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Given any genus-two, hyperbolic, fibered knot in S3 with nonzero fractional Dehn twist coefficient, we
show that its pseudo-Anosov representative has a fixed point. Combined with recent work of Baldwin,
Hu and Sivek, this proves that knot Floer homology detects the cinquefoil knot T .2; 5/, and that the
cinquefoil is the only genus-two L-space knot in S3. Our results have applications to Floer homology
of cyclic branched covers over knots in S3, to SU.2/–abelian Dehn surgeries, and to Khovanov and
annular Khovanov homology. Along the way to proving our fixed point result, we describe a small list
of train tracks carrying all pseudo-Anosov homeomorphisms in most strata on the punctured disk. As a
consequence, we find a canonical track � carrying all pseudo-Anosov homeomorphisms in a particular
stratum Q0 on the genus-two surface, and describe every fixed-point-free pseudo-Anosov homeomorphism
in Q0.

37E30, 57K18

1 Introduction

Recent developments in Heegaard Floer homology have highlighted intimate connections between link
homology theories and the dynamics of surface diffeomorphisms; see for example Baldwin, Hu and
Sivek [2], Ni [28; 27] and Ghiggini and Spano [13]. The aim of this paper is to use tools which may be
familiar to some dynamicists, in order to study a particular open question in Heegaard Floer homology:
whether knot Floer homology detects the torus knot T .2; 5/. To that end, we answer this question in the
affirmative:

Theorem A If bHFK.KIQ/ Š bHFK.T .2; 5/IQ/ as bigraded vector spaces , then K D T .2; 5/. In
particular , T .2; 5/ is the only genus-two L-space knot in S3.

This is the first knot Floer detection result for a knot of genus two. Prior detection results rely on a
classification of fibered knots with genus at most one; see Ozsváth and Szabó [29] and Ghiggini [12].
But there are infinitely many genus-two, hyperbolic, fibered knots with the same Alexander polynomial
as that of T .2; 5/ (see Misev [26]), indicating that close attention must be paid to the structure of the
fibration. In this vein, our proof completes a strategy outlined by Baldwin, Hu and Sivek in [2], which
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4338 Ethan Farber, Braeden Reinoso and Luya Wang

uses connections between knot Floer homology and symplectic Floer homology, to reduce the question to
a problem about fixed points of pseudo-Anosov maps. Our first key result is a solution to this problem.

Definition 1.1 Let K � Y be a hyperbolic, fibered knot in a 3–manifold Y . The knot K specifies an
open book decomposition .S; h/ for Y , where h W S ! S is freely isotopic to a pseudo-Anosov  on S .
We say that K is fixed-point free if  has no fixed points in the interior of S .

Theorem B LetK be a hyperbolic , genus-two , fibered knot in S3. If the fractional Dehn twist coefficient
c.K/¤ 0, then K is not fixed-point free.

Pseudo-Anosov maps and fractional Dehn twist coefficients are defined in Section 2. Theorem A follows
immediately from Theorem B and the work of Baldwin, Hu and Sivek [2, Theorem 3.5]. We would like
to emphasize that the proof of Theorem B is completely geometric in nature, and after the introduction
we will only make passing references to Floer homology theories throughout the paper. An unfamiliar
reader need not have expertise in any link homology theory to understand the proof of Theorem B.

The proof of Theorem B is broken down into two smaller theorems (Theorems B1 and B2), based on
cases for the singularity type of  . An outline for the proof is given in Section 1.5. We will now discuss
various applications of our techniques and results.

1.1 Applications to train tracks and the dilatation spectrum

One of the central tools in the proof of Theorem B is the theory of train tracks for pseudo-Anosov braids,
including a theory of “tight splitting” developed in Section 5. We believe the techniques we use are
broadly applicable elsewhere within surface dynamics. For example:

Theorem C (cf Theorem 4.2) Let  be a pseudo-Anosov on the genus-two surface with one boundary
component , with singularity type .4I∅I 32/. Then  is conjugate to a pseudo-Anosov carried by the train
track depicted on the bottom left in Figure 6. A similar statement holds for the closed genus-two surface.

This result suggests a strategy for systematically studying the set of dilatations of pseudo-Anosovs in
genus two. Indeed, Theorem C reduces the study of dilatations in the stratum .4I∅I 32/ to the study of a
special collection of maps on a single graph. One would hope for the development of a kneading theory
generalizing the classical theory of Milnor and Thurston [25] for interval maps. Applying such a theory to
a small list of tracks in each of the other strata in genus two would provide a much clearer understanding
of the full dilatation spectrum. This line of study was suggested to us by Chenxi Wu. Another step in this
direction is the following result:

Theorem D Let  be a pseudo-Anosov on the punctured disk with at least one k–pronged singularity
away from the boundary with k � 2. Then  is carried by a standardly embedded train track � with no
joints.

Geometry & Topology, Volume 28 (2024)
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See Definition 5.1 for the definition of a standardly embedded train track. A loop switch of a standardly
embedded train track � is a switch at a loop surrounding a 1–prong singularity (cf Definition 5.16), and a
joint is a loop switch that is incident to more than one expanding edge (cf Definition 5.24). The track in
Theorem C is the lift of a joint-less track on the punctured disk, so Theorem C may be seen as a specific
case of Theorem D. See Section 5.4 for the proofs of Theorems C and D.

1.2 Applications to the Floer homology of branched covers

For a knot K � S3, let †n.K/ denote the n–fold cyclic cover of S3 branched along K. There has been
much interest recently in the Floer homology of †n.K/ in terms of K. For example, Boileau, Boyer and
Gordon in [7; 8] have studied extensively the set of all integers n� 2 such that †n.K/ is an L-space; see
also Issa and Turner [16] and Peters [31]. One question that has persisted in this area is the following:

Question 1.2 (Boileau, Boyer and Gordon; Moore) Can †n.K/ be an L-space for K a hyperbolic
L-space knot?

Combining Theorem A with [7, Corollary 1.4] yields a complete answer to this question for n > 2:

Corollary 1.3 If K is an L-space knot and†n.K/ is an L-space for some n> 2, thenK is either T .2; 3/
or T .2; 5/. In particular , K is not hyperbolic.

1.3 Applications to instanton Floer homology and Dehn surgery

For a 3–manifold Y , let R.Y /D Hom.�1.Y /;SU.2// denote the SU.2/–representation variety. We say
that a 3–manifold Y is SU.2/–abelian if R.Y / contains no irreducibles. The name is motivated by the
fact that Y is SU.2/–abelian if and only if every � 2R.Y / has abelian image.

Following work initiated by Kronheimer and Mrowka [20] in their proof of the Property P conjecture,
Baldwin, Li, Sivek and Ye [3], Baldwin and Sivek [4], and Kronheimer and Mrowka [19] proved that
r–surgery S3r .K/ on a nontrivial knot K � S3 is not SU.2/–abelian for all slopes r 2 Œ0; 3�[ Œ4; 5/ with
prime power numerator, and for some additional slopes r 2 Œ3; 4/.

The key theory which facilitates most of these results is the instanton Floer homology of the surgered
manifold S3r .K/ (and related techniques arising from this theory, as in [19]). Combining Theorem B with
[3, Proposition 2.4] allows us to prove an analogue of Theorem A for instanton Floer homology:

Corollary 1.4 The cinquefoil T .2; 5/ is the only genus-two instanton L-space knot , ie the only genus-two
knot K for which dim I #.S3r .K//D jH1.S

3
r .K//j for some r > 0.

Now, as described in [3, Section 1.3], Corollary 1.4 completes the set of slopes r for which S3r .K/ is not
SU.2/–abelian, to all rational numbers r 2 Œ0; 5/ with prime power numerator:

Corollary 1.5 Let K � S3 be a nontrivial knot , and r 2 Œ0; 5/ a rational number with prime power
numerator. Then S3r .K/ is not SU.2/–abelian.

Geometry & Topology, Volume 28 (2024)
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Remark 1.6 S3r .K/ may in general be SU.2/–abelian for r � 5, as S35 .T .2; 3// is the lens space L.5; 1/,
which has abelian fundamental group. However, Baldwin, Li, Sivek and Ye [3] have extended the slopes
for which S3r .K/ is not SU.2/–abelian to some additional r 2 .5; 7/. It is an open question whether
S3r .K/ is SU.2/–abelian for all rational numbers r 2 Œ0; 5/, though it is known to be true for r 2 Œ0; 2� by
work of Kronheimer and Mrowka [19].

1.4 Applications to Khovanov homology

In [2], Baldwin, Hu and Sivek proved that Khovanov homology (with coefficients in Z=2Z) detects the
cinquefoil T .2; 5/. Combining Theorem A with previous work of Baldwin, Dowlin, Levine, Lidman and
Sazdanovic [1, Corollary 2], we can improve Baldwin, Hu and Sivek’s result, from Z=2Z–coefficients to
Q–coefficients:

Corollary 1.7 If Kh.KIQ/Š Kh.T .2; 5/IQ/ as bigraded Q–vector spaces , then K D T .2; 5/.

We also obtain detection results in annular Khovanov homology. One may think of T .2; 5/ as the lift of
the braid axis for the 5–braid B D �1�2�3�4 in S3 seen as the double-branched cover over yB under the
Birman–Hilden correspondence; see Section 2.2 for background. From this perspective, we can adapt
techniques of Binns and Martin in [6, Theorems 10.2, 10.4 and 10.7] to prove that annular Khovanov
homology detects the aforementioned braid closure:

Corollary 1.8 Let L � A� I be an annular link with AKh.LIQ/Š AKh. yBIQ/. Then L is isotopic
to yB in A� I .

The proof of this corollary is almost identical to those of the analogous results proved by Binns and
Martin [6]. So we omit the proof in the present work, and instead refer the reader to their work.

1.5 Outline of the proof of Theorem B

Let K be a hyperbolic, genus-two, fibered knot in S3 with associated open book decomposition .S; h/
and pseudo-Anosov representative  h. If c.K/¤ 0 and K is fixed-point free, it follows from work of
Baldwin, Hu and Sivek (see Theorem 2.5) that:

�  h has singularity type either

Case 1 .6I∅I∅/, or

Case 2 .4I∅I 32/.
� h is the lift of a 5–braid ˇ with unknotted braid closure y̌.

� The pseudo-Anosov representative  ˇ of the braid ˇ has singularity type either

Case 1 .3I 15I∅/, or

Case 2 .2I 15I 3/.

For our conventions of the singularity types, see Section 2.1. Cases 1 and 2 are mutually exclusive, and
we will use notation K; h; ˇ;  h;  ˇ as above for the rest of this outline, in either case.

Geometry & Topology, Volume 28 (2024)
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Case 1 is dealt with in Section 3. In this case, Masur and Smillie proved in [24] that the foliations preserved
by  h are orientable, so that the dilatation of  h is a root of the Alexander polynomial �K.t/. This is
a special fact about the stratum .6I∅I∅/ in genus two. Using the Lefschetz fixed point theorem and
basic facts about Alexander polynomials of fibered knots in S3, we completely determine the Alexander
polynomial of K and conclude that the dilatation of  h coincides with the minimal dilatation �2 for
genus-two pseudo-Anosovs. Work of Lanneau and Thiffeault in [21] further implies that  h is the almost
unique genus-two pseudo-Anosov realizing �2 as its dilatation. It follows that ˇ is (up to inverse and
composing with the hyperelliptic involution) conjugate to the dilatation-minimizing 5–braid ˛ of Ham
and Song [14] within the mapping class group of the punctured sphere. We then show that no braid which
is conjugate to ˛ within the spherical mapping class group has unknotted closure.

Case 2 is harder: we perform our analysis using a splitting argument and a careful combinatorial analysis
of train track maps. In this case, we focus on the braid ˇ and its pseudo-Anosov representative  ˇ . We
show (Theorem 4.2) that any pseudo-Anosov  ˇ on the five-punctured disk in the stratum .2I 15I 3/ is
carried by a single canonical train track � ; see also Theorems C and D. To prove this result, we develop a
theory of “tight splitting” in Section 5, which allows us to study the splitting of all train track maps on
any given track within the stratum.

