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Taut foliations, left orders, and pseudo-Anosov mapping tori

JONATHAN ZUNG

For a large class of 3–manifolds with taut foliations, we construct an action of �1.M / on R by orientation-
preserving homeomorphisms which captures the transverse geometry of the leaves. This action is
complementary to Thurston’s universal circle. Applications include the left-orderability of the fundamental
groups of every nontrivial surgery on the figure-eight knot. Our techniques also apply to at least 2598
manifolds representing 44.7% of the non-L-space rational homology spheres in the Hodgson–Weeks
census of small closed hyperbolic 3–manifolds.
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1 Introduction

A taut foliation on a 3–manifold M is a valuable structure. Taut foliations may be used to certify nontriv-
iality of a transverse loops or to certify surfaces of minimum genus in their homology classes, as shown
in classic work of Novikov [22], Roussarie [25], Thurston [26] and Gabai [17]. The existence of a taut
foliation puts constraints on �1.M /. For example, Thurston showed that if M is an atoroidal, irreducible
3–manifold with a taut foliation, then �1.M / admits a faithful action on S1 by homeomorphisms; see
Thurston [27] and Calegari and Dunfield [9]. In another direction, Kronheimer and Mrowka [20; 21]
made a connection to Floer theory via contact and symplectic geometry, showing that a taut foliation
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4192 Jonathan Zung

gives rise to a nontrivial class in monopole Floer homology. Ozsváth and Szabó [23] established parallel
results in the setting of Heegaard Floer homology.

The L-space conjecture, formulated in parts by Boyer, Gordon and Watson [4] and Ozsváth and Szabó [23],
is a proposed sharpening of the connections outlined above. It posits that the following are equivalent for
an orientable, irreducible rational homology sphere M :

(i) M has a co-orientable taut foliation.

(ii) �1.M / is left-orderable, ie �1.M / acts faithfully on R by orientation-preserving homeomorphisms.

(iii) M is not an L-space, ie its Heegaard Floer homology cHF.M / satisfies the strict inequality
rank.cHF.M // > jH 2.M IZ/j.

Technology for deciding conditions (i) and (iii) is well developed; for example, Dunfield verified the
equivalence of (i) and (iii) for 99.8% of the manifolds in his census of �300; 000 small hyperbolic
rational homology spheres [13]. Techniques for deciding (ii) are harder to come by. For every non-left-
orderable group, there is a finite length certificate proving its non-left-orderability. On the other hand,
left-orderability is not known to be decidable for three-manifold groups. See Calegari and Dunfield [9]
for a discussion. Here are a few practical methods for proving the left-orderability of a 3–manifold group:

� Try to lift PSL.2;R/ representations of �1.M / to ePSL.2;R/, which acts on the universal cover of
the circle at infinity in H2. See Eisenbud, Hirsch and Neumann [14] or Culler and Dunfield [11]
for examples of this technique.

� If M has a taut foliation, try to lift Thurston’s action of �1.M / on S1 to an action on R. This
works whenever the Euler class of the plane field tangent to the foliation vanishes. See Calegari
and Dunfield [9, Section 7] or Boyer and Hu [5, Section 5] for examples of this technique.

� We say that a foliation F is R–covered if the leaf space of the lift of F to the universal cover of M

is homeomorphic to R (eg in the case of the foliation of a fibered 3–manifold by fiber surfaces).
Since �1.M / always acts on the leaf space, we get an action on R.

The third technique is appealing since it directly uses the transverse geometry of the foliation, but is limited
in generality since most taut foliations are not R–covered. In this paper, we demonstrate a method for
improving the third technique to work for more general taut foliations. We study a family of 3–manifolds
with taut foliations which are not R–covered, but whose leaf spaces admit a map to R such that the action
of �1 descends to an action on R. The question of the existence of taut foliations and left-orderings
compatible in this sense was first raised by Thurston [27]; see also Calegari [7, Section 8.1].

We prove the following:

Theorem 1.1 Let † be an orientable closed surface and ' W†!† a pseudo-Anosov map with orientable
invariant foliations. Suppose further that ' preserves the orientation of these foliations. Let M' be the
mapping torus of '. Let M'.pI q/ be the result of nonzero surgery along any collection of closed orbits
of '. If the surgery slopes all have the same sign , then M'.pI q/ has left-orderable fundamental group.
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Here we take the zero slope, also known as the degeneracy slope, to be the one which crosses no prongs.
See Convention 2.4 for a full explanation of our slope conventions.

Theorem 1.2 With the assumptions of Theorem 1.1, there is a taut foliation F on M'.pI q/. Let L

be the leaf space of zF . Then there is a continuous , monotone map f W L! R such that the action of
�1.M'.pI q// on L descends to a nontrivial action on R.

Here monotone means that f respects the natural partial order on L, ie if leaf �1 may be connected to
leaf �2 by an oriented arc positively transverse to zF , then f .�1/� f .�2/.

Corollary 1.3 For any n� 1, any nontrivial surgery on the n–fold cyclic branched cover of the figure-
eight knot has left-orderable fundamental group.

Previously, orderability for surgeries on the figure-eight knot was known only for slopes in Œ�4; 4�[Z.
The range .�4; 4/ was treated by the representation-theoretic approach of Boyer, Gordon and Watson [4],
while the toroidal exceptional surgeries f4;�4g were resolved by Clay, Lidman and Watson [10] using a
gluing theorem for amalgamations of left-orderable groups. Fenley’s work [15] on R–covered Anosov
flows applies to show that integer surgeries on the figure-eight knot are left-orderable. Hu [19] recently
gave another approach to the case of integer slopes by showing that certain taut foliations on these
manifolds have vanishing Euler class. Hu also proves a negative result: for slopes outside Œ�2; 2�[Z,
there does not exist a co-orientable taut foliation which both has trivial Euler class and is transverse to
the Dehn surgery core. Thus, the action of the universal circle on such foliations does not lift to an action
on R. We discuss this further in Remark 3.4.

In Section 3, we set up notation and construct taut foliations on the manifolds of Theorem 1.1. In Section 4,
we analyze the branching in the leaf spaces of these foliations.

Our approach to defining the map f W L! R is to glue together certain branches of the leaf space L.
This point of view is outlined in Section 5. More formally, in Section 6 we define an R–bundle with
structure group HomeoC.R/ and a flat partial connection J partial. We complete this bundle by adding a
point at infinity to each fiber. The resulting S1 bundle has an honest flat connection J . Moreover, this
S1 bundle has vanishing Euler class and hence lifts to a flat R bundle.

Finally, in Section 7 we report on computations showing that manifolds satisfying the hypotheses of
Theorem 1.1 are abundant in the Hodgson–Weeks census.

Acknowledgements The author would like to thank David Gabai and Sergio Fenley for several helpful
discussions about this work. Nathan Dunfield and Mark Bell generously shared data from their census of
monodromies of small hyperbolic manifolds. A special thanks is owed to the referee, whose exceptionally
detailed and patient reading resulted in many corrections and improvements to the article. The author is
indebted to Peter Ozsváth for his consistent encouragement and guidance during this project.
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2 Notation and conventions

In this section, we set up notation that will be used throughout the article. Let † be a closed orientable
surface. Let ' W†!† be a pseudo-Anosov map such that its stable and unstable foliations, denoted by
Fsj† and Fuj†, are orientable. This implies that each singularity of ' has an even number of prongs.
Suppose further that ' preserves the orientations of Fsj† and Fuj†.

Let M' denote the mapping torus of ', and let K1; : : : ;Kn �M' be the suspensions of any n periodic
orbits of '. For ease of exposition, we will always assume that the suspensions of the singularities of '
are included in K1; : : : ;Kn.

Let M ı
' DM' n fKig. We will use M'.pI q/ to denote the manifold obtained by slope .pi I qi/ surgery

along Ki . Let Ki.pI q/ denote the core of the Dehn filling of Ki in M'.pI q/. Our slope conventions
are explained below in Convention 2.4.

Let ƒj† be the stable invariant lamination of ' produced by splitting open Fsj† along the prongs at
each singularity. Let Fs , Fu and ƒ be the suspensions of Fsj†, Fuj† and ƒj† in M' . (To be precise,
we should take the suspension of ƒj† using an appropriate blowup of the flow '.) The orientability
constraints are equivalent to the orientability of Fs .

Example 2.1 The figure-eight knot complement fibers over the circle with a genus 1 fiber and pseudo-
Anosov monodromy. We can choose coordinates on the fiber T 2 n .0; 0/ so that the monodromy is

�
2
1

1
1

�
.

Since this matrix has distinct positive real eigenvalues, the monodromy preserves the orientation of the
invariant foliations as desired.

Proof of Corollary 1.3 Consider the nth cyclic branched cover of the figure-eight knot. The lift of the
figure-eight knot to this cyclic branched cover is a fibered knot with monodromy

�
2
1

1
1

�n. With our slope
conventions, surgery along the zero slope (ie the degeneracy slope) yields the nth cyclic branched cover. By
Theorem 1.1, surgery along any nonzero slope yields a manifold with left-orderable fundamental group.

Example 2.2 We can generate examples with a given fiber genus and prescribed singularities by
enumerating periodic splitting sequences of train tracks, as in [24]. One of the lowest volume examples
appearing in the genus 2, 1–singularity enumeration is the 1–cusped hyperbolic manifold m038.

Example 2.3 The .�2; 3; 7/ pretzel knot is fibered with a genus 5 fiber and pseudo-Anosov monodromy.
In this case, the monodromy ' has a single 18–prong singularity at the boundary of the fiber, so the invariant
foliations are orientable. However, ' reverses this orientation. The branched double cover of the .�2; 3; 7/

pretzel knot does preserve the orientation of the invariant foliations, and so satisfies the given condition.

Convention 2.4 (slope conventions) For each i , let mi be the period of the orbit Ki . The mi singularities
in Ki\† have the same number, denoted by ki , of prongs. We assume throughout that ki is even. Define
!i to be the integer in Œ0; ki/ such that 2�!i is the counterclockwise angle by which 'mi rotates one of
these singularities. We are thinking of each singularity as a cone point with angle 2�ki .

Geometry & Topology, Volume 28 (2024)
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Figure 1: This figure shows a train track carrying an invariant lamination for the monodromy of
the fibered, 1–cusped 3–manifold m038. The fiber surface has genus 2 with one puncture at the
vertices of the octagon. The complement of the train track is a punctured ideal hexagon. The
figure was generated using Mark Bell’s program flipper [2].

We describe slopes in a slightly nonstandard way. A slope of .pi I qi/ corresponds to a curve in @N.Ki/

defined as follows. Choose a point near Ki \† and flow it along the suspension flow of ' for time miqi .
(Here we set the speed of the flow that the time-1 flow of the suspension flow intersects each fiber once
and returns to the starting fiber.) Typically, the resulting curve will not close up since 'mi may rotate
singularities. We close it by appending a path in † which walks around the relevant singularity by a
clockwise angle of 2�pi . Not all such pairs represent slopes; a pair .pi I qi/ corresponds to a closed curve
if and only if pi D !iqi mod ki .

We always assume qi�0. We say that a slope is positive (resp. negative) when pi is positive (resp. negative).
We say that the slope is1 when qi D 0. The1 slope corresponds to the fiber slope and is declared to
be both positive and negative. The zero slope or the degeneracy slope is .pi I qi/D .0I ki= gcd.!i ; ki//.
In an abuse of notation, the zero slope and the infinity slope may intersect more than once.

F will denote the taut foliation to be constructed in Construction 3.2. Let G denote the guts of ƒ, ie
the compact subspace of M nƒ obtained by chopping off the ends of the ideal polygon bundles. Let I
denote the interstitial region, ie the part of M nƒ we just cut off. Topologically, I is a disjoint union of
I-bundles over half-infinite cylinders. We have M'.pI q/Dƒ[G[I. Note that the distinct components
of G have disjoint closures.

