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In 1962, Wall showed that smooth, closed, oriented, .n�1/–connected 2n–manifolds of dimension
at least 6 are classified up to connected sum with an exotic sphere by an algebraic refinement of the
intersection form, which he called an n–space.

We complete the determination of which n–spaces are realizable by smooth, closed, oriented, .n�1/–
connected 2n–manifolds for all n¤ 63. In dimension 126, the Kervaire invariant one problem remains
open. Along the way, we completely resolve conjectures of Galatius and Randal-Williams and Bowden,
Crowley and Stipsicz, showing that they are true outside of the exceptional dimension 23, where we
provide a counterexample. This counterexample is related to the Witten genus and its refinement to a map
of E1–ring spectra by Ando, Hopkins and Rezk.

By previous work of many authors, including Wall, Schultz, Stolz, and Hill, Hopkins and Ravenel, as
well as recent joint work of Hahn with the authors, these questions have been resolved for all but finitely
many dimensions, and the contribution of this paper is to fill in these gaps.
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1 Introduction

A classical problem in differential topology is the following:

Problem 1.1 Classify, or enumerate, all smooth, closed, oriented, .n�1/–connected manifolds of
dimension 2n.

Early progress includes both Adams’s solution [1960] to the Hopf invariant one problem and Milnor’s
discovery [2000] of exotic spheres. A major advance was made by Wall [1962], who showed that the
diffeomorphism type of a smooth, closed, oriented, .n�1/–connected 2n–manifold of dimension at
least 6 is determined, up to connected sum with a homotopy sphere, by the middle homology group, the
intersection pairing, and the so-called normal bundle data.1 Wall refers to such a collection of algebraic
invariants as an n–space. The precise definition of an n–space will be given in Section 2. To enumerate
all smooth, closed, oriented, .n�1/–connected 2n–manifolds in terms of n–spaces, it therefore suffices to
answer the following two questions:

(1) Which n–spaces may be realized by smooth, closed, oriented, .n�1/–connected 2n–manifolds?

(2) Given an n–space which is realized by a manifold M, for which homotopy spheres † are † # M

and M diffeomorphic?

In analogy with the study of smooth structures on simply connected four-dimensional manifolds, we refer
to these as the high-dimensional geography and botany problems. Following a great deal of work over
the past half-century, both the high-dimensional geography and botany problems have been resolved in
all but finitely many dimensions [Wall 1962; 1967; Kervaire and Milnor 1963; Brown and Peterson 1966;
Kosiński 1967; Mahowald and Tangora 1967; Browder 1969; Schultz 1972; Lampe 1981; Barratt et al.
1984; Stolz 1985; 1987; Hill et al. 2016; Burklund et al. 2023].

Developments after 1987 include the work of Hill, Hopkins and Ravenel on the Kervaire invariant one
problem, which, when combined with work of Stolz, settled the geography problem for all odd n> 135;
and work of Hahn and the authors settling the geography problem when n> 124 is a multiple of 4, as
well as the botany problem when n> 232 is congruent to 1 modulo 8.

Here we complete the solution to the high-dimensional geography problem outside of dimension 126,
where the answer is contingent on the resolution of the Kervaire invariant one problem. Our answer is
phrased in terms of certain n–space invariants studied by Wall. Although some of these invariants, such
as the signature and the Kervaire invariant ˆ, are likely to be familiar to the reader, others, such as the
middle homology class �, might not be. In Section 2 we recall the definitions for all of the invariants we
use.
1The restriction to dimension at least 6 is inherited from the use of the Whitney trick in Smale’s study of handlebody
decompositions.
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Theorem 1.2 (proven as Theorem 2.10) Suppose that n� 3. With the exception of finitely many n, an
n–space .H;H ˝H ! Z; ˛/ is realized by a smooth , closed , oriented , .n�1/–connected 2n–manifold
if and only if the following conditions hold :

(1) If n� 0 mod 4, then sigC 4s.Q/n=2�
2 � 0 mod �n=2.

(2) If n� 2 mod 4, then sig� 0 mod �n=2.

(3) If n� 1 mod 2, then ˆD 0.

The full list of exceptions is as follows:

� If nD 3; 7; 15; 31, then every n–space is realizable.

� If nD 63, then every n–space is realizable if there exists a closed smooth manifold of Kervaire
invariant one in dimension 126. Otherwise , an n–space is realizable if and only if ˆD 0.

� If nD 4 or 8, then instead of condition (1) we require sig��2 � 0 mod �n=2.

� If nD 9, we require condition (3) and demand further that '.�/D 0.

� If nD 12, we require condition (1) and demand further that �2 � 0 mod 4.

In his 1962 paper, Wall showed for n� 3 that n–spaces lie in bijection with diffeomorphism classes of
oriented, .n�1/–connected, smooth 2n–manifolds with boundary a homotopy sphere. An n–space may
be realized precisely when this homotopy sphere may be filled in, ie when it is diffeomorphic to the
standard .2n�1/–sphere. Therefore, the high-dimensional geography problem is intimately related to the
following question:

Question 1.3 Given an integer n>2, which .2n�1/–dimensional homotopy spheres arise as the boundary
of an .n�1/–connected 2n–manifold?

The answer to Question 1.3 invokes knowledge of the Kervaire–Milnor group [1963] of homotopy spheres,
so we begin by recalling its basic structure. Let ‚m denote the group of h–cobordism classes of oriented,
smooth, closed manifolds † that are homotopy equivalent to the m–sphere, where the group operation is
the connected sum. The Kervaire–Milnor exact sequence

0! bPmC1!‚m! coker.J /m

expresses‚m in terms of the finite cyclic group bPmC1 and the much more complicated group coker.J /m.
Geometrically, the group bPmC1 is the subgroup of ‚m consisting of those homotopy spheres which
bound parallelizable manifolds.

Theorem 1.4 Suppose that n > 2 and n ¤ 9; 12. Then a .2n�1/–dimensional homotopy sphere is
the boundary of an .n�1/–connected smooth 2n–manifold if and only if it also bounds a parallelizable
manifold.

Geometry & Topology, Volume 28 (2024)
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A homotopy 17–sphere † is the boundary of an 8–connected 18–manifold if and only if

Œ†� 2 f0; ��4g � coker.J /17:

A homotopy 23–sphere † is the boundary of an 11–connected 24–manifold if and only if

Œ†� 2 f0; �3
x�g � coker.J /23:

Remark 1.5 Theorem 1.4 is new when

� n� 0 mod 4 and 12� n� 124;

� n� 1 mod 8 and 9� n� 121.

In the remaining cases the attribution is as follows:

� When 3� n� 8, it is due to [Wall 1962].

� When n� 3; 5; 6; 7 mod 8, it follows from [Wall 1962, Theorem 2] and the existence of almost
closed parallelizable manifolds of signature 8 (n even) and Kervaire invariant one (n odd). Examples
of such manifolds are given by Milnor’s E8–plumbing and the Kervaire plumbing, respectively.
See eg [Browder 1972, Section V.2].

� When n� 2 mod 8, it is due to [Schultz 1972, Corollary 3.2 and Theorem 3.4(i)].

� When n� 1 mod 8 and n� 129, it is due to [Stolz 1985, Theorem B].2

� When n�0 mod 4 and n�128 it is due to Hahn and the authors [Burklund et al. 2023, Theorem 8.6].

Theorem 1.4 resolves the following conjecture, which is equivalent to [Galatius and Randal-Williams
2016, Conjectures A and B]:

Conjecture 1.6 (Galatius and Randal-Williams) Suppose n� 0 mod 4. Then a .2n�1/–dimensional
homotopy sphere is the boundary of an .n�1/–connected 2n–manifold if and only if it also bounds a
parallelizable manifold.

In particular, we learn that the conjecture is false for nD 12 and true otherwise. The interest of Galatius
and Randal-Williams in this conjecture was spurred on by their work on mapping class groups of highly
connected manifolds. In Section 9.2, we will briefly record some applications of Theorem 1.4 to the
computation of mapping class groups.

As we shall see in Section 9.1, Theorem 1.4 also resolves the following conjecture of Bowden, Crowley
and Stipsicz:

Conjecture 1.7 [Bowden et al. 2014, Conjecture 5.9] An odd-dimensional homotopy sphere admits a
Stein-fillable contact structure if and only if it also bounds a parallelizable manifold.

2Stolz [1985, Theorem B] claims this result for all n� 113, and in this case Stolz’s proof is in fact valid for n� 105. However,
Stolz made crucial use of a theorem announced by Mahowald, whose statement appears in his work as [Stolz 1985, Satz 12.9], of
which no proof has appeared in the literature. A similar theorem was proven in [Burklund et al. 2023, Section 15], which when
plugged into Stolz’s argument gives the result for n� 129.
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More precisely, we show in Theorem 9.1 that the conjecture is true for all dimensions other than 23, and
that a 23–dimensional homotopy sphere † admits a Stein-fillable contact structure if and only if

Œ†� 2 f0; �3
x�g � coker.J /23:

Bowden et al. [2014, Proposition 5.3] show how to equip an odd-dimensional homotopy sphere which
bounds a parallelizable manifold with an explicit, geometrically defined, Stein-fillable contact structure.
This leads us to ask the following question:

Question 1.8 Given an exotic 23–sphere † with Œ†�D �3x� 2 coker.J /23, can one construct an explicit
Stein-fillable contact structure on † in a geometric way? Can this be done in such a way as to shed light
on what is special about dimension 23 and the class �3x� 2 coker.J /23?

Let us take a moment to discuss why the dimension 23 is exceptional, providing counterexamples to
both the conjectures of Galatius and Randal-Williams and Bowden, Crowley and Stipsicz. We proceed
by contradiction: Supposing that Conjecture 1.6 held for nD 12, the work of Wall [1962] implies the
existence of a closed, oriented, 11–connected, smooth 24–manifold with certain Pontryagin numbers.
This manifold would have to admit a string structure, and so we may consider its Witten genus, which
can be computed in terms of the Pontryagin numbers.

