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We calculate the mod-(p, v;, v2) homotopy V(2),.TC(BP(2)) of the topological cyclic homology of the
truncated Brown—Peterson spectrum BP(2), at all primes p > 7, and show that it is a finitely generated and
free Fp[v3]-module on 12 p+4 generators in explicit degrees within the range —1 <% <2 p34+2p%4+2p-3.
At these primes BP(2) is a form of elliptic cohomology, and our result also determines the mod-(p, vy, v3)
homotopy of its algebraic K-theory. Our computation is the first that exhibits chromatic redshift from
pure v,-periodicity to pure vs-periodicity in a precise quantitative manner.
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1 Introduction
Let p be a prime, let V(n) denote a Smith—-Toda complex with BP.V(n) = BP«/(p,...,vs), and let
BP(n) with mxBP(n) = Zp)[v1, . ..., vs] denote a truncated Brown—Peterson spectrum equipped with the

© 2025 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.


http://msp.org
http://dx.doi.org/10.2140/gt.2025.29.619
http://www.ams.org/mathscinet/search/mscdoc.html?code=19D50, 19D55, 55P43, 55Q51, 55N20, 55N34, 55N91, 55Q10, 55T25
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/

620 Gabriel Angelini-Knoll, Christian Ausoni, Dominic Leon Culver, Eva Honing and John Rognes

E; BP-algebra structure of Hahn and Wilson [2022, Theorem A]. Let P(x) =IFp[x] and E(x) denote the
polynomial and exterior IF,-algebras on a generator x, and let I, {x} denote the IF,-module generated by x.

We confirm the quantitative form of the chromatic redshift conjecture of [Rognes 2000, page 8] in the case
of BP(2) at p > 7, showing that V(2). TC(BP(2)) is finitely generated and free as a P(v3)-module. Hence
the topological cyclic homology functor takes the “pure fp-type 2” ring spectrum BP(2) with V' (1).BP(2)
finitely generated and free as a P(v;)-module to a “pure fp-type 3” ring spectrum TC(BP(2)) with
V(2)« TC(BP(2)) finitely generated and free as a P(v3)-module, dilating the wavelength of periodicity!
from |vy| = 2p% —2to |v3| =2p3 —2.

Theorem 1.1 Let p > 7. There is a preferred isomorphism
V(2)x TC(BP(2)) = P(v3) ® E(0,A1,A2,A3)
® P(v3) ® E(A2,43) ®Fp{E1,4 |0 <d < p}
® P(v3) @ E(A1,A3) ®Fp{E2,410<d < p}
@ P(v3) ® E(A1,A2) ®Fp{E3,4|0<d < p}

of P(v3)QFE (A1, Ay, A3)-modules. This is a finitely generated and free P(v3)-module on 12 p 44 explicit
generators in degrees —1 < * <2p3 +2p? 4+ 2p —3.

The close relation between algebraic K-theory and topological cyclic homology for p-complete ring
spectra leads to the following application; cf Theorem 12.20.

Theorem 1.2 Let p > 7. There is an exact sequence of P(v3)QE (A1, Ay, A3)-modules
0 — S 72F,{71, T2, 1172} — V(2)« K(BP(2),) ¥ V(2) TC(BP(2)) — =7 !'F,{1} — 0
with |7;| = 2p' — 1. The localization homomorphism
V(2)« K(BP(2),) = v3' V(2)« K(BP(2),)

is an isomorphism in degrees * > 2 p? + 2 p, and the target is a finitely generated and free P(vfl)-module
on 12 p + 4 generators.

The proven Lichtenbaum—Quillen conjecture for K(Zp)) and K(Zp) also lets us pass from the p-complete
version to the p-local version of BP(2); cf Theorem 12.21.

Theorem 1.3 Let p > 7. The p-completion map induces a (2 p?+2 p—2)-coconnected homomorphism
V(2)«K(BP(2)) “5 V(2), K(BP(2),).

The localization homomorphism
V(2)« K(BP(2)) — v3 ' V(2)« K(BP(2))

I'See also Remark 1.9 regarding the recent resolution by Burklund, Schlank and Yuan [Burklund et al. 2022] of the (weaker)
qualitative form of the redshift conjecture, in the case of E ring spectra.
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is an isomorphism in degrees * > 2 p? + 2 p, and the target is a finitely generated and free P(vgbl)—module
on 12 p 4 4 generators.

Remark 1.4 An alternative title for this paper could be Topological cyclic homology modulo p, v,
and vy of the second truncated Brown—Peterson spectrum. In earlier work [Ausoni and Rognes 2002] we
referred to the calculation of V(1) TC(BP(1)) as (an essential step toward) a calculation of the “algebraic
K-theory of topological K-theory”. The relation between BP(1) and topological K-theory is analogous to
that between BP(2) and elliptic cohomology, so we hope the reader grants us the poetic license presumed
by our choice of title.

The v;- and v,-periodic families in 74V (0) and 7,V (1), respectively, are related to the well-known
a-family visible to topological K-theory and the fairly well understood B-family visible to elliptic
cohomology. The v;-periodic families emerging from our calculation are related to the third family of
Greek letter elements, the y-family, which is less well understood, and for which there is currently no
known detecting cohomology theory with a geometric interpretation of the cohomology classes. Our result
suggests that algebraic K-theory of elliptic cohomology may be such a detecting cohomology theory.

We now explain Theorem 1.1 in more detail. For each E5 ring spectrum B we have maps of £ ring spectra
S — K(B) % TC(B) &> THH(B)"T — THH(B)

from the sphere spectrum to the topological Hochschild homology THH(B) of B, via its algebraic
K-theory K(B), topological cyclic homology TC(B) and the T-homotopy fixed points of THH(B). For
p = 7, the Smith-Toda spectrum V(2) exists as a homotopy commutative and associative ring spectrum,
with a periodic class v3 € 7,3, V(2). In Section 3 we recall that

V(2)« THH(BP(2)) = E(A1.A2.43) @ P(),

with |A;| = 2p’ — 1 for i € {1,2,3} and || = 2p3. In Sections 5 and 6 we use E, ring spectrum
power operations to show that the THH-classes A; lift to K-theory classes )\iK € V(2)« K(BP(2)), with
tr(AK) = A;. We also write A; for their images in V(2), TC(BP(2)) and V(2), THH(BP(2))"T. In
Sections 8—11 we determine the structure of the T -homotopy fixed point spectral sequence

E*(T) = H™*(T. V(2)x THH(BP(2))) = P(1) ® E(k1, k2, 43) ® P(1) = V(2), THH(BP(2))"T.
The image of v3 in V(2)« THH(BP(2))"T is detected by #1. The homotopy classes
Eiaq € V(2)« TC(BP(2))

fori € {1,2,3} and 0 < d < p are constructed in Section 12 so that
o0
7(Bid) =) Eitind
n=0

in V(2)x THH(BP(2))"T. In this convergent series, each &k.a 1s a specific V(2)-homotopy element

detected by a class . .
Xk,d = tir(k))u[k]uﬁr(k_” € E®(T).
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Here [k] € {1, 2, 3} satisfies k =[k] mod 3, and r (k) = p* + p*¥=3 +- -4 pIKl for k > 1. In particular, both
i—1
7(8i,q) and &g € 1P i
are detected by ¢dp' ! Ajin E®(T), fori €{1,2, 3}. Letting d denote the generator of V' (2)_; TC(BP(2)),
and noting that A;-E; 4 = 0 for each i and d, this concludes our specification of the notation in Theorem 1.1,

which appears as Theorem 12.17 in the body of the text. One way to summarize the grading of the module
generators is to say that the Poincaré series of V' (3)« TC(BP(2)) is

1+ x"H(1 +x227H (1 + 2271 + 2277
+(1 —|—X21’2_1)(1 +x2p3_1)(x—i—x3 +“_+x2p—3)
(14 X271 4 X220 (2P x4l 22T
+(1+x2p—1)(1+x2p2—1)(x2p2—1 _|_x4p2—1 +__'+x2p3—2p2—1).

Remark 1.5 The seminal calculation in this field was made by Bokstedt and Madsen [1994; 1995]. For
the Eilenberg-MacLane spectrum BP(0) = HZ,) at p > 3 they established an isomorphism

V(0)« TC(Z () = P(v1) ® E(3. 1)
®P)RFp{E14|0<d < p}

of free P(vq)-modules of rank p + 3, where & 4 is detected by 19\, . The (then unproven) Lichtenbaum-—
Quillen conjecture for K(Q,) could be deduced from this, showing that the natural homomorphism

V(0)+K(Qp) — V(0)xK(Qp)"0r

is 0-coconnected, where G, = Gal(Q p/Qp) is the absolute Galois group. In particular, the P(v)-
module generators of V' (0)x TC(Z)) correspond in a precise manner to a basis for the Galois cohomology
groups in the descent spectral sequence

E?, = H5(QpiFp(t/2)) = V(0)—s1s K(Qp)"%0n.

The fact that V(0)« TC(Zp)) is P(vy)-torsion free is thus a reflection of Suslin’s theorem [1984]
that V(0)xK(Q p) = V(0)xku = Fplu] is P(v;)-torsion free, and the finite generation and grading of
V(0)« TC(Zp)) corresponds to precise information about the Galois (or motivic) cohomology of Q.

For the Adams summand BP(1) = £ of ku(,) at p > 5, Ausoni and Rognes [2002] thereafter obtained an
isomorphism
V(1) TC() = P(v2) ® £(3,11,42)
@ P(v2) ® E(h2) ®Fp{E1,4|0<d < p}
@ P(v2) ® E(A) ®Fp{E,,4[0<d < p}

of free P(v,)-modules of rank 4p + 4, where B, 4 is detected by 193, and E,,4 is detected by 1P ),.
Moreover, Ausoni [2010] proceeded to calculate V(1) TC(ku), and showed [Ausoni 2005] that

V(1) K(€p) — V(15K (kup)"®
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is an isomorphism. Rognes [2014, Section 5] viewed this as computational evidence for the existence of
a descent spectral sequence, converging to V(1) K({;), from a form of motivic cohomology defined
for Eo ring spectra such as £,. The fact that V' (1)« TC({) is P(v;)-torsion free would then reflect an
analog of Suslin’s theorem, and the finite generation and grading of V (1)« TC({) would correspond to
specific information about this spectrally defined motivic cohomology.?

Our present conclusions about V(2)« TC(BP(2)) and V(2)« K(BP(2),) as P(v3)-modules continue this
pattern, and further suggest the existence of a descent spectral sequence from a motivic cohomology
defined for less commutative ring spectra, such as the E3 ring spectrum BP(2),. If so, Theorem 1.1
provides information about these (at the time of writing, hypothetical) motivic cohomology groups.

Remark 1.6 Our calculations in V(2)-homotopy involve the homotopy element v3 € m,,3_,V(2)
and its vy-Bockstein image i; j,(v3) € n2p3—2p2—1V(2)’ closely related to the first element y; €
Typ3—2p2—2p—1S in the third Greek letter family. To make a similar computation of V(3)« TC(BP(3)) as
a P(v4)-module would require knowing the existence of a homotopy element v4 € 7, 54_, V(3), mapping
to the class with the same name in BP,V(3) = BP./(p, ..., v3). The existence of vy is presently not
known for any prime p; cf [Ravenel 2004, Section 5.6 and (5.6.13)]. Conceivably, a calculation could be
made of Vi TC(BP(3)) as a P(w)-module for another type 4 finite ring spectrum V', with v4 self-map
w: 24V — V. Something similar was carried out for the Eilenberg—-MacLane spectrum BP(0) = H Z2)
at p = 2 in [Rognes 1999], calculating (S/2)« TC(Z(2)) and (S/4)« TC(Z3)) in tandem.

Remark 1.7 Let 7(3) = v3_1 V(2) be the telescopic localization of the type 3 complex V(2), and let
V(3) be the mapping cone of vj3: »2r°-2 V(2) — V(2). The three theorems above imply that
T(3)« TC(BP(2)) = T'(3)s K(BP(2),) = T'(3): K (BP(2))
are all nontrivial P(vfl)-modules, so that the Bousfield 7'(3)-localizations
L73) TC(BP(2)) >~ L3 K(BP(2),) >~ L13)K(BP(2))
are all nontrivial spectra. Moreover, the graded abelian groups

V(3)« TC(BP(2)) <~ V(3)«K(BP(2),) < V(3)« K(BP(2))
are all finite, so

TC(BP(2))p < K(BP(2)p)p <= K(BP(2)),

are all of fp-type 3 in the sense of [Mahowald and Rezk 1999]. These qualitative statements confirm a
weaker form of the chromatic redshift conjecture for BP(2), roughly as formulated in [Ausoni and Rognes
2008, Conjecture 1.3], but do not contain the information that V' (2), TC(BP(2)) is free over P(v3), ie

2See also Remark 1.9 regarding the recent discovery by Hahn, Raksit and Wilson [Hahn et al. 2022] of such a cohomology
theory, in the case of Eo ring spectra.
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that TC(BP(2)) is of “pure fp-type 3” in the sense of [Rognes 2000], nor the quantitative information

about its precise rank and generating basis.

In groundbreaking work, Hahn and Wilson [2022, Theorem B] confirmed the qualitative form of the
chromatic redshift conjecture for all BP(n), at all primes p. However, as outlined in Remark 1.5, we take
the view that the precise P(w)-module structure of Vi TC(BP(n)), where V is some type (n+1) finite
complex with v, self-map w: ¥4V — V, will be an essential ingredient of an understanding of it and
Vi« K(BP(n),) as being obtained by descent from a form of motivic cohomology for ring spectra.

Remark 1.8 Ausoni and Rognes [2002] had outlined a calculation of V(). TC(BP(n)) as a P(v;+1)-
module, under the strong hypotheses that V'(n) exists as a ring spectrum (with a homotopy element v,41)
and that BP(n) admits an E ring spectrum structure. As in the case n = 1, the sketched argument used
a homotopy Cartan formula for E, power operations, and was carried out in the range of degrees where
the comparison homomorphism f‘l*: V(n)« THH(BP(n)) — V(n)« THH(BP(n))*» is an isomorphism.
When n =2 and p > 7, this homomorphism is (2 p2+2 p—3)-coconnected, as we show in Theorem 8.1,
so that the calculation would determine V(2)+ TC(BP(2)) for > 2p? +2p —3.

There is a (2p%—2)-connected map BP(2) — BP(1) inducing a (2p?—1)-connected map
V(2)« TC(BP(2)) — V(2)« TC(BP(1))

(cf [Bokstedt and Madsen 1994, Proposition 10.9; Dundas 1997] and Proposition 12.19). Hence the
known calculation of V (1), TC(BP(1)) does account for V(2), TC(BP(2)) in degrees * < 2p? — 1. This
leaves a gap in degrees 2p? — 1 < % < 2p? +2p — 3, where the traditional arguments do not determine
V(2)« TC(BP(2)). (This is a new phenomenon for #n > 2; there is no such gap for n € {0, 1}.)

Around the year 2000 it was only known that BP(n) could be realized as an E ring spectrum [Baker
and Jeanneret 2002, Corollary 3.5], so the calculations were hypothetical, even for n = 2 and p > 7.
With the much more recent Hahn—Wilson construction of an E’5 ring structure on BP(n), it has finally
become possible to carry out most of the original program, as we show in this paper. The lower order
of commutativity has, however, required us to also develop a homotopy Cartan formula for certain E,
power operations, which we do in Section 5.

The original Bokstedt—Hsiang—Madsen presentation [Bokstedt et al. 1993] of TC(B) was given in terms
of fixed point spectra THH(B) for finite subgroups C C T, using the language of genuinely equivariant
stable homotopy theory. However, almost all calculations were made using the naively equivariant
homotopy fixed points THH(B)"€ and Tate constructions THH(B)?€, and were therefore only known to
be valid in the range of degrees where the comparison map f‘l induces an isomorphism.

The new Nikolaus—Scholze presentation [2018] of topological cyclic homology promoted the ingredients
that were previously used for calculations into definitions. Hence TC(B) was redefined in terms of the
homotopy fixed points THH(B)"T and Tate construction THH(B)'T, and the key role of the (naively
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T -equivariant) map f‘l, now called the p-cyclotomic structure map ¢,, was greatly clarified. Moreover,
Nikolaus and Scholze proved that the old and new definitions agree when THH(B) is bounded below,
eg for connective B. This means that by carrying out the homotopy fixed point and Tate construction
calculations in all degrees, we can now fully calculate V(2)« TC(BP(2)), eliminating the gap of degrees
discussed above. We compare the old and new terminologies in Section 4.

Remark 1.9 After the present paper was first posted in preprint form, Hahn, Raksit and Wilson [Hahn
et al. 2022] introduced a motivic filtration on TC(R), for so-called chromatically quasisyntomic Es ring
spectra R, whose associated graded realizes the form of motivic cohomology that was predicted to exist in
Remark 1.5. This new cohomology theory for E ring spectra generalizes the syntomic cohomology for
quasisyntomic commutative rings introduced by Bhatt, Morrow and Scholze [Bhatt et al. 2019, Section 7.4].

In the same year, Burklund, Schlank and Yuan [Burklund et al. 2022, Theorem E], building on [Yuan
2024, Theorem A], proved that if R is an E ring spectrum such that K(n)« R # 0 and K(n+ 1)+ R =0,
then K(n 4+ 1)x K(R) # 0. Combined with previous work of Land, Meier, Mathew and Tamme [Land
et al. 2024, Corollary B] and Clausen, Mathew, Naumann and Noel [Clausen et al. 2024] on the vanishing
of K(m)« K(R) for m > n + 2, this proves that algebraic K-theory of an E ring spectrum increments
chromatic complexity by precisely one, thus establishing a very general form of qualitative redshift.

Acknowledgments We all thank the referee for good advice. Ausoni acknowledges support from the
project ANR-16-CE40-0003 ChroK. Culver was supported by the Max Planck Institute for Mathematics
while this work was being carried out. He would like to thank the Institute for their hospitality. Honing
thanks the Radboud Excellence Initiative for funding her postdoc position. This project received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie Sktodowska-
Curie grant agreement 101034255.

2 Smith-Toda and truncated Brown—Peterson spectra

Let A4 be the mod-p dual Steenrod algebra, and write Hx X = Hy(X;IF,) for the mod-p homology of a
spectrum X, viewed as an Ayx-comodule. Likewise, let H = HIF, denote the mod-p Eilenberg-MacLane
(E ring) spectrum.

By a Smith—Toda complex V(n) we mean a finite and p-local spectrum with Hy V(n) = E(1g,. .., Tn) C Ax.
The spectra V(0) = S Upel, V(1) = S Up e! Uy, e?P~1 U, e?P and V(2) exist for p > 2, p > 3 and
p = 5, respectively; see Smith [1970, Section 4] and Toda [1971, Theorem 1.1]. In the stable homotopy
category there are unital multiplications wg: V(0) A V(0) — V(0), uy: V(1) A V(1) — V(1) and
wr:VQR)AV(2)— V(2) for p=3, p>5and p > 7, respectively; cf [ Yanagida and Yosimura 1977,
Sections 1.4, 2.4 and 3.3]. These are unique, and therefore commutative. They are also associative, with the
exception of g at p = 3. Toda [1971, Theorem 4.4] showed that V'(3) exists for p > 7 and admits a unital
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multiplication for p > 11. The spectra V(n) for n > 4 are not known to exist at any prime p; cf [Ravenel
2004, (5.6.13)]. We use the following notation for some of the resulting homotopy cofiber sequences:

(2-1) S 2 550 vy xS,

2-2) »2P-2y(0) 2L v(0) 5 v(1) L 2221y (0),
(2-3) 220721 (1) 22 y(1) 2 y(2) L2 52071y,
2-4) =27 2212) 2 v (2) B v (3) £ 32771y 2),

The unital multiplications on V(0), V(1) and V(2) are also regular, in the sense that the respective
Bockstein operators ig jo: V(0) = ZV(0), i1 j1: V(1) = 222~V (1) and i3 jo: V(2) = y2p?-1 V(2) act
as derivations; see [Araki and Toda 1965, Theorem 5.9; Yosimura 1977, Propositions 1.1 and 1.2].

The complex cobordism spectrum MU is a prototypical E« ring spectrum. Basterra and Mandell [2013,
Theorem 1.1] proved that the p-local Brown—Peterson spectrum BP is a retract up to homotopy of MU,
in the category of E4 ring spectra, and that the E4 ring structure on BP is unique up to equivalence. By
an n'™ truncated Brown—Peterson spectrum BP(n) we mean a complex orientable p-local ring spectrum
such that the composite

Z(p)[vl, ceey Un] C nxBP — 4 MU(p) — JT*BP<I’l)

is an isomorphism, following [Lawson and Naumann 2014, Definition 4.1]. It follows, as in [Lawson and
Naumann 2014, Theorem 4.4], that HyBP(n) = P (£ | k > 1) ® E(% | k > n) as a subalgebra of the
dual Steenrod algebra. According to recent work by Hahn and Wilson [2022], there exist towers

«+—BP(n+1) - BP(n) — --- — BP(0) = HZ)

of E; BP-algebra spectra, for all p, where each BP(n) is an n™ truncated Brown—Peterson spectrum.
Hence THH(BP) is an E'53 ring spectrum with cyclotomic structure, in the sense to be recalled in Section 4,
and there are towers

.- — THH(BP(n + 1)) — THH(BP(1n)) — - -- — THH(Z )

of £, THH(BP)-algebra spectra with cyclotomic structure. The availability of these T -equivariant ring
spectrum structures is an essential prerequisite for our calculations.

