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We build limit spaces .M n
j ;gj / ! .X k ; d/ of manifolds Mj with uniform lower bounds on Ricci

curvature such that X k is nowhere a topological manifold, and in fact every open set U �X has infinitely
generated homology.

More completely, it is known that any such X k must be k-rectifiable for some unique dim X WD k � nD

dim Mj . It is also known that if k D n, then X n is a topological manifold on an open dense subset, and
it has been an open question as to whether this holds for k < n. Consider now any smooth complete
4-manifold .X 4; h/ with Ric> � and � 2R. Then for each � > 0 we construct a complete 4-rectifiable
metric space .X 4

� ; d�/ with dGH.X
4
� ;X

4/ < � such that the following hold. First, X 4
� is a limit space

.M 6
j ;gj /! X 4

� , where M 6
j are smooth manifolds satisfying the same lower Ricci bound Ricj > �.

Additionally, X 4
� has no open subset which is topologically a manifold. Indeed, for any open U �X 4

� we
have that the second homology H2.U / is infinitely generated. Topologically, X 4

� is the connect sum of
X 4 with an infinite number of densely spaced copies of CP 2.

In this way we see that every 4-manifold X 4 may be approximated arbitrarily closely by 4-dimensional
limit spaces X 4

� which are nowhere manifolds. We will see that there is a sense, as yet imprecise, in which
generically one should expect manifold structures to not exist on spaces with higher-dimensional Ricci
curvature lower bounds.
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1 Introduction

Let us begin with a historical discussion of measured Gromov Hausdorff limit spaces

(1) .M n
j ;gj ; vj ;pj /! .X k ; d; �;p/; Ricj > �; �j WD

dvgj

Vol.B1.pj //
;

and their structure. That metric space limits even exist in this context was the result of Gromov [1999,
Theorem 5.3]. Structural results for the limits X began in earnest with the almost rigidities of Cheeger
and Colding [1996, Theorem 6.62]. Their almost splitting theorem allowed them to show that X was the
union of rectifiable pieces of various dimensions [Cheeger and Colding 1997], and they conjectured that
the dimension is locally constant and hence unique. Colding and Naber [2012] resolved this conjecture
and showed that the limit X k is k-rectifiable for a unique k. More recently, an example of Pan and Wei
[2022] has shown that while X k is k-rectifiable, its Hausdorff dimension might be larger than k. More
specifically, it is possible for the singular part of X to have larger dimension with respect to the Hausdorff
measure than it does with respect to the limit �-measure.

In the context where (1) is noncollapsed, which is to say Vol.B1.pj // > v > 0, one can say quite a
bit more. In this case one has that k D n, and by volume convergence [Cheeger and Colding 1997,
Theorem 5.9] the limit measure � is the n-dimensional Hausdorff measure on X . The starting point
for a more refined analysis of X in the noncollapsed context is another almost rigidity of Cheeger and
Colding [1996, Theorem 4.85]. This time one considers the monotone quantity

�r .x/ WD
Vol.Br .x//

!nrn

and shows that in the limit X it is a constant in r if and only if Br .x/ is a metric cone. This opens
the door to the techniques of Federer [1970], which have been applied to many nonlinear equations. In
particular, one can decompose X D Reg.X /[Sing.X / into a regular and singular part and stratify the
singular part S0.X /� � � � � Sn�1.X /D Sing.X /. Cheeger-Colding were able to then use the Federer
dimension reduction to prove the dimensional estimates dim S` � `. More recently, the work of Cheeger,
Jiang and Naber [Cheeger et al. 2021] was able to prove that S`.X / is `-rectifiable. This result is sharp
for `� n� 2 by an example of Li and Naber [2020], who built examples whose singular strata S`.X /

are `-rectifiable, `-cantor sets.

For the regular set Reg.X / of a noncollapsed limit one can say even more. A Reifenberg-type result of
Cheeger and Colding [1997, Theorem 5.14] allows one to show that there is an open dense subset on
which X is a topological manifold. In the case where the Mj are boundary free it was shown in [Cheeger
and Colding 1997, Theorem 6.1] that X is a manifold away from a codimension 2 set. More recently,
it was shown by Brué, Naber and Semola [2022] that even in the boundary case one has a manifold
structure away from a codimension 2 set. That is, the top stratum of the singular set Sn�1.X / is itself a
manifold away from a codimension 2 set, and thus X is a topological manifold with boundary away from
a codimension 2 set.

Geometry & Topology, Volume 29 (2025)



Lower Ricci curvature and nonexistence of manifold structure 445

1.1 Main result on topological structure

It has remained an open question as to whether in the collapsed case X needs to have a topological
manifold structure on some open dense subset. The main result of this paper is to answer this question in
the negative:

Theorem 1.1 Let .X 4; h/ be a smooth complete manifold with RicX > �, where � 2R. Then for every
� > 0 there exists a metric space .X 4

� ; d�/ such that

(i) dGH.X
4;X�/ < �,

(ii) X 4
� is 4-rectifiable ,

(iii) there exist .M 6
j ;gj /

GH
�! .X 4

� ; d/ with Ricgj > �,

(iv) for all open sets U �X�, we have that the homology group H2.U / is infinitely generated. Conse-
quently, every open set U �X is noncontractible and therefore not homeomorphic to Euclidean
space.

We will see that it is possible to build many such X 4
� . In short, for each countable dense subset

CD fxj g � X and each collection of sufficiently decaying constants � � �j ! 0 we will build X� by
connect-summing X 4 with a CP2 of size � �j at the collection of points C. The topological picture will
be similar to a complex algebraic blow up, where we replace a point xj with a 2-sphere S2

�j
, though it

is important to note that this is purely topological and there is no complex structure being preserved in
this process. In particular, the geometric properties of the blow down map that sends the newly added
S2
�j

to the chosen xj will be important to the construction. These blow down maps will explain how the
rectifiable charts of the space X 4

� collapse each of our added 2-spheres to points, which form a set of
measure zero. Most examples of rectifiable structures which are not manifolds arise by allowing for holes
in the space. The blow down picture here explains the ability to build a rectifiable space which is nowhere
a manifold, but also has no holes. By choosing these points fxj g and scales �j fairly freely we see that a
smooth structure is actually quite hard to obtain under higher-dimensional lower Ricci curvature bounds,
and in a certain generic sense we should expect limit spaces to not have manifold structures.

The above raises the question about whether if we assume bounds on topology we might obtain more.
There are two versions of such a question:

Question 1.1 Let .M n
j ;gj ; �j ;pj /

mGH
��! .X k ; d; �;p/, where Ricj � �, �j WD dvgj =Vol.B1.pj // and

jH�.Mj ;Z/j<A<1. Then is X k a topological manifold on an open dense subset?

Here, jH�.Mj ;Z/j refers to the number of generators for the abelian group in question. We can phrase
the question directly on the metric-measure space itself in a very similar form:

Question 1.2 If .X k ; d; �/ is an RCD.n; �/ space with bounded homology jH�.X;Z/j<1, then is X

a topological manifold on an open dense subset?

Geometry & Topology, Volume 29 (2025)



446 Erik Hupp, Aaron Naber and Kai-Hsiang Wang

Rephrasing the above: is the nonmanifold structure in Theorem 1.1 only possible in the presence of
infinitely generated homology?

Acknowledgements Naber was funded by National Science Foundation grant DMS-1809011 for much
of this work.

2 Geometric outline of construction

Let us turn our attention to the construction of the smooth manifolds .M 6
j ;gj / WD .X

4
j �S2; hjCf

2
j gS2/.

We will often write Xj �fj S2 to represent that we are geometrically considering the product of two
spaces with a warping factor fj . We can view X 4

j as the blow up of X 4 at an increasingly dense sequence
of points. That is, to construct X 4

j we will effectively take a collection of points fxa
j g �X 4 and replace

these points with 2-spheres. Each time we blow up a point, we are introducing a new noncontractible S2

into the space. Geometrically, each S2 being introduced will be of size at most �, but their sizes will
decrease quickly as the sequence continues. We will additionally alter the warping factor on the S2 factor
of M 6

j in order to preserve the strict Ricci curvature lower bound. As our collection of blow up points
becomes dense, we will arrive at our limit X 4

� .

Our construction will be inductive. That is, given M 6
j which satisfies a handful of inductive properties,

we will explicitly construct from it M 6
jC1

with similar inductive properties. Our goals in this section will
first be to prove Theorem 1.1 given our inductive sequence, which we will do in Section 2.0.1. We will
then focus on the inductive construction itself, which will be broken down into steps. Each step will
consist of a main inductive lemma. The inductive lemmas will be proved later in the paper, but in the
meantime we will finish the inductive construction in Section 2.3 based on these lemmas. As such, our
goal for this section is to complete the proof of Theorem 1.1 modulo the proof of the inductive lemmas.

In order to state the conditions of our inductive construction, let us introduce the correct notion of
regularity scale for this paper.

Definition 2.1 (regularity scale) Let .M n;g/D .X n�2 �S2; hCf 2gS2/ be a smooth manifold with
x 2X , and 0< � < 1 a constant. Then we define the regularity scale

(2) rx D r�x WD max
0<r�1

�
injX .x/� r and sup

Br .x/

X
0�k�2

.r2Ck
jr

k Rmh jC r1Ck
jr

1Ck lnf j/� �
�
:

Remark 2.1 The definition depends on a constant 0<�< 1, though this constant may be fixed somewhat
arbitrarily. Pictorially, when � is small we are increasingly close to Rn�2 �S2 with a product metric.

Remark 2.2 It follows that if rx > 2r , then topologically Br .x/�X is contained in a Euclidean ball.

Remark 2.3 If rx > 2r , then we can write the metric h in exponential coordinates on Br .x/ so that hab

is C 2 close to the identity and lnf is C 3 close to a constant. See Lemma 3.2.

Geometry & Topology, Volume 29 (2025)
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Now let .X 4; h/ be our chosen manifold from Theorem 1.1 with RicX >�. We will go ahead and assume
X 4 is compact, but it will be clear that this is not needed as all constructions are purely local. Primarily,
this allows us to discuss the construction in terms of some global parameters instead of choosing them
locally. Let us define

(3) �C WDmaxf� W RicX Œv; v�� �jvj
2
g;

and observe that as X is compact we have �C > �. There is no loss in generality in us then assuming
that the constant � > 0 from Theorem 1.1 satisfies

(4) � < 1
2
.�C��/:

Our inductive construction of .M 6
j ;gj / will produce a choice of parameters

(5) rj WD
1

2j
; ıj � ı

1Cj ; �j WD
�

2j
< �; �j WD �

C
�

jX
kD1

�k > �;

where 0 < ı� 1 will later be chosen sufficiently small. We will let our base step of the induction be
represented by the space M 6

0
WDX 4�S2 with product metric g0DhCı2gS2 . Our inductive assumptions

will be the following:

(I1) We can write M 6
j D X 4

j �S2, with metric gj D hj C f
2

j gS2 satisfying Ricgj � �j . The space
.X 4

j ; hj / and warping function fj WXj !RC are smooth with jfj j< ıj rj .

(I2) We have a smooth mapping �j WXj !Xj�1 and a maximal disjoint collection fBrj .x
a
j /�Xj ga

subject to the conditions

(I2.a) fxa
j ga � fx 2Xj W rx � 4rj g,

(I2.b) �ji.B4rj .x
a
j //\fx

b
i g D∅, where �ji WD �iC1 ı � � � ı�j WXj !Xi for i < j .

(I3) The mapping �j WXj !Xj�1 is a diffeomorphism away from ��1
j .xa

j�1
/Š S2, an isometry away

from ��1
j .Brj�1

.xa
j�1

//, and ��1
j .Brj�1

.xa
j�1

// is diffeomorphic to the generating line bundle
E! S2.

(I4) ��1
j .xa

j�1
/Š S2 are totally geodesic, round 2-spheres of radius � ıj rj in Xj . We have jD�j j<

C.6/, and if x;y2Xj with d.x;y/>ıj rj then .1�ıj /d.x;y/<d.�j .x/; �j .y//<.1Cıj /d.x;y/.

The notation C.6/ above tells us that jD�j is uniformly bounded by a dimensional nD 6 constant, which
in this case is just a uniform constant.

Let us discuss some of the above properties and their implications. Condition (I1) tells us that from a
geometric standpoint M 6

j is globally a warped product over X 4
j , and that geometrically the S2 factor

is disappearing in the limit. Condition (I2) is an enumeration of the points we will be doing surgery
around to move from Xj to XjC1. The important point to observe is that necessarily this set is becoming
increasingly dense by condition (I2.a), as the points are maximal subsets inside the set whose regularity
scale is too large.

Geometry & Topology, Volume 29 (2025)



448 Erik Hupp, Aaron Naber and Kai-Hsiang Wang

To move from Xj to XjC1 we will be performing surgeries on the balls Brj .x
a
j /. Condition (I3) is telling

us that the surgery is topologically a connect sum with CP2, where we are replacing each xa
j with a

2-sphere. Near xa
j this has the effect of replacing the diffeomorphic ball Brj .x

a
j / with the total space

E! S2 of the generating line bundle over S2. Note that the unit sphere bundle in E is S3, and hence
this is the right object for gluing. From a topological perspective, moving from Xj to XjC1 adds a second
homology generator for each xa

j . Condition (I2.b) is telling us that our surgeries never intersect the
previously added 2-spheres.

Condition (I4) is explaining the geometric properties of our blow down maps �j WXj !Xj�1. These will
each be smooth mappings, indeed uniformly Lipschitz, and will be Riemannian isometries away from some
small neighborhoods of the blow up points. We will see that the limit map ˆ WD limj!1 �j1 WX

4
� !X 4

is uniformly Hölder and locally bi-Lipschitz away from a set of measure zero. In particular we will have a
single rectifiable chart of X 4

� over X 4, that is an a.e. defined locally bi-Lipschitz map onto a full-measure
subset of a smooth manifold. The blow up 2-spheres will all be collapsed to single points under this
mapping.

