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ZIQUAN ZHUANG

We show that a set of K–semistable log Fano cone singularities is bounded if and only if their local
volumes are bounded away from zero, and their minimal log discrepancies of Kollár components are
bounded from above. As corollaries, we confirm the boundedness conjecture for K–semistable log Fano
cone singularities in dimension three, and show that local volumes of 3–dimensional klt singularities only
accumulate at zero.

14B05, 14E99, 14J45

1 Introduction

Following the recent study on K–stability of Fano varieties (see Xu [38] for a comprehensive survey),
there has been growing interest in establishing a parallel stability theory for klt singularities, which are
the local analog of Fano varieties. In the global theory, boundedness of Fano varieties plays an important
role. Building on the seminal work of Birkar [1; 2], Jiang [18] proved that (in any fixed dimension)
K–semistable Fano varieties with anticanonical volumes bounded away from zero form a bounded family.
(Several different proofs were later found in Li, Liu and Xu [25] and Xu and Zhuang [39].) This is the
first step in the general construction of the K–moduli space of Fano varieties; it is also a key ingredient
in the proof of the global version of the Higher Rank Finite Generation Conjecture; see Liu, Xu and
Zhuang [31].

To advance the local stability theory, it is therefore natural to investigate the boundedness of klt singularities.
Several years ago, Li [24] introduced an interesting invariant of klt singularities called the local volume.
It has become clear that the stability theory of klt singularities should be built around this invariant. In
particular, it is speculated that (in any fixed dimension) klt singularities with local volumes bounded away
from zero are specially bounded, i.e. they isotrivially degenerate to a bounded family. This is known in
some special cases, see for example Han, Liu and Qi [16], Moraga and Süss [34; 33] and Zhuang [42],
but the general situation is still quite mysterious.

By the recent solution of the Stable Degeneration Conjecture — see Blum [4], Li and Xu [27; 28], Xu [37],
Xu and Zhuang [39; 40], Li, Wang and Xu [26], as well as Blum, Liu and Qi [8] — every klt singularity
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3910 Ziquan Zhuang

has a canonical “stable degeneration” to a K–semistable log Fano cone singularity; see Section 2.4 for the
precise definition, but roughly speaking, K–semistable log Fano cone singularities are generalizations of
cones over K–semistable Fano varieties. This suggests a more precise boundedness conjecture:

Conjecture 1.1 (see [40, Conjecture 1.7], also [35, Problem 6.9]) Fix n 2 N, " > 0 and a finite set
I � Œ0; 1�. Then the set˚
.X; �/ j x 2 .X; �/ is a K–semistable log Fano cone singularity; dim X D n;Coef.�/� I andcvol.x;X; �/� "

	
is bounded.

Here cvol.x;X; �/ denotes the local volume of the singularity x 2 .X; �/. This conjecture has been
verified for toric singularities by Moraga and Süss [34] and Zhuang [42], for hypersurface singularities,
and for singularities with torus actions of complexity one also by Moraga and Süss [33].

In this paper, we study Conjecture 1.1 using the minimal log discrepancies of Kollár components (or
simply mldK); see Section 2.2. Our main result gives a boundedness criterion in terms of mldK and the
local volume.

Theorem 1.2 (Corollary 3.10) Fix n 2N and consider a set S of n–dimensional K–semistable log Fano
cone singularities with coefficients in a fixed finite set I � Œ0; 1�. Then S is bounded if and only if there
exist some ";A> 0 such that

cvol.x;X; �/� " and mldK.x;X; �/�A

for all x 2 .X; �/ in S.

This upgrades the special boundedness result from our previous work [42] to actual boundedness. We also
prove boundedness results for more general log Fano cone singularities, replacing the K–semistability
requirement by lower bounds on stability thresholds (as introduced by Huang in [17]); see Corollary 3.14.

Comparing Conjecture 1.1 and Theorem 1.2, we are naturally led to the following conjecture, already
raised in [42]:

Conjecture 1.3 [42, Conjecture 1.7] Let n 2N, " > 0 and let I � Œ0; 1� be a finite set. Then there exists
some constant A depending only on n, " and I such that

mldK.x;X; �/�A

for any n–dimensional klt singularity x 2 .X; �/ with Coef.�/� I and cvol.x;X; �/� ".
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Boundedness of singularities, II 3911

This is known in dimension up to three [42]. By Theorem 1.2, we then get a complete solution of
Conjecture 1.1 in dimension three (the surface case was already treated by Han, Liu and Qi [16]). The
same result is also independently proved by Liu, Moraga and Süss [29] using a different method.

Corollary 1.4 (Corollaries 3.16 and 3.17) Conjecture 1.1 holds in dimension 3. Moreover , for any
fixed finite coefficient set I � Œ0; 1�, the set of possible local volumes of 3–dimensional klt singularities is
discrete away from zero.

1.1 Strategy of the proof

In addition to our previous work [42], the proof of Theorem 1.2 relies on several new ingredients. For
simplicity, we assume �D 0, so that we are dealing with Fano cone singularities. Every such singularity
x 2X is an orbifold cone over some Fano variety V, so a natural idea is to prove Theorem 1.2 by showing
the boundedness of the associated Fano variety V.

There are two main reasons why this naïve approach does not directly work. First, the orbifold base is
highly nonunique; in fact, for a fixed Fano cone singularity the possible orbifold bases can be unbounded.
For example, the simplest Fano cone singularity 0 2 An can be realized as an orbifold cone over any
weighted projective space of dimension n� 1, but without further constraint, weighted projective spaces
do not form a bounded family.

Moreover, even when there is a canonical choice of the orbifold base (e.g. when the singularity has a
unique Gm–action), the anticanonical volume of V is only a fraction of the local volume of the singularity,
where the factor is related to the Weil index of V (defined as the largest number q such that �KV �Q qL

for some Weil divisor L). In particular, the volume of V can a priori be arbitrarily small, which needs to
be ruled out if we want any boundedness of this sort.

Our solution is to turn the local boundedness question into a global one by considering the projective
orbifold cone X over V. A key observation is that by choosing the appropriate orbifold base V, the
anticanonical volume of X approximates the local volume of x 2X and in particular is bounded from
both above and below. This takes care of the second issue mentioned above.

Still, as we make different choices of V, the corresponding projective orbifold cones X can be unbounded.
To circumvent this issue, we prove an effective birationality result for X . More precisely, we show
that regardless of the choice of V, there is some positive integer m depending only on cvol.x;X / and
mldK.x;X / such that j�mKX j induces a birational map that restricts to an embedding on X . This is the
main technical part of the proof, and ultimately reduces to the construction of certain isolated non-klt
centers and some careful analysis of certain Izumi-type constants; see Section 3.2. Once the effective
birationality is established, it is fairly straightforward to conclude the boundedness of X .

Geometry & Topology, Volume 28 (2024)



3912 Ziquan Zhuang

1.2 Structure of the article

In Sections 2.2–2.5, we give the necessary background on mldK, local volumes, log Fano cone singularities
and their boundedness. In Sections 2.6–2.7, we collect some useful results in previous works; these include
results from Han, Liu and Shokurov [15] tackling pairs with real coefficients, as well as modifications of
some results from the prequel [42] of the present work. In Section 3, we present and prove a more general
boundedness statement for polarized log Fano cone singularities, Theorem 3.1. Our main Theorem 1.2
will follow as an application of Theorem 3.1.

Acknowledgements The author is partially supported by NSF grants DMS-2240926 and DMS-2234736,
a Clay research fellowship, as well as a Sloan fellowship. He thanks Harold Blum, János Kollár, Yuchen Liu
and Chenyang Xu for helpful discussions and comments. He also thanks the referees for careful reading
of the manuscript and several helpful suggestions.

2 Preliminaries

2.1 Notation and conventions

We work over an algebraically closed field k of characteristic 0. We follow the standard terminology
from [23; 21].

