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1 Introduction

The weak convergence and measure-valued tensor used in the following theorem are defined in the next
section; a more precise formulation is given in Theorem 2.6.

Main theorem 1.1 Let M1;M2; : : : be a sequence of complete m–dimensional Riemannian manifolds
with sectional curvature bounded below by �. Assume that the sequence Mn Gromov–Hausdorff converges
to an Alexandrov space A of the same dimension. Then the curvature tensors of Mn weakly converge to a
measure-valued tensor on A.
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3870 Nina Lebedeva and AP

Note that from the theorem we get that the limit tensor of the sequence depends only on A and does not
depend on the choice of the sequence Mn. Indeed, suppose another sequence M 0

n satisfies the assumptions
of the theorem. If the limit tensor is different, then a contradiction would occur for the alternated sequence
M1;M

0
1
;M2;M

0
2
; : : : . In particular, if the limit space is Riemannian, then the limit curvature tensor is

the curvature tensor of the limit space. The latter statement was announced by the second author [21].

Analogous statements about metric tensor and Levi-Civita connection were essentially proved by Perelman
[18], we only had to tie his argument with an appropriate convergence. This part is discussed in Section 7.
It provides a technique that could be useful elsewhere as well. For curvature tensor (which has a
higher order of derivative), this argument cannot be extended directly; we found a way around applying
Bochner-type formulas as in [23].

The following statement looks like a direct corollary of the main theorem, and indeed, it follows from its
proof but strictly speaking, it cannot be deduced directly from the main theorem alone. We will denote by
Sc the scalar curvature and volm the m–dimensional volume; that is, m–dimensional Hausdorff measure
calibrated so that the unit m–dimensional cube has unit measure.

Corollary 1.2 In the assumption of the main theorem , the measures Sc � volm on Mn weakly converge to
a locally finite signed measure m on A.

The following subcorollary requires no new definitions.

Subcorollary 1.3 In the assumption of the main theorem , suppose A is compact. Then the sequence

sn D

Z
Mn

Sc � volm

converges.

The main theorem in [23] implies that if a sequence of complete m–dimensional Riemannian manifolds
Mn has uniformly bounded diameter and uniform lower curvature bound, then the corresponding sequence
sn is bounded; in particular, it has a converging subsequence. However, if Mn is collapsing, then this
sequence may not converge. For example, an alternating sequence of flat 2–tori and round 2–spheres
might collapse to the one-point space; in this case, the sequence sn is 0; 4 ��; 0; 4 ��; : : : .

From the main theorem (and the definition of weak convergence) we get the following.

Corollary 1.4 Let K be a convex closed subset of curvature tensors on Rm such that all sectional
curvatures of tensors in K are at least �1. Assume that K is invariant with respect to the rotations of Rm.
(For example , one can take as K the set of all curvature tensors with nonnegative curvature operator.)

Suppose Mn is a sequence of complete m–dimensional Riemannian manifolds that converges to a
Riemannian manifold M of the same dimension. Assume that for any n, all curvature tensors of Mn

belong to K. Then the same holds for the curvature tensors of M.

Geometry & Topology, Volume 28 (2024)



Curvature tensor of smoothable Alexandrov spaces 3871

Remarks The limit measure m in Corollary 1.2 has some specific properties; let us describe a couple of
them:

˘ The measure m vanishes on any subset of A with a vanishing .m�2/–dimensional Hausdorff measure.
In particular, m vanishes on the set of singularities of codimension 3. This is an easy corollary of [23].

˘ The measure can be explicitly described on the set of singularities of codimension 2. Namely, suppose
A0 �A denotes the set of all points x with tangent space TxADRm�2 �Cone.�/, where Cone.�/ is a
2–dimensional cone with the total angle � D �.x/ < 2 �� . Then

mjA0 D .2 �� � �/ � volm�2 :

This statement follows from Proposition 4.2.

The geometric meaning of our curvature tensor is not quite clear. In particular, we do not see a solution
to the following problem; compare to Gigli’s conjecture [7, 1.1].

Problem 1.5 Suppose that the limit curvature tensor of Alexandrov space A as in the main theorem
has sectional curvature bounded below by K > �. Show that A is an Alexandrov space with curvature
bounded below by K.

The theorem makes it possible to define a curvature tensor for every smoothable Alexandrov space. It is
expected that the same can be done for general Alexandrov space; so the following problem has to have a
solution:

Problem 1.6 Extend the definition of the measure-valued curvature tensor to general Alexandrov spaces.

If this is the case, then one may expect to have a generalization of the Gauss formula for the curvature of a
convex hypersurface, which in turn might lead to a solution of the following open problems in Alexandrov
geometry. This conjecture is open even for convex sets in smoothable Alexandrov space.

Conjecture 1.7 The boundary of an Alexandrov space equipped with its intrinsic metric is an Alexandrov
space with the same lower curvature bound.

More importantly, a solution to Problem 1.6 might provide nontrivial ways to deform Alexandrov space;
see [22, Section 9].

Related results The result of the main theorem in dimension 2 is well known; see the book of Alexandr
Alexandov and Viktor Zalgaller [1, VII Section 13].

The construction of harmonic coordinates at regular points of RCD space (in particular, Alexandrov
space) given by Elia Bruè, Aaron Naber, and Daniele Semola [4] might help to solve Problem 1.6.

The problem of introducing Ricci tensor was studied in far more general settings; see works of Gigli [6],
Han [9], Lott [14] and Sturm [27]. Curvature tensor for RCD spaces was defined by Nicola Gigli [7]; it
works for a more general class of spaces, but this approach does not see the curvature of singularities. It
is expected that our definitions agree on the regular locus.

Geometry & Topology, Volume 28 (2024)



3872 Nina Lebedeva and AP

About the proof As it was stated, the 2–dimensional case is proved in [1, VII Section 13]. The
3–dimensional case is the main step in the proof; the higher-dimensional case requires only minor
modifications.

We subdivide the limit space A into three subsets: Aı— the subset of regular points, A0— points
with singularities of codimension 2, A00— singularities of higher codimension. These sets are treated
independently.

First, we show that limit curvature vanishes on A00; this part is an easy application of the main result
in [23].

The A0–case is reduced to its partial case when the limit is isometric to the product of the real line and a
two-dimensional cone. The proof uses a Bochner-type formula (Theorem 6.1) and Theorem 4.3, which is
a more exact version of the following problem from [24].

Problem 1.8 (convex-lens) Let D and D0 be two smooth discs with a common

L

D

D
′

boundary that bound a convex set (a lens) L in a positively curved 3–dimensional
Riemannian manifold M. Assume that the discs meet at a small angle. Show that the
integral

R
D k1 � k2 is small ; here k1 and k2 denote the principal curvatures of D.

The Aı–case is proved by induction. The base is the 2–dimensional case. Further, we apply the induction
hypothesis to level sets of special concave functions. By the Gauss formula, these level sets have the same
lower curvature bound. In the proof, we use the Bochner-type formula together with the DC-calculus
developed in [18]. The first step in the induction is slightly simpler.

As a rule, the calculus is done in the approximating sequence of Riemannian manifolds.

Acknowledgments We wish to thank Sergei Ivanov for pointing out a gap in a preliminary version
of this paper, John Lott for expressing his interest in a written version for many years, and Alexander
Lytchak for helping us to write this paper in a more readable way. Our very special thanks to a referee
who suggested several dozens of refinements.

Nina Lebedeva was partially supported by the Russian Foundation for Basic Research grant 20-01-00070.
Anton Petrunin was partially supported by the National Science Foundation grant DMS-2005279 and the
Ministry of Education and Science of the Russian Federation, grant 075-15-2022-289.

2 Formulations

In this section, we give the necessary definitions for a precise formulation of the main theorem. For
simplicity we will always assume that the lower curvature bound is �1; applying rescaling, we can get
the general case.

We denote by Alexm the class of m–dimensional Alexandrov’s spaces with curvature > �1.

Geometry & Topology, Volume 28 (2024)
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Suppose A;A1;A2; : : : 2 Alexm and An GH�! A. That is, An converges to A in the sense of Gromov–
Hausdorff; since A 2Alexm, we have no collapse. Denote by an WAn!A the corresponding Hausdorff
approximations. If A is compact, then by Perelman’s stability theorem [10; 16] we can (and will) assume
that an is a homeomorphism for every sufficiently large n. In the case of noncompact limit, we assume
that for any R, the restriction of an to an R–neighborhood of the marked point is a homeomorphism to
its image for every sufficiently large n.

We say that A2Alexm is smoothable if it can be presented as a Gromov–Hausdorff limit of a noncollapsing
sequence of Riemannian manifolds Mn with sec Mn >�1; here sec stands for sectional curvature. Given
a smoothable Alexandrov space A, a sequence of complete Riemannian manifolds Mn as above together
with a sequence of approximations an WMn!A will be called smoothing of A (briefly, Mn ��!A, or
Mn

an

��!A). By Perelman’s stability theorem, any smoothable Alexandrov space is a topological manifold
without boundary.

2A Weak convergence of measures

In this subsection, we define weak convergence of measures. For more detailed definitions and terminology,
we refer to [8].

Let X be a Hausdorff topological space. Denote by M.X / the space of signed Radon measures on X .
Further, denote by Cc.X / the space of continuous functions on X with a compact support.

We denote by hmjf i the value of m 2M.X / on f 2 Cc.X /. We say that measures mn 2M.X / weakly
converge to m 2M.X / (briefly mn *m) if hmnjf i ! hmjf i for any f 2 Cc.X /.

Suppose An GH�!A with Hausdorff approximations an WAn!A and mn is a measure on An. We say that
mn weakly converges to a measure m on A (briefly mn *m) if the pushforwards m0n of mn to A by the
Hausdorff approximations an WAn!A weakly converge to m. If the condition hm0njf i!hmjf i holds only
for functions f with support in an open subset ��A, then we say that mn weakly converges to m in �.

Equivalently, the weak convergence can be defined using the uniform convergence of functions. We say
that a sequence fn 2 Cc.An/ uniformly converges to f 2 Cc.A/ if their supports are uniformly bounded
and

sup
x2An

f jfn.x/�f ı an.x/j g ! 0:

Then mn*m if for any sequence fn2Cc.An/with uniformly bounded supports and uniformly converging
to f 2 Cc.A/ we have hmnjfni ! hmjf i.

2B Test functions

In this subsection, we introduce a class of test functions and define their convergence.

Test functions form a narrow class of functions defined via a formula. It is just one possible choice of a
class containing sufficiently smooth DC functions; see the remarks in the next section.

Geometry & Topology, Volume 28 (2024)
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Recall that the distance between points x;y in a metric space is denoted by jx�yj; we will denote by
distx the distance function distx W y 7! jx�yj.

Suppose An;A 2Alexm and An GH�!A. Then any distance function distp WA!R can be lifted to An; it
means that we can choose a convergent sequence pn! p and take the sequence distpn

.