2.0.1 Proving Theorem 1.1 given the inductive spaces M 6
j

Before focusing on the inductive con-
struction itself, let us see how to use (I1)–(I4) in order to finish the proof of Theorem 1.1.

Let us begin by studying properties of the spaces X 4
j . For each i < j let us write fS2

jiaga WD f�
�1
ji .x

a
i /ga.

Notice by conditions (I4) and (I2.b) that these are disjoint totally geodesic round 2-spheres inside of X 4
j .

Additionally, by (I3) and a Mayer–Vietoris sequence we have that

(6) �1.X
4

j /D �1.X
4/ with H2.X

4
j /DH2.X

4/˚
M

i<j ;a

hŒS2
jia�i:

In particular, the rank of the second homology is growing in step with these two spheres.

Let us now flesh out the geometric properties implied by (I4) more completely. From (I4), we expect
the Lipschitz constant to be uniformly bounded, but not necessarily close to 1. On the other hand, (I4)
also tells us that the Lipschitz constant is close to 1 away from a small neighborhood of the diagonal in
X 4

j �X 4
j . Consequently, we have the following bounds:

(7) If x;y 2Xj with
�

d.x;y/ > ıj rj ; then .1� ıj /d.x;y/ < d.�j .x/; �j .y// < .1C ıj /d.x;y/;

d.x;y/� ıj rj ; then d.�j .x/; �j .y// < Cd.x;y/ for C D C.6/:

Thus we can take the Lipschitz constant to be small if the distance between two points is also not too
small. This in particular implies the much weaker estimate

(8) �j is a Cıj � C 2�jı-Gromov Hausdorff map:

By composing, we see that X 4
j is always Cı < �-GH close to X 4 for small enough ı.

The importance of these estimates is that our real goal is to obtain uniform continuity for the maps
�ji W Xj ! Xi from (I2.b). It is too much to ask that they be uniformly Lipschitz. However, for
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ı < ı.C /D ı.6/ in the construction, condition (I4) will now allow us to show that the �ji are uniformly
C ˛ maps. Indeed, for any fixed x;y 2Xj , write r WD d.x;y/, and then using (7) we can estimate

(9) d.�ji.x/; �ji.y//�
Y

k�j Wr�ıkrk

C �
Y

k�j Wr>ıkrk

.1C ık/r:

To estimate the above we will use that ıj � ı1Cj , which gives us that

(10) d.�ji.x/; �ji.y//� .1C ı/C
ln.r/= ln.ı=2/r D .1C ı/r˛.ı/;

where ˛.ı/D 1C ln.C /=ln.ı=2/! 1 as ı! 0.

Now recall by (8) that �j is a Cıj � C 2�jı-Gromov Hausdorff map. Consequently we have that
�ji WXj !Xi is a C

P
j�k�iC1 ık �C 2�iı-Gromov Hausdorff map. This tells us that fXj g is a Cauchy

sequence, and so

(11) .Xj ; dj /
GH
�! .X�; d/:

Note that this is not a subsequential convergence but an actual convergence by the Cauchy condition. It
follows from (I1) that Mj

GH
�!X 4

� as well, since jfj j � ıj rj! 0. As the maps �ji witness the GH-Cauchy
condition, we can take limits

(12) lim
j!1

�ji WDˆi WX
4
� !Xi ;

where the ˆi are also C 2�iı-Gromov Hausdorff maps. It follows from (10) that the ˆi are C ˛-Hölder
maps,1 or more precisely that

(13) d.ˆi.x/; ˆi.y//� .1C ı/d.x;y/
˛:

Importantly, we have that the ˆi are continuous maps.

Now recall from (I3) and (I4) that fS2
jiag �X 4

j are totally geodesic round 2-spheres in X 4
j . Note also

that for i < j < k we have by (I2.b) and (I3) that �kj jS2
kia
W S2

kia
! S2

jia is an isometry. Consequently,
we can limit our sequences of 2-spheres to get round 2-spheres

(14) lim
j!1

fS2
jia �Xj g D fS

2
ia �X 4

� g:

Note that ĵ jS2
ia
WS2

ia!S2
jia is an isometry for every j > i ; in particular, the radius of each 2-sphere S2

ia

is at most riıi . Now we claim that each S2
ia �X 4

� is a nontrivial generator in the second homology group
as well. Indeed, assuming this is not the case, there must be a continuous 3-chain  W �3! X 4

� with
boundary @ D S2

ia. If we compose with ĵ then this gives us a continuous chain ĵ ı W�
3! X 4

j ,
whose boundary is the 2-sphere S2

jia. However, as we know that S2
jia is a nontrivial generator in the

second homology group, this is not possible. A similar argument shows that each fS2
iag generates an

independent factor in the second homology group.

1In fact, the ˆi are rectifiable charts. Indeed, the �j are .1C ıj /-bi-Lipschitz away from the bubbles ��1
j .Bıj�1rj�1

.xa
j�1

//,
and uniformly locally bi-Lipschitz away from the added 2-spheres. Composing these estimates as in (10) shows that for any
j > 0, the ˆi are C.i; j /-bi-Lipschitz away from

S
k>i;a Brkıj^k

.S2
ka
/.
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Finally, let us show more carefully that the 2-spheres fS2
iagi;a are dense in X�. Fix any x 2 X� and

�0 > 0. Consider ˆi.x/ 2 Xi for some large i such that ˆi is an �0-GH map. We claim that we can
find xa

j 2 Xj for some j � i such that d.�ji.x
a
j /; ˆi.x// < �

0. Since ˆi D �ji ı ĵ , it is then clear
that the 2-sphere S2

ja D ˆ
�1
j .xa

j / is contained in the ball B2�0.x/. To prove the claim, suppose it is
not true. Since �ji is a C 2�iı-Gromov Hausdorff map, we then have xa

j 62 B�0�C 2�iı. ĵ .x// for any
j � i and any blow up point xa

j . Thus the ball B�0�C 2�iı�ri
. ĵ .x// has the same Riemannian metric

for all such j . In particular, ĵ .x/ will have the same regularity scale for all such j — note that the
regularity scale is invariant under scaling of the warping function f . Now for j large enough, a point in
B�0�C 2�iı�ri

. ĵ .x// has to be blown up since the collection of blow up points is maximal. This is a
contradiction.

Thus we have our limit space X 4
� and a dense collection of two spheres fS2

iag which are all generators in
the second homology group, as claimed. This finishes the proof of Theorem 1.1 under the assumption
that we have built our inductive sequence M 6

j satisfying (I1)–(I4).

2.1 Step 1: the gluing block B.�; ˛; ı/

In order to prove Theorem 1.1 we are therefore left with showing how to build MjC1 DXjC1 �fjC1
S2

from Mj DXj �fj S2 in the inductive construction. The first step of the construction will build what is
our main gluing block. When we move from Xj to XjC1 we will take our appropriately dense collection
of points fxa

j g and replace a small neighborhood of each with our gluing block B. From a topological
perspective, it will be a connect sum with a copy of CP2 near each xa

j , so that we are blowing up the
points fxa

j g and replacing them with 2-spheres.

Our main constructive lemma in this step of the construction is the following:

Lemma 2.2 (inductive step 1) For every 0< � < 1
10

, 0< ˛ < ˛.�/ and 0< ı < ı.�; ˛/, there exists a
smooth Riemannian manifold B.�; ˛; ı/ with RicB > 0 and such that :

(i) B is diffeomorphic to E �S2, where E is the total space of the generating line bundle E! S2.
Further , .B;g/ has a warped product structure g WD gE Cf

2gS2 .

(ii) There exists U D UE � S2 � B such that B n U is isometric to a neighborhood of infinity in
C.S3

1��
/�ır˛ S2 with the metric dr2C .1� �/2r2gS3 C ı2r2˛gS2 .

Further , there exists a � W .E;gE/! C.S3
1��

/ such that :

(i) � is a diffeomorphism away from the cone point 0 2 C.S3/, with ��1.0/ Š S2 an isometric
sphere.

(ii) jD�j � C is uniformly bounded with � an isometry away from UE .

Note that BnU looks very pGH-close to R4�S2, where the degree of closeness is being measured by �,
˛ and ı in a quantitative manner.
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2.2 Step 2: adding cone singularities

The second step of the construction involves changing the geometry near each xa
j so that the gluing

blocks B, which have a very specific geometry at infinity, may be isometrically glued along an annulus
into Xj . Let us begin with a broader discussion before stating the main constructive lemma.

Let us start with a discussion of the density of singularities. It is known — see for instance [Otsu and
Shioya 1994, Example 2] — that one can build examples .X; h/ with Rich > 0 for which the singular set
is dense. In fact, the example in [loc. cit.] has positive sectional sech > 0 and even full positive curvature
operator Rmh > 0. What is at first counterintuitive is that the constructions of [loc. cit.] not only produce
but essentially rely on these stronger curvature conditions. That is, the construction of singularities with
Rmh > 0 in [loc. cit.] is very analogous to the construction of convex functions with nonsmooth points.

Let us now consider what is almost the reverse direction. Begin with a smooth space .X; h/ with some
form of lower bound on the curvature and ask about adding cone singularities near any point x 2 X

without destroying the lower curvature bound. If for instance sech > � > 0, then one can accomplish
this by performing a C 0 gluing in the spirit of [Perelman 1997, Section 4]. Namely, one can remove a
sufficiently small neighborhood of x 2 X and isometrically glue in a rescaled spherical suspension of
the boundary. There will be what is essentially distributional curvature added along the gluing, but the
sech > � assumption will allow us to guarantee that these distributional curvatures all have the right sign.
In particular, one can smooth near the gluing region and preserve the sech > � > 0 condition.

The procedure described above of adding cone singularities near any point does not work if we are only
assuming Rich>�. In short, the distributional curvature added from the C 0 gluing is due to the difference
in second fundamental forms of the boundary on the two sides of the gluing. This second fundamental
form in turn is closely related to sectional curvature, and Ricci curvature control is not sufficient. It turns
out that we need to exploit better the local geometry near x 2X in order to control the Ricci curvature.

In Step 2.1 of Section 5, we will see how to resolve this problem and add such cone singularities to
arbitrary spaces satisfying Rich > � without destroying the lower Ricci curvature bound.2 The inductive
lemma of this step of the construction is a generalization of this discussion and will allow us to also
add conical singularities with a fixed warping structure near every point. This extra warping control is
necessary in order to use the inductive lemma of Step 1 to add our desired topology. We will focus on the
6-dimensional case M DX 4�S2 of interest, though it is clear that dimension is not a relevant constraint.
Precisely, we have the following local gluing lemma, which focuses on a ball with controlled regularity
scale:

Lemma 2.3 (inductive step 2) Consider a warped product space .B4
2
.p/�S2;g/, where the metric

g D gBCf
2gS2 satisfies injgB

.p/ > 2, Ricg > � and

(15) jRmgB
j; jr RmgB

j; jr2 RmgB
j; jr lnf j; jr2 lnf j; jr3 lnf j< � < 1:

2The construction in Section 5.1 is a bit more general; one can drop the warping factor to obtain the claimed result.
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Write r WD distgB
. � ;p/. Then for all choices of parameters 0<�<�.j�j/, 0<˛<˛.�/, 0< yr < yr.˛; �; �/

and 0< yı < yı.�; ˛; �; kf kL1 ; yr/, there exists 0< ı D ı. yıkf k1 j ˛; �; �/ and a warped product metric
yg D ygBC

yf 2gS2 such that :

(i) The Ricci lower bound Ricyg > ��C.4/� holds for yr=2� r � 2.

(ii) yg D gBC
yı2f 2gS2 is unchanged up to scaling the warping factor f by yı for 1� r � 2.

(iii) ygD dr2C .1� �/2r2gS3C ı2r2˛gS2 has the cone warping structure C.S3
1��

/�ır˛ S2 for r � yr .

(iv) The identity map Id W .B2.p/; ygB/! .B2.p/;gB/ is .1C 2�/-bi-Lipschitz.

Remark 2.4 Our notation of the constant dependence ı. yıkf k1 j ˛; �; �/ means ı! 0 as yıkf k1! 0

with the other constants ˛, � and � fixed.

Remark 2.5 The caveat in (i) that Ricyg > ��C.4/� only away from a small neighborhood of the cone
point, eg Byr=2.p/�S2, cannot be improved. This is simply due to the fact that the fixed warping structure
C.S3

1��
/�ır˛ S2 has infinite negative curvature at the pole, in particular it has RicjTS2!�1 as r! 0.

In practice, Byr=2.p/�S2 will be replaced by a rescaled bubble B obtained from Lemma 2.2, which does
have the appropriate Ricci lower bound.

In practice the above works as follows. If M D X �f S2 is a smooth manifold with a lower Ricci
curvature bound and x 2X , then the above tells us we can find a potentially very small neighborhood
B2�.x/�S2 in which we can change the geometry of M . Specifically, after shrinking the warping factor
by yı, we can alter the metric so that the ball Byr�.x/�S2 will be isometric to that of the warped cone
C.S3

1��
/�ı�.r=�/˛ S2.

In the case of no warping factor, as per the discussion before the statement of the above lemma, we
can repeat this process indefinitely in order to produce a dense set of singularities. In the case of a
warping factor we can similarly repeat this process indefinitely, but also combine with the inductive
lemma (Lemma 2.2) in order to glue topology in at each step. We will discuss this construction more
carefully in the next step.

