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Lee filtration structure of torus links

QIUYU REN

We determine the quantum filtration structure of the Lee homology of all torus links. In particular, this
determines the s–invariant of a torus link equipped with any orientation. In the special case T .n; n/, our
result confirms a conjecture of Pardon, as well as a conjecture of Manolescu, Marengon, Sarkar and Willis
which establishes an adjunction-type inequality of the s–invariant for cobordisms in kCP

2
. We also give

a few applications of this adjunction inequality.

57K18; 57K10, 57K40

1 Introduction

Khovanov homology is a link invariant introduced by Khovanov [2000], which categorifies the Jones
polynomial. Despite its computability for every given link diagram, few families of links have had their
Khovanov homology fully determined. Notable examples where the complete answer is known include
alternating links [Lee 2005] (more generally, quasialternating links [Manolescu and Ozsváth 2008]), and
the torus links T .2;m/ [Khovanov 2000] and T .3;m/ [Turner 2008; Stošić 2009; Gillam 2012; Benheddi
2017].

Specifically, in the case of positive torus links T .n;m/, although the Jones polynomials have a well-known
closed form, this is far from true for Khovanov homology. The investigation of the Khovanov homology
of torus links dates back at least to Stošić [2007; 2009], where he calculated, for example, some low
(h� 4) homological degree parts of Kh.T .n;m// and the highest (hD 2kn2) homological degree part of
Kh.T .2n; 2kn//. More interestingly, he showed the existence of the “stable Khovanov homology groups”
of T .n;m/ as m!1, which have since been extensively investigated; see for example [Gorsky et al.
2013]. It is also worth remarking that the Khovanov–Rozansky triply graded homology of T .n;m/ was
completely determined [Hogancamp and Mellit 2019]. However, a comprehensive understanding of the
ordinary Khovanov homology for torus links remains elusive.

Nevertheless, many useful knot or link invariants that are more computable and possess desirable properties
can be derived from Khovanov homology or its variants. A notable example is Rasmussen’s s–invariant
[2010] for knots, extracted from Lee homology [2005], whose values on torus knots were computed
and played a crucial role in providing the first gauge-theory-free proof of Milnor’s conjecture on the
slice genus of torus knots. In the case of links, the quantum filtration structure of the Lee homology can
be considered as a natural generalization of the s–invariant for knots, encompassing the generalization
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3936 Qiuyu Ren

proposed by Beliakova and Wehrli [2008] and Pardon [2012] as special cases. We completely determine
the quantum filtration structure of the Lee homology of all torus links.

For ease of exposition, we only state our result in terms of Beliakova and Wehrli’s s–invariant for
oriented links and Pardon’s invariants as the bigraded dimension of the associated graded vector space
of the Lee homology. The actual quantum filtration structure, ie the quantum filtration degree function
q W KhLee! Zt fC1g, will become apparent during the proof of Theorem 1.2.

In the statements below, let n and m be two positive integers, d D gcd.n;m/, n1 D n=d and m1 Dm=d .
For p; q � 0 with pC q D d , let T .n;m/p;q denote the torus link T .n;m/ equipped with an orientation
in which p of the components are oriented oppositely to the other q components.

Theorem 1.1 The s–invariant of T .n;m/p;q , over any coefficient field , is given by

s.T .n;m/p;q/D .n1jp� qj � 1/.m1jp� qj � 1/� 2 min.p; q/:

Here the s–invariant of an oriented link over any field of characteristic not equal to 2 is defined in the same
way as in [Beliakova and Wehrli 2008]. Over characteristic 2, one should use the Bar-Natan deformation
(see [Bar-Natan 2005]) of Khovanov homology instead of the Lee deformation.

By construction of the Khovanov/Lee complex, the Lee homology of T .n;m/p;q , as a homologically
graded and quantum filtered vector space, equals that of the positive torus link T .n;m/ WDT .n;m/d;0, up
to a bidegree shift. Thus we will only state the structure of KhLee.T .n;m//. By Lee [2005, Proposition 4.3],
KhLee.T .n;m// as a homologically graded vector space is determined by the linking matrix of T .n;m/.
Explicitly,

dim Kh2n1m1pq
Lee .T .n;m//D

(
2
�
d
q

�
p ¤ q;�

d
q

�
p D q;

for every pair of nonnegative integers .p; q/ with pC q D d , with other graded components being zero.
The following theorem determines (the isomorphism type of) its quantum filtration structure:

Theorem 1.2 The associated graded vector space of the Lee homology (over Q) of the positive torus
link T .n;m/ is determined by

dim gr.KhLee.T .n;m///
2n1m1pq;6n1m1pqCs.T .n;m/p;q/C2r�1

D

8̂̂̂<̂
ˆ̂:

dim.d � r; r/ r D 0 and p ¤ q;

dim.d � r; r/C dim.d � r C 1; r � 1/ 0< r <min.p; q/C 1 and p ¤ q;

dim.d � r C 1; r � 1/ r Dmin.p; q/C 1 and p ¤ q;

dim.d � r; r/ 0� r �min.p; q/ and p D q;

for every pair of nonnegative integers .p; q/ with pC q D d , with all other bigraded components being
zero. Here .a; b/ denotes the irreducible representation of the symmetric group SaCb given by the two-row
Young diagram .a; b/. Thus

dim.d � r; r/D
�d

r

�
�

� d

r�1

�
for 0� r � 1

2
d:

Geometry & Topology, Volume 28 (2024)



Lee filtration structure of torus links 3937

The appearance of Sd –representations in Theorem 1.2 is no coincidence. Indeed, we will show that
KhLee.T .n;m// carries a filtered Sd –action, and determine its structure as a filtered Sd –representation.

In the special case mD n, Theorem 1.2 confirms a conjecture of Pardon [2012, Section 5.2].

Since taking the mirror image of a link has the effect of taking the dual on the Lee homology, the quantum
filtration structure of T .n;�m/ is determined by that of T .n;m/. We can also read off its s–invariants as
follows (see the second paragraph in the proof of Theorem 1.1).

Corollary 1.3 The s–invariant , over Q, of T .n;�m/p;q is given by

s.T .n;�m/p;q/D

�
�.n1jp� qj � 1/.m1jp� qj � 1/ p ¤ q;

1 p D q:

As observed by Manolescu, Marengon, Sarkar and Willis [Manolescu et al. 2023], Theorem 1.1 in the
special case mD n implies the following corollary, which is an adjunction-type inequality for s–invariants
of nullhomologous oriented links in a connected sum of .S1�S2/’s, as defined in their paper. We remark
that, however, one cannot deduce an adjunction-type inequality from Corollary 1.3 using the same proof.

Corollary 1.4 If †�ZD .I�l.S1�S2//#kCP2 is an oriented cobordism between two nullhomologous
oriented links L0;L1 � l.S1 �S2/ with �0.L1/! �0.†/ surjective , then

s.L1/� s.L0/��.†/� Œ†�
2
� jŒ†�j0:

Here jŒ†�j0 is defined as the sum
Pk

iD1 jŒ†� � zi j, where z1; : : : ; zk 2H2.Z/Š ZlCk are the generators
coming from the CP2 factors.

Corollary 1.4 holds over any coefficient field as long as l D 0. For l > 0, in [Manolescu et al. 2023] the
s–invariant is only defined over fields with characteristic not equal to 2, although we expect everything to
hold in characteristic 2 as well.

The term Œ†�2 above is well defined, and the term jŒ†�j0 is independent of the choice of the decomposition
Z D .I � l.S1 �S2// # kCP2, both thanks to the links Li being nullhomologous. Of course, one may
also dualize and obtain a similar adjunction inequality in .I � l.S1 �S2// # kCP2 (see Section 2.3).

In practice, the special case l D 0 might be the most useful, where s reduces to Beliakova and Wehrli’s
generalization of the classical Rasmussen s–invariant (defined in Section 2.2). In particular, this opens
a new approach to detect exotic kCP2 whose existence is not yet known, for example by modifying
the constructions in [Manolescu and Piccirillo 2023]. When l D 0, L0 D ∅ and L1 D K is a knot,
Corollary 1.4 takes the following form:

Corollary 1.5 [Manolescu et al. 2023, Conjecture 9.8] If .†;K/� ..kCP2/nB4;S3/ is a connected
orientable properly embedded surface with boundary a knot K, then

s.K/� 1��.†/� Œ†�2� jŒ†�j:

Here jŒ†�j is the L1–norm of Œ†� (denoted by jŒ†�j0 in Corollary 1.4).

Geometry & Topology, Volume 28 (2024)
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The adjunction-type inequality parallel to Corollary 1.5 for the �–invariant in knot Floer homology was
established by Ozsváth and Szabó [2003] two decades ago. The inequality parallel to the more general
Corollary 1.4 appeared recently (for knots, and in some special cases for links) in the work of Hedden
and Raoux [2023]. In fact, their inequalities were stated for more general smooth 4–manifolds. This
naturally leads us to the question of whether Corollaries 1.4 and 1.5 can be generalized to those settings.
Of course, this (in its full generality) entails generalizing the s–invariant to rationally nullhomologous
links in arbitrary closed oriented 3–manifolds. It is worth remarking, however, that in order to successfully
construct exotic kCP2’s detectable by the s–invariant using a modified version of the construction in
[Manolescu and Piccirillo 2023], one should hope that Corollary 1.5 does not have a generalization
applicable to arbitrary simply connected negative-definite 4–manifolds.

Two applications of the adjunction inequality for the s–invariant will be given in Section 3.

We summarize the paper’s structure and briefly describe the proofs of the main results:

In Section 2.1, we state a “graphical lower bound”, Theorem 2.1 (see also Figures 1 and 2), for the
Khovanov homology of the torus links T .n; n/ and the torus knots T .nC 1; n/. In the case of T .n; n/,
in homological degrees 2pq with pC q D n, the bound is sharp, and the nonvanishing groups with the
lowest quantum degrees are Z, which also give rises to Lee homology generators. As we shall see in
Section 2.2, this implies Theorem 1.1 in the special case m D n. The general case is then proved in
Section 2.3 inductively, using the adjunction inequality (Corollary 1.4). The proof of Theorem 2.1, which
follows the induction scheme set up by Stošić [2007; 2009], is a cumbersome verification that is not
illuminating and is deferred to Section 5.

As further illustrations of the power of the adjunction inequality, we give two applications. In Section 3.1,
we provide an optimal bound on the change of the s–invariant when full twists are applied to an oriented
link. In particular, the s–invariant grows linearly when the twist number is sufficiently large, answering
positively a question in [Manolescu et al. 2023]. In Section 3.2, we show there exist knots in S3 with
simultaneously large CP2–genus and CP2–genus.

Section 4 is independent of Section 3. We exploit an Sd –symmetry and decompose KhLee.T .n;m// into
irreducible Sd –representations. By working equivariantly, we are able to deduce Theorem 1.2 inductively
from Theorem 1.1.

Finally, in Section 6, we state a numerical observation as an open question. In particular, we propose a
conjectural (recursive) formula for the rational Khovanov homology of T .n; n/.