It will also be convenient to work with another decomposition M'.pI q/Dƒ
0 [ G0. We obtain ƒ0 by

blowing down I and define G0 to be the closure of M'.pI q/nƒ
0. Some of the leaves of ƒ0 are branched

Geometry & Topology, Volume 28 (2024)



4196 Jonathan Zung

Figure 2: Blowing down I. The shaded region on the left is G, and the shaded region on the right is G0.

surfaces instead of surfaces, so ƒ0 is not a lamination, but a branched lamination. The advantage of ƒ0

over ƒ is that there is a Solv metric supported on ƒ0.

The following lemma will be useful later:

Lemma 2.5 Let S be a fiber surface in the fibered manifold M'.pI q/ n G. Suppose 
 is a path in
S \ .M'.pI q/ n G/ with endpoints on two walls of G. Suppose that 
 makes Ntan tangencies with F .
Then there is an arc 
 0 in S \ .M'.pI q/ nG0/ with endpoints on the corresponding two walls of G0 and
in the same homotopy class rel endpoints as 
 such that 
 0 makes at most Ntan tangencies with ƒ0. (Here
the homotopy happens in S \ .M'.pI q/ nG/ and we are identifying relative homotopy classes of paths
in .S \ .M'.pI q/nG/;S \@G/ and .S \ .M'.pI q/n@G0/;S \@G0/ in the obvious way.) The converse
also holds.

Proof First, homotope 
 so that all of its tangencies with F and all of its self-intersections occur on the
interior of I. This may be done without introducing any new tangencies. Let I" be the subset of I of
thickness less than ". We begin by blowing down I" for some " > 0. Let F" and ƒ" be the images of F
and ƒ under this blowdown.

If we choose " small enough, then 
 intersects F \ I" transversely. Moreover, if we choose " small
enough, then the blowdown changes the tangent plane field of F by a uniformly small amount. Thus, we
can arrange that 
 has Ntan tangencies with F".

Now, homotope 
 so that all of its tangencies with F" and its self intersections occur inside ƒ". At this
stage, 
 nƒ" is a collection C of disjoint segments transverse to F". We now blow down the rest of I so
that each of the segments in C blows down to a point. The curve 
 then blows down to a curve 
 0 with
the desired properties.

The converse is easier: ƒ is obtained by splitting open the prongs in ƒ0, and this may be done without
introducing new tangencies with 
 0.

Geometry & Topology, Volume 28 (2024)
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Figure 3: On the left is the standard foliation of D2 �S1, where S1 is cut open. In the middle,
we alternately comb the edges of the disks to expose their positive and negative sides. Grey shows
the positive sides of the leaves, while white shows the negative sides. On the right, we show
the limiting configuration which has 4 annular leaves at the boundary, which we call walls, and
infinitely tall saddle-like leaves (homeomorphic to planes) on the interior. The interior saddle-like
leaves accumulate on the walls. We can vary the number of legs of the saddle’s rider or the gluing
of the top and bottom of the picture to get sutures of any desired nonmeridional slope.

3 Foliations on surgeries on pseudo-Anosov mapping tori

In this section, we describe the construction of taut foliations on our class of 3–manifolds. One might
colloquially describe the construction as “stuffing the guts of the suspension of the '–invariant lamination
with monkey saddles”.

Construction 3.1 Given a sutured solid torus D such that the sutures are parallel with nonmeridional
slope, there is a foliation of D by planes compatible with the sutures. Recall that the sutures on a sutured
manifold divide its boundary into (possibly disconnected) positive and negative subsurfaces. We can
construct the desired foliation beginning with the obvious product foliation of the solid torus by disks,
and then combing the edges of the disks to expose their positive sides in the positive regions of @D and
their negative sides in the negative regions of @D. This is called a foliation by a stack of monkey saddles.
See Figure 3.

Construction 3.2 Let .pi I qi/ be any choice of slopes with pi ¤ 0. Then the manifold M'.pI q/ carries
a taut foliation constructed as follows. Recall that M ı

' DM' n fKig. Let Fs be the codimension-1
weak stable foliation of the suspension flow of ' on M ı

' . Split open Fs along its prongs to obtain a
laminationƒ on M ı

' �M'.pI q/. The complement M'.pI q/nƒ is a collection of ideal polygon bundles
over S1. With our conventions (see Convention 2.4), these polygons are 2pi–gons since a closed curve
of slope .pi I qi/ decomposes into an arc of slope .0I qi/, which intersects no prongs, and an arc of slope
.pi I 0/, which wraps around an angle of 2�pi and therefore intersects 2pi prongs. Fill in these bundles
with the foliations constructed in Construction 3.1. The resulting foliation is taut because it contains no
compact leaves; in fact, all leaves are either cylinders or planes.

Example 3.3 When pi D 1 for all i , the complementary regions can be blown down without inserting
any leaves at all. The resulting 3–manifold carries an Anosov flow. Fried [16] shows that every transitive
Anosov flow with orientable invariant foliations is obtained by this construction. The transitivity condition

Geometry & Topology, Volume 28 (2024)
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is not severe; every Anosov flow on a hyperbolic 3–manifold is transitive. His construction might require
the slopes to have different signs, so our results will not hold for all of these manifolds.

Remark 3.4 The Euler class of a foliation constructed via Construction 3.2 is typically nonzero, so the
action of �1 on Thurston’s universal circle will not in general lift to an action on R. One can see this by
applying a result of Hu:

Let X be a Q–homology solid torus, k � 1 the order of the longitude of X in H2.X; @X /. Let � be any
meridian. Let S be the set of filling slopes for X yielding a 3–manifold with a co-orientable taut foliation
which is transverse to the Dehn surgery core and has zero Euler class. Let x be the Thurston norm of a
generator of H2.X; @X /. If x ¤ 0, then [19, Theorem 5.2] says that

(i) outside the interval .�x=k � 1;x=kC 1/, S may contain only � and the integer slopes;

(ii) S is nowhere dense in R[f1=0g. In particular, it is nowhere dense in .�x=k � 1;x=kC 1/.

To apply Hu’s theorem, fill all but one of the boundary components of M ı
' . Since M ı

' is a pseudo-Anosov
suspension, it is a cusped hyperbolic manifold. Therefore, for a generic choice of slopes, the result of
filling is a 1–cusped hyperbolic manifold which we call X . Suppose further that X is a Q–homology
solid torus; otherwise, any filling of X has b1 > 0 and we can find a left-ordering by other means. Let x

be the Thurston norm of a generator of H2.X; @X /. By hyperbolicity, x ¤ 0. Therefore, X satisfies the
hypothesis of Hu’s theorem. The foliations of Construction 3.2 are transverse to the Dehn surgery core
because the core is transverse to the monkey saddles. Thus, in a generic choice of filling slopes for X ,
the foliations of Construction 3.2 have nonzero Euler class.

As an example, take the figure-eight knot complement. In this case, x D 1. By Hu’s result, our foliations
have nonzero Euler class for filling slopes outside .�2; 2/[Z.

4 Structure of branching in L

Let L be the leaf space of the lift zF of F to eM'.pI q/. In this section, we roughly prove that “all
branching in L happens in the saddle regions”. These results are not logically required for the proof of
the main theorem (and indeed do not hold in full generality), but are interesting in their own right and
provide motivation for subsequent constructions.

In this section, we make the following assumption:

Assumption 4.1 All the monkey saddles used in the construction of F have at least four sides.

In the case where all the monkey saddles have two sides, the resulting manifolds carry Anosov flows.
The branching in their invariant foliations was analyzed in [15].

Recall that for a taut foliation, the leaf space of the universal cover is a simply connected (possibly
non-Hausdorff) 1–manifold. Each leaf of the universal cover is homeomorphic to a plane, and its stabilizer
under the action of �1 by deck transformations is the fundamental group of the projected leaf in M'.pI q/.
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Two points in L are said to be nonseparated if they coincide in the Hausdorffification of L. A branch
locus is maximal set of at least two points in L that are pairwise nonseparable; see [8, Chapter 4].

Proposition 4.2 Assume Assumption 4.1. For each orbit Ki there are two branch loci called BCi and
B�i (unique up to covering transformations) each of which is finite and has pi points corresponding to
coherent lifts of the positively or negatively oriented walls of the filling saddle region. Moreover , these
are all of the branch loci of zF up to covering transformations.

Proof The core of a saddle region is a curve transverse to F and is therefore noncontractible. Therefore,
the S1 worth of saddle-like leaves in a saddle region lifts to an R worth of saddle-like leaves (plus
translates thereof) in zF . This R worth of leaves limits to lifts of the positive (resp. negative) walls in the
C1 (resp. �1) direction, so the positively (resp. negatively) oriented walls of a saddle region form a
branch locus. We choose one of the translates of this branch locus and call it BCi (resp. B�i /.

To show that there is no branching elsewhere, it suffices to show that any curve can be “pulled tight”
relative to F so that it is transverse to F except for controlled intervals in G. Roughly speaking, our
strategy will be to pull 
 tight relative to the natural Solv metric on ƒ0.

We say that an arc in G with endpoints on the interior of the walls in @G is inessential if it can be
compressed into a wall of @G, and essential otherwise. An essential arc with endpoints in oppositely
oriented walls can be homotoped in G rel boundary to be transverse to F , while an essential arc with
endpoints in similarly oriented walls can be homotoped in G rel boundary to have a single tangency
with F . An essential arc of the latter type lifts to a short curve in L that connects two points in B˙i . It
suffices to show that any curve 
 with endpoints on leaves �1; �2 can be homotoped in M'.pI q/ relative
to its endpoints so that either

(i) 
 is transverse to F except for finitely many tangencies, each of which is contained in an essential
subarc of 
 in G, or

(ii) �1 D �2 and 
 lies inside �1.

We call such a curve efficient. Moreover, we can without loss of generality assume that �1 and �2 are
walls of G. For, suppose that z�1 and z�2 are nonseparated leaves of eF in a branch locus not equal to
one of the B˙i . We may choose z�1 and z�2 to be adjacent, meaning that there is a family of leaves
fz�tgt>0 limiting to both z�1 and z�2. Adjacency is a stronger condition that nonseparatedness, but a
pair of nonseparated leaves can be connected by a sequence of adjacent leaves; we direct the reader to
[8, Example 4.44, page 170] for further discussion. Without loss of generality, assume that z�t approaches
z�1 and z�2 from above in L as t ! 0. Any path z
 � eM'.pI q/ from z�1 to z�2 descends to a path 
 in
M'.pI q/ that cannot be homotoped in M'.pI q/ rel endpoints to become efficient. Since F is taut, we
can augment the beginning of 
 with a descending transversal from �1 to a wall of G. Similarly, we can
augment the end of 
 with a descending transversal from �2 to a wall of G. This resulting path is also not
homotopic in M'.pI q/ to an efficient one, but has endpoints on walls of G.
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Given any arc 
 with endpoints in leaves �1; �2 which are walls of G, we may homotope it in M'.pI q/

so that it intersects @G transversely on the interior of the walls. Define

� Ntan as the number of tangencies between 
 and F in M'.pI q/ nG,

� Ness as the number of components of 
 \G that are essential,

� Niness as the number of components of 
 \G that are inessential.

Define the complexity function

I.
 /DNessC 1:01NtanC 1:02Niness:

Now choose 
 in its relative homotopy class to minimize I.
 /. With this choice, we claim that Ntan D

Niness D 0.

Suppose Niness > 0. Then we can compress an inessential arc in G. This decreases Niness by 1 at the cost
of increasing Ntan by one, violating the minimality assumption.

Now suppose that Ntan > 0. Then there is a component 
0 of 
 \ .M'.pI q/ nG/ containing a tangency
with F . The suspension flow of ' blows up to a flow X on M'.pI q/ nG which

(i) is transverse to the fibering M'.pI q/ nG! S1,

(ii) preserves ƒ, and

(iii) exits through the interstitial annuli (ie the annuli in @G \ @I) in forward time and exists for all
backwards time.

We can arrange that 
0 lies in a single fiber surface S of the fibering. We can do this by pushing 
0

backwards along the flowlines of X into some choice of fiber surface S . This possibly slides 
0.0/ and

0.1/ along their respective walls of G, but does not change the complexity function. Using Lemma 2.5,
we may replace 
0 with an arc 
 0

0
having the properties that

(i) 
 0
0

is in the support of ƒ0,

(ii) 
 0
0

is homotopic to 
0 rel endpoints, and

(iii) the number of tangencies of 
0 with F is equal to the number of tangencies of 
 0
0

with ƒ0.

