p in an Alexandrov region admits a convex neighborhood. Moreover, its size can be controlled
in terms of dimension, 7.(p), and a lower bound on the volume of ball B(p, r.). The construction is the
same as for Alexandrov space [19, 4.3].

By the globalization theorem (see, for example, [3]), a compact convex subset in an Alexandrov region
is an Alexandrov space. So the statement above makes it possible to apply most of the arguments and
constructions for Alexandrov spaces to Alexandrov regions. Moreover, in the case when an Alexandrov
region is a Riemannian manifold (possibly noncomplete) it is possible to take the doubling of a convex
neighborhood from the proposition and smooth it with almost the same lower curvature bound. This
allows us to apply the main result from [23], where the complete manifold can be replaced by a convex
domain in a possibly open manifold.

Further, let us define a local version of smoothing. Let us denote by M”__ a class of m—dimensional

-1
Riemannian manifolds without boundary, but possibly noncomplete, with sectional curvature bounded

from below by —1.
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Definition 9.3 Let M, € M’;’_l (with corresponding intrinsic metric) converge in Gromov—Hausdorff
sense to some metric space A via approximation. Suppose that M, > x, — x € A, dim A = m, and
fe(xn) = R> 0. Let U, = B(x,, R)p,,. Then we say that U, is a local smoothing of U = B(x, R)4
(briefly, U, — U).

It is straightforward to redefine test functions and weak convergence for local smoothings. Using this
language we can make a local version for each statement in this paper; the proofs go without changes. As
a result, we get the following local version of the main theorem.

Theorem 9.4 (local version of Theorem 2.6) Let M, € M’;’
U, —> U be a local smoothing.

M, —> A, U, C M,,, UC A, and

—1° n GH

Denote by qm,, the dual measure-valued curvature tensor on U,,. Then there is a measure-valued tensor
gm on U such that qm,, — qm.

References
[1] AD Aleksandrov, V A Zalgaller, Intrinsic geometry of surfaces, Transl. Math. Monogr. 15, Amer. Math.
Soc., Providence, RI (1967) MR Zbl

[2] S Alexander, V Kapovitch, A Petrunin, An optimal lower curvature bound for convex hypersurfaces in
Riemannian manifolds, llinois J. Math. 52 (2008) 1031-1033 MR Zbl

[3] S Alexander, V Kapovitch, A Petrunin, Alexandrov geometry: foundations, Grad. Stud. Math. 236, Amer.
Math. Soc., Providence, RI (2024) Zbl

[4] E Brue, A Naber, D Semola, Boundary regularity and stability for spaces with Ricci bounded below,
Invent. Math. 228 (2022) 777-891 MR Zbl

[5] Y Burago, M Gromov, G Perelman, A D Alexandrov spaces with curvature bounded below, Uspekhi Mat.
Nauk 47 (1992) 3-51 MR Zbl In Russian; translated in Russian Math. Surveys 47 (1992) 1-58

[6] N Gigli, Nonsmooth differential geometry: an approach tailored for spaces with Ricci curvature bounded
from below, Mem. Amer. Math. Soc. 1196, Amer. Math. Soc., Providence, RI (2018) MR Zbl

[7] N Gigli, Riemann curvature tensor on RCD spaces and possible applications, C. R. Math. Acad. Sci. Paris
357 (2019) 613-619 MR Zbl

[8] N Gigli, A Mondino, G Savaré, Convergence of pointed non-compact metric measure spaces and stability
of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc. 111 (2015) 1071-1129 MR Zbl

[9] B-X Han, Ricci tensor on RCD* (K, N) spaces, J. Geom. Anal. 28 (2018) 1295-1314 MR Zbl

[10] V Kapovitch, Perelman’s stability theorem, from “Surveys in differential geometry, XI” (J Cheeger, K
Grove, editors), Surv. Differ. Geom. 11, International, Somerville, MA (2007) 103-136 MR Zbl

