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Small-energy isotopies of loose Legendrian submanifolds

LUKAS NAKAMURA

We prove that for a closed Legendrian submanifold L of dimension n� 2 with a loose chart of size �, any
Legendrian isotopy starting at L can be C 0–approximated by a Legendrian isotopy with energy arbitrarily
close to 1

2
�. This in particular implies that the displacement energy of loose displaceable Legendrians is

bounded by half the size of its smallest loose chart, which proves a conjecture of Dimitroglou Rizell and
Sullivan (2020).

53D10

1 Introduction

In many situations it requires a positive amount of energy to connect two different Legendrian submanifolds
of a contact manifold via a contact isotopy. On the other hand, Murphy [6] showed that for loose
Legendrians the existence of a contact isotopy is a purely topological question. The goal of this paper is to
give an upper bound for the minimal energy that is required for Legendrian isotopies of loose Legendrians.

Let .M; ˛/ be a strict contact manifold of dimension 2nC1, and let L be a closed Legendrian submanifold.
This means that ˛ is a 1–form on M such that ˛^ .d˛/n defines a volume form, and L is everywhere
tangent to � WD ker˛ and of dimension n. The Reeb vector field R˛ is the unique vector field on M

defined by iR˛d˛ D 0 and ˛.R˛/ D 1. A Reeb chord of L is a flow line  W Œ0; l �!M of R˛ with
endpoints on L, and l > 0 is called the action of the Reeb chord.

We consider isotopies Lt , t 2 Œ0; 1�, of L through Legendrian submanifolds. It is a general fact that such
isotopies are always induced by an ambient contact isotopy �t of M , ie an isotopy of M that preserves �
(in fact, this even holds for parametrized Legendrians, see Geiges [5, Theorem 2.6.2]). We can associate
to �t its contact Hamiltonian H WM � Œ0; 1�!R, which is defined by the formula

(1) H.�t .x/; t/D ˛. P�t .x//;

where P�t .x/ denotes the time-derivative of �t .x/. Conversely, given a function H WM � Œ0; 1�! R,
which we may also view as a time-dependent function Ht WM ! R with t 2 Œ0; 1�, we can define its
time-dependent contact vector field XHt

via the equations

(2) Ht D ˛.XHt
/ and � dHt j� D iXHt

d˛j� :
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4234 Lukas Nakamura

The condition ˛^ .d˛/n ¤ 0 ensures that this defines a unique vector field. The flow of XHt
preserves � ,

and thus gives a contact isotopy �H
t . It is straightforward to check that these two correspondences

between functions on M and contact isotopies are inverse to each other.

To a contact isotopy �t and its associated Hamiltonian Ht we associate the energy

(3) k�tk˛ D kHtk WD

Z 1

0

max
x2M

jHs.x/j ds;

which induces a nondegenerate metric on the space of contactomorphisms as was shown by Shelukhin
[9, Theorem A].

Unless stated otherwise, all manifolds here and below are assumed to be connected, and isotopies always
start at the identity.

Assume that L0 and L1 are two distinct closed Legendrian submanifolds of M Legendrian isotopic to
each other. We are interested in the infimum of the energies of contact isotopies that move L0 to L1.
Denote this infimum by d.L0;L1/. In [8], Rosen and Zhang showed that either d.L0;L1/ D 0 or
d.L0;L1/ > 0 always holds for fixed L0 independent of L1. It is expected that the latter holds under
quite general assumptions on M ; see [8, Conjecture 1.10]. For example, the following theorem, which
combines results obtained by Dimitroglou Rizell and Sullivan [2; 3] and Oh [7], implies that this is
indeed the case for displaceable Legendrians in contact manifolds which are either closed1 or of the form
.P �R; �C dz/, where .P; d�/ is an exact geometrically bounded symplectic manifold and z denotes
the coordinate on R.

Theorem 1.1 Let .M; ˛/ be either compact or equal to .P �R; �Cdz/ as above , and let L0 and L1 be
two distinct closed Legendrian submanifolds that can be connected by a Legendrian isotopy. If there are
no Reeb chords between L0 and L1, then2 2d.L0;L1/ is bounded from below by the minimal action of
Reeb chords of L0 (and by symmetry also of L1).

In a strict contact manifold .M; ˛/, a subset A is said to be displaced from a subset B if there are no Reeb
chords between A and B. The displacement energy of a Legendrian L0 is the infimum of d.L0;L1/ over
all Legendrians L1 such that there are no Reeb chords between L0 and L1, ie Theorem 1.1 states that the
displacement energy of L0 is bounded from below by half of the minimal action of Reeb chords of L0.

We are concerned with the converse question. Can we give an upper bound on d.L0;L1/ depending on
L0 and L1? As a first step, it was proven by Dimitroglou Rizell and Sullivan [2, Theorem 1.8] that the
displacement energy of the standard Legendrian 2–sphere in R5 can be made arbitrarily small by adding

1The results of [3] and [7] also hold for more general classes of contact manifolds which may not be closed.
2The additional factor of 2 in Theorem 1.2 when compared to the formulation of the results in [2], [3] or [7] appears because in
this paper the energy is measured using the maximum norm of a Hamiltonian, and not the oscillatory norm. By Remark 2.7, the
displacement energy defined in terms of the oscillatory norm is twice as large as the one used here, as long as the Reeb vector
field is complete.
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a stabilization contained in a sufficiently small neighborhood of a point x 2L. They conjectured that the
same should hold for any closed Legendrian in a contact manifold. We will use their techniques to prove
this conjecture if dim L� 2, and, in fact, give an explicit bound of the displacement energy in terms of
the size of the stabilization (Corollary 1.11). It turns out that this upper bound coincides with the lower
bound from Theorem 1.1 for “nice” stabilizations and therefore is optimal.

These results follow from the following more general theorem about loose Legendrians, which states
that we can guarantee the existence of an isotopy of small energy, and even C 0–approximate any given
isotopy.

Theorem 1.2 Let .M 2nC1; ˛/, with n� 2, be a strict contact manifold , and let U0;U1 �M be open
subsets with the property that there exist "0; "1 > 0 such that the energy (as a contactomorphism of Ui) of
the time-1 map of any compactly supported contact isotopy  i

t W Ui ! Ui is smaller than "i for i 2 f0; 1g.
Let ft WL!M , with t 2 Œ0; 1�, be a homotopy of closed , connected Legendrian embeddings such that
fi.L/\Ui is a loose Legendrian submanifold of Ui for i 2 f0; 1g. Then , for any given � > 0, there
exist compactly supported contact isotopies �t and  i

t for i 2 f0; 1g, with k�tk˛ < �, supp. i
t / � Ui ,

k i
tk˛ < "i and  1

1
ı�1 ı 

0
1
ı f0 D f1. Furthermore , given any ı > 0, these isotopies can be chosen in

such a way that �t ı 
0
1
ı f0 is ı–close3 to ft for all t 2 Œ0; 1�; see Figure 1. In particular , the energy of

the concatenation . 0 �� � 1/t is smaller than "0C "1C �.

Remark 1.3 Proposition 2.8 gives an explicit class of examples of sets that satisfy the property of U0 and
U1 in the statement of Theorem 1.2. In particular, any closed Darboux ball and thus also loose charts in
the sense of Murphy [6, Definition 4.3] satisfy this property for some " > 0. To be more precise, any open
subset of a closed Darboux ball can be compressed into any arbitrarily small neighborhood of the origin via
contact isotopies with a bound on their energies depending only on the Darboux ball — to see this, consider
the contact isotopy .x;y; z/ 7! .e��tx; e��ty; e�2�tz/, with t 2 Œ0; 1�, on .R2nC1; f .dz � y dx// for
some function f W R2nC1 ! .0;1/, and proceed as in the proof of Proposition 2.8, using that f is
bounded when restricted to the Darboux ball. Following the proof of Proposition 2.8, we may thus assume
that the Darboux ball is strict after possibly shrinking it, and then Proposition 2.8 applies.

The main ingredients in the proof of Theorem 1.2 are the following four facts:

(i) d. zL0; zL1/D 0 whenever zL0 and zL1 are two n–dimensional non-Legendrian submanifolds that
can be connected via a contact isotopy, as was shown by Rosen and Zhang [8, Theorem 1.10,
Proposition 8.6] and the refinement of this result to parametrized non-Legendrian submanifolds by
Dimitroglou Rizell and Sullivan [4, Theorem B]; see Theorems 2.3, 2.4 and Corollary 2.6 below.

(ii) Any formally Legendrian submanifold can be C 0–approximated by loose Legendrians (see
[6, Corollary 5.1]) (Lemma 3.4).

3Throughout this paper, closeness refers to strict C 0–closeness, ie two functions f and g are ı–close if and only if kf �gkC 0 <ı.
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(iii) Murphy’s h-principle for loose Legendrians [6, Theorem 1.2] (Theorem 3.1).

