Geometry &
Topology

Volume 29 (2025)

Classification of bubble-sheet ovals in R4

BEOMJUN CHOI
PANAGIOTA DASKALOPOULOS
WENKUI DU
ROBERT HASLHOFER
NATASA SESUM

:'msp



Geometry & Topology 29:2 (2025) 931-1016
:'msp DpOI: 10.2140/gt.2025.29.931
Published: 21 April 2025

Classification of bubble-sheet ovals in R*

BEOMJUN CHOI
PANAGIOTA DASKALOPOULOS
WENKUI DU
ROBERT HASLHOFER
NATASA SESUM

We prove that any bubble-sheet oval for the mean curvature flow in R*, up to scaling and rigid motion,
either is the O(2)x O(2)-symmetric ancient oval constructed by Haslhofer and Hershkovits, or belongs
to the one-parameter family of Z% x O(2)-symmetric ancient ovals constructed by Du and Haslhofer. In
particular, this seems to be the first instance of a classification result for geometric flows that are neither
cohomogeneity-one nor selfsimilar.
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1 Introduction

In the study of geometric flows it is crucial to understand ancient solutions, ie solutions that are defined
for all sufficiently negative times. In particular, to capture the formation of singularities one always
magnifies the original flow by rescaling by a sequence of factors going to infinity and passes to a limit,
and any such blowup limit is an ancient solution.

1.1 Ancient solutions and the dimension barrier

We recall that a mean curvature flow M, is called ancient if it is defined for all # <« 0, and noncollapsed
if it is mean-convex and there is an & > 0 such that every point p € M; admits interior and exterior balls
of radius at least o/ H(p); see [Sheng and Wang 2009; Andrews 2012; Haslhofer and Kleiner 2017] —
in fact, by [Brendle 2015; Haslhofer and Kleiner 2015] one can always take @ = 1. It is known that all
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blowup limits of mean-convex mean curvature flow are ancient noncollapsed flows; see [White 2000;
2003; 2015; Haslhofer and Hershkovits 2018]. More generally, by Ilmanen’s mean-convex neighborhood
conjecture [2003], which has been proved recently in the case of neck-singularities by Choi, Haslhofer
and Hershkovits [Choi et al. 2022a] and Choi, Haslhofer, Hershkovits and White [Choi et al. 2022b], it is
expected that for mean curvature flow starting at any closed embedded hypersurface any blowup limit
near any cylindrical singularity is in fact an ancient noncollapsed flow. In particular, by [Colding and
Minicozzi 2012] and Chodosh, Choi, Mantoulidis and Schulze [Chodosh et al. 2024] it is expected that
any blowup limit near any generic singularity is an ancient noncollapsed flow.

For ancient noncollapsed flows in R3, or more generally in R”*! under the additional assumption that
the flow is uniformly two-convex, a complete classification has been obtained in significant works by
Brendle and Choi [2019; 2021] and Angenent, Daskalopoulos and Sesum [Angenent et al. 2019; 2020].
Specifically, any such flow is, up to parabolic rescaling and space-time rigid motion, either the flat plane,
the round shrinking sphere, the round shrinking neck, the rotationally symmetric translating bowl soliton
from [Altschuler and Wu 1994], or the rotationally symmetric ancient oval from [White 2003; Haslhofer
and Hershkovits 2016]. Ultimately, what made this classification possible is that at the end of the day all
solutions turned out to be rotationally symmetric.

In stark contrast, in higher dimensions without two-convexity assumption there are multiparameter
families of examples of ancient noncollapsed flows that are not rotationally symmetric, and not even
cohomogeneity-one, see [Wang 2011; Hoffman et al. 2019; Du and Haslhofer 2021]. For this reason,
the classification of ancient noncollapsed flows in higher dimensions without two-convexity assumption
until recently seemed out of reach. As a parallel story, ancient «-noncollapsed 3d Ricci flows have been
classified in [Brendle 2020; Angenent et al. 2022; Brendle et al. 2021], with an extension to higher
dimensions under the additional PIC2 assumption in [Li and Zhang 2022; Brendle and Naff 2023; Brendle
et al. 2023], but in light of examples from [Lai 2024] the classification of general ancient k-noncollapsed
Ricci flows in higher dimensions has remained widely open.

1.2 The classification program in R4

In a recent paper [Du and Haslhofer 2024], with the aim of overcoming the dimension barrier discussed
above, the third and fourth author introduced a classification program for ancient noncollapsed flows
in R*. To describe this, recall first that if M; is an ancient noncollapsed flow in R*, then its tangent flow
at —oo is always either a round shrinking sphere, a round shrinking neck, a round shrinking bubble-sheet,
or a static plane. The first and last scenario are of course trivial, and ancient noncollapsed flows whose
tangent flow at —oo is a neck have been classified in [Angenent et al. 2019; 2020; Brendle and Choi
2019; 2021], as discussed above. We can thus assume from now on that the tangent flow at —oo is a
bubble-sheet, specifically

(1-1) A1im AM, 2, =R* x S1(/2)t]).
—0
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Writing the renormalized flow M ; = e™/2M_,—+ as a graph of a function u( -, 7) over increasing domains
exhausting I' = R? x S1(+/2), namely

(1-2) {g+u(q.t)v(g) g €T N Byt C My,

where v is the outward unit normal of I", and lim;_,_ p(7) = oo, we recall:

Theorem 1.1 (bubble-sheet quantization [Du and Haslhofer 2024; 2023]) For any ancient noncollapsed
mean curvature flow in R*, whose tangent flow at —oo is given by (1-1), the bubble-sheet function u
satisfies

(1-3) im lizlu(p. 9.0 =y T Qy +2t(Q)ll ek sy =0

for all R < oo and all integers k, where Q is a symmetric 2 x 2 matrix whose eigenvalues are quantized
to be either 0 or —1/+/8.

In particular, the theorem uniquely associates to the flow a symmetric 2 x 2 matrix Q, whose eigenvalues
are quantized to be either 0 or —1/+/8, so that in the region with bounded y = (y;, y,) one has the
expansion

T _
(1-4) u(y. 9.0 =2 Qymz“(Q) ol .

Intuitively, directions in the range of Q are short directions with inwards quadratic bending, while
directions in the kernel of Q are long directions.

Thanks to Theorem 1.1 (bubble-sheet quantization), the problem of classifying general ancient noncol-
lapsed flows in R# can be naturally divided into three cases according to the rank of the bubble-sheet

matrix Q.

In the case rk(Q) = 0 it has been shown in [Du and Haslhofer 2024, Theorem 1.2], as a consequence
of the no-ancient-wings theorem from [Choi et al. 2024], that the flow must be either a round shrinking
R? x S! or a translating R x 2d-bowl.

In the case rk(Q) = 1 it has been shown in [Du and Haslhofer 2024, Theorem 1.3], as a consequence
of [Angenent et al. 2019; 2020; Brendle and Choi 2019; Choi et al. 2023], that under the additional
assumption that the flow either splits off a line or is selfsimilar, it is R x 2d-oval or belongs to the
one-parameter family of noncollapsed translators constructed by Hoffman, Ilmanen, Martin and White
[Hoffman et al. 2019], respectively. The general tk(Q) = 1 case without additional assumptions will be
addressed in forthcoming work by Choi and the fourth author [Choi and Haslhofer 2024].

In the present paper, we are concerned with the case rk(Q) = 2, also known as the bubble-sheet oval case:

Definition 1.2 (bubble-sheet oval) A bubble-sheet oval in R* is an ancient noncollapsed mean curvature
flow in R*, whose tangent flow at —oo is given by (1-1) and whose bubble-sheet matrix Q has rk(Q) = 2.
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We recall that by [Du and Haslhofer 2024, Theorem 1.4] all bubble-sheet ovals are compact. Also, since
they become extinct as a round point, but the tangent flow at —oo is a bubble-sheet, they are obviously not
selfsimilar. In addition to this lack of selfsimilarity, a second major difficulty in classifying bubble-sheet
ovals is, as we will review momentarily, the presence of a whole one-parameter family of examples that
are only Z3x O(2)-symmetric.

1.3 Ancient ovals

We recall that an ancient noncollapsed flow is called an ancient oval if its time-slices are compact but not
round.

Ancient ovals play an important role as potential compact singularity models in mean-convex flows; see
[White 2000; 2003; Haslhofer and Kleiner 2017]. Moreover, the two-convex ancient ovals, whose unique-
ness up to rigid motion and dilation has been established in the recent work by Angenent, Daskalopoulos
and Sesum [Angenent et al. 2019; 2020], appeared as potential blowup limits in the recent proof of the
mean-convex neighborhood conjecture; see [Choi et al. 2022a; 2022b]. Furthermore, ancient ovals are
tightly related to the fine structure of singularities, including questions about accumulation of neckpinch
singularities and finiteness of singular times [Colding and Minicozzi 2016; Choi et al. 2021]. Finally,
ancient ovals are in fact also of key importance for the analysis of noncompact singularities, where they
describe the asymptotic shape of the level sets of translators [Choi et al. 2023].

The existence of ancient ovals has been proved first by White [2003]. Later, Hershkovits and the second
author [Haslhofer and Hershkovits 2016] carried out White’s construction in more detail, which in
particular yielded O(k)x O(n+1—k)-symmetric ancient ovals in R”*! for every 1 <k <n. Recently, Du
and Haslhofer [2021] proved uniqueness, up to rigid motion and dilation, among SO(k)xSO(n+1—k)-
symmetric solutions. Furthermore, for 1 — —oo these cohomogeneity-one solutions are asymptotic to
small perturbations of ellipsoids with k long axes of length \/W and n — k short axes of length
2(n —k)|t|. In particular, for (n, k) = (3, 2) this gives an O(2)x O(2)-symmetric ancient oval in R*,
unique up to rigid motion and dilation, which is the simplest example of a bubble-sheet oval in R*.

On the other hand, in the same paper Du and Haslhofer [2021] constructed a whole one-parameter
family #4° of ancient ovals in R* that are only Z3x O(2)-symmetric." Intuitively, this family interpolates
between R x 2d-oval and 2d-oval x R, and the O(2)x O(2)-symmetric ancient oval from above sits in
the middle of the family. Specifically, to construct this family, for any a € (0, 1) and any £ < oo one
considers the ellipsoid

2 2
la._ 4.0° 5, (1—a)
(1-5) Fla.— {xeR ot

x§+x§+x§=2}.

I'More generally, for every k > 2 the construction gives a (k—1)-parameter family of uniformly (k4 1)-convex ancient ovals in
R”*1 that are only ZIZ‘ x O(n+1—k)-symmetric.
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One then chooses time-shifts #; , and dilation factors Ay , so that the flow

la . . L,a
(1-6) M= hea B

becomes extinct at time 0 and satisfies

1 —|x|2 1(4 2
_ |x[</4 _ 12 <0
(47 /Mf-f (4m)r* 2(e K )

Considering sequences a; € (0, 1) and £; — oo, the class of examples is then defined by

(1-8) A° = { lim Mf“ai : the limit along a;, £; exists and is compact}.

11—
Of course, this class contains as a special case the O(2)x O(2)-symmetric oval from [Haslhofer and
Hershkovits 2016]. It has been shown in [Du and Haslhofer 2021, Theorem 1.9] that all elements of the
class ${° are Z%x O(2)-symmetric, ancient, noncollapsed, and with tangent flow at —oo given by (1-1),
and that for any p € (0, 1) there exists an M; € s{° whose reciprocal width ratio satisfies

(maxyep_, |x1])7"!
(maXXGMfl |X1|)_1 + (maXXGMfl |X2|)_1

Let us also point out that under the Z,-symmetry that swaps the x; and x, coordinate, & gets of course

(1-9) = 1.

mapped to 1 — p, and correspondingly one could consider the quotient class s{°/Z,. However, for our
purpose it is most convenient to work with the slightly redundant description as class s4°.

1.4 Main result and consequences

Our main result classifies all bubble-sheet ovals for the mean curvature flow in R* (see Definition 1.2):

Theorem 1.3 (classification of bubble-sheet ovals) Any bubble-sheet oval in R* belongs, up to space—
time rigid motion and parabolic dilation, to the class s4°.

The most important feature of Theorem 1.3 (classification of bubble-sheet ovals), in contrast to all prior
classification results for geometric flows in the literature, is that it provides a classification result for
ancient flows that are neither cohomogeneity-one nor selfsimilar. In particular, recall that all ancient
flows that arise as blowup limits near neck-singularities at the end of the day turned out to be rotational
symmetric [Choi et al. 2022a; 2022b], and thus their time slices can be described by a single spatial
variable. In contrast, the bubble-sheet ovals from our main theorem genuinely depend on three variables,
namely the two spatial variables y1, y, and the time variable t.

Moreover, Theorem 1.3 (classification of bubble-sheet ovals) completes the classification program for
ancient noncollapsed flows in R*, as introduced in [Du and Haslhofer 2024] and reviewed in Section 1.2,
in the case rk(Q) = 2. In particular, as a corollary, together with the prior results reviewed above, we
obtain:
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Corollary 1.4 (blowup limits) For mean curvature flow of closed embedded mean-convex hypersurfaces
in R* (or more generally in any 4-manifold) any blowup limit, up to parabolic rescaling and space—time
rigid motion, is

e either one of the shrinkers S3, R x S2, R2 x S! or R3,

e or the 3d-bowl, or R x 2d-bowl, or is a strictly convex ancient noncollapsed flow whose tangent
flow at —oo is a bubble-sheet and whose bubble-sheet matrix Q has tk(Q) = 1 (such as the
one-parameter family of Z,x O(2)-symmetric translators from [Hoffman et al. 2019]),

e or the rotationally symmetric 3d-oval from [White 2003], or R x 2d-oval, or the O(2)xO(2)-
symmetric 3d-oval from [Haslhofer and Hershkovits 2016], or belongs to the one-parameter family
of Z%x O(2)-symmetric 3d-ovals from [Du and Haslhofer 2021].

Corollary 1.4 (blowup limits) provides the first general classification result— with the caveat that the
remaining case rk(Q) = 1 is addressed in [Choi and Haslhofer 2024] — of blowup limits in higher
dimensions without two-convexity assumption. Moreover, Corollary 1.4 (blowup limits) also suggests a
corresponding conjectural picture for k-solutions in 4d Ricci flow. This will be discussed in forthcoming
work of the fourth author [Haslhofer 2024].

Finally, one naturally wonders how all these ancient solutions fit together in a global picture. Specifically,
we can consider the moduli space

M is a compact ancient noncollapsed flow in R*, /
whose tangent flow at —oo is a bubble-sheet '

(1-10) X = {
where the topology is the one induced by locally smooth convergence, and we mod out by space—time
rigid motions and parabolic dilation. Equivalently, in terms of the renormalized mean curvature flow, &

can be described as the space of all connecting orbits between R2 x S!(1/2) and S3(+/6).

As a consequence of Theorem 1.3 (classification of bubble-sheet ovals) in combination with [Choi and
Haslhofer 2024], we obtain:

Corollary 1.5 (moduli space) The moduli space ¥ is homeomorphic to a half-open interval. More
precisely, we have the homeomorphisms

(1-11) X =al®/7,=]0,1).

In Corollary 1.5 (moduli space) the endpoint 0 of course corresponds to the O(2)x O(2)-symmetric 3d
oval from [Haslhofer and Hershkovits 2016], while the endpoint 1 corresponds to the product of the 2d oval
with a line. Equivalently, in terms of the renormalized mean curvature flow the endpoint 0 corresponds to
the O(2)x O(2)-symmetric connecting orbit from R? x §1(+/2) to $3(+/6), while as one degenerates
to the endpoint 1 the renormalized flow lingers around for longer and longer times in the vicinity of
the fixed point R x S2(+/4). For a more detailed discussion of this we refer to forthcoming work by
Angenent, Daskalopoulos and Sesum [Angenent et al. 2023], where the space of ancient noncollapsed
mean curvature flows will be discussed from a more general perspective.
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1.5 Related prior work

In this subsection, as a motivation for our approach, let us review some ideas from [Angenent et al. 2019;
2020; Choi et al. 2023], which are most closely related to our current problem.?

As already mentioned several times, ancient ovals have been classified in the uniformly two-convex case:

Theorem 1.6 (two-convex ancient ovals [Angenent et al. 2019; 2020]) Any uniformly two-convex
ancient oval in R* ™1 agrees, up to rigid motion and scaling, with the rotationally symmetric ancient oval
constructed by White.

We recall that the first paper [Angenent et al. 2019] establishes sharp asymptotics, and the second paper
[Angenent et al. 2020] upgrades the sharp asymptotics to uniqueness.

To relate with the terminology of Section 1.2, note that by [Haslhofer and Kleiner 2017] for ancient ovals
the assumption of being uniformly two-convex is equivalent to the assumption that the tangent flow at

—o00 is a neck, namely
(1-12) A1im AM; -2, =R x S" 1 (/2(n = 1)[1]).
—0

Hence, uniformly two-convex ancient ovals could simply be called neck-ovals. Also, for ancient non-
collapsed flows whose tangent flow at —oo is a neck, the matrix Q is just a 1 x 1 matrix, ie a number,
that is either 0 or —\/m. The neck-oval case is the case where Q = —\/m (in the case
where Q = 0, the solution is noncompact, and thus either a round neck or the rotationally symmetric
bowl soliton, as shown in [Brendle and Choi 2019; 2021]).

Neck-ovals, thanks to the SO(n)-symmetry, which has been established using the neck-improvement
theorem from [Brendle and Choi 2019; 2021], can be described by a renormalized profile function v(y, 7)
depending only on a single spatial variable y = y;, namely one can express the renormalized ovals as

(1-13) Me={(ry2. o yut1) €ER"™ (s yng ) = (0, )

The uniqueness proof in [Angenent et al. 2020] is based on energy estimates. To this end, it is useful
to split up the ovals into a cylindrical region, where v is larger than some small fixed number, and a tip
region. In the cylindrical region, the evolution of v is governed by the 1d Ornstein—Uhlenbeck operator,

(1-14) Ly =07 —5ydy+1.

In the tip region, one instead works with the inverse profile function ¥ = Y (v, ). The tip region in
turn can be split into a soliton region, where a zoomed-in version of Y is close to the translating bowl
soliton, and a collar region, where one transitions between soliton and neck behavior. The bulk of
[Angenent et al. 2020] then derives energy estimates in carefully weighed function spaces for the profile
2 As an historical aside, let us mention that the classification of closed ancient solutions was initiated by Daskalopoulos, Hamilton

and Sesum [Daskalopoulos et al. 2010]. Also, there has been some interesting related work in the collapsed case; see eg Bourni,
Langford and Tinaglia [2021; 2022].
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functions in the respective regions. Moreover, it is shown via the maximum principle that the function v?

is concave, which is the key a priori estimate for dealing with the collar region. Finally, given two
neck-ovals one has to arrange that the difference of their profile functions is orthogonal to the unstable and
neutral eigenfunctions of £, but this can be accomplished easily by suitable rigid motion and parabolic
rescaling.’

The other most directly related prior work is the recent classification of noncollapsed translators in R* by
Choi, Haslhofer and Hershkovits [Choi et al. 2023]:

Theorem 1.7 (translators) Every noncollapsed translator M C R* is either R x 2d-bowl, or the 3d round
bowl, or belongs to the one-parameter family of 3d oval-bowls constructed by Hoffman, Ilmanen, Martin
and White.

Let us recall the construction of the translators from [Hoffman et al. 2019]. For any ellipsoidal parameter
ae [0, %] and any height / < oo, let M %" be the SO(2)-symmetric translator-with-boundary with tip at
the origin and whose boundary lies at height x; = / and is an ellipse of the form
—\2 —a\2
azxg + (—1 2a) x% + (—1 2a) xi = R?,
where R = R(a, ). The Hoffman-Ilmanen—Martin—White class is then defined as the collection of all
possible limits, namely
(1-15) slyunaw = { lim M%" :q; € [0, 1] and h; — oo}.
1—>00
To sketch the main steps of the proof from [Choi et al. 2023], given a noncollapsed translator M C R*,
that is neither R x 2d-bowl nor 3d-bowl, we normalize without loss of generality such that H = ei-. By
the no-wings theorem from [Choi et al. 2024], the spatial blowdown is a ray, more precisely

(1-16) lim AM = {ueyq : > 0},
A—0

which in particular yields SO(2)-symmetry [Zhu 2022]. Hence, the level sets
(1-17) = MN{xs=h}

can be described by a renormalized profile function v(y, t), where t = —log /i, whose analysis is governed
by the 1d Ornstein—Uhlenbeck operator &£; from above. Using this, it has been shown that v satisfies the
same sharp asymptotics as the 2d ancient ovals in R? An important technical point is that these estimates
are uniform for certain one-parameter families. Specifically, they only depend on a parameter x, which
captures the error in the inwards quadratic bending in the central region. The key analytic step is then
to establish a spectral uniqueness theorem, which says that if for two (suitably normalized) translators

3The uniqueness of O(k)x O(n+1—k)-symmetric ovals in [Du and Haslhofer 2021] has been established in a similar spirit as
above, thanks to the cohomogeneity-one property.
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the difference of the profile functions v; — v, is perpendicular to the unstable and neutral eigenspace
of &1, then the translators agree. Finally, this spectral condition is arranged via a continuity argument in
the ellipsoidal parameter a from the HIMW-construction. This continuity argument in turn relies on a
Rado-type argument, which relates the parameter a with the smallest principle curvature k at the tip.

1.6 Major new challenges

In this subsection, we describe some major new challenges that we face in our classification of bubble-sheet
ovals.

Generally speaking, recall that our bubble-sheet oval problem genuinely depends on 3 independent
variables, namely the two spatial variables (y1, y;) and the time variable t. This is obviously more
complex than all prior problems. In particular, the classification from [Angenent et al. 2019;2020; Du and
Haslhofer 2021] crucially relied on the fact that thanks to the cohomogeneity-one property there is only
one spatial variable, and the classification from [Choi et al. 2023] crucially relied on the fact that thanks
to the selfsimilarity assumption there is no time-dependence. More specifically, our bubble-sheet ovals
can be described by a renormalized profile function v = v(y, ¢, 7) in polar coordinates, defined via

(1-18) M, ={(ycosg,ysing, y3, ya) : |(y3. ya) = v(y. 0, 0)}.