Acknowledgements I would like to thank my advisor Ian Agol for insights, discussions and encourage-
ment. I thank Qianhe Qin for introducing me to this question, Marco Marengon for kindly providing me
with the proof of Proposition 3.5, Michael Willis for feedback on a first draft of this paper, and Ciprian
Manolescu and Melissa Zhang for many helpful discussions. I also thank the referee for a careful read of
the paper and many valuable suggestions.
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2 The s–invariants of T.n; m/

2.1 A graphical lower bound for Kh.T.n; n// and Kh.T.n C 1; n//

In this section we state our core technical result, which gives a “graphical lower bound” on the Khovanov
homology of T .n; n/ and T .nC 1; n/, whose proof is postponed to Section 5. We assume the reader
is familiar with Khovanov homology and Lee homology, and refer to the literature mentioned in the
introduction if otherwise. See also [Bar-Natan 2002] for a short introduction.

Before stating the theorem, we introduce two families of auxiliary functions qn;n; qnC1;n WZ!Z[fC1g,
which serve as quantum lower bounds for the Khovanov homology of T .n; n/ and T .nC 1; n/ in various
homological degrees, respectively. Let

hmax.T .n; n// WD
�

1
2
n2
˘

and hmax.T .nC 1; n// WD
�

1
2
n2
˘
C
�

1
2
n
˘
:

The functions qn;n are defined by

(a) qn;n.h/DC1 for h< 0 or h> hmax.T .n; n//,

(b) qn;n.0/D n2� 2n,

(c) if pC q D n for p � q > 0, then for 2.pC 1/.q� 1/ < h� 2pq,

qn;n.h/D n2
C 2

˙
1
2
h
�
� 2p:

The functions qnC1;n are defined by

(a) qnC1;n.h/DC1 for h< 0 or h> hmax.T .nC 1; n//,

(b) if pC q D n for p � q > 0, then

qnC1;n.2pqC 1/D qn;n.2pqC 1/C n� 3;

(c) for other 0� h� hmax.T .n; n//,

qnC1;n.h/D qn;n.h/C n� 1;

(d) for hmax.T .n; n//� h� hmax.T .nC 1; n//,

qnC1;n.h/D
�

1
2
n2
˘
C 2h� 1:

Note the two definitions of qnC1;n.hmax.T .n; n/// via (c) and (d) agree.

We now state the main technical theorem. See Figures 1 and 2 for an illustration of the case nD 6. The
reader is warned that the same letter q is (unfortunately) used for two different purposes: the quantum
degree and an integer between 0 to n that is complementary to p. It should be clear from context which
of these is referred to.

Theorem 2.1 (i) Khh;q.T .n; n//D 0 for q < qn;n.h/. Moreover , for every pC q D n with p; q > 0,
the saddle cobordism T .n� 2; n� 2/tU ! T .n; n/ induces an isomorphism

Kh2.p�1/.q�1/;qn�2;n�2.2.p�1/.q�1//�1.T .n� 2; n� 2/tU / Š�! Kh2pq;qn;n.2pq/.T .n; n//:

(ii) Khh;q.T .nC1; n//D 0 for q< qnC1;n.h/. Moreover , Kh2n�1;qnC1;n.2n�1/.T .nC1; n// is torsion.
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q

ˇ ˇ ˇ ˇh 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

54 Z5

52 Z9

50 Z5 Z9 Z5

48 Z3 Z6 Z14 Z
46 Z Z6 Z5 Z Z6

44 Z2˚Z5 Z2˚.Z2/
5 Z6 Z

42 Z2 Z2 Z6 Z2 Z
40 Z2 Z5˚Z2 Z2˚Z5 Z2

38 Z Z˚Z2 Z7

36 Z Z˚Z2 Z2 Z
34 Z Z Z2 Z
32 Z Z Z
30 Z2 Z
28 Z
26 Z

24 Z

Figure 1: The Khovanov homology of T .6; 6/. The lower bound given by q6;6 is shown by the
thick bars. The homology groups Kh2pq;q6;6.2pq/ are circled.

Corollary 2.2 For any pC q D n with p; q � 0, we have Kh2pq;qn;n.2pq/.T .n; n//D Z.

Proof For pq D 0, this follows from Stošić’s calculation [2007, Theorem 3.4] that Kh0;�.T .n; n//D Z

for �D .n�1/2˙1 and 0 otherwise. The general case then follows by induction using the last statement
in Theorem 2.1(i).

The case p D n� 1 and q D 1 of Corollary 2.2 confirms a conjecture of Stošić [2007, Conjecture 3.8].

2.2 Proof of Theorem 1.1 for m D n

We prove Theorem 1.1 in the special case mD n, assuming Theorem 2.1. By symmetry we may assume
p � q. The statement then takes the form s.T .n; n/p;q/D .p� q� 1/2� 2q.

We induct on n. The base cases n D 1; 2 are easily checked. Assume n � 3. If q D 0, the result
follows either from the sharpness of Kawamura and Lobb’s inequality on s–invariants for nonsplit positive
links [Abe and Tagami 2017, Corollary 2.4], or Stošić’s calculation of Kh0;�.T .n; n// mentioned above.
Assume from now on q > 0.

The linking matrix of T .n; n/ is .lij /1�i;j�n, where lij D 0 if i D j and 1 otherwise. Thus by Lee [2005,
Proposition 4.3], Kh2pq

Lee .T .n; n// is the vector space spanned by the canonical generators Œso�, one for each
orientation o of T .n; n/ realizing T .n; n/p;q; see also [Rasmussen 2010]. Moreover, the Lee homology
of T .n; n/ is that of T .n; n/p;q with a bidegree shift Œ2pq�f6pqg [Khovanov 2000, Proposition 28, typo].

Geometry & Topology, Volume 28 (2024)
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Figure 2: The Khovanov homology of T .7; 6/. The lower bound given by q7;6 is shown by the
thick bars. The homology group Kh2�6�1;q7;6.2�6�1/ is boxed.
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According to Beliakova and Wehrli’s definition of the s–invariant [2008, Definition 7.1], s.T .n; n/p;q/

over Q equals the quantum filtration degree of Œso� 2KhLee.T .n; n/p;q/ plus 1, where o is any orientation
that realizes T .n; n/p;q . Taking into account the degree shift 6pq, we need to prove Œso� 2KhLee.T .n; n//

has quantum filtration degree .p� q� 1/2� 2q� 1C 6pq D qn;n.2pq/.

Every element of Kh2pq
Lee .T .n; n// is a linear combination of these Œso�, and thus has quantum filtration

degree no less than that of these Œso�. Thus it remains to prove the lowest filtration level of Kh2pq
Lee .T .n; n//

is qn;n.2pq/.

This is equivalent to showing that Kh2pq;qn;n.2pq/.T .n; n//˝QŠQ (see Corollary 2.2) survives to the
E1 page in the Lee spectral sequence from E1 D Kh.T .n; n//˝Q to KhLee.T .n; n//. The differential
on the Er page has bidegree .1; 4r/. By Theorem 2.1, Kh2pq�1;�.T .n; n//D 0 for �< qn;n.2pq�1/D

qn;n.2pq/, so Kh.T .n; n//˝Q cannot be annihilated by differentials mapping into it. To see that all
differentials out of it are zero, we observe that the naturality of the Lee spectral sequence applied to the
cobordism T .n� 2; n� 2/! T .n; n/ gives the following commutative diagram on page Er :

Kh2.p�1/.q�1/;qn�2;n�2.2.p�1/.q�1//.T .n� 2; n� 2//˝Q Kh2pq;qn;n.2pq/.T .n; n//˝Q

E
2.p�1/.q�1/C1;qn�2;n�2.2.p�1/.q�1//C4r
r .T .n� 2; n� 2// E

2pqC1;qn;n.2pq/C4r
r .T .n; n//:

drD0

Š

dr

Here the vertical map on the left is zero by the induction hypothesis and the horizontal map on the top is
an isomorphism by Theorem 2.1(i). Consequently, the vertical map on the right is also zero.

The proof above works with Q replaced by any coefficient field with characteristic not equal to 2.
For characteristic 2, one should replace the Lee homology with Bar-Natan homology, and the Lee
spectral sequences with Bar-Natan–Turner spectral sequences [Bar-Natan 2005; Turner 2006] (whose r th

differential has bidegree .1; 2r/), but everything else goes through. Thus the theorem is proved in the
special case mD n.

2.3 Adjunction inequality and proof of Theorem 1.1

Manolescu, Marengon, Sarkar and Willis [Manolescu et al. 2023, Theorem 6.10] proved the adjunction
inequality (Corollary 1.4) in the special case of nullhomologous cobordisms, using the calculation of
s.T .2p; 2p/p;p/. Having calculated all s.T .n; n/p;q/, Corollary 1.4 in its full generality is proved in
exactly the same way. For completeness, we sketch their proof here. Then we apply this inequality to
prove Theorem 1.1 in its full generality.

Proof of Corollary 1.4 Turning the cobordism upside down and reversing the ambient orientation,
we obtain a cobordism †t in Zt D .I � l.S1 �S2// # kCP2 from L1 to L0 with �0.L1/! �0.†

t /

surjective. Choose embedded 2–spheres S1; : : : ;Sk representing generators Nz1; : : : ; Nzk 2H2.Z
t / coming

from the CP2 factors. We may assume †t intersects each Si transversely, in some pi points positively
and qi points negatively. Since Si has self-intersection 1, a tubular neighborhood �.Si/ has boundary S3,
and the projection to the core @�.Si/! Si is the Hopf fibration. Therefore, removing all �.Si/ and

Geometry & Topology, Volume 28 (2024)
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tubing each @�.Si/ to f1g� .S1�S2/�Zt gives a cobordism †t
0

from L1 to L0t
�F

i T .ni ; ni/pi ;qi

�
in I � l.S1 �S2/, where ni D pi C qi . Topologically, †t

0
is obtained by deleting

P
i.pi C qi/ disks in

the interior of †t Š†. Now by [Manolescu et al. 2023, Theorem 1.5,Proposition 3.7], we have�
s.L0/C

kX
iD1

s.T .ni ; ni/pi ;qi
/� k

�
� s.L1/� �.†

t
0/D �.†/�

kX
iD1

.pi C qi/:

By Theorem 1.1 with mD nD ni , this simplifies to

s.L0/� s.L1/� �.†/�

kX
iD1

..jpi � qi j � 1/2� 2 min.pi ; qi/� 1Cpi C qi/

D �.†/�

kX
iD1

jpi � qi j
2
C

kX
iD1

jpi � qi j D �.†/C Œ†�
2
CjŒ†�j0:

Proof of Theorem 1.1 We induct on mCn. The base cases are mD n, which we have already addressed.
To perform the induction step, by symmetry we may assume n<m. If pq D 0 we conclude as before.
Assume p; q> 0, thus d � 2. There is a cobordism† from T .n;m�n/p;q to T .n;m/p;q in CP2 obtained
by adding a positive full twist. The surface † is a disjoint union of d annuli, which intersects a copy of
CP1 � CP2 transversely at n1p points positively and n1q points negatively. Applying Corollary 1.4
to †, we obtain

s.T .n;m/p;q/� s.T .n;m�n/p;q/Cn2
1jp�qj2�n1jp�qjD .n1jp�qj�1/.m1jp�qj�1/�2 min.p; q/:

On the other hand, since T .n;m/ is a d–cable on T .n1;m1/, there is a saddle cobordism

T .n� 2n1;m� 2m1/p�1;q�1 tU ! T .n;m/p;q:

Thus

s.T .n;m/p;q/�s.T .n�2n1;m�2m1/p�1;q�1tU /�1D .n1jp�qj�1/.m1jp�qj�1/�2 min.p; q/:

3 Applications of the adjunction inequality

3.1 Eventual linearity of the s–invariant under full twists

Let L be an oriented link in S3. A full twist can be performed to L along any (unoriented) 2–disk in S3

that intersects L transversely in the interior. More generally, if D1; : : : ;Dl � S3 are l disjoint such 2–
disks, we can independently perform any number of full twists along these disks. Given EnD .n1; : : : ; nl/,
let L.D1;D2; : : : ;Dl I En/� S3 denote the oriented link obtained by performing ni full twists (ni positive
ones if ni � 0; �ni negative ones if ni < 0) to L along Di . Let di denote the algebraic intersection
number of Di and L (which is well defined up to sign).