(iv) Upper bounds on the energy of contact isotopies in Weinstein neighborhoods [2] (Proposition 2.8).

In outline, the proof goes as follows. Letˆt be a contact isotopy so that ft Dˆt ıf0. First C 0–perturb f0

to a formal Legendrian embedding g which is non-Legendrian. By (i), we can find a contact isotopy z�t

with arbitrarily small energy so that ˆ1 ı g D z�1 ı g. Then C 0–approximate g by a loose Legendrian
embedding � using (ii). Let hi for i 2 f0; 1g, be loose Legendrian embeddings obtained by stabilizing
fi inside a of a small neighborhood of a point in Ui \ fi.L/. We can perform these steps in such a
way that h0 is formally isotopic to � inside of a small Weinstein neighborhood of f0.L/ and formally
isotopic to f0 via an isotopy with compact support in U0, and h1 is formally isotopic to z�1 ı� inside of a
small Weinstein neighborhood of f1.L/ and formally isotopic to f1 via an isotopy with compact support
in U1. By Murphy’s h-principle we can find a contact isotopies � i

t and  i
t , with i 2 f0; 1g, so that  i

t has
compact support in Ui ,  0

1
ıf0 D h0,  1

1
ı h1 D f1, �0

1
ı h0 D � and �1

1
ı z�1 ı�D h1. The isotopy  i

t

can be chosen to satisfy k i
tk˛ < "i by assumption, and k� i

t k˛ can be assumed to be arbitrarily small
by (iv). Then the isotopies  i

t for i 2 f0; 1g and �t WD .�
0 � z� � �1/t have the desired properties and

can, in fact, be chosen so that �t ı 
0
1
ıf0 is C 0–close to ft . The details of the proof are explained in

Section 4.

As a consequence of Theorem 1.2, we obtain an upper bound on the displacement energy of a loose
Legendrian.

Theorem 1.4 Let .M 2nC1; ˛/, with n � 2, be a strict contact manifold , and let U �M be an open
subset with the property that there exists an " > 0 such that the energy (as a contactomorphism of U ) of
the time-1 map of any compactly supported contact isotopy  t W U ! U is smaller than ". Let L�M be
a closed , displaceable Legendrian submanifold such that L\U is loose in U . Then , for any given � > 0

and E > 0, there exist compactly supported contact isotopies �t and  t with k�tk˛ < �, supp. t /� U

and k tk˛ < " such that all Reeb chords between L and �1. 1.L// have action larger than E.

If in addition the image of L under the Reeb flow is closed as a subset of M , we may choose �t and  t

as above such that there are no Reeb chords between L and �1. 1.L//. In particular , the displacement
energy of L is not larger than ".

In the case that L may not be displaceable, we have the following more general statement.

Theorem 1.5 Let M and U be as in Theorem 1.4, and let E1;E22R. Let L�M be a closed Legendrian
submanifold such that L\U is loose in U , and assume that there exists a Legendrian submanifold L1

that is Legendrian isotopic to L such that all Reeb chords from L to L1 have action larger than E1, and all
Reeb chords from L1 to L have action larger than E2. Then , for any given � > 0, there exist compactly
supported contact isotopies �t and  t with k�tk˛ < �, supp. t /� U , and k tk˛ < " such that all Reeb
chords from L to �1. 1.L// have action larger than E1, and all Reeb chords from �1. 1.L// to L have
action larger than E2.
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U0 U1

 0
1
.f0.L//

f0.L/

ft

�t

. 1
1
/�1.f1.L//

f1.L/

Figure 1: After perturbing the Legendrians there exists an isotopy �t of small energy.

If , in addition , the image of L under the nonnegative (resp. nonpositive) Reeb flow is closed as a subset
of M , the above statement still holds if we allow E1 D1 (resp. E2 D1), meaning that there are no
Reeb chords from L to L1 (resp. from L1 to L).

We show in Section 5 how these results follow from Theorem 1.2.

Remark 1.6 In a contactization .M �R; dzC�/ of an exact symplectic manifold .M; d�/, the image
of any compact set under the Reeb flow is closed.

Remark 1.7 If ft W L! .M; ˛/ is a homotopy of Legendrian embeddings of a compact, connected
manifold L of dimension � 2 with nonempty boundary, then for any " > 0 there exists a contact isotopy
�t WM!M such that �1ıf0Df1 and k�tk˛<" (for unparametrized Legendrians, see [8]). Furthermore,
�t ı f0 can be chosen to C 0–approximate ft . This follows from the same techniques as Theorem 1.2
since L0 and L1 have arbitrarily small loose charts near their respective boundaries (where “small” refers
both to the diameter and the size of the loose chart as defined at the end of this section). Indeed, if
f W L!M is a Legendrian embedding with nonempty boundary and �t W L! L with t 2 Œ0; 1� is a
homotopy of embeddings C 0–close to the identity starting at the identity so that �1.L/ is contained
in the interior of L, then for any stabilization Sf W L!M of f sufficiently close the boundary of L,
we have f ı �1 D Sf ı �1. Now both f ı �t and Sf ı �t are induced by ambient contact isotopies  t

and S t , respectively, whose contact Hamiltonians vanish along the Legendrians. Thus, we may assume
the energies of  t and S t to be arbitrarily small. Therefore, if .U;Sf .L/\U / is a small loose chart
for Sf , then . �1

1
ıS 1/.U;Sf .L/\U / is a small loose chart for f .

As the following corollary shows, we can also approximate an arbitrary Hamiltonian function instead of
requiring the energy of the isotopy to be very small.

Corollary 1.8 Assume that the assumptions of Theorem 1.2 hold , and let H W M � Œ0; 1�! R be a
compactly supported Hamiltonian. Then the conclusion of Theorem 1.2 remains true if we replace the
condition k�tk˛ < � by kHt �Ftk< �, where Ft denotes the contact Hamiltonian associated to �t .

Corollary 1.8 is proven in Section 5.
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Proposition 2.8 shows that local Weinstein neighborhoods of L0 and L1 of height 2� satisfy the assumption
on the sets Ui with "D 2�. Furthermore, recall that stabilized Legendrians are always loose. Applying
the above theorems to this case gives the following results.

Corollary 1.9 Let L0;L1 � .M
2nC1; ˛/, for some n � 2, be closed Legendrian submanifolds. For

i 2 f0; 1g, stabilize Li inside of a local Weinstein neighborhood Ui of Li of height 2"i > 0 to obtain a
new Legendrian SLi . Let Vi be an open neighborhood of Li such that Ui � Vi . If there exists a family
of Legendrian embeddings ft WL!M for t 2 Œ0; 1�, with fi.L/D SLi then , for any given � > 0, there
exist contact isotopies �t , and  i

t for i 2 f0; 1g, with

supp. i
t /�Vi ; k 

i
tk˛ <"i ; k�tk˛ <minf�; ."0�k 

0
t k˛/; ."1�k 

1
t k˛/g;  1

1 ı�1ı 
0
1 ıf0Df1:

Furthermore , given any ı > 0, these isotopies can be chosen in such a way that �t ı 
0
1
ı f0 is ı–close

to ft for all t 2 Œ0; 1�. In particular , the energy of the concatenation . 0��� 1/t is smaller than "0C"1.

Remark 1.10 Again, it is possible to approximate arbitrary Hamiltonians as in Corollary 1.8 instead of
the condition on k�tk˛.

Corollary 1.11 Let Ln � .M; ˛/, for some n � 2, be a closed Legendrian submanifold , and let U"

be a local Weinstein neighborhood of L of height 2". Let SL denote a Legendrian submanifold of M

obtained by stabilizing L inside of U", and assume that SL is displaceable. Then for any E > 0, there
exists a compactly supported contact isotopy �t with k�tk˛ < " such that all Reeb chords between SL

and �1.SL/ have action larger than E.

If , in addition , the image of SL under the Reeb flow is closed as a subset of M , we may assume that
there are no Reeb chords between SL and �1.SL/. In particular , the displacement energy of SL is not
larger than ".

Corollaries 1.9 and 1.11 are proven in Section 5.

Remark 1.12 The supremum of the actions of Reeb chords in U" is bounded by 2". This means
that Corollary 1.11 states the reverse of the energy capacity inequality in Theorem 1.1 for stabilized
Legendrians.

Remark 1.13 The proof of Proposition 2.8 motivates the following coordinate-independent definition
of the size of a loose chart. Namely, let .M; ˛/ be a strict contact manifold, L�M a Legendrian, and
U �M a connected open set so that U \L� U is loose. Then we say that L has a loose chart of size

(4) 2 sup
V

inf
�t

k�tk˛

in U , where the supremum is taken over all open sets V � U , and the infimum is taken over all contact
isotopies �t with support in U such that .V; �1.L/\V / contains a loose chart. In other words, the size
of a loose chart is (up to a factor of 2) the minimal energy that is required to produce an arbitrarily small
loose chart. This follows from the observations that
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Small-energy isotopies of loose Legendrian submanifolds 4239

(i) if V 0 � V and .V 0; �1.L/\V 0/ contains a loose chart then also .V; �1.L/\V / contains a loose
chart, and that

(ii) the position of a small open set V � U does not matter, as any two small open sets can be moved
into each other via a contact isotopy that has small energy.