A pair .X; �/ consists of a normal variety X together with an effective R–divisor � on X (a priori, we
do not require that KX C� is R–Cartier). A singularity x 2 .X; �/ consists of a pair .X; �/ and a closed
point x 2X . We will always assume that X is affine and x 2 Supp.�/ (whenever �¤ 0).

Suppose that X is a normal variety. A prime divisor F on some birational model � W Y !X (where Y is
normal and � is proper) of X is called a divisor over X . Given an R–divisor � on X , we denote its strict
transform on the birational model Y by �Y . If KX C� is R–Cartier, the log discrepancy AX ;�.F / is
defined to be

AX ;�.F / WD 1C ordF .KY ��
�.KX C�//:

A valuation over a singularity x 2 X is an R–valued valuation v WK.X /�!R (where K.X / denotes
the function field of X ) such that v is centered at x (i.e. v.f / > 0 if and only if f 2mx) and vjk� D 0.
The set of such valuations is denoted as ValX ;x . Given � 2R, the corresponding valuation ideal a�.v/ is

a�.v/ WD ff 2 OX ;x j v.f /� �g:

When we refer to a constant C as C D C.n; "; : : :/ it means C only depends on n; "; : : : .

Geometry & Topology, Volume 28 (2024)



Boundedness of singularities, II 3913

2.2 Kollár components

We first recall some definitions related to klt singularities and Kollár components.

Definition 2.1 [23, Definition 2.34] We say a pair .X; �/ is klt if KX C� is R–Cartier, and for any
prime divisor F over X we have AX ;�.F / > 0. We say x 2 .X; �/ is a klt singularity if .X; �/ is klt.

Definition 2.2 [36] Let x 2 .X; �/ be a klt singularity and let E be a prime divisor over X . If there
exists a proper birational morphism � W Y !X such that E D ��1.x/ is the unique exceptional divisor,
.Y;EC�Y / is plt and �.KY C�Y CE/ is �–ample, we call E a Kollár component over x 2 .X; �/

and � W Y !X the plt blowup of E.

By adjunction, we may write
.KY C�Y CE/jE DKE C�E

for some effective divisor �E D DiffE.�Y / (called the different) on E, and .E; �E/ is a klt log Fano
pair.

Definition 2.3 [42] Let x 2 .X; �/ be a klt singularity. The minimal log discrepancy of Kollár
components, denoted by mldK.x;X; �/, is the infimum of the log discrepancies AX ;�.E/ as E varies
among all Kollár components over x 2 .X; �/.

If x 2 .X; �/ is a klt singularity, then we can write � D
Pr

iD1 ai�i as a convex combination of Q–
divisors �i such that each .X; �i/ is klt. Let r > 0 be an integer such that r.KX C�i/ is Cartier for
all i . Then as AX ;�.F /D

Pr
iD1 aiAX ;�i

.F /, the possible values of log discrepancies AX ;�.F / belong
to the discrete set �

1

r

rX
iD1

aimi

ˇ̌̌
mi 2N

�
:

This implies that the infimum in the above definition is also a minimum.

The following result will be useful later. Recall that the log canonical threshold lct.X; �ID/ of an
effective R–Cartier divisor D with respect to a klt pair .X; �/ is the largest number t � 0 such that
.X; �C tD/ is klt, and the ˛–invariant of a log Fano pair .X; �/ is defined as the infimum of the
log canonical thresholds lct.X; �ID/, where 0 � D �R �.KX C�/. The log canonical threshold
lctx.X; �ID/ at a closed point x 2X is defined analogously.

Lemma 2.4 Let E be a Kollár component over a klt singularity x 2 .X; �/. Then for any effective
R–Cartier divisor D on X , we have

lctx.X; �ID/�minf1; ˛.E; �E/g �
AX ;�.E/

ordE.D/
:

Geometry & Topology, Volume 28 (2024)



3914 Ziquan Zhuang

Proof Let ˛ D minf1; ˛.E; �E/g, let t D AX ;�.E/=ordE.D/ and let � W Y ! X be the plt blowup
of E. Then we have

��.KX C�C tD/DKY C�Y C tDY CE;

which gives tDY jE �R �.KY C�Y CE/jE �R �.KE C�E/. By the definition of alpha invariants,
the pair .E; �EC˛tDY jE/ is log canonical, hence by inversion of adjunction [23, Theorem 5.50] we
know that .Y; �Y C˛tDY CE/ is lc around E. As ˛ � 1, we also have

��.KX C�C˛tD/DKY C�E C˛tDY C sE

for some s � 1, thus by the above discussion we deduce that .Y; �Y C˛tDY C sE/ is sub-lc around E,
and hence .X; �C˛tD/ is lc at x. In other words, lctx.X; �ID/� ˛t , as desired.

2.3 Local volumes

We next briefly recall the definition of the local volumes of klt singularities [24]. Let x 2 .X; �/ be a klt
singularity and let nD dim X . The log discrepancy function

AX ;� W ValX ;x!R[fC1g

is defined as in [19] and [9, Theorem 3.1]. It generalizes the usual log discrepancies of divisors; in
particular, for divisorial valuations, i.e. valuations of the form � � ordF , where � > 0 and F is a divisor
over X , we have

AX ;�.� � ordF /D � �AX ;�.F /:

We denote by Val�X ;x the set of valuations v 2 ValX with center x and AX ;�.v/ <C1. The volume of a
valuation v 2 ValX ;x is defined as

vol.v/D volX ;x.v/D lim sup
m!1

`.OX ;x=am.v//

mn=n!
:

Definition 2.5 Let x 2 .X; �/ be an n–dimensional klt singularity. For any v 2 Val�X ;x , we define the
normalized volume of v as cvolX ;�.v/ WDAX ;�.v/

n
� volX ;x.v/:

The local volume of x 2 .X; �/ is defined ascvol.x;X; �/ WD inf
v2Val�

X;x

cvolX ;�.v/:

By [24, Theorem 1.2], the local volume of a klt singularity is always positive. We will frequently use the
following properties of local volumes.

Lemma 2.6 [30, Theorem 1.6] If x 2 .X; �/ is a klt singularity of dimension n, then cvol.x;X; �/� nn.

Lemma 2.7 [39, Corollary 1.4] Let x 2 .X; �/ be a klt singularity of dimension n and let D be a
Q–Cartier Weil divisor on X . Then the Cartier index of D is at most nn=cvol.x;X; �/.

Geometry & Topology, Volume 28 (2024)



Boundedness of singularities, II 3915

2.4 Log Fano cone singularities

In this subsection we recall the definition of log Fano cone singularities and their K–semistability. These
notions originally appear in the study of Sasaki–Einstein metrics [10; 11] and are further explored in
works related to the Stable Degeneration Conjecture [27; 26].

Definition 2.8 Let X D Spec.R/ be a normal affine variety and T DGr
m (r > 0) an algebraic torus. We

say that a T–action on X is good if it is effective and there is a unique closed point x 2 X that is in
the orbit closure of any T–orbit. We call x the vertex of the T–variety X , and call the corresponding
singularity x 2X a T–singularity.

Let N WD N.T /D Hom.Gm;T / be the co-weight lattice and M D N � the weight lattice. We have a
weight decomposition

RD
M
˛2M

R˛;

and the action being good implies that R0D k and every R˛ is finite-dimensional. For f 2R, we denote
by f˛ the corresponding component in the above weight decomposition.

Definition 2.9 A Reeb vector on X is a vector � 2 NR such that h�; ˛i > 0 for all 0 ¤ ˛ 2M with
R˛ ¤ 0. The set tCR of Reeb vectors is called the Reeb cone.

For any � 2 tCR , we can define a valuation wt� , called a toric valuation, by setting

wt�.f / WDminfh�; ˛i j ˛ 2M; f˛ ¤ 0g;

where f 2R. It is not hard to verify that wt� 2 ValX ;x .