Chadwick and Mandell [2015, Corollary 1.3] showed that the Quillen map MU(,) — BP is an E ring
map, and it follows from [Basterra and Mandell 2013] that it exhibits BP as a retract up to homotopy
of MU, in the category of E; ring spectra. It is not known whether the Basterra-Mandell and
Quillen/Chadwick—Mandell E, ring spectrum splittings can be chosen to agree, but the induced splittings
of 7« THH(BP) off from 7« THH(MU(,)), in the category of differential graded algebras, must agree,
modulo addition of decomposables and multiplication by p-local units. Hence the calculation in [Rognes
2020, Theorem 5.6] of the g-operator on 7, THH(BP), induced by the T -action on THH(BP), is valid
also for the Basterra—Mandell splitting, up to decomposables and p-local units.
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3 Topological Hochschild homology

Let p be an odd prime. We use the conjugate pair of presentations
Ax=P(E |k =2 1) ® E(t |k 20) = P(§k | k 2 1) ® E(fg | k 2 0) = HyH

of the dual Steenrod algebra [Milnor 1958], with S_k = x(&x) in degree 2( pk —1) and 7 = x(7%) in
degree 2 pK—1. The Hopf algebra coproduct is given by
YE)= Y &RE and Y(@) =104+ Y LR .
i+j=k i+j=k
The mod-p homology Bockstein satisfies S(7x) = &. The same formulas give the As-coaction v and
Bockstein operation on the subalgebras

HyBP= P |k >1) and HyBP(n)= P(& |k >1)Q E(% | k > n)

of Ax. For each E ring spectrum (or S-algebra) B, the topological Hochschild homology THH(B) has
a natural T -action, which induces o-operators

o: Hy THH(B) - Hyy1 THH(B) and o: 7w« THH(B) - 74y THH(B)
in homology and homotopy. Since BP and the BP(n) are (at least) E3 ring spectra, we can make the
following homology computations:
Proposition 3.1 [McClure and Staffeldt 1993, Remark 4.3; Angeltveit and Rognes 2005, Theorem 5.12]
There are Ax-comodule algebra isomorphisms

H, THH(BP) =~ HyBP® E(c& | k > 1)
and
H, THH(BP(n)) =~ H«BP(n) ® E(c&q,...,0&,41) ® P(0Ty41).

Each class 0§, is As-comodule primitive, while V(0Ty+1)=1Q®0T41 +T0® a§n+1.

Passing to homotopy, recall that 74«BP = Zp)[v, | n > 1] with |v,| = 2p" — 2. To be definite, we take
the v, to be the Hazewinkel generators.

Proposition 3.2 [McClure and Staffeldt 1993, Remark 4.3; Rognes 2020, Proposition 4.6, Theorem 5.6]
There is an algebra isomorphism

7« THH(BP) =~ 7,BP ® E(A, | n > 1),

where A, has degree || = 2p" — 1 and (mod-p) Hurewicz image h(A,) = 0&,. Here o(A,) = 0 for
each n. The first few o (vy,) satisty

o(vi) = pri, o(v2) = phy—(p+ Dvlhy,
_ 2 _ 2_ 2
o(v3) = phs — (puivd ™ + 0P )y — 8 — (p+ DUPT I 4 p2oP ey 4 pu? AL
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The specific choice of A, € 5,71 THH(BP) made in [Rognes 2020] is the unique class detected by
tn € mapn_>(BP A BP) in filtration degree 1 of the spectral sequence associated to the skeleton filtration
of THH(BP). The claim that its Hurewicz image equals 05,, € H,,n_1 THH(BP) follows from the proof
of [Zahler 1972, Lemma 3.7].

If V(n) exists as a finite spectrum with
H,V(n) = E(tg,...,Ts),

then Hy(V(n) A BP(n)) =~ A, so that V(n) A BP(n) ~ H. We write h,: V(n)s X — HiX for the
(generalized) Hurewicz homomorphism induced by the map V(n) — H extending the unit S — H.

Proposition 3.3 [Ausoni and Rognes 2012, Lemma 4.1; Angelini-Knoll et al. 2024, Proposition 2.9]
Suppose that V(n) exists as a ring spectrum. Then

V(n)« THH(BP(n)) = 704(V(n) AN THH(BP (1)) = E(A1..... Ant1) ® P(in1)
maps isomorphically to the subalgebra of Ax-comodule primitives in
Hy(V(n) ATHH(BP(n))) = H,V(n) ® Hy THH(BP(n)) = As @ E(0&1,...,086n11) ® P(0Tut1).

Here each Ay is the image of Ay € 1,k THH(BP) under the natural map induced by S — V(n) and
BP — BP(n), with Hurewicz images

h(hi) = 1A0E and hy(Ay) = o&.

n+1

Moreover, [, in degree |[ty41]| =2p is the class with Hurewicz images

h(ptng1) = 1AGT 41+ To AOEnp1  and  hy(fyt1) = 0Tns1.
Note that the A,-coaction sends /(u,+1) to

1@ (1AGTy41) + To ® (1 AGE+1) + 1 ® (To ATEns1) + To ® (1 A0En11) = 1 ® h(itng1),

so that this class is Ax-comodule primitive. We spell out these definitions a little more explicitly in the
case of main interest to us.

Definition 3.4 For p > 7 let
)\1 s )\,2, )\3, M3 € V(Z)* THH(BP(2))

denote the classes in degrees |A ;| =2p—1, |Ay| =2p%—1, |A3| =2p3—1and |u3| =2p> with Hurewicz
images 1(A1) = 1 Ao&p, h(hy) = 1 AGEs, h(h3) =1 A0E; and hi(iu3) = 1 Ao T3 + 19 AoEs. Then

V(2)x THH(BP(2)) = E(A1,A2,42) ® P(u3),

which has at most one monomial generator in each degree. We generally abbreviate (13 to i when only
discussing BP(2).

The V(n)-homotopy classes w41 should not be confused with the ring spectrum multiplications
Un: V(n) A V(n) — V(n), which hereafter appear explicitly only in the proof of Proposition 5.10.
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4 Cyclotomic nomenclature

We review some notation in common use from 1994 to 2017, including [Hesselholt and Madsen 1997;
Rognes 1999; Ausoni and Rognes 2002; Hesselholt and Madsen 2003; Ausoni and Rognes 2012]. For
each T-spectrum X there is a natural map

re X% 5 o x

of T/ Cp-spectra from the categorical C,-fixed points to the geometric Cp-fixed points. The latter were
introduced, as “spacewise Cp,-fixed points”, in [Lewis et al. 1986, Definition I1.9.7], essentially as a left
Kan extension. This definition agrees with what has later been called the monoidal geometric fixed points
[Mandell and May 2002]. Recall the T -equivariant homotopy cofiber sequence

ET, % S ET.

In the commutative square
X6 — L 9% (X)

| |-
(ET A X)Cr —=— @C»(ET A X)
the right-hand and lower maps are T /Cj,-equivariant equivalences. The expression (ﬁ A X)P is

therefore sometimes [Hesselholt and Madsen 1997] taken as a definition of the geometric fixed points,
but this construction is not strictly monoidal. The commutative square

X6 —— T 9% (X)

F(ET4+, X)¢ —— ®Cr(F(ET4, X))

is T /Cp-equivariantly homotopy Cartesian. Note that G (F(ET,, X)) ~ [ﬁ AF(ETy, X)]% =
X' defines the Cp-Tate T /Cp-spectrum. These T /Cp-spectra are hereafter viewed as T -spectra via
the p'" root isomorphism p: T = T/ Cp, which we omit from the notation.

The T-spectra X = THH(B) are cyclotomic, in the sense that there are T -equivalences ®¢» (THH(B)) ~
THH(B). Hence [Bokstedt and Madsen 1994, (6.1)] there are vertical maps of horizontal homotopy

cofiber sequences
THH(B)jc,, — — THH(B)Sr" —~— THH(B) !

R

h h
THH(B)jc,, —— THH(B)"»" —X, THH(B)'Cr"

known as the norm—restriction sequences, for all n. Here the (Witt vector restriction) maps R are given by
rCn=1 THH(B)%" — &% (THH(B))»"! ~ THH(B) 1.
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The norm maps N are given by the Adams transfer equivalence THH(B) hCyn = [ET, ATHH(B)]S",
followed by the map induced by ¢: ET+ — S°. The right-hand homotopy Cartesian squares are
compatible with the (Witt vector Frobenius) maps F: X" — X Con=1 that forget some invariance. The
Witt vector terminology is motivated by the effects of these maps on my for connective B, in view of the
isomorphisms 7o THH(B)»" = W, 41 (7o(B)) of [Hesselholt and Madsen 1997, Theorem 3.3].

The homotopy restriction map R" is induced bye:S% — ET , and induces a map of spectral sequences
from the Cpn-homotopy fixed point spectral sequence to the Cpn-Tate spectral sequence. The map I'; is
the comparison map from fixed points to homotopy fixed points, and f‘n denotes its Tate analog. Passing
to homotopy limits over the maps F, and implicitly p-completing, one obtains a map of homotopy

cofiber sequences

N R

S THH(B),1 TF(B) TF(B)

| I

h
S THH(B),r —— THH(B)"T —*_; THH(B)'T

Again, R" is induced bye: S — ET and induces a map of spectral sequences from the T -homotopy
fixed point spectral sequence to the T -Tate spectral sequence. The topological cyclic homology

TC(B) %> TF(B) ;:; TF(B)

was originally defined by Bokstedt, Hsiang and Madsen [Bokstedt et al. 1993] as the homotopy equalizer
of the identity 1: TF(B) — TF(B) and the restriction map R: TF(B) — TF(B). We refer to the
preferred lifts trc: K(B) — TC(B) and trr = omw otrc: K(B) — THH(B)"T of the Bokstedt trace
map tr: K(B) — THH(B) as the cyclotomic trace map and the circle trace map, respectively.

Some important recent papers give new emphasis to many of these objects. Hesselholt [2018] writes
TP(B) = THH(B)'T

for the circle Tate construction on THH(B) and calls it the periodic topological cyclic homology of B.
(One might also say topological periodic homology.) Nikolaus and Scholze [2018] write

TC™(B) = THH(B)"T
for the circle homotopy fixed points of THH(B) and call it the topological negative cyclic homology, write
¢p = I'1: THH(B) — THH(B)'»
for the comparison map and call it the p-cyclotomic structure map, and write

can: TC™ (B) — TP(B)

for the homotopy restriction map
R": THH(B)"T — THH(B)'T
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and refer to it as the canonical map. The structure map
e X > (X"?)% = RL(X)

to the topological Singer construction, from [Bruner et al. 1986, Section I1.5; Lunge-Nielsen and Rognes
2012], is now called the Tate diagonal.

In the definition of TC(B) as a homotopy equalizer, Nikolaus and Scholze replace TF(B) in the source by
THH(B)"T via T, and replace TF(B) in the target by THH(B)'T via T. In view of the commutative square

TR(B) —~ THH(B)T

r| =
wr ED"T 1Cp\hT
THH(B)"" —— (THH(B)'*?)
from [Hesselholt and Madsen 1997, page 68; Ausoni and Rognes 2002, page 27] the identity map

1: TF(B) — TF(B) is then replaced with the circle homotopy fixed points (f‘l)hT = (pII,’T of the p-
cyclotomic structure map, suppressing the (still implicitly p-complete) equivalence

G: THH(B)'T = (THH(B)'“")T — (THH(B)'%)"T

from the notation. The fact that G is an equivalence for connective B was shown by computation in the first
instances considered, and then proved in [Bokstedt et al. 2014, Proposition 3.8] under the assumption that
H, B is of finite type. It reappears in the new terminology as the Tate orbit lemma [Nikolaus and Scholze
2018, Lemma 1.2.1], since (THH(B)c,)'T =~ * is equivalent to X THH(B);r — (THH(B)xc,)"T
being an equivalence, which in turn is equivalent to G being an equivalence.

Likewise, the restriction map R:TF(B) — TF(B) is replaced with the homotopy restriction map R" = can.

Combining these replacements,
e SZLED"T 1T
TC(B) & THH(B) — THH(B)
R

is redefined as the homotopy equalizer of G~ o (f‘l)hT and R" = can, much as in [Ausoni and Rognes
2012, page 1072], or (in order not to need to invert G) as the homotopy equalizer

(f )hT
TC(B) % THH(B)"T ——= (THH(B)' )"
GR

of (f‘l )T = (pl},’T and G o R". The old and new definitions of TC(B) agree for connective B, by [Nikolaus
and Scholze 2018, Theorem 11.3.8].

5 Homotopy power operations

Let B be an E, 4 ring spectrum. Using the Boardman—Vogt tensor product of operads [Dunn 1988], we
may view B as an E, algebra in the category of E ring spectra (or S-algebras). There are then natural £,
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algebra structures on the algebraic K-theory spectrum K(B) and on the cyclotomic spectrum THH(B),
and these are respected by the trace map K(B) — THH(B), as well as its cyclotomic refinements.

For each E; ring spectrum R, there is a natural “top” homology power operation
§1: Hyp1 R — Hypi_ 1 R

introduced in [Cohen et al. 1976, Theorem III.1.3]. If R is an E3 ring spectrum, then &; = Qk is the
Araki—Kudo/Dyer—Lashof/Cohen operator, as defined in [Cohen et al. 1976, Theorem III.1.1]; we will
also use this notation in the E, ring spectrum case, to emphasize the dependence on k (and to avoid
confusion with the element £; in the dual Steenrod algebra). Let B denote the mod-p homology Bockstein
operator. Ausoni and Rognes [2002, Section 1.5] discussed a homotopy power operation

P*: k1 R—> V(0)2pk—1 R

lifting 0k (see Lemma 5.5), in the context of Eso ring spectra. Here we will extend its definition to E,
ring spectra, and construct a homotopy power operation

PE:V(0)2-1 R = V(D2pk—1 R
also lifting Q% (see Lemma 5.6).

To define these operations for £, ring spectra R, we make use of the little 2-cubes operad C, encoding
E, algebra structures. For a spectrum X let

Brp X = D; , X =Ca(p) Xy, XN
denote the p'" braided-extended power of X . Note that Br, 02X = 2 Br, X by [Cohen et al. 1978,
Theorem 1]. In the case X = S?¢~1, with Hx X = Fp{xox_1}.
(5-1) HyBrp S = Fp{BO* (xar—1). 0% (var—1)}
follows from [Cohen et al. 1976, Theorem II1.5.3]; cf [Cohen 1981, Proposition II.1.2]. Hence there is an
(implicitly p-complete) equivalence 7jo: S2P*~1DV(0) ~ Br, S 2k=1 " with right adjoint

no: ST 5 v(0) ABr, 21,

Here DV(0) ~ =1 V(0) denotes the Spanier—Whitehead dual of V(0), and /(7o) = OF (x2—1).
For typographical reasons we will often simply write g for the maps 1A g: AANB - A A C and

gA1: BAD — C A D, for suitable 4, g: B— C and D.

Definition 5.1 Let R be an E, ring spectrum. The homotopy power operation

P*: o 1 R— V(0)3pk—1 R

sends each map f: S$2k—1

PR(f): §2Pk=1 10, y(0) ABr, S21 B2, y(0) ABr, R & V(0) A R,

— R to the composite

where 0: Br, R — R is part of the E ring structure.
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In the case X = Z2k~1py(0), where Hy X = Fp{xak—2, Xok—1} with B(x24—1) = X24—», there is an
inclusion

Fp{x2, . BOF(x2x—1). OF (x24—1)} C Hy Br, S~ 1DV(0)

of left Ax-comodules, or of right A-modules. Of the dual Steenrod operations, only B and P} act
nontrivially on the left-hand side, with

PLO*(xpk—1) =0 and PLROF(xpk_1) = Xy

according to the spectrum-level Nishida relations; see [Cohen et al. 1976, Theorems I11.1.1(6) and I11.1.3(3);
Bruner et al. 1986, Theorem III.1.1(8)]. As in [Toda 1971], let

V(1/2) =S Upe! Uy, 271,

so that V(0) C V(1/2) C V(1) and DV(1/2) = Z!72P (S Ug, e2P~2Upe?P~1). The following construction
refines a map discussed by Toda [1968, Lemma 3]:
Lemma 5.2 There exists a (p-complete) map

M1/2: Z¥*=1py(1/2) — Br, 2~ 1DV(0)
realizing the inclusion of ]Fp{xé’k_z, BO¥ (x25—1), O% (x2%—1)} in homology.
Proof We can choose a minimal cell structure on Br, $2k=1pV(0) with a (2 pk—1)-cell representing
0¥ (xp5_1) that is attached by a degree-p map to a (2pk—2)-cell representing BO¥ (x,5_1). The

(2 pk—1)-cell is not attached to the (2 pk—2 p+1)-skeleton, since P} Qk(xzk_l) = 0. We can orient the

(2pk—2p)-cell so that the (2 pk—2)-cell is attached to it by &y, since P! BOK (x26—1) = —xfk_z. |

We fix a choice of 7/, for each integer k, but see Remark 5.4. This specifies a composite map
(5-2) iy 2251 py(1) — 2225~ 1py(1/2) 122, Br, 521 py(0),
with homology image IF), {xé)k_z, BOX (x2—1), O% (x25—1)}, and we write

np: S2Pk=1 2, y(1/2) ABr, £2K71DV(0) — V(1) ABr, 221 DV(0)

for its right adjoint.

Definition 5.3 Let R be an E; ring spectrum. The homotopy power operation
PE:V(0)26-1 R = V(1/2)2pk-1 R = V(D pic—1 R
sends each map /: S%¥~1 — V(0) A R, with left adjoint /: Z2k~1DV(0) — R, to the composite
PE(fy: 82Pk=1 I v (1) ABr, 2%~ 1DV(0) LUFN V(1) ABr, R% V(1) A R.
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Remark 5.4 We discuss the nonuniqueness of 771/, and the resulting ambiguity in the operation Pk just
defined. For brevity, let U = Br), EZk_lDV(O). By [Cohen et al. 1976, Theorem II1.3.1] we have

~ p p—1 p—2 p—2 p—3
H.U =F, {xzk—z’ Xk X2k—1-Xpp o Vak—3:Xnp o Vak—2>Xop_2X2k—1 Vak—3}

in degrees 2pk —2p < * < 2pk —2p + 2, plus classes in higher degrees, where

Vak—3 = [Xok—2, X2k—2]1 and  yagr_o = [X2k—2, X2k—1]1

are E; ring spectrum Browder brackets. (We write [x, y]; in place of the traditional A1 (x, y) in order to
avoid confusion with the homotopy class A;.) The (additive) indeterminacies in 7}, /2 and 7 are maps
»2Pk=1py(1/2) — U and m: S?Pk=1 — V(1) A U, respectively, that induce zero in homology. The
Atiyah—Hirzebruch spectral sequence for V(1)U shows that m = o -n foraclassn € V(1) x—2p42U =
Hypi—2p4+2U, generated by xé’,:_zzy‘;k_z and xé’,:fzxzk_ly4k_3. These generators map to zero in
V (1)« R if the E, ring structure on R extends to an E3 ring structure. Hence any two different choices
of maps 71/, will give operations P¥ that differ at most by a multiple of «, and which strictly agree if
R is an E; ring spectrum. This means that for all of the assertions we will make about these homotopy
power operations, the choice of 77/, makes no difference: in Lemma 5.6 the Hurewicz homomorphism
hy annihilates 1 -multiples, and in Proposition 5.10 we assume that R is an E, ring spectrum.

Lemma 5.5 Let R be an E; ring spectrum. The square

Pk
Tok—1 R —— V(0)2pk—1 R

hl lho
Qk

Hyg—1 R —— Hypp—1 R

commutes.

Proof Letty: H— H ADV(0) and by: H A V(0) - H be H-module maps that split off the top and
bottom cells, respectively. Then bgh = hg: V(0) — H, and the following diagram commutes.

no

/—\

SPE-1 () ADV(O)AS2PRT Ty (0)ABr, ST — 27Ty (0)ABr, R—f— V(O)AR
h h h h h
HAS2PK=1 s HAV(0)ADV(0)AS2Pk=1 % 11 AV (0)ABr p 21 Bl HA V(0)ABr, R HAV(0)AR
0 bo bo bo bo

HADV(O)ASPK=1 ™0, p nBr, 52k LN HABr, R—% 5 HAR

~ ~

Bril 2
B (HAS*—1) —" %, BeH (HAR)
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Here g=1Af:HAS 2k—=1 _, H A R denotes the H-module map that is left adjoint to the Hurewicz
image g = hf:S 2k=1 . H AR, and Brlf] denotes the p'" braided-extended power construction in the
category of H-modules. The upper composite S2?¥~1 — H A R then represents ho P¥( f), while the
lower composite represents

Qp—l(g) = 9*(317—1 ® g®p)’

up to a known unit in [F,, with notation as in [May 1970, Definition 2.2; Cohen et al. 1976, Section 1.1].
This equals QX (hf). a

Lemma 5.6 Let R be an E, ring spectrum. The square

Pk
V(0)ok—1 R —— V(1)2pr—1 R
T
Qk
Hyp—1 R —— Hppp—1 R

commutes.

