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We systematically introduce and study a new type of singularity, namely, exceptionally noncanonical
(enc) singularities. This class of singularities plays an important role in the study of many questions in
birational geometry, and has tight connections with local K-stability theory, Calabi–Yau varieties, and
mirror symmetry.

We reduce the termination of flips to the termination of terminal flips and the ACC conjecture for minimal
log discrepancies (mlds) of enc pairs. As a consequence, the ACC conjecture for mlds of enc pairs implies
the termination of flips in dimension 4.

We show that, in any fixed dimension, the termination of flips follows from the lower-semicontinuity for
mlds of terminal pairs, and the ACC for mlds of terminal and enc pairs. Moreover, in dimension 3, we
give a rough classification of enc singularities, and prove the ACC for mlds of enc pairs. These two results
provide a second proof of the termination of flips in dimension 3 which does not rely on any difficulty
function.

Finally, we propose and prove the special cases of several conjectures on enc singularities and local
K-stability theory. We also discuss the relationship between enc singularities, exceptional Fano varieties,
and Calabi–Yau varieties with small mlds or large indices via mirror symmetry.
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1 Introduction

We work over the field of complex numbers C.
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400 Jingjun Han and Jihao Liu

The minimal model program (MMP) aims to provide a birational classification of algebraic varieties. The
termination of flips in the MMP is one of the major remaining open problems in birational geometry. The
goal of this paper is to introduce and study a class of singularities, namely, exceptionally noncanonical
(enc) singularities, and utilize it on the termination of flips and other topics in birational geometry. A pair
.X;B/ is called enc if .X;B/ is not canonical, and all but one exceptional prime divisors over X have
log discrepancies greater than or equal to 1 (see Definition 3.8).

Termination of flips and the ACC for mlds of enc pairs Shokurov established a relation between
the termination of flips and minimal log discrepancies (mlds), a basic but important local invariant in
birational geometry. To be specific, Shokurov [2004, Theorem] proved that his ACC conjecture for (local)
mlds [1988, Problem 5] together with the lower-semicontinuity (LSC) conjecture for mlds [Ambro 1999,
Conjecture 0.2] imply the termination of flips.

On the one hand, the ACC conjecture for mlds remains unknown even in dimension 3, while the termination
of flips is proved for threefolds [Kawamata 1992b; Shokurov 1996]. On the other hand, the ACC conjecture
for mlds aims to reveal the structure of mlds of all singularities, while the singularities appearing in
any given sequence of flips should be very special (even of finitely many types as we conjecture that
the sequence of flips terminates). This indicates that the ACC conjecture for mlds might be much more
difficult than the termination of flips, and we may not need the full power of this conjecture to show the
termination of flips.

In this paper, we try to resolve this issue. Our first main result reduces the termination of flips to the ACC
for (global) mlds of a very special class of singularities, enc singularities, and the termination of terminal
flips. The latter is known up to dimension 4.

Theorem 1.1 Let d be a positive integer. Assume that

(1) the ACC for (global ) mlds of enc pairs with finite coefficients of dimension d holds , ie

fmld.X;B/ j .X;B/ is enc; dim X D d; coeff.B/� �g

satisfies the ACC , where � � Œ0; 1� is a finite set (Conjecture 1.9(20)), and

(2) any sequence of Q-factorial terminal flips in dimension d terminates.

Then any sequence of lc flips in dimension � d terminates.

We note that our proof of Theorem 1.1 does not rely on [Shokurov 2004]. As a consequence of Theorem 1.1,
the ACC for (global) mlds of enc pairs implies the termination of flips in dimension 4.

Theorem 1.2 Assume the ACC for (global ) mlds of enc pairs with finite coefficients of dimension 4.
Then any sequence of lc flips in dimension 4 terminates.

Geometry & Topology, Volume 29 (2025)



On termination of flips and exceptionally noncanonical singularities 401

As another application of Theorem 1.1, we may refine Shokurov’s approach towards the termination
of flips. To be more specific, assuming the ACC for (global) mlds of enc pairs, in order to prove the
termination of flips, we only need the ACC and LSC for mlds of terminal pairs instead of lc pairs. We
note that the set of terminal singularities is the smallest class for the purpose to run the MMP for smooth
varieties, while the set of lc singularities is rather complicated and hard to work with (see [Kollár and Mori
1998, page 57]). Moreover, terminal surface (resp. threefold) singularities are smooth (resp. hyperquotient
singularities), and the LSC conjecture for mlds is proven for the smooth varieties and hyperquotient
singularities in any dimension [Ein et al. 2003; Nakamura and Shibata 2021].

Theorem 1.3 (Theorem 4.8) Let d be a positive integer. Assume

(1) the ACC for (local ) mlds of terminal pairs with finite coefficients ,

(2) the LSC for mlds of terminal pairs , and

(3) the ACC for (global ) mlds of enc pairs with finite coefficients (Conjecture 1.9(20))

hold in dimension d . Then any sequence of lc flips in dimension � d terminates.

The set of enc singularities is expected to be a really small class of singularities that should possess some
nice properties. The local Cartier indices of enc singularities are expected to be bounded from above
(see Conjecture 1.8), hence we predict that the set of their mlds is discrete away from zero and should
be much smaller than the set of all mlds. We also remark that in Theorems 1.1, 1.2, and 1.3, we only
need the ACC for (global) mlds (of enc pairs), which is considered to be much simpler than the ACC for
(local) mlds. For instance, consider any normal variety X . The log discrepancy of the exceptional divisor,
obtained through the blow-up of X at any smooth codimension 2 point, is 2. Therefore, the global mld of
any normal variety is always � 2. However, the boundedness conjecture for (local) mlds remains open in
dimension � 4.

ACC for mlds of enc threefolds Recall that the ACC conjecture for mlds is only known in full generality
for surfaces [Alexeev 1993] (see [Shokurov 1994; Han and Luo 2023; 2024] for other proofs), toric pairs
[Ambro 2006], and exceptional singularities [Han et al. 2024]. It is still open for threefolds in general
and only some partial results are known (see [Kawamata 1992a; Markushevich 1996; Kawakita 2015a;
Nakamura 2016; Nakamura and Shibata 2022; Jiang 2021; Liu and Xiao 2021; Han et al. 2022; Liu and
Luo 2022]). The second main result of this paper is the ACC for mlds of enc pairs in dimension 3. This
result suggests that the ACC conjecture for mlds of enc pairs should be much easier than Shokurov’s
ACC conjecture for mlds.

Theorem 1.4 (cf Theorem E) Let � � Œ0; 1� be a DCC set. Then˚
mld.X;B/ j .X;B/ is enc; dim X D 3; coeff.B/� �

	
satisfies the ACC.

Geometry & Topology, Volume 29 (2025)



402 Jingjun Han and Jihao Liu

By Theorems 1.3 and 1.4, we may reprove the termination of flips in dimension 3.

Corollary 1.5 (Corollary 7.4) Any sequence of lc flips terminates in dimension 3.

We remark that our proof of Corollary 1.5 only depends on the ACC and the LSC for mlds, and does not
rely on any other auxiliary methods. In particular, our proof does not rely on difficulty functions, which
played a key role in the previous proofs on the termination of flips in dimension 3 (see [Shokurov 1985;
Kawamata et al. 1987; Kawamata 1992b; Kollár 1992; Shokurov 1996]) but are difficult to be applied in
higher dimensions, especially in dimension > 4 (we refer the reader to [Alexeev et al. 2007; Shokurov
2004; Fujino 2004] for some progress in dimension 4). The proof of Corollary 1.5, which is based on
Theorem 1.3, may shed light on another approach towards the termination of flips in high dimensions.
Note that Corollary 1.5 does not follow from Shokurov’s approach [2004] directly, as the ACC conjecture
for mlds is still open in dimension 3.

Now we turn our attention away from the termination of flips and focus on the ACC conjecture for mlds
itself. We may show the following more technical but much stronger result on the ACC conjecture for mlds.

Theorem 1.6 (cf Theorem N) Let N be a nonnegative integer , and � � Œ0; 1� a DCC set. Then there
exists an ACC set � 0 depending only on N and � satisfying the following. Assume that .X;B/ is a klt
pair of dimension 3 such that

(1) coeff.B/� � , and

(2) there are at most N different (exceptional ) log discrepancies of .X;B/ that are � 1, ie

#.fa.E;X;B/ jE is exceptional over X g\ Œ0; 1�/�N;

then mld.X;B/ 2 � 0.

Theorem 1.6 is considered to be much stronger than Theorem 1.4 as a result on the ACC conjecture for
mlds, and the class of singularities in Theorem 1.6 is much larger than the class of enc singularities. It is
clear that the local Cartier indices of these singularities in Theorem 1.6 are unbounded when their mlds
have a positive lower bound, while they are expected to be bounded for enc pairs (see Conjecture 1.8).
Moreover, when N D 0, Theorem 1.6 implies the ACC for mlds of terminal threefolds [Han et al. 2022,
Theorem 1.1] which is beyond Theorem 1.4, and when N D 1, Theorem 1.6 implies Theorem 1.4.

Nevertheless, in order to prove Theorem 1.4, we have to prove Theorem 1.6, and the proofs of these two
theorems are intertwined with each other (see Sections 2 and 6 for details).

Further remarks and conjectures We remark that, in the proof of the ACC for mlds in dimension 2

[Alexeev 1993], there are two cases:

Case 1 The dual graph of the minimal resolution is bounded.

Case 2 The dual graph of the minimal resolution is unbounded.
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On termination of flips and exceptionally noncanonical singularities 403

These two cases are treated in different ways in [Alexeev 1993]. Note that the minimal resolution of a
surface is nothing but its terminalization. Therefore, if we regard “terminalization” as a kind of “minimal
resolution” in high dimensions, then Theorem 1.6 implies that the ACC for mlds holds in dimension 3

whenever the dual graph of the terminalization is bounded. In other words, Case 1 in dimension 3 is
proved. Moreover, one may show a stronger result for Case 1: any log discrepancy which is not larger
than 1 belongs to a finite set (see [Han and Luo 2023, Lemma A.2; 2024]). In the same fashion, we can
also show this holds in dimension 3.

Corollary 1.7 Let N be a nonnegative integer , and � � Œ0; 1� a DCC set. Then there exists an ACC set
� 0 depending only on N and � satisfying the following. Assume that .X;B/ is a klt pair of dimension 3,
such that

(1) coeff.B/� � , and

(2) there are at most N different (exceptional ) log discrepancies of .X;B/ that are � 1, ie

#.fa.E;X;B/ jE is exceptional over X g\ Œ0; 1�/�N:

Then fa.E;X;B/ jE is exceptional over X g\ Œ0; 1�� � 0.

We propose two conjectures for enc pairs. Conjecture 1.8 is related to the local K-stability theory (see
[Han et al. 2023, Theorem 1.5, Conjecture 1.6]). Roughly speaking, we expect that enc singularities have
bounded local volumes (see [Li et al. 2020]):

Conjecture 1.8 (local boundedness for enc pairs) Let d be a positive integer , � a positive real number ,
and � � Œ0; 1� a DCC set. Then there exists a positive real number ı depending only on d and � satisfying
the following. Assume that .X 3 x;B/ is an enc germ of dimension d such that coeff.B/� � . Then

(1) .X 3 x;B/ admits a ı-plt blow-up ,

(2) if mld.X 3 x;B/� �, then the local volume cvol.X 3 x;B/ is bounded away from 0.

Conjecture 1.9 (ACC for mlds of enc pairs) Let d be a positive integer , and � � Œ0; 1� a set of real
numbers. Let

eMLDd .�/ WD fmld.X;B/ j .X;B/ is enc; dim X D d; coeff.B/� �g:

(1) If � satisfies the DCC , then eMLDd .�/ satisfies the ACC.

(2) If � is a finite set , then eMLDd .�/ is a discrete set away from 0.

(20) If � is a finite set , then eMLDd .�/ satisfies the ACC.

We refer the reader to [Zhuang 2024] on some related works on local K-stability theory and mlds.

Conjecture 1.9(20) is a weak form of Conjecture 1.9(2). We list it separately as we only need to assume it
instead of Conjecture 1.9(2) in many results of this paper.

Geometry & Topology, Volume 29 (2025)



404 Jingjun Han and Jihao Liu

By [Han et al. 2024, Theorem 1.3], Conjecture 1.8 implies Conjecture 1.9. In particular, in dimension 4,
either Conjecture 1.8 or 1.9 implies the termination of flips by Theorem 1.2.

There is some evidence towards Conjectures 1.8 and 1.9. We may prove both conjectures for surfaces. In
dimension 3, Conjecture 1.9(1) is nothing but Theorem 1.4, and we also have the following evidence.

(1) Let �0 WD 1 � supft j t 2 CT.3; �;Z�1/g, where CT.3; �;Z�1/ is a set of threefold canonical
thresholds (see Theorem 3.7). Then .X 3 x;B/ admits a canonical blow-up which extracts the unique
exceptional prime divisor computing mld.X 3 x;B/ if mld.X 3 x;B/ < �0. This proves a special case
of Conjecture 1.8.

(2) To prove Conjecture 1.9(2), we are only left to prove the following two cases:

(a) The case when the index 1 cover of X is strictly canonical.

(b) The case when X is terminal.

All other cases follow from our proofs in this paper.

(3) When � D f0g, since the mlds under case (2)(a) belong to the set
˚

1
n
j n 2 Z�1

	
while (2)(b) can

never happen, we could get Conjecture 1.9(2). In addition, if we assume the index conjecture of Shokurov
(see [Chen and Han 2020, Conjecture 6.3]), then we can get Conjecture 1.8(2) as well.

