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Dual structures on Coxeter and Artin groups of rank three

EMANUELE DELUCCHI
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We extend the theory of dual Coxeter and Artin groups to all rank-three Coxeter systems, beyond the
previously studied spherical and affine cases. Using geometric, combinatorial, and topological techniques,
we show that rank-three noncrossing partition posets are EL–shellable lattices and give rise to Garside
groups isomorphic to the associated standard Artin groups. Within this framework, we prove the K.�; 1/

conjecture, the triviality of the center, and the solubility of the word problem for rank-three Artin groups.
Some of our constructions apply to general Artin groups; we hope they will help develop complete
solutions to the K.�; 1/ conjecture and other open problems in the area.

20F36, 20F55; 06A07, 55P20, 55R35, 57Q70

1 Introduction

The famous K.�; 1/ conjecture, dating back to the 1960s and due to Arnold, Pham, and Thom, states that
the orbit configuration space of Artin groups is an Eilenberg–Mac Lane space (or K.�; 1/ space). This
conjecture was proved fifty years ago by Deligne [1972] for spherical Artin groups. Recently, the second
and third authors proved this conjecture for the next important class of Artin groups, namely those of
affine type [Paolini and Salvetti 2021]. Between these two results, Dehornoy, Paris, and others developed
the theory of Garside structures [Bestvina 1999; Dehornoy and Paris 1999; Bessis 2003; Charney et al.
2004; Dehornoy et al. 2015], generalizing properties of the standard presentation of spherical Artin
groups. Applying Garside theory to dual presentations (arising from noncrossing partition posets) was
a key ingredient to solving the most important open problems on affine Artin groups: not only the
K.�; 1/ conjecture [Paolini and Salvetti 2021], but also the word problem and the triviality of the center
[McCammond and Sulway 2017]. An outline of this “dual approach”, inspired by [Paolini and Salvetti
2021] and articulated in [Paolini 2021], is given in Section 1.1.

We begin the extension of the dual approach beyond the affine case by tackling Artin groups associated with
hyperbolic Coxeter systems of rank three (see Figure 1). While these Artin groups were already partially
understood with different techniques [Hendriks 1985; Charney and Davis 1995; Chermak 1998], we are
able to solve all important problems about them (including the ones previously solved) independently of
prior work. We also answer all questions posed in [Paolini 2021] on the dual structure of rank-three Artin
groups. Our main results are summarized in Section 1.2.

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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.3; 3; 4/ .2; 3;1/

Figure 1: Examples of arrangements of rank-three hyperbolic Coxeter groups in the Poincaré
model. Each picture is captioned with the labels .m1;m2;m3/ of the corresponding Coxeter
diagram. The hyperbolic plane is tiled by triangles with angles �=m1, �=m2, and �=m3.

1.1 The dual approach

Let W be a finitely generated Coxeter group and GW the associated Artin group. In the affine case, the
proof of the K.�; 1/ conjecture given in [Paolini and Salvetti 2021] roughly goes as follows. First, the
so-called interval complex KW (see below) is shown to be a K.�; 1/ space. The next step is to identify a
finite subcomplex X 0

W
�KW and to prove that it is homotopy equivalent to the orbit configuration space

of GW . Finally, using combinatorial methods (discrete Morse theory and lexicographic shellability), the
complex KW is shown to deformation retract onto X 0

W
.

The noncrossing partition poset Œ1; w� is the interval between 1 and w in the (right) Cayley graph of W ,
using the set R of all reflections as generators. The interval complex KW is a quotient of the order
complex of Œ1; w�; it is a �–complex whose d–simplices correspond to sequences � D Œx1j � � � jxd � which
are part of a reduced factorization of w. One also introduces a dual Artin group Ww associated with W

and the chosen Coxeter element w, defined as the fundamental group of KW . Combinatorial properties of
Œ1; w� reflect topological properties of KW : most significantly, if Œ1; w� is a lattice then KW is a K.�; 1/.

In addition to the K.�; 1/ conjecture, several interesting questions can be asked in general and have been
answered in the affine case. For example: Is the dual Artin group Ww always naturally isomorphic to the
standard one? Is it a Garside group? Is the word problem solvable? And, from the combinatorial point of
view: Is the noncrossing partition poset Œ1; w� a lattice? Is it EL–shellable? We refer to [Paolini 2021] for
a more detailed discussion on the dual approach and the several questions related to it.

1.2 Contributions

By studying the geometry and combinatorics of the noncrossing partition poset Œ1; w�, we answer all
previous questions (and more) when W is a Coxeter group of rank three, ie generated by three reflections.
These groups are also known as triangle groups. They are all of hyperbolic type in the sense of

Geometry & Topology, Volume 28 (2024)
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A3: .2; 3; 3/ B3: .2; 3; 4/ H3: .2; 3; 5/

zA2: .3; 3; 3/ zC2: .2; 4; 4/ zG2: .2; 3; 6/

Figure 2: Arrangements of irreducible spherical and affine Coxeter groups of rank three. Each
picture is captioned with the standard name (following the classification of spherical and affine
Coxeter groups) and the labels .m1;m2;m3/ of the corresponding Coxeter diagram. In each case,
the sphere or plane is tiled by triangles with angles �=m1, �=m2, and �=m3. The Coxeter groups
of the spherical cases (top three) are the symmetry groups of the five platonic solids (tetrahedron,
cube/octahedron, and dodecahedron/icosahedron, respectively).

[Humphreys 1990] (Figure 1), except for a finite list of spherical or affine groups that are already well
understood (Figure 2).

Going from affine to hyperbolic groups introduces new challenges. For example, a geometric charac-
terization of the elements of Œ1; w� seems difficult to achieve (in the affine case, such a characterization
was obtained by McCammond [2015]). The rank-three case is also peculiar because Œ1; w� turns out to
be a lattice, thus giving rise to a Garside structure on the corresponding dual Artin group. The lattice
property does not hold in general, even in the affine case [McCammond 2015, Theorem A]. Aside from
the lattice property, we expect many of the results and techniques we develop to extend to hyperbolic
Coxeter groups of arbitrary rank. The following are our main results:

Main theorem 1 (dual structure) Let .W;S/ be a Coxeter system of rank three and GW the associated
Artin group. Let w 2 W be any Coxeter element , and consider the associated noncrossing partition
poset Œ1; w�.

(i) Œ1; w� is a lattice.

(ii) Œ1; w� is EL–shellable.

Geometry & Topology, Volume 28 (2024)



4298 Emanuele Delucchi, Giovanni Paolini and Mario Salvetti

(iii) Every element u 2 Œ1; w� is a Coxeter element for the subgroup generated by the reflections � u.

(iv) The dual Artin group associated with Œ1; w� is naturally isomorphic to GW .

Main theorem 2 (Artin groups) Let GW be an Artin group of rank three.

(i) GW is a Garside group.

(ii) The K.�; 1/ conjecture holds for GW .

(iii) The word problem for GW is solvable.

(iv) The center of GW is trivial unless W is finite.

Some of the claims in Main theorem 2 have been proved elsewhere by completely different methods, but
our setup allows us to obtain particularly succinct proofs for all of them (see Section 7). Specifically, the
K.�; 1/ conjecture [Hendriks 1985; Charney and Davis 1995] and the word problem [Chermak 1998]
were already known for rank-three Artin groups. During the preparation of this paper, a preprint appeared
showing that the K.�; 1/ conjecture implies the triviality of the center [Jankiewicz and Schreve 2023] for
general Artin groups. All other results are completely novel.

In order to prove the theorems above, we further develop the dual approach by providing new constructions
that hold for general Artin groups. In particular, we introduce new subcomplexes of the interval complex
KW and propose a general strategy to deformation retract KW onto X 0

W
(among other things, this would

imply the isomorphism between standard and dual Artin groups).

Structure In Section 2, we give all definitions and constructions needed later: classical models of the
hyperbolic plane; some standard tools of combinatorial topology; interval groups and their relation with
Garside structures; Coxeter groups, (standard and dual) Artin groups, their orbit configuration space and
the statement of the K.�; 1/ conjecture; and the definition of the subcomplex X 0

W
, homotopy equivalent

to the orbit configuration space.

In Section 3, we introduce Coxeter elements of rank-three hyperbolic groups and their Coxeter axes. The
main result there is that, if w is a Coxeter element, every element u in the interval Œ1; w� is a Coxeter
element for the subgroup of W generated by all reflections below u (Theorem 3.10).

In Section 4, we prove the lattice property for Œ1; w�, which implies that the corresponding dual Artin
group is a Garside group. Then we introduce the axial ordering on the set of reflections in Œ1; w�. The
main result (Theorem 4.15) is that this ordering induces an EL–labeling of Œ1; w�.

In Section 5, we introduce a sequence of subcomplexes of the interval complex KW , for an arbitrary
Coxeter group W . These include the already mentioned subcomplex X 0

W
(homotopy equivalent to

the orbit configuration space) as well as new intermediate subcomplexes between X 0
W

and KW . We
hypothesize that a deformation retraction KW &X 0

W
can be constructed more easily by collapsing each

intermediate subcomplex to the next one, as outlined in Figure 10.

Geometry & Topology, Volume 28 (2024)
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In Section 6, we implement the general program of Section 5 in the rank-three case, proving that KW

deformation retracts onto X 0
W

. In Section 7, we deduce the following consequences: rank-three dual and
standard Artin groups are isomorphic (Theorem 7.1), they satisfy the K.�; 1/ conjecture (Theorem 7.2),
they are Garside groups (Theorem 7.3), they have a solvable word problem (Theorem 7.4), and the
nonspherical ones have a trivial center (Theorem 7.5).

Acknowledgments The authors thank the referees for their useful suggestions. Paolini acknowledges
support from PRIN 2022A7L229 Algebraic and topological combinatorics and INdAM’s GNSAGA
group. Salvetti acknowledges support from PRIN 2022S8SSW2 Algebraic and geometric aspects of
Lie theory and the MIUR Excellence Department Project awarded to the Department of Mathematics,
University of Pisa, CUP I57G22000700001.

2 Preliminaries

2.1 The hyperbolic plane

Denote by H2 the abstract hyperbolic plane and by @H2 the space at infinity. We refer to points in
@H2 as points at infinity or ideal points. Throughout this paper, we are going to use different models
for the hyperbolic plane: the hyperboloid model, the half-plane model, the Poincaré model, and the
Klein model. We refer to [Cannon et al. 1997; Benedetti and Petronio 1992] for their definitions and
the relations between them. The hyperboloid and Klein models are directly linked to the geometry of
hyperbolic Coxeter groups acting on the Tits cone (see Section 2.4). However, we often find the half-plane
model well-suited for explicit computations with isometries (as we see already in Section 2.1.3). Unless
otherwise stated, the figures are drawn in the Poincaré model; both the half-plane and the Poincaré models
are conformal (angles are preserved).

2.1.1 Isometries of the hyperbolic plane Every isometry of the hyperbolic plane H2 can be written as
a product of three or fewer reflections and the reflection length of an isometry is the minimal number of
reflections needed. Isometries can be classified as follows:

� the identity (reflection length 0),

� reflections with respect to a line (reflection length 1),

� rotations around a point in H2[ @H2 (reflection length 2),

� translations along a line (reflection length 2) called the axis of the translation (or the translation axis),

� glide reflections, ie products of a reflection and a translation along the same line (reflection length 3)
called the axis of the glide reflection.

The identity, reflections, and rotations around points in H2 are elliptic isometries (they fix at least one
point in H2). Rotations around points in @H2 are parabolic isometries (they fix exactly one point in @H2

Geometry & Topology, Volume 28 (2024)
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and no point in H2). Translations and glide reflections are hyperbolic isometries (they fix exactly two
points in @H2, namely the endpoints of their axes, and fix no point in H2).

For an elliptic or parabolic isometry u, denote by Fix.u/ �H2 [ @H2 the set of its fixed points (also
called its fixed set). If u is a hyperbolic isometry, then its axis is the set of points x 2H2 that minimize
the distance d.x;u.x//. For this reason, the axis of u is often also called its min-set and we denote it by
Min.u/. The distance d.x;u.x// for any x 2Min.u/ is called the translation length of u. The axis of a
hyperbolic isometry is naturally oriented according to the translation direction.

2.1.2 Isometries in the hyperboloid model Denote by

LD f.x1;x2;x3/ j x
2
1 Cx2

2 �x2
3 D�1 and x3 > 0g �R3

the hyperboloid model. Isometries in the hyperboloid model are restrictions of isometries of R3 with
respect to the quadratic form Q.x1;x2;x3/D x2

1
Cx2

2
�x2

3
. Conversely, every isometry of the quadratic

space .R3;Q/ that preserves L (as a set) restricts to an isometry of L. In particular, reflections of L are
restrictions of reflections of .R3;Q/ with respect to linear (2–dimensional) planes that intersect L.

