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Helly graphs are graphs in which every family of pairwise-intersecting balls has a nonempty intersection.
This is a classical and widely studied class of graphs. We focus on groups acting geometrically on
Helly graphs — Helly groups. We provide numerous examples of such groups: all (Gromov) hyperbolic
groups, CAT(0) cubical groups, finitely presented graphical C(4)-T(4) small cancellation groups and
type-preserving uniform lattices in Euclidean buildings of type C,, are Helly; free products of Helly
groups with amalgamation over finite subgroups, graph products of Helly groups, some diagram products
of Helly groups, some right-angled graphs of Helly groups and quotients of Helly groups by finite
normal subgroups are Helly. We show many properties of Helly groups: biautomaticity, existence of
finite-dimensional models for classifying spaces for proper actions, contractibility of asymptotic cones,
existence of EZ-boundaries, satisfiability of the Farrell-Jones conjecture and satisfiability of the coarse
Baum—Connes conjecture. This leads to new results for some classical families of groups (eg for FC-type
Artin groups) and to a unified approach to results obtained earlier.

20F06, 20F65, 20F67

1 Introduction

1.1 Motivation and main results

A geodesic metric space is injective if any family of pairwise-intersecting balls has a nonempty intersection;
see Aronszajn and Panitchpakdi [2]. Injective metric spaces appear independently in various fields of
mathematics and computer science: in topology and metric geometry — also known as hyperconvex spaces
or absolute retracts (in the category of metric spaces with 1-Lipschitz maps); in combinatorics — also
known as fully spread spaces; in functional analysis and fixed-point theory — also known as spaces with
binary intersection property; in the theory of algorithms — known as convex hulls, and elsewhere. They
form a very natural and important class of spaces and have been studied thoroughly. The distinguishing
feature of injective spaces is that any metric space admits an injective hull, ie the smallest injective space
into which the input space isometrically embeds; this important result was rediscovered several times in
the past; see Chrobak and Larmore [31], Dress [37] and Isbell [59].

A discrete counterpart of injective metric spaces are Helly graphs — graphs in which any family of
pairwise-intersecting (combinatorial) balls has a nonempty intersection. Again, there are many equivalent
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definitions of such graphs, and hence they are also known as eg absolute retracts (in the category of
graphs with nonexpansive maps); see Bandelt and Pesch [8], Bandelt and Prisner [9], Jawhari, Pouzet and
Misane [62], Pesch [75; 76] and Quilliot [80].

As the similarities in the definitions suggest, injective metric spaces and Helly graphs exhibit a plethora
of analogous features. A simple but important example of an injective metric space is (R”, d), that
is, the n-dimensional real vector space with the metric coming from the supremum norm. The discrete
analog is IZl’f L, the direct product of n infinite lines L, which embeds isometrically into (R”, dso) with
vertices being the points with integral coordinates. The space (R”, do) is quite different from the “usual”
Euclidean n-space E” = (R",d,). For example, the geodesics between two points in (R”, dso) are
not unique, whereas such uniqueness is satisfied in the “nonpositively curved” E”. However, there is
a natural “combing” on (R”, doo) — between any two points there is a unique “straight” geodesic line.
More generally, every injective metric space admits a unique geodesic bicombing of a particular type
(see Section 3.4 for details). The existence of such a bicombing allows us to conclude many properties
typical for nonpositively curved — more precisely, for CAT(0) —spaces. Therefore, injective metric
spaces can be seen as metric spaces satisfying some version of “nonpositive curvature”. Analogously,
Helly graphs and the associated Helly complexes (that is, flag completions of Helly graphs), enjoy many
nonpositive-curvature-like features. Some of them were exhibited in our earlier work: in [23] we prove,
for example, a version of the Cartan-Hadamard theorem for Helly complexes. Moreover, the construction
of the injective hull associates with every Helly graph an injective metric space into which the graph
embeds isometrically and coarsely surjectively. For the example presented above, the injective hull of
X7 Lis (R", doo).

Exploration of groups acting nicely on nonpositively curved complexes is one of the main activities in
geometric group theory. Here we initiate the study of groups acting geometrically (that is, properly and
cocompactly by automorphisms) on Helly graphs. We call them Helly groups. We show that the class is
vast— it contains many large classical families of groups (see Theorem 1.1), and is closed under various
group-theoretic operations (see Theorem 1.3). In some instances, the Helly group structure is the only
known nonpositive-curvature-like structure. Furthermore, we show in Theorem 1.5 that Helly groups
satisfy some strong algorithmic, group-theoretic and coarse geometric properties. This allows us to derive
new results for some classical groups and present a unified approach to results obtained earlier.

Theorem 1.1 Groups from the following classes are Helly:
(1) groups acting geometrically on graphs with “near” injective metric hulls, in particular, (Gromov)
hyperbolic groups,
(2) CAT(0) cubical groups, that is, groups acting geometrically on CAT(0) cube complexes,
(3) finitely presented graphical C(4)-T(4) small cancellation groups,

(4) groups acting geometrically on swm-graphs, in particular, type-preserving uniform lattices in
Euclidean buildings of type C,,.
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As aresult of its own interest, as well as a potentially very useful tool for establishing Hellyness of groups
(in particular, used successfully here), we prove the following theorem. The coarse Helly property is
a natural “coarsification” of the Helly property. The property of B-stable intervals was introduced by
Lang [65] in the context of injective metric spaces and is related to Cannon’s property of having finitely
many cone types (see Section 1.4 for further explanation).

Theorem 1.2 A group acting geometrically on a coarse Helly graph with 3-stable intervals is Helly.

Furthermore, it has been shown recently by Huang and Osajda [57] that FC-type Artin groups and weak
Garside groups of finite type are Helly. The latter class contains eg fundamental groups of the complements
of complexified finite simplicial arrangements of hyperplanes, braid groups of well-generated complex
reflection groups, structure groups of nondegenerate, involutive and braided set-theoretical solutions
of the quantum Yang—Baxter equation, one-relator groups with nontrivial center and, more generally,
tree products of cyclic groups. Conjecturally, there are many more Helly groups — see the discussion
in Section 9.

Theorem 1.3 Let I',I,1%,..., I} be Helly groups. Then:
(1) A free product It xg I of 17 and I, with amalgamation over a finite subgroup F and the
HNN-extension I'y x g over F are Helly.
(2) Every graph product of I', ..., I} is Helly. In particular, the direct product I'1 x --- x I}, is Helly.

(3) The O-product of Ty and Ty, thatis Ty O T = (I, bt : [g. h] = [g.tht | =1,gel, hel),
is Helly.

(4) The x-power of T, thatis T™ = (It : [g.tgt™'] = 1, g € '), is Helly.
(5) The quotient '/ N by a finite normal subgroup N <1 T is Helly.

Observe also that, by definition, finite-index subgroups of Helly groups are Helly. Again, we conjecture
that Hellyness is closed under other group-theoretic constructions — see the discussion in Section 9.
Theorem 1.3(2)—(4) are consequences of the following combination theorem for actions on quasimedian
graphs with Helly stabilizers. Further consequences of the same result are presented in Section 6.7.

Theorem 1.4 Let I' be a group acting topically transitively on a quasimedian graph G. Suppose that

e any vertex of G belongs to finitely many cliques,

e any vertex stabilizer is finite,

the cubical dimension of G is finite,
¢ G contains finitely many I"-orbits of prisms, and
e for every maximal prism P = Cy X --- x Cy,, we have stab(P) = stab(Cy) x - - - X stab(Cy,).

If clique stabilizers are Helly, then T" is a Helly group.
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The results above show that the class of Helly groups is vast. Nevertheless, we may prove a number of
strong properties of such groups. One very interesting and significant aspect of the theory is that the
Helly group structure equips the group not only with a specific combinatorial structure that is the source
of important algorithmic and algebraic features (eg (1) in the theorem below), but also— via the Helly
hull construction — provides a more concrete “nonpositively curved” object acted upon by the group: a
metric space with convex geodesic bicombing (see (5) below). Such spaces might be approached using
methods typical for the CAT(0) setting, and are responsible for many “CAT(0)-like” results on Helly
groups, such as (6)—(9) in the following theorem:

Theorem 1.5 If I is a Helly group, then:

(1) T is biautomatic.
(2) T has finitely many conjugacy classes of finite subgroups.

(3) T is (Gromov) hyperbolic if and only if G does not contain an isometrically embedded infinite
£oo-grid.
(4) The clique complex X(G) of G is a finite-dimensional cocompact model for the classitying

space ET for proper actions. As a particular case, I' is always of type Foo (see eg Geoghegan
[46, Theorem 7.3.1]), and is of type F when it is torsion-free.

(5) T acts geometrically on a proper injective metric space of finite combinatorial dimension, and
hence on a metric space with a convex geodesic bicombing.

(6) TI' admits an EZ-boundary 0G.
(7) T satisfies the Farrell-Jones conjecture with finite wreath products.
(8) T satisfies the coarse Baum—Connes conjecture.

(9) The asymptotic cones of I' are contractible.

As immediate consequences, we obtain new results on some classical group classes. For example it
follows that FC-type Artin groups and finitely presented graphical C(4)-T(4) small cancellation groups
are biautomatic. Further discussion of important consequences is presented in Section 1.3. Note also
that by Theorem 1.5(5), further properties of Helly groups can be deduced from eg Descombes [32] and
Descombes and Lang [33; 34]; see also the discussion in Huang and Osajda [57, Introduction].

Theorems 1.1-1.5 are proved by the use of more general results on Helly graphs. A fundamental property
that we use is the following local-to-global characterization of Helly graphs from Chalopin, Chepoi, Hirai
and Osajda [23]: a graph G is Helly if and only if G is clique-Helly (ie any family of pairwise-intersecting
maximal cliques of G has a nonempty intersection) and its clique complex X(G) is simply connected.
Here we present some of the results we obtained about Helly graphs (or complexes) in a simplified form
(see Section 1.4 for further explanation).
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Theorem 1.6 The following constructions give rise to Helly graphs:

(1) A union of graph-products (UGP) of clique-Helly graphs satisfying the 3-piece condition is clique-
Helly. If its clique complex is simply connected then it is Helly.

(2) Thickenings of simply connected C(4)-T(4) graphical small cancellation complexes are Helly.
(3) Rips complexes and face complexes of Helly graphs are Helly.

(4) Nerve complexes of the cover of a Helly graph by maximal cliques are Helly.

1.2 Historical note and general context

As already mentioned, injective metric spaces were introduced by Aronszajn and Panitchpakdi [2], and
they show the equivalence between injective metric spaces and hyperconvex spaces. Isbell [59] proves
that for any metric space (X, d) there exists a smallest injective space which contains (X, d) as an
isometric subspace. This smallest injective space is called the injective hull of (X, d). Later, this result
was independently rediscovered by Dress [37] and also established for finite metric spaces by Chrobak
and Larmore [31]. Dress provided other characterizations of injective hulls and developed the theory of
combinatorial dimension of injective hulls viewed as cell complexes. This concept of dimension was
further developed by Lang [65], who was also the first to use injective metric spaces in the context of
geometric group theory. Lang also introduced the important concept of B-stable intervals [65] and showed
that the injective hulls of locally finite graphs with S-stable intervals are proper and have the structure of
a locally finite polyhedral complex with finitely many isometry types of cells of each dimension. This
result of Lang is particularly important in the proof of Theorem 1.1(1) and Theorem 1.2. In these proofs,
we also use his concept of the bounded distance property [65], which we show to be equivalent to the
coarse Helly property introduced by Chepoi and Estellon [29]. As a matter of fact, §-hyperbolic geodesic
spaces and graphs satisfy the bounded distance property [65] and the coarse Helly property [29].

The fact that CAT(0) cubical groups are Helly (Theorem 1.1(2)) follows from the bijection between
CAT(0) cube complexes and median graphs (see Chepoi [27] and Roller [81]) and the result of Bandelt
and Van de Vel [10] establishing that the thickenings of median graphs are Helly graphs. This result was
generalized by Chalopin, Chepoi, Hirai and Osajda [23] to swm-graphs, thus yielding Theorem 1.1(4).

The Helly property is ubiquitous in combinatorics, and is captured by the concept of Helly hypergraphs;
see Berge [13]. Berge and Duchet [14] presented a simple “local” characterization of Helly hypergraphs
that is useful in showing that the maximal cliques of a graph satisfy the Helly property. This result and
the local-to-global characterization of Helly graphs of [23] provide a useful tool to establish the Hellyness
of a graph. This method is used in the proof of Theorems 1.1 and 1.6.

Besides the local-to-global characterization of Helly graphs, other characterizations of Helly graphs have
been obtained earlier by Bandelt and Pesch [8], Bandelt and Prisner [9] and Hell and Rival [52]. The
proof of Theorem 1.5(2)—(9) uses other properties of Helly graphs and injective spaces. Theorem 1.5(2)
follows from Polat’s [77] fixed-point result for Helly graphs. Theorem 1.5(4) uses the fact that Helly
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6 Jérémie Chalopin, Victor Chepoi, Anthony Genevois, Hiroshi Hirai and Damian Osajda

graphs are dismantlable [8] and that fixed-point sets in dismantlable graphs are contractible; see Barmak
and Minian [11]. The proof of Theorem 1.5(3) relies on the characterization of (Gromov) hyperbolic
weakly modular graphs of [23] and Chepoi, Dragan, Estellon, Habib and Vaxes [28].

Theorem 1.5(5) follows from the fact that a geometric action on a Helly graph extends to a geometric
action on its injective hull. The second assertion then follows since injective spaces of finite combinatorial
dimension admit a convex geodesic bicombing; see Descombes and Lang [33]. Theorem 1.5(6)—(9) follow
from the existence of this geodesic bicombing and results established by [33], Fukaya and Oguni [44]
and Kasprowski and Riiping [64].

To establish the biautomaticity of Helly groups (Theorem 1.5(5)), we use the technique introduced by
Swiatkowski [85] of locally recognized path systems in a graph. In this setting, one can design a canonical
path system satisfying a combinatorial bicombing property (this bicombing is different from the convex
geodesic bicombing of [33]). That groups acting geometrically on Helly graphs are different from groups
acting on injective spaces follows from the recent result of Hughes and Valiunas [58] showing that there
exist groups acting geometrically on injective spaces that are neither Helly nor biautomatic.

1.3 Discussion of consequences of main results

Biautomaticity is an important algorithmic property of a group. It implies, among other things, that the
Dehn function is at most quadratic and that the word problem and the conjugacy problem are solvable;
see eg Epstein, Cannon, Holt, Levy, Paterson and Thurston [40]. Biautomaticity of classical C(4)-T(4)
small cancellation groups was proved by Gersten and Short [47]. Our results (Theorem 1.1(3) and
Theorem 1.5(1)) imply biautomaticity in the more general graphical small cancellation case.

Biautomaticity of all FC-type Artin groups is a new result of this paper together with work of Huang
and Osajda [57]. Also new are the solution to the conjugacy problem and the quadratic bound on the
Dehn function. Altobelli [1] showed that FC-type Artin groups are asynchronously automatic, and hence
have solvable word problem. Biautomaticity for few classes of Artin groups was shown before by Brady
and McCammond [20], Charney [24], Gersten and Short [47], Huang and Osajda [56], Peifer [74] and
Pride [79]; (see [57, Subsection 1.3] for a more detailed account).

Although the classical C(4)-T(4) small cancellation groups have been thoroughly investigated and quite
well understood (see eg [47] and Lyndon and Schupp [67]), there was no nonpositive curvature structure
similar to CAT(0) known for them. Wise [88] equipped groups satisfying the stronger B(4)-T(4) small
cancellation condition with a structure of a CAT(0) cubical group, but the question of a similar cubulation of
C(4)-T(4) groups is open [88, Problem 1.4]. Theorems 1.5 and 1.1(3) equip such groups with a structure of
a group acting geometrically on an injective metric space. This allows us to conclude that the Farrell-Jones
and coarse Baum—Connes conjectures hold for them. These results are new; moreover, we prove them in the
much more general setting of graphical small cancellation. Note that — although quite similar in definition
and basic tools — the graphical small cancellation theories provide examples of groups not achievable
in the classical setting (see eg Osajda [71; 70] and Osajda and Prytuta [72] for details and references).
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Important examples to which our theory applies are presented in [57]. These — besides the FC-type Artin
groups mentioned above — are the weak Garside groups of finite type. This class includes among others:
fundamental groups of the complements of complexified finite simplicial arrangements of hyperplanes,
spherical Artin groups, braid groups of well-generated complex reflection groups, structure groups of
nondegenerate, involutive and braided set-theoretical solutions of the quantum Yang—Baxter equation,
one-relator groups with nontrivial center and, more generally, tree products of cyclic groups. To our best
knowledge there were no other “CAT(0)-like” structures known for these groups before. Consequently,
such results as the existence of an EZ-structure, the validity of the Farrell-Jones conjecture and of the
coarse Baum—Connes conjecture obtained by using our approach are new in these settings.

Yet another class to which our theory applies and provides new results are quadric groups introduced and
investigated by Hoda [54]. See eg [54, Example 1.4] for a class of quadric groups that are a priori neither
CAT(0) cubical nor C(4)-T(4) small cancellation groups.

Finally, we believe that many other groups are Helly — see the discussion in Section 9. Proving Hellyness
of those groups would equip them with very rich discrete and continuous structures, and would immediately
imply a plethora of strong features, described above. On the other hand, there are still many other properties
to be discovered, with the hope that most CAT(0) results can be shown in this setting.

1.4 Organization of the article and further results

The proofs of Theorem 1.1(1)—(4) are provided as follows. Item (1) follows from Proposition 6.7 and
Corollary 6.9. Items (2) and (4) follow from Proposition 6.1 and Corollary 6.2. Item (3) is Corollary 6.19.

The coarse Helly property is discussed in Section 3.3, and the proof of Theorem 1.2 (later appearing as
Proposition 6.8) is presented in Section 6.3.

The proofs of Theorem 1.3(1)—(5) are provided as follows. Item (1) is proved in Section 6.5. Items (2)—(4)
are consequences of Theorem 1.4 (later appearing as Theorem 6.24) and are shown in Section 6.7. There,
we also show more general results: Theorem 6.27 on diagram products of Helly groups, and Theorem 6.31
on right-angled graphs of Helly groups. Item (5) follows directly from Theorem 6.21.

Theorem 1.4 is discussed and proved in Section 6.7.

The proofs of Theorem 1.5(1)—(9) are provided as explained below. The proof of (1) is presented in
Section 8. Item (2) follows from the fixed point theorem (Theorem 7.1), and is proved in Section 7.1. The
proof of (3) is presented in Section 7.2. Item (4) follows from Corollary 7.4 in Section 7.3, (5) follows
from Theorems 3.13 and 6.3, and (6)—(9) are proved in Sections 7.4, 7.5, 7.6 and 7.7, respectively.

The proofs of Theorem 1.6(1)—(4) are provided as follows. A union of graph-products (UGP) is defined
and studied in Section 5.1, and (1) is a part of Theorem 5.4. Graphical small cancellation complexes are
studied in Section 6.4, and (2) is proved there as Theorem 6.18. Rips complexes and face complexes are
discussed in Sections 5.5 and 5.6, respectively, and (3) is shown there. We discuss nerve complexes and
prove (4) in Section 5.4.
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Due to its relevance to our work here, in Section 2.5 we present in detail the Helly property in the general
setting of hypergraphs (set systems). We also discuss the conformality property for hypergraphs, which is
dual to the Helly property and which is an analog of flagness for simplicial complexes. For the same
reason, in Section 3.2 we present the main ideas of Isbell’s proof of the existence of injective hulls. Some
further notions and additional results can be found in the arXiv version of the paper.

2 Preliminaries

2.1 Graphs

A graph G = (V, E) consists of a set of vertices V := V(G) and a set of edges E := E(G) C V x V. All
graphs we consider are undirected, connected and locally finite but not necessarily finite, and contain no
multiple edges and no loops. (With the exception of the quasimedian graphs considered in Section 6.7.)
That is, they are locally finite one-dimensional simplicial complexes. For two distinct vertices v, w € V
we write v ~ w (resp. v ~ w) when there is an (resp. there is no) edge connecting v with w, that is,
when vw := {v, w} € E. For vertices v, wy, ..., Wi, We write v ~ W1, ..., Wr (Tesp. v » Wi,..., W)
or v ~ A (resp. v ~ A) when v ~ w; (resp. v ~ w;), foreachi = 1,...,k, where A = {wq,..., wr}.
As maps between graphs G = (V, E) and G’ = (V’, E’) we always consider simplicial maps, that is,
functions of the form f: V — V' such that if v ~ w in G then f(v) = f(w) or f(v) ~ f(w) in G'.
A (u,w)-path (vo =u,vy,..., v = w) of length k is a sequence of vertices with v; ~ v;41. If k =2,
then we call P a2-path of G. If x; # x; for |i — j| > 1, then P is called a simple (a, b)-path. A k-cycle
(vo,v1,...,Vr_1) is apath (vg, v1,...,Vg_1,V0). For A C V, the subgraph of G = (V, E) induced by A
is the graph G(A) = (A, E’) such that uv € E’ if and only if uv € E (G(A) is sometimes called a full
subgraph of G). A square uvwz (resp. triangle uvw) is an induced 4-cycle (u, v, w, z) (resp. 3-cycle
(u, v, w)). The wheel Wy, is the graph obtained by connecting a single vertex — the central vertex ¢ —to
all vertices of the k-cycle (x1, x2,..., Xg).

The distance d(u,v) = dg(u, v) between two vertices u and v of a graph G is the length of a shortest
(u, v)-path. For a vertex v of G and an integer r > 1, we denote by B, (v, G) (or by B,(v)) the ball in G
(and the subgraph induced by this ball) of radius r centered at v, thatis, B,(v,G)={x eV :d(v,x) <r}.
More generally, the r-ball around a set A C V is the set (or the subgraph induced by) B,(A4,G) =
{veV:d(,A) <r}, where d(v, A) = min{d(v, x) : x € A}. Asusual, N(v) = B1(v, G) \ {v} denotes
the set of neighbors of a vertex v in G. A graph G = (V, E) is isometrically embeddable into a graph
H = (W, F) if there exists a mapping ¢: V — W such that dg (¢(u), ¢(v)) = dg(u, v) for all vertices
u,v € V. A retraction ¢ of a graph G is an idempotent nonexpansive mapping of G into itself, that is,
©? = ¢: V(G) = V(G) with d(¢(x), ¢(y)) < d(x, y) for all x, y € W. The subgraph of G induced by
the image of G under ¢ is referred to as a retract of G.

The interval I(u, v) between u and v consists of all vertices on shortest (1, v)-paths, that is, of all vertices
(metrically) between u and v: I(u,v) ={x € V :d(u,x) +d(x,v) = d(u,v)}. An induced subgraph
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of G (or the corresponding vertex set A) is called convex if it includes the interval of G between any pair
of its vertices. The smallest convex subgraph containing a given subgraph S is called the convex hull
of S and is denoted by conv(S). An induced subgraph H (or the corresponding vertex set of H) of a
graph G is gated [39] if for every vertex x outside H there exists a vertex x” in H (the gate of x) such
that x’ € I(x, y) for any y of H. Gated sets are convex, and the intersection of two gated sets is gated.
By Zorn’s lemma there exists a smallest gated subgraph ((S)) containing a given subgraph S, called the
gated hull of S.

Let G; for i € A be an arbitrary family of graphs. The Cartesian product [[;c Gi is a graph whose
vertices are all functions x: i — x; for x; € V(G;), and where two vertices x and y are adjacent if there
exists an index j € A such that x;y; € E(G;) and x; = y; for all i # j. Note that a Cartesian product
of infinitely many nontrivial graphs is disconnected. Therefore in this case the connected components of
the Cartesian product are called weak Cartesian products. The direct product ;e G; of graphs G; for
i € A is a graph having the same set of vertices as the Cartesian product, and two vertices x and y are
adjacent if x; y; € E(G;) or x; = y; foralli € A.

We continue with definitions of weakly modular graphs and their subclasses. We follow [23; 4]. Recall

that a graph is weakly modular if it satisfies the following two distance conditions (for every k > 0):

¢ Triangle condition (TC) For any vertex u and any two adjacent vertices v and w at distance k
to u, there exists a common neighbor x of v and w at distance kK — 1 to u.