In Section 4.1, we find a collection of braids ˇn inducing special train track maps fn W � ! � on the
distinguished track � from the previous paragraph. We show, in Section 4.2, that fn are the only maps
on � which could lift to train track maps for fixed-point-free pseudo-Anosovs  h in the cover. So, if
ˇ is any braid which lifts to a map h with fixed-point-free pseudo-Anosov representative  h, then ˇ is
conjugate (in the mapping class group of the punctured sphere) to one of ˇn. A similar argument as in
Case 1 shows that no braid conjugate to ˇn has unknotted closure.

Acknowledgements A special thank you goes to John Baldwin for suggesting this problem to Reinoso,
and for his continued support, encouragement and generous insights throughout the preparation of this
work. We also thank Jacob Caudell, Karl Winsor, Gage Martin, Fraser Binns, Jérôme Los, Steven Sivek
and Chi Cheuk Tsang for very helpful discussions, suggestions, questions and/or comments. Wang would
also like to thank Ian Agol and Paolo Ghiggini for independently suggesting the question to her, and for
initial discussions regarding the project. Wang acknowledges support by the NSF GRFP under grant
DGE 2146752.

2 Background

2.1 Mapping classes and fractional Dehn twists

Let S D Srg;n be a compact surface of genus g with n marked points and r boundary components. The
mapping class group of S is the group Mod.S/ of isotopy classes of homeomorphisms h W S ! S which
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Figure 1: Top, left to right: a 3–pronged saddle, a 4–pronged saddle, and a 1–pronged saddle at a
marked point. Bottom, left to right: the neighborhood of a boundary singularity, and a 3–pronged
boundary which permutes the first prong to the second.

fix @S pointwise, and permute the marked points of S , where the isotopies fix all boundary components
and marked points. The symmetric mapping class group of S is the analogous group SMod.S/ obtained
by additionally requiring that the homeomorphisms commute with the hyperelliptic involution � W S ! S ,
ie h ı �D � ı h.

Definition 2.1 A pseudo-Anosov is a homeomorphism  W S! S preserving a pair of transverse singular
measured foliations .Fu; �u/ and .Fs; �s/ such that

 � .Fu; �u/D .Fu; ��u/ and  � .Fs; �s/D .Fs; ��1�s/

for some fixed real number � > 1, called the dilatation of  .

We further require that each singularity p of Fu or Fs is a “k–pronged saddle”, as in Figure 1, where
k � 3 for p in the interior of S , or k � 1 for p a marked point or puncture. Along @S , the singular points
must all have a neighborhood of the form shown on the bottom left of Figure 1.

By a k–prong boundary singularity or a k–prong singularity on the boundary, we mean that  has
k singular points on a particular boundary component of S . The singularity type of  is the tuple
.b1; : : : ; br Im1; : : : ; mnI k1; : : : ; ks/, where the i th boundary component has bi–prongs, the i th puncture
or marked point has mi–prongs, and the i th interior singularity has ki prongs. We will use ∅ if  has
no boundary (or if  has no marked points or punctures, or interior singularities), and we will use an
exponent to denote a repeated number of prongs. For example, the tuple .3I 15I∅/ indicates that  has a
3–pronged boundary, five 1–pronged marked points or punctures, and no interior singularities. A stratum
on S is the collection of all pseudo-Anosovs on S with a given singularity type.

Geometry & Topology, Volume 28 (2024)
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Theorem 2.2 (Nielsen–Thurston classification) Any element h2Mod.S/ is freely isotopic rel punctures
(ie isotopic through homeomorphisms which fix the punctures , but may rotate a boundary component) to
a representative  with at least one of the following properties:

(1)  n D id for some n,

(2)  preserves the isotopy class of a multicurve C on S , or

(3)  is pseudo-Anosov. This case is disjoint from the previous two.

We say that such a  satisfying one of the properties (1)–(3) is geometric, and in case (3), we refer to  
as the pseudo-Anosov representative of h. The representative  is unique for any such h, although when
S has nonempty boundary,  will never be isotopic rel boundary to an element of Mod.S/, as  may
rotate @S .

The fractional Dehn twist coefficient c.h/D nCm=k is a rational number which measures the rotation of
 along @S . Here, n is an integer measuring the number of full rotations of h along @S , k is the number
of prongs of  on @S , and  cyclically permutes the endpoint of the first prong to that of the .mC 1/st

prong. For example, in the bottom right of Figure 1, the “fractional part” of c.h/ is 1
3

, where h 2Mod.S/
has pseudo-Anosov representative  . In particular c.h/ 2Z if and only if the rotation number of  along
the boundary is zero, and when  has a single boundary prong this is always the case.

The fractional Dehn twist coefficient can be extended analogously to braids, thought of as elements of
Mod.S10;n/ for some n > 1. In this case, we denote it by c.ˇ/, where ˇ is a braid. When K is a fibered
knot with open book decomposition .S; h/, we define the fractional Dehn twist coefficient c.K/ to be
that of h, ie c.K/ WD c.h/. It is crucial to note that, in general, c.K/ is not the same as c.ˇ/ for ˇ a braid
representative of K. The following theorem details a few well-known properties which we will make use
of in this paper:

Theorem 2.3 [15; 32; 17] Let h W S ! S be a mapping class with @S connected , and ˇ W S10;n! S10;n a
braid. Then:

� c.h/ and c.ˇ/ are preserved under conjugation.

� c.Dm
@S
ı hk/DmC kc.h/ for any k;m 2 Z, where D@S is a Dehn twist along @S .

� c.�2mˇk/DmC kc.ˇ/ for any k;m 2 Z, where �2 D .�1 � � � �n�1/n.

� If ˇ is �1–positive (ie ˇ can be written with only positive powers of �1), then c.ˇ/� 0.

� If ˇ is a positive pseudo-Anosov braid , then c.ˇ/ > 0.

See [35] for more details regarding the Nielsen–Thurston classification, and [15] or [18] for more details
regarding fractional Dehn twist coefficients.
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2.2 Knots, braids, and the Birman–Hilden correspondence

We may use branched coverings to understand relationships between mapping class groups of different
surfaces. The Birman–Hilden correspondence is a key tool for this study. For our purposes, the corre-
spondence will help us study the mapping class groups of S12 and S2, seen as two-fold branched covers
over the disk S10;5 and sphere S0;6, respectively, via the hyperelliptic involution �. Specifically, there is a
diagram

SMod.S12 / SMod.S2;1/ Mod.S2/

Mod.S10;5/ Mod.S0;6/

cap-off

‚12

forget

‚2

cap-off

Here, the map ‚12 is an isomorphism, and the map ‚2 is surjective with ker.‚2/D h�i. The cap-off maps
are both given by setting a full-twist about @S to 0 (geometrically, one may think about capping @S12 with
a marked disk), and the “forget” map forgets about the marked point on S2;1. The cap-off map forgets
about the “integer part” of the fractional Dehn twist coefficient but preserves the “fractional part” in each
case, ie the rotation number of  along @S is the rotation number of the capped-off map y at the marked
point in the capping disk. See [11] for more details on the maps involved in this diagram.

Note that the braid �2D .�1�2�3�4/5 2Mod.S10;5/ is isotopic to a full-twist about @S10;5. It follows that,
given a spherical mapping class f 2Mod.S0;6/, there are Z–many lifts of f to braids

: : : ��4ˇ; ��2ˇ; ˇ; �2ˇ; �4ˇ � � � 2Mod.S10;5/

which are all related by powers of �2, and are distinguished by their fractional Dehn twist coefficient
c.ˇ/, as in Theorem 2.3. For any such f , only finitely many such ˇ may have braid closure y̌ an unknot.
This may be seen, for example, from the following theorem of Ito and Kawamuro, which will be a key
tool in this paper:

Theorem 2.4 (Ito and Kawamuro) If the braid closure y̌ is an unknot , then jc.ˇ/j< 1.

Moreover, one may check that �2 lifts to an element of SMod.S12 / which squares to a full twist about
@S12 . This implies a very useful fact: the lift of �2 is freely isotopic to the hyperelliptic involution �. One
may see this in a number of different ways — for example, by noting that the full twist about @S12 is freely
isotopic to the identity, and that the lift of �2 acts on H1.S12 / by � id.

A genus-two, hyperbolic, fibered knot K � Y yields an open book decomposition .S; h/ for Y , where
S D S12 , and h 2Mod.S12 / is freely isotopic to a pseudo-Anosov  h W S ! S . If  h is fixed-point free in
the interior of S , then h is symmetric (ie represents an element of SMod.S12 /) by [2], so we may think of
h as the lift of a 5–braid ˇ 2Mod.S10;5/. From the perspective of 3–manifolds, this means that Y is the
double cover of S3 branched along the braid closure y̌. This implies, for example, that if Y D S3 then y̌

is the unknot. From the perspective of knots, the original fibered knot K D @S12 � Y is the lift of the
braid axis @S10;5 � S

3 in the cover.
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Baldwin, Hu and Sivek in [2] additionally computed the singularity type of  h (and originally observed
several of the facts mentioned in the previous paragraph). These observations are recorded as the following
result, which is the starting point for many of the ideas in this paper:

Theorem 2.5 (Baldwin, Hu and Sivek) Let K � S3 be a hyperbolic , genus-two , fibered knot with
associated open book decomposition .S; h/ satisfying c.h/¤ 0. If the pseudo-Anosov representative  h
is fixed-point free in the interior of S , then

�  h has singularity type either

Case 1 .6I∅I∅/, or

Case 2 .4I∅I 32/;
� h is the lift of a 5–braid ˇ under the Birman–Hilden correspondence;

� as a knot in S3, the braid closure y̌ is the unknot.

Theorem 2.5 yields strong constraints on the braid ˇ. For example, because h has pseudo-Anosov
mapping class, we know that ˇ does, too, and we may determine the singularity type of its pseudo-Anosov
representative  ˇ from that of  h, by appealing to [2, Lemma 3.7]. If  h has singularity type .6I∅I∅/,
then  ˇ has singularity type .3I 15I∅/. And, if  h has singularity type .4I∅I 32/, then  ˇ has singularity
type .2I 15I 3/.

2.3 Fibered surfaces and train tracks

For the remainder of the paper, we will denote by S 0 the surface S with its marked points deleted, and by
yS the closed surface obtained by capping-off the boundary components of S with disks and marking a
point in the interior of each disk. We will also assume that the surface S 0 has negative Euler characteristic.

In [5], Bestvina and Handel prove that one may associate to any geometric a fibered surface F �S 0. This
fibered surface is decomposed into strips and junctions, where the strips are foliated by intervals, ie leaves.
See Figure 2. Together, the leaves and junctions of F are called decomposition elements, and  .F /� F ,
sending decomposition elements into decomposition elements and, in particular, junctions into junctions.
Collapsing each decomposition element to a point produces a graph G with a graph map g WG!G. The
vertices of G correspond to the junctions of F , and the edges of G correspond to the strips of F .

Roughly speaking, a graph map g is efficient if the image of no edge backtracks under any power of g.
After adjusting F so that g is efficient, Bestvina and Handel construct a “smoothed” version of G as
follows. Within each junction J � F , one inserts additional edges that smoothly connect the strips of F
and encode how images of strips under  pass through J .

In this way, we obtain a new graph � smoothly embedded in the punctured surface S 0, called a train track.
At each vertex s of � , called a switch, there is a well-defined tangent line. Two arcs a; b of � are tangent
at s if a.0/D b.0/D s and a0.0/D b0.0/. A cusp is the data of a pair .a; b/ of adjacent arcs tangent at s.
See Figure 3 for an example.
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Figure 2: Left: the fibered surface for some geometric  on S10;5. The shaded regions are the
junctions, and the striped bands connecting them are the strips. Right: following Bestvina and
Handel, one inserts additional, “infinitesimal” edges into the junctions. These will also be inserted
into the graph G that one obtains by collapsing all of the decomposition elements. Their inclusion
will produce the smooth analogue � of G, which is a train track. See Figure 3.

Proposition 2.6 [5, Proposition 3.3.5] Suppose  is pseudo-Anosov. Then in the capped surface , each
component of yS n � is either

(1) a disk with k � 3 cusps on its boundary, or

(2) a disk with a single marked point in its interior and k � 1 cusps on its boundary.

Remark 2.7 From this perspective, the cusps of a component C � yS n � correspond precisely to the
prongs of a singularity p 2 C of the invariant foliations of  .