As we will see, the function v evolves by

119 . (O + U;)Uyy —20yVpVpy + (1 + U}%)UW 2 I+ UJZ/ 1 v 1
(1-19) ve = 2 2) 1 2 T2 2 Nz 2 )Yty
21 4vd) +v2 e yi4vy) +ug v

and the inverse function Y, defined via

(1-20) y=Ywy ¢, 1), ¢,7),

evolves by

(121) Y, = (Y2+Y<§)va—2YvaYv<p+(1+Yv2)Y(p(p+ 1 v _ Ycﬂz +Y_1
£ Y2(14Y2)+Y2 v 2] Y(r2(1+vH+v2) 2 Y

The analysis of these equations is of course quite a bit more involved than the one of the one-variable
profile functions in Section 1.5.

Arguably the biggest new challenge is the quadratic concavity estimate. Recall that in [Angenent et al.
2020] it has been shown that the function y — v(y, 7)? is concave, which is the crucial a priori estimate
for connecting the neck behavior in the cylindrical region and the translator behavior in the soliton region.
The quadratic concavity estimate has been proved by applying the maximum principle to the one-variable
function (v?) yy. Similar arguments went through in [Du and Haslhofer 2021], thanks to the symmetry,
and in [Choi et al. 2023], up to exponentially small errors, thanks to the selfsimilarity. In stark contrast,
in our setting where the evolution depends on many angular terms, this one-variable maximum principle
argument completely breaks down.
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Another major new challenge is dealing with the unstable and neutral eigenfunctions of the 2d Ornstein—
Uhlenbeck operator

1 1
(1-22) $2:a§+;ay+?a§,—%yay+1.

In [Angenent et al. 2020] the contribution from the unstable and neutral eigenfunctions of £ could simply
be killed via rigid motions and parabolic rescaling. This is not possible any more in our setting, where the
space of unstable and neutral eigenfunctions of &, is six-dimensional, but there are only five degrees of
freedom from rigid motions and rescaling. Of course this must be the case, since we are now classifying a
genuine one-parameter family of solutions. A similar phenomenon has already been encountered in [Choi
et al. 2023], and has been dealt with via a continuity argument in the ellipsoidal parameter a, as reviewed
above. However, this continuity argument in turn built on a Rado-type argument and on a continuous
recentering method, which both crucially relied on the fact that there were only two independent variables.
In our current setting with three independent variables, the Rado-type argument completely breaks down.
Moreover, the standard recentering argument from the literature (see eg [Angenent et al. 2020; Du and
Haslhofer 2021]) is not applicable either, since it is based on degree theory, which only gives existence
and no uniqueness.

1.7 Outline and intermediate results

Motivated by the above discussion, we break up our argument into the following four steps:

¢ uniform sharp asymptotics,
¢ quadratic almost concavity,
¢ gspectral uniqueness,

¢ from spectral uniqueness to classification.

We will now first discuss a few generalities that are used throughout this paper, and then discuss these
four steps in turn.

We recall from [Du and Haslhofer 2024, Theorem 1.4] that all bubble-sheet ovals in R* are SO(2)-
symmetric. Remembering also the uniqueness of tangent flows from [Colding and Minicozzi 2015],
we can thus assume throughout the paper that the tangent flow at —oo is given by (1-1), and that the
SO(2)-symmetry is in the x3x4-plane centered at the origin. We also recall that by [Haslhofer and Kleiner
2017] every ancient noncollapsed flow is convex. Instead of working with the ancient flow Mj; itself,
it will usually be more convenient to consider the renormalized flow M ; = e/2M_p—. In particular,
under this correspondence the round shrinking bubble-sheet R? x S'! (\/M) simply becomes the static
bubble-sheet R2 x S1(+/2).

Using the above setting, any bubble-sheet oval in R* can be described by a renormalized profile function
v =1v(y, ¢, 1) as defined in (1-18). Equivalently, this means that we can parametrize the renormalized
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flow ]\71 as

(1-23) (7,9,0) > (ycosg, ysing, v(y, ¢, 7) cos P, v(y, ¢, T) sin ).

As mentioned, it will be useful to consider different regions. Specifically, fixing a small constant 6 > 0
and a large constant L < oo, we consider the cylindrical region

(1-24) € ={v=>0},

and the tip region

(1-25) T ={v =20},
where we further subdivide the latter into the collar region
L
(1-26) 57{={ m §v§29},
T

and the soliton region

L
(1-27) F=qv= \/ﬂ .
Linearizing the renormalized mean curvature flow (1-23) around the static bubble-sheet R2 x S1(+/2),
ie around the steady state v = +/2, one sees that the evolution is governed by the 2d Ornstein—-Uhlenbeck
operator

1 1
(1-28) §£=a§+;ay+ﬁa§)—§y8y+1.

This operator is self-adjoint on the Gaussian L2-space

(1-29) W= LAR2, ey do dy) =% @ %o & H-,
where the unstable and neutral eigenspace are explicitly given by

(1-30) 4+ = span{l, y cos ¢, y sin ¢},

(1-31) Ho = span{y* — 4, y? cos(2¢), y? sin(2¢)}.

We denote the orthogonal projections to ¥y and ¥4 by po and p4+, respectively. Moreover, to localize in
the cylindrical region we set

(1-32) ve = vxe(v),
where x¢: R4 — [0, 1] is a cutoff function that satisfies y¢(v) = 1 for v > %9 and y¢(v) =0 forv < %9.

In Section 2, we establish uniform sharp asymptotics. Note that in [Du and Haslhofer 2024, Theorem 1.4]
it has already been shown that all bubble-sheet ovals in R* satisfy the same sharp asymptotics as the
0(2)x O(2)-symmetric ancient oval from [Haslhofer and Hershkovits 2016]. However, for the application
in the continuity method it will be crucial to have uniform estimates that only depend on the precision
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of the inwards-quadratic bending at a single time. To capture this, motivated by [Choi et al. 2023,
Definition 1.4], we consider the following notion:

Definition 1.8 («-quadratic) A bubble-sheet oval in R* is called «-quadratic at time 7 if its truncated
renormalized profile function v¢ = v ¢ (v) satisfies

y:—4 K
V8ol e 7ol

and moreover the following centering and graphical radius conditions hold:

(1-33) ve(y, @, 7o) — V2 +

(1-34) p+(ve(t)) —v2)=0 and  sup [¢|"*Olv(-. 1) = V2l cacpo.afe1/100y) < 1.

t€[279,70]

The nonuniform sharp asymptotics from [Du and Haslhofer 2024, Theorem 1.4] imply that, given any « > 0,
every bubble-sheet oval .l in R* is, after suitable recentering,* k-quadratic at some 7y = 7o (M, k) < 0.
Here, we upgrade these prior asymptotics to uniform sharp asymptotics for «-quadratic families:

Theorem 1.9 (uniform sharp asymptotics) For every € > 0, there exists k > 0 and 4« > —o0 such that
if a bubble-sheet oval M = {M,} in R* is k-quadratic at time 1y < 4, then for every T < 7y we have:

(i) Parabolic region The renormalized profile function v satisfies

2
—4 €
sup v(y,go,r)—«/z—l—y <—.
y<e—! V8|z| |~ It

(i) Intermediate region The renormalized profile function v satisfies

sup ’v(|f|1/22,(p, T)—V2-z% <e
z=<y/2—¢

(ili) Tip region Forany s < —e~ ™, setting A(s) = +/|s|~! log|s|, and denoting by p¢ € M, the tip
point in direction ¢, the flow

ME* = 0s) (M2 = 1Y)
is e-close in CL1/] ip B,—1(0) x (—&~2,&72) to Ny xR, where Ny is the 2d -bowl with tip 0 € Ny
that translates in negative cos(p)e; + sin(@)e, direction with speed 1/3/2.
Here, the tip point in direction ¢ is given by
(1-35) p¢ = (R(p.s)cos g, R(p.5)sing. 0.0).
where the radius in direction ¢ can be expressed as
(1-36) R(p.s) = Is|"/ sup{y = 0: v(y. ¢, ~log(~s)) > 0}.
4For the detailed recentering argument, please see Section 5.2.
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To prove Theorem 1.9 (uniform sharp asymptotics), we first establish the uniform sharp asymptotics under
the a priori assumption of so-called strong «-quadraticity, and then justify this assumption by applying
quantitative Merle—Zaag type arguments to the spectral ODEs originating from [Du and Haslhofer 2024].

In Section 3, we prove a quadratic almost concavity estimate. As discussed above, the maximum principle
for (v?) yy completely breaks down in our setting, due to all the angular terms. Here, we instead establish
a novel matrix estimate, which implies quadratic almost concavity in the radial direction as a corollary. To

2

this end, we view v? as an intrinsic time-dependent quantity on S3. Specifically, denoting the parametrized

renormalized mean curvature flow by Fy: S3 — R*, so that M ; = F;(S?), we set

(1-37) q9(p. 7)== (Fe(p)- o(F(p))’,

where w denotes the vector field in R* defined by

(1-38) ( y:=(0,0 3 4

- (X1, X2, X3,x4) := | 0, ) (Era)n)
Writing g;; = BiF, - 0j Ft for the induced metric, and V for its Levi-Civita connection, we prove the
following Hessian estimate:

Theorem 1.10 (quadratic almost concavity) There exist constants k > 0 and t4 > —oo with the
following significance. If M is k-quadratic at time tg < t«, then for all T < ty we have

_ 3/2
(1-39) VX, X) < (W) Z(X. X)

forall X 1 dy.

In order to show the above theorem, for any § > 0 we consider the tensor

3/2
(1-40) ay=2g— () +5)a.
Y |zlq

We first observe that in the parabolic region and in the soliton region we have A(X, X) < 0 for all
0 # X L 0y. The major computational step is then to show, using the maximum principle, that if
A(X, X) <0forall X L dy initially, then it stays so for later times as well. Finally, we let § — 0, at the
same time ensuring that k and 74 do not depend on §, to conclude our goal.

Let us try to convey some intuition for how to come up with the appropriate tensor for applying the
maximum principle. As a first attempt, one might try to work with the tensor ﬁizjq. However, then one
runs into problems showing negativity in the soliton region and at the initial time. To remedy this one
might then try to subtract 6g;;. However, as § becomes smaller this only enforces the negativity in the
soliton region further and further back in time. To overcome this problem, the tricky part is to find a
suitable perturbation that satisfies all of the following three competing properties:

(i) it yields negativity in the soliton region uniformly as § — 0,
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(i1) it is small enough so that it still implies the corollary discussed below, and

(iii) it has a good evolution equation so that the maximum principle still applies.
It turns out that subtracting (|t]q)~%/2g; ; accomplishes (i), (i) and (iii).>

Let us also point out that Hamilton’s tensor maximum principle from [Hamilton 1986] is not directly
applicable in our setting, since the vector field dy is not parallel. However, fortunately we are able to
absorb the extra error terms originating from Vg # 0 into our good reaction term.

As a very important corollary we obtain the following estimate in the collar region, which is crucial for
connecting the bubble-sheet behavior in the cylindrical region and the translator behavior in the soliton
region:

Corollary 1.11 (almost Gaussian collar) For every ¢ > 0, there exist constants k > 0, T4 > —00, L < 00
and 6 > 0, with the following significance. If M is k-quadratic at time ty < T«, then for all T < 7y we
have

(1-41) |y(v2)y + 4| <& in the collar region ¥ = { <v = 29}.

]
Indeed, we will see that the corollary is a consequence of the almost monotonicity of y > (v?) y(¥,0,7)
that follows from Theorem 1.10 (quadratic almost concavity) together with the behavior of (v?) y at the
boundaries of the collar region ¥ that follows from Theorem 1.9 (uniform sharp asymptotics).

In Section 4, we upgrade the uniform sharp asymptotics to the following spectral uniqueness result:
Theorem 1.12 (spectral uniqueness) There exist k > 0 and ty > —oo with the following significance.

If MY = {M]'} and M? = {M?} are bubble-sheet ovals in R* that are k-quadratic at time ty, where
To < T«, and if their truncated renormalized profile functions v(é and v% satisfy the spectral condition

(1-42) povg(to) = Povi (o).
then
(1-43) M= 2.

The proof is based on energy estimates in carefully chosen weighted norms. We of course need to establish
such estimates in both regions: the cylindrical region € defined in (1-24) and the tip region J defined in
(1-25).

For these energy estimates, in addition to the Gaussian L2-norm || ||5, we also need the Gaussian H '-norm

1 2 1/2
(1-44) 1fllo = ( / (f2 2 ;f;)e—y 4y dg dy) ,

SHere, we work with the exponent %, since to easily get the right sign in the parabolic region it helps to have an exponent less
than 2, and to establish the corollary via integrating the corresponding ODE in radial direction we need an exponent bigger
than 1.

Geometry & Topology, Volume 29 (2025)



Classification of bubble-sheet ovals in R* 945

and its dual norm || - || p+. Moreover, for time-dependent functions this induces the parabolic norms
T 1/2
(1-45) Flowi= s ([ 1rColEda)
=70 T—1

where ¥ = 9, © or ©*. Furthermore, in the tip region we work with the norm

1 T 20 p2m 1/2
(1-46) | Fll2,00 :== sup T(/ / [ F?e* dy dv da) ,
v [TV4\ Uit Jo Jo

where i = (v, ¢,0) is a carefully chosen weight function. Roughly speaking, this weight function
nicely interpolates between the Gaussian weight in the cylindrical region and a certain natural weight
defined in terms of R x 2d-bowl, which describes the behavior of our solution in the tip region, in the
appropriate scale. More precisely, we arrange that

(1-47) ww,p,0)= —%Yl (v, ¢.0)* for v> %9,

1+7Y, ,0)?
(1-48) (v, 9, 0) = +B+(UG)

where Y] is the inverse profile function of v{, and Yp is defined in terms of the profile function of the

for v < %9,

2d-bowl in the appropriate scale. Corollary 1.11 (almost Gaussian collar) is crucial to ensure that our
weight function p has the properties that are needed to establish a weighted Poincaré inequality.

In the cylindrical region, we then consider the difference function

(1-49) W 1= Vg — V2,

and prove that for every & > 0 there exist ¥ > 0 and 74 > —o0, such that if (! and M? are k-quadratic at
time 7y < T, then

(1-50) lwe —powellD,00 = e(llwellD,00 + lw 17220, <6} 15¢,00)-

In the tip region, we work with the difference function

(1-51) W:=Y;-Y,,

where Y; (-, ¢, 7) is defined as inverse function of v; (-, ¢, 7) as in (1-20). Furthermore, we consider the
truncated function

(1'52) Wg = Xg W’

where xg is a suitable cutoff function that localizes in the tip region. We prove that for every € > 0 there
exist k > 0 and 74 > —o0, such that if ' and J? are k-quadratic at time 7o < T«, then

(1-53) [Wzll2,00 < W 1ig<v<261 12,00

In particular, to be able to absorb all the extra terms coming from the angular derivatives into the good term
from our weighted Poincaré inequality, we have to establish quite sharp a priori estimates in the tip region.

Finally, we combine the energy estimates (1-50) and (1-53), taking also into account the equivalence of
norms in the transition region thanks to (1-47), to conclude that w¢ = 0 and Wg = 0, hence M= 2.
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In Section 5, we argue how to go from spectral uniqueness to the classification result. To this end, we
have to deal with the spectral conditions

(1-54) Pove(to) = Povi(to) and .y (viy(t0) = v2) = 0.
The bulk of our argument for this takes place in terms of the class ${°, which has the advantage that
we have Zg—symmetry a priori, and general bubble-sheet ovals will only enter towards the end of our

argument. Specifically, thanks to the Z%—symmetry, for any Jl € 4° we automatically have orthogonality
with respect to the eigenfunctions y cos ¢, y sing and y? sin(2¢).

To deal with the orthogonality relations with respect to the eigenfunctions 1 and y? —4 we consider the
transformed flow

(1-55) MBY = ("2 M=y (1—p)},

and find parameters §, y such that the truncated renormalized profile functions of MBY satisfies

24
(1-56) (1.v87 (1) = v2)x =0 and <y2—4,v32”(m)+y > _ 0
V8lto| %

We recall that all prior related orthogonality arguments in the literature (see eg [Angenent et al. 2020;
Du and Haslhofer 2021]) were based on degree theory, which only gives existence and no uniqueness,
hence no continuous dependence. In contrast, here we prove a novel Jacobian estimate, which ensures
that locally under the x-quadraticity assumption we can find canonical parameters 8,  that depend
continuously on /(. Specifically, we consider the map

2 _
(1-57) W2 (b.T) = ((1’ vl (1) = V2, <y2 —4. 057 (1) + Y 4> )
V8| 5
where
(1-58) B=eT"(1+5)*~1) and y =1l +2In(l+b).
and prove:

Proposition 1.13 (Jacobian estimate) There exist constants k > 0 and t« > —oo with the following
significance. If M is k-quadratic at time Tty < T«, then the Jacobi matrix of W satisfies

(1-59) det(JW.(h,T)) >0

forall t < vy and all (b,T") with |t|*b% +T'? < 100«2.

It is clear that the above proposition ensures the existence of parameters 8, ¢ so that both orthogonality
conditions (1-56) hold. In order to deal with the remaining sixth orthogonality condition, we consider the
spectral width ratio map®

(v (z0), y* cos® @ —2)y

(vg(vo), y2 sin® @ = 2)3c

(1-60) R(M) =

The spectral width ratio compares the amount of inwards quadratic bending in y; -direction and y,-direction at time g, and
thus — at least heuristically — is related to the more intuitive geometric width ratio max |y,|/max |y; | of the oval at time 7.
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and prove:

Theorem 1.14 (existence with prescribed spectral width ratio) There exist constants k > 0, § > 0, and
T4 > —oo with the following significance. For every 1o < 74 and every r € [(1 +8|to|™1) ™1, 1 + 8|70 7",
there exists a bubble-sheet oval JL that is k -quadratic at time 7, that satisfies (1-56) and

(1-61) RM) = r,

and that up to transformation belongs to the class A°.

To prove this theorem we use a continuity argument in the ellipsoidal parameter a from the construction
of the class #°. The continuous dependence of B and y on ., which follows from Proposition 1.13
(Jacobian estimate), is crucial for this step. Moreover, since no Rado-type argument is available in our
setting, we have to set up the continuity argument in a more involved way than in [Choi et al. 2023],
making use in particular of the Z%—symmetry.

On the other hand, given any bubble-sheet oval .IL!, via a more standard argument based on degree theory
and basic linear algebra, we can arrange that

(v (t0), »? sin(2¢))5 = 0,

y -4 5 >_
<U(G(TO)+\/_|1'O| 4%—0,

such that ! is x-quadratic at time Ty, in particular

(1-62)

(1-63) P4 (v (o) — V2) = 0.

Thanks to Theorem 1.14 (existence with prescribed spectral width ratio) we can then find a bubble-sheet
oval J(? that is obtained as suitable transformation of an element of the class $4°, such that

(1-64) RMYY = R(M?).

Finally, applying Section 4 (spectral uniqueness) we can then complete the proof of Theorem 1.3
(classification of bubble-sheet ovals).
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2 Uniform sharp asymptotics

In this section, we establish uniform sharp asymptotics for our bubble-sheet ovals. Our scheme of proof,
similarly to the one for translators from [Choi et al. 2023, Section 3], is to first derive uniform sharp
asymptotics under a stronger a priori assumption, called strong k-quadraticity, and then to use quantitative
Merle—Zaag type arguments to justify this a priori assumption.

Throughout this section M = {M;} denotes a bubble-sheet oval in R* (see Definition 1.2), where by
[Du and Haslhofer 2024, Theorem 1.4] we can always assume that we have SO(2)-symmetry in the
x3x4-plane centered at the origin. Since the tangent flow at —oo is given by (1-1), for t — —oo the
renormalized flow

(2-1) M;=e"?M_,—

converges smoothly on compact subsets to the static bubble-sheet

(2-2) I:=R2xS'(V2).

We denote points in R? by

(2-3) Yy =(1,y2) = (ycosg, ysing), where y=|y|.

Let Q; be the set of points y € R? such that (y,r cos 9, sin®) € M, for some r > 0, and define
u(y, 1), where y € Qq, by

(2-4) (. (V24 u(y, 7)) cos, (V2 +u(y,7))sin®) € M.
Note that the graphical function u and the profile function v are related by
(2-5) v(1.¢.7) =2+ u(ycosg, ysing, 7).

Since M ; evolves by renormalized mean curvature flow, u satisfies

\/E—I—u 1
2 «/§+u’

where the summation convention is used over all indices i, j € {1, 2}. Furthermore, fixing a smooth

Uy;Uy; 1
(2-6) U = (SU — m)uyiyj — Eyiuy,. +

cutoff function with x(s) =1 for s <1 and x(s) = 0 for s > 2, we often consider the truncated graphical

function

. _ 1yl
2-7) u(y. o) =uy. x|\ —= |

p(r)
where p(7) is any admissible graphical radius, ie
(2-8) lim p(t) =00, where —p(r) < p'(r) <0,
T—>—00

(2_9) ”H( ] T)”C‘L(Fﬂsz(r)(O)) = ,0(.[)—2.
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Finally, we recall that our Gaussian inner product is given by the formula

_ 2
@-10) (b= [ ey e ay,
and that there is the well-known weighted Poincaré inequality

(2-11) I+ 1w D SN = CAULS Mlse + 11DS 15)-

Indeed, by approximation it is enough to check this for smooth compactly supported functions f, and for
such functions this follows by computing

(2-12) [ Gy Pr2—2s2)e PPy = [ D(fY)-ye P ay
R2 R2

—lvl2
E/RZ(%Iylzfz+4|Df|2)e Wy,

2.1 Uniform sharp asymptotics assuming strong « -quadraticity

In this subsection, we establish uniform sharp asymptotics under the following a priori assumption:

Definition 2.1 (strong x-quadraticity [Choi et al. 2023, Definition 3.7]) We say that a bubble-sheet
oval Jl in R* (with coordinates chosen as above) is strongly k-quadratic from time tq if

(i) p(t) = |71 is an admissible graphical radius for T < 7o, and
(ii) the truncated graphical function #(-,7) = u(-, ) x(|-|/p(7)) satisfies

ly|*—4

2-13 R Al
(2-13) 7)+ NG

K
<— for 7 <r1y.
% |7l

u(y

We will now upgrade the sharp asymptotics from [Du and Haslhofer 2024, Theorem 1.4] to uniform sharp
7

asymptotics for families of strongly x-quadratic solutions.
Proposition 2.2 (parabolic region) For every ¢ > 0, there exists k > 0 and t« > —o0, such that if M is
strongly k -quadratic from time ty < T+, then for every T < ty we have:

lyI?—4| _ e
(2-14) sup |u(y. 1)+ —| =< —.
Iy |<s—! VBt | Il

Proof For ease of notation, let us abbreviate
ly12—4
NG |7|

"The reader might wonder whether deriving sharp asymptotics twice is inefficient. However, we first needed the nonuniform
asymptotics in [Du and Haslhofer 2024] to prove SO(2)-symmetry. Having established the symmetry, we can now upgrade the
estimates to uniform estimates.