¢ Quadrangle condition (QC) For any vertices u and z at distance k and any two neighbors v and w
of z at distance k — 1 to u, there exists a common neighbor x of v and w at distance k — 2 from u.

Vertices vi, vy and v3 form a metric triangle vivavs if I(v;,v;) N I(v;, vg) = {v;} for any distinct
1<i,j,k<3.Ifd(vy,v2) =d(va,v3) = d(v3,v1) = k, then this metric triangle is called equilateral
of size k. All metric triangles of a weakly modular graph are equilateral [25].

We use some classes of weakly modular graphs defined either by forbidden isometric or induced subgraphs,
or by restricting the size of the metric triangles of G. A graph is called median if every triplet of vertices
has a unique median, that is, |/ (u, v) N I (v, w) N I(w, v)| = 1 for every triplet of vertices (u, v, w). By
a result of [27; 81], median graphs are exactly the 1-skeletons of CAT(0) cube complexes (see below).
For other properties and characterizations of median graphs, see the survey [4]; for some other results
on CAT(0) cube complexes, see [82]. A graph is called modular if I(u,v) N I(v,w) N I(w,v) # & for
every triplet (1, v, w) of vertices, that is, every triplet of vertices admits a median. Clearly, median graphs
are modular and modular graphs are weakly modular. A modular graph is called strongly modular if it
does not contain K7 5 as an isometric subgraph. We will also consider a nonbipartite generalization of
strongly modular graphs, called sweakly modular graphs or swm-graphs, which are defined as weakly
modular graphs without induced K and isometric K3 53 (K is K4 minus one edge and Ky 5 is K33
minus one edge). The swm-graphs have been introduced and studied in depth in [23]. The cell complexes
of swm-graphs can be viewed as a far-reaching generalization of CAT(0) cube complexes in which the
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cubes are replaced by cells arising from dual polar graphs, introduced and characterized by Cameron [22].
By [23, Theorem 5.2], dual polar graphs are exactly the thick weakly modular graphs not containing any
induced K or isometric K3 5 (a graph is thick if the interval between two vertices at distance 2 contains
at least two other vertices). A set X of vertices of an swm-graph G is Boolean-gated if X induces a gated
and thick subgraph of G. By [23, Section 6.3] a set X of vertices of an swm-graph G is Boolean-gated if
and only if X is a gated set of G that induces a dual-polar graph.

A graph G is called pseudomodular if any three pairwise-intersecting balls of G have a nonempty
intersection [6]. This condition easily implies both the triangle and quadrangle conditions, and thus
pseudomodular graphs are weakly modular. An important subclass of pseudomodular graphs is constituted
by Helly graphs, the main subject of our paper, which will be defined below. The quasimedian graphs are
the K, - and K> 3-free weakly modular graphs; equivalently, they are exactly the retracts of Hamming
graphs (weak Cartesian products of complete graphs). From the definition it follows that quasimedian
graphs are pseudomodular and swm-graphs. For many results about quasimedian graphs see [7; 45], and
for a theory of groups acting on quasimedian graphs see [45].

A graph G is called bridged [42; 84] if it does not contain any isometric cycle of length greater than 3.
Alternatively, a graph G is bridged if and only if the balls B, (A4, G) around convex sets A of G are convex.
Bridged graphs are exactly the weakly modular graphs that do not contain induced 4- and 5-cycles [25].
A graph G (or its clique-complex X(G)) is called locally systolic if the neighborhoods of vertices do
not induce 4- and 5-cycles. If additionally the clique complex X(G) of G is simply connected, then the
graph G (or its clique-complex X(G)) is called systolic. If the neighborhoods of vertices of a (locally)
systolic graph G do not induce 6-cycles, then G is called (locally) 7-systolic. It was shown in [27] that
bridged graphs are exactly the 1-skeletons of the systolic complexes of [61]. In the following, we will use
the name systolic graphs instead of bridged graphs.

A graph G = (V, E) is called hypercellular [30] if G can be isometrically embedded into a hypercube
and G does not contain Q5 as a partial cube minor (Q75 is the 3-cube Q3 minus one vertex). A graph H
is called a partial cube minor of G if G contains a finite convex subgraph G’ which can be transformed
into H by successively contracting some classes of parallel edges of G’. Hypercellular graphs are not
weakly modular but they generalize median graphs [30].

2.2 Complexes

All complexes we consider are locally finite CW complexes. Following [51, Chapter 0], we call them
cell complexes or just complexes. If all cells are simplices (resp. unit solid cubes) and the nonempty
intersection of two cells is their common face, then X is called a simplicial (resp. cube) complex. For a
cell complex X, by X (&) we denote its k-skeleton. All cell complexes in this paper will have graphs as
their 1-skeletons. Therefore we use the notation G(X) := X (1. The star of a vertex v in a complex X,
denoted by St(v, X), is the set of all cells containing v.
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An abstract simplicial complex A on a set V is a set of nonempty subsets of V' such that each member
of A, called a simplex, is a finite set, and any nonempty subset of a simplex is also a simplex. A simplicial
complex X naturally gives rise to an abstract simplicial complex A on the set of vertices (0-dimensional
cells) of X by setting U € A if and only if there is a simplex in X having U as its vertices. Combinatorial
and topological structures of X are recovered from A. Hence we sometimes identify simplicial complexes
and abstract simplicial complexes.

The cligue complex of a graph G is the abstract simplicial complex X (G) having the cliques (ie complete
subgraphs) of G as simplices. A simplicial complex X is a flag simplicial complex if X is the clique
complex of its 1-skeleton. Given a simplicial complex X, the flag-completion X of X is the clique
complex of the 1-skeleton G(X) of X.

Let C be a cycle in the 1-skeleton of a complex X. Then a cell complex D is called a singular disk
diagram (or Van Kampen diagram) for C if the 1-skeleton of D is a plane graph whose inner faces are
exactly the 2-cells of D and there exists a cellular map ¢: D — X such that ¢|gp = C (for more details
see [67, Chapter V]). According to Van Kampen’s lemma [67, pages 150-151], a cell complex X is simply
connected if and only if, for every cycle C of X, one can construct a singular disk diagram. A singular disk
diagram with no cut vertices (that is, its 1-skeleton is 2-connected) is called a disk diagram. A minimal
(singular) disk for C is a (singular) disk diagram D for C with a minimum number of 2-faces. This
number is called the (combinatorial) area of C and is denoted by Area(C). If X is a simply connected
triangle (resp. square, triangle-square) complex, then for each cycle C, all inner faces in a singular disk
diagram D of C are triangles (resp. squares, triangles or squares).

As morphisms between cell complexes we always consider cellular maps, that is, maps sending the
k-skeleton into the k-skeleton. An isomorphism is a bijective cellular map that is a linear isomorphism
(isometry) on each cell. A covering (map) of a cell complex X is a cellular surjection p: X — X such that
p|sr(ﬁ,)?): Si(ﬁ, X)— St(p(v), X) is an isomorphism for every vertex v in X; compare [51, Section 1.3].
The space X is then called a covering space.

2.3 CAT(0) spaces and Gromov hyperbolicity

Let (X, d) be a metric space. A geodesic segment joining two points x, y € X is an isometric embedding
p: R ©[0,1] — X such that p(0) = x, p(I) = y and d(p(t), p(t')) = |t —'| for any t,1’ € [0,]
(d(x,y) =1 is the length of the geodesic p). A metric space (X, d) is geodesic if every pair of points in
X can be joined by a geodesic segment. Every graph G = (V, E) can be transformed into a geodesic
space (Xg, d) by replacing every edge e = uv by a segment vy, = [u, v] of length 1; the segments may
intersect only at common ends. Then (V, dg) is isometrically embedded in a natural way into (Xg, d).

A geodesic triangle A(x1, X2, x3) in a geodesic metric space (X, d) consists of three points in X and a
geodesic between each pair of vertices. A comparison triangle for A(x1, x2, x3) is a triangle A(x], x5, x3)
in the Euclidean plane E? = (R?, d5) such that da(x!, xj/.) =d(x;,x;) fori, j €{1,2,3}. A geodesic
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metric space (X, d) is a CAT(0) space [49] if all geodesic triangles A(x1, x2,x3) of X satisfy the
comparison axiom of Cartan, Alexandrov and Toponogov:

If y is a point on the (x7, x2)-geodesic of A(x1, X2, x3) and y’ is the unique point on the line
segment [x], x3] of the comparison triangle A(x], x}, x5) such that da(x], y') = d(x;, y)
fori = 1,2, then d(x3,y) < d2(x},y').

The CAT(0) property is equivalent to the convexity of the function f: [0, 1] — X given by f(¢) =
d(a(tly), B(tlg)), for any two geodesics a and B of lengths I, and /g (which is further equivalent to the
convexity of the neighborhoods of convex sets). This implies that CAT(0) spaces are contractible. Any
two points of a CAT(0) space can be joined by a unique geodesic. See [21] for a detailed account on
CAT(0) spaces and their isometry groups.

A cube complex X is CAT(0) if X, endowed with the intrinsic £, metric, is a CAT(0) metric space.
Gromov [49] characterized CAT(0) cube complexes as the simply connected cube complexes such that
the following cube condition holds: if three (k+2)-dimensional cubes intersect in a k-dimensional cube
and pairwise intersect in (k+1)-dimensional cubes, then all three are contained in a (k4 3)-dimensional
cube. The cube condition is equivalent to the flagness condition, which states that the geometric link of
any vertex is a flag simplicial complex. The 1-skeletons of CAT(0) cube complexes are precisely the
median graphs [27; 81].

A metric space (X, d) is §-hyperbolic [49; 21] if, for any points u, v, x and y of X, the two larger
of the sums d(u,v) + d(x,y), d(u,x) + d(v,y) and d(u, y) + d(v, x) differ by at most 26 > 0. A
graph G = (V, E) is §-hyperbolic if (V,dg) is §-hyperbolic. A metric space or a graph has bounded
hyperbolicity if it is §-hyperbolic for some finite §. For geodesic metric spaces and graphs, -hyperbolicity
can be defined as spaces in which all geodesic triangles are §-slim. Recall that a geodesic triangle
A(x,y,z) is called §-slim if for any point u on the side [x, y] the distance from u to [x, z] U [z, y] is at
most §.

2.4 Group actions

For a set X and a group I, a I"-action on X is a group homomorphism I' — Aut(X). If X is equipped
with an additional structure, then Aut(X) refers to the automorphism group of this structure. We say
then that I' acts on X by automorphisms, and x — gx denotes the automorphism that is the image of g.
Here X will be a graph or a cell complex, and thus Aut(X) will denote graph automorphisms or cellular
automorphisms. Let I" be a group acting by automorphisms on a cell complex X. Recall that the action
is cocompact if the orbit space X /G is compact. The action of I" on a locally finite cell complex X is
proper if stabilizers of cells are finite. Finally, the action is geometric (or I' acts geometrically on X) if it
is cocompact and proper. If a group I' acts geometrically on a graph G or on a cell complex X, then G
and X are locally finite. This explains why we consider locally finite graphs, complexes and hypergraphs.
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2.5 Hypergraphs (set families)

In this subsection, we recall the main notions in hypergraph theory. We closely follow the book by
Berge [13] on hypergraphs (with the single difference that our hypergraphs may be infinite). A hypergraph
is a pair H = (V, ), where V is aset and £ = {H; }; < is a family of nonempty subsets of V; V is called
the set of vertices and & is called the set of edges (or hyperedges) of 7. Abstract simplicial complexes
are examples of hypergraphs. The degree of a vertex v is the number of edges of H containing v. A
hypergraph # is called edge-finite if all edges of H are finite and vertex-finite if the degrees of all vertices
are finite. H is called a locally finite hypergraph if H is edge-finite and vertex-finite. A hypergraph H is
simple if no edge of  is contained in another edge of H. The simplification of a hypergraph H = (V, )
is the hypergraph # = (V, £) whose edges are the maximal by inclusion edges of 7.

The dual of a hypergraph H = (V, ) is the hypergraph H* = (V*, £*) whose vertex set V* is in bijection
with the edge-set £ of H and whose edge-set £* is in bijection with the vertex set V'; namely £* consists
ofall S, ={H; €£:ve H;}forveV.Bydefinition, (£*)* = H. The dual of a locally finite hypergraph
is also locally finite. The hereditary closure Hofa hypergraph # is the hypergraph whose edge set is
the set of all nonempty subsets F' C V' such that F' € H; for at least one index i. Clearly the hereditary
closure 7 of a hypergraph H is a simplicial complex and # = 7L. The 2-section [H]2 of a hypergraph H is
the graph having V' as its vertex set, and two vertices are adjacent in [#], if they belong to a common edge
of 7. By definition the 2-section [#]5 is exactly the 1-skeleton 71 of the simplicial complex 7, and
the 2-section of H coincides with the 2-section of its simplification H. The line graph L(H) of H has &
as its vertex set, and H; and H; are adjacent in L(#) if and only if H; N H; # &. By definition (see also
[13, Proposition 1, page 32]), the line graph L(#) of H is precisely the 2-section [H*], of its dual H*. A
cycle of length k of a hypergraph # is a sequence (v, Hy, vz, H,v3, ..., Hi,v1) suchthat Hy, ..., Hy
are distinct edges of H, vy, va, ..., v are distinct vertices of V', v;,v;y1 € H; fori =1,...,k—1, and
Vg, V1 € Hy. A copair hypergraph is a hypergraph H in which V' \ H; € £ for each edge H; € £. The
nerve complex of a hypergraph H = (V, £) is the simplicial complex N(#) having £ as its vertex set and
such that a finite subset o € € is a simplex of N(H) if (", ¢, Hi # ; see [17]. The nerve graph NG(H)
of a hypergraph # is the 1-skeleton of the nerve complex N(#). The following result is straightforward:

Lemma 2.1 N(H) = H* and NG(H) = [H*], = (H*)D.

A family of subsets F of a set V satisfies the (finite) Helly property if, for any (finite) subfamily 7’ of F,
the intersection (| F' = ({F : F € F'} is nonempty if and only if F N F’ # & for any pair F, F' € F'. A
hypergraph H = (V, £) is called (finitely) Helly if its family of edges £ satisfies the (finite) Helly property.
We continue with a characterization of Helly hypergraphs. In the finite case this result is due to Berge and
Duchet [13; 14]. The case of edge-finite hypergraphs follows from a more general result [5, Proposition 1].

Proposition 2.2 [13; 14] An edge-finite hypergraph H = (V, £) is Helly if and only if forany x, y,z €V
the intersection of all edges containing at least two of x, y and z is nonempty.
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We call the condition in Proposition 2.2 the Berge—Duchet condition.

A hypergraph H = (V, £) is conformal if all maximal cliques of the 2-section [H], are edges of H. In
other words, # is conformal if and only if its hereditary closure Hisa flag simplicial complex. The
following result establishes the duality between conformal and Helly hypergraphs:

Proposition 2.3 [13, page 30] #H is conformal if and only if its dual H* is Helly.

Analogously to the Helly property, the conformality can be characterized in a local way via the following
Gilmore condition (the proof follows from Propositions 2.2 and 2.3):

Proposition 2.4 [13, page 31] A vertex-finite hypergraph H is conformal if and only if for any three
edges Hy, Hy and H3 of H there exists an edge H of H containing (H1 N Hy)U(H1 N H3)U(H> N H3).

A hypergraph H is balanced [13] if any cycle of H of odd length has an edge containing three vertices of
the cycle. Balanced hypergraphs represent an important class of hypergraphs with strong combinatorial
properties (the Konig property) [13; 15]. It was noticed [13, page 179] that the finite balanced hypergraphs
are at the same time Helly and conformal; the duals of balanced hypergraphs are also balanced. In fact,
those three fundamental properties still hold for a larger class of hypergraphs: we call a hypergraph H
triangle-free if any cycle of H of length 3 has an edge containing the three vertices of the cycle. That
is, for any three distinct vertices x, y and z and any three distinct edges H;, H, and H3 such that
x,y€ Hy, y,z € Hy and z, x € Hs, one of the edges H;, H, and H3 contains the three vertices x, y
and z. Equivalently, a hypergraph H is triangle-free if and only if it satisfies a stronger version of the
Gilmore condition: for any three edges Hy, H» and H3 of H there exists an edge H; in {H1, Hy, H3}
that contains (Hy N Hy) U (Hy N H3) U (H N H3). Since the dual of a triangle-free hypergraph is also
triangle-free, locally finite triangle-free hypergraphs are conformal and Helly [15; 13].

Another important class of Helly hypergraphs, extending the class of balanced hypergraphs, is the class
of normal hypergraphs. A hypergraph H is called normal [13; 66] if it satisfied the Helly property and its
line graph L(#) is perfect (ie by the strong perfect graph theorem L (#) does not contain odd cycles of
length > 3 and their complements as induced subgraphs).

With any graph G = (V, E) one can associate several hypergraphs, depending on the studied problem and
of the studied class of graphs. In the context of our current work, we consider the following combinatorial
and geometric hypergraphs: the clique-hypergraph X (G) of all maximal cliques of G, the ball-hypergraph
B(G) of all balls of G, and the r-ball-hypergraph B,(G) of all balls of a given radius r of G. The
ball-hypergraph can be considered for an arbitrary metric space (X, d). The clique-hypergraph X' (G)
of any graph G is simple and conformal, and its hereditary closure X (G) coincides with the clique
complex X(G) of G. In the case of median graphs G (and CAT(0) cube complexes), together with
the cube complex (cube hypergraph), an important role is played by the copair hypergraph H(G) of
all halfspaces of G (convex sets with convex complements). Since convex sets of median graphs are
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gated [60, Theorem 1.22] and gated sets satisfy the finite Helly property, the hypergraph #(G) is finitely
Helly. For a graph G we will also consider the nerve complex N (X (G)) of the clique-hypergraph X (G),
as well as the nerve complex N(5,(G)) of the r-ball-hypergraph 5, (G) for r € N.

2.6 Abstract cell complexes

An abstract cell complex X (also called a convexity space or closure space) is a locally finite hypergraph
H(X) = (V, &) with @ € £ and whose edges are closed under intersections, ie if H; for i € I are edges
of H, then ();c; H; is also an edge of H(X ). We call the edges of H(X) the cells of X and H(X) the
cell-hypergraph of X. The cells of X contained in a given cell C are called the faces of C. The faces
of a cell C ordered by inclusion define the face lattice F(C) of C. C' & C is a facet of C if C' is a
maximal by inclusion proper face of C; in other words, C’ is a coatom of the face lattice F(C). The
dimension dim(C) of a cell C is the length of the longest chain in the face lattice of C. Locally finite
abstract simplicial complexes are abstract cell complexes. In fact, they are the cell complexes in which the
face lattices are Boolean lattices. The dimension of a simplex with d + 1 vertices is d. Cube complexes
are also abstract cell complexes. It suffices to consider the vertex set of each cube as an edge of the
cell-hypergraph; the dimension of a cube is the standard dimension.

Abstract cell complexes also arise from swm-graphs and hypercellular graphs. The cells of an swm-graph
are its Boolean-gated sets and the dimension of a Boolean-gated set is its diameter. Observe that in an
swm-graph, any maximal clique is boolean-gated. In the corresponding abstract cell complex, each such
clique is a 1-dimensional cell whose 0-cells are the vertices of the clique. It was shown in [23] that one
can also associate a contractible geometric cell complex to any swm-graph G, in which the cells are
the orthoscheme complexes of the Boolean-gated sets of G. Note that the geometric dimension of this
geometric complex is larger than the dimension of the abstract cell complex. The cells of a hypercellular
graph G are the gated subgraphs of G which are the convex hulls of the isometric cycles of G. It was
shown in [30] that those cells are Cartesian products of edges and even cycles. It was established in [30]
that the geometric realization of the abstract cell complex of a hypercellular graph is contractible. The
dimension of such a cell is the number of edge factors plus twice the number of cycle factors. Notice that
swm-graphs and hypercellular graphs represent two far-reaching and quite different generalizations of
median graphs. Swm-graphs no longer have hyperplanes (ie classes of parallel edges) and halfspaces,
and their cells (Boolean-gated sets) have a complex combinatorial structure; nevertheless, they are still
weakly modular and admit a local-to-global characterization. On the other hand, hypercellular graphs are
no longer weakly modular but they still admit hyperplanes (whose carriers are gated) and halfspaces, and
each triplet of vertices admits a unique median cell.

2.7 Helly graphs and Helly groups

We continue with the definitions of our main objects: Helly and clique-Helly graphs and complexes, and
Helly groups.
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Definition 2.5 A graph G is a Helly graph if the ball-hypergraph B(G) is Helly. A graph G is a 1-Helly
graph if the 1-ball-hypergraph B1(G) is Helly. A clique-Helly graph is a graph G in which the hypergraph
X(G) of maximal cliques is Helly.

Observe that a Helly graph is 1-Helly and a 1-Helly graph is clique-Helly, but that the reverse implications
do not hold: a cycle of length at least 7 is 1-Helly but not Helly and a cycle of length 4 is clique-Helly
but not 1-Helly. Notice also that Helly graphs are pseudomodular and thus weakly modular. For arbitrary
graphs not containing infinite cliques, Polat and Pouzet [78] proved that the Helly property and the finite
Helly property are equivalent.

Definition 2.6 A Helly complex is the clique complex of some Helly graph. A clique-Helly complex is
the clique complex of some clique-Helly graph.

Remark 2.7 If in Definitions 2.5 and 2.6 instead of a Helly property we consider the corresponding finite
Helly property, then the graphs satisfying it are called finitely Helly. For example, finitely clique-Helly
graphs are graphs G in which the hypergraph X'(G) has the finite Helly property. For locally finite graphs,
the finite Helly properties for balls and cliques implies the Helly property, and thus finitely Helly (resp.
clique-Helly) graphs and complexes are Helly (resp. clique-Helly). By [78], the same implication holds
for arbitrary graphs not containing infinite cliques.

We continue with the definition of Helly groups:
Definition 2.8 A group I' is Helly if it acts geometrically on a Helly complex X.

If a group I" acts geometrically on a Helly complex X, then X is locally finite. Moreover X has uniformly
bounded degrees.

In case of the clique-Helly property, Proposition 2.2 can be specified in the following way:

Proposition 2.9 [35; 86] A graph G with finite cliques is clique-Helly if and only if for any triangle T
of G the set T* of all vertices of G adjacent with at least two vertices of T contains a vertex adjacent to
all remaining vertices of T*.

Remark 2.10 Proposition 2.9 does not hold for graphs containing infinite cliques. For example, consider
the graph G defined as follows. First, consider an infinite clique K = {vg, vy, v2,..., Vg, ...} whose
vertex set is indexed by N. For each i € N, we add a vertex u; that is adjacent to all v; such that j >i.
Observe that any two maximal cliques of G have a nonempty intersection but there is no universal vertex
in G. Consequently, G is not clique-Helly. On the other hand, one can easily check that G satisfies the
criterion of Proposition 2.9.

For any locally finite graph G, the clique-hypergraph X' (G) is conformal and G is isomorphic to the
2-section of X' (G). Moreover, if G is clique-Helly, then X' (G) is Helly. We conclude this subsection with
the following simple but useful converse result (see eg [9]):

Geometry & Topology, Volume 29 (2025)



Helly groups 17

Proposition 2.11 For a locally finite hypergraph H = (V, £) the following conditions are equivalent:

(i) The 2-section [H], of H is a clique-Helly graph and H is conformal (each maximal clique of [H],
is an edge of H).

(i1) The simplification H of H is conformal and Helly.

(iii) H satisfies the Berge—Duchet and Gilmore conditions.

In particular, the 2-section of any locally finite triangle-free hypergraph is clique-Helly.

