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Hyperbolic hyperbolic-by-cyclic groups are cubulable

FRANÇOIS DAHMANI

SURAJ KRISHNA MEDA SATISH

JEAN PIERRE MUTANGUHA

We show that the mapping torus of a hyperbolic group by a hyperbolic automorphism is cubulable. Along
the way, we give an alternate proof of Hagen and Wise’s theorem that hyperbolic free-by-cyclic groups are
cubulable, and extend to the case with torsion Brinkmann’s thesis that a torsion-free hyperbolic-by-cyclic
group is hyperbolic if and only if it does not contain Z2-subgroups.

20E08, 20E36, 20F65, 20F67

1 Introduction

We prove the following:

Corollary 5.4 Hyperbolic hyperbolic-by-cyclic groups are cubulable.

A hyperbolic-by-cyclic group is a semidirect product G Ì Z of a hyperbolic group G with the integers Z.
A group is cubulable if it admits an isometric action on a CAT.0/ cube complex that is cubical, proper, and
cocompact. The repetition in the statement is intended: we assume that both G and G Ì Z are hyperbolic
(equivalently, G is hyperbolic and G Ì Z does not contain Z2; see Corollary 5.3). This restricts what G

can be.

Emblematic cases of our theorem are known by outstanding works. First and foremost, if G is a closed
surface group, then any hyperbolic extension G Ì Z is a closed hyperbolic 3-manifold group [Thurston
1982]. Its cubulation is due to independent works of Bergeron and Wise [2012] — using Kahn and
Markovic’s [2012] surface subgroup theorem — and Dufour [2012] — using the immersed quasiconvex
surfaces of Cooper, Long, and Reid [Cooper et al. 1994]. Second, when G is free, Hagen and Wise [2016]
cubulated the mapping torus G Ì Z of a fully irreducible hyperbolic automorphism.

Hagen and Wise [2015] also treat extensions of free groups by arbitrary hyperbolic automorphisms, a
notoriously difficult analysis. We do not rely on, nor follow, that work. Instead, our proof uses the
emblematic cases above in a telescopic argument that encompasses the case when G is a torsion-free
hyperbolic group (see Theorem 4.2). It provides a hopefully appreciated alternative.

We adopt a relative viewpoint and bootstrap the relative cubulation of certain free-product-by-cyclic
groups of [Dahmani and Meda Satish 2022]; this uses recent work of Groves and Manning [2023] on
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260 François Dahmani, Suraj Krishna Meda Satish and Jean Pierre Mutanguha

improper actions on CAT.0/ cube complexes along with the malnormal combination theorem of Hsu
and Wise [2015]. The need for the theory of train tracks (of free groups or free product automorphisms;
see [Bestvina and Handel 1992; Francaviglia and Martino 2015]) is limited to absolute train tracks for
the fully irreducible case; it is encapsulated in the relative cubulation of free-product-by-cyclic groups
[Dahmani and Meda Satish 2022].

For a hyperbolic group G possibly with torsion, if there exists a hyperbolic extension G Ì Z, then G is
virtually torsion-free (and residually finite) by Proposition 5.2. In particular, G Ì Z is virtually cubulable
hyperbolic, and hence cubulable [Wise 2021, Lemma 7.14]. As a consequence, we have:

Corollary If a hyperbolic-by-cyclic group � is hyperbolic , then

(1) � is virtually (compact) special [Agol 2013],

(2) � is Z-linear and its quasiconvex subgroups are separable [Haglund and Wise 2008],

(3) � virtually surjects onto F2 [Antolín and Minasyan 2015],

(4) � is conjugacy separable [Minasyan and Zalesskii 2016], and

(5) � admits Anosov representations [Douba et al. 2023].

We end this introduction with a question. Proposition 5.2 states that a hyperbolic group is virtually a
free product of free and surface groups whenever it admits a hyperbolic automorphism. However, the
converse is false as can be seen from a hyperbolic triangle group or the free product of two finite groups —
these have finite outer automorphism groups.

Question Can one algebraically characterise hyperbolic groups that admit hyperbolic automorphisms?