2.3 Step 3: constructing MjC1

Let us now see how to use the inductive steps of Lemmas 2.2 and 2.3 in order to complete the inductive
step of the construction and build MjC1 from Mj . Thus let us assume we have built Mj DXj �S2 with
gj D hj C f

2
j gS2 and Ricgj > �j . Let us also choose a maximal disjoint collection fBrj .x

a
j /g such that

fxa
j g � fx 2X 4

j W rx � 4rj g and �ji.B4rj .x
a
j //\fx

b
i g D∅.

Due to the unfortunate number of constants being accounted for in the construction, it is helpful to briefly
remark on what will happen. The goal is to construct MjC1 in two steps. First we will take each ball
Brj .x

a
j /�Xj and apply the inductive step of Lemma 2.3 in order to add a warped cone singularity on

Byrrj .x
a
j /. This space is not smooth at the cone point xa

j of course, but will have appropriately positive Ricci
at least outside of Byrrj =2.x

a
j /. We will then apply the inductive step of Lemma 2.2 to replace each warped
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cone Byrrj .x
a
j / with the smooth bubble metric yB of positive Ricci. This will produce XjC1, and if we

choose the various constants sufficiently small at each stage, we can do this while keeping control of both
the space and its relationship to Xj . That is, we can show the inductive hypotheses (I1)–(I4) are satisfied.

Let us now describe the modifications to each disjoint ball B2rj .x
a
j /�S2 in more detail. It will be more

convenient to describe the process on a single rescaled ball B2.p/�S2 WD r�1
j .B2rj .x

a
j /�S2/ with

metric g D gBC f
2gS2 WD r�2

j .hj C f
2

j gS2/D r�2
j gj . Observe that the ball B2.p/�S2 satisfies the

criteria of Lemma 2.3, with Ricci lower bound r2
j �j . Therefore let us apply Lemma 2.3 with input

parameters �0, ˛, yr , yı, and output parameter ıI . We choose �0, ˛, yr and yı to satisfy the conditions of
Lemmas 2.3 and 2.2, but we may further shrink these constants later.

The previous application of Lemma 2.3 to B2.p/�S2 produced a metric ygD ygBC
yf 2gS2 such that yf Dyıf

and ygB D gB on the open set A1;2.p/. Note additionally that by choosing �0 < �0.�jC1; rj / small enough,
we can ensure that Ricyg� r2

j �jC1 holds away from Byr=2.p/�S2. Inside the inner radius, .Byr .p/�S2; yg/

is isometric to the cone warping structure Byr .0/�S2�C.S3
1��0

/�ıI r˛ S2. We wish to replace this inner
ball with a rescaled copy of the gluing model B.�0; ˛; ı.�0; ˛// from Lemma 2.2. Recall from Lemma 2.2
that U � B is an open set such that B nU is isometric to dr2C .1� �0/2r2gS3 C .ı.�0; ˛//2r2˛gS2 .
Let yB be a rescaling of B so that the rescaled core yU � yB is contained in a bounded region with a
collar neighborhood yV of its boundary isometric to Ayr=2;yr .0/� S2 � C.S3

1��0
/�ıII r˛ S2, for some

ıII D ıII .yr ; ˛; �
0/. We additionally require that yr < yr.j�jC1j; rj / is small enough so that RicyB > r2

j �jC1

in this region. In particular, if we multiply yf by min.ıI ; ıII /=ıI and multiply the warping factor of yB
by min.ıI ; ıII /=ıII , then we can define a warped product .xB; xg/ from .B2.p/�S2; yg/ by removing
Byr=2.p/�S2 and isometrically gluing the rescaled model yB into Byr .p/�S2 along yV . Note that for
warped product geometries, multiplying the warping factor by a constant � 1 only increases the Ricci
curvature — see Remark 3.2 — so Ricxg > r2

j �jC1.

We now seek to replace the original ball B2rj .x
a
j /�S2 �Mj with the rescaled rj xB. By construction,

rj xB is a warped product over a compact manifold with boundary, with a collar neighborhood of its
boundary isometric to .Arj ;2rj .p/�S2; hj C .xıfj /

2gS2/, where xı WD yımin.ıI ; ıII /=ıI . If we multiply
the warping factor of Mj by xı— which is independent of the choice of point in fxa

j g! — then we see that
Brj .x

a
j /�S2 can be replaced by rj xB, glued isometrically along Arj ;2rj .p/�S2. We similarly replace

B2rj .x
a
j /�S2 for each other a to form .MjC1;gjC1/.

We have almost completed our construction. For any choices of �0 > 0 and yr > 0 appropriately small our
construction above holds, and we need only make choices. Observe that we can define �jC1 WXjC1!Xj

to be the identity outside of
S

a Brj .x
a
j /. On the union of annuli

S
a.Brj .x

a
j / n Byrrj .x

a
j // we have

by Lemma 2.3 that jD�jC1 � I j < C�0 if we set �jC1 WD Id setwise on this region. We can use the
second part of Lemma 2.2 in order to extend �jC1 to each glued bubble rj xB, so that jD�jC1j< C.6/ on
fByrrj .x

a
j /g. If we now choose �0 < �0.ıjC1/ and yr < ıjC1=2 sufficiently small, (7) holds. This finishes

the construction of MjC1.
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3 Preliminaries

3.1 Ricci curvature of warping geometry

The underlying ansatz for all constructions going forward is the warped product with S2. We have several
formulas for the curvature of such spaces which will be used in this paper. In this section we collect
together some elementary remarks and formulas about such constructions. These will be the starting
point for many of the other formulas computed in this paper.

Let us now be more precise: consider the data of a smooth Riemannian manifold .X; h/ with a positive
function f WX ! .0;1/. We can form the warped product of X with S2 as follows:

(16) X �f S2
WD .X �S2; hCf 2gS2/:

That is, X �f S2 is a Riemannian manifold that topologically has the structure of a (trivial) sphere bundle
S2!X �f S2 �

�!X . The fibers ��1.x/D S2
f .x/

, for x 2X , of the projection map � are metrically
round spheres of radius f , and are orthogonal to the natural sections X � f!g for ! 2 S2. Denoting
M WDX�f S2, we will therefore use the orthogonal splitting to make the identification TM ŠTX˚TS2.
We obtain the following concise formulas for the Ricci curvature of M in the complementary directions:

RicM jTX D Rich�2
.r2

h
f /

f
;(17)

RicM jTS2 D

�
1

f 2
�
jrhf j

2
h

f 2
�
�hf

f

�
f 2gS2 :(18)

Let us make a couple of remarks about the general form of these identities, which we will use without
further comment throughout the rest of the paper:

Remark 3.1 There is no cross-term in RicM , ie RicM .v; w/D 0 for v 2 TX and w 2 TS2. In practice,
this splitting of the Ricci curvature into orthogonal blocks will allow us to subdivide the problem of lower
bounding RicM into two distinct steps.

Remark 3.2 The scaling action f 7!�f for �> 0 leaves the TX directions RicM jTX invariant, and acts
on the TS2 directions by RicM jTS2 7! �2 RicM jTS2C .��2� 1/�2gS2 . Thus, RicM is nondecreasing
under the scaling f 7! �f when �� 1. In practice, this will mean that RicM jTS2 can be made as large
as desired, without disrupting RicM jTM , by multiplying f by a suitably small positive number.

3.2 C 1 gluing lemma for warping geometry

We state in this subsection a C 1 gluing lemma. It is a slight generalization of a result of Menguy [2000,
Lemma 1.170], and its proof is essentially verbatim. We will make use of it in both steps of the
construction.
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Lemma 3.1 (C 1 warped geometry gluing) Let .M n; h/ be a smooth manifold with N n�1 � M a
complete smooth submanifold. Consider .M n �Sk ;g/, where g D hC f 2gSk is a C 1 warped product
metric. Assume further that

(i) h and f are smooth on M nN and have smooth limits from each side of N ,

(ii) inf Ricg > � on .M nN /�Sk .

Then for every open set N � U and number � > 0, there exists a smooth metric gU D hU C f
2

U
gSk

on M � Sk such that RicgU
> � and gU D g outside of U � Sk . Moreover , one can arrange that

kg�gU kC 1.U�Sk/ < �.

Remark 3.3 It is enough to assume that g is C 4 on M nN .

Remark 3.4 The verbatim result is true for more general warping factors other than spheres.

3.3 Regularity under the exponential map

The following is relatively standard, and the proof goes through a series of Jacobi field estimates; however
it is surprisingly difficult to find a precise reference for it. For the convenience of the reader we state the
result precisely below:

Lemma 3.2 (regularity of exponential map) Let 0< � < 1 be a number and .B1.p/;g/ a metric ball
which satisfies the regularity scale estimates

(19) inj.p/ > 1 with
kX
`D0

kr
`RmkL1 < �:

Given an orthonormal basis f@ag of TpM , let gab D exp� g be the metric in exponential coordinates.
Then we can estimate

(20)
X
a;b

�
r�2
jjgab � ıabkL1 C

X
c

r�1
k@cgabkL1 C

kX
`D2

X
c1;:::;c`

k@`c1;:::;c`
gabkL1

�
� C.n; k/ �:

Remark 3.5 Let us say a few words about how these estimates can be proved. One rewrites the
metric derivatives in terms of the Jacobi vector fields Ja WD r@a along radial geodesics passing through p,
eg @cgabD r�3.g.rJc

Ja;Jb/Cg.Ja;rJc
Jb// for @c ?rr . To obtain estimates on the iterated covariant

derivatives Ja1;:::;ak ;b WD rJa1
� � � rJak

Jb , one uses the equation they solve:

0DrJa1
� � � rJak

.J 00b CR.Jb; @r /@r /D J 00a1;:::;ak ;b
CR.Ja1;:::;ak ;b; @r /@r CEa1;:::;ak ;b:

The inhomogeneous term Ea1;:::;ak ;b depends only on lower-order covariant derivatives Jc1;:::;c`Jd for
` < k, which inductively have already been estimated, the base case `D 0 being the standard estimates
for Jacobi vector fields as in [Jost 2017, Chapter 6.5]. One can then proceed to estimate solutions of this
inhomogeneous ODE, eg by Duhamel’s principle.
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Remark 3.6 Let us briefly compare this regularity estimate and proof sketch with another possible
approach. First, one switches to harmonic coordinates and uses the assumed injectivity radius and
curvature bounds (19) to obtain C kC1;˛ control on the metric in these coordinates for any 0 < ˛ < 1,
following [Anderson 1990]. Then, one converts this into C k�1;˛ control on the metric in exponential
coordinates by [DeTurck and Kazdan 1981, Theorem 2.1]. The loss of .1�˛/ derivatives compared to
Lemma 3.2 is immaterial in our context, where we are only ever working on the regularity scale in a
smooth manifold.

Our primary use of the above will be to view the metric g as a form of twisted cone. Namely, in
the context where inj.p/ > 1 as above we can use exponential coordinates to write the metric g on
B1.0/� C.Sn�1/DRn as

(21) g D dr2
C r2gr ;

where gr is a smooth family of metrics on Sn�1. The estimates above can then be understood as estimates
on this family gr :

Corollary 3.3 (cone regularity of exponential map) Let .B1.p/;g/ be a metric ball which satisfies the
regularity scale estimates (19) with 0<�< 1. Let us use exponential coordinates to write gD dr2Cr2gr

as in (21), where gr is a family of metrics on Sn�1. Then we have the estimates

(22)
kX
`D0

kr
`
g

S3
.gr �gS3/kL1.S3;g

S3 /
� C.n; k/ � r2;

k�1X
`D0

kr
`
g

S3
g0rkL1.S3;g

S3 /
� C.n; k/ � r;

k�2X
`D0

kr
`
g

S3
g00r kL1.S3;g

S3 /
� C.n; k/ �:

4 Step 1: the gluing block

In this section we build the gluing block of Step 1 for our construction. Our 4-manifold of interest for this
gluing block is the generating line bundle E!S2, which we can topologically also view as C2 blown-up
at the origin. We will build a metric of positive Ricci curvature on E �S2 which has the property that
at infinity it looks roughly like R4 � S2. More precisely, it will be isometric to the warped product
C.S3

1��
/�ır˛ S2 near infinity. The precise lemma is the following:

Lemma 4.1 (inductive step 1) For every 0< � < 1
10

, 0< ˛ < ˛.�/ and 0< ı < ı.�; ˛/, there exists a
smooth Riemannian manifold B.�; ˛; ı/ with RicB > 0 and such that :

(i) B is diffeomorphic to E �S2, where E is the total space of the generating line bundle E! S2.
Further , .B;g/ has a warped product structure g WD gE Cf

2gS2 for some smooth f WE!RC.

(ii) There exists a U D UE � S2 � B such that B n U is isometric to a neighborhood of 1 in
C.S3

1��
/�ır˛ S2 with the metric dr2C .1� �/2r2gS3 C ı2r2˛gS2 .
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Further , there exists a � W .E;gE/! C.S3
1��

/ such that :

(i) � is a diffeomorphism away from the cone point 0 2 C.S3
1��

/, with ��1.0/ Š S2 an isometric
sphere.

(ii) jD�j � C is uniformly bounded with � an isometry away from UE .

Remark 4.1 As usual our use of the notation C.S3
1��

/�ır˛ S2 means we are looking at the warped
product metric on C.S3/�S2 given by g WD dr2C .1� �/2r2gS3 C ı2r2˛gS2 .

The proof of the above lemma is broken down over the remainder of this Section. In Step 1.1 of Section 4.1
we begin by writing down a metric on .E;gE;1/ with nonnegative Ricci curvature, and which looks like
a cone at infinity. This cone however may not be close to R4 at this stage.

In Step 1.2 of Section 4.2 we will write down a metric on E �S2 of the form g2 D gE;2Cf
2

2
gS2 . The

base metric gE;2 WD gE;1 will simply be the metric from the first step, however we will now equip the
metric with a warping S2 factor f2.r/ WD ı2.1C r2/˛2=2. The polynomial growth of the warping factor
will add extra curvature which will be useful in flattening out the cone in the third step.