[11] HB Lawson, Jr, M-L Michelsohn, Spin geometry, Princeton Math. Ser. 38, Princeton Univ. Press (1989)
MR Zbl

[12] N Lebedeva, A Nepechiy, Alexandrov regions, in preparation

Geometry & Topology, Volume 28 (2024)


https://doi.org/10.1090/mmono/015
http://msp.org/idx/mr/0216434
http://msp.org/idx/zbl/0146.44103
http://projecteuclid.org/euclid.ijm/1254403729
http://projecteuclid.org/euclid.ijm/1254403729
http://msp.org/idx/mr/2546022
http://msp.org/idx/zbl/1200.53040
http://msp.org/idx/zbl/07802912
https://doi.org/10.1007/s00222-021-01092-8
http://msp.org/idx/mr/4411732
http://msp.org/idx/zbl/07514027
http://msp.org/idx/mr/1185284
http://msp.org/idx/zbl/0802.53018
https://doi.org/10.1070/RM1992v047n02ABEH000877
https://doi.org/10.1090/memo/1196
https://doi.org/10.1090/memo/1196
http://msp.org/idx/mr/3756920
http://msp.org/idx/zbl/1404.53056
https://doi.org/10.1016/j.crma.2019.06.003
http://msp.org/idx/mr/3998287
http://msp.org/idx/zbl/1432.53060
https://doi.org/10.1112/plms/pdv047
https://doi.org/10.1112/plms/pdv047
http://msp.org/idx/mr/3477230
http://msp.org/idx/zbl/1398.53044
https://doi.org/10.1007/s12220-017-9863-7
http://msp.org/idx/mr/3790501
http://msp.org/idx/zbl/1395.53046
https://doi.org/10.4310/SDG.2006.v11.n1.a5
http://msp.org/idx/mr/2408265
http://msp.org/idx/zbl/1151.53038
http://msp.org/idx/mr/1031992
http://msp.org/idx/zbl/0688.57001

Curvature tensor of smoothable Alexandrov spaces 3907

(13]

[14]
[15]
[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

N Li, A Naber, Quantitative estimates on the singular sets of Alexandrov spaces, Peking Math. J. 3 (2020)
203-234 MR Zbl

J Lott, Ricci measure for some singular Riemannian metrics, Math. Ann. 365 (2016) 449-471 MR Zbl
A Nepechiy, Toward canonical convex functions in Alexandrov spaces, preprint (2019) arXiv 1910.00253

G Perelman, Alexandrov’s spaces with curvatures bounded from below, II, preprint, Leningrad Branch
Steklov Inst. (1991) Available at https://tinyurl.com/perelmanASWCBF

G Y Perelman, Elements of Morse theory on Aleksandrov spaces, Algebra i Analiz 5 (1993) 232-241 MR
Zbl In Russian; translated in St. Petersburg Math. J. 5 (1994) 205-213

G Perelman, DC structure on Alexandrov space, preprint (1995) Available at https://tinyurl.com/
DCstruct

G Y Perelman, A M Petrunin, Extremal subsets in Aleksandrov spaces and the generalized Liberman
theorem, Algebra i Analiz 5 (1993) 242-256 MR Zbl In Russian; translated in St. Petersburg Math. J. 5
(1994) 215-227

A Petrunin, Applications of quasigeodesics and gradient curves, from “Comparison geometry” (K Grove,
P Petersen, editors), Math. Sci. Res. Inst. Publ. 30, Cambridge Univ. Press (1997) 203-219 MR Zbl

A Petrunin, Polyhedral approximations of Riemannian manifolds, Turkish J. Math. 27 (2003) 173-187 MR
Zbl

A Petrunin, Semiconcave functions in Alexandrov’s geometry, from “Surveys in differential geometry, XI”
(J Cheeger, K Grove, editors), Surv. Differ. Geom. 11, International, Somerville, MA (2007) 137-201 MR
Zbl

A M Petrunin, An upper bound for the curvature integral, Algebra i Analiz 20 (2008) 134-148 MR Zbl
In Russian; translated in St. Petersburg Math. J. 20 (2009) 255-265

