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On Borel Anosov subgroups of SL.d; R/
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We study the antipodal subsets of the full flag manifolds F .Rd /. As a consequence, for natural numbers
d � 2 such that d ¤ 5 and d ¥ 0;˙1 mod 8, we show that Borel Anosov subgroups of SL.d;R/ are
virtually isomorphic to either a free group or the fundamental group of a closed hyperbolic surface. This
gives a partial answer to a question asked by Andrés Sambarino. Furthermore, we show restrictions on
the hyperbolic spaces admitting uniformly regular quasi-isometric embeddings into the symmetric space
Xd of SL.d;R/.

14M15, 20F65, 22E40

Dedicated to Misha Kapovich on the occasion of his 60th birthday

1 Introduction

In the past decade, Anosov subgroups of higher-rank Lie groups have emerged as a well-regarded higher-
rank extension of the classical convex-cocompact Kleinian groups. The notion of Anosov representations
was introduced by Labourie [16] from a dynamical perspective in his pioneering work on Hitchin repre-
sentations of surface groups, and then extended by Guichard and Wienhard [10] for any hyperbolic groups.
Afterward, Kapovich, Leeb and Porti [14] gave several geometrical and dynamical characterizations of
Anosov subgroups; see the article by Kapovich and Leeb [13] giving an overview of their characterizations.
A main feature of Anosov subgroups is that they have a well-defined limit set in suitable generalized flag
varieties, and any two distinct points in these limit sets are in general position.

We are motivated by a question asked by Andrés Sambarino, namely whether Borel Anosov subgroups of
SL.d;R/ are necessarily virtually free or surface groups. Combined works of Canary and Tsouvalas [4]
and Tsouvalas [22] have affirmatively answered this question for d D 3; 4 and d � 2 mod 4 (note that
d D 2 case is classical). Using a different approach, we give an affirmative answer to this question for all
d 2N satisfying

(1) d ¤ 5 and d � 2; 3; 4; 5 or 6 mod 8:

See Corollary D.

We summarize our main objectives:

(i) We study the subsets of full flag manifolds F .Rd / where all pairs points are antipodal, ie are
in general position. As noted above, the limit sets of Anosov subgroups share this property. We are
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172 Subhadip Dey

specifically interested in understanding when antipodal subsets of F .Rd / are maximally antipodal; see
Section 1.1 for discussions related to this matter.

(ii) We aim to understand which hyperbolic groups can be realized as Borel Anosov subgroups of
SL.d;R/; see Section 1.2 for the discussion related to this.

(iii) Finally, we aim to understand which geodesic metric spaces may admit coarsely uniformly regular
quasi-isometric embeddings, a notion introduced by Kapovich, Leeb and Porti [13] strengthening the
classical notion of quasi-isometric embeddings, into the symmetric space Xd of SL.d;R/. Notably, the
orbit maps of Anosov subgroups are such embeddings; see Section 1.3 for further discussions.

1.1 Antipodal subsets

For d � 2, let Fd WDF .Rd / denote the manifold consisting of all complete flags in Rd . A pair of points
�˙ 2Fd is called antipodal (or transverse) if

� .k/� C �
.d�k/
C

DRd for all k 2 f1; : : : ; d � 1g:

Here, for � 2Fd , we use the notation � .k/ to denote the k-dimensional vector subspace of Rd appearing in
the complete flag � . We denote by E� , � 2Fd the set of all points in Fd which are not antipodal to � . The
complementary subset of E� in Fd , which we denote by C� , is an open dense subset of Fd homeomorphic
to a cell. The subset C� is called a maximal Schubert cell or big cell, whereas E� is the closure of the
union of all codimension-1 Schubert cells in the Schubert cell decomposition of Fd corresponding to � .

Theorem A Let d be any natural number satisfying (1). Let �˙ 2Fd be any pair of antipodal points ,
and let � be any connected component of Fd n .E�� [ E�C/D C�� \C�C . If c W Œ�1; 1�!Fd is any
continuous map such that

c.˙1/D �˙ and c..�1; 1//��;

then , for all � 2�, the image of c intersects E� .

Although the following example is not covered in the setting of the theorem, we believe that it would
still serve as a simple illustration of the statement: In the case corresponding to SL.2;R/�SL.2;R/ and
its minimal parabolic subgroup, the “full flag manifold” is realized as a torus. Let D denote the unit
square in R2 from which we obtained the torus by identifying the opposite edges. We identify the four
corners of D with ��, and E�� with its edges. Given any point O� in the interior of D, the subset E O� can
be realized as the union of the horizontal and vertical line segments passing through O� . Therefore, for any
�C 2 C�� D intD, the intersection C�� \C�C can be seen as the disjoint union of four open rectangles.
For any path c connecting �˙ lying in (except for the endpoints) one such rectangles �, and for any point
� 2�, it can be checked that E� intersects c.

We prove Theorem A in Section 3. The main technical ingredient in the proof is Theorem 2.4, which
states that, for natural numbers d satisfying (1), an involution � defined on C�� \ C�C does not leave
invariant any connected components; see Section 2.
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Remark 1.1 Theorem A and the other key results below have the restriction (1) on d because Theorem 2.4
may fail when d is of the form 8k� 1, 8k or 8kC 1, for k 2N. Specifically, we show that Theorem 2.4
indeed fails when d D 8k˙ 1, yet the status of its validity remains unclear for d D 8k. However, with
help from Su Ji Hong, we could computationally verify the validity of Theorem 2.4 when d D 5. Further
discussions on this matter are detailed in Remark 2.5. Consequently, for d D 5, Theorems A, C and F,
and Corollaries D and G (as well as Corollary E(i) for nD 2), remain valid.

Nevertheless, it is an intriguing prospect to investigate whether Theorem A holds true for these remaining
natural numbers d , provided the hypothesis is strengthened by requiring the map c W Œ�1; 1�!Fd to also
be antipodal.

We apply Theorem A to get information about (locally) maximally antipodal subsets of Fd , defined as
follows:

Definition 1.2 (antipodal subsets and maps)

(i) A subset ƒ�Fd is called antipodal if all distinct pairs of points in ƒ are antipodal.

(ii) An antipodal subset ƒ�Fd is called maximally antipodal if it is not contained in a strictly larger
antipodal subset of Fd .

(iii) We call an antipodal subsetƒ�Fd locally maximally antipodal if there exists an open neighborhood
N of ƒ in Fd such that ƒ is not contained in any strictly larger antipodal subset of N ; equivalently,
every point of N is not antipodal to some point of ƒ.

(iv) A continuous map � W Z ! Fd is called antipodal if, for all distinct points z˙ 2 Z, �.zC/ and
�.z�/ are antipodal.