In Step 1.3 of Section 4.3 we will use the extra curvature provided by the warping factor to slowly increase
the cone angle of gE until it is close to Euclidean. In Step 1.4 we will fix the warping factor so that our
space becomes isometric to the warped cone C.S3

1��
/�ır˛ S2 near infinity. At several steps we will only

build geometries which are globally C 1, but we will end the construction of Lemma 4.1 by applying the
C 1 smoothing Lemma 3.1 in order to fix this issue.

4.1 Step 1.1: bubble metric with positive Ricci

Consider the generating line bundle E!S2, and let us observe that the unit sphere bundle is diffeomorphic
to S3. In particular, if we remove the zero section then E nS2 is diffeomorphic to RC �S3. We will
begin by writing our metric in this degenerate coordinate system. To do so let us choose the canonical
left-invariant vector fields X;Y;Z on S3 so that they satisfy the commutator relations ŒX;Y � D 2Z,
ŒY;Z�D 2X and ŒZ;X �D 2Y . Let dX , dY and dZ denote the dual frames. We first consider a metric
on RC �S3 of the form

(23) gE;1 WD dr2
CA.r/2dX 2

CB.r/2.dY 2
C dZ2/:

In order for this to define a smooth metric on E it is required that A.0/ D 0 with A.even/.0/ D 0 and
B.0/ > 0 with B.odd/ D 0. Our construction for this step is the following:

Lemma 4.2 Let gE;1 be as in (23), and let 0<m< 1
100

with r1 WD 2. Then there exist A.r/ and B.r/

such that

(i) A.r/D B.r/ with A0.r/D B0.r/Dm for r � r1,

(ii) gE;1 defines a C 1 metric on E, smooth away from r D r1, with Ric� 0 on the smooth part , and
Ric� 1

2
k2 > 0 on Ur1

WD fr < r1g for some constant k D k.m/.
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Remark 4.2 For r � r1, we have that gE;1 D dr2CA.r/2gS3
is exactly the cone metric on C.S3

m/.

Proof of Lemma 4.2 Let k > 0 be the smallest number satisfying the relation

(24) mD cos.kr1/:

Clearly we then have 1
3
� � kr1 <

1
2
� . Let us define A.r/ by the formula

(25) A.r/D

8̂<̂
:

1

k
sin.kr/ if r � r1;
p

1�m2

k
Cm.r � r1/ if r � r1:

To define B.r/ let b D b.m/ <
p

1�m2=k be taken so that we can find a smooth function with

B.r/D

8̂̂̂<̂
ˆ̂:

b if r � 1
2
r1;

0� B00 �
4m

r1

if 1
2
r1 � r � r1;

p
1�m2

k
Cm.r � r1/ if r � r1:

(26)

Note that in this case we necessarily have 0 � B0 �m � A0 and B � A. Together with kr1 <
1
2
� and

m< 1
100

, we can estimate

(27) b D B
�

1
2
r1

�
� B.r1/�m

�
r1�

1
2
r1

�
�

1

k

�p
1�m2�

1
4
m�

�
>

1

2k
:

Observe from the behavior of A and B as r ! 0C that gE;1 indeed defines a smooth metric on E near
the zero section; see eg [Perelman 1997].

Let us now estimate the Ricci curvatures. For r < 1
2
r1, we have (note that B0 D 0D B00 here)

(28) Ric.@r ; @r /D�
A00

A
� 2

B00

B
D k2;

Ric
�

X

jX j
;

X

jX j

�
D�

A00

A
� 2

A0B0

AB
C 2

A2

B4
� k2;

Ric
�

Y

jY j
;

Y

jY j

�
D Ric

�
Z

jZj
;

Z

jZj

�
D�

B00

B
�

A0B0

AB
�

�
B0

B

�2

C
2

B2
C

2B2� 2A2

B4

�
2

B.r1/2
D

2k2

1�m2
;

which is clearly appropriately positive. For 1
2
r1 � r < r1, we can estimate

Ric.@r ; @r /D�
A00

A
� 2

B00

B
� k2

� 2
4m=r1

1=2k
� k2

�
1�

48m

�

�
;(29)

Ric
�

X

jX j
;

X

jX j

�
D�

A00

A
� 2

A0B0

AB
C 2

A2

B4
� k2

� 2k cot.kr1=2/
m

1=2k
C

2k2 sin2.kr1=2/

.1�m2/2

� k2.1� 4
p

3mC
1

2.1�m2/2
/;
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Ric
�

Y

jY j
;

Y

jY j

�
D Ric

�
Z

jZj
;

Z

jZj

�
D�

B00

B
�

A0B0

AB
�

�
B0

B

�2

C
2

B2
C

2B2� 2A2

B4

� �
4m=r1

1=2k
� k cot.kr1=2/

m

1=2k
�

�
m

1=2k

�2

C
2k2

1�m2

� k2

�
2

1�m2
�

24m

�
� 2
p

3m� 4m2

�
:

Again observe that for m< 1
100

we have the appropriate positivity. Finally for r > r1, we have (note that
AD B is affine here)

(30) Ric.@r ; @r /D 0; Ric
�

X

jX j
;

X

jX j

�
D 2

1� .A0/2

A2
D 2

1�m2

A2
:

Since m< 1
100

we have Ric� 0 for r > r1. This completes the construction.

4.2 Step 1.2: bubble metric with S 2 warping factor

Recall that we ended the last step by constructing a metric gE;1 on E ! S2 which has nonnegative
Ricci curvature and is a cone C.S3

m/ outside a compact subset. The sphere S3
m in this cone is, however,

potentially quite small, and we will want to take the radius of this sphere closer to 1 in order to geometrically
flatten out the space.

In this next step of the construction, we want to add to gE;1 a warped S2 factor. This factor will add
additional curvature to the radial directions, which will be used in subsequent sections to flatten out our
cone structure. In this step we will look for a metric of the form

(31) g2 WD gE;2Cf2.r/
2gS2 D gE;1Cf2.r/

2gS2 :

In particular, we will not change the metric on our base E in this step. The warping factor f2.r/ will be
given explicitly by

(32) f2.r/D ı2.1C r2/˛2=2:

Our main purpose in this step is to see that g2 always has positive Ricci curvature:

Lemma 4.3 Let g2 be as in (31) and (32). Then for any 0< ˛2 � ˛2.m/�
1
2

and 0< ı2 < 1,

(33) g2 D gE;2Cf
2

2 gS2 D dr2
CA.r/2dX 2

CB.r/2.dY 2
C dZ2/Cf2.r/

2gS2

defines a C 1 metric on E �S2, smooth away from r D r1 with Ric> 0 on the smooth part.

Proof Note first that as f .odd/
2

.0/D 0, the metric is smooth near r D 0. Calculations together with the
results from the previous subsection give that for r < r1,

(34)
f 0

2

f2

D
˛2r

1C r2
�
˛2

2
;

f 00
2

f2

D
˛2

1C r2
.1C

.˛2� 2/r2

1C r2
/� ˛2;

A0f 0
2

Af2

D
k cos.kr/˛2r

sin.kr/.1C r2/
�
˛2 cos.kr/

1C r2

�

2
�
�

2
˛2;

B0f 0
2

Bf2

�
m

B
�

1
2
r1

� ˛2

2
�mk˛2:
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We use the subscript index ˛ for coordinate directions on S2 that are orthonormal for gS2 (and diagonalize
the corresponding block of Ric) at the point of calculation. We now estimate the Ricci curvature of the
whole space for r < r1 (with Lemma 4.2):

(35) Ric.@r ; @r /D�
A00

A
� 2

B00

B
� 2

f 00
2

f2

�
1
2
k2
� 2˛2;

Ric
�

X

jX j
;

X

jX j

�
D�

A00

A
� 2

A0B0

AB
C 2

A2

B4
� 2

A0f 0
2

Af2

�
1
2
k2
�˛2�;

Ric
�

Y

jY j
;

Y

jY j

�
D Ric

�
Z

jZj
;

Z

jZj

�
D�

B00

B
�

A0B0

AB
�

�
B0

B

�2

C 2
2B2�A2

B4
� 2

B0f 0
2

Bf2

�
1
2
k2
� 2mk˛2;

f �2
2 Ric.@˛; @˛/D

1

f 2
2

�
f 00

2

f2

�
.f 0

2
/2

f 2
2

�
A0f 0

2

Af2

� 2
B0f 0

2

Bf2

�
1

ı2
2
.1C r2

1
/˛2

�˛2�
1
4
˛2

2 �
1
2
�˛2� 2mk˛2:

Observe for any 0 < ˛2 � ˛2.m/ and any 0 < ı2 < 1 that we have Ric > 0. For r > r1 D 2 we use
different estimates (recall that AD B and they are affine here, and we impose ˛2 �

1
2

):

(36)
f 0

2

f2

D
˛2r

1C r2
;

f 00
2

f2

D
˛2

1C r2

�
1C

.˛2� 2/r2

1C r2

�
�

˛2

1C r2
.1C

.˛2� 2/r2
1

1C r2
1

/�
�˛2

5.1C r2/
;

A0f 0
2

Af2

D
m˛2r

A.1C r2/
:

Thus we can estimate the Ricci curvatures for r > r1:

(37) Ric.@r ; @r /D�3
A00

A
� 2

f 00
2

f2

> 0;

Ric
�

X

jX j
;

X

jX j

�
D�

A00

A
C 2

1� .A0/2

A2
� 2

A0f 0
2

Af2

D 2
1�m2

A2
� 2

m˛2r

A.1C r2/

�
2

Ar
.kr1

p
1�m2�m˛2/;

f �2
2 Ric.@˛; @˛/D

1

f 2
2

�
f 00

2

f2

�
.f 0

2
/2

f 2
2

� 3
A0f 0

2

Af2

�
1

ı2
2
.1C r2/˛2

C
˛2

5.1C r2/
�

�
˛2r

1C r2

�2

� 3
m˛2r

A.1C r2/

�
1

1C r2

�
1

ı2
2

C
˛2

5
�˛2

2 � 3˛2

�
:

Thus we again have, for any 0< ˛2 � ˛2.m/ and 0< ı2 < 1, that Ric> 0.
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4.3 Step 1.3: flattening the cone

Our goal in this step of the construction is to look for a metric on E �S2 of the form

(38) g3 WD gE;3Cf3.r/
2gS2 ;

where the warping factor f3.r/ WDf2.r/D ı2.1Cr2/˛2=2 will remain unchanged, up to further restrictions
on the parameters ı2 and ˛2. The base metric gE;3 should look like a flat cone C.S3

1��
/ outside some

large radius, and will more generally satisfy

(39) gE;3 D

�
gE;2 if r � r1;

dr2C h3.r/
2gS3 if r � r1;

where the warping function h3 will be smooth on Œr1;1/ and satisfy

(40) h3.r1/DA.r1/; h03.r1/Dm;

�
0� rh00

3
� 10=ln r3 if r 2 Œr1; r3�;

h0
3
.r/D 1� � if r � r3:

The following lemma will tell us that for r3 sufficiently large, the resulting metric will have positive Ricci
curvature:

Lemma 4.4 Let g3 satisfy (38)–(40) with ˛2 < ˛2.�;m/�
1
2

, r3 � r3.m; ˛2; �/ and ı2 < ı2.m/. Then
g3 is smooth away from r D r1, globally C 1, and satisfies Ric> 0 on the smooth region.

Proof We will focus our computations in the range r 2 Œr1; r3�, as in the range r 2 Œr3;1/ the metric gE;3

is again conic and the estimate will be similar as in the previous subsection. We also introduce the subscript
index i for coordinate directions on S3 that are orthonormal for gS3 (and diagonalize the corresponding
block of Ric) at the point of calculation. Let us begin by computing the Ricci curvature of the ansatz
g3 D dr2C h3.r/

2gS3 Cf3.r/
2gS2 as:

(41) Ricrr D�3
h00

3

h3

� 2
f 00

3

f3

;

h�2
3 Ricii D 2

1� .h0
3
/2

h2
3

�
h00

3

h3

� 2
h0

3

h3

f 0
3

f3

;

f �2
3 Ric˛˛ D

1� .f 0
3
/2

f 2
3

�
f 00

3

f3

� 3
f 0

3

f3

h0
3

h3

:

Let us impose the restriction ˛2 �
1
2

and calculate mr1 �A.r1/�
9

10
r1 � .1� �/r1. Then in the range

r 2 Œr1; r3�, let us observe the estimates

f 0
3

f3

h0
3

h3

�
˛2r

1C r2

1� �

m.r � r1/CA.r1/
�
˛2

m

1

r2
;(42)

1� .h0
3
/2

.h3/2
�

1� .1� �/2

..1� �/.r � r1/CA.r1//2
�
�

r2
;

1� .f 0
3
/2

.f3/2
D

1

ı2
2
.1C r2/˛2

�
˛2

2
r2

.1C r2/2
�

1

ı2
2
r2˛2

�
r2

1C r2

�̨
2

�
1

4r2
�

1

2ı2
2
r2˛2

�
1

2ı2
2
r
;
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h00

3

h3

ˇ̌̌̌
�

10

m ln r3

1

r2
;

f 00
3

f3

D
˛2

1C r2
.1C

.˛2� 2/r2

1C r2
/�

�˛2

5.1C r2/
� �

4˛2

25

1

r2
:

If we plug these estimates into (41) then we arrive at

(43) Ricrr �

�
8˛2

25
�

30

m ln r3

�
1

r2
;

h�2
3 Ricii �

�
2��

10

m ln r3

�
2˛2

m

�
1

r2
;

f �2
3 Ric˛˛ �

1

2ı2
2
r
C

�
4

25
�

3

m

�
˛2

r2
�

1

2ı2
2
r
C

1

2

�
4

25
�

3

m

�
1

r
:

It follows from the first inequality that if r3 � r3.m; ˛2/ then Ricrr > 0. It follows from the second
inequality that if ˛2 � ˛2.m; �/ and r3 � r3.m; �/ then Ricii > 0. Finally we see from the last equation
that if ı2 � ı2.m/ that Ric˛˛ > 0.