The Witten genus of a closed string manifold is an integral modular form. However, not every integral
modular form is the Witten genus of a closed string manifold: a nontrivial restriction on the image of the
Witten genus is provided by the Ando–Hopkins–Rezk string orientation [Ando et al. 2010], which implies
that the Witten genus factors through the homotopy groups of the connective spectrum tmf of topological
modular forms.3 For example, it follows from computations of Hopkins and Mahowald that the weight 12

modular form � does not lie in the image of the Witten genus; instead only multiples of 24� lie in the
image. Using this restriction, we are able to show that the putative manifold constructed above cannot exist.

Experts are aware that this restriction on the value of the Witten genus gives rise to divisibility constraints
on the Pontryagin numbers of string 24–manifolds; see for example [Teichner 2007, Corollary 90].
Nevertheless, as far as the authors are aware, thus far there have been few concrete geometric applications
of the Witten genus and the Ando–Hopkins–Rezk string orientation.4 We were therefore pleased to find
an application for this beautiful theory in this work.

Remark 1.9 The argument sketched above, whose details are the subject of Section 3, is modeled on a
classical argument making use of the yA–genus, which shows that there is no closed, simply connected,
smooth 4–manifold whose intersection form is isomorphic to the E8–form, though Freedman [1982] has

3In fact, a folk theorem of Hopkins and Mahowald, which has now been written up by Devalapurkar [2019], shows that this is
the only restriction on the image of the Witten genus: the map �String

n D �nM String! �ntmf is surjective for all n.
4However, see [Krannich 2021] for a recent application of the Ando–Hopkins–Rezk orientation to the question of how taking the
connected sum with an exotic sphere affects the mapping class group of a highly connected manifold.
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famously shown the existence of such a topological 4–manifold. Indeed, if such a smooth 4–manifold
existed then it would have to admit a spin structure and its yA–genus would be equal to 1. But the fact
that the yA–genus factors as the composite

�
Spin
4
Š �4M Spin! �4ko! �4kuŠ Z;

where the first map is induced by the Atiyah–Bott–Shapiro orientation [Atiyah et al. 1964], and the second
map is induced by tensoring up a real vector bundle to the complex numbers, implies that the yA–genus of
a 4–manifold is even, since the image of the second map is equal to 2Z� Z. Since the signature of a
simply connected spin 4–manifold is equal to �1

8
times its yA–genus, this argument also proves Rokhlin’s

theorem, which states that the signature of such a manifold must be divisible by 16.

It is interesting to note that the extra integrality for the yA–genus used above is apparent from the
interpretation of the yA–genus as the index of the Dirac operator on the spinor bundle, as the rank 4

real Clifford algebra contains the quaternions. We hope that one day it will be possible to see a similar
geometric origin for the restriction on the Witten genus of a closed string manifold used above. At the
moment the appropriate replacement for Clifford algebras is not yet clear, but see [Stolz and Teichner
2004; Douglas and Henriques 2011].

An outline of the paper

In Section 2, we deduce Theorem 1.2 from Theorem 1.4, solving the high-dimensional geography problem
for manifolds of dimension other than 126. In Section 3, we exploit the integrality properties of the Witten
genus to prove the existence of an exceptional 11–connected 24–manifold M24 whose boundary @M24 is
a homotopy sphere which does not bound a parallelizable manifold.

In Section 4, we lay the groundwork for the proof of Theorem 1.4, and we divide the proof into four parts.
In Section 5, we improve upon the key argument from [Burklund et al. 2023, Section 10] to prove several
cases of Theorem 1.4. As a consequence, we are also able to show that Œ@M24�D �

3x� 2 .coker.J /23/.2/.
In Section 6, we use power operations to prove the existence of the exceptional almost closed manifolds
in dimension 18. In Section 7, we again exploit the Ando–Hopkins–Rezk string orientation, this time
in order to resolve the 3–primary aspects of the 24–dimensional case. In Section 8, we make a short
homological algebra argument necessary to finish the 128–dimensional case of Theorem 1.4.

Finally, in Section 9, we briefly discuss the applications of our work to Stein-fillable homotopy spheres
and mapping class groups of highly connected manifolds.
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2 Classification of .n�1/–connected 2n–manifolds

In this section, we will reduce the high-dimensional geography problem to Theorem 1.4 and state the
answer as Theorem 2.10. While many cases of Theorem 2.10 were previously known, we hope that the
reader will find it useful to have a precise answer collected in a single omnibus theorem.

Convention 2.1 All manifolds in this section and Section 3 will be assumed compact, smooth and
oriented, and all diffeomorphisms will be assumed orientation-preserving. We will let n denote an integer
greater than 2.

2.1 The work of Wall

Let us begin by recalling Wall’s work [1962] on the classification of closed, .n�1/–connected 2n–
manifolds. Given such a manifold M, Wall associates the data of

� the middle homology group H DHn.M IZ/, which is a finite-dimensional free abelian group;

� the intersection pairing H ˝H ! Z, which is a unimodular bilinear form, symmetric if n is even
and skew-symmetric if n is odd; and

� the normal bundle data, which is a map of sets ˛ WH ! �nBSO.n/ assigning to x 2H the normal
bundle of an embedded sphere representing x. We will recall the values of the groups �nBSO.n/
below.

Let �Sn 2 �nBSO.n/ correspond to the tangent bundle of Sn. Moreover, let J W �nBSO.n/! �2n�1Sn

denote the unstable J–homomorphism and let H W �2n�1Sn! Z denote the Hopf invariant. Then the
above data satisfy the following compatibility conditions: given any x;y 2H, we have

(1) x2
DHJ˛.x/

and

(2) ˛.xCy/D ˛.x/C˛.y/C .xy/ � �Sn ;

where in both cases we have used multiplication to denote the intersection product.

Definition 2.2 An n–space is a triple .H;H ˝H ! Z; ˛/ which satisfies (1) and (2). Two n–spaces
.H1;H1˝H1!Z; ˛1/ and .H2;H2˝H2!Z; ˛2/ are said to be isomorphic if there is an isomorphism
of abelian groups H1 ŠH2 preserving the intersection forms and normal bundle data.

Wall proved that the n–space of a closed, .n�1/–connected 2n–manifold M determines M up to connected
sum with a homotopy sphere:

Geometry & Topology, Volume 28 (2024)
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Theorem 2.3 [Wall 1962, pages 169–170] Two closed , .n�1/–connected 2n–manifolds M and N

have isomorphic n–spaces if and only if M ŠN #† for some homotopy sphere † 2‚2n.

Moreover, call a manifold almost closed if its boundary is a homotopy sphere. Then one may equally
well associate an n–space to an almost closed, .n�1/–connected 2n–manifold. Wall’s invariant is even
more powerful in this case.

Theorem 2.4 [Wall 1962, page 170] The map associating an n–space to an almost closed , .n�1/–
connected 2n–manifold induces a bijection between the set of almost closed , .n�1/–connected 2n–
manifolds up to diffeomorphism and the set of n–spaces up to isomorphism.

Together, these two theorems reduce the classification of .n�1/–connected 2n–manifolds to the following
two questions, which we have named in analogy with the classification of simply connected smooth
4–manifolds:

(1) High-dimensional geography problem Given an n–space .H;H ˝H ! Z; ˛/, when is it
realized by a closed, .n�1/–connected 2n–manifold M ? This is equivalent to asking when the
boundary of the associated almost closed manifold is diffeomorphic to the standard .2n�1/–sphere.

(2) High-dimensional botany problem Given an n–space .H;H˝H!Z; ˛/ which is realized by a
.n�1/–connected 2n–manifold M, what is the subgroup I.M /�‚2n of † such that M #†ŠM ?

Later, Wall gave a cobordism interpretation of the remaining aspects of the high-dimensional geography
problem. This allows one to sum up the problem in an exact sequence of cobordism groups

Definition 2.5 Let�hn�1i
2n

denote the group of closed, oriented, .n�1/–connected 2n–manifolds, modulo
.n�1/–connected oriented cobordisms.

Furthermore, let A
hn�1i
2n

denote the group of oriented, almost closed, .n�1/–connected 2n–manifolds,
modulo .n�1/–connected, oriented cobordisms restricting to h–cobordisms on the boundary.

Proposition 2.6 [Wall 1967, Lemma 32] There is an exact sequence

‚2n!�
hn�1i
2n

!A
hn�1i
2n

@
�!‚2n�1;

where the first map sends a homotopy sphere to its cobordism class , the second map cuts out the interior
of a smoothly embedded 2n–disk , and the last map sends an almost closed manifold to its boundary.

The high-dimensional geography problem is thus equivalent to the computation of the kernel of the map

@ WA
hn�1i
2n

!‚2n�1

in terms of the associated n–spaces. The results of this paper, building upon a great deal of work in the
literature, compute the map @ and thereby answer the high-dimensional geography problem for all n¤ 63.
The remaining case nD 63 is equivalent to the Kervaire invariant one problem in dimension 126.

Before proceeding, we find it helpful to unpack the information present in an n–space. First, we note
that, since a complete classification of unimodular lattices is not known, the possible bilinear forms are
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not completely enumerated. This issue will not affect us, but it is worth mentioning. The definition of
an n–space depended on the classification of rank n vector bundles on the n–sphere and the class of the
tangent bundle in that group. We recall Kervaire’s work [1960] on this subject. For n at least 8, we have
the following table of values:

n .mod 8/ 0 1 2 3 4 5 6 7

�nBSO.n/ Z˚Z Z=2˚Z=2 Z˚Z=2 Z=2 Z˚Z Z=2 Z Z=2

Furthermore, the stabilization map to �nBSO is surjective with kernel generated by �Sn . In the n �

1 mod 8 case, �nBSO.n/ has a basis given by �Sn and ��, where � 2 �n�1BSO.n/ Š Z denotes a
generator.5 Finally, we set up several invariants of n–spaces and definitions which will be useful later
(here we assume n� 8):

� If n is even, let sig denote the signature of the symmetric bilinear form on H.

� If n� 0 mod 4, the composition H ˛
�! �nBSO.n/! �nBSOŠZ is a linear map by (2) and the

fact that the image of �Sn in �nBSO is trivial. This composition therefore corresponds to some
element � 2H via the unimodular bilinear form.