Given an isometry in the hyperboloid model (or an isometry of the abstract hyperbolic plane H2), we
refer to its spectral radius as the spectral radius of its extension to an isometry of .R3;Q/. The spectral
radius of an elliptic or parabolic isometry is always 1, whereas the spectral radius of a hyperbolic isometry
is e� where � is the translation length of u [McMullen 2002, Corollary 3.5].

The moved set of an isometry u of .R3;Q/ is defined as Mov.u/D im.u� id/�R3. We also define the
moved set of an isometry of the hyperbolic plane (viewed as an isometry in the hyperboloid model) as
the moved set of its extension to an isometry of .R3;Q/. The reflection length of an isometry of H2 is
equal to the dimension of its moved set [McCammond and Paolini 2022, Theorem 5.2].

2.1.3 Isometries in the half-plane model Writing the half-plane model as H D fz 2C j Im.z/ > 0g,
the group of isometries is given by PGL.2;R/ [Bridson and Haefliger 1999, I.6.14]. An element of
PGL.2;R/ acts on H as follows:�

a b

c d

�
.z/D

�
.azC b/=.czC d/ if the determinant is positive,
.aNzC b/=.c NzC d/ if the determinant is negative:

If we denote by iRC the positive imaginary line in H , the matrices

(1)
�

1 0

0 �1

�
and

�
� 0

0 1

�
for � > 1

correspond to the reflection with respect to iRC and to the translations in the positive direction of the
axis iRC, respectively. Every reflection and every translation in H is conjugate in PGL.2;R/ to one
of the matrices above. In particular, if we consider the line l in H that is represented by a Euclidean
semicircle centered in ˛ 2R and with radius �, the reflection with respect to l is given by the matrix

(2)
�
˛ �2�˛2

1 �˛

�
Geometry & Topology, Volume 28 (2024)
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(this can be computed by conjugating the reflection with respect to iRC with an isometry that sends iRC
to l). By multiplying the two matrices in (1), we see that every glide reflection is conjugate to

(3)
�
� 0

0 �1

�
for some � > 1. If u is a translation as in (1) or a glide reflection as in (3), then its translation length is
log� and its spectral radius is �. More generally, the spectral radius of an isometry given as a matrix
M 2 PGL.2;R/ is equal to the absolute value of the ratio between the higher and the lower eigenvalue
of M .

For later reference we now prove a general lemma about the composition of glide reflections and reflections:

Lemma 2.1 Let w be a glide reflection and let r be a reflection whose fixed line does not meet the axis
of w (not even at infinity). Then wr is a translation and its (oriented ) translation axis meets the (oriented )
axis of w with an angle less than 1

2
� . In addition , the (oriented ) translation axis of wr intersects Fix.r/

before the axis of w. The same applies to rw, except that the (oriented ) translation axis of rw intersects
Fix.r/ after the axis of w.

Proof Assume without loss of generality that w is of the form (3) and write r in the form (2). Since
Fix.r/ does not intersect the imaginary axis, we have 0< � < j˛j.

The matrix associated with the composition wr is�
�˛ �.�2�˛2/

�1 ˛

�
:

Every point z 2 Fix.wr/ satisfies z2C .�� 1/˛zC�.�2�˛2/D 0. This equation has two distinct real
roots z1 and z2 because .�C 1/j˛j> 2

p
�� (recall that j˛j> �, and �C 1> 2

p
� for all � > 1). Thus

wr is a translation whose axis is represented by a Euclidean circle  that meets the real line at z1 and z2.
Since z1z2 < 0, we have that  meets the (upwardly oriented) imaginary axis. After relabeling, we can
assume that the translation axis is oriented from z1 to z2. The situation is depicted in Figure 3.

0 ˛

�

z2 z1

Min.w/

Fix.r/

 DMin.wr/

Figure 3: Proof of Lemma 2.1 (in the half-plane model).
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Now 1
2
.z1C z2/ (the center of  ) has the same sign as �˛, which has the same sign as �.�2 � ˛2/=˛

(the image of 0 under wr ). This has two consequences. First, 0 is between z1 and the center of  . Thus,
the (oriented) axis of w and the (oriented) axis of wr intersect at an angle less than 1

2
� . Second, the sign

of z1 is the same as the sign of ˛. Thus, if the axis of wr intersects Fix.r/, it does so before intersecting
the axis of w. It remains to show that  intersects Fix.r/. For this, we show that exactly one of z1 and z2

is between ˛� � and ˛C �:

.z1� .˛C �//.z1� .˛� �//.z2� .˛C �//.z2� .˛� �//D .�
2
�˛2/.�C 1/2�2 < 0:

The claim about rw follows with an analogous computation, the difference being that z1C z2 has the
same sign as ˛.

Remark 2.2 In the setup of Lemma 2.1, suppose that Fix.r/ meets the axis of w in 0 (a point at infinity).
A similar analysis as in the previous proof (with j˛j D �) yields that wr is again a translation, but the
translation axis of wr meets the axis of w in 0 (with an angle of 0). Both axes are oriented outwards
from 0.

2.2 Combinatorial topology

A recurring theme of this paper is the relationship between the combinatorial properties of partially
ordered sets (in turn related to groups via Garside theory, see Section 2.3) and the topological features of
certain canonically associated spaces.

2.2.1 Generalities on posets We review some basic terminology, mainly following [Stanley 1986]. Let
.P;�/ be a partially ordered set (a poset). We call P bounded if it has a unique maximal element and a
unique minimal element. Any two elements p; q 2 P define an interval Œp; q� WD fu 2 P j p � u � qg.
Write p É q if Œp; q� has cardinality 2; in this case we say that Œp; q� is a poset cover. The Hasse diagram
of P is the graph whose vertices are the elements of P and whose edges E.P / are all poset covers in P .

A chain in P is any totally ordered subset, ie any C � P such that c � c0 or c � c0 for all c; c0 2 C . The
length of a chain is defined to be one less than its cardinality. The length of the poset P is the supremum
of the lengths of all chains in P . The poset P is chain-finite if every chain in P has a finite length. A
chain-finite poset P is called graded if any two maximal chains within the same interval have equal
length. Equivalently, P admits a rank function rk W P ! Z such that p É q implies rk.q/� rk.p/D 1.

A poset P is a lattice if every pair of elements p1;p2 2 P has a unique maximal lower bound and a
unique minimal upper bound. Note that every chain-finite lattice is bounded.

The order complex of a partially ordered set P is the abstract simplicial complex of all chains in P .
Topological properties of posets are defined by referring to the topology of its order complex. (Recall
that every abstract simplicial complex has a geometric realization as a geometric simplicial complex that
is unique up to homeomorphism.) Every chain determines a simplex of dimension equal to the chain’s
length. Thus, the order complex of a chain-finite bounded poset has a finite dimension.

Geometry & Topology, Volume 28 (2024)



Dual structures on Coxeter and Artin groups of rank three 4303

2.2.2 EL–labelings An edge-labeling of a poset P is a function � WE.P /!ƒ, where ƒ is any totally
ordered set. Given such a labeling, every finite saturated chain p1 É � � �É pk in P is associated with a
ƒ–word

�.p1;p2/�.p2;p3/ � � ��.pk�1;pk/:

Using the ordering of ƒ, chains of P can be compared using the lexicographical order of the associated
words. A chain is called increasing if the associated word is strictly increasing.

An edge-labeling of a bounded poset P is called an EL–labeling if every interval of P has a unique
increasing maximal chain and this chain lexicographically precedes all other maximal chains of the interval.
This notion was introduced by Björner [1980; Björner and Wachs 1983] in view of its strong topological
implications for the order complex of P . However, we use EL–labelings mainly as a combinatorial tool.

2.2.3 Acyclic matchings of posets and discrete Morse theory We briefly review Forman’s [1998]
discrete Morse theory for CW complexes in the poset-theoretical formulation introduced by Chari [2000]
and later extended by Batzies [2002] to the case of infinite complexes.

A matching of a poset P is a matching of the associated Hasse diagram, ie a subset M�E.P / such that
m\m0 D∅ whenever m;m0 2M. An element of P is critical with respect to a matching M if it is not
contained in any m 2M. A matching defines an orientation of the edges of the Hasse diagram of P : an
edge Œp; q� 2E.P / is oriented from p to q if Œp; q� 2M and from q to p otherwise. The matching M is
acyclic if the resulting oriented graph HM has no directed cycles.

If P is a graded poset, then any directed cycle of HM must alternate between edges in M and outside
of M. Indeed, if p! q is an oriented edge and rk is a rank function for P , then rk.q/� rk.p/ is equal
to 1 if the edge is in M and �1 otherwise. Thus a matching M of a graded poset P is acyclic if and only
if the Hasse diagram of P has no closed cycles that alternate between edges in M and outside of M.

An acyclic matching M is called proper if, for every p 2 P , there are only finitely many q 2 P that can
be reached from p by a directed path in HM.

Let X be a finite-dimensional C W –complex. The poset of cells F.X / is the set of all (open) cells of X

with the partial order given by inclusion of closure: � � � if N� � x� . Recall that every cell � �X has a
characteristic map ˆ� WDn! X , where Dn is the closed n–ball and nD dim.�/. The poset F.X / is
chain-finite and graded with rank function given by rk.�/ WD dim.�/.

Let � 2 F.X / be a cell of dimension n. A regular face of � is any cell � É � such that ˆ� restricts to a
homeomorphism ˆ�1.�/! � , and ˆ�1

� .�/ is homeomorphic to an .n�1/–ball in Dn. A matching M of
F.X / is called regular if Œ�; � � 2M implies that � is a regular face of � .

Theorem 2.3 [Forman 1998; Chari 2000; Batzies 2002] Let X be a finite-dimensional CW complex
and let M be a proper and regular acyclic matching of F.X /. Suppose that the set of critical elements of
M forms a subcomplex Y of X . Then X deformation retracts onto Y (we write X & Y ). In particular ,
the inclusion Y ,!X is a homotopy equivalence.

Geometry & Topology, Volume 28 (2024)
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A useful tool for constructing acyclic matchings is given by the following well-known theorem:

Theorem 2.4 (patchwork theorem [Kozlov 2008, Theorem 11.10]) Let � W P ! Q be a poset map.
For all q 2Q, assume there is an acyclic matching Mq �E.P / that involves only elements of the fiber
��1.q/� P . Then the union of these matchings is an acyclic matching on P .

2.3 Interval groups and Garside structures

Let G be a group with a generating set R not containing the identity of G and such that RDR�1. Then
G is partially ordered by assigning x � y whenever l.x/C l.x�1y/D l.y/, where l WG!N denotes the
length function induced by R. In other words, the relation x � y holds if and only if there is a geodesic
path between 1 and y passing through x, inside the right Cayley graph of G (with respect to R).

Fix an element g 2G and consider the interval Œ1;g��G, consisting (by definition) of all elements x 2G

such that l.x/C l.x�1g/D l.g/. The interval Œ1;g� is balanced if the set of elements x 2G satisfying
l.x/C l.x�1g/D l.g/ coincides with the set of elements x 2 G satisfying l.gx�1/C l.x/D l.g/. In
other words, this condition requires that the interval Œ1;g� inside the right Cayley graph (as we have
defined it above) contains the same elements as the interval Œ1;g� inside the left Cayley graph.

Assuming we have a balanced interval Œ1;g�, construct a new group Gg (called an interval group) and a
CW complex K (called an interval complex) as follows. The interval complex K is a �–complex
(in the sense of [Hatcher 2002]) having one d–dimensional simplex � denoted by Œx1jx2j � � � jxd �

for every d–tuple of elements x1;x2; : : : ;xd 2 Œ1;g� n f1g such that l.x1/C l.x2/C � � � C l.xd / D

l.x1x2 � � �xd / and x1x2 � � �xd 2 Œ1;g�. The faces of Œx1jx2j � � � jxd � are given by @0.�/D Œx2j � � � jxd �,
@i.�/ D Œx1j � � � jxixiC1j � � � jxd � for i D 1; : : : ; d � 1, and @d .�/ D Œx1j � � � jxd�1�. See [Paolini and
Salvetti 2021, Definition 2.8] for more details. Note that K is a quotient of the order complex of Œ1;g�.
The 0–cell Œ � of K is not a regular face of the 1–cells; all other faces are regular.

Define the interval group Gg as the fundamental group of K. Then Gg has a presentation with a generator
for each 1–cell Œx� of K and a relation Œx� Œy�D Œxy� for each 2–cell Œxjy� of K. The main reason why we
consider interval groups and interval complexes is the following result:

Theorem 2.5 [Bestvina 1999; Dehornoy and Paris 1999; Charney et al. 2004; McCammond 2005;
Dehornoy et al. 2015] If the interval Œ1;g� is a balanced lattice , then Gg is a Garside group and the
interval complex K is a classifying space for Gg. In addition , the word problem for Gg is solvable ,
provided that one can algorithmically check equality and compute meets and joins in Œ1;g�.