Proof Since [H], = [H]2, we can suppose that # is simple. The equivalence (ii) <=> (iii) follows from
Propositions 2.2 and 2.4. If (i) holds, then # coincides with the hypergraph of maximal cliques of [H],,
and thus # is Helly. Also H is conformal as the clique-hypergraph of a graph. This establishes (i) = (ii).
Conversely, if (ii) holds, since # is conformal, each clique of [#], is included in an edge of H. Thus the
maximal cliques of [#], are in bijection with the edges of H. This shows that [#], is clique-Helly. O

2.8 Hellyfication

There is a canonical way to extend any hypergraph H = (V, ) to a conformal hypergraph conf(#) =
(V,&"): & consists of £ and all maximal by inclusion cliques C in the 2-section [H] of H. Any
conformal hypergraph #” extending H and having the same 2-section [H"] = [#] as H also contains
conf(#) as a subhypergraph, thus conf(#) can be called the conformal closure of H. Since the Helly
property and conformality are dual, any hypergraph H = (V, £) can be extended to a Helly hypergraph
Helly(H) = (V', £’): for every maximal pairwise-intersecting set F of edges of H with empty intersection,
add a new vertex vz to V' and to each member of F. In the thus extended hypergraph Helly(#) any two
edges intersect exactly when their traces on V intersect. Hence Helly (%) satisfies the Helly property and
we call Helly(#) the Hellyfication of H. Again, Helly(#) is contained in any hypergraph satisfying the
Helly property, extending # and having the same line graph as H. This kind of Hellyfication approach
was used in [5] to Hellyfy discrete copair hypergraphs and to relate this Hellyfication procedure with the
cubulation (median hull) of the associated wall space; see [5, Proposition 3].

3 Injective spaces and injective hulls

In this section we discuss injective metric spaces and Isbell’s construction of injective hulls. Those notions
are strongly related to Helly graphs: roughly, Helly graphs and ball-Hellyfication can be seen as discrete
analogs of (continuous) injective metric spaces and injective hulls.

3.1 Injective spaces

A metric space (X, d) is called hyperconvex if every family of closed balls By, (x;) of radii r; € R
with centers x; satisfying d(x;, x;) < r; 4+ r; has a nonempty intersection. Rephrasing the definition,
(X.d) is hyperconvex if it is Menger-convex (that is, By (x) N Bg(x,y)—r(y) # @ for all x, y € X and
r € [0,d(x, y)]) and the family of closed balls in (X, d) satisfies the Helly property. A metric space
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(X, d) is called integer-valued if d(x, y) is an integer for any x, y € X. An integer-valued metric space
(X, d) is discretely geodesic if for any two points x, y € X with d(x, y) = n there exists a sequence of
points xg := X, X1, X2, ..., X, := y such that d(x;, x;+1) = 1. The set of vertices of a connected graph
equipped with a graph distance is an example of an integer-valued and discretely geodesic metric space.

Let (Y, d’) and (X, d) be two metric spaces. For ACY,amap f: A— X is 1-Lipschitzif d( f(x), f(y)) <
d’(x, y) for all x, y € A. The pair (Y, X) has the extension property if for any A C Y, any 1-Lipschitz
map f: A — X admits a 1-Lipschitz extension, ie a 1-Lipschitz map f Y — X such that f a=f. A
metric space (X, d) is injective if for any metric space (Y, d’), the pair (Y, X) has the extension property.
For Y C X,the map f: X — Y is a (nonexpansive) retraction if f is 1-Lipschitz and f(y) = y for any
y € Y. A metric space (Y, d’) is an absolute retract if, whenever (Y, d’) is isometrically embedded in a
metric space (X, d), there exists a retraction f from X to Y.

In 1956, Aronszajn and Panitchpakdi established the following equivalence between hyperconvex spaces,
injective spaces, and absolute retracts:

Theorem 3.1 [2] A metric space (X, d) is injective if and only if (X, d) is hyperconvex if and only if
(X, d) is an absolute (1-Lipschitz) retract.

3.2 Injective hulls

By a construction of Isbell [59] (rediscovered twenty years later by Dress [37] and yet another ten
years later by Chrobak and Larmore [31] in computer science), for every metric space (X, d) there
exists a smallest (with respect to inclusion) injective metric space containing X. More precisely, an
injective hull (or tight span, or injective envelope, or hyperconvex hull) of (X, d) is a pair (e, E(X)) where
e: X — E(X) is an isometric embedding into an injective metric space £ (X), and such that no injective
proper subspace of E(X) contains e(X). Two injective hulls e: X — E(X) and f: X — E’(X) are
equivalent if they are related by an isometry i : E(X) — E’(X). Below we describe Isbell’s construction in
some details and we recall a few important features of injective hulls — all this will be of use in Section 6.

Theorem 3.2 [59] Every metric space (X,d) has an injective hull and all its injective hulls are
equivalent.

We continue with the main steps in the proof of Theorem 3.2. We follow the Isbell’s proof [59], but
also use some notations and results from Dress [37] and Lang [65]; see these three papers for a full
proof. Let (X,d) be a metric space. A metric form on X is a real-valued function f on X such
that f(x) 4+ f(y) = d(x,y) for all x,y € X. Denote by A(X) the set of all metric forms on X, ie
AX)={feRX: f(x)+ f(y)=d(x,y) forall x,y € X}. For f, g € A(X), set f <gif f(x)<g(x)
for each x € X. A metric form is called extremal on X if there is no g € A(X) such that g # f and
g<f.Let E(X)={f € A(X): f is extremal}.

Claim 3.3 If f € E(X), then f(x)+d(x,y)> f(y) forany x,y € X, thatis, f is 1-Lipschitz.
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If this was false for x,y € X, then defining g to coincide with f everywhere except at y, where
g(y) = f(x)+d(x,y), we conclude that g € A(X). Since g < f, we obtain g = f.

The difference doo(f, g) = sup,cx | f(x) — g(x)| between any two extremal forms f and g is bounded;
any number f(x) + g(x) is a bound. Thus (E(X), dso) is a metric space. For a point x € X, let dy be
defined by setting dx(y) = d(x,y) forany y € X.

Claim 3.4 For any x € X, the map dx: y — d(x,y) is extremal on X and the map e: X — E(X)
sending x to dy is an isometric embedding of (X, d) into (E(X), deo)-

The map e is often called the Kuratowski embedding.

From the definition of extremal metric forms, the following useful property of E(X) easily follows (this
explains why extremal maps are called tight extensions in [37]):

Claim 3.5 If (X,d) is compact then for any f € E(X) and x € X there exists y in X such that
f(x)+ f(y) =d(x,y). In general metric spaces, for any x € X and any € > 0, there exists y in X such

that f(x)+ () <d(x, ) +e.
The inequalities f(x) 4+ f(y) > d(x,y) and f(x)+d(x,y) > f(y) together are equivalent to:
Claim 3.6 If f € E(X), then f(x) = doo(f,e(x)) forall x € X.

The following claim is the main tool in Isbell’s proof. Let A(E (X)) denote the set of all metric forms on
E(X) and let E(E(X)) denote the set of all extremal metric forms on E(X).

Claim 3.7 If s is extremal on E(X), then se is extremal on X .

First notice that se € A(X). To prove Claim 3.7, we suppose by way of contradiction that se is not extremal
and we obtain a contradiction with the assumption that s is extremal on E(X). Then there exists & € E(X)
such that 1 <se and h(x) <se(x) for some x € X. Definethe map ¢: E(X) — R by setting 7 ( ) =s(f) for
all f € E(X) different from e(x). Sett(e(x)) = h(x) <s(e(x)). Since t < s, to contradict the extremality
of s on E(X) it remains to show thatt € A(E(X)),iet(f)+1(g) > dx(f, g) forany f, g € E(X). Since
s € A(E(X)), from the definition of ¢ it suffices to establish the previous inequality for any f € E(X)
and g = e(x) with f # e(x), that is, to show that ze(x) + ¢ (f) > doo(f. €(x)). This is done using the
definition of e(x) and Claims 3.3 and 3.6. For any € > 0, pick y € X such that f(x)+ f(y) <d(x,y)+e.
Then te(x) +1(f) =te(x) +se(y) —se(y) +s(f) = h(x) + h(y) —doole(y), f) = d(x,y) = f(y) >
f(x)—€ =dxo(e(x), f)—e. Since € > 0 is arbitrary, te(x) +1(f) > doo(f, e(x)), as required.

Claim 3.8 The metric space (E(X), doo) is injective.

To prove Claim 3.8, in view of Theorem 3.1 it suffices to show that (E(X), dx) is hyperconvex: if
fi€ E(X), ri e R" and i € I such that doo(f;, fj) <ri+7j,then(");c; B(fi,ri) # 2. We may suppose
that r: E(X) — A(E(X)) is a metric form on E(X) extending the radius function r;: r( f;) = r; (this
extension exists by Zorn’s lemma). Let s € E(E(X)) such that s < r. By Claim 3.7, se belongs to
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E(X). We assert that se belongs to any r( f)-ball centered at f € E(X). Indeed, for any x € X, we have
se(x)— f(x) =se(x)—doo(f.e(x)) <s(f) <r(f), where the equality follows from Claim 3.6 and the
first inequality follows from Claim 3.3 (applied to E(X) and E(E(X)) instead of X and E(X)). On
the other hand, f(x)—se(x) = doo(f, e(x)) —se(x) <s(f) <r(f), where the equality follows from
Claim 3.6 and the inequality follows by the choice of s in A(E(X)). This establishes Claim 3.8.

Claim 3.9 The embedding e: X — E(X) is an injective hull and is equivalent to every injective hull of X .

Let a: E(X) — E(X) be 1-Lipschitz such that a(e(x)) = e(x) for any x € X. Let f € E(X) and
let g = a(f). By Claim 3.6, for any x € X we have g(x) = dxo(g,e(x)) = doo(oz(f),oz(e(x))) <
deo(f,e(x)) = f(x). Hence g < f, whence « is the identity map. Thus E(X) cannot be retracted to
any subset S & E(X) containing e(X), and hence S is not injective.

Finally, consider any injective hull ¢’: X — E’(X) of (X,d). Let f be an isometry from e(X) to
e’(X) and let f” be its inverse. Since both E(X) and E’(X) are injective, there exist 1-Lipschitz maps
fiE(X)— E'(X)and f': E'(X) — E(X) extending f and f’, respectively. Note that the composition
f ! f is a 1-Lipschitz map from E(X) to E(X) that is the identity on e(X). Therefore f ! f is the identity
map by what has been shown above, and thus f is injective and f is surjective. Since f and f' are
1-Lipschitz and f ! f is the identity on E(X), necessarily f is an isometric embedding of E(X) in E’(X).
Then since E(X) is injective, the image of f contains ¢’(X) = f (e(X)) and E’(X) is an injective hull,
SO f must be surjective and thus f is an isometry. Then f ' is injective, otherwise f ! f cannot be the
identity map on E(X). Thus both f and f " are isometries. This concludes the proof of Theorem 3.2.

Dress [37] defined E(X) as the set of all maps f € RX such that f(x) = sup{d(x,y)— f(y):y € X}
for all x € X. He established the following nice property of £(X) (which in fact characterizes E(X);
see [37, Theorem 1]):

Claim 3.10 If f,g € E(X), then
doo(f. &) = sup{deo(e(x), e(y)) —doo(e(y), f) —doole(x),g) 1 x, y € X}.

For simplicity, we prove Claim 3.10 for compact metric spaces, for which the supremum can be replaced
by maximum. The claim asserts that any pair of extremal functions f and g lies on a geodesic between
the images e(x) and e(y) in E(X) of two points x and y of X. Let x be a point of X such that
do(f, g) = f(x)— g(x). By Claim 3.5 there exists y € X such that f(x) = d(x,y) — f(y). Hence
doo(f.8) = f(x) —g(x) = d(x.y) = f(y) — &(x) = doo(e(x).e(y)) — f(y) — g(x). By Claim 3.6,
S(y)=deo(f.e(y)) and g(x) = doo(g. €(x)). Consequently doo (/. &) = doo(e(x). e(y))—f(y)—g(x) =
deo(e(x),e(y)) —doo(f,e(y)) —doo(g, e(x)) and we are done.

One interesting property of injective hulls is their monotonicity:

Corollary 3.11 If (X, d) is isometrically embeddable into (X', d’), then E(X) is isometrically embed-
dable into E(X').
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Proof Since (X, d) is isometrically embeddable into (X', d’) and E(X), and (X', d’) is isometrically
embeddable into E(X’), there exists an isometric embedding of e¢(X) C E(X) into E(X’). Since
E(X’) is injective, this isometric embedding extends to a 1-Lipschitz map « from E(X) to E(X'). If

doo(@(f),2(g)) < doo(f. g) for f, g € E(X), then doo(ax(e(x)),a(e(y))) < doo(e(x), e(y)) for points
X,y € X occurring in Claim 3.10, contrary to the assumption that o isometrically embeds e(X). a

As shown by Dress [37], the injective hull of a finite metric space is a finite polyhedral complex. Using this,
he defined the combinatorial dimension of a general metric space X as the supremum of the dimensions
of the polyhedral complexes E(Y') for all finite subspaces Y of X. Any f € E(X) belongs to the interior
of a unique cell of the polyhedral complex. Dress combinatorially characterized the cells of E(X).
Goodman and Moulton gave a presentation of Dress’s result in the finite case [48]. Lang presented Dress’s
result in the case of general metric spaces, and formulated conditions under which the injective hull is
finite-dimensional or has a finite number of types of cells for each dimension [65]. In the following, we
continue with this combinatorial description following the presentation of [65; 33].

For any f € A(X), consider the graph (X, A(f)) where A(f) is the set of all pairs {x, y} of points in
X such that f(x) 4+ f(y) =d(x,y). If X is finite (or compact), then f belongs to E(X) if and only if
(X, A(f)) has no isolated vertices. This is no longer true when X is not compact (see Claim 3.5). For
this, Dress and Lang introduced the subset E'(X) = { f € A(X) :|JA(f) = X} of E(X). They show
that E’(x) is dense in E(X) if the metric on X is integer-valued.

A set A of unordered pairs of points in X is called admissible if there exists ' € E’(X) with A(f) = A.
Denote by .A(X) the set of all such admissible sets. The family of polyhedral faces of E(X) is then given
by {P(A)}aea(x) Where P(A) ={f € A(X):AC A(f)}. Asnoticed in [65], P(A) = P(A)NE(X) =
P(A)N E’'(X). The rank tk(A) of an admissible set A is the dimension of P(A). The rank rk(4) can
be characterized as follows. If f,g € P(A), then f(x)+ f(y) =d(x,y) =g(x)+g(y) for {x,y} € A
and thus f(y) —g(y) = —(f(x) — g(x)). So the difference f — g has alternating sign along all paths in
the graph (X, A). Consequently, for each connected component of (X, A), there is at most one degree of
freedom for the values of f € P(A). If the connected component C contains an odd cycle, then f and g
coincide on all vertices of C. Alternatively, if the connected component C is bipartite, then the restrictions
of all functions f € P(A) on the vertices of C form a 1-parameter family: given the value f(x) on
one vertex of C, one can deduce all the other values of f on C. Then the rank rk(A) = dim(P(A)) is
precisely the number of bipartite components of the graph (X, A4).

Dress [37] characterized spaces of combinatorial dimension at most # by a 2(n+1)-point inequality. These
notions are important to state and establish some results of Lang [65] that we present and use in Section 6.3.

3.3 Coarse Helly property

A metric space (X, d) is coarsely hyperconvex if there exists some § > 0 such that, for any set of
centers {x;}jcs in X and any set of radii {r;};e; in R™ satisfying d(x;,x;) < r; + rj, there exists
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x € X such that d(x,x;) <r; + 8 forall i € I, ie the intersection (");c; B, +5(x;) is not empty. A
metric space (X, d) has the coarse Helly property if there exists some é > 0 such that, for any family
B ={B;(x;) :i € I} of pairwise-intersecting closed balls of X, the intersection (");¢; B, +.5(x;) is not
empty. If the space (X, d) is Menger-convex (in particular, if (X, d) is geodesic), both properties are
equivalent. In a discretely geodesic metric space (in particular, in a graph), if d(x;, x;) <r; +r;, then the
balls Bry,1(x;) and By,,1(x;) intersect. In particular if the {r;};es are integers, then d(x;, x;) <r; +7;
if and only if By, (x;) and By, (x;) intersect. Consequently, a discretely geodesic metric space (X, d) is
coarsely hyperconvex with some constant § if and only if it satisfies the coarse Helly property with some
constant §’, where § and & differ by at most 1. The injective hull E(X) of a metric space (X, d) has the
bounded distance property if there exists 6 > 0 such that for any f € E(X) there exists a point x € X
such that do (f, e(x)) <. The coarse Helly property was introduced in [29] and the bounded distance
property in [65], in both cases for §-hyperbolic spaces and graphs.

We show that the coarse hyperconvexity of a metric space is equivalent to the fact that its injective hull
satisfies the bounded distance property.!

Proposition 3.12 A metric space (X, d) is coarsely hyperconvex if and only if its injective hull E(X)
satisfies the bounded distance property. Consequently, if (X, d) is a geodesic or discretely geodesic
metric space, then the coarse hyperconvexity of (X, d), the coarse Helly property for (X, d) and the
bounded distance property for E(X) are all equivalent.

Proof First suppose that (X, d) is coarsely hyperconvex with some constant § > 0. Let f € E(X).
Then f(x)+ f(y) > d(x,y) for any x and y. By the coarse hyperconvexity of (X, d) applied to the
radius function f, there exists a point z € X such that d(z, x) < f(x) + § for any x € X. We assert that
doo(f.e(2)) < 8. Indeed, doo(f.e(z)) = supyex | f(x) —d(x,z)|. By the choice of z in By(y)+s(x),
d(x,z)— f(x) <§4. It remains to show the other inequality, f(x)—d(x,z) <§. Assume by contradiction
that f(x) —d(x,z) > 6. Let e = %(f(x) —d(x,z)—6) and observe that f(x) > d(x,z) + 6 + €. By
Claim 3.5, there exists y € X such that f(x) + f(y) < d(x,y) + €. But since z € By(y)45(y), we have
f()=d(y,z)—6,andso f(x)+ f(y)>d(x,z)+é+€e+d(y,z)—6=d(x,z)+d(y,z)+e>d(x,y)+e€
(the last inequality follows from the triangle inequality), a contradiction.

Conversely, let E(X) satisfy the bounded distance property with § > 0. We will show that (X, d)
is coarsely hyperconvex. Let B(x;,r;) fori € I be a collection of closed balls of (X, d) such that
ri+rj>d(x;,x;) foralli, j €l.Letr € A(X) be ametric form on X extending the radius function r;
fori € I (its existence follows from Zorn’s lemma). Let f € E(X) such that f(x) <r(x) forany x € X.
By the bounded distance property, X contains a point z such that deo( f, €(z)) < 8. This implies that
| f(x)—e(z)(x)|=|f(x)—d(x,z)| <6 forany x € X. In particular, d(x,z) < f(x)+38 <r(x)+3,
and thus z belongs to all closed balls B, (x)+5(x), x € X. |

Independently, this was also observed by Urs Lang (personal communication, 2019).
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3.4 Geodesic bicombings

One important feature of injective metric spaces is the existence of a nice (bi)combing. Recall that a
geodesic bicombing on a metric space (X,d) isamap o: X x X x [0, 1] = X such that for every pair
(x,y) € X x X the function 0x, :=0(x, y,-) is a constant-speed geodesic from x to y. We call o convex
if the function 7 +— d(0xy (f), 0xy(t)) is convex for all x, y, x’, " € X. The bicombing o is consistent if
Oopg(A) =0xy(1=A)s+Ar)forallx,y € X,0<5 <t <1, p:=0xy(s),q:=0xy(t)and A € [0, 1]. It
is called reversible if 0xy(t) = oyx(1 —1t) forall x, y € X and ¢ € [0, 1]. From the definition of injective
hulls and [33, Lemma 2.1 and Theorems 1.1-1.2] we have the following:

Theorem 3.13 A proper injective metric space of finite combinatorial dimension admits a unique convex
consistent reversible geodesic bicombing.

4 Helly graphs and complexes

In this section, we recall the basic properties and characterizations of Helly graphs. We also show that
any graph admits a Hellyfication, a discrete counterpart of Isbell’s construction.

4.1 Characterizations

Helly graphs are the discrete analogs of hyperconvex spaces: namely, the requirement that radii of balls
are nonnegative reals is modified by replacing the reals by the integers. A vertex x of a graph G is
dominated by another vertex y if the unit ball B1(y) includes B;(x). A graph G is dismantlable if its
vertices can be well ordered (denoted by <) so that, for each v there is a neighbor w of v with w < v
which dominates v in the subgraph of G induced by the vertices u < v.

The following result presents a local-to-global and a topological characterization of all (not necessarily
finite or locally finite) Helly graphs.
Theorem 4.1 [23] For a graph G, the following conditions are equivalent:
(i) G is Helly.
(i) G is a weakly modular 1-Helly graph.
(iii) G is a dismantlable clique-Helly graph.

(iv) G is clique-Helly with a simply connected clique complex.
Moreover, if the clique complex X(G) of G is finite-dimensional, then (i)-(iv) are equivalent to:
(v) G is clique-Helly with a contractible clique complex.

Let G be a (finitely) clique-Helly graph and let G be the 1-skeleton of the universal cover X := X (G) of
the clique complex X := X(G) of G. Then G is a (finitely) Helly graph. In particular, G is a (finitely)
Helly graph if and only if G is (finitely) clique-Helly and its clique complex is simply connected.
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Conditions (ii) and (iii) of Theorem 4.1 refine and generalize the characterizations of finite Helly graphs
given in [9; 8]. The second part of Theorem 4.1 and its proof lead to two conclusions. First, if a simplicial
complex X is clique-Helly (for arbitrary families of maximal cliques), then its universal cover X is Helly
(for arbitrary families of balls of its 1-skeleton). Second, if X is finitely clique-Helly, then its universal
cover is finitely Helly (this holds even if X contains infinite cliques). From [23, Theorem 9.1] it follows
that Helly graphs satisfy a quadratic isoperimetric inequality. It was shown in [80] that any finite Helly
graph G has the stabilized clique property: there exists a complete subgraph of G invariant under the
action of the automorphism group of G. Other properties of Helly graphs will be presented below.

4.2 Injective hulls and Hellyfication

We will show that for any graph G there exists a smallest Helly graph Helly(G) comprising G as an
isometric subgraph; we call Helly(G) the Hellyfication of G (analogously, we will denote by Helly(X(G))
the clique complex of Helly(G) and refer to it as to the Hellyfication of X (G)).

Let (X, d) be an integer-valued metric space. An integer metric form on X is a function f: X — Z such
that f(v) 4+ f(w) > d(v, w) forall v, w € X. Let A°(X) denote the set of all integer metric forms on X.
An integer metric form is extremal if it is minimal pointwise. We define the metric space E®(X) c A%(X)
as the set of all extremal integer metric forms on (X, d) endowed with the sup-metric do. The embedding
e: X — E%X) is defined as v > d(v,-). The pair (e, E®(X)) is the discrete injective hull of X. We
define a graph structure on E°(X) by putting an edge between two extremal forms f, g € E%(X) if
doo( f. g) = 1. With some abuse of notation, we also denote this graph by E®(X). If G = (V, E) is a graph
with the path metric d, we will denote by E°(G) and E(G) the discrete injective hull E®(V(G)) and the
injective hull of the metric space (V(G), d), respectively. Similarly, we write e(G) instead of e(V(G)).

The following result is well known (see [62; 75; 76]), and is the discrete counterpart of Isbell’s Theorem 3.2.

Theorem 4.2 If (X, d) is an integer-valued metric space, then E®(X) = E(X)NZX is the smallest
Helly graph into which (X, d) is isometrically embedded. In particular, the discrete injective hull E°(G)
of a graph G is contained as an isometric subgraph in any Helly graph G’ containing G as an isometric
subgraph and is the Hellyfication Helly(G) of G.