Definition 2.8 An edge path in � is a map e W I ! � such that e.0/ and e.1/ are switches. A train path
is an edge path that is also a smooth immersion. The length of a train path e is defined to be the number
of edges traversed by e.I /, counting with multiplicity. Let e.I /D e1 � � � ek denote a train path whose
directed image traverses first e1, then e2, etc. See Figure 4 for examples.

Figure 3: A train track � on the five-punctured disk D5. The components of the complement of �
consist of: five once-punctured monogons, ie disks with a single boundary cusp; a trigon, ie a disk
with three boundary cusps; and an exterior once-punctured bigon. Pseudo-Anosovs carried by this
track lie in the stratum .2I 15I 3/.
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Figure 4: Three edge-paths on the train track � from Figure 3. Left: an edge path of length 7
which is not a train path, since it makes several sharp turns. Middle: a train path of length 7 which
can be “pushed off” of � into a small neighborhood so that it does not intersect itself. Right: a
train path of length 6 which cannot be “pushed off” of � so that it becomes injective.

Definition 2.9 A train track map is a map f W �! � such that for any train path g W I! � the composition
f ıg W I ! � is a train path.

Remark 2.10 If f W �! � is a train track map, then f .e/ is a train path for each edge e of � . Indeed, from
this it follows that f k.e/ is a train path for each k � 1, and hence f k is a train track map for all k � 1.

The map  W F ! F , or equivalently the graph map g WG!G corresponding to  and F , defines a map
f W � ! � . The fact that g is efficient implies that f is a train track map. In this case, we say that the
train track � carries the map  , and the map  induces the train track map f . The data of a geometric
map will then be a triple .�;  ; f / in a commutative diagram

�  .�/

�

 

f
collapse

Here, one should imagine � being mapped forward by  into F , meeting the leaves of F transversely.
The map f is then defined by collapsing each leaf of F to a point, while inside each junction the arcs of
 .�/ are collapsed onto the appropriate edges of � . See Figure 5.

The edges of G (other than those loops peripheral to marked points/punctures of S ) are in bijection with a
subset of the edges of � , which we call the real edges. All other edges of � are infinitesimal. In particular,
all edges of � contained in a junction of F are infinitesimal. Enumerate the edges of � so that e1; : : : ; ek
are the real edges and ekC1; : : : ; en are the infinitesimal edges. For each pair .i; j / with 1 � i; j;� n,
define the integer

mi;j D the number of times the train path f .ej / traverses ei .

The extended transition matrix of f is the matrix zM whose .i; j /–entry is the integermi;j . The transition
matrix of f is the submatrix M � zM recording the transitions between real edges of � ; in other words,

M D .mi;j / where 1� i; j � k:
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Figure 5: Top row: the train track � from Figure 3 and the action of a pseudo-Anosov  that
it carries. The real edges of � are labeled e1; : : : ; e5. The shaded regions on the right denote
the neighborhoods that deformation retract onto these edges. Bottom three rows: the action of
f D .collapse ı / on each edge of � , depicted separately.

Definition 2.11 Let M be a square matrix whose entries are nonnegative integers. We say that M
is Perron–Frobenius if the entries of MN are strictly positive, for some power N . In this case, the
Perron–Frobenius theorem states that the eigenvalue of M of largest absolute value is in fact real, simple,
and has an eigenvector all of whose entries are positive. We call this eigenvalue the Perron–Frobenius
eigenvalue, and we say that such an eigenvector is positive.

The next theorem follows from work of Bestvina and Handel in [5].
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Theorem 2.12 Let .�;  ; f / be the data of a geometric map , where � satisfies the conclusion of
Proposition 2.6. Let M be the transition matrix of f . Then

 is pseudo-Anosov () M is Perron–Frobenius.

The Perron–Frobenius eigenvalue � of M is called the dilatation of  . There is a unique right �–
eigenvector w of M , up to scale, and its entries wi for i D 1; : : : ; k define transverse weights on the real
edges ei of M .

Remark 2.13 If a train track map F is induced by some pseudo-Anosov  , then such a  is unique
up to conjugacy in Mod. yS/. Indeed, Bestvina and Handel in [5] provide an algorithm to determine the
measured foliations preserved by  . This will be a crucial idea in Section 4.

2.4 Lifted train track maps and fixed points

Let .�;  ; f / be the data of a pseudo-Anosov on S D S12 . One of the key ideas in this paper is to
use the transition matrix M of f to study fixed points of  combinatorially. Our main tool to carry
out this approach is the following theorem, which follows from work of Los [23] and, independently,
Cotton-Clay [10].

Theorem 2.14 (Los, Cotton-Clay) If  is fixed-point free in the interior of S , then tr.M/D 0.

Our goal will be to use Theorem 2.14 to restrict the possible train tracks � and maps f W � ! � for a
fixed-point-free  . In the case of genus-two, hyperbolic, fibered knots in S3, the possible types of train
tracks � are already highly restricted by Theorem 2.5 and Remark 2.7.

Suppose we start with a genus-two, hyperbolic, fibered knot K with open book decomposition .S; h/,
where h is the lift of a 5–braid ˇ with pseudo-Anosov data . ˇ ; �; f / on the disk S10;5. We may lift � to
a train track z� on S which carries the pseudo-Anosov representative  h of h. As a graph, z� is constructed
by gluing two copies of � along the punctures and lifting the infinitesimal k–gons around these punctures
to infinitesimal 2k–gons upstairs, as in Figure 6.

For this choice of train track z� , we may determine the train track map zf W z�!z� induced by  h (so that h
has pseudo-Anosov data . h; z�; zf /) from f W � ! � , up to a binary choice, as follows. For each edge
e 2 � , denote by e1 or e2 its two lifts in z� , and write f .e/D e1 � � � en, where each ei 2 � is an edge. Note
that if two edges e; e0 2 � form a train path ee0, then exactly one of the paths eie01 or eie02 is a train path
for each i D 1; 2. And, if e1e0i is a train path, then so is e2e0j , where i ¤ j . Set zfi1.e

1/D e
i1
1 � � � e

in
n ,

where each ij 2 f1; 2g and each eijj e
ijC1

jC1 is a train path. Choosing an image for e1 also immediately
determines an image for e2, so the maps zf1 and zf2 are both defined on all of z� . See Figure 6.

Note that if zfi is induced by  i for i D 1; 2, then we have  1 D � ı 2. In particular, at most one of zf1
or zf2 is induced by  h, but this choice may be easily settled by examining ˇ as a braid, rather than a
mapping class on the punctured sphere. So we will simply denote by zf the well-defined choice of zfi
induced by  h.
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Figure 6: Lifting . ˇ ; �; f / to . h; z�; zf /. The dotted lines indicate the “back” of the surface. In
this example, � is the Peacock track from Figure 7 and ˇ is conjugate to ˇ�10 , from Proposition 4.4.
Note here the 1–gons on the disk lift to 2–gons upstairs, which are smoothed out to regular points.

3 The case with singularity type .6I∅I∅/

The main goal of this section is to prove the following:

Theorem B1 Let K be a genus-two , fibered , hyperbolic knot in S3 with associated open book decompo-
sition .S12 ; h/. If c.h/¤ 0 and the pseudo-Anosov representative  of h has singularity type .6I∅I∅/,
then K is not fixed-point free.

This resolves Case 1 from the outline in Section 1.5. Together with Theorem B2 in Section 4, this will
complete the proof of Theorem B.
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Before turning to the proof of Theorem B1, it will be helpful to recall the Lefschetz fixed point theorem,
which will be a key ingredient in our proof:

Theorem 3.1 (Lefschetz fixed point theorem) Let S be a compact surface and let f W S ! S be a
homeomorphism. Let f� WH1.S IZ/!H1.S IZ/ denote the induced map on first homology. Then

2� tr.f�/D
X

pDf .p/

Ind.f; p/:

We will apply the Lefschetz fixed point theorem to read off information about the action of a pseudo-
Anosov on homology, from its dynamical properties. The relevant result in this vein is an index calculation
due to Lanneau and Thiffeault in [21].

Proposition 3.2 (Lanneau and Thiffeault) Let  W S ! S be pseudo-Anosov with orientable invariant
foliations , and let p be a fixed k–prong singularity of  . Denote by  � WH1.S/!H1.S/ the action
on homology, and denote by �. �/ the leading eigenvalue of this action , ie the eigenvalue with greatest
absolute value.

(1) If �. �/ < 0 then Ind. ; p/D 1; that is , every fixed point of  has index 1.

(2) If �. �/ > 0, then either

(a)  fixes each prong and Ind. ; p/D 1� k < 0, or

(b)  cyclically permutes the prongs and Ind. ; p/D 1.

We can now use Lanneau and Thiffeault’s calculation to restrict the dilatation of the pseudo-Anosov
representative of a potential fixed-point-free knot K in Theorem B1:

Proposition 3.3 Let K � Y be a genus-two , fixed-point-free knot with c.K/ … Z, and suppose that Y is
an integer homology sphere. If the pseudo-Anosov representative  of K has singularity type .6I∅I∅/,
then  achieves the minimal dilatation �2 among pseudo-Anosovs in genus two.

Proof Let .S12 ; h/ be the open book decomposition of Y associated to K, and suppose  has no fixed
points in the interior of S . Because  has singularity type .6I∅I∅/ by assumption, we may cap-off  
to a pseudo-Anosov y on S2 and extend the foliations preserved by  over the capping disk. For this
stratum on S2, Masur and Smillie [24] prove that the foliations preserved by y , and therefore by  , are
necessarily orientable. We will use this fact to apply the Lefschetz fixed point theorem and determine
completely the Alexander polynomial of K.

BecauseK is fibered, the Alexander polynomial�K is equal to the characteristic polynomial �. �/ of the
action of  on homology: �K D �. �/. Because K is a genus-two fibered knot in an integer homology
sphere, �K is a monic, degree-four, palindromic polynomial satisfying �K.1/D˙1. Moreover, because
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the fractional Dehn twist coefficient c.h/ … Z by assumption, we know y rotates the separatrices of the
6–prong singularity p, so that Ind. y ;p/D 1 regardless of the sign of �. �/. And, because p is the unique
fixed point of y by assumption, it follows from the Lefschetz fixed point theorem that tr. �/D tr. y �/D 1.

From the discussion above, we conclude that the coefficients of t4 and t0 in �K.t/ are 1, while the
coefficients of t3 and t are � tr. �/D�1. Now, using the fact that �K.1/D˙1, we see

�K.t/D t
4
� t3˙ t2� t C 1:

Because the foliations preserved by  are orientable, the dilatation �. / is a root of �K . The polynomial
t4� t3C t2� t C 1, however, has no real roots. We deduce

�K.t/D t
4
� t3� t2� t C 1:

Finally, note that this polynomial has a single root �2 greater than 1, which is the minimal dilatation
achieved by any pseudo-Anosov on the genus-two surface; see eg [21].

We will need the following lemma to finish the proof of Theorem B1:

Lemma 3.4 Let h; h0 2 SMod.S12 / be the lifts of braids ˇ; ˇ0. Suppose that the capped-off maps yh and
yh0 on yS are conjugate in Mod.S2/. Then ˇ is conjugate to �2kˇ0 for some k 2 Z.

Proof Because yh and yh0 are conjugate in Mod.S2/, and the hyperelliptic involution � on S2 is in the
center of Mod.S2/, the conjugating mapping class in Mod.S2/ descends to the spherical mapping class
group Mod.S0;6/. It follows that ˇ and ˇ0 are conjugate after capping-off to Mod.S0;6/. In particular,
ˇ is conjugate to �2kˇ0 for some k 2 Z.

Though we will not need the following corollary for our purposes, it follows quickly from Lemma 3.4,
and we believe it to be helpful in many other contexts, as well.

Corollary 3.5 Let h; h0 2 SMod.Srg/ be the lifts of braids ˇ; ˇ0, for g; r 2 f1; 2g. Then h and h0 are
conjugate in Mod.Srg/ if and only if ˇ and ˇ0 are conjugate as braids.