Note that Pettet [1997] characterised virtually free groups with finite outer automorphism groups.
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2 Free factor systems

A free decomposition of a group G is an isomorphism G ŠA1 � � � � �Ak �Fr , where k � 0, r � 0, each
peripheral free factor Ai is not trivial, and Fr is free with rank r . We call AD .A1; : : : ;Ak/ a free factor
system of G; it is proper unless k � 1 and r D 0. The integer kC r is the Kurosh corank of the free factor
system A. A nontrivial group is freely indecomposable if its free factor systems have Kurosh corank 1.
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Assume G is finitely generated for the rest of this section. A Grushko decomposition of G is a free
decomposition whose free factor system A has maximal Kurosh corank and peripheral free factors Ai are
not Z; here we call A a Grushko free factor system and its Kurosh corank is the Kurosh–Grushko rank of G.

Recall the preorder of free factor systems of G: a free factor system BD .B1; : : : ;Bl/ is lower than A if
each Bj is conjugate in G to a subgroup of some Ai . In this case, a free decomposition with peripherals
A refines to one with peripherals B (as seen by the actions of Ai on TB, a Serre tree whose nontrivial
vertex stabilisers are exactly the conjugates of all Bj ), and the Kurosh corank of B is at least that of A (see
[Dahmani and Li 2022, Lemma 1.1] for a similar argument); if it is equal, then A is also lower than B.

Let B D .B1; : : : ;Bl/ be a free factor system of G. A proper .G;B/-free factor is a nontrivial point
stabiliser of a nontrivial action of G on a tree, for which edge stabilisers are trivial, and in which each Bj

is elliptic. In other words, it is a peripheral free factor Ai in a free factor system A that is higher than B
in the preorder.

A minimal free factor system in this preorder is a Grushko free factor system; it is unique up to the pre-
order’s equivalence relation. So any automorphism preserves the Grushko free factor system .A1; : : : ;Ak/,
ie it sends each Ai to a conjugate of some Aj . A free factor system is periodic with respect to � 2Aut.G/
if some (positive) power of � preserves it.

Lemma 2.1 Suppose G is a finitely generated group. If BD .B1; : : : ;Bl/ is a proper free factor system ,
then each Bi has Kurosh–Grushko rank strictly lower than the Kurosh–Grushko rank of G.

If G has Kurosh–Grushko rank � 2, then any automorphism �WG!G has a free factor system that is
maximal among �-periodic proper free factor systems.

Proof Since B is proper, G Š Bi �H for some nontrivial group H . By uniqueness of the Grushko
decomposition, the Kurosh–Grushko rank of G is the sum of those of Bi and H .

For the second assertion, as the Kurosh–Grushko rank is at least 2, the Grushko free factor system is
proper and �-periodic. Restricting to �-periodic proper free factor systems, any one with the lowest
Kurosh corank is maximal in the preorder.

3 Ingredients

Let G be a torsion-free group. For this section, we assume

� a free factor system B D .B1; : : : ;Bl/ has Kurosh corank � 3,

� an automorphism  WG!G preserves B, denoted by  2 Aut.G;B/,
�  2Aut.G;B/ is relatively fully irreducible, ie any  -periodic (up to conjugacy) proper .G;B/-free

factor must be conjugate to some Bi , and

�  2 Aut.G;B/ is relatively atoroidal, ie any  -periodic conjugacy class of nontrivial elements in
G intersects some Bi .
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262 François Dahmani, Suraj Krishna Meda Satish and Jean Pierre Mutanguha

Here is an equivalent definition of relatively fully irreducible:

Lemma 3.1 An automorphism  2Aut.G;B/ is relatively fully irreducible if and only if B is a maximal
 -periodic proper free factor system.

Proof If some -periodic proper free factor system .A1; : : : ;Ak/ is strictly higher than BD .B1; : : : ;Bl/

in the preorder, then some Ai is a  -periodic proper .G;B/-free factor that is not conjugate to any Bj .

Conversely, if some  -periodic proper .G;B/-free factor A1 is not conjugate to any Bi , then the  -
periodic free factor system .A1/ can be extended to a  -periodic proper free factor system .A1; : : : ;Ak/

that is strictly higher than B by including some (conjugates of) Bi .