Definition 2.10 A log Fano cone singularity is a klt singularity that admits a nontrivial good torus action.
A polarized log Fano cone singularity x 2 .X; �I �/ consists of a log Fano cone singularity x 2 .X; �/

together with a Reeb vector �, called a polarization.

By abuse of convention, a good T–action on a klt singularity x 2 .X; �/ means a good T–action on X

such that x is the vertex and � is T–invariant. Using terminology from Sasakian geometry, we say a
polarized log Fano cone x 2 .X; �I �/ is quasiregular if � generates a Gm–action (i.e. � is a real multiple
of some element of N ); otherwise, we say that x 2 .X; �I �/ is irregular.

We will often use the following result to perturb an irregular polarization to a quasiregular one.

Lemma 2.11 The function � 7!cvolX ;�.wt�/ defined on the Reeb cone is continuous and has a minimum.

Proof This follows from [27, Theorem 2.15(3) and Proposition 2.39].

Geometry & Topology, Volume 28 (2024)



3916 Ziquan Zhuang

Definition 2.12 We say a polarized log Fano cone singularity x 2 .X; �I �/ is K–semistable if

cvol.x;X; �/DcvolX ;�.wt�/:

This definition differs from the original ones from [10; 11], but they are equivalent by [27, Theorem 2.34].
For our purpose, the above definition is more convenient. Since the minimizer of the normalized volume
function is unique up to rescaling [39], the polarization � is essentially determined by the K–semistability
condition and hence we often omit the polarization and simply say x 2 .X; �/ is K–semistable.

Definition 2.13 The volume ratio of a polarized log Fano cone singularity x 2 .X; �I �/ is defined to be

‚.X; �I �/ WD
cvol.x;X; �/cvolX ;�.wt�/

:

The volume ratio of a log Fano cone singularity x 2 .X; �/ is defined to be

‚.x;X; �/ WD sup
�

‚.X; �I �/;

where the supremum runs over all polarizations on X .

By definition, 0<‚.X; �I �/� 1 and ‚.X; �I �/D 1 if and only if x 2 .X; �I �/ is K–semistable. By
Lemma 2.11, a similar statement holds in the unpolarized case.

2.5 Bounded family of singularities

In this subsection we define boundedness of singularities and recall some properties of singularity
invariants in bounded families. They will be useful in proving the easier direction of Theorem 1.2.

Definition 2.14 We call B � .X;D/!B an R–Gorenstein family of klt singularities (over a normal but
possibly disconnected base B) if

(1) X is flat over B, and B � X is a section of the projection,

(2) for any closed point b 2 B, Xb is connected, normal and is not contained in Supp.D/, and

(3) KX=BCD is R–Cartier and b 2 .Xb;Db/ is a klt singularity for any b 2 B.

Lemma 2.15 Let B � .X;D/! B be an R–Gorenstein family of klt singularities. Then there exist
constants ";A> 0 such that

cvol.b;Xb;Db/� " and mldK.b;Xb;Db/�A

for all closed points b 2 B.

Geometry & Topology, Volume 28 (2024)



Boundedness of singularities, II 3917

Proof The uniform lower bound of the local volumes follows from their lower semicontinuity [6] in
families together with Noetherian induction. Note that although the main result of [7] is stated for families
with Q–coefficients, it remains valid for real coefficients. This is because there exist Q–divisors D0 �D

such that KX=B C D0 is Q–Cartier and the coefficients of D � D0 are arbitrarily small; in particular,cvol.b;Xb;Db/�cvol.b;Xb;D
0
b
/ and their difference can be made arbitrarily small for any fixed b 2 B.

Thus the lower semicontinuity of cvol.b;Xb;Db/ in b 2 B follows from the lower semicontinuity ofcvol.b;Xb;D
0
b
/. Alternatively, the local volume lower bound follows from the constructibility of the

volume function [37, Theorem 1.3], which also holds for families with real coefficients by the discussions
in Theorem 2.19.

The uniform upper bound of mldK is a direct consequence of [16, Theorem 2.34]: after a (quasifinite
and surjective) base change, the family admits a flat family of Kollár components (in the sense of
[16, Definition 2.32]), whose log discrepancy is locally constant and hence uniformly bounded.

We next define the boundedness of log Fano cone singularities. Note that our definition is a priori stronger
than their boundedness as klt singularities (it is not clear to us whether they are equivalent).

Definition 2.16 We say that a set S of polarized log Fano cone singularities is bounded if there exist
finitely many R–Gorenstein families Bi � .Xi ;Di/! Bi of klt singularities, each with a fiberwise good
Ti–action for some nontrivial algebraic torus Ti , such that every x 2 .X; �I �/ in S is isomorphic to
b 2 .Xi;b;Di;bI �b/ for some i , some b 2Bi and some �b 2N.Ti/R. We say S is log bounded if we only
ask x 2 .X I �/ to be isomorphic to b 2 .Xi;bI �b/ and that Supp.�/� Supp.Di;b/ under this isomorphism.

We say that a set C of log Fano cone singularities is bounded if it is the underlying set of singularities
from a bounded set of polarized log Fano cone singularities.

Lemma 2.17 Let C be a bounded set of log Fano cone singularities. Then there exists some constant
� > 0 such that ‚.x;X; �/� � for all x 2 .X; �/ in C.

Proof By definition, it suffices to show that for any R–Gorenstein family of log Fano cone singularities
B � .X;D/! B with a fiberwise good torus T–action, we have a uniform positive lower bound of
‚.b;Xb;Db/. We may assume that B is connected. Replacing X by T–invariant affine subset, we may
also assume that XD Spec.R/ is affine. We have a weight decomposition RD

L
˛2M R˛ , which reduces

to the weight decomposition on the fibers. By flatness of X! B, each R˛ is flat over B. It follows that
the Reeb cone tCR;b �NR is locally constant in b 2 B, hence is constant as B is connected. Choose any
primitive � 2N that lies in the (constant) Reeb cone. It suffices to show that ‚.b;Xb;DbI �/ is uniformly
bounded from below. Since the T–action is good, the R˛ are also finite over B, hence locally free by
flatness. From the definition of volume, this easily implies that vol.wt�/ is constant as b 2B varies. Since
� 2N comes from a Gm–action, there is a divisor E over X such that ordE D wt� as valuations over X

and hence AXb;Db
.wt�/DAXb;Db

.ordEb
/DAX;D.E/ for general b 2 B. By Noetherian induction, this

Geometry & Topology, Volume 28 (2024)



3918 Ziquan Zhuang

implies that AXb;Db
.wt�/ is constructible in b 2 B and thus uniformly bounded from above. Finally, by

Lemma 2.15 we know that cvol.b;Xb;Db/� " for some constant " > 0. Putting these together we deduce
from the definition that ‚.b;Xb;DbI �/ is uniformly bounded from below.

2.6 Real coefficients

The following result will help us reduce many questions about pairs with real coefficients to ones with
rational coefficients. We will often use it without explicit mention when we refer to results that are
originally stated for Q–coefficients.

Lemma 2.18 Let n 2 N and let I � Œ0; 1� be a finite set. Then there exists a finite set I 0 � Œ0; 1�\Q

depending only on n and I such that the following holds.

For any n–dimensional klt singularity x 2 .X; �/ with coefficients in I , there exists some effective
Q–divisor �0 � � on X , with coefficients in I 0, such that Supp.�/ D Supp.�0/, x 2 .X; �0/ is klt ,cvol.x;X; �0/ � 2�ncvol.x;X; �/ and mldK.x;X; �0/ � 2 �mldK.x;X; �/. If in addition x 2 .X; �I �/

is a log Fano cone singularity, then ‚.x;X; �0I �/� 4�n‚.x;X; �I �/.