(2-15) G(y,t):=u(y,t)+
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By the strong x-quadraticity assumption, for all T < ty we have
K
(2-16) ”@CJW%SET

Moreover, since p(t) = |7|!/1°, for any sufficiently negative v we have
2-17) a(y,t)=u(y,v) for |y|<2¢ L.

Hence, using (2-6) and (2-9) we can find constants C = C(¢g) < oo and 74(g) > —oo such that

C

(2‘18) H@("T)HW3’2(B(0,£—1)) = H

holds for all t < 1g, provided 19 < 7«(¢). Applying Agmon’s inequality with (2-16) and (2-18), we
conclude that for all T < 7y < 7«(¢) we have

e
(2-19) sup [B(p. 1) = —.
l<e! |
provided k = k(¢) is sufficiently small. Remembering (2-17), this proves the proposition. |

Next, to capture the intermediate region we consider the function
(2-20) U(z.0.0) = v(t]?2.0.7),
where v is the renormalized profile function; see equation (2-5).

Proposition 2.3 (intermediate region) For every € > 0, there exists ¥ > 0 and t4« > —oo such that if M
is strongly «-quadratic from time toy < 74, then for every angle ¢ and every time t < 1y we have
(2-21) sup |v(z,0,7)—V2—z2% <e.

z=< ﬁ—s
Proof Using the same barrier argument as in [Du and Haslhofer 2024, Proof of Proposition 6.3], our
uniform sharp asymptotics from Proposition 2.2 (parabolic region) can be promoted to a uniform sharp
lower bound in the intermediate region, yielding
(2-22) inf (v(z,9,7)—V2—2z%)>—¢

z=/2—¢

for all ¢ and all T < 1y < 74, provided k > 0 is sufficiently small and 7, is sufficiently negative.

To establish the matching upper bound, note that by the evolution equation (2-6) and by convexity the
profile function v = v(y, ¢, 7) satisfies

(2-23) 1&5—%+%@—yw)
Hence, given any angle ¢, the function

(2-24) w?(y,7) == v(y, 0, 1)> =2
satisfies

(2-25) w? <w? - %yw;‘,’.

Geometry & Topology, Volume 29 (2025)



Classification of bubble-sheet ovals in R* 951

Moreover, by Proposition 2.2 (parabolic region), given any A < 0o, there are k4 (A) > 0 and 74(A4) > —o0,
such that if the bubble-sheet oval is strongly x-quadratic from time 79 < 74, Where 0 < k¥ < Kk, then

(2-26) w?(y.7) <|t| M@=y + A7 !

holds for all y < A. Using this, we can integrate (2-25) along characteristic curves, similarly as in [Du
and Haslhofer 2024, Proof of Proposition 6.3], to conclude that

(2-27) sup (V(z,p,7)—V2—2z2)<¢

z</2—¢
for all ¢ and all T < 7y < 4, provided « is sufficiently small and 7 is sufficiently negative. This finishes
the proof of the proposition. O

In the tip region, instead of with the polar angle ¢, we will first work with the outward unit normal angle ¢,
which is more suitable for applying Hamilton’s Harnack inequality. Specifically, given any angle ¢,
denote by pf € Mj the point that maximizes (p, cos(¢)e; + sin(¢)e,) among all p € My, and set

(2-28) MP* = A(s)- (M4 35)-20 — PD).

where

(2-29) A(s) == Vs log|s|.

Proposition 2.4 (tip region in terms of normal angle) For every € > 0, there exist k > 0 and T4« > —00
with the following significance. If M is strongly k -quadratic from time ty < t«, then for every angle ¢ and
every s < —e~ ™ the flow ]\Al,d’s is e-close in C11/¢] jp B,-1(0) x (—e2,672) to N; xR, where Ny is the
2d-bowl with tip 0 € N, that translates in negative cos(¢)e; + sin(¢p)e, direction with speed 1/+/2.

Proof Suppose towards a contradiction that for some & > 0 there are bubble-sheet ovals .l’ that are
strongly «;-quadratic from time t;, where x; — 0 and t; — —o0, but such that for some s5; < —e ™%
the flows ]\2,’ = M,O’si are not e-close in C /¢ in B,—1(0) x (—e72,672) to N; x R. (Here, suitably
rotating coordinates we arranged that ¢ = 0 and in particular denoted by N; the 2d-bowl with tip 0 € Ny
that translates in negative e, direction with speed 1/+/2.)

Now, for s <s; denote by pé eM S’ the unique point where max peMi (p,eq) is attained, and consider the
function

(2-30) di(s) := (p§. e1).
By Proposition 2.3 (intermediate region) and convexity we have

di(s) _1':0

V2|s|log |s|

(2-31) lim sup

=00 g<g;
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Note that by our definition of d; we have
(2-32) di(s) = —H(py).
Together with Hamilton’s Harnack inequality [1995] this yields

. H(pg) 1
(2-33) e

Hence, arguing similarly as in [Du and Haslhofer 2024, Proof of Proposition 6.6] we see that the
sequence M t’ converges to N; x R. For i large enough this contradicts our assumption that the flows M t’
are not e-close to Ny x R, and thus proves the proposition. |

To reformulate the result in terms of the polar angle ¢, let

(2-34) p¢ = (R(p,s)cosg, R(p, s)sing, 0,0),

where the radius in direction ¢ can be expressed as

(2-35) R(p.s) = |s]"/?sup{y = 0: v(y., ¢, —log(—s)) > 0},

and consider the flow

(2-36) MP? = (s) - (Mg y5.(9)-20 — PO)-

Corollary 2.5 (tip region in terms of polar angle) For every ¢ > 0, there exist k > 0 and T4« > —00 with
the following significance. If M is strongly k-quadratic from time 7y < tx, then for every angle ¢ and

every s < —e~ " the flow M;p’s is e-close in C1/¢] in B,~1(0) x (—e72,672) to Ny x R, where N; is

the 2d -bowl with tip 0 € N that translates in negative cos(p)e; + sin(@)e, direction with speed 1/+/2.

Proof First observe the following derivative bound for convex polar curves in the plane: If r = r(¢)
represents a closed convex polar curve in R? and

(2-37) max |r(p)—1| <6,
)
then
(2-38) max |ry| < &(8),
@

where £(§) — 0 as § — 0. Indeed, denoting by v the outward unit normal, we have
(2-39) (rcosg,rsing)-v=r(l+ (r(p/r)z)_l/2 >1-6,

since for a closed convex polar curve the minimum of the support function cannot be less than the radius
lower bound. This gives the estimate

2
(2-40) max rg<(1+ 5)2[(%) — 1].
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Now, in our setting thanks to Proposition 2.3 (intermediate region) and convexity, given any § > 0, by
choosing « small enough and 7, negative enough, we can arrange that

R(p,
(2-41) _R@.H) )<
Vv2|s|log |s|
This yields
(2-42) sup [Re(@, s)| < &(8) v/2|s|log [s],
¢

and consequently the outward unit normal angle ¢ and the polar angle ¢ differ by an arbitrarily small
amount (mod 2r). Hence, the corollary follows from Proposition 2.4 (tip region in terms of normal
angle). |

2.2 From k-quadraticity to strong «-quadraticity

In this subsection, we upgrade k-quadraticity (Definition 1.8) to strong «-quadraticity (Definition 2.1). We
will use a quantitative Merle—Zaag type argument similarly as in [Choi et al. 2023, Section 3.4]. However,
while in [Choi et al. 2023] the dominant term was captured by a single bending coefficient, in our setting
we have to analyze a more complicated system of spectral ODEs; see [Du and Haslhofer 2024].

Lemma 2.6 (initial graphical radius) There exists some universal number y > 0 with the following
significance. For every k > 0 sufficiently small, there exists a constant T« > —o0, such that if a bubble-
sheet oval in R* is k-quadratic at time Ty < t4, then p(t) = |t| is an admissible graphical radius function
for t < 19, namely (2-8) and (2-9) hold for T < 1.

Proof This follows from the Lojasiewicz—Simon inequality [Colding and Minicozzi 2015] and condition
(1-34), arguing similarly as in [Du and Haslhofer 2024, Proof of Proposition 2.5]. |

Now, given a bubble-sheet oval in R* that is k-quadratic at time 7o < 74, by Lemma 2.6 (initial graphical
radius) we can work with the truncated graphical function

(2-43) u(-,7) = u(-,t)x(u).
IT]¥
Consider
(2-44) Uo(7) := lIpoti(-, T)|% and Ux(r):= |p+i(-.7)|%.

where po and p4 are the orthogonal projections to ¥ and ¥+ respectively. Then, by [Du and Haslhofer
2024, equation (2.24)] we have the differential inequalities

Uy =2 Uy —Colt| 7 (Uy + Up + U-),
(2-45) |Uo| < Colt| ™" (Uy + Up + U-),
U_<—U_+Colt| YUy +Uy+U-),

for T < 7y, where Cy < o0 is a numerical constant.
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The following two results are closely related to the recent improved estimates from [Du and Haslhofer
2023], but with some changes to incorporate «-quadraticity.

Lemma 2.7 (quantitative Merle—Zaag type estimate) For every « > 0 sufficiently small, there exists a
constant Ty > —o0, such that if a bubble-sheet oval in R* is k-quadratic at time tg < T, then for T < 7y

we have the estimate
/

(2-46) Ut (1) + U_(x) <

< |T|yU0(T),

where C' < oo is a numerical constant.

Proof Let A(t) = Cy|t|™7. Possibly after decreasing 74, we may assume that A < 11—0 and A < %)\ for
all T < 7. We will first show that

(2-47) U- <2A(Up + Uy).
Indeed, if at some time T < 7¢ the quantity f := U_ —2A(U4+ + Uy) was positive, then at this time we
would have
. 1 )
(2-48) f<-U_+Ar(1 +4x)(1 —|—ﬁ)U_—2)»(U++Uo) <0,

which would imply that f(z) > f(7) > 0 for all T < T, contradicting lim;—_ f(7) = 0. This
proves (2-47). To conclude the proof we will show that

(2—49) U+ < SXU().

Indeed, using Definition 1.8 (x-quadratic), in particular the centering condition p 4 v¢(tp) = 0 from (1-34),
we see that (2-49) holds at T = 1y, provided k is small enough and 7 is negative enough. Now, if the
inequality (2-49) failed at some time less than 7y, then at the largest time T < tp where it failed we would
have Ut = 8AUj. Together with (2-45) and (2-47) this would imply
(2-50) % 8AUo—Us) < A8k + 1)(Uy + Up + U_) — Uy +8iU,

< ABA + 1)(8X + 1 + 2A(1 + 81)) Uy — 8(A—) Uy

< —(A—8M)Uj <0,

contradicting the definition of 7. This finishes the proof of the lemma. O

Now, as in [Du and Haslhofer 2024, Section 3.1], we consider the spectral coefficients

<ﬁ( ) ‘L'), WJ>?7€

2-51) (1) =
%) TAE

with respect to the neutral eigenfunctions
(2-52) Vi=yi-2 V2=p;=2. ¥3=2y1n.
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It has been shown in [Du and Haslhofer 2024, Proposition 3.1] that the spectral coefficients & = (a1, @2, @3)
satisfy the ODE system
o) = —«/g(cxlz —I—ag) + Eq,
(2-53) Gy = —v/8(02 +02) + Ea,
d3 = —/8(ay +ax)as + E3,
where the error terms satisfy
(2-54) |E;j ()] = o(j@(0)|* + [z 71%).

Here, we improve the error estimate as follows:
Proposition 2.8 (improved error estimate for spectral ODEs) For any sufficiently small k > 0, there

exists a constant T4« > —oo, such that if a bubble-sheet oval in R* is k -quadratic at time oy < T«, then for
all T < 1o with |a(t)| > e~171""? the error terms in (2-53) can be estimated by

ot (7) |2
(2-55) |Ei(r)|<C BE
Proof Consider the remainder
3
(2-56) wi=a-Y ay;.
j=1

Inspecting the proof of [Du and Haslhofer 2024, Proposition 3.1], and dropping the terms that vanish

thanks to the SO(2)-symmetry, we see that it is enough to show that for all T < 7o with |a(7)| > e lel”?
we have
3 -
Cla(o)[?

(2-57) D e (O (Wi w(@))sel + [(w(@)?, Yol < ————

~ 272

=
To this end, note first that by Lemma 2.7 (quantitative Merle—Zaag type estimate) we can estimate

|ot(7)]
- <C
(2-58) @l = €0
In particular, this implies
3 -
@ (o)

(2-59) 2@ Wi w@)ul < €T

i=1

Moreover, by the weighted Poincaré inequality (2-11) we can estimate
(2-60) [(w?. i)l < Clwll + I Vwl).

Next, to estimate the gradient term, note that thanks SO(2)-symmetry the evolution expansion from [Du
and Haslhofer 2024, Proposition 2.8] simplifies to

1 ~
(2-61) (0 —)u = —%ﬁz +E and [E(@0)|x < W”u(f)n% Lol ss,
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Considering the projection ? to the orthogonal complement of ¥ yields

1 ~

(2-62) (0:—P)w=g and g::@l(—%ﬁz—i-E).
Remembering (2-9) and (2-58) we can estimate

C at
2-63) e e = ~— ) < €L,

g g
and, since projections do not increase the norm, this implies

la (o) Ny le /s

(2-64) sl = C( o5 + .

Now, given any T < 7y — 1, by [Du and Haslhofer 2024, equation (3.16)] for t € [T, T 4 1] we have

(2-65) 4 / (r—t)|Vw|2—i-let Tw?)e ™ 4 < /g e—a?/4,

Hence, together with (2-58) and (2-64) for all t < 7ty we get

max;s _ & T/
(2-60) IVw()ly < o Pt @] oepys),
|z|7/2
Finally, by the Merle-Zaag ODEs (2-45), for t sufficiently negative we get
(2-67) max |a(7))|* <2)a(r)|*
v €[t—1,1]

. . - 2
This shows that for all T < ¢ with |a(7)| > ¢=17""? we have

ja(7)]
(2-68) Vw(T)llse = CW'
Combining the above facts, we conclude that (2-57) holds. This proves the proposition. O

With the above ingredients, we can now prove the main result in this subsection:

Theorem 2.9 (strong k-quadraticity) For every k > 0, there exist k' > 0 and t, > —0o0, such that if a
bubble-sheet oval in R* is k’-quadratic at some time Ty < T4, then it is strongly k -quadratic from time .

Proof As above, denoting by #(-,t) = u(-,7)x(]-|/|z|”) the truncated graphical function of the
bubble-sheet oval, we consider the expansion coefficients

(@ 0¥ )
(2-69) ; = —
%) Tap

Recall that they satisfy the ODE system
d =—8?+al)+ Ey,
(2-70) @y = —+/8(a2 +a?) + Es,
b3 = —v/8(ay + @x)a3 + E3,
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where by Proposition 2.8 (improved error estimate for spectral ODEs) for all T < 7o with |@(7)| > e=ltP”?

the error terms can be estimated by
Cla())?

2-71) 0= =57

’

provided the bubble-sheet oval under consideration is x’-quadratic at time 7y < 74, with «’ sufficiently
small and t sufficiently negative.

To analyze these ODEs, similarly as in [Du and Haslhofer 2024, Section 3.2], we consider
(2-72) S:=a14+ay and D := ozloez—ozg.

Using (2-70) and (2-71), a direct computation yields

{S = —/8(S2=2D)+ F,,

2-73 .
2-73) D =—8SD+ F;,

with the error estimate

CS(r)? CIS(@)P°
(2-74) |F1(T)|5|T|7 and |F2(T)|§|T|7
for all t € (11, 7o), where
(2-75) 71 = inf{t’ < 109 :100|S(7)| > |a(r)| > e % forall 7 e [, To]}.

Observe that since our bubble-sheet oval is k’-quadratic at time 7y, we have
1 1
V2|70 8|2

and there is some § > 0 such that t; < 7y — 8.

/ CK/

S T A4
7012

=

(2-76) ‘S(ro) +

and ‘D(‘L’o) —

7ol

To proceed, we change variables to

V21(0)S(t(0)) -1

&7 s0)= (8r(a)20<r(a)> .

), where 7(0) = —€°.

Denoting the components by &; and &,, using (2-73) we see that
£ (0) = —3£1(0) + £2(0) — 261 (0) + V21(0)* F1(x(0)),
£)(0) = —2§1(0) — 2£1(0)2(0) + 87(0)’ F2(1(0)).

Moreover, if (o) € (11, o] then using (2-74) we can estimate

(2-78)

279)  2£2(0) + 21£1(0)E2(0)| + V2IT(0)* F1 (1(0))| + 8|7(0)* Fa(x(0))|
< 4|£(0)|? + Ce™27% max{1, |1(0)S(z(0))|*}.

Furthermore, observe that by basic linear algebra we have the implication

(2-80) £@)] = £5 = 100[S(x(0))| = |a(z(0))| z e 7@,
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Hence, in the new variables we get

(2-81) £'(0) = A4(0) + N(0,£(0)) and [£(09)| = CK/,
with

(2-82) A= (:; é)

and

(2-83) IN(©.£(0)] < 4[5(0)|> + Ce27°

for all o € [0g, 01), where 69 = log(—1p) and

(2-84) o1 :=sup{o’ > a9 : |£(0)| < {5 for all o € [09. 0"]}.

Notice that the matrix A has eigenvalues —2 and —1, so & = 0 is a stable limit point. More precisely,
given any ¢ > 0, we have

(2-85) (o) <e

for all o € [0g,01), provided «’ is small enough and oq is large enough (here we also used that

/ ;: ¢~27% do can be made arbitrarily small by choosing o large enough). In particular, by continuity

this implies o0y = oo, and hence t; = —oo. Translating back to our original variables, this shows that
Ce 1 Ce
(2-86) ‘S(r) + <— and ’D(r) — <—
V2|l T 7l 8[| T [|?

for all T < 7¢, provided «’ is small enough and 7 is negative enough. This shows that both eigenvalues
of the matrix

87 (oq(r) aa(r))

a3(1) oz(7)
are Ce/|t|-close to 1/+/8|t|. Hence, choosing & = (k) sufficiently small, we conclude that

<K
% 7|

yi+yi-4

(2-88) u(yr.y2, 1)+
V87|

for all T < 1.

Finally, having established (2-88), we can consider the quantity

. 1/2
(2-89) B(z):= sup( / ﬁ(yl,yz,r’)ze"y"/“dy) ,
RZ

U<t
and argue similarly as in [Du and Haslhofer 2024, Section 2.2] to upgrade the initial graphical radius
o(7) = |7]" to the improved graphical radius p(t) = ||*/1° for T < 7. Observing also that with this
new graphical radius (2-88) still holds with x/2 replaced by «, this concludes the proof of the theorem. O
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As a corollary of the proof we also obtain:

Corollary 2.10 (full rank) For every k > 0 small enough, there exists t« > —oo with the following
significance. Let M be an ancient noncollapsed flow in R*, whose tangent flow at —oc is given by (1-1),
and suppose that M is SO(2)-symmetric in the x3x4-plane centered at the origin. If M is x-quadratic
(defined literally the same as in Definition 1.8) at some time ty < T, then its fine bubble-sheet matrix Q
satisfies tk(Q) = 2.

Proof Indeed, this follows by inspecting the above proof of Theorem 2.9 (strong k-quadraticity). O
Together with the results from the previous subsection, we get:

Proof of Theorem 1.9 (uniform sharp asymptotics) This now follows from Proposition 2.2 (parabolic
region), Proposition 2.3 (intermediate region) and Corollary 2.5 (tip region in terms of polar angle), which
establish the uniform asymptotics under the a priori of strong «-quadraticity, together with Theorem 2.9

(strong k-quadraticity), which justifies this a priori assumption. |

To conclude this section, we note that as a consequence of Theorem 1.9 (uniform sharp asymptotics) we
obtain the following standard cylindrical estimate, which will be used frequently throughout the paper:

Corollary 2.11 (cylindrical estimate) For every ¢ > 0, there exist L < 0o, k > 0 and t« > —o0 such
that if Ml is k -quadratic at time 1y < T«, then for all T < 7y we have
) k4+£—1_ —k ok ot
(2-90) sup 1<]£riaex<10 |v Y r,05v] <e.
(. 0=L/JIel} ==
Proof Observe first that by Theorem 1.9 (uniform sharp asymptotics), for every €1 > 0 there exist
L1 < o0, such that for T < 7 sufficiently negative we have
(2-91) sup 10yv] +  sup |y Tlou| <e,
{w(-.0=L/VIzl} v(-,0)zer
since otherwise some tangent plane would enter the region enclosed by the oval, contradicting convexity.
To show that the angular derivative is small in the collar region as well, we work with the inverse profile
function Y defined by Y (v(y, ¢, ), ¢, 7) = y. Note that Yyv), =1 and Yy vy, + Y, = 0. Now, considering
the convex polar curves represented by r(p) := (2|r|)_1/ 2Y (v, ¢, 7) for given v and 7, and arguing
similarly as in the proof of Corollary 2.5, we see that
(2-92) sup sup |Yy (v, 9, 7)| <e1 V],
v=<20 ¢
provided 6 > 0 is chosen sufficiently small and 7 < 7 is sufficiently negative. Hence, both suprema in
(2-91) can be taken over {v(-,7) > L{/+/|]|}.
Now, suppose towards a contradiction that for some & > 0 there are bubble-sheet ovals .’ that are
kj-quadratic at time 7; o — —00, where k; — 0 and 7; o — —o0, but such that for some 7; < 7; ¢ there are
y; and @; with

(2-93) vi (Vi @i, ) /| Ti| = oo,
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but
-1 . =
(2-94) max  |u;/* Ty ka’;,aﬁv,-|(y,-,<pi,r,«) > e
1<k+£<10
Sett; =—e %,and let p; e M ,’l be points in the unrescaled flow corresponding to points with coordinates

(»i, @i) in the renormalized flow M lr, By the noncollapsing property we have
¢

|t [vi Vi, @i, Ti)

(2-95) H (pi.t;) >

for some ¢ > 0. Let M, ,’ be the sequence of flows obtained from M/ by shifting (p;,#;) to the origin, and
parabolically rescaling by H'(p;,t;). By the global convergence theorem [Haslhofer and Kleiner 2017,
Theorem 1.12] we can pass to a subsequential limit M .°. It follows from the first derivative estimate
from above, together with (2-93) and (2-95) that M 7 splits off 2 lines. Hence, M ~° must be a round
shrinking bubble-sheet. For i large enough this contradicts (2-94), and thus proves the corollary. |

3 Quadratic almost concavity

The goal of this section is to prove the quadratic almost concavity estimate and its corollary. Throughout
this section, it will be most convenient to work with the original flow M;. Thanks to the tangent flow

property (1-1) and the SO(2)-symmetry we can then parametrize our bubble-sheet ovals via
(3-1) (x1,x2,0) = (x1,x2, V(x1,x2,8) cos ¥, V(xy, x2,7) sini}).