Proof First we show that the sets E®(X) and E(X) N ZX coincide. Observe that by the definitions
of E%(X) and E(X)NZX, we have E(X)NZX C E°(X). To show the converse inclusion, first note
that E9(X) satisfies the discrete analog of Claim 3.5: if f € E®(X), then for any x in X there exists y
in X such that f(x) + f(y) = d(x, y). By way of contradiction, suppose there exist f € E%(X) and
g€ E(X)suchthat g # f and g < f. Then g(x) < f(x) for some point x of X. By the discrete analog of
Claim 3.5, there exists y in X such that f(x)+ f(y) =d(x, y). Butsince g(x) < f(x) and g(y) < f(»),
we obtain g(x)+ g(y) < d(x, y), contrary to the assumption g € E(X). Therefore E®(X) C E(X)NZX
and thus E9(X) = E(X)NZX. Consequently, (E°(X), dso) is also an integer-valued metric space.
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Next we show that the balls of (E®(X), dso) satisfy the Helly property. Let f; € E®(X) and r; € Z for
i €I such that deo(f;, fj) < ri +rj. We may suppose that r € A°(E®(X)) is an integer metric form on
E°(X) extending the radius function r; (r(f;) =r; fori € [)andt € E°(E%(X)) = E(EO(X))HZEO(X) is
an integer metric form on £°(X) such that# <r. Lett’ € A(E (X)) be a metric form on E(X) extending ¢,
ie for any f € E%(X) we have t'(f) = t(f) —its existence follows by Zorn’s lemma. Let s € E(E(X))
such that s <¢’. By the discrete analog of Claim 3.5, for any f € E?(X) there exists g € E%(X) such that
1(f)+1(g) =doo(f. g)- Since s(f) +5(g) <t'(f)+1'(g) =1(f) +1(g) = doo(f. ) =5(f) +5(g),
we have that s(f) =t'(f) =t(f) and s(g) =t'(g) = t(g) since s(h) <t'(h) =t (h) for any h € E°(X).
Consequently, s|go(xy = ¢. By Claim 3.7 and the proof of Claim 3.8, se belongs to £(X) and is a
common point of all balls By, (f;). Since e(x) € E%(X) for any x € X, and since s and ¢ coincide on
E°(X), we have se = te. Therefore te belongs to E°(X) and is a common point of all balls B (fi).
This shows that the balls of (E°(X), dso) satisfy the Helly property.

We show by induction on k = duo( f, g) that any two vertices f, g € E%(X) are connected in the graph
E°(X) by a path of length k. Indeed, pick a ball of radius 1 centered at f and a ball of radius k — 1
centered at g. By the Helly property, there exists # € E%(X) such that doo (£, h) <1 and deo(h, g) <k —1.
By the triangle inequality, these two inequalities are equalities. Thus £E°(X) is a Helly graph isometrically
embedded in E(X). The proof that £°(X) does not contain any Helly subgraph containing X and that
all discrete injective hulls are isometric is identical to the proof of Claim 3.9. The proof that E(X) is an
isometric subgraph of any Helly graph G’ containing G as an isometric subgraph is similar to the proof
of Corollary 3.11. |

Remark 4.3 A direct consequence of the second assertion of Theorem 4.2 is that if G is Helly, then
Helly(G) coincides with G.

Remark 4.4 For an integer-valued metric space (X, d), the injective hull E(E®(X)) of the discrete
injective hull E%(X) of X coincides with the injective hull E(X) of X.

4.3 Hyperbolicity and Helly graphs
In Helly graphs, hyperbolicity can be characterized by forbidding isometric square-grids.

Proposition 4.5 For a Helly graph G, the following are equivalent:
(1) G has bounded hyperbolicity.
(2) The size of isometric €1 -square-grids of G is bounded.

(3) The size of isometric £ -square-grids of G is bounded.

Proof Since any Helly graph G is weakly modular, by [23, Theorem 9.6] G has bounded hyperbolicity
if and only if the metric triangles and the isometric square-grids are of bounded size. Since G is Helly, all
metric triangles of G are of size at most one. Therefore G has bounded hyperbolicity if and only if the size
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of the isometric £1-square-grids of G are bounded. We now show that in a Helly graph G, the size of the
isometric £1-square-grids is bounded if and only if the size of the isometric £,o-square-grids is bounded.

Let G contain an isometric 2k x 2k £1-grid Hy, where
V(Hy) ={(,j)eZ?:|i|+|j| <2k and i + j is even}

and (i, j)(i’, j') € E(Hy) ifand only if |i —i'| = |j — j/| = 1, ie if and only if do((i, j), (i’, j')) = 1.
Since G is Helly, the Hellyfication H| of H; is an isometric subgraph of G and Hj can then be
described as follows: V(H{) = {(i,j) € Z* : |i| + |j| < 2k} and (i, j)(i’, j') € E(H]) if and only
if doo((i, j),(i’, j')) = 1. But then the set {(i, j) € V(H{) : |i| < k and |j| < k} induces a 2k x 2k
Loo-grid in H{, and thus in G. Suppose now that G contains an isometric 2k x 2k {so-grid H,, where
V(H2)={(i,j)€Z?:|i| <k and |j| <k} and (i, j)(i", j') € E(H]) ifand only if deo (i, j), (i’, j')) = 1.
Let H) be the graph induced by V(H}) = {(i, j) € Z*:|i| +|j| <k and i + j is even}. Note that H is
isomorphic to a k x k £-grid. Since H} is an isometric subgraph of H>, G contains an isometric kK x k
£1-grid. O

Dragan and Guarnera [36] precisely characterize the hyperbolicity of a Helly graph by three families of
isometric subgraphs of the £,-grid.

5 Helly graph constructions

In the previous section, with any connected graph G we associated in a canonical way a Helly graph
Helly(G). However, not every group acting geometrically on G also acts geometrically on Helly(G). In
this section, we prove or recall that several standard graph-theoretical operations preserve Hellyness and
that other operations applied to some non-Helly graphs lead to Helly graphs. As we will show in the next
section, those constructions also preserve the geometric action of the group, allowing us to prove that
some classes of groups are Helly.

5.1 Direct products and amalgams

We start with the following well-known result:

Proposition 5.1 The classes of Helly and clique-Helly graphs are closed under direct products of finitely
many factors and retracts.

The first assertion follows from the fact that the balls in a direct product are direct products of balls in
the factors and that the maximal cliques of a direct product are direct products of maximal cliques. The
second assertion follows from the fact that retractions are 1-Lipschitz maps and therefore preserve the
Helly property.
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G A

Figure 1: The 3-sun can be obtained from the amalgam of a triangle and a 3-fan over an edge.

The amalgam of two Helly graphs along a Helly graph is not necessarily Helly: the 3-sun (which is not
Helly) can be obtained as an amalgam over an edge of a triangle and a 3-fan (which are both Helly); see
Figure 1. Consider now amalgams of direct products of (clique-)Helly graphs and, more generally, of
graphs obtained by amalgamating together a collection of direct products of (clique-)Helly graphs along
common subproducts. We provide sufficient conditions for these amalgams to be (clique-)Helly.

Given a family # = {H; }; e of locally finite graphs, a finite subproduct of the direct product X H =
Xes Hj is a subgraph G = X7 G/ of X H such that G/ = H; for finitely many indices and
G/ ={v j+ where v; € V(H;) for all other indices. For each vertex v of [X] H (or any of its subgraphs),
we denote by v; the coordinate of v in Hj.

A locally finite connected graph G is a union of graph products (UGP) over a family H = {H,};cy
of locally finite graphs if there exists a family {G; };<y of distinct finite subproducts of [X] H such that
G =, G;. The graphs G; are called the pieces of G. Since each H; € H is locally finite and each piece of
G is a finite subproduct of [X] H, each piece of G is also locally finite. Observe that G is a subgraph of [X] H
but not necessarily an induced subgraph. However, each piece G; of G is an induced subgraph of X] H. We
say that the pieces of a collection {G;, }rek of pieces of a UGP G = J;c; Gi S H over H={H,}jes
agree on a factor H; if there exists v; € V(H;) such that for each k € K, either Gle =H; or szk ={v;}.

Lemma 5.2 Two pieces G and G, of a UGP G C X H have a nonempty intersection if and only if G1
and G, agree on all factors Hj € H.

The set of pieces {G; }; ey satisfies the Helly property: any collection {G;, }xeck of pairwise-intersecting
pieces has a nonempty intersection, ie there exists a vertex w of G such that for each k € K and each
factor H; € H, either Gl.’k ={w;} or Gl.]k = H;.

Proof First, if G1 and G, agree on all factors H;, then for each j there exlsts w} € V(G{ )N V(Gg ).
Let w be a vertex of [X] H such that w; = w/ for all j. Since for each j, G{ = {w;} or G{ = Hj, the
vertex w belongs to G;. Similarly, w belongs to G, and thus G and G, have a nonempty intersection.
Conversely, letu € V(G1)NV(G2) and note that u; € V(GJ ) for every j. Consequently, either G1 =H;
or G1 = {u;}. Similarly, either Gé = Hj or G2 = {u;}. In both cases, G1 and G agree on H;.

Let {G;, }xck be a collection of pairwise-intersecting pieces. By the first statement, any two pieces of
this collection agree on all factors H; € H. Consequently, for any factor H;, there exists w € V(Hj)
such that for any k € K, G = {w;} or G’ H;. Consider the vertex w of [X] H such that w; = w]
for all j and observe that w belongs to every piece of the collection. O
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We say that a UGP satisfies the 3-piece condition if, for any three pairwise-intersecting pieces G1, G2
and Gs3, there exists a piece G4 intersecting G1, G and G3 such that for every factor H; € H, if for two
pieces G;, and G;, among G, G and G3 we have Gj G/ Hj, then G4 = H;j.

Proposition 5.3 Ifa UGP G over H satisfies the 3-piece condition, then every clique K of G is contained
in a piece of G.

Proof Since G is locally finite, the cliques of G are finite and we can proceed by induction on the size k
of K. Suppose that the assertion holds for all cliques of size at most k — 1. By definition of G, each edge
belongs to a piece of G. Let u, v and w be three vertices of K. Since K \ {w} is a clique of size k — 1,
there exists a piece G containing all vertices of K \ {w}. If w € V(G1), we are done. Assume now that
w ¢ V(G1). Similarly, we can assume that there exist pieces G, and G3 such that K NV (G3) = K \ {u}
and K N V(G3) = K\ {v}. Since u € V(G1) N V(G3), the pieces G; and G3 agree on every factor
H; € #. Similarly, G; and G as well as G, and G3 agree on every factor H; € H. Since u ¢ V(G»),
necessarily there exists a factor Hj, such that ng does not contain u;,. Thus ng consists of a single
vertex vy # uj,. Since both G| and G3 agree with G on H}, and since they both contain u,, necessarily
sz sz = Hj,. Similarly, there exist Hj,, H;; € H and vertices vy € Hj, and v3 € Hj; such that
GJ1 = {v}, GI' = G;l = Hj,, G3*> = {v3} and GJ3 Gé* = Hj,. By the 3-piece condition, there
exists G4 intersecting G, G2, and G3 such that for every factor H; € H, if for two pieces G;, and G,
among G1, G, and G3 we have GJ G] H;, then G4 = H;. We assert that K is a clique of G4.
Pick any vertex x € K and note that by belongs to at least two pieces among G1, G and G3, say to G
and G,. For each factor H; € H, if G‘{ # Hj, since G4 agrees with G; and G, and by the definition
of G4, either Gi = G{ ={x;} or G‘{ =GJ = {x;}. Consequently, x is a vertex of G4 and thus K is
a clique of G4. Therefore all vertices of K belong to a piece of G, and since any piece is an induced
subgraph of [X] # we conclude that K is a clique of this piece. a

Theorem 5.4 If a UGP G over H satisfies the 3-piece condition and every piece of G is clique-Helly,
then G is a clique-Helly graph. Furthermore, if the clique complex X(G) of G is simply connected
then G is a Helly graph.

Proof Since G has finite cliques, we can use Proposition 2.9 to establish the clique-Helly property for G.
Pick any triangle T = ujusu3 of G and let 7™ be the set of vertices of G adjacent to at least two vertices
of T. For any v € T*, by Proposition 5.3 there exists a piece containing a triangle vu;u;; let P* be the
set of all pieces containing such triangles. Since the pieces of P* piecewise intersect, by the first assertion
of Lemma 5.2 they pairwise agree on every factor H; € 7—[ By the second assertion of Lemma 5.2, there
exists a vertex w € G such that either G ={w;} or G = H; for any piece G; of P*. Thus w belongs
to every piece of P*.

For each factor Hj € H,let Tj = {u;j :u € T} and T/ ={v; : v € T;*}. Note that 7Tj is either a vertex, an
edge or a triangle in H;. Moreover, in the first two cases, there exists u; € T} that belongs to the 1-ball
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of every vertex v; € Tj* If T} is a triangle, then every vertex v; € Tj* is in the 1-ball of at least two
vertices of 7. Since H; is clique-Helly, in all three cases there exists a vertex w; € V(H;) belonging to
the 1-ball of each vertex v; € T* Observe that if there exists a piece G; of P* such that GJ contains
only one vertex, then 7 is a Vertex or an edge and we can choose w; € V(H;) such that Gj ={w;}.
Let w* be the vertex of G such that w =w; for every factor H; € H. By our choice of wj, for any piece G;
of P* such that GJ contains only one vertex, G = {w; } and for any other piece G; of P*, w; is a vertex
of Gi] = H;. Therefore w* is a vertex that belongs to all pieces of P*. For any vertex v € 7 and any
factor H; € H, v; is in the 1-ball of w; in H; by our choice of w;. Since each piece G; of G is an induced
subgraph of [X] H, w* is in the 1-ball in G of all vertices v of T, establishing that G is clique-Helly.

The second assertion follows from Theorem 4.1. O

Given a family H = {H }; <y of locally finite graphs, an abstract graph of subproducts (GSP) (H,G, {)
is given by a connected graph G without infinite clique and a map £: V(G) — 27 satisfying the following
conditions:

(A1) £(v) is a finite subset of H for each v € V(G).

(A2) For each edge uv € E(G), £(u) # £(v).

A realization of an abstract GSP (#, G, £) is a set of maps

{pv:H\e(v) Ny V(H,-)}

jEJ UEV(g)
satisfying the following conditions:
(A3) Foreachv e V(G), py(H;) € V(H;) for every factor H; € H \ £(v).
(A4) For any vertices u,v € V(G), there is an edge uv € E(G) if and only if py,(H;) = py(H;) for
every factor H; € H\ ({(u) U £(v)).

A GSP admitting a realization is called a realizable GSP.

Proposition 5.5 For any realizable GSP (H, G, £) and any of its realizations { p, },ev (g), We can define a
UGPG(G) = UveV(g) G, where there is a piece G, = X je s G foreach v e V(G) such that Gl = H; if
H; €{(v) and G} = {py,(H;)} otherwise. Conversely, any UGP G C [X H is the realization of a reahzab]e
GSP over X H.

Proof First note that (A4) is equivalent to the following condition on the pieces of G(G):

(A4’) For any vertices u, v € V(G), there is an edge uv € E(G) if and only if V(G,) N V(Gy) # 2.

In order to show that G(G) is a UGP, we must show that it is locally finite. Consider a vertex u € G(G)
that has an infinite number of neighbors. Since each piece containing u is locally finite, there are an
infinite number of pieces containing u. By (A4’), these pieces form an infinite clique in G, a contradiction.

Moreover, if there exist two vertices u, v € V(G) such that the pieces G, and G, coincide, then £(u) = £(v)
and py(Hj) = py(H;) for any H; € H\ {{(u)}. Souv € E(G) and £(u) = £(v), contradicting (A2).
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Conversely, given a UGP G over H, we construct a realizable GSP as follows. In G, there is a vertex
v; for each piece G; of G, and we set £(v;) ={H; € H : Gij = H;}. For each H; ¢ {(v;), there exists
w; € V(H;) such that Gl-j = {w; }, and we set p,, (H;) = w;. For any vertices v;, v;» € V(G), there is an
edge v;v;r € E(G) if and only if py, (H;) = py, (H;) for every factor H; ¢ £(v;) U £(v;7).

Since each piece G; is a finite subproduct of X H, £(v;) is finite for each v; € V(G) and thus (A1) holds.
By definition of p,, and of the edges of E(G), (A2) and (A4) also hold. Observe also that G(G) and G
are isomorphic and thus G is the realization of G. It remains to show that G does not contain infinite
cliques. By (A4), if there exists an infinite clique in G, then there exists an infinite collection {G;, }xex
of pairwise-intersecting pieces. By Lemma 5.2, this implies that there exists a vertex w that belongs to
every piece G;, . Since all pieces of G are distinct and since w belongs to an infinite number of pieces,
there exists an infinite collection of factors { H;} ;e j such that for each H; there exists a piece G;, with
w € G, and GiJ; = Hjs. Consequently, for each j’ € J’, one can find a vertex w’/" € X H in G obtained
from w by replacing the coordinate w;s by one of its neighbors in H;.. All the w/ " constructed in this
way are distinct and they are all neighbors of w in G. Consequently, w has infinitely many neighbors
in G and thus G is not locally finite, a contradiction. O

We say that a GSP (H, G, £) satisfies the product-Gilmore condition if for every triangle 7 = x1x2X3
of G there exists y € V(G) such that y = x; or y ~ x; for 1 <j <3 and

(£(x1) NE(x2)) U (£(x2) N £(x3)) U (E(x1) NE(x3)) S £(y).

Proposition 5.6 For a realizable GSP (#H, G, £) and any of its realizations { py }yev (g). the UGP G(G)
obtained from G and {py}yecy(g) satisfies the 3-piece condition if and only if (H,G,{) satisfies the
product-Gilmore condition.

Proof Assume (H, G, £) satisfies the product-Gilmore condition. By (A4’), two pieces in the UGP G(G)
obtained from a realization of a GSP G intersect if and only if there is an edge between the corresponding
vertices of G. Thus it is enough to consider three pieces Gx,, Gy, and Gy, corresponding to three vertices
X1, X3 and x3 that are pairwise adjacent in G. By our assumption, there exists a vertex y € V(G) such
that y =x; or y ~x; forany 1 <i <3 and (£(x1) N€(x2)) U (€L(x2) NL(x3)) U L(x1) NL(x3)) CL(y).
Consider the piece Gy in G(G). By (A4), Gy intersects Gy, , Gx,, and Gx;. Moreover, for any factor
H; e H,if G){1 = G£2 = Hj, by the definition of G(G) we obtain H; € £(x1) N{€(x2) € £(y). Similarly,
for any H; € H such that G,{z = G,{3 = H;j or G;{l = G£3 = Hj, we have H; € {(y). This establishes
the 3-piece condition for G(G).

Conversely, suppose that G(G) satisfies the 3-piece condition and consider a triangle xx2x3 of G and
the three corresponding pieces Gy,, Gx, and Gy, of G(G). By (A4)), V(Gx,), V(Gx,) and V(Gy,)
pairwise intersect. By the 3-piece condition, there exists x4 € V(G) such that V' (Gy,) intersects V(Gy, ),
V(Gyx,), and V(Gy,), ie x4 either coincides with or is adjacent to each x; for 1 <i < 3. Moreover, for
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each H; € £(x1) N{(x2) we have G;{l = G;{z = H;, and the definition of G, implies that G){4 = Hj,ie
Hj € {(x4). Consequently £(x1) N{(x2) € €(x4), and similarly (£(x2) N€(x3))UL(x1)NL(x3)) S L(x4).
This proves the product-Gilmore condition for (#, G, {). |

From Propositions 5.1 and 5.6 and Theorem 5.4 we obtain the following corollary:

Corollary 5.7 Consider a realizable GSP (H, G, {) and any of its realizations { py }yev(g)- If (H,G.{)
satisfies the product-Gilmore condition and if each factor H € H is clique-Helly, then G(G) is a clique-
Helly graph. Furthermore, if the clique complex X(G(G)) is simply connected, then G(G) is a Helly graph.

Thickenings of locally finite median graphs (ie of CAT(0) cube complexes) is an instructive example
of clique-Helly graphs that can be obtained via Theorem 5.4 or Corollary 5.7. The pieces of a median
graph G seen as a UGP are the thickenings of the maximal cubes of G. The fact that it satisfies the
product-Gilmore condition follows from the fact that the cell hypergraph is conformal, which can be
derived from the cube condition of the CAT(0) cube complex Xcype(G).

5.2 Thickening

The direct product of graphs considered above is the [, version of the Cartesian product. Thus, when
we turn all k-cubes of the Cartesian product of k paths into simplices, we have the corresponding direct
product of k paths. More generally, a similar operator transforms median graphs into Helly graphs: let
G2 be the graph having the same vertex set as G, where two vertices are adjacent if and only if they
belong to a common cube of G. The graph G2 is called the thickening of G (for ls-metrization of cube
complexes, of median graphs and, more generally, of median spaces; see [19; 87]).

Proposition 5.8 [10] If G is a locally finite median graph, then G® is a Helly graph and each maximal
clique of G? is a cube of G.

The thickening X of an abstract cell complex X is a graph obtained from X by making adjacent all
pairs of vertices of X belonging to a common cell of X. Equivalently, the thickening of X is the 2-section
[H(X)]2 of the hypergraph H(X). We say that an abstract cell complex X is simply connected if the
clique complex of its thickening X2 is simply connected.

Proposition 5.8 of Bandelt and Van de Vel was extended to the thickenings of the abstract cell complexes

arising from swm-graphs and from hypercellular graphs.

Proposition 5.9 [23;30] The thickening G® := X(G)2 of the abstract cell complex X(G) associated
to any locally finite swm-graph or any hypercellular graph G is a Helly graph. Each maximal clique of
G2 is a cell of X(G).

The existing proofs of Propositions 5.8 and 5.9 are based on the following global property of G2 each ball
of G2 defines a gated subgraph of G; thus G2 is Helly since gated sets satisfy the finite Helly property.
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Figure 2: A house (left) and a 3-deltoid (right).
5.3 Coarse Helly graphs

The coarse Helly property of a graph G can be used to show via Hellyfication that a group acting on G
geometrically is Helly. In this subsection, we recall the result of [29] that §-hyperbolic graphs are coarse
Helly and we deduce from a result of [26] that several subclasses of weakly modular graphs (in particular,
cube-free median graphs, hereditary modular graphs and 7-systolic graphs) are coarse Helly.

Proposition 5.10 [29] If G is a §-hyperbolic graph, then G is coarse Helly for 24.

Proposition 5.11 [26] A weakly modular graph not containing isometric cycles of length > 5, houses
or 3-deltoids (see Figure 2) is coarse Helly with constant 1. In particular, cube-free median graphs,
hereditary modular graphs and 7-systolic graphs are coarse Helly.

It is known that the systolic (bridged) graphs satisfying the conditions of Proposition 5.11 are all
hyperbolic [23; 28]. Cube-free median graphs and, more generally, hereditary modular graphs (which
by a result of [3] are exactly the graphs in which all isometric cycles have length 4) in general are not
hyperbolic. On the other hand, general median graphs are not coarse Helly: already the cubic grid Z3 is
not coarse Helly as shown by the following example:

Example 5.12 In 7.3, for any integer n, consider four balls of radius 2n centered at x| = (—2n, 2n, —2n),
x> = (2n,2n,2n), x3 = (—2n,—2n,2n) and x4 = (2n,—2n,—2n). Observe first that for any two such
nodes x; and x;/, d(x;, x;) = 4n and thus the four balls pairwise intersect. We show that for any node
y = (i, j, k) € Z3, we have max{d(y,x;) : 1 <1 <4} > 6n. Assume that y minimizes this maximum.
Observe that if y ¢ [—2n, 2n]>, then its gate y’ in the box [—2n, 2n]3 is strictly closer to each x;, contrary to
our choice of y. Consequently i, j, k € [-2n,2n], d(y,x1)=i+2n+2n—j+k+2n=6n+i—j +k,
d(y,x3) =6n—i—j—k, d(y,x3) =6n+i+ j—kand d(y,x4) = 6n—i + j + k, and thus
ZLI d(x;,y) = 24n. Therefore max{d(y,x;):1 <[ <4} > 6n.

Analogously, the triangular grid (alias, the systolic plane) is also not coarse Helly:

Example 5.13 Tj is the graph of the tiling of the plane into equilateral triangles with side length 1.
T3 is a bridged graph. Pick three vertices x1, x» and z = x3 of T3 which define an equilateral triangle
A(x1, x2,x3) of T3 with side length 6n. Consider the three balls Bz, (x1), B3, (x2) and B3, (x3). We
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assert that max{d(y, x;) : 1 <i < 3} > 4n for any vertex y of V(T3). If y ¢ A(x1, x2,x3), then y is
in one of the half-planes defined by the sides of A(x1, x2, x3) and not containing A(x1, X2, X3), say in
the halfspace defined by x; and x5. But then d(x3, y) > 6n because x3 has distance > 6n to any vertex
of T3 defined by the line between x; and x,. Now let y € A(xy, X2, x3). It can be shown easily by
induction on k that if A(x1, x2, x3) is a deltoid of size k of T3, then d(y, x1)+d(y, x2)+d(y, x3) =2k
for any y € A(x1,x2,x3). This shows that in our case d(y,x1) + d(y,x2) + d(y,x3) > 12n, ie
max{d(y,x;):1<i <3}>4n.