Proof For simplicity, suppose g D 2 and r D 1, though the same proof works for the other cases, with
minor adjustments. If ˇ and ˇ0 are conjugate, it is clear that h and h0 are conjugate, too: we may simply
lift the conjugating map to S12 . On the other hand, suppose h and h0 are conjugate in Mod.S12 /. It follows
that the capped-off maps yh and yh0 are conjugate in Mod.S2/. Lemma 3.4 now implies that ˇ is conjugate
to �2kˇ0 for some k 2 Z. Because h and h0 are conjugate in Mod.S12 /, we know that c.h/D c.h0/; see
Theorem 2.3. It follows that c.ˇ/ D 2c.h/ D 2c.h0/ D c.ˇ0/, whereas c.�2kˇ0/ D c.ˇ0/C k, so we
must have that ˇ and ˇ0 are conjugate as braids.

We need one last result before turning to the proof of Theorem B1.

Proposition 3.6 Let .S12 ; h/ be an open book decomposition with c.h/ … Z, such that h is symmetric
and freely isotopic to a pseudo-Anosov  with singularity type .6I∅I∅/ and dilatation �. /D �2. Then
.S12 ; h/ is not an open book decomposition for S3.
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Proof Because  has singularity type .6I∅I∅/, we may cap-off  to a pseudo-Anosov on S2 with
singularity type .∅I∅I 6/. Lanneau and Thiffeault [21] show that the pseudo-Anosov on S2 with foliation
type .∅I∅I 6/ and dilatation �2 is unique, up to conjugacy in Mod.S2/, inverse, and composition with
the hyperelliptic involution � on S2. Note that the pseudo-Anosov representative  ˛ of the 5–braid
˛ D �1�2�3�4�1�2 studied by Ham and Song in [14] achieves dilatation �. ˛/D �2. In particular, the
pseudo-Anosov representative  A of the lift A of ˛ to S12 achieves minimal dilatation �. A/D �2 with
the proper singularity type. It follows that y is conjugate in Mod.S2/ to one of y ˙1A or y ˙1A ı �. This
further implies that yh is conjugate in Mod.S2/ to one of yA˙1 or yA˙1 ı �.

Because � is freely isotopic to the lift of the 5–braid �2 (as described in Section 2.2), A˙1 ı � is freely
isotopic to the lift of �2˛˙1. Since h is symmetric by assumption, it is the lift of a braid ˇ. A is
symmetric by construction, so Lemma 3.4 implies that ˇ is conjugate as a braid to �2k˛˙1 for some
k 2 Z. In particular, if .S12 ; h/ is an open book decomposition for S3, we can see that �2k˛˙1 has
unknotted closure for some k 2 Z. Moreover, note that the closure of �2k˛ is unknotted if and only if
the closure of ��2k˛�1 is also unknotted, because the unknot is amphicheiral.

By Theorem 2.4, if �2k˛˙1 has unknotted closure, we must have jc.�2k˛˙1/j< 1. We may deduce that
0 < c.˛/ < 1 because ˛ is a positive pseudo-Anosov braid, and ��2˛ is a negative pseudo-Anosov braid;
see Theorem 2.3. In particular, k < c.�2k˛/ < kC 1. So it suffices to simply check that ˛ and �2˛�1

do not have unknotted closure. One may see this in a number of ways — for example, by appealing to the
self-linking number: the maximal self-linking number of the unknot is �1, but the self-linking numbers
sl.˛/D 1 and sl.�2˛�1/D 9 are both positive.

Proof of Theorem B1 Let K, h and  be as in the statement of the theorem. Recall that since K
is fixed-point free by assumption, h is symmetric; see Theorem 2.5. Since .S12 ; h/ is an open book
decomposition for S3, jc.h/j � 1

2
; see eg [18]. So if c.h/¤ 0, then c.h/…Z. Proposition 3.3 then implies

that the dilatation of  is �. /D �2, but this contradicts Proposition 3.6.

Remark 3.7 Our argument does not show that no hyperbolic, genus-two, fibered knot in S3 has the
Alexander polynomial t4� t3� t2� tC1 from the proof of Proposition 3.3. Rather, any such knot cannot
have singularity type .6I∅I∅/. Indeed, the knots 11n38 and 11n102 on KnotInfo [22] are genus-two
fibered hyperbolic knots with the given Alexander polynomial. But their singularity types are .1I∅I 35/
and .2I∅I 34/, respectively, so the foliations preserved by their pseudo-Anosov representatives are not
orientable. One may check that their dilatations are 1.916. . . and 2.751. . . , respectively, both of which
are larger than �2 D 1:722 : : : , and neither of which are roots of the given Alexander polynomial.

In the stratum .6I∅I∅/, we may additionally lift the assumption that c.h/¤ 0:

Proposition 3.8 Let K be a hyperbolic , genus-two , fibered knot in S3, with associated open book
decomposition .S12 ; h/. If c.h/D 0 and the pseudo-Anosov representative  of h has singularity type
.6I∅I∅/, then K is not fixed-point free.
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Proof Suppose that has no fixed points in the interior of S12 . As in the proof of Theorem B1, we may cap-
off  to a pseudo-Anosov y on S2 and extend the foliations preserved by  . Again, we have that these fo-
liations are orientable. Note that if �. �/< 0, then an argument identical to that of Theorem B1 will apply.

So, assuming that �. �/ > 0, the Lefschetz fixed point theorem then yields tr. y �/ D 2 � .�5/ D 7,
because the unique fixed point p given by the boundary 6–prong singularity is unrotated (since c.h/ 2Z).
Consider the Markov matrix M for a train track representative of y . It follows from a theorem of
Rykken [33] that any eigenvalue of y � is also an eigenvalue of M (counting multiplicity) except for
possibly eigenvalues of 0 or roots of unity. Note here that a train track representative of y has 8 real
edges, so that M is an 8�8 matrix, while y � is 4�4. In particular, M has at most four more eigenvalues
than y �, and each has absolute value at most one. Hence,

tr.M/� tr. y �/� 4D 7� 4D 3:

On the other hand, a well-chosen train track carrying y also carries  . In particular, by Theorem 2.14,
we can see that tr.M/D 0 because  is assumed to be fixed-point free in the interior of S , which is a
contradiction.

4 The case with singularity type .4I∅I 32/

The goal of this section is to prove the following theorem, which will resolve Case 2 from the outline in
Section 1.5.

Theorem B2 Let K be a genus-two , fibered , hyperbolic knot in S3 with associated open book decompo-
sition .S; h/. If the pseudo-Anosov representative  of h has singularity type .4I∅I 32/, then K is not
fixed-point free.

Remark 4.1 Note that we do not need to require c.h/¤ 0 here. Between this remark and Proposition 3.8,
one may wonder why the assumption c.h/¤ 0 is necessary in the statement of Theorem B: it is purely
to avoid additional singularity cases. In particular, if c.h/ D 0 then the boundary singularity may be
1–pronged or 2–pronged in Theorem 2.5.

The first step in proving Theorem B2 is to observe the following consequence of Theorem D, which we
prove at the end of Section 5:

Theorem 4.2 Let  be a pseudo-Anosov on S10;5 with singularity type .2I 15I 3/. Then  is conjugate to
a pseudo-Anosov carried by the Peacock train track shown in Figure 7.

Now, to prove Theorem B2, it suffices by Theorem 4.2 to look at pseudo-Anosovs carried by the lift of the
Peacock track. See Figure 6 for an image of the lifted track. We will perform a careful analysis of train
track maps on this track, together with topological arguments to study a family of braids ˇn inducing a
special collection of train track maps. We present the relevant family of braids ˇn and their corresponding
train track maps in Section 4.1. Then in Section 4.2, we study train track maps on the Peacock.
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The Peacock The Snail

Figure 7: The two train track classes in the stratum .2I 15I 3/ with no joints.

4.1 A family of braids lifting to fixed-point-free maps

For the remainder of this section, � will be the Peacock train track depicted on the left in Figure 8,
with edges and vertices labeled as in the figure (with edges oriented towards the punctures); ˇ will be
an arbitrary 5–braid with pseudo-Anosov data . ˇ ; �; f /; and h will be the lift of ˇ to S D S12 , with
pseudo-Anosov data . h; z�; zf /, where z� and zf are constructed as in Section 2.4. An image of z� in this
case is shown in Figure 6.

Let a; b be any real edges in � . Note that because each peripheral 1–gon in � is adjacent to a unique real
edge, the image f .a/ is naturally a word of the form w1w2 � � �wn, where wi 2 foxo; gxg; p xp; bxb; rxrg and
wn 2 fo; g; p; b; rg.

Definition 4.3 For real edges a; b of � , we say that f .a/ passes b on the right if, before collapsing down
to � , b is to the left of  ˇ .a/ as in the middle of Figure 8. In this case, we write the letter bC in place of
bxb in the word f .a/. We define passing on the left analogously, and denote it by b�. If b is the last letter
in f .a/, we write bı. When we allow for multiple possible options, we will write b˙ı, bCı, etc. See the
right of Figure 8 for an example.

b

 .a/

o
g p

b

rv3

v2

v1

1 2 3 4 5

Figure 8: Left: the Peacock train track with the labels and orientations we will use in this section.
Center: f .a/ passes b on the right. Right: f .o/D gCr�g�bı.
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homeoH

��21 H�1 collapse

��24 ��13 ��12 ��11 ��14 ��13 ��12

isotopy

Figure 9: The train track map induced by Hˇ�1n H�1, where H is an orientation-preserving
homeomorphism which swings r around the rest of the track.

Here is the family of braids which we will study:

Proposition 4.4 Set ˇnD�nC21 �2�3�4�1�2�3�
2
4 for n�0. Then ˇ�1n is pseudo-Anosov, and conjugate

to a braid carried by � , which induces the train track map fn W � ! � defined by

fn.o/D p
ı; fn.g/D b

ı; fn.r/D g
ı;

fn.p/D

�
.r�o�/.n=2/C1rı if n is even,
.r�o�/.nC1/=2r�oı if n is odd,

fn.b/D

�
.r�o�/n=2r�oı if n is even,
.r�o�/.nC1/=2rı if n is odd.

Proof Figure 9 verifies that Hˇ�10 H�1 is carried by � and induces the train track map f0 W �! � , where
the orientation-preserving homeomorphism H is given by swinging the real edge r around the train track
to the other side. For n � 1, note that ˇn D �1ˇn�1, and the additional �1 simply adds more twists
between the leftmost edges before composing with H�1 in the last step. This additional twisting adds
words of the form .r�o�/ to fn.p/ and fn.b/, and swaps which edges p and b end on, as in the map in
the proposition statement.

It now remains to verify that ˇ�1n is pseudo-Anosov. This can be seen by checking that the transition
matrix Mn associated to the train track map fn is Perron–Frobenius. When determining the matrix Mn

from the map fn given above, it may be helpful to recall that, for each real edge a; b of � , each instance
of b˙ in f .a/ records the word bxb, and each instance of bı records just b. Regardless of the parity of n,
the transition matrix is

Mn D

0BBBB@
0 0 nC 2 nC 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 nC 3 nC 2 0

1CCCCA :
It is straightforward to check that M 7

n is strictly positive for all n� 0, so Mn is Perron–Frobenius.
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It follows from Proposition 4.4 that any braid inducing the train track map fn W �! � must be conjugate to
ˇ�1n within the spherical mapping class group; see Remark 2.13. The following proposition then implies
that no braid inducing the map fn has unknotted closure.

Proposition 4.5 The braid closure 3�2kˇ˙1n is not an unknot for any k; n 2 Z, where n� 0.

Proof Because ˇn is a positive pseudo-Anosov braid, we must have c.ˇn/ > 0. On the other hand, one
can check that ˇn is braid-isotopic to ˇ0n D .�1�2�3�4/

2�nC24 . One can easily check that c.ˇ0n/� 1 in a
variety of ways — for example by verifying that ��2ˇ0n is �1–negative; see Theorem 2.3. And, because
ˇn and ˇ0n are braid-isotopic, it follows that c.ˇn/� 1, too. So we have

k < c.�2kˇn/� kC 1:

Now, by Theorem 2.4 and the fact that the unknot is amphicheiral, it suffices to check that neither čn nor
2�2ˇ�1n is an unknot for any n 2 Z. The closure čn is easily seen to be the torus knot T .2; nC 7/.
Figure 10 verifies that the closure 2�2ˇ�1n is the 3–stranded pretzel knot P.3; 3�n;�2/. These knots are
all known to not be unknotted.

4.2 Train track maps on the Peacock

In this subsection, we retain the notation from the previous subsection. Our remaining goal is to prove
the following proposition, which, together with Propositions 4.4 and 4.5, will imply Theorem B2 and
complete the proof of Theorem B.