Finally, we remark that enc singularities are deeply related to exceptional Fano varieties and Calabi–Yau
varieties with small mlds or large indices via mirror symmetry. They are also tightly connected to the
boundedness of log Calabi–Yau varieties. See Section 8 for details.
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2 Sketch of the proofs of theorems 1.4 and 1.6

Since the proofs of Theorems 1.4 and 1.6 are quite complicated, for the reader’s convenience, we sketch
a proof of them in this section. To prove Theorems 1.4 and 1.6, we need to apply induction on the lower
bound of mlds. More precisely, we need to prove the following theorems for positive integers l :
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On termination of flips and exceptionally noncanonical singularities 405

Theorem El (cf Theorem 1.4) Let l be a positive integer , � � Œ0; 1� a DCC set , and

E.l; �/ WD
n
.X;B/

ˇ̌
.X;B/ is Q-factorial enc; dim X D 3; coeff.B/� �; mld.X;B/ > 1

l

o
:

Then fmld.X;B/ j .X;B/ 2 E.l; �/g satisfies the ACC.

Theorem Nl (cf Theorem 1.6) Let l and N be positive integers , � � Œ0; 1� a DCC set , and

N .l;N; �/ WD
n
.X;B/

ˇ̌
.X;B/ is a threefold klt pair; coeff.B/� �; 1

l
<mld.X;B/ < 1;

#.fa.E;X;B/ jE is exceptional over X g\ Œ0; 1�/�N
o
:

Then fmld.X;B/ j .X;B/ 2N .l;N; �/g satisfies the ACC.

To make our proof more clear, we introduce the following auxiliary theorem:

Theorem Cl Let l be a positive integer , � � Œ0; 1� a DCC set , and

C.l; �/ WD
n
.X;B/

ˇ̌
.X 3 x;B/ is a Q-factorial threefold enc germ; coeff.B/� �;

mld.X / < 1; mld.X;B/ > 1

l
; zX 3 Qx is strictly canonical,

where � W . zX 3 Qx/! .X 3 x/ is the index 1 cover of X 3 x
o
:

Then fmld.X;B/ j .X;B/ 2 C.l; �/g satisfies the ACC. (Here “strictly canonical” means canonical but
not terminal.)

We will prove Theorems E, N, and C,1 that is, Theorems El , Nl , and Cl for any positive integer l , in the
following way:

(1) Theorem El implies Theorem Nl ; see Lemma 7.1.

(2) Theorem Cl implies Theorem El ; see Lemma 7.2, and Theorems 5.2, 5.6, 5.7, 6.3, and 6.8.

(3) Theorem Nl�1 imply Theorem Cl ; see Lemma 7.3.

The proof of (1) relies on the following observation: when proving by using contradiction, we may
construct a DCC set � 0 depending only on N and � , such that for any .X;B/ 2N .l;N; �/, there always
exists .X 0;B0/ 2 E.l; � 0/ such that mld.X 0;B0/ belongs to an ACC set if and only if mld.X;B/ belongs
to an ACC set. For such construction, one needs to look into different birational models of .X;B/ which
only extracts noncanonical places of .X;B/. Indeed, the proof also works in higher dimensions and its
idea is applied to prove Theorems 1.1, 1.2, and 1.3 as well. We refer to Lemma 4.3 for more details.

To prove (2), for any .X;B/ 2 E.l; �/, let E be the unique exceptional prime divisor over X such that
a.E;X;B/ D mld.X;B/, and x the generic point of centerX .E/. We may assume that x is a closed

1Regarding the labels of the theorems: E stands for the initial of “enc”, N stands for the additional restriction “�N ”, and C
stands for the initial of “canonical” as in “strictly canonical”. Coincidentally, these labels together also form the word enc.
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406 Jingjun Han and Jihao Liu

point (see Lemma 5.1). There are three cases:

(2.1) X 3 x is strictly canonical,

(2.2) X 3 x is not canonical, and

(2.3) X 3 x is terminal.

We prove (2.1) by applying the cone theorem and the boundedness of complements (Theorem 5.2).

To prove (2.2), let . zX 3 Qx/! .X 3 x/ be the index 1 cover of X 3 x. Then there are three subcases:

(2.2.1) zX is strictly canonical,

(2.2.2) zX is smooth, and

(2.2.3) zX is terminal and has an isolated cDV singularity.

The case (2.2.1) is nothing but Theorem Cl .

In the case of (2.2.2), X has toric singularities. Since X is enc, one can show that the degree of the cover
zX !X is bounded from above, and the ACC for mld.X;B/ immediately follows (see Theorem 6.3).

We are left to prove (2.2.3), which is the most tedious part of the whole paper. Here we need to apply the
classification of cDV singularities [Mori 1985] to classify enc cDV (cyclic) quotient singularities X 3 x.
Our ideas are inspired by the ones in the classification of threefold terminal singularities [Mori 1985;
Reid 1987] and the (rough) classification of threefold “nearly terminal” singularities [Jiang 2021; Liu and
Xiao 2021; Liu and Luo 2022]. The major difference between our classification and the previous ones is
that the mlds of enc singularities cannot be assumed to be close to 1: in fact, they can be arbitrarily small.
This makes most computations in [Reid 1987; Jiang 2021; Liu and Xiao 2021; Liu and Luo 2022] no
longer work. A key observation here is that enc cDV quotient singularities with mld.X 3 x/ 2

�
1
l
; 1

l�1

�
share similar properties and will be much easier to classify. Indeed, we will show that the local Cartier
indices of these X 3 x are (almost) bounded. On the other hand, enc cDV quotient singularities with
mld.X 3 x/ 2

�
1

l�1
; 1
�

can be classified by induction on l . This will imply (2.2.3), and we conclude the
proof of (2.2). See Section 6.2 for more details.

The proof of (2.3) is very tricky. When � is a finite set, we can apply the theory of functional pairs
introduced in [Han et al. 2024; 2021] and carefully construct some weighted blow-ups to prove this
case (Theorem 5.6). The key point is that the unique divisor E over X 3 x which computes mld.X;B/
must also compute the canonical threshold ct.X; 0IB/, and the latter satisfies the ACC [Han et al. 2022,
Theorem 1.7; Chen 2022, Theorem 1.1]. However, for the arbitrary DCC coefficient case, we are unable
to prove it directly. Nevertheless, with some clever arguments, we can reduce it to the finite coefficient
case (although possibly losing the condition that X is terminal). See Theorem 5.7 for more details.
Since (2.3) is the only case left to prove in (2), the DCC coefficient case is also automatically resolved.
This concludes the proof of (2.3), and hence of (2).
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.X 3x;B/; mld> 1
l

coeff.B/��

��

.X 3x;B/ enc?

Y
��

N
//

replace .X 3x;B/,�
.X 3x;B/! enc

(El to Nl : Lemmas 4.3, 7.1)

ii

X Q-factorial?

Y
��

N
// take Q-factorialization

uu

x closed?

Y
��

N
// surface caseX

(Lemma 5.1)

mld.X /D1?

N

��

Y
// cone theoremCcomplementX

(Theorem 5.2)

X terminal?

N

��

Y
// � finite?

Y
**

N
//

replace .X 3x;B/ and �
�!finite

(Cl to El : Theorem 5.7, Lemma 7.2)

pp

zX smooth?

N

��

Y
// show boundedness of index X

(Theorem 6.3)

uniform rational polytope+
construct weighted blow-upsX

(Theorem 5.6)

zX terminal?

N
��

Y
// classify enc singularitiesX

(Section 5.2)

mld. zX /D1

��

replace .X 3x;B/ and �
l! l � 1

(Nl�1 to Cl : Lemma 7.3)

II

Figure 1: Flowchart of the proofs of Theorems 1.4 and 1.6.

To prove (3), we may assume that l � 2. Let K zX C
zB be the pullback of KX CB. Then we may show

that

mld. zX ; zB/ 2 fa. zE; zX ; zB/� 1 j zE is exceptional over zX g � f2 mld.X;B/; : : : ; .l � 1/mld.X;B/g

and the latter is a finite set with cardinality l � 2. Thus we only need to show that mld. zX ; zB/ belongs to
an ACC set, which follows from Theorem Nl�1 as mld. zX ; zB/� 2 mld.X;B/ > 2

l
�

1
l�1

. This finishes
the proof of (3).

To summarize, we may show Theorems E, N, and C by induction on l . Now Theorems 1.4 and 1.6 follow
from Theorem N and [Han et al. 2022, Theorem 1.1].

The flowchart of Figure 1 may also help the reader.
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408 Jingjun Han and Jihao Liu

3 Preliminaries

We will freely use the notation and definitions from [Kollár and Mori 1998; Birkar et al. 2010].

3.1 Pairs and singularities

Definition 3.1 A contraction is a projective morphism f W Y !X such that f�OY DOX . In particular,
f is surjective and has connected fibers.

Definition 3.2 Let f W Y !X be a birational morphism, and Exc.f / the exceptional locus of f . We
say that f is a divisorial contraction of a prime divisor E if Exc.f /DE and �E is f -ample.

Definition 3.3 (pairs, see [Chen and Han 2020, Definition 3.2]) A pair .X=Z 3 z;B/ consists of a
contraction � WX !Z, a (not necessarily closed) point z 2Z, and an R-divisor B � 0 on X , such that
KX CB is R-Cartier over a neighborhood of z and dim z < dim X . If � is the identity map and z D x,
then we may use .X 3 x;B/ instead of .X=Z 3 z;B/. In addition, if B D 0, then we use X 3 x instead
of .X 3 x; 0/. When we consider a pair

�
X 3 x;

P
i biBi

�
, where Bi are distinct prime divisors and

bi > 0, we always assume that x 2 Supp Bi for each i .

If .X 3x;B/ is a pair for any codimension� 1 point x 2X , then we call .X;B/ a pair. A pair .X 3x;B/

is called a germ if x is a closed point. We also say X 3 x is a singularity if X 3 x is a germ.

Definition 3.4 (singularities of pairs) Let .X=Z 3 z;B/ be a pair associated with the contraction
� W X !Z, and let E be a prime divisor over X such that z 2 �.centerX E/. Let f W Y ! X be a log
resolution of .X;B/ such that centerY E is a divisor, and suppose that KY CBY D f

�.KX CB/ over a
neighborhood of z. We define a.E;X;B/ WD 1�multE BY to be the log discrepancy of E with respect
to .X;B/.

For any prime divisor E over X , we say that E is over X=Z 3 z if �.centerX E/D Nz. If � is the identity
map and z D x, then we say that E is over X 3 x. We define

mld.X=Z 3 z;B/ WD inffa.E;X;B/ jE is over Z 3 zg

to be the minimal log discrepancy (mld) of .X=Z 3 z;B/.

Let � be a nonnegative real number. We say that

.X=Z 3 z;B/ is lc (resp. klt, �-lc, �-klt) if mld.X=Z 3 z;B/� 0 (resp. > 0, � �, > �):

We say that .X;B/ is lc (resp. klt, �-lc, �-klt) if .X 3 x;B/ is lc (resp. klt, �-lc, �-klt) for any
codimension� 1 point x 2X .

We say that .X;B/ is canonical (resp. terminal, plt) if .X 3 x;B/ is 1-lc (resp. 1-klt, klt) for any
codimension � 2 point x 2X .

For any (not necessarily closed) point x 2X , we say that .X;B/ is lc (resp. klt, �-lc, canonical, terminal)
near x if .X;B/ is lc (resp. klt, �-lc, canonical, terminal) in a neighborhood of x. If X is lc (resp. klt,
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�-lc, canonical, terminal) near a closed point x, then we say that X 3 x is an lc (resp. klt, �-lc, canonical,
terminal) singularity. We remark that if .X 3 x;B/ is lc, then .X;B/ is lc near x.

We say that .X 3 x;B/ (resp. .X;B/) is strictly canonical if mld.X 3 x;B/D 1 (resp. mld.X;B/D 1).

Definition 3.5 Let a be a nonnegative real number, .X 3 x;B/ (resp. .X;B/) a pair, and D � 0 an
R-Cartier R-divisor on X . We define

a-lct.X 3 x;BID/ WD supf�1; t j t � 0; .X 3 x;BC tD/ is a-lcg�
resp. a-lct.X;BID/ WD supf�1; t j t � 0; .X;BC tD/ is a-lcg

�
to be the a-lc threshold of D with respect to .X 3 x;B/ (resp. .X;B/). We define

ct.X 3 x;BID/ WD 1-lct.X 3 x;BID/�
resp. ct.X;BID/ WD supf�1; t j t � 0; .X;BC tD/ is canonicalg

�
to be the canonical threshold of D with respect to .X 3 x;B/ (resp. .X;B/). We define

lct.X 3 x;BID/ WD 0-lct.X 3 x;BID/

.resp. lct.X;BID/ WD 0-lct.X;BID//

to be the lc threshold of D with respect to .X 3 x;B/ (resp. .X;B/).

Theorem 3.6 [Han et al. 2022, Theorem 1.6] Let a � 1 be a positive real number , and � � Œ0; 1�,
� 0 � Œ0;C1/ two DCC sets. Then the set of a-lc thresholds˚

a-lct.X 3 x;BID/ j dim X D 3; X is terminal; coeff.B/� �; coeff.D/� � 0
	
;

satisfies the ACC.

Theorem 3.7 [Han et al. 2022, Theorem 1.7; Chen 2022, Theorem 1.2] Let � � Œ0; 1� and � 0� Œ0;C1/
be two DCC sets. Then the set

CT.3; �; � 0/ WD
˚
ct.X;BID/ j dim X D 3; coeff.B/� �; coeff.D/� � 0

	
satisfies the ACC.

Definition 3.8 (1) Let .X;B/ be a pair. We say that .X;B/ is exceptionally noncanonical (enc for
short) if mld.X;B/ < 1, and the set

fE jE is exceptional over X; a.E;X;B/� 1g

contains a unique element.

(2) Let .X 3 x;B/ be a germ. We say that .X 3 x;B/ is exceptionally noncanonical (enc for short) if
.X;B/ is enc in a neighborhood of x and mld.X 3 x;B/Dmld.X;B/.

It is easy to see that any enc pair is automatically klt.