The pseudo-Anosov structure of ' gives rise to a locally Euclidean Riemannian metric on the surface
with boundary ƒ0\S . Pull 
 0

0
tight relative to this metric. Note that this tightening happens completely

inside the surface S . Since the leaves of ƒ0\S are geodesics (ie locally straight lines) with respect to
this metric, the number of tangencies between 
 0

0
and ƒ0 does not increase during tightening. We have

the following cases:

� 
 0
0

tightens to a geodesic and is not contained in a single leaf of ƒ0. Since the leaves of ƒ0\† are
geodesic, 
 0

0
cannot have any tangencies with leaves of ƒ0. Thus, using Lemma 2.5 we can also

homotope 
0 to be transverse to F and decrease Ntan.
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Figure 4: Various tightening moves.

� 
 0
0

tightens to an arc contained in a wall of @G0. Note that distinct components of the guts have
distinct boundary leaves, so this arc is really contained in a single wall of some component of G0. If

0 D 
 , then by the correspondence in Lemma 2.5 we have successfully compressed 
 into a leaf
and we’re done. Otherwise, using the correspondence in Lemma 2.5, we can compress 
0 into G
which reduces Ntan by 1. If 
0 shares an endpoint with 
 , then NessCNiness remains constant. See
Figure 4, top right. Otherwise, NessCNiness decreases by one (although each could individually
increase). Therefore, the complexity function decreases. See Figure 4, bottom left, for an example
in which Ntan decreases from 1 to 0 and NessCNiness decreases from 2 to 1.

� 
 0
0

approaches G0 during tightening. Then there is a subarc of 
 0
0

which wraps around @G0, making
contact along a subarc of Euclidean angle > � . Walking around the singularity, one meets a prong
every � radians. Thus, the arc will cross at least two prongs of the singularity. This arc must
have a tangency to ƒ0. Push � of the corresponding subarc of 
0 into G so as to decrease Ntan

by exactly one. See Figure 4, bottom right. We claim that the new arc created is essential so that
Ness increases by one. This fact crucially uses the assumption that the saddle region is an ideal
n–gon bundle for some n� 4. A pair of walls of such a saddle region which are separated by two
prongs must have distinct lifts in the universal cover of the solid torus saddle region. Therefore,
the endpoints of the newly created arc in G lie in different walls in this Z–cover and so the new arc
is essential. In total, the complexity function has decreased.
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It follows that the minimizer 
 has NtanDNinessD 0, so every tangency between 
 and F occurs inside an
essential arc in G. Finally, we pull each component of 
 \G tight so as to contain either 0 or 1 tangencies
with F . The arc 
 is now efficient.

Remark 4.3 Although Construction 3.2 works more generally for manifolds with a pseudo-Anosov
flow having orientable invariant foliations, Proposition 4.2 does not hold. For example, there are many
manifolds supporting Anosov flows whose invariant foliations have branching [15]. The existence of a
Solv metric on M' nG and the presence of “negative curvature” in G from Assumption 4.1 are crucial.

Proposition 4.4 Assume Assumption 4.1. The stabilizers of BCi and B�i in �1.M'.pI q// are both
equal to the infinite cyclic group Stab B˙i generated by a conjugate to the Dehn filling core Ki.pI q/.
Stab B˙i preserves a circular order on the points of BCi .

Proof Let R be the relevant saddle region. Observe that Stab RD Stab BCi D Stab B�i . Every leaf in
R is homeomorphic to a plane, and so has trivial stabilizer. Therefore, there is at most one element of
Stab R mapping between lifts �1; �2 2 zF of a leaf � 2R. There is always a power of Ki.pI q/ which
accomplishes this transformation, so Stab R consists only of such elements. The circular order on walls
is the order in which they appear as sides of a fiber of the ideal polygon bundle structure on R.

Let us now recall a standard fact about periodic orbits of '.

Lemma 4.5 The nonplanar leaves of ƒ are all cylindrical. Moreover , they are in correspondence with
primitive periodic orbits of '. This correspondence is k-to-one for the leaves intersecting @G, where k is
the number of walls of the incident component of G. It is one-to-one for all other leaves.

Proof In what follows, we regard the various prongs of a singular leaf of Fs or Fs \† as separate
leaves. Since ' preserves no closed curve, the intersection of any leaf in Fs with † is either a prong
(homeomorphic to Œ0;1/) or a copy of R. Leaves of Fs with nontrivial topology are suspensions of those
leaves of Fs \† which are preserved by some power of ', and hence are homeomorphic to cylinders.
Since ' is pseudo-Anosov, its action contracts lengths in each leaf of Fs \†. A contraction on Œ0;1/
or R has a unique fixed point, so each cylindrical leaf of Fs contains exactly one primitive orbit of the
suspension flow of '.

Conversely, the suspension of a primitive periodic orbit of ' is either contained in a unique leaf of Fs or
is a singular orbit contained in two or more prongs.

We obtain ƒ from Fs by splitting open the leaves of Fs which contain orbits in fKig. This has the effect
of doubling such leaves and then gluing any leaves of the form Œ0;1/�S1 in pairs; the conclusion of
the lemma follows for the leaves intersecting @G. All other leaves are preserved in the passage from Fs

to ƒ.
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Proposition 4.6 Assume Assumption 4.1. No element of Stab B˙i stabilizes any point in the Hausdorff-
ification of L aside from BCi and B�i .

Proof Stab B˙i is generated by a loop freely homotopic to the Dehn surgery core Ki.pI q/. The stabilizer
of a cylindrical leaf in ƒ is represented by a loop freely homotopic to the suspension of a periodic point
of '. We must show that there are no nontrivial free homotopies among loops Ki.pI q/ (or powers
thereof) or suspensions periodic orbits of ' (or powers thereof). Call the set of these curves O. For
simplicity, we replace each Ki.pI q/ with a power thereof that is homotopic to one living inside a wall of
@G.

First, we rule out a nontrivial homotopy between two curves in O that stays inside M'.pI q/ nG. Now
M'.pI q/ nG embeds in the fibered manifold M' so that the elements of O are suspensions of periodic
orbits of '. Since ' is pseudo-Anosov, these suspensions are never homotopic to one another.

Now we must rule out a nontrivial homotopy between curves in O that might pass through the guts G.
The idea is that the saddle regions contains lots of negative curvature, but an annulus giving rise to the
purported homotopy has Euler characteristic zero and therefore can’t cut across any saddle region. To be
more precise, let 
 and � be two elements of O. Suppose 
 is homotopic to � in M'.pI q/. Replacing 

and � by 
 k and �k if necessary, we can assume that 
 and � both lie in leaves of F . Let AD Œ0; 1��S1

and choose an immersion � WA!M'.pI q/ realizing a homotopy from 
 to �. By Roussarie [25] and
Thurston [26], we can homotope the annulus so that the induced foliation has no critical points. We can
also make A transverse to @G and the corners of @G. Let C D ��.@G/; by our transversality conditions,
C is a collection of disjoint closed polygonal curves in A. Choose � to minimize number of components
of C .

Case 1 C contains an innermost loop ˛ that is inessential in A. Let D be the disk in A bounded by ˛.
The boundary of D is a 2n–gon with sides alternating between arcs transverse to the foliation and arcs
tangent to the foliation. Here, 2n is the number of corners of @G that @D intersects. Moreover, the angles
between adjacent arcs are all convex or all concave, depending on whether int D lies inside or outside G.
See Figure 5, left, for a picture of the convex case with nD 4. The foliation on D is oriented and has no
critical points. An application of the Poincaré–Hopf index theorem shows that nD 2�.D/D 2 in the
convex case, or nD�2�.D/D�2 in the concave case, which is impossible. Since every saddle region
is an ideal polygon bundle with fiber having at least four sides, a meridian in @G crosses at least eight
corners. Therefore, ˛ is not a meridian or a multiple of a meridian. Furthermore, ˛ cannot be homotopic
to a multiple of a core of G since ˛ is zero in �1.M'.pI q//. Therefore, ˛ must be inessential in @G. We
can then compress D into @G (while maintaining Roussarie–Thurston general position) and eliminate the
curve ˛ from C , contradicting our minimality assumption.

Case 2 C contains only loops that are essential in A. Let ˛ be any element of C . As in the first case,
˛\A alternates between arcs between transverse and tangent to F , and the angles between adjacent arcs
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Figure 5: The annulus A is shown along with the induced foliation in a neighborhood of ˛ in two
disallowed configurations. If ˛ crosses the sutures in @G as shown, there is no way to extend the
foliation to the rest of A without critical points, contradicting Roussarie–Thurston.

all either convex or concave depending on which side of ˛ is on the interior of G. Let n be the number of
alternations between transverse and tangent arcs in ˛. See Figure 5, right, for the case nD 4. Let R be
the annulus cobounded by 
 and ˛. Since F \R has no singularities, we have nD 2�.R/D 0 and we
must be in the convex case. Thus, ˛ actually intersects no corners of @G and is either entirely transverse
to F (ie is contained in a suture of @G) or is contained in a wall of G. Moreover, ˛ is not contractible
in @G since ˛ is homotopic in M'.pI q/ to 
 which is even noncontractible in M'.pI q/. Therefore,
˛ is a closed curve parallel to the sutures in some component of @G.

The arguments above hold for any ˛ 2 C . The curves in C cut A into a collection of annuli which we
label A1; : : : ;AM . Each Ak is either an annulus living in M'.pI q/ nG or an annulus in G. In the first
alternative, Ak represents a free homotopy in M'.pI q/nG; as noted at the beginning of the proof, the two
boundary components of such an Ak must represent the same element of O. In the latter alternative, we
can trivially make the same conclusion. Therefore, 
 and � represent the same element of O, as desired.

5 Gluing branches

In this section, we give some motivation for the constructions in Section 6. We wish to define on L an
equivalence relation, denoted by �, such that .L=�/ŠR.

5.1 Hausdorff and non-Hausdorff quotients

We first describe this gluing process in a simpler, abstract case where L is replaced by an infinite binary
tree T . Consider an infinite rooted binary tree T , each of whose vertices has a distinguished left and
right child. We think of T not combinatorially, but as a topological space. Let v0 be the root vertex of T .
Given a vertex v 2 T , let vL represent its left child and vR represent its right child. We use the notation
fL;Rgk to denote the set of words of length k in the two letter alphabet fL;Rg. We use fractional powers
of R to denote points that are on edges of the tree; for example, vR

1
2 is the midpoint of the path Œv; vR�.

Then any point on the tree is of the form v0fL;Rg
kL˛ or v0fL;Rg

kR˛ for some k � 0 and 0� ˛ < 1.
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Figure 6: The red paths are of the form Œv; vLLL : : : / and the blue paths are of the form
Œv; vRRR : : : /. Points which are equivalent with respect to the gluing are marked with the same
number.

In order to illustrate the kinds of difficulties we will encounter in the next section, we will show two
superficially similar equivalence relations on T such that the quotient is Œ0;1/ in the first but is non-
Hausdorff in the latter.

Example 1 Let us define the first equivalence relation. At each vertex v, we glue the infinite paths
Œv; vLLL : : : / to Œv; vRRR : : : / together by the obvious map Œ0;1/! Œ0;1/ which preserves depths
of vertices. See Figure 6. This has the effect of collapsing the entire tree down to a copy of Œ0;1/.

Example 2 Let us construct a different equivalence relation such that the quotient is not Hausdorff.
At each vertex v 2 T we glue the infinite descending paths Œv; vLRRR : : : / and Œv; vRLRRR : : : /

by a homeomorphism which sends Œv; vL� to Œv; vRL� by a dilation by a factor of two, and sends
ŒvL; vLRRR : : : / to ŒvRL; vRLRRR : : : / by an isometry. See Figure 7. The points v0RnL are
identified for all n� 0. Therefore, Œv0; v0RRR : : : / is not properly embedded in the quotient space. It
turns out that the quotient space is not Œ0;1/ but a tree with infinite valence at each vertex. For example,
the points v0LL and v0RLL are not comparable in the partial order induced on the quotient. For points
a; b 2 T , let Œa� and Œb� denote their images in the quotient. Write a� b if a is an ancestor of b in T , and
Œa�� Œb� if Œa� is an ancestor of Œb� in the quotient. The interested reader is invited to show the following,
which give a precise picture of the quotient of T with respect to our second gluing.