Garside groups were introduced by Dehornoy and Paris [1999], building on previous work of Garside
[1969]. We will not need the actual definition of a Garside group.

2.4 Coxeter groups

In this section, we outline some basics of the general theory of Coxeter groups. We refer to [Bourbaki
1972; Humphreys 1990] for a more thorough treatment.
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A Coxeter system is a group W with a distinguished set of generators S such that

(4) W D hS j .st/m.s;t/ D 1 for all s; t 2 S such that m.s; t/¤1i;

for some function m W S �S!N[f1g satisfying m.s; s0/D 1 if sD s0 and m.s; s0/� 2 otherwise. The
function m can be encoded in a Coxeter diagram, ie a graph on the vertex set S where two vertices s and s0

are joined by an edge exactly when m.s; s0/� 3. The edge is labeled with m.s; s0/ when m.s; s0/� 4. The
group W is called a Coxeter group. For us, a Coxeter group W always implicitly carries with it a fixed
generating set S which makes .W;S/ a Coxeter system. For this reason, we often speak of properties
of a Coxeter group W which depend on the Coxeter system (and not only on the group structure). For
example, a Coxeter group W is called irreducible if the corresponding Coxeter diagram is connected.

The parabolic subgroup of W associated with a subset I � S is the subgroup WI of W that is generated
by the elements of I . Following [McMullen 2002], we call an element u 2 W essential if it is not
conjugated into any parabolic subgroup WI with I ¤ S . Let n WD jS j. This quantity is the rank of the
given Coxeter group.

2.4.1 Geometric representation and reflections The function m determines a symmetric bilinear
form B on the vector space RS defined on basis vectors as

B.es; es0/ WD � cos.�=m.s; s0//;

where we set B.es; es0/D�1 if m.s; s0/D1. Now, to every s 2 S is naturally associated the reflection

rs W x 7! x� 2B.x; es/es:

The assignment s 7! rs extends to a linear action of W on RS that preserves the bilinear form B; see
[Humphreys 1990, 5.3]. Denote by R the set of all elements of W that act as reflections (ie that fix a
hyperplane and send some nonzero vector to its opposite). This is called the set of reflections of the
Coxeter group and coincides with the set of all conjugates of elements of S . In particular, R generates W .
The absolute length (also called reflection length) of an element u 2W is the minimum length lR.u/ of a
reduced expression of u as a word in the generators R. The elements of S are called simple reflections.

2.4.2 Coxeter elements and dual Coxeter systems A Coxeter element of a Coxeter system .W;S/

is any product of all elements of S in some order. Every Coxeter element has reflection length equal
to nD jS j (see [Ingalls and Thomas 2009, Lemma 3.8; Paolini and Salvetti 2021, Lemma 5.1]) and is
essential [Paris 2007]. For any choice of a Coxeter element w of .W;S/, the triple .W;R; w/ is often
called a dual Coxeter system. Associated with any dual Coxeter system is the corresponding poset of
noncrossing partitions,1 namely

Œ1; w� WD fu 2W j lR.u/C lR.u
�1w/D lR.w/g;

partially ordered by
u� v if and only if lR.u/C lR.u

�1v/D lR.v/:

1The name refers to a well-known combinatorial interpretation of such elements in the case of the symmetric group; see for
example [Armstrong 2009].
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As the notation suggests, the poset Œ1; w� coincides with the interval between the identity 1 and the Coxeter
element w in the right Cayley graph of W with respect to the generating set R. In particular, it contains
1 and w as its unique minimal and maximal elements. Note that Œ1; w� is balanced because the generating
set R is closed under conjugation. The noncrossing partition posets Œ1; w� are strictly related to “dual
Garside structures”; see Section 2.3.

2.4.3 Spherical, affine, and hyperbolic Coxeter groups A Coxeter group W is called spherical if the
bilinear form B (defined in Section 2.4.1) is positive definite; it is called affine if B is positive semidefinite
but not positive definite. The spherical case occurs precisely when W is finite.

For simplicity, suppose now that B is nondegenerate. Then B induces a pairing, and hence an identification,
between RS and its dual V . In particular, we have an induced action of W on V . The generators s 2 S

act as reflections with respect to the linear hyperplanes yHs WD fp 2 V j B.p; es/ D 0g that bound a
closed polyhedron D � V (a simplicial cone). This polyhedron is a fundamental region for the action
of W on V and the union of all W –translates of D is a convex cone I in V , the Tits cone [Humphreys
1990, Section 5.13]. The cone I is tiled by copies of D. This tiling corresponds to the subdivision of I

determined by the collection of all reflection hyperplanes yHr for r 2R.

The Coxeter group W is called hyperbolic if the bilinear form B is nondegenerate of signature .n� 1; 1/

and every vector p in the Tits cone satisfies B.p;p/ < 0 [Humphreys 1990, Section 6.8]. If W is
hyperbolic, then the action of W on V is determined by its restriction to the hyperboloid model of the
hyperbolic space Hn�1 given by all p with B.p;p/ D �1, with the metric induced by B. Since the
action of W preserves the metric, W acts by isometries of the hyperbolic space. Thus, hyperbolic Coxeter
groups of rank n are a subclass of all discrete groups of isometries of Hn�1 generated by reflections.
Note that this class is strictly larger; see [Vinberg 1971].

Let W be a hyperbolic Coxeter group and, for all r 2 R, let Hr be the intersection of yHr with the
hyperboloid. The set fHr gr2R is the reflection arrangement of W . It is a locally finite set of hyperplanes
of Hn�1. The open cells of the induced subdivision of the hyperbolic space are the (open) chambers of
the reflection arrangement. Chambers are naturally and bijectively labeled by elements of W , once we
label the interior of D with the identity element.

The Coxeter graphs corresponding to spherical, affine, and hyperbolic Coxeter systems have been
completely classified; see [Humphreys 1990, Chapter 6]. The construction of the reflection arrangement
can be extended to all cases (see eg Figures 1 and 2).

2.5 Standard and dual Artin groups

For any Coxeter system .W;S/, where W is presented as in (4), there is an associated Artin group
defined as

(5) GW D hS j stst � � �„ ƒ‚ …
m.s;t/ terms

D tsts � � �„ƒ‚…
m.s;t/ terms

for all s; t 2 S such that m.s; t/¤1i:
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An Artin group is called irreducible, spherical, affine, or hyperbolic if the corresponding Coxeter group is
respectively irreducible, spherical (ie finite), affine, or hyperbolic.

Define the configuration space associated with W as

Y D .I � I/ n
[
r2R

yHr �
yHr :

Then W acts freely and properly discontinuously on Y , and the quotient space YW D Y=W is the
orbit configuration space associated with W . The fundamental group of YW is isomorphic to the Artin
group GW [Van der Lek 1983]. The orbit configuration space YW has the homotopy type of a CW complex
(called the Salvetti complex) having a k–cell for each subset T � S of cardinality k that generates a finite
subgroup WT �W [Salvetti 1987, 1994]; see also [Paris 2014].

In full generality, Artin groups are not well understood, in the sense that there are very few known results
that apply to all of them. The following are among the most important open problems on Artin groups:
the word problem, determining the center, and solving the K.�; 1/ conjecture, due to Brieskorn, Arnold,
Pham, and Thom.

Conjecture 2.6 (K.�; 1/ conjecture) The orbit configuration space YW is a classifying space for the
corresponding Artin group GW .

Among other things, the K.�; 1/ conjecture gives a way to compute the homology and cohomology of
Artin groups and implies that Artin groups are torsion-free (a property that is also unknown in general).
So far, the K.�; 1/ conjecture has been proved for spherical Artin groups (by Deligne [1972]), affine
Artin groups (by the second and third authors [Paolini and Salvetti 2021]), 2–dimensional and FC–type
Artin groups (by Charney and Davis [1995]). Special cases of these were previously proved by Fox and
Neuwirth [1962], Brieskorn [1973], Okonek [1979], Hendriks [1985], and Callegaro, Moroni and Salvetti
[Callegaro et al. 2010]. See [Paris 2014] for a survey on this problem (written before the full solution of
the affine case) and [Paolini 2021] for an exposition of the “dual approach” introduced to solve the affine
case, which we use and extend here. See also [Charney and Davis 1995; Godelle and Paris 2012] for an
overview of open problems on Artin groups (mostly up to date, except for the affine case).

If W is a finite Coxeter group, then GW is the interval group associated with the interval Œ1; ı� �W ,
where we use S as the generating set of W and define ı as the longest element of W . The interval Œ1; ı� is
a balanced lattice, and thus makes GW a Garside group (by Theorem 2.5). This is known as the standard
Garside structure on spherical Artin groups, introduced by Garside [1969] for braid groups and developed
and studied by Brieskorn and Saito [1972], Deligne [1972], and others. The interval complex associated
with Œ1; ı� is homotopy equivalent to the orbit configuration space YW , in accordance with the K.�; 1/

conjecture (this was explicitly proved in [Delucchi 2010]).

An alternative way to realize spherical Artin groups as Garside groups was introduced by Bessis [2003],
following prior work of Birman, Ko, and Lee on braid groups [Birman et al. 1998]. Consider a noncrossing
partition poset Œ1; w� in a finite Coxeter group W . It turns out that Œ1; w� is a lattice, and the corresponding
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interval group is naturally isomorphic to the Artin group GW . This is known as the dual Garside
structure on spherical Artin groups. The interval complex associated with Œ1; w� is therefore another
model for the classifying space of the spherical Artin group GW , with a combinatorial structure that is
substantially different from the Salvetti complex XW and the interval complex arising from the standard
Garside structure.

Noncrossing partition posets in general Coxeter groups are not always lattices. Indeed, McCammond
[2015] showed that the lattice property fails in most affine cases. Nevertheless, the dual structure (which
is not necessarily Garside) proved useful to answer the most important open questions on affine Artin
groups, such as the word problem, the center, and the K.�; 1/ conjecture [McCammond and Sulway
2017; Paolini and Salvetti 2021]. For all affine Coxeter groups W , McCammond and Sulway [2017]
proved (among other things) that the interval group Ww associated with Œ1; w� is isomorphic to the usual
Artin group GW ; the second and third author proved that the interval complex KW associated with Œ1; w�
is a classifying space and deformation retracts onto a finite subcomplex X 0

W
�KW which is homotopy

equivalent to the orbit configuration space YW [Paolini and Salvetti 2021].

The subcomplex X 0
W

can be defined for an arbitrary Coxeter system and is always homotopy equivalent
to YW . We review the definition of X 0

W
in Section 5. Therefore, proving that KW deformation retracts

onto X 0
W

implies the isomorphism GW ŠWw between the standard and dual Artin groups. In addition, if
the interval Œ1; w� is a lattice, then a deformation retraction KW ŠX 0

W
yields a Garside structure on GW

and implies the K.�; 1/ conjecture. These implications are discussed more thoroughly in [Paolini 2021].

3 Coxeter elements in rank-three hyperbolic groups

Let .W;S/ be a rank-three Coxeter system. Recall from [Humphreys 1990, Section 6.7] that, if the
three labels m.s; t/ for s ¤ t are denoted by m1, m2, and m3, then W is hyperbolic if and only if
1=m1C 1=m2C 1=m3 < 1 (set 1=mi D 0 if mi D1). In particular, all irreducible rank-three Coxeter
systems are hyperbolic except when the triple .m1;m2;m3/ takes the values .2; 3; 3/, .2; 3; 4/, .2; 3; 5/,
.2; 3; 6/, .2; 4; 4/, or .3; 3; 3/, up to permutations. These special cases are either spherical or affine and
the corresponding arrangements are shown in Figure 2. All questions we consider have been solved
already in the spherical and affine cases, so from now on, assume that the Coxeter system .W;S/ is
hyperbolic, thus acting by isometries on the hyperbolic plane H2. Two examples are shown in Figure 1.

3.1 Coxeter elements and their axes

Let S D fa; b; cg and fix a Coxeter element w D abc. Note that w has reflection length equal to 3 (both
in W and in the group of isometries of H2), so it is a glide reflection (see Section 2.1).

Definition 3.1 The (oriented) axis of w is called the Coxeter axis and denoted by `. An axial chamber
is a chamber whose interior intersects the Coxeter axis. We think of the orientation of the Coxeter axis
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ab

c

.3; 3; 4/

a

b

c

.2; 3;1/

Figure 4: Reflection arrangements of Figure 1 with the axis of a Coxeter elementwDabc (orange
dashed line). The axial vertices are colored based on their orbit under the action of the infinite
cyclic group generated by w (see Lemma 3.5).

as defining the “positive” or “upward” direction. Accordingly, a point p 2 ` (or an axial chamber C ) is
above another point p0 2 ` (or another axial chamber C 0) if it is further along the Coxeter axis in the
positive direction. Any vertex of an axial chamber is called an axial vertex; see Figure 4.

