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A cubical model for .1; n/-categories

TIM CAMPION

KRZYSZTOF KAPULKIN

YUKI MAEHARA

We propose a new model for the theory of .1; n/-categories (including the case nD1) in the category
of marked cubical sets with connections, similar in flavor to complicial sets of Verity. The model structure
characterizing our model is shown to be monoidal with respect to suitably defined (lax and pseudo) Gray
tensor products; in particular, these tensor products are both associative and biclosed. Furthermore, we
show that the triangulation functor to precomplicial sets is a left Quillen functor and is strong monoidal
with respect to both Gray tensor products.
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Introduction

The theory of .1; n/-categories is becoming an important tool in a number of areas of mathematics,
including manifold topology, where it is used in the definition and classification of extended topological
quantum field theories [Lurie 2009], and in derived algebraic geometry, where it is used to capture certain
properties of the “category” of correspondences [Gaitsgory and Rozenblyum 2017a, 2017b]. There are
several equivalent models for this theory, including: n-trivial saturated complicial sets [Verity 2008b,
2007; Riehl and Verity 2020; Loubaton 2022], n-quasicategories [Ara 2014], ‚n-spaces [Rezk 2010] and
n-fold complete Segal spaces [Barwick 2005].
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Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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1116 Tim Campion, Krzysztof Kapulkin and Yuki Maehara

We propose a new model for the theory of .1; n/-categories, using comical (composition + cubical) sets.
Comical sets are certain marked cubical sets (having marked n-cubes for all values n � 1), just like
complicial sets are certain marked simplicial sets. Our model allows for a particularly elegant and simple
treatment of the (lax and pseudo) Gray tensor products since they are inherently cubical in nature. One
can find drawings of cubes in Gray’s book [1974], and the simplest ways of defining the lax Gray tensor
product of strict !-categories are via cubical sets [Crans 1995; Al-Agl et al. 2002].

Because of the obvious similarities with complicial sets, there is a natural comparison functor to marked
simplicial sets. To obtain it, we extend the usual triangulation functor T W cSet! sSet from cubical sets
to simplicial sets to a marked version T W cSetC! PreComp. Here T is valued not in the whole category
sSetC of marked simplicial sets but in the reflective subcategory PreComp of precomplicial sets, so that
our results hold up to isomorphism rather than homotopy. PreComp supports a model structure that is
Quillen equivalent to the complicial model structure on sSetC and the lax Gray tensor product on sSetC

is more well-behaved when restricted to PreComp.

With that, our main results (see Theorems 3.3, 2.16, 6.5, 6.10 and 7.1) can be summarized as follows:

Theorem The category cSetC of marked cubical sets carries a model structure whose cofibrations are
the monomorphisms and whose fibrant objects are the comical sets. This model structure is monoidal
with respect to both the lax and pseudo Gray tensor products , which are simultaneously associative and
biclosed.

Furthermore , the triangulation functor T W cSetC! PreComp is left Quillen and strong monoidal with
respect to both Gray tensor products.

Since this paper was first made available in 2020, a slight adaptation of our model was proven to be Quillen
equivalent via the triangulation functor to n-trivial saturated complicial sets in [Doherty et al. 2023].
The “special cases” of this result had previously been known for .1; 0/-categories (ie 1-groupoids)
[Cisinski 2006] and .1; 1/-categories [Doherty et al. 2024], although these papers consider slightly
different versions of the cubical site from us.

In particular, our model validates the assertions [Gaitsgory and Rozenblyum 2017a, Propositions 10.3.2.6
and 10.3.2.9], given there without a proof or a reference. They are essentially the desiderata of a convenient
model of .1; 2/-categories used throughout [Gaitsgory and Rozenblyum 2017a, 2017b], and in that
sense our model in cSetC is a convenient such model. We should note however that these assertions
were previously proven in [Verity 2008b] and [Maehara 2021] in the contexts of complicial sets and
2-quasicategories, respectively.

Finally, our work owes a great deal to [Steiner 2006], where the (semi)cubical nerves of strict !-categories
are analyzed. In particular, our definition of comical open boxes in Section 3 follows [Steiner 2006,
Example 2.9].

Geometry & Topology, Volume 29 (2025)
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Organization of the paper We begin in Section 1 by reviewing the necessary background on model
categories, cubical sets and complicial sets. In Section 2, we introduce marked cubical sets, study their
basic properties, and construct both the lax and the pseudo Gray tensor products. In Section 3, we define
comical sets and construct the model structure for them. As a proof of concept, we define in Section 4 the
homotopy 1-category of a comical set and show that it has expected properties. We then turn our attention
to the comparison between the cubical and the simplicial approaches. We extend the triangulation functor
to marked cubical sets in Section 5, show that it is strong monoidal with respect to both the lax and the
pseudo Gray tensor products in Section 6, and that it is a left Quillen functor in Section 7.

Acknowledgements The authors benefited greatly from conversations about related matters with Alexan-
der Campbell, Emily Riehl and Dominic Verity. The paper was greatly improved by the comments
of the referee. This material is based upon work supported by the National Science Foundation under
grant 1440140, while the authors were in residence at the Mathematical Sciences Research Institute in
Berkeley, California, in the program Higher categories and categorification in Spring 2020. We would
like to thank the MSRI for its hospitality, and the program organizers for giving us the opportunity to
participate. Above all, we thank (again) Emily Riehl for continued support and encouragement.

1 Background

In this section we introduce the notation and collect preliminary results to be used later in the paper.

1.1 Model categories

In this subsection, we review (a special case of) the theory of Olschok [2009] for constructing combinatorial
model structures with all objects cofibrant, which generalizes the theory of Cisinski [2006] for constructing
combinatorial model structures on presheaf categories with cofibrations the monomorphisms. This theory
will be used to construct the model structures for comical sets.

Definition 1.1 [Simpson 2012] We say a set ƒ of trivial cofibrations in a model category M is
pseudogenerating if and only if any map f that has a fibrant codomain and the right lifting property with
respect to ƒ is a fibration.

Now fix a locally presentable category K.

Given a bifunctor ˇW K�K! K and maps f WA!A0 and g W B! B0 in K, we denote by

f y̌ g W .A0ˇB/qAˇB .AˇB0/!A0ˇB0

the Leibnizˇ-product of f and g.

Geometry & Topology, Volume 29 (2025)



1118 Tim Campion, Krzysztof Kapulkin and Yuki Maehara

Similarly, for any natural transformation � W F ) G between endofunctors F;G W K! K and for any
f WA!A0 in K, we denote by

y�f WG.A/qF.A/ F.A0/!G.A0/

the Leibniz product of � and f .

By the cellular closure of a set S of maps in K, we mean the closure of S under pushouts along arbitrary
maps and transfinite composition. In the rest of this subsection, assume that we are given a small set I of
maps in K whose cellular closure is precisely the monomorphisms.

Definition 1.2 A functorial cylinder on K is a functor C W K! K equipped with natural transformations
@0; @1 W Id�C and � WC! Id such that �@0D�@1D id. We also write @X D Œ@0

X
; @1

X
� WXCX!CX . We

say that C is a cartesian cylinder if the functor C preserves colimits and moreover @X is a monomorphism
for all X .

Definition 1.3 Suppose that K admits a cartesian functorial cylinder C D .C; @0; @1; �/. Let S be a set
of morphisms in K. We define ƒ.K; I;C;S/�MorK to be the smallest class of morphisms containing

S [fy@0
i j i 2 Ig[ fy@1

i j i 2 Ig;

closed under the operation f 7! y@f .

Theorem 1.4 [Olschok 2009, Theorem 2.2.5, Lemma 2.2.20] Let K and I be as above. Suppose we are
given a cartesian functorial cylinder C on K and a set S of monomorphisms in K. Then there exists a
model structure on K uniquely characterized by the following properties:

� The cofibrations are the monomorphisms.

� The set ƒ.K; I;C;S/ is a pseudogenerating set of trivial cofibrations.

This model structure is combinatorial and left proper.

Proposition 1.5 Let K and I be as above. Suppose K admits a model structure whose cofibrations
are the monomorphisms , and a pseudogenerating set ƒ of trivial cofibrations. Suppose further that K is
equipped with a tensor product ˇW K�K! K that forms part of a biclosed monoidal structure. Then
these data form a monoidal model structure if and only if

� f y̌ g is a cofibration whenever f;g 2 I ,

� f y̌ g is a trivial cofibration whenever f 2ƒ and g 2 I , and

� f y̌ g is a trivial cofibration whenever f 2 I and g 2ƒ.

Proof This is an instance of [Maehara 2021, Proposition A.4]. See also [Henry 2020, Appendix B].

Geometry & Topology, Volume 29 (2025)



A cubical model for .1; n/-categories 1119

1.2 Cubical sets

We will define cubical sets as presheaves on the box category, denoted by �. The category � is the
(nonfull) subcategory of the category of posets whose objects are the posets of the form Œ1�n WD f0� 1gn,
and whose maps are generated by the cubical operators

� faces @n
i;" W Œ1�

n�1! Œ1�n for i D 1; : : : ; n and "D 0; 1 given by

@n
i;".x1;x2; : : : ;xn�1/D .x1;x2; : : : ;xi�1; ";xi ; : : : ;xn�1/;

� degeneracies �n
i W Œ1�

n! Œ1�n�1 for i D 1; 2; : : : ; n given by

�n
i .x1;x2; : : : ;xn/D .x1;x2; : : : ;xi�1;xiC1; : : : ;xn/;

� max-connections  n
i;0
W Œ1�n! Œ1�n�1 for i D 1; 2; : : : ; n� 1 given by

 n
i;0.x1;x2; : : : ;xn/D .x1;x2; : : : ;xi�1;maxfxi ;xiC1g;xiC2; : : : ;xn/;

� min-connections  n
i;1
W Œ1�n! Œ1�n�1 for i D 1; 2; : : : ; n� 1 given by

 n
i;1.x1;x2; : : : ;xn/D .x1;x2; : : : ;xi�1;minfxi ;xiC1g;xiC2; : : : ;xn/:

We will omit the superscript n when no confusion is possible.

A straightforward computation shows that cubical operators satisfy the following cubical identities. These
maps obey the following cubical identities:

@j ;"0@i;" D @iC1;"@j ;"0 for j � i;

�i�j D �j�iC1 for j � i;

�j@i;" D

8<:
@i�1;"�j for j < i;

id for j D i;

@i;"�j�1 for j > i;

j ;"0i;" D

�
i;"jC1;"0 for j > i;

i;"iC1;" for j D i; "0 D ";

j ;"0@i;" D

8̂̂̂<̂
ˆ̂:
@i�1;"j ;"0 for j < i�1;

id for j 2 fi�1; ig; "D "0;

@i;"�i for j 2 fi�1; ig; "D 1�"0;

@i;"j�1;"0 for j > i;

�ji;" D

8<:
i�1;"�j for j < i;

�i�i for j D i;

i;"�jC1 for j > i:

Let us point out that this is only one of the many choices of the box category that appear in the literature.
References such as [Maltsiniotis 2009; Kapulkin et al. 2019] consider a box category that is spanned by
faces, degeneracies and one of the connections, specifically the max-connection (although dual arguments
can be used to work with min-connections as well). In [Cisinski 2006; Jardine 2006], a subcategory
of our � is considered that is generated by the face and degeneracy maps, but no connections; and in
[Steiner 2006], an even smaller subcategory is considered, as it is spanned by the face maps alone. At the
other extreme, [Kapulkin and Voevodsky 2020] works with � as the full subcategory of Cat.

Our choice is intentional. Since our (marked) cubical sets will be used to model .1; n/-categories, all
of our cubes need to have an orientation, and hence the symmetry and diagonal maps appearing in the

Geometry & Topology, Volume 29 (2025)



1120 Tim Campion, Krzysztof Kapulkin and Yuki Maehara

choices strictly larger than ours are undesirable. On the other hand, the box category with at least one
connection is known to have better categorical properties than the ones without connections; see [Tonks
1992; Maltsiniotis 2009]. Finally, allowing for at least one connection, we choose to work with both to
allow for a convenient description of the opposite .1; n/-category.

Given our choice of the box category, we have the following normal form of morphisms in �.

Theorem 1.6 [Grandis and Mauri 2003, Theorem 5.1] Every map in the category � can be factored
uniquely as a composite

.@c1;"
0
1
� � � @cr ;"

0
r
/.b1;"1

� � � bq ;"q
/.�a1

� � � �ap
/,

where 1� a1 < � � �< ap, 1� b1 � � � � � bq , bi < biC1 if "i D "iC1 and c1 > � � �> cr � 1.

With this, one can describe � as the category generated by the cubical operators, subject to the cubical
identities.

Remark 1.7 In particular, any composite face map can be written uniquely as ˛ D @k1;"1
: : : @kt ;"t

with
k1 > � � �> kt . Geometrically, such an ˛ is the intersection of all the @ks ;"s

.

This theorem allows us to prove the following key property of �:

Theorem 1.8 The category � is an EZ Reedy category with the structure defined as

� degŒ1�n D n,

� �� is generated under composition by degeneracies and (both kinds of ) connections ,

� �C is generated under composition by face maps.

The key difficulty in proving this theorem lies in showing that each map in �� is determined by its
sections. This is done by induction on the length of the decomposition of such a map given in Theorem 1.6.
Before proceeding with the proof, we state two lemmas. The first of these contains the base case of
induction, whereas the second contains the technical heart of the proof — a case analysis allowing us to
complete the inductive step.

Lemma 1.9 (1) The sections of �i are @i;0 and @i;1.

(2) The sections of i;0 are @i;0 and @iC1;0.

(3) The sections of i;1 are @i;1 and @iC1;1.

Lemma 1.10 Given two distinct maps p;p0 W Œ1�n! Œ1�n�k in��, there is a face map

@i;" W Œ1�
n�k
! Œ1�n�.k�1/

such that p@i;" ¤ p0@i;" and at least one of p@i;" and p0@i;" is in ��.

Geometry & Topology, Volume 29 (2025)



A cubical model for .1; n/-categories 1121

Proof We proceed by induction with respect to k with the base case of k D 1 handled by Lemma 1.9.

For the inductive step, we may use Theorem 1.6 to write

p D i1;"1
� � � il ;"l

�j1
� � � �jm

and p0 D i0
1
;"0

1
� � � i0

l 0
;"0

l 0
�j 0

1
� � � �j 0

m0
;

and without loss of generality we may assume that m�m0.

We first suppose that there is an index ji that does not appear in the set j 0
1
; : : : ; j 0m0 , ie there is a degeneracy

in the decomposition of p that is not present in the decomposition of p0. Then we may note that the
normal form of p@ji ;0 is obtained by removing �ji

from the normal form of p, and hence the resulting
map is in ��. On the other hand, the normal form p0@ji ;0 will contain more degeneracy maps than that
of p@ji ;0, since @ji ;0 will not cancel with any of the degeneracy maps present in the normal form of p0

and we assumed m�m0.

If there is no such ji , then the string �j1
� � � �jm

is a substring of �j 0
1
� � � �j 0

m0
. By precomposing with

different face maps, we may assume that mD 0. We proceed by case analysis, addressing m0 � 2, m0D 1

and m0 D 0 in order.

For m0 � 2, we can write

p D i1;"1
� � � i`;"` and p0 D i0

1
;"0

1
� � � i0

`0
;"0
`0
�j 0

1
� � � �j 0

m0
:

Now observe that p@i`;"` D i1;"1
� � � i`�1;"`�1

is in the normal form (and belongs to��), but the normal
form of p@il ;"l

must end with at least one degeneracy.

For m0 D 1, we can write

p D i1;"1
� � � i`;"` and p0 D i0

1
;"0

1
� � � i0

`�1
;"0
`�1
�j 0 :

To treat this case, we will precompose both p and p0 with @j 0;" to cancel the degeneracy appearing in the
normal form of p0, yielding a normal form of p0@j 0;", which then clearly belongs to ��. However, some
care is needed to choose the correct " in order to ensure that the normal form of p@j 0;" is different from
that of p0@j 0;". If j 0 appears in the sequence: i1, . . . , i`, then we pick "D 1� "j 0 . With this choice, the
normal form of p@j 0;" will end with a degeneracy, making it distinct from p@j 0;". If on the other hand j 0

does not appear on the list of indices: i1; : : : ; il , we first need to determine whether when using cubical
identities to write p@j 0;" in normal form, we will encounter a connection with which our face map will
cancel: if not, then we can pick either "; otherwise, we pick " in such a way as to ensure that as a result
of commuting the face and the connection, we obtain a degeneracy map.

At this point, it remains to treat the case when m0 D 0, ie the normal forms of p and p0 consist solely in
connections:

p D i1;"1
� � � ik ;"k

and p0 D i0
1
;"0

1
� � � i0

k
;"0

k
:

Geometry & Topology, Volume 29 (2025)



1122 Tim Campion, Krzysztof Kapulkin and Yuki Maehara

Note that the two decompositions have the same length, since both p and p0 are maps Œ1�n! Œ1�n�k .
Without loss of generality, we may assume that ik � i 0

k
, and we proceed by case analysis based on i 0

k
� ik ,

considering three cases: i 0
k
D ik , i 0

k
D ik C 1 and i 0

k
� ik C 2.

If ik D i 0
k

, we precompose p and p0 with @ik ;"k
. In the case of "k D "

0
k

, this reduces us to the inductive
hypothesis. If however "k ¤ "

0
k

, then the normal form of p@ik ;"k
will be i1;"1

� � � ik�1;"k�1
, making it

an element of ��, whereas the normal form of p0@ik ;"k
will end in a degeneracy.

Next, suppose that i 0
k
D ik C 1. Then the cases of "k D "

0
k

and "k ¤ "
0
k

need to be treated separately. In
the former, we precompose with @ik ;"k

. Then p@ik ;"k
D i1;"1

� � � ik�1;"k�1
is the normal form, making

it an element of ��, but the normal form of p0@ik ;"k
ends with one of: a degeneracy, a connection of

first index greater than ik , or a connection ik ;"
0
k

, making it distinct from p@ik ;"k
. In the latter case, we

see that the normal form of p@ikC1;"
0
k

ends with a degeneracy, but the normal form of p0@ikC1;"
0
k

ends
with i0

k�1
;"0

k�1
and this element belongs to ��.

Finally, if i 0
k
� ik C 2, then we precompose both p and p0 with @ik ;"k

. This gives the normal form of
p@ik ;"k

as i1;"1
� � � ik�1;"k�1

, making it an element of ��. But the normal form of p0@ik ;"k
ends with

either a degeneracy or the connection i0
k
;"0

k
, making it distinct.

Proof of Theorem 1.8 The Reedy part follows immediately from Theorem 1.6. Every morphism in ��
is a split epimorphism by Lemma 1.9.

It remains to show that maps in �� are determined by their sections. To do this, we pick two such maps
p;p0 W Œ1�n! Œ1�n�k and proceed by induction with respect to k. The base case of k D 1 is handled by
Lemma 1.9, whereas the inductive step is handled by Lemma 1.10.

The category � carries a canonical strict monoidal product ˝ given by Œ1�m˝ Œ1�n WD Œ1�mCn with unit
given by Œ1�0. Note that this product is not cartesian since, for instance, there is no “diagonal” map
Œ1�1! Œ1�2 in �. This monoidal structure leads to another characterization of our box category, due to
Grandis and Mauri [Grandis and Mauri 2003, Section 5], as a certain kind of a free monoidal category.

A cubical monoid in a monoidal category .C;˝; I/ is an object X equipped with maps

@0; @1 W I !X; � WX ! I; 0; 1 WX ˝X !X;

subject to the axioms
�@" D id for "D 0; 1;

�" D �.� ˝ idX /D �.idX ˝ �/ for "D 0; 1;

"."˝ idX /D ".idX ˝ "/ for "D 0; 1;

".@"˝ idX /D idX D ".idX ˝ @"/ for "D 0; 1;

".@ı˝ idX /D @ı� D ".idX ˝ @ı/ for ı ¤ ":
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Theorem 1.11 [Grandis and Mauri 2003, Theorem 5.2(d)] The box category � is the free strict
monoidal category equipped with a cubical monoid.

Having established basic properties of the box category, we can now define cubical sets and fundamental
constructions on them.

Definition 1.12 A cubical set is a presheaf X W�op! Set. A cubical map is a natural transformation of
such presheaves. The category of cubical sets and cubical maps will be denoted by cSet.

We write �n for the cubical set represented by Œ1�n and call it the (generic) n-cube. The boundary of the
n-cube, denoted by @�n!�n, is the maximal proper subobject of the representable �n, ie the union of
all of its faces. The subobject of �n given by the union of all faces except the .i; "/th one is called the
.i; "/-open box and denoted by un

i;"!�n.

Proposition 1.13 The monomorphisms of cSet are the cellular closure of the set

f@�n ,!�n
j n� 0g:

Proof This follows from Theorem 1.6.

The monoidal product ˝ can be extended via Day convolution from � to cSet, making .cSet;˝;�0/ a
biclosed monoidal category. We refer to this monoidal product as the geometric product of cubical sets.

We adopt the convention of writing the action of cubical operators on the right, eg the .1; 0/-face of an
n-cube x W�n!X will be denoted by x@1;0.

Proposition 1.14 The geometric product X˝Y of cubical sets X and Y admits the following description.

� For n� 0, the n-cubes in X ˝Y are the formal products x˝y of pairs x 2Xk and y 2 Y` such
that kC `D n, subject to the identification .x�kC1/˝y D x˝ .y�1/.

� For x 2 Xk and y 2 Y`, the faces , degeneracies and connections of the .kC`/-cube x ˝ y are
computed as follows:

.x˝y/@i;" D

�
.x@i;"/˝y if 1� i � k;

x˝ .y@i�k;"/ if kC 1� i � kC `I

.x˝y/�i D

�
.x�i/˝y if 1� i � kC 1;

x˝ .y�i�k/ if kC 1� i � kC `C 1I

.x˝y/i;" D

�
.xi;"/˝y if 1� i � k;

x˝ .yi�k;"/ if kC 1� i � kC `:

Proof This is proven in [Doherty et al. 2024, Proposition 1.20] in the case of cubical sets with one kind
of connection. The proof given there works almost verbatim in our case.
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Given cubes x 2Xk and y 2 Y`, we may regard them as cubical maps x W�k!X and y W�`! Y . Then
applying the geometric product to these maps yields a map x˝y W�kC`!X ˝Y , which corresponds
precisely to the .kC`/-cube with the same name. Moreover, every n-cube of X ˝ Y arises via this
construction for some, perhaps nonunique, pair of cubes .x W�k !X;y W�`! Y / for kC `D n.

Since the identification in Proposition 1.14 only concerns degenerate cubes, we obtain the following
corollary.

Corollary 1.15 A pair of nondegenerate cubes x 2 Xk , y 2 Y` yields a nondegenerate .kC`/-cube
x˝y in X ˝Y . Conversely , every nondegenerate cube in X ˝Y arises this way from a unique pair of
nondegenerate cubes.

Remark 1.16 In particular, when X D�m and Y D�n are representable, this pairing is given by the
formula

.@k1;"1
� � � @kt ;"t

/˝ .@`1;�1
� � � @`s ;�s

/D @mC`1;�1
� � � @mC`s ;�s

@k1;"1
� � � @kt ;"t

;

where all strings of @’s are in the normal form specified by Theorem 1.6. The factors are permuted because
the geometric product lists cubes in order (in the sense that x in x˝y corresponds to smaller values of i )
whereas the normal form lists faces in reverse order.

Proposition 1.17 For natural numbers k, m and n, and "D 0; 1, we have natural isomorphisms

.@�m ,!�m/ y̋ .@�n ,!�n/Š .@�mCn ,!�mCn/;

.um
k;" ,!�

m/ y̋ .@�n ,!�n/Š .umCn
k;"

,!�mCn/;

.@�m ,!�m/ y̋ .un
k;" ,!�

n/Š .umCn
mCk;"

,!�mCn/:

Proof This follows from [Doherty et al. 2024, Lemma 1.26] and the associativity of y̋ .

Using the above proposition and the fact that � is an elegant Reedy category, we obtain:

Corollary 1.18 If f and g are monomorphisms in cSet, then f y̋g is again a monomorphism.

The category � admits two canonical identity-on-objects automorphisms .�/co; .�/co-op W�!�. The
first one takes @n

i;" to @n
nC1�i;"

, �n
i to �n

nC1�i
, and  n

i;" to  n
.n�1/C1�i;"

. The second one takes @n
i;" to @n

i;1�"
,

�n
i to �n

i and  n
i;" to  n

i;1�"
. (Their names are motivated by the fact that, according to the source/target

distinction described in Section 3 below, .�/co reverses the direction of even-dimensional cubes and
.�/co-op reverses the direction of all cubes.) Precomposition with these automorphisms induces functors
also denoted by .�/co; .�/co-op W cSet! cSet. Moreover, .�/co ı .�/co-op D .�/co-op ı .�/co, yielding a
third automorphism .�/op WD .�/co ı .�/co-op.

The “contravariant” behavior of these automorphisms with respect to the cubical structure can be seen via
their interaction with the geometric product.
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Proposition 1.19 (1) The functor .�/co WcSet!cSet is strong antimonoidal , ie .X˝Y /coŠY co˝X co,
naturally in X and Y .

(2) The functor .�/co-op W cSet! cSet is strong monoidal , ie .X ˝Y /co-opŠX co-op˝Y co-op, naturally
in X and Y .

(3) The functor .�/op W cSet! cSet is strong antimonoidal , ie .X ˝Y /op Š Y op˝X op, naturally in X

and Y .

Finally, the composite �! Cat! sSet given by �n 7! .�1/n defines a cocubical object in the category
of simplicial sets. Taking the Yoneda extension, we obtain an adjoint pair

T W cSet� sSet WU:

We will call T W cSet! sSet the triangulation functor.

The triangulation functor can also be seen through the lenses of Theorem 1.11. The simplicial faces
@1; @0 W Œ0�! Œ1� and degeneracy �0 W Œ1�! Œ0� maps, along with max;min W Œ1�2! Œ1�, equip Œ1� with the
structure of a cubical monoid. Since the nerve functor preserves products, this gives a structure of a
cubical monoid on �1 in sSet. The triangulation functor T W cSet! sSet arises from this cubical monoid
via Theorem 1.11.

We conclude this section by recording some properties of the triangulation functor.

Proposition 1.20 (1) T is strong monoidal.

(2) T preserves monomorphisms.

Proof The first statement follows by the fact that T preserves colimits and sSet is cartesian closed.

The second statement follows from first, since T takes boundary inclusions, ie the elements of the cellular
model, to monomorphisms.

1.3 Complicial sets

In this section, we recall marked simplicial sets and model structures for (n-trivial) complicial sets from
[Verity 2008a, 2008b]. The reader is referred to those papers for more detail on the subject. The theory
developed in Section 3 draws great insight from this simplicial precursor.

Just as in the case of cubical sets, when working with simplicial sets, we will write the action of simplicial
operators on the right.

Definition 1.21 A marked simplicial set is a simplicial set X equipped with a subset eX of its simplices
called the marked simplices such that

� no 0-simplex is marked, and

� every degenerate simplex is marked.

A map of marked simplicial sets f WX ! Y is a map of simplicial sets which carries marked simplices to
marked simplices. We denote sSetC for the category of marked simplicial sets with maps for morphisms.
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Marked simplicial sets used to be called stratified simplicial sets (see eg [Verity 2008a]), but the name
“marked” is more descriptive and has since become more popular.

There is a natural forgetful functor sSetC! sSet, which has both left and right adjoints. The left adjoint
X 7!X [ endows a simplicial set X with the minimal marking, marking only the degenerate simplices.
The right adjoint X 7!X ] endows a simplicial set X with the maximal marking, marking all simplices.

If X is a simplicial set, we will by default consider it as a marked simplicial set with its minimal
marking X [.

Definition 1.22 We say that X 2 sSetC is n-trivial if every simplex of dimension � nC 1 is marked.

Given a marked simplicial set X , we will write corenX for its maximal n-trivial subset. In other words,
the k-simplices of corenX are precisely those k-simplices x in X such that x˛ is marked in X for any
˛ W Œm�! Œk� with m> n. This assignment extends to a functor coren W sSet

C
! sSetC, which admits a

left adjoint �n W sSet
C
! sSetC. Explicitly, �n acts as the identity on the underlying simplicial set and a

k-simplex is marked in �nX if either k � n and x is marked in X or k � nC 1.

Definition 1.23 A map X ! Y of marked simplicial sets is

� regular if it creates markings, ie for an n-simplex x of X we have that x 2 eXn if and only if
f .x/ 2 eYn, and

� entire if the induced map between the underlying simplicial sets is invertible.

We now define several distinguished objects and maps in sSetC. These will be essential to the description
of various model structures we will be considering.

We denote by z�n D �n�1.�
n/ the n-simplex with the nondegenerate n-simplex marked and no other

nondegenerate simplices marked. We call the canonical map �n! z�n the n-marker.

For n� 1 and 0� k � n, we denote by �n
k

the n-simplex with the following marking: a nondegenerate
simplex is marked if and only if it contains all of the points fk�1; k; kC1g\ Œn� among its vertices. We
call �n

k
the k-complicial n-simplex. We denote by ƒn

k
��n

k
the k-horn of dimension n (ie the simplicial

subset missing the nondegenerate n-simplex and the k th .n�1/-face) endowed with the marking making
it a regular subset of �n

k
. We call ƒn

k
the complicial k-horn of dimension n. We call the inclusion

ƒn
k
! �n

k
the k-complicial horn inclusion of dimension n. We write �n

k
00
D �n�2�

n
k

, and we write
�n

k
0
D �n

k
qƒn

k
�n�2ƒ

n
k

. The canonical inclusion �n
k
0
! �n

k
00 is called the elementary k-complicial

marking extension of dimension n.

Let �3
eq denote the marked simplicial set obtained from �3 by marking the 1-simplices f0; 2g, f1; 3g and

all 2- and 3-simplices. By a saturation map, we mean a map of the form �m ?�3
eq!�m ? .�3/] for

m� �1 (where ��1 is interpreted as ¿).

There are two standard model structures on marked simplicial sets:
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Theorem 1.24 The category sSetC carries two model structures:

(1) The complicial model structure characterized by the following properties:
� The cofibrations are the monomorphisms.
� The set of

– complicial horn inclusions , and

– elementary complicial marking extensions
forms a pseudogenerating set of trivial cofibrations.

(2) The saturated complicial model structure characterized by the following properties:
� The cofibrations are the monomorphisms.
� The set of

– complicial horn inclusions ,

– elementary complicial marking extensions , and

– saturation maps
forms a pseudogenerating set of trivial cofibrations.

Both of these model structures are cartesian.

Proof This is a combination of [Verity 2008b, Lemma 72, Theorem 100 and Lemma 105] and [Ozornova
and Rovelli 2020, Appendix B].

Note that since the terminal object is always fibrant, this includes a characterization of the fibrant objects
of the model structures, which are called (saturated) complicial sets.

Definition 1.25 A map of marked simplicial sets X ! Y is

� a complicial marking extension if it is in the cellular closure of the elementary complicial marking
extensions, and

� complicial if it is in the cellular closure of the complicial horn inclusions and the elementary
complicial marking extensions.

There is also the n-trivial version of the (saturated) complicial model structure.

Theorem 1.26 The category sSetC carries two model structures:

(1) The n-trivial complicial model structure characterized by the following properties:
� The cofibrations are the monomorphisms.
� The set of

– complicial horn inclusions ,

– elementary complicial marking extensions of dimension � nC 1, and

– markers of dimension > n

forms a pseudogenerating set of trivial cofibrations.
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(2) The saturated n-trivial complicial model structure characterized by the following properties:

� The cofibrations are the monomorphisms.

� The set of
– complicial horn inclusions ,

– elementary complicial marking extensions of dimension � nC 1,

– markers of dimension > n, and

– saturation maps
forms a pseudogenerating set of trivial cofibrations.

Proof Essentially the proof of Theorem 1.24, but combined with [Verity 2008b, Example 104].

In sSetC, the pseudo Gray tensor product is modeled by the cartesian product. We will adopt the following
notation from [Verity 2008b], which emphasizes this view.

Notation 1.27 The cartesian product on sSetC (and its reflective subcategory PreComp described below)
is denoted by �.

Thus Theorem 1.24 in particular says that Verity’s model structure is monoidal with respect to the pseudo
Gray tensor product.

The following proposition will be useful later.

Proposition 1.28 Let f W A! X and g W B! Y be entire maps in sSetC. Then their Leibniz pseudo
Gray tensor f y�g is a complicial marking extension.

Proof Since the forgetful functor sSetC! sSet preserves colimits and products, f y�g is entire. We
assume for the sake of simplicity that f y�g is an inclusion. Let .x;y/ be an n-simplex that is marked
in X � Y but not in dom.f y�g/ D .A � Y /[ .X � B/. Equivalently, x is marked in X but not in A,
and y is marked in Y but not in B. Then we must have n� 1, so the .nC1/-simplex z D .x�0;y�1/ is
well-defined. We claim that this simplex z extends as indicated below:

�nC1 .A � Y /[ .X � B/

�nC1
1

0

z

9

To see that z at least extends to �nC1
1

, let ˛ W Œm�! ŒnC 1� be a simplicial operator with 0; 1; 2 2 im˛.
Then both x.�0 ı ˛/ and y.�1 ı ˛/ are degenerate, so z˛ is marked in dom.f y�g/. Since the face
z@0 D .x;y.@0 ı �0// is marked in X � B and the face z@2 D .x.@1 ı �0/;y/ is marked in A � Y , we
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indeed have an extension as indicated. Therefore we have a pushout square`
�nC1

1

0
.A � Y /[ .X � B/

`
�nC1

1

00
X � Y

where the coproducts are taken over all n-simplices .x;y/ that are marked in X �Y but not in dom.f y�g/,
and both horizontal maps are induced by the simplices of the form .x�0;y�1/.

Definition 1.29 Let Œn� 2� and let 0� p; q � n be such that pC q D n. Then we write áp;q
1
W Œp�! Œn�

for the simplicial operator i 7! i , and áp;q
2
W Œq�! Œn� for the operator i 7! pC i .

In the following definition, we use slightly different terminology from Verity’s original one [2008a,
Definitions 127 and 128].

Definition 1.30 Let X;Y 2 sSetC, let .x;y/ 2Xn �Yn be a simplex of X �Y , and let 0� i � n. We
say that .x;y/ is i-cloven if either x á

i;n�i
1

is marked in X or y á
i;n�i
2

is marked in Y . We say that
.x;y/ is fully cloven if it is i -cloven for all 0� i � n.

The Gray tensor product of X and Y , denoted by X ˝Y , is defined to be the marked simplicial set with
underlying simplicial set X � Y , where a simplex .x;y/ 2 Xn � Yn is marked if and only if it is fully
cloven.

Theorem 1.31 [Verity 2008a, Lemma 131] The Gray tensor product endows the category sSetC with
a (nonsymmetric) monoidal structure such that the forgetful functor .sSetC;˝/ ! .sSet;�/ is strict
monoidal.

Definition 1.32 A precomplicial set is a marked simplicial set X with the right lifting property with
respect to the complicial marking extensions. These form a reflective subcategory of sSetC, which we
will denote by PreComp. We will denote the localization functor by X 7!X pre.

Proposition 1.33 The unit of the reflection X ! X pre is a complicial marking extension for any
X 2 sSetC.

Proof Obtain a complicial marking extension f W X ! Y into a precomplicial set Y by applying the
small object argument to the unique map X ! 1 with respect to the elementary complicial marking
extensions. Then any map X !Z into a precomplicial set Z factors through f . Moreover, since f is an
epimorphism, such a factorization is necessarily unique. In other words, f has the universal property of
the unit X !X pre.
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Theorem 1.34 For each of the four model structures in Theorems 1.24 and 1.26, the category PreComp

carries an analogous model structure characterized by the following conditions:

� The cofibrations are the monomorphisms.

� A pseudogenerating set of trivial cofibrations can be obtained by taking that for the corresponding
model structure on sSetC (described in Theorem 3.3 or Theorem 1.26), removing the complicial
marking extensions , and then applying the precomplicial reflection.

The localization .�/pre is a left Quillen equivalence between the complicial model structures (resp. the
n-trivial complicial model structures).

Proof Fix one of the four model structures on sSetC. Observe that if we factor a map between
precomplicial sets into a cofibration followed by a fibration (one of which is trivial) with respect to that
model structure, then the middle object must also be precomplicial. Thus we obtain a restricted model
structure on PreComp.

We obtain the characterization of its cofibrations by observing that the reflective inclusion PreComp ,!

sSetC preserves and reflects monomorphisms. It is straightforward to check that the precomplicial
reflection preserves pseudogenerating sets, and moreover it inverts all (elementary) complicial marking
extensions.

It follows that the adjunction sSetC�PreComp is a Quillen adjunction. Finally, since the unit is a natural
weak equivalence this is in fact a Quillen equivalence.

Remark 1.35 We believe that the precomplicial reflection does not actually affect the remaining members
of the pseudogenerating set. However we do not provide a proof as it is not essential.

Now we analyze the precomplicial reflection of the Gray tensor product on PreComp.

Definition 1.36 We write ˝pre W PreComp � PreComp! PreComp for the precomplicial Gray tensor
product functor .X;Y / 7! .X ˝Y /pre.

Theorem 1.37 The bifunctor ˝pre is part of a biclosed monoidal structure on PreComp. Moreover each
model structure on PreComp described in Theorem 1.34 is monoidal with respect to˝pre.

Proof The first assertion is [Verity 2008a, Theorem 148]. It is straightforward to check that the Leibniz
Gray tensor product preserves monomorphisms. Since the complicial model structure on sSetC is monoidal
with respect to the Gray tensor product [Verity 2008b, Theorem 109] (although it is not biclosed on
sSetC) and the unit of the precomplicial reflection is a levelwise complicial marking extension, it follows
that the complicial model structure on PreComp is monoidal. The n-trivial and saturated versions follow
from [Ozornova and Rovelli 2020, Section 2].
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2 Marked cubical sets and Gray tensor products

In this section, we introduce marked cubical sets and define their Gray tensor product.

2.1 Marked cubical sets

In order to define marked cubical sets, we need to introduce certain enlargement �C of the box category.
The objects of �C consist of: Œ1�n for every n� 0 and Œ1�ne for every n� 1. The morphisms of �C are
generated by the maps

@n
i;" W Œ1�

n�1
! Œ1�n for every n� 1; i D 1; : : : ; n and "D 0; 1;

�n
i W Œ1�

n
! Œ1�n�1 for n� 1 and i D 1; : : : ; n;

 n
i;" W Œ1�

n
! Œ1�n�1 for n� 2; i D 1; : : : ; n� 1 and "D 0; 1;

'n
W Œ1�n! Œ1�ne for n� 1;

�n
i W Œ1�

n
e ! Œ1�n�1 for n� 1 and i D 1; : : : ; n;

�n
i;" W Œ1�

n
e ! Œ1�n�1 for n� 1; i D 1; : : : ; n and "D 0; 1;

subject to the usual cubical identities and the following additional relations:

�i' D �i ; �i;"' D i;"; �i�j D �j�iC1 for j � i;

j ;"�i;ı D

�
i;ı�jC1;" for j > i;

i;ı�iC1;ı for j D i and ı D ";
�j�i;ı D

8<:
i�1;ı�j for j < i;

�i�i for j D i;

i;ı�jC1 for j > i:

Proposition 2.1 The category �C is an EZ Reedy category with the following Reedy structure:

� degŒ1�0 D 0, degŒ1�n D 2n� 1 for n� 1, and degŒ1�ne D 2n for n� 1.

� �C� is generated by the maps �n
i ,  n

i;", �
n
i and �n

i;".

� �CC is generated by the maps @n
i;" and 'n.

The proof of this fact follows the one in [Ozornova and Rovelli 2020, Appendix C]. We begin by noting
the following simple lemma:

Lemma 2.2 (1) The are no nonidentity maps in �C� whose target is in �C n�.

(2) The are no nonidentity maps in �CC whose source is in �C n�.

Proof of Proposition 2.1 We first note that the sections of �i are '@i;0 and '@i;1, the sections of �i;1 are
'@i;0 and '@iC1;0, and the sections of �i;0 are '@i;1 and '@iC1;1. Thus all maps in �C� have sections.

Using the techniques of [Grandis and Mauri 2003, Theorem 5.1], we can then extend Theorem 1.6 to
write normal forms for maps in �C. These are established separately for the four cases:
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(1) The normal form of a map of the form Œ1�m! Œ1�n is given by its normal form in �. If such a form
were to be nonunique, we would need to have Œ1�m! Œ1�ke ! Œ1�n with Œ1�ke ! Œ1�n 2�CC, which is
impossible by Lemma 2.2(2).

(2) The normal form of a map Œ1�m! Œ1�ne is obtained by observing that it is necessarily a composite
Œ1�m! Œ1�n

'
! Œ1�ne and taking the normal form of the first map in �. Again, Lemma 2.2(2) implies

uniqueness.

(3) The normal form of a map of the form Œ1�me ! Œ1�n is obtained by factoring it as Œ1�me ! Œ1�m�1! Œ1�n,
where the first map is either �i or �i;", and taking the normal form of Theorem 1.6 of Œ1�m�1! Œ1�n

in �. Note that the choice of �i or �i;" as the first map may not be unique, but it can be made so by
imposing the additional compatibility requirement with the factorization of Theorem 1.6 — this is
because of the additional relations relating the �i to the �i , and the �i;" to the i;". Put differently,
we may precompose Œ1�me ! Œ1�n with ', use the normal form in �, and replace the last element by
�i or �i;" as appropriate.

(4) Œ1�me ! Œ1�ne . In this case, we obtain the normal form by combining the techniques from the previous
two cases, namely factoring

Œ1�me ! Œ1�m�1
! Œ1�n

'
�! Œ1�ne ;

where again the first map is one of �i or �i;", and the composite Œ1�m�1! Œ1�k ! Œ1�n is obtained
in �.

Having established the normal forms, we proceed in a manner analogous to the proof of Theorem 1.8.

Definition 2.3 A structurally marked cubical set is a presheaf X W .�C/op! Set. A map of structurally
marked cubical sets is a natural transformation of such presheaves.

Given a structurally marked cubical set X , we will write Xn for X.Œ1�n/ and eXn for X.Œ1�ne/. Just as in
the case of cubical sets, we adopt the convention of writing cubical operators on the right, eg for x 2 eX1,
we write x' for the resulting element of X1.

Definition 2.4 A marked cubical set is a structurally marked cubical set X W .�C/op! Set for which
the map X' W eXn!Xn is a monomorphism for all n� 1. We write cSetC for the full subcategory of
Set.�

C/op
spanned by the marked cubical sets.

We think of a marked cubical set X as a cubical set in which certain n-cubes have been designated as
equivalences, ie those in eXn �Xn. The maps �i and �i;" ensure that every degenerate cube is marked.

We may apply the same intuition to structurally marked cubical sets. However, failure of the maps X' to
be monomorphisms (in an arbitrary structurally marked cubical set X ) means that being an equivalence is
not a property of an n-cube of X , but a structure on it, as there can be multiple markings on a single cube.

Every (structurally) marked cubical set has an underlying cubical set, defining a functor � W cSetC! cSet.
Given a cubical set X , we can form a marked cubical set in two ways:
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� The minimal marking functor takes a cubical set X to a marked cubical set X [, where only
degenerate n-cubes are marked.

� The maximal marking functor assigns to X the marked cubical set X ] in which all cubes marked
(ie all maps X'n are identities).

This gives two functors .�/[; .�/] W cSet! cSetC. A straightforward verification shows:

Proposition 2.5 We have a string of adjoint functors .�/[ a � a .�/].

Remark 2.6 (limits and colimits of marked cubical sets) The proposition above gives a recipe for
computing limits and colimits of diagrams F WI ! cSetC. In both cases, we first compute the underlying
cubical set by taking the (co)limit of �F in cSet, and then equipping it with the minimal marking making
the colimit inclusions maps of marked cubical sets, or the maximal marking making the limit projections
maps of marked cubical sets. It follows, for example, that a cube in a colimit is marked if and only if it is
in the image of a marked cube under one of the colimit inclusions.

Furthermore, the canonical embedding cSetC ,!Set.�
C/op

of marked cubical sets into structurally marked
cubical sets admits a left adjoint, denoted by Im W Set.�

C/op
! cSetC. Explicitly, Im X is obtained by

factoring all the 'n via their image eXn! .eXn/'n!Xn and taking the resulting object as a new set of
marked n-cubes. We may summarize it with the following statement:

Proposition 2.7 Marked cubical sets form a reflective subcategory of the structurally marked cubical sets
with the reflector given by Im W Set.�

C/op
! cSetC.

Corollary 2.8 The category cSetC of marked cubical sets is locally presentable.

Definition 2.9 A map f WX ! Y of marked cubical sets is

� regular if it creates markings, ie for an n-cube x of X we have: x 2 eXn if and only if f .x/ 2 eYn,

� entire if the induced map between the underlying cubical sets is invertible.

Definition 2.10 We say that X 2 cSetC is n-trivial if every cube of dimension � nC 1 is marked.

Given a marked cubical set X , we will write corenX for its maximal n-trivial subset. In other words,
the k-cubes of corenX are precisely those k-cubes x such that x˛ is marked for all ˛ W Œ1�m ! Œ1�k

with m > n. This assignment extends to a functor coren W cSet
C
! cSetC, which admits a left adjoint

�n W cSet
C
! cSetC. Explicitly, �n acts as the identity on the underlying cubical set and a k-cube is

marked in �nX if either k � n and x is marked in X or k � nC 1.

When a cubical set is considered as a marked cubical set, it will almost always be considered with its
minimal marking. The only exception is the open boxes; see Section 3. We denote by �n D .�n/[ the
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n-cube regarded as a marked cubical set and likewise @�n D .@�n/[. Just as in the case of cubical sets,
we call the inclusion map @�n!�n the boundary inclusion. We denote by z�n D �n�1.�n/ the n-cube
with the nondegenerate n-cube marked and no other nondegenerate cubes marked. We call the canonical
map �n! z�n the n-marker.

Proposition 2.11 The monomorphisms of cSetC (and Set.�
C/op

) are the cellular closure of the set

f@�n ,!�n
j n� 0g[ f�n ,! z�n

j n� 1g:

The functors .�/co; .�/co-op; .�/op W cSet ! cSet generalize to the marked setting in the straightfor-
ward manner. For .�/co we send 'n to itself, �n

i to �n
nC1�i

, and �n
i;" to �n

nC1�i;"
. For .�/co-op, we

send 'n and �n
i to themselves and �n

i;" to �n
i;1�"

. These then induce functors by precomposition
.�/co; .�/co-op; .�/op W cSetC! cSetC.

2.2 Gray tensor products

The following definition makes use of Corollary 1.15.

Definition 2.12 The (lax) Gray tensor product X ˝Y of two marked cubical sets X;Y 2 cSetC is the
geometric product �X ˝�Y , wherein a nondegenerate cube x˝y is marked if and only if either x is
marked in X or y is marked in Y . This extends to a functor ˝W cSetC � cSetC! cSetC in the obvious
way.

Definition 2.13 The pseudo Gray tensor product X � Y is the geometric product �X ˝�Y , wherein a
nondegenerate cube x˝y is unmarked if and only if

� x is a 0-cube and y is unmarked in Y , or

� x is unmarked in X and y is a 0-cube.

This extends to a functor � W cSetC � cSetC! cSetC in the obvious way.

Remark 2.14 Since no 0-cubes are marked, one can easily check that X � Y may be obtained from
X ˝Y by marking those nondegenerate x˝y such that x 2Xm, y 2 Yn with m; n� 1. Thus the identity
at �X ˝�Y lifts to an entire map �X ;Y WX ˝Y !X � Y . This map is clearly natural in X and Y , and
moreover �X ;Y is invertible if either X or Y is 0-trivial.

Remark 2.15 The Gray tensor products ˝ and � share many properties, and often a statement or a
proof applies equally well to both tensor products. In such situations, we write ˇ to mean either. Of
course the interpretation of ˇ is to be kept consistent within each statement and its proof.
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Theorem 2.16 (1) The Gray tensor productˇ forms part of a biclosed monoidal structure on cSetC

such that the forgetful functor � W .cSetC;ˇ/! .cSet;˝/ is strict monoidal.

(2) The entire inclusions �X ;Y WX ˝Y !X � Y together with �0 D id�0 equip the identity functor
with a monoidal structure .idcSetC ; �/ W .cSet

C;�/! .cSetC;˝/.

(3) The minimal marking functor .�/[ W .cSet;˝/! .cSetC;˝/ is strict monoidal.

(4) The maximal marking functor .�/] W .cSet;˝/! .cSetC;ˇ/ is strict monoidal.

Proof We first check the associativity of the tensor product. Suppose we are given nondegenerate cubes
x 2Xm, y 2 Yn, z 2Zk in X;Y;Z 2 cSetC. Then the .mCnCk/-cube .x˝y/˝ z in .X ˇY /ˇZ is
unmarked if and only if

(˝) none of x;y; z is marked, or

(�) (at least) two of x;y; z are 0-cubes and the last is unmarked.

One can give a similar characterization of when x ˝ .y ˝ z/ is unmarked, and it follows that the
associativity isomorphism .�X ˝ �Y / ˝ �Z Š �X ˝ .�Y ˝ �Z/ in cSet lifts to an isomorphism
.X ˇY /ˇZ ŠX ˇ .Y ˇZ/ in cSetC. The unit isomorphisms can be lifted similarly, and moreover
these lifted isomorphisms are suitably natural and coherent. Thus we indeed obtain a monoidal structure
on cSetC such that � is strict monoidal. The clauses (2)–(4) are then obvious from the definitions of the
tensor products.

It remains to show that this monoidal structure is biclosed. Equivalently, we must show that ˇ preserves
colimits in each variable separately. So let F WI ! cSetC and X 2 cSetC. Since the geometric product is
cocontinuous in each variable and � is cocontinuous and strict monoidal, the canonical comparison map

colim.X ˇF /!X ˇ colim F

is �-invertible. Moreover one can check using Remark 2.6 that a nondegenerate cube in either side is
marked if and only if it is the image of some marked cube under the canonical map from X ˇFi for
some i 2I . It follows that this comparison map is invertible. Dually, .�/ˇX preserves colimits. Since
cSetC is locally finitely presentable, the existence of the desired biclosed structure now follows.

Lemma 2.17 Let f W A! X and g W B ! Y be monomorphisms in cSetC. Then f y̌ g is again a
monomorphism. Moreover:

(1) If both f and g are regular , then so is f y̌g.

(2) If either f or g is entire , then so is f y̌g.

(3) If both f and g are entire , then f y̌ g is invertible.
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(4) If either f or g is entire , then the square

.X ˝B/[ .A˝Y / .X � B/[ .A � Y /

X ˝Y X � Y

f y̋g f y�g

�X;Y

is a pushout in cSetC, where the upper horizontal map is induced by �.

Proof Since a map in cSetC is a monomorphism if and only if its underlying map in cSet is a monomor-
phism, the first (unnumbered) assertion follows from Corollary 1.18, Theorem 2.16(1) and the cocontinuity
of � . We will assume for the sake of simplicity that f y̌ g is an inclusion.

(1), case (˝) Let x˝y be a nondegenerate cube in dom.f y̋g/. By duality, we may assume that x is
in A. If x˝y is marked in X ˝Y , then either x is marked in X or y is marked in Y . It follows (by the
regularity of f in the former case) that x˝y is marked in A˝Y . This shows that f y̋g is regular.

(1), case (�) Let x˝y be a marked nondegenerate cube in X � Y . Suppose that x˝y is in the image
of f y�g. The case (1˝) combined with the commutativity of the square in (4) imply that if x˝ y is
marked in X ˝Y then it is also marked in dom.f y�g/. Thus by Remark 2.14, it suffices to consider the
case where x 2 Xm and y 2 Yn for some m; n � 1. But in this case x˝ y is marked in dom.f y�g/ by
the definition of �.

(2) Since � preserves colimits, we have �.f y̌g/Š �f y̌ �g. Thus this assertion follows from the fact
that the pushout of an isomorphism along any map is itself an isomorphism.

(3), case (˝) We know from (2) that f y̋g is entire, so it suffices to show that this map is also regular.
Let x˝y be a marked nondegenerate cube in X ˝Y . Then either x is marked in X or y is marked in Y .
The cube x˝ y is then marked in X ˝B in the first subcase and it is marked in A˝Y in the second
subcase. Thus f y̋g is indeed regular.

(4) By (2), each map in this square is entire. Thus its image under � is trivially a pushout in cSet.
Moreover, for each of the horizontal maps, Remark 2.14 implies that the codomain is obtained from the
domain by marking those cubes x˝y such that x 2Xm and y 2 Yn with m; n� 1. Now the assertion
follows by Remark 2.6.

(3), case (�) This case follows from (3), case (˝), and (4).

Proposition 2.18 For any m; n� 0, the Leibniz Gray tensor product .@�m ,!�m/ y̋ .@�n ,!�n/ of
boundary inclusions in cSetC is isomorphic to @�mCn ,!�mCn.

Proof This is a straightforward consequence of Proposition 1.17, Theorem 2.16(3) and the cocontinuity
of .�/[.
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3 Model structure for comical sets

In this section, we construct two families of model structures on the category cSetC of marked cubical
sets. The former of those has as its fibrant objects (saturated) comical sets, which we will define, and it is
our tentative model for the theory of weak !-categories. The fibrant objects of the latter are the n-trivial
comical sets, and it is our tentative model for the theory of .1; n/-categories.

A comical set is to be thought of as a kind of weak !-category, and an n-cube therein represents an
n-dimensional morphism. The .n�1/-source of such an n-cube is the “composite” of the faces @k;"

with k C " odd, and similarly the .n�1/-target is given by the even faces. (This idea of parity-based
decomposition into source and target goes back to [Street 1987], where Street considers the free !-
categories on simplices. In the case of cubes, see eg [Aitchison 1986; Street 1991; Steiner 1993; Al-Agl
et al. 2002]). For instance, a 2-cube can be seen as a morphism of the form

@1;0

@2;0

@1;1

@2;1

and a 3-cube represents a morphism between the composites

@1;0

@3;0

@2;1

@1;1

@3;1

@2;0

Marked n-cubes are to be thought of as being (weakly) invertible, although not every invertible cube is
marked unless the comical set is saturated.

Before defining comical sets, we will need a few auxiliary definitions.

For n � 1, 1 � k � n and " 2 f0; 1g, we denote by �n
k;"

the n-cube with the following marking: a
nondegenerate cube @k1;"1

� � � @kt ;"t
, written in the form specified by Theorem 1.6, is marked whenever

this string does not contain @k�1;", @k;", @k;1�" or @kC1;". (This is exactly the marking described in
[Steiner 2006, Example 2.9].) We call this the .k; "/-comical n-cube. We denote by un

k;"
� �n

k;"
the

.k; "/-open box of dimension n (ie the cubical subset missing the nondegenerate n-cube and the .k; "/th

.n�1/-face) endowed with the marking making it a regular subset of �n
k;"

. We call un
k;"

the comical
.k; "/-open box of dimension n. We call the inclusion un

k;"
!�n

k;"
the .k; "/-comical open box inclusion

of dimension n.
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The elementary .k; "/-comical marking extension of dimension n, denoted by �n
k;"
0
! �n

k;"
00, is the

Leibniz product of the unit id! �n�2 and the comical box inclusion un
k;"
!�n

k;"
, ie the dashed map in

un
k;"

�n�2u
n
k;"

�n
k;"

�

�n�2�n
k;"

p:o:

For each x;y 2 f%;.g, we define the basic Rezk map Lxy ,! L0xy as the entire inclusion depicted
below:

L%% D

( )
; L0

%%
D

( )
;

L%. D

( )
; L0

%.
D

( )
;

L.% D

( )
; L0

.%
D

( )
;

L.. D

( )
; L0

..
D

( )
:

Here thick arrows indicate marked cubes. More precisely, L%% is the pushout of the span

X �1 Y;
@1;1 @1;0

where X is obtained from z�2 by marking @1;0 and @2;1, and Y is obtained from z�2 by marking @1;1

and @2;0. The codomain L0
%%

is the 0-trivialization �0.L%%/. The marked cubical sets Lxy ;L
0
xy are

defined similarly for other choices of x;y 2 f%;.g. By a Rezk map we mean any map of the form

.@�m ,!�m/ y̋ .Lxy ,!L0xy/ y̋ .@�n ,!�n/:

Definition 3.1 (1) A comical set is a marked cubical set with the right lifting property with respect to
the comical open box inclusions and the elementary comical marking extensions.

(2) A saturated comical set is a marked cubical set with the right lifting property with respect to the
comical open box inclusions, the elementary comical marking extensions and the Rezk maps.

Remark 3.2 We briefly explain how the definition of (saturated) comical set should be interpreted. In
the comical n-cube �n

k;"
, any subcube not contained in @k�1;", @k;", @k;1�" or @kC1;" is marked. In
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particular, the unique nondegenerate n-cube is marked, so it can be thought of as an equivalence between
the composite of its odd faces and the composite of even faces. In other words, the comical n-cube �n

k;"

exhibits @k;" as a composite of @k�1;", @k;1�" and @kC1;". For example, �3
2;0

looks like

@1;0

@3;0

@2;1 @2;0

One can thus interpret the right lifting property with respect to the comical box inclusions and the comical
marking extensions respectively as the existence of composites and the closure of marked cubes under
composition. In Section 4, we show how these conditions additionally encode such expected properties
of composition as the unit and associative laws, at least for 1-cubes.

There are two standard model structures on marked cubical sets:

Theorem 3.3 (model structure for comical sets) The category cSetC carries two model structures:

(1) The comical model structure , characterized by the following properties:
� The cofibrations are the monomorphisms.
� The set of

– comical open box inclusions , and
– elementary comical marking extensions

forms a pseudogenerating set of trivial cofibrations.

(2) The saturated comical model structure , characterized by the following properties:
� The cofibrations are the monomorphisms.
� The set of

– comical open box inclusions ,
– elementary comical marking extensions , and
– Rezk maps

forms a pseudogenerating set of trivial cofibrations.
Both of these model structures are combinatorial , left proper , monoidal with respect to either of the
Gray tensor products , and have all objects cofibrant.

The proof of this theorem is an application of the Cisinski–Olschok theory and verification of the closure
of anodyne maps under pushout-product. The latter part is contained in Lemma 3.5 below.
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Definition 3.4 We say that a map of marked cubical sets X ! Y is

(1) a comical marking extension if it is in the cellular closure of the elementary comical marking
extensions, and

(2) comical if it is in the cellular closure of the comical open box inclusions and the elementary comical
marking extensions.

Lemma 3.5 For any 1� k �m, " 2 f0; 1g and n� 0 (or n� 1 for g), the Leibniz Gray tensor products

f D .um
k;" ,!�

m
k;"/ y̌ .@�

n ,!�n/;

g D .um
k;" ,!�

m
k;"/ y̌ .�

n ,! z�n/;

hD .�m
k;"
0
,!�m

k;"
00
/ y̌ .@�n ,!�n/

are all comical.

Proof Since the case nD 0 is trivial, we will assume otherwise.

Consider a face of �mCn whose normal form @k1;"1
� � � @kc ;"c

does not involve @k�1;", @k;0, @k;1 or
@kC1;". Then clearly any terminal segment of this normal form does not involve any of these four @’s.
This observation implies that the second isomorphism of Proposition 1.17 may be lifted to the following
commutative square:

u
mCn
k;"

.�m
k;"
ˇ @�n/[ .um

k;"
ˇ�n/

�mCn
k;"

�m
k;"
ˇ�n

f

Observe that this is a pushout square on the underlying cubical set level.

In the caseˇD˝, it is in fact a pushout square in cSetC. To see this, it suffices to check that the marking
on �m

k;"
˝�n agrees with that described in Remark 2.6. This is indeed the case since f is regular by

Lemma 2.17(1) and the only marked nondegenerate cube in cod.f / n dom.f / is the .mCn/-cube, which
is the image of a marked cube under the lower horizontal map. Thus f is indeed comical.

Now we consider the case ˇD �. If mD 1 then we can simply repeat the above argument since we
have natural isomorphisms

u
1
1;"� .�/Šu1

1;"˝ .�/ and �1
1;"� .�/Š�1

1;"˝ .�/

by Remark 2.14. So assume m�2. Then there is an extra marked nondegenerate cube in cod.f /ndom.f /,
namely @k;". But then it is straightforward to check that @k�1;", @k;1�" and @kC1;" are also marked
(whenever they exist). So f can be written as a pushout of the open box inclusion umCn

k;"
,! �mCn

k;"

followed by a pushout of the comical marking extension �mCn
k;"

0
,!�mCn

k;"

00
.
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The map g is entire by Lemma 2.17(2). Similarly to the above argument, one can deduce the existence of
the following commutative square of entire monomorphisms:

�mCn
k;"

0
.�m

k;"
ˇ�n/[ .um

k;"
ˇ z�n/

�mCn
k;"

00 �m
k;"
ˇ z�n

g

One can check that, in the case where ˇD� and m� 2, the map g is in fact invertible. Otherwise, the
only cube in cod.g/ that is not marked in dom.g/ is @k;" and it is the image of a marked cube under the
lower horizontal map. This shows that the above square is a pushout. Hence g is a comical marking
extension.

Similarly, one can check that the following square is a pushout:

�mCn
k;"

0
.�m

k;"
00
ˇ @�n/[ .�m

k;"
0
ˇ�n/

�mCn
k;"

00 �m
k;"
00
ˇ�n

h

Therefore h is a comical marking extension.

Proof of Theorem 3.3 We apply the Cisinski–Olschok theory, ie Theorem 1.4 with KD cSetC and I the
set of boundary inclusions and markers. The set S consists of the comical open box inclusions and the
comical marking extensions in (1), and it additionally contains all Rezk maps in (2). For our cylinder
functor C , we can use either z�1˝ .�/ or z�1 � .�/ as they are equal by Remark 2.14. This produces a
model structure on cSetC in which the cofibrations are the monomorphisms and ƒ.cSetC; I;C;S/ is a
pseudogenerating set of trivial cofibrations.

It remains to prove that the set S is in fact pseudogenerating, and moreover the model structure is monoidal
with respect to either of the Gray tensor products. By duality and Proposition 1.5 it suffices to show that

� f y̌ g is in the cellular closure of I whenever f;g 2 I , and

� f y̌ g is in the cellular closure of S whenever f 2 S and g 2 I .

The first clause essentially follows from the unmarked version (Corollary 1.18). We now treat the second
clause.

There are three kinds of maps in S , namely

(A) comical box inclusions,

(B) elementary comical marking extensions, and

(C) Rezk maps,
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and two kinds of maps in I , namely

(a) boundary inclusions, and

(b) markers.

The case (Ca˝) is a straightforward consequence of the associativity of y̋ and Proposition 2.18. The
case (Ca�) then follows by Lemma 2.17(4). In the cases (Bb) and (Cb), the map f y̌ g is invertible by
Lemma 2.17(3). The remaining cases are treated in Lemma 3.5.

There are also n-trivial versions of these model structures.

Theorem 3.6 (model structure for n-trivial comical sets) The category cSetC carries two families of
model structures:

(1) The n-trivial comical model structure characterized by the following properties:
� The cofibrations are the monomorphisms.
� The set of

– comical open box inclusions ,

– elementary comical marking extensions of dimension � nC 1, and

– markers of dimension > n

forms a pseudogenerating set of trivial cofibrations.

(2) The saturated n-trivial comical model structure characterized by the following properties:
� The cofibrations are the monomorphisms.
� The set of

– comical open box inclusions ,

– elementary comical marking extensions of dimension � nC 1,

– markers of dimension > n, and

– Rezk maps
form a pseudogenerating set of trivial cofibrations.

Proof Analogous to the proof of Theorem 3.3. Note that the Leibniz Gray tensor product of the m-marker
with any monomorphism is in the cellular closure of the m0-markers with m0 �m.

Proposition 3.7 The functor �n W cSet
C
! cSetC is a left Quillen functor from the n-trivial comical model

structure (resp. saturated n-trivial comical model structure) to the comical model structure (resp. saturated
comical model structure).

Lemma 3.8 For any n � 0, 1 � k � nC 2 and " 2 f0; 1g, the map �nu
nC2
k;"

,! �n�nC2
k;"
D �nC2

k;"

00
is

comical.
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Proof Recall the defining pushout square of the comical marking extension:

u
nC2
k;"

�nu
nC2
k;"

�nC2
k;"

�

�n�nC2
k;"

p:o:

This diagram exhibits the desired result.

Proof of Proposition 3.7 That �n preserves cofibrations is obvious. Thus it suffices to check (by [Joyal
and Tierney 2007, Lemma 7.14]) that �n sends each member f WX ! Y of the pseudogenerating set to a
trivial cofibration.

Unless f is the open box inclusion um
k;"
,!�m

k;"
with m� nC2, any marked cube in Y of dimension > n

admits a (not necessarily marked) preimage in X . In these cases, the naturality square for the unit

X �nX

Y �nY

f �nf

is a pushout in cSetC by Remark 2.6, so �nf is a trivial cofibration.

So assume that f is the open box inclusion um
k;"
,!�m

k;"
with m� nC 2. Then we have the following

commutative square:
�m�2u

m
k;"

�nu
m
k;"

�m�2�m
k;"

�n�m
k;"

�m�2f �nfD�n.�m�2f /

Observe that the left vertical map is comical by Lemma 3.8 (with suitable substitution), and moreover it
satisfies the condition on f described in the previous paragraph. Thus this square is a pushout, exhibiting
�nf as a comical map. This completes the proof.

As we mentioned earlier, our definition of comical box inclusion uses the marking described in [Steiner
2006], where Steiner characterizes the nerves of strict !-categories. Phrased in the language of comical
sets, his characterization implies the following result:

Theorem 3.9 (cf [Steiner 2006, Theorem 3.16]) The cubical nerve of a globular !-category , or
equivalently the underlying cubical set of a cubical !-category with connections , is a comical set.

This is analogous to the statement that the simplicial nerve of a strict !-category is a complicial set [Verity
2008a].
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We conclude this section with the following observation, which will be useful in Section 7.

Proposition 3.10 For any n� 2, 1� k � n and " 2 f0; 1g, the comical box inclusion un
k;"
,!�n

k;"
may

be written as

.u2
1;" ,!�

2
1;"/ y̋ .@�

n�2 ,!�n�2/ if k D 1;

.@�k�2 ,!�k�2/ y̋ .u3
2;" ,!�

3
2;"/ y̋ .@�

n�k�1 ,!�n�k�1/ if 1< k < n;

.@�n�2 ,!�n�2/ y̋ .u2
2;" ,!�

2
2;"/ if k D n:

Proof It is easy to check that the underlying cubical maps match, and also the markings on the codomains
match. Now observe that these Leibniz Gray tensor products are regular by Lemma 2.17(1).

4 Homotopy 1-categories of comical sets

Suppose we are given two 1-cubes f;g W x! y in a comical set X . Then a marked 2-cube satisfying any
one of the following boundary conditions may be reasonably regarded as a homotopy f � g:

y

x

y

y
f

g �

y

x

y

y
g

f �0

y

x

y

x

gf �

y

x

y

x

fg �0

x

x

y

y
f

g

 

x

x

y

y
g

f

 0

x

x

y

x

f

g

!

x

x

y

x

g

f

!0

Here equalities indicate degenerate (and hence marked) 1-cubes.

Proposition 4.1 If any one of the above boundary conditions admits a marked solution in the comical
set X then so do the others.

Proof Consider the following picture:

x

x

x

y

x

x

x f

f

deg

mindeg

x

x

x

y

x

x

f

f

x
g

!deg

!0
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(Here the faces labeled “deg” are fully degenerate on the 0-cube x, and the face labeled “min” is the
min-connection on f .) If we have a marked 2-cube ! satisfying the boundary condition specified above,
then this picture may be interpreted as a map �1u

3
3;1
!X , which may be extended to�3

3;1

00
by Lemma 3.8,

yielding a marked 2-cube !0. Conversely, if we are given !0 then this picture specifies a map �1u
3
1;1
!X

and extending it to �3
1;1

00
yields a marked 2-cube !.

Similarly, the following picture shows that � exists if and only if ! does:

x

x

x

y

y

x

x g

g

f

deg

�!

x

x

x

y

y

x

g

g

x
g

mindeg

deg

Dually, �0 exists if and only if !0 does.

The following picture shows that  exists if and only if !0 does (dually,  0 exists if and only if ! does):

x

x

y

y

x

x

x

g

g

f
!0

 deg

x

x

y

y

x

x

g

g

x
g

degdeg

min

Finally the following picture shows that � exists if and only if �0 does (dually, �0 exists if and only if �
does):

x

x

y

y

y

x

x

f

g

f

g

min

�min

x

x

y

y

y

x

f

g

x
f

degdeg

�0

This completes the proof.

Definition 4.2 We say two 1-cubes f;g in a comical set X are homotopic, and write f � g if any one
of the above marked 2-cubes exists in X .

Proposition 4.3 For any pair of 0-cubes x;y in a comical set X , the homotopy relation is an equivalence
relation on the set of all 1-cubes x! y.
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Proof The reflexivity of � is obvious, and its symmetry follows from Proposition 4.1. For transitivity,
suppose we are given two homotopies:

y

x

y

y
f

g �

y

x

y

y
g

h �

Then the following picture specifies a map �1u
3
2;0
!X :

x

y

y

y

y

y

y

f

h

g
�

deg�

x

y

y

y

y

y

f

h y
deg

deg

This map extends to �3
2;0

00
, which in particular yields a homotopy f � h.

Now consider a “composable” pair of 1-cubes f W x! y and g W y ! z in a comical set X . We may
“compose” f and g by filling any one of the open boxes u2

1;0
, u2

1;1
, u2

2;0
, u2

2;1
as follows:

z

x

z

y
f

ga �

y

x

z

x

bf

g

�

y

x

z

z
c

f

g

 

x

x

z

y
f

g

d

!

We will temporarily call such a a .1; 0/-composite of f and g, and similarly call b, c and d .1; 1/-, .2; 0/-
and .2; 1/-composites of f and g respectively.

Proposition 4.4 Any two composites of f and g are homotopic to each other.

Proof First, consider two .1; 0/-composites a and a0, witnessed by 2-cubes � and �0, respectively. Then
the following picture specifies a map �1u

3
1;0
!X :

x

y

z

z

z

x

z

f g

a0

a
�

deg

x

y

z

z

z

x

f g

a0

y
f g

degdeg

�0
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This map extends to �3
2;0

00
, which yields a homotopy a� a0. Similarly, for any given a; b; c; d as above,

a homotopy a� c can be obtained by filling the following open box:

x

x

y

z

y

x

y

f

g

f g

f
deg

mindeg

x

x

y

z

y

x

f

g

f g

z

a

c

�

 

and a homotopy b � d can be obtained using

x

x

x

z

x

x

x b

d

deg

deg

x

x

x

z

x

x

b

d

y

f

f g

�min

!

Finally, we can turn the .2; 1/-composite d into a .1; 0/-composite using the following open box:

x

x

y

z

z

x

x

f

g

d

f

d

min

min

x

x

y

z

z

x

f

g

d

x
d

!deg

deg

This completes the proof.

Proposition 4.5 Let f; f 0 W x! y and g;g0 W y! z be 1-cubes in a comical set X such that f � f 0 and
g � g0. Then any composite of f and g is homotopic to any composite of f 0 and g0.

Proof Choose witnesses of the following forms for compositions and a homotopy f � f 0:

y

x

z

x

af

g

�

x

x

z

y
f 0

g

b

�

x

x

y

x

f

f 0

 

Then extending the following map �1u
3
2;1
!X to �3

2;1

00
yields a homotopy a� b:
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x

x

x

z

x

x

x a

b

deg

deg

x

x

x

z

x

x

a

b

y

f

f 0 g

� 

�

Similarly, we may combine marked 2-cubes of the forms

y

x

z

z
c

f 0

g

�0

x

x

z

y
f 0

g0d �0

z

y

z

z
g

g0  0

into a map �1u
3
2;0
!X as follows:

x

z

z

z

z

z

y

c

d

f 0 g

g0

�0

 0�0

x

z

z

z

z

z

c

d z
deg

deg

Extending this map to�3
2;0

00
yields a homotopy c� d . The desired result now follows by Propositions 4.3

and 4.4.

Definition 4.6 We define the homotopy 1-category ho1 X of a comical set X to be the category of
0-cubes and homotopy classes of 1-cubes in X .

Proposition 4.7 For a comical set X , ho1 X is indeed a 1-category.

Proof Proposition 4.5 implies that we have a well-defined composition operation on ho1 X . For any
0-cube x in X , we claim that the homotopy class containing x�1 is the identity at x. Indeed for any
f W x! y, the degenerate 2-cube

y

x

y

x
x�1

ff

y�1

f �1

exhibits f as a .1; 0/-composite of x�1 and f , and also as a .1; 1/-composite of f and y�1.
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For associativity, suppose we are given 1-cubes f W x! y, g W y! z and h W z!w in X . Compose these
1-cubes as follows:

x

x

z

y
f

g

a

�

x

x

w

z
a

h

b

�

y

y

w

z
g

h

c

 

Then we may combine them into a map �1u
3
3;1
!X :

x

y

z

w

x

x

x

f g

h

b

a
�

�deg

x

y

z

w

x

x

f g

h

b

y
f c

 deg

Extending this map to �3
3;1

00
then yields a marked 2-cube that witnesses the desired associativity.

The following proposition is straightforward to verify.

Proposition 4.8 The assignment X 7! ho1 X extends to a functor from the category of comical sets
to Cat. Moreover there is a natural isomorphism ho1.X

op/Š .ho1 X /op.

5 Triangulation

In this section, we upgrade the triangulation adjunction described in Section 1.2 to a marked version.
We start by recalling the basic combinatorics of simplicial cubes, which can be found in [Verity 2007,
Section 5]. (Note however that our indexing is reversed from Verity’s.)

Given an r -simplex � in the simplicial set .�1/n, we can define a function

f1; : : : ; ng ! f1; : : : ; r;˙1g

by declaring

i 7!

8<:
C1 if �i ı�.r/D 0;

p if �i ı�.p� 1/D 0 and �i ı�.p/D 1;

�1 if �i ı�.0/D 1:

If we regard � as an r -step walk on the n-cube with the pth step connecting �.p� 1/ to �.p/, the above
function takes i to the unique p such that the pth step moves in the i th direction; it takes the value C1 if
we never move in the i th direction, and the value �1 if we have already moved in that direction before
we start.
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Conversely, any function f1; : : : ; ng ! f1; : : : ; r;˙1g determines a unique r -simplex in .�1/n, so we
will identify the r -simplices and these functions.

Remark 5.1 In what follows, we sometimes write such expressions as p˙ k for p 2 f1; : : : ; r;˙1g

and finite k. These expressions are to be interpreted as p when p 2 f˙1g. We will never consider
expressions involving more than one ˙1.

Definition 5.2 We will write � D �n W f1; : : : ; ng ! f1; : : : ; n;˙1g for the inclusion regarded as an
n-simplex in .�1/n.

We will think of any set of the form f1; : : : ; r;˙1g as a linearly ordered set

�1< 1< � � �< r <C1:

Note however that simplices � W f1; : : : ; ng ! f1; : : : ; r;˙1g are not necessarily order-preserving.

Proposition 5.3 Under this identification , a simplicial operator ˛ W Œq�! Œr � sends an r -simplex � to the
q-simplex �˛ given by

.�˛/.i/D

8<:
C1 if �.i/ > ˛.q/;
p if ˛.p� 1/ < �.i/� ˛.p/;

�1 if �.i/� ˛.0/:

Example 5.4 Again, let us think of an r -simplex � as an r -step walk. Then the last face �@r of � moves
in the i th direction at exactly the same step as � does except that it does not have an r th step. This agrees
with the following formula obtained using Proposition 5.3:

.�@r /.i/D

�
C1 if �.i/D r;

�.i/ otherwise:

On the other hand, taking the 0th face decreases the index of each step by 1, so we have

.�@0/.i/D

�
�1 if �.i/D 1;

�.i/� 1 otherwise.

For 0< k < n, taking the k th step merges the k th and the .kC1/st steps, so it does not affect the endpoints
of the whole walk. When regarded as a function, this means that �@k takes the values ˙1 on exactly the
same inputs as � does. However, some of the indices are shifted:

.�@k/.i/D

�
�.i/� 1 if k < �.i/� r;

�.i/ otherwise.

For any 0�m� r , taking the last face .r �m/ times yields ám;r�m
1

, so we have

.� á
m;r�m
1

/.i/D

�
C1 if �.i/ >m;

�.i/ if �.i/�m:
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Similarly, since taking the 0th face m times yields ám;r�m
2

, we have

.� á
m;r�m
2

/.i/D

�
�.i/�m if �.i/ >m;

�1 if �.i/�m:

It is easy to verify the following proposition using Proposition 5.3.

Proposition 5.5 An r -simplex � in .�1/n is nondegenerate if and only if ��1.p/¤¿ for each 1�p� r .
More precisely, � is degenerate at p� 1 if and only if ��1.p/D¿.

Now we upgrade the codomain of the triangulation functor to a marked version. More precisely, we first
consider the functor �! PreComp associated (in the sense of Theorem 1.11) to the cubical monoid �1,
where PreComp is considered to be monoidal with respect to the Gray tensor product ˝pre. Its object part
is thus given by Œ1�n 7! .�1/˝

pren. This functor induces a strong monoidal left adjoint T W cSet!PreComp

with right adjoint U . We first show that .�1/˝
pren D .�1/˝n.

Proposition 5.6 An r -simplex � W f1; : : : ; ng ! f1; : : : ; r;˙1g in .�1/˝n is unmarked if and only if
there exist

1� i1 < � � �< ir � n

such that �.ip/D p for all 1� p � r . In particular , the only unmarked n-simplex in .�1/˝n is �n.

Proof This is proved in [Verity 2007, Observation 27] (with opposite indexing from ours).

Using the above characterization, we can indeed prove the following.

Proposition 5.7 The marked simplicial set .�1/˝n is precomplicial for any n� 0.

Proof Suppose for the sake of contradiction that there exists a map �r
k
0
! .�1/˝n that cannot be

extended to �r
k
00. Regard this map as an r -simplex � W f1; : : : ; ng ! f1; : : : ; r;˙1g. Then �@k is

unmarked, so Proposition 5.6 implies that there exist

1� i1 � � � � � ir�1 � n

such that

� �.ip/D p for 1� p � k � 1,

� �.ik/D k or �.ik/D kC 1, and

� �.ip/D pC 1 for kC 1� p � r � 1.

But if �.ik/D k then the same sequence i1; : : : ; ir�1 witnesses that �@kC1 is unmarked, and similarly
if �.ik/ D k C 1 then �@k�1 is unmarked. In either case, it contradicts with our assumption that �
corresponds to a map �r

k
0
! .�1/˝n.
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Next we would like to upgrade the domain of T to a marked version too, by sending the marked n-cube
to �n�1..�

1/˝n/. Proposition 5.6 implies that this marked simplicial set may be obtained from .�1/˝n

by marking �n. The following lemma shows that it is indeed an object in PreComp.

Lemma 5.8 The marked simplicial set �n�1..�
1/˝n/ is precomplicial for any n� 1.

Proof Suppose for the sake of contradiction that we are given a map � W�m
k
0
! �n�1..�

1/˝n/ that cannot
be extended to �m

k
00. Then � must not factor through the precomplicial set .�1/˝n, so � sends at least

one of the marked, nondegenerate simplices in �m
k
0 to �n. Since all simplices in �m

k
0 of dimension >m

are degenerate, it follows that m� n. On the other hand, we cannot have m> n since �@k is unmarked in
the .n�1/-trivial marked simplicial set �n�1..�

1/˝n/. Thus we must have mD n and �D �n. But at least
one of @k�1 and @kC1 is a well-defined face of �m

k
0, and it can be easily checked using Proposition 5.6

that � sends this face to an unmarked simplex. This is the desired contradiction.

Thus we have defined the object part of T W�C! PreComp, but we still need to define its value on the
generating morphisms 'n, �n

i and �n
i;", and verify the cocubical identities. The maps T 'n W T Œ1�n! T Œ1�ne

are identity on the underlying simplicial sets and add the additional marking on �n. To define T �n
i

(resp. T �n
i;"), notice that we must have T �n

i T 'nDT�n
i (resp. T �n

i"T '
nDT  n

i;"). Since T�n
i (resp. T  n

i;")
sends the n-simplex �n to a degenerate (and hence marked) one, it must factor through T 'n. Moreover,
since T 'n is (entire and hence) an epimorphism, this factorization is unique, yielding a unique possible
choice for T �n

i (resp. T �n
i;"). Finally, to see that this definition satisfies the additional identities, we note

that these involving ' are clear, whereas the remaining ones can be reduced to the usual cubical identities
by precomposing with ' and using the fact that it is an epimorphism.

Hence we obtain a left adjoint functor T from structurally marked cubical sets to precomplicial sets.
Moreover, the right adjoint U takes values in marked cubical sets, because the map �n! z�n is carried
by T to an epimorphism. Thus by restricting the domain of T , we have constructed an adjunction T aU

between marked cubical sets and precomplicial sets. In the remainder of the paper, we show that T is
strong monoidal with respect to either version of the Gray tensor products and moreover left Quillen with
respect to suitable model structures. We will make use of the following observation.

Proposition 5.9 There are isomorphisms T .X op/Š .TX /op natural in X 2 cSetC.

Proof Since both X 7! T .X op/ and X 7! T .X /op are cocontinuous, it suffices to verify the assertion
for X D�n for n� 0 and X D z�n for n� 1. The component at each �n is simply given by

T ..�n/op/D T .�n/D .�1/˝n
D ..�1/op/˝n

Š ..�1/˝n/op
D T .�n/op;

where the isomorphism is induced by the antimonoidality of .�/op W sSetC ! sSetC [Verity 2008a,
Lemma 131], and the component at each z�n is then obtained by applying �n�1.
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It remains to check that these components are natural. Since the forgetful functor sSetC! sSet is faithful,
we may instead check the naturality of the whiskering:

�C sSetC sSet

T ..�/op/

T .�/op

Now it is straightforward to check that this (potentially unnatural) transformation may also be written as

�C � sSet

T ..�/op/

T .�/op

where the first factor forgets the marking and the second factor (potentially unnatural transformation) is
the unmarked analogue of our desired natural isomorphism. But in the unmarked case, we know that both
X 7! T .X op/ and X 7! T .X /op are antimonoidal, and moreover it is straightforward to manually check
that the naturality of its restriction to the full subcategory spanned by �0, �1 and �2. Thus the desired
naturality follows from Theorem 1.11.

6 Triangulating Gray tensor product

We now prove that the triangulation functor is strong monoidal with respect to either version of the Gray
tensor product. We begin by describing a proof strategy that will be used in both the lax and the pseudo
cases.

6.1 Proof strategy

The proof typically reduces to showing an entire inclusion A ,! B to be a complicial marking extension
where A and B are certain entire supersets of .�1/˝N . (The integer N will be of the form N DmC n

in the actual proofs, but this is irrelevant in this subsection.) There are three kinds of simplices of interest,
namely those that are

(i) marked in .�1/˝N ,

(ii) marked in A but not in .�1/˝N , and

(iii) marked in B but not in A.

The simplices of type (i) are characterized by Proposition 5.6. The first step of the proof will be to (define
suitable A;B and) characterize simplices of type (ii) and (iii).

Before proceeding, we need the following definitions.
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Definition 6.1 For any r -simplex � W f1; : : : ;N g ! f1; : : : ; r;˙1g in .�1/N , define

D.�/D j��1.f1; : : : ; rg/j � r and O.�/D f.i; j / 2 f1; : : : ;N g2 j i < j ; �.i/ < �.j /g:

The integer D.�/ measures how “diagonal” � is, and the set O.�/ measures how “in order” � is.

We complicially extend the marking on A to those simplices � of type (iii) by nested induction on D.�/
and jO.�/j. More precisely, consider the lexicographical ordering on Z�N so that .u1; v1/� .u2; v2/ if
and only if

� u1 < u2, or

� u1 D u2 and v1 � v2.

For each .u; v/ 2 Z�N, let A.u; v/ denote the marked simplicial set obtained from A by marking those
simplices � such that � is marked in B and .D.�/; jO.�/j/ < .u; v/. Then

� A.u1; v1/ is an entire subset of A.u2; v2/ for any .u1; v1/� .u2; v2/,

� colimv A.u; v/DA.uC 1; 0/ for any u 2 Z,

� colimu;v A.u; v/D B, and

� A.0; 0/DA (by Proposition 5.5).

Now we assume the following.

Assumption 1 Any marked simplex � in B with D.�/D 0 is marked in A.

Then we may upgrade the last bulleted item to A.1; 0/DA. Thus to prove that A! B is a complicial
marking extension, it suffices to exhibit the map A.u; v/!A.u; vC1/ as a complicial marking extension
for each .u; v/� .1; 0/.

So fix .u; v/� .1; 0/ and suppose that we are given an r -simplex � of type (iii) with .D.�/; jO.�/j/D
.u; v/. Then in particular D.�/� 1. So by the pigeonhole principle, we can choose 1� p� � r such that
j��1.p�/j � 2. Let i� Dmin��1.p�/. Let z� be the .rC1/-simplex given by

z�.i/D

�
�.i/ if �.i/� p� and i ¤ i� ;

�.i/C 1 if �.i/ > p� or i D i� :

Observe that we have z�@p� D �. We wish to show that this simplex z� extends to �rC1
p�

0
:

�rC1 A.u; v/

�rC1
p�

0

z�

9
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Assuming this fact, we can deduce that we have a pushout square`
�rC1

p�

0
A.u; v/

`
�rC1

p�

00
A.u; vC 1/

where the coproducts are taken over all r -simplices � of type (iii) with .D.�/; jO.�/j/ D .u; v/ for
various r , and the horizontal maps are induced by z�.

The following lemma implies that z� at least extends to �rC1
p�

.

Lemma 6.2 Let ˛ W Œq�! Œr C 1� be a face operator with fp� ;p� ˙ 1g � im˛. Then z�˛ is marked in
.�1/˝N .

Proof Let p2 Œq� be the necessarily unique element with ˛.p/Dp� . Then we must have ˛.p�1/Dp��1

and ˛.p C 1/ D p� C 1. Now one can check using Proposition 5.3 and the minimality of i� that
.z�˛/�1.pC 1/ D fi�g and moreover any 1 � i � N satisfying .z�˛/.i/ D p must also satisfy i > i� .
Thus z�˛ is marked in .�1/˝N by Proposition 5.6.

Therefore it remains to prove that the faces �D z�@p��1 and  D z�@p�C1 are marked in A.u; v/. First,
we describe these simplices explicitly.

Lemma 6.3 The simplex � is given by

�.i/D

�
�1 if �.i/D p� and i ¤ i� ;

�.i/ otherwise:

if p� D 1, and

�.i/D

�
p� � 1 if �.i/D p� and i ¤ i� ;

�.i/ otherwise

if p� � 2. The simplex  is given by

 .i/D

�
C1 if i D i� ;

�.i/ otherwise

if p� D r and

 .i/D

�
p� C 1 if i D i� ;

�.i/ otherwise
if p� < r .

Proof This is a routine application of Proposition 5.3.

These explicit descriptions allow us to prove the following.
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Lemma 6.4 The simplices � and  satisfy

.D.�/; jO.�/j/ < .D.�/; jO.�/j/ and .D. /; jO. /j/ < .D.�/; jO.�/j/:

Proof If p� D 1 then clearly D.�/ < D.�/.

Suppose p� � 2. Then we have D.�/DD.�/. We claim that O.�/ is a proper subset of O.�/. Indeed, it
can be seen from Lemma 6.3 that if a pair .i; j / satisfies �.i/ � �.j / and �.i/ < �.j / then we must
have �.i/D �.j /D p� and i ¤ i� D j . But then the minimality of i� implies i > j , and this shows
that there is no pair .i; j / in O.�/ nO.�/. On the other hand, since � is unmarked in .�1/˝N , there
exist 1 � i1 � � � � � ir � N such that �.ip/D p for 1 � p � r . It is straightforward to check that the
pair .ip��1;max��1.p�// is then in O.�/ nO.�/. Therefore O.�/ is a proper subset of O.�/, and this
proves the lexicographical inequality concerning �.

The simplex  can be treated dually.

The last missing piece of the proof (that A! B is a complicial marking extension) is the following.

Assumption 2 The simplices � and  are marked in B.

This completes the proof strategy. (Whether Assumptions 1 and 2 hold depends on the exact definitions
of A and B, so there is no general strategy for verifying them.)

6.2 Triangulating the lax Gray tensor product

The goal of this subsection is to prove the following theorem.

Theorem 6.5 The adjunction T a U is monoidal with respect to the lax Gray tensor products. Equiva-
lently, T W .cSetC;˝/! .PreComp;˝pre/ is strong monoidal.

Fix m� 1 and n� 0. Observe that `
�mCk �mCn

`
z�mCk z�m˝�n

`
'

is a pushout square in cSetC, where the coproducts are taken over all face maps Œ1�k! Œ1�n. This pushout
is preserved by T , so the right square in`

�mCk
`
.�1/˝.mCk/ .�1/˝.mCn/

`
z�mCk

`
�mCk�1

�
.�1/˝.mCk/

�
T . z�m˝�n/

`
�mCk
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is a pushout square in PreComp, where the upper horizontal map is induced by id.�1/˝m ˝ T .�/ for
various face maps � W Œ1�k ! Œ1�n. The left square is also a pushout by Proposition 5.6, so the pasted
square is a pushout too. In this subsection, we define A to be the corresponding pushout in sSetC (and
not in PreComp) `

�mCk .�1/˝.mCn/

`
z�mCk A

p:o:

so that its precomplicial reflection Apre is precisely T . z�m˝�n/.

Now we give combinatorial characterizations of marked simplices in A and in T . z�m/˝T .�n/.

Lemma 6.6 An r -simplex � is marked in A but not in .�1/˝.mCn/ if and only if r �m, �.i/D i for
all 1� i �m and the restriction

��1.f1; : : : ; rg/! f1; : : : ; rg

of � is an isomorphism of linearly ordered sets.

Proof Compute the colimit.

Lemma 6.7 Let � be an unmarked r -simplex in .�1/˝.mCn/. Then � is marked in T . z�m/˝T .�n/ if
and only if :

(1) r �m;

(2) �.i/D i for all 1� i �m; and

(3) there does NOT exist a sequence m < im < imC1 < � � � < ir �mC n such that �.ip/D p for all
m� p � r .

Proof Write � D .�1; �2/ for � regarded as a simplex in the product simplicial set .�1/m � .�1/n.
That is, �1 W f1; : : : ;mg ! f1; : : : ; r;˙1g and �2 W f1; : : : ; ng ! f1; : : : ; r;˙1g are respectively given
by �1.i/D �.i/ and �2.i/D �.mC i/.

It follows from the definitions of ˝ and T . z�m/ that � (which we are assuming to be unmarked in
.�1/˝.mCn/) is marked in T . z�m/˝T .�n/ if and only if

(a) r �m,

(b) .�1; �2/ is q-cloven for all q except for q Dm,

(c) �1 á
m;r�m
1

D �m, and

(d) �2 á
m;r�m
2

is unmarked in .�1/˝n.
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The clauses (a) and (c) here clearly correspond respectively to (1) and (2) in the lemma. Since we
are assuming � to be unmarked in .�1/˝.mCn/, Proposition 5.6 implies that there exists a sequence
1 � j1 < � � � < jr � mC n such that �.jp/ D p for all 1 � p � r . Note that the strict inequalities
imply jmC1 > m. One can now check using Example 5.4 that .�2 á

m;r�m
2

/.jp �m/ D p �m for all
mC 1� p � r . Thus the clause (d) is in fact redundant by Proposition 5.6.

It remains to check that, assuming (a), (c) and (d), the clauses (3) and (b) are equivalent. Note that
.�1; �2/ is q-cloven for any m< q � r since the q-simplex �1 á

q;r�q
1

in the simplicial set .�1/m must be
degenerate. For 0� q <m, since we are assuming (c), �1 á

q;r�q
1

D �q is unmarked in T . z�m/. So (b) is
equivalent to �2 á

q;r�q
2

being marked in .�1/˝n for all 0� q <m. By Example 5.4 and Proposition 5.6,
this latter condition for fixed q is equivalent to the NON-existence of a sequence

m< iqC1 < � � �< ir �mC n

such that �.ip/D p for all qC1� p � r . Clearly the nonexistence for q Dm�1, which is precisely (3),
implies the nonexistence for all other values of q. This completes the proof.

By combining Proposition 5.6 and Lemma 6.7, we obtain the following.

Lemma 6.8 An r -simplex � in T . z�m/˝T .�n/ with r �m is unmarked if and only if there exist

1� i1 < � � �< ir �mC n

such that �.ip/D p for all 1� p � r and moreover im >m.

Proof Let � be an unmarked r -simplex in .�1/˝.mCn/ with r � m. Note that � is unmarked in
T . z�m/˝T .�n/ if and only if it violates either Lemma 6.7(2) or (3).

The “if” direction is easy since the existence of a sequence satisfying the condition stated in the lemma
would immediately contradict Lemma 6.7(3).

For the “only if” direction, assume that � is unmarked in T . z�m/˝T .�n/. Recall that by Proposition 5.6
there exist

1� j1 < � � �< jr �mC n

such that �.jp/D p for all 1� p � r . If jm >m, then simply taking ip D jp for all p would yield the
desired sequence. So assume jm Dm. Then since the inequalities j1 < � � �< jm are strict, we must have
jp D p for all 1� p �m. Thus � cannot violate Lemma 6.7(2), so it must violate (3). That is, there exist
m< im < imC1 < � � �< ir �mC n such that �.ip/D p for all m� p � r . We then obtain the desired
sequence by taking ip D jp for 1� p �m� 1.

Lemma 6.9 There is a complicial marking extension A! T . z�m/˝T .�n/ that commutes with the
evident inclusions of .�1/˝.mCn/.
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Proof We apply the proof strategy from Section 6.1 with B D T . z�m/˝T .�n/.

One can easily check using Lemmas 6.6 and 6.7 that any marked simplex � in T . z�m/˝T .�n/ with
D.�/D 0 must also be marked in A. This verifies Assumption 1.

To verify Assumption 2, let � be an r -simplex that is marked in T . z�m/˝T .�n/ but not in A. Then we
necessarily have r �m by Lemma 6.7.

Consider the simplex �D z�@p��1. Suppose for contradiction that � is unmarked in T . z�m/˝T .�n/.
Then by Lemma 6.8 there exist 1 � i1 < � � � < ir � mC n such that �.ip/ D p for all 1 � p � r and
im >m.

� If p� D 1, then we also have �.ip/ D p for all p by Lemma 6.3, thus � is unmarked in
T . z�m/˝T .�n/. This is the desired contradiction.

� Suppose p� � 2. We claim that �.ip/Dp holds for all p in this case too. According to Lemma 6.3,
the only thing we must check is that �.ip��1/D p� � 1 holds (as opposed to �.ip��1/D p�). To
see that this is indeed the case, observe that ��1.p�/D fi�g by Lemma 6.3. Thus we must have
ip� D i� . Since ip��1 < ip� , the minimality of i� implies that ip��1 62 �

�1.p�/. Therefore we
have obtained the desired contradiction.

The simplex  D z�@p�C1 can be similarly checked to be marked in T . z�m/˝T .�n/. This completes
the proof.

Proof of Theorem 6.5 Since both T .�˝�/ and T .�/˝pre T .�/ preserve colimits in each variable, it
suffices to check the existence of natural isomorphisms T .X ˝Y /Š T .X /˝pre T .Y / for X;Y generic
(possibly marked) cubes.

By construction of T , we have T .�m˝�n/Š T .�m/˝pre T .�n/ for any m; n� 0.

For any m � 1 and n � 0, we may obtain an isomorphism T . z�m ˝�n/ Š T . z�m/˝pre T .�n/ by
reflecting the complicial marking extension of Lemma 6.9 into PreComp. Dually, we have T .�m˝ z�n/Š

T .�m/˝pre T . z�n/ for any m� 0 and n� 1.

Let m; n� 1. Observe that the left square below is a pushout in cSetC by Lemma 2.17(3):

�m˝�n z�m˝�n T .�m˝�n/ T . z�m˝�n/

�m˝ z�n z�m˝ z�n T .�m˝ z�n/ T . z�m˝ z�n/

Since T is cocontinuous, it follows that the right square is a pushout in PreComp. On the other hand,
since both T .�m/! T . z�m/ and T .�n/! T . z�n/ are entire, the square below is a pushout in PreComp
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by [Verity 2008a, Lemma 140]:

T .�m/˝pre T .�n/ T . z�m/˝pre T .�n/

T .�m/˝pre T . z�n/ T . z�m/˝pre T . z�n/

Thus by comparing the two pushout squares in PreComp, we obtain T . z�m˝ z�n/Š T . z�m/˝pre T . z�n/.
The naturality of these isomorphisms is evident, and this completes the proof.

6.3 Triangulating the pseudo Gray tensor product

The goal of this subsection is to prove the following theorem.

Theorem 6.10 The adjunction T a U is monoidal with respect to the pseudo Gray tensor products.
Equivalently, T W .cSetC;�/! .PreComp;�/ is strong monoidal.

Fix m; n� 1. By Remark 2.14, the square`
�kC` �mCn

`
z�kC` �m ��n

is a pushout in cSetC, where the coproducts are taken over all pairs of face maps�k!�m and�`!�n

such that k; `� 1. This pushout is preserved by T , so the right square in`
�kC`

`
.�1/˝.kC`/ .�1/˝.mCn/

`
z�kC`

`
�kC`�1

�
.�1/˝.kC`/

�
T .�m ��n/

`
�kC`

is a pushout square in PreComp. The left square is also a pushout by Proposition 5.6, so the pasted square
is a pushout too. In this subsection, we define A to be the corresponding pushout in sSetC (and not in
PreComp): `

�kC` .�1/˝.mCn/

`
z�kC` A

p:o:

so that its precomplicial reflection Apre is precisely T .�m ��n/.
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Lemma 6.11 An r -simplex � is marked in A but not in .�1/˝.mCn/ if and only if the restriction

��1.f1; : : : ; rg/! f1; : : : ; rg

of � is an isomorphism of linearly ordered sets and moreover ��1.f1; : : : ; rg/ intersects both f1; : : : ;mg
and fmC 1; : : : ;mC ng.

Proof Compute the colimit.

Lemma 6.12 An r -simplex � in T .�m/� T .�n/ is unmarked if and only if there exist either

1� i1 < � � �< ir �m or mC 1� i1 < � � �< ir �mC n

such that �.ip/D p for all 1� p � r .

Proof Since � is the categorical product on PreComp, � is marked if and only if both �1.�/ and �2.�/

are marked. Equivalently, � is unmarked if and only if either �1.�/ or �2.�/ is unmarked. Thus the
assertion follows from Proposition 5.6.

Lemma 6.13 There is a complicial marking extension A! T .�m/� T .�n/ that commutes with the
evident inclusions of .�1/˝.mCn/.

Proof We apply the proof strategy from Section 6.1 with B D T .�m/� T .�n/.

One can easily check using Proposition 5.6 and Lemmas 6.11 and 6.12 that any marked simplex � in
T .�m/� T .�n/ with D.�/D 0 must also be marked in A. This verifies Assumption 1.

To see that Assumption 2 holds for �, suppose for contradiction that � is unmarked in T .�m/� T .�n/.
By Lemma 6.12, this unmarked-ness is witnessed by a sequence i1; : : : ; ir , but then the same sequence can
be checked to witness that � is unmarked in T .�m/�T .�n/. The details are similar to the corresponding
part in the proof of Lemma 6.9. Assumption 2 for  can be checked similarly.

Let m� 1 and n� 0. Observe that the square below is a pushout in cSetC:`
�m �m ��n

`
z�m z�m ��n

where the coproducts are taken over all Œ1�0! Œ1�n. This pushout is preserved by T , so the right square in`
�m

`
T .�m/ T .�m ��n/

`
z�m

`
T . z�m/ T . z�m ��n/

`
�m
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is a pushout in PreComp. The left square is also a pushout by Proposition 5.6, so the pasted square is a
pushout too. Let A0 denote the “corresponding” pushout in sSetC (and not in PreComp):`

�m A

`
z�m A0

p:o:

so that its precomplicial reflection .A0/pre is precisely T . z�m ��n/.

Lemma 6.14 The marked simplicial set A0 is obtained from A by marking those m-simplices � such
that �.i/D i for 1� i �m and �.i/ 2 f˙1g for i >m.

The unmarked simplices in B0 D T . z�m/� T .�n/ admit a characterization similar to Lemma 6.12.

Lemma 6.15 An r -simplex in T . z�m/� T .�n/ with r ¤m is unmarked if and only if it is unmarked in
T .�m/� T .�n/. An m-simplex � in T . z�m/� T .�n/ is unmarked if and only if there exist

mC 1� i1 < � � �< im �mC n

such that �.ip/D p for all 1� p �m.

Lemma 6.16 There is a complicial marking extension A0! T . z�m/� T .�n/ that commutes with the
evident inclusions of .�1/˝.mCn/.

Proof We first check that Assumption 1 holds. Let � be a marked r -simplex in T . z�m/� T .�n/ with
D.�/D 0. Note that, if � is marked in T .�m/� T .�n/ then we already know that it is marked in A

(and so in A0 too). So suppose otherwise. Then we can see from Lemmas 6.12 and 6.15 that we must
have r Dm and a sequence

1� i1 < � � �< im �m

such that �.ip/D p for all 1� p �m. It is then easy to check that � is one of the extra marked simplices
described in Lemma 6.14.

For Assumption 2, we assume for contradiction that � or  is unmarked, obtain a sequence using
Lemma 6.15, and deduce that � is unmarked. The details are similar to those in the proofs of Lemmas
6.9 and 6.13.

Proof of Theorem 6.10 Since both T .���/ and T .�/� T .�/ preserve colimits in each variable, it
suffices to check the existence of natural isomorphisms T .X � Y /Š T .X /� T .Y / for X;Y generic
(possibly marked) cubes.
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For the appropriate values of m and n, we may obtain isomorphisms

T .�m ��n/Š T .�m/� T .�n/;

T . z�m ��n/Š T . z�m/� T .�n/;

T .�m � z�n/Š T .�m/� T . z�n/

by reflecting to PreComp the complicial marking extensions of Lemmas 6.13 and 6.16 and the dual of the
latter respectively.

Let m; n� 1. Observe that the left square below is a pushout in cSetC by Lemma 2.17(3):

�m ��n z�m ��n T .�m ��n/ T . z�m ��n/

�m � z�n z�m � z�n T .�m � z�n/ T . z�m � z�n/

Since T is cocontinuous, it follows that the right square is a pushout in PreComp. On the other hand,
since both T .�m/! T . z�m/ and T .�n/! T . z�n/ are entire, the square below is a pushout in PreComp

by Proposition 1.28:

T .�m/� T .�n/ T . z�m/� T .�n/

T .�m/� T . z�n/ T . z�m/� T . z�n/

Thus by comparing the two pushout squares in PreComp, we obtain T . z�m � z�n/Š T . z�m/� T . z�n/.
The naturality of these isomorphisms is evident, and this completes the proof.

7 Triangulating model structures

The main theorem of our final section is the following.

Theorem 7.1 The adjunction T a U is a Quillen adjunction with respect to the comical model structure
on cSetC and the complicial model structure on PreComp.

In the following proof, we denote a nondegenerate r -simplex � W f1; 2; 3g ! f1; : : : ; r;˙1g in the
simplicial set .�1/�3 by the sequence �.1/�.2/�.3/, omitting the letter1. For instance, 21� denotes
the 2-simplex � given by �.1/ D 2, �.2/ D 1 and �.3/ D �1. Note that since � is assumed to be
nondegenerate, the dimension of � can be recovered as the maximum integer appearing in the sequence.
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Proof We first show that T preserves cofibrations. It suffices to prove that T sends the boundary
inclusions and the markers in cSetC to monomorphisms in sSetC. Clearly T sends the boundary inclusions
@�0 ,!�0 and @�1 ,!�1 to (maps that are isomorphic to) the boundary inclusions @�0 ,!�0 and
@�1 ,!�1 respectively. For any n� 2, we have

T .@�n ,!�n/Š T ..@�1 ,!�1/
y̋n/Š .T .@�1 ,!�1//

y̋n
Š .@�1 ,!�1/

y̋n

by Proposition 1.17 and Theorem 6.5, and the last map is clearly a monomorphism. Also, T sends the
marker �n ,! z�n to the monomorphism .�1/˝n! �n�1..�

1/˝n/ by definition. This shows that T

preserves cofibrations.

Next we show that T sends the open box inclusions to trivial cofibrations. We will check this “by hand”
on the boxes of dimension � 3. This will imply the general case since the higher-dimensional box
inclusions are generated by these low-dimensional ones in the sense of Proposition 3.10, T is strong
monoidal with respect to the lax Gray tensor products (Theorem 6.5), and the Leibniz Gray tensor product
of a complicial horn inclusion and a monomorphism (in PreComp) may be obtained as a composite of
pushouts of complicial horn inclusions [Verity 2008b, Lemma 72].

Clearly T sends u1
1;"
,!�1

1;"
to the trivial cofibration ƒ1

1�"
,!�1

1�"
. Consider the open box inclusion

u2
1;0
,!�2

1;0
. Its image under T may be written as a pushout of the horn inclusion ƒ2

1
,!�2

1
followed

by a pushout of ƒ2
2
,!�2

1
. The following pictures (in which thick arrows indicate marked simplices)

depict this factorization:8̂<̂
:

9>=>; ,!

8̂<̂
:

9>=>; ,!

8̂<̂
:

9>=>;
The box inclusions u2

k;"
,!�2

k;"
for other values of k and/or " can be treated similarly.

Now consider the open box inclusion u3
2;0
,!�3

2;0
. Observe that the only marked, nondegenerate cubes

in �3
2;0

are id, @1;1, @3;1 and @3;1@1;1:

@1;0

@3;0

@2;1

@1;1

@3;1

@2;0

Let B0 denote the marked simplicial set obtained from .�1/˝3 by marking the 3-simplex �3 D 123, the
2-simplices 12� and �12 and the 1-simplex �1�. Then the precomplicial reflection .B0/pre is precisely
T .�3

2;0
/. Observe that the 3-simplex 231 specifies a map �3

1
! B0. So if we mark its first face 121, the

resulting object B has the same precomplicial reflection as B0. We will adopt B (rather than B0) as our
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s pushout of interior missing face

1 ƒ2
1
,!�2

1
211 111

2 ƒ2
1
,!�2

1
2C1 1C1

3 ƒ3
2
,!�3

2
312 212

4 ƒ3
1
,!�3

1
213 112

5 ƒ3
2
,!�3

2
123 122

6 �1ƒ
3
2
,!�3

2

00
321 221

7 �1ƒ
3
1
,!�3

1

00
231 121

8 ƒ3
3 ,!�3

3 132 1C2

Table 1: Inclusions As�1 ,!As .

“model” for T .�3
2;0
/. For the open box, we define A to be the regular subset of B (or B0) consisting of

those simplices � such that:

� �.1/ 2 f˙1g,

� �.2/D�1, or

� �.3/ 2 f˙1g,

so that the precomplicial reflection Apre is T .u3
2;0
/. Then we have a sequence of inclusions

ADA0 ,!A1 ,! � � � ,!A8
D B;

where As�1 ,!As is the pushout of a suitable trivial cofibration as indicated in Table 1. This table is to
be interpreted as saying, for example, that the inclusion A0 ,!A1 fits into the pushout square

ƒ2
1

A0

�2
1

A1

in sSetC, where the composite �2
1
! A1 ,! B corresponds to the simplex � D 211, and the face �@1

corresponding to the missing face in the horn is 111. One can check that every nondegenerate face in
B nA appears exactly once in Table 1, and moreover it is marked if and only if it appears either in the
“interior” column or in the sixth or seventh row. It is also straightforward to verify using Proposition 5.6
that, for each 1� s � 8, the marked simplicial set As�1 indeed contains enough (marked) simplices to
support a map from the domain in the “pushout of” column. By reflecting everything to PreComp, we
can deduce that T sends the box inclusion u3

2;0
,!�3

2;0
to a trivial cofibration. The case u3

2;1
,!�3

2;1

is dual, and the other 3-dimensional boxes can be treated using Proposition 3.10.
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It remains to prove that T .�n
k;"
0 ,!�n

k;"
00/ is a trivial cofibration for any n; k; ". We show that this map

is in fact invertible.

Consider the following commutative diagram in PreComp:

�n�1 T .�n�1/ T .�n
k;"
0/

z�n�1 T . z�n�1/ T .�n
k;"
00/

�n�1 T .@k;"/

�n�1 T .@k;"/

The left square is a pushout by the definition of T , and the right square is a pushout because it is the
image of a pushout square under T . Thus, to show that T .�n

k;"
0 ,!�n

k;"
00/ is invertible, it suffices to

prove that the .n�1/-simplex in T .�n
k;"
0/ corresponding to the top row above is marked. Note that, by

unwinding the above argument, one can express T .un
k;"
,!�n

k;"
/ as a composite

T .un
k;"/DX 0 ,!X 1 ,! � � � ,!X N

D T .�n
k;"/;

where each map X s�1 ,!X s is a pushout (in PreComp) of the precomplicial reflection of a complicial
horn inclusion. We show by induction on s that all .n�1/-simplices contained in X s are marked in
T
�
�n

k;"
0
�
.

For the base case, write �n
k;"
0 as a pushout`

�m �n

`
z�m �n

k;"
0

where the coproducts are taken over all marked faces of �n
k;"
0, which in particular include all faces @`;�

of codimension 1 with .`; �/¤ .k; "/. By applying T to this pushout square, we can deduce that any
.n�1/-simplex of the form

�n�1 .�1/˝.n�1/ D T .�n�1/ T .�n/
�n�1 T .@`;�/

is marked in T .�n
k;"
0/. By combining this observation with Proposition 5.6, one can deduce that any

.n�1/-simplex contained in X 0 is marked in T .�n
k;"
0/. For the inductive step, suppose that all .n�1/-

simplices contained in X s�1 are marked in T .�n
k;"
0/. Suppose further that X s contains a nondegenerate

.n�1/-simplex � that X s�1 does not contain (for otherwise we are done). Then X s�1 ,! X s fits into
either a pushout square of the form

.ƒn�1
`

/pre X s�1

.�n�1
`

/pre X s�
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or one of the form
.ƒn

`
/pre X s�1

.�n
`
/pre X s�

with �@`D�. In the former case, � is marked in X s and hence in T .�n
k;"
0/ since the unique nondegenerate

.n�1/-simplex in �n�1
`

is marked. In the latter case, the inductive hypothesis implies that � extends to
the marked simplicial set �n

`
0. Since X s is a precomplicial set, it follows that � D �@` is marked in X s

and hence in T .�n
k;"
0/. This completes the proof.

The saturated and n-trivial versions can be proved analogously.

Theorem 7.2 The adjunction T a U is a Quillen adjunction when cSetC and PreComp are respectively
equipped with :

� the saturated comical model structure and the saturated complicial model structure ,

� the n-trivial comical model structure and the n-trivial complicial model structure for some 0�n<1,
or

� the saturated n-trivial comical model structure and the saturated n-trivial complicial model structure
for some 0� n<1.

Proof The proof is analogous to that of Theorem 7.1. For the n-trivial versions, observe that T sends
the (cubical) m-marker to a pushout of the (simplicial) m-marker.

For the saturated versions, we only check that T sends the basic Rezk maps to trivial cofibrations. (That
the higher Rezk maps are also sent to trivial cofibrations then follows from Theorems 1.37 and 6.5.) Note
that T sends all four basic Rezk maps to the same map (up to isomorphism). This unique image, which
we denote by TL ,! TL0, may be visualized as

TLD

8̂̂<̂
:̂

9>>=>>; and TL0 D

8̂̂<̂
:̂

9>>=>>; :
Let A (resp. A0) be the regular subset of TL (resp. TL0) consisting of the middle two nondegenerate
2-simplices so that they look like

AD

8̂<̂
:

9>=>; and A0 D

8̂̂<̂
:̂

9>>=>>; :
Clearly TL ,! TL0 is a pushout of its restriction A ,!A0, so it suffices to show that the latter is a trivial
cofibration.
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Observe that A is isomorphic to the regular subset of �3
eq consisting of @0 and @3. One can check that

the inclusion A ,!�3
eq may be written as the composite of a pushout of ƒ2

1
,!�2

1
(attaching @1) and

a pushout of ƒ3
2
,! �3

2
. Hence A ,! �3

eq is complicial. Similarly, A0 ,! .�3/] is the composite of
pushouts of two complicial horn inclusions and one elementary complicial marking extension (marking
the 1-simplex f0; 3g), so it is complicial too. Since the square

A A0

�3
eq .�3/]

commutes, the desired conclusion now follows by the 2-out-of-3 property.
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1 Introduction

A properly convex domain in P .RdC1/ is an open subset �� P .RdC1/ such that � is a bounded convex
domain in an affine chart. Any such domain � carries a canonical distance function d�, called the
Hilbert metric on �, defined using projective cross-ratios; see Section 3. Then � equipped with its
Hilbert metric constitutes a Hilbert geometry. A motivating example is given by the open projective disk
�2 WD fŒx W y W 1� 2 P .R3/ j x2Cy2 < 1g, a properly convex domain in P .R3/. In fact, .�2; d�2/ is the
projective model of the 2-dimensional real hyperbolic space H2.

For a properly convex domain �, the group Aut.�/ WD fg 2 PGLdC1.R/ j g�D�g acts properly and
isometrically on .�; d�/. If � � Aut.�/ is a discrete subgroup, then the quotient space �=� is “locally
modeled” on .�; d�/. These are the main objects that we study in this paper. We make the following
definition.

Definition 1.1 We say that � is a Hilbert geometry if � � P .RdC1/ is a properly convex domain.
Further, we say that a pair .�; �/ is a Hilbert geometry if �� P .RdC1/ is a properly convex domain
and � � Aut.�/ is a discrete subgroup. A Hilbert geometry .�; �/ is divisible if � � Aut.�/ acts
cocompactly on �.

Example Consider the projective model �2 of H2. Here Aut.�2/D PO.2; 1/. If � � PO.2; 1/ is any
discrete subgroup, then .�2; �/ is a Hilbert geometry and .�2; �/ is divisible when � is a uniform lattice.

The boundary of a Hilbert geometry �, denoted by @�, is the topological boundary of � as a subset of
P .RdC1/. The regularity of @� strongly influences the geometric properties of .�; d�/. For instance,
consider the class of strictly convex Hilbert geometries, ie Hilbert geometries � such that @� does not
contain any nontrivial projective line segments. Benoist [8] showed that strictly convex divisible Hilbert
geometries .�; �/ have C 1 boundaries and behave like compact Riemannian manifolds of negative
curvature (more precisely, � is Gromov hyperbolic and the geodesic flow is Anosov). This analogy
between strictly convex Hilbert geometries and Riemannian negative curvature was subsequently studied
by many authors with much success; see Benoist [12] or Marquis [43] for a survey.

On the other hand, the nonstrictly convex Hilbert geometries (ie when @� contains nontrivial projective
line segments) have remained elusive. There are only a few examples (see Section 3.4) and, until recently,
only a limited number of results. Taking a cue from the strictly convex case, one hopes to liken nonstrictly
convex Hilbert geometries to Riemannian nonpositive curvature, or more generally, CAT.0/ spaces. This
will be our guiding principle in this paper. But we remark that the similarity with CAT(0) geometry is
superficial. In fact, an old theorem of Kelly and Straus [41] states that � is CAT.0/ if and only if � is the
projective model of the real hyperbolic space. Thus, one needs to use very different tools and techniques
for working with Hilbert geometries as compared to CAT(0) spaces.

Our target in this paper is to classify Hilbert geometries into two broad classes: “rank one” and “higher
rank”. The motivation for this classification comes from the success of the rank rigidity theorem for
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a b

z

a b

z

Figure 1: In the left figure, .a; b/ is a rank-one geodesic while in the right figure, .a; b/ is
contained in a half triangle in �. However, Proposition 6.5 will show that neither of these can be
a closed rank-one geodesic (ie a rank-one axis) in �=� .

nonpositively curved Riemannian manifolds; see Ballmann [3] and Burns and Spatzier [22]. Roughly, this
theorem states that there is a dichotomy for irreducible compact Riemannian manifolds of nonpositive
curvature: either the manifold is “rank one”, or it is a higher rank Riemannian locally symmetric space.
Similar rank rigidity theorems have been proven in other “nonpositive curvature” settings (see Caprace
and Sageev [23] and Ricks [47]) and conjectured for CAT(0) spaces. We remark that the usual definition
of rank for Riemannian manifolds uses Jacobi fields and will not be useful for Hilbert geometries. This is
because the geodesic flow on a generic nonstrictly convex Hilbert geometry is only C 0.

We introduce a notion of rank-one geodesics in .�; d�/ using projective geometry. Consider an open
projective line segment .a; b/�� with a; b 2 @�. Then .a; b/ is a bi-infinite geodesic for the Hilbert
metric d�. We will say that .a; b/ is a rank-one geodesic provided it is not contained in a half triangle in�,
ie either .a; c/�� or .c; b/�� for any c 2 @�; see Figure 1 and Definitions 6.1 and 6.2. The notion
of a half triangle in Hilbert geometry is analogous to the notion of a half flat in CAT.0/ geometry; see
Ballmann [4, Section III.3]. Our above definition of a rank-one geodesic is motivated by an analogous
characterization of rank-one geodesics in CAT(0) geometry. In a CAT(0) geodesic metric space, a rank-one
geodesic does not bound a half flat.

We will say that an isometry  2 Aut.�/ is a rank-one isometry if  acts by a translation along a
rank-one geodesic `��; see Definition 6.3. We remark that acting by a translation along a rank-one
geodesic (ie having a rank-one axis) is much more special than simply translating along any projective
geodesic (ie having an axis); see Remark 6.4. Our definition of rank-one isometry is again analogous
to a characterization of rank-one isometries in CAT(0) geometry; see Ballmann [2] and Ballmann and
Brin [5]. A rank-one isometry  2 Aut.�/ has several properties reminiscent of hyperbolic isometries
in Isom.H2/:  is biproximal, has exactly two fixed points ˙ in �, has a unique axis .C; �/��,
both fixed points are “visible” (ie .C; z/[ .z; �/ for any z 2 @��fC; �g), and  has the so-called
north–south dynamics on @�; see Proposition 6.5 and Corollary 6.7. In the case where .�; �/ is divisible,
it is quite easy to detect a rank-one isometry: if  2 Aut.�/ has an axis and is biproximal, then  is a
rank-one isometry; see Proposition 6.8.

We further the analogy between rank-one isometries in Hilbert geometry and CAT(0) geometry by proving
that rank-one isometries (in our sense above) are contracting elements in the sense of Sisto [49]. Sisto
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introduced the notion of contracting elements to capture the essence of “negative curvature” in groups; see
Section 9. He proved in [49, Proposition 3.14] that if ƒ acts properly by isometries on a proper CAT.0/
spaceX , then an element ofƒ is contracting if and only if it is rank one (in the sense of CAT(0) geometry).
Our first main result in the paper is an analogue of this result for Hilbert geometries. If � is a Hilbert
geometry, let PS� WD fŒx; y� j x; y 2�g, where Œx; y� is a projective line segment joining x and y.

Theorem 1.2 (see Part III) If � is a Hilbert geometry, then  2 Aut.�/ is a contracting element for
.�;PS�/ if and only if  is a rank-one isometry.

In the light of these analogies, one naturally expects that the presence of many rank-one isometries would
induce interesting “negative curvature”-like behavior. To formalize this, we now introduce the notion of
rank-one Hilbert geometries. An example to keep in mind is .�2; �/ where �2 � P .R3/ is the projective
model of H2 and � � PO.2; 1/ is an infinite discrete subgroup.

Definition 1.3 A rank-one Hilbert geometry is a pair .�; �/ where �� P .RdC1/ is a Hilbert geometry
and � is a discrete subgroup of Aut.�/ that contains a rank-one isometry.

Morally, if a rank-one group � as in Definition 1.3 is not virtually cyclic (ie does not contain a finite-index
cyclic subgroup), then it contains many rank-one isometries and we expect the group � to appear quite
“hyperbolic”. But of course we cannot expect such a group � to always be Gromov hyperbolic — there
are many examples to the contrary; see Section 3.4. The main result of this paper is to identify the notion
of hyperbolicity that rank-one groups satisfy. We prove that a rank-one group is either virtually cyclic or
an acylindrically hyperbolic group; see Theorem 1.4 below.

The notion of acylindrically hyperbolic groups, introduced by Osin in [45], is a generalization of the notion
of nonelementary Gromov hyperbolic groups. Roughly speaking, a group is acylindrically hyperbolic if it
admits a nonelementary action on a (possibly nonproper) Gromov hyperbolic metric space with all but
finitely many elements acting “hyperbolically”; see Definition 12.1. This family includes many important
classes of groups: mapping class groups of most finite-type surfaces, rank-one CAT.0/ groups that are
not virtually abelian, relatively hyperbolic groups that are not virtually cyclic and have proper peripheral
subgroups, and outer automorphism groups of free groups on at least two generators; see [45, Appendix].
We prove the following.

Theorem 1.4 (see Section 12) If .�; �/ is a rank-one Hilbert geometry , then either � is virtually
cyclic or � is an acylindrically hyperbolic group.

The acylindrical hyperbolicity of rank-one Hilbert geometries .�; �/ have several applications. We defer
this discussion until the section Applications below. Instead we first mention some of the precursors to
our above result. In all those previous results, the conclusion is that the group under consideration is
either Gromov hyperbolic or relatively hyperbolic — both of which are acylindrically hyperbolic groups;
see the previous paragraph. Benoist [8] showed that if .�; �/ is divisible and @� is strictly convex, then
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� is Gromov hyperbolic. If instead �=� is noncompact but has finite volume, then Cooper, Long and
Tillmann [25, Theorem 0.15] showed that � is relatively hyperbolic (with respect to the cusp subgroups).
More generally, if �=� is geometrically finite, then Crampon and Marquis [27, Theorem 1.8] proved
that � is relatively hyperbolic. However, they require that @� is C 1, and not just strictly convex.

Outside the strictly convex setting, Islam and Zimmer [39] have recently shown that if � acts cocompactly
on �, then � is relatively hyperbolic (with peripheral subgroups free abelian of rank at least two) if and
only if the set of properly embedded simplices in � of dimension at least two (see Section 3.3) forms an
“isolated family”. The results in [39] hold in greater generality — whenever � acts convex cocompactly
on �; see Definition A.1 and Section A.6 for further discussion. We can interpret the above Theorem 1.4
as a generalization of these aforementioned results in the general setup of (possibly nonstrictly convex)
Hilbert geometries. Theorem 1.4 characterizes the existence of rank-one isometries in � as a key factor
that underpins the presence of these various weak forms of hyperbolicity for the group � .

Zariski density and rank one

Before moving on to contrasting rank one against “higher rank” Hilbert geometries, we indulge in a
short discussion about Hilbert geometries .�; �/ where � � Aut.�/ is Zariski dense in SLdC1.R/,
ie it is “large” in an algebraic sense. For such groups � , one can define a notion of proximal limit
set ƒG=Q� � P .RdC1/ (see Definition 8.3 and Remark 8.4) that is independent of the properly convex
domain �. In Section 8, we prove that if x; y 2 ƒG=Q� \ @� are such that .x; y/ � � is a rank-one
geodesic, then the set of rank-one isometries in � form a Zariski dense set in SLdC1.R/ and .x; y/ can
be approximated by the axes of rank-one isometries (Lemma 8.10). In particular, a Hilbert geometry
.�; �/ with � Zariski dense in SLdC1.R/ is rank one if and only if � contains a rank-one geodesic
.x; y/ with x; y 2ƒG=Q� \ @�; see the answer to Question 8.1.

Rank one versus higher rank

The class of rank-one Hilbert geometries is quite rich. Besides the strictly convex Hilbert geometries,
there are several examples of nonstrictly convex divisible Hilbert geometries which are rank one, eg the
3-manifold groups constructed in Benoist [10] from projective reflection groups. For more examples, see
Section 3.4. In Appendix A, we discuss this further and also generalize the notion of rank one for convex
cocompact actions.

On the other hand, there are several examples of Hilbert geometries that are not rank one, or in other
words, have “higher rank”. Projective simplices of dimension at least two and symmetric domains of
real rank at least two are the key examples of “higher rank” Hilbert geometries; see Sections 3.3 and 3.4.
The former are examples of reducible “higher rank” while the latter are examples of irreducible “higher
rank” domains; see Definition 3.6. At this point, it is natural to ask whether these are all the “higher
rank” divisible Hilbert geometries, akin to the case of Riemannian nonpositive curvature. Recently,
A Zimmer [50] has proven that this is indeed the case.
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We will now briefly discuss Zimmer’s result for context. Zimmer calls � a higher rank Hilbert geometry
if any .p; q/�� is contained in a properly embedded projective simplex S in � of dimension at least
two; see also Section 3.4. Under some assumptions, he proves that his notion of higher rank is exactly
complementary to our notion of rank one. We remark that Zimmer does not develop a theory of rank-one
geometries. He focuses only on higher rank geometries and proves that an irreducible divisible Hilbert
geometry .�; �/ is higher rank (in his sense) if and only if it does not satisfy the notion of rank one (in
the sense introduced in this paper).

Theorem 1.5 (part of [50, Theorem 1.4]) Suppose .�; �/ is a divisible Hilbert geometry and � is
irreducible. Then the following are equivalent :

(i) � has higher rank (in the sense of Zimmer [50, Definition 1.1]).

(ii) � is a symmetric domain of real rank at least two.

(iii) � does not contain any rank-one geodesics (in the sense of this paper , Definition 6.2).

(iv) � does not contain any rank-one isometries (in the sense of this paper , Definition 6.3).

Applications

We now return to our discussion about rank-one geometries. There is a sizeable literature exploring
different properties of acylindrically hyperbolic groups. By virtue of Theorem 1.4, we can use these to
establish several interesting results about rank-one Hilbert geometries. We remark that in the ensuing
discussion, we usually do not require the additional assumption of divisibility.

1.1 Second bounded cohomology and quasimorphisms

A quasimorphism of a groupG is a function f WG!R such that supg;h2G jf .gh/�f .g/�f .h/j is finite.
We say that two quasimorphisms are equivalent if they differ by a bounded function or a homomorphism
of G into R. The set of all equivalence classes of quasimorphisms of G constitute eQH.G/, which is a
R-vector space. More generally, if � WG!U.E/ is a unitary representation of G on a complete normed
R-vector space .E; k � k/, then we can define fQC.GI �/; see Section 13.

Bestvina and Fujiwara proved in [17] that if M is a compact nonpositively curved Riemannian manifold,
then — under some mild assumptions —eQH.�1.M// is infinite-dimensional if and only ifM is a rank-one
Riemannian manifold. We prove a similar cohomological characterization of rank-one Hilbert geometries.

Theorem 1.6 (see Section 13) If .�; �/ is a rank-one Hilbert geometry , � is torsion-free and � is not
virtually cyclic , then

(i) dim.eQH.�//D1, and

(ii) if p 2 .1;1/ and �preg W �!U.`p.�// is the regular representation , then dim.fQC.�I �preg//D1.
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We prove a more general Theorem 13.1. On the other hand, if � �G is a lattice in a higher-rank simple
Lie group G, then a result of Burger and Monod [21, Theorem 21] implies that eQH.�/ D 0. Then
Theorem 1.6 and the rank rigidity result (Theorem 1.5) implies:

Corollary 1.7 (see Section 13) If .�; �/ is a divisible Hilbert geometry and � is irreducible , then
dim.eQH.�//D1 if and only if .�; �/ is a rank-one Hilbert geometry. Otherwise dim.eQH.�//D 0.

1.2 Counting of conjugacy classes

For g 2 Aut.�/, define the translation length ��.g/ WD infx2� d�.x; gx/ (see also Section 3.8) and the
stable translation length

� stable
� .g/ WD lim

n!1

d�.x; gnx/
n

:

Note that � stable
� .g/ is independent of the basepoint x 2�. Now suppose that .�; �/ is a rank-one Hilbert

geometry. For g 2 � , let Œcg � denote the conjugacy class of g in � . Both �� and � stable
� are well-defined

on the set of conjugacy classes in � . Then for t > 0, define

C.t/ WD #fŒcg � j g 2 �; ��.Œcg �/� tg and Cstable.t/ WD #fŒcg � j g 2 �; � stable
� .Œcg �/� tg:

Here C.t/ (resp. Cstable.t/) counts the number of conjugacy classes in � whose translation length (resp. sta-
ble translation length) is at most t . For divisible rank-one Hilbert geometries, we prove an asymptotic
growth formula for C.t/ and Cstable.t/. To state our result, we will require the critical exponent of � ,
which is defined as

!� WD lim sup
n!1

log #fg 2 � j d�.x; gx/� ng
n

for some (and hence any) basepoint x 2�.

Theorem 1.8 (see Section 14) Suppose .�; �/ is a divisible rank-one Hilbert geometry and � is not
virtually cyclic. Then there exists a constant D0 such that if t � 1,

1

D0
exp.t!�/

t
� C.t/ � D0

exp.t!�/
t

:

The function Cstable.t/ also satisfies a similar growth formula as above.

Remark 1.9 (i) An element g 2 � is called primitive if g¤ hn for any h 2 � and jnj � 2. If CPrim.t/

is the number of conjugacy classes Œcg � of primitive elements in � such that ��.Œcg �/ � t , then
CPrim.t/ satisfies a similar growth formula as C.t/.

(ii) In [18, Proposition 1.5], Blayac establishes finer counting results for (a related notion of) rank-one
Hilbert geometries using very different techniques.

Counting of conjugacy classes is often connected to counting of closed geodesics. However, this connection
is subtle for Hilbert geometries, since there could be elements in � that do not act by a translation along
any projective line in � (ie do not have an axis, see Example 5.11(B)).
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1.3 Genericity and random walks

Suppose .�; �/ is a rank-one Hilbert geometry, � is not virtually cyclic and � is finitely generated. If S
is a finite symmetric generating set of � , let Wn.S/ be the set of words of length n in the elements of S .
A simple random walk on � (with support S ) is a sequence of �-valued random variables fXngn2N with
laws �n defined by: if n� 1 and g 2 � ,

�n.fgg/D
#fw 2Wn.S/ j w represents gg

#Wn.S/
:

Using results in [49], we show that rank-one isometries in � are exponentially generic from the viewpoint
of simple random walks. This roughly means that the probability that a long word, written down by
randomly choosing generators of � , is not a rank-one isometry is small. In particular, this probability
decays exponentially in the length of the word.

Proposition 1.10 (see Section 15) Suppose .�; �/ is a rank-one Hilbert geometry , � is not virtually
cyclic and � is finitely generated. Then the rank-one isometries in � are exponentially generic: if
fXngn2N is a simple random walk on � , then there exists a constant C � 1 such that for all n� 1,

P ŒXn is not a rank-one isometry�� Ce�n=C :

1.4 More consequences of acylindrical hyperbolicity

Proposition 1.11 (see Section 15) If .�; �/ is a rank-one Hilbert geometry and � is not virtually
cyclic , then:

(i) � is SQ-universal , ie every countable group embeds in a quotient of � .

(ii) If � is the Baumslag–Solitar group BS.m; n/, then m D n D 0 and � is the free group on two
generators.

1.5 Morse geodesics and Morse boundary

Roughly speaking, the Morse geodesics [26] in a geodesic metric space identify the “hyperbolic directions”.
As a corollary to Theorem 1.2, we prove that the axis of a rank-one isometry is a Morse geodesic.

Proposition 1.12 (see Section 15) If � is a Hilbert geometry and  2 Aut.�/ is a rank-one isometry ,
then the axis ` of  is K-Morse for some Morse gauge K W Œ1;1/ � Œ0;1/ ! Œ0;1/, ie if ˛ is a
.�; "/-quasigeodesic with endpoints on ` , then ˛ � NK.�;"/.` /.

In [26], Cordes introduced a notion of Morse boundary for proper geodesic metric spaces. In the cases of
proper CAT(0) spaces and hyperbolic metric spaces, the Morse boundary coincides with the contracting
boundary and the Gromov boundary respectively. Theorem 1.2 and Proposition 1.12 implies that the
Morse boundary @M� of a rank-one Hilbert geometry .�; �/ is nonempty. This inspires the following
question (that we will not answer in this paper).

Question 1.13 Describe the Morse boundary @M� of a rank-one Hilbert geometry .�; �/.
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Recent developments

Since this paper first appeared on arXiv, there have been tremendous new developments in the field.
We mention a few of them. Blayac [18] has developed the Patterson–Sullivan theory for rank-one
Hilbert geometries. In [20], Blayac and Viaggi constructed examples of divisible rank-one Hilbert
geometries .�; �/ in every dimension d � 3 where � is not Gromov hyperbolic. In their examples, � is
Zariski dense in SLdC1.R/ and relatively hyperbolic with peripheral subgroups isomorphic to Z�H ,
where H is possibly nonabelian [20, Theorem 1.3].

Outline of the paper

We discuss the preliminaries in Part I. Section 4 of Part I is of particular interest as it discusses the
geometry of !-limit sets of automorphisms in Aut.�/. Part II develops the notion of rank-one Hilbert
geometries. We define rank-one isometries and study their geometric properties in Sections 6 and 7. Our
main tools here are the lemmas proven in Section 5. In Section 8, we study rank-one groups which are
Zariski dense.

In Part III, we prove Theorem 1.2 (in Sections 10 and 11) and Theorem 1.4 (in Section 12). Part IV discusses
several applications of our results, like computing the dimension of the space of quasimorphisms, counting
of conjugacy classes and genericity from the viewpoint of random walks. We discuss generalizations,
examples and nonexamples of rank-one Hilbert geometries in Appendix A. In Appendix B, we discuss
the equivalence of two notions of contracting elements.
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Part I Preliminaries

2 Notation

We set the following notation as standard for the rest of the paper.

(i) If v 2RdC1 n f0g, let Œv� or �.v/ denote its image in P .RdC1/. Conversely, if u 2 P .RdC1/, we
will use zu to denote a lift of u (ie �.zu/D u).

(ii) If A 2 GLdC1.R/, let ŒA� denote its image in PGLdC1.R/, while zB 2 GLdC1.R/ will denote a
lift of B 2 PGLdC1.R/.
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(iii) If W �RdC1 is a nonzero linear subspace, P .W / denotes its projectivization.

(iv) If g 2 GLdC1.R/, the eigenvalues of g (over C) are denoted by �1.g/; : : : ; �dC1.g/. We index
them in the nonincreasing order of their absolute values, ie j�1.g/j � � � � � j�dC1.g/j. Let
�max.g/ WD j�1.g/j and �min.g/ WD j�dC1.g/j.

(v) If g 2 PGLdC1.R/ and 1� i ¤ j � d C 1, define
ˇ̌̌̌
�i

�j
.g/

ˇ̌̌̌
WD

ˇ̌̌̌
�i .zg/

�j .zg/

ˇ̌̌̌
for some (hence any) lift

zg 2 GLdC1.R/ of g.

3 Hilbert geometries

3.1 Properly convex domains

An open set �� P .RdC1/ is called a properly convex domain if there exists a codimension one subspace
H �RdC1 such that� is a bounded (Euclidean) convex domain in the affine chart A WDP .RdC1/nP .H/.

Remark 3.1 If L�RdC1 is a 2-dimensional linear subspace, then P .L/ 6�� for any properly convex
domain �. This elementary observation that a properly convex domain cannot contain an entire projective
line will be used in many of the proofs in this paper.

For a nonempty set X �RdC1, let Span.X/ denote the linear span of X . If X 0 � P .RdC1/ is nonempty,
define

Span.X 0/ WD Span.fzx 2RdC1 j �.zx/ 2X 0g/:

Suppose � is a properly convex domain. If x; y 2 �, let Œx; y� denote the unique closed connected
subset of P .Spanfx; yg/\� that joins x and y. We will call Œx; y� the projective line segment between
x and y (note that the notion of a projective line segment depends on �, but we assume that � will
be clear from context and suppress it for brevity). We introduce the notation .x; y/ WD Œx; y� n fx; yg,
Œx; y/ WD Œx; y�nfyg and .x; y� WD Œx; y�nfxg. We will call .x; y/ an open projective line segment. When
we say that Œx; y� (or .x; y/) is nontrivial, we mean x ¤ y.

We have a notion of convexity and convex hull in a properly convex domain �. A set Y �� is convex if
Œy1; y2�� Y for all y1; y2 2 Y . If X �� is a nonempty set, then ConvHull�.X/ is the smallest closed
convex subset of � that contains X . We define

ConvHull�.X/ WD�\ConvHull�.X/:

3.2 Hilbert metric

Suppose � is a properly convex domain and A is an affine chart that contains � as a compact subset. We
equip A with the Euclidean norm j � j. If x; y 2�, then there exist a; b 2 @� such that

P .Span.fx; yg//\�D Œa; b�;
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where the four points appear in the order a; x; y; b. The cross-ratio of these four points is given by

Œa; x; y; b� WD
jb� xjjy � aj

jb�yjjx� aj
:

The Hilbert metric on � is defined by

d�.x; y/ WD 1
2

log.Œa; x; y; b�/:

Observation 3.2 If �0 �� are properly convex domains and x; y 2�0, then d�.x; y/� d�0.x; y/.

If x; y 2�, then Œx; y� is a geodesic in .�; d�/ joining x and y. In order to emphasize this fact, we will
often refer to the projective line segment Œx; y� as the projective geodesic segment between x and y. If
.x; y/�� with x; y 2 @�, then .x; y/ is a bi-infinite geodesic in .�; d�/ and we will call it a (bi-infinite)
projective geodesic.

The space .�; d�/ is a proper, complete and geodesic metric space and we will call � a Hilbert geometry,
see Definition 1.1. The group Aut.�/ WD fg 2 PGLdC1.R/ j g�D�g acts properly and isometrically
on .�; d�/. However, the projective geodesic may not be the unique geodesic between points in .�; d�/.
Consider, for example, the two-dimensional simplex T2 WD P .RCe1˚RCe2˚RCe3/ with its Hilbert
metric dT2 . Then generic points x¤ y 2 T2 have uncountably many geodesics (for the Hilbert metric dT2)
joining them [36, Proposition 2].

Definition 3.3 For a Hilbert geometry �, the preimage ��1.�/ WD fv 2 RdC1 j �.v/ 2 �g has two
connected components. The cone above (or over)�, denoted by z�, is a connected component of ��1.�/.

Then ��1.�/ D z�t .�z�/. If g 2 Aut.�/, then there is a lift zg 2 GLdC1.R/ of g that preserves z�,
ie zg � z�D z�. Indeed, if a lift zg does not preserve z�, then zg � z�D�z� and hence �zg preserves z�. We
have the following elementary observation about such lifts of automorphisms.

Observation 3.4 Suppose z� is a cone above � and zg 2 GLdC1.R/ preserves z�. If za 2 z� satisfies
zg � zaD � � za, then � > 0.

Proof Clearly � ¤ 0. As zg preserves z�, zg � za 2 z� which implies that � � za 2 z�. Now if � < 0, then
za 2 .�z�/. But then za 2 z�\ .�z�/D∅, a contradiction.

3.3 Projective simplices

The standard k-dimensional projective simplex in P .RdC1/ is

Tk WD fŒx1 W � � � W xkC1 W 0 W � � � W 0� 2 P .RdC1/ j x1; : : : ; xkC1 > 0g:

A k-dimensional projective simplex is a subset of P .RdC1/ of the form gTk for some g 2 PGLdC1.R/.
If �� P .RdC1/ is a properly convex domain and S �� is a projective simplex, then we say that S is a
properly embedded simplex in � if and only if @S � @�.
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The Hilbert metric dTk on Tk is given by

dTk .Œx1 W � � � W xkC1 W 0 W � � � W 0�; Œy1 W � � � W ykC1 W 0 W � � � W 0�/D max
1�i;j�kC1

1

2

ˇ̌̌̌
log

xiyj

xjyi

ˇ̌̌̌
:

Then .Tk; dTk / is quasi-isometric to the real Euclidean space of dimension k. For a more elaborate
discussion, see [39, Section 5], [44] or [36]. The group Aut.Td / is generated by the group of permutation
matrices in PGLdC1.R/ and the group fŒdiag.�1; : : : ; �dC1/� 2 PGLdC1.R/ j �1; : : : ; �dC1 > 0g.

Lemma 3.5 Suppose g WD Œdiag.�1; : : : ; �dC1/� 2 Aut.Td / where �i > 0 for all i D 1; : : : ; d C 1. Let
�max WD max1�i�dC1 �i and �min WD min1�i�dC1 �i . Then dTd .x; gx/ D

1
2

log.�max=�min/ for any
x 2 Td .

Proof Fix x D Œx1 W � � � W xdC1� 2 Td . Using the formula for dTd ,

dTd .x; gx/D max
1�i;j�dC1

1

2

ˇ̌̌̌
log

xi�jxj

xj�ixi

ˇ̌̌̌
D max
1�i;j�dC1

1

2

ˇ̌̌̌
log

�j

�i

ˇ̌̌̌
D
1

2
log

�max

�min
:

3.4 Examples of Hilbert geometries

The projective open ball �d WD
˚
Œx1 W � � � W xd W 1� j

Pd
iD1 x

2
i < 1

	
in P .RdC1/ is the simplest example

of a divisible strictly convex Hilbert geometry. In fact �d with its Hilbert metric is isometric to Hd and
is well-known as the Beltrami–Klein model of real hyperbolic space. Moreover, Aut.�d /D PO.d; 1/.
There are several examples of divisible strictly convex Hilbert geometries that are not isometric to Hd : in
dimension 4, there is a construction due to Benoist [11, Proposition 3.1], while Kapovich [40] constructed
examples in all dimensions above 4.

Among nonstrictly convex (divisible) Hilbert geometries, the simplest example is the standard d -
simplex Td ; see Section 3.3. But this example is reducible, a term which we now define. Recall that a
convex cone in RdC1 is a set C �RdC1 such that r1v1C r2v2 2 C whenever v1; v2 2 C and r1; r2 > 0.

Definition 3.6 A properly convex domain � � P .RdC1/ is reducible if there exist convex cones
C1 �Rd1 and C2 �Rd2 with d1; d2 � 1 such that �D P .C1˚C2/. Otherwise, � is irreducible.

An irreducible nonstrictly convex (divisible) example is Posd with d � 3, the set of positive-definite
real symmetric d � d matrices of unit trace. It is a properly convex domain in Rd.dC1/=2 and is a
projective model for the symmetric space of SLd .R/. The notion of symmetric domains generalize Posd .
A symmetric domain � is a properly convex domain such that: for each x 2�, there exists an order two
isometry sx 2 Aut.�/ where x is the unique fixed point of sx in �. Symmetric domains of real rank
at least two are real projective analogues of higher rank Riemannian symmetric spaces of nonpositive
curvature; see [12; 50] for details. As one might expect, symmetric domains are very special in the theory
of properly convex domains. The rank rigidity theorem (Theorem 1.5) mentioned in the introduction is
also a result in this spirit. Benoist proved the following result.
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Theorem 3.7 [12, Theorem 5.2] Suppose �� P .RdC1/ is an irreducible properly convex domain that
is not a symmetric domain. If � � SLdC1.R/ is a discrete subgroup that acts cocompactly on �, then �
is Zariski dense in SLdC1.R/.

Besides simplices and the symmetric domains of real rank at least two, only a few examples of divisible
nonstrictly convex Hilbert geometries are known. These are low-dimensional examples; see for instance
[10; 24], which rely on Coxeter group constructions, or [1], which uses “cusp-doubling” construction for
certain three manifolds.

3.5 Closest-point projection for the Hilbert metric

Suppose � is a Hilbert geometry. If r > 0, we set

B�.x; r/ WD fy 2� j d�.x; y/ < rg:

Lemma 3.8 [25, Lemma 1.7] B�.x; r/ is a relatively compact and convex set.

If C �� is a closed convex set, we define the closest-point projection on C as: if x 2�,

…C .x/ WD C \B�.x; d�.x; C //:

As the intersection of two closed convex sets is again a closed convex set, Lemma 3.8 immediately implies
the following.

Observation 3.9 Suppose � is a Hilbert geometry, C is a closed convex set and x 2�. Then …C .x/ is
a compact convex set.

Corollary 3.10 Suppose � W R! .�; d�/ is a unit-speed parametrization of the bi-infinite projective
geodesic �.R/ with �.˙1/ 2 @�. If x 2�, then there exist T �x ; T

C
x 2R with T �x � T

C
x such that

…�.R/.x/D Œ�.T
�
x /; �.T

C
x /�:

Proof Any compact convex subset of the bi-infinite projective geodesic �.R/ is of the form Œ�.T /; �.T 0/�

with T � T 0.

3.6 Faces of properly convex domains

Suppose � is a Hilbert geometry. We define the relation ��: if p; q 2�, then p �� q if and only if
there exists an open projective line segment in � that contains both p and q. The relation �� is an
equivalence relation; see [27, Section 3.3]. The equivalence class of p 2� is called the (open) face of p
and is denoted by F�.p/.
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Proposition 3.11 Suppose �� P .RdC1/ is a Hilbert geometry.

(i) If x 2 @�, then F�.x/� @�.

(ii) F�.x/D� if and only if x 2�.

(iii) If x; y 2 @�, then either Œx; y�� @� or .x; y/��.

(iv) Suppose Œx; y�� @�, a 2 F�.x/ and b 2 F�.y/. Then Œa; b�� @�.

Proof For part (i), note that if y 2�, then Œy; x� cannot be extended beyond x in �. Thus F�.x/ �
���D @�. Part (ii) follows from part (i).

(iii) If Œx; y� 6� @�, choose any z 2 .x; y/\�. So F�.z/D�. Then .x; y/� F�.z/��.

(iv) It suffices to prove this for b D y, ie to prove that Œa; y� � @�. Suppose, for a contradiction,
that .a; y/ � �. Then a ¤ x. Pick a0 2 F�.x/ such that x 2 .a; a0/. As .a; y/ � �, pick w 2 .a; y/.
Then .w; a0/ � �. Thus ConvHull�fa0; y; ag is a nonempty set, as it contains .w; a0/ � �. Hence,
ConvHull�fa0; y; ag ��. This implies that a, a0 and y span a 2-simplex in � and the interior of this
2-simplex is contained in �. As x 2 .a; a0/, .x; y/ is contained in the interior of this 2-simplex. Thus
.x; y/��, a contradiction.

3.7 Distance estimates

Proposition 3.12 [38, Proposition 5.2] Suppose � is a Hilbert geometry and fxng and fyng are
sequences in � such that x WD limn!1 xn and y WD limn!1 yn exist in �. If

lim inf
n!1

d�.xn; yn/ <1;

then y 2 F�.x/ and
dF�.x/.y; x/� lim inf

n!1
d�.xn; yn/:

Note that if lim infn!1 d�.xn; yn/D 0, then the above proposition implies that y D x.

Next we need the notion of Hausdorff distance. If .X; d/ is a metric space, then the Hausdorff distance
between A;B �X is defined by

dHaus.A;B/Dmax
˚

sup
a2A

d.a; B/; sup
b2B

d.b; A/
	
:

Proposition 3.13 [38, Proposition 5.3], [25, Lemma 1.8] Suppose � is a Hilbert geometry and
x1; x2; y1; y2 2� satisfy F�.x1/D F�.x2/ and F�.y1/D F�.y2/. If .x1; y1/��, then

dHaus
� ..x1; y1/; .x2; y2//�maxfdF�.x1/.x1; x2/; dF�.x2/.y1; y2/g:

In particular, if xi ; yi 2�, then dHaus
� .Œx1; y1�; Œx2; y2�/�maxfd�.x1; x2/; d�.y1; y2/g.
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3.8 Translation length

Suppose � is a Hilbert geometry and let g 2 Aut.�/. Its translation length is defined by ��.g/ WD
infx2� d�.x; gx/.

Remark 3.14 [38, Observation 7.2] Suppose g 2 Aut.�/ and W �RdC1 is a g-invariant subspace of
dimension � 2 such that �\P .W / is nonempty. Then ��.g/� ��\P.W /.gjW /.

Proposition 3.15 [25, Proposition 2.1] If g 2 Aut.�/, then ��.g/D
1

2
log
ˇ̌̌̌
�1

�dC1
.g/

ˇ̌̌̌
.

This differs from the formula in [25] by a factor of 1
2

. This is because our definition of Hilbert metric has the
factor of 1

2
. We further remark that if zg2GLdC1.R/ is any lift of g, then ��.g/D 1

2
log.�max.zg/=�min.zg//.

3.9 Minimal translation sets

Suppose � is a Hilbert geometry and � � Aut.�/. If H � � is a subgroup, then the minimal translation
set of H in � is

Min�.H/ WD
\
h2H

fx 2� j d�.x; h � x/D ��.h/g:

Example 3.16 (i) If g D Œdiag.�1; : : : ; �dC1/� 2 Aut.Td / with �i > 0 for all i D 1; : : : ; d C 1, then
Lemma 3.5 implies that Td DMinTd .hgi/.

(ii) The minimal translation set could be empty; eg if u is a parabolic isometry in PO.2; 1/, then
�H2.u/D 0 and the minimal translation set of hui is empty.

We will need the following result connecting eigenspaces with minimal translation sets.

Lemma 3.17 Suppose a; b; c 2 @� are three distinct fixed points of g 2 Aut.�/.Then

ConvHull�fa; b; cg �Min�.hgi/:

Proof Without loss of generality, we can assume that ConvHull�fa; b; cg is nonempty since the result
is obviously true otherwise. Let T WD ConvHull�fa; b; cg. Fix a cone z� over � and a lift zg of g that
preserves z�. Let V D Spanfa; b; cg and g0 WD zgjV . Let za; zb; zc 2 z� be lifts of a, b and c respectively,
and fix the basis fza; zb; zcg of V . In this basis, g0 D diag.t1; t2; t3/. By Observation 3.4, we can assume
that t1; t2; t3 > 0. Since T is a 2-simplex in P .V /, Lemma 3.5 implies that

dT .x; g0x/D
1

2
log

maxft1; t2; t3g
minft1; t2; t3g

for any x 2 T .
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Suppose �1.zg/; : : : ; �dC1.zg/ are the eigenvalues of zg, indexed in the nonincreasing order of their modulus.
Then

j�1.zg/j �maxft1; t2; t3g �minft1; t2; t3g � j�dC1.zg/j:

By Proposition 3.15,

��.g/D
1

2
log
ˇ̌̌̌
�1.zg/

�dC1.zg/

ˇ̌̌̌
:

Then dT .x; g0x/� ��.g/ for any x 2 T .

As �\P .V / � T , Observation 3.2 implies that dT .y0; y/ � d�\P.V /.y
0; y/ for any y0; y 2 T . Then

dT .x; g0x/� ��\P.V /.g0/ for any x 2 T . Then Remark 3.14 implies that dT .x; g0x/� ��.g/. Thus
dT .x; g0x/D ��.g/ for any x 2 T . Hence T �Min�.g/DMin�.hgi/.

The next result concerns translation length and minimal translation sets of compact subgroups. This is
essentially a restatement of [43, Lemma 2.1], which shows that every compact subgroup of Aut.�/ has a
fixed point in �.

Lemma 3.18 [43, Lemma 2.1] Suppose � is a Hilbert geometry and H � Aut.�/ is a compact
subgroup. Then ��.h/D 0 for all h 2H and Min�.H/D fx 2� jH � x D xg ¤∅.

3.10 Centralizers

Suppose � is a Hilbert geometry and � � Aut.�/. If H � � is a subgroup, the centralizer of H in � is

C�.H/ WD
\
h2H

fg 2 � j ghg�1 D hg:

We will need to following result on cocompactness of centralizer subgroups.

Theorem 3.19 [38, Theorem 1.10] Suppose � is a Hilbert geometry , C�� is a closed convex subset ,
and � �Aut.�/ is a discrete subgroup that acts cocompactly on C. If A� � is an abelian subgroup , then
C�.A/ acts cocompactly on ConvHull�.MinC.A//, where

MinC.A/ WD C\Min�.A/:

3.11 Proximality

We call g 2 GLdC1.R/ proximal if g has a unique eigenvalue of maximum modulus and the multiplicity
of this eigenvalue is 1, or equivalently if

j�1.g/j> j�2.g/j:

We will say that g 2 GLdC1.R/ is biproximal if both g and g�1 are proximal, ie j�1.g/j> j�2.g/j and
j�d .g/j> j�dC1.g/j. Note that the notion of proximality is invariant under scaling a matrix by nonzero
real numbers. Then  2 PGLdC1.R/ is proximal (resp. biproximal) if some (hence any) lift of  is
proximal (resp. biproximal).
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4 Dynamics of automorphisms

4.1 !-limit sets of automorphisms

Let �� P .RdC1/ be a Hilbert geometry and let  2 Aut.�/ with

��./D
1

2
log
ˇ̌̌̌
�1

�dC1
./

ˇ̌̌̌
> 0:

Recall that for any X ��, X denotes the closure of X in �. We define the !-limit set of  as

!.;�/ WD
[
x2�

.fnx j n 2Ng\ @�/:

Thus, !.;�/ is the union of all accumulation points in @� of all fn j n 2Ng-orbits in �.

Example 4.1 Let �D T2 and  D Œdiag.1; 2; 2/�. Then for any x D Œx1 W x2 W x3� 2 T2, limn!1 nx D
Œ0 W x2 W x3�. Thus

!.; T2/D fŒ0 W x2 W x3� 2 P .R3/ j x2; x3 > 0g:

Thus !.; T2/ is the open projective line segment .�.e2/; �.e3// � @T2. Also note that !.; T2/ D
EC �f�.e2/; �.e3/g, where EC D P .Spanfe2; e3g/\ @�. Here P .Spanfe2; e3g/ is the projectivization
of the direct sum of the eigenspace of  that correspond to eigenvalues of maximum modulus. This
observation that !.; T2/�EC holds more generally, as we will see in Proposition 4.9.

Remark 4.2 We now compare the notion of !-limit set with that of the full orbital limit set introduced
in [30]. Given an infinite discrete subgroupH �Aut.�/, the full orbital limit set ofH is defined in [30] as

Lorb
� .H/ WD

[
x2�

.H � x\ @�/:

If  2 Aut.�/ and ��./ > 0, then fn j n 2Ng is an infinite discrete subsemigroup of Aut.�/. Then
!.;�/ can be interpreted as the full orbital limit set of the subsemigroup fn j n 2Ng.

4.2 Geometry of !-limit sets of automorphisms

For the rest of this subsection, fix a Hilbert geometry � � P .RdC1/ and  2 Aut.�/ with ��./ > 0.
Fix a lift z of  . Our goal here is Proposition 4.9 — a description of !.;�/ using the real Jordan
decomposition of z . We first give an intuitive idea. Suppose c1; : : : ; cq are all the eigenvalues (with
repetitions) of z of modulus �max.z/. If c1; : : : ; cq 2 R, then !.;�/ is contained in the projective
subspace spanned by the eigenvectors corresponding to the eigenvalues of modulus �max.z/. In the
notation of Definition 4.3 below, this subspace is precisely P .Ez /. Now suppose that among the ci , there
is a complex conjugate pair of eigenvalues �; x�2C�R. Then, in the above subspace, we need to replace
the eigenvectors for � and x� with a 2-dimensional  -invariant projective real subspace on which  acts
by a rotation (E� in the notation of Definition 4.3). This is the key intuition behind Proposition 4.9. The
references for this section are [42, II.1] and [25, Section 2]).
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Now we start the formal discussion. First we introduce some notation. If � 2R, define

J� WD

0BBBBB@
� 1 0 : : : 0

0 � 1 : : : 0
:::

:::
:::

:::
:::

0 : : : 0 : : : 1

0 : : : 0 : : : �

1CCCCCA :
If �D ˛C iˇ 2C�R, define

J� WD

0BBBBB@
R.�/ Id2 0 : : : 0

0 R.�/ Id2 : : : 0
:::

:::
:::

:::
:::

0 : : : 0 : : : Id2
0 : : : 0 : : : R.�/

1CCCCCA ;
where Id2 is the 2� 2 identity matrix and

R.�/ WD

�
˛ �ˇ

ˇ ˛

�
:

Consider the real Jordan decomposition of z . This says that there is a z invariant decomposition
RdC1 D V�1 ˚ � � �˚V�n into real vector subspaces and, with an appropriate choice of basis for V�j ,

z D

0B@J�1 : : : 0
:::

:::
:::

0 : : : J�n

1CA :
We remark that V� D Vx�, as conjugate pairs of eigenvalues correspond to the same invariant subspace
in the real Jordan decomposition. Without loss of generality, we can assume that �1; : : : ; �l 2 R

and �lC1; : : : ; �n 2 C �R. Then �1; : : : ; �l , �lC1; x�lC1; : : : ; �n; x�n are eigenvalues (possibly with
repetitions) of z over C and the multiplicity of �i is determined by the Jordan block J�i .

Note that �max.z/ and �min.z/ are the maximum and the minimum of the set fj�i j j 1� i � ng. Now we
focus on the eigenvalues of maximum modulus. By reindexing the �i , we now assume that �1; : : : ; �m
are precisely those �i that satisfy j�i j D �max.z/. We further assume that among them, �1; : : : ; �k 2R

and �kC1; : : : ; �m 2C�R. Then �1; : : : ; �k; �kC1; x�kC1; : : : ; �m; x�m are eigenvalues (possibly with
repetitions) of z of modulus �max.z/ and their multiplicities are determined by the Jordan block structure
of z .

Definition 4.3 If �j 2R, let E�j be the eigenvector for z in V�j with eigenvalue �j . If �j 2C�R, let
E�j be the two-dimensional z -invariant subspace of V�j such that z jE�j is conjugated to R.�j /. Define

Ez WD
M

1�j�m

E�j D
M

j�j jD�max.z/

E�j :
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We also define

Lz WD
M

j�j jD�max.z/

V�j and Kz WD
M

j�j j<�max.z/

V�j :

Then z jEz is conjugated in GL.Ez / to

(1) �max.z/ �

0BBBBBBB@

Mk 0 : : : 0

0 R

�
�kC1

�max.z/

�
: : : 0

:::
:::

:::
:::

0 0 0 R

�
�m

�max.z/

�

1CCCCCCCA
;

where Mk is a k�k diagonal matrix with each diagonal entry ˙1. Thus hz jEz i is conjugated in GL.Ez /
to a cyclic subgroup of f˙Idgk �O.E�kC1/� � � � �O.E�m/ < O.Ez /. Here, O.W / denotes the group
of orthogonal transformations preserving a linear subspace W �Rd .

Claim 4.3.1 There exists a sequence fmkg in N with mk!1 such that

lim
k!1

1

�max.z/mk
.z jEz /

mk D IdjEz :

Proof Let k WD .1=�max.z//z jEz and K WD hk i. By equation (1), there exists h 2 GL.Ez / such that
h �K �h�1 is a compact subgroup of f˙Idgk �O.E�kC1/� � � ��O.E�m/. Thus K0 WD h �K �h�1 is a Lie
subgroup of O.Ez /. Hence either Id is an isolated point of K0 or there exists a neighborhood U of Id in
O.Ez / such that U \K0 � K0.

In the latter case, it is obvious that there exists a monotonic sequence of integers fmpg such that
limp!1 k

mp
 D IdjEz . Up to passing to a subsequence, we can assume that mp!1 or mp!�1. If

mp!1, the claim is proved. Otherwise, choose the sequence �mp.

In the former case (ie when Id is an isolated point of K0), it implies .k /s D IdjEz for some s 2N. Then
mp WD sp proves the claim.

We will now discuss the dynamics of .z/n on P .RdC1/. The results are quite standard and the proofs are
fairly elementary computations using Jordan blocks; see [42, II.1] or [25, Lemma 2.5] for instance.