Proposition 3.1 For n1; : : : ; nl large , the number

s.LID1; : : : ;Dl I En/ WD s.L.D1; : : : ;Dl I En//�

lX
iD1

ni jdi j.jdi j � 1/

is independent of n1; : : : ; nl .
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Therefore the stable number, denoted by s.LID1; : : : ;Dl/, is an isotopy invariant of the oriented link L

together with 2–disks D1; : : : ;Dl in S3. In the special case n1 D n2 D � � � D nl , this answers positively
a question of Manolescu, Marengon, Sarkar and Willis [Manolescu et al. 2023, Question 9.1].

Remark 3.2 (i) By performing 0–surgeries on each @Di � S3, L can be regarded as an oriented link
in l.S1 �S2/. Manolescu, Marengon, Sarkar and Willis [loc. cit., Theorem 1.4] proved Proposition 3.1
in the special case d1 D � � � D dl D 0 and n1 D � � � D nl , and further showed that in this case the stable
number s.LID1; : : : ;Dl/ is an invariant of the nullhomologous oriented link L in l.S1 �S2/, which
can then be defined as the s–invariant of L� l.S1 �S2/. However, as followed from their Remark 9.6,
the stable number in the general case does not define an invariant of L� l.S1 �S2/. In fact, sliding the
strands intersecting Di over @Di changes the stable number by ˙2jdi j.jdi j � 1/. It would be interesting
if one could use Proposition 3.1 to define s–invariants of links in some other 3–manifolds, or to define
s–invariants for links in l.S1 �S2/ valued in Z=gcd.d1; : : : ; dl/.

(ii) Manolescu, Marengon, Sarkar and Willis [loc. cit., Conjecture 8.31] conjectured that when d1 D

� � � D dl D 0, if there is a generic projection of L;D1; : : : ;Dl to R2 which consists of k–disjoint
2–disks corresponding to the Di and a positive link diagram corresponding to L, then the number
s.LID1; : : : ;Dl I En/ already stabilizes when EnD E0, ie it is independent of En for n1; : : : ; nl � 0. This is not
true, because adding a positive full twist appropriately to two oppositely oriented strands in the right-handed
trefoil unknots it, but the right-handed trefoil and the unknot have s–invariants 2 and 0, respectively.

The proof of Proposition 3.1 is an easy consequence of the following bound on the behavior of s–invariants
under twists.

Proposition 3.3 Let L� S3 be an oriented link , and D � S3 a 2–disk intersecting it transversely in the
interior , in p points positively and q points negatively , where p � q. Then for m0 >m,

s.LIDIm0/� s.LIDIm/ 2

�
Œ�2pC 2; 0� p > q;

Œ�2p; 0� p D q:

Remark 3.4 By considering T .n;�2n/p;q , T .n;�n/p;q and a disjoint union of n unknots, we see the
bounds in Proposition 3.3 are sharp (see Corollary 1.3).

Proof The lower bounds are exactly those in [Roberts 2011, Theorem 1.2]. We prove the upper bounds.
Adding m0�m full twists along D gives a cobordism L.DIm/!L.DIm0/ in .m0�m/CP2 with Euler
characteristic 0 and homology class .p� q; : : : ;p� q/. Thus Corollary 1.4 gives

s.L.DIm0//� s.L.DIm//C .m�m0/..p� q/2� .p� q//;

or equivalently s.LIDIm0/� s.LIDIm/.
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Proof of Proposition 3.1 Proposition 3.3 implies s.LID1; : : : ;Dl I En/ is nonincreasing in the coordinates
of En, and has a lower bound independent of En; consequently, it is constant for large En.

3.2 Knots with large CP 2– and CP 2–genus

For a closed oriented smooth 4–manifold M and a knot K in S3, the M –genus of K is the minimal
genus of a smooth orientable surface in M nB4 that bounds K. Marco Marengon informed us of the
following consequence of Corollary 1.5; see also [Marengon et al. 2024, Proposition 2.1].

Proposition 3.5 There exist knots with simultaneously arbitrarily large CP2–genus and CP2–genus.

Proof Following the argument in [Marengon et al. 2024, Proposition 2.1], after Corollary 1.5, it suffices
to construct a knot with large s–invariant, small �–invariant and vanishing Levine–Tristram signature
function. For example, such a knot can be taken to be a connected sum of some copies of the untwisted
negative Whitehead double of T .2;�3/— which has vanishing Levine–Tristram signature [Litherland
1979, Theorem 2] and � D�1 [Hedden and Ording 2008, Theorem 1.2] — with some copies of Piccirillo’s
companion to the Conway knot, denoted by K0 in [Piccirillo 2020] — which has vanishing Levine–
Tristram signature and � D 0 as it is topologically slice, and s D 2.

This is in contrast to the fact that the .CP2#CP2/–genus (and the .S2�S2/–genus) of any knot is 0

[Norman 1969, Corollary 3 and Remark], and the fact that every knot has topological CP2–genus and
CP2–genus at most 1 [Kasprowski et al. 2024, Corollary 1.15]. We remark that the proof does not carry
to kCP2 for k > 1, and to our knowledge there is currently no knot known to be nonslice in 2CP2. In
fact all knots are topologically slice in 2CP2 [Kasprowski et al. 2024, Corollary 1.15].

4 The Lee filtration structure of T.n; m/

In this section we prove Theorem 1.2.

By Lee [2005] and Rasmussen [2010], the Lee homology of T .n;m/ as a vector space is spanned by the
canonical generators Œso�, one for each orientation o of T .n;m/. For our purpose in the next subsection, it
will be convenient to use the rescaled canonical generators ŒQso� as defined by Rasmussen [2005].

We identify a rescaled canonical generator Œso� with the orientation o. Upon labeling the d components
of T .n;m/ by 1; 2; : : : ; d and choosing a preferred direction, we further identify o with a subset of
Œd � WD f1; 2; : : : ; dg. Thus KhLee.T .n;m// is identified with Qf2Œd �g, where 2Œd � denotes the power set
of Œd �. Since the linking number between any two different components of T .n;m/ is n1m1, under this
identification, the span of subsets of Œd � with cardinality k or d � k is identified with the homological
degree 2n1m1k.d � k/ part of the Lee homology [Lee 2005, Proposition 4.3; Rasmussen 2010].
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Hence, the Lee homology of T .n;m/ is zero for homological degrees not equal to 2n1m1pq for any
pC q D d . For each pC q D d we have

(1) Kh2n1m1pq
Lee .T .n;m//ŠQfX � Œd � W #X D p or qg:

It remains to prove for each pC q D d that gr.Kh2n1m1pq
Lee .T .n;m/// has the desired graded dimension.

By symmetry we assume throughout that p � q.

4.1 Halve the dimensions

Let Kh2n1m1pq
Lee;0 .T .n;m// (resp. Kh2n1m1pq

Lee;1 .T .n;m//) denote the subspace of Kh2n1m1pq
Lee .T .n;m//

spanned by subsets of Œd � with cardinality q (resp. p), namely,

(2) Kh2n1m1pq
Lee;0 .T .n;m//ŠQfX � Œd � W #X D qg:

Thus when pDq, we simply have Kh2n1m1pq
Lee;0 .T .n;m//DKh2n1m1pq

Lee;1 .T .n;m//DKh2n1m1pq
Lee .T .n;m//.

Lemma 4.1 For p > q, as graded vector spaces , we have

gr.Kh2n1m1pq
Lee .T .n;m///Š gr.Kh2n1m1pq

Lee;0 .T .n;m///˝ .Q˚Qf2g/:

Proof The Lee homology Kh2n1m1pq
Lee .T .n;m// has a quantum Z=4–grading, and the elements are

supported in odd gradings if d is even, and even gradings if d is odd. In either case, we can write
Kh2n1m1pq

Lee .T .n;m// D V1˚ V2 as a direct sum of two Z=4–homogeneous components. Let � be an
involution on KhLee.T .n;m// which is 1 on V1 and �1 on V2. Then �maps every ŒQso� to˙ŒQsNo� [Rasmussen
2010, Lemma 3.5], where No denotes the reverse orientation of o. Thus it interchanges the two subspaces
Kh2n1m1pq

Lee;0=1 .T .n;m//.

Let q W Kh2n1m1pq
Lee .T .n;m//! Zt fC1g denote the quantum filtration degree function. Then q.x/D

q.�x/Dmin.q.xC �x/; q.x� �x// for nonzero x. We claim that q.x/Dmax.q.xC �x/; q.x� �x//� 2

if x 2 Kh2n1m1pq
Lee;0 .T .n;m//. This would imply the desired statement, for example by performing an

induction from the top filtration degree.

Let Xi WKhLee.T .n;m//!KhLee.T .n;m// be the map induced by putting a dot on the i th component of
T .n;m/ (see [Bar-Natan 2005, Section 11.2]) for 1� i � d . Then Xi has quantum filtration degree �2.
For a suitable choice of sign for Xi , Xi ŒQso�D �ŒQso� where � D 1 if i 2 o and �1 otherwise. It follows that
for x 2 Kh2n1m1pq

Lee;0 .T .n;m// we have
�Pd

iD1 Xi

�
x D .q�p/x and

�Pd
iD1 Xi

�
�x D .p� q/�x. Hence,�Pd

iD1 Xi

�
=.q�p/ is a map of quantum filtration degree �2 that interchanges x˙ �x.