Proposition 4.6 Let  ˇ be a pseudo-Anosov carried by � , which lifts to a map  h in the cover. If  h is
fixed-point free , then ˇ is conjugate in the spherical mapping class group to ˇn or ˇ�1n for some n 2 Z.
In particular , ˇ is conjugate as a braid to �2kˇ˙1n for some n; k 2 Z.

We begin with some helpful lemmas to simplify the case analysis.

Lemma 4.7 (trace lemma) If  h is fixed-point free , then for any real edge a 2 � , we have a˙ı … f .a/.

Proof First, if aı 2 f .a/, then the marked point at the end of a is fixed by  ˇ , and the lift of this marked
point is fixed by  h. Next, suppose that a˙ 2 f .a/, and recall that this means that f .a/ contains a word
of the form axa. In the lift, it follows that zf .a1/ contains a word of the form aixaj for some i; j 2 f1; 2g;
see the construction in Section 2.4. Because the edges ai and aj are not adjacent to infinitesimal loops in
the cover (the infinitesimal loops in � lift to regular points in the cover), we can see that i ¤ j . So zf .a1/
contains either a1 or xa1 as a letter. In either case, the transition matrix of zf has nonzero trace, so  h is
not fixed-point free by Theorem 2.14.

The trace lemma also holds in general, with the same proof, for any jointless train track with only
1–pronged punctures. Because we will use the trace lemma with great frequency in this section, when we
invoke this lemma we will often use the shorthand “by trace”.
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�.nC2/ �.nC2/ �.nC2/

�.nC1/ �n �n

�nC1 �nC2 �nC3

�nC3 �nC3

Figure 10: Isotopies of 1�2ˇ�1n to P.3; 3�n;�2/.

Lemma 4.8 If  h is fixed-point free , then f .vi /¤ vi for i D 1; 2; 3.

Proof If f .vi /D vi for some i , then Df.r/D r˙ı, which is forbidden by the trace lemma.
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a

b

v

 ˇ .a/

 ˇ .b/

f .v/

 ˇ .c/
convex cone

Figure 11: The edge c will be absorbed into f .v/.

The above lemma implies that f .v1/ 2 fv2; v3g, and this choice also determines the images f .vi / for
i D 2; 3. Note that there is a natural horizontal symmetry of � induced by reversing the orientation
of the disk. Composing with this symmetry takes a braid to its reverse inverse, and a braid lifts to a
fixed-point-free map if and only if its reverse inverse does. Hence, it suffices to choose either one of the
images f .v1/ as above. Therefore, without loss of generality, f .v1/D v3.

Lemma 4.9 Let a and b be any two real edges of � with a and b adjacent at initial vertex v. Then for any
real edge c of � ,  ˇ .c/ does not intersect the convex cone determined by the initial segments of  ˇ .a/
and  ˇ .b/. (See Figure 11 for reference.)

Proof By injectivity of  ˇ , we know that  ˇ .c/ may not cross  ˇ .b/ or  ˇ .a/. If  ˇ .c/ enters the
convex cone X on the initial segments of  ˇ .a/ and  ˇ .b/, then  ˇ .c/ must either have its endpoint
inside X or must leave X . The first case is not possible because c ends at a vertex of an infinitesimal
monogon by assumption. Therefore  ˇ .c/ must enter and leave X . Let A and B denote the strips of
the fibered surface F that collapse onto a and b, respectively. The arc  ˇ .c/ lies transverse to the fibers
of F . Assume without loss of generality that  ˇ .c/ enters X along A. Since it must exit X ,  ˇ .c/ must
subsequently traverse either A or B . Neither case is possible, however, since a and b form a cusp: the arc
 ˇ .c/ is forced to be nonsmooth.

When a situation as in Lemma 4.9 arises, we say that the edge c is absorbed into f .v/. In practice, an
edge being absorbed into a vertex is much easier to spot visually than by formal definition: the typical
picture is the one depicted in Figure 11.

For the following arguments, recall that we assume without loss of generality that f .v1/ D v3. The
figures provided in each proof below are single scenarios appearing in each main case, not exhaustive
images of every possibility. We strongly encourage the reader to draw by hand the train track maps which
are written in words, as they read through each argument.

Lemma 4.10 If  h is fixed-point free , then Df.r/ … foC; gCg.

Proof If Df.r/D oC, then we must have f .r/D oCr˙ı � � � , which is forbidden by the trace lemma.
The same argument applies to gC.
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Df.p/D rı Df.p/D rı Df.p/D rıCase 1 Case 2 Case 3

Figure 12: Cases for the proof of Lemma 4.11.

Lemma 4.11 If  h is fixed-point free , then Df.p/D r�.

Proof First suppose that Df.p/D rC. Then the second letter in f .p/ is either p or b. The former is
not allowed by trace. In the latter case, note that then f .b/D rCb˙ı � � � since p is to the left of b, which
is again ruled out by trace.

Now, suppose that f .p/ D rı. Note that then Df.b/ D rC, and this further implies by trace that
f .b/ D rCp˙ı � � � . It then follows that Df.o/ D p˙ı, so we will check these three possible cases
individually. See Figure 12.

Case 1 (f .o/ D pı) In this case, f .b/ D rCpC � � � and Df.g/ D pC. By trace, it follows that
f .g/D pCo˙ı � � � , and this in turn forces Df.r/D o˙ı. By Lemma 4.10, we know Df.r/¤ oC, so
Df.r/D o�ı. If Df.r/D oı, then the real edges o, p and r are permuted, implying that the transition
matrix of f is not Perron–Frobenius. Finally, if Df.r/ D o�, we can see that f .r/ D o�p�r˙ı � � � ,
which is ruled out by trace.

Case 2 (Df.o/ D p�) In this case, we must have f .o/ D p�r�g˙ı � � � by trace (or else f .o/ is
absorbed into either f .v3/ or f .v1/, if it goes “inside” b or g, respectively). This further implies that
f .g/D p�r�g˙ı � � � , which is ruled out by trace.

Case 3 (Df.o/ D pC) Here, we have f .o/ D pCg˙ı � � � , and therefore f .b/ D rCpCg˙ı � � � . In
particular, this forces f .g/D pCg˙ı � � � , which is ruled out by trace.

Lemma 4.12 If  h is fixed-point free , then Df.b/D r�.

Proof By Lemma 4.11, we may assume Df.p/D r�. Note that Df.b/D rC is not possible, because
then one of b or p will be absorbed into f .v3/.

So suppose f .b/Drı. We branch along cases for the second letter in f .p/. Note that if f .p/Dr�gCı � � � ,
then Df.r/ D gC, which contradicts Lemma 4.10. So there are four cases left to consider, shown in
Figure 13.
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Df.b/D rı Df.b/D rı Df.b/D rıCase 1 Case 2A Case 2B

Df.b/D rı Df.b/D rı Df.b/D rıCase 3 Case 4A Case 4B

Figure 13: Cases for the proof of Lemma 4.12.

Case 1 (f .p/ D r�g� � � � ) In this case, we must have f .p/ D r�g�b˙ı � � � , because otherwise p
is absorbed into f .v3/ (if it follows r next) or contributes trace (if it follows p next). Now note that
Df.o/D b˙ı. If Df.o/D bCı then f .g/D bCg˙ı � � � , which is ruled out by trace. So Df.o/D b� and
we must have f .o/D b�r�g˙ı � � � by trace. Note that Df.g/¤ bC by Lemma 4.9, so Df.g/D b�ı. If
Df.g/D b�, then we have f .g/D b�r�g˙ı � � � , which is ruled out by trace. So Df.g/D bı. Finally,
consider cases for Df.r/. We know Df.r/D g˙ı, and by Lemma 4.10, we must have Df.r/D g�ı. If
Df.r/Dgı, then the transition matrix is not Perron–Frobenius. IfDf.r/Dg�, then f .r/Dg�b�r˙ı � � � ,
which is ruled out by trace.

Case 2 (f .p/ D r�oC � � � ) In this case, f .p/ D r�oCrCb˙ı � � � by trace and, by Lemma 4.10, it
follows that Df.r/D g�ı. Now, look at cases for Df.o/.

If Df.o/ D bCı then f .g/ D bCg˙ı � � � , which is ruled out by trace. And, if Df.o/ D b� then
f .o/D b�r�o˙ı � � � , also ruled out by trace. If Df.o/Dp� then similarly f .o/Dp�r�o˙ı � � � , which
is again ruled out by trace. There are two remaining subcases to consider:

Subcase 2A (Df.o/ D pı) Here, consider cases for Df.g/: either Df.g/ D pC or Df.g/ D b˙ı.
If Df.g/ D pC then f .g/ D pCg˙ı � � � , which is ruled out by trace. We cannot have Df.g/ D bC

because then g is absorbed into f .v1/. Finally, we cannot have Df.g/D b�ı because then either p is
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absorbed into f .v1/ (if Df.g/D bı or Df.g/D b� with p outside g) or g is absorbed into f .v3/ (if
Df.g/D b� and g is outside p).

Subcase 2B (Df.o/D pC) Here, consider cases for Df.r/: either Df.r/D gı or Df.r/D g�, by
Lemma 4.10. If Df.r/D gı then o will be absorbed into f .v3/. If Df.r/D g�, then either o is inside r ,
in which case f .r/D g�p�r˙ı � � � (which is ruled out by trace); or, r is inside o, in which case o will
be absorbed into f .v3/.

Case 3 (f .p/ D r�o� � � � ) In this case, we must have f .p/ D r�o�b˙ı � � � (otherwise p will be
absorbed into f .v3/ or contribute trace), which forces Df.o/ D b˙ı and Df.g/ D b˙ı, as well. If
Df.o/ D bC, then either f .o/ D bCo˙ı � � � (which is ruled out by trace), or f .o/ D bCg˙ı � � � , in
which case f .g/ D bCg˙ı � � � , too (which is again ruled out by trace). And, if Df.o/ D b�, then
f .o/D b�r�o˙ı � � � , which is ruled out by trace.

So we must have f .o/Dbı. Note here that we must haveDf.r/Do�ı, by Lemma 4.10, andDf.g/DbC.
Now look at r : if Df.r/ D o�, then f .r/ D o�b�r˙ı � � � , which is ruled out by trace. Finally, if
Df.r/D oı, then either g is inside p, in which case g is absorbed into f .v3/, or p is inside g, in which
case p will be absorbed into f .v1/.

Case 4 (f .p/D r�oı) In this case, Df.r/D g�ı by Lemma 4.10, so consider subcases for Df.r/.

Subcase 4A (Df.r/D g�) Here, consider cases for Df.o/. If Df.o/D bCı then f .g/D bCg˙ı � � � ,
which is ruled out by trace. If Df.o/ D b� then f .o/ D b�r�o� � � � , again ruled out by trace. If
Df.o/D p�ı then f .r/D g�p�r˙ı � � � , ruled out by trace. And finally, if Df.o/D pC then either o is
inside r , in which case f .r/D g�p�r˙ı � � � (which is ruled out trace), or o is outside r , in which case it
will be absorbed into f .v3/.

Subcase 4B (Df.r/Dgı) Look first atDf.o/. IfDf.o/DpC orDf.o/D bC then o will be absorbed
into f .v3/. If Df.o/D p� or Df.o/D b� then f .o/D p�r�o˙ı � � � or f .o/D b�r�o˙ı � � � , both of
which are ruled out by trace. So we must have either Df.o/D pı or Df.o/D bı and then it follows that
Df.g/D bı orDf.g/Dpı, respectively, as well, after some simple analysis onDf.g/. ButDf.o/D bı

and Df.g/D pı is not possible, since  ˇ is orientation-preserving. And, Df.o/D pı and Df.g/D bı

is not possible, because then the transition matrix is not Perron–Frobenius.

Lemma 4.13 If  h is fixed-point free , then Df.r/D g�ı.

Proof By Lemma 4.10, we know that Df.r/ … fgC; rCg, so we just need to show that Df.r/¤ o�ı.
Suppose otherwise, ie Df.r/D o�ı. By Lemmas 4.11 and 4.12, we know that Df.p/DDf.b/D r�,
and then because Df.r/D o�ı by assumption, it follows that f .p/D r�o� � � � and f .b/D r�o� � � � .
From here, we must have f .b/D r�o�p˙ı � � � by trace, but then f .p/D r�o�p˙ı, which is ruled out
by trace.