Observation 4.4 (i) For a generic point v 2 V�, all accumulation points of�
1

j�jn
.z jV�/

nv
ˇ̌̌
n 2N

�
lie in E�.
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(ii) Let W D V�1 ˚ V�2 and j�1j > j�2j. Then , for any w 2 W � V�2 , all accumulation points of
f.1=j�1j

n/.z jW /
nw j n 2Ng lie in E�1 .

(iii) Let W 0 D V�˚V�0 with j�j D j�0j. Then , for a generic point w0 2W 0, all accumulation points
of f.1=j�jn/.z jW /nw0 j n 2 Ng lie in E� if dimV� > dimV�0 . If dimV� D dimV�0 , then the
accumulation points lie in E�˚E�0 .

Recall the notation from Definition 4.3. Then the above observations imply the following result.

Fact 4.5 If w 2 P .RdC1/ n P .Kz /, then the accumulation points of fnw j n > 0g lie in P .Ez /. In
particular , if w0 2 P .Lz /, then all accumulation points of fnw0 j n > 0g also lie in P .Ez /.

Remark 4.6 In fact, a finer conclusion is possible in Fact 4.5. Following [25], call a real Jordan
subspace V�i most powerful if j�i j D �max.z/ and dim.V�i /D maxfdim.V�j / j j�j j D �max.z/g. Let
Fz be the direct sum of the E�j that correspond to the most powerful Jordan subspaces V�j . Then,
Fz �Ez . For any w 2 P .RdC1/nP .Kz / as above, the accumulation points of fnw j n> 0g actually lie
in P .Fz /; see part (iii) of Observation 4.4 above or [25, Proposition 2.5]. We record this finer conclusion
for completeness, but we will not need it in this paper.

Claim 4.6.1 �\P .Kz /D∅; P .Ez /\�� @� and !.;�/� P .Ez /\ @�.

Proof We first note that �\P .Kz /D∅. Otherwise, Remark 3.14 implies that

��\P.Kz /./D log
�
�max.z jKz /

�min.z jKz /

�
< log

�
�max.z/

�min.z/

�
D ��./;

a contradiction. Suppose, if possible, that P .Ez /\� is nonempty. Then ��./� �P.Ez /\�. jEz /D 0

by Remark 3.14, a contradiction. Finally, �� P .RdC1/ nP .Kz / since �\P .Kz /D∅. Then Fact 4.5
implies that !.;�/� P .Ez /. Moreover, !.;�/� @� by definition.

Note that these subspaces in Definition 4.3 as well as the discussion above are independent of the lift z
of  that we fix. Thus we introduce the following definitions.

Definition 4.7 If  2 Aut.�/, fix some (hence any) lift z 2 GLdC1.R/ of  that preserves the cone z�
above �, and define

EC WD P .Ez /; LC WD P .Lz / and KC WD P .Kz /;

where the subspaces Ez , Lz and Kz are as in Definition 4.3. We also define

E� WDE
C

�1
; L� WD L

C

�1
and K� WDK

C

�1
:
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Remark 4.8 A linear subspace V �RdC1 is a real Jordan subspace for z with eigenvalue � if and only
if V is a real Jordan subspace for z�1 with eigenvalue ��1. Indeed, this follows because ker.z�� Id/kD
ker.z�1���1 Id/k for any k 2N. Thus, if the V� are the real Jordan subspaces for z as above, then

Ez�1 D
M

j�jD�min.z/

E�; Lz�1 D
M

j�jD�min.zg/

V� and Kz�1 D
M

j�j>�min.zg/

V�:

The key upshot of the discussion in this subsection is the following proposition.

Proposition 4.9 If � is a Hilbert geometry,  2 Aut.�/ and ��./ > 0, then

(i) !.;�/�EC ,

(ii) the action of  on EC is conjugated into the projective orthogonal group PO.EC /, and

(iii) there exists a sequence of positive integers fmkg with mk!1 such that

lim
k!1

. j
E
C

/mk D Idj

E
C

:

Remark 4.10 A similar proposition is true if we replace  by �1 and EC by E� . Moreover, it is
possible that !.;�/¨EC � @�; see Example 4.1. We finally remark that a finer conclusion is possible
here: !.;�/ � P .Fz / � E

C
 , where Fz is as defined in Remark 4.6. We will not need this finer

conclusion, but we record it for completeness.

4.3 !-limit sets and faces in a properly convex domain

We continue our discussion about !-limit sets from the previous subsection. Our goal now is to prove a
result about the faces F�.x/ for x 2E˙ . This result will be used in Section 11. Before formulating the
precise result, we give an illustrative example.

Example 4.11 Let g D diag.�1; �2; �3/ where �1 > �2 > �3 > 0, and let g preserve a properly convex
domain � � P .R3/. Suppose �.e3/ 2 @� and let F WD F�.�.e3//. We will show that �.e2/ … F .
Suppose, on the contrary, that �.e2/ 2 F . Then It WD Œ�.e3� te2/; �.e3C te2/�� F for some t > 0. It
is an elementary observation that It gets expanded by the action of g and

S1
kD1 g

kIt D P .Spanfe2; e3g/.
Thus P .Spanfe2; e3g/� F ��, which contradicts that � is a properly convex domain. Thus �.e2/ … F .
By similar reasoning �.e1/ … F .

The takeaway from this example should be the following: since �.e3/ is an eigenvector corresponding to
an eigenvalue of modulus �min.g/, the corresponding face F�.�.e3// cannot intersect any eigenspace
whose eigenvalue has modulus greater than �min.g/. The above philosophy works even if we replace
eigenspaces by Jordan blocks, and is the key idea behind the next result.
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We now state the precise version of the result. Recall the notation L� from the previous section
(see Definition 4.7 and Remark 4.8): for any  2 Aut.�/,

L� D P

� M
j�jD�min.z/

V�

�
:

As in the previous subsection, z is some (hence any) lift of  and V� is the real Jordan subspace of z for
the eigenvalue �. Thus L� is the direct sum of all the Jordan subspaces corresponding to the eigenvalues
of z of minimum absolute value.

Lemma 4.12 Suppose � is a Hilbert geometry and  2 Aut.�/ with ��./ > 0. If y 2 E� , then
F�.y/� L

�
 .

Proof Suppose, for contradiction, that v 2F�.y/�L� . Fix a lift z of  . As y 2E� , Proposition 4.9(iii)
implies we can find a sequence fdkg of positive integers with dk!1 such that . jE� /

dk ! IdjE� .

Up to passing to a subsequence of fdkg, we can assume that dkv! v1 2�. As v …L� , Observation 4.4
part (ii) implies that there exists c > �min.z/ such that the accumulation points of f.z=c/dkv j k � 1g do
not lie in L� . Thus v1 …L� and limk!1.c=�min/

dk D1. We can then fix lifts zy, zv and zv1 such that�
z

�min.z/

�dk
zy! zy and

�
z

c

�dk
zv! zv1:

We claim that
P .Spanfy; v1g/��:

To prove this claim, it suffices to show that �.zyC tzv1/ 2� for any real number t ¤ 0. Fix 0¤ t 2R.
Define

sk WD t �
�
dk
min

cdk C t�
dk
min

:

Then sk! 0 as k!1. In fact, for k large enough, sk belongs to .0; 1/ or .�1; 0/ accordingly as t > 0
or t < 0. Set

wk WD �..1� sk/zyC skzv/D �

�
zyC

sk

1� sk
zv

�
D �

�
zyC t

�
dk
min

cdk
zv

�
;

since sk=.1� sk/ D t .�
dk
min=c

dk /. Then wk 2 P .Spanfy; vg/ and limk!1wk D y. Thus, for k large
enough, wk 2 F�.y/\P .Spanfy; vg/ because v 2 F�.y/. Moreover, wk lies on opposite sides of y in
F�.y/\P .Spanfy; vg/ accordingly as t > 0 or t < 0. Thus the following computation will show that
dk expands small neighborhoods of y in P .Spanfy; vg/\F�.y/ to large subintervals of the projective
line P .Spanfy; v1g/. More precisely, we observe that

lim
k!1

dkwk D lim
k!1

�

�
.1�sk/

zdk

�min.z/dk
zyCsk

zdk

�
dk
min

zv

�
D lim
k!1

�

�
zdk

�min.z/dk
zyC

sk

1�sk

cdk

�
dk
min

zdk

cdk
zv

�
D lim
k!1

�

�
zdk

�min.z/dk
zyCt
zdk

cdk
zv

�
D �.zyCtzv1/:
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Thus �.zyCtzv1/2�, sincewk 2F�.y/ for k large enough. Since t¤0 is arbitrary, P .Spanfy; v1g/��.
This proves the claim.

However, if � contains the nontrivial projective line P .Spanfy; v1g/, then � cannot be properly convex.
This is a contradiction.

Corollary 4.13 Suppose �� P .RdC1/ is a Hilbert geometry and  2 Aut.�/ with ��./ > 0.

(i) If y 2E� , then F�.y/\EC D∅.

(ii) If y 2 E� , z 2 F�.y/ and fikg is a sequence in Z such that z1 WD limk!1  ikz exists , then
z1 2E

�
 .

Proof By Lemma 4.12, F�.y/�L� . Since ��./ > 0, L� \E
C
 is empty by definition and this proves

the first part. For the second part, note that z 2F�.y/ implies that z 2L� . On Span.L� /, all eigenvalues
of z have the same modulus �min.z/. Then Observation 4.4(iii) implies that all accumulation points of
fnz j n 2Ng lie in E� . By similar reasoning, all accumulation points of f�nz j n 2Ng also lie in E� .
This proves the second part.

Remark 4.14 Analogues of Lemma 4.12 and Corollary 4.13 hold for F�.x/ where x 2EC . One has to
replace  with �1 to obtain the analogous results.

Part II Rank-one Hilbert geometries

5 Axis of isometries

Definition 5.1 Suppose��P .RdC1/ is a Hilbert geometry and g 2Aut.�/. An axis of g is a nontrivial
projective line segment `g WD P .Vg/\� where Vg � RdC1 is a two-dimensional g-invariant linear
subspace.

We will show that if g has an axis and ��.g/ > 0, then g acts by a translation along its axis `g and
the endpoints of `g correspond to eigenvectors with eigenvalues of maximum and minimum modulus
respectively. Recall the notation ECg ; E

�
g � P .RdC1/ from Definition 4.7.

Lemma 5.2 Suppose that � � P .RdC1/ is a Hilbert geometry , and that g 2 Aut.�/ with ��.g/ > 0
and g has an axis `g D P .Vg/\�. If zg is a lift of g in GLdC1.R/, then

(i) zgjVg has two distinct eigenvalues �C > ��,

(ii) there exist zgC; zg� 2RdC1 such that zg � zg˙ D �˙ � zg˙ and `g D .gC; g�/, where g˙ D �. zg˙/,

(iii) j�Cj D �max.zg/, j��j D �min.zg/ and ��.g/D log.j�C=��j/ > 0,

(iv) gC 2E
C
g and g� 2E�g .
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Remark 5.3 If the lift zg preserves the cone z� above � and zg˙ 2 z�, then �˙ > 0; see Observation 3.4.
Then �C D �max.zg/ and �� D �min.zg/.

Proof Let `g D .a; b/. Note that g preserves the set fa; bg D `g \ @�. Fix any lift zg of g. In the basis
fR � a;R � bg of Vg , there exist c1; c2 ¤ 0 such that zgjVg is either�

c1 0

0 c2

�
or

�
0 c1
c2 0

�
:

In the latter case, both eigenvalues of zgjVg have the same modulus and ��\P.Vg/.gjP.Vg// D 0, by
Proposition 3.15. But then Remark 3.14 implies

0� ��.g/� ��\P.Vg/.gjP.Vg//D 0;

a contradiction. Thus we are in the former case and g is diagonalizable with eigenvalues c1 and c2.
Note that c1 ¤ c2, since otherwise the same reasoning as above implies that ��.g/ D 0. Then set
�C WDmaxfc1; c2g and �� WDminfc1; c2g and this proves part (i). For part (ii), let zg˙ be the eigenvectors
of zg in Vg with eigenvalues �˙. Then note that by previous discussion, the set f�. zgC/; �. zg�/g equals
the set fa; bg. Thus `g D .�. zgC/; �. zg�// and zgjVgD diag.�C; ��/ in this basis.

For part (iii), first note that Remark 3.14 implies ��.g/ � ��\P.Vg/.gj�\P.Vg//. Proposition 3.15
then implies that log.�max=�min/.zg/� log j�C=��j. Since j�Cj � �max.zg/ and j��j � �min.zg/, we get
j�C=��j � .�max=�min/.zg/. Thus ˇ̌̌̌

�C

��

ˇ̌̌̌
D
�max

�min
.zg/:

Then j�Cj D j��j �.�max=�min/.zg/��max.zg/, implying j�Cj D�max.zg/. Similarly, j��j D�min.zg/. This
proves part (iii). Then part (iv) follows by definition of ECg and E�g .

Corollary 5.4 Suppose g 2 Aut.�/ with ��.g/ > 0 and g has an axis. If #.ECg /D #.E�g /D 1, then g
has a unique axis given by .ECg ; E

�
g /��. In particular , if g is biproximal (see Section 3.11) and has an

axis , then the axis of g is unique.

Proof Immediate from Lemma 5.2 parts (ii) and (iv), and the hypothesis that #.ECg /D #.E�g /D 1. For
the “In particular” part, it suffices to note that if g is biproximal, then #.ECg /D #.E�g /D 1.

Remark 5.5 Although biproximality of g implies #.ECg /D #.E�g /D 1, its converse fails in general.
For example, consider

g D

0@0:25 0 00 2 1

0 0 2

1A :
However, we will show in Lemma 5.17 that if g has an axis, then g is biproximal if and only if
#.ECg /D #.E�g /D 1.
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An isometry g 2 Aut.�/ may not have an axis; see Example 5.11 part (B) below. Hence we introduce
the notion of a pseudoaxis.

Definition 5.6 Suppose �� P .RdC1/ is a Hilbert geometry and g 2 Aut.�/. A pseudoaxis of g is a
nontrivial projective line segment �g WDP .Wg/\�, where Wg �RdC1 is a two-dimensional g-invariant
linear subspace such that P .Wg/\�D∅.

Observation 5.7 If ��.g/ > 0, then g has either an axis or a pseudoaxis.

This observation is immediate from the following result of Benoist (also see [43, Proposition 2.2]). Here
z� denotes a cone above �; see Definition 3.3 and the remark that follows.

Proposition 5.8 [9, Lemma 3.2] Suppose � is a Hilbert geometry , g 2 Aut.�/ and ��.g/ > 0. Let zg
be a lift of g that preserves z�. Then zg has a real positive eigenvalue that equals �max.zg/ and there exists v
such that zg � v D �max.zg/ � v and �.v/ 2�. A similar result holds if we replace �max.zg/ by �min.zg/.

Remark 5.9 If zg is an arbitrary element of GLdC1.R/, then �max.zg/ doesn’t have to be an eigenvalue
of zg. In fact, zg may only have complex nonreal eigenvalues of modulus �max.zg/. So the key point of the
above proposition is that preserving the cone z� above � imposes a strong restriction, namely that zg has
a positive real eigenvalue that equals �max.zg/.

However, the proposition does not imply anything about the number (or nature) of the other eigenvalues
whose modulus is �max.zg/. In Example 5.11 part (A), the matrix g�12 has a repeated eigenvalue 1=�2 of
maximum modulus. Moreover, zg can have complex eigenvalues of modulus �max.zg/; see Example 5.12.

We will now discuss a few examples to illustrate the notions introduced. An isometry may have a unique
axis, infinitely many axes, or no axes at all. An isometry can have pseudoaxes without having an axis,
and vice versa.

Example 5.10 (unique axis, no pseudoaxes) Consider the Hilbert geometry� WDfŒx Wy W1� jx2Cy2<1g
in P .R3/. It is the projective model of H2 and Aut.�/D PO.2; 1/. If g 2 SO.2; 1/ has ��.Œg�/ > 0 (ie g
is a hyperbolic isometry in Isom.H2/), then Œg� has a unique axis.

Example 5.11 Consider the two-dimensional simplex T2 WD fŒx1 W x2 W x3� j x1; x2; x3 > 0g.

(A) (uncountably many axes, several pseudoaxes) Let g2 WD Œdiag.�1; �2; �2/�, where �1 > �2 > 0.
For 0 < t < 1, let Qt WD .Œe1�; Œte2C .1� t /e3�/. Then fQtgt2.0;1/ is an uncountable family of
axes of g2. There are three pseudoaxes: Œe1; e2�, Œe2; e3� and Œe1; e3�.

(B) (several pseudoaxes, no axis) Let g1 WD Œdiag.�1; �2; �3/�, where �1 > �2 > �3 > 0. The
pseudoaxes of g1 are Œe1; e2�, Œe2; e3� and Œe1; e3�. But g1 does not have an axis.
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Example 5.12 Let �2 � P .R3/ be the projective disk model of H2 and fix a cone z�2 over �2. Define
�� WD fŒv W x� 2 P .R4/ j v 2 z�2; x > 0g, ie �� � P .R4/ is the properly convex domain obtained by the
join of �2 with a point. Let

g WD

24�A 0

0
1

�3

35 2 Aut.��/; where � > 1 and AD

24cos.�/ �sin.�/ 0
sin.�/ cos.�/ 0
0 0 1

35 2 SO.2; 1/:

Then g has three eigenvalues �; �e˙i� of maximum modulus.

Note that g has an axis `g WD .�.e3/; �.e4//���. The action of g is by a translation along `g and a
rotation (by angle � ) around `g . The axis `g is contained in properly embedded triangles in ��.

5.1 Three key lemmas

We conclude this section by establishing three lemmas that will be used in the next section. The first one
is a consequence of Lemma 5.2.

Lemma 5.13 Suppose �� P .RdC1/ is a Hilbert geometry, g 2 Aut.�/ with ��.g/ > 0, and a; b are
fixed points of g with a 2ECg and b 2E�g . If c is a fixed point of g such that c 2�� .ECg [E

�
g /, then

Œa; c�[ Œb; c�� @�.

Proof First observe that c 2@�. Otherwise, ��.g/Dd�.c; gc/D0, a contradiction. Suppose .a; c/��.
Then .a; c/ is an axis of g with a 2 ECg . Lemma 5.2 then implies that c 2 E�g , a contradiction. Thus
Œa; c�� @�. Similar reasoning implies that Œc; b�� @�.

The next lemma shows that if g 2 Aut.�/, ��.g/ > 0, g has an axis .a; b/ and #.ECg / > 1, then F�.a/
contains a nontrivial projective line segment in @�. Before formulating the precise result and its proof, let
us give an intuitive explanation of the main idea. Suppose u¤ a 2ECg and let � be a point in .a; b/��.
As � is open, we can find a point � 0 2�\P .Spanf�; ug/ that is distinct from � . Then, up to extracting a
suitable subsequence of fgng, gnk� ! a while gnk� 0! a0. As � ¤ � 0 and u; a 2 ECg , one can check
that a0 ¤ a; see the proof below. Then a property of the Hilbert metric (Proposition 3.12) implies that
a0 2 F�.a/. This is the gist of the proof below.

Lemma 5.14 Suppose � � P .RdC1/ is a Hilbert geometry, g 2 Aut.�/ with ��.g/ > 0, and g has
an axis .a; b/, where a 2 ECg and b 2 E�g . If u 2 ECg n fag, then there exist x�u ¤ x

C
u 2 @� such that

a 2 .x�u ; x
C
u / and

F�.a/\P .Spanfa; ug/D .x�u ; x
C
u /:

Remark 5.15 Suppose we have the same setup as Lemma 5.14. By similar reasoning, if v 2E�g n fbg,
then F�.b/\P .Spanfb; vg/D .x�v ; x

C
v /, where x�v ¤ x

C
v .
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Proof Let us fix a cone z� over �. Then, we fix lifts zg; za; zb; zu of g; a; b; u such that za; zb; zu 2 z� and
zg � z� D z�. Note that za is an eigenvector of zg corresponding to the eigenvalue �max.zg/ or ��max.zg/.
Since zg preserves z�, Observation 3.4 implies that zg � zaD �max.zg/ � za. Similarly, zg � zbD �min.zg/ � zb. Since
u 2ECg , Proposition 4.9(iii) implies that there exists an unbounded sequence of positive integers fmkg
such that �

zg

�max.zg/

�mk
zuD zu:

For t 2R, let zpt WD 1
2
.zaC zb/C t zu and pt WD �. zpt /. Since .a; b/ is an axis, p0 2�. Then, as � is an

open set, there exists "0 > 0 such that zpt 2 z� for all t 2 .�"0; "0/. Fix t 2 .�"0; "0/. Then

lim
k!1

gmkpt D lim
k!1

�

��
zg

�max.zg/

�mk
zpt

�
D lim
k!1

�

�
za

2
C

�
�min.zg/

�max.zg/

�mk zb
2
C t

�
zg

�max.zg/

�mk
zu

�
D �.zaC 2t zu/ 2�:

Then, limk!1 gmkp0 D a, and limk!1 gmkpt ¤ a whenever t ¤ 0. By Proposition 3.12,

lim
k!1

gmkpt 2 F�.a/

because limk!1 d�.gmkp0; gmkpt /D d�.p0; pt /. Thus there exist xCu ¤ x
�
u 2 @� such that

F�.a/\P .Spanfa; ug//D .x�u ; x
C
u /:

The next lemma shows that if  2Aut.�/ has an axis and #.E� /D 1, then �1 is a proximal element in
PGLdC1.R/; see Section 3.11. Before stating the precise version of the result, we give an illustrative
example to explain the main idea behind it.

Example 5.16 Let � > � > 0. Suppose that

g D

0@� 0 0

0 � 1

0 0 �

1A
preserves �� P .R3/ and �.e1/; �.e2/ 2 @�. Here g satisfies #.E�g /D 1 but g�1 is not proximal. The
main takeaway from this example will be that such a matrix g cannot have an axis in �, ie the only
candidate for an axis, namely .�.e1/; �.e2//, cannot lie in �.

To proceed, we will first explain that �.e3/ cannot lie in �. For this, first note that

g˙k�.e3/D �.k�
k�1e2C�

ke3/:

Hence g˙k�.e3/ ! �.e2/ as k ! 1, but they approach �.e2/ from “opposite directions” in the
projective line P .Spanfe2; e3g/. That is, g˙k “wraps” Œg�1�.e3/; g�.e3/� around P .Spanfe2; e3g/.
Then, �.e3/2� will imply that P .Spanfe2; e3g/��, which is a contradiction as � is a properly convex
domain. Thus �.e3/ …�.
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Now we revisit our basic proposition: that .�.e1/; �.e2// cannot lie in �. Suppose this is false and
.�.e1/; �.e2//��. Since gk.�.e1/; �.e3//! .�.e1/; �.e2//, we can find �.yk/ 2�\ .�.e1/; �.e3//
such that gk�.yk/ converges to the midpoint of .�.e1/; �.e2//. Now unless �.yk/! �.e3/, one can
use the action of g to show that gk�.yk/! �.e1/, a contradiction; see the computation in equation (5).
Thus �.yk/! �.e3/ and hence �.e3/ 2�. This contradicts the previous paragraph.

The argument discussed above is the gist of the proof below. We now precisely formulate and prove our
result.

Lemma 5.17 Suppose �� P .RdC1/ is a Hilbert geometry ,  2 Aut.�/ with ��./ > 0 and  has an
axis. If #.E� /D 1, then ˇ̌̌̌

�d

�dC1
./

ˇ̌̌̌
> 1:

Remark 5.18 Similar reasoning with  replaced by �1 implies that if #.EC /D 1, thenˇ̌̌̌
�1

�2
./

ˇ̌̌̌
> 1:

Proof Suppose the axis of  is .a; b/ with a 2EC and b 2E� . Let us fix z�, a cone above �. Fix lifts
z , za and zb where za; zb 2 z� and z � z�D z�. Set �max WD �max.z/ and �min WD �min.z/. Since b 2E� is a
fixed point and zb 2 z�, Observation 3.4 implies that z � zb D �min � zb. Similarly, z � zaD �max � za.

Since #.E� /D 1, there is a one-dimensional eigenspace of z (namely Rzb) and a single Jordan block Jmin

corresponding to eigenvalues of modulus �min (immediate from the definition, see Definition 4.7). Thus,
in order to prove j.�d=�dC1/./j>1, it is enough to show that the Jordan block Jmin has size 1. Suppose
this is false. Then there exists zw 2RdC1 such that if k 2 Z, then

(2) zk zw D k�k�1min
zbC�kmin zw:

Setting w WD �. zw/, limk!1 kw D b. Since ka D a for all k, limk!1 kŒa; w� D Œa; b�. Fix
p 2 .a; b/��. Then there exist yk 2 .a; w/ such that

(3) lim
k!1

kyk D p:

Since p 2� and � is open, kyk 2� for k large enough. Thus, up to truncating finitely many terms of
the sequence fykg, we can assume that for k � 1,

yk 2 .a; w/\�:

We can fix lifts zyk of yk in z� such that

(4) zyk D ckzaC dk zw;

where ck; dk 2 Œ0; 1�. Thus, up to passing to a subsequence, we can assume that c1 WD limk!1 ck and
d1 WD limk!1 dk exist. Then zy1 WD limk!1 zyk exists and we set

y1 WD �.zy1/D �.c1zaC d1 zw/:
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We now claim that y1 D �. zw/Dw. If this is not true, then c1 ¤ 0. Then, there exists k0 2N such that
ck > c1=2 for all k > k0, and limk!1.dk=ck/D d1=c1 exists in R. Then using equation (3) followed
by (4) and (2),

(5) p D lim
k!1

kyk D lim
k!1

�

�
zk zyk

ck�
k
max

�
D lim
k!1

�

�
zaC

dk

ck

�
k

�max

�
�min

�max

�k�1
zbC

�
�min

�max

�k
zw

��
D �.za/D a:

This is a contradiction since p 2� while a 2 @�. Thus y1 D w.

Since yk 2� for k � 1, w D y1 implies that w 2�. Then for all k 2 Z,

(6) Œw; kw���:

We now show that this implies P .Spanfw; bg/��. For t > 0, let

Ht WD f�. zwC r zb/ j �t � r � tg:

Then
S
t>0 Ht D P .Spanfb;wg/. Now observe that if k 2 Z, then equation (2) implies that

kw D �

�
zk zw

�kmin

�
D �

�
zwC

k

�min

zb

�
:

Then, for every t > 0, there exists kt 2 N such that Ht � Œ
�.kt�1/w;w� [ Œw; ktw�. Then, by

equation (6), Ht �� for any t > 0. Thus P .Spanfw; bg/D
S
t>0 Ht ��. This is a contradiction as �

is a properly convex domain and hence � cannot contain a projective line.

6 Rank-one isometries: definition and properties

In this section, we introduce the notion of rank-one isometries for Hilbert geometries. Our definition is
analogous to the definition of rank-one isometries for CAT.0/ spaces [2; 5]. The notion of half triangles
that we introduce is analogous to the notion of half flats used in the CAT.0/ setting. Refer to Figure 1 for
the next two definitions.

Definition 6.1 Suppose �� P .RdC1/ is a Hilbert geometry. Then the points x; z; y 2 @� form a half
triangle in � if

Œx; z�[ Œy; z�� @� and .x; y/��:

For x; y 2 @�, we will say that the projective geodesic .x; y/�� is not contained in any half triangle
in � if for any z 2 @�, either .x; z/�� or .z; y/��.

Definition 6.2 Suppose �� P .RdC1/ is a Hilbert geometry and a; b 2 @�. The projective geodesic
.a; b/ is a rank-one geodesic provided .a; b/�� is not contained in any half triangle in �.
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We now define rank-one isometries for Hilbert geometries. An isometry in Aut.�/ is rank one if it acts
by a translation along a rank-one geodesic; see Figure 1.

Definition 6.3 Suppose �� P .RdC1/ is a Hilbert geometry.

(i) An element  2 Aut.�/ is a rank-one isometry if

(a) ��./D log
ˇ̌̌
�1
�dC1

./
ˇ̌̌
> 0,

(b)  has an axis,

(c) none of the axes ` of  are contained in a half triangle in �.

(ii) A bi-infinite projective geodesic `�� is a rank-one axis if ` is the axis of a rank-one isometry in
Aut.�/.

Remark 6.4 The prototypical example of a rank-one isometry is a hyperbolic isometry Œdiag.�; 1; 1=�/�
with � > 1 in Isom.H2/; see Example 5.10. On the other hand, any element in Aut.Td /, where Td is a
d -dimensional simplex, is a nonexample. In fact, this nonexample highlights the necessity of the half
triangle condition in the definition of a rank-one isometry, as we now explain. Recall Example 5.11
part (A). In that example, g2 D Œdiag.�1; �2; �2/� has an axis Qt for each 0 < t < 1 and �T2.g2/ > 0.
But all of these axes are contained in the projective triangle T2 (and hence a half triangle). For another
nonexample, see Example 5.12.

Recall Definition 1.3: a rank-one Hilbert geometry is a pair .�; �/ where � is a Hilbert geometry and
� �Aut.�/ is a discrete subgroup that contains a rank-one isometry. In Appendix A, we discuss examples
and also a generalization for convex cocompact groups.

We will now establish some key geometric and dynamical properties of rank-one isometries. The essence
here is that translating along a rank-one axis is much more special than translating along any axis, and
Proposition 6.5 could be interpreted as strengthening Lemma 5.2 under the rank one assumption. Our
results are reminiscent of Ballmann’s results in rank-one Riemannian nonpositive curvature [2; 4]. Recall
the notation E˙g from Definition 4.7 and the notion of proximality from Section 3.11.

Proposition 6.5 Suppose � is a Hilbert geometry and  2 Aut.�/ is a rank-one isometry with an axis
` D .a; b/, where a 2EC and b 2E� . Then

(i)  is biproximal ,

(ii) ` is the unique axis of  in �,

(iii) the only fixed points of  in � are a and b,

(iv) if z0 2 @� n fa; bg, then .a; z0/[ .b; z0/�� (see Figure 1),

(v) if z 2 @� n fa; bg, then neither .a; z/ nor .b; z/ is contained in a half triangle in �.
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Remark 6.6 If  is a rank-one isometry, then the above proposition shows that #.E˙ / D 1 and we
will henceforth use the notation ˙ WDE˙ . We will call C the attracting fixed point of  and � the
repelling fixed point of  . We choose this terminology because  has north–south dynamics on @�; see
Corollary 6.7.

Proof Let us fix z�, a cone over �. For the rest of this proof, fix lifts z , za and zb, where za; zb 2 z� and
z � z�D z�. Set �max WD �max.z/ and �min WD �min.z/. Since a 2EC is a fixed point of  , the lift za is an
eigenvector of z corresponding to the eigenvalue �max or ��max. By Observation 3.4,

z � zaD �max � za:

Similarly, z � zb D �min � zb.

(i) By the hypothesis, #.E˙ /� 1. In order to prove that  is biproximal, we first prove that:

Claim 6.6.1 #.EC /D #.E� /D 1.

Proof It suffices to prove the claim for EC , since the same arguments with  replaced by �1 implies
the result for E� . Now suppose the claim is false and there exists u 2 EC n fag. Then Lemma 5.14
implies that there exist z�; zC 2 @� such that a 2 .z�; zC/ and

F�.a/\P .Spanfa; ug//D .z�; zC/:

Then, Iz WD Œz�; zC� is the maximal projective line segment in @� containing both z� and zC.

Since  is a rank-one isometry, its axis .a; b/ cannot be contained in a half triangle in�. But Œa; zC�� @�,
which implies that .zC; b/��. Similarly, .z�; b/��. Choose x˙ 2 .z˙; b/\�. By Proposition 4.9
part (iii), there exists a sequence fmkg of positive integers with mk!1 such that

lim
k!1

. j
E
C

/mk D Id

E
C

:

Since zC 2 P .Spanfa; ug/, it follows that zC 2EC . Fix a lift zzC 2 z� of zC. Then

lim
k!1

�
z

�max

�mk
zzC D zzC:

On the other hand,

lim
k!1

�
z

�max

�mk
zb D lim

k!1

�
�min

�max

�mk
zb D 0;

as �max > �min. Then, since xC 2 .zC; b/,

lim
k!1

mkxC D zC:

Similarly,
lim
k!1

mkx� D z�:

Since limk!1 d�.mkxC; mkx�/D d�.xC; x�/, Proposition 3.12 implies that zC 2 F�.z�/. Thus
there is an open projective line segment in @� containing both zC and z�. This contradicts the maximality
of Iz and finishes the proof of Claim 6.6.1.
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By the above claim, #.EC /D #.E� /D 1, where ��./ > 0 and  has an axis .a; b/. Then Lemma 5.17
implies that  is biproximal.

(ii) This follows from biproximality of  and Corollary 5.4.

(iii) Suppose c is a fixed point of  in @� that is distinct from both a and b. By part (i) of this proposition,
 is biproximal. Thus c … EC [E� . Then, by Lemma 5.13, Œa; c� � @� and Œb; c� � @�. Thus, the
axis ` D .a; b/ of  is contained in a half triangle, contradicting that  is a rank-one isometry.

(iv) Let v 2 @� n fa; bg. Then v 62 P .Spanfa; bg/ as .a; b/ � �. Suppose Œa; v� � @�. Since  is
biproximal, there exists a  -invariant decomposition of RdC1 given by

RdC1 DRza˚Rzb˚ zE:

Choose any lift zv of v in z�. Then zv decomposes as

zv D c1zaC c2zbC zv0;

where c1; c2 2 R and zv0 ¤ 0. If c2 ¤ 0, then limn!1 �nv D b, that is, limn!1 �nŒa; v� D Œa; b�.
Since Œa; v�� @� by assumption, Œa; b�� @�. This is a contradiction since .a; b/��. Thus, c2 D 0.

Set � zE WD �max.z j zE /. Since  is biproximal, � zE < �max. Then, for every n > 0,�
z

� zE

��n
zv D c1

�
�max

� zE

��n
zaC

�
z j zE
� zE

��n
zv0:

Up to passing to a subsequence, we can assume that v1 WD limn!1 �nv exists. Note that v12�\P . zE/.
But �\ P . zE/ is a -invariant nonempty convex compact subset of Rd�1 and Brouwer’s fixed point
theorem implies that  has a fixed point in �\ P . zE/. But �\ P . zE/\ fa; bg D ∅. This contradicts
part (iii). Hence, .a; v/��. Similarly we can show that .b; v/��.

(v) This is a consequence of part (iv).

Corollary 6.7 Suppose  2 Aut.�/ is a rank-one isometry. Then  has north–south dynamics on @�,
that is ,

. j��f�g/
˙n
! ˙ as n!1;

and the convergence is locally uniform on compact subsets of ��f�g.

Proof The proof is very similar to part (iv) of Proposition 6.5. By the above proposition,  is biproximal.
Thus there exists a  -invariant decomposition RdC1 DRC˚H ˚R�, where ˙ DE˙ . Moreover,
n converges to the constant map C locally uniformly on compact subsets of P .RdC1/�P .H˚R�/

as n!1.

We claim that P .H ˚R � �/\� D f�g. If the claim is false, pick v 2 P .H ˚R � �/\� such
that v ¤ �. Up to passing to a subsequence, we can assume that v1 D limn!1 nv exists in �.
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Since v 2 P .H ˚ R�/ � f�g, similar reasoning as in part (iv) implies that v1 2 P .H /. Thus
v1 2�\P .H /. Again, as in part (iv), Brouwer’s fixed point theorem will imply the existence of a
fixed point of  in �\P .H / which is distinct from ˙. This contradicts Proposition 6.5 part (iii). This
finishes the proof of the claim.

By the claim and the first paragraph of the proof, n converges to the constant map C locally uniformly
on compact subsets of ��f�g as n!1. The proof for �n follows by similar reasoning.

Now we prove a simpler characterization of rank-one isometries for cocompact actions.

Proposition 6.8 Suppose � is a Hilbert geometry , � � Aut.�/ is a discrete subgroup that acts cocom-
pactly on � and  2 � , where ��./ > 0. If  2 � has an axis , then the following are equivalent :

(i)  is biproximal.

(ii) None of the axes of  are contained in a half triangle in �.

(iii)  is a rank-one isometry.

Proof Note that (ii)() (iii) is by definition (see Definition 6.3), and (iii) D) (i) is Proposition 6.5
part (i). We will prove (i) D) (ii) under the assumption that �=� is compact.

Let .a; b/ be the axis of  with a 2EC and b 2E� . We first show that  has no other fixed points in @�
except a and b. If this is not true, let v be such a fixed point of  . Since  is biproximal, v …EC [E

�
 .

Then Lemma 5.13 implies that

(7) Œa; v�[ Œv; b�� @�:

Since .a; b/��, ConvHull�fa; v; bg is a nonempty set.

Let A WD hi. Recall the notation Min�.A /D
T
h2A
fx 2� j d�.x; h �x/D ��.h/g from Section 3.9.

Lemma 3.17 implies that

(8) ConvHull�fa; v; bg �Min�.A /:

The group � acts cocompactly on �. Then, Theorem 3.19 implies that C�.A / acts cocompactly on
ConvHull�.Min�.A //. Fix p2 .a; b/ and choose vn2 Œp; v/ such that limn!1 vnDv. By equation (8),
vn 2 Min�.A /. Then there exists hn 2 C�.A / such that q WD limn!1 hnvn exists in �. Thus
limn!1 d�.h�1n q; vn/D 0. Then Proposition 3.12 implies that, up to passing to a subsequence,

lim
n!1

h�1n q D lim
n!1

vn D v:

Pick a point q0 2 .a; b/. Up to passing to a subsequence, v0 WD limn!1 h�1n q0 exists in �. Since
limn!1 d�.h�1n q; h�1n q0/ D d�.q; q0/, Proposition 3.12 implies that v 2 F�.v0/. Now we show that
v0 2 fa; bg. Since hn 2C�.A /, hn.a; b/ is an axis of  . As  is biproximal and has an axis, Corollary 5.4
implies that hn.a; b/D .a; b/. Then, since q0 2 .a; b/, we get v0 D limn!1 h�1n q0 2 fa; bg. Hence

v 2 F�.a/[F�.b/:
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If possible, let v 2 F�.a/. By equation (7), Œa; v�[ Œv; b� � @�. Now, by Proposition 3.11 part (iv),
v 2 F�.a/ and Œv; b� � @� implies that Œa; b� � @�. This is a contradiction as .a; b/ � �. Thus,
v … F�.a/. So v must be in F�.b/. By a similar reasoning, we now observe that v … F�.b/. Thus we
have a contradiction.

So we have shown that if  has an axis .a; b/ and is biproximal, then  has no fixed points in @� other than
a and b. Then the proof of part (iv) of Proposition 6.5 goes through verbatim. Thus .a; z/[ .z; b/��
for all z 2 @�n fa; bg, that is, the axis .a; b/ is not contained in any half triangle in @�. This finishes the
proof.

7 Rank-one axis and thin triangles

In this section, we prove that any projective geodesic triangle in � with one of its sides on a rank-one
axis ` is D`-thin for some constant D`.

Proposition 7.1 Suppose � is a Hilbert geometry. If ` � � is a rank-one axis , then there exists a
constant D` � 0 such that if �.x; y; z/ WD Œx; y�[ Œy; z�[ Œz; x� is a projective geodesic triangle in �
with Œy; z�� `, then �.x; y; z/ is D`-thin.

Remark 7.2 The thinness constant D` in the above theorem depends only on the axis ` (and not on the
rank-one isometry that has ` as its axis).

But first let us introduce some relevant definitions and technical results that we will need.

7.1 Thin triangles

Definition 7.3 Suppose .X; d/ is a geodesic metric space.

(i) A geodesic triangle T with vertices y1; y2; y3 is a union of geodesics �1[ �2[ �3 where �i is a
geodesic joining yi and yiC1, where the indices i 2 f1; 2; 3g are counted modulo 3.

(ii) A geodesic triangle T WD �1[ �2[ �3 is called D-thin for some D � 0 if

�i � fx 2X j d.x; �i�1[ �iC1/ < Dg;

where the indices i 2 f1; 2; 3g are counted modulo 3.

The following is an elementary observation about thin triangles that we use later in the paper.

Observation 7.4 Suppose .X; d/ is a geodesic metric space and T WD �1[�2[�3 is a geodesic triangle
with vertices y1; y2; y3, and each �i is a continuous geodesic path joining yi and yiC1 (the indices
i 2 f1; 2; 3g are counted modulo 3). If T is D-thin , then there exist xi 2 �i for i D 1; 2; 3 such that
maxfd.x1; x2/; d.x1; x3/g �D.
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Proof By slight abuse of notation, let �1 W Œ0; b�! X denote the continuous parametrization of the
geodesic path �1 for some b � 0. Without loss of generality, we assume that �1.0/ D y1. Since T is
D-thin,

(9) �1.Œ0; b�/� fx 2X j d.x; �2[ �3/ < Dg:

Note that d.�1.0/; �3/D 0 as y1 2 �1 \ �3. Let E WD ft 2 Œ0; b� j d.�1.t/; �3/ < Dg. Then 0 2 E and
s0 WD supE exists. We can find a sequence ftng in E such that tn! s0. Then, by continuity of �1,

d.�1.s0/; �3/D lim
tn!s0

d.�1.tn/; �3/�D:

Now note that d.�1.s0/; �2/ � D. Indeed, if t > s0, then d.�1.t/; �3/ � D by definition of s0. Then
equation (9) implies that d.�1.t/; �2/ < D. By continuity of �1,

d.�1.s0/; �2/D lim
t!s

C

0

d.�1.t/; �2/�D:

Then set x1 WD �1.s0/ and for i D 2; 3, let xi 2 �i be such that d.x1; xi /D d.x1; �i /.

Suppose .�; d�/ is a Hilbert geometry. Then there are some special geodesic triangles in �, namely the
ones whose edges are projective geodesic segments.

Definition 7.5 If v1; v2; v3 2�, a projective geodesic triangle (with vertices v1, v2 and v3) is

�.v1; v2; v3/ WD Œv1; v2�[ Œv2; v3�[ Œv3; v1�:

We will say that �.v1; v2; v3/ is D-thin if it is D-thin in the sense of Definition 7.3. There is a simple
criterion to determine whether a projective geodesic triangle is D-thin. This proof comes from [39], and
we include it here for the convenience of the reader.

Lemma 7.6 Suppose � is a Hilbert geometry, R � 0 and �.x; y; z/ is projective geodesic triangle such
that Œy; z�� NR.Œx; y�[ Œx; z�/. Then �.x; y; z/ is .2R/-thin.

Proof Since Œy; z� � NR.Œx; y�[ Œx; z�/, there exist myz 2 Œy; z�, mxy 2 Œx; y� and mxz 2 Œx; z� such
that d�.myz; mxy/�R and d�.myz; mxz/�R. Indeed, the existence of three such points follows by a
similar reasoning as in the proof of Observation 7.4. Then, by Proposition 3.13,

dHaus
� .Œy;myz�; Œy;mxy �/�R;

dHaus
� .Œz;myz�; Œz;mxz�/�R;

dHaus
� .Œx;mxy �; Œx;mxz�/� 2R:

Hence, �.x; y; z/ is .2R/-thin.
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7.2 Proof of Proposition 7.1

Now we prove Proposition 7.1. Fix a Hilbert geometry � and a rank-one axis ` � �. The remark
following Proposition 7.1 will be a consequence of the proof — the proof only uses the fact that there is
some rank-one isometry  that acts along ` by a translation; it does not rely on  in any other manner.
Lemma 7.6 reduces Proposition 7.1 to the following.

Proposition 7.7 If `�� is a rank-one axis , then there exists a constant B` with the following property:
if �.x; y; z/ is an projective geodesic triangle in � with Œy; z� � `, then Œy; z� � NB`.Œx; y�[ Œx; z�/.
Moreover , this constant B` depends only on the rank-one axis ` (and not on the rank-one isometry whose
axis is `).

Proof The “moreover” statement will again follow from the proof since the proof is independent of the
choice of the rank-one isometry which has ` as its axis. Now we begin the proof of the first part.

If the claim is false, then for each n � 0, there exists a projective geodesic triangle �.an; bn; cn/��
with Œan; bn�� `, cn 2� and en 2 .an; bn/ such that

d�.en; Œcn; an�[ Œcn; bn�/� n:

Since ` is a rank-one axis, there exists a rank-one isometry  0 whose axis is `. Thus, translating
�.an; bn; cn/ by elements in h 0i and passing to a subsequence, we can assume that e WD limn!1 en
exists and e 2 `. Up to passing to a subsequence, we can assume that a WD limn!1 an, b WD limn!1 bn
and c WD limn!1 cn exist. Observe that

d�.e; Œa; c�[ Œc; b�/D lim
n!1

d�.en; Œan; cn�[ Œcn; bn�/� lim
n!1

nD1:

Thus Œa; c�[ Œc; b�� @�. But .a; b/�� since e 2 .a; b/\�. Thus a, c and b form a half triangle in �.
But since Œan; bn�� `, Œa; b�� x̀. Since a; b 2 @� and `��, we get x̀D Œa; b�. Thus `D .a; b/. So the
rank-one axis ` is contained in a half triangle in �, a contradiction.

8 Rank-one Hilbert geometry: Zariski density and limit sets

Recall the definition of rank-one geodesics from Definition 6.2. In this section we would like to address
the following question.

Question 8.1 Suppose .�; �/ is a Hilbert geometry and � contains a rank-one geodesic. When does
this imply that .�; �/ is a rank-one Hilbert geometry?

It is a natural question that aims to understand how the geometry of a properly convex domain influences
the algebraic properties of a “large” group acting on it. Under certain assumptions, Zimmer answers this
question in [50].
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Proposition 8.2 Suppose � is an irreducible Hilbert geometry and � � Aut.�/ acts cocompactly on �.
Then .�; �/ is a rank-one Hilbert geometry if and only if � contains a rank-one geodesic.

This is immediate from Theorem 1.5. So our main goal in this section is to answer Question 8.1 without
the assumptions of irreducibility or cocompactness as above. Instead, we will work with groups that
satisfy the following assumption.

Assumption � � SLdC1.R/ is a discrete Zariski dense subgroup of SLdC1.R/ and there exists a
properly convex domain �� P .RdC1/ such that � ��D�.

In this assumption, Zariski density may be interpreted as an assurance that the group � is “large”. We will
work with SLdC1.R/ in this section instead of PGLdC1.R/. Indeed, given � � PGLdC1.R/, we can
pass to a subgroup of index at most 2 and assume that � � SLdC1.R/. In Section 8.2, we will formulate
a hypothesis on the proximal limit set ƒG=Q� (see Definition 8.3), that we call Hypothesis (?), and use it
to provide an answer to Question 8.1.

Notation For the rest of this section, let G WD SLdC1.R/, let P �G be the subgroup of upper-triangular
matrices and Q be the stabilizer in G of Œe1�D Œ1 W 0 W � � � W 0� 2 P .RdC1/. Fix the standard inner product
on RdC1 and let K WD SO.d C 1/.

Let "i be the evaluation of the i th diagonal entry of a diagonal matrix. Take� WDf"i�"iC1 j1� i�dg to be
the set of positive simple roots. For any �Df"i1�"i1C1; : : : ; "ik�"ikC1g��, let P� denote the subgroup
of block upper-triangular matrices in G with square diagonal blocks of sizes i1; i2 � i1; : : : ; ik � ik�1,
d � ik , respectively. In particular, P� D P and G=P is the full flag variety, while Pf"1�"2g DQ and
G=QŠ P .RdC1/.

8.1 Limit sets in flag varieties

We will require the notion of limit sets of discrete subgroups of G in flag varieties, in particular G=P and
G=Q. This has been defined and studied by various authors in different degrees of generality: Guivarch [35]
(for subgroups of SLdC1.R/ acting proximally and strongly irreducibly on Rd ), Benoist [6] (for Zariski
dense subgroups of reductive groups) and Guéritaud, Guichard, Kassel and Wienhard [34] (for arbitrary
subgroups of reductive groups). We use the definition from [34, Section 5.1]

First recall the notion of singular value decomposition (or more generally, Cartan decomposition in G):
for any g 2G, there exist k1; k2 2 SO.d C 1/ and Ag D diag.a1; : : : ; adC1/ with a1 � � � � � adC1 > 0
such that

g D k1Agk2:

The Cartan decomposition defines the Cartan projection �.g/ WD diag.log.a1/; : : : ; log.adC1//. It maps
G into the space of trace-zero diagonal matrices of size .d C 1/� .d C 1/.
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Let � ��. If g 2G has a singular value decomposition g D k1Agk2, define E� WG!G=P� by

E� .g/ WD k1 � eP� :

The map E� does not depend on the choices of k1 and k2, provided ˛.�.g// > 0 for all ˛ 2 � ; see
[34, Section 5.1].

Definition 8.3 [34, Definition 5.1] Suppose �0 is a discrete subgroup of G. The limit set ƒG=P��0
of �0

in G=P� is defined to be the set of all accumulation points of sequences fE� .n/gn2N where fngn2N is
any sequence in �0 such that ˛.�.n//!1 for all ˛ 2 � .

Remark 8.4 Suppose �0 is Zariski dense in G.

(i) ThenƒG=P��0
is nonempty and is the closure of the set of attracting fixed points of proximal elements

in G=P� ; see [6] and [34, Section 5.1]. Here, an element g 2 G is called proximal1 in G=P�
provided ˛.�.g// > 0 for all ˛ 2 � . Moreover, g is proximal in G=P� if and only if g has a unique
attracting fixed point2 in G=P� ; see [34, Definition 2.25].

(ii) Suppose � Df"1�"2g so that P� DQ. ThenƒG=Q�0
is the unique minimal closed �-invariant subset

ofG=Q; see [13, Lemma 4.2]. This may not be true for arbitrary choices of � ; see [13, Remark 4.4].

Lemma 8.5 Suppose � � SLdC1.R/ satisfies the assumption. Then ƒG=Q� ¤∅ and ƒG=Q� � @� is the
unique minimal closed �-invariant subset of @�.

Proof Note that @� is a closed �-invariant set and the unique attracting fixed point of any proximal
element (in G=Q) of � lies in @�. The lemma then follows from Remark 8.4 above.

If we do not assume Zariski density, then we may still have nonempty limit set (in an appropriate G=P� )
but with some unusual properties. The following is such an example.

Example 8.6 Consider the discrete subgroup � 0 WD
˚
diag.2m1 ; : : : ; 2mdC1/ j

PdC1
iD1 mi D 0

	
of Aut.Td /

and d -dimensional torus Td=� 0. Although � 0 is not Zariski dense in SLdC1.R/, the proximal limit set
in P .RdC1/ is nonempty and in fact ƒG=Q� 0 D fŒe1�; : : : ; ŒedC1�g. Thus ƒG=Q� 0 is a proper subset of @Td .
Note that .Td ; � 0/ is not a rank-one Hilbert geometry; see Remark 6.4.

In the light of Lemma 8.5 and this example, it is natural to ask when does ƒG=Q� equal @�.

Remark 8.7 In general, if � only satisfies the assumption, then ƒG=Q� can be a proper subset of @�. For
example, let ��PO.2; 1/ be a Zariski dense convex cocompact Kleinian group. ThenƒG=Q� D� � x\@H2,
where x 2H2. Unless � is cocompact, ƒG=Q� ¤ @H2. However, under the additional cocompactness
assumption, we often have equality. Blayac [19, Theorem 1.3] has recently shown that if .�; �/ is a
divisible rank-one Hilbert geometry, then ƒG=Q� D @�.
1This coincides with the notion of proximality discussed in Section 3.11 when � D f"1 � "2g.
2A fixed point x 2X of a smooth map f WX !X is attracting if kDfxk< 1.

Geometry & Topology, Volume 29 (2025)



Rank-one Hilbert geometries 1209

8.2 Hypothesis (?) and an answer to Question 8.1

We now introduce a special hypothesis under which we can answer Question 8.1.

Hypothesis .?/ Suppose � �G is a discrete subgroup and �� P .RdC1/ is a properly convex domain
such that � ��D�. We will say that .�; �/ satisfies Hypothesis .?/ if there exists a rank-one geodesic
.a0; b0/�� with its endpoints a0; b0 2ƒG=Q� \ @�.

We will show that for any Zariski dense discrete subgroup � , this hypothesis is equivalent to the rank one
property. One implication is easy and does not require Zariski density.

Lemma 8.8 Suppose � � G is a discrete subgroup that preserves a properly convex domain � and
.�; �/ is a rank-one Hilbert geometry. Then .�; �/ satisfies Hypothesis .?/.

Remark 8.9 In this lemma, we do not assume that � is Zariski dense in G.

Proof Since .�; �/ is a rank-one Hilbert geometry, we can find a rank-one isometry  2� . Let ˙ 2 @�
be the attracting and the repelling fixed points of  . Then ˙ 2 ƒG=Q� by definition of ƒG=Q� . Also
.C; �/ is the axis of  and hence a rank-one geodesic; see Definition 6.3 and Proposition 6.5.

Next we will seek a converse of the above lemma and this will require the Zariski density assumption
on � . But first we recall the notion of loxodromic elements. We will call g 2G loxodromic if

j�1.g/j> � � �> j�dC1.g/j:

If g is loxodromic, then it has unique attracting fixed points in both G=Q and G=P . We will denote by
a˙g 2G=Q (resp. X˙g 2G=P ) the unique attracting fixed point of g˙1 in G=Q (resp. G=P ). With this
notation, …PQ.X˙g /D a

˙
g , where

…PQ WG=P !G=Q

is the natural smooth projection map. Also recall that if g 2 Aut.�/ is a rank-one isometry, then we
denote by g˙ the attracting and the repelling fixed points of g; see Remark 6.6.

Lemma 8.10 Suppose � �G satisfies the assumption. If there exists a rank-one geodesic .a0; b0/��
with its endpoints a0; b0 2ƒG=Q� \ @�, then

(i) there exist rank-one isometries fgng in � such that limn!1 gCn D a
0 and limn!1 g�n D b

0,

(ii) .�; �/ is a rank-one Hilbert geometry,

(iii) the set of rank-one isometries in � is Zariski dense in G,

(iv) ƒ
G=Q
� D fC j  is a rank-one isometryg.
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Corollary 8.11 Suppose � � G satisfies the assumption, and .�; �/ satisfies Hypothesis .?/. Then
.�; �/ is a rank-one Hilbert geometry.

Proof of Lemma 8.10 The key idea of this proof is in [46] and it relies on results of Benoist [7]. Before
starting the proof, we informally outline the main idea. The key technical point is to find a sequence fgng
of biproximal elements in � such that a

g
C
n
! a0 and a�gn! b0. A direct way to find such a fgng is: using

Zariski density, find a pair g; h 2 � of transversally biproximal elements [13, Chapter 7] such that aCg
and a�

h
are arbitrarily close to a0 and b0, respectively. Then, for large enough n, gnhn is a biproximal

element whose attracting and repelling fixed points are close to a0 and b0. However, in this proof, we
will take a more indirect approach by passing to the limit set in G=P and using a result of Benoist. We
rely on [7, Lemma 2.6(c)]: given two distinct points XC;X� 2ƒ

G=P
� , there exist loxodromic elements

gn 2 � such that X˙gn!X˙. Once we have this sequence fgng, Claim 8.11.1 implies that all but finitely
many of them are rank-one isometries.

Now we begin the formal proof. Equip G=P and G=Q with K-invariant Riemannian metrics and denote
the corresponding Riemannian distance functions by dP and dQ respectively. We remark that this
specific choice of Riemannian metrics will be insignificant as G=P and G=Q are compact manifolds.
Let �lox be the set of loxodromic elements in � . Since � is Zariski dense in G, Remark 8.4 implies that
…PQ.ƒ

G=P
� /Dƒ

G=Q
� . Then pick Xa;Xb 2ƒ

G=P
� such that …PQ.Xa/D a0 and …PQ.Xb/D b0. For

any " > 0,
�" WD fg 2 �lox j dP .XCg ;Xa/ < "; dP .X

�
g ;Xb/ < "g

is Zariski dense in G; see [7, Lemma 2.6(c)].

For any g 2 �lox, a˙g D…PQ.X
˙
g / and a˙g 2 @�. Moreover, …PQ is continuous and .a0; b0/��. Thus

there exists "0 such that if " 2 .0; "0/, then .aCg ; a
�
g / � � for any g 2 �". In fact .aCg ; a

�
g / � � is the

unique axis in � for any such g 2 �". Indeed, the uniqueness follows from Corollary 5.4 because g has
an axis .aCg ; a

�
g /��, g is loxodromic and ��.g/ > 0. We now claim that:

Claim 8.11.1 If " 2 .0; "0/ is small enough , then g is a rank-one isometry for all g 2 �".

Proof Suppose the claim is false. Then there exist a sequence f"ng in .0; "0/ with "n! 0 and gn 2 �"n
such that gn is not a rank-one isometry. Then XCgn ! Xa and X�gn ! Xb . Since …PQ is continuous,
aCgn ! a0 and a�gn ! b0.

By the paragraph before the claim, each gn has a unique axis .aCgn ; a
�
gn
/��. Moreover, .aCgn ; a

�
gn
/!

.a0; b0/. But since gn is not a rank-one isometry by assumption, this implies that there exists fcng with
cn 2 @��fa

C
gn
; a�gng such that

ŒaCgn ; cn�[ Œcn; a
�
gn
�� @�:

Up to passing to a subsequence, we can assume that cn! c in @�. Then Œa0; c�[ Œc; b0� � @� while
.a0; b0/��. Thus .a0; b0/ cannot be a rank-one geodesic and we have a contradiction. This finishes the
proof of this claim.
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Now we finish the proof of the lemma. Let us choose an " 2 .0; "0/ as in the above claim.

(i) The result follows by choosing gn 2 �"=n for all n� 1.

(ii) This follows from (i), since there is at least one rank-one isometry in � .

(iii) The set �" is a subset of the set of rank-one isometries of � and �" is Zariski dense.

(iv) By Lemma 8.5,ƒG=Q� � @� is a minimal, closed �-invariant set which contains the unique attracting
fixed points of all proximal elements. Since a rank-one isometry is necessarily proximal,

fC j  is a rank-one isometryg �ƒG=Q� :

Since fC j  is a rank-one isometryg is a closed�-invariant set, the equality then follows from minimality
of ƒG=Q� .

We now observe that Hypothesis (?) gives:

Answer to Question 8.1 (see Lemma 8.8 and Corollary 8.11) If � � SLdC1.R/ is a discrete Zariski
dense subgroup of SLdC1.R/ that preserves a properly convex domain �, then .�; �/ is a rank-one
Hilbert geometry if and only if � contains a rank-one geodesic .a0; b0/�� with a0; b0 2ƒG=Q� \ @�.

We finish the section with an example where Hypothesis (?) fails. Recall Example 8.6. In that case, � 0

preserves the standard d -simplex Td , Td=� 0 is homeomorphic to a d -torus, and Td does not contain
any rank-one geodesics. Thus .Td ; � 0/ does not satisfy Hypothesis (?). However, in this example, the
group � 0 is not Zariski dense in SLdC1.R/, and one may wonder if that is the reason why Hypothesis (?)
fails. So we ask the following question.

Question 8.12 Suppose � �G is a discrete subgroup that preserves a properly convex domain �. If �
is Zariski dense in G, then does .�; �/ satisfy Hypothesis (?)?

To the best of the author’s knowledge, the answer to this question is not known unless one makes other
assumptions, eg say �=� is compact and � is irreducible. Under these assumptions, Remark 8.7 and
Theorem 1.5 together provide an answer.

Part III Contracting elements in Hilbert geometry

In this part of the paper, we prove our main results: Theorems 1.2 and 1.4. The outline of this part of the
paper is as follows. We recall the notion of contracting elements in Section 9. The proof of Theorem 1.2
is split into two sections: Sections 10 and 11. In Section 12, we introduce the notion of acylindrically
hyperbolic groups and prove Theorem 1.4.
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9 Contracting elements: definition and properties

SupposeK�1 andC �0. A function F W .X; dX /! .Y; dY / is called a .K;C /-quasi-isometric embedding
if for any x1; x2 2X ,

1

K
dX .x1; x2/�C � dY .F.x1/; F .x2//�K dX .x1; x2/CC:

Fix a proper geodesic metric space .X; d/ and a group G that acts properly and by isometries on X . If
K � 1 and C � 0, then a .K;C /-path in .X; d/ is a set F.R/ where F W .R; j � j/! .X; d/ is a .K;C /-
quasi-isometric embedding. A subpath of the path F.R/ is F.I / where I �R is an interval, possibly
unbounded.

Definition 9.1 Let K � 1 and C � 0. Let PS be a collection of .K;C /-paths in X . Then:

(i) PS is called a path system on X if

(a) any subpath of a path in PS is also in PS, and

(b) any pair of points in X can be connected by a path in PS.

(ii) PS is called a geodesic path system if all paths in PS are geodesics in .X; d/.

(iii) If G preserves PS, then .X;PS/ is called a path system for the group G.

Definition 9.2 (contracting subsets [49]) If PS is a path system on X , then A � X is said to be
PS-contracting (with constant C ) if there exists a map �A WX !A such that

(i) if x 2A, then d.x; �A.x//� C ,

(ii) if x; y 2X and d.�A.x/; �A.y//� C; then for any path � 2 PS joining x and y,

d.�; �A.x//� C and d.�; �A.y//� C:

A prototypical example of a contracting subset is a bi-infinite geodesic in H2 (with the map �A being the
closest point projection on the geodesic). Generally speaking, one should think of the projection map �A

as an analogue of the closest-point projection. In fact, the following lemma makes this analogy concrete
in the context of geodesic path systems. We will use the notation

�A.x/ WD fa 2A j d.x; a/D d.x;A/g

for the set-valued closest-point projection map on A.

Lemma 9.3 Suppose PS is a geodesic path system and A � X is PS-contracting (with constant C )
with the projection map �A WX !A. Then supa2�A.x/

d.�A.x/; a/� 2C for all x 2X .

Proof Suppose there exist x 2X and a 2 �A.x/ such that

d.�A.x/; a/ > 2C:
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Since A is PS-contracting and a 2A, one gets that d.�A.a/; a/� C . Then

d.�A.x/; �A.a/� d.�A.x/; a/� d.�A.a/; a/ > C:

Let �x;a be a geodesic path in PS joining x and a. Since A is PS-contracting, there exists z 2 �x;a such
that d.z; �A.x// � C . As z 2 �x;a, d.a; z/ D d.a; x/� d.z; x/. As a 2 �A.x/, d.x; a/ � d.�A.x/; x/.
Then

d.a; z/� d.�A.x/; x/� d.x; z/� d.�A.x/; z/C d.z; x/� d.z; x/� C:

Then d.�A.x/; a/� d.�A.x/; z/C d.z; a/� 2C , a contradiction.

Using the notion of contracting subsets, one introduces the notion of contracting group elements. A
prototypical example of a contracting element is

g D

0@� 0

0
1

�

1A
for some � > 1, that acts on H2 by a translation along a bi-infinite geodesic in H2.

Definition 9.4 (contracting elements [49]) If .X;PS/ is a path system forG, then g2G is a contracting
element for .X;PS/ provided for some (hence any) x0 2X ,

(i) g has infinite order and hgi � x0 is a quasi-isometric embedding of Z in X , and

(ii) there exists A � X containing x0 that is hgi-invariant, PS-contracting and has cobounded hgi-
action.

Remark 9.5 If g 2G is a contracting element and PS is a geodesic path system, then �A is coarsely
hgi-equivariant. This is immediate from Lemma 9.3 since �A is coarsely equivalent to �A and �A is
clearly hgi-equivariant.

In the definition of a contracting element, the set A is not necessarily a hgi-orbit in X . We will now
explain that we can always replace A by a hgi-orbit. Moreover, we also show g has positive translation
length for its action onX . We remark that the following observation does not require that PS is a geodesic
path system.

Observation 9.6 Suppose .X;PS/ is a path system for G and g 2 G is a contracting element for
.X;PS/. Then

(i) �X .g/ WD infx2X d.x; gx/ is positive , and

(ii) for any x0 2 A, Amin.x0/ WD hgix0 is the minimal PS-contracting , hgi-invariant subset of X
containing x0 with a cobounded hgi-action.
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Proof (i) Recall the definition of stable translation length

� stable
X .g/ WD lim

n!1

d.x; gnx/
n

:

Then �X .g/ � � stable
X .g/ and it suffices to show � stable

X .g/ > 0. Fix any x0 2 X . Since g is contracting,
hgix0 is a quasigeodesic, that is, there exists K � 1 and C � 0 such that d.x0; gnx0/ � .1=K/jnj �C
for every n 2 Z. Then, � stable

X .g/� 1=K > 0.

(ii) Let A be PS-contracting with constant CA and the map �A W X ! A. Fix any x0 2 A and set
RA WD diam.A=hgi/, C0 WD CAC 2RA and Amin.x0/ WD hgix0.

Since Amin.x0/ � A, if x 2 X , then there exists m 2 Z such that d.�A.x/; g
mx0/ � RA. Define

�min W X ! Amin.x0/ by setting �min.x/ D g
mx0. Then, if x 2 Amin.x0/, �min.x/ D x. If x; y 2 X

and d.�min.x/; �min.y// � C0, then d.�A.x/; �A.y// � CA. Thus, if � 2 PS is a path from x to y,
d.�A.x/; �/� CA and d.�A.y/; �/� CA. Hence,

d.�min.x/; �/� C0 and d.�min.y/; �/� C0:

There are many other notions of contracting subsets in geometric group theory. We will require one such
notion in Section 14 for proving our Theorem 1.8. We will call this notion contraction in the sense of BF —
it was introduced by Bestvina and Fujiwara for CAT(0) spaces [17] and by Gekhtman and Yang [32] in
general. We defer all further discussion about this to Appendix B and only remark that in our case, this
notion of contraction will be equivalent to Definition 9.2.

Remark 9.7 If � is a Hilbert geometry, we use the geodesic path system PS� WD fŒx; y� j x; y 2�g

given by projective geodesics. We use the PS-contracting notion everywhere in the paper except in
Section 14 (where we use contraction in the sense of BF, see Definition B.2). Proposition 9.8 below
implies that these two notions of contraction are equivalent in our setup. Hence, in the rest of the paper,
we will use the term contracting subset (and element) without additional labels.

Proposition 9.8 Suppose .X;PS/ is a geodesic path system. Then:

(i) A�X is PS-contracting if and only if A is contracting in the sense of BF.

(ii) If G preserves PS, then g 2 G is a contracting element for .X;PS/ if and only if g 2 G is a
contracting element in the sense of BF.

Proof See Appendix B.

10 Rank-one isometries are contracting

In this section, we prove one implication in Theorem 1.2. Fix a Hilbert geometry � and let PS� WD

fŒx; y� j x; y 2�g.
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Theorem 10.1 If  2 Aut.�/ is a rank-one isometry, then  is a contracting element for .�;PS�/.

The key step will be part (ii) of Lemma 10.3, which shows that a rank-one axis is PS�-contracting. First,
we construct suitable projection maps on a rank-one axis. Recall the notion of closest-point projection on
closed convex subsets, particularly Corollary 3.10.

Definition 10.2 Suppose� is a Hilbert geometry, ` is a bi-infinite projective geodesic in� and � WR! `

is its unit-speed parametrization. Then …`.x/ D Œ�.T �x /; �.T
C
x /� for T �x ; T

C
x 2 R. We define the

projection map �` W�! ` as

�`.x/ WD �

�
T �x CT

C
x

2

�
:

We now establish some properties of the map �` when ` is a rank-one axis.

Lemma 10.3 If `�� is a rank-one axis , then there exists C` � 0 such that :

(i) If x 2� and z 2 `, then there exists pxz 2 Œx; z� such that

d�.�`.x/; pxz/� 3C`:

(ii) The geodesic ` is PS�-contracting with constant C` and the map �`.

Proof (i) Let x 2� and z 2 `. Choose any C` �D`, where D` is the constant from Proposition 7.1.
Proposition 7.1 implies that �.x; �`.x/; z/ is D`-thin. By Observation 7.4, there exists p 2 Œx; �`.x/�,
q 2 Œ�`.x/; z� and r 2 Œz; x� such that

d�.q; p/� D` and d�.q; r/� D`:

Then

d�.�`.x/; p/D d�.�`.x/; x/� d�.p; x/� d�.q; x/� d�.p; x/� d�.p; q/� D`:

Thus
d�.�`.x/; q/� d�.�`.x/; p/C d�.q; p/� 2D`:

Set pxz WD r . Then

d�.�`.x/; pxz/� d�.�`.x/; q/C d�.q; r/� 3D` � 3C`:

(ii) Set � WD �` for ease of notation. Let us label the endpoints of ` so that ` WD .a; b/. Observe that we
only need to verify (ii) in Definition 9.2. Suppose, for a contradiction, that it is not satisfied. Then, for
every n 2N, there exist xn; yn 2� such that

d�.�.xn/; �.yn//� n and d�.Œxn; yn�; �.xn//� n:

Since ` is a rank-one axis, fix a rank-one isometry  whose axis is `. Then  ı� D � ı  . Hence, up to
translating xn and yn using elements in hi, we can assume that ˛ WD limn!1 �.xn/ exists in ` ��.
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Up to passing to a subsequence, we can further assume that the following limits exist in �:

x WD lim
n!1

xn; y WD lim
n!1

yn; ˇ WD lim
n!1

�.yn/:

Then limn!1Œxn; yn�D Œx; y�. We will now show that

(10) Œx; y�� @�:

This follows from the following estimate:

d�.˛; Œx; y�/D lim
n!1

d�.˛; Œxn; yn�/� lim
n!1

�
d�.�.xn/; Œxn; yn�/� d�.�.xn/; ˛/

�
� lim
n!1

�
n� d�.�.xn/; ˛/

�
D1:

We also observe that
d�.˛; ˇ/D lim

n!1
d�.˛; �.yn//� lim

n!1

�
d�.�.xn/; �.yn//� d�.�.xn/; ˛/

�
� lim
n!1

�
n� d�.�.xn/; ˛/

�
D1:

Thus ˇ 2 @�. However, since ˇ 2 x̀D Œa; b�, ˇ 2
˚
a; b

	
. Thus, up to switching the labels of the endpoints

of `, we can assume that

(11) ˇ D b:

Claim 10.3.1 x D y D b.

Proof We first show that y D b. Since yn 2 � and ˛ 2 `, part (i) of Lemma 10.3 implies that there
exists pn 2 Œyn; ˛� such that

d�.pn; �.yn//� 3C`:

Up to passing to a subsequence, we can assume thatp WD limn!1 pn exists in�. Then by Proposition 3.12,
p 2 F�.ˇ/. By equation (11), ˇ D b, which implies p 2 F�.b/. Since b is an endpoint of the rank-one
axis `, part (iv) of Proposition 6.5 implies that F�.b/ D b. Thus p D b. On the other hand, since
pn 2 Œyn; ˛�, we have p 2 Œy; ˛�. Since p D b, we have p 2 @�. Thus,

p 2 Œ˛; y�\ @�D fyg:

Hence,
y D p D b:

We now show that x D b. By equation (10), Œx; y�� @�. But since y D b, this contradicts part (iv) of
Proposition 6.5 unless x D y. Hence x D y D b. This concludes the proof of Claim 10.3.1.

Consider the points xn 2 � and �.yn/ 2 `. By part (i) of Lemma 10.3, there exists qn 2 Œxn; �.yn/�
such that d�.�.xn/; qn/� 3C`. Up to passing to a subsequence, we can assume that q WD limn!1 qn
exists in �. Then by Proposition 3.12, q 2 F�.˛/D �. Thus limn!1Œxn; �.yn/� is a projective line
segment containing q and hence intersects �. However, limn!1Œxn; �.yn/�D Œx; ˇ�D fbg � @�. This
is a contradiction.
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We will now apply Lemma 10.3 to prove Theorem 10.1. Suppose  2 Aut.�/ is a rank-one isometry.
Then ��./ > 0, which implies that  has infinite order. By part (ii) of Proposition 6.5,  has a unique
axis ` along which  acts by a translation. Fix x0 2 ` . As hi acts cocompactly on ` , hi � x0 is a
quasi-isometric embedding of Z in �. Part (ii) of Lemma 10.3 implies that ` is a PS�-contracting set.
Thus  is a contracting element for .�;PS�/; see Definition 9.4.

11 Contracting isometries are rank one

In this section, we prove the other implication of Theorem 1.2. Fix a Hilbert geometry � and let
PS� WD fŒx; y� j x; y 2�g.

Theorem 11.1 If  2 Aut.�/ is a contracting element for .�;PS�/, then  is a rank-one isometry.

We begin by recalling a result of Sisto which says that contracting elements are “Morse” in the following
sense.

Proposition 11.2 [49, Lemma 2.8] If PS is a path system on .X; d/ and A � X is PS-contracting
with constant C , then there exists a constant M DM.C/ such that if � is a .C; C /-quasigeodesic with
endpoints in A, then � � NM .A/ WD fx 2X j d.x;A/ <M g.

We use this Morse property to show that a contracting element has at least one axis and none of its axes
are contained in half triangles in �. The first step is the following lemma. Recall the notation EC ; E

�


from Definition 4.7.

Lemma 11.3 Suppose � is a Hilbert geometry and  2 Aut.�/ is a contracting element for .�;PS�/.
If there exist x0 2� and two unbounded sequences of positive integers fnkgk2N and fmkgk2N such that

p WD lim
k!1

nkx0 belongs to EC and q WD lim
k!1

�mkx0 belongs to E� ;

then

(i) .p; q/��, and

(ii) .p; q/ is not contained in any half triangle in �.

Proof Since  is a contracting element, Observation 9.6 implies that ��./ > 0. Thus p ¤ q.

(i) Suppose this is false. Then Œp; q�� @�. Choose any r 2 .p; q/. Set Lk WD Œ�mkx0; nkx0�. Then
L1 WD limk!1Lk D Œq; p�. Thus we can choose rk 2 Lk such that limk!1 rk D r .

Since  is a contracting element, part (ii) of Observation 9.6 implies that Amin.x0/ WD hix0 is PS�-
contracting. Since the Lk are geodesics with endpoints in Amin.x0/, Proposition 11.2 implies that there
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exists a constant M such that for all k � 1, Lk � NM .Amin.x0//. Thus for every k � 1, there exists
 tkx0 2Amin.x0/ such that

(12) d�.rk; 
tkx0/�M:

Up to passing to a subsequence, we can assume that

t WD lim
k!1

 tkx0

exists in �. Since rk leaves every compact subset of �, ftkg is an unbounded sequence. Then by
Proposition 4.9 part (i), t 2 .EC tE

�
 /. On the other hand, by Proposition 3.12 and equation (12),

(13) t 2 F�.r/� @�:

We now analyze the two possibilities:

Case 1 If possible, suppose t 2 E� . Then consider the sequence fnkrgk2N . Up to passing to a
subsequence, we can assume that r1 WD limk!1 nkr exists in @�. Since p 2 EC , q 2 E� and
r 2 .p; q/ with nk > 0, Observation 4.4 part (ii) implies that

(14) r1 D lim
k!1

nkr 2EC :

To sum up, we have r 2 F�.t/, where t 2 E� and r1 D limk!1 nkr ; see (13) and (14). Now we
apply part (ii) of Corollary 4.13 with t , r and fnkg taking the role of y, z and fikg respectively. Then the
conclusion is that r1 2E� . This contradicts equation (14).

Case 2 If possible, suppose t 2 EC . We can repeat the same arguments as in Case 1 by considering
the sequence f�mkrgk2N , and arrive at a contradiction — we need a version of Corollary 4.13 with 
replaced by �1; see Remark 4.14.

The contradiction to both of these possibilities finishes the proof of (i).

(ii) By part (i), .p; q/ � �. Suppose there exists z 2 @� such that p; z; q form a half triangle in �.
Choose any sequence of points zk 2 Œx0; z�\� such that limk!1 zk D z. Since  is contracting, part (ii)
of Observation 9.6 implies that Amin.x0/D hix0 is PS�-contracting (with constant, say C ). Thus there
exists a projection � W�!Amin.x0/ that satisfies Definition 9.2. We will analyze the sequence �.zk/.
Since �.zk/ 2Amin.x0/, there exists a sequence of integers fikg such that �.zk/D  ikx0. Up to passing
to a subsequence, we can assume that the following limit exists in �:

(15) w WD lim
k!1

�.zk/D lim
k!1

 ikx0:

Claim 11.3.1 It holds that w 2 @� and w 2 .EC tE
�
 /.

Proof Recall that � acts properly discontinuously on �. Moreover, !.;�/[!.�1; �/�EC [E
�
 ;

see Proposition 4.9. Thus it suffices to show that fikg is an unbounded sequence. Suppose, on the contrary,
that fikg is a bounded sequence. Then w 2� and limk!1 d�.w; �.zk//D 0; see (15).
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Recall that fnkg is the sequence such that nkx0! p 2 @�. We will prove this claim by comparing
 ikx0.D �.zk// with nkx0. We claim that d�.�.zk/; �.nkx0// ! 1 as k ! 1. To prove this
subclaim, first note that (i) of Definition 9.2 implies that

d�.nkx0; �.nkx0//� C

because nkx0 2Amin.x0/. The subclaim then follows from the equation

lim
k!1

d�.�.zk/; �.
nkx0//� lim

k!1

�
d�.w; nkx0/� d�.w; �.zk//� d�.nkx0; �.nkx0//

�
� lim inf

k!1
d�.w; nkx0/�C D1:

The above equation then implies that for k large enough, d�.�.zk/; �.nkx0// � C . Since � is a
projection into a PS�-contracting set, condition (ii) of Definition 9.2 implies that

d�.�.zk/; Œzk; 
nkx0�/� C:

Thus
d�.w; Œz; p�/� lim

k!1
d�.�.zk/; Œzk; 

nkx0�/� C:

Then Œz; p�\�¤∅. But since p, z, q form a half triangle, Œz; p�� @�. This is a contradiction and it
concludes the proof of this claim.

Claim 11.3.2 w 2 F�.z/.

Proof First observe that for k large enough,

d�.�.zk/; �.x0//� C:

Indeed, this follows because �.x0/ 2� while wD limk!1 �.zk/ 2 @�. Again, as � is a projection into
a PS�-contracting set, we have

d�.�.zk/; Œx0; zk�/� C:

Choose �k 2 Œx0; zk� such that d�.�.zk/; �k/� C . Up to passing to a subsequence, we can assume that
� WD limk!1 �k exists. By Proposition 3.12, � 2 F�.w/. Since w 2 @�, � 2 @� (Proposition 3.11(i)).
But � 2 Œx0; z�, which intersects @� at exactly one point, namely z. Thus, �D z implying z 2 F�.w/, or
equivalently, w 2 F�.z/. This concludes the proof of Claim 11.3.2.

Since p; z; q form a half triangle, Œp; z�[ Œz; q�� @�. By Claim 11.3.2, w 2 F�.z/. Then part (iv) of
Proposition 3.11 implies that

(16) Œp; w�[ Œq; w�� @�:

Recall from Claim 11.3.1 that fikg is an unbounded sequence and that w D limk!1  ikx0 lies in
EC tE

�
 . We will now show that (16) contradicts this.
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Suppose, up to passing to a subsequence, that fikg is a sequence of positive integers. Then w 2EC . Since
limk!1  ikx0 D w 2 EC and limk!1 �mkx0 D q 2 E� , then part (i) of Lemma 11.3 implies that
.w; q/��. This contradicts (16). On the other hand, if we suppose that fikg is a sequence of negative
integers, then w 2 E� . Then, by a similar reasoning, .p;w/�� which again contradicts (16). These
contradictions show that p, z, q cannot form a half triangle.

We now prove Theorem 11.1 using the above lemma. Let  2 Aut.�/ be a contracting element for
.�;PS�/. By part (i) of Observation 9.6, ��./ > 0. The following will imply that  is a rank-one
isometry.

�  has an axis By Proposition 5.8, there exists .a; b/�� with a; b fixed points of  such that a 2EC
and b 2E� . We will show that .a; b/��; hence it is an axis of  .

Fix x0 2 �. Proposition 4.9 part (i) implies fnx0 j n 2 Ng has an accumulation point p in EC and
f�nx0 j n 2Ng has accumulation point q in E� . By part (i) of Lemma 11.3, .p; q/��.

Note that EC \�� @�; see Claim 4.6.1. Thus Œa; p�� @� as a; p 2EC \ @�. Similarly, Œb; q�� @�.
By part (ii) of Lemma 11.3, .p; q/�� is not contained in any half triangle in �. Since Œb; q�� @�, this
implies that .p; b/��.

We will use .p; b/ � � to derive that .a; b/ � �. First note that since b 2 E� is the endpoint of a
pseudoaxis, b is a fixed point of  . Thus limk!1 �ky0D b 2E� for any y0 2 .p; b/. We then note that
p is an “almost-fixed” point of  , ie there exists fnkg with nk!1 such that limk!1 nkp D p 2EC .
Indeed, Proposition 4.9 part (iii) implies that there exists a sequence of positive integers fnkg with
nk!1 such that limk!1  j

nk

E
C


D Id
E
C


, ie limk!1 nkpDp. Now pick y0 2 .p; b/2�. The above
discussion implies that limk!1 nky0 D p 2 EC while limk!1 �ky0 D b 2 E� . Then, by part (ii)
of Lemma 11.3, .p; b/�� cannot be contained in a half triangle in �. But we know that Œa; p�� @�.
Thus, .a; b/��.

� None of the axes of  are contained in a half triangle in � Let .a0; b0/ � � be any axis of 
with a0 2EC and b0 2E� . If z0 2 .a0; b0/, then limk!1 kz0 D a0 and limk!1 �kz0 D b0: Then, by
part (ii) of Lemma 11.3, .a0; b0/ cannot be contained in a half triangle in �.

12 Acylindrical hyperbolicity: proof of Theorem 1.4

Acylindrically hyperbolic groups are a generalization of nonelementary Gromov hyperbolic groups with
many interesting examples, like mapping class groups of most finite-type surfaces, rank-one CAT.0/
groups that are not virtually cyclic, outer automorphisms of free groups on at least two generators and
relatively hyperbolic groups with proper peripheral subgroups that are not virtually cyclic [45, Appendix].
In this section, we will add a new class of examples by showing that discrete groups acting on Hilbert
geometries with at least one rank-one isometry are either virtually cyclic or acylindrically hyperbolic.
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12.1 Acylindrically hyperbolic groups

We first recall some basic definitions about Gromov hyperbolic metric spaces (not necessarily proper)
and we refer to [33] for details. A geodesic metric space .Y; dY / is called Gromov hyperbolic if there
exists ı � 0 such that every geodesic triangle in Y is ı-thin (recall Definition 7.3). If .Y; dY / is Gromov
hyperbolic, let @Y denote the boundary of Y defined via equivalence classes of sequences in Y “convergent
at infinity”; see [33, Section 1.8]. We remark that this definition of @Y does not require that Y is a proper
metric space.

If G acts isometrically on a Gromov hyperbolic space .Y; dY /, let ƒG.Y /� @Y denote the limit set of
the G-action (ie ƒG.Y / is the set of accumulation points in @Y of any G orbit in Y ). The action is called
nonelementary if #.ƒG.Y //D1; see [45] for details.

Finally we define the notion of acylindrical actions on a metric space (not necessarily Gromov hyperbolic).
An isometric action of a group G on a metric space .Y; dY / is called acylindrical if, for every " > 0, there
exists R"; N" > 0 such that if x; y 2 Y with dY .x; y/�R", then

#fg 2G j dY .x; gx/� " and dY .y; gy/� "g �N":

Definition 12.1 A group G is called acylindrically hyperbolic if it admits an isometric nonelementary
acylindrical action on a (possibly nonproper) Gromov hyperbolic metric space .Y; dY /.

A motivating example of acylindrically hyperbolic groups is a nonelementary Gromov hyperbolic group.
Indeed, if H is a finitely generated nonelementary Gromov hyperbolic group, then it has a nonelementary
acylindrical action on its Cayley graph which is a Gromov hyperbolic metric space. More generally if H
is a finitely generated nonelementary relatively hyperbolic group with proper peripheral subgroups, then
H has an acylindrical action on its coned-off Cayley graph. Another interesting example is the mapping
class group of a closed hyperbolic surface. It acts acylindrically and nonelementarily on the curve graph
of the surface, which is a (nonproper) Gromov hyperbolic space.

Although Definition 12.1 of acylindrically hyperbolic groups is perhaps the cleanest to state, a characteri-
zation of acylindrically hyperbolic groups using contracting elements will be particularly well-suited for
our purpose. We state such a characterization now, which follows directly from work of Osin and Sisto; a
proof is included because we could not find a result stated in this form.

Theorem 12.2 [45; 49] Suppose G has a proper isometric action on a geodesic metric space .X; d/,
and suppose that .X;PS/ is a path system for G and g 2G is a contracting element for .X;PS/. Then
either G is virtually cyclic , or G is acylindrically hyperbolic.

Sketch of proof In [45], Osin introduces several characterizations of acylindrically hyperbolic groups
that are equivalent to Definition 12.1. The one that we will use (Proposition 12.3) requires the notion of
hyperbolically embedded subgroups. Results due to Osin and Sisto (see Propositions 12.3 and 12.4) will
allow us to use this notion without defining it precisely. See [45, Definition 2.8] or [49, Definition 4.6].
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Proposition 12.3 (Osin [45, Theorem 1.2 and Definition 1.3] and Remark 12.5) A group G is acylin-
drically hyperbolic if G contains a proper infinite hyperbolically embedded subgroup.

So in order to prove that a group is acylindrically hyperbolic, it suffices to produce a proper infinite
hyperbolically embedded subgroup. For this, we rely on a result of Sisto.

Proposition 12.4 [49, Theorem 4.7] Suppose g 2G is a contracting element for .X;PS/ and A�X

is hgi-invariant , PS-contracting and has cobounded hgi-action. Then

E.g/ WD fh 2G j dHaus.�A.hA/;A/ <1g

is a hyperbolically embedded subgroup of G which is infinite and contains hgi as a finite-index subgroup ,
ie E.g/ is virtually cyclic.

Now let us summarize how these results give us our desired conclusion. Suppose g 2G is a contracting
element. By Proposition 12.4, E.g/ is an infinite hyperbolically embedded subgroup of G which is
virtually cyclic. Now note that if G is virtually cyclic, there is nothing to prove. So suppose that G is not
virtually cyclic. Then E.g/¨G as E.g/ is virtually cyclic. Thus E.g/ is a proper infinite hyperbolically
embedded subgroup and Proposition 12.3 implies that G is an acylindrically hyperbolic group. See the
following remark for further comments on the proof.

Remark 12.5 Recall the alternate definition of an acylindrically hyperbolic group from Proposition 12.3.
A subgroup H � G is proper infinite if H ¨ G and H is infinite. Such proper infinite hyperbolically
embedded subgroups are sometimes called nondegenerate hyperbolically embedded subgroups in the
terminology of [45; 29]. Notably, the existence of one such nondegenerate hyperbolically embedded
subgroup H � G implies the existence of nonabelian free subgroups in G; see [45, Lemma 5.12] or
[29, Theorem 6.14]. Thus G is not virtually cyclic and contains infinitely many “independent loxodromic”
elements [45; 29]. Roughly speaking, this is akin to producing nonabelian free subgroups in any
nonelementary Gromov hyperbolic group.

12.2 Proof of Theorem 1.4

We first recall the theorem.

Theorem 1.4 If .�; �/ is a rank-one Hilbert geometry , then either � is virtually cyclic or � is an
acylindrically hyperbolic group.

The proof of Theorem 1.4 will be immediate from Theorem 12.2, thanks to the well-developed machinery
of acylindrically hyperbolic groups due to the work of many authors; see for instance [45; 29; 49; 16]. In
case the proof seems a bit opaque to a reader, we will first give an informal sketch of the underlying idea
before providing a formal proof.
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Our result Theorem 1.2 implies that rank-one isometries in Aut.�/ are contracting elements for .�;PS�/.
Thus a rank-one Hilbert geometry .�; �/ contains contracting elements by definition. Now it is possible
that � is virtually cyclic in which case � , up to passing to a finite-index subgroup, is generated by a single
rank-one isometry. But if � is not virtually cyclic, then there will be infinitely many rank-one isometries
1; 2; : : : which are “independent loxodromics”, ie there exists an abstract Gromov hyperbolic space X
on which each i acts “loxodromically” with exactly two distinct fixed points ˙i and the sets f˙i g and
f˙j g are pairwise disjoint whenever i ¤ j . This last conclusion follows from results in [29] and [49]
that we referred to in Remark 12.5. These infinitely many independent rank-one isometries i generate
nonabelian free subgroups of � , and the i lie in distinct hyperbolically embedded subgroups E.i /; see
Proposition 12.4.

Now let us give the formal proof.

Proof of Theorem 1.4 Since .�; �/ is a rank-one Hilbert geometry, � contains a rank-one isometry.
Then Theorem 1.2 implies that � contains a contracting element for .�;PS�/. The result follows from
Theorem 12.2.

Remark 12.6 By Theorem 1.4, a rank-one Hilbert geometry .�; �/ where � is not virtually cyclic
gives an example of an acylindrically hyperbolic group � . A natural question is: what is an example of a
Gromov hyperbolic metric space X on which � acts acylindrically and nonelementarily? Is there a way
to understand this space X in terms of the Hilbert geometry �?

It seems that one might be able to apply the projection complex construction in [16] (see also [14; 49]) to
construct such a space X from the Hilbert geometry �. Roughly speaking, this will be a metric space
obtained by collecting all rank-one axes in � and adding edges between them depending on diameters of
images of some projection maps. We do not pursue this direction in this paper and this remark is mostly
speculative in nature.

Part IV Applications

13 Second bounded cohomology and quasimorphisms

13.1 Definitions

We first introduce some definitions following [15, Section 1]. Suppose G is a group, .E; k � k/ is a
complete normed R-vector space and � WG!U.E/ is a unitary representation. Let C.G;E/ be the space
of all functions from G to E.

A function F 2 C.G;E/ is called a quasicocycle if

�.F / WD sup
g;g 02G

kF.gg0/�F.g/� �.g/F.g0/k<1:
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Let V be the vector subspace of C.G;E/ that consists of all quasicocyles. Let V0 be the subspace of V
generated by bounded functions and the set

fF WG!E j F.gg0/D F.g/C �.g/F.g0/ for all g; g0 2Gg:
Define fQC.GI �/ WD V=V0:

If � is the trivial representation �triv WG!R, then V is the space of quasimorphisms of G while V0 is the
space generated by bounded functions and group homomorphisms from G to R. In this case, fQC.GI �triv/

recovers a classical object called the space of “nontrivial” quasimorphisms of G, usually denoted by
eQH.G/; see the definitions preceding Theorem 1.6.

Group cohomology ofG (twisted by the representation �) affords an interesting interpretation of fQC.GI �/.
If F is a quasicocycle, then dF.g; g0/ WDF.gg0/�F.g/��.g/F.g0/ defines a class in the second bounded
cohomology group H 2

b
.GI �/. This class dF is trivial in the ordinary cohomology group H 2.GI �/. On

the other hand, the class dF is nontrivial in H 2
b
.GI �/ whenever F is nontrivial in V=V0. Thus fQC.GI �/

is the kernel of the comparison map H 2
b
.G; �/!H 2.GI �/. For a more detailed discussion, we refer the

reader to [15, Section 1] or [31].

13.2 Results

Infinite dimensionality of eQH.G/ and fQC.GI �) is often related to geometric phenomena. For example,
[17] shows that a compact irreducible nonpositively curved Riemannian manifold M is (Riemannian)
rank one if and only if dim.eQH.�1.M///D1. Now, in the same spirit as in Riemannian nonpositive
curvature, we prove a cohomological characterization of rank-one Hilbert geometries. We will only
consider unitary representations on uniformly convex Banach spaces,3 eg R or `p.G/, where G is a
discrete group and 1 < p <1.

Theorem 13.1 Suppose that .�; �/ is a rank-one Hilbert geometry , � is torsion-free and � is any unitary
representation of � on a uniformly convex Banach space E ¤ 0. Then either � is virtually cyclic or
dim.fQC.�I �//D1.

The proof follows directly from the following general result about acylindrically hyperbolic groups.

Theorem 13.2 [15, Corollary 1.2] If G is an acylindrically hyperbolic group , E ¤ 0 is a uniformly
convex Banach space , � WG!U.E/ is a unitary representation and any maximal finite normal subgroup
of G has a nonzero fixed vector , then dim.fQC.GI �//D1.

Proof of Theorem 13.1 If � is not virtually cyclic, then Theorem 1.4 implies that � is an acylindrically
hyperbolic group. Since � is torsion-free, there are no finite normal subgroups. The claim then follows
from Theorem 13.2.
3A Banach space E is uniformly convex if for any "0 >0, there exists ı0 >0 such that if u; v 2E, kuk� 1, kvk� 1, ku�vk� "0,
then k.uC v/=2k � 1� ı0.
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We will now apply Theorem 13.1 to two specific choices of � and E to get Theorem 1.6. For the first,
�D �triv and E DR, in which case fQC.�I �/DeQH.�/, the space of nontrivial quasimorphisms. For the
second, ED `p.�/ with 1<p <1 and �D �preg is the regular representation, ie �preg./f .x/D f .

�1x/

for any f 2 `p.�/ and x 2 � .

Theorem 1.6 If .�; �/ is a rank-one Hilbert geometry , � is torsion-free and � is not virtually cyclic ,
then dim.eQH.�//D1 and dim.fQC.�I �preg//D1 if 1 < p <1.

Proof Immediate from Theorem 13.1 and the fact that R and `p.�/ with 1 < p <1 are uniformly
convex Banach spaces; see [15, Section 3].

Corollary 1.7 If .�; �/ is a divisible Hilbert geometry and � is irreducible , then dim.eQH.�//D1 if
and only if .�; �/ is a rank-one Hilbert geometry. Otherwise , dim.eQH.�//D 0.

Proof If .�; �/ is a rank-one Hilbert geometry, then Theorem 1.6 implies that dim.eQH.�//D1. If
.�; �/ is not rank one, then Theorem 1.5 implies that Aut.�/ is locally isomorphic to a simple Lie
group of real rank at least two, ie � is an irreducible symmetric domain of rank at least two. Thus � is
isomorphic to a uniform lattice in a higher-rank simple Lie group, which implies that dim.eQH.�//D 0
[21, Theorem 21].

14 Counting of conjugacy classes

Suppose .�; �/ is a rank-one Hilbert geometry. Recall the notions of translation length and stable
translation length of a conjugacy class in �; see Section 1.2. We now introduce the notion of pointed
length for a conjugacy class Œcg � of g 2 �; see [32]. Fix a basepoint p 2�. The pointed length of Œcg � is

Lp.Œcg �/ WD inf
g 02Œcg�

d�.p; g0p/:

We first show that
��.Œcg �/D �

stable
� .Œcg �/:

Indeed, triangle inequality implies � stable
� .g/� ��.g/. On the other hand, by Proposition 3.15,

� stable
� .g/� lim

n!1

��.g
n/

n
D
1

n
log

�max.zg
n/

�min.zgn/
D log

�max.zg/

�min.zg/
D ��.g/:

Next, we show that if �=� is compact and R WD diam.�=�/, then

��.Œcg �/� Lp.Œcg �/� ��.Œcg �/C 2R:

Clearly ��.Œcg �/�Lp.Œcg �/. On the other hand, if x2� then there exists hx 2� such that d�.x; hxp/�R.
Then

Lp.Œcg �/� d�.p; h�1x ghxp/� 2 d�.hxp; x/C d�.x; gx/� 2RC d�.x; gx/:

Thus, Lp.Œcg �/� ��.Œcg �/C 2R.
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Now let us consider the following counting functions for conjugacy classes in �:

C.t/ WD #fŒcg � j g 2 �; ��.Œcg �/� tg;

Cstable.t/ WD #fŒcg � j g 2 �; � stable
� .Œcg �/� tg;

CLp .t/ WD #fŒcg � j g 2 �;Lp.Œcg �/� tg:

Based on the above discussion,

(17) C.t/D Cstable.t/:

If �=� is compact and RD diam.�=�/, then

(18) CLp .t/� C.t/� CLp .t C 2R/:

We now prove asymptotic growth formula for these functions. It is a direct consequence of the Main
Theorem in [32]. Recall that the critical exponent of � (see Section 1.2) is defined by

!� WD lim sup
n!1

log #fg 2 � j d�.x; gx/� ng
n

:

Theorem 1.8 Suppose .�; �/ is a divisible rank-one Hilbert geometry and � is not virtually cyclic.
Then there exists a constant D0 such that for all t � 1,

(19)
1

D0
exp.t!�/

t
� C.t/�D0

exp.t!�/
t

:

The functions Cstable.t/, CLp .t/ and CPrim.t/ (see Remark 1.9) also satisfy similar growth formulas.

Proof Part (1) of the Main Theorem in [32] implies that if � is a nonelementary group with a cocompact
action (more generally, statistically convex cocompact action) on a geodesic metric space and � contains a
contracting element (in the sense of BF, see Appendix B), then CLp .t/ satisfies the growth formula in (19).
If .�; �/ is as above, then it satisfies all of these conditions; see Theorem 1.2 and Remark 9.7. Then
CLp .t/ satisfies equation (19). By equations (17) and (18), C.t/ and Cstable.t/ also satisfy equation (19).

For proving Remark 1.9 part (ii), set

C
Lp
Prim.t/ WD #fŒcg � j g 2 � is primitive;Lp.Œcg �/� tg:

Part (1) of the Main Theorem in [32] implies that the C
Lp
Prim.t/ satisfies a similar growth formula as (19).

Since ��.Œcg �/� Lp.Œcg �/� ��.Œcg �/C 2R, this implies the result for CPrim.t/.

15 Proofs of Propositions 1.10, 1.11 and 1.12

For the proofs in this section, recall the following implication of Theorem 1.4: if .�; �/ is a rank-one
Hilbert geometry and � is not virtually cyclic, then � is an acylindrically hyperbolic group.
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Proposition 1.10 If .�; �/ is a rank-one Hilbert geometry , � is not virtually cyclic and � is finitely
generated , then the rank-one isometries in � are exponentially generic: if .Xn/n2N is a simple random
walk on � , then there exists a constant C � 1 such that for all n� 1,

P ŒXn is not a rank-one isometry�� Ce�n=C :

Proof Under the hypotheses, � is an acylindrically hyperbolic group. The result then follows from
[49, Theorem 1.6].

Proposition 1.11 If .�; �/ is a rank-one Hilbert geometry and � is not virtually cyclic , then:

(i) � is SQ-universal , ie every countable group embeds in a quotient of � .

(ii) If � is the Baumslag-Solitar group BS.m; n/, then m D n D 0 and � is the free group on two
generators.

Proof Under the hypotheses, � is an acylindrically hyperbolic group. Then SQ-universality follows from
[45, Theorem 8.1]. The second part follows from [45, Example 7.4], where Osin proves that BS.m; n/ is
acylindrically hyperbolic if and only if mD nD 0. But BS.0; 0/D F2.

Proposition 1.12 If � is a Hilbert geometry and  2 Aut.�/ is a rank-one isometry , then the axis `
of  is K-Morse for some Morse gauge K W Œ1;1/� Œ0;1/! Œ0;1/, ie if ˛ is a .�; "/-quasigeodesic
with endpoints on ` , then ˛ � NK.�;"/.` /.

Proof Since  is a rank-one isometry, Theorem 1.2 implies that  is a contracting element for .�;PS�/.
Then the axis of ` of  is PS�-contracting. Thus [49, Lemma 2.8] (Proposition 11.2 in this paper)
implies that ` is a Morse geodesic.

Appendix A Rank-one Hilbert geometries: generalization, examples and
nonexamples

This section is devoted to the discussion of examples and nonexamples of rank-one Hilbert geometries
(see Definition 1.3) and generalizing the notion of rank one to convex cocompact actions.

A.1 Strictly convex examples

If� is a strictly convex Hilbert geometry, then @� does not contain any line segments. Thus, if g2Aut.�/
with ��.g/ > 0, then g is a rank-one isometry (as it has an axis and there are no half triangles in �).
Then, all the strictly convex divisible examples in Section 3.4 are rank one.

A.2 Non-strictly-convex examples

Suppose .�; �/ is a divisible Hilbert geometry where � is infinite and not virtually abelian. Assume that
� is a relatively hyperbolic group with respect to a finite collection of free abelian subgroups of rank at
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least two. Then we claim that .�; �/ is a divisible rank-one Hilbert geometry. The proof of this follows
from Remark A.3(B) and Proposition A.4; see below. This claim implies that the divisible nonstrictly
convex examples discussed in Section 3.4, that are neither simplices nor symmetric domains of rank at
least two, are all examples of rank-one Hilbert geometries.

A.3 Nonexamples

The d -simplices Td for d � 2 are clearly nonexamples of rank-one Hilbert geometries. If � is an
irreducible symmetric domain of rank at least two and � � Aut.�/ acts cocompactly on �, then .�; �/
cannot be a rank-one Hilbert geometry; see Theorem 1.5.

A.4 Generalization of rank one to convex cocompact actions

The notion of convex cocompact actions on Hilbert geometries [30] generalizes divisible Hilbert geometries.
Suppose � is a Hilbert geometry and � � Aut.�/ is a discrete subgroup. The full orbital limit set is
defined as Lorb

� .�/ WD
S
x2�.� � x\ @�/ and let Cc�.�/ WD ConvHull�.Lorb

� .�//.

Definition A.1 An infinite discrete group � �Aut.�/ is convex cocompact if Cc�.�/¤∅ and Cc�.�/=�

is compact.

The ideal boundary of Cc�.�/ is given by @iC
c
�.�/ WD @�\ Cc�.�/. For convex cocompact groups,

@iC
c
�.�/ is the only part of @� “visible” to the group acting on �. Thus it is natural to modify the notion

of rank-one isometries by considering half triangles in Cc�.�/ instead of �. We say that the projective
geodesic .a; b/ � Cc�.�/ is not contained in any half triangle in Cc�.�/ if either .a; z/ � Cc�.�/ or
.z; b/� Cc�.�/ for any z 2 @iC

c
�.�/.

Definition A.2 Suppose �� P .RdC1/ is a Hilbert geometry and � � Aut.�/ is a convex cocompact
group.

(i) An element  2 � is a convex cocompact rank-one isometry if

(a) logj.�1=�dC1/./j> 0 and  has an axis (see Definition 5.1),

(b) none of the axes ` of  are contained in a half triangle in Cc�.�/.

(ii) We say that � is a rank-one convex cocompact group if � contains a convex cocompact rank-one
isometry.

Remark A.3 (A) The notion of a convex cocompact rank-one isometry differs from the notion of a
rank-one isometry (see Definition 6.3) only in condition (i)(b): for convex cocompact actions, we
consider half triangles in Cc�.�/ instead of �.

(B) If � acts cocompactly on �, then .�; �/ is a divisible rank-one Hilbert geometry if and only if �
is a rank-one convex cocompact group. This is because divisibility implies Cc�.�/D�.
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If � � Aut.�/ is a convex cocompact group and  2 � is a convex cocompact rank-one isometry, then
the analogues of Propositions 6.5, 6.7 and 6.8 hold. But now we need to replace � with Cc�.�/ and @�
with @iC

c
�.�/. In particular, we have that  2 � is a convex cocompact rank-one isometry if and only if

 is biproximal and has an axis.

We sketch the proof ideas of these analogues; see [37] for details. Observe that if j.�1=�dC1/./j> 0,
then E˙ \ @�DE

˙
 \ @iC

c
�.�/. Recall that if x 2 @iC

c
�.�/, then

FCc�.�/
.x/ WD fxg[fy 2 Cc�.�/ j an open projective line segment in Cc�.�/ contains x and yg:

Convex cocompact groups have a special property: if x 2 @iC
c
�.�/, then FCc�.�/

.x/ D F�.x/; see
[30, Corollary 4.13]. Using these properties, one can now see that the proofs in Section 6 go through
verbatim after replacing � by Cc�.�/ and @� by @iC

c
�.�/. Thus the analogues of Propositions 6.5, 6.7

and 6.8 hold; also see [37].

A.5 Convex cocompact examples: hyperbolic groups

Suppose � �Aut.�/ is a convex cocompact group that is word hyperbolic. We claim that � is a rank-one
convex cocompact group. Indeed, [30, Theorem 1.15] implies that word hyperbolicity of � is equivalent
to the property that @iC

c
�.�/ does not contain any nontrivial projective line segments. Then there are no

half triangles in Cc�.�/. Moreover, any infinite-order element  has an axis [30, Corollary 7.4]. Thus
every such  is a convex cocompact rank-one isometry and the claim follows.

A.6 Convex cocompact examples: relatively hyperbolic groups

Proposition A.4 Suppose � � Aut.�/ is a convex cocompact group that is relatively hyperbolic with
respect to fA1; A2; : : : ; Amg, where each Ai is a virtually free abelian group of rank at least two. Then
� is either a rank-one convex cocompact group or a virtually abelian group.

This proposition shows that the divisible examples of Section A.2 and their convex cocompact deformations
produce relatively hyperbolic examples that are rank-one convex cocompact. We will spend the rest of
this subsection proving this proposition. We will rely on results from [39].

Proof Let S� be the collection of all maximal properly embedded simplices in Cc�.�/ of dimension at
least two. Since � is relatively hyperbolic with respect to virtually abelian subgroups of rank at least
two, [39, Theorem 1.7] implies that .Cc�.�/; d�/ is a Hilbert geometry with isolated simplices, ie S�

is closed and discrete in the local Hausdorff topology induced by d�. In this case, [39, Theorem 1.18]
implies that for each i 2 f1; : : : ; mg, we can assume Ai D Stab�.Si /, where Si is a maximal properly
embedded simplex in Cc�.�/ of dimension � 2 and S� D

Fm
iD1 � �Si . We will require the following

result regarding simplices in S� .
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Proposition A.5 [39, Theorem 1.8] Suppose � and S� are as above. Then:

(i) If Œx; y�� @iC
c
�.�/ with x ¤ y, then there exists S 2 S� such that Œx; y�� @S .

(ii) If S1 ¤ S2 2 S� , then #.S1\S2/� 1 and @S1\ @S2 D∅.

Since � is relatively hyperbolic with respect to fA1; A2; : : : ; Amg, [28, Lemma 2.3] implies either

� Case 1 � is virtually gAig�1 for some g 2 � and 1� i �m, or

� Case 2 there exists  2 � such that  …
S
g2�

Sm
iD1 gAig

�1 D
S
S2S�

Stab�.S/.

In Case 1, � is a virtually abelian group. So we can now assume that we are in Case 2.

Claim If  is as in Case 2, then  is a convex cocompact rank-one isometry.

From this claim, Proposition A.4 is immediate.

All that remains is to prove this claim.

Proof of claim As � is a convex cocompact group, logj.�1=�dC1/./j D �Cc�.�/
./ > 0. We first show

that  has an axis in Cc�.�/. Let

CC WDEC \Cc�.�/ and C� WDE� \Cc�.�/:

Then CC and C� are disjoint, nonempty, compact, convex,  -invariant subsets of Rd . Then the Brouwer
fixed point theorem implies the existence of distinct fixed points ˙ of  in C˙. If ŒC; ��� @iC

c
�.�/,

Proposition A.5 implies that there exists S 2 S� such that ŒC; ��� @S . Then @.S/\ @S � ŒC; ��
and Proposition A.5 implies that S DS . Thus,  2Stab�.S/. This contradiction implies that .C; �/�
Cc�.�/ and is an axis of  .

SupposeA WD ŒAC ; A
�
 � is an axis of  contained in a half triangle in Cc�.�/: ŒA

C
 ; z�[Œz; A

�
 ��@iC

c
�.�/.

Then, by Proposition A.5, there exist S˙ 2 S� such that Œz; A˙ � � @S
˙. Since z 2 @SC \ @S�,

Proposition A.5 implies that S WD SC D S� and A � S . Since  acts by a translation along A ,
S \S � A which implies #.S \S/D1. Then by Proposition A.5, S D S . Thus  2 Stab�.S/, a
contradiction. Thus A is not contained in any half triangle in Cc�.�/. This proves the claim.

Appendix B Contracting elements

Fix a proper geodesic metric space .X; d/ and a group G that acts properly isometrically on X . If x 2X
and R > 0, let B.x;R/ WD fy 2X j d.x; y/ < Rg. If A�X and x 2X , let the closest-point projection
onto A be defined by �A.x/ WD fy 2A j d.x; y/D d.x;A/g. We let Nr.A/ WD fy 2X j d.y;A/ < rg and
Nr.A/ WD fy 2X j d.y;A/� rg) denote the open and the closed r-neighborhoods of A, respectively.

In [17], Bestvina and Fujiwara introduced the following notion of contracting subsets.

Definition B.1 A set A�X is B-contracting if there exists a constant B such that if x 2X , R > 0 and
B.x;R/\AD∅, then diam

�
�A.B.x;R//

�
� B .
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We will, however, use a related but stronger notion of contracting subsets introduced in [32].

Definition B.2 [32] Fix a geodesic path system PS on X ; see Definition 9.1. A set A � X is a
contracting subset in the sense of BF if there exists a constant C such that if � �X is a geodesic in PS

for which d.�;A/ > C , then
diam.�A.�//� C:

Suppose G preserves PS. Then g 2G is a contracting element in the sense of BF if for any x0 2X ,

(i) g has infinite order and hgi � x0 is a quasi-isometric embedding of Z in X , and

(ii) hgi � x0 is a contracting subset in the sense of BF.

Remark B.3 If X is a proper CAT(0) geodesic metric space, Bestvina and Fujiwara [17, Corollary 3.4]
prove that Definitions B.1 and B.2 are equivalent. In fact, they prove this equivalence for any metric
space that satisfies their axioms DD and FT; see [17]. However, it is unclear whether Definitions B.1 and
B.2 are equivalent in complete generality. We will discuss this in Proposition B.6 below. Proposition B.6
suggests that it is unlikely that these definitions are equivalent in general.

We will now prove Proposition 9.8, that contraction in the sense of BF is equivalent to Sisto’s notion
(see Definitions 9.2 and 9.4), in the context of a geodesic path system. Before starting the proof, we
record the following immediate consequence of Definition B.2.

Lemma B.4 Suppose A�X is contracting in the sense of BF with constant C . Let �x;x0 2 PS be a
geodesic joining x and x0 such that �x;x0 \N2C .A/D fx

0g. Then supa2�A.x/ d.a; x0/� 3C .

Proof Since d.�x;x0 ; A/� 2C > C , it follows that d.y; y0/� C for any y 2 �A.x/ and any y0 2 �A.x0/.
But d.a0; x0/� 2C for any a0 2 �A.x0/. Hence the conclusion.

Proposition B.5 (Proposition 9.8) Suppose .X;PS/ is a geodesic path system. Then:

(i) A�X is PS-contracting if and only if A is contracting in the sense of BF.

(ii) If G preserves PS, then g 2 G is a contracting element for .X;PS/ if and only if g 2 G is a
contracting element in the sense of BF.

Proof It suffices to prove only part (i), as (ii) then follows from definitions. We will use �p;q to denote a
geodesic path in PS joining p and q. We now start the proof of (i).

(D)) Suppose A is contracting in the sense of BF. Define a projection map � W X ! A by choosing
�.x/ 2 �A.x/ for each x 2X . We remark that such a map � is coarsely unique, ie any other such map � 0

has the property that d.�.x/; � 0.x// � 2C for any x 2 X . Indeed, for any x such that d.x;A/ > C ,
we have that diam.�A.x// � C as fxg is a geodesic in PS. On the other hand, if d.x;A/ � C , then
supa2�A.x/

d.x; a/� C and hence diam.�A.x//� 2C . Hence the remark.
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We now show that � satisfies Definition 9.2 with constant 3C . Clearly, if x 2A, then d.x; �.x//D 0.
Now suppose that x; y 2 X is such that d.�.x/; �.y// � 3C . Then diam.�A.�x;y// � 3C > C . Then
d.�x;y ;A/ � C and thus �x;y \ N2C .A/ ¤ ∅. Let x0 be the first point along �x;y that intersects
N2C .A/ (assume that �x;y is continuously parametrized in the direction from x to y). If x D x0, then
d.�.x/; x0/� 2C . Otherwise apply Lemma B.4 to �x;x0 � �x;y to see that d.�.x/; x0/� 3C . Similarly,
if y0 is the last point along �x;y where �x;y intersects N2C .A/, then d.y0; �.y// � 3C . Thus � is a
contracting projection with constant 3C .

( D)) Suppose � WX !A is a contracting projection with constant C . By Lemma 9.3, it follows that
supa2�A.x/

d.a; �.x// � 2C for any x 2 X . Let �x;y 2 PS be such that d.�x;y ;A/ > 5C . If possible,
let there exist a1 2 �A.x/ and b1 2 �A.y/ such that d.a1; b1/ > 5C . Then

d.�.x/; �.y//� d.a1; b1/� d.a1; �.x//� d.b1; �.y// > C:

Then, �x;y must intersect NC .A/, a contradiction.

B.1 Comparison between Definitions B.1 and B.2

To discuss the relationship between B.1 and B.2 for a general metric space, we need the following
condition .�/. We will say that A�X satisfies .�/ if there exists a constant C such that for any x 2X ,
z 2 A and a 2 �A.x/,

d.x; z/� d.x; a/C d.a; z/�C:
We will now show:

Proposition B.6 Fix a proper geodesic metric space X and a geodesic path system PS on X . Then
A�X is contracting in the sense of BF if and only if it satisfies .�/ and Definition B.1.

The implication .D)/ follows from [48, Lemma 2.10]. Note that in [48], condition .�/ is called (AP1)
while Definition B.1 is called (AP2). This direction is then immediate from [48, Lemma 2.10]. The proof
of the converse ( D)) follows from the next two lemmas. For p; q 2X , we will denote by �p;q a geodesic
in PS joining p and q.

Lemma B.7 Suppose A�X satisfies Definition B.2. Then A satisfies .�/.

Proof Fix any x 2X , z 2A and a 2 �A.x/. It suffices to only consider the case when d.x; A/ > 2C . Let
x02�x;z be the first point along �x;z that intersects N2C .A/ (assume that �x;z is continuously parametrized
in the direction from x to z). By Lemma B.4, d.x0; a/ � 3C . Then d.x; a/� d.x; x0/ � d.x0; a/ � 3C
and d.z; a/�d.z; x0/� d.x0; a/� 3C . Since x0 2 �x;z , it follows that d.x; z/D d.x; x0/Cd.x0; z/. Thus

d.x; z/� d.x; a/� d.a; z/D .d.x; x0/� d.x; a//C .d.x0; z/� d.a; z//� �6C:

Lemma B.8 Suppose A�X satisfies Definition B.2. Then A also satisfies Definition B.1.

Proof Proposition B.5 implies that A is PS-contracting. Then there exists a projection map �A WX!A

with constant C satisfying Definition 9.2. Suppose x 2 X and 0 < R < d.x;A/. We claim that
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diam.�A.B.x;R/// � 20C . By Lemma 9.3, it suffices to prove that d.�A.x/; �A.y// � 8C for any
y 2 B.x;R/.

Fix y 2B.x;R/ and let �x;y 2PS. Without loss of generality, we can assume that d.�A.x/; �A.y//�C .
Then there exists x1 2 �x;y such that d.x1; �A.x//� C . Then

jd.x; x1/� d.x;A/j � d.x1; �A.x//C sup
a2�A.x/

d.a; �A.x//� 3C:

Thus, d.y; x1/ D d.y; x/ � d.x; x1/ � d.y; x/ � d.x;A/ C 3C . As d.y; x/ < d.x;A/, we get that
d.y; x1/� 3C . Then

d.y; �A.y//� d.y; �A.x//� d.y; x1/C d.x1; �A.x//� 4C;

which implies that

d.�A.y/; �A.x//� d.�A.y/; y/C d.y; x1/C d.x1; �A.x//� 8C:
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Random unitary representations of surface groups
II: The large n limit

MICHAEL MAGEE

Let †g be a closed surface of genus g � 2 and �g denote the fundamental group of †g . We establish a
generalization of Voiculescu’s theorem on the asymptotic �-freeness of Haar unitary matrices from free
groups to �g . We prove that, for a random representation of �g into SU.n/, with law given by the volume
form arising from the Atiyah–Bott–Goldman symplectic form on moduli space, the expected value of the
trace of a fixed nonidentity element of �g is bounded as n!1. The proof involves an interplay between
Dehn’s work on the word problem in �g and classical invariant theory.
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1 Introduction

In a foundational series of papers, Voiculescu [1985; 1986; 1987; 1990; 1991] developed a robust theory
of noncommuting random variables that became known as free probability. One of the initial landmarks
of this theory is the following result. Let Fr denote the noncommutative free group of rank r . Let
U.n/ denote the group of n � n complex unitary matrices. For any w 2 Fr we obtain a word map
w W U.n/r ! U.n/ by substituting matrices for generators of Fr . Let �Haar

U.n/r
denote the probability Haar

measure on U.n/r and Tr W U.n/!C the standard trace. Any integral over a compact group will be done
with respect to the probability Haar measure, denoted by d�.
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1238 Michael Magee

A simplified version of Voiculescu’s result [1991, Theorem 3.8] can be formulated as follows:1

Theorem 1.1 (Voiculescu) For any nonidentity w 2 Fr , as n!1,

(1-1)
Z
U.n/r

Tr.w.x// d�.x/D ow.n/:

We describe the interpretation of Theorem 1.1 as convergence of noncommutative random variables in a
moment. Before this, we explain the main result of the current paper.

Another way to think about the integral (1-1), which invites generalization, is to identify U.n/r with
Hom.Fr ;U.n// and Haar measure as a natural probability measure on this representation variety. Now it
is natural to ask whether there are other infinite discrete groups G besides Fr such that Hom.G;U.n//
has a natural measure, and whether similar phenomena as in Theorem 1.1 may hold. The main point of
this paper is to establish the analog of Theorem 1.1 when Fr is replaced by the fundamental group of a
compact surface of genus at least 2.

We now explain this generalization of Theorem 1.1; for technical reasons it superficially looks slightly
different, as follows:

(1) The integral (1-1) is equal to 0 if w … ŒFr ;Fr �, the commutator subgroup of Fr [Magee and Puder
2015, Claim 3.1], and, if w 2 ŒFr ;Fr �, the value of (1-1) is, for n � n0.w/, the same as the
corresponding integral over SU.n/r � U.n/r , where SU.n/ is the subgroup of determinant one
matrices [Magee 2022, Proposition 3.1]. So in all cases of interest we can replace U.n/ by SU.n/

in (1-1).

(2) Since Tr ıw is invariant under the diagonal conjugation action of SU.n/ on Hom.Fr ; SU.n//Š
SU.n/r , the integral

R
SU.n/r Tr.w.x// d�.x/ can be written as one over Hom.Fr ; SU.n//=PSU.n/.

Here PSU.n/ is SU.n/ modulo its center.

For g � 2 let †g denote a closed topological surface of genus g. We let �g denote the fundamental group
of †g with explicit presentation

�g D ha1; b1; : : : ; ag ; bg j Œa1; b1� � � � Œag ; bg �i:

The most natural measure on Hom.�g ; SU.n//=PSU.n/ to replace the measure induced by Haar measure
on Hom.Fr ; SU.n//=PSU.n/ is called the Atiyah–Bott–Goldman measure. The definition of this measure
involves removing singular parts of Hom.�g ; SU.n//=PSU.n/. Indeed, let Hom.�g ; SU.n//irr denote the
collection of homomorphisms that are irreducible as linear representations. Then

Mg;n WD Hom.�g ; SU.n//irr=PSU.n/

1Voiculescu’s result [1991, Theorem 3.8] is more general than what we state here, also involving a deterministic sequence of
unitary matrices.
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is a smooth manifold [Goldman 1984]. Moreover there is a symplectic form !g;n on Mg;n, called the
Atiyah–Bott–Goldman form after [Atiyah and Bott 1983; Goldman 1984]. This symplectic form gives, in
the usual way, a volume form on Mg;n denoted by VolMg;n . For many more details, see [Goldman 1984]
or our prequel paper [Magee 2022, Section 2.7].

For any  2 � , we obtain a function Tr W Hom.�g ; SU.n//!C defined by

Tr .�/ WD Tr.�.//:

This function descends to a function Tr WMg;n!C. We are interested in the expected value

Eg;nŒTr � WD

R
Mg;n

Tr dVolMg;nR
Mg;n

dVolMg;n
:

The main theorem of this paper is the following:

Theorem 1.2 Let g � 2. If  2 �g is not the identity, then Eg;nŒTr �DO .1/ as n!1.

The noncommutative probabilistic consequences of Theorem 1.2 will be discussed in the next section.

1.1 Noncommutative probability

We follow [Voiculescu et al. 1992]. A noncommutative probability space is a pair .B; �/ where B is a
complex unital algebra and � is a linear functional on B such that �.1/D 1. Let Chx1; : : : ; xri denote
the free noncommutative unital algebra in indeterminates x1; : : : ; xr . A random variable in .B; �/ is an
element of B. If .X1; : : : ; Xr/ 2Br are random variables in .B; �/, their joint distribution is defined to
be the linear functional

Q� WChx1; : : : ; xri !C

given by Q�.z/ WD �.ˆ.z//, where ˆ WChx1; : : : ; xri!B is the linear map defined by ˆ.xi /DXi . For a
linear functional Q�1 WChx1; : : : ; xri !C with Q�1.1/D 1, we say that a sequence of random variables
.X

.n/
1 ; : : : ; X

.n/
r / 2 .Bn; �n/ converges in distribution as n!1 to Q�1 if Q�n converges pointwise to Q�1

on Chx1; : : : ; xri.

A very concrete example of this phenomenon is as follows. The function

�n W Fr !C; �n.w/ WD
1

n

Z
U.n/r

Tr.w.x// d�.x/

extends to a linear functional �n on the algebra CŒFr �with �n.id/D1. From this point of view, Theorem 1.1
implies the following statement:

Geometry & Topology, Volume 29 (2025)



1240 Michael Magee

Theorem 1.3 (Voiculescu) Let r � 0 and X1; : : : ; Xr denote fixed generators of Fr , and X1; : : : :Xr
denote their inverses , ieX iDX�1i . The random variablesX1; : : : ; Xr ; X1; : : : :Xr in the noncommutative
probability spaces .CŒFr �; �n/ converge as n!1 to a limiting distribution

Q�1 WChx1; : : : ; xr ; Nx1; : : : ; Nxri !C

that is completely determined by (1-1). Indeed , if w is any monomial in x1; : : : ; xr ; Nx1; : : : ; Nxr , then
Q�1.w/D 1 if and only if , after identifying Nxi with x�1i , w reduces to the identity in Fr D hx1; : : : ; xri,
and Q�1.w/D 0 otherwise.

In the language of [Voiculescu 1991], in the limiting noncommutative probability space

.Chx1; : : : ; xr ; Nx1; : : : ; Nxri; Q�1/;

the subalgebras
A1 WDChx1; Nx1i; : : : ; Ar WDChxr ; Nxri

are a free family of subalgebras: if aj 2 Aij for j 2 Œq� with i1 ¤ i2 ¤ � � � ¤ iq , and Q�1.aj / D 0 for
j 2 Œq�, then

Q�1.a1a2 � � � aq/D 0:

Accordingly [Voiculescu 1991, Theorem 3.8], if fuj .n/ W 1 � j � rg are independent Haar-random
elements of U.n/, the family ffuj .n/; u�j .n/g W 1� j � rg of sets of random variables are asymptotically
free.

Because �g is not free, asymptotic freeness does not correctly capture the asymptotic behavior of the
expected values Eg;nŒTr �; however, an analog of Theorem 1.3 is implied by Theorem 1.2. For  2 �g let

�g;n./ WD
1

n
Eg;nŒTr �:

Corollary 1.4 Let g�2, a1; b1; : : : ; ag ; bg denote the previously fixed generators of �g , and Na1; Nb1; : : : ,
Nag ; Nbg denote their inverses. The random variables a1; b1; : : : ; ag ; bg , Na1; Nb1; : : : ; Nag ; Nbg in the non-
commutative probability spaces .CŒ�g �; �g;n/ converge in distribution as n!1 to a limiting distribution

Q�g;1 WChx1; : : : ; xg ; y1; : : : ; yg ; Nx1; : : : ; Nxg ; Ny1; : : : ; Nygi !C;

where xi (resp. yi ; Nxi ; Nyi ) corresponds to ai (resp. bi ; Nai ; Nbi /. This can be described explicitly as follows.
If w is any monomial in x1; : : : ; xg ; y1; : : : ; yg , Nx1; : : : ; Nxg ; Ny1; : : : ; Nyg , then Q�g;1.w/D 1 if and only if
w maps to the identity under the map

Chx1; : : : ; xg ; y1; : : : ; yg ; Nx1; : : : ; Nxg ; Ny1; : : : ; Nygi !CŒ�g �

obtained by identifying xi , yi , Nxi and Nyi with the corresponding elements of �g . If w does not map to
the identity under this map , then Q�g;1.w/D 0.

Notice that the estimate given in Theorem 1.2 is stronger than needed to establish Corollary 1.4.
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1.2 Related works and further questions

The most closely related existing result to Theorem 1.2 is [Magee and Puder 2023, Theorem 1.2],
which establishes Theorem 1.2 when the family of groups SU.n/ is replaced by the family of symmetric
groups Sn, and Tr is replaced by the character fix given by the number of fixed points of a permutation.
In this case, the result is phrased in terms of integrating over Hom.�g ; Sn/ with respect to the uniform
probability measure. The corresponding result for Hom.Fr ; Sn/ was proved much longer ago [Nica
1994].

The problem of integrating geometric functions like Tr over Mg;n is also connected to the work of
Mirzakhani, since, as Goldman [1984, Section 2] explains, the Atiyah–Bott–Goldman symplectic form
generalizes the Weil–Petersson symplectic form on the Teichmüller space of genus g Riemann surfaces.
Mirzakhani [2007] developed a method for integrating geometric functions on moduli spaces of Riemann
surfaces with respect to the Weil–Petersson volume form. Although there is certainly a similarity between
[loc. cit.] and the current work, here the emphasis is on n!1, whereas [loc. cit.] caters to the regime
g!1; the target group playing the role of SU.n/ is always PSL.2;R/.

We now take the opportunity to mention some questions that Theorem 1.2 leads to. Voiculescu [1991]
is able to boost Theorem 1.1 from a convergence in distribution result to a result on convergence in
probability; that is, for any � > 0 and fixed w 2 Fr , the Haar measure of the set

f� 2 Hom.Fr ;U.n// W jTr.�.w//j � �ng

tends to one as n!1 [Voiculescu 1991, Theorem 3.9]. To do this, Voiculescu uses that the family of
measure spaces

�
Hom.Fr ;U.n//; �

�
form a Levy family in the sense of [Gromov and Milman 1983]. This

latter fact relies on an estimate for the first nonzero eigenvalue of the Laplacian on Hom.Fr ;U.n//. It is
interesting to ask whether a similar phenomenon holds for the family of measure spaces .Mg;n; �

ABG
g;n /,

where �ABG
g;n is the probability measure corresponding to VolMg;n . The fact that Mg;n is noncompact

seems to be a significant complication in answering this question using isoperimetric inequalities.

On the other hand, as pointed out to us by a referee, the results of this paper can very likely be extended
to give bounds on the variance

Eg;nŒjTr j2�

that can be used to improve Theorem 1.2 to the result that, for  ¤ id, the normalized traces Tr=n
converge in probability to zero as n!1. To avoid adding complications to this paper, this will be
pursued elsewhere.

In the prequel to this paper [Magee 2022], we proved that, for any fixed  2 �g , there is an infinite
sequence of rational numbers a�1./; a0./; a1./; : : : 2Q such that, for any M 2N,

(1-2) Eg;nŒTr �D a�1./nC a0./C
a1./

n
C � � �C

aM�1./

nM�1
CO;M

�
1

nM

�
Geometry & Topology, Volume 29 (2025)



1242 Michael Magee

as n!1. Theorem 1.2 implies that a�1./D 0 if  ¤ id. It is also interesting to understand the other
coefficients of this series. This has been accomplished when �g is replaced by Fr in [Magee and Puder
2019], where in fact it is proved that

EFr ;nŒTrw � WD
Z
U.n/r

Tr.w.x// d�.x/

is given by a rational function of n and, in particular, can be expanded as in (1-2). The corresponding
coefficients of the Laurent series of EFr ;nŒTrw � are explained in terms of Euler characteristics of subgroups
of mapping class groups. One corollary is that, as n!1,

(1-3) EFr ;nŒTrw �DO
�

1

n2 cl.w/�1

�
;

where cl.w/ is the commutator length of w: the minimal number of commutators that w can be written
as a product of, or1 if w … ŒFr ;Fr �. We guess that an estimate like (1-3) should hold for Eg;nŒTr �,
where commutator length in Fr is replaced by commutator length in �g .

Another strengthening of Theorem 1.1 is the strong asymptotic freeness of Haar unitaries. This states that,
for any complex linear combination X

w

aww 2CŒFr �;

almost surely with respect to Haar random � 2 Hom.Fr ;U.n// as n!1, we haveX
w

aw�.w/

! X
w

aww


Op.`2.Fr //

;

where the left-hand side is the operator norm on Cn with standard Hermitian inner product and the norm
on the right-hand side is the operator norm in the regular representation of Fr . This result was proved in
[Collins and Male 2014]. It is probably very hard to extend this result to �g ; the proof of Collins and
Male relies on seminal work of Haagerup and Thorbjørnsen [2005] in a way that does not obviously
extend to �g .

We finally mention that the expected values Eg;nŒTr � arise as a limiting form of expected values of
Wilson loops in 2D Yang–Mills theory, when the coupling constant is set to zero. This will not be
discussed in detail here; we refer the reader instead to the introduction of [Magee 2022]. Here we just
mention the recent works [Lemoine 2022; Dahlqvist and Lemoine 2023], which make progress on related
problems in the Yang–Mills setting.

1.3 Overview of paper

Here we explain the structure of the paper.

In Sections 2.1–2.5, we give some general background to the paper not depending on [Magee 2022]. In
Section 2.6, we import results that we proved in the prequel and that are needed here.

Geometry & Topology, Volume 29 (2025)
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At the beginning of Section 3, we state the key result (Theorem 3.1) of the remainder of the paper. To
motivate things, Section 3.1 contains a discussion of why the most straightforward approach does not
work, and also a discussion of what will follow instead. In the remainder of Section 3, we explain how
to augment the Weingarten calculus to arrive to a formula for the key quantity Jn.w; �; �/ (defined in
Proposition 2.9) in combinatorial terms that are “good” for the next part of the argument.

Indeed, in Section 4.1 we explain how each combinatorial datum we encountered in our formula for
Jn.w; �; �/ can be used to build a decorated surface. In Corollary 4.5 we obtain a bound on Jn.w; �; �/

in terms of the Euler characteristics of some of the surfaces that previously arose. We may restrict to
certain surfaces of simplified form by performing two surgery arguments explained in Section 4.2. Given
that now we have reduced estimating Jn.w; �; �/ to estimating Euler characteristics of certain surfaces,
in Section 4.3 we formulate a topological result (Proposition 4.8) which suffices to prove Theorem 3.1.
Proposition 4.8 is proved in Section 4.5 using arguments related to Dehn’s algorithm and the work of
Birman and Series. The necessary additional background for this proof is given in Section 4.4.

In Section 5, we show how Theorem 3.1, in conjunction with the results of [Magee 2022], proves
Theorem 1.2.

1.4 Notation

We write N for the natural numbers f1; 2; 3; : : : g and N0 WD N [ f0g. We write Œn� WD f1; : : : ; ng for
n2N and Œk; l� WD fk; kC1; : : : ; lg for k; l 2N. If A and B are two sets, we write AnB for the elements
of A not in B. If H is a group and h1; h2 2H, we write Œh1; h2� WD h1h2h�11 h�12 . We let id denote the
identity element of a group. We let ŒH;H� be the subgroup of H generated by elements of the form
Œh1; h2�; this is called the commutator subgroup of H. If V is a complex vector space, for q 2N0 we let

V ˝q WD V ˝V ˝ � � �˝V„ ƒ‚ …
q

:

We use Vinogradov notation as follows. If f and h are functions of n 2 N, we write f � h to mean
that there are constants n0 � 0 and C0 � 0 such that, for n� n0, jf .n/j � C0h.n/. We write f DO.h/
to mean f � h. We write f � h to mean both f � h and h� f. If in any of these statements the
implied constants depend on additional parameters, we add these parameters as subscripts to�, O or �.
Throughout the paper we view the genus g as fixed and so any implied constant may depend on g.

In this paper, Tr denotes the standard (unnormalized) trace on square complex matrices.

Acknowledgments We thank Benoît Collins, Antoine Dahlqvist, Doron Puder, Sanjaye Ramgoolam,
Calum Shearer and Henry Wilton for valuable discussions about this work. This project has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement 949143).

Geometry & Topology, Volume 29 (2025)



1244 Michael Magee

2 Background

2.1 Representation theory of symmetric groups

Let Sk denote the symmetric group of permutations of Œk� WD f1; : : : ; kg, and CŒSk� denote its group
algebra. The group S0 is by definition the group with one element.

If we refer to Sl � Sk with l � k, we always view Sl as the subgroup of permutations that fix every
element of ŒlC 1; k� WD flC 1; : : : ; kg. We write S 0r � Sk for the subgroup of permutations that fix every
element of Œk � r�. As a consequence, we obtain fixed inclusions CŒSl �� CŒSk� for l and k as above.
When we write Sl �Sk�l � Sk , the first factor is Sl and the second factor is S 0

k�l
.

A Young diagram � is a left-aligned contiguous collection of identical square boxes in the plane such that
the number of boxes in each row is nonincreasing from top to bottom. We write �i for the number of
boxes in the i th row of � and say � ` k if � has k boxes. We write `.�/ for the number of rows of �. For
each � ` k, there is a Young subgroup

S� WD S�1 �S�2 � � � � �S�`.�/ � Sk;

where the factors are subgroups in the obvious way, according to the increasing order of Œk�.

The equivalence classes of irreducible representations of Sk are in one-to-one correspondence with Young
diagrams � ` k. Given �, the construction of the corresponding irreducible representation V � can be
done, for example, using Young symmetrizers as in [Fulton and Harris 1991, Lecture 4]. We write �� for
the character of Sk associated to V � and d� WD ��.id/D dimV �. Given � ` k, the element

p� WD
d�

kŠ

X
�2Sk

��.�/� 2CŒSk�

is a central idempotent in CŒSk�.

If G is a compact group, .�;W / is an irreducible representation of G, and .�; V / is any finite-dimensional
representation of G, the .�;W /-isotypic subspace of .�; V / is the invariant subspace of V spanned by
all irreducible direct summands of .�; V / that are isomorphic to .�;W /. When � and � can be inferred
from W and V, we call this simply the W -isotypic subspace of V. If H �G is a subgroup and .�;W / is
an irreducible representation of H, then the W -isotypic subspace of V for H is the W -isotypic subspace
of the restriction of .�; V / to H.

If .�; V / is any finite-dimensional unitary representation of Sk , and � ` k, then V is also a module
for CŒSk� by linear extension of � and �.p�/ is the orthogonal projection onto the V �-isotypic subspace
of V.

For any compact group G, we write .trivG ;C/ for the trivial representation of G. The following lemma
can be deduced for example by combining Young’s rule [Fulton and Harris 1991, Corollary 4.39] with
Frobenius reciprocity.

Lemma 2.1 Let k 2N0 and � ` k. The space of vectors in V � fixed by S� is one-dimensional.
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2.2 Representation theory of U.n/ and SU.n/

Every irreducible representation of U.n/ restricts to an irreducible representation of SU.n/, and all
equivalence classes of irreducible representations of SU.n/ arise in this way. The equivalence classes of
irreducible representations of U.n/ are parametrized by dominant weights, which can be thought of as
nonincreasing sequences

ƒD .ƒ1; : : : ; ƒn/ 2 Zn;

also known as signatures. We write W ƒ for the irreducible representation of U.n/ corresponding to the
signature ƒ. Two irreducible representations of U.n/ restrict to the same one of SU.n/ if and only if their
signatures differ by a constant vector. Let T .n/ denote the maximal torus of U.n/ consisting of diagonal
matrices. Any matrix of T .n/ has the form diag.exp.i�1/; : : : ; exp.i�n//, where all �j 2R. Associated
to the signature ƒ is the character �ƒ of T .n/ given by

�ƒ
�
diag.exp.i�1/; : : : ; exp.i�n//

�
WD exp

�
i

� nX
jD1

ƒj �j

��
:

The highest weight theory says among other things that the �ƒ-isotypic subspace of W ƒ for T .n/ is
one-dimensional. Any vector in this subspace is called a highest weight vector of W ƒ.

Given k; l 2N0 and fixed Young diagrams �` k and � ` l , we define a family of representations of U.n/
as follows. For n� `.�/C `.�/, define

ƒ�;�.n/ WD .�1; �2; : : : ; �`.�/; 0; : : : ; 0„ ƒ‚ …
n�`.�/�`.�/

;��`.�/;��`.�/�1; : : : ;��1/:

We let .��;�n ; W
�;�
n / denote the irreducible representation of U.n/ corresponding to ƒ�;�.n/ when

n� `.�/C `.�/. We let D�;�.n/ WD dimW
�;�
n and s�;�.g/ WD Tr.��;�n .g// for g 2 U.n/. If � ` k and

� ` l , then, as n!1,

(2-1) D�;�.n/� n
kCl

by [Magee 2022, Corollary 2.3] (alternatively [Enomoto and Izumi 2016, Lemma 3.5]).

We now present a version of Schur–Weyl duality for mixed tensors due to Koike [1989]. The very definition
of U.n/ makes Cn into a unitary representation of U.n/ for the standard Hermitian inner product. We let
fe1; : : : ; eng denote the standard basis of Cn. If .�;W / is any finite-dimensional representation of U.n/,
we write .�_; W _/ for the dual representation, where W _ is the space of complex linear functionals
on W. The vector space .Cn/_ has a dual basis f Le1; : : : ; Leng given by Lej .v/ WD hv; ej i. Throughout the
paper we frequently use certain canonical isomorphisms, eg

..Cn/˝p/_ Š ..Cn/_/˝p; End.W /ŠW ˝W _;

to change points of view on representations; if we use noncanonical isomorphisms, we point them out.
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Let Tk;l
n
WD .Cn/˝k˝ ..Cn/_/˝l , with the convention that .Cn/˝0 WDC. With the natural inner product

induced by that on Cn, this is a unitary representation of U.n/ under the diagonal action and also a unitary
representation of Sk �Sl , where Sk acts by permuting the indices of .Cn/˝k and Sl acts by permuting
the indices of ..Cn/_/˝l . We write �k;ln W U.n/! EndŒTk;ln � and �k;ln W CŒSk � Sl �! EndŒTk;ln � for
these representations. The actions of U.n/ and Sk � Sl on Tk;ln commute. We use the notation, for
I D .i1; : : : ; ik/ 2 Œn�

k and J D .j1; : : : ; jl/ 2 Œn�l ,

eI WD ei1 ˝ � � �˝ eik 2 .C
n/˝k; LeJ WD Lej1 ˝ � � �˝ Lejl 2 ..C

n/_/˝l ; eJI WD eI ˝ LeJ 2 Tk;ln :

We write I tJ for the concatenation .i1; : : : ; ik; j1; : : : ; jl/.

For k; l �1, let PTk;ln denote the intersection of the kernels of the mixed contractions cpq WT
k;l
n !Tk�1;l�1

for p 2 Œk� and q 2 Œl � given by

(2-2) cpq.ei1 ˝ � � �˝ eik ˝ Lej1 ˝ � � �˝ Lejl /

WD ıipjqei1 ˝ � � �˝ eip�1 ˝ eipC1 ˝ � � �˝ eik ˝ Lej1 ˝ � � �˝ Lejq�1 ˝ LejqC1 ˝ � � �˝ Lejl ;

where ıipjq is the Kronecker delta. If k D 1 or l D 1, then the definition is extended in the natural way,
interpreting an empty tensor of ei or Lei as 1. If either k D 0 or l D 0, then PTk;ln D Tk;ln by convention.
The space PTk;ln is an invariant subspace under U.n/� Sk � Sl and hence a unitary subrepresentation
of Tk;ln . On PTk;ln there is an analog of Schur–Weyl duality due to Koike.

Theorem 2.2 [Koike 1989, Theorem 1.1] There is an isomorphism of unitary representations of
U.n/�Sk �Sl

(2-3) PTk;ln Š
M

�`k;�`l
`.�/C`.�/�n

W �;�
n ˝V �˝V � :

Next we explain how to construct U.n/-subrepresentations of PTk;ln isomorphic to W �;�
n . Suppose that

� 2 PTk;ln is a nonzero vector such that, under the isomorphism (2-3),

(2-4) � Š w˝ v

for w 2W �;�
n and v 2V �˝V � . Then U.n/ �� linearly spans a U.n/-subrepresentation of PTk;ln isomorphic

to W �;�
n . The following argument to construct such a vector � , given � ` k and � ` l , appears implicitly

in [Koike 1989] and is elaborated in [Benkart et al. 1994]. For n� `.�/C `.�/, let

(2-5) Q�n�;� WD e
˝�1
1 ˝ � � �˝ e

˝�`.�/
`.�/

˝ . Len/
˝�1 ˝ � � �˝ . Len�`.�/C1/

˝�`.�/ :

This vector is in the ��;�-isotypic subspace of PTk;ln for the maximal torus T .n/ of U.n/, where ��;� is
the character of T .n/ corresponding to the highest weight in W �;�

n .

Let p� 2 CŒSk� and p� 2 CŒS l � be the projections defined in Section 2.1. Let �kn W Sk ! End.Tk;ln /

denote the representation of Sk described above and O�ln W S l ! End.Tk;ln / that of Sl . Clearly these two
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representations commute. Now let

(2-6) �n�;� WD �
k
n.p�/ O�

l
n.p�/

Q�n�;� 2
PTk;ln :

Now this is in the same isotypic subspace for T .n/ as before since Sk � Sl commutes with U.n/.
Moreover, it is in the subspace of PTk;ln corresponding to W �;�

n ˝V �˝V � under the isomorphism (2-3).
The intersection of the two subspaces of PTk;ln just discussed corresponds via (2-3) to Cw˝V �˝V � ,
where w is a highest weight vector in W �;�

n , and hence �n�;� takes the form of (2-4), as we desired.

Of course, we also want to know �n�;� ¤ 0.

Lemma 2.3 Suppose that k; l 2N0, � ` k, � ` l , and �n�;� is as in (2-6) for n� `.�/C `.�/. We have

k�n�;�k
2
D

d�d�

ŒSk WS��ŒSl WS� �
:

Proof Recall the definition of Young subgroups S� and S� from Section 2.1. Letting Q� D Q�n�;� (as
in (2-5)) and � D �n�;� , we have

� D �kn.p�/ O�
l
n.p�/

Q� D
d�d�

kŠlŠ

X
�D.�1;�2/2Sk�Sl

��.�1/��.�2/�
k
n.�1/ O�

l
n.�2/

Q�

D
d�d�

kŠlŠ

X
Œ�1�2Sk=S�
Œ�2�2Sl=S�

� X
�12S�

��.�1�1/

�� X
�22S�

��.�2�2/

�
�kn.�1/ O�

l
n.�2/

Q�:

The second equality used that Q� is invariant under S� �S� .

By Lemma 2.1, there is a one-dimensional subspace of invariant vectors for S� in V �. If v� 2 V � is a
unit vector in this space, then

(2-7)
X
�12S�

��.�1�1/D jS�jh�1v�; v�i:

Since the vectors �kn.�1/ O�
l
n.�2/

Q� for Œ�1� 2 Sk=S� and Œ�2� 2 Sl=S� are orthogonal unit vectors, this
gives

k�k2 D

�
d�d�

kŠlŠ

�2 X
Œ�1�2Sk=S�
Œ�2�2Sl=S�

� X
�12S�

��.�1�1/

�2� X
�22S�

��.�2�2/

�2

D

�
d�d�

kŠlŠ

�2
jS�j

2
jS� j

2
X

Œ�1�2Sk=S�
Œ�2�2Sl=S�

jh�1v�; v�ij
2
jh�2v� ; v�ij

2 (by (2-7))

D

�
d�d�

kŠlŠ

�2
jS�jjS� j

X
�12Sk
�22Sl

jh�1v�; v�ij
2
jh�2v� ; v�ij

2
D

d�d�

ŒSk WS��ŒSl WS� �
:

The last inequality used the orthogonality relations for matrix coefficients.
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Recall that we write �k;ln WU.n/!End.Tk;ln / for the diagonal representation of U.n/ on Tk;ln . Lemma 2.3
implies that �n�;� is a nonzero vector. By the remarks following (2-6), it is of the pure tensor form w˝ v

under the Schur–Weyl isomorphism (2-3), with w 2W �;�
n , and hence we obtain the following corollary:

Corollary 2.4 Suppose n� `.�/C `.�/. The subspace

Wn.�
n
�;�/ WD spanf�k;ln .u/�n�;� W u 2 U.n/g �

PTk;ln

is , under �k;ln , a U.n/-subrepresentation of PTk;ln isomorphic to W �;�
n .

2.3 The Weingarten calculus

The Weingarten calculus is a method based on Schur–Weyl duality that allows one to calculate integrals of
products of matrix coefficients in the defining representation of U.n/ in terms of sums over permutations.
It was discovered initially by Weingarten [1978], and developed further in [Xu 1997; Collins 2003; Collins
and Śniady 2006].

We present two formulations of the Weingarten calculus. Given k 2N and n2N, the Weingarten function
with parameters n and k is the element2 of CŒSk� [Collins and Śniady 2006, equation (9)]

(2-8) Wgn;k WD
1

.kŠ/2

X
�`k
`.�/�n

d2
�

D�.n/

X
�2Sk

��.�/�:

We write Wgn;k.�/ for the coefficient of � in (2-8). The following theorem was proved by Collins and
Śniady [2006, Corollary 2.4]:

Theorem 2.5 For k 2N and for i1; i 01; jk; j
0
k
; : : : ; ik; i

0
k
; jk; j

0
k
2 Œn�,

(2-9)
Z
u2U.n/

ui1j1 � � �uikjk Nui 01j
0
1
� � � Nui 0

k
j 0
k
d�.u/

D

X
�;�2Sk

ıi1i 0�.1/
� � � ıiki 0�.k/

ıj1j 0�.1/
� � � ıjkj 0�.k/

Wgn;k.��
�1/;

where ıpq is the Kronecker delta function.

It is sometimes more flexible to reformulate Theorem 2.5 in terms of projections. Here u 2 U.n/ acts on
A 2 End..Cn/˝k/ by A 7! �kn .u/A�

k
n .u
�1/, where �kn W U.n/! End..Cn/˝k/ is the diagonal action.

Write Pn;k for the orthogonal projection in End..Cn/˝k/ onto the U.n/-invariant vectors. The following
proposition is due to [Collins and Śniady 2006, Proposition 2.3]:

2Although not relevant here, classically the Weingarten function arises as the multiplicative inverse of
P
�2Sk

n#cycles.�/�

in CŒSk � whenever n� k.
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Proposition 2.6 (Collins and Śniady) Let n; k 2N. Suppose A 2 End..Cn/˝k/. Then

Pn;kŒA�D �
k
n.ˆŒA� �Wgn;k/;

where
ˆŒA� WD

X
�2Sk

Tr.A�kn.�
�1//�:

Later we will need the following bound for the Weingarten function due to [Collins and Śniady 2006,
Proposition 2.6]. For a permutation � , let j� j denote the minimum number of transpositions that � can be
written as a product of.

Proposition 2.7 For any fixed � 2 Sk , Wgn;k.�/�k n
�k�j� j as n!1.

2.4 Free groups and surface groups

Let F2g WD ha1; b1; : : : ; ag ; bgi be the free group on 2g generators a1; b1; : : : ; ag ; bg and Rg WD
Œa1; b1� � � � Œag ; bg � 2 F2g . There is a quotient map F2g ! �g given by reduction modulo Rg . We
say that w 2F2g represents the conjugacy class of  2 �g if the projection of w to �g is in the conjugacy
class of  in �g .

Given w 2F2g , we view w as a combinatorial word in a1; a�11 ; b1; b
�1
1 ; : : : ; ag ; a

�1
g ; bg ; b

�1
g by writing

it in reduced (shortest) form; ie a1 does not follow a�11 etc. We say that w is cyclically reduced if the first
letter of its reduced word is not the inverse of the last letter. The length jwj of w 2F2g is the length of its
reduced form word. We say w 2F2g is a shortest element representing the conjugacy class of  2 �g if it
has minimal length among all elements representing the conjugacy class of  . If w is a shortest element
representing some conjugacy class in �g , then w is cyclically reduced.

For any group H, the commutator subgroup ŒH;H��H is the subgroup generated by all elements of
the form Œh1; h2� WD h1h2h

�1
1 h�12 with h1; h2 2H. If  2 Œ�g ; �g � and w represents the conjugacy class

of  , then w 2 ŒF2g ;F2g � (see [Magee 2022, Section 2.6]).

2.5 Witten zeta functions

Witten zeta functions appeared first in [Witten 1991] and were named by Zagier [1994]. The Witten zeta
function of SU.n/ is defined, for s in a half-plane of convergence, by

(2-10) �.sIn/ WD
X

(�;W / 2 bSU.n/

1

.dimW /s
;

where 1SU.n/ denotes the equivalence classes of irreducible representations of SU.n/. Indeed, the series
(2-10) converges for Re.s/ > 2=n by [Larsen and Lubotzky 2008, Theorem 5.1] (see also [Häsä and
Stasinski 2019, Section 2]). Also relevant to this work is a result of Guralnick, Larsen and Manack
[Guralnick et al. 2012, Theorem 2 and equation (7)], which states, for fixed s > 0,

(2-11) lim
n!1

�.sIn/D 1:
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2.6 Results of the prequel paper

By [Magee 2022, Proposition 1.5], if  … Œ�g ; �g �, then Eg;nŒTr � D 0 for n � n0./. This proves
Theorem 1.2 in this case. Hence, in the rest of the paper we need only consider  2 Œ�g ; �g � and hence
w 2 ŒF2g ;F2g � if w 2 F2g represents the conjugacy class of  .

For eachw2F2g , we have a word mapw WU.n/2g!U.n/ obtained by substituting matrices for the genera-
tors ofF2g . For example, if u1; v1; : : : ; ug ; vg 2U.n/ thenRg.u1; v1; : : : ; ug ; vg/D Œu1; v1� � � � Œug ; vg �.
We begin with the following result from [Magee 2022, Corollary 1.8]:

Proposition 2.8 Suppose that g � 2,  2 �g , and w 2 F2g represents the conjugacy class of  . For any
B 2N, we have , as n!1,

(2-12) Eg;nŒTr �D �.2g� 2In/�1
X

�;� Young diagrams
`.�/;`.�/�B

�1;�1�B
2

D�;�.n/In.w; �; �/COB;w;g.n
jwjn�2 logB/;

where

(2-13) In.w; �; �/ WD

Z
SU.n/2g

Tr.w.x//s�;�.Rg.x// d�.x/:

Notice that, for n � 2B, the right-hand side of (2-12) makes sense, ie D�;� ; s�;� are well defined. We
also have the following proposition, which follows from [Magee 2022, Proposition 3.1] together with
Ns�;� D s�;�:

Proposition 2.9 Let w 2 ŒF2g ;F2g �. Then , for any fixed �, � and n� `.�/C `.�/,

In.w; �; �/D Jn.w; �; �/ WD

Z
U.n/2g

Tr.w.x//s�;�.Rg.x// d�.x/:

This is convenient as it will allow us to use the Weingarten calculus directly as it is presented in Section 2.3
for U.n/ rather than SU.n/. By using Proposition 2.9, taking a representative w 2 F2g of the conjugacy
class of  and taking B such that jwj � 2 logB � �1 in Proposition 2.8, we obtain the following result,
from which we begin the new arguments of this paper:

Corollary 2.10 Let  2 Œ�g ; �g � and w 2 ŒF2g ;F2g � be a representative of the conjugacy class of  2 � .
Then there exists a finite set z� of pairs .�; �/ of Young diagrams such that

Eg;nŒTr �D �.2g� 2In/�1
X

(�; �/ 2z�

D�;�.n/Jn.w; �; �/COw;g

�
1

n

�
:

As we know limn!1 �.2g � 2; n/ D 1 by (2-11), we have now reduced the proof of Theorem 1.2 to
establishing suitable bounds for the integrals Jn.w; �; �/, where we can view � and � as fixed Young
diagrams since z� is finite.
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3 Combinatorial integration

3.1 Setup and motivation

The main result of the rest of the paper is the following:

Theorem 3.1 Let  2 �g with  ¤ id. Let w 2 F2g be a shortest element representing the conjugacy
class of  . For each k; l 2N0, there is a constant C.w; k; l/ > 0 such that , for any � ` k, � ` l

jD�;�.n/Jn.w; �; �/j � C.w; k; l/

for all n 2N.

Accordingly, since we know the large n behavior of D�;�.n/ from (2-1), in this section we wish to
estimate

Jn.w; �; �/D

Z
U.n/2g

Tr.w.x//s�;�.Rg.x// d�.x/

for fixed � ` k; � ` l .

What doesn’t work We begin by discussing why the most straightforward approach to this problem
leads to serious complications. It is possible to approach the problem by writing s�;�.h/ as a fixed finite
linear combination of functions

p�0.h/p�0.h
�1/;

where p�0.h/ (resp. p�0.h�1/) is a power sum symmetric polynomial of the eigenvalues of h (resp. h�1

or Nh). See for example [Magee 2022, Section 3.3] for one way to do this. The coefficients of this expansion
are fixed, but not transparent, since they involve Littlewood–Richardson coefficients. In any case, this
approach leads to writing Jn.w; �; �/ as a finite linear combination of integrals of the form

(3-1)
Z
U.n/2g

Tr.w.x//Tr.Rg.x/k1/ � � �Tr.Rg.x/kp /Tr.Rg.x/�l1/ � � �Tr.Rg.x/�lq / d�.x/;

where
P
kj D j�j and

P
lj D j�j.

Magee and Puder [2019] give a full asymptotic expansion for (3-1) as n!1. However, these estimates
are not sufficient for the current paper and, to motivate the rest of this section, we explain briefly the
issues involved. However, this discussion is not needed to understand the arguments that we will make to
prove Theorem 3.1.

The main result of [Magee and Puder 2019] gives a full “genus” expansion of (3-1) in terms of surfaces
and maps on surfaces dictated by w 2 F2g . Roughly speaking, every term in this expansion comes
from a homotopy class of map f from an orientable surface †f to

W2g
iD1 S

1; to contribute to (3-1)
the surface †f has one boundary component that maps to w at the level of the fundamental groups,
p boundary components that map respectively to Rk1g ; : : : ; R

kp
g at the level of fundamental groups, and q
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boundary components that map respectively to R�l1g ; : : : ; R
�lq
g at the level of fundamental groups. The

contribution of the pair .f;†f / to (3-1) is of the form c.f;†f /n
�.†f /; the coefficient c.f;†f / is an

Euler characteristic of a symmetry group of .f;†f / and is not easy to calculate in general. However, one
could still hope to get decay of (3-1) by controlling the possible �.†f / that could appear.

There are two issues with this. The first one is that, if w is not the shortest element representing the
conjugacy class of  , then we get bounds that are not helpful. For a very simple example, let w DRlg
and  D id�g , and consider the potential contribution from pD 0, q D 1 and l1 D l . Then, for any � with
j�j D l , there is contribution to Jn.w;∅; �/ that is a multiple ofZ

U.n/2g
Tr.Rg.x/l/Tr.Rg.x/�l/ d�.x/:

Here, in the theory of [Magee and Puder 2019], there is a .†f ; f / that is an annulus, one boundary com-
ponent corresponding to wDRlg and one corresponding to R�lg , so we can only bound the corresponding
contribution to D∅;�.n/Jn.w;∅; �/ by using [Magee and Puder 2019] on the order of D∅;�.n/� n

l . On
the other hand, any approach that works to establish Theorem 3.1 (for  ¤ id) should extend to show that,
when  D id, D∅;�.n/Jn.w;∅; �/� n as Eg;nŒTrid�D n.

Indeed, this phenomenon extends to words of the form w0R
l
g and more generally to words that are not

shortest representatives of some conjugacy class in �g . It means that, even if we use something similar
in spirit to [Magee and Puder 2019], to prove Theorem 3.1 we must incorporate the theory of shortest
representative words. This indeed takes place in Sections 4.3–4.5; the topological result proved there
hinges on this theory.

The second issue is a little more subtle and only appears for “mixed” representations, ie both �; � ¤∅.
In this case, suppose w is a shortest element representing some conjugacy class in �g and w 2 ŒF2g ;F2g �.
This means that there is a pair .f0; †f0/ where †f0 has one boundary component that maps to w at the
level of the fundamental groups. Let us take �; � D .k/; .k/, ie each Young diagram has one row of k
boxes. This means we get a potential contribution to D�;�.n/Jn.w; �; �/ that is a constant multiple of

(3-2) D.k/;.k/.n/

Z
U.n/2g

Tr.w.x//Tr.Rg.x/k/Tr.Rg.x/�k/ d�.x/:

Now, for every k 2N, there is .f;†f / contributing to (3-2) with one component that is .f0; †f0/ and
the other an annulus with boundary components corresponding to Rkg and R�kg . Since the annulus has
Euler characteristic 0, and D.k/;.k/ � n2k , the order of this contribution to D.k/;.k/.n/Jn.w; .k/; .k// is
potentially� n2kn�.†f0 /. For large enough k, the exponent here is arbitrarily large, which is clearly
catastrophic. In reality, this contribution must cancel with some other contribution, but we do not know
how to see these cancellations.

This ends the discussion of the difficulties of the most straightforward approach to the problems of this
paper.
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What does work To bypass the previous issues we produce a refined version of the Weingarten calculus
that leads to a restricted set of surfaces, for instance not including the ones causing the problem above as
well as all generalizations of this issue.

The basic approach is the following. Instead of trying to deal with a complicated formula for s�;�.R2.x//
(as above), we instead use the copy Wn.�n�;�/ of W �;�

n in PTk;ln that we found in Corollary 2.4. In
Section 3.3, we compute the orthogonal projection q� from Tk;ln (note: not PTk;ln ) onto Wn.�n�;�/
(Proposition 3.2). In the formula we obtain, we give bounds on the coefficients appearing therein
(Lemma 3.3). In addition, we remember that q� 2 End. PTk;ln /; this fact is not obvious from our formula
but turns out to be vital going forward.

The calculation of q� is extra to, but in the same spirit as, the vanilla Weingarten calculus, which is why
we claim to have refined the Weingarten calculus here.

In the expression for Jn.w; �; �/, we now write

s�;�.R2.x//D Tr
Tk;ln

.Aq�Bq�A
�1q�B

�1q�Cq�Dq�C
�1q�D

�1q� /;

where A, B, C and D are the images of the generators of �2 under x. Then the entire integral of
Tr.w.x//s�;�.R2.x// is done using the usual Weingarten calculus. The fact that q� 2End. PTk;ln / intervenes
at a critical point to show that certain contributions from the classical Weingarten calculus cancel and
lead to restrictions on the nonzero contributions. Precisely, the restriction we obtain is summarized in the
forbidden matching property below (Section 3.4) and property (P4) (Section 4.3).

3.2 Proof of Theorem 3.1 when kD l D 0

Here we give a proof of Theorem 3.1 when k D l D 0. This will allow us to bypass the slightly confusing
issue of using the Weingarten function Wgn;kCl when kC l D 0 in Section 3.3.

If k D l D 0, then the only possible � ` k and � ` l are empty Young diagrams �D � D∅, and W ∅;∅
n is

the trivial representation of U.n/, so D∅;∅.n/D 1 for all n � 1 and s∅;∅.h/D 1 for all h 2 U.n/. We
then have

(3-3) D∅;∅.n/Jn.w;∅;∅/D Jn.w;∅;∅/D
Z
U.n/2g

Tr.w.x// d�.x/:

If w 2 F2g is a cyclically shortest word representing the conjugacy class of  2 �g with  ¤ id, then
w ¤ id. It then follows from (1-1) that D∅;∅.n/Jn.w;∅;∅/D ow.n/ as n!1, but, in fact, (3-3) is
given by a rational function of n for n�n0.w/ by a straightforward application of the Weingarten calculus
[Magee and Puder 2019]. This implies D∅;∅.n/Jn.w;∅;∅/DOw.1/ as n!1, as required.