� If n� 1; 2 mod 8, the same procedure determines an element � 2H=2.

� If n� 0; 2; 4 mod 8, the self-intersection number of � is an integer �2 (well defined modulo 4 in
the n� 2 mod 8 case).

� If n� 1 mod 8, we let ' denote the map �nBSO.n/! Z=2 with kernel ��.6

� If n� 1 mod 8, the element '.˛.�// gives an element in Z=2, which we denote by '.�/.

� If n is odd, then, since �Sn is sent to a generator under the map ˛ (˛ ı' in the n� 1 mod 8 case),
this map determines a quadratic refinement of the mod 2 reduction of the intersection pairing. We
let ˆ denote the Arf–Kervaire invariant of this quadratic form.

Our notation for these invariants follows that in [Wall 1962], with the exception of writing sig for the
signature instead of � . Wall shows that each of the invariants sig, �2, ˆ and '.�/ descends to a linear
map from A

hn�1i
2n

.7 He has further computed the groups A
hn�1i
2n

in terms of these invariants.

Proposition 2.7 [Wall 1962, Theorem 2; 1967, Theorem 11] Assume n� 9. The values of A
hn�1i
2n

are
given in the following table , along with a choice of basis in terms of the above invariants:

n .mod 8/ 0 1 2 3 4 5 6 7

A
hn�1i
2n

Z˚Z Z=2˚Z=2 Z˚Z=2 Z=2 Z˚Z Z=2 Z Z=2

basis
�

1
8

sig; 1
2
�2
�

.ˆ; '.�//
�

1
8

sig; 1
2
�2
�

ˆ
�

1
8

sig; 1
2
�2
�

ˆ 1
8

sig ˆ

5This follows from the preceding sentence and the fact that �8nC1koŠZ=2Z is generated by � times a generator of �8nkoŠZ.
6Wall [1962] did not fix a specific choice of ', merely asking that the direct sum of ' with the stabilization map be an
isomorphism. This leads to an ambiguity in his definition of ˆ when n� 1 mod 8. Here we are careful to fix this specific choice
so as to make Theorem 2.10 correct and unambiguous when n� 1 mod 8.
7This follows in a straightforward way from [Wall 1962, Lemma 4] and the definitions.
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2.2 The main theorem

We are now ready to state and prove the main theorem of this paper, assuming Theorem 1.4 as input. We
first recall some useful quantities computed by Krannich and Reinhold.

Definition 2.8 Let n> 2 denote a positive integer. Following [Krannich and Reinhold 2020], we let

� B2n denote the .2n/th Bernoulli number;

� jn and kn denote the denominator and numerator, respectively, of the absolute value of B2n=4n

when written in lowest terms;

� an denote 1 if n is even and 2 if n is odd;

� �n denote the integer �n D an22nC1.22n�1� 1/kn;

� cn and dn denote integers such that cnknC dnjn D 1.

Finally, we let s.Q/2n denote the integer

s.Q/2n D
�1

8j 2
n

�
�2

n C a2
n�2nkn.c2nknC 2.�1/nd2njn/

�
:

Remark 2.9 The integers cn and dn, and therefore s.Q/2n, are not well defined. Nevertheless, s.Q/2n

is well defined modulo 1
8
�2n. Since we will only use the value of s.Q/2n modulo 1

8
�2n in this section,

this will not present a problem for us.

Theorem 2.10 Suppose that n�3. With the exception of finitely many n, an n–space .H;H˝H!Z; ˛/

is realized by a smooth , closed , oriented , .n�1/–connected 2n–manifold if and only if the following
conditions hold :

(1) If n� 0 mod 4, then sigC 4s.Q/n=2�
2 � 0 mod �n=2.

(2) If n� 2 mod 4, then sig� 0 mod �n=2.

(3) If n� 1 mod 2, then ˆD 0.

The full list of exceptions is as follows:

� If nD 3; 7; 15; 31, then every n–space is realizable.

� If nD 63, then every n–space is realizable if there exists a closed smooth manifold of Kervaire
invariant one in dimension 126. Otherwise , an n–space is realizable if and only if ˆD 0.

� If nD 4 or 8, then instead of condition (1) we require sig��2 � 0 mod �n=2.

� If nD 9, we require condition (3) and demand further that '.�/D 0.

� If nD 12, we require condition (1) and demand further that �2 � 0 mod 4.

Remark 2.11 The cases 3� n� 8 were proven in [Wall 1962, Theorem 4], so we will assume n� 9 in
the following.
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Almost all of the ingredients in this theorem are already in the literature, and much of what we do here
consists merely of their collation. What is original to this paper are the new cases of Theorem 1.4, as
well as the special care given to the n� 1 mod 8 case, which we have not seen spelled out elsewhere.

The proof of Theorem 2.10 will follow immediately from Proposition 2.7 and Lemma 2.12 below, which
computes the boundaries of several specific classes. Recall the Kervaire–Milnor exact sequence

0! bP2n!‚2n�1! coker.J /2n�1:

Given an element † 2 ‚2n�1, we will let Œ†� 2 coker.J /2n�1 denote its image under the map in the
above exact sequence.

When n is even, this sequence is short exact, and Brumfiel [1968] constructed a preferred splitting

‚2n�1 Š bP2n˚ coker.J /2n�1:

Lemma 2.12 Assume n� 9.

(1) For n even , let P 2 A
hn�1i
2n

denote the element with 1
8

sigD 1 and 1
2
�2 D 0 if n� 0; 2; 4 mod 8.

As noted in [Krannich 2020, Section 3.2.2], we may choose P to be Milnor’s E8–plumbing. The
homotopy sphere @.P / 2‚2n�1 is a generator of bP2n, which is a cyclic group of order 1

8
�n=2.

(2) For n� 0 mod 4, let Q 2A
hn�1i
2n

denote the element with
�

1
8

sig; 1
2
�2
�
D .0; 1/. For n¤ 12, @.Q/

is s.Q/n=2 � @.P /. For nD 12, @.Q/ is s.Q/6 � @.P /C �
3x�, where �3x� 2 coker.J /23 is viewed as

an element of ‚23 via Brumfiel’s splitting. The class �3x� is simple 2–torsion.

(3) For n� 2 mod 4, let L 2A
hn�1i
2n

denote the element with
�

1
8

sig; 1
2
�2
�
D .0; 1/. Then @.L/D 0.

(4) For n odd , let K 2A
hn�1i
2n

denote the element with ˆ.K/D 1 (and '.�/D 0 if n� 1 mod 8). We
may choose K to be the Kervaire plumbing. The homotopy sphere @.K/ 2‚2n�1 is a generator of
bP2n. This group is zero for nD 1; 3; 7; 15; 31 and possibly 63. (It is zero for nD 63 precisely if
there exists a 126–dimensional manifold of Kervaire invariant one.) It is Z=2 otherwise.

(5) For n� 1 mod 8, let R 2A
hn�1i
2n

denote the element with .ˆ; '.�//D .0; 1/. For n¤ 9, we have
@.R/D 0. For nD 9, we have Œ@.R/�D ��4 2 coker.J /17, which is simple 2–torsion

Proof of Lemma 2.12(1)–(4) The element P The boundary of Milnor’s E8–plumbing is well known
to be a generator of bP2n when n is even (use eg [Levine 1985, Lemma 3.5(2)] and the fact the signature
of the Milnor plumbing is equal to 8). The fact that for even n the group bP2n is a cyclic of order 1

8
�n=2

follows from [Levine 1985, Corollary 3.20].

The element Q We will describe @.Q/ in terms of Brumfiel’s splitting. On the one hand, Krannich and
Reinhold [2020, Lemma 2.7], building on work of Stolz [1987], have computed the bP2n–component
of @.Q/ to be s.Q/n=2 � @.P / for the explicit quantity s.Q/n=2 defined in Definition 2.8. On the other
hand, the computation of the coker.J /2n�1–component of @.Q/ follows immediately from Theorem 1.4
and the fact that @.P / lies in bP2n. In particular, the coker.J /2n�1–component of @.Q/ is zero if n¤ 12

and is �3x� for nD 12.

Geometry & Topology, Volume 28 (2024)



4268 Robert Burklund and Andrew Senger

The element L It is a result of Schultz [1972, Corollary 3.2 and Theorem 3.4(iii)] that @.L/D 02‚2n�2.

The element K The boundary of the Kervaire plumbing, @.K/, is the Kervaire sphere, which generates
bP2n by [Kervaire and Milnor 1963, Theorem 8.5]. This case of Theorem 2.10 now follows from the
fact that, if n is odd, bP2n Š 0 if a smooth closed 2n–manifold of Kervaire invariant one exists, and is
isomorphic to Z=2Z otherwise. By [Brown and Peterson 1966; Mahowald and Tangora 1967; Browder
1969; Barratt et al. 1984; Hill et al. 2016], such a manifold exists if n D 1; 3; 7; 15; 31 and possibly
if nD 63.

When n � 1 mod 8, we need to show that '.�/ of K is zero. To prove this, we note that, since the
Kervaire plumbing K is obtained by plumbing together the disk bundles of �Sn over Sn, the (nonlinear)
map Z˚ZŠHn.K/

˛
�!�nBSO.n/ sends both generators to �Sn , and hence the composite (linear) map

Z˚ZŠHn.K/
˛
�! �nBSO.n/! .�nBSO/=2 is zero. It follows that �D 0, and hence '.�/D 0.

Computing @.R/ takes more work. It follows from Theorem 1.4 that, for n¤9, Œ@.R/�D02coker.J /2n�1,
but, to show that the condition for realizability of an n–space is ˆ D 0 and not ˆC '.�/ D 0, it is
necessary to prove that @.R/D 0 2‚2n�1. To do this, we recall an argument of Schultz [1972] which
reduces it to the case of n� 0 mod 8.

Recall Bredon’s pairing
� ��W‚n ��nCk.S

n/!‚nCk :

Roitberg [1972, Theorem B] has shown that this pairing is that induced by the composition action on
‚n Š �nPL=O, and used this to show that the restriction of this pairing to bPnC1 is zero for k � 1.

