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The smooth classification of 4-dimensional complete intersections
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We prove the “Sullivan conjecture” on the classification of 4-dimensional complete intersections up to
diffeomorphism. Here an n-dimensional complete intersection is a smooth complex variety formed by the
transverse intersection of k hypersurfaces in CP nCk.

Previously Kreck and Traving proved the 4-dimensional Sullivan conjecture when 64 divides the total
degree (the product of the degrees of the defining hypersurfaces) and Fang and Klaus proved that the
conjecture holds up to the action of the group of homotopy 8-spheres ‚8 Š Z=2.

Our proof involves several new ideas, including the use of the Hambleton–Madsen theory of degree-d
normal maps, which provide a fresh perspective on the Sullivan conjecture in all dimensions. This leads
to an unexpected connection between the Segal conjecture for S1 and the Sullivan conjecture.

57R55; 32J18

1 Introduction

1.1 Complete intersections and the Sullivan conjecture

A complete intersection Xn.d/�CPnCk is the transverse intersection of k complex hypersurfaces of
degrees d D fd1; : : : ; dkg. We regard Xn.d/ as an oriented smooth manifold of real dimension 2n and
consider the problem of classifying complete intersections up to orientation-preserving diffeomorphism.
Hence throughout this paper, all manifolds are oriented and all diffeomorphisms and homeomorphisms
are assumed to preserve orientations. By an observation of Thom, the diffeomorphism type of Xn.d/

depends only on the multidegree d .

The main conjecture organising the classification of complete intersections for n � 3 is the “Sullivan
conjecture”. The statement of the conjecture relies on the following fact (see Remark 2.6): There are
integers pi.n; d/ such that the Pontryagin classes of Xn.d/ satisfy pi.Xn.d// D pi.n; d/x

2i, where
x 2H 2.Xn.d// is the pullback of a generator of H 2.CPnCk/. Let d WD d1 � � � dk denote the total degree
of Xn.d/, which is the product of the individual degrees.

Definition 1.1 The Sullivan data associated to the complete intersection Xn.d/ is the tuple

SDn.d/ WD
�
d; .pi.n; d//

bn=2c
iD1

; �.Xn.d//
�
2 ZC �Zbn=2c �Z;
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270 Diarmuid Crowley and Csaba Nagy

which consists of the total degree d , the Pontryagin classes of Xn.d/ regarded as integers and the Euler
characteristic of Xn.d/. For a fixed n, each of these integers is a polynomial function of the individual
degrees; see Section 2.2.

Conjecture 1.2 (the Sullivan conjecture) Suppose that n � 3 and Xn.d/ and Xn.d
0/ are complete

intersections. If SDn.d/D SDn.d
0/, then Xn.d/ is diffeomorphic to Xn.d

0/.

The main result of this paper is that the Sullivan conjecture holds in complex dimension 4.

Theorem 1.3 Suppose that X4.d/ and X4.d
0/ are complete intersections with SD4.d/D SD4.d

0/. Then
X4.d/ is diffeomorphic to X4.d

0/.

1.2 Background and an application

We first list some existing results about the Sullivan conjecture, its analogue in dimensions n< 3 and its
converse.

When nD 1, X1.d/ is an oriented surface and the classification is classical (in particular the Sullivan
conjecture holds but its converse does not).

When nD 2, X2.d/ is a simply connected smooth manifold and smooth classification results are currently
out of reach. However, the topological classification can be deduced from results of Freedman [1982]:
Two complete intersections are homeomorphic if and only if they have the same Pontryagin class p1 and
the same Euler characteristic. The converse fails, because the total degree is not even a diffeomorphism
invariant (eg X2.4/, X2.3; 2/ and X2.2; 2; 2/ are all K3-surfaces.)

When n� 3, the converse of the Sullivan conjecture holds; see Proposition 2.10.

If nD 3, the Sullivan conjecture follows from classification theorems of Wall [1966] or Jupp [1973].

If nD 4, Fang and Klaus [1996, Remark 2] proved that the Sullivan conjecture holds up to connected
sum with homotopy 8-spheres:

Theorem 1.4 [Fang and Klaus 1996] Suppose that X4.d/ and X4.d
0/ are complete intersections

with SD4.d/ D SD4.d
0/. Then there is a homotopy 8-sphere † such that X4.d

0/ and X4.d/ ] † are
diffeomorphic.

If 5� n� 7, then Fang and Wang [2010] proved that the Sullivan conjecture holds up to homeomorphism.

For n� 3, Kreck and Traving proved the following general statement. Let �p.d/ be the largest integer
such that p�p.d/ jd . If SDn.d/D SDn.d

0/ and �p.d/ � .2nC 1/=2.p�1/C 1 for every prime p with
p.p�1/� nC1, then Xn.d/ and Xn.d

0/ are diffeomorphic [Kreck 1999, Theorem A]. If nD 4, then the
condition says that 64jd .
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The smooth classification of 4-dimensional complete intersections 271

A motivation for the diffeomorphism classification of complete intersections is [Libgober and Wood
1982, Corollary 8.3], which says that if n� 3 and diffeomorphic complete intersections have different
multidegrees, then their complex structures lie in different connected components of the moduli space of
complex structures on the underlying smooth manifold. Here and in general, multidegrees are regarded as
equal if one can be obtained from the other by adding or removing 1s, because then the corresponding
complete intersections have a common representative. Libgober and Wood used this result to show that
for all odd n� 3 there are complete intersections having a complex moduli space with arbitrarily many
connected components. Their proof relied on a counting argument, valid in all dimensions, which shows
that the sets fd 0 j SDn.d

0/D SDn.d/g of multidegrees with the same Sullivan data can be arbitrarily large.

In future work we give an effective algorithm for finding pairs of multidegrees with the same Sullivan data.
The Sullivan conjecture then allows us to construct explicit examples of complete intersections in different
components of the complex moduli space and we obtain the following application of Theorem 1.3.

Example 1.5 The complete intersections X4.3
.150/; 7.89/; 9.65/; 15; 25.130// and X4.5

.261/; 21.89/; 27.64//

(where 3.150/ stands for 150 copies of 3, etc) are diffeomorphic by Theorem 1.3 and the formulae in
Section 2.2. Hence the corresponding complex structures lie in different components of the complex
moduli space.

1.3 The outline of the proof of Theorem 1.3

If SD4.d/ D SD4.d
0/, then by Theorem 1.4 of Fang and Klaus there is a diffeomorphism X4.d/!

X4.d
0/ ]† for some homotopy sphere †. The group of homotopy 8-spheres, ‚8 Š Z=2, is known from

[Kervaire and Milnor 1963] and so we let †8
ex denote the unique diffeomorphism class of the exotic

8-sphere and introduce the following terminology.

Definition 1.6 � An 8-manifold M is ‚-rigid if M ]†8
ex is diffeomorphic to M.

� An 8-manifold M is ‚-flexible if M ]†8
ex is not diffeomorphic to M.

� A complete intersection X4.d/ is strongly‚-flexible if X4.d/]†
8
ex is not diffeomorphic to a complete

intersection.

As our proof of Theorem 1.3 involves treating several cases separately, we shall say that the Sullivan conjec-
ture holds for a fixed complete intersection Xn.d/ if, for every d 0, SDn.d/D SDn.d

0/ implies that Xn.d
0/

is diffeomorphic to Xn.d/. By Theorem 1.4 and Remark 2.11, the Sullivan conjecture holds for X4.d/ if
and only if X4.d/ is either ‚-rigid or strongly ‚-flexible. To prove the 4-dimensional Sullivan conjecture
we consider four cases, which are indexed by the Wu classes of X4.d/ and the parity of the total degree:

v2.X4.d// v4.X4.d// d mod 2 ‚-rigidity treated in

0 � � strongly ‚-flexible Theorem 1.7
1 0 � ‚-rigid Theorem 1.12
1 1 0 unknown in general Theorem 1.14 (a)
1 1 1 unknown in general Theorem 1.14 (b)
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272 Diarmuid Crowley and Csaba Nagy

Here vi.X4.d// 2H i.X4.d/IZ=2/ is the i th Wu class of Xn.d/, which can be regarded as an element
of Z=2 by Remark 2.6, a “�” indicates the value of the invariant is not relevant in that case, and in the
cases when the ‚-rigidity of X4.d/ is unknown, we conjecture that it depends on p1.4; d/ mod 8; see
Conjecture 1.15.

Now we discuss the proof in each of the four cases.

For a spin complete intersection X4.d/ (equivalently, by Proposition 2.8, when v2.X4.d//D 0) we find
a diffeomorphism invariant property of complete intersections not shared by X4.d/ ]†

8
ex; see Section 3.

Namely, if S.X; ˛/ denotes the total space of the circle bundle over a space X with first Chern class ˛,
then S.Xn.d/;˙x/ admits a framing, making it a null-cobordant framed .2nC1/-manifold (for any
Xn.d/), whereas S.X4.d/ ]†

8
exI˙x/ does not (for a spin X4.d/). Hence (see Theorem 3.10), we have:

Theorem 1.7 If X4.d/ is spin , then X4.d/ is strongly ‚-flexible. In particular , the Sullivan conjecture
holds for X4.d/.

Remark 1.8 For the 5-dimensional Sullivan conjecture, the group of homotopy 10-spheres ‚10 Š

Z=2�Z=3 will play a central role. We believe that “transfer” arguments similar to those we use in the
4-dimensional spin case will control the .Z=3/-factor of ‚10. The .Z=2/-factor of ‚10 is detected by the
˛-invariant, and Baraglia [2020] has recently computed the ˛-invariant of spin complete intersections,
verifying its values are consistent with the Sullivan conjecture. We anticipate that these ideas will lead to
a proof of the 5-dimensional Sullivan conjecture in future work.

In the nonspin cases we apply Kreck’s modified surgery theory [1999]. Consider Bn WDCP1�BOhnC1i,
with the stable bundle �n.d/ � 
BOhnC1i over it; for the notation see Definition 2.4 and Section 2.3.
Recall from [Kreck 1999, Section 8] that a normal .n�1/-smoothing in .Bn; �n.d/ � 
BOhnC1i/ is
a pair .f; Nf /, where f W M ! Bn is an n-connected map from a closed smooth manifold M and
Nf W �M ! �n.d/� 
BOhnC1i is a map of stable bundles from the normal bundle of M, which covers f .

Recall also that the normal .n�1/-type of Xn.d/ is .Bn; �n.d/�
BOhnC1i/; in particular Xn.d/ admits a
normal .n�1/-smoothing in .Bn; �n.d/�
BOhnC1i/. In this setting [Kreck 1999, Proposition 10] reduces
the Sullivan conjecture to a statement about bordism classes over .Bn; �n.d/ � 
BOhnC1i/. For our
purposes, it is useful to state an altered version of [loc. cit., Proposition 10], which compares a complete
intersection Xn.d/ to a somewhat more general closed 2n-manifold X 0. The proof of Proposition 1.9 is
identical to the proof of the sufficient condition of [loc. cit., Proposition 10].

Proposition 1.9 Let n� 3, Xn.d/ be a complete intersection and X 0 be a closed 2n-manifold such that
�.Xn.d//D�.X

0/, and Xn.d/ and X 0admit bordant normal .n�1/-smoothings over .Bn; �n.d/�
BOhnC1i/.
If d ¤f1g;f2g or f2;2g, then Xn.d/ and X 0 are diffeomorphic.

Remark 1.10 In fact, the assumption that d ¤f1g can be removed by applying [Kreck 1999, Proposition
8 (i)]. We do not know the situation for d D f2g; f2; 2g. However, for all three of these exceptional
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The smooth classification of 4-dimensional complete intersections 273

multidegrees d , it is elementary that SDn.d/D SDn.d
0/ implies d D d 0 and so the Sullivan conjecture

holds for these complete intersections.

The main challenge when applying Proposition 1.9 is showing that the bordism condition holds; see
the discussion in Section 2.3. Note that the bordism group of 8-manifolds over .B4; �4.d/� 
BOh5i/

is canonically isomorphic to the twisted string bordism group �Oh7i
8

.CP1I �4.d//, since BOh5i D

BOh8i D B.Oh7i/.

In the case of a nonspin complete intersection X4.d/ with v4.X4.d//D 0, we will use Proposition 1.9 to
compare X4.d/ with X 0 D X4.d/ ]†

8
ex . They admit normal 3-smoothings over .B4; �4.d/� 
BOh8i/,

whose bordism classes differ by the image of †8
ex under the canonical homomorphism i0 W ‚8 !

�
Oh7i
8

.CP1I �4.d//. The map i0 factors through Tors�Oh7i
8

.CP1I �4.d/jCP1/, and (see Lemma 4.2)
we prove:

Proposition 1.11 If X4.d/ is nonspin , then Tors�Oh7i
8

.CP1I �4.d/jCP1/Š Z=4.

When v4.X4.d//D 0, we combine Proposition 1.11 with the computations of [Fang and Klaus 1996,
Section 2.2] to show that the map ‚8!�

Oh7i
8

.CP1I �4.d// vanishes (Proposition 4.3), which gives
(see Theorem 4.4):

Theorem 1.12 Suppose that X4.d/ is a nonspin complete intersection with v4.X4.d//D 0. If d ¤f2; 2g,
then X4.d/ is ‚-rigid and so the Sullivan conjecture holds for X4.d/.

Remark 1.13 In fact X4.2; 2/ is ‚-rigid too. This follows from results in Nagy’s PhD thesis [2021,
Theorem 4.6.1] but will not be proven here.

If X4.d/ is nonspin, v4.X4.d//D 1 and the total degree d is even, then 16jd (see Remark 2.9). We add
Proposition 1.11 to the Adams filtration argument of Kreck and Traving [Kreck 1999, Section 8] and the
calculations of [Fang and Klaus 1996, Section 2.4] to prove (see Proposition 4.6) part (a) of the following
theorem.

Theorem 1.14 Let X4.d/ and X4.d
0/ be nonspin complete intersections with SD4.d/D SD4.d

0/ and
suppose that either

(a) v4.X4.d//¤ 0 and the total degree d is even , or

(b) the total degree d is odd.

Then X4.d/ and X4.d
0/ admit bordant normal 3-smoothings over .B4; �4.d/� 
BOh8i/. Consequently ,

X4.d/ and X4.d
0/ are diffeomorphic and the Sullivan conjecture holds for X4.d/.

Note that the cases discussed so far (ie those prior to Theorem 1.14 (b)) have a significant overlap with,
but are not implied by, the theorem of Kreck and Traving [Kreck 1999, Theorem A]. However, the case
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274 Diarmuid Crowley and Csaba Nagy

of odd total degree covered in Theorem 1.14 (b) is completely new. Note also that the total degree can be
odd only if v2.X4.d//¤ 0 and v4.X4.d//¤ 0; see Proposition 2.8.

To prove Theorem 1.14 (b) we use the Hambleton–Madsen theory of degree-d normal maps [1986]. A
complete intersection Xn.d/ (with a canonical choice of normal data) represents an element in the set
N C

d
.CPn/ of normal bordism classes of degree-d normal maps over CPn. As explained in Section 5.1,

an oriented version of the Hambleton–Madsen theory gives a bijective normal invariant map

� WN C
d
.CPn/� ŒCPn; .QS0=SO/d �;

which is the usual normal invariant in the familiar case when d D 1 and where .QS0=SO/d is the oriented
version of the classifying space for isomorphism classes of stable fibrewise degree-d maps between
sphere bundles of vector bundles, which was identified by Brumfiel and Madsen [1976, Section 4]. We
establish a relationship between certain “relative divisors” of a vector bundle and degree-d normal maps
over the vector bundle (Lemma 5.17) and then use this to give a formula for the canonical degree-d
normal invariant of Xn.d/ (Theorem 5.19).

The surgery argument of Proposition 1.9 also works if we have bordant representatives in N C
d
.CPn/

(Lemma 5.18). This and the formula of Theorem 5.19 leads to a new perspective on the stable homotopy-
theoretic input needed to prove the Sullivan conjecture (see Theorem 5.20). This new perspective allows
us to prove the 4-dimensional Sullivan conjecture when the total degree is odd and we anticipate that it
will lead to other new results in higher dimensions; eg see Remark 5.34.