This proves Theorem 3.1 when k D l D 0. Hence, in the rest of Section 3, we can assume kC l > 0.

Geometry & Topology, Volume 29 (2025)



1254 Michael Magee

3.3 A projection formula

Here we develop an integral calculus that is more powerful than the usual Weingarten calculus and allows
us to directly tackle Jn.w; �; �/ without writing it in terms of integrals as in (3-1). The key point is that
our method leads to the forbidden matchings property of Section 3.4 and property (P4) of Section 4.3.

We now view k, l , � ` k and � ` l as fixed, assume kC l > 0 and n� `.�/C `.�/, and write � D �n�;�
as in (2-6), suppressing the dependence on n. Let Wn.�/ be defined as in Corollary 2.4. Thus Wn.�/ is
an irreducible summand of PTk;ln isomorphic to W �;�

n for the group U.n/.

In the remainder of the paper we drop the dependence of our notation on n whenever it adds clarity.

Our first task is to compute the orthogonal projection q� onto W.�/. Let P� denote the orthogonal
projection in Tk;ln onto � . We also view P� as an element of End. PTk;ln / by restriction.

Under the canonical isomorphism End. PTk;ln /Š PTk;ln ˝ . PT
k;l
n /_, we have P� Š .�˝ �_/=k�k2, and also,

from (2-6),

(3-4) P� D
1

k�k2
�k.p�/ O�

l.p�/Œ Q��;� ˝ Q�
_
�;� ��

k.p�/ O�
l.p�/I

here the inner square bracket is interpreted as an element of End. PTk;ln /. By Schur’s lemma, we have

(3-5) q� DD�;�.n/

Z
h2U.n/

�.h/P��.h
�1/ d�.h/

since the right-hand side is an element of End.W.�//� End.Tk;ln / that commutes with �k;l.U.n//, so it
is a multiple of q� , and it has the correct trace.

On the other hand, we can view Tk;ln ˝ . PT
k;l
n /_ Š TkCl;kCln by the canonical isomorphism

Tk;ln ˝ . PT
k;l
n /_ Š .Cn/˝k˝ ..Cn/˝l/

_
˝ ..Cn/˝k/

_
˝ .Cn/˝l

followed by the fixed isomorphism

(3-6) ' W eJI ˝ Le
J 0

I 0 7! eItJ 0 ˝ LeI 0tJ :

Finally, there is a canonical isomorphism TkCl;kCln Š End..Cn/˝kCl/. So, combining these, we fix
isomorphisms

(3-7) End.Tk;ln /Š PTk;ln ˝ . PT
k;l
n /_ ��!

'
TkCl;kCln Š End..Cn/˝kCl/:

We view the outer two isomorphisms as fixed identifications. These isomorphisms are of unitary represen-
tations of U.n/ when everything is given its natural inner product. Moreover, for � D .�1; �2/ 2 Sk �Sl
and � D .�1; �2/ 2 Sk �Sl , we have, for A 2 End.Tk;ln /,

(3-8) 'Œ�k.�1/ O�
l.�2/A�

k.�1/ O�
l.�2/�D �

kCl.�1; �
�1
2 /'ŒA��kCl.�1; �

�1
2 /;

recalling that �kCl WCŒSkCl �! End..Cn/˝kCl/ is the representation by permuting coordinates.
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We now return to the calculation of q� in (3-5). We have

(3-9) q� DD�;�.n/'
�1ŒPn;kCl Œ'.P� /��;

where Pn;kCl is the projection onto the U.n/-invariant vectors (by conjugation) in End..Cn/˝kCl/. This
can now be done using the classical Weingarten calculus. By Proposition 2.6, we have

(3-10) Pn;kCl Œ'.P� /�D �
kCl

�
ˆŒ'.P� /� �Wgn;kCl

�
;

where

ˆŒ'.P� /�D
X

�2SkCl

Tr.'.P� /�
kCl.��1//�:

By (3-8) and (3-4), and since eg ��.g/D ��.g�1/, we obtain

'.P� /D
1

k�k2
'.�k.p�/ O�

l.p�/Œ Q��;� ˝ Q�
_
�;� ��

k.p�/ O�
l.p�//

D
1

k�k2
�kCl.p�˝�/'. Q��;� ˝ Q�

_
�;�/�

kCl.p�˝�/;

where
p�˝� WD

d�d�

kŠlŠ

X
�D.�1;�2/2Sk�Sl

��.�1/��.�2/� 2CŒSkCl �:

Now, using that ˆ is a CŒSkCl �-bimodule morphism [Collins and Śniady 2006, Proposition 2.3 (1)], we
obtain

ˆŒ'.P� /�D
1

k�k2
p�˝�ˆŒ'. Q��;� ˝ Q�

_
�;�/�p�˝�

D
1

k�k2
p�˝�

� X
�2SkCl

Tr.'. Q��;� ˝ Q�_�;�/�
kCl.��1//�

�
p�˝� :

Now, Tr.'. Q��;� ˝ Q�_�;�/�
kCl.��1// is equal to 1 if and only if � is in S� � S� � Sk � Sl , and is 0

otherwise. So we obtain
ˆŒ'.P� /�D

1

k�k2
p�˝�

� X
�2S��S�

�

�
p�˝� I

hence, from (3-10),

Pn;kCl Œ'.P� /�D �
kCl.z� /;

where

(3-11) z� WD
X

�2SkCl

z� .�/� WD
1

k�k2
p�˝�

� X
�2S��S�

�

�
p�˝�Wgn;kCl 2CŒSkCl �:

Therefore we obtain the following proposition:

Proposition 3.2 q� DD�;�.n/'
�1Œ�kCl.z� /�:
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We can use the bound for the coefficients of Wgn;kCl from Proposition 2.7 to infer a bound on the
coefficients z� .�/. For � 2 SkCl , let k�kk;l denote the minimum m for which

� D �0t1t2 � � � tm;

where �0 2 Sk �Sl and t1; : : : ; tm are transpositions in SkCl .

Lemma 3.3 For all � 2 SkCl and � D ��;� as above , z� .�/DOk;l.n�k�l�k�kk;l / as n!1.

Proof Referring to (3-11), as n ! 1, k�k�2 D Ok;l.1/ by Lemma 2.3 and the coefficients of
p�˝�

�P
�2S��S�

�
�
p�˝� are clearly Ok;l.1/, so z� has the form� X

�2Sk�Sl

A.�/�

�
Wgn;kCl ;

where each A.�/ is Ok;l.1/. This means

z� .�/D
X

�2Sk�Sl
� 02SkCl
�� 0D�

A.�/Wgn;kCl.�
0/:

The order of any of the finitely many summands above is n�k�l�j�
0j by Proposition 2.7, and the minimum

possible value of j� 0j is k�kk;l .

Before moving on, it is useful to explain the operator '�1Œ�kCl.�/� for � 2SkCl . For I D .i1; : : : ; ikCl/,
let I 0.I I�/ WD i�.1/; : : : ; i�.k/ and J 0.I I�/ WD i�.kC1/; : : : ; i�.kCl/. As an element of

.Cn/˝kCl ˝ ..Cn/_/˝kCl ;

�kCl.�/ is given by X
ID.i1;:::;ik/

JD.jkC1;:::;jkCl /

eI 0.ItJ I�/tJ 0.ItJ I�/˝ LeItJ ;

so, from (3-6),

(3-12) '�1Œ�kCl.�/�D
X

ID.i1;:::;ik/
JD.jkC1;:::;jkCl /

eJI 0.ItJ I�/˝ Le
J 0.ItJ I�/
I :

3.4 A combinatorial integration formula

In this rest of Section 3, we assume g D 2. All proofs extend to g � 3. We write fa; b; c; dg for the
generators of F4 and R WD Œa; b�Œc; d �. Assume both  and w are not the identity and w 2 ŒF4;F4�
according to the remarks at the beginning of Section 2.6. We write w in the reduced form

(3-13) w D f
�1
1 f

�2
2 : : : f

�jwj
jwj

; �u 2 f˙1g; fu 2 fa; b; c; dg;
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where, if fu D fuC1, then �u D �uC1. For f 2 fa; b; c; dg, let pf denote the number of occurrences
of f C1 in (3-13). The expression (3-13) implies that, for h WD .ha; hb; hc ; hd / 2 U.n/4,

(3-14) Tr.w.h//D
X
ij2Œn�

.h
�1
f1
/i1i2.h

�2
f2
/i2i3 � � � .h

�jwj
fjwj

/ijwji1 :

Working with this expression will be cumbersome so we explain a diagrammatic way to think about (3-14).
This will be the starting point for how we eventually understand Jn.w; �; �/ in terms of decorated
surfaces. We begin with a collection of intervals as follows:

w-intervals and the w-loop Firstly, for every j 2 Œw� with fj D f as in (3-13) and �j D 1, we take a
copy of Œ0; 1� and direct it from 0 to 1.

In our constructions, every interval will have two directions: the intrinsic direction (which is the direction
from 0 to 1) and the assigned direction. In the case just discussed, these agree, but in general they will
not.

We write Œ0; 1�f;j;w for such an interval and IC
f;w

for the collection of these intervals.

For every j 2 Œw� with fj D f as in (3-13) and �j D�1, we take a copy of Œ0; 1� and direct this interval
from 1 to 0. We write Œ0; 1�f �1;j;w for such an interval and I�

f;w
for the collection of these intervals.

All the intervals described above are called w-intervals. There are jwj of these intervals in total.

w-intermediate-intervals Between each Œ0; 1�f �j
j
;j;w and Œ0; 1�f �jC1

jC1
;jC1;w we add a new interval

connecting 1f �j
j
;j;w to 0f �jC1

jC1
;jC1;w , where the indices j run mod jwj. These intervals added are called

w-intermediate-intervals. Note that these intervals together with the w-intervals now form a closed cycle
that is paved by 2jwj intervals alternating between w-intervals and w-intermediate-intervals. Starting at
Œ0; 1�f �11 ;1;w , reading the directions and f -labels of the w-intervals so that every w-interval is traversed
from 0 to 1 spells out the word w. The resulting circle is called the w-loop and the previously defined
orientation of this loop is now fixed. See Figure 1 for an illustration of the w-loop in a particular example.

We now view the indices ij as an assignment

a W fendpoints of w-intervalsg ! Œn�;

a.0f;j;w/ WD ij ; a.1f;j;w/D ijC1; a.0f �1;j;w/D ij ; a.1f �1;j;w/D ijC1:

The condition that a comes from a single collection of ij is precisely that if two endpoints of w-intervals
are connected by a w-intermediate-interval, they are assigned the same value by a. Let A.w/ denote the
collection of such a. If I is any copy of Œ0; 1�, we write 0I for the copy of 0 and 1I for the copy of 1 in I.
We can now write

Tr.w.h//D
X

a2A.w/

Y
f 2fa;b;c;dg

� Y
i2IC
f;w

ha.0i/a.1i/

�� Y
j2I�
f;w

Nha.1j/a.0j/

�
:
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0

1

0

1

0

1

0
1

0

1

0

1
a

a

b

a

a

b

ICa;w

ICa;w

IC
b;w

I�a;w

I�a;w

I�
b;w

Figure 1: The w-loop for w D a2ba�2b�1. The solid intervals are w-intervals and the dashed
intervals are w-intermediate-intervals. We also label each interval by the set, eg ICa;w , to which
they belong.

Now let vp be an orthonormal basis for Wn.�/. We have

s�;�.Rg.ha; hb; hc ; hd //D
X
pi

hhavp2 ; vp1ihhbvp3 ; vp2ihh
�1
a vp4 ; vp3ihh

�1
b vp5 ; vp4i

� hhcvp6 ; vp5ihhdvp7 ; vp6ihh
�1
c vp8 ; vp7ihh

�1
d vp1 ; vp8i:

Here we have written eg havp2 for �k;ln .ha/vp2 to make things easier to read. Next we write each
vp D

P
I;J ˇ

J
pI e

J
I , where ˇJpI WD hvp; e

J
I i. We then have

(3-15) hhavp2 ; vp1ihhbvp3 ; vp2ihh
�1
a vp4 ; vp3ihh

�1
b vp5 ; vp4ihhcvp6 ; vp5ihhdvp7 ; vp6ihh

�1
c vp8 ; vp7i

� hh�1d vp1 ; vp8i

D

X
rf ;Rf ;Vf ;vf
Uf ;uf ;sf ;Sf

ˇVa
p2sa
ŇUa
p1ra

ˇVb
p3sb
ŇUb
p2rb

ˇ
ua
p4Ra

Ňva
p3Sa

ˇ
ub
p5Rb

Ňvb
p4Sb

ˇVc
p6sc
ŇUc
p5rc

ˇVd
p7sd

ŇUd
p6rd

ˇ
uc
p8Rc

� Ň
vc
p7Sc

ˇ
ud
p1Rd

Ňvd
p8Sd
hhae

Va
sa
; eUa

ra
ihhbe

Vb
sb
; eUb

rb
ihh�1a e

ua
Ra
; e

va
Sa
ihh�1b e

ub
Rb
; e

vb
Sb
i

� hhce
Vc
sc
; eUc

rc
ihhde

Vd
sd
; eUd

rd
ihh�1c e

uc
Rc
; e

vc
Sc
ihh�1d e

ud
Rd
; e

vd
Sd
i:

We calculate

(3-16) hhf e
Vf
sf ; e

Uf
rf ihh

�1
f e

uf
Rf
; e

vf
Sf
i D hhf esf ; erf ihhf eVf ; eUf ihhf eSf ; eRf ihhf evf ; euf i

D hhf esf tvf ; erf tuf ihhf eSf tVf ; eRf tUf i:

We now want a diagrammatic interpretation of (3-15) similarly to before. We make the following
constructions:

R-intervals For each j 2 Œk� and f 2 fa; b; c; dg, we make a copy of Œ0; 1�, direct it from 0 to 1, label
it by f, and also number it by j. We write IC

f;R
for the collection of these intervals. These correspond to

occurrences of f in R.
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0
1

0

1

0

1

0

10
1

0

1

0

1

0

1 ra sa

rb

sb

Sa

Ra

Sb

Rbrc
sc

rd

sd

Sc

Rc

Sd

Rd

a

b

a

b
c

d

c

d

k times

0

1

0

1

0

1

0
1

0

1

0

1

0

1

0
1

ud

vd

uc

vc

Vd

Ud

VcUc
ub

vb

ua

va

Vb

Ub

Va
Ua d

c

d

c
b

a

b

a

l times

Figure 2: The R-intervals (left) and the R�1-intervals (right). We have indicated their assigned
direction and label (which f they correspond to). We have also, for each endpoint of an interval,
indicated which index function, eg ra, has this endpoint in its domain.

For each j 2 Œk� and f 2 fa; b; c; dg, we make a copy of Œ0; 1�, direct it from 1 to 0, label it by f, and
also number it by j. We write I�

f;R
for the collection of these intervals. These correspond to occurrences

of f �1 in R.

(These two constructions of k intervals correspond to the presence of f and f �1 each exactly once in R.)

These intervals are called R-intervals. There are 8k R-intervals in total (for general g, there are 4gk of
these intervals).

R�1-intervals For each j 2 ŒkC 1; kC l � and f 2 fa; b; c; dg, we make a copy of Œ0; 1�, direct it from
0 to 1, label it by f, and also number it by j. We write IC

f;R�1
for the collection of these intervals. These

correspond to occurrences of f in R�1.

For each j 2 ŒkC 1; kC l � and f 2 fa; b; c; dg, we make a copy of Œ0; 1�, direct it from 1 to 0, label it
by f, and also number it by j. We write I�

f;R�1
for the collection of these intervals. These correspond to

occurrences of f �1 in R�1.

These intervals are called R�1-intervals. There are 8l R�1-intervals in total (for general g, there are 4gl
of these intervals). See Figure 2 for an illustration of the R- and R�1-intervals.

We now view (by identifying endpoints of intervals with the given numbers of intervals in ŒkC l �)

rf W f0i W i 2 I
C

f;R
g ! Œn�; Rf W f1i W i 2 I

�
f;Rg ! Œn�;

sf W f1i W i 2 I
C

f;R
g ! Œn�; Sf W f0i W i 2 I

�
f;Rg ! Œn�;

Uf W f1i W i 2 I
�

f;R�1
g ! Œn�; uf W f0i W i 2 I

C

f;R�1
g ! Œn�;

Vf W f0i W i 2 I
�

f;R�1
g ! Œn�; vf W f1i W i 2 I

C

f;R�1
g ! Œn�:
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We obtain, from (3-16),

hhae
Va
sa
; eUa

ra
ihhbe

Vb
sb
; eUb

rb
ihh�1a e

ua
Ra
; e

va
Sa
ihh�1b e

ub
Rb
; e

vb
Sb
i

� hhce
Vc
sc
; eUc

rc
ihhde

Vd
sd
; eUd

rd
ihh�1c e

uc
Rc
; e

vc
Sc
ihh�1d e

ud
Rd
; e

vd
Sd
i

D

Y
f

Y
iC2IC

f;R

i�2I�
f;R

Y
jC2IC

f;R�1

j�2I�
f;R�1

hrf .0iC /sf .1iC /
huf .0jC /vf .1jC /

NhRf .1i� /Sf .0i� /
NhUf .1j� /Vf .0j� /:

With this formalism, we obtain

(3-17) Jn.w; �; �/D
X
pi

X
rf ;Rf ;Vf ;vf
Uf ;uf ;sf ;Sf

X
a2A.w/

ˇVa
p2sa
ŇUa
p1ra

ˇVb
p3sb
ŇUb
p2rb

ˇ
ua
p4Ra

Ňva
p3Sa

ˇ
ub
p5Rb

Ňvb
p4Sb

ˇVc
p6sc

� Ň
Uc
p5rc

ˇVd
p7sd

ŇUd
p6rd

ˇ
uc
p8Rc

Ňvc
p7Sc

ˇ
ud
p1Rd

Ňvd
p8Sd

�

Y
f 2fa;b;c;dg

Z
h2U.n/

Y
i2IC
f;w

;j2I�
f;w

iC2IC
f;R

;i�2I�
f;R

jC2IC
f;R�1

;j�2I�
f;R�1

hrf .0iC /sf .1iC /
huf .0jC /vf .1jC /

NhRf .1i� /Sf .0i� /

� NhUf .1j� /Vf .0j� / dh:

For each f, the integral in (3-17) can be done using the Weingarten calculus (Theorem 2.5). To do this,
fix bijections for each f 2 fa; b; c; dg

IC
f
WD IC

f;R
[ IC

f;R�1
[ IC

f;w
Š ŒkC l Cpf �;

I�f WD I�f;R [ I�
f;R�1

[ I�f;w Š ŒkC l Cpf �

such that

IC
f;w
Š ŒkC l C 1; kC l Cpf �; I�f;w Š ŒkC l C 1; kC l Cpf �

and

(3-18) IC
f;R
Š Œk�; I�f;R Š Œk�; IC

f;R�1
Š ŒkC 1; kC l �; I�

f;R�1
Š ŒkC 1; kC l �

correspond to the original numberings of IC
f;R

, I�
f;R

, IC
f;R�1

and I�
f;R�1

.

Hence, if �f ; �f 2 SkClCpf we view �f ; �f W I
C

f
! I�

f
by the above fixed bijections. For each f 2

fa; b; c; dg, we say .a; rf ;uf ;Rf ;Uf /! �f if, for all i 2 IC
f

and i0 2 I�
f

with �f .i/D i0, we have

Œrf tuf t a�.0i/D ŒRf tUf t a�.1i0/I

here we wrote eg Œrf tuf t a� for the function that a, rf and uf induce on f0i W i 2 ICf g. Similarly, we
say .a; sf ; vf ;Sf ;Vf /! �f if, for all i 2 IC

f
; i0 2 I�

f
with �f .i/D i0, we have

Œsf t vf t a�.1i/D ŒSf tVf t a�.0i0/:
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Theorem 2.5 translates toZ
h2U.n/

Y
i2IC
f;w

;j2I�
f;w

iC2IC
f;R

;i�2I�
f;R

jC2IC
f;R�1

;j�2I�
f;R�1

hrf .0iC /sf .1iC /
huf .0jC /vf .1jC /

NhRf .1i� /Sf .0i� /
NhUf .1j� /Vf .0j� / dh

D

X
�f ;�f 2SkClCpf

Wgn;kClCpf .�f �
�1
f /1f.a; rf ;uf ;Rf ;Uf /! �f ; .a; sf ; vf ;Sf ;Vf /! �f g;

so putting this into (3-17) gives

Jn.w; �; �/D
X

�f ;�f 2SkClCpf

� Y
f 2fa;b;c;dg

Wgn;kClCpf .�f �
�1
f /

�
�

X
pi

X
a2A.w/;rf ;Rf ;Vf ;vf ;Uf ;uf ;sf ;Sf

.a;rf ;uf ;Rf ;Uf /!�f
.a;sf ;vf ;Sf ;Vf /!�f

ˇVa
p2sa
ŇUa
p1ra

ˇVb
p3sb
ŇUb
p2rb

ˇ
ua
p4Ra

Ňva
p3Sa

ˇ
ub
p5Rb

Ňvb
p4Sb

�ˇVc
p6sc
ŇUc
p5rc

ˇVd
p7sd

ŇUd
p6rd

ˇ
uc
p8Rc

Ňvc
p7Sc

ˇ
ud
p1Rd

Ňvd
p8Sd

:

Here we make our main improvement over the classical Weingarten calculus. We introduce the following
beneficial property that the �f and �f possibly have:

Forbidden matchings property For every f 2 fa; b; c; dg, the following hold: neither �f nor �f map
any element of IC

f;R
to an element of I�

f;R�1
, or map an element of IC

f;R�1
to an element of I�

f;R
.

We have the following key lemma:

Lemma 3.4 If for some f 2 fa; b; c; dg, �f and �f do not have the forbidden matchings property,
then , for any choice of p1; : : : ; p8,

(3-19)
X

a2A.w/;rf ;Rf ;Vf ;vf ;Uf ;uf ;sf ;Sf
.a;rf ;uf ;Rf ;Uf /!�f
.a;sf ;vf ;Sf ;Vf /!�f

ˇVa
p2sa
ŇUa
p1ra

ˇVb
p3sb
ŇUb
p2rb

ˇ
ua
p4Ra

Ňva
p3Sa

ˇ
ub
p5Rb

Ňvb
p4Sb

�ˇVc
p6sc
ŇUc
p5rc

ˇVd
p7sd

ŇUd
p6rd

ˇ
uc
p8Rc

Ňvc
p7Sc

ˇ
ud
p1Rd

Ňvd
p8Sd

D 0:

Proof Indeed, suppose �a matches an element i 2 ICa;R with j 2 I�
a;R�1

; �a.i/D j. With our given fixed
bijections (3-18), i corresponds to an element of Œk� and j corresponds to an element of ŒkC 1; kC l �.
Without loss of generality in the argument suppose that 0i corresponds to 1 and 0j corresponds to kC 1.
The condition �a.i/D j and .a; ra;ua;Ra;Ua/! �f means that, as functions on Œk� and ŒkC 1; kC l �,
ra.1/D Ua.kC 1/. There are no other constraints on these values.

Then, for all variables in (3-19) fixed apart from ra and Ua, and all values of ra and Ua fixed other than
ra.1/ and Ua.kC 1/, the ensuing sum over ra and Ua isX

ra.1/DUa.kC1/

ˇUa
p2ra

:
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But, recalling the contraction operators from (2-2), this sum is the coordinate of

era.2/˝ � � � � � � era.k/˝ LeUa.kC2/˝ � � �˝ LeUa.kCl/

in c1;1.vp2/. But c1;1.vp2/D 0 because vp2 2 PT
k;l
n .

We henceforth write
P�
�f ;�f

to mean the sum is restricted to �f and �f satisfying the forbidden matchings
property. Lemma 3.4 now implies

(3-20) Jn.w; �; �/

D

�X
�f ;�f 2SkClCpf

� Y
f 2fa;b;c;dg

Wgn;kClCpf .�f �
�1
f /

�
�

X
pi

X
a2A.w/;rf ;Rf ;Vf ;vf ;Uf ;uf ;sf ;Sf

.a;rf ;uf ;Rf ;Uf /!�f
.a;sf ;vf ;Sf ;Vf /!�f

ˇVa
p2sa
ŇUa
p1ra

ˇVb
p3sb
ŇUb
p2rb

ˇ
ua
p4Ra

Ňva
p3Sa

ˇ
ub
p5Rb

Ňvb
p4Sb

�ˇVc
p6sc
ŇUc
p5rc

ˇVd
p7sd

ŇUd
p6rd

ˇ
uc
p8Rc

Ňvc
p7Sc

ˇ
ud
p1Rd

Ňvd
p8Sd

:

Moreover, we can significantly tidy up (3-20). For everything in (3-20) fixed except for eg p2, the ensuing
sum over p2 is X

p2

ˇVa
p2sa
ŇUb
p2rb
D

X
p2

heUb
rb
; vp2ihvp2 ; e

Va
sa
i D hq�e

Ub
rb
; eVa

sa
i:

Therefore, executing the sums over pi in (3-20), we replace the sum over pi and the product over ˇ-terms
by

(3-21) hq�e
Ub
rb
; eVa

sa
ihq�e

va
Sa
; eVb

sb
ihq�e

vb
Sb
; e

ua
Ra
ihq�e

Uc
rc
; e

ub
Rb
ihq�e

Ud
rd
; eVc

sc
ihq�e

vc
Sc
; eVd

sd
ihq�e

vd
Sd
; e

uc
Rc
i

� hq�e
Ua
ra
; e

ud
Rd
i:

By Proposition 3.2, we have eg

hq�e
Ub
rb
; eVa

sa
i DD�;�.n/

X
�2SkCl

z� .�/h'
�1Œ�k;ln .�/�eUb

rb
; eVa

sa
i:

Now recall from (3-12) that

'�1Œ�kCln .�/�D
X

ID.i1;:::;ik/
JD.jkC1;:::;jkCl /

eJI 0.ItJ I�/˝ Le
J 0.ItJ I�/
I :

This means that h'�1Œ�kCln .�/�e
Ub
rb ; e

Va
sa i is equal to either 0 or 1 and h'�1Œ�kCln .�/�e

Ub
rb ; e

Va
sa i D 1 if

and only if, letting (3-18) induce identifications

f1i W i 2 I
C

a;Rg Š Œk�; f1i W i 2 I
�

b;R�1
g Š ŒkC 1; kC l �;

f0i W i 2 I
C

b;R
g Š Œk�; f0i W i 2 I

�

a;R�1
g Š ŒkC 1; kC l �
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via their given indexing of intervals, we have Œsa tUb� ı� D Œrb tVa�, where eg sa tUb is the function
either on endpoints of intervals or on ŒkC l � induced by the union of sa and Ub . Hence, repeating this
argument,

(3-21)DD�;�.n/8
X

�1;:::;�82SkCl

� 8Y
iD1

z� .�i /

�
1
˚
ŒsatUb�ı�1D ŒrbtVa�; Œsbtva�ı�2D ŒSatVb�;

ŒRatvb�ı�3D ŒSbtua�; ŒRbtUc�ı�4D Œrctub�;

ŒsctUd �ı�5D ŒrdtVc�; Œsdtvc�ı�6D ŒSctVd �;

ŒRctvd �ı�7D ŒSdtuc�; ŒRdtUa�ı�8D Œratud �
	
:

Putting all these arguments together gives

Jn.w; �; �/

DD�;�.n/
8

�X
�f ;�f 2Spf CkCl

X
�1;:::;�82SkCl

� Y
f 2fa;b;c;dg

Wgn;kClCpf .�f �
�1
f /

�� 8Y
iD1

z� .�i /

�
�

X
pi

X
a2A.w/;rf ;Rf ;Vf ;vf ;Uf ;uf ;sf ;Sf

.a;rf ;uf ;Rf ;Uf /!�f
.a;sf ;vf ;Sf ;Vf /!�f

1
˚
ŒsatUb�ı�1D ŒrbtVa�; Œsbtva�ı�2D ŒSatVb�;

ŒRatvb�ı�3D ŒSbtua�; ŒRbtUc�ı�4D Œrctub�;

ŒsctUd �ı�5D ŒrdtVc�; Œsdtvc�ı�6D ŒSctVd �;

ŒRctvd �ı�7D ŒSdtuc�; ŒRdtUa�ı�8D Œratud �
	
:

This formula says that we can calculate Jn.w; �; �/ by summing over some combinatorial data of
matchings (the �f , �f and �i ) a quantity that we can understand well times a count of the number of
indices that satisfy the prescribed matchings. To formalize this point of view we make the following
definition:

Definition 3.5 A matching datum of the triple .w; k; l/ is a pair .�f ; �f /2SkClCpf �SkClCpf as above,
satisfying the forbidden matchings property for each f 2fa; b; c; dg, together with .�1; : : : ; �8/2 .SkCl/8.
We write

MATCH.w; k; l/

for the finite collection of all matching data for .w; k; l/.

Given a matching datum f�f ; �f ; �ig, we write N.f�f ; �f ; �ig/ for the number of choices of a 2A.w/,
rf , Rf , Vf , vf , Uf , uf , sf and Sf such that

(3-22)

.a; rf ;uf ;Rf ;Uf /! �f ; .a; sf ; vf ;Sf ;Vf /! �f ;

Œsa tUb� ı�1 D Œrb tVa�; Œsb t va� ı�2 D ŒSa tVb�;

ŒRa t vb� ı�3 D ŒSb tua�; ŒRb tUc� ı�4 D Œrc tub�;

Œsc tUd � ı�5 D Œrd tVc�; Œsd t vc� ı�6 D ŒSc tVd �;

ŒRc t vd � ı�7 D ŒSd tuc�; ŒRd tUa� ı�8 D Œra tud �:

With this notation, we have proved the following theorem:
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Theorem 3.6 For kC l > 0 with � ` k and � ` l and w 2 ŒF4;F4�, we have

(3-23) Jn.w; �; �/

DD�;�.n/
8

X
f�f ;�f ;�i g2MATCH.w;k;l/

� 8Y
iD1

z� .�i /

�� Y
f 2fa;b;c;dg

Wgn;kClCpf .�f �
�1
f /

�
�N.f�f ; �f ; �ig/:

We conclude this section by bounding the terms z� .�i / and Wgn;kClCpf .�f �
�1
f
/ using Proposition 2.7

and Lemma 3.3, recalling also (2-1). Note that
P
f 2fa;b;c;dg pf D

1
2
jwj. This yields:

Corollary 3.7 For kC l > 0 with � ` k and � ` l and w 2 ŒF4;F4�, we have

(3-24) Jn.w; �; �/

�k;l;w n
�4k�4l�jwj=2

X
f�f ;�f ;�i g2MATCH.w;k;l/

n�
P
f j�f �

�1
f
j�
P8
iD1 k�ikk;lN.f�f ; �f ; �ig/:

We will proceed in the next section to understand all the quantities in (3-24) in topological terms by
constructing a surface from each f�f ; �f ; �ig.

4 Topology

4.1 Construction of surfaces from matching data

We now show how a datum in MATCH.w; k; l/ can be used to construct a surface such that the terms
appearing in (3-23) can be bounded by topological features of the surface. This construction is similar
to the constructions of [Magee and Puder 2019; 2015], but with the presence of additional �i adding a
new aspect. We continue to assume g D 2 for simplicity. We can still assume that  2 Œ�2; �2� and hence
w 2 ŒF4;F4�.

Construction of the 1-skeleton

�-intervals The identifications of the previous section mean that we view

(4-1)

�1 W f0i W i 2 I
C

b;R
[ I�

a;R�1
g ! f1i0 W i

0
2 ICa;R [ I�

b;R�1
g;

�2 W f0i W i 2 I
�
a;R [ I�

b;R�1
g ! f1i0 W i

0
2 IC

b;R
[ IC

a;R�1
g;

�3 W f0i W i 2 I
�
b;R [ IC

a;R�1
g ! f1i0 W i

0
2 I�a;R [ IC

b;R�1
g;

�4 W f0i W i 2 I
C

c;R [ IC
b;R�1

g ! f1i0 W i
0
2 I�b;R [ I�

c;R�1
g;

�5 W f0i W i 2 I
C

d;R
[ I�

c;R�1
g ! f1i0 W i

0
2 ICc;R [ I�

d;R�1
g;

�6 W f0i W i 2 I
�
c;R [ I�

d;R�1
g ! f1i0 W i

0
2 IC

d;R
[ IC

c;R�1
g;

�7 W f0i W i 2 I
�
d;R [ IC

c;R�1
g ! f1i0 W i

0
2 I�c;R [ IC

d;R�1
g;

�8 W f0i W i 2 I
C

a;R [ IC
d;R�1

g ! f1i0 W i
0
2 I�d;R [ I�

a;R�1
g:
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We add an arc between any two interval endpoints that are mapped to one another by some �i . All
the intervals added here are called �-intervals. The purpose of this construction is that the conditions
concerning �i in (3-22) correspond to the fact that two endpoints of intervals connected by a �-interval
are assigned the same value in Œn� by the relevant functions out of rf , Rf , Vf , vf , Uf , uf , sf and Sf (at
most one of these functions has any given interval endpoint in its domain).

The �-intervals together with the R-intervals and R�1-intervals form a collection of loops, which we call
R˙-�-loops.

� -arcs and �-arcs Recall from the previous sections that we view

�f ; �f W I
C

f
! I�f :

We add an arc between each 0i and 1i0 with �f .i/D i0 and between each 1i and 0i0 with �f .i/D i0. These
arcs are called �f -arcs and �f -arcs, respectively. Any �f -arc (resp. �f -arc) is also called a �-arc (resp.
� -arc). Notice even though an arc is formally the same as an interval, we distinguish these types of objects.
The only arcs that exist are �-arcs and �-arcs. The purpose of this construction is that the conditions
pertaining to �f and �f in (3-22) are equivalent to the fact that two endpoints of intervals connected by a
� -arc or � -arc are assigned the same value in Œn� by the relevant functions out of a, rf , Rf , Vf , vf , Uf ,
uf , sf and Sf .

After adding these arcs, every endpoint of an interval has exactly one arc emanating from it. We have
therefore now constructed a trivalent graph

G.f�f ; �f ; �ig/:

Each vertex of the graph is an endpoint of two intervals and one arc. The number of vertices of this
graph is twice the total number of w-intervals, R-intervals and R�1-intervals, which is 2.jwjC8.kC l//.
Therefore we have

(4-2) �.G.f�f ; �f ; �ig//D�.jwjC 8.kC l//:

(For general g, we have �.G.f�f ; �f ; �ig//D�.jwjC 4g.kC l//.) Moreover, the conditions in (3-22)
are now interpreted purely in terms of the combinatorics of this graph.

Gluing in discs There are two types of cycles in G.f�f ; �f ; �ig/ that we wish to consider:

� Cycles that alternate between following either a w-intermediate-interval or a �-interval and then
either a �-arc or a �-arc. These cycles are disjoint from one another, and every �- or �-arc is
contained in exactly one such cycle. We call these cycles type I cycles. For every type I cycle, we
glue a disc to G.f�f ; �f ; �ig/ along its boundary, following the cycle. These discs will be called
type I discs. (These are analogous to the o-discs of [Magee and Puder 2019].)
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Figure 3: An example †.f�f ; �f ; �ig/ for w D ab�1a�1b. The � , � and some of the �i -arcs are
labeled along with the numbers (0 or 1) of the points being matched in the w-intervals. Each
w-interval is also labeled with its corresponding letter. Here k D l D 1; �8 is a transposition
and all other �i are the identity. There is one resulting R˙-�-loop. In this example, for each
f 2 fa; b; c; dg, �f D �f . This means that all type II discs are rectangles.

� Cycles that alternate between following either a w-interval, an R-interval or an R�1-interval and
then either a �-arc or a � -arc. Again, these cycles are disjoint, and every �- or � -arc is contained
in exactly one such cycle. We call these cycles type II cycles. For every type II cycle, we glue a
disc to G.f�f ; �f ; �ig/ identifying the boundary of the disc with the cycle. These discs will be
called type II discs. (These are similar to the z-discs of [Magee and Puder 2019].)

Because every interior of an interval meets exactly one of the glued-in discs, and every arc has two
boundary segments of discs glued to it, the object resulting from gluing in these discs is a decorated
topological surface, which we denote by

†.f�f ; �f ; �ig/:

An example of this construction is depicted in Figure 3.
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The boundary components of †.f�f ; �f ; �ig/ consist of the w-loop and the R˙-�-loops. It is not hard
to check that †.f�f ; �f ; �ig/ is orientable with an orientation compatible with the fixed orientations of
the boundary loops corresponding to traversing every w-interval or R˙1-interval from 0 to 1.

We view the given CW–complex structure and the assigned labelings and directions of the intervals that
now pave @† as part of the data of †.f�f ; �f ; �ig/. The number of discs of †.f�f ; �f ; �ig/ is connected
to the quantities appearing in Theorem 3.6 as follows:

Lemma 4.1 N.f�f ; �f ; �ig/D n
#ftype I discs of†.f�f ; �f ; �i g/g:

Proof The constraints on the functions a, rf , Rf , Vf , vf , Uf , uf , sf and Sf in (3-22) now correspond
to the fact that, altogether, they assign the same value in Œn� to every interval endpoint in the same type I
cycle, and there are no other constraints between them.

The quantities j�f ��1f j in (3-24) can also be related to †.f�f ; �f ; �ig/ as follows:

Lemma 4.2
Y

f 2fa;b;c;dg

n�j�f �
�1
f
j
D n�4.kCl/�jwj=2n#ftype II discs of†.f�f ; �f ; �i g/g:

Proof Recalling the definition of j�f ��1f j from Proposition 2.7, we can also write

j�f �
�1
f j D kC l Cpf � #fcycles of �f �

�1
f g.

The cycles of f�f ��1f W f 2 fa; b; c; dgg are in one-to-one correspondence with the type II cycles of
†.f�f ; �f ; �ig/ and hence also the type II discs. Therefore,Y

f 2fa;b;c;dg

n�j�f �
�1
f
j
D n�4.kCl/n

P
f2fa;b;c;dg.�pfC#fcycles of �f ��1f g/

D n�4.kCl/�jwj=2n#ftype II discs of†.f�f ; �f ; �i g/}:

We are now able to prove the following:

Theorem 4.3 For kC l > 0 with � ` k and � ` l and w 2 ŒF4;F4�, we have

Jn.w; �; �/�w;k;l

X
f�f ;�f ;�i g2MATCH.w;k;l/

n�
P8
iD1 k�ikk;ln�.†.f�f ;�f ;�i g//:

Proof Combining Lemmas 4.1 and 4.2 with Corollary 3.7 gives

Jn.w; �; �/�w;k;l n
�8k�8l�jwj

X
f�f ;�f ;�i g2MATCH.w;k;l/

n�
P8
iD1 k�ikk;ln#fdiscs of†({�f ,�f ,�i})g:

Then, from (4-2), we obtain

Jn.w; �; �/�w;k;l

X
f�f ;�f ;�i g2MATCH.w;k;l/

n�
P8
iD1 k�ikk;ln�.G.f�f ;�f ;�i g//C#fdiscs of†({�f ,�f ,�i})g

D

X
f�f ;�f ;�i g2MATCH.w;k;l/

n�
P8
iD1 k�ikk;ln�.†.f�f ;�f ;�i g//:
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4.2 Two simplifying surgeries

Theorem 4.3 suggests that we now bound

�.†.f�f ; �f ; �ig//�

8X
iD1

k�ikk;l

for all f�f ; �f ; �ig 2MATCH.w; k; l/. To do this, we make some observations that simplify the task. If
C is a simple closed curve in a surface S, then compressing S along C means that we cut S along C and
then glue discs to cap off any new boundary components created by the cut.

Suppose that we are given f�f ; �f ; �ig 2MATCH.w; k; l/. Then f�f ; �f ; �ig is also in MATCH.w; k; l/

(the forbidden matching property continues to hold). It is not hard to see that

�.†.f�f ; �f ; �ig//� �.†.f�f ; �f ; �ig//:

Indeed, the �f -arcs can be replaced by �f -parallel arcs inside the type II discs of †.f�f ; �f ; �ig/. The
resulting surface’s arcs may not cut the surface into discs, but this can be fixed by (possibly repeatedly)
compressing the surface along simple closed curves disjoint from the arcs, leaving the combinatorial data
of the arcs unchanged but only potentially increasing the Euler characteristic.

It remains to deal with the sum
P8
iD1 k�ikk;l .

Suppose again that an arbitrary f�f ; �f ; �ig 2MATCH.w; k; l/ is given. For each i 2 Œ8�, write

�i D �
�
i �i ;

where ��i 2 Sk �Sl , �i D .�
�
i /
�1�i 2 SkCl and j�i j D k�ikk;l . Let X0 WD†.f�f ; �f ; �ig/.

Take †.f�f ; �f ; �ig/ and add to it all the ��i -intervals that would have been added if �i was replaced
by ��i for each i 2 Œ8� in its construction. The resulting object X1 is the decorated surface X0 together
with a collection of ��i -intervals with endpoints in the boundary of X0, and interiors disjoint from X0.
This adds 8.kC l/ edges to X0 and hence

�.X1/D �.†.f�f ; �f ; �ig//� 8.kC l/:

Now we consider all cycles that for any fixed i 2 Œ8�, alternate between �i -intervals and ��i -intervals.
The number of these cycles is the total number of cycles of the permutations f.��i /

�1�i W i 2 Œ8�g. On the
other hand, the number of cycles of .��i /

�1�i is

kC l � j.��i /
�1�i j D kC l � j�i j D kC l �k�ikk;l :

So in total there are 8.kC l/�
P
i k�ikk;l of these cycles. For every such cycle, we glue a disc along

its boundary to the cycle. The resulting object is denoted X2. Now, X2 is a topological surface, and we
added 8.kC l/�

P
i k�ikk;l discs to X1 to form X2, so

�.X2/D �.X1/C 8.kC l/�
X
i

k�ikk;l D �.†.f�f ; �f ; �ig//�
X
i

k�ikk;l :
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��8 ��8
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Figure 4: A local illustration of the second type of simplifying surgery, precisely in the context
of Figure 3. The dashed simple closed curve in X3 is disjoint from any arcs, and cutting along
this curve and gluing in two discs yields X4. Going back to Figure 3 again, the net effect of this
surgery is to cut the left half from the right half.

Now “forget” all the original �i -intervals from X2 to form X3. The surface X3 is a decorated surface in
the same sense as X0, except the connected components of X3�farcsg may not be discs. Similarly to
before, by sequentially compressing X3 along nonnullhomotopic simple closed curves disjoint from arcs,
if they exist, we obtain a new decorated surface X4. See Figure 4 for an illustration of this surgery taking
place. Moreover, and this is the main point, X4 is the same as †.f�f ; �f ; ��i g/ in the sense that they are
related by a decoration-respecting cellular homeomorphism. Compression can only increase the Euler
characteristic, so we obtain

�.†.f�f ; �f ; �
�
i g//� �.X3/D �.X2/D �.†.f�f ; �f ; �ig//�

X
i

k�ikk;l :

Combining these two arguments proves the following proposition:

Proposition 4.4 For any given f�f ; �f ; �ig, there exist ��i 2 Sk �Sl for i 2 Œ8� such that

�.†.f�f ; �f ; �
�
i g//�

8X
iD1

k��i kk;l D �.†.f�f ; �f ; �
�
i g//� �.†.f�f ; �f ; �ig//�

8X
iD1

k�ikk;l :
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This has the following immediate corollary when combined with Theorem 4.3. Let

MATCH�.w; k; l/

denote the subset of MATCH.w; k; l/ consisting of f�f ; �f ; �ig (ie �f D �f for each f 2 fa; b; c; dg)
with �i 2 Sk �Sl for each i 2 Œ8�.

Corollary 4.5 For kC l > 0 with � ` k and � ` l and w 2 ŒF4;F4�, we have

Jn.w; �; �/�w;k;l n
maxf�f ;�f ;�i g2MATCH�.w;k;l/ �.†.f�f ;�f ;�i g//:

The benefit to having �i 2 Sk � Sl for i 2 Œ8� is the following. Suppose now that f�f ; �f ; �ig 2
MATCH�.w; k; l/. Recall that the boundary loops of †.f�f ; �f ; �ig/ consist of one w-loop and some
number of R˙-�-loops. The condition that each �i 2 Sk �Sl means that no �-interval ever connects
an endpoint of a R-interval with an endpoint of an R�1-interval. So every boundary component of
†.f�f ; �f ; �ig/ that is not the w-loop contains either only R-intervals or only R�1-intervals, and, in fact,
when following the boundary component and reading the directions and labels of the intervals according
to traversing each from 0 to 1, reads out a positive power of R (in the former case of only R-intervals) or
a negative power of R�1 (in the latter case of only R�1-intervals). The sum of the positive powers of R
in boundary loops is k, and the sum of the negative powers of R is �l . Knowing this boundary structure
is extremely important for the arguments in the next sections.

4.3 A topological result that proves Theorem 3.1

Here, in the spirit of [Culler 1981], we explain another way to think about the surfaces †.f�f ; �f ; �ig/
for f�f ; �f ; �ig 2MATCH�.w; k; l/ that is easier to work with than the construction we gave. At this
point we also show how things work for general g � 2. An arc in a surface † is a properly embedded
interval in † with endpoints in the boundary @†.

Definition 4.6 For w 2 F2g , we define surfaces.w; k; l/ to be the set of all decorated surfaces †� as
follows. A decorated surface †� 2 surfaces.w; k; l/ is an oriented surface with boundary, with compatibly
oriented boundary components, together with a collection of disjoint embedded arcs that cut †� into
topological discs. One boundary component is assigned to be a w-loop, and every other boundary
component is assigned to be either a R-loop or an R�1-loop. Each arc is assigned a transverse direction
and a label in fa1; b1; : : : ; ag ; bgg. Every arc-endpoint in @†� inherits a transverse direction and label
from the assigned direction and label of its arc. We require that †� satisfy the following properties:

(P1) When one follows the w-loop according to its assigned orientation, and reads f when an f -labeled
arc-endpoint is traversed in its given direction, and f �1 when an f -labeled arc-endpoint is traversed
counter to its given direction, one reads a cyclic rotation of w in reduced form, depending on where
one begins to read.
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(P2) When one follows any R-loop according to its assigned orientation in the same way as before, one
reads (a cyclic rotation) of some positive power of Rg in reduced form. The sum of these positive
powers over all R-loops is k.

(P3) When one follows any R�1-loop according to its assigned orientation in the same way as before,
one reads (a cyclic rotation) of some negative power of Rg in reduced form. The sum of these
negative powers over all R�1-loops is �l .

(P4) No arc connects an R-loop to an R�1-loop.

Given a surface †.f�f ; �f ; �ig/ with f�f ; �f ; �ig 2MATCH�.w; k; l/, all the type II discs of the surface
are rectangles. Hence, by collapsing each w-interval, R-interval and R�1-interval to a point, and
collapsing every type II rectangle to an arc, we obtain a CW–complex that is a surface with boundary,
cut into discs by arcs. Every arc inherits a transverse direction and label from the compatible assigned
directions and labels of the intervals in the boundary of its originating type II rectangle. We call this
modified surface †� D†�.f�f ; �ig/. It clearly satisfies (P1)–(P3) and (P4) follows from the forbidden
matchings property. (Of course, when gD 2, we identify fa; b; c; dg with fa1; b1; a2; b2g.) We also have
�.†.f�f ; �f ; �ig//D �.†

�.f�f ; �ig//. With Definition 4.6 and the remarks proceeding it, we can now
state a further consequence of Corollary 4.5 as it extends to general g � 2:

Corollary 4.7 For kC l > 0 with � ` k and � ` l and w 2 ŒF2g ;F2g �, as n!1,

Jn.w; �; �/�w;k;l n
maxf�.†�/W†�2surfaces.w;k;l/g:

In order for Corollary 4.7 to give us strong enough results, it needs to be combined with the following
nontrivial topological bound:

Proposition 4.8 If w 2 ŒF2g ;F2g � is a shortest element representing the conjugacy class of  2 �g ,
w ¤ id and †� 2 surfaces.w; k; l/, then �.†�/� �.kC l/.

Remark 4.9 Proposition 4.8 is by no means a trivial statement and one has to use that w is a shortest
element representing the conjugacy class of some element of �g . For example, if w D Rg , then w
represents the conjugacy class of id�g , but for k D 0 and l D 1 there is an “obvious” annulus in
surfaces.w; 0; 1/. This has �D 0 > �.kC l/D�1. Proposition 4.8 also requires w ¤ id; if w D id then
for k D 0 and l D 1 one can take a disc with no arcs as a valid element of surfaces.id; 0; 0/. This has
�D 1 > �.kC l/D 0. In fact this disc is ultimately responsible for Eg;nŒTrid�D n.

The proof of Proposition 4.8 is self-contained and given in Section 4.5. Before doing this, we prove
Theorem 3.1.
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Proof of Theorem 3.1 given Proposition 4.8 Since Theorem 3.1 was proved when k D l D 0 in
Section 3.2, we can assume kC l > 0. Then combining Corollary 4.7 and Proposition 4.8 gives

Jn.w; �; �/�w;k;l n
�.kCl/:

On the other hand, D�;�.n/DO.nkCl/ from (2-1). Therefore, D�;�.n/Jn.w; �; �/�w;k;l 1.

4.4 Work of Dehn and Birman–Series

As we mentioned in Section 3.1, to prove Proposition 4.8 we have to use the fact that w 2 ŒF2g ;F2g � is a
shortest element representing the conjugacy class of  2 �g . We use a combinatorial characterization of
such words that stems from Dehn’s algorithm [1912] for solving the problem of whether a given word
represents the identity in �g . The ideas of Dehn’s algorithm were refined in [Birman and Series 1987].
Magee and Puder [2023] used Birman and Series’ results (alongside other methods) to obtain the analog
of Theorem 1.2 when the family of groups SU.n/ is replaced by the family of symmetric groups Sn.
Similar consequences of the work of Dehn, Birman and Series that we used in [loc. cit.] will be used here.

We now follow the language of [Magee and Puder 2023] to state the results we need in this paper. These
results are simple and direct consequences of the work of Birman and Series.

We view the universal cover of †g as a disc tiled by 4g-gons that we call U. We assume every edge
of this tiling is directed and labeled by some element of fa1; b1; : : : ; ag ; bgg such that when we read
counterclockwise along the boundary of any octagon we read the reduced cyclic word Œa1; b1� � � � Œag ; bg �.
By fixing a basepoint u 2 U, we obtain a free cellular action of �g on U that respects the labels and
directions of edges and identifies the quotient �gnU with †g ; this gives a description of †g as a 4g-gon
with glued sides, as is typical.

Now suppose that  2� is not the identity. The quotient A WD hinU of U by the cyclic group generated
by  is an open annulus tiled by infinitely many 4g-gons. The edges of A inherit directions and labels
from those of the edges of U. The point u 2 U maps to some point, denoted by x0 2 A .

Now let w 2F2g be an element that represents  , and identify w with a combinatorial word by writing w
in reduced form. Beginning at x0, and following the path spelled out by w beginning at x0, we obtain an
oriented closed loop Lw in the one-skeleton of A . If w is a shortest element representing the conjugacy
class of  , then this loop Lw must not have self-intersections. In this case, which we from now assume,
Lw is therefore a topologically embedded circle in the annulus A that is nonnullhomotopic and cuts A
into two annuli A˙ .

Every vertex of A has 4g incident half-edges each of which has an orientation and direction given by
the edge they are in. Going clockwise, the cyclic order of the half-edges incident at any vertex is:

a1-outgoing, b1-incoming, a1-incoming, b1-outgoing, . . . , ag -outgoing, bg -incoming, ag -incoming,
bg -outgoing.
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ag bg

a1

b1

b1
a2

b2

a2

b2

a1

b1
a1

b1

a2

a2

b2

ag

bg
b2

Figure 5: A piece P of yLw in the case when the reduced form of w contains aga�11 b�12 as a
subword. The edges of Lw are in bold. The piece is indicated by the dotted lines. This piece P
has e.P / D 2, he.P / D 7 and �.P / D 1. Note that a piece may also run along the other side
of Lw .

We define yLw to be the loop Lw with all incident half edges in A attached. We call the new half-edges
added hanging half-edges.

Moreover, we thicken up yLw by viewing each edge of Lw as a rectangle, each hanging half-edge as
a half-rectangle, and each vertex replaced by a disc. In other words, we take a small neighborhood
of yLw in A . We now think of yLw as the thickened version. This is a topological annulus, where the
hanging half-edges have become stubs hanging off. A piece of yLw is a contiguous collection of hanging
half-rectangles and rectangle sides following edges of Lw in the boundary of yLw . Such a piece is in
either AC or A� . Given a piece P of yLw we write e.P / for the number of rectangle sides following
edges of Lw , and he.P / for the number of hanging-half edges in P. We say that a piece P has Euler
characteristic �.P /D 0 if it follows an entire boundary component of yLw , and �.P /D 1 otherwise, as we
view it as an interval running along the rectangle sides and around the sides of the hanging half-rectangles.
See Figure 5 for an illustration of a piece of yLw .

Birman and Series [1987, Theorem 2.12(a)] prove that, if w is a shortest element representing the
conjugacy class of  2 �g , then there are strong restrictions on the pieces of yLw that can appear. This has
the following consequence, which is given by3 [Magee and Puder 2023, Proof of Lemma 5.18]:

3We stress that Lemma 4.10 is a straightforward consequence of Birman and Series’ work, so, even though we cite [Magee and
Puder 2023], this paper does not depend on that work in any significant way.
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Lemma 4.10 If w is a shortest element representing the conjugacy class of  2 �g , and both  and
hence w are nonidentity, then for any piece P of yLw , we have

e.P /� .2g� 1/he.P /C 2g�.P /:

Proof Since w is a shortest element representing some nonidentity conjugacy class in �g , in the language
of [Magee and Puder 2023], Lw is a boundary reduced tiled surface. Then the proof of [Magee and
Puder 2023, Lemma 5.18] contains the result stated in the lemma. The basic idea of the proof is not
complicated and goes back to [Dehn 1912]: if there are too many edges (ie e.P / is large) then one can
find a string of letters in the reduced word of w (eg aba�1b�1c) that can be shortened using the relator R
(eg aba�1b�1c D dcd�1).

This inequality plays a crucial role in the next section.

4.5 Proof of Proposition 4.8

Suppose that g � 2 and w 2 ŒF2g ;F2g � is a nonidentity shortest element representing the conjugacy
class of  2 �g . In particular, w is cyclically reduced. We let RDRg . Now fix k; l 2N0 and suppose
†� 2 surfaces.w; k; l/. The arcs of †� are of three different types:

(WR) An arc with one endpoint in the w-loop and one endpoint in an R- or R�1-loop.

(RR) An arc with both endpoints in R- or R�1-loops. By property (P4), the endpoints of such an arc
are both in R-loops or both in R�1-loops.

(WW) An arc with both endpoints in the w-loop.

The boundary of any disc of †� alternates between segments of @†� and arcs. A disc is a pre-piece disc
if its boundary contains exactly one segment of the w-loop. A disc is called a junction disc if it is not a
pre-piece disc. We say that a junction disc is piece-adjacent if it meets a WR-arc-side.

To be precise, we view all discs as open discs, and hence not containing any arcs. A disc meets certain
arc-sides along its boundary; it is possible for a disc to meet both sides of the same arc and we view this
scenario as the disc meeting two separate arc-sides. We say an arc-side has the same type WR/RR/WW
as its corresponding arc.

Note that any pre-piece disc cannot meet any WW-arc-side: if it did, the disc could only meet this one
arc-side together with one segment of the w-loop and this would contradict the fact that w is cyclically
reduced since the arc matches a letter f with a cyclically adjacent letter f �1 of w. It is also clear that
any pre-piece disc meets exactly two WR-arc-sides: the ones that emanate from the sole segment of the
w-loop. So, in light of (P4), a pre-piece disc takes one of the forms shown in Figure 6.

We define a piece of †� to be a connected component of

fpre-piece discs}[fWR-arcs}:
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R-loop R-loop R-loop R-loop

WR RR RR RR RR WR

w-loop

w-loop

WR RR RR RR RR WR

R�1-loop R�1-loop R�1-loop R�1-loop

Figure 6: Possible forms of pre-piece discs. The number of R-loop segments or R�1-loop
segments is at least 1 and bounded given k and l . The arrows denote the orientations of the
boundary loops.

A piece of †� is therefore either a contiguous collection of pre-piece discs that meet only along WR-arcs,
or a single WR-arc. If P is a piece of †�, either �.P /D 1, or �.P /D 0, in which case P meets the
entire w-loop and is the unique piece.

We now have two definitions of pieces: pieces of yLw and pieces of †�. These are, as the names suggest,
closely related, and this is the key observation in the proof of Proposition 4.8. Indeed, the reader should
carefully consider Figure 7, which leads to the following lemma. In analogy to pieces of yLw , if P is any
piece of †�, we write e.P / for the number of WR-arcs in P, and he.P / for the number of RR-arc-sides
that meet P (this is zero if P is a single WR-arc).

Lemma 4.11 If w is a shortest element representing the conjugacy class of  2 �g , k; l 2 N0 and
†� 2 surfaces.w; k; l/, then , for any piece P of †�, we have

e.P /� .2g� 1/he.P /C 2g�.P /:

Proof Given any piece P of †�, it contains a consecutive (possibly cyclic) series of WR-arcs that
correspond to a contiguous collection of edges in the loop Lw . The discs of P correspond to certain
vertices of Lw ; each of these vertices has two emanating half-edges belonging to the edges defined by
WR-arcs of P. The piece P can either meet only R-loops or meet only R�1-loops.

We define a piece P 0 of yLw corresponding to P as follows. If P meets R-loops, then P 0 consists of
rectangle sides along the edges of Lw corresponding to the WR-arcs of P together with all hanging
half-edges at vertices corresponding to discs of P that are on the left of Lw as it is traversed in its assigned
orientation (corresponding to reading w along Lw ). If P 0 meets R�1-loops, then P 0 is defined similarly
with the modification that we include instead hanging half-edges on the right of Lw . Figure 7 together
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R-loop R-loop R-loop R-loop

a1
bg ag b2 a2

b2

w-loop

w-loop

b2
a2 b1 a1 b1

a1

R�1-loop R�1-loop R�1-loop R�1-loop

a1 b1

a2

b2

a2

b2

ag

bg

a1

b1

Figure 7: Given a segment of thew-loop corresponding to a juncture between letters a�11 b�12 inw,
if this segment is part of a pre-piece disc then some possible forms of that disc are shown above.
This juncture between letters ofw corresponds to a vertex inLw . The right-hand illustration shows
the neighborhood of this vertex in the annulus A , where the bold lines correspond to half-edges
of Lw . The right-hand picture actually almost determines the left-hand pictures. Indeed, given
the a1-arc on the top-left, the next arc has to be a bg -arc with the given direction, since only
b�1g cyclically precedes a1 in Rg or any power of Rg . Then the next arc ag with its direction is
determined since only ag cyclically precedes bg in Rg . This continues until an arc labeled by b2
and with an incoming direction is reached, as in the right arc of the top-left picture. At this point,
the boundary of the disc may close up. (This is analogous to what happens in the bottom picture,
where an analogous pattern occurs.) The only indeterminacy is that after reaching a b2-arc with an
incoming direction for the first time, the entire pattern shown in the right-hand picture may repeat
any number of times, as long as k and l allow it. The upshot of this is that any pre-piece disc has
at least as many incident RR-arc-sides as there are hanging half-edges on the corresponding side
of Lw , at the corresponding vertex.

with its captioned discussion now shows that

he.P 0/� he.P /;

and e.P /D e.P 0/ by construction. We also have �.P 0/D �.P /. Therefore Lemma 4.10 applied to P 0

implies
e.P /D e.P 0/� .2g� 1/he.P 0/C 2g�.P 0/� .2g� 1/he.P /C 2g�.P /:

Let NRR be the number of RR-arcs, NWR the number of WR-arcs, and NWW the number of WW-arcs
in †�. In the following, we refer to discs of †� simply as discs. Since there are 4g.kC l/ incidences
between arcs and R-loops or R�1-loops, we have

(4-3) 2NRRCNWR D 4g.kC l/:

Let †1 be the surface formed by cutting †� along all RR-arcs. We have

�.†1/D
X

discsD

�
1� 1

2
d 0.D/

�
;
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where d 0.D/ is the number of arc-sides meeting D that are not of type RR. This formula holds because
d 0.D/ is the degree of the disc D in the dual graph G1 of †1, the right-hand side is easily seen to
be �.G1/D V.G1/�E.G1/, and, since †1 deformation retracts to an obvious embedded copy of G1,
�.G1/D �.†1/. We partition the sum above according to �.†1/D S0CS1CS2, where

S0 WD
X

pre-piece discsD

�
1� 1

2
d 0.D/

�
;

S1 WD
X

piece-adjacent junction discsD

�
1� 1

2
d 0.D/

�
;

S2 WD
X

not piece-adjacent junction discsD

�
1� 1

2
d 0.D/

�
:

Note first that a pre-piece disc has d 0.D/D 2 (see Figure 6). Hence S0 D 0. We deal with S1 next. For a
disc D of †�, let dWR.D/ denote the number of WR-arc-sides meeting D. Note that a piece-adjacent
junction disc D has dWR.D/ > 0 by definition. We rewrite S1 as

(4-4) S1 D
X

piece-adjacent junction discsD

�
1� 1

2
d 0.D/

� 1

dWR.D/

X
incidences betweenD and WR-arc-sides

1

D

X
pieces P

X
incidences between P and some junction discD along WR-arc

Q.D/;

where, for a piece-adjacent junction disc D,

Q.D/ WD
1

dWR.D/

�
1� 1

2
d 0.D/

�
:

Suppose that D is a piece-adjacent junction disc. By parity considerations, dWR.D/ is even. We estimate
Q.D/ by splitting into two cases. If dWR.D/D 2 then d 0.D/� 3, since, otherwise, D would meet only
two WR-arc-sides and other RR-arc-sides, whence be a pre-piece disc and not be a junction disc. In this
case,

Q.D/D 1
2

�
1� 1

2
d 0.D/

�
�
1
2

�
1� 3

2

�
D�

1
4
:

Otherwise, dWR.D/� 4 and, since d 0.D/� dWR.D/, we have

Q.D/�
1

dWR.D/

�
1� 1

2
dWR.D/

�
D

1

dWR.D/
�
1
2
�
1
4
�
1
2
D�

1
4
:

So we have proved that, for all piece-adjacent junction discs D, Q.D/��1
4

. Putting this into (4-4) gives

(4-5) S1 � �
1

4

X
pieces P

X
incidences between P and some junction discD along WR-arc

1

D�
1

4

X
pieces P

2�.P /D�
1

2

X
pieces P

�.P /:
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We now turn to S2. Here is the key moment where w ¤ id is used.4 Since w ¤ id, any disc must meet an
arc. Indeed, the only other possibility is that the boundary of the disc is an entire boundary loop that has
no emanating arcs. This hypothetical boundary loop cannot be an R- or R�1-loop, so it has to be the
w-loop. But this would entail w D id.

Hence any disc contributing to S2 meets no WR-arc-side, but meets some arc-side. Therefore it meets only
WW-arcs or only RR-arcs. Every disc D contributing to S2 meeting only WW-arcs gives a nonpositive
contribution since w is cyclically reduced, and hence d 0.D/� 2. Every discD contributing to S2 meeting
only RR-arcs, which we will call an RR-disc, has d 0.D/D 0 and hence contributes 1 to S2.

This shows

(4-6) S2 � #fRR-discsg:

In total, combining S0 D 0 with (4-5) and (4-6), we get

�.†1/� #fRR-discsg� 1
2

X
pieces P of†�

�.P /:

To obtain †� from †1 we have to glue all cut RR-arcs, of which there are NRR. Each gluing decreases �
by 1, so

(4-7) �.†�/� #fRR-discsg�NRR�
1

2

X
pieces P of†�

�.P /:

Using Lemma 4.11 with the above gives

(4-8) �.†�/� #fRR-discsg�NRR�
1

2

X
pieces P of†�

�.P /

� #fRR-discsg�NRR�
1

4g

X
pieces P of†�

e.P /C
2g�1

4g

X
pieces P of†�

he.P /

D #fRR-discsg�NRR�
NWR

4g
C
2g�1

4g

X
pieces P of†�

he.P /:

Let he0.†�/ denote the total number of RR-arc-sides meeting RR-discs. Every RR-disc has to meet at
least 4g arc-sides; this observation is similar to the reasoning in Figure 7. Therefore

(4-9) he0.†�/� 4g#fRR-discsg:

Every RR-arc-side either meets a piece P and contributes to he.P / or a disc meeting only RR-arc-sides
and contributes to he0.†�/. Hence

(4-10) he0.†�/C
X

pieces P of†�
he.P /D 2NRR:

4Although, technically, w ¤ id was used to define Lw and pieces etc, if w is the identity, the proof of Proposition 4.8 could, a
priori, circumvent these definitions.
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Combining (4-3), (4-9) and (4-10) with (4-8) gives

�.†�/�
he0.†�/

4g
�NRR�

NWR

4g
C
2g�1

4g

X
pieces P of†�

he.P / (by (4-9))

D
he0.†�/

4g
�NRR�

NWR

4g
C
.2g� 1/NRR

2g
�
2g�1

4g
he0.†�/ (by (4-10))

D�
1

4g
.2NRRCNWR/�

2g�2

4g
he0.†�/

� �
1

4g
.2NRRCNWR/D�

4g.kC l/

4g
(by (4-3))

D�.kC l/:

This completes the proof of Proposition 4.8.

5 Proof of the main theorem

Proof of Theorem 1.2 Assume  2 Œ�g ; �g � is not the identity and that w 2 ŒF2g ;F2g � is a shortest
element representing the conjugacy class of  , hence also not the identity. By Corollary 2.10, we have

Eg;nŒTr �D �.2g� 2In/�1
X

(�; �/ 2z�

D�;�.n/Jn.w; �; �/COw;g

�
1

n

�
;

where z� is a finite collection of pairs of Young diagrams. We know limn!1 �.2g�2In/D 1 from (2-11)
and, for each fixed .�; �/, D�;�.n/Jn.w; �; �/ D D�;�.n/Jn.w; �; �/ D Ow;�;�.1/ by Theorem 3.1.
Hence Eg;nŒTr �DO .1/ as n!1, as required.
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Lecture Notes in Math. 1132, Springer (1985) 556–588 MR Zbl

[Voiculescu 1986] D Voiculescu, Addition of certain noncommuting random variables, J. Funct. Anal. 66 (1986)
323–346 MR Zbl

[Voiculescu 1987] D Voiculescu, Multiplication of certain noncommuting random variables, J. Operator Theory
18 (1987) 223–235 MR Zbl

[Voiculescu 1990] D Voiculescu, Noncommutative random variables and spectral problems in free product
C �-algebras, Rocky Mountain J. Math. 20 (1990) 263–283 MR Zbl

[Voiculescu 1991] D Voiculescu, Limit laws for random matrices and free products, Invent. Math. 104 (1991)
201–220 MR Zbl

[Voiculescu et al. 1992] D V Voiculescu, K J Dykema, A Nica, Free random variables, CRM Monogr. Ser. 1,
Amer. Math. Soc., Providence, RI (1992) MR Zbl

[Weingarten 1978] D Weingarten, Asymptotic behavior of group integrals in the limit of infinite rank, J. Math.
Phys. 19 (1978) 999–1001 MR Zbl

[Witten 1991] E Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991) 153–209
MR Zbl

[Xu 1997] F Xu, A random matrix model from two-dimensional Yang–Mills theory, Comm. Math. Phys. 190
(1997) 287–307 MR Zbl

[Zagier 1994] D Zagier, Values of zeta functions and their applications, from “First European Congress of
Mathematics, II” (A Joseph, F Mignot, F Murat, B Prum, R Rentschler, editors), Progr. Math. 120, Birkhäuser,
Basel (1994) 497–512 MR Zbl

Department of Mathematical Sciences, Durham University
Durham, United Kingdom

michael.r.magee@durham.ac.uk

https://www.mmagee.net/

Proposed: David Fisher Received: 2 December 2021
Seconded: John Lott, Leonid Polterovich Revised: 3 January 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1007/BFb0074909
http://msp.org/idx/mr/799593
http://msp.org/idx/zbl/0618.46048
https://doi.org/10.1016/0022-1236(86)90062-5
http://msp.org/idx/mr/839105
http://msp.org/idx/zbl/0651.46063
http://msp.org/idx/mr/915507
http://msp.org/idx/zbl/0662.46069
https://doi.org/10.1216/rmjm/1181073107
https://doi.org/10.1216/rmjm/1181073107
http://msp.org/idx/mr/1065830
http://msp.org/idx/zbl/0718.46037
https://doi.org/10.1007/BF01245072
http://msp.org/idx/mr/1094052
http://msp.org/idx/zbl/0736.60007
https://doi.org/10.1090/crmm/001
http://msp.org/idx/mr/1217253
http://msp.org/idx/zbl/0928.46045
https://doi.org/10.1063/1.523807
http://msp.org/idx/mr/471696
http://msp.org/idx/zbl/0388.28013
https://doi.org/10.1007/BF02100009
http://msp.org/idx/mr/1133264
http://msp.org/idx/zbl/0762.53063
https://doi.org/10.1007/s002200050242
http://msp.org/idx/mr/1489573
http://msp.org/idx/zbl/0937.81043
https://doi.org/10.1007/978-3-0348-9112-7_23
http://msp.org/idx/mr/1341859
http://msp.org/idx/zbl/0822.11001
mailto:michael.r.magee@durham.ac.uk
https://www.mmagee.net/
http://msp.org
http://msp.org




msp

Geometry & Topology 29:3 (2025) 1283–1344
DOI: 10.2140/gt.2025.29.1283

Published: 31 May 2025

Partial Okounkov bodies and Duistermaat–Heckman measures
of non-Archimedean metrics

MINGCHEN XIA

Let X be a smooth complex projective variety. We construct partial Okounkov bodies associated with
Hermitian big line bundles .L; �/ on X. We show that partial Okounkov bodies are universal invariants of
the singularities of �. As an application, we construct Duistermaat–Heckman measures associated with
finite-energy metrics on the Berkovich analytification of an ample line bundle.
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1 Introduction

1.1 Background

Let X be an irreducible smooth projective variety of dimension n and L be a big holomorphic line
bundle on X. Given any admissible flag X D Y0 � Y1 � � � � � Yn on X (see Definition 2.7 for the
precise definition), one can attach a natural convex body �.L/ of dimension n to L, generalizing the
classical Newton polytope construction in toric geometry. This construction was first considered by
Okounkov [47; 48] and then extended by Lazarsfeld and Mustat,ă [45] and Kaveh and Khovanskii [43].
The convex body �.L/ is known as the Okounkov body or Newton–Okounkov body associated with L
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(with respect to the given flag). We briefly recall its definition: given any nonzero s 2H0.X;Lk/, let �1.s/

be the vanishing order of s along Y1. Then s can be regarded as a section of H0.X;Lk˝OX .��1.s/Y1//.
It follows that s1 WD sjY1

is a nonzero section of Ljk
Y1
˝OX .��1.s/Y1/jY1

. We can then repeat the
same procedure with s1 and Y2 in place of s and Y1. Repeating this construction, we end up with
�.s/D .�1.s/; : : : ; �n.s// 2Nn. In fact, � extends naturally to a rank n valuation on C.X /. Consider
the semigroup

�.L/ WD f.�.s/; k/ 2 ZnC1
j k 2N; s 2 H0.X;Lk/�g:

Then �.L/ is the intersection of the closed convex cone in RnC1 generated by �.L/ with the hyperplane
f.x; 1/ j x 2Rng. A key property of �.L/ is that the Lebesgue volume of �.L/ is proportional to the
volume of the line bundle L:

(1-1) vol�.L/D
1

n!
hLn
i:

Here h � i denotes the movable intersection product in the sense of Boucksom, Demailly, Păun and
Peternell [12] and Boucksom, Favre and Jonsson [15].

In [45], Lazarsfeld and Mustat,ă showed moreover that �.L/ depends only on the numerical class of L.
Conversely, it is shown by Jow [41] that the information of all Okounkov bodies with respect to various
flags actually determines the numerical class of L. In other words, Okounkov bodies can be regarded as
universal numerical invariants of big line bundles.

This paper concerns a similar problem. Assume that L is equipped with a singular plurisubharmonic
(psh) metric �. We will construct universal invariants of the singularity type of �. We call these universal
invariants the partial Okounkov bodies of .L; �/.

1.2 Main results

Let us explain more details about the construction of partial Okounkov bodies. Recall that any admissible
flag on X induces a rank n valuation on C.X / with values in Zn. We will work more generally with
such valuations, not necessarily coming from admissible flags on X. We define a set

(1-2) �.L; �/ WD f.�.s/; k/ 2 ZnC1
j k 2N; s 2 H0.X;Lk

˝ I.k�//�g

similar to �.L/. Here I. � / denotes the multiplier ideal sheaf in the sense of Nadel. However, a key
difference here is that �.L; �/ is not a semigroup in general. Thus, the constructions in both [45] and [43]
break down. We will show that in this case, there is still a canonical construction of Okounkov bodies.

Before stating our main theorem, let us recall the definition of volume. The volume of .L; �/ is defined as

vol.L; �/ WD lim
k!1

1

kn
h0.X;Lk

˝ I.k�//:

The existence of this limit is proved in Darvas and Xia [33].

Geometry & Topology, Volume 29 (2025)
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Theorem A Let .L; �/ be as above. Assume that vol.L; �/ > 0. Then there is a convex body �.L; �/�
�.L/ associated with .L; �/ satisfying

(1-3) vol�.L; �/D vol.L; �/:

Moreover , �.L; �/ is continuous in � if
R
X .ddc�/n > 0. (Here the set of � is endowed with the dS -

pseudometric in the sense of Darvas, Di Nezza and Lu [29] and the set of convex bodies is endowed with
the Hausdorff metric.)

Define
�k WD fk

�1�.s/ 2Rn
j s 2 H0.X;Lk

˝ I.k�//�g

and let �k denote the convex hull of �k . Then

(1-4) �k !�.L; �/

with respect to the Hausdorff metric if vol.L; �/ > 0.

Observe that the last assertion actually uniquely determines �.L; �/, so �.L; �/ can be regarded as
canonically attached to the given data .X;L; �; �/.

The convex body�.L; �/ is called the partial Okounkov body of .L; �/ with respect to the given valuation.
Here the word partial refers to the fact that the partial Okounkov bodies are contained in �.L/. One
should not confuse them with the notion of Okounkov bodies with respect to partial flags.

We will also extend the definition to the case vol.L; �/ D 0 in Section 5.6, at the expense of losing
continuity in �.

Observe that (1-3) bears strong resemblance with (1-1). In fact, when � has minimal singularities,
�.L; �/D�.L/ and (1-3) just reduces to (1-1).

The second main result says that partial Okounkov bodies uniquely determine the I-singularity type of �.

Theorem B Let L be a big line bundle on X. Let � and �0 be two singular psh metrics on L with positive
volumes. Then the following are equivalent :

(1) � �I �
0.

(2) �.L; �/D�.L; �0/ for all rank n valuations on C.X / taking values in Zn.

Recall that � �I �
0 means I.k�/ D I.k�0/ for all real k > 0. This relation is studied in detail in

Darvas and Xia [32; 33]. It captures a lot of important information about the singularity of a psh metric.
Theorem B should be regarded as a metric analogue of Jow’s theorem.

As a byproduct of our proof of Theorem B, we reprove a formula computing the generic Lelong numbers
of currents of minimal singularities in c1.L/, slightly generalizing Boucksom [9, Theorem 5.4]:

Geometry & Topology, Volume 29 (2025)
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Theorem 1.1 (Corollary 5.25) Let L be a big line bundle on X. Consider a current Tmin of minimal
singularity in c1.L/. Then for any prime divisor E over X, we have

(1-5) �.Tmin;E/D lim
k!1

1

k
ordE H0.X;Lk/:

Here �.Tmin;E/ denotes the generic Lelong number of Tmin along E.

As a consequence, we find a new formula computing the multiplier ideal sheaf I.Tmin/ in Corollary 5.26.

The third main result is an analogue of Witt Nyström [52]. Given any continuous metric  on L, one can
naturally construct a convex function cŒ � on Int�.L/, known as the Chebyshev transform of  . The
main property of cŒ � is that given another continuous metric  0 on L, we have

(1-6)
Z
�.L/

.cŒ �� cŒ 0�/ d�D vol. ;  0/;

where vol. ;  0/ is the relative volume as studied in Berman and Boucksom [4] and Berman, Boucksom
and Witt Nyström [6] and d� is the Lebesgue measure on Rn. In our setup, we also associate a convex
function cŒ��Œ � W Int�.L; �/!R. Moreover:

Theorem C Assume that the valuation � is induced by an admissible flag on X. Let  and  0 be two
continuous metrics on L. Then

(1-7)
Z
�.L;�/

.cŒ��Œ �� cŒ��Œ 
0�/ d�D�E�Œ��. /C E�Œ��. 

0/;

where E�
Œ��

is the partial equilibrium energy functional defined in (6-1).

Theorems A, B and C together give convex-geometric interpretations of the main results of [32; 33].
These results also provide us with a convex-geometric approach to the study of psh singularities.

As an application of our theory, we prove a generalization of Boucksom–Chen theorem (Theorem 7.9).
Recall that the Boucksom–Chen theorem [11] says that given a multiplicative filtration F on the section
ring R.X;L/, one can naturally associate a probability measure on R, known as the Duistermaat–
Heckman measure. Moreover, the Duistermaat–Heckman measure is the weak limit of a sequence of
discrete measures �k associated with the filtration F on H0.X;Lk/. We show that this construction can
be generalized to all I-model test curves, not necessarily coming from filtrations. Here we only prove the
generalized Boucksom–Chen theorem for filtrations on the full graded linear series, which suffices for
our purpose. It is, however, easy to see that the techniques apply to more general situations.

More generally, we introduce the notion of an Okounkov test curve (Definition 7.2) and generalize
Duistermaat–Heckman measures to this setting.

When L is ample, this construction allows us to associate a Radon measure DH.�/ on R with each
element � in the non-Archimedean space E1.Lan/ in the sense of Boucksom and Jonsson [17]; see
Definition 7.13. The space E1.Lan/ can be seen as the completion of the space of test configurations.

Geometry & Topology, Volume 29 (2025)
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Theorem 1.2 The Duistermaat–Heckman measure construction of test configurations as in Witt Nys-
tröm [51] admits a unique continuous extension DH W E1.Lan/!M.R/. Here M.R/ is the space of
Radon measures on R.

The Duistermaat–Heckman measure of a non-Archimedean metric is also constructed by Inoue [40] using
a different method. See Remark 7.17 for more details.

In Theorem 7.16, we will furthermore prove that DH.�/ contains a lot of interesting information of �.

In the last section, we interpret the partial Okounkov bodies in the toric setting. We prove the following
results:

Theorem 1.3 Let X be a smooth toric variety of dimension n and .L; �/ be a toric invariant Hermitian
big line bundle on X with positive volume. Fix a toric invariant admissible flag on X. Recall that upon
choosing a toric invariant rational section of L, � can be identified with a convex function �R on Rn.
Then the partial Okounkov body �.L; �/ is naturally identified with the closure of the image of r�R.

Theorem D Let .Li ; �i/ for i D 1; : : : ; n be toric invariant Hermitian big line bundles on X of positive
volumes. If the toric invariant flag .Y�/ satisfies the additional condition that Yn is not contained in the
polar locus of any �i , thenZ

X

ddc�1 ^ � � � ^ ddc�n D n! vol.�.L1; �1/; : : : ; �.Ln; �n//:

It is of interest to generalize Theorem D to the nontoric setting as well. As shown by Example 8.5, the
nontoric generalization has to involve all valuations instead of just one.

Lastly, let us mention that our generalization of the Boucksom–Chen theorem has important consequences
in Archimedean pluripotential theory as well. When applied to generalized deformation to the normal
cone in the sense of Xia [55], it gives a number of interesting equidistribution results of the jumping
numbers of multiplier ideal sheaves. As a detailed investigation would lead us too far away, we do not
include these results in this paper.

1.3 Strategy of the proofs

We will sketch the proof of these theorems.

Proof of Theorem A In general, the graded linear space

W .L; �/ WD

1M
kD0

H0.X;Lk
˝ I.k�//

is not an algebra and similarly �.L; �/ as defined in (1-2) is not a semigroup. Thus, one cannot directly
apply the theory of graded linear series or the theory of semigroups as in Lazarsfeld and Mustat,ă [45]
and Kaveh and Khovanskii [43].

A key observation here is that although �.L; �/ is not a semigroup, it is not too far away from being one.

Geometry & Topology, Volume 29 (2025)
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To make this precise, we introduce a pseudometric d on the space yS of subsets of ZnC1 lying in a suitable
strictly convex cone:

d.S;S 0/ WD lim
k!1

k�n.jSk jC jS
0
k j � 2jSk \S 0k j/:

Let � be the equivalence relation defined by d . The classical Okounkov body construction associates with
each semigroup a convex body. As we will prove later, this map factorizes through the �-equivalence
classes, and it extends continuously to an almost semigroup, namely an object in yS which can be
approximated by certain nice semigroups with respect to d .

In order to define the Okounkov body of .L; �/, we will actually show that �.L; �/ is an almost semigroup
and we could simply define

�.L; �/ WD�.�.L; �//:

The proof follows the same pattern as the proof in [33]. We proceed by approximations. We first consider
the case where � has analytic singularities. In this case, after taking a suitable resolution, we can easily
see that W .L; �/ can be approximated by graded linear series both from above and from below. In
the case of a singular � with ddc� being a Kähler current, we make use of analytic approximations
as in Demailly, Peternell and Schneider [36] and Cao [19]. More precisely, take a quasi-equisingular
approximation �j of �. Based on the convergence theorems proved in [33], we can show that �.L; �j /

converges to �.L; �/ with respect to the pseudometric d , which enables us to conclude in this case.
Finally, in the general case, a trick discovered in [29] and [33] enables us to reduce to the previous case.

Along the lines of the proof, we actually find that �.L; �/ satisfies a stronger property (1-4). This property
is essential to the proof of Theorem B; we call it the Hausdorff convergence property.

Proof of Theorem B Recall that in the classical setting, we can read information about the asymptotic
base loci of L from the Okounkov body �.L/ directly; see [21]. In our setup, the analogue says that
the Okounkov body �.L; �/ gives information about the generic Lelong numbers of �. We will prove a
qualitative version of Theorem B:

Theorem 1.4 Let E be a prime divisor over X. Let � WZ!X be a birational model of X such that E is
a divisor on Z. Take an admissible flag .Y�/ on Z with Y1 DE, then

�.�;E/D min
x2�.��L;���/

x1:

Here �.�;E/ is the generic Lelong number of � along E, defined as the minimum of the Lelong numbers
�.���;x/ for all x 2 E. The proof of Theorem 1.4 again follows the same pattern as in the proof of
Theorem A. With some efforts, we can reduce the problem to the case where � has analytic singularities
along some normal crossing Q-divisor on X and ddc� is a Kähler current. In this case, the desired result
follows from a result proved in [55].

Proofs of Theorems C and D The proofs roughly follow the same pattern as above. Namely, we first
handle the case of analytic singularities and then conclude the general case by suitable approximations.
We will not repeat the details here.
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As explained above, our approach to general psh singularities requires a number of approximations; this
motivates the study of the metric geometry of the space of psh singularity types. We prove the continuity
of mixed masses under dS -approximations:

Theorem 1.5 (Theorem 4.2) Let �i for i D 1; : : : ; n be smooth closed real .1; 1/-forms representing
big classes on a connected compact Kähler manifold X of dimension n. Let 'k

i ; 'i 2 PSH.X; �i/ for

i D 1; : : : ; n and k 2N. Assume that 'k
i

dS;�i
���! 'i for all i as k!1. Then

(1-8) lim
k!1

Z
X

�1;'k
1
^ � � � ^ �n;'k

n
D

Z
X

�1;'1
^ � � � ^ �n;'n

:

Here the Monge–Ampère operators are taken in the nonpluripolar sense.

This theorem and its various consequences are indispensable in all of our proofs. They are of independent
interest as well.

1.4 Structure of the paper

In Section 2, we collect a few preliminaries. In Section 3, we study the Okounkov bodies of almost
semigroups. In Section 4, we further develop the theory of dS -pseudometrics on the space of singularity
types initiated in [29]. In Section 5, we define partial Okounkov bodies associated with Hermitian
pseudoeffective line bundles and prove a number of properties. In Section 6, we define and study
Chebyshev transforms of continuous metrics. In Section 7, we generalize the theory of Boucksom–Chen
and study the non-Archimedean Duistermaat–Heckman measures. In Section 8, we give an explicit
description of partial Okounkov bodies construction in terms of the moment polytope in the toric situation.

1.5 Conventions

In this paper, Monge–Ampère operators �n
' refer to the nonpluripolar product in the sense of Boucksom,

Eyssidieux, Guedj and Zeriahi [13]. The group Zn is always endowed with the lexicographic order. A
line bundle always refers to a holomorphic line bundle. We do not distinguish a line bundle and the
associated invertible sheaf. When talking about a birational modification (resolution) � W Y ! X, we
always assume that Y is smooth and � is projective. We follow the convention that ddc

D .i=2�/@x@.
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2 Preliminaries

2.1 Hausdorff metric of convex bodies

In this section, we recall the theory of Hausdorff metrics on the set of convex bodies following
[50, Section 1.8]. Fix n 2 N. Recall that a convex body in Rn is a nonempty compact convex subset
of Rn, which may have empty interior. Let Kn denote the set of convex bodies in Rn. We will fix the
Lebesgue measure d� on Rn, normalized so that the unit cube has volume 1.

Recall the definition of the Hausdorff metric between K1;K2 2 Kn:

dn.K1;K2/ WDmax
�

sup
x12K1

inf
x22K2

jx1�x2j; sup
x22K2

inf
x12K1

jx1�x2j

�
:

We extend dn to an extended metric on Kn[f∅g by setting

dn.K;∅/D1 for all K 2 Kn:

Theorem 2.1 The metric space .Kn; dn/ is complete.

Theorem 2.2 (Blaschke selection) Every bounded sequence in Kn has a convergent subsequence.

Theorem 2.3 The Lebesgue volume vol W Kn!R�0 is continuous.

Theorem 2.4 Let Ki ;K 2 Kn for i 2N. Then Ki
dn
�!K if and only if the following conditions hold :

(1) Each point x 2K is the limit of a sequence xi 2Ki .

(2) The limit of any convergent sequence .xij /j2N with xij 2Kij lies in K, where ij is a subsequence
of 1; 2; : : : .

The proofs of all these results can be found in [50, Section 1.8].

Lemma 2.5 Let K0;K1 2 Kn. Assume that K0 �K1 and

vol K0 D vol K1 > 0:

Then K0 DK1.

Proof In fact, if K1¤K0, then K1 nK0 is a nonempty open subset of K1. As vol K1 > 0, .K1 nK0/\

Int K1 ¤∅. Thus, vol K1 > vol K0, which is a contradiction.

Let K 2 Kn be a convex body with positive volume. For ı > 0 small enough, let

Kı
WD fx 2K j d.x; @K/� ıg:

Then Kı 2 Kn for ı small enough.
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Lemma 2.6 Let K 2 Kn be a convex body with positive volume and K0 2 Kn. Assume that for some
large enough k 2 Z>0, K0 contains K\ .k�1Z/n, then K0 �Kn1=2k�1

.

Proof Let x 2Kn1=2k�1

. By assumption, the closed ball B with center x and radius n1=2k�1 is contained
in K. Observe that x can be written as a convex combination of points in B \ .k�1Z/n, which are
contained in K0 by assumption. It follows that x 2K0.

Given a sequence of convex bodies Ki (i 2N), we set

lim
i!1

Ki D

1[
iD0

\
j�i

Kj :

Suppose K is the limit of a subsequence of Ki , we have

(2-1) lim
i!1

Ki �K:

This is a simple consequence of Theorem 2.4.

2.2 Admissible flags and valuations

Let X be an irreducible normal projective variety of dimension n.

Definition 2.7 An admissible flag .Y�/ on X is a flag of subvarieties

X D Y0 � Y1 � � � � � Yn

such that Yi is irreducible of codimension i and smooth at the point Yn.

Given any admissible flag .Y�/, we can define a rank n valuation �.Y�/ W C.X /� ! Zn as in [45].
Here we consider Zn as a totally ordered abelian group with the lexicographic order. We recall the
definition: let s 2 C.X /�. Let �1.s/ D ordY1

s. After localization around Yn, we can take a local
defining equation t1 of Y1; set s1 D .s.t

1/��1.s//jY1
. Then s1 2C.Y1/. We can repeat this construction

with Y2 in place of Y1 to get �2.s/ and s2. Repeating this construction n times, we get �.Y�/.s/D �.s/D
.�1.s/; �2.s/; : : : ; �n.s// 2 Zn. It is easy to verify that � is indeed a rank n valuation.

Remark 2.8 Conversely, by a theorem of Abhyankar, any valuation of C.X / with Noetherian valuation
ring of rank n is equivalent to a valuation taking value in Zn; see [38, Chapter 0, Theorem 6.5.2]. As
shown in [23, Theorem 2.9], any such valuation is equivalent to (but not necessarily equal to) a valuation
induced by an admissible flag on a birational modification of X. Here two valuations � and �0 with value
in Zn are equivalent if one can find a matrix G of the form ICN , where N is strictly upper triangular
with integral entries, such that �0 DG�.
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2.3 Model potentials and I-model potentials

Let X be a connected compact Kähler manifold of dimension n and � be a smooth closed real .1; 1/-form
representing a .1; 1/-cohomology class Œ� �. Define V� WD supf' 2 PSH.X; �/ j ' � 0g. For any two
'; 2 PSH.X; �/, we say ' is more singular than  and write Œ'� � Œ � if there is a constant C such
that ' �  CC . When ' �  and  � ', we say that they have the same singularity type. We write
�' D � C ddc'.

Definition 2.9 Let ' 2 PSH.X; �/. Define

(2-2) C � Œ'� WD sup�
�
 2 PSH.X; �/

ˇ̌̌
Œ'�� Œ �;  � 0;

Z
X

�k
' ^ �

n�k
V�
D

Z
X

�k
 ^ �

n�k
V�

for all k

�
:

If C � Œ'�D ', we say ' is a model potential. We omit � from the notation if there is no risk of confusion.

Here and in the sequel the Monge–Ampère type operators are taken in the nonpluripolar sense [13].

Proposition 2.10 [29, Proposition 2.6] For any '2PSH.X; �/, C � Œ'� is a model potential in PSH.X; �/.
When

R
X �n

' > 0 we have
C � Œ'�D P � Œ'�;

where

(2-3) P � Œ'� WD sup� f 2 PSH.X; �/ j Œ �� Œ'�;  � 0g :

In general , we only have

(2-4) C � Œ'�D lim
�!0C

P � Œ.1� �/'C �V� �:

We omit � from the notation P � Œ'� if there is no risk of confusion.

Definition 2.11 A birational model of X is a projective birational morphism � W Y !X from a smooth
projective variety Y to X.

Recall that I.'/ denotes the multiplier ideal sheaf of a qpsh function ' on X in the sense of Nadel, namely
the coherent subsheaf of OX consisting of functions f such that jf j2 exp.�'/ is locally integrable.

Definition 2.12 Let '; be two quasi-psh functions, we say '�I  if the following equivalent conditions
are satisfied:

(1) I.k'/� I.k / for all real k > 0.

(2) I.k'/� I.k / for all integer k > 0.

(3) For any birational model � W Y !X and any y 2 Y , we have �.��';y/� �.�� ;y/.

The equivalence between (1) and (3) is just [32, Corollary 2.16]. The equivalence between (2) and (3)
follows from [32, Proposition 2.14].
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We say ' �I  if ' �I  and  �I '.

Given any ' 2 PSH.X; �/, we define

P � Œ'�I WD supf 2 PSH.X; �/ j  �I '; � 0g:

We omit � when there is no risk of confusion. We say ' is I-model if ' D P Œ'�I .

It is shown in [32, Proposition 2.18] that P Œ'�I 2 PSH.X; �/ and ' �I P Œ'�I . Moreover, P Œ'�I is always
I-model. We can also talk about the �I relation of two psh metric on L in the obvious manner.

Typical model potentials are not I-model; however, the converse is true:

Proposition 2.13 If  2 PSH.X; �/ is an I-model potential then it is model.

Proof We need to show that  �I C Œ �. Let � WZ! X be a birational modification. Let z 2Z. As
 � C Œ �CC for some constant C , it suffices to show that

�.C Œ �; z/� �. ; z/:

Here �. ; z/ denotes the Lelong number of �� at z. By (2-4) and the upper semicontinuity of Lelong
numbers (see [39, page 73, Exercise 2.7]), we find

�.C Œ �; z/� lim
�!0C

�.P Œ.1� �/ C �V� �; z/D lim
�!0C

�..1� �/ C �V� ; z/D �. ; z/:

We conclude our assertion.

2.4 Potentials with analytic singularities

Definition 2.14 A quasi-plurisubharmonic function (quasi-psh) ' on X is said to have analytic singular-
ities if for each x 2X, there is a neighborhood Ux �X of x with respect to the Euclidean topology, such
that on Ux ,

(2-5) ' D c log
� NxX

jD1

jfj j
2

�
C ;

where c 2Q�0, the fj are analytic functions on Ux , Nx 2Z>0 is an integer depending on x,  2L1.Ux/.

Definition 2.15 Let D be an effective normal crossing R-divisor on X. Let DD
P

i aiDi with Di being
prime divisors and ai 2R>0. We say that a quasi-psh function ' has analytic singularities along D if
locally, in the Euclidean topology,

' D
X

i

ai log jsi j
2
C ;

where si is a local holomorphic function defining Di ,  is a bounded function.
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In the sequel, when we talk about a normal crossing divisor, we always assume that it is effective.

Note that a potential with analytic singularities along a normal crossing Q-divisor has analytic singularities
in the sense of Definition 2.14.

For any quasi-psh function ' on X with analytic singularities, there is always a birational model � WY !X

such that ��' has analytic singularities along a normal crossing Q-divisor on Y . See [46, Lemma 2.3.19]
for example. We remind the readers that in [46], the definition of analytic singularities differs slightly
from ours: they require the remainder  to be smooth instead of just bounded. However, the proof of
[46, Lemma 2.3.19] works verbatim with our definition.

2.5 Quasi-equisingular approximations

We recall the concept of quasi-equisingular approximations in the sense of [19; 36].

Let X be a connected compact Kähler manifold of dimension n and � (resp. �i for i D 1; : : : ; n) be a
smooth real .1; 1/-form representing a pseudoeffective .1; 1/-cohomology class Œ� � (resp. Œ�i �). Take a
Kähler form ! on X.

Definition 2.16 Let ' 2 PSH.X; �/. Define a quasi-equisingular approximation to be a sequence
'j 2 PSH.X; � C �j!/ with �j ! 0 such that

(1) 'j ! ' in L1,

(2) 'j has analytic singularities,

(3) 'jC1 � 'j ,

(4) For any ı > 0, k > 0, there is j0 > 0 such that for j � j0,

I.k.1C ı/'j /� I.k'/� I.k'j /:

The existence of a quasi-equisingular approximation follows from the arguments in [19; 35; 36].

2.6 Volumes of Hermitian pseudoeffective line bundles

Let X be a smooth irreducible projective variety of dimension n.

Definition 2.17 A Hermitian pseudoeffective (psef ) line bundle on X is a pair .L; �/, where L is a
pseudoeffective line bundle on X and � is a psh metric on L.

When L is big, we say .L; �/ is a Hermitian big line bundle.

Let .L; �/ be a Hermitian psef line bundle on X. In this section, we recall the main results in [32; 33]
concerning the volume of .L; �/.
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Definition 2.18 The volume of .L; �/ is defined as

vol.L; �/ WD lim
k!1

1

kn
h0.X;Lk

˝ I.k�//:

The existence of the limit follows from [33, Theorem 1.1].

We take a smooth Hermitian metric h on L. Set � D c1.L; h/. Then we can identify � with a �-psh
function ', namely � D h exp.�'/.

Theorem 2.19 [33, Theorem 1.1] Under the above assumptions ,

vol.L; �/D
1

n!

Z
X

�n
P Œ'�I

:

We argue that vol deserves the name volume by proving that it satisfies the Brunn–Minkowski inequality.

Corollary 2.20 Let .L; �/ and .L; �0/ be two Hermitian psef line bundles on X. Then

(2-6) vol.LCL0; �C�0/1=n
� vol.L; �/1=n

C vol.L0; �0/1=n:

Proof Fix a smooth Hermitian metric h0 on L0 with � 0D c1.L
0; h0/. We identify �0 with '0 2PSH.X; � 0/.

By Theorem 2.19, (2-6) is equivalent to�Z
X

.� C � 0C ddcP �C� 0 Œ'C'0�I/
n

�1=n

�

�Z
X

�n
P� Œ'�I

�1=n

C

�Z
X

� 0n
P�
0
Œ'0�I

�1=n

:

Observe that
P �C� 0 Œ'C'0�I � P � Œ'�I CP � 0 Œ'0�I :

Thus, by the monotonicity theorem of [53], it suffices to show that�Z
X

.� C � 0C ddcP � Œ'�I C ddcP � 0 Œ'0�I/
n

�1=n

�

�Z
X

�n
P� Œ'�I

�1=n

C

�Z
X

� 0n
P�
0
Œ'0�I

�1=n

:

This follows from [28, Theorem 6.1].

2.7 Non-Archimedean pluripotential theory

In this section, we briefly recall the notion of Berkovich analytification of a smooth complex projective
variety and the pluripotential theory in the sense of Boucksom and Jonsson [17] on it.

For simplicity, we assume that X is a connected smooth projective variety of dimension n and L is an
ample line bundle on X.

The set of real valuations on C.X / trivial on C is denoted by X val. This set can be defined in the same
way for nonsmooth varieties as well.

The center of a valuation v is the scheme-theoretic point c D c.v/ of X such that v � 0 on OX ;c and
v > 0 on the maximal ideal mX ;c of OX ;c . The center exists and is unique.
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Let X an denote the Berkovich analytification X an of X with respect to the trivial valuation on C. As a set,
X an is the set of semivaluations on X, in other words, real-valued valuations v on irreducible reduced
subvarieties Y in X that is trivial on C. We call Y the support of the semivaluation v. In other words,

X an
D

a
Y

Y val:

The Berkovich space X an admits a natural topology, called the Berkovich topology and a sheaf of analytic
functions. The natural morphism of ringed spaces X an! X allows us to pullback L to an invertible
sheaf Lan on X an. See [2] for more details.

In [17], Boucksom and Jonsson developed a pluripotential theory with respect to .X an;Lan/, similar to
its complex counterpart. In particular, there is a natural notion of plurisubharmonic metrics on Lan. In
[17, Section 7.1], Boucksom and Jonsson defined the notion of energy pairings .'0; : : : ; 'n/ between
nC1 plurisubharmonic metrics '0; : : : ; 'n on Lan. One can then define the space E1.Lan/ of finite-energy
metrics as the space of plurisubharmonic functions ' on Lan such that

E.'/ WD
1

nC 1
.'; : : : ; '/ > �1:

Note that our definition of E differs from the definition of [17] by a multiple 1=V . We will explain the
relation between the non-Archimedean pluripotential theory and the complex pluripotential theory in
Section 7.4.

3 The Okounkov bodies of almost semigroups

Fix an integer n � 0. Fix a closed convex cone C �Rn �R�0 such that C \ fxnC1 D 0g D f0g. Here
xnC1 is the last coordinate of RnC1.

3.1 Generality on semigroups

Write yS.C / for the set of subsets of C \ZnC1 and S.C / for the set of subsemigroups S � C \ZnC1.
For each k 2N and S 2 yS.C /, we write

Sk WD fx 2 Zn
j .x; k/ 2 Sg:

Note that Sk is a finite set by our assumption on C .

We introduce a pseudometric on yS.C / as follows:

d.S;S 0/ WD lim
k!1

k�n.jSk jC jS
0
k j � 2j.S \S 0/k j/:

Here j � j denotes the cardinality of a finite set.

Lemma 3.1 The above-defined d is a pseudometric on yS.C /.
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Proof Only the triangle inequality needs to be argued. Take S;S 0;S 00 2 yS.C /. We claim that for any
k 2N,

jSk jC jS
0
k j � 2jSk \S 0k jC jS

00
k jC jS

0
k j � 2jS 00k \S 0k j � jSk jC jS

00
k j � 2jSk \S 00k j:

From this the triangle inequality follows. To argue the claim, we rearrange it to the form

jS 0k j � jSk \S 0k j � jS
0
k \S 00k j � jSk \S 00k j;

which is obvious.

Given S;S 0 2 yS.C /, we say S is equivalent to S 0 and write S �S 0 if d.S;S 0/D 0. This is an equivalence
relation by Lemma 3.1.

Lemma 3.2 Given S;S 0;S 00 2 yS.C /, we have

d.S \S 00;S 0\S 00/� d.S;S 0/:

In particular , if S i ;S 0i 2 yS.C / (i 2N) and S i! S , S 0i! S 0, then

S i
\S 0i! S \S 0:

Proof Observe that for any k 2N,

jSk \S 00k j � jSk \S 0k \S 00k j � jSk j � jSk \S 0k j:

The same holds if we interchange S with S 0. It follows that

jSk \S 00k jC jS
0
k \S 00k j � 2jSk \S 0k \S 00k j � jSk jC jS

0
k j � 2jSk \S 0k j:

The first assertion follows.

Next we compute

d.S i
\S 0i ;S \S 0/� d.S i

\S 0i ;S i
\S 0/C d.S i

\S 0;S \S 0/� d.S 0i ;S 0/C d.S i ;S/

and the second assertion follows.

The volume of S 2 S.C / is defined as

vol S WD lim
k!1

.ka/�n
jSkaj D lim

k!1
k�n
jSk j;

where a is a sufficiently divisible positive integer. The existence of the limit and its independence from a

both follow from the more precise result [43, Theorem 2].

Lemma 3.3 Let S;S 0 2 S.C /, then

jvol S � vol S 0j � d.S;S 0/:

Proof By definition, we have

d.S;S 0/� vol S C vol S 0� 2 vol.S \S 0/:

It follows that vol S � vol S 0 � d.S;S 0/ and vol S 0� vol S � d.S;S 0/.
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We define S.C / as the closure of S.C / in yS.C /with respect to the topology defined by the pseudometric d .
By Lemma 3.3, vol W S.C /!R admits a unique 1-Lipschitz extension to

(3-1) vol W S.C /!R:

Lemma 3.4 Suppose that S;S 0 2 S.C / and S � S 0. Then

vol S � vol S 0:

Proof Take sequences Sj and S 0j in S.C / such that Sj ! S and S 0j ! S 0. By Lemma 3.2, after
replacing Sj by Sj \S 0j , we may assume that Sj �S 0j for each j . Then our assertion follows easily.

3.2 Okounkov bodies of semigroups

Given S 2 yS.C /, we will write C.S/� C for the closed convex cone generated by S [f0g. Moreover,
for each k 2 Z>0, we define

�k.S/ WD Convfk�1x 2Rn
j x 2 Skg �Rn:

Here Conv denotes the convex hull.

Definition 3.5 Let S 0.C / be the subset of S.C / consisting of semigroups S such that S generates ZnC1

(as an abelian group).

Note that for any S 2 S 0.C /, the cone C.S/ has full dimension (ie the topological interior is nonempty).
Given a full-dimensional subcone C 0 � C , it is clear that C 0\ZnC1 2 S 0.C /.

This class behaves well under intersections:

Lemma 3.6 Let S;S 0 2 S 0.C /. Assume that vol.S \S 0/ > 0. Then S \S 0 2 S 0.C /.

The lemma obviously fails if vol.S \S 0/D 0.

Proof We first observe that the cone C.S/\C.S 0/ has full dimension since otherwise vol.S \S 0/D 0.
Take a full-dimensional subcone C 0 in C.S/\C.S 0/ such that C 0 intersects the boundary of C.S/\C.S 0/

only at 0. It follows from [43, Theorem 1] that there is an integer N > 0 such that for any x 2ZnC1\C 0

with Euclidean norm no less than N lies in S \S 0. Therefore, S \S 0 2 S 0.C /.

We recall the following definition from [43].

Definition 3.7 Given S 2 S 0.C /, its Okounkov body is defined as

�.S/ WD fx 2Rn
j .x; 1/ 2 C.S/g:
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Theorem 3.8 For each S 2 S 0.C /, we have

(3-2) vol S D lim
k!1

k�n
jSk j D vol�.S/ > 0:

Moreover , as k!1,

(3-3) �k.S/
dn
�!�.S/:

This is essentially proved in [52, Lemma 4.8], which itself follows from a theorem of Khovanskii [44].
We remind the readers that (3-2) fails for a general W 2 S.C /; see [43, Theorem 2].

Proof The equalities (3-2) follow from the general theorem [43, Theorem 2].

It remains to prove (3-3). By the argument of [52, Lemma 4.8], for any compact set K � Int�.S/, there
is k0 > 0 such that for any k � k0, ˛ 2K\ .k�1Z/n implies that ˛ 2�k.S/.

In particular, taking K D�.S/ı for any ı > 0 and applying Lemma 2.6, we find

dn.�.S/;�k.S//� n1=2k�1
C ı

when k is large enough. This implies (3-3).

Corollary 3.9 Let S;S 0 2 S 0.C /. Assume that vol.S \S 0/ > 0. Then we have

d.S;S 0/D vol S C vol S 0� 2 vol.S \S 0/:

Proof This is a direct consequence of Lemma 3.6 and (3-2).

Lemma 3.10 Given S 2 S 0.C /, we have S � Reg.S/.

Recall that the regularization Reg.S/ of S is defined as C.S/\ZnC1.

Proof Since S and Reg.S/ have the same Okounkov body, we have vol S D vol Reg.S/ by Theorem 3.8.
By Corollary 3.9 again,

d.Reg.S/;S/D vol Reg.S/� vol S D 0:

Lemma 3.11 Let S;S 0 2 S 0.C /. Assume that d.S;S 0/D 0, then �.S/D�.S 0/.

Proof Observe that vol.S \S 0/ > 0, as otherwise

d.S;S 0/� vol S C vol S 0 > 0;

which is a contradiction.

It follows from Lemma 3.6 that S\S 02S 0.C /. It suffices to show that�.S/D�.S\S 0/. In fact, suppose
that this holds, since vol�.S 0/D vol S 0 D vol S D vol�.S/, the inclusion �.S 0/��.S \S 0/D�.S/

is an equality.
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By Lemma 3.2, we can therefore replace S 0 by S\S 0 and assume that S�S 0. Then clearly�.S/��.S 0/.
By (3-2),

vol�.S/D vol�.S 0/:

Thus, �.S/D�.S 0/ by Lemma 2.5.

Lemma 3.12 Suppose that S i 2 S 0.C / is a decreasing sequence such that

lim
i!1

vol S i > 0:

Then there is S 2 S 0.C / such that S i! S .

In general, one cannot simply take S D
T

i S i . For example, consider the sequence S i DS1\fxnC1� ig.

Proof By Lemma 3.10, we may replace S i by its regularization and assume that S i D C.S i/\ZnC1.
We define

S D

� 1\
iD1

C.S i/

�
\ZnC1:

Since
T1

iD1 C.S i/ is a full-dimensional cone by assumption, we have S 2 S 0.C /. By Corollary 3.9 and
Theorem 3.8, we can compute the distance

d.S;S i/D vol S i
� vol S D vol�.S i/� vol�.S/;

which tends to 0 by construction.

3.3 Okounkov bodies of almost semigroups

Definition 3.13 We define S 0.C />0 as elements in the closure of S 0.C / in yS.C / with positive volume.
An element in S 0.C />0 is called an almost semigroup in C .

Recall that the volume here is defined in (3-1).

Our goal is to prove the following theorem:

Theorem 3.14 The Okounkov body map � W S 0.C /! Kn, as defined in Definition 3.7, admits a unique
continuous extension

(3-4) � W S 0.C />0! Kn:

Moreover , for any S 2 S 0.C />0, we have

(3-5) vol S D vol�.S/:

Proof The uniqueness of the extension is clear as long as it exists. Moreover, (3-5) follows easily from
Theorem 3.8 and Theorem 2.3 by continuity. It remains to argue the existence of the continuous extension.
We first construct an extension and prove its continuity.
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Step 1 We construct the desired map (3-4). Let S 2 S 0.C />0. We wish to construct a convex body
�.S/ 2 Kn.

Let S i 2 S 0.C / be a sequence that converges to S such that

d.S i ;S iC1/� 2�i :

For each i; j � 0, we introduce
S i;j
D S i

\S iC1
� � � \S iCj :

Then, by Lemma 3.2,
d.S i;j ;S i;jC1/� 2�i�j :

Take i0 > 0 large enough that, for i � i0, vol S i > 2�1 vol S and 22�i < vol S and hence

vol S i
� vol S i;j

� d.S i;0;S i;1/C d.S i;1;S i;2/C � � �C d.S i;j�1;S i;j /� 21�i :

It follows that vol S i;j > 2�1 vol S�21�i > 0 whenever i � i0. In particular, by Lemma 3.6, S i;j 2S 0.C /
for i � i0.

By Lemma 3.12, for i � i0, there exists T i 2 S 0.C / such that S i;j ! T i as j !1. Moreover,

d.T i ;S/D lim
j!1

d.S i;j ;S/� lim
j!1

d.S i;j ;S i/C d.S i ;S/� 21�i
C d.S i ;S/:

Therefore, T i! S . We then define

�.S/ WD

1[
iDi0

�.T i/:

In other words, we have defined
�.S/ WD lim

i!1

�.S i/:

This is an honest limit: if � is the limit of a subsequence of �.S i/, then �.S/�� by (2-1). Comparing
the volumes, we find that equality holds. So by Theorem 2.2,

(3-6) �.S/D lim
i!1

�.S i/:

Next we claim that �.S/ as defined above does not depend on the choice of the sequence S i . In fact,
suppose that S 0i 2 S 0.C / is another sequence satisfying the same conditions as S i . The same holds for
Ri WD S iC1\S 0iC1. It follows that

lim
i!1

�.Ri/� lim
i!1

�.S i/:

Comparing the volumes, we find that equality holds. The same is true with S 0i in place of S i . So we
conclude that �.S/ as in (3-6) does not depend on the choices we made.

Step 2 It remains to prove the continuity of � defined in Step 1. Suppose that S i 2 S 0.C />0 is a
sequence with limit S 2 S 0.C />0. We want to show that

(3-7) �.S i/
dn
�!�.S/:
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We first reduce to the case where S i 2 S 0.C /. By (3-6), for each i , we can choose T i 2 S 0.C / such that
d.S i ;T i/ < 2�i and dn.�.S

i/;�.T i// < 2�i . If we have shown �.T i/
dn
�!�.S/, then (3-7) follows

immediately.

Next we reduce to the case where d.S i ;S iC1/ � 2�i . In fact, thanks to Theorem 2.2, in order to
prove (3-7), it suffices to show that each subsequence of �.S i/ admits a subsequence that converges
to �.S/. Hence, we easily reduce to the required case.

After these reductions, (3-7) is nothing but (3-6).

Corollary 3.15 Suppose that S;S 0 2 S 0.C />0 with S � S 0, then

(3-8) �.S/��.S 0/:

Proof Let Sj ;S 0j 2 S 0.C / be elements such that Sj ! S and S 0j ! S 0. Then it follows from
Lemma 3.2 that Sj \S 0j ! S . Since vol is continuous, for large j , Sj \S 0j has positive volume and
hence lies in S 0.C / by Lemma 3.6. We may therefore replace Sj by Sj \S 0j and assume that Sj � S 0j .
Hence (3-8) follows from the continuity of � proved in Theorem 3.14.

Remark 3.16 As the readers can easily verify, the construction of � is independent of the choice of C in
the following sense: Suppose that C 0 is another cone satisfying the same assumptions as C and C 0 � C ,
then the Okounkov body map � W S 0.C 0/>0! Kn is an extension of the corresponding map (3-4). We
will constantly use this fact without further explanations.

4 The metric on the space of singularity types

Let X be a connected compact Kähler manifold of dimension n and � (resp. �i for i D 1; : : : ; n) be a
smooth real .1; 1/-form representing a big .1; 1/-cohomology class Œ� � (resp. Œ�i �). Let ! be a Kähler
form on X.

In this section, we develop further the metric geometry on the space of singularity types of quasi-psh
functions, initiated in [29] and studied further in [32].

As explained in [29, Section 3], one can introduce a pseudometric dS on the set of singularity types of
functions in PSH.X; �/. In particular, dS lifts to a pseudometric on PSH.X; �/ as well. We do not recall
the precise definition, as the following double inequality from [29, Proposition 3.5] will be enough for us.
For any '; 2 PSH.X; �/ we have

(4-1) dS .';  /�

nX
iD0

�
2

Z
X

� i
maxf'; g ^ �

n�i
V�
�

Z
X

� i
' ^ �

n�i
V�
�

Z
X

� i
 ^ �

n�i
V�

�
� C0dS .';  /;

where C0 > 1 is a constant depending only on n. In addition, dS .';  /D 0 if and only if

C Œ'�D C Œ �:

When there is a risk of confusion, we write dS;� instead of dS .
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Lemma 4.1 Let 'i 2 PSH.X; �i/ for i D 1; : : : ; n. ThenZ
X

�1;'1
^ � � � ^ �n;'n

D

Z
X

�1;C Œ'1� ^ � � � ^ �n;C Œ'n�:

Proof From the definition (2-2), we have Œu� � ŒC Œu��, the � direction is obvious. For the reverse
direction, recall that C Œ'i �D lim�!0C P Œ.1� �/'i C �V�i

�. Thus, for � 2 .0; 1/,Z
X

�1;C Œ'1� ^ � � � ^ �n;C Œ'n� � .1� �/
n

Z
X

�1;'1
^ � � � ^ �n;'n

:

Letting �! 0C, we conclude.

Theorem 4.2 Let 'k
i ; 'i 2PSH.X; �i/ for i D 1; : : : ; n and k 2N. Assume that 'k

i

dS;�i���!'i as k!1.
Then

(4-2) lim
k!1

Z
X

�1;'k
1
^ � � � ^ �n;'k

n
D

Z
X

�1;'1
^ � � � ^ �n;'n

:

Proof By Lemma 4.1 and [29, Theorem 3.3], we may assume that 'k
i and 'k are model potentials.

Step 1 We assume that there is a constant ı > 0 such that for all i and k,Z
X

�n

i;'k
i

> ı:

In order to show (4-2), it suffices to prove that any subsequence of
R
X �1;'k

1
^� � �^�n;'k

n
has a converging

subsequence with limit
R
X �1;'1

^ � � � ^ �n;'n
. Thus, by [29, Theorem 5.6], we may assume that for each

fixed i , 'k
i is either increasing or decreasing. We may assume that for i � i0, the sequence is decreasing

and for i > i0, the sequence is increasing.

Recall that in (4-2) the � inequality always holds [26, Theorem 2.3], it suffices to prove

(4-3) lim
k!1

Z
X

�1;'k
1
^ � � � ^ �n;'k

n
�

Z
X

�1;'1
^ � � � ^ �n;'n

:

By Witt Nyström’s monotonicity theorem [53; 26], in order to prove (4-3), we may assume that for j > i0,
the sequences 'k

j are constant. Thus, we are reduced to the case where for all i , the 'k
i are decreasing.

In this case, for each i we may take an increasing sequence bk
i > 1, tending to1, such that

.bk
i /

n

Z
X

�n
i;'i

> ..bk
i /

n
� 1/

Z
X

�n

i;'k
i

:

Let  k
i be the maximal �i-psh function such that

.bk
i /
�1 k

i C .1� .b
k
i /
�1/'k

i � 'i ;

whose existence is guaranteed by [29, Lemma 4.3].
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Then by Witt Nyström’s monotonicity theorem [53; 26] again,
nY

iD1

.1� .bk
i /
�1/

Z
X

�1;'k
1
^ � � � ^ �n;'k

n
�

Z
X

�1;'1
^ � � � ^ �n;'n

:

Letting k!1, we conclude (4-3).

Step 2 Now we deal with the general case.

We claim that if t 2 .0; 1�, then .1� t/'k
i C tV�i

dS
�! .1� t/'i C tV�i

as k!1 for each i . From this
and Step 1, we find that for ti 2 .0; 1�,

lim
k!1

Z
X

�1;.1�t1/'
k
1
Ct1V�1

^ � � � ^ �n;.1�tn/'
k
nCtnV�n

D

Z
X

�1;.1�t1/'1Ct1V�1
^ � � � ^ �n;.1�tn/'nCtnV�n

:

Thus, (4-2) follows, after letting ti& 0.

It remains to prove the claim. For simplicity, we suppress the i indices momentarily. We need to argue that

2

Z
X

�
j

maxf.1�t/'kCtV� ;.1�t/'CtV� g
^ �

n�j
V�
�

Z
X

�
j

.1�t/'kCtV�
^ �

n�j
V�
�

Z
X

�
j

.1�t/'CtV�
^ �

n�j
V�
! 0:

Note that the above expression is a linear combination of terms of the following type:

2

Z
X

�r
maxf'k ;'g

^ �n�r
V�
�

Z
X

�r
'k ^ �

n�r
V�
�

Z
X

�r
'k ^ �

n�r
V�

:

Thanks to (4-1), all these expressions tend to 0 as k!1 since 'k dS
�! ', which proves our claim.

Corollary 4.3 Let 'k ; ' 2 PSH.X; �/ for k 2N. Let ! be a Kähler form on X. Assume that 'k dS;�
��! '.

Then 'k dS;�C!
����! '.

Proof It suffices to show that for each j D 0; : : : ; n, we have

2

Z
X

.�C!/
j

maxf'k ;'g
^ .�C!/

n�j
V�C!

�

Z
X

.�C!/
j

'k ^ .�C!/
n�j
V�C!

�

Z
X

.�C!/j' ^ .�C!/
n�j
V�C!

! 0

as k!1. Note that this quantity is a linear combination of terms of the form

2

Z
X

�r
maxf'k ;'g

^!j�r
^ .�C!/

n�j
V�C!

�

Z
X

�r
'k ^!

j�r
^ .�C!/

n�j
V�C!

�

Z
X

�r
' ^!

j�r
^ .�C!/

n�j
V�C!

;

where r D 0; : : : ; j . By Theorem 4.2, it suffices to show that maxf'; 'kg
dS
�! '. But this follows from

[29, Proposition 3.5].

Corollary 4.4 Let ' 2 PSH.X; �/ be an I-model potential of positive mass. Let ! be a Kähler form
on X. Then P �C! Œ'� is I-model.

Proof By [33, Theorem 3.8], we may take a sequence 'j with analytic singularities such that 'j dS;�
��! '.

Then 'j dS;�C!
����! ' by Corollary 4.3. Thus, P �C! Œ'� is I-model.
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Corollary 4.5 Let 'j ; ' 2 PSH.X; �1/ and  j ;  2 PSH.X; �2/ for j 2N. Assume that 'j
dS;�1
���! ',

 j
dS;�2
���!  . Then

'j
C j dS;�1C�2

�����! 'C :

Proof Let � D �1C �2. It suffices to show that for each r D 0; : : : ; n,

2

Z
X

�r
maxf'jC j ;'C g ^ �

n�r
V�
�

Z
X

�r
'jC j

^ �n�r
V�
�

Z
X

�r
'C ^ �

n�r
V�
! 0:

Observe that
maxf'j

C j ; 'C g �maxf'j ; 'gCmaxf j ;  g:

Thus, it suffices to show that

2

Z
X

�r
maxf'j ;'gCmaxf j ; g ^ �

n�r
V�
�

Z
X

�r
'jC j

^ �n�r
V�
�

Z
X

�r
'C ^ �

n�r
V�
! 0:

The left-hand side is a linear combination of

2

Z
X

�a
1;maxf'j ;'g ^ �

r�a
2;maxf j ; g ^ �

n�r
V�
�

Z
X

�a
1;'j
^ �r�a

2; j
^ �n�r

V�
�

Z
X

�a
1;' ^ �

r�a
2; ^ �

n�r
V�

with aD 0; : : : ; r . Observe that maxf'j ; 'g
dS
�! ' and maxf j ;  g

dS
�! by [29, Proposition 3.5], each

term tends to 0 by Theorem 4.2.

Finally, we prove the continuity of P Œ � �I .

Theorem 4.6 The map PSH.X; �/>0! PSH.X; �/>0 given by ' 7! P Œ'�I is continuous with respect
to the dS -pseudometric.

Here PSH.X; �/>0 denotes the subset of PSH.X; �/ consisting of ' with
R
X �n

' > 0.

Proof Let 'i ; ' 2 PSH.X; �/>0, with 'i
dS
�! '. We want to show that

(4-4) P Œ'i �I
dS
�! P Œ'�I :

We may assume that the 'i and ' are all model potentials by [29, Theorem 3.3]. By [29, Theorem 5.6],
we may assume that 'i is either increasing or decreasing. These cases follow from [32, Lemma 2.21] and
[29, Proposition 4.8, Lemma 4.1].

5 Partial Okounkov bodies

Let X be an irreducible smooth complex projective variety of dimension n and L be a big line bundle
on X. Take a singular psh metric � on L. We assume that vol.L; �/ > 0. Let h be a smooth Hermitian
metric on L. Let � D c1.L; h/. Then we can identify � with a function ' 2 PSH.X; �/. We will use
interchangeably the notations .�; '/ and .L; �/.
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For each k � 0,

Wk.�; '/ WD H0.X;Lk
˝ I.k'// and W .�; '/ WD

1M
kD0

Wk.�; '/:

We omit .�; '/ from our notations when there is no risk of confusion. Observe that Wk.�; '/¤ 0 when
k is large enough, as follows from Theorem 2.19.

Fix a rank n valuation � WC.X /�! Zn. We will write

��;k.�; '/D fk
�1�.s/ j s 2Wk.�; '/

�
g for k � 1;

��.�; '/D f.�.s/; k/ j k 2N; s 2Wk.�; '/
�
g:

In [45], Lazarsfeld and Mustat,ă only considered the case where � is induced by an admissible flag, but
thanks to Remark 2.8, their results can be easily extended to the current setup. We will use these results
without further comments.

5.1 Construction of partial Okounkov bodies

Our goal in this section is to show that ��.�; '/ 2 S 0.��.L//>0, namely it is an almost semigroup. Then
we shall define

(5-1) ��.�; '/ WD�.��.�; '//

using the theory of Okounkov bodies of almost semigroups developed in Section 3.3. Moreover, we have

(5-2) vol��.�; '/D
1

n!

Z
X

�n
P Œ'�I

:

5.1.1 The case of analytic singularities Assume that ' has analytic singularities and �' is a Kähler
current.

For any rational � � 0, we define

(5-3) W �
k DW �

k .�; '/ WD fs 2 H0.X;Lk/ j jsj2
hk e�k.1��/' is boundedg:

Then W � WD
L1

kD0 W �
k

has the property that

(5-4) ��.W
�/ WD f.�.s/; k/ j k 2N; s 2W

�;�
k
g 2 S 0.��.L//:

To see this, we may assume that ' has analytic singularities along a Q-divisor E. Then (5-4) follows
from the fact that L� .1� �/E is big, proved in [55, Lemma 2.4]; cf [45, Lemma 2.2].

For any � 2Q>0, we have that

(5-5) W 0
k �Wk �W �

k

for k large enough depending on �. The first inclusion is of course trivial. The second inclusion is widely
known among experts. A detailed proof can be found in [33, Remark 2.9].
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Let � WY !X be a resolution such that ��' has analytic singularities along a normal crossing Q-divisor E.
Then we have a natural identification for sufficiently divisible k,

W �
k Š H0.Y; ��Lk

˝OY .�.1� �/kE//:

On the other hand,
W 0

k Š H0.Y; ��Lk
˝OY .�kE//� H0.Y; ��Lk/:

We compute the volumes

(5-6) vol��.W �/D
1

n!

Z
X

�n
.1��/' and vol��.W 0/D

1

n!

Z
X

�n
' :

It follows that ��.W �/! ��.W
0/ and ��.�; '/ is equivalent to ��.W 0/. In particular, we get that

��.�; '/ 2 S 0.��.L//>0, (5-1) makes sense and (5-2) holds.

Remark 5.1 It follows from the proof that if W 0.�; '/ is defined as in (5-3) and (5-4):

W 0
k .�; '/ WD fs 2 H0.X;Lk/ j jsj2

hk e�k' is boundedg;

then

(5-7) �.��.W
0.�; '///D��.�; '/:

If we assume furthermore that ��' has analytic singularity along some normal crossing Q-divisor E

on Y , then ��.�; '/ is just the translation of ��.��L�E/ by �.E/.

5.1.2 The case of Kähler currents Now assume that �' is Kähler current. Let 'j 2 PSH.X; �/ be a
quasi-equisingular approximation of '. Then 'j dS

�! P Œ'�I by [33, Proposition 3.3].

In this case, we claim that

(5-8) ��.�; '
j /! ��.�; '/:

In fact, by Theorem 2.19, we have

d.��.�; '
j /; ��.�; '//D lim

k!1
k�n

�
h0.X;Lk

˝ I.k'j //� h0.X;Lk
˝ I.k'//

�
D lim

k!1
k�nh0.X;Lk

˝ I.k'j //� lim
k!1

k�nh0.X;Lk
˝ I.k'//

D
1

n!

Z
X

�n
'j
�

1

n!

Z
X

�n
P Œ'�I

:

Letting j !1, we conclude (5-8) by Theorem 4.2.

Thus, ��.�; '/ 2 S 0.��.L//>0 and (5-1) makes sense. By Theorem 3.14, we find that

��.�; '/D

1\
jD0

��.�; '
j /:

In particular, (5-2) holds.
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5.1.3 General case Now we consider general ' with the assumption that
R
X �n

P Œ'�I
>0. We may replace

' with P Œ'�I and then assume that the nonpluripolar mass of ' is positive. Take a potential 2PSH.X; �/
such that  � ' and � is a Kähler current. The existence of  is proved in [33, Proposition 3.6]. For
each � 2Q\ .0; 1�, let '� D .1� �/'C � . Then we have W .�; '�/�W .�; '/. By (5-2),

vol��.�; '�/D
1

n!

Z
X

�n
P Œ'��I

:

We claim that
��.�; '�/! ��.�; '/:

In fact, this follows from the simple computation

d
�
��.�; '�/; ��.�; '/

�
D lim

k!1
k�n

�
h0.X;Lk

˝ I.k'//� h0.X;Lk
˝ I.k'�//

�
D lim

k!1
k�nh0.X;Lk

˝ I.k'//� lim
k!1

k�nh0.X;Lk
˝ I.k'�//

D
1

n!

Z
X

�n
' �

1

n!

Z
X

�n
P Œ'��I

:

By [33, Proposition 2.7], as � decreases to 0, P Œ'� �I increases to P Œ'�I D ' a.e., which implies the
dS -convergence by [29, Lemma 4.1]. Therefore, the right-hand side of the above equation converges to 0

by Theorem 4.2. Our claim is proved. It follows that ��.�; '/ 2 S 0.��.L//>0 and (5-1) makes sense.
By Theorem 3.14,

��.�; '/D
[
�>0

��.�; '�/:

It remains to verify (5-2):

vol��.�; '/D
1

n!
lim
�!0C

Z
X

�n
P Œ'��I

D
1

n!

Z
X

�n
P Œ'�I

:

Definition 5.2 Assume that ' 2PSH.X; �/, where
R
X �n

P Œ'�I
> 0. We call��.�; '/ the partial Okounkov

body of .L; �/ or of .�; '/ with respect to �. When � is induced by an admissible flag .Y�/ on X (see
Definition 2.7), we also say that ��.�; '/ the partial Okounkov body of .L; �/ or of .�; '/ with respect
to .Y�/. In this case, we also write �Y� instead of �� .

We use interchangeably the notations ��.�; '/ and ��.L; �/. When there is no risk of confusion, we
write � instead of �� or �Y� .

Remark 5.3 We have assumed X to be smooth only for simplicity. All of our constructions work equally
well when X is normal or merely unibranch, based on the pluripotential theory in these settings developed
in [54].

Remark 5.4 In the transcendental setting, a theory of Okounkov bodies was recently established in [31]
based on the work of [37]. The proof of the volume identity of transcendental Okounkov bodies relies on
the technique of partial Okounkov bodies developed in this paper. The transcendental analogue of the
partial Okounkov bodies is constructed in a forthcoming joint paper with T Darvas.

Geometry & Topology, Volume 29 (2025)



Partial Okounkov bodies and Duistermaat–Heckman measures of non-Archimedean metrics 1309

5.2 Basic properties of partial Okounkov bodies

We first show that �.�; '/ does not depend on the explicit choices of L, h and ', it just depends on ddc�.

Lemma 5.5 Let L0 be another big line bundle on X. Let h0 be a smooth Hermitian metric on L0 with
c1.L; h/D c1.L

0; h0/. Then �.�; '/ defined with respect to .L; h/ is the same as the one defined with
respect to .L0; h0/.

Proof From our construction, we may assume that �' is a Kähler current and ' has analytic singularities.
After taking a birational resolution, it suffices to deal with the case where ' has analytic singularities along
normal crossing Q-divisors E. By rescaling, we may also assume that E is a divisor. By Remark 5.1, we
further reduce to the case without the singular potential �.

In this case, the assertion is proved in [45, Proposition 4.1].

Lemma 5.6 Let h0 be another smooth Hermitian metric on L. Set � 0 D c1.L; h
0/. Write ddcf D � � � 0.

Let '0 D 'Cf 2 PSH.X; � 0/. Then

(5-9) �.�; '/D�.� 0; '0/:

Proof This is obvious as W .�; '/DW .� 0; '0/.

Corollary 5.7 The partial Okounkov body �.L; �/ depends only on ddc�, not on the explicit choices
of L, � and h.

Thanks to this result, given a closed positive .1; 1/-current T 2 c1.L/ on X with
R
X T n > 0, we can

define �.T / as �.�; '/ if T D � C ddc' for some ' 2 PSH.X; �/.

Proof This is a direct consequence of Lemmas 5.5 and 5.6.

Let PSH.X; �/>0 denote the subset of PSH.X; �/ consisting of potentials ' such that
R
X �n

' > 0.

Proposition 5.8 Let '; 2 PSH.X; �/>0. Assume that ' �I  . Then

(5-10) �.�; '/��.�;  /:

In particular , as by definition , �.�;V� /D�.L/, we have

�.�; '/��.L/:

Proof This follows from Corollary 3.15.

Theorem 5.9 The Okounkov body map

�.�; � / W .PSH.X; �/>0; dS /! .Kn; dn/

is continuous.
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Remark 5.10 On the other hand, it is of interest to understand the dependence of �.�; � / on � as well.
For some preliminary results and anticipations in the usual Okounkov body setting, see [1]. In particular,
see [1, Conjecture 10.1] for a concrete continuity conjecture.

Proof Let 'j ! ' be a dS -convergent sequence in PSH.X; �/>0. We want to show that

(5-11) �.�; 'j /
dn
�!�.�; '/:

By Proposition 5.8 and [29, Theorem 3.3], we may assume that all the 'j and ' are model potentials.
By Theorem 2.2 and [29, Theorem 5.6], we may assume that 'j is either decreasing or increasing. By
Theorem 4.6, we may further assume that the 'j are I-model. In both cases, we claim that ��.�; 'j /!

��.�; '/. In fact, we can compute their distance as

d
�
��.�; 'j /; ��.�; '/

�
D lim

k!1
k�n
jh0.X;Lk

˝I.k'j //�h0.X;Lk
˝I.k'//j D

1

n!

ˇ̌̌̌Z
X

�n
'j
�

Z
X

�n
'

ˇ̌̌̌
;

where we applied Theorem 2.19 at the last step. Then Theorem 4.2 implies our claim. Hence, (5-11)
follows from Theorem 3.14.

Although W .�; '/ and ��.�; '/ are not birationally invariant, we could still show that the Okounkov
body is.

Proposition 5.11 Let � W Y !X be a birational resolution. Let .L; �/ be a Hermitian big line bundle
on X with positive volume. Then

�.��L; ���/D�.L; �/:

Here we are using the same valuation � on the function field C.Y /DC.X / of Y .

Proof By Definition 2.12(3), P� Œ � �I commutes with birational pullbacks, we may assume that ' is
I-model. By [33, Theorem 3.8], we can find a sequence 'j 2 PSH.X; �/ with analytic singularities such
that 'j dS

�! '. It follows from (4-1) that ��'j dS
�! ��'. By Theorem 5.9, we may then reduce to the

case where ' has analytic singularities. In this case, up to replacing Y by a further sequences of blowups,
we may assume that ��' has analytic singularities along a normal crossing Q-divisor D. It suffices to
apply Remark 5.1.

Next we prove the Brunn–Minkowski inequality.

Proposition 5.12 Let .L; �/, .L0; �0/ be Hermitian big line bundles on X of positive volumes. Then

.vol�.LCL0; �C�0//1=n
� .vol�.L; �//1=n

C .vol�.L0; �0//1=n:

Proof This follows from Corollary 2.20.
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Proposition 5.13 Let .L0; �0/ be another Hermitian big line bundle on X with positive volume. Then

�.L; �/C�.L0; �0/��.L˝L0; �˝�0/:

Proof Take a smooth metric h0 on L0, and let � 0 D c1.L
0; h0/. We identify �0 with '0 2 PSH.X; � 0/.

Then we need to show

(5-12) �.�; '/C�.� 0; '0/��.� C � 0; 'C'0/:

By [33, Theorem 3.8], we can find 'j 2 PSH.X; �/ and '0j 2 PSH.X; � 0/ such that

(1) 'j and '0j both have analytic singularities and have positive masses,

(2) 'j dS
�! ' and '0j dS

�! '0.

Then 'j C '0j 2 PSH.X; � C � 0/ and 'j C '0j
dS
�! ' C '0 by Corollary 4.5. Thus, by Theorem 5.9,

we may assume that ' and  both have analytic singularities. Taking a birational resolution, we may
further assume that they have analytic singularities along some normal crossing divisors. By Remark 5.1,
we reduce to the case without singularities, in which case the result is well-known; see for example
[45, Proof of Corollary 4.12].

Theorem 5.14 Let '; 2 PSH.X; �/>0. Then for any t 2 .0; 1/,

(5-13) �.�; t'C .1� t/ /� t�.�; '/C .1� t/�.�;  /:

Proof We may assume that t is rational as a consequence of Theorem 5.9. Similarly, by [33, Theorem 3.8],
we could reduce to the case where both ' and  have analytic singularities. Taking a resolution, we may
assume that ' (resp.  ) has analytic singularities along a normal crossing Q-divisor E (resp. E0). In this
case, let N > 0 be an integer such that N t is an integer. Then for any s 2W 0

k
.�; '/ and r 2W 0

k
.�;  /,

we have
.st r1�t /N 2W 0

N k.�; t'C .1� t/ /:

By Theorem 3.8, (5-13) follows.

Proposition 5.15 For any integer a> 0,

�.a�; a'/D a�.�; '/:

Proof By Theorem 5.9, it suffices to treat the case where ' has analytic singularities. Taking a birational
resolution, we may assume that ' has analytic singularities along a normal crossing Q-divisor E. By
Remark 5.1, we reduce to the case without the singularity ', which is already proved in [45].

In particular, if T is a closed positive .1; 1/-current on X with
R
X T n > 0 and such that the cohomology

class of T lies in the Néron–Severi group with rational coefficients, then we can define�.T / as a�1�.aT /

for a sufficiently divisible positive integer a.
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We also need the following perturbation. Let A be an ample line bundle on X. Fix a smooth Hermitian
metric hA on A such that ! WD c1.A; hA/ is a Kähler form on X. Then for any ı 2Q>0, we can define

�.� C ı!; '/ WD�.� C ı!C ddc'/D C�1�.C� CCı!;C'/;

where C 2N>0 is any integer so that Cı 2N.

Proposition 5.16 Under the above assumptions , as ı 2Q>0 decreases to 0, �.� C ı!; '/ is decreasing
under inclusion with Hausdorff limit �.�; '/.

Proof Let 0� ı < ı0 be two rational numbers. Take C 2N>0 divisible enough, so that Cı and Cı0 are
both integers. Then by Proposition 5.13,

�.C� CCı!;C'/��.C� CCı0!;C'/:

It follows that
�.� C ı!; '/��.� C ı0!; '/:

On the other hand,

vol�.� C ı!; '/D
1

n!

Z
X

.� C ı!/n
P�Cı! Œ'�I

D
1

n!

Z
X

.� C ı!/n
P� Œ'�I

;

where we applied Corollary 4.4. As ı! 0C, the right-hand side converges to

vol�.�; '/D
1

n!

Z
X

�n
P� Œ'�I

:

It follows that
�.�; '/D

\
ı2Q>0

�.� C ı!; '/:

5.3 The Hausdorff convergence property of partial Okounkov bodies

For each k 2 Z>0, we introduce

�k.�; '/ WD Convfk�1�.f / j f 2 H0.X;Lk
˝ I.k'//�g �Rn:

Here Conv denotes the convex hull. The convex hull is a polytope if it is nonempty by [45, Lemma 1.4].
For large enough �k.�; '/ is nonempty thanks to Theorem 2.19.

For later use, we introduce a twisted version as well. If T is a holomorphic line bundle on X, we introduce

�k;T .�; '/ WD Convfk�1�.f / j f 2 H0.X;T ˝Lk
˝ I.k'//�g �Rn:

We also write
�k;T .L/ WD Convfk�1�.f / j f 2 H0.X;T ˝Lk/�g �Rn;

�k.L/ WD Convfk�1�.f / j f 2 H0.X;Lk/�g �Rn:

We write I1.'/D I1.�/ for the ideal sheaf on X locally consisting of holomorphic functions f such
that jf j� is locally bounded.
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The main result is the following:

Theorem 5.17 (Hausdorff convergence property) Let T be a holomorphic line bundle on X. As k!1,
we have �k;T .�; '/

dn
�!�.�; '/.

Although we are only interested in the untwisted case, the proof given below requires twisted case.

We first extend Theorem 3.8 to the twisted case.

Proposition 5.18 For any holomorphic line bundle T on X,

�k;T .L/
dn
�!�.L/ as k!1:

Proof As L is big, we can take k0 2 Z>0 so that

(1) T �1˝Lk0 admits a nonzero global holomorphic section s0,

(2) T ˝Lk0 admits a nonzero global holomorphic section s1.

Then for k 2 Z>k0
, we have injective linear maps

H0.X;Lk�k0/
�s1
��! H0.X;T ˝Lk/

�s0
��! H0.X;LkCk0/:

It follows that

.k � k0/�k�k0
.L/C �.s1/� k�k;T .L/� .kC k0/�kCk0

.L/� �.s0/:

By Theorem 3.8, we conclude.

Lemma 5.19 Let T be a holomorphic line bundle on X. Assume that ' has analytic singularities and
�' is a Kähler current. Then as k!1,

�k;T .�; '/
dn
�!�.�; '/:

Proof Up to replacing X by a birational model and twisting T accordingly, we may assume that ' has
analytic singularities along a normal crossing Q-divisor D; cf Proposition 5.11. Take � 2 .0; 1/\Q. In
this case, as in (5-5), for large enough k 2 Z>0 we have

H0.X;T ˝Lk
˝ I1.k'//� H0.X;T ˝Lk

˝ I.k'//� H0.X;T ˝Lk
˝ I1.k.1� �/'//:

Take an integer N 2 Z>0 so that ND is a divisor and N� is an integer.

Let�0 be the limit of a subsequence of .�k;T .�; '//k , say the sequence defined by the indices k1; k2; : : : .
We want to show that �0 D�.�; '/.

There exists t 2 f0; 1; : : : ;N � 1g such that ki � t modulo N for infinitely many i , up to replacing ki by
a subsequence, we may assume that ki � t modulo N for all i . Write ki DNgi C t . Then

H0.X;T ˝L�NCt
˝LN.giC1/

˝ I1.N.gi C 1/'//� H0.X;T ˝Lki ˝ I.ki'//

� H0.X;T ˝Lt
˝LNgi ˝ I1.giN.1� �/'//:
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So

.gi C 1/�giC1;T˝L�NCt .NL�ND/CN.gi C 1/�.D/

� .Ngi C t/�k;T .�; '/� gi�gi ;T˝Lt .NL�N.1� �/D/CNgi.1� �/�.D/:

Letting i !1, by Proposition 5.18,

�.L�D/C �.D/��0 ��.L� .1� �/D/C .1� �/�.D/:

Letting �! 0C, we find that
�.L�D/C �.D/D�0:

It follows from Theorem 2.2 that

�k;T .�; '/
dn
�!�.L�D/C �.D/D�.�; '/ as k!1:

Lemma 5.20 Assume that �' is a Kähler current. Then as ˇ! 0C with ˇ 2Q, we have

�..1�ˇ/�; '/!�.�; '/:

Proof By Proposition 5.13, we have

�..1�ˇ/�; '/Cˇ�.L/��.�; '/:

In particular, if �0 is a limit of a subsequence of .�..1�ˇ/�; '//ˇ, then

�0 ��.�; '/:

But

vol�0 D lim
ˇ!0C

�..1�ˇ/�; '/D lim
ˇ!0C

Z
X

..1�ˇ/� C ddcP .1�ˇ/� Œ'�I/
n
D

Z
X

.� C ddcP � Œ'�I/
n;

where the last step follows easily from [56, Theorem 0.6]. It follows that �0 D�.�; '/. We conclude by
Theorem 2.2.

Proof of Theorem 5.17 Fix a Kähler form ! � � on X.

Step 1 We first handle the case where �' is a Kähler current, say �' � ˇ0! for some ˇ0 2 .0; 1/.

Take a decreasing quasi-equisingular approximation 'j of '. Up to replacing ˇ0 by ˇ0=2, we may assume
that �'j � ˇ0! for all j � 1.

Let �0 be a limit of a subsequence of .�k;T .�; '//k . Let us say the indices of the subsequence are
k1 < k2 < � � � . By Theorem 2.2, it suffices to show that �0 D�.�; '/.

As Œ'�� Œ'j � for each j � 1, we have �0 ��.�; 'j / by Lemma 5.19. Letting j !1, we find

�0 ��.�; '/:

In particular, it suffices to prove that

vol�0 � vol�.�; '/:
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Take ˇ 2 .0; ˇ0/\Q. Write ˇ D p=q with p; q 2 Z>0. Observe that for any j � 1,

�'j � ˇ! � ˇ�:

Namely, 'j 2PSH.X; .1�ˇ/�/. Similarly, '2PSH.X; .1�ˇ/�/. By Lemma 5.20, it suffices to argue that

(5-14) vol�0 � vol�..1�ˇ/�; '/:

For this purpose, we are free to replace the ki by a subsequence, so we may assume that ki � a modulo q

for all i � 1, where a 2 f0; 1; : : : ; q� 1g. We write ki D giqC a. Observe that for each i � 1,

H0.X;T ˝Lki ˝ I.ki'//� H0.X;T ˝L�qCa
˝Lgi qCq

˝ I..giqC q/'//:

Up to replacing T by T ˝L�qCa, we may therefore assume that aD 0.

By [33, Lemma 4.2], we can find k 0 2Z>0 such that for all k � k 0, there is a vˇ;k 2 PSH.X; �/ such that

(1) P Œ'�I � .1�ˇ/'k Cˇvˇ;k ,

(2) vˇ;k has positive mass.

Fix k � k 0. It suffices to show that

(5-15) �..1�ˇ/�; 'k/C v
0
��0

for some v0 2Rn. In fact, if this is true, we have

vol�0 � vol�..1�ˇ/�; 'k/:

Letting k!1 and applying Theorem 5.9, we conclude (5-14).

It remains to prove (5-15). We will fix k � k 0. Let � W Y ! X be a log resolution of the singularities
of 'k . By the proof of [33, Proposition 4.3], there is j0 D j0.ˇ; k/ 2 Z>0 such that for any j � j0, we
can find a nonzero section sj 2 H0.Y; ��Lpj ˝ I.jp��vˇ;k// such that we get an injective linear map

H0.Y; ��T ˝KY=X ˝�
�L.q�p/j

˝ I.j q��'k//
�sj
��! H0.X;T ˝Ljq

˝ I.j q'//:

In particular, when j D ki for some i large enough, we then find

�ki ;��T˝KY=X
..1�ˇ/q���; q��'k/C .ki/

�1�.ski
/� q�ki ;T .�; '/:

We observe that .ki/
�1�.ski

/ is bounded as both convex bodies appearing in this equation are bounded
when i varies. Then by Lemma 5.19, there is a vector v0 2Rn such that

�..1�ˇ/���; ��'k/C v
0
��0:

By Proposition 5.11, we find (5-15).

Step 2 Next we handle the general case.

Let �0 be the limit of a subsequence of .�k;T .�; '//k , say the subsequence with indices k1 < k2 < � � � .
By Theorem 2.2, it suffices to prove that �0 D�.�; '/.
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Take  2 PSH.X; �/ such that

(1) � is a Kähler current,

(2)  � '.

The existence of  is proved in [33, Proposition 3.6].

Then for any � 2Q\ .0; 1/,

�k;T .�; '/��k;T .�; .1� �/'C � /

for all k. It follows from Step 1 that

�0 ��.�; .1� �/'C � /:

Letting �! 0 and applying Theorem 5.9, we have �0 ��.�; '/. It remains to establish that

(5-16) vol�0 � vol�.�; '/:

For this purpose, we are free to replace k1 < k2 < � � � by a subsequence. Fix q > 0, we may then assume
that ki � a modulo q for all i � 1 for some a 2 f0; 1; : : : ; q� 1g. We write ki D giqC a. Observe that

H0.X;T ˝Lki ˝ I.ki'//� H0.X;T ˝La
˝Lgi q

˝ I.giq'//:

Up to replacing T by T ˝La, we may assume that aD 0.

Take a very ample line bundle H on X and fix a Kähler form ! 2 c1.H /, and take a nonzero section
s 2 H0.X;H /.

We have an injective linear map

H0.X;T ˝Ljq
˝ I.j q'//

�sj
�! H0.X;T ˝H j

˝Ljq
˝ I.j q'//

for each j � 1. In particular, for each i � 1,

ki�ki ;T .q�; q'/C ki�.s/� ki�ki ;T .!C q�; q'/:

Letting i !1, by Step 1, we have

q�0C �.s/��.!C q�; q'/:

So

vol�0 � vol�.q�1!C �; '/D

Z
X

.q�1!C � C ddcPq�1!C� Œ'�I/
n:

By Corollary 4.4,

vol�0 �
Z

X

.q�1!C � C ddcP � Œ'�I/
n:

Letting q!1, we conclude (5-16).

Geometry & Topology, Volume 29 (2025)



Partial Okounkov bodies and Duistermaat–Heckman measures of non-Archimedean metrics 1317

Theorem 5.21 The Okounkov body �.L; �/ is independent of the choice of a very general flag in a
family of admissible flags.

Proof By Theorem 5.17, it suffices to show that �k.W .�; '// is independent of the choice of a very
general flag. For this purpose, we may assume that k D 1.

Let T be an irreducible component of the moduli space of admissible flags. Let

X �T D Y0 � � � � � Yn

be the universal flag. The Hermitian line bundle .L; �/ pulls back to .L; ˆ/ on X � T . We denote
quantities at the fiber at t 2 T by a subindex t .

We claim that for each � 2Nn, there is a proper Zariski closed set †� T , so that

dim H0.Xt ;Lt ˝ I.�t //
��

are constants for t 2 T n†, where H0.Xt ;Lt ˝I.�t //
�� is the space of sections in H0.Xt ;Lt ˝I.�t //

with valuations no less than � .

Let L�� be the coherent subsheaf of L introduced in [45, Remark 1.6]. After possibly shrinking T , we
may guarantee that L�� ˝ I.ˆ/ is flat over T . By further shrinking T , we may guarantee that

t 7! dim H0
�
Xt ; .L�� ˝ I.ˆ//jXt

�
is constant. Observe that

.L�� ˝ I.ˆ//jXt
ŠL��t ˝ I.�/:

Thus, our claim follows.

From this claim, it follows that the images of �k.W .L; �// are independent of the choice of a very
general flag .Y�/ as [45, Proof of Theorem 5.1]. Thus, �.W .L; �// is independent of the choice of a
very general flag.

5.4 Recover Lelong numbers from partial Okounkov bodies

Lemma 5.22 Let ' 2 PSH.X; �/ be such that �' is a Kähler current. Let 'j be a quasi-equisingular
approximation of '. Then �.'j ;E/! �.';E/ for any prime divisor E over X.

This result is essentially [55, Lemma 2.2], proved under slightly different assumptions. We reproduce the
argument for the convenience of the readers.

Proof Fix k 2Z>0, ı 2Q>0, take j0 > 0, so that when j > j0, I..1C ı/k'j /� I.k'/. When j > j0,
we get

1

k
ordE.I.k'//�

1

k
ordE.I..1C ı/k'j //:

By Fekete’s lemma,

�.'j ;E/D sup
k2Z>0

1

k
ordE.I.k'j //:
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So
1

k
ordE.I.k'//� .1C ı/�.'j ;E/:

Take sup with respect to k 2 Z>0, we get

�.';E/� .1C ı/�.'j ;E/:

Letting j !1 and then ı! 0C, we get

�.';E/� lim
j!1

�.'j ;E/:

The reverse inequality is trivial.

Theorem 5.23 Let E be a prime divisor on X. Let .Y�/ be an admissible flag with E D Y1. Then

(5-17) �.';E/D min
x2�.�;'/

x1:

Here x1 denotes the first component of x. The generic Lelong number �.';E/ means the minimum of
�.';x/ for various x 2E.

Proof We first reduce to the case where �' is a Kähler current. Let  � ', � is a Kähler current. Then
by (5-17) applied to '� WD .1� �/'C � , we have

�.'�;E/D min
x2�.�;'�/

x1:

Letting �! 0C using Theorem 5.9, we conclude (5-17).

Similarly, taking a quasi-equisingular approximation of ' and applying Lemma 5.22, we easily reduce
to the case where ' also has analytic singularities. Replacing X by a birational model, we may assume
that ' has analytic singularities along a simple normal crossing Q-divisor F . Perturbing L by an ample
Q-line bundle by Proposition 5.16, we may assume that �' is a Kähler current. Finally, by rescaling, we
may assume that F is a divisor and L is a line bundle and L�F is ample by [55, Lemma 2.4]. In fact,
since �' is a Kähler current, the same holds for �' � �!, where ! is a Hodge form lying in c1.A/ for
some ample line bundle A on X and � > 0 is a small enough rational number. By [55, Lemma 2.4], we
deduce that L�F � �A is nef and big and hence L�F is ample.

By Theorem 5.17, we know that

min
x2�.�;'/

x1 D lim
k!1

min
x2�k.�;'/

x1:

By definition,
min

x2�k.�;'/
x1 D k�1 ordE H0.X;Lk

˝ I.k'//:

It remains to show that

(5-18) lim
k!1

k�1 ordE H0.X;Lk
˝ I.k'//D lim

k!1
k�1 ordE I.k'/:
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The � direction is trivial, we prove the converse. Observe that

H0.X;Lk
˝ I.k'//D H0.X;Lk

˝OX .�kF //; I.k'/DO.�kF /:

As L�F is ample, for large enough k, we have

ordE H0.X;Lk
˝OX .�kF //D ordE.kF /:

Thus, (5-18) is clear.

Corollary 5.24 Let '; 2 PSH.X; �/>0. If

�.���; ��'/��.���; �� /

for all birational models � W Y !X and all admissible flags on Y, then ' �I  .

Proof In view of Theorem 5.23, the assumption implies the following: for any prime divisor E over X,
we have �.';E/ � �. ;E/. This implies ' �I  : take a birational model � W Y ! X and y 2 Y, we
need to show that �.��';y/� �.�� ;y/. Let E be the exceptional divisor of the blowup of Y at fyg.
As explained in [8, Corollaire 1.1.8], we have �.��';y/ D �.';E/ and �.�� ;y/ D �. ;E/. Our
assertion follows.

In particular, Theorem B is proved. This corollary is similar to [41]. It suggests that �.�; '/ is a universal
invariant of the singularities of '.

Corollary 5.24 has a reminiscence of [14]: in order to understand plurisubharmonic singularities, we need
to consider all birational models of our variety at the same time.

Theorem 5.23 can be regarded as a generalization of the following (slightly generalized form of the)
classical result proved by Boucksom; see [9, Theorem 5.4].

Corollary 5.25 Let E be a prime divisor over X. Then

(5-19) �.V� ;E/D lim
k!1

1

k
ordE H0.X;Lk/:

Proof This follows from Theorem 5.23 and the fact that �.�;V� /D�.L/.

We write
ordE kLk WD lim

k!1

1

k
ordE H0.X;Lk/:

Corollary 5.26 We have

I.V� /D ff 2OX j 9 � > 0 such that ordE.f /� .1C �/ ordE kLk�AX .E/8 primes E over X g;

where AX .E/ is the log discrepancy of E over X.

Proof This follows from [10, Corollary 10.17] and Corollary 5.25.
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5.5 Okounkov bodies induced by filtrations

Assume that L is ample.

Definition 5.27 A multiplicative filtration on R.X;L/ is a decreasing, left continuous, multiplicative
R-filtration F � on the ring R.X;L/, which is linearly bounded in the sense that there is C > 0 such that

F�k�H0.X;Lk/D H0.X;Lk/ and Fk�H0.X;Lk/D 0 when � > C:

A multiplicative filtration F is called a multiplicative Z-filtration if F� DF b�c for any � 2R.

A multiplicative Z-filtration F is called finitely generated if the bigraded algebraM
�2Z;k2Z�0

F�H0.X;Lk/

is finitely generated over C.

Let F � be a multiplicative filtration on R.X;L/. Then we can associate a test curve  � as in [49; 55]:

(5-20)  � WD sup�
k2Z>0

k�1 sup�
˚
log jsj2

hk

ˇ̌
s 2Fk�H0.X;Lk/; sup

X

jsjhk � 1
	
:

Here sup� denotes the upper-semicontinuous regularized supremum. By [32, Theorem 3.11],  � is
I-model or �1 for each � 2R.

Theorem 5.28 Let F � be a finitely generated multiplicative Z-filtration on R.X;L/. Let  � be the test
curve associated with F . For any � < �C,

�

� 1M
kD0

Fk�H0.X;Lk/

�
D�.�;  � /:

Proof Observe that Fk�H0.X;Lk/� H0.X;Lk ˝ I.k � // for any k 2N. Thus, by Corollary 3.15,

�

� 1M
kD0

Fk�H0.X;Lk/

�
��.�;  � /:

On the other hand, the two sides have the same volume by [55, Lemma 4.5]. Thus, equality holds.

5.6 Limit partial Okounkov bodies

Let ' 2 PSH.X; �/, not necessarily of positive volume. Take an ample effective divisor H on X and a
Kähler form ! 2 c1.H /. Then we just set

�.�; '/ WD
\

�2Q>0

�.� C �!; '/:

Clearly, this definition does not depend on the choice of H and !. As in [22], we cannot expect
�.�; '/ to be continuous along decreasing sequences of '. Note that Theorem 5.23, Corollary 5.24 and
Proposition 5.8 extend to this setup without changes.
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Conjecture 5.29 Under the above assumptions ,

dim�.�; '/D nd.�; '/:

For the definition of the analytic numerical dimension nd.�; '/, we refer to [19, Definition 4].

We expect this conjecture to follow from the arguments in [22] together with the numerical criterion of [19].

6 Chebyshev transform

Let X be an irreducible smooth complex projective variety of dimension n and L be a big line bundle
on X. Let h be a fixed smooth Hermitian metric on L and � D c1.L; h/. Consider a singular positive
Hermitian metric � on L corresponding to ' 2 PSH.X; �/. Assume that

R
X �n

P Œ'�I
> 0.

Let v 2 C 0.X / corresponding to a continuous metric he�v=2 on L. We do not distinguish v and he�v=2.
Fix a valuation � D .�1; : : : ; �n/ W C.X /�! Zn of rank n. Assume that � is defined by an admissible
flag .Y�/ on X.

The whole section is devoted to the proof of Theorem C. Our results are direct extensions of the results of
Witt Nyström [52]. The latter is motivated by [57].

6.1 Equilibrium energy

Let E1.X; � IP Œ'�I/ denote the set of  2 PSH.X; �/ such that  and P Œ'�I have the same singularity
types.

Let E�
Œ'�
W E1.X; � IP Œ'�I/!R be the relative Monge–Ampère energy:

E�
Œ'�. / WD

1

nC 1

nX
iD0

Z
X

. �P Œ'�I/ �
i
 ^ �

n�i
P Œ'�I

:

Define the equilibrium energy E�
Œ'�
W C 0.X /!R:

(6-1) E�Œ'�.v/ WDE�
Œ'�.P Œ'�I.v//:

Here
P Œ'�I.v/D sup�f� 2 PSH.X; �/ j �� v; ��I 'g:

Note that this definition is different from the energy defined in [33], so we choose a different notation.

Theorem 6.1 The Gateaux differential of E�
Œ'�

at v 2 C 0.X / is given by �n
P Œ'�I.v/

. In other words , for

any f 2 C 0.X /,

(6-2) d
dt

ˇ̌̌
tD0

E�Œ'�.vC tf /D

Z
X

f �n
P Œ'�I.v/

:

Proof This is not exactly [33, Proposition 5.10] because we are using P Œ � �I projections instead of P Œ � �

projections, but the proofs are identical.
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The metric he�v=2 induces an L1-type norm k � kL1.kv/ on H0.X;Lk ˝ I.k'//:

kskL1.kv/ WD sup
X

jsjhk e�kv=2:

In particular, det k � kL1.kv/ is a Hermitian metric on det H0.X;Lk ˝ I.k'//.

Theorem 6.2 Let v; v0 2 C 0.X /. Then

(6-3) lim
k!1

n!

knC1
log
�

det k � kL1.kv/
det k � kL1.kv0/

�
D E�Œ'�.v/� E�Œ'�.v

0/:

Remark 6.3 When ' D V� , the left-hand side of (6-3) is known as the relative volume between the two
metrics he�v=2 and he�v

0=2. They are studied in detail in [6].

This theorem partially generalizes [4, Theorem A]. We remind the readers that our conventions of
multiplier ideal sheaves are different from those in [4] and [6], which explains the difference between our
coefficients and theirs.

For the definition of the Bernstein–Markov property, see [4, Definition 2.3].

Proof We may assume that v0 D 0. Let � be a smooth volume form on X. Then recall that � satisfies the
Bernstein–Markov property with respect to tv for all t 2 Œ0; 1�; see [4, Theorem 2.4]. We may replace the
L1-norm on the left-hand side with the L2.�/-norm by [33, Lemma 6.5]. We recall the definition of the
partial Bergman kernel:

Bk
tv;';�.x/ WD sup

�
jsj2

hk e�kv.x/
ˇ̌̌ Z

X

jsj2
hk e�tv

� 1; s 2 H0.X;Lk
˝ I.k'//

�
;

ˇk
tv;';� WD

n!

kn
Bk

tv;';� d�;

where k 2 Z>0.

By [33, Theorem 1.2],
ˇk

tv;';�*�n
PX Œ'�I.tv/

as k!1 for all t 2 Œ0; 1�. By the dominated convergence theorem,

lim
k!1

Z 1

0

Z
X

v ˇk
tv;';� dt D

Z 1

0

Z
X

v �n
PX Œ'�I.tv/

dt;

and (6-3) follows.