5.4 Nerve graphs of clique-hypergraphs

We first show that (clique-)Hellyness is preserved by the nerve complex N (X (G)) of the clique-hypergraph
X (G) of a Helly graph G. Nerve complexes of clique-hypergraphs are also called cligue graphs in the
literature; see eg [9]. In general, the nerve complex N(X(G)) of the clique-hypergraph of a graph G is
not a flag simplicial complex. However, N(X(G)) is flag if G is clique-Helly:

Lemma 5.14 For any locally finite graph G, N(X(G)) is a flag simplicial complex if and only if G is a
(finitely) clique-Helly graph.

Proof By definition, N(X(G)) is a flag simplicial complex if and only if any finite set of pairwise-
intersecting cliques K1, K>, ..., K, of G have a nonempty intersection. This is precisely the definition
of a finitely clique-Helly graph. Since G is locally finite, G is finitely clique-Helly if and only if G is
clique-Helly. a

The first assertion of the following result was first proved by Escalante [41] (he also proved the converse,
that any clique-Helly graph is the clique graph of some graph):

Proposition 5.15 If G is a locally finite clique-Helly graph, then the nerve graph NG(X(G)) of the
clique-hypergraph X (G) is a clique-Helly graph and its flag-completion is a clique-Helly complex. If G is
a locally finite Helly graph, then NG(X (G)) is a Helly graph and its flag-completion is a Helly complex.

Proof Let G be a locally finite clique-Helly graph. Let G’ be the nerve graph of the clique-hypergraph
X(G). Since G is locally finite, G’ is also locally finite. We prove that G’ is clique-Helly by using the
triangle criterion from Proposition 2.9. Let uvw be a triangle in G'. It corresponds to three pairwise
intersecting, and thus intersecting, maximal cliques in G, denoted by the same symbols u, v and w.
Observe that all vertices of (¥ Nv) U (v Nw) U (w Nu) are pairwise adjacent in G, and thus ¥ Nv, v Nw
and w Nu are all contained in a common maximal clique x in G(X). We claim that every vertex y in
G’ that is adjacent to u and v in G’ is also adjacent to x in G’. This is so because in G, the maximal
clique y intersects u# and v, and hence intersects ¥ N v since G is a clique-Helly graph. Since u Nv C x,
y intersects x in G and thus x ~ y in G’. Similarly, the vertex x € G’ is a universal vertex for triangles
containing {v, w} and {w, u} in G’. Consequently, the nerve graph G’ is clique-Helly.
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Suppose now that G is Helly. By Theorem 4.1, X(G) is simply connected and G is a clique-Helly graph.
By the first part of the theorem, the 1-skeleton G’ = G(Y') of the nerve complex Y of the clique-hypergraph
X(G) is clique-Helly. By Borsuk’s nerve theorem [18; 17], X(G) and Y have the same homotopy type.
Consequently, Y is also simply connected. By Theorem 4.1, this implies that G’ = G(Y) is Helly. O

We now show that the clique-Hellyness of the nerve graph is preserved by taking covers:

Theorem 5.16 Given two locally finite graphs G and G’ such that the clique complex X(G) is a cover
of the clique complex X(G’), the nerve graph NG(X(G)) is clique-Helly if and only if the nerve graph
NG(X(G")) is clique-Helly.

Theorem 4.1 immediately gives the following corollary since the nerve complex of the maximal simplices
of a simply connected simplicial complex is simply connected by Borsuk’s nerve theorem [18; 17].

Corollary 5.17 For a locally finite graph G, the nerve graph NG(X (5)) of the clique-hypergraph of the
1-skeleton G of the universal cover X (G) of X(G) is Helly if and only if the nerve graph NG(X(G)) of
the clique-hypergraph X (G) is clique-Helly.

Theorem 5.16 is proved via the following lemma, establishing that a covering map between the clique
complexes of two graphs extends to a covering map between the nerve complexes of the corresponding
clique-hypergraphs.

Lemma 5.18 Given two locally finite simple graphs G and G’, any covering map ¢: X(G) — X(G')
induces a covering map from N(X(G)) to N(X(G")).

Proof In N(X(G)), the vertices are the maximal cliques of G and a finite set 0 = {K1,..., K} of
cliques of G is a simplex of N(X(G)) if ﬂf’ _1 Ki # @. Since G is locally finite, each maximal clique
K of G is finite. We extend the map ¢ to all cliques of G: for any clique K = {uy,...,u;} of G, we set

o(K) ={p(u1),...,@(ug)}. Observe that for any clique K = {u1,...,ur} of G we have u; ~u;, and
thus ¢(u;) ~ ¢(u;). Since G’ is loop-free, ¢(K) is a clique of G’ and |p(K)| = |K|.
Consider two cliques K of G and K" of G’ such that K’ = ¢(K). For any u € K, ¢ induces a bijection

between the cliques containing u and the cliques containing ¢(u). So K is a maximal clique of G if and
only if K’ is a maximal clique of G’. Therefore ¢ induces a map from V(N (X (G))) to V(N(X(G"))).

We now prove a useful claim:

Claim 5.19 For any maximal cliques K1 and K, of G such that K1 N K, # &, we have (K1) Np(K3) =
@(K1 N K>).

Proof The inclusion (K1 NK>3) C ¢(K1)Ne(K>) is trivial. Suppose now that the reverse inclusion does
not hold, ie that there exist u1 € Ky \ K» and us € K» \ Kj such that ¢(u1) = ¢(u). Picku € K1 N K>
and observe that ¥ ~ u since K is a clique and u ~ u, since K> is a clique. Consequently the map ¢ is
not locally injective at u, a contradiction. O
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Note that if 0 = {K7,..., K} is a simplex of N(X(G)), then there exists u € ﬂf’zl K;. Consequently
o(u) € ﬂf;l @(K;), and thus the image of a simplex of N(X(G)) is a simplex of N(X(G')). Thus ¢ is a
simplicial map from N(X(G)) to N(X(G’)). Moreover, forany 1 <i < j < p wehaveu € K; N K, and
consequently, by Claim 5.19, ¢(K;) N¢(K;) = ¢(K; N K;). Since |¢(K;)| = |K;| and |p(K;)| = |K;|,
this implies that if K; # K then ¢(K;) # ¢(K;). Consequently, |¢(c)| = |o]|.

We now show that ¢ is locally surjective. Let Ko € V(N(X(G))) and K| = ¢(K) € V(N(X(G")))
and consider a simplex o’ = {K{, K|, ..., K} in N(X(G’)). By definition of N(X(G")), there exists
u' € NF_, K!. Since K{, = ¢(Kp), there exists u € Ko such that u’ = ¢(u). Since ¢ is a covering map
from G to G', for each 1 <i < p, there exists K; € V(N(X(G))) such that u € K; and K| = ¢(K;).
Since u € (\/_, Ki, 0 ={Ko. K1....,Kp} is a simplex of N(X(G")) that is mapped to o’ by ¢.

We now show that ¢ is locally injective. Consider Ko € V(N(X(G))) and assume that there exist
two distinct simplices o1 and o, in N(X(G)) such that Ky € 01 N oy and ¢(01) = ¢(02). Since
lp(c1)| = |o1] and |@(02)| = |o2], it implies that there exist K1 € 01 \ 02 and K> € 0> \ 01 such that
o(K1) = o(K3). If K1 N Ky # @, since |p(K1)| = |K1| and |¢(K3)| = |K2]|, by Claim 5.19 we have
K1 = K3, a contradiction. Consequently, K; N K> = @. Consider two distinct vertices u; € Ko N K3
and up € Ko N K». Since |¢(Ko)| = | Ko|, we have ¢(u1) # ¢(uz). Since ¢(K») = ¢(K1), there exists
v1 € K5 such that ¢(vy) = ¢(uy1). But up ~uq since uy,us € Ko and u ~ vy since uy, v; € K». This
contradicts the local injectivity of ¢ at us.

Consequently, ¢ defines a simplicial map from N(X(G)) to N(X(G’)) that induces a bijection between
the simplices containing a vertex of N(X(G)) and the simplices containing its image, ie ¢ defines a
covering map from N(X(G)) to N(X(G")). O

Since a covering map is locally bijective, from Lemma 5.18 and Proposition 2.9 we conclude that the
nerve graph NG(X(G)) is clique-Helly if and only if the nerve graph NG(X(G’)) is clique-Helly. This
concludes the proof of Theorem 5.16.

5.5 Rips complexes and nerve complexes of §-ball-hypergraphs

The Rips complex Rg(M) of a metric space (M, d) and positive real § is an abstract simplicial complex
that has a simplex for every finite set of points of M that has diameter at most §. If (M, d) is a connected
unweighted graph G, then for any positive real §, Rs(G) and R|5,(G) coincide. In this case, we can
thus assume that § is a positive integer, and then the Rips complex Rg(G) is just the 8 power G? of G.
Notice that for any § € N, the nerve complex N(Bs(G)) of the §-ball-hypergraph Bs(G) is isomorphic to
the Rips complex R,5(G).

Lemma 5.20 Rips complexes Rs(G) of a Helly graph G are Helly.

Proof As noted above, § can be assumed to be an integer and thus the Rips complex Rg(G) coincides
with the §® power G? of G. For any vertex v and any radius r, note that B, (v, G%) = B,s(v, G). Thus
the result follows since the family of balls of G satisfies the Helly property. O
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5.6 Face complexes

The face complex F(X) of a locally finite abstract simplicial complex X is the simplicial complex whose
vertex set V(F (X)) is the set of nonempty simplices of X and where {Fy, F», ..., Fi} is a simplex of
F(X)if Uf-‘zl F; is contained in a common simplex F of X. If X is the clique complex of a graph G,
then the vertices of F(X) are the cliques of G and two cliques K; and K, of G are adjacent in the
1-skeleton of F(X) if K; U K> is a clique.

Given a maximal simplex o = {Fy, F», ..., Fi} of F(X), Uf-;l F; is contained in a common simplex
F of X. By maximality of 0, F = Jo = Uf-‘zl F; and F is a maximal simplex of X. Moreover,
F € 0, and consequently, since o is maximal, 0 = P(F) \ {&} where P(F) is the set of all subsets of F.
Conversely, for any maximal simplex F of X, by definition of F(X), 0 = P(F)\ {9} is a simplex of
F(X). Since F is a maximal simplex of X, o must be a maximal simplex of F(X). As a result, we
obtain the following lemma:

Lemma 5.21 For any simplicial complex X, the map o — |_J o defines a bijection from the set of maximal
simplices of F(X) to the set of maximal simplices of X, with inverse given by F +— P(F)\ {Z}.

The face complexes of clique complexes are also clique complexes:
Lemma 5.22 For any clique complex X, its face complex F(X) is also a clique complex.

Proof Let G = G(X) be the 1-skeleton of X and let G’ = G(F (X)) be the 1-skeleton of F(X). For any
edge F1 F» in G', F1, F» and F1 U F; are cliques of G. Consequently, for any clique o0 ={Fy, F>, ..., F}
in G(F(X)), F1UF,U---U Fy is aclique of G. Since X is the clique complex of G, F1 U F U---U F
is a clique of X and thus o is a simplex of F(X). |

Proposition 5.23 The face complex F(X) of a locally finite clique-Helly (resp. Helly) complex X is a
locally finite clique-Helly (resp. Helly) complex.

Proof By Lemma 5.22, F(X) is a clique complex. Let G = G(X) be the 1-skeleton of X and
G’ = G(F(X)) be the 1-skeleton of F(X). Since G is locally finite, G’ is also locally finite and thus
F(X) is a locally finite simplicial complex. Consider the bijection o — | J o between the maximal cliques
of F(X) and the maximal cliques of X defined in Lemma 5.21. Observe that if (0;);¢7 is a family of
maximal cliques of F(X), then (");¢; 0; # @ if and only if ();¢; (U 0i) # @. Consequently, since X is
clique-Helly, F(X) is also clique-Helly.

Suppose now that X is simply connected. Since the nerve complexes of the clique hypergraphs of X
and F(X) are isomorphic thanks to the bijection ¢ + | Jo, X and F(X) are homotopy equivalent by
Borsuk’s nerve theorem [18; 17]. Consequently F(X) is simply connected, and thus by Theorem 4.1
F(X) is a Helly complex when X is a Helly complex. m|
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6 Helly groups

As defined above, a group is Helly if it acts geometrically on a (necessarily, locally finite) Helly graph.
The main goal of this section is to provide examples of Helly groups. More precisely, in this section we
prove Theorems 1.1, 1.2, 1.3 and 1.4, some of their consequences and related results.

6.1 Proving Hellyness of a group

To prove that a group I' (geometrically) acting on a cell complex X (or on its 1-skeleton G (X)) is Helly,
we will derive from X a Helly complex X™* and prove that I' acts geometrically on X *. The natural
(and most canonical) way would be to take as X * the Hellyfication Helly(X) of X. By Theorem 4.2,
Helly(X) is well defined and Helly for all complexes X. The group I" acts on Helly(X), but the group
action is not always geometrical. However, using the results from Sections 4.2 and 5.3, and a result of
Lang [65], we will prove that hyperbolic groups act geometrically on the Hellyfication of their Cayley
graphs that are hyperbolic, and thus hyperbolic groups are Helly.

In several other cases there are more direct ways to derive X *. In the case of CAT(0) cubical groups,
based on Proposition 5.8 and the bijection between median graphs and 1-skeletons of CAT(0) cube
complexes [27; 81], it follows that thickenings along cubes of locally finite CAT(0) cube complexes
are Helly. Thus CAT(0) cubical groups are Helly. By Proposition 5.9, the thickenings of locally
finite hypercellular complexes and of locally finite swm-complexes are Helly. Consequently, groups
acting geometrically on hypercellular graphs or swm-graphs are Helly. We use the same technique by
thickening (along cells) to show that classical C(4)-T(4) small-cancellation and graphical C(4)-T(4)
small-cancellation groups are Helly. In all these cases, the maximal cliques of the thickenings correspond
to cells of the original complex. This allows us to establish that the group I' acts geometrically on the
thickening. By considering face complexes, we show that Helly groups are stable by free products with
amalgamation over finite subgroups and by quotients by finite normal subgroups. Using the theory of
quasimedian groups of [45], we provide criteria allowing the construction of Helly groups from groups
acting on quasimedian graphs. This allows us to show that Helly groups are stable by taking graph
products, [J-products, x-powers and ><-products of groups. We also show that the fundamental groups
of right-angled graphs of Helly groups are Helly.

6.2 CAT(0) cubical hypercellular, and swm-groups via thickening

A group I' is called cubical if T acts geometrically on a median graph G (or on the CAT(0) cube
complex of G). A group I is called an swm-group if it acts geometrically on an swm-graph G (or on the
orthoscheme complex of G). A group I' is called hypercellular if it acts geometrically on a hypercellular
graph G (or on the geometric realization of G).

Any group I' acting geometrically on a median graph, swm-graph or hypercellular graph G also acts
geometrically on its thickening G2. From Propositions 5.8 and 5.9 we obtain:
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Proposition 6.1 Cubical groups, swm-groups and hypercellular groups are Helly.

In [23], with every building A of type C,, we associated an swm-graph H(A) in such a way that any
(proper or geometric) type-preserving group action on A induces a (proper or geometric) action on H(A).

Corollary 6.2 Uniform type-preserving lattices in isometry groups of buildings of type C, are Helly.
6.3 Hyperbolic and quadric groups via Hellyfication

If a group I acts geometrically on a graph G, it also acts on its Hellyfication Helly(G) = E°(G) and
on its injective hull £(G). However in general, this action is no longer geometric. This is because the
injective hull £(G) is not necessarily proper and because the points of £(G) may be arbitrarily far
from e(G). This does not happen if G is a Helly graph:

Theorem 6.3 Let G be a locally finite Helly graph.
(1) The injective hull E(G) of G is proper and has the structure of a locally finite polyhedral complex

with only finitely many isometry types of n-cells, isometric to injective polytopes in {7, for every
n > 1. Moreover, dg (E(G), e(G)) < 1. Furthermore, if G has uniformly bounded degrees, then
E(G) has finite combinatorial dimension.

(2) A group acting cocompactly, properly or geometrically on G acts cocompactly, properly or
geometrically, respectively, on its injective hull E(G).

For B > 1, the graph G has B-stable intervals [65] if for every triple of vertices w, v and v’ with v ~ v/,
we have dg (I(w,v), I(w,v’)) < B, where dy denotes the Hausdorff distance. The proof of the first
assertion of Theorem 6.3(1) is based on the following theorem of Lang [65]:

Theorem 6.4 [65, Theorem 1.1] Let G be a locally finite graph with B-stable intervals. Then the
injective hull of G is proper (that is, bounded closed subsets are compact) and has the structure of a
locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective
polytopes in €%, for every n > 1.

Next we show that weakly modular graphs (and thus Helly graphs) have S-stable intervals:
Lemma 6.5 Every weakly modular graph has 1-stable intervals.

Proof We need to show that for every triplet of vertices w, v and v’ with d(v,v’) < 1 and every
u € I(w,v), there exists a vertex u’ € I(w,v’) with d(u,u’) < 1. If v = v/, we are done by taking
u’ = u. Suppose now that v ~ v’. We proceed by induction on k = d(w,v) + d(w,v’). The case
k = 0 is obvious. Assume that the statement holds for any j < k and let d(w, v) + d(w,v’) = k. If
d(w,v") =d(w,v)+1, then I(w,v) € I(w, v) and the result holds. If d(w, v) = d(w, v’), then, by the
triangle condition (TC) (see Section 2.1) there exists a vertex v* ~ v, v’ such that v* € I(w, v) N I(w,v’).
Since d(w, v)+d(w, v*) =d(w, v)+d(w, v')—1=k—1, by the induction hypothesis, for any u € I(w, v)
there exists u’ € I(w,v*) € I(w, v’) such that d(u,u’) < 1. Let d(w,v') = d(w,v) —1, ie v € I(w, v).
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For any u € I(w,v), let u* € N(v) N I(u,v). By the quadrangle condition, there exists v* such that
v* ~ v, u* and v* € I(w,v") N I(w,u*). Since d(w,u*) + d(w, v*) =k —2 and since u € I(w,u™),

by the induction hypothesis there exists u’ such that d(u,u’) <1 and u’ € I(w,v*) C I(w,v’). O

To establish the second assertion of Theorem 6.3(1), we use Lang’s results relating the combinatorial
dimension with the notion of cones. In a graph G, the cone [65] determined by the directed pair (x, v) of
vertices of G is the set C(x,v) ={y € V(G):v € I(x, y)}. Given a vertex v € V(G), we denote by C(v)
the set of all cones C(x, v) for x € V(G). For a ball B of G, we denote by C(B) the set of all pointed
cones (v, C(x,v)) with v € B and x € V(G). By [65, Lemma 5.8], the size of C(B) is finite and bounded
by a function of the size of B.

Proposition 6.6 [65, Proposition 5.12] Let G be a locally finite graph with §-stable intervals. Given a
vertex z € V(G) and a > 0, let B be the ball Byqpg(z). Then for every f € E'(G) such that f(z) < a,
we have tk(A(f)) < %|C(B)|.

Proof of Theorem 6.3(1) Properness and the structure of a locally finite polyhedral complex follow
from Theorem 6.4 and Lemma 6.5.

We now show that dgy (E(G), e(G)) < 1. Pick any f € E(G) and consider f’ € A°(G) defined by setting
f'(x)=[f(x)] forany x € V(G). Let " € E°(G) such that f” < f’, and notice that for any x € V(G)
we have f”(x) < f'(x) < f(x) + 1. On the other hand, for any x € V(G), by Claim 3.5, for any € > 0,
there exists y € V(G) such that f(x)+ f(y) <d(x,y)+e < f"(xX)+ f"()+e < f"(x)+ f(y)+1+e.
Consequently f(x) < f”(x)+ 1+e¢ for any € > 0, and thus f(x) < f”(x)+ 1. Since G is a Helly graph,
by Theorem 4.2, E°(G) and G coincide, and thus there exists a vertex z € V(G) such that " = d,
establishing that doo( f, dz) < 1.

Now, additionally suppose that G has uniformly bounded degrees. To show that £ (G) is finite-dimensional,
pick any f € E’(G) and consider the vertex z € V(G) such that f(z) = doo(f,d;) < 1. By Lemma 6.5,
G has 1-stable intervals, and by Proposition 6.6 applied with « = 8 = 1, we have that rk(A(f)) <
%|C (B2(2))|. Since G has bounded degrees, the size of the balls of radius 2 in G is also bounded, and by
[65, Lemma 5.8] the size of |C(B2(z))| is uniformly bounded by some constant K. Consequently, by
Proposition 6.6 all cells of E’(X) are of dimension at most %K . By [65, Theorem 4.5], E'(G) = E(G).
This proves that £(G) has finite combinatorial dimension. O

Theorem 6.3(2) is an immediate corollary of Theorem 6.3(1) and of the next proposition.

Proposition 6.7 Let G be a locally finite graph such that the injective hull E(G) is proper and satisfies
the bounded distance property, and let I be a group acting on G.

(1) If T acts cocompactly on G, then T acts cocompactly on E(G) and E°(G).

(2) If T acts properly on G, then T acts properly on E(G) and E°(G).

(3) If T acts geometrically on G, T" acts geometrically on E(G) and E°(G); thus I is a Helly group.
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Proof Consider the Helly graph E£°(G). Since the set E%(G) is an integer-valued subspace of E(G)
and E(G) is proper, the balls of E%(G) are compact. Therefore the graph E°(G) is a proper metric
space and thus is locally finite. In particular, all compact sets of E°(G) are finite. Since E(G) satisfies
the bounded distance property, there exists § such that, for each f € E(G), we have doo(f, e(G)) <.

We first assume that I" acts cocompactly on G, and then show that I' acts cocompactly on E°(G) and
E(G). The proof is the same in both cases; we provide it for £°(G). Since I" acts cocompactly on G,
there exists v € V(G) and r € N such that V(G) = Uger V(Br(gv,G)). Let R =r 4 § and consider
Uger V(Br(ge(v). E°(G))). For any f € E°(G), there exists v" € V(G) such that deo (/. e(v')) < 6.
Since there exists g € I" such that dg(v', gv) <r,

doo(f.8€(v)) = doo(f, €(gV)) < doo(f. e(v')) + doo(e(v'), e(gv)) <6 +dG (v, gv) <8+
This shows that E%(G) = UgeF V(BR (ge(v), EO(G))), and thus I' acts cocompactly on E%(G).

We now assume that I" acts properly on G, and then show that T acts properly on E®(G) and E(G).
Consider a compact set K in E®(G) or E(G) andlet K’ ={v e V(G):3f € K such that do( f,e(v)) <8}.
Since K’ is a bounded subset of V(G), K’ is finite, and thus e(K") is also finite. Pick any g € I such that
ZK N K # & (where g is the inverse of g in ") and some f € K such that g f € K. Let v € K’ such that
doo(f. e(v)) < 8. Since I acts on E%(G) and E(G), doo (g f. g¢(v)) = doo( f. e(v)) < 8. Since ge(v) =
e(gv) wehave gve K’,andthusve K'NgK’. Hence {ge T :gKNK #2} C{gel:gK'NK' # &}.
Since I acts properly on G, the second set is finite and thus I" acts properly on E%(G) and E(G).

Finally, if " acts geometrically on E°(G), since E°(G) is Helly, I is a Helly group. |
If we consider a group I' acting on a coarse Helly graph G, then the following holds:
Proposition 6.8 A group acting geometrically on a coarse Helly graph with B-stable intervals is Helly.

This result is a particular case of Theorem 6.4 and Propositions 3.12 and 6.7.

From Propositions 5.10 and 6.8, we also get the following corollary:
Corollary 6.9 Hyperbolic groups are Helly.

Proof By Proposition 5.10, any §-hyperbolic graph G is coarse Helly with constant 25. Moreover, if G
has §-thin geodesic triangles, then one can easily check that G has (§+1)-stable intervals. The result
then follows from Proposition 6.8. |

A group T is quadric if it acts geometrically on a quadric complex [54]. Quadric complexes are cell
complexes that have hereditary modular graphs as 1-skeletons.