4.4 Step 1.4: the warped cone metric

In the last step of the construction we have built a global metric g3 on E � S2 such that outside the
compact set U3 WD fr � r3g, the metric g3 can be written as

(44) g3 D dr2
C .1� �/2.r �R3/

2gS3 C ı2
2.1C r2/˛2gS2 ;

where R3 solves h3.r3/D .1��/.r3�R3/. Observe that R3> 0 under our assumptions of the parameters.
Our goal in this step of the construction is to build a metric g4 which agrees with g3 for r � r3, but for
r � r3 should take the form

(45) g4 D dr2
C .1� �/2.r �R3/

2gS3 Cf4.r/
2gS2 ;

where our warping factor satisfies

(46) f4.r/D

�
f3.r/ if r � r3;

ı.r �R3/
˛ if r � r3:

We want our warping function to be globally C 1, and thus we will choose the constants

(47) ˛ WD ˛2

r3

h3.r3/

1� �

1C r2
3

< ˛2 and ı WD ı2
.1C r2

3
/

1
2
˛2�

h3.r3/

1� �

�̨ :

Our final lemma is that for ˛2 and ı2 sufficiently small, our new metric g4 has positive Ricci curvature:

Lemma 4.5 Let g4 satisfy (45) and (46). If we further choose ˛2 � ˛2.�/ and ı2 � ı2.˛2/, then for
r > r3 we have that Ric> 0.
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Remark 4.3 After the change of coordinates t WD r �R3, the metric g4 above becomes the desired
format

(48) dt2
C ..1� �/t/2gS3 C .ıt˛/2gS2 DW dt2

C h.t/2gS3 Cf .t/2gS2 ;

as in Lemma 4.1.

Proof The range r > r3 corresponds exactly to t > h3.r3/=.1� �/, and in these new coordinates we can
compute the Ricci curvature of g4 as

(49) Rict t D�2
˛.˛�1/

t2
> 0;

h�2 Ricii D

�
1

.1��/2
�1�˛

�
2

t2
;

f �2 Ric˛˛ D
�
˛.1�˛/C

t2�2˛

ı2
�˛2
�3˛

�
1

t2
�

�
˛.1�˛/C

�
h3.r3/

1��

�2�2˛

ı2
�˛2
�3˛

�
1

t2
:

Notice that as ˛2! 0 we have that ˛! 0, and similarly (after fixing ˛2; ˛; r3) we have that ı2! 0 as
ı! 0. Thus for ˛2 � ˛2.�/ the second term is uniformly positive. Finally for ı2 � ı2.˛2/ we have that
the third term is uniformly positive.

4.5 Finishing the proof of Lemma 4.1

For � > 0 and mD 1
103 fixed we can now choose ˛ <˛.�/ and ı < ı.�; ˛/. Let us now equip E�S2 with

the metric g4. Recall that this metric is smooth away from r 2 fr1; r3g, globally C 1 and satisfies Ric> 0

on the smooth part. We can now apply the C 1 smoothing Lemma 3.1 in order to build a smooth metric
gD gECf

2gS2 on E�S2 with Ric> 0 such that gD g4 for r � 2r3. This completes the construction
of BDB.�; ˛; ı/. What remains is to define and study the projection map � W .E;gE/! C.S3

1��
/.

Recall that we have coordinates .r; !/ on RC�S3, and we have identified E nS2 and C.S3/ n f0g with
RC �S3. Our mapping � WE! C.S3/ will then take the form

(50) �.r; !/D .�.r/; !/;

where � W Œ0;1/! Œ0;1/ is a smooth function with

(51)

8̂̂̂<̂
ˆ̂:
�.0/D 0;

�0; �00 > 0;

�.r3/D r3�R3 < r3;

�0.r/D 1 for r � r3:

Note that since �0 � 1 and �.0/D 0, we have �.r/� r for all r > 0. Also observe that � sends the zero
section S2 of E to the cone point 0 of C.S3

1��
/. It then suffices to estimate jD�j in terms of the metrics

on E and C.S3
1��

/. Since the C 1 gluing lemma produces a smooth metric on E which is an arbitrarily
small C 1 perturbation, it is enough to estimate in the metric g4 on E.
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For r < r1, using the notation and results in Lemma 4.2 we have

(52) jD�.@r /j D �
0.r/� 1;ˇ̌̌̌

D�

�
X

jX j

�ˇ̌̌̌
D
.1� �/�.r/

A.r/
�

.1� �/r

.1=k/ sin.kr/
�
.1� �/kr1

sin.kr1/
�
�

2
.1� �/;ˇ̌̌̌

D�

�
Y

jY j

�ˇ̌̌̌
D

ˇ̌̌̌
D�

�
Z

jZj

�ˇ̌̌̌
D
.1� �/�.r/

B.r/
�
.1� �/r1

B
�

1
2
r1

� � �.1� �/:
For r1 < r < r3, using the notation and results in Lemma 4.4 we have

(53) jD�.@r /j D �
0.r/� 1;ˇ̌̌̌

D�

�
@!

j@!j

�ˇ̌̌̌
D
.1� �/�.r/

h3.r/
�

.1� �/r

A.r1/C .r � r1/m
�

1� �

m
:

Since mD 10�3 is chosen universally, the bounds above do not depend on any other parameters.

For r > r3, D� is an isometry. This concludes the proof of Lemma 4.1.

5 Step 2: adding conical singularities

We complete Step 2 of the construction in this section. Namely, we want to see how to take a manifold
M DX 4�f S2 and add a cone point in any arbitrarily small neighborhood of X 4 while (almost) preserving
a Ricci curvature lower bound. Our primary setup, essentially after rescaling on the regularity scale of M ,
is to assume we are faced with a warped product space .B2.p/�S2;g/ with metric g D gBCf

2gS2 ,
under the assumptions

(54) Ricg > �g; injgB
.p/ > 2;

jRmgB
jgB
; jr RmgB

jgB
; jr2 RmgB

jgB
< � < 1;

jrgB
lnf jgB

; jr2
gB

lnf jgB
; jr3

gB
lnf jgB

< �:

Note that there are no assumptions about the sign of � 2R. Observe that the above hold for any warped
product M 4 �f S2 so long as we work on the regularity scale. Our main result in this section is:

Lemma 5.1 (inductive Step 2) Consider a warped product space .B4
2
.p/� S2;g/ with metric g D

gBCf
2gS2 satisfying (54), and write r WDdistgB

. � ;p/. Then for all choices of parameters 0<�<�.j�j/,
0<˛<˛.�/, 0< yr < yr.˛; �; �/ and 0< yı < yı.�; ˛; �; kf kL1 ; yr/, there exists 0<ıD ı.yıkf k1 j˛; �; �/

and a warped product metric yg D ygBC
yf 2gS2 such that :

(i) The Ricci lower bound Ricyg > ��C.4/� holds for yr=2� r � 2.

(ii) yg D gBC
yı2f 2gS2 is unchanged up to scaling the warping factor f by yı for 1� r � 2.

(iii) ygD dr2C .1� �/2r2gS3C ı2r2˛gS2 has the cone warping structure C.S3
1��

/�ır˛ S2 for r � yr .

(iv) The identity map Id W .B2.p/; ygB/! .B2.p/;gB/ is .1C 2�/-bi-Lipschitz.
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Remark 5.1 Most of the results of this section hold in general dimensions, where the constants should
then include a dimensional dependence. Our notation C.4/ denotes that the constant only depends on the
dimension nD 4.

Remark 5.2 Recall that our notation of the constant dependence ı D ı. yıkf k1 j ˛; �; �/ means that
ı! 0 as yıkf k1! 0 with the other constants ˛; �; � fixed.

The construction will be broken down into three steps. In Step 2.1 of Section 5.1 we begin by writing the
metric gB D dr2C r2gr in exponential polar coordinates, where gr is a smooth family of metrics on
S3 which naturally converges to the standard metric as r ! 0. Our primary goal in Step 2.1 is to alter
the base metric gB to a metric gB;1. The metric gB;1 will agree with gB for 1� r � 2, but will take the
form gB;1 D dr2C .1� �/2r2gr for r � r1. This will give gB;1 a large amount of additional positive
Ricci curvature in the nonradial directions, which we will exploit in future steps. Additionally, we are
able to ensure that Ric of the total space drops by at worst an �-small amount when passing from g to g1.

In Step 2.2 of Section 5.2 we focus on the S2 warping factor and leave the base gB;2 WD gB;1 fixed.
Our goal will be to construct a warping factor f2 so that f2 D

yıf1 for r � r1, while f2 D ı r˛ for
r � r2. The effect of this will be to add a large amount of Ricci curvature to the radial direction of
g2 WD gB;2Cf

2
2

gS2 .

In the final Step 2.3 of Section 5.3 we will use the additional positive Ricci curvature introduced in the first
two steps to once again alter the base metric gB;3, while fixing f3 WD f2. We will preserve gB;3 D gB;2

for r � r2, however for r � r3 we will ensure that gB;3 D dr2C .1� �/2r2gS3 is the standard cone
C.S3

1��
/. This will complete the construction of yg, and in Section 5.4 we will check the final bi-Lipschitz

property of the construction.

5.1 Step 2.1: decreasing the cone angle

Consider the metric gB on B2.p/, and by using the radial function r WD d. � ;p/ and exponential
coordinates let us write gB as

(55) gB D dr2
C r2gr ;

where gr is a smooth family of metrics on S3. It follows from Corollary 3.3, recalling that � < 1, that

(56) .2�C.4/� r2/gr � Ricgr
and kg0rkL1.S3;gr /

� C.4/�r:

Let us remark that the first inequality of (56) follows either from the C 2 estimate Corollary 3.3 or directly
from the second inequality of (56) by applying the Gauss equations and the identity 1

2
.r2gr /

0D II@Br .p/.

In this subsection we will look for a metric

(57) g1 WD gB;1Cf
2

1 gS2

under the ansatz

(58) gB;1 D dr2
C h.r/2gr and f1 WD f:
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Observe that gr is the original family of metrics on S3 and that f1 is a function on B2.p/. For r1 WD
1
2

,
the function h.r/ will be chosen as any smooth function with the properties that

(59)

8<:
h.r/D r if r � 1;

jh� r jC jh0� 1jC jh00j � 10� if r1 � r � 1;

h.r/D .1� �/r if r � r1:

In particular, this construction implies that gB;1 D gB for 1� r � 2, while gB;1 D dr2C .1� �/2r2gr

for r � r1. Note that on Br1
.p/ we have introduced a cone singularity at p, and we will see that this

introduces a scale invariant (positive) blow up of the Ricci curvature near p. Our main result in this
subsection is that for � sufficiently small, the metric g1 has Ricci curvature that drops by an arbitrarily
small amount from that of g:

Lemma 5.2 Let g satisfy the assumptions of Lemma 5.1 with gB;1 defined as in (58) and (59). Then for
any 0< � < �.j�j/, we have that

(i) Ricg1
jTB2.p/ > ��C.4/� on .B2.p/ n fpg/�S2, and

(ii) Ricg1
jTS2 > f �2�C.4/�r�1 on .B2.p/ n fpg/�S2.

Remark 5.3 The reader may wonder at the disagreeable Ricg1
jTS2 estimate. This is simply an artifact

of the division of the proof of Lemma 5.1 into distinct steps. As soon as the radius r2 is chosen in Step 2.2
of Section 5.2, we will multiply f by the small but positive number 0< yı D yı.r2; : : : / so that the first
term of the above Ricg1

jTS2 lower bound dominates the second in the range r2 � r � 2.

Proof Our standard notation for the rest of this section will be to use i; j ; : : : to represent coordinate
directions on S3 and ˛; ˇ; : : : to represent coordinate directions on S2. The index r is reserved for the
radial direction, and we will sometimes write @r hD h0 to represent radial derivatives. Let us compute the
Ricci curvature of the ansatz (58) as follows:

.Ricg1
/rr D .Ricg/rr � 3

h00

h
C

�
1

r
�

h0

h

�
trgr

.g0r /;(60)

.Ricg1
/ir D .Ricg/ir C

2

h

�
h0

h
�

1

r

�
h@if1

f1

;

.Ricg1
/ij D .Ricg/ij C

h2� r2

r2
.Ricg/ij C

�
1

h2
�

1

r2

�
.h2 Ricgr

/ij �
h00

h
.g1/ij

C 2

�
1

r2
�
.h0/2

h2

�
.g1/ij C

�
1

r
�

h0

h

��
1
2

trgr
.g0r /.g1/ij C

3
2
.h2g0r /ij C 2

f 0
1

f1

.g1/ij

�
C 2

h2� r2

r2

�
.r2

gB
f1/ij

f1

�
1
2

f 0
1

f1

.g0r /ij

�
;
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.Ricg1
/˛ˇ D

�
1

f 2
1

�
r2

h2

�
�gB

f1

f1

C
jrgBf1j

2
gB

f 2
1

�
C
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As in (56) we have that

(61) .2�C� r2/gr � Ricgr
and kg0rkL1.S3;gr /

� C�r:

Additionally, we recall the assumptions

(62) jrgB
lnf jgB

< � and
ˇ̌̌̌
.r2

gB
f /

f

ˇ̌̌̌
gB

� jr
2
gB

lnf jgB
CjrgB

lnf j2gB
< C�:

Let us focus first on the region r 2 Œr1; 1�, which is the worst of the two regions. If we plug the above
estimates and (59) into (60), we arrive at

(63) .Ricg1
/rr > ��C.1CC�/�;

j.Ricg1
�Ricg/ir j.g1/ij < C��;

.Ricg1
/ij > .��C.1CC�/�/.g1/ij ;

.Ricg1
/˛ˇ >

�
1

f 2
�C�

�
.g1/˛ˇ:

We see from the first three inequalities that if � < �.j�j/, then Ricg1
jTB2.p/ > ��C.4/�. If we focus

now on r � r1, where h.r/D .1� �/r , then most of the error terms of (60) vanish. What remains are the
estimates

(64) .Ricg1
/rr > �;

.Ricg1
/ri D .Ricg/ri ;

.Ricg1
/ij >

�
�C

.2�C�r2/�

r2
�C

��

r
�C��

�
.g1/ij ;

.Ricg1
/˛ˇ >

�
1

f 2
�C

��

r
�C�

�
.g1/˛ˇ:

We again see that for � < �.j�j/, the Ricci curvature satisfies Ricg1
� ��C� in the TB2.p/ directions.