Proof Lett;: H— HADV(1)andb;: HAV (1) — H be H-module maps that split off the top and bottom
cells, respectively. Then b1h = hy: V(1) — H and the following diagram commutes, up to units in F,.

n1

n Brp f
SPR=1 (Y ADV(1)ASZR-1 Ly (1) ABr, 21 DV(0)—2L s V(1) ABr, R— s V(I)AR
h h h h h

n Brp f
HAS?*=1 s HAV(1)ADV(1)AS2Pk—1 2>H/\V(1)ABr,, EZk—lDV(O)i>H/\V(1)/\Brp RL HAV()AR

f b] bl bl bl
apk—1___M 2k—1 Brp f 4
HADV()AS“P*™ ——— HABr, X DV(0) ——— HABr, R——— HAR
€p—
! Brp to - =
HABr, §2%-1 Brl! (HAS DV(0)— 2 Be (HAR
ABr1 ), r, (HA V(0)) ——Br, (HAR)

Brﬁ to
= BrII;I g
Brif (HAS?T)

Here g: H A S*~!' — H A R denotes the H-module map extending the V(0)-Hurewicz image
g =hof: S**' - H A R. The two maps from H A S?*k~1 to H A Brp ¥2k=1pV(0) agree, up
to a known unit in [Fp, because the map 7/, in Lemma 5.2 sends the top cell to Qk (X2%—1). The two
maps from Brlf] (HAS*=1) 10 Brf (H A R) agree because g is homotopic through H-module maps
to f19. The upper composite S2?K—1 _» H A R in the diagram represents /1; P¥( f), while the lower
composite represents a known unit times Q,_1(g), which equals 0k (ho 1). O
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The following homotopy Cartan formula generalizes the one proved for E ring spectra in [Ausoni and
Rognes 2002, Lemma 1.6]:

Proposition 5.7 Let R be an E3 ring spectrum. For x € »; R and y € 751 R, the relation
PK(xy) =xPP/(y)

holds in V(0)5,x—1 R, where k =i + j.

Proof We use the following nearly commutative diagram, where §, is the operadic diagonal from [Bruner
et al. 1986, Section 1.2],
Dn,p X =Cu(p) Xxp XN?

denotes the p" E,-extended power, and o7 : X\P ~ Dy, X —> Dy, X =Brp Xandoy:Brp X — D3 , X
are stabilization maps.

flo Brp(f-8) 0

$20k=1py(0) Br, §2k-1 B, R— % R
lg = Bry ¢
S2PIAE2PIIDV(0) Br,(S2as2-1) — PYN) g (RAR) 4
l: i 3
Dy, 5% ABry §271 70 pr, 52 B, 521 00 g g, R0 RAR
02O 020 -
D3, fAD3 g

D3 ,S? AD; ,S% 71 ————""5 D3 ,RAD;3 ,R

We may view the E3 ring spectrum R as an E, algebra in the category of £ ring spectra. The ring
spectrum pairing ¢ : R A R — R is then an E, ring spectrum map, and therefore the right-hand rectangle
commutes. Moreover, the right-hand triangle commutes, because the E3 operad action extends the E»
action.

Let f:S? — Rand g: S*~! — R be maps representing x and y. The composite
fog: S~ g2 5 g2-1 SAg, R A RS R
then represents x y, and the upper square commutes by functoriality of the braided-extended power. The

central and lower squares commute by naturality of §, and 0.

We do not know whether the left-hand rectangle commutes. However, we do claim that the two composites
»2Pk=1py(0) — Br, S2 ABr, S2/~! become homotopic after composition with o5 A o5 This implies
that the composite along the upper edge, which is adjoint to the map representing Pk (x ¥), is homotopic
to the composite along the left-hand, lower and right-hand edges, which in turn is homotopic to the central
composite via Br, f A Br, g; this is adjoint to the map representing x# PI(p).
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To justify the claim, we compute in homology. Recall the expression (5-1) for Hyx Br, S 2k=1\which has
an evident analog for Hy Br), S2/=1 In the case X = S%, with H, X = Fp{xa2i},

(5-3) Hy Brp S =Fp{x], azpi+1}

follows from [Cohen et al. 1976, Theorem II1.5.2]. Here azp;41 = —xé’i_z[le-, X7;]1 is a class given in

terms of the £, Browder bracket, and Basp; 41 = 0 according to [loc. cit., Theorem III.1.2(7)]. Note that
Q2pi+1 Maps to zero under o;.

Along one route, the right A-module generator X5, in Hypi—g Ezpk—lDV(O) maps to Xzp; @ X2pj—1
in the homology of S/ A £2?/~1DV(0), and thereafter to xé’i ® 07 (x j—1) in the homologies of
Dy, S* ABrp S 71, Br, S?) ABr, S~ ! and D3 ,S?' A D3 ,SH L.

Along the other route, x5, maps to 0¥ (xx_1) in the homology of Bry S2k=1 andto QK (x,; ®x2j-1)
in the homologies of Brp(SZi AS% =1y and D3,p(52i AS%/=1), By the E3 ring spectrum Cartan formula
[loc. cit., Theorem III.1.1(4)], it maps to

0" (x21) ® Q7 (x2j-1) = x3; ® Q7 (x2-1)
in the homology of D3 ,S% A D3 ,S*/ 1.

It follows that the two composites {1, {»: Z2?*~1DV(0) — D3 ,S% A D3 ,S%~! induce the same
homomorphism in homology. Hence their adjoints £, £: S?2Pk~1 — V(0) A D3,pS2i A D3,1,,S2j_1
also agree in homology. Since Dg,pSZi A D;;,pSzj_1 is (2pk—3)-connected and hg: V(0) — H is
(2 p—3)-connected, it follows that £; and £, are homotopic. Therefore ¢, and £, are also homotopic. O

Remark 5.8 This proof also shows that

§px Q% (x21 ® x2j—1) = xE, ® Q7 (x2j_1) + ¢ - i1 ® BOT (x2j-1)

in the homology of Br, S?! ABr, S2/~1, for some unknown coefficient ¢ € IF,. If ¢ % 0 then the two
maps $%7 k=1py(0) — Br, § 2iA Br, § 2/=1 induce different homomorphisms in homology, and the
left-hand rectangle does not commute.

Corollary 5.9 Let
RS TL R

be spectrum maps with rs homotopic to the identity. Assume that R is an E, ring spectrum, that T is
an E3 ring spectrum and that s or r is an E, ring map. Then PX(xy) = x? P/(y) in V(0)2pk—1R for
XemiR, yemj_Randk =i+ j.

Proof Replace Proposition 5.10 with Proposition 5.7 in the proof of Corollary 5.12. a

We will also need a homotopy Cartan formula for the power operations from Definition 5.3:
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Proposition 5.10 Let R be an E, ring spectrum. For x € V(0),; R and y € V(0),;_1 R, the relation

P¥(xy) =xP P (y)
holds in V(1)px—1 R, where k =i + j.

Proof We use the following nearly commutative diagram, where

DpX =Coo(p) X3p xne

denotes the p" (unqualified) extended power, and 05:Bry, X — D, X is the infinite stabilization map.
We write ,ug : V(0)NP — V(0) for the (p—1)-fold iterate of the ring spectrum multiplication, and let
m = p1(i; A1): V(0) A V(1) = V(1) denote the left V(0)-module action on V(1).

£27k=1py/(1) n Br, 5°~1DV/(0) By /8 Br,R— 4R
Dm Brp Dpg ; Brp ¢
S2IDV(0)AZ?P/ =DV (1) Brp(EZfDV(O)AEZJ—IDV(O))MBrP(RAR) ¢
Dul Aty 8p ) 8p
Dy, ,Z* DV(0)ABr, £2/~1DV(0) ‘”—M>Br,, 2 DV(0)ABr, ZZj_lDV(O)MBrp RABr, R2% RAR
e DpfADp e on6

D, 2 DV(0)AD, ¥~ DV(0)—2""% . p,RAD, R

The right-hand rectangle and triangle commute as before, replacing E3 by Eso.
Let /: S% — V(0)A R and g: S?~1 — V(0) A R be maps representing x and y, with adjoints
f:22DV(0) — R and g: S ~1DV(0) — R. The composite

Fg: 2% 1py(0) 240 52ipy 0y A 521DV (0) L2% RAR S R

is then adjoint to the map f - g: S2K~1

— V(0) A R that represents xy, and the upper square commutes
by functoriality of the braided-extended power. The central and lower squares commute by naturality

of §, and 0.

As before we do not know whether the left-hand rectangle commutes. However, we claim that the two
composites
»2Pk=1py(1) — Br, 2 DV(0) ABr, £2~'DV(0)

become homotopic after composition with o) A 0} to
W = D,2*DV(0) A D,=¥ 1DV (0).

This implies that the composite along the upper edge, which is adjoint to the map representing Pk (x »), is
homotopic to the composite along the left-hand, lower and right-hand edges, which in turn is homotopic
to the central composite via Br), f A Brp g; this is adjoint to the map representing x? PI(p).

Geometry & Topology, Volume 29 (2025)



Algebraic K-theory of elliptic cohomology 639

To justify the claim, we first compute in homology, using [Cohen et al. 1976, Theorem 1.4.1]. Writing
H.X*DV(0) = Fp{x2i—1,x2;} and H.X*~1pV(0) = Fpixaj—2,Xx2j—1}, with Bx5; = X;_; and
Bxaj—1 = Xx2j_2, we have

Hy DpS2DV(0) = Fp{BO" (x2i-1), Q' (x2i—1), X2im1x8 1 xF, BOT (x2i1), QT (x2im1), ..}

in degrees * > 2 pi — 2, and

Hy Dy =271 DV(0) =Fp{xh,_y xx0 1. 807 (x2j-2), Q7 (x2j-2). BOY (x2j-1), Q7 (x2j-1)....}

in degrees * > 2pj —2 p. Their tensor product is Hx W, which is concentrated in degrees 2pk —2p —2 <
% <2pk—2p+1and x> 2pk —4.

On one hand, the right A-module generator x5,k 1 in Hyp—j EZPk—lDV(l) maps to X2p; ® X2pj—1
in the homology of 227DV (0) A X277 ~1DV/(1), and thereafter to xé’ ;® 07 (x, j—1) in the homologies
of Dy ,£2'DV(0) A Brp, £2/71DV(0), Br, 2 DV(0) A Br, £271DV(0) and W. On the other hand,
X2pk—1 Maps to Qk(xzk_l) in the homology of Br, »2k=1py(0), and to Qk(xzi ® x2j—1) in the
homologies of Br,(22DV(0) A 22 ~1DV(0)) and D,(22'DV(0) A £2/71DV(0)). By the Eoo ring
spectrum Cartan formula [loc. cit., Theorem 1.1.1(6)] it maps to Q (x2;)® Q7 (x2j-1)= xé’i ®Q/ (x2j—-1)
in H,W.

It follows that the two composites 7y, 71: 22PK~1DV(1) — W induce the same homomorphism
in homology. Let m = m, — m be their difference, inducing zero in homology. The homological
Atiyah—Hirzebruch spectral sequence for V(1) W = [DV(1), W]« shows that m2 is nullhomotopic, since
Hypi—opt2(Wimap3V(1)) = Hypg—2p+2W = 0. Hence my and m, are homotopic, as claimed. O

Remark 5.11 A similar proof goes through if R is an Ej ring spectrum with n > 6, replacing W with
W, = Dn,pEZ"DV(O) A Dn,pEZj_lDV(O). For 3 <n <5 the group Hjpx 3,42 Wy will be nonzero, due
to the presence of E, Browder bracket terms in this degree, so 7 might map the top cell of £2P¥~1py/(1)
via a1 to a (2pk—2p+2)-cell of Wy, and hence be essential. For simplicity we assume n = oo, since
this will suffice for our application.

Corollary 5.12 Let
RSTL R
be spectrum maps with rs homotopic to the identity. Assume that R is an E, ring spectrum, that T is
an E, ring spectrum and that r or s is an E, ring map. Then Pk(xy) = xPPJ(y) in V(1)2pk—1 R for
xeV(0);R, yeV(0)j—1Rand k =i+ j.
Proof Apply Proposition 5.10 for T to see that
re(PX (55 -54)) = 1a((5:0)7 - P (54 )
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in V(1)o,—1(R). If r is an E, ring map, then naturality of the products and homotopy power operations
with respect to r implies Pk (FaSsX - FxSxy) = (Fessxx)? - P/ (r«s«y). If s is an E, ring map, then
naturality of the products and homotopy power operations with respect to s implies rxsx(P* (x - y)) =
FaSsx(XP - pPJ (»)). In either case the conclusion follows from rys4 = 1. O

6 Some V' (0)- and V' (1)-homotopy classes

The homotopy power operations introduced in Definitions 5.1 and 5.3 apply for R = § with its E ring
structure. The E,-term of its mod-p Adams spectral sequence

Ey'(S) = Ext} (Fp.Fp) = m1—5(S))
contains classes traditionally denoted by
ap=[ro] and h; =[],

fori > 0, in bidegrees (s,7) = (1,1) and (1,2 p'(p—1)), respectively. Here g is dual to 8 and aq detects
p € mo(S)y = Zp, while éf’l is dual to PP’ and hq detects the generator o € m,-3(S), = Z/p. The
classes h; for i > 1 support nonzero d,-differentials [Liulevicius 1962] in the Adams spectral sequence
for S, but some of these map to permanent cycles in the corresponding spectral sequences for V(0)
and V(1), detecting interesting homotopy classes.

Definition 6.1 Let

—1 2_
Bl = PP (o) € Tap2_2p—1V(0) and yr = PP P(B)) € Tap3—ap2—1 V().
The ring/circle superscripts indicate that these classes are constructed using the £ ring spectrum structure.

Lemma 6.2 The classes 7 and y; are detected by io(hy) = [Sf’ | and iyig(hy) = [ f’ 2] in the Adams
spectral sequences for V(0) and V (1), respectively.

Proof The case of B is due to Toda [1968, Lemma 4]. It suffices to prove that the dual Steenrod
operation P? acts nontrivially in the homology of the mapping cone C 8, where
B: 32*~2~1py(0) ~ Br, §23 B, g 5 8, §
is left adjoint to 7. There are natural maps
— ~ Dy
CB <& C(Brpa;) =25 Bry(Cay)

that are induced by 6 and the canonical nullhomotopy in a cone, respectively. By an analog of [Toda
1968, Theorem 2] for braided-extended powers we have

Dy, ((ep—1 @ XEP)N) = ¢ ® (x)®72,
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up to a unit in IF,, where x* € H,,_,Ca; lifts the generator x € Hzp_3S2p_3 and (ep—1 ® x®P)N e
Hypo_p, C(Brp o) lifts ep—1 ® x®? ¢ Hyp2 ), Brp S2P=3_ Since PL(x") generates HoCa, it fol-
lows from the homology Cartan formula that P£ (e ® (x)®?) = eq@PL (x)®? generates Hy Br,(Cay).
By naturality with respect to Toda’s map Dy, , it follows that P ((ep—1 ®x®P)") generates HyC (Brp ay),
and by naturality with respect to 6 it follows that

PY:H,,» ,,CB— HyCP
1S nonzero.

2
The proof for y; is similar. It suffices to prove that the dual Steenrod operation PP acts nontrivially in
the homology of the mapping cone Cy, where

7. £27° =201 py(1) 1L, B, (527°=20-1 py(0)) B8, Br, S & §
is left adjoint to yf . Here 11 was defined in (5-2). There are natural maps
_ 5 = 8 = Dj >
Cy 15 C(H oBry B) <& C(Bry f) =25 Br,(CH)
induced by 7171, 6 and the canonical nullhomotopy, respectively. By [Toda 1968, Theorem 2] again, we have
Dz, (ep—1 ® ¥EP)") = o ® (")®7,
up to a unit in Fp,, where y" € H, p2—2pC B lifts the generator
2_pp
ye 1_12172—217—1(2217 2 IDV(O))
and (ep—1 ® yOPYA ¢ H;p3_5,2C(Brp B) lifts
ep1 ® y®P € Hyps_ypo_y Bry (227" ~271DV(0)).
— 2
Since PZ(y”) generates HyCp, it follows that P (eg @ (" )®P) = eq @ PL(y")®P generates
Hy Br, (C ,3). Naturality with respect to D k; implies that
2
P ((ep-1 ® y®P)Y)
generates HyC (Br, B), and naturality with respect to 6 and 11 implies that

2 _ —
P Hyp3_5p2Cy — HoCy
is nonzero. O

The first Greek letter element oy € 75,3 S is the image under jo: V(0) — S Tofaclass vy € m2p—2V(0)
detected by the class of the cobar cocycle [t1]1 + [§1]7o in bidegree (s,2) = (1,2p — 1) of the Adams
spectral sequence

ES'(Y) =Exty (Fp, HyY) = m—s(Y}))
for Y = V(0). Similarly, 1 € mp2_5,_,S is the image under joji: V(1) — S2P of a class v, €
Typ2_oV(1), and y1 € myp3_np2_5, 1S is the image under joj1j2: V(2) — §2P°+2P=1 of g class
V3 € T3, V(2).

Geometry & Topology, Volume 29 (2025)



642 Gabriel Angelini-Knoll, Christian Ausoni, Dominic Leon Culver, Eva Honing and John Rognes

Lemma 6.3 The groups 7ap—» V(0) = Z/p for p =3, 75,2, V(1) =Z/p for p=3 and 1, ,3_, V(2) =
Z/ p for p > 5 are generated by classes vy, v, and vs3, respectively, each in Adams filtration 1.

Proof The claim for V(0) is well known. The claim for V(1) is contained in [Toda 1971, Theorem 5.2
and (5.7)]. The claim for V(2) can be deduced from [Toda 1971, Section 3], as follows. Let P C A
be the sub-Hopf algebra of the mod-p Steenrod algebra generated by the Steenrod operations P*. Let
K =TF,{Q3,BQs....} be the kernel of the surjection A®p F, - H*V(2) = E(B, Q1, Q2), where Q;
denotes the Milnor primitive, and consider the long exact sequence

- — Ext’, (K, Fp) & Ext’ (H*V(2), Fp) — Ext}s (Fp, Fp) — -+

Using the May spectral sequence, Toda [1971, Section 3] calculated an upper bound for Exti;t (Fp,.Fp)
in the range ¢ < 2(p? 4 2p + 3)(p — 1) + 4, which shows that these groups are trivial in topological
degrees t —s = 2p3 —3 and 2p3 — 2. Hence § (Q3) in cohomological degree s = 1 is the only generator
of E»(V(2)) = Ext4(H*V(2),F,) in topological degree 2 p3 —2. Moreover, there is no possible target
for an Adams differential on this class, which must therefore detect vs3. O

Lemma 6.4 For p > 3, the classes ] and j;(v2) = B} in Ty p2_p—1 V(0) agree modulo (a nonzero mul-

tiple of) alvf_l. Hence iy (B]) =i1(B)) inmpp2_n,—1 V(1), and jo(B7) = B1 = jo(B)) in7pp2_5p 5 S
is the first element in the B-family.

For p > 5, the classes y; and j(v3) = y; inmwy,3_5,2_1 V(1) agree modulo alvg_l. Hence i5(yy) =

ir(y) in7yp3_5p2 1 V(2).

Proof The cobar cocycle [t2]1 + [€x]tg + [&f’ Jz1 detects vy € 7,2, V(1). The Ax-comodule ho-
momorphism Jix: H V(1) — Hy_5,,1V(0) sends 1 and 7y to zero, and maps 7; to 1. Hence

EL *(V(l)) 1 *=221(1(0)) sends [2]1 + [E2]to + [Sp]rl to [éf)]l = ig(hy). This is also
the class detecting A7, by Lemma 6.2. Therefore j; (v;) = B] and B agree modulo Adams filtration > 2,
ie modulo alv p=l (We will see in Remark 7.5 that vy 7 # 0, while vl,B/ =0, so 7 — B is a nonzero
multiple ofotlv1 )Nonetheless Jo(BS) = jo(B)), since ]O(cxlvl )—oelocp 1 =0.

The cobar cocycle [3]1 + [£3]t0 + [52 lt1 + [&p ]tz detects v3 € m,,5_,V(2). The Ax-comodule ho-
momorphism jo4: Hy V(2) — H,_ 5,24, V(1) sends 1, 79 and 7 to Zero and maps 75 to 1. Hence
J2r Ey* (V@) — Ey* 2P L (v(1) sends [z3]1 + [Eslo + (671 + [ Tra to 6711 = iaio(ha). This
is also the class detecting y;, by Lemma 6.2. Therefore j,(v3) = ;" and y; agree modulo Adams

filtration > 2, ie modulo o vé’ -1 O

Remark 6.5 One way to see that o4 vf 1 and o vf 1 generate Adams filtration > 2 in i, p2—2p—1 V(0)

and 7,53 _552_ V(1), respectively, is to compare with the corresponding Adams—Novikov spectral
sequences. By the beginning calculations in [Ravenel 2004, Section 4. 4] the classes /11 and hlovp !

generate the Adams—Novikov E-term for V(0) in topological degree 2 p% —2p — 1, while the classes /1
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and hlovf ! generate the Adams—Novikov E,-term for V(1) in topological degree 2p3 —2p? — 1. The
formula ng(vy4+1) = Vpt1 + vntlpn —vPt; in BP«BP/ I, from [Ravenel 2004, Corollary 4.3.21] shows

that j,(vy41) in 774V (n — 1) is detected by /y, — hlov,ﬁ’_l when v, 41 € 74V (n) exists, while o pP1

is detected by hlov,f_l.