Proposition 6.4 Let '2PSH.X; �/ such that �' is a Kähler current. Let .'j /j2N be a quasi-equisingular
approximation of '. Then

(6-4) lim
j!1

E�
Œ'j �

.v/D E�Œ'�.v/:

Geometry & Topology, Volume 29 (2025)



Partial Okounkov bodies and Duistermaat–Heckman measures of non-Archimedean metrics 1323

Proof By Theorem 6.1, for j 2N,

E�
Œ'j �

.v/D

Z 1

0

Z
X

v �n
P Œ'j �I.tv/

dt and E�Œ'�.v/D
Z 1

0

Z
X

v �n
P Œ'�I.tv/

dt:

It follows from [33, Proposition 3.3] and [26, Theorem 1.2] that as j !1,

�n
P Œ'j �I.tv/

*�n
P Œ'�I.tv/

:

By the dominated convergence theorem, (6-4) follows.

Proposition 6.5 Let '; 2 PSH.X; �/. Assume that  � '. Set '� D .1� �/'C � for any � 2 Œ0; 1�.
Then

(6-5) lim
�!0C

E�Œ'��.v/D E�Œ'�.v/:

Proof The proof is similar to that of Proposition 6.4. We just replace [33, Proposition 3.3] by
[33, Proposition 2.7].

We finally recall a technical lemma.

Lemma 6.6 [52, Corollary 3.4] Let C �RnC1 be an open convex cone. Let F be a subadditive function
on C \ZnC1 defined outside a compact set. Then for any sequence ˛k 2 C \ZnC1 tending to infinity
such that ˛k=j˛k j converges to some point p 2 C . Then the limit

cŒF �.p/ WD lim
k!1

F.˛k/

j˛k j

exists and depends only on p and F . Moreover , cŒF � is a convex function on C \fxnC1 D 1g.

Here j˛k j denotes the absolute value of the last component of ˛k .

Recall that a real-valued function F defined on a semigroup � is said to be subadditive if for any x;y 2� ,
F.xCy/� F.x/CF.y/.

6.2 The case of analytic singularities

Assume that ' has analytic singularities.

Let � WY !X be a resolution such that ��' has analytic singularity along a normal crossing Q-divisor E.
We define as before

W 0
k D H0.Y; ��Lk

˝OY .�kE//� H0.X;Lk/:

Fix a 2 �k.W
0/. Let p be the center of � on X. Let zD .z1; : : : ; zn/ be a regular sequence in OX ;p such

that .Yi/x is the zero locus of z1; : : : ; zi . Fix a local trivialization of L near p. Define

Aa
k WD fs 2W 0

k j �.s/� ka; s D zka
C higher-order terms near pg:
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Define
F Œv�.ka; k/D inf

s2Aa;k

log jsjL1.kv/:

Recall the following two lemmas proved in [52, Lemmas 5.3 and 5.4].

Lemma 6.7 F Œv� is subadditive on �.W 0/.

Lemma 6.8 There is a C > 0 such that for any .ka; k/ 2 �.W 0/,

F Œv�.ka; k/� C j.ka; k/j:

Proof It suffices to apply [52, Lemma 5.4].

Let cŒ'�Œv� W Int�.�; '/!R be the convex function cŒF Œv�� defined by Lemma 6.6.

Theorem 6.9 We have Z
�.W .�;'//

.cŒ'�Œv�� cŒ'�Œ0�/ d�D�E�Œ'�.v/:

Proof The proof follows verbatim from that of [52, Theorem 6.2], taking into account Theorem 6.2.

Observe that

(6-6) sup
Int�.W .�;'//

jcŒ'�Œv�� cŒ'�Œ0�j �
1
2
kvkC 0.X /:

The following result is obvious:

Lemma 6.10 Let '; '0 2 PSH.X; �/ be potentials with analytic singularities. If Œ'�� Œ'0�, then

cŒ'�Œv�� cŒ'0�Œv�

when restricted to Int�.�; '/.

6.3 The case of Kähler currents

Assume that �' is a Kähler current. Let 'j be a quasi-equisingular approximation of '. Then cŒ'j �Œv�

restricted to Int�.W .�; '// is an increasing sequence. Thus, we can define cŒ'�Œv� W Int�.�; '/!R[f1g

by
cŒ'�Œv� WD lim

j!1
cŒ'j �Œv�:

Lemma 6.11 Let s 2Wk.�; '/, locally written as zka plus higher-order terms near p. Then

cŒ'�Œv�.a/� k�1 log kskL1.kv/:

Proof This follows from the corresponding result for the 'j .
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By convexity, cŒ'�Œv� takes finite values.

It follows that (6-6) still holds in this case. By the dominated convergence theorem, Proposition 6.4 and
the previous case we find Z

�.�;'/

.cŒ'�Œv�� cŒ'�Œ0�/ d�D�E�Œ'�.v/:

It follows from Lemma 6.10 that our definition of cŒ'�.v/ is independent of the choice of 'j .

Lemma 6.12 Let '; '0 2 PSH.X; �/ be potentials such that �' and �'0 are both Kähler currents. If
Œ'��I Œ'

0�, then

cŒ'�Œv�� cŒ'0�Œv�

when restricted to Int�.�; '/.

Proof This follows from Lemma 6.10.

6.4 General case

Let ' 2 PSH.X; �/ such that
R
X �n

P Œ'�I
> 0. We may replace ' with P Œ'�I and therefore assume that the

nonpluripolar mass of ' is positive.

Let � 2 PSH.X; �/ be a potential so that �� is a Kähler current and � � '. The existence of such � is
guaranteed by [33, Proposition 3.6]. Define '� WD .1� �/'C ��. Then we define

cŒ'�Œv� W Int�.�; '/!R[f�1g; cŒ'�Œv� WD lim
�!0C

cŒ'��Œv�:

This is a decreasing limit by Lemma 6.12. On the other hand, cŒ'�Œv�� cŒV� �Œv�, the latter is finite by [52].
Thus, cŒ'�Œv� is real-valued. Inequality (6-6) extends to this situation. By the dominated convergence
theorem and Proposition 6.5 again,Z

�.�;'/

.cŒ'�Œv�� cŒ'�Œ0�/ d�D�E�Œ'�.v/:

We do not know if cŒ'�Œv� is independent of the choice of �.

7 A generalization of Boucksom–Chen theorem

In this section, let X be an irreducible smooth projective variety of dimension n. Let L be a big line
bundle on X. Take a smooth Hermitian metric h on L with � D c1.L; h/.

Fix a rank n valuation � WC.X /�! Zn.
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7.1 The theory of test curves

Let V D hLni.

Definition 7.1 We define a test curve (of finite energy) with respect to .X; �/ to be a map  D  � WR!
PSH.X; �/[f�1g such that

(1)  � is concave in � ,

(2)  � is a model potential or �1 for any � ,

(3)  is usc as a function in the R-variable,

(4) lim�!�1  � D V� in L1,

(5)  � D�1 for � large enough,

(6)  satisfies

(7-1) E. �/ WD �CV C

Z �C

�1

�Z
X

�n
 �
�V

�
d� > �1:

Here �C WD inff� 2 R j  � D �1g. The set of test curves of finite energy with respect to .X; �/ is
denoted by T C1.X; �/. We say  is normalized if �C D 0. The test curve is called bounded if  � D V�

for � small enough. Let �� WD supf� 2 R j  � D V�g in this case. The set of bounded test curves is
denoted by T C1.X; �/.

We say a test curve is I-model if  � is I-model for each � < �C. The set of I-model test curves is denoted
by T C1

I.X; �/.

7.2 Okounkov test curves

Let � 2 Kn. Assume that V D n! vol�> 0.

Definition 7.2 An Okounkov test curve relative to � is an assignment .�� /���C for �C 2R such that:

(1) �� is a decreasing assignment of convex bodies in Rn for � � �C.

(2) �� converges to � as � !�1 with respect to the Hausdorff metric (cf Section 2.1).

(3) �� is concave in the � variable.

(4) The energy is finite:

E.��/ WD �CV CV

Z �C

�1

�
n!

V
vol�� � 1

�
d� > �1:

(5) Continuity holds at �C:
��C D

\
�<�C

�� :

Proposition 7.3 Any Okounkov test curve .�� /���C relative to � is continuous for � < �C.
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Proof We first claim that vol�� 0 > 0 for all � 0 < �C. By condition (2) and Theorem 2.3, we know
that vol�� 00 > 0 when � 00 is small enough. Fix one such � 00. Any � 0 < �C can be written as a convex
combination of �C and � 00, thus �� 0 has positive volume by condition (3).

Next we claim that vol�� is continuous for � <�C. In fact, by condition (3) and the Minkowski inequality,
we know that log vol�� is concave for � < �C. The continuity follows.

Next we show that
�� D

\
� 0<�

�� 0 :

The � direction is obvious. By the continuity of the volume, both sides have the same volume and the
volume is positive, hence, equality holds by Lemma 2.5.

Similarly, we have
�� D

[
� 0>�

�� 0 :

The continuity of �� at � < �C is proved.

Definition 7.4 A test function on � is a function F W�! Œ�1;1/ such that:

(1) F is concave.

(2) F is finite on Int�.

(3) F is usc.

(4) The energy is finite:

(7-2) E.F / WD n!

Z
�

F d� > �1:

Let �C D sup� F . Then

(7-3) E.F /D �CV CV

Z �C

�1

�
n!

V
volfF � �g� 1

�
d�:

Let �� be an Okounkov test curve relative to �. We define the Legendre transform of �� as

GŒ��� W�! Œ�1;1/; a 7! supf� < �C j a 2��g:

Conversely, a test function F on �, set �C D sup� F . We define the inverse Legendre transform of F as

�ŒF � W .�1; �C�! Kn; �ŒF �� D fF � �g:

Theorem 7.5 The Legendre transform and inverse Legendre transform are inverse to each other , defining
a bijection between the set of Okounkov test curves relative to � and test functions on �. Moreover , if
�� is an Okounkov test curve relative to �, then

(7-4) E.��/D E .GŒ���/ :

Proof Let �� be an Okounkov test curve relative to �. We prove that GŒ��� is a test function on �.
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Firstly GŒ��� is concave by condition (1) and condition (3) in Definition 7.2. More precisely, take a; b 2�.
We want to prove that for any t 2 .0; 1/,

(7-5) GŒ���.taC .1� t/b/� tGŒ���.a/C .1� t/GŒ���.b/:

There is nothing to prove if GŒ���.a/ or GŒ���.b/ is �1. So we assume that both are finite. Take � > 0,
then a 2�GŒ���.a/�� and b 2�GŒ���.b/��. Thus,

taC .1� t/b 2 t�GŒ���.a/��C .1� t/�GŒ���.b/�� ��tGŒ���.a/C.1�t/GŒ���.b/��:

We deduce that
GŒ���.taC .1� t/b/� tGŒ���.a/C .1� t/GŒ���.b/� �:

Since � > 0 is arbitrary, (7-5) follows.

Next GŒ��� is finite on Int� by condition (2). In fact, as�� is increasing and converges to� as �!�1,
we have

�D
[
�

�� :

Hence, by [50, Theorem 1.1.15] and the assumption that vol�> 0,
S
� �� contains Int�.

Thirdly, we show that GŒ��� is usc. Let ai 2� with ai! a 2�. Define �i DGŒ���.ai/. Let � D limi �i .
We need to show that

(7-6) GŒ���.a/� �:

There is nothing to prove if � D�1. We assume that it is not this case. Up to subtracting a subsequence
we may assume that �i ! � . In particular, we can assume that �i ¤ �1 for all i . Fix � > 0, then
ai 2��i�� . Observe that ��i��

dn
�!���� . By Theorem 2.4 it follows that a 2���� . Thus, (7-6) follows

since � > 0 is arbitrary.

Finally, (7-4) follows from (7-3), and it follows that E.GŒ���/ > �1.

Conversely, if F W�! Œ�1;1/ is a test function on �. Let �ŒF � be the inverse Legendre transform
of F . Then one can similarly show that �ŒF � is an Okounkov test curve.

Firstly, for each � < �C WD sup� F , �ŒF �.�/ is a convex body as F is concave and usc. Moreover, �ŒF ��
is clearly decreasing in � . Hence, �ŒF ��C is also a convex body.

Secondly, for each a 2 �, we can write a D limi ai with ai 2 Int�. By assumption, F is finite at ai .
Thus,

a 2 fF > �1g D
[
�

�ŒF �� :

By Theorem 2.4, �ŒF ��
dn
�!� as � !�1.

Thirdly, �ŒF � is concave. To see, take �; � 0 � �C, we need to prove that for any t 2 .0; 1/,

(7-7) �ŒF �t�C.1�t/� 0 � t�ŒF �� C .1� t/�ŒF �� 0 :
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Let a 2�ŒF �� and b 2�ŒF �� 0 . We have F.a/� � and F.b/� � 0. F is concave, so F.taC .1� t/b/�

t� C .1� t/� 0. Thus,
taC .1� t/b 2�ŒF �t�C.1�t/� 0

and (7-7) follows.

Fourthly, (7-2) follows immediately from (7-3).

Finally, we show that �ŒF �� is continuous at �C. This amounts to

fF � �Cg D
\
�<�C

fF � �g;

which is obvious.

To see that these two operations are inverse to each other, observe that by definition for any Okounkov
test curve ��, any a 2� and any � � �C, one has GŒ���.a/� � if and only if a 2���� for any � > 0.
By Proposition 7.3, this happens if and only if a 2�� , that is,

fGŒ���� �g D�� :

Conversely, for any test function F W�! Œ�1;1/, any � � �C, by definition,

fF � �g D�ŒF �� :

Definition 7.6 Let �� be an Okounkov test curve relative to �. We define the Duistermaat–Heckman
measure DH.��/ as

DH.��/ WDGŒ����.d�/:

It is a Radon measure on R.

Observe that

(7-8)
Z

R
DH.��/D vol�:

7.3 Boucksom–Chen theorem

Let  � 2 T C1
I.X; �/. Let �C D inff� 2R j  � D�1g.

Lemma 7.7 The curve

�Œ ��� WD

�
�.�;  � / if � < �C;T
� 0<�C �Œ ��� 0 if � D �C;

is an Okounkov test curve relative to �.L/. Moreover ,

(7-9) E. �/D E.�Œ ���/:

Proof We verify the conditions in Definition 7.2. condition (1) follows from Proposition 5.8. Condition (2)
follows from the fact that

lim
�!�1

vol�� D vol�:

Geometry & Topology, Volume 29 (2025)



1330 Mingchen Xia

Condition (3) follows from Theorem 5.14 and Proposition 5.8. Condition (4) is a translation of (7-1).
Condition (5) is obvious.

Finally, (7-9) follows from (7-1) and (1-3).

Definition 7.8 Let  � 2 T C1
I.X; �/. Define the Duistermaat–Heckman measure of  � as

DH. �/ WD DH.�Œ ���/:

We write
GŒ ��DGŒ�Œ ���:

Then
DH. �/DGŒ ���.d�/:

Now consider the (not necessarily multiplicative) filtration

Fk
� H0.X;Lk/ WD

�
H0.X;Lk ˝ I.k � // if � < �C;

0 if � � �C:

Let ej .H0.X;Lk/;Fk/ be the jumping numbers of Fk listed in decreasing order. In other words,

ej .H0.X;Lk/;Fk/ WD supf� 2R j dim Fk
� H0.X;Lk/� j g:

Let

�k WD
1

kn

h0.X ;Lk/X
jD1

ıej .H0.X ;Lk/;Fk/:

Theorem 7.9 Let  � 2 T C1
I.X; �/. Then as k!1, the measure �k converges weakly to DH. �/.

As explained in [49; 32; 55], T C1
I.X; �/ is the completion of the space of filtrations, so this theorem

indeed generalizes [11, Theorem A], in the case of full-graded linear series.

Proof It suffices to show the convergence holds as distributions. By our definition, �k is the distributional
derivative of the function

hk.�/ WD

�
k�nh0.X;Lk ˝ I.k � // if � < �C;

0 if � � �C:

On the other hand, DH. �/ is the distributional derivative of h.�/ WD volfGŒ�Œ ���� � �g D vol�� by
the Fubini–Tonelli theorem.

By Theorem 2.19, hk.�/ ! h.�/ for all � ¤ �C. By the dominated convergence theorem hk ! h

in L1
loc.R/. Hence, �k * DH. �/.

Corollary 7.10 For any  � 2 T C1
I.X; �/. The Duistermaat–Heckman measure DH. �/ is independent

of the choice of the valuation �.
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7.4 Applications to non-Archimedean geometry

Assume that L is ample and � is a Kähler form. We write ! D � instead.

Finite-energy geodesic rays Let E1.X; !/ denote the space of !-psh functions with finite energy:

E1.X; !/ WD

�
' 2 PSH.X; !/

ˇ̌̌ Z
X

!n
' D

Z
X

!n;

Z
X

j'j!n
' <1

�
:

See [24] for a detailed introduction. Recall that E1.X; !/ admits a natural metric d1: for '; 2 E1.X; !/,
given by

d1.';  / WD E.'/CE. /� 2E.' ^ /:

Here
' ^ WD sup f� 2 PSH.X; !/ j �� '; ��  g :

In [27, Theorem 2.10], Darvas, Di Nezza and Lu proved that ' ^  2 E1.X; !/. They proved in
[25, Section 3] that d1 is indeed a metric. The Monge–Ampère energy functional E W E1.X; !/!R is
defined as

E.'/D
1

nC 1

nX
iD0

Z
X

' !i
' ^!

n�i :

In this case, let R1.X; !/ denote the set of geodesic rays in E1.X; !/ emanating from 0. For a detailed
study of R1.X; !/, we refer to [30]. Here we only recall the definition of the metric on R1.X; !/. Given
`; `0 2R1.X; !/, we define

d1.`; `
0/ WD lim

t!1

1

t
d1.`t ; `

0
t /:

By [20, Corollary 5.5], t 7! d1.`t ; `
0
t / is convex, guaranteeing the existence of the limit. It is shown

in [30] that .R1.X; !/; d1/ is a complete metric space.

The following notion is introduced in [54]:

Definition 7.11 A rooftop metric space is a triple .E; d;^/: .E; d/ is a metric space and ^WE�E!E

is an associative, commutative binary operator on E satisfying

d.a^ c; b ^ c/� d.a; b/ for any a; b; c 2E:

For `; `0 2R1.X; !/, define `^ `0 as the greatest geodesic in R1.X; !/ that lies below both ` and `0. It
is shown in [54, Theorem 7.6] that ^ is well-defined and .R1.X; !/; d1;^/ is a complete rooftop metric
space.

The energy functional E WR1.X; !/!R is defined as

E.`/ WD E.`1/:
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Recall that we have the following two maps: Given any ` 2R1.X; !/, its inverse Legendre transform is
defined as

ỳ
� WD inf

t�0
.`t � t�/:

Conversely, given any  � 2 T C1.X; !/, we define its Legendre transform by

{ t WD sup
�2R

. � C t�/:

They are inverse to each other, as proved in [32, Theorem 3.7].

Non-Archimedean pluripotential theory Let X an be the Berkovich analytification of X with respect
to the trivial valuation on X and Lan be the analytification of L. See Section 2.7 for a brief introduction.
In the same section, we also recalled the definition of the space E1.Lan/ of non-Archimedean psh metrics
on Lan with finite energy and the energy functional E W E1.Lan/!R.

Next we briefly explain the relation between the non-Archimedean pluripotential theory and the complex
pluripotential theory. Firstly, given a geodesic ray ` 2R1.X; !/, one can associate a non-Archimedean
potential `an 2 E1.Lan/ as in [5, Definition 4.2, Theorem 6.2]. The construction of `an requires the notion
of Gauss extension of valuations, as explained in [5, Section 3.1]. The map

R1.X; !/! E1.Lan/

is surjective but not injective. It admits a canonical section

� W E1.Lan/ ,!R1.X; !/

sending � 2 E1.Lan/ to the maximal element ` 2 E1.Lan/ with `an D �. See [5, Theorem 6.6].

The geodesics lying in the image of � are known as maximal geodesic rays or approximable geodesic rays.
Moreover,

(7-10) E.�.˛//D E.˛/

for any ˛ 2 E1.Lan/; see [5, Corollary 6.7].

Maximal geodesic rays are closely related to test curves:

Theorem 7.12 The Legendre transform is a bijection from T C1
I.X; !/ (resp. T C1.X; !/) to �.E1.Lan//

(resp. R1.X; !/); the inverse is given by the inverse Legendre transform. Further , for any �2T C1.X; !/,

(7-11) E. �/D E. { /:

This is one of the main theorems of [32, Theorems 3.7 and 3.17]. It is based on the previous work [49; 25].
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Duistermaat–Heckman measures The space E1.Lan/ is closely related to the theory of test configura-
tions. For the latter, we refer to [16, Section 2] for a brief introduction. Recall that two test configurations
.X ;L/ and .X 0;L0/ of .X;L/ are said to be equivalent if they can be dominated by a common test
configuration; see [16, Definition 6.1]. There is a natural injection from the set of equivalence classes of
test configurations to E1.Lan/. Moreover, this injection has dense image and E1.Lan/ is the d1-completion
of the space of test configurations (modulo the equivalence relation). These results are explained in detail
in [32, Section 3.2].

Given a test configuration .X ;L/, Witt Nyström [51] constructed a naturally defined Radon measure
DH.X ;L/ on R, called the Duistermaat–Heckman measure. See [16, Section 3.2] for more details. It is
not hard to see from the definition that DH.X ;L/ depends only on the equivalence class of .X ;L/.

In the sequel, we will define the Duistermaat–Heckman measure of an element in E1.Lan/. As the space
E1.Lan/ is the completion of the space of test configurations (modulo the equivalence relation), our
definition can be seen as an extension of Witt Nyström’s results [51].

Definition 7.13 For any ˛ 2 E1.Lan/, define the Duistermaat–Heckman measure of ˛ as

DH.˛/ WD DH.b�.˛//:

We get a map DH W E1.Lan/!M.R/. Here M.R/ denotes the space of Radon measures on R.

For the proof of the next theorem, we need to recall several basic constructions of test curves.

The space T C1.X; !/ is a rooftop metric space. Its rooftop structures .d1;^/ are induced from the
corresponding structures on R1.X; !/.

Corollary 7.14 Let  �; '�; �� 2 T C1.X; !/.

(1) The rooftop operator on T C1.X; !/ is given by

(7-12) . ^'/� D  � ^'� :

It is the maximal element in T C1.X; !/ that lies below both  � and '�. In particular ,

(7-13) d1.. ^ �/�; .' ^ �/�/� d1. �; '�/:

(2) The metric on T C1.X; !/ is given by

(7-14) d1. �; '�/ WD E. �/CE.'�/� 2E.. ^'/�/:

Proof (1) Note that (7-13) is part of our definition of a rooftop structure.

Observe that the bijection T C1.X; !/!R1.X; !/ is order-preserving. In order to prove our claim, it
suffices to show that .' ^ /� defined by (7-12) is indeed in T C1.X; !/, which is obvious.

(2) This follows simply from (1) and (7-11).
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If '�;  � 2 T C1
I.X; !/, then . ^ '/� 2 T C1

I.X; !/ as well. This follows from the simple observation
that the rooftop of two I-model potentials is still I-model. Now the d1 metric on T C1.X; !/ restricts to
a metric d1 on T C1

I.X; !/. The rooftop structure also restricts to a rooftop structure on T C1
I.X; !/.

We need the following constructions on test curves:

(1) Increasing limit Let  ˛
�
2 T C1.X; !/ be an increasing net. Assume that �C

 ˛
is bounded from

above. Define
z � WD C

�
sup�
˛
 ˛�
�
:

Let �C D inff� j z � D�1g. We define

 � D

�
z � if � ¤ �C;
lim�!�C� z � if � ¤ �C:

It is easy to verify that  � 2 T C1.X; !/.

(2) Decreasing limit Let  ˛
�
2 T C1.X; !/ be an increasing net and �� 2 T C1.X; !/. Assume that

 ˛
�
� �� for all ˛. Define

.inf /� WD inf
˛
 ˛� :

Then if .inf /� is not identically �1, then .inf /� 2 T C1.X; !/.

(3) Max Let '�;  � 2 T C1.X; !/. There is the smallest test curve .' _ /� 2 T C1.X; !/ such that
.' _ /� � '� and .' _ /� �  �. In fact, we could simply define

.' _ /� WD inff�� j �� 2 T C1.X; !/; �� � '�; �� �  �g:

In terms of the Legendre transform, .' _ /{ is the minimal geodesic ray lying above both {' and { . We
observe that

(7-15) d1.'�;  �/� d1.'�; .' _ /�/C d1. �; .' _ /�/� C0d1.'�;  �/

for some C0.n/ > 0. See [29, Proposition 2.15] for the proof of the latter inequality. Moreover, if
�� 2 T C1.X; !/ and if '� �  �, then

(7-16) d1..' _ �/�; . _ �/�/� d1.'�;  �/:

This follows from the corresponding inequality of geodesic rays, which in turn follows from Proposition
4.12 of [54] (Proposition 6.8 in the arXiv version).

We observe that the operator _ is associative and commutative; hence, we could also define  1
�
_� � �_ k

�

in the obvious way.

Lemma 7.15 Let  j
�
;  � 2 T C1.X; !/. Assume that one of the following conditions holds:

(1)  j
�

is increasing and  � is the increasing limit of  j
�

.

(2)  j
�

is decreasing and  � D .inf /�.

Then  j
�

d1
�!  �.
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Proof We assume that condition (2) holds; the other case is similar. First observe that �C
 j
! �C

 
. It

suffices to observe that

d1. 
j
�
;  �/D .�

C

 j
� �C

 
/

Z
X

!n
C

Z 1
�1

�Z
X

!n

 
j
�

�

Z
X

!n
 �

�
d�:

The assertion is a simple consequence of dominated convergence theorem.

Theorem 7.16 The map DH W E1.Lan/!M.R/ is continuous.

For any ˛ 2 E1.Lan/, Z
R

x dDH.˛/.x/D E.˛/;(7-17) Z
R

DH.˛/D
1

n!
.Ln/:(7-18)

Proof We first prove the continuity of DH.

By the dominated convergence theorem, it suffices to show that GŒ ��.x/ depends continuously on  �
for almost all x 2 Int�.L/. To be more precise, let  j

�
2 T C1

I.X; !/ be a sequence converging to  �.
We want to show that

GŒ j
�
�.x/!GŒ ��.x/

for almost all x 2 Int�.L/. We will reduce to the case where  j
�

is either increasing or decreasing. In
these cases, it suffices to show that GŒ j

�
�!GŒ �� in L1. By (7-4) and (7-9), this amounts to showing

that E. j
�
/! E. �/. The latter follows from Lemma 7.15.

In order to make the reduction, we will prove that after passing to a subsequence, there exists an increasing
sequence 'j

�
2 T C1

I.X; !/ and a decreasing sequence �j
�
2 T C1

I.X; !/ such that 'j
�
�  j

�
� �j

�
and

'j
�

d1
�!  �, �j

�

d1
�!  �. In fact, we can relax the requirement to 'j

�
; �j
�
2 T C1.X; !/, not necessarily

I-model. Then it suffices to replace both test curves by their pointwise I-projections, which satisfy the
same conditions by [32, Theorem 3.18].

Up to subtracting a subsequence, we may assume that for all j ,

d1. 
j
�
;  �/� 2�j :

For k � j � 0, we set
�j ;k
�
WD  j

�
_ � � � _ k

�
2 T C1.X; !/:

Let �j
�
2 T C1.X; !/ be the increasing limit of �j ;k

�
as k!1. We then have

d1.�
j ;k
�
;  �/�d1. �; . _ 

j /�/C d1.. _ 
j /�; . _ 

j
_ jC1/�/C � � �

C d1.. _ 
j
_ � � � _ k�1/�; . _ 

j
_ � � � _ k/�/

�d1. �; . _ 
j /�/C � � �C d1. �; . _ 

k/�/

�C0

kX
iDj

d1. �;  
i
�
/� C021�j :
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Here the second inequality follows from (7-16), the third inequality follows from (7-15). Then by
Lemma 7.15, we find that d1.�

j
�
;  �/� C 21�j . Thus, �j

�

d1
�!  �.

Similarly, for k � j � 0, let
'j ;k
�
WD  j

�
^ � � � ^ k

�
2 T C1.X; !/:

The same argument as above shows that for k � j � 0, d1.'
j ;k
�
;  �/� 21�j . Let

 j
� WD inf

k�j
'j ;k
� :

By the monotone convergence theorem,  j 2 T C1.X; !/. Thus, by Lemma 7.15, d1.'
j
�
;  �/� 21�j .

Next we prove (7-17). Let ˛ 2 E1.Lan/. Let  � be the test curve corresponding to ˛. We need to computeZ
R

x DH.˛/.x/D
Z
�.L/

GŒ �� d�:

By (7-3), (7-4) and (7-9), the right-hand side is just E. �/, which is equal to E.˛/ by (7-10) and (7-11).

Finally, (7-18) follows from (7-8).

Remark 7.17 On the subspace HNA, the Duistermaat–Heckman measure is the same as the one defined
in [16, Section 3.2]. This follows from Theorem 5.28 and [11, Theorem A]. On the other hand, in
[40, Definition 3.56], Inoue defined the Duistermaat–Heckman measure for a general non-Archimedean
metric on Lan. As explained in [40, Remark 1.4], his definition agrees with ours for metrics in E1.Lan/.

8 Toric setting

This section is devoted to a toric interpretation of the partial Okounkov body construction.

8.1 Technical lemmata

Lemma 8.1 Let ˛; ˇ1; : : : ; ˇm 2 Zn. Let � be the convex polytope generated by ˇ1; : : : ; ˇm. Then the
following are equivalent :

(1) The function

(8-1) jz˛j2
� mX

iD1

jzˇi j
2

��1

is bounded on C�n.

(2) ˛ 2�.

Proof (2) D) (1) Write ˛ D
P

i tiˇi , where ti 2 Œ0; 1� and
P

i ti D 1. Then

jz˛j2
� mX

iD1

jzˇi j
2

��1

D

Y
i

jzˇi j
2ti

� mX
iD1

jzˇi j
2

��1

�

Y
i

X
j

jz ǰ j
2ti

� mX
iD1

jzˇi j
2

��1

� 1:
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(1) D) (2) Assume that ˛ 62�. Let H be a hyperplane that separates ˛ and �. Say H is defined by
a1x1C � � �C anxn D C . Set

z.t/ WD .ta1 ; : : : ; tan/:

Then clearly (8-1) evaluated at z.t/ is not bounded.

Lemma 8.2 Let ˇ1; : : : ; ˇm 2Nn and ˇ 2Rn. Then the following are equivalent :

(1) log
Pm

iD1 ex�ˇi � .x; ˇ/ is bounded from below.

(2) ˇ is in the convex hull of the ˇi .

Proof The proof follows the same pattern as Lemma 8.1.

8.2 Toric Okounkov bodies

Let X be an n-dimensional smooth projective toric variety, corresponding to a smooth complete fan † in
NR ŠRn. Let N be the lattice in NR, whose dual is the character lattice M . Let T WDN ˝Z C� be the
corresponding torus. Define MR D N _R . Given any T -invariant divisor D on X, let PD �MR be the
polyhedron associated with D.

Let D1; : : : ;Ds be the class of prime T -invariant divisors on X, each corresponding to a ray �i in †.
Let vi be the primitive generator of �i . Any T -invariant admissible flag Y� has the following form after
renumbering the Di :

Yi DD1\ � � � \Di :

Now the vi induce an isomorphism ˆ WM ! Zn, u 7! ..u; vi//i . Let ˆR WMR!Rn be the extension
of � to MR and � be the cone generated by the vi . Let U� be the corresponding orbit of T . Given any
T -invariant line bundle, there is a unique T -invariant divisor D with DjU� D 0 such that OX .D/DL.

It is shown in [45, Proposition 6.1] that

(8-2) �k.L/DˆR ..kPD/\M /

for sufficiently divisible k. We will omit ˆR from out notations from now on.

Let Tc be the compact torus in T . Next consider a Tc-invariant metric � on L. An unpublished result of
Yi Yao says that in the toric setting, two invariant potentials �0 and �00 are I-equivalent if and only if
r�0R.R

n/Dr�00R.R
n/. In other words, in the toric setting, for the invariant potentials, the P Œ � �-envelope

is the same as the P Œ � �I-envelope. In particular,

vol.L; �/D
1

n!

Z
X

.ddc�/n

always holds, without having to take the P Œ � �I-envelope. For the proof of a more general result, we refer
to [7, Theorem 3.13, Proposition 3.11].
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Let U0 be the maximal orbit of T . The basis .vi/ allows us to identify U0 D C�n. We denote the
coordinates on C�n by .z1; : : : ; zn/, zi D xiC iyi . Fix a T -invariant section s0 of L on U0 corresponding
to D. Then we can identify � with a Tc-invariant function on U0. Given the identification U0 D C�n,
� can be identified with a convex function �R WR

n!R such that r�R�PD . We let PD;� be the closure
of the image of r�. By [3, Lemma 2.5], PD;� corresponds to the closure of

QD;� WD fy 2MR j �.x/� .x;y/ is bounded from belowg :

We will be more explicit at this point. Assume that

� D log
aX

iD1

jsi j
2
CO.1/;

where si 2 H0.X;L/. Let ˇi be the lattice points in PD corresponding to si . In this case, QD;� is just
the convex polytope generated by the ˇi by Lemma 8.2.

Consider ˛ 2M \PD . It corresponds to a Laurent polynomial z˛ on C�n. Observe that ˛ 2QD;� if
and only if jz˛j2e�� is bounded from above. This is just a reformulation of Lemma 8.1.

Thus, we find

(8-3) �k.W
0.L; �//D .kQD;�/\M

when k is sufficiently divisible. Hence, �.L; �/� PD;� . Comparing the volumes, we find that equality
holds.

Next we deal with Tc-invariant � such that ddc� is a Kähler current. Let �j be an equivariant quasi-
equisingular approximation of � constructed as in [34, Corollary 13.23]. Then by definition,

�.L; �/D
\
j

�.L; �j /:

On the other hand,
PD;� �

\
j

PD;�j :

Hence, PD;� ��.L; �/. On the other hand, the volume of both sides agree, so they are indeed equal
thanks to the assumption that � has analytic singularities.

In general, if � is Tc-invariant and has positive volume. Let  � � be a potential with ddc being a
Kähler current. We may guarantee that  is Tc-invariant. Then by definition, if we set ��D .1��/�C� ,
then

�.L; �/D
[

�2.0;1/

�.L; ��/;

while
PD;� �

\
�

PD;P Œ���I :

Thus, �.L; �/� PD;� . Comparing the volumes, we find that these convex bodies are equal.
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Theorem 8.3 Let � be a Tc-invariant psh metric on L with positive volume. Then

�.L; �/D PD;�

under the identification ˆR as above.

8.3 Mixed volumes of line bundles

Let X and T be as in Section 8.2.

Lemma 8.4 Let L1; : : : ;Ln be big and nef T -invariant line bundles on X. Assume that the flag is
T -invariant. Then

(8-4)
1

n!
.L1; : : : ;Ln/D vol.�.L1/; : : : ; �.Ln//:

Here vol denotes the mixed volume functional. We refer to [50, Section 5.1] for the precise definition.

As pointed out by Rémi Reboulet, this result is already proved in [18, Proposition 3.4.3].

Proof Step 1 We first assume that all the Li are ample.

In this case, we know that for any ti 2N for i D 1; : : : ; n,

�

� nX
iD1

tiLi

�
D

nX
iD1

ti�.Li/

by [42, Theorem 3.1]. Hence,

vol�
� nX

iD1

tiLi

�
D

X
˛2Nn;j˛jDn

�n

˛

�
t˛ vol

�
�.L1/

˛1 ; : : : ; �.Ln/
˛n
�
:

On the other hand, by (1-3),

vol�
� nX

iD1

tiLi

�
D

1

n!

X
˛2Nn;j˛jDn

�n

˛

�
t˛.L

˛1

1
; : : : ;L˛n

n /:

Comparing the coefficients, we find (8-4).

Step 2 General case.

The results of Step 1 generalize immediately to ample Q-divisors. Hence, the nef case follows from a
simple perturbation argument.

The following example is due to Chen Jiang.

Example 8.5 If the flag is not toric invariant, Lemma 8.4 fails. For example, consider X D P1 �P1,
L1DO.1; 2/ and L2DO.2; 1/. Take a flag X D Y0 � Y1 � Y2 with Y1 being the diagonal. In this case,
(8-4) fails.
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Figure 1: Okounkov body.

In this case, .L1;L2/D 5. By a simple computation using [45, Theorem 6.4], we find �.L1/D�.L2/

is the trapezoid shown in Figure 1. In particular,

vol.�.L1/;�.L2//D 2<
5

2!
:

For simplicity, we call .L; �/ a T -invariant Hermitian big line bundle on X if .T; �/ is a Hermitian big
line bundle on X, L is T -invariant and � is Tc-invariant.

Corollary 8.6 Let .Li ; �i/ for i D 1; : : : ; n be T -invariant Hermitian big line bundles on X with positive
volumes. If the T -invariant flag satisfies that Yn is not contained in any of the polar loci of the �i , then

(8-5)
1

n!

Z
X

ddc�1 ^ � � � ^ ddc�n D vol
�
�.L1; �1/; : : : ; �.Ln; �n/

�
:

Proof According to Proposition 5.16, by perturbing Li , we may assume that each ddc�i is a Kähler
current.

Observe that both sides of (8-5) are continuous under dS -approximations of �i : the left-hand side follows
from Theorem 4.2 and the right-hand side follows from Theorem 5.9.

Hence, by [33, Lemma 3.7], we may assume that each �i has analytic singularities. Taking a birational
resolution, we may assume that �i has analytic singularities along normal crossing Q-divisor Ei . By
Remark 5.1, we reduce to the situation of Lemma 8.4.

We have finished the proof of Theorem D.

Corollary 8.7 Let L1; : : : ;Ln be big T -invariant line bundles on X. Assume that the flag .Y�/ is
T -invariant and Yn is not contained in the non-Kähler locus of any c1.Li/. Then

(8-6)
1

n!
hL1; : : : ;Lni D vol

�
�.L1/; : : : ; �.Ln/

�
:

Here h � i denotes the movable intersection in the sense of [12; 15].

Proof It suffices to apply Corollary 8.6 to the case where �i has minimal singularities.
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Finally, we propose the following conjecture concerning the mixed volume of partial Okounkov bodies in
the nontoric setting:

Conjecture 8.8 Let .Li ; �i/ for i D 1; : : : ; n be Hermitian big line bundles on X (not necessarily a toric
variety) with positive volumes. Then

(8-7)
1

n!

Z
X

ddc�1 ^ � � � ^ ddc�n D sup
�

vol
�
��.L1; �1/; : : : ; ��.Ln; �n/

�
;

where � runs over all rank n valuations C.X /�! Zn.

To the best of the author’s knowledge, this conjecture is open even when the �i have minimal singularities.
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We provide new1-categorical models for unstable and stable global homotopy theory. We use the notion
of partially lax limits to formalize the idea that a global object is a collection of G-objects, one for each
compact Lie group G, which are compatible with the restriction–inflation functors. More precisely, we
show that the1-category of global spaces is equivalent to a partially lax limit of the functor sending
a compact Lie group G to the1-category of G-spaces. We also prove the stable version of this result,
showing that the1-category of global spectra is equivalent to the partially lax limit of a diagram of
G-spectra. Finally, the techniques employed in the previous cases allow us to describe the1-category of
proper G-spectra for a Lie group G, as a limit of a diagram of H -spectra for H running over all compact
subgroups of G.

55N91, 55P91; 18N70

1. Introduction 1346

I. Partially lax limits, promonoidal 1-categories and Day convolution 1355

2. From topological/model categories to1-categories 1355

3. Promonoidal1-categories and Day convolution 1360

4. Partially lax limits 1372

5. Partially lax limits of symmetric monoidal1-categories 1377

II. 1-categories of global objects as partially lax limits 1382

6. Global spaces as a partially lax limit 1382

7. 1-categories of equivariant prespectra 1390

8. Models for1-categories of equivariant prespectra 1401

9. Functoriality of equivariant prespectra 1408

10. Functoriality of equivariant spectra 1418

11. Global spectra as a partially lax limit 1424

12. Proper equivariant spectra as a limit 1430

Appendix. Tensor product of modules in an1-category 1433

References 1438

© 2025 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/gt.2025.29.1345
http://www.ams.org/mathscinet/search/mscdoc.html?code=55N91, 55P91, 18N70
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1346 Sil Linskens, Denis Nardin and Luca Pol

1 Introduction

It has been noted since the beginning of equivariant homotopy theory that there are equivariant objects
which exist uniformly and compatibly for all compact Lie groups in a certain family, and which exhibit
extra functoriality. For example, given compact Lie groups … and G, there exists a construction for the
classifying space of G-equivariant …-principal bundles which is uniform on the group G and which is
functorial on all continuous group homomorphisms [Schwede 2018, Remark 1.1.29]. Similarly, there are
uniform constructions for many equivariant cohomology theories, such as K-theory, cobordism and stable
cohomotopy, just to mention a few. The objects exhibiting such a “global” behavior are the subject of
study of global homotopy theory.

In this paper we provide a new1-categorical model for global homotopy theory by formalizing the idea
that a global stable/unstable object is a collection of G-objects, one for each compact Lie group G, which
are compatible with the restriction–inflation functors. The key categorical construction that we will use
to make this slogan precise is that of a partially lax limit, which we recall below. The main result of
our paper is that this construction agrees with the models of global homotopy theory considered in the
literature. Specifically we will compare it to the models of [Gepner and Henriques 2007] and [Schwede
2018] in the unstable and stable case, respectively. We first present our result in the simpler context of
unstable global homotopy theory, and then consider the stable analogue of our main result. Finally we
discuss an application of the techniques developed in this paper to proper equivariant homotopy theory.

Unstable global homotopy theory

Global spaces were first proposed in [Gepner and Henriques 2007] as a powerful framework for studying
the homotopy theory of topological stacks and topological groupoids, which in turn generalize orbifolds
and complexes of groups. This homotopy theory records the isotropy data of such objects as a particular
diagram of fixed-point spaces. To make this precise, [Gepner and Henriques 2007] defined the1-category
of global spaces as the presheaf1-category

Sgl D Fun.Gloop;S/:

Here Glo is the1-category whose objects are all compact Lie groups G, and whose morphism spaces
are given by hom.H;G/hG ; the homotopy orbits of the conjugation G-action on the space of continuous
group homomorphisms. In particular, a global space X consists of the data of a fixed-point space XG for
every compact Lie group G, which are functorial in all continuous group homomorphisms. Furthermore,
the conjugation actions have been trivialized, reflecting the fact that spaces of isotropy are insensitive to
inner automorphisms.

This definition is motivated by Elmendorf’s theorem in equivariant homotopy theory, which states that the
1-category of G-spaces SG is equivalent to the presheaf1-category on the G-orbit category OG . Here
SG is defined as the1-categorical localization of G-CW-complexes at the homotopy equivalences, and
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OG is the full subcategory of G-spaces spanned by the transitive G-spaces G=H for a closed subgroup
H �G.

There is in fact a strong connection between equivariant and global homotopy theory. Let Orb denote the
wide subcategory of Glo spanned by the injective group homomorphisms. Gepner and Henriques [2007]
observed that the slice1-category Orb=G is equivalent to the G-orbit category OG . In particular, this
allows us to define a restriction functor

resG W Sgl! Fun.Oop
G ;S/' SG

by precomposing with forgetful functor OG ' Orb=G ! Glo. Thus a global space has an associated
underlying G-space for all compact Lie groups G. Furthermore, that all these G-spaces come from the
same global object imposes strong compatibility conditions among them.

We would like to understand how to recover a global space X from its restrictions resGX to all compact
Lie groups G, together with the previously mentioned compatibility conditions. The precise sense in
which this is possible requires the notion of a (partially) lax limit, which we now recall, following [Gepner
et al. 2017] and [Berman 2024].

Partially lax limits

Let I be an 1-category and consider a functor F W I! Cat1. Intuitively, the lax limit of F is the
1-category laxlimF whose objects consist of the following data:

� an object Xi 2 F.i/ for each i 2 I, and

� compatible morphisms f˛ W F.˛/.Xi /!Xj for every arrow ˛ W i ! j in I.

A morphism fXi ; f˛g! fX 0i ; f
0
˛g is a suitably natural collection of maps fgi WXi!X 0ig. More precisely,

laxlimF is the1-category of sections of the cocartesian fibration associated to F . For our description
we will require that for certain arrows ˛ in I, the map f˛ is an equivalence. We therefore fix a collection
of edges W� I which contains all equivalences and which is stable under homotopy and composition,
and denote by I� the resulting marked1-category. The partially lax limit of F is then the subcategory
of laxlimF spanned by those objects .fXig; ff˛g/ for which the canonical map f˛ is an equivalence for
all edges ˛ 2W. Note that if W contains only equivalences, then we recover the lax limit of F . On the
other hand, if W contains all edges, we recover the usual notion of the limit of F . In particular we obtain
canonical functors

limF ! laxlim� F ! laxlimF;

which indicates that a partially lax limit interpolates between the limit and the lax limit of a diagram.
For exposition’s sake, we have only defined the partially lax limit of a functor with values in Cat1,
but there are similar definitions if we replace Cat1 with Cat˝1, the1-category of symmetric monoidal
1-categories. We refer the reader to Section 4 for more details on this construction.
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1348 Sil Linskens, Denis Nardin and Luca Pol

As mentioned, in this paper we show that a global space can be thought of as a compatible collection of
G-spaces. We can formalize what “compatible” means using the language of partially lax limits. To this
end, let .Gloop/� denote the1-category Gloop where we marked all the edges in Orbop

� Gloop, ie all
the injective edges. We prove the following theorem, which summarizes the main result of Section 6.

Theorem 6.17 There exists a functor S� W Gloop
! Cat˝1 which sends a compact Lie group G to the

1-category of G-spaces SG endowed with the cartesian symmetric monoidal structure , and a continuous
group homomorphism ˛ WH !G to the restriction–inflation functors. Furthermore , there is a symmetric
monoidal equivalence

Sgl ' laxlim�
G2.Gloop/�

SG

between the1-category of global spaces with the cartesian monoidal structure and the partially lax limit
over .Gloop/� of the diagram S�.

By the above theorem a global space X consists of the following data and conditions:

� A G-space resGX for each compact Lie group G.

� An H -equivariant map f˛ W ˛�resGX ! resHX for each continuous group homomorphism
˛ WH !G.

� The maps f˛ are functorial, so that fˇı˛ ' fˇ ıˇ�.f˛/ for all composable maps ˛ and ˇ, and
fid D id.

� The map f˛ is an equivalence for every continuous injective homomorphism ˛.

� A homotopy between the map fcg induced by the conjugation isomorphism and the map given by
left multiplication by g, denoted by lg W c�g resGX ! resGX .

� Higher coherences for the homotopies.

This is a precise formulation of the compatibility conditions encoded in a global space.

Global stable homotopy theory

Our discussion so far has been limited to the homotopy theory of global spaces, but there are also numerous
examples of equivariant cohomology theories exhibiting a global behavior. These cohomology theories
are represented by global spectra, and their study is called global stable homotopy theory.

The consideration of “global spectra” grew out of the literature on equivariant stable homotopy theory,
and was considered in works such as [Greenlees and May 1997]. Morally, a global spectrum models a
compatible family of equivariant spectra for all compact Lie groups at once. Our main result makes this
moral precise, and provides the same description as in the unstable case.
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There are multiple models for the homotopy theory of global spectra. In this paper we will use the
framework developed by Schwede [2018]. His approach has the advantage of being very concrete; the
category of global spectra is modeled by the usual category of orthogonal spectra but with a finer notion
of equivalence, the global equivalences. The category of orthogonal spectra with the global stable model
structure of [Schwede 2018, Theorem 4.3.17] underlies a symmetric monoidal 1-category Spgl. As
any orthogonal spectrum is a global spectrum, this approach comes with a good range of examples.
For instance, there are global analogues of the sphere spectrum, cobordism, topological and algebraic
K-theory spectra, Borel cohomology, symmetric product spectra and many others. Global spectra have
also been shown to give cohomology theories on orbifolds and topological stacks in [Juran 2020], thereby
establishing them as a natural home for (genuine) cohomology theories on topological stacks. As part of
the framework developed by Schwede, the1-category of global spectra comes with symmetric monoidal
restriction functors

resG W Spgl! SpG

into the 1-category of G-spectra, for all compact Lie groups G. As a first indication that a global
spectrum should consist of just this data, together with various comparison maps, note that the functors
resG are jointly conservative by the very definition of global equivalences.

However, not all equivariant spectra admit global refinements. In fact being a “global” object forces
strong compatibility conditions between the underlying G-spectra for different G. For example, resGX
is always a split G-spectrum by [Schwede 2018, Remark 4.1.2] and its G-homotopy groups for all G
together admit the structure of a global functor, see [Schwede 2018, Example 4.2.3]. We can again
formalize how a global spectrum is determined by its restrictions for all compact Lie groups using the
language of partially lax limits. Recall that .Gloop/� denotes the1-category Gloop, marked by all the
edges in Orbop, ie the injective group homomorphisms.

Theorem 11.10 There exists a functor Sp
�
W Gloop

! Cat˝1 which sends a compact Lie group G to the
symmetric monoidal1-category of G-spectra Sp˝G , and a continuous group homomorphism ˛ WH !G

to the restriction–inflation functor. Furthermore , there is a symmetric monoidal equivalence

Spgl ' laxlim�
G2.Gloop/�

SpG

between Schwede’s1-category of global spectra , and the partially lax limit over .Gloop/� of the dia-
gram Sp

�
.

Proper equivariant stable homotopy theory

The techniques employed in the proof of Theorem 11.10 can also be used in other settings. Given a (not
necessarily compact) Lie group G, we can consider the1-category of proper G-spectra SpG;pr. This is
the1-category underlying the category of orthogonal G-spectra with the proper stable model structure
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of [Degrijse et al. 2023], in which a map f WX ! Y is a weak equivalence if and only if for all compact
subgroups H �G, the map induced on homotopy groups �H� .f / W �

H
� .X/! �H� .Y / is an isomorphism.

Write OG;pr for the proper G-orbit category, which is defined to be the subcategory of OG spanned by
the cosets G=H, where H is a compact subgroup of G. Our techniques allow us to prove:

Theorem 12.11 Let G be a Lie group. There is a symmetric monoidal equivalence

SpG;pr ' lim
H2O

op
G;pr

SpH

between the1-category of properG-spectra and the limit of the functor Sp
�

restricted along the canonical
functor �G WO

op
G;pr! Gloop sending G=H to H.

Having introduced the main theorems of this article. We continue the introduction by discussing the proof
strategy for each in some detail.

The proof strategy for Theorem 6.17

We begin with a discussion of the proof of the unstable result. Implicit in [Rezk 2014] is the following
crucial observation (see also Proposition 6.13): the space of factorizations of any map ˛ W H ! G in
Glo into a surjective followed by an injective group homomorphism is contractible. In fewer words, the
surjective and injective maps form an orthogonal factorization system on Glo. This is the main ingredient
in the proof of Theorem 6.17, and moreover, we would like to argue that it is at the core of the relationship
between global and G-equivariant homotopy theory.

This claim is justified by the following two facts. The first is that the functoriality under the restriction–
inflation functors of the different1-categories of equivariant spaces is equivalent to the previous obser-
vation. The second is that the observation formally implies that one can recover a global space X from
the Gloop-indexed diagram of G-spaces resGX .

Let us first explain how the1-categories of equivariant spaces are functorial in the category Gloop. Due
to the existence of a nontrivial topology on the morphism spaces, this is not immediate. For example, note
that exhibiting this functoriality also entails giving a homotopy coherent trivialization of the conjugation
action on SG . The key is that the existence of the orthogonal factorization system allows one to define
functors

˛Š W Orb=H ! Orb=G ; .K ,!H/ 7! .˛.K/ ,!G/:

On objects, ˛Š factorizes the composite K ,!H !G into a surjection followed by an injection, and then
only remembers the injective part. The fact that such factorizations are unique is equivalent to the fact that
this functor is well-defined. Precomposing with ˛op

Š
gives the standard restriction functor ˛� W SG! SH .

Furthermore, given this description of the individual restriction functors, it is clear that they are functorial
in Gloop.
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Next we explain how the observation implies that one can recover a global space from its restrictions.
When one takes an object .fresGXg; ff˛g/ of the partially lax limit over Glo� of the diagram S�, the
functoriality of the associated global space in injections is recorded by restricting to each resGX , and the
functoriality in surjections is given by the morphisms f˛ . One recovers the functoriality in all morphisms
in Glo by factorizing an arbitrary morphism into an injection followed by a surjection. The ability to split
the functoriality in this way again reduces to the observation that the surjective and injective maps form
an orthogonal factorization system. We make precise all of the ideas sketched here in Section 6.

The proof strategy for Theorem 11.10

The proof of Theorem 11.10 is considerably more involved than its unstable analogue, and takes up the
majority of the second half of the paper. Therefore we now give an overview of the proof as a roadmap
for the reader.

Firstly, we discuss the existence of the functor Sp
�
. Recall that aG-spectrum can be thought of as a pointed

G-space together with a compatible collection of deloopings for all representation spheres. With modern
tools we can give this construction a universal property: as a symmetric monoidal1-category, SpG is
obtained from the1-category of pointed G-spaces by freely inverting the representation spheres SV for
every G-representation V ; see [Gepner and Meier 2023, Appendix C]. This universal property, combined
with the unstable functor S� of Theorem 6.17, immediately gives the functoriality of G-spectra in Gloop

as in our theorem.

Unfortunately, constructing the functor Sp
�

via the universal property of equivariant spectra is unhelpful
for our purposes, as it is too inexplicit for calculating the partially lax limit. For example, note that for a
surjective group homomorphism ˛ WH!G andG-spectrum E, to obtain theH -spectrum ˛�E one has to
freely add deloopings with respect to representation spheres not in the image of ˛� W Rep.G/! Rep.H/.
This is a process which one cannot easily control.

Therefore, pivotal to our proof is an explicit construction of the functor Sp
�
. The calculation of the

partially lax limit of Sp
�

will then follow from this by a long series of nontrivial formal arguments. The
crucial idea is to construct and calculate with a functoriality on prespectrum objects rather than at the
level of spectrum objects. In this setting, we are able to build the functoriality of equivariant prespectra
explicitly using the functoriality of the1-categories OG and Rep.G/, the category of representations
and linear isometries.

To make this precise, let us first specify our model of G-prespectra. We define an1-category ORG ,
naturally fibered over O

op
G , whose objects are pairs .H; V /, where H is a closed subgroup of G and

V is an H -representation; see Definition 8.5. This is canonically symmetric promonoidal and so the
1-category of functors Fun.ORG ;S�/ is symmetric monoidal via Day convolution. There is a functor
SG W ORG ! S� which sends the object .H; V / to the pointed space .SV /H. This is a commutative
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algebra object in Fun.ORG ;S�/ via the universal property of Day convolution. The first ingredient of
the proof is the following:

Step 1 The1-category SpG is equivalent to an explicit Bousfield localization of the1-category

PSpG WDModSG Fun.ORG ;S�/:

We obtain this description by reinterpreting the construction of G-spectra as a Bousfield localization
of the level model structure on orthogonal G-spectra internally to1-categories. This identification is
the culmination of Sections 7 and 8, and the reader can find a precise statement as Proposition 7.30 and
Corollary 8.14.

Having obtained this identification, we can build the functoriality of equivariant prespectra by exhibiting
the pairs .ORG ; SG/ as functorial in Gloop. In fact the categories ORG will only be (pro)functorial
in Gloop, but this is a subtlety which we choose to gloss over in this introduction. To exhibit this
functoriality, we build a global version of the category ORG and the algebra object SG , which we denote
by ORgl and Sgl; see Definition 9.2. The1-category ORgl is naturally fibered over Gloop and has objects
.G; V /, where G is a compact Lie group and V is a G-representation, and Sgl WORgl! S� sends .G; V /
to the pointed space .SV /G .

There is a precise sense in which the pair .ORgl; Sgl/ contain all of the functoriality of the pairs .ORG ; SG/
in Glo. For the group direction this stems from the fact that the surjections and injections form an
orthogonal factorization system on Glo, while for the representation direction this follows from the
observation that ORgl is a cocartesian fibration over Gloop classifying the functor Rep.�/ WGloop

!Cat1
which sends a compact Lie group G to its category of G-representations, with functoriality given by
restriction. These observations allow us to prove the following result; see Proposition 9.16.

Step 2 There exists a functor

PSp
�
W Gloop

! Cat˝1; G 7! PSpG :

Furthermore the partially lax limit of PSp
�

over .Gloop/� is given by ModSgl Fun.ORgl;S�/.

We have shown in Step 1 that SpG is a Bousfield localization of PSpG . We call a map in PSpG a stable
equivalence if it is inverted by the functor PSpG! SpG .

Step 3 The diagram PSp
�

preserves stable equivalences , and therefore induces a diagram Sp
�
. Further-

more , as indicated by the notation , this diagram is equivalent to the functoriality of equivariant spectra
built at the beginning of this section using the universal property of SpG .

In particular, on morphisms this diagram gives the standard restriction–inflation functors on equivariant
spectra; see Corollary 10.6. The following result follows formally from this.
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Step 4 The partially lax limit of Sp
�

is given by an explicit Bousfield localization of the1-category

ModSgl Fun.ORgl;S�/:

Finally, we compare this 1-category to Schwede’s model of global spectra, Spgl. Once again we do
this by first translating his construction into one internal to 1-categories. We define an 1-category
ORfgl as the subcategory of ORgl spanned by the objects .G; V /, where V is a faithful G-representations.
Restricting Sgl we obtain a commutative algebra object Sfgl in Fun.ORfgl;S�/. We then show:

Step 5 Spgl is an explicit Bousfield localization of the category ModSfgl.Fun.ORfgl;S�//.

The precise statement is obtained by combining Proposition 7.27 and Corollary 8.23. Finally we show in
Section 11 that the canonical inclusion j WORfgl!ORgl induces an adjunction

jŠ WModSfgl.Fun.ORfgl;S�//�ModSgl.Fun.ORgl;S�// Wj
�

on prespectrum objects. Then we show that this adjunction descends to an adjunction on the corresponding
Bousfield localizations of Steps 4 and 5. Finally we prove that the fibrancy conditions imposed by these
localizations cancel out the difference between all and faithful representations, so that we obtain an
equivalence

Spgl ' laxlim� Sp
�
;

concluding the proof of Theorem 11.10.

Finally let us note that to fill in all of the details of this argument requires a long list of technical results
about the relationship between various constructions applied to model categories and1-categories, Day
convolution monoidal structures induced by promonoidal categories, and partially lax limits of symmetric
monoidal categories. We have included these in Part I to make the paper self-contained, and because we
failed to find a convenient reference for many of these facts.

Related work

There are many models of global unstable homotopy theory. The first was given in [Gepner and Henriques
2007], and since then others have been obtained in [Schwede 2018; 2020]. The second of these papers,
together with [Körschgen 2018], proves that all these models induce the same1-category. Finally, we
would like to mention the unpublished manuscript [Rezk 2014], which contains many of the ideas we
exploit in Section 6.

There has been a lot of work towards finding a good framework for the study of global stable homotopy
theory; see [Bohmann 2014; Greenlees and May 1997] and [Lewis et al. 1986, Chapter II]. Schwede’s
model [2018] has so far being the most successful one, in part because of its numerous applications
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to equivariant stable homotopy theory; see for example [Schwede 2017] and [Hausmann 2022]. Haus-
mann [2019] gave a model for global homotopy theory for the family of finite groups by endowing
the category of symmetric spectra with a global model structure. There is also a model for G-global
homotopy theory [Lenz 2025] which is a synthesis between classical equivariant homotopy theory and
Schwede’s global homotopy theory. This specializes to global homotopy theory by setting G to be the
trivial group. Recently, Lenz [2022] gave an1-categorical model for global stable homotopy theory for
the family of finite groups using spectral Mackey functors. However to the best of our knowledge, our
model is the first1-categorical model for global stable homotopy theory for the family of all compact
Lie groups and not just the finite ones.

Future directions

In this paper we focused only on global and proper equivariant homotopy theory, but it is quite natural to
wonder if we can recover our two results as a special case of a more general one. For any Lie group G,
we can in fact consider G-global homotopy theory which is a generalization of global and G-equivariant
homotopy theory. We conjecture that G-global stable homotopy theory is equivalent to the partially lax
limit of the functor Sp

�
restricted along the canonical functor Gloop

=G
! Gloop.

Organization of the paper

The paper is divided into three main parts.

In the first part we first discuss the relationship between model and1-categories. Then we recall the
concept of a promonoidal 1-category and use this to define the Day convolution product on functor
categories. We then introduce the notions of partially lax (co)limits and collect various useful results that
we will need throughout the paper. We finish Part I by describing the lax limits of symmetric monoidal
1-categories in terms of the operadic norm functor.

The second part of the paper contains the proofs of our main results. In Section 6 we introduce the
1-category of global spaces and prove Theorem 6.17. This is an unstable version of Theorem 11.10, and
serves as a warm-up for the considerably more involved proof of the stable case. We therefore recommend
that the reader read this section before moving forward. In Section 7 we recall various model structures on
the categories of orthogonal G-spectra for a Lie group G, and hence define the underlying1-categories
of proper G-spectra and of global spectra. In Section 8 we apply a variant of Elmendorf’s theorem and
use this to provide specific models for the1-categories of proper G-prespectra and global prespectra. In
Section 9 we construct the functor Sp

�
from the introduction, and in Section 11 we identify the partially

lax limits with the1-category of global spectra. Finally in Section 12, we apply the same techniques to
describe the1-category of proper G-spectra as a limit, proving Theorem 12.11.

The third part of the paper contains an appendix on the tensor product of modules in an1-category.

Geometry & Topology, Volume 29 (2025)



Global homotopy theory via partially lax limits 1355

Acknowledgements The authors thank Stefan Schwede for first suggesting that a description of global
spectra as a partially lax limit should be possible. We would also like to thank Stefan Schwede, Lennart
Meier, Markus Hausmann, Branko Juran and Bastiaan Cnossen for numerous helpful conversations on
this topic. We also thank the referees for helpful suggestions, which improved the paper.

During the preparation of this text Linskens was a member of the Hausdorff Center for Mathematics at
the University of Bonn funded by the German Research Foundation (DFG). This material is based upon
work supported by the Swedish Research Council under grant 2016-06596 while Pol was in residence
at the Institut Mittag-Leffler in Djursholm, Sweden, during the semester Higher algebraic structures in
algebra, topology, and geometry. Linskens was supported by the DFG Schwerpunktprogramm 1786
Homotopy theory and algebraic geometry (project ID SCHW 860/1-1). Pol was supported by the SFB
1085 Higher invariants in Regensburg.

Part I Partially lax limits, promonoidal 1-categories and Day convolution

In this part of the paper we introduce the necessary machinery to state and prove our main results. In the
first section we give references for the passage from topological/model categories to1-categories. We
then discuss the Day convolution product for functor1-categories, where the source is only assumed to
be a promonoidal1-category. Finally we recall the notion of partially lax limits of1-categories and
symmetric monoidal1-categories, and proof some useful properties about them.

2 From topological/model categories to 1-categories

In this paper we will often need to pass from topological categories (or operads) and (symmetric monoidal)
model categories to1-categories. In this section we recall how this is done, and provide relevant references.
After this section we will largely leave these identifications implicit for the rest of the paper.

2.1 Topological categories and operads

We can promote a topological category C to an1-category by first applying the singular functor to the
mapping spaces (see [Lurie 2009, Section 1.1.4]) and then applying the coherent (also called simplicial)
nerve functor [Lurie 2009, Corollary 1.1.5.12]. This defines a functor

TopCat! Cat1

from topological categories to1-categories. Importantly, applying this functor to a topologically enriched
category C preserves the set of objects and the weak homotopy type of the mapping space between any
two objects; see [Lurie 2009, Theorem 1.1.5.13]. Throughout this paper we will not distinguish between
the topological category and its1-categorical counterpart.
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There is a similar functorial construction between topological operads and1-operads, which we now
recall. Given a topological colored operad O, we let O˝ denote the topological category whose objects are
pairs .IC; .Ci /i2I /, where IC 2 Fin� and Ci are colors in O. Given a pair of objects C D .IC; fCigi2I /
and D D .JC; fDj gj2J / in O˝, the morphism space O˝.C;D/ is given bya

˛ W IC!JC

Y
j2J

O.fCig˛.i/Dj ;Dj /:

Composition is defined in the obvious way. This is the topological analogue of [Lurie 2017, Notation
2.1.1.22]. Note that O˝ admits a functor to Fin�. By the process before, this induces a functor of
1-categories O˝! Fin�.

Lemma 2.1 Let O be a topological colored operad. Then the forgetful functor p W O˝! Fin� defines an
1-operad. Moreover , this construction is functorial in the sense that it sends maps of topological colored
operads to maps of 1-operads.

Proof Recall that a topological category is seen as an1-category by applying the singular functor on
mapping spaces and then by applying the coherent nerve functor to the resulting simplicial category. Since
the singular functor preserves products and sends every object to a fibrant one, it sends the topological
colored operad O to a fibrant1 simplicial operad Os . Moreover by direct inspection, the singular functor
sends the topological category O˝ defined above to O˝s as defined in [Lurie 2017, Notation 2.1.1.22].
Applying the coherent nerve to O˝s ! Fin� we obtain an1-operad by [Lurie 2017, Proposition 2.1.1.27],
proving the first claim. A simple check shows that the formation of the topological category O˝ is
functorial in maps of topological operads. Applying the singular functor and the coherent nerve then gives
a functor of1-categories over Fin�. Furthermore the cocartesian edges over inert edges are explicitly
constructed in the proof of [Lurie 2017, Proposition 2.1.1.27], and the functor constructed clearly preserves
these edges.

2.2 Model categories and 1-categories

We will very often pass from model categories to1-categories. Therefore we explain and give references
for this passage.

Let M be a model category with class of weak equivalences denoted by W. We always assume that M has
functorial factorizations. The model category M presents an1-category which we denote by MŒW �1�.
We may define MŒW �1� as the Dwyer–Kan localization of N.M/ at the weak equivalences of M, ie as
the initial1-category with a functor from M which inverts the morphisms in W. Write Mf , Mc and Mı

for the full subcategories of M spanned by the fibrant, cofibrant and bifibrant objects, respectively. The
composite

N.Mf /!N.M/!MŒW �1�

1Recall that a simplicial operad is fibrant if each multispace is a fibrant simplicial set; see [Lurie 2017, Definition 2.1.1.26].
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is a Dwyer–Kan localization at the restriction of W to Mf , and similarly for the case of cofibrant and
bifibrant objects. See for example the discussion in [Lurie 2017, Remark 1.3.4.16].

If M is a topological model category, then the enriched structure gives another construction of MŒW �1�. In
this case, MŒW �1� is equivalent to the1-category associated to the topologically enriched category Mı

as in the previous section; see [Lurie 2017, Theorem 1.3.4.20]. Throughout our paper it will be necessary
to use all these different constructions of MŒW �1�.

We note that if the model category M is cofibrantly generated and the underlying category is locally
presentable, then MŒW �1� is a presentable 1-category; see [Lurie 2017, Proposition 1.3.4.22]. Also
we note that any Quillen adjunction of model categories F W M0 � M1 WG induces an adjunction of
underlying1-categories F WM0ŒW

�1
0 ��M1ŒW

�1
1 � WG by [Hinich 2016, Proposition 1.5.1].

Next we may consider symmetric monoidal model categories. By [Lurie 2017, Proposition 4.1.7.6], if
M is a symmetric monoidal model category then the1-category MŒW �1� admits a symmetric monoidal
structure such that the localization functor Mc!MŒW �1� is strong monoidal, and if F is a symmetric
monoidal left Quillen functor then F is again symmetric monoidal.

Once again we obtain a different construction of the symmetric monoidal1-category MŒW �1� when M

is topological. Namely, one can first restrict to bifibrant objects and then form the topological colored
operad N˝.M/ with colors X 2Mı and multimorphism spaces

MulN˝.Mı/.fX1; : : : ; Xng; Y /DMapMı.X1˝ � � �˝Xn; Y /:

This then gives an 1-operad by Lemma 2.1. By [Lurie 2017, Proposition 4.1.7.10] this is in fact a
symmetric monoidal1-category whose underlying1-category is equivalent to MŒW �1�. Furthermore,
by [Lurie 2017, Corollary 4.1.7.16], these two methods of obtaining a symmetric monoidal structure on
MŒW �1� are equivalent.

2.3 Pointed categories

Many of the typical constructions one applies to model categories admit an analogue internally to1-
categories. Furthermore, in many cases these constructions are not only analogous but in fact equivalent.

For example we may consider the formation of pointed objects. Given a model category M with
final object �, we can equip the slice category M� D M�= with a model structure in which fibrations,
cofibrations and weak equivalences are detected by the forgetful functor M�! M; see [Hovey 1999,
Proposition 1.1.8]. If M is cofibrantly generated with set of generating cofibrations I and set of generating
acyclic cofibrations J , then M� is also cofibrantly generated by the sets IC and JC; see [Hovey 1999,
Lemma 2.1.21]. If M is symmetric monoidal with cofibrant unit given by �, then the slice category M�

with the smash product is again a symmetric monoidal model category with cofibrant unit; see [Hovey
1999, Proposition 4.2.9].
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Let us now discuss the same construction for1-categories. Given a presentable symmetric monoidal
1-category .C;˝/, we can endow the slice C� D C�= with a symmetric monoidal structure ^˝ given as
follows: for all .�! C/; .�!D/ 2 C�, we define C ^˝D by the following pushout in C:

C ˝�t�˝D C ˝D

�˝� C ^˝D

y

The existence of such symmetric monoidal structure on C� is a formal consequence of [Lurie 2017,
Proposition 4.8.2.11] as we now explain. Indeed the cited reference shows that the functor .�/� WPrL

!PrL
�

from presentable 1-categories to pointed presentable 1-categories is a smashing localization, so it
induces a functor on commutative algebras CAlg.PrL/! CAlg.PrL

�/ showing that a symmetric monoidal
structure on C� exists. Furthermore, [Lurie 2017, Proposition 4.8.2.11] implies that this symmetric
monoidal structure is uniquely determined by the condition that the tensor product on C� commutes with
colimits on each variable and makes the functor .�/C WC!C� into a symmetric monoidal functor. From
this one obtains the concrete description of ^˝ as given above.

Example 2.2 Applying this construction to S with the cartesian product returns S�, the category of
pointed spaces with the smash product. We write S� for the1-operad giving the former, and S^� for the
latter.

We now give a result that connects these two constructions.

Proposition 2.3 Let M be a symmetric monoidal model category with cofibrant final object , which is
also the monoidal unit. Suppose that the underlying1-category MŒW �1� is presentable. Then the functor
.�/C WM!M� induces a symmetric monoidal equivalence

.MŒW �1�/� 'M�ŒW
�1�:

Proof First note that the underlying1-category M�ŒW
�1� models the1-categorical slice .MŒW �1�/�;

see for example [Cisinski 2019, Corollary 7.6.13]. Note also that .�/C W M! M� is left Quillen and
strong monoidal, and therefore we obtain a strong monoidal colimit-preserving functor

.�/C WMŒW
�1�!M�ŒW

�1�;

which is equivalent to the standard left adjoint .�/C under the equivalence M�ŒW
�1�'MŒW �1�� by

inspection. Also, M�ŒW
�1� is automatically presentable and closed monoidal. Now we can conclude the

result, because there is a unique closed symmetric monoidal structure on MŒW �1�� such that .�/C is
strong monoidal.

Next we consider the formation of module categories. Recall that given a presentable symmetric monoidal
1-category C and a commutative algebra object S 2CAlg.C/, the category of S -modules in C, ModS .C/
is a symmetric monoidal1-category via the relative tensor product, constructed in Section 4.5.2 of [Lurie
2017]. We will always consider ModS .C/ as symmetric monoidal in this way.
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Proposition 2.4 Let M be a symmetric monoidal and cofibrantly generated model category with weak
equivalences W, generating cofibrations I and generating acyclic cofibrations J , and let A be a com-
mutative algebra object in M whose underlying object is cofibrant. Suppose that ModA.M/ admits a
symmetric monoidal and cofibrantly generated model structure where fibrations and weak equivalences
are tested on underlying objects , and the sets A˝ I and A˝J form a set of generating cofibrations and
generating acyclic cofibrations , respectively. Write Wm for the class of weak equivalences in ModA.M/.
Then applying ModA to the functor Mc!MŒW �1� induces a symmetric monoidal equivalence

ModA.M/ŒW �1m �'ModA.MŒW �1�/:

Proof This is essentially [Lurie 2017, 4.3.3.17]. However since the statement there does not literally
apply, let us spell out the argument. We need to show that there exists a symmetric monoidal equivalence

� WN.ModA.M/c/ŒW �1m �
'
�!ModA.N.Mc/ŒW �1�/:

We start by noting that the forgetful functor U W ModA.M/! M is left Quillen. One can verify this
by observing that U sends the generating (acyclic) cofibrations to (acyclic) cofibrations, using that A
is cofibrant and that M satisfies the pushout-product axiom. Since a cofibrant A-module is then also
cofibrant in M, there exists a symmetric monoidal functor

N.ModA.M/c/!N.ModA.Mc//'ModA.N.Mc//:

Postcomposing with the symmetric monoidal functor N.Mc/!N.Mc/ŒW �1� and using the universal
property of symmetric monoidal localization we obtain a symmetric monoidal functor � as claimed. To
show that � is an equivalence, we apply [Lurie 2017, 4.7.3.16] to the diagram

N.ModA.M/c/ŒW �1m � ModA.N.Mc/ŒW �1�/

N.Mc/ŒW �1�

�

U U 0

We need to check:

(a) The1-categories N.ModA.M/c/ŒW �1m � and ModA.N.Mc/ŒW �1�/ admit geometric realization of
simplicial objects. In fact, both categories admit all colimits. ForN.ModA.M/c/ŒW �1m � this is [Barnea et al.
2017, Theorem 2.5.9]. For ModA.N.Mc/ŒW �1�/, we note that N.Mc/ŒW �1� admits all colimits by the
previous reference and that these can be calculated as homotopy colimits in the model category by [Barnea
et al. 2017, Remark 2.5.7]. Since A is cofibrant, the functor A˝�W M! M is left Quillen and so it
induces a colimit-preserving functor N.Mc/ŒW �1�!N.Mc/ŒW �1� by [Hinich 2016, Proposition 1.5.1].
Finally, we can invoke [Lurie 2017, Proposition 4.3.3.9] to deduce the existence of all colimits in
ModA.N.Mc/ŒW �1�/.

(b) The functors U and U 0 admits left adjoints F and F 0. The existence of a left adjoint to U follows
from the fact that U is determined by a right Quillen functor. The existence of a left adjoint to U 0 follows
from [Lurie 2017, Corollary 4.3.3.14].
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(c) The functor U 0 is conservative and preserves geometric realizations of simplicial objects. This follows
from [Lurie 2017, Corollary 4.3.3.2, Proposition 4.3.3.9].

(d) The functor U is conservative and preserves geometric realizations of simplicial objects. The first
assertion is immediate from the definition of the weak equivalences in ModA.M/, and the second follows
from the fact that U is also a left Quillen functor.

(e) The natural map U 0 ıF 0! U ıF is an equivalence. Unwinding the definitions, we are reduced to
proving that if N is a cofibrant object of M, then the natural map N ! A˝N induces an equivalence
F 0.N / ' A˝ N . This follows from the explicit description of F 0 given in [Lurie 2017, Corollary
4.3.3.13].

Remark 2.5 Suppose M is a symmetric monoidal cofibrantly generated model category. If M is locally
presentable, then the existence of the model structure on ModA.M/ as in Proposition 2.4 holds by [Schwede
and Shipley 2000, Remark 4.2].

3 Promonoidal 1-categories and Day convolution

We start this section by recalling the notion of a promonoidal1-category. We recall the definition of the
operadic norm functor and use this to define the Day convolution product on a functor category. We then
collect various important results about the Day convolution product which will be important later. We
finish the section by giving a symmetric monoidal recognition criteria for presheaf categories, inspired by
Elmendorf’s theorem.

We start off by recalling the following useful notion from [Ayala and Francis 2020, Definition 0.7].

Definition 3.1 A functor p W C!B between1-categories is an exponentiable fibration if the pullback
functor p� W Cat1=B! Cat1=C admits a right adjoint p�, which we call the pushforward.

Example 3.2 Both cocartesian and cartesian fibrations are exponentiable; see [Ayala and Francis 2020,
Lemma 2.15].

Example 3.3 Exponentiable fibrations are stable under pullbacks; see [Ayala and Francis 2020, Corollary
1.17]

For any1-operad O˝, we let O˝act WD O˝ �Fin� Fin� O˝ denote the subcategory of active arrows. We
recall the following definition from [Shah 2021, Definition 10.2].

Definition 3.4 Let O˝ be an1-operad. A map of1-operads p W C˝! O˝ defines a O˝-promonoidal
1-category if the restricted functor pact W C

˝
act! O˝act is exponentiable. A functor of O˝-promonoidal

1-categories is simply a map of O˝-operads.

Example 3.5 Any O˝-symmetric monoidal1-category is O˝-promonoidal by Example 3.2.
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Example 3.6 Let C be an 1-category. Then the 1-operad Cq ! Fin� of [Lurie 2017, Construc-
tion 2.4.3.1] is a symmetric promonoidal1-category. In fact

Cq �Fin� Fin! Fin

is the cartesian fibration which classifies the functor sending I to Fun.I;C/.

Example 3.7 Consider a cartesian fibration p W C! I. Similarly to Example 3.6, one can show that the
induced map pq W Cq! Iq exhibits Cq as a Iq-promonoidal1-category.

The key property of promonoidal1-categories is that they induce operadic norm functors.

Definition 3.8 Let p W C˝! O˝ be a O˝-promonoidal1-category. Then the functor

p� W .Op1/=O˝ ! .Op1/=C˝

has a right adjoint by [Shah 2021, Theorem/Construction 10.6], which we denote by Np and call the
norm along p. Note that p� also has a left adjoint pŠ which is given by postcomposition with p.

The norm interacts well with pullbacks along maps of1-operads.

Lemma 3.9 Let p W C˝ ! O˝ be a O˝-promonoidal 1-category and let f W P˝ ! O˝ be a map of
1-operads. Write p0 W C˝ �O˝ P˝ ! P˝ and f 0 W C˝ �O˝ P˝ ! O˝ for the functors obtained via
basechange. Then there is a natural equivalence of functors

f �Np 'Np0.f
0/� W .Op1/=C˝ ! .Op1/=P˝ :

In other words , for every D˝ 2 .Op1/=C˝ there is an equivalence of1-operads over P˝,

Np.D
˝/�O˝ P˝ 'Np0.D

˝
�O˝ P˝/:

Proof To check that two right adjoint functors are equivalent it is enough to check that the left adjoints
are equivalent. But the left adjoint of f � is just postcomposition with f , so the thesis is equivalent to the
fact that for every E˝ 2 .Op1/=P˝ , there is a natural equivalence

E˝ �O˝ C˝ ' E˝ �P˝ .P
˝
�O˝ C˝/

and this is clear.

Remark 3.10 In a similar vein we observe that because q�p� ' .pq/�, also Npq 'NpNq .

Remark 3.11 Recall that passing to underlying1-categories gives a functor U W Op1! Cat1 which
admits a left adjoint F with essential image precisely those 1-operads q W P˝ ! Fin� such that the
functor q factors through Triv � Fin�; see [Lurie 2017, Proposition 2.1.4.11]. In particular for any
1-operad O˝, we obtain an adjunction on overcategories

F W .Cat1/=O! .Op1/=O˝ WU:
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See [Lurie 2009, Proposition 5.2.5.1]. Let p W C˝ ! O˝ be a O˝-promonoidal 1-category; we will
now describe the effect of Np on underlying1-categories. Observe that the underlying map U.p/ on
1-categories is exponentiable, as it can be described as the pullback of p along O� O˝, compare with
Example 3.3. One can compute that the diagram of left adjoints

.Op1/=C˝ .Op1/=O˝

.Cat1/=C .Cat1/=O

F

p�

U.p/�
F

commutes. Therefore the associated diagram of right adjoints

.Op1/=C˝ .Op1/=O˝

.Cat1/=C .Cat1/=O

U

Np

U.p/�

U

also commutes, and we conclude that on underlying categories Np is given by the pushforward U.p/�.

We can now define the Day convolution functor.

Definition 3.12 Let p W C˝! O˝ be a O˝-promonoidal1-category. The Day convolution functor

FunO.C;�/
Day
W .Op1/=O˝ ! .Op1/=O˝

is the right adjoint of the functor

pŠp
�
D��O˝ C˝ W .Op1/=O˝ ! .Op1/=O˝ :

This is a composite of right adjoints, and so we conclude that FunO.C;�/
Day ' Npp

�.�/. This also
shows the existence of FunO.C;�/

Day. When OD Fin�, we will omit it from the notation.

Remark 3.13 Recall that AlgC˝.D
˝/ is defined to be the full subcategory of Fun=Fin�.C

˝;D˝/ spanned
by the maps of operads, and that taking the maximal1-subgroupoid of this category gives the mapping
spaces Op1.C

˝;D˝/. Therefore we may view Alg.�/.�/ as constituting an enrichment of Op1 in
Cat1. A standard argument shows that the adjunction equivalence

Op1.P
˝;Fun.J˝;C˝/Day/' Op1.P

˝
�Fin� J˝;C˝/

improves to an equivalence

AlgP˝.Fun.J˝;C˝/Day/' AlgP˝�Fin�J˝.C
˝/:

Example 3.14 Recall from Example 3.6 that for any 1-category C, the 1-operad Cq ! Fin� is
promonoidal. For every1-operad D˝, the Day convolution1-operad Fun.Cq;D˝/Day is equivalent to
the pointwise operad structure on Fun.C;D/. Indeed they corepresent the same functor by [Lurie 2017,
Theorem 2.4.3.18].
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The description of Day convolution combined with Remark 3.11 implies that on underlying categories
FunO.C

˝;�/Day is given by U.p/�U.p/�. We can describe the fibers of this category explicitly.

Construction 3.15 Let p W C! B be an exponentiable fibration of1-categories and q W D! B any
functor. Fix an arrow f W b0! b1 in B and let us write Cbi and Dbi for the fibers of p and q over bi .
The unit of the adjunction .p�; p�/ gives a canonical functor p�p�D!B whose fiber over bi can be
identified with

(3.15.1) .p�p
�D/bi ' FunB.fbig; p�p

�D/' FunC.C�B fbig;C�B D/' Fun.Ci ;Di /:

Remark 3.16 One should be careful to note that, if the underlying1-category O of O˝ is not contractible,
then the underlying 1-category of FunO.C

˝;D˝/Day is not the same as the 1-category of functors
over O. Rather, it is a fibration over O whose global sections are Fun=O.C;D/. Compare also with the
previous construction.

We would like to have a formula for the multimapping spaces for the Day convolution. We will achieve
this in Lemma 3.25 below. In preparation for this result, we compute the mapping spaces in a pushforward.
To state the result we recall the definition of twisted arrow1-categories, and the notion of coends.

Definition 3.17 Let � W�!� be the functor Œn� 7! Œn� ? Œn�op' Œ2nC1�. Let I be an1-category. The
twisted arrow1-category Tw.I/ is the associated1-category of the simplicial set ��NI. By definition,
we have

Tw.I/n DMap.�n ? .�n/op;I/:

The natural transformations �� and .��/op!�� ? .��/op induce a functor .s; t/ W Tw.I/! I�Iop.

Remark 3.18 There are two possible conventions for defining Tw.�/. In this paper we follow that of
Lurie [2017, Section 5.2.1]. This is the opposite of the convention used in [Barwick 2017].

Example 3.19 The objects of Tw.I/ are given by edges of I. An edge from f W x! y to f 0 W x0! y0

in Tw.I/ is represented by a diagram
x x0

y y0

f f 0

Remark 3.20 The twisted arrow category is insensitive to taking opposites, meaning that Tw.Iop/'

Tw.I/. However under this equivalence .s; t/ is sent to .t; s/.

Definition 3.21 Given a functor F WC�Cop!S, we define the coend
R x2C

F.x; x/ to equal the colimit
of the functor

Tw.C/ .s;t/��! C�Cop F
�! S:

Dually for a functor F W Cop �C! C, we define the end
R
x2C F.x; x/ to be the limit of the functor

Tw.C/op .s;t/op
���! Cop

�C
F
�! S:
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We are now ready to state the formula for multimapping spaces in the Day convolution.

Lemma 3.22 Suppose we are in the setting of Construction 3.15. Let Fi W Ci ! Di be two objects of
.p�p

�D/bi , viewed as such via the equivalence (3.15.1). Then there is an equivalence

(3.22.1) Mapfp�p�D.F0; F1/'

Z
.x0;x1/2C

op
0 �C1

Map.MapfC .x0; x1/;MapfD .F0x0; F1x1//;

where the left-hand side denotes the fiber over f of the canonical map

Mapp�p�D.F0; F1/!MapB.b0; b1/:

Proof Let us write f as a map �1!B. Then, by the definition of p�, there is an equivalence

MapB.�
1; p�p

�D/'MapC.�
1
�B C;C�B D/'Map�1.�

1
�B C; �1 �B D/:

Therefore we have an equivalence

Mapfp�p�D.F0; F1/' f.F0; F1/g �MapB.@�
1;p�p�D/ MapB.�

1; p�p
�D/

' f.F0; F1/g �Map.C0;D0/�Map.C1;D1/ Map�1.�
1
�B C; �1 �B D/:

Now from the proof of [Ayala and Francis 2020, Lemma 4.2] it follows that the map

Cat1=�1 ! Cat1 �Cat1 ŒC!�1� 7! .C��1 f0g;C��1 f1g/;

is a right fibration classified by the functor Cat1 �Cat1! S sending .C0;C1/ to Map.Cop0 �C1;S/.
Therefore

f.F0; F1/g �Map.C0;D0/�Map.C1;D1/ Map�1.�
1
�B C; �1 �B D/

'Map.F0;F1/Cat1=�1
.�1 �B C; �1 �B D/

'Map.Cat1=�1 /.C0;C1/
.�1 �B C; .F0; F1/

�.�1 �B D//

'MapFun.Cop
0 �C1;S/

.MapfC .�;�/;MapfD .F0�; F1�//:

But this is exactly the thesis, thanks to [Gepner et al. 2017, Proposition 5.1].

Remark 3.23 In the setting of Lemma 3.22, suppose that q is equal to the projection D�B!B and
that D is cocomplete. Then we can interpret formula (3.22.1) as saying that p�p�D is a cocartesian
fibration and that given f W i ! j , the induced functor

fŠ W Fun.Ci ;D/! Fun.Cj ;D/

evaluated on a functor F W Ci ! D gives the functor

Cj ! D; xj 7!

Z xi2Ci

MapCij
.xi ; xj /�F.xi /;

where Cij WDC�B;f Œ1�. That is, fŠF is computed by left Kan extending F along the inclusion Ci �Cij

and then restricting to Cj �Cij . In particular, if Cij ! Œ1� is a cartesian fibration we have fŠF 'F ıf �,
where f � W C1! C0 is the pullback.
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Recall the following notion of multimapping spaces.

Definition 3.24 Let C˝! O˝ be a map of1-operads and let � W fxig! y be an active morphism of O˝

with target in O WD .O˝/1C . For every fcig 2 .C˝/fxi g '
Q
i Cxi and d 2 Cy , objects of C˝ over the

source and target of �, we define the �-multimapping space in C˝ as the space of morphisms fcig ! d

above �:
Mul�

C˝
.fcig; d / WDMapC˝.fcig; d /�Map

O˝
.fxi g;y/ f�g:

We say that C˝ is representable if for every active morphism � and objects fcig, the functor

Mul�
C˝
.fcig;�/ W C! S

is corepresentable. In this case we write
N
�fcig for the corepresenting object and we call it the �-tensor

product of fcig. This is equivalent to the functor C˝! O˝ being a locally cocartesian fibration.

We are ready to prove the formula for the multimapping spaces in the Day convolution.

Lemma 3.25 Let O˝ be an1-operad , C˝ be an O˝-promonoidal1-category and D˝ be an1-operad
over O˝. Then the multimapping spaces in FunO.C

˝;D˝/Day are given by the natural equivalence

Mul�FunO.C˝;D˝/Day.fFig; G/'

Z
c02Cy

Z
fci g2.

Q
i Cxi /

op
Map

�
Mul�C.fcig; c

0/;Mul�D.fFicig; Gc
0/
�

for all active morphisms � W fxig ! y, and objects fFig 2
Q
i Fun.Cxi ;Dxi /, G 2 Fun.Cy ;Dy/.

Proof We will use [Lurie 2017, Proposition 2.2.6.6]. However the cited result has the hypothesis that
C˝ is a O˝-monoidal1-category. We note that this is only used to ensure the existence of the norm
(after replacing the appeal to [Lurie 2009, Proposition 3.3.1.3] with [Lurie 2017, Proposition B.3.14]).
Therefore, in view of [Shah 2021, Theorem/Construction 10.6], we can safely apply this result when C˝

is only O˝-promonoidal.

Then, arguing as in the proof of [Lurie 2017, Proposition 2.2.6.11], we obtain an equivalence

Mul�FunO.C˝;D˝/Day.fFig; G/' f.F;G/g �Fun
=O˝

.@�1�
O˝

C˝;D˝/ Fun=O˝.�
1
�O˝ C˝;D˝/;

where �1! O˝ picks out the active arrow � and F WC˝
fxi g
!D˝

fxi g
is the functor sending fcig to fFicig.

Let Cact WD C˝�O˝ Oact and Dact WDD˝�O˝ Oact be the subcategories of active arrows. Since �1! O˝

factors through Oact, we have an equivalence

MulFun.C˝;D˝/Day.fFigi2I ; G/' f.F;G/g �Fun=Oact .@�1�Oact Cact;Dact/ Fun=Oact.�1 �Fin Cact;Dact/

'Map.pact/�.pact/�Dact.F;G/;

where the last equality makes sense since pact is an exponentiable fibration. Therefore the thesis follows
from Lemma 3.22.
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Definition 3.26 We say that an O˝-monoidal1-category D˝! O˝ is compatible with colimits if for
every object x 2 O, the fiber Dx has all small colimits, and if for every active arrow �, the �-tensor
product commutes with all small colimits separately in each variable; see [Lurie 2017, Definition 3.1.1.18]
for a more precise formulation. If moreover each fiber is presentable, then we say D˝ is a presentably
O˝-monoidal1-category.

Example 3.27 The underlying1-category of a symmetric monoidal model category is compatible with
colimits as the tensor product is a left Quillen bifunctor by the pushout-product axiom.

Remark 3.28 Recall that every cocomplete1-category C is canonically tensored over S. Namely, for
every X 2 S and C 2 C, we define X �C to equal colim.constC W X ! C/, the colimit over X of the
constant functor at C .

Corollary 3.29 Fix an1-operad O˝. Let C˝ be a small O˝-promonoidal 1-category and let D˝ be a
O˝-monoidal1-category which is compatible with colimits. Then:

(a) FunO.C
˝;D˝/Day is an O˝-monoidal1-category which is again compatible with colimits.

Suppose furthermore that O˝ ' Fin� is the commutative 1-operad.

(b) The unit of Fun.C˝;D˝/Day is given by 1Day WD MulD.¿;�/ � 1D, and the tensor product is
given by

.F ˝DayG/.�/'

Z .c1;c2/2C2

MulC.fc1; c2g;�/� .F.c1/˝G.c2//:

In particular , when D is the1-category of spaces with the cartesian symmetric monoidal structure ,
we have

MapC.x;�/˝
Day MapC.y;�/'MulC.fx; yg;�/

for every x; y 2 C.

Proof If D˝ is O˝-monoidal, it follows from the formula of Lemma 3.25 that Fun.C˝;D˝/Day is
representable and that the �-tensor product is given byO

�

fFigi2I '

Z fci g2Qi2I Coi
Mul�

C˝
.fcigi2I ;�/�

O
�

fFi .ci /gi2I :

This shows the existence of locally cartesian edges in Fun.C˝;D˝/Day. Because the tensor product
functors in D˝ commutes with colimits in each variable, one can calculate that the composite of locally
cartesian edges is locally cartesian, and therefore FunO.C

˝;D˝/Day is a O˝-monoidal1-category. The
fibers are clearly cocomplete, and from the formula for the tensor product it follows that the tensor in
Fun.C;D/˝ commutes with colimits in each variable.

Finally the statement for the tensor product of corepresentable functors follows from the formula above
and the Yoneda lemma.
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Notation 3.30 Suppose we are in the situation of the previous corollary, and suppose that O˝ ' Fin�.
In the case that both C˝ and D˝ are canonically (pro)monoidal, then we write C�D for the symmetric
monoidal category given by the1-operad Fun.C˝;D˝/Day. The two examples which will arise constantly
are C-S and C-S�, where S is symmetric monoidal via the cartesian product, and S� via the smash product.
Nevertheless, when we refer to the1-operad inducing the symmetric monoidal structure on C�D, we
will continue to write Fun.C˝;D˝/Day. While this distinction is mathematically meaningless, we find it
notationally convenient.

We next turn to the functoriality of Day convolution.

Construction 3.31 Let O˝ be an1-operad and suppose f W I˝! J˝ is a map of O˝-promonoidal
1-categories. Then for every two1-operads C˝ and P˝ over O˝ we have a natural transformation

AlgP˝=O˝.FunO˝.J
˝;C˝/Day/' AlgP˝�

O˝
J˝.C

˝/! AlgP˝�
O˝

I˝.C
˝/

' AlgP˝=O˝.FunO˝.I
˝;C˝/Day/

given by precomposition along P˝�O˝ I˝!P˝�O˝ J˝. Since this is natural in P˝, it induces a map
in .Op1/=O˝

f � W FunO˝.J
˝;C˝/Day

! FunO˝.I
˝;C˝/Day:

Definition 3.32 Consider C˝;D˝ 2 .Op1/=O˝ . An operadic adjunction between C˝ and D˝ is a
relative adjunction over O˝ in the sense of [Lurie 2017, Definition 7.3.2.2] such that both functors are
maps of1-operads. This notion is equivalent to an adjunction in the .1; 2/-category of1-operads; see
[Riehl and Verity 2016, Observation 4.3.2].

Remark 3.33 If C˝ and D˝ are both O˝-monoidal then an operadic left adjoint f W C˝ ! D˝ is
automatically O˝-monoidal by [Lurie 2017, Proposition 7.3.2.6].

Proposition 3.34 Let O˝ be an1-operad and let f WI˝!J˝ a map of O˝-promonoidal1-categories.
Suppose C˝ is a presentably O˝-monoidal1-category. Let us consider the lax O˝-monoidal functor

f � W FunO˝.J
˝;C˝/Day

! FunO˝.I
˝;C˝/Day:

(a) Suppose that for every active arrow � W ftigi ! t in O˝ the natural map

.ft /Š Mul�I.fxigi ;�/!Mul�J.fftixigi ;�/

adjoint to
Mul�I.fxigi ;�/!Mul�J.fftixigi ; ft .�//

is an equivalence for every family of objects fxigi . Then f � has a left operadic adjoint fŠ that is
O˝-monoidal.

(b) Suppose f has an operadic right adjoint g W J˝! I˝. Then there is a natural equivalence of maps
of 1-operads fŠ ' g�, and moreover this functor is O˝-monoidal.
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Proof We will use [Lurie 2017, Proposition 7.3.2.11] applied to the functor f � over O˝. Since on the
fiber over ti 2 O this is just given by precomposition by fti , the functor on the fiber over ftigiY

i

Fun.Jti ;Cti /!
Y
i

Fun.Iti ;Cti /

has a left adjoint, given by the left Kan extension .fti /Š on every component. In particular, this collection
of left adjoints commutes with the pushforwards along inert maps. So it suffices to show that this collection
of left adjoints commute with the pushforwards along active maps. Let � W .ti /i ! t be an active map.
Then we need to show that the map

.ft /Š

� �O
i

Fi

�
!

�O
i

.fti /ŠFi

is an equivalence. But then this follows from our hypothesis together with the description of Corollary 3.29.

Suppose now that f has an operadic right adjoint g. Since g� is an operadic left adjoint to f �, it follows
immediately that fŠ D g�. So it remains only to check the two final conditions. But we have

.ft /Š Mul�I.fxigi ;�/'Mul�I.fxigi ; gt�/'Mul�J.fftixigi ;�/;

since g is an operadic right adjoint of f .

Remark 3.35 If O˝ D Fin� and I˝ and J˝ are both symmetric monoidal, then the conditions ensuring
the symmetric monoidality of fŠ are equivalent to f being a symmetric monoidal functor (since fŠ
restricts to f on representables). Thus the above proposition gives an alternative proof of [Ben-Moshe
and Schlank 2024, Proposition 3.6].

3.1 Symmetric monoidal structures on copresheaf categories

We finish this section by classifying all possible closed symmetric monoidal structures on the copresheaf
1-category Fun.I;S/ in terms of symmetric promonoidal structures on I; see Theorem 3.37.

Lemma 3.36 Let I be a small1-category and let us suppose that the presheaf category Fun.I;S/ is
equipped with a symmetric monoidal structure Fun.I;S/˝ which is compatible with colimits. Equip I

with the full suboperad structure I˝ induced by the Yoneda embedding I � Fun.I;S/op. Then I˝ is
symmetric promonoidal.

Proof For brevity let us write D˝ D Fun.I;S/˝. Recall from Definition 3.4 that I˝ is promonoidal if
the functor I˝! Fin� is exponentiable over Fin' .Fin�/act. By the characterization of exponentiability
in [Ayala and Francis 2020, Lemma 1.10(c)], we need to show that for every map f W I ! J in Fin, every
x 2 II and every z 2 I the mapZ y2IJ

MulI.fyj gj2J ; z/�
Y
j2J

MulI.fxigi2f �1j ; yj /!MulI.fxigi2I ; z/
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is an equivalence. Using that I� Dop is a full suboperad, this is equivalent to asking that the mapZ y2IJ Y
j2J

MapD

�
yj ;

O
i2f �1j

xi

�
�MapD

�
z;
O
j2J

yj

�
!MapD

�
z;
O
i2I

xi

�
is an equivalence of spaces. But since MapD.z;�/ commutes with all colimits (as z 2 I is tiny) it is
enough to show that the mapZ y2IJ�Y

j2J

MapD

�
yj ;

O
i2f �1j

xi

��
˝

O
j2J

yj !
O
i2I

xi

is an equivalence. Since the tensor product in D commutes with colimits in each variable, we can bring
all the colimits inside (using that Tw.IJ /' Tw.I/J ). We are reduced to proving that the mapO

j2J

Z yj2C

MapD

�
yj ;

O
i2f �1j

xi

�
˝yj !

O
i2I

xi

is an equivalence. But this follows from the fact that for any j 2 J and w 2 D, the mapZ yj2C

Map.yj ; w/�yj ' colim
yj2C=w

yj ! w

is an equivalence, which is just another form of the Yoneda lemma.

We are ready to prove our classification result.

Theorem 3.37 Let I be a small 1-category and suppose Fun.I;S/ is equipped with a symmetric
monoidal structure Fun.I;S/˝ which is compatible with colimits. Equip I˝ with the1-operad structure
induced by the Yoneda embedding I � Fun.I;S/op. Then I˝ is symmetric promonoidal and the
symmetric monoidal structure on Fun.I;S/ is equivalent to the one induced by Day convolution with the
symmetric promonoidal structure on I˝.

Proof It follows from Lemma 3.36 that I˝ is symmetric promonoidal. Consider the composite

I˝ �Fin� Fun.I;S/˝! .Fun.I;S/op/˝ �Fin� Fun.I;S/˝! S�

of lax symmetric monoidal functors, where the first functor is induced by the Yoneda embedding and the
second is the lax symmetric monoidal enhancement of the mapping space functor constructed in [Glasman
2016, Section 3]. By the universal property of the Day convolution, we obtain a map of1-operads

Fun.I;S/˝! Fun.I˝;S�/Day;

which is the identity on underlying1-categories. Therefore to prove our thesis it will suffice to show that
this functor is symmetric monoidal. Since Fun.I;S/ is generated under colimits by the corepresentable
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functors and both tensor products commute with colimits in each variable, it is enough to check that the
maps

MulI.¿;�/' 1! 1Day;

MulI.fx; yg;�/'MapI.x;�/˝MapI.y;�/!MapI.x;�/˝
Day MapI.y;�/

are equivalences for all x; y 2 I. But this follows from Corollary 3.29.

Recall that the 1-category of pointed objects in a presentably symmetric monoidal 1-category is
canonically symmetric monoidal. For later use we also record how taking pointed objects in a category of
diagram spaces interacts with the Day convolution symmetric monoidal structure.

Proposition 3.38 Consider a small promonoidal 1-category I, and a presentably symmetric monoidal
1-category C. There exists a symmetric monoidal equivalence

.I�C/� ' I�C�:

Proof Consider the lax monoidal functor I�C! I�C� induced by the universal property of Day
convolution by the composite

Fun.I˝;C˝/�Fin� I˝! C˝
.�/C
���! .C�/

^˝ :

Because .�/C is strong monoidal and colimit-preserving, one calculates that this functor is in fact strong
monoidal. Therefore by [Lurie 2017, Proposition 4.8.2.11] we obtain an induced strong monoidal functor
.I�C/�! I�C�, which is easily seen to be the identity on underlying categories.

3.2 A symmetric monoidal Elmendorf’s theorem

In this subsection we give a general1-categorical version of Elmendorf’s theorem. We then enhance
this to a symmetric monoidal equivalence.

Theorem 3.39 (Elmendorf) Let C be a cocomplete1-category and let i W C0! C be the inclusion of a
small full subcategory satisfying the following conditions:

(a) The objects of C0 are tiny: for all c 2 C0, the functor MapC.c;�/ preserves small colimits.

(b) The collection of objects fc0 2 C0g is jointly conservative: an arrow f in C is an equivalence if
and only if MapC.c0; f / is so for all c0 2 C0.

Then the restricted Yoneda functor induces an equivalence of 1-categories j W C' P.C0/.

Proof By the universal property of the category of presheaves [Lurie 2009, Theorem 5.1.5.6], there
exists a colimit-preserving functor L W P.C0/! C such that Lj0 ' i , where j0 W C0! P.C0/ denotes
the Yoneda embedding. By the adjoint functor theorem [Nguyen et al. 2020, Corollary 4.1.4], the functor
L admits a right adjoint R W C! P.C0/, which is defined via the formula

Rc.c0/DMapC.Lj0.c0/; c/'MapC.i.c0/; c/
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for all c 2C and c0 2C0. Therefore R can be identified with the restricted Yoneda functor j WC!P.C0/.
We note that the functor j preserves all small colimits since for all c0 2 C0, the functor

MapC.c0;�/ W C
j
�! P.C0/

evc0
��! C0

does so by condition (a). As equivalences in P.C0/ are detected pointwise, the same argument as above
using condition (b) then shows that j is conservative. Note that the unit map � W 1! jL is an equivalence
on all objects in the image of j0 as by construction jLj0 ' j i D j0. It follows that the unit map is an
equivalence on all objects as P.C0/ is generated under colimits by the representable functors and all the
functors involved preserve colimits. Using the triangle identities of the adjunction we then find that j.�/
is an equivalence and so the counit map � W Lj ! 1 is an equivalence by conservativity of j . Thus j and
L are inverse equivalences.

Example 3.40 Let G be a topological group and let GT be a convenient category of G-spaces. There is
a model structure on GT where a map f WX ! Y of G-spaces is a weak equivalence (resp. fibration) if
f H WXH ! YH is a weak homotopy equivalence (resp. Serre fibration) for all closed subgroups H �G;
see [Schwede 2018, Proposition B.7]. Let SG denote the underlying1-category of this model category,
which is cocomplete by [Barnea et al. 2017, Theorem 2.5.9]. Moreover, colimits in SG of projective
cofibrant diagrams can be calculated as homotopy colimits in GT by [Barnea et al. 2017, Remark 2.5.7].
Let OG�SG be the full subcategory ofG-spaces spanned by the cosetsG=H whereH runs over all closed
subgroups of G. Note that G=H 2 SG corepresents the H -fixed-point functors so the collection of cosets
fG=H jH �Gg is jointly conservative by definition of weak equivalences inGT. The fact thatG=H 2SG

is tiny then follows from the fact that the H -fixed-point functor commutes with all small homotopy colim-
its [Schwede 2018, Proposition B.1(i) and (ii)]. Then the theorem above gives an equivalence O

op
G -S'SG .

Therefore the previous theorem is a generalization of the classical theorem of Elmendorf [1983].

Under suitable assumptions we now enhance this to a symmetric monoidal equivalence, where we endow
the presheaf category with Day convolution for a promonoidal structure on subcategory of tiny objects.

Corollary 3.41 Suppose we are in the setting of Theorem 3.39 and that , furthermore , the following hold :

(a) C admits a symmetric monoidal structure C˝ which is compatible with colimits.

(b) C0 admits an1-operad structure C˝0 .

(c) The inclusion i W C0! C lifts to a fully faithful functor of1-operads i˝ W C˝0 ! C˝.

Then C˝0 is a symmetric promonoidal 1-category and the restricted Yoneda embedding induces a
symmetric monoidal equivalence P.C0/

Day ' C˝.

Proof By Theorem 3.39 there is a commutative diagram

C0 C

P.C0/

i

j0 j

�
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We can equip P.C0/ with a symmetric monoidal structure P.C0/
˝ induced by C˝ via j , and hence

obtain a symmetric monoidal equivalence j˝ W C˝! P.C0/
˝. Combining this with condition (c) we

obtain another commutative diagram

C˝0 C˝

P.C0/
˝

i˝

j
˝

0 j˝

�

of1-operads. It is only left to note that by Theorem 3.37, the1-category C˝0 is symmetric promonoidal
and that the symmetric monoidal structure on P.C0/

˝ coincides with the Day convolution product.

4 Partially lax limits

In this section we recall the necessary background on (partially) lax (co)limits and collect some important
properties that we will use throughout the paper. The main references for this material are [Gepner et al.
2017; Berman 2024].

The notion of a partially lax limit over an1-category I is defined with reference to a collection of edges
of I. To make this precise we make the following definition.

Definition 4.1 A marked 1-category is an 1-category C along with a collection of edges W �

Map.�1;C/ which contains all equivalences and which is stable under homotopy and composition. Given
two marked1-categories C and D, we write Fun�.C;D/ for the subcategory spanned by marked functors;
those functors that preserve marked edges. We write Cat�1 for the1-category of marked1-categories.
For the existence see [Lurie 2017, Construction 4.1.7.1].

Example 4.2 Let C be an1-category.

(a) There is a maximal marking C] where all morphisms are marked.

(b) There is a minimal marking C[ where only the equivalences are marked.

(c) Given a (co)cartesian fibration p W C! I� over a marked1-category, there is a marking Cp in
which the (co)cartesian morphisms living over marked edges are marked.

Partially lax limits in an1-category C are also defined with reference to a cotensoring of C by Cat1. For
the purposes of this paper, this is nothing but a functor Œ�;�� W Catop

1 �C! C. The following examples
are all naturally cotensored over Cat1.

Example 4.3 In the following I is an1-category.

(a) Clearly Cat1 is cotensored over itself with cotensor given by ŒI;C�D Fun.I;C/.

(b) The1-category Cat�1 is cotensored over Cat1 by considering ŒI;C��D Fun.I;C�/, where we
mark all those natural transformations whose components are all marked in C�.
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(c) The1-category of symmetric monoidal categories Cat˝1 is cotensored over Cat1 by endowing the
1-category Fun.I;C/ with the pointwise symmetric monoidal structure q W Fun.I;C/˝! Fin�
which is defined as follows. If p W C˝! Fin� is the cocartesian fibration witnessing the symmetric
monoidal structure of C, then we construct the pullback

Fun.I;C/˝ Fin�

Fun.I;C˝/ Fun.I;Fin�/

q

const

p�

Note that by construction we have Fun.I;C/˝
hni
' Fun.I;C˝

hni
/ for all hni 2 Fin�. From this we

immediately see that q satisfies the Segal conditions. The map p� is a cocartesian fibration by the
dual of [Lurie 2009, Proposition 3.1.2.1], and so by base-change [Lurie 2009, Proposition 2.4.2.3],
q is too. Therefore q gives a symmetric monoidal structure on Fun.I;C/.

(d) We can generalize the previous example as follows. Let O˝ ! Fin� be an 1-operad. The 1-
category of 1-operads Op1 is cotensored over Cat1 by endowing the 1-category Fun.I;O/
with the pointwise operadic structure induced by the map Fun.I;O˝/�Fun.I;Fin�/ Fin�! Fin�.

Similarly, partially lax colimits in C are defined with reference to a tensoring of C by Cat1. Once again,
while more structured tensorings are typically useful, for our purposes it suffices for this to be a functor
.�/˝ .�/ W Cat1 �C! C. The most important example will be Cat1, for which the cartesian product
gives a tensoring.

We now move on to the definition of partially lax (co)limits. For this we need to recall some categorical
constructions. Recall the following result.

Lemma 4.4 [Lurie 2017, Proposition 4.1.7.2] The minimal functor .�/[ W Cat1! Cat�1 admits a left
adjoint denoted by j � j.

The1-category jC�j is obtained from C by adjoining formal inverses to all the marked morphisms, and
so we call j � j the localization functor.

Example 4.5 Given a model category M, we may view it as a marked1-category by marking the weak
equivalences in M. Then jMj 'MŒW �1�.

Next we define marked slice categories.

Construction 4.6 Let C be an1-category. There is a functor C=� W C! Cat1 sending x 2 C to the
slice category C=x . This is obtained by straightening the cocartesian fibration given by the target map
t W Ar.C/ WD Fun.�1;C/! C. One checks that a diagram

f0 g0

f1 g1

f g
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is a t-cocartesian edge if the top horizontal arrow is an equivalence. If C� is marked, then C
�

=x
has an

induced marking where a morphism is marked if its image under the forgetful functor C
�

=x
! C� is a

marked morphism. It is easy to see that this construction is functorial on x, and so we obtain a functor
C
�

=�
W C! Cat�1.

We are finally ready to introduce the notion of partially lax (co)limit. Recall the definition of the twisted
arrow1-category from Definition 3.17.

Definition 4.7 Consider a functor F W I! C and choose a marking I�.

(a) If C is cotensored over Cat1, then the partially lax limit of F is the limit of the composite

Tw.I/op .s;t/op
���! Iop

�I
jI
�

=�
j�F

�����! Catop
1 �C

Œ�;��
���! C:

We abbreviate this by laxlim� F .

(b) If C is tensored over Cat1, then the partially lax colimit of F is the colimit of the composite

Tw.I/ .s;t/��! I�Iop F�j.Iop/
�

=�
j

�������! C�Cat1
�˝�
��! C:

We abbreviate this by laxcolim� F .

Remark 4.8 If we choose the minimal marking I[, then we recover the notion of lax (co)limit of [Gepner
et al. 2017]. If we choose the maximal marking I], then we recover the usual notion of (co)limit;
see [Berman 2024, Proposition 3.6].

In some cases we have a concrete description of the partially lax (co)limit.

Theorem 4.9 [Berman 2024, Theorem 4.4] Let I� be a small marked1-category and let F WI!Cat1
be a functor. Consider the source of the (co)cartesian fibrations Unct.F /! Iop and Unco.F /! I as
marked via Example 4.2(c).

(a) The partially lax limit of F is the1-category of marked sections of p W Unco.F /! I�. In other
words , we have

laxlim� F ' Fun�
=I�
.I�;Unco.F //:

(b) The partially lax colimit of F is given by the localization of Unct.F / at the marked edges. In other
words , we have

laxcolim� F D jUnct.F /j:

Remark 4.10 The previous result gives a more explicit description of the partially lax limit of F . Recall
that informally the Grothendieck construction Unco.F / is the1-category whose objects are pairs .X; i/
where i 2 I and X 2 F.i/. A morphism from .X; i/ to .Y; j / is a pair .'; f / where f W i ! j is a
morphism in I and ' W F.f /.X/ ! Y is a morphism in F.j /. Then the previous result informally
implies that laxlim� F is equivalent to the1-category whose objects are coherent collections of objects
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.Xi 2 F.i//i2I together with maps 'f W F.f /.Xi /!Xj for every arrow f W i ! j in I, such that the
map 'f is an equivalence whenever f is marked.

We record some useful properties of partially lax (co)limits.

Proposition 4.11 Let I� be a marked1-category and let F W I! Cat1 be a functor. Given any other
1-category C, we have an equivalence

Fun.laxcolim�
I

F;C/' laxlim�
Iop

Fun.F.�/;C/:

Proof The partially lax colimit of F W I! Cat1 is by definition calculated via the formula

laxcolim� F D colim
Tw.I/

F � j.Iop/
�

=�
j:

Postcomposing by the limit-preserving functor Fun.�;C/ WCatop
1!Cat1, we deduce that the1-category

Fun.laxcolim� F;C/ is the limit of the diagram

(4.11.1) Tw.I/op .s;t/op
���! Iop

�I
.F;j.Iop/

�

=�
j/op

��������! Catop
1 �Catop

1
���
���! Catop

1
Fun.�;C/
�����! Cat1:

By adjunction, we find that the composite of the final three functors is equivalent to

Fun.�;�/ ı .j.Iop/
�

=�
j;Fun.F.�/;C// ı � W Iop

�I! Cat1;

where � is the symmetry isomorphism of the product. As indicated in Remark 3.20, the following triangle
commutes:

Tw.I/op Tw.Iop/op

Iop �I
.s;t/op .t;s/op

�

These two observations allow us to rewrite equation (4.11.1) and conclude that Fun.laxcolim� F;C/ is
the limit of the functor

Tw.Iop/op .s;t/op
���! I�Iop .j.Iop/

�

=�
j;Fun.F .�/;C//

��������������! Catop
1 �Cat1

Fun.�;�/
�����! Cat1;

which is exactly the definition of the partially lax limit of Fun.F.�/;C/ W Iop! Cat1.

We finish this section by discussing how (partially) lax limits interact with localizations. Later on we will
use these results to pass from (partially) lax limits of prespectra to that of spectra.

Lemma 4.12 Let I be an 1-category and let F W I ! Cat1 be a functor. Suppose that for every
i 2 I we are given a reflexive subcategory Gi � F i with left adjoint Li W F i ! Gi . If for every arrow
f W i ! j of I, the pushforward functor f� W F i ! Fj sends Li -equivalences to Lj -equivalences , then
there is a functor G W I! Cat1 and a natural transformation L W F )G whose i th component is given by
Li W F i !Gi . Furthermore , the functor

laxlim
I

L W laxlim
I

F ! laxlim
I

G

has a fully faithful right adjoint.
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Proof Let us consider the Grothendieck construction Unco.F /!I of F . This is the cocartesian fibration
classified by F under the straightening-unstraightening equivalence, so in particular the fiber over i 2 I

can be canonically identified with F i . Let E� Unco.F / be the full subcategory spanned by the objects
of Gi � Unco.F / for all i 2 I.

We claim that E! I is a cocartesian fibration whose cocartesian edges are those that can be factored
in Unco.F / as a cocartesian edge of Unco.F / followed by a Li -equivalence in the fiber over i . More
precisely, if f W i ! j is an arrow of I and x 2Gi , then the cocartesian lift of f starting from x is the
composition x! f�x! Lj .f�x/ where the first arrow is the cocartesian lift of f in Unco.F /.

Indeed, for every z 2Gj , we have

MapfE .x; z/'MapFj .f�x; z/'MapGj .Ljf�x; z/;

and so those edges are locally cocartesian. Furthermore, it is easy to see they are stable under composition
(using the fact that L-equivalences are stable under pushforward), therefore they are cocartesian arrows
by [Lurie 2009, Lemma 2.4.2.7].

The inclusion � W E � Unco.F / has a relative left adjoint, which is a map of cocartesian fibrations by
[Lurie 2017, Proposition 7.3.2.11]. Therefore there is a functor G W I! Cat1 and a natural transfor-
mation L W F ) G such that E can be identified with Unco.G/ in such a way that the induced map
L W Unco.F /! Unco.G/ agrees with Li W F i !Gi on each fiber.

Finally, by Theorem 4.9 the lax limit of F and G are computed by the 1-categories of sections of
the respective cocartesian fibrations, and laxlimIL is given by postcomposition with L. Therefore
postcomposition with � gives a fully faithful right adjoint to laxlimIL.

Lemma 4.13 Suppose we are in the situation of Lemma 4.12, and suppose I is equipped with a
marking I� such that for every marked edge f W i ! j the pushforward functor f� W F i ! Fj sends Gi
into Gj . Then the functor

laxlim
I�

L W laxlim
I�

F ! laxlim
I�

G

has a fully faithful right adjoint. In particular , laxlimI� L is a localization functor.

Proof It suffices to show that the right adjoint of Lemma 4.12 sends laxlimI� G into laxlimI� F . Recall
that the partially lax limit can be calculated as the subcategory of sections spanned by those sending
marked edges to cocartesian arrows. Thus, we ought to show that the right adjoint preserves cocartesian
arrows lying over marked edges. But the right adjoint is given by postcomposing a section with the
inclusion Unco.G/! Unco.F /, and so by the description of cocartesian edges given in Lemma 4.12 and
by our hypothesis, it sends cocartesian arrows over marked edges to cocartesian arrows (here we are
implicitly using that an Li -equivalence between objects of Gi is automatically an equivalence in F i and
so in particular a cocartesian arrow).

Geometry & Topology, Volume 29 (2025)



Global homotopy theory via partially lax limits 1377

For later reference we record the following immediate corollary of Lemma 4.12.

Corollary 4.14 Let I be an1-category and let F W I!Cat˝1 be a functor. Suppose that for every i 2 I,
we are given a reflexive subcategory Gi � F i with left adjoint Li W F i !Gi which is compatible with
the symmetric monoidal structure in the sense of [Lurie 2017, Definition 2.2.1.6]. Suppose furthermore
that for every arrow f W i ! j in I , the pushforward functor f� W F i ! Fj sends Li -equivalences to Lj -
equivalences. Then there exists a functor G W I! Cat˝1 and a symmetric monoidal natural transformation
L W F )G whose i th component is given by Li W F i !Gi .

Proof Cat˝1 embeds as a subcategory of Fun.Fin�;Cat1/, so consider the functor zF W Fin��I!Cat1
induced by F , so that zF .AC; i/' .F i/A (the fiber over A of F i! Fin�). If we let zG.AC; i/D .Gi/A�
zF .AC; i/, we can apply Lemma 4.12 to zF . To see that the pushforwards respect local equivalences, it

suffices to prove this separately for maps of the form .�; id/ and .id; f / in Fin� �I. However, both of
these cases are ensured by our assumptions. Therefore there exists a functor

zG W Fin� �I! Cat1

and a natural transformation zL W zF ) zG as desired. By construction zG satisfies the Segal conditions, and
so it induces a functor G W I! Cat˝1 with a symmetric monoidal natural transformation L W F )G as
desired.

5 Partially lax limits of symmetric monoidal 1-categories

Recall that Op1 is canonically cotensored over Cat1 by Example 4.3. Therefore we immediately obtain
a definition of partially lax limits of diagrams in Op1. In this section we will collect some important
properties of partially lax limits of symmetric monoidal1-categories and1-operads. In particular the
calculations of Proposition 5.8 and Theorem 5.10 are used repeatedly in part two. The first is analogous
to the calculation of the (partially) lax limit of a diagram of1-categories, and as such it is stated in terms
of an unstraightening equivalence for symmetric monoidal categories, which we recall in Proposition 5.5.

Remark 5.1 If P˝ is another1-operad, it follows from the definition and [Lurie 2017, Remark 2.1.3.4]
that there is a natural equivalence

AlgP˝
�
laxlim
i2I

O˝i
�
' laxlim

i2I
AlgP˝.O

˝/:

Such a natural equivalence then also uniquely determines the lax limit. Since Cat˝1 � Op1 is a
subcategory closed under limits and cotensoring, it is also closed under partially lax limits. In particular
we conclude that for every family of symmetric monoidal1-categories C� and every symmetric monoidal
1-category D, there is a natural equivalence

Fun˝
�
D; laxlim

i2I
Ci
�
' laxlim

i2I
Fun˝.D;Ci /:
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We note that the underlying1-category functor U W Op1! Cat1 preserves limits and commutes with
cotensoring, and therefore preserves partially lax limits. Therefore the previous construction equips the
partially lax limit of a family of symmetric monoidal1-categories with a canonical symmetric monoidal
structure, which satisfies the expected universal property.

Remark 5.2 There is always a canonical map laxlim� O˝i ! laxlim O˝i . This functor is induced on limits
by a natural transformation which is pointwise given by the inclusion of a fully faithful suboperad. Thus
we conclude that the partially lax limit is always a fully faithful suboperad of the lax limit. In practice this
means that we can determine which suboperad by considering the induced map on underlying categories.

In the second part of the paper we will build diagrams of symmetric monoidal1-categories indexed on
Gloop. Central to our constructions of these diagrams is an operadic variant of straightening/unstraightening,
which we will recall now.

Notation 5.3 Recall from [Lurie 2017, 2.4.3.5] that for every 1-category I there is a functor of
1-operads c W I�Fin�! Iq sending .x; AC/ to the constant family fxga2A 2 IqAC .

Construction 5.4 Let I be an 1-category and let C˝ be an Iq-monoidal 1-category. Then the
commutative diagram of cocartesian fibrations

C˝ �Iq .I�Fin�/ I�Fin�

I

pr2

prI
pr1

is classified by a functor C� W I! .Cat1/=Fin� , which lands in Cat˝1. We refer to C� as the family of
symmetric monoidal1-categories classifying C˝.

Proposition 5.5 The previous construction furnishes an equivalence between the1-category of Iq-
monoidal categories and Fun.I;Cat˝1/.

Proof This is [Drew and Gallauer 2022, Corollary A.12].

Definition 5.6 Consider a map of1-operads p W O˝! Iq. Any object i 2 I induces a functor

fig �Fin� ,! I�Fin�
c
�! IqI

see Notation 5.3. Equivalently, the map above can be obtained by applying .�/q to the map �0! I

defined by i 2I. Inspired by the equivalence of Proposition 5.5 we will refer to the pullback O˝�Iq Fin�
as the operadic fiber of p at i 2 I. If p is an Iq-monoidal1-category, then its operadic fiber at i is a
symmetric monoidal1-category, and corresponds to the value of the functor C� at i .

The following example will be crucial for later applications.

Example 5.7 Let p W C˝ ! Iq be a Iq-promonoidal 1-category and let D˝ ! Iq be a map
of 1-operads which is compatible with colimits. Then the operadic fiber of the Day convolution
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FunI.C
˝;D˝/Day over i 2 I is given by the symmetric monoidal1-category Ci�Di , where Ci and Di

are the operadic fibers over i of C˝ and D˝, respectively. To see this, first recall that Ci�Di is defined
to be Fun.Ci ;Di / with the Day convolution symmetric monoidal structure. Then the claim follows from
the following computation using Lemma 3.9:

.Npp
�D˝/�Iq Fin� 'Npi .p

�D˝ �C˝ C˝i /'Npip
�
i D˝i D Ci�Di :

Recall that the lax limit of a diagram of1-categories was calculated by taking sections of the associated
cocartesian fibration. Similarly, we can describe the lax limit of C� in terms of (suitable) sections of the
1-operad C˝.

Proposition 5.8 Let C˝ ! Iq be a Iq-monoidal 1-category , and write C� W I ! Cat˝1 for the
associated diagram of symmetric monoidal1-categories. Then there is a natural equivalence of symmetric
monoidal1-categories

laxlim C� 'NIqC˝;

where the right-hand side is the norm along Iq! Fin�, which is well-defined by Example 3.6.

Proof We will show that the right-hand side has the universal property of the lax limit. By the universal
property of the norm, for any1-operad P˝ we have an equivalence

AlgP˝.NIqC˝/' AlgP˝�Fin�Iq=Iq.C
˝/:

By [Lurie 2017, Theorem 2.4.3.18], we can write

AlgP˝�Fin�Iq=Iq.C
˝/' AlgP˝�Fin�Iq.C

˝/�Alg
P˝�Fin�Iq

.Iq/ fpr2g

' Fun.I;AlgP˝.C
˝//�Fun.I;Alg

P˝
.Iq// fpr2g;

where pr2 W P
˝ �Fin� Iq! Iq is the projection. In other words, we have shown that AlgP˝.NIqC˝/

is the1-category of sections of the functor

AlgP˝.C
˝/�Alg

P˝
.Iq/ I! I;

which is exactly the cocartesian fibration classified by i 7! AlgP˝.C
˝

i /. Our thesis then follows from
Theorem 4.9.

Remark 5.9 Let p W C˝ ! Iq be an Iq-monoidal 1-category, and write C� W I ! Cat˝1 for the
associated diagram of symmetric monoidal1-categories. Then by the discussion in Remark 3.11, the
underlying category of NIqC˝ is given by Fun=I.I;C/. Therefore the proposition above is an operadic
analogue of Theorem 4.9(b). Since we know that the partially lax limit of a diagram of1-operads is a
fully faithful suboperad of the lax limit, the previous result also allows us to calculate the partially lax
limit of C�. Namely it is the fully faithful symmetric monoidal subcategory of NIqC˝ determined by
the fully faithful subcategory laxlim� C� � laxlim C�.
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We finish this section by proving that the formation of (partially) lax limits of symmetric monoidal
categories commutes with taking modules, in a precise sense. This will be a key observation for the
second part of the paper, and crucially uses the equivalence NIqC˝ ' laxlim C�.

Theorem 5.10 Let C˝ ! Iq be a Iq-monoidal 1-category which is compatible with colimits ,
and write C� W I! Cat˝1 for the associated diagram of symmetric monoidal 1-categories. Let S 2
CAlg.laxlim C�/ be a commutative algebra in the lax limit , which corresponds to a (partially lax) family
of commutative algebras Si 2 CAlg.Ci /. Then there is a functor

ModS�.C�/ W I! Cat˝1; i 7!ModSi .Ci /;

and an equivalence of symmetric monoidal1-categories

laxlim ModS�.C�/'ModS .laxlim C�/:

Moreover , there is a natural transformation C� ! ModS�.C�/ sending x 2 Ci to the free Si -module
Si ˝ x, which induces the functor S ˝� on the lax limit.

The proof of the previous result will require some preparation and some results from the appendix. For
this reason we recommend the reader to skip this part on a first reading.

We start our journey by studying how the lax limit interacts with the tensor product of algebras.

Construction 5.11 By [Lurie 2017, Proposition 3.2.4.6] there is an equivalence of1-operads

Iq˝BV Fin� ' Iq;

where ˝BV is the Boardman–Vogt tensor product, and so there exists a unique bifunctor of1-operads
Iq � Fin�! Iq. For any1-operad O˝ we obtain a bifunctor of1-operads mO, which is given by the
composition

Iq �O˝! Iq �Fin�! Iq:

Thus, for every map of 1-operad C˝ ! Iq [Lurie 2017, Construction 3.2.4.1] produces a map of
1-operads

AlgO˝=Iq.C/
˝
! Iq;

whose operadic fiber over i 2 I is given by AlgO˝.Ci /
˝. Suppose that C˝ is a Iq-monoidal category.

Then by [Lurie 2017, Proposition 3.2.4.3.(3)] AlgO˝.Ci /
˝ is also a Iq-monoidal1-category. In this

case, Proposition 5.5 gives a functor I! Cat˝1 sending i 2 I to AlgO˝.Ci /
˝. We will now compute the

lax limit of this functor.

Lemma 5.12 Let I be an1-category , C˝ ! Iq a map of1-operads and O˝ an1-operad. Then
there is a natural equivalence of1-operads

AlgO˝.NIqC˝/˝ 'NIq AlgO˝=Iq.C/
˝:

In particular if C˝ is Iq-symmetric monoidal we have a natural equivalence of 1-operads

AlgO˝
�
laxlim
i2I

Ci
�˝
' laxlim

i2I
AlgO.Ci /

˝:
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Proof We will prove that both sides represent the same functor in the1-category of1-operads. Let
P˝ be an1-operad. Then

AlgP˝ NIq AlgO˝=Iq C˝ ' AlgP˝�Fin�Iq=Iq.AlgO˝.C/
˝
�Alg

O˝
.I/˝ Iq/

' AlgP˝�Fin�Iq=Alg
O˝
.I/˝.AlgO˝.C/

˝/

' AlgP˝�Fin�Iq.AlgO˝.C/
˝/�Alg

P˝�Fin�Iq
.Alg

O˝
.I/˝/ fpr2g

' Alg.P˝˝BV O˝/�Fin�Iq.C
˝/�Alg

.P˝˝BV O˝/�Fin�Iq
.Iq/ fpr2g

' Alg.P˝˝BV O˝/�Fin�Iq=Iq.C/
˝

' AlgP˝.AlgO˝.NIqC/˝/:

Here ˝BV is the Boardman–Vogt tensor product of1-operads of [Lurie 2017, Section 2.2.5].

We are ready to prove the main result of this section.

Proof of Theorem 5.10 By the definition of the norm we have an equivalence

CAlg.NIqC˝/' AlgIq=Iq.C
˝/' AlgIq.AlgFin�=Iq.C/

˝/;

therefore we can also consider S as a section of AlgFin�=Iq.C/
˝! Iq in Op1.

By Theorem 12.21 and Lemma 5.12 there is an equivalence

ModS .NIqC˝/˝ ' AlgCM.NIqC/˝ �CAlg.N
Iq

C/˝ Fin�

'NIq.AlgCM=Iq.C/
˝
�AlgFin�=Iq

.C/˝ Iq/;

where Iq! AlgFin�=Iq.C/
˝ is the section corresponding to S . Moreover, by Lemma 12.20,

AlgCM=Iq.C/
˝
�AlgFin�=Iq

.C/˝ Iq! Iq

is an Iq-monoidal1-category. Then Theorem 12.21 shows that the corresponding family of symmetric
monoidal1-categories is exactly

i 7!ModSi .Ci /;

and so our thesis follows from Proposition 5.8.

Finally, let us construct the symmetric monoidal functor C˝i !ModSi .Ci /
˝. There is a map of Iq-

monoidal1-categories
AlgCM˝=Iq.C/

˝
! AlgFin�=Iq.C/

˝
�Iq C˝

induced by the map of1-operads Fin��Triv˝!CM˝ picking the algebra and the underlying object of
the module. By [Lurie 2017, Corollary 4.2.4.4] this has a left adjoint on every fiber, which is compatible
with the pushforwards by [Lurie 2017, Corollary 4.2.4.8], and so by [Lurie 2017, Corollary 7.3.2.12] it
has a relative left adjoint F which is an Iq-monoidal functor. Then the functor we want is the composite

C˝
.S;id/
���! AlgFin�=Iq.C/

˝
�Iq C˝

F
�! AlgCM˝=Iq.C/

˝:

This induces the desired functor on the lax limit, since applying NIq preserve operadic adjunctions.
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Part II 1-categories of global objects as partially lax limits

In this second part of the paper we prove that various1-categories of global objects admit a description
using (partially lax) limits. In Theorem 6.17, we show that the1-category of global spaces is equivalent
to the partially lax limit of the functor sending a compact Lie group G to the1-category of G-spaces.
Our main result is Theorem 11.10, which describes the1-category of global spectra as a partially lax
limit of G-spectra where G runs over all compact Lie groups G. Finally, the techniques employed in the
previous cases allow us to prove that for any Lie group G, the1-category of proper G-spectra is a limit
of H -spectra for H running over all compact subgroups of G. The precise statement can be found in
Theorem 12.11.

Remark To not burden the notation even more, we have decided to state Theorems 6.17 and 11.10 for
the family of all compact Lie groups. However, the proofs hold verbatim for any family of compact
Lie groups which is closed under isomorphisms, finite products, passage to subgroups and passage to
quotients (ie any multiplicative global family in the language of [Schwede 2018]). If the family is not
closed under finite products, then the equivalences of the two theorems still hold without symmetric
monoidal structures. This is due to the fact that the model structure constructed in [Schwede 2018] is
only shown to be symmetric monoidal for a multiplicative global family. We note that our result in fact
allows us to define a symmetric monoidal structure on global spectra with respect to any global family, as
a partially lax limit of symmetric monoidal categories is automatically symmetric monoidal.

6 Global spaces as a partially lax limit

In this section we show that the1-category of global spaces is equivalent to a certain partially lax limit
of the functor which sends a group G to the1-category of G-spaces SG . This is an unstable version of
our main result, and serves as a warm up for the considerable more details involved in that proof. We
start off by recalling a few relevant definitions.

Definition 6.1 The global category Glo is the1-category associated to the topological category whose
objects are compact Lie groups and whose mapping spaces are given by

MapGlo.H;G/ WD jHom.H;G/==Gj;

the geometric realization of the action groupoid of G acting on the space of continuous group homomor-
phisms Hom.H;G/ by conjugation. Composition is induced by the composition of group homomorphisms.

We define Orb and Glosur to be the wide subcategory of Glo whose hom-spaces are given by those path-
components of MapGlo.H;G/ spanned by the injective and surjective group homomorphisms respectively.
For later applications it will be convenient to mark all the edges in the full subcategory Orb� Glo; we
denote this marking by Glo�. Finally, we let Rep denote the homotopy category of Glo, that is, the

Geometry & Topology, Volume 29 (2025)



Global homotopy theory via partially lax limits 1383

category whose objects are compact Lie groups and whose morphisms are given by conjugacy classes of
continuous group homomorphisms.

Remark 6.2 The definition of Glo agrees with the definition given in [Gepner and Henriques 2007,
Section 4] restricted to compact Lie groups, up to one difference. We apply thin geometric realization to
the action groupoids to obtain a topologically enriched category, while the original definition uses fat
geometric realization. Up to a technical condition, the two conventions define Dwyer–Kan equivalent
topological categories. See [Körschgen 2018, Remark 3.10] for a more detailed discussion. Note as well
that [Gepner and Henriques 2007] uses the name Orb for both Glo and what we call Orb.

Key to the main properties of Glo is the following description of the mapping spaces.

Proposition 6.3 Let G and H be two compact Lie groups. Then

Hom.H;G/'
a

Œ˛�2Rep.H;G/

˛G and Glo.H;G/'
a

Œ˛�2Rep.H;G/

BC.˛/;

where ˛G denotes the orbit of ˛ under the G-conjugation action , and C.˛/ denotes the centralizer of the
image of ˛.

Proof See [Körschgen 2018, Propositions 2.4 and 2.5] for a proof of the first and second statement,
respectively.

Proposition 6.4 Let f WH ! G be a map in Glo. The induced map f� W Glo.K;H/! Glo.K;G/ on
mapping spaces corresponds under the equivalences of Proposition 6.3 to the composite of the mapa

Œ˛�2Rep.H;G/

Bf W
a

Œ˛�2Rep.K;H/

BC.˛/!
a

Œ˛�2Rep.K;H/

BC.f ˛/

with the map a
Œ˛�2Rep.K;H/

BC.f ˛/!
a

Œˇ�2Rep.K;G/

BC.ˇ/

which is the identity on individual path-components and acts on �0 by f� W Rep.K;H/! Rep.K;G/.

Proof The statement on �0 follows from the fact that Rep is the homotopy category of Glo. Therefore, it
suffices to restrict to one path component, and analyze the effect of f . The relationship f�.ch˛/Dcf .h/f ˛
implies that f� acts as f when restricted to a map ˛H ! f ˛G. This implies that the induced map
BC.˛/! BC.f ˛/ equals Bf .

Definition 6.5 The1-category of global spaces Sgl is the category of functors from Gloop to S. This
admits a symmetric monoidal structure by pointwise product. This is equivalent to the symmetric monoidal
category .Gloop/q-S.
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Remark 6.6 Schwede [2020] proves that the underlying1-category of orthogonal spaces equipped
with the positive global model structure of [Schwede 2018, Proposition 1.2.23] is equivalent to presheafs
on a topologically enriched category Ogl. Furthermore, in [Körschgen 2018] it is shown that Ogl is
Dwyer–Kan equivalent to Glo. Therefore the two models of global spaces define the same1-category.
In fact, the two1-categories are symmetric monoidal equivalent since they are both endowed with the
cartesian monoidal structure; see [Schwede 2018, Theorem 1.3.2].

Before stating and proving the main result of this section, we need some preparation. In the following we
fix an1-category C with an orthogonal factorization system .CL;CR/. For a detailed discussion and
a definition of orthogonal factorization systems on1-categories, the reader may consult [Lurie 2009,
Section 5.2.8]. We write CL for the left class of maps and CR for the right class. We will denote edges in
CL by� and edges in CR by�.

Proposition 6.7 Let C be an1-category equipped with an orthogonal factorization .CL;CR/. Write
ArR.C/ for the full subcategory of the arrow category of C spanned by the edges in CR. Then the target
projection t W ArR.C/! C is a cocartesian fibration. Furthermore an edge in ArR.C/ is t-cocartesian if
and only if it is of the form

(6.7.1)
X Y

X 0 Y 0

Proof Consider an edge in ArR.C/:
X Y

X 0 Y 0

This is cocartesian if and only if, given a 2-simplex in C and a (2,0)-horn in ArR.C/, there is a contractible
choice of extensions. This corresponds to showing that given a diagram in C

X Y Z

X 0 Y 0 Z0

its extensions to a 2-simplex in ArR.C/ form a contractible space. However, completing this diagram is
equivalent to supplying an edge Y !Z which makes the diagram below commute:

X Z

Y Z0
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There is a contractible choice of such factorizations if and only if X ! Y is in CL. This shows that an
edge is t -cocartesian if and only if it is of the form of equation (6.7.1). Next, fix an edge in C and a lift of
its source in ArR.C/. This corresponds to a diagram

X

X 0 Y 0

Factorizing the composite X ! Y 0 extends this to an edge

X Y

X 0 Y 0

in ArR.C/, which is t -cocartesian.

We record the following fact for later reference.

Lemma 6.8 The constant functor s0 W C! ArR.C/ is a fully faithful left adjoint to the source functor
s W ArR.C/! C.

Construction 6.9 Suppose we are in the setting of Proposition 6.7. Straightening the cocartesian fibration
t W ArR.C/! C gives a functor

CR=� W C! Cat1:

To justify our notation let us unravel the effect of this functor. By definition, the evaluation of CR
=�

at an
object X 2 C is given by ArR.C/X ; the fiber of t at X . By construction this is the full subcategory of
C=X on the objects C�X in CR. A priori an edge in this full subcategory is given by a diagram

X X 0

Y

However the edge X!X 0 is necessarily also in CR by [Lurie 2009, Proposition 5.2.8.6(3)], and therefore
ArR.C/X is in fact equivalent to CR

=X
. Next consider an edge f W Y ! Y 0. Then the induced map

f� W CR
=Y
! CR

=Y 0
sends an object X � Y to an object X 0 � Y 0 such that the following diagram

commutes:
X X 0

Y Y 0
f

In particular, if f 2 CR this is nothing but the standard functoriality of the slices CR
=�

. Therefore the
functor CR

=�
W C! Cat1 extends the functoriality of the slices of CR to all of C.

Geometry & Topology, Volume 29 (2025)



1386 Sil Linskens, Denis Nardin and Luca Pol

Proposition 6.10 Let C be an1-category equipped with a factorization system .CL;CR/. The partially
lax colimit of .�/op ıCR

=�
W C! Cat1 with respect to the marking CR � C is equivalent to Cop.

Proof Recall that the partially lax colimit of a functor F W C! Cat1 is the localization of Unct.F / at
the cartesian edges which live above marked edges; see Theorem 4.9(b). In the case F D .�/op ıCR

=�
,

we observe that Unct.F /' Unco.CR
=�
/op and so we conclude that the partially lax colimit of F is equal

to the opposite of ArR.C/ localized at the edges of the form

X X 0

Y Y 0

However, note that because edges in CR are left cancellable, X !X 0 is not only in CL but also in CR.
Therefore X !X 0 is in fact an equivalence. We will write M for this collection of edges. We claim that
localizing at the edges of M is equivalent to localizing at the larger class of edges M 0 of the form

X X 0

Y Y 0

�

where we do not impose any conditions on the edge Y ! Y 0. To see this note that such an edge in M 0

fits into the following diagram:

X X 0 X 0

X 0 Y Y 0

�

�

Both the first edge and the composite are in M , and so therefore M 0 is contained in the two-out-of-three
closure of M . So it is enough to calculate the localization of ArR.C/ at M 0. Note that the source functor
s W ArR.C/! C sends an edge to an equivalence if and only if it is in M 0. Then Lemma 6.8 implies that
C is a Bousfield colocalization of ArR.C/ at M 0. So we conclude that the partially lax colimit of op ıCR

=�

is equivalent to Cop, finishing the proof.

Example 6.11 There are two extreme cases of the previous result. If CR D C and CL D �C, then

colim..C=�/
op
W C! Cat1/Š Cop:

If CR D �C and CL D C, then

laxcolim.�C=� W C! Cat1/Š Cop:
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Now that we have introduced the main tools we need, we can build our functor and compute its partially
lax limit. This relies on two important observations. The first key insight is the following, which was first
stated in [Gepner and Henriques 2007] and originally proven as [Rezk 2014, Example 3.5.1].

Lemma 6.12 For all compact Lie groups G, the assignment G=K 7! .K ,!G/ defines an equivalence
OG ' Orb=G .

Proof Observe that the spaces OG.G=H;G=K/ are homeomorphic to the space fg2G j cg.H/�Kg=K.
The latter space is equivalent to the homotopy orbits fg 2G j cg.H/�KghK as the K-space is free; see
for example [Körschgen 2018, Theorem A.7]. Therefore we can define a functor F 0 WOG! Glo, which
sends G=H to H, and on mapping spaces acts as homotopy orbits of the K-equivariant inclusion

fg 2G j cg.H/�Kg ! hom.H;K/; g 7! Œcg WH !K�:

Note that the1-category OG has a final object G=G, and therefore F 0 induces a functor OG! Glo=G ,
which in fact factors through Orb=G . We claim that the induced functor F WOG!Orb=G is an equivalence
of1-categories. First note that F is clearly essentially surjective. To deduce that the functor is fully
faithful pick two objects G=H and G=K, which we identify with inclusions i WH ,!G and j WK ,!G.
Recall that the mapping space between G=H and G=K is empty if and only if H is not subconjugate
to K. In this case the mapping space in Orb=G between i and j is also empty. Now suppose that this is
not the case. Consider the square

fg 2G j cg.H/�KghK Hom.H;K/hK

� Hom.H;G/hG

To prove F is fully faithful it suffices to prove that this square is homotopy cartesian. For everyK-spaceX ,
.G �K X/hG 'XhK , so that the above square is equivalent to�

G �K fg 2G j cg.H/�Kg
�

hG .G �K Hom.H;K//hG

GhG Hom.H;G/hG

Because taking homotopy orbits preserves homotopy pullback diagrams, it suffices to show that the square

G �K fg 2G j cg.H/�Kg G �K Hom.H;K/

G Hom.H;G/

is homotopy cartesian. In fact it is easily shown to be a pullback square of topological spaces, and the
bottom horizontal arrow is a Serre fibration. To see this we note that the map G! Hom.H;G/ factors
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through one component of the decomposition of Proposition 6.3, and therefore is equivalent to the quotient
map G!G=C.H/, which is a fibration by [Körschgen 2018, Theorem A.9].

The second insight is the following, which was also observed in [Rezk 2014].

Proposition 6.13 The subcategories Glosur and Orb are the left and right classes , respectively, of an
orthogonal factorization system on Glo.

Proof We will apply [Lurie 2009, Proposition 5.2.8.17] to the subcategories Glosur and Orb. Clearly
these subcategories contain all the equivalences and are closed under equivalences in Ar.Glo/. Therefore
it suffices to prove that given a diagram

H J

G K

f g

the space of dotted diagonal fillers is contractible. As noted in [Lurie 2009, Remark 5.2.8.3], this is
equivalent to the map

MapGloH=.H
f
�!G;H ! J /

g
�!MapGloH=.H

f
�!G;H !K/

being a weak homotopy equivalence for every lift of g to a map in GloH= from H ! J to H ! K.
Proposition 6.4 shows that when f is surjective the map

MapGlo.G; J /
f �
�!MapGlo.H; J /

is an inclusion of path-components for every J .

Therefore the space MapGloH=.H
f
�!G;H ! J /, being the homotopy fiber of this map, is either empty

or contractible. Translating back this reduces our task to simply proving the existence of a lift in the
square above. This is a simple exercise in group theory.

Remark 6.14 When we restrict to finite groups, Glo is equivalent to the full subcategory of S given by
the connected 1-truncated spaces. In this case the orthogonal factorization system constructed above is a
restriction of the standard mono/epi factorization system of any1-topos. However, in the generality of
compact Lie groups, no such description applies.

We are finally ready to construct the functor.

Construction 6.15 Applying Construction 6.9 to the orthogonal factorization system .Glosur;Orb/ yields
a functor Orb=� WGlo! Cat1. Postcomposing the opposite of this functor with Fun..�/op;S/ W Catop

1!

Cat1 gives the desired functor
S� W Gloop

! Cat1:
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Also note that S� clearly factors through product-preserving functors, and so enhances to a functor

S� W Gloop
! Cat˝1;

where each category .Orb=G/op-S is given the cartesian monoidal structure.

Lemma 6.12 and Elmendorf’s theorem for G-spaces, see Example 3.40, imply that the value of S� at the
object G is equivalent to the1-category of G-spaces SG . However, we owe the reader the following
consistency check, which implies that the functor S� also has the expected functoriality.

Proposition 6.16 Let ˛ WH !G be a continuous group homomorphism. Then the diagram

Fun..Orb=G/op;S/ SG

Fun..Orb=H /op;S/ SH

'

S˛ ˛�

'

commutes. Here the horizontal equivalences are obtained by applying Lemma 6.12 and Example 3.40.

Proof It is enough to check that the analogous diagram, where the vertical maps are replaced with left
adjoints, commutes. For this, let us denote by L˛ and ˛Š the left adjoints of S˛ and ˛�, respectively.
Note that the inclusion �H W Orb=H ,! Glo=H has a left adjoint LH , which on objects sends K ˇ

�!H

to ˇ.K/ ,!H. By the universal property of the presheaf categories there exists a unique cocontinuous
functor (the left Kan extension along �H )

.�H /Š W Fun..Orb=H /
op;S/! Fun..Glo=H /

op;S/;

which agrees with �H on representables. In a similar fashion, we define functors .LG/Š and .˛�/Š, where
˛� W Glo=H ! Glo=G is postcomposition by ˛. We claim that the following diagram commutes:

Fun..Orb=H /op;S/ Fun..Glo=H /op;S/

Fun..Orb=G/op;S/ Fun..Glo=G/op;S/

.�H /Š

L˛ .˛�/Š

.LG/Š

This is easily seen by comparing the result on generators, and using that all the functors in the diagram
commute with all colimits. Using this diagram we can reduce to a statement on the level of model
categories. Namely, all three functors which make up the long way around in the diagram above can be
modeled by left Quillen functors between enriched functor categories with the projective model structure.
Indeed, the right adjoint of .�H /Š is given by restriction along �H , which is clearly a right Quillen functor.
A similar argument also works for .LG/Š and .˛�/Š. After precomposing and postcomposing with the
equivalences

TH ' Funtop..Orb=H /
op;T/ and Funtop..Orb=G/

op;T/' TG
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constructed in [Rezk 2014, Proposition 3.5.1], which agree with the equivalences constructed by [Gepner
and Meier 2023] by inspection, we can apply the explicit description for .LG/Š and .�H /Š given in
[Rezk 2014, Section 5.3], where .LG/Š is denoted by …G and .�H /Š by �H , to deduce that the functor
L˛ W TH ! TG is equivalent to induction of H -spaces.

We have now constructed our functor. Therefore we are left to prove that the partially lax limit is given
by the1-category of global spaces.

Theorem 6.17 Let Glo� denote the marked1-category from Definition 6.1. Then the partially lax limit
over .Glo�/op of the diagram from Construction 6.15

Gloop
! Cat˝1; G 7! SG ;

is equivalent to the 1-category of global spaces , equipped with the cartesian monoidal structure.

Proof Recall that SG D Fun.Oop
G ;S/ and that OG ' Orb=G . First we prove the result on underlying

categories. Proposition 4.11 implies that it suffices to prove an equivalence between the partially lax
colimit of .Orb=�/op and Gloop. However, this follows from Proposition 6.10 applied to the factorization
system .Glosur;Orb/ on Glo. Now we deduce the symmetric monoidal statement. First observe that the
equivalence constructed before trivially lifts to a symmetric monoidal equivalence, where both sides are
given the cartesian symmetric monoidal structure. Then note that the subcategory of Op1 spanned by the
cartesian operads is closed under partially lax limits. This implies that Sgl is equivalent to the partially
lax limit of the diagram S� W Gloop

! Cat˝1, but now taken in symmetric monoidal1-categories.

7 1-categories of equivariant prespectra

In this section we define the1-categories of G-(pre)spectra for a Lie group G, and we introduce the
1-category of global (pre)spectra. We will do this by first defining the relevant level model structures,
which present the1-categories of prespectra objects, and then defining the stable model category as a
Bousfield localization. This will then present the1-categories of spectra objects. The material in this
section is classical, and largely well-known. Nevertheless we include the details of the model structures,
mainly to emphasize that the level model structure on SpOG is induced formally from the level model
structure on I-GT. While not a deep statement, it is crucial to our proof strategy. In particular, this
observation will allow us to interpret the construction of the level model structure1-categorically, as
will be explained in this section.

Definition 7.1 Let I denote the topological category whose objects are finite-dimensional inner product
spaces V, and morphism space I.V;W / is given by the space of linear isometric isomorphisms from V

to W.
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Definition 7.2 Let G be a Lie group (not necessarily compact). We write I-GT for the enriched category
of continuous functors from I into G-spaces, and call this the category of I-G-spaces. When G is the
trivial group, we simply write I-T and refer to it as the category of I-spaces.

Remark 7.3 As discussed in [Bohmann 2014, Section 5], the category of I-G-spaces (as defined above)
is equivalent as a topological category to the category of IG-spaces as defined by Mandell and May
in [2002, Chapter II, Definition 2.3].

Remark 7.4 The category I-GT has a symmetric monoidal structures given by enriched Day convolution;
see [Mandell and May 2002, Chapter II, Proposition 3.7]. Given X; Y 2 I-GT we have the formula

.X ˝Y /.V / WD

Z .W;W 0/2I�I

I.W ˚W 0; V /�X.W /�Y.W 0/:

Remark 7.5 Given any I-G-space X and an inner product space V, the value X.V / admits a G�O.V /-
action. If V is given the structure of an H -representation � WH !O.V /, then we can equip X.V / with
an H -action by restricting along

H
�
�!H �H

i��
��!G �O.V /:

We will always consider the value X.V / with this H -action in the following.

Construction 7.6 (free I-G-space) For every H -representation V, there is an evaluation functor

evV W I-GT!HT; X 7!X.V /:

This functor admits a left adjoint G �H IV , given by the formula

G �H IVADG �H .I.V;�/�A/:

When A D �, we simply write G �H IV and when G D H, we write IV .�/. By construction, the
I-G-space G �H IV corepresents the functor X 7!X.V /H.

For all compact subgroups H and K of G, all H -representations V and all K-representations W, there is
an isomorphism of I-G-spaces

(7.6.1) .G �H IV /˝ .G �K IW /Š�
�.G �G �H�K IV˚W /;

where � WG!G �G is the diagonal embedding. This can be checked directly by applying the formula
of the Day convolution product from Remark 7.4 and using that induction commutes with colimits.

We will now proceed to equip the category of I-G-spaces with the level model structure. The following
will be the weak equivalences, fibrations and cofibrations of this model structure.
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Definition 7.7 Let G be a Lie group and let f WX ! Y be a morphism in I-GT.

(a) We say f is a level equivalence if for any compact subgroup H �G and any H -representation V,
the map f .V /H WX.V /H ! Y.V /H is a weak homotopy equivalence of spaces.

(b) We say f is a level fibration if for any compact subgroup H �G and any H -representation V, the
map f .V /H WX.V /H ! Y.V /H is a Serre fibration.

(c) We say f is a level cofibration if for every m � 0, the map f .Rm/ W X.Rm/ ! Y.Rm/ is a
Com-cofibration of G�O.m/-spaces, see [Degrijse et al. 2023, Definition 1.1.2], and moreover
the O.m/-action is free away from the image of f .Rm/.

For all m � 0, we let CG.m/ denote the family of compact subgroups � of G � O.m/ such that
� \ .1 �O.m// consists only of the neutral element. These are precisely the graph subgroups of a
continuous homomorphism to O.m/ defined on some compact subgroup of G. The category of G�O.m/-
spaces admits a CG.m/-projective model structure by [Schwede 2018, Proposition B.7]. We have the
following useful characterization of the level equivalences, cofibrations and fibrations.

Lemma 7.8 Let G be a Lie group and let f W X ! Y be a morphism in I-GT. The following are
equivalent :

(a) The map f WX ! Y is a level equivalence (resp. level fibration).

(b) The map f .Rm/ WX.Rm/!Y.Rm/ is a weak equivalence (resp. fibration) in the CG.m/-projective
model structure for all m� 0.

Furthermore , the following are equivalent :

(c) The map f WX ! Y is a level cofibration.

(d) The map f .Rm/ WX.Rm/! Y.Rm/ is a cofibration in the CG.m/-projective model structure for
all m� 0.

Proof Let H �G be a compact subgroup and let V be an H -representation. Choose a linear isometric
isomorphism ' W V ŠRm and define a group homomorphism

� WG!O.m/; g 7! ' ı .g � �/ ı'�1:

The homeomorphism X.'/ WX.V /'X.Rm/ restricts to a homeomorphism

X.V /H 'X.Rm/�.�/;

where �.�/ D f.h; �.h// 2 H �O.m/g by the definition of the H -action given in Remark 7.5. From
this description, it is clear that (b) implies (a). Conversely, given � 2 CG.m/, we can always find a
continuous group homomorphism ˛ WH !O.m/ for H �G compact such that � D �.˛/. By definition
of the H -action, we have X.Rm/H DX.Rm/� , showing that (a) implies (b). Finally, that (c) and (d) are
equivalent follows from (the topological version of) [Stephan 2016, Proposition 2.16].
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Theorem 7.9 Let G be a Lie group. The category I-GT admits a cofibrantly generated and topological
model structure in which the weak equivalences are the level equivalences , the fibrations are the level
fibrations and the cofibrations are the level cofibrations. The set of generating cofibrations IG and acyclic
cofibrations JG are given by

IG D fG �H IV @D
n
!G �H IVD

n
jH �G; n� 0g;

JG D fG �H IV .D
n
� f0g/!G �H IV .D

n
� Œ0; 1�/ jH �G; n� 0g;

where H runs over all compact subgroups of G and V runs over all H -representations. We call this the
(proper) level model structure.

Proof We observe that the category I-GT is equivalent to
Q
m�0.G�O.m//T. We can endow this latter

category with the product of the CG.m/-projective model structures on G�O.m/-spaces. By Lemma 7.8,
the induced model structure on I-GT has weak equivalences, fibrations and cofibrations as in the theorem.
Also we note that the right lifting property against the sets IG and JG detect the level fibrations and level
acyclic fibrations respectively, by the adjunction isomorphism

HomI-GT.G �H IVA;X/' HomT.A;X.V /
H /

for A a nonequivariant space. Finally, we observe that resulting model structure is again topological by
[Schwede 2018, Proposition B.5].

As discussed in [Degrijse et al. 2023, Proposition 1.1.6], a continuous homomorphism ˛ WK!G between
Lie groups gives rise to adjoint functors between the associated category of equivariant spaces

GT KT˛�

G�˛�

Map˛.G;�/

which by levelwise application gives rise to an adjoint triple

I-GT I-KT:˛�

G�˛�

Map˛.G;�/

Proposition 7.10 Let ˛ WK!G be a continuous group homomorphism between Lie groups.

(a) Then ˛� preserves level fibrations and level equivalences. Thus the adjoint pair .G �˛ �; ˛�/ is
Quillen.

(b) If ˛ has closed image and compact kernel , then the adjoint pair .˛�;Map˛.G;�// is also Quillen
with respect to the level model structure.
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Proof Part (a) follows from [Degrijse et al. 2023, Proposition 1.1.6(ii)]. Suppose that ˛ has closed
image and compact kernel and note that by (a), it suffices to check that ˛� preserves level cofibrations.
We start by noting that the image of ˛ �O.m/ is closed in G �O.m/ since the image of ˛ is closed
in G. Moreover, the kernel of ˛ �O.m/ is ker.˛/� 1, which is compact by hypothesis. So restriction
along ˛ �O.m/ takes Com-cofibrations of G�O.m/-spaces to Com-cofibrations of K�O.m/-spaces
by [Degrijse et al. 2023, Proposition 1.1.6(iii)]. Now let i W A! B be a level cofibration of I-G-spaces
so that i.Rm/ is a Com-cofibration of G�O.m/-spaces. By the previous discussion, ˛�.i.Rm// is a
Com-cofibration of K�O.m/-spaces. Moreover, the O.m/-action is unchanged, so it still acts freely off
the image of ˛�i . This shows that ˛� preserves cofibrations as required.

Proposition 7.11 The level model structures on I-GT is symmetric monoidal with cofibrant unit object.

Proof Let us show that the pushout-product axiom holds. By a standard reduction [Hovey 1999, 4.2.5],
it suffices to check that the pushout product f g is

(i) a cofibration if f and g belong to the set of generating cofibrations,

(ii) an acyclic cofibration if furthermore f or g is a generating acyclic cofibration.

In this case we may assume f DG �H IV f
0 and g DG �K IW g

0 and so

f g D��.G �G �H�K IV˚W f
0 g0/

by equation (7.6.1). Since T is a symmetric monoidal model category, the pushout product f 0 g0 satisfies
conditions (i) and (ii) above. By Proposition 7.10 we see that the functors

�� W I-.G �G/T! I-GT

are left Quillen. Moreover, it is clear from the definition of the model structures that the functor
evV˚W W I-.G �G/T! .H �K/T is right Quillen, and therefore .G�G/�H�K IV˚W is left Quillen.
From these observations it follows that the pushout-product axiom holds for I-GT too. Finally, the unit
axiom holds since the unit object � DG �G I0 is cofibrant.

In Section 2.3 we discussed how to induce a model structure on pointed objects. We will apply these
results to the category I-GT with the level model structure. Note first that the category of pointed objects
in I-GT is equivalent to I-GT�, the category of continuous functors from I to GT�, the category of
based G-spaces.

Proposition 7.12 Let G be a Lie group. The category I-GT� admits a proper level model structure in
which the weak equivalences , fibrations and cofibrations are detected by the forgetful functor I-GT�!

I-GT. This model structure is topological , cofibrantly generated by the sets .IG/C and .JG/C, symmetric
monoidal , and the unit object is cofibrant. Moreover , there exists a symmetric monoidal equivalence of
1-categories

I-GT�ŒW
�1

lvl �' .I-GTŒW �1lvl �/�:
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Proof The first part follows from the discussion in Section 2.3 and [Schwede 2018, Proposition B.5].
For the final claim apply Proposition 2.3 together with the fact that I-GTŒW �1lvl � is presentable by
Theorem 8.9.

We now change gears and consider the global analogue of the previous discussion. Recall that for any
G-representation V and I-space X , the value X.V / admits a natural G-action by restricting along the
canonical morphism G!O.V /; see Remark 7.5.

Definition 7.13 Let f WX ! Y be a morphism in I-T.

(a) We say f is a faithful level equivalence if for every compact Lie group G and every faithful G-
representation V, the map f .V / WX.V /! Y.V / is a G-weak equivalence: for all closed subgroups
H �G, the induced map f .V /H WX.V /H ! Y.V /H is a weak homotopy equivalence of spaces.

(b) We say f is a faithful level fibration if for every compact Lie group G and every faithful G-
representation V, the map f .V / WX.V /! Y.V / is a fibration in the projective model structure of
G-spaces.

The following result is a reformulation of [Schwede 2018, Lemmas 1.2.7, 1.2.8] in our context.

Lemma 7.14 Let f WX ! Y be a morphism in I-T. Then the following are equivalent :

(a) The map f .V / WX.V /G! Y.V /G is a weak homotopy equivalence (resp. Serre fibration) for every
compact Lie group G and every G-representation V.