In the hyperboloid model L�R3, the Coxeter axis ` is the intersection between L and a linear plane
P �R3 which we call the Coxeter plane. As noted in [Paolini 2021, Section 2], P is indeed the analog
of the classical Coxeter plane of spherical Coxeter groups.

Let C be any chamber of the reflection arrangement. In particular, the closure C intersects every W –orbit
in exactly one point. Denote by �C WH

2! C the projection defined by �C .x/ WDW x \C for every
x 2H2. The following lemma describes the location of the Coxeter axis `:

Lemma 3.2 For every point x 2 `, the image of the segment Œx; w.x/�� ` under �C is the shortest loop
that touches the three walls of C and coincides with the orthic triangle of C (see Figure 5).

Proof The orthic triangle of a triangle C �H2 is the (only) shortest loop that touches all three walls
of C . This can be proved with the same argument as the one used in [Rademacher and Toeplitz 1957,
Chapter 6] for the Euclidean case.

By [McMullen 2002, Theorem 4.1 and Proposition 4.2], there exists a Coxeter element w0 2W such that
�C .Œx

0; w0.x0/�/ is the shortest loop that touches all three walls of C , where x0 is any point on the axis
of w0. Note that the length of any such loop is equal to the translation length � of w0.

Every Coxeter element is conjugate in W to one of abc, bca, cab, cba, bac, or acb (where fa; b; cg is a
fixed set of simple reflections). The first three (abc, bca, and cab) can be obtained from each other via
source-sink flips [McCammond 2015, Lemma 7.4], and hence they are geometrically equivalent Coxeter
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a
b

c

Figure 5: Axes of the Coxeter elements abc (in orange), bca (in blue), and cab (in purple). The
orthic triangle of the chamber delimited by Fix.a/, Fix.b/, and Fix.c/ is highlighted in gray.

elements and thus have the same translation length. The same holds for the last three (cba, bac, and
acb). In addition, each of the first three is the inverse of one of the last three, so all Coxeter elements
have translation lengths equal to �. In particular, the loop  D �C .Œx; w.x/�/ has length �. Since w is
essential, [McMullen 2002, Proposition 4.3] ensures that  touches all three walls of C . Therefore  is
the shortest loop that touches the three walls of C .

We now derive two useful corollaries: first, the Coxeter axis is not a reflection line (so axial chambers
exist); second, every axial chamber induces a factorization of w.

Corollary 3.3 The Coxeter axis ` does not coincide with any reflection line of W . In addition , if two
reflection lines intersect ` in the same point , then they are perpendicular.

Proof The orthic triangle of any chamber C touches every wall at exactly one point. In addition, it
touches two walls at the same point if and only if the two walls are perpendicular (in this case, the orthic
triangle is degenerate since two vertices coincide). The statement then follows from Lemma 3.2, since
�C .`/ is the orthic triangle of C .

Corollary 3.4 Suppose that C is an axial chamber , with associated reflections s1, s2, and s3 in the order
the sides of C are touched by the loop �C .Œx; w.x/�/ for any x 2 `\C . Then w D s1s2s3.

Proof Let x 2C \`. Now �C .x/D�C .w.x//, and no other point in �C .`/ is in the same W –orbit. By
Lemma 3.2, the segment of Œx; w.x/�� ` intersects exactly three reflection lines, and the corresponding
reflections are s1, s1s2s1, and s1s2s3s2s1. Therefore w D .s1s2s3s2s1/.s1s2s1/s1 D s1s2s3.
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We close this section with a geometric observation on axial vertices which is exemplified in Figure 4.

Lemma 3.5 Let p be an axial vertex. Every axial chamber has exactly one vertex in fwj .p/ j j 2 Zg.

Proof Let C be an axial chamber. Since C is a fundamental domain for the action of W on H2, at most
one vertex of C belongs to the orbit fwj .p/ j j 2 Zg. In particular, the three vertices of C necessarily
belong to three different orbits.

Let C 0 be another axial chamber. By induction on the number of axial chambers between C and C 0, we
prove that the orbits of the three vertices of C are the same as the orbits of the three vertices of C 0. It
is enough to consider the case where C 0 is the axial chamber immediately above C . Denote by s1, s2,
and s3 the reflections with respect to the walls of C , ordered as in Corollary 3.4, so that w D s1s2s3.

Case 1 Suppose that C and C 0 are separated by a single reflection line, Fix.s1/. Then C 0 D s1.C /.
The vertex q0 of C 0 opposite to Fix.s1/ is equal to s1.q/D w.q/ where q is the vertex of C opposite to
Fix.s1/. The other two vertices are in common between C and C 0; see for example Figure 4, left.

Case 2 Suppose that C and C 0 are separated by two reflection lines, Fix.s1/ and Fix.s2/, which are
orthogonal by Corollary 3.3. Then C 0 D s1s2.C /. The vertices q0

1
and q0

2
of C 0 opposite to Fix.s1/ and

Fix.s2/ are equal to s1s2.q1/ D w.q1/ and s1s2.q2/ D w.q2/, where q1 and q2 are the vertices of C

opposite to Fix.s1/ and Fix.s2/. The third vertex is in common between C and C 0; see for example
Figure 4, right.

In all cases, the vertices of C and the vertices of C 0 belong to the same three orbits.

3.2 Reflections

Let r be a reflection in the noncrossing partition poset Œ1; w�. By analogy with the affine case, we say
that r is vertical if Fix.r/ intersects the Coxeter axis ` and horizontal if it does not.

Remark 3.6 If r is a horizontal reflection, then Fix.r/ does not intersect ` at infinity, because the
distance between Fix.r/ and ` is bounded away from 0. Indeed, we can fix a point x 2 ` and find
an �–neighborhood N of the closed segment Œx; w.x/� which intersects no fixed lines of horizontal
reflections; then the union of all wk.N / for k 2 Z is an �–neighborhood of ` with the same property.

Differently from the affine case, the roots corresponding to horizontal reflections are not necessarily
orthogonal to the Coxeter plane. In fact, Œ1; w� contains infinitely many horizontal reflections. However,
we now show that wr is a rotation if r is vertical and a translation if r is horizontal (as in the affine case).

Lemma 3.7 If r is vertical , thenwr (resp. rw) is a rotation around an axial vertex p (possibly at infinity).
Specifically, p is the vertex opposite to Fix.r/ in the axial chamber immediately above (resp. below)
Fix.r/\ `. If r is horizontal , then wr (resp. rw) is a translation whose axis meets the Coxeter axis ` with
an angle < 1

2
� .
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Proof If r is horizontal, then the statement follows by Lemma 2.1. Suppose from now on that r is vertical.
By Corollary 3.3, the intersection point Fix.r/\ ` is fixed by at most one other reflection r 0 2W and,
if this happens, the two reflection lines are perpendicular. Therefore, the axial chamber C immediately
above Fix.r/\ ` has Fix.r/ as one of its walls. By Corollary 3.4, the walls of C yield a factorization
wD r1r2r . Therefore wr D r1r2 is a rotation around the vertex Fix.r1/\Fix.r2/ of C opposite to Fix.r/.
Note that this vertex might be at infinity (if there is no relation between r1 and r2) and in such case, wr

is a parabolic isometry.

3.3 Rotations and translations

Next, we give further insights on rank-two elements of the noncrossing partition poset Œ1; w�, namely,
rotations and translations.

Lemma 3.8 (rotations) Let u 2 Œ1; w� be a rotation around a point p 2H2[ @H2. Then u is a Coxeter
element for the parabolic subgroup Wu �W that fixes p. In addition , a point p 2H2[ @H2 is the fixed
point of a rotation u 2 Œ1; w� if and only if p is an axial vertex.

Proof Let r Dwu�1 be the left complement of u. Then r is a vertical reflection by Lemma 3.7 and p is
an axial vertex. Let C be the axial chamber immediately below Fix.r/. Note that Fix.r/ is a wall of C

by Corollary 3.3. By Corollary 3.4 there is a factorization w D rr1r2 associated with the walls of C ,
and r comes first. Therefore uD r1r2. We finish the proof of the first part of the statement by noting that
fr1; r2g is a set of simple reflections for the parabolic subgroup Wu that fixes p.

It remains to show that every axial vertex p is the fixed point of a rotation u 2 Œ1; w�. Let C be an axial
chamber having p as one of its vertices. By Corollary 3.4 there is a factorization wD s1s2s3 where s1, s2,
and s3 are the reflections with respect to the walls of C . The three rotations s1s2, s2s3, and s1s3 are all
in Œ1; w�, and one of them is a rotation around p.

The case of translations (given by the following lemma) is less trivial. Our proof relies on the fact that
Coxeter elements minimize the spectral radius among all essential elements of W .

Lemma 3.9 (translations) Let t 2 Œ1; w� be a translation. A reflection r 2W is in Œ1; t � if and only if
Fix.r/ is orthogonal to Min.t/. In addition , t is a Coxeter element for the type- zA1 subgroup Wt �W

generated by the reflections below t .

Proof The product of two reflections r and r 0 in the hyperbolic plane is a translation if and only if Fix.r/
and Fix.r 0/ do not meet (not even at infinity); when t D rr 0 is a translation, the translation axis Min.t/
is orthogonal to both Fix.r/ and Fix.r 0/. In particular, if t 2 Œ1; w� is a translation as in the statement,
Fix.r/ is orthogonal to Min.t/ for any reflection r 2 Œ1; t �. Conversely, if r 2W is a reflection such that
Fix.r/ is orthogonal to Min.t/, then r 0 D r t 2W is also a reflection and thus r; r 0 2 Œ1; t �. This proves
the first part of the statement.
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The reflections below t form an infinite discrete sequence : : : ; r�1; r0; r1; r2; : : : ordered according to the
positions of Fix.ri/\Min.t/ along the oriented translation axis Min.t/. We need to prove that t D riC1ri

for any (or equivalently all) i 2 Z. Suppose that t D rj ri for some j > i .

Let r be the left complement of t , so that w D r t . Let t� be the translation with the same translation axis
as t but with spectral radius changed to an arbitrary � > 1 (ie the translation length is log�). Up to a
change of coordinates in the half-plane model, we have

t� D

�
� 0

0 1

�
:

Writing the reflection r as in (2), we can express r t� as

(6) r t� D

�
�˛ �2�˛2

� �˛

�
for some � > j˛j> 0. This is an isometry of the hyperbolic plane with an odd reflection length. It is not a
reflection because Fix.r/ is not orthogonal to the translation axis of t�, so it is a glide reflection. The
spectral radius of r t� is given by the absolute value of the ratio of the two eigenvalues of the matrix (6).
The characteristic polynomial of (6) is t2� .�� 1/˛t ���2. The absolute value of the ratio between the
larger and the smaller eigenvalue is�p

.�� 1/2C 4�ˇC .�� 1/

2
p
�ˇ

�2

;

where ˇ D �2=˛2 > 1. This quantity is strictly increasing in � for � � 1 (and it is equal to 1 for the
degenerate case �D 1 where t� becomes the identity). Thus the spectral radius of r t� increases with the
translation length of t�.

Recall that t D rj ri and suppose for the sake of contradiction that j > i C 1. Then the translation length
of t 0 D riC1ri is strictly smaller than the translation length of t . Therefore, the spectral radius of w0 D r t 0

is strictly smaller than the spectral radius of w D r t (and strictly greater than 1). As noted in the proof of
Lemma 3.2, all the Coxeter elements of W have the same translation length and thus the same spectral
radius. We reach a contradiction because w0 is essential and, by [McMullen 2002, Theorem 4.1], the
Coxeter elements minimize the spectral radius among all essential elements of W .

The previous two lemmas yield the following analog of [Paolini and Salvetti 2021, Theorem 3.22]:

Theorem 3.10 For every element u 2 Œ1; w�, we have that u is a Coxeter element for the subgroup of W

generated by the reflections below u.

We end this section by proving a geometric property of factorizations of translations into horizontal
reflections:
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Fix.r 0/

Fix.r2/

`
Fix.r1/

Fix.r/
Min.t/

Figure 6: The oriented axis Min.t/ of a translation t D r1r2 (dashed in blue) together with the
other five lines of Lemma 3.11. The Coxeter axis ` is the same as in Figure 4, left (dashed in
orange).

Lemma 3.11 (five lines) Let t 2 Œ1; w� be a translation. Suppose that there is a factorization t D r1r2

where r1 and r2 are horizontal reflections whose fixed lines are on opposite sides of `. Let r D wt�1 be
the left complement of t and r 0 D t�1w be the right complement of t . Then the (oriented ) translation
axis of t intersects the five lines Fix.r 0/, Fix.r2/, `, Fix.r1/, and Fix.r/ in this order , and these five lines
are pairwise disjoint.