Notice that Fang and Klaus (Theorem 1.4) reduced the 4-dimensional Sullivan conjecture to a 2-local prob-
lem. When d is odd, [Brumfiel and Madsen 1976] showed that there is an equivalence of 2-localisations
..QS0=SO/d /.2/ ' .G=O/.2/, where G=O is the familiar classifying space from classical surgery theory
[Browder 1972; Wall 1970]. We can then exploit Sullivan’s 2-local splitting (see [Madsen and Milgram
1979, Theorem 5.18]),

.G=O/.2/ ' .BSO/.2/ � coker J.2/;

where coker J.2/ is a 2-local space whose homotopy groups are certain large summands of the 2-primary
component of the cokernel of the J -homomorphism (see [Madsen and Milgram 1979, Definition 5.16]).
It follows that we have a sequence of maps

ŒCPn; .QS0=SO/d �! ŒCPn; ..QS0=SO/d /.2/�
�
�! ŒCPn; .G=O/.2/�

�
�! ŒCPn; .BSO/.2/�� ŒCPn; coker J.2/�:

The formula for the degree-d normal invariant of Xn.d/ shows that it is the restriction of a map CP1!

.QS0=SO/d . Now the proof of [Feshbach 1986, Theorem 6], which is based on the Segal conjecture
for the Lie group S1, implies that any map CP1! coker J.2/ is null-homotopic and this is enough to
prove that the ŒCPn; coker J.2/�-factor of the 2-localised normal invariant is trivial (Corollary 5.29). The
ŒCPn; .BSO/.2/�-factor is controlled by the Sullivan data; hence in dimension 4 the degree-d normal
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The smooth classification of 4-dimensional complete intersections 275

invariant is completely determined by the Sullivan data (Theorem 5.30). The 4-dimensional Sullivan
conjecture for complete intersections with odd total degree follows (Theorem 5.31).

1.4 Inertia groups of 4-dimensional complete intersections

Recall that the inertia group of a closed connected m-manifold M is the subgroup

I.M / WD f† 2‚m jM and M ]† are diffeomorphicg �‚m

of the group of homotopy m-spheres ‚m [Kervaire and Milnor 1963]. For example, an 8-manifold M

is ‚-rigid if and only if I.M / D ‚8. The results in Section 1.3 determine the inertia groups of a
4-dimensional complete intersection when X4.d/ is spin, or when X4.d/ is nonspin and v4.X4.d//D 0.
When X4.d/ is nonspin and v4.X4.d//¤ 0, we have p1.4; d/� 1 mod 4 (see Proposition 2.8 and the
calculations in Section 2.2) and we offer the third and fourth rows of the table in the following conjecture.

Conjecture 1.15 The inertia groups I.X4.d//�‚8 Š Z=2 of 4-dimensional complete intersections are
given by the table below:

v2.X4.d// v4.X4.d// p1.4; d/ mod 8 I.X4.d//

0 � � 0

1 0 � ‚8

1 1 5 0

1 1 1 ‚8

Here a “�” indicates the value of the invariant is not relevant for I.X4.d// in that case.

Remark 1.16 The first the line of the table follows from Theorem 1.7 and the second line follows
from Theorem 1.12 and Remark 1.13. By [Kasilingam 2016, Remark 2.6 (1)], I.X4.1//D I.CP4/D 0,
which is consistent with the third line of the table. The conjecture is based on analysing the homotopy
type of the Thom spectrum of �4.d/jCP4 and using this to determine the map ‚8 Š Tors�Oh7i

8
!

�
Oh7i
8

.CP1I �4.d//.

In the spin case, we identified a diffeomorphism invariant property which distinguishes the manifolds
X4.d/ and X4.d/]†

8
ex . In the‚-flexible nonspin cases, besides the bordism class in�Oh7i

8
.CP1I �4.d//,

we do not know of such a property.

The rest of this paper is organised as follows. Section 2 covers necessary preliminaries. Section 3 treats
the spin case. Section 4 treats the two nonspin cases whose solutions rely on Proposition 1.11, which is
the case with v4 D 0 and the case with v4 ¤ 0 and even total degree (together comprising all nonspin
complete intersections with even total degree). Section 5 treats the case of odd total degree. Finally, we
have an appendix about Toda brackets and extensions, which are needed in Section 4 and specifically for
the proof of Proposition 1.11.
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2 Preliminaries

In this section we recall and establish some basic facts about complete intersections and Sullivan data.
We then recall Kreck’s modified surgery setting for the classification of complete intersections.

2.1 Complete intersections

Given a finite multiset d D fd1; d2; : : : ; dkg of positive integers, consider homogeneous polynomials
f1; f2; : : : ; fk 2CŒx0;x1; : : : ;xnCk �with these degrees. If the zero set fŒx�2CPnCk jfi.x/D0g of fi is
a smooth submanifold of CPnCk for every i and these submanifolds are transverse, then their intersection
is a representative of the complete intersection Xn.d/. Any two representatives are diffeomorphic, due to
an argument generally attributed to Thom (see eg [Browder 1979]), which we outline below.

Let Pn.d/ denote the space of tuples .f1; f2; : : : ; fk/ of homogeneous polynomials in nCkC1 variables
of degrees d1; d2; : : : ; dk , and let Pn.d/

ns � Pn.d/ be the subspace of tuples that define complete
intersections. The restriction of the tautological map

f.Œx�; .f1; f2; : : : ; fk// 2CPnCk
�Pn.d/ j fi.x/D 0 for all ig ! Pn.d/

to Pn.d/
ns is a locally trivial bundle, and its fibres are the representatives of Xn.d/. Since Pn.d/nPn.d/

ns�

Pn.d/ is a subvariety of positive complex codimension, Pn.d/
ns is a generic (ie open and everywhere

dense) subset in Pn.d/ and it is path-connected.

This implies that every tuple in Pn.d/ can be approximated by one in Pn.d/
ns. We also get that any

two tuples in Pn.d/
ns can be joined by a path in Pn.d/

ns, which determines a diffeomorphism (up to
isotopy) between the fibres over them. So if we take Xn.d/ to mean any of its representatives, then it is
well-defined up to diffeomorphism. Moreover, if two representatives are identified via a path as above,
then their natural embeddings in CPnCk are isotopic; hence Xn.d/ comes equipped with an embedding
i WXn.d/!CPnCk, well-defined up to isotopy. The embedding i is n-connected (this follows from the
Lefschetz hyperplane theorem, or see [Dimca 1992, Chapter 5 (2.6)]).

2.2 Computation of Sullivan data and the converse of the Sullivan conjecture

Definition 2.1 Let x 2 H 2.CP1/ denote the standard generator (satisfying hx; ŒCP1�i D 1). The
pullbacks of x (by the standard embeddings) in H 2.CPm/ and H 2.Xn.d// will also be denoted by x.
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Definition 2.2 For a (complex) bundle � and a positive integer r let r� D �˚ � � �˚ � denote the r -fold
Whitney sum of � with itself and let �r� denote the stable bundle which is the inverse of r�. Let
�r D �˝� � �˝ � be the r -fold tensor product (over C) of � with itself. For a tuple r D .r1; r2; : : : ; rk/ let
�r D �r1 ˚ �r2 ˚ � � �˚ �rk.

Definition 2.3 Let 
 be the conjugate of the tautological complex line bundle over CP1.

With this notation, the tautological bundle is N
 , and since c1. N
 /D �x, we have c1.
 /D x. It is well
known that the normal bundle of CPm in CPmC1 is �.CPm!CPmC1/Š 
 jCPm and that the stable
normal bundle of CPm is �CPm Š�.mC1/
 jCPm (see eg [Milnor and Stasheff 1974, Section 14]).

Definition 2.4 The stable vector bundle �n.d/ over CP1 is defined to be

�n.d/ WD �.nCkC1/
 ˚ 
 d1 ˚ � � �˚ 
 dk :

Since the normal bundle of a degree-r hypersurface in CPm is the restriction of 
 r (cf Construction 5.22
and Remark 5.16), we have:

Proposition 2.5 The stable normal bundle �Xn.d/ of Xn.d/ is isomorphic to i�.�n.d/jCPnCk /.

Remark 2.6 Since �Xn.d/ is the pullback of a bundle over CP1, all of the stable characteristic classes
of Xn.d/ lie in the subring i�.H�.CP1// �H�.Xn.d//, which is generated by x 2H 2.Xn.d//. In
particular, pj .Xn.d//2hx

2j iŠZ, cj .Xn.d//2hx
j iŠZ and if 2j �n, thenw2j .Xn.d//; v2j .Xn.d//2

h%2.x
j /i Š Z=2, where %2 WH

�.Xn.d//!H�.Xn.d/IZ=2/ is reduction mod 2. (If 2j > n and d is
even, then %2.x

j /D 0.)

Proposition 2.5 allows us to compute the characteristic classes of Xn.d/ in terms of the degrees d1; : : : ; dk .
Since c.
 r /D 1Crx, the total Chern class of �n.d/ is c.�n.d//D .1Cx/�.nCkC1/

Qk
iD1.1Cdix/. The

same formula holds for the normal bundle �Xn.d/, because it is the pullback of �n.d/. This implies that
c.Xn.d//D .1C x/nCkC1

Qk
iD1.1C dix/

�1. For the Pontryagin classes we have p.
 r /D 1C r2x2;
hence p.Xn.d//D .1Cx2/nCkC1

Qk
iD1.1C d2

i x2/�1.

The Euler characteristic of Xn.d/ can also be determined, namely

�.Xn.d//D hcn.Xn.d//; ŒXn.d/�i D hcn.��Xn.d//; ŒXn.d/�i

D hcn.�i�.�n.d///; ŒXn.d/�i D hcn.��n.d//; i�.ŒXn.d/�/i;

where i�.ŒXn.d/�/ 2H2n.CPnCk/ is d times the generator.

It will be useful to explicitly compute the Stiefel–Whitney classes w2 and w4 and Wu classes v2 and v4

of a 4-dimensional complete intersection X4.d/.

Definition 2.7 For a multidegree d let p.d/ denote the number of even degrees in d .
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Proposition 2.8 The Stiefel–Whitney classes w2 and w4 of �X4.d/ and X4.d/ and Wu classes v2 and v4

of X4.d/ are determined by p.d/ mod 4 as follows (by Remark 2.6 these Stiefel–Whitney classes and
Wu classes can be regarded as elements of Z=2):

p.d/ mod 4 0 1 2 3

w2.�X4.d//D w2.X4.d//D v2.X4.d// 1 0 1 0

w4.�X4.d//D v4.X4.d// 1 1 0 0

w4.X4.d// 0 1 1 0

Proof The total Chern class of �n.d/ is given by the formula

c.�n.d//D .1Cx/�.nCkC1/
kY

iD1

.1Cdix/

D 1C

�
�.nC1/C

kX
iD1

.di�1/

�
xC

��nC2

2

�
�.nC2/

kX
iD1

.di�1/C
X

1�i<j�k

.di�1/.dj�1/

�
x2
C�� � :

We have w2i D %2.ci/. Therefore

w2.�4.d//D %2

��
�5C

kX
iD1

.di � 1/

�
x

�
D %2..1Cp.d//x/;

w4.�4.d//D %2

��
15� 6

kX
iD1

.di � 1/C
X

1�i<j�k

.di � 1/.dj � 1/

�
x2

�
D %2

��
1C

�p.d/

2

��
x2

�
:

We have the same formulas for the Stiefel–Whitney classes of �X4.d/, because �X4.d/ is the pullback
of �4.d/. Since H 1.X4.d/IZ=2/ Š H 3.X4.d/IZ=2/ Š 0, the Stiefel–Whitney classes w2.X4.d//

and w4.X4.d// are determined by w2.�X4.d// and w4.�X4.d// via the Cartan formula. We get that
w2.X4.d//D w2.�X4.d// and w4.X4.d//D w2.�X4.d//

2Cw4.�X4.d//. By applying the Wu formula
we get that v2.X4.d//D w2.X4.d// and v4.X4.d//D w2.X4.d//

2Cw4.X4.d//D w4.�X4.d//.

Remark 2.9 Notice that if v2.X4.d//¤ 0 and v4.X4.d//¤ 0, then p.d/ is divisible by 4. This means
that either p.d/D 0, and hence all degrees are odd, so the total degree is odd; or p.d/� 4, so there are
at least four even degrees and then the total degree is divisible by 16.

The following proposition implies that the converse of the Sullivan conjecture holds.

Proposition 2.10 Let n� 3 and let d and d 0 be two multidegrees. If there is a homotopy equivalence
f WXn.d/!Xn.d

0/ such that f �.�Xn.d 0//Š�Xn.d/ (eg if f is a diffeomorphism), then SDn.d/DSDn.d
0/.

Proof If n� 3, then H 2.Xn.d//ŠH 2.Xn.d
0//Š Z, so any homotopy equivalence Xn.d/!Xn.d

0/

preserves x up to sign. If f sends x to �x, then we can replace it with another homotopy equivalence
that preserves x, by composing it with a self-diffeomorphism of Xn.d/ (or Xn.d

0/) that changes the
sign of x. (Consider the conjugation map of the ambient CPnCk ; it sends x to �x. If a representative
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of Xn.d/ is given by polynomials f1; f2; : : : ; fk , then its image is another representative of the same
complete intersection, given by the conjugate polynomials Nf1; Nf2; : : : ; Nfk . By Thom’s argument there is
a diffeomorphism between the two representatives such that after identifying them their embeddings into
CPnCk are isotopic. By composing this diffeomorphism with the restriction of the conjugation map, we
get a self-diffeomorphism of either representative that changes the sign of x.) Since hxn; ŒXn.d/�i D d

and hxn; ŒXn.d
0/�i D d 0, this means that d D d 0. The Euler characteristic is a homotopy invariant. The

Pontryagin classes are preserved by f because of the assumption on the normal bundles, and since the
elements x2i are preserved, the Pontryagin classes are also invariant when regarded as integers.

Remark 2.11 If † 2‚2n is a homotopy sphere, then there is a homeomorphism between Xn.d/ and
Xn.d/ ]† which preserves normal bundles. Thus if n� 3 and Xn.d/ ]† is diffeomorphic to a complete
intersection Xn.d

0/, then SDn.d/D SDn.d
0/.

2.3 The setting for modified surgery

We recall the setup for the modified surgery arguments of [Kreck 1999, Section 8; Fang and Klaus 1996],
which will be used in Sections 4 and 5.

Recall that the inclusion i WXn.d/!CP1 is n-connected. It is covered by a bundle map Ni W�Xn.d/!�n.d/

(Proposition 2.5) and therefore .i; Ni/ is a normal .n�1/-smoothing over .CP1; �n.d//.

Let 
BO denote the universal stable vector bundle over BO and 
BOhji its pullback to BOhj i, the
.j�1/-connected cover of BO . Let Bn WDCP1 �BOhnC1i. Then .i; Ni/ can be regarded as a normal
map over .Bn; �n.d/� 
BOhnC1i/ (and it is still n-connected). Moreover, the map Bn! BO inducing
�n.d/� 
BOhnC1i from 
BO is n-coconnected; therefore .Bn; �n.d/� 
BOhnC1i/ is the normal .n�1/-
type of Xn.d/. When n D 4, we have that BOh5i D BOh8i D BString by Bott periodicity, and
thus .i; Ni/ represents an element in the bordism group of closed 8-manifolds with normal maps to
.B4; �4.d/ � 
BOh8i/. We denote this bordism group by �fr

8
.B4I �4.d/ � 
BOh8i/; it is canonically

isomorphic to the twisted string bordism group �Oh7i
8

.CP1I �4.d//.

First we will want to apply Proposition 1.9 when X 0 DX4.d/ ]†
8
ex . There is a canonical homeomorphism

h W X4.d/ ] †
8
ex ! X4.d/, and since homotopy spheres are stably parallelisable [Kervaire and Milnor

1963, Theorem 3.1], h is covered by a bundle map Nh of stable normal bundles. Then .i ı h; Ni ı Nh/ is
also a normal 3-smoothing over .B4; �4.d/� 
BOh8i/, and in the bordism group �Oh7i

8
.CP1I �4.d// it

represents Œi; Ni �C Œ†8
ex �, where Œ†8

ex � is the image of †8
ex under the canonical homomorphism i0 W‚8!

�
Oh7i
8

.CP1I �4.d//. So to apply Proposition 1.9 in this setting we need to show that this homomorphism
is trivial and we do this in the nonspin case with v4.X4.d//D 0; see Proposition 4.3.