We are finally ready to prove Proposition 4.6.
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Final Final FinalCase 1 Case 2A Case 2B

Figure 14: Cases for the proof of Proposition 4.6. In this figure, we have chosen to omit the
shaded collapsing regions for readability.

Proof of Proposition 4.6 By the discussion after Lemma 4.8, it suffices to assume f .v1/ D v3. By
Lemmas 4.11 and 4.12, we know Df.p/DDf.b/D r�, and by Lemma 4.13 we know Df.r/D g�ı.
From here, we branch along cases forDf.o/. The casesDf.o/D b˙ı can be ruled out quickly as follows.

If Df.o/ D bC, then f .o/ D bCg˙ı � � � by trace. But then f .g/ D bCg˙ı � � � , which is ruled out by
trace. If Df.o/ D bı, then f .g/ D bCg˙ı � � � because Df.r/ D g�ı, and this is ruled out by trace.
Finally, if Df.o/ D b�, then f .o/ D b�r�g˙ı � � � by trace. Because Df.r/ D g�ı, it follows that
f .p/D r�g� � � � and f .b/D r�g� � � � . From here, we must have f .b/D r�g�p˙ı � � � by trace. But
then f .p/D r�g�p˙ı, too, which is ruled out by trace.

Also, if Df.o/D p�, then f .o/D p�r�g˙ı � � � by trace. Here, we must have f .p/D r�g�p˙ı � � �
because Df.r/ D g�ı, which is ruled out by trace. So we have two cases left to consider, shown in
Figure 14.

Case 1 (Df.o/D pC) In this case, we have f .o/D pCg˙ı � � � by trace. If f .o/D pCg�ı � � � then
f .r/ is either absorbed into f .v1/ or passes over r . So f .o/D pCgCr˙ı � � � .

Next, consider Df.g/. If Df.g/ D bC then g is absorbed into f .v1/, and the case Df.g/ D pC

is ruled out quickly by trace. So we have Df.g/ D b�ı. In either case, note that for both of f .p/
and f .b/, the second letter is in the set fo˙ı; g�g because Df.r/ D g�ı. If f .p/ D r�g� � � � then
f .p/D r�g�p˙ı � � � , which is ruled out by trace. So f .p/D r�o˙ı � � � .

Similarly, if f .b/D r�g� � � � then either b is outside o, in which case b will be absorbed into f .v1/, or
o is outside b, in which case o will be absorbed into f .v3/. So we must have f .b/D r�o˙ı � � � , too.

Now, if f .p/D r�oCı � � � then f .b/D r�oCrCb˙ı � � � , which is ruled out by trace. So we must have
f .p/D r�o�r˙ı � � � . Also, if f .p/D r�o�r�ı � � � then f .o/D bCgCr�o˙ı � � � , which is ruled out
by trace. So we have instead f .p/D r�o�rCg�p˙ı � � � because Df.r/D g�ı, which is again ruled
out by trace.
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Case 2 (Df.o/D pı) Here, we branch along subcases for Df.g/. Note that if Df.g/D bC then g is
absorbed into f .v1/, and if Df.g/D pC then f .g/D pCg˙ı � � � , which is ruled out by trace. So we
have two remaining subcases to consider:

Subcase 2A (Df.g/D b�) Because Df.r/D g�ı, if f .p/D r�g� � � � then p is absorbed into f .v1/.
A similar argument applies to f .b/, so we must have both f .p/ D r�o˙ı � � � and f .b/ D r�o˙ı � � � .
Now, if f .b/D r�oC � � � then either b is absorbed into f .v3/, or f .b/D r�oCrCb˙ı, which is ruled
out by trace. So either f .b/D r�o�r˙ı � � � or f .b/D r�oı.

In the first case, if f .b/ D r�o�rC � � � , then either b is absorbed into f .v3/, absorbed into f .v1/, or
f .b/D r�o�rCoCrCb˙ı � � � , which is ruled out by trace. So we must have either f .b/D r�o�r� � � �
or f .b/D r�o�rı.

We can then see that f .b/D .r�o�/kr�oı or f .b/D .r�o�/kC1rı for some k � 0. The argument that
follows will not depend on k (with large k, all remaining strands will just turn more times along r and o),
so for simplicity suppose either f .b/D r�oı or f .b/D r�o�rı.

First, suppose f .b/D r�oı. Then we must have f .p/D r�o�r˙ı � � � and f .g/Db�r�o� � � � . Note here
that if f .p/D r�o�rCı � � � , then g will be absorbed into f .v3/. But if f .p/D r�o�r� � � � , then p will
be absorbed into f .v3/. This same argument will work for arbitrary k after several twists around r and o.

Next, suppose that f .b/D r�o�rı. The argument is very similar in this case. We must have f .p/D
r�o�r�o˙ı � � � and f .g/ D b�r�o�r�o˙ı � � � . If f .p/ D r�o�r�o�ı � � � then g will be absorbed
into f .v3/. Also, if f .p/D r�o�r�oC then either g will be absorbed into f .v3/ or p will be absorbed
into f .v1/. As before, the same argument will work for arbitrary k after several additional twists around
r and o.

Subcase 2B (Df.g/D bı) We cannot have Df.r/D g� since then r will be absorbed into f .v1/. So
we must have Df.r/D gı. From here, note that f .b/D r�o�ı � � � because otherwise b will be absorbed
into either f .v1/ or f .v3/. In either case, it follows that f .p/ D r�o�r�ı � � � because otherwise p
will be absorbed into either f .v1/ or f .v3/. Iterating the same argument, it is now easy to see that
for some n� 0, f .b/D .r�o�/n=2r�oı or f .b/D .r�o�/.nC1/=2rı, and f .p/D .r�o�/.n=2/C1rı or
f .p/D .r�o�/.nC1/=2r�oı.

One may observe that these final train track maps match identically with the ones given in Proposition 4.4.
Proposition 4.4 and the subsequent discussion then imply that the braid ˇ is conjugate in the spherical
mapping class group to ˇ�1n for some n.

5 The tight splitting

This section is devoted to developing a tool which will be integral to the proof of Theorem 4.2: a
specialized form of “splitting”, which will allow us to restrict our attention to pseudo-Anosovs carried by
a single train track.
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5.1 Standardly embedded tracks

We first describe a particular class of train tracks on the punctured disk, called standardly embedded
tracks, which will aid in the description of our splitting procedure. Standardly embedded train tracks have
previously appeared in the work of Ko, Los and Song [34], Cho and Ham [9] and Ham and Song [14],
who used them to study pseudo-Anosovs on S10;n for small n.

Definition 5.1 An infinitesimal polygon of a train track � is a connected component of S10;n n � whose
boundary consists of finitely many infinitesimal edges of � . A train track � on S10;n is standardly embedded
if the following conditions hold:

(1) Every component of S10;n n � is an infinitesimal polygon, except for the one containing @S10;n.

(2) If two edges of � are tangent at a switch, then either both are real or both are infinitesimal.

(3) Cusps only occur at vertices of infinitesimal polygons.

Figure 3 is an example of a standardly embedded track, and Figure 5 shows a pseudo-Anosov carried
by this track, as well as the induced train track map. Every train track may be adjusted to a standardly
embedded one, and this adjustment does not affect which pseudo-Anosovs the track carries. So we have:

Proposition 5.2 Every pseudo-Anosov on S10;n is carried by a standardly embedded train track.

We adapt the following definition from Ham and Song’s notion in [14] of an elementary folding map.

Definition 5.3 Let �; �1 ,! S10;n be standardly embedded train tracks. A Markov map is a graph map
p W �1! � that maps vertices to vertices, and is locally injective away from the preimages of vertices. An
elementary folding map is a smooth Markov map such that for exactly one real edge ˛, the image p.˛/ has
word length 2, while the images of all other edges have word length 1. We require that the distinguished
edge ˛ belong to a cusp .˛; ˇ/ of �1, and that p.˛/ be of the form p.˛/D p.ˇ/ � a, where a is a real
edge joined to p.ˇ/ by an infinitesimal edge.

For the purposes of this paper, an elementary folding map p W �1! � will be the identity map away from
the distinguished real edge ˛. See Figure 15.

e

˛

ˇ

e

a

ˇ
p

Figure 15: An example of an elementary folding map. The map p is the identity except at the
edge ˛, which is mapped as a directed path to ˇ � e � a.
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Remark 5.4 An elementary folding map in our terminology is the composition of two elementary moves
in Ham and Song’s terminology in [14].

5.2 The tight splitting

We are ready to introduce a specialized variant of a classical operation on train tracks, known as splitting;
cf [30, Section 2.1]. Our variant, which we call tight splitting, takes as input the data .�;  ; f / of a
pseudo-Anosov  with an invariant standardly embedded train track � and outputs another train track �1
that is also invariant under  .

More precisely, suppose that .�;  ; f / is the data of a pseudo-Anosov  on S10;n carried by the standardly
embedded train track � ,

�

�  .�/
 

f
collapse

Suppose further that �1 ,! S10;n is another standardly embedded train track such that there exists an ele-
mentary folding map p W �1! � . Then there is a well-defined elementary folding map p W  .�1/!  .�/

such that the following diagram commutes:

�

�  .�/

�1  .�1/

 

f
collapse

 

p p 

If �1 were invariant under  , we would then be able to complete the above commutative diagram as
follows:

�

�  .�/

�1  .�1/

�1

 

f
collapse

 

p

f1

p 

collapse

Unfortunately, �1 need not be invariant under  , as Example 5.5 shows. We introduce tight splitting to
deal with this problem by taking into account the train track map f W � ! � . In particular, we will show
that if .�;  ; f / is the data of a pseudo-Anosov acting on a standardly embedded train track � , then there
is always a split p W �1! � such that �1 is still invariant under  . See Proposition 5.10.
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e1

e2 e3

e4

e5

 

Figure 16: The action of a particular pseudo-Anosov  W S10;5! S10;5 on an invariant train track.
Each of the loop edges contains a puncture.

Example 5.5 Consider the pseudo-Anosov  W S10;5! S10;5 represented in Figure 16. By computing a
right eigenvector for the Perron–Frobenius eigenvalue of the transition matrix M , we see that edge e2 has
smaller transverse measure than edge e3. Following Harer and Penner, we can perform a split by peeling
e2 away from e3 (truthfully, this is two splits since we need to also peel e2 away from the nonexpanding
edge connecting it to e3). The resulting train track is shown on the left of Figure 17. Unhappily, �1 is not
invariant under  .

After some thought, one might notice that a different split does produce an invariant train track for  .
Indeed, we can see from Figure 16 that e4 has smaller transverse measure than e5, and performing the
corresponding pair of splits (first over the black edge connecting e4 to e5, then over e5) produces an
invariant train track �2, as desired. See Figure 18. This second split differs from the first in that it is
compatible with the action of  on � : all paths in the image  .�/ that collapse onto e4 also collapse
onto e5. It is this property that allows us to easily isotope strands in  .�/ to lie transverse to the leaves
of the fibered neighborhood of �2. See Definition 5.8 and Proposition 5.10 for more.

e1

e2 e3

e4

e5

 

Figure 17: The action of  after naïvely splitting e2 over e3. On the left is the new track �1, and
on the right is the image  .�1/, up to isotopy. The only difference between the right-hand images
of this figure and Figure 16 is that the image of e2 has been peeled back along that of e3 and now
starts at the leftmost loop. As we can see, �1 is not invariant under  .

Geometry & Topology, Volume 28 (2024)



4368 Ethan Farber, Braeden Reinoso and Luya Wang

 e1

e2 e3 e4

e5

Figure 18: The action of  after more carefully splitting � . On the left is the train track �2, and on
the right is  .�2/. We obtain a new train track that is still invariant under  . This is an example
of a “tight split”.

Let � ,! S10;n be standardly embedded, and let v 2 � be a switch. The link of v is the collection Lk.v/ of
edges of � incident to v. The elements of Lk.v/ inherit a natural counterclockwise cyclic order e1; : : : ; ek .
A subset C � Lk.v/ is connected if whenever ei ; ej 2 C and i < j , then either

(1) eiC1; : : : ; ej�1 2 C , or

(2) ejC1; : : : ; ek; e1; : : : ; ei�1 2 C .