Lemma 3.9 Let .X;B/ be an enc pair. Then .X;B/ is klt.
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Proof Since .X;B/ is an enc pair, there exists an exceptional divisor over X . In particular, dim X � 2.
Let f W Y !X be a log resolution of .X;Supp B/ and write KY CBY WD f

�.KX CB/. If .X;B/ is not
klt, then there exists a component D of Supp BY such that multD BY � 1. Let H1;H2 be two general
hyperplane sections on Y . For each i 2 f1; 2g, let yi be the generic point of Hi \D and let Ei be the
exceptional divisor obtained by the blow-up of Y at yi . Then for each i 2 f1; 2g, Ei is exceptional over
X and

1� 2�multD BY � a.Ei ;Y;BY /D a.Ei ;X;B/;

which contradicts our assumption.

Theorem 3.10 [Kollár 1992, Theorem 18.22] Let
�
X 3 x;

Pm
iD1 biBi

�
be an lc germ such that Bi � 0

are Q-Cartier near x, bi � 0, and x 2 Supp Bi for each i . Then
Pm

iD1 bi � dim X .

Definition 3.11 Let S be a set. We define #S or jS j to be the cardinality of S .

3.2 Complements

Definition 3.12 Let n be a positive integer, �0� .0; 1� a finite set, and .X=Z 3 z;B/ and .X=Z 3 z;BC/

two pairs. We say that .X=Z 3 z;BC/ is an R-complement of .X=Z 3 z;B/ if

� .X=Z 3 z;BC/ is lc,

� BC � B, and

� KX CBC �R 0 over a neighborhood of z.

We say that .X=Z 3 z;BC/ is an n-complement of .X=Z 3 z;B/ if

� .X=Z 3 z;BC/ is lc,

� nBC � b.nC 1/fBgcC nbBc, and

� n.KX CBC/� 0 over a neighborhood of z.

We say that .X=Z 3 z;B/ is R-complementary (resp. n-complementary) if .X=Z 3 z;B/ has an R-
complement (resp. n-complement).

We say that .X=Z 3 z;BC/ is a monotonic n-complement of .X=Z 3 z;B/ if .X=Z 3 z;BC/ is an
n-complement of .X=Z 3 z;B/ and BC � B.

We say that .X=Z 3 z;BC/ is an .n; �0/-decomposable R-complement of .X=Z 3 z;B/ if there exists
a positive integer k, a1; : : : ; ak 2 �0, and Q-divisors BC

1
; : : : ;BC

k
on X , such that

�
Pk

iD1 ai D 1 and
Pk

iD1 aiB
C
i D BC,

� .X=Z 3 z;BC/ is an R-complement of .X=Z 3 z;B/, and

� .X=Z 3 z;BCi / is an n-complement of itself for each i .
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Theorem 3.13 [Han et al. 2024, Theorem 1.10] Let d be a positive integer and � � Œ0; 1� a DCC set.
Then there exists a positive integer n and a finite set �0 � .0; 1� depending only on d and � and satisfying
the following.

Assume that .X=Z 3 z;B/ is a pair of dimension d and coeff.B/ � � , such that X is of Fano type
over Z and .X=Z 3 z;B/ is R-complementary. Then .X=Z 3 z;B/ has an .n; �0/-decomposable
R-complement.

3.3 Threefold singularities

Lemma 3.14 [Kawamata 1988, Lemma 5.1] Let X 3 x be a terminal threefold singularity and I a
positive integer such that IKX is Cartier near x. Then ID is Cartier near x for any Q-Cartier Weil divisor
D on X .

Theorem 3.15 [Liu and Xiao 2021, Theorem 1.4; Jiang 2021, Theorem 1.3] Let X be a Q-Gorenstein
threefold. If mld.X / < 1, then mld.X /� 12

13
.

Definition 3.16 A weight vector is a vector w 2Qd
>0

for some positive integer d .

For any vector ˛ D .˛1; : : : ; ˛d / 2 Zd
�0

, we define x˛ WD x
˛1

1
� � �x

˛d

d
, and w.x˛/ WD

Pd
iD1wi˛i to

be the weight of x˛ with respect to w. For any analytic function 0 ¤ h WD
P

˛2Zd
�0

a˛x˛, we define
w.h/ WD minfw.x˛/ j a˛ ¤ 0g to be the weight of h with respect to w. If h D 0, then we define
w.h/ WD C1.

Definition 3.17 Let
�
X 3 x;B WD

Pk
iD1 biBi

�
be a threefold germ such that X is terminal, bi � 0, and

Bi � 0 are Q-Cartier Weil divisors. Let d; n, and m< d be positive integers, such that

.X 3 x/Š .�1 D � � � D �m D 0/� .Cd
3 o/=

1

n
.a1; : : : ; ad /

for some nonnegative integers a1; : : : ; ad and some semi-invariant irreducible analytic function �1 : : : ;�m2

Cfx1; : : : ;xdg such that multo �i>1 for each i , and the group action on Cd corresponding to 1
n
.a1; : : : ;ad /

is free outside o. By [Kawamata 1988, Lemma 5.1], Bi can be identified with�
.hi D 0/� .Cd

3 o/
ı 1

n
.a1; : : : ; ad /

�ˇ̌̌
X

for some semi-invariant analytic function hi 2 Cfx1; : : : ;xdg near x 2 X . We say that Bi is locally
defined by .hi D 0/ for simplicity. The set of admissible weight vectors of X 3 x is defined byn

1

n
.w1; : : : ; wd / 2

1

n
Zd
>0

ˇ̌
there exists b 2 Z such that wi � bai mod n, 1� i � d

o
:

For any admissible weight vector w D 1
n
.w1; : : : ; wd /, we define

w.X 3 x/ WD
1

n

dX
iD1

wi �

mX
iD1

w.�i/� 1; and w.B/ WD

kX
iD1

biw.hi/:

By construction, w.B/ is independent of the choices of bi and Bi .
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Let f 0 WW ! .Cd 3 o/=1
n
.a1; : : : ; ad / be the weighted blow-up at o with an admissible weight vector

w WD 1
n
.w1; : : : ; wd /, Y the strict transform of X on W , and E0 the exceptional locus of f 0. Let

f WD f 0jY and E WD E0jY . We say that f W Y ! X 3 x is a weighted blow-up at x 2 X and E is the
exceptional divisor of this weighted blow-up.

We will use the following well-known lemma frequently.

Lemma 3.18 (see [Mori 1985, the proof of Theorem 2; Hayakawa 1999, Section 3.9]) Settings as in
Definition 3.17. For any admissible weight vector w of X 3 x, let E be the exceptional divisor of the
corresponding weighted blow-up f W Y !X at x (see Definition 3.17). If E is a prime divisor , then

KY D f
�KX Cw.X 3 x/E; and f �B D BY Cw.B/E;

where BY is the strict transform of B on Y . In particular , a.E;X;B/D 1Cw.X 3 x/�w.B/.

4 On termination of flips

4.1 Proofs of Theorems 1.1 and 1.2

We need the following auxiliary lemma for induction purposes.

Lemma 4.1 Let d � 2 be a positive integer. We have the following.

(1) The ACC for (global ) mlds of enc pairs with finite coefficients in dimension d implies the ACC for
(global ) mlds of enc pairs with finite coefficients in dimension � d .

(2) The termination of Q-factorial terminal (resp. klt , lc) flips in dimension d implies the termination
of Q-factorial terminal (resp. klt , lc) flips in dimension � d .

Proof (1) It suffices to show that for any enc pair .X;B/, .X 0;B0/ WD .X �C;B �C/ is also an enc
pair, and mld.X 0;B0/D mld.X;B/. Let E be the unique exceptional prime divisor over X , such that
a.E;X;B/Dmld.X;B/ < 1. By [Kollár and Mori 1998, Proposition 2.36], there exists a log resolution
f W Y ! X of .X;B/, such that Supp B>0

Y
is log smooth, where KY CBY WD f

�.KX CB/. Then
multE BY D 1� a.E;X;B/ > 0. Let Y 0 WD Y �C, BY 0 WDBY �C, E0 DE �C, and f 0 WD f � idC .
Then f 0 W Y 0!X 0 is a log resolution of .X 0;B0/,

KY 0 CBY 0 D f
0�.KX 0 CB0/;

Supp B>0
Y 0

is log smooth, and multE0 BY 0 DmultE BY > 0.

Since .X;B/ is enc, for any point y0 on Y 0 such that y0¤E0 is exceptional over X 0, we have codim y0 >

multy0 BY 0 C 1. Thus by [Chen and Han 2020, Lemma 3.3],

mld.Y 0 3 y0;BY 0/D codim y0�multy0 BY 0 > 1:

In other words, E0 is the unique exceptional prime divisor over X 0 such that a.E0;X 0;B0/� 1. Hence
.X 0;B0/ is an enc pair, and mld.X 0;B0/D a.E0;X 0;B0/D a.E;X;B/Dmld.X;B/.
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(2) Let .X;B/ be a Q-factorial terminal (resp. klt, lc) pair, and

.X;B/ WD .X0;B0/Ü .X1;B1/Ü � � � .Xi ;Bi/Ü � � �

a sequence of flips. Let C be an elliptic curve. Then

.X �C;B �C / WD .X0 �C;B0 �C /Ü .X1 �C;B1 �C /Ü � � � .Xi �C;Bi �C /Ü � � �

is also a sequence of flips of dimension dim X C 1. Now (2) follows from our assumptions.

We will use the following notation in the proofs of Lemma 4.3 and Theorem 1.1.

Definition 4.2 Let .X;B/ be an lc pair. We define

D.X;B/�1 WD fE jE is exceptional over X; a.E;X;B/� 1g:

By [Kollár and Mori 1998, Proposition 2.36], D.X;B/ is a finite set when .X;B/ is klt.

The following lemma plays a key role in this section, and it will be applied to prove Theorems 1.1, 7.6,
and Lemma 7.1.

Lemma 4.3 Let d;N be two positive integers , and � � Œ0; 1� a DCC set. Let f.Xi ;Bi/g
1
iD1

be a
sequence of klt pairs of dimension d , and

�i WD fa.Ei ;Xi ;Bi/ jEi is exceptional over Xig\ Œ0; 1�:

Suppose that

� coeff.Bi/� � for each i ,

� 1� #�i �N for each i , and

�
S1

iD1 �i does not satisfy the ACC.

Then possibly passing to a subsequence , there exists a DCC set � 0 � Œ0; 1�, and a sequence f.X 0i ;B
0
i/g
1
iD1

of Q-factorial enc pairs of dimension d , such that

(1) coeff.B0i/� �
0 for each i ,

(2) fmld.X 0i ;B
0
i/g
1
iD1

is strictly increasing , and

(3) mld.X 0i ;B
0
i/�mld.Xi ;Bi/ for each i .

Moreover , if we further assume that � is a finite set and
S1

iD1 �i is a DCC set , then we may choose � 0 to
be a finite set.
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Proof Possibly passing to a subsequence we may assume that #�i D k � 1 for some positive integer
k �N . For each i , there exist positive integers r1;i ; : : : ; rk;i and real numbers fai;j gi�1;1�j�k , such that

D.Xi ;Bi/�1 D
˚
Ei;1;1; : : : ;Ei;1;r1;i

IEi;2;1; : : : ;Ei;2;r2;i
I : : : IEi;k;1; : : : ;Ei;k;rk;i

	
for some distinct exceptional prime divisors Ei;j ;l over Xi , ai;j D a.Ei;j ;l ;Xi ;Bi/� 1 for any i; j ; l ,
and fai;j gi�1;1�j�k does not satisfy the ACC. Possibly reordering indices and passing to a subsequence,
we may assume that there exists 1� j0 � k, such that

� ai;j is strictly increasing for any 1� j � j0, and

� ai;j is decreasing for any j0C 1� j � k.

Let fi W Yi!Xi be a birational morphism which extracts exactly the set of divisors

Fi WD fEi;j ;lgj0C1�j�k;1�l�rj ;i

and let KYi
CBYi

WD f �i .KXi
CBi/. Since ai;j is decreasing for any j0C1� j � k, the coefficients of

BYi
belong to the DCC set z� WD�[f1�ai;j gj0C1�j�k . By construction, D.Yi ;BYi

/�1DD.Xi ;Bi/nFi ,
and D.Yi ;BYi

/�1 is a nonempty set as Ei;1;1 2D.Yi ;BYi
/�1.

Let aj WD limi!C1 ai;j for any 1 � j � j0. By [Liu 2018, Lemma 5.3], for each i , there exist
1� ji � j0 and 1� li � rji ;i , and a birational morphism gi WX

0
i ! Yi which extracts exactly all divisors

in D.Yi ;BYi
/�1 except Ei;ji ;li

, such that X 0i is Q-factorial andX
1�j�j0;1�l�rj ;i ; .j ;l/¤.ji ;li /

.aj � ai;j /multEi;ji ;li
Ei;j ;l < aji

� ai;ji
:

Let BX 0
i
WD .g�1

i /�BYi
C
P

1�j�j0;1�l�rj ;i ; .j ;l/¤.ji ;li /
.1 � aj /Ei;j ;l . Then the coefficients of BX 0

i

belong to the DCC set � 0 WD z� [f1� aj g1�j�j0
. Moreover, if � is a finite set and

S1
iD1 �i is a DCC

set, then � 0 is a finite set.

By construction, .X 0i ;BX 0
i
/ is enc and mld.Xi ;Bi/� ai;ji

� a.Ei;ji ;li
;X 0i ;BX 0

i
/ < aji

� 1. Thus

ai;ji
� a.Ei;ji ;li

;X 0i ;BX 0
i
/Dmld.X 0i ;BX 0

i
/ < aji

� 1:

Possibly passing to a subsequence, we may assume that ji D j1 is a constant. Since ai;j1
is strictly

increasing for each i , fmld.X 0i ;BX 0
i
/ j i 2 Z�1g is not a finite set. Possibly passing to a subsequence, we

may assume that fmld.X 0i ;BX 0
i
/g1

iD1
is strictly increasing.