Note that antipodal subsets of Fd form a poset, partially ordered by inclusions, and the maximally
antipodal subsets are precisely the maximal elements.

As an application of Theorem A, we get the following result:

Corollary B Let d be any natural number satisfying (1). If c W S1!Fd is an antipodal embedding ,
then ƒ WD c.S1/ is a locally maximally antipodal subset of Fd .

Proof Let x1; x2; x3 2 S1 be any distinct triple. For distinct indices i; j; k 2 f1; 2; 3g, let �ijk denote
the connected component of Fd n .Ec.xi /[ Ec.xk// containing c.xj /. Then Y D�123[�231[�312 is
an open neighborhood of ƒ. Applying Theorem A, one can verify that every point in Y is nonantipodal
to some point in ƒ.

It is unclear whether one can omit the word “locally” in the conclusion of the above result. However, if
the image of c W S1!Fd is the limit set of a Borel Anosov subgroup of SL.d;R/, then ƒ WD c.S1/ is a
maximally antipodal subset of Fd ; see Proposition 5.1.
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1.2 Borel Anosov subgroups

First, let us recall the notion of boundary embedded subgroups of SL.d;R/ introduced by Kapovich,
Leeb and Porti [14].

Definition 1.3 (boundary embedded subgroups) A subgroup � of SL.d;R/ is called B-boundary
embedded if � , as an abstract group, is hyperbolic and there exists a �-equivariant antipodal embedding
� W @1�!Fd of the Gromov boundary @1� of � to the complete flag manifold Fd .

Due to the fact that nonelementary hyperbolic groups act as convergence groups on their Gromov
boundaries, it can be inferred that nonelementary B-boundary embedded subgroups of SL.d;R/ are
discrete. The following result shows that the group-theoretic structures of the B-boundary embedded
subgroups of SL.d;R/ are highly restricted:

Theorem C Let d be any natural number satisfying (1). If a subgroup � of SL.d;R/ is B-boundary
embedded , then � is virtually isomorphic to either a free group or the fundamental group of a closed
hyperbolic surface.

This result, which we prove in Section 4, directly applies to the class of Borel Anosov subgroups introduced
by Labourie [16], who proved the seminal result that the images of the Hitchin representations of surface
groups into SL.d;R/ are Borel Anosov subgroups. While Labourie’s original definition of Borel Anosov
subgroups was intricate, a more straightforward definition has since emerged thanks to the work of
Kapovich, Leeb and Porti [14; 15] and Bochi, Potrie and Sambarino [2].

For g 2 SL.d;R/, let
�1.g/� � � � � �d .g/

denote the singular values of g. For a finitely generated group � , let j � j W � ! N [ f0g denote the
word-length function with respect to some symmetric finite generating set of � . The following definition
does not depend on the choice of such a generating set, although the implied constants may vary.

Definition 1.4 (Borel Anosov subgroups) A finitely generated subgroup � of SL.d;R/ is called Borel
Anosov if there exist constants L� 1 and A� 0 such that, for all k 2 f1; : : : ; d � 1g and for all 
 2 � ,

(2) log
�
�k.
/

�kC1.
/

�
� L�1j
 j �A:

The main features of the Borel Anosov subgroups � of SL.d;R/ include: � , as an abstract group, is
hyperbolic, and there exists a �-equivariant antipodal embedding, called the limit map,

� W @1�!Fd ;

from the Gromov boundary @1� of � to the complete flag manifold Fd ; see [2; 16]. In particular, Borel
Anosov subgroups of SL.d;R/ are B-boundary embedded (Definition 1.3). Therefore, Theorem C has
the following direct implication:
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Corollary D Let d be any natural number satisfying (1). If � is a Borel Anosov subgroup of SL.d;R/,
then � is virtually isomorphic to either a free group or the fundamental group of a closed hyperbolic
surface.

Remark 1.5 This result partially answers a question asked by Sambarino (see Canary and Tsouvalas
[4, Section 7]), who asked if the statement is true for all d � 2. As mentioned above, this question
previously has been affirmatively answered for d D 3 and d D 4 by Canary and Tsouvalas [4], and
for all d of the form 4k C 2 by Tsouvalas [22]. In fact, we give a new (and possibly simpler) proof
for the previously known cases from [4; 22]. However, for the remaining integers d � 2 not covered
by Corollary D (except for d D 5), we are unable to provide a conclusive answer to this question; see
Remark 1.1. We emphasize a connection between the maximal antipodality of limit sets and Sambarino’s
question, which could be beneficial for further exploration in these remaining cases: Suppose there exists
d 2N and a Borel Anosov subgroup � < SL.d;R/, isomorphic to a surface group, such that the limit
set of � in Fd is not maximally antipodal. In this case, by applying the combination theorem for Anosov
subgroups by Dey, Kapovich and Leeb [7] (see also Dey and Kapovich [6]), one can construct a Borel
Anosov subgroup of SL.d;R/ isomorphic to � 0 ?Z, where � 0 is a finite-index subgroup (and thus a
surface subgroup) of � . Such a construction could produce a counterexample.

More generally, given a connected noncompact real semisimple Lie group G with finite center and a
parabolic subgroup P of G, there is a distinguished class of discrete subgroups of G called P -Anosov
subgroups; see Guichard and Wienhard [10] and also Kapovich, Leeb and Porti [14]. By a B-Anosov
subgroup of G, we are referring to a P -Anosov subgroup, where P is assumed to be a minimal parabolic
subgroup of G.1

In the special case G D SO0.n; nC 1/ (resp. G D Sp.2n;R/), the Borel Anosov subgroups of G map
to Borel Anosov subgroups of SL.2nC 1;R/ (resp. SL.2n;R/) under the inclusion SO0.n; nC 1/ ,!
SL.2nC 1;R/ (resp. Sp.2n;R/ ,! SL.2n;R/). Thus Corollary D also yields the following:

Corollary E Let G be one of

(i) SO0.n; nC 1/, where n¤ 2 and n� 1 or 2 mod 4,

(ii) Sp.2n;R/, where n� 1; 2 or 3 mod 4.

If � is a Borel Anosov subgroup of G, then � is virtually isomorphic to either a free group or the
fundamental group of a closed hyperbolic surface.

Finally, it is worth remarking that restrictions on Anosov subgroups of the symplectic groups are explored
further in the subsequent papers of Dey, Greenberg and Riestenberg [5] and Pozzetti and Tsouvalas [18].