Choose r > 0 and p 2A. Let us define smoothed distance function as the average:

�

distp;r D
I

B.p;r/

distx dx:

We can lift this function to
�

distpn;r WAn! Œ0;1/ by choosing some sequence An 3 pn! p 2A.

We say that f is a test function if it can be expressed by the formula

f D '.
�

distp1;r1
; : : : ;
�

distpN ;rN
/;

where ' W .0;1/N !R is a C 2–smooth function with compact support. If for some sequences of points
An 3 pi;n! pi 2A and C 2–smooth functions 'n that C 2–converge to ' with compact support we have

fn D 'n.
�

distp1;n;r1
; : : : ;
�

distpN;n;rN
/;

then we say that fn is test-converging to f (briefly, fn
test
�! f ).

Remarks Note that test functions form an algebra.

Let M be a Riemannian manifold. Note that for any open cover of M, there is a subordinate partition
of unity of test functions. Further, around any point of M one can take a smoothed distance coordinate
chart. One can express any C 2–smooth function in these coordinates, and then apply partition of unity
for a covering by charts. This way, we get:

Claim 2.1 On a smooth complete Riemannian manifold , test functions include all C 2–smooth functions
with compact support.

2C C 1–delta convergence

Here we introduce C 1–delta convergence. It will be necessary to formulate the main theorem in an
invariant way, but, except for Section 5B, everywhere in the proofs, we will use test convergence and
occasionally DC convergence instead. (As claimed in Claim 2.3 test convergence implies C 1–delta
convergence.) By that reason, it would be wise to skip this section for the first reading.

The C 1–delta convergence will be used together with other delta convergences introduced in Section 5A.

Convergence of vectors Let A be an Alexandrov space, we denote by TA the set of all tangent vectors
at all points. So far TA is a disjoint union of all tangent cones; let us define a convergence on it.

Geometry & Topology, Volume 28 (2024)
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We will use gradient exponent gexp W TA!A which is defined in [3]. Given a vector V 2 TA, it defines
its radial curve 
V W t 7! gexp.t �V /. We say that a sequence of vectors Vn 2 TA converges to V 2 TA

(briefly, Vn! V ) if 
Vn
converges to 
V pointwise. Since the radial curve 
V is jV j–Lipschitz, we get

that any bounded sequence of vectors with base points in a bounded set has a converging subsequence
of 
Vn

. Further, the pointwise limit of such curves is a radial curve as well. Therefore, any bounded
sequence of tangent vectors with base points in a bounded set has a converging sequence.

In a similar fashion, we can define the convergence of tangent vectors to sequences of Alexandrov spaces
An that converge to A. That is, if Vn 2 TAn is a bounded sequence of tangent vectors at points on a
bounded distance to the base points, then it has a subsequence that converges to some vector V 2 TA.

Note that
jV j6 lim inf

n!1
jVnj

and the inequality might be strict.

Recall that if V 2 Tp is the unit vector in the direction of Œpq�, then 
V is a unit-speed parametrization
of Œpq�. Using this we get the following observation; it provides a way to apply the convergence.

Observation 2.2 Let Mn ��!A be a smoothing , pn; qn 2Mn, and pn! p, qn! q as n!1. Denote
by Vn 2 Tpn

and V 2 Tp the directions of geodesics Œpnqn� and Œpq�. Suppose that there is a unique
geodesic Œpq� in A. Then Vn! V.

C 1–delta smoothness Given a function f WA!R and a vector V 2 TA, set

Vf D .f ı 
V .t//
0
jtD0:

Note that Vf is defined for all DC functions and, in particular, all test functions.

Two vectors V;W 2 TpA will be called ı–opposite if

1� ı < jV j6 1; 1� ı < jW j6 1; and jhX;V iC hX;W ij< ı

for any unit vector X 2 TpA. We say that V;W 2 TpA are opposite if they are ı–opposite for any ı > 0;
in this case, they are both unit vectors and make angle � to each other.

A function f WA!R is called C 1–delta smooth if for any compact set K �A and " > 0 there is ı > 0

such that any sequence of points pn! p 2 K and unit vectors Vn 2 Tpn
A that converges to a vector

V 2 TpA that has a ı–opposite vector we have

jVf � Klim
n!1

Vnf j< ";

where “ Klim ” stands for an arbitrary partial limit.

Suppose Mn ��!A. A sequence of C 1–smooth functions fn WMn!R is called C 1–delta converging to
f WA!R (briefly, fn

C 1
ı
�! f ) if fn converges to f pointwise and for any compact set K �A and any

Geometry & Topology, Volume 28 (2024)
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" > 0 there is ı > 0 such that if a sequence of unit vectors Vn 2 Tpn
Mn converges to a vector V 2 TpA

such that p 2K and V has a ı–opposite vector, then we have

jVf � Klim
n!1

Vnfnj< ":

Claim 2.3 Any test function is C 1–delta smooth. Moreover , for any smoothing Mn ��!A, sequence of
test functions fn WMn!R, and test function f WA!R, we have

fn
test
�! f D) fn

C 1
ı
�! f:

Proof Let V and W be ı–opposite vectors in TpA. Note that for almost all points q 2A, we have

jV distqCW distq j< ı:

It follows that

(2-1) jV
�

distq;r CW
�

distq;r j< ı

for any q 2A and r > 0.

Suppose Vn is a sequence of unit tangent vectors on Mn such that Vn! V ; that is, 
Vn
! 
V as n!1.

By monotonicity of radial curves [3, 16.32], we get

V distq 6 lim inf
n!1

Vn distqn

if qn! q. Integrating, we get
V
�

distq;r 6 lim inf
n!1

Vn
�

distqn;r :

Suppose V has a ı–opposite vector W. We can assume that W is a unit geodesic vector; that is, there is a
geodesic Œps� in the direction of W. Moreover, we can assume that Œps� is a unique geodesic from p to s.
Choose points sn and pn that converge to s and p respectively. By Observation 2.2, the directions Wn of
Œpnsn� converge to W. Note that Wn is ı–opposite to Vn for all large n.

Repeating the above argument, we get

W
�

distq;r 6 lim inf
n!1

Wn
�

distqn;r :

Applying (2-1) we get C 1–delta convergence of
�

distqn;r and, in particular, C 1–delta smoothness of
�

distq;r .
Applying the definition of test function, we get the result.

Recall (Section 2B) that for any smoothing Mn ��!A and test function f WA!R there are test functions
fn WMn!R such that fn

test
�! f .

Corollary 2.4 Given a smoothing Mn ��! A and a test function f W A! R, there is a sequence of
C 1–smooth functions fn WMn!R such that fn

C 1
ı
�! f .

Geometry & Topology, Volume 28 (2024)
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Remarks In the next section, we define measure-valued tensor as a functional on an array of test
functions. Note that, one test function might have very different presentations that lead to different
test convergences. Thus to prove the invariance of measure-valued curvature tensor we need to use
the C 1–delta convergence which is more general than test convergence. We could use other classes of
functions as well. For example, a subclass of DC0 functions (see Section 7) or a subclass of C 1–delta
function (see Section 2C). Of course, we have to have an analog of Corollary 2.4 for the chosen class.
We hope a more natural setting will be found eventually.

2D Tensors

In this subsection, we define measure-valued tensors on Alexandrov spaces. Basically, we reuse the
derivation approach to vector fields in classical differential geometry. This definition will be used in
Claim 2.9 that reduces the main theorem to Proposition 2.10 and will not show up ever after.

Let A 2Alexm. Recall that M.A/ denotes the space of signed Radon measures on A. A measure-valued
vector field v on A is a linear map that takes a test function, spits a measure in M.A/, and satisfies the
chain rule: for any collection of test functions f1; : : : ; fk and a C 2–smooth function ' W Rk ! R, we
have

v.'.f1; : : : ; fn//D

nX
iD1

.@i'/.f1; : : : ; fn/ � v.fi/:

In the same way, we define (contravariant) measure-valued tensor fields. Namely, a measure-valued
tensor field t of valence k on A is a multilinear map that takes a k–array of test functions, spits a measure
in M.A/, and satisfies the chain rule in each of its arguments.

Suppose that x1; : : : ;xm are local coordinates in an m–dimensional Riemannian manifold M. Then a
measure-valued vector field v on M can be described by m components, .v.x1/; : : : ; v.xm//, which are
measures. These components transform by contravariant rule under change of coordinates.

By the definition of a measure-valued vector field, we get

v.f /D
X

i

@if � v.xi/:

Similarly, for arbitrary k, a measure-valued tensor field of valence k is defined by mk components
t.xi1

; : : : ;xik
/; namely,

t.f1; : : : ; fk/D
X

i1;:::;ik

@i1
f1 � � � @ik

fk � t.xi1
; : : : ;xik

/:

Note that if T is a smooth contravariant tensor field then tD T � vol is a measure-valued tensor field. In
other words, usual tensor fields might be considered as a subspace of measure-valued tensor fields.

Definition 2.5 Let Mn ��!A be a smoothing. Assume that tn is a sequence of measure-valued tensor
fields on Mn and t is a measure-valued tensor field on A, all of the same valence k. We say that tn weakly
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converges to t (briefly tn * t) if

fi;n
C 1
ı
�! fi for all i D) tn.f1;n; : : : ; fk;n/ * t.f1; : : : ; fk/

for arbitrary k sequences f1;n; : : : ; fk;n of C 1–smooth functions and test functions f1; : : : ; fk WA!R.

2E Dual curvature tensor

The curvature of Riemannian manifold M is usually described by a tensor of valence 4 that will be
denoted by Rm. We will use a dual curvature tensor — a curvature tensor written in a dual form that will
be denoted by Qm; it is a tensor field of valence 2 � .m� 2/ defined the by

Qm.X1; : : : ;Xm�2;Y1; : : : ;Ym�2/D Rm
�
�.X1 ^ � � � ^Xm�2/;�.Y1 ^ � � � ^Ym�2/

�
;

where Xi ;Yi are vector fields on M and �W
�Vm�2T

�
M !

�V2T
�
M is the Hodge star operator. This

definition will be used further mostly for gradient vector fields of semiconcave functions.

In addition, we will need a measure-valued version of Qm denoted by qm; it will be called dual measure-
valued curvature tensor. Namely, we define

qm.f1; : : : ; fm�2;g1; : : : ;gm�2/

as the measure with density

Qm.rf1; : : : ;rfm�2;rg1; : : : ;rgm�2/ WM !R:

Remarks Note that

Qm.X1; : : : ;Xm�2;X1; : : : ;Xm�2/D jX1 ^ � � � ^Xm�2j
2
�K� ;

where K� is the sectional curvature of M on a plane � orthogonal to .m�2/–vector X1 ^ � � � ^Xm�2.
Hence, the sectional curvatures of M and therefore its curvature tensor Rm can be computed from qm.
By the symmetry

qm.f1; : : : ; fm�2;g1; : : : ;gm�2/D qm.g1; : : : ;gm�2; f1; : : : ; fm�2/;

the density of qm is defined by the sectional curvature. Therefore measure-valued tensor qm gives an
equivalent description of the curvature of Riemannian manifolds.