The collections

R.v/D freal edges in Lk.v/g and I.v/D finfinitesimal edges in Lk.v/g

are connected. We index the elements of Lk.v/ so that the real edges are e1; : : : ; em under the cyclic
order. In other words, from the perspective of v facing its real edges, e1 is the real edge furthest to the
right and em is the edge furthest to the left.

Definition 5.6 The right extremal edge of v is r.v/D e1, and the left extremal edge is l.v/D em. If
R.v/D feg is a singleton, then we set e D l.v/D r.v/.

If v is a switch at an infinitesimal loop of � , we treat each end of the loop as a distinct element of Lk.v/.
Hence I.v/ always consists of two elements, il and ir . These are defined so that, under the cyclic order,
we have

l.v/ < il < ir < r.v/:

Definition 5.7 We denote by vl the switch of � at the other end of il from v. Similarly, we denote by vr
the switch of � at the other end of ir from v. In the case that v is at a loop of � , we set vl D vr D v.

From now on, we set the convention that, for a given switch v of � , all edges in R.v/ are oriented into v
as paths.
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a

e

b
� N.�/

 

˛

e

b
�1 N.�1/

 

v v

Figure 19: Left: part of a train track � and the image of a pseudo-Anosov  carried by � . Here  
induces a train track map f W � ! � for which v splits tightly to the right. Right: the train track �1
after r–splitting v, and the action of  on �1. Note in particular that  has not changed, only �
and its fibered neighborhood N.�/. In each subfigure, the highlighted regions are collapsed by a
deformation retraction onto the corresponding edges.

Definition 5.8 Let � ,! S10;n be a standardly embedded train track. Let v be a switch of � . Fix a train
track map f W � ! � . We say that v splits tightly to the left or l–splits if for every real edge x � � the
following two conditions hold:

(1) Whenever l.v/ appears in the train path f .x/, it is followed by r.vl/.

(2) Whenever l.v/ appears in the train path f .x/, it is preceded by r.vl/.

Similarly, we say that v splits tightly to the right or r–splits if for every real edge x � � the following
two conditions hold:

(1) Whenever r.v/ appears in the train path f .x/, it is followed by l.vr/.

(2) Whenever r.v/ appears in the train path f .x/, it is preceded by l.vr/.

In either case, we say that v splits tightly. See Figures 19 and 20.

a

e

b
�

N.�/

 ˛
e

b
�1

 

N.�1/

v
v

Figure 20: Left: another train track � and map f W � ! � for which v splits tightly to the right.
Right: the train track �1 after r–splitting v.
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If v splits tightly, we define a new train track that maps to � by an elementary folding map. In this way,
we view splitting as an inverse operation to folding. In what follows we will restrict our attention to the
case that v tightly splits to the left: all definitions are analogous if v splits tightly to the right. To obtain
these analogous statements and proofs, one need only replace all l’s with r’s and vice versa.

Suppose v l–splits. Define � lv to be the standardly embedded train track obtained by deleting l.v/ and
replacing it with a real edge ˛ such that:

(1) As a directed edge, ˛.0/D l.v/.0/ and ˛.1/D r.vl/.1/.

(2) The edge ˛ forms a bigon (ie a two-cusped disk) with the train path l.v/ � r.vl/, and there is an
isotopy rel the punctures of S10;n so that ˛ lies transverse to the leaves of the fibered neighborhood
of � .

The standardly embedded track � lv comes equipped with a natural elementary folding map p W � lv! � ,
defined by

p.x/D

�
x if x ¤ ˛;
l.v/ � r.vl/ if x D ˛.

Definition 5.9 If v splits tightly to the left, then the map p W � lv! � is called a tight left split or an l–split
of � . We analogously define the tight right split or r–split p W �rv ! � .

Proposition 5.10 Suppose .�;  ; f / is the data of a pseudo-Anosov carried by the standardly embedded
train track � ,

�

�  .�/
 

f
collapse

If v l–splits , then � lv carries  . Hence the above diagram may be completed to the commutative diagram

�

�  .�/

� lv  .� lv/

� lv

 

f
collapse

 

p

f lv

p 

collapse

where f lv is a train track map.

Proof Let F � S10;n be a fibered surface for  from which the Bestvina–Handel algorithm produces � .
Let L; I and R denote the strips of F collapsing to the (unoriented) edges l.v/; il , and r.vl/ of � ,
respectively. Deleting L and replacing it with a strip A collapsing to ˛ produces a new fibered surface F 0
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from which the algorithm produces � lv. The fact that F 0 is a fibered surface for  follows from the fact
that v l–splits: any strip of  .F / passing through L in fact passes through all three of L, I and R in
order, and hence after an isotopy we may arrange for the strip to pass through A instead. Furthermore,
since ˛ is isotopic to l.v/ � il � r.lv/ and  .L/,  .I /, and  .R/ may be isotoped into F 0, it follows that
 .A/ may be isotoped into F 0 as well.

Proposition 5.11 Suppose that v l–splits and let M and Mv be the transition matrices of f W � ! � and
f lv W �

l
v! � lv, respectively. Then

Mv D P
�1MP;

where P is the transition matrix of the elementary folding map p W � lv! � : that is , if l.v/ is the j th edge
and r.vl/ is the i th edge , then we have

P D InCDi;j ;

where � has n real edges , In is the identity, and Di;j is the square matrix with a 1 in the .i; j /–entry and
0’s elsewhere.

Proof We will argue that we have the commutative diagram

� lv � lv

� �

p

f lv

p

f

From this the claim will follow, since each of the arrows is a Markov map, and so upon passing to
transition matrices we obtain the relation

PMv DMP:

Suppose x is an edge of � lv. By the definition of p we have

.f ıp/.x/D

�
f .x/ if x ¤ ˛,
f .l.v// �f .r.vl// if x D ˛.

On the other hand, we must understand the map f lv W �
l
v! � lv in order to analyze the composition p ıf lv .

For any edge y 2 � , define f 0.y/ to be the word obtained from the train path f .y/ by replacing each
instance of l.v/ �r.vl/ with ˛ and each instance of r.vl/ � l.v/ with x̨. In other words, f 0.x/ is the unique
word such that

p.f 0.x//D f .x/:

If x ¤ ˛ is an edge of � lv , then f lv .x/D f
0.x/. If x D ˛, then f lv .x/D f

l
v .˛/D f

0.l.v// �f 0.r.vl//. In
either case, we obtain the formula

.p ıf lv /.x/D

�
f .x/ if x ¤ ˛,
f .l.v// �f .r.vl// if x D ˛.

This agrees with the formula for f ıp, so the proof is complete.
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Recall that by the Perron–Frobenius theorem, the dilatation of  is a simple eigenvalue of the transition
matrix M , and there exists a positive right �–eigenvector � of M . For a fixed choice of � we will denote
by �.x/ the entry of � corresponding to the real edge x.

Corollary 5.12 Let .�;  ; f / be the data of a pseudo-Anosov carried by a standardly embedded train
track. Let M be the transition matrix for f W � ! � , and let � be the dilatation of f . Fix a positive
right �–eigenvector � of M . If v l–splits then �v D P�1� is a positive right �–eigenvector of Mv.
Consequently,

�.l.v// < �.r.vl//:

Proof Since Mv D P
�1MP , it immediately follows that �v D P�1� is a right �–eigenvector of Mv.

At least one entry of �v is positive, since �v.˛/ D �.l.v// > 0. Therefore �v is positive, since the
Perron–Frobenius theorem states that � is a simple eigenvalue of Mv and has a positive eigenvector.

To see that �.l.v// < �.r.vl//, observe that

0 < �v.r.vl//D �.r.vl//��.l.v//:

Example 5.13 Here is an extended example of a sequence of tight splittings. The maps appearing
in this example are closely related to the maps studied in Section 4. Let .�;  ; f / be the data of the
pseudo-Anosov represented in Figure 21. The transition matrix for f W � ! � is

M1 D

0BBBBB@
0 0 1 0 0

0 0 0 1 0

0 0 0 1 1

1 2 0 0 0

1 1 0 0 0

1CCCCCA:

The characteristic polynomial of M1 is �.t/D .t C 1/.t4� t3� t2� t C 1/. The dilatation of  is the
root � of this polynomial with largest absolute value, as in Section 2.3. A positive right �–eigenvector for
M1 is

�1 D

0BBBB@
�1.e1/

�1.e2/

�1.e3/

�1.e4/

�1.e5/

1CCCCAD
0BBBB@
2C 5���2��3

�2� 2�C�2C�3

1C�C 4�2� 2�3

�1����2C 2�3

3

1CCCCAD
0BBBB@
2:537 : : :

2:628 : : :

4:370 : : :

4:526 : : :

3

1CCCCA :
One can see that the vertex at loop 5 splits tightly to the left. Performing this l–split produces the track �2,
which also carries  . See Figure 21. The transition matrix of the l–split p1 W �2! �1 is

P1 D

0BBBBB@
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1

1CCCCCAD I5CD4;5;
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e1
e2 e3

e4

e5
˛

ˇ


1 2 3 4 5 3 4 5 1 2

 

e1
e2 e3

e4

e5
˛

ˇ


1 2 3 4 5 3 4 5 1 2

 

e1
e2 e3

e4

e5
˛

ˇ


1 2 3 5 4 3 4 5 2 1

��14 ı ı �4

e1
e2 e3

e4

e5
˛

ˇ


1 2 3 5 4 3 4 5 2 1

��14 ı ı �4

�1

�2

� 02

�3

Figure 21: The track �1, �2 carries  . The track � 02 D �
�1
4 .�2/ carries ��14 ı ı �4. The track �3

carries ��14 ı ı �4.

and the transition matrix for f2 W �2! �2 is

M2 D P
�1
1 M1P1 D

0BBBBB@
0 0 1 0 0

0 0 0 1 1

0 0 0 1 2

0 1 0 0 0

1 1 0 0 0

1CCCCCA;
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which has right �–eigenvector

�2 D P
�1
1 �1 D

0BBBB@
�2.e1/

�2.e2/

�2.e3/

�2.e4/

�2.e5/

1CCCCAD
0BBBB@

�1.e1/

�1.e2/

�1.e3/

�1.e4/��1.e5/

�1.e5/

1CCCCAD
0BBBB@
2:537 : : :

2:628 : : :

4:370 : : :

1:526 : : :

3

1CCCCA :
We may conjugate by ��14 to obtain the track � 02, which is slightly easier to read. See Figure 21. This
move is a standardizing braid move in the language of [34]. It is not a tight splitting and is purely cosmetic.
It does not alter the transition matrix or any other relevant dynamical information.

We can now see that the switch at loop 4 splits tightly to the right. Performing this r–split produces the
track �3, which also carries ��14 ı ı�4. See Figure 21. The transition matrix of the r–split p2 W �3! �2 is

P2 D

0BBBBB@
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 1

1CCCCCAD I5CD5;4;
and the transition matrix for f3 W �3! �3 is

M3 D P
�1
2 M2P2 D

0BBBBB@
0 0 1 0 0

0 0 0 2 1

0 0 0 3 2

0 1 0 0 0

1 0 0 0 0

1CCCCCA;
which has right �–eigenvector

�3 D P
�1
2 �2 D

0BBBB@
�2.e1/

�2.e2/

�2.e3/

�2.e4/

�2.e5/��2.e4/

1CCCCAD
0BBBB@

�1.e1/

�1.e2/

�1.e3/

�1.e4/��1.e5/

2�1.e4/��1.e4/

1CCCCAD
0BBBB@
2:537 : : :

2:638 : : :

4:370 : : :

1:526 : : :

1:473 : : :

1CCCCA :

5.3 Switch rigidity

In this section we investigate when a tight splitting is possible at a given switch, identifying the essential
obstruction. We call this obstruction switch rigidity and show that it is uncommon. Indeed, the orbit of
every switch contains a switch that is tightly splittable; cf Proposition 5.20.

Let v be a switch of the train track � . Recall that Lk.v/ is the set of edges of � incident to v. A Markov
map f W �! � induces a mapDf WLk.v/!Lk.f .v// as follows. Orient all edges in Lk.v/ and Lk.f .v//
away from v and f .v/, respectively. Then

Df.a/D b if f .a/ begins with b.
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e1
e2

e

f .w/D v

f .x1/

f .x2/

v

Figure 22: An example of a rigid switch. On the left is the switch, on the right the image of the
map near the switch.