1When dealing with a connected algebraic group G defined over an algebraically closed field, the minimal parabolic subgroups
are Borel subgroups. This is why we refer this class of subgroups as “B-Anosov”. For the same reason, we referred to the class
of subgroups defined in Definition 1.3 as “B-boundary embedded”. When the minimal parabolic subgroups of G are Borel
(eg if G is split), we may also refer to B-Anosov subgroups as Borel Anosov subgroups as done in Definition 1.4 for the case
G D SL.d;R/.
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1.3 Uniformly regular quasi-isometric embeddings

The notion of uniformly regular quasi-isometric embeddings, introduced by Kapovich, Leeb and Porti, of
geodesic metric spaces into the symmetric space

Xd WD SL.d;R/=SO.d;R/

is a strengthening of quasi-isometric embeddings. Since the definition of uniformly regular quasi-isometric
embeddings requires a lengthier discussion, we refer our reader to Kapovich and Leeb [13, Definition 2.26].
This notion is especially interesting in the context of Anosov subgroups since, by [13, Theorem 3.41], a
subgroup � < SL.d;R/ is Borel Anosov if and only if � is finitely generated and the orbit map

(3) �!Xd ; 
 7! 
 � x0;

is a uniformly regular quasi-isometric embedding where � is equipped with any word metric and x0 2Xd
is any basepoint; see (2).

Theorem F Consider any locally compact geodesic Gromov hyperbolic space Z with @1Z denoting its
Gromov boundary. Suppose there exists a topological embedding c W S1! @1Z such that the image of c
is not an open set. Then Z does not admit any uniformly regular quasi-isometric embeddings into Xd ,
given d satisfies (1).

Theorem F is proved in Section 4. This result obstructs uniformly regular quasi-isometric embeddings
of certain simply connected complete Riemannian manifolds of nonpositive sectional curvature (also
called Cartan–Hadamard manifolds) into Xd . More precisely, if Y is a Cartan–Hadamard manifold with
sectional curvature bounded below and Y admits a uniformly regular quasi-isometric embedding into Xd ,
then Y is Gromov hyperbolic as a metric space (by Kapovich, Leeb and Porti [15, Theorem 1.2]), whereas
the Gromov boundary of Y is homeomorphic to the sphere of dimension dimY � 1 (by Kaimanovich
[11, Theorem 2.10]). Thus if d satisfies (1), then Theorem F implies that dimY � 2. A special case of
this is as follows:

Corollary G The hyperbolic plane is the only symmetric space of noncompact type that admits uniformly
regular quasi-isometric embeddings into Xd with d satisfying (1).

In a similar vein, applying Theorem F, a stronger conclusion than Corollary D can be obtained: finitely
generated groups � , unless � is virtually a free group or a surface group, do not even admit uniformly
regular quasi-isometric embeddings2 into Xd when d satisfies (1), since in such cases, if � admits a
uniformly regular quasi-isometric embedding into Xd , then � is a hyperbolic group [15, Theorem 1.2]
and there exist such nonisolated circles in @1� (see Bonk and Kleiner [3, Corollary 2]) as required by
the hypothesis of Theorem F to get a contradiction.

2These need not arise from a group homomorphism �! SL.d;R/ as in (3).
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Outline In Section 2, we present and prove our main technical result, Theorem 2.4. Using this, we
establish Theorem A in Section 3. Subsequently, we apply Corollary B, an immediate consequence of
Theorem A, to prove Theorems C and F in Section 4. Finally, in Section 5, we explore some additional
applications of the methods we introduce.

Acknowledgements I extend my sincere thanks to Misha Kapovich and Yair Minsky for their suggestions
and encouragement. I am grateful to Richard Canary, Su Ji Hong, Or Landesberg and Max Riestenberg
for the engaging discussions related to this work. Special thanks to Hee Oh for her insightful question
(referenced in Proposition 5.2) and the discussions stemming from it, and to Misha Shapiro for very
helpful discussions related to Theorem 2.4. I express my gratitude to the referee for their careful review
of this article and for suggesting Corollary E.

2 An involution on the intersection of two opposite maximal Schubert cells

The goal of this section is to state and prove the main technical result behind the results discussed in the
introduction; see Theorem 2.4.

We recall that SL.d;R/ acts transitively on the set consisting of all antipodal pairs of points in Fd . From
now on, we reserve the notation �˙ for the descending/ascending flags defined as follows: Let Rd be
equipped with the standard basis fe1; : : : ; ed g. Define

�C as f0g � spanfed g � spanfed ; ed�1g � � � � � spanfed ; : : : ; e1g DRd ;

�� as f0g � spanfe1g � spanfe1; e2g � � � � � spanfe1; : : : ; ed g DRd :

It can be seen easily that �˙ are antipodal.

We also reserve the notation Ud to denote the subgroup of SL.d;R/ consisting of all upper-triangular
unipotent matrices. It is easy to check that Ud fixes ��, and hence preserves the big cell C�� . Moreover,
Ud acts on C�� simply transitively, so we have a diffeomorphism

F�C W Ud ! C�� ; F .u/D u�C:

For notational convenience, for all � 2 C�� , let us write

u� WD F
�1
�C
.�/:

We identify Ud with C�� under the diffeomorphism F�C .

Furthermore, we identify Ud (and hence C��) with R.
d
2/ by sending a matrix u 2 Ud to the vector

.uij /1�i<j�d . Under this identification, � 2 C�� lies in E�C DFd nC�C if and only if there exists some
k 2 f1; : : : ; d � 1g such that � .k/C � .d�k/

C
is a proper subspace of Rd or, equivalently,

pk.u� / WD
.u�ed�kC1/^ � � � ^ .u�ed /^ ekC1 ^ � � � ^ ed

e1 ^ � � � ^ ed
D 0:
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Thus we can describe the set E�C \C�� algebraically as a subset of R.
d
2/ by

E�C \Ud D

d�1[
kD1

E k�C ;

where E k�C WD fu 2 Ud j pk.u/D 0g.

Example 2.1 If d D 3, then

p1

0@241 x y

1 z

1

351AD y; p2

0@241 x y

1 z

1

351AD xz�y:
Therefore E�C\U3 can be written as the union of the hypersurfaces E 1�CDf.x; y; z/ jp1.x; y; z/DyD0g

and E 2�C D f.x; y; z/ j p2.x; y; z/D xz�y D 0g in R3; see Figure 1.

The following lemma can be verified by linear algebra. We omit the details.

Lemma 2.2 The polynomial pk.u/ can be expressed as pk.u/ D detu.k/; where u.k/ denotes the
upper-right k � k block submatrix of u. In particular ,

E k�C D fu 2 Ud j detu.k/ D 0g:

We define an involution
� W Ud ! Ud ; u 7! u�1:

This simple involution plays a key role here. Note that � is a diffeomorphism, Fix.�/ D fIg, where I

denotes the identity matrix, and d�jTIUd
D�id.