The homotopy power operations also apply to R = K(BP) and R = THH(BP), with their E3 ring
structures derived from the F4 ring structure on BP, and to R = K(BP(n)) and R = THH(BP(n)), with
their E, ring structures derived from the E3 ring structure on BP(n). (For n < 1 these are Eo ring
structures.)
7% K(BP) ——— 7+« K(BP(n)) ———— 7« K(Z(p))
L

7+ THH(BP) —— 7, THH(BP(n)) —— 74 THH(Z,))

According to [Bokstedt and Madsen 1994, Theorem 10.14; Rognes 1998, Theorem 1.1] we can find a
class A{( € myp—1 K(Z) with tr(k{() = Ay € my,—1 THH(Z), having Hurewicz image h(A;) = 051 €
H,, 1 THH(Z). The same statements apply with Z replaced by BP(0) = HZ ). The E4 ring spectrum
map BP — HZ,) is (2p—2)-connected, and induces a (2p—1)-connected map K(BP) — K(Z())
by [Bokstedt and Madsen 1994, Proposition 10.9]. Hence we can lift kf( to mpp,—1 K(BP). Its trace
image tr()\lK) € myp—1 THH(BP) = Z,){A 1} then maps to the generator A € 73,1 THH(Z ()) = Z/ p.
It follows that we can scale the choice of )\f € myp—1 K(BP) by a p-local unit so as to ensure that
tr(AX) = Ay in 7, THH(BP).

Definition 6.6 We fix a choice of a class A{( € myp—1 K(BP) with tr()\{() = Ay in m,,_1 THH(BP).
These map to classes with the same names in 7,1 K(BP(n)) and m,,_; THH(BP(n)), respectively, for
eachn > 0.

The choice of A{( € myp—1 K(BP) made here is equivalent to the selection of k{( € mpp—1 K(BP(1))
discussed in [Ausoni and Rognes 2002, Section 1.2], since BP — BP(1) = { is (2p*—2)-connected,
which ensures that K(BP) — K(BP(1)) is (2p?—1)-connected.

Definition 6.7 Let )\f = PP (A{( ) € V(0),,2_; K(BP), mapping to classes with the same name in
V(0),,2_1 K(BP(n)) for each n = 1.

By naturality of P? for E, ring spectrum maps, this definition agrees with the case n = 1 discussed in
[Ausoni and Rognes 2002, Section 1.7].

Lemma 6.8 The classes tr()»f ) and ig(2) in V(0),,2_; THH(BP) both have Hurewicz image o0&, in
H,,>»_ THH(BP). Hence they agree modulo vfkl, and have the same image in V(1),,2_; THH(BP).

Geometry & Topology, Volume 29 (2025)



644 Gabriel Angelini-Knoll, Christian Ausoni, Dominic Leon Culver, Eva Honing and John Rognes

Proof We have tr(kf ) =tr(P? (XII( )) = PP (tr()\f' )) = PP (A1) by naturality of P? with respect to tr,
and o PP (A1) = QPh(Ly) = QP(c&;) by Lemma 5.5. Moreover, Q?(c&;) = 0 QP (&) = 0&, by
[Angeltveit and Rognes 2005, Proposition 5.9; Bruner et al. 1986, Theorem I11.2.3]. |

Definition 6.9 Let )\f = pr’ (Af ) € V(1);,3_; K(BP), mapping to classes with the same name in
V(1)5,3_1 K(BP(n)) for each n > 2.

Lemma 6.10 The classes
2
w(A5), irig(hs) and PP (ip(A2))
in V(1),,3_; THH(BP) all have Hurewicz image 053 in H,,3_; THH(BP). Hence they agree modulo
vf A1 and have the same image in V(2),,3_; THH(BP).

Proof We have tr(kK ) = tr(PI’2 (XK ) = pr’ (tr(kK )) by naturality of PP’ with respect to tr, and

Pl’ (tr(AK)) = QP ho(tr(AK)) = Ql’ (052) by Lemmas 5.6 and 6.8. Likewise, /1 pr’ (ip(Ap)) =
Ql’ ho(io(Xp)) = QP (0&,). Finally, Qp (0&) = OQP (£,) = 0&5 by the same two references as in
the previous lemma. |

Let us summarize these results, for later reference:

Proposition 6.11 Let p > 7. The trace map tr: K(B) — THH(B) induces ring homomorphisms
V(2)«K(BP) = V(2)« THH(BP) and V(2)«K(BP(2)) — V(2)« THH(BP(2)),

each mapping izilio(k{(), izil(kf) and iz(kf) to A1, Ay and Aj, respectively.

Proof The claims for BP follow from Definition 6.6 and Lemmas 6.8 and 6.10. The image classes

in V(2) THH(BP(2)) coincide with the classes from Definition 3.4 since their Hurewicz images in
H, THH(BP(2)) agree. |

7 Approximate homotopy fixed points

For C = Cyn or T we have multiplicative homotopy fixed point spectral sequences
E*(C)= H *(C;V(2)« THH(B)) = V(2)« THH(B)hC

(cf [Hedenlund and Rognes 2024, Section 5]) and multiplicative Tate spectral sequences
E*(C) = H*(C; V(2)x THH(B)) = V(2)s THH(B)'¢

(see [loc. cit., Section 6]). Here H*(T) = P(r) and H*(T) = P(t!) with 1 € H? =~ H?, while
H*(Cpn) = E(uy) ® P(t) and H*(Cpn) = E(up) ® P(t*") with u, € H' = H'. Note that for
B = BP(2), each bidegree of EZ(C) and E 2(C) is either 0 or IFp. This section is devoted to the proof of
the following collection of detection results:
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Proposition 7.1 The unit map S — K(B) and the circle trace map try : K(B) — THH(B)"T induce
ring homomorphisms

V(2)x — V(2)«K(BP) — V(2)x THHBP)"T — v(2), THH(BP(2))"T
mapping iziyio(cy), i2i1(BY]), i2(yy) and v3 to classes detected by tAy, 1P A, tpz)\3 and tj, respectively.
Proof By Proposition 7.3 the circle trace image of A7 is detected by #7A; in the T-homotopy fixed
point spectral sequence for V(0) A THH(BP), hence also for V(2) A THH(BP(2)).

By Proposition 7.4 the image of y; is detected by ) 3 in the spectral sequence for V(1) A THH(BP),
hence also for V(2) A THH(BP(2)).

By Proposition 7.6 the image of v3 is detected by 7t in the spectral sequence for V(2) A THH(BP{(2)).

A simpler case of this last argument shows that the image of «; is detected by #A; in the spectral sequence
for THH(BP), hence also for V(2) A THH(BP(2)), but this is also readily deduced from the previously
known case of THH(Z). |

Notation 7.2 For any spectral sequence E ,‘%* = G« and nonzero element x € EZ, we write {x} for the
coset of elements & € G that are detected by x. Sometimes we will write [x] for a specific choice of
such an element £, so that [x] € {x}. Similar conventions appear in [Barratt et al. 1970, Proposition 3.1.5;
Bruner and Rognes 2021, Theorem 11.61].

For each T-spectrum X and integer m > 0 we have an m"-order approximate T -homotopy fixed point
spectral sequence
E;, = Z[/ (") @ e (X) = m PSP 0T,

obtained by truncating the T -homotopy fixed point spectral sequence to (horizontal) filtration degrees
—2m <% =<0.
Proposition 7.3 Consider the p'-order approximate T -homotopy fixed point spectral sequence
E2, =Z[1)/(t?™") ® ns THH(BP) = m, F(S3”"', THH(BP))T
for THH(BP), and its analog for V(0) A THH(BP). The circle trace image of a € my,_3(S) in
mx F(SP+! THH(BP))T

factors as a product [t] -[M1], with [[¢t] € {z} and [A1] € {X1} detected by t and X1, respectively. Moreover,
the image of B7 € 75,2_5, 1 V(0) in

V(0)« F(SZ**! THH(BP))"

is the unique class detected by t? ,.
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Proof The p"-order approximate T-homotopy fixed point spectral sequence is multiplicative, and has
E2-term
Z[t)/(tP T @ Z(py {1, v1, A1, VT, viAg, ... )

with generators as listed in vertical degrees * < 6p — 6. Here d?(v{) = t-0(v;) =t - pAy, as in
Proposition 3.2, and E3 = E® in this range of degrees. Hence ¢, A; and tA; are all infinite cycles,
detecting homotopy classes with indeterminacies Zp){t” vy}, Z/pitP~ v A} and Z/ p{tPv L}, te-
spectively. The unit map S — F (Sip + THH(BP))T takes oy to a class detected by 741 ; cf [Rognes
1998, Theorem 1.4]. Since each element in the indeterminacy of {¢A;} factors as an element in the
indeterminacy of {¢} times A; (and also factors as ¢ times an element in the indeterminacy of {1;}), it

follows that the image of «; can be factored as a product [[¢] - [A{] in {¢} - {A1}.

Let A5 = tr(kf ) = P?(Ay) in V(0)x THH(BP). By the homotopy Cartan formula from Proposition 5.7,

applied for the E3 ring spectrum F(Sierl ,THH(BP))T, the circle trace image of BI = PP~ (ay) is
PPUEL D) = 17 PP (),

Here P?([A1]) € {A5} is a class detected by A3, by naturality of P? with respect to the edge homo-
morphism induced by F(S3*"' THH(BP))T — THH(BP). It follows that [¢]? - P?([A1]) is detected
by 1713, with zero indeterminacy since this class lives in the lowest filtration degree.

To complete the proof, note that 1”15 = 1”1, at the V(0)-homotopy E 3_term, since these classes differ
by a multiple of d?(t?~1v,) = —tpvfkl by Proposition 3.2 and Lemma 6.8. a

Proposition 7.4 Consider the (p?*)"-order approximate T -homotopy fixed point spectral sequence
E2, = Z[1]/(t”**") ® V(0) THH(BP) = V(0)s F(Sif’2+ ' THHBP))T
for V(0) N\THH(BP) and its analog for V(1) A\THH(BP). The circle trace image of B € w5 ,2_5,_1 V(0) in
V(0)« (S ! THH(BP))T

factors as a product [[t?] - [A,], with [tP] € {tP} and [[A;] € {A,} detected by t? and A,, respectively.
Moreover, the image of y; € 7y ,3_5,2_1 V(1) in
V(1) F(S2° ! THH(BP))T

is the unique class detected by tpz)x3.

Proof Our first goal will be to show that 7# times the indeterminacy in {A,} and A, times the indetermi-

nacy in {77}, in combination, span the indeterminacy in {t?,} in the (p?)™®-order spectral sequence for

V(0) A THH(BP). To do this, we compare the m™-order approximate T -homotopy fixed point spectral
sequences for the three T -spectra

V(1) ATHH(BP), V(0) ATHH(BP) and THH(BP),
via the morphisms induced by ig: S — V(0), i1: V(0) — V(1) and j;: V(1) = Z2P~1V(0).
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We begin with the V(1)-homotopy spectral sequence, which is easiest to understand. The m"M-order
spectral sequence for V(1) A THH(BP) has E2-term

Pui1(t)® P(va,...) Q@ E(A1,A2,...),

where the omitted generators have vertical degree * > 2p> —2. Here vy, A1 and A, are infinite cycles,
since multiplication by v, is realized by a self-map of V(1) and since A; and A, detect the circle trace

K

images of A" and kf , respectively. For m = p it follows that this spectral sequence collapses at the

E?-term, in vertical degrees * < 2p3 —2.
For m > p there are nonzero d?P-differentials generated by
d* (1) =Pt

where x = y means that x is a unit (in IF) times y. This differential is present already in the T -homotopy
fixed point spectral sequence for THH(BP), and lifts that of [Bokstedt and Madsen 1994, Theorem 5.8(i)]
for THH(Z p)) over the morphism of spectral sequences induced by BP — HZ ). It follows that the
m®-order E2P*!_term equals

Fp{t' |0<i<m, p|i}® P(v2) ® E(A1, ;)

in vertical degrees * < 2p3 — 2, plus some extra classes in even filtrations —2m < % < —2m + 2p and
—2p < % < 0 that survive due to being close to the truncation limits. Moreover, for m < p% + p the
spectral sequence must collapse at this stage, for these vertical degrees, since there is no room for a
differential on 72.

For later use, note that when m = 3p — 2 no classes survive in total degree * = 2p? —2p — 2i for
2 <i < p, since the classes t* T2~ 1y, support differentials and the classes tT2P~1X;A, are hit by
differentials. Hence V(1) F (Sim”Ll,THH(BP))T is zero in these degrees. Moreover, for i = 1 only the
classes 2”111, and tPv, survive in total degree * = 2p? —2p —2, and here i; j; (1P v,) is detected by
t2P )\, # 0, s0 only 12”111, can be (and is) in the image of iy, since j;i; = 0. Hence the image of i is
isomorphic to Z/ p in this degree.

We now turn to the ¥(0)-homotopy spectral sequence. The (p?)™-order approximate T -homotopy fixed
point spectral sequence for V(0) A THH(BP) has E2-term

Pp2+1(f)®P(U1,U2,...)®E()ul,)xz,...),

where the omitted generators have vertical degree * > 2p3 —2. Here ¢, vy, A; and A, are d?-cycles,
while d?(v,) = —lvf A1 by Proposition 3.2. Hence the E3-term equals

Py () ® (P} Pp(v){hi. vaht. ..., v A1) ® E(hy)

in vertical degrees * < 2p3 —2p, except that there are some additional classes in filtration degrees 0 and
—2p?; see Figure 1, which is drawn for p = 3, and hence is not quite to scale for the primes p > 7 under
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. . . . . . . . 'y -vlp2
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124 t3p—2 Z2P tp+1 tP lp—l t 1

N, N, N,
L]

Figure 1: E3 = V(0). F(SZI’2+1 ,THH(BP))T in vertical degrees * < 4p> +2p — 5, with all
d?P -differentials (dashed) and selected d*?~2-differentials (solid).
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consideration. As above, we know that the classes vy, A1 and A, are infinite cycles. The next nonzero
differentials are

d* () =ty and  d*(vahy) = tPv A As.
The d?P-differential on ¢ for V(0) A THH(BP) follows, as above, from the one for THH(BP). The
earlier differential d*?~2(v,A1) € ]Fp{tp_1 vf’“} must vanish by tvf-linearity, since tvf’ -vpA; = 0 and
tvf Pl vf+3 £ 0. If d?P (v,A ) were zero, vo A would detect a class in V/(0)4 F(Sip'i'1 ,THH(BP))T
that maps under i1 : V(0) — V(1) to the class in V(l)*F(S_%rerl ,THH(BP))T detected by voA;. However,
the latter class maps under i j;: V(1) = Z2?~1V(1) to the nonzero class i1 j;(vah;) = i(BPh =
i1(B7)A1 detected by 1715 - Ay = —tP - A1Ay, as follows from Lemma 6.4 and Proposition 7.3. This
contradicts jji; = 0, and proves that d2” (vyA;) is nonzero in Fp{tPv A As}.

It follows that the E2P+!-term equals
Ppr1(t7) ® (P(1){1, 22} ® Pp(v1) (A1} @ Fpihiha, v7 ™ v2h1})
EBIFp{ti |0<i<p? ptit® (P(vl){vf, V1A +CcvpAy} @Fp{vf_lvzkl})

in vertical degrees * < 4p? 4 2p — 5, plus some extra classes in even filtrations —2p? < * < —2p? 4+ 2p
and —2 p < % < 0. In the expression v; A, +cvyA 1, the coefficient ¢ (which will vary with the ¢-exponent i)
is some unit in [Fp.

The next differentials include

d*?72(tvf) = tPvihy and  dPT2(0P) =TT W kg + cvahy)
for 2 < i < p. To see that these are nonzero, we compare the m"-order spectral sequences for
V(0) ATHH(BP) and V(1) ATHH(BP), in the particular case m = 3p—2. If d*P~2(¢! vlp ) were zero in the
former, then tivf would survive to detect a class in degree 2 p? —2p—2i of V(0)4 F(Sim+1 ,THH(BP))T
that cannot be a v;-multiple, for filtration reasons, and which must therefore have nonzero image in
V)« F(S i’”"'l ,THH(BP))T. However, for 2 < i < p we checked above that this graded abelian group

is zero in these degrees. The assumption that d*? =2 (¢! vf ) is zero therefore leads to a contradiction,
which shows that this class is nonzero in IFp{li+21’_1 (v1A2 + cvaA1)}, as claimed.

Furthermore, for i = 1 it is not possible that both t2P ) 1Ay and tvf survive to E°°, since then the image
of i1 in degree 2p? —2p — 2 would have order p?, rather than the order p that we established above.
Hence d4P—2 (tvf’) must be nonzero in Fp{t?Pv{A,,12PvyA;}. Extending to the case m = 3p shows that
d41’_2(tvf) must be nonzero in F,{t?”v;A,}, as claimed.

We can now conclude that #? is an infinite cycle in the spectral sequence converging to
2
V(0)«F(S3 !, THH(BP))T,

since there are no possible targets for later differentials, and the indeterminacy in {¢?} is generated by

(classes detected by)
2__ — 2
t? p+1vf ' and ¢? vf’.
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The class £7 is also an infinite cycle, detecting the circle trace image of 87 by Proposition 7.3, and has

indeterminacy generated by (a subset of)

lzp_l(vl)\2+(3v2)\1), lp —ptl p 1)\.2 and lp p Uz)\,].

Likewise, A, is an infinite cycle, detecting the circle trace image of Af plus some multiple of vf’ )\IK

according to Lemma 6.8, with indeterminacy generated by (a subset of)
— _ 2_ — 2_
PN wihgy +cvphy),  tPTE(wIAg +cvjvarg), tP PyP YvoA; and ¢? lvf’sz.

Here t?~!(v{ A, 4 cvyA 1) might support a nonzero d” -differential and not be an infinite cycle. However,
there are no possible targets in filtrations —2p% < % < —2p2 4 2p of such a d”-differential, since
ct”"’_z(t"’z_1 vfp-"z) = tp2+2p_2vf+3k2 # 0 in the full T-homotopy fixed point spectral sequence.
Hence in this case 12?71 (v; Ay 4+ cva);) will also support a nonzero differential, of the same length, and
also not be an infinite cycle. Similarly, if P?=p v B vzkl is hit by a d”-differential, then tl’zvfJ -1 VoA
will be hit by a differential of the same length.

It follows that ¢ times the indeterminacy in {A,}, together with the class 2=l vf A2 span the
indeterminacy in {t”A,}. That extra class lies in the indeterminacy of {¢?} times A,. Hence we have

achieved our first goal, as formulated at the outset of the proof.

Now choose classes x and y in V(0)« F (Sip 21 ,THH(BP))T, detected by ¢? and A, respectively. Then
the difference between the circle trace image of 87 and the product xy lies in the indeterminacy of {rP4,}.
By modifying the choices of x and y, within the indeterminacies of {¢?} and {A,}, respectively, we can
reduce the filtration of this difference until it becomes zero. Let [1?] = x and [A,] = p be the final values
of x € {t?} and y € {A,}, so that the circle trace image of 87 equals the product [#7] - [A2].

Let A = pr’ (Ap) in V(1)4 THH(BP) We apply the Cartan formula from Corollary 5.12 in the case of
the E3 ring spectrum retract F/(S’ 2+ ,THHBP))T of F (S 2+ , THH(MU p)))T where the latter is
an E ring spectrum. It asserts that the circle trace image of y; = pri- P(BY) is

PP ([P]-[A2]) = [:717 - PP ([22)).

Here PP’ ([A2]) € {A5} is a class detected by A5, by naturality of PP” with respect to the edge homomor-
phism induced by F(S""’ 1 THH(BP))T — THH(BP). It follows that [t?]? - PP*([A5]) is detected
by tP? A3, with zero indeterminacy since this class lives in the lowest filtration degree.

To complete the proof, note that ZPZ)C; = tp2k3 at the V(1)-homotopy E3-term, since these classes

differ by a multiple of afz(tpz_1 v3) = —tP? v4 A1 by Proposition 3.2 and Lemma 6.10. |

Remark 7.5 In the course of the previous proof, we have seen that the circle trace image of 87 € V/(0)«
is detected by P A,, and that 1”v; A, is not a boundary in the (approximate) T -homotopy fixed point
spectral sequence, which implies that vy - 8 # 0. This confirms a claim made in the proof of Lemma 6.4.
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Proposition 7.6 Consider the first-order (approximate T -homotopy fixed point) spectral sequence
EZ, =1Z[1)/(t*) ® V(2)x THH(BP(2)) = V(2), F(S}. THH(BP(2)))"
for V(2) ATHH(BP(2)). The circle trace image of v3 € 7, ,3_, V(2) in
V(2)«F(S3, THH(BP(2)))T
is the unique class detected by t/1.