In particular, if the loose chart is contained in a local Weinstein neighborhood of height ", then its size
will be smaller than " by the arguments in the proof of Proposition 2.8.

Note that the size of a loose chart depends on the chosen contact form. For example, if we replace ˛ by
�˛ for some � > 0, then it follows from the definition of the contact Hamiltonian associated to a contact
isotopy that the size of any loose chart changes by a factor of � as well.

With this definition, the above results can be restated vaguely as “If L0 and L1 have loose charts of size
"0 and "1, respectively, then, for any � > 0, one can approximate any Legendrian isotopy from L0 to L1

by a Legendrian isotopy of energy less than 1
2
"0C

1
2
"1C �”. Combining this with Murphy’s h-principle

for loose Legendrians yields the following quantitative version of the h-principle.

Corollary 1.14 Let L0 and L1 be two closed loose Legendrians that are formally isotopic and admit
loose charts of size "0 and "1 (in M ), respectively. Then , for any � > 0, there exists a Legendrian isotopy
from L0 to L1 of energy less than 1

2
"0C

1
2
"1C �.

Corollary 1.14 is proven in Section 5.

Outline of the paper In Section 2, we prove a C 0–close refinement of results of Rosen and Zhang [8]
and Dimitroglou Rizell and Sullivan [4], which allow us to find contact isotopies of arbitrarily small energy
between non-Legendrian embeddings, and we discuss energy bounds in local Weinstein neighborhoods
of Legendrians.

Section 3 deals with loose Legendrians. We show how to obtain C 0–bounds for the h-principle for loose
Legendrians by adapting Murphy’s arguments in [6].

Section 4 contains the proof of Theorem 1.2.

In Section 5, we explain how Theorems 1.4 and 1.5, and Corollaries 1.8, 1.9, 1.11 and 1.14 follow from
Theorem 1.2.
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2 The energy of a contactomorphism

Let .M; ˛/ be a strict contact manifold, and let Cont0.M / denote the set of all compactly supported
contactomorphisms on M that are isotopic to the identity through compactly supported contactomorphisms.
For any function H WM � Œ0; 1�!R with compact support define

(5) kHk WD

Z 1

0

max
x2M

jH.x; s/j ds:

k�H
t k˛ WD kHk will also be called the energy of �H

t , where �H
t denotes the contact isotopy associated

to H .

For any contactomorphism � 2 Cont0.M / define4

(6) k�k˛ WD inf
 t

k tk˛;

where the infimum is taken over all compactly supported contact isotopies  t on M that satisfy  1 D �.
Recall that in this paper all isotopies start at the identity.

Shelukhin proved the following theorem.

Theorem 2.1 [9, Theorem A] Let �; 2 Cont0.M / be two contactomorphisms. Then:

(i) Nondegeneracy k�k˛ � 0, and k�k˛ D 0 if and only if � D idM .

(ii) Triangle inequality k� k˛ � k�k˛Ck k˛.

(iii) Symmetry k��1k˛ D k�k˛.

(iv) Naturality k � �1k˛ D k�k �˛.

In fact, the following lemma is an easy consequence of the definition of a contact Hamiltonian isotopy
associated to a contact isotopy.

Lemma 2.2 Let H WM � Œ0; 1�! R be a compactly supported Hamiltonian with associated contact
isotopy �H

t . Then �H1�t is the contact Hamiltonian associated to �H
1�t
ı .�H

1
/�1.

Let  WM !M be a contactomorphism and denote by f WM !R>0 the function defined by  �˛D f ˛.
Then .fHt / ı 

�1 is the Hamiltonian associated to the contact isotopy  �H
t  

�1.

Rosen and Zhang [8] analyzed how k � k˛ behaves with respect to orbits of certain subsets of M under
the contactomorphism group. The following result follows immediately from [8, Theorem 1.10 and
Proposition 8.6] and will be essential in our argument.

4By abuse of notation, we will use the same symbol to denote the energy of a contact isotopy and a contactomorphism. When the
contactomorphism is written with the subscript t , we will always mean the energy of the contact isotopy.
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Theorem 2.3 Let Ln�M 2nC1 be a closed , connected non-Legendrian submanifold , and ˆt WM!M a
compactly supported contact isotopy. Then there exist compactly supported contact isotopies �t WM !M

of arbitrarily small energies that satisfy �1.L/Dˆ1.L/.

Recently, Dimitroglou Rizell and Sullivan [4] refined Rosen and Zhang’s result to (parametrized) proper
non-Legendrian embeddings. The following is a weaker version of [4, Theorem B].

Theorem 2.4 Let f WLn!M 2nC1 be a proper , connected non-Legendrian embedding of a manifold L,
and let ˆt WM !M be a compactly supported contact isotopy. Then there exist compactly supported
contact isotopies �t WM !M of arbitrarily small energies that satisfy �1 ıf Dˆ1 ıf .

Remark 2.5 From the proof of [4, Theorem B] it is clear that Theorem 2.4 also holds in the case that L

is disconnected with finitely many connected components as long as we assume that every component
is non-Legendrian, since the heart of the argument is purely local around the image of any connected
component of L. Furthermore, even if L has countably infinitely many connected components, only
finitely many components of f .L/ can intersect the (compact!) support of ˆt by properness of f . Thus,
the conclusion of Theorem 2.4 also holds in this case (still under the assumption that f is non-Legendrian
on every connected component of L).

We will need the following C 0–close version of Theorem 2.4.

Corollary 2.6 Let f WLn!M 2nC1 be a proper embedding which is non-Legendrian almost everywhere
(ie Dxf .TxL/ª ker˛ for a.e. x 2L), and let ˆt WM !M be a compactly supported contact isotopy.
Then for any ı > 0, there exist compactly supported contact isotopies �t WM !M of arbitrarily small
energies that satisfy �1 ıf Dˆ1 ıf so that �t ıf is ı–close to ˆt ıf for all t 2 Œ0; 1�.

Proof Let fU k
j g, with k 2 f1; : : : ;Kj g and j 2 f1; : : : ;J g, be an open cover of the support of ˆt by

relatively compact subsets such that

(i) the diameter of U k
j is smaller than ı=.J C 1/ for all j and k, and

(ii) U k
j \U k0

j D∅ for all j 2 f1; : : : ;J g and k; k 0 2 f1; : : : ;Kj g with k ¤ k 0.

The existence of such sets can be seen as follows. After choosing a proper embedding of M into some RH ,
with H 2N, we may assume that M is a proper submanifold of RH . For any � > 0, RH is covered by
the cubes

(7) C k
�;j WD…

H
iD1

�
�
�
2ki C ji �

1
3

�
; �
�
2ki C ji C

4
3

��
;

where k D .k1; : : : ; kH / 2ZH and j D .j1; : : : ; jH / 2 f0; 1g
H. We set U k

�;j
WD C k

�;j
\M . Then (ii) is

clearly satisfied. We define

(8) K� WD fk 2 ZH
j U k

�;j \ suppˆt ¤∅ for some j 2 f0; 1gH g:

Then the sets fU k
�;j
g, for j 2 f0; 1gH and k 2 K�, cover the support of ˆt , and it is straightforward to

see that (i) is satisfied if � is sufficiently small.
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By the proof of the fragmentation lemma in [1], there exist a subdivision t0 D 0< t1 < � � �< tN D 1, for
some N 2 N, of the interval Œ0; 1�, and contact isotopies �i;j

t , for j 2 f1; : : : ;J g and t 2 Œti ; tiC1� for
i 2 f0; : : : ;N � 1g, such that each �i;j

t is supported in
S

1�k�Kj
U k

j , and for every i 2 f0; : : : ;N � 1g,
ˆt ı .ˆti

/�1 D �
i;J
t ı � � � ı�

i;2
t ı�

i;1
t for t 2 Œti ; tiC1�. Furthermore, we may assume that ˆt ı .ˆti

/�1,
for t 2 Œti ; tiC1�, is ı=.J C 1/–close to the identity for every i 2 f0; : : : ;N � 1g.

First, we assume that N D 1, and we drop i from the notation. Let " > 0. We will define contact isotopies
z�

j
t inductively over j . Since f is non-Legendrian almost everywhere, f jf �1.

S
1�k�K1

U k
1
\f .L// is

non-Legendrian on each connected component of f �1
�S

1�k�K1
U k

1
\f .L/

�
. By Theorem 2.4 applied

to �1
t j
S

1�k�K1
U k

1
and f jf �1.