As you will see further, the described dual form of curvature tensor behaves better in the limit; in particular,
it makes it possible to formulate Proposition 4.2.

In the 2–dimensional case, the valence of qm is 0; in this case, qm coincides with the curvature measure —
the standard way to describe the curvature of surfaces [1; 25]. For a smooth surface, the density of this
curvature measure with respect to the area is its Gauss curvature. In this case, it is known that curvature
measures are stable under smoothing [1, VII §13]; in other words, our main theorem is known in the
two-dimensional case.

Geometry & Topology, Volume 28 (2024)
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2F Formulation and plan

Theorem 2.6 (main theorem) Consider a smoothing Mn ��!A. Denote by qmn the dual measure-valued
curvature tensor on Mn. Then there is a measure-valued tensor qm on A such that qmn * qm.

Let A be an m–dimensional Alexandrov space without boundary. Let us partition A into three subsets
Aı, A0, and A00:

˘ Aı is the set of regular points in A; that is, the set of points with tangent cone isometric to the
Euclidean space.

˘ A0— the set of points in AnAı with an isometric copy of Rm�2 in their tangent space; in other words,
for any p 2A0, the tangent space Tp is isometric to the product Cone.�/�Rm�2 where Cone.�/ denotes
a two-dimensional cone with the total angle � D �.p/ < 2 �� .

˘ A00— the remaining set; this is the set of points with tangent space that does not contain an isometric
copy of Rm�2.

According to [13], A0 is countably .m�2/–rectifiable, and A00 is countably .m�3/–rectifiable.

Observe that the set of regular points Aı can be presented as

Aı D
\
ı>0

Aı;

where Aı denotes the set of ı–strained points of A.

Let M be an m–dimensional Riemannian manifold. Denote by Kmax.x/ the maximal sectional curvature
at x 2M. The following statement is a direct corollary of the main result in [23]:

Corollary 2.7 Given an integer m > 0, there is a constant const.m/ such that the following holds:

Let M be an m–dimensional Riemannian manifold (possibly noncomplete) with sectional curvature
bounded below by �1. If for some r < 1 the closed ball B.p; 2 � r/M is compact , thenZ

B.p;r/M

Kmax 6 const.m/ � rm�2:

Observation 2.8 There is another constant const0.m/ such that

jQm.X1; : : : ;Xm�2;Y1; : : : ;Ym�2/j6 const0.m/ �Kmax � jX1 ^ � � � ^Xm�2j � jY1 ^ � � � ^Ym�2j:

Note that Corollary 2.7 and Observation 2.8 imply:

Claim 2.9 Given a smoothing Mn ��! A, test functions fi W A! R, and sequences of C 1–smooth
functions fi;n WMn!R such that fi;n

C 1
ı
�! fi , the sequence of measures qmn.f1;n; : : : ; f2�m�4;n/ has a

weakly converging subsequence.

Geometry & Topology, Volume 28 (2024)
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Moreover , the subsequence can be chosen simultaneously for several choices of function arrays so that it
meets the chain rule. More precisely, choose i ; fix all functions f1;n; : : : ; f2�m�4;n except fi;n; suppose

Oqmi;n.fi;n/D qmn.f1;n; : : : ; f2�m�4;n/:

Assume hj;n WMn!R are C 1–smooth functions such that hj;n
C 1
ı
�! hj , each hj is a test function , and

h0;n D '.h1;n; : : : ; hk;n/

for a fixed C 2–function ' WRk !R. Then the sequence of measure arrays Oqmi;n.h0;n/; : : : ; Oqmi;n.hk;n/

has a partial limit Oqmi.h0/; : : : ; Oqmi.hk/, and

Oqmi.h0/D

kX
jD1

.@j'/.h1; : : : ; hk/ � Oqmi.hj /:

By Perelman’s stability theorem, the space A in the claim is a topological manifold. In particular, A has
no boundary; in other words, the singular set in A has codimension at least 2. Together with the claim, it
implies that Theorem 2.6 follows from the next statement.

Proposition 2.10 Let Mn ��! A and dim AD m. Suppose h1; : : : ; hm�2 are test functions on A and
h1;n; : : : ; hm�2;n are C 1–smooth functions on Mn such that hi;n

C 1
ı
�! hi for each i . Let m1 and m2 be two

measures on A that are weak partial limits of the sequence of measures qmn.h1;n; : : : ;hm;n;h1;n; : : : ;hm;n/

on Mn. Then the following statements hold :

(i) m1jA00 Dm2jA00 D 0.

(ii) m1jA0 Dm2jA0 .

(iii) m1jAı Dm2jAı .

The three parts of the proposition will be proved below in Sections 3, 4, and 5, respectively.

Proofs

3 Singularities of codimension 3

Proof of Proposition 2.10(i) According to [5, 10.6], A00 has a vanishing .m�2/–dimensional Hausdorff
measure; that is, A00 can be covered by a countable family of balls B.xi ; ri/ such that

P
rm�2
i is arbitrarily

small. Therefore, Observation 2.8 and Corollary 2.7 imply the statement.

4 Singularities of codimension 2

The following lemma will be proved in Section 8.

Lemma 4.1 Let A be an m–dimensional Alexandrov space without boundary. Then the subset A0�A can
be covered by a countable set of compact sets Qi that each admit a bi-Lipschitz embedding into Rm�2.
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Let h WA!Rk be a Lipschitz map defined on an m–dimensional Alexandrov space without boundary.
Suppose Q � A is a closed subset such that there is a bi-Lipschitz embedding s W Q! Rk . By the
generalized Rademacher theorem, the metric differential of s�1 is defined almost everywhere in the
domain of definition of s�1. Moreover, the metric differential is defined by a bilinear form; its determinant
is the Jacobian of s�1, briefly jac s�1. The same way we can define jac.hıs�1/ (we can apply the standard
Rademacher theorem this time). Further, set jac.hjQ/D jac.h ı s�1/= jac s�1. It is straightforward to
check that this definition is volk–almost-everywhere independent of the choice of s.

Consider the function

(4-1) �.p/D 2 �� �
volm�1†p

volm�1 Sm�1
;

where †p denotes the space of directions at p. According to [5, 7.14], � WA!R is lower-semicontinuous.

Note that � is identically 2 �� on Aı. Further note that for any point p 2A0, its tangent cone is isometric
to the product space Cone.�/�Rm�2, where � D �.p/ < 2 � � . Since volm�2.A00/ D 0, the measure
.2� � �/ � volm�2 vanishes on A00.

Note that Proposition 2.10(ii) follows from Lemma 4.1 and the following statement; it will be proved in
Sections 4C–4D.

Proposition 4.2 Let m be one of two limit measures mi in Proposition 2.10 and

hD .h1; : : : ; hm�2/ WA!Rm�2

be an array of test functions. Suppose that Q�A is a compact subset that admits a bi-Lipschitz embedding
into Rm�2. Then

mjQ D .2 �� � �/ � .jac.hjQ//2 � volm�2 :

4A Gauss and mean curvature estimates

Theorem 4.3 Let f , h be a pair of strongly convex smooth 1–Lipschitz functions defined on an open set
of a 3–dimensional Riemannian manifold. Suppose that

(i) jrf j> 1 and

jr.f C h/j< " � jrf j

for some fixed positive " < 1
2

;

(ii) for some a; b 2R, the set

Wa;b D fp 2M j f .p/D a; h.p/6 bg

is compact.
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Denote by k1.p/6 k2.p/, H.p/D k1.p/C k2.p/ and G.p/D k1.p/ � k2.p/, the principal , mean , and
Gauss curvatures of Wa;b at p. Then

(4-2)
Z

Wa;b

G 6 100 � "

and

(4-3)
Z

Wa;b

H 6 10 �
p
" � length.@Wa;b/:

The proof is based on the 2–dimensional case of the following statement, which is the integral Bochner
formula with Dirichlet boundary condition.

Proposition 4.4 Assume � is a compact domain with smooth boundary @� in a Riemannian manifold
and f is a smooth function that vanishes on @�. ThenZ

�

�
j�f j2� jHessf j2� hRic.rf /;rf i

�
D

Z
@�

H � jrf j2;

where H denotes the mean curvature of @�.

Proof of Theorem 4.3 Equip Wa;b with unit normal vector field nD
rf

jrf j
. Let

Sp W TpWa;b! TpWa;b

be the corresponding shape operator, so Sp W v 7! rvn. Since f is strongly convex, we have that

hSp.v/; vi> ı � jvj2

for a fixed value ı > 0 and any tangent vector v 2 TpWa;b .

Note that the restriction uD hjWa;b
is strongly convex. Moreover,

(4-4) Hessp u.v; v/> .1� "/ � hSp.v/; vi

for any p 2Wa;b and v 2 TpWa;b . Indeed, consider the geodesic 
 in Wa;b such 
 .0/Dp and 
 0.0/D v.
Set w D 
 00.t/. Note that

w D�hSp.v/; vi � n;

Since h is strongly convex, Hessp h > 0; therefore

.Hessp u/.v; v/D .Hessp h/.v; v/Chrph; wi>�hrph;rpf i

jrpf j
� hSp.v/; vi> .1�"/ � jrpf j � hSp.v/; vi:

Since jrf j> 1, (4-4) follows.
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Since hSp.v/; vi> 0 and " < 1
2

, the inequality (4-4) implies that

(4-5) 4 � det.Hessp u/> G.p/

and

(4-6) �2 ��u > H.p/

for any p 2Wa;b .

Denote by �1.p/; �2.p/ the eigenvalues of Hessp u, so

trace.Hess u/D�uD �1C�2; jHess uj2 D �2
1C�

2
2; det.Hess u/D �1 ��2;

and hence
2 � det.Hess u/D j�uj2� jHess uj2:

Since Wa;b is two-dimensional, by Proposition 4.4 we get thatZ
Wa;b

2 � det.Hess u/D

Z
Wa;b

K � jruj2C

Z
@Wa;b

� � jruj2;

where � > 0 is the geodesic curvature of @Wa;b and K is the curvature of Wa;b .

Since u is a convex function that vanishes on the boundary of Wa;b , it has a unique critical point, which is
its minimum. By the Morse lemma, Wa;b is a disc. Therefore, by the Gauss–Bonnet formula, we get thatZ

Wa;b

KC

Z
@Wa;b

� D 2 ��:

Whence, Z
Wa;b

det.Hess u/6 � � sup
p2Wa;b

jrpuj2:

Note that rpu is the projection of rph to TpWa;b . Therefore,

jrpuj2 D jrphj2� hrph; ni2 6 1� .1� "/2 < 2 � ":

It follows that Z
Wa;b

det.Hess u/6 2 �� � ":

Applying (4-5), we obtain (4-2).