Proof The line of argument is the same as for the case of v, € 7, ,2_, V(1) in [Ausoni and Rognes 2002,
Proposition 4.8]. For brevity, let ¥ = F(S3, THH(BP(2)))T. We have a map of mod-p Adams spectral
sequences

E>(V(2)) =Exty, (Fp, H V(2)) = Exty, (Fp, H«(V(2)AY)) = E2(V(2) AY),
where v3 is detected in the source in bidegree (s,7) = (1,2p3 — 1) by the class of the cobar cocycle

P p?
x = [r3]1 +[§3]r0 + 65 It +[6] |2
in £ 11 F(V(2)) = Ax ® Hy V(2). (As usual, A, denotes the cokernel of the unit F p» — Ax.) We claim that
this cocycle does not become a coboundary when mapped to E 11 FVQRAY) =A@ H (V2 AY).
This implies that the image of vz is nonzero in V(2)4(Y'), and in view of Proposition 3.3 the only possible
detecting class in its total degree is 7.
To prove the claim we use the first-order spectral sequence for H A V(2) A THH(BP(2)), which reduces
to a long exact sequence, leading to an extension
0 — cok(o) > Hx(V(2Q)AY) > ker(o) — 0
of A.-comodules. Here
o: H«(V(2) ATHH(BP(2))) — Hyx+1(V(2) ATHH(BP(2)))
acts on Hy(V(2) A THH(BP(2))) = A« ® E(0&;,0&,,0&3) ® P(073), as per Proposition 3.1. The
cocycle x is a cobar coboundary only if there is a class y € E ?’*(V(2) ANY) = H«(V(2) AY) with
Ay-comodule coaction v(y) containing the term 73 ® 1.
There is no such class y € cok(o), since this Ax-subcomodule does not contain the algebra unit 1.
Moreover, since 0(73) = 073 # 0, the class T3 is not in ker(c'). Hence ker(o) in total degree 2p3 — 1 is

generated by polynomials in 7y, 71, 72, 51, é_z, 53, o é 1s 0‘,52 and 05_3, none of which have A,-coaction
that involves 3. This proves that no such class y exists, and x is not a coboundary. O

8 The C,-Tate spectral sequence

We now establish an effective version of the Cp-equivariant Segal conjecture (or homotopy limit property)
for V(2) ATHH(BP(2)), by direct computation. The corresponding results for the groups Cp» and T then
follow from a theorem of Tsalidis. The analogous results for BP(0) = HZ,) and BP(1) = £ were proved
in [Bokstedt and Madsen 1994, Theorem 5.8(i)] and [Ausoni and Rognes 2002, Theorem 5.5], respectively.
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Theorem 8.1 The C)-Tate spectral sequence

E*(Cp) = H™*(Cp: V(2)« THH(BP(2))) = V(2)» THH(BP(2))'
has E?-term R
E*(Cp) = E(up) ® P(*1) ® P(1p1) ® E(hy, Az, 43).

There are differentials
AP ('Py = (hy,  dPPI(PPYY =Py, dPIPTPYY =Py and  dPPT(uyPY) =,
and the classes A, Ay, A3 and (%P * are permanent cycles. The E°°-term
E® = P(tip3) ® E(A1,A2,A3)
is the associated graded of
V(2)« THH(BP(2))' = E(h1.h2.43) ® P(u™").
The comparison map IVE THH(BP(2)) — THH(BP(2))*» induces the localization homomorphism
V@l'1: EGu. A2, 43) ® P() = E(i.ha hs) ® P(*),
which is (2p*+42 p—3)-coconnected.
Proof The circle trace map K(B) — THH(B)"T lifts the trace map, so by Proposition 6.11 the classes
kiK for i € {1,2,3} map to classes in V(2)x THH(B)"T detected by the A;. Similarly, by Proposition 7.1
the class v3 in 74V (2) maps to a class detected by #.. Hence these detecting classes are infinite cycles in
all of the C-homotopy fixed point and C-Tate spectral sequences. This means that in order to determine

the d” -differentials in one of these spectral sequences, it suffices to determine d” (x) for x ranging through
a P(tn)® E(A1, Ay, A3)-module basis for the E”-term.

The unit map S — THH(B) factors through B, and V(2)«BP(2) = [, so the images of a1, B, ¥y
and v3 in 74 V(2) map to zero in V(2), THH(BP(2)) and V(2)x THH(BP(2))?“». Hence the four classes
th1, tP Ay, tP2A3 and 7p must all be boundaries in the C,-Tate spectral sequence.

The first possible (nonzero) d” -differentials on #; and tlin E 2(Cp) have r = 2 p. We know that £, is

a boundary, so
d*(117P) = 1.

Also d?P(uy) € Fp{u1tPr1}, so d?P(u11™1) = 0 for some integer m1; defined mod p. Hence
E?PTNCp) = E(uit™) ® P(*P) @ P(tp) ® E(hy, A, A3).
The next possible d” -differentials on u1™! and r*? have r = 2p2. We know that #7 1, is a boundary, so
A2 (1P7P7) = (P,

Also dzl’z(ultml) € Fp{ultmﬁpzkz}, o) dzl’z(ultmz) = 0 for some integer m, defined mod p?, with

myp =m mod p. Then
E2P’H1(Cy) = Euit™) ® P(tEP7) @ P(t1) ® E(Ay. A, ).
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If m> = —p mod p? then the first possible differential on u 12 is d” (ut™?) € Fp{lm2+P2+Pklkz}
with » = 2p? 4+ 2p — 1. Otherwise, the first possible differential on ;™2 has r = 2p3.

By naturality with respect to the group cohomology transfer (Verschiebung), with V(t’) = 0 and
V(uqt') = ut’, the first possible d”-differential on t£P? cannot take a value of the form u1x, and
hence has r = 2p3; cf [Ausoni and Rognes 2002, Lemma 5.2].

We know that ¢# 2k3 is a boundary, and the only possible sources in E 2(Cp) of a d"-differential with this
target are t_P3+2P2+P_1A1k2 withr =2p3—2p2 —2p+2, ult_l’s"'zpz_l)»z withr =2p3 —2p? 41,
uyt=P P2 HP=10 with r = 2p% —2p + 1 and +~2°TP* with r = 2p3. The first source is not
present in E2p7H1 (Cp), and the second and third sources are present there only if 72, = —1 mod p? or
my = p— 1 mod p?, respectively. In both of these cases m, # —p mod p2, so u;1™2 survives to the
E2P* term. In the second case

3_9p2 I 2_ 3_9p2 _p3 2_
d2p 2p +1(u1t p°+2p 1)\2) :d2p 2p +1(U1[ p°+2p 1))\‘2 =0,

while in the third case

3_ 3420y 3_ —p34p24
d2p 2p+1(ult p +p°+p 1X1)=d2p 2P+1(u1l‘ p’+p +p l)k1 =0.

Hence the fourth option, . - )
d*PT (TP P75,
is the only possibility.

We also know that 7x is a boundary, and the only possible sources of a d” -differential with this target are
uyt =P FPPEP=I) s with = 2p3 —2p2 —2p +3, 1P TP A, with r = 2p3 —2p2 42, =P HP),
with r =2p3 —2p +2 and ull_p3 with 7 = 2p3 + 1. The first source is only present in EZPZ‘H(CP) if
my = p—1 mod p2, in which case u;™2 survives to the E 2P*_term, and
d2p3—2p2—2p+3(u1[—p3+p2+p—l)\‘1)\2) _ d2p3—2p2—2p+3(ult—p3+p2+p—l)klkz —0.
In the second case
d2p3_2p2+2(l_p3+‘p2)\2) _ d2P3_2p2+2((t_p2)p_l)l2 -0,

. 2 . 3 . . . S92 .
since 1*P” survive to the E2P -term. The third source is not present in E2P t1 (Cp). This leaves the

fourth option, . \
d>P TP = ap,

as the only possibility. It follows that d 2p? (ull_pS) = 0. In particular, ult_P3 must be present in
E2P7+1 (Cp), and we may take m; = my = 0 in the formulas above. Then

EPH(Cy) = E(uit ™) @ P(tEPY) @ P(t)) ® E(h1. ha. A3).
Here d2P*+1 (R4 3) lies in a trivial group, so
E?'T2(C,) = PEP’) @ E(hy. Aa. A3).
This equals E *(Cp), since there are no further targets for differentials on ™% :
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We claim that f‘l (i) in V(2)« THH(BP(2))*C» is detected by a unit times ¢ 7 ¥ To see this, we can use
naturality with respect to the map BP(2) — BP(1), as in the commutative diagram below.

H, THH(BP(2)) 22— V(2), THH(BP(2)) N V(2)« THH(BP(2))/C»

H, THH(BP(1)) «2— V(2), THH(BP(1)) Iy V(2)s THH(BP(1))/Cr
H, THH(BP(1)) < V(1), THH(BP(1)) T V(1) THH(BP(1))’C»

Recall from Proposition 3.3 that V(1) THH(BP(1)) = E(A{,A2) ® P(uz), where hi(iy) = 07, in

H, THH(BP(1)), and that T (i2) in V(1) THH(BP(1))*<r is detected by a unit times =P’ by the proof

of [Ausoni and Rognes 2002, Theorem 5.5]. It follows that p maps to 12(/1«2) in V(2)x THH(BP(1)),

since /i, () = 0'T3 maps to /1y (/,Lz) = (07,)? = 073. By naturality, Fl (i) maps to a class detected by a
o 2 3 . .

unit times (¢1777)? = ¢~P", which proves the claim.

The highest-degree class in E(A;, A2, A3) ® P(u*t1) that is not in the image from E (A1, A2, A3) @ P(11)
is A\jA2hspu~ L indegree 2p— 1)+ (2p2— 1)+ (2p3 —1)— (2p3) =2p2 +2p —3. Hence V(2)4 Ty is
injective in this degree, and an isomorphism in all higher degrees. O
Corollary 8.2 [Tsalidis 1998, Theorem 2.4; Bokstedt et al. 2014, Theorem 2.8] The comparison maps
Cp: VA THH(BP(2))CP" - V(Q2)A THH(BP(2))hCP”,
T,: V(2) ATHH(BP(2))S»"~! — V(2) ATHH(BP(2))'Cr" |
forn > 1, and their homotopy limits
I': V(2)ATF(BP{2)) — V(2)/\THH(BP(2))”T and T: V(2) ATF(BP(2)) — V(2)/\THH(BP(2))’T,

are all (2p?+2p—3)-coconnected.

9 The C,:-Tate spectral sequence

Our next goal is to determine the differential structure of the Cpn-Tate spectral sequence converging to
V(2)« THH(BP(2))!C»" , for each n > 2. There are some minor differences between the cases n = 2 and
n = 3, so we spell out the Cp,2 case in this section, including some motivation, and leave the notationally
more elaborate cases n > 3 for the next section.

We first determine the structure of the Cp-homotopy fixed point spectral sequence from that of the C,-Tate
spectral sequence, using the homotopy restriction morphism (also known as the canonical morphism)

R E"(Cp) — ET(Cp).
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It is algebraically simpler to work with the localized spectral sequence p~ ! E” (Cp), keeping in mind that
E"(Cp) — u 'E"(Cp)
is (2p%42p—3)-coconnected. In view of Theorem 8.1, the -localized C ‘»-homotopy fixed point spectral
sequence for V(2) A THH(BP(2)) is isomorphic to the C,-homotopy fixed point spectral sequence for
V(2) A THH(BP(2))!Cr.
Proposition 9.1 The p-localized C,-homotopy fixed point spectral sequence
W EX(Cp) = H™*(Cpi ™' V(2)« THH(BP(2))) = 11" V(2)« THH(BP(2))" <

has E?-term
u E*(Cp) = E(u1) ® P(1p1) ® E(h1. A2, A3) ® P(u™h).

There are differentials
d? () = (1) P ha ', 2 (uP) = ()P hop? P,
A2 (W) = ()P dap T P Pty = (o,
and the classes tit, Ay, Ay, A3 and uiPS are permanent cycles.

Proof The composite relations
d?P () - P =d? (et P =1 tP Ay pP = ()P A,
T B e () ) B U LA PRV U L ST
A2 () pP = AP ()PP = )P T i = () hap?”
3 3 3 3 —p3 . 3 3
AP ) = dPP TN ()P ug TP = ()P o = ()P
lift to the Cp-homotopy fixed point spectral sequence and can be rewritten as claimed after inverting . O

The first differential leaves
p EPTNCy) = E(u1) ® P(1jt) ® E(My, Aa, h3) ® P(u*?)

® E(u1) ® Pp(tpt) ® E(A2, 23) @ Fpihipt! | vp(j) =0}
The second leaves

P EPIH(C,) = E(uy) ® P(tp) ® E(hy Az, h3) ® P(utPY)
®E(u1)® Pp(tit) ® E(h, A3) @ Fp{hip/ | vp(j) =0}

@ E(u1) ® Pya(tp) ® E(hy. 23) ® Fpfhop’ |vp(j) = 1}
The third leaves

P ERTN(Cy) = E(u) ® P(1p) ® E(hy Ao, hy) ® P(uEP)
B E(u1) ® Pp(tp) ® E(Aa, A3) @ Fpfhipt! [ vp(j) = 0}
@ E(uy) ® Pp2(tit) ® E(A 1, A3) @ Fpldapt! [vp(j) =1}
@ E(u1) ® Pps(ti) ® E(hy. h2) @ Fpldap’ | vp(j) =2}
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The final differential leaves
W EPH2(Cy) = Py (1) ® E(hp A2, h3) ® P(utP)
® E(u1) ® Ppltp) ® E(hg, A3) @ Fpih ! [ v,(j) = 0}
® Eu1) ® Ppa(tp) ® E(h1.23) ® Fplhapd |vp(j) = 13
® E(u1) ® Pps(tp) ® E(hy, h2) @ Fpfhsp’ [v,(j) =2},
which equals ,u_lEoo(Cp).

Next we use the commutative diagram
THH(BP(2))"C» JREE THH(BP(2))¢» & THH(BP(2))'»?
C
THH(BP(2)) ——— THH(BP(2)) L) THH(BP(2))!Cr

and what is known about V(2), THH(BP(2))"C» above degree 2p? + 2p — 3 to pin down the differential
pattern of the C),>-Tate spectral sequence leading to V(2)« THH(BP(Z))tCHZ:

Theorem 9.2 The C,2-Tate spectral sequence

E*(Cy2) = H7*(Cp2: V(2)« THH(BP(2))) = V(2) THH(BP(2))'
has E?-term
E*(Cp2) = E(uz) ® P(r*") ® P(1p) ® E(A1, A2, A3).
There are differentials
APy = ihy, AP (PTPY) = 1Phy,  dPPN (PP =P,
AR S Py, PP 2 0 )P,

6 3 5_,6 . 5 3 6 3 _ 6 . 3
R (T L (11 L P Lk (N T D
6
and the classes tit, A1, A2, A3 and t=P° are permanent cycles.

Proof According to [Ausoni and Rognes 2002, Lemma 5.2], naturality with respect to Frobenius and
Verschiebung maps forces the first three differentials, showing that
E*PH(Cp) = E(u2) ® P(2P") ® P(t11) ® E(h1. A2 13).
To proceed, we shall make use of the summands
Ppt) ® Fpihip}.  Ppa(ti) ® Fpldopt?},  Ppa(t) @ Fp{hsp?’} and  Ppsyy (i) ® Fpip?”})

in E%°(Cp), which is equal to u~! E®(C)) in these degrees. There are almost no classes in the same
total degrees and of lower filtration than the vanishing products

G)? A, @GP P, P Asp? and ()P TP’
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The only exception is the class (11)? >+p ~IX1AsA3 in the same total degree as (¢u)? 2 - Ao u?. However,
this class is itself a (t;L)PZ-multiple, so there is no room for a hidden vf -extension on A, u”. Hence At
detects a v¥-torsion class xy, A, u? detects a vf ’ -torsion class x;, Azu? ? detects a vf ’ -torsion class x3,
u? ? detects a vf 3Jr1-torsion class x4 in V(2)4 THH(BP(2))hCP, and these v3-power torsion orders are
all exact.

By Corollary 8.2 the maps I'y and f‘z are (2p2+2p—3)-coconnected. Hence the classes x; lift uniquely
to classes y; in V(2)s« THH(BP(2))» with T’y (y;) = x;, and we let z; = f‘z (i) denote their images in
V(2)x« THH(BP(2))’CPZ. Since fl (n) = t_l’s, up to a unit in I, that we hereafter often omit to mention,
F(zy) is detected by Z_P3)\1, F(zy) is detected by t_p4k2, F(z3) is detected by t_P5X3 and F(zy4) is
detected by t=° in EOO(CP).

We claim that there are no classes in £ °°(Cp2) in the same total degrees and of higher filtrations than
—p3 _p4 —pS _pn6
tTPA, TP Ay, 7P A3 and 7P,

This will imply that the z; are detected by precisely these classes. Already at the (known) E2? *+1_term
the only exception to the claim is u¢~? *=P° in the same total degree as t 7 5)»3, and we shall see below
that this class supports a nonzero d 2p*+2p -differential, hence does not survive to the E°°-term. It then
follows that the products
(w)? -k, @) T A @)? P Ay and (q)? P
must detect zero, and therefore be boundaries in the C),2-Tate spectral sequence E" (Cp2). We shall prove
that these boundaries must be
S B N L o SR s O Y D L 83
d2P0H2P0 (PP = ()P TPy, PRI (2P0 = ()PP

and the asserted formulas follow readily.

We shall make use of the following lemma. Each cyclic P(zi)-module is either free or torsion, being
isomorphic to a suspension of P (ft) or of its truncation Py (i) = P(ti)/((z0)") at some height 7 > 1,
according to the case. Here and below exponents € and ¢; are always assumed to lie in {0, 1}.

Lemma 9.3 For each r > 2p3 4+ 1 the Cp2-Tate E" -term E’(sz) is a direct sum of cyclic P(tjt)-
modules, generated by classes of the form ugti -)\?)L;Z)\? with p3|i. The d” -differential maps free
summands to free summands, and is zero on the torsion summands.

Proof We proceed by induction on r > 2p3 4 1, assuming that the P(zjt)-module structure of the
E7-term is as stated.

Suppose that there is a d”-differential d” (¢) = b hitting a nonzero fu-torsion class. Then tu-b =
by = d"°(ap) must have been hit by an earlier d’0-differential, where aq is a generator of the form
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uSt’ - AT AS2ASY with p? |i. Hence @ must lie in the same total degree as the formal product (fu)~! - aq,
but in a higher filtration. At the E2-term, this could happen in three cases:

. 7 . . . i P n2 i n2__
o if ag = uSt' - AyAzA3, with a in the bidegree of u§t'™? - Ay, uSt'™P" - Ay, uat'”P" 7P -1 or
fi=pP=p+1, 1,

. ; . . . -~ _ P n2 c 22
o if ag = uSt’ - Aoz, with a in the bidegree of ut' P TP~ )y (1 =PHP )y or uS TP 1,
o ifayg= ugti - A1A3, with ¢ in the bidegree of ugli_l’ - 1.

However, in none of these cases is the prescribed z-exponent (i — p, i — p?, etc) a multiple of p>. Hence
there are no nonzero classes in these bidegrees of E2p+1 (Cp2), and therefore also not in ET (Cp2) for
r>2p341.

It follows that no differentials hit the torsion summands, so each nonzero differential maps a free summand
to another free summand. Its kernel is then zero, while its cokernel creates a torsion summand in the
E”" 1 term, which is still generated by a class of the required form. This proves the inductive statement
forr + 1. O

The remainder of the proof of Theorem 9.2 can be separated into five steps:

(1) We start with z;, which we know is detected by ¢ —? 3)\1. Checking bidegrees in E2p+1 (Cp2), the
next possible differentials on u, and ¢ —? ¥ are

2P +2p-1 (t_pS) c Fp{uzl_p3+P4 (tp)P~ 1A A5,
AP € Fplr P 0 ()P},

d*7" 2P (uy) € Fpluat” (t10)" 11},

Since ¢4 and the A; are infinite cycles, we must have d” = 0 for 2p3 4+ 1 <r <2p* +2p — 1. Moreover,
(tw)? ~t_1’3k1 = d"(a;) in vertical degree 2p* 4+ 2p — 1 must be a boundary, and the only possible
source of such a d”!-differential with r; >2p*+2p—1lisa; = =P =P with r1 =2p*+2p. It follows
that ¢ 2P +2p—1 (l_P3) = 0 vanishes and furthermore that d2P*+2P (t_Ps) = —p’+p (t)® A1 is nonzero.

(2) We turn to z4, which we know is detected by t—# °. Thus ¢7° and its inverse are permanent cycles.
The nonzero product vf ’ -z4 is detected by by = (tn)? A or, if this product is a boundary, by another
class in the same total degree as b4 but of lower filtration. Let b, denote the actual detecting class. Then
ti-by = d"(ay) in total degree 4p% —2 detects v§’3+1 -z4 = 0, and hence is a boundary. By Lemma 9.3,
the source of this differential is of the form a4 = ugti AJTASZASY, with p? i, (If ag were a tj-multiple
at the E2-term, then it would be a ¢z4-multiple at the E”4-term, by the lemma. Then b;f would be a
d"4-boundary, which is impossible since it detects vf ’ -z4 #0.) The total degree of a4 is 4p® — 1, so the
only possibilities are tp3_2p6k3 with r4 > 2p%+2, or u21_2P6 with r4 > 2p% +2p3 + 1. However, we
showed in (1) that ¢? 3=2p 6k3 supports a nonzero (shorter) d 2p*+2p_(ifferential. Hence Ay = Uyt 2P o
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. 6 3 . 6 .
survives at least to the E27" 2P +1_term, and d"*(a4) # 0 for some r4 > 2p® +2p3 + 1. Since 7" is

. . . . 6 3
an infinite cycle it follows that u5 also survives to the E2?" 727”1 term. Hence

EP+2H(Co) = E(uz) ® P(tEP') ® P(1p) ® E(hy. Az, h3)
@ E(u2) ® Pp(tpt) ® E(hy, h3) @ Fp{t'Ay | vp(i) = 3}.

. _p3_p5. . . . . .
In particular, u,2~? ~7" is not an infinite cycle, and cannot detect z3, confirming our earlier claim.