Proof of Theorem 1.1 First, we prove the case of klt flips in dimension d . Let

.X;B/ WD .X0;B0/ //

##

.X1;B1/ //

{{

� � � // .Xi ;Bi/ //

##

.XiC1;BiC1/ //

xx

� � �

Z0 Zi
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be a sequence of klt flips of dimension d . Since a.E;Xi ;Bi/� a.E;Xj ;Bj / for any i � j and any prime
divisor E over X , possibly truncating to a subsequence, we may assume that there exist exceptional prime
divisors E1; : : : ;Ek over X , such that D.Xi ;Bi/�1 D D.X;B/�1 D fE1; : : : ;Ekg for any i . Then
fa.El ;Xi ;Bi/ j 1� l �kg1

iD1
is a DCC set and the coefficients of Bi belong to a finite set. By Lemma 4.3

and the ACC for (global) mlds of enc pairs with finite coefficients, fa.El ;Xi ;Bi/ j 1� l � kg1
iD1

satisfies
the ACC. It follows that fa.El ;Xi ;Bi/ j 1 � l � kg1

iD1
is a finite set. Thus possibly truncating to a

subsequence, we may assume that a.El ;Xi ;Bi/D a.El ;Xj ;Bj / for any i; j .

Let f0 W Y0!X0 be the birational morphism which extracts exactly E1; : : : ;Ek for each i such that Y0

is Q-factorial, and let KY0
CBY0

WD f �
0
.KX0

CB0/. We claim that we may construct a sequence of
Q-factorial terminal flips on KY0

CBY0
. Suppose that we have constructed .Yi ;BYi

/ with fi W Yi!Xi

such that KYi
C BYi

WD f �i .KXi
C Bi/, and .Y0;BY0

/ Ü .Y1;BY1
/ � � �Ü .Yi ;BYi

/ consists of a
sequence of terminal flips on KY0

C BY0
. By [Birkar et al. 2010, Corollary 1.4.3], we may run a

.KYi
CBYi

/-MMP over Zi which terminates with a minimal model .YiC1;BYiC1
/. Since .XiC1;BiC1/

is the log canonical model of .Yi ;BYi
/ over Zi , there exists an induced morphism fiC1 W YiC1!XiC1,

such that KYiC1
CBYiC1

WD f �
iC1

.KXiC1
CBiC1/. Since a.El ;Xi ;Bi/D a.El ;XiC1;BiC1/ for any l ,

El is not contracted in the MMP Yi Ü YiC1, and Yi Ü YiC1 only consists of a sequence of flips. Thus
we finish the proof of the claim by induction. Now the termination follows from the termination of flips
for Q-factorial terminal pairs.

Finally, we prove the general case. By Lemma 4.1, assumptions in Theorem 1.1 also hold for � d �1. So
we may do induction on d , and assume that any sequence of lc flips in dimension � d�1 terminates. Now
the termination follows from the klt case and the special termination (see [Shokurov 2004, Corollary 4;
Fujino 2007; Chen and Tsakanikas 2023, Lemma 2.17(1); Han and Li 2022]).

Proof of Theorem 1.2 This follows from Theorem 1.1 and the termination of canonical fourfold flips
[Fujino 2004]. Note that [Fujino 2004] only deals with the Q-coefficients case but the same argument
works for the R-coefficients case.

4.2 Proof of Theorem 1.3

Lemma 4.4 Let .X;B/ be a pair. Then the set

fmld.X 3 x;B/ j x 2X g

is finite. In particular , minx2S mld.X 3 x;B/ is well-defined for any subset S of X .

Proof Let f W Y !X be a log resolution of .X;B/, and KY CBY WD f
�.KX CB/. Then

fmld.X 3 x;B/ j x 2X g � fmld.Y 3 y;BY / j y 2 Y g;

and the latter is a finite set by [Chen and Han 2020, Lemma 3.3].
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Definition 4.5 ([see Fulton 1984, Examples 19.1.3–19.1.6; Kollár 1996, Chapter II.(4.1.5)]) Let X

be a reduced projective scheme and let k be a nonnegative integer. We denote by Zk.X /Q the group
of k-dimensional algebraic cycles on X with rational coefficients. All cycles which are numerically
equivalent to zero form a subgroup of Zk.X /Q, and we denote by Nk.X /Q the quotient group. Then
Nk.X /Q is a finite-dimensional Q-vector space.

Lemma 4.6 Let k be a positive integer , and f WX Ü Y a dominant rational map of reduced projective
schemes. Suppose that f induces a birational map on each irreducible component of X and Y , and f �1

does not contract any k-dimensional subvariety of Y . Then

(1) dim Nk.X /Q � dim Nk.Y /Q, and

(2) if f contracts some k-dimensional subvariety of X , then dim Nk.X /Q > dim Nk.Y /Q.

Proof (1) This follows from the fact that f� WNk.X /Q!Nk.Y /Q is surjective.

(2) Let W �X be a subvariety of dimension k which is contracted by f . Then the cycle ŒW � satisfies
ŒW � 6� 0 in Zk.X /Q, f�ŒW �� 0 in Zk.Y /Q, and (2) is proved.

Shokurov proved that the ACC and the LSC conjectures for mlds imply the termination of flips [Shokurov
2004]. The following slightly stronger result actually follows from similar arguments as his proof. For
the reader’s convenience, we give a proof in details here.

Theorem 4.7 Let d be a positive integer , a a nonnegative real number , and � � Œ0; 1� a finite set.
Suppose that

(1) the set of mlds˚
mld.X 3 x;B/ jmld.X;B/ > a .resp:� a/; dim X D d; coeff.B/� �

	
satisfies the ACC , and

(2) for any pair .X;B/ of dimension d such that mld.X;B/ > a (resp. � a),

x!mld.X 3 x;B/

is lower-semicontinuous for closed points x.

Then for any pair .X;B/ with dim X D d and mld.X;B/ > a (resp. � a), any sequence of .KXCB/-flips
terminates.

Proof Step 1 In this step, we introduce some notation. Suppose that there exists an infinite sequence of
.KXCB/-flips,

.X;B/ WD .X0;B0/
f0Ü .X1;B1/

f1Ü � � � .Xi�1;Bi�1/
fi�1Ü .Xi ;Bi/

fiÜ .XiC1;BiC1/ � � � :
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For each i � 0, denote by �i W Xi ! Zi and �Ci W XiC1 ! Zi the corresponding flip contraction and
flipped contraction between quasiprojective normal varieties, respectively. Let

ai WD min
xi2Exc.�i /

mld.Xi 3 xi ;Bi/; and ˛i WD inffaj j j � ig:

There exists an exceptional prime divisor Ei over Xi , such that ai D a.Ei ;Xi ;Bi/, and centerXi
Ei �

Exc.�i/. We note that ai > a (resp. ai � a) as mld.Xi ;Bi/�mld.X;B/ and codim Exc.�i/� 2.

Step 2 In this step, for each i � 0, we show that ˛i D ani
for some ni � i .

For each i �0, let ˛l
i WDminfaj j i �j � lg for l� i . For each l� i , there exist i � il � l and an exceptional

prime divisor Eil
over Xil

, such that ail
D ˛l

i D a.Eil
;Xil

;Bil
/, and centerXil

Eil
� Exc.�il

/. Suppose
that ˛i ¤˛

l
i for any l � i , then there are infinitely many l � iC1, such that il > il�1. For each such l , and

any i � j < il , we have centerXj Eil
62 Exc.�j /, otherwise a.Eil

;Xj ;Bj / < a.Eil
;Xil

;Bil
/D ˛l

i � aj ,
which contradicts the definition of aj . Thus mld.Xi 3xi;il

;Bi/D a.Eil
;Xi ;Bi/D a.Eil

;Xil
;Bil

/D ail
,

where xi;il
D centerXi

Eil
. In particular, fmld.Xi 3 xi;il

;Bi/ j l � ig is an infinite set which contradicts
Lemma 4.4. Thus ˛i D ani

for some ni � i .

Step 3 In this step, we show that possibly passing to a subsequence of flips, there exists a nonnegative
real number a0 > a (resp. a0 � a), such that

� ai � a0 for any i � 0, and

� ai D a0 for infinitely many i .

Since mld.Xi ;Bi/�mld.X;B/ > a (resp. mld.Xi ;Bi/�mld.X;B/� a) for any i , by Step 2 and (1),

f˛i j i 2 Z�0g D fani
j i 2 Z�0g

is a finite set. In particular, there exist a nonnegative integer N , and a unique nonnegative real number
a0 > a (resp. a0 � a), such that ani

� a0 for any i �N , and ani
D a0 for infinitely many i .

Step 4 In this step, we construct k;Si ;Wi , and show some properties.

Possibly passing to a subsequence, we may assume there exists a nonnegative integer k satisfying the
following:

� For any i , any point xi 2 Exc.�i/ with .Xi 3 xi ;Bi/D a0 satisfies dim xi � k.

� For infinitely many i , there exists a k-dimensional point xi 2 Exc.�i/ such that .Xi 3 xi ;Bi/D a0.

Let Si be the set of the k-dimensional points xi 2 Xi with mld.Xi 3 xi ;Bi/ � a0, and Wi � Xi the
Zariski closure of Si . Then by (2) and [Ambro 1999, Proposition 2.1], any k-dimensional point xi 2Wi

belongs to Si .

Step 5 In this step, we prove that fi induces

� a bijective map Si nExc.�i/! SiC1, and

� a dominant morphism f 0i WWi nExc.�i/!WiC1.
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It suffices to show the first assertion as the second one follows from the first one.

For any xi 2 Si nExc.�i/, fi.xi/ 2 SiC1 as

mld.XiC1 3 fi.xi/;BiC1/Dmld.Xi 3 xi ;Bi/� a0:

For any xiC1 2 SiC1, suppose that xiC1 2 Exc.�Ci /. Then

min
xi2Exc.�i /

mld.Xi 3 xi ;Bi/ <mld.XiC1 3 xiC1;BiC1/� a0;

contradicting Step 3. It follows that xiC1 62Exc.�Ci / and fi induces a bijective map Si nExc.�i/!SiC1.

Step 6 In this step, we derive a contradiction, and finish the proof.

By Step 5, the number of the irreducible components of Wi is nonincreasing. Thus possibly passing to a
subsequence, we may assume that fi induces a birational map on each irreducible component of Wi . On
the one hand, by Step 5 and Step 4, f �1

i does not contract any k-dimensional subvariety of WiC1. On the
other hand, by construction of k in Step 4, there exist infinitely many i such that mld.Xi 3 xi ;Bi/D a0

for some k-dimensional point xi 2 Exc.�i/. For such i and xi , by Step 5, xi 2Wi is contracted by fi ,
which contradicts Lemma 4.6.

Theorem 4.8 (Theorem 1.3) Let d be a positive integer. Assume that

(1) the ACC for mlds of terminal pairs with finite coefficients in dimension d , ie˚
mld.X 3 x;B/ jmld.X;B/ > 1; dim X D d; coeff.B/� �

	
satisfies the ACC for any finite set � , and

(2) the LSC for mlds of terminal pairs in dimension d , ie for any pair .X;B/ of dimension d such that
mld.X;B/ > 1,

x!mld.X 3 x;B/

is lower-semicontinuous for closed points x.

Then any sequence of terminal flips in dimension d terminates. Moreover , if we additionally assume that
Conjecture 1.9(20) holds in dimension d , then any sequence of lc flips in dimension � d terminates.

Proof This follows from Theorem 4.7 when aD 1 and Theorem 1.1.

Remark 4.9 Generalized pairs, introduced in [Birkar and Zhang 2016], have become central topics in
birational geometry in recent years. By [Hacon and Liu 2023], we can run MMPs for any Q-factorial lc
generalized pair. Therefore, studying the termination of flips for generalized pairs is also intriguing. It is
important to note that the proofs in this section are expected to work for generalized pairs as well. For
instance, [Chen et al. 2024, Theorem 4.8] provides a proof of Theorem 4.7 for generalized pairs when
aD 0. Consequently, we anticipate that Theorems 1.1, 1.2, and 1.3 will also apply to generalized pairs by
using similar arguments to those in this section. For the sake of brevity and the reader’s convenience, we
omit the detailed proofs here.
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5 Theorems 1.4 and 1.6 for canonical threefolds

In this section, we prove Theorem 1.4 when X is canonical.

We first prove Theorem 1.4 when .X;B/ is noncanonical in codimension 2. More precisely, we have:

Lemma 5.1 Let � � Œ0; 1� be a DCC set. Assume that .X;B/ is an enc pair of dimension 3 and E a
prime divisor over X , such that

(1) coeff.B/� � ,

(2) dim centerX E D 1, and

(3) a.E;X;B/� 1.

Then mld.X;B/ belongs to an ACC set.

Proof Since .X;B/ is enc, a.E;X;B/Dmld.X;B/. Let C WD centerX E, H a general hyperplane on
X which intersects C , and KH CBH WD .KX CBCH /jH . Then the coefficients of BH belong to a
DCC set. By [Kollár and Mori 1998, Lemma 5.17(1)],

mld.H;BH /�mld.X;BCH /� a.E;X;BCH /D a.E;X;B/Dmld.X;B/:

By [Birkar et al. 2010, Corollary 1.4.5], a.E;X;BCH /�mld.H;BH /. Thus mld.H;BH /Dmld.X;B/.
By [Alexeev 1993, Theorem 3.8], mld.H;BH / belongs to an ACC set, hence mld.X;B/ belongs to an
ACC set.

5.1 Strictly canonical threefolds

In this subsection, we prove Theorem 1.4 when X is strictly canonical. More precisely, we have:

Theorem 5.2 Let � � Œ0; 1� be a DCC set. Then˚
mld.X 3 x;B/ j dim X D 3; .X 3 x;B/ is enc; X is strictly canonical; coeff.B/� �

	
satisfies the ACC.

Proof Suppose that the statement does not hold. Then there exists a sequence of enc pairs .Xi 3 xi ;Bi/

of dimension 3, such that

� mld.Xi/D 1, and

� ai WDmld.Xi 3 xi ;Bi/ is strictly increasing.