S
1�k�K1

U k
1
\f .L//, there exists a compactly supported contact isotopy z�1

t

on
S

1�k�K1
U k

1
such that kz�1

t k˛ < "=J and z�1
1
ı f D �1

1
ı f . In the following we will view z�1

t as a
contact isotopy of M with compact support in

S
1�k�K1

U k
1

. Assume now that z�1
t ; : : : ;

z�
j
t have already

been defined. As before, it follows from Theorem 2.4 applied to

�
jC1
t jS

1�k�KjC1
U k
jC1

and �
j
1
ı � � � ı�1

1 ıf j.�j
1
ı���ı�1

1
ıf /�1.

S
1�k�KjC1

U k
jC1
\.�

j

1
ı���ı�1

1
ıf /.L//

that we can find a contact isotopy z�jC1
t with compact support in

S
1�k�KjC1

U k
jC1

such that

kz�
jC1
t k˛ <

"

J
and z�

jC1
1
ı�

j
1
ı � � � ı�1

1 ıf D �
jC1
1
ı�

j
1
ı � � � ı�1

1 ıf:

After J steps we have defined isotopies z�1
t ; : : : ;

z�J
t such that �t WD

z�1
t �� � ��

z�J
t satisfies �1ıf Dˆ1ıf ,

where � denotes the concatenation of isotopies.

Furthermore, k�tk˛ < " and each z�j
t is ı=.J C 1/–close to the identity since it is supported in a disjoint

union of sets of diameter less than ı=.J C 1/. In particular, �t is J ı=.J C 1/–close to the identity. Also,
ˆt is ı=.J C 1/–close to the identity by assumption. All in all, we see that �t ıf is ı–close to ˆt ıf

for all t 2 Œ0; 1�. This finishes the proof for N D 1.

In the case that N > 1, we perform the above constructions on each time interval Œti ; tiC1� separately
(with " replaced by "=N ) and concatenate the obtained contact isotopies to find the desired isotopy �t .

Remark 2.7 Similarly to the Hofer metric in symplectic manifolds, one can also consider the oscillatory
seminorm

(9) kHkosc WD

Z 1

0

�
max
x2M

H.x; s/� min
x2M

H.x; s/
�

ds

of a compactly supported function H WM � Œ0; 1�!R. If M is noncompact,

(10) 2 max
x2M

jH.x; t/j � max
x2M

H.x; t/� min
x2M

H.x; t/� max
x2M

jH.x; t/j

holds for all times t 2 Œ0; 1�. This implies that the same inequalities also hold for the energies of contact
isotopies that are defined using k � k and k � kosc.
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In fact, when dealing with displacement, these two seminorms differ exactly by a factor of 2 in the
following sense. Assume that A0;A1 �M are two compact subsets such that there exists a contact
isotopy �t WM !M with �1.A0/DA1. Assume that the Reeb vector field is complete and denote the
Reeb flow by �˛t . Then a straightforward argument shows that

(11) 2 inf
T2R

inf
�t

k�tk˛ D inf
�t

k�tkosc;

where the infimum on the left-hand (resp. right-hand) side is taken over all compactly supported contact
isotopies �t WM !M with �H

1
.A0/D �

˛
T
.A1/ (resp. �H

1
.A0/DA1).

Let N be a manifold, and denote its 1–jet bundle by J 1N . For ı > 0 we define a local Weinstein
neighborhood of the zero section of height 2ı to be an open set of the form

(12) Uı WD .f.q;p; z/ 2 J 1N j q 2 V;p 2Wq; jzj< ıqg; ˛std/;

where V �N is open, Wq � T �q N is a star-shaped neighborhood of 0, and V ! .0;1/, q 7! ıq , is a
function with supq2V ıq � ı. Here, ˛std is locally defined as ˛std D

P
i pi dqi �dz, where fqig are local

coordinates on N , and fpig are the conjugate coordinates on the cotangent fibers.

Similarly, for a Legendrian submanifold N � .M; ˛/ we call Uı �M a local Weinstein neighborhood of
N of height 2ı if it is strictly contactomorphic to a local Weinstein neighborhood zUı � J 1N of the zero
section of height 2ı via a contactomorphism that identifies N \Uı with N \ zUı . Recall that any closed
Legendrian has strict Weinstein neighborhoods [5, Theorem 6.2.2]. Such a neighborhood Uı � zUı is said
to have fibers of diameter " > 0 (with respect to some metric on M ) if the diameter in M of the set of
points identified with ��1.fqg/� zUı is less than " for all q 2N \ zUı �N \Uı , where � W J 1N !N

denotes the projection onto the zero section.

The next proposition gives us bounds on the energies of contact isotopies with support in local Weinstein
neighborhoods. The first part is an adaption of the last paragraph of the proof of [2, Theorem 1.8].

Proposition 2.8 For any manifold N and any local Weinstein neighborhood Uı of the zero section of
height 2ı > 0 and every compactly supported contact isotopy �t W Uı! Uı with t 2 Œ0; 1�, there exists a
compactly supported contact isotopy z�t W Uı! Uı such that z�1 D �1 and kz�tk˛ < 2ı.

If , in addition , Uı has fibers of diameter " > 0, then for any compact subset K � Uı, the isotopy z�t jK

can be chosen to be "–close to �t jK for all t 2 Œ0; 1�.

Proof We assume that N is closed and that Uı D J 1
ı

N WD f.q;p; z/ 2 J 1N j jzj< ıg. The general case
is directly analogous by restricting to a compact subset containing the support of �t . Let 0< � < ı be
such that the isotopy �t is supported in J 1

�N . For �> 0 consider a time-dependent function Ht WM !R,
with t 2 Œ0; 1�, such that Ht .q;p; z/D �z on J 1

e��t�N , and such that Ht is appropriately cut off outside
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of J 1
e��t�

N . Then its associated contact isotopy  H
t will map .q;p; z/ in J 1

�N to .q; e��tp; e��tz/ in
J 1

e��t�
N , and it satisfies

(13) k H
t k˛ �

Z 1

0

��e��tdt C �e�� D �;

where the �e��–summand is due to the chosen cut-off. Note also that .. H
1
/�˛/jJ 1

�N D e��˛jJ 1
�N .

Now let

(14) z�t DW
�
. H

s /� . H
1 �s. 

H
1 /�1/� . H

1�s ı . 
H
1 /�1/

�
t
;

where � denotes the concatenation of isotopies.

As a consequence of Lemma 2.2,

(15) kz�tk˛ D k
�
. H

s /� . H
1 �s. 

H
1 /�1/� . H

1�s ı . 
H
1 /�1/

�
t
k˛

D k H
t k˛Ck 

H
1 �t . 

H
1 /�1

k˛Ck 
H
1�t ı . 

H
1 /�1

k˛

D 2k H
t k˛C e��k�tk˛ � 2�C e��k�tk˛;

which is smaller than 2ı if � is sufficiently large.

Now assume that K �Uı is a compact subset. By choosing � sufficiently close to ı, we may assume that
K � J 1

�N . If, in addition, Uı has fibers of diameter " > 0, then  H
t jJ 1

�N and  H
1�t
ı . H

1
/�1jJ 1

e��
N

are "–close to the identity as they preserves the fibers of the projection onto the zero section. Therefore,
 H

1
�t . 

H
1
/�1 ı H

1
jJ 1
�N D  

H
1
�t jJ 1

�N is "–close to �t jJ 1
�N , and z�t jJ 1

�N will be "–close to �t jJ 1
�N

if we perform the concatenation in the definition of z�t is such a way that  H
t and  H

1�t
ı . H

1
/�1 are

traversed very quickly.

3 Loose Legendrians

Murphy’s h-principle for loose Legendrians is an important ingredient in the proof of our main result.
Roughly speaking, it states that for two loose Legendrians in the sense of [6, Definition 4.3], the existence
of a Legendrian isotopy between them is a purely homotopy-theoretical problem. We recall this result in
this section and explain how to refine Murphy’s proof to obtain C 0–bounds.

Recall that a formal Legendrian embedding of an n–dimensional manifold L into a contact manifold
.M 2nC1; �/ is a pair .f;Fs/ consisting of an embedding f W L ! M and a homotopy of fiberwise
injective bundle maps Fs W TL! f �.TM /, with s 2 Œ0; 1�, covering f , such that F0 is equal to the
differential Df of f and F1.TL/ is a Lagrangian subspace of f �� at every point with respect to the
conformal symplectic structure on �. We identify a Legendrian embedding f WL!M with the formal
Legendrian embedding .f;Df /, where Df is viewed as the constant homotopy.

The first result that we need is the following version of Murphy’s h-principle.
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Theorem 3.1 Let .M 2nC1; �/, for some n � 2, be a contact manifold endowed with a Riemannian
metric , and let Ln be a connected manifold. Let .ft ;F

t
s / with t 2 Œ0; 1� be a homotopy of proper

formal Legendrian embeddings L ! .M; �/, constant (in t ) outside of a compact subset of L, such
that .f0;F

0
s / and .f1;F

1
s / are Legendrian embeddings which admit loose charts .U0;U0\f0.L// and

.U1;U1\ f1.L//, respectively. Then for any ı > 0, there exists a homotopy ˆt WL!M of Legendrian
embeddings , constant outside of a compact subset of L, such that ˆi D fi for i 2 f0; 1g, and ˆt is
pointwise .d C ı/–close to ft for all t 2 Œ0; 1�, where d denotes the maximum of the diameters of U0

and U1 (with distances measured in M ).