Figure 1: The part of the set E�C lying in R3 Š C�� �F3. The six components of C�� \C�C
are visible in the complement of this algebraic surface.
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Proposition 2.3 For all k 2 f1; : : : ; d � 1g,

pk.u
�1/D .�1/k.dC1/pd�k.u/:

In particular , �.E k�C/D E d�k�C
, � preserves E�C \Ud , and hence preserves Ud n E�C .

Proof We apply Jacobi’s complementary minor formula: if A is an invertible d � d matrix, then for any
subsets I; J � f1; : : : ; dg of size k,

detAIJ D .�1/
P
IC

P
J .detA/ det..A�1/J cIc /:

Here we use the notation AIJ to denote the submatrix of A obtained by its I th rows and J th columns.
Since in our case detuD 1, the above formula reduces to

det..u�1/IJ /D .�1/
P
IC

P
J detuJ cIc :

Fix k 2 f1; : : : ; d � 1g. Notice that when I D f1; : : : ; kg and J D fd � k C 1; : : : ; dg, we have
pk. Ou/ D det OuIJ , pd�k. Ou/ D det OuJ cIc and

P
I C

P
J D k.d C 1/. Hence, by the formula in the

previous paragraph, pk.u�1/D .�1/k.dC1/pd�k.u/:

By the above result, we thus have a well-defined involution � on Ud nE�C . Our main result of this section
is as follows:

Theorem 2.4 Suppose that d is any natural number such that d ¤ 5 and d � 2; 3; 4; 5 or 6 mod 8. Then
the involution � W Ud ! Ud does not leave invariant any connected components of Ud n E�C .

The proof of Theorem 2.4 is split into several cases and occupies the rest of this section. Here is our
plan: The proof for d D 3 is discussed in Section 2.1; see Section 2.2 for the case when d is of the
form 4kC 2. These initial cases are approached in an elementary manner. However, as our elementary
approach appears to be insufficient for the remaining cases, we rely upon some sophisticated invariants
developed by Shapiro, Shapiro and Vainshtein [19; 20], which characterize the connected components of
C�� \C�C in a combinatorial manner. In Section 2.3, we recall some necessary background on these
papers. Subsequently, the proof for d D 4 is discussed in Section 2.4. Following that, we prove the
theorem in the rest of the odd cases of d in Section 2.5 and in the remaining even cases of d in Section 2.6.

Remark 2.5 When d is of the form 8m˙ 1, then the � W Ud ! Ud leaves invariant some components
of Ud n E�C ; see below. Therefore Theorem 2.4 is false in those cases of d ; see Proposition 2.10(ii).
When d is of the form 8m, we are unable to make the conclusion because we could not study some
“exceptional” connected components; see Remark 2.12. However, in all these cases, the total number of
these components is quite “small” compared to the total number of connected components of Ud n E�C .

With help from Su Ji Hong, we managed to computationally verify Theorem 2.4 for d D 5. Despite this
effort, we decided to exclude the d D 5 case because we couldn’t find a way to present a proof for it.
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2.1 Proof of Theorem 2.4 when d D 3

When d D 3, the connected components of U3 n E�C in R3 D U3 are

�1Df.x; y; z/ j x >0; y >0; z > 0; xz�y >0g; y�1Df.x; y; z/ j x <0; y >0; z < 0; xz�y >0g;

�2Df.x; y; z/ j x <0; y <0; z > 0; xz�y <0g; y�2Df.x; y; z/ j x >0; y <0; z < 0; xz�y <0g;

�3Df.x; y; z/ jy >0; xz�y <0g; y�3Df.x; y; z/ jy <0; xz�y >0g:

See Figure 1. By picking a representative in each component and applying � to the representative, it can
be checked that ��k D y�k for k D 1; 2; 3. We omit the details.

2.2 Proof of Theorem 2.4 when d � 2 mod 4

Suppose that d � 2 mod 4. Let u 2 Ud n E�C be any point. By Proposition 2.3, �u 2 Ud n E�C . Let
c W Œ�1; 1�! Ud for c.˙1/D u˙1 be any path. We show that such a path c must intersect E�C \Ud . In
this case, since 1

2
d is odd, by Proposition 2.3

pd=2.u
�1/D�pd=2.u/:

Thus, by continuity, the image of c must intersect E
d=2
�C . Therefore u and �u lie in different connected

components of Ud n E
d=2
�C , and hence of Ud n E�C .

2.3 Some preparation before the proof of Theorem 2.4 in the remaining cases

We recall some notions of Shapiro, Shapiro and Vainshtein [19; 20]. Throughout, we try to be consistent
with their papers so that we can freely refer to those for more details.

Let n WD d � 1. Denote by T n D T n.F2/ the vector space of all n�n upper-triangular matrices with F2-
valued entries, where F2 D f0; 1g is the finite field of order 2. There is a certain subgroup Gn < GL.T n/
acting linearly on T n. This action is called the first Gn-action; see the introduction of [20]. There is
also another Gn-action defined in that paper, which is called the second Gn-action. However we do not
need to discuss the second action, and hence will simply call the first Gn-action the Gn-action. For the
reader’s convenience, we recall this action. For 1 � i � j � n� 1, let gij 2 GL.T n/ be the element
acting linearly on T n as follows: Let M ij be the 2� 2 submatrix of M formed by the rows i and i C 1,
and the columns j and j C 1 (or its upper triangle when i D j ). Then gij �M is the matrix obtained by
adding to each entry of M ij its trace, and keeping the rest of the entries of M unchanged. The subgroup
Gn < GL.T n/ is generated by all these gij .

Example 2.6 We revisit the case d D nC 1D 3, where

(4) T 2 D

��
0 0

0

�
;

�
0 1

0

�
;

�
1 0

1

�
;

�
1 1

1

�
;

�
0 0

1

�
;

�
1 1

0

�
;

�
1 0

0

�
;

�
0 1

1

��
;

and G2 is the group of order 2, with g11 as its nontrivial generating element. We note that G2 has
precisely four fixed points in T 2, represented by the initial four elements in (4). The remaining four

Geometry & Topology, Volume 29 (2025)



On Borel Anosov subgroups of SL.d;R/ 181

elements in T 2 form two distinct G2-orbits. Consequently, there are six G2-orbits in total. Remarkably,
each of these orbits corresponds to a unique connected component of U3 n E�C (see Section 2.1). We
elaborate this further in our discussion below.

When d D nC 1D 4, the G3-orbits in T 3 can be found in Table 1.