Possibly taking a small Q-factorialization, we may assume that Xi is Q-factorial. By Lemma 5.1, we
may assume that xi is a closed point for each i .
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Let Ei be the unique prime divisor that is exceptional over Xi such that a.Ei ;Xi ;Bi/ � 1. Then
a.Ei ;Xi ;Bi/ D mld.Xi 3 xi ;Bi/ D ai and centerXi

Ei D xi . For any prime divisor Fi ¤ Ei that is
exceptional over Xi , a.Fi ;Xi ; 0/� a.Fi ;Xi ;Bi/ > 1. Since Xi is strictly canonical, a.Ei ;Xi ; 0/D 1.

By Theorem 3.13, there exists a positive integer n and a finite set �0 � .0; 1� depending only on � ,
such that for any i , there exists an .n; �0/-decomposable R-complement .Xi 3 xi ;B

C
i / of .Xi 3 xi ;Bi/.

Possibly passing to a subsequence, we may assume that there exists a positive real number a, such that
a.Ei ;Xi ;B

C
i /D a for any i . Since ai is strictly increasing and aD a.Ei ;Xi ;B

C
i /� a.Ei ;Xi ;Bi/D ai ,

possibly passing to a subsequence, we may assume that there exists a positive real number ı, such that
ai � a> ı for any i .

Let fi W Yi ! Xi be the divisorial contraction which extracts Ei , and let BYi
and BC

Yi
be the strict

transforms of Bi and BCi on Yi respectively. Then

KYi
CBYi

C .1� ai/Ei D f
�

i .KXi
CBi/:

By the length of extremal rays, there exists a .KYi
CBYi

C.1�aC/Ei/-negative extremal ray Ri over a
neighborhood of xi which is generated by a rational curve Ci , such that

0> .KYi
CBYi

C .1� a/Ei/ �Ci � �6

(see [Fujino 2017, Theorem 4.5.2(5)]). Since .KYi
CBYi

C .1� ai/Ei/ �Ci D 0, we have

0< .ai � a/.�Ei �Ci/� 6:

Thus
0< .�Ei �Ci/ <

6

ı
:

By [Kawakita 2015b, Theorem 1.1], 60KYi
is Cartier over a neighborhood of xi . Since Xi is enc, Yi is

terminal. By Lemma 3.14, 60Di is Cartier over a neighborhood of xi for any Weil divisor Di on Yi . In
particular, �Ei �Ci belongs to the finite set 1

60
Z�1\

�
0; 6
ı

�
.

We may write Bi D
P

j bi;j Bi;j , where Bi;j are the irreducible components of Bi , and let BYi ;j be the
strict transform of Bi;j on Yi for each i; j . Then BYi ;j �C 2

1
60

Z�0 for every i; j . Since KYi
D f �i KXi

,
KYi
�Ci D 0. Thus

a.Ei ;Xi ;Bi/D 1�
.KYi

CBYi
/ �Ci

.�Ei �Ci/
D 1�

X
j

bi;j

.BYi ;j �Ci/

.�Ei �Ci/
:

Since bi;j 2 � , a.Ei ;Xi ;Bi/ belongs to an ACC set, this leads to a contradiction.

5.2 Terminal threefolds

In this subsection, we study Theorem 1.4 when X is terminal. At the moment, we cannot prove
Theorem 1.4 in full generality, but we can prove the finite coefficient case, and reduce the DCC coefficient
case to the finite coefficient case (but possibly losing the condition that X is terminal).
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Lemma 5.3 Let I be a positive integer and � � Œ0; 1� be a DCC set. Assume that .X 3 x;B/ is a
threefold pair , such that

(1) X is terminal ,

(2) coeff.B/� � ,

(3) .X 3 x;B/ is enc , and

(4) IKX is Cartier near x.

Then mld.X 3 x;B/ belongs to an ACC set.

Proof Possibly replacing X with a small Q-factorialization, we may assume that X is Q-factorial. By
Lemma 5.1, we may assume that x is a closed point.

Suppose that the statement does not hold. By Theorem 3.10, there exist a nonnegative integer m, a real
number a 2 .0; 1�, a strictly increasing sequence of real numbers ai 2 .0; 1� such that limi!C1 ai D a,
and a sequence of Q-factorial threefold germs

�
Xi 3 xi ;Bi D

Pm
jD1 bi;j Bi;j

�
, such that for any i ,

� .Xi 3 xi ;Bi/ is enc and Xi is terminal,

� bi;j 2 � for any j ,

� mld.Xi 3 xi ;Bi/D ai ,

� Bi;1; : : : ;Bi;m are the irreducible components of Bi ,

� xi 2 Supp Bi;j for any j , and

� IKXi
is Cartier near xi .

Possibly passing to a subsequence, we may assume that bi;j is increasing for any fixed j , and let
bj WD limi!C1 bi;j . We let Bi WD

Pm
jD1 bj Bi;j for each i . By [Hacon et al. 2014, Theorem 1.1],

possibly passing to a subsequence, we may assume that .Xi 3 xi ;Bi/ is lc for each i .

Since .Xi 3 xi ;Bi/ is enc, we may let Ei be the unique prime divisor over Xi 3 xi which computes
mld.Xi 3xi ;Bi/. By Lemma 3.14 and [Nakamura 2016, Theorem 1.2], possibly passing to a subsequence,
we may assume that a0 WD a.Ei ;Xi ;Bi/� 0 is a constant, and we may pick a strictly decreasing sequence
of real numbers �i , such that .1C �i/Bi � Bi ¤ Bi for each i and limi!C1 �i D 0. Therefore,

a0 D a.Ei ;Xi ;Bi/ < a.Ei ;Xi ;Bi/D ai < a;

and
lim

i!C1
�i multEi

Bi � lim
i!C1

.a.Ei ;Xi ;Bi/� a.Ei ;Xi ;Bi//D a� a0 > 0:

Hence limi!C1multEi
Bi D C1. Let ti WD ct.Xi 3 xi ; 0IBi/. Since .Xi 3 xi ;Bi/ is enc and

a.Ei ;Xi ;Bi/ < 1, we have that ti < 1. By [Han et al. 2022, Lemma 2.12(1)], a.Ei ;Xi ; tiBi/ D 1

for each i . Since

1D a.Ei ;Xi ; tiBi/D a.Ei ;Xi ;Bi/� .1� ti/multEi
Bi < a� .1� ti/multEi

Bi ;
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we have
1> ti > 1�

a� 1

multEi
Bi
:

Thus limi!C1 ti D 1 and ti < 1 for each i , which contradicts Theorem 3.6.

Definition 5.4 Let .X 3 x;B/ be an lc germ. A terminal blow-up of .X 3 x;B/ is a birational morphism
f W Y !X which extracts a prime divisor E over X 3 x, such that a.E;X;B/Dmld.X 3 x;B/, �E

is f -ample, and Y is terminal.

Lemma 5.5 [Han et al. 2022, Lemma 2.35] Let .X 3 x;B/ be a germ such that X is terminal and
mld.X 3 x;B/D 1. Then there exists a terminal blow-up f W Y !X of .X 3 x;B/. Moreover , if X is
Q-factorial , then Y is Q-factorial.

Theorem 5.6 Let � � Œ0; 1� be a finite set. Then˚
mld.X 3 x;B/ j dim X D 3; .X 3 x;B/ is enc; X is terminal; coeff.B/� �

	
satisfies the ACC.

Proof Step 1 We construct some functional pairs in this step.

Possibly replacing X with a small Q-factorialization, we may assume that X is Q-factorial. By Lemma 5.1,
we may assume that x is a closed point. By Lemmas 5.1 and 5.3, we may assume that X 3 x is a cA=n

type singularity for some positive integer n� 3. Let E be the unique prime divisor over X 3 x such that
mld.X 3 x;B/D a.E;X;B/.

Let t WD ct.X 3 x; 0IB/. By Theorem 3.6, there exists a positive real number �0 depending only on � ,
such that t � 1� �0.

By our assumptions and [Han et al. 2024, Theorem 5.6], there exist two positive integers l;m, real numbers
1; v1

0
; : : : ; vl

0
that are linearly independent over Q, v0 WD .v

1
0
; : : : ; vl

0
/ 2 Rl , an open set U 3 v0 of Rl ,

and Q-linear functions s1; : : : ; sm WRlC1!R depending only on � , and Weil divisors B1; : : : ;Bm � 0

on X , such that:

(1) si.1; v0/ > 0 and x 2 Supp Bi for each 1� i �m.

(2) Let B.v/ WD
Pm

iD1 si.1; v/B
i for any v 2 Rl . Then B.v0/D B and .X 3 x;B.v// is lc for any

v 2 U .

(3) Possibly shrinking U , we may assume that
�
1C �0

2

�
B � B.v/�

�
1� �0

2

�
B for any v 2 U .

We may pick vectors v1; : : : ; vlC1 2U \Ql and real numbers b1; : : : ; blC1 2 .0; 1� depending only on � ,
such that

PlC1
iD1 bi D 1 and

PlC1
iD1 bivi D v0. We let Bi WDB.vi/ for each i . Then there exists a positive

integer M depending only on � , such that MBi is integral for any i .
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Let ti WD ct.X 3 x; 0IBi/ for each i . By [Han et al. 2022, Lemma 2.12(2)], mld.X 3 x; tiBi/D 1. Since
Bi �

�
1� �0

2

�
B and t � 1� �0, we have

ti �
1� �0

1� �0

2

< 1:

Thus
B �

1� �0

1� �0

2

�
1C

�0

2

�
B �

1� �0

1� �0

2

Bi � tiBi :

Since .X 3 x;B/ is enc, a.E;X; tiBi/ D 1 and a.F;X; tiBi/ > 1 for any prime divisor F ¤ E over
X 3 x.

Step 2 Construct divisorial contractions.

By Lemma 5.5, there exists a terminal blow-up f W Y ! X of .X 3 x; tiBi/ which extracts a prime
divisor E over X 3 x. By [Kawakita 2005, Theorem 1.3], f is of ordinary type as n� 3. By [Han et al.
2022, Theorem 2.31(1)], we may take suitable local coordinates x1;x2;x3;x4 of C4, an analytic function
� 2Cfx1;x2;x3;x4g, and positive integers r1; r2; a; b and d satisfying

� gcd.b; n/D 1,

� .X 3 x/Š .�.x1;x2;x3;x4/D 0/� .C4 3 o/=1
n
.1;�1; b; 0/,

� � is semi-invariant under the group action

� WD .x1;x2;x3;x4/! .�x; ��1x2; �
bx3;x4/;

where � D e2�i=n,

� f is a weighted blow-up at x 2X with the weight vector w WD 1
n
.r1; r2; a; n/,

� a� br1 mod n, gcd..a� br1/=n; r1/D 1, r1C r2 D adn,

� �.x1;x2;x3;x4/D x1x2Cg.xn
3
;x4/, and

� zdn 2 g.xn
3
;x4/ and w.�/D adn.

There are two cases:

Case 1 d � 4 or a� 4.

Case 2 d � 3 and a� 3.

Step 3 In this step we deal with Case 1, that is, the case when d � 4 or a� 4. In this case, we can pick
three positive integers r 0

1
; r 0

2
and a0, such that

� r 0
1
C r 0

2
D a0dn,

� a0 � br 0
1

mod n,

� r 0
1
; r 0

2
> n, and

�
1
n
.r 0

1
; r 0

2
; a0; n/¤ 1

n
.r1; r2; a; n/.

In fact, when a� 4, we may take a0 D 3. When d � 4, we may take a0 D 1 and .r 0
1
; r 0

2
/¤ .r1; r2/.
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Let w0 WD 1
n
.r 0

1
; r 0

2
; a0; n/. Since a� a0, by [Han et al. 2022, Lemma C.7], the weighted blow-up with the

weight vector w0 at x 2X under analytic local coordinates x1;x2;x3;x4 extracts an exceptional prime
divisor E0 ¤E, such that w0.X 3 x/D a0=n. By our assumptions,

a.E0;X;B/D 1C
a0

n
�

lC1X
iD1

biw
0.Bi/ > 1;

hence
PlC1

iD1 biw
0.Bi/ < a0=n. Since MBi is integral for each i and x 2 Supp Bi , w0.Bi/ 2

1
Mn

Z�1 for
each i .

Let b0 WD minfbi j i D 1; 2; : : : ; l C 1g. By Lemma 5.3, we may assume that n > 3M=0. Since MBi

a Weil divisor, MBi D .hi D 0/� C4=1
n
.1;�1; b; 0/ for some analytic function hi . Since w0.x1/ > 1,

w0.x2/ > 1, w0.x4/ D 1, a0 � 3, bi � b0, and n > 3M=0, for each i , there exists a positive integer
1� pi <Ma0=0, such that x

pi

3
2 hi and w0.xpi

3
/D w0.hi/D pia

0=n, and

lC1X
iD1

bi
pia
0

M n
D

lC1X
iD1

biw
0.Bi/ <

a0

n
:

In particular,
PlC1

iD1 bipi=M < 1. We have

w.B/D

lC1X
iD1

biw.Bi/D

lC1X
iD1

bi

M
w.hi/�

lC1X
iD1

bi

M
w.x

pi

3
/D

lC1X
iD1

bipi

M
�
a

n
<

a

n
;

hence a.E;X;B/D a.E;X; 0/�multE B D 1C a
n
�w.B/ > 1, a contradiction.

Step 4 In this step, we deal with Case 2, that is, the case when d � 3 and a � 3, hence we conclude
the proof. In this case, since a � br1 mod n and gcd.b; n/ D 1, gcd.r1; n/ D gcd.a; n/ � a � 3, so
gcd.r1; n/j6. Since r1C r2 D adn,

gcd.r1; r2/D gcd.r1; adn/jad gcd.r1; n/j216:

Since MBi is a Weil divisor, nMBi is Cartier near x. Thus
a

n
D a.E;X; 0/� a.E;X; tiBi/D ti multE Bi D

ti

nM
multE nMBi 2

ti

nM
Z�1;

which implies that aM=ti 2 Z�1. Then .aM=ti/.KX C tiBi/ is a Weil divisor for any i , by [Han et al.
2022, Lemma 5.3], .216aM=ti/.KX C tiBi/ is Cartier near x.