(b) The map f WX ! Y is a faithful level equivalence (resp. faithful level fibration).

(c) The map f .Rm/ WX.Rm/! Y.Rm/ is anO.m/-weak equivalence (resp.O.m/-fibration) for every
m� 0.

Proof It is clear that (a) implies (b), which implies (c). Suppose that (c) holds and let V be a G-
representation. As in the proof of Lemma 7.8 we can choose a linear isometric isomorphism ' W V 'Rm

and define a group homomorphism � WG!O.m/ such that

X.V /G 'X.Rm/�.G/;

showing that (c) implies (a).

Construction 7.15 (semifree I-space) For every G-representation V, there is an evaluation functor

evG;V W I-T!GT; X 7!X.V /;

which admits a left adjoint IG;V given by the formula IG;V .A/ D I.V;�/�G A. When A D �, we
simply write IG;V . For all H -representations V and K-representations W, there is an isomorphism of
I-G-spaces

(7.15.1) IH;V ˝IK;W Š IH�K;V˚W :
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One can check this using the formula in Remark 7.4 or by mimicking the proof of [Schwede 2018,
Example 1.3.3].

The next result is an analogue of [Schwede 2018, Proposition 1.2.10], adapted to our context.

Theorem 7.16 The category I-T admits a topological , cofibrantly generated model structure in which
the weak equivalences are the faithful level equivalences Wf-lvl and the fibrations are the faithful level
fibrations. The set of generating cofibrations I and acyclic cofibrations J are given by

I D fIG;V .@D
n/! IG;V .D

n/g and J D fIG;V .D
n
� f0g/! IG;V .D

n
� Œ0; 1�/g;

where G runs over all compact Lie groups , V over all faithful G-representations , and n � 0. This is a
symmetric monoidal model category with cofibrant unit object. We call this the faithful level model
structure.

Proof We can identify I-T with the category
Q
m�0O.m/T and endow the latter category with the

product of the standard model structures on O.m/-spaces. The induced model structure on I-T has weak
equivalences and fibrations as in the theorem by Lemma 7.14. We note that the right lifting property against
the sets I and J detect the level fibrations and level acyclic fibrations respectively, by the adjunction
isomorphism

HomI-T.IH;VA;X/' HomT.A;X.V /
H /

for A a nonequivariant space. Let us next show that the pushout-product axiom holds. As explained in the
proof of Proposition 7.11, it suffices to check that the pushout product f g is an (acyclic) cofibration if
f and g belong to the set of generating (acyclic) cofibrations. In any case we have f D IG;V f

0 and
g D IH;W g

0. But then f g D IG�H;V˚W f
0 g0 by equation (7.15.1). Since GT is a symmetric

monoidal model category, it suffices to check that the functor IG�H;V˚W is left Quillen. This is clear
since evG�H;V˚W is right Quillen by definition of the faithful level model structure. The pushout-product
axiom then follows. Finally, the unit axiom holds since the unit object � D Ie;0 is cofibrant and the
model structure is topological by [Schwede 2018, Proposition B.5].

As before we obtain an induced model structured on pointed objects.

Proposition 7.17 The category I-T� admits a faithful level model structure in which the weak equiva-
lences , fibrations and cofibrations are detected by the forgetful functor I-T�!I-T. This model structure
is topological , cofibrantly generated by the set IC and JC, symmetric monoidal and the unit object is
cofibrant. Finally, there exists a symmetric monoidal equivalence of1-categories

I-T�ŒW �1f-lvl�' .I-TŒW �1f-lvl�/�:

Proof The first two claims follows from the discussion in Section 2.3 and [Schwede 2018, Proposition
B.5]. For the final claim apply Proposition 2.3, using the fact that I-TŒW �1f-lvl� is presentable. We will
show this in Theorem 8.19.
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We now pass from pointed objects to prespectrum objects. Observe that the category of pointed I-G-spaces
has a commutative algebra object SG given by the functor sending V to its one-point compactification SV

equipped with the trivial G-action. If we are thinking of the category of I-spaces with the faithful level
model structure, we will write Sfgl for Se , to emphasize that the sphere should be thought of as evaluated
on all faithful representations of all groups (fgl stands for faithful global).

Definition 7.18 Let G be a Lie group. Following [Mandell and May 2002, Chapter II Proposition 3.8],
we define the topological category SpOG of orthogonal G-spectra to be the category of SG-modules in
I-GT�. These categories inherit induced model structures:

(a) The category of orthogonal G-spectra admits a (proper) level model structure, whose weak equiv-
alences and fibrations are created by the forgetful functor SpOG ! I-GT�, where the target is
endowed with the level model structure. This is a cofibrantly generated, proper, topological model
category; see the proof of [Degrijse et al. 2023, Theorem 1.2.22]. We also obtain that a set of
generating cofibrations and acyclic cofibrations are given by the maps SG ˝ IG and SG ˝ JG ,
where SG ˝� denotes the left adjoint to the forgetful functor SpOG ! I-GT�.

(b) The category of orthogonal spectra admits a faithful level model structure, whose weak equivalences
and fibrations are created by the forgetful functor SpO ! I-T�, where the target is endowed with
the faithful level model structure; see [Schwede 2018, Propositions 4.3.5]. From this result we
obtain that the faithful level model structure is cofibrantly generated and topological, with a set of
generating cofibrations and acyclic cofibrations given by Sfgl˝ I and Sfgl˝ J , where Sfgl˝�

denotes the left adjoint to the forgetful functor SpO ! I-T�.

Remark 7.19 By combining straightforward generalizations of [Mandell and May 2002, Theorem 4.3]
and [Schwede 2018, Remark 3.1.8] to Lie groups, we conclude that SpOG is equivalent to the category of
orthogonal spectra defined in [Degrijse et al. 2023, Definition 1.1.9].

As discussed in [Mandell and May 2002, Chapter II Section 3], the category of orthogonal G-spectra
admits a closed symmetric monoidal structure.

Proposition 7.20 Let G be a Lie group.

(a) The level model structure on SpOG is symmetric monoidal.

(b) The faithful level model structure on SpO is symmetric monoidal.

Proof The proof that the pushout product axiom holds for SpOG is similar to that given in Proposition 7.11
for I-G-spaces. The explicit argument for cofibrations can be found in [Degrijse et al. 2023, Proposition
1.2.28(i)] and we note that a slight modification of that argument then also gives the statement for acyclic
cofibrations. The argument that the faithful level model structure satisfies the pushout-product axiom
is similar to that given in Theorem 7.16. The argument for cofibrations can also be found in [Schwede
2018, Proposition 4.3.23] and a slight modification of that argument also gives the statement for acyclic
cofibrations.
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Definition 7.21 We define the1-category PSpG of G-prespectra to be the symmetric monoidal1-
category associated to the symmetric monoidal model category SpOG with the level model structure.
Similarly, we define the1-category PSpfgl of faithful global prespectra to be the symmetric monoidal
1-category associated to the symmetric monoidal model category SpO with the faithful level model
structure.

We have emphasized how the level model structures on SpOG and SpO are induced by the level model
structure on I-GT� and I-T�, respectively, by taking modules. This allows us to reinterpret the passage
to modules internally to1-categories.

Proposition 7.22 There are symmetric monoidal equivalences

PSpG 'ModSG .I-GTŒW �1lvl ��/ and PSpfgl 'ModSfgl.I-TŒW �1f-lvl��/:

Proof Apply Proposition 2.4.

Finally, we pass from the level model structure to the stable model structure, which will present the
categories of global and genuine G-spectra. Fix a complete G-universe UG and write s.UG/ for the
poset, under inclusion, of finite-dimensional G-subrepresentations of UG . The G-equivariant homotopy
groups of an orthogonal G-spectrum X are given by

�Gk .X/D

�
colimV 2s.UG/ŒS

kCV; X.V /�G� for k � 0;
colimV 2s.UG/ŒS

V; X.R�k˚V /�G� for k � 0;

where the connecting maps in the colimit system are induced by the structure maps, and Œ�;��G� means
G-equivariant homotopy classes of based G-maps. Note that the same definition works even if X is
an orthogonal spectrum, since the value X.V / admits a G-action as discussed before Definition 7.13.
Moreover, everything is functorial with respect to morphisms of orthogonal (G-)spectra. We finally note
that the definition above a priori depends on a choice of complete G-universe. However, the functors
associated to different complete G-universes are naturally isomorphic, and so the choice is immaterial.

Definition 7.23 Let G be a Lie group.

� A morphism f WX!Y of orthogonalG-spectra is a ��-isomorphism if �H� .f / W�
H
� .X/!�H� .Y /

is an isomorphism for all compact subgroupsH �G. The ��-isomorphisms are part of a cofibrantly
generated, topological, stable and symmetric monoidal model structure on the category of orthogonal
G-spectra [Degrijse et al. 2023, Theorem 1.2.22], called the G-stable model structure.

� A morphism f WX!Y of orthogonal spectra is a global equivalence if �H� .f / W�
H
� .X/!�H� .Y /

is an isomorphism for all compact Lie groups H. The global equivalences are part of a cofibrantly
generated, topological, proper, stable and symmetric monoidal model structure on the category of
orthogonal spectra [Schwede 2018, Theorem 4.3.17, Proposition 4.3.24], called the global model
structure.
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Definition 7.24 We define the symmetric monoidal1-category SpG of G-spectra to be the underlying
1-category of orthogonalG-spectra with theG-stable model structure. Similarly, we define the symmetric
monoidal1-category Spgl of global spectra to be the underlying1-category of orthogonal spectra with
the global model structure.

We now make precise the observation that SpG and Spgl are Bousfield localizations of PSpG and PSpfgl,
respectively, at an explicit collection of weak equivalences. We begin with global spectra.

Construction 7.25 Given a compact Lie group G and a G-representation V, consider the adjoint pairs

SpO I-T� GT�:
forget

Sgl˝�

evG;V

IG;V

Following [Schwede 2018, Construction 4.1.23], we denote the composite Sgl˝IG;V by FG;V . Note that
the adjoint pairs above are Quillen with respect to the global level structure and so they yield corresponding
adjoint pairs of underlying1-categories. As discussed before [Schwede 2018, Theorem 4.1.29], there
are maps in SpO

�G;V;W W FG;V˚W S
V
! FG;W S

0

for all compact Lie groups G and G-representations V and W. We can view these maps in PSpgl since
the domain and codomain of �G;V;W are bifibrant. Consider the diagram

GT�.S
0; X.W // GT�.S

V ; X.V ˚W //

SpO.FG;W S0; X/ SpO.FG;V˚W SV ; X/

z�G;V;W

��

where the vertical maps are the adjunction isomorphisms and the top map is the adjoint structure map
of X . The bottom map is equal to precomposition by �G;V;W . In particular, taking X D FG;W S0, we
may define �G;V;W as the image of the identity of FG;W S0 under the bottom map. Note also that �G;V;W
is equivalent to FG;W S0˝�G;V;0, and that �G;V;0 is adjoint to the identity.

Remark 7.26 Both characterizations of �G;V;W given above also uniquely specify the map on the level
of1-categories.

Proposition 7.27 Spgl is a Bousfield localization of PSpfgl. Furthermore , an object in PSpfgl lies in
Spgl if and only if it is local with respect to the morphisms f�G;V;W g for all compact Lie groups G and
G-representations V and W with W faithful.

Proof Let ƒ denote the set of maps �G;V;W for G, V and W as in the proposition. We write SpOlvl and
SpOgl for the category of orthogonal spectra endowed with the faithful level model structure and the global
stable model structure, respectively. We will show that SpOgl is a left Bousfield localization (in the model
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categorical sense) of SpOlvl at the setƒ, that is, LƒSpOlvlDSpOgl . Because both can be checked on underlying
homotopy categories, Bousfield localizations of model categories present Bousfield localizations of1-
categories. Therefore the claim in the proposition will follow by passing to underlying1-categories.
By definition X 2 SpOlvl is ƒ-local (and so fibrant in the Bousfield localization) if and only if X is fibrant
in SpOlvl (which always holds in this case), and the canonical map of homotopy function complexes

��G;V;W WMap.FG;W S0; X/!Map.FG;V˚W SV ; X/

is an equivalence for all �G;V;W 2 ƒ. By adjunction this is equivalent to asking that X.W /G !
�V .X.V ˚W //G be an equivalence for all G, V and W as in the proposition. In other words, X is a
global �-spectrum; see [Schwede 2018, Definition 4.3.8]. By [Schwede 2018, Theorem 4.3.17] these are
precisely the fibrant objects SpOgl . Since LƒSpOlvl and SpOgl have the same cofibrations and fibrant objects,
the two model structures coincide by [Joyal 2008, Proposition E.1.10].

We repeat this analysis for SpG and PSpG .

Construction 7.28 Let H be a compact subgroup of a Lie group G, and let V be an H -representation.
We have a sequence of adjoint pairs

SpOG I-GT� HT�;
forget

SG˝�

evV

GC^HIV

which are Quillen with respect to the proper level model structure, and so they define adjoint pairs at the
level of underlying1-categories. The composite SG ˝ .GC ^H IV / will also be denoted by G ËH FV
following [Degrijse et al. 2023, Example 1.1.15]. This notation is justified by the fact that G ËH FV

is also equivalent to the induction of the H -prespectrum FV as one can easily verify. For all pairs of
H -representations V and W, there are maps in SpOG

G ËH �V;W WG ËH FV˚W SV !G ËH FW ;

see [Degrijse et al. 2023, equation 1.2.19]. We can view these maps in PSpG as the domains and codomains
are bifibrant. Similarly to before, G ËH �V;W is determined by the property that the map

SpOG .G ËH FW ; X/! SpOG .G ËH FV˚W S
V ; X/;

defined so that the diagram

HT�.S
0; X.W // HT�.S

V ; X.V ˚W //

SpOG .G ËH FW ; X/ SpOG .G ËH FV˚W SV ; X/

resGH .z�V;W /

��

commutes, is equal to precomposition by GËH �H;V;W . Also, GË�V;W is equal to GËH FW S0˝�V;0
and �V;0 is adjoint to the identity on SV.

Geometry & Topology, Volume 29 (2025)



Global homotopy theory via partially lax limits 1401

Remark 7.29 Once again, the characterizations of G ËH �V;W given above also uniquely specify the
map on the level of1-categories.

Proposition 7.30 Let G be a Lie group. Then SpG is a Bousfield localization of PSpG . Furthermore , an
object in PSpG lies in SpG if and only if it is local with respect to the morphisms fG ËH �V;W g for all
compact subgroups H �G and H -representations V and W. Equivalently , X 2 PSpG lies in SpG if and
only if for all compact subgroups H �G, the object resGHX 2 PSpH is local with respect to morphisms
f�V;W g for all H -representations V and W.

Proof The proof is similar to that of Proposition 7.27 but now we use the characterization of fibrant
objects in the proper stable model structure given in [Degrijse et al. 2023, Theorem 1.2.22(v)]. The
second claim follows from the first one by adjunction.

8 Models for 1-categories of equivariant prespectra

In the previous section we introduced the 1-categories of equivariant and global (pre)spectra, and
exhibited the spectrum objects as local objects in the relevant category of prespectra with respect to an
explicit class of weak equivalences. Furthermore, we observed that the construction of PSpG admitted
a reinterpretation internal to1-categories, by first passing to pointed objects in I-GTŒW �1lvl � and then
taking modules over SG . Similarly, we observed that

PSpfgl 'ModSfgl.I-TŒW �1f-lvl��/:

Furthermore, these equivalences were symmetric monoidal.

However this is only part of the story, because the1-categories I-GTŒW �1lvl � and I-TŒW �1f-lvl� are still
too inexplicit for our arguments. Luckily we can give explicit models of these1-categories. Consider
the case of I-GTŒW �1lvl �. By construction this1-category records the fixed-point spaces X.V /H for
every (compact) subgroup H of G and every H -representation V of an I-G-space X . By functoriality,
these different fixed-point spaces are related by subconjugacy relationships in H and equivariant linear
isometries in V. We will prove that the1-category I-GT is in fact freely generated under these properties.
More precisely, we will exhibit an equivalence

I-GTŒW �1lvl �'ORG-S;

where the 1-category ORG indexes pairs .H; V /, each one of which records one of the fixed-point
spaces X.V /H of an I-G-space X . Similarly, we will prove that

I-TŒW �1f-lvl�'ORfgl-S;

where the1-category ORfgl indexes pairs .G; V /, where G is a compact Lie group and V is a faithful
G-representation.
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In total we will obtain equivalences

PSpG 'ModSG .ORG-S�/ and PSpfgl 'ModSfgl.ORfgl-S�/:

It will be in this guise that we will think of the1-category of G-prespectra and global prespectra for the
remainder of the paper.

Finally, to make future constructions symmetric monoidal it will be important to understand how the
symmetric monoidal structures transfer under the equivalences

I-GTŒW �1lvl �'ORG-S and I-TŒW �1f-lvl�'ORfgl-S:

We may immediately apply Theorem 3.37 to conclude that the monoidal structure on I-GTŒW �1lvl � and
I-TŒW �1f-lvl� are induced by Day convolution from the restricted promonoidal structure on ORG . We will
make these promonoidal structures explicit.

To show that I-GTŒW �1lvl � and I-TŒW �1lvl � are equivalent to categories of copresheafs on an explicit set
of generators, we will apply a version of Elmendorf’s theorem; see Corollary 3.41. The application of
this theorem to I-GTŒW �1lvl � and I-TŒW �1f-lvl� has a similar flavor, but are logically distinct. Therefore we
treat each case separately.

8.1 I-G -spaces and ORG -spaces

We begin with I-GTŒW �1lvl �.

Remark 8.1 LetG be a Lie group and consider a map ' WG=K!G=H in the orbit category OG . Giving
' is equivalent to giving gH 2 .G=H/K , that is an element gH 2G=H such that cg.K/D g�1Kg �H.
When we need to emphasize this correspondence between gH and ' we will use subscripts 'g and g' .
Since g ı'H D g'g H , composition of maps corresponds to multiplication with reverse order.

Definition 8.2 For a Lie group G, the proper G-orbit category OG;pr is the full subcategory of OG

spanned by those cosets G=H with H �G compact.

Let G be a Lie group and H;K � G be compact subgroups. Given an H -representation V and a
K-representation W, we can consider the space G �H I.V;W /, where H acts on G by right translation,
and on I.V;W / via h:' D 'h�1. Note that K acts diagonally on G �H I.V;W / via G and W. We have
the following helpful criterion.

Lemma 8.3 An element Œg; '� 2 G �H I.V;W / is K-fixed if and only if cg.K/ � H and k:'.v/ D
'.cg.k/v/ for all k 2K and v 2 V .

Proof An element Œg; '�2G�H I.V;W / is K-fixed if and only if Œkg; k:'�D Œg; '� for all k 2K. This
means that there exists h 2H such that kg D gh and k:' D 'h for all k 2K. In other words g is such
that cg.K/�H and ' is K-equivariant in the sense that k:' D 'cg.k/ for all k 2K.
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Lemma 8.4 Let G be a Lie group andH;K;L�G be compact subgroups. Let V be anH -representation ,
W a K-representation and U an L-representation. Then the map

ıW .G �K I.W;U //L � .G �H I.V;W //K ! .G �H I.V; U //L

given by .Œg0;  �; Œg; '�/ 7! Œg0g; '� is well-defined and continuous. Furthermore , upon varying the
objects , the collection of maps so obtained is associative and unital.

Proof Let us first show that the map does not depend on the chosen representatives. For h2H and k 2K
we have Œg; '�D Œgh; 'h� and Œg0;  �D Œg0k;  k� so we ought to check that Œg0g; '�D Œg0kgh; k'h�.
Using that cg.K/�H and ' is K-equivariant with respect to the cg -twisted action, we can write

Œg0kgh; k'h�D Œg0g cg.k/h„ ƒ‚ …
2H

;  k'h�D Œg0g; k'h.cg.k/h/
�1�D Œg0g; k'cg .k

�1/�D Œg0g; '�;

as required. We verify that Œg0g; '� is K-fixed using the criterion from Lemma 8.3. Using that
cg 0.L/�K and cg.K/�H we immediately see that cg 0g.L/�H. Using the twisted equivariance of  
and ' we see that

l: ' D  

2K‚…„ƒ
cg 0.l/' D  'cg.cg 0.l//D  'cg 0g.l/ for all l 2 L:

Therefore  ' is twisted equivariant and Œg0g; '� is indeed K-fixed. Finally, the map is associative,
unital and continuous, since multiplication and composition maps are so.

We now formally define the1-category ORG .

Definition 8.5 Let G be a Lie group. We define a topological category ORG whose objects are pairs
.H; V / of a compact subgroup H �G and an H -representation V. The morphism spaces are given by

ORG..H; V /; .K;W //D .G �H I.V;W //K :

Composition is given by the maps

ıWORG..K;W /; .L; U //�ORG..H; V /; .K;W //!ORG..H; V /; .L; U //

defined in Lemma 8.4. Note that there is a projection map

ORG..H; V /; .K;W //! .G=H/K DOG;pr.G=K;G=H/; Œg; '� 7! ŒgH�;

which extends to a functor �G WORG!O
op
G;pr.

Example 8.6 Let G D e be the trivial group. Then the topological category ORG is equivalent to I.

Example 8.7 By definition, ORG..H; V /; .e;W //DG�H I.V;W /, which is a space with an action of

ORG..e;W /; .e;W //DG �O.W /:

One can identify the functor ORG..H; V /; .e;�// W I!GT with the free I-G-space G �H IV .
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Definition 8.8 We let ORG-S denote the 1-category of ORG-spaces, given by the 1-category of
functors ORG! S.

We are finally ready to prove the main result of this subsection.

Theorem 8.9 Let G be a Lie group. Then there is an equivalence of 1-categories

I-GTŒW �1lvl �'ORG-S:

Proof The discussion in Example 8.7 shows that there exists a functor of topological categories (and so
of1-categories)

ORop
G ! I-GT; .H; V / 7!ORG..H; V /; .e;�//DG �H IV :

This is fully faithful by definition of ORG . Since the I-G-spaces G �H IV are bifibrant in the level
model structure, the composite

L WORop
G ! I-GT! I-GTŒW �1lvl �; .H; V / 7!G �H IV ;

is also fully faithful. We apply Theorem 3.39 to the functor L. We note that the I-G-space G �H IV

corepresents the functor X 7!X.V /H. This functor commutes with small homotopy colimits since:

� The H -fixed-point functor preserves small homotopy colimits as discussed in Example 3.40.

� The evaluation functor X 7! X.V / preserves small homotopy colimits. Indeed, this functor
preserves all colimits (as they are calculated pointwise), level equivalences by definition, and
(acyclic) cofibrations (as one can verify by checking on the generating (acyclic) cofibrations).

Finally, the collection of objects fG �H IV j .H; V / 2ORGg is jointly conservative by definition of the
level equivalences. Thus the required equivalence follows from Theorem 3.39.

Next we explain how to upgrade the equivalence above to an equivalence of symmetric monoidal1-
categories.

Construction 8.10 We enhance the topological category ORG to a topological colored operad as follows.
The colors are simply the objects of ORG , and the space of multimorphisms from f.Hi ; Vi /gi2I to
.K;W / is given by

ORG.f.Hi ; Vi /gi2I ; .K;W //D
��Y

i2I

G

�
�.
Q
i2I Hi /

I

�M
i2I

Vi ; W

��K
:

By Lemma 8.3, a point of this space is equivalent to the following data:

� For all i 2 I , an element giHi 2G=Hi such that cgi .K/�Hi .

� A linear isometry ' D
P
i 'i W

L
i Vi !W such that k:'i .v/D 'i .cgi .k/v/ for all v 2 Vi , k 2K

and i 2 I .
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For every map I ! J of finite sets with fibers fIj gj2J , every finite collections of objects f.Hi ; Vi /g/i2I
and f.Kj ; Wj /gj2J , and every .L; U / 2ORG we have a composition mapY
j2J

ORG.f.Hi ; Vi /gi2Ij ; .Kj ; Wj //�ORG.f.Kj ; Wj /gj2J ; .L; U //!ORG.f.Hi ; Vi /gi2I ; .L; U //;

which is defined by the formulas�M
i2Ij

Vi !Wj ;
M
j2J

Wj ! U

�
7!

�M
i2I

Vi D
M
j2J

M
i2Ij

Vi !
M
j2J

Wj ! U

�
and �

.giHi /i2Ij ; .gjKj /j2J
�
7! .gjgiHi /j2J;i2Ij :

Note that for any color .H; V / 2ORG , there is an identity element ŒeH; 1V � 2ORG..H; V /; .H; V //.
Using Lemma 8.3 one can check that this composition is continuous, associative and unital and so that
ORG is indeed a topological colored operad. We leave the details to the interested reader.

Remark 8.11 We can endow the topological category O
op
G;pr with a topological colored operad structure

whose colors are the objects of OG;pr, and whose multimorphism spaces are given by

OG;pr.fG=Higi2I ; G=K/DOG;pr

�
G=K;

Y
i2I

G=Hi

�
D

�Y
i2I

G=Hi

�K
with composition defined in the obvious way. The associated1-operad models the cocartesian monoidal
structure. There is a canonical projection functor of topological colored operads

�G WORG!O
op
G;pr:

By Lemma 2.1, we can lift �G to a map of1-operads OR˝G! .O
op
G;pr/

q, which by abuse of notation
we still denote by �G .

Recall that because I-GT is a symmetric monoidal topological model category, we can construct a
topological colored operad whose colors are given by the bifibrant objects of I-GT and the multimorphism
spaces are given by

MulN˝..I-GTı/op/.fXig; Y /D I-GT

�
Y;
O
i2I

Xi

�
:

Furthermore the associated1-operad models the symmetric monoidal structure on .I-GTŒW �1lvl �/
op.

Lemma 8.12 The functor L of Theorem 8.9 lifts to a fully faithful functor of topological colored operads.

Proof We define a functor between colored operads by

ORG! .I-GTı/op; f.Hi ; Vi /g 7!ORG
�O

.Hi ; Vi /; .e;�/
�
:
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Using equation (7.6.1), we can rewrite this functor in more familiar terms as

ORG.f.Hi ; Vi /g; .e;�//D
�Y
i

G

�
�.

Q
i Hi/

I

�M
i

Vi ;�

�
'

O
i

.G �Hi IVi /:

By construction, this functor defines a colored operad map which lifts L. Using this description of the
functor and the fact that G �H IW corepresents the functor X 7! X.W /K , we also see that the map
induced on multimorphism spaces

ORG.f.Hi ; Vi /gi2I ; .K;W //! I-GT

�
G �K IW ;

O
i2I

G �Hi IVi

�
is a homeomorphism. Therefore the functor of colored operads is fully faithful.

The map L of topological operads constructed above induces a map L WOR˝G! .I-GTŒW �1lvl �
˝/op of

1-operads. Furthermore this functor is again fully faithful.

Corollary 8.13 The functor L WOR˝G! .I-GT�ŒW
�1

lvl �
˝/op induces a symmetric monoidal equivalence

I-GTŒW �1lvl �'ORG-S;

where the right-hand side is equipped with the Day convolution product.

Proof This follows from Corollary 3.41, where we argue as in Theorem 8.9 and use Lemma 8.12.

As a convenient reference, let us summarize the final description of G-prespectrum objects, which
combines all of the identifications obtained.

Corollary 8.14 Let G be a Lie group. Then there is a symmetric monoidal equivalence

PSpG 'ModSG .ORG-S�/:

Proof Combine Corollary 8.13 and Propositions 7.22 and 3.38.

Remark 8.15 We will often implicitly identify PSpG with ModSG .ORG-S�/ for the remainder of the
paper.

8.2 I-spaces and ORfgl-spaces.

We now undertake a similar analysis for the 1-category of I-spaces localized at the faithful level
equivalences. Many of the details are similar, so we will be briefer in this section than in the previous one.
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Definition 8.16 We define a topological category ORfgl whose objects are pairs .G; V /, where G is a
compact Lie group and V is a faithful G-representation. The morphism spaces are given by

ORfgl..G; V /; .H;W //D .I.V;W /=G/
H :

There is a composition map

ıWORfgl..H;W /; .L; U //�ORfgl..G; V /; .H;W //!ORfgl..G; V /; .L; U //

given by .Œ �; Œ'�/ 7! Œ ı'�. Similarly to Lemma 8.4, one may verify that this composition is well-defined,
associative, unital and continuous.

Example 8.17 By definition ORfgl..G; V /; .e;W //D I.V;W /=G. Thus we can identify the functor

ORfgl..G; V /; .e;�// W I! T

with the semifree I-space IG;V from Construction 7.15. Recall this I-space corepresents the functor
X 7!X.V /G .

Definition 8.18 We let ORfgl-S denote the1-category of ORfgl-spaces which is the1-category of
functors ORfgl! S. We also write ORfgl-S� for the1-category of functors ORfgl! S�.

We now prove the main result of this subsection.

Theorem 8.19 There is an equivalences of 1-categories

I-TŒW �1f-lvl�'ORfgl-S:

Proof The discussion in Example 8.17 shows that there exists a functor of topological categories (and so
of1-categories)

.ORfgl/
op
! I-T; .G; V / 7!ORfgl..G; V /; .e;�//D IG;V :

This is fully faithful by definition of ORfgl. Since the I-spaces IG;V are bifibrant in the faithful level
model structure, the composite

.ORfgl/
op
! I-T! I-TŒW �1f-lvl�

is also fully faithful. We note that the semifree I-space IG;V corepresents the functor X 7! X.V /G,
which commutes with small homotopy colimits. Indeed the G-fixed-point functor commutes with small
homotopy colimits by the discussion in Example 3.40, and so does the evaluation functorX 7!X.V / since
it preserves all colimits (as they are calculated pointwise), faithful level equivalences by definitions and
cofibrations (as one can verify by checking on the set of generating cofibrations). Finally, the collection
of objects fIG;V j .G; V / 2ORfglg is jointly conservative by definition of the faithful level equivalences.
Thus the claimed equivalence follows by applying Theorem 3.39.

We now discuss how the symmetric monoidal structure on I-TcŒW �1f-lvl� translates to ORfgl-S�.
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Lemma 8.20 The topological category ORfgl is symmetric monoidal with unit object .e; 0/ and tensor
product given by .G; V /˝ .H;W /D .G �H;V ˚W /. In particular , the1-category of ORfgl-spaces
admits a symmetric monoidal structure given by Day convolution.

Proof The first claim is a straightforward verification. The second claim follows from Corollary 3.29.

Write OR˝fgl for the1-operad associated to symmetric monoidal topological category ORfgl.

Lemma 8.21 The functor Lgl WORfgl! .I-TŒW �1f-lvl�/
op given by .G; V / 7! IG;V lifts to a fully faithful

symmetric monoidal functor of 1-categories ,

Lgl WORfgl! .I-TŒW �1f-lvl�/
op:

Proof It suffices to observe that (7.15.1) implies that Lgl WORfgl! I-T is a strong monoidal functor.

Corollary 8.22 There is a symmetric monoidal equivalence

I-TŒW �1lvl �'ORfgl-S;

where the right-hand side is symmetric monoidal via Day convolution.

Proof This follows from Corollary 3.41, where we argue as in Theorem 8.19 and use Lemma 8.21.

Summarizing all of the identifications made, we have the following description of the symmetric monoidal
1-category of faithful global prespectra.

Corollary 8.23 There is a symmetric monoidal equivalence

PSpfgl 'ModSfgl.ORfgl-S�/:

Proof Combine Proposition 7.22, Corollary 8.22 and Proposition 3.38.

Remark 8.24 We will often implicitly identify PSpfgl with ModSfgl.ORfgl-S�/.

9 Functoriality of equivariant prespectra

The goal of this section is to construct a functor PSp
�
W Gloop

! Cat˝1 sending a compact Lie group G to
the symmetric monoidal1-category of G-prespectra of Definition 7.18, and to compute its (partially) lax
limit. By Corollary 8.14, the1-category of G-prespectra can be identified with the category of modules
over a certain object SG in ORG-S�. Therefore our first step is to construct a functor sending a compact
Lie group G to the1-category ORG-S�.

Geometry & Topology, Volume 29 (2025)



Global homotopy theory via partially lax limits 1409

In the unstable case we observed that the relevant functoriality was induced by the functoriality of
the partial slices Orb=G in Glo. Formally, the functoriality of the categories ORG-S� is induced by a
(pro)functoriality of the categories ORG , and we will see that this is once again given by “passing to the
slices” of a global analogue ORgl of the individual equivariant categories ORG . The category ORgl will
be fibered over Glo and its objects will consist of pairs .G; V /, where G is a compact Lie group and V
is an arbitrary G-representation. Furthermore we will see that restricting to faithful representations, we
recover ORfgl.

Construction 9.1 Let G;H be compact Lie groups and let V;W be orthogonal G andH -representations
respectively. We equip the topological space

Hom.H;G/�I.V;W /

with the right G-action and the left H -action given by

.˛; '/ �g D .cg˛; 'g
�1/ and h � .˛; '/D .˛; h'˛.h/�1/:

There is a residual G-action on the fixed points .Hom.H;G/�I.V;W //H since the G and H -actions
commute. By definition, the fixed-point space can be characterized as the space of pairs .˛; '/, where
˛ WH !G is a Lie group homomorphism and ' W V !W is an H -equivariant isometry (where H acts
on V via ˛). If K is another compact Lie group and U is an orthogonal K-representation, we define a
composition map

.Hom.H;G/�I.V;W //H � .Hom.K;H/�I.W;U //K ! .Hom.K;G/�I.V; U //K ;

.˛; '/ � .ˇ;  /D .˛ˇ; ' /;

that is compatible with the various actions, so that it induces an associative and unital composition map
on the respective action groupoids:

.Hom.H;G/�I.V;W //H==G � .Hom.K;H/�I.W;U //K==H ! .Hom.K;G/�I.V; U //K==G:

Definition 9.2 Let ORgl be the topological category whose objects are pairs .G; V /, where G is a
compact Lie group and V is an orthogonal G-representation. Its morphism spaces are defined to be

ORgl..G; V /; .H;W //D j.Hom.H;G/�I.V;W //H==Gj;

where j � ==Gj is the geometric realization of the action groupoid of G on I.V;W / (as in Definition 6.1).
As in Lemma 8.20, one sees that ORgl admits a symmetric monoidal structure given by .G; V /˝.H;W /'
.G �H;V ˚W /. We write OR˝gl for the associated1-operad.

The next result tells us that the1-category ORfgl from Definition 8.16 is equivalent to the subcategory
of ORgl spanned by the faithful representations.
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Lemma 9.3 Let C be the symmetric monoidal subcategory of ORgl spanned by .G; V /, where V
is a faithful G-representation. Then there is a symmetric monoidal functor of topological categories
C!ORfgl sending .G; V / to .G; V /, which induces a homotopy equivalence on mapping spaces (and so
it is an equivalence of the underlying1-categories).

Proof The functor is the identity on objects, so it suffices to define it on mapping spaces. For any
.G; V /; .H;W / 2 C, let us consider the map

p W .Hom.H;G/�I.V;W //H ! .I.V;W /=G/H

sending .˛; '/ to Œ'�. We claim that this map exhibits the target as the quotient of the source by G.
Firstly, note that the map is G-equivariant. Let us show that its fibers are exactly the G-orbits. Suppose
we have a point Œ'� in the target and let us choose a representative ' W V ! W. Then we know that
h � Œ'�D Œh'�D Œ'� for every h 2H . Then necessarily there exists ˛.h/ 2G such that h' D '˛.h/�1.
Note that the element ˛.h/ is unique since V is a faithful G-representation. Then the map h 7! ˛.h/

is a Lie group homomorphism and its graph is closed in H �G (since it is a fiber of the continuous
map H �G! I.V;W / sending .h; g/ to h'g�1), so it is continuous. Then it is clear that .˛; '/ is a
preimage of Œ'�, and so p is surjective.

On the other hand, if .˛; '/ and .˛0; '0/ have the same image under p, then there is some g 2 G such
that '0 D 'g. A simple computation as before shows that this forces ˛0 D cg˛ (since the G-action on
I.V;W / is faithful, ˛0 is determined by '0). Moreover, the action of G on .Hom.H;G/�I.V;W //H

is free and proper, and so p is a principal G-bundle. In particular it induces a natural equivalence of
topological groupoids

.Hom.H;G/�I.V;W //H==G ' .I.V;W /=G/H ;

and so a homotopy equivalence

j.Hom.H;G/�I.V;W //H==Gj ' .I.V;W /=G/H :

Finally, it is easy to check that p is compatible with composition and sends the identity to the identity.
Therefore it induces an equivalence of1-categories C!ORfgl. We leave to the reader to check that the
above can be given the structure of a symmetric monoidal equivalence.

Remark 9.4 There is a pair of functors of topological categories

s0 W Gloop
!ORgl; �gl WORgl! Gloop

given by s0.G/D .G; 0/ and �gl.G; V /DG on objects. Note that s0 and �gl are both symmetric monoidal,
where Glo is symmetric monoidal under the cartesian product (and therefore Gloop is equipped with
the cocartesian symmetric monoidal structure). This implies that the functors �gl and s0 lift to maps of
1-operads �gl WOR˝gl ! .Gloop/q and s0 W .Gloop/q!OR˝gl , respectively.
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Lemma 9.5 Let f.Gi ; Vi /g; .H;W / be objects of OR˝gl , and consider the map

�gl WMulORgl.f.Gi ; Vi /g; .H;W //!MulGloop.fGig;H/:

The homotopy fiber of this map over a group homomorphism ˛ WH !
Q
i Gi 2 .Gloop/q is equivalent to

the space of H -equivariant isometries
L
i Vi !W , where H acts on

L
i Vi via ˛.

Proof Put V D
L
i Vi and GD

Q
i Gi so that ˛ WH !G, and we can rewrite the map induced by �gl as

MapORgl
..G; V /; .H;W //!MapGloop.G;H/DMapGlo.H;G/:

We recall from Proposition 6.3 that the G-space Hom.H;G/ decomposes as a disjoint union of orbits

Hom.H;G/'
a
.˛/

G=C.˛/;

where ˛ is a conjugacy class of homomorphisms and C.˛/ is the centralizer of the image of ˛. Therefore
we have a decomposition

MapORgl
..G; V /; .H;W //'

�
.Hom.H;G/�I.V;W //H

�
hG
'

a
.˛/

I.V;W /HhC.˛/;

depending on the choice of an ˛ in each conjugacy class. This lies above the decomposition

MapGlo.H;G/'
a
.˛/

BC.˛/

from Proposition 6.3 via the canonical maps I.V;W /H !�. Therefore the homotopy fiber over ˛ is
precisely I.V;W /H.

Lemma 9.6 The functor �gl WOR˝gl ! .Gloop/q is a cocartesian fibration , and therefore exhibits OR˝gl

as a .Gloop/q-monoidal1-category.

Proof Consider f.Gi ; Vi /gi2I 2OR˝gl , and let us set V D
L
i Vi andGD

Q
i Gi so that V is naturally aG-

representation. Since �gl is a map of1-operads, it is enough to find cocartesian lifts over active morphisms
whose target is in Gloop. A multimorphism from fGig to H in .Gloop/q is the datum of a continuous
group homomorphism ˛ WH !G. Consider the multimorphism f 2OR˝gl .f.Gi ; Vi /g; .H; ˛

�V // lying
over the map ˛ which is represented by the element

Œ˛; 1V � 2 j.Hom.H;G/�I.V; ˛�V //H==Gj:

We claim that this is a cocartesian edge. This follows from the fact that for all .L;W / 2OR˝gl , the square

MulORgl..H; ˛
�V /; .L;W // MulORgl.f.Gi ; Vi /g; .L;W //

MulGloop.H;L/ MulGloop.fGig; L/

f �

�gl �gl

˛�
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is a homotopy pullback of spaces. We can verify this by checking that the vertical fibers are equivalent.
This is now a consequence of Lemma 9.5.

Definition 9.7 We define Rep W Gloop
! Cat˝1 to be the functor corresponding to OR˝gl under the

equivalence of Proposition 5.5.

Remark 9.8 Rep.G/ is the 1-category corresponding to the topologically enriched category with
objects V a G-representation, and morphism spaces Rep.V;W /D I.V;W /G , the space of G-equivariant
linear isometries from V to W. This is a symmetric monoidal category via direct sum. The functoriality
in Glo is given by restriction of representations along group homomorphisms.

Recall from Remark 8.11 that there is a map of1-operads �G WOR˝G! .O
op
G;pr/

q. Also note that there
is a canonical functor OG;pr! Glo which sends an object G=H to H and acts as

OG;pr.G=H;G=K/' fg 2G j cg.H/�KghK ! hom.H;K/hK ; g 7! Œcg WH !K�:

This is an immediate generalization of the functor used in Lemma 6.12 to (not necessarily compact) Lie
groups. We denote the opposite of this functor by �G . It induces a map of cocartesian1-operads, which
we denote by �qG . We are now ready to state the next result.

Lemma 9.9 Let G be a Lie group. Then there is a canonical map of 1-operads �G WOR˝G!OR˝gl and
a cartesian square of 1-operads

OR˝G OR˝gl

.O
op
G;pr/

q .Gloop/q

�G

�G �gl

�qG

Proof It will suffice to construct the map �G at the level of topological colored operads and then apply
Lemma 2.1. Recall from Definition 8.5 that

ORG..H; V /; .K;W //D .G �H I.V;W //K ;

where G �H I.V;W / is the quotient of G �I.V;W / by the right H -action .g; '/ � hD .gh; 'h/. Since
the H -action is free, we can identify the quotient with the homotopy quotient (see [Körschgen 2018,
Theorem A.7] for example) and so there is a canonical identification

ORG..H; V /; .K;W //D j.G �I.V;W //K==H j

that respects composition. Moreover, under this identification, the multilinear spaces of the colored operad
structure are given by

ORG.f.Hi ; Vi /gi ; .K;W //D
ˇ̌̌̌�Y

i

G �I

�M
i

Vi ; W

��K..Y
Hi

ˇ̌̌̌
:

Geometry & Topology, Volume 29 (2025)



Global homotopy theory via partially lax limits 1413

Therefore we may define a functor of topological colored operad ORG !ORgl by sending .H; V / to
.H; V / and on the multimorphism spaces we take the map which is induced by the map of topological
groupoids�Y

i

G �I

�M
i

Vi ; W

��K..Y
i

Hi !

�
Hom

�
K;
Y
i

Hi

�
�I

�M
i

Vi ; W

��K..Y
i

Hi ;

.fgig; '/ 7! ..cgi jK/i ; '/:

A tedious but simple calculation shows that these maps respect composition. This defines a map
�G WOR˝G!OR˝gl as required.

Another tedious calculation shows that the square in the lemma commutes (already as a square of
topological operads) and that it is a pullback on 0-vertices. Therefore it is enough to show that every
induced square

MulORG .f.Hi ; Vi /g; .K;W // MulORgl.f.Hi ; Vi /g; .K;W //

MulOop
G;pr
.fG=Hig; G=K/ MulGloop.fHig; K/

�G

�G

�gl

�G

of multimorphism spaces is a homotopy pullback. It suffices to check that the vertical homotopy fibers
are equivalent. A morphism ' W G=K !

Q
G=Hi in OG;pr amounts to giving elements gi 2 G such

that cgi .K/�Hi . The homotopy fiber of �G over ' is given by the space of K-equivariant isometriesL
i Vi !W , where K acts on each Vi via cgi . The map �G sends ' to .cgi WK!Hi / and the homotopy

fiber over this is again the space of K-equivariant isometries as above by Lemma 9.5. As the vertical
homotopy fibers are equivalent, the square is a pullback of1-operads.

We write Arinj.Glo/ for the full subcategory of Ar.Glo/ spanned by the injective group homomorphisms.

Definition 9.10 We define OR˝ via the pullback of1-operads

OR˝ OR˝gl

.Arinj.Glo/op/q .Gloop/q

�inj �gl

sop

Thus an object of OR, the underlying1-category of OR˝, is a pair .˛ WH !G; V /, where ˛ is injective
and V is a H -representation.

Lemma 9.11 The composition

� WOR˝
�inj
��! .Arinj.Glo/op/q

top
�! .Gloop/q

gives OR˝ the structure of a .Gloop/q-promonoidal 1-category, whose operadic fiber over G is exactly
OR˝G .
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Proof We will show that each of the two maps in the defining composite is promonoidal in turn. Note
that both are maps of1-operads. The map �inj is a pullback of a cocartesian fibration, and therefore
again cocartesian. The second map is then promonoidal by Example 3.7.

Finally we note that the operadic fiber of top over G is .Oop
G /
q by Lemma 6.12 and the observation that

.�/q preserves pullbacks. Therefore, the calculation of the operadic fiber follows from Lemma 9.9 and
the observation that the composite

.O
op
G /
q
! .Arinj.Glo/op/q

top
�! .Gloop/q

is equivalent to �qG .

Because � is a promonoidal category over .Gloop/q with operadic fiber OR˝G , morally it represents a
profunctor of promonoidal1-categories. Therefore we can extract an honest symmetric monoidal functor
by taking copresheafs. This will be the functor Gloop

! Cat˝1 sending G to ORG-S�.

Definition 9.12 The Day convolution FunGloop.OR˝;S^� � .Gloop/q/Day is a .Gloop/q-monoidal1-
category, whose operadic fiber over G 2 Glo equals

FunGloop.OR˝;S^� � .Gloop/q/Day
�.Gloop/q Fin� ' Fun.OR˝ �.Gloop/q Fin�;S^� /

Day

'ORG-S�

by Example 5.7 and Lemma 9.11. We define OR�-S� W Gloop
! Cat˝1 to be the functor associated to it

under the equivalence of Proposition 5.5.

Lemma 9.13 Let OR be the underlying category of the 1-operad OR˝. Then the projection map

� WOR! Gloop

is cartesian over Orbop, and an edge .�; �/2OR is �-cartesian if and only if sop.�/ and � are equivalences.

Proof Suppose we have an injection ˛ WH !G, and an object .ˇ WK!H;V / 2OR. As noted before,
the map top W Arinj.Glo/op! Gloop is a cartesian fibration. Furthermore, over an injection ˛ WH ! G,
cartesian lifts with target ˇ WK!H are given by squares � :

K K

G H

˛ˇ ˇ

�

˛

In particular, we note that cartesian lifts of injections are sent to equivalences by the source functor
sop W Arinj.Glo/op! Gloop. Lifting sop.�/ to an equivalence � 2ORgl with target .K; V /, we obtain an
edge .�; �/ which lies over ˛ and ends at .ˇ; V /. Because both components of the edge .�; �/ in OR are
�-cartesian, the edge .�; �/ is itself �-cartesian. This shows that there are enough cartesian edges in OR
over injections, and that they are exactly of the form claimed.
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Lemma 9.14 The projection map
OR˝!OR˝gl

induces a fully faithful symmetric monoidal functor

ORgl-S�!OR-S�

via restriction , with essential image those functors F WOR! S� that send cartesian arrows over Orbop to
equivalences.

Proof Recall from Lemma 6.8 that the source projection Arinj.Glo/!Glo has a fully faithful left adjoint
Glo! Arinj.Glo/ given by the diagonal embedding. Therefore, by the functoriality of the cocartesian
operad [Lurie 2017, Proposition 2.4.3.16], it follows that the source projection

.Arinj.Glo/op/q! .Gloop/q

has a fully faithful operadic right adjoint. Since Bousfield localizations are stable under basechange, it
follows that the projection

OR˝!OR˝gl

again has a fully faithful operadic right adjoint. Therefore OR! ORgl is a Bousfield localization on
underlying1-categories and moreover the fully faithful functor

ORgl-S!OR-S�

is symmetric monoidal by Proposition 3.34(b). Finally, because OR!ORgl is a Bousfield localization,
the essential image of the functor Fun.ORgl;S�/! Fun.OR;S�/ is given by those functors which send
the edges inverted by the map OR!ORgl to equivalences. But these are exactly the cartesian arrows
over the injections by Lemma 9.13.

Lemma 9.15 There are symmetric monoidal equivalences

laxlim
G2Gloop

ORG-S� 'OR-S and laxlim�
G2Gloop

ORG-S� 'ORgl-S�;

where the lax limit is marked over the subcategory Orb� Glo of all objects and injective maps.

Proof By Proposition 5.8 there is a symmetric monoidal equivalence

laxlim
G2Gloop

ORG-S� 'Np FunGloop.OR˝;S^� � .Gloop/q/Day;

where p W .Gloop/q ! Fin� is the structure morphism of .Gloop/q. Applying the formula of Day
convolution twice (see Definition 3.12), and the transitivity of norms of operads, we obtain

laxlim OR�-S� 'NpN���.S^� � .Gloop/q/'N�p.�
�p�S^� /' Fun.OR˝;S^� /

Day
DOR-S�:

To compute the partially lax limit we appeal to Remark 5.2 to reduce to a statement on underlying cate-
gories. Combining Remarks 3.11 and 5.9, we conclude that the underlying1-category of the1-operad
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Np FunGloop.OR˝;S^� �.Gloop/q/Day is given by sections of the cocartesian fibration ����.S��Gloop/,
where by slight abuse of notation we write � D U.�/. Therefore we may calculate

Fun=Gloop.Gloop; ���
�.S� �Gloop//' Fun=Gloop.OR;S� �Gloop/' Fun.OR;S�/;

using the definition of the left adjoints �� and �Š. Now by Theorem 4.9 the partially lax limit of the
diagram in question is given by the full subcategory of the left-most category spanned by those sections
which map edges in Orbop to cocartesian arrows. We now apply [Lurie 2009, Corollary 3.2.2.13] (with
p WOR�Gloop Orbop

!Orbop, q WS��Orbop
!Orbop and T D ����.S��Gloop/�Gloop Orbop) together

with Lemma 9.13, to see that these sections corresponds to those functors in Fun=Gloop.OR;S� �Gloop/

which send cartesian edges over Orbop to cocartesian edges of S� �Orbop
! Orbop. These are exactly

those maps which are equivalences in the first component, and therefore such sections correspond to
functors F WOR! S� which map cartesian edges over Orb to equivalences. Therefore we conclude by
applying Lemma 9.14.

Proposition 9.16 There exists a functor PSp
�
W Gloop

! Cat˝1 sending G to PSpG . Moreover , there is a
symmetric monoidal equivalence

laxlim�
G2Gloop

PSpG 'ModSgl.ORgl-S�/:

Proof There is a lax symmetric monoidal topologically enriched functor Sgl W ORgl ! S� sending
.G; V / to .SV /G. This induces a lax symmetric monoidal functor of1-operads, which uniquely specifies
a commutative algebra in OR-S� by [Lurie 2017, Example 2.2.6.9], where we view ORgl-S� as a
symmetric monoidal subcategory of OR-S� using Lemma 9.14. Applying Theorem 5.10 to the lax limit
of Lemma 9.15 shows that there is a functor sendingG to ModSG .ORG-S�/'PSpG (see Corollary 8.14),
whose lax limit is ModSgl.OR-S�/.

Finally, we have to calculate the subcategory corresponding to the partially lax limit. Because the natural
transformation PSpG ! ORG-S� is pointwise conservative, we can check that an object lies in the
partially lax limit of PSpG by checking that its image lies in the partially lax limit of ORG-S�. In other
words, we have a pullback square of symmetric monoidal1-categories

laxlim�G PSpG laxlimG PSpG

laxlim�G ORG-S� laxlimG ORG-S�

Therefore, by Lemma 9.15 and the previous paragraph we have a symmetric monoidal equivalence

laxlim�
G2Gloop

PSpG 'ModSgl.Fun.OR;S�//�Fun.OR;S�/ Fun.ORgl;S�/:

Finally, since Sgl 2 Fun.ORgl;S�/, this implies that

laxlim�
G2Gloop

PSpG 'ModSgl.ORgl-S�/:
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Notation 9.17 We write PSp�gl for the1-category ModSgl.ORgl-S�/, and identify it with laxlim� PSp
�
.

Recall the definition of the diagram S� W Gloop
! Cat˝1 from Construction 6.15, which sends a group G

to the1-category of G-spaces. We would like to construct a natural transformation †1 W S�! PSp
�
,

whose component at G is given by an analogue of the suspension prespectrum functor. Morally, this sends
a G-space X to the SG-module .H; V / 7! .X ^SV /H. We make this precise in the next construction.
Let us first fix some notation: we write S�;� for the composite .�/� ıS� of S� with the functor which
sends a presentably symmetric monoidal category to the1-category of pointed objects.

Construction 9.18 We will construct natural transformations of functors Gloop
! Cat˝1

S�! S�;�! PSp
�
:

The first natural transformation is simply given by postcomposing S� with the natural transformation
.�/C W id! .�/� of functors .PrL/˝! .PrL/˝.

For the second natural transformation, we will construct it as a composite

S�;�!OR�-S�! PSp
�
:

For the latter transformation OR�-S�! PSp
�
, we simply note that the free module functors

SG ˝�WORG-S�!ModSG .ORG-S�/' PSpG

are symmetric monoidal and fit into a natural transformation by the second half of Theorem 5.10.

For the first, it will be technically convenient to construct the natural transformation S^
�;�!OR�-S� as

a map of .Gloop/q-monoidal1-categories and then to use Proposition 5.5.

For this, we need to pin down the .Gloop/q-monoidal 1-category which corresponds to S�;� under
Proposition 5.5. Note that the map top W .Arinj.Glo/op/q! .Gloop/q exhibits Arinj.Glo/op as a .Gloop/q-
monoidal category; see Example 3.7. We claim that S�;� corresponds to the Day convolution

FunGloop..Arinj.Glo/op/q;S^� � .Gloop/q/Day:

To see this, we first note that

FunGloop..Arinj.Glo/op/q;S� � .Gloop/q/Day

classifies S�
�

, because it does so on underlying categories (combine Remark 3.11 and [Gepner et al. 2017,
Proposition 7.3]) and the forgetful functor Cat˝1!Cat1 is faithful when restricted to cartesian monoidal
1-categories. Now we observe that the .Gloop/q-monoidal functor

..�/C/� W FunGloop.Arinj..Gloop/q;S� � .Gloop/q/Day
! FunGloop.Arinj..Gloop/q;S^� � .Gloop/q/Day

agrees pointwise with .�/C, and therefore by the universal property of taking pointed objects (see [Lurie
2017, Proposition 4.8.2.11]), FunGloop.Arinj..Gloop/q;S^� � .Gloop/q/Day must classify S�;�.
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Now we can construct the .Gloop/q-monoidal functor which will induce S�;�!OR�-S�. Pulling back
the functor s0 of Remark 9.4 along top we obtain a commutative diagram

Arinj.Glo/op/q OR˝

.Gloop/q
top

s0;inj

�

where top and � exhibit the sources as .Gloop/q-promonoidal1-categories by Lemma 9.11, so that s0;inj

is a map of .Gloop/q-promonoidal1-categories. One can then verify that s0;inj satisfies the hypotheses
of Proposition 3.34(a), and there exists a .Gloop/q-monoidal functor

.s0;inj/Š W FunGloop..Arinj.Glo/op/q;S^� � .Gloop/q/Day
! FunGloop.OR˝;S^� � .Gloop/q/Day;

which then induces the required natural transformation. This description shows as well that the component
at G coincides with I0, and so the composite functor SG;�! PSpG is analogous to the usual suspension
prespectrum functor F0.�/. We will formulate a precise statement to this effect as Proposition 10.5.

10 Functoriality of equivariant spectra

In the previous section we have constructed the functor

PSp
�
W Gloop

! Cat˝1;

and calculated its partially lax limit. In this section we will show that this functor descends to a diagram Sp
�
,

where on every level we restrict to the subcategory of spectrum objects. Furthermore, we will prove that
the functoriality obtained in this way agrees with the standard functoriality of equivariant spectra under
the restriction–inflation functors. Finally, we will compute the partially lax limit of Sp

�
as a Bousfield

localization of PSp�gl D laxlim� PSp
�
.

Given a continuous group homomorphism ˛ WH !G between compact Lie groups, we write

˛� WORG-S�!ORH -S�

for the symmetric monoidal functor induced by ˛. Our goals require a better understanding of ˛�. We
start by studying the interaction between ˛� and the Quillen adjunction of Construction 7.6

IV WGT� I-GT WevV

for a given G-representation V. However, before we do this, we first need to understand how these
adjunctions manifest themselves under the equivalences

SG 'OG-S and ORG-S' I-GT

of Example 3.40 and Theorem 8.9.
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Remark 10.1 Consider X 2 I-GT and a G-representation V. Then the G-space X.V / corresponds to
the presheaf

G=H 7!X.V /H 'MapI-GT.G �H IV jH ; X/:

Note thatG�HIV jH is the image of .H; V jH / under the embeddingL of Theorem 8.9. Therefore, if we let
sV WO

op
G !ORG be the cocartesian section of �G sendingG=G to .G; V /, we have s.G=H/' .H; V jH /,

so we can identify evV with
s�V WORG-S! SG ; X 7!X ı sV ;

and similarly for the pointed version. It follows that the derived functor associated to IV is given by the
left Kan extension functor .sV /Š. Finally, we can compute that this is given by

.IVX/.H;W /' I.V;W /H �XH ;

by the following lemma.

Lemma 10.2 Let � W E!B be a cocartesian fibration of1-categories and s WB! E be a cocartesian
section. For every functor F WB! C where C is a cocomplete1-category, we can compute the left Kan
extension along s by

.sŠF /.e/'Map��1.�e/.s�.e/; e/�F.�.e// for all e 2E:

Proof By the usual formula for left Kan extensions we have that

.sŠF /.e/' colim
b2B�EE=e

F.b/:

We claim that the projection B�E E=e ! B=�e is a left fibration with fiber over f W b! �e given by
MapfE .s.b/; e/. In particular, since F is constant along the fibers of this fibration and B=�e has a final
object, we have

colim
b2B�EE=e

F.b/' colim
Œf W b!�e�2B=�e

MapfE .s.b/; e/�F.b/'Map��1.�e/.s�.e/; e/�F.�.e//:

It only remains to prove that the functor B�E E=e!B=�e is a left fibration. That is, we need to show
that for every diagram

ƒni B�E E=e

�n B=�e

with 0 � i < n, there exists a dotted arrow completing the diagram. Using the definition of slice
1-categories, this is equivalent to finding a dotted arrow completing the dotted diagram

ƒni ?�
0 E

�n ?�0 '�nC1 B

F

�

G
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where F restricted to ƒni �ƒ
nC1
i is given by the restriction of sG. This diagram is a diagram of marked

simplicial sets when we give B the total marking, E the cocartesian marking and on the left column the
marking .ƒni /

] ?�0! .�n/] ?�0. Since the left vertical arrow is left marked anodyne by [Shah 2023,
Lemma 4.10], the lift exists.

Having understood the adjunction IV a evV , we now discuss how this interacts with the functor ˛�.

Proposition 10.3 Let us fix an arrow ˛ WH !G in Glo.

(1) Given a pointed G-space X , there is a natural equivalence

˛�IVX ' I˛�V .˛
�X/:

(2) Given a pointed ORG-space Y , there is a natural equivalence

˛� evV Y ' ev˛�V ˛�Y:

(3) Under the two previous identifications , the counit natural transformation

IV evV X !X

is sent by ˛� to
I˛�V ev˛� V.˛�X/! ˛�X;

the counit natural transformation for ˛�V applied to ˛�X .

Proof Write O˛ 'Arinj.Glo/�Glo Œ1� (using the target map t WArinj.Glo/!Glo) and let i0 WOH !O˛

and i1 WOG !O˛ be the inclusions of the fibers over 0 and 1, respectively. Similarly, write OR˛ WD
ORgl �Gloop O

op
˛ and j0; j1 W ORH ;ORG ! OR˛ for the inclusion of the fiber of OR˛ ! Œ1�op over 0

and 1, respectively. Therefore by Remark 3.23 we can identify

˛� ' i�0 .i1/Š W SG;�! SH;� and ˛� ' j �0 .j1/Š WORG-S�!ORH -S�:

Let sV W O
op
G ! ORG be the cocartesian section of �G W ORG ! O

op
G which sends G=G to .G; V /.

Similarly let s W Oop
˛ ! OR˛ be the cocartesian section sending the initial object i1.G=G/ of O

op
˛ to

j1.G; V /. Then s restricts to sV on O
op
G and to s˛�V on O

op
H , since a cocartesian section is determined

by where it sends the initial object. Therefore by Remark 10.1 we obtain

˛�IVX ' ˛
�.sV /ŠX ' j

�
0 .j1sV /ŠX ' j

�
0 sŠ.i1/ŠX

for every pointed G-space X . Using the formula for sŠ described in Lemma 10.2 we see that the above
can be identified with .s˛�V /Ši�0 .i1/ŠX , thus proving the first statement.

Now let Y be an ORG-space. Then we claim that s�.j1/ŠY is left Kan extended from O
op
G . In fact this

happens if and only if s�.j1/ŠY sends the arrows .G; ˛L/! .H;L/ in O
op
˛ to equivalences. But the

arrow
Œs.G; ˛L/! s.H;L/�' Œ.G; ˛L; V /! .H;L; ˛�V /�
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is a terminal object of ORG �OR˛ .OR˛/=.H;L;˛�V / and so it is sent to an equivalence by .j1/ŠY . This
implies that

ev˛�V ˛�Y ' s�˛�V .j1/ŠY ' j
�
0 s
�.j1/ŠY ' j

�
0 .j1/Š.sV /

�Y ' ˛� evV Y;

proving the second statement.

Finally we consider for every ORG-space Y , the natural transformation

sŠs
�.j1/ŠY ! .j1/ŠY;

and note that this is a natural transformation of functors left Kan extended from ORG , which restricts to

.sV /Šs
�
V Y ! Y and .s˛�V /Šs�˛�V ˛

�Y ! ˛�Y

on the fibers over 0 and 1, respectively. Thus ˛� sends the former to the latter, showing the third
statement.

With this result we can show that PSp
�

restricts to a functor on spectrum objects.

Proposition 10.4 There exists a functor Sp
�
W Gloop

! Cat˝1 and a natural transformation of functors

L� W PSp
�
! Sp

�
;

whose component for a fixed G is the spectrification functor LG W PSpG! SpG .

Proof Consider a group homomorphism ˛ WH !G. We claim that the functor PSp˛ W PSpG! PSpH
preserves stable equivalences. It suffices to show that it preserves the generating equivalences GÌK �V;W
of Proposition 7.30. Moreover, sinceG is compact, we can restrict to the cofinal setW ofK-representations
that are extended from G.

First note that �V;W ' .G ÌK FV .S0//˝ �0;W . Since PSp˛ is symmetric monoidal by construction
and stable equivalences are stable under tensor product, it suffices to show that PSp˛.�0;W / is a stable
equivalence. We claim it is equivalent to �0;˛�W . In fact, �0;W is exactly the counit of the adjunction
FW a evW of Construction 7.28 applied to SG . Therefore we can factor it as

.FW evW /SG ' .SG ˝�/IW evW USG! .SG ˝�/USG! SG ;

where .SG˝�/ aU is the free-forgetful adjunction between PSpG and ORG-S�, and the arrows are the
counits of the respective adjunctions. Then our claim follows from Theorem 5.10 and Proposition 10.3.

Knowing that PSp˛ preserves stable equivalences, we can combine Construction 9.18 and Corollary 4.14
to obtain Sp

�
and the natural transformation L� W PSp

�
! Sp

�
.

Recall that we constructed a natural transformation †1
�
W S�;� ! PSp

�
in Construction 9.18, which

pointwise was our analogue of the suspension prespectrum functor. We may compose this with the natural
transformation L� to obtain a new natural transformation, which we again denote by †1

�
.
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Proposition 10.5 The component of †1
�
W S�;� ! Sp

�
at the group G is equivalent to the standard

suspension spectrum functor.

Proof Considering the component at G, we observe that the functor †1G is defined as the composition

SG;�!ORG-S�!ModSG .ORG-S�/' PSpG! SpG ;

where the first functor is I0 (ie precomposition along ORG ! O
op
G ), the second functor is the free

SG-module functor .SG ˝�/ and the third functor is the localization functor. These functors are all
modeled by left Quillen functors

GT�! I-GT�! SpOG ! SpOG

given by the constant I-G-space, the free SG-module and the identity, respectively. Therefore †1G is
modeled by their composition, which is exactly the suspension spectrum functor constructed in [Mandell
and May 2002].

This suffices for us to conclude that the functoriality of Sp
�

agrees morphismwise with the functoriality
of equivariant spectra in restriction, by the universal property of G-spectra.

Corollary 10.6 The functor Sp
�
WGloop

! Cat˝1 sends a compact Lie group G to SpG , and a continuous
group homomorphism ˛ WH !G to the restriction functor ˛� W SpG! SpH .

Proof Consider the commutative diagram

SpG SpH

SG;� SH;�

SG SH

Sp˛

†1G

S˛�

†1H

.�/C

S˛

.�/C

of symmetric monoidal functors. By the universal property of G-spectra [Gepner and Meier 2023,
Corollary C.7], the functor Sp˛ is uniquely determined by S˛;�, and this is completely determined by S˛

by [Lurie 2017, Proposition 4.8.2.11]. Finally, Proposition 6.16 identifies the functor S˛ with ˛�.

Remark 10.7 The argument of Corollary 10.6 in fact shows that the natural transformation †�;� WS�;�!
Sp
�

admits a universal property. This forces Sp
�

to coincide with the construction of [Bachmann and
Hoyois 2021, Section 9] on the subcategory of Glo spanned by finite groups. This suggests a possible
comparison between ultracommutative Fin-global ring spectra in the sense of [Schwede 2018] and normed
spectra in the sense of [Bachmann and Hoyois 2021].
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We have now constructed Sp
�

and shown that it agrees with the standard functoriality of equivariant
spectra. We will write Sp�gl for the partially lax limit laxlim� Sp

�
. We would like to describe Sp�gl as a

Bousfield localization of PSp�gl by applying Lemma 4.13. To do this requires the following two lemmas.

Proposition 10.8 Let ˛ WH !G be an injective group homomorphism. Then the functor ˛� WORG-S!
ORH -S has a left adjoint ˛Š. Moreover , under the identification of Theorem 8.9, the adjunction ˛Š a ˛�

corresponds to the Quillen adjunction G �H � a ˛� of Proposition 7.10.

In particular , for X 2ORH -S and Y 2ORG-S, the comparison map

˛Š.X ˝˛
�Y /! ˛ŠX ˝Y

adjoint to X ˝˛�Y ! ˛�˛ŠX ˝˛
�Y is an equivalence.

Proof By the description of Remark 3.23 and Lemma 9.13 it follows that ˛� W ORH -S! ORG-S is
given by precomposition along the functor p˛ WORH !ORG obtained by basechange from O

op
H !O

op
G .

In particular, it has a left adjoint ˛Š given by left Kan extension along p˛.

In the proof of Theorem 8.9 we have constructed a functor LH WORop
H ! I-HTŒW �1lvl � sending .K;W /

to H �K IW. We claim that there is a commutative diagram

ORop
H ORH -S I-HTŒW �1lvl �

ORop
G ORG-S I-GTŒW �1lvl �

p˛

LH

Yoneda

˛Š

�

G�H�

LG

Yoneda
�

where the horizontal equivalences are given by Theorem 8.9. The diagram on the left commutes by the
universal property of presheaf categories and the outer square commutes by direct verification using the
formulas of LG and LH . Therefore a generation argument, using that all the functors preserve colimits,
shows that the rightmost diagram commutes too. The rightmost vertical functor can be modeled by a left
Quillen functor by Proposition 7.10, so the first claim follows.

Finally, since the map
G �H .X ˝Y /! .G �H X/˝Y

is an isomorphism in I-GT, it follows that the derived formula holds as well.

Lemma 10.9 Let ˛ WH!G be an injective homomorphism of compact Lie groups. Then PSp˛ WPSpG!
PSpH sends SpG into SpH .
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Proof PSp˛ sends X to SH ˝˛�SG ˛
�X ' ˛�X , since ˛ is injective. Therefore PSp˛ preserves all

small limits and colimits, since ˛� does, and so it has a left adjoint L˛. Moreover, by Proposition 10.8
there is an equivalence

L˛.X ˝PSp˛Y /' L˛.X/˝Y:

To prove that ˛�.SpG/� SpH it suffices to show that L˛ preserves stable equivalences. By cofinality the
stable equivalences in SpH are generated by those of the form H �M �V;W jM , where M <H is a closed
subgroup, V is an M -representation and W is a G-representation. But then

L˛.H �M �V;W jM /' L˛..H �M FV S
0/˝˛��0;W jH /' L˛.H �M FV S

0/˝�0;W :

Since stable equivalences are stable under tensoring and �0;W is a stable equivalence, this proves the
thesis.

Given a compact Lie group G 2Glo, we denote by U gl
G W PSp�gl! PSpG the canonical functors associated

to the universal cone.

Proposition 10.10 The1-category Sp�gl is a Bousfield localization of PSp�gl. We denote the associated
left adjoint by Lgl W PSp�gl ! Sp�gl. Furthermore , the following conditions are equivalent for an object
X 2 PSp�gl:

(a) X is in Sp�gl.

(b) For every compact Lie group G, the G-prespectrum U
gl
G .X/ is in SpG .

(c) For every compact Lie group G, the G-prespectrum U
gl
GX is local with respect to the maps �V;W

defined in Construction 7.28 for any G-representations V and W.

Proof Recall that Sp
�

was constructed in Proposition 10.4 by localizing the functor PSp
�

using
Lemma 4.13. By the same lemma together with Lemma 10.9, we conclude that Sp�gl is a Bousfield
localization and that conditions (a) and (b) are equivalent. By Proposition 7.30, condition (b) is equivalent
to the condition that for every compact Lie group G and closed subgroup H �G, the H -prespectrum
resGHU

gl
GX is local with respect to the maps f�V;W g, where V and W vary over all H -representations.

By construction we have U gl
H D resGH ıU

gl
G , so (b) and (c) are equivalent.

11 Global spectra as a partially lax limit

Recall the functors PSp
�
;Sp

�
WGloop

! Cat˝1 constructed in Propositions 9.16 and 10.4. We also defined

PSp�gl WD laxlim�
Gloop

PSpG and Sp�gl WD laxlim�
Gloop

SpG :

The goal of this section is to show that Sp�gl is symmetric monoidally equivalent to Schwede’s1-category
of global spectra Spgl, whose definition is recalled in Definition 7.23. Our proof will go roughly as
follows:
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� We will first construct a symmetric monoidal adjunction

jŠ W PSpfgl 'ModSfgl.ORfgl-S�/�ModSgl.ORgl-S�/' PSp�gl Wj
�

between prespectra objects, where the equivalences are given by Proposition 9.16 and Corollary 8.23.

� We note that there are Bousfield localizations Spgl � PSpfgl and Sp�gl � PSp�gl. We denote by
Lgl W PSp�gl! Sp�gl the localization functor.

� We will then check that j � preserves spectrum objects, and therefore obtain an induced adjunction

Lgl ı jŠ W Spgl� Sp�gl Wj
�

between the respective localizations.

� We will show that this adjunction is in fact an equivalence, by showing that j � is conservative on
spectrum objects, and that the unit of the adjunction .Lgl ı jŠ; j

�/ is an equivalence.

We start by constructing an adjunction between prespectrum objects. By Lemma 9.3 we can identify
ORfgl with the full subcategory of ORgl spanned by .G; V /, where V is a faithful G-representation. Then
the canonical inclusion j WORfgl ,!ORgl induces an adjunction

jŠ WORfgl-S��ORgl-S� Wj �:

Note that jŠ is fully faithful as it is given as a left Kan extension along a fully faithful functor. Moreover
the functor jŠ is strong monoidal by Proposition 3.34.

Proposition 11.1 The inclusion j WORfgl ,!ORgl admits a right adjoint q, which is given on objects by

.G; V / 7! .G=ker.V /; V /;

where ker.V / < G is the subgroup of g 2G acting trivially on V. In particular , the left Kan extension jŠ
is equivalent to the functor q� given by precomposition by q.

Proof The G=ker.V /-representation V is clearly faithful, so to prove the thesis it is enough to show that
for every .H;W / 2ORfgl, the map .G=ker.V /; V /! .G; V / induces an equivalence on mapping spaces

MapORgl
..H;W /; .G=kerV // ��!MapORgl

..H;W /; .G; V //:

By Definition 9.2, this means we need to show that the map

.Hom.G=kerV;H/�I.W; V //
G=kerV
hH

! .Hom.G;H/�I.W; V //GhH

given by precomposition with G!G=kerV on the first coordinate, is a homotopy equivalence. In fact
we will show that

.Hom.G=kerV;H/�I.W; V //G=kerV
! .Hom.G;H/�I.W; V //G
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is a homeomorphism. Since it is a continuous map of compact Hausdorff topological spaces, it suffices to
show that it is bijective. As Hom.G=kerV;H/!Hom.G;H/ is injective, so is the above map. Therefore
to conclude we need to show it is surjective.

Concretely this means that if we have a map ˛ WG!H and an isometry ' WW ! V that is G-equivariant,
we need to show that ˛ is trivial when restricted to kerV . But if g 2 kerV , then g acts as the identity
on V, and therefore ˛.g/ acts as the identity on W (since ' is G-equivariant). Since W is a faithful
H -representation this implies that ˛.g/D 1, as required.

Note that it is clear from the definitions that j �Sgl'Sfgl as commutative algebra objects. As an application
of the previous proposition we find:

Corollary 11.2 The counit map � W jŠSfgl! Sgl is an equivalence of commutative algebra objects. In
particular , the functors jŠ a j � induce an adjunction

jŠ W PSpfgl 'ModSfgl.ORfgl-S�/�ModSgl.ORgl-S�/' PSp�gl Wj
�:

Proof Because j is strong monoidal, the counit is canonically a map of commutative algebra objects.
Therefore for all .G; V / 2ORgl we compute

jŠ.Sfgl/.G; V /' Sfgl.q.G; V //D .S
V /G=ker.V /

' .SV /G D Sgl.G; V /:

Because jŠ and j � are strong and lax monoidal, respectively, and they swap the two algebra objects, they
induce functors as in the statement, which are evidently adjoint.

We will now use the adjunction
jŠ W PSpfgl� PSp�gl Wj

�

to induce an adjunction at the level of spectrum objects. To do this we need to see how the adjunction
.jŠ; j

�/ interacts with the full subcategories of spectrum objects. To this end we briefly rephrase the
discussion of local objects in PSpfgl given at the end of Section 7.

Remark 11.3 Recall from Proposition 7.27 that Spgl is a Bousfield localization of PSpfgl at the morphisms
f�G;V;W g where G is a compact Lie group and V and W are G-representations with W faithful. Because
jŠ W PSpfgl! PSp�gl is fully faithful, we can equivalently require that jŠX is local with respect to the maps
jŠ.�G;V;W /, where W is a faithful representation. These maps again corepresent the G-fixed points of
the adjoint structure map z�G;V;W , and therefore we will denote them by ��G;V;W , and similarly we will
write F �G;V for jŠFG;V .

We have seen in Construction 7.25 that for any compact Lie group G and G-representation V, there is a
functor evG;V W PSpfgl! SG;� that sends a faithful global prespectrum X to the G-space X.V /. Under
the equivalence

PSpfgl 'ModSfgl.ORfgl-S�/;
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this functor can be modeled as follows. Consider the cocartesian section sV W O
op
G ! ORG which is

determined by the object .G; V / 2ORG , and write kV for the composite O
op
G

sV
�!ORG

�G
�!ORgl. If V

is faithful then kV lands in ORfgl and so we can define evG;V as the composite of right adjoints

ModSfgl.ORfgl-S�/
fgt
�!ORfgl-S�

k�V
�! SG;�:

Similarly, as discussed in Construction 7.28, there is a functor evV W PSpG ! SG;� sending a G-
prespectrum X to the G-space X.V /. Under the equivalence

PSpG 'ModSG .ORG-S�/

this functor is modeled by the composite

ModSG .ORG-S�/
fgt
�!ORG-S�

s�V
�! SG;�:

See also Remark 10.1.

Remark 11.4 From the previous discussion we conclude that there is a commutative diagram of right
adjoints

PSpfgl PSp�gl PSpG

ModSfgl.ORfgl-S�/ Mod
S
�
gl
.ORgl-S�/ ModSG .ORG-S�/

ORfgl-S� ORgl-S� ORG �S�

SG;�

� �

j� U
gl
G

�

fgt

j�

fgt

��G

fgt

k�W

j�

k�W

��G

s�W

Using that the corresponding diagram of left adjoints commute, we see that for all X 2 PSp�gl and
G-representations V and W with W faithful, the diagram

(11.4.1)

SG;�.S
0; X.W // SG;�.S

V ; X.V ˚W //

PSpG.FW S
0; U

gl
G .X// PSpG.FV˚W S

V ; U
gl
G .X//

PSpfgl.FG;W S
0; j �X/ PSpfgl.FG;V˚W S

V ; j �X/

PSp�gl.F
�
G;W S

0; X/ PSp�gl.F
�
G;V˚W S

V ; X/

z�V;W

��

��V;W

��

��G;V;W

��

.�
�
G;V;W /

�

commutes, so all the various �-maps correspond to each other under the various adjunctions.
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Given any compact Lie group G and any faithful G-representation W, we define a functor

U
fgl
G;W W PSpfgl! PSpG

as the composite

PSpfgl
jŠ
�! PSp�gl

U
gl
G
�! PSpG

shW
�! PSpG ;

where shW denotes the shift W -functor, given by cotensoring by FW S0.

Theorem 11.5 An object X 2 PSpfgl is in Spgl if and only if , for every compact Lie group G and
faithful G-representation W, the object U fgl

G;W .X/ is in SpG . Moreover , the functors fU fgl
G;W g.G;W / are

also jointly conservative.

Proof By Remark 11.3, we know that X 2 PSpfgl is in Spgl if and only if jŠX 2 PSp�gl is local with
respect to the set of maps f��G;V;W g, where G runs over all compact Lie groups and V and W are G-
representations withW faithful. The commutative diagram (11.4.1), together with the fact that j �jŠX'X ,
shows that this is equivalent to asking that for all compact Lie groups G, the object U gl

G .jŠX/ is local
with respect to f�G;V;W g, where V and W are as above.

We next note that by definition, given an arbitrary G prespectrum Y, the map

��U;V W PSpG.FV S
0; shW Y /! PSpG.FU˚V S

U ; shW Y /

is equivalent to ��U;V˚W . Also recall that given a faithful G-representation W, W ˚U is also faithful for
any G-representation U .

These two observations combine to imply that U gl
G .jŠX/ is local with respect to f�V;W g for G, V and

W as above if and only if for all compact Lie groups G and faithful G-representations W, the object
shWU

gl
G jŠ.X/D U

fgl
G;WX is local with respect to f�V;U g for arbitrary G-representations V and U.

On the other hand by Proposition 7.30, U fgl
G;WX is in SpG if and only if for all closed subgroups

H � G, the H -prespectrum resGHU
fgl
G;WX D U

fgl
H;resGHW

X is local with respect to f�V;U g for arbitrary
H -representations V and U , andW a faithfulG-representation. Varying these statements over all compact
Lie groups, we find that U fgl

G;WX is in SpG for all compact Lie groups G and all faithful G-representations
W if and only if for allG and all faithfulG-representationsW, theG-prespectrumU

fgl
G;WX is f�V;U g-local

for arbitrary G-representation V and U . This is identical to the condition of the previous paragraph, and
so we obtain the first claim in the theorem. For the second statement, note that after forgetting module
structures, the functor U fgl

G;W is given by restriction along the functor

shW WORG!ORfgl; .G=H;U / 7! .H;U ˚ resGH .W //:

The claim then follows from the fact that the functors fshW g.G;W /, where G runs over all compact Lie
groups and W all faithful G-representations, are jointly essentially surjective.
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The following is the key fact about the right adjoint j �.

Proposition 11.6 Let G be a compact Lie group and let W be a faithful G-representation. Then the
following square commutes:

PSpG PSp�gl

PSpG PSpfgl

shW

U
gl
G

j�

U
fgl
G;W

Proof The unit of the adjunction jŠ a j � provides a natural transformation

U
fgl
G;W j

�
D shWU

gl
G jŠj

�
! shWU

gl
G ;

which we claim is a natural equivalence. This follows from the fact that on underlying objects shWU
gl
G is

given by restriction along the functor

ORG!ORgl; .H; V / 7! .H; resGH .W /˚V /:

This only sees levels in the image of ORfgl, where the unit is an equivalence.

Corollary 11.7 Suppose X 2 Sp�gl. Then j �.X/ 2 Spgl. In particular we obtain a functor

j � W Sp�gl! Spgl;

which admits a left adjoint given by Lgl ı jŠ.

Proof Because X is in Sp�gl, we obtain that U gl
G .X/ is a G-spectrum by Proposition 10.10. Note that

the functor shW preserves G-spectra for every G-representation W. We deduce using Proposition 11.6
that U fgl

G;W j
�.X/ is a G-spectrum for every G and W faithful. Therefore by Theorem 11.5 j �.X/ is

contained in Spgl.

Proposition 11.8 The map j � W Sp�gl! Spgl is conservative.

Proof Let f WX!Y be a map in PSp�gl such that j �.f / is an equivalence. This implies that f.G;W / is an
equivalence of spaces for every faithful G-representation W. We finish the argument by proving that if f
is in fact a map between objects in Sp�gl, then f.G;V / is an equivalence for every G-representation V if and
only if it is an equivalence for faithful G-representations. The forward direction is trivial. For the converse,
note that because PSp�gl is a partially lax limit, the collection of functors fU gl

G gG is jointly conservative.
Now our assumptions tell us that U gl

G .f /.G;W / is an equivalence for every faithful G-representation W.
But because f is in fact in Sp�gl, both the source and target of U gl

G .f / are G-spectra. Therefore our claim
reduces to the fact that a map between G-spectra, which is an equivalence on faithful levels, is already
an equivalence. The collection of faithful representations is cofinal in all representations, and so this is
clear.
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Theorem 11.9 The unit of the adjunction

Lgl ı jŠ W Spgl� Sp�gl Wj
�

is an equivalence.

Proof Consider X 2 Spgl. Let �X WX! j �LgljŠX be the unit of the adjunction Lgl ıjŠ� j � evaluated
at X . This adjunction is given as a composite of two adjunctions and so the unit is given by the composite

X
�0
�! j �jŠX

j�./
���! j �LgljŠX;

where �0 is the unit of the adjunction jŠ a j � and  exhibits LgljŠX as the localization of jŠX in PSp�gl.
However, recall that jŠ is fully faithful and therefore the first of the two maps is an equivalence. So it
suffices to prove that the second map is also an equivalence.

The functors U fgl
G;W are jointly conservative, and so we will prove that U fgl

G;W .j
�.// is an equivalence

for every .G;W / where W is faithful. Applying Proposition 11.6 we conclude that U fgl
G;W .j

�.// is
equivalent to

shWU gl
G ./ W shWU gl

G jŠX ! shWU gl
GLgljŠX:

By Proposition 10.10, U gl
G ./ is equivalent to

G W U
gl
G jŠX ! LGU

gl
G jŠX;

where G exhibits LGU
gl
G jŠX as the localization of U gl

G jŠX in PSpG . Spectrification of G-prespectra
commutes with shW, and therefore shW .G/ gives the localization of U fgl

G;W .X/D shWU gl
G jŠX in PSpG .

Recall that X 2 Spgl, and so U fgl
G;W .X/ is a G-�-spectrum by Theorem 11.5. Therefore shW .G/ is an

equivalence, concluding the proof.

Theorem 11.10 There is a symmetric monoidal equivalence j � W Sp�gl WD laxlim�G SpG! Spgl.

Proof We have proven that jŠ a j � is an adjunction in which the right adjoint is conservative, and the
unit is a natural equivalence. Therefore the functors are an adjoint equivalence. Moreover jŠ is strong
monoidal, which implies that j �, as its inverse, is also strong monoidal.

12 Proper equivariant spectra as a limit

The goal of this section is to exhibit the1-category of genuine proper G spectra SpG as a limit over the
proper orbit category O

op
G;pr of a diagram

Sp.�/ WO
op
G;pr! Cat1; G=H ! SpH :

In contrast to the case of global spectra, once the diagram has been constructed, the identification of the
limit will be almost immediate. In fact even the general strategy for constructing the diagram is essentially
identical. For this reason we will be brief and refer to Section 9 for the relevant details.
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Recall from Lemma 9.9 that the1-operad OR˝G fits into a pullback

OR˝G OR˝gl

.O
op
G;pr/

q .Gloop/q

�G

�G �gl

�qG

Because OR˝gl ! .Gloop/q is a cocartesian fibration which by definition classifies the functor Rep.�/,
we immediately obtain:

Proposition 12.1 For every Lie group G, the forgetful functor �G WOR˝G! .O
op
G;pr/

q is a cocartesian
fibration which classifies the functor

O
op
G;pr! Cat˝1; G=H 7! Rep.H/:

Definition 12.2 We define eOR˝G via the following pullback of operads:

eOR˝G OR˝G

.Ar.OG;pr/
op/q .O

op
G;pr/

q

�Ar

sop

We consider eOR˝G as living over OG;pr via the composite

� WeOR˝G
�Ar
�! .Ar.OG;pr/

op/q
top
�! .O

op
G;pr/

q:

Just as in Lemma 9.11, we can show that eOR˝G is a pro-.OG/
q-monoidal category.

Proposition 12.3 The functor � WeORG! .O
op
G;pr/, given by restricting � to underlying categories , is

a cartesian fibration. Furthermore , an edge .f; g/ 2eORG is cartesian if and only if sop.f / and g are
equivalences.

Proof The proof is analogous to Lemma 9.13.

Proposition 12.4 eOR˝G �.Oop
G /
q fG=H g 'OR˝H .

Proof The pullback P DeOR˝G �.Oop
G /
q fG=H g fits into the diagram

P eORG OR˝G OR˝gl

.O
op
H /
q .Ar.OG;pr/

op/q .O
op
G;pr/

q .Gloop/q

fG=H g .O
op
G;pr/

q
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in which every square is a pullback. One can show by direct computation that the middle composite
.O

op
H /
q! .Gloop/q is equivalent to �qH . Therefore the result follows from Lemma 9.9.

Definition 12.5 Consider the Day convolution operad

FunOG;pr.
eOR˝G ;S

^
� � .O

op
G;pr/

q/Day:

Just as in Section 9, this is an .Oop
G;pr/

q-monoidal category. We define

OR�-S� WO
op
G;pr! Cat˝1

to be the functor associated to it by the equivalence of Proposition 5.5. By Proposition 12.4, the value of
OR�-S� at G=H is equivalent to ORH -S�.

Proposition 12.6 The projection map eOR˝G!OR˝G induces a fully faithful symmetric monoidal functor
ORG-S�!eORG-S�, given by restriction. A functor F WeORG! S� is in its essential image if and only
if F sends �-cartesian edges to equivalences.

Proof The argument is identical to that of Lemma 9.14.

Lemma 12.7 There is a symmetric monoidal equivalence

lim
O

op
G;pr

OR�-S� 'ORG-S�:

Proof The calculation at the beginning of the proof of Lemma 9.15 shows that the lax limit of the
diagram OR�-S� is equivalent to the symmetric monoidal category eORG-S� To compute the actual limit,
we can once again argue on underlying categories by appealing to Remark 5.2. Note that by Remark 3.11,
the underlying category of eORG-S� is equivalent to Fun.eORG ;S�/. The analysis of the second half
of the proof of Lemma 9.15 implies that the limit is equivalent to the full subcategory spanned by the
functors which send �-cartesian edges to equivalences. By Proposition 12.6 this subcategory is equivalent
to Fun.ORG ;S�/.

Recall from Definition 7.18 that ORG-spaces admit an algebra object SG , whose restriction to ORH -
spaces for H a compact subgroup of G is equivalent to SH .

Corollary 12.8 There exists a functor PSp
�
WO

op
G;pr! Cat˝1, and one calculates

lim
O

op
G;pr

PSp
�
'ModSG .ORG-S/:

Proof Once again, PSp
�

is defined as ModS�.OR�-S�/, using Theorem 5.10. An argument as in
Proposition 9.16 allows us to calculate the limit.

So far we have constructed and computed the limit of the diagram PSp
�
WO

op
G;pr! Cat˝1. Given a map

˛ WH ,!K �G in OG;pr, the induced map PSpK ! PSpH is by construction equivalent to the global
functoriality constructed in Section 9 evaluated at ˛. Therefore the results there imply that PSp˛ preserves
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spectrum objects, and so we obtain a diagram Sp
�
WO

op
G;pr! Cat˝1. Furthermore, Corollary 10.6 implies

that Sp˛ W SpK ! SpH agrees with the standard restriction functor between equivariant spectra. To
calculate the limit of Sp

�
, we apply Lemma 4.13 to conclude:

Corollary 12.9 The limit limO
op
G;pr

Sp
�

is a Bousfield localization of ModSG .ORG-S�/ at the objects X
whose restriction to ModSH .ORH -S�/ is an H -spectrum for every compact subgroup H of G.

Recall from Section 8 that the category of genuine proper G-spectra is also a Bousfield localization of
ModSG .ORG-S�/. Therefore it remains to show that the two subcategories agree.

Proposition 12.10 An object X 2ModSG .ORG-S�/ is a G-spectrum if and only if for every compact
subgroup H �G, the restriction of X to ModSH .ORH -S�/ is a H -spectrum.

Proof Recall from Proposition 7.30 that an object X 2 PSpG is a G-spectrum if and only if for all
compact subgroups H � G, the object resGHX is local with respect to �H;V;W . Now by definition,
resGHX is a G-spectrum if and only if resHK resGHX is local with respect to �K;V;W . However, because
resHK resGH D resGK , we conclude that the two conditions of the theorem agree.

Thus we can conclude the main theorem of this section:

Theorem 12.11 The category of proper G-spectra is equivalent to the limit of the diagram

Sp
�
WO

op
G;pr! Cat˝1:

In symbols ,
SpG ' lim

O
op
G;pr

Sp
�
:

Appendix Tensor product of modules in an 1-category

The goal of this section is to provide a proof of Theorem 12.21 below, which will be useful when studying
lax limits of 1-categories of modules. This section uses some technical results about the theory of
1-operads as developed in [Lurie 2017] and so it should be skipped on a first reading.

Definition 12.12 We define CM˝ to be the1-operad corresponding to the symmetric multicategory
with two objects a and m with

Mul.fxig; a/D
�
� if for all i; xi D a;
¿ otherwise,

Mul.fxig; m/D
�
� if jfi j xiDmgj D 1;
¿ otherwise.

We know by [Glasman 2014, Proposition 7] or [Hinich 2015, Lemma B.1.1] that for every1-operad C˝

there is a natural equivalence of1-categories

ModFin�.C/' AlgCM˝.C/:
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Our goal is to give a similar description of the tensor product of modules over a commutative algebra, that
is, of the family of1-operads Mod.C/˝. In order to do so we will introduce a variant of CM˝ which
parametrizes finite sets of modules.

Construction 12.13 Let eCM˝ be the category whose objects are triples .hni; hmi; fSigiD1;:::;n/, where
hni; hmi 2 Fin� and fSig is a family of pairwise disjoint subsets of hmi. A map

.hni; hmi; fSig/! .hn0i; hm0i; fS 0ig/

is a pair of maps f W hni ! hn0i and g W hmi ! hm0i in Fin� such that

� for every i 2 hniı, we have g.Si /� S 0f .i/[f�g, where S 0� D¿,

� for every i 2 f �1hn0iı and every s0 2 S 0
f .i/

, there is exactly one s 2 Si such that g.s/D s0.

Lemma 12.14 The projection eCM˝ ! Fin� � Fin� that forgets the subsets fSig is a Fin�-family of
1-operads in the sense of [Lurie 2017, Definition 2.3.2.10], with inert arrows exactly those arrows that
are sent to an equivalence by the first projection and to an inert arrow by the second projection.

Proof The inert arrows are the arrows

.idhni; f / W .hni; hmi; fSig/! .hni; hm0i; ff .Si /\ hm
0
i
ı
g/;

where f W hmi ! hm0i is an inert arrow in Fin�. It is easy to check that they satisfy all necessary
properties.

Notation 12.15 For every1-category X ! Fin� with a functor to Fin�, we will write eCM˝X for the
X -family of1-operads X �Fin�

eCM˝, where we pull back along the composite

eCM˝! Fin� �Fin�
pr1
�! Fin�:

Note that eCM˝
h1i

is equivalent to CM˝. Intuitively, the fiber eCM˝
hni

is the1-operad controlling pairs
.A; fMig/, where A is a commutative algebra and fMig is an n-tuple of A-modules.

We will write an for the object .hni; h1i; f¿g/ and mj;n for the object .hni; h1i; fSig/, where Si D¿ for
i ¤ j and Sj D f1g. It’s easy to see these are all the objects of the underlying category of the generalized
operad

eCM˝! Fin� �Fin�
pr2
�! Fin�:

First we will prove a generalization of [Glasman 2014, Proposition 7] that shows how eCM˝ controls the
tensor product of modules over commutative algebras.

Proposition 12.16 LetX 2 .Cat1/=Fin� be an1-category over Fin�, and let C˝2Op1 be an1-operad.
Then there is a natural equivalence

AlgfCMX
.C˝/' Fun=Fin�.X;ModFin�.C/˝/:
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Proof Let K � Ar.Fin�/ be the full subcategory of semi-inert arrows [Lurie 2017, Notation 3.3.2.1].
Consider the pullback

X �Fin� K X

K Fin�

Fin�

s

t

We will say that an arrow .f; g/ in X �Fin� K is inert if f is an equivalence and t .g/ is an inert edge
of Fin�(this is different from the convention in [Lurie 2017], but it is more suited to the current proof).
Then recall that by [Lurie 2017, Construction 3.3.3.1] the1-category Mod.C/˝ is defined so that there
is a natural fully faithful inclusion

Fun=Fin�.X;ModFin�.C/˝/! Fun=Fin�.X �Fin� K;C˝/;

where X �Fin� K lives over Fin� by the vertical composite in the diagram above, with essential image
those functors sending inert arrows of X �Fin� K to inert arrows.

There is a functor K!eCM sending a semi-inert arrow Œs W hni ! hmi� to .hni; hmi; ffs.i/g \ hmiıgi /.
It identifies K with the full subcategory of eCM spanned by those triples .hni; hmi; fSig/ where jSi j � 1
for every i 2 hniı. Moreover, an arrow in X �Fin� K is inert if and only if its image in eCMX is inert.
Therefore restricting along this inclusion induces a natural transformation

AlgfCMX
.C˝/! Fun=Fin�.X;ModFin�.C/˝/:

Our goal now is to prove that this is an equivalence of1-categories. This follows from [Lurie 2009,
Proposition 4.3.2.15] together with the following two statements, where we write p W C˝! Fin� for the
structure map of C˝:

(1) Every map F W X �Fin� K! C˝ over Fin� that sends inert arrows to inert arrows admits a right
p-Kan extension to eCMX that sends inert arrows to inert arrows.

(2) A functor F WeCMX ! C˝ which sends inert arrows to inert arrows is the right p-Kan extension of
its restriction to X �Fin� K.

Let .x; hmi; fSig/ be an object of eCMX and write S D
`
i Si � hmi

ı. Let us consider the functor

P.S/op
!eCMX

sending a subset A � S to .x; hmi=.S XA/; fA\ Sig/ and all arrows to inert arrows. This induces a
functor

P.S/op
! .eCMX /.x;hmi;fSi g/=;

which sends A to the inert morphism collapsing all elements of S not in A to the basepoint. If we let
Q.S/�P.S/ be the subposet of those elements A such that jA\Si j � 1 for every i , we obtain a functor

Q.S/op
! .X �Fin� K/.x;hmi;fSi g/=
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to the comma category, which has a right adjoint given by

Œ.f; g/ W .x; hmi; fSig/! .x0; hm0i; fS 0ig/� 7! g�1
�a
i

S 0i

�
\S;

and therefore is coinitial. Thus, by [Lurie 2009, Proposition 4.3.1.7 and Lemma 4.3.2.13] it suffices to
show the following two conditions:

(1) Let F WX �Fin� K! C˝ send inert arrows to inert arrows. Then the composition

Q.S/op
!X �Fin� K! C˝

has a p-limit diagram sending all edges to inert edges.

(2) Let F WeCMX ! C˝ send inert arrows to inert arrows. Then the composition

.Q.S/op/G! P.S/op
!eCMX ! C˝

is a p-limit diagram, where the first functor sends the cone point to S � S .

Both of them are now an immediate consequence of the characterization of p-limit diagrams in terms of
mapping spaces [Lurie 2009, Remark 4.3.1.2] and the definition of1-operads.

Now we will obtain a description of inert and cocartesian arrows of ModFin�.C/˝ in terms of the model
of Proposition 12.16.

Construction 12.17 (bar construction) There is a functor

B W .�op/F!eCM˝

sending Œn� to .h2i;Hom�.Œn�; Œ1�/C; ffr0g; fr1gg/, where ri is the constant arrow at i , and sending the
point at1 to m1;1 D .h1i; h1i; f1g/. Concretely this sends Œn� to the object .m2;1; a; : : : ; a;m2;2/ in the
fiber over hnC 2i of the1-operad eCM˝

h2i
(and so it encodes the bar construction in eCM˝

h2i
).

Lemma 12.18 Let e W�1!ModFin�.C/˝ be an arrow , and let e0 W hni! hn0i be the image of e in Fin�.
Write

Fe WeCM˝
�1
! C˝

for the functor corresponding to e via the isomorphism of Proposition 12.16.

(1) The arrow e is inert if and only if e0 is inert and Fe sends the arrows an! an0 and mi;n!me0i;n0

to cocartesian arrows.

(2) Suppose that C˝ is a symmetric monoidal1-category compatible with geometric realizations , and
that e0 is the unique active arrow from h2i to h1i. Then e is cocartesian if and only if Fe sends the
arrow a2! a1 to a cocartesian arrow and the composition

.�op/F
B
�!eCM˝

�1
Fe
�! C˝

is an operadic colimit diagram.

Proof This is immediate from the proofs of [Lurie 2017, Proposition 3.3.3.10 and Theorem 4.5.2.1] and
the identification of Proposition 12.16.
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Construction 12.19 There is a square of1-categories

Fin� �Fin� Fin� �Fin�

Fin� �CM˝ eCM˝

.1;^/

j1 j2

�

where

� the top horizontal arrow sends .hni; hmi/ to .hni; hni ^ hmi/,

� the arrow j1 sends .hni; hmi/ to .hni; .hmi;¿// 2 Fin� �CM˝,

� the arrow j2 sends .hni; hmi/ to .hni; hmi; f¿g/ 2eCM˝,

� the arrow � sends .hni; .hmi; S// 2 Fin� �CM˝ to .hni; hni ^ hmi; ffig �Sg/.

Since each of these functors sends inert arrows to inert arrows, it induces for every X 2 .Cat1/=Fin� a
natural square

Fun=Fin�.X;ModFin�.C/˝/' AlgfCM˝X
.C˝/ Fun=Fin�.X;AlgCM˝.C/

˝/

Fun=Fin�.X;Fin� �CAlg.C//' AlgX�Fin�.C
˝/ Fun=Fin�.X;CAlg.C/˝/

and therefore a natural square of1-categories over Fin�

(12.19.1)

ModFin�.C/˝ AlgCM˝.C/
˝

Fin� �CAlg.C/ CAlg.C/˝

Our goal now is to show that the square (12.19.1) is cartesian. To do so we will show that the right
vertical arrow is a cocartesian fibration in favorable situations.

Lemma 12.20 Let I be an 1-category and C˝! Iq be an Iq-monoidal1-category compatible with
geometric realizations. Then the map of 1-operads

pI W AlgCM˝=Iq.C/
˝
! AlgFin�=Iq.C/

˝

is a cocartesian fibration.

Proof By [Lurie 2017, Proposition 3.2.4.3.(3)] this is a map of cocartesian fibrations over Iq. Moreover,
the fiber over fxj gj2J 2 Iq is given byY

j2J

Mod.Cxj /!
Y
j2J

CAlg.Cxj /;

and therefore it is a cocartesian fibration by [Lurie 2017, Theorem 4.5.3.1]. Therefore by [Lurie 2009,
Proposition 2.4.2.11] pI is a locally cocartesian fibration with locally cocartesian arrows those given by
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the composition of a fiberwise cocartesian arrow and a cocartesian arrow over Iq. In order to prove it is
a cocartesian fibration it suffices to show then that the composition of two locally cocartesian arrow is
locally cartesian, that is, that fiberwise cocartesian arrows are stable under pushforward along arrows
in Iq. Unwrapping the various cases it suffices to show that for every x; y 2 I and arrow f W x! y, the
squares

Mod.Cx/�Mod.Cx/ Mod.Cx/

CAlg.Cx/�CAlg.Cx/ CAlg.Cx/

˝

˝

and

Mod.Cx/ Mod.Cy/

CAlg.Cx/ CAlg.Cy/

f�

f�

are maps of cocartesian fibrations. That is, that for every two maps of commutative algebras A! A0,
B! B 0, A-module M and B-module N , the canonical maps

.M ˝N/˝A˝B .A
0
˝B 0/' .M ˝AA

0/˝ .N ˝B B
0/ and f�.M ˝AB/' f�M f̋�A f�B

are equivalences. This is easily seen to be true since f� is symmetric monoidal and commutes with
geometric realization, and the tensor product commutes with geometric realization in each variable.

Finally we arrive at the main result of this section.

Theorem 12.21 The square (12.19.1) is cartesian for every 1-operad C˝.

Proof Let us do first the case where C˝ is a symmetric monoidal1-category compatible with geometric
realizations. Then both vertical arrows are cocartesian fibrations by [Lurie 2017, Theorem 4.5.3.1]
and Lemma 12.20. Moreover, the description of cocartesian arrows in Lemma 12.18 and [Lurie 2017,
Proposition 3.2.4.3.(4)] shows that

ModFin�.C/˝! .Fin� �CAlg.C//�CAlg.C/˝ AlgCM˝.C/
˝

is a map of cocartesian fibrations over Fin�. So it suffices to show that it induces an equivalence on fibers.
Since it is a map of generalized operads, it suffices to show it induces an equivalence on the fibers over
h0i and h1i. But this is immediate by Proposition 12.16.

Now let us show the result for small 1-operads C. Indeed, it is clear by inspection that if the
square (12.19.1) is cartesian for an 1-operad, then it is cartesian for any full suboperad. But every
small 1-operad embeds as a full suboperad of a symmetric monoidal 1-category compatible with
small colimits. Indeed, this is just the composition C˝! Env C˝!P.Env C/˝, where Env C˝ is the
symmetric monoidal envelope of C˝, and the second arrow is the Yoneda embedding.

Finally, since every1-operad is a sufficiently filtered union of small suboperads, the thesis is true for
any1-operad.
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An h-principle for complements of discriminants

ALEXIS AUMONIER

We compare spaces of nonsingular algebraic sections of ample vector bundles to spaces of continuous
sections of jet bundles. Under some conditions, we provide an isomorphism in homology in a range of
degrees growing with the jet ampleness. As an application, when L is a very ample line bundle on a
smooth projective complex variety, we prove that the rational cohomology of the space of nonsingular
algebraic sections of L˝d stabilises as d !1 and compute the stable cohomology. We also prove that
the integral homology does not stabilise, using tools from stable homotopy theory.

55R80; 14J10, 14J70

1 Introduction

Our purpose here is to study spaces of nonsingular holomorphic sections of vector bundles by comparing
them to spaces of continuous sections of appropriate jet bundles. The latter are particularly amenable to
computations using tools from homotopy theory.

Given a holomorphic line bundle L on a smooth projective complex variety X , one may consider the
vector space of all holomorphic global sections �hol.X IL/. To each section s 2 �hol.X IL/ is associated a
geometric object, its vanishing set

V.s/ WD fx 2X j s.x/D 0g �X;

and s is called nonsingular whenever its derivative ds 2 �hol.�
1
X ˝L/ does not vanish on V.s/. This

implies in particular that V.s/ is a smooth subvariety of X . It has been known for a century now that
when L is a very ample line bundle, the Bertini theorem implies that a generic section is nonsingular.
There is thus a Zariski open subset

�hol;ns.X IL/� �hol.X IL/

consisting of those nonsingular sections, which geometrically can be interpreted as a moduli space of
equations of certain smooth hypersurfaces in X . A prime example is the space �hol;ns.CPnIO.d//
(sometimes modded out by C� or GLnC1.C/) of smooth hypersurfaces of degree d in the complex
projective space CPn.

The cohomology ring of �hol;ns.X IL/, sometimes known as the ring of characteristic classes, is therefore
an important object in the study of hypersurface bundles. We give a way of computing it in a range.
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Before revealing our main theorem, we will extend the classical situation above in two directions. To
begin, instead of limiting ourselves to line bundles, we will look at sections of bundles of possibly higher
rank. Furthermore, we observe that being nonsingular imposes conditions on the value and derivative of a
global section. We will generalise this situation by looking at a broader class of conditions on higher-order
derivatives, thus encompassing various other flavours of moduli spaces: hypersurfaces with simple nodes,
smooth complete intersections, etc.

Having said this, let X be a smooth projective complex variety and E be a holomorphic vector bundle
on X . One can construct a new holomorphic vector bundle J rE , called the r th jet bundle of E , together
with a map on global sections j r W �hol.E/! �hol.J

rE/. Intuitively, for a section s of E , the associated
section j r.s/ of the jet bundle records all derivatives of s up to order r . For T� J rE a subset which we
think of as “forbidden derivatives”, we say that a section s of E is nonsingular if j r.s/.x/ … T for all
x 2X . For instance, when E is a line bundle and T� J 1E is the zero section, we recover the classical
notion of nonsingular sections discussed at the beginning of this article.

Theorem 1.1 (see Theorem 2.13 for full generality) Let X be a smooth complex projective variety and
E be a holomorphic vector bundle on it. Let r � 0 be an integer and T� J rE be a closed subvariety of
the r th jet bundle of E of codimension at least dimC X C 1. We write

�hol;ns.E/ WD fs 2 �hol.E/ j 8x 2X; j r.s/.x/ … Tg

for the space of nonsingular holomorphic sections of E . If E is d -jet ample , the composition

�hol;ns.E/
j r

�! �hol.J
rE �T/ ,! �C0.J rE �T/

induces an isomorphism in integral homology in the range of degrees �< .d � r/=.r C 1/.

The theorem above can be strengthened, and in Section 2 we introduce a more general class of allowed
subsets T� J rE of the jet bundle as well as give a sharper range of degrees. We also take advantage of
that section to give the definition of jet ampleness and jet bundles in algebraic geometry.

Remark 1.2 By the Whitney approximation theorem, the spaces of continuous (C0) sections and smooth
(C1) sections of a fibre bundle are homotopy equivalent. Thus, in our main theorem, instead of first taking
the jet and then including inside the continuous sections, we could have tried to argue in the reverse order:

�hol;ns.E/ �hol.J
rE �T/

�C1;ns.E/ �C1.J
rE �T/

We caution the reader about one subtle point: J rE is the holomorphic jet bundle of E , which does not
agree with the smooth jet bundle of the underlying real vector bundle of E . In particular �C1;ns.E/ is
defined analogously to its holomorphic counterpart by imposing conditions on the complex derivatives of
smooth sections. It seems likely that the map �C1;ns.E/! �C1.J

rE �T/ can be studied using the same
arguments as given by Vassiliev in the real case [29], but we shall not comment further on that matter.
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1.1 Motivations and applications

Our main theorem can be seen as a holomorphic analogue of the work of Vassiliev on spaces of maps with
mild singularities [29, Chapter III]. In another current of thought, we should also mention the seminal
work of Segal [25] on spaces of rational maps, where the idea was born that holomorphic maps should
approximate continuous ones, and that this approximation becomes better with the growth of ampleness.

We were also very much influenced by the work of Vakil and Wood on stability results in the Grothendieck
ring of varieties [28]. There they conjectured that for a very ample line bundle L on a smooth projective
complex variety, the space of nonsingular sections of L˝d should exhibit cohomological stability. In the
special case of the projective space, Tommasi obtained the following result:

Theorem 1.3 (Tommasi [27]) Let d; n � 1 be integers. Let Ud;n be the space of nonsingular holo-
morphic sections of O.d/ on CPn. The rational cohomology of Ud;n is isomorphic to the rational
cohomology of the space GLnC1.C/ in degrees �< 1

2
.d C 1/.

She furthermore has investigated an extension of this result to arbitrary smooth projective varieties
(personal communication, 2021). Using different techniques, O Banerjee also confirmed the conjecture of
Vakil and Wood in the case of smooth projective curves [2].

The present work was strongly motivated by the result of Tommasi and the wish to understand the stable
cohomology from a more homotopy-theoretic point of view. At the time of writing, let us in particular
mention the following result:

Theorem 1.4 (Tommasi, personal communication, 2021) Let X be a smooth projective complex variety
of dimension n and L be a very ample line bundle on X . Let d � 1 be an integer and Ud be the space
of nonsingular holomorphic sections of L˝d . There is a Vassiliev spectral sequence converging to the
homology of Ud . Working with rational coefficients , this spectral sequence degenerates on the E2-page
in the stable range if and only if the stable cohomology is a free commutative graded algebra on the
cohomology of X shifted by one degree.

Assuming this degeneration , the rational cohomology of Ud in degrees �<
�
1
2
.d C 1/

˘
is given by the

free commutative graded algebra ƒ.H��1.X IQ// on the cohomology of X shifted by one degree.

In the last section (Section 8) we apply our main theorem to spaces of smooth hypersurfaces to prove a
homological stability result with rational coefficients.

Theorem 1.5 (see Theorem 8.2) Let X be a smooth projective complex variety and L be a very ample
line bundle on X . The rational cohomology ring of the space �hol;ns.Ld / of nonsingular sections (in the
classical sense) of the d th tensor power of L is isomorphic to ƒ.H��1.X IQ// in degrees �< 1

2
.d � 1/.

Geometry & Topology, Volume 29 (2025)
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Firstly, this agrees with the work in progress of Tommasi. In fact, one can use our main theorem to
show the degeneration of the Vassiliev spectral sequence she constructed. Secondly, in contrast to many
other instances of homological stability, note that there are no natural stabilisation maps from spaces of
nonsingular sections of Ld to those of LdC1. Thus we only mean that the cohomology rings abstractly
stabilise, and the answer only depends on X and not on L. After the apparition of the first version of
the present article, and using different tools, Das and Howe proved a version of the above theorem for
hypersurfaces in algebraic varieties over any algebraically closed field [11].

On the other hand, we find it quite interesting that there is in general no integral homological stability. In
fact, we prove the following result about the moduli space of smooth hypersurfaces of degree d in CP2:

Proposition 8.10 Let d � 6 be an integer. We have

H2.�hol;ns.CP2;O.d//IZ=2/Š
�

Z=2 d � 0 mod 2;
0 d � 1 mod 2:

Besides the phenomenon this result illustrates, its proof showcases the potential of homotopical methods
allowed by our main theorem. Indeed, the computation comes down to simple manipulations of Steenrod
squares where the parity of d is reflected in the Chern class of O.d/. In contrast, a more classical
approach following the work of Vassiliev [30] would require knowledge of nontrivial differentials in
spectral sequences that quickly grow out of hand when d increases.

For good measure, we also study the p-torsion in the homology of �hol;ns.Ld / and show that it stabilises
when p � dimC X C 2 and d !1; see Proposition 8.15.

Our results are also inspired by analogies with theorems in arithmetic statistics, such as Poonen’s Bertini
theorem over finite fields [24], and in motivic statistics in the Grothendieck ring of varieties, as in [28]
or [6]. The recent results of Bilu and Howe particularly influenced the current formulation of our main
theorem and we would like to recommend the introduction of their paper [6] to the reader interested in an
overview of these analogies. Finally, we also wish to mention that I Banerjee recently announced a result
relating nonsingular sections of a line bundle on an algebraic curve and smooth sections of the same line
bundle [1].
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2 Statement of the main theorem

We begin with a few preliminary definitions before stating precisely our main theorem. Throughout
this article, X is a smooth projective complex variety and E is a holomorphic vector bundle on X . We
denote by � the space of sections of a vector bundle, and decorate it with subscripts “hol” or “C0” to
indicate holomorphic or continuous sections, respectively. We will make extensive use of cohomology
with compact support, which we denote by H�c , and refer to [8] for its definition and standard properties.
All homology and cohomology groups will be taken with integral coefficients, unless otherwise specified.
We recall the following definition of jet ampleness:

Definition 2.1 (compare [4]) Let k � 0 be an integer. Let x1; : : : ; xt be t distinct points in X and
.k1; : : : ; kt / be a t-tuple of positive integers such that

P
i ki D kC 1. Denote by O the structure sheaf

of X and by mi the maximal ideal sheaf corresponding to xi . We regard the tensor product
Nt
iD1m

ki

i

as a subsheaf of O under the multiplication map
Nt
iD1m

ki

i ! O. We say that E is k-jet ample if the
evaluation map

�hol.E/! �hol

�
E ˝

�
O
ı tO
iD1

mki

i

��
Š

tM
iD1

�hol.E ˝ .O=mki

i //

is surjective for any x1; : : : ; xt and k1; : : : ; kt as above.

Example 2.2 A vector bundle E is 0-jet ample if and only if it is spanned by its global sections. In the
case of a line bundle, 1-jet ampleness corresponds to the usual notion of very ampleness. On a curve,
a line bundle is k-jet ample whenever it is k-very ample. However, on higher-dimensional varieties, a
k-jet ample line bundle is also k-very ample but the converse is not true in general. Finally, and most
importantly for us, if A and B are holomorphic vector bundles which are a- and b-jet ample, respectively,
then their tensor product A˝B is .aCb/-jet ample; see [4, Proposition 2.3].

To ease the readability of various statements we will use the following notation:

Definition 2.3 For a holomorphic vector bundle E on X and an integer r 2N, we define N.E ; r/� 0
to be the largest integer N such that E is ..NC1/.rC1/�1/-jet ample. If no such integer exists, we set
N.E ; r/D�1, although we do not consider such cases here.

Let us also recall the construction of the jet bundle from [14, IV.16.7], where it is called the sheaf of
principal parts. The diagonal morphism� WX!X�X gives a surjection of sheaves�] W��OX�X!OX .
Denoting by I the kernel, OX Š��OX�X=I. For an integer r �0, we define the r th jet bundle of OX to be

J rOX WD��OX�X=IrC1:

The projections pi WX�X!X give two OX -algebra structures on J rOX and, unless otherwise specified,
we use the one given by the first projection p1. The other morphism induced by p2 is denoted by

d rX WOX ! J rOX :
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For a holomorphic vector bundle E on X , we define its r th jet bundle to be

(1) J rE WD J rOX ˝OX
E ;

where J rOX is seen as an OX -module via the morphism d rX for the tensor product, and the result is
regarded as an OX -module again via p1. It comes with the morphism

d rX;E WD d
r
X ˝ E W E! J rOX ˝OX

E D J rE :

Taking global sections, we obtain the jet map:

(2) j r D �.d rX;E/ W �hol.E/! �hol.J
rE/:

The most important observation for us is that if x 2X is a point with maximal ideal sheaf m, the fibre
.J rE/jx is naturally identified with the complex vector space Ex=mrC1x Ex . Furthermore, the composition

Ex
.dr

X;E/x
�����! .J rE/x! .J rE/jx D Ex=mrC1x Ex

is the natural quotient map. (Here, and everywhere else, we write Ex for the stalk of the sheaf E and
Ejx D Ex=mxEx for the fibre of the bundle E .) Intuitively, for a holomorphic section s of E , one should
think of the value of j r.s/ at a point x 2 X as the tuple of all derivatives of s at x up to order r . In
particular, the following lemma is a direct consequence of the definitions:

Lemma 2.4 Let E be a holomorphic vector bundle on X and let N.E ; r/ be as in Definition 2.3. Let
.x0; : : : ; xp/ be a tuple of pC 1 distinct points in X . If p �N.E ; r/, the simultaneous evaluation of the
jet map (2) at these points ,

j r.x0;:::;xp/
W �hol.E/! .J rE/jx0

� � � � � .J rE/jxp
; s 7! .j r.s/.x0/; : : : ; j

r.s/.xp//;

is surjective.

We shall now explain what we precisely mean by restricting the behaviour of sections of E . In particular,
we will require certain subsets of the jet bundle to be “semialgebraic”. This is a technical condition chosen
for two reasons: to make the proofs of Section 4 precise, and to prove our main theorem in a good degree
of generality. Our arguments rely on multiple properties of these sets: they admit cell decompositions,
have a well-defined dimension and they behave well under projections and closure. (See Section 4.2 for
their single but crucial use.)1

There is a well-studied concept of real semialgebraic subsets of a Euclidean space. They are subsets
defined by polynomial equations and inequalities.

Definition 2.5 (compare [7]) A semialgebraic subset of Rn is a union of finitely many subsets of the form

fx 2Rn j P.x/D 0; Q1.x/ > 0; : : : ;Ql.x/ > 0g;

where l 2N and P;Q1; : : : ;Ql 2RŒX1; : : : ; Xn�.

1As the referee pertinently pointed out, the semialgebraicity conditions could potentially be rephrased in the language of
o-minimal structures. We have refrained to do so to keep the technicalities to a minimum.

Geometry & Topology, Volume 29 (2025)



An h-principle for complements of discriminants 1447

We adapt the definition to families, ie to subsets of vector bundles, by demanding the standard definition
be satisfied locally in charts. This is well defined because an algebraic variety X has an atlas whose
transition functions are algebraic, and hence respect the semialgebraicity.

Let us be more precise. First, we briefly recall the notion of an algebraic atlas on X . To lighten the
notation, we let n be the complex dimension of X and m be the complex rank of J rE . We denote by
V.�/ the vanishing set of the tuple of polynomials.

The variety X can be covered by Zariski open subsets, each of the form

U Š V.f1; : : : ; fd�n/�Cd

for some integer d � 1 and polynomials f1; : : : ; fd�n. Furthermore, if U and W are Zariski open subsets
of X with ˛ W U Š V.f1; : : : ; fd�n/�Cd and ˇ WW Š V.g1; : : : ; gd 0�n/�Cd 0 , the homeomorphism
on the intersection

˛.W \U/\V.f1; : : : ; fd�n/
Š
�!W \U Š

�! ˇ.U \W /\V.g1; : : : ; gd 0�n/

is given by a rational function whose domain is a subset of Cd and codomain is a subset of Cd 0 . Recall
also that the algebraic vector bundle J rE is equivalently given by the data of trivialising Zariski open
subsets Ui �X (over which J rEjUi

ŠUi�Cm) and transition functions on overlaps Ui\Uj !GLm.C/.
Most importantly for us, the transition functions are regular morphisms.

Definition 2.6 Let n be the complex dimension of X and m be the complex rank of J rE . A subset
T� J rE is real semialgebraic if there exists a cover X D

S
Ui by Zariski open subsets such that the

following conditions hold for each i :

(i) The jet bundle may be trivialised over Ui via a map 'i W J rEjUi

Š
�! Ui �Cm.

(ii) There is a chart �i W Ui
Š
�! V.f i1 ; : : : ; f

i
di�n

/�Cdi for some polynomials f i1 ; : : : ; f
i
di�n

.

(iii) The image in R2.diCm/ of TjUi
via the map

J rEjUi

'i
�! Ui �Cm �i�id

���! V.f i1 ; : : : ; f
i
di�n

/�Cm
�CdiCm ŠR2.diCm/

is a real semialgebraic subset. (Here TjUi
is the restriction of T above Ui .)

We will often drop the adjective “real” as we will never consider any complex analogue. In essence, a
subset T� J rE is semialgebraic in the sense of Definition 2.6 when it is semialgebraic in the usual way
when “read in charts”. As all the change-of-coordinates maps described above are rational functions,
being semialgebraic is independent of the choice of the cover. Indeed, the image of a semialgebraic set
by a rational function is still semialgebraic; see [7, Section 2.2].

A semialgebraic subset has a well-defined dimension (as in [7, Section 2.8]) which can be thought of as
the maximal dimension in a decomposition into cells of the form �0; 1Œd ; see [7, Corollary 2.8.9]. We
therefore get a well-defined dimension for a semialgebraic subset T� J rE by looking at the dimensions
when “reading in charts”:
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Definition 2.7 Let T�J rE be a semialgebraic subset. LetXD
S
Ui be a finite cover as in Definition 2.6

(the finiteness can always be arranged by compactness of X) and write TUi
�R2.diCm/ for the semial-

gebraic sets obtained using (iii). Each of them has a well-defined dimension and we let the dimension
of T be their maximum.

In the following definition, we denote by rkC J
rE the complex rank of J rE .

Definition 2.8 A subset T� J rE is an admissible Taylor condition if it is closed, real semialgebraic and
has dimension at most 2.rkC J

rE � 1/. We will use the notation Tjx WD .J
rE/jx \T for the fibre above

a point x 2X .

Remark 2.9 Although our definition is quite technical and general, the typical admissible Taylor
conditions arise as subvarieties of high-enough codimension. Indeed, any closed subvariety T� J rE of
the jet bundle of complex codimension at least dimC X C 1 defines an admissible Taylor condition.

Motivated by the previous remark, and to help general bookkeeping, we will use the following notation:

Definition 2.10 The (real) excess codimension of an admissible Taylor condition T is the number
e.T/D codimR T� dimRX � 2, where codimR T is the real codimension of T in the jet bundle J rE .

We are now ready to define what it means for a section to be singular with respect to an admissible Taylor
condition T:

Definition 2.11 A holomorphic section s of the vector bundle E is said to be singular if there exists a
point x 2 X such that j r.s/.x/ 2 Tjx . Similarly, a (continuous) section s of the vector bundle J rE is
said to be singular if there exists a point x 2X such that s.x/ 2 Tjx . A section that is not singular is said
to be nonsingular.

Example 2.12 If E is a line bundle, we may take T to be the zero section of J 1E . It is an admissible
Taylor condition, and a singular section is one that vanishes at a point on X where its derivative also
vanishes. In particular, if s is a nonsingular section, its zero set Z.s/ WD fx 2 X j s.x/D 0g � X is a
smooth submanifold.

When talking about spaces of sections � , we will use the subscript “ns” to denote the subspace of
nonsingular sections. The following is our main result:

Theorem 2.13 Let r � 0 and N � 1 be integers. Let E be an ..NC1/.rC1/�1/-jet ample vector bundle
on X and let T� J rE be an admissible Taylor condition. The composition

�hol;ns.E/
j r

�! �hol;ns.J
rE/ ,! �C0;ns.J

rE/

induces an isomorphism in homology

H�.�hol;ns.E/IZ/!H�.�C0;ns.J
rE/IZ/

in the range of degrees �<N.e.T/� 1/C e.T/� 2.
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2.1 Outline

We present here a detailed summary of the arguments exposed in Sections 3–7. We will produce a
sequence of vector spaces

��1! �0! �1! �2! � � � ! �1

where ��1 D �hol.E/, �1 D �C0.J rE/ and �j D �hol.J
rE ˝ Lj / ˝ �hol.Lj / for 0 � j < 1 (see

Section 5). There is a discriminant †1 � �1 inducing discriminants †j � �j by preimage, and such
that �hol;ns.E/D ��1�†�1 and �C0;ns.J

rE/D �1�†1. For n <m<1 one gets a map of long exact
sequences

� � � H i
c .�n�†n/ H i

c .�n/ H i
c .†n/ H iC1

c .�n�†n/ � � �

� � � H iCd
c .�m�†m/ H iCd

c .�m/ H iCd
c .†m/ H iCdC1

c .�m�†m/ � � �

where d D dimR �m � dimR �n. This only relies on a few properties: each �j is a finite-dimensional
vector space, †j is a closed subset satisfying mild point–set conditions and the inverse image of �m is �n.
The five lemma shows that H i

c .†n/!H iCd
c .†m/ needs to be proven to be an isomorphism in a range

for the main theorem to follow. This will be done one step at a time by showing that one gets a map of
spectral sequences associated to resolutions of these discriminant loci, which induces an isomorphism on
the first page in a range. To finish the argument, we invoke the Stone–Weierstrass theorem to prove a
weak homotopy equivalence colimj .�j �†j /' �1�†1.

We construct the resolution of a discriminant locus and its associated spectral sequence in Section 3.
We study in details its first page in Section 4. In Section 5, we construct the �j interpolating between
holomorphic and continuous sections. In Section 6, we construct a morphism of spectral sequences and
use it to compare various spaces of sections. We prove the last homotopy equivalence and finish proving
our main theorem in Section 7. Lastly, in Section 8, we apply our results to study spaces of nonsingular
sections of a very ample line bundle on a projective variety.

3 Resolution of singularities

In this section, we choose an admissible Taylor condition T�J rE inside the r th jet bundle of a holomorphic
vector bundle E on X , and write for brevity

� D �hol.E/ and †D �hol.E/��hol;ns.E/;

for the vector space � of all holomorphic sections of E and its subspace † of singular sections. We also
define the singular space of a section f 2 �

(3) Sing.f / WD fx 2X j j r.f /.x/ 2 Tg �X
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as the space of points where f is singular (as in Definition 2.11). Our final goal, Theorem 2.13, is to
understand the homology of the space of nonsingular sections �hol;ns.E/D � �†. By Alexander duality
[8, Theorem V.9.3]

H i
c .†/Š

zH2 dimC ��i�1.� �†/;

it is equivalent to understand the compactly supported cohomology of its complement †. To achieve that,
we want to construct a spectral sequence converging to H�c .†/. This spectral sequence arises from a
resolution of the space †, which we define in this section.

Remark 3.1 By cohomology with compact support and homology, we shall always technically mean
sheaf (co)homology and rely accordingly on the theory exposed in [8]. Of course, all the spaces of interest
to us are homologically locally connected and sheaf and singular (co)homologies agree for them.

3.1 Construction of the resolution

We will construct a space RX� † recording points in the singular space Sing.f /. Accordingly, the
inverse image of a section f 2† with j C1 singularities will be a j -simplex �j with vertices indexed by
the singular points. It will follow that RX!†, or rather a slightly modified construction RNconeX!†,
induces an isomorphism in cohomology with compact supports. This construction will be advantageously
filtered by subspaces RjX related via pushout diagrams resembling the skeletal decomposition of a
simplicial space. This filtration will then yield a spectral sequence computing the cohomology of †.

This is inspired by the so-called truncated resolution of Mostovoy [21], but written in a more functorial
way as in [31].

In what follows, the space � is given its canonical topology coming from the fact that it is a finite-
dimensional complex vector space. Let F be the category whose objects are the finite sets Œn� WD f0; : : : ; ng
for n� 0 and whose morphisms are all maps of sets Œn�! Œm�. Let Top be the category of topological
spaces and continuous maps between them. We define the functor

(4) X W Fop
! Top; Œn� 7! XŒn� WD f.f; s0; : : : ; sn/ 2 � �X

nC1
j 8i; si 2 Sing.f /g;

where XŒn� is given the subspace topology from ��XnC1. On morphisms, for a map of sets g W Œn�! Œm�,
we define

X.g/ W XŒm�! XŒn�; .f; s0; : : : ; sm/ 7! .f; sg.0/; : : : ; sg.n//:

For an integer k � 0, we denote by F�k the full subcategory of F on objects Œn� for n� k. We also write

j�nj D f.t0; : : : ; tn/ j 8i; 0� ti � 1 and t0C � � �C tn D 1g �RnC1

for the standard topological n-simplex, and denote by @j�nj its boundary. In particular, the assignment
Œn� 7! j�nj gives a functor F! Top. For an integer j � 0, we define the j th geometric realisation of X
by the coend

(5) RjX WD

Z Œn�2F�j

XŒn�� j�nj D

� G
0�n�j

XŒn�� j�nj

�ı
�;
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where the equivalence relation � is generated by .X.g/.z/; t/� .z; g�.t// for all maps g W Œn�! Œm� in F.
(Here g� W j�nj! j�mj denotes the usual map induced on the simplices by functoriality.) This is of course
reminiscent of the classical geometric realisation of a simplicial space. Note however that here a cell j�nj
in the geometric realisation is indexed by an unordered set of singularities, even though the functor X is
defined using ordered tuples. Indeed, all the permutations Œn�! Œn� are valid morphisms in our category F.

Let j � 1 be an integer. We now describe how RjX may be obtained from Rj�1X via a pushout diagram.
Let Lj be the set

(6) Lj WD f.f; s0; : : : ; sj / 2 � �X
jC1
j 9l ¤ k such that sl D skg � XŒj �;

topologised as a subspace of XŒj �. This should be thought of as the analogue of the “latching object” of
a simplicial space. We denote by

Lj �SjC1
j�j j

the quotient space ofLj�j�j j by the symmetric group SjC1 acting onLj by permuting the singularities si ,
and on j�j j by permuting the coordinates. Denote by O� the omission of an element in a tuple.

Lemma 3.2 The formula

..f; s0; : : : ; sj /; .t0; : : : ; tj //

7! ..f; s0; : : : ; Osl ; : : : ; sj /; .t0; : : : ; tkC tl ; : : : ; Otl ; : : : ; tj // if there exists k ¤ l such that sl D sk

gives a well-defined map Lj �SjC1
j�j j !Rj�1X.

Proof The formula appears ill-defined as we are arbitrarily choosing two indices k and l . The identifica-
tions made by the coend formula (5) show that any choice will yield the same class in the quotient.

Recall that a point t D .t0; : : : ; tj / 2 j�j j is in the boundary @j�j j if one of its coordinates vanishes. An
argument similar to the proof of Lemma 3.2 gives the following:

Lemma 3.3 The formula

..f; s0; : : : ; sj /; .t0; : : : ; tj // 7! ..f; s0; : : : ; Osl ; : : : ; sj /; .t0; : : : ; Otl ; : : : ; tj // if tl D 0

gives a well-defined map XŒj ��SjC1
@j�j j !Rj�1X.

Consider the following pushout diagram of spaces:

Lj �SjC1
@j�j j XŒj ��SjC1

@j�j j

Lj �SjC1
j�j j .Lj �SjC1

j�j j/[ .XŒj ��SjC1
@j�j j/

p

Equivalently, the pushout is the union of the top-right and bottom-left spaces inside XŒj ��SjC1
j�j j.

The maps defined in Lemmas 3.2 and 3.3 glue to a continuous map

j̨�1 W .Lj �SjC1
j�j j/[ .XŒj ��SjC1

@j�j j/!Rj�1X:
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The natural map XŒj �� j�j j ! RjX factors through the quotient by the symmetric group action and
gives a map

ǰ W XŒj ��SjC1
j�j j !RjX:

From the coend formula (5) and the inclusion of the full subcategory F�j�1 � F�j , we also get a natural
map Rj�1X!RjX.

Proposition 3.4 The following square is a pushout diagram of topological spaces:

(7)

.Lj �SjC1
j�j j/[ .XŒj ��SjC1

@j�j j/ Rj�1X

XŒj ��SjC1
j�j j RjX

j̨�1

p
ǰ

Proof We may construct the pushout P as the quotient

P WD .Rj�1XtXŒj ��SjC1
j�j j/=�:

One may check that the map ǰ together with the natural map Rj�1X! RjX gives a map from the
disjoint union above which factors through the quotient. Hence we get a well-defined map P !RjX.
We now construct a continuous inverse. Recall that RjX is defined in (5) as a quotient of� G

0�n�j�1

XŒn�� j�nj

�
t .XŒj �� j�j j/:

The natural map
�F

0�n�j�1XŒn��j�
nj
�
!Rj�1X!P together with the identity of XŒj ��j�j j gives

a map from the disjoint union that factors through the quotient and yields a well-defined map RjX! P .
One may finally verify that it is the inverse of the map P !RjX constructed above.

We now turn to proving some topological results about our constructions.

Lemma 3.5 For any integer n� 0, the subspace XŒn�� � �XnC1 defined in (4) is closed.

Proof Let ev W � �XnC1! .J rE/nC1 be the simultaneous evaluation of the jet map j r (defined in (2))
at .nC 1/ points of X . We observe directly from the definitions that XŒn�D ev�1.TnC1/, and hence is
closed as the inverse image of a closed set.

Lemma 3.6 For any n� 0, the map �n W XŒn�! � given by .f; s0; : : : ; sn/ 7! f is a proper map.

Proof The projection onto the first factor � �XnC1! � is proper as XnC1 is compact. Hence so is its
restriction �n to the closed subspace XŒn�.

In particular, the map �n is closed, so †D �1.XŒ1�/ is closed in � . We have natural projections maps
XŒn�� j�nj ! XŒn�

�n
�! � for any n� 0. They give rise to a map

(8) �j WR
jX!†

for every integer j � 0.
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Lemma 3.7 For any integer j � 0, the map �j WRjX!† is a proper map.

Proof We have to show that the preimage of any compact set is compact. Equivalently, because †
is locally compact and Hausdorff, we will show that �j is a closed map with compact fibres. From
Lemma 3.6, for any n the map �n is closed and hence so is the composition XŒn�� j�nj ! XŒn�

�n
�! � .

This implies that �j is closed. It remains to see that it has compact fibres. If f 2 †, we observe that
��1j .f /D ǰ .�

�1
j .f //, which is compact as ��1j .f / is, by Lemma 3.6.

A major advantage of the pushout square (7) is that it allows us to prove the following topological lemma:

Lemma 3.8 For any integer j � 0, the space RjX is paracompact and Hausdorff. Furthermore , the
natural map Rj�1X!RjX is a closed embedding.

Proof Firstly, from Lemma 3.5, R0XDXŒ0�� ��X is a closed subset, and hence is itself paracompact
Hausdorff. Then the lemma is proven inductively using the pushout diagram (7) together with the fact that

..Lj �SjC1
j�j j/[ .XŒj ��SjC1

@j�j j// ,! XŒj ��SjC1
j�j j

is a closed embedding.

In the sequel, using the closed embedding of Lemma 3.8 just above, we will simply write Rj�1X�RjX.
For an integer j � 0, we let

(9) Yj WD f.f; s0; : : : ; sj / 2 XŒj � j sl ¤ sk if l ¤ kg D XŒj ��Lj � XŒj �

be the subspace of XŒj � where the singularities are pairwise distinct. For later use, we record the following
homeomorphism, which is a direct consequence of the pushout square (7) and the fact that the vertical
maps therein are closed embeddings:

(10) RjX�Rj�1XŠ Yj �SjC1
Interior.j�j j/:

Let us now discuss why �j WRjX!† needs to be slightly modified to obtain a meaningful “resolution”
of †. The fibre ��1j .f / above a section f 2† that has at most j C 1 singularities is by construction a
j -simplex. Hence it is contractible, and one might hope that �j induces an isomorphism in cohomology.
This is unfortunately not the case. Indeed, ��1j .f / is not contractible if f has at least j C 2 singularities.
To fix this problem, we will modify Rj .†/ by gluing a cone over each fibre ��1j .f / which is not
contractible. The precise construction is as follows.

Let N � 0 be an integer. We let

(11) †�NC2 WD ff 2 � j #Sing.f /�N C 2g �†

denote the subspace of those sections with at least N C 2 singularities. We denote by †�NC2 its closure
in † (or equivalently, in �). Observe that the surjectivity of the map �N implies the following equality:

�N .�
�1
N .†�NC2//D†�NC2:
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We glue fibrewise a cone over each f 2†�NC2 by defining the spaceRNcone.†/ as the following homotopy
pushout:

(12)

��1N .†�NC2/ RNX

†�NC2 RNconeX:

�N
hop

All three defining spaces in the corners of (12) map to †, and hence we obtain a surjective projection
map

(13) � WRNconeX!†:

We want to prove that � induces an isomorphism in cohomology with compact supports. We begin with
a couple of lemmas.

Lemma 3.9 The map � WRNconeX!† is proper.

Proof We will prove that is it closed with compact fibres, which implies the properness. By definition of
the homotopy pushout, RNconeX is a quotient of the following disjoint union:

RNXt ��1N .†�NC2/� Œ0; 1�t†�NC2:

The map � is induced by the following three maps: the projection �N W RNX ! †, the projection
��1N .†�NC2/� Œ0; 1�! ��1N .†�NC2/!† and the inclusion †�NC2 ,!†. The first two are closed
by Lemma 3.7 and the last one is the inclusion of a closed subset, and hence closed.

Finally, we prove that the fibres of � are compact. We saw in the proof of Lemma 3.7 that for any f 2†,
the fibre ��1N .f / was compact. Now, ��1.f / is either ��1N .f / if f 2†�†�NC2 or a cone over it if
f 2†�NC2. In any case it is compact.

Lemma 3.10 The space RNconeX is paracompact , locally compact and Hausdorff.

Proof The paracompactness and Hausdorffness follow from the definition as a homotopy pushout and
Lemma 3.8. It is locally compact as it maps properly to the locally compact space †.

The most important corollary is the following:

Proposition 3.11 The map � W RNconeX ! † induces an isomorphism in cohomology with compact
supports.

Proof The properness of � proved in Lemma 3.9 implies that it induces a well-defined map in cohomology
with compact supports. We also observed in the proof of that lemma that a fibre of � is either a simplex or a
cone, and hence contractible. The proposition then follows from the Vietoris–Begle theorem [8, V.6.1].
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3.2 Construction of the spectral sequence

Let N � 1 be an integer. Recall from Lemma 3.8 that we have closed embeddings Rj�1X�RjX. We
define the following filtration on RNconeX:

F0 DR
0X� F1 DR

1X� � � � � FN DR
NX� FNC1 DR

N
coneX:

Following standard arguments, we obtain from the filtration a spectral sequence

E
p;q
1 DHpCq

c .Fp �Fp�1/)HpCq
c .RNconeX/:

Using Proposition 3.11 and Alexander duality, we obtain

HpCq
c .RNconeX/ŠH

pCq
c .†/Š zH2 dimC ��.pCq/�1.� �†/;

where zH denotes reduced singular homology. Letting s D�p� 1 and t D 2 dimC � � q, we regrade our
spectral sequence and obtain the following:

Proposition 3.12 There is a spectral sequence on the second quadrant s � �1 and t � 0:

E1s;t DH
2 dimC ��1�s�t
c .F�s�1�F�s�2IZ/) zHsCt .� �†IZ/:

The differential d r on the r th page of the spectral sequence has bidegree .�r; r � 1/, ie it is a morphism
d rs;t WE

r
s;t !Ers�r;tCr�1.

4 Cohomology groups on the E 1-page

As in the last section, we choose a holomorphic vector bundle E on X and an admissible Taylor condition
T� J rE inside the r th jet bundle of E . For the remainder of this section, we also let

N DN.E ; r/

be the largest integer N � 0 such that E is ..NC1/.rC1/�1/-jet ample as in Definition 2.3. As discussed
in the introduction, we assume that such anN exists. If not, the statements in this section are either trivially
false, or trivially true as they describe elements of the empty set. For brevity, we still use the notation

� D �hol.E/ and †D �hol.E/��hol;ns.E/;

as well as X for the associated functor Fop! Top as in (4).

We will study the first page of the spectral sequence from Proposition 3.12 converging to the cohomology
of RNconeX. For convenience, we summarise the results of this section as follows:

Proposition 4.1 Let E be a holomorphic vector bundle on X and T � J rE be an admissible Taylor
condition. Let N DN.E ; r/. The resolution and its filtration described in Section 3 give rise to a spectral
sequence on the second quadrant s��1 and t � 0 converging to the homology of the space of nonsingular
sections �hol;ns.E/:

E1s;t DH
2 dimC ��1�s�t
c .F�s�1�F�s�2IZ/) zHsCt .�hol;ns.E/IZ/:
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The differentials on the r th page have bidegree .�r; r � 1/. Furthermore:

(i) Proposition 4.4 For �N � 1� s � �1, we have the isomorphisms

E1s;t ŠH
�t�2s rkC J

rE
c .T.�s/IZsign/

for all t � 0, with T.�s/ defined in (14).

(ii) Proposition 4.10 For t < .N C 1/e.T/,

E1�N�2;t D 0:

As a visual aid, we have drawn the spectral sequence in Figure 1, where we have chosen to fix e.T/D 2 to
lighten the notation. We briefly describe the various zones. Firstly, the only possibly nonvanishing groups
lie in the coloured squares. All groups Ers;t with s ��N �3 are zero as the filtration finishes after N C1
steps. According to Proposition 4.10, the groups below the horizontal solid line in the column sD�N �2
vanish. The differentials coming from the groups below the upper staircase never hit groups in the column
where sD�N �2 and t � 2NC2. Finally, the lower staircase delimits the zone of total degree ��N �1.
We have also drawn some differentials d r to the group Er

�N�2;2NC2 for r D 1; 2; 3 and N C 1.

s

t

�1�2�3� � �� � �

�
N
�
1

�
N
�
2

�
N
�
3

1

2

3

:::

NC1

NC2

NC3

:::

:::

2NC1

2NC2

2NC3

Figure 1: The first page of the spectral sequence when e.T/D 2.
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4.1 The first steps of the filtration

For an integer j � 0, recall from (9) the space

Yj D f.f; s0; : : : ; sj / 2 XŒj � j sl ¤ sk if l ¤ kg � XŒj �:

Lemma 4.2 For 0� j �N.E ; r/, there is a fibre bundle

Interior.j�j j/! Fj �Fj�1! Yj =SjC1:

Proof Recall from the definition of the filtration on RNconeX that Fj D RjX for 0 � j � N . As a
consequence of the pushout square (7), we observed in (10) that we have the following homeomorphism:

RjX�Rj�1XŠ Yj �SjC1
Interior.j�j j/:

Projecting down to the first factor gives the required fibre bundle.

By an affine bundle we mean a torsor for a vector bundle. In the sequel, they will arise naturally from
fibrewise surjective linear maps between vector bundles. For any integer j � 1, the bundle .J rE/j

projects down to Xj and we may consider its restriction to the open subset Confj .X/ � Xj of those
tuples of points which are pairwise distinct. The symmetric group Sj acts on these spaces by permuting
the coordinates. In particular, it acts on the subspace Tj � .J rE/j and we let

(14) T.j / WD .Tj jConfj .X//=Sj

be the orbit space of the restriction of Tj over the subspace Confj .X/�Xj .

Lemma 4.3 Let 0 � j � N.E ; r/ be an integer and recall from (9) the space Yj of those tuples
.f; s0; : : : ; sj / 2 � �ConfjC1.X/ where f is singular at the si . We may simultaneously evaluate the jet
map at these points:

Yj ! TjC1jConfjC1.X/; .f; s0; : : : ; sj / 7! .j r.f /.s0/; : : : ; j
r.f /.sj //:

Taking SjC1-orbits on the domain and codomain of this map yields an affine bundle

Yj =SjC1! T.jC1/

whose fibre has complex dimension dimC �� .j C1/ rkC J
rE . (Here rkC J

rE denotes the complex rank
of the vector bundle J rE .)

Proof The simultaneous evaluation of the jet map gives a map

(15)
� �ConfjC1.X/ .J rE/jC1jConfjC1.X/

ConfjC1.X/

of vector bundles over the configuration space ConfjC1.X/. Under the assumption 0 � j � N.E ; r/,
Lemma 2.4 shows that this map of bundles is fibrewise surjective. Therefore the top map of (15) is an affine
bundle. Subtracting the ranks, we obtain that its fibre has complex dimension dimC � � .j C 1/ rkC J

rE .
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Now, the pullback of the affine bundle (15) to the subspace TjC1jConfjC1.X/ is an affine bundle with total
space Yj . Finally, taking SjC1-orbits yields the affine bundle

Yj =SjC1! .TjC1jConfjC1.X//=SjC1 D T.jC1/;

which still has the rank that we have computed above.

The quotient maps Yj ! Yj =SjC1 and TjC1jConfjC1.X/ ! T.jC1/ are principal SjC1-bundles and
hence are classified by (homotopy classes of) maps to the classifying space BSjC1. Composing with the
sign representation BSjC1

Bsign
���! BZ=2, we obtain two well-defined homotopy classes of maps:

Yj =SjC1! BZ=2 and T.jC1/! BZ=2:

We will write Zsign for the corresponding local coefficient systems.

Proposition 4.4 Let �N.E ; r/� 1� s � �1. Then we have the isomorphism

E1s;t ŠH
�t�2s rkC J

rE
c .T.�s/IZsign/;

where T.�s/ is the space defined in (14) and Zsign is the local coefficient system described above.

Proof Recall from Proposition 3.12 that the first page of the spectral sequence is given by

E1s;t DH
2 dimC ��1�s�t
c .R�s�1X�R�s�2XIZ/:

Via a homeomorphism Interior.j�j j/ŠRj , we see that the fibre bundle of Lemma 4.2 is homeomorphic
to a vector bundle. Applying the Thom isomorphism to the latter, we obtain

E1s;t ŠH
2 dimC ��t
c .Y�s�1=S�sIZ

sign/:

Another application of the Thom isomorphism using Lemma 4.3 yields

E1s;t ŠH
�t�2s rkC J

rE
c .T.�s/IZsign/:

4.2 The last step of the filtration

We study the last nontrivial part of the E1-page, that is, the column s D�N.E ; r/� 2, where

E1�N�2;t DH
2 dimC �C1CN�t
c .RNconeX�R

NXIZ/:

The methods from the last section do not apply to the space RNconeX�R
NX and we will not be able

to express the cohomology groups E1
�N�2;t in terms of other “known” groups. However, using the

technical assumptions made in Definition 2.8 about the Taylor condition T, we will obtain a vanishing
result for E1

�N�2;t . This will be enough for the proof of our main theorem.

Recall the projection map �N WRNX!† from (8). From the homotopy pushout square (12), we obtain
the homeomorphism

RNconeX�R
NXŠ ..��1N .†�NC2/� �0; 1�/t†�NC2/=�;
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��1.f / ��1.f /\Str�1 ��1.f /\Str0 ��1.f /\Str1
(the three sides only)

Figure 2: Decomposition of the open cone.

where .z; 1/ 2 ��1N .†�NC2/� �0; 1� is identified with �N .z/ 2†�NC2 in the quotient. Indeed, there is a
natural continuous bijection from the right-hand side to the left-hand side. It is in fact a homeomorphism,
as the top arrow in the homotopy pushout square (12) is the inclusion of a closed subset. In other words,
this is the fibrewise (for the map �N ) open cone over †�NC2. We stratify this space by the following
locally closed subspaces (this is analogous to [27, Lemma 18]):

Str�1 WD†�NC2;

Str0 WD .��1N .†�NC2/� �0; 1Œ/\ .R
0X� �0; 1Œ/;

Strj WD .��1N .†�NC2/� �0; 1Œ/\ ..R
jX�Rj�1X/� �0; 1Œ/ for 1� j �N:

For 0� j �N , let

(16) Y
�NC2
j WD f.f; s0; : : : ; sj / 2 � �ConfjC1.X/ j f 2†�NC2 and si 2 Sing.f /g � Yj :

Using the homeomorphism (10) identifying the difference between two consecutive steps of the resolution,
we have a homeomorphism

(17) Strj Š .Y
�NC2
j �SjC1

Vj�j j/� �0; 1Œ

for 0� j �N , where Vj�j j denotes the interior of the simplex.

It is easier to think about this stratification by looking at one fibre ��1.f / at a time. Then we are just
decomposing an open cone over a union of simplices into the following pieces: the apex (corresponding to
Str�1\��1.f /), the open segments from the 0-simplices to the apex (corresponding to Str0\��1.f /),
the open (filled) triangles between the 1-simplices and the apex, etc. Figure 2 shows the strata in a
single fibre ��1.f / when f has three singular points and N D 1. In this case, ��1N .f / consists of three
1-simplices glued together (ie a triangle), so ��1.f / is the cone over that triangle.

If we find an integer D � 0 such that Hk
c .Strj /D 0 for all �1 � j � N and all k > D, then the same

result will hold for the union, ie Hk
c .R

N
coneX � R

NX/ D 0 for k > D. In what follows, we set out
to find such a D as small as we can. With that in mind, we make the following ad hoc definition of
cohomological dimension:
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Definition 4.5 A space Z has cohomological dimension D with respect to a local coefficient system A
if D is the smallest integer such that Hk

c .ZIA/D 0 for all k >D. We will denote it by cohodim.Z;A/,
or simply cohodim.Z/ if AD Z.

The only nontrivial local coefficient system we will need is Zsign, which is induced on the quotient
Y
�NC2
j =SjC1 by the sign representation SjC1! Z=2.

Lemma 4.6 For 0� j �N , we have

cohodim.Strj /D 1C j C cohodim.Y �NC2j =SjC1;Z
sign/:

Proof From the homeomorphism (17), we have a trivial fibre bundle

�0; 1Œ! Strj ! Y
�NC2
j �SjC1

Vj�j j:

This implies that cohodim.Strj /D 1Ccohodim.Y �NC2j �SjC1

Vj�j j/. Now, we have another fibre bundle:

Vj�j j ! Y
�NC2
j �SjC1

Vj�j j ! Y
�NC2
j =SjC1:

Hence, by the Thom isomorphism, we obtain

cohodim.Y �NC2j �SjC1

Vj�j j/D j C cohodim.Y �NC2j =SjC1;Z
sign/:

We thus have reduced our problem to studying the cohomology of Y �NC2j =SjC1 for 0� j �N , as well
as that of †�NC2. We shall do so by comparing these spaces to a known one, namely the space

YN D f.f; s0; : : : ; sN / 2 � �ConfNC1.X/ j si 2 Sing.f /g:

We first introduce some notation. Using charts onX , we may cover YN by finitely many semialgebraic sets,
whose intersections are also semialgebraic. Recall, eg from [7, Theorem 2.3.6], that every semialgebraic
set is the disjoint union of cells, each homeomorphic to an open disc �0; 1Œd for some d � 0. The largest
d in such a decomposition is called the dimension of the semialgebraic set. Let dimYN be the largest of
the dimensions of the semialgebraic sets in a cover of YN . (It depends a priori on the chosen cover, but
we suppress this from the notation.) The following is a crucial result for controlling our spectral sequence:

Lemma 4.7 For 0� j �N , we have

dimYN � cohodim.Y �NC2j =SjC1;Z
sign/:

Proof Forgetting the last singularity yields a map

YNC1! YN ; .f; s0; : : : ; sNC1/ 7! .f; s0; : : : ; sN /;

and we will write Y �NC2N � YN for its image. As the projection map is semialgebraic (when read
in charts), its image is semialgebraic (in charts) and dimY

�NC2
N � dimYN . Let 0 � j � N . Only

remembering the .jC1/st singularities gives a map

(18) Y
�NC2
N ! Y

�NC2
j ; .f; s0; : : : ; sN / 7! .f; s0; : : : ; sj /:
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Notice that this map is not surjective, as it may happen that a section f 2†�NC2 has fewer than N C 1
singularities. We study the map (18) locally via charts. Let U0; : : : ; UN � X be charts on X as in
Definition 2.6. Then the subsets

U WD f.f; s0; : : : ; sj / 2†�NC2 �U0 � � � � �Uj j sk 2 Sing.f /; si ¤ sj 8i ¤ j g � Y
�NC2
j

and

V WD f.f; s0; : : : ; sN / 2 � �U0 � � � � �UN j sk 2 Sing.f /; si ¤ sj 8i ¤ j g\Y
�NC2
N � Y

�NC2
N

are semialgebraic. Indeed, they are the preimages of the semialgebraic sets TjC1 and TNC1, respectively,
via the simultaneous evaluation of the jet map, which is algebraic and hence is semialgebraic; see
[7, Proposition 2.2.7]. The restriction of the map (18) to U and V is an algebraic map, and hence a
semialgebraic map, � W V ! U between semialgebraic sets. Using [7, Theorem 2.8.8] we obtain the
following inequality on the dimensions (as defined above using cell decompositions):

dim.V /� dim.�.V //:

Furthermore, the definition of Y �NC2j implies that the semialgebraic map � W V ! U has dense image,
ie �.V /D U . Using that the closure has the same dimension [7, Proposition 2.8.2] and the inequality
above, we obtain

dim.V /� dim.U /:

Varying the charts U0; : : : ; UN �X , we may cover the domain and codomain of (18) by subsets defined
like U and V . If U 0 and V 0 are two other such subsets, then U \U 0 and V \V 0 are also semialgebraic
sets because they are intersections of semialgebraic sets. (This follows from Definition 2.5.) Hence the
argument shows that the inequality on the dimensions also holds on intersections. Let dimY

�NC2
j denote

the maximum of the dimensions in a cover of Y �NC2j by semialgebraic sets. Then an argument using the
Mayer–Vietoris spectral sequence shows that the cohomological dimension of Y �NC2j is less than its
dimension dimY

�NC2
j . Therefore

(19) dimYN � dimY
�NC2
N � dimY

�NC2
j � cohodim.Y �NC2j /:

Finally, from the principal SjC1-bundle Y �NC2j !Y
�NC2
j =SjC1, we see that the dimension of the orbit

space is the same as that of Y �NC2j . Therefore the inequality (19) holds when replacing the rightmost
term with cohodim.Y �NC2j =SjC1;Zsign/.

Repeating the proof with the map Y �NC2N !†�NC2, .f; s0; : : : ; sN / 7! f yields:

Lemma 4.8 The following inequality holds:

dimYN � cohodim.†�NC2;Z/:

The final computation to be made is the content of the following lemma. It uses the notation e.T/ of
excess codimension established in Definition 2.10.
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Lemma 4.9 The dimension of YN satisfies

dimYN � 2 dimC � � .N C 1/e.T/:

Proof The proof of Lemma 4.3 shows that the simultaneous evaluation of the jet map

YN ! TNC1jConfNC1.X/; .f; s0; : : : ; sN / 7! .j r.f /.s0/; : : : ; j
r.f /.sN //

is an affine bundle whose fibre has complex dimension dimC � � .N C 1/ rkC J
rE . Therefore, on

dimensions,
dimYN � dim.TNC1jConfNC1.X//C 2 dimC � � 2.N C 1/ rkC J

rE :

Now, because T is a semialgebraic subset of J rE of dimension less than 2 rkC J
rE � e.T/,

dim.TNC1jConfNC1.X//� .N C 1/.2 rkC J
rE � e.T//:

The lemma is then proven by combining these two inequalities.

Assembling all the estimations we have obtained so far, we can state and prove the following:

Proposition 4.10 The cohomology groups in the column s D �N.E ; r/ � 2 on the first page of the
spectral sequence

E1�N�2;t DH
2 dimC �C1CN�t
c .RNconeX�R

NXIZ/

vanish for t < .N C 1/e.T/.

Proof A direct inspection of the spectral sequence associated to the stratification Strj on RNconeX�R
NX

shows that
cohodim.RNconeX�R

NX/�max
j

cohodim.Strj /:

For 0� j �N , combining Lemmas 4.6, 4.7 and 4.9, we get

cohodim.Strj /� 1C j C 2 dimC � � .N C 1/e.T/� 2 dimC � �N.e.T/� 1/� .e.T/� 1/:

Similarly, using Lemmas 4.8 and 4.9, we obtain

cohodim.Str�1/� 2 dimC � � .N C 1/e.T/:

Therefore cohodim.RNconeX�R
NX/� 2 dimC � �N.e.T/� 1/� .e.T/� 1/ and the result follows.

5 Interpolating holomorphic and continuous sections

In this section, we introduce and study section spaces that lie in between holomorphic and continuous
sections of the jet bundle J rE . They will be written as combinations of holomorphic and “antiholomorphic”
sections. We first explain how to take the complex conjugate of a holomorphic section. We then construct
these spaces and finish by explaining how the resolution and the spectral sequence from the previous
sections can be adapted to them.
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5.1 Complex conjugation of sections

Using the fact that X is projective, we choose once and for all a very ample holomorphic line bundle L
on it as well as a basis z0; : : : ; zM of the complex vector space of holomorphic global sections �hol.L/.

We denote by L the complex conjugate line bundle of L. It is obtained from the underlying real vector
bundle of L by having the complex numbers act by multiplication by their complex conjugates. We regard
it as a smooth complex line bundle. We now define a complex conjugation operation L! L. Recall that
the line bundle L may be constructed as a quotient

L WD
�G
i

Ui �C

�
=.x; vi /� .x; tj i .vi //

from the data .fUigi ; .tij /i;j / of trivialising open sets Ui �X and transition functions

tij W Ui \Uj ! GL1.C/DC�

satisfying a cocycle condition. Similarly, L may be constructed via such a quotient by replacing the
transition functions by their complex conjugates Ntij . The formulaG

i

Ui �C!
G
i

Ui �C; .x; v/ 7! .x; Nv/;

then gives a well-defined R-linear isomorphism L! L. On continuous global sections, we thus obtain
an R-linear complex conjugation operation:

(20) N� W �C0.L/! �C0.L/:

For a complex vector space V , we denote by V the C-vector space whose underlying set is V with the
C-module structure given by multiplication by the complex conjugate. We get a C-linear map

(21) �hol.L/ ,! �C0.L/ (20)
��! �C0.L/:

We let

(22) � WD

MX
jD0

zj ˝ Nzj 2 �hol.L/˝C �hol.L/:

We note that although � depends on a choice of basis of �hol.L/, our results will be independent of this
choice. Its image via the composition of the map (21) and the multiplication map �C0.L/˝C �C0.L/!
�C0.L˝L/ is a never vanishing section. It therefore gives an explicit trivialisation of the smooth complex
line bundle L˝LŠX �C. In particular, we obtain an isomorphism on the level of continuous sections:

(23) �C0.L˝L/Š �C0.X �C/D C0.X;C/:
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5.2 Stabilisation

For every integer k � 0, we now construct the following commutative diagram:

(24)

�hol..J
rE/˝Lk/˝C �hol.Lk/

�C0.J rE/

�hol..J
rE/˝LkC1/˝C �hol.LkC1/

'k

k

'kC1

The horizontal maps are given by the composition

(25) 'k W �hol..J
rE/˝Lk/˝C �hol.Lk/! �C0.J rE ˝Lk/˝C �C0.Lk/

! �C0.J rE ˝Lk˝Lk/Š �C0.J rE/;
where the first arrow is induced by the map (21), the second arrow is the multiplication map and the last
isomorphism is (23) applied to .L˝L/k Š Lk˝Lk .

We construct the vertical map in the diagram (24) as the composition

(26) k W �hol..J
rE/˝Lk/˝C �hol.Lk/

! �hol..J
rE/˝Lk/˝C �hol.Lk/˝C .�hol.L/˝C �hol.L//

Š .�hol..J
rE/˝Lk/˝C �hol.L//˝C .�hol.Lk/˝C �hol.L//

! �hol..J
rE/˝LkC1/˝C �hol.LkC1/;

where the first arrow is given by tensoring with the element � defined in (22), the isomorphism is given
by reordering the factors and the last arrow is given by the multiplication maps.

The commutativity of the diagram (24) follows directly from the fact that � is sent to the constant function
equal to 1 via the isomorphism (23). Loosely speaking, the vertical map k is a “multiplication by �”,
which amounts to multiplying a continuous section of J rE by the constant function 1 after using the
chosen identification (23).

Example 5.1 If X D CPn, L D O.1/ and E D O.d C 1/, then �hol.E/ is the space of homogeneous
polynomials of degree d C 1 in nC 1 variables. One may also prove an isomorphism J 1.O.d C 1//Š
O.d/˚.nC1/ as holomorphic vector bundles; see [12, Proposition 2.2] for a proof.

We may then view �hol..J
1E/˝Lk/˝C �hol.Lk/ as the space of .nC1/-tuples of homogeneous polyno-

mials of bidegree .d C k; k/, that is, of degree d C k in the variables zi and of degree k in the complex
conjugate variables Nzi . In this case, the image of � in �C0.L˝ L/ is jzj2 WD z0 Nz0 C � � � C zn Nzn. The
isomorphism �C0.L˝L/Š C0.X;C/ corresponding to (23) sends a section s to the map

z D Œz0 W � � � W zn� 2CPn 7!
s.z/

jzj2
2C:
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Under these identifications, the map k is then

.f0; : : : ; fn/ 7! ..z0 Nz0C � � �C zn Nzn/f0; : : : ; .z0 Nz0C � � �C zn Nzn/fn/;

which sends a tuple of polynomials of bidegree .d C k; k/ to one of bidegree .d C k C 1; k C 1/;
compare [20] for a related situation.