(i) Each equivalence class under the gluing has a canonical representative of the form v0fL;Rg
kLLRs ,

v0LRs , or v0Rs for some s � 0.

(ii) Suppose a and b are canonical representatives of their equivalence classes. Write aD rWRs for
some word W in L and R, and s 2R maximal. Then Œa�� Œb� if and only if one of the following
holds:

(a) a� b.

(b) W is the empty word and v0WRnL� b for some integer n� s.

(c) W DW 0L and v0W 0RkLL� b for some integer k � 0.
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Figure 7: Two paths that are to be glued together, Œv0; v0LRRR : : : / and Œv0; v0RLRRR : : : /,
are shown in red and blue respectively. Dotted lines are drawn through the equivalence classes 2, 20

and 200. These classes map to nonseparable points in the quotient. Their canonical representatives
are v0LL, v0RLL and v0RRLL. For any s � 0, the point v0LRs , marked with the label
2� 1=2s , is a common ancestor of all three of these points in the quotient. Moreover, as s!1,
v0LRs converges to all three of these points, so the space is not Hausdorff.
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5.2 Gluing branches in L

We wish to perform a similar gluing on the leaf space L. The leaf space should be thought of as a kind of
tree, but possibly with a dense set of branching points. There are two new features in this case. First,
there may be branching in both the upward and downward directions. Second, we must do this gluing in a
�1–equivariant way so that the action of �1 will descend to the quotient L=�. The gluings we performed
in the case of the binary tree are equivariant with respect to the semigroup of isometric self-maps of the
binary tree which preserve the left and right children at each node. More care will be required in L since
the stabilizer of a branch point may be nontrivial.

Let bi be a generator for Stab B˙i . Let ai be the smallest positive integer such that b
ai

i stabilizes Bi

pointwise. In other words, ai is the integer such that b
ai

i is freely homotopic to the essential loop in a
wall of G. We fix the orientation of bi by asking that the pushoff of b

ai

i to the outside of G has negative
intersection number with †. With this choice, the holonomy of F on the outside of G along a curve freely
homotopic to b

ai

i is always attracting. This implies that the action of bi
ai on the leaf space is locally

expanding.

For each x 2 BCi (ie a lift of a wall of a saddle region), let .x;1/�L be the lift to L of the transverse
loop obtained by pushing the essential loop in x slightly outside the saddle region corresponding to BCi .
Another way to think of .x;1/ is as the path in L corresponding with the set of leaves of zF intersecting
a prong of the unstable invariant foliation Fu. Let Œx;1/D fxg[ .x;1/. The paths fŒx;1/ j x 2 BCi g

will play the role of the paths Œv; vRRR : : : / or Œv; vLLL : : : / in the case of the binary tree.

Lemma 5.1 The set Œx;1/ is a b
ai

i invariant path from x to1 in L. Furthermore , bai acts on Œx;1/
by an expanding dilation fixing x.

Proof Since .x;1/ is a lift of a loop homotopic to ai times the core of the corresponding saddle region,
Œx;1/ is b

ai

i invariant. Suppose Œx;1/ had a greatest lower bound y. Then either y and bai y are distinct
nonseparated leaves or y D bai y. By Proposition 4.6, this never happens. Therefore, Œx;1/ is properly
embedded in L. Since the holonomy around the essential loop in x is repelling on the outside of G and
b

ai

i has no fixed points in Œx;1/ besides x, it must be that b
ai

i acts by a homeomorphism conjugate to a
dilation with stretch factor > 1.

Call Œx;1/ the invariant path at x. We are now ready to give a first attempt at defining the equivalence
relation � on L.

Construction 5.2 Recall that BCi is an arbitrarily chosen representative among its translates by deck trans-
formations. For each point x in the branch locus BCi (resp. B�i ), construct the upward (resp. downward)
oriented path Œx;1/�L from x toC1 (resp. �1), which is invariant under b

ai

i as in Lemma 5.1. Now
bi acts on

S
x2B

C

i
Œx;1/. We shall now glue together the various paths in the set fŒx;1/ j x 2BCi g. Up
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Figure 8: On the left, the action of bi on
S

x2O Œx;1/ is shown for the case ai D 3. Here,
O D fx1;x2;x3g � B�i . The action of bi descends to the quotient by �. This action on the
quotient is shown on the right.

to reparametrizing Œx;1/, we can assume that b
ai

i acts on each Œx;1/ by dilation by a factor 2ai . For
each x 2 BCi , each y 2 Œx;1/ and each m 2 Z, declare y � .1=2m/bm

i y. This has the effect of gluing
together the paths fŒx;1/ j x 2 Og for O � BCi an orbit of the Stab BCi action on BCi . See Figure 8.
The action of bi descends to the quotient L=�. In the quotient, bi acts on Œx;1/=� as a dilation by a
factor of 2.

We have now glued together Œxi ;1/ and Œxj1/ whenever xi ;xj are points of BCi lying in the same
orbit of the Stab BCi action. However, the Stab BCi action on BCi may not be transitive. For example,
consider the case when Ki is an untwisted orbit with 2k prongs. In the nonsingular case k D 1, we have
jBCi j D jB

�
i j D 1. In the singular case k > 1, the action of bi on BCi is not transitive because it does not

permute the k points in BCi . We also wish to additionally glue those paths when xi and xj are in different
orbits. Moreover, we wish to do this in some bi equivariant way. Observe that the induced action of bi

on the quotient is the same on Œxi ;1/=� and Œxj ;1/=�; both induced actions are expanding dilations.
Thus, when xi and xj lie in different orbits, we simply choose some gluing map from Œxi ;1/ to Œxj ;1/

that intertwines their respective Stab BCi actions.

In total, we have glued together jBCi j semiinfinite paths from BCi to1 together in a Stab B˙i –equivariant
way. Perform this gluing procedure for B�i as well. Finally, we perform a gluing at each of the translates
of B˙i in the way dictated by �1–equivariance. This concludes the construction.

Note that if x � y, then gx � gy for any g 2 �1.M'.pI q//. Therefore, Construction 5.2 gives a
�1–equivariant equivalence relation � on leaves. Unfortunately, L=� is not homeomorphic to R due to
a phenomenon like that of Figure 7. In Section 6, we present a coarsening of this equivalence relation
which finishes the job.
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6 The flat connection yJ

We prove the main theorems in this section. Recall that M ı
' DM' n fKig. Our first goal is to construct a

trivial S1–bundle (with structure group HomeoC.S1/) on M ı
' with a flat connection J whose monodromy

around the filling curves on the toroidal ends is trivial. This S1–bundle will lift to an R–bundle with a
flat connection yJ having the same property.

For the purposes of defining J and proving Theorem 1.1, we will need only the singular foliations Fu

and Fs . The foliation F will figure in the proof of Theorem 1.2 where we make use of the fact that F
blows down to Fs .

6.1 Preliminaries on connections and partial connections

We will use the following convention throughout the rest of the paper.

Convention 6.1 (concatenation of paths) Let X be a topological space. Given paths 
1 and 
2 in X ,
we define their concatenation 
1 � 
2 to be the path which first follows 
1, then follows 
2. We use �
as multiplication in �1.X /. With this convention, the action of �1.X / on zX by deck transformations
is determined as follows. Choose a basepoint x0 2

zX . For any g 2 �1.M / and q 2 zX , let 
1 be a path
representing g and let 
2 be a path in X that lifts to a path from x0 to q. Then 
1 �
2 lifts to a path from
x0 to gq.

Let B be a topological space. Given a topological bundle F ! E
�
! B, a connection H is a choice

of a homeomorphism H
 W ��1.
 .0//! ��1.
 .1// for each continuous path 
 W Œ0; 1�! B. These
homeomorphisms are required to be independent of the parametrization of 
 and to satisfy functoriality
conditions with respect concatenation of paths. We refer to H
 as parallel transport along 
 with respect
to H. The functoriality conditions are:

(i) H
�� DH� ıH
 , where � and 
 are concatenable paths in B, and 
 �� is their concatenation.

(ii) H
�
�1 D id, where 
�1 is 
 traversed backwards.

(iii) Parallel transport along a trivial path is the identity map.

Said in a different way, let C be the category whose objects are topological spaces homeomorphic to F

and whose morphisms are homeomorphisms. An F–bundle over B assigns to each point x 2 B the
fiber over x which is an object in C. A connection is an extension of this assignment to a functor from
the groupoid of paths in B to C. This perspective will be useful because we will sometimes specify a
connection by defining it on a set of generators for the groupoid of paths in B. We might also replace the
groupoid of paths in B with a slightly larger but equivalent groupoid.
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Remark 6.2 For the purposes of this paper, we will not need to ask that H
 is close to the identity
when 
 is a short path. Thus, our definition of a connection makes sense even in the absence of a local
product structure on the bundle. This is useful because we will actually use a connection to define the
local product structure.

A connection is called flat if H
 D id whenever 
 is contractible. A flat connection gives rise to a
homomorphism of �1.B/ into Homeo.F / defined by Œ
 � 7!H�1


 for Œ
 � 2 �1.B/.

A section of � is called flat with respect to H or H–flat if H
 .s.
 .0///D s.
 .1// for all paths 
 W Œ0; 1�!B.
When H is understood, we will suppress mentioning it and simply say that a section is flat.

We may also refer to sections of � over a curve 
 W Œ0; 1�!B; this simply means a section of the pullback
bundle over Œ0; 1�. We will usually express such a section as a map s W Œ0; 1�!E. A flat section over a
path is also called a parallel section. For any path 
 W Œ0; 1�! B and x 2 ��1.
 .0//, there is a unique
parallel section sx over 
 satisfying sx.0/ D x. It is traced out by parallel transport of x along 
 . In
equations, this means sx.t/DH
 j

Œ0;t�
.x/, where 
 j

Œ0;t �
is the restriction of 
 to Œ0; t �.

A partial connection is similar to a connection except that the homeomorphisms H
 may not be defined on
all of ��1.
 .0//. A partial connection H is a choice of a homeomorphism H
 for each path 
 W Œ0; 1�!B

from some (topological) subspace of ��1.
 .0// to some subspace of ��1.
 .1//. The subspaces may
depend on the path 
 . The homeomorphisms are again required to be independent of the parametrization
of 
 and functorial with respect to composition of paths:

(i) H
��.x/ D H�.H
 .x// for all x 2 ��1.
 .0// at which the right side is defined. In particular,
H��
 .x/ is defined whenever the right side is defined.

(ii) H
�
�1.x/D x for all x 2 ��1.
 .0// at which H
 is defined. In particular, H
�
�1.x/ is defined
whenever H
 .x/ is defined.

(iii) Parallel transport along a trivial path is defined on the entire fiber ��1.
 .0// and is equal to the
identity map.

A partial connection is called flat if for each point x 2B and each compact set W � ��1.x/, there exists
a neighborhood U of x such that for every contractible path 
 W Œ0; 1�! U , H
 is defined on all of W

and agrees with the identity map.

Remark 6.3 In contrast with the case of flat connections, the monodromy of a flat partial connection
around a long, contractible loop need not agree with the identity map on its domain of definition.

A section is called flat with respect to a partial connection H if H
 .s.
 .0/// D s.
 .1// for all paths

 W Œ0; 1�!B along which H
 is defined on s.
 .0//. Define flat or parallel sections over paths analogously
to the case of connections. Given a path 
 W Œ0; 1�! B and a point x 2 ��1.
 .0//, one may attempt
to define a parallel section sx over 
 by sx.t/ D H
 j

Œ0;t�
.x/. However, the right side may fail to be
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��1.
 .0// ��1.
 .1//

Figure 9: The total space for the bundle is shown with the fiber direction vertical. Parallel sections
for the partial connection H are shown in red. Each parallel section is defined only for a limited
time.

defined for large t . In this case, let tmax .x/D supft jH
 j
Œ0;t�
.x/ is definedg. Then we say that the parallel

section sx blows up at time tmax .x/.