Proof This is essentially a consequence of [15, Theorem 5.6]. Without loss of generality we may assume
12 I . Write I Dfa1; : : : ; amg and let aD .a1; : : : ; am/2Rm. Let V �Rm be the rational envelope of a,
i.e. the smallest affine subspace defined over Q that contains a. By [15, Theorem 5.6], there exists an open
neighborhood U of a 2 V depending only on n and I such that for any n–dimensional singularity x 2X

and any Weil divisors �1; : : : ; �m� 0, if x 2
�
X;
Pm

iD1 ai�i

�
is klt (resp. plt) then x 2

�
X;
Pm

iD1 a0i�i

�
is klt (resp. plt) for any a0 D .a0

1
; : : : ; a0m/ 2 U. Note that the plt case implies that if E is a Kollár

component over x 2
�
X;
Pm

iD1 ai�i

�
then it is also a Kollár component over x 2

�
X;
Pm

iD1 a0i�i

�
.

Choose some a0D .a0
1
; : : : ; a0m/2U \Qm such that 2a0�a; 2a�a0 2U. We claim that I 0Dfa0

1
; : : : ; a0mg

satisfies the required conditions. Indeed, for any n–dimensional klt singularity x 2
�
X; �D

Pm
iD1 ai�i

�
(where the �i are Weil divisors), if we set �0 D

Pm
iD1 a0i�i and let �1 D 2�0 � �, then by our

choice of U and a0 we know that Supp.�0/ D Supp.�/, x 2 .X; �0/ and x 2 .X; �1/ are both klt,
and any Kollár component over x 2 .X; �/ is also a Kollár component over x 2 .X; �0/. Moreover,
since �0 D 1

2
.�C�1/, we have AX ;�0.v/D

1
2
.AX ;�.v/CAX ;�1

.v// � 1
2
AX ;�.v/ for any valuation

v 2 Val�X ;x . Similarly, using 2a � a0 2 U we get AX ;�0.v/ � 2AX ;�.v/. In particular, we see that
2�ncvolX ;�.v/�cvolX ;�0.v/� 2ncvolX ;�.v/. These imply the inequalities about cvol, mldK and the volume
ratio (all by definition).

We also note the Stable Degeneration Conjecture holds for pairs with real coefficients.

Theorem 2.19 [4; 27; 37; 39; 40] Every klt singularity x 2 .X; �/ has a special degeneration to a
K–semistable log Fano cone singularity x0 2 .X0; �0/ with cvol.x;X; �/Dcvol.x0;X0; �0/
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Proof The arguments in [4; 27; 39; 40] extend directly to real coefficients, since they are not sensitive
to the coefficients. The proof in [37] uses the existence of monotonic N –complement which requires
Q–coefficients, but the main results in loc. cit. can be extended to R–coefficients by [16, Theorems 3.3
and 3.4]. Thus [40, Theorem 1.2] holds for R–pairs. In particular, the minimizer v of the normalized
volume function cvolX ;� induces a special degeneration of x 2 .X D Spec.R/;�/ to a K–semistable log
Fano cone x0 2 .X0 D Spec.grvR/;�0I �v/. By [27, Lemma 2.58], we havecvolX ;�.v/DcvolX0;�0

.wt�v
/:

Since cvol.x;X; �/DcvolX ;�.v/ (as v is the minimizer of cvolX ;�) and cvol.x0;X0; �0/DcvolX0;�0
.wt�v

/

(as x0 2 .X0; �0I �v/ is K–semistable), we see that the degeneration preserves the local volume.

2.7 Results from Part I

In this subsection we collect slight modification of several results from [42] that we need in later proofs.
For the first result, recall that we say a singularity x 2 .X; �/ is of klt type if there exists some effective
R–divisor D on X such that x 2 .X; �CD/ is klt.

Lemma 2.20 Let n 2N and let " > 0. Then there exists some constant c D c.n; "/ > 0 such that for any
n–dimensional klt singularity x 2 .X; �/ with cvol.x;X; �/ � ", we have that x 2 .X; .1C c/�/ is of
klt type.

Proof Since x 2 .X; �/ is klt, by [3] (cf. [42, Lemma 4.7]) there exists a small birational morphism
� W Y ! X such that KY is Q–Cartier and relatively ample. Since � is small, we have KY C�Y D

��.KX C�/, hence by [30, Lemma 2.9(2)] (cf. the proof of [42, Lemma 2.10]) we havecvol.y;Y; �Y /�cvol.x;X; �/� "

for all y 2 ��1.x/. By [42, Theorem 3.1], there exists some constant c D c.n; "/ > 0 such that the pair
.Y; .1C c/�Y / is klt for all y 2 ��1.x/. Note that �.KY C .1C c/�Y / �Q;� cKY , hence � is also
the ample model of �.KX C .1C c/�/. By [41, Lemma 2.4], this implies that x 2 .X; .1C c/�/ is of
klt type.

The second result is extracted from the proof of [42, Theorem 4.1].

Lemma 2.21 Let n2N, let ";A> 0, and let I � Œ0; 1�\Q be a finite set. Then there exists some integer
N DN.n; ";A; I/ > 0 such that for any n–dimensional klt singularity x 2 .X; �/ with coefficients in I

and cvol.x;X; �/ � ", and for any Kollár component E over x 2 .X; �/ with AX ;�.E/ � A, we have
that NE and N.KY C�Y CE/ are Cartier on the plt blowup Y !X of E.

Proof By [42, (4.1)], the local volumes cvol.y;Y; �Y / (where y 2E) are bounded from below by some
constants that only rely on the given constants n, " and A. Thus by Lemma 2.7 we get the desired Cartier
index bound.
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3 Boundedness

In this section, we prove the following statement on boundedness of log Fano cone singularities, which
will imply the main results of this paper.

Theorem 3.1 Let n2N and let I � Œ0; 1� be a finite set. Let "; �;A>0. Let S be the set of n–dimensional
polarized log Fano cone singularities x 2 .X; �I �/ with coefficients in I such thatcvol.x;X; �/� "; ‚.X; �I �/� �; mldK.x;X; �/�A:

Then S is bounded.

Recall that ‚.X; �I �/ is the volume ratio of the log Fano cone singularity (Definition 2.13). We refer to
Sections 2.2–2.5 for the other relevant definitions.

3.1 Orbifold cones

Since the volume ratio is continuous in the Reeb vector � (Lemma 2.11), by perturbing the polarization, we
see that it suffices to prove Theorem 3.1 when S consists of quasiregular log Fano cones. Every quasiregular
log Fano cone singularity has a natural affine orbifold cone structure induced by the polarization. The
proof of Theorem 3.1 relies on the associated projective orbifold cone construction. In this subsection,
we first fix some notation and recall some basic properties of orbifold cones from [20].

Definition 3.2 Let V be a normal projective variety. Let L be an ample Q–Cartier Q–divisor on V.

(1) The affine orbifold cone Ca.V;L/ is defined as

Ca.V;L/ WD Spec
1M

mD0

H 0.V;OV .bmLc//:

(2) The projective orbifold cone Cp.V;L/ is defined as

Cp.V;L/ WD Proj
1M

mD0

1M
iD0

H 0.V;OV .bmLc/ � si ;

where the grading of H 0.V;OV .bmLc// and s are m and 1, respectively.

For ease of notation, denote X D Ca.V;L/, X D Cp.V;L/ and let x 2X be the vertex of the orbifold
cone. On the projective orbifold cone, we also denote by V1 the divisor at infinity, i.e. the divisor
corresponding to .s D 0/. We have X ŠX nV1. Note that X n fxg is a Seifert Gm–bundle over V (in
the sense of [20]). Thus for any effective R–divisor �V on V, we can define the affine (resp. projective)
orbifold cone over the polarized pair .V; �V IL/ as the pair .X; �/ (resp. .X ; x�/), where � (resp. x�)
is the closure of the pullback of �V to X n fxg (since the projection X n fxg ! V is equidimensional,
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the pullback of a Weil divisor is well-defined). Every quasiregular polarized log Fano cone singularity
x 2 .X; �I �/ arises in this way, so we can talk about its associated projective orbifold cone .X ; x�/.