Now suppose that X4.d
0/ is another complete intersection with an analogous normal 3-smoothing

.i 0; Ni 0/ over .CP1; �4.d
0//. If the Pontryagin classes of X4.d/ and X4.d

0/ agree, in particular if
SD4.d/D SD4.d

0/, then the Pontryagin classes p1 and p2 of �4.d/ and �4.d 0/ also agree. This implies
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that �4.d/jCP4 Š �4.d
0/jCP4 (by [Sanderson 1964, Theorem (3.9)] every stable bundle over CP4 is

isomorphic to �a;b WD a
 ˚b.
 ˝R 
 / for some a; b 2Z, and the function .a; b/ 7! .p1.�a;b/;p2.�a;b//

is injective). Thus �4.d 0/	�4.d/ is trivial over CP4, so it has an Oh7i-structure. Therefore IdCP1 has a
lift g WCP1! B4 which induces �4.d 0/ from �4.d/� 
BOh8i. Hence if Ng W �4.d 0/! �4.d/� 
BOh8i is
a bundle map over g, then .g ı i 0; Ng ı Ni 0/ is a normal 3-smoothing of X4.d

0/ over .B4; �4.d/� 
BOh8i/.

If SD4.d/ D SD4.d
0/, then the discussion in the paragraph above shows that X4.d/ and X4.d

0/

admit normal 3-smoothings over .B4; �4.d/� 
BOh8i/ and �.X4.d//D �.X4.d
0//; therefore to apply

Proposition 1.9 it is enough to prove that these normal 3-smoothings represent the same bordism class
in �Oh7i

8
.CP1I �4.d//. Fang and Klaus obtained Theorem 1.4 by showing that the difference of these

bordism classes is in the image of the canonical homomorphism i0 W‚8!�
Oh7i
8

.CP1I �4.d//. In the
nonspin cases with v4.X4.d//¤0, we are able to show in Sections 4.3 and 5 that the bordism classes agree.

3 The spin case

In this section we prove that 4-dimensional spin complete intersections are strongly ‚-flexible; hence the
Sullivan conjecture holds for them.

Definition 3.1 For a smooth manifold X and a cohomology class ˛ 2H 2.X /, let E.X; ˛/ denote the
total space of the complex line bundle over X with first Chern class ˛. Let D.X; ˛/ denote its disc bundle
and S.X; ˛/ denote its sphere bundle.

Recall that x 2H 2.Xn.d// is the pullback of the standard generator of H 2.CP1/. First we will prove
that for every complete intersection Xn.d/ the total space S.Xn.d/;x/ admits a framing such that it is
framed null-cobordant (where by a framing of a manifold we mean a trivialisation of its stable normal
bundle, equivalently, of its stable tangent bundle); see Theorem 3.4.

Recall that (a representative of) the complete intersection XnC1.d/ � CPnCkC1 is the set of com-
mon zeros of some homogeneous polynomials f1; f2; : : : ; fk 2 CŒx0;x1; : : : ;xnCkC1�. If fkC1 2

CŒx0;x1; : : : ;xnCkC1� is linear and its zero set L is transverse to XnC1.d/, then Xn.d/DXnC1.d/\L.

Proposition 3.2 The complement XnC1.d/ nXn.d/ is stably parallelisable.

Proof We have the following commutative diagram of embeddings:

CPnCkC1 nL // CPnCkC1

XnC1.d/ nXn.d/ //

i

OO

XnC1.d/

i

OO

So

�XnC1.d/nXn.d/ Š �XnC1.d/jXnC1.d/nXn.d/ Š i�.�nC1.d//jXnC1.d/nXn.d/ Š i�.�nC1.d/jCPnCkC1nL/

(using Proposition 2.5), and this is trivial, because CPnCkC1 n L is contractible (recall that L is a
hyperplane).
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Proposition 3.3 We have �.Xn.d/!XnC1.d//Š i�.
 / (see Definition 2.3).

Proof Since L is transverse to XnC1.d/ and Xn.d/D XnC1.d/\L, the normal bundle �.Xn.d/!

XnC1.d// is the restriction of �.L!CPnCkC1/; hence

�.Xn.d/!XnC1.d//Š �.L!CPnCkC1/jXn.d/ Š 
 jXn.d/:

Theorem 3.4 For any complete intersection Xn.d/, (the total space of ) the S1-bundle S.Xn.d/;x/

admits a framing F0 such that ŒS.Xn.d/;x/;F0�D 0 2�fr
2nC1

.

Proof Let U be a tubular neighbourhood of Xn.d/ in XnC1.d/. By Proposition 3.3 it is diffeomorphic
to the disc bundle of i�.
 /, whose first Chern class is x, therefore @U � S.Xn.d/;x/. Its complement,
XnC1.d/ n int U, is a codimension-0 submanifold in XnC1.d/ nXn.d/. The latter is stably parallelisable
by Proposition 3.2, so XnC1.d/ n int U is stably parallelisable too. If we choose F0 to be the restriction
of a framing of XnC1.d/ n int U to the boundary @.XnC1.d/ n int U / � @U � S.Xn.d/;x/, then
.S.Xn.d/;x/;F0/ is framed null-cobordant.

The goal of the rest of this section is to prove that S.X4.d/ ]†
8
ex;x/ is not framed nullcobordant (with

any framing) if X4.d/ is spin; see Theorem 3.9. First we show that, when an m-manifold X is replaced
by X ]† for a homotopy m-sphere †, the framed cobordism class of S.X; ˛/ changes by †�S1 (with
a certain choice of framings); see Lemma 3.5. In Lemma 3.6 we give a formula to compute the framing
of the S1 component. By applying this formula we prove that if X4.d/ is spin, then S.X4.d/ ]†

8
ex;x/

has a framing such that it is not framed nullcobordant (Theorem 3.8). Finally we show that we cannot
make the framed cobordism class vanish by changing the framing.

Lemma 3.5 Suppose that m � 3, X is an m-manifold , ˛ 2 H 2.X / and F0 is a framing of S.X; ˛/.
Then there exists a framing F2 of S1 such that for every † 2‚m and framing F1 of † there is a framing
F of S.X ]†; ˛/ such that

ŒS.X; ˛/;F0�C Œ†�S1;F1 �F2�D ŒS.X ]†; ˛/;F � 2�fr
mC1:

Proof Fix an embedding Dm ! X where the connected sum is done. There is a homotopically
unique homeomorphism between X and X ]† that is the identity on X n int Dm, so there is a canonical
isomorphism H 2.X /ŠH 2.X ]†/. Thus ˛ can be regarded as an element of H 2.X ]†/, and S.X ]†; ˛/

makes sense. The homomorphisms H 2.X /!H 2.X n int Dm/ H 2.X ]†/ are injective (in fact they
are isomorphisms); therefore S.X ]†; ˛/ is (the total space of) the unique S1-bundle over X ]† whose
restriction to X n int Dm is isomorphic to that of S.X; ˛/.

Let W D .S.X; ˛/t†�S1/� I [f .D
m �S1 � I/, where the gluing map

f WDm
�S1

� @I ! .S.X; ˛/t†�S1/� f1g

is the disjoint union of the (homotopically unique) local trivialisation f0 WD
m�S1�f0g!S.X; ˛/�f1g

of S.X; ˛/ over the fixed Dm and the product map f1 WD
m�S1�f1g!†�S1�f1g, where Dm!†
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is the embedding used to construct the connected sum X ]†. Then @W D @�W t @CW, where @�W D

.S.X; ˛/t†�S1/�f0g and @CW D .S.X; ˛/n.int Dm�S1/t.†nint Dm/�S1/�f1g[f Sm�1�S1�I.
Thus @CW is an S1-bundle over .X n int Dm/[Sm�1�I [ .†n int Dm/�X ]† and it coincides with
S.X; ˛/ over X n int Dm; therefore @CW � S.X ]†; ˛/.

The inclusion S.X; ˛/� f0g ! S.X; ˛/� I [f0
Dm �S1 � I is a homotopy equivalence, covered by a

bundle map between the stable normal bundles; therefore the framing F0 can be extended to a framing
of S.X; ˛/� I [f0

Dm �S1 � I. The restriction of this framing to Dm �S1 � f1g is Em �F2, where
Em is the homotopically unique framing of Dm and F2 is some framing of S1 (because every framing
of Dm � S1 is of this form). Similarly, we can take the framing F1 �F2 of †� S1 and extend it to
†�S1�I. The restriction of this framing to Dm�S1�f1g is again Em�F2 (up to homotopy); therefore
the framings of S.X; ˛/� I [f0

Dm �S1 � I and †�S1 � I together determine a framing of W. Let
F denote its restriction to @CW � S.X ] †; ˛/. Then W is a framed cobordism between the framed
manifolds .S.X; ˛/;F0/t .†�S1;F1 �F2/ and .S.X ]†; ˛/;F /.

Lemma 3.6 Suppose that , in addition to the assumptions of Lemma 3.5, there is an Œa� 2 �2.X / such
that h˛; �.Œa�/i D 1, where � W �2.X /! H2.X / is the Hurewicz homomorphism. Then for any such
Œa� 2 �2.X / and the framing F2 constructed in the proof of Lemma 3.5 we have

ŒS1;F2�D hw2.X /; �.Œa�/iC 1;

where both sides are regarded as elements of Z=2 (using that �fr
1
Š Z=2).

Proof Fix a local trivialisation f0 WD
m�S1! S.X; ˛/, as in the proof of Lemma 3.5. The framing F2

is defined by the property that the restriction of F0 to f0.D
m �S1/ is Em �F2 (throughout this proof

we will identify the framings of f0.D
m �S1/ with the framings of Dm �S1 via (the derivative of) f0).

First we will give another characterisation of Em �F2.

If @ W �2.X /! �1.S
1/ Š Z denotes the boundary map in the homotopy long exact sequence of the

fibration S1! S.X; ˛/! X , then @.Œa�/ D h˛; �.Œa�/i (this holds if X D S2 and a D IdS2 , because
˛ is the Euler class of E.S2; ˛/, and in general a W S2! X induces a commutative diagram between
the exact sequences). Moreover, @ is the composition of the isomorphism �2.X / Š �2.S.X; ˛/;S

1/

and the boundary map �2.S.X; ˛/;S
1/! �1.S

1/. Therefore for any Œa� with h˛; �.Œa�/i D 1 there is
a map Qa W D2! S.X; ˛/ (well-defined up to homotopy) such that QajS1 is the inclusion of a fibre and
. Qa; QajS1/ represents the element in �2.S.X; ˛/;S

1/ corresponding to Œa� 2 �2.X /. We can lift Qa to a
map Na WD2! S.X; ˛/�RC

0
(where RC

0
denotes Œ0;1/) such that Na is an embedding, it is transverse

to S.X; ˛/� f0g, Na�1.S.X; ˛/� f0g/D S1, NajS1 W S1! S.X; ˛/� f0g is the inclusion of a fibre and
Œ Na; NajS1 �D Œ Qa; QajS1 � 2 �2.S.X; ˛/�RC

0
;S1 �RC

0
/Š �2.S.X; ˛/;S

1/.

Let U be a tubular neighbourhood of Na.D2/ in S.X; ˛/�RC
0

. We can assume that U \S.X; ˛/�f0g D

f0.D
m �S1/. (Note that U is the total space of a Dm-bundle over D2, so it has a homotopically unique
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trivialisation D2 �Dm ! U, but the restriction of this trivialisation to S1 may differ from f0, the
difference is given by an element of �1.SOm/Š Z=2.) The framing F0 can be extended to a framing
of S.X; ˛/�RC

0
and then restricted to a framing of U. As mentioned above, if we further restrict this

framing to f0.D
m�S1/, we get Em�F2. Since U is contractible, it has a homotopically unique framing,

so this means that Em �F2 is the restriction of the homotopically unique framing of U.

The local trivialisation f0 is the restriction of a local trivialisation Nf0 W D
m �D2 ! D.X; ˛/. The

homotopically unique framing of Nf0.D
m�D2/ is Em�E2; its restriction to f0.D

m�S1/ is Em�.E2jS1/.
Since .S1;E2jS1/ is the framed boundary of .D2;E2/, we have ŒS1;E2jS1 �D 0 2 �fr

1
Š Z=2. So if

g 2 �1.SO/ŠZ=2 denotes the difference of the framings F2 and E2jS1 of S1, then ŒS1;F2�D g 2Z=2.

We have D.X; ˛/ [S.X ;˛/ S.X; ˛/ � RC
0
� E.X; ˛/ (in each fibre D2 [S1 S1 � RC

0
� R2) and

Nf0.D
m�D2/[U is a tubular neighbourhood of Nf0.f0g�D2/[ Na.D2/�S2 in E.X; ˛/. As a Dm-bundle

over S2 it is classified by an element of �2.BSOm/ Š Z=2. Under the isomorphism �2.BSOm/ Š

�2.BSO/Š �1.SO/ this element corresponds to g (because it is equal to the difference of the restrictions
of the unique framings of Nf0.D

m �D2/ and U, which are Em � .E2jS1/ and Em �F2 respectively).

So we need to determine the normal bundle of the embedding S2!E.X; ˛/ as an element of �2.BSO/.
Since S2 is stably parallelisable, it is the same as the restriction of the stable tangent bundle �E.X ;˛/

to S2. The embedding S2 ! E.X; ˛/ is homotopic to its projection to the zero section (X ). Since
Nf0.f0g�D2/ is a fibre of D.X; ˛/, its projection to X is one point. The map Na WD2! S.X; ˛/�RC

0
is

a lift of Qa WD2! S.X; ˛/, which is a lift of a map a W S2!X representing Œa� 2 �2.X /. Therefore the
composition of the embedding S2!E.X; ˛/ and the projection to X is a. The restriction of �E.X ;˛/

to X is E.X; ˛/˚ �X . So the bundle we are interested in is the pullback of E.X; ˛/˚ �X by a.

The second Stiefel–Whitney class detects �2.BSO/, so

g D hw2.a
�.E.X; ˛/˚ �X //; ŒS

2�i D hw2.E.X; ˛/˚ �X /; a�.ŒS
2�/i

D hw2.E.X; ˛//Cw2.�X /; �.Œa�/i D h%2.˛/; �.Œa�/iC hw2.X /; �.Œa�/i D 1Chw2.X /; �.Œa�/i;

where %2 WH
2.X /!H 2.X IZ=2/ denotes reduction mod 2 and we used that E.X; ˛/ is a complex line

bundle, so w1.E.X; ˛//D 0 and w2.E.X; ˛//D %2.c1.E.X; ˛///D %2.˛/ and that h˛; �.Œa�/i D 1.

We already saw that g corresponds to ŒS1;F2�, so the statement follows.

Proposition 3.7 If F2 is the (homotopically unique) framing of S1 such that ŒS1;F2� is the nontrivial
element in �fr

1
Š Z=2, and F1 is any framing of †8

ex , then Œ†8
ex �S1;F1 �F2�¤ 0 2 �fr

9
. Moreover ,

Œ†8
ex �S1;F1 �F2� is not contained in the image of the J -homomorphism J9 W �9.SO/!�fr

9
.

Proof It follows from [Kervaire and Milnor 1963, Section 4 and Theorem 5.1] that Œ†8
ex;F1� 62 Im J8. Un-

der the Pontryagin–Thom isomorphism the map �ŒS1;F2� W�
fr
8
!�fr

9
corresponds to �� W�s

8
!�s

9
, which
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is injective by [Toda 1962, page 189 and Theorem 14.1 i)]. By [Adams 1966, Proof of Example 12.15],
we have Im J9 D .Im J8/�. Therefore

Œ†8
ex;F1�� ŒS

1;F2� 2 .�
fr
8 n Im J8/� ŒS

1;F2�D .�
fr
8 � ŒS

1;F2�/ n .Im J8 � ŒS
1;F2�/

D .�fr
8 � ŒS

1;F2�/ n Im J9 ��
fr
9 n Im J9:

In particular Œ†8
ex;F1�� ŒS

1;F2�¤ 0.

Theorem 3.8 If X4.d/ is spin , then there is a framing F such that ŒS.X4.d/ ]†
8
ex;x/;F �¤ 0 2�fr

9
.

Proof Let F0 be a framing of S.X4.d/;x/ such that ŒS.X4.d/;x/;F0�D 0 (see Theorem 3.4). Let F1

be any framing of †8
ex . By Lemma 3.5 there are framings F2 and F such that

ŒS.X4.d/ ]†
8
ex;x/;F �D ŒS.X4.d/;x/;F0�C Œ†

8
ex �S1;F1 �F2�D Œ†

8
ex �S1;F1 �F2�:

Since x is a generator of H 2.X4.d//, there is a generator Œa� of �2.X4.d// such that hx; �.Œa�/i D 1,
so we can apply Lemma 3.6, and since X4.d/ is spin, we get that ŒS1;F2� D 1. By Proposition 3.7
Œ†8

ex �S1;F1 �F2�¤ 0 and this implies that ŒS.X4.d/ ]†
8
ex;x/;F �¤ 0.