A flat partial connection is roughly the same thing as a foliated bundle, though we will not use that
language since the total space of our bundle may not a priori have a topology making it a manifold.

Example 6.4 A partial connection H on the bundle .0; 1/! .0; 1/�R!R may be defined as follows. For
any 
 parametrizing a curve in R that is monotonically increasing or decreasing, H
 is a homeomorphism
between an open subinterval of the fiber over 
 .0/ and an open subinterval of the fiber over 
 .1/. We
define H
 .x/ D xC 
 .0/� 
 .1/ for any x satisfying x 2 .0; 1/ and xC 
 .0/� 
 .1/ 2 .0; 1/. For 

which is not monotonically increasing or decreasing, H
 is defined by composition of monotonic paths.
In this case, the range and domain of H
 will be smaller than that specified in the formula. See Figure 9.

6.2 The partial connection J partial

Let †ı be a typical fiber of M ı
' , ie † punctured at its intersections with the Ki . M ı

' comes equipped with
transverse stable and unstable codimension 1 foliations Fs and Fu. It also has a natural incomplete Solv
metric g locally expressible as dt2C�tdx2C��tdy2, where x and y are local coordinates on †ı, �> 1

is the stretch factor of ', and t is the coordinate transverse to †ı. By the orientability constraints, we
may consistently establish cardinal directions north, south, east and west. We choose our orientations on
Fs and Fu so that Fs \†ı is oriented eastward and Fu\†ı is oriented northward. For us, a rectangle
will always mean a rectangle in a fiber surface free of singularities on its interior, with top and bottom
parallel to the east–west direction, and left and right sides parallel to the north–south direction. Recall
that we constructed F by splitting open Fs . Let †ıp be the fiber surface containing a point p.

A generalized leaf of Fu\†ı is one of

(i) a leaf of Fu\†ı which is not a prong, or

(ii) the concatenation of two prongs of Fu\†ı which meet at the same singularity and make an angle
of � , ie a limit of leaves of Fu\†ı approaching the singularity.
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p

� ı��1.peast/� ı��1.pwest/

Figure 10: The unstable foliation near a singularity with ki D 4. The fibers over pwest and peast

are each unions of two prongs.

We may similarly define a generalized leaf of Fu. The concatenation of two prongs P1 and P2 of Fu\†ı

incident with the same singularity q formally requires an extra dummy point since q itself is not a point
in M ı

' . We usually call the dummy point q� so that the generalized leaf is P1[ fq
�g [P2. If there is

more than one generalized leaf in play, we will use q��; q���, etc to denote their dummy points.

A point on a prong of Fu is contained in exactly two generalized leaves, but it would be better if each
point were contained in exactly one generalized leaf. Thus, we will formally double each point p on a
prong P of Fu into two points pwest and peast. The points pwest and peast should be regarded as points
in M ı

' infinitesimally perturbed to the west and east of P respectively. Let Z be the space obtained
from M ı

' by doubling each point on a prong of Fu. The open sets of the topology on Z are the pullbacks
of open sets in M ı

' under the obvious projection. Note that Z is not Hausdorff and not even T0 because
for any point p on a prong, pwest and peast are not topologically distinguishable. In Z, each point is
contained in exactly one generalized leaf of Fu. One can construct a path in Z from pwest to peast whose
image is the two point set fpwest;peastg; such a path should be interpreted as an infinitesimal path in M ı

'

crossing P from pwest to peast. As a consequence, Z is path-connected.

For any p 2Z, let †ıp be the fiber surface containing p. (Here we are abusing notation slightly by using
†ıp to refer to its lift to Z. Let

E� D f.p;y/ j p;y 2Z and y is on the generalized leaf of Fu
\†ıp which contains pg:

Let � WE� !Z be the projection map � W .p;y/ 7! p. Then � defines an R bundle over Z. Intuitively,
one should think of � as the R–bundle over M ı

' whose fiber over a point p 2M ı
' is the generalized leaf

of Fu\†ıp containing p.

Define the auxiliary map � W E� ! Z by .p;y/ 7! y. In practice, we visualize points in E� via their
images under � .
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 .1/

h
 .y0/

� ı��1.
 .1//� ı��1.
 .0//

y0
0

y0


 .0/

Figure 11: This is a picture in M ı
' . The leaves of F s are shown in red. The point h
 .y0/ lies

on the same stable leaf as y0. Moreover, there exists a path from y0 to h
 .y0/ in a leaf of F s ,
and this path is homotopic to 
 through paths connecting � ı��1
 .0/ to � ı��1.
 .1//. These
properties uniquely specify h
 .y0/. On the other hand, h
 is not defined at y0

0
.

Note that there is no obvious local product topology on E� , since the leaves of Fu diverge around every
singular point. We will eventually define a topology by using a flat connection in Section 6.4.

In the rest of this section, when there is no chance of confusion, we will conflate Z and M ı
' . This means

that we will think of pwest and peast as points in M ı
' , think of � as an R–bundle over M ı

' , and think of �
as a map from E� to M ı

' . We will also think of the path from pwest to peast in Z as an infinitesimal path
in M ı

' with distinct endpoints. Since M ı
' embeds in Z (for example by always choosing p 7!pwest when

p lies on a prong), a connection on Z restricts to a connection on M ı
' . Thus, we only gain generality by

working in Z.

For a curve 
 W Œ0; 1�!M ı
' , there is a partially defined map

h
 W � ı�
�1.
 .0//! � ı��1.
 .1//;

which we refer to as the holonomy of Fs along 
 . To define h
 , choose a lift of 
 to the leaf space of zFs .
(Here, zFs is a foliation on zM ı

' , obtained by lifting the restriction of Fs to M ı
' .) Choose a compatible

lift of � ı��1.
 .0// to a line embedded in the leaf space of zFs . Here, compatible means that the lift of
� ı��1.
 .0// agrees with the lift of 
 at 
 .0/. Similarly, choose a lift of � ı��1.
 .1// that agrees with
the lift of 
 at 
 .1/. Then for y0 2 � ı�

�1.
 .0//, we define h
 .y0/ to be the point in � ı��1.
 .1//

whose lift to the leaf space of zFs coincides with the lift of y0, if such a point exists. Note that h
 is only
defined on the subinterval of � ı��1.
 .0// whose lift intersects the lift of � ı��1.
 .1//. See Figure 11
for a picture in M ı

' .

Now we shall define a partial connection J partial on the bundle � . We initially define J partial on three types
of short paths which generate a dense set of paths in M ı

' . Whenever h
 exists, we define J partial

 so that

(1) � ıJ partial

 D h
 ı �:
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In other words, the �–image of a parallel section tries to stay on the same leaf of Fs . This is what happens
in type 1 and type 2 curves below. However, J partial will also be defined on some curves (type 3 curves
below) along which holonomy does not exist.

Type 1 Suppose 
 is a path in a generalized leaf � of Fu. In this case, we simply define J partial using
the holonomy of Fs . In z�ŠR2, the leaves of zFs \ z� (ie the lifts of flow lines of the suspension flow
of ') and the lifts to z� of the �–images of fibers of � form two transverse codimension-1 foliations. This
pair of foliations is topologically conjugate to the horizontal and vertical foliations of R2. It follows that
h
 is fully defined on � ı��1.
 .0//. We may thus define J partial


 as in equation (1). In other words, we
are pushing �–images of fibers of � along the suspension flow of '.

Type 2 Suppose R is a rectangle in †ıp for some p. Let 
 be a path in R from the east to the west side
of R. In this case, h
 identifies the east and west sides of the rectangle by the obvious isometry, so we
define J partial as in equation (1). (If an endpoint of 
 lies on a prong, then we make the same definition
of J partial


 regardless of whether the endpoint is infinitesimally perturbed to the east or the west. We also
allow the north or south side of the rectangle to contain a singularity.)

Type 3 Let p be a point on a prong P of Fu\†ıp , and let 
 be the infinitesimal path from pwest to peast.
Let q be the singularity terminating P . Let Peast and Pwest be the prongs at q adjacent to P so that

� ı��1.pwest/D P [fq�g[Pwest and � ı��1.peast/D P [fq��g[Peast:

Briefly conflating � ı��1.pwest/ with ��1.pwest/, let us define

J partial

 W P [fq�g[Pwest! P [fq��g[Peast

separately in two subcases:

� Type 3a If p lies to the south of q, then declare that J partial

 sends q� to q��, acts as the identity

on P , and stretches Pwest by a factor of �mi qi=pi , where .pi I qi/ is the surgery slope at the relevant
singularity and mi is the '–period of the singularity. Here, � is the stretch factor of ' and the
relevant metric is the singular Euclidean metric induced on z†ıp by the incomplete Solv metric g, as
introduced at the beginning of Section 6.2. It is instructive to look at Figure 13, which illustrates
how parallel sections over type 3a curves behave.

� Type 3b If p lies to the north of q, then make the same definition except that we use the inverse
stretch factor ��mi qi=pi instead.

Note that h
 is defined on P , but not on Pwest. Thus, we had some freedom to choose the dilation factors
in types 3a and 3b. Our choice is designed to make Proposition 6.8 work.

Now we will extend the definition of J partial to arbitrary curves in M ı
' . By composition of parallel

transport maps, we may define J partial for concatenations of type 1–3 curves. Given an arbitrary path 

in M ı

' , we may C 0 approximate 
 by a concatenation of type 1–3 curves. There may be many different
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ways to do this approximation, resulting in different parallel transport maps with slightly different domains
of definition; for example, a type 2 curve may be written as a concatenation of a type 2, type 3 and a type 2
curve. We define J partial


 by patching together all of these parallel transport maps. More precisely, for
x 2 ��1.
 .0//, we say that J partial


 .x/D y if there is a sequence of paths 
i from 
 .0/ to 
 .1/ such that

� 
i is a concatenation of type 1–3 curves,

� the sequence of paths 
i converges to 
 in the C 0 topology as i !1, and

� J partial

i

.x/D y.

Proposition 6.7 below guarantees that the various different C 0 approximations of 
 yield parallel transport
maps that agree on the intersection of their domains of definition. So J partial


 is well defined.

Remark 6.5 The definition of J partial along Type 3 curves is motivated by Construction 5.2. The images
in L of Pwest and Peast are paths the form Œx;1/ constructed in Section 5. The failure of J partial to be a
connection is analogous to the failure of L=� to be a line in Construction 5.2.

Definition 6.6 A commutator of type i and type j curves is a contractible loop formed by concatenating
four arcs which alternate between type i and type j curves.

Proposition 6.7 Given any point p2M ı
' and a compact subset W of ��1.p/, the monodromy of J partial

around sufficiently small contractible loops based at p formed by concatenating type 1, 2 and 3 curves is
defined on W and equal to the identity. It follows that J partial is flat.

Proof Without loss of generality, assume p 2 int �.W /. If p does not lie on a prong, then one can find a
tall, skinny rectangle R in †ıp containing a neighborhood of �.W /. Thicken this rectangle by " in the
direction transverse to †ıp . Now holonomy of transversals to Fs in R� .�"; "/ exists along all curves in
a neighborhood p, so the required monodromies are trivial in this case.

Suppose instead that p D pwest lies on a prong P �†ıp . This time, choose a tall, skinny rectangle Rwest

such that its east side contains �.W /. Choose another tall, skinny rectangle Reast such that its west side
contains �.J partial


 W /, where 
 is the type 3 curve from pwest to peast. Let U be an "–thickening of
Rwest[Reast in the direction transverse to †ıp. By construction, p lies on the interior of U .