4.2 An Sd –symmetry

The torus link T .n;m/ can be seen as a d–cable of the torus knot T .n1;m1/. Thus every element in the
braid group Bd lifts to an isotopy from T .n;m/ to itself. This induces a Bd –action on KhLee.T .n;m//
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up to sign, which respects the homological grading, the quantum Z=4–grading and the quantum filtration.
Our choice of using the rescaled canonical generators ŒQso� has the advantage that an element ˛ 2 Bd acts
by ˛ � ŒQso�D˙ŒQsx̨�o� [Rasmussen 2005, Proposition 3.2], where x̨ denotes the image of ˛ in Sd , which
acts on the power set 2Œd � in the natural way. In particular, the Bd –action descends to an Sd –action, up
to sign. In fact, following Grigsby, Licata and Wehrli [Grigsby et al. 2018, Theorem 2], we can fix a sign
convention (ie a choice of signs for the action of each ˛ 2 Bd on KhLee.T .n;m//) to remove the sign
ambiguity (see the proof of Proposition 4.4).

Proposition 4.2 As Sd –representations over Q,

(3) Kh2n1m1pq
Lee;0 .T .n;m//Š

qM
rD0

.d � r; r/:

Proof By the proceeding paragraph, upon changing the signs of some of the ŒQso�, the identification
KhLee.T .n;m//ŠQf2Œd �g is Sd –equivariant. Now the statement follows by restricting to (2) and the
standard fact that QfX � Œd � W #X D qg Š

Lq
rD0

.d � r; r/ as Sd –representations; see eg [Pasechnik
2013].

Remark 4.3 Grigsby, Licata and Wehrli [Grigsby et al. 2018, Theorem 2] actually showed that the
Sd –action on KhLee.T .n;m// descends to an action of the Temperley–Lieb algebra TLd .1/. In fact,
the irreducible Sd –representations .d � r; r/ are exactly the ones pulled back from irreducible TLd .1/–
representations.

The Lee homology of the unknot U is generated by the two rescaled canonical generators, denoted by A

and B. In standard notation of the Lee homology defined via the Frobenius algebra QŒX �=.X 2� 1/, we
can take AD 1

2
.X C1/ and BD 1

2
.X �1/. Define an involution � on KhLee.U / by A 7!B, which equips

KhLee.U / with a Z=2–action. Then KhLee.U /Š 1˚ � as Z=2–representations. Abuse the notation and
use 1 and � to also denote the corresponding subrepresentations of KhLee.U /. The quantum filtration
structure of KhLee.U / is determined by

(4) q.�/D 1; q.1/D�1:

From the description of T .n;m/ as a d–cable on T .n1;m1/, when d � 2 there is a saddle cobordism

T .n� 2n1;m� 2m1/tU ! T .n;m/:

Proposition 4.4 The induced map

(5) KhLee.T .n� 2n1;m� 2m1/tU /! KhLee.T .n;m//

by the saddle cobordism is .Sd�2�Z=2/–equivariant. Here Sd�2 �Z=2 D Sd�2 � S2 � Sd via the
natural inclusion. Moreover , upon negating the involution on KhLee.U /, the induced map

(6) KhLee.T .n;m//! KhLee.T .n� 2n1;m� 2m1/tU /

by the (backward ) saddle cobordism is .Sd�2�Z=2/–equivariant.
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Proof We only prove the equivariance of (5). The equivariance of (6) is proved similarly.

Let † denote the saddle cobordism T .n� 2n1;m� 2m1/tU ! T .n;m/. For a braid ˛ 2 Bd , let †˛
denote the corresponding self-isotopy of T .n;m/. By an explicit calculation, one can show the involution
� on KhLee.U / is the map induced by the self-isotopy †� of U flipping itself around. Now the following
pairs of cobordisms that are isotopic rel boundary show the equivariance of (5) up to sign:

† ı†�i
�†�i

ı† for i D 1; 2; : : : ; d � 3; † ı†� �†�d�1
ı†:

Here �1; : : : ; �d�1 are the usual braid group generators.

To remove the sign ambiguity, we have to look into the sign convention in [Grigsby et al. 2018, Section 7.2]
which we adopted. Let op denote the parallel orientation ∅ � Œd �. The sign of 'i WD KhLee.†�i

/ is
chosen so that 'i.ŒQsop

�/D ŒQsop
�. This is the sign convention we adopted to define KhLee.T .n;m// as an

Sd –representation.

Grigsby, Licata and Wehrli [Grigsby et al. 2018] also considered maps  i on KhLee.T .n;m//, each
induced by the annular cobordism T .n;m/! T .n� 2n1;m� 2m1/ that annihilates the components
labeled i and i C 1, followed by the annular cobordism T .n� 2n1;m� 2m1/! T .n;m/ that recreates
two components with labels i and i C 1. This defines  i up to sign. Let oa denote the alternating
orientation

˚
2; 4; : : : ; 2

�
1
2
d
˘	
� Œd �, and oa;i denote the symmetric difference between oa and fi; i C 1g.

Then  i.ŒQsoa
�/D �1ŒQsoa

�C �2ŒQsoa;i
� for some signs �1; �2 2 f˙1g [Rasmussen 2005, Proposition 3.2]. The

sign of  i is fixed by demanding

(7)  i.ŒQsoa
�/D�ŒQsoa

�˙ ŒQsoa;i
�:

Under these two sign conventions, they showed that 'i D idC i [Grigsby et al. 2018, Proposition 9].

The above sign fixes do not depend on the signs of the rescaled canonical generators ŒQso�, but our
assumption (in the proof of Proposition 4.2) that KhLee.T .n;m// Š Qf2Œd �g is Sd –equivariant does.
Since 'i.ŒQsoa

�/D ŒQsoa
�� ŒQsoa

�˙ ŒQsoa;i
�D˙ŒQsoa;i

�, the sign in (7) is C by our convention.

Since we have shown that (5) is equivariant up to sign, to prove the full equivariance it now suffices to
check on particular Lee generators.

First we check KhLee.†/'iD'i KhLee.†/ for 1� i �d�3. Since  i vanishes on any ŒQso� where the i and
iC1 components are parallel in o, we see 'i D id on such generators. Therefore KhLee.†/'i.ŒQso�˝A/D

KhLee.†/.ŒQso�˝A/D 'i KhLee.†/.ŒQso�˝A/ (which is nonzero) for any such o.

Next we check KhLee.†/�D 'd�1 KhLee.†/. By definition,  d�1 factors through KhLee.†/, and we see
 d�1.ŒQsoa

�/D KhLee.†/.ŒQsoa
�˝ 1/ up to sign. In view of (7) and noting 1DA�B in KhLee.U /, upon

switching A and B we may assume KhLee.†/.ŒQsoa
�˝A/D˙ŒQsoa

� and KhLee.†/.ŒQsoa
�˝B/D˙ŒQsoa;d�1

�,
where the two signs ˙ are equal. It follows that

KhLee.†/�.ŒQsoa
�˝A/DKhLee.†/.ŒQsoa

�˝B/D˙ŒQsoa;d�1
�D˙'d�1.ŒQsoa

�/D 'd�1 KhLee.†/.ŒQsoa
�˝A/;

so we are done.
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4.3 Proof of Theorem 1.2

By Lemma 4.1, Theorem 1.2 reduces to showing that nonzero components of gr.Kh2n1m1pq
Lee;0 .T .n;m///

are determined by

(8) dim gr.Kh2n1m1pq
Lee;0 .T .n;m///6n1m1pqCs.T .n;m/p;q/C2r�1

D dim.d � r; r/ for r D 0; 1; : : : ; q:

Let V
2n1m1pq

d�r;r
� Kh2n1m1pq

Lee;0 .T .n;m// denote the irreducible Sd –subrepresentation that corresponds to
.d � r; r/ via (3). Since the Sd –action respects the quantum filtration structure, all nonzero elements in
V

2n1m1pq

d�r;r
have the same filtration degree, denoted by q.V

2n1m1pq

d�r;r
/. Moreover, since every irreducible

Sd –representation appears at most once in Kh2n1m1pq
Lee;0 .T .n;m//, we conclude that

gr.Kh2n1m1pq
Lee;0 .T .n;m///Š

qM
rD0

V
2n1m1pq

d�r;r

as graded vector spaces. Now (8) reduces to showing that

(9) q.V
2n1m1pq

d�r;r
/D 6n1m1pqC s.T .n;m/p;q/C 2r � 1 for r D 0; 1; : : : ; q:

We proceed by induction on d . The case d D 0 is plain, and the case d D 1 follows directly from
Theorem 1.1. Below we assume d � 2.

In the case q > 0, the map (5) restricts to

(10) ˆ W Kh2n1m1.p�1/.q�1/
Lee;0 .T .n� 2n1;m� 2m1//˝KhLee.U /! Kh2n1m1pq

Lee;0 .T .n;m//;

where the left-hand side is isomorphic to
Lq�1

rD0
..d�r�2; r/˝.1˚�// as .Sd�2�Z=2/–representations.

Since

ResSd

Sd�2�Z=2.d�r; r/D

�
.d�r; r �2/˝1˚.d�r �1; r �1/˝.1˚�/˚.d�r �2; r/˝1 r < 1

2
d;

.d�r; r �2/˝1˚.d�r �1; r �1/˝� r D 1
2
d;

(here a non-Young-diagram .a; b/ is considered to be zero), the right-hand side of (10) contains a unique
copy of .d � r � 2; r/˝ � for every 0 � r � q � 1, denoted by W

2n1m1pq

d�r�1;rC1
, which is a subspace of

V
2n1m1pq

d�r�1;rC1
.

By an explicit description of cobordism maps on Lee homology in terms of the canonical generators
(see [Rasmussen 2005, Proposition 3.2]), (5) is injective. Consequently ˆ is injective, and thus by
Proposition 4.4 it maps V

2n1m1.p�1/.q�1/

d�r�2;r
˝� isomorphically onto W

2n1m1pq

d�r�1;rC1
. Similarly, the backward

map
‰ W Kh2n1m1pq

Lee;0 .T .n;m//! Kh2n1m1.p�1/.q�1/
Lee;0 .T .n� 2n1;m� 2m1//˝KhLee.U /

is surjective and maps W
2n1m1pq

d�r�1;rC1
isomorphically onto V

2n1m1.p�1/.q�1/

d�r�2;r
˝ 1. Upon shifting

KhLee;0.T .n� 2n1;m� 2m1//˝KhLee.U /

by Œ2n1m1.d � 1/�f6n1m1.d � 1/g to account for the bidegree differences between Kh.T .n;m// and
Kh.T .n;m/p;q/ and between Kh.T .n � 2n1;m � 2m1// and Kh.T .n � 2n1;m � 2m1/p�1;q�1/, the
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maps ˆ and ‰ preserve the homological degree and have quantum filtration degree �1. By (4) and
induction hypothesis, we conclude that

q.V
2n1m1pq

d�r�1;rC1
/D q.W

2n1m1pq

d�r�1;rC1
/D q.V

2n1m1.p�1/.q�1/

d�r�2;r
/C 6n1m1.d � 1/

D 6n1m1pqC s.T .n;m/p;q/C 2r C 1:

This proves (9) for r ¤ 0. Finally, Theorem 1.1 implies q.V
2n1m1pq

d�r;r
/D 6n1m1pqC s.T .n;m/p;q/� 1

for some r , which is now necessarily 0.