Theorem 3.9 If X4.d/ is spin , then , for every framing F, ŒS.X4.d/ ]†
8
ex;x/;F �¤ 0 2�fr

9
.

Proof First we show that S.X4.d/]†
8
ex;x/ is 3-connected. Recall that the embedding X4.d/!CP4Ck

is 4-connected. Therefore we have �1.X4.d// Š �3.X4.d// Š 0 and �2.X4.d// Š Z. From the
homotopy long exact sequence of the fibration S1! S.X4.d/;x/!X4.d/, we obtain that S.X4.d/;x/

is 3-connected. Since S.X4.d/ ] †
8
ex;x/ is homeomorphic to S.X4.d/;x/, it is also a 3-connected

9-manifold. This implies that S.X4.d/ ] †
8
ex;x/ is homotopy equivalent to a CW-complex with cells

only in dimensions 0, 4, 5 and 9 (see [Smale 1962, Theorem 6.1]).

Any two framings of S.X4.d/ ] †
8
ex;x/ differ by a map S.X4.d/ ] †

8
ex;x/! SO. Since �4.SO/ Š

�5.SO/Š 0, this difference is in fact an element of �9.SO/. Changing the framing of the 9-cell by an
element of �9.SO/ has the same effect on the framed cobordism class as taking connected sum with S9

with the corresponding framing, which is given by the J -homomorphism J9 W �9.SO/!�fr
9

. Therefore
the set of cobordism classes in �fr

9
represented by S.X4.d/ ]†

8
ex;x/ (with any framing) is a coset of

Im J9. By Proposition 3.7 and the proof of Theorem 3.8 this coset has an element which is not in Im J9;
therefore it is not the trivial coset. So it does not contain 0; therefore 0 2 �fr

9
is not represented by

S.X4.d/ ]†
8
ex;x/ with any framing.

Now we can conclude that 4-dimensional spin complete intersections are strongly ‚-flexible.

Theorem 3.10 If X4.d/ is spin , then X4.d/ ]†
8
ex is not diffeomorphic to a complete intersection.

Proof Suppose that X4.d/ ]†
8
ex is diffeomorphic to some complete intersection X4.d

0/. The diffeo-
morphism induces an isomorphism between H 2.X4.d

0// and H 2.X4.d/ ]†
8
ex/. We may assume that

the generator x 2H 2.X4.d
0// goes into the generator of H 2.X4.d/ ]†

8
ex/ corresponding to x under the
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isomorphism H 2.X4.d/]†
8
ex/ŠH 2.X4.d/n int D8/ŠH 2.X4.d// (see the proof of Lemma 3.5). This

is because X4.d
0/ has a self-diffeomorphism which sends x to �x (see the proof of Proposition 2.10).

This implies that S.X4.d/ ]†
8
ex;x/ is diffeomorphic to S.X4.d

0/;x/.

By Theorem 3.4, S.X4.d
0/;x/ has a framing F0 such that .S.X4.d

0/;x/;F0/ is framed nullcobordant,
but by Theorem 3.9 S.X4.d/ ]†

8
ex;x/ does not have such a framing, so they are not diffeomorphic. This

contradiction shows that X4.d/ ]†
8
ex is not diffeomorphic to any complete intersection X4.d

0/.

4 The nonspin cases with even total degree

In this section we prove Theorems 1.12 and 1.14 (a). Both of these results rely on the computation of
Tors�Oh7i

8
.CP1I �1/ Š Z=4 in Lemma 4.2 below, where �1 denotes the (unique up to isomorphism)

nontrivial stable bundle over CP1 D S2. Note that if � is a stable bundle over CP1 with w2.�/¤ 0,
then its restriction to CP1 is isomorphic to �1.

4.1 The computation of Tors�Oh7i

8
.CP 1I �1/

We first establish the necessary background to state and prove Lemma 4.2. Let S0 denote the sphere
spectrum and write Sk for the k-fold suspension of S0. We let � W S1 ! S0 denote the generator of
the 1-stem �s

1
Š Z=2, and C� the cofibre of �. Since �1 is the nontrivial stable bundle over CP1, the

Thom spectrum of �1 is given by Th.�1/' C�, and the Pontryagin–Thom map for �Oh7i
� .CP1I �1/ is

an isomorphism
PT W�Oh7i

� .CP1
I �1/! ��.MOh8i ^Th.�1//Š ��.MOh8i ^C�/;

where ^ denotes the smash product. Smashing the cofibration S0! C�! S2 with MOh8i and taking
homotopy groups, we obtain the long exact sequence

(1) � � � ! �7.MOh8i/
��
�! �8.MOh8i/! �8.MOh8i^C�/! �6.MOh8i/

��
�! �7.MOh8i/! � � � :

We shall need some basic facts about the low-dimensional string bordism groups �Oh7i
� Š ��.MOh8i/

and the natural forgetful map F W�fr
�!�

Oh7i
� . These facts can be deduced from results of [Giambalvo

1971], and we also give a direct proof below.

Lemma 4.1 (cf [Giambalvo 1971]) The natural map F W�fr
�!�

Oh7i
� satisfies:

(a) �
Oh7i
6
Š Z=2 and F W�fr

6
!�

Oh7i
6

is an isomorphism.

(b) �
Oh7i
7
Š 0.

(c) �
Oh7i
8
ŠZ=2˚Z and F W�fr

8
!�

Oh7i
8

has image Z=2 and kernel the image of J -homomorphism
J8 W �8.SO/! �s

8
Š�fr

8
Š .Z=2/2.

Proof Under the Pontryagin–Thom isomorphism, the map F W�fr
�!�

Oh7i
� corresponds to the map on

homotopy groups induced by the inclusion of the Thom cell S0!MOh8i. To compute this map, we first
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replace MOh8i with a simpler spectrum. Let fH WS
8!BOh8i represent a generator of �8.BOh8i/ŠZ

and let �H be the stable vector bundle over S8 classified by fH .

The Thom spectrum of any vector bundle over an m-sphere is the cofibre of a map Sm�1 ! S0,
and it was Milnor [1958, Lemma 1] who first observed that this map is obtained by applying the
stable J -homomorphism to the clutching function of the bundle. Hence the Thom spectrum of �H is
Th.�H /' C N� , where N� W S7! S0 is given by applying the J -homomorphism to the clutching function
of �H , which generates �7.SOh7i/D �7.SO/.

By construction, fH induces an isomorphism on �8. We have �9.S
8/Š�s

1
ŠZ2 and �10.S

8/Š�s
2
ŠZ2,

generated by � and �2 respectively, so by Bott periodicity and [Adams 1966, Proof of Example 12.5],
fH also induces isomorphisms on �9 and �10. Hence fH is 10-connected, and so the induced map of
Thom spectra

Th.�H /' C N� !MOh8i

is also 10-connected. Hence in dimensions � � 9 the map F W�fr
�!�

Oh7i
� is isomorphic to the map on

homotopy groups induced by the inclusion S0! C N� .

The cofibration S0! C N� ! S8 leads to a long exact sequence

� � � ! �s
1
N��
�! �s

8! �8.C N� /! �s
0
N��
�! �s

7! �s
7.C N� /! 0! �s

6! �6.C N� /! 0! � � � :

We see immediately that �s
6
! �6.C N� / is an isomorphism, and so F W�fr

6
!�

Oh7i
6

is an isomorphism.
Since �fr

6
Š �s

6
Š Z=2 (where the last isomorphism is given in [Toda 1962, Chapter XIV]), this proves

part (a). For part (b), we use that J7 W �7.SO/! �s
7

is onto by [Adams 1966, Example 7.17], and so N�
generates �s

7
. Hence N�� W �s

0
! �s

7
is surjective, which proves part (b). For part (c), since �s

0
Š Z and

�s
7

is finite, Ker. N�� W �s
0
! �s

7
/Š Z. We also have Im. N�� W �s

1
! �s

8
/D h� N�i D Im.J8/ (using [Adams

1966, Proof of Example 12.15]). By Toda’s calculations [1962, Chapter XIV], �s
8
Š .Z=2/2 with � N� ¤ 0,

and this finishes the proof of part (c).

From the exact sequence (1) and Lemma 4.1 (b) we deduce that there is a short exact sequence

(2) 0!�
Oh7i
8
!�

Oh7i
8

.CP1
I �1/!�

Oh7i
6
! 0:

Noting that �fr
6
Š�

Oh7i
6
ŠZ=2 is detected by the Arf invariant, it is easy to see that the homomorphism

�
Oh7i
8

.CP1I �1/!�
Oh7i
6

can be identified with the codimension-2 Arf invariant

ACP1 W�
Oh7i
8

.CP1
I �1/! Z=2;

which is defined by making a normal map .g; Ng/ WM ! S2 transverse to a point � 2 S2 and taking the
Arf invariant of the resulting 6-manifold g�1.�/, which is canonically framed.

Lemma 4.2 There is a nonsplit short exact sequence of abelian groups

0!‚8! Tors�Oh7i
8

.CP1
I �1/

ACP1
���! Z=2! 0:

In particular Tors�Oh7i
8

.CP1I �1/Š Z=4.
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Proof There is a natural forgetful map F1 W�fr
8
.CP1I �1/!�

Oh7i
8

.CP1I �1/ and the exact sequence
of (2) forms part of the following commutative diagram:

(3)

�fr
7

��
// �fr

8

F
��

// �fr
8
.CP1I �1/

F 1

��

Afr
CP1

// Z=2
��
// �fr

7

0 // �
Oh7i
8

// �
Oh7i
8

.CP1I �1/
ACP1

// Z=2 // 0

Here Afr
CP1 W�

fr
8
.CP1I �1/! Z=2 is a codimension-2 Arf invariant, which is defined analogously to the

codimension-2 Arf invariant on �Oh7i
8

.CP1I �1/. We shall first compute �fr
8
.CP1I �1/ and we do this

via the Pontryagin–Thom isomorphism

�fr
8.CP1

I �1/Š �s
8.C�/:

The cofibration S0! C�! S2 leads to the following long exact sequence (showing in particular that the
top row of diagram (3) is also exact):

� � � ! �s
7
��
�! �s

8! �8.C�/! �s
6
��
�! �s

7! � � � :

From Toda’s calculations [1962, Chapter XIV], we have �s
6
Š Z=2.�2/, �s

7
Š Z=240.�/, �s

8
Š

Z=2.��/˚ Z=2.�/, where � 2 �s
3

is a generator and �� 2 �s
4
D f0g. It follows that �� W �s

6
! �s

7

is the zero map and that there is a short exact sequence

(4) 0! Z=2.Œ��/! �8.C�/! Z=2! 0;

where Œ�� 2 �s
8
=��.�

s
7
/ denotes the equivalence class of �. By Lemma A.1 from the appendix, the

extension (4) is determined by the Toda bracket

h�; �2; 2i � �s
8:

By [loc. cit., Proposition 3.4 ii], there is a Jacobi identity for Toda brackets,

0 2 h�; �2; 2iC h2; �; �2
iC h�2; 2; �i;

where we have ignored signs since all the Toda brackets consist of elements of order 2 or 1. Now by
[loc. cit., Proposition 1.2], h2; �; �2i� h2; �; �i�. Since h2; �; �i��s

5
Df0g, we have h2; �; �i�Df0g and

so h2; �; �2iDf0g. By [loc. cit., page 189], h�2; 2; �iDf�; �C��g. It follows that h�; �2; 2iDf�; �C��g

is nontrivial and maps to the generator Œ�� 2 �s
8
=��.�

s
7
/. Applying Lemma A.1, we deduce that the

extension (4) is nontrivial and hence is isomorphic to the extension

0! Z=2! Z=4! Z=2! 0:

The above shows that �fr
8
.CP1I �1/Š Z=4.

In diagram (3) we can replace the top row with the short exact sequence (4) (noting that, as we saw in the
proof of Lemma 4.1, Im.J8/D ��.�

s
7
/ and coker.J8/D‚8) and restrict the bottom row to the torsion
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subgroups, to get the following commutative diagram:

0 // ‚8

F
��

// �fr
8
.CP1I �1/

F 1

��

Afr
CP1

// Z=2
��
// 0

0 // Tors�Oh7i
8

// Tors�Oh7i
8

.CP1I �1/
ACP1

// Z=2 // 0

We check that the bottom row is exact. The map ACP1 is surjective by the commutativity of the diagram,
while exactness at Tors�Oh7i

8
and Tors�Oh7i

8
.CP1I �1/ follows from the exactness of the original

sequence. Now by Lemma 4.1 (c) the map F W ‚8 ! Tors�Oh7i
8

is an isomorphism. So, by the five
lemma, the homomorphism F1 W�fr

8
.CP1I �1/! Tors�Oh7i

8
.CP1I �1/ is also an isomorphism, which

completes the proof.

4.2 The nonspin case with v4.X4.d//D 0

Let X4.d/ be a nonspin complete intersection with v4.X4.d// D 0. We will prove that X4.d/ is
‚-rigid. As explained in Section 2.3, it is enough to show that the canonical homomorphism i0 W‚8 Š

Tors�Oh7i
8

! �
Oh7i
8

.CP1I �4.d// is trivial. We will exploit the fact that i0 factors through the
group Tors�Oh7i

8
.CP1I �4.d/jCP1/.

Proposition 4.3 Let � be a stable bundle over CP1 such that w2.�/ ¤ 0 and w4.�/ D 0. Then the
natural map i0 W‚8!�

Oh7i
8

.CP1I �/ is trivial.

Proof By [Fang and Klaus 1996, Section 2.2] we have �Oh7i
8

.CP1;�I �/Š Z. From the exactness of
the sequence

� � � !�
Oh7i
8

j0
�!�

Oh7i
8

.CP1I �/!�
Oh7i
8

.CP1;�I �/! � � �

we deduce that the image of j0 contains the torsion subgroup of �Oh7i
8

.CP1I �/. The signature
defines nontrivial homomorphisms �Oh7i

8
! Z and �Oh7i

8
.CP1I �/ ! Z which commute with j0.

By Lemma 4.1 (c), �Oh7i
8

Š Z˚ Z=2 and so j0 is rationally injective. Therefore its restriction to
Tors�Oh7i

8
Š ‚8 is surjective onto Tors�Oh7i

8
.CP1I �/. Thus if �Oh7i

8
.CP1I �/ has a nontrivial

torsion element, then it has order 2.

Let iCP1� W Tors�Oh7i
8

.CP1I �1/! Tors�Oh7i
8

.CP1I �/ denote the homomorphism induced by the
inclusion CP1!CP1. By Lemma 4.2, Tors�Oh7i

8
.CP1I �1/Š Z=4 and if a denotes a generator, then

†8
ex represents 2a. Therefore i0.†

8
ex/D iCP1�.2a/D 2iCP1�.a/D 0.

Theorem 4.4 If X4.d/ is a nonspin complete intersection with v4.X4.d// D 0 and d ¤ f2; 2g, then
X4.d/ and X4.d/ ]†

8
ex are diffeomorphic.

Proof In this case w2.�4.d//¤ 0 and w4.�4.d//D 0 (see Proposition 2.8), so by Proposition 4.3 the
canonical homomorphism i0 W‚8!�

Oh7i
8

.CP1I �4.d// is trivial. Therefore X4.d/ and X4.d/ ]†
8
ex

admit bordant normal 3-smoothings over .B4; �4.d/�
BOh8i/. By Proposition 1.9, X4.d/ and X4.d/]†
8
ex

are diffeomorphic.
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4.3 The nonspin case with v4.X4.d//¤ 0 and even total degree

Now we suppose that v4.X4.d//¤ 0 and the total degree d is even. By Remark 2.9 this implies that
�2.d/�4 (where �2.d/ denotes the exponent of 2 in the prime factorisation of d ). We will apply the Adams
filtration argument of Kreck and Traving [Kreck 1999, Section 8]. If � is a stable vector bundle over CP1,
we use the Pontryagin–Thom isomorphism to identify the groups�Oh7i

8
.CP1I �/D�8.MOh8i^Th.�//

and hence their torsion subgroups. In this way we obtain an Adams filtration on Tors�Oh7i
8

.CP1I �/.
Recall that a map Si! E representing a torsion class in �i.E/, the i th homotopy group of a spectrum E,
has Adams filtration � k if it can be factored as a composition of k maps, each of which is trivial on
homology with Z=2 coefficients.

We will need the following improvement of Kreck and Traving’s vanishing result in dimension 8.