By [19], the connected components of C�� \C�C are in one-to-one correspondence with the Gn-orbits
in T n. The correspondence can be realized as follows (see [19, Sections 2 and 3] for more details): Let
SnC1 denote the group of all permutations of f1; : : : ; nC 1g, let w0 denote the longest element in SnC1,
and let sk for k D 1; : : : ; n denote the transposition which swaps k and kC 1 in f1; : : : ; nC 1g. The
element w0 can be written as

(5) w0 D .s1s2 � � � sn/.s1s2 � � � sn�1/ � � � .s1s2s3/.s1s2/.s1/:

Corresponding to this (fixed) reduced decomposition of w0, by [1; 17], a generic matrix u 2 Ud D UnC1
can be uniquely factorized as

(6) uD .I C t1nEs1/.I C t2.n�1/Es2/ � � � .I C tn1Esn/.I C t1.n�1/Es1/ � � � .I C t.n�1/1Esn�1
/

� � � .I C t12Es1/.I C t21Es2/.I C t11Es1/;

where tij represents the coefficient of Esi when Esi appears the j th time from right to left in the above
expression, the tij are nonzero real numbers, and Esi denotes the .nC1/ � .nC1/ matrix with only
nonzero entry 1 at the place .i; i C 1/. Using this unique factorization of u, we assign to it the matrix
Mu 2 T

n given by

(7) Mu D

2666664
�11 �21 � � � �.n�1/1 �n1

�12 �.n�1/2� � � � � �
:::� � � � � � �2.n�1/
�1n

3777775 ;
where �ij D 0 if tij > 0 in (6), and �ij D 1 if tij < 0; see [19, Section 2.8].

Lemma 2.7 For a generic matrix u 2 Ud , the matrices Mu and Mu�1 are related by

.Mu�1/ij D .Mu/.nC1�j /.nC1�i/C 1 for all 1� i � j � n:

Proof Suppose that the factorization of u is given by (6) and the corresponding Mu has the expression
given by (7). To obtain an expression for Mu�1 , we first notice

u�1 D .I � t11Es1/.I � t21Es2/.I � t12Es1/ � � � .I � t.n�1/1Esn�1
/ � � � .I � t1.n�1/Es1/.I � tn1Esn/

� � � .I � t2.n�1/Es2/.I � t1nEs1/:

This is not in the order required by the chosen reduced form of w0 in (5); see (6). However, using the
fact that Esi and Esj commute if ji � j j � 2, we can easily put this expression in the desired form (6):
If t 0ij denote the coefficients involved in this expression for u�1, then

t 0ij D�ti.nC1�j /:
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� ��241 1 1

1 1

1

35 240 0 0

0 0

0

35
241 1 0

1 1

1

35 240 0 1

0 0

0

35
241 0 0

1 0

1

35 240 1 1

0 1

0

35
241 0 1

1 0

1

35 240 1 0

0 1

0

35
241 0 0

1 1

1

35 241 1 1

0 0

1

35 241 1 1

1 1

0

35 240 0 1

1 0

1

35 240 0 1

0 1

0

35 240 1 0

1 0

0

35 241 0 0

0 0

0

35 240 1 0

0 1

1

35
240 1 1

0 0

0

35 240 0 0

1 1

0

35 240 0 0

0 0

1

35 241 1 0

0 1

0

35 241 1 0

1 0

1

35 241 0 1

0 1

1

35 240 1 1

1 1

1

35 241 0 1

1 0

0

35
241 0 1

1 1

1

35 241 1 0

0 0

1

35 241 1 0

1 1

0

35 240 0 0

1 0

1

35 240 0 0

0 1

0

35 240 1 1

1 0

0

35 241 0 1

0 0

0

35 240 1 1

0 1

1

35
240 1 0

0 0

0

35 240 0 1

1 1

0

35 240 0 1

0 0

1

35 241 1 1

0 1

0

35 241 1 1

1 0

1

35 241 0 0

0 1

1

35 240 1 0

1 1

1

35 241 0 0

1 0

0

35
241 1 0

0 0

0

35 240 0 0

1 0

0

35 240 0 0

0 1

1

35 241 1 1

1 0

0

35 241 1 1

0 1

1

35 240 0 1

1 1

1

35
240 1 1

1 0

1

35 241 0 1

1 1

0

35 241 0 1

0 0

1

35 240 1 0

0 0

1

35 241 0 0

0 1

0

35 240 1 0

1 1

0

35
241 1 1

0 0

0

35 241 0 0

1 1

0

35 240 0 1

1 0

0

35 241 1 0

1 0

0

35 241 0 1

0 1

0

35 241 1 0

0 1

1

35
241 0 0

0 0

1

35 240 1 0

1 0

1

35 240 0 1

0 1

1

35 240 1 1

1 1

0

35 240 1 1

0 0

1

35 240 0 0

1 1

1

35
Table 1: All the G3-orbits (see Section 2.4). Each table entry represents a single G3-orbit, which
is a collection of upper-triangular matrices comprising only 0’s or 1’s.
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Hence the matrix Mu�1 is derived from Mu through a two-step process: first reflecting it across its
antidiagonal to adjust the indices, and then adding 1 to each entry in the upper-triangular region to
accommodate the sign changes.

To each connected component � of C�� \C�C we associate the set

S� WD fMu j u 2� is genericg � T n:

The vector space T n can be partitioned into subsets of the form S�, and the correspondence �$ S�

is one-to-one. Moreover, by the main theorem of [19], the subsets S� are precisely the orbits of the
Gn-action. Let us define an involution � W T n! T n by

(8) �.M/ij WDM.nC1�j /.nC1�i/C 1 for all 1� i � j � n:

A consequence of Lemma 2.7 is that

(9) �S� D S��:

Thus � is �-invariant if and only if S� is. The first part of the following lemma records this discussion:

Lemma 2.8 Let n 2 N. The involution � W UnC1 ! UnC1 preserves a connected component � of
C�� \C�C if and only if the map � W T n! T n leaves S� invariant.

Further , the involution � has no fixed points in T n. In particular , no singleton Gn-orbits are preserved by �.

The “further” part of the lemma above is verified by noticing that the entries in upper-right corner of
M 2 T n and �.M/ are different.