We will need the following small result, analogous to Lemma 2.4. Let .x0; : : : ; xp/ be a tuple of points
in X . We may evaluate a continuous section of J rE simultaneously at all these points:

(27) ev.x0;:::;xp/ W �C0.J rE/! .J rE/jx0
� � � � � .J rE/jxp

; s 7! .s.x0/; : : : ; s.xp//:

Lemma 5.2 Let E be a holomorphic vector bundle on X and N.E ; r/ 2N be as in Definition 2.3. Let
.x0; : : : ; xp/ be a tuple of pC 1 distinct points in X . If p �N.E ; r/, the composition

�hol..J
rE/˝Lk/˝C �hol.Lk/

'k
��! �C0.J rE/! .J rE/jx0

� � � � � .J rE/jxp

of the map 'k of (25) and the simultaneous evaluation (27) is surjective.

Proof The case k D 0 is a direct consequence of Lemma 2.4. The result for k � 1 then follows from the
commutativity of the diagram (24).

5.3 Nonsingular sections

We define
N .k/� �hol..J

rE/˝Lk/˝C �hol.Lk/

to be subspace of elements sent to nonsingular sections of J rE (as in Definition 2.11) under the map 'k
defined in (25). We say that an s 2 �hol..J

rE/˝Lk/˝C �hol.Lk/ is nonsingular if it is in the subspace
N .k/. We define the singular subset to be the complement

S.k/ WD .�hol..J
rE/˝Lk/˝C �hol.Lk//�N .k/:

Remark 5.3 When k D 0, N .0/� �hol.J
rE/ is the usual subspace of nonsingular sections of J rE as in

Definition 2.11.

Example 5.4 In the case X D CPn, L D O.1/ and E D O.d C 1/, recall from Example 5.1 that the
space �hol..J

1E/˝Lk/˝C�hol.Lk/ corresponds to .nC1/-tuples of homogeneous polynomials of degree
d C k in the holomorphic variables zi and of degree k in the complex conjugate variables Nzi . Under this
identification, if the Taylor condition T � J 1.O.d C 1// is the zero section, the space of nonsingular
sections N .k/ contains exactly those .nC1/-tuples of polynomials that never vanish simultaneously.

5.4 Resolution and spectral sequences

We now explain how the results from Section 3 can be adapted to the case

� D �hol..J
rE/˝Lk/˝C �hol.Lk/ and †D S.k/
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to construct a resolution of S.k/ and a spectral sequence converging to its cohomology, or equivalently
to the homology of N .k/ by Alexander duality. In this case, the definition of the singular space (3) of
f 2 � has to be changed to

Sing.f / WD fx 2X j 'k.f /.x/ 2 Tg �X:

In particular, in the case kD 0, it agrees with Definition 2.11. The topological results about the resolution
just follow from the fact that T� J rE is closed. In particular, Lemma 3.5 still holds with its proof nearly
unchanged: one has to replace the jet map j r by 'k . The construction of the spectral sequence is then
unchanged.

The computations of cohomology groups on the E1-page from Section 4 can also be adapted in this case.
We first describe what to adapt for the first steps of the filtration. The analogue of Lemma 4.3 with the jet
map j r replaced by 'k still holds as the key point is the surjectivity established in Lemma 5.2. The other
result, Lemma 4.2, remains unchanged. Hence Proposition 4.4 is true in our new setting.

The adaptations are similar to examine the last step RNconeX�R
NX. Indeed, the same stratification works,

as well as the cohomological dimension estimates. In details, Lemma 4.6 is unchanged, and Lemma 4.9
is proved similarly by just replacing the jet map by 'k . The other two results, Lemmas 4.7 and 4.8, also
hold when rewriting the proof by changing the jet map j r by 'k . Indeed, the key ingredients were the
semialgebraicity of the Taylor condition T (which remains unchanged), and the fact that the jet map was
complex algebraic, and hence real semialgebraic. The map 'k is no longer complex algebraic, but is
given by a ratio of algebraic maps and complex conjugates of algebraic maps. In particular, it is real
semialgebraic. This is enough for the proof to go through.

To sum up, we have the following analogue of Proposition 4.1:

Proposition 5.5 Let E be a holomorphic vector bundle on X and T � J rE be an admissible Taylor
condition. Let

� D �hol..J
rE/˝Lk/˝C �hol.Lk/

and N .k/� � be the subspace of nonsingular sections. Let N DN.E ; r/. The resolution and its filtration
described in Section 3 give rise to a spectral sequence on the second quadrant s��1 and t � 0 converging
to the homology of the space of nonsingular sections:

E1s;t DH
2 dimC ��1�s�t
c .F�s�1�F�s�2IZ/) zHsCt .N .k/IZ/:

The differentials on the r th page have bidegree .�r; r � 1/. Furthermore , for �N � 1� s � �1, we have
the following isomorphisms for all t � 0:

E1s;t ŠH
�t�2s rkC J

rE
c .T.�s/IZsign/:

Moreover , for t < .N C 1/e.T/,
E1�N�2;t D 0:

Lastly, let us mention that in the particular example where X D CPn, L D O.1/, E D O.d C 1/ and
T� J 1E is the zero section, the spectral sequence is completely analogous to that of [21].
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6 Comparison of spectral sequences

From our definition of nonsingularity, it follows that the jet map j r sends a nonsingular section f of E to
a nonsingular section j r.f / of J rE . Likewise, the stabilisation map described in (26) sends elements
in N .k/ to elements in N .kC 1/. We shall see that these maps induce isomorphisms in homology in a
range of degrees up to around N DN.E ; r/. We first explain the argument for the jet map j r and then
go through the required modifications for the stabilisation map.

6.1 The case of the jet map

Reading Propositions 4.1 and 5.5, we may observe that we have similar-looking spectral sequences, one
converging to the homology of �hol;ns.E/ and the other one to that of �hol;ns.J

rE/DN .0/. In particular,
in the range �N � 1� s � �1, the terms E1s;t are given by the same cohomology groups

E1s;t ŠH
�t�2s rkC J

rE
c .T.�s/IZsign/

in both spectral sequences. If we had a morphism of spectral sequences that happened to be an isomorphism
in this range, then, using the vanishing result E1

�N�2;t D 0 for t < .NC1/e.T/, the morphism induced on
the E1-page would be an isomorphism in the range of degrees �<N.e.T/�1/Ce.T/�2. (See Figure 1,
where we have drawn some differentials.) We shall construct such a morphism of spectral sequences,
whilst making sure that it is compatible with the morphism induced on homology by the jet map j r :

zHsCt .�hol;ns.E//! zHsCt .�hol;ns.J
rE//:

For the sake of completeness, we recall when a morphism is compatible with a morphism of spectral
sequences; see eg [32, Section 5.2]. If two spectral sequences Erp;q and E

0r
p;q converge to H� and H 0�,

respectively, we say that a map h WH�!H 0� is compatible with a morphism f WE!E 0 if h maps FpHn
to FpH 0n (here Fp denotes the filtration) and the associated maps FpHn=Fp�1Hn! FpH

0
n=Fp�1H

0
n

correspond to f1p;q W E
1
p;q! E

01
p;q (where q D n�p) under the isomorphisms E1p;q Š FpHn=Fp�1Hn

and E
01
p;q Š FpH

0
n=Fp�1H

0
n. The main point being that if f is an isomorphism in a range, then h also is

an isomorphism in a range; see [32, Comparison Theorem 5.2.12].

Let d1 WD 2 dimC �hol.E/ and d2 WD 2 dimC �hol.J
rE/ be the real dimensions of the complex vector

spaces of sections. We define the shriek morphism j Š as the unique morphism making the square

(28)

zH�.�hol;ns.E// zH�.�hol;ns.J
rE//

H
d1�1��
c .�hol.E/��hol;ns.E// H

d2�1��
c .�hol.J

rE/��hol;ns.J
rE//

Š

.j r /�

Š

j Š

commutative, where the vertical isomorphisms are given by Alexander duality and the top map is induced
by the jet map j r in homology. As our spectral sequences actually converge to the Čech cohomology
with compact support of the singular subspaces, we will construct our morphism of spectral sequences so
that it is compatible with j Š.
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The spectral sequences arose from filtrations, so we now recall some notation from Section 3. We let X
be the functor Fop! Top constructed there using � D �hol.E/ and †D �hol.E/��hol;ns.E/. As we have
explained in Section 5.4, the resolution also works for �hol.J

rE/ and its singular subspace, and we let
Y W Fop! Top be the associated functor in this case. We denote the filtration of RNconeX by

F 1�1 D∅� F 10 DR
0X� � � � � F 1N DR

NX� F 1NC1 DR
N
coneX;

and the analogous one of RNconeY by

(29) F 2�1 D∅� F 20 DR
0Y� � � � � F 2N DR

NY� F 2NC1 DR
N
coneY:

We will slightly abuse notation and also write

(30) j Š WH�c .R
N
coneX/!H�Cd2�d1

c .RNconeY/

for the bottom map defined by making the following square commutative:

H�c .�hol.E/��hol;ns.E// H
�Cd2�d1
c .�hol.E/��hol;ns.J

rE//

H�c .R
N
coneX/ H

�Cd2�d1
c .RNconeY/

Š

j Š

Š

j Š

Recall from the general theory that the spectral sequence associated to the filtration F i� for i D 1; 2, arises
from an exact couple .H �c .F

i
�/;H

�

c .F
i
� �F

i
��1//. The map of spectral sequences that we want is then

constructed via a map of exact couples as in the following lemma:

Lemma 6.1 Let ı D d2 � d1 D 2.dimC �hol.E/� dimC �hol.J
rE//. There exists a morphism of exact

couples

.j Šp; j
Š
.p//p�0 W .H

�
c .F

1
p /;H

�
c .F

1
p �F

1
p�1//! .H�Cıc .F 2p /;H

�Cı
c .F 2p �F

2
p�1//

satisfying the following two assertions:

(i) For 0� p �N , the map j Š
.p/

in the diagram

(31)

H�c .F
1
p �F

1
p�1/ H �c .T

.pC1/IZsign/

H�Cıc .F 2p �F
2
p�1/ H �c .T

.pC1/IZsign/

j Š
.p/

Š

Š

is an isomorphism , where

�D �� 2 dimC �hol.E/�pC 2.pC 1/ rkC J
rE ;

and the horizontal isomorphisms are given by Thom isomorphisms as in Proposition 4.4.

(ii) The map j ŠNC1 is equal to the shriek map (30).
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Unpacking the definition of a morphism of exact couples, we see that it amounts to providing morphisms
j Šp and j Š

.p/
for 0� p �N C 1 such that the diagram

H��1c .F 1p�1/ H�c .F
1
p �F

1
p�1/ H�c .F

1
p / H�c .F

1
p�1/

H��1Cıc .F 2p�1/ H�Cıc .F 2p �F
2
p�1/ H�Cıc .F 2p / H�Cıc .F 2p�1/

j Š
p�1

j Š
.p/

j Š
p j Š

p�1

commutes, where the horizontal morphisms in the diagram are given by the long exact sequence of the
pair .F ip ; F

i
p�1/ for i D 1; 2.

This result says exactly what we need: there a morphism of spectral sequences compatible with j Š (by (ii))
and giving an isomorphism in the vertical strip �N � 1 � s � 1 (by (i)). The lemma, as well as the
strategy of proof, is adapted from [31, Proposition 4.7]. First, let us state the most important consequence:

Proposition 6.2 For a holomorphic vector bundle E on X , the jet map

j r W �hol;ns.E/! �hol;ns.J
rE/

induces an isomorphism in homology in the range of degrees �<N.E ; r/.e.T/� 1/C e.T/� 2.

To understand how to construct the degree-shifting morphisms of Lemma 6.1, it is helpful to give a
description of the shriek map between cohomology groups arising from Alexander duality as in the
diagram (28). We shall do so generally first (following [31, Appendix D]) and then specialise to our
situation to prove the lemma at hand.

6.1.1 Alexander duality and shriek maps Let p W E ! B be a vector bundle between oriented
paracompact topological manifolds of dimensions n and m, respectively. Let j WK �E be a closed subset,
and let i W B ,! E be the zero section. We will see B as a submanifold of E via i . Using Alexander
duality (the vertical isomorphisms in the diagram below), we may define the shriek map

(32) i Š WH�c .B \K/!H�C.n�m/c .K/

to be the unique morphism making the following diagram commute:

H�.B;B �B \K/ H�.E;E �K/

Hm��
c .B \K/ Hn��

c .K/

i�

Š

i Š

Š

The goal of this section is to give a more intrinsic definition of i Š that will allow us to define the required
morphisms in Lemma 6.1.

Firstly, Vokřínek proves in [31, Proposition D.1] the following:
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Lemma 6.3 The diagram

H�.B;B �B \K/ H�.E;E �K/

Hm��
c .B \K/ Hm��

p�1c
.K/ Hn��

c .K/

i�

Š

k� �[j��

Š

commutes , where the vertical isomorphisms are given by Alexander duality, k W B \K ,! K is the
inclusion , � 2H ı.D.E/; S.E// is the Thom class of p and p�1c is the family of supports defined as

p�1c D fF �K j F closed and p.F /� B \K is compactg;

so that H�
p�1c

denotes cohomology with supports in p�1c. (See eg [8, Chapter II.2].)

Sketch of proof We repeat Vokřínek’s proof here for convenience. First, we explain the morphisms in
Alexander duality. Recall from eg [8, Corollary V.10.2] that we have fundamental classes ŒB� 2HBM

m .B/

and ŒE� 2HBM
n .E/, where HBM

� denotes Borel–Moore homology (also known as homology with closed
support). Using the proper inclusions .E;∅/ ,! .E;E �K/ and .B;∅/ ,! .B;B �B \K/, they give
rise to classes oE 2HBM

n .E;E�K/ and oB 2HBM
m .B;B�B\K/. If U �E is a closed neighbourhood

of K, we get a morphism

Hn��
c .U /

�\oE jU
������!H�.U; U �K/!H�.E;E �K/;

where oE jU is the image of oE via the excision isomorphism HBM
n .E;E �K/ Š HBM

n .U; U �K/.
(Note that it is important for U to be closed, so that the inclusion U ,!E is proper, and hence induces a
morphism in Borel–Moore homology.) Likewise, we get a morphism

Hm��
c .B \U/

�\oB jU
������!H�.B \U;B \ .U �K//!H�.B;B �B \K/:

Now, the isomorphisms in Alexander duality are given by taking the colimit over all closed neighbourhoods
U of K of the two morphisms constructed above; this is explained in [8, V.9]. Hence, to prove the lemma,
it suffices to check commutativity of the diagram

H�.B \U;B \ .U �K// H�.U; U �K/

Hm��
c .B \U/ Hm��

p�1c
.U / Hn��

c .U /

g�

�\oB jU

g� �[h��

�\g�.oB jU/ �\oE

where g WB \U ,! U and h W U ,!E are the inclusions. The left part commutes by naturality of the cap
products. The right part commutes by observing that the fundamental classes can be chosen to correspond
under the Thom isomorphism, which implies that h�� \ oE jU D g�oB jU , and finishes the proof.

In the statement of Lemma 6.3, if the morphism k� were invertible, the shriek map (32) would be given
by “.k�/�1” followed by taking the cup product with the “Thom class” j �� . However, it is not invertible
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in general. There is nevertheless a way around that problem, which we explain below, using "-small
neighbourhoods of B \K in K and the continuity property of cohomology.

We choose, once and for all, a bundle metric on p W E ! B . For a real number " > 0, denote by D"
(resp. S", VD") the closed disc (resp. sphere, open disc) subbundle of E! B of radius " (for the chosen
metric). In [31, Lemma D.2], Vokřínek proves:

Lemma 6.4 The diagram

(33)

H�.B;B �B \K/ H�.E \ VD"; .E �K/\ VD"/ H�.E;E �K/

Hm��
c .B \K/ Hn��

c .K \ VD"/ Hn��
c .K/

Hm��
c .K \D"/ Hn��

c .K \D"; K \S"/

Š

Š

Š Š

.l"/�

�[�"

commutes , where the vertical isomorphisms on the first row are given by Alexander duality, the one on the
second row follows from general results about cohomology with compact supports , l" WB \K ,!K\D"

is the inclusion , �" is the restriction of the Thom class of E ! B and the rightmost horizontal arrows
are induced by the inclusions. (Recall that cohomology with compact supports is covariant for open
inclusions.)

Sketch of proof The left part of the diagram can be shown to commute by a proof analogous to that of
Lemma 6.3. The right-hand square is seen to commute by a direct verification.

Taking the limit "! 0, the morphisms .l"/� induce a morphism from the colimit

colim
"!0

Hm��
c .K \D"/!Hm��

c .B \K/

which is an isomorphism by the continuity property of cohomology with compact supports; see eg
[8, Theorem II.14.4]. We finally obtain another description of the shriek map i Š:

Proposition 6.5 (compare [31, Theorem D.3]) The shriek map i Š defined in (32) is equal to the
composite obtained as one goes along the bottom path in the diagram (33) above:

i Š WHm��
c .B \K/ Š � colim

"!0
Hm��
c .K \D"/

! colim
"!0

Hn��
c .K \D"; K \S"/Š colim

"!0
Hn��
c .K \ VD"/!Hn��

c .K/:

Furthermore , in the case where both E and B are themselves vector bundles over the same base , K DE
and i W B ,!E is the inclusion of a subbundle , the shriek map i Š is the Thom isomorphism of the bundle
E! B given by choosing a splitting of i .

Proof The first part follows from Lemmas 6.3 and 6.4. The second part is shown by direct inspection of
the construction.
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6.1.2 The proof of Lemma 6.1 We shall apply the general theory described in the last section to our
case. To lighten the notation, we write

�1 WD �hol.E/; †1 WD �hol.E/��hol;ns.E/

and

�2 WD �hol.J
rE/; †2 WD �hol.J

rE/��hol;ns.J
rE/:

The jet map j r gives a linear embedding of �1 into �2 such that the image of the singular subspace is
precisely given by the intersection with the bigger singular subspace:

j r.†1/D j
r.�1/\†2:

Choosing a complementary linear subspace of j r.�1/ inside �2, we obtain a projection giving a vector
bundle

(34) �2! j r.�1/Š �1

of real rank ı D d2� d1. Below, we apply Vokřínek’s results to this situation.

We first set up the notation. Let " > 0 be a positive real number and denote by D" (resp. S", VD") the
closed disc (resp. sphere, open disc) subbundle of radius " of the vector bundle (34). Recall from (29) the
functor Y giving rise to the resolution of †2. We also define YD"

W Fop! Top to be the subfunctor of Y
given by

YD"
Œn� WD f.f; s0; : : : ; sn/ 2YŒn� j f 2D"g;

and likewise for YS"
�Y and Y VD"

�Y using only sections f 2S" or VD". Let �"2H ı.†2\D"; †2\S"/

be the restriction of the Thom class of the vector bundle (34) to †2. (Recall that the Thom class is
an element of H ı.D"; S"/.) In all what follows, we see �1 � �2 via the embedding j D j r . Let
l" W †1 ,! †2 \D" be the inclusion (which is proper, and hence induces a morphism on compactly
supported cohomology). We explained in Proposition 6.5 that the shriek map j Š is obtained from the zigzag

H�c .†1/
.l"/�
 ���H�c .†2\D"/

�[�"
���!H�Cıc .†2\D"; †2\S"/ŠH

�Cı
c .†2\ VD"/!H�Cıc .†2/

by taking a colimit as "! 0.

We mimic that construction at the level of the resolutions. Let 0 � p � N C 1 be an integer. Recall
from (29) that F ip denoted the pth step of the filtration of the resolution of †i . We denote by F 2p;D"

,
F 2p;S"

and F 2p; VD"
the analogous filtrations on the resolutions obtained from the subfunctors YD"

, YS"
and

Y VD"
, respectively. Because a singular point of a section f 2 �1 is also a singular point of j r.f / 2 �2,

the jet map gives a map on resolutions

XŒp�!YŒp�; .f; s0; : : : ; sp/ 7! .j r.f /; s0; : : : ; sp/;
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which preserves the filtrations. Let Ql" WF 1p ,!F 2p;D"
be the induced inclusion. Let " 2H ı.F 2p;D"

; F 2p;S"
/

be the pullback of �" along .F 2p;D"
; F 2p;S"

/! .†2\D"; †2\S"/. The diagram

H�c .F
1
p / H�c .F

2
p;D"

/ H�Cıc .F 2p;D"
; F 2p;S"

/ŠH�Cıc .F 2p; VD"
/ H�Cıc .F 2p /

H�c .†1/ H�c .†2\D"/ H�Cıc .†2\D"; †2\S"/ŠH
�Cı
c .†2\ VD"/ H�Cıc .†2/

.Ql"/� �["

.l"/� �[�"

then commutes by naturality of all the constructions involved, where all the vertical maps are induced
by the proper projections F ip ! †i . The morphism j Šp WH

�
c .F

1
p /!H�Cıc .F 2p / is then defined as the

colimit, when "! 0, of the top composition in the diagram above. (Recall that . Ql"/� is an isomorphism
in the colimit, by continuity of cohomology.) In particular, when p D N C 1, the vertical maps are
isomorphisms (by 3.11), which proves Lemma 6.1(ii) by noticing that the bottom composition is the
shriek map j Š.

The morphisms j Š
.p/
WH�c .F

1
p �F

1
p�1/!H�Cıc .F 2p �F

2
p�1/ are defined analogously, ie by the colimit

as "! 0 of the zigzag

H�c .F
1
p �F

1
p�1/ H�c .F

2
p;D"
�F 2p�1;D"

/!H�Cıc .F 2p;D"
�F 2p�1;D"

; F 2p;S"
�F 2p�1;S"

/

ŠH�Cıc .F 2p; VD"
�F 2p�1; VD"

/!H�Cıc .F 2p �F
2
p�1/;

where, as before, the first morphism is induced by the inclusion, the second morphism is the cup product
with the Thom class and the third is induced covariantly by the open inclusion.

One may check, using naturality of the various constructions involved, that the morphisms j Šp and j Š
.p/

give a morphism of exact couples. This amounts to staring at the following commutative diagram:

H��1c .F 1p�1/ H�c .F
1
p �F

1
p�1/ H�c .F

1
p / H�c .F

1
p�1/

H��1c .F 2p�1;D"
/ H�c .F

2
p;D"
�F 2p�1;D"

/ H�c .F
2
p;D"

/ H�c .F
2
p�1;D"

/

H��1Cıc .F 2p�1;D"
;F 2p�1;S"

/ H�Cıc .F 2p;D"
�F 2p�1;D"

;F 2p;S"
�F 2p�1;S"

/ H�Cıc .F 2p;D"
;F 2p;S"

/ H�Cıc .F 2p�1;D"
;F 2p�1;S"

/

H��1Cıc .F 2p�1; VD"
/ H�Cıc .F 2p; VD"

�F 2p�1; VD"
/ H�Cıc .F 2p; VD"

/ H�Cıc .F 2p�1; VD"
/

H��1Cıc .F 2p�1/ H�Cıc .F 2p �F
2
p�1/ H�Cıc .F 2p / H�Cıc .F 2p�1/

Š Š Š Š

To conclude the proof, we verify Lemma 6.1(i), ie that the morphism

j Š.p/ WH
�
c .F

1
p �F

1
p�1/!H�Cıc .F 2p �F

2
p�1/

is an isomorphism. Recall from (10) that

F 2p �F
2
p�1 Š Yp.Y/�SpC1

Vj�pj and F 1p �F
1
p�1 Š Yp.X/�SpC1

Vj�pj;
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where we defined as in (9) the subspace

Yp.Y/ WD f.f; s0; : : : ; sp/ 2YŒp� j sl ¤ sk if l ¤ kg �YŒp�;

and likewise for Yp.X/ � XŒp�. Recall also that these spaces were vector bundles over T.pC1/; see
Section 4. Hence we have an inclusion of vector bundles:

F 1p �F
1
p�1 F 2p �F

2
p�1

T.pC1/

Now the second part of Proposition 6.5 applies and finishes the proof.

6.2 The case of the stabilisation map

Choose some integer k � 0. We now describe how the argument of the previous section can be made
with the stabilisation map

k W �hol..J
rE/˝Lk/˝C �hol.Lk/! �hol..J

rE/˝LkC1/˝C �hol.LkC1/

from (26). It is a linear embedding; hence, by choosing a complementary subspace, we get a vector bundle

�hol..J
rE/˝LkC1/˝C �hol.LkC1/! k.�hol..J

rE/˝Lk/˝C �hol.Lk//

analogous to the one in (34). From the commutativity of the diagram (24), we see that a singularity x 2X
for f 2 S.k/ is also a singularity of k.f / 2 S.kC 1/. Therefore we also get a map induced on the
respective resolutions of S.k/ and S.kC 1/. Together with the fact that nonsingular sections are sent to
nonsingular sections, this is enough for the argument to be repeated in that case.

Proposition 6.6 The restriction of the stabilisation map k to the nonsingular subspaces

k WN .k/!N .kC 1/

induces an isomorphism in homology in the range of degrees �<N.E ; r/.e.T/� 1/C e.T/� 2.

Combining Propositions 6.2 and 6.6, we obtain the following:

Proposition 6.7 Each map in the composition

�hol;ns.E/! �hol;ns.J
rE/DN .0/! colim

k!1
N .k/

induces an isomorphism in homology in the range of degrees �<N.E ; r/.e.T/� 1/C e.T/� 2.

7 Comparison of holomorphic and continuous sections

We shall relate colimk N .k/ to the space �C0;ns.J
rE/ of nonsingular continuous sections of the jet bundle.

Recall from the stabilisation diagram (24) that every nonsingular space N .k/ maps via 'k to �C0;ns.J
rE/.

The aim of this section is to prove the following result about the map induced from the colimit:
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Proposition 7.1 The map

(35) colim
k!1

N .k/! �C0;ns.J
rE/

is a weak homotopy equivalence.

Combining this result with Proposition 6.7 readily implies Theorem 2.13. Proposition 7.1 is a direct
consequence of the openness of the subspace of nonsingular sections, which follows from the fact that the
admissible Taylor condition T� J rE is closed (see the discussion after Lemma 3.6), and the following:

Lemma 7.2 Let F be a finite CW-complex. The map

C0
�
F; colim

k!1
N .k/

�
! C0.F; �C0;ns.J

rE//

induced by (35) has a dense image.

As in [20], we will need an adaptation of the classical Stone–Weierstrass theorem for real vector bundles.

Theorem 7.3 (Stone–Weierstrass) Let E ! B be a finite-rank real vector bundle over a compact
Hausdorff space. Let A� C0.B;R/ be a subalgebra and fsj gj2J be a set of sections such that

(i) the subalgebra A separates the points of B: for any x; y 2 B , there exists h 2 A such that
h.x/¤ h.y/,

(ii) for any x 2 B , there exists h 2 A such that h.x/¤ 0,

(iii) for any x 2 B , the fibre Ex is spanned by the sj .x/ as an R-vector space.

Then the A-module generated by the sj is dense for the sup-norm (induced by the choice of any inner
product on E) in the space of all continuous sections of E.

Proof of Lemma 7.2 Let F be a finite CW-complex. By adjunction, a continuous map F !�C0;ns.J
rE/

corresponds to a section of the underlying real vector bundle of J rE � F ! X � F . We shall apply
Theorem 7.3 to that vector bundle.

Recall that we have chosen in Section 5 a very ample line bundle L on X and explained how to define the
complex conjugate Ns of a section s of L. For any integer k � 0, define the squared norm of a holomorphic
section of L by

j � j
2
W �hol.Lk/! �C0.Lk˝Lk/Š C0.X;C/; s 7! jsj2 WD s Ns;

where the isomorphism with continuous maps was obtained in (23). Notice that jsj2 is in fact a real-valued
function X !R�C. We also let

Ak WD fjg. � ; � /j
2
WX �F !R j g 2 C0.F; �hol.Lk//g � C0.X �F;R/;
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where if g 2 C0.F; �hol.Lk//, we see g. � ; � / as a map from X �F to Lk by adjunction. Keeping the
notation from Theorem 7.3, we let A be the subalgebra of C0.X � F;R/ generated by all the Ak for
k � 0. For the set of sections as in Theorem 7.3, take

(36) f.x; u/ 7! .s.x; u/; u/ WX �F ! J rE �F j s 2 C0.F; �hol.J
rE//g;

where again, for s 2 C0.F; �hol.J
rE//, we see s. � ; � / as a map from X �F to J rE by adjunction. We

may now check the conditions of Theorem 7.3.

(i) Let .x; u/¤ .x0; u0/ 2X �F . Consider the first case, where x ¤ x0. For k � 2, Lk is 2-very ample
(see Example 2.2). Hence there exists a section s 2 �hol.L2/ such that s.x/¤ 0 and s.x0/D 0. Then the
map .x; u/ 7! js.x/j2 is in Ak and separates .x; u/ and .x0; u0/ as js.x/j2 ¤ 0 and js.x0/j2 D 0. In the
other case, where x D x0, we have that u¤ u0. By the 1-very ampleness of L we may choose s 2 �hol.L/
such that s.x/ D s.x0/ ¤ 0. Let � W F ! RC be a bump function such that �.u/ D 0 and �.u0/ D 1.
Then the map .x; u/ 7! j�.u/s.x/j2 is in A1 and separates the points. Indeed it is vanishing at .x; u/ but
nonvanishing at .x0; u0/.

(ii) The second point is exactly what we have just proved in the first case of (i).

(iii) It suffices to prove that the fibre of J rE above x2X is spanned by the sections s.x/ for s2�hol.J
rE/.

This is implied by the 0-jet ampleness of E (see Example 2.2).

By construction, any element in the image of the map

C0
�
F; colim

k!1
N .k/

�
! C0.F; �C0;ns.J

rE//

is, by adjunction, in the A-module generated by the set (36).

8 Applications

8.1 Nonsingular sections of line bundles

Our first application concerns the case of nonsingular sections of line bundles, which was the starting
motivation for this work. Here, a direct corollary of our main theorem reads as:

Corollary 8.1 Let X be a smooth projective complex variety and L be a very ample line bundle on it.
Let d � 1 be an integer. The jet map

j 1 W �hol;ns.Ld /! �C0;ns.J
1Ld /

from nonsingular holomorphic sections of Ld to continuous never-vanishing sections of J 1Ld , induces
an isomorphism in homology in the range of degrees �< 1

2
.d � 1/.

Proof It is a straightforward application of Theorem 2.13 by taking the admissible Taylor condition T

to be the zero section of J 1Ld and recalling from Example 2.2 that if L is very ample, then the tensor
power Ld is d -very ample.
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More interestingly, we can compute the stable rational cohomology. This agrees with a computation made
by Tommasi (personal communication, 2021).

Theorem 8.2 Let nD dimC X be the complex dimension of X . For d � 1, there is a rational homotopy
equivalence

�C0;ns.J
1Ld / 'Q

��!

2nC1Y
iD1

K.Hi�1.X IQ/; i/:

In particular , the rational cohomology of �C0;ns.J
1Ld / is given by the free commutative graded algebra

ƒ.H��1.X IQ//;

on the cohomology of X shifted by one degree.

Remark 8.3 This result implies in particular that the rational (co)homology of �hol;ns.Ld / stabilises as
d !1. As we will see below, the integral cohomology does not stabilise in general.

Remark 8.4 The stable cohomology only depends on the topology of X . This is in accordance with the
analogies between topology and arithmetic and motivic statistics mentioned in the introduction. In both
the results of Poonen and Vakil–Wood, the limit is expressed by a zeta function which only depends on X .

Example 8.5 For X DCPn and LDO.1/, we find that the stable rational cohomology is the exterior
algebra

ƒQ.t1; t3; : : : ; t2nC1/

where ti is in degree i . This agrees with the result of Tommasi in [27].

Proof of Theorem 8.2 Recall that the nonsingular sections of J 1Ld are precisely the never-vanishing
ones. We choose a Riemannian metric once and for all and denote by Sph.J 1Ld /!X the unit sphere
bundle of the vector bundle J 1Ld . We may scale a never-vanishing section to have norm equal to 1 (for
the chosen metric) in each fibre. We thus obtain a homotopy equivalence

�C0;ns.J
1Ld / '�! �C0.Sph.J 1Ld //:

We now rationalise the sphere bundle in the following sense. By [17, Theorem 3.2], there is a fibration
S2nC1Q ! Sph.J 1Ld /Q!X and a morphism of fibrations

S2nC1 S2nC1Q

Sph.J 1Ld / Sph.J 1Ld /Q

X
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such that the map induced on the fibres S2nC1! S2nC1Q 'K.Q; 2nC 1/ is a rationalisation. As X is
homotopy equivalent to a finite CW-complex and S2nC1 is nilpotent (it is indeed simply connected), we
may use [19, Theorem 5.3] to show that the map Sph.J 1Ld /! Sph.J 1Ld /Q induces a map

�C0.Sph.J 1Ld // 'Q
��! �C0.Sph.J 1Ld /Q/;

which is a rationalisation. (In general, one has to restrict to some path component. However both spaces
are connected in our situation.) Now, oriented rational odd sphere bundles are classified by their Euler
class; see eg [13, II.15.b]. In our situation, the orientation is induced from the canonical one on the
complex vector bundle J 1Ld and the Euler class vanishes for dimensional reasons. It follows directly
that Sph.J 1Ld /Q!X is a trivial bundle. Therefore

�C0.Sph.J 1Ld /Q/Šmap.X;K.Q; 2nC 1//;

where map.�;�/ denotes the space of continuous functions with its compact open topology. Finally,
in [26] (see also [15] for an accessible reference), Thom proves that this mapping space is homotopy
equivalent to a product of Eilenberg–MacLane spaces

map.X;K.Q; 2nC 1//'
2nC1Y
iD0

K.H 2nC1�i .X IQ/; i/'
2nC1Y
iD0

K.Hi�1.X IQ/; i/;

where the last equivalence comes from Poincaré duality. More precisely, he proves that if

ev Wmap.X;K.Q; 2nC 1//�X !K.Q; 2nC 1/

is the evaluation map, and � 2H 2nC1.K.Q; 2nC 1/IQ/ is the fundamental class, we may write

ev�.�/D
X
i

�i ;

where �i 2H i .map.X;K.Q; 2nC 1//IH 2nC1�i .X IQ//. Then the projection

map.X;K.Q; 2nC 1//!K.H 2nC1�i .X IQ/; i/

is determined by the cohomology class �i .

8.1.1 Geometric description of the stable classes and mixed Hodge structures As a Zariski open
subset of the affine space �hol.Ld /, the subspace �hol;ns.Ld / inherits a structure of complex variety and
its cohomology thus has a natural mixed Hodge structure. On the other hand, we may endow the stable
cohomology computed in Theorem 8.2 with a mixed Hodge structure defined as follows. Recall that the
cohomology H�.X IQ/ can be equipped with a mixed Hodge structure using the structure of complex
variety on X , and denote by Q.�1/ the Tate–Hodge structure of pure weight 2. By first tensoring these
structures and then applying the symmetric algebra functor, we obtain a mixed Hodge structure on the
stable cohomology. In this section, we show the following:
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Proposition 8.6 The morphism of Theorem 8.2,

ƒ.H��1.X IQ/˝Q.�1//!H�.�hol;ns.Ld /IQ/;

is compatible with the mixed Hodge structures.

Proof By the universal property of the (graded) symmetric algebra, it is enough to see that the morphism

H��1.X IQ/˝Q.�1/!H�.�hol;ns.Ld /IQ/

respects the mixed Hodge structures. We do this by giving a more geometric description of this map. Let

� W �hol;ns.Ld /�X ! �hol;ns.Ld /

be the trivial fibre bundle, and let

j W �hol;ns.Ld /�X ! J 1Ld �f0g

be the jet evaluation. By integrating along the fibres of � , we obtain in cohomology a morphism of mixed
Hodge structures:

�Š ı j
�
WH�.J 1Ld �f0g/˝Q.n/!H��2n.�hol;ns.Ld //:

The extra Tate twist Q.n/ comes from the definition of the Gysin map �Š via Poincaré duality; see
[23, Corollary 6.25]. As the Euler class of the jet bundle vanishes for dimensional reasons, we compute that

H�.J 1Ld �f0gIQ/ŠH�.X IQ/˝H�.CnC1
�f0gIQ/:

Now H 2nC1.CnC1�f0gIQ/ŠQ.�n�1/, so we have obtained a morphism of mixed Hodge structures:

�Š ı j
�
WH�.X/˝Q.�1/!H�C1.�hol;ns.Ld //:

We claim that this coincides with the morphism given in Theorem 8.2. The proof is an exercise in algebraic
topology and uses the description of the mapping space given at the end of the proof of Theorem 8.2.

8.2 Integral homology and stability

In this section, we focus on the special case where X DCP1 and LDO.1/. That is, we study the space

Ud WD �hol;ns.CP1;O.d//

of nonsingular homogeneous polynomials in two variables of degree d . From Corollary 8.1, we know
that the jet map

j 1 W Ud ! �C0;ns.J
1O.d//

induces an isomorphism in integral homology in the range of degrees �< 1
2
.d � 1/. We prove that the

section space on the right-hand side does not depend on d � 1, and hence that the integral homology
of Ud stabilises.
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Theorem 8.7 For d � 1, we have a homotopy equivalence

�C0;ns.J
1OCP1.d//'map.S2; S3/:

In particular

H�.Ud IZ/ŠH�.map.S2; S3/IZ/

in the range of degrees �< 1
2
.d � 1/.

Remark 8.8 Choosing a basepoint b 2 S2 and using the Lie group structure on S3 Š SU.2/, we obtain
a homeomorphism

map.S2; S3/ Š�! S3 �map�.S
2; S3/D S3 ��2S3; f 7! .f .b/; f .b/�1f /;

which can be used to compute the integral homology. This can be done one prime at a time. Indeed, the
p-primary elements have order exactly p by [22, Corollary 10.26.5]. This p-primary part can then be
computed directly from the Bockstein spectral sequence and the knowledge of the Z=p homology, which
is recalled in [22, Corollary 10.26.4]. We can also note that the homology of �2S3 '�20S

2 is the stable
homology of braid groups studied in [10, Paper III, Appendix A].2

Remark 8.9 In the next section, we will show that one cannot expect integral homological stability in
general. The case X DCP1 should be seen as a very particular phenomenon.

Proof Recall from the proof of Theorem 8.2 that we have to study continuous sections of the sphere
bundle of the jet bundle:

S3! Sph.J 1OCP1.d//!CP1:

One sees that this bundle is classified by the second Stiefel–Whitney class of the jet bundle, ie the
reduction modulo 2 of its first Chern class. Using that d � 1 and [12, Proposition 2.2], we obtain an
isomorphism of vector bundles

J 1OCP1.d/ŠOCP1.d � 1/˚2:

We compute the first Chern class to be

c1.J
1OCP1.d//D c1.OCP1.d � 1/˚2/D 2c1.OCP1.d � 1//;

so its reduction modulo 2 vanishes regardless of d . As the sphere bundle was classified by this class, this
shows that it is trivial. Therefore

�C0;ns.J
1OCP1.d//' �C0

�
Sph.J 1OCP1.d//

�
'map.S2; S3/:

2Many thanks to Antoine Touzé for explaining this computation to me, and to the referee for pointing out the connection to braid
groups.
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8.3 Integral homology and nonstability

As we indicated in Remark 8.3, the rational cohomology groups of the spaces �hol;ns.Ld / stabilise. That
is, for a fixed i � 0, the i th rational cohomology group is independent of d as long as i � 1

2
.d � 1/. In

this section, to contrast with the very special case of the previous one, we show that one cannot expect
integral stability in general.

Let us fix some notation for the remainder of this section: d � 1 is an integer, L is a very ample line
bundle on a smooth projective complex variety X and nD dimC X is the complex dimension of X . As
we will only be considering spaces of continuous sections, we will use � as a shorthand for �C0 .

The main result of this section is Theorem 8.11. To show its computational potential, we will show the
following:

Proposition 8.10 Let d � 6 be an integer. We have

H2
�
�hol;ns.CP2;O.d//IZ=2

�
Š

�
Z=2 d � 0 mod 2;
0 d � 1 mod 2:

8.3.1 A comparison map As stated in Corollary 8.1, we are reduced to studying the homotopy type of
the space of continuous sections of the sphere bundle Sph.J 1Ld /. Even though this is a purely homotopy-
theoretic problem, its resolution is quite hard. We will therefore “linearise it” in the homotopical sense
using spectra. This is made precise in the following result:

Theorem 8.11 Let TX be the tangent bundle of X , and let XJ
1Ld�TX denote the Thom spectrum of

the virtual bundle J 1Ld �TX of rank 2. There is a 2n-connected map

�.Sph.J 1Ld //!�1C1XJ
1Ld�TX :

Our proof uses very lightly the theory of parametrised pointed spaces/spectra and is written using1-
categories. We feel that this choice helps in conveying the main ideas more clearly. The unfamiliar reader
is encouraged to think of bundles of pointed spaces/spectra, whilst resting assured that there exists a theory
which renders all statements made here literally true. An encyclopaedic reference is [18]. As we shall
only use basic adjunctions and Costenoble–Waner duality, we suggest to simply look at [16, Appendix A]
for a very readable introduction.

We denote by S� and Sp the1-categories of pointed spaces and spectra, respectively. Likewise, we let
S�=X

D Fun.X; S�/ and Sp=X D Fun.X; Sp/ be the1-categories of parametrised pointed spaces/spectra
over X . (In the definitions, X is seen as an1-groupoid.) We let r W X ! � be the unique map to the
point. We will use the following three standard functors:

the restriction functor: r� W S�! S�=X
;

its right adjoint: r� W S�=X
! S�;

its left adjoint: rŠ W S�=X
! S�:
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The right and left adjoints are given by right and left Kan extensions, respectively. In other words, r� takes
the limit of a functor F 2 S�=X

D Fun.X; S�/, whilst rŠ takes its colimit. We will also use the analogous
functors in the case of parametrised spectra with the same notation. It will be clear from the context
which one we are using. The crucial fact for us is that for any bundle Y !X equipped with a section s
(this gives the data of a pointed space over X ), r�.Y / is the path component of s in the section space.

As a last piece of notation, we will use†1
=X
a�1

=X
to denote the infinite suspension/loop space adjunction

between parametrised pointed spaces and spectra, and use †1 a�1 to denote the usual adjunction in
the unparametrised setting.

On our way to the proof of Theorem 8.11, we first make some formal observations. Loosely speaking,
we would like to say that the section space of a fibrewise infinite loop space is the infinite loop space of
the “section spectrum”. This is made precise in the lemma below.

Lemma 8.12 Let Y 2 S�=X
be a parametrised space over X . We have a natural equivalence of pointed

spaces:
�1r�.†

1
=XY /' r�.�

1
=X†

1
=XY /:

Proof We use the Yoneda lemma and the adjunction r� a r�. Let Z 2 S� be a pointed space. We have

mapS�
.Z;�1r�.†

1
=XY //'mapSp.†

1; r�.†
1
=XY //'mapSp=X

.r�†1Z;†1=XY /

'mapSp=X
.†1=Xr

�Z;†1=XY /'mapS�=X
.r�Z;�1=X†

1
=XY /

'mapS�
.Z; r�.�

1
=X†

1
=XY //:

Almost all manipulations follow from the standard adjunctions. The third equivalence uses the fact that
r�†1Z is the trivial parametrised spectrum with fibre †1Z, and hence is equivalent to †1

=X
r�Z.

We will need two more facts before proving Theorem 8.11. The first one is the following simple
observation. If V ! X is a vector bundle such that its associated sphere bundle Sph.V /! X has a
section s, then we may take the fibrewise infinite suspension †1

=X
Sph.V / 2 Sp=X , using s to give a

basepoint in each fibre. On the other hand, we could have taken the fibrewise one-point compactification
and then suspended using the added point at infinity as a basepoint in each fibre. Up to a suspension,
these are the same parametrised spectra.

Lemma 8.13 Let V ! X be a vector bundle with a nonvanishing section , and let Sph.V /! X be
its associated sphere bundle. Let SVX denote the fibrewise infinite suspension of the fibrewise one-point
compactification of V (using the point at infinity as the basepoint in each fibre). Then

†1=X Sph.V /'�XSVX ;

where �X denotes the desuspension in the category Sp=X .
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Proof Let us scale a nonvanishing section s of V so that it has image in the sphere bundle. We write
D.V / � V for the unit disc bundle of V , which we point using s, and V C for the fibrewise one-point
compactification. We obtain the lemma by applying the fibrewise infinite suspension †1

=X
to the cofibre

sequence Sph.V /!D.V /! V C of parametrised pointed spaces over X .

Recall that the1-category Sp=X is symmetric monoidal, with monoidal unit SX WD r�.S/. (Here and
everywhere else S denotes the sphere spectrum.) The usefulness of the whole machinery set up so
far is contained in the following result. A classical reference is [18, Chapter 18]. In the language of
1-categories, one may read the second section of [16, Appendix A].

Lemma 8.14 (Costenoble–Waner duality) The Costenoble–Waner dualising spectrum of X is S�TXX ,
the spherical fibration associated to the stable normal bundle of X . That is , we have an equivalence of
functors:

r�.�/' rŠ.�˝SX
S�TXX /:

Proof of Theorem 8.11 We start by choosing once and for all a section s of the sphere bundle Sph.J 1Ld /,
which provides us with a basepoint in every fibre. We may therefore apply the free infinite loop space
functor QD�1†1 W S�! S� fibrewise and obtain the following diagram of fibrations:

S2nC1 �1†1S2nC1

Sph.J 1Ld / �1
=X
†1
=X

Sph.J 1Ld /

X X

By the Freudenthal suspension theorem, the map S2nC1!�1†1S2nC1 is .4nC1/-connected. Using
thatX is homotopy equivalent to a 2n-dimensional CW-complex, and that �.�/ sends homotopy pushouts
to homotopy pullbacks, a direct induction on the skeletal filtration shows that the map on section spaces

�.Sph.J 1Ld //! �.�1=X†
1
=X Sph.J 1Ld //

is 2n-connected. (Notice that both spaces are connected, so the choice of s was immaterial.) Using
Lemma 8.12, we obtain

�.�1=X†
1
=X Sph.J 1Ld //' r�.�1=X†

1
=X Sph.J 1Ld //'�1r�.†1=X Sph.J 1Ld //:

We now make the purely formal computation

r�.†
1
=X Sph.J 1Ld //' rŠ.†1=X Sph.J 1Ld /˝SX

S�TXX /' rŠ.�XSJ
1Ld

X ˝SX
S�TXX /

' rŠ.�XSJ
1Ld�TX

X /'�rŠ.S
J 1Ld�TX
X /'�XJ

1Ld�TX ;

where we used Lemma 8.14 for the first equivalence, Lemma 8.13 for the second, and recognised that the
value of rŠ on a spherical fibration is the associated Thom spectrum.
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8.3.2 An example when X D CP2 To show how Theorem 8.11 can be applied in practice, we use
it to prove Proposition 8.10. We hope that this will convince the reader of the computational power of
homotopy-theoretic methods to study spaces of algebraic sections.

Following Theorem 8.11, we should investigate �1C1XJ
1Ld�TX when X D CP2 and L D O.1/.

Because J 1Ld �TX is of rank 2, the spectrum �XJ
2Ld�TX is 1-connective and the bottom homotopy

group is �1 Š Z by the Hurewicz theorem. We consider the fibration

F !�1C1XJ
1Ld�TX

! S1;

where F is the homotopy fibre of the rightmost map, which is taken to induce an isomorphism on �1. A
generator of �1.�1C1XJ

1Ld�TX /Š Z gives a section of that fibration, and we obtain

�1C1XJ
1Ld�TX

' S1 �F:

In particular, F is simply connected with �2.F /Š �2.�1C1XJ
1Ld�TX /. By the Hurewicz theorem

and the universal coefficient theorem, H2.F IZ=2/ŠH2.F IZ/˝Z=2Š �2.F /˝Z=2. We thus wish
to compute �2.�1C1XJ

1Ld�TX /, which we will do using the Adams spectral sequence at the prime 2:

E
s;t
2 D Exts;tA .H

�.XJ
1Ld�TX

IZ=2/;Z=2/) ��.X
J 1Ld�TX /^2 :

(Hence we will only compute the 2-completed group, but this will be enough for our purposes.) The
E2-page is computed by knowing the cohomology H�.XJ

1Ld�TX IZ=2/ as an algebra over the mod 2
Steenrod algebra A. (See [3, Section 3.3] for a very readable introduction.) If U denotes the Thom class
of J 1Ld �TX , the classes in the cohomology of the Thom spectrum XJ

1Ld�TX are given via the Thom
isomorphism as yU where y 2H�.X IZ=2/. At the prime 2, the Steenrod squares can then be computed
from the formula

Sqk.yU /D
X

iCjDk

Sqi .y/Sqj .U /D
X

iCjDk

Sqi .y/wjU;

where wj is the j th Stiefel–Whitney class of J 1Ld � TX . In our case, writing Z=2Œx�=.x3/ for the
cohomology ring of X DCP2, the total Stiefel–Whitney class is given by:

w.J 1Ld �TX/D
�
1 d � 0 mod 2;
1C x d � 1 mod 2:

We used the handy tool [9] to compute the E2-page for us, and obtained Figure 3. From this, standard
arguments about differentials (see eg [3, Section 4.8]) show that

�3.X
J 1Ld�TX /^2 Š

�
Z=2 d � 0 mod 2;
0 d � 1 mod 2:

Therefore

H2.F IZ=2/Š �2.F /˝Z=2Š �3.X
J 1Ld�TX /˝Z=2Š

�
Z=2 d � 0 mod 2;
0 d � 1 mod 2:
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Figure 3: Left: d � 0 mod 2. Right: d � 1 mod 2. Following the established convention, we use
the Adams grading: the horizontal axis is indexed by t � s, and the vertical one by s. Every dot
represents a copy of Z=2. The vertical lines represent multiplication by h0 2 Ext1;1A .Z=2;Z=2/.
We suggest to the unfamiliar reader to look at [3, Section 4.3] for more explanation.

Using the Künneth theorem, we obtain

H2.�
1C1XJ

1Ld�TX
IZ=2/ŠH2.S

1
�F IZ=2/ŠH2.F IZ=2/;

which finishes the proof of Proposition 8.10.

8.4 Stability of p-torsion

In this final section, we study the p-torsion in the homology of the space �C0.Sph.J 1Ld //. On the one
hand, we have just seen in Proposition 8.10 that it depends on d in general. On the other hand, the
result below shows that when the prime p is slightly bigger than the dimension of X , the p-torsion is
independent of L.

Proposition 8.15 Let X be a smooth complex projective variety of complex dimension n and L be a
holomorphic line bundle on it. Let p be a prime such that p � nC 2. Then the fibrewise p-localisation of
the sphere bundle Sph.J 1L/!X is trivial. In particular , we have an equivalence of p-local spaces

�C0.Sph.J 1L//.p/ 'map.X; S2nC1
.p/

/:

As an immediate consequence, combining the proposition above with Corollary 8.1 shows that the
p-torsion in the homology of �hol;ns.X ILd / stabilises when p � dimC X C 2 and d !1.

The proof uses the following result, which we learned from [5, Proposition 4.1]:

Lemma 8.16 For p � 1
2
kC 3

2
, the space map1.S

k
.p/
; Sk
.p/
/ of maps homotopic to the identity is .k�1/-

connected.
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Proof The proof is given in [5], but we sketch it here for convenience. We shall assume that k is odd, as
we will only use this case. Recall the evaluation fibration

�k1S
k
.p/!map1.S

k
.p/; S

k
.p//! Sk.p/:

Using the associated long exact sequence of homotopy groups, it suffices to show that �i .�k1S
k
.p/
/

vanishes for i � k � 1. Using the assumption p � 1
2
kC 3

2
, this follows from Serre’s calculations on

p-torsion in the homotopy groups of spheres.

Proof of Proposition 8.15 Let
S2nC1
.p/

! Sph.J 1L/.p/!X

be the fibrewise p-localisation of Sph.J 1L/!X . By [19, Theorem 5.3], we have a homotopy equivalence

�C0.Sph.J 1L//.p/ ' �C0.Sph.J 1L/.p//:

As the sphere bundle is canonically oriented (using the complex orientation of J 1L), the fibration
Sph.J 1L/.p/!X is classified by a map

X ! B map1.S
2nC1
.p/

; S2nC1
.p/

/:

By Lemma 8.16, the codomain of that map is .2nC1/-connected. As the domain has real dimension 2n,
the classifying map must be nullhomotopic, thus showing that the fibration is trivial.
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1 Introduction

Motivic homotopy theory is a homotopy theory for algebraic varieties, developed by Morel and Voevodsky
[1999]. Since its conception and subsequent use by Voevodsky [2003; 2011] to resolve the Milnor and
Bloch–Kato conjectures, an immense amount of work has gone into the theory, with applications to
algebraic geometry, algebraic number theory, and algebraic topology.

Motivic stable homotopy theory is the home of A1-invariants on algebraic varieties, such as algebraic
K-theory, motivic cohomology, and algebraic cobordism. The universal such invariants are motivic stable
homotopy groups, and as such the internal structure of the motivic stable homotopy groups of spheres
reflects the broad-scale structure of the motivic stable homotopy category. These motivic stable stems
encode deep geometric and number-theoretic information; for example, Morel [2004] showed that the
Milnor–Witt K-theory of a field appears in its stable stems, and Röndigs, Spitzweck and Østvær [Röndigs
et al. 2019; 2021] have identified motivic stable stems in low Milnor–Witt stem in terms of variants of
Milnor K-theory, Hermitian K-theory, and motivic cohomology.

Motivic homotopy theory was originally developed to apply ideas and tools from homotopy theory to
problems in algebraic geometry and algebraic K-theory. Information now flows the other way as well.
After p-completion, C-motivic stable stems capture information about classical stable stems that is not
seen using classical techniques. This has led to the highly successful program of Gheorghe, Isaksen, Wang
and Xu [Isaksen 2019; Isaksen et al. 2023; Gheorghe et al. 2021], yielding groundbreaking advances in
computations of classical stable homotopy groups of spheres. A similar program using R-motivic stable
stems to capture information about C2-equivariant stable stems has also developed [Burklund et al. 2020;
Belmont and Isaksen 2022; Dugger and Isaksen 2017a; 2017b; Guillou and Isaksen 2020; Belmont et al.
2021]. More recently, Bachmann, Kong, Wang and Xu [Bachmann et al. 2022] related F -motivic stable
homotopy theory over a general field F to classical complex cobordism.

All of this has motivated a swath of explicit computations of motivic stable stems over particular base
fields F. We refer the reader to [Isaksen and Østvær 2020] for a general survey, but mention the following
2-primary computations:

F DC Dugger and Isaksen [2010] computed the C-motivic stable stems through the 36 stem, and
these computations were pushed out to the 90 stem in [Isaksen 2019; Isaksen et al. 2023].

F DR Dugger and Isaksen [2017a] computed the first four Milnor–Witt stems over R, and Belmont
and Isaksen [2022] expanded on this to compute the first 11 Milnor–Witt stems over R.

F D Fq Wilson [2016] and Wilson and Østvær [2017] computed the motivic stable homotopy groups of
finite fields in motivic weight zero through topological dimension 18.

There are still many mysteries contained in the motivic stable stems. All of the above computations
were enabled by the motivic Adams spectral sequence, originally introduced by Morel [1999] and further
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developed by Dugger and Isaksen [2010]. This is a motivic analogue of the classical Adams spectral
sequence, which was developed by Adams [1958; 1960] to resolve the Hopf invariant one problem.
Adams used this spectral sequence to prove that the only elements of Hopf invariant one in the classical
stable stems �cl

� are the classical Hopf maps �cl 2 �
cl
1 , �cl 2 �

cl
3 , and �cl 2 �

cl
7 . This theorem has a number

of implications, including classifications of which spheres can be made into H -spaces, which spheres are
parallelizable, which 2-dimensional modules over the Steenrod algebra can be realized by cell complexes,
which dimensions a finite-dimensional real division algebra can have, and more.

This paper is concerned with topics surrounding motivic analogues of the classical Hopf invariant
one problem. There is an element � in the motivic stable stems, represented by the canonical map
� WA2 n f0g ! P1, which refines the classical complex Hopf map �cl. Hopkins and Morel — see [Morel
2004] — showed that � is one of the generators of the Milnor–WittK-theory of the base field. This motivic
� behaves quite differently from the classical Hopf map; most famously, � is not nilpotent, and is generally
not 2-torsion. Because � is not nilpotent, one may consider the �-inverted stable stems ��;�Œ��1�. These
are closely related to Witt K-theory [Bachmann 2022; Bachmann and Hopkins 2020], and have been the
subject of thorough investigation [Andrews and Miller 2017; Guillou and Isaksen 2015; 2016; Ormsby
and Röndigs 2020; Wilson 2018].

Using the theory of Cayley–Dickson algebras, Dugger and Isaksen [2013] have shown that the classical
quaternionic and octonionic Hopf maps �cl and �cl also admit geometric refinements to motivic classes �
and � . All of these motivic Hopf maps �, �, and � are maps of Hopf invariant one, but, unlike classically,
they are not the only such maps. For example, the classical stable stems include into the weight 0 portion
of the motivic stable stems, and �cl, �cl, and �cl give rise to distinct examples of maps of Hopf invariant
one in the motivic setting. If we reformulate the condition of a map ˛ having nontrivial Hopf invariant
as asking that the homology of the 2-cell complex with attaching map ˛ not split as a module over the
motivic Steenrod algebra, then the situation becomes even richer: for example, �2cl admits an R-motivic
refinement to a map of nontrivial Hopf invariant in this sense, closely related to the nonexistent Hopf
map coming next in the sequence �, �, � .

All of this motivates the present work, the purpose of which is three-fold:

(1) to analyze the motivic Hopf invariant one problem and deduce geometric consequences;

(2) to advance our understanding of motivic stable stems over general base fields;

(3) to introduce the motivic lambda algebra, a new tool for motivic computations.

As mentioned above, Adams resolved the Hopf invariant one problem by introducing and studying the
Adams spectral sequence. Morel [1999] and Dugger and Isaksen [2010] have already introduced the
F -motivic Adams spectral sequence, which takes the form

E
�;�;�
2 D Ext�;�;�

AF .MF ;MF /) �F�;�:
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Here AF is the F -motivic Steenrod algebra [Voevodsky 2003; Hoyois et al. 2017], which acts on MF,
the mod 2 motivic cohomology of Spec.F /. This spectral sequence converges to �F�;�, the homotopy
groups of the .2; �/-completed F -motivic sphere [Hu et al. 2011a; Kylling and Wilson 2019]. Implicit is
the assumption that 2 is invertible in F.

In this paper, we bring the motivic Adams spectral sequence back to its classical roots, using it to study the
motivic Hopf invariant one problem. We do not follow Adams’ original approach. Instead, at least in broad
outline, we follow J S P Wang’s approach [1967], which proceeded by first gaining a good understanding
of the E2-page of the Adams spectral sequence. Importing this approach to motivic homotopy theory
requires analyzing the E2-page of the motivic Adams spectral sequence over general base fields in ranges
beyond what is known by previous techniques.

To carry out this analysis, we bring another tool from classical stable homotopy theory into the motivic
context: the lambda algebra. The classical lambda algebra ƒcl is a certain differential graded algebra,
originally constructed by Bousfield, Curtis, Kan, Quillen, Rector and Schlesinger [Bousfield et al. 1966],
whose homology recovers the E2-page of the Adams spectral sequence. The classical lambda algebra
is now a standard member of the homotopy theorist’s toolbox, and we cannot hope to list all of its
applications, but the following are a selection:

(1) Wang’s computation [1967] of the E2-page of the Adams spectral sequence through the 3-line, and
subsequent simplified resolution of the Hopf invariant one problem;

(2) some of the first automated computations of the E2-page of the Adams spectral sequence, including
products and Massey products [Tangora 1985; 1993; 1994; Curtis et al. 1987];

(3) the construction of Brown–Gitler spectra [1973], which played an important role in analyzing the
bo-resolution [Mahowald 1981; Shimamoto 1984], the proof of the immersion conjecture [Cohen
1985], and more [Mahowald 1977; Goerss 1999; Hunter and Kuhn 1999];

(4) the algebraic Atiyah–Hirzebruch spectral sequence for RP1 [Wang and Xu 2016], used as input to
their proof of the nonexistence of exotic smooth structures on the 61-sphere [Wang and Xu 2017];

(5) the only complete computations of the 4- and 5-lines of the Adams E2-term [Chen 2011; Lin
2008].

We expect that the motivic lambda algebra will likewise become a useful member of the motivic homotopy
theorist’s toolbox. We focus in particular on developing the lambda algebra and applying this to the
motivic Hopf invariant one problem. We consider both the unstable problem, with applications toH -space
structures on motivic spheres, and the stable problem, which is concerned with the 1-line of the motivic
Adams spectral sequence. The motivic situation is substantially richer than the classical situation, and
requires us to develop a number of new techniques for motivic computations across general base fields.

Adams’ resolution of the classical Hopf invariant one problem asserted the existence of differentials
d2.haC1/D h0h

2
a in the Adams spectral sequence. There are classes ha in the F -motivic Adams spectral

sequence for any field F, corresponding to the motivic Hopf maps discussed above for a � 3. Using
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Betti realization, it is possible to lift Adams’ differentials to the C-motivic Adams spectral sequence. It
follows that, if F admits a complex embedding, then haC1 must support a nontrivial differential for a� 3.
However, this is insufficient to determine the precise target of the differential, as well as to determine what
happens over other base fields, particularly fields of positive characteristic. The techniques we develop
are geared towards resolving this sort of issue. We use these to obtain a number of new results; let us
give the following here, as it is the most pleasant to state.

Theorem A (Theorem 7.3.1) For an arbitrary base field F of characteristic not equal to 2, there are
differentials of the form

d2.haC1/D .h0C �h1/h
2
a

in the F -motivic Adams spectral sequence , which are nonzero for a � 3.

It is worth making a couple remarks to distinguish this from the classical result.

Remark 1.0.1 Classically, there is at most one possible nontrivial target for a d2-differential on haC1.
As suggested by the target in Theorem A, the motivic situation is more complicated. For example, when
F DR, we show that, if a�4, then the group of potential values of d2.haC1/ is given by F2fh0h2a; �h1h

2
ag.

The general picture is similar, except there may be additional interference coming from the mod 2 Milnor
K-theory of F. This computation requires new techniques for computing the cohomology of the motivic
Steenrod algebra, which is much richer than the analogous classical computation. G

Remark 1.0.2 Even once we have carried out the algebraic work of identifying potential values of
d2.haC1/, the classical proof does not directly generalize to yield Theorem A. In spirit, our proof
follows Wang’s classical inductive proof [1967]. The base case of Wang’s induction is the differential
d2.h4/D h0h

2
3, which follows easily from graded commutativity of stable stems. By contrast, our base

case must include the differential d2.h5/D .h0C �h1/h24. Over R, this differential may be deduced by
combining complex and real Betti realization, but a completely different argument is required to obtain
the differential for other fields. To obtain this differential over other base fields, we use a certain motivic
Hasse principle to reduce to considering fields with simple mod 2 Milnor K-theory, then analyze how the
classical Kervaire class �4 appears in the motivic stable stems. G

Remark 1.0.3 There is another elegant proof of the classical Adams differential d2.haC1/D h20ha, due
to Bruner [1986b, Corollary 1.5], which makes use of power operations in the Adams spectral sequence.
Tilson [2017] has explored analogues of Bruner’s results in the R-motivic setting, but so far these methods
have only succeeded in determining the R-motivic differential d2.haC1/ for a � 3. G

1.1 Brief overview

Now let us give a very brief overview of what we do in this paper, before giving a more thorough summary
in Section 1.2. This paper has three main parts. These parts are not independent, but none rely on the
hardest aspects of the others.
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The first part is purely algebraic, and is the most computationally intensive. In Section 2, we introduce
the F -motivic lambda algebra (Theorem B), and in Section 4 we use the R-motivic lambda algebra
to compute ExtR in filtrations f � 3 (Theorem C). The result is quite complicated, with eight infinite
families of multiplicative generators and numerous relations between these. As we explain in Section 7.1,
this gives information about ExtF for any base field F once the mod 2 Milnor K-theory of F is known.

The second part is shorter, and does not rely on the above computation. In Section 6, after some
preliminaries in Section 5, we consider the motivic analogue of the Hopf invariant one problem in
its classical unstable formulation, concerning unstable 2-cell complexes with specified cup product,
as well as concerning geometric applications such as to H -space structures on motivic spheres. Our
analysis proceeds by a novel reduction to the classical case and other known results, by first formulating a
certain motivic Lefschetz principle (Proposition 5.2.1), then using this to build unstable “Betti realization”
functors over arbitrary algebraically closed fields (Proposition 5.3.2). One consequence of this analysis is
a complete classification of motivic spheres which are represented by smooth schemes admitting a unital
product (Theorem D).

The third part is our main homotopical contribution. In Section 7, we give a detailed study of the 1-line
of the F -motivic Adams spectral sequence. This work has a direct geometric interpretation: permanent
cycles on the 1-line of the motivic Adams spectral sequence classify how the motivic Steenrod algebra
can act on the cohomology of a motivic 2-cell complex. This section does not rely on the full strength of
our computation of ExtR, and should be understandable by the reader familiar with prior work on the
R-motivic Adams spectral sequence. The main theorems in this section are Theorem A above, together
with much more detailed information about the 1-line of the F -motivic Adams spectral sequence for the
particular fields F D R, F D Fq with q an odd prime power, F DQp with p any prime, and F DQ

(Theorem E). As this includes all the prime fields, these computations give information that applies
to an arbitrary base field. When F D R, we completely determine all permanent cycles on the 1-line
by comparison with a computation in Borel C2-equivariant homotopy theory (Theorem F); both the
equivariant computation and the method of comparison are of independent interest.

1.2 Summary of results

We now summarize our work in more detail. We begin with our introduction of the motivic lambda
algebra. The nature of the classical lambda algebra ƒcl [Bousfield et al. 1966] was greatly clarified by
Priddy [1970], who introduced the notion of a Koszul algebra and showed that ƒcl is the Koszul complex
of the classical Steenrod algebra. We carry out the motivic analogue of this, producing the following.

Theorem B (Section 2.4) There is a differential graded algebra ƒF, the F -motivic lambda algebra,
with the following properties:

(1) ƒF may be described explicitly in terms of generators , relations , and monomial basis.
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(2) There is a surjective and multiplicative quasiisomorphism C.AF /!ƒF from the cobar complex
of the F -motivic Steenrod algebra to ƒF. In particular , there is an isomorphism

H�ƒ
F
Š Ext�F

compatible with all products and Massey products. Moreover , the squaring operation Sq0 W Ext�F !
Ext�F lifts to a map � WƒF !ƒF of differential graded algebras.

(3) ƒF generalizes the classical lambda algebra , in the sense that , if F is algebraically closed , then
ƒF Œ��1�DƒclŒ�˙1�. In particular , it is considerably smaller than C.AF /.

Here we have abbreviated Ext�;�;�
AF .MF ;MF / to Ext�F , where the single index refers to filtration, or

homological degree, ie ExtfF DH
f .AF /.

Remark 1.2.1 Several subtleties arise in the construction and identification of the motivic lambda algebra.
We note two interesting points here:

(1) Priddy’s notion [1970] of Koszul algebra is not general enough for our situation: AF is generally
not augmented as an MF -algebra, and MF is generally not central in AF. This forces us to
consider a more general notion of a Koszul algebra, as well as to find new arguments to prove that
AF is Koszul in this more general sense.

(2) As readers familiar with the motivic Adem relations might suspect, the elements � and � of MF

appear in the relations defining the motivic lambda algebra, as well as in its differential and the
endomorphism � lifting Sq0. Determining these formulas precisely is delicate and requires some
careful arguments. G

Remark 1.2.2 As indicated above, we construct the F -motivic lambda algebra as a certain Koszul
complex for the F -motivic Steenrod algebra. The Koszul story produces other complexes as well: for
any AF -modules M and N with M projective over MF, there are complexes ƒF .M;N / serving as
small models of the cobar complex computing ExtAF .M;N /. An amusing special case of this produces
a lambda algebra ƒC2 for the C2-equivariant Steenrod algebra (Remark 2.3.5). G

We use the motivic lambda algebra to study ExtF in low filtration. Before diving into our more extensive
computations, we illustrate the structure of ƒF with some simple examples in Section 3.1, showing how
it may be used to give easy rederivations of some well-known low-dimensional relations in ExtF . We
then carry out our main algebraic computation in Section 4, where we prove the following. Note that
Ext0R D F2Œ��.

Theorem C The structure of ExtR in filtrations f � 3 is as described in Section 4; in particular , the
F2Œ��-module structure is described in Theorem 4.2.12, including a description of multiplicative generators
and the action of Sq0, and the majority of the multiplicative structure is described in Theorem 4.3.7.
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Here we are justified in focusing on ExtR as it is, in a certain precise sense, the universal case (see
Remark 2.2.8). We explain in Section 7.1 how to pass from information about ExtR to information about
ExtF for other base fields F.

Example 1.2.3 (Theorem 4.2.12(1)) The computation of Ext�3R is much more involved than the
corresponding classical computation, and the result is much richer. We refer the reader to Section 4 for
the full statements, but illustrate this here with the following sample. Classically, Ext�3cl is generated as
an algebra by the classes ha and ca for a � 0. By contrast, a minimal multiplicative generating set of
Ext�3R as an F2Œ��-algebra is given by the classes in the following table:

multiplicative generator �-torsion exponent

haC1 1

caC1 1

�b2
a�1.4nC1/cha 2a

�2
a.8nC1/h2aC2 2aC1 � 3

�b2
a�1.2.16nC1/C1/ch2aC3ha 2a � 13

�2
a.4.4nC1/C1/h3aC3 2a � 7

�b2
a�1.16nC1/cca 2a � 7

�2
aC1.8nC1/caC1 2aC2 � 3

�b2
a�1.2.4nC1/C1/cca 2a � 3

Here a; n� 0, and the �-torsion exponent of a class ˛ is the minimal r for which �r˛ D 0; the classes
haC1 and caC1 are �-torsion-free. Note that all of the classes listed are named for their image in ExtC ,
and are not themselves products. G

Example 1.2.4 Observe that the multiplicative generators ha and ca of Ext�3cl appear, with a shift, as
�-torsion-free classes in ExtR. This is a general phenomenon: Dugger and Isaksen [2017a, Theorem 4.1]
produce an isomorphism ExtRŒ��1� ' ExtdclŒ�

˙1�; here Extdcl D Extcl only given a motivic grading
such that Exts;fcl D Ext2sCf;f;sCfdcl . As we discuss in Section 3.2, this in fact refines to a splitting
ExtRŠ ExtdclŒ��˚Ext�-tors

R , where Ext�-tors
R � ExtR is the subgroup of �-torsion; moreover, this splitting

is modeled by a multiplicatively split inclusion z� Wƒdcl!ƒR. The general shape of ExtR forced by this
may be illustrated by the description of the 1-line

(1-1) Ext1R D F2Œ��fha W a � 1g˚
M
a�0

F2Œ��=.�
2a

/f�b2
a�1.4nC1/cha W n� 0g: G

As Ext�3cl is entirely understood by Wang’s computation [1967], the hard work of Theorem C is in
computing the �-torsion subgroup of Ext�3R . This is the most computationally intensive part of the paper,
and proceeds by a direct case analysis of monomials in ƒR in low filtration. In the end, we find that Ext�3R

carries the multiplicative generators listed in Example 1.2.3, and that there are many exotic relations
between these generators. Our computation describes all of this.
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With the algebraic computation of Theorem C in place, we turn to more homotopical topics, namely those
surrounding the Hopf invariant one problem. There are (at least) two good motivic analogues of the Hopf
invariant one problem: one which is unstable, concerning the construction of unstable 2-cell complexes
with nontrivial cup product structure, and one which is stable, concerning the construction of stable 2-cell
complexes with nontrivial AF -module structure. As we recall in Section 6.2, understanding the latter
question is equivalent to understanding the 1-line of the F -motivic Adams spectral sequence; we get to
this in Section 7, which we will discuss further below.

It is the former unstable formulation which has more direct geometric applications. For example, following
[Dugger and Isaksen 2013] on the Hopf construction in motivic homotopy theory, it is directly tied up
with the question of which unstable motivic spheres Sa;b admit H -space structures (see Lemma 6.4.3).
Here Sa;b is the motivic sphere which is A1-homotopy equivalent to †a�bG^bm . We discuss this unstable
formulation in Section 6, which is independent of our other calculations. One pleasant consequence of
this story is the following.

Theorem D (Theorem 6.4.5) The only motivic spheres which are represented by smooth F -schemes
admitting a unital product are S0;0, S1;1, S3;2, and S7;4.

The statement of Theorem D is directly analogous to the classical result that the only spheres admitting
unital products are S0, S1, S3, and S7. Classically, the nonexistence of H -space structures on any other
spheres may be reduced to the Hopf invariant one problem, which was then established by Adams. This
reduction makes use of the instability condition that Sqa.x/D x2 whenever x 2Ha.X/ for some space X.
There is an analogous instability condition for the motivic cohomology of a motivic space, but it holds
only in a smaller range than we would need; as a consequence, some additional input is needed to analyze
the unstable motivic Hopf invariant one problem (see Remark 6.3.2).

This additional input is interesting in itself. It follows from the formulation of the unstable motivic
Hopf invariant one problem that, at least for nonexistence, one may reduce to the case where F is
algebraically closed. In Section 5.2, we explain how work of Wilson and Østvær [2017] implies a certain
Lefschetz principle for suitable 2-primary categories of cellular motivic spectra. When combined with
Mandell’s p-adic homotopy theory [2001], this gives a 2-primary unstable “Betti realization” functor
for any algebraically closed field F, which is well behaved with respect to the mod 2 cohomology of
motivic cell complexes; see Section 5.3. This gives a direct relation between motivic and classical
homotopy theory, and we are then able to analyze the unstable motivic Hopf invariant one problem using
a combination of classical results, work of Dugger and Isaksen [2013] on the motivic Hopf construction,
and work of Asok, Doran and Fasel [Asok et al. 2017] on smooth models of motivic spheres.

Finally, in Section 7, we turn to a study of the 1-line of the F -motivic Adams spectral sequence. After a
few preliminaries, we begin by proving Theorem A, producing the differentials

d2.haC1/D .h0C �h1/h
2
a
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valid for any F (Theorem 7.3.1). As we mentioned above, the main content of this theorem is not the fact
that the classes haC1 for a � 3 support nonzero differentials, but the exact value of the target of these
differentials. We mention two interesting aspects of this computation here:

First, in order to get a more explicit handle on possible targets of d2.haC1/, we reduce to considering the
case where F is a prime field, ie F D Fp with p odd or F DQ. The latter case is then handled with the
aid of a Hasse principle. We explain how work of Ormsby and Østvær [2013] on the structure of MQ

may be used to give a concrete description of ExtQ and of the Hasse map

(1-2) ExtQ! ExtR �
Y

p prime

ExtQp
;

in particular proving this map is injective (Proposition 7.1.3). In this way we reduce to computing the
differentials d2.hn/ over the fields Fp with p odd, Qp with p prime, and R.

Second, the classical argument, using the fact that 2�2 D 0, may be used to compute d2.h4/, but a
new argument is required to produce the differential d2.h5/D .h0C �h1/h24 (Proposition 7.3.3). Once
this differential is resolved, the rest follow by an inductive argument analogous to Wang’s classical
argument [1967]. After a further reduction when F D R, the differential d2.h5/ may be resolved
uniformly in the above choices of base field. In short, to resolve this differential, we lift the Hurewicz map
�cl
� ! �F

�;0 to a map Ext�;�cl ! Ext�;�;0F of spectral sequences (Proposition 5.1.1) and, by considering the
effect of this on the Kervaire class �4, deduce that .h0C �h1/h24 must be hit by h5.

The story does not stop with the differentials d2.haC1/, as Ext1F contains many more classes than these;
recall for instance Ext1R from (1-1). Having resolved these differentials, we move on to giving an explicit
analysis of the 1-line of the F -motivic Adams spectral sequence for a number of base fields F. Our main
results may be summarized in the following.

Theorem E The following are carried out in Section 7:

(1) In Theorem 7.4.9, we compute all d2-differentials out of Ext1R, as well as all permanent cycles in
Ext1R.

(2) In Theorem 7.5.3, for q a prime power satisfying q�1 .mod 4/, we compute all Adams differentials
out of Ext1Fq

, in particular giving all permanent cycles in Ext1Fq
.

(3) In Theorem 7.5.6, for q a prime power satisfying q � 3 .mod 4/, we compute all d2-differentials
out of Ext1Fq

, as well as all higher differentials in stems s � 7, in particular giving all permanent
cycles in Ext1Fq

in stems s � 7.

(4) In Theorem 7.6.2, for p an odd prime , we give as much information about Ext1Qp
as was given for

Ext1Fp
.

(5) In Theorem 7.6.6, we compute all d2-differentials out of Ext1Q2
, as well as all higher differentials

in stems s � 7, in particular giving all permanent cycles in Ext1Q2
in stems s � 7.

(6) In Theorem 7.7.1, we give the same information for Ext1Q as was given for Ext1Q2
.
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Cases (2)–(6) of Theorem E proceed by a direct analysis, combining the Hopf differentials we produced
in Theorem A with arithmetic differentials that may be obtained by comparison with the F -motivic
Adams spectral sequence for integral motivic cohomology. The latter has been computed by Kylling
[2015] for F D Fq with q an odd prime power, by Ormsby [2011] for F DQp with p an odd prime, and
by Ormsby and Østvær [2013] for F DQ2 and F DQ. Case (6), where F DQ, may be read off the
cases F DR and F DQp , using our good understanding of the Hasse map (1-2). As with Ormsby and
Østvær’s computations over Q, the final description of the set of d2-cycles in Ext1Q is quite intricate, but
we feel that our techniques show that understanding the Q-motivic Adams spectral sequence for �Q

�;� is
an accessible problem ripe for future investigation.

The R-motivic computation requires more work. Recall the structure of Ext1R from (1-1). Theorem A
describes what happens on the �-torsion-free summand of this, but says nothing about the large quantity
of �-torsion classes. It is possible to use similar methods to compute all d2-differentials supported on this
�-torsion summand, and we do so in Proposition 7.4.8. However, this is insufficient to determine which
classes in Ext1R are permanent cycles, as higher differentials may, and indeed must, occur.

We resolve this by comparison with Borel C2-equivariant homotopy theory. Behrens and Shah [2020]
formulate and prove an equivalence

.Spcell
R /^.2;�/Œ�

�1�' Fun.BC2; Sp^2 /

between the �-periodic .2; �/-complete cellular R-motivic category and the 2-complete Borel C2-
equivariant category. Define

Exts;f;wBC2
D Exts�w;f

Acl .F2;H
�P1w /;

where P1w is a stunted real projective space. These form the E2-pages of the classical Adams spectral
sequences for the stable cohomotopy groups of infinite stunted projective spaces. The equivalence of
Behrens and Shah gives an effective method of computing these groups by “inverting �” in ExtR. The
�-periodic behavior of ExtR is plainly visible in our computation of Ext�3R , allowing us to directly read
off the structure of Ext�3BC2

(Lemma 7.4.3). In particular,

Ext1BC2
D F2Œ��fha W a � 1g˚

M
a�0

F2Œ��=.�
2a

/f�b2
a�1.4nC1/cha W n 2 Zg

(compare (1-1)). We warn the reader that this naming of classes is incompatible with viewing ExtBC2
as a

collection of ordinary Adams spectral sequences; for example, h0 does not detect 2, but instead the transfer
P10 ! S0. We may use the relatively simple structure of these 1-lines to verify that Ext1R! Ext1BC2

reflects permanent cycles (Lemma 7.4.4), and this reduces the identification of permanent cycles in Ext1R
to the identification of permanent cycles in Ext1BC2

. The problem of �-torsion permanent cycles in Ext1BC2

turns out to be equivalent to the vector fields on spheres problem (Lemma 7.4.5), which was resolved by
Adams [1962]. Together with known information regarding the �-torsion-free classes, this leads to the
following classification of maps †cP1w ! S0 detected in Adams filtration 1.
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Theorem F (Theorem 7.4.7) For a � 0, write aD cC 4d with 0� c � 3, and define  .a/D 2cC 8d .
Then the subgroup of permanent cycles in Ext1BC2

is given by

F2Œ��fh1; h2; h3; �h4g˚
M
a�0

F2Œ��=.�
 .a//f�2

a� .a/�b2
a�1.4nC1/cha W n 2 Zg:

Moreover , one may characterize maps †cP1w ! S0 detected by each of these classes.

1.3 Future directions

The classical lambda algebra has been applied broadly in stable homotopy theory. This suggests several
natural directions for future work, and we list a few here.

1.3.1 Homological computations The homology of the classical lambda algebra can be computed
algorithmically via a method known as the Curtis algorithm. This procedure was refined and implemented
by Tangora [1985] to compute the cohomology of the Steenrod algebra through internal degree 56, as
well as to compute products and Massey products [Tangora 1993; 1994]; further computations of Curtis,
Goerss, Mahowald and Milgram [Curtis et al. 1987] pushed this out to describe the cohomology of the
Steenrod algebra through stem 51. More recently, the Curtis algorithm was used by Wang and Xu [2016]
to compute the algebraic Atiyah–Hirzebruch spectral sequence for RP1, providing the data necessary
for their proof of the uniqueness of the smooth structure on the 61-sphere [Wang and Xu 2017].

Our method for computing Ext�3R is closely related to the homology algorithm of [Tangora 1985], only
modified to take into account the F2Œ��-module structure of ƒR, as well to incorporate some additional
flexibility in choosing representatives for the sake of a more digestible manual computation. By ignoring
this additional flexibility and incorporating the ideas of [loc. cit., Section 3.4], one obtains a Curtis
algorithm for computing the homology of the R-motivic lambda algebra, as well as of other motivic
lambda complexes. The effectiveness of these procedures in higher dimensions remains to be seen.

In addition to its use in computer-assisted computations, the classical lambda algebra has also been used in
[Lin 2008; Chen 2011] to completely compute the cohomology of the classical Steenrod algebra through
filtration 5. In principle, there should be no obstruction to continuing our computation of Ext�3R to higher
filtrations, other than the rather more involved calculations and bookkeeping that this would necessarily
take.

1.3.2 Motivic Brown–Gitler spectra Brown–Gitler spectra [1973] have many applications in classical
algebraic topology, including Mahowald’s analysis [1981; Shimamoto 1984] of the bo-resolution, Cohen’s
solution [1985] of the immersion conjecture, and more [Mahowald 1977; Hunter and Kuhn 1999; Goerss
1999]. The classical lambda algebra was essential for constructing and analyzing Brown–Gitler spectra
[1973; Shimamoto 1984] as above, as well as [Goerss et al. 1986]. Culver and Quigley [2021] introduced
a motivic analogue of the bo-resolution, the kq-resolution, and analyzed it over algebraically closed fields
of characteristic zero. The analysis of the kq-resolution over more general base fields would be greatly
simplified by the existence of motivic Brown–Gitler spectra.
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1.3.3 Unstable motivic Adams spectral sequences The classical lambda algebra ƒcl has certain
subcomplexes ƒcl.n/ which form the E1-page of an unstable Adams spectral sequence:

E1 Šƒ
cl.n/) ��S

n:

Moreover, James’s 2-local fiber sequence [1957]

Sn!�SnC1!�S2nC1;

which gives rise to the EHP sequence, is modeled by short exact sequences [Curtis 1971, Section 11]

0!ƒcl.n/!ƒcl.nC 1/!†nƒcl.2nC 1/! 0;

which are useful for understanding both the unstable complexes ƒcl.n/ and the stable complex ƒcl. It is
natural to ask whether there are analogous subcomplexes of ƒF related to a suitable motivic unstable
Adams spectral sequence. The motivic situation seems to be much more delicate: it is not obvious how
to define such subcomplexes of ƒF, and the nature of the cohomology of motivic Eilenberg–Mac Lane
spaces suggests that a motivic unstable Adams spectral sequence may not be as well behaved. A better
understanding of these topics would shed light both on the nature of ƒF and on unstable F -motivic
homotopy theory.

1.4 Conventions

We maintain the following conventions throughout the paper:

(1) We work solely at the prime 2.

(2) We write F for a base field of characteristic not equal to 2.

(3) We write �F�;� for the homotopy groups of the .2; �/-completed F -motivic sphere spectrum.

(4) Our homotopy and cohomology groups are bigraded by .s; w/, where s is stem and w is weight.

(5) In particular, we write Sa;b for the motivic sphere which is A1-homotopy equivalent to †a�bG^bm .

(6) We write H�;� for reduced mod 2 F -motivic cohomology and H� for reduced ordinary mod 2
cohomology.

(7) We write, for instance, H�;�.XC/ for the unreduced mod 2 motivic cohomology of X.

(8) We will use homological grading even for cohomology classes, in the sense that, if x 2Ha;b.X/,
then we say jxj D .�a;�b/. This allows us to say, for instance, j� j D .0;�1/ and j�j D .�1;�1/,
regardless or whether we are working with homology or cohomology.

(9) We write MF DH�;�.Spec.F /C/ for the unreduced mod 2 motivic cohomology of a point.

(10) We write MF
0 for the portion of MF concentrated on the line s D w, so that MF DMF

0 Œ� �. (The
ring MF

0 may be identified as the mod 2MilnorK-theory of F, by work of Voevodsky; see [Isaksen
and Østvær 2020, Section 2.1] for an overview of the structure of MF ).
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(11) We write ExtF for the cohomology of the F -motivic Steenrod algebra, employing the grading
conventions given in the following two points.

(12) We write ExtfF for the filtration f piece of ExtF .

(13) We write Exts;f;wF � ExtfF for the subset of elements in filtration f with topological stem s and
weight w.

(14) We use a subscript or superscript cl to denote classical objects; in particular, �cl
� are the classical

2-completed stable stems, Acl is the classical mod 2 Steenrod algebra, and Extcl is its cohomology.

(15) We take the binomial coefficient
�
a
b

�
to be aŠ

bŠ.a�b/Š
for 0� b � a, and to be zero otherwise.
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Part I The motivic lambda algebra

2 The motivic lambda algebra

In this section, we show that Priddy’s construction [1970] of the lambda algebra as a certain Koszul
complex can be extended to produce a motivic lambda algebra. As noted in Remark 1.2.1, a more refined
notion of Koszulity is needed to handle the more exotic nature of the MF -algebra AF. The notion of a
Koszul algebra has been generalized in various ways; see [Polishchuk and Positselski 2005] for an account
of some developments in this area. We will use the formulation given in [Balderrama 2023, Section 3],
as this gives a sufficiently general definition of Koszul algebra and explicit description of their associated
Koszul complex. The reader familiar with Koszul algebras will find no surprises in this material.

In Section 2.2, we review the structure of the F -motivic Steenrod algebra AF. We show that AF is in fact
a Koszul algebra in Section 2.3, ultimately by reducing to Priddy’s classical PBW criterion for Koszulity
[Priddy 1970, Section 5]. The F -motivic lambda algebra ƒF is then defined to be the Koszul complex
of AF. We compute the structure of ƒF explicitly, and introduce an endomorphism � of ƒF lifting the
squaring operation Sq0 on ExtF . All of this structure is summarized in one place in Section 2.4.
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2.1 Review of Koszul algebras

This section summarizes the definitions and facts from [Balderrama 2023, Section 3] regarding Koszul
algebras which we will use to construct the motivic lambda algebra. We review this material in some
detail, in order to specialize from the more abstract context considered there. Many of the results we
need have appeared in varying levels of generality throughout the literature; in particular, the definition of
Koszulity we use can be considered as a direct generalization of the homogeneous case considered by
Rezk [2012, Section 4].

We fix throughout this subsection an associative algebra S to serve as our base ring, together with an
associative algebra A which is an S -algebra in the sense of being equipped with an algebra map S ! A.
Equivalently, A is a monoid in the category of S -bimodules. We abbreviate ˝D˝S .

We are most interested in the case where S DMF and A D AF, and so, to avoid some subtle points
regarding signs, we shall assume that S is of characteristic 2. In addition, we suppose throughout that A
is projective as a left S -module.

Definition 2.1.1 Say that A is a graded S -algebra if we have chosen a decomposition AD
L
n�0AŒn�

of S -bimodules such that

(1) S Š AŒ0�;

(2) the product on A restricts to AŒn�˝AŒm�! AŒnCm�.

Say that A is a filtered S -algebra if we have chosen a filtration AŠ colimn!1A�n such that

(1) S Š A�0;

(2) the product on A restricts to A�n˝A�m! A�nCm.

Finally, say that the filtration on a filtered S -algebra A is projective if (both A and) the associated graded
algebra

grA WD
M
n�0

AŒn�; AŒn� WD coker.A�n�1! A�n/

are projective as left S -modules. G

Fix a left A-module M. Write Bun.A;A;M/ and B.A;A;M/ for the unreduced and reduced bar
resolutions of M relative to S ; that is, for the unnormalized and normalized chain complexes associated
to the standard monadic resolution of M with respect to the adjunction LModS � LModA. These are
projective left A-module resolutions provided that M is projective as a left S-module. If A is a filtered
algebra, then Bun.A;A;M/ is a filtered complex, with filtration defined by

(2-1) Bun
n .A;A;M/Œ�m� WD Im

� M
m1C���CmnDm

A˝A�m1
˝ � � �˝A�mn

˝M ! Bun
n .A;A;M/

�
;
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and this descends to a filtration of B.A;A;M/; compare for instance [Priddy 1970, Section 10; Rezk
2012, Section 4; Balderrama 2023, Section 3.5]. If A is augmented, then this augmentation makes S
into an A-bimodule, allowing us to form the bar complex B.A/ WD S ˝A B.A;A; S/ and consider the
homologyH�.A/ WDH�.B.A//, and the filtration of (2-1) descends to a filtration on B.A/. If A is graded,
then A is naturally filtered by A�n D

L
i�nAŒi�; this filtration is split in the sense that AŠ grA, and

likewise the filtration on B.A/ is split with grB.A/D
L
m�0B.A/Œm�. This then passes to a splitting

H�.A/Š
L
m�0H�.A/Œm�.

Definition 2.1.2 [Rezk 2012, Definition 4.4; Balderrama 2023, Definition 3.5.3] We say that A is a
homogeneous Koszul S -algebra provided that

(1) A has been given the structure of a graded S -algebra;

(2) Hn.A/Œm�D 0 for n¤m.

We say that A is a Koszul S -algebra if

(1) A has been equipped with a projective filtration;

(2) grA is a homogeneous Koszul S -algebra. G

Suppose now that A is projectively filtered, and fix a left A-module M which is flat as a left S-module.
The filtration of (2-1) on B.A;A;M/ induced by that on A satisfies grB.A;A;M/Š A˝B.grA/˝M,
and so the convergent spectral sequence associated to this filtration is of signature

(2-2) E1p;q D A˝Hq.grA/Œp�˝M )HqB.A;A;M/; d rp;q WE
r
p;q!Erp�r;q�1:

Definition 2.1.3 Let M be an A-module which is flat as a left S -module. The Koszul resolution of M is
the augmented chain complex

M  K.A;A;M/

defined by
Kp.A;A;M/DE1p;p D A˝Hp.grA/Œp�˝M;

with differential given by the d1-differential of the spectral sequence (2-2). When M is projective as a
left S -module, we define the Koszul complex KA.M;M 0/ as the cochain complex

KA.M;M
0/ WD HomA.K.A;A;M/;M 0/Š HomS .H�.grA/˝M;M 0/;

with differential inherited from that on K.A;A;M/. G

Observe that, by construction, K.A;A;M/ is a subcomplex of B.A;A;M/, and dually KA.M;M 0/ is a
quotient complex of the cobar complex CA.M;M 0/ WD HomA.B.A;A;M/;M 0/. When A is Koszul, the
spectral sequence of (2-2) collapses into the Koszul complex K.A;A;M/, proving the following.
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Theorem 2.1.4 (see [Priddy 1970, Theorem 3.8; Rezk 2012, Proposition 4.8; Balderrama 2023, Theorem
3.5.5]) Suppose that A is a Koszul S -algebra , and fix left A-modules M and M 0.

(1) If M is flat over S, then there is an injective quasiisomorphism K.A;A;M/� B.A;A;M/.

(2) If M is projective over S, then there is a surjective quasiisomorphism CA.M;M
0/!KA.M;M

0/.

In particular , ifM is projective over S, the homology ofKA.M;M 0/ is isomorphic to ExtA.M;M 0/.

This allows us to define Koszul complexes in the generality we need. We now recall some facts from
[Balderrama 2023, Sections 3.6–3.7] describing the structure of Koszul complexes; these are direct
analogues of [Priddy 1970, Theorem 4.6]. We begin by fixing some conventions.

Definition 2.1.5 Fix a left S -module M. Then the dual M_ D LModS .M; S/ carries the structure of a
right S -module by

.f � s/.m/D f .m/ � s:

IfM is in fact an S -bimodule, thenM_ also carries an S -bimodule structure, with left S -module structure

.s �f /.m/D .f .m � s//:

Now, if M is a left S -module and M 0 is an S -bimodule, then there is a comparison map

c WM_˝M 0_! .M 0˝M/_; c.f ˝f 0/.m0˝m/D f 0.m0f .m//:

If M is finitely presented and projective as a left S -module, then this map is an isomorphism. In general,
if M 00 is another left S -module, then we write

M_ y̋ M 00 WD LModS .M;M 00/;
so that, in particular,

M_ y̋ M 0_ Š .M 0˝M/_I

in good cases, this may be realized as a topological tensor product, as the notation suggests. G

The theory of Koszul algebras is closely related to the theory of quadratic algebras; let us fix some notation.

Definition 2.1.6 Fix an S -bimodule B and subbimodule R � B˝B. The quadratic algebra generated
by the pair .B;R/ is the algebra

T .B;R/ WD
M
n�0

Tn.B;R/; Tn.B;R/ WD coker
� X
iCjDn

B˝i�1˝R˝B˝j�1! B˝n
�
;

with multiplication inherited from the tensor algebra T .B/. Similarly, given a subbimoduleR0�B_ y̋ B_

dual to a quotient of B˝B, we define the completed quadratic algebra

yT .B_; R0/ WD
Y
n�0

yTn.B
_; R0/; yTn.B

_; R0/ WDcoker
� X
iCjDn

.B_/
y̋ i�1 y̋R0 y̋ .B_/

y̋ j�1
! .B_/

y̋n

�
:

Say that .B;R/ is a quadratic datum if T .B;R/ is projective. In this case, the dual quadratic datum
to .B;R/ is the pair .B_; R?/, where R? D .T2.B;R//_. G
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The cohomology of a homogeneous Koszul algebra may be explicitly described as follows.

Theorem 2.1.7 (see [Priddy 1970, Theorem 2.5; Rezk 2012, Proposition 4.12; Balderrama 2023,
Theorem 3.6.4]) (1) Let .B;R/ be a quadratic datum. Then H 1.T .B;R//Œ1�Š B_, and the
inclusion B_ �H�.T .B;R// extends to an isomorphism yT .B_; R?/Š

Q
n�0H

n.T .B;R//Œn�.

(2) Let A D
L
n�0AŒn� be a homogeneous Koszul algebra , and let R D ker.AŒ1�˝AŒ1�! AŒ2�/.

Then AŠ T .AŒ1�; R/ is quadratic , and H�.A/Š yT .AŒ1�_; R?/.

Now fix a quadratic algebraADT .AŒ1�; R/ and leftA-modulesM andM 0, supposing thatM is projective
as a left S -module. We may use Theorem 2.1.7 to describe the Koszul complex KA.M;M 0/. Recall that

KnA.M;M
0/D LModA.A˝Hn.A/Œn�˝M;M 0/Š LModS .Hn.A/Œn�˝M;M 0/:

If we suppose that H�.A/ is projective as a left S-module, as holds if A is Koszul, then there is an
isomorphism .Hn.A//

_ ŠHn.A/ of S -bimodules. In this case, we have

KnA.M;M
0/Š LModS .M;Hn.grA/Œn� y̋ M 0/Š LModS

�
M; yTn.AŒ1�

_; R?/ y̋ M 0
�
I

Thus K�A.M;M
0/ is completely described as a graded object by Theorem 2.1.7.

It remains to describe the differential on KA.M;M 0/. Observe first that, if M 00 is an additional A-module,
then there are pairings

oWKnA.M;M
0/˝ZK

n0

A .M
0;M 00/!KnCn

0

A .M;M 00/:

This is a pairing of chain complexes compatible with analogous pairings on cobar complexes and, when
A is Koszul, it is a chain-level lift of the standard composition product in ExtA. In addition, it may be
described in terms of the product structure on yT .AŒ1�_; R?/ as follows (see [Balderrama 2023, Sections
3.2 and 3.7]). Write� for the multiplication on yT .AŒ1�_; R?/. Then, given f WM! yTn.AŒ1�_; R?/ y̋M 0

and g WM 0! yTn0.AŒ1�_; R?/ y̋ M 00, we have

f og D .�˝ 1/ ı .1˝g/ ıf:

In the special case where M DM 0, these pairings give KA.M;M/ the structure of a differential graded
algebra, and give KA.M;M 0/ the structure of a differential graded KA.M;M/-KA.M 0;M 0/-bimodule.
Note that K1A.M;M/D LModS .AŒ1�˝M;M/. The A-module structure on M restricts to an element
QM 2K1A.M;M/, and we have the following.

Theorem 2.1.8 [Balderrama 2023, Theorem 3.7.1] The differential on KA.M;M 0/ is given by

ı WKnA.M;M
0/!KnC1A .M;M 0/; ı.f /DQM of �f oQM

0

:

In particular , if M DM 0, then ı.f / is the commutator ŒQM ; f �.

This theorem describes Koszul complexes for a homogeneous Koszul algebra. Suppose now that A is
an arbitrary Koszul S-algebra, and continue to fix left A-modules M and M 0 with M projective as a
left S-module. The additive and multiplicative structure of the Koszul complexes KA.M;M 0/ depend
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only on the algebra grA and left S -modules M and M 0, and so are still described by Theorem 2.1.7. In
practice, the differential on KA.M;M 0/ may be identified using the following.

Let qR D ker.A�1 ˝ A�1 ! A�2/, and observe that .A�1; qR/ is a quadratic datum. Let Abig DL
n�0A�n. This is a graded algebra, and the inclusion A�1�Abig extends to a map T .A�1; qR/!Abig

of graded algebras.

Theorem 2.1.9 [Balderrama 2023, Theorem 3.7.3] (1) T .A�1; qR/! Abig is an isomorphism of
graded algebras.

(2) Abig is a homogeneous Koszul algebra.

(3) The surjection Abig! A gives rise to short exact sequences

0!KnA.M;M
0/!Kn

Abig.M;M
0/!Kn�1A .M;M 0/! 0;

which are split if A is augmented.

In particular , KA.M;M 0/�KAbig.M;M 0/ is a subcomplex with differential on the target described by
Theorem 2.1.8.

2.2 The motivic Steenrod algebra

We will construct the motivic lambda algebra by applying the theory recalled in Section 2.1 to the mod 2
motivic Steenrod algebra, whose structure we now recall. The conventions of Section 1.4 are in force
throughout this section.

We note in particular that, following these conventions, we take the somewhat unconventional approach
of consistently using homological grading. Thus, for example, � 2H 0;1.Spec.F /C/, but we shall write
j� j D .0;�1/, as this is how it will appear in the lambda algebra.

We begin by recalling the general structure of the base ring MF DH�;�.Spec.F /C/.

Example 2.2.1 For any F, we have MF DMF
0 Œ� �, where

j� j D .0;�1/

and MF
0 �MF is the subring concentrated on the line s D w, isomorphic to the Milnor K-theory of F

taken mod 2. The following are some particular examples of the ring MF
0 . We refer the reader to [Isaksen

and Østvær 2020, Section 2.1] for further details.

� For F D F algebraically closed, such as F DC, we have

MF
0 Š F2

� For F DR the real numbers, we have

MR
0 Š F2Œ��;

where j�j D .�1;�1/.
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� For F D Fq a finite field of odd prime-power order q, we have

M
Fq

0 Š

�
FqŒu�=u2 if q � 1 .mod 4/;
FqŒ��=�2 if q � 3 .mod 4/;

where j�j D juj D .�1;�1/.

� For F DQp the p-adic rationals with p an arbitrary prime, we have

M
Qp

0 Š

8<:
F2Œ�; u�=.�2; u2/ if q � 1 .mod 4/;
F2Œ�; ��=.�2; �� C�2/ if q � 3 .mod 4/;
F2Œ�; �; u�=.�3; u2; �2; �u; ��; �2Cu�/ if q D 2;

where j�j D juj D j�j D .�1;�1/.

See also Section 7.1 for a discussion of MQ. G

Voevodsky [2003] (with minor corrections by Riou [2012]) and Hoyois, Kelly and Østvær [Hoyois et al.
2017] have constructed Steenrod squares

Sqa WHm;n.X/!HmCa;nCba=2c.X/

for a� 0 and shown that they generate the algebra AF of natural operations in mod 2motivic cohomology.
It is convenient to take the convention that Sqa D 0 for a < 0. The relations between these squares are
generated by Sq0 D 1 together with the Adem relations:

Theorem 2.2.2 [Voevodsky 2003, Theorem 10.2; Riou 2012, théorème 4.5.1; Hoyois et al. 2017,
Theorem 5.1] Fix positive integers a and b with a < 2b.

If a is even and b is odd , then

Sqa Sqb D
X

0�j�ba=2c

�b�1�j
a�2j

�
SqaCb�j Sqj C

X
1�j�ba=2c
j odd

�b�1�j
a�2j

�
� SqaCb�j�1 Sqj :

If a and b are odd , then

Sqa Sqb D
X

1�j�ba=2c
j odd

�b�1�j
a�2j

�
SqaCb�j Sqj :

If a and b are even , then

Sqa Sqb D
X

0�j�ba=2c

�j mod 2
�b�1�j
a�2j

�
SqaCb�j Sqj :

If a is odd and b is even , then

Sqa Sqb D
X

0�j�ba=2c
j even

�b�1�j
a�2j

�
SqaCb�j Sqj C

X
1�j�ba=2c
j odd

� b�1�j
a�1�2j

�
� SqaCb�j�1 Sqj :

In all cases , the bounds on summation are not necessary, but give regions where the given binomial
coefficients may be nonzero.
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As with the classical Steenrod algebra, AF admits an admissible basis.

Definition 2.2.3 Given a sequence I D .r1; : : : ; rk/ with ri > 0 for all 1 � i � k, we abbreviate
SqI D Sqr1 : : : Sqrk . Say that SqI is admissible if ri � 2riC1 for all 1� i � k� 1. G

Proposition 2.2.4 [Voevodsky 2003, Section 11] AF is freely generated as a left MF -module by the
admissible squares SqI.

The mod 2 motivic cohomology H�;�.XC/ of any smooth scheme X carries the structure of a left
A-module. These actions satisfy the following Cartan formulas.

Proposition 2.2.5 [Voevodsky 2003, Proposition 9.6; Riou 2012, Proposition 4.4.2] Let a � 0 and
x; y 2H�;�.XC/. Then

Sq2a.xy/D
aX
rD0

Sq2r.x/Sq2a�2r.y/C �
a�1X
sD0

Sq2sC1.x/Sq2a�2s�1.y/;

Sq2aC1.xy/D
aX
rD0

.Sq2rC1.x/Sq2ai�2r.y/CSq2r.x/Sq2a�2rC1.y//

C �

a�1X
sD0

Sq2sC1.x/Sq2a�2s�1.y/:

The action of AF on MF is determined by these Cartan formulas and the following.

Proposition 2.2.6 [Voevodsky 2003; Röndigs and Østvær 2016, Appendix A] The action of AF on MF

satisfies

Sq�1.x/D 0 for x 2MF
0 ; Sq1.�/D �; Sq�2.�/D 0:

As in the classical case, the Cartan formulas of Proposition 2.2.5 may be encoded in a coproduct on the
algebra AF. The resulting structure is not quite a Hopf algebra, but is dual to a Hopf algebroid structure
on the dual Steenrod algebra .AF /_. This complication arises in part due to the following. The Steenrod
algebra AF is an MF -algebra, by way of the homomorphism MF !AF sending an element x 2MF

to the stable operation given by left multiplication by x. However, MF does not land in the center of AF ;
equivalently, AF has nontrivial MF -bimodule structure. We may describe this structure explicitly as
follows.

Proposition 2.2.7 The MF -bimodule structure of AF is determined by

Sqn x D x Sqn for x 2MF
0 ;

Sq2n � D � Sq2nC�� Sq2n�1;

Sq2nC1 � D � Sq2nC1C� Sq2nC�2 Sq2n�1 :
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Proof It suffices to show both sides of each equality coincide when evaluated on an arbitrary cohomology
class. For example, for any X and x 2H�;�.XC/, we have

.Sq2n �/.x/D Sq2n.�x/D
X

iCjDn

.Sq2i �/.Sq2j x/C �
X

iCjDn�1

.Sq2iC1 �/.Sq2jC1 x/

D � Sq2n.x/C �� Sq2n�1.x/

by Proposition 2.2.5. This proves the second equation, and the other cases are similar.

Remark 2.2.8 Although we work in this section over an arbitrary base field F, there is a sense in which
F DR represents the universal case: the class � may be defined over any field F, making MF into an
MR-module, and in all cases we have

AF DMF
˝MR AR:

In fact, the formulas of Proposition 2.2.6 describe an action of AR on MF for which

ExtF Š ExtAR.MR;MF /;

and at least additively this depends only on the F2Œ��-module structure of MF
0 .

It is worth putting this observation in a slightly more general context. The Cartan formulas of Proposition
2.2.5 give the category of left AR-modules a symmetric monoidal structure. If R is a monoid in this
category, then the tensor product R˝MR AR may be equipped with a product with the property that

LModR˝MRAR ' LModR.LModAR/I

this is the semitensor product of [Massey and Peterson 1965]. Moreover, we have

ExtR˝MRAR.R;R/Š ExtAR.MR; R/:

The algebras AF are obtained in the case where RDMF. Another simple class of example is given by
the algebras AR=.�n; �m/, where n and m are such that �m is central in AR=.�n/. A more interesting
example is the following: there is an isomorphism of algebras

AC2 ŠMC2 ˝MR AR;

where AC2 is the C2-equivariant Steenrod algebra, MC2 is the C2-equivariant cohomology of a point,
and AR acts on MC2 as described, for instance, in [Guillou et al. 2020, Section 2] (building on [Hu and
Kriz 2001]). G

2.3 The motivic lambda algebra

We now produce the motivic lambda algebra. For simplicity of notation, we consider the base field F as
fixed, and abbreviate

ADAF ; MDMF

throughout this subsection.
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2.3.1 Koszulity of A We begin by showing that A is Koszul. The algebra A is a projectively filtered
M-algebra under the length filtration: A�n �A is the submodule generated by squares SqI where I is a
sequence of length at most n. In particular,

A�1 DMfSqa W a � 0g

as a left M-module, with the understanding that Sq0 D 1 in A. By Definition 2.1.3, to show that A is
Koszul we must show that grA is homogeneous Koszul. To show that the classical Steenrod algebra
is Koszul, Priddy [1970, Theorem 5.3] developed a PBW criterion for Koszulity. We cannot apply this
criterion directly, in part due to the nontrivial M-bimodule structure of grA. Our strategy is to filter this
issue away, thereby reducing to Priddy’s criterion.

Theorem 2.3.1 A is a Koszul M-algebra.

Proof As A is a projectively filtered algebra, we need only show that grA is a homogeneous Koszul
algebra, ie that Hn.grA/Œm�D 0 for n¤m. To that end, we define a new filtration F� grA on grA by
declaring F�m grA � grA to be generated by elements of the form SqI, where I D .r1; : : : ; rk/ is a
sequence satisfying r1C� � �C rk �m. This filtration is multiplicative, and so we may form its associated
graded algebra gr grA.

The same construction employed in Section 2.1 shows that the filtration F� grA induces a filtration
on the bar complex B.grA/ with associated graded B.gr grA/. This filtration is compatible with the
decomposition

B.grA/Š
M
m�0

B.grA/Œm�;

and so, for each m, there is a convergent spectral sequence

En1 DHnB.gr grA/Œm�)Hn.grA/Œm�:

It is thus sufficient to verify that gr grA is a homogeneous Koszul algebra with respect to the grading
gr grAD

L
m�0 gr grmA. By passing from grA to gr grA, we have filtered away both the nontrivial M-

bimodule structure on grA described in Proposition 2.2.7 and the parts of the Adem relations involving �
which appear in Theorem 2.2.2, and in the end we may identify

gr grAŠMF
˝F2Œ�� grAC:

From here, it is easily seen that the admissible basis of gr grA satisfies Priddy’s PBW criterion [1970,
Section 5.1]. It now follows from [loc. cit., Theorem 5.3] that gr grA is Koszul; the assumption in [loc.
cit.] that the base is a field is not needed so long as everything in sight is free over the base.

Remark 2.3.2 When F DR, the filtration F� grA coincides with the �-adic filtration of grA. The use
of F allows us to apply our argument uniformly to arbitrary base fields, but we could have also proved
Theorem 2.3.1 in the R-motivic case, and deduced the general case from this. Indeed, everything in
Section 2.1 is compatible with base change (see [Balderrama 2023, Lemma 3.5.7]), so Koszulity of AR
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implies that any algebra obtained from the construction of Remark 2.2.8 is Koszul. As an example not
explicitly covered by the statement of Theorem 2.3.1, AC2 is Koszul over MC2 . G

Definition 2.3.3 The F -motivic lambda algebra ƒF is the Koszul complex KAF .MF ;MF / associated
to the Koszul MF -algebra AF, as defined in Definition 2.1.3, where AF acts on MF as described in
Proposition 2.2.6. G

We shall abbreviate ƒ D ƒF throughout the rest of this subsection. Theorem 2.1.4 now implies the
following.

Theorem 2.3.4 Let C.A/ D CA.M;M/ denote the cobar complex of A. Then there is a surjective
multiplicative quasiisomorphism

C.A/!ƒ:

In particular ,
H�ƒŠ Ext�A.M;M/;

and this isomorphism is compatible with all products and Massey products.

Remark 2.3.5 More generally, the theory recalled in Section 2.1 produces and describes Koszul com-
plexes KA.M;M

0/ modeling the cobar complex CA.M;M
0/ for any left A-modules M and M 0 with

M projective over M. Classically, the case where M D H�.RP1/ and M 0 D F2 is of particular
importance. Another amusing example is given over F DR with the observation that KAR.MR;MC2/Š

KAC2 .M
C2 ;MC2/DƒC2 (see Remarks 2.2.8 and 2.3.2). G

2.3.2 The structure of the motivic lambda algebra We will now apply the theory recalled in
Section 2.1 to describe ƒ explicitly. First note that ƒ D

L
m�0ƒŒm� with ƒŒ1� D .AŒ1�/_, where

AŒ1�D coker.M!A�1/. As a left M-module, we may identify

AŒ1�DMfSqr W r � 1g:

Dualizing, we may identify
ƒŒ1�D f�r W r � 0gM

as a right M-module, where �r is dual to SqrC1 in the given basis. Considering internal algebraic degrees
yields j�r j D

�
r C 1;

�
1
2
.r C 1/

˘�
; following our conventions (Section 1.4), we subtract off the filtration

from the algebraic stem to obtain the topological stem, and so instead write j�r j D
�
r;
˙
1
2
r
��

.

We now begin by describing the multiplicative structure of ƒ.

Proposition 2.3.6 The left M-module structure on ƒŒ1� is determined by

x�nD�nx for x 2M0; ��2nC1D�2nC1�C�2nC2�; ��2nD�2n�C�2nC1��C�2nC2�
2:

Proof This follows by dualizing Proposition 2.2.7.

Geometry & Topology, Volume 29 (2025)



The motivic lambda algebra and motivic Hopf invariant one problem 1513

Proposition 2.3.7 If a is odd or b is even , then

�a�2aCbC1 D
X

0�r<b=2

�aCb�r�2aC1Cr

�b�r�1
r

�
;

and if a is even and b is odd , then

�a�2aCbC1 D
X

0�r<b=2

�aCb�r�2aC1Cr

�b�r�1
r

�
� .r�1/ mod 2

C

X
0�r�.bC1/=2

�aCbC1�r�2aC1Cr

 �
1
2
b
˘
�
�
1
2
r
˘�

1
2
r
˘ !

�:

Proof By Theorem 2.1.7, the bimodule of relations defining ƒ as a quadratic algebra with generating
bimodule ƒŒ1� may be identified as AŒ2�_ D ker.AŒ1�_˝AŒ1�_!R_/, where R �AŒ1�˝AŒ1� is the
projection of the subbimodule qR �A�1˝A�1 of Adem relations recalled in Theorem 2.2.2. It follows
by direct computation that this kernel is generated by the indicated relations.

Remark 2.3.8 Unless both a and b are even, the Adem relation expanding a product of the form �a�b

is exactly as in the classical lambda algebra. G

The additive structure of ƒ may be understood just as in the classical case.

Definition 2.3.9 Given a sequence I D .r1; : : : ; rn/, write �I D �r1
� � ��rn

. Call the sequence I
coadmissible if 2ri � riC1 for all 1� i � n� 1. G

Proposition 2.3.10 ƒ is freely generated as a right M-module by classes of the form �I , where I is a
coadmissible sequence.

Proof The relations of Proposition 2.3.7 imply that the coadmissible classes �I generate ƒ as a right
M-module, and we must only verify that they do so freely. Following Remarks 2.2.8 and 2.3.2, there is
an isomorphism

ƒŠƒR
˝MR MI

thus we may reduce to the case where F DR. By construction, ƒ is free as a right M-module. Thus, to
show that the coadmissible classes �I freely generate ƒ over M, it is sufficient to verify the same for
ƒ=.�/Œ��1� over M=.�/Œ��1�. There is an isomorphism ƒ=.�/Œ��1�Šƒcl˝F2

F2Œ�˙1�, so this follows
from the classical case.

Finally, we describe the differential on ƒ by applying Theorem 2.1.8.

Proposition 2.3.11 The differential on ƒ is determined by the Leibniz rule , together with

ı.x/D 0 for x 2M0 ı.�/D �0�; ı.�n/D
X

1�r�n=2

�n�r�r�1

�n�r
r

�
:
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Proof Recall the construction AbigD
L
m�0A�m used in the statement of Theorem 2.1.9. By inspection,

we find that Abig may be identified as the “big motivic Steenrod algebra”, defined with generators and
relations the same as A only without the stipulation that Sq0 D 1. Let ƒbig DKAbig.M;M/, where Abig

acts on M through the quotient Abig!A, ie with Sq0 acting by the identity.

Theorem 2.1.9 tells us that Abig is a homogeneous Koszul algebra, and that there is an inclusion ƒ�ƒbig

of differential graded algebras. As Abig is homogeneous Koszul, Theorem 2.1.7 applies to show that
ƒbig is generated by classes �r for r � �1, subject to relations of the same form as described for ƒ in
Propositions 2.3.6 and 2.3.7. The inclusion ƒ�ƒbig is the obvious one, identifying ƒ as the subalgebra
of ƒbig generated by the classes �r for r � 0.

Theorem 2.1.8 describes the differential on ƒbig as

ı.f /D ŒQ; f �DQ �f �f �Q;

where Q 2ƒbigŒ1�Š .AbigŒ1�/_ is the map AbigŒ1�ŠA�1˝M!M induced by the action of Abig on M.
In the basis AbigŒ1�DA�1 DMfSqr W r � 0g, this map is the projection onto Sq0, which by definition is
the class ��1 2ƒbig. So the differential on ƒbig is given by

ı.f /D Œ��1; f �D ��1f �f ��1;

and ƒ�ƒbig is closed under this. The proposition follows upon expanding out this commutator using
the relations defining the algebra ƒbig.

Remark 2.3.12 The description of the differential onƒ as the commutator ı.f /D Œ��1; f � has appeared
classically as well; see [Bruner 1988, page 83]. G

2.3.3 A closed formula for ı.�n/ Proposition 2.3.11 gives a recursive process for computing ı.�n/. It
is possible to solve this recursion, and we do so here. Recall that the pair .M;A_/ carries the structure
of a Hopf algebroid. In particular, A_ is a commutative ring, and A_

�1 is a quotient of this ring. Now, the
differential ı WƒŒ0�!ƒŒ1� may be described as the composite

�RC �L WƒŒ0�DM!A_!A_�1! coker.M!A_�1/DƒŒ1�;

where �L; �R W M ! A_ are given by �R.m/.a/ D �.ma/ and �L.m/.a/ D �.am/, where � W A D
A˝M M!M encodes the action of A on M.

We may use this interpretation to compute ı.�n/. The full structure of the Hopf algebroid .M;A_/ was
determined by Voevodsky [2003]; however, we only need a small piece of this, which is easily computed
by hand from the structure of A recalled in Section 2.2. We record this piece in the following.

Lemma 2.3.13 There is an isomorphism of rings

A_�1 DMŒ�0; �1�=.�
2
0 C �1�0�C �1�/;

where the quotient map
A_�1!ƒŒ1�
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acts by
��0�

n
1 7! �2n�1C�

for � 2 f0; 1g and n � 0, with the interpretation that ��1 D 0. Moreover , the maps �L; �R WM! A_
�1

act by
�R.x/D x for x 2M; �L.x/D x for x 2M0; �L.�/D � C �0�:

Proof The structure of the ring A_
�1 may be read off the coproduct of A, as given in Proposition 2.2.5,

and its relation with our basis of ƒŒ1� then follows by construction. The behavior of the left and right
units may be read off the M-bimodule structure of A�1 as given in Proposition 2.3.11, together with
knowledge of the counit map � WA�1!M given in Proposition 2.2.6.

The main input to our computation of ı.�n/ is the following elementary computation.

Lemma 2.3.14 In the ring A_
�1, we have

�n0 D
X

�2f0;1g
.n��/=2�i�n�1

��0�
i
1

� iC��1
n�i�1

�
�n�i���2i�nC�:

These bounds on i are not necessary, but give a region where the binomial coefficients may be nonzero.

Proof We first compute �n in the quotient ring

F2Œ�0; �1�=.�
2
0 C �1�0C �1/

of A_
�1, in which both � and � are set to 1. Clearly,

�n0 D
X
0�i�n

.� i1cn;i C �0�
i
1dn;i /

for some cn;i ; dn;i 2 F2. The relation

�n0 D �1.�
n�1
0 C �n�20 /

gives rise to recurrence relations

cn;i D cn�1;i�1C cn�2;i�1; dn;i D dn�1;i�1C dn�2;i�1:

Set c0i;n D cnCi;i and d 0i;n D dnCi;i . Then these relations become

c0i;n D c
0
i�1;n�1C c

0
i�1;n; d 0i;n D d

0
i�1;n�1C d

0
i�1;n;

exactly as seen in Pascal’s triangle. Paired with the initial conditions

c0i;0 D c
0
0;1 D d

0
1;0 D 0; c01;1 D 1D d

0
0;1;

we find that
c0i;n D

� i�1
n�1

�
; d 0n;i D

� i

n�1

�
;
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and thus
cn;i D

� i�1

n�i�1

�
; dn;i D

� i

n�i�1

�
:

Plugging this back in, we find

�n0 D
X
0�i�n

�
� i1

� i�1

n�i�1

�
C �0�

i
1

� i

n�i�1

��
D

X
�2f0;1g
0�i�n

��0�
i
1

� iC��1
n�i�1

�
:

To compute �n0 in A_
�1 itself, recall that j� j D .0;�1/, j�j D .�1;�1/, j�0j D .1; 0/, j�1j D .2; 1/. Solving

j�n0 j D j�
�
0�
i
1�
a�bj

yields
aD n� i � �; b D 2i �nC �:

It follows that
�n0 D

X
�2f0;1g
0�i�n

��0�
i
1

� iC��1
n�i�1

�
�n�i���2i�nC�

in A_
�1. For this binomial coefficient to be nonzero, we require

0� i C �� 1; 0� n� i � 1; n� i � 1� i C �� 1;

giving the stated bounds on summation.

Proposition 2.3.15 The differential ı satisfies

ı.�n/D
X
r�0

�r

 
nC

�
1
2
r
˘

r C 1

!
�n�br=2c�1�rC1:

Proof Following Lemma 2.3.13, to compute ı.�n/ one may compute

�nC .� C �0�/
n

in terms of the standard basis of A_
�1 DMŒ�0; �1�=.�

2
0 C �1�0�C �1�/. Moreover, it is sufficient to work

in the quotient of A_
�1 wherein � and � are set to 1, as the necessary quantity of �’s and �’s may be

recovered by comparing degrees, just as in the proof of Lemma 2.3.14. Using Lemma 2.3.14, we find

1C .1C �0/
n
D

X
1�k�n

�n
k

�
�k0 D

X
1�k�n

�n
k

� X
�2f0;1g
i�0

� iC��1
k�i�1

�
��0�

i
1I

here we are free to omit the bounds of summation on i , as they merely recorded when certain binomial
coefficients were zero. The coefficient of ��0�

i
1 in this sum isX

1�k�n

�n
k

�� iC��1
k�i�1

�
D

X
1�k�n

�n
k

�� iC��1
2iC��k

�
D

�nCiC��1
2iC�

�
I
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here the first equality uses the standard identity
�
a
b

�
D
�
a
a�b

�
, and the second uses Vandermonde’s identity.

Adding in a sufficient number of �’s and � ’s, and converting to ƒŒ1�, we learn

ı.�n/D
X

�2f0;1g; i�0
.i;�/¤.0;0/

�2iC��1

�nCiC��1
2iC�

�
�n�i���2iC�:

Set r D 2i C �� 1. Then
�
1
2
r
˘
D i C �� 1, leading to the given description.

2.3.4 Lift of Sq0 The dual motivic Steenrod algebra A_ is a commutative Hopf algebroid, and thus
its cohomology, which agrees by definition with ExtA.M;M/, is equipped with algebraic Steenrod
operations [Bruner 1986a]. The purpose of this section is to lift the operation Sq0 to an endomorphism
of ƒ. Our approach essentially follows the proof of [Palmieri 2007, Proposition 1.4].

Let C.A/D CA.M;M/ denote the cobar complex of the algebra A; this is by definition the same as the
cobar complex of the Hopf algebroid A_. As A_ is a commutative ring, C.A/ is the Moore complex
of a cosimplicial commutative ring, and the levelwise Frobenius on this cosimplicial commutative ring
induces a map

� W C.A/! C.A/:

This is a map of differential graded algebras, and Sq0 is the map induced by � in homology.

Theorem 2.3.16 The map � W C.A/! C.A/ induced by the levelwise Frobenius descends to a map

� Wƒ!ƒ

of differential graded algebras. This map is given on generators by

�.x/D x2 for x 2M; �.�2n�1/D �4n�1; �.�2n/D �4nC1� C�4nC2�:

Proof Recall Abig and ƒbig from the proof of Proposition 2.3.11. Let C.Abig/ be the cobar complex
for Abig with respect to augmentation of Abig, so that H�C.Abig/ D ƒbig as algebras. The levelwise
Frobenius gives a map

� W C.Abig/! C.Abig/

of differential graded algebras and, by taking homology, this induces a map

� 0 Wƒbig
!ƒbig

of algebras. We claim that to produce � it suffices to show that � 0 restricts to an endomorphism of
ƒ�ƒbig satisfying the given formulas. Indeed, there is an inclusion C.A/� C.Abig/ of algebras, which
does not respect differentials but does commute with the levelwise Frobenius � . It would thus follow
that the restriction � of � 0 to ƒ is induced by the levelwise Frobenius on C.A/. In particular, this would
show that � W C.A/! C.A/ indeed descends to an algebra map � Wƒ!ƒ. That � moreover respects
the differential is inherited from � .
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To understand � 0, it suffices to understand its effect on the generators of ƒbig, ie to understand the map

� 0 WƒbigŒ1�!ƒbigŒ1�:

Recall that ƒbigŒ1�D .AbigŒ1�/_ DA_
�1. This ring was described in Lemma 2.3.13, and � 0 acts on it by

the Frobenius. We find that � 0 satisfies the same formulas as described for � , only with the addition that
� 0.��1/D ��1. In particular, � 0 does restrict to ƒ, and this restriction satisfies the stated formulas.

2.4 Summary

For ease of reference, let us summarize what we have learned in one place. As always, F is a base field
of characteristic not equal to 2.

2.4.1 Generators There is a differential graded algebra ƒF, the F -motivic lambda algebra, together
with a multiplicative quasiisomorphism C.AF /!ƒF, where C.AF / is the reduced cobar complex of AF.
We write ƒF D

L
m�0ƒ

F Œm�, where the differential on ƒF is of the form ı WƒF Œm�!ƒF ŒmC 1�.

The F -motivic lambda algebra ƒF is an MF -bimodule algebra, generated by classes �r 2 ƒF Œ1� for
r � 0. In the trigrading .stem;filtration;weight/, we have

j� j D .0; 0;�1/; j�j D .�1; 0;�1/; j�aj D
�
a; 1;

˙
1
2
a
��
:

A right MF -module basis of ƒF is given by those �r1
� � ��rn

with 2ri � riC1 for 1� i � n� 1.

2.4.2 Relations The F -motivic lambda algebra is a quadratic MF -bimodule algebra. Recall that
MF DMF

0 Œ� �. The MF -bimodule structure of ƒF is determined by

x�nD�nx for x 2MF
0 ; ��2nC1D�2nC1�C�2nC2�; ��2nD�2n�C�2nC1��C�2nC2�

2;

and the quadratic relations are given as follows. Fix a; b � 0. If a is odd or b is even, then

�a�2aCbC1 D
X

0�r<b=2

�aCb�r�2aC1Cr

�b�r�1
r

�
I

and if a is even and b is odd, then

�a�2aCbC1 D
X

0�r<b=2

�aCb�r�2aC1Cr

�b�r�1
r

�
� .r�1/ mod 2

C

X
0�r�db=2e

�aCbC1�r�2aC1Cr

 �
1
2
b
˘
�
�
1
2
r
˘�

1
2
r
˘ !

�:

2.4.3 Differentials The differential on ƒ is determined by the Leibniz rule, together with

ı.x/D 0 for x 2MF
0 ; ı.�/D �0�; ı.�n/D

X
1�r�n=2

�n�r�r�1

�n�r
r

�
:

Moreover, we have

ı.�n/D
X
r�0

�r

 
nC

�
1
2
r
˘

r C 1

!
�n�br=2c�1�rC1:
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2.4.4 The endomorphism � The squaring operation Sq0 W Exts;f;wF ! Ext2sCf;f;wCfF lifts to an
endomorphism � WƒF !ƒF of differential graded algebras, determined by

�.x/D x2 for x 2MF ; �.�2n�1/D �4n�1; �.�2n/D �4nC1� C�4nC2�:

3 Some first examples, and the doubling map

3.1 First examples

Before continuing on, we give some basic examples illustrating the form of the motivic lambda algebra.
In particular, we use ƒF to define some classes in ExtF , and reprove some well-known low-dimensional
relations. This material is meant only to familiarize the reader with ƒF ; we give a more thorough and
entirely self-contained investigation in Section 4.

Given a cycle z 2ƒF, in this section we write Œz� 2 ExtF for the corresponding cohomology class.

Lemma 3.1.1 We have ı.�2a�1/D 0 for all a � 0.

Proof The proof is identical to the proof of [Wang 1967, Proposition 2.2].

This allows us to define the following Hopf elements.

Definition 3.1.2 Let ha WD Œ�2a�1�. G

Lemma 3.1.3 If �D 0 in MF, such as when F is algebraically closed , then ı.�n/D 0 for all n� 0.

Proof This is immediate from the differential ı.�/D �0�.

In general, if � is nilpotent in MF, then various powers of � will be cycles in ƒF. We shall write �n in
place of Œ�n� in this case. We begin by considering some examples in the case where F is algebraically
closed.

Proposition 3.1.4 For F algebraically closed , there is a relation

� � h31 D h2h
2
0:

Proof By definition, � � h31 D Œ�
3
1�� and h2h20 D h

2
0h2 D Œ�

2
0�3�. We have

�20�3 D �
3
1�;

so these classes coincide in ExtF .

Proposition 3.1.5 For F algebraically closed , there is a relation

� � h41 D 0:

However , hn1 ¤ 0 for any n.
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Proof Observe that �0�1 D 0, and thus h1h0 D 0. Combined with Proposition 3.1.4, we find

� � h41 D �h
3
1 � h1 D h2h

2
0 � h1 D 0:

Alternatively, �h41 D Œ�
4
1��, and there is a differential

ı.�22�1/D �
4
1�:

On the other hand, for hn1 to vanish, the class �n1 must be nullhomotopic, ie ı.x/D �n1 for some x 2ƒ.
The class x must live in stem nC 1, weight n, and filtration n� 1, and in this degree ƒ is generated by
the cycle �3�n�21 . So no such x exists.

Next we consider some examples relevant to base fields F over which � does not vanish. We begin by
defining some classes. Note that the differential

ı.�/D �0�

implies that ı.�2
n

/� 0 .mod �2
n

/. This allows for the following definition.

Definition 3.1.6 If F DR, then
�2

a�1

ha WD

�
1

�2
a ı.�

2a

/

�
for a � 1. In general, �2

a�1

ha 2 ExtF is defined by pushing these classes forward along the map
ƒR!ƒF induced by MR!MF (see Remark 2.2.8). G

Remark 3.1.7 Following our convention that ƒF is considered primarily as a right MF -module, it
would be more natural to write ha�2

a�1

for the classes introduced above. We have chosen instead to
work with naming conventions compatible with those in [Belmont and Isaksen 2022], as no confusion
should arise. G

Remark 3.1.8 If �2
a�1

is a cycle in ExtF , then �2
a�1

ha D �
2a�1

� ha. G

Example 3.1.9 We have

�h1D Œ�1�C�2��; �2h2D Œ�3�
2
C�5��

2
C�6�

3�; �4h3D Œ�7�
4
C�11�

2�4C�13��
6
C�14�

7�:

In fact, we may identify �b2
a�1cha D Œ�

2a

�2a�1� for all a � 1. G

The following relation was proved over R by Dugger and Isaksen [2017a, Proof of Lemma 6.2] using
Massey products and May’s convergence theorem. We may use the lambda algebra to provide an explicit
direct proof.

Proposition 3.1.10 There is a relation

.h0C �h1/ � �h1 D 0:

Proof By definition,

h0 � �h1 D Œ�0.�1� C�2�/�; �h1 � �h1 D Œ��1.�1� C�2�/�:
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Expanding, we have

�0.�1� C�2�/D �
2
1��C�1�2�

2
C�2�1�

2; �h1.�1� C�2�/D �
2
1��C�1�2�

2:

But
ı.�3��C�4�

2/D �2�1�
2;

so h0 � �h1 D �h1 � �h1. The proposition follows.

The fact that ı.�n/� 0 .mod �/ allows for the following definition.

Definition 3.1.11 If F DR, then
�2nh0 WD

h
1

�
ı.�2nC1/

i
:

In general, �2nh0 2 ExtF is defined by pushing these classes forward along the map ƒR!ƒF induced
by MR!MF (see Remark 2.2.8). G

Example 3.1.12 We have

h0 D Œ�0�;

�2h0 D Œ�0�
2
C�1�

2�C�3��
3
C�4�

4�;

�4h0 D Œ�0�
4
C�3�

3�3C�4�
2�4C�5�

2�5C�7��
7
C�8�

8�: G

The following proposition was originally proved over R by Dugger and Isaksen [2017a, Proof of
Lemma 6.2] using Massey products, May’s convergence theorem, and analysis of the �-Bockstein
spectral sequence. Using the lambda algebra, the proof amounts to checking that the products of cycle
representatives are equal.

Proposition 3.1.13 There is a relation

�2h0 � h1 D �.�h1/
2:

Proof We may directly compute

�2h0 � h1 D Œ.�0�
2
C�1�

2�C�3��
3
C�4�

4/�1�

D Œ�21�
2�C�2�1��

2
C�22�

3
C�2�3�

4�

D Œ�.�1� C�2�/
2�D �.�h1/

2:

3.2 The doubling map

Dugger and Isaksen [2017a, Theorem 4.1] produce an isomorphism

ExtclŒ�
˙1�Š ExtRŒ��1�;

which doubles internal degrees. We can lift this isomorphism to a quasiisomorphism of lambda algebras.
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Proposition 3.2.1 Let ƒdcl denote the classic lambda algebra , only given a motivic grading where j�nj
has stem 2nC 1 and weight nC 1. For any F, there is a retraction

ƒdcl z�
�!ƒF !ƒF

q
�!ƒdcl

with the following properties:

(1) All maps shown are maps of differential graded algebras respecting � .

(2) z� is given on generators by z�.�n/D �2nC1.

(3) q is given on generators by q.�/D 0, q.�2n/D 0, and q.�2nC1/D �n.

Now say F DR, and write Ext�-tors
R � ExtR for the �-torsion subgroup of ExtR.

(4) The map ExtdclŒ��˚Ext�-tors
R !ExtR induced by z� and the inclusion of �-torsion is an isomorphism.

(5) In particular , z� extends to a quasiisomorphism ƒdcl˝F2
F2Œ�˙1�!ƒRŒ��1�.

Proof The assignments given in (2) and (3) are easily seen to extend to maps of differential graded
algebras, proving (1), and that the resulting sequence is a retraction is clear. Evidently (4) implies (5), so
we are left with proving (4).

It is equivalent to verify that the composite ExtdclŒ��! ExtR! ExtR =Ext�-tors
R is an isomorphism. This

is a split inclusion of free F2Œ��-modules, so for it to be an isomorphism it is sufficient to verify that it is an
isomorphism after inverting �, and for this it is sufficient for the injection ExtdclŒ�

˙1�! ExtRŒ��1� to be
an isomorphism. By Dugger and Isaksen’s isomorphism [2017a, Theorem 4.1] ExtRŒ��1�Š ExtdclŒ�

˙1�,
we find that our map ExtdclŒ�

˙1�! ExtRŒ��1� is an injection between vector spaces of equal finite rank
in each degree, and is thus an isomorphism.

Remark 3.2.2 Proposition 3.2.1 has the following amusing corollary: there is a multiplicative injection

Q W ker.Sq0 W Extcl! Extcl/! Ext�-tors
C ;

acting in degrees as Sq0 would. For example, as z��n0 D �
n
1 , we find that Q.hn0/ D h

n
1 . This provides

another explanation of the fact that h1 is not nilpotent in ExtC . It is natural to ask whether Q accounts for
all indecomposable � -torsion classes in ExtC , but a counterexample is given by the class B6 in stem 55

and filtration 7, as Ext24;7cl D 0. G

4 ExtR in filtrations f � 3

In this section, we use the R-motivic lambda algebra to compute ExtfR for f � 3. Throughout this section,
we shall abbreviate

ƒDƒR:
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4.1 Preliminaries

We begin by describing our strategy for computing ExtR. We rely on the following device, which uses
ideas from Tangora’s work [1985] on the classic lambda algebra to produce something like a chain-level
lift of the �-Bockstein spectral sequence [Hill 2011]. While the algorithm is essentially standard, we
include a detailed description since we were unable to find a reference with the algorithm in precisely the
form we need in the sequel. We begin with some preliminary definitions.

Definition 4.1.1 Let V D F2fxs W s 2 Sg be a (locally) finite F2-vector space with ordered basis.

(1) The leading term of a class x 2 V is the largest term appearing when x is written as a sum of basis
elements.

(2) We write x < x0 when the leading term of x is less than that of x0.

(3) Given another vector space U D F2fxs W s 2 T g with ordered basis, map � W V ! U, and s 2 S and
t 2 T, we write

�.xsC</D yt C<

for the relation that there exist some classes u < xs and v < yt for which �.xsCu/D yt Cv. G

The main technical lemma we need is the following. The reader is invited to skip this lemma on first
reading; the details are not necessary to understand our computation, and we rephrase what we need in
the context of ƒ in Theorem 4.1.4.

Lemma 4.1.2 Let .C; d/ be a chain complex of locally finite and free F2Œ��-modules , and suppose (for
simplicity) that H�C Œ��1�D 0. Choose an ordered basis F2fxs W s 2 T g for C=.�/, and extend this to a
basis F2f�nxs W .s; n/ 2 T �Ng for C, itself ordered by �nxs < �mxt whenever n > m, or else nD m
and s < t . Let f˛s W s 2 Bg be a basis for H�.C=.�//, indexed by a subset B � T with the property that ,
for each ˛s , there is some zs 2 C with leading term xs which projects to a cycle representative of ˛s . Let
B1 � B be the subset of those s for which xs is the leading term of some cycle in C, and let B0 D B nB1.

There is then a unique injection t W B0! B such that

d.xsC</D �
r.s/xt.s/C<

for all s 2 B0. Here r.s/� 1 is an integer uniquely determined by comparing the degrees of xs and xt.s/.
Moreover , t restricts to a bijection t W B0 Š B1, and there is an isomorphism

H�C D
M
s2B0

F2Œ��=.�
r.s//;

where we may take the summand indexed by s to be generated by any class of the form ��r.s/ �d.xsC</

with leading term xt.s/.
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Proof We begin by defining a function t�1 WB1!B. Fix b 2B1; we claim that there exists some s 2B
such that d.xs C</ D xb C<. The function t�1 will then be defined by declaring t�1.b/ to be the
minimal s for which d.xsC</D xbC<.

Indeed, let zb be a cycle with leading term xb which projects to a cycle representative for ˛b . As
H�C Œ�

�1� D 0, necessarily �rzb is nullhomologous for some minimal r � 1. That is, there is some
y 2 C not divisible by � such that d.y/D �rzb . If y D xsC< with s 2 B, then we are done. Otherwise,
as y is a cycle in C=.�/, necessarily y is homologous to some xsCu with u < xs and s 2 B, in which
case there exists some v with d.v/D xsCuCy. We find that

d.xsC</D d.xsCu/D d.xsCuC d.v//D d.y/D �
rzb D �

rxbC<;

as claimed. Thus we have produced the function t�1.

Next we claim that t�1 restricts to a function t�1 W B1! B0. Indeed, suppose towards contradiction that
there are some b 2 B1 such that xt�1.b/ is the leading term of some cycle. That is to say, suppose given
u; v < xt�1.b/ such that

d.xt�1.b/Cu/D xbC<; d.xt�1.b/C v/D 0:

Adding these together, we find
d.uC v/D xbC<:

As uC v < xt�1.b/, this contradicts minimality of t�1.b/. Thus we have a function t�1 W B1! B0.

Next we claim that t�1 is a bijection. It is a function between locally finite sets, and the assumption that
H�C Œ�

�1� D 0 implies that these sets have the same cardinality in each degree. So it is sufficient to
verify that t�1 is an injection. Indeed, suppose towards contradiction that there were some b < c in B1
for which t�1.b/D s D t�1.c/. Thus there are u; v < xs such that

d.xsCu/D xbC<; d.xsC v/D xc C<:

Adding these together, we find
d.uC v/D xc C<:

As uC v < xs , this contradicts minimality of t�1.c/.

By taking the inverse of t�1 W B1! B0, we have thus proved the existence of a bijection t W B0! B1

with the property that d.xsC</D xt.s/C< for all s 2B0. With this t , the given description of H�C is
clear; in effect, we have described how to choose a basis for C for which d is upper triangular, where,
if a diagonal entry is divisible by �r , so too are all entries above it. Compare the notion of a tag from
[Tangora 1985].

It remains to verify uniqueness. Suppose towards contradiction that we have found some other injection
t 0 W B0! B such that d.xsC</D xt 0.s/C< for all s 2 B0. The condition that t 0 ¤ t means that there
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exists some s 2 B0 for which d.xsC</D xt 0.s/C<, but s is not minimal among possible a 2 B0 with
d.xaC</D xt 0.s/C<. Choose such s with t 0.s/ maximal, and let aD t�1.t 0.s// be the minimal a 2B0
with d.xaC</D xt 0.s/C<. So there are u; v < xa for which

d.xaCu/D xt 0.s/C<; d.xaC v/D xt 0.a/C<:

Adding these together, we find that

d.uC v/D xt 0.s/C xt 0.a/C<;

where uC v < xa. If t 0.a/ < t 0.s/, then this reduces to

d.uC v/D xt 0.s/C<;

contradicting minimality of a. If t 0.s/ < t 0.a/, then this reduces to

d.uC v/D xt 0.a/C<;

contradicting maximality of t 0.s/. So there is no such t 0, proving that t is the unique injection satisfying
the required property.

We now specialize to the computation of ExtR. Observe that by Proposition 3.2.1, we may reduce to
considering only the �-torsion subgroup of ExtR. In terms of ƒ, this amounts to ignoring monomials of
the form �I where I is a sequence of odd numbers. We will apply Lemma 4.1.2 to compute this �-torsion
subgroup as follows.

We take as basis of ƒ=.�/ the standard basis �I �n where I is coadmissible (Definition 2.3.9) and n� 0.
We also need to order this basis. In the region where we will compute, our choice of order makes
no difference, in the sense that all “error terms” appearing in “C<” will be divisible by �. But for
concreteness let us say that �I �n < �J �m if n > m, or else n D m and I < J lexicographically, ie if
I D .i1; : : : ; if / and J D .j1; : : : ; jf /, then i1 < j1, or else i1 D j1 and i2 < j2, and so forth.

We must fix some further notation. Let f˛0s W s 2 S0g be a basis for Extcl, and write ˛s 2 ExtC for the
image of ˛0s under the map induced by z� Wƒdcl!ƒC (see Proposition 3.2.1). Extend this to a minimal
generating set f˛s W s 2 Sg for ExtC as an F2Œ� �-module. For s 2 S, let ns denote the � -torsion exponent
of ˛s , so that f˛s�n W s 2S; n<nsg is an F2-basis for ExtC . For each s 2S, choose a distinct coadmissible
monomial �I.s/ which is the leading term of a cycle representative for ˛s in ƒC , making this choice so
that, if s 2 S0, then �I.s/ is in the image of z� . See the discussion following Proposition 4.2.1 for the
particular choices we will take in our computation.

Let B 0 D f.s; n/ W s 2 S; n < nsg. Given b D .s; n/ 2 B 0, write xb D �I.s/�n 2 ƒR. Let B � B 0 be the
subset of pairs not of the form .s; 0/ with s 2 S0. Let B1 � B be the subset of those b such that xb is the
leading term of some cycle, and let B0 D B nB1. Let BŒf �� B be the subset of those b for which xb is
in filtration f, and extend this notation to all the indexing sets under consideration.
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For our computation, we will produce, for every b 2 B0Œf � with f � 2, some t .b/ 2 B such that

ı.xbC</D �
r.b/xt.b/C<;

making this choice so that t WB0!B is injective. Here r.b/� 1 is some integer which may be determined
by comparing the stems of xb and xt.b/.

Definition 4.1.3 In the above situation, we shall write xb! xt.b/�
r.b/. G

Theorem 4.1.4 Fix notation as above. Then:

(1) t is uniquely determined (given our choice of ordered basis).

(2) t restricts to bijections t W B0Œf �Š B1Œf C 1�.

(3) The �-torsion subgroup of ExtfC1R is isomorphic toM
b2B0Œf �

F2Œ��=.�
r.b//;

where the summand corresponding to b 2 B0Œf � is generated by any class of the form

ı.xbC</

�r.b/

with leading term xt.b/.

Proof This follows by specializing Lemma 4.1.2 to the complementary summand of z� Wƒcl �ƒ.

Most notably, the �-torsion in ExtfC1R is obtained by understanding differentials out of ƒŒf �; this is
significantly easier than finding cycles in ƒŒf C 1� directly.

We end with two remarks, which could have been made in the more general context of Lemma 4.1.2.

Remark 4.1.5 More generally, H�.AR=.�m//DH�.ƒ=.�
m// (denoted by Ext.m/ in Section 7) may

be read off our computation as follows. For each b 2 B0, choose ub 2 ƒ such that ub < xb and
ı.xbCub/D �

r.b/xt.b/C<, and let zb D ��r.b/ � ı.xbCub/. Then H�.ƒ=.�m// is given as follows:

(1) For each s 2 S0, there is a summand of the form F2Œ��=.�m/, generated by the image of ˛s .

(2) For each xb! �r.b/xt.b/, there is a summand of the form F2Œ��=.�min.m;r.b///, generated by the
class with cycle representative zs .

(3) For each xb! �r.b/xt.b/, there is a summand of the form F2Œ��=.�m�max.0;m�r.b///, generated
by the class with cycle representative �max.0;m�r.b//.xbCub/. G

Remark 4.1.6 Our approach to computing ExtR via ƒ is closely related to the computation of ExtR via
the �-Bockstein spectral sequence ExtCŒ��) ExtR [Hill 2011]. The precise relation is as follows. For
b D .s; n/ 2 B, let ˛b D ˛s�n, so that f˛b W b 2 Bg is a basis of ExtC . Our ordering on ƒ and choice of
classes xb gives B an order, thus making this into an ordered basis of ExtC . Now, xb ! �r.b/xt.b/ if
and only if dr.b/.˛bC</D �r.b/˛t.b/C< in the �-Bockstein spectral sequence. G
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The above discussion describes how we will compute Ext�3R as an F2Œ��-module. The computation gives
more, as it produces explicit cocycle representatives for our generators of Ext�3R . We will use this in
Section 4.3 to compute products in Ext�3R .

4.2 Extf

R
for f � 3

We now proceed to the computation. We begin by understanding ƒR=.�/ŠƒC .

Proposition 4.2.1 Ext�3C is generated as a commutative F2Œ� �-algebra by classes ha for a�0, represented
in ƒC by �2a�1, and ca for a � 0, represented in ƒC by �2a3�1�

2
2aC2�1

. A full set of relations is given
by

haC1ha D 0; h2aC2ha D 0; h2h
2
0 D �h

3
1; haC3h

2
aC1 D h

3
aC2

for all a � 0. This is free over F2Œ� �, with basis given by the classes in the following table:

class constraints

1

ha a � 0

ha � hb a � b � 0 and a¤ bC 1
ha � hb � hc a � b � c � 0 with a¤ bC 1, b ¤ cC 1 and , if b D c or aD b, then a¤ cC 2

ca a � 0

The only such classes not in the image of z� W Extdcl! ExtC are those in which either h0 or c0 appears.

Proof This is essentially well known, owing to work of Isaksen [2019] on the cohomology of the
C-motivic Steenrod algebra. Alternatively, one may compute H�3.ƒC=.�// following Wang’s approach
[1967], and run the � -Bockstein spectral sequence to recover Ext�3C . One finds that H�3.ƒC=.�// agrees
with Ext�3cl , with two exceptions:

(1) Instead of h20 � h2 D h
3
1, one has h20 � h2 D 0.

(2) There is a new cycle ˛ represented by �22�1.

There is a � -Bockstein differential d1.˛/D �h41, after which we recover the claimed F2Œ� �-module basis
of Ext�3C . The hidden extension h20 �h2 D �h

3
1 was shown in Proposition 3.1.4; alternatively, it is the only

relation compatible with Sq0.h20 � h2/D �
2h21h3 D �

2h32 D Sq0.�h31/.

Proposition 4.2.1 describes a basis for Ext�3C , thus giving our set SŒ�3�. We must also choose lambda
algebra representatives of these classes. We shall choose cn to be represented by �2n3�1�

2
2nC2�1

and
a product hn1

� � � hnk
with n1 � � � � � nk to be represented by �2n1�1 � � ��2nk�1. We warn that these

representatives are not minimal; for example, we have chosen �3�0 as our representative for h2h0, rather
than the minimal representative �2�1. However, they are easily defined and convenient enough for our
computation.
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The following identity will be used frequently in consolidating various cases in our computation. It is an
immediate consequence of the description of � given in Theorem 2.3.16.

Lemma 4.2.2 We have

�a.�0�
n/D �2a�1�

b2a�1.2nC1/c
CO.�2

a�1

/

for all n� 0, the error term being omitted when aD 0.

Remark 4.2.3 Explicitly,

b2a�1.2nC 1/c D

�
2a�1.2nC 1/ if a � 1;
n if aD 0:

This sort of pattern appears frequently throughout our computation, as a consequence of Lemma 4.2.2. G

We now produce the relation “!” described in Definition 4.1.3, proceeding filtration by filtration. To
start, observe that B0Œ0�D f�n W n� 1g.

Proposition 4.2.4 We have

ı.�2
a.2mC1//D �2a�1�

b2a�1.4mC1/c�2
a

CO.�d2
aC2a�1e/

for all a;m� 0. In particular ,

�2
a.2mC1/

! �2a�1�
b2a�1.4mC1/c�2

a

:

Proof When aD 0, as �2 is a cycle mod �2, we may compute

ı.�2mC1/D ı.�/�2mCO.�2/D �0�
2m�CO.�2/;

as claimed. By Lemma 4.2.2, applying �a for a � 1 to this yields

ı.�2
a.2mC1//D .�2a�1�

2a�1.4mC1/
CO.�2

a�1

//�2
a

CO.�2
aC1

/

D �2a�1�
b2a�1.4mC1/c�2

a

CO.�2
aC2a�1

/:

Combining the cases aD 0 and a � 1 yields the proposition.

Corollary 4.2.5 The set B0Œ1� consists of those �2a�1�
n such that n is not of the form 2a�1.4mC 1/

for any m.

We have located the following indecomposable classes.

Definition 4.2.6 For a; n� 0, we declare

�b2
a�1.4nC1/cha

to be the class represented by
��2

a

� ı.�2
a.2nC1//: G
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We now compute out of B0Œ1�.

Proposition 4.2.7 For the combinations of a and b below , we have �2b�1�
2a.2mC1/! the following

monomial :
row case target

.1/ a < b� 1 or aD b �2b�1�2a�1�
b2a�1.4mC1/c�2

a

.2/ a > bC 1 and b ¤ 0 �2a�1�2b�1�
b2a�1.4mC1/c�2

a

.3/ aD b� 1 and mD 2nC 1 �2
2b�1

�2
b.4nC1/�2

b

.4/ aD bC 1 and b ¤ 0 �2
2bC1�1

�b2
b�1.8mC1/c�2

b3

Moreover , these cases are mutually exclusive and altogether exhaust B0Œ1�.

Proof That these cases are mutually exclusive and altogether exhaust B0Œ1� is seen by direct inspection.
As the monomials arising as targets are �-multiples of distinct elements of BŒ2�, it suffices to verify that
for each claim of x! y we have ı.xC</D yC<.

(1) We have

ı.�2b�1�
2a.2mC1//D �2b�1�2a�1�

b2a�1.4mC1/c�2
a

CO.�2
aC2a�1

/:

(2) Note that
�2

a.2mC1/�2b�1 D �2b�1�
2a.2mC1/

C<;

as � is central mod �. Now we have

ı.�2
a.2mC1/�2b�1/D .�2a�1�

b2a�1.4mC1/c�2
a

CO.�2
aC2a�1

//�2b�1

D �2a�1�2b�1�
b2a�1.4mC1/c�2

a

CO.�2
aC1/:

(3) Note that
�b.�0�

2nC1/D �2b�1�
b2b�1.4nC3/c

CO.�/:

Now we have

ı.�b.�0�
2nC1//D �b.ı.�0�

2nC1//D �b.�20�
2n�CO.�2//D �2

2b�1
�2

b.4nC1/�2
b

CO.�2
bC1/:

(4) We have

ı.�2b�1�
2bC1.2mC1//D ı.�b�1.�1�

8mC4//D �b�1.�1ı.�
4/�8mCO.�8//

D �b�1.�23�
8mC1�6CO.�7//D �2

2bC1�1
�2

b�1.8mC1/�2
b3
CO.�2

b3C2b�1

/:

Here the third equality uses the Adem relations �1�3 D 0 and �1�5 D �3�3 to determine the leading
term of �1ı.�4/.

Corollary 4.2.8 The set B0Œ2� consists of those �2b�1�2c�1�
n where b D c or b � cC 2, and where

moreover:

(1) n¤ b2b�1.4mC 1/c and n¤ b2c�1.4mC 1/c for any m.

(2) If b D c D 0, then n is odd.
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(3) If b D c � 1, then n¤ 2b.4mC 1/ for any m.

(4) If b D c � 2, then n¤ 2b�2.8mC 1/ for any m.

We have located the following indecomposable classes.

Definition 4.2.9 For a; n� 0, we declare

�2
a.8nC1/h2aC2

to be the class represented by
��2

aC13
� ı.�2aC1�1�

2aC2.2nC1// G

We now compute out of B0Œ2�.

Proposition 4.2.10 For bD c or b � cC2, we have �2b�1�2c�1�
2a.2mC1/! the following monomial :

# case target

(1) b D c D 0, aD�1, mD 2nC 1 �30�
2n�

(2) b D c � 1, aD b� 1, mD 2nC 1 �3
2b�1

�2
b.2nC1/�2

b

(3) b D c � 0, aD c, mD 2nC 1 �3
2b�1

�b2
b�1.4.2nC1/C1/c

(4) b D c � 1, aD bC 1 �2b�13�1�
2
2bC1�1

�b2
b�2.16mC1/c�2

b�17

(5) b D c � 1, aD bC 2 �2
2bC2�1

�2b�1�1�
b2b�2.2.16mC1/C1/c�2

b�113

(6) b D c � 1, a � bC 3 �2a�1�
2
2b�1

�b2
a�1.4mC1/c�2

a

(7) b D c � 2, aD b� 2, mD 4nC 2 �3
2b�1

�b2
b�2.2.4nC1/C1/c�2

b

(8) b D c � 2, aD b� 2, mD 2nC 1 �2b�23�1�
2
2b�1

�b2
b�3.2.4nC1/C1/c�2

b�23

(9) b D c � 3, a � b� 3 �2
2b�1

�2a�1�
b2a�1.4mC1/c�2

a

(10) b� 2� c D 0, aD 0, mD 2nC 1 �2b�1�
2
0�
2n�

(11) b� 2D c � 1, aD b �2
c.8nC1/�2c3�1�

2
2cC2�1

�2
cC13

(12) b� 2D c � 1, a � bC 2 �2a�1�2b�1�2c�1�
b2a�1.4mC1/c�2

a

(13) b� 3� c � 1, a � b, a¤ bC 1 �2a�1�2b�1�2c�1�
b2a�1.4mC1/c�2

a

(14) b� 2� c � 1, c � a < b, a … fcC 1; b� 1g �2b�1�2a�1�2c�1�
b2a�1.4mC1/c�2

a

(15) b� 2D c � 1, aD c � 1, mD 2nC 1 �3
2cC1�1

�2
c.2nC1/�2

c

(16) b� 3� c � 1, aD c � 1, mD 2nC 1 �2b�1�
2
2c�1�

2c.2nC1/�2
c

(17) b� 2D c � 1, aD cC 1, mD 2nC 1 �3
2b�1

�b2
b�3.4.4nC1/C1/c�2

b�27

(18) b� 3D c � 1, aD cC 1 �3
2cC2�1

�b2
c�1.8mC1/c�2

c3

(19) b� 4� c � 1, aD cC 1 �2b�1�
2
2cC1�1

�b2
c�1.8mC1/c�2

c3

(20) b� 3� c � 1, aD b� 1, mD 2nC 1 �2
2b�1

�2c�1�
2b.2nC1/�2

b

(21) b� 2� c � 1, aD bC 1 �2
2bC1�1

�2c�1�
b2b�1.8mC1/c�2

b3

(22) b� 2� c � 2, a � c � 2 �2b�1�2c�1�2a�1�
b2a�1.4mC1/c�2

a

Moreover , these cases are mutually exclusive and altogether exhaust B0Œ2�.

Geometry & Topology, Volume 29 (2025)



The motivic lambda algebra and motivic Hopf invariant one problem 1531

Proof That these cases are mutually exclusive and altogether exhaust B0Œ2� is seen by direct inspection.
As the monomials arising as targets are �-multiples of distinct elements of BŒ3�, it suffices to verify that
for each claim of x! y we have ı.xC</D yC<.

Each case represents a collection of families of monomials whose leading terms are connected by � .
Thus we may always reduce to the smallest possible c, except in cases (9) and (22), where doing so
would place extra constraints on a. In addition, by working modulo the smallest power of � in which the
proposed target does not vanish, we may always reduce to the smallest possible m.

We may further divide the list of cases provided into three types: those which require no calculations
beyond those carried out in Proposition 4.2.7; cases (15) and (18); and the more interesting cases which do
require additional calculation, producing new indecomposable classes in Ext3R. Here cases (15) and (18)
are not really exceptional; they could be consolidated into cases (16) and (19), only this would require
slightly modifying the setup of Section 4.1, and it is easier to just separate them out. The more interesting
cases are (4), (5), (8), (11), and (17). The remaining less interesting cases may all be handled exactly
the same way as the first two cases of Proposition 4.2.7 were handled. Thus we shall not handle them
individually, and instead only illustrate this point with a verification of (21). With these reductions in
place, the proposition is proved by the following calculations:

(4) Here we are claiming ı.�21�
4C</D �2�

2
3�
7C<. In fact, ı.�21�

4/D �2�
2
3�
7 on the nose.

(5) Here we are claiming ı.�21�
8C</D �27�0��

13C<. Observe that ı.�21�
8/D �33�

4�8CO.�12/,
but �3�4�4 is already seen as a target in case (1). Thus some additional correction term must be added to
�21�

8 to get down to �27�0��
13. Such a correction term is given by

uD �23�
6�4C�3�5�

5�6C�3�6�
4�7C�5�7�

3�10C .�5�8C�6�7/�
2�11C .�11�3C�5�9/�

2�12

C .�8�7C�7�8C�6�9/��
13
I

with this choice of u, we have ı.�21�
8Cu/D �27�0��

13CO.�14/.

(8) Here we are claiming ı.�23�
3C</D �2�

2
3��

3C<. Indeed, let

uD .�3�4C�4�3/�
2�C�3�5�

2�2C�4�5��
3
I

then we have ı.�23�
3Cu/D �2�

2
3��

3CO.�4/.

(11) Here we are claiming ı.�7�1�8C</D �5�27�
2�12. Indeed, let

uD �9�7�
4�8C�9�11�

2�12I

then we have ı.�7�1�8Cu/D �5�27�
2�12CO.�14/.

(15) Here we are claiming ı.�7�1�3C</D �33�
2�2C<. Indeed, let

uD �7�2�
2�C .�9�1C�5�5/�

2�2I

then we have ı.�7�1�3C</D �33�
2�2CO.�3/.
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(17) Here we are claiming ı.�7�1�12C</D �37�
5�14C<. Indeed, let

uD �11�3�
9�6C .�11�4C�12�3C�7�8C�8�7/�

8�7C�27�
9�6C�9�7�

8�8I

then we have ı.�7�1�12Cu/D �37�
5�14CO.�15/.

(18) Here we are claiming ı.�15�1�4C</D �37��
6C<. Indeed, let

uD .�19�3C�11�11/��
6
I

then we have ı.�15�1�4Cu/D �37��
6CO.�7/.

(21) Here we are claiming ı.�2b�1�2c�1�
2bC1.2mC1/C</D �2

2bC1�1
�2c�1�

2b�1.8mC1/�2
b3C<, at

least provided b� 2� c � 1. This case is intended to illustrate all the remaining cases, and is identical in
form to case (2) of Proposition 4.2.7. Recall from Proposition 4.2.7 that

ı.�2b�1�
2bC1.2mC1/

CO.�//D �2
2bC1�1

�2
b�1.8mC1/�2

b3
CO.�2

b3C1/:

As
�2b�1�2c�1�

2bC1.2mC1/
� �2b�1�

2bC1.2mC1/�2c�1 .mod �/;

it follows that

ı.�2b�1�2c�1�
2bC1.2mC1/

CO.�//D ı.�2b�1�
2bC1.2mC1/�2c�1CO.�//

D .�2
2bC1�1

�2
b�1.8mC1/�2

b3
CO.�2

b3C1//�2c�1

D �2
2bC1�1

�2c�1�
2b�1.8mC1/�2

b3
CO.�2

b3C1/;

which gives the desired relation. The remaining cases are either identical in form to this, or simpler in that
they do not require one to first move � around to reduce to a case already considered in Proposition 4.2.7.