In these (x1, X, ¥)-coordinates the metric takes the form

1+sz1 Vi, Ve, 0
(3-2) g= |V Vi, 14VE 0
0 0 V2

Hence, the inverse metric is
1 + szz _Vxl sz 0

(3-3) gle L | VeV 14V 0
1+ |DV|? 0 14+|DV|?
V2
where
(3-4) |IDV> =V + V2.

Furthermore, observing that the outward unit normal is

. (—Vx,» —Vx,.cos ¥, sint})

(3-5) v
1+|DV|?
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we see that the second fundamental form is given by

1 _VX1X1 _VX1X2 0
(3-6) h=—m —Vxixs —Vipx, 0

V1+|DV|? 0 0 1%

In particular, convexity of our hypersurfaces M; is now captured by the analytic condition that (x1, x,) —
V(x1, x5, t) is concave and nonnegative.

Moreover, note that

Vi, Vx; 1
_ 2y1/2 _ L Xi T Xj _
(14 [DVI) 2 trgh = (5,, = lDV|2)Vxl.xj -

which is of course consistent with the evolution equation (2-6) for the renormalized profile function.

Observing that

. |DV|?
3-7 VV2 =gV Vj= ———,
throughout this section we will abbreviate
(3-8) n:i=(1+|DVIHY2 =1 - |VV|})~1/2

Finally, throughout this section we will work in the region where V' > L/|¢|/ log |¢| (this will be justified
below in Proposition 3.8).

3.1 Intrinsic quantities and their evolution

Throughout this subsection, we will view the unrescaled profile function as an intrinsic time-dependent
quantity on S3. Specifically, denoting the parametrized mean curvature flow by F;: S3 — R*, so that
M; = F(S3), we set

(3-9) V(p.1) == Fi(p)-o(F:(p)).

where w denotes the vector field in R* defined by

(3-10) w(X1,X2,X3,X4) i= (0,0, 3 x32 2 72 X42 1/2)'
(x5 +x7) (x5 +x7)

To begin with, we observe that we can express the second fundamental form in term of the intrinsic
Hessian of the profile function:

Lemma 3.1 (second fundamental form) We have

(3-11) hij = —nV5V 4+ 0V ViV, 9.

Proof We work in the (x1, x5, ©)-coordinates. Using the standard formula for the Christoffel symbols,
(3-12) F,kj = 1" igjo + 95810 — degij),
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and the equations (3-2) and (3-3), for 7, j, k € {1,2} we get

Vi Vi xei —VV
Fik' = kNN Fik3 -0, F§‘3 N S
I T 1+ DV 1+ DV

Remembering the formula Vizj V =20;0;V — Fikj 0r V this yields

(3-13)

VX1X1 Vxle O

(3-14) VZV =(1+ |DV|2)_1 VX1x2 szxz 0
0 0 |DV]2V
Together with (3-6) and (3-8) this implies the assertion. O

We will now compute the evolution equations of several intrinsic quantities. Throughout, we will briefly
denote by A = Ag(;) the Laplace-Beltrami operator with respect to the metric g(7) induced by the
embedding F;.

Proposition 3.2 (evolution of profile function) The profile function V', considered as an intrinsic
quantity, satisfies the evolution equation
(3-15) @, —A)V =-v"1

Proof Under the flow we have d;w(F;) = 0 due to the symmetry. Also, for functions f that depend
only on the angle ¥, we have A f = V™2 f3,5. Hence,

(3-16) (0 — Ao (F;) = o(F)V 2

Together with the mean curvature flow equation 0, Fy = A F; this yields

(3-17) O = D) (Fr-o(F) = Fr-o(F)V ™2 =2¢"7 8y Fy - dp0(Fr) = =V

This proves the proposition. a

We will now compute the evolution of the intrinsic Hessian Vl.zj Q, where
(3-18) 0:=V?

denotes the square of the profile function from (3-9). As usual in tensor computations, we use the
extended summation convention, where indices are raised using the metric and summed over, eg h;phpi =

; ;
>3 o=t hijgd .

Proposition 3.3 (evolution of Hessian) The Hessian of the square of the profile function, viewed as an
intrinsic function, evolves by

(3-19) (3, —A)V;0=-0"'"Vi OV V;0-07'V; 0V3 0+3072 VOV Q
+072(ViQVik OV}, 0+V; 0V, 0V}, 0)-07*|VOI* Vi 0V, 0
+2(hijhpg—highjp) Vg O—(Hhix—hiphpi) V5 Q—(Hhjx—hjphpi) V7 Q

+2h1p Vichij Vp Q—(hijhip—hiphji) 0~ Vi OV, 0.
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Proof Applying Proposition 3.2 (evolution of profile function) yields

(3-20) (0, —A)Q=—-30""VO|*-2.
Differentiating we get
(3-21) Vi@ —A)Q =-07'Vi OV}, 0+ 307IVOI*Y; 0,

and differentiating again we obtain
(322) VA3 —A)0=-07'V0ViV3 0 - 07'VL0VE 0+ L0 VoPrVEQ
+ 072 (ViQVk QY30 + V; OV, OV 0) — 073V Q2V; 0V, 0.
Hence, our main task is to compute the commutator of the heat operator and the Hessian.
In general, the time derivative of the Hessian of a function f equals
(3-23) 0:(VE f) = V30 f)— 0, TE) f.

where the variation of the Christoffel symbols is given (see eg [Chow et al. 2006, Lemma 2.27]) by the

formula

(3-24) 0,Tf = 2" (Vi(drgj0) + V (31g10) — Ve (018i))).-

Under mean curvature flow we have d;g;; = —2H h;;; together with the Codazzi equation V;h;i = V;h;j
this yields

(3-25) 0:(V50)— Vi (0:0) = (HVihjg —hijVicH + hy Vi H + hj Vi H) Vi Q.

On the other hand, thanks to the second Bianchi identity we have (see eg [Chow et al. 2006, equation (2.34)])
the general commutator formula

(3-26) V7 ASf = AV} f =2RipjqVpy f — Rik Vi f — RixVii f — (ViRji + Vi Rix = Vi Rij) Vi /.

where R;jxg is the Riemann tensor and R;; = R;pkp 18 the Ricci tensor. In our setting of hypersurfaces,
we in addition have the Gauss equation

(3-27) Rijke = hixhje —hichj,
and its trace
(3-28) Rix = Hhjg —hijhj.
In particular, together with the Codazzi equation this yields
(3-29) ViRjk + ViR —ViRij = (HVihj —hijViH +hiyg Vi H + hj Vi H) = 2h ,Vphij.
Combining the above formulas we infer that
(3-30) (3 —A)V;;Q = V70— A)Q =2y VphijVicQ + 2(hijhpg — highjp) Vs, O
— (Hhig = hiphpi) V] @ — (Hhji = hjphpi) V3 Q.
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Together with (3-22), where we rewrite the third derivative term using
(3-31) ViV 0 = ViV 0+ (hijhip — hiphji)Vp O,
this yields the assertion. a

To make the evolution equation more feasible for applying the maximum principle, we rewrite the Codazzi
term from the last line of (3-19) in terms of V':

Lemma 3.4 (Codazzi term) We have
(3-32) 2hiepVichijVpQ = =21V Vhp Vi VE O + Wyj,
where
(3-33) Wij =4V Vi (ViVVEV + Vi VIRV + ViV V)
— 4V Vhp (PP VVEVVGVVEY = VGrij),
and Gy;j = Gyj; is a 3-tensor that satisfies Gy XiXJ =0forall X L dg.

Proof Using Lemma 3.1 (second fundamental form) we see that

(3-34) Vihij = =PV VR VVEV =V ViV + Gy,

where

(3-35) Grij = ViV)Vid V9 + qV V9V 9 +nV V] 0V;0.

In particular, note that G;; X iXJ =0 whenever X L 3. Moreover, substituting Q = V2 we see that
(3-36) ViViQ =2(VVi ViV + Vi VVEV +ViVVLV + ViV VE V).

Combining the above facts yields the assertion. O

Given any § > 0, we now consider the tensor

(3-37) Aij =V50— (v +8)gij.
where

L\ 3
3-38 = V.
(-39 y (1og<—z))

The tensor A;; will be used in the proof of Theorem 3.9 in the next subsection.

Corollary 3.5 (evolution of A-tensor) We have
(3-39) (0 — M) Ajj = —(Q7' Ve Q + 20V, Vi) Vi Aij + Nij,

where

~ 3 ) v?2 1
(3-40) Nij = Nij +2(y +8)Hhij — W[l —6|VV|>=2npVI(VV,VV) + 7(1 — 10g(_t))]yg,-j,
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with y given by (3-38), and where
G-41) Nij=—07'VA20V30+ 1072 VOPVEQ + 0 2(ViQVi V3 0 +V; 0V, OV, 0)
— Q73 |\VOIPViQV; 0 + Wij—(hijhkp — hiphjx) 7'V OV, 0
+ 2(hijhicp — hiphji) Vi, @ + (hikhiy — hip H)V;, O + (hjxhip — hjp H)V}, 0,
with W;; given by (3-33).
Proof We have already seen in Proposition 3.3 (evolution of Hessian) and Lemma 3.4 (Codazzi term)
that
(3-42) @ = D)VE 0 = (07" Vi Q + 20V, Vhpp) ViV O + Nij,

where ]V,’ j 1s given by (3-41). Next, observe that

—t \/? 3 1
(3-43) (8t—A)(()/—|—8)g,~j)=—2(y+8)Hh,~j+[(log(—l_t)) (8t—A)V_3+E(1—IOg(—_Z))yi|gij.

Moreover, using Proposition 3.2 (evolution of profile function) we get

(3-44) (B, — AV =3V3(1—4|VV]?).

Furthermore, we have

(3-45) (Q7'Vk O+ 20V Vhyp)Viy = =6V 2 |VV 2y —6nV (VY VV)y.

Combining the above facts the assertion follows. O

3.2 Proof of the quadratic almost concavity estimate

We will now prove the quadratic almost concavity estimate and its corollary. Similarly as in the previous
subsection, we work with the tensor

(3-46) A=V?Q—¢g,

where Q = V2 is the square of the profile function viewed as an intrinsic function on S*, and where
(3-47) e=y+06.

Also recall that y denotes the function defined in (3-38), and § is an arbitrarily small positive constant.
We have seen in Corollary 3.5 (evolution of A-tensor) that 4 satisfies an evolution equation of the form

(3-48) (3, —A+Vz)A=N.

We will show that A(X, X) <0 for all X L dy is preserved along the flow. To this end, we will first
estimate the reaction term when evaluated on null eigenvectors of A, away from a certain region, then
check the sign in the region that has been excluded in the first step, and then conclude by adapting the
proof of Hamilton’s tensor maximum principle to our setting.
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Lemma 3.6 (null eigenvector) If X L dy is a null eigenvector of A, then we have the inequality
(3-49) 26X = 071 |Vx Q.

Furthermore, we have the identities®

(3-50) h(X. X) = V=1 (Q 7 IVx O — 26| X ),

(3-51) (X, VV) =9V (h(VV,VV)— tenV 1 (Q7T'|VQ|* —2¢)) Vx V.
Proof By the null eigenvector assumption we have

(3-52) VIO(X,Y)=¢eg(X,Y)

for all Y. Substituting Q = V2, we thus get

(3-53) VIV(X.Y) =V (3e(X,Y) - Vx VVy V).

Since V2V (X, X) < 0 thanks to the assumption X L 9, this implies

(3-54) el X2 < |Vx V2,

which yields (3-49). Moreover, using again the assumption X | dy, Lemma 3.1 (second fundamental
form) and (3-53) we compute

(3-55) h(X,X)=-nV2V(X,X)=—nV (el X|* = |Vx V]?),
which yields (3-50). Finally, arguing similarly we compute
(3-56) W (X, VV)=n?V~"! Z(%gu(, ej) = VxVVe, V)V3V(e;, VV)
= 1en*VIVEV(X,VV) +nV T h(VV, VV)Vx V,
(3-57) VEV(X,VV) =V (3e = |VV|*)Vx V.
This yields (3-51), and thus concludes the proof of the lemma. |

Proposition 3.7 (reaction term) For all ¢ > 0, there exist constants k > 0, T« > —o0 and L < oo, which
are all independent of the parameter 8, with the following significance. If M is x -quadratic at time g < Tx,
then for all times t < —e™ ™ in the region {L\/m <V <2t - L\/H/ log |t|} we have the
following. It X L dy is a null eigenvector of A, then

(3-58) N(X.X)=-1(1-¢-2)07%Vx 012 (Q7'|VQ|* —2¢).

Proof During the proof we will frequently use Lemma 3.6 (null eigenvector), which together with strict
convexity in particular implies that
(3-59) 0 Y VO]? —2¢> 0.

8Recall that throughout this section, 7 denotes the quantity defined in (3-8).
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We start by computing N (X, X), where N is from equation (3-41). To this end, note that
(3-60) 2(hijhip — hiphji)grp + (hikhip —hip H)gjp + (hjxhip —hjp H)gip = 0.
Together with the null eigenvector assumption this yields

(3-61)  (hikhip —hip H)V;, 0 X' X7 + (hjihip —hjp H)V], 0 X' X7
= —2(hijhxp —hiphjx)egkp X X7 .
Also note that

(3-62) 2V, 0— 07V OV, 0 =4V VE V.

Hence, using the null eigenvector assumption again we infer that

(3-63)  N(X.X)=—(Q7"|VOP ~26)(Q7*|Vx O — 3607 [X ") + W(X. X) + B(X. X),
where

(3-64) B(X, X) = 2(hijhip — hiphji) QVVE,V —egip) X' X7

To estimate B, recalling the block-diagonal structure from the beginning of this section, we choose an
orthonormal basis e, €5, e3 for V2V such that

(3-65) V2V (e, ep) = MSkp.  gleksep) =8kp, e1,e2 L .

Using such a basis we can express our quantity as
2
(3-66) B(X,X) = Z 2(h(X, X)h(eg, ex) —h(X, ex)?) 2V Ak — &) + 2h(X, X)h(es, e3)(2V A3 —e).
k=1

Now, since / is positive definite, we have the Cauchy—Schwarz inequality
(3-67) h(X, ex)® < h(X. X)h(ek. ex).

Together with the fact that A; < 0 and A, < 0, this shows that the term in the first line of (3-66) has the
good sign. To deal with the term in the second line, note that by (3-2), (3-6) and (3-8) we have

(3-68) h(es. e3) = g(p.05) " h(dy.09) ="'V,

and that using also (3-7) and (3-14) we get

(3-69) Ay =g(d9.09) V2V (39.05) = |VV|*V
Together with (3-50) this yields

(3-70) B(X.X) = 4(Q7'VOI* —26)(Q7*|Vx QI =207 | X ).
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Hence, remembering (3-63), we infer that
(3-71) N(X.X) = W(X. X) = —~(Q7'|VO* —26)(Q*|Vx O — 36071 X )
—(Q7'IVOI? - 28) (-3 07|Vx O + 307X ?)
=307 IVx 01207 IVOI* - 2e).

Next, using (3-33) and the assumption X L dy we compute
(3-72) W(X.X) =4nhpgVpVVgVVEVX' X/ + 89V, Vhpy Vi VVE VX X/

— 4 VN Vhp Vi, VVgVVE VX XY
To write this in a more useful way, observe that since X3 = 0 and 93V = 0 the sums only run over
indices i, j, p.q.k € {1,2}. Hence, by Lemma 3.1 (second fundamental form) we can replace V2V by
—n~1h, yielding
(3-73)  W(X,X)=—-4h(VV,VV)(X,X)—8h*(X,VV)VxV —4nVh*(VV,VV)h(X, X).

Since 4 is positive definite, the first term and the third term have the good sign, and we can estimate the
second term using (3-51). This yields

(3-74) (X, X) < In?e07?Vx Q12 (Q7 ' [VOI* —2e).

On the other hand, by (3-40) we have

- 3 & 1
(3-75) (N—N)(X, X)=2eHh(X, X)——=|1-6|VV |?*=2nVI(VV,VV)+—| 1—- vIX |2
V2 2t log(—1)
To estimate this, note that by Corollary 2.11 (cylindrical estimate) in the region {V > L./|t|/log |t|}
we have
(3-76) |IDV|=o(l), H=(1+o(1)V~"

where o(1) denotes terms that can be made arbitrarily small by choosing ¥ > 0 small enough, 74« > —o0
negative enough, and L < oo large enough. Moreover, by Theorem 1.9 (sharp asymptotics) and convexity,
far away from the tip region we have a sharper gradient estimate, specifically

(3-77) sup |IDV| <

C
V2/(~20)21/2} V—log(—t)’

where C < oo is a uniform constant. Restricting to the region {L /|¢|/log |t| <V < /2|t|—-L/|t|/log |t|}
for L < oo sufficiently large, the second term on the right-hand side of (3-75) has the good sign. Therefore,

using the identities (3-49) and (3-50) and the estimate (3-76) we conclude that
(3-78) (N =N)(X,X) < ;(1+0(1) 072 [Vx 01> (' |VQI* - 2¢).

Together with the estimates (3-71) and (3-74), taking into account again the fact that = 1 4+ o(1) thanks
to (3-76), this proves the proposition. O
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Next, we check the sign in the excluded region:

Proposition 3.8 (sign in excluded region) For every L < oo there exist constants k > 0 and T4« > —00
with the following significance. If M is k-quadratic at time tg < T4 then for all times t < —e™™ in

{V < L/|t]/log|t]} and in {V > /2|t| — L\/|t|/ log|t|}, we have VZQ(X, X) < yg(X, X) for all
X L 3.

Proof Unlike V(p,t), note that the quadratic profile Q(p, t) is a smooth function on the whole manifold
unless it is the singular time of the flow. Recall from [Angenent et al. 2020, Lemma 5.4] that the profile
function of the 2d-bowl is quadratically concave. Since V2 Q is a scale invariant quantity, applying
Theorem 1.9 (uniform sharp asymptotics) we thus infer that

(3-79) VZO(X. X) <AlX|?

in{V < L./|t|/log|t|}, where A > 0 can be made arbitrarily small by choosing ¥ > 0 small enough and
T4 < —00 negative enough. On the other hand, inserting V' < L ,/|t|/ log |¢| in equation (3-38) we see that

(3-80) yg(X. X)= L7 X%,

Suppose now V > /2|t| — L+/|t|/log|t|. Then by Theorem 1.9 (uniform sharp asymptotics) and
convexity we have’

(3-81) VV| < ,
log [¢]

hence

(3-82) Vio(X, | X|?

X)) ——
(log |¢])?
On the other hand, inserting the rough bound V > ,/|¢| in the definition of y we get

1
3-83 X, X)> — | X%

This implies the assertion. |

We are now ready to present the proof of Theorem 1.10 (quadratic almost concavity), which we restate
here in terms of the unrescaled variables:

Theorem 3.9 (quadratic almost concavity) There exist constants k > 0 and t4 > —oo with the following
significance. If M is k-quadratic at time Ty < tT«, then for all t < —e™ ™ we have

(3-84) V2O(X. X) <y g(X. X)

forall X | 0y, where y denotes the function defined in (3-38).

90ne has to apply this twice, specifically first considering the tangent plane at any point with, say, renormalized radial coordinate
y = 100 to show that {V > ,/2|t| — L/|t|/log |t|} is contained in the parabolic region, and then again to get the gradient bound.
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Proof Letk >0, 7, > —00, and L < oo be the constants from Proposition 3.7 (reaction term), where
we choose ¢ sufficiently small, say ¢ = ﬁ. Adjusting x and 74« we can arrange that the conclusion of

Proposition 3.8 (sign in excluded region) holds as well, and also that for all # < —e™ ™ we have y < ﬁ.

Suppose now that JL is k-quadratic at time t9 < 7«. Given any § € (0, ﬁ), we work with the tensor
(3-85) A=V*0—(y+9d)g.

By Proposition 3.8 (sign in excluded region) for all # < —e™™ in the region

(3-86) E;:={V < L\/Jt|/log|t]} U{V = 2[t] - L\/]t]/ log |¢]}

we have

(3-87) VZO(X,X)<yg(X.X) forall X Ld,.

)10
b

Moreover, by the derivative estimate from Corollary 2.11 (cylindrical estimate there exists some

Ts < —e™ " such that for all ¢ < Tj the estimate
(3-88) AX,X)<0 forall 0 # X 1L dy
holds at all points (here, by convention we set A(X, X') := —oo at points with V' = 0).

Suppose towards a contradiction that there is some time 7 € (T, —e "] such that (3-88) fails, and let 7
be the first such time. Let p € S be a point where this happens. By the above, we have p & E7. We now
choose a null eigenvector X € T5S3 N BIJ; and extend it to a vector field around p as follows:

Claim 3.10 (extension) There exists an extension of X to a vector field X (p) in an open neighborhood
of p, say U, with the following properties:

(i) X LdyinU,
(i) Vo, X =(107'Vx0)dy inU,
(iii)) VX = 0 for any geodesics y in U with y(0) = p and y(0) L 0.