Proof We will explain how to adjust the arguments in the proof of [6, Theorem 1.2] to prove this theorem.
The C 0–close part in the case of a fixed loose chart and the fact that we may choose compactly supported
homotopies are consequences of the constructions in Murphy’s proof. We will first explain how to obtain
these two results and then reduce the proof in the general case to these special cases.

Let ı > 0 be an arbitrary number, and define d as in the statement.

First note that the assumptions of the theorem imply in particular that ft is Legendrian outside of a
compact subset of L for all t . Furthermore, we may assume that f �1

0
.U0\f0.L// and f �1

1
.U1\f1.L//

are contained in a compact subset of L after possibly replacing U0 and U1 by slightly smaller loose
charts. Note that this will not increase d .

First, we prove the theorem under the assumptions that U0 D U1, and that f �1
t .U0 \ f0.L// and

ft jf �1
t .U0\f0.L// do not depend on t (in other words, we assume that there is a fixed loose chart for the

family ft ).

By [6, Proposition 3.4] and the subsequent paragraph in [6], there exists a compactly supported homotopy
xft WL!M of wrinkled Legendrian embeddings5 agreeing with ft outside of a compact subset such that
xf �1
t .U0\f0.L// and xft j xf �1

t .U0\f0.L// do not depend on t , xfi D fi for i 2 f0; 1g, and xft is 1
2
ı–close

to ft .

Following [6], there exists a homotopy gt of wrinkled Legendrian embeddings obtained from xft by
replacing loose charts in U0 by inside-out wrinkles which agrees with xft outside of f �1

0
.U0\f0.L//,

satisfies gt .f
�1

0
.U0\ f0.L///� U0, and admits a (finite) collection of markings for its wrinkles which

agree with the markings of the model inside-out wrinkle near t 2 f0; 1g. It follows that gt is d–close
to xft since U0 has diameter d .

Let zgt WL!M denote the homotopy of (smooth) Legendrian embeddings obtained from gt by resolving
the singularities using the collection of markings; see [6, Lemma 4.2]. Note that zgt agrees with ft outside
of a compact subset of L. Furthermore, we may assume that zgt is 1

2
ı–close to gt .

Combining the C 0- estimates, we see that zgt is .d C ı/–close to ft .

5Here and below, we omit the data of the Darboux charts in the definition of a wrinkled Legendrian from the notation.

Geometry & Topology, Volume 28 (2024)



4246 Lukas Nakamura

The explicit construction of an inside-out wrinkle in [6] shows that, in addition, we may assume that for
i 2 f0; 1g, there exists a homotopy hi

t W L!M of Legendrian embeddings which agrees with fi D
xfi

outside of f �1
0
.U0\f0.L// so that hi

0
D fi , hi

1
D zgi and hi

t .f
�1

0
.U0\f0.L///� U0. It follows again

that hi
t is d–close to fi .

Now consider the homotopy ˆt D .h
0 � zg � h1/t of Legendrian embeddings, where h1

t D h1
1�t

. By
construction, ˆi D fi for i 2 f0; 1g, and ˆt agrees with ft outside of a compact subset of L. Since hi

t ,
ft and zgt are constant (in t) outside of a compact set (in fact, they are equal to each other outside of a
compact set), hi

t is d–close to fi for i 2 f0; 1g, and zgt is .d C ı/–close to ft , ˆt will be .d C ı/–close
to ft for all t 2 Œ0; 1� if the concatenation in the definition of ˆt is performed in such a way that h0

t and
h1

t are traversed sufficiently fast.

It follows that ˆt satisfies the required properties.

This finishes the proof in the case that there exists a fixed loose chart.

In the general case, pick a path pt , with t 2 Œ0; 1�, in L so that fi has a loose chart of diameter bounded
by d in the complement of some neighborhood of fi.pi/ for i 2 f0; 1g. We may assume that .ft ;F

t
s /

is Legendrian in a neighborhood of pt for all t 2 Œ0; 1� by Lemma 3.2 below. Let �t be a compactly
supported isotopy of L with �t .p/ D pt for all t . After replacing .ft ;F

t
s / by .ft ı �t ;F

t
s ıD�t /, we

may assume that p WD pt does not depend on t . Then there exists a compactly supported contact isotopy
 t WM !M such that  t ıf0 D ft on a neighborhood of p since homotopies of compact Legendrian
embeddings can always be extended to contact isotopies. Because  t has compact support, it is uniformly
C 0–continuous. Thus, we can find " > 0 with " < 1

2
ı such that for any two points x;y 2M , the distance

between  t .x/ and  t .y/ is smaller than 1
2
ı for all t 2 Œ0; 1� whenever the distance between x and y is

smaller than ".

The homotopy . �1
t ı ft ; .D t /

�1 ıF t
s / of formal Legendrian embeddings is genuinely Legendrian

for t 2 f0; 1g and equal to .f0;Df0/ on a neighborhood V of p for all t 2 Œ0; 1�, and does not depend
on t outside of a compact subset of L. Let U be a Darboux ball around f0.p/ so that f �1

0
.U / � V ,

. �1
t ı ft /

�1.U /D f �1
0
.U /, and .U;U \ f0.L/; f0.p// � .M; f0.L/; f0.p// is contactomorphic to

.B�;B� \Rn; f0g/� .R2nC1;Rn; f0g/ for some � > 0, with its standard contact structure. Furthermore,
we ask that the diameter of U is smaller than 1

2
" and that fi has a loose chart of diameter bounded by d

in the complement of  i.U /. Now let .gt ;G
t
s/ be a homotopy of formal Legendrian embeddings which

agrees with . �1
t ı ft ; .D t /

�1 ıF t
s / outside of a compact subset of f �1

0
.U / so that .gt ;G

t
s/jf �1

0
.U /

is Legendrian, has image contained in U , and does not depend on t , and so that there is a loose chart for
gt .L/ contained in a compact subset of U . In addition, we assume that there exists a homotopy of formal
Legendrian embeddings from .gt ;G

t
s/jf �1

0
.U / to f0jf �1

0
.U / with compact support in f �1

0
.U / and image

in U . For example, we can find such a .gt ;G
t
s/ by performing a .�D 0/–stabilization of  �1

t ıft inside
of U .
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In particular, .gt ;G
t
s/ has a fixed loose chart of diameter smaller than 1

2
", does not depend on t outside

of a compact subset of L, and is 1
2
"–close to  �1

t ıft for t 2 f0; 1g. By what we have proven above, we
may find a homotopy ht WL!M of Legendrian embeddings which does not depend on t outside of a
compact subset of L so that hi D gi for i 2 f0; 1g and so that ht is 1

2
"–close to gt for all t 2 Œ0; 1�. In

particular, ht is "–close to  �1
t ıft for all t .

By our choice of ",  t ı ht is 1
2
ı–close to ft for all t , by our choice of U ,  i ı hi has a loose chart

of diameter bounded by d in the complement of  i.U /, and by our choice of gt , there exists a formal
Legendrian isotopy from  i ı hi to fi with support in  i.U / for i 2 f0; 1g. It follows that this formal
isotopy is 1

2
ı–close to the constant isotopy since the diameter of  i.U / is bounded by 1

2
ı.

Now we can apply the special case of Theorem 3.1 which we have already proven to these formal isotopies
to find for i 2 f0; 1g a homotopy �i

t W L!M of Legendrian embeddings from  i ı hi to fi which is
.d C ı/–close to fi for all t .

Then ˆt WD .�
0
1�s
� . s ıhs/��

1
s /t is a compactly supported homotopy of Legendrian embeddings from

f0 to f1. If we perform the concatenation again in such a way that �0
s and �1

s are traversed very quickly,
then ˆt is .d C ı/–close to ft for all t 2 Œ0; 1�.

The following lemma is needed to reduce Theorem 3.1 to the case of a fixed loose chart.

Lemma 3.2 Let .ft WL! .M; �/;F t
s /, with t 2 Œ0; 1�, be a homotopy of formal Legendrian embeddings

such that .fi ;F
i
s / is Legendrian for i 2 f0; 1g. Let pt 2 L, with t 2 Œ0; 1�, be a smooth path , and let

W �L� Œ0; 1� be an open neighborhood of
S

tf.pt ; t/g. Then there exists a C 0–small formal homotopy
from .ft ;F

t
s / to a homotopy of formal Legendrian embeddings .gt ;G

t
s/ which is fixed for t 2 f0; 1g and

outside of a compact subset of W, so that .gt ;G
t
s/ is genuinely Legendrian on a neighborhood of pt

for all t .

Proof Step 1 We may assume that pt does not depend on t .