5 Proof of Theorem 2.1

We follow the induction scheme set up by Stošić [2007; 2009]. For ease of notation, in this section,
we write Tn;m for the torus link T .n;m/. Define an auxiliary family of links Di

n;m for m; n � 0 and
0� i �n�1, as the braid closure of the braid .�1 � � � �n�1/

m�1 � � � �i 2Bn. Thus Tn;mDD0
n;mDDn�1

n;m�1
.

For i > 0, performing a 0–resolution to the crossing of Di
n;m corresponding to the last letter �i gives the

link Di�1
n;m , while performing a 1–resolution gives another link, which we denote by Ei�1

n;m . The reader is
warned this notation does not agree with that of Stošić [2007; 2009].

For our purpose, the cases mD n; n�1 will be useful. The following statement is easily checked. The first
two items appeared in [Stošić 2009, Proof of Theorem 1]. See Figure 3 for an illustration of the third item.

Lemma 5.1 � En�2
n;n�1

'Dn�3
n�2;n�3

tU ,

� Ei
n;n�1

'Di
n�2;n�3

for i D 0; 1; : : : ; n� 3,

� Ei
n;n 'Di�1

n�2;n�2
for i D 1; 2; : : : ; n� 2,

� E0
n;n 'D0

n�2;n�2
tU .

Equip Di
n;m with the orientation where all components are oriented in the same direction. Equip Ei

n;m

with the orientation coming from the right-hand sides of Lemma 5.1 for mD n; n� 1. Then all crossings
in Di

n;m are positive, while Ei
n;n�1

has 2n� 3 negative crossings and Ei
n;n has 2n� 2 negative crossings.

+1 +1

Figure 3: The oriented link E3
5;5
'D1

3;3
.
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Keeping track of the degree shifts (see eg [Turner 2017, Section 3.1, Case II]), the skein long exact
sequences on Khovanov homology corresponding to the resolution at the last letter �i in Di

n;m read

� � � ! Khh�2nC2;q�6nC7.Ei�1
n;n�1/! Khh;q.Di

n;n�1/! Khh;q�1.Di�1
n;n�1/! � � � ;(11)

� � � ! Khh�2nC1;q�6nC4.Ei�1
n;n /! Khh;q.Di

n;n/! Khh;q�1.Di�1
n;n /! � � � :(12)

Moreover, the maps in the above long exact sequences are the maps induced by the obvious saddle
cobordisms between the relevant links. Since the author is not aware of this last claim on cobordisms in
the existing literature, we take a short detour:

Lemma 5.2 At a crossing of a link diagram , we have the following skein exact triangle in Khovanov
homology, where the morphisms are induced by the saddles as indicated. (For simplicity we have
suppressed all grading shifts.)

Kh

 !
Kh

 !

Kh

 !

Proof Let CKh denote the Khovanov chain complex. Then by definition

CKh
� �

D Cone
�
CKh

� �
��! CKh

� ��
:

This gives rise to an exact triangle as stated, except that we still have to check that the top and the left
morphisms in the exact triangle agree with the morphisms induced by the saddle cobordisms given in the
statement.

First we check the top morphism. Identify CKh
� �

D CKh
� �

˚ CKh
� �

as modules; the top
morphism in the exact triangle is induced by the projection of CKh

� �
onto CKh

� �
. On the other

hand, the morphism given in the statement is induced by the chain map

(13) CKh
� �

��! CKh
� � .R1C/�1

������! CKh
� �

;

where .R1C/�1 denotes the chain homotopy equivalence induced by undoing the positive twist. See
[Hayden and Sundberg 2024, Tables 1 and 3] for succinct descriptions of the induced maps by saddle
cobordisms and Reidemeister I moves. On the direct summand CKh

� �
, (13) equals

(14) CKh
� �

! CKh
� �

! CKh
� �

;

where the first map is induced by the splitting saddle cobordism � W 1 7! 1˝X CX ˝1, X 7!X ˝X on
the top strand, and the second map is induced by the death cobordism � W 1 7! 0, X 7! 1 on the middle circle.
Since .1˝ �/ı�D 1, the composition (14) is the identity. On the direct summand CKh

� �
, (13) equals

CKh
� �

! CKh
� �

! CKh
� �

;
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where the second map is identically zero. We have thus shown that the top morphism in the exact triangle
equals the stated morphism.

Next we check the left cobordism. The morphism in the exact triangle is induced by the inclusion of
CKh

� �
into CKh

� �
as a direct summand. On the other hand, the morphism given in the statement is

induced by the chain map

(15) CKh
� �

R1����! CKh
� �

��! CKh
� �

;

where R1� denotes the chain homotopy equivalence induced by creating the negative twist, which is
equal to the map CKh

� �
! CKh

� �
induced by the birth cobordism � W 1 7! 1 creating the middle

circle, followed by the inclusion CKh
� �

! CKh
� �

as a direct summand. On the direct summand
CKh

� �
, the second map in (15) equals the merging saddle cobordism m W 1˝ 1 7! 1, 1˝X 7! X ,

X ˝ 1 7! X , X ˝X 7! 0 on the right two components. Since m ı .�˝ 1/ D 1, the composition (15)
equals the inclusion map, and the proof is complete.

Next we introduce some notation that will be convenient. For two functions f;g WZ!ZtfC1g, define
min.f;g/ to be the function Z! Zt fC1g with min.f;g/.h/Dmin.f .h/;g.h//. We write f > g if
f .h/ > g.h/ for all h with f .h/ <C1, and write f < g, f � g and f � g analogously. For h; q 2 Z,
we define f Œh�fqgW Z! Z t fC1g by .f Œh�fqg/.h0/ D f .h0 � h/C q. For a function defined on a
subset of Z with values in Z t fC1g, we abuse the notation and use the same expression to denote
its extension by C1 to all of Z. Finally, define tn;n.h/ WD inffq W Khh;q.Tn;n/¤ 0g to be the quantum
infimum function for Kh.Tn;n/, and similarly tnC1;n and d i

n;m; e
i
n;m to be the quantum infimum functions

for Kh.TnC1;n/, Kh.Di
n;m/ and Kh.Ei

n;m/, respectively.

Thus, for example, the lower bound of Theorem 2.1(i) says tn;n � qn;n.

Before launching into the proof of Theorem 2.1, we note the following relations among the functions
qn;n and qnC1;n defined in Section 2.1:

Lemma 5.3 We have

qn�2;n�2Œ2n� 2�f6n� 8g D qn;njh�2n�2 � qn;n;(16a)

qn�1;n�2Œ2n� 2�f6n� 6g � qnC1;njh�hmax.TnC1;n/�1;(16b)

qn;nfn� 1g � qnC1;n;(16c)

qn;n�1fn� 1g � qn;n;(16d)

qn;n�1Œ1�f2gj1¤h�hmax.Tn;n�1/ � qn;n�1;(16e)

qn;n�1Œ2�f4gjh�hmax.Tn;n�1/ � qn;n�1:(16f)

Moreover , (16c) is strict at hD 2n�1. Also , (16d) is strict at hD 2pq for any pCqD n with p � q > 0;
it is strict at hD 2pq� 1 for any pC q D n with p � q > 1.

These are elementary. We sketch mostly geometric proofs:
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Proof The functions qn;n are thought of as staircases as indicated by the thick segments in Figure 1. The
height of a step is usually 2, but is 4 right after homological degrees 2pq. Thus to check the equality in
(16a), note that the two sets f2pq W pCqD n with p � q > 0g and f2pq W pCqD n�2 with p � q � 0g

are identical up to a shift of 2n� 2, and that qn;n.2n� 2/D qn�2;n�2.0/C 6n� 8.

The function qnC1;n is thought of as a shift of qn;n by fn� 1g with all but the first big step flattened (by
decreasing the height by 2 at 2pqC 1 for p � q > 0), plus

�
1
2
n
˘

short small steps as tail; see Figure 2.
This description immediately gives (16c), (16e) and (16f). Together with (16a), this also proves (16b) (we
can apply the truncation in the end because the tail of qnC1;n is one longer than that of qn�1;n�2). Since
2n� 1D 2.n� 1/ � 1C 1, (16c) is strict at hD 2n� 1.

Finally, (16d) is more contrived, so we first calculate algebraically. At hD 0, (16d) is an equality. For
0 < h � hmax.Tn�1;n�1/, choose pC q D n for p � q > 0 and p0C q0 D n� 1 for p0 � q0 > 0 with
h 2 .2.pC 1/.q� 1/; 2pq�\ .2.p0C 1/.q0� 1/; 2p0q0�. Then

(17) qn�1;n�1.h/C2n�3�qn;n.h/D .n�1/2C2
˙

1
2
h
�
�2p0C2n�3�n2

�2
˙

1
2
h
�
C2pD 2.q0�q/:

If h¤ 2.p0C1/.q0�1/C1 or q0D 1, (17) gives qn;n�1fn�1g.h/D qn�1;n�1.h/C2n�3� qn;n.h/ since
q0�q. If hD2.p0C1/.q0�1/C1 and q0¤1, (17) gives qn;n�1fn�1g.h/Dqn�1;n�1.h/C2n�5Dqn;n.h/

since q0 > q.

To prove (16d) for hmax.Tn�1;n�1/� h� hmax.Tn;n�1/, we note that in this range qn;n�1fn� 1g is a tail
of short small steps while qn;n is a combination of long small and long big steps. Thus (16d) follows
from its validity at hD hmax.Tn�1;n�1/, unless qn;n has a big step right after hD hmax.Tn�1;n�1/. In
this exceptional case, hmax.Tn�1;n�1/D 2pq for some pCq D n with p � q > 0. This implies q0 > q in
(17), so (16d) is strict at hD hmax.Tn�1;n�1/, and (16d) also follows.

Finally we prove the addendum about the strictness of (16d). For 0 < h � hmax.Tn�1;n�1/ we have
h2 .2.pC1/.q�1/; 2pq�\.2.p0C1/.q0�1/; 2p0q0�, (16d) is strict if and only if q0> qC1 or q0D qC1

and h¤ 2.p0C1/.q0�1/C1. This is the case for hD 2pq if p� q> 0, and for hD 2pq�1 if p� q> 1.

Now assume hD 2pq; 2pq� 1 for h> hmax.Tn�1;n�1/. The case for hD 2pq is trivial because

qn;n�1fn� 1g.2pq/D qn;n�1fn� 1g.2pq� 1/C 2� qn;n.2pq� 1/C 2D qn;n�1.2pq/C 2:

For hD 2pq� 1, we divide into three cases:

Case 1 If 2pq� 1>max.2.pC 1/.q� 1/C 1; hmax.Tn�1;n�1/C 1/, then

qn;n�1fn� 1g.2pq� 1/D qn;n�1fn� 1g.2pq� 3/C 4� qn;n.2pq� 3/C 4D qn;n.2pq� 1/C 2:

Case 2 If 2pq � 1 D 2.pC 1/.q � 1/C 1, then p D q C 1, so hmax.Tn;n�1/ D 2q2C q is less than
2pq� 1 unless q D 1, which is excluded in our hypothesis.