For h 2G, adhWG!G denotes the inner automorphism g 7! hgh�1. For a peripheral free factor Bi , let
ki � 1 be the smallest integer such that  ki .Bi/D g�1

i Bigi for some gi 2G. The peripheral suspension
Bi Ì Z is the suspension of Bi by adgi

ı ki jBi
WBi!Bi ; this group naturally embeds in G Ì Z — one

can verify using normal forms that the natural homomorphism Bi Ì hsi !G Ì hti given by s 7! gi t
ki

is injective.

The first two authors recently gave a relative cubulation (introduced in [Einstein and Groves 2020]) of the
mapping torus of a relatively fully irreducible relatively atoroidal automorphism. Their proof is adapted
from Hagen and Wise’s [2016] cubulation of hyperbolic irreducible free-by-cyclic groups.

Theorem 3.2 (see [Dahmani and Meda Satish 2022, Theorem 1.1]) Under this section’s assumptions ,
the mapping torus G Ì Z acts cocompactly on a CAT.0/ cube complex, where each cell stabiliser is
either trivial or conjugate to a finite-index subgroup of some peripheral suspension Bi Ì Z.

The cited theorem has an additional assumption: absence of twinned subgroups. Two subgroups H1¤H2

of G are twinned in B if they are conjugates of some Bj and Bk , and adg ı 
n.Hi/DHi (for i D 1; 2) for

some n� 1 and g 2G. This assumption ensures the family of peripheral suspensions is malnormal (for
relative hyperbolicity [Dahmani and Li 2022, Theorem 0.1]), but Guirardel remarked that it is redundant:

Lemma 3.3 (Guirardel) As B has Kurosh corank � 3 and  2Aut.G;B/ is relatively fully irreducible ,
there are no twinned subgroups in B.

Our proof of the lemma uses objects (expanding train tracks, limit trees, and geometric trees of surface
type) that we do not define here for the sake of brevity; we refer the reader to the cited literature for each.

Proof The automorphism  is represented by an expanding irreducible train track; see [Dahmani
and Li 2022, Section 1.3]. Projectively iterating the train track produces the limit .G;B/-tree T and a
 -equivariant expanding homothety hWT ! T ; see [Bestvina et al. 1997, page 232]. Note that nontrivial
point stabilisers of T are  -periodic (up to conjugacy) by the finiteness of G-orbits of branch points in T

[Horbez 2017, Corollary 5.5] and the  -equivariance of h.
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Let H �G be a nontrivial nonperipheral point stabiliser of T — nonperipheral means the subgroup is
not conjugate to some Bi . Then no proper .G;B/-free factor contains H — otherwise, the smallest such
factor would be nonperipheral and  -periodic, yet  2 Aut.G;B/ is relatively fully irreducible. Thus
T is geometric of surface type [Horbez 2017, Section 6.2 and Lemma 6.8] and the point stabiliser H

is cyclic [Horbez 2017, Proposition 6.10]. As H was arbitrary, all nonperipheral point stabilisers of
T are cyclic; therefore there are no twinned subgroups in B because they would generate a noncyclic
nonperipheral T -elliptic subgroup by the  -equivariance of h.

We use the following theorem of Groves and Manning to upgrade relative cubulations in the next section.

Theorem 3.4 (see [Groves and Manning 2023, Theorem D]) If a hyperbolic group � acts cocompactly
on a CAT.0/ cube complex so that cell stabilisers are quasiconvex and cubulable , then � is cubulable.

The cited theorem has “virtually special” in place of “cubulable”. Since virtually cubulable hyperbolic
groups are cubulable [Wise 2021, Lemma 7.14], the properties “virtually special” and “cubulable” are
equivalent for hyperbolic groups by Agol’s theorem [2013]. In particular, for hyperbolic groups, being
cubulable is a commensurability invariant.

Finally, for sporadic cases when the Kurosh corank is 2, we will need a specialisation of Hsu and Wise’s
malnormal combination theorem:

Theorem 3.5 (see [Hsu and Wise 2015, Corollary C]) Suppose � D �1 �hci �2 or �1�hci is hyperbolic
and hci is an infinite cyclic malnormal subgroup of � . If each �i is cubulable , then � is cubulable.