Lemma 4.5 Let � be a stable bundle over CP1 such that w2.�/¤ 0, w4.�/¤ 0 and the homomorphism
i0 W ‚8 ! �

Oh7i
8

.CP1I �/ is injective. Then the only element of Tors�Oh7i
8

.CP1I �/ with Adams
filtration 4 or higher is the trivial element.

Proof Consider the exact sequence

� � � !�
Oh7i
8

j0
�!�

Oh7i
8

.CP1I �/!�
Oh7i
8

.CP1;�I �/! � � � :

Fang and Klaus [1996, Section 2.4] proved that �Oh7i
8

.CP1;�I �/ŠZ˚Z=2, where the Z=2 summand
is detected by the codimension-2 Arf invariant. Hence we have the following commutative diagram
between exact sequences (the bottom sequence is exact, because j0 is rationally injective, as in the proof
of Proposition 4.3):

‚8

Š

��

// Tors�Oh7i
8

.CP1I �1/

iCP1�
��

ACP1
// Z=2

D

��

Tors�Oh7i
8

i0
// Tors�Oh7i

8
.CP1I �/

A
// Z=2

Moreover, the top sequence is short exact by Lemma 4.2. The bottom sequence is also short exact (the
surjectivity of A follows from the commutativity of the diagram and the injectivity of i0 was assumed). It
follows that iCP1� W Tors�Oh7i

8
.CP1I �1/! Tors�Oh7i

8
.CP1I �/ is an isomorphism.

Now we choose a generator a2Tors�Oh7i
8

.CP1I �/ŠZ=4 and let Œfa�2�8.MOh8i^Th.�// represent
the image of a under the Pontryagin–Thom isomorphism. By [Fang and Klaus 1996, page 144], the image
of Œfa� in the group �8.MOh8i ^ .Th.�/=S0// has Adams filtration 2. Since the Adams filtration cannot
decrease under composition, Œfa� has Adams filtration � 2. Therefore 2a, corresponding to 2Œfa� under the
Pontryagin–Thom isomorphism, has Adams filtration� 3. Since 2a is a multiple of every nonzero element
of Tors�Oh7i

8
.CP1I �/ŠZ=4, the only element with Adams filtration 4 or higher is the trivial element.

Proposition 4.6 Let X4.d/ and X4.d
0/ be nonspin complete intersections with SDn.d/D SDn.d

0/ and
v4.X4.d//¤ 0. If the total degree d is even , then X4.d/ and X4.d

0/ are diffeomorphic.
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Proof By Theorem 1.4 there is a homotopy sphere † 2 ‚8 such that X4.d/ � X4.d
0/ ] †. By

Proposition 2.8 we have w2.�4.d// ¤ 0 and w4.�4.d// ¤ 0. Again we consider the natural map
i0 W‚8!�

Oh7i
8

.CP1I �4.d//.

If i0 is zero, then X4.d
0/ and X4.d

0/ ] † are diffeomorphic by the same argument as in the proof of
Theorem 4.4. Hence X4.d/ and X4.d

0/ are diffeomorphic.

Now suppose that i0 W‚8!�
Oh7i
8

.CP1I �4.d// is nonzero (hence injective). The arguments of Kreck
and Traving [Kreck 1999, Section 8] show that X4.d/ and X4.d

0/ admit normal 3-smoothings over
.B4; �4.d/� 
BOh8i/ whose bordism classes differ by a torsion element of Adams filtration �2.d/ or
higher. Since d is even, we have �2.d/� 4 (see Remark 2.9), so by Lemma 4.5 any such torsion element
is trivial. Hence X4.d/ and X4.d

0/ admit bordant normal 3-smoothings over .B4; �4.d/� 
BOh8i/ and
so by Proposition 1.9, X4.d/ and X4.d

0/ are diffeomorphic.

5 The case of odd total degree

It remains then to consider the case where the total degree d is odd. Note that in general this case is not
‚-rigid as the following theorem of Kasilingam shows.

Theorem 5.1 [Kasilingam 2016, Remark 2.6 (1)] CP4 is not diffeomorphic to CP4 ]†8
ex .

To prove the Sullivan conjecture for X4.d/ when d is odd, we find a new way to compare normal bordism
classes for X4.d/ and X4.d

0/, which is one of the main achievements of this paper. In particular, we
believe that introducing the Hambleton–Madsen theory [1986] of degree-d normal invariants will provide
a new perspective on the Sullivan conjecture in all dimensions.

5.1 Degree-r normal maps and their normal invariants

In this subsection we review the surgery classification of bordism classes of degree-r normal maps for
any integer r . Our treatment follows [Hambleton and Madsen 1986] but with minor modifications to suit
our setting. We will assume that all manifolds and all bundles are oriented and that all bundle maps are
orientation-preserving. We also choose to work with stable normal bundles in the source of normal maps,
as opposed to stable tangent bundles, and for simplicity, we only formulate the statements in the special
case when the target space of a degree-r normal map is a closed smooth connected oriented m-manifold P.

Definition 5.2 Let M and P be closed smooth oriented m-manifolds and assume that P is connected.
For r 2 Z, a degree-r normal map .f; Nf / WM ! P is a map of stable vector bundles

�M

Nf
//

��

�

��

M
f
// P

from the stable normal bundle of M to some stable vector bundle over P such that f WM ! P has
degree r .
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When r D˙1, then � is a vector bundle reduction of the Spivak normal fibration of P, but in general this
only holds away from r . Normal bordism of degree-r normal maps is defined analogously to normal bor-
dism of degree-1 normal maps [Wall 1970, Proposition 10.2]: the normal maps .f; Nf / W .M; �M /! .P; �/

and .f 0; Nf 0/ W .M 0; �M 0/! .P; � 0/ are normally bordant if there is an isomorphism ˛ W � 0 ! � and a
bordism between .f; Nf / and .f 0; ˛ ı Nf 0/ over .P; �/.

Definition 5.3 We denote the set of normal bordism classes of degree-r normal maps to P by N Cr .P /,
where the superscript “C” indicates that we are working in the oriented setting.

For a fixed �, let �fr
m.P I �/r denote the subset of �fr

m.P I �/ consisting of bordism classes whose repre-
sentatives have degree r . The group of stable bundle automorphisms of �, Aut.�/, acts on �fr

m.P I �/r

by postcomposition. Let N Cr .P; �/ � N Cr .P / denote the subset of normal bordism classes that are
representable by normal maps to .P; �/. Then we have a canonical bijection

N Cr .P; �/��fr
m.P I �/r=Aut.�/:

Moreover,
N Cr .P /D

G
Œ��

N Cr .P; �/;

where we take the union over the isomorphism classes of stable bundles over P which admit degree-r
normal maps. To distinguish degree-r normal bordism classes from usual bordism classes we use

Notation 5.4 We denote the bordism class of .f; Nf / in �fr
m.P I �/r by Œf; Nf �� and in N Cr .P / by Œf; Nf �.

As in the degree-1 case, the computation of N Cr .P / proceeds via fibrewise degree-r maps between vector
bundles. Recall that for a bundle �, the total space is denoted by E�, the disc bundle is D�, the sphere
bundle is S� and the projection is �� . For a space Y with oriented vector bundles � and � of the same
rank over Y, we consider fibrewise maps

S�
g

//

  

S�

~~

Y

between the associated sphere bundles, where the restriction of g to each fibre has degree r . Given a
fibrewise degree-r1 map g1 W S�1! S�1 and a fibrewise degree-r2 map g2 W S�2! S�2, their fibrewise
join is a fibrewise degree-r1r2 map g1 � g2 W S.�1 ˚ �2/! S.�1 ˚ �2/ between the spheres bundles
of the Whitney sums of the original bundles. An isomorphism between two fibrewise degree-r maps,
gi W S�i! S�i , i D 0; 1, is a pair of vector bundle isomorphisms ˛ W �0! �1 and ˇ W �0! �1 such that
the following diagram commutes up to fibre homotopy over Y :

S�0
g0
//

S˛
��

S�0

Sˇ
��

S�1
g1
//// S�1

where S˛ and Sˇ are the induced maps of sphere bundles.
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Definition 5.5 Two fibrewise degree-r maps are equivalent if they become isomorphic after fibrewise
join with the restriction of a vector bundle isomorphism (ie stabilisation), and we define

FCr .Y / WD fg W S�! S�g=�

to be the set of equivalence classes of fibrewise degree-r maps of vector bundles over Y. The equivalence
class of g is denoted by Œg�.

We now review how taking the transverse inverse image of the zero section is used to define a map
T W FCr .P /!N Cr .P /. If g W S�! S� represents an element Œg� 2 FCr .P /, then we can extend it to a
fibre-preserving map f WD�!D� that is transverse to the zero section P �D� . We set M WD f �1.P /

and fM WD f jM . Since g has degree r , the map fM WM ! P has degree r too. The map f determines
a bundle map Nf0 W �.M !D�/! �.P !D�/Š � over fM . We have

�M Š �.M !D�/˚ �D� jM Š �.M !D�/˚ .�� jM /�.�P 	 �/D �.M !D�/˚f �M .�P 	 �/:

By adding the canonical map f �
M
.�P 	 �/! �P 	 � to Nf0, we get a bundle map

NfM W �M ! � ˚ �P 	 �

over fM . Then we define T .Œg�/ WD ŒfM ; NfM �. For the case when P is a smooth manifold (which we
have assumed for simplicity), the following theorem is the oriented version of a foundational result of
Hambleton and Madsen on degree-r normal maps (their proof applies verbatim in the oriented setting).

Theorem 5.6 (cf [Hambleton and Madsen 1986, Theorem 2.2]) The map T W FCr .P /!N Cr .P / is a
well-defined bijection.

Remark 5.7 In [Hambleton and Madsen 1986] the source manifold M is defined as the inverse image
under g of a section of S� . The construction above can be seen as a special case of this via stabilisation,
as we now explain. Let R WD .R�P ! P / denote the trivial rank-1 bundle over P and let S0 WD S R.
If � D �0 ˚ R, � D � 0 ˚ R and g D g0 � IdS0 W S� D S�0 � S0 ! S� D S� 0 � S0 for some �0, � 0

and g0 W S�0! S� 0, then S� D DC�
0 [S�0 D��

0 (where D˙�
0 are two copies of the disc bundle D�0),

S� D DC�
0 [S� 0 D��

0, f 0 WD gjDC�0 W DC�
0 ! DC�

0 is an extension of g0, and the zero section of
DC�

0 coincides with the section 1�P � S0 �P D S0 � S� 0 �S0 D S� of S� .

In order to apply Theorem 5.6 we need to be able to compute FCr .P /. The assignment Y 7! FCr .Y / is a
homotopy functor from the category of spaces to the category of sets. By Brown representability [1962],
this functor (restricted to CW-complexes) is represented by a classifying space.

Definition 5.8 The classifying space of the functor FCr is denoted by .QS0=SO/r , and the canonical
bijection from FCr .Y / to ŒY; .QS0=SO/r � is denoted by

Br W FCr .Y /! ŒY; .QS0=SO/r �:
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Remark 5.9 Hambleton and Madsen [1986, Section 1] and Brumfiel and Madsen [1976, Section 4] allow
orientation-reversing bundle isomorphisms when they define the equivalence relation on fibrewise degree-r
maps. They denote the corresponding classifying space by .QS0=O/r for r � 0. The forgetful map
induces a map .QS0=SO/r ! .QS0=O/jr j of classifying spaces, which is a homotopy equivalence when
r ¤ 0 and a nontrivial .Z=2/-covering when r D 0 (see [Brumfiel and Madsen 1976, Proposition 4.3]).

When r D 1, we may identify .QS0=SO/1 D G=O , where G=O is the homotopy fibre of the canonical
map BSO!BSG, the forgetful map from the classifying space of stable vector bundles to the classifying
space of stable spherical fibrations.

The equivalence Br and Theorem 5.6 combine to give the following important definition.

Definition 5.10 Let � W N Cr .P /! ŒP; .QS0=SO/r � denote the composition Br ıT �1. For a degree-r
normal map .f; Nf / WM!P, the homotopy class �.Œf; Nf �/2 ŒP; .QS0=SO/r � is called the normal invariant
of .f; Nf /.

We shall need two classes of examples of fibrewise degree-r maps. The trivial degree-r map of rank k (well-
defined up to fibre homotopy) is h�IdY WS

k�1�Y !Sk�1�Y for some degree-r map h WSk�1!Sk�1.
For the second class of degree-r maps, � has real rank 2, and we regard � as a complex line bundle over Y.
Setting � WD �r to be the r -fold complex tensor product of � with itself, we have the canonical degree-r map

tr .�/ W S�! S�r ; v 7! vr
D v˝ v˝ � � �˝ v:

For the classification of complete intersections the universal examples of such maps, where Y DCPn or
CP1 and � D 
 jCPn or 
 , will play a central role.

Definition 5.11 For a k-tuple of integers r D .r1; : : : ; rk/ with r D r1r2 � � � rk set

�n.r/ WD Br.Œtr1
.
 jCPn/� � � � � trk

.
 jCPn/�/ 2 ŒCPn; .QS0=SO/r �;

�1.r/ WD Br.Œtr1
.
 /� � � � � trk

.
 /�/ 2 ŒCP1; .QS0=SO/r �:

The notation in Definition 5.11 is designed to match Theorem 5.19, which states that the com-
plete intersection Xn.d/ admits a degree-d normal map .fn.d/; Nfn.d// W Xn.d/ ! CPn such that
�.Œfn.d/; Nfn.d/�/D �n.d/.

5.2 The space .QS0=SO/r and connected sums

In order to apply Theorem 5.6 we will need to make computations with the set of normal invariants
ŒP; .QS0=SO/r �. For this we need information about the space .QS0=SO/r , and we first adapt the
discussion of the related space .QS0=O/r from [Brumfiel and Madsen 1976, Section 4] to the oriented
setting. When r D 1, the space .QS0=SO/1 D G=O has been extensively studied. In general, Brumfiel
and Madsen [1976, Proposition 4.3] showed that there is a fibration sequence

(5) QS0
r

ir
�! .QS0=SO/r

ır
�! BSO;
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where the map ır W .QS0=SO/r ! BSO classifies taking the formal difference of the source and target
vector bundles of a fibrewise degree-r map, QS0

r is the space of stable degree-r self maps of the sphere,
which classifies fibrewise degree-r self-maps of trivialised vector bundles and ir W QS0

r ! .QS0=SO/r
classifies forgetting that the bundles are trivialised. The space QS0

1 is often denoted by SG. There is also
a map � r WG=O! .QS0=SO/r , which classifies taking fibrewise join with the trivial degree-r map and
which fits into the following map of fibration sequences:

(6)

SG
i1

//

� r
��

G=O
ı

//

� r
��

BSO

IdBSO

��

QS0
r

ir
// .QS0=SO/r

ır
// BSO

where � r W SGDQS0
1!QS0

r is the map obtained by composition with a fixed map of degree r and ı WD ı1
is the canonical map.

Since QS0
WD
F

r2Z QS0
r , the space of stable self maps of the sphere is a grouplike H -space (with the “loop

sum” operation, which induces the addition on �s
0
), its connected components are all homotopy equivalent.

So �i.QS0
r /Š �i.SG/D �s

i for all r and i , and under this identification �i. � r/ W �i.SG/! �i.QS0
r / is

multiplication by r . Therefore when we invert the primes dividing r , the map � r becomes a weak homotopy
equivalence and hence a homotopy equivalence (see [Brumfiel and Madsen 1976, Proposition 4.6]).
Combining this with the commutative diagram of (6), we get:

Proposition 5.12 (cf [Brumfiel and Madsen 1976, Proposition 4.6]) If r ¤ 0, the map � r W G=O !
.QS0=SO/r induces a homotopy equivalence

. � r/Œ1=r � W .G=O/Œ1=r �' .QS0=SO/r Œ1=r �

such that ır Œ1=r � ı . � r/Œ1=r �' ıŒ1=r �.

Here X Œ1=r � denotes the localisation of a space X obtained by inverting the primes dividing r (see
[Sullivan 1970, Chapter 2]), and for a map f WX ! Y, f Œ1=r � WX Œ1=r �! Y Œ1=r � denotes the induced
map.

We now consider the effect of taking the connected sum with a framed manifold in the source of a normal
map. For this, we will tacitly assume that all manifolds have basepoints, the bundles considered over
these basepoints have been trivialised (and for a fibrewise degree-r map, the map over the basepoint is
identified with some fixed degree-r map between spheres) and that the connected sum operation is carried
out at discs which have the basepoints on their boundaries so that the connected sum is itself based.