Case 3 If 2pq�1D hmax.Tn�1;n�1/C1> 2.pC1/.q�1/C1, then the strictness of (16d) at 2pq�1

is equivalent to that at hmax.Tn�1;n�1/. The latter is true because q0 > q in (17) unless q D 1.
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i

n

iDnC 1

D4
6;5

D3
6;5

D2
6;5

D1
6;5

D0
6;5DT6;5

T6;6DD5
6;5

T4;4DD3
4;3

D2
4;3

D2
4;3

D0
4;3
DT4;3

T2;2DD1
2;1

D0
2;1DT2;1

Figure 4: Flowchart of applying (18) to D4
6;5.

Proof of Theorem 2.1 In the notation above, we need to prove tn;n � qn;n, tnC1;n � qnC1;n and the two
addenda to (i) and (ii).

We induct on n. The base cases nD 1; 2 are easily checked. Below we assume n� 3.

(i) The statements for Tn;n The long exact sequence (11) gives

(18) d i
n;n�1 �min.ei�1

n;n�1Œ2n� 2�f6n� 7g; d i�1
n;n�1f1g/:

Using Lemma 5.1, we thus have

tn;n �min.tn�2;n�2Œ2n� 2�f6n� 8g; dn�2
n;n�1f1g/DWmin.A;B/;

where A�qn�2;n�2Œ2n�2�f6n�8g�qn;n by the induction hypothesis and (16a). Inductively applying (18)
(see Figure 4), we obtain

(19) B �min

 
min

n�mD2r�0
m�2

tm;m�1

�X0

.2i � 2/

��X0

.6i � 8/C n� 1

�
;

min
n�mD2r>0

m�1

tm;m

�X0

.2i � 2/

��X0

.6i � 8/C n�m

�!
:

Here and henceforth, each †0 is a sum over i 2 .m; n� with the same parity as m and n. By the induction
hypothesis and (16a), each term in the second sum in (19) is bounded below by

qm;m

�X0

.2i � 2/

��X0

.6i � 8/C n�m

�
� qn;nfn�mg> qn;n:

Similarly, by the induction hypothesis and (16b), (16d) and (16f), each term in the first sum in (19) is
bounded below by

qm;m�1

�X0

.2i � 4/C 2r

��X0

.6i � 12/C 4r C n� 1

�
� qn;n�1Œ2r �f4r C n� 1g

�min.qn;n�1fn� 1g; tail/� qn;n;
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where tail is the function defined on Œhmax.Tn;n�1/; hmax.Tn;n�1/C 2r � which consists of short small
steps (in the sense of the proof of Lemma 5.3) and agrees with qn;n�1fn� 1g at hD hmax.Tn;n�1/.

Now it remains to prove the statement about the saddle cobordism. The relevant induced map ˛ fits in the
long exact sequence (11),

(20) � � � ! Khh�1;q�1.Dn�2
n;n�1/

ˇ
�! Khh�2nC2;q�6nC7.Tn�2;n�2 tU /

˛�! Khh;q.Tn;n/! Khh;q�1.Dn�2
n;n�1/! � � � ;

for hD 2pq > 0 and q D qn;n.h/. The map ˛ would be an isomorphism if

Khh�1;q�1.Dn�2
n;n�1/D Khh;q�1.Dn�2

n�1;n�2/D 0;

or equivalently, using the notation above, if B.h� 1/;B.h/ > q.D qn;n.h/D qn;n.h� 1//.

We reexamine the estimate B � qn;n above. The contribution from the second term in (19) is always
strict. The contribution from the first term is strict for h, and is strict for h� 1 if q > 1, because (16d)
is strict for such homological degrees by the second addendum of Lemma 5.3. If q D 1, however, the
inequality is strict at h� 1D 2n� 3 for r > 0 (as the left-hand side is C1), but not for r D 0. In this
exceptional case, the addendum in the induction hypothesis for Tn;n�1 states that the relevant homology
group Kh2n�3;qn;n�1.2n�3/.Tn;n�1/ is torsion, and thus so is every Kh2n�3;qn;n�1.2n�3/Ci.Di

n;n�1
/, in

view of (12). This group for i D n� 2 and the group Kh0;.n�3/2�2.Tn�2;n�2 tU /D Z appear as the
first two terms in (20), which implies ˇ in (20) is zero, and thus ˛ is an isomorphism.

(ii) The statements for TnC1;n The long exact sequence (12) gives

(21) d i
n;n �min.ei�1

n;n Œ2n� 1�f6n� 4g; d i�1
n;n f1g/:

Using Lemma 5.1, we obtain

tnC1;n �min.tn�1;n�2Œ2n� 1�f6n� 4g; dn�2
n;n f1g/DWmin.A;B/;

where A � qn�1;n�2Œ2n � 1�f6n � 4g � qnC1;nŒ1�f2gj2n�1�h�hmax.TnC1;n/ � qnC1;n by the induction
hypothesis, (16b) and (16e), and

(22) B � min
n�mD2r�0

tm;m

�X0

.2i � 1/

��X0

.6i � 6/C n� 1

�
:

By the induction hypothesis, (16a), (16c) and (16e), the r D 0 term in the summation is bounded below
by qn;nfn� 1g � qnC1;n, and each of the r > 0 terms is bounded below by

qm;m

�X0

.2i � 1/

��X0

.6i � 6/C n� 1

�
� qn;nŒr �f2r C n� 1gjh�2n�1

� qnC1;nŒr �f2rgj2n�1�h�hmax.Tn;n/Cr � qnC1;n:

It remains to show Kh2n�1;qnC1;n.2n�1/.TnC1;n/ is torsion. This group sits in the long exact sequence (12):

(23) � � � ! Kh2n�2;qnC1;n.2n�1/�1.Dn�2
n;n /



�! Kh0;qn�1;n�2.0/.Tn�1;n�2/

! Kh2n�1;qnC1;n.2n�1/.TnC1;n/! Kh2n�1;qnC1;n.2n�1/�1.Dn�2
n;n /! � � � :
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Thus it suffices to show, upon tensoring with Q, that 
 is surjective and Kh2n�1;qnC1;n.2n�1/�1.Dn�2
n;n /D0.

By Lemma 5.2, 
 is induced by a saddle cobordism Dn�2
n;n ! Tn�1;n�2. Let

� W Kh0;qn�1;n�2.0/C2.Tn�1;n�2/! Kh2n�2;qnC1;n.2n�1/�1.Dn�2
n;n /

be the map induced by the backward saddle cobordism. Then by the neck-cutting relation [Bar-Natan
2005, Section 11.2] we have 
 ı � D 2X , where

(24) X W Kh0;qn�1;n�2.0/C2.Tn�1;n�2/! Kh0;qn�1;n�2.0/.Tn�1;n�2/

is the map induced by the dotted cobordism on Tn�1;n�2. By Stošić [2007, Theorem 3.4], we have
Kh0;�.Tn�1;n�2/D Z for � D qn�1;n�2.0/C 1˙ 1 and 0 otherwise, and Kh1;�.Tn�1;n�2/D 0. Hence
the reduced Khovanov homology of Tn�1;n�2 has fKh

1;�
.Tn�1;n�2/D 0, and thus fKh

0;�
.Tn�1;n�2/DZ

for � D qn�1;n�2.0/C 1 and 0 otherwise, in view of the long exact sequence

� � � !fKh
�1;��1

!fKh
0;�C1

! Kh0;�
!fKh

0;��1
!fKh

1;�C1
! � � �

applied to Tn�1;n�2. Consequently, (24) is an isomorphism. This proves the surjectivity of 
 ˝Q.

Next we show Kh2n�1;qnC1;n.2n�1/�1.Dn�2
n;n /˝QD 0. Let d i

n;m;Q denote the quantum infimum function
for Kh.Di

n;m/˝Q. The above estimates apply equally well with d i
n;m replaced by d i

n;m;Q. We now
need to show the inequality dn�2

n;n;Qf1g � qnC1;n is strict at homological degree 2n� 1. We reexamine the
estimate for B above. The contribution from the r D 0 term in (22) is strict at 2n�1, because (16c) is strict
at 2n� 1 by the first addendum of Lemma 5.3. The r � 2 terms are also strict because the left-hand sides
areC1. For the r D 1 term, the contribution is not necessarily strict, but it would be if we could improve
the contribution coming from the first term in (21) at homological degree 2n� 1 by an extra positive
quantum shift, for each i . Upon tensoring with Q, we can indeed make this improvement, by showing
that the relevant maps Kh2n�2;qn�2;n�2.0/Ci�2C6n�5.Di�1

n;n /˝Q!Kh0;qn�2;n�2.0/Ci�2.Ei�1
n;n /˝Q in

(12)˝Q are surjective. Note that for i D n� 1 this map is exactly 
 ˝Q, whose surjectivity has just
been shown. The i < n� 1 cases follow from exactly the same argument, using the fact that, by an
induction on i using (12), Kh0;�.Di

n�2;n�2
/˝QDQ for � D qn�2;n�2.0/C i C 1˙ 1 and 0 otherwise,

and Kh1;�.Di
n�2;n�2

/ D 0 (the base case for D0
n�2;n�2

D Tn�2;n�2 follows again from [Stošić 2007,
Theorem 3.4]).

Remark 5.4 The argument above carries through with Q replaced by any Fp for p ¤ 2. This shows the
order of every element in Kh2n�1;qnC1;n.2n�1/.TnC1;n/ is a power of 2.

6 Questions

In this section we make some comments mostly related to Theorem 2.1. First, we remark that the statements
in Theorem 2.1 are almost designed minimally so that the mD n case of Theorem 1.1 can be proven.
One may try to prove more about Kh.T .n; n// and Kh.T .nC1; n// of their own interests using the same
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induction scheme. For example, it seems true that the bound qn;n is sharp not only for hD 2pq, but for any
even h; not only Kh2n�1;qnC1;n.2n�1/.T .nC 1; n// but also any Kh2pqC1;qnC1;n.2pqC1/.T .nC 1; n// is
torsion, which equals 0 if n is odd. Moreover, one can similarly expect to obtain a “graphical upper bound”
for Kh.T .n; n// and Kh.T .nC 1; n//. This might lead to a proof of Corollary 1.3 (over any coefficient
field) without resorting to Theorem 1.2. One may also try to prove similar results on Khovanov homology
of more general torus links T .n;m/.

By pushing the representation theory techniques further, one may try to prove Theorem 1.2 for more
general coefficient fields.

More interestingly, we state the following numerical observation as a conjecture. Let Di
n;m and Ei

n;m be
defined as in the previous section.

Conjecture 6.1 The saddle cobordism Di
n;n�1

!Di�1
n;n�1

at the crossing of Di
n;n�1

corresponding to
the last letter �i induces a surjection in rational Khovanov homology.