We also see that Ricg1
jTS2 >f �2�C�r�1 holds for both the r1 � r � 1 region and the r � r1 region.

5.2 Step 2.2: the S 2 warping factor

We now want to alter the metric g1 in the range r2 � r � r1 D
1
2

. We are looking for a metric g2 of the
form

(65) g2 WD gB;2Cf2.x/
2gS2 WD gB;1Cf2.x/

2gS2 :
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In particular, we will not alter the base metric gB;1 in this step. Our warping function f2 W B2!RC is
not a radial function everywhere, though one of our goals will be to make it radial on small radii. We will
want f2 to satisfy the properties

(66)
�
f2 D

yıf1 if r � r1;

f2 D ır
˛ if r � r2:

Due to the nonradial nature of f1, there is some subtlety which makes a naive interpolation between f1

and ır˛ insufficient. Morally, this is due to the uncontrolled positivity of Ric, which can contribute very
negative terms if altered in a careless manner. The following will be the main constructive lemma for f2

in this subsection:

Lemma 5.3 Let .B2.p/;gB/ and f1 be as in Lemma 5.2. Then for each 0 < ˛ < 1, 0 < yı < 1 and
0< r2< r2.˛/, there exists f2 WB2.p/!RC with r2<C.4/r2D rC

2
< r1 and ıDı. yıkf k1 j r2/ such that

(i) f2 D
yıf1 on the region rC

2
� r � 2,

(ii) f2 D ır
˛ on the region r � r2,

(iii) �f 00
2
=f2 � ˛r�2 on the region r2 � r � rC

2
,

(iv) ˛�1jrgB
lnf2j

2
gB
; jr2

gB
lnf2jgB

< C.4/ ˛ r�2 on the region r2 � r � rC
2

,

(v) kf2k1 � C.4/.yıkf k1/
1=2 on the region r2 � r � rC

2
, and

(vi) f2 is smooth away from r 2 f0; r2; r
C

2
g, and C 1 everywhere except fpg.

Remark 5.4 The C 1 nature of f2 is due to (iii), where we force a definite amount of radial concavity
throughout the interpolation region. This will later be smoothed with a C 1 gluing lemma.

We will wait until the end of the subsection to prove the above, which will require a bit of work. Let us
begin instead with how to use it in order to build our desired g2.

Lemma 5.4 Let .B2.p/ � S2;g1/ be as in Lemma 5.2, and for 0 < ˛ < ˛.�/, r2 D r2.�; ˛; �/ and
0 < yı < yı.�; ˛; �; kf k1; yr/, let f2 be as in Lemma 5.3. Then g2 WD gB;1C f

2
2

gS2 satisfies Ricg2
>

��C.4/� away from r 2 Œ0; yr=2/[fr2; r
C

2
g.

Proof of Lemma 5.4 given Lemma 5.3 Let us apply Lemma 5.3, to obtain f2. We will choose our
constants r2, ˛ and yı later in the proof. We begin with the Ricci curvature computation, where gB is the
base metric for the original metric from Lemma 5.1 :

.Ricg2
/rr D .RicgB

/rr � 2
f 00

2

f2

;(67)

.Ricg2
/ir D .RicgB

/ir � 2
.r2

gB
f2/ir

f2

;
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.Ricg2
/ij D .1� �/
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/ij C .1� .1� �/
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;
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/˛ˇ D
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jrgBf2j
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.g2/˛ˇ:

To estimate the Ricci curvature, we have three regions to study, namely r 2 .0; r2/[ .r2; r
C

2
/[ .rC

2
; r1/.

The region r 2 .r1; 2/ is covered by Remark 3.2 and the previous steps of the construction. Let us begin
with the region r 2 .rC

2
; r1/, and let us use Lemma 5.2. If we allow yı < yı.kf k1; rC2 ; j�j/ then we can

use Lemma 5.2 to estimate

(68) Ricg2
jTB2.p/ > .��C.4/ �/ and Ricg2

jTS2 > f �2
2 �C.4/�r�1

�
1

yı2f 2
�

C�

rC
2

> �:

In particular, once rC
2

has been fixed we may fix yı sufficiently small to control the above. Let us therefore
focus on the more challenging situations: when r 2 .0; r2/[ .r2; r

C

2
/.

To begin, let us record some basic estimates which will be used. Recalling (56), we have that

(69) .2�C�r2/gr � Ricgr
and kg0rkL1.S3;gr /

� C�r:

In view of Lemma 5.3, we have in the region r2 < r < rC
2

that

(70) ˛�1
jrgB

lnf2j
2
gB
; jr2

gB
lnf2jgB

< C
˛

r2
and

˛

2r2
� �

f 00
2

f2

:

Moreover, the same estimates hold when 0 < r < r2, because f2 D ır
˛ in this region. Let us analyze

each B2.p/�S2 block of Ricg2
according to (67). For the r; i; j ; : : : block corresponding to the base

B2.p/ we can use the above estimates to get

(71) .Ricg2
/rr >

˛

2r2
�C�;

j.Ricg2
/ir j< C.�/

˛

r2
CC�;

.Ricg2
/ij >

�
.2�C�r2/�

r2
�C

�
˛

r2
C �

��
.g2/ij :

If we require that ˛ < ˛.�/ and rC
2
< rC

2
.˛; �/ are small enough, then

(72) .Ricg2
/rr >

˛

4r2
; .Ricg2

/ij >
�

r2
.g2/ij ; j.Ricg2

/ir j< C
˛

r2
:

If ˛ <˛.�/ is again small enough, then this gives the estimate Ricg2
jTB2.p/>�=2r2. If we finally require

that rC
2
< rC

2
.�; j�j/, then this gives the required estimate for the B2 block.
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For the S2 block of Ricg2
, we argue separately for r 2 .yr=2; r2/ and r 2 .r2; r

C

2
/. When r 2 .r2; r

C

2
/ let

us use (67) and (70) in order to estimate

(73) .Ricg2
/˛ˇ >

�
1

kf2k
2
1

�C

�
˛

r2
2

C ��˛

��
.g2/˛ˇ:

Recalling the bound kf2k1 � C.yıkf k1/
1=2 from Lemma 5.3, it is clear that a small enough choice of

yı < yı.kf k1; �; r2/ ensures that .Ricg2
/˛ˇ > �.g2/˛ˇ for r 2 .r2; r

C

2
/. We can now focus on the region

r 2 .yr=2; r2/, where

(74) .Ricg2
/˛ˇ >

�
1

.ır˛
2
/2
�C

˛

yr2

�
.g2/˛ˇ:

We see that for ı<ı.yr ; j�j/, we have the desired .Ricg2
/˛ˇ>�.g2/˛ˇ in this region, which would complete

the proof if ı were sufficiently small. However, we have from Lemma 5.3 that ı D ı.yıkf k1 j r2/, so it
suffices to require that yı < yı.kf k1; r2; yr ; j�j/ to ensure that ı is sufficiently small.

Proof of Lemma 5.3 Before diving into the proof, we establish some new notation for the sake of
legibility. We label

(75) fC.r; !/ WD yıf1.r; !/ and f�.r; !/D f�.r/ WD ır
˛;

where ı will be specified later in the proof. Also, instead of referring to the radii r2 and rC
2

directly, it will
be convenient to write the interval of interpolation .r2; r

C

2
/ in terms of a midpoint rm WD .r2C rC

2
/=2 and

a radius �rm WD .r
C

2
� r2/=2. In particular, the choice of radii r2; r

C

2
from the statement of Lemma 5.3

will instead take the form of a choice of a constant � and radius rm < rm.˛/.

The remaining proof has multiple steps, which we will break down into pieces:

Locating the intersection set of f� and fC We first seek to set it up so that the intersection set
ffC D f�g D f.r; !/ j fC.r; !/D f�.r/g is approximately at our radius rm, which requires selecting ı
depending on rm. We will estimate the deviation of the intersection set from this radius. These estimates
will be used in the next steps of the proof.

Begin by observing that the rgB
lnf bound gives the estimate

(76) jlnfC.r; !/� lnfC.p/j � �r D) fC.r; !/ 2 ŒfC.p/e
�2�rm ; fC.p/e

2�rm � for all r � 2rm:

One then checks under what conditions f� takes values in this same interval:

(77) f�.r/D ır
˛
2 ŒfC.p/e

�2�rm ; fC.p/e
2�rm �

() r 2 Œ.ı�1fC.p/e
�2�rm/1=˛; .ı�1fC.p/e

2�rm/1=˛ �:

It is at this point that we make the choice

ı WD fC.p/r
�˛
m e2�rm :
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For this choice of ı, we have

.ı�1fC.p/e
2�rm/1=˛ D rm;

and thus when (77) holds we have r � 2rm. Observe that we now have the relationships

(78)

8<:
f�.r/ < fC.p/e

�2�rm � fC.r; !/ if r < rme�4�rm=˛;

f�.r/ 2 ŒfC.p/e
�2�rm ; fC.p/e

2�rm � if rme�4�rm=˛ � r � rm;

f�.r/ > fC.p/e
2�rm � fC.r; !/ if rm < r � 2rm:

In particular, we have

(79) ff� D fCg\B2rm
.p/�Arme�4�rm=˛;rm

.p/:

Let us additionally remark that ff� D fCg\B2rm
.p/\ .RC�f!g/ is nonempty for each ! 2 S3 by the

intermediate value theorem. We may therefore define g.!/ 2 Œrme�4�rm=˛; rm� for each ! 2 S3 to be a
radius such that fC.g.!/; !/D f�.g.!//. We can ensure that .g.!/; !/ always lies in the interpolation
region r 2 ..1� �/rm; .1C �/rm/ by requiring that rm < rm.˛/ is small enough that e�4�rm=˛ > 1� �.
It is not necessary that g be continuously defined.

Definition of f2 and C 1 cubic interpolation Our construction of f2 will make use of the general
notion of a C 1 cubic interpolation. Namely, we will ask that f2 be the uniquely defined C 1 function
satisfying

(80) ln f2.r; !/D

8<:
lnf�.r/ if r � .1� �/rm

Q.r; !/D cubic polynomial in r if r 2 ..1� �/rm; .1C �/rm/;

lnfC.r; !/ if r � .1C �/rm:

We see from the above that Q.r; !/ is therefore well defined by the values of f˙ and f 0
˙

at the end points
of the interval Œ.1� �/rm; .1C �/rm�. It will be helpful to write the form of Q.r; !/ explicitly by

(81) Q.r; !/ WD

�
r � .1� �/rm

2�rm

�2�
lnfC..1C �/rm; !/

� ..1C �/rm� r/

�
.lnfC/0..1C �/rm; !/�

1

�rm
lnfC..1C �/rm; !/

��
C

�
.1C �/rm� r

2�rm

�2�
lnf�..1� �/rm/

C .r � .1� �/rm/

�
.lnf�/0..1� �/rm/C

1

�rm
lnf�..1� �/rm/

��
:

Concavity estimates for lnf2 We can now estimate .lnf2/
00 in the interpolation region

r 2 ..1� �/rm; .1C �/rm/:

Next, we use the mean value theorem to estimate the difference, at g.!/, between r 7! lnf˙.r; !/ and
its linearization centered at r D .1˙ �/rm:
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(82) .lnf2/
00

D
1

2�rm

�
.lnfC/0..1C�/rm; !/�.lnf�/0..1��/rm/

�
C

3.r�rm/

2�3r3
m

.g.!/�rm/
�
.lnfC/0..1C�/rm; !/�.lnf�/0..1��/rm/

�
C

3.r�rm/

2�3r3
m

�
..1C�/rm�g.!//.lnfC/0..1C�/rm; !/�

�
lnfC..1C�/rm; !/�lnfC.g.!/; !/

��
„ ƒ‚ …

DO.k lnf 00
C
k1/

C
3.r�rm/

2�3r3
m

�
.g.!/�.1��/rm/.lnf�/0..1��/rm/�

�
lnf�.g.!//�lnf�..1��/rm/

��
„ ƒ‚ …

DO.k lnf 00�k1/

�

�
�

1

2�
C

3

2

jg.!/�rmj

�2rm

C
C

1��

�
˛

.1��/r2
m

C

�
1

2�
C

3

2

jg.!/�rmj

�2rm

CC rm

�
�

rm
:

The desired concavity should arise from the first term on the right-hand side of (82). We therefore pick
the universal constant � > 0 small enough so that

�
1

2�
C

C

1� �
< �

4

1� �
;

and then rm � rm.˛/ small enough so that

j1� e�4�rm=˛j �
2�2

3.1� �/
:

Since g.!/ 2 .rme�4�rm=˛; rm/, the constraint on rm implies that

jg.!/� rmj �
2�2

3.1� �/
rm:

Thus,

(83)
�
�

1

2�
C

3

2

jg.!/� rmj

�2rm

C
C

1� �

�
� �

3

1� �
:

We also require that rm � rm.˛/ is small enough so that

�

rm
�

�
1

2�
C

1

1� �
CC rm

��1
˛

.1� �/2r2
m

in order to absorb the lower-order second term on the right-hand side of (82). This yields the claimed
concavity

(84) .lnf2/
00
� �2

˛

Œ.1� �/rm�2
� �2

˛

r2
for all r 2 ..1� �/rm; .1C �/rm/:

Radial zeroth- and first-order estimates on f2 We begin this step by obtaining a bound on .lnf2/
0.