(3) We continue with z,, which we know is detected by ¢ ~7 4)L2. Checking bidegrees in E2pt+2p+1 (Cp2),
the next possible differentials on 1 =7 * are

A2 Y B lunt P P () " Aghs}y and  d2PTFRPR (PN e Ryl R ()P ),

while u, survives at least to E20°+2p°+1 (sz) by (2). The differentials on zu, the A; and the torsion
summand are zero. Hence d” = 0 for 2p* +2p 4+ 1 <r <2p> +2p? — 1. Moreover, (Z;L)P2 ~t_p4k2 =
d"(a») in vertical degree 2p> + 2p% — 1 must be a boundary, and the only possible source of such
a d"2-differential with r, > 2p> +2p? — 1 is ay = t=7*=P° with rp = 2p> + 2p?. It follows that
d2pP°+20°=1(;=P*) =  vanishes and that d27°+2P%(t=2"*) = t=P*+P" (111)P* 1, is nonzero. Hence
E?PTR20HN(Cpa) = E(u2) @ P(EP) @ P(1) ® E (k1 A, hs)

® E(u2) ® Pp(tp) ® E(ha, 13) @ Fplt'ay [ vp(i) = 3

@ E(u2) ® Ppa(tp) ® E(hy. h3) ®Fp{t' Ay | vp(i) = 4}
(4) We know from (2) that z3 is detected by t~7 5k3. Checking bidegrees in E2p°+2p7+1 (Cp2), the next
possible differential on =P is

2P () € Fplt PP ()P s},

while u, survives to the E2? *+20°+1_term by (2). The differentials on #u, the A; and the torsion summands
are zero. Hence d” = 0 for 2p° +2p? +1 <r <2p® +2p>. Moreover, (t,u)p3 -Z_PSM =d"(az) in
vertical degree 2 p®+4-2 p3 —1 must be a boundary, and the only possible source of such a differential is a3 =
t=P°=P° with r3 =2p®+2p3. It follows that d2po+2p? (t_l’s) = Z_P5+p6(ZpL)P3k3 is nonzero. Hence
E2P"R20 N (Cpa) = E(u2) ® P(F7") @ P(tt) @ E by A, 23)

® E(u3) ® Pp(tp) ® E(ha, 23) @ Fplt' Ay | vp(i) = 3}

@ E(u2) ® Ppa(tp) ® E(hy.23) ® Fpft' Ay | v, (i) = 4}

® E(u2) ® Pps (1) ® E(h1.h2) ®Fplt'hs | vp(i) = 5.
(5) Finally, we return to z4. Since by = (tu)‘”3 -17P" is nonzero, in vertical degree 2p% of the

E2p°+2p 3‘H—term, it can no longer become a boundary. We can therefore strengthen the conclusions
. 3 . 3 _ 6 . .
in (2) to conclude that vf - z4 is detected by b = by, and that tj0 - by = (t0)? T1.47P” is a unit times
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d"™(as), withrg =2p®+2p3+ 1 and ay = uzt_2P6. It follows that d21’6+21’3+1(u21_1’6) = (t,u)p3+1,
since #7° is an infinite cycle. Hence
EXHR2(C ) = PP ® Pps gy (110) ® E(Ay, Agu A3)
® E(u2) ® Pp(ti) ® E(ha, A3) @ Fpl{t' Ay | vp(i) =3}
@ E(uz) ® Ppa(tpt) ® E(h1. h3) @ Fp{t' A | vp(i) = 4}
B E(u3) ® Pps(tp) ® E(hy.22) ® Fp{t'As | vp(i) = 5}

No free summands remain, so by Lemma 9.3 there are no further differentials, and this E”-term
equals Eoo(sz). O

10 The C,--Tate spectral sequences

The following notations will be convenient when we now determine the differential structure of the
Cpn-Tate spectral sequence.

Definition 10.1 [Ausoni and Rognes 2002, Definition 2.5; Angelini-Knoll et al. 2024, (5.8)] Let
r(k)=0fork € {0,—1,—2} and set r (k) = p¥ +r(k—3) fork > 1. Thus r(3n—2) = p" 2 +... 4 p,
r(3n—1)=p3" 1 +...4 p?and r(3n) = p3" +---+ p3, with n terms in each sum.

Let [k] € {1,2, 3} be defined by k = [k] mod 3, so that {Ajx], Ak+17 Ak+2]) = A1, A2, A3}

Theorem 10.2 The Cpn-Tate spectral sequence

E2(Cpn) = H™*(Cpn; V(2)« THH(BP(2))) = V(2)« THH(BP(2))'»"
has E?-term
E*(Cpn) = E(un) ® P(tE") ® P(tpt) ® E(h1. A2, A3).
There are differentials
d2r® P = P g

foreach 1 <k <3n, and
d2r(3n)+l(unt_p3n) - ([M)r(3n—3)+1.

The classes tjt, Ay, A2, A3 and £ " are permanent cycles.
For n =1, this is Theorem 8.1. We prove the statement for general # by induction, assuming the statement
for a value n > 2, and deducing that it also holds for n + 1. The case n = 2 is provided by Theorem 9.2.

The distinct terms of the Cpn-Tate spectral sequence are

EMFNCpn) = E(un) @ PEP") @ P(tp) ® E(h1, Az, A3)

m
® D Eun) ® Pri—3)(t1) ® ECrpie 13, Mr2) © Fplt Apgy | vp (i) = k — 1}
k=4
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for 1 <m < 3n. To see this, note that the differential 72" %) only affects the summand

E(un) @ Fplt’ [ vp(1) =k —1}® P(tp1) ® E(h1. 42 23).
and here its homology is E () ® Py (x—3)(t 1) @ E (Ag+1]- k[k+2])®FP{lik[k] |vp(i) =k—1}. Thereafter,
E> DR (Cyn) = PUHP™) @ Pranm3y 1 () 8 EQur Az hs)

3n

® P Ewn) ® Pre—3)(ti) ® Ehiger 1) Ag2) © Fplt Ay | vp (1) = k — 1.
k=4

To see this, note that d2”G™+1 only affects the summand E (1) ® P(tip3n) ® P(tp) ® E(Aq, A2, A3),
and that its homology is P(tip3n)® Pr3n—3)+1(t)® E (A1, A2, A3). For bidegree reasons, the remaining
differentials are zero, so £27 (3”)+2(Cpn) =E % (Cpn) and the classes 1P are permanent cycles.

We obtain the differential structure of the C,n-homotopy fixed point spectral sequence E”(Cpn) for
V(2) ATHH(BP(2)) from that of the Cpn-Tate spectral sequence E" (Cpn) by restricting to the second
quadrant, and write © ! E” (Cpn) for its localization given by inverting (a power of) . It follows from
Theorem 8.1 that u~'E” (Cpn) is isomorphic to the Cpn-homotopy fixed point spectral sequence for
V(2) A THH(BP(2))C».

Proposition 10.3 The p-localized Cpn-homotopy fixed point spectral sequence

W E(Cpn) = H*(Cpn; ™' V(2)4 THH(BP(2))) = 1" V(2), THH(BP(2))" "

has E?-term
p E*(Cpn) = E(un) ® P(tp) ® E(hy, 2, 23) ® P(u™).

There are differentials
k—1 . k—1_ k
d¥ O ") = )" Odpgu” P

foreach 1 <k <3n, and
d2r(3n)+1(unup3") - (ZM)r(3n)+l.

The classes tii, A1, Ay, A3 and ,uil’3” are permanent cycles.

Proof This follows from Theorem 10.2 by comparison along the morphism
R": E"(Cpn) — E"(Cpr)

of spectral sequences induced by the homotopy restriction map (also known as the canonical map), and
the (2 p2+2p—3)-coconnected localization morphism

E"(Cpn) = W VE" (Cpn).
Algebraically, the translation is achieved through multiplication with appropriate powers of 7. |
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The distinct terms of the u-localized Cpr-homotopy fixed point spectral sequence are
P EX N (Con) = E(un) @ P(110) ® E(hy A h3) ® P(u")
m
® P E(un) ® Prgey (1) ® EQrpget1: As2) @ Fplhpgu’ [vp(j) =k — 13
k=1
for 1 <m < 3n. To see this, note that the differential 42" %) only affects the summand
E(un) ® P(tp) ® E(1, 32, h3) @ Fp{pd | 0p(j) =k =13,

and here its homology is E () ® Py ) (t14) ® E (Mg +1]> Ak +2]) ®Fp {k[k]uj | vp(j) =k —1}. Thereafter
pT B OO (Cn) = Py 41 (10) @ E(hy ko, hy) @ P(u*P™)

3n

® D Eun) ® Pry (11t) ® Ehpger1)s Aie+2) @ Fplhpn? [ vp(j) =k —13.
k=1

As before, d2”3M+1 only affects the summand E(u,) @ P(t) @ E(A1, Az, A3) ® P(/Lil’3”), and its
homology is Py3u)+1 () ® E(A1,A2,A3) @ P (u*P 3m). For bidegree reasons the remaining differentials
are zero, so ! E2GmM+2(Cpn) = 1 E%(Cpn) and the classes pP™" are permanent cycles.

To achieve the inductive step we use the commutative diagram

T, T,
THH(BP(2))"Crn «—"— THH(BP(2))C»" —"% THH(BP(2)) Con+1

(10-1) lF lpn an
THH(BP(2)) ——— THH(BP(2)) — s THH(BP(2))C»

and what is known about V(2), THH(BP(2))"Co" above degree 2 p2 +2 p —3 to determine the differential

pattern of the Cp,»+1-Tate spectral sequence converging to V(2)x THH(BP(2))tCP"+1 .

Proof of Theorem 10.2 We must show that the C,»+1-Tate spectral sequence
E*(Cyut1) = H™*(Cput1: V(2)« THH(BP(2))) = V(2), THH(BP(2)) “p"+!

has the asserted differential pattern. By naturality with respect to (Tate spectrum) Frobenius and Ver-
schiebung morphisms,
F: E"(Cynt1) 2 E"(Cpn) 1V,

it follows as in [Ausoni and Rognes 2002, Lemma 5.2] that the left-hand spectral sequence has differentials
d?r 0 Py = P gy R0
for all 1 <k < 3n, leading via the E2®+1 = E20°+1 torm
B (Cpnin) = E(unt1) ® PEP)) @ P(ipt) ® (A1, A2, 43)
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to the E27GM+1 _term

E¥COH(Couit) = Etnsr) ® PUEP™") @ P(tpt) ® E(hy., Ay A3)
3n

S En+1)® Prie—) (1) ® E Ay 11. Ag+2) ©Fp it Apgg | 0p (1) = k=13
k=4

We shall prove that this spectral sequence contains three more families of even-length differentials,
followed by one family of odd-length differentials, after which it collapses.

3 . . . . .
Note that the E27"+ ! term is free as a P(zu)-module. Replacing Cp2 with Cpnt1 and up with Uy in
the proof of Lemma 9.3, with no other changes, establishes the more general statement:

Lemma 10.4 For each r > 2p? + 1 the Cpn+1-Tate E”-term E" (Cpn+1) is a direct sum of cyclic
P(tjt)-modules, generated by classes of the form u$ 1" - A{'A2AS* with p*|i. The d” -differential
maps free summands to free summands, and is zero on the torsion summands. |

By our inductive hypothesis, the abutment £°°(Cpn), which is isomorphic to uwE *°(Cpn) above degree

2p? +2p — 3, contains summands
3n—2

3n—3
Pr(3n—2) (th) ® IFp{)\l,up 3 Pr(3n—1)(t1u) ® Fp{)\zﬂp I
3n—1 3n
Pr(3n)(tﬂ) ® IE‘1)‘{)"3#1) I Pr(3n)+1(t/L) ® ]Fp{:up 3

Moreover, u ' E *°(Cpn) is generated as a P(¢ju)-module by classes in filtrations —1 and 0. Hence any
class in £°°(Cpn) in the same total degree as, but of lower filtration than, one of the vanishing products

3n—2

) D 1P () O ™

() O™ aapn?™ ) OO ™
must itself be divisible by (at least) the indicated power of #u. It follows that there are no hidden v3-

. 3n—3 — .
power extensions present, so that A1 ?”  detects a v;(3n 2 _torsion class x1 € V(2)« THH(BP(2))"Co
3n—2 — . 3n—1 . 3
Ao u? "7 detects a v;(3" 1)—torsmn class x5, Asu? "™ detects a v;(S”)—torsmn class x3 and u? " detects

3n)+1 . .
a v;( MF1_torsion class X4, and these v3-power torsion orders are exact.

By Corollary 8.2 there are unique classes y; € V(2), THH(BP(2))%»" and z; € V(2)« THH(BP(Z))tCP'“rl
with I, (y;) = x; and f‘n+1 (yi) = zj for each i. Moreover, zy, ..., z4 are v3-power torsion classes of
orders precisely »(3n —2), r(3n— 1), ¥r(3n) and r (3n) + 1, respectively.

Applying Frobenius maps F” as in (10-1), and the fact from Theorem 8.1 that f‘l maps ( to ¢t~ ? ’ (up
to the usual implicit unit) and preserves the A;, we deduce that F"(zy),..., F"(z4) are detected by
the classes Z_PM)»I, t_p3n+lk2, t_P3n+2k3 and t=7""" in E°°(Cp). Hence zq, ..., z4 are detected in
E *°(Cpn+1) in the same total degrees as these classes, in equal or higher filtration. However, since n > 2,
there are no possible detecting classes of strictly higher filtration present in E2rGm+1 (Cpn+1). We can

therefore conclude that zq, ..., z4 are detected by

_ pl3n _ p3n+1 3n+2 3n+3
7PN, TP

Ao, TP TA3 and TP,
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respectively, in E"O(Cpnﬂ). (The only problematic class at the E2")+1_term, un+1t_p3_1’3n+2 in the
Zpant2, . . . .
same total degree as t =P A3, is now known to support a d2” 4 _differential, as in the C 2 case.)

It follows that the products

e R SR 7 N A S (N R

3n+2 3n+3

A3 and (tp)"CMFLP

must detect zero, and therefore be boundaries, in the Cpn+1-Tate spectral sequence. We shall prove that
these boundaries must be

er(3n+l)(t 2’H'l) (l )r(3n 2) .t -p3 )\‘1’
d27(3n+2) (f pinti— 3”+2) (l/,L)r(Sn 1) .t p3"+l)kz,
d2’(3”+3)(z p3n+2 3n+3) (l )r(3n) _p3n+2)\3’

J42rGn+3)+1 3nt3

(un+ll—2p-n+3) - (tﬂ)r(3n)+1 4P

In view of the Leibniz rule, the first three can be rewritten as
k—1_ ,k . k—1 —
d2r(k)(tp Yy =P (lu)r(k 3))\[k]

for 3n + 1 < k < 3n 4+ 3, while the fourth is equivalent to
d2r(3n+3)+1(un+1t—p3”+3) - (Zu)r(Sn)+1'
As for Theorem 9.2, the remainder of the proof of Theorem 10.2 will consist of five steps, but for n > 2
we can start with z4 in place of z;, and this simplifies the discussion of the class u,,4 1.
3n+3

3n+3 . .
. Thus ¢? and its inverse are permanent cycles. The
3n+3

(1) We know that z4 is detected by =7
r(3m) - z4 is detected by by = (tp)"C" .¢—P
another class in the same total degree as b4 but of lower filtration. Let b} denote the actual detecting
class. Then 7y - by in total degree 4p3n+3 _ 2 and vertical degree > 2r (3n + 3) detects v r(3n)+l cz4 =0,
and hence is a boundary. We write 71t - b} = d"*(a4). By Lemma 10.4, the source of this dlfferential is of

nonzero product v3 or, if this product is a boundary, by

the form a4 = uj, t’ ATTASZASY, with p? | i. The total degree of ay is 4p3"+3 — 1, so the only possible
3”+3A3, with 74 > 2r(3n+3)—2p> +2, or un+1t_21’3”+3
first of these possibilities is no longer present in E2rGm+1 (Cpn+1). Hence ag = un+ll_21’3n+3 survives
at least to the E2"Gn+3)+ 1 term, and d”4(as) # 0 for some r4 > 2r(3n + 3) + 1. Since 7" s an
infinite cycle it also follows that d” (u,,4+1) = 0 for all » <2r(3n + 3).

sources are t? _21’ . However, since n > 2, the

r(3n—2)—1

(2) We continue with 21 which is detected by ¢ A " 1. The nonzero product v, -z1 is detected by

by = ()" Gn=2=1 P’ " k1 or, if this product is a boundary, by another class in the same total degree as b

but of lower filtration. Let ] denote the detecting class. Then ¢/ - b/ in total degree 2 p3ntlpopi3n
and vertical degree > 2r(3n + 1) — 1 detects v;(3n_2) -zy = 0, and hence is a boundary. We write
t,u -by =d"'(ay). By Lemma 10.4 the source of this differential is of the forma; = ufH_lt" ATASZASY with

3n+1

p3 |i. The only such class in the correct total degree is @ = ¢ —p¥'=p’ . Considering vertical degrees,
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it follows that ; > 2r(3n+1). Since the torsion summands in E2rGm+1 (Cpn+1) are not affected by later
differentials, the A; and 7y are infinite cycles and u, 41 survives to the E2"G7+3)+1_term by (1), it follows
that d” = 0 for 2r(3n) <r <2r(3n + 1). After this, b; is in too low a vertical degree to be a boundary.
Hence b} = by and r; = 2r(3n + 1). It follows that d2’(3”+1)(t_1’3”) = =P+ p ()" G2,
This establishes the first new even-length differential, and leads to the E2” Grn+D+1_term

ErOmt D (C i) = Eunp )@ PP )@ P()® E (A1 A2, A3)
3n+1 .
& D Ent1)®Prk—3) ) SE (fge 11, Mi42) ®Fplt Apgy | vp () =k =13
k=4
3n+1 r(3n—1)—1 .
3
A or, if this product is a boundary, by another class in the

(3) Next? we turn to z,, which is detected by =7
detected by b, = ()" Gn—D-1 P
same total degree as by but of lower filtration. Let 5} denote the detecting class. Then #j1 - b}, = d"*(a;)

As. The nonzero product v Zp 18

detects v;(3"_1) -zp = 0, and hence is a boundary. The source a, of this differential is of total degree
. i _ p3n+1_ ,3n+2
2p31%2 £ 2p37+1 and by Lemma 10.4 it has the usual form u€ , ¢’ AP AZAS  s0a; =17F ep

n+1
is the only possibility, with r, > 2r(3n+2). It follows as in (2) that d” =0 for 2r 3n+1) <r <2r(3n+2).

After this, b; lies too close to the horizontal axis to be a boundary, so b}, = b, and r = 2r(3n +2). It
then follows that @27 Gn+2) (=p*" 1y = y=p*" 1 +p¥"*2 (4 \rGn=1)) . This establishes the second new

even-length differential, and gives the E2" G722+ _term

B OmDH(Ci) = B )@ PEP )@ P ® E(hy, o, 13)
3n+2 )
& D Ent1)®Prk—3) WS E (hige 11 Ma42) ®Fplt Apgy | vp () =k —13.
k=4

(4) Carrying on, we consider z3, which is detected by 7 e

detected by b3 = (1p)" M1 o
detected by another class in the same total degree as b3, but of lower filtration. Let bg denote the detecting
class. Then tp-b} = d"3(a3) detects v;(3n) -z3 = 0, and must be a boundary. The source a3 of this differ-
ial i 3n+3 3n+2 ; [ 9 €19 €29 €3

ential is of total degree 2p°"7> + 2p>"T= and b};nlﬁmniil:?"l %t has the usual form u;, 7' - A7'A2 A5
, with r3 > 2r(3n + 3). It follows as above

not involving w. The only possibility is a3 =27 ~—#°
that d” = 0 for 2r (3n 4+ 2) < r < 2r(3n + 3), after which b3 is in too low a vertical degree to become a

r(3n)—1
3

A3, unless this class is a boundary, in which case the product is

A3. The nonzero product v -Z3 18

boundary, so b} = b3 and r3 = 2r(3n + 3). Hence d2rGnt3) =2y == ) yrGBm
This establishes the third new even-length differential, and leaves the E£2” Gn+3)+1_term
~ 3n+3
EX O (Copni1) = E(un )@ PUFP" )@ PUW)®E (A1 A2, A3)
3n+3 )
& D E@n+)®Prk—3) )@ E (et 11 M4 2) ®Fp it Ay | vp (1) =k —13.
k=4

3Steps (3) and (4) are very similar to (2), but we believe the arguments are easier to follow when written out separately.
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(5) Finally, we return to z4. Since bg = (t)" 3™ -t=7"""* is nonzero, in vertical degree 2r (3n+3)—2p?
of the E27Gn+3)+1_term, it cannot be a boundary, and hence is equal to the class bjf from step (1). Thus
t-by = (1) Gm+1 P g (ag) with aq = un+11_2P3n+3 and rq4 = 2r(3n + 3) + 1. It follows
that d2’(3”+3)+1(un+1t_1’3"+3) = (rp)" G+ since 2> is an infinite cycle. This establishes the

claimed new odd-length differential, and leaves

3n+3
)@ P41 (WS E (A1, ha, h3)

EZr(3n+3)+2(Cp”+l) — P(f
3n+3

® @ E(nt1)® Priie—3) (1) ® E (i 17, A4-2) @Fpdt Apiey [ vp (i) =k —1}.
k=4

No free summands remain, so by Lemma 10.4 the remaining differentials are all zero, and this E”-term
equals E *°(Cpn+1). This completes the n'" inductive step. O

11 The T -Tate spectral sequence

We can now make the differential structure of the spectral sequences
E*(T)= H *(T:;V(2)« THH(BP(2))) =V(2). THH(BP(2))"T,
w VE2(T) = H™*(T; V(2)x THH(BP(2))' )=V (2)+ (THH(BP(2)) <» )T

E*(T) = H*(T:;V(2)« THH(BP(2))) = V(2)sx THH(BP(2))'T
fully explicit.