Lemma 2.13 Suppose that n> 9 is congruent to 1 modulo 8. Then @.R/D @.Q/ � �2, where we have
used � for Bredon’s pairing.

Proof Let ˛ 2�n�1BSO.n�1/ denote a generator of the image of �n�1BSO.n�2/ in �n�1BSO.n�1/.
It maps under the stabilization map i� W �n�1BSO.n� 1/! �n�1BSO.n/Š Z to a generator.

As in [Krannich 2020, Section 3.2.2], Q may be chosen to be the plumbing of two copies of the .n�1/–
dimensional linear disk bundle over Sn�1 corresponding to ˛. Similarly, it is not hard to see that R

may be constructed by plumbing together two copies of the n–dimensional linear disk bundle over Sn

corresponding to i��˛. Indeed, for this plumbing we have H Š Zfx;yg with intersection xy D 1, and
the map

Zfx;yg ŠH ˛
�! �nBSO.n/ '

�! Z=2

sends x and y to zero, and hence xCy to xy D 1, from which it follows that the Kervaire invariant is 0.
On the other hand, the map

Zfx;yg ŠH ˛
�! �nBSO.n/! �nBSOŠ Z=2

sends x and y to 1, so that �D xCy and so '.�/D 1.
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It then follows from [Schultz 1972, Theorem 2.5; Lawson 1973, Diagram (B)] and the fact that � lies in
the image of J that

@.R/D @.Q/ � �2;

as desired.

Remark 2.14 This is essentially [Schultz 1972, Theorem 3.1], except that Schultz does not specify the
definition of ˆ that he is using.

Proof of Lemma 2.12(5) Suppose that n>9. We have already seen above that @.Q/2bP2n�2. (Note that
n�1� 0 mod 8 and in particular cannot be equal to 12.) Then Lemma 2.13 asserts that @.R/D @.Q/ ��2,
which is equal to 0 because Bredon’s pairing restricts to zero on bP.

On the other hand, at nD 9, Theorem 1.4, Proposition 2.7 and the computation of @.K/ imply that we
must have Œ@R�D ��4 2 coker.J /17.

3 The Witten genus of 11–connected 24–manifolds

In this section, we will show that the 23–dimensional case of Theorem 1.4 is exceptional, disproving the
conjecture of Galatius and Randal-Williams. In particular, we prove the following theorem:

Theorem 3.1 The image of the composition

A
h11i
24

@
�!‚23! coker.J /23! .coker.J /23/.2/

is not 0. In particular , there is an 11–connected 24–manifold whose boundary is a homotopy sphere
which does not bound a parallelizable manifold.

Remark 3.2 In Sections 5 and 7, we refine this result, showing that the image of the composition

A
h11i
24

@
�!‚23! coker.J /23

is f0; �3x�g � coker.J /23.

The proof of Theorem 3.1 is a relatively straightforward application of the Ando–Hopkins–Rezk refinement
[Ando et al. 2010] of the Witten genus and will be accomplished in two steps. First, we will collect results
of Hirzebruch, Hopkins and Mahowald, and Ando, Hopkins and Rezk that provide a divisibility condition
on the Pontryagin numbers of a closed 11–connected 24–manifold. Second, we will work through the
implications of this restriction for the relevant examples.

3.1 A condition on Pontryagin numbers

In order to motivate the condition on the Pontryagin numbers of an 11–connected 24–manifold which
we need, we will begin by working through an analogous restriction for 4–dimensional spin manifolds,
which is equivalent to Rokhlin’s theorem.
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Example 3.3 The Hirzebruch signature formula tells us that the signature of the intersection form on H2

of an oriented 4–manifold is given by 1
3
p1, where p1 is the first Pontryagin number. In the case where

the 4–manifold is spin (ie w2 D 0), the intersection form on H2 is unimodular and even. Any even
unimodular quadratic form has signature divisible by 8, so we may conclude that p1 is divisible by 24.

Further divisibility conditions can be obtained by a more sophisticated analysis. Given a spin manifold,
we can consider its yA–genus, which is an integer (being the index of the Dirac operator on the spinor
bundle). In this case, the yA–genus is equal to � 1

24
p1, from which we immediately recover our earlier

divisibility criterion. But we may go further. Indeed, since the real Clifford algebra Cl4 Š M2.H/

contains the quaternions, the spinor representation inherits a quaternionic structure. The Dirac operator
is then quaternion-linear, so its index must be even. The same conclusion can be obtained using the
Atiyah–Bott–Shapiro orientation

M Spin! ko;

which refines the yA–genus [Atiyah et al. 1964]. Indeed, the composite

�4MSpin! �4ko! �4kuŠ Z

is equal to the yA–genus, where the first map is induced by the Atiyah–Bott–Shapiro orientation and the
second map is induced by tensoring up a real vector bundle to the complex numbers. Since the second
map sends a generator to twice a generator of Z, we learn that the yA–genus of a spin 4–manifold is
divisible by 2, ie that p1 is divisible by 48.

In the case of 11–connected 24–manifolds, we will use the Ando–Hopkins–Rezk refinement of the Witten
genus to prove the following:

Proposition 3.4 If M is an 11–connected 24–manifold , then �1177p2
3
� 311p6 is divisible by

237758976000D 212
� 36
� 53
� 72
� 13:

The Witten genus is a cobordism invariant of string manifolds which takes values in the ring of integral
modular forms; see Definition 3.5. However, not every integral modular form is the Witten genus of
a string manifold. Indeed, the Witten genus factors through the coefficient ring of the spectrum of
topological modular forms and it is this restriction which will provide the leverage we need to prove
Proposition 3.4.

Definition 3.5 Let MFn denote the group of integral modular forms of weight n. The direct sum of these
groups, MF� D

L
n�0 MFn, is a graded ring, and has explicit generators and relations

MF� Š ZŒE4;E6; ��=.E
3
4 �E2

6 � 1728�/;

where E4 and E6 are the weight 4 and 6 normalized Eisenstein series, respectively, and � is the
discriminant. (See [Deligne 1975, proposition 6.1].)
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Let �String
� denote the cobordism ring of string manifolds. The Witten genus is a ring map

�W W�
String
2�
!MF�:

In fact, by [Ando et al. 2010], the Witten genus can be refined to a map of E1–ring spectra as follows.
Let M String denote the Thom spectrum of the canonical map BStringD ��8BO! BO. Then there is
a canonical isomorphism ��M StringŠ�String

� . Let tmf denote the connective spectrum of topological
modular forms [Hopkins and Miller 2014; Behrens 2014; Lurie 2018]. This is an E1–ring spectrum
which comes equipped with a ring map �2�tmf!MF�. Ando et al. [2010] proved the Witten genus lifts
to a map of E1–ring spectra.

Theorem 3.6 [Ando et al. 2010] There is a map of E1–rings M String! tmf such that the induced
map

�
String
2�
Š �2�M String! �2�tmf!MF�

is the Witten genus �W .

Hopkins and Mahowald have determined the image of the map �2�tmf!MF�:

Theorem 3.7 [Hopkins 2002, Proposition 4.6] The image of the map �2�tmf!MF� has a basis given
by the monomials

ai;j ;kEi
4E

j
6
�k ; i; k � 0; j D 0; 1;

where

ai;j ;k D

8<:
1 if i > 0; j D 0;

2 if j D 1;

24=gcd.24; k/ if i; j D 0:

Some additional references for this result are [Bauer 2008; Konter 2012, Theorem 1.2; Bruner and Rognes
2021, Section 9.3]. Specializing to the case of 24–dimensional manifolds, we obtain the following result:

Corollary 3.8 The image of the Witten genus�String
24
!MF12 lies in the subspace of MF12DZfE3

4
; �g

spanned by E3
4

and 24�.

Remark 3.9 At this point one could obtain the desired divisibility criterion on the Pontryagin numbers
as follows. The Witten genus is determined by the characteristic series

exp
�X

k�1

2G2k

z2k

.2k/!

�
;

where G2k is the weight 2k Eisenstein series. From this, one can extract a polynomial in the Pontryagin
numbers which computes the Witten genus for 24–manifolds. Plugging in the fact that all terms except
p2

3
and p6 are zero due to the 11–connectedness assumption would prove the proposition.

Instead of doing this, we will cite results of Hirzebruch and Hopkins and Mahowald, since they have
already analyzed the 24–dimensional case in connection with the Hirzebruch prize manifold.
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Lemma 3.10 [Hirzebruch et al. 1992, Example, pages 85–86] Let M denote a 24–dimensional string
manifold. Then

�W .M /D yA.M /x�C yA.M;TC/�;

where x�DE3
4
�744�, yA.M / is the yA–genus of M, and yA.M;TC/ is the twisted yA–genus of M, where

the twisting is by the complexified tangent bundle TC .

Since 744 is divisible by 24, combining this lemma with Corollary 3.8 yields the following corollary:

Corollary 3.11 Let M denote a 24–dimensional string manifold. Then yA.M;TC/ is divisible by 24.

We thank the referee for pointing out that this corollary has been noted earlier by Teichner [2007,
Corollary 90].

Finally, we recall the formula for yA.M;TC/ in terms of Pontryagin numbers, conveniently provided by
[Mahowald and Hopkins 2002, page 98], specialized to the case of 11–connected 24–manifolds:

Proposition 3.12 [Mahowald and Hopkins 2002, page 98] Let M denote a smooth , closed , oriented
11–connected 24–manifold. Then

yA.M;TC/D
�1177p2

3
� 311p6

9906624000
:

Combining this with Corollary 3.11, we obtain Proposition 3.4.