The two decompositions can be stated together as “� splits over hci”.

4 The bootstrap

The following proposition is due to Sela (see Proposition 5.1 for a proof):

Proposition 4.1 (see [Sela 1997, Corollary 1.10]) Assume G is a torsion-free hyperbolic group and
some extension G Ì� Z does not contain a copy of Z2. If G is freely indecomposable , then it is the
fundamental group of a closed surface.

We now prove our central result:

Theorem 4.2 Let G be a torsion-free hyperbolic group. If G Ì� Z is hyperbolic , then it is cubulable.

Proof We proceed by induction on the Kurosh–Grushko rank.
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If the Kurosh–Grushko rank of G is 1, then G is freely indecomposable. By Proposition 4.1, G is a
closed surface group and, by the classification of its automorphisms, � is pseudo-Anosov [Thurston
1982, Theorem 5.5]. Then G Ì� Z is famously the fundamental group of a closed hyperbolic 3-manifold
[Thurston 1982, Theorem 5.6] and cubulable, as already mentioned in Section 1. Assume n� 2 and the
theorem holds for torsion-free hyperbolic groups of Kurosh–Grushko rank < n.

Let the Kurosh–Grushko rank of G be n. Lemma 2.1 provides a maximal �-periodic proper free factor
system BD .B1; : : : ;Bl/, and each Bi has Kurosh–Grushko rank < n. As each peripheral free factor Bi

is quasiconvex in the hyperbolic group G, a closest point projection G! Bi is Lipschitz and extends
(cosetwise) to a peripheral retraction G Ì� Z! Bi Ì Z to the peripheral suspension. Since � is a
quasi-isometry, the peripheral retractions are Lipschitz by the Morse lemma (in G) — a variation of this
idea appears in [Mitra 1998, Section 3]. Thus the peripheral suspensions are quasiconvex and hyperbolic.
By the induction hypothesis, each Bi Ì Z is cubulable.

We distinguish two cases. The first is when the Kurosh corank of B is at least 3. Some positive power
 of � preserves B and, by Lemma 3.1,  2 Aut.G;B/ is relatively fully irreducible. Since G Ì Z is
hyperbolic, it has no Z2-subgroups and there are no  -periodic conjugacy classes of nontrivial elements
in G. In particular,  2 Aut.G;B/ is relatively atoroidal. By Theorem 3.2, G Ì Z acts cocompactly on
a CAT.0/ cube complex, where each cell stabiliser is either trivial or conjugate to a finite-index subgroup
of some quasiconvex cubulable Bi Ì Z. Groves and Manning’s Theorem 3.4 thus implies G Ì Z is
cubulable. It naturally embeds in G Ì� Z with finite index, so the latter is also cubulable by [Wise 2021,
Lemma 7.14].

The last case is when the Kurosh corank of B is 2. There are three possibilities: G is B1 �B2, B1 �F1,
or F2. We rule out the third possibility as F2 Ì Z is never hyperbolic — it is a classical theorem of
Nielsen [1917] that any automorphism of F2 maps the commutator of a basis to a conjugate of itself or
its inverse. To conclude, we will prove that � DG Ì� hti (virtually) satisfies the hypotheses of Hsu and
Wise’s Theorem 3.5, and hence is cubulable. Note that hti is a maximal cyclic subgroup of � , and hence
malnormal. It remains to show that � splits over hti as needed.

In the first possibility, up to taking the square of �, we may assume that � preserves the conjugacy classes
of both B1 and B2. After conjugation (which does not change the mapping torus), we may assume it
fixes B1 (setwise) and, being an automorphism, it sends B2 to a conjugate by an element of B1. After
further conjugation, it fixes both B1 and B2. Then the mapping torus � is

.B1 �B2/Ì� hti Š .B1 Ì hti/�hti .B2 Ì hti/:

In the second possibility, we write G D B1 � hsi. Up to taking the square of � and composing with a
conjugation, we may assume that �.B1/DB1 and �.s/D sb for some b 2B1. Consider G Ì� hti, where
tst�1 D sb, or written differently s�1ts D bt . Then, rewriting the presentation, one has that

� D .B1 � hsi/Ì� hti Š .B1 Ì hti/�htisDhbti;
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where the last operation is an HNN extension with a stable letter s that (right) conjugates hti to hbti (and
actually t to bt ).