Theorem 11.1 The T -Tate spectral sequence

E*(T) = H*(T; V(2)« THH(BP(2))) = V(2), THH(BP(2))'T
has E?-term
EXT) = P(*)® P(t) ® E(A1. A2, h3),
there are differentials
@y = o gy gy
for each k > 1, the classes tii, Ay, A, and A3 are permanent cycles, and the E°°-term is
E®(T) = P(tp) ® E(h1. 2. 13)

OEP Prik—3» 1) ® EChpir1): Aet2) @ Fplt Ay | vp (i) =k — 1},
k>4

Proof This follows by passage to the limit over n from Theorem 10.2. |

Remark 11.2 We saw in Propositions 9.1 and 10.3 that for each n > 1, some positive power of
w € V(2)« THH(BP(2)) lifts to V(2), THH(BP(2))"Cr"  so that the p-localized Cpn-homotopy fixed
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point spectral sequence converges to a localization i~ ! V(2), THH(BP(2))"C»" . However, no such power
of w lifts to V(2)x THH(BP(Z))hT, and we therefore instead express the abutment of the p-localized
T -homotopy fixed point spectral sequence in terms of THH(BP(2))*», with 1~V (2), THH(BP(2)) =~
V(2)« THH(BP(2))!“?, as per Theorem 8.1.

Proposition 11.3 The u-localized T -homotopy fixed point spectral sequence
p~ EX(T) = H™*(T:u”' V(2)« THH(BP(2))) = V(2)-(THH(BP(2))"“")"*

has E?-term
p EX(T) = P(tp) ® E(Ay, Ao, A3) ® P(uh),

there are differentials
1

k=1, . k=1_pk
d? O ey = @) Orggu?” =7
for each k > 1, the classes tjt, A1, Ay and A3 are permanent cycles, and the E°°-term is
u E®(T) = P(tpn) ® E(h1. A2, A3)

&P Prity (111) ® EQprt1), Mg 42) @ Fpfhpqn [ vp(j) =k —13.
k>1

Proof This follows by passage to the limit over » from Proposition 10.3. O

Proposition 11.4 The T -homotopy fixed point spectral sequence

E*(T) = H™*(T; V(2)x THH(BP(2))) = V(2) THH(BP(2))"T
has E?-term
E*(T)=P(t) ® E(A1. A2, A3) ® P(1),

for each k > 1 there are differentials
d2r(k)(Mdp"_l) - (ZM)’(k)A[k]M(d_P)Pk_I for d > p with ptd,
A2 (PP = dpt T g yrE=d Ty for 0 < d < p,
d2r ) (pdp" Tty = pdpt Tt ()" ®Dpg  for d > 0 with ptd,
the classes tjt, A1, Ao and A3 are permanent cycles, and the E°°-term is
E®(T) = P(tp) ® E(A1, A2, A3)
& P Prito (1) ® EChprr). Mg+a) @ Eplhgqu® ™ | prd > 0}

k=1
k—1
& D Py ey—api—1 (110) ® EGhpgey 1) Ae2) ®Fp{tP” Ay |0 < d < p}
k=1
k—1
OB Prk—3(111) ® ECpes1) Ape2) @ Fplt" Ay | ptd > p}.
k>4
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Proof The differentials on %"~ for ptd > 0 follow as in Theorem 11.1, while those on udl’k—] for
ptd > p are as in Proposition 11.3. For 0 < d < p,

k—1 .
> O @y = ()" Prggu®

k—1

_pk _ tpk_dpk—l (l‘lu,)r(k)—’—dpk_l_l,k)\[k],

Replacing d by p — d we obtain the claimed formula.

For each k > 1 and p }d, the d*"®)_differential maps the summand

EM\k1]s AMrr2) @ Fplt i — j = dp*=' — p*}

of E2"®)(T) injectively to the summand

EMk+17s AMi+2) @ Fplt Apqu? | i — j = dp*=13,

with cokernel one of the displayed summands in £°°(T). Here i > 0 and j > 0 in each case. |
Following the referee’s good advice, we decompose these E°°-terms as in the next three definitions.

Definition 11.5 Let 4 = P(t) ® E(A1, A2, A3), viewed as a subalgebra of E°°(T). For k > 1 and
0<d<plet

k—1
Ck.d) = Pyy_ape—1 (1) ® E(r11. AMt2) ® Fp{t P Ay}
be the finite A-submodule of E°°(T) generated by

k—1
Ck,d = de }\[k]-
The class

dy(k—3) .

Xk = () ” = 15" O p kD

Ck,d

k—1

is an element of C(k, d), is nonzero since %r(k —3) <r(k)—dp®™", and has total degree |xx 4| =

2pll —2dptk1=1 _ 1. n particular,
2
X1 d=C1d= 192, Xod =Cod = t%7), and X3,d =C3,d = (%" s

forall 0 <d < p. Let C = D1 0<q<p Clk, d), and let

k—1
B =B Priioy(t1t) ® E(hpget 1) Micr2) ® Fp g™ | prd > 0},
k=1

k—1
D =D Pr—3 1) ® EQhpg1) Ae+2) @ Fplt " Ay | ptd > p}
k=4

be the indicated A-submodules of £°°(T), concentrated in positive and negative total degrees, respectively.
Then EX(T)=A®BaeCa& D.

It should be clear from the context whether B refers to this summand in £°°(T) or a generic S-algebra.
The classes xj 4 are the ones mentioned in Section 1. Their role, together with the classes z; 4 defined
just below, will only become apparent starting with Corollaries 12.7 and 12.8.

Geometry & Topology, Volume 29 (2025)



Algebraic K-theory of elliptic cohomology 669

Definition 11.6 Let A’ = P(t;) ® E(h1, A2, A3) as a subalgebra of u~! E®(T). For k > 1 and
0<d<p,let
1

—dpk—
C' (k. d) = Proy(ti) ® ECrer 11, Mi+2) © Fp g™ 7}
be the finite A’-submodule of £ ~! E®(T) generated by

_dpk—l

Ckd = Mk
The class

d

Zkd = (t,u)zr(k) 'cl,c,d _ t%r(k))‘[k]ﬂ%r(k_”

is an element of C’(k, d), is nonzero since %r(k) <r(k), and has total degree |z 4| = 2plkl 2 plkl=1_1.

k—1
B' = @ Py (1) ® EQies 11, A2 ® Fpfhpqu® ™ | ptd > 0},
k>1

_dpk—1
D'=@P Proyti) ® Er11- Aes2) @ Fpfhpqu ™ | ptd > p}
k>1

be the indicated A’-submodules of u~! E%(T), concentrated in positive and negative total degrees,
respectively. Then u~'E®(T)=A'" @B &C' & D',
Definition 11.7 Let A = P(t11) ® E(h1, Aa, A3),

~ k—1

Clk.d) = Pr—3)(t1t) ® EQupie1)s Mira) ® Fplt P g}
fork>1and 0 <d < p, and

-~ _Jdnk—1
B =P Prk—3(t1) ® EQuict11- M+2) ®Fp e =P Ay | phd > 0},

k>4
C= P CdCka,
k>4,0<d<p
~ dpk—l
D= @ Prk—3) (1)) ® E(Afk+1], Ake+2]) @ Fplt Ayl ptd > p}.
k>4

Then EOO(T) =A® BoC @ D. Note that é(k,d) =0 for k € {1,2,3}.

The T -equivariant comparison map
Ty : THH(BP(2)) — THH(BP(2))'¢>

(renamed the p-cyclotomic structure map ¢, in [Nikolaus and Scholze 2018]) induces a morphism of
T -homotopy fixed point spectral sequences, given at the E2-term by the homomorphism

EX([T1): EX(T) = P(1) ® E(A1, A2, 43) ® P(1) > P(1) ® E(hy, A2, 43) ® P(u*!) = ' EX(T)
that inverts p. At the E°°-terms we have the following formulas:
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Lemma 11.8 The homomorphism
E®(T): E®(T) — n~ ' E®(T)
maps
(1) A isomorphically to A’,
(2) B isomorphically to B’,
(3) C injectively to C’, and
(4) D to zero.

Specifically, E Oo(f‘f‘T) is injective in total degrees * > —2p3 + 2p? and bijective in total degrees
*x>2p24+2p—2.

Proof Cases (1) and (2) are clear. In (3), the injection C(k,d) — C’(k,d) takes ¢k g4 = tdpk_l)\[k]
to (Z/L)"'J”k_1 - ¢} 4> Which is annihilated by the same #/.-power as ¢ 4, namely (zj)" ()—dp*! 1 4),
the image of D {n D’ is zero since tdpk_l)»[k] maps to (Z;L)“U”k_1 -k[k]u_dpk_l, which is zero because
dp*=1 > r(k) for d > p.

The highest-degree element in the kernel of E oO(f‘f”r) is t(P+DP? (t)P~1A1AsA3 in D in total degree
—2p3 +2p2—1, mapping to d2*@ (P ~1), 131~ 1). The highest-degree element not in the image of
Eoo(f‘{ﬂr) is A{A,A3 "1 in C’(1, 1), in total degree 2p2 + 2p — 3. a
Similarly, the homotopy restriction map

R": THH(BP(2))"T — THH(BP(2))'T

(renamed the canonical map in [Nikolaus and Scholze 2018]) induces a morphism of spectral sequences,
given at the E2-term by the homomorphism

EX(R"): E*(T) = P(t) ® E(h1, 22, 43) ® P() > P(*") @ E(h1, 42, h3) ® P(1) = E*(T)

that inverts 7. The following lemma is similar to [Ausoni and Rognes 2002, Proposition 7.2]:

Lemma 11.9 The homomorphism
E®(R"): E®(T) — E*(T)
maps
(1) A isomorphically to A,
(2) B to zero,
(3) C surjectively to C, and
(4) D isomorphically to D.

Specifically, E % (RM) is surjective in total degrees * < 2p3 4+ 2 p — 2 and bijective in total degrees * < 0.
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Proof Cases (1) and (4) are clear. In (2), the image of B in B is zero since X[k]udl’k_l maps to
(t,u)dpk_l ~t_dpk_lk[k], which is zero because dp*~! > r(k —3) for d > 0. In (3), the surjection
C(k,d) — C(k,d) takes ¢y g = dek_lk[k] to tdpk_l)\[k], which is annihilated by a lower 7u-power
than ¢ 4 since r(k —3) <r(k)— dpk=1 for 0 < d < p.

The lowest-degree element not in the image of E®(R") is r=? 3A1 in B, in total degree 2p® +2p — 1.

The lowest-degree element in the kernel of E%(R") is =11, in C(1, p — 1) in total degree 1, mapping
to d?P(t71). m|

12 Topological cyclic homology and algebraic K -theory

We now pursue the calculational strategy employed in [Bokstedt and Madsen 1994; 1995; Hesselholt and
Madsen 1997; Rognes 1999; Ausoni and Rognes 2002, 2012; Ausoni 2010] to identify TC(B) with the
homotopy equalizer of the two maps GR" and f‘{’T displayed below.

h
TC(B) —— THH(B)"T — & THH(B)'T

(THH(B)!Cr)hT
In these papers, this identification was only known to be valid in V' -homotopy in a range of sufficiently
high degrees, for suitable finite spectra V. However, with the work of Nikolaus and Scholze [2018,
Remark 1.6], we now know that TC(B) is given by the homotopy equalizer above in all degrees, whenever
THH(B) is bounded below. (This certainly holds for all connective S-algebras B.) Let GRQ = Vi (GRh)
and f‘f’f = Vi (f‘{’T). The associated long exact sequence

h_{hT
i, Y, (THH(B)Y )T 2, ...

.. V, TC(B) Z> V, THH(B)"T

leads to the short exact sequence
0 — 7! cok(GR! —TT) 2 v, TC(B) Z> ker(GR! —T"T) — 0.

In our case, the task is to calculate the kernel and cokernel of GRﬁ — 1:{’3 for B=BP(2) and V = V(2),
and thereby to determine V(2), TC(BP(2)). We studied the effect of f‘f’T and R at the level of spectral
sequence E°°-terms in Lemmas 11.8 and 11.9. In Proposition 12.1 we do something similar for G.
Thereafter we find lifts Z E C and D in V(2)« THH(BP(Z))}’T of the summands 4, B, C and D of
E®°(T) from Definition 11.5, and compute the effect of GRQ — f‘{’f acting upon these lifts.
Proposition 12.1 The isomorphism

Gy = V(2)+(G): V(2), THH(BP(2))'T = v(2),(THH(BP(2))!¢»)*T
takes each class

3 .
ne{t? ()" AT A AT
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detected by y = tP3i(tu)mki1A;2)\§3 € E(T) to a class
Gul) € ()" 3§ SRS )
detected by z = (tp)™ A AS2AS ™" € w1 E®(T) (up to a unit in F,, which we suppress). Conversely,
its inverse G, ! takes each class '
e ™ AgAg W)
to a class S
GI' @) € P ()"

(again, up to a unit in IF,, which we suppress).

Proof We first handle the case m = 0, using the commutative diagram

t
THH(B)'T — & THH(B) Cr+!

|- s

h
(THH(B)Z‘Cp)hT F (THH(B)th)thn
in the special case of B = BP(2) and n = 0. It is constructed by viewing the T /C,-equivariant Cp-fixed
point spectrum s
X =[ET A F(ET,, THH(B))]|? ~ THH(B)
as a T -spectrum via the p™ root isomorphism p: T =T/ Cp. The comparison map G : X T 5 X"7T is then
compatible with the comparison map G,: X %" — X hCpn | via the group restriction maps along Cp,n C T.

In the case n = 0, the group restriction map F’ induces a morphism of spectral sequences given at the
E?-terms by the inclusion

EX(F):EX(T)=P(*)®E(M1.h2.23)® P(1) = E()® P )@ E (1. A2, h3)® P (1) = E*(Cy).
Hence each class n € V(2)« THH(BP(2))!T detected by tp3")»?k;2)\§3 # 0 in £°°(T) maps to a class
FL(n) detected by tp3iki‘ ASZASY in EOO(CP) = P(tip3) ® E(A1, Az, A3), which remains nonzero there.
It follows from Theorem 8.1 that (Go F')«(n) = A{'AS2AS ™ in V(2)« THH(BP(2))'“» up to a unit
in IF,,, which we suppress. This equals (F hG) (1), where the group restriction map F”* for n = 0 induces
the edge homomorphism

E®(FMY: f7VE®(T) > E(Ay, Aa, h3) ® P(uth).

Hence G« (1) must be detected in = ! E%(T) by a class z mapping to ki‘k;ﬂ? p~" under the edge
homomorphism, and the only possibility is that z = A{'A52A5* ™, in filtration degree zero.

For m > 1, each class n detesc.ted by y = tl’ii (t)"AS AS2ASS # 0in E®(T) is of the fornAl n=v5"no,
with o detected by yo = tP"'A{'A5?A5* € E%(T). To see this, note that each element of £°°(T) in the
same total degree as y, but of lower filtration, is a (z4)™-multiple. This follows from the case enumeration
in the proof of Lemma 9.3. By the first part of the proof, G« (1) is detected by zy = )\iIKZZAZSM_i.
Hence G« (1) = v§" - Gx(no) is detected by (¢14)"™ - z9 = z, since this product is nonzero.
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For the converse, consider any class ¢ detected by z = (1u)™A{' A5} w/ #0in =1 E®(T). Then
n = G;!(¢) must be detected by some monomial y in E*(T), and G«(n) = ¢ is detected by z. By the
first part of the proposition, this monomial must be y = ¢=2°J (1) A ASEASY. m|

Recall AII(, )\f and )\3K from Definitions 6.6, 6.7 and 6.9.

Definition 12.2 Let
A= P(v3) ® E(A1. A2, A3) C V(2)s THHBP(2))*T

be the subalgebra generated by the images of izilio(le),izil(kf),iz(kf) € V(2)xK(BP(2)) and
v3 € 74 V(2) under the composites
S — K(BP(2)) & TC(BP(2)) Z> THH(BP(2))"T

where trc denotes the cyclotomic trace map [Bokstedt et al. 1993]. The homomorphisms GRQ and IA*{‘E
agree on these classes, and we let

A= P(v3) ® E(Ay. A2, A3) C V(2)(THH(BP(2)) )T

be the subalgebra generated by the images of v3, A1, A, and A3, under either one of these homomorphisms.

The subalgebras A and A’ are lifts to V(2)-homotopy of the subalgebras A C E*°(T) and A’ C
w1 E®(T), respectively. To choose good lifts C (k,d) and C'(k,d ) in V'(2)-homotopy of the summands
C(k,d) and C’(k, d) we make use of the norm-restriction homotopy cofiber sequence

¥ THH(BP(2)),r X% THHBP(2))"T &% THH(BP(2))'T 2% £2 THH(BP(2)),T

and the associated long exact sequence. The T -Tate spectral sequence maps to a horizontally shifted
T -homotopy orbit spectral sequence
(12-1) E; .= Hy o(T:V(2)« THH(BP(2))) = Fp{t' | i <0} ® E(h1.42.23) ® P(i)

= V(2)«3* THH(BP(2))sT .

concentrated in filtrations s > 2 of the first quadrant.

The T-Tate differentials crossing the vertical line s = 1 are closely related to the homotopy norm
map N = V(2)«(N"); cf [Bokstedt and Madsen 1994, Theorem 2.15]. Let R? = V(2)4(R"), so
that im(Nf) = ker(Ri) by exactness. The following two lemmas spell out some upper bounds for
ker E%(R"):

Lemma 12.3 In the T -Tate spectral sequence (E "(T), d"), the nonzero differentials from total degrees
% < 2p3 that cross the line s = 1 are of the form

. 2 —_p2 . 3 2_ 53 . 2
d*P(ITPA2) = eI AE, AP PTPISY) = Ay, dPP (T ASIAS) = A A A,
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for suitable 0 < d < p and €, €5 € {0, 1}. Hence in total degrees x <2 p> —2 the classes on the right-hand
side generate ker E®(R™). These lie in filtrations —2(p> — p?) < s < —2, and there is at most one class
in each total degree * < 2p3 —2.

Proof The restriction to total degrees * < 2p3 means we only have to consider differentials on the
classes ¢ for —p3 <i <0, and their A;- and A,-multiples. The d?”-differentials only cross s = 1 for
—p <i <0. The d2P’ _differentials are defined for p|i and only cross s = 1 when —p? <i < 0. The
d?P’ differentials are defined for p? |i and cross s = 1 whenever —p3 < i < 0. An explicit enumeration

shows that each total degree in the range 1 < s < 2p3 — 2 occurs at most once. O

Lemma 12.4 In the T -Tate spectral sequence, the nonzero d” -differentials from total degrees * < 4p3—1
that cross the line s = 1 are of the form

d*P P )" AAS) = 14 )" AR
2 dp 2 .
d2p (de P (t:u)m}‘?)\?) - de(zl/v)m)\?)‘i)\ﬁ’
3 2_ .3 . 2
d*P7 (P ()™ AT ASE) = 1P ()™ A A s,
4 _p3 . 4_p3
dPP7TRP (PN = PP ()P gAY
for suitable m, €1, ¢€,,€3 € {0, 1}, with m + €3 < 1. In the d?P case with m = 1 we have d = —1 or
0 <d < p— 1, while in the remaining d*?, d?P® and d?P° cases we have 0 < d < p. Hence in total
degrees * < 4p3 — 3 the classes on the right-hand side generate ker E °°(Rh). These lie in filtrations

—2(p*—p*+1) =<s=0, except for the last two classes tp4_P3(tu)PA1A§2, which lie in filtration
—2(194 - P3 + p) and total degrees 2p3 -1+ 62(2p2 —1).

Proof The restriction to total degrees * < 4p3 — 1 means that we only have to consider differentials on
the classes ¢ for — p3 <1i <0, and some of their #i4-, A1-, A- and A3-multiples (without repeated factors).
The resulting right-hand classes have the form ¢’ y in Tate filtration s = —2i, where 0 <i < p3 — p2 +1,
except in the last two cases. |

Recall ¢; 4 and cl/c 4 from Definitions 11.5 and 11.6.

Proposition 12.5 Foreach k € {1,2,3} and 0 < d < p there is a unique element

Vi.d € {ck.a} C V(2)« THH(BP(2))"T
that satisfies
Rt (ye.a) =0.
Pk _dpk—l

Moreover, Ay - Yg,q = 0 and v “Vid = 0.

Proof The tower of spectra inducing the T-homotopy fixed point spectral sequence is obtained by
restricting the tower inducing the T -Tate spectral sequence to filtrations s < 0. Hence each nonzero class
x € ker E®(R") ¢ E°(T) can be represented by an element & € ker(Rﬁ) C V(2)« THHBP2) T  in
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the sense that £ € {x}; see [Bokstedt and Madsen 1994, page 75; Ausoni and Rognes 2002, Lemma 7.3].
Furthermore, for x in total degree * < 2p3 —2, the element £ is unique. To see this, suppose that £’ € {x}
is also in ker(R"). Then & — £ in ker(R”) must be detected by a class x’ in ker E%(R"), in the same
total degree as x, but in lower filtration. As noted in Lemma 12.3, there are no nonzero such x’, so & = €.

In particular, for k € {1,2,3} and 0 < d < p this applies to the classes cx 4 = tdpk_lkk in total degrees
1< Zpk — 2dpk_1 —1<2p*—2p?—1, and uniquely defines the homotopy elements Vi,d-

By exactness, we can write yg g4 = Nf (Ok,q) with
Or.a € V(2)«X? THH(BP(2)) 5T

in degree 2pk — 2dp*~!. 1In fact, Ok,a € {tdpk_l_f’k}, up to a unit multiple, but we only need to

know that 6y 4 must be detected in filtration s < 2 pk — dek_l in the shifted T -homotopy orbit spectral

pk_dpk—l . . . . Pk_dpk—l
sequence (12-1). Hence v Ok ,q = 0, for filtration reasons, which implies that v3 “Vie,d =0

since Ni’ is P(v3)-linear.