This allows us to turn the concavity estimates for lnf2 into concavity estimates for f2. Additionally, we
will use the estimate on .lnf2/

0 to obtain L1 control for f2 in the interpolation region.
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The previous step implies that for fixed ! 2 S3, the map r 7! lnf 0
2
.r; !/ is decreasing from the value

lnf 0
2
..1� �/rm; !/D ˛Œ.1� �/rm�

�1 at r D .1� �/rm. Thus,

(85) j.lnf2/
0
j �

˛

.1� �/rm
� ˛

1C �

1� �
r�1:

Combining this with our concavity estimate for lnf2 gives

(86)
f 00

2

f2

D .lnf2/
00
C .lnf 02/

2
� �2

˛

r2
C

�
1C �

1� �

�2
˛2

r2
� �˛r�2 as long as ˛ �

�
1� �

1C �

�2

:

This proves Lemma 5.3.(iii). To obtain L1 control on f2, let us estimate f2 on ..1� �/rm; .1C �/rm/

by using the explicit formula (81) for Q:

(87) Q.r; !/�

�
r � .1� �/rm

2�rm

�2

ŒlnfC..1C �/rm; !/C �..1C �/rm� r/�

C

�
.1C �/rm� r

2�rm

�2�
lnf�..1� �/rm/C˛

.r � .1� �/rm/

.1� �/rm

�
�

��
r � .1� �/rm

2�rm

�2

C

�
.1C �/rm� r

2�rm

�2�
ln.kfCk1/C

2�

1� �
˛C 2�rm�

�
1
2

ln kfCk1CC˛CC rm�:

Note that for the second inequality above, we used that f�..1� �/rm/� f�.g.!//D fC.g.!//. Since
f� is increasing, this holds if .1� �/rm � g.!/, which itself will hold if rm < rm.˛/ is small enough
because g.!/� rme�4�rm=˛. Taking exp on both sides proves Lemma 5.3(v).

Remaining derivative estimates The last remaining item is Lemma 5.3(iv), which we now turn to. The
constraint rm � rm.˛/ is also finalized in this last step.

For the remaining computations, we pick coordinates @i on S3 that are normal at ! 2S3 for the metric gr ,
and assume that we are working in the region r 2 ..1� �/rm; .1C �/rm/. Before launching into the
remaining derivative estimates, we recall two basic bounds that we will need, both from Corollary 3.3:

(88) kg0rkL1.S3;gr /
� C.4/�r and kg00r kL1.S3;gr /

� C.4/�:

We begin with the tangential derivatives of f2. One notices the identity, using the notation (81),

(89) @i lnf2 D

�
r�.1��/rm

2�rm

�2�
@i lnfC..1C�/rm; !/�..1C�/rm�r/..@i lnfC/0..1C�/rm; !/

�
1

�rm
@i lnfC..1C�/rm; !/

�
:

What is important is that the right-hand side is a linear combination of @i lnfC..1C �/rm; !/ and
O.r/@i lnf 0C..1C �/rm; !/ with uniformly bounded coefficients. The first term @i lnfC..1C �/rm; !/

is bounded by �, while the second equals

O.r/.@i lnf 0C/DO.r/.r2
i;r lnfCC r�1.ık

i C rgkj
r .g0r /ji=2/@k lnfC/;
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which can be bounded by C�. Thus, for rm � rm.˛/, we can estimate

(90) jri lnf2jr2.gr /ij
� C.4/��

˛

r
:

Similarly, @i@j lnf2 is a linear combination of @i@j lnfC..1C�/rm; !/ and O.r/@i@j lnf 0C..1C�/rm; !/

with bounded coefficients, where

(91) @i@j lnfC Dr2
i;jfC�

1
2

�
2r.gr /ij C r2.g0r /ij

�
@rfC;

@i@j lnf 0C Dr
3
r;i;jfC�

1
2

�
2.gr /ij C 4r.g0r /ij C r2.g00r /ij

�
@rfC�

1
2

�
2r.gr /ij C r2.g0r /ij

�
@2

rfC

C
1

2r

�
2ık

i C rgk`
r .g0r /`i

�
r

2
k;jfCC

1

2r

�
2ık

j C rgk`
r .g0r / j̀

�
r

2
k;ifC:

The highest-order term is �.gr /ij@rfC from the second equation, and can be bounded by �r�2. The
other terms can be estimated by C�r�1. Using this and the previously obtained bound on lnf 0

2
, and

again requiring that rm � rm.˛/, we get

(92) jr
2
ij lnf2jr2.gr /ij

� j@i@j lnf2jr2.gr /ij
C

1
2
j.2r.gr /ij C r2.g0r /ij / lnf 02jr2.gr /ij

� C
�

r
CC

˛

r2
� C

˛

r2
:

Finally we repeat this strategy once more and observe as in (89) that @i@r lnf2 is a linear combination of
@i lnfC..1C�/rm; !/ and O.r/@i lnf 0C..1C�/rm; !/, with coefficients that are bounded times a factor
� r�1

m . We have already bounded these two expressions by C�, so for rm � rm.˛/ we get

(93) jr
2
i;r lnf2jr2.gr /ij

� j@i@r lnf2jr2.gr /ij
C

1

2r
j.2ık

i C rgk`
r .g0r /`i/@k lnf2jr2.gr /ij

� C.4/�r�1
m CC.4/�r�1

� C.4/�
˛

r2
;

which finishes the proof of Lemma 5.3.

5.3 Step 2.3: interpolating the warped cone to a homogeneous cone

We ended the last subsection having constructed a metric

(94) g2 D gB;2Cf
2

2 gS2 :

This metric has the property that for r � r2 we can write

(95) gB;2 D dr2
C .1� �/2r2gr and f2 D f2.r/D ır

˛;

where recall that gB D dr2C r2gr was the original smooth metric with regularity scale rx > 2; see (54).
Our final goal in this section is to interpolate gr with the unit sphere metric gS3 . In this way we will
build a metric

(96) g3 WD gB;3Cf
2

3 gS2 ;
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where f3 WD f2 and gB;3 D dr2C .1� �/2r2gr;3, with

(97) gr;3 WD

8<:
gr if r � 2r3;

�.r/gr C .1� �.r//gS3 if r 2 Œr3; 2r3�;

gS3 if r � r3:

Here, �.r/ is a smooth cutoff on Œr3; 2r3� satisfying the r3-independent bounds

(98) j� 0.r/j � C r�1 and j� 00.r/j � C r�2:

We will show that for r3 sufficiently small, the metric g3 will have the appropriate Ricci curvature bounds:

Lemma 5.5 Let g3 be defined as in (96) and (97) under the assumptions of Lemma 5.1. Then for
r3 � r3.˛; �; �/, we have that Ricg3

> ��C.4/� on .B2.p/ nByr=2.p//�S2.

Proof For radii r > 2r3, the Ricci lower bound follows from Lemma 5.4 and the fact that g2 D g3 in
this region. Thus, we assume for the rest of the proof that r � 2r3. The main basic estimates we will
need are from Corollary 3.3, namely

(99) kgr �gS3kC 2.S3;gr /
� C�r2; kg0rkC 1.S3;gr /

� C�r; kg00r kL1.S3;gr /
� C�:

Let us first apply the above in order to see the estimates

(100) kgr;3�gS3kC 2.S3;gr;3/
� C�r2;

kg0r;3kC 1.S3;gr;3/
D k� 0.gr �gS3/C �g0rkC 1.S3;gr;3/

� C�r;

kg00r;3kL1.S3;gr;3/
D k� 00.gr �gS3/C 2� 0g0r C �g

00
r kL1.S3;gr;3/

� C�:

We are now in a position to estimate Ricg3
, which we compute as follows:

(101) .Ricg3
/rr D�

1
2

trgr;3
.g00r;3/�

1

r
trgr;3

.g0r;3/C
1
4
jg0r;3j

2
gr;3
�2

˛.˛�1/

r2
;

.Ricg3
/ir D

1
2

�
@i trgr;3

.g0r;3/�.tr
1;2
gr;3

.rg0r;3//i
�
;

.Ricg3
/ij D .1�.1��/

2/.Ricg
S3
/ijC.Ricgr;3

�Ricg
S3
/ij �

1
2
.1��/2.r2g00r;3/ij

�.1��/2
�

3

2r
C

1
4

trgr;3
.g0r;3/

�
.r2g0r;3/ijC

1
2
.1��/2.rg0r;3/ikgk`

r;3.rg0r;3/ j̀

C
1

2r
trgr;3

.g0r;3/.g3/ij �˛

�
2

r2
.g3/ijC.1��/

2.rg0r;3/ij

�
C2..gS3/ij �.gr;3/ij /;

.Ricg3
/˛ˇ D

�
1

ı2r2˛
�
˛

r2

�
2.1C˛/C 1

2
trgr;3

.rg0r;3/
��
.g3/˛ˇ:

We may now use the bounds (100) above to estimate the components of Ricg3
by

(102) .Ricg3
/rr > 2

˛.1�˛/

r2
�C.4/�; .Ricg3

/ij >

�
2
�

r2
�C

�
˛

r2
CC.4/�

��
.g3/ij ;

j.Ricg3
/ir j.g3/ij < C.4/�; .Ricg3

/˛ˇ >

�
1

ı2r2˛
�C

�
˛

r2
CC.4/�

��
.g3/˛ˇ:
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We see from these estimates that requiring ˛ � C�, r3 � r3.˛; �; �/ and ı < ı.yr ; j�j/ small enough
guarantees that Ricg3

> � for the range yr=2 � r � 2r3 under consideration. Note that without loss of
generality these requirements on ˛ and ı (by way of yı) held when they were chosen in Lemma 5.4.

5.4 Proof of Lemma 5.1

By construction, the metric g3 with inner radius yr subject to yr < r3D r3.˛; �; �/ from Lemma 5.5 satisfies
Ricyg > ��C.4/� on .B2.p/ nByr=2.p//�S2 and all the conditions of Lemma 5.1, except that it is not
smooth. This metric is globally C 1 away from p, but fails to be smooth at r 2 f0; r2; r

C

2
g. The singularity

at 0 is as described in the statement of Lemma 5.1, and the other two radii can be smoothed within the
class of warped product metrics to a metric yg D ygB C

yf 2gS2 while preserving the Ric bound by the
C 1 gluing of Lemma 3.1.

The last remaining statement of Lemma 5.1 to be proved is that the identity map Id W .B2.p/; ygB/!

.B2.p/;gB/ is .1C2�/-bi-Lipschitz. As the smooth metric yg can be made C 1 close to g3, we can prove
a slightly stronger estimate directly for g3, and the result will follow for our final smooth metric as in
Lemma 3.1.

The bi-Lipschitz condition will follow from the following metric comparisons for different ranges of r ,
which themselves follow by construction and the estimate kgr;3�grkC 0.S3;gr /

� C�r2:

(103)
gB

.1� �/2gB

.1� �/2.1�C.4/�r2/gB

9=;� gB;3 �

8<:
gB if r 2 .1; 2�;

gB if r 2 .2r3; 1�;

.1CC.4/�r2/gB if r 2 .0; 2r3�:

By again requiring that r3 � r3.�/ in Lemma 5.5, we can simplify the above by replacing all lower and
upper bounds by

�
1˙ 3

2
�
�2

gB , respectively. Estimating the bi-Lipschitz constant of � then becomes a
matter of unraveling definitions as

(104)
�
1� 3

2
�
�
jD�.v/jgB

D
�
1� 3

2
�
�
jvjgB

�jvjgB;3
�
�
1C 3

2
�
�
jD�.v/jgB

for all v2 .TB2.p/;gB;3/;

which completes the proof.

References
[Anderson 1990] M T Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent.