By [Shokurov 1993, 4.8 Corollary], there exists a prime divisor E0¤E over X 3x such that a.E0;X; 0/D

1C a0

n
for some integer a0 2f1; 2g. Since .216aM=ti/.KXCtiBi/ is Cartier near x and a.E0;X; tiBi/>1

for any i , there exists a positive integer ki such that

a.E0;X; tiBi/D 1C
ki ti

216aM
:

Thus
multE0 Bi D

1

ti
.a.E0;X; 0/� a.E0;X; tiBi//D

a0

nti
�

ki

216aM
:
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Since M nBi is Cartier near x and x 2 Supp Bi , there exist positive integers a0i , such that multE0 Bi D

a0i=.M n/. Since
�
X 3 x;B D

PlC1
iD1 biBi

�
is enc and a.E;X;B/ < 1, a.E0;X;B/ > 1, hence

(5-1)
PlC1

iD1 bia
0
i

M n
DmultF B <

a0

n
:

Thus the a0i belong to a finite set depending only on � .

Since a.E;X; 0/D 1C a
n

and a.E;X; tiBi/D 1, multE Bi D a=.nti/. Thus

a.E;X;Bi/D a.E;X; 0/�multE Bi D 1C
a

n
�

a

nti
:

Since .X 3 x;Bi/ is lc, a.E;X;Bi/ > 0, so

nti >
a

1C a
n

D
1

1
a
C

1
n

>
1

2
;

and we have a0=.nti/ < 2a0. Since

(5-2)
a0

nti
�

ki

216aM
DmultE0 Bi D

a0i
nM

and each ki is a positive integer, the ki belong to a finite set depending only on � . By (5-1) and (5-2), we
have

a0
� lC1X

iD1

bi

nti
�

1

n

�
�

lC1X
iD1

kibi

216Ma
D

lC1X
iD1

�
bia
0

nti
�

biki

216Ma

�
�

a0

n
D

� lC1X
iD1

bia
0
i

M n

�
�

a0

n
< 0:

Since a0; ki ; bi ;M; a; a0i belong to a finite set depending only on � ,

lC1X
iD1

bia
0
i

M n
�

a0

n
D�

1

n

�
a0�

lC1X
iD1

bia
0
i

M

�

belongs to a DCC set depending only on � , and
PlC1

iD1 bi=.nti/�
1
n

also belongs to a DCC set depending
only on � . Since

multE Bi D
1

ti
.a.E;X; 0/� a.E;X; tiBi//D

1

ti

�
1C

a

n
� 1

�
D

a

nti
;

we have

mld.X 3 x;B/D a.E;X;B/D a.E;X; 0/�multE B D a.E;X; 0/�

lC1X
iD1

bi multE Bi

D 1C
a

n
�

lC1X
iD1

abi

nti
D 1� a

� lC1X
iD1

bi

nti
�

1

n

�
:

Thus mld.X 3 x;B/ belongs to an ACC set depending only on � .
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Theorem 5.7 Let � 2 .0; 1/ be a positive real number. Suppose that˚
mld.X 3 x;B/ j dim X D 3; coeff.B/� �0; .X 3 x;B/ is Q-factorial enc

	
\ Œ�; 1�

satisfies the ACC for any finite set �0 � Œ0; 1�. Then for any DCC set � � Œ0; 1�,˚
mld.X 3 x;B/ j dim X D 3; X is terminal; coeff.B/� �; .X 3 x;B/ is enc

	
\ Œ�; 1�

satisfies the ACC.

Proof Possibly replacing X with a small Q-factorialization, we may assume that X is Q-factorial.
Suppose that the statement does not hold. By Theorem 3.10, there exist a positive integer m, a real
number a, a strictly increasing sequence of real numbers ai , and a sequence of Q-factorial enc threefold
pairs

�
Xi 3 xi ;Bi D

Pm
jD1 bi;j Bi;j

�
, such that for any i ,

� bi;j 2 � , and Bi;j � 0 are Weil divisors for any j ,

� for any fixed j , bi;j is increasing,

� mld.Xi 3 xi ;Bi/D ai , and

� limi!C1 ai D a 2 .�; 1�.

By [Han et al. 2022, Theorem 1.1], a < 1. Let bj WD limi!C1 bi;j and Bi WD
Pm

jD1 bj Bi;j . By
[Hacon et al. 2014, Theorem 1.1], possibly passing to a subsequence, we may assume that .Xi 3 xi ;Bi/

is lc for each i . Let ti WD ct.Xi 3 xi IBi/ and Ei the unique prime divisor over Xi 3 xi such that
a.Ei ;Xi ;Bi/ < 1. Then a.Ei ;Xi ;Bi/D ai . By [Han et al. 2022, Lemma 2.12(1)], a.Ei ;Xi ; tiBi/D 1,
hence multEi

Bi D .1�ai/=.1� ti/ < 1=.1� ti/. By construction, ti < 1 for each i . By Theorem 3.6, we
may assume that ti is decreasing, hence there exists a positive real number M such that multEi

Bi <M .

By construction, there exists a sequence of positive real numbers �i such that .1C �i/Bi � Bi and
limi!C1 �i D 0. We have

ai D a.Ei ;Xi ;Bi/� a.Ei ;Xi ;Bi/� a.Ei ;Xi ; .1C�i/Bi/D a.Ei ;Xi ;Bi/��i multEi
Bi > ai��iM;

Since limi!C1 ai D limi!C1.ai � �iM /D a, possibly passing to a subsequence, we may assume that
Nai WD a.Ei ;Xi ;Bi/ is strictly increasing and limi!C1 Nai D a.

Let fi W Yi!Xi be the divisorial contraction which extracts Ei , and let BYi
;BYi

be the strict transforms
of Bi and Bi on Yi respectively. Then .Yi=Xi 3 xi ;BYi

C .1� a/Ei/ is canonical and

coeff.BYi
C .1� a/Ei/� � [f1� ag:

By Theorem 3.6, possibly passing to a subsequence, we may assume that .Yi=Xi 3 xi ;BYi
C .1� a/Ei/

is canonical.

By Theorem 3.13, there exists a positive integer N and a finite set �0 � .0; 1�, such that .Xi 3 xi ;Bi/

has an .N; �0/-decomposable R-complement .Xi 3 xi ;B
C
i / for each i . In particular, a.Ei ;Xi ;B

C
i /
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belongs to a discrete, hence finite set for any i . Thus there exists a positive real number t , such that
.Yi=Xi 3xi ;BYi

C.1�aCt/Ei/ is lc. Possibly passing to a subsequence, we may assume that a� Nai <
t
2

for any i .

For any i , we let

Di WD
˚
Fi j Fi is over Xi 3 xi ; Fi ¤Ei ; a.Fi ;Xi ;Bi/ < 1

	
:

For any Fi 2 Di , we have

a.Fi ;Yi ;BYi
C .1� aC t/Ei/� 0 and a.Fi ;Yi ;BYi

C .1� Nai/Ei/ < 1:

Since a� Nai <
t
2

, multFi
Ei <

2
t
, and

a.Fi ;Xi ;Bi/D a.Fi ;Yi ;BYi
C .1� Nai/Ei/

D a.Fi ;Yi ;BYi
C .1� a/Ei/C .a� ai/multFi

Ei > 1�
2.a� Nai/

t
:

Possibly passing to a subsequence, we may assume that a� Nai <
t
2
.1�a/ for every i . Then a.Fi ;Xi ;Bi/>

a> Nai D a.Ei ;Xi ;Bi/ for any Fi 2 Di .

If .Xi ;Bi/ is not klt near xi for infinitely many i , then we let �i W Wi ! Xi be a dlt modification of
.Xi ;Bi/, and let KWi

CBWi
WD ��i .KXi

CBi/. Then there exists a prime divisor Hi �Exc.�i/ such that
centerWi

Ei �Hi . We immediately get a contradiction by applying adjunction to Hi and using the precise
inversion of adjunction formula (see [Liu 2018, Lemma 3.3]) and the ACC for mlds of surfaces [Alexeev
1993, Theorem 3.8]. Therefore, possibly passing to a subsequence, we may assume that .Xi ;Bi/ is klt
near xi for each i .

Since .Xi ;Bi/ is klt near xi , each Di is a finite set, and we may assume that Di D fFi;1; : : : ;Fi;ri
g

for some nonnegative integer ri . Note that limi!C1 a.Fi;j ;Xi ;Bi/ D 1 for any 1 � j � ri , and
limi!C1 a.Ei ;Xi ;Bi/D a. By [Liu 2018, Lemma 5.3], possibly reordering Fi;1; : : : ;Fi;ri

, one of the
following hold:

(1) There exists a birational morphism gi WZi!Xi which extracts exactly Fi;1; : : : ;Fi;ri
, such that

Nai D a.Ei ;Zi ;BZi
/C

riX
jD1

.1� a.Fi;j ;Xi ;Bi/Fi;j /� a.Ei ;Zi ;BZi
/ < a

for each i , where BZi
is the strict transform of Bi on Zi . In this case, we let E0i WDEi and B0i WD BZi

(2) There exists a birational morphism gi WZi!Xi which extracts exactly Ei ;Fi;1; : : : ;Fi;ri�1, such
that

1�
2.a� Nai/

t
� a.Fi;ri

;Xi ;Bi/� a.Fi;ri
;Zi ;BZi

C .1� a/EZi
/ < 1

for each i , where BZi
;EZi

are the strict transforms of Bi and Ei on Zi respectively. In this case, we let
E0i D Fi;ri

and B0i WD BZi
C .1� a/EZi

.
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In either case, possibly passing to a subsequence, we may assume that Na0i WD a.E0i ;Zi ;B
0
i/ < 1 is strictly

increasing. For any i , we let

D0i WD
˚
F 0i j F

0
i is over Xi 3 xi ; F 0i is exceptional over Zi ; a.F 0i ;Zi ;B

0
i/D 1

	
:

By construction, .Zi=Xi 3 xi ;B
0
i/ is klt, so D0i is a finite set. Let hi W Vi!Wi be a birational morphism

which extracts all divisors in D0i , and let B0
Vi

be the strict transform of B0i on Vi . Then .Vi ;B
0
Vi
/ is enc

and a0i WD a.E0i ;Vi ;BV 0
i
/ is strictly increasing. Moreover, limi!C1 a0i D 1 or a. Since a> �, possibly

passing to a subsequence, we may assume that a0i > � for any i . However, the coefficients of B0
Vi

belong
to a finite set, which contradicts our assumptions.

6 Index one cover

6.1 Enc cyclic quotient singularities

In this subsection, we prove Theorem 1.4 when X is noncanonical, with isolated singularities, and the
index 1 cover of X is smooth (see Theorem 6.3).

Lemma 6.1 (see [Liu and Luo 2022, Lemma 2.11; Ambro 2006, Theorem 1]) Let d be a positive
integer and .X 3 x/D 1

r
.a1; a2; : : : ; ad / a d -dimensional cyclic quotient singularity. Let

e WD

��
a1

r

�
;

�
a2

r

�
; : : : ;

�
ad

r

��
;

ei the i th unit vector in Zd for any 1� i � d ;

N WD Z�0e˚Z�0e1˚Z�0e2˚ � � �˚Z�0ed ;

� WDN \Qd
�0; and relin.�/ WDN \Qd

>0:

The following holds.

(1) For any prime divisor E over X 3 x that is invariant under the cyclic quotient action , there exists a
primitive vector ˛ 2 relin.�/ such that a.E;X; 0/D ˛.x1x2 � � �xd /. In particular , there exists a unique
positive integer k � r , such that

˛ 2

�
1C

a1k

r
�

�
a1k

r

�
; 1C

a2k

r
�

�
a2k

r

�
; : : : ; 1C

adk

r
�

�
adk

r

��
CZd

�0:

(2) mld.X 3 x/D min
1�k�r�1

� dX
iD1

�
1C

kai

r
�

�
kai

r

���
� d:

Proof Point (1) is elementary toric geometry, and (2) follows immediately from (1).

Lemma 6.2 Let d be a positive integer and � a positive real number. Then there exists a positive integer I ,
depending only on d and �, satisfying the following. Let r be a positive integer and v1; : : : ; vd 2 Œ0; 1�

real numbers , such that
Pd

iD1.1C .m� 1/vi �dmvie/� � for any m 2 Œ2; r �\Z. Then r � I .
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Proof Suppose that the statement does not hold. Then for each j 2Z�1, there exist v1;j ; : : : ; vd;j 2 Œ0; 1�

and positive integers rj , such that

�
Pd

iD1.1C .m� 1/vi;j �dmvi;je/� � for any m 2 Œ2; rj �\Z,

� rj is strictly increasing, and

� Nvi WD limj!C1 vi;j exists.

Let v WD . Nv1; : : : ; Nvd /. By Kronecker’s theorem, there exist a positive integer n and a vector u 2 Zd

such that knv � uk1 < min
˚
�
d
; Nvi j Nvi > 0

	
and n Nvi 2 Z for any i such that Nvi 2 Q. In particular,

d.nC1/ NvieDb.nC1/ NvicC1 for any i such that Nvi 2 .0; 1/. Now limj!C1.1Cnvi;j�d.nC1/vi;je/D 0

when Nvi D 0 and limj!C1.1C nvi;j �d.nC 1/vi;je/D 1C n Nvi �d.nC 1/ Nvie when Nvi > 0. Thus

lim
j!C1

dX
iD1

.1C nvi;j �d.nC 1/vi;je/D
X

0< Nvi<1

.1C n Nvi �d.nC 1/ Nvie/

D

X
0< Nvi<1

.1C .nC 1/ Nvi �d.nC 1/ Nvie� Nvi/

D

X
N0< Nvi<1

.f.nC 1/ Nvig� Nvi/ <
X

0< Nvi<1

�

d
� �:

Thus possibly passing to a subsequence,
Pd

iD1.1C nvi;j �d.nC 1/vi;je/ < � for any j , hence n> rj ,
which contradicts limj!C1 rj DC1.