3.2 Application

To prove Theorem 3.1, we begin by using the results of Section 2 to construct an element of �h11i
24

.
Let P 2A

h11i
24

and Q 2A
h11i
24

represent the classes with
�

1
8

sig; 1
2
�2
�
D .1; 0/ and

�
1
8

sig; 1
2
�2
�
D .0; 1/,

respectively. Moreover, let Œ†Q� equal the image of Q in coker.J /23 under the composite

A
h11i
24

@
�!‚23! coker.J /23;

and let ord.Œ†Q�/ denote its order. Then, for any choice of s.Q/6 2 Z as in Definition 2.8, the class

ord.Œ†Q�/.Q� s.Q/6P / 2A
h11i
24

lifts to �h11i
24

(see [Krannich and Reinhold 2020, Theorem 2.9]).8

Assuming the class N.Q� s.Q/6P / lifts to �h11i
24

for some integer N, we can compute its Pontryagin
numbers and check whether they are compatible with Proposition 3.4. This will allow us to conclude that
ord.Œ†Q�/ is even. In order to compute the Pontryagin numbers of N.Q� s.Q/6P /, we make use of the
formulas provided by Krannich and Reinhold.

8This statement depends on a choice of integer s.Q/6 and is true for all possible such choices.
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Proposition 3.13 [Krannich and Reinhold 2020, Proposition 2.13] Given n � 3 and a choice of
s.Q/2n 2 Z, the Pontryagin numbers of a lift of N.Q� s.Q/2nP / to �h4n�1i

8n
are given by

p2
n D 2Na2

n.2n� 1/!2; p2n DNa2
n

�
.2n� 1/!2C .4n� 1/!j2n

jB2nj

4n

�
c2n

jB2nj

4n
C 2d2n.�1/n

��
for the choices of c2n and d2n corresponding to the choice of s.Q/2n.

Evaluating these formulas for nD 3 (see Definition 2.8 for the constants which appear) we obtain:

� B6 D
1

42
and B12 D�

691
2730

.

� j6 D denom
�

1
4�6
jB12j

�
D 65520.

� k6 D num
�

1
4�6
jB12j

�
D 691.

� a3 D 2 and a6 D 1.

� We choose c6 D�18869 and d6 D 199.

From this we compute that

p2
3 D 2Na2

3.2 � 3� 1/!2 D 115200 �N;

p6 DNa2
3

�
.2 � 3� 1/!2C .4 � 3� 1/!j6

jB6j

4 � 3

�
c6

jB6j

4 � 3
C 2d6.�1/n

��
DN � 22

�

�
5!2C 11! � 65520 �

ˇ̌
1

42

ˇ̌
12
�

�
�18869 �

ˇ̌
1

42

ˇ̌
12
C 2 � 199 � .�1/3

��
D�9038281766400 �N:

Corollary 3.14 The Pontryagin numbers of any lift of N.Q� s.Q/6 �P / to �h11i
24

are

p2
3 D 115200 �N and p6 D�9038281766400 �N:

Finally, plugging these values into Proposition 3.4, we learn that

2810905493760000 �N D 211
� 36
� 54
� 72
� 13 � 4729 �N

is divisible by
237758976000D 212

� 36
� 53
� 72
� 13;

and in particular that N must be even.

4 Reduction to homotopy theory

In this section, we use standard arguments to reduce the proof of Theorem 1.4 to Theorem 4.1, a statement
in stable homotopy theory. We then further divide the proof of Theorem 4.1 into several cases, which
are the subjects of Sections 5–8. In the statement of Theorem 4.1, we have only included the cases not
already in the literature.
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Theorem 4.1 Let MOhni denote the Thom spectrum of the canonical vector bundle on ��nBO . Then
the kernel of the unit map

�2n�1 S! �2n�1MOhni

may be described as follows:

(1) When nD 9, it is generated by the image of the J–homomorphism and ��4.

(2) When nD 12, it is generated by the image of the J–homomorphism and �3x�.

(3) When n� 0 mod 4 and 16� n� 124, it is equal to the image of the J–homomorphism.

Proof of Theorem 1.4 from Theorem 4.1 By Remark 1.5, the only new cases of Theorem 1.4 that we
need to establish are when

� n� 0 mod 4 and 12� n� 124;

� n� 1 mod 8 and 9� n� 121.

From [Stolz 1985, Satz 1.7], we know that the image of the composite

A
hn�1i
2n

@
�!‚2n�1! coker.J /2n�1

is equal to the image of the composite �2n�1.†
�1MOhni=S/!�2n�1.S/! coker.J /2n�1. The image

of �2n�1.†
�1MOhni=S/! �2n�1.S/ is, by the long exact sequence on homotopy groups, the kernel

of the unit map �2n�1 S! �2n�1MOhni. As a consequence, Theorem 4.1 implies Theorem 1.4 when
nD 9 or nD 4m and 3�m� 31.

On the other hand, as discussed in Section 2, when n� 1 mod 8, n> 9 we have A
hni
2n
ŠZ=2˚Z=2, with

basis elements K and R. Here K is the Kervaire plumbing and R has Kervaire invariant 1. The Kervaire
sphere @.K/ bounds a parallelizable manifold and therefore this class maps to zero in coker.J /2n�1.
Schultz [1972, Theorem 3.1] (see also Lemma 2.13) shows that @.R/D @.Q/ � �2. As we already know
that the image of @.Q/ in coker.J /2n�1 is zero from the n� 0 mod 8, n> 8 case of Theorem 1.4, this is
enough to conclude.

To prove Theorem 4.1, we first note that the kernel of the unit map

�� S! ��MOhni

is well known to contain the image of J in degrees n� 1 and above, so the question is mostly reduced
to finding an effective upper bound on the size of this kernel. Our proof of this upper bound in the
n� 0 mod 4 case extends the methods and results of [Burklund et al. 2023], so we begin by reviewing
the main points of the arguments therein.

Theorem 4.2 [Burklund et al. 2023, Lemma 6.9 and Theorem 7.1] The kernel of the p–localized unit
map

u8m�1 W �8m�1 S.p/! �8m�1MOh4mi.p/

is generated by the image of J if any of the following conditions are met :
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� p � 5.

� m� 32 and p D 3.

� m� 17 and p D 2.

In [Burklund et al. 2023], Theorem 4.2 is proven in two steps:

(1) A lower bound on the Fp–Adams filtration of the classes in the kernel of u8m�1 is established.

(2) This lower bound is compared to an upper bound on the Fp–Adams filtration of elements in
�8m�1 S.p/ which do not lie in the image of the J–homomorphism.

More precisely, (1) and (2) are accomplished via the following proposition and definition:

Proposition 4.3 [Burklund et al. 2023, Lemma 6.9 and Theorem 10.8] Suppose that m� 3. Then the
kernel of the p–localized unit map

u8m�1 W �8m�1 S.p/! �8m�1MOh4mi.p/

is generated by image of J and a single element w 2 �8m�1 S.p/ which lies in Fp–Adams filtration at
least 2Np � 1.9 Relevant values of 2Np � 1 are summarized in Table 1.

Definition 4.4 Let �p.k/ denote the minimal m such that every ˛ 2 �k S.p/ with Fp–Adams filtration
strictly greater than m is in the subgroup generated by the image of J together with Adams’s �–family
(at the prime 2).10

In Table 1, we have recorded known bounds on �2 and �3.

� The sharp value of �2 through 87 and the bound in 95 can be extracted from the extensive Adams
spectral sequence computations of Isaksen, Wang and Xu [Isaksen et al. 2023].

� The bounds on �2 above 95 are obtained from [Davis and Mahowald 1989, Corollary 1.3].

� The sharp value of �3 through 103 can be extracted from Adams spectral sequence computations
of [Oka 1972; Nakamura 1975].

� The bounds on �3 above 103 are obtained from [Burklund 2022, Proposition 6.3.20].

Comparing the values of 2Np � 1 and �p.8m � 1/ in Table 1 and using Theorem 4.2, we see that
w 2 �8m�1 S.p/ must lie in the image of J with the possible exception of the six cases

.p; 8m� 1/D .2; 23/; .3; 23/; .2; 31/; .3; 39/; .2; 47/; .2; 127/:

In order to handle these cases, as well as the nD 9 case of Theorem 4.1, we make four essentially different
arguments. We outline each of these arguments here.

(1) Dimensions 23 (prime 2), 31; 39 and 47 In Section 5, we make a mild improvement on the lower
bound for the Fp–Adams filtration of the classes in the kernel of u8m�1 established in [Burklund et al.

9Note that 2Np � 1 depends on m, though this is omitted from the notation. The general definition of Np is given in [Burklund
et al. 2023, Definition 7.5].
10However, note that the �–family elements only appear in stems congruent to 1 and 2 mod 8, and in particular are absent from
�8m�1 S.2/.
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m 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8m�1 23 31 39 47 55 63 71 79 87 95 103 111 119 127
2N2�1 5 5 11 13 19 19 25 27 33 35 41 43 49 49
�2.8m�1/ 9 5 9 13 0 9 15 14 15 �19 �37:9 �41:3 �42:7 �49:1

2N3�1 1 3 5 7 7 9 11 13 15 17 19 21 23 25
�3.8m�1/ 5 0 5 5 5 0 0 0 0 8 0 �14:2 �14:7 �15:2

m 17 18 19 20 21 22 23 24
8m�1 135 143 151 159 167 175 183 191
2N3�1 27 29 31 33 33 35 37 39
�3.8n�1/ �15:7 �16:2 �16:7 �17:2 �17:7 �18:2 �18:7 �19:2

m 25 26 27 28 29 30 31
8m�1 199 207 215 223 231 239 247
2N3�1 41 43 45 47 49 51 53
�3.8n�1/ �19:7 �20:2 �20:7 �21:2 �21:7 �22:2 �22:7

Table 1

2023]. This improvement resolves the cases in dimensions 31, 39 and 47. It further implies that, modulo
the image of J, the only element which can lie in the kernel of the 2–localized map u23 is �3x�. By
Theorem 3.1 and [Stolz 1985, Satz 1.7], it follows that �3x� does indeed lie in the kernel.

(2) Dimension 17, ie nD 9 In Section 6, we analyze the exceptional situation in dimension 17. We
first obtain an upper bound on the kernel of u17 by considering the composition

�17 S! �17MOh9i ! �17MOh8i ! �17tmf;

noting that the kernel is generated by ��4 and the image of J. In order to show ��4 lies in the kernel
of u17, we examine the homotopy power operation P9. Using the Steenrod squares on the E2–page of
the F2–Adams spectral sequence, we find that P9 sends �� to an element of �17 S which does not lie in
the image of J. Since �� is in the image of J, we learn that it maps to zero in �8MOh9i and therefore
P9.��/ must also go to zero in �17MOh9i, which concludes the argument.