Proof Working in (xp, x,, ¥)-coordinates we can construct a vector field of the form
(3-89) X = X' (v, x2)8x, + X2 (x1,x2)dx,

by first parallel transporting in the (x1, x;)-plane along radial geodesics emanating from the point under
consideration, and then declaring that in this local formula for X is independent of ©##. Then, in a
neighborhood of p, the properties (i) and (iii) hold by construction, and moreover using (3-13) and
F33j = V;/V for j €{1,2} we get (ii). This proves the claim. m|

100ne can apply this for some «” < «, since the inwards quadratic bending improves when one goes further back in time (as we
have seen in the proof of Theorem 2.9).
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Continuing the proof of the theorem, we consider the function

(3-90) f(p.1) == Apn(X(p). X(p)).
Then, by the second derivative test from calculus at (p,7) we have
(3-91) d:f>0, Vf=0, Af=0.
Moreover, recall that by Corollary 3.5 (evolution of A-tensor) we have
(3-92) (0, —A+Vz)A=N,

where Z is defined by (Z,Y) = Q7 !'VyQ + 2ph(VV,Y) for all Y. Using also the null eigenvector
assumption, at the point (p, ) we thus get

(3-93) @ —A-Vz)[=NWX.X)=2) A(Ve,X. Ve, X)=4) (Ve A)(Ve, X. X).

k k
where e, €5, e3 is any orthonormal basis at p. Now, thanks to Proposition 3.7 (reaction term) we have
the estimate

(3-94) N(X. X) = —3(1-5 =)0 |Vx Q1(Q 7|V Q|* —2¢).
On the other hand, using (3-7) and (3-14) we see that

(3-95) g(0y.05)”" A(dy.0p) = 3(Q7'VOI* - 2e).

Hence, applying Claim 3.10 (extension) we infer that

(3-96) -2 Z A(Ve, X, Ve, X) = —1072|Vx 012(07'[VO|* - 2¢).
k

Moreover, working in a frame {e}, e, e3} that extends {e, €5, e3} to a neighborhood of p, the null
eigenvector condition implies

(3-97) D Ve (A(Vg X, X)) =Y (Ve A) (Vg X, X) + Y A(Vg, X, Vg, X),
k k k

and we infer that the left-hand side of (3-97) evaluated at p is independent of the choice of {e¢;} and
its extension as a frame. Hence, for any three curves {yj }x—1,2, 3 starting at p, if {y4(0)} forms an
orthonormal basis, then

d

(3-98) > Ve (A, X.X) = Y S| Ay (Vi X X (1)),
k k

Choosing y; and Y, to be unit-speed geodesics satisfying y;(0) L dy and y;5 to be the integral curve

of V=19,, by Claim 3.10 (extension), remembering also the block-diagonal structure of A, we infer that

for each k € {1,2, 3} the function 7 = A,, 1)(Vy, (n X, X (yx(?))) is identically zero. This yields

(3-99) —4) (Ve (Ve X, X) = 1072 Vx O1X(Q 7V Q| —2e).
k
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Finally, recall that thanks to Lemma 3.6 (null eigenvector) we have
(3-100) Vx QIP(Q7' VO —2¢) > 0.
Combining the above, we thus conclude that

(3-101) (0, —A=Vz)f <0

at (p, 1), which gives the desired contradiction with (3-91). Since § > 0 was arbitrary, this finishes the
proof of the theorem. a

Finally, we can now prove the crucial Corollary 1.11 (almost Gaussian collar), which we restate here for
convenience of the reader.

Corollary 3.11 (almost Gaussian collar) For every € > 0, there exist constants ¥ > 0, T4 > —00, L < 00
and 0 > 0, with the following significance. If M is x -quadratic at time toy < T4, then for all T < ty we have
(3-102) |y(v2)y +4| <& in the collar region % = {L/+/|t| <v <26}.

Proof To begin with, given any § > 0, using Theorem 1.9 (uniform sharp asymptotics) and convexity,
we see that for 7 < g in the region {v < 268}, provided 8 = 6(§) is small enough, we have

(3-103) 2lT|(1=8) < y* < 2|z|(1+6)

for any Jl that is k = k(§)-quadratic from time 79 < 7«(6). Moreover, Theorem 1.9 (uniform sharp
asymptotics) and convexity also yield

(3-104) 0)2lum20 = 2 (1-D)
2
(3-105) 0Vy) 2y F] = m(l +CL™Y,

for L large enough, possibly after decreasing x and 74«. (See [Angenent et al. 2020, Proof of Lemma 5.7]
for a similar computation, with more details.)

Applying Theorem 1.10 (quadratic almost concavity) in the direction of the radial vector X = d,, we get

(3-1006) 217_2vvyy + 2v§ < |r|_3/2v_3(1 + vf),
where
(3-107) n*=1+v)+y v

Together with Corollary 2.11 (cylindrical estimate) this implies
(3-108) (Voy)y <2|2| 73273

for all T < 74 in the region {v > L//|t|}, provided L is sufficiently large, k is sufficiently small, and
74 1s sufficiently negative. For any fixed ¢ and 7, considering vy, as a function of v, we can rewrite our
inequality as

d 3/
(3-109) %(U2v§)§4|‘[| 32y=2,
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Integrating this from v to 260 and from L/\/T to v yields

(3-110) (0y)*[y=26 — 4L 2|7 < 0?05 < (vy) Py g + AL T

Multiplying this by y2, and using (3-103), (3-104) and (3-105), the assertion follows. O

4 Spectral uniqueness

In this section, we prove Theorem 1.12 (spectral uniqueness), which we restate here for convenience of
the reader:

Theorem 4.1 (spectral uniqueness) There exists k > 0 and ty > —oo with the following significance. If
MY = {M}} and M?> = {M?} are bubble-sheet ovals in R* that are k-quadratic at time ty < T, and if
their truncated renormalized profile functions v(é and v% satisfy the spectral condition

“4-1) pove(to) = Povi (o).
then
(4-2) M= M2,

Here, denoting by v; the profile function of the renormalized flow e2 M1 o—» the truncated renormalized
profile function is defined by

(4-3) v = xe(vi)vi,
where x¢: [0, 00) — [0, 1] is a fixed smooth function satisfying
(4-4) (i) x¢=0 on[0,20] and (i) x¢=1 on [Z6,00).

We also recall that the evolution of v¢ is governed by the 2d Ornstein—Uhlenbeck operator, which in
Euclidean coordinates is given by the formula

(4-5) L=0% +0%, — 2110y, + y20y,) + 1,

and which is a self-adjoint operator on the Gaussian L2-space

(4-6) 9 = L2R2,e P4 dy)y =%, @9 @ ¥

Here, the unstable and neutral eigenspace are explicitly given by

(4-7) ¥+ =span{l, y1,y2} and o = span{y; —2,y5 —2, y1y2},

and as before we denote the orthogonal projections by p and pg. In particular, note that by Definition 1.8
(k-quadratic) thanks to the k-quadraticity assumption in addition to the hypothesis (4-1) we also have

(4-8) p+g(t0) = p4+v (o).
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As before, given any renormalized profile function v (eg v = v;) we consider the associated cylindrical
region and tip region

(4-9) 6={v>160} and T ={v=<206}

where the latter can be subdivided into the collar region and soliton region:

L
51}529} and Ef’={v< }

~ VIt

Note that x< indeed localizes in the cylindrical region; more precisely,'!

(4-10) 57{={
|z

(4-11) spt(xe) € {v = 30} C €.

To localize in the tip region, we fix a smooth function xg: [0, c0) — [0, 1] satisfying
(4-12) (i xg=1 on [0,0] and (i) x7=0 on [20,00).
In the tip region we work with the inverse profile function Y defined by

(4-13) Y, ¢,0).0,7) =,

and its zoomed-in version Z defined by

(4-14) Z(p.p.0) = [t (Y (17|72 p. 0. 1) = Y (0, 0. 7).

Throughout this section we use the convention that 8 > 0 is a fixed small constant and L < oo is a fixed
large constant. During the proofs one is allowed to decrease 6 and increase L at finitely many instances,
as needed or convenient.

4.1 Energy estimate in the cylindrical region

In this subsection, we prove an energy estimate in the cylindrical region, by generalizing [Angenent et al.
2020, Section 6; Choi et al. 2023, Section 5.4] to the bubble-sheet setting.

Recall that for any bubble-sheet oval in R* the renormalized profile function v, viewed as function
depending on y1, ), and t, satisfies

_ Uy, Vy; 1 11
(4-15) Vr = (51';' - m)‘)ym —2YiVy T3V v

Now, given ! and > we consider the difference of their renormalized profile functions
(4-16) w =1V — V3.
The wiggle room between %9 and %9 will be used for estimating vq x¢(v1) — v x¢ (v2).
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In the following, we abbreviate D = (dy,), D? = (Biiyj) and A: B = a;;b;j.

Lemma 4.2 (evolution of w) The function w evolves by
4-17) (0; —P)w = ¢[w],

where & is the 2d Ornstein—Uhlenbeck operator from (4-5), and

975

(4-18) €[w]=
Dvi®Dvi:D?>w  D?*vy:D(v14+v2)®Dw  D?v3:Dv;®Dvy D(vi+v2)-Dw  2—v v,
1+|Dv;|? (1+|Dvy|?) (1+|Dvy|2)(1+]|Dvy|?) 2v1vy
Proof Subtracting the evolution equations of v; and v, yields
Dv Dv; : D*v Dv Dv,: D%v 2—vv
(4-19) w, = Pw— 1 ® Dvy 1 2 ® Dv; 2 1
1+|DU1|2 1+|DU2|2 2v1vp
Now, using the product rule for differences we compute
(4_20) DU1 ®DU1 §D2U1 _ DU2®DU2:D2U2
1+ |Dv,|? 1+ |Dvy|?
_ Dv; ® Dv, :D*w  Dvy®Dw:D?*v,; Dw® Dv,y:D?v,
1+ |Dy? 1+ |Dv;|? 1+ |Dv |2
+ 1 1 Dv, ® Dv, : D?
- v vy D7vs.
1+ |Dvi|2 1+ |Dvy2) 27727 72
Moreover, we have
(4-21) Dv; ® Dw: D?*vy + Dw ® Dv,: D*vy, = Dw ® D(vy + v3): D?v,,
and
1 1 Dw-D
4-22) w - D(vy + v2)

I+ |Dvi|>2 1+|Dv2 (1+ Do )1+ [Dvy2)

This implies the assertion.

Next, we consider the truncated difference

(4-23) we = V1 X¢(V1) — v2 X (v2).

To simplify the notation in the computations that follow, for any scalar function y (eg for x«, x¢ or x4

we denote by wX the function
(4-24) w(y. 1) = x(1(y. 1)) — x(2(y. 7).
In particular, note that w'd = w and |wX| < |w|sup |x'|.
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Lemma 4.3 (evolution of we¢) The function we satisfies
(4-25) (0; —L)we

= €[we] + E[w, xe())] — 2w ] —2Dvs - DwX 4 v3(dr — L)W + wX(dy — L+ 1va,
where

(4-26) Ew, xe()] = (9 — L) (wxe V1) — Ewxe V)]

Proof By the product rule we have

(4-27) (0r — L) (VawX*) = V(07 — L)WX* + WX (I, — L + 1)vy —2Dv, - DwXe,
Observing also that

(4-28) we = wxe(vy) + vowXe,

this implies the assertion. |
The goal of this subsection is to prove the following energy estimate:

Proposition 4.4 (energy estimate in cylindrical region) For every € > 0, there exists k > 0 and T4 > —00
with the following significance. If M' and M? are k -quadratic at time Ty < T, then

(4-29) lwe —powell,00 < e(llwe|lD,00 + lwlie/2<v, <61 ll5,00)-

Let us review the relevant norms and spaces for this energy estimate. In addition to the Gaussian
L2-space 9, which is equipped with the norm
/2

1
(4-30) 1 /1l = ( /R IO dy)

we also need the Gaussian H!-space © :={ f € # : Df € %} with the norm
2

1/
_ 2
(4-31) 1 llo = ( /R LS+ 1D ()P “dy) ,
and its dual space ©* equipped with the dual norm

(4-32) I/ llox = sup (/. &),
lgllo<1

where (, ): ©* x D — R denotes the canonical pairing.

For time-dependent functions the above induces the parabolic norms

: 1/2
(433) ||f||%,oo=sup( / 1||f(-,o)||§fda) ,

<70

where ¥ = %, or D*.
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Let us also recall a few basic facts that will be used frequently in the following proof. To begin with, by
the weighted Poincaré inequality (2-11) multiplication by 1+ |y | is a bounded operator from © to ¥,
and hence by duality from % to ©* as well, namely

(4-34) IA+1yDSlse = Clifllo and (T + [y fllox = CIlS/ -

Consequently, d,, and 83",,. = —0y, + % y; are bounded operators from © to 3, and hence by duality
from ¥ to ©* as well. In particular, this implies that the Ornstein—Uhlenbeck operator £: ® — ©* is
well-defined. Finally, for estimating the ©*-norm it is useful to observe that if g € © and h € W1,
then by the product rule we have ||hg|o < C||h|lj1.0|/g]lD, hence by duality

(4-35) 12/ 1o+ = CllAllp 100l /0=

We are now ready to prove the energy estimate in the cylindrical region.

Proof of Proposition 4.4 To begin with, thanks to (4-8) and [Angenent et al. 2020, Lemma 6.7], we
have the general estimate

(4-36) [we —powe ||o,00 < Cll(0r — L)we || o+, 00-

To estimate the expression on the right-hand side, we rewrite the conclusion of Lemma 4.3 (evolution
of we) in the form

(4-37) (0 — L) we = Elwe] + Ew, xe(v)]+ J + K,

where
I «
J = (va,r =2,y + 3ViV2,y; — €[v2])wX¢ —2Dvy - DwXe,

(4-38)
K = €[va]wX — €[vawX¢] + vy (3 — L)wXe.

Following the same arguments as in [Choi et al. 2023, Proof of Lemma 5.13], which in turn is similar
to [Angenent et al. 2020, Proof of Lemmas 6.8 and 6.9], but now using the bubble-sheet evolution
equation from Lemma 4.2 (evolution of w) and the bubble-sheet derivative estimates from Corollary 2.11
(cylindrical estimate), one can easily show that given any & > 0, there exist ¥ > 0 and 74« > —o0 such that
assuming k-quadraticity at time 7ty < 74, for all T < 7y we have

(4-39) [€[we(D]llo+ < ellwe(r)]o.

(4-40) 1€[w(2), xe (i (@)]llo+ < ellw(@)1p, |,

where

(4-41) D, := {y : %9 <vi(y,7) < %9 or %9 <v(y, 7)< %9}.

Also, following the same arguments as in [Choi et al. 2023, Proof of Lemma 5.14], but now using the
bubble-sheet asymptotics from Theorem 1.9 (uniform sharp asymptotics), we easily get the estimate

(4-42) [J(D)[lox < ellw(z)1p, [l5-
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Hence, our only new task that necessitates somewhat nontrivial modifications is to estimate the ©*-norm
of K(t). To this end, note that

Dv®Dvy:D?>wX¢4+2Dvy-Dvy Dvy-DwXe
(4-43)  E[vaJwXé—E[uguwXe] = 22V PV DTWT 2Dy Dua Dvi-Dw

1+|Dv1 |2
vy D?v3:D(v) 4v3)@ DwXe 02 D?v,:Dv, @ Dvy D(vq+v,)-DwXe
1+|Dvy|? (1+][Dvi[2)(1+|Dv2?)

On the other hand, differentiating the defining identity (4-24) we get
(4-44)  DwX¢ = y/,(v;) Dw + w¥¢ Dv,,
(4-45) D2wX¢ = y/,(v1) D>w + x4 (v1)(Dvy ® Dw + Dw ® Dvy) + wXe D*vy + wXe Dvy @ Dv,.

Hence, we can rewrite the above as

(4-46) Euaw X —E[uawX] + xly (1) V2E[w] = a - Dw + bw + cwXc 4+ dwXe,
where

g va X (v1)Dvy - D(v1 4+ v2) + 2x¢(v1) Dy - Dvs D

1+ |DU1|2 1
2—1)11)2

b= mxf@(vl)vz,

(4-47) ¢ = v D%y 1 (Dvy ® Dvy + D(vq + v3) ® Dvy) + 2(Dvy - Dvy)?
1+ |DU1|2

_ vy Dvy - D(vq + Uz)D2U2 :Dvy, ® Dv,y
(1 +[Dvi[*)(1 +|Dvz|?)

’

_ v2(Dvy - Dvy)?
1+ |Dy 2

Now, using the basic facts reviewed above we can estimate
(4-48) la- Dwlox = lla- D(wlp )0+ = Cllaly .o |wlp, [l

bw

(4-49) [bwlox = C lwlp, llse.

| <
AT PRI

where in the last step we also used that |y | > |7|'/2 on the support of 1 D, thanks to Theorem 1.9 (uniform
sharp asymptotics). Similarly, we see that

(4-50) lewXe e < Cllellyr.oo wlp, I3,
(4-51) ldwX¢||px < C||d|lyr1.00 |wlp, |3,

where we also used that

(k)

(4-52) e | = Ip, < Clullp,.

V2
/ X((@k+1)(v) v
v

1
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Furthermore, thanks to Corollary 2.11 (cylindrical estimate) we can make the W -*-norm of a, ¢ and d
arbitrarily small by choosing ¥ > 0 small enough and 7« > —o0 negative enough. Combining the above
we thus obtain

(4-53) 1E[v2]w*e —€lvaw* ‘] + x¢ (v)v2é[w]lo < elwlp, lls.
To capture the remaining terms, we compute
(4-54)  v2(3r = L)X — xe (V1) va€[w] = x5 (V1) v2w — X (V1)v2 D(V1 + v2) - Dw — VWX
— 03| Dua|PwX€ 4 vy (vg ¢ — V2. y, 5, + %)ﬁ'vz,yi)wx(/@-
Arguing similarly as above, we see that
(4-55) | xenvaw — X4 (v1)v2 D(v1 + v2) - Dw — v2wX — vy | Dvg|2wXe | o=
12 (V2,0 = V2,3 + 33iV2, ) wH |00
< e¢llwlp, (5.
Summing up, we have thus shown that
(4-56) K ()|l = ellw(t)1p, 5.
Finally, thanks to Theorem 1.9 (uniform sharp asymptotics) for « small enough and 7, negative enough,

(.1 =30 = v(y.1) =36,

(4-57) ;
vy, 1)<zl = vi(y,7) =90,
hence
(4-58) Ip, = Lg/2<v,(-,0)<63}-
This concludes the proof of the proposition. a

4.2 Derivative and weight estimates in the tip region

In this subsection, we prove derivative estimates for the inverse profile function and weight function in
the tip region, by generalizing some arguments from [Angenent et al. 2020, Section 7] and [Choi et al.
2023, Section 5.5] to the bubble-sheet setting.

Throughout, we denote by Zp = Zp(p) the profile function of the 2d-bowl with speed 1/ V2, namely
the unique solution of

z 1
(4-59) ﬂJrlzB,er— =0 and Zp(0) = Zp ,(0) =0.

1+23, P V2
(Note that in our sign convention Zp =< 0, which is consistent with (4-14).) We recall the well-known
fact that one has the asymptotic expansions
—/2p%/4+ O(log p) as p — oo,
—V2p*/84+ 0(p*)  as p—0,
and that these expansions may be differentiated; see eg [Angenent and Veldzquez 1997].

(4-60) Zuo) =
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Proposition 4.5 (first tip derivatives) For every n > 0, there exist 6 > 0, x > 0 and 74« > —o0 such that
if M is k-quadratic at time Tty < T«, then

Y, Y,
(4-61) 2|22 <2 Yl <alel? and Yo <)

holds for all v <260 and t < 1.

Proof First, the estimate for Y, has already been established in (2-92).
Next, thanks to Theorem 1.9 (uniform sharp asymptotics) the zoomed-in profile function Z = Z(p, ¢, 1),
as defined in (4-14), satisfies

(4-62) max  sup sup sup |8’;8'{;(Z —Zp)| <e.

0<i+j<10 ¢ r<rg pzet
This yields the desired estimates in the soliton region, namely

Yy

(4-63) e 2 < |2 < t|? and Yo <7

v
v
forall v < L/ |r|1/ 2 and T < 19; see eg [Angenent et al. 2020, Proof of Lemma 7.4] for a similar

computation, with more details.

Furthermore, by Corollary 1.11 (almost Gaussian collar) we have
vY
2Y,

for L/|7]'/? <v <26 and t < 1. On the other hand, thanks to Theorem 1.9 (uniform sharp asymptotics),

(4-64) <e

1+

for v <26 and 7 < 19 we have

(4-65)

Y ’

(v.71) 1' <

V27l

where ¢ can be made as small as we want by adjusting 6, x and ... Hence, in the collar region we obtain
the sharper estimate

Yy 1
- + _
v|z|V/2 /2

Finally, to estimate Y7 in the collar region we rewrite the evolution equation (1-21) from the introduction

(4-66) <e

(for the derivation of this evolution equation see Lemma 4.10 below) in the form
(Y2 + YYo= 2Yp Yy Yoy + (1 + Y)Yy B Y}
Y2(1+YH+7Y; Y(Y2(1+YH+Y))
LY v\ 1
v 2y, 2 Y

By the estimates that we have already established, the expression in the second line is well controlled,

(4-67) Y, =

specifically has absolute value less than say %n| Yy /v, possibly after adjusting 6, k and .. On the other
hand, differentiating the defining identity (4-13) of the inverse profile function, we get
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and differentiating again we obtain

(4-69) Yoo = —Yovyy, Yo = =YY vy, — Y0y,
(4-70) Yoo = =Yu Y vyy — 2V Ypvy0 — Yovpy.
Together with Corollary 2.11 (cylindrical estimate) and the already established estimates, this implies
(4_71) YUU Yva(p Y(p(p E e ﬁ
1+7Y? Y(1+Y2) Y? v

in the collar region. Hence, we conclude that

Yy
(4-72) |Ye| =7 N
holds in the collar region as well. |

Corollary 4.6 (second tip derivatives) For every n > 0, there exist 0 > 0, L < o0, k > 0 and tx > —00
such that if M is k -quadratic at time to < T, then for all T < 7 in the collar region L/|t|'/? < v <20,

(4_73) va Yva(p Y(p(p E ﬁ ,
1+ Y7 Y(14+Y2) Y? v

and in the soliton region v < L/|t| 1/2 we have the sharper estimates

(4-74) Yool < CItIV2 Yol <zl Yol < izl

Proof We have already obtained the estimate (4-73) in the above proof, which in particular gives us
some constant L < oo. Now with this fixed L, we will deal with the soliton region v < L/|z|'/2. To this
end, note first that thanks to (4-60) and strict convexity there is a constant A < oo such that

(4-75) AN <Zp o< A.
Hence, using (4-62), in the soliton region we get

1L _ Yol
4-76 — =< <2A
( ) 2A — |17|1/2 -

To proceed, consider the rescaled profile function of 2d-bowl x R, namely

4-77) T, x,7):= ZB(|r|1/2v).

|T|1/2

We remind the reader that a hypersurface M’ is called e-close in C /el in B, /£(0) to a hypersurface M,
if it can be written as normal graph of a function ¥ over M N By ;,(0) with ||Y/|[cL1/e) (MNBy,6(0)) = &
In particular, if the hypersurfaces are e-close, then associated geometric quantities (such as curvatures,
curvature ratios, Hessian ratios, etc) are also almost equal.