Equivalently, the conjecture states that the exact triangle

Kh.Ei�1
n;n�1/Œ2n� 2�f6n� 7g Kh.Di

n;n�1/

Kh.Di�1
n;n�1/f1g

Œ1�

splits into a short exact sequence

0! Kh.Ei�1
n;n�1/Œ2n� 2�f6n� 7g ! Kh.Di

n;n�1/! Kh.Di�1
n;n�1/f1g ! 0:

An affirmative answer to Conjecture 6.1 enables one to express the rational Khovanov homology of the
torus links T .n; n/ entirely in terms of that of the torus knots T .n0C1; n0/. Explicitly, let Kn.t; q/ denote
the Poincaré polynomial of the Khovanov homology of T .nC 1; n/ and Ln.t; q/ denote that of T .n; n/.
Then Conjecture 6.1 is equivalent to the following:

Conjecture 6.10 The Poincaré polynomial of Kh.T .n; n// is recursively defined by

L0 D 1; L1 D q�1
C q;

Ln D t2n�2.q6n�8
C q6n�6/Ln�2C

b.n�1/=2cX
iD1

Ci�1t2i.n�i/q6i.n�i/Ln�2i

C

b.n�2/=2cX
iD0

��n�2

i

�
�

�n�2

i�1

��
t2i.n�i/q6i.n�i/Cn�2i�1Kn�2i�1 for n� 2:

Here Cn D
�
2n
n

�
=.nC 1/ is the nth Catalan number.

Geometry & Topology, Volume 28 (2024)



3958 Qiuyu Ren

On the other hand, Shumakovitch and Turner have the following conjecture:

Conjecture 6.2 [Gorsky et al. 2013, Conjecture 1.8] The Poincaré polynomial of Kh.T .nC 1; n// is
recursively defined by

K0 DK1 D q�1
C q; K2 D qC q3

C t2q5
C t3q9;

Kn D q2n�2Kn�1C t2n�2q6n�6Kn�2C t2n�1q8n�8Kn�3 for n� 3:

Conjectures 6.10 and 6.2 together establish a recursive formula for the rational Khovanov homology of
T .n; n/.

With the help of the computer program KnotJob [Schütz 2023], we are able to verify Conjecture 6.1 for
the cases n� 8. The integral version of the conjecture is not true, and the first counterexample is found at
nD 7 and i D 6. We also verified Conjecture 6.2 for n� 8.

One can also consider the (rational) annular Khovanov homology version of Conjecture 6.1. With the
help of the program implemented in [Hunt et al. 2015], we are able to verify the cases n � 4 for the
annular version. Due to the existence of a spectral sequence from annular Khovanov homology to the
usual Khovanov homology, an affirmative answer to the annular version implies the version as stated. We
remark that, however, the annular version of Conjecture 6.2 is not true.

More generally, if Conjecture 6.1 has an affirmative answer, one can ask for what values of m, n and i

does Di
n;m!Di�1

n;m induce a surjection on Khovanov homology, aiming for a complete calculation of
rational Khovanov homology of all torus links. This is not true for most cases where n jm. For n−m with
mCn� 7, all violations for the annular version of this question are .n;m; i/D .4; 2; 1/; .4; 2; 3/; .5; 2; 3/.

References
[Abe and Tagami 2017] T Abe, K Tagami, Characterization of positive links and the s–invariant for links, Canad.

J. Math. 69 (2017) 1201–1218 MR Zbl

[Bar-Natan 2002] D Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2
(2002) 337–370 MR Zbl

[Bar-Natan 2005] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005)
1443–1499 MR Zbl

[Beliakova and Wehrli 2008] A Beliakova, S Wehrli, Categorification of the colored Jones polynomial and
Rasmussen invariant of links, Canad. J. Math. 60 (2008) 1240–1266 MR Zbl

[Benheddi 2017] M Benheddi, Khovanov homology of torus links: structure and computations, PhD thesis,
Université de Genève (2017) Available at https://archive-ouverte.unige.ch/unige:101697

[Gillam 2012] W D Gillam, Knot homology of .3;m/ torus knots, J. Knot Theory Ramifications 21 (2012)
art. id. 1250072 MR Zbl

[Gorsky et al. 2013] E Gorsky, A Oblomkov, J Rasmussen, On stable Khovanov homology of torus knots, Exp.
Math. 22 (2013) 265–281 MR Zbl

Geometry & Topology, Volume 28 (2024)

https://doi.org/10.4153/CJM-2016-030-7
http://msp.org/idx/mr/3715009
http://msp.org/idx/zbl/1391.57002
https://doi.org/10.2140/agt.2002.2.337
http://msp.org/idx/mr/1917056
http://msp.org/idx/zbl/0998.57016
https://doi.org/10.2140/gt.2005.9.1443
http://msp.org/idx/mr/2174270
http://msp.org/idx/zbl/1084.57011
https://doi.org/10.4153/CJM-2008-053-1
https://doi.org/10.4153/CJM-2008-053-1
http://msp.org/idx/mr/2462446
http://msp.org/idx/zbl/1171.57010
https://archive-ouverte.unige.ch/unige:101697
https://doi.org/10.1142/S0218216512500721
http://msp.org/idx/mr/2925426
http://msp.org/idx/zbl/1257.57011
https://doi.org/10.1080/10586458.2013.798553
http://msp.org/idx/mr/3171092
http://msp.org/idx/zbl/1459.57018


Lee filtration structure of torus links 3959

[Grigsby et al. 2018] J E Grigsby, A M Licata, S M Wehrli, Annular Khovanov homology and knotted Schur–Weyl
representations, Compos. Math. 154 (2018) 459–502 MR Zbl

[Hayden and Sundberg 2024] K Hayden, I Sundberg, Khovanov homology and exotic surfaces in the 4–ball, J.
Reine Angew. Math. 809 (2024) 217–246 MR Zbl

[Hedden and Ording 2008] M Hedden, P Ording, The Ozsváth–Szabó and Rasmussen concordance invariants
are not equal, Amer. J. Math. 130 (2008) 441–453 MR Zbl

[Hedden and Raoux 2023] M Hedden, K Raoux, Knot Floer homology and relative adjunction inequalities,
Selecta Math. 29 (2023) art. id. 7 MR Zbl

[Hogancamp and Mellit 2019] M Hogancamp, A Mellit, Torus link homology, preprint (2019) arXiv 1909.00418

[Hunt et al. 2015] H Hunt, H Keese, A Licata, S Morrison, Computing annular Khovanov homology, preprint
(2015) arXiv 1505.04484

[Kasprowski et al. 2024] D Kasprowski, M Powell, A Ray, P Teichner, Embedding surfaces in 4–manifolds,
Geom. Topol. 28 (2024) 2399–2482 MR Zbl

[Khovanov 2000] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359–426
MR Zbl

[Lee 2005] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554–586 MR Zbl

[Litherland 1979] R A Litherland, Signatures of iterated torus knots, from “Topology of low-dimensional
manifolds” (R A Fenn, editor), Lecture Notes in Math. 722, Springer (1979) 71–84 MR Zbl

[Manolescu and Ozsváth 2008] C Manolescu, P Ozsváth, On the Khovanov and knot Floer homologies of
quasi-alternating links, from “Proceedings of Gökova Geometry/Topology Conference” (S Akbulut, T Önder, R J
Stern, editors), GGT, Gökova (2008) 60–81 MR Zbl

[Manolescu and Piccirillo 2023] C Manolescu, L Piccirillo, From zero surgeries to candidates for exotic definite
4–manifolds, J. Lond. Math. Soc. 108 (2023) 2001–2036 MR Zbl

[Manolescu et al. 2023] C Manolescu, M Marengon, S Sarkar, M Willis, A generalization of Rasmussen’s
invariant, with applications to surfaces in some four-manifolds, Duke Math. J. 172 (2023) 231–311 MR Zbl

[Marengon et al. 2024] M Marengon, A N Miller, A Ray, A I Stipsicz, A note on surfaces in CP 2 and CP 2#CP 2,
Proc. Amer. Math. Soc. Ser. B 11 (2024) 187–199 MR Zbl

[Norman 1969] R A Norman, Dehn’s lemma for certain 4–manifolds, Invent. Math. 7 (1969) 143–147 MR Zbl

[Ozsváth and Szabó 2003] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7
(2003) 615–639 MR Zbl

[Pardon 2012] J Pardon, The link concordance invariant from Lee homology, Algebr. Geom. Topol. 12 (2012)
1081–1098 MR Zbl

[Pasechnik 2013] D Pasechnik, Permutation character of the symmetric group on subsets of certain size, Reply in
MathOverflow thread (2013) Available at https://mathoverflow.net/q/123754

[Piccirillo 2020] L Piccirillo, The Conway knot is not slice, Ann. of Math. 191 (2020) 581–591 MR Zbl

[Rasmussen 2005] J Rasmussen, Khovanov’s invariant for closed surfaces, preprint (2005) arXiv math/0502527

[Rasmussen 2010] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419–447
MR Zbl

Geometry & Topology, Volume 28 (2024)

https://doi.org/10.1112/S0010437X17007540
https://doi.org/10.1112/S0010437X17007540
http://msp.org/idx/mr/3731256
http://msp.org/idx/zbl/1133.57006
https://doi.org/10.1515/crelle-2024-0001
http://msp.org/idx/mr/4726569
http://msp.org/idx/zbl/1490.57004
https://doi.org/10.1353/ajm.2008.0017
https://doi.org/10.1353/ajm.2008.0017
http://msp.org/idx/mr/2405163
http://msp.org/idx/zbl/1155.53046
https://doi.org/10.1007/s00029-022-00810-1
http://msp.org/idx/mr/4507976
http://msp.org/idx/zbl/1172.57008
http://msp.org/idx/arx/1909.00418
http://msp.org/idx/arx/1505.04484
https://doi.org/10.2140/gt.2024.28.2399
http://msp.org/idx/mr/4793644
http://msp.org/idx/zbl/07927933
https://doi.org/10.1215/S0012-7094-00-10131-7
http://msp.org/idx/mr/1740682
http://msp.org/idx/zbl/1083.57019
https://doi.org/10.1016/j.aim.2004.10.015
http://msp.org/idx/mr/2173845
http://msp.org/idx/zbl/1080.57015
https://doi.org/10.1007/BFb0063191
http://msp.org/idx/mr/547456
http://msp.org/idx/zbl/0412.57002
http://msp.org/idx/mr/2509750
http://msp.org/idx/zbl/1195.57032
https://doi.org/10.1112/jlms.12800
https://doi.org/10.1112/jlms.12800
http://msp.org/idx/mr/4668522
http://msp.org/idx/zbl/07780667
https://doi.org/10.1215/00127094-2022-0039
https://doi.org/10.1215/00127094-2022-0039
http://msp.org/idx/mr/4541332
http://msp.org/idx/zbl/07780667
https://doi.org/10.1090/bproc/218
http://msp.org/idx/mr/4762681
http://msp.org/idx/zbl/07872143
https://doi.org/10.1007/BF01389797
http://msp.org/idx/mr/246309
http://msp.org/idx/zbl/0181.51602
https://doi.org/10.2140/gt.2003.7.615
http://msp.org/idx/mr/2026543
http://msp.org/idx/zbl/1037.57027
https://doi.org/10.2140/agt.2012.12.1081
http://msp.org/idx/mr/2928905
http://msp.org/idx/zbl/1263.57007
https://mathoverflow.net/q/123754
https://doi.org/10.4007/annals.2020.191.2.5
http://msp.org/idx/mr/4076631
http://msp.org/idx/zbl/1471.57011
http://msp.org/idx/arx/math/0502527
https://doi.org/10.1007/s00222-010-0275-6
http://msp.org/idx/mr/2729272
http://msp.org/idx/zbl/1419.57027