Proof The situation is depicted in Figure 6. By construction and by Lemma 3.7, all reflections r , r 0, r1,
and r2 are horizontal and therefore their fixed lines do not intersect `. By Lemma 2.1, the translation
axis of t intersects Fix.r 0/ and Fix.r2/ before `, and it intersects Fix.r/ and Fix.r1/ after `. Since
w D r t D rr1r2, we have that rr1 is a translation by Lemma 2.1, and therefore Fix.r/ does not intersect
Fix.r1/. Similarly, Fix.r 0/ does not intersect Fix.r2/. Applying Lemma 2.1 to w and r2, we find that the
(oriented) translation axis of rr1 intersects Fix.r2/ before `. Therefore Fix.r1/ is between ` and Fix.r/.
Similarly, Fix.r2/ is between ` and Fix.r 0/.

4 The poset of noncrossing partitions

In this section, we study some order-theoretic properties of the noncrossing partition poset Œ1; w�, where w
is a Coxeter element of a rank-three hyperbolic Coxeter group. The following preliminary observation
will allow us to link the order relation in Œ1; w� with the geometric attributes of its elements:

Lemma 4.1 The map u 7! Mov.u/ from Œ1; w� to the poset of linear subspaces of R3 (ordered by
inclusion) is a poset isomorphism onto its image.
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Proof Denote by Œ1; w�Isom.H2/ the interval between the identity and w in the group Isom.H2/ of all
isometries of the hyperbolic plane H2 (using all reflections as generators). Since the reflection length
of w is 3 both in W and in Isom.H2/, every geodesic between 1 and w in the Cayley graph of W is
also a geodesic in the Cayley graph of Isom.H2/. Therefore there is a natural order-preserving and
rank-preserving inclusion Œ1; w� ,! Œ1; w�Isom.H2/. To show that this inclusion is a poset isomorphism
onto its image, we need to check that u� v in Œ1; w�Isom.H2/ implies u� v in Œ1; w�. The only nontrivial
case is when u has reflection length 1 and v has reflection length 2 (in both W and Isom.H2/): in this
case, v D ur for some reflection r 2 Isom.H2/ and r is also a reflection of W (because u; v 2W ), so
u� v in Œ1; w�. Finally, by [McCammond and Paolini 2022, Theorem 5.3], the map u 7!Mov.u/ from
Œ1; w�Isom.H2/ to the poset of linear subspaces of R3 is a poset isomorphism onto its image.

4.1 The lattice property

We now prove that Œ1; w� is a lattice and thus defines a Garside structure on the dual Artin group Ww.

Theorem 4.2 The interval Œ1; w� is a lattice.

Proof The poset Œ1; w� is bounded and of rank three. Thus, if it is not a lattice then there are two reflections
r1¤ r2 and two rank-two elements u1¤ u2 with ri < uj for all i; j 2 f1; 2g (this configuration is usually
called a bowtie). By Lemma 4.1 Mov.ri/�Mov.uj /, where each Mov.ri/ is one-dimensional and each
Mov.uj / is two-dimensional. Also, Mov.r1/¤Mov.r2/, and therefore Mov.u1/DMov.r1/CMov.r2/D

Mov.u2/, which is a contradiction (again by Lemma 4.1).

Corollary 4.3 The dual Artin group Ww is a Garside group.

Proof This follows immediately from Theorems 2.5 and 4.2, since Ww is the interval group associated
with the poset Œ1; w�, which is balanced (see Section 2.4).

4.2 Axial ordering

Denote by R0 the set of all reflections of Œ1; w�. We now describe a total ordering of R0 which we call
axial ordering.

Working in the hyperboloid model, let P �R3 be the Coxeter plane, ie the linear span of the Coxeter
axis `. Given a reflection r , let Fix.r/D ker. Nr � id/ where Nr is the extension of r to a linear reflection
of R3 (with respect to the quadratic form Q of Section 2.1.2).

Note that Fix.r/ is the fixed set of Nr in R3 and coincides with the linear span of Fix.r/ in the hyperboloid
model.

Definition 4.4 (axial ordering of reflections) Let� be the total ordering of R0 defined as follows. Fix an
axial chamber C0 and a point q2`\C0. Define r1� r2 whenever the line Fix.r1/\P comes before the line
Fix.r2/\P when traversing the projective line P .P / starting from the line spanned by q and going in the
positive direction of `. If Fix.r1/\P D Fix.r2/\P , define the relative order between r1 and r2 arbitrarily.
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p

`

Fix.r1/

Fix.r2/

Fix.r3/

Figure 7: Reflections below a 2
3
�–rotation uD r1r2 in the Klein model, as in Remark 4.5 and

in Case 1 of the proof of Theorem 4.15. The Coxeter axis ` does not pass through p, so it
defines a reflection ordering of R0 \ Œ1;u�, say r1 � r3 � r2 (it could also be r2 � r1 � r3 or
r3 � r2 � r1, depending on the location of the chamber C0 along the axis `). We have that
uD r1r2D r2r3D r3r1, so any of the three possible reflection orderings above is compatible with u.

Remark 4.5 (dihedral subgroups) Let u2 Œ1; w� be a rotation, so that Œ1;u� generates a dihedral subgroup
Wu for which u is a Coxeter element (Lemma 3.8). By [Paolini and Salvetti 2021, Proposition 4.4], the
restriction �u of the total order � to R0\ Œ1;u� is a reflection ordering for Wu: whenever ˛, ˛1, and ˛2

are distinct positive roots and ˛ is a positive linear combination of ˛1 and ˛2, we have either

r˛1
� r˛ � r˛2

or r˛2
� r˛ � r˛1

(see [Bourbaki 1972; Dyer 1993; Björner and Brenti 2005] for more background on reflection orderings).
The situation is depicted in Figure 7. Reflection orderings play an important role in the proof that finite
noncrossing partition lattices are EL–shellable [Athanasiadis et al. 2007].

Next we give a more intrinsic reformulation of the definition of axial ordering:

Definition 4.6 Given a reflection r 2R0, define �.r/ 2 ` to be the point of the Coxeter axis ` which is
closest to Fix.r/. Note that Fix.r/ does not meet ` at infinity by Remark 3.6, so �.r/ is not at infinity.
An example of the construction of �.r/ in the Poincaré model is shown in Figure 8.

Lemma 4.7 Let r1; r2 2R0 be horizontal reflections. We have that Fix.r1/\P D Fix.r2/\P if and
only if �.r1/D �.r2/. In addition , r1 � r2 if and only if �.r1/ is above �.r2/.

Proof Working in the Poincaré model, assume without loss of generality that the Coxeter axis ` is a
diameter of the disk, as in Figure 8. Let r be a horizontal reflection and let l be its fixed line. Then l
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`

l D Fix.r/

�

@H2

p

q1

q2

�.r/



Figure 8: Proof of Lemma 4.7.

is represented by a circle that intersects @H2 perpendicularly in two points q1 and q2 on the same side
of `. Let p be the point where the radical axis � of l and @H2 meets the extension of the Coxeter axis `
outside the disk (ie the intersection of the Coxeter plane P with the plane in which the Poincaré disk is
placed when compared to the hyperboloid model). Now, in order to identify the point �.r/, let  be the
circle centered at p and perpendicular to l ; if � and ` are parallel, take  to be the axis of the segment
connecting q1 and q2. Since the power of p with respect to l is the same as with respect to @H2, the
circle  is perpendicular to @H2 as well (and of course to `). Thus, conformality of the Poincaré model
implies that  \ `D �.r/.

We now pass to the Klein model, noting that the canonical transformation from the Poincaré to the Klein
disk maps the boundary points (such as q1 and q2) identically and preserves the axis `. However, now �

is the transform of the line l , and so p represents Fix.r/\P . Thus the position of p along ` determines
the position of r in the axial ordering of Definition 4.4. Since �.r/D  \ ` only depends on the power
of p with respect to the boundary of the model disk, the first claim follows immediately.

For the second claim, observe that if we move p further away from the center of the disk, its power with
respect to the boundary circle increases. Accordingly, the point �.r/ will move towards the center of the
disk, ie in the opposite direction with respect to p.

Remark 4.8 The previous lemma gives a reformulation of the ordering � of Definition 4.4: First come
the vertical reflections r such that Fix.r/\` is above C0, ordered by Fix.r/\` using the orientation of `.
Then come the horizontal reflections r , ordered by �.r/ using the reverse orientation of `. Finally come
the vertical reflections such that Fix.r/\ ` is below C0, ordered by Fix.r/\ ` using the orientation of `.

Definition 4.9 Once a Coxeter elementw has been fixed, denote by '.u/ WDw�1uw the conjugation byw.
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The following lemmas describe how ' interacts with the axial ordering �:

Lemma 4.10 Let r1; r2 2R0 be two horizontal reflections. We have r1 � r2 if and only if '.r1/� '.r2/.

Proof Conjugating a horizontal reflection r by w has the effect of translating �.r/ in the negative
direction of ` by an amount equal to the translation length of w: �.'.r//D w�1.�.r//. The statement
then follows from Remark 4.8.

Lemma 4.11 If r 2 R0 is a vertical reflection , then '.r/ � r unless r is among the three �–smallest
reflections. If r is horizontal , then '.r/� r .

Proof If r is vertical, then ' moves Fix.r/\ ` in the negative direction of ` by the translation length
of w. Therefore '.r/� r if and only if Fix.r/\ ` is between C0 and w.C0/. By Lemma 3.2, there are
exactly three reflection hyperplanes separating C0 and w.C0/, so the result follows. If r is horizontal, we
immediately have '.r/� r by Remark 4.8.

Lemma 4.12 For every vertical reflection r 2R0, there exists a unique j 2 Z such that 'j .r/ is one of
the three �–smallest reflections. In addition , j � 0 if and only if Fix.r/ intersects ` above C0.

Proof As already noted in the proof of the previous lemma, exactly three reflection hyperplanes
separate C0 and w.C0/, and they are the fixed lines of the three �–smallest reflections. The statement
immediately follows.

Lemma 4.13 Let r 2R0 be a vertical reflection. Its right complement uD rw fixes a vertex of C0 if
and only if r is among the three �–smallest reflections.

Proof Let C be the axial chamber immediately below Fix.r/\ `. By Lemma 3.7, u is a rotation around
the vertex p of C opposite to the wall Fix.r/.

Suppose that p is a vertex of C0. In particular, Fix.r/ intersects ` above C0, because otherwise p and C0

would be on opposite sides of Fix.r/. By Lemma 3.5, C0 and w.C0/ have no vertices in common, so C is
between C0 (included) and w.C0/ (excluded). Therefore Fix.r/ intersects ` below w.C0/. We conclude
that r is one of the three �–smallest reflections.

Conversely, suppose that r is one of the three �–smallest reflections. Then Fix.r/ intersects ` between C0

and w.C0/, so C is between C0 (included) and w.C0/ (excluded). Therefore p and w.C0/ lie on opposite
sides of Fix.r/, so p is not a vertex of w.C0/. By Lemma 3.5, p is a vertex of C0.

4.3 EL–labeling

Next, we prove that the interval Œ1; w� admits an EL–labeling (see Section 2.2.2), so in particular it is
EL–shellable. Note that noncrossing partition posets are known to be EL–shellable in the spherical case
[Athanasiadis et al. 2007] and in the affine case [Paolini and Salvetti 2021].

Geometry & Topology, Volume 28 (2024)



Dual structures on Coxeter and Artin groups of rank three 4319

Definition 4.14 The natural labeling of Œ1; w� by reflections is the labeling E.Œ1; w�/!R0 which maps
a poset cover u É ur to the reflection r 2R0. The set of reflections R0 is totally ordered by the axial
ordering � constructed in Section 4.2.

Theorem 4.15 The natural labeling of Œ1; w� by reflections ordered by � is an EL–labeling. In other
words , every element u 2 Œ1; w� has a unique �–increasing factorization into reflections , and this
factorization is lexicographically minimal.

Proof Case 1 (u is a rotation) Then u is a rotation around a point p 2H2[ @H2 and it is a Coxeter
element for the (parabolic) dihedral subgroup Wu that fixes p by Lemma 3.8. If u is a rotation through an
angle of � , then there are exactly two factorizations uD r1r2D r2r1; exactly one of them is �–increasing
and lexicographically smaller than the other one.

Suppose from now on that u is a rotation through an angle less than � . The restriction of � to R0\ Œ1;u�

is a reflection ordering (see Remark 4.5 and Figure 7). By [Athanasiadis et al. 2007, Theorem 3.5], it is
enough to show that this ordering is compatible with u, ie that there is at least one factorization uD r1r2

such that r1 comes immediately after r2 in the cyclic order �0 where the last reflection comes immediately
before the first (see the caption of Figure 7). This is true if r1 and r2 are as in the proof of Lemma 3.8,
because Fix.r2/ intersects ` immediately below the axial chamber C .