Now, setting V = 0, and X = dyx, we have

2
_ DXV, V)

-1
(4-78) AT < EIE

<A, D?*Y(V,X)=0, D?*Y(X,X)=0.
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Then, since ratios are scaling invariant, by Theorem 1.9 (uniform sharp asymptotics) and the definition of
e-closeness, in the soliton region we get

D2Y (3, (2|z))~ /20 2
(4-79) (9w, 2I7)) o) DAY (V. X) <3
D2Y (dy. dv) D2Y (V. V)
2 —1/2 —1/2 2
(4-80) DY (2lz) ™20y, (2I))7120y) DY (X, X) <3
D2Y (9y, 0v) D2Y(V,V)

where § = §(¢) > 0 can be made as small as we want by decreasing x and 74«. Remembering that
D?Y (-, X) =0, we have thus shown that

Yool | Yool
- + < §|Y,
Combining the above facts, the assertion follows. |

Denote by Yp the rescaled profile function of the 2d-bowl, namely

(4-82) Yp(v,7) = Zg(|t|"?v).

|T|1/2

Corollary 4.7 (rescaled bowl profile) For every n > 0 and L < oo, there exist k > 0, 74« > —o0 and
6 > 0, such that if M is k -quadratic at time to < T«, then for all T < 1y and v < 20, we have

1+Y3, N PREREY
(4-83) ——— — 1/ <nmingy 1, —— ;.
1472 L

Proof By (4-62) and (4-63) in the soliton region v < L/|t| 1/2 e have

14+Y3, 1/2
(4-84) W — 1| = |(YB,y — Yu)(YB,» + Yo)| < 2¢|t| /.
On the other hand, by (4-66) in the collar region L/|z|'/? < v < 26 we have
(4-85) LG €

v el 2T
Since (4-85) of course in particular holds for Y = Yp, the result follows. O
In the tip region we consider the weight function
0 200/ 1+Y2 ’
Y ’ l + /(v ’ T)
@56) o901 = 412000+ [ [con (D) —a-ewn 2
v % v

where ¢: R — [0, 1] is a smooth monotone function satisfying

(4-87) (w)=0 forv<gH and ((v)=1 forv>10.

Proposition 4.8 (weight estimates) For any n > 0, there exist 0 > 0, x > 0 and t« > —o0 with the
following significance. If M is k -quadratic at time 7y < T4, then for all T < 7y and v < 26 we have
Uiy
1+7Y?

(4-88) 1‘577, el =mltl.  |pcl = nlzl.
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Proof To begin with, note that

y?2 1+Y3
(4-89) [hv =§(—T) + (1= ——>
v v
This yields
Uiy YZ Y
4-90 —1|< +(1- Y1 <n,
(4-90) o §‘1+YU22Yv (- g b 1+Y2 "

where to estimate the first term we used (4-87), Proposition 4.5 (first tip derivatives) and Corollary 1.11
(almost Gaussian collar), and to estimate the second term we used Corollary 4.7 (rescaled bowl profile).

Next, via integration by parts we see that

Y2 0 , Y2
4-91) |u¢|—'z(7)w+ | c(T)w

where we used Proposition 4.5 (first tip derivatives) and Y < 2|¢|!/2.

<zl

Finally, arguing similarly we can estimate

2 6 2 v Y2
(4-92) lurl=‘€(YT) + / E(YT) + /9 (1—plB)

where we used in addition that !(Y t% v)f‘ < Cv? thanks to (4-60). O

<nlt|,

Corollary 4.9 (weighted Poincaré inequality) There exist Cy < 0o, 8 > 0, k > 0 and 74« > —o0 with
the following significance. If M is k -quadratic at time 1y < T, then for t < ¢ and ¢ € [0, 27| we have

26 5
(4-93) / Fz(v)e“(”‘“)dv<co 0 uwen g,
0

~ 7l 1+Yv2(vv¢)»r)
for all smooth functions F satisfying F'(0) = 0 and spt(F) C [0, 26).

Proof Thanks to (4-60) there is a constant A < oo such that
(4-94) A7 2| V20 < |V, | < Ale]Y 2.
We fix vg = vo(7) = 3A/|7|"/? and start with the integration by parts formula

260 2 2 20 2
[ gy F
v

(4-95) oD | (upy — 1) e dv.
v Vo vo v

0
Together with

2 FF, 4F? F?
— <2 1+72)—,
v _1+YU2+( + ”)4v2

(4-96)
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this yields

F(U())2 20 F2 26 F2
4-97 0 onoeT) +/ vy — 21+ Y2) —1) et dv < 4/ — et dv.
(4-97) ” . (vio =31+ Y) = 1) — =4 Tire

v

Now, using Corollary 4.7 (rescaled bowl] profile), Proposition 4.8 (weight estimates) and (4-94) we can
estimate our integrand by

(4-98) vy — FI+ Y- 1231+ Y3 ) - 1= 50 +Y3).
This implies
20 20 g2
(4-99) |T|/ F2eP dv < C[ — et dv,
Vo ) 1 + Y‘U
F 2 26 F2
(4-100) F0)” uwoen < ¢ / L ok,
Vo vo 1+7Y;

Finally, for v < vg by our choice of weight function we have

U() 1
(4-101) ‘,U«(U, ¢, 7) — p(vo, ¢, 7) —10g(1)‘ = / =Yg, dv'|=C,
Vo v U ’

hence
(4-102) c! V)< (0, 0)—1(v0,0,7) < v ‘

vo/) — \Yo
Together with the standard Poincaré inequality

vo Vo

(4-103) /0 (F(v) — F(vg))*vdv < Cv(z)/o Ffv dv,
taking also into account (4-100), this yields

Vo 260 F2
(4-104) |r|/ F2et dv < C/ —L et dv,

0 o L+Y5

and thus concludes the proof of the corollary. O

To conclude this subsection, let us prove the evolution equation for ¥, which has already been used above:

Lemma 4.10 (evolution of Y') The function Y evolves by

(Y24Y)) You—2Y Yo Yout+(14+1) You +(1 v) Yz Y 1
v

Y2(1+Y2)+Y7

(4-105) Y, =
v 2

CY(Y2(1+YR)+YR) Ty
Proof Recall that v = v(y1, )2, T) evolves by

s Vy; Uy, Vi v o1
. ve= (= e o = F o+ 5
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Setting y; = ycos¢ and y; = ysin¢, by the chain rule we have

sin ¢ cos @

(4-107) 0y, =cos @0, — dp and 0y, =singd, + 0g.

Hence, v = v(y, ¢, 7), viewed as a function of polar coordinates, evolves by

4 (y2+vé)vyy—2v¢vyv(py+(1 +v§)v(p¢ 2 1 1+v)2, v 1
(4-108) v = 5 5 5 YUy
y2(l+v3) + v

»2 2 y2(142) + o2

+
2
Note that for v, = 0 this reduces to the formula

vy vy v

T Uw) Ty 27T 2T

for the O,x O,-symmetric bubble-sheet ovals from [Du and Haslhofer 2021, equation (2.75)].

Finally, differentiating the identity y = Y (v(y, ¢, ), ¢, T) we see that

Uy = Yo Vv = 1 - Y,
(4-109) . S 2“" Y
Vyy = _& vy = _Y(p(p 2Yy Yoy _ Y, Yuv, Yoy = _& Y(vav'
Y v Yy Y? Y} Y2 Y}
Plugging this into (4-108) yields the assertion. O

4.3 Energy estimate in the tip region

In this subsection, we prove an energy estimate in the tip region, by generalizing some arguments from
[Angenent et al. 2020, Section 7] and [Choi et al. 2023, Section 5.5] to the bubble-sheet setting.

We denote the inverse profile functions by ¥ = Y, and ¥ = Y,. Consider the difference
(4-110) W:.=Y-Y.

Lemma 4.11 (evolution of W) The function W evolves by
(VY Wy =2Y, Yy Wey + (1 + Y)Wy

(4-111) W, = D +aWy +bWy +cW,
where
(4-112) D=Y*(14+Y2)+Y2

and where the coefficients a, b and ¢ are specified in equation (4-117) below.

Proof Let us abbreviate
(4-113) D=Y>(1+Y})+7Y2
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Then, Lemma 4.10 (evolution of Y) and the product rule for differences yield
(Y2 + Y(pz)WUU - 2Y<vaW¢v + (1 + sz)WWP + zpqo(Yv + ?v)Wv

(4-115) W, =
D D
N Yol (Y + )W + (Yo + Y)Wyl You(YpWo + Yo Wy)  B(D—D)
D D DD
1 Y, +7, W  D-D 11
+l-—= )W —L—2W, + Y( + = _)+(——|——_)W.
(v 2) " yp ¢ DYY YDD 2 vy

Furthermore, note that
(4-116) D—D=Y*(Yy+ Y)Wy + Yo+ Y)Wy + (Y +Y)(1+YHW.

Hence, collecting the coefficients of Wy, W, and W, we obtain the claimed evolution equation with

L v, Fop(lo+ 1) =2Fp ¥y P20+ 1) [ﬁ—ﬁ}

=373t D DD Y
v v v v v v 2
(4-117) p= et o) =Waly Yottty Goi¥ls g ,
D YD DD LY
11 T +Y) Y @+ DO+ YH[Y, o
C= -4+ — + — + — — —B|.
8% D DYY DD Y
This proves the lemma. |

Now, considering Wy = x5 W we have the following energy inequality:

Proposition 4.12 (energy inequality) There exist constants 6 > 0, k > 0, 74 > —o0 and C = C(0) < 00
with the following significance. If J is k-quadratic at time tg < t«, then for t < ty we have

(Wg)3
_ - Y M _ . v
(4-118) [ Wye dodv < 20 1 2

et do dv+—/W 1{9<v<29}e“ do dv

D, D = Ny
+/(Y2 +1+Yv2b —}-C)Wge de dv,

where the coefficients d, b and ¢ are specified in equation (4-120) below.

Proof Throughout this proof, we denote xg simply by x and denote [ d¢ dv simply by [. To begin
with, using Lemma 4.11 (evolution of W) and integration by parts we see that

Y2+Y; 2Y, Yy 1412
(4-119) /WZ“——[( 5 w2 W, W, + +D W) et

+ /(&'WWv + EWW¢ + W) 2t

Y2412 2Y,Y,
_/(—“’WW - ‘g ”WW¢)(X2)’e“,

D v
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where
B (Y2+Y(p2) Y247
a=a— - MKy,
D v D
(4-120) = 2Y, Y, 2Y,Y, 14 Y2 (1+Y2)
b=>b _ v _ v ,
™ )t ™ p ), b ™
T=c+ .
With the aim of absorbing various mixed terms in (4-119) we estimate
2.2 ~2 2
4-121) aw Wy x? < 4 D W X+ = 72 a“ Wy,
(4-122) EWW, 52 < lIJF—”WZXZ + p2w2
ot T4 ¢ 1+v2 7
2YUY¢7 1Y2 2 1 sz 2
- < -
(4-123) WUW¢_4D ”+100D 0

where in the last step we used that Y(p2 /Y? < 1 thanks to Proposition 4.5 (first tip derivatives) and
Theorem 1.9 (uniform sharp asymptotics).

Combining the above, and discarding some lower-order good terms, gives

Y? &
(4-124) %%/ Wiet 5—%/(3Wv2+%W;)Xze“—l-/ﬁque“

Y2 4+Y2 2Y,Y,
_2/(T‘”WWU— g UWW(,,)XX/e“,

where we abbreviated

(4-125) 9 D”‘2+ D b* 47
- = —d C.
Y? 14 Y2
Now, using the fact that W, x = (Ws), — Wy’ we can estimate
(4-126) —Wix* < —1(Wy)i +2W2y2.
Moreover, we also have
(4-127) ~WW,xx' = —(WJ)va +W2y? < 5 (Wa)y +4x W2,
Y, Y. 1 Y2
4_12 (4 < 2.2 2.2

where in the last step we used again that Y(p2 /Y? <. This yields

1 d 2 W 1 Y2 2 W 2 W Y2 2,2 1
(4-129) sa0 | Wit =15 | 5 Wanse + [ gWiek +13 | — W2yt

Finally, using again that Y(p2 /Y? < n we observe that we can replace Y2/D by 1/(1 + Y) up to a
multiplicative factor close to 1. Remembering also that | Y| > %9|‘E|1/ 2 on the support of x’ thanks to
Proposition 4.5 (first tip derivatives), this concludes the proof of the proposition. O
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To put the energy inequality into use it is crucial to control the coefficients:

Lemma 4.13 (estimate for coefficients) For every n > 0, there exist constants k > 0, T4« > —o0 and
6 > 0 with the following significance. If M is k-quadratic at time tg < T«, then for t < tg and v < 20
we have

(4-130) (1+ Y@ + |t|b* + [2] < ylz].

In particular, the quantity $ defined in (4-125) satisfies $ < 3n|z|.

Proof Throughout this proof, o(1) denotes a quantity that can be made arbitrarily small in the tip region
v < 20, by choosing x small enough, 7, negative enough and 6 small enough. Moreover, we abbreviate

(4-131) fog = 1—1‘:0(1).
g

In particular, by definition we have

(4-132) v=o0(1),

and thanks to Theorem 1.9 (uniform sharp asymptotics) we get
(4-133) Y ~Y ~ /2.

Recall that by Proposition 4.5 (first tip derivatives) we have

(4-134) 1Yol + 1 Y,| = o(1)|z] /2.
Together with Corollary 4.7 (rescaled bowl profile) the above implies
(4-135) D~Y*(1+YH)~Y3(1+Y2) ~D.

Also recall that by Proposition 4.5 (first tip derivatives) we have

(4-136) Lole|1/2 < |¥y| < wle|/2,
and that by Corollary 4.6 (second tip derivatives) we have

Yoo 1/2 Yvav 3/2
(4-137) ‘W SClTl , W =0(1)|T|, |Y(p(p| =0(1)|T| y

and similarly for Y, and that by Proposition 4.8 (weight estimates) we get
(4-138) Uiy ~ 14+ Y2 and  |uy| + || = o(1)]|z].
Now, let us begin by estimating
Ltpe 1 Yo +7)  ¥g 470+ Y&){‘é _E]

4-139 F=—"" 4 —+ —
(-139) 2 YY D DYY DD
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The facts from above directly imply that the first four terms are of order at most o(1)|z|. That actually
works for the last term as well, observing that

17Y? _

(4-140) ‘:[T“’—B] <C|z|V/2.
DLY

We have thus shown that

(4-141) |¢] = o(1)|7].

Next, all the terms in

(4-142) b=
D YD DD

Voo (Y + ) = 2¥gu ¥y Yo+ ¥y | (Y +Ty) [_5 _E]
D Y

can be dealt with similarly as above, yielding

(4-143) |b] = o(1).

Let us now consider

~ 2Y,Y, 2Y, Y, 1+ Y2 (1+7Y2)
4-144 b—b= — vl — LXSTP
( ) ( D )v + D Ho D . D Mo

The above facts directly imply that the second and fourth term are of order at most o(1). To deal with the
first term, we observe that

Yy Y, YooYy + Yy Yoo | | VY, o(1) | Y,D,
4-145 —?) < Dyl =0(1)+ ,
(1) ‘( D ) ‘ D e A TS 7Y
(4_146) Yva < 2YU Y(pY(OU + YYv(l + sz) + YZYUYUU < C|‘E|1/2.
(14+Y2)D| ™ |[14+Y2 D
Similarly, we can estimate the third term by
14+ Y2 C |Y,Y, YY,(1+Y2)+Y2Y,Y,
(4-147) ‘( i ) <oty + = |Telee PV TeU AT + Mg _ )
D/, 7] D

Summing up, we have thus shown that
(4-148) 6] = o(1).

It remains to show that /1 + Y 2|@| is of order at most o(1)|z] 172 To this end, we consider the quantities

1 Y24v,
(4-149) ay == "

~ 2V Y YA+ Y)Y
4-150 = — = :
(4-150) “2 D? DD
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Then, a direct computation shows that

@151) G—7, —a, = Yoo T 10) =2V + Y)Yy —2YYy v

D 2
2Y2Y Yy Yoy +2(Y2 + Y ) (Y Yo + YV (1 + 1))
+ 3
172(Yv+17v)(—2— = = = =2 Yé)
— U Y2Y 0 —2Y o Yy Y + (1 + Y)Yy — — |.
DD (7] X)) pLtviov ( U) (X)) Y

Most of these terms multiplied by /1 + ¥;2 can be estimated similarly as above, taking also into account
the elementary fact that the function x + x/+/1 + x2 is bounded. The only three terms for which one
has to argue somewhat differently are v and (Y, + wi)Yw /D and (Y? + Y(,,Z)Y(‘7 Yyv/D?. Regarding
the first term, since v = o(1) and /1 + Y2 = o(1)|z|'/? we easily get

(4-152) V1+Y2v=o(1)|z|V2.

To deal with the second term, in the collar region we estimate

(You + Ypu) Yy 1 (Ypu + Ypu) Yy /14 Y2

4-153 Vigypmee T ool | L Yo| = o(1)]r]"/2,

( ) + v D 2|_L_| (1 + sz) YU @ 0( )|T|

where we used that |Yy| is large in the collar region. On the other hand, thanks to Corollary 4.6 (second
1/2

tip derivatives) in the soliton region v < L/||!/? we have the sharper estimate |V, | + |Ypu| = o(1)|7],

so we also get the desired bound in the soliton region. Finally, since (Y2 + Y(pz) /D <1 the same argument
applies for the third term as well. This yields

(4-154) V14 Y2|a—a; —ds| = o))"
In contrast, to deal with @; and @, we have to use cancellations.

First, in the soliton region v < L/|t|!/2, where L < oo is fixed, using that the formula vpy =1+ Y2 |
holds there, we can estimate

2vyv2 2vy2 2vy2 2 2
@iss) g = L TV Y T Yo Ve 1)) 14 Ye| Yoo Yy o2
Y2(1+Y2)+ Y2 T 14+ Y2 Y? '

where in the last step we used Corollary 4.7 (rescaled bowl profile) and the above standard facts. On the
other hand, in the collar region L/ \/m < v < 26 using in particular Proposition 4.8 (weight estimates)
we get

2 4 y2

(4-156) ‘1 —Vpy——2

D =o(1).

Observing also that v™1/1+ Y2 < C|t| 172 in the collar region, this yields
(4-157) V1+Y2d| = o(1)|c]!/2.
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To estimate /1 + Y2 |d;|, motivated by the product rule for differences, we rewrite @, in the form

2V YOV Yo VA —V)Voy 274V (oo —You) 2V*VYy, D-D
DD DD DD D DD

The contribution from the first term can be readily estimated observing that |Y* — Y *| = o(1)Y*. To

(4-158) @ =

deal with the second term we use that —Y;, ~ vY /2 ~ —Y, in the collar region thanks to Corollary 1.11
(almost Gaussian collar) and that |Y;, — )_’v| = 0(1) in the soliton region thanks to (4-62). To deal with the
third term we use that | Yy, | = e(1 + Y2)|7| 172 in the collar region thanks to Corollary 4.6 (second tip
derivatives), where ¢ can be made arbitrarily small by adjusting the parameters, in particular choosing L
large enough, and that | Yy, — )_’vv| =0(1)|7|!/2 in the soliton region thanks to (4-62). Finally, to deal with

the last term we use that D — D = o(1) D thanks to Corollary 4.7 (rescaled bowl profile). Summing up,
this yields

(4-159) VI+Y] @] = o(D)e]'2,

and thus concludes the proof of the lemma. a

Recall that in the tip region we work with the norm
(4-160) [ Fll2,00 = sup

1 T 20 p2m 1/2
T (/ / / F(v, ¢,0)2e* 99 do dy da) .
e<wo |TIV4\ Sz o Jo

Having established the above results, our energy estimate in the tip region now becomes smooth sailing:

Proposition 4.14 (energy estimate in tip region) For every ¢ > 0, there exist k > 0, 74« > —00 and 6§ > 0
with the following significance. If /' and M? are k-quadratic at time Ty < T4, then for T < 7y we have

(4-161) [W7ll2,00 < el W1a<v<26}l2,00-

Proof By Proposition 4.12 (energy inequality) we have

(4-162) ——/W

Wo D
( J)v M+—/W 1{9<v<20}€ +/(—a +

<—= b2 +5) W2et,
20 1+ Y2 Y2 1+ Y2 7

and applying Corollary 4.9 (Poincaré inequality) we get

(Wg)3
4-163 W2elt < Cn | 220 o1
(4-163) o [ wier =i e

Moreover, thanks to Lemma 4.13 (estimate for coefficients) we can estimate

D
4-164 =
( ) Yza + 172

v

b2 +7 < 3lt|.
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Combining the above facts and taking n = 1/(120Cy) we infer that

d 1 C
(4-165) e / Wiek < _MM / W2et + ol / W21g<p<201e”.
Setting ¢ = 1/(20Cy) and considering
T T
(4-166) A(r) = / 1 / W2et and B(r) = / 1 / W21 p<p<agye®,
T— T—
it follows that
d B
(4-167) e A(r)] < Clele " 2B@)
dt 7|2
Integrating this from —oo to 7 yields
(4-168) A(r) < C sup |T'|2B(*)),
<t
and hence in particular
(4-169) It 72 A(x) < C|z| % sup ||V B().
U<t
This shows that
C
(4-170) W ll2,00 < m”Wl{HSvSZG}”Z,OOv
0
and thus concludes the proof of the proposition. |

4.4 Proof of the spectral uniqueness theorem

In this subsection, we prove our spectral uniqueness theorem by generalizing the arguments from [Angenent
et al. 2020, Section 8; Choi et al. 2023, Section 5.6] to the bubble-sheet setting.