A Petrunin, PIGTIKAL (puzzles in geometry that I know and love), Assoc. Math. Res. Monogr. 2, Assoc.
Math. Res., Davis, CA (2022) MR Zbl

Y G Reshetnyak, Two-dimensional manifolds of bounded curvature, from “Geometry, IV”, Encycl. Math.
Sci. 70, Springer (1993) 3-163 MR Zbl

L Simon, Lectures on geometric measure theory, Proc. Cent. Math. Anal. 3, Australian National Univ.,
Canberra (1983) MR Zbl

K-T Sturm, Ricci tensor for diffusion operators and curvature-dimension inequalities under conformal
transformations and time changes, J. Funct. Anal. 275 (2018) 793-829 MR Zbl

NL: Mathematics Department, Saint Petersburg State University
Saint Petersburg, Russia

Saint Petersburg Department, V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Saint Petersburg, Russia

Department of Mathematics, Pennsylvania State University
University Park, PA, United States

lebed@pdmi.ras.ru, petrunin@math.psu.edu

Proposed: John Lott Received: 19 September 2022
Seconded: Urs Lang, Dmitri Burago Revised: 22 July 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers :.msp


https://doi.org/10.1007/s42543-020-00026-2
http://msp.org/idx/mr/4171913
http://msp.org/idx/zbl/1480.53059
https://doi.org/10.1007/s00208-015-1288-7
http://msp.org/idx/mr/3498918
http://msp.org/idx/zbl/1343.53031
http://msp.org/idx/arx/1910.00253
https://tinyurl.com/perelmanASWCBF
https://www.mathnet.ru/eng/aa374
http://msp.org/idx/mr/1220498
http://msp.org/idx/zbl/0815.53072
https://tinyurl.com/DCstruct
https://tinyurl.com/DCstruct
https://www.mathnet.ru/eng/aa375
https://www.mathnet.ru/eng/aa375
http://msp.org/idx/mr/1220499
http://msp.org/idx/zbl/0802.53019
http://msp.org/idx/mr/1452875
http://msp.org/idx/zbl/0892.53026
https://journals.tubitak.gov.tr/math/vol27/iss1/9/
http://msp.org/idx/mr/1975337
http://msp.org/idx/zbl/1034.53070
https://doi.org/10.4310/SDG.2006.v11.n1.a6
http://msp.org/idx/mr/2408266
http://msp.org/idx/zbl/1166.53001
https://www.mathnet.ru/eng/aa508
http://msp.org/idx/mr/2423998
http://msp.org/idx/zbl/1206.53048
https://doi.org/10.1090/S1061-0022-09-01046-2
http://anton-petrunin.github.io/puzzles/
http://msp.org/idx/mr/4563127
http://msp.org/idx/zbl/1509.00001
https://doi.org/10.1007/978-3-662-02897-1_1
http://msp.org/idx/mr/1263964
http://msp.org/idx/zbl/0781.53050
https://projecteuclid.org/proceedings/proceedings-of-the-centre-for-mathematics-and-its-applications/lectures-on-geometric-measure-theory/toc/pcma/1416406261
http://msp.org/idx/mr/756417
http://msp.org/idx/zbl/0546.49019
https://doi.org/10.1016/j.jfa.2018.03.022
https://doi.org/10.1016/j.jfa.2018.03.022
http://msp.org/idx/mr/3807777
http://msp.org/idx/zbl/1419.58020
mailto:lebed@pdmi.ras.ru
mailto:petrunin@math.psu.edu
http://msp.org
http://msp.org

Mohammed Abouzaid
Dan Abramovich
Tan Agol

Arend Bayer

Mark Behrens
Mladen Bestvina
Martin R Bridson
Jim Bryan

Dmitri Burago
Tobias H Colding
Simon Donaldson
Yasha Eliashberg
Benson Farb

David M Fisher
Mike Freedman
David Gabai
Stavros Garoufalidis
Cameron Gordon
Jesper Grodal