We need to show that monodromy around a contractible loop in U based at p is trivial on W. The
null-homotopy of such a loop may be decomposed into disks whose boundaries are commutators of
type i and type j arcs. Moreover, we can arrange that the only commutators crossing P � .�"; "/ are
commutators of type 3 and type 1 arcs. This can be achieved by subdividing every type 2 arc crossing
P � .�"; "/ into a concatenation of a type 2 arc in Rwest� .�"; "/, a type 3 arc crossing P � .�"; "/ and a
type 2 arc in Reast� .�"; "/. This replacement only increases the domain of definition of the J partial. Any
commutator contained in Rwest � .�"; "/ or Reast � .�"; "/ has trivial monodromy on W. In particular,
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Figure 12

this includes any commutator involving a type 2 arc. So it only remains to check that the monodromy
around a commutator of a type 1 arc and a type 3 arc vanishes. Parallel transport along a type 1 arc which
moves a distance ˛ in the direction transverse to †ıp acts as a dilation by factor �˛ (relative to the induced
Euclidean metric on fibers). On the other hand, parallel transport along a type 3 arc acts as a piecewise
dilation. These two maps commute, as desired. Finally, it’s easy to check that parallel transport along any
path 
 � U starting at p is defined on W.

Now we will prove one of the key properties that make our constructions work.

Proposition 6.8 The monodromy of J partial along a curve parallel to a filling slope on a toroidal end
of M ı

' is trivial. To be precise , let p be a point on an unstable prong incident to an end of M ı
' . For any

compact subspace W � ��1.p/, the monodromy of J partial around a small enough loop 
 based at p

and homotopic to the Dehn filling meridian is defined on W and equal to the identity.

Proof The boundary curve in N.Ki/ can be written as the suspension of a small perturbation of a
point in †\Ki under the map 'mi qi and an arc in †ı traveling a clockwise angle of 2�pi around the
singularity. Parallel transport along the first arc stretches distances by a factor of �mi qi . Roughly speaking,
the second arc contains pi subarcs of type 3b and pi subarcs which are (the inverse of) type 3a. Together,
J partial–parallel transport along these arcs produces a dilation of a factor of .��mi qi=pi /pi . Thus, the
composite monodromy is dilation by a factor �mi qi .��mi qi=pi /pi D 1.

In more detail, let us analyze parallel transport around a short arc traveling an angle of 2� around the
singularity. Figure 12 shows the foliation Fu \†ı near a singularity along with an arc 
 traveling an
angle of 2� around the singularity. The arc 
 is chosen so that 
 .0/; 
 .1=2/ and 
 .1/ lie on prongs of the
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stable foliation Fs \†ı (not shown). The �–images of half fibers of � are labeled P1; : : : ;P6, so that,
for example, � ı��1.
 .0//D P1[P2 and 
 .0/D P1\P2. We will abuse notation and use P1 to refer
to both a half leaf Fu\†ı and its �–preimage in ��1.
 .0//, and similarly for P2; : : : ;P6.

Let R1, R2 and R3 be rectangles bounded on the east and west sides by the Pi’s and the prongs of
Fu \†ı as shown shaded in Figure 12. We might not be able to make the rectangles arbitrarily long
in the north–south direction due to hitting other singularities. However, if 
 .0/, 
 .1=2/ and 
 .1/ hug
very close to the singularity, these rectangles can be chosen to be as long in the north–south direction,
as desired.

Restrict attention to points in the Pi such that the �–images of their parallel transports along 
 stay inside
R1[R2[R3. Call the set of such points N . For example, N \ .P1[P2/ is an interval containing 
 .0/.

Now 
 jŒ0;1=2� decomposes as a type 2 curve in R1, the inverse of a type 3a curve crossing the prong, and
a type 2 curve in R2. Therefore, J partial


 jŒ0;1=2�
maps P2\N to P3\N by an isometry and maps P1\N to

P4\N by a stretch by a factor ��mi qi=pi . (It is worth checking in Figure 12 that the prong is indeed
crossed from east to west, so 
 follows the inverse of a type 3a curve and the corresponding dilation
factor has negative exponent.) Similarly, 
 jŒ1=2;1� decomposes as a type 2 curve in R2, a type 3b curve,
and a type 2 curve in R3. Thus, 
 j

Œ1=2;1�
maps P4\N to P5\N by an isometry and P3\N to P6\N

by a stretch by a factor ��mi qi=pi . The composite J partial

 maps .P1[P2/\N to .P5[P6/\N by a

dilation of ��qi mi=pi . This justifies and makes precise the claim made in the first paragraph of the proof.

Finally, if we take 
 .0/, 
 .1/ and 
 .1=2/ to hug close to the singularity, then R1;R2 and R3 may be
made as long as needed, and in turn N may be made as large as desired. By the accounting of dilation
factors from the first paragraph, the monodromy of 
 is the identity on as large a subspace of ��1.p/

as desired.

6.3 Blowup time for parallel sections

Let 
 W Œ0;1/ ! †ı parametrize an eastward ray in a leaf of †ı \ Fs by arclength. (Here, we are
conflating †ı with its lift to Z, and will continue to do so without comment. So, for example, 
 .0/
might be of the form pwest or peast for some p on a prong.) Given a point x 2 ��1.
 .0//, recall from
Section 6.1 that one may attempt to construct a parallel section sx W Œ0;1/!E� with sx.0/Dx. However,
sx typically blows up in finite time and can only be defined over Œ0; tmax .x// for some tmax .x/ > 0. In
this section, we show that tmax is locally a homeomorphism from ��1.
 .0// to R.

Remark 6.9 In what follows, we will abuse notation and treat sx as a real-valued function of t whose
value is the signed north–south distance in z†ı from 
 .t/ to � ı sx.t/. Similarly, we will think of x as a
real number.
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singularity with magnification factor ˛i

sx.t0� "/� d

d

˛i.sx.t0� "/� d/

d


 .t0/
 .t0� "/ 
 .t0C "/

Figure 13: Constructing sx.t/ by pushing a fiber of � past a singularity, as seen in the image of
the developing map.

Recall that we defined � so that � > 1. We also assumed that pi all have the same sign. Without loss
of generality, we assume pi � 0. Let ˛i D �

mi qi=pi . Note that ˛i � 1. Let ˛max D maxi �
mi qi=pi . If

˛max D 1, then M'.pI q/ is fibered and there is no blowup of sections. So we assume that ˛max > 1.
Now we can define ˛min D minf�mi qi=pi j qi > 0g. We call a singularity magnifying if the associated
coefficient satisfies ˛i > 1. A ragged rectangle is the region in z†ı swept out by a interval in Fs \†ı

under the time t northward flow along Fu\†ı (ie the map that sends each point t units due north). It
looks like a rectangle with some vertical slits cut into the northern edge.

It is best to visualize all our constructions via the developing map D W z†ı ! R2, which is locally an
isometry. We can arrange that D.CFs \†ı/ and D.CFu\†ı/ are the horizontal and vertical foliations
of R2, respectively. Thus, the �–images of fibers of � also correspond to vertical lines in this picture.
Ragged rectangles project via D to honest rectangles. We can also arrange that the image of 
 is the
positive x axis.

Given x 2 ��1.
 .0//, the section sx.t/ may be constructed geometrically. If x > 0, push the vertical
segment Œ
 .0/; �.x/� eastward along 
 . The endpoint sweeps out the � image of the section sx.t/. See
Figure 13. Whenever the segment hits a singularity in orbit i at distance d from 
 .t/ with 0< d < sx.t/,
the segment continues on the other side with length dC˛i.sx.t/�d/. If x < 0, then the same procedure
works except that the new length of the segment is d C .1=˛i/.sx.t/� d/.

When x < 0, the section sx.t/ stays bounded for all time because 
 can be expressed as a composite of
type 2 and type 3b curves, neither of which increases jsx.t/j. On the other hand, when x > 0, sx.t/ grows
with t and possibly blows up. Lemma 6.10 below guarantees that we can expect many singularities to be
encountered during this procedure.

Lemma 6.10 There exists a positive constant � such that for every " > 0, there exists a large enough A"

so that every ragged rectangle of area A > A" has number of magnifying singularities in the range
Œ.� � "/A; .�C "/A�.
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Proof First, we may use the action of ' to turn any ragged rectangle of area A into a new ragged
rectangle of width O.1/ and height O.A/ having the same number of magnifying singularities. Now the
lemma follows from the ergodicity of the translation flow on flat surfaces. Masur’s criterion states that
the translation flow on a flat surface is ergodic whenever the corresponding flow on Teichmüller space
given by multiplying the metric by �

et 0

0 e�t

�
stays in some compact set; see [28, Section 3.7]. A pseudo-Anosov map corresponds to a closed orbit
under this flow. Therefore, Masur’s criterion is fulfilled.

We now define A� to be a constant large enough that every ragged rectangle of area A� contains a
magnifying singularity. We also remind the reader that in what follows, we are using the identifications
introduced in Remark 6.9.

Lemma 6.11 There exists a constant C independent of 
 such that whenever x > S > 0, sx.t/ blows
up in time tmax .x/ < C=S .

Proof By Lemma 6.10, a prong from a magnifying singularity intersects the image of 
 in †ı at
north–south distance < S=2 in time t <A� � .2=S/. Therefore,

(2) sx

�
2A�

S

�
>

S

2
C˛min

S

2
D

1C˛min

2
S:

Repeating the argument to find more nearby singularities, we find that

(3) sx

�
2A�

S

n�1X
iD0

�
1C˛min

2

��i�
>

�
1C˛min

2

�n

S

as long as the left side is defined. Taking n!1, we find that

(4) tmax .x/ <
2A�

S

�
1�

2

1C˛min

��1

:

The right side is of the form C=S , as desired.

Lemma 6.12 There exists a constant c independent of 
 such that whenever 0 � x < S , the section
sx.t/ exists for time c=S .

Proof By Lemma 6.10, we can choose a constant A� so that every ragged rectangle of area A>A� has
fewer than 2�A singularities. Choose c DA�=..˛max /

2�A� /. Choose any S > 0 and any 0� x < S .

Consider a ragged rectangle R whose southwest corner lies at 
 .0/ and which has an area A� , with
height .˛max /

2�A�S and width c=S DA�=..˛max /
2�A�S/. This ragged rectangle has fewer than 2�A�

singularities. Since jsx.t/j grows by at most ˛max each time it encounters a singularity, � ı sx.t/ does not
grow enough times to exit through the top of R. Therefore, sx.t/ exists for time at least the width of the
ragged rectangle, c=S .
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�.x/


 .0/

�
ı
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1
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.0
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 .tmax.x//

Figure 14: In this example, †ı D T 2, ' is the monodromy of the figure-eight knot, and the
surgery coefficient is .p1I q1/ D .5; 1/. This picture shows D. z†ı/ Š R2 with the 2–pronged
singularities of ' drawn as dots. Objects in † have been lifted to z†ı, and then projected to R2

via D; for convenience in labeling the picture, we identify objects with their images under this
procedure. Sections sx.t/ are shown in colors for various choices of x. These sections have been
projected to †ı by � , then lifted to z†ı, and finally projected to D. z†ı/. Whenever x 2 ��1.
 .0//

satisfies x < 0, the section sx.t/ exists for all time. When x > 0, sx.t/ blows up in finite time.

Proposition 6.13 The map tmax W fx 2 �
�1.
 .0// j x > 0g ! .0;1/ is surjective.

Proof We first show that the image of tmax is dense. For any t0 and any " > 0, Lemma 6.11 guarantees
that if x 2 ��1.
 .t0// is large enough, the parallel section over 
 passing through x will blow up before
t D t0C ". A section can always be extended backwards in time because as one travels west, the section
is always decreasing and positive. See Figure 14. Thus, we have found a section defined at t D 0 and
which blows up between time t0 and time t0C". Our choices of t0 and " were arbitrary, so tmax has dense
image.

Since tmax is nondecreasing and has dense image, it is surjective.

Proposition 6.14 The map tmax W fx 2 �
�1.
 .0// j x > 0g ! .0;1/ is injective.

Proof Choose x;y 2 ��1.
 .0//. Assume 0 < x < y. We want to show that sy explodes strictly
before sx .