Finally, Ag - 0 4 = 0, because 1P 71 =P y e = d2P" (19" 7' =2P") i a boundary and by inspection of
bidegrees there are no other classes in the E°°-term of (12-1) in the same total degree and of lower
filtration. Applying N/ we can conclude that Ay, - Yk.d = 0. |

Proposition 12.6 Foreach k > 1 and 0 < d < p there are elements

Vea €15 4} CVQ«(THHBP2) )T and i 434 € {exq3,a} C V(2)« THHBP(2))"T

that satisty
dpk—! BAT h
v3" Vg =Tl Wka) and GR{(Vk+43.d) = Vi g
_dpk+2
Moreover, v;(k) . Vlé,d = 0 and v;(k+3) dp “Vi+3,d = 0.

Proof We proceed by induction on k > 1, starting from Proposition 12.5. By Lemma 11.8 the image
f‘f’f (Vk.4) € V(2)«(THH(BP(2))’ Cr)IT of the previously constructed class Yk.d € 1k} is detected
by 47" = ()@ - ¢} 4 in TP E®(T), so any initial choice of y; , € {c} ,} will satisfy
v;ip o y]é, = f‘{’f (Vk,d)- rn,odulo classes of lower filtration. Since u~'E "’O(T) is’generated as a
P (tin)-module by classes in filtration s = 0, each nonzero class in lower filtration than ¢, 4, but of the

. k— . . .
same total degree, is (Z/L)dp " times a class in the same total degree as c,’{ 4 and of lower filtration.

k—1 A~
Hence the choice of )/,2 4 can be iteratively adjusted so as to make vgip . )/12 q= Ff’f Vk.,d)-
r(k) r(k)—dp*=' SpT s AT : r(k)—dpk—!
Therefore vy 'Vlé,d =, T1e (Vk,a) =0, since I'{ is P(v3)-linear and v, “Vi.d =0

by the inductive hypothesis.

The final choice of class )/]é 4 1s still detected by c//c q= A[k]u_dpk_l in C'(k,d) c pn='E*(T), so by
Proposition 12.1, G5! (v ;) € V(2)« THH(BP(2))! " is detected by 1% " Aty in C (k +3. d) € E%(T).
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This class lies in negative total degree, where E °°(Rh) is bijective by Lemma 11.9. It follows that

R" ¥ (Vk43.d) = 1()/k d) for a uniquely determined class yxy3.4 € V(2)x THH(BP(2 2))"T | which is
detected by cx 43,0 =1 dp* k[k] inC(k+3,d)C E(T).
From the relation vg(k) Vk 4 = 0and P(v3)-linearity of G« and Rh we deduce that vr(k) G, 1()/,é =0

and R" (v3( ) “Vk+3.4) = 0. Since ker(R ) = 1m(Nh) we can write v3( ) “Vi+3.d = Ny (9k+3,d) for

some 0y 1 3.4 in degree 2p*+3 —2dp*+2. From the T-Tate differential

k+2_ pk+3_ . +2
d?>r &+ " =p )=t"1’ () O = )" ® g3

we could prove that Oy 43 4 € {t“’l”kJr } (up to a unit), but again we only need to know that O 13 4
k+3_ gpk+2
must be detected in filtration 5 < 2pk‘"3 2dpk*2 in (12-1). Hence vf —dp “Ok+3,4 = 0in
V(2)« X2 THH(BP(2)),T, which implies that
k+3)—d k+2 k+3_d k+2
U;( A aa = vy PN Ok s3a) =0
in V(2)« THHBP(2))"T as asserted. |

Recall the classes xi 4 and zj 4 from Definitions 11.5 and 11.6.

Corollary 12.7 Foreach k € {1,2,3} and 0 < d < p there is a unique element
shde{xhd}cv«a*THHan%mY”

that satisfies R” % (&k.a) = 0. Moreover, Ay - 4 = 0 and vp "~ Sk,d =0.
Proof Let & g4 = vk, 4 as in Proposition 12.5, noting that xg 4 = ¢k 4. a

Corollary 12.8 Foreach k > 1 and 0 < d < p there are unique elements
Ek+3.d € (X430} C V(D) THHBPR)'  and  §iq € {zx,a} C V(2)«(THHBP(2))' 7)™

that satisty
GRU (& v3.0) = T1Y (Ek.0) = Ca-

(1 )r(k+3)

Moreover, Ak - k43,4 =0 and v “€k43,4 =0.

Proof For k > 1, choose elements yj 13 4 and )/k 4 s in Proposition 12.6. Recalling that xz 13,4 =

(lM)” Ck+3,d, we let
4r(k)

Ek+3.d=V5  Vkt3d-
Then
4y (k) fr(k) —dpk—1 g k-1 r(k 3)
GRU(Ex13.0) =v! -GRM(ypys.a) = 07 v g =g T (k)

=TT (& 2).
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To see that this uniquely determines £, 13 4 € {Xk 43,4}, note that any other choice of class & € {xXg 43,4}
with GRQ &)= GRﬁ’< (€k+3,4) would differ from &3 4 by an element £’ in ker(Rﬁ) that is detected by
an element x’ in ker E C’O(Rh) of lower filtration than xj 13 4, and hence of filtration s < —2( pP+1).
By Lemma 12.3, no such element x” exists in total degree |§x43.4| = 2plkl 2 gplkl=1 _ 1 <2p3 —2.

By induction, GRQ(A[k] “Ekt3.d) = f‘{’f (Afk] - &k,a) = 0. Hence, if £&” = Ap) - Ex+3,4 Were nonzero,
it would be a class in ker(Rﬁ), in total degree 4pkl — 24plk1=1 _ 2 < 4p3 — 3 that is detected by
an element x” in ker E °°(Rh) of lower filtration than that of xz 43 4. By Lemma 12.4, treating the
cases k +3 = 4 and k + 3 > 5 separately, no such element x” exists. This contradiction proves that
)‘[k] &k +3,4 = 0. By Proposition 12.6,

(1=2)r(k+3) k+3)—dp*+2
v, 7 Sk+3.d = U;( )= “Yk+3,d = 0.
Finally, let {3 4 = f‘f’f (6,4 ), which is then detected by Eoo(f‘f’T)(xk’d) =Zkd- O

We now fix compatible choices of classes yx 4 and y,i 4 as in Propositions 12.5 and 12.6:

Definition 12.9 Fork > 1and 0 <d < p let

Clk.d) 2= Py(ty—dpr—1 (v3) ® EChpga1). e 2) ® Fplvia)
be the P(v3)®E(A[k+1]. Ak+2))-submodule of V(2)« THH(BP(2))"T generated by Yk.d» and let

C' (k. d) = Prgoy(v3) ® E(hig11, Ae2) @ Fplvg o)
be the P(v3)® E(A[k 1], Ak +2])-submodule of V(2)«(THH(BP(2))'»)"T generated by y,é 4 Let
C= [] Ctk.dy and C'= [] C'tk.a).
k>1 k>1

0<d<p 0<d<p

These are detected by the summands C C E*(T) and C’' C u~! E®(T), respectively.

Lemma 12.10 The P(v3)® E(A[ 417, Ak +2])-submodules

(Ek.a) CCk,d) and (Lkq) C C'(k,d)

dy(k—3 dy(k
generated~by Ekd = v3”r( ). Yk.d and Gy g = v3”r( ). Vlé,d’ respectively, are equal to the (uniquely

defined) A-submodules generated by & 4 and i 4, with
(Er,a) = P(l_%),(k)(vs) ® E(A k411> Mr+2) @ Fpléials
(Cr.a) = Py ) (v3) & ERpir 11, Apet2) @ Fpilead-

Proof These P(v3)® E(Afk41]. Ak+2])-submodules are A-submodules, since we proved Afgy - €x,a =0
in Corollaries 12.7 and 12.8, which readily implies that Az - §x 4 = 0. O
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Remark 12.11 With this notation, Proposition 12.6 shows that f‘{’f induces isomorphisms (£x 4) —
(&x.q) and injections C (k,d) — C'(k,d) and C(k,d)/{Ex.q) — C'(k,d)/{¢k.4). Tt also shows that
GR" induces isomorphisms C (k + 3, d)/{Ek+3.d) = C'(k, d)/(Ck,a), and surjections (§x3.4) = (Ck.a)
and C(k +3,d) — C'(k,d), forallk > 1and 0 <d < p.

Choosing lifts of the B- and D-summands requires less precision:

Definition 12.12 For each k > 1 and p {d > 0 choose a class
Br.a € V(2)« THH(BP(2))"T
detected by A """ ¢ B, and let

B(k,d) = Prgy(v3) ® EChge1] Mi+2]) © FpiBr.a’

be the E(A[k4 1], Ak+2))-submodule of V(2)x THH(BP(2))"T generated by vy Br,a for 0 <m <r(k).
For each k > 4 and p td > p choose a class

8k.a € V(2)« THH(BP(2))"T
detected by tdpk_lk[k] € D, and let

D(k,d) = Pr(—3)(v3) ® EQufiy 13, Mict21) ® Fp{.a)

be the E (A 417, Ak +2])-submodule of V(2)x THH(BP(2))"T generated by vy g g for 0 <m <r(k—3).
Let
B= [] Bk.d) and D= [[ Dk.d).

k=1 k=>4
ptd>0 ptd>p

These are detected by the summands B and D of E°°(T), respectively.

Lemma 12.13 Foreach k > 1 and p +d > 0 the difference
(GRL —T11)(Br.a) € V(2)x(THH(BP(2)) )"
is detected by —k[k]udpk_l € B’. Foreach k > 4 and ptd > p the difference
(GRY—T1)(Sk.a) € V(2)+(THH(BP(2) )T

*

is detected by Ak w4t e pr.

T

*

Proof On one hand, by Lemma 11.8 the image —f{’ (Bk,a) is detected by —A[x) ;Ldpk_l in homotopy

fixed point filtration 0, while by Lemma 11.9 and Proposition 12.1 the image GR& (Bk,q) lies in negative
filtration (or is zero). Hence (GRﬁ’< — f‘f‘T)(ﬂk,d) is detected by the filtration O class.

%
—4

On the other hand, by Lemma 11.9 and Proposition 12.1 the image GRﬁ (8k,a) is detected by Afx i y
in filtration 0, while by Lemma 11.8 the image —f‘f’f (Ok,q) lies in negative filtration (or is zero). Hence

(GRf’k — f‘f’f)((ﬁk’d) is detected by the filtration 0 class. O
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Definition 12.14 As subgroups of V(2)«(THH(BP(2))*¢»)AT let
B' = (GR!'—T"T)(B) and D' = (GR!—T!T)(D).

These are detected by the summands B’ and D’ of ~! E®(T), respectively.

Proposition 12.15 The inclusions induce isomorphisms
V(2)« THHBP2)'T ~ A B Cod D and V(Q2)«(THHBPR)' YT~ A @B &C' @D’

In these terms, GRﬁ — f‘{lf is the direct sum of the zero homomorphism ALY A two isomorphisms
B => B’ and D > D', and the difference A: C — C’ between the restricted homomorphisms

GRL: [ Ckedy— [] C'ked). (ooviar--) > (oo Vs ge---)

k>1 k>1
O<d<p 0<d<p

and

A~ ~ ~ k—1
o ] Ckedy—» ] Cled). Cooovieae-- ) G v yfgen).

k=1 k=1
0<d<p 0<d<p

Here y; _, , is to be interpreted as 0 for k € {1, 2, 3}.

Proof The submodules A, B, C and D are detected by the direct summands A, B, C and D spanning
E®(T),s0 A® B®C & D — V(2)« THH(BP(2))"T is an isomorphism by strong convergence of
the T -homotopy fixed point spectral sequence. Likewise, A’, B/, C' and D’ are detected by the direct
summands A’, B’, C’ and D’ spanning ;! E>(T).

The homomorphisms GRﬁ and f‘hf agree on /T, since the classes v3, A1, A, and A3 come from algebraic

K-theory, and hence also from topological cyclic homology. Their difference is therefore the zero
homomorphism. The restricted homomorphisms GRQ - f‘f’f : B — B’ and GRﬁ - f‘f’f :D — D' are

isomorphisms, by the construction of the target modules, which relies on Lemma 12.13. The restricted

FhT

homomorphism GRh A: C — C’ factors as asserted by Propositions 12.5 and 12.6. a

Proposition 12.16 There are P(v3)Q E (A1, A3, A3)-module isomorphisms
ker(GR: —T1T) = P(v3) ® E(h1.42.43) ® P(v3) ® E(h2. 3) ® Fp{E1 4 |0 <d < p}
DP(W3)REM,A3)QFp{E,4|0<d < p}
® P(v3) ® E(A1,42) ® Fp{E3,4 |0 <d < p},
cok(GR" — T'T) = P(v3)® E(h1, A2, A3).

Here B, 4 in degree 2p' —2dp'~! — 1 is detected by Xid =1 dp'~ )\. € E®(T), foreach i € {1,2,3}
and 0 <d < p.
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Proof Let A:C — C’ beasin Proposition 12.15. Then
ker(GRZ — f‘f’T) =Ao ker(A) and cok(GRﬁ — f‘{'T) =A@ cok(A).

* *

Consider the associated map of vertical short exact sequences

A/
[Tk>1,0<a<plbi,a) ——— Tli=1,0<a<p(Ck.d)

I I

~ A ~
[Tk>1,0<d<p Ck.d) ——— [1x>1,0<a<p C'(k.d)

l l

Mis1,02d<p Clk.d)/Era) —2 Tlkz1.0ea<p C' (k. )/ (E.a)-

In the upper row, the IA‘{’E A&k.a) = (Ck.a) for k = 1 and 0 < d < p are isomorphisms, so we can identify
ker(A’) with the product over i € {1,2,3} and 0 < d < p of the limit of the sequence

(Eia),

@Cp5~1GrRY (@1~ GrY
—

e —> (5k+3,d) <$k,d> > <§i+3,d>

where k =i mod 3. Since
(IO T'GRE &30 > &
this limit is isomorphic, as an A-module, to P(v3) ® E(A[j41], AMit2) ®Fp{E; 4}, with
Bid=10(...0,643,4.0,0,&4.0,...)

detected by x; 7 in E°°(T). Similarly, we can identify cok(A’) with the (right) derived limit of this
sequence, which vanishes because each GRQ: (€k+3,4) = (Ck.a) is surjective.

In the lower row, ker(A”) = 0 and cok(A”) = 0 because C (i, d)/(&.4) =0 fori € {1,2,3} and the
GRﬁ: é(k +3.d)/k+3,0) — 5’(1{, d)/(Ck.a4) are isomorphisms. Taken together, this proves that

ker(A) =ker(A) = ] Ps)® ECs1). Ajiv2) ®Fp{Eia}

i€{1,2,3)
0<d<p

and cok(A) = 0. a
Theorem 12.17 Let p > 7. There is a preterred P(v3)® E(A1, A2, A3)-module isomorphism
V(2)+« TC(BP(2)) = P(v3) ® E(3.A1,42,43) ® P(v3) ® E(A2,A3) ®Fp{E1,4 |0 <d < p}
® P(v3) ® E(h1,43) ®Fp{E,,4 [0 <d < p}
@ P(v3) @ E(A,A2) ®Fp{E3,4|0<d < p},

with E; 4 detected by x; 4 :ldl’i_lki fori €{1,2,3}and 0 <d < p. Here |v3| =2p>—2, |A;| =2p'—1,
|0| = —1 and |t| = —2. This is a free P(v3)-module on the 16 + 12(p — 1) = 12 p + 4 generators

IATAZAT, APAT B4, AVASEng and AY'ATE;4
in degrees —1 < % <2p* +2p? +2p —3, wheree,e; € {0, 1} and 0 < d < p.
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Proof The definition of TC(BP(2)) as the homotopy equalizer of f‘{m and GR" leads to the short exact

sequence
0 — 27! cok(GR" —T"T) 2 v(2),, TC(BP(2)) Z> ker(GR" —T'T) — 0.

* *

It splits as an extension of P(v3)®E (A1, Az, A3)-modules, since the image of d is trivial in the (even)
degrees of the products A; - E; 4 that vanish on the right-hand side. The splitting is unique, since the
left-hand side is trivial in the (zero or odd) degrees of the module generators 1 and &; 4. a

Corollary 12.18 The classes a, ] and y" € m+V(2) map under the unit map S — TC(BP(2)) to the
classes 1,1, E5,1 and B3, 1, respectively.

Proof These elements are detected, in pairs, by tAq, tP 1, and tpzk3 in E°°(T), and in these (total)
degrees there are no other classes of lower filtration, nor in the image of 0. |

Thanks to the Nikolaus—Scholze model for TC(B) we no longer need to recover V(2) TC(BP(2)) from
V(2)« TC(BP(1)) in low degrees, but we nonetheless have the following consistency result:

Proposition 12.19 The E3 BP-algebra map BP(2) — BP(1) induces a (2 p?—1)-connected surjective
ring homomorphism

V(2)x TC(BP(2)) — V(2)x TC(BP(1)) = E(0, A1, A2)
S ER) ®Fp{E1,4|0<d < p}
@ EMR)®Fp{Er410<d<p}
mapping 0, Ay, Ay, B1 4 and E, 4 to the classes with the same names, and mapping v3, A3 and Ej 4

to zero.

Proof This is clear for d, A; and A,. Moreover, 81 4 and E, 4 in V(2)x TC(BP(2)) map to classes in
V(2)« THH(BP(1))*T that are detected by %A and %P ), respectively, which characterizes their images
in V(2)« TC(BP(1)). The classes v3, A3 and E3 4 for 1 <d < p—2 are mapped to trivial groups. Finally,
E3,p—1 in degree 2p% — 1 maps to zero in V(2)« THH(BP(2)), and hence cannot be detected by A,. O

We write BP(2),, for the p-completion of the p-local E3 ring spectrum BP(2).

Theorem 12.20 Let p > 7. There is an exact sequence
0 — X7, {71, T2, T1 12} — V(2)« K(BP(2),) ¥ V(2)« TC(BP(2)) — X7 'F,{1} — 0.

Hence V(2)« K(BP(2),) is the direct sum of a free P(vs)-module on 12p + 4 generators in degrees
0<x<2p3+2p2+2p—3, plusan [F-module with trivial vs-action spanned by three classes in degrees
2p—3,2p%*—3and 2p?+ 2p — 4. In particular, the localization homomorphism

V(2)«K(BP(2),) = v3' V(2)« K(BP(2),)
is an isomorphism in degrees * > 2p? 4+ 2p.
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Proof By [Dundas 1997; Hesselholt and Madsen 1997, Theorem D] there is a homotopy cofiber sequence
K(BP(2)), ¥ TC(BP(2)), & X 'HZ),
and hence also a long exact sequence
o= V(2)« K(BP(2),) ¥ V(2) TC(BP(2)) &5 V(2)« (X 'HZp) — ---.

Here V(2)«(HZ,) = E(71, T,) with |7;| =2p—1and |7;| = 2p? — 1. The only P (v3)-module generator
of V(2)x TC(BP(2)) that is mapped nontrivially by w is 9, with w4 (9) = X~ !1. The generators A,
A, and dA A, come from V(0)-homotopy, hence factor through V(0)«(X~1 HZ,), and therefore map
to zero. The generator A; E, ; is the product of two classes in the image of trc, hence also maps to zero
under w. It follows that ker(w) is freely generated as a P(v3)-module by the same generators as for
V(2)+« TC(BP(2)), except that 9 in degree —1 is replaced by v3d in degree 2p3 — 3. |

Theorem 12.21 The p-completion map «: BP(2) — BP(2), induces a (2p% 42 p—2)-coconnected

homomorphism
V(2)xK(BP(2)) &> V(2)+ K(BP(2),).

Hence V(2)« K(BP(2)) is the direct sum of a free P(v3)-module on 12p + 4 generators in degrees

0<x<2p3+2p>+2p-—3, plus an F,-module with trivial vs-action concentrated in degrees 1 < * <
2p? 4+ 2p —3. In particular,

V(2)« K(BP(2)) — v3 ' V(2)« K(BP(2))

is an isomorphism in degrees * > 2p% 4+ 2p.

Proof By the proven Lichtenbaum—Quillen/Bloch—Kato conjectures [Voevodsky 2011] and the earlier
calculation of V' (0)« TC(Z) from [Bokstedt and Madsen 1994; 1995], V(1) K(Q) and V (1)« K(Q)) are
concentrated in degrees 0 < * <2p —2. Hence V(1) A K(Q) — V(1) A K(Qp) is (2p—1)-coconnected.
It follows from the localization sequence in algebraic K-theory that V(1) A K(Z,)) — V(1) A K(Zyp) is
also (2 p—1)-coconnected, so that V(2) A K(Zp)) — V(2) A K(Zp) is (2p?+2p—2)-coconnected. By
the commutative cube

K(BP(2)), K(BP(2),),

tre K(Zp))p — ml \K(Zp)p

TC(BP(2)), — TC(BP(2) ), tre
\TC(Z(I,))p = \TC(Zp)p

and [Dundas 1997] applied to the left-hand and right-hand faces, V(2) A K(BP(2)) — V(2) A K(BP(2),)
is also (2p242p—2)-coconnected. O
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