Misha Gromov

GEOMETRY & TOPOLOGY

Andris I Stipsicz

msp.org/gt

MANAGING EDITOR

Alfréd Rényi Institute of Mathematics

stipsicz@renyi.hu

BOARD OF EDITORS

Stanford University
abouzaid @stanford.edu
Brown University
dan_abramovich@brown.edu

University of California, Berkeley
ianagol@math.berkeley.edu

University of Edinburgh
arend.bayer@ed.ac.uk

University of Notre Dame
mbehren] @nd.edu
University of Utah
bestvina@math.utah.edu
University of Oxford
bridson @maths.ox.ac.uk

University of British Columbia
jbryan@math.ubc.ca
Pennsylvania State University
burago @math.psu.edu

Massachusetts Institute of Technology
colding @math.mit.edu

Imperial College, London
s.donaldson@ic.ac.uk

Stanford University
eliash-gt@math.stanford.edu
University of Chicago
farb@math.uchicago.edu

Rice University
davidfisher @rice.edu

Microsoft Research
michaelf @microsoft.com

Princeton University
gabai @princeton.edu

Southern U. of Sci. and Tech., China
stavros @ mpim-bonn.mpg.de
University of Texas
gordon@math.utexas.edu

University of Copenhagen
jg@math.ku.dk

IHES and NYU, Courant Institute
gromov @ihes.fr

Mark Gross

Rob Kirby

Bruce Kleiner
Sandor Kovics
Urs Lang

Marc Levine
Ciprian Manolescu
Haynes Miller
Tomasz Mrowka
Aaron Naber

Peter Ozsvith
Leonid Polterovich
Colin Rourke
Roman Sauer
Stefan Schwede
Natasa Sesum
Gang Tian

Ulrike Tillmann
Nathalie Wahl

Anna Wienhard

University of Cambridge

mgross @dpmms.cam.ac.uk
University of California, Berkeley
kirby @math.berkeley.edu

NYU, Courant Institute
bkleiner @cims.nyu.edu
University of Washington
skovacs @uw.edu

ETH Ziirich
urs.lang@math.ethz.ch

Universitit Duisburg-Essen
marc.levine @uni-due.de

University of California, Los Angeles
cm@math.ucla.edu

Massachusetts Institute of Technology
hrm @math.mit.edu

Massachusetts Institute of Technology
mrowka@math.mit.edu

Northwestern University
anaber @math.northwestern.edu

Princeton University
petero@math.princeton.edu
Tel Aviv University
polterov @post.tau.ac.il
University of Warwick
gt@maths.warwick.ac.uk

Karlsruhe Institute of Technology
roman.sauer @kit.edu

Universitit Bonn
schwede @math.uni-bonn.de

Rutgers University
natasas @math.rutgers.edu

Massachusetts Institute of Technology
tian@math.mit.edu

Oxford University
tillmann @maths.ox.ac.uk

University of Copenhagen
wahl @math.ku.dk

Universitit Heidelberg
wienhard @mathi.uni-heidelberg.de

See inside back cover or msp.org/gt for submission instructions.

The subscription price for 2024 is US $805/year for the electronic version, and $1135/year (+$70, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Geometry & Topology is indexed
by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Geometry & Topology (ISSN 1465-3060 printed, 1364-0380 electronic) is published 9 times per year and continuously online, by Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840. Periodical
rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences
Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

GT peer review and production are managed by EditFLow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