We identify the dual space .T n/� with the space of n� n upper-triangular matrices with F2-entries so
that, for M 2 T n and M � 2 .T n/�,

(10) hM;M �i D
X
i�j

MijM
�
ij :

We recall the elements Ek 2 T n and Rk 2 .T n/� for k D 1; : : : ; n from [20, Section 2.1],

Ek D
X

s�rDk�1

Ers and Rk D
X

1�r�k�s�n

Ers;

where Ers denotes the matrix whose only nontrivial entry is at the position .r; s/. The subspace of
.T n/� (resp. T n) spanned by the matrices Rk (resp. Ek) is denoted by Dn (resp. In). One checks that
�Ek D

P
i¤k Ei , and hence

(11) �In DIn:

Moreover, note that the matrices Ek are symmetric with respect to the antidiagonal; therefore any element
I 2In D spanfE1; : : : ; Eng is also symmetric with respect to the antidiagonal. Hence

(12) �.I CM/D I C �.M/ for all M 2 T n and I 2In:
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Let D?n � T
n denote the subspace orthogonal to Dn with respect to the standard pairing h � ; � i in (10). A

translation of D?n by a matrix M 2 T n is called a slice. If S � T n is a slice, then its height hS is defined
to be the vector

hS D .hS1 ; : : : ; h
S
n / 2 Fn2 ;

where hS
k
WD hM;Rki 2 F2 and M 2 S is an arbitrary matrix. A straightforward computation using (8)

shows that for any M 2 T n,

h�.M/;RnC1�ki � hM;RkiC k.nC 1� k/ mod 2:

In particular, � sends slices to slices. The following lemma relates the height vectors of S and �S , and
follows from the formula above:

Lemma 2.9 For every slice S � T n and k 2 f1; : : : ; ng,

hSk � h
�S
nC1�kC k.nC 1� k/ mod 2:

Note that D?n is the slice at height zero. Moreover, the correspondence S $ hS is one-to-one. A slice S
is called symmetric if its height vector hS is symmetric with respect to its middle, ie hS

k
D hS

nC1�k
for

all k 2 f1; : : : ; ng. By the Gn-orbit structure theorem [20, Theorem 2.2], every orbit of Gn Õ T n lies in
some slice S � T n.

With the help of Lemmata 2.8 and 2.9, our strategy now is to apply [20, Theorem 2.2] to check if any
Gn-orbit is preserved under the involution �.

2.4 Proof of Theorem 2.4 when d D 4

This case is illustrative, and also does not fit into the discussion of the more general cases below. Here T 3

has 64 elements, and there are twenty G3-orbits, each corresponding to one connected component of
U4 n E�C . The orbits are listed in Table 1; the theorem can be verified directly from the table.

2.5 Proof of Theorem 2.4 when d is odd and d � 7

More precisely, we prove the following:

Proposition 2.10 Let d � 7 be an odd integer.

(i) If d � 3 or 5 mod 8, then the involution � W Ud ! Ud does not preserve any connected component
of Ud n E�C .

(ii) If d � 1 or 7 mod 8, then � preserves 2.dC1/=2 connected components of Ud n E�C .

Note that there are 3 � 2d�1 connected components of Ud n E�C [20].

Let d � 7 be any odd integer. Equivalently, we assume that nD d � 1� 6 is even. Applying Lemma 2.9,
hS
k
D h�S

nC1�k
for all k 2 f1; : : : ; ng. Thus, if S � T n is a nonsymmetric slice, then h�S ¤ hS . Hence �

does not preserve any orbits lying in the nonsymmetric slices.
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However, for every symmetric slice S ,

(13) hS D h�S

or, equivalently, �S D S . Using [20, Theorem 2.2(ii)], every symmetric slice S decomposes into a number
of singleton Gn-orbits and two nonsingleton Gn-orbits of equal sizes. By Lemma 2.8, no singleton
Gn-orbit is preserved under �. So it remains only to check how � acts on the pair of nonsingleton Gn-orbits
in each symmetric slice.

Any symmetric slice can be sent to any other by the action In Õ T n by translations. It has been noted in
the proof of [20, Lemma 6.7] that In Õ T n maps Gn-orbits to Gn-orbits.

Claim 1 If � swaps (resp. preserves) the pair of nonsingleton Gn-orbits in one symmetric slice , then it
swaps (resp. preserves) those for all symmetric slices.

Proof Let S1 and S2 be any two symmetric slices, and let I 2In be a matrix such that I CS1 D S2.
Let S˙1 � S1 denote the distinct nonsingleton Gn-orbits. Then S˙2 WD I C S

˙
1 � S2 are the distinct

nonsingleton Gn-orbits in S2. If �.SC1 /D S
�
1 , then by (12),

�.SC2 /D �.I CS
C
1 /D I C �.S

C
1 /D I CS

�
1 D S

�
2 :

Thus it is enough to understand how � acts on the pair of nonsingleton Gn-orbits in D?n , the symmetric
slice at zero height. Consider the matrix M�n 2 T

n whose only nontrivial entries are the ones contained
in the 2� 2 submatrix at the upper-right corner, and let MCn WD �.M

�
n /. We note that M�n 2 D?n , and

hence so is MCn . Using the description of the Gn-action above, it is easy to observe that the Gn-orbits
S˙n WDGn �M

˙
n are both nonsingleton. Finally, since MCn D �.M

�
n /, we get SCn D �.S

�
n /.

Claim 2 For all even numbers n� 6, SCn \S
�
n D∅ precisely when n� 2 or 4 mod 8.

Proof Letˆn W .T n/�!T n�1 denote the linear map given by sending a matrixM 2 .T n/� toN 2T n�1

such that
Nij DMij CMiC1;j CMi;jC1CMiC1;jC1:

It is proven in [20, Lemma 6.6] that the dual map ˆ�n W .T
n�1/�! T n maps .T n�1/� isomorphically

onto D?n . The dual map ˆ� can be computed by

(14) ˆ�.En�1ij /DEnij CE
n
i;jC1CE

n
iC1;j CE

n
iC1;jC1;

where Ekij denotes the k � k matrix with only nontrivial entry at the position .i; j /, if i � j , or the zero
k � k matrix, otherwise. Let N�n�1 2 .T

n�1/� be the matrix whose only nontrivial entry is contained in
the upper-right corner. Let NCn�1DN

�
n�1CPn�1, where Pn�1 denotes the .n�1/� .n�1/ matrix whose

nontrivial entries are precisely located at the .i; j / such that i � j , and i and j are both odd numbers.
By the description of ˆ� above, it is easy to check that

ˆ�n.N
˙
n�1/DM

˙
n :
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There is a quadratic function

(15) Q W .T n�1/�! F2

defined in [20, Section 5.1] which distinguishes the two nonsingleton orbits. Applying [20, Lemma 5.1],
we get

Q.N�n�1/D 1 and Q.NCn�1/D
1
2
�
1
2
n
�
1
2
nC 1

�
� 1 mod 2:

Note that the quantity 1
2
�
1
2
n
�
1
2
nC1

�
counts the number of 1’s in the matrix Pn�1. ThereforeQ.NCn�1/¤

Q.N�n�1/ exactly in the cases when n� 2 or 4 mod 8. Applying [20, Lemmata 4.3, 5.5 and 6.6], the
claim follows.

Proof of Proposition 2.10 Let nD d � 1.

(i) By the second claim above, for all even integers n� 6 satisfying n� 2 or 4 mod 8, � swaps the pair
of nonsingleton Gn-orbits in D?n . Following the discussion before that claim, we conclude that no orbit
of Gn Õ T n is preserved by �.