Suppose that .f; Nf / WM!P is an m-dimensional degree-r normal map and ŒN;F �2�fr
m. Let fN WN!P

be the constant map and NfN be the bundle map over fN corresponding to the framing F. We can assume
that .f; Nf / is constant over a small m-disc Dm �M, and by taking connected sum in the source and
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extending with the constant map, we obtain a degree-r normal map .f ] fN ; Nf ] NfN / WM ]N ! P.
Connected sum defines a natural operation

] WN Cr .P /��fr
m!N Cr .P /; .Œf; Nf �; ŒN;F �/ 7! Œf ] fN ; Nf ] NfN �;

and we will explain how to determine �.Œf ] fN ; Nf ] NfN �/ in terms of �.Œf; Nf �/ and ŒN;F �. To do this,
we need to define an appropriate normal invariant of ŒN;F �. Define the homomorphism

�fr
r W�

fr
m! �m.QS0

r /

to be the composition�fr
m

PT
�!�s

m
ad
�!�m.QS0

0/
lsr�
��!�m.QS0

r /, where PT denotes the Pontryagin–Thom
isomorphism, ad is defined via the adjoint map, lsr is given by taking the loop sum with a fixed degree-r
map and lsr� is the induced map on �m.

For any connected, oriented m-manifold P and topological space X , connected sum of maps defines an
action ] W ŒP;X �� �m.X /! ŒP;X � of �m.X / on ŒP;X �, where we can and do assume that maps are
constant at the same value in a neighbourhood of the basepoints. This action is natural in X , ie a map
f WX ! Y determines a commutative diagram

(7)

ŒP;X ���m.X /
]
//

f��f�
��

ŒP;X �

f�
��

ŒP;Y ���m.Y /
]
// ŒP;Y �

Lemma 5.13 Let .f; Nf / WM ! P be an m-dimensional degree-r normal map and ŒN;F � 2�fr
m. The

normal invariant of .f ] fN ; Nf ] NfN / WM ]N ! P is given by

�.Œf ] fN ; Nf ] NfN �/D �.Œf; Nf �/ ] ir�.�
fr
r .ŒN;F �// 2 ŒP; .QS0=SO/r �;

where ir W QS0
r ! .QS0=SO/r is the inclusion of the fibre appearing in (5).

Proof We will prove that there is a commutative diagram

N Cr .P /��fr
m

]

��

FCr .P /��s
m

T�PT�1
oo

Id�˛
//

��

FCr .P /�FCr .Sm/
Br�Br

//

]

��

ŒP; .QS0=SO/r ���m..QS0=SO/r /

]

��

N Cr .P / FCr .P /
T

oo FCr .P /
Br

// ŒP; .QS0=SO/r �

where ˛ is the composition of ad W �s
m Š �m.QS0

0/, lsr� W �m.QS0
0/Š �m.QS0

r / and the canonical map
�m.QS0

r /! FCr .Sm/ which sends a homotopy class to the adjoint fibrewise degree-r map between trivi-
alised bundles over Sm. The second and third vertical maps will be defined in the course of the proof below.

The commutativity of the diagram above suffices to prove the lemma, because ir� is the composition
of the canonical map �m.QS0

r /! FCr .Sm/ and Br (recall that QS0
r is the classifying space of fibrewise

degree-r maps between trivialised bundles and ir classifies forgetting that the bundles are trivialised).
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First we define the map FCr .P /��s
m!FCr .P / and show that the first square commutes. Let g WS�!S�

represent an element of FCr .P /, where � and � are bundles of rank kC1�m of the form �D �0˚R and
� D � 0˚R. We define the sections s˙ WP!S� by s˙.x/D .˙1;x/2S0�P �S.� 0˚R/, and assume
that g is transverse to sC.P /, so that T .Œg�/ is represented by g�1.sC.P //! sC.P /� P (covered by
the appropriate bundle map); see Remark 5.7.

Let Dm � P be a small embedded disc, then �jDm DRkC1 �Dm and �Dm DRkC1 �Dm are uniquely
trivialised (up to homotopy). After a fibre homotopy of g we may assume that gjS�jDm is trivial,
ie gjS�jDm D h� IdDm for some degree-r map h W Sk ! Sk , and that for some small disc Dk � Sk

the map hjDk is constant with value �1 2 S0 � Sk�1 �S0 � Sk. Then g.Dk �Dm/ D s�.D
m/, so

.gjDk�Dm/�1.sC.P // is empty.

The adjoint of gjDk�Dm is the constant map in Map
�
.Dm;Sm�1/; .Map..Dk ;Sk�1/; .Sk ;�1//; c�1/

�
,

where c�1 denotes the constant map with value �1. Identifying Map..Dk ;Sk�1/; .Sk ;�1//D�kSk

we have the isomorphism

ˆ W �0

�
Map..Dm;Sm�1/; .Map..Dk ;Sk�1/; .Sk ;�1//; c�1//

�
Š �m.�

kSk/Š �mCk.S
k/D �s

m:

For a 2 �s
m, let ua WD

k �Dm! Sk �Dm be the adjoint of a representative of ˆ�1.a/. We define the
fibrewise degree-r map ga W S�! S� by

ga.v/D

�
ua.v/ if v 2Dk �Dm;

g.v/ if v 2 S� n int.Dk �Dm/.

The map ga is well-defined and continuous, because g and ua agree on @.Dk �Dm/. We define the map
FCr .P /��s

m! FCr .P / by .Œg�; a/ 7! Œga�.

We may assume that ua is transverse to 1�Dm. Then u�1
a .1�Dm/ is the image of a under the Pontryagin

construction. Moreover, ga is transverse to sC.P / and g�1
a .sC.P //D g�1.sC.P //tu�1

a .1�Dm/. This
is bordant to g�1.sC.P //]u�1

a .1�Dm/, showing that T .Œga�/D T .Œg�/ ]PT�1.a/. Thus the first square
commutes.

Next we define the map ] WFCr .P /�FCr .Sm/!FCr .P / and consider the second square. Given fibrewise
degree-r maps over P and Sm, we fix embeddings Dm!P and Dm!Sm at the basepoints and identify
the restrictions of both maps with h� IdDm . Then we can take their connected sum over P ]Sm � P.

Now let Œg� 2 FCr .P / and a 2 �s
m as before. We let g0 WD h� IdSm W Sk �Sm! Sk �Sm be a trivial

degree-r map and construct g0
a W S

k �Sm! Sk �Sm from ua and g0, analogously to ga. Then Œga�D

Œg� ] Œg0
a � (the connected sum P ]Sm is formed using the embedding Dm!P that was previously used to

construct ga and an embedding Dm!Sm whose image is the complement of the one used to construct g0
a).

We can extend ua with the projection Dk � .Sm nDm/! f�1g � .Sm nDm/ � Sk � .Sm nDm/ to
get Qua W D

k � Sm ! Sk � Sm. This is again the adjoint of a, and also of the corresponding element
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a0 2�m.QS0
0/. Since g0.y;x/D .h.y/;x/ for every .y;x/2Sk�Sm and h.y/D�1 if y 2Dk , we have

g0
a.v/D

�
ua.v/ if v 2Dk �Dm;

g0.v/ if v 2 Sk �Sm n int.Dk �Dm/

D

�
Qua.v/ if v 2Dk �Sm;

g0.v/D .h.y/;x/ if v D .y;x/ 2 .Sk n int Dk/�Sm.

Since lsr W QS0
! QS0

r is defined by taking loop sum with h, the map g0
a is the adjoint of lsr�.a

0/.
Therefore Œga�D Œg� ] ˛.a/, proving that the second square commutes.

Finally we consider the third square. For any space X , the action ] W ŒP;X ���m.X /! ŒP;X � is equal
to the composition

ŒP;X ���m.X /
_
�! ŒP _Sm;X �

p�
�! ŒP;X �;

where p WP!P=Sm�1�P_Sm is the pinch map, collapsing the boundary of a small embedded m-disc
Dm � P. Similarly, ] W FCr .P /�FCr .Sm/! FCr .P / is the composition of _W FCr .P /�FCr .Sm/!

FCr .P _Sm/ and p� W FCr .P _Sm/! FCr .P /. So the commutativity of the third square follows from
the naturality of Br.

5.3 Relative divisors

In this subsection we give another description of the bijection T W FCr .P /!N Cr .P / from Theorem 5.6
in terms of sections and divisors. In order to relate fibre-preserving maps to sections we introduce the
following notation.

Definition 5.14 Suppose that � and � are vector bundles over some base space Y.

(a) For a fibre-preserving map g W S�! S� we define a section sg W S�! .�� jS�/
�.S�/ � S� �S�

of the sphere bundle .�� jS�/�.S�/, the pull-back of S� via the projection �� jS� W S�! Y, by sg.x/D

.x;g.x//. The assignment g 7! sg is a bijection between fibre-preserving maps S�! S� and sections
of .�� jS�/�.S�/.

(b) For a fibre-preserving map f WD�!D� we define a section sf WD�! .�� jD�/
�.D�/�D� �D�

by sf .x/D .x; f .x//. The assignment f 7! sf is a bijection between fibre-preserving maps D�!D�

and sections of .�� jD�/�.D�/. Moreover, f is transverse to the zero section of D� if and only if sf is
transverse to the zero section of .�� jD�/�.D�/.

These two bijections are compatible in the sense that if g is the restriction of some f , then sg is the
restriction of sf .

Now suppose that Q� is a rank-k smooth vector bundle over a smooth manifold V with boundary @V and
s@ W @V ! S Q� j@V is a section of S Q� j@V (hence a nowhere-zero section of E Q� j@V ).
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Definition 5.15 If s W V !E Q� is a smooth section of Q� , which extends s@, and which is transverse to the
zero section, s0, then we call

Z.s/ WD s.V /\ s0.V /� s0.V /� V

a divisor of Q� relative to s@.

Remark 5.16 We have �Z.s/Š . Q�˚�V /jZ.s/, because the normal bundle of the embedding Z.s/ ,! V

is given by �.Z.s/ ! V / Š Q� jZ.s/ (in a tubular neighbourhood U � D�.Z.s/ ! V / of Z.s/ the
section sjU corresponds to a fibre-preserving map D�.Z.s/! V /!E Q� jZ.s/, and by transversality the
restriction of its derivative is an isomorphism �.Z.s/! V /Š Q� jZ.s/).

Since the fibre of E Q� is contractible, s@ can always be extended to a (transverse) section s and the
extension is unique up to homotopy (rel @V ). This also implies that the normal bordism class of the
normal map

�Z.s/
//

��

Q� ˚ �V

��

Z.s/ // V

is independent of the choice of s (and it only depends on the homotopy class of s@ as a nowhere-zero
section).

Suppose in addition that V DD� itself is the disc bundle of a rank-k smooth vector bundle � over a closed
smooth manifold P. Let � D Q� jP be the restriction of Q� . Then Q� can be identified with .�� jD�/�.�/.

Let g W S� ! S� be a fibrewise degree-r map and sg the corresponding section (see Definition 5.14).
There exists a section s WD�! .�� jD�/

�.D�/ that extends sg and is transverse to the zero section. Let
p D �� jZ.s/ WZ.s/! P.

Lemma 5.17 The map p WZ.s/!P has degree r and it is covered by a bundle map Np W�Z.s/!�˚�P	�

such that
T .Œg�/D Œp; Np� 2N Cr .P /:

Proof Using the bijection from Definition 5.14 (b) there is a fibre-preserving map f WD�!D� such
that s D sf . This f extends g and it is transverse to the zero section, so it satisfies the conditions in
the definition of T (given before Theorem 5.6). The manifold M D f �1.P / is then equal to Z.s/ and
f jM D p (and it has degree r ). We can choose Np D NfM and then T .Œg�/D Œp; Np�.

5.4 The canonical degree-d normal invariant of a complete intersection

Consider a complete intersection Xn.d/. By cellular approximation the canonical embedding i WXn.d/!

CPnCk is homotopic to a map fn.d/ WXn.d/!CPn and since CPnCk has no .2nC1/-cells, fn.d/ is
well-defined up to homotopy. Since i�.ŒXn.d/�/ is d times the preferred generator of H2n.CPn/, fn.d/

is a degree-d map.
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The main result of this section is the computation of the normal invariant of a certain degree-d normal map
covering fn.d/ in Theorem 5.19 below. The importance of this calculation comes from the next lemma
(which can be regarded as a variation of [Kreck 1999, Proposition 10]) and its application, Theorem 5.20.

Lemma 5.18 Let Xn.d/ and Xn.d
0/ be complete intersections with �.Xn.d// D �.Xn.d

0// and
the same total degree d . Suppose that there are degree-d normal maps .f; Nf / W .Xn.d/; �Xn.d// !

.CPn; �n.d/jCPn/ and .f 0; Nf 0/ W .Xn.d
0/; �Xn.d 0//! .CPn; �n.d

0/jCPn/ such that

Œf; Nf �D Œf 0; Nf 0� 2N C
d
.CPn/:

If n� 3, then Xn.d/ and Xn.d
0/ are diffeomorphic.

Proof Let � D �n.d/jCPn and recall (see Notation 5.4) that Œg; Ng�� 2�fr
2n
.CPnI �/d denotes the element

represented by a degree-d normal map .g; Ng/ and the image of Œg; Ng�� in N C
d
.CPn/ is Œg; Ng�. By definition,

the condition Œf; Nf � D Œf 0; Nf 0� means that there is an isomorphism ˛ W �n.d
0/jCPn ! �n.d/jCPn D �

(which in particular implies that SDn.d/D SDn.d
0/) such that

Œf; Nf �� D Œf
0; ˛ ı Nf 0�� 2�

fr
2n.CPn

I �/d :

Now consider the composition

�fr
2n.CPn

I �n.d/jCPn/d !�fr
2n.CPn

I �n.d/jCPn/!�fr
2n.CP1I �n.d//!�

Ohni
2n

.CP1I �n.d//:

We see that Xn.d/ and Xn.d
0/ admit bordant normal .n�1/-smoothings over .BnI �n.d/� 
BOhnC1i/

and if d ¤ f1g; f2g or f2; 2g, then the lemma follows from Proposition 1.9. If d D f1g; f2g or f2; 2g, then
SDn.d/D SDn.d

0/ implies that d 0 D d .

Theorem 5.19 There is a bundle map Nfn.d/ W �Xn.d/! �n.d/jCPn over fn.d/ such that

�.Œfn.d/; Nfn.d/�/D �n.d/ 2 ŒCPn; .QS0=SO/d �:

(For the definitions of � and �n.d/ see Definitions 5.10 and 5.11.)

An immediate consequence of Theorem 5.19, the fact that � is a bijection and Lemma 5.18 is the following:

Theorem 5.20 Let Xn.d/ and Xn.d
0/ be complete intersections with the same total degree d and the

same Euler characteristic. If n� 3 and �n.d/D �n.d
0/ 2 ŒCPn; .QS0=SO/d �, then Xn.d/ and Xn.d

0/ are
diffeomorphic.

Proof of Theorem 5.19 Let f 0 WD.k
 jCPn/!D.
 d jCPn/ denote the Whitney sum of the tensor power
maps D.
 jCPn/!D.
 di jCPn/ and let g0 W S.k
 jCPn/! S.
 d jCPn/ be its restriction to the sphere
bundle. Hence, in the notation of Definition 5.11, g0D td1

.
 jCPn/�� � ��tdr
.
 jCPn/, so Br.Œg0�/D�n.d/

and we must prove the following: there is a map of stable vector bundles Nfn.d/ W �Xn.d/! �n.d/jCPn

over fn.d/ such that
T .Œg0�/D Œfn.d/; Nfn.d/� 2N Cd .CPn/:
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First we describe a way of constructing a representative of the complete intersection Xn.d/ in an arbitrarily
small neighbourhood of the subspace CPn�CPnCk. Let Œx0;x1; : : : ;xnCk � be homogeneous coordinates
on the ambient CPnCk. For i D 1; 2; : : : ; k, define p0

i 2CŒx0;x1; : : : ;xnCk � by p0
i .x/D x

di

nCi , where
x D .x0;x1; : : : ;xnCk/. Then˚
Œx�2CPnCk

jp0
1.x/Dp0

2.x/D � � � Dp0
k.x/D 0

	
D
˚
Œx�2CPnCk

j xnC1D xnC2D � � � D xnCk D 0
	

DCPn:

Note that if di > 1, then p0
i is singular at its zeros, so CPn is not a representative of Xn.d/ unless

d D f1; 1; : : : ; 1g. However, by applying an arbitrarily small perturbation to the p0
i we can obtain new

polynomials pi such that˚
Œx� 2CPnCk

j p1.x/D p2.x/D � � � D pk.x/D 0
	
DXn.d/

is a complete intersection and it is contained in the interior of a closed tubular neighbourhood U of CPn

(we will fix a U in Lemma 5.23 below).