© 2024 Mathematical Sciences Publishers


http://dx.doi.org/10.2140/gt
mailto:stipsicz@renyi.hu
mailto:abouzaid@stanford.edu
mailto:dan_abramovich@brown.edu
mailto:ianagol@math.berkeley.edu
mailto:arend.bayer@ed.ac.uk
mailto:mbehren1@nd.edu
mailto:bestvina@math.utah.edu
mailto:bridson@maths.ox.ac.uk
mailto:jbryan@math.ubc.ca
mailto:burago@math.psu.edu
mailto:colding@math.mit.edu
mailto:s.donaldson@ic.ac.uk
mailto:eliash-gt@math.stanford.edu
mailto:farb@math.uchicago.edu
mailto:davidfisher@rice.edu
mailto:michaelf@microsoft.com
mailto:gabai@princeton.edu
mailto:stavros@mpim-bonn.mpg.de
mailto:gordon@math.utexas.edu
mailto:jg@math.ku.dk
mailto:gromov@ihes.fr
mailto:mgross@dpmms.cam.ac.uk
mailto:kirby@math.berkeley.edu
mailto:bkleiner@cims.nyu.edu
mailto:skovacs@uw.edu
mailto:urs.lang@math.ethz.ch
mailto:marc.levine@uni-due.de
mailto:cm@math.ucla.edu
mailto:hrm@math.mit.edu
mailto:mrowka@math.mit.edu
mailto:anaber@math.northwestern.edu
mailto:petero@math.princeton.edu
mailto:polterov@post.tau.ac.il
mailto:gt@maths.warwick.ac.uk
mailto:roman.sauer@kit.edu
mailto:schwede@math.uni-bonn.de
mailto:natasas@math.rutgers.edu
mailto:tian@math.mit.edu
mailto:tillmann@maths.ox.ac.uk
mailto:wahl@math.ku.dk
mailto:wienhard@mathi.uni-heidelberg.de
http://dx.doi.org/10.2140/gt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
https://msp.org/

GEOMETRY &
Volume 28  Issue 8 (pages

Chromatic cyclotomic extensions

SHACHAR CARMELI, TOMER M SCHL

Weak del Pezzo surfaces with global vector fie
GEBHARD MARTIN and CLAUDIA STA

The string coproduct “knows” Reidemeister.
FLORIAN NAEF

Reeb flows transverse to foliations
JONATHAN ZUNG

Monopoles, twisted integral homology, and Hi

FRANCESCO LIN and MIKE MILLER EI

Holomorphic anomaly equations for the Hilbe
surface

GEORG OBERDIECK
Curvature tensor of smoothable Alexandrov s
NINA LEBEDEVA and ANTON PETRUNI

On boundedness of singularities and minimal
components, II

ZIQUAN ZHUANG
Lee filtration structure of torus links
QIUYU REN
Stability of tori under lower sectional curvatur

ELIA BRUE, AARON NABER and DANI


http://dx.doi.org/10.2140/gt.2024.28.3511
http://dx.doi.org/10.2140/gt.2024.28.3565
http://dx.doi.org/10.2140/gt.2024.28.3643
http://dx.doi.org/10.2140/gt.2024.28.3661
http://dx.doi.org/10.2140/gt.2024.28.3697
http://dx.doi.org/10.2140/gt.2024.28.3779
http://dx.doi.org/10.2140/gt.2024.28.3779
http://dx.doi.org/10.2140/gt.2024.28.3869
http://dx.doi.org/10.2140/gt.2024.28.3909
http://dx.doi.org/10.2140/gt.2024.28.3909
http://dx.doi.org/10.2140/gt.2024.28.3935
http://dx.doi.org/10.2140/gt.2024.28.3961

	1. Introduction
	2. Formulations
	2A. Weak convergence of measures
	2B. Test functions
	2C. C1–delta convergence
	2D. Tensors
	2E. Dual curvature tensor
	2F. Formulation and plan

	Proofs
	3. Singularities of codimension 3
	4. Singularities of codimension 2
	4A. Gauss and mean curvature estimates
	4B. Curvature of level sets
	4C. Three-dimensional case
	4D. Higher-dimensional case

	5. Regular points
	5A. Common chart and delta-convergence
	5B. Convergences
	5C. Proof modulo a key lemma
	5D. Strange curvature
	5E. Three-dimensional case
	5F. Higher-dimensional case


	Details
	6. Bochner formula
	7. DC-calculus
	8. Bi-Lipschitz covering
	9. Localization
	References

	
	