Similarly, by the divergence theorem, we get that

�

Z
Wa;b

�uD

Z
@Wa;b

jruj:

Whence (4-6) implies Z
Wa;b

H 6 10 �
p
" � length.@Wa;b/:
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4B Curvature of level sets

Let M be a 3–dimensional Riemannian manifold. Choose a smooth function f WM !R. Consider its
level sets

Lc D fx 2M j f .x/D cg:

If the level set Lc is a smooth surface in a neighborhood of x 2Lc , then denote by k1.x/6 k2.x/ the
principal curvatures of Lc at x. In this case, set

G.x/D k1.x/ � k2.x/; H.x/D k1.x/C k2.x/I

that is, G.x/ and H.x/ are Gauss and mean curvature of Lc at x.

Recall that Cone.�/ denotes a 2–dimensional cone with the total angle � .

Theorem 4.5 Let Mn ��! Cone.�/�R and fn WMn! R be a sequence of strongly concave smooth
1–Lipschitz functions. Suppose that sec Mn > �1

n
for each n, and fn converges as n!1 to the R–

coordinate f W .x; t/ 7! t on Cone.�/�R. Then Gn and Hn (the Gauss and mean curvatures of the level
sets of fn) weakly converge to zero.

Proof Choose p 2 Cone.�/�R; set aD f .p/.

By the theorem of Artem Nepechiy [15], there is a .�2/–concave function % defined in an r–neighborhood
of p such that %.x/D �jp� xj2C o.jp� xj2/. Moreover, the function % is liftable; that is, there is a
sequence of .�2/–concave %n WMn!R that converges to %.

Consider a point q 2Cone.�/�R above p; that is, its R–coordinate is larger, and its Cone.�/–coordinate
is the same. If the R–coordinate of q is large, then distqCf is �–concave for small � > 0 and it has a
nonstrict minimum at p. Therefore, given � > 0, we can find q so that the sum s D f C distqC� � % is
.��/–concave and has a strict maximum at p. Moreover

�
1
2
�� � jp�xj2Cone.�/�R > s.x/� s.p/> �3

2
�� � jp�xj2Cone.�/�R

and therefore

(4-7) jrxsj6 10 �� � jp�xjCone.�/�R

if jp�xjCone.�/�R is sufficiently small; say if jp�xjCone.�/�R 6 r
10

.

Choose a sequence of points qn2Mn that converges to q. Let us apply the Green–Wu smoothing procedure
to distqn

C��%n; denote by hn the obtained function; we can assume that jhn�distqn
���%nj!0. Observe

that (4-7) implies that the first condition in Theorem 4.3 is met for all large n in an r
2

–neighborhood
of pn with " D 10 � � � r . Moreover, one can choose b so that the second condition is satisfied and
Bn D B.pn; r=10/\La �Wa;b . Applying Theorem 4.3, we get that for any ı > 0, we haveZ

Bn

Gn < ı; and
Z

Bn

Hn < ı:

for all large n. It remains to integrate the obtained inequalities by a and pass to a limit as n!1.
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For a product Rm�2�Cone.�/, denote by V the volm�2–measure on the vertical line Rm�2�f0g. Further,
consider the curvature measure

! D .2 �� � �/ �V

on Rm�2 �Cone.�/.

Corollary 4.6 Suppose that Mn ��!Cone.�/�R and fn WMn!R be as in Theorem 4.5. Set unD
rfn

jrfnj
.

Then:

(i) hRic un;uni weakly converges to zero.

(ii) Let vn and wn be sequences of uniformly bounded , continuous vector fields on Mn. Suppose that
hvn;uni and hwn;uni converge uniformly as n!1 to some constants a and b respectively. Then

Qm.vn; wn/ * a � b �!;

where ! is the measure on Cone.�/�R described above.

Proof (i) Passing to a subsequence if necessary, we can assume weak convergence of hRic un;uni �vol3

to a measure m on Cone.�/�R. Since sec Mn > �1
n

, we have that m > 0. Therefore it is sufficient to
show that m 6 0.

By Theorem 6.1 we have thatZ
�

'n � hRic un;uni D

Z
�

�
'n �GnCHn � hun;r'ni � hr'n;run

uni
�

holds for any function 'n with compact support on Mn, assuming that all expressions in the formula have
sense.

It remains to find a sequence of nonnegative functions 'n WMn!R with compact support that converges
to a ' W Cone.�/�R! R such that (1) ' is unit in a neighborhood of a given point p 2 Cone.�/�R

and (2) we have control on the three terms on the right-hand side of the formula; the latter means that we
have the weak convergences

(4-8) 'n �Gn * 0; Hn � hun;r'ni* 0; hr'n;run
uni* 0:

For the first convergence, it is sufficient to choose the sequence 'n so that in addition it is universally
bounded. Indeed, since jrfnj ! 1, we have that Theorem 4.5 implies the first convergence in (4-8).

Similarly, to prove the second convergence in (4-8), it is sufficient to assume in addition that jr'nj is
universally bounded and apply Theorem 4.5.

To prove the last convergence in (4-8), note that jrun
unj* 0 away from the singular locus. The latter

follows from Lemmas 5.3 and 5.4. Indeed, run
un can be written in a common chart away from the
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singular locus. The lemmas imply that its components converge to the components of ruu in the limit
space. By assumption u is parallel in the limit space; in particular ruuD 0.

This observation will be used to control the term hr'n;run
uni at the points far from the singular locus

of Cone.�/�R. To do this we only need to assume that jr'nj is bounded. Next, we describe how to
control it near the singularity.

Since junjD 1, we have run
un?rfn. Therefore if r'n is proportional to

ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1

ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0

rfn at some point, then hr'n;run
uni D 0 at this point. This observation

makes it possible to choose 'n so that the term hr'n;run
uni vanish

around the singular locus of Cone.�/ �R. Namely, in addition to the
above conditions on 'n we have to assume that the identity 'n D  ıfn

holds at the points of Mn that are sufficiently close to the singular locus
of Cone.�/�R.

Finally, observe that the needed sequence exists. Indeed, one can take

'n D .� ı distpn
/ � . ıfn/

for appropriately chosen fixed mollifiers �;  WR!R and Mn 3 pn! p.

(ii) Since Gn* 0, we get that the curvature measure of level sets of fn weakly converges to the curvature
of Cone.�/. It follows that

Qm.un;un/ * !:

Suppose v0n ? un for all n. Part (i) implies that Qm.v0n; v
0
n/ * 0.

Fix t 2R. Since the lower bound on sectional curvature of Mn converges to 0, any partial weak limit of
Qm.v0nC t �wn; v

0
nC t �wn/ is nonnegative. It follows that

Qm.v0n; wn/ * 0

for any sequence of fields v0n; wn such that v0n ? un.

Consider the vector fields v0n; w
0
n such that

v0n ? un; vn D an �unC v
0
n;

w0n ? un; wn D bn �unCw
0
n:

Since Qm is bilinear, we get that

Qm.vn; wn/D Qm.v0n; wn/C an � ŒQm.un; w
0
n/C bn �Qm.un;un/�:

By assumption, an D hun; vni and bn D hun; wni uniformly converge to a and b respectively. Whence
the statement follows.
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4C Three-dimensional case

Proof of the 3–dimensional case in Proposition 4.2 Suppose Mn ��!A and dim AD 3. Choose a set
Q�A that admits a bi-Lipschitz embedding into R.

Let us split m into negative and positive parts mDmC�m�; that is,

m˙.X / WD supf˙m.Y / j Y �X g:

Since the sectional curvature of Mn is bounded below, we get that m� has bounded density; in other
words, m� is a regular measure with respect to vol3 on A. Since Q has zero volume, we get m�.Q/D 0.

Set nDmjQ; from above we have n > 0. By [23], n is regular with respect to vol1 on Q. Therefore it is
sufficient to show that

.2 �� � �/ � .jac.hjQ//2

is the vol1–density of n at vol1–almost all p 2Q.

Choose a bi-Lipschitz embedding s WQ! R; set K D s.Q/. Since s�1 and h ı s�1 are Lipschitz, by
Rademacher’s theorem, we can assume that s�1 and h ı s�1 are differentiable at almost all x 2 K.
Moreover, we can assume that dxs�1.y/D .� �y; 0/ 2R�Cone.�/D Tp and the vol1–density of n at
p D s�1.x/ is defined.

Shifting and scaling the interval K, we may assume that x D 0 and �D 1. In this case, j jacp.hjQ/j D

jd0.h ı s�1/j.

Note that we can choose a sequence of points pn 2Mn and a sequence of factors cn!1 such that
.cn �Mn;pn/ converges to the tangent space Tp DR�Cone.�/.

Applying Perelman’s construction [22, 7.1.1 and 7.2.3] for a horizontal vector in Tp D R�Cone.�/,
we can choose a sequence of functions fn W cn �Mn!R satisfying the assumptions in Theorem 4.5; let
un Drfn=jrfnj. Consider the sequence of functions Ohn W cn �Mn!R defined by

Ohn.x/D cn � .hn.x/� hn.pn//:

Since �D 1, we have that jhr Ohn;unij uniformly converges to jd0.h ı s�1/j. By Corollary 4.6(ii), the
sequence of measures qm. Ohn; Ohn/ on cn �Mn!R weakly converges to jd0.hıs

�1/j2 �!Cone.�/�R. Recall
that vol1–density of !Cone.�/�R on the singular line is 2 �� � �.p/.

Observe that

qm. Ohn; Ohn/ŒB.pn; 1/cn�Mn
�D cn � qm.hn; hn/ŒB.pn; 1=cn/Mn

�

Whence .2 �� � �.p// � .jacp.hjQ//
2 is the vol1–density of n at p as required.
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4D Higher-dimensional case

Suppose Mn ��! Cone.�/ � Rm�2, where Cone.�/ denotes a two-dimensional cone with the total
angle � < 2 � � . First, we will show that the curvatures of Mn in the vertical sectional directions of
Cone.�/�Rm�2 weakly converge to zero; an exact statement is given in the following proposition. By
combining this result with the 3–dimensional case we get Proposition 4.2 in all dimensions.

For X;Y 2 Tp, denote by K.X ^ Y / the curvature in the sectional direction of X ^ Y . A function
f W Cone.�/�Rm�2!R will be called a vertical affine function if f can be obtained as a composition
of the projection to Rm�2 and an affine function on Rm�2.

Proposition 4.7 Let Mn ��! Cone.�/�Rm�2 and fn; hn WMn!R be sequences of strongly concave
smooth Lipschitz functions. Suppose that sec Mn > �1

n
for each n, and we have pointwise convergences

fn! f and hn! h, where f and h are vertical affine functions on Rm�2 �Cone.�/. Then

K.rfn ^rhn/ � volm * 0:

Let † be a convex hypersurface in an m–dimensional Riemannian manifold M. Suppose x is a smooth
point of†; that is, the tangent hyperplane Hx of† is defined at x; denote by e1; : : : ; em�1 an orthonormal
basis of Hx . Set

Zc†.x/D
X
i;j

K.ei ^ ej /:

In other words,
Zc† D Sc�2 �Ric.n†; n†/;

where n† is the unit normal vector to †.