3960 Qiuyu Ren

[Roberts 2011] L Roberts, Extending Van Cott’s bounds for the � and s–invariants of a satellite knot, J. Knot
Theory Ramifications 20 (2011) 1237–1245 MR Zbl

[Schütz 2023] D Schütz, KnotJob, Java program (2023) Available at https://www.maths.dur.ac.uk/users/
dirk.schuetz/knotjob.html
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[Stošić 2009] M Stošić, Khovanov homology of torus links, Topology Appl. 156 (2009) 533–541 MR Zbl

[Turner 2006] P R Turner, Calculating Bar-Natan’s characteristic two Khovanov homology, J. Knot Theory
Ramifications 15 (2006) 1335–1356 MR Zbl

[Turner 2008] P Turner, A spectral sequence for Khovanov homology with an application to .3; q/–torus links,
Algebr. Geom. Topol. 8 (2008) 869–884 MR Zbl

[Turner 2017] P Turner, Five lectures on Khovanov homology, J. Knot Theory Ramifications 26 (2017)
art. id. 1741009 MR Zbl

Department of Mathematics, University of California, Berkeley
Berkeley, CA, United States

qiuyu_ren@berkeley.edu

Proposed: Ciprian Manolescu Received: 25 May 2023
Seconded: András I Stipsicz, Peter Ozsváth Revised: 11 December 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1142/S0218216511009200
http://msp.org/idx/mr/2844805
http://msp.org/idx/zbl/0467.13007
https://www.maths.dur.ac.uk/users/dirk.schuetz/knotjob.html
https://www.maths.dur.ac.uk/users/dirk.schuetz/knotjob.html
https://doi.org/10.2140/agt.2007.7.261
http://msp.org/idx/mr/2308944
http://msp.org/idx/zbl/1209.57009
https://doi.org/10.1016/j.topol.2008.08.004
http://msp.org/idx/mr/2492301
http://msp.org/idx/zbl/1498.05201
https://doi.org/10.1142/S0218216506005111
http://msp.org/idx/mr/2286127
http://msp.org/idx/zbl/1114.57015
https://doi.org/10.2140/agt.2008.8.869
http://msp.org/idx/mr/2443099
http://msp.org/idx/zbl/1298.57011
https://doi.org/10.1142/S0218216517410097
http://msp.org/idx/mr/3627709
http://msp.org/idx/zbl/1361.57017
mailto:qiuyu_ren@berkeley.edu
http://msp.org
http://msp.org


GEOMETRY & TOPOLOGY
msp.org/gt

MANAGING EDITOR

András I Stipsicz Alfréd Rényi Institute of Mathematics
stipsicz@renyi.hu

BOARD OF EDITORS

Mohammed Abouzaid Stanford University
abouzaid@stanford.edu

Dan Abramovich Brown University
dan_abramovich@brown.edu

Ian Agol University of California, Berkeley
ianagol@math.berkeley.edu

Arend Bayer University of Edinburgh
arend.bayer@ed.ac.uk

Mark Behrens University of Notre Dame
mbehren1@nd.edu

Mladen Bestvina University of Utah
bestvina@math.utah.edu

Martin R Bridson University of Oxford
bridson@maths.ox.ac.uk

Jim Bryan University of British Columbia
jbryan@math.ubc.ca

Dmitri Burago Pennsylvania State University
burago@math.psu.edu

Tobias H Colding Massachusetts Institute of Technology
colding@math.mit.edu

Simon Donaldson Imperial College, London
s.donaldson@ic.ac.uk

Yasha Eliashberg Stanford University
eliash-gt@math.stanford.edu

Benson Farb University of Chicago
farb@math.uchicago.edu

David M Fisher Rice University
davidfisher@rice.edu

Mike Freedman Microsoft Research
michaelf@microsoft.com

David Gabai Princeton University
gabai@princeton.edu

Stavros Garoufalidis Southern U. of Sci. and Tech., China
stavros@mpim-bonn.mpg.de

Cameron Gordon University of Texas
gordon@math.utexas.edu

Jesper Grodal University of Copenhagen
jg@math.ku.dk

Misha Gromov IHÉS and NYU, Courant Institute
gromov@ihes.fr

Mark Gross University of Cambridge
mgross@dpmms.cam.ac.uk

Rob Kirby University of California, Berkeley
kirby@math.berkeley.edu

Bruce Kleiner NYU, Courant Institute
bkleiner@cims.nyu.edu

Sándor Kovács University of Washington
skovacs@uw.edu

Urs Lang ETH Zürich
urs.lang@math.ethz.ch

Marc Levine Universität Duisburg-Essen
marc.levine@uni-due.de

Ciprian Manolescu University of California, Los Angeles
cm@math.ucla.edu

Haynes Miller Massachusetts Institute of Technology
hrm@math.mit.edu

Tomasz Mrowka Massachusetts Institute of Technology
mrowka@math.mit.edu

Aaron Naber Northwestern University
anaber@math.northwestern.edu

Peter Ozsváth Princeton University
petero@math.princeton.edu

Leonid Polterovich Tel Aviv University
polterov@post.tau.ac.il

Colin Rourke University of Warwick
gt@maths.warwick.ac.uk

Roman Sauer Karlsruhe Institute of Technology
roman.sauer@kit.edu

Stefan Schwede Universität Bonn
schwede@math.uni-bonn.de

Natasa Sesum Rutgers University
natasas@math.rutgers.edu

Gang Tian Massachusetts Institute of Technology
tian@math.mit.edu

Ulrike Tillmann Oxford University
tillmann@maths.ox.ac.uk

Nathalie Wahl University of Copenhagen
wahl@math.ku.dk

Anna Wienhard Universität Heidelberg
wienhard@mathi.uni-heidelberg.de

See inside back cover or msp.org/gt for submission instructions.

The subscription price for 2024 is US $805/year for the electronic version, and $1135/year (C$70, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Geometry & Topology is indexed
by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Geometry & Topology (ISSN 1465-3060 printed, 1364-0380 electronic) is published 9 times per year and continuously online, by Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840. Periodical
rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences
Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

GT peer review and production are managed by EditFLOW® from MSP.
PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2024 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/gt
mailto:stipsicz@renyi.hu
mailto:abouzaid@stanford.edu
mailto:dan_abramovich@brown.edu
mailto:ianagol@math.berkeley.edu
mailto:arend.bayer@ed.ac.uk
mailto:mbehren1@nd.edu
mailto:bestvina@math.utah.edu
mailto:bridson@maths.ox.ac.uk
mailto:jbryan@math.ubc.ca
mailto:burago@math.psu.edu
mailto:colding@math.mit.edu
mailto:s.donaldson@ic.ac.uk
mailto:eliash-gt@math.stanford.edu
mailto:farb@math.uchicago.edu
mailto:davidfisher@rice.edu
mailto:michaelf@microsoft.com
mailto:gabai@princeton.edu
mailto:stavros@mpim-bonn.mpg.de
mailto:gordon@math.utexas.edu
mailto:jg@math.ku.dk
mailto:gromov@ihes.fr
mailto:mgross@dpmms.cam.ac.uk
mailto:kirby@math.berkeley.edu
mailto:bkleiner@cims.nyu.edu
mailto:skovacs@uw.edu
mailto:urs.lang@math.ethz.ch
mailto:marc.levine@uni-due.de
mailto:cm@math.ucla.edu
mailto:hrm@math.mit.edu
mailto:mrowka@math.mit.edu
mailto:anaber@math.northwestern.edu
mailto:petero@math.princeton.edu
mailto:polterov@post.tau.ac.il
mailto:gt@maths.warwick.ac.uk
mailto:roman.sauer@kit.edu
mailto:schwede@math.uni-bonn.de
mailto:natasas@math.rutgers.edu
mailto:tian@math.mit.edu
mailto:tillmann@maths.ox.ac.uk
mailto:wahl@math.ku.dk
mailto:wienhard@mathi.uni-heidelberg.de
http://dx.doi.org/10.2140/gt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
https://msp.org/


GEOMETRY & TOPOLOGY
Volume 28 Issue 8 (pages 3511–3972) 2024

3511Chromatic cyclotomic extensions

SHACHAR CARMELI, TOMER M SCHLANK and LIOR YANOVSKI

3565Weak del Pezzo surfaces with global vector fields

GEBHARD MARTIN and CLAUDIA STADLMAYR

3643The string coproduct “knows” Reidemeister/Whitehead torsion

FLORIAN NAEF

3661Reeb flows transverse to foliations

JONATHAN ZUNG

3697Monopoles, twisted integral homology, and Hirsch algebras

FRANCESCO LIN and MIKE MILLER EISMEIER

3779Holomorphic anomaly equations for the Hilbert scheme of points of a K3
surface

GEORG OBERDIECK

3869Curvature tensor of smoothable Alexandrov spaces

NINA LEBEDEVA and ANTON PETRUNIN

3909On boundedness of singularities and minimal log discrepancies of Kollár
components, II

ZIQUAN ZHUANG

3935Lee filtration structure of torus links

QIUYU REN

3961Stability of tori under lower sectional curvature

ELIA BRUÈ, AARON NABER and DANIELE SEMOLA

G
E

O
M

E
T

R
Y

&
T

O
P

O
L

O
G

Y
2024

Vol.28,
Issue

8
(pages

3511–3972)

http://dx.doi.org/10.2140/gt.2024.28.3511
http://dx.doi.org/10.2140/gt.2024.28.3565
http://dx.doi.org/10.2140/gt.2024.28.3643
http://dx.doi.org/10.2140/gt.2024.28.3661
http://dx.doi.org/10.2140/gt.2024.28.3697
http://dx.doi.org/10.2140/gt.2024.28.3779
http://dx.doi.org/10.2140/gt.2024.28.3779
http://dx.doi.org/10.2140/gt.2024.28.3869
http://dx.doi.org/10.2140/gt.2024.28.3909
http://dx.doi.org/10.2140/gt.2024.28.3909
http://dx.doi.org/10.2140/gt.2024.28.3935
http://dx.doi.org/10.2140/gt.2024.28.3961

	1. Introduction
	2. The s–invariants of T(n,m)
	2.1. A graphical lower bound for Kh(T(n,n)) and Kh(T(n+1,n))
	2.2. Proof of Theorem 1.1 for m=n
	2.3. Adjunction inequality and proof of Theorem 1.1

	3. Applications of the adjunction inequality
	3.1. Eventual linearity of the s–invariant under full twists
	3.2. Knots with large CP2– and (-CP2)–genus

	4. The Lee filtration structure of T(n,m)
	4.1. Halve the dimensions
	4.2. An S_d–symmetry
	4.3. Proof of Theorem 1.2

	5. Proof of Theorem 2.1
	6. Questions
	References
	
	