Corollary 6.10 Quadric groups are Helly.

Proof Since hereditary modular graphs are weakly modular, they have 1-stable intervals by Lemma 6.5
and they are coarse Helly by Proposition 5.11. O
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By [54, Theorem B], any group admitting a finite C(4)-T(4) presentation acts geometrically on a quadric
complex, leading thus to the following corollary:

Corollary 6.11 Any group admitting a finite C(4)-T(4) presentation is Helly.
6.4 Graphical small cancellation groups via thickening

Here we prove that finitely presented graphical C(4)-T(4) small cancellation groups are Helly. We
closely follow [72, Section 6], where graphical C(6) groups were studied. We begin with general notions
concerning complexes, then graphical C(4)-T(4) complexes, and proving the Helly property for a class
of graphical C(4)-T(4) complexes. From this we conclude the Hellyness of the corresponding groups.

In this subsection, unless otherwise stated, all complexes are 2-dimensional CW-complexes with combi-
natorial attaching maps (that is, restriction to an open cell is a homeomorphism onto an open cell) being
immersions — see [72, Section 6] for details. A polygon is a 2-disk with the cell structure that consists
of n vertices, n edges and a single 2-cell. For any 2-cell C of a 2-complex X there exists a map R — X,
where R is a polygon and the attaching map for C factors as S! — R — X. By a cell we will mean a
map R — X where R is a polygon. An open cell is the image in X of the single 2-cell of R. A path in X
is a combinatorial map P — X where P is either a subdivision of the interval or a single vertex. In the
latter case we call P — X a trivial path. The interior of the path is the path minus its endpoints. Given
paths P; — X and P, — X such that the terminal point of P; is equal to the initial point of P,, their
concatenation is the obvious path Py P, — X whose domain is the union of Py and P, along these points.
A cycle is amap C — X, where C is a subdivision of the circle S!. The cycle C — X is nontrivial if it
does not factor through a map to a tree. A path or cycle is simple if it is injective on vertices. Notice that
a simple cycle (of length at least 3) is nontrivial. The length of a path P or a cycle C, denoted by | P|
or |C|, respectively, is the number of 1-cells in the domain. A subpath Q — X of a path P — X (or a
cycle) is a path that factors as Q — P — X such that Q — P is an injective map.

A disk diagram is a contractible finite 2-complex D with a specified embedding into the plane. We call D
nonsingular if it is homeomorphic to the 2-disc, otherwise D is called singular. The area of D is the
number of 2-cells. The boundary cycle dD is the attaching map of the 2-cell that contains the point {oo},
when we regard S? = R? U {oo}. A boundary path is any path P — D that factors as P — 0D — D.
An interior path is a path such that none of its vertices, except for possibly endpoints, lie on the boundary
of D. If X is a 2-complex, then a disk diagram in X isamap D — X.

A piece in a disk diagram D is a path P — D for which there exist two different lifts to 2-cells of D, ie
there are 2-cells R; — D and R; — D such that P — D factors bothas P — R; — D and P — R; — D,
but there does not exist an isomorphism R; — R; making the following diagram commutative:

P —— R

| ]

Rj—>D
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Let ¢: G — O be an immersion of graphs where ® is connected and G does not have vertices of degree
0 or 1. For convenience we will write G as the union of its connected components G = | |;; G;, and
refer to the connected graphs G; as relators.

A thickened graphical complex X is a 2-complex with 1-skeleton ® and a 2-cell attached along every
immersed cycle in G (if a cycle C — G is immersed, then in X there is a 2-cell attached along the
composition C — G — ). A (nonthickened) graphical complex X* is a 2-complex obtained by gluing
a simplicial cone C(G;) along each G; — ©:
X*=0U,| |C@G).
iel
For any G; — X we have a thick cell Th(G;) — X, where Th(G;) is formed by gluing 2-cells along
all immersed cycles in G;. In X™* a cone-cell is the corresponding map C(G;) — X. Note that the two
complexes X and X * have the same fundamental groups. To be consistent with the approach in [72], in

the following material we usually work with the thickened complex X, however the results could also be
formulated for X *.

Let X be a thickened graphical complex. A piece in X is a path P — X for which there exist two
different lifts to G, ie there are two relators G; and G; such that the path P — X factorsas P — G; — X
and P — G; — X, but there does not exist an isomorphism Th(G;) — Th(G;) such that the following
diagram commutes:

P —— Th(G;)

|

Th(G;) —— X

A disk diagram D — X is reduced if for every piece P — D the composition P — D — X is a piece in X .

Lemma 6.12 (Lyndon—Van Kampen lemma) Let X be a thickened graphical complex and let C — X
be a closed homotopically trivial path. Then:

(1) There exists a disk diagram D — X such that the path C factors as C — 0D — X, and C — 0D
is an isomorphism.

(2) Ifadiagram D — X is not reduced, then there exists a diagram D1 — X with smaller area and the
same boundary cycle in the sense that there is a commutative diagram

Dy —=— oD
X
(3) Any minimal-area diagram D — X such that C factors as C => 0D — X is reduced.
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Definition 6.13 We say that a thickened graphical complex X satisfies

e the C(4) condition if no immersed cycle C — X that factors as C — G; — X is the concatenation
of fewer than four pieces, and
e the T(4) condition if there does not exist a reduced nonsingular disk diagram D — X with D

containing an internal O-cell v, of valence 3, that is, contained in exactly three corners of 2-cells.

If X satisfies both conditions we call it a C(4)-T(4) thickened graphical complex. The corresponding
complex X * is called a C(4)-T(4) graphical complex.

If D is a disk diagram, we define small cancellation conditions in a very similar way, except that a piece
is understood as a piece in a disk diagram.

Proposition 6.14 If X is a C(4)-T(4) thickened graphical complex and D — X is a reduced disk
diagram, then D is a C(4)-T(4) diagram.

Proof The assertion follows immediately from the definitions of a reduced map and a piece. a

The following lemma is a graphical C(4)-T(4) analog of [72, Theorem 6.10] —the graphical C(6) case —
and [54, Propositions 3.4, 3.5 and 3.7 and Corollary 3.6] — the classical C(4)-T(4) case.

Lemma 6.15 Let X be a simply connected C(4)-T(4) thickened graphical complex. Then:
(1) For every relator G;, the map G; — X is an embedding.
(2) The intersection of (the images of) any two relators is either empty or it is a finite tree.

(3) If'three relators pairwise intersect then they all intersect and the intersection is a finite tree.

Proof We proceed by contradiction, assuming the statement does not hold and showing that this leads to
a forbidden reduced disk diagram in each case.

(1) Suppose there is a relator G that does not embed. Let v and v’ be two vertices of G1 mapped to a
common vertex vy1 in X, and let y be a geodesic path in G| between v and v’. The path y is mapped
to a loop y1 in X. By simple connectedness and Lemma 6.12 there exists a reduced disk diagram D
for yy; see Figure 3, left. We may assume that we choose a counterexample so that the area (the number
of 2-cells) of D is minimal among all counterexamples.

a3
J \ 53] [ F3
v = 31
V23 |
Y1 | Fl ptl
F; ‘
(%) (%%)

v F, Fy F
o 12 V12 2

Figure 3: The proof of Lemma 6.15. From left to right: (1), (2) and (3).
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Figure 4: The proof of Lemma 6.15(1).

Now consider a larger disk diagram D U F; where F] is a cell whose boundary is the concatenation
y1o1 which is mapped to a loop in G, and the only common point of y; and «; is v;1; see Figure 3,
left. The existence of F; follows from our assumption that there are no degree-1 vertices in relators. The
diagram D U F; cannot be reduced, otherwise it would be a C(4)-T(4) diagram by Proposition 6.14,
and this would contradict eg [54, Proposition 3.4]. Hence, by the definition of a reduced diagram, there
is a piece P in D U F; that does not lift to a piece in X. Since D is reduced, it follows that P has to
lie on y;. Since P does not lift to a piece in X, P is a part of the boundary of a cell F’ such that its
other boundary part Q maps to G as well; see Figure 4. Thus replacing the subpath P of y; by Q and,
if necessary, reducing the resulting loop to get an immersed one, we get a new counterexample with a
diagram D’, such that D = D’ U F’, of smaller area. This is a contradiction and so proves (1).

(2) First we prove that the intersection of two relators is connected. We proceed analogously to the
proof of (1). Suppose not, and let G; and G, intersect in a nonconnected subgraph leading to a reduced
disk diagram as in Figure 3, middle, with the boundary of F; mapping to G;. Again, we assume
that D has minimal area among counterexamples and consider the extended disk diagram D U F; U F5.
By [54, Proposition 3.5] the new diagram is not reduced, and hence, as in the proof of (1), we get
to a contradiction by finding a new counterexample with a smaller area diagram. This proves the
connectedness of the intersection of two relators. The fact that such intersections do not contain cycles
follows immediately from the C(4) condition.

(3) By (1) and (2) it is enough to show that the triple intersection is nonempty. Here we proceed
analogously to (1) and (2). The corresponding diagrams are depicted in Figure 3, right, and the fact that
the extended diagram D U F; U F, U F3 is not reduced follows from [54, Proposition 3.7]. O

Lemma 6.16 Let G1, G, and G3 be three pairwise-intersecting relators in a simply connected C(4)-T(4)
thickened graphical complex X . Then the intersection G; N G; of any two relators is contained in the
third one.

Proof Suppose not. Let v; be a vertex in G; NGy notin G; for {i, j, k} ={1,2,3}. By Lemma 6.15 there
exists a vertex v € G1 N G2 N G3 and immersed paths y; € G; NGy from v to v; forall {i, j, k} ={1,2,3}.
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Figure 5: The proof of Lemma 6.16.

By our assumption that there are no degree-1 vertices, we may find a reduced disk diagram consisting of
cells F; mapped to G; fori = 1,2, 3, as in Figure 5. This contradicts the T(4) condition. |

Lemma 6.17 Let X be a simply connected C(4)-T(4) thickened graphical complex and consider a
collection {G; — X };cy of relators. If for every i, j € I the intersection G; N G; is nonempty, then the
intersection ();¢; G; is a nonempty tree.

Proof This follows directly from Lemmas 6.16 and 6.15(3). O

In view of Lemmas 6.16 and 6.15, for a simply connected C(4)-T(4) graphical complex X * we may define
a flag simplicial complex X2, called its thickening, as follows: vertices of X2 are the vertices of X *, and
two vertices are connected by an edge if and only if they are contained in a common cone-cell. (Observe
that the thickening of a graphical complex is not the corresponding thickened graphical complex.)

Theorem 6.18 Let X* be a simply connected C(4)-T(4) graphical complex. Then the 1-skeleton of the
thickening X2 of X* is Helly. Consequently, a group acting geometrically on X* is Helly.

Proof Since cone-cells are contractible and, by Lemma 6.17, all their intersections are contractible
or empty, by Borsuk’s nerve theorem [18; 17] the thickening X2 is homotopically equivalent to X *.
By Lemmas 6.16 and 6.15, the hypergraph defined by the thickening is triangle-free, and hence, by
Proposition 2.11 the 1-skeleton of X2 is clique-Helly. The theorem now follows by Theorem 4.1. O

Examples of groups as in Theorem 6.18 are given by the following construction. A graphical presentation
P = (S :¢)isagraph G = | |;c; G; and an immersion ¢: G — Rg, where every G; is finite and
connected and Rg is a rose, ie a wedge of circles with edges (cycles) labeled by a set S. Alternatively,
the map ¢: G — Rg, called a labeling, may be thought of as an assignment: to every edge of G we
assign a direction (orientation) and an element of S.

A graphical presentation P defines a group I' = I'(P) = 71 (Rgs)/{@«(71(Gi))ier)). In other words "
is the quotient of the free group F(S) by the normal closure of the group generated by all words (over
S U S~ read along cycles in G (where an oriented edge labeled by s € S is identified with the edge of
the opposite orientation and the label s~!). Observe that removing vertices of degree 1 from G does not

Geometry & Topology, Volume 29 (2025)



46 Jérémie Chalopin, Victor Chepoi, Anthony Genevois, Hiroshi Hirai and Damian Osajda

change the group. Hence we may assume that there are no such vertices in G. A piece is a path P labeled
by S such that there exist two immersions pj: P — G and p,: P — G, and there is no automorphism
®: G — G such that p; = ® o ps.

Consider the graphical complex X* = Rg Uy | |;<; C(G;). The fundamental group of X * is isomorphic
to I. In the universal cover X * of X* there might be multiple copies of cones C(G;) whose attaching
maps differ by lifts of Aut(G;). After identifying all such copies, we obtain the complex Xt. The
group I' acts geometrically, but not necessarily freely, on XT. We call the presentation P a C(4)-T(4)
graphical small cancellation presentation when the complex X* is a C(4)-T(4) graphical complex. The
presentation P is finite, and the group I' is finitely presented if the graph G is finite and the set S (of
generators) is finite. As an immediate consequence of Theorem 6.18 we obtain the following:

Corollary 6.19 Finitely presented graphical C(4)-T(4) small cancellation groups are Helly.
6.5 Free products with amalgamation over finite subgroups

Let H be a graph with vertex set {w }jes. For a collection { H; } ey of graphs indexed by vertices of H,
we consider the collection FH := {F(H;)};ey of their face complexes. For every edge e = {u;,u;}
in H we pick vertices w]e € F(H;) and wj?, € F(Hjs). The amalgam of FH over H, denoted by H(FH),
is a graph defined as follows: Vertices of H(F#H) are equivalence classes of the equivalence relation on
U ies V(F(H})) induced by the relation wje. ~ w]?, for all edges e of H. Edges of H(F#H) are induced
by edges in the disjoint union |_| jes F(Hj). The part of Theorem 1.3(1) concerning free products with
amalgamations over finite subgroups is implied by the following result. The case of HNN-extensions

follows analogously.

Theorem 6.20 Fori = 1,2 let I} act geometrically on a Helly graph G;, and let T} < T; be finite
subgroups such that T and T, are isomorphic. Then the free product Ty #ry=ry 2 of I and T with
amalgamation over I'{ = T; acts geometrically on an amalgam H(FH) of FH over H, where H is a
tree, elements of H are copies of G and G, and such that H(FH) is Helly.

Proof Let H be the Bass—Serre tree for I *I/ Ty I>. For a vertex w; of H corresponding to I'; we define
H; to be a copy of G;. For an edge e in H we define wj‘r’ to be a vertex fixed in H; by the corresponding
conjugate of I'] = Ty (such a vertex exists by Theorem 7.1 and Proposition 5.23). An equivariant choice of
vertices w]? leads to an amalgam H (FH) acted geometrically upon by I'y k) I. The graph H(FH)
is Helly since it can be obtained by consecutive gluings of two Helly graphs along a common vertex —
such a gluing obviously results in a Helly graph (for a more general gluing procedure see [68]). |

6.6 Quotients by finite normal subgroups

Let I' act (by automorphisms) on a complex X. Then I" acts on F(X) and we define the fixed-point
complex F(X)T in the face complex as the subcomplex spanned by all vertices of F(X) fixed by I (that
correspond to the cliques of X stabilized by I'). The following theorem implies Theorem 1.3(5):
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Theorem 6.21 Let I' be a group acting by automorphisms on a clique-Helly graph G. Let N <1 T" be a
finite normal subgroup. Then T'/N acts by automorphisms on the clique-Helly complex F(X(G))N. If
G is Helly then F(X(G))" is Helly as well. If the T" action on G is proper or cocompact then the induced
action of T'/N on F(X(G))" is proper or cocompact, respectively.

Proof The I'-action on G induces the ["-action on F(X(G)), and consequently the I'/ N-action on
F(X(G))N. 1t is clear that the latter is proper or cocompact if the initial action is so. By Lemma 7.7 and
Corollary 7.8 the complex F(X(G))" is (clique-)Helly if G is so. |

6.7 Actions with Helly stabilizers

Our goal now is to apply the general theory developed in [45] in order to show that the family of
Helly groups is stable under several group-theoretic operations. The main theorem in this direction is
Theorem 6.24, which shows that if a group acts on a quasimedian graph in a specific way and if clique
stabilizers are Helly, then the group must be Helly as well. We emphasize that, contrary to the rest of
the article, our quasimedian graphs may not be locally finite; in particular, their cliques will typically be
infinite. We begin by giving general definitions and properties related to quasimedian graphs.

6.7.1 Preliminaries on quasimedian graphs Recall that a graph is quasimedian if it is weakly modular
and does not contain K, or K3 > as induced subgraphs. Several subgraphs are of interest in the study of
quasimedian graphs:

¢ In this subsection, by a cligue, we mean a maximal complete subgraph.

e A prism is an induced subgraph which decomposes as a Cartesian product of cliques. The maximal
number of factors of a prism in a quasimedian graph is referred to as its cubical dimension (which may
be infinite). (Observe that, by maximality of our cliques, a single vertex defines a prism of zero cubical
dimension if and only if it is isolated.)

e A hyperplane is an equivalence class of edges with respect to the transitive closure of the relation
which identifies two edges whenever they belong to a common triangle or they are opposite sides of a
square (ie a four-cycle). Two cliques are parallel if they belong to the same hyperplane. Two hyperplanes
are transverse if their union contains two adjacent edges of some square.

e According to [45, Proposition 2.15], a hyperplane separates a quasimedian graph, that is, the graph
obtained by removing the interiors of the edges of a hyperplane contains at least two connected components.
Such a component is a sector delimited by the hyperplane.

According to [7; 45, Lemmas 2.16 and 2.80], cliques and prisms are gated subgraphs. For convenience, in
the sequel we will refer to the map sending a vertex to its gate in a given gated subgraph as the projection
onto this subgraph.

6.7.2 Systems of metrics Given a quasimedian graph G, a system of metrics is the data of a metric d¢
on each clique C of G. Such a system is coherent if for any two parallel cliques C and C’ one has
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Sc(x,y) =ébc/(tcc/(x),tc—c/(y)) for all vertices x,y € C, where tc ¢’ denotes the projection
of C onto C’. As shown in [45, Section 3.2], it is possible to extend a coherent system of metrics to
a global metric on G. Several constructions are possible; we focus on the one which will be relevant
for our study of Helly groups. A chain R between two vertices x, y € V(G) is a sequence of vertices
(x1 =Xx,x2,...,Xn—1,Xn = y) such that, for every 1 <i <n — 1, the vertices x; and x; belong to a
common prism, say P;. The length of R is £(R) = Z;:ll 8p; (xi,xj41), where §p, denotes the £o,-metric
associated to the local metrics defined on the cliques of P;. Then the global metric extending our system

of metrics is
000: (x,y) > min{f(R) : R is a chain between x and y}.

Throughout this section, all our local metrics will be graph metrics. It is worth noticing that, in this case,
800 turns out to be a graph metric as well. Consequently, (G, §o) Will be considered as a graph. More
precisely, this graph has V(G) as its vertex set and its edges link two vertices if they are at §oo-distance 1.
Notice that if P = Cy x---x Cy, is a prism of G, then the graph (P, 6~ ) is isometric to the direct product
(C1.8¢c))W---W(Cp.c,).

The main result of this section is that extending a system of Helly graph metrics produces a global metric
which is again Helly. More precisely:

Proposition 6.22 Let G be a quasimedian graph of finite cubical dimension endowed with a coherent
system of graph metrics {§c : C is a clique of G }. Suppose that (C,d¢c) is a locally finite Helly graph
for every clique C of G and that each vertex belongs to only finitely many cliques. Then (G, §o0) is a
Helly graph.

We begin by proving the following preliminary lemma:

Lemma 6.23 Suppose G is a quasimedian graph endowed with a coherent system of graph metrics
{6¢ : C is a clique of G} and that the clique complex of (C, §c) is simply connected for every clique C
of G. Then the clique complex of (G, ) is simply connected as well.

Proof Lety be acycle in the 1-skeleton of (G, §s0). We prove by induction on the number of hyperplanes
of G crossed by y that y is nullhomotopic in the clique complex of (G, §o0). Of course, if y does not
cross any hyperplane then it has to be reduced to a single vertex and there is nothing to prove. So from
now on we assume that y crosses at least one hyperplane.

Let Y € V(G) denote the gated hull of the vertex set of y. Notice that the subgraph of (G, §o) spanned
by the vertices of Y coincides with (Y, o). According to [45, Proposition 2.68], the hyperplanes of Y
are exactly the hyperplanes of G crossed by y. If the hyperplanes of Y are pairwise transverse, then it
follows from [45, Lemma 2.74] that Y is a single prism. Consequently, (¥, ) is the direct product of
graphs whose clique complexes are simply connected, so y must be nullhomotopic in the clique complex
of (G, 8x). From now on assume that Y contains at least two hyperplanes, say J and H, which are
not transverse.
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Let S denote the sector delimited by H which contains J. Decompose y as a concatenation of subpaths
a1B1 - 0pPran+1 such that aq, ..., o,+1 are included in S and B4, ..., B, intersect S only at their
endpoints. For every 1 <i < n, fix a path g; C (Y, §o0) between the endpoints of §; which does not
cross J (such a path exists as a consequence of [45, Proposition 3.16]). Notice that ,B,-ol._l is a cycle which
does not cross H, so by our induction assumptions we know that 8; and o; are homotopic (in the clique
complex). Therefore y is homotopic (in the clique complex) to the cycle «1071 - - - o5 0 +1, Which does
not cross H. We conclude that y is nullhomotopic (in the clique complex) by our induction assumptions. [

Proof of Proposition 6.22 Fix a set C of representatives of cliques modulo parallelism. For every C € C,
let ¢ : G — C denote the projection onto C. We claim that

7:(G.800) > M (C.8¢c), x> (mc(x)),
CecC
is an injective graph morphism.
Let x, y € (G, 80 ) be two adjacent vertices, ie o0 (X, ¥) = 1. So there exists a prism P of G, thought of
as a product of cliques C; x - - - x Cp, which contains x and y and such that the projections of x and y
onto each C; are identical or 8¢, -adjacent. For every 1 <i <n, let C/ € C denote the representative of C;.
Because our system of metrics is coherent, we also know that the projections of x and y onto each C/ are

identical or SCI,/—adjacent. Therefore 7(x) and 7(y) are adjacent in the subgraph X1 <; <, (C/, 8C{) of
Xcec(C,é¢). Thus m is a graph morphism.

Now, let x, y € (G, 6x0) be two distinct vertices. By [45, Proposition 2.30], there exists a hyperplane
separating x and y. Therefore if C € C denotes the representative clique dual to this hyperplane, then
e (x) # e (y). Hence (x) # m(y), proving that 7 is indeed injective.

Notice that the image of a prism of G under 7 is a finite subproduct of Xcec(C, §¢). Moreover, because
every vertex of G belongs to only finitely many cliques and because each (C, §¢) is locally finite, (G, §c0)
must be locally finite. As a consequence, (G, §x) is a UGP over {(C,8¢) : C € C}. We claim that our
UGP satisfies the 3-piece condition, so let Py, P> and P3 be three pairwise-intersecting prisms in G.
Because prisms are gated, they satisfy the Helly property, so there exists a vertex x € Py N P, N Ps.
Let J denote the set of all the hyperplanes that have a clique in at least two prisms among Pq, P> and P3.
Observe that any two distinct hyperplanes J1, J» € J are transverse (ie there exists a prism containing
cliques from both J; and J3). For every J € J, fix a clique C; C P; U P, U P3 in J that contains x
and let P denote the gated hull of the union of all the Cy for J € 7. Because the hyperplanes in 7 are
pairwise transverse, we deduce from [45, Proposition 2.68 and Lemma 2.74] that P is a prism. Our goal
is to show that P is the piece of G we are looking for. So let C € C be such that at least two prisms
among P;, P, and P3 have projection C on the C-coordinate. It follows from [45, Lemma 2.20] that the
hyperplane J containing C intersects at least two prisms among Pj, P> and P3, and hence J € J. By
construction, P contains a clique in J, and hence a clique parallel to C. In other words, C is also the
projection of P on the C-coordinate, as desired. Thus we have verified that the 3-piece condition holds.
We conclude that (G, 8o0) is a Helly graph by combining Theorem 5.4 with Lemma 6.23. O
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6.7.3 Constructing Helly groups We are now ready to construct new Helly groups from old ones.
Recall from [45] that the action of a group I" on a quasimedian graph G is topical-transitive if it satisfies
the two following conditions:

(1) For every hyperplane J, every clique C C J and every g € stab(J), there exists & € stab(C') such
that g and % induce the same permutation on the set of sectors delimited by J.
(2) For every clique C of G either
e ( is finite and stab(C) = fix(C), or
e stab(C) ~ C is free and transitive on the vertices.