Theorem 6.3 Let � � Œ0; 1� be a DCC (resp. finite) set. Assume that .X 3 x;B/ is a Q-factorial enc
pair of dimension 3, such that

(1) X 3 x is a noncanonical isolated singularity,

(2) coeff.B/� � , and

(3) zX 3 Qx is smooth , where � W . zX 3 Qx/! .X 3 x/ is the index 1 cover of X 3 x.

Then mld.X 3 x;B/ belongs to an ACC set (resp. is discrete away from 0).

Proof We may assume that mld.X 3 x;B/ > � for some fixed positive real number � < 12
13

. Then
mld.X 3 x/ > �. Since X 3 x is noncanonical and .X 3 x;B/ is enc, X 3 x is enc. Since X 3 x is
an isolated singularity, by Theorem 3.15, mld.X 3 x/ D mld.X / � 12

13
. Since zX is smooth, .X 3 x/

is analytically isomorphic to a cyclic quotient singularity .Y 3 y/D 1
r
.a1; a2; a3/, where a1; a2; a3; r

are positive integers such that ai < r and gcd.ai ; r/ D 1 for each i . By Lemma 6.1, there exists a
positive integer k0 2 Œ1; r � 1� such that mld.Y 3 y/ D mld.X 3 x/ D

P3
iD1faik0=rg 2

�
�; 12

13

�
, and

for any positive integer k ¤ k0 such that k 2 Œ1; r � 1�,
P3

iD1faik=rg > minf1; 2 mld.X 3 x/g. Let
vi WD faik0=rg for each i . Then

3X
iD1

.1C .m� 1/vi �dmvie/D

3X
iD1

.1Cmvi �dmvie/�

3X
iD1

vi >min
˚

1
13
; �
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for any m 2 Œ2; r=gcd.k0; r/ � 1� \ Z�1. By Lemma 6.2, r=gcd.k0; r/ belongs to a finite set. In
particular, w WD .v1; v2; v3/ belongs to a finite set, hence mld.Y 3 y/ belongs to a finite set. Suppose
that B D

P
i biBi , where Bi are the irreducible components of B and bi 2 �>0, and Bi Š .fi D 0/jY

for some semi-invariant analytic function fi 2Cfx1;x2;x3g. Let E be the unique divisor over X 3 x

such that a.E;X; 0/� 1. Then by Lemma 3.18,

mld.X 3 x;B/D a.E;X;B/D a.E;X; 0/�multE B D a.E;X; 0/�
X

i

bi multE Bi

Dmld.Y 3 y/�
X

i

biw.fi/

belongs to an ACC set (resp. finite set).

6.2 Enc cDV quotient singularities

In this subsection, we prove Theorem 1.4 when X is noncanonical, with isolated singularities, and the
index 1 cover of X is cDV (see Theorem 6.8).

Theorem 6.4 Let r be a positive integer , a; b; c; d integers , and f 2 Cfx1;x2;x3;x4g an analytic
function , such that

.X 3 x/Š
�
.f D 0/� .C4

3 0/
�ı1

r
.a; b; c; d/

is an enc threefold isolated singularity. Let

N WD
n
w 2Q4

�0

ˇ̌
w �

1

r
.ja; jb; jc; jd/ mod Z4 for some j 2 Z

o �
f0g:

Then there exists at most one primitive vector ˇ 2N, such that t WD ˇ.x1x2x3x4/�ˇ.f /� 1.

In particular , for any ˛ 2N nfˇ; 2ˇ; : : : ; .k � 1/ˇg, ˛.x1x2x3x4/�˛.f / > 1, where k WD
�

1
t

˘
C 1.

Proof Assume that there exists a primitive vector ˇ 2N such that ˇ.x1x2x3x4/�ˇ.f /� 1. It suffices
to show that such ˇ is unique.

Let Z WD C4=1
r
.a; b; c; d/, and �ˇ W Zˇ ! Z the toric morphism induced by ˇ which extracts an

exceptional divisor Eˇ . Let Xˇ be the strict transform of X on Zˇ . By [Jiang 2021, Proposition 2.1], we
have

KZˇ CXˇC .1� t/Eˇ D �
�
ˇ.KZ CX /:

Since X 3 x is an isolated klt singularity and dim X D 3, .Z;X / is plt by inversion of adjunction. Thus
.Zˇ;XˇC .1� t/Eˇ/ is plt. By the adjunction formula,

KXˇ CBˇ WD .KZˇ CXˇC .1� t/Eˇ/jXˇ D �
�
ˇKX ;

for some Bˇ � 0, and the coefficients of Bˇ are of the form 1� .1�s.1� t//= l for some positive integers
l; s as Eˇ intersects Xˇ. Since X is enc, Supp Bˇ is a prime divisor, say Fˇ.
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Let vFˇ be the divisorial valuation of Fˇ. Thus vFˇ .x
m/ D .1 � .1 � s.1 � t//= l/ˇ.xm/ for any

monomial xm, where m 2M , and M is the dual sublattice of Z4CZ � 1
r
.a; b; c; d/. Hence such ˇ is

unique by the primitivity.

We introduce the following setting. Roughly speaking, Theorem 6.6 below will show that if

.X 3 x/Š .f D 0/� .C4
3 0/

ı1

r
.a1; a2; a3; a4/

is enc and a cyclic quotient of an isolated cDV singularity, then f; ai ; r; e; k, and ˇ should satisfy
Setting 6.5. Therefore, we can transform the ACC conjecture in this case to computations on variables
that satisfy Setting 6.5.

Setting 6.5 We set up the following notation and conditions.

(1) Let r be a positive integer , 0� a1; a2; a3; a4; e < r integers , such that

(a) gcd.ai ; r/j gcd.e; r/ for any 1� i � 4,

(b) gcd.ai ; aj ; r/D 1 for any 1� i < j � 4,

(c)
P4

iD1 ai � e � 1 mod r .

(2) f 2Cfx1;x2;x3;x4g is �-semi-invariant , that is , �.f /D �ef , and is one of the following 3 types ,

(a) (cA type) f D x1x2Cg.x3;x4/ with g 2m2,

(b) (Odd type) f D x2
1
Cx2

2
Cg.x3;x4/ with g 2m3 and a1 6� a2 mod r ,

(c) (cD-E type) f D x2
1
Cg.x2;x3;x4/ with g 2m3,

where m is the maximal ideal of Cfx1;x2;x3;x4g, and � W C4! C4 is the action .x1;x2;x3;x4/!

.�a1x1; �
a2x2; �

a3x3; �
a4x4/.

(3) One of the two cases hold :

(a) ˛.x1x2x3x4/�˛.f / > 1 for any ˛ 2N . In this case , we let k WD 1 and ˇ WD 0.

(b) There exists an integer k � 2, and a primitive vector ˇ 2N , such that
(i) � either 1

k
< ˇ.x1x2x3x4/�ˇ.f /�min

˚
12
13
; 1

k�1

	
, or

� ˇ.x1x2x3x4/�ˇ.f /D 1 and k D 2,
and

(ii) for any ˛ 2N nfˇ; 2ˇ; : : : ; .k � 1/ˇg, ˛.x1x2x3x4/�˛.f / > 1,

where
N WD

n
w 2Q4

�0

ˇ̌
w �

1

r
.ja1; ja2; ja3; ja4/ mod Z4 for some j 2 Z

o �
f0g:

Moreover , if f is of cA type , then for any integer a such that gcd.a; r/ D 1, 1
r
.a1; a2; a3; a4; e/ 6�

1
r
.a;�a; 1; 0; 0/ mod Z5.
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Theorem 6.6 Let r be a positive integer , 0� a1; a2; a3; a4; e < r integers , � WD e2� i=r ,

N WD
n
w 2Q4

�0

ˇ̌
w �

1

r
.ja1; ja2; ja3; ja4/ mod Z4 for some j 2 Z

o �
f0g;

� W C4! C4 the action .x1;x2;x3;x4/! .�a1x1; �
a2x2; �

a3x3; �
a4x4/, and f 2 Cfx1;x2;x3;x4g a

�-semi-invariant analytic function such that �.f /D �ef . Suppose that

.X 3 x/Š .f D 0/� .C4
3 0/

ı1

r
.a1; a2; a3; a4/

be a hyperquotient singularity such that

� .Y 3 y/ WD .f D 0/Š .C4 3 0/ is an isolated cDV singularity,

� � W .Y 3 y/! .X 3 x/ is the index one cover , and

� .X 3 x/ is enc ,

then possibly replacing 1
r
.a1; a2; a3; a4/ with .fja1=rg; fja2=rg; fja3=rg; fja4=rg/ for some j such

that gcd.j ; r/D 1, and taking a �-equivariant analytic change of coordinates and possibly permuting the
coordinates xi , we have that ai ; e; r; f satisfy Setting 6.5.

Proof By [Reid 1987, Page 394], since � acts freely outside y, ai ; e; r satisfy Setting 6.5(1)(a) and
(1)(b). Let s 2 !Y be a generator, then � acts on s by s! �

P4
iD1 ai�es. Since the Cartier index of KX

near x is r , gcd
�P4

iD1 ai�e; r
�
D 1, and ai ; e; r satisfy Setting 6.5(1)(c). By [Reid 1987, pages 394–395

and Proposition (6.7)] (see also [Jiang 2021, Proposition 4.2]), f satisfies Setting 6.5(2).

By Theorem 6.4, in order to show that f satisfies Setting 6.5(3), we only need to prove that

ˇ.x1x2x3x4/�ˇ.f / 62
�

12
13
; 1
�
:

We may assume that r > 13. By [Liu and Xiao 2021, Theorem 1.6, Lemmas 6.3 and 6.4] and [Jiang 2021,
Lemma 2.12, Remark 2.13], if ˇ.x1x2x3x4/�ˇ.f / 2

�
12
13
; 1
�
, then .X 3 x/ and ˇ satisfy [Jiang 2021,

Section 4, Rules I–III], which is absurd according to [Jiang 2021, Section 4].

It suffices to show that ai ; e; r satisfy the “moreover” part of Setting 6.5. By [Kollár and Shepherd-
Barron 1988, Theorem 6.5], if 1

r
.a1; a2; a3; a4; e/�

1
r
.a;�a; 1; 0; 0/ mod Z5, then X 3 x is a terminal

singularity, which leads to a contradiction.

Theorem 6.7 With notation and conditions as in Setting 6.5, either r or ˇ ¤ 0 belongs to a finite set
depending only on k. In particular , ˇ.x1x2x3x4/�ˇ.f / belongs to a finite set depending only on k, and
ˇ.g/ belongs to a discrete set for any analytic function g.

Proof Proving that either r or ˇ ¤ 0 belongs to a finite set depending only on k is elementary but
requires complicated computations, so we omit the proof and refer the reader to [Han and Liu 2025,
Theorem 1.2] (which was Theorem A.1 of the first arXiv version2 of the present paper).

2See arXiv:2209.13122v1.
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We are left to prove the “in particular”-part. There exists a positive integer n depending only on k

such that nˇ 2 Z4
�0

. Thus ˇ.g/ belongs to the discrete set 1
n
Z�0 for any analytic function g. Since

ˇ.x1x2x3x4/�ˇ.f / 2 .0; 1�, ˇ.x1x2x3x4/�ˇ.f / belongs to the finite set 1
n
Z�0\ .0; 1�.

Theorem 6.8 Let � � Œ0; 1� be a DCC (resp. finite) set. Assume that .X 3 x;B/ is a Q-factorial enc
pair of dimension 3, such that

(1) X 3 x is an isolated noncanonical singularity,

(2) coeff.B/� � , and

(3) zX 3 Qx is terminal but not smooth , where � W . zX 3 Qx/! .X 3 x/ is the index 1 cover of X 3 x.

Then mld.X 3 x;B/ belongs to an ACC set (resp. is discrete away from 0).

Proof We only need to show that for any positive integer l � 2, if mld.X 3 x/ 2 .1
l
; 1

l�1
�, then

mld.X 3 x;B/ belongs to an ACC set (resp. is discrete away from 0).

There exists a positive integer r , integers 0� a1; a2; a3; a4; e, and � WD e2�i=r , such that

.X 3 x/Š
�
.f D 0/� .C4

3 0/
�
=�;

where � W C4 ! C4 is the action .x1;x2;x3;x4/ ! .�a1x1; �
a2x2; �

a3x3; �
a4x4/ and f is �-semi-

invariant, such that �.f /D �ef . By Setting 6.5(1)(c), possibly replacing .a1; a2; a3; a4/ and e, we may
assume that a1C a2C a3C a4 � e � 1 mod r . Moreover, possibly shrinking X to a neighborhood of
x, we may write B D

Pm
iD1 biBi where Bi are the irreducible components of B and x 2 Supp Bi for

each i . Then bi 2 � , and we may identify Bi with ..fi D 0/� .C4 3 0//=�jX for some �-semi-invariant
function fi for each i .

Let

N WD
n
w 2Q4

�0

ˇ̌
w D

1

r
.ja1; ja2; ja3; ja4/ mod Z4 for some j 2 Z

o �
f0g:

By Setting 6.5(3), there are two cases:

Case 1 ˛.x1x2x3x4/� ˛.f / > 1 for any ˛ 2 N . In this case, by Theorems 6.6, 6.7, r belongs to a
finite set. Since .X 3 x;B/ is enc and X 3 x is noncanonical, there exists a unique prime divisor E over
X 3 x, such that a.E;X;B/Dmld.X 3 x;B/ and a.E;X; 0/ < 1. Since rKX is Cartier, r a.E;X; 0/

belongs to a finite set and r multE Bi 2 Z�1 for each i . Thus

a.E;X;B/D a.E;X; 0/�

mX
iD1

bi multE Bi

belongs to an ACC set (resp. finite set).
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Case 2 There exists a unique primitive vector ˇ 2N and an integer k � 2, such that

1

k
< ˇ.x1x2x3x4/�ˇ.f /�

1

k�1
:

We consider the pair

.Z 3 z;X CBZ / WD

�
C4
3 0; .f D 0/C

mX
iD1

bi.fi D 0/

�.
�:

By [Jiang 2021, Proposition 2.1], the primitive vector ˇ 2N corresponds to a divisor E over Z 3 z, and

(6-1) a WD a.E;Z;X CBZ /D ˇ.x1x2x3x4/�ˇ.f /�

mX
iD1

biˇ.fi D 0/:

In particular, 0< a� 1=.k � 1/� 1. Let h WW !Z be the birational morphism which extracts E. Then

KW CXW CBW C .1� a/E D h�.KZ CX CBZ /;

where XW and BW are the strict transforms of X and B on W , respectively.