Since tangent hyperplanes are defined at almost all points of convex hypersurfaces, Zc†.x/ is defined
almost everywhere on †.

Lemma 4.8 Let † be a strongly convex hypersurface in an m–dimensional Riemannian manifold M

with curvature > �1. Suppose that for some point p 2 † and r < 1 the closed ball B.p; 2 � r/ in the
intrinsic metric of † is compact.

Then , Z
x2B.p;r/

Zc†.x/ � volm�1 6 .m� 1/ � .m� 2/ � const.m� 1/ � rm�3;

where const.m� 1/ is the constant in Corollary 2.7.

Proof If † is smooth, then the inequality follows from Corollary 2.7, and the fact that curvature cannot
decrease when we pass to a convex hypersurface.

In the general case, the surface † can be approximated by a smooth convex surface; this can be done by
applying the Green–Wu smoothing procedure; compare to [2].
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It remains to pass to the limit. More precisely, suppose †n is a sequence of smooth strongly convex
hypersurfaces that converges to †. For each n, choose a point pn 2 †n such that pn ! p. By [20,
Theorem 1.2], .†n;pn/ converges to .†;p/ as in the pointed Gromov–Hausdorff convergence.

Recall that volm�1 on †n weakly converges to volm�1 on † (see [5, 10.8]). Further, since M is smooth,
Zc†n

is bounded in B.pn; r/†n
. Therefore,Z

x2B.pn;r/†n

Zc†n
.x/ � volm�1

!

Z
x2B.p;r/†

Zc†.x/ � volm�1 as n!1

follows if for almost all x 2 † we have that for any " > 0 there is ı > 0 such that if xn 2 †n and
jxn�xj< ı for large n, then

jZc†n
.xn/�Zc†.x/j< ":

This condition holds if the tangent plane Hx is defined. Whence the nonsmooth case follows.

Proof of Proposition 4.7 Passing to a subsequence, we can assume that

K.rfn ^rhn/ � volm *m

for some measure m on Rm�2 �Cone.�/.

First, let us show that m is supported on the singular locus. If p is not singular, then it has a flat
neighborhood. Therefore by a local version of Key lemma 5.5 (see also Section 9) we get that m vanishes
in a neighborhood U 3 p. Indeed, we can include copies of U (which is flat) in the approximating
sequence Un �Mn of U and argue as in the introduction.

Let p be a singular point on Cone.�/�Rm�2; let us denote its liftings by pn 2Mn. We can assume
that p corresponds to the origin of Rm�2. Choose points a1;n; : : : ; am�2;n, b1;n; : : : ; bm�2;n in Mn such
that the functions fi;n D distai;n

�jai;n �pj and �hi;n D � distbi;n
Cjbi;n �pj converge to i th vertical

coordinate function on Cone.�/ �Rm�2. Further, choose points c1;n; c2;n; c3;n so that the functions
gi;nD distci;n

�jci;n�pj converge to Busemann functions for different horizontal rays in Cone.�/�Rm�2

emerging from p. Note that the latter implies that the angles z].pn
ci;n

cj;n/ are bounded away from zero for
all large n.

By [22, Lemma 7.2.1], there is an increasing concave function ' defined in

R
m

−
2

p

s
ij
=

−
w

s
ij
=

w

a neighborhood of zero in R such that '0 is close to 1 and for any " > 0 and
i ¤ j the function

sij;n D ' ıgi;nC' ıgj;nC

X
i

Œ'." �fi;n/C'." � hi;n/�

is strongly concave in B.pn;R/ for fixed R> 0 and every large n.

Denote by sij WCone.�/�Rm�2!R the limits of sij;n. Note that given w > 0,
we can take small " > 0 so that for all i ¤ j the set s�1

ij Œ�w;w� covers the
singular locus in B.p;R/.
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Note that we can choose "0 > 0 so that for almost all points x 2 B.pn;R/ the differential dxsij;n is
linear and jdxsij;nj> "0 > 0 for some i and j . Indeed, these differentials are linear outside cutlocuses of
ai;n, bi;n, and ci;n; in particular, they are linear at almost any point xn 2Mn. Further, if the differential
dxn

s12;n is very close to zero, then the directions of Œxn; c1;n� and Œxn; c2;n� are nearly opposite. Since xn

is close to pn, we get that for large n the angles ]Œxn
ci;n

cj;n � is bounded away from zero, we get jdxn
s13;nj

is bounded away from zero as well.

Since fn and hn are converging to vertical affine functions, we get that for large n their gradients are
nearly orthogonal to rxn

gi;n at almost all xn 2Mn. Suppose dxsij;n is linear and jdxsij;nj > "0 > 0.
Then gradients rxn

fn and rxn
hn are nearly orthogonal to rxsij;n.

Set †ij;n D†ij;n.c/D fx 2Mn j sij;n.x/D cg. The argument above implies that for almost all points
x 2 B.pn;R/ one of the sectional directions of the tangent directions � of †ij;n is close to the sectional
direction rfn ^rhn. In particular, given ı > 0, we have

K.rfn ^rhn/.x/6 K.�/C ı � jKmax.x/j

for all large n (Kmax is defined in Corollary 2.7).

By Lemma 4.8 and the coarea formula, the sum of integral curvatures of Mn in the directions of †ij;n at
xn at the subsets where jdxn

sij;nj> "0 is bounded by const �w. By Corollary 2.7, the same holds for the
integral of K.rfn^rhn/ if n is large. The proposition follows since w can be taken arbitrarily small.

Proof of the general case of Proposition 4.2 Choose m� 2 sequences of strongly concave functions
f1;n; : : : ; fm�2;n WMn!R that converge to vertical affine functions f1; : : : ; fm�2 on Cone.�/�Rm�2

with orthonormal gradients. It is done using Perelman’s construction [22, 7.1.1 and 7.2.3] for the
corresponding vertical vectors in Cone.�/�Rm�2.

Note that the fields e1;n Drf1;n, : : : , em�2;n Drfm�2;n are nearly orthonormal; in particular, they are
linearly independent for all large n. Let us add two fields em�1;n and em;n so that e1;n; : : : ; em;n form a
nearly orthonormal frame in Mn; that is, hei;n; ej;ni! 0 for i ¤ j and hei;n; ei;ni! 1 for any i as n!1.

Observe that Proposition 4.7 implies that K.ei ^ ej / � vol* 0 if i; j 6 m� 2.

Let us show that K.ei ^ ej / � vol * 0 for i 6 m� 2 and j > m� 1. The 3–dimensional case is done
already; it is used as a base of induction. Let us apply the induction hypothesis to the level surfaces of f1;n.
(Formally speaking, we apply the local version of the induction hypothesis described in Section 9.) Since
the curvature of convex hypersurfaces is larger than the curvature of the ambient manifold in the same
direction, we get the statement for i ¤ 1. Applying the same argument for the level surfaces of f2;n, we
get the claim.

Now let us show that K.em�1 ^ em/ � volm *!Cone.�/�Rm�2 . Consider the level sets Ln defined by

(4-9) f1;n D c1; : : : ; fm�2;n D cm�2:
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Note that Ln ��! Cone.�/. Applying the 2–dimensional case to Ln and the coarea formula, we get that
curvatures of Ln weakly converge to !Cone.�/�Rm�2 . It remains to show that the extra term in the Gauss
formula for the curvature of Ln weakly converges to zero; in other words, the difference between the
curvature of Ln and sectional curvature of Mn in the direction tangent to Ln weakly converges to zero.

The 3–dimensional case is done already. To prove the general case, we apply the 3–dimensional case to
the 3–dimensional level sets defined by m� 3 equations from the m� 2 equations in (4-9). (The same
argument is used in the proof of Key lemma 5.5, and it is written with more details.)

Note that for � D 0, the last argument implies:

Claim 4.9 Let Mn ��!A. If A has a flat open set U , then jKmaxj � voln * 0 on U .

In particular, the weak limit of dual curvature tensor has support on the singularity of Cone.�/�Rm�2.

The same argument as in Corollary 4.6 shows that hRm.ei ; ej /eq; er i � volm * 0 if at least one of the
indices i; j; q; r is at most m� 2. The latter statement implies the result.

5 Regular points

5A Common chart and delta-convergence

Choose a smoothing Mn ��! A of an m–dimensional Alexandrov space A. Let p 2 A be a point of
rank m; that is, there are mC 1 points a0; : : : ; am 2A such that z].p ai

aj / >
�
2

for all i ¤ j .

Recall [22, Sec. 7] that we can choose small r > 0, finite set of points ai near ai , and a smooth concave
increasing real-to-real function ' defined on an open interval such that

fi D

X
x2ai

' ı
�

distx;r

is strongly a concave function that is defined in a neighborhood U 3p; it will be called smoothed distance
chart.

Since r is small, and all points in ai are near ai we get that the functions f0; : : : ; fm are tight in U ; see
the definition in [22]. In particular, the map U !Rm defined by x 7! .f1.x/; : : : ; fm.x// is a coordinate
system in U .

The presented construction can be lifted to Mn. As a result, we obtain a chart of an open set Un �Mn.
Passing to smaller sets we may assume that U and each Un is mapped to a fixed open set ��Rm for all
large n. Further, we assume that it holds for all n; it could be achieved by cutting off the beginning of the
sequence Mn.

The obtained collection of charts xn W Un ! � and x W U ! � will be called a common chart at p.
It will be used to identify points of �, Mn, and A; in addition, we will use it to identify the tangent
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spaces TMn and TA with Rm. For example, we will use the same notation for function Mn!R and its
composition �!R with the inverse of the chart Un!�. We will use index n or skip it to indicate that
the calculations are performed in Mn or A respectively. For example, given a function f W�!R, we
denote by rnf and rf the gradients of f ıxn in Mn and f ıx in A respectively.

Recall that Aı denotes the set of ı–strained points in A. For a fixed common chart x we will use the
notation Aı

�
for the image x.Aı/��.

Part (iii) of Proposition 2.10 will follow from certain estimates in one common chart.

Definitions 5.1 Let Mn ��!A, dim ADm; choose a common chart with range ��Rm.

A sequence of measures nn defined on � is called weakly delta-converging if the following conditions
hold:

˘ Every subsequence of nn has a weak partial limit.

˘ For any " > 0 there is ı > 0 such that for any two weak partial limits m1 and m2 of .nn/ we have

j.m1�m2/.S/j< "

for any Borel set S �Aı
�

.

A sequence of bounded functions fn on � is called weakly delta-converging if the measures fn � voln are
weakly delta-converging.

A sequence of functions fn defined on � is called uniformly delta-converging if the following conditions
hold:

˘ For any " > 0 there is ı > 0 such that such that

lim sup
n!1

ffn.x/g� lim inf
n!1

ffn.x/g< "

for any x 2Aı
�

.