Proposition 4.15 (coercivity estimate) For every & > 0 there exist k > 0 and t4 > —o0, such that if !
and J? are k-quadratic at time Ty < T4, then for t < ty we have

(4-171) lwe —powella,co + W ll2,00 < €llPowella,o0-

Proof First of all, to compare our different norms in the transition region, let us abbreviate
(4-172) f~gg < thereexistsa C =C(f) <oosuchthat C=C~'f <g<C/f.
Then, by Theorem 1.9 (uniform sharp asymptotics) and convexity we have

(4-173) 10,01 (¥, @, 1) ~p |T|+/2 for 6 <vi(y,e, 1) <26.

By the mean value theorem this implies

w(Yl (U, @, ‘L'), @, t) N

for 6 <v <26.
W, 9.7) 9|r|1/2 or 0 <v=

(4-174)
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Hence, by the change of variables formula we infer that

1 260 Yl (29a¢77) 2
(4-175) 7 / (W2eH)(v, 9. 7) dv ~g / w?(y.@. 1) dy.
2|/ Jo Yi1(6.0.7)
Remembering (4-160), this shows that
(4-176) CHIW Lg<v<a03ll2,00 < [Wlo<v, (1)<263 5,00 < CIW Lg<p<26312,00-

Now, Proposition 4.14 (energy estimate in tip region) combined with (4-176) yields
(4-177) [Wll2,00 = Cellwlip<v, <26} ll5¢,00 = Cellwee 3,00

where in the last step we used that w(y, ¢, t) = we(y, ¢, ) for vi(p, @, T) > 0, provided that « is small
enough and 7 is negative enough.

Similarly, by (4-176) applied with 8/2 instead of 6, we have
(4-178) lwltg/2<v, <63 3,00 < CIIWg 2,00,

where we also used that W (v, ¢, t) = Wz (v, ¢, t) for v < 6, and so Proposition 4.4 (energy estimate in
cylindrical region) gives

(4-179) [we —powellD,00 = ellwelln,00 + Cel Wall2,00-
Finally, by the triangle inequality we clearly have
(4-180) [welle,oo = llwe —powsella,oo + [IPowe lo,00-

Combining the above inequalities, and adjusting ¢, the assertion follows. |
We also need the following standard derivative estimates:

Lemma 4.16 (derivative estimates) For any L < oo and 6 > 0, there exist k > 0, T4 > —o0 and C < 00
with the following significance. If M is k-quadratic at time ty < t«, then for all T < Ty we have

C
(4-181) sup (| Dv(z)| + | D*v(2)]) < —,
y<L 7|
C

(4-182) sup (|Dv(7)| + | D*v(2)]) < 77
v(2)=6/2 7|

Proof By Theorem 1.9 (uniform sharp asymptotics) and convexity we get

(4-183) |t| sup |Dv(r)|—i—|t|1/2 sup |Dv(r)| < C.
y=<2L v(r)=>6/4

In particular, by standard interior estimates we easily get (4-181). To prove the second derivative estimate
in (4-182), given any (o, 7o) such that v(yg, 79) > 6/2, we consider the corresponding unrescaled
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point (xg, fp). Recall that the unrescaled profile function V = V(x, ¢), viewed as an extrinsic quantity,

evolves by
ViV 1
4-184 0 V=\6j——————|Vii— —.
( ) t ( ij 1+ |DV|2) ij v
Now, in the parabolic ball P(x, tg, /—%9) we have
|4 C
(4-185) cl< <C and |DV|< ——r-r.
—lo V1og(—tp)

Hence, by standard interior estimates for perturbations of the heat equation, taking also into account that
we have good control for the differentiated coefficients thanks to Corollary 2.11 (cylindrical estimate), we

obtain
’ C
(4-186) V=t | D"V |(x0,00) < —F——.
vlog(=to)
Transforming back to our initial variables, this concludes the proof. m|

We can now conclude the proof of our spectral uniqueness theorem:

Proof of Theorem 1.12 In light of Proposition 4.15 (coercivity estimate) our task boils down to
controlling the spectral coefficients a;(t) defined by

2
(4-187) powe(r) = Y ai(t)yi,
i=0
where
(4-188) Yo=y>—4, Y1 =y>cosp), Y»=y>sin(2p).

To this end, recall from Lemma 4.3 (evolution of w¢) that

(4-189) (0 — Pywe = Ewe] + Ew, (V)] +J + K,
where J and K are defined in (4-38). Since £y; = 0, this implies

d .. _ Z Vi
(4-190) T ()= <%[w<@] +¢€[w, x¢(v)]+ J + K, ||Wi||2>'
To proceed, note that

(Yo.¥3)  (Yo.¥?) (o, ¥3)
4-191 = = =38,
oD Wol2 — Iil2 ~ Ival?
(4-192) (Yo, Yov1) = (Yo, Yoy2) = (Yo, ¥1¥2) = 0.
We can thus rewrite (4-190) in the form
d . 2ai(t)

(4-193) 7740 = =+ Fi(o),
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where
(4-194) Fi= <%[w<@] - %Pow% ”l;fjﬁ> + <%[w, pe(v)]+J + K, ”;//2l”2>-
Solving these ODEs, taking into account the fact that a; (7o) = 0 thanks to the spectral assumption (4-1),
we get
1 [P

(4-195) a;i (1) = -5 /r Fi(0)o? do.
In the following, we use the notation

o 2 1/2
(4-196) A(7) := sup (/ Zai(a)2 da) .

U<t v/—1 i=0

Claim 4.17 (decay estimate) For every ¢ > 0, there exist k > 0 and 1« > —oo such that, assuming
k-quadraticity at Ty < 14, for t < 7y we have

(4-197) / |Fi(0)|do < %A(ro).
7—1

Proof By Proposition 4.15 (coercivity estimate) we have
(4-198) [we —powella,co + [ Wall2,00 = e CA(70).

Now, fix a smooth cutoff function ¥: R™ — [0, 1] such that ¥(v) = 1 if v € [1—969, %9] and x(v) =0 if

v [%9, 9]. Then, since spt(/,) [%9, %0], using the estimates (4-40), (4-42) and (4-56) we infer that

(4-199) [(E[w (), xe1 (@)H+J (@) +K(@), ¥i)| < [Ew(2), xe (1 ()T @+ K@) o= [¥i X (w10

<el|lw(t)lig/2<v, ()=} llsee™™/4.

Together with (4-178) and (4-198) this yields

T €
(4-200) f (@ )]+ T + Ko i) = 5 Ao)
o
Next, by (4-18) we have
2—vv
(4-201) Elwe] — ﬂPow<@ = Dlweg] + L2 g — ﬂpow%

4|7| 2v1v; 47|
where
Dv; ® Dvy : D*wq  D?vy: D(vy +v3) ® Duyg
1+ |Dv |2 (14 |Dvy]?)
D?vy: Dvy ® Duy D(vy + v3) - Dug
(14 |Dv1|2)(1 + | Dvy|?)

(4-202)  Bwe] =

Now, using Lemma 4.16 (derivative estimates) we see that

(4-203) (@ we(D)]. )| < |§||w<@<r>||@.
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Indeed, when computing (@[w«(7)], ¥;), the contribution to the integrals from the region y < L decays
quadratically in |7| thanks to (4-181), and the contribution from the region y > L can be bounded by
e(L)/|z| thanks to (4-182) and the Gaussian weight. Hence,

4204) [ latwad vl = o)

Next, we estimate

2—vqv; Yo
< 2010, We 4| |]J()u)<g l;01>

<22Uv11)v2 X%(Ul)(wfﬁ - Z aj %) %>

j=0

(4-205)

IA

Yo 2—v1vy
+Z|a, < X<@( vy — IS |WJ Vi T(l—m(vl))w%%
To proceed, note that since the v; are k-quadratic at time 7y, we have
C
(4-200) IV2—ville < .
Via the energy method as in the proof of Proposition 2.8 this implies
C
(4-207) [ Dvilgy;>0/23 15 = T

Remembering also (4-11), this yields

C
(4-208) 1(V2 = vi) xe(vi) o < R

Hence, arguing similarly as in [Choi et al. 2023, Proof of Claim 5.26], we get

)
(4-209) /_1< 2UI)1;)2X‘€(UI)(w(€_ZaJWJ) %>

and arguing similarly as in [Angenent et al. 2020, Proof of Claim 8.3], we get

(4-210) / Zla, < ”‘vzm( - Yo

Afz|’
Finally, since (1 — x« (vl))w% is supported in the region where the Gaussian weight is exponentially

= HA(TO)

Wz%>

F |A(o)

small, we easily get
< 2 A(x).

(4-211) /f
7—1 |

This concludes the proof of the claim. O

2v1V,

<2 P12 () () we. z/f,>
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Continuing the proof of the theorem, using Claim 4.17 (decay estimate) we can now estimate

0] [T0] (|k|+1)2
(4-212) / Fi(o)o?do| < Z/ |Fi(0)|o*do < ) A(1o) < |7|*eA(xo).
4 k=1t k=1]

Remembering (4-195), this shows that for all T < 7y we have
(4-213) |ai ()] = eA(zo).
Choosing ¢ = % this implies

(4-214) A(tp) = 0.

Together with Proposition 4.15 (coercivity estimate) we conclude that

(4-215) lwell,co + W ll2,00 =0,

hence

(4-216) M= 2.

This finishes the proof of the theorem. |

S From spectral uniqueness to classification

In this section, we conclude the proof of our main classification theorem. We refer the reader to Section 1.7
(Outline and intermediate results) for an overview of our strategy in this section, including some notation
and terminology.

5.1 Existence with prescribed spectral width ratio
In this subsection, we prove that the class {° of Z%xO(z)-symmetric ovals from [Du and Haslhofer
2021], whose definition we recalled in (1-8), realizes all spectral width ratios.

Thanks to the Z%—symmetry the profile function of any /M € #° is orthogonal to the eigenfunctions
ycosg, ysing and p2sin(2¢). Our first goal concerns orthogonality relations with respect to the
eigenfunctions

(5-1) Yiy=1 and v, =y>—4.

To this end, given M = {M;}, and parameters 8 and y, we consider the transformed flow

(5-2) MPY = £V 2 My (s_py}.
For COHVenienCC we set
—In(1 + Be®
(5-3) b= JTTBet—1 and 1 =Y —IAFFD
T
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Then, the renormalized profile functions of M#? and .l are related by

(5-4) vbr(y,r)z(l—l—b)v(lj_b,(l—kr)r).

Our first goal is to find a canonical zero of the map

(5-5) We(b.T) = (m, veh =2, <wz, ufF 4 L2 > )
V8|l

The key towards finding such a canonical zero is Proposition 1.13 (Jacobian estimate), which we restate
here for the convenience of the reader:

Proposition 5.1 (Jacobian estimate) There exist k > 0 and t« > —oo with the following significance.
If M is k -quadratic at time Tty < Tx, then

(5-6) det(JW,(b,T)) >0

holds for all T < ty and all (b,T") with |t|?b? 4+ T'? < 100«2.

Proof Throughout this proof, we write / = O(g) if there exists some constant C < co independent of

T < 19 and (b, T"), with |7|>b% + T2 < 1002, such that | /| < Cg.'? Let us also recall that our cutoff
function x< satisfies

(5_7) X%(U) =0 forv< %9 and X(@(U) =1 forv> %9,

and that thanks to Theorem 1.9 (uniform sharp asymptotics) and convexity for 6 small enough we have
the Gaussian tail estimate

(5-8) e pr<gy < 7173,

and the gradient estimate

(5-9) |DVPT |1 prsg/0y = O(2[71/2).

Now, to prove the proposition, we have to estimate the derivatives with respect to the parameters b and I.
We start with the former:

Claim 5.2 (b-derivatives) For the derivatives with respect to b, we have

(5-10) (W1, 0508 )5 = V2w |12+ O™ and (Y2, 3505 )9 = O(e| ™).

Proof First, by the transformation formula (5-4) we have

_ br Y 4 Y po[
(5-11) dpv (y,f)—v(1+b,(l+F)r) b Dv(1+b,(1+F)t).

12The constraint |t|2b% + I'2 < 100« is motivated by the degree argument below.
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Via integration by parts, this implies

(5-12) (Wi, xe(WPT)pvb )

999

. . w2V . ,bT
:<(%+2y Dy +(4—y )WI)X(@(va)’v> +<%&X<@(vbr) >
I ¥

2(1+b)
where the function v is evaluated at (y /(1 +b), (1 +T')7).

1+b

Using the basic facts recalled above we see that

L2y DY+ (4= bT _ ~10
6-13) ((+ 2 2E E22 ) =™} = 007,
y-Dv bT > ~10
5-14 i ) =0 .
6-14) (28 ) = 00

Next, by the k-quadraticity assumption, we have the #-norm expansion

(1+F)) \/E—L-i-O(L)
R NS TN

y
5-15
©-15) v (1 +b
This yields

. _ 12
516 @H}yD%+m Vi

2(1+0b)
and, taking into account the identity (wzz —16, )9 = 0, also yields

m>=¢ﬂmW+0mr5
¥

2y Dy + (4— ¥, _ —1
(5-17) wﬁ- e WL—0W|l
Finally, observe that
(5-18) (Wi, 3505 )5 = (Wi, xe P30T a6 + (Wi, 2T sl (2T 00T ),
(5-19) (Vi 0P ) P73 vPT )3 = O(12|71).

Combining the above estimates, the claim follows.

Claim 5.3 (I"-derivatives) For the derivatives with respect to I we have

_ _— ory Il (g)
(5-20) (1.0 he = 00 and {200 = 2 24+ 0( )

Proof By the transformation formula (5-4) we have

bT _ y
(5-21) arv (y,r)—(1+b)rvr(1+b,(1+F)r).

Recall that the renormalized profile function evolves by

D?>v:(Dv® D 1
(5-22) by = gy 20 (Dv®DY) v 1
1+ |Dvl? 2 v
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Together with integration by parts, this implies
Vi, xe(@PT)arv®T)y

(5-23) (I+b)t . Do (Dve DY)
= (0. v (e (34 7)) = (e PEHEEZD)
where the function v is evaluated at (y /(1 4+ b), (1 + I')7) as usual.
We can rewrite the first term using the product rule in the form
(5-24) L") = xe @M LYi + Y1 (L= Dxe (0"7) +2Dxe(0"T) Dy
Arguing as above, and using also that £v; = §;, this yields
(5-25) (L)), vy = {xe D811 v)ae + Oz 1)
Next, we have to deal with the term
(5-26) (e@PT), v} <w1, x«;(v”)(g - %)Lf = <X<@(Ubr), S - %>%

To estimate this, we start with the algebraic identity

1 —/2)?
(5-27) B__zv_ﬁ_m_
2 v 2v
Using the tail bound (5-8) we see that
(5-28) (e ") = 1Lv=v2)3 = 0z 70),
and using (1, ¥»)9 = 0 and (5-15) we can estimate
K

(5-29) (1,v—+2)3 < —V24 = > 0(—).

V3| k1
Moreover, remembering that x¢(v) = 0 for v < 29 we infer that

—/2)?
(5-30) (e Y25 < 2o Vil = 0o,
9%

Combining the above observations shows that

v 1 K
(5-31) (X6 (@), w3 — <w1, m(v”)(— + —)> - 0(—).

2 vy 7|
Next, we have to deal with the term

v 1
(5-32) —<1/f2, X«%(vbr)(— + —)> :
2 v/l
To estimate this, we start with the algebraic identity
v 1 u? ul
(5-33) 4 —=V24+—=——, where u=v—-+v2.
2 v \/§ \/gv
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Using in particular the tail bound (5-8) we see that

(5-34) (Vaxe(PT), v2)5 = O(|2|719),
(5-35) (W2 (xe (WP — 1), u?)5 = O(|z|71).
Also observe that

z_ii»__(lo
(5-36) <1{y540ry2|r|1/100},1/f2(u 8|‘L’|2 %—O |‘E|2 .

On the other hand, abbreviating y := 1 {4<y<|r|1/100}, WE can estimate

sm (o) <o 2l ol )
’ 8zl el — 1772 NEVa P VBJzl )l
To proceed, we set
~, ¥
5-38 = —+ ,
(5-38) w=1u NG

where 7 is truncated via the graphical radius p(t) = |t|'/1°%. Note that

(5-39) |lwllge = 0( ) and ||(0; —L)w|y = 0(|‘E|_101/100),

K
7]
Hence, arguing similarly as in the proof of Proposition 2.8 we infer that

(5-40) anm=0(%)

Using also the weighted Poincaré inequality (2-11) this implies

1/2 7} K
(5-41) xX¥ (u + —) = 0(—),

2 V8|l ) s 7]
and in particular via the triangle inequality this also implies

1/2 () 1
(542 ol (u= )| = oge™,

2 V8lTl/ s
Together with (5-36) and (5-37), and with (2, %3 )5 = 8| |2, this yields

2 K
549 =L o)
|| |7l
Moreover, using the graphical radius condition from (1-34) we see that
u’ 2 101
- )< = —101/50
(5-44) '<¥’f21{ys|r|l/w°}’ 5 >% < C(|Yal,u )%ysf?f}’/‘molul O([z| ).
Note also that we have the tail estimate
3
u -
(5-45) <wzx<@(vbf)1{y2m1/wo}, 7> = 0(|z|719).
%
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Combining the above observations shows that

i _ pry( ¥ 1)> :_||¢2||2 (L)
(5-46) <w2,x<@(v )(2+v . \/§|T|2+0 )

Moreover, using by Lemma 4.16 (derivative estimates) and (5-40) we can estimate

(5-47) (1iy<jepr/100p, [¥il| D*v][ Do)y = O(|x|/2073/2),
D?v:(Dv® Dv) )
(5-48) <1 1/100 ,W'X%(Ubr) > = O(|z|” 0)-
{y=lt| IR 1+ |Dv|? S
This shows that
D?v:(Dv® Dv)
5-49 ; 2 — O(|¢|~124/50y
(549) (o1 PAEDTEDD) — o(je1240%)
Furthermore, observe that
(5-50) (i, 0rvl o = (Wi, xe @PT)ArvPT o + (Wi, vyl 0PT)arvPT )se,
(5-51) (Vi 0P (P vPT e = O(1r|719).
Combining the above estimates the claim follows. |

Finally, combining Claim 5.2 (b-derivatives) and Claim 5.3 (I"-derivatives) we conclude that

2 2
(5-52) det(Jwy) = WalTlv2l” O(i).
27| 1

This proves the proposition. |

In the following continuity argument we need a family for which we know a priori that it depends
continuously on the parameters. Hence, instead of with the ancient ovals themselves we will actually
work with sequences of ellipsoidal flows that approximate the elements of the class «4°. Specifically, we
call a mean curvature flow M = {M;},>7 an ellipsoidal flow if its initial condition at some given time
T > —oo is given by an ellipsoid of the form

a? (1—a)?
(5-53) E(a,t,R):= {x eR*: P T ERRE: X34 X3+x; = R2}
for some parameters a € (0, 1), £ < oo and R < oo. To relate to the notation from the introduction,
note that the flow M f *“ from (1-6) is an ellipsoidal flow with initial condition E(a, £, \/2A¢ ) at time

2
—)\K,al‘g,a.

Definition 5.4 (k-quadratic between 7y and 2ty) An ellipsoidal flow M = { M, } ;> is called k-quadratic
between ty and 21y, if log(—T) > 2|7¢|, and

_4
(5-54) max |rl||ve(y, 0. 1) = V24 2 :
279<1=<79) \/—lfl
_ 1/50 _
(5-55) o max 71"+ 1) = V2l cacpeo,afepiro0y < 1.
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The Jacobian estimate at T = 7 also holds for ellipsoidal flows:

Corollary 5.5 (Jacobian estimate for ellipsoidal flows) There exist k > 0 and 74 > —oo with the
following significance. If an ellipsoidal flow L is k -quadratic between ty and 2ty for some Tty < T«, then
we have

(5-56) det(J W, (b, T)) >0
for all (b,T") with |to|?b% + T'? < 100k2.

Proof Indeed, this follows by inspecting the above proof. O

Now, given x > 0 and T, 9 > —oo with log(—T) > 2|1/, set
(5-57) %Z(TQ) = {M: M= {M;};>T is an ellipsoidal flow that is 2k-quadratic between 7y and 27¢}.

We equip %Z (7o) with the topology induced by the parametrization in terms of (@, £, R) € (0, 1) xRy xR 4.
Of course, since the flow is well-posed, if the initial time slices are close, then later time slices are close

as well.

Proposition 5.6 (transformation map) There exist k > 0 and t« > —oo with the following significance.
Given any 1o < 14 and any T < —e 2%, there exist B = B(M) and y = y (M) depending continuously
onJM e %,{ (o) such that the truncated renormalized profile function vfg’y of the transformed flow MB-Y

satisfies

24
(5-58) (127 (1)~ V2)x =0 and <y2_4,vggv(fo)+y > _0
V870l 5

Proof We will combine the above Jacobian estimate with a mapping degree argument. Since Jl is
2k-quadratic between ty and 27y, we have

y:—4
V38|
Thus, using the transformation formula (5-4) and standard Gaussian tail estimates, for all (b,I') €
[=1/12l. 1/]e)x [~4. 4] we get

2K
< =

(5-59) ve(y, 9, T0) — V2 +

% |TO|'

y -4
VBlro|(1+T)

Hence, for « > 0 small enough and 7y < 7« negative enough, the map ¥ is homotopic to

ly2*> T )
’\/§|‘L’0|(1+F) ’

10«
<

(5-60) T (. 9. 10) — V2 —V2b +

% |TO|'

(5-61) (b.T) (ﬁuwl 125

when restricted to the boundary of the disc
(5-62) D:={(b,T)eR?:|79|?h* + T2 < 100x?},
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where the homotopy can be chosen through maps avoiding the origin. Hence,
(5-63) deg(V¥|p) = 1.

On the other hand, by Corollary 5.5 (Jacobian estimate for ellipsoidal flows), as long as we choose x > 0
small enough and ty < 74 negative enough, we have

(5-64) det(JY|p) > 0.

In particular, (0, 0) is a regular value. Recalling also that degree is given by counting the inverse images
according to the sign of their Jacobian, we thus infer that there exists a unique (b, I") € D such that
W(h, ') = 0. By uniqueness, (b, I'), and thus the corresponding (8, ), depends continuously on Jt. This
finishes the proof of the proposition. a

Given k > 0 and 7y > —o0, we set

M is k-quadratic at time 79, and satisfies

(5-65) sl (o) := { < (o) + L= =0,

—4 4>
3 y -
\/_|T0| %
and there exist N' € #° and B, y such that M = NBY

We remind the reader that by the Z%—symmetry the function v!é/t(ro), for M € /(o) is automatically
orthogonal to the eigenfunctions y cos ¢, y sin ¢ and y? sin(2¢), and that by definition of being k-quadratic
at time tp, we in particular have

(5-66) (v (z0) = V2. 1) = 0.