Math. 102 (1990) 429–445 MR Zbl

[Bruè et al. 2022] E Bruè, A Naber, D Semola, Boundary regularity and stability for spaces with Ricci bounded
below, Invent. Math. 228 (2022) 777–891 MR Zbl

[Cheeger and Colding 1996] J Cheeger, T H Colding, Lower bounds on Ricci curvature and the almost rigidity of
warped products, Ann. of Math. 144 (1996) 189–237 MR Zbl

[Cheeger and Colding 1997] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded
below, I, J. Differential Geom. 46 (1997) 406–480 MR Zbl

Geometry & Topology, Volume 29 (2025)

https://doi.org/10.1007/BF01233434
http://msp.org/idx/mr/1074481
http://msp.org/idx/zbl/0711.53038
https://doi.org/10.1007/s00222-021-01092-8
https://doi.org/10.1007/s00222-021-01092-8
http://msp.org/idx/mr/4411732
http://msp.org/idx/zbl/07514027
https://doi.org/10.2307/2118589
https://doi.org/10.2307/2118589
http://msp.org/idx/mr/1405949
http://msp.org/idx/zbl/0865.53037
http://projecteuclid.org/euclid.jdg/1214459974
http://projecteuclid.org/euclid.jdg/1214459974
http://msp.org/idx/mr/1484888
http://msp.org/idx/zbl/0902.53034


Lower Ricci curvature and nonexistence of manifold structure 477

[Cheeger et al. 2021] J Cheeger, W Jiang, A Naber, Rectifiability of singular sets of noncollapsed limit spaces
with Ricci curvature bounded below, Ann. of Math. 193 (2021) 407–538 MR Zbl

[Colding and Naber 2012] T H Colding, A Naber, Sharp Hölder continuity of tangent cones for spaces with a
lower Ricci curvature bound and applications, Ann. of Math. 176 (2012) 1173–1229 MR Zbl

[DeTurck and Kazdan 1981] D M DeTurck, J L Kazdan, Some regularity theorems in Riemannian geometry, Ann.
Sci. École Norm. Sup. 14 (1981) 249–260 MR Zbl

[Federer 1970] H Federer, The singular sets of area minimizing rectifiable currents with codimension one and of
area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970) 767–771
MR Zbl

[Gromov 1999] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progr. Math. 152,
Birkhäuser, Boston, MA (1999) MR Zbl

[Jost 2017] J Jost, Riemannian geometry and geometric analysis, 7th edition, Springer (2017) MR Zbl

[Li and Naber 2020] N Li, A Naber, Quantitative estimates on the singular sets of Alexandrov spaces, Peking
Math. J. 3 (2020) 203–234 MR Zbl

[Menguy 2000] X Menguy, Noncollapsing examples with positive Ricci curvature and infinite topological type,
Geom. Funct. Anal. 10 (2000) 600–627 MR Zbl

[Otsu and Shioya 1994] Y Otsu, T Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom.
39 (1994) 629–658 MR Zbl

[Pan and Wei 2022] J Pan, G Wei, Examples of Ricci limit spaces with non-integer Hausdorff dimension, Geom.
Funct. Anal. 32 (2022) 676–685 MR Zbl

[Perelman 1997] G Perelman, Construction of manifolds of positive Ricci curvature with big volume and large
Betti numbers, from “Comparison geometry” (K Grove, P Petersen, editors), Math. Sci. Res. Inst. Publ. 30,
Cambridge Univ. Press (1997) 157–163 MR Zbl

Department of Mathematics, Northwestern University
Evanston, IL, United States

Institute for Advanced Study
Princeton, NJ, United States

Department of Mathematics, Northwestern University
Evanston, IL, United States

hupp@iam.uni-bonn.de, anaber@ias.edu, khwang2025@u.northwestern.edu

Proposed: Tobias H Colding Received: 3 September 2023
Seconded: Dmitri Burago, Bruce Kleiner Revised: 2 February 2024

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.4007/annals.2021.193.2.2
https://doi.org/10.4007/annals.2021.193.2.2
http://msp.org/idx/mr/4226910
http://msp.org/idx/zbl/1469.53083
https://doi.org/10.4007/annals.2012.176.2.10
https://doi.org/10.4007/annals.2012.176.2.10
http://msp.org/idx/mr/2950772
http://msp.org/idx/zbl/1260.53067
https://doi.org/10.24033/asens.1405
http://msp.org/idx/mr/644518
http://msp.org/idx/zbl/0486.53014
https://doi.org/10.1090/S0002-9904-1970-12542-3
https://doi.org/10.1090/S0002-9904-1970-12542-3
http://msp.org/idx/mr/260981
http://msp.org/idx/zbl/0194.35803
https://doi.org/10.1007/978-0-8176-4583-0
http://msp.org/idx/mr/1699320
http://msp.org/idx/zbl/0953.53002
https://doi.org/10.1007/978-3-319-61860-9
http://msp.org/idx/mr/3726907
http://msp.org/idx/zbl/1380.53001
https://doi.org/10.1007/s42543-020-00026-2
http://msp.org/idx/mr/4171913
http://msp.org/idx/zbl/1480.53059
https://doi.org/10.1007/PL00001632
http://msp.org/idx/mr/1779615
http://msp.org/idx/zbl/0971.53030
http://projecteuclid.org/euclid.jdg/1214455075
http://msp.org/idx/mr/1274133
http://msp.org/idx/zbl/0808.53061
https://doi.org/10.1007/s00039-022-00598-4
http://msp.org/idx/mr/4431126
http://msp.org/idx/zbl/1496.53104
https://library2.msri.org/books/Book30/files/perricci.pdf
https://library2.msri.org/books/Book30/files/perricci.pdf
http://msp.org/idx/mr/1452872
http://msp.org/idx/zbl/0890.53038
mailto:hupp@iam.uni-bonn.de
mailto:anaber@ias.edu
mailto:khwang2025@u.northwestern.edu
http://msp.org
http://msp.org


GEOMETRY & TOPOLOGY
msp.org/gt

MANAGING EDITORS

Robert Lipshitz University of Oregon
lipshitz@uoregon.edu

András I Stipsicz Alfréd Rényi Institute of Mathematics
stipsicz@renyi.hu

BOARD OF EDITORS

Mohammed Abouzaid Stanford University
abouzaid@stanford.edu

Dan Abramovich Brown University
dan_abramovich@brown.edu

Ian Agol University of California, Berkeley
ianagol@math.berkeley.edu

Arend Bayer University of Edinburgh
arend.bayer@ed.ac.uk

Mark Behrens University of Notre Dame
mbehren1@nd.edu

Mladen Bestvina University of Utah
bestvina@math.utah.edu

Martin R Bridson University of Oxford
bridson@maths.ox.ac.uk

Jim Bryan University of British Columbia
jbryan@math.ubc.ca

Dmitri Burago Pennsylvania State University
burago@math.psu.edu

Tobias H Colding Massachusetts Institute of Technology
colding@math.mit.edu

Simon Donaldson Imperial College, London
s.donaldson@ic.ac.uk

Yasha Eliashberg Stanford University
eliash-gt@math.stanford.edu

Benson Farb University of Chicago
farb@math.uchicago.edu

David M Fisher Rice University
davidfisher@rice.edu

Mike Freedman Microsoft Research
michaelf@microsoft.com

David Gabai Princeton University
gabai@princeton.edu

Stavros Garoufalidis Southern U. of Sci. and Tech., China
stavros@mpim-bonn.mpg.de

Cameron Gordon University of Texas
gordon@math.utexas.edu

Jesper Grodal University of Copenhagen
jg@math.ku.dk

Misha Gromov IHÉS and NYU, Courant Institute
gromov@ihes.fr

Mark Gross University of Cambridge
mgross@dpmms.cam.ac.uk

Rob Kirby University of California, Berkeley
kirby@math.berkeley.edu

Bruce Kleiner NYU, Courant Institute
bkleiner@cims.nyu.edu

Sándor Kovács University of Washington
skovacs@uw.edu

Urs Lang ETH Zürich
urs.lang@math.ethz.ch

Marc Levine Universität Duisburg-Essen
marc.levine@uni-due.de

Ciprian Manolescu University of California, Los Angeles
cm@math.ucla.edu

Haynes Miller Massachusetts Institute of Technology
hrm@math.mit.edu

Tomasz Mrowka Massachusetts Institute of Technology
mrowka@math.mit.edu

Aaron Naber Northwestern University
anaber@math.northwestern.edu

Peter Ozsváth Princeton University
petero@math.princeton.edu

Leonid Polterovich Tel Aviv University
polterov@post.tau.ac.il

Colin Rourke University of Warwick
gt@maths.warwick.ac.uk

Roman Sauer Karlsruhe Institute of Technology
roman.sauer@kit.edu

Stefan Schwede Universität Bonn
schwede@math.uni-bonn.de

Natasa Sesum Rutgers University
natasas@math.rutgers.edu

Gang Tian Massachusetts Institute of Technology
tian@math.mit.edu

Ulrike Tillmann Oxford University
tillmann@maths.ox.ac.uk

Nathalie Wahl University of Copenhagen
wahl@math.ku.dk

Anna Wienhard Universität Heidelberg
wienhard@mathi.uni-heidelberg.de

See inside back cover or msp.org/gt for submission instructions.

The subscription price for 2025 is US $865/year for the electronic version, and $1210/year (C$75, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Geometry & Topology is indexed
by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Geometry & Topology (ISSN 1465-3060 printed, 1364-0380 electronic) is published 9 times per year and continuously online, by Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840. Periodical
rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences
Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

GT peer review and production are managed by EditFLOW® from MSP.
PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2025 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/gt
mailto:lipshitz@uoregon.edu
mailto:stipsicz@renyi.hu
mailto:abouzaid@stanford.edu
mailto:dan_abramovich@brown.edu
mailto:ianagol@math.berkeley.edu
mailto:arend.bayer@ed.ac.uk
mailto:mbehren1@nd.edu
mailto:bestvina@math.utah.edu
mailto:bridson@maths.ox.ac.uk
mailto:jbryan@math.ubc.ca
mailto:burago@math.psu.edu
mailto:colding@math.mit.edu
mailto:s.donaldson@ic.ac.uk
mailto:eliash-gt@math.stanford.edu
mailto:farb@math.uchicago.edu
mailto:davidfisher@rice.edu
mailto:michaelf@microsoft.com
mailto:gabai@princeton.edu
mailto:stavros@mpim-bonn.mpg.de
mailto:gordon@math.utexas.edu
mailto:jg@math.ku.dk
mailto:gromov@ihes.fr
mailto:mgross@dpmms.cam.ac.uk
mailto:kirby@math.berkeley.edu
mailto:bkleiner@cims.nyu.edu
mailto:skovacs@uw.edu
mailto:urs.lang@math.ethz.ch
mailto:marc.levine@uni-due.de
mailto:cm@math.ucla.edu
mailto:hrm@math.mit.edu
mailto:mrowka@math.mit.edu
mailto:anaber@math.northwestern.edu
mailto:petero@math.princeton.edu
mailto:polterov@post.tau.ac.il
mailto:gt@maths.warwick.ac.uk
mailto:roman.sauer@kit.edu
mailto:schwede@math.uni-bonn.de
mailto:natasas@math.rutgers.edu
mailto:tian@math.mit.edu
mailto:tillmann@maths.ox.ac.uk
mailto:wahl@math.ku.dk
mailto:wienhard@mathi.uni-heidelberg.de
http://dx.doi.org/10.2140/gt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
https://msp.org/


GEOMETRY & TOPOLOGY
Volume 29 Issue 1 (pages 1–548) 2025

1Helly groups

JÉRÉMIE CHALOPIN, VICTOR CHEPOI, ANTHONY GENEVOIS, HIROSHI HIRAI and DAMIAN
OSAJDA

71Topologically trivial proper 2-knots

ROBERT E GOMPF

127The stable Adams operations on Hermitian K-theory

JEAN FASEL and OLIVIER HAUTION

171On Borel Anosov subgroups of SL.d; R/

SUBHADIP DEY

193Global Brill–Noether theory over the Hurwitz space

ERIC LARSON, HANNAH LARSON and ISABEL VOGT

259Hyperbolic hyperbolic-by-cyclic groups are cubulable

FRANÇOIS DAHMANI, SURAJ KRISHNA MEDA SATISH and JEAN PIERRE MUTANGUHA

269The smooth classification of 4-dimensional complete intersections

DIARMUID CROWLEY and CSABA NAGY

313An embedding of skein algebras of surfaces into localized quantum tori from Dehn–Thurston
coordinates

RENAUD DETCHERRY and RAMANUJAN SANTHAROUBANE

349Virtual classes via vanishing cycles

TASUKI KINJO

399On termination of flips and exceptionally noncanonical singularities

JINGJUN HAN and JIHAO LIU

443Lower Ricci curvature and nonexistence of manifold structure

ERIK HUPP, AARON NABER and KAI-HSIANG WANG

479Independence of singularity type for numerically effective Kähler–Ricci flows

HOSEA WONDO and ZHOU ZHANG

495Subgroups of genus-2 quasi-Fuchsian groups and cocompact Kleinian groups

ZHENGHAO RAO

G
E

O
M

E
T

R
Y

&
T

O
P

O
L

O
G

Y
2025

Vol.29,
Issue

1
(pages

1–548)

http://dx.doi.org/10.2140/gt.2025.29.1
http://dx.doi.org/10.2140/gt.2025.29.71
http://dx.doi.org/10.2140/gt.2025.29.127
http://dx.doi.org/10.2140/gt.2025.29.171
http://dx.doi.org/10.2140/gt.2025.29.193
http://dx.doi.org/10.2140/gt.2025.29.259
http://dx.doi.org/10.2140/gt.2025.29.269
http://dx.doi.org/10.2140/gt.2025.29.313
http://dx.doi.org/10.2140/gt.2025.29.313
http://dx.doi.org/10.2140/gt.2025.29.349
http://dx.doi.org/10.2140/gt.2025.29.399
http://dx.doi.org/10.2140/gt.2025.29.443
http://dx.doi.org/10.2140/gt.2025.29.479
http://dx.doi.org/10.2140/gt.2025.29.495

	1. Introduction
	1.1. Main result on topological structure

	2. Geometric outline of construction
	2.0.1. Proving Theorem 1.1 given the inductive spaces M6j
	2.1. Step 1: the gluing block B(,,)
	2.2. Step 2: adding cone singularities
	2.3. Step 3: constructing Mj+1

	3. Preliminaries
	3.1. Ricci curvature of warping geometry
	3.2. C1 gluing lemma for warping geometry
	3.3. Regularity under the exponential map

	4. Step 1: the gluing block
	4.1. Step 1.1: bubble metric with positive Ricci
	4.2. Step 1.2: bubble metric with S2 warping factor
	4.3. Step 1.3: flattening the cone
	4.4. Step 1.4: the warped cone metric
	4.5. Finishing the proof of Lemma 4.1

	5. Step 2: adding conical singularities
	5.1. Step 2.1: decreasing the cone angle
	5.2. Step 2.2: the S2 warping factor
	5.3. Step 2.3: interpolating the warped cone to a homogeneous cone
	5.4. Proof of Lemma 5.1

	References
	
	