Observation 5.2 If fn is uniformly delta-converging and nn is weakly delta-converging , then fn � nn is
weakly delta-converging.

5B Convergences

Lemma 5.3 Let Mn ��!A, dim ADm; choose a common chart with range ��Rm. Let fn WMn!R

be a sequence of C 1–functions such that fn
C 1
ı
�! f W A! R. Let us denote by @1; : : : ; @m the partial

derivatives on ��Rm. Denote by gij;n and g
ij
n the components of the metric tensors on Mn. Then:

(i) fn uniformly converges to f on �.

(ii) @ifn are uniformly delta-converging.

(iii) gij;n and g
ij
n are uniformly delta-converging for all i; j ; moreover , det gij;n is bounded away from

zero.

(iv) jrnfnj uniformly delta-converges on �.
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Proof Part (i) is trivial.

(ii) Suppose a0; a1; : : : ; am struts p (see the definition in [3]), and the geodesics Œpai � are uniquely
defined. In this case, for any sequence of points ai;n;pn 2Mn such that ai;n ! ai , and pn ! p as
n!1, we have

lim
n!1

]Œpn
ai;n

aj;n �> ]Œp ai
aj
�:

If Tp is Euclidean, then (nC1)–point comparison implies that equality holds in the last inequality.

Note that the angles ]Œpn
ai;n

aj;n � for all i; j > 0 completely describe the metric tensor at pn in the basis
V1;n; : : : ;Vm;n, where Vi;n is the unit vector in the direction of Œpn; ai;n�.

If fn
C 1
ı
�! f , then Vi;nfn completely describes rpn

fn in the basis V1;n; : : : ;Vm;n. From above, we can ex-
press jrpn

fnj in terms of Vi;nfn and the angles ]Œpn
ai;n

aj;n �. Whence we get convergence jrpn
fnj! jrpf j

and therefore
hrpn

fn;rpn
hni ! hrpf;rphi

if hn
C 1
ı
�! h; the latter follows by the identity 4 �B.x;y/D B.xC y;xC y/�B.x � y;x � y/ for any

bilinear form B.

Note that the partial derivatives @ifn at a regular point p can be expressed in terms of hdpfn; dpxj in and
hdpxj; dpxkin, where x1; : : : ;xm are the coordinate functions of the chart. Therefore, we get that all
@ifn converge at any regular point.

Finally, observe that if p is a ı–strained point for sufficiently small ı > 0, then the calculations above go
thru with a small error. Whence the statement follows.

(iii) This part follows from the proof of (ii) since g
ij
n D hdpxi ; dpxj in and gij;n can be expressed

thru g
ij
n .

(iv) Note that jrnfnj can be expressed from g
ij
n and @ifn. Since these quantities are delta-converging,

so is jrnfnj.

The following lemma relies on the DC-calculus which is discussed in Section 7; this section includes
the definition of DC and DC0 functions, as well as DC convergence. Since test convergence implies DC
convergence (see Observation 7.1), the lemma also holds for test-converging sequences of functions.

Lemma 5.4 Let Mn ��! A. Choose a common chart xn W Un �Mn ! � and x W U � A! � with
range��Rm. Let fn WMn!R be a sequence of smooth functions that DC converges to a DC0 function
f WA!R. Let us denote by @1; : : : ; @m the partial derivatives on ��Rm. Denote by gij;n and g

ij
n the

components of the metric tensors on Mn. Then the partial derivatives @kgij;n, @kg
ij
n , @j@ifn, as well as

their products to uniformly delta-converging functions , are weakly converging.

Proof The weak convergence of @kgij;n, @kg
ij
n , and @j@ifn follows from Theorem 7.4. Products of these

partial derivatives with uniformly delta-converging sequences of functions are weakly delta-converging,
by Observation 5.2.
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Let hn WMn! R be a uniformly delta-converging sequence. Note that its limit is well defined in Aı;
denote it by h; let us extend it by 0 to the whole A.

Denote by mn one of the measures on � with the density @kgij;n, @kg
ij
n , or @j@ifn. Let m be the

corresponding limit measure @kgij , @kgij , or @j@if . We need to show that

(5-1)
Z
�

.hn ıx�1
n / �' �mn!

Z
�

.h ıx�1/ �' �m as n!1

for any continuous function ' W�!R with compact support.

Choose " > 0; let ı > 0 be as in Definitions 5.1 (for hn). The set Sı
�
D� nAı

�
is a closed subset of �.

By Proposition 7.3, jmj.Sı
�
/D 0. Therefore we can choose an open neighborhood N �� of Sı

�
such

that jmj.N / < ". Choose two nonnegative continuous functions '0 and '1 such that

' D '0C'1; supp'0 �N; supp'1 �Aı� D� nSı�:

Note that the sequence an D
R
�.hn ı x�1

n / � '0 �mn converges with error "0 D " � c �maxf j'j g, where
c is a bound on jhnj. In other words, the upper and lower limits of an differ by at most "0. Similarly,
bn D

R
�.hn ıx�1

n / �'1 �mn converges with error "1 D " � jmj � c �maxf j'j g. Since " > 0 is arbitrary, we
get (5-1).

5C Proof modulo a key lemma

Key lemma 5.5 Choose a common chart with range � � Rm for a smoothing Mn ��! A. Choose
a component Rmijsr;n of the curvature tensor of Mn in �. Then Rmijsr;n � volmn is a weakly delta-
converging sequence of measures.

The proof of the key lemma will take the remaining part of this section; in the current subsection, we
show that it implies Proposition 2.10(iii).

Proof of Proposition 2.10(iii) modulo Key lemma 5.5 Recall that components of qmn can be expressed
from the components of Rmn. Therefore, the key lemma implies delta-convergence of components of qmn.

Choose sequences of test functions f1;n; : : : ; fm�2;n, h1;n; : : : ; hm�2;n on Mn that test-converge to
f1; : : : ; fm�2, h1; : : : ; hm�2 WA!R. By Lemma 5.3, we have delta-convergence of the partial derivatives
@ifj;n and @ihj;n to @ifj and @ihj , respectively. The measures qmn.f1;n; : : : ; fm�2;n; h1;n; : : : ; hm�2;n/

can be expressed as a linear combination of the components of qmn with coefficients expressed in terms
of @ifj;n. By Observation 5.2, it follows that the sequence of measures

mn D qmn.f1;n; : : : ; fm�2;n; h1;n; : : : ; hm�2;n/

is delta-converging.
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Finally, recall that
Aı D

\
ı>0

Aı:

Therefore delta-convergence of qmn.f1;n; : : : ; fm�2;n; h1;n; : : : ; hm�2;n/ implies Proposition 2.10(iii).

5D Strange curvature

Suppose M is a 3–dimensional Riemannian manifold. Strange curvature tensor Str on M is a bilinear
form that is uniquely defined by

Str.w;w/D Sc �jwj2�Ric.w;w/

for w 2 TM. Note that Str completely describes the Ricci curvature tensor Ric. Further, since M is
3–dimensional, Str completely describes the curvature tensor Rm of M.

In Riemannian manifolds, we can (and will) use the metric tensor to identify tangent and cotangent
bundles. Therefore the tensor Str can be applied to vector fields and forms; in particular, for any smooth
function f we have

Str.df; df /D Str.rf;rf /:

Proposition 5.6 Let Mn ��!A and dim AD 3; choose a common chart with range ��R3. Suppose
that f is a convex combination of coordinate functions of the chart. Then the measures

mn D Strn.df; df / � vol3n
are weakly delta-converging in �.

The definition of strange curvature tensor is motivated by the following integral expression from
Theorem 6.1:

(5-2)
Z
�

' �Str.u;u/D
Z
�

' � IntC
Z
�

ŒH � hu;r'i � hr';ruui�;

where

˘ uDrf=jrf j,

˘ H.x/ is the mean curvature of the level set f �1.f .x//,

˘ Int.x/ is the scalar curvature of f �1.f .x//.

This formula is the main tool in the proof of the proposition. It reduces the proposition to the following
two lemmas; each lemma provides the convergence of an integral term in the right-hand side of (5-2).

Lemma 5.7 In the assumptions of Proposition 5.6, Intn � vol3n is a delta-converging sequence of measures
on �.

The proof of this lemma uses the convergence of curvature measures Intn � vol2 on the 2–dimensional
level sets of concave functions f and the coarea formula. Recall that the sequence jrnf j is only weakly
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delta-convergent (see Lemma 5.3(iv)). Since the factor jrnf j appears in the coarea formula, we get that
Intn � vol3n is only weakly delta-convergent.

Proof Recall that any point in an Alexandrov space A has a convex neighborhood [22]. This construction
can be lifted to the smoothing sequence .Mn/. Let V � A be an open convex neighborhood of x and
Vn �Mn be open convex sets such that V n GH�! V.

Set
Lt;n D f

�1.t/\Vn; Ct;n D f
�1Œt;1/\V n;

Lt D f
�1.t/\V; Ct D f

�1Œt;1/\V :

For every t and n, the set Ct;n is a convex subset in Alexandrov space and hence is an Alexandrov space
with curvature >�1. Note that Ct;n GH�! Ct . Let us equip the boundaries @Ct;n and @Ct with the induced
inner metrics. By [20, Theorem 1.2], @Ct;n converges to @Ct as n!1.

By [2], @Ct;n is an Alexandrov space with curvature > �1; hence, so is the limit @Ct .

Note that Lt;n with induced inner metric is isometric to its image in @Ct;n. Since @Ct is an extremal
subset of Ct , the inner metric of @Ct is bi-Lipschitz to the metric restricted from A. It follows that we
can take r sufficiently small such that for all t and Ut;n DLt;n\B.xn; r/ we will have

hn 6 1
10
� dist.Ut;n; @Ct;n nLt;n/;

where hn denotes the intrinsic diameter of Ut;n. Then the local version of the 2–dimensional case of the
main theorem can be applied to Ut;n; it implies weak convergence of measures Intn � vol2n on Lt;n.

Choose a smooth function ' WB.xn; r/!R with a compact support in Aı
�

. Applying the coarea formula,
we get

(5-3)
Z

s2�

Intn.s/ �'.s/ � vol3n D

hZ
�h

dt �

Z
s2Ut;n

'n.s/

jrnf .s/j
� Intn.s/ � vol2 :

Note that rnf is bounded away from zero. By Lemma 5.3(iv), 1=jrnf .s/j is uniformly delta-converging.
Recall that Intn � vol2 are weakly converging measures on Ln [1, VII §13]. Therefore Observation 5.2
implies that Intn � vol3n are weakly delta-converging measures on Mn.

The following lemma is related to the convergence of the second integral in (5-2), the proof uses the DC
calculus in a common chart; see Section 7.