Considering the spectral width ratio map

(vg'(vo), ¥* cos® @ — 2)5¢
(v (z0). y? sin® @ — 2)¢

we can now prove Theorem 1.14 (existence with prescribed spectral width ratio), which we restate here

(5-67) R: A (tg) > R, M>

in the following, technically sharper, form:

Theorem 5.7 (existence with prescribed spectral width ratio) There exist constants § > 0, k > 0 and
T4 > —oo with the following significance. For every 1o < 74 and every r € [(1 +8|to|™") ™1, 1 + 8|70 7",
there exists an M € s, (to) that is a bubble-sheet oval and satisfies

(5-68) R(M) =7

Proof Our argument is related to [Choi et al. 2023, Proof of Theorem 4.11], but with some modifications,
since there is no Rado-type argument available in our setting. Fix constants 74 > —o0 and ¥ >k’ > 0
such that Proposition 5.6 (transformation map) and Theorem 2.9 (strong «-quadraticity) apply. Possibly
after decreasing 74, given any 7ty < 74, by the uniqueness result of symmetric ancient ovals from [Du and
Haslhofer 2021], we can assume that the O(2)x O(2)-symmetric oval MY™ is x’/100-quadratic at time 7
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and satisfies

—4
(5-69) <W + 2= p? 4> .
(7o) \/—|T0| =0

Note also that R(M>™) = 1 thanks to the symmetry. Let § := «’/100. Our goal is to show given any
0 < &' < § that the image of ®: 51, (to) — R contains the points r+ = (1 4 §'|zo|~1)*!.

Fixing any sequence 7T; — —o0, denote by Jl, ; the ellipsoidal flow whose initial condition at (unrescaled)
time 7; is given by the ellipsoid

(5_70) Ea,i = E(a’ Ea,ia Ra,i),

where {,; and R, ; are such that .l,; becomes extinct at (unrescaled) time 0 and satisfies

1 2
5-71 e Pt da(p) =16 +10g.g,
( : /(Ma,i)—l (47T)3/2 (p) 27SIXR2 T 3 ES2xR

where © g2, g =4/e < /27 /e = Og1,r2. Now, given any i > 1, consider all a € (0, 1) such that there
exist some fB4,; and yg4,; such that the transformed flow ¢ := J(/Lf”l.’i Yai is k’-quadratic at time 7o, and
satisfies the orthogonality condition

(5-72) <v () + 2%y _4>
€0 «/_|To|’ =0

Claim 5.8 (compactness) We have limsup;_, o, sup,(|Ba.i| + |Va,i]) < co.

Proof To begin with, since the transformed flow L¢ is x’-quadratic at time 7o, by comparison with
the round shrinking sphere and the round shrinking bubble-sheet we see that the absolute value of its
(unrescaled) extinction time is bounded by some ¢ = ¢(tg). Together with the fact that the untransformed
flow (M, ; becomes extinct at (unrescaled) time 0, this yields

(5-73) |Bail <c.

To establish the bound for y, ; for any given i >> 1 and a, we consider the flow M= Ji/tﬂ“ 0 and analyze
Huisken’s monotone quantity [1990],

I 120402
(574) 0= [ Garae "V dA (),

at dyadic annuli of scales r; = 2/, where j € Z. By the equality case of the monotonicity formula,
if O(rj41) —O(rj—1) = 0 then M is selfsimilarly shrinking at scale r;. Upgrading this to a quantitative
rigidity statement, via a standard contradiction argument similarly as in [Cheeger et al. 2013, Proof of
Lemma 3.2], for any ¢ > 0 we can find a § > 0 such that if ©@(rj 1) — ©O(rj_;) < then M is e-close at
scale r; to a selfsimilarly shrinking noncollapsed hypersurface. Recall also that the only selfsimilarly
shrinking noncollapsed hypersurfaces in R* are the flat plane, the round shrinking sphere, and the round
shrinking neck and the round shrinking bubble-sheet, and that the value of Huisken’s quantity for these
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four solutions are ordered by size. Moreover, note that by (5-71) and (5-73) there is some Ry < oo,
independent of i > 1 and a, such that
(5-75) O(Ro) = 1O51r2 + 2O g2,R.

Hence, by quantitative differentiation, similarly as in [Cheeger et al. 2013, Proof of Lemma 3.2], given
any ¢ > 0 we can find an integer J < oo, independent of i > 1 and a, such that for all j > J the flow M
is e-close at scale r; to the round shrinking bubble-sheet. Now, choosing & = ¢(z¢) small enough, if y, ;
was very negative, then we would obtain a contradiction with the orthogonality condition (5-72). This
proves that y, ; is bounded below.

Finally, if y,,; was very large, then by a similar argument the flow J{ at (renormalized) time 7o would
be very close to a blowup limit of ., ;, which would again violate (5-72). This shows that y, ; is also
bounded above, and thus concludes the proof of the claim. |

Now, for each fixed i >> 1, consider the largest interval [a;, b;] containing % such that for every a € [a;, b;]
there exist some Bg,i, Ya,i such that the transformed flow A := A/Lg“l.”"y“’i
(i) is x’-quadratic at time T,
(i1) satisfies the orthogonality condition (5-72),
e 1 3 a
(iii) and we have'” that R(MT) € [r—, r4].
Note that such a largest interval indeed exists thanks to Claim 5.8 (compactness), and is nonempty since it

contains a = % thanks to [Du and Haslhofer 2021]. Also, note that by the Z,-symmetry from swapping y;
and y,, we have

(5-76) b =1—a;.
Moreover, observe that
(5-77) a; >0,

since 7; and 7 are fixed and thus, remembering also Claim 5.8 (compactness), for a very close to 0 the
orthogonally condition (5-72) cannot hold.

In general it is not obvious whether or not /I depends continuously on a, since the parameters Bg,;
and y,,; might be nonunique. However, fortunately we can locally construct a continuous family satisfying
the orthogonality condition (5-72) as follows. Given any a; € [a;, b;], note that J(/L?i is an ellipsoidal flow
with initial condition

(5-78) Ei = E@;. 4, e"/?R;) attime T; ="' T; + B;,
where we abbreviated
(5-79) Bi=PBa.i and ¥i=va.

130 be clear, the definitions of «’-quadraticity and the width ratio map % for ellipsoidal flows are verbatim the same as for
ancient bubble-sheet ovals.
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Now, by Theorem 2.9 (strong x-quadraticity) and Corollary 2.10 (full rank), for 7 large enough Jl/tfi is
%K-quadratic between 1y and 279. We consider

(5-80) Mg = B7
Note that A7La,i is an ellipsoidal flow with initial condition
(5-81) Eqi=E(a.t;,e¥@i/2R;) attime Tj,

and that it is 2«x-quadratic between 1y and 27, provided «a is sufficiently close to a;. Hence, applying
Proposition 5.6 (transformation map) in a neighborhood of a; we get a continuous family

(5-82) ars Alg‘;’f’fa’f

that satisfies the orthogonality condition (5-72), where we abbreviated

(5-83) Basi:=Bllla;) and  Fai:=y (o).

Finally, remembering (5-80) we can rewrite this continuous family as

(5-84) ar> MEffeVi Ea’i’7i+)7a’i.

In particular, considering this continuous family around a; = % it follows that

(5-85) aj < 3.

Claim 5.9 (saturation) For all large i we have

(5-86) R € {r—, rq}.

Proof By definition of ¢; and the above construction of a continuous family near a; = a;, either condition

(i) or condition (iii) must be saturated. Suppose towards a contradiction condition (i) is saturated for
increasingly high values of i, ie that at least one of the weak inequalities

/

(5-87) a7 )— 2+ yio4l _ «

- V! y,(PaTO - = T |
<"° V8|7l ll5e ~ 170l

(5-88) sup |2’ (-, ) = V2l cagpoapepr /100y < 1.

T€[270,70]
is an equality. After passing to a subsequence the Jl/L?i converge to an ancient noncollapsed flow ., whose

tangent flow at —oo is given by (1-1), which is SO(2)-symmetric in the x3x4-plane centered at the origin,
and which satisfies the inequalities (5-87) and (5-88) as well as the centering conditions

(5-89) p+ (il (rg) —V2) =0,
24
(5-90) <v”‘+y—, 2—4> —0.
¢ NEE g %

Thus, by Corollary 2.10 (full rank) our limit /M is a bubble-sheet oval, and by Theorem 2.9 (strong

1/10

k-quadraticity), it is strongly k-quadratic from time ty. In particular, p(t) = |7| is an admissible
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graphical radius function for T < 7y, so inequality (5-88) is a strict inequality for i large enough. Thus, it

must be the case that
/

y2—4 K
VBlwolllse ol

On the other hand, provided 7y < 74 is sufficiently negative, by Lemma 2.7 (quantitative Merle—Zaag

(5-91) v (v, 0. 10) = V2 +

type estimate) we have

!/

- J‘/(/ K
(5-92) |p—(vig (o)) ll5e =< T00[z0]

and by the orthogonality condition from equation (5-90), together with the facts that (v{é‘, 2 sin(2¢))5% =0
and R (M) € [r—, r4], we have

2 /
y-—4 106
(5-93) Po(v (r0) — V2 + <
% V8|0l s ~ Il
Since §’ < ﬁx’ , this contradicts (5-91), and thus proves the claim. O

To conclude, by Claim 5.9 (saturation) and the Z,-symmetry from swapping y; and y, it must be the
case that

(5-94) (R, Ry = {r—, v ).

Hence, passing to subsequential limits, we get ancient noncollapsed mean curvature flows ., whose
tangent flow at —oo is given by (1-1), that are SO(2)-symmetric in the x3x4-plane centered at the origin,
and satisfy

2

M yo—4

(5-95) <v t 4+ Y —4> =0 and R(UMy)=r4,
© T Bl %

and that are x’-quadratic at time 7. In particular, by Corollary 2.10 (full rank) the flows /(4 are bubble-
sheet ovals, and hence, remembering also that they are obtained as limits of transformed ellipsoidal flows,
and that k" < k, they belong to the class /(7). We have thus showed that the image of R: A (t9) — R
contains the points r4. This proves the theorem. |

5.2 Conclusion of the proof

In this subsection, we conclude the proof of the main theorem.

Given any bubble-sheet oval M = {M;} in R* (with coordinates chosen as usual) and parameters o € R2,
BeR,yeRand ¢ €]0,27), we set

(5-96) MEPBY S = (V2R (M (i—py — @)},

where the translation by « is understood to be in the xx;-plane, and Ry denotes rotation by ¢ in the
X1X,-plane centered at the origin.
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Proposition 5.10 (orthogonality) For any bubble-sheet oval Al in R* and any k > 0, there exists a
constant T4 = T« (M, k) > —oo with the following significance. For every 1y < T«, there exist @ € R?,
B eR, yeR and ¢ € [0,27) such that the truncated renormalized profile function v%’ﬂ Y of the
transformed flow M%P-Y-9 satisfies

y2—4
597)  (EPT?(z), y?sin(2p))x =0 and <v%“¢(m)+ y2—4> =0,
V8lto| %

and such that M%-P-7-9 js k-quadratic at time 1y, in particular

(5-98) Py (0P (1) = v2) =0,

Proof We will solve four equations using a degree argument similarly as in [Angenent et al. 2020,
Section 7], and solve the remaining fifth equation using basic linear algebra. For convenience, we set

—In(1 T

(5-99) d=e b= TFpei—1, T=yZIUEED

T
Then

R_4y—a
(5-100) vBYd (3 1) = (1 +b)v(L, 1+ I‘)t).
1+b
Our first goal is, given any ¢ € [0, 27), to find a suitable zero of the map
(1, v(@br‘qb «/_

(ycosgo,v(@ e _ \/_ e
(ysing, v§*T? = V2)y
abT

(72 =407 + (02 =)/ (VBleD)u
To this end, observe that the vector space spanned by the eigenfunctions
(5-102) Vo=1 Y1 =ycosg, yYp=ysing,
as well as the eigenfunction
(5-103) v3=y> -4,

are SO(2)-invariant. Hence, if (a, b, T') is a solution of ¥°(a, b, T") = 0, it actually solves ¥ (a, b, T) =0
for all ¢ € [0, 27r). To proceed, we need:

(5-101) W (a,b,T) =

Claim 5.11 (transformation estimate) For every x > 0 there exists T« = T« (M, k) > —o0 such that for
all T <ty and all (a,b,T) €[-1,11* x[-1/|z|,1/|7]] x [—%, %], we have

(5-104) '< Vo ,vféb”—\/i> —(ﬁb— i )5 £
1¥oll? 3 VBlr|(14 1) 500 7|

Vi abTo > 2a; K
5-105 , _J2) - < ’
10 <||w,||2 % V8lt|(1+T)| = 500|z]
¥3 abTo | Y —4> r K
5-106 , < ‘
©-100 ‘<||W3||2 f|z| VB|t|(1+T)| ~ 500|<|
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Proof By [Du and Haslhofer 2024, Proposition 6.2 and Section 2.2], for any «’ > 0 there exists 7, > —00
such that J is strongly k’-quadratic from time 4. In particular, for all T < 7, we have

2 /

ye—4 K
(5-107) vy, y2. 1) — V2 + NG %Sm.
Since (a, b, I') are in the given rectangle, using (5-100) this implies
(5-108) v*T0 = 24 V2bh - i - ! (y2—4)+Lycos¢
VBltl(1+T)  VB8Jz|(1+T) V8lz|(1+T)
2as . K’

VRS SR O(H)

in #-norm. Choosing x” < «, together with standard Gaussian tail estimates, the claim follows. a

Now, by Claim 5.11 (transformation estimate), for x > 0 small enough, for every 7y < 74, the map ¥°
restricted to the boundary of

(5-109) Dy :={(a.b,T) e R*: |a|® + |zo|*h? + T2 < 1002}

is homotopic to the injective map

(5-110) (abF)H(\/EH%IIZb [Vol?lal> _ 2[¥11%a lys )T )

 VBlrol(1+ 1) VBlrol(1+T) v8|ze|(1 4+ T)

through maps from 9D, to R*\ {0}. The map W° from the full ball to R* has therefore degree one.
Hence, there exists (a,b,T") € D, solving ¥°(a, b, ') = 0. Remembering the above discussion, this
actually solves

(5-111) U(a,b,T)=0 forall ¢.

Finally, observe that

(5-112) (v sin(20). v§"T? (0))ae = (»? sin(2(p + ), v (z0)) .
Hence, choosing ¢ € [0, 27r) such that

cos(2¢)\ ( (»?sin(2¢). vE? 0 (zo))s \ _
G113 (sin(2¢>) ' (<y2 c0s(29), vébm(m))%) =0

we can obtain a solution of the remaining fifth equation
(5-114) (7 sin(2¢). v (z0))oe = 0.

Noting also that by the above estimates the transformed flow MEBY-2 s k-quadratic at time 7, this
finishes the proof of the proposition. O

We can now prove Theorem 1.3 (classification of bubble-sheet ovals):
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Proof of Theorem 1.3 Let L' be a bubble-sheet oval in R*. As always, we work in coordinates such
that the tangent flow at —oo is given by (1-1) and such that the SO(2)-symmetry is in the x3x4-plane
centered at the origin. By Proposition 5.10 (orthogonality), given any «’ > 0 and 7o < (M, k) after a
suitable space—time transformation we can assume that the truncated renormalized profile function v!é’tl

of M! satisfies

2
S5l e =0 ad (ol 0+ 20 -4) —o
V38|1o| %

and such that M! is «’ -quadratic at time tg; in particular,
(5-116) py ' () —v2) = 0.

Let § > 0, x > 0, 74+ > —o0 be constants such that Theorem 1.14 (existence with prescribed spectral width
ratio) and Theorem 1.12 (spectral uniqueness) apply. Possibly after decreasing 74« and choosing k' <« §
we can arrange that

)
(5-117) |RMY) —1] < | o
Thus, by Theorem 1.14 (existence with prescribed spectral width ratio) there exists a bubble-sheet oval (2,
that up to transformation belongs to the class ${°, that satisfies

y2—4
5-118 +2 =2 y2-4) =o,
( ) <U<€ (TO) \/_|‘L'0| y >%
(5-119) R(M?) = R(MD),

and that is k-quadratic at time 7y; in particular,
(5-120) s (vl (z9) — V2) = 0.
Recall also that by construction we have

(5-121) (il (z0), 2 sin(29)) 5 =

Hence, we can apply Theorem 1.12 (spectral uniqueness) to conclude that the bubble-sheet ovals .it! and
M? coincide. We have thus shown that any bubble-sheet oval in R* belongs, up to parabolic rescaling
and space—time rigid motion, to the oval class 4°. This proves the theorem. |

Finally, let us explain how the corollaries follow:

Proof of Corollary 1.4 By general theory [White 2003; Haslhofer and Kleiner 2017] all blowup limits
of mean-convex mean curvature flow of 3-dimensional hypersurfaces are ancient noncollapsed flows
in R4, in particular smooth and convex until they become extinct. Moreover, by the quoted references for
any ancient noncollapsed flow .l in R* the tangent flow at —oo is either (i) a round shrinking sphere, or
(i1) a round shrinking neck, or (iii) a round shrinking bubble-sheet, or (iv) a static plane.
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In case (i), it follows from Huisken’s classical roundness estimate [1984] that the flow il itself is a round
shrinking S3. In case (iv), by the equality case of Huisken’s monotonicity formula [1990], the flow .l
itself must be a static R3. In case (ii), by the work of Brendle and Choi [2019; 2021] and Angenent,
Daskalopoulos and Seum [Angenent et al. 2020], the flow .l is, up to scaling and rigid motion, either
the round shrinking R x S2, or the rotationally symmetric 3d-bowl or the rotationally symmetric 3d-oval
from [White 2003].

We can thus assume from now on that we are in case (iii). We consider three subcases according to the
rank of the bubble-sheet matrix Q:

e Ifrk(Q) =0, then by [Du and Haslhofer 2024, Theorem 1.2], which has been obtained as a consequence
of the no-ancient-wings theorem from [Choi et al. 2024], the flow Jl must be either a round shrinking
R2 x ST or a translating R x 2d-bowl.

e Ifrk(Q) =1, and if A does not split off a line then it is strictly convex by Hamilton’s tensor maximum
principle [Hamilton 1986], and if Al does split off a line then up to scaling and rigid motion it is R x 2d-oval
by [Angenent et al. 2020].

e Ifrk(Q) = 2, then by Theorem 1.3 (classification of bubble-sheet ovals), the flow Jl is, up to scaling
and rigid motion, either the O(2)x O(2)-symmetric 3d-oval from [Haslhofer and Hershkovits 2016], or
belongs to the one-parameter family of Z§x0(2)—symmetric 3d-ovals from [Du and Haslhofer 2021]. O

Proof of Corollary 1.5 By [Choi et al. 2024; Du and Haslhofer 2024] there are no compact solutions
with rk(Q) = 0, and by a result of Choi and Haslhofer [2024] there are no compact solutions with
rk(Q) = 1, either.

Consider the canonical map ¢: 4° — & that sends any Al € ${° to its equivalence class [M] € ¥. By
Theorem 1.3 (classification of bubble-sheet ovals) and the above, the map ¢ is well-defined and surjective.
Suppose now that g(M;) = g(My). Then, by definition of our equivalence relation, ., is obtained
from M, by a space—time rigid motion and parabolic dilation. Since all elements at of the class ${°
become extinct at the origin at time zero, there cannot be any nontrivial space—time translation, and
thanks to the condition that the Huisken density at time —1 equals (4/e + \/m) /2 there cannot be
any nontrivial parabolic dilation either. So L, is obtained from .il; by a rotation R € SO(4). Since the
rotation fixes the tangent flow at —oo, the rotation must be of the form R = Ry, R34, where R;; is a
rotation in the x;x;j-plane. Moreover, since R34 acts trivially thanks to the SO(2)-symmetry, we can
assume R = Rq;. To proceed, let us consider the spectral width matrix

B. B. .
(WA (1), y2 cos2 o — 25 (v (o), y? sin(29))x
W (19), y2 sine))se (v (10), p2sin® 9 —2)5 )

where B, y are chosen such that the orthogonality conditions (5-58) hold. Note that W () is diagonal for
any Jl € «° thanks to the Z%—symmetry. If W(ly) is a multiple of the identity matrix, then applying

(5-122) W) = (
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Theorem 1.12 (spectral uniqueness) we see that l; = JMy is the unique SO(2)xSO(2)-symmetric
bubble-sheet oval, and if W (Jl;) has two distinct eigenvalues then, taking also into account again the
Z%-symmetry, we see that either Jl, = M or Al, is obtained from Jt; by a rotation by 7r/2. This shows
that the induced map ¢: 4°/Z, — & is bijective. Hence, by definition of the quotient topology, the map g
is a homeomorphism.

To conclude, given any M € #4°, we can choose suitable ¥ > 0, 79 > —o0 and f, y such that setting
M= MY and r := R(M'), we have M € A (o) and (1 4 8|to| ™)™ < r < 14 8|o|~". We equip
A (tg) with the smooth topology. Then, by Theorem 1.12 (spectral uniqueness) and Theorem 1.14
(existence with prescribed spectral width ratio) there exists an open neighborhood $' C ) (to) of
M’ such that the restricted width ratio map %|y is a homeomorphism from $’ to an open interval
containing r. Furthermore, possibly after decreasing the intervals, arguing as in the proof of Theorem 1.14
(existence with prescribed spectral width ratio) we can find a homeomorphism from $’ to an open
neighborhood $ C ° of .. This shows that every Jl € s4° has a neighborhood homeomorphic to an
open interval. Similarly, given any two elements i1, M, € A°, we can choose suitable ¥ > 0, g > —0c0
and f;,y; for i = 1,2 such that setting M} := /i/t?"’yi and r; := R(M;), we have A} € s (t9) and
(1 +8|to|™H ™! <r; <14 8|t9|~". We can assume without loss of generality that ; < r,. Then, by
Theorem 1.12 (spectral uniqueness) and Theorem 1.14 (existence with prescribed eccentricity), the map
[0, 1] — % given by s +> [R™!(s7; + (1 —s)r2)] is a continuous path in ¥ from [;] to [M5]. This shows
that & is connected. Observing also that & is Hausdorff and second countable, we thus conclude that
X ~ A° /7, is homeomorphic to a half-open interval. m|
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