Let �t be a compactly supported isotopy of L so that �t .p/ D pt for all t . If the lemma holds for
.ft ı �t ;F

t
s ıD�t /, then it also holds for .ft ;F

t
s /.

Step 2 We may assume that ft .p/ does not depend on t .

Let ˆt be a compactly supported contact isotopy of M such that ˆt .f0.p//D ft .p/. If the lemma holds
for .ˆ�1

t ıft ; .Dˆt /
�1 ıF t

s /, then it also holds for .ft ;F
t
s / by uniform C 0–continuity of ˆt .

As all of the constructions below are inherently performed inside of an arbitrarily small neighborhood
of p, the homotopies of formal Legendrian homotopies will be supported in a compact subset of W.

Step 3 We may assume that F t
s .p/DDpft for all s; t 2 Œ0; 1�.

Let „s;t W Tft .p/M ! Tft .p/M , with s; t 2 Œ0; 1�, be a family of isomorphisms which is equal to the
identity for .s; t/ 2 f0g � Œ0; 1�[ Œ0; 1�� f0; 1g and satisfies „s;t ıDpft D F t

s for all s; t 2 Œ0; 1�. Such
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„s;t exist since the map GL2nC1.R/!MonoR.R
n;R2nC1/ given by restriction to the first n coordinate

directions is a Serre fibration. Choose a local coordinate chart around p diffeomorphic to R2nC1 in
which ft .p/ is identified with the origin. Let ˆs;t W R2nC1! R2nC1, with s; t 2 Œ0; 1�, be a family of
compactly supported diffeomorphisms that agrees with „s;t near the origin (where we identify Tft .p/M

with R2nC1 using the local coordinates) and is equal to the identity for .s; t/ 2 f0g� Œ0; 1�[ Œ0; 1��f0; 1g.
Such a ˆs;t can be constructed by cutting off the generating vector field of „s;t for fixed t (viewed
as an isotopy with time-parameter s) outside of a compact neighborhood of the origin. Using the
chosen coordinates, ˆs;t may be viewed as a family of diffeomorphisms fixing ft .p/, with compact
support near p, which is equal to the identity for .s; t/ 2 f0g � Œ0; 1�[ Œ0; 1�� f0; 1g, and which satisfies
Dft .p/ˆs;t D„s;t . Then ˆu;t ıft , with t;u2 Œ0; 1�, defines an isotopy of families of embeddings starting
at ft and ending at ˆ1;t ı ft . It is well-known and easy to check that ˆu;t ı ft extends to a family
of formal embeddings .ˆu;t ı ft ;F

t;u
s /, with s; t;u 2 Œ0; 1�, rel t 2 f0; 1g starting at .ft ;Dpft �s F t

s /,
which can be chosen so that F

t;u
s .p/D ..Dft .p/ˆu.1�s/;t ıDft .p/ˆ

�1
u;t / ı .Dp.ˆu;t ı ft // �s F t

s .p/D

.Dft .p/ˆu.1�s/;t ıDpft // �s F t
s .p/ D .„u.1�s/;t ıDpft / �s F t

s .p/ D F t
u.1�s/

�s F t
s .p/. For u D 1,

this becomes F t
1�s

.p/ �s F t
s .p/ W TpL! Tft .p/M , which is clearly homotopic rel .s; t/ 2 @.Œ0; 1�2/

to the constant (in s) family F t
1
D „1;t ıDpft D Dp.ˆ1;t ı ft /. From this it follows that F

t;1
s is

homotopic (with fixed underlying embedding) rel .s; t/ 2 @.Œ0; 1�2/ to a family zF t
s ; s; t 2 Œ0; 1�, which

satisfies zF t
s .p/ D Dp.ˆ1;t ı ft / for all s; t 2 Œ0; 1�. This finishes the third step as .ft ;Dpft �s F t

s / is
clearly homotopic to .ft ;F

t
s / rel .s; t/ 2 @.Œ0; 1�/2.

Step 4 We may assume that Dpft does not depend on t .

Let kt WU !M be a family of Legendrian embeddings of a neighborhood U �L of p such that kt .p/D

ft .p/ and Dpkt DDpft . Then there exists a contact isotopy ‰t with compact support near ft .p/ so that
k0D‰t ıkt near p. Now u 7! .‰ut ıft ;D‰ut ıF

t
s / defines a homotopy of formal Legendrian isotopies.

For uD 1 and at p this becomes .‰t ıft ;D‰t ıF t
s /.p/D .k0.p/;D‰t ıDpft /D .k0.p/;Dpk0/ by

Step 2 and our choice of ‰t and kt .

Step 5 We prove the lemma.

Let zf W U !M be a Legendrian embedding of a neighborhood U �L of p that satisfies Dp
zf DDpft .

On a sufficiently small neighborhood V � U of p, zf is C 1–close to ft and D zf is C 0–close to F t
s for

all s; t 2 Œ0; 1� by Step 4. The first observation implies that we can find a family of C 1–small isotopies
„s;t WM !M , with s; t 2 Œ0; 1�, with compact support near ft .p/ so that zf D„1;t ıft near p for all
t 2 Œ0; 1�, and „s;t .p/D p and Dp„s;t D id for all s; t 2 Œ0; 1�. Then .„1;t ıft ;D.„1�s;t ıft /�s F t

s /

defines a formal Legendrian homotopy which is clearly homotopic to .ft ;F
t
s /, where we have again

identified6 the tangent fibers using local coordinates near p so that we can view D.„1�s;t ıft /�s F t
s as

maps of tangent bundles covering „1;t ıft . Near p, D.„1�s;t ıft /�s F t
s is C 0–close to D.„1;t ıft /.

6As in the proof of the Step 3, we can use an identification of the tangent fibers in which the contact structure is constant near p.
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Since the space of monomorphisms TxL! T„1;tıft .x/M forms a smooth manifold and the Legendrian
monomorphisms (ie those whose image is contained in � and Lagrangian) form a smooth submanifold,
all depending smoothly on x and t , this implies that we can find a homotopy Fu;t

s , with s; t;u 2 Œ0; 1�,
with support near p starting at D.„1�s;t ı ft /�s F t

s covering „1;t ı ft with Fu;t
0
DD.„1;t ı ft / and

Fu;t
1

Legendrian for all t;u 2 Œ0; 1� so that F1;t
s DD.„1;t ıft / near p for all s; t 2 Œ0; 1�.

This finishes the proof since „1;t ıft is Legendrian near p by construction.

Remark 3.3 As is clear from the proof, Lemma 3.2 also holds if .fi ;F
i
s / is not Legendrian for i D 0 or

i D 1 and we don’t demand that the homotopy from .fi ;F
i
s / to .gi ;G

i
s/ is constant.

We will also need the following statement that allows us to approximate a formal Legendrian by a loose
Legendrian.

Lemma 3.4 Let .f W L ! M;Fs/ be a formal Legendrian embedding of a closed and connected
manifold L into a contact manifold .M; �/ with dim L� 2. Then .f;Fs/ is C 0–closely formally isotopic
to a loose Legendrian embedding. This isotopy can be chosen to be constant outside of any nonempty
neighborhood of the set where .f;Fs/ is not genuinely Legendrian.

Proof We explain how this is a consequence of the proof of [6, Corollary 5.1] in a way similar to how
Theorem 3.1 above is a consequence of the proof of [6, Theorem 1.2]. Let "> 0. As in [6], we may assume
that there exists an open set U �M of diameter smaller than " so that f is Legendrian on f �1.U / and
that .U;U \ f .L// is a loose chart; see Remark 3.3 above. By [6, Proposition 3.4], there exists a formal
homotopy "–close to f which fixes the loose chart from .f;Fs/ to a wrinkled Legendrian embedding g.
We can find pairwise disjoint loose charts inside of U , one for each wrinkle of g. By replacing each of
those loose charts by an inside-out wrinkle, we can find a wrinkled Legendrian embedding zg "–close
to g which admits markings for its wrinkles. Using the markings to resolve the wrinkles, we obtain
a Legendrian embedding which is 3"–closely formally isotopic to f . Since [6, Proposition 3.4] holds
relatively, and the other constructions in the proof are compactly supported, the lemma follows.

4 Proof of Theorem 1.2

In this section we present the proof of our main result as outlined in the introduction. The idea of the
proof is taken from the proof of [2, Theorem 1.8].

Proof of Theorem 1.2 Let U0;U1 � M be two open subsets and ft a homotopy of Legendrian
embeddings as in the statement of Theorem 1.2. Let ˆt WM !M be a contact isotopy with ˆt ıf0D ft .
Let ı; � > 0 be two positive numbers.

Let Wi denote a Weinstein neighborhood of fi.L/ of height 1
3
� with fibers of diameter 1

3
ı for i D 1; 2.