By Construction 5.22 the polynomials p0
i and pi define sections of 
 di jCPnCk . Therefore the tu-

ples .p0
1
;p0

2
; : : : ;p0

k
/ and .p1;p2; : : : ;pk/ define some sections s0 and s of 
 d jCPnCk (so the zero

sets of s0 and s are CPn and Xn.d/ respectively). Then we can assume that there is a homotopy
CPnCk � I ! 
 d jCPnCk of sections between s0 and s that is nonzero on .CPnCk n int U / � I. In
particular, the restrictions of s0 and s are homotopic as nonzero sections over @U.

The normal bundle of CPn in CPnCk is k
 jCPn , so U can be identified with D.k
 jCPn/. Moreover, the
projection �U WU !CPn of U is a deformation retraction; hence the bundle ��

U
.
 d jCPn/ is isomorphic

to 
 d jU . We will fix an identification and an isomorphism in Lemma 5.23. With these identifications,
the sections s0jU and sjU correspond to fibre-preserving maps D.k
 jCPn/! D.
 d jCPn/ under the
bijection of Definition 5.14. Let f W D.k
 jCPn/! D.
 d jCPn/ be the map such that sf D sjU . In
Lemma 5.23 we prove that sf 0 D s0jU . Let g W S.k
 jCPn/! S.
 d jCPn/ be the restriction of f (we
can assume that it has values in the sphere bundle, because f jS.k
 jCPn / is nowhere zero since sj@U

is nowhere zero). Then sg D sj@U . The restriction of f 0 is g0, so sg0 D s0j@U . Since sg0 D s0j@U

and sg D sj@U are homotopic as nonzero sections, g0 and g are fibre homotopic. The bijection T is
well-defined on fibre homotopy classes, so T .Œg0�/D T .Œg�/.

By construction Xn.d/DZ.s/ is a divisor of 
 d jCPnCk relative to sj@U D sg. Since �U is homotopic
to the identity, we have fn.d/ D �U jXn.d/ (up to homotopy). By Lemma 5.17 there is a bundle map
Nfn.d/ W �Xn.d/! 
 d˚�.nC1/
	k
 jCPnŠ �n.d/jCPn such that T .Œg�/D Œfn.d/; Nfn.d/�2N Cd .CPn/.

Therefore T .Œg0�/D Œfn.d/; Nfn.d/�.

Remark 5.21 There is a canonical bundle map �Xn.d/! �n.d/jCPnCk over i , and hence over fn.d/

(cf Proposition 2.5), because there is a canonical isomorphism �Xn.d/ Š �.Xn.d/!CPnCk/˚ �CPnCk

and the normal bundle of a degree-r hypersurface in CPnCk is canonically isomorphic to the restriction
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of 
 r (see Construction 5.22 and Remark 5.16). By following the definitions, we can see that the bundle
map Nfn.d/ constructed in the proof of Theorem 5.19 is equal to this canonical map (up to homotopy).

We used the following (well-known) construction and the lemma below.

Construction 5.22 A homogeneous polynomial q of degree r in variables x0;x1; : : : ;xm determines a
section of the bundle 
 r jCPm as follows.

If rD1, then the assignment Œx0;x1; : : : ;xm� 7! Œx0;x1; : : : ;xm; q.x0;x1; : : : ;xm/� is a well-defined map
CPm!CPmC1nŒ0; 0; : : : ; 0; 1�. Since the map CPmC1nŒ0; 0; : : : ; 0; 1�!CPm, Œx0;x1; : : : ;xmC1� 7!

Œx0;x1; : : : ;xm�, can be identified with the projection of the normal bundle of CPm in CPmC1, which
is isomorphic to 
 jCPm , we get that q determines a section of 
 jCPm . So every linear monomial xi

determines a section of 
 jCPm . If we have sections s1; s2; : : : ; sr of some vector bundle �, then their
symmetric product s1s2 � � � sr is a section of the symmetric power Symr .�/ and if � is a line bundle, then
Symr .�/D �r. Therefore every degree-r monomial, and hence every degree-r homogeneous polynomial,
determines a section of 
 r jCPm .

Lemma 5.23 We can identify D.k
 jCPn/ with a tubular neighbourhood U of CPn in CPnCk and the
bundle ��

U
.
 d jCPn/ with 
 d jU such that after these identifications the section sf 0 corresponding to f 0

under the bijection of Definition 5.14 (b ) is equal to s0jU .

Proof First we will introduce “coordinates” on the total space of 
 r jCPm . Then we will define U and
describe the necessary identifications. Finally we will show that sf 0 (regarded as a section of 
 d jU ) is
equal to s0jU .

By Construction 5.22 a pair .Œa�; q/ (where Œa� D Œa0; a1; : : : ; am� 2 CPm and q is a homogeneous
polynomial of degree r in variables x0;x1; : : : ;xm) determines a point in E.
 r jCPm/ (namely, the value
of the section determined by q over the point Œa�). Every point in E.
 r jCPm/ can be described by such a
pair and two pairs, .Œa�; q/ and .Œa�; q0/, determine the same point if and only if q.a/D q0.a/. Similarly,
if qi is a homogeneous polynomial of degree di , then a pair .Œa�; .q1; q2; : : : ; qk// determines a point in
E.
 d jCPm/.

To simplify notation we use the abbreviations aD .a0; a1; : : : ; an/2CnC1nf0g, bD .b1; b2; : : : ; bk/2Ck

and c D .c0; c1; : : : ; cnCk/ 2 CnCkC1 n f0g. Also, qi and ri will always denote some homogeneous
polynomials in variables x0;x1; : : : ;xn such that qi has degree di and ri is linear.

The map .Œa�; .r1; r2; : : : ; rk// 7! Œa; r1.a/; r2.a/; : : : ; rk.a/� is a homeomorphism between E.k
 jCPn/

and an open tubular neighbourhood of CPn in CPnCk (which is diffeomorphic to CPnCk nCPk�1).
We define U to be the image of the disc bundle D.k
 jCPn/ under this map. Then this map identifies
D.k
 jCPn/ with U.

Points of the subspace E.��
U
.
 d jCPn//�U �E.
 d jCPn/ are of the form .Œa; b�; .Œa�; .q1; q2; : : : ; qk///.

The map
�
Œa; b�; .Œa�; .q1; q2; : : : ; qk//

�
7! .Œa; b�; . Nq1; Nq2; : : : ; Nqk// 2 E.
 d jCPnCk / (where Nqi is equal
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to qi , but is regarded as a polynomial in the variables x0;x1; : : : ;xnCk) is an isomorphism between the
bundles ��

U
.
 d jCPn/ and 
 d jU D .


d jCPnCk /jU .

By definition the section s0 is the map Œc� 7! .Œc�; .p0
1
;p0

2
; : : : ;p0

k
//.

The map f 0 is given by the formula .Œa�; .r1; r2; : : : ; rk// 7! .Œa�; .r
d1

1
; r

d2

2
; : : : ; r

dk

k
//. After identifying

D.k
 jCPn/ with U the formula becomes Œa; b� 7! .Œa�; .r
d1

1
; r

d2

2
; : : : ; r

dk

k
//, where ri is chosen such

that ri.a/D bi . Therefore sf 0.Œa; b�/D .Œa; b�; .Œa�; .r
d1

1
; r

d2

2
; : : : ; r

dk

k
/// and this point is identified with

.Œa; b�; . Nr
d1

1
; Nr

d2

2
; : : : ; Nr

dk

k
//. We have

Nr
di

i .a; b/D r
di

i .a/D b
di

i D p0
i .a; b/;

so .Œa; b�; . Nrd1

1
; Nr

d2

2
; : : : ; Nr

dk

k
//D .Œa; b�; .p0

1
;p0

2
; : : : ;p0

k
//. Therefore sf 0 D s0jU .

We conclude this section with a discussion of the bundle data Nfn.d/ in the canonical normal invariant
of Xn.d/. Although the degree-d normal map .fn.d/; Nfn.d// WXn.d/!CPn is canonically constructed,
so far we have not been able to characterise its homotopy class amongst all such degree-d normal maps.
In particular, if there is a diffeomorphism h WXn.d/!Xn.d

0/, then up to homotopy it induces a unique
bundle map Nh W �Xn.d/! �Xn.d 0/ covering h and in general we do not know whether Nfn.d

0/ı Nh and Nfn.d/

are homotopic stable bundle maps. In this paper, we shall only need to address this question when nD 4

and X4.d/ is nonspin. In this case, the problem is solved via the following:

Lemma 5.24 Let X be a closed , connected nonspin 8-manifold which is homotopy equivalent to
a CW-complex with only even-dimensional cells , � a stable vector bundle over X and Ng W � ! � an
orientation-preserving stable bundle automorphism. Then Ng is fibre homotopic to the identity.

Proof By standard K-theoretic arguments (given for automorphisms of stable spherical fibrations in
[Browder 1972, Lemma I.4.6]), it is sufficient to prove that ŒX;SO� D 0. By [Hatcher 2002, Proposi-
tion 4C.1], we may assume that there is a homotopy equivalence X 'K[f D8, where K is a 6-dimensional
CW-complex with only even-dimensional cells and f W S7!K attaches a single 8-cell. Consider the
Puppe sequence of the cofibration K!K[f D8! S8:

Œ†K;SO�! �8.SO/! ŒK[f D8;SO�! ŒK;SO�:

Obstruction theory [Hatcher 2002, Corollary 4.73] gives that ŒK;SO�D0, since �2i.SO/D0 for 0�2i �6.
So to prove that ŒX;SO�Š ŒK[f D8;SO� is trivial, it is enough to show that the map Œ†K;SO�!�8.SO/
is surjective.

The map Œ†K;SO�! �8.SO/ sends a homotopy class Œg�2 Œ†K;SO� to Œgı†f �, where †f WS8!†K

is the suspension of f [Whitehead 1978, 6.18 Chapter III]. Since K[f D8 has no odd-dimensional cells,
H 1.X IZ=2/ D 0, and so X is orientable. Since X is nonspin, v2.X / D w2.X / ¤ 0 by [Milnor and
Stasheff 1974, Theorem 11.15], and so Sq2

W H 6.X IZ=2/! H 8.X IZ=2/ is nonzero. Let K.4/ � K

Geometry & Topology, Volume 29 (2025)



The smooth classification of 4-dimensional complete intersections 303

denote the 4-skeleton of K, and let c WK!K=K.4/ be the collapse map; then K=K.4/ D
Wb

iD1 S6 is
a wedge of 6-spheres. Since H 6.S7/ Š H 5.S7/ Š H 8

�Wb
iD1 S6

�
Š H 7

�Wb
iD1 S6

�
Š 0, we deduce

that the functional Steenrod square of Sq2 applied to c ı f W S7!
Wb

iD1 S6 is unambiguously defined
and nonzero on H 6.K=K.4/IZ=2/; cf [Mosher and Tangora 1968, Chapter 16]. Since Sq2 is a stable
operation, the functional Steenrod square of Sq2 applied to the suspension †c ı†f W S8!

Wb
iD1 S7

is also nonzero on H 7
�Wb

iD1 S7IZ=2
�
, showing that †c ı†f is essential (see [Mosher and Tangora

1968, Chapter 16, Proposition 1]). By Hilton’s theorem [1955, Theorem A] and the computation of
the 1-stem [Toda 1962, Chapter XIV], �8

�Wb
iD1 S7

�
Š
Lb

iD1 �8.S
7/ Š .Z=2/b, and it follows that

prj ı .†c ı†f / W S8! S7 is essential for some j 2 f1; : : : ; bg, where prj W
Wb

iD1 S7! S7 splits off
the j th sphere in the wedge. Using [Adams 1966, Example 12.15], we see that precomposition with
�7 W S

8! S7 induces a surjection �7.SO/! �8.SO/, and so the composition

�7.SO/
pr�

j
�! Œ†

�
K=K.4/

�
;SO� †c�

��! Œ†K;SO� †f
�

��! �8.SO/

is onto. It follows that Œ†K;SO�! �8.SO/ is onto, completing the proof.

Corollary 5.25 Let .f0; Nf0/; .f1; Nf1/ WX4.d/! .CP4; �4.d/jCP4/ be a pair of normal maps from a non-
spin complete intersection X4.d/ such that f �

0
.x/D f �

1
.x/. Then .f0; Nf0/ and .f1; Nf1/ are homotopic.

Proof It follows from the assumption f �
0
.x/ D f �

1
.x/ that f0 and f1 are homotopic as maps into

CP1 ' K.Z; 2/. By cellular approximation they are also homotopic as maps into CP4, so we may
assume that f0 D f1. Then the bundle maps Nf0; Nf1 W �X4.d/! �4.d/jCP4 differ by precomposition with
a bundle automorphism Ng W �X4.d/! �X4.d/. By Lemma 5.24, Ng is homotopic to the identity and so Nf0

and Nf1 are homotopic.

5.5 The Sullivan conjecture in the case of odd total degree

Let Xn.d/ be a complete intersection. By Theorem 5.19 there is a degree-d normal map .fn.d/; Nfn.d// W

Xn.d/!CPn such that
�.fn.d/; Nfn.d//D �n.d/ 2 ŒCPn; .QS0=SO/d �:

Our goal is to show that if d is odd and SD4.d/D SD4.d
0/, then �4.d/D �4.d

0/. Then Theorem 5.20
allows us to deduce the Sullivan conjecture when nD 4 and d is odd. To compare the normal invariants
�4.d/ and �4.d

0/, we will apply results of Feshbach on the Segal conjecture, using the fact that �n.d/ is
the restriction of �1.d/ WCP1! .QS0=SO/d .

Due to a combination of Theorem 1.4 of Fang and Klaus and Proposition 5.12 of Brumfiel and Madsen,
localising at the prime 2 will prove to be an effective strategy when the total degree d is odd. For a simple
space Z and a prime p we shall write Z.p/ (and even .Z/.p/ where necessary) for the p-localisation
of Z. Similarly, we write A.p/ for the p-localisation of an abelian group A. If ' 2 ŒY;Z� is a homotopy
class of maps from some other space Y to Z, we write '.p/ 2 ŒY;Z.p/� for the homotopy class of the
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composition Y
'
�!Z!Z.p/, where Z!Z.p/ is the natural map. Similarly, for ZŒ1=p�, the space

obtained from Z by inverting p, we write 'Œ1=p� 2 ŒY;ZŒ1=p�� for the homotopy class of the composition
Y

'
�!Z!ZŒ1=p�, where Z!ZŒ1=p� is the natural map.

Lemma 5.26 Let n and d be positive integers. Suppose that '; 2 ŒCPn; .QS0=SO/d � are homotopy
classes such that '.p/ D  .p/ and 'Œ1=p� D  Œ1=p� for some prime p. Then ' D  .

Proof We partition the set of all primes into the sets l WD fpg and l 0 WD fq j q ¤ pg. By [Sullivan 1970,
(4), page 41], for any simple space Z the natural maps Z!ZŒ1=p� and Z!Z.p/ fit into a fibre square

Z //

��

ZŒ1=p�

��

Z.p/
// ZQ

where ZQ denotes the rationalisation of Z. Hence there is a homotopy fibration sequence Z !

Z.p/ �ZŒ1=p�!ZQ, and for Z D .QS0=SO/d we have a homotopy fibration sequence

.QS0=SO/d
`p
�! ..QS0=SO/d /.p/ � ..QS0=SO/d /Œ1=p�! ..QS0=SO/d /Q:

The Puppe sequence for homotopy classes of maps from CPn into this fibration contains the exact
sequence

ŒCPn; �..QS0=SO/d /Q�! ŒCPn; .QS0=SO/d �
`p�
��! ŒCPn; ..QS0=SO/d /.p/��ŒCPn; ..QS0=SO/d /Œ1=p��;

where p̀�.'/D .'.p/; 'Œ1=p�/ and ŒCPn; �..QS0=SO/d /Q� acts transitively on the fibres of p̀�. We will
show that ŒCPn; �..QS0=SO/d /Q�D 0, which implies that p̀� is injective and proves the lemma.

Since QS0
d is connected with finite homotopy groups (see Section 5.2), its rationalisation is contractible. So,

by the rationalisation of the fibration sequence (5), ..QS0=SO/d /Q' .BSO/Q. It is well known that there
is an equivalence .BSO/Q'

Q1
iD1 K.Q; 4i/ (see eg [Sullivan 1970, (12), pages 42–43]), and so we have

a chain of isomorphisms ŒCPn; �..QS0=SO/d /Q� Š Œ†CPn; ..QS0=SO/d /Q� Š Œ†CPn; .BSO/Q� ŠL1
iD1 H 4i.†CPnIQ/Š 0.