Case 2 (u is a translation) By Lemma 3.9, u is a product of any two consecutive reflections below u.
Recall from Lemma 2.1 that the translation axis of u and the Coxeter axis ` intersect with an angle
less than 1

2
� . Then, if uD r1r2, the reflection r1 comes immediately after r2 in the cyclic order �0 on

R0 \ Œ1;u�. (This is easily seen in the Klein model; see Figure 9.) Therefore r1 � r2, unless r1 is the
�–first reflection and r2 is the last.

Case 3 (u D w) The lexicographically minimal factorization wD abc is increasing by construction (if
a and b commute, or b and c commute, we may need to swap a and b, or b and c, for this to become
true). Therefore it is enough to show that every increasing factorization w D r1r2r3 coincides with the
factorization w D abc.

Suppose that r1 is vertical and let C be the axial chamber immediately below Fix.r1/. By Lemma 3.7,
v D r2r3 is a rotation around the vertex p of C opposite to Fix.r1/. In addition, we can write v D r 0

2
r 0
3

where Fix.r 0
2
/ and Fix.r 0

3
/ are the two walls of C containing p. By Corollary 3.4, Fix.r 0

3
/ intersects the

Coxeter axis ` below Fix.r1/, so r 0
3
� r1 unless C D C0. By Case 1, since r2 � r3, we have that r2 is

the �–smallest reflection below v; in particular, r2 � r 0
3
. Putting this all together, if C ¤ C0, we get

r2 � r 0
3
� r1 which is a contradiction. If C D C0, the factorization r1r2r3 coincides with abc. A similar

argument can be carried out if r3 is vertical.

Suppose now that r1 and r3 are both horizontal. Since r1 � r2 � r3, we have that r2 is also horizontal.
By Case 2, if t D rr 0 is the increasing factorization of a translation and both r and r 0 are horizontal,
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`

Min.u/

Fix.r2/ Fix.r1/

Figure 9: Case 2 of the proof of Theorem 4.15, depicted in the Klein model. Both the Coxeter
axis ` and the translation axis Min.u/ are taken as diameters of the disk. Then any reflection r � u

fixes a line perpendicular to Min.u/. In addition, the oriented axes ` and Min.u/ form an angle
smaller than 1

2
� . Therefore, if uD r1r2, then Fix.r1/ intersects (the extension of) ` above Fix.r2/.

then Fix.r/ and Fix.r 0/ are on opposite sides of the Coxeter axis. Applying this observation to the three
factorizations r1r2 (translation), r2r3 (translation), and r1r3 (translation or rotation), we find that r1r3 has
to be a rotation. Then its left complement r1r2r1 is a vertical reflection. However, Fix.r1/ and Fix.r2/

are on opposite sides of the Coxeter axis `, so Fix.r1r2r1/D r1.Fix.r2// and ` are on opposite sides of
Fix.r1/, and in particular they cannot intersect. This is a contradiction.

5 The interval complex KW and its subcomplexes

Throughout this section, let .W;S/ be a nonspherical irreducible Coxeter system of arbitrary rank n,
where S D fs1; s2; : : : ; sng is the set of reflections with respect to some chamber C0. Fix a Coxeter
element w D s1s2 � � � sn. As usual, Œ1; w� denotes the interval between 1 and w in the right Cayley graph
of W with respect to the set of all reflections R�W . Let KW be the interval complex associated with
Œ1; w� (see Section 2.3).

For every T � S , consider the Coxeter element wT of the standard parabolic subgroup WT consisting of
the product of the elements of T in the same relative order as in the sequence s1; s2; : : : ; sn. As shown
in [Paolini and Salvetti 2021, Section 5], the interval Œ1; wT � is the same in WT and in W (using all
reflections as generators) and the interval complex KWT

is naturally a subcomplex of KW . Let X 0
W
�KW

be the subcomplex defined as
X 0W D

[
T�S

WT finite

KWT
:
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Sections 6.2–6.3 Section 6.4Proposition 5.5�

KW & K
long
W

& Kshort
W

& K
sparse
W

KW & X 0
W ' YW

Proposition 5.2�

K.Ww; 1/ '

Theorem 2.5 (Garside) Theorem 5.1�

Figure 10: Relationships between the various subcomplexes of KW and strategy of the proof of
Theorem 6.1. The statements marked with an asterisk are valid for a general Coxeter group W .
Note that Proposition 5.2 requires the collapses on the top row of the picture to hold for every
infinite standard parabolic subgroup of W .

Theorem 5.1 [Paolini and Salvetti 2021, Theorem 5.5] For any Coxeter system .W;S/ and Coxeter
element w, the subcomplex X 0

W
�KW is homotopy equivalent to the orbit configuration space YW .

A deformation retraction KW & X 0
W

was a crucial step in the proof of the K.�; 1/ conjecture in the
affine case [loc. cit., Theorem 8.14] and it is natural to ask whether such a deformation retraction can
be constructed for a general W (see [Paolini 2021, Question 5.5]). In this section, we introduce three
additional subcomplexes of KW that will be useful in answering the previous question when W has rank
three (Section 6). The overall structure of the retraction argument is summarized in Figure 10. The reader
might find it helpful to refer to Figure 10 when reading the definitions of the three new complexes below.
We define the subcomplexes in full generality, with the hope that they will also prove useful when dealing
with arbitrary Coxeter groups.

5.1 The subcomplex K
sparse
W

and inductive collapses

Consider the following subcomplex of KW :

K
sparse
W

D

[
T ¨S

KWT
:

Since W is infinite, every finite standard parabolic subgroup WT is a proper subgroup of W and therefore
X 0

W
� K

sparse
W

. Note that X 0
W
D K

sparse
W

whenever W is affine or compact hyperbolic because every
proper parabolic subgroup of W is finite. Also, note that a simplex Œx1j � � � jxd � of KW belongs to K

sparse
W

if and only if the product x1 � � �xd fixes a vertex of C0. The nickname “sparse” is motivated in Figure 12.

The reason for introducing K
sparse
W

is given by the following criterion, which allows us to deformation
retract KW onto X 0

W
inductively:
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Proposition 5.2 Suppose that KWT
&K

sparse
WT

for every infinite standard parabolic subgroup WT of W .
Then KW &X 0

W
.

Proof Let T1;T2; : : : ;Tk be the list of all subsets of S such that WT is infinite. Order this list in such
a way that Ti � Tj implies i > j . In particular, T1 D S . Note that any deformation retraction of KWT

onto K
sparse
WT

must delete all the simplices of KWT
that are not contained in any KWT 0 with T 0 ¨ T while

fixing all KWT 0 with T 0 ¨ T . Therefore it is enough to start from KW and perform the deformation
retractions KWT

&K
sparse
WT

one at a time for T D T1; : : : ;Tk . The final subcomplex is precisely X 0
W

.

Hence, in order to deformation retract KW onto X 0
W

it is enough to be able to deformation retract KW

onto the larger subcomplex K
sparse
W

(and to be able to do so for all infinite WT �W ).

5.2 Fiber components and the subcomplexes K short
W

and K
long
W

As in the affine case [Paolini and Salvetti 2021, Section 7], consider the poset map � W F.KW /! N

defined as

(7) �.Œx1jx2j � � � jxd �/D

�
d if x1x2 � � �xd D w;

d C 1 otherwise:

The connected components of any fiber ��1.d/ in the Hasse diagram of F.KW / are called the d–fiber
components. A d–fiber component has the form

Œx1j � � � jxd �

Œx2j � � � jxd �

Œx2j � � � jxdC1�

Œx3j � � � jxdC1�Œx1j � � � jxd�1�

Œx0j � � � jxd�1�

Œx0j � � � jxd�2�

where xixiC1 � � �xiCd�1 Dw for all i . The bi-infinite sequence .xi/i2Z satisfies xiCd D '.xi/ for all i ,
where ' is the conjugation by w introduced in Definition 4.9. The collection of all d–fiber components
for d D 1; : : : ; n yields a partition of F.KW /. Note that a fiber component can be finite (so its Hasse
diagram is a closed loop) or infinite.

We now use the notion of fiber components to introduce two further subcomplexes of KW that interpolate
between KW and its subcomplex K

sparse
W

defined in Section 5.1.

Definition 5.3 (subcomplexes Kshort
W

and K
long
W

) (a) Define Kshort
W

as the union of all simplices � of
KW such that there is a simplex of K

sparse
W

both (weakly) to the left and (weakly) to the right of � in the
fiber component C containing � . Roughly speaking, Kshort

W
is constructed by taking the “convex hull” of

the simplices of K
sparse
W

in the Hasse diagram of each fiber component.

(b) Define K
long
W

as the union of all fiber components that intersect K
sparse
W

.

The nicknames “short” and “long” are motivated in Figure 12. The following lemma shows that Kshort
W

and K
long
W

indeed are subcomplexes of KW :
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Œx1j � � � jxd �

Œx2j � � � jxd �

Œx2j � � � jxdC1�

Œx3j � � � jxdC1�

Œx3j � � � jxdC2�

Œx4j � � � jxdC2�Œx1j � � � jxd�1�

Œx0j � � � jxd�1�

Œx0j � � � jxd�2�

Figure 11: A matching on an infinite d–fiber component leaving the critical simplices
Œx1j � � � jxd�1�, Œx1j � � � jxd �, and Œx2j � � � jxd � unmatched. More generally, one can construct a
similar matching that leaves an arbitrary finite set of contiguous critical simplices unmatched,
starting and ending with .d�1/–dimensional simplices. This matching is acyclic and proper.

Lemma 5.4 Let � 2 F.KW / and let � be a face of � . Suppose that the fiber component of � contains a
simplex of K

sparse
W

weakly to the right (resp. to the left) of � . Then the fiber component of � contains a
simplex of K

sparse
W

weakly to the right (resp. to the left) of � .

Proof Let d D �.�/, so that � is of the form Œx1j � � � jxd � or Œx1j � � � jxd�1� where x1 � � �xd Dw. Denote
by C the d–fiber component of � . Let � 0 be a simplex of K

sparse
W

weakly to the right of � in C. Then � 0 is
a minimal element of C and takes the form

� 0 D Œ'�k.xjC1/j � � � j'
�k.xd /j'

�kC1.x1/j � � � j'
�kC1.xj�1/�

for some j D 1; : : : ; d and some k > 0.

Recall from Section 2.3 that the faces of an m–simplex Œy1j � � � jym� are denoted by @i.Œy1j � � � jym�/ for
i D 0; : : : ;m. Let � D @i.�/. If � has dimension d and i D 0 or i D d , then � 2 C and � 0 is weakly to
the right of � . In all other cases, the fiber component of � contains the simplex @k.�

0/ weakly to the right
of � , where k D i � j mod d .

Recall from [Paolini and Salvetti 2021, Section 7] that, given an infinite d–fiber component, for any
connected subgraph of its Hasse diagram starting and ending with a .d�1/–simplex, there exists a proper
acyclic matching with critical simplices given by this subgraph (see Figure 11). This immediately gives
us the following result:

Proposition 5.5 The complex K
long
W

deformation retracts onto Kshort
W

.

Proof Every d–fiber component C of K
long
W

intersects K
sparse
W

(and thus Kshort
W

), so it admits a proper
acyclic matching with C \F.Kshort

W
/ as the set of critical simplices (if C is finite, then C � F.Kshort

W
/,

so the empty matching works). Let M be the union of all these matchings. By the patchwork theorem
(Theorem 2.4), M is acyclic. Let HM be the acyclic graph defined in Section 2.2.3, where H is the Hasse
diagram of F.Klong

W
/. If � is any simplex in a d–fiber component, then every oriented path starting from �

in the graph HM can change the fiber component at most d � 1 times (each time the fiber component
changes, the value of � decreases by 1; the initial value is d and the value on any simplex is � 1). By
induction on d , for any � in a d–fiber component, there are only a finite number of simplices reachable
from � . Therefore M is proper. By Theorem 2.3, we conclude that K

long
W
&Kshort

W
.
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Kshort
W

K
long
W

KW

Œa� Œbc�

Œajbc�

2X 0
W 2K

sparse
W
nX 0

W

Figure 12: Example of how the subcomplexes X 0
W
�K

sparse
W
�Kshort

W
�K

long
W
�KW can intersect

two different fiber components. The bottom fiber component intersects X 0W (and thus also K
sparse
W ,

Kshort
W

, and K
long
W

), whereas the top one does not. This figure visually motivates the names “sparse”,
“short”, and “long” given to the three subcomplexes. The depicted situation can be realized eg if
W is the .2; 3;1/ triangle group (Figure 4, right), the bottom component contains the simplices
: : : ; Œa�; Œajbc�; Œbc�; : : : , and on top is any component that does not intersect K

sparse
W

(see Remark 6.4).