By choosing W0 close enough to f0.L/, we may assume that ˆ1.W0/�W1.
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W0
yLD �0.L/
zLD g1.L/
f0.L/

ˆt , z�t

W1

f1.L/
z�1. zL/Dˆ1. zL/

z�. yL/

Figure 2: Starting from an isotopy ft of Legendrian embeddings, we construct a non-Legendrian
perturbation g1, a loose Legendrian approximation �0 of g1 inside of W0, and contact isotopies
ˆt and z�t that satisfy ˆt ıf0 D ft and z�1. zL/Dˆ1. zL/.

We perturb f0 to get a formal Legendrian homotopy .gt WL!W0;Gs;t / from f0 to a formal Legendrian
.g1;Gs;1/ which is non-Legendrian almost everywhere so that gt is 1

6
ı–close to f0 and ˆt ı g1 is

1
3
ı–close to ft for all t 2 Œ0; 1�. Write zL WD g1.L/.

According to Corollary 2.6, there exists a contact isotopy z�t with z�1 ı g1 D ˆ1 ı g1 and kz�tk˛ <
1
3
�

such that z�t ıg1 is 1
3
ı–close to ˆt ıg1 for all t 2 Œ0; 1�. In particular, z�t ıg1 is 2

3
ı–close to ft for all

t 2 Œ0; 1�.

For any yı > 0, we can find a formal Legendrian homotopy .�t WL!W0;Xs;t / from a loose Legendrian
embedding �0 WL!W0 to .g1;Gs;1/ so that �t is yı–close to the constant homotopy; see Lemma 3.4.
Write yL WD �0.L/. We may choose �0 in such a way that yL and z�t . yL/ have loose charts of diameter
smaller than 1

3
ı contained in W0 and W1, respectively. We choose yı < 1

6
ı so small that z�t ı�0 is 1

3
ı–close

to z�t ıg1 for all t 2 Œ0; 1�. In particular, z�t ı�0 is ı–close to ft for all t 2 Œ0; 1�.

We claim that we may assume that there exists a formal Legendrian homotopy .�t W L ! W1; „s;t /

from z�1 ı�0 to f1 that is 1
3
ı–close to f1. In order to see this, let zı > 0 be so small that for all points

x 2 ft .L/, with t 2 Œ0; 1�, and y 2M so that the distance between x and y is smaller than zı, the distance
between .ˆ1 ıˆ

�1
t /.x/ and .ˆ1 ıˆ

�1
t /.y/ is smaller than 1

3
ı and .ˆ1 ıˆ

�1
t /.y/ 2W1. For any ı > 0,

we have constructed a formal Legendrian homotopy .gt ;Gs;t /� .�1�t ;Xs;1�t / from f0 to �0 which is
1
3
ı–close to f0, and we proved that we can find a Legendrian isotopy z�t ı�0 from �0 to z�1 ı�0 which is
ı–close to ft . We can apply the above constructions7 to some ı smaller than zı so that we may assume
that .gt ;Gs;t /� .�1�t ;Xs;1�t / and z�t ı�0 are, in fact, zı–close to f0 and ft , respectively. Then by our

7Note that we have not used the properties of W1 in our constructions yet. This implies that we can apply those constructions to
a smaller ı while keeping W1 fixed.
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W0

U0

yLD �0.L/

f0.L/
h0

1
.L/

U1

W1
h1

1.L/

z�. yL/
f1.L/

Figure 3: Inside of Vi \Wi , we find a formal Legendrian homotopy .hi
t ;H

i
s;t / from fi to a loose

Legendrian embedding hi
1

which admits a small loose chart.

choice of zı, the formal Legendrian homotopy�
ˆ1 ıˆ

�1
1�t ı .

z�1�t ı�0/
�
�
�
.ˆ1;Dˆ1/ ı ..�t ;Xs;t /� .g1�t ;Gs;1�t //

�
from z�1 ı�0 to f1 is 1

3
ı–close to f1, and the underlying embeddings have image contained in W1. This

proves the claim.

For i 2 f0; 1g, let Vi be a relatively compact subset of Ui so that .Vi ; fi.L/ \ Vi/ is a loose chart
for fi.L/. Let .hi

t W L ! Wi ;H
i
s;t / be a formal Legendrian homotopy 1

3
ı–close to fi from fi to a

loose Legendrian embedding hi
1
W L ! Wi which admits a loose chart contained in Wi \ Vi whose

diameter is smaller than 1
3
ı, which is constant outside of a compact subset of f �1

i .fi.L/\Wi \Vi/ and
maps f �1

i .fi.L/\Wi \Vi/ into Wi \Vi ; see Figure 3. Such .hi
t ;H

i
s;t / may be found for example by

performing a .�D 0/–stabilization of fi .

By applying Murphy’s h-principle for i 2 f0; 1g to the formal Legendrian homotopies .hi
t ;H

i
s;t / inside of

Vi � Ui , we find contact isotopies  i
t WM !M with compact support in Ui such that  0

1
ıf0 D h0

1
and

 1
1
ı h1

1
D f1. By definition of Ui , we may assume that k i

tk˛ < "i .

As hi
1
.L/, yL and z�1. yL/ have loose charts of diameter smaller than 1

3
ı, we can apply the C 0–close version

of Murphy’s h-principle (Theorem 3.1) to the formal Legendrian homotopies

.h0
1�t ;H

0
s;1�t /� .gt ;Gs;t /� .�1�t ;Xs;1�t / and .�t ; „s;t /� .h

1
t ;H

1
s;t /
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to find contact isotopies � i
t W M ! M , for i 2 f0; 1g, with compact support in Wi so that �0

t ı h0
1

is
a homotopy of Legendrian embeddings from h0

1
to �0 and �1

t ı
z�1 ı �0 is a homotopy of Legendrian

embeddings from z�1 ı�0 to h1
1

which are 1
3
ı–close to .h0

1�t
;H 0

s;1�t
/� .gt ;Gs;t /� .�1�t ;Xs;1�t / and

.�t ; „s;t /� .h
1
t ;H

1
s;t /, respectively.

Note that .h0
1�t
;H 0

s;1�t
/ � .gt ;Gs;t / � .�t ;Xs;t / and .�t ; „s;t / � .h

1
t ;H

1
s;t / are 1

3
ı–close to f0 and f1,

respectively, and thus �0
t ı h0

1
is 2

3
ı–close to f0, and �1

t ı
z�1 ı�0 is 2

3
ı–close to f1 for all t 2 Œ0; 1�.

Since Wi has height 1
3
� and fibers of diameter 1

3
ı, it follows from Proposition 2.8 applied to � i

t that
we can find contact isotopies z� i

t WM !M that satisfy z� i
1
D � i

1
and kz� i

t k˛ <
1
3
� so that z�0

t jh
0
1
.L/ and

z�1
t jz�1ı�0.L/ are 1

3
ı–close to �0

t jh
0
1
.L/ and �1

t jz�1ı�0.L/, respectively. Note that then z�0
t ıh

0
1
D z�0

t ı 
0
1
ıf0

and z�1
t ı
z�1 ı�0 are ı–close to f0 and f1, respectively, for all t 2 Œ0; 1�.

Because z�t ı�0 is ı–close to ft , .z�0 � z� � z�1/t ı 
0
1
ı f0 will be ı–close to ft if the concatenation is

performed in such a way that z�0
t and z�1

t are traversed very fast. Since also kz�tk˛ <
1
3
�, we see that

k.z�0 � z� � z�1/tk˛ < �.

Then the isotopies  0
t ,  1

t , and �t WD .z�
0 � z� � z�1/t have the desired properties.

5 Proofs of the corollaries

In this section we present the proofs of Theorems 1.4 and 1.5, and Corollaries 1.8, 1.9, 1.11 and 1.14.

Proof of Theorems 1.4 and 1.5 Assume that the assumptions in Theorem 1.4 are satisfied. Let L1 �M

be a closed Legendrian submanifold which is Legendrian isotopic to L such that there are no Reeb chords
between L and L1. In particular, L1 is loose. It follows from Murphy’s h-principle that L1 is Legendrian
isotopic to some Legendrian L2 which agrees with L1 outside of an arbitrarily small strict Darboux
ball U1 around some point in L1, and so that U1\L2 is loose in U1. If U1 is chosen sufficiently small,
all Reeb chords between L and L2 will have action larger than E, there will be no Reeb chords at all
if the image of L under the Reeb flow is closed, and U1 will satisfy the property in the statement of
Theorem 1.2 for "1D

1
2
� by Proposition 2.8. Now we can apply Theorem 1.2 to find compactly supported

contact isotopies  0
t , �t and  1

t such that  0
t has support in U , k 0

t k˛ < ", k�tk˛ <
1
2
�, k 1

t k˛ <
1
2
�

and L2 D . 
1
1
ı�1 ı 

0
1
/.L/. In particular, the isotopies  0

t and .� � 1/t have the desired properties.