Lemma 5.8 In the assumptions of Proposition 5.6, suppose ' W�!R is a smooth function with compact
support. Then

(5-4)
Z
�

�
Hn � hun;rn'in� hrun

un;rn'in
�
� vol3n

converges , where Hn and un as in (5-2).
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Proof Note that Hn D div un. Let us rewrite the first term of (5-4) in coordinates:Z
�

�X
i

�
@iu

i
nC

1
2
ui

n � @i log det gn

��
�

�X
i;j

ui
n � @i'

�
�
p

det gn � dx1 dx2 dx3:

We also have

ui
n D

P
j gij � @jfqP

j;k gjk � @jf � @kf
:

Taking the derivatives, we see under the integral a sum of products the following two types of expressions:
the first a partial derivative @kgij;n, @kg

ij
n , or @i@jf , and the second is an expression made from gij;n,

g
ij
n , @if , @i'. Applying Lemmas 5.3 and 5.4, we get that the integral converges.

Further, for the second term in (5-4) we haveZ
Mn

hr'n;run
uni � vol3n

D

Z
�

dx1 dx2 dx3
�

X
i;j;k

ui
n � @k' �

p
det gn �

�
@iu

k
n C

1
2
uj

n �

X
s

.@igjs;nC @j gsi;n� @sgij;n/ �g
ks
n

�
:

The convergence follows by the same argument.

Proof of Proposition 5.6 By (5-2) and Lemmas 5.7, and 5.8 we get that Strn.un;un/ � vol3n is a weakly
delta-converging sequence of measures. It remains to apply Lemma 5.3(iv) and Observation 5.2.

5E Three-dimensional case

In this section, we prove Key lemma 5.5 in the 3–dimensional case.

Vectors w1; : : : ; wm.mC1/=2 2Rm are said to be in general position if the vectors wi˝wi form a basis in
Rm�.mC1/=2 — the symmetric square of Rm. In this case, any quadratic form Q on Rm can be computed
from the m.mC 1/=2 values

Q.w1; w1/; : : : ; Q.wm.mC1/=2; wm.mC1/=2/:

More precisely, there are rational functions s1; : : : ; sm.mC1/=2 that take m.mC 1/=2 vectors in Rm and
return a quadratic form on Rm such that

(5-5) QD

m.mC1/=2X
kD1

sk.w1; : : : ; wm.mC1/=2/ �Q.wk ; wk/:

Note that the vectorsw1; : : : ;wm.mC1/=22Rm are in general position if and only if sk.w1; : : : ;wm.mC1/=2/

are finite for all k. Since sk are rational functions, we get:

Observation 5.9 Suppose that vectors w1; : : : ; wm.mC1/=2 2 Rm are in general position. Then the
functions s1; : : : ; sm.mC1/=2 are Lipschitz in a neighborhood of .w1; : : : ; wm.mC1/=2/ 2 .R

m/m.mC1/=2.
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Proof of the 3–dimensional case of Key lemma 5.5 Choose a common chart

Mn � Un!�; and A� U !�:

Let us use it to identify tangent spaces of Mn and A with R3.

Choose 6 sequences of convex combinations of coordinate functions f1; : : : ; f6, such that rf1; : : : ;rf6

are in general position at p 2�. We can assume that� is a small neighborhood of p, so by Proposition 5.6
the measures Strn.rnfk ;rnfk/ � vol3n weakly delta-converges on Aı

�
for k D 1; : : : ; 6.

By Observation 5.9, the functions si are Lipschitz in a neighborhood of .rf1; : : : ;rf6/2 .R
3/6. Applying

(5-5), we get that

StrD
6X

kD1

sk.rnf1; : : : ;rnf6/ �Strn.rnfk ;rnfk/:

Hence the measure Strn.dxi ; dxj / � vol3n are weakly delta-converging for all i and j , where x1;x2;x3 is
the standard coordinates in R3.

By Lemma 5.3, the sequence of metric tensors gn of Mn on � is uniformly delta-converging. Since the
following equality

Tr Strn D

X
i;j

gij;n �Strn.dxi ; dxj /

holds almost everywhere, we get that the sequence of measures Tr Strn � vol3n is weakly delta-converging.

Note that for 3–dimensional manifolds we have

(5-6) Qmn.V;V /D Strn.V;V /�
1
4
� jV j2 �Tr Strn :

Hence the measures Qmn.dxi ; dxj / � vol3n are weakly delta-converging for all i and j .

Finally, according to Lemma 5.3(ii), the components ˛ik;n of rnfk are uniformly delta-converging. The
result follows since

qm.fk ; fk/D
X
i;j

˛ik;n � j̨k;n � qm.xi ;xj /:

5F Higher-dimensional case

Observation 5.10 Choose a common chart with the range��Rm for a smoothing Mn ��!A. Consider
the sequence of coordinate level sets � D Lm � Lm�1 � � � � � L0, where Li D Li.ciC1; : : : ; cm/ is
defined by setting the last m� i coordinates to be ciC1; : : : ; cm, respectively. Then each level set Li is a
smooth convex hypersurface in LiC1 in each Mn; in particular , each Li has sectional curvature bounded
below by �1.

Moreover , there is an open set O in the space of linear transformations of Rn such that the same holds
after applying any linear transformation T 2O to �.
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Proof of Key lemma 5.5 Let us use notations as in the observation. By Key lemma 5.5 in dimensions 2

and 3, we get weak delta-convergence of curvature tensors on L2 and L3. (Again, we apply the local
version of these statements as described in Section 9.) In particular, applying the coarea formula, we get
convergence of sectional curvatures of L3 in the directions of L2 as well as the sectional curvature of L2

for all values c3; : : : ; cm. The difference between these curvatures is the Gauss curvature Gn of L2 as a
submanifold in L3. Therefore, Gn is weakly delta-converging as well.

Consider a linear transformation of � that preserves the direction of L2. By the last statement in
Observation 5.10, the above argument shows weak delta-convergence of Gn.w/, where the direction w
of L3 on L2 can be chosen in an open set of Rm�2 — the space transversal to L2. In particular, we
may choose directions w1; : : : ; w.m�2/�.m�1/=2 in Rm�2 that form a generic set (see the definition in
Section 5E).

Denote by GCn the term in the Gauss formula for L2 in Mn; that is, GCn is the difference between the
curvature of L2 and the sectional curvature of Mn in the same direction. Denote by gn the Riemannian
metric of Mn in �. Note that

GCn D
X

˛k;n �Gn.wk/;

where the coefficients ˛k;n depend continuously on w1; : : : ; w.m�2/�.m�1/=2, and the components of gn.
It follows that weak delta-convergence of Gn.wk/ implies weak delta-convergence of GCn as n!1.
Since the curvature of L2 is weakly delta-converging, it implies weak delta-convergence of sectional
curvature in the direction of L2.

By the second statement in the observation, the above argument can be repeated after applying a linear
transformation of � that changes the direction of L2 slightly. It follows that sectional curvatures converge
for a generic array of simple bivectors in Rm. Note that the curvature tensor can be expressed from these
sectional curvatures and the metric tensor. Hence, the weak delta-convergence of components of curvature
tensor and therefore dual curvature tensor follows.

Details

6 Bochner formula

Let M be a Riemannian m–manifold and f WM !R be a smooth function without critical points on an
open domain ��M. Set uDrf=jrf j. Let us define Intf .x/ (or just Int) to be scalar curvature of the
level set Lx D f

�1.f .x// at x 2Lx �M. Set

(1) �1.x/6 �2.x/6 � � �6 �m�1.x/, as the principal curvatures of Lx at x;

(2) H DHf .x/D �1C �2C � � �C �m�1, the mean curvature of Lx at x;

(3) G DGf .x/D 2 �
P

i<j �i � �j , the extrinsic term in the Gauss formula for Intf .x/.
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Recall that the strange curvature Str is defined as

Str.u/D Sc�hRic.u/;ui;

where Sc and Ric denote scalar and Ricci curvature respectively.

Theorem 6.1 (Bochner’s formula) Let M be an m–dimensional Riemannian manifold , f WM ! R

be a smooth function without critical points on an open domain � �M, and u D rf=jrf j. Assume
' W�!R is a smooth function with compact support. Then

(6-1)
Z
�

' � hRic u;ui D

Z
�

Œ' �GCH � hu;r'i � hr';ruui�

and

(6-2)
Z
�

' �Str.u/D
Z
�

ŒH � hu;r'i � hr';ruui�C

Z
�

' � Intf :

The following calculations are based on [11, Chapter II]. The Dirac operator will be denoted by D. We
use the Riemannian metric to identify differential forms and multivector fields on M. Therefore the
statement about differential forms can be also formulated in terms of multivector fields and the other way
around.

Proof of Theorem 6.1 Assume b1; : : : ; bm is an orthonormal frame such that bm D u. Then

Sc�2 � hRic.u/;ui D 2 �
X

i<j<m

sec.bi ^ bj /:

Therefore the Gauss formula can be written as

(6-3) IntDGCSc�2 � hRic.u/;ui DGCStr.u/� hRic.u/;ui:

We can assume that bi.x/ points in the principal directions of Lx for i <m; so we have rbi
uD �i � bi

at x. We will denote by “ � ” the Clifford multiplication; recall that bi � bi D�1. Note that

DuD
X

i

bi �rbi
uD

X
i<m

�i � bi � bi Cu �ruuD�H Cu �ruu:

Since hruu;ui D 0, we get H ? .u �ruu/. Therefore

hDu;Dui D

�X
i<m

�i

�2

Cju �ruuj2 DH 2
Cjruuj2:

On the other hand
ruD

X
i<m

�i � bi ˝ bi Cruu˝u;

hence
hru;rui D

X
i<m

�2
i Cjruuj2:

Therefore
hDu;Dui � hru;rui D 2 �

X
i<j

�i � �j DG:
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Following the calculations in [11, II.5.3], we getZ
�

' � ŒhDu;Dui � hD2u;ui�D�

Z
�

hr' �u;Dui D �

Z
�

ŒH � hr';ui � hr';ruui�:

Since juj � 1, we have hrr'u;ui D 0. ThereforeZ
�

' � Œhru;rui � hr�ru;ui�D

Z
�

hrr'u;ui D 0:

By the Bochner formula [11, II.8.3],

D2u�r�ruD Ric.u/I

in particular,

(6-4) ' � hD2u;ui �' � hr�ru;ui D ' � hRic.u/;ui:

Integrating (6-4) and applying the derived formulas, we getZ
�

' �G D

Z
�

' � ŒhDu;Dui � hru;rui�D

Z
�

' �Ric.u;u/�
Z
�

ŒH � hu;r'i � hr';ruui�:

It remains to apply the Gauss formula (6-3).

7 DC-calculus

Let f be a continuous function defined on an open domain of an m–dimensional Alexandrov space A.
Recall that f is DC if it can be presented locally as a difference between two concave functions. Recall
that for any point p 2 A there is a .�1/–concave function defined in a neighborhood of p [17, 3.6].
Therefore we can say that f is DC if and only if it can be presented locally as a difference between two
semiconcave functions.