(ii) If n� 6 and n� 0 or 6 mod 8, then by the above claim it follows that �SCn D S
�
n D S

C
n . Hence �

preserves the nonsingleton orbits of Gn Õ T n lying in the symmetric slices. Finally, by the first item of
[20, Theorem 2.2(ii)], there are exactly 2n=2C1 such orbits.

2.6 Proof of Theorem 2.4 when d � 4 mod 8 and d � 12

The only remaining case of Theorem 2.4 is as follows:

Proposition 2.11 Let d � 12 be an integer such that d � 4 mod 8. The involution � W Ud ! Ud does not
preserve any connected components of Ud n E�C .

Proof Suppose that nD d � 1� 11 is an odd integer such that n� 3 mod 8. Applying Lemma 2.9, we
observe that the Gn-orbits in the symmetric slices are not preserved, since, for every symmetric slice S ,
hS1 D 1C h

�S
1 . Furthermore, by a similar application of Lemma 2.9 to the nonsymmetric slices S , we

observe that hS ¤ h�S unless hS satisfies

(16) hSk D h
S
nC1�k for all even k and hSk D h

S
nC1�kC 1 for all odd k:

Therefore our discussion reduces to the case of Gn-orbits contained in the nonsymmetric slices whose
height vectors hS satisfy (16); we call such nonsymmetric slices special. By definition, it follows that a
slice S is special if and only if �.S/D S . By [20, Theorem 2.2(i)], every nonsymmetric (in particular,
special) slice decomposes into a pair of orbits of equal sizes.

Claim Any special slice can be brought to any other by the action In Õ T n by translations.

Proof If S and S 0 are any two special slices, then the difference vector hS � hS
0

is symmetric with
respect to the middle. We only need to remark that the image of the map h W In! Fn2 which sends a
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matrix M 2 In to the vector .hM1 ; : : : ; h
M
n / 2 Fn2 , where hM

k
WD .M;Rk/ 2 F2, consists of all vectors

h 2 Fn2 which are symmetric with respect to the middle.

Since � preserves the orbit structure of the action In Õ T n (by (12)), and the action In Õ T n preserves
the Gn-orbit structure of the slices, by the above claim, it is enough to understand the involution � W S! S

on only one special slice S . Let Sn denote the special slice at height

Nhn D . 1; 0; 1; 0; : : : ; 1„ ƒ‚ …
first .n�1/=2 entries

; 0; : : : ; 0/ 2 Fn2 :

Note that Nhn satisfies (16). Let M�n 2 Sn � T
n denote the diagonal matrix whose diagonal entries are

given by the vector Nhn, and let MCn WD �.M
�
n /. Let S˙n WDGn �M

˙
n � Sn.

Define a map f W T n! T nC1 by sending a matrix M to the matrix f .M/2 T nC1 obtained by appending
the transpose of the vector

.1; : : : ; 1„ ƒ‚ …
.nC1/=2

; 0; : : : ; 0/ 2 FnC12

to M as the last column. By a direct calculation of the height, we observe that f .Sn/�D?nC1. Moreover,
by definition of the Gn-action, it follows that f .S�n / (and similarly f .SCn /) are contained in a nonsingleton
GnC1-orbit in D?nC1. Therefore it is enough to show that f .S�n / and f .SCn / lie in two different GnC1-
orbits. Recall that Q ı .ˆ�nC1/

�1, where Q W .T n/�! Fn2 is the quadratic function in (15), distinguishes
between the pair of nonsingleton GnC1-orbits in D?nC1. LetN˙n 2 .T

n/� denote the n�nmatrices given by

.N�n /ij D

�
1 i � j; i is odd and i � 1

2
.nC 1/;

0 otherwise;

.NCn /ij D

8<:
1 i � j; i and j are both odd and i � 1

2
.nC 1/;

1 i � j; i is odd, j is even and i � 1
2
.nC 1/;

0 otherwise:

Using the description of the dual map ˆ�n in (14), one checks that f .M˙n /Dˆ
�
n.N

˙
n /. With the help of

[20, Lemma 5.1], we obtain that (modulo 2) the quantity Q.N�n / counts the number of nontrivial rows in
N�n , whereas Q.NCn / counts the number of 1’s in Q.NCn /; since n is of the form 8mC 3,

Q.N�n /D 1 and Q.NCn /D 0:

Remark 2.12 Most of the discussion in the above proof applies to the case when d is divisible by 8,
except that in this case Q.N˙

d�1
/ are both zero.

3 Proof of Theorem A

We first need the following lemma:

Lemma 3.1 Let d be any natural number satisfying (1), and let � be any connected component of
C�� \C�C . Then �C … u�� for every � 2�.
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Proof The equivalent statement that u�1� �C …� for every � 2� follows directly from Theorem 2.4.

Proof of Theorem A Suppose that d 2 N is any number satisfying (1), and let � be a connected
component of Fd n .E�C [E��/. Let � 2� be any point. Pick a continuous path ut , for t 2 Œ0; 1�, in Ud
from the identity element to u� . The set E D

S
t2Œ0;1� utE�C D

S
t2Œ0;1� Eut�C is compact and does not

contain ��. Let Br.��/ denote the closed ball in Fd centered at �� (with respect to some background
metric on Fd compatible with the manifold topology) of radius r > 0 small enough that it does not
intersect E . We show that

(17) .Br.��/\�/� u��:

By our choice of the radius r , any point O� 2 Br.��/\� is antipodal to �� and ut�C, for all t 2 Œ0; 1�.
Equivalently, for all t 2 Œ0; 1�, u�1t O� , is antipodal to �� and �C. Therefore we obtain a path u�1t O� , for
0� t � 1, from O� to u�11 O� which lies completely in a single connected component of C�� \C�C . Since,
by assumption, O� 2�, we must have u�11 O� 2�. Hence O� 2 u1�D u��.

Now we can complete the proof of the theorem. Let c W Œ�1; 1�!Fd be a continuous path such that

c.˙1/D �˙ and c..�1; 1//��:

Then, by (17), there exists t0 2 .�1; 1/ such that

(18) c.t/ 2 u�� whenever � 1� t � t0:

However, by Lemma 3.1, �C … u��. Since �C is antipodal to both �� and � , �C … u��, where �
denotes the closure of � in Fd . Therefore there exists t1 2 .t0; 1/ such that

(19) c.t/ … u�� whenever t1 � t � 1:

By (18) and (19), c.Œt0; t1�/ must intersect the boundary @.u��/ of the subset u�� in Fd . Note that the
boundary of u�� is contained in E�� [ E� , because

@.u��/D u� .@�/� u� .E�� [ E�C/D E�� [ E� :

Furthermore, under our hypothesis, c..�1; 1//\ E�� D∅, and so

c.Œt0; t1�/\ E� ¤∅:

4 Proofs of Theorems C and F

We first prove Theorem C. The proof of Theorem F is similar and given afterwards.