Then the statement we are interested in is:

Theorem 6.24 Let I" be a group acting topically transitively on a quasimedian graph G. Suppose that
e every vertex of G belongs to finitely many cliques,
e every vertex stabilizer is finite,
e the cubical dimension of G is finite,
e G contains finitely many I"-orbits of cliques, and
e for every maximal prism P = Cy x --- x Cy,, we have stab(P) = stab(Cy) X - - - X stab(Cp).
If clique stabilizers are Helly, then sois I'.

Before turning to the proof of Theorem 6.24, we need the following easy observation (which can be
proved by following [45, Lemma 4.34]):

Lemma 6.25 For every Helly group I', there exist a Helly graph G and a vertex xo € G such that I acts
geometrically on G and stab(xy) is trivial. |

Proof of Theorem 6.24 First, observe that G contains only finitely many I"-orbits of prisms. Indeed, let
C be a finite collection of representatives of cliques modulo the action of I". For every C € C, fix a vertex
xc € C. Let P denote the set of all the prisms in G that contain x¢ for some C € C. Since each vertex
belongs to finitely many cliques by assumption, we know that P is a finite collection. Now, if P is an
arbitrary prism in G, there must exist g € I" and C € C such that gP contains C, and a fortiori x¢, and
hence gP € P. This proves our observation. By combining Lemma 6.25 with [45, Proposition 7.8], there
exists a new quasimedian graph Y endowed with a coherent system of metrics {§¢ : C is a clique of Y}
such that I acts geometrically on (Y, 6oc) and such that (C, §¢) is a Helly graph for every clique C of Y.
Since (Y, do0) is a Helly graph by Proposition 6.22, we conclude that I' is a Helly group. O

We now record several applications of Theorem 6.24.

6.7.4 Graph products of groups Given a simplicial graph G and G = {I}, : u € V(G)} a collection of
groups indexed by the vertices of G (called vertex-groups), the graph product GG is the quotient
( sk Fu)/(([g,h] =1,gely, helyif (u,v) € E(G))).
ueV(G)
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For instance, if G has no edge then GG is the free product of G, and if G is a complete graph then GG is
the direct sum of G. One often says that graph products interpolate between free products and direct sums.

By combining Theorem 6.24 with [45, Proposition 8.14], one obtains:

Theorem 6.26 Let G be a finite simplicial graph and G a collection of groups indexed by V(G). If the
vertex-groups are Helly, then so is the graph product GG.

6.7.5 Diagram products of groups Let P = (X : R) be a semigroup presentation. We assume that if
u = v is a relation which belongs to R then v = u does not belong to R; in particular, R does not contain
relations of the form u = u. The Squier complex S(P) is the square-complex

e vertices are the positive words w € =T,

e edges (a,u = v, b) link aub and avb where (u = v) € R, and

e squares (a,u = v,b, p = ¢,c) are delimited by the edges (a,u = v,bpc), (a,u = v,bgc),
(aub, p = ¢q,c) and (avb, p =q,c).

The connected component of S(P) containing a given word w € 7 is denoted by S(P,w). Given
a collection of groups G = {Is, s € X} labeled by the alphabet X, the diagram product D(P, G, w) is
isomorphic to the fundamental group of the following 2-complex of groups:

¢ The underlying 2-complex is the 2-skeleton of the Squier complex S(P, w).

e To any vertex u = s1:--§, € > is associated the group I}, = Iy, x---xTj,.

e To any edge e = (a,u — v, b) is associated the group I, = I}; x [},.

¢ To any square is associated the trivial group.

¢ For every edge e = (a, u — v, b), the monomorphisms I, — I, and I, — I, are the canonical

maps [, x [}, =» Iy x I}, xTp and I, x T} — I x Iy x [}

We refer to [50; 45, Section 10] for more information about diagram products of groups. By Theorem 6.24
and [45, Proposition 10.33 and Lemma 10.34], one obtains:

Theorem 6.27 Let P = (X : R) be a finite semigroup presentation, G a collection of groups indexed by
the alphabet ¥ and w € = a baseword. If {u € ¥ :u = w mod P} is finite and if the groups of G are
all Helly, then the diagram product D(P, G, w) is a Helly group.

Explicit examples of diagram products can be found in [45, Section 10.7]. For instance, the [J-product of
two groups Iy and I3, defined by the relative presentation

0O =(Iy.0.t:[g.h] =[g.tht™ | =1forg el and h € ;)
is a diagram product [45, Example 10.65]. As it satisfies the assumptions of Theorem 6.27, it follows that:
Corollary 6.28 If Iy and I, are two Helly groups, then so is I7 O I5.

Geometry & Topology, Volume 29 (2025)



52 Jérémie Chalopin, Victor Chepoi, Anthony Genevois, Hiroshi Hirai and Damian Osajda

6.7.6 Right-angled graphs of groups Roughly speaking, right-angled graphs of groups are fundamental
groups of graphs of groups obtained by gluing graph products together along “simple” subgroups. We
refer to [83] for more information about graphs of groups.

Definition 6.29 Let G and H be two simplicial graphs, and G and H be two families of groups indexed
by V(G) and V(H), respectively. A morphism ®: GG — HH is a graphical embedding if there exists an
embedding f: G — H and isomorphisms ¢, : I}, — I's(y,) for v € V(G), such that f(G) is an induced
subgraph of H and ®(g) = ¢, (g) forevery v € V(G) and g € T,.

Definition 6.30 A right-angled graph of groups is a graph of groups such that each (vertex- and
edge-)group has a fixed decomposition as a graph product and such that each monomorphism of an
edge-group into a vertex-group is a graphical embedding (with respect to the structures of graph products
we fixed).

In the following, a factor will refer to a vertex-group of one of these graph products. Let & be a right-
angled graph of groups. Notice that, if e is an oriented edge from a vertex x to another y, then the
two embeddings of I in I'y and I, given by & provide an isomorphism ¢, from a subgroup of I'y to a
subgroup of I',. Moreover, if I" C I'y is a factor, then @, (I') := {g € I, : 3h € T such that ¢.(h) = g} is
either empty or a factor of I',. Set

O(T") ={@e, 0+ 0@e, :€1,..., e is an oriented cycle at X, @g, 0+ 0@, (I') =T},
thought of as a subgroup of the automorphism group Aut(I").
By combining Theorem 6.24 with [45, Proposition 11.26 and Lemma 11.27], one obtains:
Theorem 6.31 Let & be a right-angled graph of groups such that ®(I") = {Id} for every factor T.

Suppose that the underlying abstract graph and the simplicial graphs defining the graph products are all
finite. If the factors are Helly, then so is the fundamental group of &.

For explicit examples of fundamental groups of right-angled graphs of groups see [45, Section 11.4].
For instance, the x-power of a group I' [45, Example 11.38], defined by the relative presentation
'™ = (It :[g.tgt™'] = 1 for g € I'), is the fundamental group of a right-angled graph of groups
satisfying the assumptions of Theorem 6.31, and hence:

Corollary 6.32 If T is a Helly group, then so is I'™.

Also, the ><-product of two groups Iy and I, [45, Example 11.39], defined by the relative presentation
Mo = (1, .t [g.h] =[g.tht ™| =[h,tht™ ] =1for g € I} and h € ), is the fundamental
group of a right-angled graph of groups satisfying the assumptions of Theorem 6.31, and hence:

Corollary 6.33 If I} and I, are Helly groups, then so is 7 >< 15.
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7 Properties of Helly groups

The main goal of this section is proving Theorem 1.5(2)—(4) and (6)—(9). (Theorem 1.5(1) is proved in
the subsequent Section 8 and Theorem 1.5(5) follows from Theorems 3.13 and 6.3.) On the way we show
also some immediate consequences of the main results and prove related facts concerning groups acting
on Helly graphs.

7.1 Fixed points for finite group actions

In this subsection we prove Theorem 1.5(2), which states that every Helly group has only finitely many
conjugacy classes of finite subgroups. It is an immediate consequence of the following result, which is
interesting on it own:

Theorem 7.1 (fixed point theorem) Let I" be a group acting by automorphisms on a Helly graph G
without infinite cliques. If I" has bounded orbits, then there exists a clique of G stabilized by I'. In
particular, there is a fixed vertex of the induced action of T" on the face complex F(G).

Proof Pick a vertex v of G and consider its I'-orbit I'v. Let N be the diameter of I'v. The intersection
B:= ger BN (gv) of N-balls centered at vertices of the orbit I'v is a nonempty bounded ["-invariant
Helly graph. Since G does not contain infinite simplices, by [77, Theorem A], the graph B contains a
clique stabilized by I'. |

Proof of Theorem 1.5(2) This follows immediately from the fixed point theorem, Theorem 7.1, as in,
for example, the case of CAT(0) groups in [21, Proposition 1.8.5]. |

Remark 7.2 Theorem 1.5(2) can be also deduced from [38] or [65, Proposition 1.2] combined with our
Theorem 6.3.

7.2 Flats vs hyperbolicity

Proof of Theorem 1.5(3) Suppose that I" is hyperbolic. Then G is hyperbolic and, clearly, does not
contain an isometric {-square-grid. For the converse, recall that if " is not hyperbolic then G contains
isometric finite {~o-square-grids of arbitrary size, by Proposition 4.5. Since I" acts geometrically on G
(and, in particular, G is locally finite), by a diagonal argument it follows that G contains an isometric
infinite £oo-grid; see eg [21, Lemma 11.9.34 and Theorem 11.9.33]. O

7.3 Contractibility and Hellyness of the fixed-point set

The aim of this section is to prove that for a group acting on a Helly complex its fixed-point set is
contractible. This leads to a proof of Theorem 1.5(4) showing that the Helly complex is a model for the
classifying space for proper actions. Furthermore, we show that the fixed-point subcomplex of the face
complex (of the Helly complex on which the group acts) is Helly.
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Lemma 7.3 Let I' < Aut(X) be a group of automorphisms of a locally finite Helly complex X. The
fixed-point set X' of the barycentric subdivision X’ of X is contractible.

Proof Let o be asimplex of X stabilized by I'. For every N > 0, the intersection By :=( ),eq Bn (V)
of N-balls centered at vertices of o is Helly, and hence dismantlable. It is also I'-invariant, by construction.
The fixed-point set Bg in the barycentric subdivision B}, of By is contractible by [11, Theorem 6.5] or
[53, Theorem 1.2]. Since the sets By exhaust X, it follows that the fixed-point set X’ I in the barycentric
subdivision X’ of X is contractible. |

Theorem 1.5(4) is a part of the following corollary of Theorem 7.1 and Lemma 7.3:

Corollary 7.4 Let I be a group acting properly on a locally finite Helly graph G. Then the Helly
complex X (G) is a model for the classitying space ET for proper actions of I'. If the action is cocompact
then the model is finite-dimensional and cocompact.

In view of Theorem 6.3 and [65, Theorem 1.4] there exists another model for ET", defined as follows:

Theorem 7.5 Let I' be a group acting properly on a locally finite Helly graph G. The injective hull
E(G) of G is a model for the classifying space ET for proper actions of T'. If the action is cocompact
then the model is finite-dimensional and cocompact.

Remark 7.6 Observe that X(G) can be nonhomeomorphic to £(G). For example, if G is an (n+1)-
clique then obviously the clique complex X (G) is an n-simplex, whereas the injective hull E(G) is a
cone over n + 1 points, that is, a tree.

Recall that the fixed-point complex F(X)T in the face complex is the subcomplex spanned by all vertices
of F(X) fixed by I". We now prove that F(X)! is Helly.

Lemma 7.7 (clique-Helly fixed-point set) Let I' < Aut(X) be a group of automorphisms of a locally
finite clique-Helly complex X . Then the fixed-point complex F(X)' is clique-Helly.

Proof Let uvw be a triangle in F(X)T'. By the clique-Helly property for F(X) (Proposition 5.23)
there is a vertex z € F(X) adjacent to all vertices of F(X) spanning triangles with an edge of uvw
(Proposition 2.9). Since uvw belongs to F(X)!', all vertices in the orbit I'z have the same property as z, ie
they are adjacent to all vertices of F'(X) spanning triangles with an edge of uvw. Thus they span a simplex
of F(X). Let o be the union of the simplices of X corresponding to the vertices of ['z in F(X). By
Lemma 5.21, o is a simplex of X. Let y be the vertex of F'(X) corresponding to o. Notice that y belongs
to F(X)T'. We now prove that y satisfies the assumption of Proposition 2.9. Pick a vertex x of F(X)T
spanning a triangle with an edge of uvw, say with uv. By the definition of z, x is adjacent to z and to any
z’ € I'z. Consequently, for any z’ € 'z, x and z’ correspond to two subsimplices 7, and 7, of a common
simplex of X. Therefore all vertices of 7, are adjacent to all vertices of 7,/. Since 0 = |, e, 72/,
7x and o are also subsimplices of a common simplex of X. Thus x and y are adjacent in F(X). O
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Corollary 7.8 (Helly fixed-point set) Let I' < Aut(X) be a group of automorphisms of a locally finite
Helly complex X . Then the fixed-point complex F(X)T is Helly.

Proof Since every edge in F(X)T is homotopic to a path in X', every cycle in F(X)! is homotopic to
acyclein X', and hence F(X)' is simply connected by Lemma 7.3. So by Lemma 7.7 and Theorem 4.1,
F(X)T is Helly. o

7.4 EZ-boundaries

For a group T acting geometrically on X, by an EZ-structure for T' we mean a pair (X, 0X), where
X = X UdX is a compactification of X that is a Euclidean retract with the following additional properties.
The EZ-boundary dX is a Z-set in X such that, for every compact K C X, the sequence (gK) gerisa
null sequence, and the action I' ~, X extends to an action I' ~, X by homeomorphisms. This notion was
first introduced by Bestvina [16] (without the requirement of extending ' ~, X to T' ~, X), then by Farrell
and Lafont [43] (for free actions) and finally in [73] (in the form above). Homological invariants of the
boundary are related to homological invariants of the group, and the existence of an EZ-structure has some
important consequences (eg it implies the Novikov conjecture in the torsion-free case). Conjecturally,
all groups with finite classifying spaces admit EZ-structures, but such objects were constructed only for
limited classes of groups — notably for hyperbolic groups and for CAT(0) groups. Theorem 1.5(6) is a

consequence of the following:

Theorem 7.9 Let I' act geometrically on a Helly graph G. Then there exists an EZ-boundary 0G such
that (X(G) U 4G, dG) and (E(G) U dG, dG) are EZ-structures for I'.

Proof It is shown in [33] that for a complete metric space E(G) with a convex and consistent bicombing,
there exists dG (a space of equivalence classes of combing rays) such that (E(G)UdG, dG) is a so-called
Z-structure. The proof is easily adapted to show that it is an EZ-structure (see eg [73] where a much weaker
version of a “coarse bicombing” is used to define an EZ-structure). It follows that (X(G) U dG, 0G) is an

EZ-structure as well. O
7.5 The Farrell-Jones conjecture

For a discrete group I', the Farrell-Jones conjecture asserts that the K-theoretic (resp. L-theoretic)

assembly map
HY (Evey(T); Kg) — Kn(RT)  (resp. HY (Evey(T); LY %) — L§)(RT))

is an isomorphism. Here R is an associative ring with a unit, RI" is the group ring and K, (RI") are the
algebraic K-groups of RI". By Eycy(I") we denote the classifying space for the family of virtually cyclic
subgroups of I', and K is the spectrum given by algebraic K-theory with coefficients from R (resp. we
have the L-theoretic analogs); see eg [12; 64] for more details. We say that I' satisfies the Farrell-Jones
conjecture with finite wreath products if for any finite group F the wreath product I' ? F satisfies the
Farrell-Jones conjecture.
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Proof of Theorem 1.5(7) Kasprowski and Riiping [64] showed that the Farrell-Jones conjecture with
finite wreath products holds for groups acting geometrically on spaces with convex geodesic bicombing.
Hence our result follows from Theorems 6.3 and 3.13. |

7.6 The coarse Baum—Connes conjecture

For a metric space X the coarse assembly map is a homomorphism from the coarse K-homology of X to
the K-theory of the Roe algebra of X. The space X satisfies the coarse Baum—Connes conjecture if the
coarse assembly map is an isomorphism. A finitely generated group I' satisfies the coarse Baum—Connes
conjecture if the conjecture holds for I seen as a metric space with a word metric given by a finite
generating set. Equivalently, the conjecture holds for I' if a metric space (equivalently, every metric
space) acted geometrically upon by I' satisfies the conjecture.

Proof of Theorem 1.5(8) Fukaya and Oguni [44] introduced the notion of geodesic coarsely convex space,
and proved that the coarse Baum—Connes conjecture holds for such spaces. A geodesic coarsely convex
space is a metric space with a coarse version of a bicombing satisfying some coarse convexity condition.
In particular, metric spaces with a convex bicombing — and hence all proper injective metric spaces
(Theorem 3.13) — are geodesic coarsely convex spaces. Therefore our result follows from Theorem 6.3. O

7.7 Asymptotic cones

In this section, we are interested in asymptotic cones of Helly groups and prove Theorem 1.5(9). Before
turning to the proof, let us begin with a few definitions.
An ultrafilter w over a set S is a collection of subsets of S satisfying the following conditions:

e J¢wand S €w.

e Forevery A, Bew, ANB cw.

e Forevery A C S, either A € w or A € w.

Basically, an ultrafilter may be thought of as a labeling of the subsets of S as “small” (if they do not
belong to w) or “big” (if they belong to w). More formally, the map

0 ifA¢w,

1 ifdew,

defines a finitely additive measure on S. The easiest example of an ultrafilter is the following. Fixing

B(S) — {0, 1}, A

some s € S,setw={A C S :s € A}. Such an ultrafilter is called principal. The existence of nonprincipal
ultrafilters is assured by Zorn’s lemma; see [63, Section 3.1] for a brief explanation.

Now fix a metric space (X, d), a nonprincipal ultrafilter w over N, a scaling sequence € = (¢5,) satisfying
€n — 0 and a sequence of basepoints 0 = (0,,) € XN. A sequence (r,) € RN is w-bounded if there
exists some M > 0 such that {n € N : |r,| < M} € w (ie if |r,| < M for “w-almost all n”). Set
B(X.€,0) ={(xn) € XN : (€nd(xp,0,)) is w-bounded}. We may define a pseudodistance on B(X, €, 0)
as follows. First, we say that a sequence (r,) € RN w-converges to a real r € R if, for every € > 0,
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{neN:|r,—r| <€} ecw. If so, we write r = lim, r,. It is worth noticing that an w-bounded sequence
of RN always w-converges; see [63, Section 3.1] for more details. Then our pseudodistance is

B(X.€,0)> = [0,4+00), (x,y) > lime,d(xn, yn).
[0
The previous w-limit always exists since the sequence under consideration is w-bounded.

Definition 7.10 The asymptotic cone Coney, (X, €, 0) of X is the metric space obtained by quotienting
B(X, €, 0) by the relation (x5) ~ (yn) if d((xn), (y»)) =0.

The picture to keep in mind is that (X, €,d) is a sequence of spaces we get from X by “zooming out”,
and the asymptotic cone is the “limit” of this sequence. Roughly speaking, the asymptotic cones of a
metric space are asymptotic pictures of the space. For instance, any asymptotic cone of Z2, thought of as
the infinite grid in the plane, is isometric to R? endowed with the £;-metric, and the asymptotic cones of
a simplicial tree (and more generally of any Gromov-hyperbolic space) are real trees.

One can define asymptotic cones of finitely generated groups up to bi-Lipschitz homeomorphism by
looking at word metrics associated to finite generating sets, since quasi-isometric metric spaces have
bi-Lipschitz-homeomorphic asymptotic cones [63, Proposition 3.12].

We are now ready to prove Theorem 1.5(9) as a consequence of the following result:

Proposition 7.11 Let (X, d) be a finite-dimensional proper injective metric space. Then its asymptotic
cones are contractible.

Proof Let o: X x X x [0, 1] denote the combing provided by Theorem 3.13. Fix a nonprincipal
ultrafilter w, a sequence of basepoints 0 = (0,) and a sequence of scalings € = (¢,). For every point
x = (x,) € Coney (X, 0,€) and every ¢t € [0, 1], let p(z, x) denote (o (05, X5,1)). Since o is geodesic,
p(t, x) defines a point of Cone, (X, 0, €). Also, since ¢ is convex, the map

p:]0, 1] x Coney (X, 0,€) = Coney, (X, 0,€), (t,x)— p(t, x),
is continuous. In other words, p defines a retraction of Cone,, (X, 0, €) to the point o. O

Proof of Theorem 1.5(9) Let I" be a group acting geometrically on a Helly graph G. By Theorem 6.3, I"
acts geometrically on the injective hull £(G) of G, which is a finite-dimensional proper injective metric
space. As every asymptotic cone of I" must be bi-Lipschitz-homeomorphic to an asymptotic cone of
E(G), the desired conclusion follows from Proposition 7.11. m|

8 Biautomaticity of Helly groups

Biautomaticity is a strong property implying numerous algorithmic and geometric features of a group
[40; 21]. Sometimes the fact that a group acting on a space is biautomatic may be established from the
geometric and combinatorial properties of the space. For example, one of the important and nice results
about CAT(0) cube complexes is a theorem by Niblo and Reeves [69] stating that the groups acting
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geometrically on such complexes are biautomatic. Januszkiewicz and Swiatkowski [61] established a
similar result for groups acting on systolic complexes. It is also well known that hyperbolic groups are
biautomatic [40]. Swiatkowski [85] presented a general framework of locally recognized path systems
in a graph G under which proving biautomaticity of a group acting geometrically on G is reduced to
proving local recognizability and the 2-sided fellow traveler property for some paths.

In this section we use a different meaning of the term “bicombing”. Here the bicombing is a combinatorial
object that should not be confused with the (continuous) geodesic bicombing from Section 3.4.

8.1 Main results

In this section, similarly to the results of [69] for CAT(0) cube complexes, of [61] for systolic complexes
and of [23] for swm-graphs, we define the normal clique-path and prove the existence and uniqueness
of normal clique-paths in all Helly graphs G. These clique-paths can be viewed as usual paths in the
1-skeleton of the face complex F(X(G)) of X(G) and give rise to paths in the 1-skeleton §(G) of the first
barycentric subdivision of X(G). From their definition, it follows that the sets of normal clique-paths are
locally recognized sensu [85]. Moreover, we prove that they satisfy the 2-sided fellow traveler property.
As a consequence, groups acting geometrically on Helly graphs are biautomatic.

Theorem 8.1 The set of normal clique-paths between all vertices of a Helly graph G defines a regular
geodesic bicombing in $(G). Consequently, a group acting geometrically on a Helly graph is biautomatic.

Remark 8.2 A natural generalization of this theorem would be to prove that injective groups (ie groups
acting geometrically on injective metric spaces) are biautomatic. Recently, Hugues and Valiunas [58]
proved this is not the case: they constructed an injective group that is not biautomatic and thus not Helly.

8.2 Bicombings and biautomaticity

We continue by recalling the definitions of (geodesic) bicombing and biautomatic group [40; 21]. Let
G = (V, E) be a graph and suppose that I" is a group acting geometrically by automorphisms on G.
These assumptions imply that the graph G is locally finite and that the degrees of the vertices of G are
uniformly bounded. Denote by P(G) the set of all paths of G. A path system P [85] is any subset of
P(G). The action of I" on G induces the action of I" on the set P(G) of all paths of G. A path system
P C P(G) is called I'-invariant if g-y € P forall g e " and y € P.