Since .X;B/ is klt near x, X 3 x is an isolated singularity, and dim X D 3, .Z;X CBZ / is plt by the
inversion of adjunction. Thus .W;XW CBW C .1� a/E/ is plt. Since h is a divisorial contraction of
E and centerZ E D x, E is Q-Cartier, and Supp.E \XW / contains a prime divisor F which does not
belong to Supp.BW \E/. By the adjunction formula,

a.F;X;B/D
1

n
.1� s.1� a//� a�

1

k�1

for some positive integers n; s. Since .X 3 x;B/ is enc, a.F;X;B/Dmld.X 3 x;B/ > 1
l
, hence k � l .

Thus k belongs to a finite set. By Theorems 6.6 and 6.7, a� 1 belongs to an ACC set (resp. finite set).
Thus

mld.X 3 x;B/D a.F;X;B/D
1

n
.1� s.1� a//

belongs to an ACC set (resp. is discrete away from 0), and we are done.

7 Proofs of other main results

Lemma 7.1 For any positive integer l , Theorem El implies Theorem Nl .

Proof This follows from Lemma 4.3.

Lemma 7.2 For any positive integer l , Theorem Cl implies Theorem El .

Proof Let .X;B/ 2 E.l; �/, and E the unique exceptional prime divisor over .X;B/ such that
a.E;X;B/Dmld.X;B/.
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By Lemma 5.1, we may assume that x WD centerX E is a closed point. By Theorem 5.7, we may assume
that either X is terminal and � is a finite set, or X is not terminal. By Theorem 5.6, we may assume that
X is not terminal. By Theorem 5.2, we may assume that X is not canonical. Let . zX 3 Qx/! .X 3 x/ be
the index 1 cover of X 3 x. Then zX 3 Qx is smooth, or an isolated cDV singularity, or a strictly canonical
singularity. By Theorems 6.3 and 6.8, we may assume that zX 3 Qx is strictly canonical. By Theorem Cl ,
mld.X;B/ belongs to an ACC set.

Lemma 7.3 For any positive integer l � 2, Theorem Nl�1 implies Theorem Cl .

Proof Let .X 3 x;B/ 2 C.l; �/, � W . zX 3 Qx/! .X 3 x/ the index 1 cover of X 3 x, and zB WD ��B.
Then coeff. zB/� � .

Since mld.X / < 1, there exists an exceptional prime divisor E over X , such that a.E;X;B/ �

a.E;X; 0/Dmld.X /<1. Thus E is the unique exceptional prime divisor over X such that a.E;X;B/�1

as .X 3 x;B/ is enc. In particular, a.E;X;B/ D mld.X 3 x;B/. Hence for any exceptional prime
divisor zE over zX such that a. zE; zX ; zB/ � 1, we have a. zE; zX ; zB/ D r zEa.E;X;B/, where r zE is the
ramification index of � along zE. Since . zX 3 Qx/ is canonical,

1� a. zE; zX ; 0/D r zEa.E;X; 0/ < r zE ;

so r zE � 2 for any zE. It follows that

mld. zX ; zB/ 2
˚
a. zE; zX ; zB/� 1 j zE is exceptional over zX

	
�
˚
2 mld.X;B/; : : : ; .l � 1/mld.X;B/

	
as mld.X;B/ > 1

l
and . zX 3 Qx/ is strictly canonical. In particular,

1� #
�
fa. zE; zX ; zB/ j zE is exceptional over zX g\ Œ0; 1�

�
� l � 2:

Moreover, since a. zE; zX ; zB/D r zEa.E;X;B/ > 2
l
� 1=.l � 1/, we have mld. zX ; zB/ > 1=.l � 1/. Thus

by Theorem Nl�1, mld. zX ; zB/ belongs to an ACC set, which implies that mld.X;B/ also belongs to an
ACC set.

Proof of Theorems E, N, and C These follow from Lemmas 7.1, 7.2, 7.3.

Proof of Theorem 1.6 By [Han et al. 2022, Theorem 1.1], we may assume that mld.X;B/ < 1. Now
the theorem follows from Theorem N.

Proof of Theorem 1.4 This follows from Theorem 1.6.

Corollary 7.4 (Corollary 1.5) Any sequence of lc flips

.X;B/ WD .X0;B0/Ü .X1;B1/Ü � � � .Xi ;Bi/Ü � � �

terminates in dimension 3.

Geometry & Topology, Volume 29 (2025)



436 Jingjun Han and Jihao Liu

Proof We only need to check the conditions of Theorem 4.8 when d D 3. Theorem 4.8(1) follows
from [Nakamura 2016, Corollary 1.5] (see also [Han et al. 2022, Theorem 1.1]), Theorem 4.8(2) follows
from [Ambro 1999, Main Theorem 1] (see also [Nakamura and Shibata 2021, Theorem 1.2]), and
Theorem 4.8(3) follows from Theorem 1.4.

We conjecture that Corollary 1.7 generalizes to high dimensions:

Conjecture 7.5 Let N be a nonnegative integer , d a positive integer , and � � Œ0; 1� a DCC set. Then
there exists an ACC set � 0 depending only on d;N and � satisfying the following. Assume that .X;B/
is a klt pair of dimension d , such that

(1) coeff.B/� � , and

(2) there are at most N different (exceptional ) log discrepancies of .X;B/ that are � 1, ie

#
�
fa.E;X;B/ jE is exceptional over X g\ Œ0; 1�

�
�N;

then fa.E;X;B/ jE is exceptional over X g\ Œ0; 1�� � 0.

Theorem 7.6 Assume that Conjecture 1.9(1) holds in dimension d . Then Conjecture 7.5 holds in
dimension d .

Proof This follows from Lemma 4.3.

Proof of Corollary 1.7 This follows from Theorems 1.4 and 7.6.

Finally, we show the following theorem for independent interest. Theorem 7.7 implies that in order to
show the 1-gap conjecture for mlds (see [Chen et al. 2021, Conjecture 5.4]), it suffices to show the 1-gap
conjecture for mlds of enc pairs. We note that the 1-gap conjecture has a close relation with the birational
boundedness of rationally connected klt Calabi–Yau varieties; see [Chen et al. 2021, Corollary 5.5; Han
and Jiang 2024].

Theorem 7.7 Let d be a positive integer , and � � Œ0; 1� a set. Then

sup
˚
mld.X;B/ < 1 j .X;B/ is Q-factorial enc; dim X D d; coeff.B/� �

	
D sup

˚
mld.X;B/ < 1 j .X;B/ is klt; dim X D d; coeff.B/� �

	
:

Proof Let .X;B/ be a klt pair such that dim X D d , coeff.B/� � , and mld.X;B/ < 1. By [Kollár and
Mori 1998, Proposition 2.36], we may assume that E1;E2; : : : ;Ek are all exceptional prime divisors
over X , such that a.Ei ;X;B/ < 1. By [Liu 2018, Lemma 5.3], there exist 1 � i � k and a birational
morphism f W Y !X which extracts exactly all E1;E2; : : : ;Ek but Ei , such that 1> a.Ei ;Y; f

�1
� B/�

a.Ei ;X;B/. Possibly replacing Y with a small Q-factorialization, we may assume that Y is Q-factorial.
Then .Y; f �1

� B/ is a Q-factorial enc pair with 1>mld.Y; f �1
� B/�mld.X;B/, and we are done.
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8 Further remarks

Remark 8.1 (history of enc pairs) We briefly introduce some history on the study of enc pairs. In [Liu
2018, Lemma 5.4], a class of pairs similar to enc pairs, that is, pairs .X;B/ such that mld.X;B/ < a and
there exists only 1 exceptional divisor with log discrepancy � a with respect to .X;B/, was constructed.
When a D 1, these are exactly enc pairs. However, [Liu 2018] only deals with the case when a < 1

and does not deal with the case when aD 1. [Jiang 2021, Definition 2.1] first formally introduced enc
varieties X , naming them “extremely noncanonical”. In dimension 3 and when mld.X /! 1, [Jiang
2021] systematically studied the singularities of these varieties, which played a crucial role in his proof
of the 1-gap conjecture for threefolds. [Han et al. 2022] introduced enc pairs .X;B/ to prove the 1-gap
conjecture for threefold pairs.

Remark 8.2 (enc pairs and exceptional Fano pairs) We explain why we use the notation “exceptionally
noncanonical” instead of “extremely noncanonical” as in [Jiang 2021]. The key reason is that, as suggested
by Shokurov, we expect exceptionally noncanonical singularities in dimension d to have connections
with the global lc thresholds in dimension d � 1, while the latter is known to have connections with the
mlds of exceptional pairs in dimension d � 1 [Liu 2023, Theorem 1.2] (see [Han et al. 2024; Shokurov
2020]). Shokurov suggested us that the role of enc singularities in the study of klt singularities may be as
important as the role of exceptional pairs in the study of Fano varieties (see [Birkar 2019]).

Theorem 7.7 could provide some evidence of this for us: when d D 3 and � D f0g, the 1-gap of mld
is equal to 1

13
(Theorem 3.15) and is reached at an enc cyclic quotient singularity 1

13
.3; 4; 5/. If we let

f W Y !X be the divisorial contraction which extracts the unique prime divisor E over X 3 x such that
a.E;X; 0/Dmld.X 3 x/, then E is normal and�

P .3; 4; 5/; 12
13
.x3

1x2Cx2
2x3Cx2

3x1 D 0/
�
Š .E;BE/;

where KE CBE �Q f �KX jE D
�
KY C

1
13

E
�
jE . On the other hand, 12

13
is also expected to be3 the

largest surface global lc threshold [Liu 2023, Remark 2.5; Alexeev and Liu 2019, Notation 4.1] and can
be reached by the same pair

�
P .3; 4; 5/; 12

13
.x3

1
x2Cx2

2
x3Cx2

3
x1 D 0/

�
[Kollár 2013, 40].

Remark 8.3 (enc pairs, Calabi–Yau varieties, and mirror symmetry) Enc pairs also have a deep
relationship with Calabi–Yau varieties in different ways.

First, by Theorem 7.7, the 1-gap conjecture for mlds of enc pairs implies the 1-gap conjecture of mlds,
while the latter will imply the birational boundedness of rationally connected Calabi–Yau varieties by
applying similar arguments as in [Han and Jiang 2024, proof of Theorem 1.2].

Second, as mentioned in Remark 8.2, the mlds of enc pairs have connections with the global lc thresholds,
while the latter is related to the minimal possible mld of klt Calabi–Yau varieties. Indeed, the 1-gap of the

3It is proven in [Liu and Shokurov 2023, Theorem 1.1] after the first version of this paper appeared.
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mlds of enc pairs is always smaller than or equal to the minimal possible mld of klt Calabi–Yau varieties
of smaller dimensions, and they are expected to be the same (see [Esser et al. 2022, Proposition 6.1]).
Finally, the second author was informed by Chengxi Wang that the klt Calabi–Yau variety with minimal
possible mld should be associated with a klt Calabi–Yau variety with maximal possible index by mirror
symmetry (see [Esser et al. 2022, Proposition 6.1]).

References
[Alexeev 1993] V Alexeev, Two two-dimensional terminations, Duke Math. J. 69 (1993) 527–545 MR Zbl

[Alexeev and Liu 2019] V Alexeev, W Liu, Open surfaces of small volume, Algebr. Geom. 6 (2019) 312–327
MR Zbl

[Alexeev et al. 2007] V Alexeev, C Hacon, Y Kawamata, Termination of (many) 4-dimensional log flips, Invent.
Math. 168 (2007) 433–448 MR Zbl

[Ambro 1999] F Ambro, On minimal log discrepancies, Math. Res. Lett. 6 (1999) 573–580 MR Zbl

[Ambro 2006] F Ambro, The set of toric minimal log discrepancies, Cent. Eur. J. Math. 4 (2006) 358–370 MR
Zbl

[Birkar 2019] C Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. 190 (2019) 345–463 MR
Zbl

[Birkar and Zhang 2016] C Birkar, D-Q Zhang, Effectivity of Iitaka fibrations and pluricanonical systems of
polarized pairs, Publ. Math. Inst. Hautes Études Sci. 123 (2016) 283–331 MR Zbl

[Birkar et al. 2010] C Birkar, P Cascini, C D Hacon, J McKernan, Existence of minimal models for varieties of
log general type, J. Amer. Math. Soc. 23 (2010) 405–468 MR Zbl

[Chen 2022] J-J Chen, Accumulation points on 3-fold canonical thresholds, preprint (2022) arXiv 2202.06230
To appear in J. Math. Soc. Japan

[Chen and Han 2020] G Chen, J Han, Boundedness of .�; n/-complements for surfaces, preprint (2020) arXiv
2002.02246 Short version published in Adv. Math. 383 (2021) art. id. 107703

[Chen and Tsakanikas 2023] G D Chen, N Tsakanikas, On the termination of flips for log canonical generalized
pairs, Acta Math. Sin. (Engl. Ser.) 39 (2023) 967–994 MR Zbl

[Chen et al. 2021] W Chen, G Di Cerbo, J Han, C Jiang, R Svaldi, Birational boundedness of rationally
connected Calabi–Yau 3-folds, Adv. Math. 378 (2021) art. id. 107541 MR Zbl

[Chen et al. 2024] W Chen, Y Gongyo, Y Nakamura, On generalized minimal log discrepancy, J. Math. Soc.
Japan 76 (2024) 393–449 MR
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