The proof of Theorem 1.5 works in the same way after we note that if all Reeb chords from L to L1 have
action larger than E1, and all Reeb chords from L1 to L have action larger than E2, then also all Reeb
chords from L to L2 have action larger than E1, and all Reeb chords from L2 to L have action larger
than E2, as long as L2 is sufficiently C 0–close to L1, since

(16)
[

t2Œ�E2;E1�

�˛t .L/

is closed as a subset of M , where �˛t denotes the Reeb flow of ˛.
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Proof of Corollary 1.8 Assume that the assumptions in Corollary 1.8 are satisfied. Let �H
t denote the

contact isotopy associated to the function Ht . Let ft WL!M be a homotopy of Legendrian embeddings
and assume that there exist open sets U0;U1 as in the statement of Theorem 1.2 such that fi.L/\Ui�Ui is
loose for i D 1; 2. For any z�> 0, we can apply Theorem 1.2 to the family .�H

t /
�1ıft to find isotopies  0

t ,
z 1

t and z�t with k 0
t k˛<"0, supp. 0

t /�U0, supp. z 1
t /� .�

H
1
/�1.U1/, kz�tk˛< z� and z 1

1
ız�1ı 

0
1
ıf0D

.�H
1
/�1 ıf1. Let zFt denote the contact Hamiltonian associated to z�t . Then the contact Hamiltonian Ft

associated to �t WD �
H
t ı
z�t is given by Ft .x/ D Ht .x/C ht ..�

H
t /
�1.x// zFt ..�

H
t /
�1.x//, where ht

denotes the positive function, which is equal to 1 outside of a compact set, defined by .�H
t /
�˛ D ht˛. In

particular, kHt�Ftk can be made arbitrarily small by decreasing z�. Define 1
t WD�

H
1
ı z 1

t ı.�
H
1
/�1. Then

 1
t is supported in U1, and we may assume that k 1

t k˛ < "1. It also follows that  1
1
ı�1 ı 

0
1
ıf0 D f1.

Furthermore, if we choose these isotopies in such a way that z�t ı 
0
1
ı f0 is sufficiently C 0–close to

.�H
t /
�1 ıft , then �t ı 

0
1
ıf0 is C 0–close to ft .

Proof of Corollary 1.9 Assume that Ui , Li , Vi , SLi , for i 2 f0; 1g, and ft are as in the statement of
Corollary 1.9. Let ˆt WM !M be a compactly supported contact isotopy with ˆt ı f0 D ft . Recall
that SLi \Ui � Ui is loose. Let �; �; ı > 0. We identify Ui with a subset of the 1–jet bundle J 1L with
coordinates .q;p; z/, with q 2L, p 2 T �q L, z 2R, as in the definition of a local Weinstein neighborhood
and write the height explicitly as U i

"i
WD Ui . For � 2 .0; 1�, we denote by U i

�"i
� U i

"i
the image of U i

"i

under the contactomorphism .q;p; z/ 7! .q; �p; �z/. We let z"i < "i be such that SLi is still stabilized
inside of U i

z"i
. It follows from the proof of Proposition 2.8 that for any � 2 .0; 1� there exists a contact

isotopy z i
t with compact support8 in U i

"i
that satisfies z i

1
.U i
z"i
/�U i

�z"i
and k z i

tk˛ < z"iC� for i 2 f0; 1g.
Choose � and � so small that z"i C�C 2�z"i < "i for i 2 f0; 1g. By Proposition 2.8, U i

�z"i
satisfies the

property of Ui in the statement of Theorem 1.2 with the constant 2�z"i . Hence, we can apply Theorem 1.2
to the homotopy

�
. z 0

1�t
ı . z 0

1
/�1/�ˆt �

z 1
t

�
ı z 0

1
ı f0 to conclude that there exist contact isotopies y�t

and y i
t for i 2 f0; 1g, such that

(17) ky�tk˛ <min
�
�;
"0� .z"0C�C 2�z"0/

2
;
"1� .z"1C�C 2�z"1/

2

�
;

k y i
tk˛ < 2�z"i , supp. y i

t / � U i
�z"i

and y 1
1
ı y�1 ı

y 0
1
ı z 0

1
ı f0 D

z 1
1
ı f1. Furthermore, we can assume

that y�t ı
y 0

1
ı z 0

1
ıf0 is ı–close to��

z 0
1�s ı .

z 0
1 /
�1
�
�ˆs �

z 1
s

�
t
ı z 0

1 ıf0:

This concatenation is performed so that z 0
1�t
ı . z 0

1
/�1 is traversed during the time interval

�
0; 1

3

�
,

ˆt during the time interval
�

1
3
; 2

3

�
, and z 1

t during the time interval
�

2
3
; 1
�
. As z i

t .SL0/ is contained in Vi

by construction, we may assume after potentially using appropriate cut-offs outside of a compact subset
of Vi that fy�t=3gt2Œ0;1� and fy�2=3Ct=3 ı .y�2=3/

�1gt2Œ0;1� have compact support contained in V0 (resp. V1)

8Technically speaking, we may also have to shrink U i
z"i

a bit in the q–coordinate in order to ensure that z i
t can be chosen to have

compact support in U i
"i

, but this causes no issue and we omit to write this explicitly.
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as long as y�t ı
y 0

1
ı z 0

1
ı f0 is sufficiently close to .. z 0

1�s
ı . z 0

1
/�1// �ˆs �

z 1
s /t ı

z 0
1
ı f0 so that

y�t=3 ı
z 0

1
.SL0/� V0 and y�2=3Ct=3 ı

z 0
1
.SL0/� V1 for all t 2 Œ0; 1�.

Now, for t 2 Œ0; 1�, we define

 0
t D .

z 0
s �
y 0

s �
y�s=3/t ;

 1
t D

�
.y�2=3Cs=3 ı .y�2=3/

�1/� y 1
s � .
z 1

1�s ı .
z 1

1 /
�1/

�
t
;

�t D
y�1=3Ct=3 ı .y�1=3/

�1:

Here, s 2 Œ0; 1� for all of the isotopies in the concatenations. It is now straightforward to check that these
maps have the desired properties.

Proof of Corollary 1.11 The proof of Corollary 1.11 combines the proofs of Corollary 1.9 and
Theorem 1.4.

Let Ln�M , for some n� 2, be a closed Legendrian submanifold and U" a local Weinstein neighborhood
of L of height 2" > 0. Let SL be a displaceable stabilized version of L such that the stabilization is
performed in U". Again, SL\U" � U" is loose. As above, we denote by U�" � U" the image of U",
viewed as a subset of J 1L, under the contactomorphism .q;p; z/ 7! .q; �p; �z/ for � 2 .0; 1�. Let z" < "
be such that SL is stabilized inside of Uz". Let � > 0. It follows as before that for any � 2 .0; 1� there
exists a compactly supported contact isotopy  t with  1.Uz"/� U�z" and k tk˛ < z"C�. According to
Proposition 2.8, U�z" satisfies the property of U in the statement of Theorem 1.2 with the constant 2�z".

Let E> 0, and choose � and � so small that z"C�C2�z"< ". Let L1 be a Legendrian which is Legendrian
isotopic to SL so that there are no Reeb chords between L1 and SL. In particular L1 is loose, and it is
Legendrian isotopic to L2, where L2 is obtained from L1 via a stabilization inside of some Darboux
ball U1. We may choose U1 in such a way that there are no Reeb chords between SL and L2 of action
larger than E and no Reeb chords at all if the image of SL under the Reeb flow is closed, and U1

satisfies the property in the statement of Theorem 1.2 with "1 D
1
2
."�z"��� 2�z"/ > 0. We now apply

Theorem 1.2 to a Legendrian isotopy from  1.SL/ to L2, to conclude that there exist contact isotopies
 0

t ,  1
t and �1 so that  1

1
ı�1 ı 

0
1
. 1.SL//DL2 and k 0

t k˛ < 2�z", k�tk˛ <
1
2
."�z"���2�z"/ and

k 0
t k˛ <

1
2
."�z"��� 2�z"/. Then the concatenation  t � 

0
t ��t � 

1
t has the desired properties.

Proof of Corollary 1.14 Let L0 and L1 be two closed loose Legendrian submanifolds of M that are
formally isotopic and admit loose charts of size "0 and "1, respectively. By Murphy’s h-principle for
loose Legendrians, L0 and L1 are Legendrian isotopic. Let � > 0, and let V �M be an open subset
which satisfies the property of Ui in the statement of Theorem 1.2 with "i (in Theorem 1.2) equal to 1

3
�.

By definition of the size of a loose chart, there exist contact isotopies  i
t for i 2 f0; 1g, with k i

tk˛ �
1
2
"i

so that  i
1
.Li/ has a loose chart contained in V . By applying Theorem 1.2 to  0

1
.L0/ and  1

1
.L1/, it

follows that there exists a contact isotopy �t with �1. 
0
1
.L0// D  

1
1
.L1/ and k�tk˛ < �. Then the

concatenation  0
t ��t � .. 

1
1�t
/�1 ı 1

1
/ has the desired properties.
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