Proof of Theorem C Suppose that d 2N is as in the hypothesis. By definition, since � is a B-boundary
embedded subgroup of SL.d;R/, � is a hyperbolic group. Furthermore, since � is finitely generated,
appealing to the Selberg lemma, we know that � is virtually torsion-free. After passing to a subgroup
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of finite index, we may (and will) assume that � is torsion-free. Then, by the Stallings decomposition
theorem, � is isomorphic to a free product

(20) � D Fk ?�1 ? � � �?�n;

where Fk is a free group of rank k � 0, and the �j are one-ended hyperbolic groups for n� 0. Supposing
� is not free gives n� 1. We show that for k D 0 and nD 1, �1 is a surface group.

The subgroup �1 is naturally B-boundary embedded in SL.d;R/: Let � W @1�!Fd denote a (fixed)
�-equivariant antipodal embedding, and let �1 denote the composition

@1�1 ,! @1�
�
�!Fd :

Then �1 W @1�1!Fd is a �1-equivariant antipodal embedding.

Lemma 4.1 If yG is a one-ended hyperbolic group then there exists a topological embedding i WS1!@1 yG.

Proof Such embedded circles can be constructed either by a direct topological argument, by using the
fact that boundaries of one-ended groups are locally connected and without any global cut points (see
Swarup [21]) or by using Bonk and Kleiner’s [3, Corollary 2].

Let i W S1! @1�1 be a topological embedding, and define

c WD �1 ı i W S
1
!Fd :

Then c is an antipodal map. Define

Ec WD
[
x2S1

Ec.x/ �Fd :

We show that @1�1 D i.S1/, ie @1�1 is homeomorphic to a circle: Suppose to the contrary that
@1�1 © i.S1/. Consider a sequence of points .yn/ in @1�1 n i.S1/ which converges to some point
y 2 i.S1/. Then �1.yn/! �.y/ as n!1. Since �1 is antipodal, �1.yn/ … Ec . However, by Corollary B,
the image of c is contained in the interior of Ec , giving a contradiction.

Since @1�1 is homeomorphic to a circle, �1 is isomorphic to a surface group due to the deep work by
Tukia, Gabai, Freden, Casson and Jungreis; see the survey by Kapovich and Benakli [12, Theorem 5.4].

Finally, we show that �D�1 in (20): Suppose, to the contrary, that �n�1 is nonempty. Then @1�n@1�1
is also nonempty (for example, the fixed points in @1� of any element 
 2 � n�1 lie outside @1�1).
Let z 2 @1� n @1�1 be an arbitrary point, and let 
1 2 �1 be a nontrivial element. Then .
n1 z/n2N

is a sequence in @1� n @1�1 accumulating in @1�1 Š S1. By a similar argument as in the previous
paragraph, we obtain a contradiction.
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Proof of Theorem F If the image of c W S1 ! @1Z is not open, then there exists a sequence .zn/
in @1Z outside c.S1/ converging to a point z 2 c.S1/. Suppose, to the contrary, that there exists a
uniformly regular quasi-isometric embedding f W Z ! Xd , where d satisfies (1). Since Z is locally
compact, by [15, Theorem 1.2], f admits a continuous extension

Nf WZ!Xd tFd ;

where Z is the compactification of Z by attaching the Gromov boundary @1Z, such that the restriction
Nf j@1Z W@1Z!Fd is an antipodal map. As a consequence of continuity, the sequence . Nf .zn// converges

to Nf .z/. However, due to the antipodality of the map Nf j@1Z , . Nf .zn//must remain antipodal to Nf .c.S1//.
This is a contradiction since Corollary B asserts that Nf .c.S1// is locally maximally antipodal.

5 Some further remarks

Suppose that d is any natural number satisfying (1). Recall that, by Corollary B, antipodal circles ƒ in
Fd are locally maximally antipodal. The following result shows that, if such a circle ƒ is the limit set of
some Borel Anosov subgroup of SL.d;R/, then ƒ is maximally antipodal, ie[

�2ƒ

E� DFd :

Proposition 5.1 Let d be any natural number satisfying (1). If � <SL.d;R/ is a Borel Anosov subgroup
which is isomorphic to a surface group , then its flag limit set ƒ is a maximally antipodal subset of Fd .

Proof Suppose, to the contrary, that there exists a point O� 2 Fd antipodal to every point in ƒ. Let

 2 � be any hyperbolic element with attracting/repelling points �˙ 2ƒ. Then 
k O� ! �C as k!1.
However, since 
 preserves ƒ, 
k O� remains antipodal to ƒ for all k 2N. Since ƒ is homeomorphic to a
circle, by Corollary B, ƒ is locally maximally antipodal in Fd , and so we get a contradiction with the
preceding two sentences.

We prove the following statement, answering a question asked by Hee Oh, which was motivated Oh and
Edwards [8, Theorem 5.2], where the authors mention knowing the result for d D 3 or when d is even;
see Remark 5.4(4) in that paper.

Proposition 5.2 Let d � 2 be any natural number. The image in Fd of the equivariant limit maps
corresponding to the Hitchin representations of surface groups into PSL.d;R/ for d � 2 are maximally
antipodal subsets.

Proof By Proposition 5.1, this result is true for all d covered under the hypothesis of Proposition 5.1.

In any case, for all d � 2 it is enough to verify that ƒ is locally maximally antipodal in Fd (see the
proof of Proposition 5.1): By Fock and Goncharov [9], the Hitchin representations are characterized
by �-equivariant positive limit maps � W @1�!Fd . Let x�; x; xC 2 @1� be any distinct points, and

Geometry & Topology, Volume 29 (2025)



On Borel Anosov subgroups of SL.d;R/ 191

let �˙ WD �.x˙/ and � WD �.x/. Then the configuration of flags .��; �; �C/ in Fd is positive, ie with
an appropriate identification of Ud with the unipotent radical in the stabilizer of �� in PSL.d;R/ there
exists a totally positive matrix u 2Ud such that � D u�C. Such a matrix u corresponds to the zero matrix
02T d�1.F2/; see (6) and (7). By Lemma 2.8, the involution � does not preserve the connected component
�C
d

of C�� \C�C corresponding to 0, since 0 is a Gd�1-fixed point for the action Gd�1 Õ T d�1; see
Section 2 for these notions. Therefore, for all d � 2, Lemma 3.1, and hence Theorem A, hold for the
specific component �C

d
. Following the proof of Corollary B, one verifies that ƒ is a locally maximally

antipodal subset of Fd .
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