Let [0, n]* denote the set of integer points from the segment [0, n]. Given a path y of length n = |y| in G,
we can parametrize it and denote it by y: [0, n]* — V(G). It will be convenient to extend y over [0, 0]
by setting y(i) = y(n) for any i > n. A path system P of a graph G is said to satisfy the 2-sided fellow
traveler property if there are constants C > 0 and D > 0 such that for any two paths y1, y2 € P, the
following inequality holds for all natural i:

dg(y1(0). y2(i)) = C max{dg (y1(0). y2(0)). dG (y1(00). y2(c0))} + D.
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A path system P is complete if any two vertices are endpoints of some path in P. A bicombing of a
graph G is a complete path system P satisfying the 2-sided fellow traveler property. If all paths in the
bicombing P are shortest paths of G, then P is called a geodesic bicombing.

We quickly recall the definition of a biautomatic structure for a group; for details see [40; 21; 85]. Let I
be a group generated by a finite set S. A language over S is some set of words in S U S™! (in the free
monoid (S US™1)*). A language over S defines a I'-invariant path system in the Cayley graph Cay(T", S).
A language is regular if it is accepted by some finite-state automaton. A biautomatic structure is a pair
(S, £), where S is as above, £ is a regular language over S and the associated path system in Cay(I", S) is
a bicombing. A group is biautomatic if it admits a biautomatic structure. In what follows, we use specific
conditions implying biautomaticity for groups acting geometrically on graphs. The method, relying on
the notion of a locally recognized path system, was developed by Swiatkowski [61].

Let G be a graph and let I" be a group acting geometrically on G. Two paths y; and y, of G are
I"-congruent if there is g € I' such that g - y; = y2. Denote by S the set of I'-congruence classes of
paths of length k£ of G. Since I" acts geometrically on G, the sets Sy are finite for any natural k. For any
path y of G, denote by [y] its I"-congruence class.

For a subset R C Sk, let Pgr be the path system in G consisting of all paths y satisfying the following
two conditions:

(1) If |y| = k, then [n] € R for any subpath 7 of length k of y.
(2) If |y| <k, then y is a prefix of some path 5 such that [] € R.

A path system P in G is k-locally recognized if, for some R C Sy, we have P = Pg, and P is locally
recognized if it is k-locally recognized for some k. Swiatkowski [85] established the following sufficient
conditions for biautomaticity in terms of local recognition and bicombing:

Theorem 8.3 [85, Corollary 7.2] Let I be group acting geometrically on a graph G and let P be a path
system in G satistying the following conditions:

(1) P islocally recognized.

(2) There exists vg € V(G) such that any two vertices from the orbit I - vg are connected by a path
from P.

(3) P satisties the 2-sided fellow traveler property.

Then I is biautomatic.
8.3 Normal clique-paths in Helly graphs

For a set S of vertices of a graph G = (V, E) and an integer k > 0, let B;'(S) :=(\;cs Bk (s). In particular,
if S is a clique, then Bi" (S) is the union of S and the set of vertices adjacent to all vertices in S. If S C S/,
then B/ (S) 2 B} (S’). For two cliques 7 and o of G, let d(t,0) :=max{d(t,s):t €tands €o}. We
also recall the notation d(t,0) = min{d(t,s) :t € T and s € o} for the standard distance between 7 and o.
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We say that two cliques o and 7 of a graph G are at uniform distance k (denoted by o<y v) if d(s,t) =k
for any s € o and any 7 € t. Equivalently, o <y, 7 if and only if d (z,0) = d(z,0) = k.
Given two cliques o and 7 of G with d(t,0) = k > 2, let ﬁr(o) = B (r) N B{(0) and let f;(0) :=
B,’:_l (tr)N By (131 (0)). The following observations can help to understand these notions:

e R, (0) is the union of the maximal cliques of B; () that contain o.

* BY (I/Q\r (0)) is the intersection of the maximal cliques of B, (7) that contain o

* fz(0) is the intersection of B;_, (t) and the maximal cliques of B;’(7) that contain 0.

Since G is a Helly graph, the set f; (o) is nonempty, and we call it the imprint of o with respect to t.
Note that since o is a clique o C R, (0), and thus f;(0) C R, (o). Note also that each vertex in fz(0) is
adjacent to all other vertices in R, (o), whence R, (0) € By (f:(0)) and f¢(0) is a clique.

Lemma 8.4 For any two cliques o and © of a Helly graph G such that d (v, o) = k > 2, the imprint
f+(0) is a nonempty clique such that d (z, fr(0)) =k —1 =d(z,s) for any s’ € fy(0). Moreover, if
0 ><y T, then f7(0)><f_1 7.

Proof By definition f;(0) S B_, (7). Also, for any r,r" € R.(0), we have o € By(r) N B1(r).
Moreover, for any r € R;(0) and any ¢ € 7, d(r,t) < k and thus Bj_;(¢) N B1(r) # &. Note also
that since 7 is a clique and k > 2, 7 € B/’ (7). Consequently, since G is a Helly graph, fz(0) # @.
Since fz(0)Uo C R.(0) and each vertex of f; (o) is adjacent to all other vertices of R; (o), necessarily
f+(0)Uo is a clique. Therefore, for any ¢ € t and s € o such that d (¢, s) = d (r,0) =k, and any s’ € f+(0),
we have d(s’,t) > d(s,t)—d(s,s") =k —1. Since 5" € f(0) € B;_,(t), we have d(s’, 1) = k —1. Thus,
d(z, fr(0)) =k —1and fs(r)r<}_q1 T when o < 7. m]

Lemma 8.5 Consider three cliques o', o’ and t of a Helly graph G such that d (t,0) = d(t,0') =k > 2.
If 6’ C o, then R;(0) € R.(¢”) and f,(¢") € f:(0). In particular, if o <\ , then for every s € ¢ we

have f(s) C f:(0).

Proof Recall that R.(0) := Bl (r) N Bf (o) and R.(¢') := B (t) N B (o’). Since o’ C o, we
have B{ (o) € B (0’) and thus R.(0) € Ry(c"). Consequently, Bi"(l’éf(cr’)) - Bf(ﬁf(a)) and thus
fe(0") = B;_,(x) N Bf (R:(0”)) € B _,(r) N Bf (R:(0)) = fz(0). o

A sequence of cliques (09, 01, ...,0%) of a Helly graph G is called a normal clique-path if the following
local conditions hold:

(1) Forany 0 <i <k —1, 0; and o0;4 are disjoint and 0; U g; 41 is a clique of G.
(2) Forany 1 <i <k —1, 0;—1 and 0;4 are at uniform distance 2.
(3) Forany 1 <i <k—1,0; = fo,_,(0i+1).

Notice that if k > 2, then (1) follows from (2) and (3).
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Theorem 8.6 (normal clique-paths) For any pair t and o of cliques of a Helly graph G such that

o ><, T, there exists a unique normal clique-path y.; = (t = 09,01, 02, ...,0, = 0) such that
(8-1) 0;i = f¢(0ij+1) foreachi=k—1,...,2,1,
and any sequence of vertices P = (¢, 51, ...,S;) with s; € g; for 0 <i < k is a shortest path from sg

to si. In particular, any two vertices p and q of G are connected by a unique normal clique-path ypq.
Proof We first prove that y;, is a normal clique-path. The proof uses the following result:

Lemma 8.7 Let 0, 0/, ¢” and t be four cliques of a Helly graph G such that o >} T with k > 3,
o’ C fr(0) and 0" C f(0”). Then f(0) = for(0).

Proof Note that our conditions and Lemma 8.4 imply that o/ ><t3_; 7, ¢” b<ix_» T and o <z 6.

We first show that Ry (0) = R:(0). Recall that R¢(0') = B} ()N B} (o) and Ry~ (0) = B3 (06”)N B} (0).
Since 7 ><1;_5 0", we have B3 (0”) C B; (7). Consequently, Ry7(0) € R¢(0). Conversely, by the
definition of ¢, we have 0’ C B (¢”). Since 0"’ € f;(c”), we have Bf (6”) 2 Bf (f:(0”)) 2 R:(¢')20".
Since 6/ C f,(0), we have Ry(c) € BY(f:(0)) € By (0’) € B} (c") where the last containment follows
from 0" C f;(0”). So R;(0) = Bl (t)NB{(0) S B;(06")NBY(0) = Ry (o), and thus Ry~ (0) = R¢(0).

Set R := Ry (0) = Ry (0), 0’ := f»r(0) and V' := f;(0). Recall that v/ = f;(0) = By ()N Bi"(ﬁ)
and ¢’ = fov(0) = B} (0”) N BY (R). Since T ><j_, 0", we have BY(0") € B;_,(7) and thus o’ C V.
Conversely, since v/ C R (V)= B (V)N Bg—1(r) € Bf(6")N By— 1(‘[) =R (0 ), we have v’ € B (0”)
by definition of o”. Consequently, v' C B} (¢”) N Bf (R) =o'. Thus v =¢. O

To prove that y;4 is a normal clique-path, we proceed by induction on k. If k < 2, there is nothing to
prove. Assume now that k > 3. Since 7 < 0y, 0x_1 = fz(0%) and 0x_» = fr(0}_1), we have that
TD<If_1 Ok_1, TP<_o Of_o and 0 _, ><Ip 0%. By the induction hypothesis, (o9 = 7,01,02,...,0%_1)
is a normal clique-path. Applying Lemma 8.7 with 0 = o}, ¢’ = 04_; and 0" = 0} _,, we have that
0k—1 = for_-(0%), and thus y;s is a normal clique-path as well.

We now prove that an arbitrary normal clique-path y._ = (t = 09, 01, 02. - . ., 0; = 0) coincides with Y.

In fact, we prove this result under a weaker assumption than o <, 7.

Proposition 8.8 Let o and t be two cliques of a Helly graph G, and let k be an integer such that
d(s,t) =k forevery s € o. Then any normal clique-path Yie = (t =00.01,02,...,0] = 0) coincides
with y.¢ = (t = 09, 01,02, ...,0; = 0), whose cliques are given by (8-1).

Proof The proof of the proposition is based on the following result:

Lemma 8.9 Let o, 0, 0" and 1 be four cliques of a Helly graph G with d (t,0) = 1+d(z,0') =1k > 3,
d(0.0") 22, o' = for(0) and 0" S f:(¢'). Then¢' = f:(0).
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Proof Leto’ = f;(p), and note that our conditions and Lemma 8.4 imply that d (z,0’) = 14+d (z, 0") =
k—1and d(o,0") =2.

We first show that Ry (0) = R (o). Recall that R;(0) = B} ()N Bf () and Ry (0) = B3 (") N B} (o).
Since d (t, 0") = k —2, necessarily B} (0”) € B/ (t), and consequently, Ry7(0) S R-(0). In particular,
note that o’ C ﬁg//(g) C Ry(0), so o’ C Bi“(ﬁt(g)) C Bf (o). Since o' € B;_, (1), we have o’ C
Bl_ ()N B (@) =R, (Q/).ATherefore, by the definition of o C ff\(g’), we have 0/ C BT(Q”).AHence
Bi(0') S B;(0"), and thus R:(¢) < By (0”) S B;(0"). Therefore R:(0) < B; (") N Bf(0) = Ry~ (0)
and thus R;(0) = Ry (0).

Let R = R:(o) = ﬁgn(g) and recall that o = f,7(0) = By (0”") N Bi"(ﬁ) and that o’ = fz(0) =
B ()N Bf(ié). Since 0’ € B (0”), necessarily o’ C ¢’. Conversely, since d(t,0") =k —2,
necessarily Bj (¢") € B;_,(r), and consequently, o' € o”. Thus ¢’ = o”. O

We prove the proposition by induction on the length / of the normal clique-path y, . If [ <2, there is
nothing to prove. Assume now that / > 3 and let k = d (z, 0).

Suppose first that d (t, 0;—;) = k — 1. Since ¢;_; U o is a clique and since d (s, t) = k for every
s € o, necessarily d(p’,7) = k — 1 for every p’ € 0;_;. By the induction hypothesis, the clique-path
Véezq = (t = 00,01, 02, .. .,01—1) coincides with yzo,_,. Consequently, / =k and 0;_» = fz(0;—1).
Applying Lemma 8.9 with ¢ = 0, ¢’ = 0;—1 and 0" = g;_,, we have that f;(0) = fo,_,(0) = 0/_1.
Hence y.; and ys coincide.

Suppose now that d(t,0;—1) > k. In this case [ > k + 1, and so d(g;,7) = k <[ — 1. Consider
the minimal index i for which there exists p € o; such that d(p,7) <i — 1. Note that i > 2, since
otherwise t = po = {p} and 0o N 01 # &, contradicting the fact that y,  is a normal clique-path. Note
also that since y. . is a normal clique-path, oo ><i2 02, and thus i > 3. By the induction hypothesis,
V{'Qifl = (1 =00,01,02,...,0i—1) and Yz, _, coincide. In particular, this implies that o; > = fz(0i—1).
Note that p € B} | () by our choice of p and that p € B (0;—1) since 0j—1 = fp;_,(0i). Consequently
pE ﬁt (0i—1) < B;‘ (0i—2). But then p; and g;_, are not at uniform distance 2, contradicting the fact
that y. . is a normal clique-path. This finishes the proof of Proposition 8.8. |

To conclude the proof of Theorem 8.6, consider any sequence P = (s, S1, - .., Sk) such that s; € o; for
0 <i <k. Note that P is a path since o; Ugj 41 is a clique for every 0 <i <k —1, and that it is a shortest
path since d(so, Sx) = d(00,0%) = k. m]

8.4 Normal paths in Helly graphs

In this subsection, we define the notion of a normal path between any two vertices ¢ and s of a Helly
graph. Analogously to normal clique-paths, normal paths can be characterized in a local-to-global way,
and therefore they are locally recognized. Any two vertices ¢ and s of G can be connected by at least one
normal path, and all normal (¢, s)-paths are hosted by the normal clique-path y;;.
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A path (¢ = 59,51, ...,5; =5) between two vertices ¢ and s of a Helly graph G is called a normal path
if the following local conditions hold:

(1) Forany 1 <i <k—1,d(si—1,8i+1) =2.
(2) Forany 1 <i<k—1,s; € f5;_,(Si+1).

Proposition 8.10 (normal paths) A path P;s = (t =50, 51, ...,S8; =S) between two vertices t and s of a
Helly graph G is a normal path if and only if s; € f;(s;j4+1) forany 1 <i <k —1. In particular, this implies
that Py is a shortest path of G. If y;s = ({t} = 00,01, ...,0; = {s}) is the unique normal clique-path
between t and s, then for any normal path Pt’s =(t =50,51,...,8, =S8), wehave s; €0; for0 <i <k.

Proof The proof of the first statement is similar to the proof of Theorem 8.6. We first prove that Py
is a normal path. Observe that by Lemma 8.4, P;; is a shortest path of G. We proceed by induction on
the distance k = d(¢, s). If k <2, there is nothing to prove. Assume now that k > 3. Since d (¢, s;) =k,
Si—1 € ft(sk) and sg_5 € fr(Sg—1), we have d(¢,s;,_1) =k —1 and d(¢, sx_,) = k —2. By the induction
hypothesis (so =1, 51,52, ...,5k—1) is a normal path. Applying Lemma 8.7 with 0 = {si}, 6’ = {sx_1},
0" ={sx—p}and T ={t}, we conclude that sy _; € f;(sg) = fs,_, (%) and thus P is a normal path as well.

We now prove that any normal path P/, = (t = pg. p1..... p; = s) is a shortest path of G and that

pi € ft(pi+1) forevery 1 <i <I. To do so, we proceed by induction on the length [ of P/,. If ] <2,

there is nothing to prove. Assume now that / > 3 and let k = d(¢, p;). By the induction hypothesis applied
/

to the normal path P;, = (t = po, p1,..., p1-1), Pt’pl_1 is a shortest path of G and p; € f;(pi+1)
forevery 1 <i <[ —2. In particular, d(¢, pj_1) =1 —1.

Suppose first that d(z, pj—1) = k — 1. Then [ = k, and therefore P/ is a shortest path. Since
Pi—2 € fr(pi—1), applying Lemma 8.9 with o0 = {s}, o’ = fp,_,(s) and 0" = {p;_»}, we have that
f1(8) = fp,_,(s), and thus p;_; € fp,_,(s) = fi(s). Consequently, p; € f;(pi+1) forevery 1 <i <!
and the proposition holds in this case. Suppose now that [ — 1 = d(¢, pj_1) > k,iel > k + 1. By
ip,_» We have p;_5 € ft(pl_l)' Note that p; € B;_;(t)
because d(t, p;) =k <[ —1, and that p; € B1(p;_1). Consequently, p; € R;(p;_1) € B1(p;—>). But
then d(p;, p;—») < 1, contradicting the fact that P/, is a normal path.

the induction hypothesis applied to the path P

Consider now the normal clique-path y;s = ({t} = 09,01, ...,0r = {s}) between two vertices ¢ and s
and any normal path P;s = (¢t = s¢, 51, ..., Sk = §). We show by reverse induction on 7 that s; € g; for
0 <i < k. Fori = k, there is nothing to prove. Suppose now that i < k and that s; 1 € 0;4+1. Since
si € ft(si4+1) by the first assertion of the proposition and since f;(sj+1) € f¢(0i+1) = 0; by Lemma 8.5,
we have s; € 0;. O

Remark 8.11 Figure 6 is a Helly graph and contains two vertices s and ¢ such that the cliques of the
normal clique-path y;s contain a vertex not included in any normal (z, s)-path.
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Figure 6: In this graph, y appears in a clique of the normal clique-path y;s = (¢, {x, y}, {u, u’, w}, s).
However, for any normal path (t = so, 51, 52,53 = §), R;(s2) contains either v or v’, and thus

V& fi(s2).

8.5 Normal (clique-)paths are fellow travelers

Proposition 8.12 Let G be a Helly graph. Consider two cliques o and t, two vertices p and g of G, and
two integers k' > k such that pr<ig o, g>< T, d(0,7) <1 and d(p,q) < 1. For the normal clique-paths
Ypo = (p =00,01,...,0p =0) and Y4 = (¢ = 10, 71, ..., T = 1), we have d(o;, 7;) < 1 for every
0<i<kandd(oj,t) <1 foreveryk <i <k’

Proof We prove the result by induction on k’. If k” < 1, there is nothing to prove. Assume now that k' > 2
and that the lemma holds for any cliques o and t, any vertices p and ¢, and any integers [ <1’ <k’ —1
such that pr<y o, g 7, d(o,7) <land d(p,q) < 1.

Suppose first that k < k’. Note that k + 1 <k’ <k + 2 since d(p,q) <1 and d(o,7) < 1. Let s € 0 and
t € T suchthatd(s,t) =d(o,7) < 1. Note that d(p,t) <d(gq,t)+1=k+1<k’. Consequently € ﬁp(s),
and thus f,(s) € Bi(t). So since f,(s) € fp(0) = ox/—; by Lemma 8.5, we have d(ox/—1, %) < 1.
By Lemma 8.4, p ><ijs_1 0x/—1, and thus we can apply the induction hypothesis to oz/_1, 7, p and q.
Therefore d(o;,7;) < 1 for every 0 <i <k and d(o;, 1) < 1 for every k <i <k’ —1. Since, by our
assumptions, d(oy/, 7x) < 1, we are done.

Suppose now that k = k’. By the induction hypothesis, it is enough to show that d( f,(0), f4(1)) < 1.
Consider any two vertices s € o and ¢ € t such that d(s,7) = d(o, 7). By Lemma 8.5, it is enough to
show that d( f(s), f4(1)) < 1.

Assume first that d(p, t) <k (in this case s = ¢ or p = ¢g). Note that t € By (p) N B1(s) = ié,,(s), and so
Sfp(s) € Bi(t). Since fp(s) € Bx—1(p) € Bi(q), we have f,(s) € Bix(q) N B1(t) = ﬁq (t). Therefore
fq(t) S B (fp(s)) and d( f(s), f4(¢)) < 1. Using symmetric arguments, we have d(f,(s), f4(1)) <1
when d(q,s) <k.

Assume now that d(q,s) =d(p,t) =k + 1. This implies that p £ q, s #t, p>< f4(t) and g < f(s).
Since d(p,s) =k and p < fy(2), we have {s,1} U f4(t) C I/Q\p(t). Consider a vertex u € f,(t). By
definition of u, we have d(p,u) = k and {s,t} U f4(¢) € B1(u). Also, d(q,u) = k since d(q,s) =
k + 1 and since d(q, fq(t)) = k — 1. Therefore, by the previous case replacing ¢ by u, we have
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d(f»(s), f;(u)) < 1. Note that R, (r) = By () N Br(q) € B1(t) N Br41(p) = Ry(t). Since u € f,(t),
we obtain Ry (r) C Rp(t) € B (f»(1)) € B1(u). Consequently, Ry(t) € By (u) N B (q) = Ry(u) and

Jqu) € f4(t). Therefore d( fp(s), f4(t)) < d(fp(s), fg(u)) <1, concluding the proof. |

From Propositions 8.10 and 8.12, we immediately get the following result:

Corollary 8.13 In a Helly graph G, the set of normal paths satisfies the 2-sided fellow traveler property.
More precisely, for any four vertices s, t, p and g and two integers k' > k such that d(p,s) = k’,
d(q,t) =k,d(s,t) <1 and d(p,q) <1, and for any normal paths P = (p = s¢,S1,...,8 = §) and
O=(q=to.t1,...,tx =t) wehaved(s;,t;) <3 forevery0<i <k and d(s;,t;) <3 foreveryk <i <k'.

We are ready to conclude the proof of biautomaticity from Theorem 8.1:
Proposition 8.14 Let a group I' act geometrically on a Helly graph G. Then I is biautomatic.

Proof Let P denote the set of all normal paths of G. We will prove now that the path system P satisfies
Theorem 8.3(1)—(3). Condition (2) is satisfied because any two vertices of G are connected by a path of P.
That P satisfies the 2-sided fellow traveler property follows from Corollary 8.13. Finally, condition (1),
that the set P can be 2-locally recognized, follows from the definition of normal paths and the fact
that conditions (1) and (2) of this definition can be tested within balls of G of radius 2. Since I acts
geometrically on G, there exists only a constant number of types of such balls. a

Remark 8.15 Proposition 8.14 can be also proved by viewing the set P* of normal clique-paths of a
Helly graph G as paths of the face complex F(X(G)) of the clique complex of G and establishing that
P* satisfies Theorem 8.3(1)—(3).

The set P* in F(X(G)) gives rise to a set P’ of paths of the first barycentric subdivision S(G) of the
clique complex X(G) of G. Combinatorially, 8(G) can be defined in the following way: The cliques of
G are the vertices of 8(G) and two different cliques o and ¢’ are adjacent in B(G) if and only if o C o’
or o/ C 0. For each path P in P*, each edge oo’ of P is replaced by the 2-path (0,0 Uo’,0’) in the
path P’ of P’ corresponding to P. Again, one can establish that P* satisfies Theorem 8.3(1)—(3).

9 Final remarks and questions

We strongly believe that the theory of Helly graphs, injective metric spaces and groups acting on them
deserves intensive study on its own. In this article we focused mostly on geometric actions of groups
on Helly graphs, but similarly to other nonpositive curvature settings, just proper or cocompact actions
should be studied as well.

Below we pose a few arbitrary problems following the overall scheme of our main results; the first two
concern examples of Helly groups, and the last one is about their properties.
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Problem 9.1 (When) are the following groups (virtually) Helly: mapping class groups, cubical small
cancellation groups, Artin groups and Coxeter groups?

Confirming a conjecture stated by the authors of the current article, Nima Hoda [55] proved recently that
the Coxeter group acting on the Euclidean plane and generated by three reflections in the sides of the
equilateral Euclidean triangle is not Helly. This group is CAT(0) and systolic (and hence also biautomatic).

Problem 9.2 (combination theorems for group actions with Helly stabilizers) Is a free product of two
Helly groups with amalgamation over an infinite cyclic subgroup Helly? Are groups hyperbolic relative to
Helly subgroups Helly? (When) are small cancellation quotients of Helly groups Helly?

As for general properties of Helly groups, it is natural to ask which of the properties of CAT(0) groups
hold in the Helly setting. For a choice of such properties a standard reference is [21].

Problem 9.3 Are abelian subgroups of Helly groups finitely generated? Is there a solvable subgroup
theorem for Helly groups? Describe centralizers of infinite-order elements in Helly groups. Construct
low-dimensional models for classifying spaces for families of subgroups (eg for virtually cyclic subgroups)
of Helly groups. Describe quasifiats in Helly groups.
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