Suppose that a sequence of Alexandrov spaces An converges to Alexandrov space A without collapse. Let
fn and f be DC functions defined on open domains Domfn�An and Domf �A. Suppose that for any
p 2 Domf there is a sequence pn 2 Domfn and R> 0 such that pn! p and B.pn;R/An

� Domfn,
B.p;R/A � Domf and for some fixed � 2R, and each large n we have �–concave functions an and bn

defined in B.pn;R/An
and �–concave functions a and b defined in B.p;R/A such that fn D an � bn

and f D a� b and the sequences an and bn converge to functions a and b respectively. In this case, we
say that fn is DC-converging to f D a� b WA!R as n!1; briefly fn DC�! f .

A DC function f WA!R is called DC0 if it is continuously differentiable in Aı. More preciously, for any
smoothed distance chart x W U �A!Rm (see Section 5A) the restriction f ıx�1jx.Aı/ is continuously
differentiable.
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Observation 7.1 Any test function is DC0. Moreover , test convergence implies DC-convergence.

Proof Choose a test function f D '.
�

distp1;r ; : : : ;
�

distpn;r /. Note that the function ' can be presented
locally as a difference between C 2–smooth concave functions increasing in each argument; say 'D ��.

For the first part of the observation, it remains to observe that the functions

aD  .
�

distp1;r ; : : : ;
�

distpn;r /; b D �.
�

distp1;r ; : : : ;
�

distpn;r /

are semiconcave and continuously differentiable in Aı.

Suppose that a sequence of functions 'i is C 2–converging to '. Choose x D .x1; : : : ;xn/ in the domain
of definition of '. Note that 'n and its partial derivatives up to order 2 are bounded; fix a bound c.
Then in a neighborhood of .x1; : : : ;xn/ we may choose  n that is uniquely defined by  n.x/ D 0,
@i n.x/D 2 �c, @i@j n� 0 for i ¤ j , and @2

i  n��d for a large constant d . In this case, �nD n�'n

is concave. Moreover, C 2–convergence of 'n implies convergence of  n and �n. Hence, the second
statement follows.

The definition of DC-convergence extends naturally to sequences of functions defined on a fixed domain
��Rm. The proof of the following statement is a straightforward modification of [18, Section 3]:

Proposition 7.2 Let Mn ��!A; choose a common chart xn W Un �Mn!�, x W U �A!��Rm.

Consider functions fn and f defined on Un and U , respectively. Then

fn DC�! f if and only if fn ıx�1
n DC�! f ıx�1:

The following statement follows from the lemma in [18, Section 4].

Proposition 7.3 Let A be an m–dimensional Alexandrov space and x W U !Rm — a smoothed chart for
U �A. Denote by gij components of metric tensors in this chart and by gij components of the inverse
matrix. Let f W U !R be a DC0 function.

Then the partial derivatives @kgij , @kgij , @i@jf are Radon measures on A that vanish on x�1.A0[A00/.

Theorem 7.4 Let Mn ��!A, dim ADm; choose a common chart xn defined on Un�Mn, x defined on
U �A with a common range ��Rm. Denote by gij;n components of metric tensors in this chart and by
g

ij
n components of the inverse matrix. Let fn W Un!R be a sequence of DC function that DC-converges

to a DC0 function f W U ! R. Then partial derivatives @kgij;n, @kg
ij
n , @i@jfn weakly converge to the

Radon measures @kgij , @kgij , @i@jf described in Proposition 7.3.

By Observation 7.1, the theorem applies to any test-converging sequence fn
test
�! f . In the proof, we will

modify the argument in [18, Section 4] slightly.
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Proof Let’s start with the partial derivatives of metric tensors. In [18, Subsection 4.2], it was shown that
components of metric tensors can be expressed as a rational function of partial derivatives of distance
functions to a finite collection of points. The distance functions are semiconcave, in particular DC.

The base points pi;n 2Mn of these distance functions can be chosen so that they converge to some point
pi 2A. In this case, the distance functions are DC-converging. Now, applying Proposition 7.2, we get
the statement.

The case of @i@jfn is similar.

8 Bi-Lipschitz covering

In this section we will prove Lemma 4.1. A more general version of the lemma can be proved along the
same lines as Lemma 11.1 in [26].

Note that the lemma follows from the next proposition.

Proposition 8.1 Let A be an m–dimensional Alexandrov space with curvature at least �1 and p 2A0.
Then there is a compact set Q such that

(i) Q admits a bi-Lipschitz embedding into Rm�2 and

(ii) there is a neighborhood U 3 p and " > 0 such that q 2Q for any point q 2 U \A0 such that

�.q/ < �.p/C ":

Let x be a point in an Alexandrov space A with curvature at least �1. Recall that Bishop–Gromov
inequality implies that

volm B.x;R/A

volm B. Qx;R/Hm

6 volm�1†x

volm�1 Sm�1

for any R> 0; here Hm denotes the m–dimensional hyperbolic space. The following lemma makes this
inequality more precise.

Lemma 8.2 Let x be a point in an m–dimensional Alexandrov space A with curvature at least �1.
Suppose y 2A is a point such that jx�yj<R and ]Œy x

z � < � � " for any point z. Then

volm B.x;R/A

volm B.R/Hm

6 .1� ı/ �
volm�1†x

volm�1 Sm�1
;

where ı is a positive number that depends on m, jx�yj, R and ".
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Proof To simplify the presentation we will assume that A is nonnegatively curved; it is straightforward
to adapt the proof to the general case. In this case, we need to show that

volm B.x;R/A

volm B.R/Rm

6 .1� ı/ �
volm�1†x

volm�1 Sm�1
;

Let us denote by Qp a vector in Tx that is tangent to a geodesic path 
 W Œ0; 1�! A from x to p. By
comparison, the map p 7! Qp is a distance-noncontracting map.

Since ]Œy x
z � < � � " for any z, the image of the map p 7! Qp does not include points in a cone C behind

Qy of angle ". It follows that

volm.B.0;R/Tx
nC /> volm.B.x;R/A/

for any R> 0.

Since R> jx�yj, the intersection C \B.0;R/Tx
includes a ball of a certain

CTx

ỹ̃ỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹy00000000000000000000000000000000000000000000000000000000000000000

radius r > 0 that can be found in terms of jx � yj, R and ". By the Bishop–
Gromov inequality, we get ı D ı.m; jx�yj;R; "/ > 0 such that

volm.C \B.0;R/Tx
/

volm.B.0;R/Tx
/

> ı:

Further, observe that
volm.B.0;R/Tx

/

volm.B.0;R/Rm/
D

volm�1†x

volm�1 Sm�1
;

whence the lemma.

Proof of Proposition 8.1 Since the tangent cone at p has Rm�2–factor, we can choose points a1; : : : ;am�2,
b1; : : : ; bm�2 that are ı–strainers of p for arbitrary ı > 0. The corresponding distance map

s W x 7! .ja1�xj; : : : ; jx� am�2j/

is an almost submersion of a neighborhood U 3 p to Rm�2. Choose small " > 0 and set

Q0 D fx 2 U \A0 j �.x/ < �.p/C "g:

Let us show that sjQ0 is bi-Lipschitz. Once it is done, passing to the closure QDQ0 gives the required
set.

Note that for some R> 0 the ball B.p; 10 �R/A is almost isometric to the ball B.0; 10 �R/Tp
and we can

assume that U �B.p;R/A. By the volume convergence (see [5, 10.8]) and Bishop–Gromov inequality,
we can assume that

volm B.x;R/A >
�.p/�"

2��
� volm B.0;R/Hm

for any x 2 U ; here Hm denotes the m–dimensional hyperbolic space.

Assume x and y in Q0. Since " is small, the lemma implies that there is z 2A such that ]Œy x
z � is near � .

It follows that "Œyx� lies very close to the Rm�2–factor in Ty . The same way we can show that "Œxy� lies
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very close to the Rm�2–factor in Tx . In other words Œxy� lies nearly horizontally with respect to almost
submetry s. In particular,

js.x/� s.y/jRm�2 7 �˙1
� jx�yjA

for some constant � > 1. (In fact, we can take � arbitrarily close to 1, but we do not need it.)

9 Localization

In this section we formulate a local version of the main theorem. This version is more general, but its
proof requires just a slight change of language. A couple of times we had to use this local version in the
proof. In a perfect world, we had to rewire the whole paper using this language. However, this is not a
principle moment, so we decided to keep the paper more readable at the cost of being not fully rigorous.
A more systematic discussion of this topic is given in [12].

First, we need to define Alexandrov region; its main example is an open set in Alexandrov space.

Definition 9.1 Let A be a locally compact metric space. We say that a point p 2 A is "–inner if the
closed ball B.x; 2 � "/ is compact.

Definition 9.2 We say that a locally compact inner metric space A of finite Hausdorff dimension is an
Alexandrov region if any point has a neighborhood where the Alexandrov comparison for curvature > �1

holds.

The comparison radius rc.p/ for p 2A is defined as the maximal number r such that p is r–inner point
and Alexandrov comparison for curvature > �1 holds in B.x; r/.

Any point p in an Alexandrov region admits a convex neighborhood. Moreover, its size can be controlled
in terms of dimension, rc.p/, and a lower bound on the volume of ball B.p; rc/. The construction is the
same as for Alexandrov space [19, 4.3].

By the globalization theorem (see, for example, [3]), a compact convex subset in an Alexandrov region
is an Alexandrov space. So the statement above makes it possible to apply most of the arguments and
constructions for Alexandrov spaces to Alexandrov regions. Moreover, in the case when an Alexandrov
region is a Riemannian manifold (possibly noncomplete) it is possible to take the doubling of a convex
neighborhood from the proposition and smooth it with almost the same lower curvature bound. This
allows us to apply the main result from [23], where the complete manifold can be replaced by a convex
domain in a possibly open manifold.

Further, let us define a local version of smoothing. Let us denote by Mm
>�1

a class of m–dimensional
Riemannian manifolds without boundary, but possibly noncomplete, with sectional curvature bounded
from below by �1.
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Definition 9.3 Let Mn 2M
m
>�1

(with corresponding intrinsic metric) converge in Gromov–Hausdorff
sense to some metric space A via approximation. Suppose that Mn 3 xn! x 2 A, dim A D m, and
rc.xn/ > R > 0. Let Un D B.xn;R/Mn

. Then we say that Un is a local smoothing of U D B.x;R/A

(briefly, Un ��! U ).

It is straightforward to redefine test functions and weak convergence for local smoothings. Using this
language we can make a local version for each statement in this paper; the proofs go without changes. As
a result, we get the following local version of the main theorem.

Theorem 9.4 (local version of Theorem 2.6) Let Mn 2M
m
>�1

, Mn GH�! A, Un �Mm, U � A, and
Un ��! U be a local smoothing.

Denote by qmn the dual measure-valued curvature tensor on Un. Then there is a measure-valued tensor
qm on U such that qmn * qm.
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