(3) Dimension 23 (prime 3) In Section 7, we study the map of F3–Adams spectral sequences induced
by the composition

MOh12i !MOh8i ! tmf

of the canonical map with the Ando–Hopkins–Rezk string orientation of tmf [Ando et al. 2010]. The
string orientation provides the leverage necessary to conclude that the kernel of the 3–localized map u23

is equal to the image of J. This appears in Section 7.

(4) Dimension 127 In Section 8 we make a short homological argument which shows there are no
elements of F2–Adams filtration 49 in the 127–stem. It follows that w 2 �127 S.2/ must be of F2–Adams
filtration at least 50. Consulting Table 1, we find that it must lie in the image of J.
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5 A homotopy argument

In order to finish the proof of Theorem 4.1 in dimensions 31; 39 and 47, as well as the prime 2 case
of dimension 23, we will need to improve the Fp–Adams filtration bound from [Burklund et al. 2023,
Theorem 10.8]. As in the proof of that bound, this proof relies on the existence and properties of the
category of synthetic spectra. We suggest the reader consult [Pstrągowski 2023] for a general introduction
to synthetic spectra and [Burklund et al. 2023, Section 9] or [Burklund 2022] for a more computational
viewpoint.11 Since the proof we give is essentially a refinement of the argument in [Burklund et al. 2023,
Section 10], we will assume the reader is generally familiar with that argument.

Burklund et al. [2023, Lemma 6.9] give a Toda bracket expression for an element w which generates the
kernel of the unit map

�8m�1 S.p/! �8m�1MOh4mi.p/

(modulo the image of J ). We begin by recalling this expression.

Definition 5.1 Let
M !†1Oh4m� 1i

denote the inclusion of an .8m�1/–skeleton of †1Oh4m� 1i. By the inclusion of an .8m�1/–skeleton,
we mean in particular that the induced map

.Fp/�.M /! .Fp/�.†
1Oh4m� 1i/

is an isomorphism for � � 8m � 1 and that .Fp/�.M / Š 0 for � > 8m � 1. The generator x 2

�4m�1.†
1Oh4m�1i/ŠZ is the image of some class in �4m�1M, which by abuse of notation we also

denote by x. We additionally abuse notation by using J to denote the composite map

M !†1Oh4m� 1i J
�! S;

where
†1Oh4m� 1i J

�! S

is adjoint to the map
Oh4m� 1i !O J

�! GL1.S/:

Construction 5.2 Consider the diagram

S8n�2 S8n�2 M

S

2

0

0

0

0

h

f

xJ .x/

J .x/2J .x/2 J

g

where the homotopies f;g and h are chosen as follows:

11In this section all synthetic spectra will be Fp–synthetic spectra.
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� f is an arbitrary nullhomotopy.

� g is the canonical homotopy associated to the fact that J is a map of S–modules.

� h is the canonical nullhomotopy given by the E1–ring structure on S.

This provides a homotopy from 0 to itself which defines the map w W S8n�1
! S0, well defined modulo

the image of J. By [Burklund et al. 2023, Lemma 6.9], w generates the kernel of the unit map

u8m�1 W �8m�1 S! �8m�1MOh4mi:

The Adams filtration bound in [Burklund et al. 2023, Theorem 10.8] arises via the construction of a
synthetic lift of the diagram in Construction 5.2. Our improvement in Adams filtration will come from
producing a slightly better synthetic lift.

Recollection 5.3 As in [Burklund et al. 2023, Construction 10.5], once we move over to the category of
synthetic spectra there is a lift of the map of synthetic spectra

�J W �M ! S0;0

along the map �Np W S0;�Np ! S0;0 to a map �M ! S0;�Np , which we view as a map

zJ W†0;Np�M ! S0;0 :

The main result of this section is the following:

Lemma 5.4 Suppose that zJ .�.x// D �N z. Then the Toda bracket w has Adams filtration at least
2NpCN � 1.

Proof Let us fix the following notation: we set y D zJ .�.x//, aD 8n� 2 and b D 8n� 2C 2NpCN.
Then we construct the diagram in synthetic spectra

Sa;b Sa;b †0;Np�.M /

S0;N S0;0

2

0

00

z2 yz
Qh

Qf

�.x/z

zJ
Qg

�N

Qk

where the homotopies Qf, Qg and Qh are chosen as follows:

� Qf is an arbitrary nullhomotopy, which exists as a consequence of the fact that�8n�2;8n�2C
 .�M /D

0 for all 
 � 2 [Burklund et al. 2023, Proof of Proposition 10.7].

� Qg is the canonical homotopy that expresses the fact that zJ is a map of right S0;0–modules.
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� Qh is the canonical nullhomotopy that comes from the fact that S0;0 is an E1–ring in the symmetric
monoidal1–category SynFp

.

� Qk is the composite of a homotopy expressing that z�N D y and the natural homotopy expressing
that composition with z is homotopic to multiplication by z.

This diagram determines a homotopy of 0 with itself, and hence a map

zw W SaC1;b
! S0;0 :

On applying ��1, the above diagram recovers Construction 5.2, so zw maps to w under ��1. The desired
Adams filtration bound now follows from [Burklund et al. 2023, Corollary 9.21].

Using this lemma, we are able to finish the proof of Theorem 4.1 in the promised cases.

Proposition 5.5 When .p; 8m� 1/D .2; 31/, .3; 39/ and .2; 47/, the element w lies in the image of J.
On the other hand , when .p; 8m� 1/D .2; 23/, the image of the element w in the cokernel of J is �3x�.

Proof Throughout this proof, we will freely make use of [Burklund et al. 2023, Theorem 9.19] in order
to translate between knowledge of the Fp–Adams spectral sequence and knowledge of Fp–synthetic
homotopy groups.

Dimension 23, prime 2 In this case, J.x/D �11 and we can determine that zJ .�.x//D �2z�11 because
there is no �–torsion in this bidegree. Thus, w has F2–Adams filtration at least 7. It follows from
Theorem 3.1 and [Stolz 1985, Satz 1.7] that the image of w in the 2–localized cokernel of J must be
nonzero. Using our restriction on its F2–Adams filtration, we conclude that w must be equal to �3x� in
the 2–localized cokernel of J.

Dimension 31, prime 2 In this case, J.x/D �15 and we can determine that zJ .�.x//D � z�15 because
there is no �–torsion in this bidegree. Thus, w has Adams filtration at least 6 and so it must be in the
image of J (see Table 1).

Dimension 39, prime 3 In this case, J.x/D ˛5 and we can determine that zJ .�.x//D �2 z̨5 because
there is no �–torsion in this bidegree. Thus, w has Adams filtration at least 7 and so it must be in the
image of J (see Table 1).

Dimension 47, prime 2 Once again, zJ .�.x// lands in a bidegree with no �–torsion where every element is
divisible by �2. Thus,w has Adams filtration at least 15 and so it must be in the image of J (see Table 1).

6 The case of dimension 17

The goal of this section is to prove the following theorem, which shows that the dimension 17 is
exceptional:
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Theorem 6.1 The kernel of the unit map

u17 W �17 S! �17MOh9i

is generated by the image of J and ��4 2 �17 S.

We begin the proof of Theorem 6.1 with the following bounds on the size of the kernel of u17:

Lemma 6.2 The kernel of the unit map

�17 S! �17MOh9i

is either equal to the image of J or the subgroup of �17 S generated by the image of J and ��4.

Proof It is well known that in degrees 8 and above the image of J is in the kernel of the unit map
for MOh9i. Composing the Ando–Hopkins–Rezk string orientation [Ando et al. 2010] with the canonical
map MOh9i ! MOh8i, we obtain an E1–ring map MOh9i ! tmf. One may read off from the
computations of [Bauer 2008] that the kernel of

�17 S! �17MOh9i ! �17tmf

is generated by the image of J and ��4, from which the proposition follows.

It now suffices to show that the kernel of the unit map

�� S! ��MOh9i

contains an element not in the image of J in dimension 17. To prove this, we will use the fact that this
kernel is closed under spherical power operations. The power operation of interest to us is described in
the following proposition:

Proposition 6.3 [Bruner et al. 1986, Table V.1.3] Let R be an E1–ring. There is a natural , not
necessarily additive , operation P9 from �8R to �17R, with indeterminacy. The indeterminacy of P9.x/

is �x2.

Moreover , if x 2 �8R is detected by a 2 E
s;8Cs
2

on the E2–page of the F2–Adams spectral sequence ,
then P9x lies in F2–Adams filtration at least 2s� 1 and its image in E

2s�1;17C2s�1
2

is Sq9 a.

Proof of Theorem 6.1 Applying this power operation to �� 2 �8 S, which lies in the image of J and
thus the kernel of

�8 S! �8MOh9i;

we learn that P9.��/ is in the kernel of the unit map for MOh9i. Since �.��/2 D 0, the operation
P9.��/ 2 �17 S has no indeterminacy.
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The class P9.��/ is detected on the E2–page of the F2–Adams spectral sequence by Sq9.h1h3/. Using
the Cartan formula and the fact that Sq2i

.hi/D hiC1 — see [Bruner et al. 1986, Proposition 1.4(i)] — it
follows that

Sq9.h1h3/D Sq1.h1/Sq8.h3/CSq2.h1/Sq7.h3/D h2
1h4C h2h2

3 D h2
1h4:

Since no element detected by h2
1
h4 lies in the image of J, we are done.

7 The case of dimension 23 at the prime 3

In this section, we will show that, although the kernel of the unit map �23 S! �23MOh12i contains an
exceptional element at the prime 2, at the prime 3 the kernel contains only the image of J. This is the
final step in the proof of the dimension 23 case of Theorem 4.1.