Alternatively, the Seifert Gm–bundle X n fxg can be compactified by adding V1 and the missing zero
section V0; the resulting space Y is also the orbifold blowup of X at x. Similarly, let Y be the orbifold
blowup of X at x, i.e. Y D Y nV1. Write the fractional part of L as fLg D

Pk
iD1.ai=bi/Di for some

prime divisors Di on V and 0 < ai < bi coprime integers. We denote �L WD
Pk

iD1..bi � 1/=bi/Di .
Then the pairs .V0;DiffV0

.0// and .V1;DiffV1.0// obtained by taking adjunction over some big open
set of V from the pair .X ;V0CV1/ are both isomorphic to .V; �L/ (this is a local computation; see
[20, Section 4]).

With this notation, we have the following well-known result [20] (cf. [21, Section 3.1] for analogous
statement for usual cones).

Lemma 3.3 The following conditions are equivalent :

(1) x 2 .X; �/ is klt ;

(2) .X ; x�CV1/ is plt ;

(3) .V; �V C�L/ is a log Fano pair , and �.KV C�V C�L/�R rL for some r > 0.

Moreover , when the above conditions are satisfied , we have KX C
x��R �.1Cr/V1 and AX ;�.V0/D r .

The next result is a key observation in the proof of Theorem 3.1. It expresses the normalized volume of a
polarized log Fano cone singularities as the global volume of the associated projective orbifold cone.

Lemma 3.4 Assume that x 2 .X; �/ is klt. Then under the notation of Lemma 3.3 we havecvolX ;�.ordV0
/D vol.�.KX C

x�CV1//D r � vol.�.KV C�V C�L//:

Proof This follows from a direct calculation. First we have AX ;�.V0/D r by Lemma 3.3. We also have
�V0jV0

ŠL, hencecvolX ;�.ordV0
/DAX ;�.V0/

n
� volX ;�.ordV0

/D rnvol.�V0jV0
/D rnLn�1;

where nD dim X . On the other hand, by Lemma 3.3 we get �.KX C
x�CV1/ �R rV1; recall also

that �.KX C
x�CV1/jV1 �R �.KV C�V C�L/�Q rL (where we identify V1 with V ), thus

vol
�
�.KX C

x�CV1/
�
D
�
�.KX C

x�CV1/
�n�1
� .rV1/

D r � vol.�.KV C�V C�L//D r � .rL/n�1
D rnLn�1;

which proves the desired equality.

We also need a slight generalization of Lemma 3.3.
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Lemma 3.5 Notation as before. Assume that x 2 .X; �/ is of klt type. Then �.KV C�V C�L/ is big.

Proof By assumption, there exists some effective R–divisor D such that x 2 .X; �CD/ is klt (note
that D is not necessarily invariant under the Gm–action). In particular, AX ;�CD.V0/ > 0 and we have

KY C�Y CDY CV0 �R AX ;�CD.V0/ �V0

over X . It follows that �.KY C�Y CDY CV0/jV0
�R AX ;�CD.V0/ �L is ample. By adjunction, this

implies that
�.KV C�V C�L/D�.KY C�Y CDY CV0/jV0

CDY jV0

is the sum of an ample divisor and an effective divisor, hence is big.

3.2 Effective birationality

Given Lemma 3.4, a naïve idea to prove Theorem 3.1 is to associate to each log Fano cone singularity a
projective orbifold cone and show that the corresponding set of projective orbifold cones is bounded. In
general, this is too much to hope for, as the projective orbifold cone depends on the (auxiliary) choice of
a quasiregular polarization. The following example shows that even for a fixed singularity we can get an
unbounded family of projective orbifold cones by choosing different polarizations.

Example 3.6 Let a1; : : : ; an 2N be pairwise coprime positive integers. Then � D .a1; : : : ; an/ 2Nn

gives a polarization of the Fano cone singularity 0 2 An; it generates the Gm–action with weights
a1; : : : ; an on the coordinates. This endows An with an affine orbifold cone structure Ca.V;L/, where
V D P .a1; : : : ; an/ and LD OV .1/. The associated projective orbifold cone is X D P .1; a1; : : : ; an/,
which is clearly unbounded as the weights ai vary. By choosing appropriate weights, we can even ensure
that the normalized volume cvol.wt�/D .a1C � � �C an/

n=.a1 � � � an/ is fixed.

Nonetheless, we observe that in the above example the projective orbifold cones we get satisfy the
following interesting property: the linear system j�KX j always defines a birational map that is an
embedding at the vertex Œ1 W 0 W � � � W 0�. In fact, if Œs W x1 W � � � W xn� are the weighted homogeneous
coordinates of X , then for every i 2 f1; : : : ; ng there exists some ki 2N such that ski xi 2H 0.�KX /

(this is possible because s has weight 1); it is not hard to see that the sublinear system spanned by ski xi

for i D 0; : : : ; n is basepoint-free and restricts to an embedding on the affine chart An DX n .s D 0/.

This motivates us to raise the following question.

Question 3.7 Let n 2 N and " > 0. Let I � Œ0; 1� \Q be a finite set. Is there some integer m D

m.n; "; I/ > 0 such that for any n–dimensional quasiregular polarized log Fano cone x 2 .X; �I �/

with cvol.x;X; �/� ", we have that j�m.KX C
x�CV1/j defines a birational map that restricts to an

embedding on X ?
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As before, .X ; x�/ denotes the associated projective orbifold cone, and V1 D X nX is the divisor at
infinity.

The technical core of the proof of Theorem 3.1 is the answer to this question after imposing upper bounds
on the minimal log discrepancies of Kollár components.

Proposition 3.8 Let n 2N and ";A > 0. Let I � Œ0; 1�\Q be a finite set. Then there is some integer
mDm.n; ";A; I/> 0 such that for any n–dimensional quasiregular polarized log Fano cone x 2 .X; �I �/

with cvol.x;X; �/� " and mldK.x;X; �/�A, we have that j�m.KX C
x�CV1/j defines a birational

map that restricts to an embedding on X .

We remark that the integer m is independent of the polarization � .

Proof We start with some reductions. Let H WD�.KX C
x�CV1/. We view X as an affine orbifold cone

Ca.V;L/ and keep the notation (�V ; �L, etc.) from Section 3.1. First note that since the coefficients of
x� belong to a fixed finite set I of rational numbers, we can choose some m0 depending only on I such
that m0H has integer coefficients. Since cvol.x;X; �/� ", by Lemma 2.7 we know that the Cartier index
of m0H at x is bounded from above by nn=". Thus replacing m0 by a sufficiently large fixed multiple
(e.g. bnn="c!) we may further assume that m0H is Cartier in a neighborhood of x. By Gm–translation,
this implies that m0H is Cartier on X .