5 Once more, with torsion

Now G is a finitely presented group (possibly with torsion). It has a maximal decomposition as the
fundamental group of a finite graph of groups with finite edge groups [Dunwoody 1985]. The infinite
vertex groups are thus one-ended [Stallings 1971]. We call this a Dunwoody–Stallings decomposition. It
is not unique, but the conjugacy classes of infinite vertex groups are uniquely defined: they are conjugacy
classes of the maximal one-ended subgroups of G. The following is a generalisation of Proposition 4.1:

Proposition 5.1 Assume G is a hyperbolic group (possibly with torsion) and some extension G Ì� Z

does not contain a copy of Z2. Then every maximal one-ended subgroup of G is virtually a closed
surface group.

Proof Let H be a maximal one-ended subgroup of G. Since there are only finitely many conjugacy
classes of such subgroups,  D .adg ı�

k/jH is an automorphism of H for some integer k � 1 and
element g 2G.

Similar to the discussion in Section 3, the suspension H Ì Z naturally embeds in G Ì� Z. As H is
one-ended, its JSJ decomposition is preserved by  [Bowditch 1998, Theorem 0.1]. The lack of Z2 in
G Ì� Z imposes that the JSJ is trivial but not a rigid vertex [Bestvina and Feighn 1995, Corollary 1.3]. It
is therefore a vertex of surface type. In particular, H is virtually a closed surface group; see, for instance,
[Martino 2007, Section 4].

We are now ready to state the main observation of this section:

Proposition 5.2 If G is a hyperbolic group (possibly with torsion) and some extension G Ì� Z does not
contain a copy of Z2, then G has a characteristic finite-index subgroup that is a free product of closed
surface groups and free groups. In particular , G is residually finite.

Proof Let X be a Dunwoody–Stallings decomposition of G. We need notation for the decomposition:
the underlying finite graph is X , for each vertex v in X its vertex group is Xv , and for each edge e in X

its finite edge group is Xe . For each vertex v, denote by Hv a normal finite-index subgroup of Xv that is
either trivial or a closed surface group, as guaranteed by Proposition 5.1.

As the subgroups Hv are torsion-free, the surjections qvWXv!Xv=Hv are injective on finite subgroups.
Thus we define a graph of finite groups Y with underlying graph X , vertex groups Xv=Hv, and edge
groups Xe; the surjections qv induce a surjection qWG ! �1.Y / with a torsion-free kernel. The quo-
tient �1.Y / is virtually free by Karrass, Pietrowski, and Solitar’s characterisation [Karrass et al. 1973,
Theorem 1].
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Let J � �1.Y / be a free finite-index subgroup. Since J and the kernel of q are torsion-free, the preimage
q�1.J /�G is a torsion-free finite-index subgroup. The intersection H of subgroups of G with index
ŒG W q�1.J /� is a characteristic torsion-free finite-index subgroup. The decomposition X of G induces a
Grushko decomposition of H whose freely indecomposable free factors are closed surface groups.

We may extend Brinkmann’s thesis [2000] to the case with torsion:

Corollary 5.3 Suppose G is a hyperbolic group. Then G Ì� Z is hyperbolic if and only if it does not
contain a copy of Z2.

The forward implication is standard. Conversely, if G Ì� Z does not contain a copy of Z2, then the
same holds for the finite-index subgroup G0 Ì�jG0

Z, where G0 is the torsion-free subgroup given by
Proposition 5.2. As G0 Ì�jG0

Z is hyperbolic [Brinkmann 2000], so is G Ì� Z.

Corollary 5.4 If G and G Ì� Z are hyperbolic groups , then G Ì� Z is cubulable.

Again, consider the finite-index subgroup G0 Ì�jG0
Z of G Ì� Z, where G0 is given by Proposition 5.2.

G0 Ì�jG0
Z is cubulable by Theorem 4.2, and hence, by [Wise 2021, Lemma 7.14], so is G Ì� Z.
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