We will prove this by directly computing of the F3–Adams spectral sequence for MOh12i. As at the
prime 2, one of the key techniques in this argument is comparison with tmf via the Ando–Hopkins–Rezk
string orientation [Ando et al. 2010]. The first step we take is to compute the homology of MOh12i as an
A�–comodule in a range.

As is common in odd primary Adams spectral sequence computations, everything will be implicitly 3–
completed and we will make use of the :D notation, which means that an equation holds up to multiplication
by a 3–adic unit. Similarly, since we do not keep track of constants, all claims in this section should be
regarded as true up to multiplication by a 3–adic unit.

Lemma 7.1 In degrees � 25, the F3–homology of MOh12i has the following properties:

(1) It is isomorphic to F3˚.F3/�.†
12ko/˚†24 F3 as an A�–comodule.

(2) The only nontrivial product is the square of the generator in degree 12, which is equal to a generator
of the third summand.

(3) On F3–homology, the composition of the canonical map with the string orientation

MOh12i !MOh8i ! tmf

is only nonzero on the unit.

Proof We begin by showing that, in degrees � 25, the Thom isomorphism

F3˝MOh12i ' F3˝†
1
CBOh12i;

which is an equivalence of E1–rings, preserves the A�–comodule structure. To do this, we just need to
show that the action of the Steenrod algebra on the Thom class u 2 .F3/

0.MOh12i/ is trivial through
degree 25. Since the Steenrod algebra is generated by ˇ, P1 and P3 in this range, it suffices to show that
the action of these operations on u is zero.
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To show this, we note that u is the pullback of another class u 2 .F3/
0.tmf/ along the composition

MOh12i !MOh8i ! tmf. From [Culver 2021, Section 4.1], we can extract that through dimension 12

the cohomology of tmf is given by F3fug˚F3fb4g˚F3fzg where juj D 0, jb4j D 8 and jzj D 12 with
Steenrod action z

:
D P1.b4/

:
D P3.u/. For degree reasons, ˇ.u/D P1.u/D 0 and b4 maps to zero in

.F3/
8.MOh12i/D 0; therefore, the Steenrod operations ˇ, P1 and P3 act trivially on u in MOh12i.

Using the Goodwillie tower of the identity for E1–rings, as worked out in [Kuhn 2006], we obtain a
tower of nonunital E1–rings

D3.��12ko/ D2.��12ko/ ��12ko

†1BOh12i � � � Q3 Q2 Q1

'

For connectivity reasons, through degree 25 we only need to work with Q2. Since Q1 is the stabilization
of †1BOh12i, the product on Q1 is zero.

Note that
.F3/�.D2.��12ko//Š

�
0 if � � 23 or � D 25;

F3 if � D 24;

and let x denote a generator of .F3/12.BOh12i/. In order to finish the proof of (1), we only need to
show that the vertical map into Q2 is injective on F3–homology in degree 24. In fact, this would follow
from knowing that x2 is nonzero, which itself would imply (2), given that we know the product on Q1 is
zero. In order to show x2 is nonzero, we note that x must be primitive for degree reasons and consider
the coproduct, in .F3/�.BOh12i/,

4.x2/D x2
˝ 1C 2.x˝x/C 1˝x2;

where the middle term is clearly nonzero.

Now we turn to (3). Applying F3–cohomology to the map MOh12i ! tmf, we obtain a map of A�–
modules

.F3/
�tmf! .F3/

�.MOh12i/:

Since .F3/
�.tmf/ has a two-stage filtration by cyclic A�–modules with generators in degrees 0 and 8,

respectively [Rezk 2002, Theorem 21.5(2)], and .F3/
�.†12ko/˚†24 F3 begins in degree 12, it follows

that through degree 25 the map
.F3/

�tmf! .F3/
�.MOh12i/

factors through the unit.

As a consequence of this lemma, we learn that the E2–page of the F3–Adams spectral sequence
for MOh12i takes the form shown in Figure 1. Next we determine the easy differentials in this spectral
sequence.
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0 4 8 12 16 20 24

0

2

4

6

a0 h0

˛2

b0

h1

˛4

˛5

u

x12

x16

x20

x24

x2
12

Figure 1: The F3–Adams spectral sequence for MOh12i. Classes in black come from the unit
copy of F3. Classes in red come from the copy of .F3/�.ko/ in degree 12. Classes in blue come
from the copy of F3 in degree 24. The nontrivial product in homology from Lemma 7.1 lets us
conclude that x2

12
is as labeled.

Lemma 7.2 Through degree 24, the differentials in the F3–Adams spectral sequence for MOh12i fit
into one of the following two families:

(1) the differentials induced from the sphere , all of which occur; and

(2) the extra differentials

d2.x12/
:
D a0h1; d3.x16/

:
D ˛4; d3.x20/

:
D ˛5; d2.x24/

:
D a2

0u; d5.x
2
12/

:
D ?:

Both families are displayed in Figure 1.

After proving this lemma, the final task of this section will be to show that x2
12

is a permanent cycle.

Proof First we note that, for degree reasons, nothing can interfere with the differentials induced from
the sphere. We also know that the elements ˛3=2, ˛4 and ˛5 in the image of J must each map to zero
in MOh12i as well. For each of these there is a unique possible differential which could enforce that
relation. It remains to show that d2.x24/

:
D a2

0
u.

In the sphere we can use Moss’s theorem [1970] to conclude that h˛5; ˛1; 3i is detected by a2
0
u in the

F3–Adams spectral sequence. Since the indeterminacy is just 3 times this same element, we find that this
bracket is equal to ˛6=2 up to a unit. The class ˛5 maps to zero in MOh12i; therefore, ˛6=2 becomes
divisible by 3. Examining Figure 1, this can only happen if ˛6=2 is zero. Thus, we know it gets hit by
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0
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˛1
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ˇ1
˛3=2

˛4

˛5

Figure 2: The bigraded homotopy groups of the F3–synthetic sphere displayed in the .t�s; s/–
plane. Black dots denote �–torsion-free classes, red dots denote �1–torsion classes. Note that in
order to reconstruct the group in a given bidegree one must examine all degrees lying above it.

some differential. We will finish the proof by using synthetic spectra to bound the length of the Adams
differential that hits a2

0
u.

The first step is to lift the Toda bracket above to one in the synthetic category. Using [Burklund et al.
2023, Theorem 9.19], we may compute the F3–synthetic homotopy of the sphere through 24 using the
known computation of its F3–Adams spectral sequence in this range. The result is displayed in Figure 2.
We next fix some names for specific elements of ��;� S:

� Let Q3 2 �0;1 S denote the unique element in that degree which maps to 3 in �0 S and a0 in
�0;1.C�/Š Ext1;4A .F3;F3/.

� Let ˛1 2 �3;4 S denote the unique element in that degree which maps to ˛1 in �3 S and h0 in
�3;4.C�/Š Ext1;4A .F3;F3/.

� Let ˛5 2 �19;24 S denote the unique element in that degree which maps to ˛5 in �3 S and a
generator of �19;24.C�/.

Since the image of ˛1˛5 in �22;28.C�/ is hit by a d2 differential and there are no classes above it we
learn that �˛1˛5 D 0. Since �3;5 SD 0 we learn that Q3˛1 D 0. This means we can form the Toda bracket
x WD h�˛5; ˛1; Q3i in synthetic spectra. Upon inverting � , the bracket x goes to the bracket h˛5; ˛1; 3i,
which is detected by a2

0
u on the E2–page. We may therefore conclude that x maps to a2

0
u in the homotopy

of C� . If we show that the image of x in �MOh12i is simple �–torsion, then this will imply that a2
0
u is

hit by a d2 differential in the F3–Adams spectral sequence for MOh12i.
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Toda brackets are preserved by E1–ring maps, and S! �MOh12i is a map of E1–rings, therefore we
may make the following manipulations of Toda brackets (now considered in �MOh12i):

�x 2 �h�˛5; ˛; Q3i � h�
2˛5; ˛; Q3i D h0; ˛; Q3i D Q3�23;26.MOh12i/;

where the fact that �2˛5 D 0 follows from it getting hit by the d3 differential off of x20. Finally, since
there is no possible nonzero Q3–division for �x, we conclude that it is zero.

In dimension 12 we will need slightly finer information than that provided by Lemma 7.2.

Lemma 7.3 The element c6 which generates �12tmf3 lifts to �12MOh12i, where it is detected (up to a
unit) by a2

0
x12 in the F3–Adams spectral sequence.

Proof We begin by considering the sequence of maps

S11 9
�! S11 ˛3=2

��! S0 �
�! tmf:

Since each pairwise composite is nullhomotopic, we can form the Toda bracket h9; ˛3=2; �i. This Toda
bracket has indeterminacy 9�12.tmf/C�12.S/�D .9Z/ � c6. We will begin by showing that, up to a unit,
c6 is contained in this bracket.

This bracket can be evaluated using the corresponding Massey product ha2
0
; a0h1; �i. In particular, it

will suffice to show that this Massey product is equal to c6 as an element of the E2–page for tmf. After
consulting this E2–term, we note that c6 is the only element in its bidegree, so it will suffice to simply
show that the bracket is nontrivial. In order to do this, we shuffle the bracket with h0:

h0ha
2
0; a0h1; �i D hh0; a

2
0; a0h1i�

:
D ˛4�:

Finally, we note that the image of ˛4 in the E2–page for tmf is nontrivial [Culver 2021]. From this we
can read off that h9; ˛3=2; �i D uc6 for some u 2Z�

3
. The claim that c6 lifts to MOh12i now follows from

the fact that the bracket h9; ˛3=2; �
0i is defined, where �0 is the unit of MOh12i. Since c6 is a generator

of �12tmf3, the only possibility for an F3–Adams representative of its lift to �12MOh12i is (up to a
unit) a2

0
x12.

Proposition 7.4 The kernel of the unit map �23 S3! �23MOh12i3 does not contain ˛1ˇ
2
1

, and hence
is generated by the image of J. Equivalently, d5.x

2
12
/D 0.

Proof We will proceed by contradiction. Suppose that d5.x
2
12
/
:
D h0b2

0
.

� Let y denote an element of �24MOh12i which is detected by a2
0
x24.