Case 2 (sy.t/=sx.t/ is unbounded) Choose t so that sy.t/=sx.t/>C=c, where C and c are the constants
from Lemmas 6.11 and 6.12. By Lemma 6.11 with S D sy.t/, sy blows up before time t CC=sy.t/. By
Lemma 6.12 with S D sy.t/c=C , sx exists at time tCC=sy.t/. Therefore, sy explodes strictly before sx .
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Case 2 (sy.t/=sx.t/ stays bounded) Let ftj g be the sequence of times at which sx grows, and let bj be
the height of the singularity encountered at time tj . Note that 0< bj < sx.tj /. Let tj � " be a time just
before crossing the singularity and tj C " a time just after. This helps us avoid talking about sx.tj / which
is problematic since sx is discontinuous at tj . We have

sy.tj C "/� sx.tj C "/

sx.tj C "/
D
˛tj � .sy.tj � "/� sx.tj � "//

˛tj � .sx.tj � "/� bj /C bj
D

sy.tj � "/� sx.tj � "/

sx.tj � "/� bj .1� 1=˛tj /

D
1

1� .1� 1=˛tj / � bj=sx.tj � "/
�
sy.tj � "/� sx.tj � "/

sx.tj � "/
;

where ˛tj is the magnification factor at the singularity encountered at time tj . Since ˛tj > 1, we have
0< 1� 1=˛tj < 1. Since ˛tj takes on at most finitely many values, 1� 1=˛tj is bounded away from 0.
If bj=sx.tj �"/ is also bounded away from 0, then .sy.t/� sx.t//=sx.t/ grows by a factor bounded away
from 1. Since we assumed that sy.t/=sx.t/ remains bounded, we must have limj!1 bj=sx.tj � "/D 0.

Let N 2N and " > 0 be constants to be determined. Choose n large enough that bi=sx.ti/ < " for all
i > n. By Lemma 6.11, there exists m> n such that

.˛max /
N�1sx.tn/ < sx.tm/ < .˛max /

NC1sx.tn/;(5)

tm� tn <
C

sx.tn/
:(6)

Now consider the ragged rectangle R with base 
 .Œtn; tm�/ and height "sx.tm/. We have that

(7) Area.R/D "sx.tm/.tm� tn/ < "sx.tn/
C

sx.tn/
.˛max /

NC1
D C ".˛max /

NC1:

Since bj=sx.tj / < " for every j 2 Œn;m�, the ragged rectangle contains every singularity which the
section sx encounters between time tn and tm. Taking into account equation (5) and the fact that sx can
grow by a factor of at most ˛max each time it encounters a singularity, there must be at least N singularities
in R. Taking N large enough and then " small enough, we find a ragged rectangle of arbitrarily small
area containing arbitrarily many singularities. Such a rectangle may be extended northward to a ragged
rectangle of any desired larger area with at least as many singularities. This contradicts Lemma 6.10.

6.4 The full connection J

The uniqueness statements for blowup proven in the previous section suggest that we add a point at
infinity to each fiber of � , obtaining an new bundle S1 ! E…

…
!M ı

' . Via the embedding of fibers
of � into fibers of …, J partial is naturally a partial connection on … as well. We now define an honest
connection J on … which extends J partial, ie for all 
 �M ı

' , we have J
 D J partial

 on the domain of

J partial

 in …�1.
 .0//.

On a type 1 curve 
 , the domain of J partial

 is all of ��1.
 .0//. We define J in the only sensible way

which extends J partial, asking that J
 sends the point at infinity in …�1.
 .0// to the point at infinity in
…�1.
 .1//.
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� ı sx.t/

�.x/


 .0/

�
ı
�
�

1
.

.0
//

Figure 15: We continue the example from Figure 14. As before, we are drawing all objects lifted
to z†ı and then projected via D to R2. The figure shows the �–image of a parallel section for J
over a curve 
 oriented east–west. The curve 
 is drawn as a horizontal black line in the figure.
For any t , � ı��1.
 .t// would be a vertical line in the picture. The section is piecewise constant.
It starts out equal to s0, wraps around1 at t D tmax .x/, and continues as s1.

It remains to define J on curves oriented east–west, ie those in leaves of †ı\Fs which were considered
in Section 6.3. Such a curve may be represented as a (possibly infinite) concatenation of type 2 and
type 3 curves. Given 
 W Œ0; t �!M ı

' parametrizing an eastward interval in a leaf of †ı\Fs by arclength
and a point x 2…�1.
 .0//, let s0 be the parallel section over 
 traced out by parallel transport of x

along 
 using J partial. Suppose s0 blows up towards C1 at time tmax .x/. (When x D1, we say that
tmax .x/ D 0, and when x < 0 we have tmax .x/ D 1.) By Propositions 6.13 and 6.14, there exists a
unique parallel section s1 defined on .tmax .x/;1/ that blows up towards �1 as t approaches tmax .x/

from the right. We now define J in cases:

(8) J
 .x/D

8<:
s0.t/ if t < tmax .x/;

s1.t/ if t > tmax .x/;

1 if t D tmax .x/:

Proposition 6.15 J is flat.

Proof Consider three types of short arcs in M ı
' : eastward arcs, northward arcs and transverse arcs,

ie arcs contained in flowlines of the suspension flow of '. Every curve in M ı
' can be C 0 approximated by

Geometry & Topology, Volume 28 (2024)



Taut foliations, left orders, and pseudo-Anosov mapping tori 4223

� ı sx.t/


 .0/

�.x/

�
ı
�
�

1
.

.0
/

Figure 16: The �–image of a parallel section for J over a curve 
 of negative slope relative to
the stable foliation on †ı. This picture is drawn with the same conventions as in Figure 15. The
section sx intersects the1–section infinitely many times. To see this, first homotope 
 in †ı to
a curve which is piecewise southward or eastward with each straight segment having length at
least " for some " > 0. This does not change � ı sx , since J is flat. Since 
 had negative slope
and � ı sx is nondecreasing, the north–south distance between � ı sx.t/ and 
 .t/ increases to
C=" in finite time, where C is the constant from Lemma 6.11. By that lemma, sx blows up and
crosses the1–section within the next eastward segment of 
 . This process repeats indefinitely
and produces infinitely many intersections between sx and the1–section.

such curves. As in Proposition 6.7, it is enough to show that the monodromy of J around all commutators
is trivial.

First, let’s check that the monodromy around a commutator of eastward and northward arcs vanishes (ie
the monodromy around the boundary of a rectangle is trivial). Let 
1 and 
2 be the north and south sides
of the rectangle respectively. The �–image of any J partial–parallel section over 
1 is also the �–image of
a J partial–parallel section over 
2; this follows from flatness of J partial combined with the fact that the
�–image of a J partial–parallel section along any northward arc is a single point. A J –parallel section
is formed by patching together J partial parallel sections at their asymptotes according to equation (8).
Therefore, the �–images of J –parallel sections over 
1 are also �–images of J –parallel sections over 
2.
It follows that the desired monodromy is the identity.

Second, the commutator of northward and transverse arcs vanishes because both are type 1 curves.
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Finally, consider the commutator of a transverse arc of length " and an eastward arc 
 . Observe that the
entire construction of J
 for an eastward arc 
 is equivariant with respect to dilations in the north–south
or east–west directions, and in particular, a dilation by �" in the north–south direction and ��" in the
east–west direction where ". This is equivalent to the vanishing of the desired monodromy.

We can now rectify the lack of a good topology on E…. A flat connection gives a local product structure
on E…, so we endow E… with the corresponding local product topology.

… has a special section, called the1–section and denoted by r1, whose value at any point is the point
at infinity in the corresponding fiber. There is another section, called the zero-section and denoted by r0,
defined by the property

�.r0.p//D p for all p 2M ı
' :

Note that neither of these sections is flat with respect to J . Nevertheless, these sections are continuous.

Lemma 6.16 The1–section and the zero-section are both continuous sections of ….

Proof Lemma 6.12 gives a quantitative bound on how fast flat sections can explode to1 in the east and
west directions. In the north–south and transverse directions, flat sections do not blow up. It follows that
the graph of the1–section is closed and r1 is continuous.

Now let’s check continuity of the zero-section near a point p 2M ı
' . Take a neighborhood U of a point

p 2M ı
' which Fs and Fu foliate as products. The set

U 0 D fy 2E� j �.y/ 2 U; �.y/ 2 U g

is a neighborhood of r0.p/. Since holonomy of Fs exists for all transverse arcs in U , the topology on U 0

is just the standard product topology. The graph of the zero-section is clearly closed in this topology.

Lemma 6.17 The zero-section is flat over any leaf of Fs .

Proof This follows immediately from the way we defined J to agree with the holonomy of Fs in
equation (1). If � is a leaf of Fs and 
 is a path in �, then we have

h
 .
 .0//D 
 .1/;

J
 .r0.
 .0///D �
�1
ı h
 ı �.r0.
 .0///D �

�1
ı h
 .
 .0//D r0.
 .1//:

Proposition 6.18 The monodromy of J around a curve parallel to the Dehn filling slope on a toroidal
end of M ı

' is trivial. Moreover , a parallel section over such a curve has zero intersection number with the
1–section.

Proof Since J is a flat connection, the conjugacy class of its monodromy around a closed curve is
invariant under free homotopies of the closed curve. Thus, it suffices to show that the desired monodromy
around some freely homotopic curve is trivial. Fix a point p on an unstable prong incident to the

Geometry & Topology, Volume 28 (2024)



Taut foliations, left orders, and pseudo-Anosov mapping tori 4225

toroidal end. Consider a loop based at p freely homotopic to our curve. Proposition 6.8 tells us that the
monodromy of J partial around this loop is the identity, and moreover that the domain of J partial can be
made as large as we like by choosing the loop to hug very close to the toroidal end. Since J agrees with
J partial when they are both defined, we conclude that the monodromy is the identity for all points in the
fiber not equal to1. Since J is a bijection from …�1.p/ to itself, it must be equal to the identity at1
as well.

For the second statement, it suffices to check that just one parallel section of J has zero intersection
number with the1–section. Simply take any parallel section of J partial along the meridian; as noted in
the previous paragraph, such a section has no intersections with the1–section.

Proposition 6.18 guarantees that .…;J / extends to a bundle over M'.pI q/ with a flat connection.
Moreover, the1–section extends to a section over M'.pI q/. Thus, the Euler class of … vanishes and
the S1–bundle with flat connection .…;J / unrolls to an R–bundle with flat connection which we call
. y…; yJ /. We choose this unrolling so that the 1–section lifts to a section of y…. More detail on this
construction is provided in Remark 6.19.

Remark 6.19 Suppose X is a space with an S1 bundle S1! E …
�! X and a flat connection H. A

fiberwise cover of … is an bundle R! yE
y…
�! X along with projection map ˇ making the following

diagram commute:
R yE

S1 E X

mod 1 ˇ
y…

…

Fiberwise covers of … are classified by elements of H 1.E;Z/ which evaluate to 1 on each fiber. Such
an element exists if and only if the Euler class of … vanishes. By Poincaré duality, such elements are in
one-to-one correspondence with homotopy classes of sections of …. Given such a class ' 2H 1.E;Z/,
we may construct yE as the corresponding Abelian cover of E. Let ˇ W yE ! E be the corresponding
covering map and let y…D… ı b. Since ' evaluates to 1 on each fiber of …, the y… preimage of a point
in X is a copy of R as desired. Observe that under this construction, any section of E Poincaré dual to '
lifts to a section of yE. In the context of this article, we are using the fiberwise lift corresponding to the
1–section.

Suppose now that … is equipped with a flat connection H. Then on any fiberwise cover y…, there is an
induced flat connection yH. One may define yH as follows. A flat connection on the bundle … is the same
thing as a foliation of E by leaves transverse to the S1 fibers; the flat connection may be recovered as
holonomy of this foliation. The lift of this foliation to yE is transverse to the fibers of y…. Moreover, the
holonomy of the lifted foliation exists along any path 
 in the base. This holonomy map is what we call yH
 .

Proof of Theorem 1.1 The flat connection yJ provides a homomorphism from �1.M'.pI q// into
HomeoC.R/. This map is nontrivial since the monodromy around any closed orbit of the restriction of
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the suspension flow of ' to M ı
' is nontrivial; indeed, the monodromy of J partial around such a curve is a

dilation. Theorem 1.1 of [6] states that for fundamental groups of irreducible 3–manifolds, the existence
of any nontrivial map to a left-orderable group is equivalent to the existence of a left-ordering.