As a consequence of the Bestvina–Handel algorithm, all elements of R.v/ belong to the same gate: that
is, there exists an integer k � 1 such that .Df /k DD.f k/ is constant on R.v/.

Definition 5.14 Let � ,! S10;n be standardly embedded, and let f W � ! � be a train track map. Let v be
a switch of � such that R.v/ is not a singleton, and set R.v/D fe1; : : : ; ekg. Let w be the switch of �
such that f .w/D v. We say that v is rigid if there exist x1; : : : ; xk 2R.w/ such that

Df.xi /D ei for all i:

Lemma 5.15 Let .�;  ; f / be the data of the pseudo-Anosov  on S10;n carried by the standardly
embedded � . Let w be a switch of � . Write ˛ D r.w/, ˇ D l.w/ and v D f .w/. For any c 2 R.v/
between Df.˛/ and Df.ˇ/, there exists a 
 2 R.w/ such that Df.
/ D c. In other words , the set
Df.Lk.w//� Lk.v/ is connected.

Proof Suppose c 2 R.v/ is between Df.˛/ and Df.ˇ/. Since  is pseudo-Anosov, f is surjective.
Hence there exists a real edge 
 such that f .
/ collapses onto c. But since  is a homeomorphism,  .
/
cannot intersect  .˛[ˇ/, so 
 must be incident to w. In other words, c DDf.
/.

Definition 5.16 We say a switch v of � is a loop switch if it is incident to an infinitesimal loop.

The next lemma says that switch rigidity is the only barrier to the existence of a tight splitting at a loop
switch. Note that if v is a loop switch, then vl D vr D v.

Lemma 5.17 Let .�;  ; f / be the data of a pseudo-Anosov  on S10;n carried by the standardly embed-
ded � . Let v be a loop switch , and suppose that R.v/ is not a singleton. Then exactly one of the following
three possibilities is true.

(1) The switch v splits tightly to the left.

(2) The switch v splits tightly to the right.

(3) The switch v is rigid.

Proof Let w be the loop switch of � such that f .w/D v. If either (1) or (2) holds then v cannot be rigid:
for example, if v l–splits then there does not exist x 2R.w/ such that Df.x/D l.v/. On the other hand,
if v is not rigid then Lemma 5.15 implies that at least one of l.v/; r.v/ is not in the image Df.Lk.w//.
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Assume without loss of generality that l.v/ …Df.Lk.w//. Then any appearance of l.v/ in an image train
path is in fact an appearance of l.v/ � xx, up to orientation. Here x is some edge in R.v/ that might vary.
If x is always r.v/ then v l–splits. Otherwise, we claim that v r–splits.

Indeed, suppose that there exists a real edge y � � such that f .y/ contains l.v/ � xx, up to orientation, for
some real edge x ¤ r.v/. Lemma 5.15 implies that Df.Lk.w// is a subset of the real edges between
l.v/ and x. In particular, r.v/ …Df.Lk.w//. Let z be a real edge such that f .z/ contains r.v/, up to
orientation. Since  is a homeomorphism and f .z/ is a train path, the appearance of r.v/ in f .z/ must
be followed by l.v/, due to the existence of  .y/. In other words, v r–splits.

Thus we have established that (1) or (2) holds if and only if (3) does not hold. It remains to show that (1)
and (2) are mutually exclusive. Corollary 5.12 says that if v l–splits then �.l.v// < �.r.v//. It follows
that if (1) holds then (2) cannot. The proof is complete.

The same argument gives the following proposition for a switch not at a loop.

Proposition 5.18 Let .�;  ; f / be the data of a pseudo-Anosov  on S10;n carried by the standardly
embedded � . Let v be a switch of � , and suppose that R.v/ is not a singleton. Suppose additionally that
R.vl/ and R.vr/ are singletons. Then at least one of the following three possibilities is true.

(1) The switch v splits tightly to the left.

(2) The switch v splits tightly to the right.

(3) The switch v is rigid.

Moreover , case (3) is disjoint from cases (1) and (2).

Lemma 5.17 says that if we cannot split at a particular switch v, then it is rigid. The natural next step is
to consider the preimage switch v1 causing v to be rigid. If v1 is also rigid, we look at its preimage v2.
It might happen that we never find a splittable switch. In this case, the periodic orbit of v consists of a
cycle of rigid switches.

Definition 5.19 A rigid cycle of length k is a collection of rigid switches v1; : : : ; vk 2 � such that
f .vj /D vj�1 for all j , where the indices are taken modulo k.

Proposition 5.20 Rigid cycles do not exist.

Proof Let v 2 � be a switch. Since � is standardly embedded, every element of R.v/ belongs to the
same gate of v, hence there exists k � 1 such that .Df /k is constant on R.v/. In fact, for all n� k we
have that .Df /n is constant on R.v/. On the other hand, if v belonged to a rigid cycle of length n then
.Df /n WR.v/!R.v/ would be the identity map, a contradiction.

Corollary 5.21 Let v 2 � be a switch such that R.v/ is not a singleton. Then some iterated preimage
switch w of v is not rigid.
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It is well-known that if .�;  ; f / is the data of a pseudo-Anosov, then f permutes the infinitesimal
k–gons for each k; see [5]. We obtain the following corollary, which will be of central importance in the
following section. The real valence of a switch v is the cardinality of R.v/.

Corollary 5.22 Let nk denote the maximal real valence of a switch at an infinitesimal k–gon of � , where
k � 1. If nk > 1, then there exists a switch of valence nk at such a k–gon which is not rigid.

Proof The infinitesimal k–gons are permuted by f . If every such maximal valence switch is rigid, then
they must form a rigid cycle, since real valence cannot decrease when passing to the preimage of a rigid
switch. This is impossible, since rigid cycles do not exist.

5.4 The proofs of Theorems 4.2, C, and D

In this subsection, we will use the theory of tight splitting developed above to prove Theorem D, and
see Theorem 4.2 as a consequence. Though Theorem D itself is more general than necessary to prove
Theorem 4.2, we believe it has wider-reaching applications to surface dynamics.

Definition 5.23 Let � ,! S10;n be a standardly embedded train track. We say a real edge e of � is a stem
if at least one end of e is incident to an infinitesimal k–gon, where k � 2.

Definition 5.24 Let � ,! S10;n be a standardly embedded train track. We say a loop switch v 2 � is a
joint if jR.v/j � 2.

Theorem D Let  be a pseudo-Anosov on S10;n with at least one k–pronged singularity away from the
boundary with k � 2. Then  is carried by a train track � with no joints.

The central argument in the proof of Theorem D hinges on finding a maximal-valence vertex v near a
puncture, and then using Corollary 5.22 to tightly split at v. Before diving into the proof, we observe
one crucial lemma. Although well-known to experts, the authors could not find a complete proof of
Lemma 5.25 in the literature. For the sake of completeness, we have included a proof which arose from a
helpful conversation with Karl Winsor.

Lemma 5.25 For any fixed n and B > 0, there is a finite number of Perron–Frobenius matrices of size n
and spectral radius at most B . In particular , there is a finite number of Perron–Frobenius matrices of a
given size with a particular Perron–Frobenius eigenvalue.

Proof Fix n� 2, and let M be an n�n Perron–Frobenius matrix. Write Mi;j for the .i; j /th entry of M ,
and Cj .M/ for the j th column of M . An exercise in matrix algebra shows that for each integer k � 1,

Cj .M
k/D

nX
iD1

.M k�1/i;j �Ci .M/:
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It is well-known (see [36]) that M n2�2nC2 has all entries positive. Hence the smallest column sum of
M n2�2nC3 is at least the sum kMk1 of all the entries of M . It is not hard to see that the smallest column
sum of a Perron–Frobenius matrix is a lower bound on its spectral radius �.M/. We now have

�.M/n
2�2nC3

D �.M n2�2nC3/� kMk1 :

In particular, �.M/� kMk
1=.n2�2nC3/
1 . Since there are only finitely many integer-valued matrices M

with kMk1 below a given bound, the result follows.

Proof of Theorem D Let �0 ,! S10;n be a standardly embedded train track carrying  . We will
algorithmically perform a finite sequence of tight splittings on �0 to produce the desired track � with no
joints.

Let J denote the number of cusps at the loop switches of � , ie J D
P
v.jR.v/j�1/, where v ranges over

the loop switches of � . If J D 0 then there is nothing to prove, so assume J � 1. By Corollary 5.22
there exists a loop switch of �0 of maximal valence that can be tightly split. Therefore, we introduce the
following simple algorithm.

(1) Initialize �D �0 and MDfM0g, whereM0 is the transition matrix associated to the data .�0;  ; f0/.

(2) Find a loop switch of � of maximal valence that is not rigid, and split it, obtaining the data
.�1;  ; f1/ with transition matrix M1. Set � D �1.

(3) If J has decreased by one, return the data .�1;  ; f1/.

(4) If J has not decreased, add M1 to M and repeat Steps 2 and 3 with .�1;  ; f1/.

We claim that this algorithm terminates in finitely many steps, and returns a train track � with one fewer
joint than �0. First, note that splitting at a loop switch v0 either preserves J or decreases it by one. Indeed,
let b be the real edge that is split over, ie the edge whose transverse weight is reduced (cf Corollary 5.12).
Let vb denote the switch at the other end of b. The tight splitting transfers a cusp from the splitting switch
v0 to vb . Thus, in the formula

J D
X

v a loop switch

.jR.v/j � 1/;

the contribution from v0 decreases by one, whereas the contribution from vb either

(1) increases by one, if vb is itself a loop switch; or

(2) does not change, if vb is not a loop switch.

In particular, if b is a stem, then splitting over b at the loop switch v0 will always reduce J by one.

It remains to show that, by repeatedly applying the above algorithm, we will eventually split over a stem.
Indeed, by Lemma 5.25 there are only finitely many possible transition matrices that can appear, hence we
will eventually produce a matrix Mj DMi 2M. Since this matrix is Perron–Frobenius, the dilatation �
of  is an eigenvalue with strictly positive eigenvectors �i and �j . Moreover, � is simple, so in fact �j
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is a scalar multiple of �i . According to Corollary 5.12, each tight splitting reduces one of the entries of
this eigenvector, so recurring to a matrix in M implies that every entry of � has been reduced, ie that
every real edge of �0 has been split over. In particular, the stems of �0 have been split over. The preceding
paragraph now implies that the algorithm must terminate in finite time.

Repeating this algorithm sufficiently many times will eventually reduce J to 0, proving the theorem.

Proof of Theorem 4.2 In the stratum .2I 15I 3/, there are only two classes of standardly embedded train
tracks without joints: those shown in Figure 7. By Theorem D, any pseudo-Anosov in this stratum is
conjugate to one carried by either the Peacock or the Snail. We will argue that any pseudo-Anosov  
carried by the Snail tightly splits to one carried by the Peacock.

First, observe that  must split at the unique valence-3 switch of the infinitesimal triangle in the Snail, by
Corollary 5.22. Either a left or right split at this vertex yields a pseudo-Anosov  0 conjugate to  , and
carried by a track � 0 with a unique two-valent vertex v at a puncture. This vertex v is again splittable by
Corollary 5.22. At v, note that  0 splits either to another map carried by � 0, with strictly smaller edge
weight on the edge running between two punctures, or to a map carried by the Peacock. In particular,
after sufficiently many splits,  0 splits to a pseudo-Anosov carried by the Peacock.

Proof of Theorem C If  W S ! S has the given singularity type, we may cap-off  to a pseudo-
Anosov y on the closed genus-two surface yS and extend the foliations preserved by  along the capping
disk. In this case, the 4–prong singularity p in the capping disk is the unique 4–prong singularity of y .
In particular, y commutes with the hyperelliptic involution � on yS and p is fixed by �, as for instance in
[2, Lemma 3.7]. And, because p is fixed by �, we see that  commutes with the hyperelliptic involution
on S , as well. We may then quotient  to a pseudo-Anosov 5–braid ˇ, and from here the techniques of
Section 5 apply. Theorem 4.2 implies that ˇ is carried by the Peacock train track depicted in Figure 7,
and we can then lift this track to S as described in Section 2.4.
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