This produces the indecomposable classes

�2
a�1.2.16nC1/C1/h2aC3ha; �2

a.4.4nC1/C1/h3aC3; �2
a�1.16nC1/ca;

�2
aC1.8nC1/caC1; �2

a�1.2.4nC1/C1/ca

for a; n� 0, following the same recipe as employed in Definitions 4.2.6 and 4.2.9, only where one must
employ � -iterates of � -multiples of the correction terms u given in Proposition 4.2.10.

Proposition 4.2.10 concludes the work necessary for our computation of the F2Œ��-module structure
of Ext�3R . Let us now summarize in one theorem what we have learned. We wish to give a minimal
generating set of Ext�3R whose elements are products of the indecomposable classes we have found.
Before doing so, let us treat the following subtlety.

By way of example, let x D .1=�2
b

/ı.�2b�1�
2b�1.4mC3// with b � 1, and let ˛ 2 ExtR be the class

represented by x. Our computation in Proposition 4.2.7 combined with the recipe of Theorem 4.1.4
would yield ˛ as an element of a minimal generating set for ExtR. Observe that x has leading term
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�2
2b�1

�2
b.4mC1/. It follows quickly from this that x has the same leading term as the cocycle representative

of .�2
b�1.4mC1/hb/

2 given by the product of those cocycle representatives for �2
b�1.4mC1/hb given in

Definition 4.2.6. However, this does not prove that ˛ D .�2
b�1.4mC1/hb/

2: we have not ruled out the
possibility that ˛CˇD .�2

b�1.4mC1/hb/
2 for some nonzero ˇ represented by a cycle y<�2

2b�1
�2

b.4mC1/.
This is still sufficient to deduce that we may, if necessary, replace ˛ with ˛Cˇ in our minimal generating
set in order to obtain a minimal generating set built as products of indecomposables. It turns out that no
such correction is necessary.

Lemma 4.2.11 Write � W ExtR! ExtC for the quotient. Fix classes ˛; ˇ in Ext1R or Ext2R, at least one of
which is �-torsion and not both in Ext2R. Let r be minimal for which �r˛ D 0 or �rˇ D 0. Fix  2 Ext�3R

not divisible by � and such that �r D 0, and suppose �.˛/ ��.ˇ/D �./. Then ˛ �ˇ D  .

Proof Under the given conditions, there is in fact a unique class in the degree of ˛ � ˇ which is not
divisible by � and is killed by �r . This may be seen by direct inspection of the propositions preceding
this.

We may now state the main theorem of this section.

Theorem 4.2.12 (1) A minimal multiplicative generating set for Ext�3R as an F2Œ��-algebra is given
by the classes in the following table:

multiplicative generator �-torsion exponent

haC1 1

caC1 1

�b2
a�1.4nC1/cha 2a

�2
a.8nC1/h2aC2 2aC1 � 3

�b2
a�1.2.16nC1/C1/ch2aC3ha 2a � 13

�2
a.4.4nC1/C1/h3aC3 2a � 7

�b2
a�1.16nC1/cca 2a � 7

�2
aC1.8nC1/caC1 2aC2 � 3

�b2
a�1.2.4nC1/C1/cca 2a � 3

Here a; n � 0, and the �-torsion exponent of a class ˛ is the minimal r for which �r˛ D 0; the
classes haC1 and caC1 are �-torsion-free.

(2) The operation Sq0 acts on these classes by incrementing a in each row.

(3) The image of these classes under ExtR! ExtC is as their name suggests.

(4) A minimal F2Œ��-module generating set for Ext�3R is given in the following table. In all cases ,
the �-torsion exponent of a given class is the minimal �-torsion exponent of the multiplicative
generators it is written as a product of.
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F2Œ��-module generator constraints

1

ha a � 1

�b2
a�1.4nC1/cha a; n� 0

ha � hb a � b � 1 and a¤ bC 1

ha � �
b2b�1.4nC1/chb a � 1 and b; n� 0, and a¤ b˙ 1

�b2
a�1cha � �

b2a�1.4nC1/cha a; n� 0

�2
a.8nC1/h2aC2 a; n� 0

ha � hb � hc
a � b � c � 1 with a¤ bC 1, b ¤ cC 1,

and if b D c or aD b then a¤ cC 2

ha � hb � �
b2c�1.4nC1/chc

a � b � 1 and c; n� 0 with a¤ bC 1 and c … fa˙ 1; b˙ 1g,
and if aD b then c … fa� 2; a; aC 2g, and if aD bC 2 then c ¤ a

ha � �
b2b�1chb � �

b2b�1.2nC1/chb a � 1 and b; n� 0, and a … fb� 2; b� 1; bC 1g

h0 � h0 � �
2nh0 n� 0

ha � �
2b.8nC1/h2

bC2
a � 1 and b; n� 0, and either a � b� 1 or a � bC 4

�b2
a�1.2.16nC1/C1/ch2aC3ha a; n� 0

�2
a.4.4nC1/C1/h3aC3 a; n� 0

ca a � 1

�b2
a�1.16nC1/cca a; n� 0

�2
aC1.8nC1/caC1 a; n� 0

�b2
a�1.2.4nC1/C1/cca a; n� 0

Proof All of this may be read off the preceding computations, using Lemma 4.2.11 with Proposition 4.2.1
if necessary to write a given class as a product of classes in the given generating set.

We point out the following corollary.

Corollary 4.2.13 The operation � �Sq0 is injective on Ext�3R .

Remark 4.2.14 As indicated in Remark 4.1.6, one may also read off our computation a description of all
differentials in the �-Bockstein spectral sequence ExtCŒ��) ExtR emanating out of filtration at most 2.
We leave this to the interested reader. G

4.3 Multiplicative structure

We now compute the multiplicative structure of Ext�3R . This material is mostly not needed for our study
of the 1-line of the motivic Adams spectral sequence in Section 7; the exception is that we will use the
relation Proposition 4.3.4(4) in the proof of Theorem 7.4.9.
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Already Lemma 4.2.11 produces a large number of relations. For example, it implies that we may always
shift powers of � around in products that do not vanish in ExtC , provided it makes sense to do so, yielding
relations such as

�b2
a�1.4nC1/cha � �

b2b�1.4mC1/chb D ha � �
b2b�1.4.mC2a�b�2.4nC1//C1/chb

for a � bC 2. These were implicitly used in the proof of Theorem 4.2.12. The condition that the product
does not vanish in ExtC is necessary; see Example 4.3.3 below.

We are left only with relations that would be realized as hidden extensions in the �-Bockstein spectral
sequence. These arise from the possible failure of the relations haC1ha D 0 and h2aC2ha D 0 to lift
through ExtR! ExtC .

Remark 4.3.1 The following computations will involve some explicit calculations with cocycle repre-
sentatives. For ease of reference, we collect some important cocycle representatives here:

class cocycle representative

h0 �0

h1 �1

h2 �3

h3 �7

c0 �2�
2
3

c1 �5�
2
7

�2
a

haC1 ��2
aC1

� ı.�2
aC1

/D �aC1.�0/D �
2a

�2aC1�1 D �2aC1�1�
2a

CO.�2
a

/

�2h0 �0�
2C�1�

2�C�3��
3C�4�

4

�4h0 �0�
4C�3�

3�3C�5�
2�5C�7��

7C�8�
8

�h22 �23� C .�3�4C�4�3/�D ��
2
3

�9h22 �23�
9C .�3�4C�4�3/�

8�C�5�3�
8�2CO.�10/

We will use these without further comment. G

We begin with some products in Ext�3R which lift the relation haC1ha D 0.

Proposition 4.3.2 (1) haC1 � �
b2a�1.4.2nC1/C1/cha D �

2a

� �2
a

haC1 � �
2a.4nC1/haC1.

(2) haC1 � �
b2a�1.8nC1/cha D 0.

(3) �2
aC1.4nC1/haC2 � haC1 D �

2aC1

� �2
a.8nC1/h2aC2.

(4) �2
a.8nC1/h2aC2 � haC1 D �

2a

� �b2
a�1.16nC1/cca.

(5) �2
a.8nC1/h2aC2 � �

2a.4mC1/haC1 D �
2a

� �b2
a�1.2.4.mC2n//C1/cca.

(6) haC3 � �
2a.16nC1/h2aC2 D 0.

(7) haC3 � �
2a.8.2nC1/C1/h2aC2 D �

2aC3

� �2
a.4.4nC1/C1/h2aC3.
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Proof In each of these, we may use Sq0 to reduce to the case a D 0. In all cases where the product
does not vanish, the claimed value of the product is the unique nonzero class in its degree which is both
�-torsion and divisible by �, so it suffices to verify the product working modulo the smallest power of �
in which the claimed value does not vanish. In doing so, we may in each case reduce to nDmD 0. With
these reductions in place, the proposition is proved by the following computations:

(1) Here we are claiming h1 � �2h0 D � � �h1 � �h1. Indeed, we may compute

.�0�
2
C�1�

2�C�3��
3
C�4�

4/��1D�
2
1�
2�C�2�1��

2
C�2�2�

3
C�2�3�

4
D�.�1�C�2�/

2
D��.�0/

2;

which represents � � �h1 � �h1.

(2) There are no nonzero �-torsion classes in this degree, so the product must vanish.

(3) Here we are claiming h1 � �2h2 D �2 � �h22. Indeed, we may compute

�1 � �
2�3 D �

2
� ��23

on the nose.

(4) Here we are claiming h1 � �h22 D � � c0. Indeed, we may compute

�1 � ��
2
3 D �2�

2
3�

on the nose.

(5) Here we are claiming �h1 ��h22D � ��c0. For this, it suffices to work mod �2. Here we may compute

��1 � ��
2
2 D � ��2�

2
3� CO.�

2/;

and the claim follows.

(6) Here we have reduced to aD 0 but not yet to nD 0. The only nonzero �-torsion class in this degree
is �6�16nC1c1, so it suffices to work mod �7. In doing so, we may now reduce to nD 0. Indeed, we have

��23 ��7 D 0;

and the claim follows.

(7) Here we are claiming h3 � �9h22 D �
8 � �5h33. For this, it suffices to work mod �9. Here we may

compute
.�23�

9
C .�4�3C�3�4/�

8�C�5�3�
8�2/ ��7 D �

3
7�
5�8CO.�9/;

yielding the claim.

Example 4.3.3 We have
�2h2 � h

2
1 D �

3c0; h2 � .�h1/
2
D 0:

This serves as a warning that one cannot in general freely shift around powers of � in products. G
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We now give some products that lift the relation h2aC2ha D 0.

Proposition 4.3.4 (1) h2aC2 � �
b2a�1.16nC1/cha D 0.

(2) h2aC2 � �
b2a�1.4.2nC1/C1/cha D �

2aC1

� �b2
a�1.2.4nC1/C1/cca.

(3) h2aC2 � �
b2a�1.8.2nC1/C1/cha D �

2a3 � �2
aC1

haC2 � �
2a.8nC1/h2aC2.

(4) �2
aC2

haC3 � �
2aC2.4nC1/haC3 � haC1 D �

2aC13 � �2
a.4.4nC1/C1/h3aC3.

(5) haC1 � haC3 � �
2aC2.4nC1/haC3 D �

2aC2

� �2
aC1.8nC1/caC1.

(6) �2
aC1.8nC1/h2aC3 � haC1 D 0.

Proof As in the proof of Proposition 4.3.2, we may use Sq0 to reduce to the case aD 0, and in all cases
where the product does not vanish may reduce to nD 0. With these reductions in place, the proposition is
proved by the following computations:

(1) There are no nonzero �-torsion classes in this degree, so the product must vanish.

(2) Here we are claiming h22 � �
2h0 D �

2 � �c0. For this, it suffices to work mod �3. Recall that �2h0 is
represented by �0�2C�1�2�CO.�3/. We may compute

.�0�
2
C�1�

2�/ ��23 D �
2
��2�

2
3� CO.�

3/;

and the claim follows.

(3) Here we are claiming h22 � �
4h0 D �

3 � �2h2 � �h
2
2. For this, it suffices to work mod �4. Observe that

h2 � h2 � �
4h0 D h2 � �

2h2 � �
2h0 D �

2h2 � h2 � �
2h0 D �

2h2 � �
2h2 � h0

by Lemma 4.2.11. We may now compute

�0 � �
2�3 � �

2�3 D �
3
��33�

3
CO.�4/;

yielding the claim.

(4) Here we are claiming �4h3 � �4h3 � h1 D �6 � �5h33. For this, it suffices to work mod �7. Here we
may compute

�1 � �
4�7 � �

4�7 D �
6
��37�

5
CO.�7/;

yielding the claim.

(5) Here we are claiming h1 � h3 � �4h3 D �4 � �2c1. For this, it suffices to work mod �5. Here we may
compute

�1 � �
4�7 ��7 D �

4
��5�

2
7�
2
CO.�6/;

yielding the claim.

(6) There are no nonzero �-torsion classes in this degree, so the product must vanish.
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The preceding propositions leave open three families of products. A complete resolution of these requires
the following, which appeared as a conjecture in an earlier version of this work. We thank Dugger, Hill
and Isaksen for supplying a proof.

Lemma 4.3.5 (Dugger, Hill and Isaksen) There are relations

(1) �4mC1h1 � �
2lh0 D �h1 � �

2.2mCl/h0;

(2) �4.4mC1/h3 � �
8lC1h22 D �

4h3 � �
8.2mCl/C1h22;

(3) �8mC1h22 � �
2lh0 D �h

2
2 � �

2.2mCl/h0.

Proof These will be proved using Massey product-shuffling techniques. The Massey products we require
are most easily computed using the �-Bockstein spectral sequence; see especially [Belmont and Isaksen
2022, Section 7.4] for a discussion of Massey products in ExtR.

(1) By induction on m, it suffices to show

�2lh0 � �
4mC5h1 D �

2lC4h0 � �
4mh1

for m� 0. Observe that

�4mC5h1 D h�
2; �2�2h2; �

4mC1h1i; �2lC4h0 D h�
2l ; �2; �2�2h1i

with no indeterminacy. We may therefore shuffle

�2lh0 ��
4mC5h1D �

2lh0h�
2; �2�2h2; �

4mC1h1iD h�
2lh0; �

2; �2�2h2i�
4mC1h1D �

2lC4h0 ��
4mC1h1:

(2) By induction on m, it suffices to show

�8lC1h22 � �
4.4mC1/C16h3 D �

8lC17h22 � �
4.4mC1/h3

for m� 0. Observe that

�4.4mC1/C16h3 D h�
8; �8�8h4; �

4.4mC1/h3i; �8lC17h22 D h�
8lC1h22; �

8; �8�8h4i

with no indeterminacy. We may therefore shuffle

�8lC1h22 � �
4.4mC1/C16h3 D �

8lC1h22h�
8; �8�8h4; �

4.4mC1/h3i

D h�8lC1h22; �
8; �8�8h4i�

4.4mC1/h3 D �
8lC17h22 � �

4.4mC1/h3:

(3) By induction on m, it suffices to show

�2lh0 � �
8mC9h22 D �

2lC8h0 � �
8mC1h22

for m� 0. Observe that

�8mC9h22 D h��
4h3; �

7; �8mC1h22i; �2lC8h0 D h�
2lh0; ��

4h0; �
7
i

with no indeterminacy. We may therefore shuffle

�2lh0 � �
8mC9h22 D �

2lh0h��
4h3; �

7; �8mC1h22i

D h�2lh0; ��
4h0; �

7
i�8mC1h22 D �

2lC8h0 � �
8mC1h22:
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From here, we have the following.

Proposition 4.3.6 Write 2mC l C 1D 2k.2nC 1/. Then the following hold :

(1) �2
a.4mC1/haC1 � �

b2a�1.4lC1/cha D �
2a.2kC1�1/ � haC1 � �

2aCk.4nC1/haCkC1.

(2) �2
aC2.4mC1/haC3 � �

2a.8lC1/h2aC2 D �
2aC1.2kC2�3/ � haC1 � haC3 � �

2aCkC2.4nC1/haCkC3.

(3) �2
a.8mC1/h2aC2 � �

b2a�1.4lC1/cha D �
2a.2kC1�1/ � h2aC2 � �

2aCk.4nC1/haCkC1.

Proof In each of these, we may use Sq0 to reduce to the case aD 0. By working modulo the smallest
power of � in which the claimed product does not vanish, we may reduce to the case n D 0. By
Lemma 4.3.5, we may moreover reduce to the case m D 0. The proposition is now proved by the
following computations:

(1) Here we are claiming �h1 ��2.2
k�1/h0D�

2kC1�1 �h1 ��
2k

hkC1. Recall that �2.2
k�1/h0 is represented

by ��1ı.�2.2
k�1/C1/. Now, the Leibniz rule implies

��1ı.�2.2
k�1/C1/ � ��1 D �

�1ı.�2
kC1

/ ��1C �
�1�2.2

k�1/C1
� ı.�/ ��1:

The second summand vanishes, as ı.�/ ��1 D ��0 ��1 D 0; the first represents �2
kC1�1 � �2

k

hkC1 � h1,
yielding the claimed relation.

(2) Here we are claiming �4h3��8.2
k�1/C1h22D�

2.2kC2�3/�h1�h3��
2kC2

hkC3. Recall that �8.2
k�1/C1h22

is represented by ��6ı.�1�8.2
k�1/C4/. Now, the Leibniz rule implies

��6ı.�1�
8.2k�1/C4/ � �4�7 D �

�6�1 � ı.�
2kC3

/ ��7C �
�6�1 � �

8.2k�1/C4
� ı.�4/ ��7:

The second term vanishes, as ı.�4/��3D �2�3 ��7D 0; the first represents �2.2
kC2�3/ �h1 �h3 ��

2kC2

hkC3,
yielding the claimed relation.

(3) Here we are claiming �h22 ��
2.2k�1/h0D�

2kC1�1 �h22 ��
2k

hkC1. Recall that �2.2
k�1/h0 is represented

by ��1ı.�2.2
k�1/C1/. Now, the Leibniz rule implies

��1ı.�2.2
k�1/C1/ � ��23 D �

�1ı.�2
kC1

/ ��23C �
�1�2.2

k�1/C1
� ı.�/ ��23:

The second term vanishes, as ı.�/ ��23 D ��0 ��
2
3 D 0. The first summand represents �2

kC1�1hkC1 � h
2
2,

yielding the claimed relation.

The relations above suffice to write any product in Ext�3R in terms of the basis given in Theorem 4.2.12.
Thus we have the following.

Theorem 4.3.7 A full set of relations for Ext�3R is given by those visible relations which may be deduced
from Lemma 4.2.11 together with the products listed in Propositions 4.3.2, 4.3.4, and 4.3.6.
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Part II The motivic Hopf invariant one problem

5 Some homotopical preliminaries

With the algebraic computation of Section 4 out of the way, we now proceed to more homotopical
considerations. This brief section collects a couple of constructions that will be used in the following
sections. Explicitly, Section 5.1 will be used in our computation of d2.h5/ in Section 7, and Section 5.3
will be used in our discussion of the unstable Hopf invariant one problem in Section 6.

5.1 The Hurewicz map

The constant functor c W Spcl! SpF has a lax symmetric monoidal right adjoint c�, described by

c�.X/D SpF .S0;0; X/:

In particular, the unit of c�.S0;0/ gives a ring map

S0! c�.S0;0/;

and on homotopy groups this yields a Hurewicz map

c W �cl
� ! �F�;0:

Proposition 5.1.1 For any F, there is map

c W Exts;fcl ! Exts;f;0F

of multiplicative spectral sequences , converging to the Hurewicz map

c W �cl
� ! �F�;0:

Moreover , c commutes with Sq0 and satisfies c.h0/D h0C �h1.

Proof Write HF2 for the ordinary mod 2 Eilenberg–Mac Lane spectrum and HFF2 for the motivic
spectrum representing mod 2 motivic cohomology. Then c�.HFF2 /DHF2, thereby giving maps

HF˝n2 ' c�.HFF2 /
˝n
! c�..HFF2 /

˝n/:

Thus there is a map from the canonical Adams resolution of the sphere to the restriction along c� of the
canonical Adams resolution of the F -motivic sphere. On homotopy groups, this gives a map from the
cobar complex of Acl to the weight 0 portion of the cobar complex of AF, and passing to homology we
obtain a map

Exts;fcl ! Exts;f;0F

which is multiplicative and commutes with Sq0, and by construction this is a map of spectral sequences
converging to the Hurewicz map. That c.h0/D h0C�h1 follows as these are the classes detecting 2 (see
for instance [Isaksen and Østvær 2020, Remark 6.3]).
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5.2 The Lefschetz principle

The Lefschetz principle asserts, informally, that “everything” which is true over C is true over any
algebraically closed field. In this subsection, we note how one may read off a certain motivic Lefschetz
principle from [Wilson and Østvær 2017].

So far, we have primarily been concerned with F -motivic homotopy theory for F a field of characteristic
not equal to 2. For this subsection, we extend our notation to apply also when F is some ring in which 2
is invertible. We shall write S0;0 for the HFF2 -nilpotent completion of the F -motivic sphere spectrum.
When F is a field, this is the .2; �/-completion of the F -motivic sphere spectrum, and, when F is an
algebraically closed field, this reduces to a 2-completion [Hu et al. 2011a; Kylling and Wilson 2019].
Let SpF2 denote the category of modules over this completed F -motivic sphere spectrum. In addition,
let SpF;cell

2 � SpF2 denote the cellular subcategory, ie the category generated by the spheres Sa;b under
colimits.

Proposition 5.2.1 Let F be an algebraically closed field. Then there is an equivalence

SpF;cell
2 ' SpC;cell

2 :

Moreover , this is compatible on Adams spectral sequences with the isomorphism ExtF Š ExtC .

Proof First suppose that F is of odd characteristic p. We follow the methods of [Wilson and Østvær
2017, Section 6]. Let W.F / be the ring of Witt vectors on F, and choose an algebraically closed field L
of characteristic 0 together with embeddings

C! L W.F /! F:

This gives rise to base change functors

SpC
! SpL SpW.F /! SpF ;

and, in particular, maps

(5-1) �C
�;�! �L�;� �

W.F /
�;� ! �F�;�:

Although W.F / is not a field, Wilson and Østvær [2017] show that its Steenrod algebra and Adams
spectral sequence are still well behaved, and [loc. cit., Corollary 6.3] that the above maps are modeled on
motivic Adams spectral sequences by a zigzag of isomorphisms

ExtC! ExtL ExtW.F /! ExtF :

It follows that (5-1) is a zigzag of isomorphisms. In particular, consider the zigzag

SpC;cell
2 ! SpL;cell

2  SpW.F /;cell
2 ! SpF;cell

2 :

This is a zigzag of colimit-preserving functors of compactly generated stable categories which are
equivalences on subcategories of compact generators, and is thus a zigzag of equivalences. This yields
the canonical equivalence SpC;cell

2 ' SpF;cell
2 .
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If F is of characteristic zero, then we may apply the same argument instead to a zigzag of the form

C! L F

with L algebraically closed.

5.3 Betti realization

If X is a smooth scheme over C, then the space of complex points of X is a complex manifold. This
refines to give Betti realization functors [Morel and Voevodsky 1999] from C-motivic spaces to ordinary
spaces, and from C-motivic spectra to ordinary spectra, with a number of nice properties. We may use
the Lefschetz principle of Proposition 5.2.1 to obtain an analogue for an arbitrary algebraically closed
field F.

Let S0 denote the 2-completed sphere spectrum, and Spcl
2 the category of modules thereover.

Proposition 5.3.1 Let F be an algebraically closed field. Then there is a symmetric monoidal “Betti
realization” functor

Be W SpF;cell
2 ! Spcl

2 ;

factoring through an equivalence from the category of modules over S0;0Œ��1� in SpF;cell
2 to Spcl

2 , with the
following properties:

(1) Be.�/D 1. In particular , Be.Sa;b/D Sa, so that Be induces a map �Fs;w ! �cl
s , and these patch

together to an isomorphism �F�;�Œ�
�1�Š �cl

� Œ�
˙1�.

(2) The above isomorphism is modeled on Adams spectral sequences by the map

ExtF ! ExtF Œ��1�Š ExtclŒ�
˙1�:

(3) The composite Be ıc W Spcl
2 ! SpF;cell

2 ! Spcl
2 is an equivalence. In particular , the map c W Extcl!

ExtF of Proposition 5.1.1 extends to an equivalence ExtclŒ�
˙1�! ExtF Œ��1�.

Proof These facts are known of the Betti realization functor for F D C [Dugger and Isaksen 2010,
Section 2], and the general case immediately follows from Proposition 5.2.1.

Using Mandell’s p-adic homotopy theory [2001], we may also produce an unstable analogue. Let F be
an algebraically closed field. Note from [Hu et al. 2011b, Proposition 15] that the spectrum HFF2 is
cellular; moreover, Be.HFF2 /DHF2, as can be seen by inspection of homotopy groups. Let Spc.F / be
the category of F -motivic spaces and Spc2 be the category of 2-complete spaces.

Proposition 5.3.2 Let F be an algebraically closed field , and define

Be W Spc.F /! Spc2; Be.X/D CAlgHF2

�
Be..HFF2 /

XC/;F2
�
:

Then Be.Sa;b/ D .Sa/^2 , and , at least when restricted to the full subcategory of Spc.F / consisting of
simply connected finite motivic cell complexes , the functor Be preserves finite colimits and satisfies

HF
Be.X/C
2 ' Be..HFF2 /

XC/:
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Proof We begin by recalling two facts from Mandell’s work [2001] on p-adic homotopy theory. Strictly
speaking, Mandell states his main theorem at the level of homotopy categories; a reference explicitly
treating the full homotopical version we use is [Lurie 2011, Section 3]. First, the functor

Spc! CAlgHF2
; Y 7!HF

YC
2 ;

is fully faithful when restricted to the full subcategory of connected 2-complete nilpotent spaces with
locally finite mod 2 cohomology. In particular, if Y is a connected nilpotent space with locally finite
mod 2 cohomology, then the unit map

Y ' Spc.�; Y /! CAlgHF2
.HF

YC
2 ;HF

�C
2 /' CAlgHF2

.HF
YC
2 ;HF2/

realizes the target as the 2-completion of Y. Second, the functor

CAlgop
HF2
! Spc; R 7! CAlgHF2

.R;HF2/;

lands in Spc2 and preserves finite colimits when restricted to the full subcategory of E1-algebras R
over F2 such that R� is locally finite-dimensional, R0 D F2, R1 D 0, and the Dyer–Lashof operation Q0

acts by the identity on R�.

We now apply this to our situation. The stable Betti realization functor is symmetric monoidal, and thus
Be..HFF2 /

XC/ is indeed an E1-ring over F2. Moreover, as Sq0 acts by the identity on H�;�.X/, the
Dyer–Lashof operation Q0 acts by the identity on �� Be..HFF2 /

XC/. In particular, Be..HFF2 /
S

a;b
C /'

HF
Sa
C

2 , and so the proposition follows by applying Mandell’s theory.

Remark 5.3.3 We have focused in this section on 2-primary motivic homotopy theory over a field F of
characteristic not 2. However, our discussion applies in general to p-primary motivic homotopy theory
over a field F of characteristic not p. G

6 The motivic Hopf invariant one problem

In this section, we formulate and discuss motivic analogues of the Hopf invariant one problem. The
material in this section is not needed for Section 7.

6.1 The unstable Hopf invariant one problem

Classically, Adams’ determination of the permanent cycles in Ext1cl resolved the Hopf invariant one
problem. The Hopf invariant one problem may be formulated motivically using the following.

Definition 6.1.1 Let f W S2a�1;2b! Sa;b be an unstable map between motivic spheres; in particular,
a� b � 0 and a� 1. Write C.f / for the cofiber of f. The map f vanishes in mod 2 motivic cohomology
for degree reasons, and thus there exists an isomorphism

H�;�.C.f /C/ŠMF
f1; x; yg
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of MF -modules, where jxj D .�a;�b/ and jyj D .�2a;�2b/. Say that f has Hopf invariant one if one
may choose such generators x and y to satisfy

x2 D y;

ie if H�;�.C.f /C/ŠMF Œx�=.x3/; otherwise x2 D 0 and f has Hopf invariant zero. G

The unstable motivic Hopf invariant one problem is now the following question.

Question 6.1.2 For which .a; b/ does there exist a map f W S2a�1;2b! Sa;b of Hopf invariant one? G

This turns out to mostly reduce to the classical case, by way of the following.

Lemma 6.1.3 Let f W S2a�1;2b! Sa;b be an unstable F -motivic map. Then f has Hopf invariant one
if and only if its base change to an algebraic closure of F is of Hopf invariant one.

Proof This is immediate from the definitions.

Proposition 6.1.4 Fix an unstable F -motivic map f W S2a�1;2b ! Sa;b of Hopf invariant one. Then
the Betti realization (see Proposition 5.3.2) of f is an odd multiple of 2, �, �, or � . In particular ,
a 2 f1; 2; 4; 8g.

Proof By Lemma 6.1.3, we may as well suppose that F is algebraically closed. Let C.f / denote the
cofiber of f and C.Be.f // the cofiber of Be.f /. Then Be.C.f // D C.Be.f // by Proposition 5.3.2,
and thus H�

�
C.Be.f //C

�
DH�

�
Be.C.f //C

�
D F2Œx�=.x3/ with jxj D �a. In other words, the map

between 2-completed spheres Be.f / W S2a�1! Sa has Hopf invariant one. The proposition now follows
from Adams’ resolution [1960] of the Hopf invariant one problem.

Proposition 6.1.4 is not a complete answer to Question 6.1.2, as we have not given any bounds on b,
nor have we discussed the existence of maps of Hopf invariant one. Although we will not end up with a
complete answer in general, there is more we can say. Before this, we recall what information is encoded
in the 1-line of the F -motivic Adams spectral sequence.

6.2 The stable Hopf invariant one problem

Question 6.1.2 can be rephrased as asking when there exists an unstable 2-cell complex, with cells in
dimension .a; b/ and .2a; 2b/, such that in cohomology the bottom cell squares to the top cell. In the
stable category, one no longer has cup squares; instead, one has Steenrod operations. Thus we may
consider the stable motivic Hopf invariant one problem to be the following question.

Question 6.2.1 What AF -modules arise as the cohomology of 2-cell complexes? In particular, for which
.a; b/ does there exist a 2-cell complex, with cells in dimensions .0; 0/ and .a; b/ and attaching map
vanishing in mod 2motivic cohomology, such thatH�;�XDMF fx; yg is not split as an AF -module? G
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This is a particular case of the realization problem for AF -modules, and is exactly what the 1-line of the
F -motivic Adams spectral sequence encodes. The following is standard.

Proposition 6.2.2 Fix a class � 2 Exta�1;1;bF classifying an extension 0!MF fyg!E!MF fxg! 0

of AF -modules with jxj D .0; 0/ and jyj D .�a;�b/. Then the following are equivalent :

(1) There is stable 2-cell complex C with cells in dimensions .0; 0/ and .a; b/ such that H�;�C ŠE.

(2) The class � is a permanent cycle in the F -motivic Adams spectral sequence , and thus detects a
stable class ˛ 2 �F

a�1;b
.

Explicitly, if � 2 Exta�1;1;bF detects ˛ 2 �F
a�1;b

, then the cofiber C.˛/ satisfies H�;�C.˛/ Š E; and ,
if C is a stable 2-cell complex with H�;�C D E, then the fiber of the inclusion S0;0 ! C is a map
˛ W Sa�1;b! S0;0 detected by � 2 Exta�1;1;bF .

As we will see in Section 7, the 1-line of the F -motivic Adams spectral sequence is already quite rich,
and strongly depends on the base field F. Thus, in considering the stable Hopf invariant one problem,
one may not reduce to the case where F is algebraically closed, unlike in the unstable case.

6.3 Relation between the unstable and stable motivic Hopf invariant one problems

We may now relate the unstable and stable questions, Questions 6.1.2 and 6.2.1.

Proposition 6.3.1 Let f W S2a�1;2b! Sa;b be a map of Hopf invariant one. Then the associated stable
class ˛ 2 �F

a�1;b
is detected by a permanent cycle in Exta�1;1;bF which , after base change to the algebraic

closure of F, is one of

h0; h1; �h1; h2; �h2; �2h2; h3; �h3; �2h3; �3h3; �4h3:

In particular , if Exta�1;1;bF does not contain any such permanent cycle , then there is no map f WS2a�1;2b!
Sa;b of Hopf invariant one.

Proof By Lemma 6.1.3, we may suppose that F itself is algebraically closed. By stabilizing Proposition
6.1.4, we find that Be.˛/ is detected by h1, h2, or h3 in Ext1cl. Recall from Proposition 5.3.1 that Betti
realization is modeled on Adams spectral sequences by the map

ExtF ! ExtF Œ��1�Š ExtclŒ�
˙1�:

In particular, the structure of ExtF (see Proposition 4.2.1) implies that ˛ must be detected by a permanent
cycle in ExtF of the form �nh0, �nh1, �nh2, or �nh3 for some n � 0. As f is an unstable map, this
class must have nonnegative weight, reducing to the listed classes.

Remark 6.3.2 Our method of relating the unstable motivic Hopf invariant one problem to the stable
motivic Hopf invariant one problem, going through the “Betti realization” functors of Section 5.3, may
seem somewhat roundabout. This route was taken for the following reason: if f W S2a�1! Sa is a map
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of Hopf invariant one, then the fact that H�.C.f // is nonsplit as an Acl-module, and thus the associated
stable class ˛ 2 �cl

a�1 is detected in Ext1cl, follows from the instability condition Sqa.x/D x2.

Motivically, the analogous instability condition asserts that, if X is a motivic space and x 2H 2a;a.XC/,
then Sq2a.x/D x2 [Voevodsky 2003, Lemma 9.7]. Now suppose that f WS2a�1;2b!Sa;b is an unstable
map of Hopf invariant one, and write H�;�.C.f /C/DMF Œx�=.x3/ with jxj D .�a;�b/. If a is even
and b � 1

2
a, then one may set c D 1

2
a � b and deduce Sqa.�cx/ D �2cx2, so that H�;�.C.f // is

not split as an AF -module. If a is odd, then one may argue by appealing to an integral motivic Hopf
invariant and graded commutativity, as in the classical case. Thus, it is to rule out the possibility of a map
f W S2a�1;2b! Sa;b of Hopf invariant one with b > 1

2
a that we have taken our approach. G

Our computations in Section 7 show, for a variety of base fields F, when Ext1F contains a permanent cycle
whose image over the algebraic closure is one of the classes listed in Proposition 6.3.1, yielding various
nonexistence results. To obtain existence results, we must recall how maps of Hopf invariant one arise.

6.4 Geometric applications

Adams’ resolution of the classical Hopf invariant one problem had geometric consequences; notably, it
implied that the only spheres which admit H -space structures are S0, S1, S3, and S7. It makes sense to
ask for the motivic analogue of this, ie to ask which spheres Sa;b admit H -space structures.

This question is in some sense geometric, but we can also ask for something even more concrete. The
spheres Sa;b are certain sheaves on the Nisnevich site of smooth F -schemes, and so it is reasonable to
ask when Sa;b is in fact represented by a smooth F -scheme. This question was raised and studied by
Asok et al. [2017]; in particular, they produce explicit smooth affine schemes representing Sa;da=2e, as
well as prove that Sa;b is not represented by a smooth scheme for a > 2b. Motivated by this, we are led
to ask the following question.

Question 6.4.1 For what pairs .a; b/ is Sa;b a motivic H -space? Of these, when is it represented by a
smooth F -scheme which admits a unital product? G

Classically, the connection between the H -space structures and the Hopf invariant one problem is via
the Hopf construction. This construction may also be carried out in the motivic category, and has been
studied in this context in [Dugger and Isaksen 2013]. We recall the key points.

Definition 6.4.2 [Dugger and Isaksen 2013, Definition C.1] Let X, Y, and Z be pointed spaces, and let
h WX �Y !Z be a pointed map. The Hopf construction of h is the map H.h/ WX ?Y !†Z obtained
by taking homotopy colimits of the rows of the diagram

X X �Y Y

� Z � G
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Here ? is the join. Note that Sa;b ? Sc;d ' SaCcC1;bCd ; thus the Hopf construction may be used to
construct maps between motivic spheres. Using the theory of Cayley–Dickson algebras, Dugger and
Isaksen [2013, Section 4] used this to define motivic Hopf maps � 2 �F1;1, � 2 �F3;2, and � 2 �F7;4. As
noted in [loc. cit., Remark 4.14], these motivic Hopf maps have Hopf invariant one. This is a general
property of the Hopf construction, which we may summarize in the following.

Lemma 6.4.3 If � W Sa�1;b � Sa�1;b ! Sa�1;b is an H -space product , then its Hopf construction
H.�/ W S2a�1;2b! Sa;b has Hopf invariant one.

Proof The proof of the analogous fact for topological spaces [Steenrod 1962, Section I.5] extends to
motivic spaces. We summarize the key points.

Define the (mod 2) degree of a pointed map Sa;b ! Sa;b of motivic spaces to be its induced map in
reduced motivic cohomology. A pointed map f W Sa�1;b �Sa�1;b! Sa�1;b of motivic spaces is said
to have degree .˛; ˇ/ if f jSa�1;b�fp2g

has degree ˛ and f jfp1g�Sa�1;b has degree ˇ. Since � is an
H -space product, its restrictions to Sa�1;b �fp2g and fp1g�Sa�1;b are homotopic to the identity, so �
has degree .1; 1/. The lemma follows by showing that, more generally, the Hopf invariant, defined in the
evident way, of the Hopf construction of a map of degree .˛; ˇ/ is ˛ �ˇ.

Steenrod and Epstein’s proof of [Steenrod 1962, Lemma 5.3] carries over to the motivic setting to complete
the proof. The main point is that Steenrod and Epstein work with particular models of the cone, join,
homotopy cofiber, and suspension in their proof, but any model would work, as all of their statements
only depend on the homotopy types of the relevant spaces and homotopy classes of the relevant maps.
More precisely, with notation as in their proof, one may replace E1, E2, EC, and E� by the cones on
S1, S2, S, and S, respectively, to avoid any potential point-set issues. In particular, one regards E1, E2,
EC, and E� as suspension data in the sense of [Dugger and Isaksen 2013, Remark 2.9] for the various
suspensions appearing in the Hopf construction. In this language, the identifications of various pushouts in
the proof of [Steenrod 1962, Lemma 5.3] are examples of induced orientations [Dugger and Isaksen 2013,
Remark 2.10]. The proof carries through unchanged with these new choices of E1, E2, EC, and E�.

To be precise, their proof considers maps Sn�1 �Sn�1! Sn�1 with n > 1 even and works integrally.
Routine modifications extend this to arbitrary n� 1 provided one works mod 2 throughout. Classically,
this is the adaption needed to incorporate the degree 2 map S1! S1, which is the Hopf construction
of the standard product on S0 Š C2. Motivically, this is the adaption needed for our lemma to hold for
arbitrary unstable motivic spheres Sa�1;b , allowing especially for the uniform treatment of 2 and �.

Remark 6.4.4 Under Definition 6.1.1, the map h W S1;1! S1;1 represented by the squaring map on Gm,
sometimes called the “zeroth Hopf map” and stably detected by h0, is not a map of Hopf invariant one.
In the context of Lemma 6.4.3, this is justified by the fact that, for degree reasons, h is not the Hopf
construction of an H -space structure on any motivic sphere. G
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We can now summarize what is known in the following.

Theorem 6.4.5 A motivic sphere is represented by a smooth F -scheme admitting a unital product if and
only if it is one of

S0;0; S1;1; S3;2; S7;4:

In addition to the motivic spheres listed above , the following motivic spheres admit H -space structures:

S1;0; S3;0; S7;0:

The only other motivic spheres that could possibly admit H -space structures are

S3;1; S7;3; S7;2; S7;1I

moreover , an H -space structure on such a sphere produces a permanent cycle in ExtF whose image over
the algebraic closure is �h2, �h3, �2h3, or �3h3, respectively.

Proof That the spheres S0;0, S1;1, S3;2, and S7;4 are represented by smooth F -schemes admitting a
unital product is given by [Dugger and Isaksen 2013]. The spheres S1;0, S3;0, and S7;0 are the images of
S1, S3, and S7, respectively, under the unstable constant functor from spaces to motivic spaces, and so
inherit H -space structures from their classical structures. That all the spheres listed are the only spheres
which may admit H -space structures follows from Lemma 6.4.3 and Proposition 6.3.1, as does the final
claim concerning the F -motivic Adams spectral sequence. Finally, Asok et al. [2017, Proposition 2.3.1]
prove that, if Sa�1;b is represented by a smooth F -scheme, then necessarily 2b � a� 1, and the only
possible H -spaces satisfying this are S0;0, S1;1, S3;2, and S7;4, as listed.

We note the following special case.

Corollary 6.4.6 Suppose there is an R-motivic map f W S2a�1;2b! Sa;b of Hopf invariant one. Then
.a; b/ is one of

.1; 0/; .2; 1/; .4; 2/; .8; 4/; .2; 0/; .4; 0/; .8; 0/:

Moreover , all of these are realized , and in fact

S0;0; S1;1; S3;2; S7;4; S1;0; S3;0; S7;0

are all the R-motivic spheres admitting H -space structures.

Proof This is immediate from Theorem 6.4.5, either appealing to the fact that ExtR vanishes in the
degrees detecting the remaining possibilities, or else noting that the real points of Sa;b are Sa�b , so that,
if Sa;b is an H -space, then a� b 2 f0; 1; 3; 7g.

7 The 1-line of the motivic Adams spectral sequence

We now analyze the 1-line of the F -motivic Adams spectral sequence. We begin in Section 7.1 by
explaining how to read off the structure of ExtF for various fields F from our computation of ExtR.

Geometry & Topology, Volume 29 (2025)



The motivic lambda algebra and motivic Hopf invariant one problem 1549

After some additional preliminaries in Section 7.2, we give a direct motivic analogue of the classical
differentials in Section 7.3, proving d2.haC1/D .h0C �h1/h2a for a � 3 over arbitrary base fields. We
then proceed to give more detailed information about the 1-line for the particular fields F of the form R,
Fq with q an odd prime power, Qp with p any prime, and Q.

7.1 Computing ExtF

As a general rule, ExtF is largely understood once MF and ExtR are both understood. Rather than
formulate a precise statement, let us just describe ExtF for the various particular fields F we shall
encounter, namely those described in Example 2.2.1 as well as F DQ.

Recall from Remark 2.3.2 that, for any field F, we may view MF as an AR-module, and there is an
isomorphism

ExtF Š ExtAR.MR;MF /:

Thus, the main point is to understand MF as an AR-module, and this is in fact determined by MF
0 as an

F2Œ��-module. For the examples of interest, we have the following. Abbreviate

MD F2Œ�; ��; M.r/ DM=.�r/:

Lemma 7.1.1 As AR-modules , we have the following:

(1) MR DM.

(2) If F D F is algebraically closed , then MF DM.1/.

(3) If q � 1 .mod 4/, then MFq DM.1/f1; ug.

(4) If q � 3 .mod 4/, then MFq DM.2/.

(5) If p � 1 .mod 4/, then MQp DM.1/f1; �; u; �ug.

(6) If p � 3 .mod 4/, then MQp DM.2/f1; �g.

(7) MQ2 DM.3/f1g˚M.1/fu; �g.

(8) MQ DMf1g˚M.1/fŒ2�g˚M.1/fŒp�; ap W p � 1 .mod 4/g˚M.2/fup W p � 3 .mod 4/g.

Proof All but the case F DQ may be read off the examples listed in Example 2.2.1. When F DQ, the
ring MQ is described in [Ormsby and Østvær 2013, Propositions 5.3 and 5.4], following [Milnor 1970].
Our description may be read off this upon setting up D Œp�C � for p � 3 .mod 4/.

For r � 0, define
Ext.r/ D ExtAR.M;M.r//DH�.ƒ

R=.�r//:

The F2Œ��-module structure of Ext.r/ may be easily computed from ExtR via the long exact sequence
associated to the cofiber of �r . Even less work is necessary when ExtR has been computed by some
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method compatible with the �-Bockstein spectral sequence such as ours; see in particular Remark 4.1.5.
Thus Theorem 4.2.12 allows us to read off Extf

.r/
for f � 2, as well as the image of ExtR! Ext3

.r/
. This

does not give the entirety of Ext3
.r/

; however, we at least know that whatever remains is generated by
classes which appear in the �-Bockstein spectral sequence as �k˛ with ˛ 2 Ext3

.1/
and k < r , and this is

enough information for our purposes.

Lemma 7.1.1 describes for various F how ExtF may be written as a direct sum of copies of various
Ext.r/. For example, ExtQ2

D Ext.3/f1g ˚ Ext.1/fu; �g. We may use this to prove a Hasse principle
for ExtQ.

Lemma 7.1.2 The map
MQ
!MQp

satisfies
Œp� 7! �; ap 7! u�; up 7! � C �:

Here the first is relevant for p D 2 or p � 1 .mod 4/, the second for p � 1 .mod 4/, and the third for
p � 3 .mod 4/.

Proof The behavior of these maps is described in [Ormsby and Østvær 2013, Proposition 5.3]. Our
description follows immediately; note we have defined up D Œp�C � for p � 3 .mod 4/.

Proposition 7.1.3 The Hasse map

ExtQ! ExtR �
Y
p

ExtQp

is injective.

Proof By Lemma 7.1.1, we have

ExtQ D ExtR˚Ext.1/fŒ2�g˚Ext.1/fŒp�; ap W p � 1 .mod 4/g˚Ext.2/fup W p � 3 .mod 4/g:

The summand ExtR maps isomorphically to ExtR, and the maps ExtQ ! ExtQp
are determined by

Lemma 7.1.2. In particular, it is easily seen that the maps

Ext.1/fŒ2�g ! ExtQ2
; Ext.1/fŒp�; apg ! ExtQp

; Ext.2/fupg ! ExtQp

are all split injections, and the proposition follows.

The preceding discussion, together with our computation of ExtR, describes what we will need of ExtF
in low filtrations and arbitrary stem. So that we may rule out various higher differentials in low stems for
degree reasons, we record the following.

Lemma 7.1.4 Ext.1/ is given in stems s � 6 by the module

F2Œ� �˝
�
F2fh

n
0 W n� 0g˚F2fh1; h

2
1; h

3
1; h2; h0h1; h

2
2g
�
˚F2Œ� �=.�/fh

4
1; h

5
1; h

6
1g:

Proof These groups have been computed in [Dugger and Isaksen 2010].
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7.2 Existence of Hopf elements

Our computation of the F -motivic Adams differentials d2.haC1/ will follow a similar pattern to Wang’s
computation [1967] of the corresponding classical Adams differentials (differentials which were first
computed in [Adams 1960]). This is an inductive argument, beginning with information about the Hopf
elements which are known to exist. We record some of this information in this subsection.

Write � 2 �F0;0 for the class represented by the twist map S1;1˝S1;1! S1;1˝S1;1.

Lemma 7.2.1 Fix ˛ 2 �F
a;b

and ˇ 2 �F
c;d

. Then there is an identity

˛ �ˇ D .�1/.a�b/.c�d/�bd �ˇ �˛:

Moreover , 1� � is detected in ExtF by h0 and 2 by h0C �h1.

Proof The claimed graded commutativity is given in [Morel 2004, Corollary 6.1.2]; see also [Isaksen
and Østvær 2020, Section 6.1] for a discussion. That 1� � is detected by h0 and 2 by h0C �h1 is noted
in [Isaksen and Østvær 2020, Remark 6.3].

Lemma 7.2.2 For any field F, the class ha is a permanent cycle for a 2 f0; 1; 2; 3g.

Proof The class h0 is a permanent cycle by Lemma 7.2.1. Dugger and Isaksen [2013] construct the
motivic Hopf elements �, �, and � , and indicate [loc. cit., Remark 4.14] that these are detected by h1,
h2, and h3, respectively; see also our discussion in Section 6.4. Thus these classes must be permanent
cycles.

7.3 Nonexistence of Hopf elements

The purpose of this subsection is to prove the following.

Theorem 7.3.1 For an arbitrary base field F of characteristic not equal to 2, there are differentials of the
form

d2.haC1/D .h0C �h1/h
2
a

in the F -motivic Adams spectral sequence , which are nonzero for a � 3. G

By naturality, it suffices to produce these differentials in the case where F is a prime field, ie F D Fq or
F DQ, and when F is algebraically closed. Moreover, by the Hasse principal given in Proposition 7.1.3,
the case F DQ may be deduced from the cases F DQp and F DR combined. All of these build on the
case where F is algebraically closed, which may be treated as follows.

Proposition 7.3.2 If F D F is algebraically closed , then

d2.haC1/D h0h
2
a:

This is nonzero for a � 3.
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Proof The corresponding classical differentials are known due to [Adams 1960]. The proposition could
be reduced to this by appealing to Proposition 5.3.1; however, we shall instead proceed as follows.

Wang [1967, Section 3] gives another proof of the classical differentials, combining only a minimal
amount of homotopical input with a good understanding of Extcl. His argument may be applied essentially
verbatim to produce the claimed F -motivic differentials. It is this argument that may be adapted to work
for other base fields, so to motivate our later computations let us recall this argument in full.

The proof proceeds by induction on a, where only the base case requires any homotopical input.

Consider the base case a D 3. The class h3 is a permanent cycle, detecting the Hopf element � ; see
Lemma 7.2.2. By Lemma 7.2.1, we find that 2�2 D 0. As 2 is detected by h0 over algebraically closed
fields, it follows that h0h23 cannot survive the Adams spectral sequence. The structure of ExtF implies
that d2.h4/D h0h23 is the only way for h0h23 to die.

Now suppose we have produced the differential d2.ha/Dh0h2a�1 for some n�4. The relation haC1haD0
together with the Leibniz rule implies

0D d2.haC1ha/D d2.haC1/ � haC haC1 � d2.ha/:

Applying our inductive hypothesis and the relation haC1 � h2a�1 D h
3
a, this reduces to

.d2.haC1/C h0h
2
a/ � ha D 0:

The algebraic structure of Ext3F implies that d2.haC1/ 2 F2fh0h2ag, so it suffices to verify that h0h3a ¤ 0
for a � 4. This follows from Wang’s computation [1967, Proposition 3.4] by comparison along the map
ExtF ! ExtF Œ��1�' ExtclŒ�

˙1�.

The base step for the inductive argument given in Proposition 7.3.2 works for arbitrary base fields, but
the inductive step falls apart. This inductive step relies on the algebraic fact that, when working over an
algebraically close field, multiplication by ha is injective on the degree of d2.haC1/ for a� 4. Over other
base fields, this fails for aD 4: this degree may contain elements of the form !h1h

2
4 where ! 2Ext�1;0;�1F

is a sum of elements such as �, � , and u, and

!h1h
2
4 � h4 D !h1 � h

3
4 D !h1 � h

2
3 � h5 D 0:

Luckily, the inductive step fails only for aD 4; once we have resolved d2.h5/, the remaining differentials
will follow via the same argument. To resolve this differential, we proceed as follows.

Proposition 7.3.3 Let F be a field of the form Fq for q odd , Qp for any p, or R. Then there is a
differential

d2.h5/D .h0C �h1/h
2
4

in the F -motivic Adams spectral sequence.
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Proof When F DR, we first make the following reduction. Observe that ExtR in the degree of d2.h5/
is given by F2fh0h24; �h1h

2
4g, and that neither of these classes are divisible by �2. Thus it is sufficient to

verify this differential in the Adams spectral sequence for the cofiber of �2. By [Behrens and Shah 2020,
Lemma 7.8], this cofiber is a ring spectrum, and so its Adams spectral sequence is multiplicative. Having
made this reduction, the remainder of the argument is uniform in the given choices of F. For brevity of
notation, in the following we shall write ExtF for the object so named when F D Fq or F DQp, and
write the same for Ext.2/ when F DR.

First observe that, as �4 2 Ext0F , the class �16 is a square and thus a d2-cycle. As �16 acts injectively on
ExtfF for f � 3, it suffices to show

d2.�
16h5/D .h0C �h1/�

16h24:

Consider the Hurewicz map c W ��! �F
�;0: Let �4 2 �30S0 be the Kervaire class, detected by h24 and

satisfying 2�4 D 0. By Proposition 5.1.1, we find that c.�4/ is detected by .Sq0/4.h20/ D �
16h24. As

2 � c.�4/ D 0, the class .h0 C �h1/�16h24 cannot survive. The only possibility is that d2.�16h4/ D
.h0C �h1/�

16h24, yielding the desired differential.

Remark 7.3.4 When F DR, the differential d2.h5/, and in fact all the differentials d2.haC1/, may also
be produced as follows. By comparison with C, one finds d2.h5/ 2 h0h24CF2f�h1h24g. Thus it suffices
to verify that d2.h5/ is not �-torsion. This is a consequence of the fact that the isomorphism ExtRŒ��1�'
ExtdclŒ�

˙1� [Dugger and Isaksen 2017b, Theorem 4.1] commutes with Adams differentials. G

We need just one more algebraic fact for the proof of Theorem 7.3.1.

Lemma 7.3.5 Let ! 2 Ext0F be nonzero. Then !h1h3a ¤ 0 for all a � 5.

Proof The class h0h3a�1 is nonzero in Extcl for a� 5 by [Wang 1967, Proposition 3.4]. Proposition 3.2.1
gives an injection Extdcl! ExtF , and this extends by linearity to an injection Ext0F ˝F2

Extdcl! ExtF ,
as can be seen by using Lemma 7.1.1 to reduce to the injections Ext0

.r/
˝F2

Extdcl! Ext.r/. The class
!h1h

3
a is the image of !˝ h0h3a�1 under this map, yielding the claim.

We may now give the following.

Proof of Theorem 7.3.1 As discussed, it suffices to consider only the cases where F is of the form Fq
for some q odd, Qq for some q, or R. So let F be one of these. We now induct on a, with base cases
aD 3 and aD 4.

First consider the case aD 3. By Lemma 7.2.2, the class h3 is a permanent cycle detecting the class � .
By Lemma 7.2.1, 2�2 D 0, and so .h0C �h1/h23 must be the target of a differential. The only possibility
is that d2.h4/D .h0C �h1/h23.

The case aD 4 was handled in Proposition 7.3.3.
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Now suppose inductively that we have produced the differential d2.ha/ D .h0C �h1/h2a�1 for some
a � 5. Combining the Leibniz rule with the relation haC1ha D 0, we find

0D d2.haC1ha/D d2.haC1/haC haC1d2.ha/:

Applying our inductive hypothesis and the relation haC1h2a�1 D h
2
a, we find

.d2.haC1/C .h0C �h1/h
2
a/ha D 0:

It follows that d2.haC1/D .h0C �h1/h2aC x where x is some class killed by ha. The only classes in
this degree are h0h2a and those of the form !h1h

2
a where ! 2 Ext0F . By comparison with F , we find

that x must be zero or a nonzero class of the form !h1h
2
a with ! 2 Ext�1;0;�1F . As a � 5, Lemma 7.3.5

implies that none of the latter are killed by ha. Thus x D 0, yielding the desired differential.

This concludes our uniform analysis of differentials out of Ext1F . The rest of this section is dedicated to
studying the 1-line in more detail for particular fields F.

7.4 The real numbers

We now study the case F DR in more detail. Recall from Theorem 4.2.12 that

Ext1R D F2Œ��fha W a � 1g˚
M
a�0

F2Œ��=.�
2a

/f�b2
a�1.4nC1/cha W n� 0g:

Here recall that 2a�1.4nC 1/D 2n for aD 0. Theorem 7.3.1 allows one to understand the fate of the
classes in the �-torsion-free summand, so we turn our attention to the �-torsion subgroup. We shall first
pin down which of these �-torsion classes are permanent cycles, and then by separate methods compute
all d2-differentials on these �-torsion classes. A comparison reveals that there must be numerous higher
differentials, but determining these is outside the scope of our computation. The first point of order is the
following.

Definition 7.4.1 For a � 0, write aD cC 4d with 0� c � 3, and define  .a/D 2cC 8d to be the ath

Radon–Hurwitz number. G

Proposition 7.4.2 The class �r�2
a�1.4nC1/ha is a permanent cycle if and only if r � 2a � .a/.

The proof of Proposition 7.4.2 requires some preliminaries. We proceed by comparison with Borel
C2-equivariant stable homotopy theory. Let ExtBC2

denote the E2-page of the Borel C2-equivariant
Adams spectral sequence [Greenlees 1988]. Explicitly,

Exts;f;wBC2
D Exts�w;f

Acl .F2;H
�P1w /I

this is just a combination of the ordinary Adams spectral sequences for the stable cohomotopy groups
of infinite stunted projective space. By Lin’s positive resolution [1980] of the Segal conjecture, this
spectral sequence converges to �C2

�;�, the homotopy groups of the 2-completion of the C2-equivariant
sphere spectrum.
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Betti realization followed by Borel completion yields a functor from the stable R-motivic category to the
Borel C2-equivariant stable category Fun.BC2; Sp/, and Behrens and Shah [2020, Section 8] show that
this may be understood as completing at � and inverting � . Applying this to an Adams resolution, we
find that

ExtBC2
D lim
n!1

Ext.2n/Œ�
�2n

�:

The simple form of Ext�3R allows us to immediately read off Ext�3BC2
.

Lemma 7.4.3 Ext�3BC2
is exactly as Ext�3R is described in Theorem 4.2.12, except n is allowed to be

negative , and in place of the map ExtR! ExtC is a map ExtBC2
! ExtCŒ��1�Š ExtclŒ�

˙1�.

In particular,

Ext1BC2
D F2Œ��fha W a � 1g˚

M
a�0

F2Œ��=.�
2a

/f�b2
a�1.4nC1/cha W n 2 Zg:

We have introduced ExtBC2
in order to make the following reduction.

Lemma 7.4.4 Write h W ExtR! ExtBC2
for the canonical map of spectral sequences. Fix a �-torsion

class x 2 Ext1R. Then x is a permanent cycle if and only if h.x/ is a permanent cycle.

Proof Clearly, if x is a permanent cycle, then the same must be true of h.x/. Conversely, suppose that
h.x/ is a nontrivial permanent cycle; we claim that x is a permanent cycle.

Write ExtC2
for theE2-page of theC2-equivariant Adams spectral sequence [Hu and Kriz 2001, Section 6],

converging to the same target as ExtBC2
. This splits additively as ExtC2

D ExtR˚ExtNC for a certain
summand ExtNC (see [Guillou et al. 2020, Section 2]), and h factors as hDgıf WExtR!ExtC2

!ExtBC2
,

the first map being the obvious inclusion and the second map killing the summand ExtNC.

As h.x/ is a nontrivial permanent cycle, it detects a class ˛ in Borel Adams filtration 1. The class ˛
must then be detected in Ext�1C2

. By [Belmont et al. 2021], the map ExtR! ExtC2
is an isomorphism

in the degrees under consideration, so the same must be true for ExtC2
! ExtBC2

. As there is at most
one nonzero �-torsion class in these degrees, the only possibility is that ˛ is detected by f .x/ in Ext1C2

,
implying that f .x/ is a permanent cycle. As ExtR! ExtC2

is the inclusion of a summand, this implies
that x is a permanent cycle, as claimed.

Thus it suffices to understand permanent cycles in Ext1BC2
. The main point is the following.

Lemma 7.4.5 There exists a nonzero �-torsion class ˛ 2 �C2
s;w detected in Borel Adams filtration 1 if and

only if the inclusion of the bottom cell of Pw�1w�s�1 is split , where P n
k

is the Thom spectrum of the k-fold
Whitney sum of the tautological line bundle over the real projective space RP n.
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Proof First suppose given such a map ˛. The structure of Ext1BC2
implies that ˛ must have �-torsion

exponent sC 1, and so there is a lift x̨ in the diagram

†s�wC1Pw�1w�s�1

†s�wP1w S0

†s�wP1w�s�1

x̨
@

˛

�sC1˛D0

As ˛ and @ have Adams filtration 1, necessarily x̨ has Adams filtration 0. It follows that precomposing x̨
with the inclusion of the bottom cell S0!†s�wC1Pw�1w�s�1 gives a map S0! S0 which is nonzero in
mod 2 cohomology, and must therefore be an equivalence. In other words, x̨ splits off the bottom cell
of Pw�1w�s�1.

Conversely, if the inclusion of the bottom cell of Pw�1w�s�1 is split, then its splitting gives a nonzero map x̨
as above in Adams filtration 0. Let ˛ D x̨ ı @; we claim that ˛ is a nonzero class detected in Adams
filtration 1. Indeed, the cofibering Pw�1w�s�1! P1w�s�1! P1w gives an exact sequence

Ext0.F2;H�P1w /! Ext0.F2;H�P1w�s�1/! Ext0.F2;H�Pw�1w�s�1/
@0
�! Ext1.F2;H�P1w /;

where @0 models restriction along @ in the previous diagram. The first map is exactly

�sC1 W Ext�;0;wBC2
! Ext�;0;w�s�1BC2

:

As Ext0BC2
D F2Œ��, we find that the kernel of @0 consists of only that class represented by the inclusion

F2!H 0Pw�1w�s�1. So @0 is injective in the relevant degrees, implying that ˛ is nonzero and of Adams
filtration 1, as claimed.

We may now give the following.

Proof of Proposition 7.4.2 By Lemma 7.4.4, it suffices to show that a class �r�b2
a�1.4nC1/cha 2Ext1BC2

is a permanent cycle if and only if r � 2a� .a/. By sparseness of Ext1BC2
, the class �r�b2

a�1.4nC1/cha

is a permanent cycle if and only if there is some �-torsion class ˛ 2 �C2

2a�r�1;�2aC1n�r
detected in Borel

Adams filtration 1. By Lemma 7.4.5, this holds if and only if inclusion of the bottom cell of P�2
aC1n�r�1

�2aC1n�2a

is split. By James periodicity [1958; 1959], this holds if and only if the inclusion of the bottom cell of
P 2

N�2aC1n�r�1
2N�2aC1�2a is split for some sufficiently largeN�0; that is, we may assume ourselves to be working

with suspension spectra of honest real projective spaces. When this happens was resolved by Adams’
solution [1962, Theorem 1.2] of the vector fields on spheres problem, yielding the condition claimed.

Corollary 7.4.6 The classes �b2
a�1.4nC1/cha are permanent cycles for a � 3.

Corollary 7.4.6 could also be proved more directly, applying the technique used in the proof of Theorem
7.3.1 or Proposition 7.4.8 below to reduce to the region considered by Belmont and Isaksen.
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It is worth summarizing what we have learned from the proof of Proposition 7.4.2 about the stable
cohomotopy groups of projective spaces.

Theorem 7.4.7 The subgroup of permanent cycles in Ext1BC2
is given by

F2Œ��fh1; h2; h3; �h4g˚
M
a�0

F2Œ��=.�
 .a//f�2

a� .a/�b2
a�1.4nC1/cha W n 2 Zg:

A choice of maps †cP1w ! S0 detected by these permanent cycles is given by the following:

(1) For all r � 0, there are maps

P11�r ! P11
�
�! S0; †P12�r !†P12

�
�! S0; †3P14�r !†3P13

�
�! S0:

Here �, �, and � are equivariant refinements of the Hopf maps with the same names. These
composites are detected by �rh1, �rh2, and �rh3, respectively.

(2) For all r � 0, there is a map

†7P17�r !†7P17
Sq.�/
���! S0;

where Sq.�/ is the symmetric square of � W S7! S0. This composite is detected by �1Crh4.

(3) For all a � 0, n 2 Z, and 1� r �  .a/, there is a map

†2
a.2nC1/�1P1

�2a.2nC1/Cr
@
�!†2

a.2nC1/P
�2a.2nC1/Cr�1

�2a.2nC1/
s
�! S0:

Here @ is the cofiber of the map †2
a.2nC1/�1P1�2a.2nC1/ ! †2

a.2nC1/�1P1
�2a.2nC1/Cr

, and
s is any map that splits off the bottom cell of P�2

a.2nC1/Cr�1
�2a.2nC1/

. This composite is detected by
�2

a�r�b2
a�1.4nC1/cha.

Proof Recall that

Ext1BC2
D F2Œ��fha W a � 1g˚

M
a�0

F2Œ��=.�
2a

/f�b2
a�1.4nC1/cha W n 2 Zg:

We have just analyzed which classes in the �-torsion summand are permanent cycles, leading to exactly
the claimed �-torsion permanent cycles with representatives as described in (3). Lemma 7.2.2 implies that
h1, h2, and h3 are permanent cycles, and these detect the maps described in (1). Theorem 7.3.1 shows that
�nha supports a d2-differential for a� 5 and n� 0, and that h4 supports a d2-differential but �h4 does not.
We are left with verifying that �h4 is a permanent cycle detecting the map Sq.�/. Indeed, taking geometric
fixed points yields an isomorphism �

C2
�;�Œ�

�1�Š �cl
� Œ�
˙1� which sends Sq.˛/ to ˛ for any ˛ 2 �cl

� . This
isomorphism is modeled on Adams spectral sequences by ExtC2

Œ��1� Š ExtRŒ��1� Š ExtclŒ�
˙1�. As

�h4 is the only class in its degree lifting h3 2 Ext1cl, it must be that �h4 detects Sq.�/.

Proposition 7.4.2 implies that the classes �2
a�1.4nC1/ha must support Adams differentials for a � 4.

Although we do not compute all these differentials, we do give the following.

Proposition 7.4.8 For all n� 0 and a � 3, there is a differential

d2.�
2a.4nC1/haC1/D .h0C �h1/.�

2a�1.4nC1/ha/
2:
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Proof We give separate arguments for the case aD 3 and a > 3. First consider the case aD 3. The class
�4.4nC1/h3 is a permanent cycle by Corollary 7.4.6, detecting a class which we might call �4.4nC1/� . By
Lemma 7.2.1, 2 �.�4.4nC1/�/2D 0, and so .h0C�h1/ �.�4.4nC1/h3/2 must die. This class is not divisible
by �, and the only non-�-divisible classes that may hit it are �8h4 and �8h4C�16h5. By Theorem 7.3.1, if
d2.�

8h4C�
16h5/D .h0C�h1/�.�

4.4nC1/h3/
2, then d2.�8h4/D .h0C�h1/�.�4.4nC1/h3Ch4/2. This is

not possible as �8h4 is �-torsion and this target is not. Thus, in fact, d2.�8h4/D .h0C�h1/�.�4.4nC1/h3/2,
as claimed.

Next consider the case a > 3. The �-torsion subgroup of ExtR in the degree of d2.�2
a.4nC1/haC1/ is

given by F2fh0; �h1g˝F2f.�2
a�1.4nC1/ha/

2g. These classes are not divisible by �2, and so it suffices
to verify the differential in the Adams spectral sequence for the cofiber of �2. By [Behrens and Shah
2020, Lemma 7.8], this cofiber is a ring spectrum, so its Adams spectral sequence is multiplicative. As
�2 is a cycle, �4 is a d2-cycle, so we reduce to showing d2.haC1/D .h0C �h1/h2a. This was shown in
Theorem 7.3.1.

We may summarize what we have learned as follows.

Theorem 7.4.9 The nontrivial d2-differentials out of the 1-line of the R-motivic Adams spectral sequence
are exactly those given in the following table:

source target constraints

h4 h0h
2
3

�rha �r.h0C �h1/h
2
a�1 a � 5, r � 0

�r�2
a�1.4nC1/ha �r.h0C �h1/.�

2a�2.4nC1/ha�1/
2 n� 0, a � 4, 0� r � 2a�1� 1

The 1-line of the E3-page of the R-motivic Adams spectral sequence has a basis given by the elements in
the following table:

F2Œ��-module generator constraints �-torsion exponent

ha a 2 f1; 2; 3g 1

�h4 1

�b2
a�1.4nC1/cha n� 0 and a 2 f0; 1; 2; 3g 2a

�2
a�1�1�2

a�1.4nC1/ha n� 0 and a � 4 2a�1C 1

Those classes in Ext1R which are permanent cycles are given in the following table:

F2Œ��-module generator constraints �-torsion exponent stem

ha a 2 f1; 2; 3g 1 2a � 1

�h4 1 14

�b2
a�1.4nC1/cha n� 0 and a 2 f0; 1; 2; 3g 2a 2a � 1

�2
a� .a/�2

a�1.4nC1/ha n� 0, a � 4  .a/  .a/� 1
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Proof All of this is immediate from Theorem 7.3.1, Propositions 7.4.2 and 7.4.8, Theorem 7.4.7, and
the �-torsion exponents of the generators of Ext3R given in Theorem 4.2.12, with the following exception:
Proposition 7.4.8 produces differentials d2.�8.4nC1/h4/D .h0C �h1/.�4.4nC1/h3/2, and one must use
Proposition 4.3.4(4) to check that this target has �-torsion exponent 7.

7.5 Finite fields

We now study the case where F is a finite field. For the most part, this case follows by combining
Theorem 7.3.1 with differentials out of Ext0F that may be deduced from [Kylling 2015]. By naturality,
our discussion in this subsection gives information for F an arbitrary field of odd characteristic.

We will need the following definition.

Definition 7.5.1 For an integer q, let �2.q/ denote the 2-adic valuation of q, ie

q D 2�2.q/.2nC 1/

for some integer n, and let
".q/D �2.q� 1/; �.q/D �2.q

2
� 1/: G

We now split into cases based on congruence of the order of the field mod 4.

7.5.1 q � 1 .mod 4/ Fix a prime power q such that q � 1 .mod 4/. We work over F D Fq . Recall
that ExtFq

D Ext.1/f1; ug. In particular,

Ext1Fq
D F2Œ� �f1; ug˝F2fha W a � 0g:

The class u is a permanent cycle for degree reasons, and we have already computed the differential on all
the classes ha. However the story does not stop there; instead, we have the following.

Lemma 7.5.2 There are differentials

d".q/Cs.�
2s

/D u�2
s�1h

".q/Cs
0

for all s � 0.

Proof Kylling [2015, Lemma 4.2.1] produces identical differentials in the Fq-motivic Adams spectral
sequence for HZ. The claimed differentials follow by naturality.

This may be combined with Theorem 7.3.1 to easily compute all differentials out of the 1-line.

Theorem 7.5.3 For q � 1 .mod 4/, the 1-line of the Fq-motivic Adams spectral sequence supports only
the nontrivial differentials given in the following table:

Geometry & Topology, Volume 29 (2025)



1560 William Balderrama, Dominic Leon Culver and J D Quigley

source dr target constraints

�nh0 d".q/C�2.n/ �n�1h
".q/C�2.n/C1
0 n� 1

�2nC1h2 d2 u�2nh2h
2
0 n� 0, ".q/D 2

�2nC1h3 d2 u�2nh3h
2
0 n� 0, ".q/D 2

�2nC1h3 d3 u�4nC1h3h
3
0 n� 0, ".q/D 3

�4nC2h3 d3 u�4nC1h3h
3
0 n� 0, ".q/D 2

�nhb d2 �nh0h
2
b�1
C d2.�

n/hb n� 0, b � 4
u�nhb d2 u�nh0h

2
b�1

n� 0, b � 4

After these have been run , the 1-line of the E1-page of the Fq-motivic Adams spectral sequence has a
basis given by the elements in the following table:

class constraints

h0

�nh1 n� 0

�nh2 n� 0, where if ".q/D 2 then n� 0 .mod 2/
�nh3 n� 0, where if ".q/D 2 then n� 0 .mod 4/, and if ".q/D 3 then n� 0 .mod 2/
u�nhb n� 0, b 2 f0; 1; 2; 3g

Proof The first four families of differentials follow immediately from Lemmas 7.5.2 and 7.2.2, and the
remaining two by combining Lemma 7.5.2 with Theorem 7.3.1. Note in particular that d2.�n/�0 .mod u/,
and thus d2.�nhb/¤ 0 for b� 4. The second table may be easily read off the first, provided we verify that
we have not missed any differentials, ie that the classes listed in the second table are indeed permanent
cycles. For degree reasons, the only possible nontrivial differentials on the classes �nhb with b 2 f1; 2; 3g
would be of the form

(1) dr.�
nh1/

‹
D �n�1hr�10 ,

(2) d2.�
nh2/

‹
D u�n�1h20h2,

(3) d2.�
nh3/

‹
D u�n�1h20h3,

(4) d3.�
nh3/

‹
D u�n�1h30h3

with n� 1. The first is impossible for nD 1 as h0 detects 2 and thus no power of h0 may be killed, and
is impossible for n� 2 as the class �n�1hr�10 must support the differential given the first row of the first
table. The remaining three differentials may occur, and when they occur is accounted for in the given
tables.

7.5.2 q� 3 .mod 4/ Now fix a prime power q such that q� 3 .mod 4/. We work over F D Fq . Recall
that ExtFq

D Ext.2/.
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Lemma 7.5.4 We may identify

Ext0Fq
D F2Œ�

2; �; ���=.�2 D � � .��/D .��/2 D 0/;

and Ext1Fq
is the tensor product of F2Œ�2� with

F2fh0; �� � h0g˚F2fh1; � � h1; �� � h1; �h1g˚F2fhb; � � hb; �� � hb W b � 2g:

Proof This follows quickly from our computation of ExtR, following the recipe of Remark 4.1.5.
Alternatively, one may compute the �-Bockstein spectral sequence

Ext.1/Œ��=.�
2/) Ext.2/

directly (see [Wilson and Østvær 2017]); the only relevant differential is d1.�/D �h0.

As in the previous case, powers of � support arbitrarily long differentials.

Lemma 7.5.5 There are differentials

d�.q/Cs.�
2sC1

/D ��2
sC1�1h

�.q/Cs
0

for all s � 0. On the other hand , �� is a permanent cycle.

Proof The class �� is a permanent cycle for degree reasons. Kylling [2015, Lemma 4.2.2] produces
identical differentials in the Fq-motivic Adams spectral sequence for Fq-motivic HZ. The claimed
differentials follow by naturality.

Theorem 7.5.6 For q � 3 .mod 4/, the 1-line of the Fq-motivic Adams spectral sequence supports the
differentials given in the following table:

source dr target constraints

�2nh0 d�.q/C�2.n/ ��2n�1h
�.q/C�2.n/C1
0 n� 1

�4nC2h3 d3 ��4nC1h30h3 n� 0, �.q/D 3
�2nhb d2 �2n.h0C �h1/h

2
b�1

n� 1, b � 4
��2nC1hb d2 ��2nC1h0h

2
b�1

n� 0, b � 4

After the d2-differentials have been run , the 1-line of the E3-page of the Fq-motivic Adams spectral
sequence has a basis given by the classes in the following table:

class constraints

h0

�� � �2nhb n� 0, � 2 f0; 1g, b 2 f1; 2; 3g
��2nC1hb n� 0, b 2 f0; 1; 2; 3g
���4nC1h1 n� 0, � 2 f0; 1g

�2nh0 n� 1

��2nhb n� 0, b � 4
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Of these , all the classes in the first region are permanent cycles , with the exception that �4nC2h3 supports
a d3-differential if �.q/D 3. The classes �2nh0 for n� 1 are not permanent cycles , and we leave open
the fate of the classes ��2nhb for n� 1 and b � 4.

Proof The given differentials follow quickly by combining Theorem 7.3.1 with Lemma 7.5.5, and
this accounts for all d2-differentials. Note in particular that �2 is a d2-cycle as �.q/ � 3 whenever
q � 3 .mod 4/. Thus the given E3-page may be produced by linearly propagating the differentials of
Theorem 7.3.1. Note also that d2.��2nhb/D ��2n.h0C�h1/h2b�1 D 0 for all n� 0 and b � 4, yielding
the classes in the final row of the second table.

It remains only to verify that the permanent cycles provided are indeed permanent cycles. As � and �� are
permanent cycles for degree reasons, we may reduce to considering only the classes �2nhb , ��2nC1h0,
and �4nC1h1 for b 2 f1; 2; 3g and n � 0. For degree reasons, the only possible nontrivial differentials
supported by these classes would be of the form

(1) d2.�
2nhb/

‹
D ��2n�1h20hb for b 2 f2; 3g,

(2) d3.�
2nh3/

‹
D ��2n�1h30h3

with n� 1. The first does not hold, as �2 and hb are d2-cycles. The second holds only when �.q/D 3,
and this is accounted for in the theorem statement.

7.6 The p-adic rationals

We now work over F DQp, the p-adic rationals. This is very similar to the case where F D Fq , only
where the additional input necessary to understand differentials out of Ext0Qp

comes from work of Ormsby
[2011] for p odd and Ormsby and Østvær [2013] for pD 2. The case where p is odd turns out to entirely
reduce to what we have already done.

Lemma 7.6.1 There are the following differentials in the Qp-motivic Adams spectral sequence:

(1) If p � 1 .mod 4/, then da.q/Cs.�2
s

/D u�2
s�1h

a.q/Cs
0 ;

(2) If p � 3 .mod 4/, then d�.q/Cs.�2
sC1

/D ��2
sC1�1h

�.q/Cs
0 .

Proof Ormsby [2011, Theorem 5.2] produces identical differentials in the Qp-motivic Adams spectral
sequence for the Brown–Peterson spectrum BPh0i. The claimed differentials follow by naturality.

We may summarize the situation as follows.

Theorem 7.6.2 Fix an odd prime p, and consider the facts outlined about the Fp-motivic Adams spectral
sequence in Theorems 7.5.3 and 7.5.6. The same facts hold for the Qp-motivic Adams spectral sequence
upon tensoring with Fpf1; �g.

Proof The class � is a permanent cycle for degree reasons, and the differentials given in Lemma 7.6.1
agree with those given in Lemmas 7.5.2 and 7.5.5. All of the work carried out over Fp then goes through
verbatim, only where everything in sight has a twin copy indexed by � .
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Remark 7.6.3 The somewhat awkward phrasing of Theorem 7.6.2 is necessary as we did not wish to
repeat two verbatim copies of both Theorems 7.5.3 and 7.5.6, but we have not shown that the 1-line of
the Qp-motivic Adams spectral sequence is a direct sum of two copies of the 1-line of the Fp-motivic
Adams spectral sequence. The possible failure of this arises from the fact that when p � 3 .mod 4/, the
classes ��2nhb for b � 4 could support different higher differentials over Fp and Qp. G

The case where p D 2 requires a separate analysis. Recall that

ExtQ2
D Ext.3/f1g˚Ext.1/fu; �g:

Lemma 7.6.4 We may identify

Ext0.3/ D F2.�
4; ��2; �2�; �2�3; �/� F2Œ�; ��=.�

3/;

and Ext1
.3/

is the tensor product of F2Œ�4� with the direct sum of the modules

F2fh0; �
2h0; �

2�h0; �
2�3h0g;

F2f1; �g˝F2f�h1g˚F2f��
3h1g˚F2f1; �; �

2; ��2; �2�2; �2�3g˝F2fh1g;

F2f1; �; �
2; �2�; �2�3; ��2; �2�2g˝F2fhb W b � 2g:

Proof As with Lemma 7.5.4, this follows from our computation of ExtR via the recipe in Remark 4.1.5,
or via the �-Bockstein spectral sequence; here the relevant �-Bockstein differentials are d1.�/D �h0 and
d2.�

2/D �2�h1.

Lemma 7.6.5 The classes

�4nC1�2; �2n�; �4nC3�2; ��n; u; u�2nC1

are permanent cycles. There are differentials

d4Cr.�
2rC2

/D��2
rC2�1h4Cr0 ; d3Cr.u�

2rC1

/D�2�2
rC1�1h3Cr0 ; d3Cr.�

2rC1

h0/D��
2rC1�1h4Cr0

for all r � 0.

Proof Ormsby and Østvær [2013, Lemma 5.7] compute differentials in the Q2-motivic Adams spectral
sequence for BPh0i. The claimed facts follow by comparison.

Theorem 7.6.6 The 1-line of the Q2-motivic Adams spectral sequence supports the following nontrivial
differentials:

source dr target constraints

�2nh0 d3C�2.n/ ��2n�1h
4C�2.n/
0 n� 1

�4nhb d2 �4n.h0C �h1/h
2
b�1

n� 0, b � 4

��2nhb d2 �2�2nh1h
2
b�1

n� 0, b � 5

u�nhb d2 u�nh0h
2
b�1

n� 0, b � 4

��nhb d2 ��nh0h
2
b�1

n� 0, b � 4

u�4nC2h3 d3 �2�4nC1h30h3 n� 0
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After all the d2-differentials have been run , the 1-line of the E3-page of the Q2-motivic Adams spectral
sequence has a basis given by the classes in the following table:

class constraints

h0

�ı�4nhb n� 0, ı 2 f0; 1; 2g, b 2 f1; 2; 3g
�2�2nC1h0 n� 0

���4nC1h1 n� 0, � 2 f0; 1g
�1C��4nC3h1 n� 0, � 2 f0; 1g
�1C��4nC2h1 n� 0, � 2 f0; 1g

uh0

u�2nC1h0 n� 0

u�nhb n� 0, b 2 f1; 2g
u�2nC1h3 n� 0

u�4nh3 n� 0

��nhb n� 0, b 2 f0; 1; 2; 3g

u��2nh0 n� 1, � 2 f0; 1g
u�4nC2h3 n� 0

�1C��4nh4 n� 0, � 2 f0; 1g
�2�4nhb n� 0, b � 5

Of these , the classes in the first region are permanent cycles , the classes u��2nh0 with n� 1 and � 2 f0; 1g,
as well as u�4nC2h3 with n� 0, support higher differentials , and we leave open the fate of the classes
�1C��4nh4 and �2�4nhb for n� 0, � 2 f0; 1g, and b � 5.

Proof The given differentials follow by combining Theorem 7.3.1 with Lemma 7.6.5. For example,

d2.��
2nhb/D ��

2n
� d2.hb/D ��

2n
� .h0C �h1/h

2
b�1 D �

2�2nh1h
2
b�1

for b � 4, which is nonzero precisely when b � 5; as another example,

d3.u�
4nC2h3/D d3.u�

2/ � �4nh3 D �
2� � �4nh3 D �

2�4nC1h3:

We must verify that all d2-differentials are accounted for in this table; the claimed description of the
E3-page follows quickly. We must also verify that the classes we give as permanent cycles are indeed
permanent cycles. It suffices to verify the latter.

We may cut down the number of classes to consider by taking into account the classes which are products
of the permanent cycles given in Lemma 7.6.5 with some other class. After this reduction, degree
considerations rule out all differentials except for possibly

(1) dr.�
4nC1h1/

‹
D �4nhrC10 ,

(2) dr.��
4nC3h1/ 2 F2fu; �g˝F2f�4nC2h

rC1
0 g,

(3) dr.��
4nC2h1/

‹
D �2�4nC1hrC10 ,
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(4) dr.u�
2nh1/

‹
D �2�2n�1hrC10

with n � 0, and in the fourth case n � 1. In all cases, the possible nonzero targets are present and
not boundaries in Ormsby and Østvær’s computation [2013] of the Adams spectral sequence for the
Q2-motivic BPh0i, so by naturality they cannot be boundaries in the Adams spectral sequence for the
sphere. Thus these possible nonzero differentials are in fact not possible, yielding the theorem.

7.7 The rational numbers

We end by considering the case F D Q. By naturality, this gives information over arbitrary fields of
characteristic zero. Recall the functions " and � defined in Definition 7.5.1.

Theorem 7.7.1 The 1-line of the E3-page of the Q-motivic Adams spectral sequence is given by a direct
sum of that for the R-motivic Adams spectral sequence with the classes in the following table , where p
ranges through all primes:

class constraints

�nhbŒ2� n� 0, b 2 f0; 1; 2; 3g
h0Œp� p � 1 .mod 4/
�nh1Œp� p � 1 .mod 4/, n� 0
�2nh2Œp� p � 1 .mod 4/, n� 0
�2nC1h2Œp� p � 1 .mod 4/, n� 0, ".p/� 3
�4nh3Œp� p � 1 .mod 4/, n� 0
�4nC2h3Œp� p � 1 .mod 4/, n� 0, ".p/� 3
�2nC1h3Œp� p � 1 .mod 4/, n� 0, ".p/� 4
�nhbap p � 1 .mod 4/, n� 0, b 2 f0; 1; 2; 3g
h0up p � 3 .mod 4/

�2nhbup p � 3 .mod 4/, n� 0, b 2 f1; 2g
�4nh3up p � 3 .mod 4/, n� 0
�4nC2h3up p � 3 .mod 4/, n� 0, �.p/� 4
��2nhbup p � 3 .mod 4/, n� 0, b 2 f1; 2; 3g
��2nC1hbup p � 3 .mod 4/, n� 0, b 2 f1; 2; 3; 4g
���4nC1h1up p � 3 .mod 4/, n� 0, � 2 f0; 1g

�2nh0Œp� p � 1 .mod 4/, n� 1
�2nC1h0Œp� p � 1 .mod 4/, n� 1, ".p/� 3
�4nC2h3Œp� p � 1 .mod 4/, n� 0, ".p/D 2
�2nC1h3Œp� p � 1 .mod 4/, n� 0, ".p/D 3
�4nC2h3up p � 3 .mod 4/, n� 0, �.p/D 3
�2nh0up p � 3 .mod 4/, n� 1

��2nhbup p � 3 .mod 4/, n� 0, b � 4
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Moreover , we have the following information about higher differentials. The classes in the first region
of this table are permanent cycles , as are the classes ha and �b2

a�1.4nC1/cha for a � 3. The classes in
the second region of this table support higher differentials , as do the classes in Ext1R, which must support
higher differentials by Theorem 7.4.9. We leave open the fate of the classes in the third region of this table ,
as well as the possibility of exotic higher differentials on the classes �h4 and �2

a� .a/�2
a�1.4nC1/ha

for a � 4.

Proof Recall the splitting

ExtQ D ExtR˚Ext.1/fŒ2�g˚Ext.1/fŒp�; ap W p � 1 .mod 4/g˚Ext.2/fup W p � 3 .mod 4/g

implied by Lemma 7.1.1. As in the proof of Proposition 7.1.3, each of these summands is itself either ExtR
or an identifiable summand of some corresponding ExtQp

; for p odd, this summand looks like ExtFp
.

We may thus read the given table off the information given in Theorems 7.4.9, 7.6.2 (with Theorems 7.5.3
and 7.5.6), and 7.6.6, provided we verify the following claim: if ˛Œp� 2 Ext1Q is a class in stem s � 6,
then ˛Œp� or ˛up is a dr -cycle if and only if it projects to a dr -cycle in the Qp-motivic Adams spectral
sequence; and, likewise, if ˛ 2 Ext1R is a class in stem s � 7, then ˛ is a dr -cycle in the Q-motivic Adams
spectral sequence if and only if it projects to a dr -cycle in the R-motivic Adams spectral sequence.

As in the proofs of Theorems 7.5.3, 7.5.6, and 7.6.6, differentials on the classes ˛Œp� and ˛up in stems
s � 6 are completely determined by the structure of differentials on the classes Œp��2

i

and up�2
i

in the Q-
motivic Adams spectral sequence for BPh0i, together with the fact that h0, h1, h2, and h3 are permanent
cycles. The Q-motivic Adams spectral sequence for BPh0i was computed in [Ormsby and Østvær 2013,
Theorem 5.8]. We find that differentials on the classes Œp��2

i

and up�2
i

in the Q-motivic Adams spectral
sequence for BPh0i are entirely detected over Qp , and our first claim follows. That the classes ha 2 Ext1R
for a � 3 are permanent cycles was seen in Lemma 7.2.2, and the classes �b2

a�1.4nC1/cha 2 Ext1R must
be permanent cycles for a � 3 as there is no room for exotic higher differentials.
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Exotic Dehn twists on sums of two contact 3-manifolds

EDUARDO FERNÁNDEZ

JUAN MUÑOZ-ECHÁNIZ

We exhibit the first examples of exotic contactomorphisms with infinite order as elements of the contact
mapping class group. These are given by certain Dehn twists on the separating sphere in a connected sum
of two closed contact 3-manifolds. We detect these by a combination of hard and soft techniques. We
make essential use of an invariant for families of contact structures which generalizes the Kronheimer–
Mrowka contact invariant in monopole Floer homology. We then exploit an h-principle for families of
convex spheres in tight contact 3-manifolds, from which we establish a parametric version of Colin’s
decomposition theorem. As a further application, we exhibit new exotic 1-parametric phenomena in
overtwisted contact 3-manifolds.
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1 Introduction

Throughout this article all 3-manifolds are closed, oriented and connected unless otherwise noted, and all
contact structures on 3-manifolds are co-oriented and positive.

1.1 Main result

A fundamental problem in contact topology is to understand the isotopy classes of contact diffeomorphisms,
usually called “contactomorphisms”, of a contact manifold. The following is a longstanding open question
in all dimensions:
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Question 1.1 Do there exist exotic contactomorphisms with infinite order as elements in the contact
mapping class group?

In this article we answer this question in the affirmative in dimension three. Here, and throughout the
article, by exotic we will mean nontrivial in the contact category but formally trivial (and, in particular,
trivial in the smooth category). See Section 2.3 and below for further details. We consider a contact
3-manifold given by the connected sum of two contact 3-manifolds .Y#; �#/ WD .Y�; ��/#.YC; �C/. Recall
that the connected sum is built by removing Darboux balls B˙ � Y˙ and gluing the complements Y nB˙
by an orientation-reversing diffeomorphism of their boundary spheres which preserves their characteristic
foliations. Reparametrization of one of the spheres provides a U.1/ worth of choices for gluing, and thus
.Y#; �#/ naturally belongs in a family of contact 3-manifolds

.Y#; �#/ ,! Y#! U.1/:

The monodromy of this family is realized by a contactomorphism of .Y#; �#/, well-defined up to contact
isotopy. Its underlying diffeomorphism is the Dehn twist on the separating sphere S# in the neck of the
connected sum Y# D Y� #YC. We denote this contactomorphism by �S# and call it the contact Dehn twist
on S#. Unlike previous constructions of contactomorphisms, the contact Dehn twist is a local symmetry of
an arbitrarily small neighborhood of a 2-sphere (see Section 3 for further details). As a diffeomorphism, the
Dehn twist can be isotoped so that it is supported on a neighborhood Œ0; 1��S2 of S#'S

2 on which it acts
as Œ0; 1��S2 3 .t; p/ 7! .t; R�.t/.p//, whereR' denotes the rotation of angle ' along the z axis in R3, and
� W Œ0; 1�! Œ0; 2�� is a smooth function with � � 0 near t D 0 and � � 2� near t D 1. Because �1 SO.3/D
Z=2, the 2-fold iterate �2S#

is smoothly isotopic to the identity, but it remains to be understood whether:

Question 1.2 Is �2S#
contact isotopic to the identity?

Associated to the contact structures �˙ we have their Kronheimer–Mrokwa contact invariants c.�˙/ 2
zHM.�Y˙/; see [Kronheimer and Mrowka 1997; Kronheimer et al. 2007]. These are canonical elements
(defined up to sign) in the “to” flavor of the monopole Floer homology of �Y˙. The contact invariant
was also defined in the setting of Heegaard–Floer homology by Ozsváth and Szabó [2005]. Under the
isomorphism between the monopole and Heegaard–Floer homologies [Kutluhan et al. 2020; Colin et al.
2011] the contact invariants agree. Throughout this article we only consider monopole Floer homology
and the contact invariant with coefficients in Q, for simplicity. Our main result is the following:

Theorem 1.3 Let .Y˙; �˙/ be irreducible contact 3-manifolds. Suppose that the Kronheimer–Mrowka
contact invariants c.�˙/ do not lie in the image of the U -map

U WzHM.�Y˙/!zHM.�Y˙/:
Then:

(A) The k-fold iterates �kS#
for k � 1 of the contact Dehn twist are not contact isotopic to the identity.

(B) If the Euler classes of �˙ vanish , then �2S#
is formally contact isotopic to the identity.

Geometry & Topology, Volume 29 (2025)
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We now explain the meaning of the assertion in Theorem 1.3(B). Given a contact 3-manifold .Y; �/,
a formal contactomorphism of .Y; �/ consists of a pair .f; F / where f is a diffeomorphism of Y and
F D .Fs/ is a homotopy through vector bundle isomorphisms Fs WT Y !f �T Y such that F0Ddf and F1
preserves � . Any contactomorphism f yields a formal contactomorphism, and one says that f is formally
trivial if f can be deformed to the identity through formal contactomorphisms. A contactomorphism f

of .Y; �/ will be called exotic if it is formally contact isotopic to the identity but is not contact isotopic
to the identity. Thus exotic contactomorphisms are those which are “geometrically” nontrivial, and not
for reasons having to do with the underlying smooth or tangential structures. See Section 2.3 for further
context. Thus Theorem 1.3 asserts that �2S#

and all its iterates are exotic.

Remark 1.4 In fact, we will establish more: the contactomorphism �2S#
from Theorem 1.3 has infinite

order as an element in the abelianization of the group

(1) ker.�0 Cont.Y; �/! �0 Diff.Y //:

Remark 1.5 For comparison with Theorem 1.3, whenever either of .Y˙; �˙/ is the tight S1 � S2 or
a quotient of tight .S3; �/— eg the lens spaces L.p; q/ or the Poincaré sphere †.2; 3; 5/— then the
squared contact Dehn twist �2S#

of .Y#; �#/ is contact isotopic to the identity; see Lemmas 3.13–3.15.

We also establish an analogous result for connected sums with multiple summands. Let .Y; �/ be a tight
3-manifold. By the prime decomposition theorem combined with Colin’s decomposition theorem [1997]
(see also [Honda 2002; Ding and Geiges 2007]) we have a unique connected sum decomposition

.Y; �/Š .Y0; �0/ # � � � # .YN ; �N /

into tight contact 3-manifolds .Yj ; �j /, where each piece Yj is a prime 3-manifold. Let nC 1 � N be
the number of prime summands .Yj ; �j / such that c.�j / … ImU and the Euler class of �j vanishes. Let
C.Y; �/ (resp. „.Y; �/) be the space of contact structures (resp. co-oriented 2-plane fields) on Y in the
path-component of � .

Theorem 1.6 With .Y; �/ as above , when n� 1 there is a Zn subgroup in the kernel of

�1C.Y; �/! �1„.Y; �/

which induces a Zn subgroup in the first singular homology H1.C.Y; �/IZ/.

In particular, the exotic subgroup Zn exhibited in Theorem 1.6 can be arbitrarily large in the following
sense: for every n� 1 there exists a tight contact 3-manifold, in fact infinitely many, such that the kernel
of the previous homomorphism contains a subgroup isomorphic to Zn.

Remark 1.7 The n homologically independent loops of contact structures that we detect in Theorem 1.6
yield, under the natural map

�1C.Y; �/! �0 Cont.Y; �/;

Geometry & Topology, Volume 29 (2025)
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the squared contact Dehn twists on each of the n spheres which separate the nC 1 prime summands
.Yj ; �j /. However, we are unable to establish that the corresponding squared contact Dehn twists are
nontrivial or that they yield a subgroup Zn � �0 Cont.Y; �/ when n � 2, but we conjecture that this
should be true. See Remark 6.6.

The proofs of Theorems 1.3 and 1.6 combine rigid obstructions arising from Floer homology with
flexibility results. An essential ingredient is a families generalization of the Kronheimer–Mrowka contact
invariant in monopole Floer homology, introduced by the second author [Muñoz-Echániz 2024]. This
obstructs the existence of sections of a natural fibration given by the evaluation map ev W C.Y; �/! S2

which sends a contact structure to its plane at p, where p 2 Y is some fixed point. We combine this
machinery with the multiparametric convex surface theory techniques introduced by the first author
together with J Martínez-Aguinaga and F Presas [Fernández et al. 2020]. In particular, we use these
techniques to establish the following generalization of the much-celebrated decomposition theorem of
Colin [1997], which could be of independent interest for contact topologists, and which will be crucial to
the proof of Theorem 1.6.

We consider two tight contact 3-manifolds .Y˙; �˙/ equipped with Darboux balls B˙ � .Y˙; �˙/. Let
C.Y˙; �˙; B˙/ � C.Y˙; �˙/ denote the subspace of contact structures on Y˙ that coincide with �˙
over B˙. We consider the evaluation maps ev˙ W C.Y˙; �˙/! S2 which send a contact structure to
its plane at the point p˙ given by the center of B˙. These maps are fibrations, and the inclusion of
C.Y˙; �˙; B˙/ into the fiber of ev˙ induces a homotopy equivalence. We form the connected sum
.Y#; �#/D .Y�; ��/# .YC; �C/ by carving out the balls B˙ and gluing together the boundary components
thus created. Consider the evaluation map ev# WC.Y#; �#/!S2 at a point on the “neck” region. We establish
the following h-principle type result, which should be regarded as a parametric version of Colin’s theorem:

Theorem 1.8 The inclusion of C.Y�; ��; B�/�C.YC; �C; BC/ into the fiber of ev# induces a homotopy
equivalence. Thus there is a fibration sequence

C.Y�; ��; B�/� C.YC; �C; BC/ ,! C.Y#; �#/
ev#��! S2:

We refer to Theorem 6.1 for a more general version.

1.2 Examples

We now give examples of irreducible contact 3-manifolds .Y; �/ such that c.�/ … ImU , many of which
also have vanishing Euler class.

Example 1.9 (links of singularities) The simplest example is the Brieskorn sphere

†.p; q; r/D f.x; y; z/ 2C3
j xpCyqC zr D 0 and jxj2Cjyj2Cjzj2 D �g;

where � 2 R>0 is small and p; q; r � 1 are integers with 1=p C 1=q C 1=r < 1, equipped with the
contact structure �sing induced from the Brieskorn singularity. More generally, we could take any isolated

Geometry & Topology, Volume 29 (2025)
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normal surface singularity germ .X; o/ and let .Y; �sing/ be the contact manifold arising as the link of
the singularity. Neumann [1981] proved that the 3-manifold Y is irreducible. Provided that Y is also
a rational homology sphere, then the following are equivalent statements, as proved by Bodnár and
Plamenevskaya [2021] and Némethi [2017]:

(a) c.�sing/ … ImU .

(b) Y is not an L-space.

(c) .X; o/ is not a rational singularity.

For instance, all Seifert fibered integral homology spheres excluding S3 or the Poincaré sphere carry a
contact structure �sing with the above properties.

Example 1.10 Several surgeries on the figure eight knot are hyperbolic (and hence irreducible) and
support contact structures with c.�/ … ImU . Contact structures on these manifolds have been classified
by Conway and Min [2020].

Example 1.11 All but one of the 1
2
n.n� 1/ tight contact structures supported on �†.2; 3; 6n� 1/, up

to isotopy, were classified by Ghiggini and Van Horn-Morris [2016].

1.3 Exotic overtwisted phenomena

Let .Y; �/ be such that c.�/ … ImU and � has vanishing Euler class. Let B � .Y; �/ be a Darboux ball.
From this, one can produce overtwisted contact manifolds by modifying .Y; �/ by a Lutz twist inside B , or
by taking the connected sum (using B) with an overtwisted contact manifold .M; �ot/. In either case, the
squared contact Dehn twist on the boundary of B becomes isotopic to the identity in this new overtwisted
manifold, by an application of Eliashberg’s h-principle [1989] for overtwisted contact structures. However,
this has surprising implications (see Section 7 for the precise statement).

Proposition 1.12 (A) There exist overtwisted contact 3-manifolds that have an exotic loop of Lutz
twist embeddings.

(B) There exist overtwisted contact 3-manifolds that have an exotic loop of standard sphere embeddings.

In other words, (A) says that the h-principle for codimension-0 isocontact embeddings of embedded
S1-families of overtwisted disks fails in 1-parametric families; see [Gromov 1986; Eliashberg and
Mishachev 2002]. To the best of our knowledge this is the first example of this nature. On the other hand,
(B) says that the h-principle for standard spheres [Fernández et al. 2020] in tight contact 3-manifolds
fails in the overtwisted case.

The first known exotic phenomena regarding overtwisted disks in overtwisted contact 3-manifolds are
due to Vogel [2018]. He has proved that the space of overtwisted disks in certain overtwisted 3-sphere is
disconnected and used this to construct an exotic loop of overtwisted contact structures. By Eliashberg’s
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h-principle [1989], understanding the homotopy type of the space of overtwisted disks is the only obstacle
remaining in order to completely understand the homotopy type of the space of overtwisted contact
structures on a 3-manifold. Thus understanding families of overtwisted disks or overtwisted objects bears
special importance in 3-dimensional contact topology.

1.4 Context

1.4.1 h-principles As with symplectic topology, an ubiquitous theme of contact topology is the contrast
between two types of behaviors: flexible (similar to differential topology) and rigid (similar to algebraic
geometry). Beyond the tight–overtwisted dichotomy, 3-dimensional contact topology would seem to be
dominated by flexibility, due to the following h-principle of Eliashberg and Mishachev:

Theorem 1.13 [Eliashberg and Mishachev 2021] Let .B3; �stD ker.dz�y dx// be the standard contact
unit 3-ball. Then the inclusion Cont.B3; �st/! Diff.B3/ is a homotopy equivalence.

Here Cont.B3; �/ is the group of contactomorphisms of Y fixing a neighborhood of @B3, and likewise
for the group of diffeomorphisms Diff.B3/. This result was claimed, without a complete proof, by
Eliashberg [1992], treating the 0-1 parametric case. The complete proof recently appeared in [Eliashberg
and Mishachev 2021]. To give some context, the analogous statement that Diff.B3/! Homeo.B3/ is
a homotopy equivalence is equivalent to the Smale conjecture in dimension 3, a deep result proved by
Hatcher [1983]. Then an argument due to Cerf [1968] shows that the Smale conjecture implies that
Diff.Y /! Homeo.Y / is a homotopy equivalence for all 3-manifolds. Thus the exotic phenomena at the
�0-level which are exhibited in Theorems 1.3–1.6 are in sharp contrast with the above, and unexpected.

Remark 1.14 In 4-dimensional symplectic topology, the statement analogous to the h-principle of
Eliashberg and Mishachev is false: for the standard symplectic .R4; ! D dx ^ dy C dz ^ dw/, the
inclusion

Sympc.R
4; !/! Diffc.R4/

is not a homotopy equivalence. This follows from M Gromov’s [1985] result on the contractibility
of Sympc.R

4; !/ combined with Watanabe’s recent disproof of the 4-dimensional Smale conjecture
[Watanabe 2018].

1.4.2 Gompf’s contact Dehn twist We will see (Section 3) that the contact Dehn twist is well defined
on a (co-oriented) sphere S � .Y; �/ with a tight neighborhood. To the authors’ knowledge, this
contactomorphism was first considered by Gompf [1998] on the nontrivial sphere in the tight S1 �S2.
Gompf observed that �S and its iterates are not contact isotopic to the identity. Ding and Geiges [2010]
later established that �2S generates all smoothly trivial contact mapping classes; see also [Min 2024].
Gironella [2021] has recently studied higher-dimensional analogues of Gompf’s contactomorphism.
However, all iterates of Gompf’s �S and Gironella’s generalizations happen to be formally nontrivial
already, and hence not exotic.
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1.4.3 Finite-order exotic contactomorphisms The previously known exotic 3-dimensional contac-
tomorphisms have finite order, and the underlying 3-manifolds have b1 � 3. These were detected on
torus bundles by Geiges and Gonzalo [2004], who used an essentially elementary argument to reduce the
problem to the Giroux–Kanda classification of tight contact structures on T 3. This was reproved using
contact homology by Bourgeois [2006], who also found more exotic contactomorphisms in Legendrian
circle bundles over surfaces of positive genus. In the latter case, those contactomorphisms have been
shown to generate the group (1) by Geiges and Klukas [2014] and Giroux and Massot [2017]. Unlike
the squared Dehn twists, these exotic contactomorphisms are all given by global symmetries. The
paradigmatic example is the following:

Example 1.15 [Geiges and Gonzalo Perez 2004; Bourgeois 2006] Consider the 3-torus T 3 with the
fillable contact structure �1 D ker.cos � dx� sin � dy/. By passing to n-fold covers T 3! T 3 given by
.�; x; y/ 7! .n�; x; y/, we obtain contact structures �n on T 3. By a classical result of Giroux [1999] and
Kanda [1997], the contact structures �n (for n� 1) are pairwise not contactomorphic and give all the tight
contact structures on T 3. When n� 2 the deck transformations of the n-fold cover T 3! T 3 generate
all the exotic contactomorphisms of .T 3; �n/.

1.4.4 Other exotic Dehn twists Dehn twists have been a common source of exotic phenomena in
topology:

(a) Let Y# D Y� #YC be the sum of two aspherical 3-manifolds Y˙. By a result of McCullough [1990]
(see also [Hatcher and Wahl 2010]) it follows that the kernel of �0 Diff.Y#/ ! Out.�1Y#/ is Š Z2,
generated by the smooth Dehn twist on the separating sphere.

(b) Seidel [1999] used Lagrangian Floer homology to detect exotic 4-dimensional symplectomorphisms
with infinite order in the symplectic mapping class group, given by squared Dehn twists on Lagrangian
spheres. He later generalized these results to higher dimensions [Seidel 2000; 2003]. See also the recent
work of Smirnov [2020; 2022] using Seiberg–Witten gauge theory.

(c) Kronheimer and Mrowka [2020] have proved that the smooth Dehn twist on the separating sphere
in the connected sum of two copies of the smooth 4-manifold underlying a K3 surface is not smoothly
isotopic to the identity, even if it is topologically. For this they employ the Bauer–Furuta homotopical
refinement of the Seiberg–Witten invariants of 4-manifolds. See also [Lin 2023].

1.5 Sketch of the proof of Theorem 1.3(A)

We outline here a proof of Theorem 1.3(A) which is simpler than the one we give later. In particular, the
proof that we present now does not yield the stronger conclusion that the class of �2S#

is nontrivial in the
abelianization of (1). We will need a stronger argument, which uses Theorem 1.8, in order to deduce both
this and Theorem 1.6.

The main ideas go as follows. First, we have a relative version of the problem. Given a Darboux ball B
in a contact 3-manifold .Y; �/ we have a contactomorphism given by a Dehn twist �@B performed on an
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exterior sphere parallel to @B . This contactomorphism fixes the ball B and need not be contact isotopic
to the identity relative to B , even if it always is globally (not fixing the ball). The problem of whether
the squared Dehn twist �2

@B
is isotopic rel B to the identity can be essentially recast as a lifting problem

involving families of contact structures: if Y is aspherical (irreducible and with infinite fundamental
group) then �2

@B
is isotopic to the identity rel B precisely when the fibration given by the evaluation

map ev W C.Y; �/! S2 admits a (homotopy) section (see Corollary 3.7). We recall that ev is defined by
evaluating contact structures at a point. The key point that we exploit is that this fibration resembles a
corresponding “evaluation map” pertaining to the Seiberg–Witten gauge theory of the manifold Y , and
which is closely related to the U map in monopole Floer homology. As a result, an obstruction to the
existence of a section was given by the second author in [Muñoz-Echániz 2024]: if c.�/ … ImU then no
(homotopy) section exists, and thus �2

@B
isn’t isotopic to the identity rel B .

Going back to the original problem, consider two tight irreducible contact manifolds .Y˙; �˙/ and their
sum .Y#; �#/. Let CEmb.S2; .Y#; �#//S# be the space of co-oriented convex embeddings S2 ,! .Y#; �#/

with standard characteristic foliation, in the isotopy class of the separating sphere S#. The group of
contactomorphisms of .Y#; �#/ acts transitively on this space and yields a fibration1

(2) Cont.Y#; �#; S#/! Cont.Y#; �#/! CEmb.S2; .Y#; �#//S# ; f 7! f .S#/:

From the long exact sequence of homotopy groups, a contactomorphism f of .Y#; �#/ fixing the sphere S#

is contact isotopic to the identity (not necessarily fixing S#) precisely when it arises as the monodromy
in (2) of a loop of sphere embeddings. It thus becomes essential to understand the topology of the
sphere embedding space. This brings us to the following h-principle-type result, which asserts that the
topological complexity of this space only comes from reparametrizations of the source:

Theorem 1.16 If .Y˙; �˙/ are irreducible and tight then the reparametrization map provides a homotopy
equivalence U.1/ '�! CEmb.S2; .Y#; �#//S# .

In the smooth case, the result analogous to the above was proved by Hatcher [1981]. The proof of
Theorem 1.16 rests on the h-principle for standard convex spheres established by the first author together
with Martínez-Aguinaga and Presas [Fernández et al. 2020], and should be regarded as an application of
the h-principle of Eliashberg and Mishachev [2021].

With these ingredients in place, the proof of Theorem 1.3(A) goes as follows. The monodromy in (2) over
the standard loop in U.1/ is given by the product of Dehn twists �@B��@BC (see Lemma 3.5). The contact
Dehn twist �S# agrees with the image of �@B� in �0 Cont.Y#; �#/. Because the manifolds .Y˙; �˙/ have
infinite-order contact Dehn twists �@B˙ rel B˙, for all k � 1 the class �k

@B�
2 �0 Cont.Y#; �#; S#/ is not

an iterate of �@B��@BC or its inverse. It follows that �S# and its iterates are not contact isotopic to the
identity in .Y#; �#/.

1Strictly speaking, we should replace Cont.Y#; �#/ with the subgroup consisting of contactomorphisms which preserve the
isotopy class of the co-oriented sphere S#.
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Outline The structure of the article is as follows. In Section 2 we introduce notation and present
background material. In Section 3 we define the contact Dehn twist, establish various key properties and
present examples where it is isotopic to the identity. In Section 4 we provide background on the families
version of the Kronheimer–Mrowka contact invariant introduced in [Muñoz-Echániz 2024], which will
be one of the main ingredients in the proofs of our main results. In Section 5 we review the h-principle
for families of convex spheres in tight contact 3-manifolds established in [Fernández et al. 2020]. In
Section 6 we use this h-principle to establish Theorem 1.8. We then complete the proofs of Theorems 1.3
and 1.6. In Section 7 we deduce exotic 1-parametric phenomena in overtwisted contact 3-manifolds.
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2 Background

This section introduces the main players in this article: spaces of contact structures, contactomorphisms,
embeddings, etc.

Remark 2.1 For convenience, throughout this article by a “fibration” we will mean a “Serre fibration”. By
a “homotopy equivalence” we will mean a “weak homotopy equivalence”. However, the latter distinction
isn’t important: the various infinite-dimensional spaces that we consider are Fréchet manifolds, and hence
they have the homotopy type of countable CW complexes [Palais 1966; Milnor 1959] and Whitehead’s
theorem applies.

2.1 Notation

Let .Y; �/ be a closed contact 3-manifold. We always assume Y is connected and oriented, and � co-
oriented and positive. Occasionally we will allow Y to be compact with nonempty boundary, in which case
we assume that @Y is convex for the contact structure � and we fix a collar neighborhood C D .�1; 0��@Y
of @Y . We quickly introduce here some of the spaces that will be relevant, all of which are equipped with
the Whitney C1 topology:

� We denote by Emb.B3; Y / the space of orientation-preserving smooth embeddings � W B3 ,! Y of
the closed unit ball (avoiding the closure of C , if @Y ¤∅). Let Emb..B3; �st/; .Y; �// be the subspace
consisting of contact embeddings of the standard contact unit ball. Such embeddings will be referred to
as Darboux balls in .Y; �/. Darboux’s theorem asserts that for any interior point p of a contact manifold
we may find such � with �.0/D p. We will often abuse notation by referring to a Darboux ball only by
its image B WD �.B3/.
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� We denote by Diff.Y / the group of orientation-preserving diffeomorphisms, and by Diff.Y; B/ the
subgroup consisting of those which fix a Darboux ball B pointwise. By Diff0.Y / and Diff0.Y; B/ we
denote the subgroups consisting of those which are smoothly isotopic to the identity (rel B in the second
case). We denote by Cont.Y /� Diff the subgroup of co-orientation-preserving contactomorphisms of
.Y; �/, and by Cont.Y; B/ the subgroup consisting of those which fix a Darboux ball B pointwise. By
Cont0.Y / and Cont0.Y; B/ we denote the subgroups consisting of those which are smoothly isotopic to
the identity (rel B in the second case).

� We denote by C.Y; �/ the space of contact structures on Y in the path-component of � . When @Y ¤∅
we also require that they agree with � over C . Given a Darboux ball B in .Y; �/ we denote by C.Y; �; B/
the subspace consisting of contact structures � 0 for which the coordinate ball B is a Darboux ball for
.Y; � 0/— ie � D � 0 over B .

� We denote by Fr.Y / the principal .SO.3/'/GLC.3/-bundle over Y of oriented frames in T Y , and by
CFr.Y / the principal .U.1/'/CSpC.2;R/-bundle over Y of co-oriented frames in � . Here CSpC.2;R/
denotes the linear conformal-symplectomorphism group. By the smooth and contact versions of the disk
theorem2 we have homotopy equivalences

(3)
Emb.B3; Y / '�! Fr.Y /; � 7! .d�/0.e1; e2; e3/;

Emb..B3; �st/; .Y; �//
'�! CFr.Y; �/; � 7! .d�/0.e1; e2/:

Notice that Fr.Y /' Y �SO.3/ and, when the Euler class of � vanishes, CFr.Y; �/' Y �U.1/.

� We denote by Emb.S2; Y / the space of co-oriented embeddings of 2-spheres. By CEmb.S2; .Y; �//
we denote the subspace consisting of convex embeddings with standard characteristic foliation (“standard
convex spheres” in short). Recall that a surface †� .Y; �/ is convex [Giroux 1991; Geiges 2008] if there
exists a contact vector field on a neighborhood which is transverse to †. The standard characteristic
foliation on S2 is that induced from its embedding as the boundary of the Darboux ball.

� We denote by Cont.Y; �; S/ the subgroup of contactomorphisms which fix a standard convex sphere S
pointwise, and likewise for Diff.Y; S/.

2.2 Standard fibrations

Next, we review how the spaces introduced above relate to each other through various natural fibrations.
Some of the material from this section is treated in [Giroux and Massot 2017] in greater detail.

2.2.1 Diffeomorphisms acting on contact structures By an application of Gray’s stability theorem
(Moser’s argument) [Geiges 2008] with parameters, one can show:

2The key point in the contact case is that 't .x; y; z/ WD .tx; ty; t2z/ is a contactomorphism of .R3; �st/ for every t > 0, so the
proof in the contact case follows along the same lines as in the smooth case; see [Geiges 2008, Theorem 2.6.7].
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Lemma 2.2 The action f 7! f�� of the group of diffeomorphisms on a fixed contact structure � gives a
fibration

(4) Cont0.Y; �/! Diff0.Y /! C.Y; �/:

Similarly, there is fibration

(5) Cont0.Y; �; B/! Diff0.Y; B/! C.Y; �; B/:

By (4), understanding the homotopy type of the space of contact structures C.Y; �/ and the group of
contactomorphisms Cont0.Y; �/ is essentially equivalent, since the homotopy type of Diff0.Y / is often
well understood (eg for all prime 3-manifolds by now).

2.2.2 Contactomorphisms acting on Darboux balls By an application of the contact isotopy extension
theorem [Geiges 2008] with parameters, we have:

Lemma 2.3 The action f 7! f .B/ of the group of contactomorphisms on a fixed Darboux ball B � Y
gives a fibration

(6) Cont.Y; �; B/! Cont.Y; �/! Emb..B3; �st/; .Y; �//:

Similarly, there is a fibration

(7) Diff.Y; B/! Diff.Y /! Emb.B3; Y /:

2.2.3 Evaluation of contact structures at a point Fix a Darboux ball B � Y with center 0 2 Y . By
regarding the 2-sphere S2 as the space of co-oriented planes in the tangent space T0B , we obtain the
evaluation map

(8) evB W C.Y; �/! S2; � 0 7! � 0.0/:

The following result is well known, but we provide a proof:

Lemma 2.4 The evaluation map (8) is a fibration. The inclusion C.Y; �; B/ ! .evB/�1.�.0// is a
homotopy equivalence.

Proof Let Bj be the unit j -disk and consider a homotopy Œ0; 1��Bj ! S2, .t; u/ 7! �t;u, together
with a lift of the time zero map f0g � Bj ! C.Y; �/ given by u 7! �u, ie at the point 0 2 B we have
�u.0/D �0;u. We must find a family of contact structures �t;u with �t;u.0/D �t;u and �0;u D �u.

Let vt;u 2 S.T0B/ D S2 be the unit normal (with respect to the standard flat metric on B) to the
plane �t;u. Since the action of SO.3/ on S2 gives a fibration SO.3/! S2 given by A 7! Ae3, we may
find At;u 2 SO.3/ such that At;ue3 D vt;u. Differentiating At;u in t we get a vector field Vt;u on R3.
After cutting off Vt;u outside the unit ball B � Y we regard Vt;u as a u-family of t-dependent vector
fields on Y whose associated flows (starting at time t D 0) we denote by �tu. We obtain contact structures
�t;u WD .�

t
u/��u with the desired property, which in fact agree with � outside B � Y .
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For the second part, let �uD ker˛u be a family of contact structures parametrized by a disk Bj 3 u so that
�u.0/D �.0/ for all u 2 Bj and �u.p/D �.p/ for all .u; p/ 2 @Bj �B . We must deform relative to @Bj

this family of contact structures to another family which agrees with � over the Darboux ball B . Denote by
i WB3 ,!Y the inclusion ofBD i.B3/. By the parametric version of Darboux’s theorem we obtain a family
of disk embeddings �u WB3 ,!Y , which are Darboux balls for �u, such that �u.0/D02B , .d�u/0D id for
all u2Bj , and �uD i for all u2@Bj . By (3) we may deform the family of embeddings �u to the inclusion i
relative to @Bj , and this deformation may be followed by an isotopy fu;t 2Diff.Y / for .u; t/2Bj � Œ0; 1�,
with fu;t D id for all .u; t/ 2 Bj � f0g[ @Bj � Œ0; 1�. The homotopy of contact structures .fu;t /��u for
.u; t/ 2 Bj � Œ0; 1� solves the problem since the .fu;1/��u agree with � over B for all u 2 Bj .

2.2.4 Contactomorphisms act on standard convex spheres Again, an application of the contact
isotopy extension theorem gives:

Lemma 2.5 The action f 7! f .S/ of the group of contactomorphisms on a fixed standard convex sphere
S � Y gives a fibration

(9) Cont.Y; �; S/! Cont.Y; �/! CEmb.S2; .Y; �//:

Similarly, there is a fibration

(10) Diff.Y; S/! Diff.Y /! Emb.S2; Y /:

Remark 2.6 The above statement isn’t quite precise. For either (9) or (10), the downstairs projection
is not surjective in general, so strictly speaking we only have a fibration over a union of connected
components of the right-hand side. We will make no further comment on this point from now on.

2.3 Formal triviality and exoticness

Here we collect basic material that we need related to the notion of a formal contactomorphism. The
material in this section should be well known to experts, but we did not find a convenient reference.

2.3.1 Formal contact structures and contactomorphisms For a 3-manifold Y , the flexible analogue3

of a contact structure is a 2-plane field, ie a codimension-1 distribution � �T Y . Henceforth all 2-planes in
a 3-manifold are assumed to be co-oriented, as we’ve been assuming with contact structures. Let „.Y; �/
denote the path-component of a fixed 2-plane field � in the space of all such. If � is a contact structure we
have a natural inclusion map C.Y; �/!„.Y; �/. The correct flexible analogue of a contactomorphism is:

Definition 2.7 A formal contactomorphism of .Y; �/, where � is a 2-plane field, is a pair .f; f�sg0�s�1/
such that f 2 Diff.Y / and f�sg0�s�1 is a homotopy through vector bundle isomorphisms

�s W T Y Š�! f �T Y

such that �0 D df and �1 preserves the 2-plane field �.

3In general, if Y has dimension 2nC 1� 3, one should define „.Y; �/ as the space of codimension-1 hyperplane fields in T Y
equipped with a U.n/ structure.
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Of course, the above notion can be generalized to an arbitrary n-manifold equipped with a reduction of
structure group to a subgroupG�GL.n;R/. The group of formal contactomorphisms of .Y; �/ is denoted
by FCont.Y; �/. When � is a contact structure there is the obvious inclusion map Cont.Y; �/!FCont.Y; �/
given by f 7! .f; df /, where df denotes the constant homotopy at df .

A homotopy class in �j Cont.Y; �/ is said to be formally trivial if it lies in the kernel of �j Cont.Y; �/!
�j FCont.Y; �/. If, in addition, such a homotopy class is nontrivial in �j Cont.Y; �/ then we call it exotic.
Similar terminology applies for families of contact structures.

2.3.2 A flexible analogue of (4) We introduce a flexible counterpart of the fibration (4). This is done via
fibrant replacement of the map Diff0.Y /!„.Y; �/ given by f 7! f �� . That is, we decompose this map
as the composite of a homotopy equivalence Diff0.Y / '�!FDiff0.Y / and a fibration FDiff0.Y /!„.Y; �/.
Here FDiff.Y / is the topological group which consists of pairs .f; f�tg0�t�1/ where f 2 Diff.Y / and
f�tg0�t�1 is a homotopy of vector bundle isomorphisms �t W T Y Š�! f �T Y such that �0 D df . By
FDiff0.Y / we denote the identity component. Clearly the inclusion induces a homotopy equivalence
Diff.Y /' FDiff.Y /. Define a mapping

(11) FDiff0.Y /!„.Y; �/; .f; f�tg/ 7! �1.�/:

Lemma 2.8 Let � be a 2-plane field on a compact oriented 3-manifold Y . Then the mapping (11) is
a fibration with fiber FCont0.Y; �/. Thus , for a contact structure � , we have a commuting diagram of
fibrations inducing a homotopy equivalence of total spaces

FCont0.Y; �/ FDiff0.Y / „.Y; �/

Cont0.Y; �/ Diff0.Y / C.Y; �/
'

We leave the proof of this lemma as an exercise.

Corollary 2.9 Let .Y; �/ be a contact 3-manifold. If ˇ 2 �j C.Y; �/ is formally trivial , then so is its
image in �j�1 Cont0.Y; �/ under the connecting map of the fibration (4).

The homotopy type of the space „.Y; �/ is often easy to understand, unlike that of C.Y; �/.

Example 2.10 Let Y be any integral homology 3-sphere, and � a 2-plane field on Y . Let �st be any
contact structure on S3 (say, the tight one). By a result of Hansen [1978] there is a homotopy equivalence
„.S3; �st/'„.Y; �/. From this one easily calculates

�j„.Y; �/� �jS
2
��jC3S

2:

3 Contact Dehn twists on spheres

In this section we define the contact Dehn twist on a sphere in several equivalent ways, establish some
key properties and discuss some examples when its square is isotopic to the identity.
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3.1 The contact Dehn twist

Let .Y; �/ be a contact 3-manifold, and S � Y be a co-oriented embedded sphere. Provided S has a tight
neighborhood, we can associate to S a contactomorphism �S well defined in �0 Cont.Y; �/. We discuss
this construction now.

3.1.1 Local model We start by discussing the local picture. Consider the contact 3-manifold Y0 D
Œ�1; 1��S2 with the tight contact structure �0D ker.˛0/ where ˛0D z dsC 1

2
x dy� 1

2
y dx. Here s is the

standard coordinate on Œ�1; 1�, and x, y and z are coordinates on R3 restricted onto the unit sphere S2.
Consider the sphere S0 D f0g �S2 � Y0. We now describe the contact Dehn twist �S0 on the sphere S0.

We choose a smooth function � W Œ�1; 1�! Œ0; 2�� with �.s/� 0 near s D�1 and �.s/D 2� near s D 1.
Let R' be the counterclockwise rotation in the xy plane with angle '. Consider the diffeomorphism Q�S0
of Y0 given by a smooth Dehn twist along S0

Q�S0.s; x; y; z/D .s; R�.s/.x; y/; z/:

Since �1 SO.3/ D Z=2 it follows that the squared Dehn twist Q�2S0 is smoothly isotopic to the identity
rel @Y0. We don’t quite have a contactomorphism of .Y0; �0/, since

Q��S0˛0 D ˛0C
1
2
� 0.s/.x2Cy2/ ds:

However, consider the naive interpolation from ˛0 to Q��S0˛0

˛t D ˛0C t
1
2
� 0.s/.x2Cy2/ ds;

and observe that:

Lemma 3.1 For any t 2 Œ0; 1� the form ˛t is a contact form.

Proof A straightforward calculation shows ˛t ^ d˛t D ˛0 ^ d˛0 > 0.

Thus, by Gray stability (Moser’s argument) [Geiges 2008], the deformation of contact structures �t D
ker.˛t / is realized by an isotopy ft , ie f0 D id and .ft /��t D �0. Since the forms ˛t don’t depend on t
near @Y0 we may further assume that ft D id near @Y0. We then replace Q�S0 with �S0 WD Q�S0 ı f1, and
the latter is a contactomorphism of .Y0; �0/. Also, the support of �S0 can be made arbitrarily close to the
sphere S0 by choosing �.s/ appropriately. Then for any � 2 .0; 1� we have a well-defined isotopy class of
contact Dehn twist

�S0 2 �0 Cont.Œ��; ���S2; �0/:

It is worth pointing out the following:

Lemma 3.2 The group Cont.Y0; �0/ is homotopy equivalent to �U.1/' Z. Its �0 is generated by the
contact Dehn twist �S0 .
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Proof Gluing a Darboux ball B to .Y0; �0/ gives back the standard contact ball .B3; �st/. Thus, from the
fibration (6), we have a map of fiber sequences

Cont.Y0; �0/ Cont.B3; �st/ Emb..B3; �st/; .B3; �st//

�U.1/ f�g U.1/

' '

where the middle homotopy equivalence follows from Theorem 1.13 combined with Hatcher’s theorem
[1983]. The first assertion now follows. For the second assertion, we need to show that the generator
1 2 �1U.1/ maps to the class of the contact Dehn twist �S0 under the connecting map.

We first describe the contact Dehn twist on S0 more conveniently in terms of the coordinates on
the ball B3 D B [ Y0. Recall that the standard contact structure on B3 is �st D ker˛st where ˛st D

dzC 1
2
x dy� 1

2
y dx. Choose a smooth function � W Œ0; 1�! Œ0; 2�� with � D 0 near 0 and � D 2� near 1.

Let r2 WD x2Cy2C z2 be the radius squared function on B3. Then the diffeomorphism of B3 given by

Q�.x; y; z/ WD .R�.r2/.x; y/; z/

does not quite preserve the contact structure, but

. Q�/�˛st D ˛stC
1
2
.x2Cy2/� 0.r2/ d.r2/:

As in Lemma 3.1, the obvious interpolation that takes the second term in the above identity to zero gives
a path of contact forms, and as in Section 3.1.2 we may canonically deform Q� to a contactomorphism �S0
in the isotopy class of the contact Dehn twist on S0.

Consider now a homotopy of maps �t W Œ0; 1�! Œ0; 2�� with �t constant near 1 (with value 2�), such that
�0 D � and �1 is the constant function with value 2� . We obtain an isotopy through diffeomorphisms
of B3 (fixing a neighborhood of the boundary @B3, but not the smaller ball B!) given by

Q�t .x; y; z/ WD .R�t .r2/.x; y/; z/

such that Q�0 D Q� and Q�1 D id. Again, by observing that for each t the obvious interpolation from . Q�t /
�˛st

and ˛st gives a path of contact forms, we may canonically deform the isotopy Q�t to a contact isotopy �t
with �0 D �S0 and �1 D id.

Now, the path of contactomorphisms �1�t from the identity to �@B induces a loop of Darboux balls
.�1�t /.B/ in the class of the generator 1 2 ZD �1 Emb..B3; �st/; .B3; �st//.

Likewise, we have a firm hold on the topology of the space of standard spheres in our local model. Let
S˙ D

˚
˙
1
2

	
�S2 � Y0, and denote by e0 W S2 ,! Y0 the embedding of S0 � Y0.

Lemma 3.3 The map induced by reparametrization of e0

U.1/! CEmb.S2; .Y0; �0//; � 7! e0 ı r� ;
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is a homotopy equivalence. Here r� .x; y; z/D .R� .x; y/; z/. Under the connecting homomorphism of
the fibration (9), the generator of �1U.1/D Z maps to the class

.�S�/
�1�SC 2 �0 Cont.Y0; �0; S0/:

Proof We have the following map of fiber sequences, with homotopy equivalences on the fiber and total
space by Lemma 3.2:

Cont.Y0; �0; S0/ Cont.Y0; �0/ CEmb.S2; .Y0; �0//

�U.1/��U.1/ �U.1/ U.1/

' '

3.1.2 General case The robustness of our local picture allows us to consider contact Dehn twists in
more general settings. We fix a 3-manifold .Y; �/ together with a co-oriented standard convex sphere
S � Y , ie an embedded sphere whose characteristic foliation agrees with that of S0 � Y0 in the local
model. It follows that neighborhoods of S � Y and S0 � Y0 are contactomorphic in a (homotopically)
canonical fashion [Giroux 1991; Geiges 2008], and by making the support of �S0 sufficiently close to S0
we may therefore implant �S0 into .Y; �/ as a compactly supported contactomorphism �S , which we
refer to as the contact Dehn twist on the co-oriented standard convex sphere S � Y . The class of �S in
�0 Cont.Y; �/ only depends on the isotopy class of S in the space of co-oriented standard convex spheres,
defining a map of sets

�0 CEmb.S2; .Y; �//! �0 Cont.Y; �/; S 7! �S :

The contactomorphism �S makes sense more generally whenever S � Y is a just a convex co-oriented
sphere with a tight neighborhood U (but not necessarily having standard characteristic foliation). Indeed,
by Giroux’s criterion [2001] the dividing set of S is connected. Then by Giroux’s realization theorem, we
may find a smooth isotopy of sphere embeddings St whose image lies in the tight neighborhood U , S0DS
and S1 is a standard convex sphere, to which we associate the Dehn twist �S1 by the previous construction.
A different choice of isotopy S 0t may yield a different standard convex sphere S 01. The two spheres
(S1 and S 01/ are isotopic within U as standard convex spheres by a result of Colin [1997, Proposition 10],
so the contact Dehn twists �S1 and �S 01 are contact isotopic. Therefore we have a well-defined contact
Dehn twist �S 2�0 Cont.Y; �/ associated to the convex sphere S with tight neighborhood U . In fact, since
any smooth sphere can be made convex by a small isotopy [Giroux 1991], this construction defines a map

�0 Embtight.S
2; .Y; �//! �0 Cont.Y; �/; S 7! �S ;

where Embtight.S
2; .Y; �// stands for the space of smooth co-oriented embeddings S2 � Y which admit

a tight neighborhood. In particular, if .Y; �/ is tight (globally) then �S only depends up to contact isotopy
on the smooth isotopy class of the co-oriented sphere S .

The following particular case will play an essential role in this article, so we emphasize it now. Consider
a Darboux ball B D �.B3/ in a contact manifold .Y; �/. Associated to an exterior sphere (a sphere
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contained in the complement Y nB) parallel to @B we have a well-defined contact Dehn twist which
fixes B pointwise. By abuse of notation and for convenience we denote this contactomorphism by �@B
even if the Dehn twist is not on the sphere @B . This defines a map of sets

�0 Emb..B3; �st/; .Y; �//! �0 Cont.Y; �; B/; B 7! �@B :

The following convenient description of �@B follows from the local calculation in the proof of Lemma 3.2.

Lemma 3.4 The Dehn twist �@B 2 �0 Cont.Y; �; B/ agrees with the image of 1 2 Z under the map

ZD �1U.1/! �1 Emb..B3; �st/; .Y; �//! �0 Cont.Y; �; B/;

where the first map is induced by the reparametrization map

U.1/! Emb..B3; �st/; .Y; �//; � 7! � ı r� ;

and the second map is the connecting map in the long exact sequence of the fibration (6).

Let e 2 CEmb.S2; .Y; �// be an embedding of a standard convex sphere. Thus the image S D e.S2/�
.Y; �/ is a co-oriented standard convex sphere. Let S˙ be two parallel copies of S given by pushing S
forward and backward. By the local calculation in Lemma 3.3 we have:

Lemma 3.5 The product of Dehn twists .�S�/
�1�SC 2 �0 Cont.Y; �; S/ agrees with the image of 1 2 Z

under the map
ZD �1U.1/! �1 CEmb.S2; .Y; �//! �0 Cont.Y; �; S/;

where the first map is induced by the reparametrization map

U.1/! CEmb.S2; .Y; �//; � 7! e ı r� ;

and the second map is the connecting map in the long exact sequence of the fibration (9).

3.2 The Dehn twist and the evaluation map

We move on to study a relative version of the isotopy problem for the Dehn twist. Consider the Dehn
twist �@B on (an exterior sphere parallel to) the boundary @B of a Darboux ball, as in the previous section.
We will now rephrase the problem of whether �2

@B
defines the trivial class in �0 Cont0.Y; �; B/ as a

lifting problem.

3.2.1 The obstruction class The main player is the evaluation mapping evB W C.Y; �/! S2 defined
by (8), which is a fibration (Lemma 2.4). If ı W �2S2 ! �1C.Y; �; B/ is the connecting map in the
homotopy long exact sequence, then we have a distinguished class

(12) O� WD ı.1/ 2 �1C.Y; �; B/;

which, by construction, is the obstruction class to finding a homotopy section of evB (a map s WS2!C.Y; �/
such that evB ıs W S2! S2 has degree 1):

evB admits a homotopy section if and only if O� D 0:
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Later in this section we will explicitly describe a loop of contact structures that represents the obstruction
class O� 2 �1C.Y; �; B/.

We now relate the problem of finding a section of evB to the triviality of the Dehn twist �2
@B

as fol-
lows. Consider the connecting map ı0 W �1C.Y; �; B/! �0 Cont0.Y; �; B/ of the fibration (5). The key
observation is the following:

Proposition 3.6 The class ı0.O�/ 2 �0 Cont0.Y; �; B/ agrees with the squared contact Dehn twist �2
@B

.

Proof Consider first the case when .Y; �/ is the contact unit ball
�
B3; �st D ker

�
dzC 1

2
x dy � 1

2
y dx

��
and B � B3 is a subball of smaller radius with center at 0. The fibrations from Section 2.2 fit into a
commuting diagram

C.B3; �st; B/ C.B3; �st/ S2

Diff0.B3; B/ Diff0.B3/ Emb.B3;B3/' SO.3/

Cont0.B3; �st; B/ Cont0.B3; �st/ Emb..B3; �st/; .B3; �st//' U.1/

evB

In the third vertical fiber sequence the map �2S2 D Z! �1U.1/ D Z is multiplication by 2. From
the diagram we see that the image of O�st 2 �1C.B

3; �st; B/ in �0 Cont0.B3; �st; B/ can be alternatively
calculated as the image of 2 2 ZD �1U.1/ in �0 Cont0.B3; �st; B/. From Lemma 3.4 this is the class
of �2

@B
.

For an arbitrary .Y; �/ and a Darboux ball, B�Y the result then follows from the previous local calculation
by extending the contact embedding B ,! Y to a contact embedding B � B3 ,! Y , and considering the
commuting diagram

�2S
2 �1C.B3; �st; B/ �0 Cont0.B3; �st; B/

�2S
2 �1C.Y; �; B/ �0 Cont0.Y; �; B/

Corollary 3.7 Suppose Y is aspherical (irreducible and with infinite fundamental group). Then �2
@B

is
isotopic to the identity rel B if and only if the evaluation mapping (8) admits a homotopy section (the
obstruction class O� vanishes).

Proof By the fibration (5) we have the exact sequence

�1 Diff0.Y; B/! �1C.Y; �; B/! �0 Cont0.Y; �; B/;

so by Proposition 3.6 the result will follow from �1 Diff0.Y; B/D 0. Let us now explain why this group
vanishes. By the fibration (7) we have an exact sequence

1! �1 Diff0.Y; B/! �1 Diff0.Y /! �1 Fr.Y /Š �1Y �Z2:
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Here, to have a 1 on the left we use �2Y D 0 (which follows from Y being aspherical). Since the
homomorphism �1 Diff0.Y /!�1Y , and hence �1 Diff0.Y /!Fr.Y /, is injective, it follows by exactness
that �1 Diff0.Y; B/ D 0 as required. The fact that �1 Diff0.Y /! �1Y is injective follows from the
calculation of the homotopy type of the group Diff0.Y / for all aspherical4 3-manifolds. More precisely,
the papers [Hatcher 1976, 1981; 1983, Gabai 2001; Ivanov 1976; McCullough and Soma 2013] cover
all aspherical 3-manifolds with the exception of the non-Haken infranilmanifold (see [McCullough and
Soma 2013] for a nice summary). The latter consist of the nontrivial S1-bundles over T 2, which are
covered by [Bamler and Kleiner 2024]. In all these cases Diff0.Y / has the homotopy type of .S1/k ,
where k is the rank of the center of �1Y and �1 Diff0.Y /! �1Y is the inclusion of the center.

In the local model .Y; �/D
�
B3; �st D ker

�
dzC 1

2
x dy � 1

2
y dx

��
, and letting B � B3 be any concentric

subball, we have the following unique characterization of the obstruction class:

Lemma 3.8 The evaluation of contact structures on B3 along the radial line f.0; 0; z/ j z 2 Œ0; 1�g � B3

identifies the evaluation fibration on C.B3; �st/ with the path fibration on S2:

C.B3; �st; B/ C.B3; �st/ S2

�S2 PS2 S2:

'

evB

' D

Thus the obstruction class O�st 2�1C.B
3; �st; B/ corresponds to the standard generator of �1�S2D�2S2.

Proof By the Eliashberg–Mishachev theorem [2021], the space C.B3; �st/ is contractible. So is the path
space PS2, so the desired result follows.

3.2.2 Geometric description of the obstruction class It is instructive to describe an explicit loop
.�'/'2S1 of contact structures on Y fixed over a Darboux ball B � Y which represents the obstruction
class O� 2 �1C.Y; �; B/; we do this now, but, won’t use this construction in the remainder of the article.

By definition of the connecting map ı W �2S2! �1C.Y; �; B/ associated to the fibration (8), a based loop
�' 2 C.Y; �; B/ represents the obstruction class O� precisely when there exists a B2-family of contact
structures �r;' 2 C.Y; �/— here, the unit 2-ball B2 is parametrized using polar coordinates .r; '/— with
�r;0D � such that �1;' D �' and the mapping B2 3 .r; '/ 7! evB.�r;'/D �r;'.p/ 2 S2 induces a degree-1
mapping B2=@B2!S2 (note that the map out of B2=@B2 is well defined because �1;'.p/ is constant in ').

Such a family �r;' can be constructed as follows. First, it suffices to consider the case .Y; �/D .B3; �st/,
and construct a family �r;' 2 C.B3; �; B/ as above (and with �r;' D �st near @B3). For this, choose any
smooth mapping q W Œ0; 1��S1! SO.3/=U.1/ with

q.0; '/D q.1; '/D Œid�; q.r; 0/D q.r; 2�/D Œid�;

4For the irreducible 3-manifolds with finite fundamental group, the calculation of the homotopy type of Diff0.Y / has also been
completed [Hong et al. 2012; Bamler and Kleiner 2019, 2023]. Thus the homotopy type of Diff0.Y / is known for all prime
3-manifolds.
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such that the induced map †S1! SO.3/=U.1/ has degree 1. Here †S1 � S2 is the reduced suspension
of S1, and in what follows we regard S1 as R=2�Z. Next, regarding q as a homotopy of based maps
S1 ! SO.3/=U.1/, we may lift it along the fibration SO.3/! SO.3/=U.1/ to produce a family of
matrices Ar;' 2 SO.3/ parametrized by .r; '/ 2 Œ0; 1��S1 such that

(13) ŒAr;' �D q.r; '/; A0;' D id; Ar;0 D Ar;2� D id:

Because of the second condition in (13), Ar;' is, in fact, a family of matrices parametrized by the unit
2-ball B2Š Œ0; 1��S1=0�S1. At this point, we would like to take the B2-family of contact structures on
B3 given by �r;' D .Ar;'/��st. By the first condition in (13) A1;' 2U.1/, and from this it follows that �1;'
is a loop of contact structures on B3 fixed over the ball B � B3 (in fact this loop is constant everywhere
on B3, �1;' D �st) and the induced map B2=@B2!S2 given by .r; '/ 7! �r;'.0/ has degree 1, as required.
However, the B2-family �r;' is not constant near the boundary of B3, so we must appropriately “cut off”
this family near the boundary.

We can do this as follows. Introduce a smooth cutoff function ˇ on B3 which is identically 1 over B �B3

and vanishes near @B3. For each .r; '/ 2 Œ0; 1��S1 we consider the following vector field supported in
the interior of B3:

Vr;'.x/D ˇ.x/
@

@r
Ar;' � x:

We regard Vr;' as a '-family of r-dependent vector fields on B3, and consider the associated '-family of
flows ˆr' W B

3! B3 starting at time r D 0, namely

@

@r
ˆr'.x/D Vr;'.ˆ

r
'.x//; ˆ0'.x/D x:

Over the ball B � B3 we have, by construction, that ˆr'.x/D Ar;' � x, and near the boundary of B3 we
have ˆr;' D id. Hence the B2-family of contact structures defined by �r;' WD .ˆr'/��st is now constant
near the boundary of B3, and still has the required properties.

The loop �1;' of contact structures in C.B3; �st; B/ thus constructed is an explicit representative of the
obstruction class O� 2 �1C.B3; �st; B/. This loop can then be implanted into an arbitrary contact 3-
manifold .Y; �/ along a Darboux chart .B3; �st/� .Y; �/ to give a representative of the obstruction class
for arbitrary .Y; �/.

3.3 Formal triviality of �2
@B

We continue in the setting of the previous section, and we show:

Lemma 3.9 Suppose the Euler class of � vanishes. Then both the loop of contact structures given by
the obstruction class O� 2 �1C.Y; �; B/ and the squared Dehn twist �2

@B
2 �0 Cont0.Y; �; B/ are formally

trivial rel B .
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Proof On the space of co-oriented plane fields we have an analogous evaluation mapping (a fibration
also, in fact)

„.Y; �/! S2; � 0 7! � 0.0/:

When the Euler class of � vanishes we may identify„.Y; �/ with the space Map0.Y;S
2/ of nullhomotopic

smooth maps Y ! S2. The evaluation mapping becomes identified with the obvious evaluation mapping
on this latter space. Clearly this fibration admits a section given by the constant maps Y ! S2. Hence
the corresponding obstruction class vanishes, and hence

O� 2 ker.�1C.Y; �; B/! �1„.Y; �; B//;

so O� is formally trivial. From the rel B analogue of Corollary 2.9 it follows that �2
@B

is formally trivial
also.

3.4 Behavior of O� under summation

We proceed by discussing how the obstruction class O� from (12) interacts with the formation of connected
sums.

First, we briefly review a convenient model for the contact connected sum [Colin 1997; Geiges 2008]. We
write .Y0; �0/D

�
Œ�1; 1��S2; ker

�
zdsC 1

2
x dy� 1

2
y dx

��
. Let .Y˙; �˙/ be two contact 3-manifolds with

Darboux balls B˙�Y˙, and coordinates �˙ W .Y0; �0/ ,! .Y˙; �˙/ around @B˙ such that �˙.f0g�S2/D
@B˙ and �˙.Y0/\ Y˙nB˙ D �˙..0; 1� � S2/. Consider the smaller ball B0

˙
D B˙n�˙.Y0/ � B˙.

To define the contact connected sum we use the gluing contactomorphism G of .Y0; �0/ given by
G.s; x; y; z/D .�s;�x;�y;�z/.

Definition 3.10 The connected sum of contact manifolds

.Y#; �#/D .Y�; ��/ # .YC; �C/

is defined to be .Y�nB0�; ��/[G .YCnB
0
C
; �C/.

The connected sum of contact manifolds is well defined and independent of choices up to contactomorphism
[Colin 1997].

We will fix a Darboux ball B# � Y# inside the neck region Œ�1; 1��S2 D ��.Y0/D �C.Y0/� Y#. We
also have natural inclusions C.Y˙; �˙; B˙/� C.Y#; �#; B#/. We consider their induced maps on �1

.�/ # �C W �1C.Y�; ��; B�/! �1C.Y#; �#; B#/;

�� # .�/ W �1C.YC; �C; BC/! �1C.Y#; �#; B#/:

Proposition 3.11 The obstruction class O�# 2 �1C.Y#; �#; B#/ is given by

O�# D .O�� # �C/ � .�� #O�C/:
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Proof It suffices to prove the corresponding statement in the local model where .Y˙; �˙/D .B3; �st/,
B˙ � Y˙ are smaller concentric subballs and .Y#; �#/ D .Y� nB�; ��/[@B�D�@BC .YC; �C/. We let
B# � Y# be a Darboux chart contained in the interior.

Consider the map j W C.Y�; ��; B�/�C.YC; �C; BC/! C.Y#; �#; B#/ given by gluing together the contact
structures on the pieces Y˙ nB˙ to produce a contact structure on Y#. Choose paths ˙ � Y# which
connect the ball B# to the component @Y˙ of the boundary of Y#. There is a commuting diagram

C.Y#; �#; B#/ .�S2/2

C.Y�; ��; B�/� C.YC; �C; BC/ .�S2/2

ev� � evC

j

'

D

where the bottom horizontal map is given by the homotopy equivalences of Lemma 3.8. By a similar
argument to that in the proof of Lemma 3.8, one shows that the top horizontal map is a homotopy
equivalence. Thus j is also a homotopy equivalence.

Next, consider the following diagram of spaces and maps, where the bottom row is two copies of the path
fibration over S2, and � is the diagonal map:

C.Y#; �#; B#/ C.Y#; �#/ S2

.�S2/2 .PS2/2 .S2/2

ev� � evC ev� � evC

evB#

�

The path fibration on S2 can be identified with the evaluation fibration on C.Y˙; �˙/ at the center of B˙,
by Lemma 3.8. Under this identification, the leftmost vertical map in the second diagram becomes the
homotopy inverse of the map j (which follows from the first diagram). Combining these observations and
passing to the long exact sequence in homotopy groups in the second diagram yields a commutative square

�2S
2 �1C.Y#; �#; B#/

�2S
2 ��2S

2 �1C.Y� nB�; ��/��1C.YC nBC; �C/

ı

ı�ı

j

from which the desired result follows.

Remark 3.12 In particular, it follows from Propositions 3.11 and 3.6 that we have the relation �2
@BC

�2
@B�
D

�2B#
in �0 Cont0.Y#; �#; @B#/.

3.5 Examples: trivial Dehn twists

For comparison with Theorem 1.3 we now exhibit examples where the squared Dehn twist on a connected
sum becomes trivial as a contactomorphism.
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3.5.1 Quotients of S 3 Let � be a finite subgroup of U.2/. Then � preserves the standard contact
structure �st D ker

�P
jD1;2 xj dyj � yj dxj

�
on the unit 3-sphere S3, so it descends onto the quotient

M� D S
3=� . The M� are the spherical 3-manifolds and include, among others, the lens spaces L.p; q/

and the Poincaré sphere †.2; 3; 5/.

Lemma 3.13 The squared Dehn twist �2
@B

on the boundary of a Darboux ball B �M� is contact isotopic
to the identity rel B . Hence the squared Dehn twist �2S#

on the separating sphere S# in .Y; �/# .M� ; �st/ is
contact isotopic to the identity.

Proof The center of U.2/ is given by the subgroup Š U.1/ of diagonal matrices with diagonal .�; �/
for some � 2 U.1/. This subgroup acts on M� by contactomorphisms and thus also on the space of
Darboux balls, which is homotopy equivalent to M� �U.1/ by (3). This gives a map �1U.1/D Z!

�1.M� �U.1// D � �Z which we assert is given by 1 7! .e; 2/ where e 2 � is the identity element.
From Lemma 3.4 and this assertion, the result would follow.

That the component Z! � is trivial follows from U.1/ being the center of U.2/. To verify that Z! Z

is multiplication by 2 we need to calculate the change in contact framing under the action of U.1/. We
view S3 as the unit sphere in the quaternions HDRh1; i; j; ki, so the tangent space at q 2 S3 is given
by TqS3 DRhiq; jq; kqi and the standard contact structure is �st.q/DRhjq; kqi DChjqi. Thus the
frame jq trivializes �st ŠC as a complex line bundle. The center subgroup U.1/� U.2/ acts on S3 by
.�; q/ 7! �q, and the action of U.1/ on the frame jq is

� � jq D j N�q D �2 � j.�q/:

Thus the action on �st ŠC is by multiplication by �2 on the fibers. This establishes our assertion, and
hence the proof is complete.

Remark 3.14 When ��SU.2/, an alternative proof of Lemma 3.13 can be obtained by instead exhibiting
a section of evB W C.M� ; �st/! S2. The point is that the radial vector field x@x C y@y C z@z Cw@w
is a Liouville vector field for each of the symplectic forms !u, for u 2 S2, in the flat hyperkähler
structure of R4. The induced S2-family of contact structures �u on S3 descends to the quotients M�

(with � � SU.2/) and provides a section of evB .

3.5.2 S 1 �S 2 Consider the unique tight contact structure on S1 �S2, given by

�0 D ker
�
z d� C 1

2
x dy � 1

2
y dx

�
:

Lemma 3.15 The squared Dehn twist �2
@B

on the boundary of a Darboux ball B � S1 �S2 is contact
isotopic to the identity rel B . Hence the squared Dehn twist �2S#

on the separating sphere S# in any contact
connected sum of the form .Y; �/ # .S1 �S2; �0/ is contact isotopic to the identity.

Proof Let R' be the counterclockwise rotation in the xy plane of angle '. By considering the subgroup
fF' j ' 2 S

1g ' U.1/ � Cont.S1 � S2; �0/, given by F'.�; x; y; z/ WD .�; R'.x; y/; z/, one easily
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checks that �1.Cont.S1 � S2; �0/! �1 Emb..B3; �st/; .S
1 � S2; �0//! �1U.1/ is surjective, so the

result follows.

Remark 3.16 In turn, the contact Dehn twist on the nontrivial sphere in .S1 �S2; �0/ is nontrivial (and
has infinite order). However, it is formally nontrivial already and therefore not exotic; see Section 3.6.

3.5.3 Sum with an overtwisted contact 3-manifold Let .r; �; z/ 2 R3 be cylindrical coordinates.
Consider the contact structure �ot in R3 defined by the kernel of

˛ot D cos r dzC r sin r d�:

The disk �ot D f.r; �; z/ 2R3 j z D 0; r � �g is an overtwisted disk.

Definition 3.17 [Eliashberg 1989] An overtwisted contact 3-manifold is a contact 3-manifold that
contains an embedded overtwisted disk.

Let C.Y;�ot/ be the space of contact structures in Y with a fixed overtwisted disk�ot� Y . Let„.Y;�ot/

be the space of co-oriented plane fields in Y tangent to �ot at the point 0 2�ot. A foundational result of
Eliashberg, generalized in higher dimensions by Borman, Eliashberg and Murphy, is:

Theorem 3.18 [Eliashberg 1989; Borman et al. 2015] The inclusion

C.Y;�ot/!„.Y;�ot/

is a homotopy equivalence.

Remark 3.19 A relative version Eliashberg’s h-principle is available. Suppose A� Y n�ot is compact
and Y nA is connected. Given a family of co-oriented plane fields �k 2„.Y;�ot/ that is contact over an
open neighborhood of A, there exists a homotopy rel A from �k to a family of contact structures.

Using Eliashberg’s h-principle we obtain:

Lemma 3.20 Let .Y; �/ be a contact 3-manifold with vanishing Euler class. Then , for every overtwisted
contact 3-manifold .M; �ot/, the squared contact Dehn twist �2S#

in .Y; �/ # .M; �ot/ is contact isotopic to
the identity.

Proof Let B � .Y; �/ be a Darboux ball that we remove when performing the connected sum. By
Lemma 3.9 �2

@B
is formally contact isotopic to the identity rel B . It follows that �2S#

is formally contact
isotopic to the identity on Y #M , in fact relative to a small ball Bot containing an overtwisted disk
�ot �M . At this point, by Eliashberg’s Theorem 3.18 and Lemma 2.8 applied to the contact 3-manifold
with convex boundary .Y # .M nBot/; � # �ot/, the group of contactomorphisms fixing �ot is homotopy
equivalent to the corresponding space of formal contactomorphisms.

In Section 7 we will see that Lemma 3.20 implies exotic 1-parametric phenomena in overtwisted contact
3-manifolds.
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l
'1

'1.l/

Figure 1: Front projection of l and Ol . The shaded ball represents the small ball B" � B3.

3.6 The Reidemeister I move and Gompf’s contactomorphism

We now describe the contact Dehn twist diagrammatically by means of front projections of Legendrian arcs.
This approach is in the spirit of Gompf’s description [1998] of the contact Dehn twist. For convenience
we consider the unit ball .B3; � D ker.dz�y dx//. Let Y0 D Œ�1; 1��S2 be the complement in B3 of a
small open ball B" around the origin. Consider the standard Legendrian arc l W Œ�1; 1�! B3 given by
t 7! .t; 0; 0/. Perform two Reidemeister I moves to the Legendrian l to obtain a second Legendrian arc Ol .
We may assume that Ol coincides with l over the B". The fronts of these arcs are depicted in Figure 1.

These arcs are Legendrian isotopic, so there exists a contact isotopy 't 2 Cont.B3; �/ with '0 D id and
'1ıl D Ol . Moreover, '1 can be taken to be the identity over B". Therefore '1 gives a contactomorphism �

of the contact manifold with convex boundary .Y0; �/. From now on, we will denote the restrictions of l
and Ol to the red segments in Figure 1 by the same letters for convenience. We have �.l/D Ol and the arc Ol
is obtained in .Y0; �/ from l by a positive stabilization; see Figure 2. In particular,

rot.�.l//D rot.l/C 1:

It follows that � is not (formally) contact isotopic to the identity as a contactomorphism of .Y0; �/ rel @Y0.
This contactomorphism is contact isotopic to the contact Dehn twist as we have defined it in this section.
In fact, as we will see in Lemma 3.22, since the complement of l is a tight 3-ball, any contactomorphism of
.Y0; �/ can be described, up to contact isotopy, just in terms of its effect on l and, therefore, just by means
of front projections of Legendrian arcs. First, we observe that the path-connected components of the space
Leg.Y0; �/ of Legendrian embeddings of arcs that coincide with l at the endpoints can be easily understood:

l �

�.l/

Figure 2: The image of l under � .
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Figure 3: Legendrian isotopy from a double stabilization of l to l in .Y0; �/.

Lemma 3.21 The map rot W �0 Leg.Y0; �/! Z given by L 7! rot.L/ is an isomorphism.

Proof Two smoothly isotopic Legendrian arcs with the same rotation number are Legendrian isotopic
after adding a finite number of double stabilizations (pairs of positive and negative stabilizations) because
of the Fuchs–Tabachnikov theorem [1997]. As depicted in Figure 3, this can done by a Legendrian isotopy
in .Y0; �/. Therefore the proof follows from the 3-dimensional light bulb theorem.

We conclude the following:

Lemma 3.22 The map Cont.Y0; �/! Leg.Y0; �/ given by f 7! f ı l is a homotopy equivalence. In
particular ,

�0 Cont.Y0; �/! Z; f 7! rot.f ı l/;

is an isomorphism. Moreover , the contact Dehn twist is characterized , up to contact isotopy , by the
relation

rot.f .l//D rot.l/C 1:

Proof This follows by the previous lemma, the Eliashberg–Mishachev theorem (Theorem 1.13) and
Hatcher’s theorem [1983], since the fiber of Cont.Y0; �/! Leg.Y0; �/ can be identified with the contac-
tomorphism group of the complement of a neighborhood of l , and the latter is a tight 3-ball.

4 Monopole Floer homology and families of contact structures

In this section we provide the necessary background on the Floer-theoretic ingredients that come into the
proof of Theorem 1.3. Henceforth all homology groups are taken with Q coefficients for simplicity.

4.1 Monopole Floer homology and the contact invariant

For a quick introduction to Kronheimer and Mrowka’s monopole Floer homology groups we recommend
[Lin 2016; Kronheimer et al. 2007] and for a detailed treatment the monograph [Kronheimer and Mrowka
2007]. Here we just comment briefly on a few formal aspects.

Consider a 3-manifold Y together with spin-c structure s (here the only spin-c structure that will be
relevant is that induced by a contact structure �, denoted by s�). Associated to it there are various
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monopole Floer homology groups (Q-vector spaces in this article). The ones relevant to us are the
“to” and “tilde” flavors: zHM.Y; s/ and eHM.Y; s/. The former arises “formally” as the S1-equivariant
Morse homology of the Chern–Simons–Dirac functional. An algebraic manifestation of this equivariant
nature is that zHM.Y; s/ carries a module structure over the polynomial algebra QŒU � (the S1-equivariant
cohomology of a point, H �

S1
.point/DQŒU �) and U decreases grading by two. In turn, the “tilde” flavor

should be regarded as the (nonequivariant) Morse homology, and thus is anH�.S1/DQŒ��=.�2/-module,
with � raising the degree by one. A standard Gysin sequence relates the two groups:

� � �
p
�!zHM�.Y; s/

U
�!zHM��2.�Y; s/

j
�!eHM��1.�Y; s/

p
�! � � � :

The map � is recovered from this by �D jp. A common feature of all flavors of the monopole groups
is a canonical grading by the set of homotopy classes of plane fields �0„.Y /, which carries a natural
Z-action.

The contact invariant c.�/ is an element of zHMŒ��.�Y; s�/ which is well defined up to a sign, and is
canonically attached to a contact structure � on Y . It was defined by Kronheimer, Mrowka, Ozsváth and
Szabó in [Kronheimer et al. 2007], but its definition goes back essentially to the earlier paper [Kronheimer
and Mrowka 1997]. Ozsváth and Szabó [2005] gave a definition of c.�/ in Heegaard–Floer homology.
Under the isomorphism between the monopole and Heegaard–Floer groups [Kutluhan et al. 2020; Colin
et al. 2011], the contact invariants are shown to agree. Some of the basic properties of c.�/ are:

� [Mrowka and Rollin 2006] c.�/D 0 if .Y; �/ is overtwisted.

� [Echeverria 2020] c.�/¤ 0 if .Y; �/ admits a strong symplectic filling.

� [Echeverria 2020] c.�/ is natural under symplectic cobordisms: if .W; !/ is a symplectic cobor-
dism .Y1; �1/Ý .Y2; �2/— here the convex end is .Y2; �2/— then

zHM.�W; s!/c.�2/D c.�1/:

� U �c.�/D 0 (this is clear from the Heegaard–Floer point of view; in the monopole case this follows
from Theorem 4.2).

4.2 The families contact invariant

Remark 4.1 Throughout this section we assume that c.�/¤ 0 because it simplifies a little the exposition
that follows (otherwise one should consider homologies with twisted coefficients; see [Muñoz-Echániz
2024]). We also resolve the sign ambiguity of c.�/ by fixing one of the two. All homologies are taken
with Q coefficients.

A version of the contact invariant for a family of contact structures was introduced by the second author
in [Muñoz-Echániz 2024]. We summarize now some of those results. We have homomorphisms

Fc� WH�.C.Y; �//!zHMŒ��C�.�Y; s�/;(14) fFc� WH�.C.Y; �; B//!eHMŒ��C�.�Y; s�/:(15)
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The invariant Fc� recovers the usual contact invariant: H0.C.Y; �//DQ and then Fc0.1/D c.�/. Their
main property we exploit is the following. Associated to the fibration evB W C.Y; �/! S2 there is the
Serre spectral sequence in homology. The latter collapses on the E3 page and assembles into the Wang
long exact sequence,

� � � !H�.C.Y; �// UB��!H��2.C.Y; �; B//!H��1.C.Y; �; B// ���! � � � ;

where UB takes the intersection of cycles in the total space of the fibration with the fiber, and �� is the
map induced by inclusion � W C.Y; �; B/! C.Y; �/. We note that the obstruction class O� for evB to
admit a homotopy section arises here homologically as the image of 1 under Q D H0.C.Y; �; B//!
H1.C.Y; �; B//.

Theorem 4.2 [Muñoz-Echániz 2024] There is a commutative diagram (up to signs)

� � � zHMŒ��C�.�Y; s�/ zHMŒ��C��2.�Y; s�/ eHMŒ��C��1.�Y; s�/ � � �

� � � H�.C.Y; �// H��2.C.Y; �; B// H��1.C.Y; �; B// � � �

p U j p

UB

Fc� .Fc��2/ı�� gFc��1
��

Some observations are in order:

� As a particular case, Theorem 4.2 recovers a property about the contact invariant c.�/ which is well
known from the Heegaard–Floer point of view: that U � c.�/ D 0 and we have a canonical element
Qc.�/ WDfFc0.1/ 2eHMŒ��.�Y; s�/ such that p Qc.�/D c.�/. Conjecturally, the invariant c.�/ corresponds
to the Heegaard–Floer contact invariant that takes values in cHF.�Y; s�/, which is defined in [Ozsváth
and Szabó 2005].