The next step is to produce enough sections (of some multiple of m0H ) that do not vanish at x. We do
this by creating isolated non-klt centers at x and apply Nadel vanishing. Let ' W Y !X be the orbifold
blowup of the vertex x, and let �Y be the strict transform of x�. Let V0 be the exceptional divisor as
before. Recall that Y has an orbifold P1–bundle structure � W Y ! V. Then we have

�.KY C�Y CV0CV1/�Q ��
�.KV C�V C�L/:

(See [20, Proposition 40 and Corollary 41].) The left-hand side is�Q'
�H�aV0, where aDAX ;�.V0/>0,

while the right-hand side is semiample since �.KV C�V C�L/ is ample on V by Lemma 3.3. From
here we deduce that '�H � aV0 is semiample. For any positive integer m, if we take D to be a general
member of the Q–linear system '�j'

�H � aV0jQ, then D �Q H and .X ; x�CmD/ is klt away from x

(since this is the only basepoint of the Q–linear system). In particular, the multiplier ideal J.X ; x�CmD/

is co-supported at x. Furthermore, we have

ordV0
J.X ; x�CmD/ >m � ordV0

.D/�AX ;x�.V0/D .m� 1/a

by the definition of multiplier ideals. Thus we obtain

(3-1) J.X ; x�CmD/� a.m�1/a;

where a.m�1/a WD a.m�1/a.ordV0
/ denotes the valuation ideals. Recall that m0H is Cartier at x, hence as

mH � .KX C
x�CmD/�Q �.KX C

x�/
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is ample, by the following Lemma 3.9 (Nadel vanishing for Weil divisor), we have

H 1.X ;J.X ; x�CmD/˝OX .mH //D 0

for all m 2N that are divisible by m0. From the long exact sequence we then deduce that the natural map

H 0.X ;OX .mH //!H 0.X ;OX =J.X ; x�CmD//

is surjective. Combined with (3-1), we get a surjection

(3-2) H 0.X ;OX .mH //!H 0.X ;OX =a.m�1/a/

for all m 2N that are divisible by m0.

At this point, we have produced sections of mH that separate the jets in OX =a.m�1/a. Our goal is to
make jmH j into a birational map that restricts to an embedding on X . Clearly, a necessary condition is
that jmH j separates tangent directions at x. Let us first show that this latter condition can be achieved. In
view of (3-2), it suffices to show that

(3-3) a.m�1/a �m2
x;

which becomes a local question. If X is fixed, this is certainly true for m� 0, so the main point is to
make sure that the bound on m depends only on the given data n; ";A rather than on X . To this end, note
that one way to interpret the opposite condition a.m�1/a 6� m2

x is that there exists some f 2 mx nm
2
x

such that ordV0
.f /� .m� 1/a; in particular, lct.f / WD lct.X; �I .f D 0//� 1=.m� 1/. This suggests

to us that we should try to analyze the Izumi type constant

(3-4) infflct.f / j f 2mx nm
2
xg

for the singularities in question.

Let E be a Kollár component over x 2 .X; �/ such that AX ;�.E/�A, whose existence is guaranteed
by our assumption that mldK.x;X; �/ � A. Let f W Z ! X be the plt blowup that extract E and let
�E D DiffE.�Z / be the different. By Lemma 2.4, we have

(3-5) lct.f /�minf1; ˛.E; �E/g �
AX ;�.E/

ordE.f /
:

In order to give a uniform estimate of (3-4) using (3-5), we need further information about the log
discrepancy AX ;�.E/, the ˛–invariant ˛.E; �E/, and the value of

dE WD supfordE.f / j f 2mx nm
2
xg:

(This last value can be thought of as measuring how well the valuation ideals of ordE approximate the
first two powers of the maximal ideal mx .)

For the log discrepancy, recall from the previous discussion that m0.KX C�/ is Cartier. Since .X; �/ is
klt, this implies that AX ;�.E/� 1=m0. For the ˛–invariant, we know by Lemma 2.21 that there exists

Geometry & Topology, Volume 28 (2024)



Boundedness of singularities, II 3925

some positive integer N1 D N1.n; ";A; I/ divisible by m0 such that N1E and N1.KZ C�Z CE/

are Cartier. By adjunction, we see that N1.KE C�E/ is also Cartier. By [14, Corollary 1.8], the log
Fano pair .E; �E/ belongs to a bounded family (which relies only on N1). This implies that ˛.E; �E/

is uniformly bounded below. Finally, to give an upper bound for dE , let L D �EjE be the (ample)
Q–divisor defined as in [15, Definition A.4] and let

bk WD ak.ordE/D f�OZ .�kE/;

where k D 1; 2; : : : . Then N1L is Cartier as N1E is Cartier. Since �.KEC�E/�Q AX ;�.E/ �L and
AX ;�.E/� 1=m0, we see that the coefficient and degree of L are bounded, hence the triple .E; �;L/
belongs to a bounded family. Thus there exists an integer N DN.n; ";A; I/ > 0 such that the section
ring

L
k2N H 0.E; bkLc/ is generated in degree �N . We claim that

(3-6) bNC1 �m2
x :

Taking this for granted, it follows immediately that dE �N . Putting this information together we deduce
from (3-5) that (3-4) is bounded below by some positive constant that only relies on n; ";A; I . From the
discussion right above (3-4) we also know that (3-4) is bounded from above by 1=.m� 1/, where m is
the largest integer such that a.m�1/a 6�m2

x . Thus we see that there is some fixed m depending only on
n; ";A; I such that mH is Cartier and (3-3) holds. Combined with (3-2), we deduce that

(3-7) H 0.X ;OX .mH //!H 0.X ;OX =m
2
x/

is surjective, i.e. jmH j separates tangent directions at x.

Before we proceed to show that jmH j also defines a birational map, let us finish the proof of the
claim (3-6). In fact, we shall prove by descending induction that bk � m2

x for all k � N C 1. This
is clear when k � 0. Suppose that bkC1 � m2

x and k � N C 1, then since bkC1 � bk for all k and
since

L
k2N bk=bkC1 Š

L
k2N H 0.E; bkLc/ is generated in degree � N (see [28, Section 2.4] or

[32, Proposition 2.10] for a proof of the isomorphism bk=bkC1 ŠH 0.E; bkLc/), we see that

bk=bkC1 �

NX
iD1

.bi=biC1/ � .bk�i=bk�iC1/� b2
1=bkC1:

In other words, bk � bkC1Cb2
1
. As bkC1 �m2

x by induction hypothesis and clearly b1 �mx , we obtain
bk �m2

x , as desired.

We are finally in a position to show that jmH j defines a birational map that restricts to an embedding
on X . By (3-7), we already know that in a neighborhood of x, the linear system jmH j is basepoint-free
and the induced map is unramified. Since the base locus of jmH j is closed and invariant under the
Gm–action (coming from the orbifold cone structure), we see that jmH j has no basepoint in X . Similarly,
as the ramification locus of the induced map ' on X is a closed Gm–invariant subset, we see that ' is
unramified on X and thus it is quasifinite. This implies that '.x0/¤ '.x/ for all x0 ¤ x 2X , otherwise

Geometry & Topology, Volume 28 (2024)



3926 Ziquan Zhuang

by Gm–translation we deduce that ' contracts the closed orbit Gm �x0. In particular, 'j�1
X
.'.x// is

supported at x; as ' is also unramified, the scheme-theoretic preimage 'j�1
X
.'.x// equals fxg. By upper

semicontinuity and the Gm–action, this implies that 'j�1
X
.'.x0// has length 1 and thus consists of a single

point for all x0 2X . It follows that 'jX is an embedding on X and we finish the proof.

We have used the following vanishing result in the above proof. This should be well-known to experts,
but we are unable to find a suitable reference.