The following is the chain of subcomplexes we have introduced:

X 0W �K
sparse
W

�Kshort
W �K

long
W
�KW :

The definition of Kshort
W

extends the definition of the canonical nice subcomplex introduced in [Paolini and
Salvetti 2021, Section 7] for the affine case, where the chain above simplifies to X 0

W
DK

sparse
W

�Kshort
W
�

K
long
W
DKW . However, differently from the affine case, K

sparse
W

(and thus Kshort
W

) does not necessarily
intersect every fiber component of KW in general (see Section 6). Figure 12 exemplifies the definition of
all subcomplexes; see also [loc. cit., Figure 8] for an affine example.

The reason for introducing the subcomplexes Kshort
W

and K
long
W

is twofold. First, Proposition 5.5 yields
a deformation retraction K

long
W
& Kshort

W
. Second, the proof that Kshort

W
& K

sparse
W

in the affine case
([loc. cit., Section 8]) applies more generally, provided that one has an axial ordering of R0 that induces
an EL–labeling of Œ1; w�.

6 Discrete Morse theory for the rank-three case

We apply discrete Morse theory to the complexes introduced in the previous section in the case of a
rank-three Coxeter system, which we assume to be irreducible and hyperbolic. The end goal of this
section is to prove the following main theorem:

Theorem 6.1 The interval complex KW deformation retracts onto X 0
W

. In particular , KW is homotopy
equivalent to the orbit configuration space YW .
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The strategy of the proof is outlined in Figure 10. The only missing ingredients at this point are the
deformation retractions KW &K

long
W

and Kshort
W
&K

sparse
W

, which we construct in Sections 6.2, 6.3 and 6.4.

We will proceed in steps. First, we will classify the fiber components of the complex KW . Based on this
classification, we will construct a discrete Morse matching M on KW that will prove the collapsing of
KW onto K

long
W

. Then we will explain how the arguments of [Paolini and Salvetti 2021, Section 8] carry
over to our context, allowing us to prove the collapse of Kshort

W
onto K

sparse
W

. Finally, we will summarize
all the steps and prove Theorem 6.1.

6.1 Classification of fiber components

We provide a geometric classification of the fiber components of KW for a rank-three hyperbolic
Coxeter group:

Lemma 6.2 Let C be a d–fiber component of KW , encoded by the bi-infinite sequence .xi/i2Z. Up to
translation of the indices , exactly one of the following cases occurs:

(i) C D fŒ �; Œw�g, d D 1, and xi D w for all i .

(ii) d D 2, x2i is a vertical reflection , and x2iC1 is a rotation (possibly around a point at infinity).

(iii) d D 2, x2i is a horizontal reflection , and x2iC1 is a translation.

(iv) d D 3, all the xi are reflections , and at least one of the subsequences .x3i/i2Z, .x3iC1/i2Z, and
.x3iC2/i2Z consists of vertical reflections.

(v) d D 3 and all the xi are horizontal reflections.

Proof The cases d D 1 and d D 3 are obvious. In the case d D 2, we only need to use the fact that the
(left or right) complement of a vertical reflection is a rotation, whereas the complement of a horizontal
reflection is a translation (Lemma 3.7).

The classification of Lemma 6.2 has some similarities with the (rank-three) affine case ([Paolini and
Salvetti 2021, Section 7]). There, components of type (iii) are finite, type (v) does not occur, and overall
there are only a finite number of components. Here on the other hand, all components are infinite except
for the single component of type (i). In addition, there are infinitely many components of types (iii) and (v).

Remark 6.3 Even though a reflection can never occur twice in the same minimal factorization of w, the
sequence .xi/i2Z defining a fiber component can have repetitions. For example, if t is the translation of
Figure 6 and t D r1r2 is its �–increasing factorization, then r2 D '

3.r1/. Therefore the fiber component
of type (v) containing Œr1jr2� has a repetition of both r1 and r2.

Remark 6.4 The fiber components that intersect K
sparse
W

(and thus constitute the subcomplex K
long
W

) are
all those of types (i), (ii), and (iv), and some of type (iii). Indeed, for every minimal element Œri jriC1� of
a type (v) fiber component, the product ririC1 is a translation by Lemma 3.7 and fixes no vertices of the
chamber C0.
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If a fiber component of type (iii) intersects K
sparse
W

, we say that it is exceptional. Exceptional components
are characterized in the following lemma:

Lemma 6.5 Let C be a fiber component of type (iii ). The following are equivalent :

(I) C intersects K
sparse
W

(ie C is exceptional ).

(II) For every Œr � 2 C where r is a (horizontal ) reflection , r fixes an axial vertex.

(III) For every Œt � 2 C where t is a translation , there is at least one vertical reflection below t in Œ1; w�.

Proof If (I) holds, then there exists a simplex Œr � 2 C such that r is a horizontal reflection that fixes a
vertex of C0. Then 'k.r/ fixes an axial vertex for every k 2 Z, and thus (II) holds. Conversely, if (II)
holds, then by Lemma 3.5 there is at least one horizontal reflection r that fixes a vertex of C0 with Œr � 2 C,
so (I) holds.

If (II) holds, then by Lemma 3.8, for any horizontal reflection r with Œr � 2 C we have that r � u for some
rotation u 2 Œ1; w� (around an axial vertex fixed by r ). Therefore t � r 0, where t is the right complement
of r (a translation) and r 0 is the right complement of u (a vertical reflection). Thus (III) holds. Finally,
if (III) holds and t is a translation with Œt � 2 C, there is a vertical reflection r 0 � t . Then u� r , where u

is the right complement of r 0 (a rotation around an axial vertex) and r is the right complement of t (a
horizontal reflection). In particular, r fixes an axial vertex. Therefore (II) holds.

6.2 Componentwise construction of the matching M

We now describe a perfect matching M (ie a matching with no critical simplices) on KW n K
long
W

.
Recall that KW nK

long
W

consists of the union of all fiber components of type (v) and all nonexceptional
components of type (iii).

Fix any point p0 2 ` and consider the semiopen segment I � ` between p0 (included) and w.p0/

(excluded). Then I is a fundamental domain for the action of ZD hwi on `. Recall from Definition 4.6
that the function � assigns to every reflection r the point �.r/ on the Coxeter axis that is closest to Fix.r/.

Definition 6.6 A translation t 2 Œ1; w� is special if its left complement r satisfies �.r/ 2 I .

We could alternatively define a translation to be special if its right complement r satisfies �.r/ 2 I , or if
the translation axis of t intersects ` in a point of I . All these definitions are equivalent up to changing the
point p0 2 ` in the definition of I .

Remark 6.7 By construction, for every translation t 2 Œ1; w�, there is exactly one j 2 Z such that the
translation 'j .t/ is special. Therefore every fiber component of type (iii) contains exactly one simplex Œt �
such that t is a special translation. For the same reason, every component of type (v) contains exactly
three simplices of the form Œri jriC1� such that ririC1 is a special translation.
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Œr1jr2�

Œt �

Figure 13: The matching M on a fiber component of type (v) (top) and the corresponding
nonexceptional component of type (iii) (bottom), as described in Sections 6.2.1, 6.2.2 and 6.2.3.
The translation t is special and t D r1r2 is its increasing factorization.

6.2.1 Matching on fiber components of type (v) Let C be a fiber component of type (v), defined by a
bi-infinite sequence of horizontal reflections .ri/i2Z. Consider the sequence of axial order relations (�
or �) between consecutive reflections along the sequence .ri/i2Z.

Lemma 6.8 Up to translation of the indices , the sequence of axial order relations among the reflections
defining a component of type (v) is

� � � � r�1 � r0 � r1 � r2 � r3 � � � � ;

ie an infinite 3–periodic repetition of one � and two �.

Proof By Lemma 4.10, the sequence of order relations is 3–periodic: ri � riC1 if and only if riC3� riC4.
In addition, there cannot be two consecutive �, because then we would have an increasing factorization
of w into three horizontal reflections, contradicting Theorem 4.15 (the only increasing factorization
of w is induced by the fundamental chamber C0 as in Corollary 3.4 and uses at least two vertical
reflections). Finally, if we have � � � � r�1 � r0 � r1 � r2 � � � � (an all-� sequence of order relations),
then r0 � r3 D '.r0/, which is impossible by Lemma 4.11.

Apply the previous lemma and assume that r3iC1 � r3iC2 for all i 2 Z. By Remark 6.7, among all
translations ti D r3iC1r3iC2, exactly one is special. Without loss of generality, assume that t0 D r1r2 is
special. Then we match simplices of C as follows:

On the component C, the matching M is defined as the unique acyclic matching that has
Œr1jr2� as the only critical simplex (see Figure 13, top).

6.2.2 Matching on nonexceptional fiber components of type (iii) Let C be a nonexceptional fiber
component of type (iii). By Remark 6.7, C has a unique simplex Œt � such that t is a special translation.

On the component C, the matching M is defined as the unique acyclic matching that has Œt �
as the only critical simplex (see Figure 13, bottom).
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6.2.3 Cross-fiber edges Let C be a nonexceptional fiber component of type (iii) and let Œt � be the unique
simplex of C such that t is a special translation. Then t has a unique increasing factorization t D r1r2. By
Lemma 6.5, the reflections r1 and r2 are horizontal and so Œr1jr2� belongs to a fiber component of type (v).
Notice that, so far, in the construction of M the simplices Œt � and Œr1jr2� have not been matched yet.

Add to M all edges Œt � ! Œr1jr2� where t is a special translation in a nonexceptional
component of type (iii) and t D r1r2 is its increasing factorization (see Figure 13).

Remark 6.9 The matching M has no critical cells in KW nK
long
W

. In fact, let C be a fiber component
of type (v) and consider the unique simplex Œr1jr2� 2 C such that r1 � r2 and r1r2 is special. Since the
increasing factorization t D r1r2 has two horizontal reflections, there is no vertical reflection below t , so
Œr1r2� is in a nonexceptional component of type (iii) by Lemma 6.5 and is matched with Œr1jr2�.

6.3 Acyclicity and properness of M

The matching M is regular because it does not involve the 0–cell Œ �, which is the only simplex of KW that
is a nonregular face of some other simplex (see Section 2.3). In order to prove the acyclicity and properness
of M, we will weight every matched cell by a real number in such a way that the weight (weakly) decreases
along directed paths (this will suffice to prove acyclicity) and the weights form a discrete subset of the
positive real numbers (which will allow us to prove properness by induction on the weight).

Given a cell � in a fiber component of type (v) or in a nonexceptional component of type (iii), let
r.�/ be the left complement of the special translation associated with the unique cross-fiber edge
exiting the fiber component of � (see Sections 6.2.1, 6.2.2 and 6.2.3). Then construct a poset map
! W F.KW / nF.Klong

W
/!R by setting

!.�/D d.Fix.r.�//; `/;

where d. � ; � / denotes the distance between two lines in the hyperbolic plane. Note that ! is constant on
fiber components and r.�/ is always a horizontal reflection.

Lemma 6.10 The image of ! is a discrete subset of the positive real numbers bounded away from 0.

Proof By Remark 3.6, the values taken by ! are positive and bounded away from zero. We now show
that, for every ı > 0, the intersection im.!/\ .0; ı/ is finite. Let � be a cell such that !.�/ < ı. By
definition of special translation, �.r.�// 2 I (recall that I is introduced at the beginning of Section 6.2).
Therefore Fix.r.�// intersects the closed ı–neighborhood N of the segment I . Since N is compact, it
intersects only a finite number of reflection hyperplanes. In particular, !.�/D d.Fix.r.�//; `/ can only
take a finite number of possible values.

Lemma 6.11 The function ! is order-preserving. In addition , !.�/D !.�/ whenever Œ�; � � 2M.
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Proof Suppose that � is a face of � , with both simplices belonging to F.KW / nF.Klong
W
/. For the first

part of the claim, we want to show that !.�/ � !.�/. The only nontrivial case is if � and � belong to
different components, and this only happens if � is in a (nonexceptional) component of type (iii) and � is
in a component of type (v).

Let .ri/i2Z be the sequence of (horizontal) reflections defining the fiber component C of � . By Lemma 6.8,
without loss of generality,

� � � � r�1 � r0 D r.�/� r1 � r2 � r3 � � � � :

By Case 2 in the proof of Theorem 4.15 applied to the (special) translation t D r1r2, the fact that r1 � r2

implies that r1 and r2 must be the �–first and �–last reflections below t , and so the fixed lines of r1 and r2

are on opposite sides of `. Since r0 D r.�/ is the left complement of the (special) translation t D r1r2, it
follows immediately from Lemma 3.11 that the distances d.Fix.r1/; `/ and d.Fix.r2/; `/ are both strictly
lower than the distance d.Fix.r0/; `/Dd.Fix.r3/; `/. Now recall that the distance d.Fix. � /; `/ is invariant
under conjugation by w, whence !.�/D d.Fix.r3k/; `/ and d.Fix.ri/; `/D d.Fix.r3kCi/; `/ for all k

and for i D 1; 2. This implies that !.�/Dmaxfd.Fix.ri/; `/ j i 2 Zg. In addition, !.�/D d.Fix.ri/; `/

for some i 2 Z and therefore !.�/� !.�/.