� Let z denote an element of �24MOh12i which is detected by a0x2
12

.

Note that any choice of y and z forms a basis for �24MOh12i over Z3. By Moss’s theorem [1970], we
can choose z such that z 2 h3; ˛ˇ2; �0i, where again �0 is the unit of MOh12i. Similarly, from the d4 off

Geometry & Topology, Volume 28 (2024)



4286 Robert Burklund and Andrew Senger

0 4 8 12 16 20 24

0

2

4

6

a0 h0

˛2

c6

˛4

˛5

u

�

c2
6

Figure 3: The F3–Adams spectral sequence for tmf as it appears in [Culver 2021].

of � in the F3–Adams spectral sequence for tmf, we learn that Œ3�� 2 h3; ˛ˇ2; �i. Postcomposing with
the string orientation lets us conclude that z maps to Œ3�� up to higher filtration elements. Then, using the
fact that c2

6
and Œ3�� are generators for �24tmf, we may conclude that the map �24MOh12i! �24tmf is

surjective. Now we may choose z such that it maps to Œ3�� in tmf.

Using the F3–Adams filtration of MOh12i and the fact that a lift of c6 is detected by a2
0
x12, we can

conclude that c2
6
D u127zCu2y for some constants u1 2 Z�

3
and u2 2 Z3. Rearranging, we can write

c2
6 � 27u1z D u2y:

Now consider the Adams filtration of the image of each side of this equality in tmf. The left-hand side
maps to c2

6
� 27u1Œ3��, which has Adams filtration 5. The element y is detected by a2

0
x24 in filtration 5.

However, by Lemma 7.1, we know that x24 maps to zero under the map of E2–pages induced by the string
orientation. Thus, the right-hand side maps to an element of Adams filtration at least 6, a contradiction.

8 The case of dimension 127 at the prime 2

In this section, we will prove the following proposition, which implies the dimension 127 case of
Theorem 4.1:

Proposition 8.1 There is no element of �127 S.2/ which is detected in F2–Adams filtration 49. In other
words , if x 2 �127 S.2/ has F2–Adams filtration at least 49, then it also has F2–Adams filtration at
least 50.
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Proof of Theorem 4.1 in dimension 127, given Proposition 8.1 By Proposition 4.3 and Table 1, the
element w 2 �127 S.2/ lies in F2–Adams filtration at least 49. By Proposition 8.1, w in fact lies in
F2–Adams filtration at least 50. Consulting Table 1 once more, we find that w must lie in the image of J,
as desired.

The proof of Proposition 8.1 will be based on two further lemmas.

Lemma 8.2 Let E
s;t
2

denote the E2–page of the F2–Adams spectral sequence. Then

E
49;176
2

D F2fh
48
0 h7g:

Proof It may be read off from [Tangora 1970, Figure 5] that E
17;80
2

D F2fh
16
0

h6g. It follows from
[Ravenel 1986, Theorem 3.4.6] that Adams periodicity determines an isomorphism E

17;80
2

ŠE
49;176
2

,
so that the latter is a one-dimensional F2–vector space. By [Ravenel 1986, Lemma 3.4.15], h63

0
h7 is

nonzero, so that h48
0

h7 2E
49;176
2

must be nonzero and so a basis for E
49;176
2

.

Remark 8.3 The conclusion of this lemma can also be read off directly from Nassau’s computer
calculations [2000] of Ext over the Steenrod algebra.

Lemma 8.4 Suppose that x 2�2n�1 S.2/ is detected on the E2–page of the F2–Adams spectral sequence
by the class h2n�1�1

0
hn. Then x lies in the image of the J–homomorphism.

Proof By Adams vanishing [1966b, Theorem 2.1], there can be no elements above h2n�1�1
0

hn in the
F2–Adams spectral sequence, ie E1Cs;2nCs D 0 for all s � 2n�1. It therefore suffices to establish the
existence of an element in the image of J detected by h2n�1�1

0
hn. This follows from [Ravenel 1986,

Lemma 3.4.15 and Theorem 3.4.16].

Proof of Proposition 8.1 Suppose that x 2 �127 S.2/ were of F2–Adams filtration 49. Then it would
have to be detected on the E2–page by h48

0
h7 by Lemma 8.2, so that 215x is detected by h63

0
h7.

By Lemma 8.4, this implies that 215x lies in the image of J. Since the image of J is a summand
of �127 S.2/ [Adams 1966a; Quillen 1971], this implies that the image of J must contain an element of
order 216, which contradicts the fact that it is a cyclic group of order 28 [Adams 1966a; Quillen 1971].

9 Further applications

9.1 Stein-fillable homotopy spheres

In this section, we complete the enumeration of odd-dimensional homotopy spheres which admit a
Stein-fillable contact structure, answering a question of Eliashberg [2012, 3.8]. Bowden et al. [2014,
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Conjecture 5.9] have constructed Stein-fillable contact structures on homotopy spheres which bound
parallelizable manifolds and conjectured that these are all of them. We show that their conjecture is true in
dimensions other than 23. In dimension 23, we provide a counterexample and analyze the extent to which
it fails. This result is new in dimensions nD 23 and 39� n� 247 congruent to 7 modulo 8; see [Bowden
et al. 2014, Theorem 5.4], Remark 9.2 and [Burklund et al. 2023, Theorem 3.1] for the other cases.

Theorem 9.1 Let q ¤ 11 be a positive integer. A homotopy sphere † 2‚2qC1 admits a Stein-fillable
contact structure if and only if † 2 bP2qC2, ie if and only if the class Œ†� of † in coker.J /2qC1 is zero.

On the other hand , a homotopy sphere † 2‚23 admits a Stein-fillable contact structure if and only if

Œ†� 2 f0; �3
x�g � coker.J /23:

Proof As in [Bowden et al. 2014], let A
U hqC1i
2qC2

denote the group of almost closed, q–connected,
almost complex .2qC2/–manifolds, modulo q–connected almost complex cobordisms restricting to
h–cobordisms on the boundary. We then have the sequence of maps

A
U hqC1i
2qC2

!A
hqC1i
2qC2

@
�!‚2qC1! coker.J /2qC1;

and, as in [Bowden et al. 2014, Proof of Theorem 5.4], we see that an exotic sphere † 2‚2qC1 admits a
Stein-fillable contact structure if and only if the class Œ†�2 coker.J /2qC1 is in the image of the composite
map from A

U hqC1i
2qC2

.

By [Bowden et al. 2014, Theorem 5.4], it suffices to deal with the case when q � 3 mod 4 or q D 9. In
the case q D 9, Schultz [1972, Theorem 3.4(iii)] states that the map A

hqC1i
2qC2

! coker.J /2qC1 vanishes.
In the case when q � 3 mod 4 and q ¤ 11, this map is zero by Theorem 1.4.

On the other hand, when qD 11, we note that, by the argument in [Bowden et al. 2014, page 28], the map
A

U hqC1i
2qC2

!A
hqC1i
2qC2

is surjective, as �11.U /! �11.SO/ is an isomorphism. It follows that the image of
the composite A

U hqC1i
2qC2

! coker.J /2qC1 is equal to f0; �3x�g by Theorem 1.4, as desired.

Remark 9.2 Case (1) of [Bowden et al. 2014, Theorem 5.4] assumes that q ¤ 9 in the q � 1 mod 8

case. This is because [Schultz 1972, Corollary 3.2] does not cover this case. However, this case is in fact
covered in [Schultz 1972, Theorem 3.4(iii)], so this hypothesis may be removed.

In particular, we obtain a counterexample to [Bowden et al. 2014, Conjecture 5.9]:

Corollary 9.3 There exists a 23–dimensional homotopy sphere which admits a Stein-fillable contact
structure but does not bound a parallelizable manifold.

9.2 Mapping class groups

Our results also have application to the computation of mapping class groups of highly connected
manifolds. Indeed, this was the original motivation of Galatius and Randal-Williams [2016] in making
their conjecture.
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Definition 9.4 Let W 2n
g D #g

.Sn �Sn/ denote the connected sum of g copies of Sn �Sn. We further
let

�n
g D �0DiffC.W 2n

g /

denote the group of isotopy classes of orientation-preserving diffeomorphisms of W 2n
g .

Building on work on Kreck [1979], Krannich [2020] determined the group �n
g for n� 3 odd and g � 1

in terms of two extensions. In the case n� 3 mod 4, his answer is phrased in terms of a certain exotic
.2nC1/–sphere †Q, which is the boundary of the manifold Q considered in Section 2. In Section 2,
we computed †Q for all n. Therefore, our results completely resolve the identity of the mysterious †Q

which appeared in Krannich’s work. We refer the interested reader to [Krannich 2020] for more details.

One consequence of Krannich’s results is a computation of the abelianization of �n
g , extending and

reproving an earlier result of Galatius and Randal-Williams [2016].12 When combined with Theorem 1.4,
Krannich [2020, Corollary E(i), page 4] implies the following result, which demonstrates the effect that
our 23–dimensional counterexample to [Galatius and Randal-Williams 2016, Conjectures A and B] can
have on the abelianization of the mapping class groups of highly connected manifolds:

Theorem 9.5 Suppose that n� 9 is odd. Then , if n¤ 11 and g � 3, there is an isomorphism

H1.�
n
g /Š coker.J /2nC1˚Z=4Z;

and if n¤ 11 and g D 2, we have

H1.�
n
g /Š coker.J /2nC1˚ .Z=4Z˚Z=2Z/:

On the other hand , if nD 11 and g � 3, there is an isomorphism

H1.�
n
g /Š .coker.J /23=�

3
x�/˚Z=4ZŠ .Z=4Z˚Z=2Z/˚Z=4Z;

and if nD 11 and g D 2, we have

H1.�
n
g /Š coker.J /2nC1=�

3
x�˚ .Z=4Z˚Z=2Z/Š .Z=4Z˚Z=2Z/˚ .Z=4Z˚Z=2Z/:

In particular, one consequence of the existence of the exceptional 23–dimensional counterexample to
[Galatius and Randal-Williams 2016, Conjectures A and B] is to make the abelianization of �11

g smaller
than would otherwise be expected.
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