Lemma 3.9 Let .X; �/ be a pair such that KX C� is Q–Cartier. Let L be a Q–Cartier Weil divisor
such that L� .KX C�/ is nef and big. Assume that .X; �/ is klt along the non-Cartier locus of L. Then

H i.X;J.X; �/˝OX .L//D 0 for all i > 0:

Proof If L is a line bundle this is just the usual Nadel vanishing; in the general case we follow the proof
of Nadel vanishing. Let f W Y !X be a log resolution. We may write

KY C�Y D f
�.KX C�/C

X
aiEi and f �LD bf �LcC

X
biEi ;

where the Ei are the exceptional divisors, and 0� bi < 1. Let

L0 D bf �Lc� b�Y cC

X
dai C bieEi and D D f�Y gC

X
f�ai � bigEi :

Then it’s easy to check that .Y;D/ is klt (i.e. fDgD 0 since Y is a log resolution) and L0�.KY CD/�Q

f �.L�KX ��/ is nef and big. By Kawamata–Viehweg vanishing we have H i.Y;OY .L
0//D 0 and

Rif�OY .L
0/D 0 for all i > 0. It follows that Rf�OY .L

0/D f�OY .L
0/ and hence

H i.X; f�OY .L
0//DH i.X;Rf�OY .L

0//DH i.Y;OY .L
0//D 0:

It remains to show that

(3-8) f�OY .L
0/D J.X; �/˝OX .L/:

This is a local question, so it suffices to check the equality at any x 2X . If .X; �/ is klt at x, then locally
J.X; �/D OX , b�Y c D 0 and ai > �1, which implies dai C bie � 0. It follows that

f�OY .L
0/D OX .L/D J.X; �/˝OX .L/:

If .X; �/ is not klt at x, then L is Cartier around x, which gives bi D 0 for every Ei whose image
contains x, thus locally

f�OY .L
0/D f�OY .f

�LCd��Y C

X
aiEie/D J.X; �/˝OX .L/

by the projection formula and the definition of the multiplier ideal. Thus we see that (3-8) always holds.
This completes the proof.
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3.3 Proof of Theorem 3.1

We are now in a position to prove Theorem 3.1.

Proof First assume that I � Œ0; 1�\Q. Let x 2 .X; �I �/ be a polarized log Fano cone singularity in S

and let T be the torus generated by � . By Lemma 2.11, there exists some quasiregular polarization � 0 that
is sufficiently close to � in the Reeb cone such that ‚.X; �I � 0/� 1

2
� . Using � 0, we may realize .X; �/

as an orbifold cone over some polarized pair .V; �V IL/. Moreover, if V0 is the exceptional divisor
of the orbifold vertex blowup as in Section 3.1, then ordV0

is proportional to wt�0 . By assumption and
Lemma 2.6, we obtain

(3-9) cvolX ;�.ordV0
/DcvolX ;�.wt�0/� 2��1cvol.x;X; �/� 2��1nn:

Let .X ; x�/ be the projective orbifold cone over .V; �V IL/ and let V1 be the divisor at infinity. By
Proposition 3.8, there exists some integer m depending only on n; ";A; I such that j�m.KX C

x�CV1/j

defines a birational map ' that restricts to an embedding on X . By (3-9) and Lemma 3.4, we see that

vol.�m.KX C
x�CV1//Dmn

�cvolX ;�.ordV0
/� 2��1.mn/n

is bounded above.

Let us show that vol.�m.KX C
x�CV1/jx�/ is also bounded from above, so that the pair .X ; x�/ belongs

to a birationally bounded family. By Lemma 2.20, we know that x 2 .X; .1C c/�/ is of klt type for
some constant c D c.n; "/ > 0. By Lemma 3.5, this implies that �.KV C .1C c/�V C�L/ is big. By a
similar calculation as in Lemma 3.4, it follows that

vol.�.KX C
x�CV1/jx�/D

�
�.KX C

x�CV1/
�n�2
� rV1 � x�D r �

�
�.KV C�V C�L/

�n�2
��V

� c�1r �
�
�.KV C�V C�L/

�n�1
D c�1cvolX ;�.ordV0

/� 2.c�/�1nn;

where the first equality is by Lemma 3.3, the second by adjunction along V1 Š V, the next inequality by
the bigness of �.KV C .1C c/�V C�L/, and the last equality by Lemma 3.4. Thus

vol
�
�m.KX C

x�CV1/jx�
�

is also bounded from above, as desired. Note that 'jSupp.x�/ is also birational since ' is an embedding at x.
Therefore, the image .W; �W / of .X ; x�/ under the birational map induced by j�m.KX C

x�CV1/j

belongs to a fixed bounded family .W;D/! B.

By construction, .X ; x�/ carries an effective T–action and V1 is T–invariant. Thus j�m.KX C
x�CV1/j

is a T–invariant linear system and the induced birational map ' is T–equivariant. In particular, the image
.W; �W / also carries an effective T–action. We claim that there exist finitely many morphisms Bi ! B

(depending only on the family .W;D/! B) such that

(1) after base change, each family .Wi ;Di/ D .W;D/ �B Bi ! Bi admits an effective fiberwise
Ti–action for some torus Ti , and
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(2) .W; �W / Š .Wbi
;Dbi

/ for some bi 2 Bi , and under this isomorphism, the T–action on W is
induced by some group homomorphism T ! Ti (in other words, the T–action on W is induced
by the Ti–action on Wbi

).

To see this, first observe that for any torus action on a projective variety, the induced action on the Picard
scheme is trivial. This is because both Pic0 (an abelian variety) and Pic=Pic0 (a discrete group) have no Gm–
action. Thus if L is a relatively ample line bundle on W, then it is invariant under any fiberwise torus action.
Consider the relative automorphism group scheme G over B, which parametrizes the automorphisms of
the polarized fibers .Wb;DbILb/. Note that G is affine over B. Possibly after stratifying the base B,
we may also assume that G is smooth over B. By [12, Exposé XII, Théorème 1.7(a)], after a further
stratification of B, we may assume that the dimension of the maximal torus of Gb is locally constant in
b 2 B. We may discard the components of B where this torus dimension is zero. By [12, Exposé XII,
Théorèm 1.7(b)], it then follows that there exists an (étale) cover

S
Bi!B of the remaining components

of B and a subgroup scheme Gi �G�B Bi that reduces to the maximal tori on the fibers. Passing to a
further finite cover of the Bi , we may assume that the Gi are split, i.e. Gi D Ti �Bi for some torus Ti .
In particular, the G–action on .W;D/ induces a fiberwise Ti–action on .Wi ;Di/ WD .W;D/�B Bi . This
gives the family in (1). Since .W; �W / has a nontrivial torus action, we see that .W; �W / appears as a
fiber of .Wi ;Di/!Bi for some i . Since all maximal tori in Aut.W; �W / are conjugate to each other, we
see that T is conjugate to a subtorus of the maximal torus Ti . In other words, there exists an isomorphism
.W; �W /Š .Wbi

;Dbi
/ such that (2) holds. This proves the claim.

Taking the fiberwise isolated Ti–fixed points .Wi ;Di/!Bi for all i , we get families Bi � .Xi ;Di/!Bi

of singularities (possibly after a refinement of the Bi), each with an effective fiberwise torus Ti–action.
Since ' restricts to an embedding on X , by the second part of the above claim we see that x 2 .X; �I �/

is isomorphic to bi 2 .Wbi
;Dbi
I �bi

/ for some bi 2 Bi and some �bi
2N.Ti/R. In particular, this gives

log boundedness. Note that when I 6�Q, we can still apply the above argument to the singularities and
the coefficient set constructed from Lemma 2.18, thus the same conclusion holds.

To get boundedness, we need to further stratify the family .Wi ;Di/!Bi so it becomes R–Gorenstein klt.
By [22, Lemma 4.44] and inversion of adjunction, there exists a finite collection of locally closed subsets Sj

of
S

i Bi such that the family becomes R–Gorenstein after base change to
S

j Sj and enumerates exactly
all the klt fibers of

S
i.Wi ;Di/!

S
i Bi . (Note that [22, Lemma 4.44] requires the family to be proper

but the proof applies to our situation, essentially because the section Bi � Xi is proper over the base.)
Replacing the Bi by the Sj , we obtain the desired family. The proof is now complete.

3.4 Applications

We now explain how to deduce the other main results of this paper from Theorem 3.1. First we prove the
boundedness criterion for K–semistable log Fano cone singularities.
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Corollary 3.10 Let S be a set of n–dimensional K–semistable log Fano cone singularities with coef-
ficients in a fixed finite set I � Œ0; 1�. Then S is bounded if and only if there exist some ";A > 0 such
that cvol.x;X; �/� " and mldK.x;X; �/�A

for all x 2 .X; �/ in S.