Lemma 5.27 Let X4.d/ and X4.d
0/ be nonspin complete intersections such that SD4.d/D SD4.d

0/. If
�4.d/.2/ D �4.d

0/.2/ 2 ŒCP4; ..QS0=SO/d /.2/�, then �4.d/D �4.d
0/.

Proof By Theorem 1.4, there is a homotopy 8-sphere † and a diffeomorphism h WX4.d/�X4.d
0/ ]†.

We may assume that h preserves the cohomology class x (see the proof of Proposition 2.10) and hence the
maps f4.d/ and f4.d

0/ ıh are homotopic (as in the proof of Corollary 5.25). Let Nh W �X4.d/! �X4.d 0/]†

be the stable bundle map covering h, which is uniquely determined up to homotopy by the derivative
of h. By Theorem 5.19, there are bundle maps Nf4.d/ and Nf4.d

0/ such that �4.d/D �.Œf4.d/; Nf4.d/�/

and �4.d
0/D �.Œf4.d

0/; Nf4.d
0/�/. As in Section 5.2, let f† W†! CP4 be the constant map. Then the

choice of an arbitrary framing of † determines a bundle map Nf† over f† and we get a normal map
.f4.d

0/ ] f†; Nf4.d
0/ ] Nf†/ WX4.d

0/ ]†!CP4. As explained in Section 2.3, since SD4.d/D SD4.d
0/,
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there is a stable bundle isomorphism ˛ W �4.d
0/jCP4 ! �4.d/jCP4 . We have the following diagram of

stable bundle maps, which commutes by Corollary 5.25:

�X4.d/

Nh

��

Nf4.d/
// �4.d/jCP4

�X4.d 0/]†

Nf4.d
0/] Nf†

// �4.d
0/jCP4

˛

OO

It follows that the degree-d normal maps

.f4.d/; Nf4.d// WX4.d/!CP4 and .f4.d
0/ ] f†; Nf4.d

0/ ] Nf†/ WX4.d
0/ ]†!CP4

represent the same element in N C
d
.CP4/, so �.Œf4.d/; Nf4.d/�/D �.Œf4.d

0/]f†; Nf4.d
0/] Nf†�/. Therefore

by Lemma 5.13 we have
�4.d/D �4.d

0/ ] Œ �

for some Œ �2 .id /�.�8.QS0
d //. By the naturality of ] (see (7)) we have �4.d/Œ1=2�D �4.d

0/Œ1=2�]Œ Œ1=2��.
Since �8.QS0

d / Š �s
8

and �s
8
Š Z=2 ˚ Z=2 by [Toda 1962, Theorem 7.1], Œ � 2 �8..QS0=SO/d /

is 2-torsion. This implies that Œ Œ1=2�� D 0, and hence �4.d/Œ1=2� D �4.d
0/Œ1=2�. We assumed that

�4.d/.2/ D �4.d
0/.2/ and so by Lemma 5.26, �4.d/D �4.d

0/.

From now on we assume that d is odd. Then .ZŒ1=d �/.2/ ' Z.2/ for any simple space Z, so from
the Brumfiel–Madsen equivalence .G=O/Œ1=d �' .QS0=SO/d Œ1=d � of Proposition 5.12, we deduce the
existence of a homotopy equivalence

� W ..QS0=SO/d /.2/ ' .G=O/.2/

such that ı.2/ ı�D .ıd /.2/, where ı.2/ and .ıd /.2/ are the 2-localisations the canonical maps ı and ıd
from (6). Moreover, by Sullivan’s 2-primary splitting theorem for G=O [Madsen and Milgram 1979,
Theorem 5.18], there is a homotopy equivalence

(8) � W .G=O/.2/! .BSO/.2/ � coker J.2/;

where the space coker J.2/ is defined in [loc. cit., Definition 5.16] and the map � is constructed in the
proof of [loc. cit., Theorem 5.18]. From the splitting of .G=O/.2/ in (8) we obtain a projection map

� W .G=O/.2/! coker J.2/:

The following result is contained in the proof of [Feshbach 1986, Theorem 6], where the arguments rely
on work of Feshbach [1987] and Ravenel [1984] on the Segal conjecture.

Theorem 5.28 (cf [Feshbach 1986, Proof of Theorem 6]) For any prime p, ŒCP1; coker J.p/�Š 0.

Proof The proof of [Feshbach 1986, Theorem 6] states that the stable cohomotopy group �0
s .CP1/ is

trivial, where �0
s .CP1/D ŒCP1;QS0

0�. The natural map QS0
0!

Q
p.QS0

0/.p/ from QS0
0 to the product

of its p-localisations, taken over all primes p, is a weak equivalence, because QS0
0 is connected with
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finite homotopy groups �i.QS0
0/Š �

s
i (hence �i.QS0

0/Š
Q

p �i.QS0
0/.p/). Now by Sullivan’s splitting

of QS0
1'QS0

0 [Madsen and Milgram 1979, Theorem 5.18], .QS0
0/.p/' imJ.p/�coker J.p/ for a certain

p-local space imJ.p/. Therefore

0Š ŒCP1;QS0
0�Š

Y
p

�
ŒCP1; imJ.p/�� ŒCP1; coker J.p/�

�
and the theorem follows.

As a consequence of Theorem 5.28 we have:

Corollary 5.29 If d is odd , then ��.��.�n.d/.2///D 0 2 ŒCPn; coker J.2/� for all n.

Proof Let i WCPn!CP1 be the inclusion and consider the following commutative diagram:

ŒCP1; .QS0=SO/d �

i�

��

// ŒCP1; ..QS0=SO/d /.2/�

i�

��

��
// ŒCP1; .G=O/.2/�

i�

��

��
// ŒCP1; coker J.2/�

i�

��

ŒCPn; .QS0=SO/d � // ŒCPn; ..QS0=SO/d /.2/�
��
// ŒCPn; .G=O/.2/�

��
// ŒCPn; coker J.2/�

Now �n.d/D i�.�1.d// by Definition 5.11 and ŒCP1; coker J.2/�Š 0 by Theorem 5.28, so the corollary
follows from the commutativity of the diagram.

Theorem 5.30 Let X4.d/ and X4.d
0/ be complete intersections with SD4.d/D SD4.d

0/ and odd total
degree. Then �4.d/D �4.d

0/ 2 ŒCP4; .QS0=SO/d �.

The Sullivan conjecture for nD 4 and odd total degree follows directly from Theorems 5.20 and 5.30.

Theorem 5.31 Let X4.d/ and X4.d
0/ be complete intersections with SD4.d/D SD4.d

0/ and odd total
degree. Then X4.d/ is diffeomorphic to X4.d

0/.

Proof of Theorem 5.30 By Lemma 5.27, it is enough to prove that �4.d/.2/ D �4.d
0/.2/. Since the

map � W ..QS0=SO/d /.2/! .G=O/.2/ is a homotopy equivalence, it suffices to show that ��.�4.d/.2//D

��.�4.d
0/.2// 2 ŒCP4; .G=O/.2/�. To simplify the notation we set

O�.d/ WD ��.�4.d/.2// and O�.d 0/ WD ��.�4.d
0/.2//:

Let � W .G=O/.2/!BSO.2/ and ˛.2/ W .BSO/.2/! .G=O/.2/ be the projection and inclusion defined by
the Sullivan splitting of .G=O/.2/ in (8) respectively, so that �D��� W .G=O/.2/! .BSO/.2/�coker J.2/,
and consider the bijection

�� ��� W ŒCP4; .G=O/.2/�� ŒCP4; .BSO/.2/�� ŒCP4; coker J.2/�:

Corollary 5.29 states that ��. O�.d//D ��. O�.d 0//D 0, hence
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(a) it remains to show that ��. O�.d//D ��. O�.d 0//, and

(b) we have
O�.d/D .˛.2/ ı�/�. O�.d// and O�.d 0/D .˛.2/ ı�/�. O�.d

0//:

It follows from Lemma 5.32 that ı.2/�. O�.d//D ı.2/�. O�.d 0//; hence

.ı.2/ ı˛.2/ ı�/�. O�.d//D .ı.2/ ı˛.2/ ı�/�. O�.d
0//:

By Lemma 5.33 .ı.2/ı˛.2//� W ŒCP4; .BSO/.2/�! ŒCP4; .BSO/.2/� is injective, so��. O�.d//D��. O�.d 0//,
which completes the proof.

Lemma 5.32 Suppose that n 6� 1 mod 4. If Xn.d/ and Xn.d
0/ are complete intersections such that

SDn.d/D SDn.d
0/, then .ı.2/ ı�/�.�n.d/.2//D .ı.2/ ı�/�.�n.d

0/.2//.

Proof By the assumption SDn.d/D SDn.d
0/, the complete intersections Xn.d/ and Xn.d

0/, and hence
their normal bundles �Xn.d/ and �Xn.d 0/, have the same Pontryagin classes (regarded as integers). This
implies that pj .�n.d//D pj .�n.d

0// for 2j � n (see Section 2.2). By [Sanderson 1964, Theorem 3.9], if
n 6� 1 mod 4, then ŒCPn;BSO�ŠZbn=2c, detected by the total Pontryagin class. Therefore �n.d/jCPn Š

�n.d
0/jCPn , and hence .nC1/
 ˚ �n.d/jCPn Š .nC1/
 ˚ �n.d

0/jCPn .

Since ıd classifies taking the formal difference of the source and target vector bundles of a fibrewise
degree-d map (see Section 5.2), .ıd /�.�n.d// 2 ŒCPn;BSO� is the classifying map of �k
 ˚ 
 d1 ˚

� � �˚ 
 dk jCPn Š .nC1/
 ˚ �n.d/jCPn . Therefore we have .ıd /�.�n.d//D .ıd /�.�n.d
0//.

By localising at 2 we get that .ıd /.2/�.�n.d/.2//D .ıd /.2/�.�n.d
0/.2//. We saw that � satisfies ı.2/ı�D

.ıd /.2/ (see Proposition 5.12), so this means that .ı.2/ ı�/�.�n.d/.2//D .ı.2/ ı�/�.�n.d
0/.2//.

Lemma 5.33 Suppose n 6� 1 mod 4. Then the map .ı.2/ ı˛.2//� W ŒCPn; .BSO/.2/�! ŒCPn; .BSO/.2/�
is injective.

Proof The proof of [Madsen and Milgram 1979, Theorem 5.18] shows that there is a commutative
diagram

.G=O/.2/

ı.2/

��

.BSO/.2/

˛.2/

66

 3�Id
// .BSO/.2/

where  3 is the map induced by the third-power Adams operation; see [loc. cit., 5.13 and Theorem 5.18].
The map  3�Id is a rational homotopy equivalence (to see this, we note that the homotopy fibre of  3�Id
is connected and has finite homotopy groups by the second Sullivan splitting in [loc. cit., Theorem 5.18]);
hence ı.2/ ı˛.2/ is a rational homotopy equivalence.
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Now let jQ W .BSO/.2/! ..BSO/.2//QDBSOQ be the natural map to the rationalisation of BSO. There
is a commutative square

ŒCPn; .BSO/.2/�
jQ�
//

.ı.2/ı˛.2//�
��

ŒCPn;BSOQ�

.ıQı˛Q/�
��

ŒCPn; .BSO/.2/�
jQ�
// ŒCPn;BSOQ�

where ıQ and ˛Q are the rationalisations of ı.2/ and ˛.2/ respectively. In particular, ıQı˛Q is a homotopy
equivalence; hence .ıQ ı˛Q/� is a bijection.

Since there are isomorphisms ŒCPn;BSOQ� Š ŒCPn; .BSO/.2/�˝Q Š .Z.2//
bn=2c˝Q ŠQbn=2c, it

follows that jQ� is injective. Therefore .ıQ ı˛Q/� ıjQ�D jQ� ı.ı.2/ ı˛.2//� is injective, which implies
that .ı.2/ ı˛.2//� is injective.

Remark 5.34 The arguments of this section can be generalised to prove the Sullivan conjecture “prime
to the total degree”. We plan to take this up in future work.

Appendix. Extensions and Toda brackets

Appendix Extensions and Toda brackets

Recall that S0 denotes the sphere spectrum and that the i th stable stem, �i.S0/, is denoted by �s
i . The

k-fold suspension of S0 is denoted by Sk, and if f W Sk ! S0 is a map, then Cf denotes the cofibre of f .
The aim of this appendix is to prove Lemma A.1, which concerns the role of Toda brackets in computing
extensions for homotopy groups of Cf . Lemma A.1 is presumably well known, but we did not find a
proof for it in the literature so far.

The stable homotopy groups of Cf lie in the following fragment of the long exact Puppe sequence:

� � � ! �s
j�k

f�
�! �s

j
i�
�! �j .Cf /

c�
�! �s

j�k�1! � � � :

Here f�; i� and c� are respectively the homomorphisms induced by composition with f , the inclusion
i W S0 � Cf , and the collapse map c W Cf ! SkC1. We shall be interested in describing the extension

(9) 0! im.i�/! �j .Cf /! im.c�/! 0:

To do this we take an element g 2�s
j�k�1

of order a for some positive integer a, which lifts to Ng 2�j .Cf /.
Then a Ng 2 im.i�/Š coker.f�/. The element a Ng 2 �s

j will of course depend on the choice of Ng in general.

To describe a Ng we consider the sequence of maps

Sj�1 f
�! Sj�k�1 g

�! S0 a
�! S0:
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Since g ıf and a ıg are both null-homotopic, the Toda bracket

ha;g; f i � �s
j

is defined. Representatives for the elements of ha;g; f i are defined as unions

.a ıH1/[ .C.f / ıH2/ W C.S
j�1/[C.Sj�1/! S0;

where H1 is a null-homotopy of g ıf , H2 is a null-homotopy of a ıg and C.�/ denotes the cone of a
spectrum or a map. The indeterminacy of ha;g; f i arises from the choice of null-homotopies H1 and H2

and is given by

I.ha;g; f i/D f�.�
s
j�k/C a�s

j � �
s
j :

We now relate the restriction of the extension (9) to the cyclic subgroup hgi � �s
j�k�1

generated by g to
the Toda bracket ha;g; f i.

Lemma A.1 Suppose that g 2 �s
j�k�1

has order a and that Ng W Sj ! Cf is a map such that c ı Ng D g.
Then

a Ng 2 i�.ha;g; f i/� �j .Cf /:

In particular , the extension

0! im.i�/! .c�/
�1.hgi/! hgi ! 0

is trivial if and only if 0 2 ha;g; f i.

Proof Given H1 WC.S
j�1/!S0, a null-homotopy of gıf WSj�1!S0, we define a choice of Ng2�j .Cf /

by

Ng DH1[C.g/ W C.Sj�1/1[C.Sj�1/2! Cf ;

where the subscripts label two copies of C.Sj�1/. There is an a-fold fold map aCf
W .Cf ;S

0/ !

.Cf ;S
0/, which extends a W S0! S0, and we have a Ng D aCf

ı Ng. On the first copy of C.Sj�1/ we have
.aCf
ı Ng/jC.Sj�1/1

D aıH1. On the second copy of C.Sj�1/, the map .aCf
ı Ng/jC.Sj�1/2

defines the zero
element of �s

j .Cf ;S
0/Š �s

j�1
. It follows that .aCf

ı Ng/jC.Sj�1/2
is homotopic rel Sj�1 to H2 ıC.f /,

where H2 W C.S
j�k�1/! S0 is a null-homotopy of ag. It follows that a Ng D aCf

ı Ng is homotopic to
i ı
�
.a ıH1/[ .H2 ıC.f //

�
and so a Ng 2 i�.ha;g; f i/ as required.

Finally, the extension 0! im.i�/! .c�/
�1.hgi/! hgi ! 0 is trivial if and only if there is Ng 2 �j .Cf /

such that a Ng D 0. Given such a Ng, we have 0 2 i�.ha;g; f i/ by the previous paragraph and so ha;g; f i
contains an element of ker.i�/ D f�.�s

j�k
/. Hence ha;g; f i \ I.ha;g; f i/ ¤ 0 and so 0 2 ha;g; f i.

Conversely, 02ha;g; f i if and only if ha;g; f iDf�.�s
j�k

/Ca�s
j and then a Ng2 i�.ha;g; f i/Dai�.�

s
j /.

Hence we can modify our choice of Ng to achieve a Ng D 0.
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