6.5 The fiber of y… and the leaf space

In this section we will prove Theorem 1.2. Our strategy is to construct a monotone map from the leaf
space of zF to a chosen fiber of y…. Before proceeding with the proof, we briefly summarize the relevant
constructions from the previous section. … is an S1 bundle over M'.pI q/ with trivial Euler class. J is
a flat connection on …. We defined a section r0 of … called the zero-section. The zero-section is defined
by the property that �.r0.p//D p. The R–bundle y… is a fiberwise cover of …, and is equipped with a
flat connection yJ .

Proof of Theorem 1.2 Let M ı
' be the lift of M ı

' to eM'.pI q/. We use bars to denote the lifts of objects
in M ı

' (for example Fs) to objects in M ı
' (for example Fs). Recall that L is the leaf space of zF . Let

K be the leaf space of Fs , where prongs incident with the same singularity are considered the same
leaf. This is the same as saying that K is the leaf space of the induced stable foliation in eM'.pI q/.
Let f1 W L! K be the monotone, �1.M'.pI q//–equivariant map which crushes each interval in L

corresponding with a lift of a saddle region down to a point.

By construction, the1–section of the S1–bundle … lifts to a section (not just a multivalued section) of
the R–bundle y…. Refer to Remark 6.19 for more discussion of this point. The zero-section is homotopic
to the1 section, so it also lifts to a section of y…. Choose such a lift and call it yr0.

Select a basepoint p 2M ı
' and a lift xp 2M ı

' . We define a monotone, �1.M'.pI q//–equivariant map

f2 WK! y…
�1.p/

as follows. For any leaf x� in Fs , choose a point xq on x� and a path x
 W Œ0; 1�!M ı
' from xq to xp. Let q, �

and 
 be the projections of xq, x� and x
 to M ı
' , and similarly let 
 be the projection of x
 to M ı

' . We now
define

f2.x�/D yJ 
 .br0.q//:

Since yJ extends to a flat bundle over M'.pI q/, this definition is independent of the choice of 
 in
its relative homotopy class in M'.pI q/. As discussed in Lemma 6.17, the zero-section is flat on �.
Therefore, our definition is independent of the choice of q on �. Finally, it’s easy to check that two
prongs of Fs corresponding with the same point in K have the same value of f2. One way to see this
is to connect two adjacent prongs by a short path 
p, note that h
p

.
p.0//D 
p.1/, and then argue as
in Lemma 6.17 that f2 has the same value on these two prongs. Then one could iterate to show that all
prongs incident to the same singularity have the same value of f2.
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Let’s check that f2 is �1–equivariant, ie that it intertwines the action on K by deck transformations and
the action on y…�1.p/ induced by yJ . Given g 2 �1.M'.pI q//, represent g by a loop 
2 in M ı

' based
at p. We remind the reader that g acts on y…�1.p/ as yJ 
�1

2
, as explained in Section 6.1. Now we have

f2.gx�/D yJ 
�
�1
2
.yr0.q// since 
 � 
�1

2 lifts to a path from gx� to xp,

D yJ 
�1
2
ı yJ 
 .yr0.q//

D yJ 
�1
2
f2.x�/

D gf2.x�/; since g acts on y…�1.p/ as yJ 
�1
2

.

Next, we will check that for any leaf � of Fs , there is an interval in K around � which f2 maps
homeomorphically onto an interval in y…�1.p/. (Though K is not a 1–manifold, the notion of interval
still makes sense: we mean the lift to K of an interval in M ı

' which is transverse to Fs .) Roughly
speaking, the local leaf space of Fs is homeomorphic to the local leaf space of Fs , and � gives rise to a
homeomorphism between the local leaf space of Fs and an interval in a fiber of y…. Finally, yJ gives a
homeomorphism from any fiber of y… to y…�1.p/. The function f2 can be expressed as a composition of
these maps, and hence is locally a homeomorphism.

In more detail, choose a short curve x
3 W Œ0; 1�!M ı
' that is transverse to Fs , lies in the strong unstable

foliation, and passes through the leaf �. Then x
3 parametrizes an interval in K containing �. We will
check that f2 is a homeomorphism on this interval. Let xq D x
3.1/. Let x
 be a path from xq to xp. Let 
 ,

3 and q be the projections of x
 , x
3 and xq to M ı

' . Since 
3 lies in the strong unstable foliation, 
3 is
the y�q–image of some curve 
4 in y…�1.q/. Here, y�q W

y…�1.q/!M ı
' is the composition of � with the

covering map y…�1.q/!…�1.q/. A priori, there are many choices for 
4 because the covering map
y…�1.q/!…�1.q/ is Z to 1. We eliminate this ambiguity by asking that

(9) 
4.1/D yr0.
3.1//:

Using the definition of J on the type 1 curve 
3, we have

� ıJ
3jŒt;1�
.r0.
3.t///D � ı r0.
3.t//D 
3.t/:

Therefore,

y�q ı yJ 
3jŒt;1�
.yr0.
3.t///D 
3.t/;(10)

yJ 
3jŒt;1�
.yr0.
3.t///D 
4.t/:(11)

A priori, equation (11) holds only up to deck transformations of the covering y…�1.q/!…�1.q/. However,
the normalization in equation (9) is designed so that equation (11) holds exactly.

Now let us compute f2 on the desired interval. For any t 2 Œ0; 1�,

f2.x
3.t//D yJ 
 ı yJ 
3jŒt;1�
.yr0.
3.t///(12)

D yJ 
 .
4.t//(13)

D yJ 
 .y��1
q .
3.t///:(14)
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In equation (12) we used that 
3jŒt;1� � 
 lifts to a path from x
3.t/ to xp. In (13), we applied (11).
In (14), we have used the fact that y�q restricts to a homeomorphism between the images of 
4 and 
3.
Equation (14) expresses f2 locally as a composition of the homeomorphisms yJ and y��1, so f2 is a
homeomorphism of x
3 onto its image as desired. The chosen leaf � was arbitrary, so it follows that f2 is
continuous and monotone. We conclude that the composition f D f2 ı f1 is a continuous, monotone,
�1.M'.pI q//–equivariant map. The �1.M'.pI q// action on the image is nontrivial, as noted in the
proof of Theorem 1.1.

Remark 6.20 The map f2 can be visualized quite cleanly in the setting of Figure 16. Extend 

linearly in both directions and choose p D 
 .0/. The vertical red lines (plus their completions at1)
are �–images of fibers of …. Lift these fibers to half-open subintervals of fibers of the R–bundle y….
Choose the lifts so that they intersect the zero-section in y…. Now parallel transport these subintervals to
y…�1.
 .0// along 
�1. The transported intervals are disjoint and cover y…�1.
 .0//. To be more precise,
let : : : ;x�1;x0;x1;x2; : : : be the lifts of the point x 2 …�1.
 .0// to y…�1.
 .0//. Parallel transport
along 
�1 maps the first vertical red line (viewed as a half-open interval in a fiber of y…) to Œx�1;x0/.
The second vertical red line is transported to Œx�2;x�1/, etc. During this parallel transport, the points at
˙1 of the vertical red lines follow the section sx drawn in the figure.

Therefore, the vertical lines (plus their completions at 1) contain a representative from each point
preimage of f2. The quotient of the leaf space we have constructed (ie y…�1.
 .0//) can now be seen as
the concatenation of all of the vertical red lines in Figure 16. This picture is analogous to that of the step
map in the setting of skew-Anosov flows: the vertical red lines are unstable leaves in the orbit space,
while the curved red arcs are analogous to stable leaves which make perfect fits with the unstable leaves.
See [1, Proposition 3.22] for a discussion of the skew-Anosov picture.

7 Computations

Building on work of Dunfield and Bell, we were able to find 2598 manifolds in the Hodgson–Weeks
census which can be constructed by a surgery satisfying the hypotheses of Theorem 1.1. This represents
about 44.7% of the 5801 non-L-spaces in the Hodgson–Weeks census; see Hodgson and Weeks [18] and
Dunfield [13]. Dunfield and Bell [3] found monodromies for many of the fibered, orientable 1–cusped
manifolds that can be triangulated with at most 9 tetrahedra. Using Bell’s program flipper [2], they
were able to find invariant laminations for about 25,700 of them. About 800 of these have orientable
invariant laminations and monodromy preserving these orientations. The first few such examples with
genus � 2 are listed in Table 1, left.

We used flipper to drill these manifolds along their pseudo-Anosov singularities and produce ideal
triangulations of the resulting many-cusped manifolds. Using SnapPy, we performed surgeries with small
coefficients on these manifolds satisfying the constraints of Theorem 1.1, and identified the resulting
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name genus

m038 2
m120 3
s090 4

v0224 5
m221 3

t00448 6
o9_00896 7

s173 4
v0248 6
m289 2

t00682 4
m305 2
s296 2
m310 3

t00707 3

name underlying fibered manifold volume

m003(-2,3) m004 0.981
m004(6,1) m004 1.284
m004(1,2) m004 1.398
m003(-3,4) v0650 1.414
m009(4,1) m023 1.414
m004(3,2) m004 1.440
m004(7,1) m004 1.463
m004(5,2) m004 1.529
m015(5,1) t03310 1.757
m009(5,1) m009 1.831
m009(-5,1) m009 1.831
m011(1,3) v1577 1.831
m009(1,2) m009 1.843
m007(-5,1) o9_31045 1.843
m006(-5,1) m009 1.941

Table 1: Left: the first few 1–cusped fibered manifolds with genus � 2 and monodromy satisfying
the conditions of Theorem 1.1. Right: the first few (closed) manifolds in the Hodgson–Weeks
census to which Theorem 1.1 applies.

manifolds in the Hodgson–Weeks census [12]. We found 2598 manifolds in the census, the first few of
which are shown in Table 1, right.

Dunfield [13] obtained orderability results for many manifolds in the Hodgson–Weeks census either by
constructing a taut foliation with vanishing Euler class or by constructing a PSL.2;R/–representation
that lifts to a ePSL.2;R/ representation. Table 2 shows the overlap in applicability between these methods
and ours.

8 Remarks and questions

� For which taut foliations does there exist a �1–equivariant, order-preserving map from the leaf space
of the universal cover to R? As a first step, we suggest the following conjecture:

Conjecture 8.1 Theorem 1.2 holds without the condition that the surgery slopes have the same sign.

This would greatly expand the scope of the results in this paper; for example, by [16] it would include
every 3–manifold carrying a transitive pseudo-Anosov flow with orientable invariant foliations. The
difficulty is that the some of dilation factors �mi pi=qi may be greater than 1 in absolute value while others
may be smaller than 1. Parallel sections are no longer monotonic as shown in Figure 14, and they might
blow up as t !C1 or as t !�1. A more detailed study of their dynamics in this case is necessary.
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Theorem 1.1 applies?
Yes No

Taut foliation or PSL.2;R/ representation Yes 1795 1730
with Euler class 0? No 803 1473

Table 2: The overlap in applicability between our method and previously used methods for
proving orderability on the non-L-space rational homology spheres in the Hodgson–Weeks census.

� Can the map f WL!R be upgraded to a strictly monotone map? We expect that f factors as

(15)
L R y…�1.p/

R R

�

f

�

where � is locally a homeomorphism onto its image, � is monotonic, and R is yet to be defined. The
composition f D �ı� collapses the leaves of each saddle region in L to a point. Therefore, R should be
obtained from y…�1.p/ by blowing up the f –image of a leaf in a saddle region to a closed interval. The
difficulty is that different saddle regions could conceivably map to the same point under f .

� What is the best possible analytic quality of the representations we have constructed?

� A generic pseudo-Anosov map will violate the orientability constraints of Theorem 1.1. For surgery
coefficients satisfying an appropriate parity condition, we expect that the methods of this paper may be
extended to give an action of �1 on R by possibly orientation-reversing homeomorphisms.

� What can be said about fillings along the degeneracy slope? Experiments suggest that these are
L-spaces, and hence do not carry taut foliations.
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