Proof One direction follows from Lemma 2.15, while the other direction is implied by Theorem 3.1
as the volume ratio of a K–semistable log Fano cone singularity (with the K–semistable polarization) is
equal to 1.

Similarly, we have an unpolarized version of Theorem 3.1.

Corollary 3.11 Let S be a set of n–dimensional log Fano cone singularities with coefficients in a fixed
finite set I � Œ0; 1�. Then S is bounded if and only if there exist positive constants "; �;A> 0 such thatcvol.x;X; �/� "; ‚.x;X; �/� �; mldK.x;X; �/�A;

for all x 2 .X; �/ in S.

Proof One direction follows from Lemmas 2.15 and 2.17, while the other direction is immediate by
Theorem 3.1.

We next prove a version of Theorem 3.1 that replaces the volume ratios with the stability thresholds
introduced in [17]. First we recall the definition. Let x 2 .X D Spec.R/;�I �/ be a polarized log
Fano cone singularity and let T be the torus generated by �. For this definition it is more convenient to
rescale the polarization so that AX ;�.wt�/D 1, which we will assume in what follows. Using the weight
decomposition RD

L
˛ R˛, we set

Rm WD

M
˛;m�1<h˛;�i�m

R˛:

An m–basis type Q–divisor of x 2 .X D Spec.R/;�I �/ is defined to be a Q–divisor of the form

D D
1

mNm

NmX
iD1

fsi D 0g;

where Nm D dim Rm and s1; : : : ; sNm
form a basis of Rm. Set ım D infD lctx.X; �ID/, where the

infimum runs over all m–basis type Q–divisors D. The stability threshold of x 2 .X D Spec.R/;�I �/
is defined as

ı.X; �I �/ WD lim
m!1

ım:

If .X; �I �/ is the cone over a log Fano pair .V; �V /, then this definition is closely related to the stability
threshold of .V; �V / introduced in [13]; see also [5]. In fact, using inversion of adjunction it is not hard
to show that ı.X; �I �/Dminf1; ı.V; �V /g; cf. [39, Theorem 3.6].

The stability threshold version of Theorem 3.1 is a direct consequence of the following result.
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Lemma 3.12 Let x 2 .X D Spec.R/;�I �/ be a polarized log Fano cone singularity of dimension n.
Then

‚.X; �I �/� ı.X; �I �/n:

Proof Let ı WD ı.X; �I �/. We first recall the valuative interpretation of ı.X; �I �/ as explained in [17].
Fix some T–invariant valuation v 2 Val�X ;x . Set Sm.v/ WD supD v.D/, where D varies among m–basis
type Q–divisors. By an Okounkov body argument [17, Section 4], we know that S.v/ WD limm!1 Sm.v/

exists and, by [17, Theorem 4.3.5],

(3-10) AX ;�.v/� ı �S.v/:

We next relate S.v/ to the “relative” S–invariant S.wt� I v/ defined in [39, Section 3.1]. In our notation
(and under our assumption that AX ;�.wt�/D 1/, we have S.wt� I v/D limm!1 Sm.wt� I v/, where

Sm.wt� I v/ WD
Pm

kD0 kNkSk.v/Pm
kD0 kNk

:

Intuitively, the previous Sm.v/ is defined using basis type divisors for Rm while Sm.wt� I v/ is defined
via basis type divisors for

L
k�m Rk (the main reason for doing so in [39] is that in the more general

situation, the dimension of the analogous space
L

k�m Rk has an asymptotic expression, while the
individual Rm does not). Note that our Sm.wt� I v/ differs slightly from the one in [39, Section 3.1]
by some round-downs, but after taking the m!1 limit we get the same value of S.wt� I v/. Since
Sm.v/! S.v/ as m!1, from the above expression we get S.v/ D S.wt� I v/. From the proof of
[39, Theorem 3.7], especially the inequality after (3.8) in loc. cit., we then obtain

S.v/�

�
vol.wt�/
vol.v/

�1=n

:

Combined with (3-10) and recalling that AX ;�.wt�/D 1, we deducecvolX ;�.v/DAX ;�.v/
n
� vol.v/� ınS.v/n � vol.v/� ınvol.wt�/D ı

ncvolX ;�.wt�/

for all T–invariant valuation v 2 Val�X ;x . Since the local volume of x 2 .X; �/ is computed by some
T–invariant valuation (see [4] and [39, Corollary 1.2]), this implies that cvol.x;X; �/� ıncvolX ;�.wt�/
and hence ‚.X; �I �/� ın.

Remark 3.13 We also have an inequality in the reverse direction, namely, there exists some positive
constant c > 0, that only depends on the dimension, such that

(3-11) c � ı.X; �I �/�‚.X; �I �/:

To see this, let c D c�1
0

, where c0 is the constant from [42, Lemma 3.4], and let D be any m–basis type
Q–divisor of .X; �I �/. By definition we have wt�.D/� 1DAX ;�.wt�/, hence by loc. cit. we see that

lctx.X; �ID/� c0 �‚.X; �I �/;
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which gives (3-11). Note that the upper bound on the volume ratio is at least linear in the stability threshold,
as can be seen on the smooth toric singularities .X; �/D .An; 0/: if � D .a1; : : : ; an/ 2 t

C

R DRn
>0

and
a1� a2 D � � � D an, then we have that ‚.X; �I �/D nna1 � � � an=.a1C � � �C an/

n is roughly linear in
ı.X; �I �/D na1=.a1C � � �C an/.

Corollary 3.14 Let n 2 N and let I � Œ0; 1� be a finite set. Let "; ı;A > 0. Let S be the set of
n–dimensional polarized log Fano cone singularities x 2 .X; �I �/ with coefficients in I such thatcvol.x;X; �/� "; ı.X; �I �/� ı; mldK.x;X; �/�A:

Then S is bounded.

Proof This is a direct consequence of Theorem 3.1 and Lemma 3.12.

Finally we specialize our results to dimension three. For this we need the following result from [42].

Proposition 3.15 Let " > 0 and let I � Œ0; 1� be a finite set. Then there exists some constant ADA."; I/

such that
mldK.x;X; �/�A

for all 3–dimensional klt singularities x 2 .X; �/ with coefficients in I and cvol.x;X; �/� ".

Proof If I �Q this is [42, Corollary 6.11]; in general we apply Lemma 2.18 to reduce to the rational
coefficient case.

Corollary 3.16 For any finite set I � Œ0; 1� and any " > 0, the set of 3–dimensional K–semistable log
Fano cone singularities with coefficients in I and with local volume at least " is bounded.

Proof Immediate from Corollary 3.10 and Proposition 3.15.

The last application concerns the distribution of local volumes in dimension 3. For any n2N and I � Œ0; 1�,
consider the set Volloc

n;I of all possible local volumes of n–dimensional klt singularities x 2 .X; �/ with
coefficients in I .

Corollary 3.17 Let I � Œ0; 1� be a finite set. Then Volloc
3;I is discrete away from zero.

Proof By Theorem 2.19, it suffices to consider local volumes of K–semistable log Fano cone singularities.
Let ">0. By Corollary 3.16, the set of 3–dimensional K–semistable log Fano cone singularities x2 .X; �/

with coefficients in I and cvol.x;X; �/� " is bounded. On the other hand, the local volume function is
constructible in R–Gorenstein families by [37, Theorem 1.3]; see [16, Theorem 3.5] for the real coefficient
case. In particular, the local volumes only take finitely many possible values in a bounded family. This
implies Volloc

3;I \ Œ";C1/ is a finite set, and we are done.

Geometry & Topology, Volume 28 (2024)



3932 Ziquan Zhuang

Remark 3.18 By combining the ideas in this work with some generalization of the proof of [16,
Theorem 1.2(2)], one should be able to show that if the set I in Corollary 3.17 is not finite but satisfies
DCC (descending chain condition), then Volloc

3;I satisfies ACC (ascending chain condition). We leave the
details to the interested readers.
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