For the second part of the claim, since ! is constant on fiber components, it is enough to check that !
is constant along cross-fiber edges of M. Such edges are of the form Œt �! Œr1jr2� where t D r1r2 is a
special translation. By definition of !, we have !.Œt �/D d.Fix.wt�1/; `/D !.Œr1jr2�/.

Lemma 6.12 The matching M is acyclic.

Proof By the patchwork theorem (Theorem 2.4), it is enough to show that there is no alternating cycle
on which ! is constant. Suppose for the sake of contradiction that such an alternating cycle  exists.

Case 1 Suppose that  has no cross-fiber edges. Then  is also an alternating cycle with respect to the
smaller matching M0 �M where all cross-fiber edges are removed. Note that every edge of M0 matches
elements in the same fiber component. By the patchwork theorem applied to the map � of Section 5.2, 
needs to be entirely contained in a single fiber component. However, the restriction of M0 to every fiber
component is obviously acyclic.

Case 2 Suppose that  has at least one cross-fiber edge Œt �! Œr1jr2�, where t is a special translation
and r1r2 is its increasing factorization. After that edge,  has to continue either with Œr1jr2�! Œr1� or
Œr1jr2�! Œr2�. In both cases, the value of ! strictly decreases by Lemma 3.11, which is a contradiction.

Lemma 6.13 The matching M is proper.

Proof Without using cross-fiber edges, from any simplex it is possible to reach only a finite number of
simplices. Indeed, this is true while staying in the same fiber component, and any path starting from a
d–simplex can only change the fiber component d � 1 times.
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Therefore it is enough to check that there is only a finite number of simplices reachable from Œt �, where t

is any special translation. We prove this by induction on !.Œt �/, which takes values in a discrete subset
of the positive real numbers bounded away from 0 (by Lemma 6.10). A directed path starting from Œt �

necessarily begins with Œt �! Œr1jr2�! Œri �, where i 2 f1; 2g. Then it continues as an alternating path
inside the fiber component Ci of Œri � until it reaches the unique simplex Œti � 2 Ci such that ti is a special
translation. As already noted in the proof of Lemma 6.12, !.Œti �/D !.Œri �/ < !.Œt �/ by Lemma 3.11. By
induction, there are only a finite number of simplices reachable from Œt1� and Œt2�, so there are only a finite
number of simplices reachable from Œt �.

6.4 Construction of the matching N

In this section, we construct an acyclic and proper matching N on Kshort
W

whose critical cells are exactly
the faces of K

sparse
W

. The construction of N , as well as the proof of acyclicity and properness, closely
follow the treatment given in [Paolini and Salvetti 2021, Section 8] for the case of affine Artin groups, but
notation differs slightly: our complexes K

sparse
W

and Kshort
W

respectively take the place of X 0
W

and K0
W

in
[loc. cit.] where, accordingly, a matching on F.K0

W
/nF.X 0

W
/ is constructed (note that X 0

W
DK

sparse
W

in
the affine case).

The matching N will be defined as the set of orbits of an involution � on F.Kshort
W

/ nF.Ksparse
W

/; see
Definition 6.18. For the remainder of this subsection, we consider simplexes of the form

� D Œx1jx2j � � � jxk � 2 F.Kshort
W / nF.Ksparse

W
/;

and we set �.�/ WD x1 � � �xk 2 Œ1; w�.

Definition 6.14 Let � D Œx1j � � � jxd � be such that �.�/ D w. The depth ı D ı.�/ is the minimum
i 2 f1; 2; : : : ; dg such that either xi has reflection length at least 2, or else i � d � 1 and xi precedes in
the axial ordering every reflection that is below xiC1 in Œ1; w�. If no such i exists, set ı.�/D1.

Lemma 6.15 Let � D Œx1j � � � jxd � be such that �.�/ D w and x2 � � �xd fixes some vertex of C0.
Then ı.�/ <1.

Proof This is the claim of [loc. cit., Lemma 8.4], whose proof relies on [loc. cit., Lemma 8.2] and [loc. cit.,
Proposition 3.10 and Remark 3.2]. These correspond to our Lemmas 4.13 and 3.5, respectively.

Definition 6.16 (the involution �) Recall the map � from (7) and let d D �.�/, so that � D Œx1j � � � jxk �

belongs to a d–fiber component C.

(i) If �.�/ ¤ w, then k D d � 1 and we let �.�/ be the simplex Œxjx1j � � � jxd�1� 2 C that lies
immediately to the left of � .

(ii) If �.�/D w (so k D d ) and x2 � � �xd does not fix any vertex of C0, let �.�/D Œx2j � � � jxd �.
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Suppose now that �.�/D w (so k D d) and x2 � � �xd fixes a vertex of C0. Let ı D ı.�/ and note that
ı ¤1 by Lemma 6.15.

(iii) If xı is not a reflection, let �.�/D Œx1j � � � jxı�1jyjzjxıC1j � � � jxd �, where xı D yz and y is the
�–smallest reflection below xı in Œ1; w�.

(iv) If xı is a reflection, let �.�/D Œx1j � � � jxıxıC1j � � � jxd �.

Lemma 6.17 The map � is well defined and involutive on F.Kshort
W

/ nF.Ksparse
W

/.

Proof The claim can be proved by the same arguments as [loc. cit., Lemma 8.8 and Proposition 8.9], using
properties of vertical reflections proved in Lemmas 4.12 and 4.13 (which replace [loc. cit., Lemmas 8.1
and 8.2]), the order-preserving correspondence between elements of Œ1; w� and linear subspaces of R3

proved in Lemma 4.1 (which replaces [loc. cit., Lemmas 2.15 and 2.16]), and Lemma 3.8 (which replaces
[loc. cit., Lemma 3.18]). We also use the fact that the natural edge-labeling of Œ1; w� is an EL–labeling
with respect to the axial ordering (Theorem 4.15).

Definition 6.18 The matching N on F.Kshort
W

/ nF.Ksparse
W

/ consists of all pairs of cells .�.�/; �/ such
that �.�/ is a face of � .

Lemma 6.19 The matching N is proper and acyclic.

Proof The main tool consists in a special total ordering G on the set of all minimal-length factorizations
of w as a product of reflections. This total ordering is induced by the axial ordering � as defined in
[loc. cit., pages 548–549]. Now, given any simplex � D Œx1jx2j � � � jxk � 2 F.Kshort

W
/ nF.Ksparse

W
/, we can

consider the minimal-length factorization of w obtained by concatenating the �–increasing factorizations
of y;x1;x2; : : : ;xk , where y is the left complement of x1x2 � � �xk (such increasing factorizations are
unique because of the EL property). This defines an order-preserving map from F.Kshort

W
/nF.Ksparse

W
/ to

the (totally) G–ordered set of minimal-length factorizations of w. Properness and acyclicity of N follow
from the fact that this order-preserving map is strictly increasing along alternating paths of N . This can
be proved as in [loc. cit., Lemmas 8.10–8.13] with (extensive) use of the EL property of the axial ordering
(Theorem 4.15).

6.5 Proof of Theorem 6.1

Proof of Theorem 6.1 By Lemmas 6.12 and 6.13, M is a proper acyclic matching on KW having
K

long
W

as the subcomplex of critical simplices. Using discrete Morse theory (Theorem 2.3), we deduce
that KW & K

long
W

. Proposition 5.5 shows that K
long
W
& Kshort

W
. Discrete Morse theory applied to the

matching N of Section 6.4 shows that Kshort
W
&K

sparse
W

. Combining these collapses we obtain a collapse
KW &K

sparse
W

. In addition, KWT
&K

sparse
WT

for all infinite proper standard parabolic subgroups WT by
[loc. cit., Theorem 8.14] (such subgroups are necessarily affine of type zA1). Finally, Proposition 5.2
implies that KW &X 0

W
.
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7 Consequences for rank-three Artin groups

In this section, we use the theory developed in the rest of the paper to derive several results about rank-three
Artin groups. All results are already known in the spherical and affine cases, so in our proofs below we
implicitly restrict ourselves to the hyperbolic case.

Using the deformation retraction KW &X 0
W

, we are now able to establish the isomorphism between the
standard and the dual Artin groups associated with W , as well as the K.�; 1/ conjecture in the rank-three
case. Note that the K.�; 1/ conjecture was already proved by other means by Charney and Davis [1995]
for 2–dimensional Artin groups, which include rank-three Artin groups as a special case.

Theorem 7.1 If W has rank three , then the natural map from the standard Artin group GW to the dual
Artin group Ww is an isomorphism.

Proof The natural map GW !Ww is induced by the inclusion of the subcomplex X 0
W

into KW , which
is a homotopy equivalence by Theorem 6.1.

Theorem 7.2 The K.�; 1/ conjecture holds for all rank-three Artin groups GW .

Proof By Theorem 6.1, the orbit configuration space YW is homotopy equivalent to KW , which is a
classifying space by Theorems 4.2 and 2.5.

In light of the isomorphism GW ŠWw , we can now use the Garside structure of Ww to study the standard
Artin group GW :

Theorem 7.3 Rank-three Artin groups are Garside groups.

Proof This is an immediate consequence of Theorem 7.1 and Corollary 4.3.

In particular, using the dual Garside structure, we can solve the word problem and easily prove that the
center is trivial (except in the spherical cases):

Theorem 7.4 Rank-three Artin groups have a solvable word problem.

Proof By Theorem 2.5, it is enough to be able to check equality and compute meets and joins in Œ1; w�.
Equality can be checked using a solution for the word problem in W , expressing elements as a product of
simple reflections (see for example [Björner and Brenti 2005, Chapter 4]). Since Œ1; w� is self-dual, it is
enough to be able to compute joins.

The only nontrivial case to consider is the join of two distinct reflections r1 and r2. Representing W as a
group of isometries of the hyperbolic plane, compute the intersection point of Fix.r1/ and Fix.r2/. If such
a point p exists (possibly at infinity), then the join r1_ r2 is either the only rotation u 2 Œ1; w� fixing p (if
p is an axial vertex) or w otherwise. To check if p is an axial vertex, check whether p coincides with one
of the vertices of the axial chambers whose closure contains the projection of p onto the Coxeter axis `.
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Suppose now that Fix.r1/ and Fix.r2/ do not intersect in H2[ @H2. The join r1 _ r2 is either the only
translation t 2 Œ1; w� whose axis is the line l orthogonal to both Fix.r1/ and Fix.r2/ (if such a translation
exists in Œ1; w�) or w otherwise. There are only a finite number of reflections r 2W whose fixed line
intersects l between Fix.r1/ and Fix.r2/ (included). By Lemma 3.9, the translation t (if it exists) has to
be equal to rr1 or r1r for at least one of these reflections r . Then we can consider all elements of this
form and check whether one of them is a translation t such that wt�1 is a reflection (this is equivalent to t

being in Œ1; w�, because t has reflection length 2). If we find such a translation t 2 Œ1; w�, then t D r1_ r2

because the axis of t is orthogonal to both Fix.r1/ and Fix.r2/ by the first part of Lemma 3.9.

Theorem 7.5 Nonspherical rank-three Artin groups have a trivial center.

Proof Let x be an element of the center of a rank-three Artin group GW . The dual Garside structure
yields a normal form x D �.w/�m�.u1/�.u2/ � � � �.uk/, where u1; : : : ;uk 2 Œ1; w� and � W Œ1; w�!GW is
the natural immersion. A well-known property of the normal form is that x commutes with �.w/ if and
only if all the ui commute with w in W [McCammond and Sulway 2017, Proposition 2.14]. In particular,
this has to hold since x is in the center of GW . However, for any u 2 Œ1; w� different from 1 and w, no
nontrivial power of w commutes with u: if u is a reflection, then �.wnuw�n/Dwn�.u/¤ �.u/; passing
to the (left) complement, we reach the same conclusion if u is a rotation or a translation. Therefore x is a
power of �.w/. Thus x does not commute with any �.u/ where u 2 Œ1; w� n f1; wg, unless x D 1.

Note that the word problem was already solved by Chermak [1998] for locally nonspherical Artin groups,
a class that includes rank-three Artin groups. In a preprint by Jankiewicz and Schreve [2023], posted while
this article was in preparation, it is shown that the K.�; 1/ conjecture implies that the center is trivial (for
a nonspherical irreducible Artin group), thus providing another proof that nonspherical rank-three Artin
groups have a trivial center.
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