� For 2-dimensional families, Theorem 4.2 gives us the simple formula

U �Fc2.ˇ/D deg.ˇ/c.�/;

where deg.ˇ/D .evB/�ˇ 2H2.S2/DQ is the degree of the family ˇ 2H2.C.Y; �; B//. In particular,
by Theorem 4.2 we have the following:

Corollary 4.3 [Muñoz-Echániz 2024] If c.�/ … ImU then the fibration evB does not admit a homotopy
section and thus the obstruction class O� is nonvanishing homologically.

� Other statements that are easily derived from Theorem 1.3 are:

c.�/ … ImU if and only if fFc1.O�/¤ 0; fFc1.O�/D � Qc.�/:
� If we define a QŒU �-module structure on H�.C.Y; �// by setting U WD �� ı UB , then Theorem 4.2
asserts, in particular, that the homomorphism Fc� W H�.C.Y; �; B// ! zHMŒ��C�.�Y; s�/ is a map of
QŒU �-modules. Notice that we have, in fact, a QŒU �=.U 2/-module structure onH2.C.Y; �//, ie the action
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of U 2 on H�.C.Y; �// vanishes. This can be regarded as a manifestation of the following geometric fact,
that we have already encountered in Section 3. Consider two disjoint Darboux balls B;B 0 � Y . Whereas
the spaces C.Y; �/ and C.Y; �; B/ are related in a possibly nontrivial way by the fibration evB , the spaces
C.Y; �; B/ and C.Y; �; B [B 0/ are related in a straightforward way:

C.Y; �; B [B 0/'�S2 � C.Y; �; B/:

Indeed, the evaluation map corresponding to the ball B 0 gives a fibration

C.Y; �; B [B 0/! C.Y; �; B/ evB0���! S2;

but now the map evB 0 is nullhomotopic, as can be seen by dragging the evaluation point (the center of B 0)
into the first ball B .

4.3 Summary of the construction of the families invariants

We summarize in this section the construction of the invariants Fc and fFc, carried out in detail by the
second author in [Muñoz-Echániz 2024]. This is included here for background purposes, but will not
be used.

4.3.1 The invariant Fc We begin with some general observations. Let X be a 4-manifold together with
a nondegenerate 2-form !, ie !2 is a volume form. We use !2 to orient X . Choose an almost-complex
structure J compatible with !, which by definition gives a metric gD!. � ; J � /. The space of choices of J
is contractible. The structure J equips X with a spin-c structure, ie a lift of the SO.4/-frame bundle of X
along the map Spinc.4/! SO.4/. In differential-geometric terms this yields rank-2 complex hermitian
bundles S˙!X and Clifford multiplication � W TX ! Hom.SC; S�/ satisfying the “Clifford identity”
�.v/��.v/D g.v; v/ id. We follow the notation and conventions from [Kronheimer and Mrowka 2007,
Section 1] and we assume the reader is familiar with these.

The Clifford action of the 2-form ! on SC splits the bundle SC into �2i eigensubbundles of rank 1.
These are given by SCDE˚EK�1J , whereKJ is the canonical bundle of .X; J / andE is a complex line
bundle which is easily verified to be trivial. Choose a unit-length section ˆ0 of E. A simple calculation
shows that there is a unique spin-c connection A0 on SC such that rA0ˆ0 is a 1-form with values in
the C2i eigenspace EK�1J . At this point, the symplectic condition comes in through the following
calculation involving the coupled Dirac operator DA0 W �.S

C/! �.S�/:

Lemma 4.4 [Taubes 1994] The nondegenerate 2-form ! is symplectic (d! D 0) if and only if
DA0ˆ0 D 0.

We now bring in a smoothly varying family of symplectic structures !u parametrized by a smooth manifold
U 3 u, with each !u in the same deformation class as !. Again, we equip the !u with compatible
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almost-complex structures Ju varying smoothly, which provide us with a family of metrics gu. From
our original Clifford bundle .S˙; �/ we canonically obtain new ones as follows. The bundles S˙ remain
the same, but new Clifford structures �u are obtained by setting �u D � ı bu, where bu is the canonical
isometry .TX; gu/ Š�! .TX; g/— the unique isometry which is positive and symmetric with respect
to gu. The Clifford action of !u again decomposes SC into eigenspaces SC D Eu˚EuK�1Ju . Each
Eu is trivializable individually, but the family .Eu/u2U might give a nontrivial line bundle over U �X .
When U is contractible we may choose a family of trivializing sections ˆu of Eu with unit length, and
as before these determine unique spin-c connections Au with DAuˆuD 0. Then, associated to our family
.!u; Ju/ and the choices of ˆu, we have a family of “deformed” Seiberg–Witten equations on X given by

1
2
�u.F

C

A /� .ˆˆ
�/0 D

1
2
�u.F

C

Au
/� .ˆuˆ

�
u/0; DAˆDDAuˆu:

For each u 2 U this is an equation on the pair .A;ˆ/, where A is a connection on ƒ2SC and ˆ is a
section of SC. In this “deformed” version of the equations, the configurations .Au; ˆu/ solve the equation
for u.

We apply now the above considerations to a special case. Let .Y; �/ be a closed contact 3-manifold with
a contact form ˛, and let .X; !/ be the symplectization X D Œ1;C1/� Y , with the exact symplectic
form ! D d

�
1
2
t2˛

�
. The structure J is chosen to be invariant under the Liouville flow, and the associated

Riemannian metric on X is conical. We now bring into the picture a family of contact structures �u
parametrized by U D�n, to which we would like to associate an element in the Floer chain complex
of �Y D @X . Here �n is the standard n-simplex. We equip our family �u with corresponding contact
forms ˛u. This gives a family !u of symplectic structures on X .

The construction now proceeds by forming a manifold ZC by gluing the cylinder Z D .�1; 0�� Y
with the symplectic manifold X . We extend all metrics gu over to ZC in such a way that they all
agree with a fixed translation-invariant metric on the cylinder Z. Then the bundle SC, together with its
splitting SCDE˚EK�1J , extends over ZC naturally in a translation-invariant manner. The U -family of
metrics and spin-c structures thus constructed on ZC are independent of u over Z, so we have effectively
trivialized our data over the cylinder end Z � ZC. In order to extend the Seiberg–Witten equations
over ZC we cut off the perturbation term on the right-hand side of the equations so that it vanishes on
the cylinder end Z. This way, we have a U -parametric family of Seiberg–Witten equations over ZC, and
natural boundary conditions for these equations (modulo gauge) are:

� On the cylinder Z, solutions should approach a translation-invariant solution a (a generator of the
“to” Floer complex {C.�Y; s�/, ie a is an irreducible or boundary-stable monopole on �Y ).

� On the symplectic end X solutions should approach the configuration .Au; ˆu/.

This way we obtain parametrized moduli spaces of solutions

� WM.Œa�; �n/!�n:
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By introducing suitable perturbations we may achieve the necessary transversality [Muñoz-Echániz 2024]
and M.Œa�; �n/ will be C 1-manifolds of finite dimension. At this point we note that, because of the gauge
invariance of the equations, a different choice of trivializations ˆu would yield diffeomorphic moduli
spaces. The connected components of M.Œa�; �n/ where the index of � is �n consist of a finite number
of isolated points lying over values in the interior of �n, and a signed count of these points gives an
integer #M.Œa�; �n/ 2 Z. We organize these counts into a Floer chain  .�n/:

 .�n/D
X
Œa�

#M.Œa�; �n/ � Œa� 2 {C.�Y; s�/:

The assignment �n 7!  .�n/ can be made into a chain map

 W C�.C.Y; �//! {C�.�Y; s�/

from the complex of singular chains on C.Y; �/. Taking homology yields the families invariant (14). The
analytic underpinnings that make all the above rigorous are discussed in [Muñoz-Echániz 2024], and are
essentially no different than those of [Kronheimer and Mrowka 1997; Taubes 2000].

4.3.2 The invariant fFc In terms of the “to” Floer complex zC�, the “tilde” Floer complex can be
defined by taking the mapping cone of (a suitable chain level version of) the U map. We have zC�.Y; s/D
{C�.Y; s/˚ {C��1.Y; s/ with differential given by the matrix (ignoring signs)

Q@D

 
L@ 0

U L@

!
:

If a family ˇ 2 Hn.C.Y; �// is in the image of �� W Hn.C.Y; �; B//! Hn.C.Y; �// then it is proved in
[Muñoz-Echániz 2024] that U �Fc.ˇ/ D 0. At the chain level this is witnessed by a canonical chain
homotopy � :

(16) U � ı �� D L@� C �@:

From this we build the chain map

Q D . ı ��; �/ W C�.C.Y; �; B//! zC�.�Y; s�/;

which, upon taking homology, gives the definition of (15). The chain homotopy � is roughly constructed
as follows. We introduce a new parameter t 2R and let 0 2 Y be the center of the ball B . Consider the
moduli space

M.Œa�; �n/!R��n

consisting of quadruples .A;ˆ; u; t/ such that .A;ˆ; u/ solve the previous set of equations and boundary
conditions subject to the further constraint that at the point .t; 0/ 2R�Y ŠZC the spinor ˆ lies in the
second component of the splitting SC DE˚EK�1J . By a simple modification of this construction one
can again achieve transversality and ensure that the M.Œa�; �n/ are C 1-manifolds of finite dimension.
Then we set

�.�n/D
X
Œa�

#M.Œa�; �n/ � Œa�:
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Theorem 4.2 is established by carefully analyzing the “boundary at infinity” of the 1-dimensional
components of the moduli M.Œa�; �n/; see [Muñoz-Echániz 2024].

5 The space of standard convex spheres in a tight contact 3-manifold

In this section we provide background on an h-principle for standard convex embeddings in tight contact
3-manifolds which was established in work of the first author with Martínez-Aguinaga and Presas
[Fernández et al. 2020]. For the sake of completeness, we will provide here a detailed account which
isn’t quite the same as in [loc. cit.].

Throughout this section .Y; �/ will be a tight contact 3-manifold. Recall that given a contact 3-manifold
.Y; �/, by a standard convex embedding of S2 we mean a convex embedding e W S2 ,! .Y; �/ such that
its oriented characteristic foliation .e��/\TS2 coincides with the characteristic foliation of the sphere

e0 W S
2 ,! f0g �S2 � .Y0; �0/D

�
Œ�1; 1��S2; ker

�
z dsC 1

2
x dy � 1

2
y dx

��
:

In fact, by this property we obtain a (homotopically) unique contact embedding of a neighborhood of
e0.S

2/� Y0 inside Y such that e0 is identified with e. We recall that the north pole of e is then a positive
elliptic point and the south pole a negative elliptic point. See Figure 4.

All of our arguments below work well for any other foliation of a convex sphere. The key fact is that the
space of tight convex spheres with fixed characteristic foliation is C 0-dense inside the space of smooth
spheres when the contact 3-manifold is tight, because of Giroux’s genericity and realization theorems and
Giroux’s tightness criterion [1991; 2001].

eC

eC

e�

K

K

Figure 4: Schematic depiction of the standard sphere and the transverse curve K on the left. The
mini-disk is depicted on the right.
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Remark 5.1 The tightness condition is just required “locally”, and therefore the results described in this
section hold in overtwisted contact 3-manifolds if one replaces the space of smooth spheres by the space
of smooth spheres with a tight neighborhood.

The main goal of this section is Theorem 5.8, which states that the space of standard embeddings of
spheres into .Y; �/ fixed near the south pole is homotopy equivalent to the corresponding space of smooth
embeddings. In order to prove this result we will first study the closely related space of “mini-disks”.

5.1 Mini-disks in a tight 3-manifold

Pick a small positively transverse curve K � e.S2/ surrounding the negative elliptic point e.s/. The
curve K divides the standard embedded sphere e.S2/ in two disjoint disks e.S2/nK DD2

C
[D2�. Here

D2
C

contains the positive elliptic point and D2� the negative one. In particular, we observe that the
self-linking number of K is �1. The curve K is oriented as the boundary of D2

C
. Each disk D2

˙
is

equipped with a natural parametrization induced by e. In particular, we will still denote by e WD2! .Y; �/

the parametrization of D2
C

. A smooth embedding of a disk with positive transverse boundary with
self-linking number �1, which is convex and induces the same characteristic foliation as e, is called a
mini-disk.5

We will denote by CEmb.D2; .Y; �// the space of embeddings of mini-disks which coincide with e over
an open neighborhood of the boundary @D2 �D2. Define the space of smooth embeddings Emb.D2; Y /
analogously. A consequence of Giroux’s elimination theorem and the tightness of .Y; �/ is the following
result, which will be crucial to us:

Lemma 5.2 [Eliashberg 1993; Giroux 1991] Let f 2 Emb.D2; Y / be a smooth embedding. Then there
exists a C 0-small isotopy of f , relative to an open neighborhood of the boundary, that makes f standard.

This result is also explained in [Eliashberg 1993]; see also [Colin 1997]. Here the tightness condition is
crucial.

We will prove the following h-principle:

Theorem 5.3 [Fernández et al. 2020] The inclusion CEmb.D2; .Y; �// ,! Emb.D2; Y / is a homotopy
equivalence whenever .Y; �/ is tight.

Remark 5.4 � The �0-surjectivity of the previous map follows from the previous lemma.

� The �0-injectivity and also the �1-surjectivity follow from Colin [1997], who proved this by
applying his discretization trick. However, this does not quite work parametrically due to the fact
that convexity is not generic among k-parametric families for k > 0.

5The terminology is due to Presas; see Figure 4. Observe that a mini-disk can be contracted inside small neighborhoods of the
positive elliptic point.
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Here we will use the approach of [Fernández et al. 2020] based on the notion of a microfibration,
introduced by Gromov [1986]. We will apply the following “microfibration trick”, which can also be
applied to an arbitrary space of convex embeddings whenever this space is dense inside the space of
smooth embeddings (Lemma 5.2) and we are able to establish a corresponding local version of the
h-principle (ie in a neighborhood of a smooth embedding). These ingredients are the same as those
required to effectively apply Colin’s trick. Our advantage with respect to Colin is that our techniques work
parametrically. However, we lose control of the geometric picture by using an algebraic construction.

Definition 5.5 A map p W Y !X of topological spaces is a Serre microfibration if for every homotopy
H W Dk � Œ0; 1�! X with a lift h0 W Dk � f0g ! Y along p at time t D 0 there exists a positive real
number " > 0 together with an extension h WDk � Œ0; "�! Y of h0 such that p ı hDH jDk�Œ0;"�.

A key property about microfibrations that we will use is:

Lemma 5.6 [Weiss 2005] Every microfibration p W Y !X with nonempty and contractible fiber is a
Serre fibration and , therefore , a weak homotopy equivalence.

Proof of Theorem 5.3 Let K be a compact parameter space and G � K a subspace. Consider
ek 2 Emb.D2; Y / for k 2K a family of smooth embeddings such that ek 2 CEmb.D2; .Y; �// for every
k 2G. It is enough to establish the existence of a homotopy ekt 2 Emb.D2; Y / such that

� ek0 D e
k ,

� ekt D e
k
0 for k 2G,

� ek1 2 CEmb.D2; .Y; �//.

Consider any extension of the embeddings ek into a family of closed tubular neighborhood embeddings

Ek WD2 � Œ�1; 1� ,! Y

such that
EkjD2�f0g D e

k :

Consider the space B of embeddings E WD2 � Œ�1; 1� ,! Y such that EjD2�f0g coincides with e over an
open neighborhood of the boundary of D2 DD2 � f0g. This space is the base of a microfibration

p W X ! B; .E; pt / 7!E;

where X is the space consisting of pairs .E; pt / such that

� E 2 B,

� pt 2 Emb.D2; E.D2� Œ�1; 1�// for t 2 Œ0; 1� is a homotopy of proper embeddings of disks into the
closed ball E.D2 � Œ�1; 1�/, agreeing with the fixed embedding e near the boundary, and joining
p0 DEjD2�f0g with a mini-disk embedding p1 2 CEmb.D2; .E.D2 � Œ�1; 1�/; �//.

The microfibration property is obviously satisfied. We will use Lemma 5.6 to conclude that p is, in
fact, a fibration. Observe that the fiber FE of p is nonempty because of Lemma 5.2. We claim that the
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fiber is also contractible. This is equivalent to the fact that the space of mini-disk embeddings, fixed
near the boundary, into a tight 3-ball is homotopy equivalent to the space of smooth embeddings, fixed
near the boundary, which is a combination of Eliashberg and Mishachev’s theorem [2021] and Hatcher’s
theorem [1983]. Indeed, let .B3; �/ D .E.D2 � Œ�1; 1�/; �/ and consider any mini-disk embedding
f WD2! .B3; �/ which coincides near the boundary with EjD2�f0g. The complement of f .D2/ in B3

is given by two tight balls B3
˙

. Denote by CEmb.D2; .B3; �// the corresponding space of mini-disk
embeddings and by Emb.D2;B3/ the smooth analogue. There is a map between fibrations

Diff.B3
C
/�Diff.B3�/ Diff.B3/ Emb.D2;B3/

Cont.B3
C
; �/�Cont.B3�; �/ Cont.B3; �/ CEmb.D2; .B3; �//

inducing homotopy equivalences of total spaces and fibers, and thus the claim follows. Then from
Lemma 5.6 we have that the map p WX ! B is a Serre fibration with contractible fibers. This is enough to
conclude the proof. Indeed, recall that we have built a map j WK! B given by k 7!Ek , so j �X !K

is a fibration with contractible nonempty fibers. We have a natural section over G � K given by the
constant homotopy:

s WG! X ; k 7! .Ek; pkt D e
k/:

Hence, by the contractibility of the fibers, we may extend this section over to K and obtain Os WK! X
given by k 7! .Ek; pkt /. The homotopy

ekt D p
k
t

solves our problem.

We will need the following generalization. Let CEmb
�F

j D2; .Y; �/
�

be the space of embeddings
e W
F
j D2 ,! .Y; �/ of n mini-disks, all of them fixed at an open neighborhood of

F
j @D

2. Denote also
by Emb

�F
j D2; Y

�
the corresponding space of smooth embeddings.

Theorem 5.7 The natural inclusion CEmb
�F

j D2; .Y; �/
�
,! Emb

�F
j D2; Y

�
is a homotopy equiva-

lence whenever .Y; �/ is tight.

Proof The proof follows word by word the proof of Theorem 5.3. In this case the microfibration
built is going to have as fiber the space of isotopies of n 2-disks into n disjoint tubular neighborhoods
ŠD2 � Œ�1; 1�.

5.2 The space of standard spheres

As a consequence of our previous discussion we may compare the homotopy types of the space of standard
spheres and the space of smooth spheres in a tight contact 3-manifold .Y; �/. For this, consider the space
of smooth embeddings Emb

�F
j S

2; Y
�

of n-disjoint spheres and the corresponding subspace of standard
spheres CEmb

�F
j S

2; .Y; �/
�
. Fix also an arbitrary standard embedding e W

F
S2! .Y; �/ and consider
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the subspaces Emb
�F

j S
2; Y;

F
j sj

�
of embeddings that agree with e on an open neighborhood

F
j Uj

of the south pole sj of each sphere. Here we assume that the boundary ejF
j @Uj

parametrizes n disjoint
positively transverse knots Kj as in the previous section. Similarly, consider the analogous subspace of
standard embeddings CEmb

�F
j S

2; .Y; �/;
F
j sj

�
. Observe that the space CEmb

�F
j S

2; .Y; �/;
F
j sj

�
is homotopy equivalent to the space of n mini-disk embeddings into the tight contact manifold with
convex boundary obtained from .Y; �/ by removing an open neighborhood of e

�F
j Uj

�
whose boundary

parametrizes Kj . The same observation applies to the space Emb
�F

j S
2; Y;

F
j sj

�
. We obtain:

Theorem 5.8 Assume that .Y; �/ is tight. Then:

� The inclusion CEmb
�F

j S
2; .Y; �/;

F
j s
�
,! Emb

�F
j S

2; Y;
F
j sj

�
is a homotopy equivalence.

� For every k � 1 the natural homomorphism

�k.SO.3/n; U.1/n/! �k

�
Emb

�G
j

S2; Y

�
;CEmb

�G
j

S2; .Y; �/

��
induced by reparametrization on the source is an isomorphism.

Proof As explained above, the proof of the first assertion follows from Theorem 5.7. For the second
assertion note that there is a natural map of fibrations given by the evaluation at the n south poles

Emb
�F

j S
2; Y;

F
j sj

�
Emb

�F
j S

2; Y
�

Frn.Y /

CEmb
�F

j S
2; .Y; �/;

F
j sj

�
CEmb

�F
j S

2; .Y; �/
�

CFrn.Y; �/

in which the vertical maps are inclusions. Here the base Frn.Y / is the space of framings over n different
points of M , that is, the total space of a fiber bundle over the configuration space Confn.Y / with fiber
� GLC.3/n, and likewise for CFrn.Y; �/ but with contact frames. Observe that the map between the
fibers is a homotopy equivalence because of the first assertion, so that the homomorphism induced by the
evaluation map

�k

�
Emb

�G
j

S2; Y

�
;CEmb

�G
j

S2; .Y; �/

��
! �k.Frn.Y /;CFrn.Y; �//Š �k.SO.3/n; U.1/n/

is an isomorphism and defines an inverse to the reparametrization map.

5.3 Standard spheres in sums of two irreducible 3-manifolds

In this section we establish Theorem 1.16. We first discuss its smooth counterpart. The relevant
reference on this topic is Hatcher’s work [1981]. Let Y# D Y� # YC with Y˙ now irreducible. Let
Emb.S2; Y#/S# � Emb.S2; Y#/ be the subspace of smooth co-oriented embeddings S2 ,! Y# isotopic to
a fixed given one S#, and let

S D Emb.S2; Y#/S#=Diff.S2/
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be the space of unparametrized co-oriented nontrivial spheres. Hatcher [1981] proved that S is contractible.
We also have a fibration

SO.3/' Diff.S2/! Emb.S2; Y#/S# ! S;

and hence
Emb.S2; Y#/S# ' SO.3/:

Proof of Theorem 1.16 This is immediate from the long exact sequence of pairs associated to the
horizontal maps in the commutative diagram

CEmb.S2; .Y#; �#//S# Emb.S2; Y#/S#

U.1/ SO.3/

'

combined with Theorem 5.8.

6 Families of contact structures on sums of contact 3-manifolds

In this section we establish our main results, Theorems 1.3, 1.6 and 1.8, by combining the tools discussed
in Sections 4 and 5.

6.1 The space of tight contact structures on a sum

Consider nC 1 tight contact 3-manifolds .Yj ; �j / for j D 0; : : : ; n with n � 1. Let .Y#; �#/ be their
connected sum, which we build as follows. We fix Darboux balls B0� � Y0, BnC � Yn and for each
0 < j < n we fix two disjoint Darboux balls Bj˙ � Yj . Then the connected sum .Y#; �#/ is formed by
gluing in the order

.Y0 nB0�/
[

@B0�D�@B1C

.Y1 n .B1C[B1�// � � �
[

@B.n�1/�D�@BnC

.Yn nBnC/:

We will denote by ej W S2 ,! .Y#; �#/, for j D 1; : : : ; n, the embedding of the j th separating standard
sphere given by @B.j�1/� D�@BjC in the connected sum .Y#; �#/. Denote by sj the south pole on the
j th sphere, regarded as a point in ej .S2/� Y#.

We will denote by Tight.Y; B/ the space of tight contact structures on Y that are fixed on a Darboux
ball B , and by Tight.Y; B;B 0/ the subspace of Tight.Y; B/ given by contact structures that are fixed on
a second Darboux ball B 0 disjoint from B . A classical result of Colin [1997] asserts that the contact
manifold .Y#; �#/ is tight, and we have a well-defined map

(17) #nC1 W Tight.Y0; B0�/�
n�1Y
jD1

Tight.Yj ; BjC; Bj�/�Tight.Yn; BnC/! Tight.Y#/:

Geometry & Topology, Volume 29 (2025)



1608 Eduardo Fernández and Juan Muñoz-Echániz

On the other hand, the evaluation map of each tight contact structure on Y at the south poles sj defines a
fibration

(18) evnC1 W Tight.Y#/! .S2/n:

The fiber F of evnC1 over .�#.sj // has the homotopy type of the space of tight contact structures on Y#

that agree with �# over n disjoint Darboux balls B#j around sj . Therefore there is a natural inclusion

i# W Tight.Y0; B0�/�
n�1Y
jD1

Tight.Yj ; BjC; Bj�/�Tight.Yn; BnC/ ,! F :

We establish the following stronger version of Theorem 1.8:

Theorem 6.1 The inclusion i# is a homotopy equivalence.

Remark 6.2 Since S2 is simply connected, we deduce from the long exact sequence in homotopy groups
of (18) that

�0.Tight.Y#//Š

nY
jD0

�0.Tight.Yj //;

which is the classical result of Colin [1997].

Proof Let K be a compact parameter space and G �K a subspace. It is enough to prove that if �k 2 F
is a K-family of tight contact structures on Y# that coincide with �# over the n Darboux balls B#j and
such that �k 2 Im.i#/ for k 2G, then there exists a homotopy of tight contact structures �kt for t 2 Œ0; 1�
such that

� �k0 D �
k ,

� �kt D �
k for k 2G, and

� �k1 2 Im.i#/.

The key point is to observe that �k 2 Im.i#/ if and only if the embeddings ej W S2 ,! .Y#; �
k/ are standard

for j D 1; : : : ; n. For a given tight contact structure � , denote by

CE� WD CEmb
� nG
jD1

S2; .Y#; �/;

nG
jD1

sj

�
the space of standard embeddings of n disjoint spheres that coincide with .ej / over a neighborhood of
the south poles .sj /, and by

E WD Emb
� nG
jD1

S2; Y#;

nG
jD1

sj

�
the analogous space of smooth embeddings. Consider the space X of pairs .�; et / where � 2F and et 2 E ,
with t 2 Œ0; 1�, is a homotopy of embeddings with e0 D e and e1 2 CE� . There is a natural forgetful map

p W X ! F ; .�; et / 7! �;
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which is in fact a fibration because of Lemma 2.2. By Theorem 5.8 the inclusion CE� ! E is a homotopy
equivalence. Therefore the fibers of the previous fibration are contractible.

This is enough to conclude the proof. Indeed, our initial family �k is given by a map j WK! F and the
pullback fibration j �X !K has a well-defined section over G �K given by the constant isotopy ekt D e
for .k; t/ 2G � Œ0; 1�. Since the fiber of this fibration is contractible we can extend this section over K,
obtaining a section ekt for .k; t/ 2K � Œ0; 1�. Then we apply the smooth isotopy extension theorem to
this family of embeddings to find an isotopy 'kt 2 Diff.Y#/ for .k; t/ 2K � Œ0; 1� such that

� 'k0 D id,

� 'kt is the identity over a neighborhood of the south poles .sj /,

� 'kt ı e D e
k
t ,

� 'kt D id for .k; t/ 2G � Œ0; 1�.

The homotopy of contact structures �kt D .'
k
t /
��k solves the problem since now e D .'k1 /

�1 ı ek1 is
standard for .'kt /

��k because ek1 is standard for �k .

6.2 Diffeomorphisms of connected sums of two irreducible 3-manifolds

Consider Y# D Y� #YC with Y˙ irreducible. Recall from Section 5.3 that Hatcher [1981] proved

Emb.S2; Y#/S# ' SO.3/:

This has the following useful consequence:

Lemma 6.3 Suppose that Y˙ are aspherical (irreducible and with infinite fundamental group). Then
�1 Diff.Y#/D 0.

Proof From the fibration (10) we have an exact sequence

�1 Diff.Y�; B�/��1 Diff.YC; BC/ �1 Diff.Y#/ Z2

�0 Diff.Y�; B�/��0 Diff.YC; BC/

Under the connecting map, the nontrivial element in Z=2 maps to

�@B��@BC 2 �0 Diff.Y�; B�/��0 Diff.YC; BC/:

We saw in the proof of Corollary 3.7 that the Dehn twists �@B˙ 2 �0 Diff.Y˙; B˙/ are nontrivial and
�1 Diff.Y˙; B˙/D 0. From this and the exact sequence above it now follows that �1 Diff.Y#/D 0.

6.3 Proof of Theorem 1.3

As we’ve been doing so far, all homologies considered below are taken with Q coefficients, unless
otherwise noted.
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By Theorem 6.1 we have

C.Y#; �#; B#/' C.Y�; ��; B�/� C.YC; �C; BC/;

and then by Proposition 3.11 the obstruction class O�# 2 �1C.Y#; �#; B#/ to finding a homotopy section
of ev# W C.Y#; �#/! S2 corresponds to

O�# Š .O�� ;O�C/ 2 �1C.Y�; ��; B�/��1C.YC; �C; BC/:

We recall that all homologies are taken with Q coefficients. A portion of the Wang long exact sequence
for the fibration evB# is

Q ı
�!H1.C.Y�; ��; B�//˚H1.C.YC; �C; BC//!H1.C.Y#; �#//! 0;

where ı.1/DO�# D .O�� ;O�C/. In the latter formula, and in what follows, we will incur a small abuse
of notation by denoting the obstruction class and its image in homology by the same symbol.

The nontrivial input from Floer theory appears now. Because c.�˙/ … ImU , by Corollary 4.3 to
Theorem 4.2 the classes O�˙ are nontrivial in H1.C.Y˙; �; B˙//. It then follows from the Wang exact
sequence that the class .O�� ; 0/ is not in the image of ı; thus the image of .O�� ; 0/ in H1.C.Y#; �#// is
nontrivial.

By Lemma 6.3, �1 Diff.Y#/ D 0. Note that the hypotheses of that lemma indeed apply, because the
manifolds Y˙ are aspherical. To see this, recall that an irreducible 3-manifold is aspherical precisely
when it is not one of the quotients M� of S3 by a finite subgroup � of SO.4/. The manifolds M� have
zHM.�M� ; s/DQŒU; U�1� in every spin-c structure s because M� is a rational homology sphere with a
positive scalar curvature metric; see [Kronheimer and Mrowka 2007, Proposition 36.1.3]. In particular,
the U map is surjective on zHM.�M� ; s/. The manifolds Y˙ are irreducible but can’t be of the form M�

since c.�˙/ … ImU .

Then, by the long exact sequence in homotopy groups of (4), it follows that

H1.C.Y#; �#/IZ/Š Ab.�0 Cont0.Y#; �#//:

Under this isomorphism, the nontrivial class .O�� ; 0/ corresponds to the class of the squared Dehn
twist �2S#

by Proposition 3.6. This proves that �2S#
is not contact isotopic to the identity. Since we’ve

shown that .O�� ; 0/ is nontrivial rationally, it follows that all the even powers of �S# (and therefore all
the powers) are also not contact isotopic to the identity. This completes the proof of Theorem 1.3(A).

By Lemma 3.9, the image of �@B˙ in �0 FCont0.Y˙; �˙; B˙/ is trivial. Hence so is the image of �2S#
in

�0 FCont0.Y#; �#/, proving Theorem 1.3(B).

Remark 6.4 Working with Z coefficients rather than Q, we can establish the following analogue
of Theorem 1.3(A) by the same argument. If 2c.�˙IZ/ ¤ 0 in zHM.�Y˙/ and 0 ¤ k 2 Z satisfies
kc.�˙IZ/… ImU , then the 2k-fold iterate �2kS#

is not contact isotopic to the identity. All examples known
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to the authors where the latter hypothesis is satisfied for some k¤ 0 also satisfy the stronger Q version of
the hypothesis. The assumption 2c.�˙IZ/¤ 0 guarantees the orientability of the moduli spaces involved
in the construction of the families contact invariant; see [Muñoz-Echániz 2024, Corollary 1.8].

6.4 Proof of Theorem 1.6

We write .Y; �/ D .Y0; �0/ # � � � # .Yn; �n/ # .YnC1; �nC1/, where .Y0; �1/; : : : ; .Yn; �n/ are those prime
summands of .Y; �/ such that c.�j / … ImU and the Euler class of �j vanishes, and .YnC1; �nC1/ is the
sum of the remaining prime summands. We take the latter to be .S3; �st/ if there are no prime summands
remaining. We choose Darboux balls B0� � Y0 and BnC1;C � YnC1, and for j D 1; : : : ; n we choose
two Darboux balls Bj˙ � Yj disjoint from each other. We may take the connected sum .Y; �/ to be built
by gluing in the order

.Y0 nB0�/
[

@B0�D�@B1C

.Y1 n .B1C[B1�// � � � .Yn n .BnC[Bn�//
[

@Bn�D�@BnC1;C

.YnC1 nBnC1;C/;

with nC1 separating spheres. We fix nC1 Darboux balls B#j for j D 1; : : : ; nC1 centered at the south
poles of the separating spheres (B#j is centered at the south pole of the sphere which separates the pieces
Yj�1 nBj�1;� and YjC nBjC) and which are disjoint from each other.

Consider the evaluation map at the nC 1 south poles of the spheres, which provides a fibration

(19) F ! C.Y; �/! .S2/nC1:

Theorem 6.1 identifies the fiber as

F ' C.Y0; B0�/�
� Y
jD1;:::;nC1

C.Yj ; BjC[Bj�/
�
� C.YnC1; BnC1;C/:

Recall that we have a homotopy equivalence

C.Yj ; BjC[Bj�/'�S2 � C.Yj ; Bj�/;

since the evaluation map evBjC W C.Yj ; Bj�/! S2 is nullhomotopic (a nullhomotopy is obtained by
dragging the evaluation point from BjC into Bj�, and this yields the required homotopy equivalence).
Thus

F ' C.Y0; B0�/��S2 � C.Y1; B1�/� � � � ��S2 � C.Yn; Bn�/� C.YnC1; BnC1;C/:

The connecting map in the long exact sequence in homotopy groups of the fibration (19) yields a
homomorphism

ı W ZnC1! �1C.Y0; B0�/�Z��1C.Y1; B1�/� � � � �Z��1C.Yn; Bn�/��1C.YnC1; BnC1;C/;

which we now calculate.

Lemma 6.5 For .a1; : : : ; anC1/ 2 ZnC1 we have

ı.a1; : : : ; anC1/D .a1 �O�0 ; a1; a2 �O�1 ; � � � ; an; anC1 �O�n ; anC1 �O�nC1/:
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Proof Our argument is modeled on the proof of Proposition 3.11. It suffices to work in the local model
where .Yj ; �j /D .B3; �st/ for all j D 0; : : : ; nC 1. We choose 2nC 2 paths 0�; 1˙; : : : ; n˙; nC1;C
in Y , where each jC goes from B#j to @Yj � @Y , and each j� goes from B#jC1 to @Yj � @Y . We
consider the following commutative diagram of maps and spaces:

C.Y;[nC1jD1B#j / C.Y / .S2/nC1

.�S2/2nC2 .PS2/2nC2 .S2/2nC2

ev ev

evB#

�nC1

Here ev#B stands for the evaluation map at the centers of the nC 1 balls B#j , and the bottom row is
given by 2nC 2 product of the path fibration on S2. In particular, both rows are fibration sequences. The
maps denoted by ev stand for evaluation of contact structures along the 2nC 2 paths chosen above, and
� W S2! .S2/2 is the diagonal map.

Each of the two fibrations evB0� W C.Y0/! S2 and evBnC1;C W C.YnC1/! S2 is identified with the path
fibration on S2, by Lemma 3.8. Similarly, each of the n fibrations evBjC � evBj� W C.Yj /! .S2/2 with
j D 1; : : : ; n is identified with two copies of the path fibration on S2. Using these, we identify the bottom
row of the first diagram with the product of these nC 2 fibrations.

The leftmost vertical map in the first diagram is a homotopy equivalence, which follows by an argument
similar to the proof of Lemma 3.8. Consider the inclusion map

j W C.Y0; B0�/�
� nY
jD1

C.Yj ; BjC[Bj�/
�
� C.YnC1; BnC1;C/! C

�
Y;

nC1[
jD1

B#j

�
:

Under the identification of the bottom row of the first diagram with the product of the nC 2 fibrations
from the previous paragraph, the map j becomes the homotopy inverse of the leftmost vertical map in the
first diagram, as in the proof of Proposition 3.11. The required result follows now from the commuting
square obtained from taking homotopy groups in the first diagram:

.�2S
2/nC1 �1C.Y;

SnC1
jD1 B#j /

.�2S
2/2nC2 �1C.Y0; B0�/�

�Qn
jD1 �1C.Yj ; BjC[Bj�/

�
��1C.YnC1; BnC1;C/

�nC1 j

With this in place, we now look at the Serre spectral sequence of the fibration (19). From it we can
assemble an exact sequence

QnC1 ı
�!H1.F/!H1.C.Y; �//! 0;

where ı is given by the same formula as in Lemma 6.5. By c.�j /… ImU and Corollary 4.3 to Theorem 4.2
we again deduce that the classes O�j for j D 0; : : : ; n are homologically nontrivial (over Q). Hence the
n-dimensional subspace of H1.F/ given by the elements

.b1 �O�0 ; 0; b2 �O�1 ; 0; : : : ; 0; bn �O�n�1 ; 0; 0; 0/ for .bj / 2Qn
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injects as a subspace of H1.C.Y; �//. The proof of the formal triviality assertion is similar to the one
given for Theorem 1.3.

Remark 6.6 When Y is the sum of two aspherical 3-manifolds we have �1 Diff.Y /D 0 (see Lemma 6.3).
In the proof of Theorem 1.3 this allowed us to pass from a nontrivial element in �1C.Y; �/ to a nontrivial
element in �0 Cont0.Y; �/ via the fibration (4). This is a special situation. For instance, if Y is instead
the sum of at least three aspherical 3-manifolds then it is known that �1 Diff.Y / is not finitely generated
[McCullough 1981]. A better control on �1 Diff.Y / for general Y would allow us to understand whether
the exotic loops of contact structures that we find in Theorem 1.6 yield nontrivial contactomorphisms.

7 Exotic phenomena in overtwisted contact 3-manifolds

In this final section we exhibit examples of 1-parametric exotic phenomena in overtwisted contact
3-manifolds.

On a heuristic level, Eliashberg’s overtwisted h-principle [1989] is based on applying Gromov’s h-principle
for open manifolds to the complement of a 3-ball and using the overtwisted disk to fill in the ball. In
the same spirit of this idea is what we call the “overtwisted escape principle”, explained to us by Presas,
which is a general strategy for proving an h-principle for a family of objects in a contact manifold .Y; �/.
First, perform the connected sum with an overtwisted manifold .M; �ot/, in order to apply the overtwisted
h-principle [Eliashberg 1989; Borman et al. 2015] in the contact 3-manifold .Y; �/ # .M; �ot/. This
could be thought of as analogous to opening up the 3-manifold in the previous situation. Second, try to
isotope the objects for which you want an h-principle so that they avoid (“escape”) the overtwisted region
.M; �ot/nB , where B is a Darboux ball. However, there could be obstructions to carrying out this second
step. There are two scenarios: if these obstructions can be sorted out then our initial problem satisfies an
h-principle; if not these obstructions should give rise to an exotic phenomenon in the overtwisted contact
manifold .Y; �/ # .M; �ot/. In [Casals et al. 2021] the authors successfully carry out this procedure to
prove an existence h-principle for codimension-2 isocontact embeddings. Next, we will instead start out
with a problem in .Y; �/ which we know is geometrically obstructed a priori, and from this deduce an
exotic overtwisted phenomenon.

Let e W S2! .Y; �/ be a standard embedding into a contact manifold .Y; �/. A formal standard embedding
of a sphere into .Y; �/ is a pair .f; F s/ for s 2 Œ0; 1� such that f 2Emb.S2; Y / is a smooth embedding and
F s WTS2!f �T Y is a homotopy of vector bundle injections withF 0Ddf and .F 1/��De���TS2. We
will denote by FCEmb.S2; .Y; �// the space of formal standard embeddings and by FCEmb.S2; .Y; �/; s/
the subspace of formal standard embedding that coincide with e over an open neighborhood U of the
south pole s 2 S2.

Let .M; �ot/ be an overtwisted contact 3-manifold. Consider the overtwisted contact 3-manifold .Y#; �#/D

.Y; �/#.M; �ot/. We will consider the spaces CEmb.S2; .Y#; �#/; s/ and FCEmb.S2; .Y#; �#/; s/ as pointed
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spaces with basepoint given by the separating sphere e W S2 ,! .Y#; �#/. We have a natural inclusion
CEmb.S2; .Y#; �#/; s/ ,!FCEmb.S2; .Y#; �#/; s/. From our previous discussion and the theory developed
in this article we deduce the following:

Corollary 7.1 Assume that .Y; �/ is irreducible , � has vanishing Euler class and c.�/ … ImU . Then
there exists an element with infinite order in

ker.�1 CEmb.S2; .Y#; �#/; s/! �1 FCEmb.S2; .Y#; �#/; s//:

Remark 7.2 � This should be compared with Theorem 5.8, which in particular asserts that this type
of phenomenon does not happen when the underlying contact manifold is tight.

� Under the same assumptions, our proof also yields an element with infinite order in

ker.�1 CEmb.S2; .Y#; �#//! �1 FCEmb.S2; .Y#; �#///:

Proof Denote by S# D e.S
2/ the standard separating sphere. Consider the squared Dehn twist �2

S
C
#

along a parallel copy SC# of S#, where we assume that SC# is contained in .Y; �/nB , where B is the
Darboux ball used to perform the connected sum. By the vanishing of the Euler class of � there exists
a homotopy through formal contactomorphisms joining the identity with �2

S
C
#

(Lemma 3.9). It follows
from Eliashberg’s Theorem 3.18 combined with Lemma 2.8 that we can deform this homotopy (through
formal contactomorphisms) to a homotopy 't through contactomorphisms with '0 D id and '1 D �2SC#

.
This process can be done relative to an open neighborhood of the south pole e.s/ 2 .Y #M; � # �ot/; see
Remark 3.19. The loop of standard spheres 't ı e is formally trivial by construction but geometrically
nontrivial. Indeed, by the contact isotopy extension theorem, the triviality of this loop would imply
that �2

S
C
#

, regarded as a contactomorphism of .Y; �/, is contact isotopic to the identity rel B , which is in
contradiction with Corollaries 3.7 and 4.3.

Given a contact 3-manifold .Y; �/ and a transverse knot K � .Y; �/, one can replace a small tubular
neighborhood of K by a Lutz twist .LTDD2�S1; �ot/ to obtain an overtwisted contact manifold .Y; �K/.
Intuitively, the Lutz twist .LT; �ot/ is an embedded S1-family of overtwisted disks; see [Geiges 2008] for
precise definitions. We will denote by LT.Y; �K/ the space of contact embeddings e W .LT; �ot/ ,! .Y; �K/,
regarded as a based space with basepoint the standard one, and by FLT.Y; �K/ the corresponding space of
formal contact embeddings. As before, there is an inclusion map LT.Y; �K/! FLT.Y; �K/. The following
can be deduced using the same strategy as above:

Corollary 7.3 Let .Y; �/ be an irreducible contact 3-manifold with vanishing Euler class and such that
c.�/ … ImU . Consider a Darboux ball B � .Y; �/ and a transverse knot K � B . Then there exists an
element with infinite order in

ker.�1 LT.Y; �K/! �1 FLT.Y; �K//:
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On boundedness and moduli spaces of
K-stable Calabi–Yau fibrations over curves

KENTA HASHIZUME

MASAFUMI HATTORI

We show boundedness of polarized Calabi–Yau fibrations over curves only with fixed volumes of general
fibers and Iitaka volumes. As its application, we construct a separated coarse moduli space of K-stable
Calabi–Yau fibrations over curves in an adiabatic sense (Hattori 2022) and show that all members
(resp. smooth members) of the moduli are simultaneously uniformly K-stable (resp. have cscK metrics)
for a certain choice of polarizations.

14J10; 14J17, 14J27, 14J40

1 Introduction

1.1 Moduli problem

Classification of higher-dimensional algebraic varieties by their geometries is one of the most important
problems in algebraic geometry. Moduli spaces, that are parameter spaces of specific classes of varieties,
are effective tools to classify varieties.

The moduli spaces of stable curves were constructed by Deligne and Mumford [1969] as Deligne–Mumford
stacks, and they are compactifications of the moduli spaces of smooth curves of general type of fixed
genus; see also Mumford, Fogarty and Kirwan [Mumford et al. 1994]. After [Deligne and Mumford 1969],
the moduli spaces of stable curves and the moduli spaces of canonically polarized surfaces with only
canonical singularities have been constructed by Mumford [1977] and Gieseker [1977], respectively. For
the construction, Mumford’s geometric invariant theory (GIT, for short, see [Mumford et al. 1994]) was
used, and the GIT-stability of those varieties was studied to apply the GIT. However, it is very difficult to
detect the GIT-stability — more precisely, the asymptotic Chow stability, see [Mumford 1977] — of other
kinds of polarized varieties. As an other strategy, Kollár and Shepherd-Barron [1988] (see also [Kollár
1990] and [Alexeev 1996b]) used the minimal model theory to construct the moduli spaces of stable
surfaces. By their works and [Alexeev 1996a], semi-log-canonical models turned out to be a suitable
higher-dimensional analog of stable curves to construct the moduli space. Their moduli spaces, called
KSBA-moduli, have been completed as a full generalization of the moduli of stable curves. For details,
see [Kollár 2023]. The recent developments of the minimal model theory [Birkar et al. 2010; Hacon
and Xu 2013; Hacon et al. 2018] are indispensable for the theory of KSBA-moduli. The construction in
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1620 Kenta Hashizume and Masafumi Hattori

[Gieseker 1977] using GIT does not work for the KSBA-moduli because there is a klt variety with the
ample canonical divisor that is asymptotically Chow unstable; see [Odaka 2012] for example.

We need a polarization when we discuss moduli theory of varieties whose canonical divisor is neither
ample nor antiample. See [Seiler 1987] and [Viehweg 1995] for the study of the moduli theory of good
minimal models with polarizations. In general, the moduli theory for noncanonically polarized varieties
is much more complicated. For example, we cannot directly apply the theories as above to construct
separated moduli of all polarized rational elliptic surfaces. The GIT-stability of rational Weierstrass
fibrations [Miranda 1981] and Halphen pencils [Miranda 1980; Zanardini 2023; Hattori and Zanardini
2022] was investigated to consider the moduli of rational elliptic surfaces from the viewpoint of GIT.
Seiler [1987] constructed the moduli space of some polarized elliptic surfaces by applying the GIT. He
treated not only elliptic surfaces with nef canonical divisors but also rational elliptic surfaces whose fibers
are reduced or of mIn-type. However, Seiler did not study the Chow stability of all polarized rational
elliptic surfaces. By [Hattori 2022, Corollary 5.7], the moduli constructed by Seiler does not contain a
polarized smooth rational elliptic surface .X;L/ of index two with a unique constant scalar curvature
Kähler (cscK, for short) metric. This .X;L/ is asymptotically Chow stable; see [Donaldson 2001]. Thus,
we naturally expect the existence of a moduli space parametrizing more polarized rational elliptic surfaces.

1.2 K-stability and K-moduli

K-stability was introduced by Tian [1997] and Donaldson [2002] in the context of the Kähler geometry to
detect the existence of cscK metrics, and the notion is closely related to the GIT. Odaka [2012] found a
relationship between the K-stability and the minimal model theory, and he proved that semi-log-canonical
models are K-stable. This implies that the KSBA-moduli is a kind of moduli of K-polystable varieties. A
moduli space parametrizing all K-polystable varieties is called a K-moduli. Odaka [2010, Conjecture 5.2]
proposed the following conjecture.

Conjecture 1.1 (K-moduli conjecture) There exists a quasiprojective moduli scheme parametrizing
all polarized K-polystable varieties with fixed some numerical data (eg genera of curves , or volumes of
polarizations).

This conjecture was motivated by the work of Fujiki and Schumacher [1990] on the construction and a
partial projectivity of moduli spaces of some projective manifolds with unique cscK metrics.

On the other hand, Dervan and Naumann [2018] constructed the moduli spaces of projective manifolds
admitting cscK metrics and nondiscrete automorphism groups. As the Yau–Tian–Donaldson conjecture
predicts that the K-polystability is equivalent to the existence of cscK metrics, the K-moduli can be
thought of as an algebrogeometric generalization of the moduli in [Fujiki and Schumacher 1990] and
[Dervan and Naumann 2018].
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For the K-stability of log Fano pairs, algebraic geometers and differential geometers have made remarkable
progress and they have constructed the projective moduli space of all K-polystable log Fano pairs; see Li,
Wang and Xu [Li et al. 2019], Alper, Blum, Halpern-Leistner and Xu [Alper et al. 2020], Xu and
Zhuang [2020] and Liu, Xu and Zhuang [Liu et al. 2022]. Moreover, quasiprojective moduli schemes of
polarized K-polystable Calabi–Yau varieties have already been constructed in several cases [Odaka 2021].
Thus, it seems that we can make use of the K-stability to construct moduli spaces of polarized varieties.
The following problems are keys to constructing the desired moduli spaces as Deligne–Mumford stacks.

(I) Boundedness Are polarized K-stable varieties parametrized by a scheme of finite type over C?

(II) Openness Do polarized K-stable varieties form an open subset of the Hilbert scheme?

(III) Separatedness Let C be a smooth curve, 0 2 C and .X ı;Lı/! C ı be a family of polarized
K-stable varieties over C ı D C n f0g. Let .X ;L/! C and .X 0;L0/! C be two extensions of this
family over C . If .X0;L0/ and .X 0

0
;L0

0
/ are K-stable, does it hold that .X ;L/Š .X 0;L0/?

In the case of (uniformly) K-stable Q-Fano varieties, these problems had been settled. More precisely, (I)
was solved by Jiang [2020] (see also [Xu and Zhuang 2021]), (II) was solved by Blum and Liu [2022], and
(III) was solved by Blumand Xu [2019]. Their proofs are based on the work of Blum and Jonsson [2020],
which shows that the ı-invariant introduced by Fujita and Odaka [2018] completely detects uniform
K-stability of log Fano pairs. However, there are few criteria of the K-stability for other kinds of polarized
varieties, and we do not know whether (I)–(III) hold or not.

1.3 Adiabatic K-stability and moduli

Adiabatic K-stability was introduced by the second author [Hattori 2024b] and it was inspired by the
works of Fine [2004; 2007] and Dervan and Sektnan [2021b; 2021a] on the existence problem of cscK
metrics of fibrations. Frankly speaking, uniform adiabatic K-stability [Hattori 2022, Definition 2.6] is
designed to be “uniform” K-stability of fiber spaces when their polarizations are very close to ample line
bundles on the base spaces. Such K-stability and cscK metrics on fiber spaces when their polarizations
are very close to ample line bundles on the base are studied in [Fine 2004; 2007] and [Dervan and
Sektnan 2021b; 2021a]. On the other hand, Dervan and Ross [2019] point out that there is a relationship
between adiabatic K-stability and “K-stability” of the base. More precisely, they show that adiabatic
K-semistability implies twisted K-semistability of the base. Recently, by replacing log twisted K-stability
with twisted K-stability, the second author [Hattori 2022] showed for klt–trivial fibrations over curves that
uniform adiabatic K-stability are equivalent to log-twisted K-stability of the base. Moreover, he showed
the existence of cscK metrics corresponding to the uniform adiabatic K-stability for klt–trivial fibrations
over curves. Using this criterion, the uniform adiabatic K-stability of elliptic surfaces is closely related to
the GIT-stability of rational Weierstrass fibrations and Halphen pencils; see [Hattori 2022, Section 5] and
[Hattori and Zanardini 2022, Remark 4.3]. Moreover, elliptic surfaces treated by Seiler are uniformly
adiabatically K-stable, and the result in [Hattori 2022] (cf Definition 2.23) gave a useful characterization
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of the uniform adiabatic K-stability for klt-trivial fibrations over curves. Quite recently, (III) was also
proved by the second author [Hattori 2024a] over C, thus we may expect a variant of Conjecture 1.1 for
the uniform adiabatic K-stability in an appropriate formulation.

The main purpose of this paper is to prove the following result.

Theorem 1.2 There exists a moduli space parametrizing uniformly adiabatically K-stable klt-trivial
fibrations over curves as a separated algebraic space of finite type.

To state the result more precisely, we prepare some notation. Let d be a positive integer, v a positive
rational number, and u a rational number. We set Zd;v;u to be8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
f W .X; �D 0;A/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f is a uniformly adiabatically K-stable polarized klt-trivial fibration
over a curve C ,

(ii) dim X D d ,

(iii) KX � uf �H for some line bundle H on C such that deg H D 1,

(iv) A is an f -ample line bundle on X such that .H �Ad�1/D v.

9>>>>>>>=>>>>>>>;
When u¤ 0, the boundedness result by Birkar [2023] implies the effectivity of the klt-trivial fibrations;
see Lemma 3.1. More precisely, there exists a positive integer r , depending only on d , u and v, such
that for any element f W .X; 0;A/! C of Zd;v;u, erKX is a basepoint-free Cartier divisor and the linear
system jerKX j defines f , where e WD u=juj. We can write the precise statement of Theorem 1.2 with
this notation.

Theorem 1.3 We fix d 2 Z>0, u 2Q<0, v 2Q>0 and r 2 Z>0 as above. For any locally Noetherian
scheme S over C, we define Md;v;u;r .S/ to be a groupoid whose objects are8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

.X ;A /
f

//

�X
��

C

��

S

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) �X is a flat projective morphism and X is a scheme,

(ii) A 2 PicX=S .S/ (see Section 2.2) such that Axs is fxs-ample for any
geometric point xs 2 S ,

(iii) !
Œr �

X=S (see Definition 2.21) exists as a line bundle,

(iv) �X�!
Œ�lr �

X=S is locally free and it generates H 0.Xs;OXs
.�lrKXs

//

for any point s 2 S and any l 2 Z>0,

(v) f is the ample model of !Œ�r �

X=S over S and .Xxs; 0;Axs/!Cxs 2Zd;v;u

for any geometric point xs 2 S .

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
Here , we define an isomorphism ˛ W .f W .X ;A /! C/! .f 0 W .X 0;A 0/! C0/ of any two objects of
Md;v;u;r .S/ to be an S-isomorphism ˛ W X ! X 0 such that there exists B 2 PicC=S .S/ satisfying that
˛�A 0 D A ˝f �B as elements of PicX=S .S/.

Then Md;v;u;r is a separated Deligne–Mumford stack of finite type over C with a coarse moduli space.
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We emphasize that Axs are not assumed to be ample or the volumes of Axs in Md;v;u;r .S/ are not bounded
from above. Theorem 1.3 is the combination of the conditions (I)–(III) for the uniform adiabatic K-stability
([Hattori 2022, Theorem B], Corollary 3.8, Theorem 4.2, and Theorem 4.6) and Theorems 1.4 and 1.5
below, which are also key ingredients.

The first ingredient (Theorem 1.4 below) is the existence of a separated coarse moduli space that
parametrizes f W .X; 0;A/! C 2 Zd;v;u such that f is uniformly adiabatically K-stable and A is an
ample line bundle whose volume is bounded from above. We set

Zd;v;u;w WD ff W .X; 0;A/! C 2 Zd;v;u jA is (globally) ample and vol.A/� wg

for any positive rational number w. Then the following holds.

Theorem 1.4 (see Theorem 5.1) We fix d 2 Z>0, u 2 Q¤0 with e WD u=juj, v 2 Q>0, w 2 Q>0

and r 2 Z>0 as above. For any locally Noetherian scheme S over C, we define Md;v;u;w;r .S/ to be a
groupoid whose objects are8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

.X ;A /
f

//

�X
��

C

��

S

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

(i) �X is a flat projective morphism and X is a scheme,

(ii) A 2 PicX=S .S/ such that Axs is ample for any geometric point xs 2 S ,

(iii) !
Œr �

X=S exists as a line bundle,

(iv) �X�!
Œler �

X=S is locally free and it generates H 0.Xs;OXs
.lerKXs

// for any
point s 2 S and any l 2 Z>0,

(v) f is the ample model of !Œer �

X=S over S and .Xxs; 0;Axs/! Cxs 2 Zd;v;u;w

for any geometric point xs 2 S .

9>>>>>>>>>>>>=>>>>>>>>>>>>;
Here , we define an isomorphism ˛ W .f W .X ;A /! C/! .f 0 W .X 0;A 0/! C0/ of any two objects of
Md;v;u;w;r .S/ to be an S -isomorphism ˛ W X ! X 0 such that ˛�A 0 D A as elements of PicX=S .S/.

Then Md;v;u;w;r is a separated Deligne–Mumford stack of finite type over C with a coarse moduli space.

When u> 0, Theorem 1.4 shows the existence of the moduli of the Iitaka fibrations from klt good minimal
models of Iitaka dimension one; see [Birkar 2022] for the related topic.

We note that the isomorphisms in Md;v;u;w;r are those in Md;v;u;r , but the converse is not necessarily
true. The choice of r in Lemma 3.1 is not unique and the stacks Md;v;u;r in Theorem 1.3 and Md;v;u;w;r

in Theorem 1.4 depend on the choice of r , however, their reduced structures are independent of r . For
details, see Remark 5.7.

The second ingredient (Theorem 1.5 below) is the boundedness of Md;v;u;r .Spec C/. In fact, we prove
the following much stronger assertion. Let d be a positive integer, ‚�Q a DCC set, v a positive rational
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number, and u a rational number. We set

Dd;‚;v;u WD8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
f W .X; �;A/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f W .X; �/! C is a klt-trivial fibration over a curve C such that
KX C�� uf �H with a line bundle H of degree one,

(ii) dim X D d ,

(iii) the coefficients of � belong to ‚,

(iv) A is an f -ample Q-Cartier Weil divisor such that .H �Ad�1/D v.

9>>>>>>>=>>>>>>>;
,
�;

where � means relative linear equivalence of A over C . Let Œf W .X; �;A/! C � denote the equivalence
class. Consider also for any w > 0,

Gd;‚;v;u;w WD

�
f W .X; �;A/! C

ˇ̌̌̌
f satisfies the conditions (i)–(iv) such that A is (globally) ample
and vol.A/� w.

�

Theorem 1.5 (boundedness) Fix d 2 Z>0, a DCC set ‚�Q, v 2Q>0 and u 2Q. With notation as
above , the following hold.

(1) The set of klt pairs .X; �/ appearing in Dd;‚;v;u is log bounded.

(2) There exists w 2Q>0, depending only on d , ‚, v and u, such that the natural map

Gd;‚;v;u;w!Dd;‚;v;u

is surjective.

After the paper was completed, Birkar informed the authors that he and Hacon obtained Theorem 1.5(1)
independently. Theorem 1.5 not only shows the boundedness of Zd;v;u but also asserts that Md;v;u;r is of
finite type in Theorem 1.3. For the other statement of the boundedness, see Proposition 6.1.

We also study special K-stability, which was introduced by the second author [Hattori 2024a]. This is a
stronger condition than uniform K-stability. By [Hattori 2024a], there exists an explicit criterion of the
special K-stability without using test configurations, and the CM minimization conjecture, a numerical
and stronger assertion than (III), holds for the spacial K-stability. We note that a uniformly adiabatically
K-stable klt-trivial fibration over a curve is specially K-stable for a certain polarization [Hattori 2024a,
Theorem 3.12]. We show that all members of Gd;‚;v;u;w are simultaneously specially K-stable for a
certain choice of polarizations as follows.

Theorem 1.6 (uniformity of adiabatic K-stability) Let d 2 Z>0, ‚�Q, u 2Q and v 2Q>0 be as in
Theorem 1.5 and w be a positive rational number. Then , there exists an �0 2Q>0, depending only on d ,
‚, u, w and v, such that .X; �; �ACf �H / is specially K-stable for any rational number � 2 .0; �0/, line
bundle H on C of deg H D 1, and f W .X; �;A/! C 2Gd;‚;v;u;w.

Geometry & Topology, Volume 29 (2025)



On boundedness and moduli spaces of K-stable Calabi–Yau fibrations over curves 1625

Furthermore , there exists ˛ > 0 such that

M NA
� .X ;M/� ˛.J �ACf

�H /NA.X ;M/

for any f W .X; �;A/! C 2 Gd;‚;v;u;w with a line bundle H on C of deg H D 1, normal semiample
test configuration .X ;M/ for .X; �ACf �H /, and rational number � 2 .0; �0/.

It is known by [Zhang 2024] that every specially K-stable smooth polarized manifold .X;L/ has a cscK
metric in the first Chern class c1.L/. By Theorems 1.5 and 1.6, we have the following corollary on the
“uniform” existence of cscK metrics.

Corollary 1.7 Let d 2Z>0,‚�Q, u2Q and v 2Q>0 be as in Theorem 1.5. Then there exists a w> 0,
depending only on d , ‚, u and v, satisfying the following: For any representative f W .X; �;A/! C

of any element of Dd;‚;v;u with a general fiber F of f , if vol.AC tF / � w for some t 2 Q then
.X; �;AC tF / is specially K-stable.

Furthermore , if X is smooth and �D 0, then X has a cscK metric ! in c1.AC tF /.

Furthermore, Corollary 1.7 states that there is a “universal” family U 0 over Md;v;u;r in Theorem 1.3 with
a polarization AU 0 whose geometric fibers are specially K-stable varieties. Here, the word “universal”
comes from the construction; see Remark 6.5.

1.4 Structure of this paper and overview of proof

The contents of this paper are as follows.

In Section 2, we collect notation and definitions in birational geometry, Hilbert schemes and stacks. To
discuss the Q-Gorensteinness of families, we explain the universal hull of coherent sheaves introduced
by Kollár [2023]. We also collect basic facts of K-stability and some results on J-stability and uniform
adiabatic K-stability [Hattori 2022], and we introduce a characterization of the uniform adiabatic K-
stability of klt-trivial fibrations over curves (Definition 2.23). We make use of this characterization to
construct our moduli spaces.

In Section 3, we prove Theorem 1.5. The idea is as follows: With notation in Theorem 1.5, we first give
an upper bound n of the Cartier indices of the log canonical divisors (see Lemma 3.1) and we reduce
Theorem 1.5 to the case where ‚D .1=n/Z\ Œ0; 1�. We also know that .X; �/ are .1=n/-lc. By using
the boundedness of singularities, we next find a lower bound of the ˛-invariants of AjF with respect to
.F; �jF / for the general fibers F of f (Lemma 3.2). Since .F; �jF / are .1=n/-lc pairs polarized by AjF ,
the existence of the lower bound is a consequence of Birkar’s result [2021b]. By using this lower bound
and the semipositivity theorem by Fujino [2018, Theorem 1.11], we find an m 2 Z such that ACmF is
ample and vol.ACmF / is universally bounded from above (Proposition 3.4, which is a special case of
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Theorem 1.5(2)). Here m can be negative. From this result and [Birkar 2023], we obtain Theorem 1.5.
The boundedness problem (I) will be solved in this section. For the construction of our moduli, we also
prove a result on the finiteness of the Hilbert polynomials (Corollary 3.8).

In Section 4, we prove two important properties, ie the openness (Theorem 4.2) and the separatedness
(Theorem 4.6) of uniformly adiabatically K-stable klt-trivial fibrations over curves. The openness is a
direct consequence of the lower semicontinuity of the ı-invariants of the log twisted bases, which will be
proved in Theorem 4.2. Note that we cannot apply [Blum and Liu 2022] since the case of families of
polarized log pairs was studied in their paper. The separatedness has already been known by the second
author [Hattori 2024a] when the varieties are over C. In Theorem 4.6, we will give an alternative proof
of the separatedness, which is an enhancement of [Hattori 2024a, Corollary 3.22] and works for any
algebraically closed field of characteristic zero. These two results directly imply (II) and (III), respectively.
Thus, we can obtain all the key conditions (I)–(III) for the uniform adiabatic K-stability in Sections 3
and 4. We also discuss the invariance of (anti)plurigenera used in the construction of our moduli spaces;
see Theorem 4.8.

In Section 5, we prove Theorem 1.4; in other words, we construct the moduli space by using tools proved
in Sections 3 and 4. We also show Theorem 1.3 by applying Proposition 3.4.

In Section 6, we prove Theorem 1.6 and Corollary 1.7. For this, we first show that there exist finitely many
log Q-Gorenstein families parametrizing polarized klt-trivial fibrations over curves (Proposition 6.1).
Compared to Section 5, we deal with klt-trivial fibrations whose boundary divisors are not necessarily
zero. However, these log Q-Gorenstein families can be constructed by a similar argument to the proof of
Theorem 1.4. In the case of nef log canonical divisors, Theorem 1.6 follows from a simple observation of
J-stability in [Hattori 2021] (Theorem 6.2). For other case, we prove that the uniform “convergence of
the ı-invariant” (cf [Hattori 2022, Theorem D]) holds for members of a family of klt-trivial fibrations
(Proposition 6.3). Theorem 1.6 follows from these results, and Corollary 1.7 follows from Theorems 1.5
and 1.6.
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2 Preliminaries

Throughout this paper, we work over an algebraically closed field k of characteristic zero unless otherwise
stated.
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Notation and conventions

We collect notation and conventions used in this paper.

(1) A scheme means a locally Noetherian scheme over k. For a scheme X, we denote the induced
reduced scheme by Xred. A variety means an integral separated scheme of finite type over k. A curve
means a smooth variety of dimension one.

A geometric point of X is a morphism Spec�!X, where � is an algebraically closed field. For a point
x 2 X, xx denotes the geometric point of X which maps the unique point of Spec� to x. We simply
denote it by xx 2X.

(2) For any scheme S and positive integer d , we denote Pd
k �Spec k S by Pd

S
. We simply write Pd if

there is no risk of confusion, for example if S D Spec k or S is a geometric point of a scheme. Let
p WPd

S
!Pd

k be the projection. For any m2Z, we often denote p�OPd
k
.m/ by O.m/, and we sometimes

think O.m/ of a Cartier divisor on Pd
S

if there is no risk of confusion.

(3) A morphism f WX ! Y of schemes is called a contraction if f is projective and f�OX ŠOY . For
a morphism f WX ! Y of schemes and a (geometric) point y 2 Y , the fiber of f over y is denoted by
Xy . For a Q-divisor D on X, we denote the restriction of D to f �1.y/ by Dy when it is well-defined;
for example, when D is Q-Cartier at every codimension-one point of f �1.y/ and Supp D 6� f �1.y/.
We note that Dy does not coincide with the scheme-theoretic fiber in general.

(4) Let X be a smooth variety, D an snc divisor on X, and f W X ! Z a morphism to a scheme Z.
We say that .X;D/ is log smooth over Z or f W .X;D/!Z is log smooth if f is a smooth surjective
morphism and for any stratum T of .X;D/, the restriction f jT W T ! Z is also a smooth surjective
morphism.

(5) We say that a subset of R satisfies the descending chain condition (DCC, for short) if the subset does
not contain any strictly decreasing infinite sequence. We say that a subset of R satisfies the ascending
chain condition (ACC, for short) if the subset does not contain any strictly increasing infinite sequence. A
subset of R is called a DCC set (resp. an ACC set) if the subset satisfies the DCC (resp. ACC).

(6) Let a be a real number. Then we define dae to be the unique integer satisfying dae�1< a� dae. Let
X be a normal variety and let D be an R-divisor on X. Let D D

P
i diDi be the prime decomposition.

Then we define dDe WD
P

iddieDi . We say that D is a Weil divisor if every coefficients of D is an integer,
in other words, D D dDe holds. We define the reduced divisor Dred of D to be

P
i Di .

(7) Let X be a normal variety. For a line bundle (resp. Q-line bundle, R-line bundle) L on X, we often
think L of a Cartier (resp. Q-Cartier, R-Cartier) divisor on X. When L is a line bundle on X, we often
denote L˝m˝OX .D/ by OX .mLCD/ for every Weil divisor D on X.

(8) Let f WX ! Y be a morphism of schemes. Let L1 and L2 be line bundles on X. We say that L1

and L2 are linearly equivalent over Y , denoted by L1 �Y L2, if there is a line bundle L on Y such that

Geometry & Topology, Volume 29 (2025)



1628 Kenta Hashizume and Masafumi Hattori

L1ŠL2˝f
�L. When Y is a point, we simply say that L1 and L2 are linearly equivalent and we write

L1 �L2.

Suppose that X is a normal variety. Let D1 and D2 be Q-Cartier Q-divisors on X. We say that D1

and D2 are Q-linearly equivalent over Y , denoted by D1 �Q;Y D2, if there exists a positive integer m

such that both mD1 and mD2 are Cartier and OX .mD1/�Y OX .mD2/. This definition is not standard.
However, the definition coincides with the usual definition of the relative Q-linear equivalence when Y

is a variety (eg f is a contraction). When Y is a point, we simply say that D1 and D2 are Q-linearly
equivalent and we write D1 �Q D2.

(9) Let X be a projective scheme over k, let A be a Cartier divisor of X, and let �jAj be a rational map
X Ü Ph0.X ;OX .A//�1 defined by the linear system jAj. If A is semiample, �jmAj induces a contraction
for every sufficiently large and divisible m> 0, and this is a kind of ample model defined in [Birkar et al.
2010, Lemma 3.6.5(3)]. Similarly, for a projective morphism � W X ! S of schemes and a �-semiample
line bundle A on X , we call a morphism f W X ! ProjS

�L
l�0 ��A

˝l
�

the ample model of A over S .

(10) Let f1 WX1! Y1 and f2 WX2! Y2 be morphisms of schemes over a scheme S . Then the induced
morphism X1�S X2! Y1�S Y2 from f1 and f2 is denoted by f1�S f2. When S D Spec k, we simply
write f1 �f2 WX1 �X2! Y1 �Y2.

(11) For any morphisms f W X ! S and h W T ! S , we denote X �S T by XT and the base change
XT ! T by fT . For any coherent sheaf A on X , we denote .h�S idX /

�A by AT . For an f -ample line
bundle H on X and a polynomial p, if �.As.tHs//D p.t/ for every t 2 Z, then we say that As has the
Hilbert polynomial p with respect to H .

(12) Let f W Y ! C be a contraction from a normal variety to a curve and D a Q-divisor on Y . Then
we can decompose D into DvertCDhor, where the support of Dhor is flat over C and the support of Dvert

has zero-dimensional image in C .

Definition 2.1 Let S be a Noetherian scheme and let S1; : : : ;Sl be locally closed subschemes of S

that are disjoint in each other and
Fl

1D1 Si D S set-theoretically. Then we call the natural inclusionFl
1D1 Si ! S a locally closed decomposition. A subset F � S is called a constructible subset if F is a

finite union of locally closed subsets.

Lemma 2.2 Let S be a scheme of finite type over k. Suppose that F � S is a constructible subset. Then
F is closed if and only if the following holds.

� For any morphism ' W C ! S from an affine curve C , if '�1.F / is dense , then '.C /� F .

Proof The assertion is local and we may assume that S is affine. Suppose that the condition holds. Let F

be the Zariski closure and assume that there exists a point s 2F nF . Take an irreducible component Z of
F containing s. It is easy to see that F contains a nonempty open subset of Z; cf [Matsumura 1980, 6.C].
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On the other hand, since fsg\F is not dense in fsg, there is a closed point s0 2 fsg nF . By [Mumford
2008, Section 6, Lemma], there exists a morphism ' W C !Z from an affine curve such that '�1.F / is
dense and s0 2 '.C /. Thus, s0 2 F by the condition and this is a contradiction.

2.1 Birational geometry

In this subsection, we collect definitions concerned with singularities of pairs, klt-trivial fibration, and
boundedness.

Definition 2.3 (singularities of pairs) A subpair .X; �/ consists of a proper normal variety X and a
Q-divisor � on X such that KX C� is Q-Cartier. A subpair is called a pair if the coefficients of �
are positive. Let F be a prime divisor over X and take � W Y ! X a proper birational morphism from
a normal variety such that F appears as a divisor on Y . Then we define the log discrepancy of F with
respect to .X; �/ by

A.X ;�/.F / WD 1C ordF .KY ��
�.KX C�//;

where ordF is the divisorial valuation associated to F with ordF .F /D 1. It is easy to see that A.X ;�/.F /

is independent of � . A (sub)pair .X; �/ is called (sub)klt (resp. (sub)lc, �-(sub)lc) if A.X ;�/.F / > 0

(resp. � 0, � �) for every prime divisor F over X. We say that a proper normal variety V is a klt variety
if .V; 0/ is a klt pair.

For an effective Q-Cartier Q-divisor M on a normal variety X, the log canonical threshold of M with
respect to a subpair .X; �/, denoted by lct.X; �IM /, is defined as follows: If there exists a t such that
.X;BC tM / is sublc, then

lct.X; �IM / WD supft 2Q j .X; �C tM / is sublcg;

and otherwise we set lct.X; �IM / WD �1.

Definition 2.4 (Iitaka volume) Let X be a normal projective variety and let D be a Q-Cartier divisor
on X such that the Iitaka dimension �.X;D/ is nonnegative. Then the Iitaka volume of D, denoted by
Ivol.D/, is defined by

Ivol.D/ WD lim sup
m!1

dim H 0.X;OX .bmDc//

m�.X ;D/=�.X;D/!
:

When D is big, the Iitaka volume of D coincides with the usual volume. By definition, we can easily
check that Ivol.rD/D r�.X ;D/ � Ivol.D/ for every r 2 Z>0.

Definition 2.5 (klt-trivial fibration) Let .X; �/ be a klt pair, and let f W X ! C be a contraction of
normal projective varieties. Then f W .X; �/! C is called a klt-trivial fibration if KX C��Q;C 0.

For a klt-trivial fibration f W .X; �/! C , we define the discriminant Q-divisor BC and the moduli
Q-divisor MC on C as follows: For every prime divisor P on C , let bP be the largest real number such
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that after shrinking C around the generic point � of P , the pair .X; �C bPf
�P / is lc. Note that bP is

well-defined since P is Cartier at �. Then we define the discriminant Q-divisor BC by

BC WD

X
P

.1� bP /P;

where P runs over prime divisors on C . Next, fix a Q-Cartier Q-divisor L on C such that KXC��Qf
�L.

Then the moduli Q-divisor MC is defined by

MC WDL� .KC CBC /:

Note that MC is only defined up to Q-linear equivalence class. We call

KX C��Q f �.KC CBC CMC /

the canonical bundle formula.

In general, we can define klt-trivial fibrations for subpairs and contractions, cf [Ambro 2004]. However,
for simplicity we always assume that .X; �/ in klt-trivial fibrations are klt pairs.

We make use of the following fundamental fact.

Theorem 2.6 [Ambro 2004, Theorem 0.1] If dim C D 1, then MC is a semiample Q-Cartier Q-divisor.

Definition 2.7 (discriminant Q-divisor with respect to contraction) By extending the notion of the
discriminant Q-divisors in Definition 2.5, for every sublc pair .X; �/ with a contraction f WX !Z of
normal varieties, we define the discriminant Q-divisor with respect to f W .X; �/!Z as follows: For
each prime divisor P on Z, we define

�P WD supf 2R j .X; �C f �P / is sublc over the generic point of Pg:

We may assume that f �P is well-defined since we may shrink Z around the generic point of P . Define

B WD
X
P

.1��P /P;

where P runs over prime divisors on Z.

It is easy to see that this definition coincides with the discriminant Q-divisor in Definition 2.5 when
f W .X; �/!Z is a klt-trivial fibration.

Definition 2.8 (boundedness) We say a set Q of normal projective varieties is bounded if there exist
finitely many projective morphisms Vi ! Ti of varieties such that for each X 2Q there exist an index i ,
a closed point t 2 Ti , and an isomorphism � W .Vi/t !X.

A couple .X;S/ consists of a normal projective variety X and a reduced divisor S on X. We use the term
couple because KX CS is not assumed to be Q-Cartier. We say that a set P of couples is bounded if there
exist finitely many projective morphisms Vi! Ti of varieties and a reduced divisor C on each Vi such
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that for any .X;S/ 2P there exist an index i , a closed point t 2 Ti , and an isomorphism � W .Vi/t !X

such that ..Vi/t ;Ct / is a couple and Ct D �
�1
� S .

Finally, we say that a set R of projective pairs .X; �/ is log bounded if the set of the corresponding
couples .X;Supp�/ is bounded.

2.2 Hilbert schemes

Let f WX!S be a proper morphism of schemes and A an f -ample line bundle on X . Then HilbX=Sp;A

denotes the scheme representing the following functor Hilbp;A

X=S . For any morphism T ! S , we attain

Hilb
p;A

X=S .T / WD

�
Z � XT

ˇ̌̌̌
Z is a closed subscheme of XT flat over T whose fibers have
the same Hilbert polynomial p with respect to A .

�
We remark that HilbX=Sp;A exists as a locally projective scheme over S . Indeed, it is well-known that
if A is further f -very ample, then HilbX=Sp;A is projective over S entirely; cf [Fantechi et al. 2005,
Section 5]. Therefore, for any quasicompact open subset U � S , by taking m> 0 such that A ˝mjXU

is
fU -very ample, we see that

HilbXU =U p;A jXU D HilbXU =U q;A˝mjXU

exists as a projective scheme over S , where q.n/Dp.mn/ for any n2Z. By patching HilbXU =U p;A jXU

together over S , we obtain a unique locally projective scheme HilbX=Sp;A over S up to isomorphism.
In this paper, we call HilbX=Sp;A the Hilbert scheme. When S D Spec k, we simply write HilbXp;A .
We write

F
p HilbX=Sp;A by HilbX=S , where p runs over polynomials.

Next, we assume that f is flat and it has geometrically connected and normal fibers. Let g W Y! S be
another proper morphism of schemes and B a g-ample line bundle on Y such that the fibers of g have
the Hilbert polynomial p with respect to B. For any S -scheme T , we set

IsomS .X ;Y/.T /D fh W XT ! YT is a T -isomorphismg;

IsomS ..X ;A /; .Y;B//.T /D fh 2 IsomS .X ;Y/.T / j h�BT �T AT g:

By [Fantechi et al. 2005, Theorem 5.23] and Corollary 2.20, which we will treat later, the functor
IsomS .X ;Y/ (resp. IsomS ..X ;A /; .Y;B//) is represented by a locally closed subscheme IsomS .X ;Y/
(resp. IsomS ..X ;A /; .Y;B//) of HilbX �S Y=S (resp. Hilb

q;p�
1

A˝p�
2

B

X�SY=S ), where q is the polynomial
defined by q.m/Dp.2m/ and p1 WX�SY!X (resp. p2 WX�SY!Y) is the first (resp. second) projection.
Thus, we see that IsomS ..X ;A /; .Y;B// is locally quasiprojective over S . If .X ;A /D .Y;B/, we set

AutS .X ;A / WD IsomS ..X ;A /; .X ;A //:

For details, we refer to [Fantechi et al. 2005, Section 5.6]. We note that if we define

Aut.Pn
Z/.T / WD fT -automorphisms of Pn

T g
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for any locally Noetherian scheme T , then it is well-known that the functor Aut.Pn
Z/ is represented by

PGL.nC 1;Z/ (cf [Mumford et al. 1994, Section 0.5(b)]).

On the other hand, we define a presheaf PicX=S as follows: For any morphism T ! S , we attain the
following set

PicX=S .T /D fL: a line bundle on XT g=�T :

In other words, PicX=S .T / is the set of all relative linear equivalence classes of line bundles on XT

over T . In general, PicX=S is not an étale sheaf. However, it is well-known (see [Mumford et al. 1994,
Section 0.5] and [Fantechi et al. 2005, Section 9]) that under the same assumption on X ! S as the
previous paragraph, there exists a separated scheme PicX=S locally of finite type over S such that there
exist the maps for all T ! S ,

PicX=S .T / ,! HomS .T;PicX=S /;

that are injective and induce the étale sheafification PicX=S ! HomS .�;PicX=S / of PicX=S . Moreover,
if X ! S has a section, then PicX=S coincides with HomS .�;PicX=S /.

2.3 Stacks

We refer to [Olsson 2016, Sections 3 and 5] and [Stacks 2005–] for the notation of fibered categories
and algebraic spaces. Let Sets be the category of sets and Sch=S the category of (locally Noetherian)
schemes over S . If S D Spec k, we write Sch=k. For any scheme S , we endow Sch=S with the étale
topology. We recall the definition of stacks; see [Olsson 2016, Proposition 4.6.2].

Definition 2.9 (stacks) Let p W C ! Sch=S be a category fibered in groupoids. C is called a stack
over S if the following two conditions hold (cf [Olsson 2016, Definition 4.6.1]).

(1) For any S-scheme X and any two objects x;y 2 C .X / WD p�1.X /, the presheaf IsomX .x;y/,
defined by

IsomX .x;y/.f W Y !X / WD IsomY .f
�x; f �y/;

where the right-hand side is the set of all isomorphisms g such that p.g/D idY , is an étale sheaf.

(2) For any étale covering in Sch=S , all descent data with respect to the covering are effective; cf [Olsson
2016, Definition 4.2.6].

Remark 2.10 In the situation of Definition 2.9, we consider the following condition.

� For any set of S -schemes fXigi2I , the natural functor

C

�G
i2I

Xi

�
!

Y
i2I

C .Xi/

is an equivalence of categories.
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We note that all stacks we treat in this paper satisfy this condition. Here, we explain the definition of
descent data when C satisfies the above condition. We say that a surjective morphism f WX 0!X is an
étale covering if X 0 WD

F
i2I Xi and f jXi

WXi!X is étale for any i 2 I . For any étale covering f , let

p1;p2 WX
0
�X X 0!X 0 and p12;p23;p13 WX

0
�X X 0 �X X 0!X 0 �X X 0

be the projections. A pair .u0 2 C .X 0/; �/ is called a descent datum with respect to f W X 0 ! X if
� 2 IsomX 0�X X 0.p

�
1
u0;p�

2
u0/ such that p�

23
� ıp�

12
� D p�

13
� . Note that for any u 2 C .X /, there exists

a canonical isomorphism �can 2 IsomX 0�X X 0.p
�
1
f �u;p�

2
f �u/ such that .f �u; �can/ is a descent datum.

If there is u 2 C .X / such that � ıp�
1
gD p�

2
g ı�can for some g 2 Isom.f �u;u0/, then we call .u0; �/ an

effective descent datum. We see that our definition and the original definition [Olsson 2016, Definition
4.2.6] of descent data are the same in this situation by [Olsson 2016, Lemma 4.2.7].

Definition 2.11 (Artin stacks, Deligne–Mumford stacks) Let C be a stack over k. C is called a
Deligne–Mumford (resp. Artin) stack if the following hold.

(i) The diagonal � W C ! C �C is representable, ie for any morphism U ! C �C from a scheme,
U �C�C C is an algebraic space.

(ii) There exists an étale (resp. smooth) surjective morphism � WX ! C from a scheme.

If C is a Noetherian Artin stack, we can define coherent sheaves on C in the way of [Olsson 2016,
Definition 9.1.14]. If L is a coherent sheaf on C and there exists a smooth surjection g W T ! C such
that g�L is a line bundle, we say that L is a line bundle on C ; see also [Olsson 2016, Section 9.3].

Example 2.12 It is well-known that Sch=S has the natural stack structure over k for any scheme S ; see
[Deligne and Mumford 1969, page 97]. We simply denote this stack by S . For any scheme T , we know
that Sch=S .T /D Hom.T;S/. We denote this by S.T /.

Example 2.13 Let X be a scheme of finite type over k and G be a linear algebraic group over k. Then
there exists a quotient stack ŒX=G� defined as [Olsson 2016, Example 8.1.12]. We remark that ŒX=G� is
an Artin stack of finite type over k; cf [Stacks 2005–, Tag 036O]. Note that X is quasicompact. Moreover,
for any G-equivariant line bundle L on X, we can find a line bundle L on ŒX=G� such that ��L DL,
where � WX ! ŒX=G� is the canonical projection; see [Olsson 2016, Exercise 9.H]. This L is unique up
to isomorphism.

The following category will be used in Section 5.

Definition 2.14 Let Pol be the category such that the collection of objects is8̂̂<̂
:̂f W .X ;A /! S

ˇ̌̌̌
ˇ̌̌̌
f is a surjective proper flat morphism of schemes whose geometric fibers
are normal and connected, and A 2 PicX=S .S/ such that there exists an étale
covering S 0! S by which the pullback of A to X �S S 0 is represented by a
relatively ample line bundle over S 0,

9>>=>>;
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and an arrow .g; ˛/ W .f W .X ;A /! S/! .f 0 W .X 0;A 0/! S 0/ is defined in the way that ˛ W S! S 0 is a
morphism and g W X ! X 0�S 0 S is an isomorphism such that g�˛�X 0A

0 DA as elements of PicX 0=S 0.S/.

It is easy to see that there exists a natural functor p WPol! Sch=k such that Pol is a category fibered in
groupoids. We further show the following.

Lemma 2.15 Pol is a stack over k.

Proof It suffices to check the conditions (1) and (2) of Definition 2.9 for Pol. We first treat (1). Take
objects f W .X ;A /! S and f 0 W .X 0;A 0/! S . Then IsomS .X ;X 0/ is represented by a locally closed
subscheme of HilbX �S X 0=S ; see [Fantechi et al. 2005, Section 5.6]. Since PicX=S is separated, we
see that IsomS .f; f

0/ ,! IsomS .X ;X 0/ is a closed immersion. Therefore IsomS .f; f
0/ is represented

by a scheme. In particular, it is an étale sheaf. Hence, (1) holds.

Next, we treat (2). One can check that for any set of schemes fXigi2I , the natural functor

Pol

�G
i2I

Xi

�
!

Y
i2I

Pol.Xi/

is an equivalence of categories. By Remark 2.10, it suffices to show the following: For any étale covering
S 0! S with the projections

p1; p2 W S
0
�S S 0! S 0 and p12; p23; p13 W S

0
�S S 0 �S S 0! S 0 �S S 0;

any descent datum .f 0 W .X 0;A 0/ ! S 0; �/ is effective. Here, � 2 IsomS 0�S S 0.p
�
1
f 0;p�

2
f 0/. If the

pullback of .f 0; �/ by an étale covering T ! S is effective, then so is .f 0; �/ by the condition (1). From
this fact, by replacing S 0 with a scheme T admitting an étale covering T ! S 0, we may assume that A 0

is an f 0-ample line bundle.

By the f 0-ampleness, there exists m 2 Z>0 such that H i.X 0s;A 0˝m
s /D 0 for every s 2 S 0 and i > 0 and

the natural morphism X 0! PS 0.f
0
�A
0˝m/ is a closed immersion. We note that for any flat morphism

g W T ! S , we have the natural isomorphism

f 0T�g
�
XA 0˝m

Š g�f 0�A
0˝m

by [Hartshorne 1977, III, Proposition 9.3]. Thus, we may identify f 0
T�

g�XA 0˝m with g�f 0�A
0˝m.

Furthermore, f 0�A
0˝m is locally free by [Hartshorne 1977, III, Theorem 12.11]. On the other hand, there

exist a line bundle M and an isomorphism

h W ��p�2;X 0A
0
Š p�1;X 0A

0
˝ .p�1f

0/�M;

where p1;X 0 W X 0 �S S 0! X 0 (resp. p2;X 0 W X 0 �S S 0! X 0) is the morphism induced from base change
of p1 (resp. p2) by the canonical morphism X 0! S 0, and p�

1
f 0 (resp. p�

2
f 0) is the base change of f 0

by p1 (resp. p2). Then h induces the isomorphism

' W PS 0�S S 0.p
�
1f
0
�A
0˝m/D PS 0�S S 0.p

�
1f
0
�A
0˝m
˝M˝m/

Š
�! PS 0�S S 0.p

�
2f
0
�A
0˝m/:

Here, the first equality is via the canonical isomorphism in [Hartshorne 1977, II, Lemma 7.9].
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The following easy claim implies that ' is independent of the choice of h.

Claim Let p W Y! T be a proper flat surjective morphism whose geometric fibers are connected and
normal , and let L be a line bundle on X . Suppose that p�L is locally free. Any isomorphism � WL !L

induces the identity morphism of PT .p�L /.

Proof Now � 2 Hom.L ;L /, and Hom.L ;L /ŠH 0.Y;OY/ŠH 0.T;OT / by [Fantechi et al. 2005,
9.3.11]. Since � is an isomorphism, we may regard � as an element of H 0.T;O�

T
/. Then the argument in

the proof of [Hartshorne 1977, II, Lemma 7.9] works without any change.

We continue to prove Lemma 2.15. We will show that ' defines a descent datum, ie p�
23
' ıp�

12
' D p�

13
'.

Clearly, this is equivalent to that .p�
13
'/�1 ıp�

23
' ıp�

12
' is the identity. We note that if the base change

of the morphism � in the decent datum .f 0; �/ by p12 (resp. p23, p13) is denoted by p�
12
� (resp. p�

23
� ,

p�
13
� ), then p�

23
� ıp�

12
�Dp�

13
� holds. This follows from the definition of descent data. We also note that

the relative linear equivalence p�ij h induces p�ij' for any 1� i < j � 3. Thus, .p�
13
'/�1 ıp�

23
' ıp�

12
'

is induced from the linear equivalence over S 0 �S S 0 �S S 0

p�12;X 0�S S 0p
�
1;X 0A

0
D .p�13�/

�..p�23�/
�1/�..p�12�/

�1/�p�12;X 0�S S 0p
�
1;X 0A

0

�S 0�S S 0�S S 0 .p
�
13�/

�..p�23�/
�1/�p�12;S 0�SX 0p

�
2;X 0A

0

D .p�13�/
�..p�23�/

�1/�p�23;X 0�S S 0p
�
1;X 0A

0

�S 0�S S 0�S S 0 .p
�
13�/

�p�13;S 0�SX 0p
�
2;X 0A

0

�S 0�S S 0�S S 0 p
�
12;X 0�S S 0p

�
1;X 0A

0;

where p12;X 0�S S 0 W X 0 �S S 0 �S S 0! X 0 �S S 0 is the base change of p12 by the canonical morphism
X 0�S S 0! S 0�S S 0, and p23;X 0�S S 0 WX 0�S S 0�S S 0!X 0�S S 0 and p13;X 0�S S 0 WX 0�S S 0�S S 0!

X 0 �S S 0 are defined similarly. By Claim, it immediately follows that .p�
13
'/�1 ıp�

23
' ıp�

12
' is the

identity morphism. Thus p�
23
' ıp�

12
' D p�

13
'.

On the other hand, �KPS0 .f
0
�A
0˝m/=S 0 is relatively ample over S . Hence, applying [Olsson 2016,

Proposition 4.4.12] to PS 0.f
0
�A
0˝m/ and �KPS0 .f

0
�A
0˝m/=S 0 , we may find a scheme P and a projective

flat surjective morphism P!S that canonically defines a descent datum isomorphic to .PS 0.f
0
�A
0˝m/; '/.

Note that P is not a projective bundle but every geometric fiber over S is a projective space. By applying
[Olsson 2016, Proposition 4.4.3] to the closed immersion X 0 ,! PS 0.f

0
�A
0˝m/, we obtain a closed

immersion X ,! P whose base change by S 0! S coincides with X 0 ,! PS 0.f
0
�A
0˝m/. On the other

hand, by the definition of the Picard scheme, there exists a unique element A 2 PicX=S .S/ such that the
pullback of A to X �S S 0 coincides with A 0.

From the above facts, .f 0; �/ is effective. We finish the proof of Lemma 2.15.

Remark 2.16 Let f W X ! S be a proper surjective flat morphism of schemes whose geometric fibers
are normal and connected. We fix A 2 PicX=S . Then .X ;A /! S is an object of Pol if and only if Axs

is ample for any geometric point xs 2 S . Indeed, we may replace f by X �S S 0! S 0 for some étale
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covering S 0! S , thus we may assume that A is a line bundle. Then A is f -ample if and only if Axs is
ample for any geometric point xs 2 S ; see [Kollár and Mori 1998, Proposition 1.41]. The converse is easy.

The following theorem is well-known to experts and holds since we assume that char.k/D 0; cf [Mumford
2008, Section 11, Theorem].

Theorem 2.17 [Olsson 2016, Remark 8.3.4; Keel and Mori 1997] Let C be an Artin stack of finite type
over k. If the diagonal morphism � W C ! C �C is finite , then C is a separated Deligne–Mumford stack.
Furthermore , there exists a separated coarse moduli space of finite type over k.

Remark 2.18 The authors in [Olsson 2016] and [Stacks 2005–] treat the category of schemes that are
not necessarily locally Noetherian, but our theory works even if we treat Sch=k. For example, we can
extend Pol to a stack over the category of all schemes, including schemes that are not locally Noetherian;
see [Vakil 2010, 28.2.12]. We can also apply Theorem 2.17 to ŒN=PGL.d1/ � PGL.d2/ � PGL.d3/�,
which is defined on the category of all schemes, in the proof of Theorem 5.1.

2.4 Universal hull and Q-Gorenstein family

For any scheme X and coherent sheaf F on X of pure dimension, we can define the S2-hull of F , which
we denote by F Œ���. For details, we refer to [Huybrechts and Lehn 1997, Section 1.1]. If X is a normal
variety of dimension d and F is of pure dimension d , then F Œ��� DHomOX

.HomOX
.F ;OX /;OX /.

Let f W X ! S be a flat projective surjective morphism between locally Noetherian schemes such that
the relative dimension of f is d and all geometric fibers of f are normal and connected. Then there is
a closed reduced subscheme Z � X such that f is smooth on X nZ and the fiber Zs over any s 2 S

satisfies codimXs
.Zs/� 2. Let F be a coherent sheaf on X such that F jXnZ is an invertible sheaf. We

define a (universal) hull of F , which we also denote by F Œ���, to be a coherent sheaf with the following
properties (cf [Kollár 2008] or [Kollár 2023, Section 9]):

� F Œ��� is flat over S .

� There exists a morphism q WF !F Œ��� that is an isomorphism outside Z.

� For any point s 2 S , the morphism F Œ���jXs
! F

Œ���
s induced by q is an isomorphism, where

F
Œ���
s is the S2-hull of Fs WDF jXs

.

A universal hull does not always exist for the sheaf F as above, but if it exists then F Œ��� Š j�.F jXnZ /,
where j WX nZ ,!X is the inclusion. Indeed, for any p2X and any affine open neighborhood U �X of p,
let IZ �OX be the ideal sheaf corresponding to Z. Take a regular sequence xa; xb 2 IZ˝OU\Xs

.U \Xs/

of F
Œ���
s for s WD f .p/, ie xa is a nonzero divisor in F

Œ���
s and xb is a nonzero divisor in F

Œ���
s =xaF

Œ���
s . If

xa; xb are the restrictions of a; b 2 IZ .U /, then a; b is also a regular sequence of F Œ��� around Xs \U by
[Matsumura 1980, (20.E)]. Thus, shrinking U if necessary, we may assume that there exists a regular
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sequence a; b 2 IZ .U / of F Œ���. Now the natural map F Œ���! j�.F jXnZ / is injective over U, and the
surjectivity can be proved as follows: Let m 2 j�.F jXnZ / be a local section over U. By the assumption,
there exists two sections ma; mb 2F Œ���.U / such that mDma=aDmb=b. Here, we applied [Matsumura
1980, Theorem 27] and assumed that b is also a nonzero divisor by shrinking U. Thus, bma D amb as
elements of F Œ���.U /. From this and the fact that b is a nonzero divisor in .F Œ���=aF Œ���/.U /, we have
m 2F Œ���.U /.

Hence, if a universal hull of F exists, then F Œ��� Š j�.F jXnZ /, and furthermore we have .F Œ���/T D

.FT /
Œ��� for any morphism g W T ! S . We denote this by F

Œ���
T

.

By applying Kollár’s theory [2023] to our setup, we obtain the following theorem.

Theorem 2.19 (cf [Kollár 2023, Theorem 9.40]) Let f WX !S be a flat projective surjective morphism
between schemes of finite type over k such that the relative dimension of f is d and the geometric fibers
of f are normal and connected. Let Z � X be a closed subset such that f is smooth on X nZ and the
fiber Zs over any s 2 S satisfies codimXs

.Zs/� 2. Let F be a coherent sheaf on X such that F jXnZ is
an invertible sheaf on X nZ. Let H be an f -ample line bundle on X .

Then there exist finitely many distinct polynomials p1; : : : ;pl with corresponding locally closed sub-
schemes S1; : : : ;Sl of S satisfying the following:

� S D
Fl

iD1 Si set-theoretically.

� For each 1� i � l , there exists the universal hull F
Œ���
Si

of FSi
such that the Hilbert polynomial of

F
Œ���
s with respect to H is pi for all s 2 Si .

� For any morphism g WT !S from a locally Noetherian scheme T , if FT has a universal hull F
Œ���
T

such that all fibers F
Œ���
t have the same Hilbert polynomial p with respect to Ht , then p D pi and

g factors through Si for some i .

The following result was proved by Hassett and Kovács [2004, Theorem 3.11] when the fibers are
Cohen–Macaulay, and Kollár [2023, Proposition 9.42] proved a more general statement. Thus, we omit
the proof.

Corollary 2.20 Let f W X ! S , F , and H be as in Theorem 2.19. For any line bundle L on X , there
exists a locally closed subscheme Su � S such that a morphism g W T ! S from a locally Noetherian
scheme T factors through Su ,! S if and only if the universal hull F

Œ���
T

exists and LT ˝f
�

T
M ŠF

Œ���
T

for some line bundle M on T .

From now on, we deal with the relative dualizing sheaf. Let f W X ! S be a flat projective surjective
morphism of schemes of finite type over k whose geometric fibers are normal and connected, and let
U �X be the largest open subscheme such that f is smooth at every point of U. Let !X=S be the relative
dualizing sheaf. Then !˝m

X=S is a coherent sheaf and !˝m
X=S jU is an invertible sheaf for every m 2 Z.
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Hence, we may use the previous results to !˝m
X=S . For each m 2 Z, if the universal hull of !˝m

X=S exists,
then !Œm�X=S denotes the (universal) hull. We also have !Œm�XT =T

D .h�S idX /
�!

Œm�

X=S for every morphism
h W T ! S since !U=S D !X=S jU is a line bundle that commutes with the base change.

Definition 2.21 (Q-Gorenstein family, log Q-Gorenstein family) Let f W X ! S be a flat projective
surjective morphism of schemes of finite type over k whose geometric fibers are normal and connected.
We say that f W X ! S is a Q-Gorenstein family over S if there exists m 2Z>0 such that !Œm�X=S exists as
a line bundle.

For any f W X ! S as above, if S is normal, then X is also normal, !X=S is reflexive and !X=S D

OX .KX=S / for some Weil divisor KX=S on X ; see [Patakfalvi et al. 2018, Proposition A10] and [Codogni
and Patakfalvi 2021, Section 2].

Let f W X ! S be as above. Suppose that S is normal. Let � be an effective Q-divisor on X such that
the support of � contains no fiber of f . We say that f W .X ; �/! S is a log Q-Gorenstein family if
KX=S C� is Q-Cartier.

Remark 2.22 Let f W X ! S be as above. Suppose that S is normal.

� Let U � X be the open locus on which f is smooth. If f W .X ; �/! S is a log Q-Gorenstein
family, then !X=S jU D !U=S is an invertible sheaf (cf [Stacks 2005–, 0E9Z]), and thus �jU is
Q-Cartier. For any morphism h W T ! S from a normal variety T and the induced morphism
� WXT !X , we define �T as a unique extension of ��.�jU / on U �S T . Then we can check that

KXT =T C�T D �
�.KX=S C�/

by applying [Conrad 2000, Theorem 3.6.1] to U �S T ! U. See also [Codogni and Patakfalvi
2021, Section 2].

� Let D be an effective Weil divisor on X such that D is flat over S as a scheme and it has only
geometrically integral fibers over S . Then the scheme-theoretic fiber Ds for any s 2 S is also a
Weil divisor, OX .�D/ is also flat and the restriction OX .�D/jU is locally free by [Huybrechts and
Lehn 1997, Lemma 2.1.7].

� Let � be an effective Q-divisor on X such that the support of � contains no fiber of f . Here,
we do not assume that f W .X ; �/! S is a log Q-Gorenstein family. Let j W U ,! X be the
open immersion. We fix m 2 Z>0 such that m� is a Weil divisor on X . If a universal hull of
OX .m.KX=S C�// exists, then the S2 condition of OX .m.KX=S C�// implies

OX .m.KX=S C�//D j�OU .m.KU=S C�jU //DOX .m.KX=S C�//
Œ���:

Moreover, if any irreducible component of � is flat over S as a reduced scheme and it has only
geometrically integral fibers over S , then OX .m.KX=S C�//jU is locally free. Then, we can
apply Corollary 2.20 to OX .m.KX=S C�// and any line bundle L on X to construct a locally
closed subscheme Su � S satisfying the property of Corollary 2.20.
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2.5 K-stability

In this subsection, we collect some definitions and known results on K-stability.

A polarized variety .X;L/ consists of a proper normal variety X and an ample Q-line bundle L on it.
The notation of polarized varieties and subpairs are the same, however, we adopt this notation because
both are standard. We will mainly deal with subpairs in Sections 3, 4 and 6, whereas we will deal with
polarized varieties in Section 5.

Let � be a Q-divisor such that .X; �/ is a pair. We call .X; �;L/ a polarized pair. We denote the
algebraic group

fg 2 Aut.X / j g��D�; g�L�Q Lg

by Aut.X; �;L/. This is a closed subscheme of fg 2 Aut.X / j g�L�Q Lg, which is a group scheme
of finite type over k since �.X;L˝m˝g�L˝n/D �.X;L˝mCn/ for every sufficiently divisible m and
n 2 Z>0; see [Fantechi et al. 2005, Section 5.6]. Hence, the above algebraic group is also of finite
type over k. We can check that Aut.X; �;L/ is a linear algebraic group. Indeed, for any sufficiently
divisible m 2 Z>0, since there exists a well-defined closed immersion Gm ,! PGL.h0.X;L˝m//, the
group scheme

Gm WD fg 2 Aut.X / j g��D�; g�L˝m
�L˝m

g

is affine. Since Aut.X; �;L/ is an algebraic group and

Aut.X; �;L/D
[

mW sufficiently divisible

Gm

as sets, we have Aut.X; �;L/DGm for some m. Hence, Aut.X; �;L/ is affine.

We say that f W .X; �;A/! C is a polarized klt-trivial fibration over a curve if f W .X; �/! C is a
klt-trivial fibration over a proper curve and A is an f -ample Q-line bundle on X.

We give the following ad hoc definition of uniform adiabatic K-stability of f .

Definition 2.23 (uniform adiabatic K-stability) We say that a polarized klt-trivial fibration over a curve
f W .X; �;A/! C is uniformly adiabatically K-stable if one of the following hold:

� KX C��Q f �.KC CBC CMC / is nef, or

� C D P1, KX C��Q uf �.O.1// for some u< 0, and maxp2P1 ordp.BC / < 1C 1
2
u, where BC

is the discriminant Q-divisor with respect to f .

Here, BC and MC are Q-divisors defined in Definition 2.5.

We note that the uniform adiabatic K-stability is a condition of .C;BC ;MC /, which we call a log-twisted
pair, rather than f .

Next, we recall the definition of K-stability, but we do not need it except in Section 6.
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Definition 2.24 (K-stability) Let .X; �;L/ be a polarized log pair of dimension d . We say that
� W .X ;L/!A1 is a (semi)ample test configuration if the following hold.

� � W X !A1 is a proper and flat morphism of schemes.

� L is a (semi)ample Q-line bundle on X .

� Gm acts on .X ;L/ so that � is Gm-equivariant where Gm acts on A1 by multiplication.

� .��1.1/;Lj��1.1//Š .X;L/.

We will write � W .X ;L/!A1 by .X ;L/ for simplicity. In this paper, we only treat test configurations
.X ;L/ such that X is normal. A test configuration .X ;L/ is trivial if X is Gm-equivariantly isomorphic
to X �A1 and we denote X by XA1 in this case. Let p WXA1!X be the canonical projection. It is well-
known that for any semiample test configuration .X ;L/, there is a normal semiample test configuration
.Y; ��L/ together with two Gm-equivariant morphisms � W Y! X and � W Y!XA1 that are the identity
morphisms over A1 n f0g. Let H be an R-line bundle on X and D be the closure of ��Gm � X . Then
we define the non-Archimedean Mabuchi functional and the non-Archimedean JH -functional by

M NA
� .X ;L/ WD .KX=P1 CDCX0;red�X0/ �Ld

�
d.KX C�/ �L

d�1

.d C 1/Ld
�LdC1;

.J H /NA.X ;L/ WD .p ı �/�H � ��Ld
�

dH �Ld�1

.d C 1/Ld
�LdC1:

Here the bar denotes the canonical compactification; cf [Boucksom et al. 2017, Sections 3 and 7]. It
is easy to see that M NA

�
.X ;L/ DM NA

�
.Y; ��L/ and .J H /NA.X ;L/ D .J H /NA.Y; ��L/. Hence, the

functionals are well-defined. We say that .X;B;L/ is uniformly K-stable (resp. .X;L/ is uniformly
JH -stable) if there exists a positive constant � > 0 such that

M NA
� .X ;L/� �.J L/NA.X ;L/ .resp. .J H /NA.X ;L/� �.J L/NA.X ;L//

for any normal semiample test configuration.

We note that .J L/NA.X ;L/ � 0, and .J L/NA.X ;L/D 0 if and only if .X ;L/ is trivial for any ample
normal test configuration (cf [Boucksom et al. 2017, Proposition 7.8]). In [Boucksom et al. 2017],
.J L/NA is introduced and denoted by INA�J NA. This coincides with the minimum norm independently
introduced in [Dervan 2016].

Definition 2.25 Let .X; �;L/ be a klt polarized pair. Let r be a positive integer such that rL is a line
bundle. For any m 2 Z>0, a Q-divisor Dmr is called a mr -basis type divisor of L if

Dmr D
1

mrh0.X;OX .mrL//

h0.X ;OX .mrL//X
iD1

Ei
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such that the Ei form a basis of H 0.X;OX .mrL//. We define ımr and ı-invariants as

ımr;.X ;�/.L/ WD inf
Dmr

lct.X; �IDmr / and ı.X ;�/.L/ WD lim
m!1

ımr;.X ;�/.L/;

where Dmr runs over all mr -basis type divisors; cf [Fujita and Odaka 2018] and [Blum and Jonsson
2020]. By [Blum and Jonsson 2020], the above limit exists.

For any prime divisor F over X with a projective birational morphism � W Y !X such that F appears as
a prime divisor on Y , we define

SL.F / WD
1

Ln

Z 1
0

vol.L� tF / dt;

where vol.L� tF / denotes vol.��L� tF / by abuse of notation. We set

Smr;L.F / WDmax
Dmr

ordF .Dmr /D

P
i�1 h0.Y;OY .mr��L� iF //

mrh0.X;OX .mrL//
;

where Dmr runs over all mr -basis type divisors; cf [Fujita and Odaka 2018, Lemma 2.2]. It is well-known
[Blum and Jonsson 2020, Lemma 2.9] that

lim
m!1

Smr;L.F /D SL.F /:

Furthermore, we have

ı.X ;�/.L/D inf
F

A.X ;�/.F /

SL.F /

by [Blum and Jonsson 2020], where F runs over all prime divisors over X.

Definition 2.26 (˛-invariant) Let .X; �;L/ be a klt polarized pair. We define the ˛-invariant, denoted
by ˛.X ;�/.L/, by

˛.X ;�/.L/ WD infflct.X; �ID/ jD 2 jLjQg D infflct.X; �ID/ jD 2 jLjRg:

This notion was introduced by Tian [1987] (and restated in [Tian 1990]) to obtain a sufficiency condition
for the existence of Kähler–Einstein metrics on Fano manifolds.

The following fact is well-known.

Lemma 2.27 (cf [Boucksom et al. 2017, Theorem 9.14; Fujita 2019, Proposition 2.1, Lemma 2.2]) Let
.X; �;L/ be a d -dimensional klt polarized pair. Then

0<
d C 1

d
˛.X ;�/.L/� ı.X ;�/.L/� .d C 1/˛.X ;�/.L/:

Example 2.28 When X is a curve, we can easily compute ı.X ;�/.L/ as follows: Since every prime
divisor over X is a point P 2X, we have

SL.P /D
1

deg L

Z deg L

0

.deg L� t/ dt D
deg L

2
:
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Thus, we have

ı.X ;�/.L/D
2

deg L
inf
P

A.X ;�/.P /D 2
.1�maxP2X ordP .�//

deg L
:

In this case we have
˛.X ;�/.L/D

1�maxP2X ordP .�/

deg L
D

1

2
ı.X ;�/.L/:

The following notion from [Hattori 2024a] will also be used in this paper.

Definition 2.29 (special K-stability) We say that a klt polarized pair .X; �;L/ is specially K-stable if
ı.X ;�/.L/LCKX C� is ample and .X;L/ is uniformly Jı.X;�/.L/LCKXC�-stable.

Note that the special K-stability depends only on the numerical class of L since so do ı.X ;�/.L/ and the
uniform Jı.X;�/.L/LCKXC�-stability.

By the following, we know that the special K-stability implies the uniform K-stability.

Theorem 2.30 [Hattori 2024a, Corollary 3.21] Let .X; �;L/ be a klt polarized variety and .X ;L/ be a
normal semiample test configuration for .X;L/. Then ,

M NA
� .X ;L/� .J ı.X;�/.L/LCKXC�/NA.X ;L/:

Over C, there exists an intrinsic criterion for J-stability and special K-stability without using test configu-
rations.

Theorem 2.31 Let .X;L/ be a polarized variety over C of dimension d , and let H be an ample R-line
bundle on X. Then .X;L/ is uniformly JH -stable if and only if there exists � > 0 such that�

d
H �Ld�1

Ld
L�pH

�
�Lp�1

�V � �.d �p/Lp
�V

for any p-dimensional subvariety V � X with 0 < p < d . In particular , if .X; �;L/ is a polarized klt
pair and H WD ı.X ;�/.L/LCKX C� is ample , then the specially K-stability of .X; �;L/ is equivalent
to the existence of � > 0 such that the above inequality holds for any subvariety V �X.

The above theorem was first proved in the case of Kähler manifolds by Chen [2021], but currently the
theorem holds for all polarized varieties by Hattori [2021, Theorem 8.12]. For polarized (resp. Kähler)
manifolds, it was shown by Datar and Pingali [2021] (resp. Song [2020]) that uniform JH -stability is
equivalent to a certain weaker condition.

Roughly speaking, the uniform adiabatic K-stability of f W .X; �;A/! C was originally defined to
be the uniform K-stability of .X; �; �ACL/ with fixed some ample Q-line bundle L on C for any
sufficiently small � > 0. The original definition [Hattori 2022, Definition 2.6] and the ad hoc definition
coincide by the following theorems. Furthermore, we do not have to fix L on C by what we stated after
Definition 2.29.
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Theorem 2.32 [Hattori 2021, Theorem 8.15] Let .X; �;A/ be a klt polarized pair over C. If KX C�

is nef , then there exists a real number C > 0, depending only on the intersection numbers Ai � .KX C

�/dim X�i for 0 � i � dim X, such that .X; �ACKX C�/ is uniformly JKXC�CC�.�ACKXC�/-stable
for every � > 0. Furthermore , there exist real numbers �0 > 0 and ˛ > 0 such that .X; �; �ACKX C�/

is specially K-stable and
M NA
� .X ;M/� ˛.J �ACKXC�/NA.X ;M/

for any 0< � < �0 and normal semiample test configuration .X ;M/ for .X; �ACKX C�/.

Theorem 2.33 [Hattori 2022, Theorem B] Let f W .X; �;A/! .P1;O.1// be a polarized klt trivial
fibration over C such that KX C��Q uf �.O.1// for some u< 0.

Then , f is uniformly adiabatically K-stable if and only if there exist real numbers �0 > 0 and ˛ > 0 such
that .X; �; �A� .KX C�// is specially K-stable and

M NA
� .X ;M/� ˛.J �A�.KXC�//NA.X ;M/

for any 0< � < �0 and for any normal semiample test configuration .X ;M/ for .X; �A� .KX C�//.

We remark that Theorem 2.32 follows from the proof of [Hattori 2021, Theorem 8.15]. On the other hand,
the equalities

lim
�!0

ı.X ;�/.�A� .KX C�//D 2
.maxp2P1 ordp.BP1/� 1/

u
D ı.P1;BP1 /

.�KP1 �BP1 �MP1/

are key steps to show Theorem 2.33; cf [Hattori 2022, Theorem D]. We will show Theorem 1.6 in
Section 6 with them in mind.

3 Boundedness

In this section, we prove results of the boundedness of certain classes.

Let d be a positive integer, v a positive rational number, u¤ 0 a rational number, and ‚�Q�0 a DCC
set. We set e WD u=juj (thus euD juj). We consider the following sets:

Fd;‚;v WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
f W .X; �/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f is a klt-trivial fibration over a curve C ,

(ii) dim X D d ,

(iii) the coefficients of � belong to ‚,

(iv) there is an f -ample Q-Cartier Weil divisor A on X such
that vol.AjF /D v, where F is a general fiber of f ,

9>>>>>>>=>>>>>>>;
Gd;‚;v;u WD

�
f W .X; �/! C 2 Fd;‚;v

ˇ̌̌ KX C�� uf �H for some Cartier divisor H with
deg H D 1.

�
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Lemma 3.1 below is crucial for the boundedness and the lemma will be used in Section 5.

Lemma 3.1 There exists a positive integer r , depending only on d , ‚, v and u, such that for any element
f W .X; �/! C of Gd;‚;v;u, we have er.KX C�/ � f

�D for some very ample Cartier divisor D

on C . In particular , er.KX C�/ is a basepoint-free Cartier divisor and the linear system jer.KX C�/j

defines f . Furthermore , there are only finitely many possibilities of dim H 0.X;OX .er.KX C�///.

Proof We fix an element f W .X; �/! C of Gd;‚;v;u, and we pick a Weil divisor A on X as in (iv) of
Fd;‚;v.

Let F be a general fiber of f , and pick a Cartier divisor H on C with deg H D 1. By applying [Birkar
2023, Corollary 1.4] to .F; �jF / and AjF , we can find m 2 Z>0, depending only on d and ‚, such that
H 0.F;OX .mAjF //¤ 0. Then there is a sufficiently large positive integer t such that

E �mAC tf �H

for some effective Weil divisor E on X. By construction, we have vol.EjF / D md�1v. By applying
[Birkar 2021a, Lemma 7.4] to .X; �/! C and E, we can find a positive integer q, depending only on d ,
‚ and v, such that we can write

q.KX C�/� qf �.KC CBCM /;

where B (resp. M ) is the discriminant part (resp. moduli part) of the canonical bundle formula, such that
qM is Cartier. Then we have deg.KC CBCM / � eu. By definition of the discriminant part of the
canonical bundle formula and the ACC for lc thresholds [Hacon et al. 2014, Theorem 1.1], we see that
the coefficients of B belong to a DCC set of Q>0 depending only on d and ‚, which we denote by ‰.
Let q0 be the smallest positive integer such that q0u is an integer and q divides q0. Since deg KC � �2

and deg M 2 .1=q/Z�0 by Theorem 2.6, we see that

deg.q0B/ 2 f0; 1; : : : ; eq0uC 2q0g:

We define ı WD inf‰, which is a positive rational number because‰ satisfies the DCC. Since deg B�euC2,
the number of components of B is not greater than .euC 2/=ı. Thus, all the coefficients of B belong to
the set

‰0 WD

�
a0�

lX
iD1

ai

ˇ̌̌
a0 2

1

q0
Z\ Œ0; euC 2�; ai 2‰; l �

euC 2

ı

�
:

We can easily check that ‰0 satisfies the ACC because .1=q0/Z\ Œ0; euC 2� is a finite set and ‰ satisfies
the DCC. Hence ‰\‰0 satisfies the ACC and the DCC, which implies that ‰\‰0 is a finite set.

From these facts, we can find q00, depending only on ‰ \ ‰0, such that q00B is a Weil divisor. By
construction, ‰\‰0 depends only on d , ‚, v and u. Since q divides q0 by construction, we have

q0q00.KX C�/� q0q00f �.KC CBCM /;

and the right-hand side is Cartier. The integer q0q00 depends only on d , ‚, v, and u.
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Since eq0q00.KC CBCM / is ample and Cartier, there is a positive integer r , depending only on d , ‚, v
and u, such that r is divided by q0q00 and er.KC CBCM / is very ample. Then this r is the desired
positive integer. We put D WD er.KC CB CM /. The finiteness of dim H 0.X;OX .er.KX C�///

follows from

0� dim H 0.X;OX .er.KX C�///D dim H 0.C;OC .D//

D dim H 1.C;OC .D//C deg DC�.C;OC /

D eruC 1C
�
dim H 0.C;OC .KC �D//� dim H 0.C;OC .KC //

�
� eruC 1

by the Riemann–Roch theorem.

Let n be a positive integer. We define

Fd;n;v WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
f W .X; �/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f is a klt-trivial fibration over a curve C ,

(ii) dim X D d ,

(iii) n� is a Weil divisor,

(iv) there is an f -ample Q-Cartier Weil divisor A on X such that
vol.AjF /D v, where F is a general fiber of f .

9>>>>>>>=>>>>>>>;
Then Lemma 3.1 shows the existence of an n 2 Z>0 such that Gd;‚;v;u is a subset of the set

Gd;n;v;u WD ff W .X; �/!C 2 Fd;n;v jKX C�� uf �H for some Cartier divisor H with deg H D 1g:

Moreover, there exists a positive integer r , depending only on d , n, v and u, such that for any element
f W .X; �/! C of Gd;n;v;u, the divisor er.KX C�/ is a basepoint-free Cartier divisor and the linear
system jer.KX C�/j defines f .

In the rest of this section, we will deal with Fd;n;v and Gd;n;v;u for the fixed d; n 2 Z>0, v 2Q>0 and
u 2Q¤0.

The following lemma gives a lower bound of the ˛-invariants for general fibers of the elements of Fd;n;v .

Lemma 3.2 There exists a positive integer N, depending only on d , n and v, such that for any element
f W .X; �/! C of Fd;n;v and any Q-Cartier Weil divisor A on X as in (iv) of Fd;n;v, we have the
inequality

˛.F;�jF /.AjF /�
1

N
;

where F is a general fiber of f .

Proof We fix f W .X; �/! C 2 Fd;n;v and A as in the final condition of Fd;n;v. Let F be a general
fiber of f . We put �F D�jF .
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By applying [Birkar 2023, Corollary 1.4] to .F; �F / and AjF , we can find an m 2 Z>0, depending only
on d and n, such that

mAjF �EF

for some effective Weil divisor EF on F . Then we have vol.EF / D md�1v. By applying [Birkar
2023, Corollary 1.6] to .F; �F / and EF , we see that .F;Supp.�F CEF // belongs to a bounded family
depending only on d , n, v, and m. By [Birkar 2019, Lemma 2.24], there exists m0 2 Z>0, depending
only on d , n, v and m, such that m0EF �m0mAjF is Cartier. Then m0m depends only on d , n and v.

Because the divisor m0mAjF � .KF C�F / is ample, we may apply the effective basepoint-freeness
[Kollár 1993, Theorem 1.1] and the effective very ampleness [Fujino 2017, Lemma 7.1]. Hence, there
exists m00 2 Z>0, depending only on d , n and v, such that m00AjF is very ample. Taking a small
Q-factorialization of X and applying the length of extremal rays, we see that KF C 3dm00AjF is the
pushdown of a big divisor; cf [Birkar 2019, Lemma 2.46]. Because we have

3dm00AjF ��F �Q 3dm00AjF CKF ;

we see that 3dm00AjF ��F is the pushdown of a big divisor. We also have

vol.3dm00AjF /D .3dm00/d�1v:

By the ACC for numerically trivial pairs [Hacon et al. 2014, Theorem 1.5], we can find a positive real
number ı > 0, depending only on d � 1 and n, such that .F; �F / is ı-lc.

From the above discussion, we may apply [Birkar 2021b, Theorem 1.8] to .F; �F / and AjF , and we can
find � 2R>0, depending only on d � 1, ı and .3dm00/d�1v, such that

˛.F;�jF /.AjF /� �:

Construction of m00 and ı implies that � depends only on d , n and v. Finally, we define N to be the
minimum positive integer satisfying � > 1=N . Then N satisfies the condition of Lemma 3.2.

Definition 3.3 Let N be the positive integer in Lemma 3.2. We define

˛ WD d.4N CdeuN e/v:

Note that ˛ depends only on d , n, v and u.

The following result is a crucial step for the boundedness and a special form of Theorem 1.5(2).

Proposition 3.4 For any element f W .X; �/! C of Gd;n;v;u and any Q-Cartier Weil divisor A on X as
in (iv) of Fd;n;v, there exists a Cartier divisor D on C such that ACf �D is ample and vol.ACf �D/�˛.

Proof We fix an element f W .X; �/! C of Gd;n;v;u, and we pick a Weil divisor A on X as in (iv) of
Fd;n;v. Let H be a Cartier divisor on C such that deg H D 1.
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We define � to be the smallest integer such that AC �f �H is big. Note that � is well-defined since H is
not numerically trivial and AC tf �H is ample for all t � 0. We fix an effective Q-divisor

A0 �Q AC �f �H:

Let N 2 Z>0 be as in Lemma 3.2. By the property of N in Lemma 3.2, there is a nonempty open subset
U � C such that .X; �C .1=N /A0/ is lc on f �1.U /.

Because A0 is ample over C and KX C��Q;C 0, we can find a positive integer l such that

ˆ WD l
�
KX C��f

�KC C
1

N
A0
�

is Cartier and basepoint-free over C and ˆ defines an embedding into PC .f�OX .ˆ//. By applying
[Fujino 2018, Theorem 1.11] to f W X ! C and ˆ, we see that f�OX .ˆ/ is nef. In other words, the
Cartier divisor corresponding to OPC .f�OX .ˆ//.1/ is nef. Because OX .ˆ/ coincides with the pullback of
OPC .f�OX .ˆ//.1/ to X, it follows that ˆ is nef.

Since f W .X; �/! C is an element of Gd;n;v;u, it follows that the divisor

euf �H � .KX C�/

is nef. Since deg H D 1, we see that 2H CKC is nef. Therefore, the divisor�
2C euC

�

N

�
f �H C

1

N
A�Q .2C eu/f �H C

1

N
A0

D

�
KX C��f

�KC C
1

N
A0
�
� .KX C�/Cf

�KC C .2C eu/f �H

D
1

l
ˆCf �.2H CKC /C .euf �H � .KX C�//

is nef. Thus, AC .N.2C eu/C �/f �H is nef. Since A is f -ample, we see that

AC .3N C euN C �/f �H DAC .N.2C eu/C �/f �H CNf �H

is ample.

By definition of � , the divisor AC .� � 1/f �H is not big. Hence, we have

vol.AC .� �N /f �H /D 0:

Since KX C��uf �H , by the canonical bundle formula, we have eu� deg KC . Then .4NCdeuN e/H

is very ample.

We put A00 WDAC .� �N /f �H and N 0 WD 4N CdeuN e. Let G 2 jN 0f �H j be a member consisting of
N 0 general fibers. Then vol.A00/D 0 and A00jG DAjG by definition. For each m 2 Z>0 and 0< k �m,
we consider the exact sequence

0!H 0.X;OX .mA00C .k � 1/N 0f �H //!H 0.X;OX .mA00C kN 0f �H //!H 0.G;OG.mAjG//
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induced by

0!OX .mA00C kN 0f �H �G/!OX .mA00C kN 0f �H /!OG.mAjG/! 0:

By similar arguments to [Jiang 2018, Proof of Lemma 2.5], we have

dim H 0.X;OX .mA00CmN 0f �H //� dim H 0.X;OX .mA00//Cm � dim H 0.G;OG.mAjG//:

Since G consists of N 0 general fibers, taking the limit m!1 we have

vol.A00CN 0f �H /� vol.A00/C dN 0 � vol.AjF /D 0C dN 0v:

Here, we used that vol.A00/D 0 and vol.AjF /D v. We put

D D .3N CdeuN eC �/H:

By recalling the definitions of A00, N 0 and ˛ (see Definition 3.3), we obtain

vol.ACf �D/D vol.A00CN 0f �H /� dN 0v D ˛:

Thus D is the desired Cartier divisor on C .

Definition 3.5 Let ˛ be the positive real number in Definition 3.3. For any element f W .X; �/! C of
Gd;n;v;u and any Q-Cartier Weil divisor A on X as in (iv) of Fd;n;v, we pick a Cartier divisor H on C

with deg H D 1 and we define

m.f;A/ WDmaxfm 2 Z jACmf �H is ample, vol.ACmf �H /� ˛g:

Note that m.f;A/ is well-defined by Proposition 3.4. We may have m.f;A/ � 0. We define

L.f;A/ WDACm.f;A/f
�H:

Now we are ready to prove the boundedness.

Theorem 3.6 (boundedness) The set of klt pairs .X; �/ appearing in Gd;n;v;u is log bounded. Further-
more , there exists a positive integer I0, depending only on d , n, v and u, such that I0L.f;A/ is an ample
Cartier divisor on X. In particular , I0A is Cartier.

Proof We pick f W .X; �/! C 2 Gd;n;v;u and a Q-Cartier Weil divisor A on X as in (iv) of Fd;n;v.
By Lemma 3.1, we can find a positive integer r , depending only on d , n, v and u, such that .X; �/ is
.1=r/-lc. By [Birkar et al. 2010, Corollary 1.4.3], there is a small Q-factorization � WX 0!X of X. Then
.X 0; 0/ is an .1=r/-lc pair and 3d��L.f;A/�KX 0 is big. By applying [Birkar 2023, Theorem 1.1] to X 0

and 3d��L.f;A/, we can find a positive integer m, depending only on d , n, v and u, such that

H 0.X 0;OX 0.m�
�L.f;A///¤ 0:

Thus, we can find an effective Weil divisor E �mL.f;A/. We have

vol.E/�md˛:
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For each f W .X; �/ ! C 2 Gd;n;v;u, we fix E � mL.f;A/ as above, and we prove that the set of
.X;Supp.�CE// is bounded. If u < 0, then we have eu � 2 by the canonical bundle formula; see
cf Theorem 2.6. By taking a reduced divisor G on X consisting of three general fibers of f , we get
a klt Calabi–Yau pair .X; �C 1

3
euG/. By applying [Birkar 2023, Corollary 1.6] to .X; �C 1

3
euG/

and E, we see that the set of such couples .X;Supp.�CGCE// is bounded. In particular, the set of
.X;Supp.�CE// for some f W .X; �/! C 2 Gd;n;v;u is bounded. If u > 0, then we pick a Cartier
divisor H on C such that deg H D 1 and KX C� � uf �H . Since the volume depends only on the
numerical class, we have

vol.KX C�CE/D .KX C�CE/d D d.uf �H �Ed�1/C .Ed /

D duf �H � .mL.f;A//
d�1
C vol.E/

� dumd�1vCmd˛:

Since .X; �/ is .1=r/-lc by Lemma 3.1 and n� is a Weil divisor by definition, we may apply [Birkar
2023, Theorem 1.5] to .X; �/ and E, and the set of .X;Supp.�CE// is bounded. By these arguments,
we obtain the boundedness of the set of .X;Supp.�CE//.

The first statement of Theorem 3.6 immediately follows from the above discussion. Moreover, [Birkar
2019, Lemma 2.24] implies the existence of a positive integer I 0, depending only on d , n, v and u, such
that I 0E is Cartier. Set I0 WD I 0m. Then I0 depends only on d , n, v and u, and I0L.f;A/ is Cartier.

Remark 3.7 We define

Gd;n;v;0 WD ff W .X; �/! C 2 Fd;n;v jKX C�� 0g;

Vd;n;v WD f.X; �/ j .X; �/ is a klt pair and f W .X; �/! C 2Gd;n;v;0 for some f g:

Then the same argument as in this section implies that Vd;n;v is log bounded. Indeed, applying the
argument in Lemma 3.1, we can find a positive integer r , depending only on d , n and v, such that
r.KX C�/� 0. We define ˛ WD 4dNv; see Definition 3.3. By the same argument as in Proposition 3.4,
for any element f W .X; �/! C of Gd;n;v;0 and any Q-Cartier Weil divisor A on X as in (iv) of Fd;n;v ,
there exists a Cartier divisor D on C such that AC f �D is ample and vol.AC f �D/ � ˛. Then we
can define the line bundle L.f;A/ as in Definition 3.5. Then the argument in Theorem 3.6 implies that
Vd;n;v is log bounded. Moreover, there exists a positive integer I0, depending only on d , n and v, such
that I0L.f;A/ is an ample Cartier divisor; see Theorem 3.6.

Proof of Theorem 1.5 By Lemma 3.1, we may assume that ‚ D .1=n/Z\ Œ0; 1� for some n 2 Z>0.
Then the assertion immediately follows from Theorem 3.6, Remark 3.7, and the existence of L.f;A/ as in
Definition 3.5.

We make use of the following result to construct moduli spaces in Section 5.
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Corollary 3.8 Fix d 2 Z>0, a DCC subset ‚�Q\ Œ0; 1� and rational numbers u; v 2Q, where v > 0.
For any w 2Q>0, consider the set

Gd;‚;v;u;w WD

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:
f W .X; �;A/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f is a klt-trivial fibration over a curve C such that
KX C� � uf �H with a line bundle H on C of
deg H D 1,

(ii) dim X D d ,

(iii) the coefficients of � belong to ‚,

(iv) A is an ample Q-Cartier Weil divisor on X such
that .H �Ad�1/D v and vol.A/� w.

9>>>>>>>>>>>=>>>>>>>>>>>;
We also fix w0 2Q>0. Then , there exist

� a positive integer I , depending only on d , ‚, u, v and w, and

� finitely many polynomials P1; : : : ;Pl , depending only on d , ‚, u, v, w and w0,

satisfying the following. For any f W .X; �;A/! C 2Gd;‚;v;u;w and nef Cartier divisor M on X,

� IACM is very ample ,

� H j .X;OX .m.IACM ///D 0 for every j > 0 and m 2 Z>0, and

� if vol.IACM /� w0, then there is 1� i � l such that

�.X;OX .m.IACM ///D Pi.m/ for every m 2 Z>0:

Before the proof, we show the following criterion for very ampleness and finiteness of Hilbert polynomials.

Lemma 3.9 Fix d 2Z>0 and w 2R>0. Then there are finitely many polynomials P1; : : : ;Pl , depending
only on d and w, such that for any d -dimensional projective klt pair .X; �/, very ample Cartier divisor A

on X, and nef Cartier divisor M on X, if A� .KX C�/ is nef and big and vol..dC2/ACM /�w, then

� .d C 2/ACM is very ample ,

� H j .X;OX .m..d C 2/ACM ///D 0 for every j > 0 and m 2 Z>0, and

� there is a 1� i � l such that

�.X;OX .m..d C 2/ACM ///D Pi.m/ for every m 2 Z>0:

Proof Put A0 D .d C 2/ACM . By the Kawamata–Viehweg vanishing theorem, we have

H j .X;OX .mA0� kA//D 0

for every m 2 Z>0, 0� k � d C 1 and j > 0. By [Fantechi et al. 2005, Lemma 5.1], A0�A is globally
generated, and

�.X;OX .mA0//D dim H 0.X;OX .mA0// for every m 2 Z>0:

Since A is very ample, so is A0 D .A0�A/CA. Furthermore, we can check the following claim:
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Claim For every m 2 Z>0, we have

dim H 0.X;OX .mA0//� d Cmdw:

Proof Let Y �mA0 be a general hyperplane section. Then we have

0!OX !OX .mA0/!OY .mA0jY /! 0;

hence we see that
H 0.X;OX .mA0//� 1CH 0.Y;OY .mA0jY ///:

This relation implies the case of dim X D 1 in the claim, and the general case follows from the relation
and induction on the dimension of X.

Thus, if we put P .m/D�.X;OX .mA0//, there are only finitely many possibilities of P .1/; : : : ;P .dC1/

depending only on d and w. In particular, they do not depend on M . Lemma 3.9 follows from this fact.

Proof of Corollary 3.8 By Lemma 3.1, we can find r , depending only on d , ‚, v and u, such that
‚D Œ0; 1�\ .1=r/Z and r.KX C�/ is Cartier for all f W .X; �;A/! C 2Gd;‚;v;u;w . By Theorem 3.6
and Remark 3.7, there exists I0, depending only on d , ‚, v and u, such that I0A is Cartier for all
f W .X; �;A/! C 2 Gd;‚;v;u;w. Note that 3dI0ACKX C� is ample by [Kollár and Mori 1998,
Theorem 3.7]. Set

A0 WD 3drI0AC r.KX C�/ and A00 WDA0C 3drI0A:

Then A0, A0 � .KX C�/, A00, A00 � .KX C�/ are ample. By the effective basepoint-freeness [Kollár
1993, Theorem 1.1] and the effective very ampleness [Fujino 2017, Lemma 7.1], there exists I1 2 Z>0,
depending only on d , such that I1A0 and I1A00 are very ample. Now

vol..d C 2/I1.A
0
CA00//D ..d C 2/I1/

d vol.A0CA00/

� ..d C 2/I1/
d
�
.6drI0/

dwC .6drI0/
d�1drvu

�
;

hence Lemma 3.9 implies that there are only finitely many possibilities of the Hilbert polynomials

m 7! �
�
X;OX

�
m..d C 2/I1.A

0
CA00//

��
for the elements f W .X; �;A/! C 2 Gd;‚;v;u;w. Similarly, Lemma 3.9 implies that there are only
finitely many possibilities of the Hilbert polynomials

m 7! �
�
X;OX

�
m..d C 2/I1A0/

��
and m 7! �

�
X;OX

�
m..d C 2/I1A00/

��
for the elements f W .X; �;A/! C 2Gd;‚;v;u;w . In particular, there exist positive integers N1 and N2,
depending only on d , ‚, u, v and w, such that

dim H 0.X;OX ..d C 2/I1A0//�N1 and dim H 0.X;OX ..d C 2/I1A00//�N2
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for every f W .X; �;A/! C 2 Gd;‚;v;u;w. From this fact, there exists a closed immersion ' W X ,!

PN1 �PN2 such that

'�p�1OPN1 .1/ŠOX ..d C 2/I1A0/ and '�p�2OPN2 .1/ŠOX ..d C 2/I1A00/;

where p1 W P
N1 �PN2 ! PN1 and p2 W P

N1 �PN2 ! PN2 are the projections. By the theory of Hilbert
schemes, there exist a scheme S of finite type over k and a closed subscheme X � PN1 � PN2 � S ,
which is flat over S , such that for any f W .X; �;A/! C 2 Gd;‚;v;u;w, there is a closed point s 2 S

satisfying X Š Xs and the condition that the immersion Xs � PN1 �PN2 coincides with '.

By the definitions of A0 and A00 and shrinking S if necessary, we may assume that�
p�1OPN1 .�1/˝p�2OPN2 .1/

�ˇ̌
X

is ample over S ; see [Kollár and Mori 1998, Corollary 1.41]. Then there exists a positive integer N 0,
depending only on d ,‚, u, v andw, such that the line bundle

�
p�

1
OPN1 .�N 0�2/˝p�

2
OPN2 .N

0C1/
�ˇ̌

X
is ample over S . This fact and the definitions of A0 and A00 imply that

�.N 0C 2/.d C 2/I1A0C .N 0C 1/.d C 2/I1A0 D .d C 2/I1.�A0C .N 0C 1/ � 3drI0A/

D .d C 2/I1.3drI0N 0A� r.KX C�//

D .d C 2/I1r.3dI0N 0A� .KX C�//

is ample for all f W .X; �;A/! C 2Gd;‚;v;u;w, therefore 3dI0N 0A� .KX C�/ is ample.

Recall from the definition of I0 (see Theorem 3.6 and Remark 3.7) that I0A is Cartier. By the effective
basepoint-freeness [Kollár 1993, Theorem 1.1] and the effective very ampleness [Fujino 2017, Lemma 7.1],
there exists I2 2 Z>0, depending only on d , such that I2A is very ample for every f W .X; �;A/! C 2

Gd;‚;v;u;w. Now define

I WD .d C 2/3dI0N 0I2;

which depends only on d , ‚, u, v and w. Then .1=.d C 2//IA is a very ample Cartier divisor and
.1=.d C 2//IA� .KX C�/ is ample for all f W .X; �;A/! C 2Gd;‚;v;u;w. By Lemma 3.9, we see
that this I is the desired positive integer.

4 Tools for construction of the moduli spaces

In this section we prove some results to construct the moduli spaces in this paper.

4.1 Openness

In this subsection, we prove the openness of uniformly adiabatically K-stable klt-trivial fibrations.
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Lemma 4.1 Let X ! S and Z ! S be flat projective surjective morphisms of normal varieties such
that all the geometric fibers of the morphisms are normal and connected. Let f W X ! Z be a contraction
over S . Let .X ;D/ be a pair such that KX CD �Q;Z 0, SuppD does not contain any fiber of X ! S ,
and .Xxs;Dxs/ is a klt pair for every geometric point xs 2 S . Let x� 2 S be the geometric generic point.

Then there exists an open subset U � S such that for every closed point t 2 U, the discriminant Q-
divisors B, Bx� and Bt with respect to f W .X ;D/ ! Z , fx� W .Xx�;Dx�/ ! Zx� and ft W .Xt ;Dt / ! Zt

respectively satisfy

max
P

coeffP .Bx�/Dmax
P

coeffP .BjZ�S U /Dmax
P 0

coeffP 0.Bt /;

where P (resp. P , P 0) runs over prime divisors on Zx� (resp. Z �S U, Zt ). Furthermore , BjZt
is well-

defined and BjZt
D Bt for any closed point t 2 U.

Proof First, note that we may shrink S whenever we focus on an open subset of S . Moreover, as in
[Ambro 2004, Lemma 5.1], we see that maxP coeffP .BjZ�S U / is not changed for any U � S even if
we replace .X ;D/! Z! S with the base change by any étale surjective morphism S 0! S . Thus, in
the rest of the proof, we will freely shrink S and take the base change of .X ;D/! Z! S by an étale
surjective morphism if necessary.

By shrinking S , we may assume that S is smooth, SuppB does not contain any fiber of Z! S and the
codimension of Sing.Z/\Zs in Zs is at least two for every s 2 S . In particular, we can define Bx�, and
we can also define Bs for every closed point s 2 S .

In this paragraph, we show the first equality of Lemma 4.1. We denote the morphism x�! S by � . By
shrinking S , we can find a finite morphism ' W S 0! S and a morphism  W x�! S 0 such that � D ' ı 
and for any component Q of Bx�, there is a prime divisor Q0 on Z �S S 0 whose pullback to Zx� is Q. By
shrinking S , we may assume that ' is étale. By replacing .X ;D/! Z! S with the base change by ',
we may assume that for any component Q of Bx�, there is a prime divisor Q on S such that ��QDQ.
Let Bx� and B be Q-divisors as in Lemma 4.1. By shrinking S and replacing .X ;D/! Z! S with an
étale base change, we may assume ��.KZ C B/ D KZx� CBx�. Then Bx� D Bx�. Shrinking S , we may
further assume that any component of B dominates S . Then

max
P

coeffP .B/Dmax
P

coeffP .Bx�/;

where P (resp. P ) runs over prime divisors on Z (resp. Zx�).

From now on, we show the second equality of Lemma 4.1. We construct a diagram of projective morphisms

Y
g
//

f 0

��

X

f
��

W h
// Z

where Y and W are smooth varieties, and snc divisors † on W and „ on Y such that

� h is birational and g is a log resolution of .X ;D/,
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� f 0 is a contraction,

� „� f 0�†[g�1
� D[Ex.g/ and the vertical part of „ with respect to f 0 maps into †, and

� .Y; „/ is log smooth over W n†, in other words, the restriction of f 0 W .Y; „/!W over W n†
is log smooth.

By shrinking S , we may assume that for every closed point t 2 S , the restricted diagram

.Yt ; „t /
gt
//

f 0t
��

.Xt ;Dt /

ft

��

.Wt ; †t /
ht

// Zt

satisfies the same conditions as stated above. We define DY by KYCDY D g�.KX CD/ and g�DY DD.
Let � be the discriminant Q-divisor with respect to f 0 W .Y;DY/!W . For each closed point t 2S , let Gt

be the discriminant Q-divisor with respect to f 0t W .Yt ;DYt
/!Wt . Then h��DB and ht�Gt DBt , where

Bt is the discriminant Q-divisor with respect to the klt-trivial fibration ft W .Xt ;Dt /! Zt . Shrinking S ,
we may assume �t D Gt for every closed point t 2 S . Then Bt D ht��t D ht�Gt D Bt , and the snc
condition of †t implies that

max
P

coeffP .B/max
P 0

coeffP 0.Bt /;

where P (resp. P 0) runs over prime divisors on Z (resp. Zt ).

By the above discussion, Lemma 4.1 holds.

Theorem 4.2 (openness of uniform adiabatic K-stability) Let S be a normal variety , � W .X ;D/! S

a log Q-Gorenstein family, and let f W X ! P be a contraction over S , where P is a scheme that is
projective and smooth over S . Let H be an f -ample Q-divisor on X , and let L be a Cartier divisor on P .
Suppose that there exists an integer m> 0 such that .Pxs;Lxs/D .P1;O.m// for any geometric point xs 2 S .
Assume that �.KX=S CD/�Q;S .u=m/f �L for some u 2Q>0 and all the geometric fibers of � are klt.

Then the function
h W S 3 s 7!max

Pxs
coeffPxs .Bxs/;

where Pxs runs over prime divisors on P1
xs , is constructible and upper semicontinuous. In particular , the

subset
W D fs 2 S j fxs W .Xxs;Dxs;Hxs/! Pxs is uniformly adiabatically K-stableg

is open and there exists a positive real number v such that

ı.P1;Bxs/
.�KP1 �Bxs �Mxs/� 1C v

for every geometric point xs 2 W, where Bxs and Mxs are the discriminant Q-divisor and the moduli
Q-divisor with respect to fxs , respectively.
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Proof We first reduce Theorem 4.2 to the case where P Š P1
S

, m D 1 and L D OP1
S
.1/. For every

closed point s 2 S , there exists an étale morphism gs W T s ! S such that s 2 gs.T s/ and PT s ! T s

has a section �s W T s ! PT s ; see [Olsson 2016, Corollary 1.3.10]. By considering T D
F

si
T si for

some finitely many closed points si 2 S , we obtain an étale surjective morphism g W T ! S such that
h W PT ! T has a section � W T ! PT . Then �.T / is a Cartier divisor on PT ; see [Fantechi et al. 2005,
Lemma 9.3.4] and [Kollár 2023, Definition–Lemma 4.20]. By [Hartshorne 1977, III, Corollary 12.9], the
sheaf h�OPT

.�.T // is locally free of rank two and

h�h�OP.�.T //!H 0.Pt ;OPt
.�.T /jPt

//

is surjective. Therefore, we obtain a morphism PT ! PT .h�OPT
.�.T ///. Then the right-hand side is a

P1-bundle, and the morphism is an isomorphism. Since g is open and surjective, if Theorem 4.2 holds
for T , then Theorem 4.2 also holds for S . Thus, we may assume that P is a P1-bundle over S . Since
the problem is local, we may assume that P D P1

S
by shrinking S . Then L �S OP1

S
.m/. It is easy to

see that we may replace L by OP1
S
.m/. In this way, we may assume that LDOP1

S
.m/. By replacing u

with u=m, we may assume mD 1.

Next, we show that h is constructible. By [Matsumura 1980, (6,C)], it suffices to show that h�1.w/

contains a nonempty open subset of S under the assumption that S is a variety and that h�1.w/ is dense
for every w 2Q>0. We pick an open subset V � S nSing.S/. Since the fibers of � W X ! S are normal,
we have K��1.V /=V DK��1.V /� .�j��1.V //

�KV . Thus, K��1.V /CDj��1.V / is Q-Cartier. Let � be
the generic point of S . By Lemma 4.1 and shrinking V if necessary, we may assume

max
P

coeffP .Bx�/Dmax
P

coeffP .Bt /

for every closed point t 2 V, where P (resp. P ) runs over prime divisors on P1
x� (resp. P1

t ). For any
point s 2 V, by applying Lemma 4.1 to fsg \ V, we see that maxPxs coeffPxs .Bxs/ are determined by
ft W .Xt ;Dt /! P1

t for general closed points t 2 fsg\V. This means that h is constant on V. Thus the
constructibility holds.

From now on we prove the upper semicontinuity. The constructibility of h implies that h takes only finitely
many values. We fix w 2Q>0. By Lemma 2.2, we may assume that S is a curve and h.s/�w for every
general point s 2 S . Then S is smooth, and hence we may write KX=S DKX ��

�KS . Thus KX CD is
Q-Cartier. Let B be the discriminant Q-divisor with respect to f W .X ;D/! P1

S
. By Lemma 4.1, we can

find an open subset V � S such that

max
Q

coeffQ.B/Dmax
P

coeffP .Bt /

for every closed point t 2V, where Q (resp. P ) runs over prime divisors on P1
S

(resp. P1
t ). Since h.s/�w

for general points s 2 S , we have

max
Q

coeffQ.B/� u:
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In our situation, the klt property of the geometric fibers of � and the inversion of adjunction [Kawakita
2007] imply that .X ;DCXs/ is lc for every closed point s 2 S . Therefore, every component of B is
horizontal over S . By our assumption, there exists a component T of B such that

coeffT .B/Dmax
Q

coeffQ.B/� u:

Since every component of B dominates S , by [Ambro 2004, Lemma 5.1], this fact is preserved even if
we take any finite base change of .X ;D/! P1

S
! S . Let  W T �! S be the natural morphism, where

T � is the normalization of T . We consider the base change of .X ;D/! P1
S
! S by  , which we

denote by .XT � ;DT � /! P1
T �
! T � , with the morphism  P1 W P1

T �
! P1

S
. By construction,  �

P1T has
a component isomorphic to T � . Since we only need to deal with closed points of S , we may replace
.X ;D/! P1

S
! S with .XT � ;DT � /! P1

T �
! T � . By this replacement, we may assume that T ! S

is an isomorphism. We put  D 1� coeffT .B/. Then there is a prime divisor E over X such that E
maps onto T and A.X ;DCu0f �T /.E/ < 0 for any real number u0 >  . Since T dominates S , for every
closed point c 2 S , the pair .X ;DCu0f �T CXc/ is not lc around Xc . By the inversion of adjunction
[Kawakita 2007], the pair .Xc ;DcCu0f �c T jP1

c
/ is not lc for any u0 >  . Since P1

S
is smooth and T ! S

is an isomorphism, T jP1
c

is a prime divisor on P1
c . Thus, the discriminant Q-divisor Bc with respect to

fc W .Xc ;Dc/! P1
c has a component whose coefficient is at least 1�  . This shows that for every closed

point c 2 S ,
u�max

Q
coeffQ.B/D 1�  �max

P 0
coeffP 0.Bc/;

where P 0 runs over prime divisors on P1
c . Thus the upper semicontinuity of h holds. The final statement

of Theorem 4.2 follows from this fact and Example 2.28.

4.2 Separatedness

In this subsection we show the separatedness of the moduli spaces that we will construct in Section 5.

Notation 4.3 Let C be an affine curve. We say that f W .X; �;L/! C is a polarized Q-Gorenstein
family if f W .X; �/! C is a log Q-Gorenstein family over C and L is an f -ample line bundle. Let
0 2 C be a closed point and C ı D C n f0g the punctured curve. We put

.X; �;L/�C C ı D .X �C C ı; ��C C ı;LjX�C C ı/:

For another polarized Q-Gorenstein family f 0 W .X 0; �0;L0/! C , we define

g W .X; �;L/! .X 0; �0;L0/

to be a C -isomorphism g W X ! X 0 such that f 0 ı g D f , g�� D �0 and g�L0 �C L. We define
C ı-isomorphisms between .X; �;L/�C C ı and .X 0; �0;L0/�C C ı similarly.

Let f W .X; �;L/! C and f 0 W .X 0; �0;L0/! C be polarized Q-Gorenstein families. For contractions
� W .X; �;L/! .P1

C
;O.1// and � 0 W .X 0; �0;L0/! .P1

C
;O.1// over C , we define .˛; ˇ/ W � ! � 0 as

a pair of C -isomorphisms ˛ W .X; �;L/ ! .X 0; �0;L0/ and ˇ W .P1
C
;O.1// ! .P1

C
;O.1// such that

� 0 ı˛ D ˇ ı� .
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The following was shown by Boucksom when � D 0, but we write here the proof for the sake of
completeness.

Proposition 4.4 [Boucksom 2014, Theorem 1.1; Blum and Xu 2019, Theorem 3.1 and Remark 3.6] Let
C be an affine curve. Let f W .X; �;L/! C and f 0 W .X 0; �0;L0/! C be two polarized Q-Gorenstein
families. Suppose that there exists a C ı-isomorphism

gı W .X; �;L/�C C ı! .X 0; �0;L0/�C C ı

and both KX C� and KX 0 C�
0 are nef over C . If .X0; �0/ is klt and .X 0

0
; �0

0
/ is lc , then gı can be

extended to a C -isomorphism g W .X; �;L/! .X 0; �0;L0/.

Proof Let g W X Ü X 0 be the birational map induced by gı. It is sufficient to prove that g is a
C -isomorphism.

We first show that g and g�1 do not contract any divisor. We apply the argument in [Boucksom 2014].
By the inversion of adjunction [Kawakita 2007] and shrinking C around 0 2 C , we may assume that
.X; �CX0/ is plt and .X 0; �0CX 0

0
/ is lc. Take a common log resolution � WY !X and � 0 WY !X 0 of g.

By construction, gı ı�jY �C C ı coincides with � 0jY �C C ı . Let � be the sum of �jY �C C ı-exceptional
prime divisors, and let x� be the closure in Y . Then x� is �-exceptional and also � 0-exceptional. By the
log canonicity of .X; �CX0/, the Q-divisor

E WDKY C�
�1
� �C x�CY0;red��

�.KX C�CX0/

is effective and �-exceptional. Similarly, we see that

E0 WDKY C�
�1
� �C x�CY0;red��

0�.KX 0 C�
0
CX 00/

is effective and � 0-exceptional. Since KX C� is nef over C , by applying the negativity lemma to � 0 and
E�E0, we see that E�E0 is effective. Similarly, we see that E0�E is effective. These facts imply that
E DE0 and hence

��.KX C�CX0/D �
0�.KX 0 C�

0
CX 00/:

Therefore, A.X ;�CX0/.F /DA.X 0;�0CX 0
0
/.F / for every prime divisor F on Y . Recalling that .X; �CX0/

is plt, we see that A.X ;�CX0/.F /D 0 if and only if F D ��1
� X0. Now

A.X ;�CX0/.�
0�1
� X 00/DA.X 0;�0CX 0

0
/.�
0�1
� X 00/

D 1� coeffX 0
0
.�0CX 00/D 0:

From these facts, we have ��� 0�1
� X 0

0
DX0. Since X0 (resp. X 0

0
) is the fiber of f (resp. f 0) over 0 2 C ,

we see that g and g�1 do not contract any divisor.

We now prove that g is a C -isomorphism. Consider L0 as a Cartier divisor on X 0, and put D D g�1
� L0.

By our hypothesis, we have LjX�C C ı �C ı .g
ı/�LjX 0�C C ı . Since g does not contract any divisor, we
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have D �C L; see [Hartshorne 1977, II, Proposition 6.5]. Thus, by Serre’s S2-condition, g induces

X D ProjC

�M
m�0

f�L
˝m

�
D ProjC

�M
m�0

f�OX .mD/

�
Š ProjC

�M
m�0

f 0�L
0˝m

�
DX 0:

This shows that g is indeed a C -isomorphism.

Corollary 4.5 Let .X; �;L/ be a polarized klt pair such that KX C� is nef. Then Aut.X; �;L/ is
finite.

Proof It follows from Proposition 4.4 as [Blum and Xu 2019, Corollary 3.5].

We are ready to prove the main theorem of this subsection.

Theorem 4.6 (separatedness) Let � W .X; �;H /! C and � 0 W .X 0; �0;H 0/! C be two polarized
Q-Gorenstein families over a curve such that .X0; �0/ is klt and .X 0

0
; �0

0
/ is lc. Let

g W .X; �;H /! .P1
C ;O.1// and g0 W .X 0; �0;H 0/! .P1

C ;O.1//

be contractions over C such that KX C��Q;P1
C

0 and KX 0C�
0 �Q;P1

C
0. Let 0 2 C be a closed point ,

and let g0 WX0! P1 (resp. g0
0
WX 0

0
! P1) be the restriction of g (resp. g0) to 0 2 C . Suppose that there

exists an isomorphism .˛ı; ˇı/ W gjX�C C ı Š g0jX 0�C C ı over C ı such that

� g0 W .X0; �0;H0/! P1 is uniformly adiabatically K-stable ,

� for the discriminant Q-divisor B0
0

and the moduli Q-divisor M 0
0

with respect to g0
0
W .X 0

0
; �0

0
/!P1,

we have ı.P1;B0
0
/.�KP1 �B0

0
�M 0

0
/� 1, and

� we have �KX �� �C;Q wg�OP1
C
.1/ and �KX 0 ��

0 �C;Q w0g0�OP1
C
.1/ for some positive

rational numbers w and w0.

Then .˛ı; ˇı/ can be extended to an isomorphism .˛; ˇ/ W g! g0 over C .

Proof We will reduce the theorem to Proposition 4.4 as in [Blum and Xu 2019, Theorem 3.1]. By
our hypothesis of .˛ı; ˇı/, it is easy to see that w D w0. Denote the bases of g and g0 by C and C0,
respectively. Note that C and C0 are isomorphic to P1

C
. Let L (resp. L0) be the line bundle on C (resp. C0)

isomorphic to O.1/. We denote the structure morphisms C! C and C0! C by � and �0, respectively.

Replacing L by LC dC0 for some sufficiently large d 2 Z>0, we may assume that the birational map
.C;L/ Ü .C0;L0/ over C induces an inclusion �0�L0 � ��L as sheaves of OC -modules. Now OC;0 is
a divisorial valuation ring and both ��L˝OC;0 and �0�L0˝OC;0 are free OC;0-modules of rank two.
Hence, by fixing a generator t of the maximal ideal of OC;0, we may find free bases fs;ug � ��L˝OC;0

and fs0;u0g � �0�L0˝OC;0 such that s0 D t�s and u0 D t�u for some �;� 2 Z�0.

By shrinking C around 0, we may assume that t , s, u, s0, and u0 are global sections. By definition, s

and u correspond to prime divisors E1 and E2 on C respectively such that E1jC0
¤ E2jC0

. Similarly,
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s0 and u0 correspond to prime divisors E0
1

and E0
2

on C0 respectively such that E0
1
jC0

0
¤E0

2
jC0

0
. We put

D D 1
2
w.E1CE2/ and D0 D 1

2
w.E0

1
CE0

2
/. Then D is the strict transform of D0 since they coincide

over C ı. Note that .X0; �0C g�
0
D0/ is klt and .X 0

0
; �0

0
C g0�

0
D0

0
/ is lc. Indeed, .P1;B0

0
CD0

0
/ is lc

since
˛.P1;B0

0
/.�KP1 �B00�M 0

0/D
1
2
ı.P1;B0

0
/.�KP1 �B00�M 0

0/�
1
2

by Example 2.28 and the second assumption of Theorem 4.6. Then the log canonicity of .X 0
0
; �0

0
Cg0�

0
D0

0
/

follows from the log canonicity of .P1;B0
0
CD0

0
/ in the same way as [Ambro 2004, Theorem 3.1].

Similarly, we have

˛.P1;B0/
.�KP1 �B0�M0/D

1
2
ı.P1;B0/

.�KP1 �B0�M0/ >
1
2

by Example 2.28 and the first assumption of Theorem 4.6, where B0 (resp. M0) is the discriminant Q-
divisor (resp. moduli Q-divisor) with respect to the klt-trivial fibration g0. We see that .X0; �0Cg�

0
D0/

is klt in the same way. We also have the relations KX C�Cg�D�C;Q 0 and KX 0C�
0Cg0�D0�C;Q 0.

Thus, we have a unique extension

˛ W .X; �Cg�D;H /Š .X 0; �0Cg0�D0;H 0/

of ˛ı over C by Proposition 4.4. Here, ˛�g0�D0Dg�D. Thus, ˛�g0�E0
1
Dg�E1 and ˛�g0�E0

2
Dg�E2

hold and they generate the pencils defining the two contractions g0 ı ˛ and g. Therefore, we have a
natural extension ˇ W .C;L/Š .C0;L0/ of ˇı. It is easy to see that .˛; ˇ/ is an isomorphism from g to g0

over C .

To construct our moduli spaces, we only need Theorem 4.6 for uniformly adiabatically K-stable g0
0
. In

this case, Theorem 4.6 follows from [Hattori 2024a, Corollary 3.22] when k D C. Since we do not
know whether .X 0

0
; �0

0
; �H 0

0
Cg0�

0
O.1// is specially K-semistable or not, we cannot apply [Hattori 2024a,

Corollary 3.22] directly. Theorem 4.6 is applicable to the case when g0
0

is an adiabatically K-semistable
klt-trivial fibration; see [Hattori 2022, Theorem A].

The following is also important for construction of our moduli spaces.

Corollary 4.7 (finiteness of stabilizers) Let f W .X; �;H / ! P1 be a polarized uniformly adia-
batically K-stable klt-trivial fibration such that �.KX C�/ is nef and not numerically trivial. Then
Aut .f W .X; �;H /! .P1;OP1.1/// is a finite group.

Proof Since Aut .f W .X; �;H / ! .P1;OP1.1/// is represented by a closed subgroup of a linear
algebraic group Aut .X; �;H /�Aut .P1;OP1.1// [Fantechi et al. 2005, Section 5.6], it is sufficient to
show that Aut .f W .X; �;H /! .P1;OP1.1/// is proper. Let C be an arbitrary affine curve and fix a
closed point 0 2 C . Set C ı WD C n f0g and take an arbitrary isomorphism

'ı 2 Aut .f j.X ;�;H /�C ı W .X; �;H /�C ı! .P1;OP1.1//�C ı/:

By Theorem 4.6, we extend 'ı to ' over C entirely.
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4.3 Invariance of plurigenera

In this subsection we prove a result on the invariance of plurigenera, which is a generalization of
[Nakayama 1986] and a key statement to construct our moduli spaces.

Theorem 4.8 Let f W .X; �/!S be a log Q-Gorenstein family such that S is a normal variety. Suppose
that there is e 2 f1;�1g such that for every geometric point xs 2 S , .Xxs; �xs/ is a klt pair and e.KXxs C�xs/

is semiample. Let r be a positive integer such that r.KX=S C�/ is Cartier. Then , for every positive
integer n, the function

S 3 t 7! dim H 0.Xt ;OXt
.enr.KXt

C�t ///

is constant.

First, we treat the case when S is a curve.

Proposition 4.9 Let f W .X; �/! C be a log Q-Gorenstein family such that C is a curve and all closed
fibers of f are klt pairs. Let D be a Cartier divisor on X such that D� .KX C�/ is semiample over C .
Then , for every closed fiber F of f , the natural morphism f�OX .D/!H 0.F;OF .DjF // is surjective.

Proof Note that X is a normal variety. The klt property of the closed fibers of f and the inversion of
adjunction [Kawakita 2007] imply that .X; �/ is klt. Let g W Y !X be a log resolution of .X; �/. We
can write

KY C�Y D g�.KX C�/CE

for some effective Q-divisors �Y and E which have no common component. Then .Y; �Y CdEe�E/

is a log smooth klt pair. Let c 2 C be an arbitrary closed point with the fiber F WD f �c. Then

.g�DCdEe�g�F /� .KY C .�Y CdEe�E//D g�.D� .KX C��F //:

Thus, .g�DCdEe�g�F /�.KY C.�Y CdEe�E// is nef and big over X, and the divisor is semiample
over C because D � .KX C�/ is semiample over C by the hypothesis. By the Kawamata–Viehweg
vanishing theorem, we have Rqg�OY .g

�DCdEe�g�F /D 0 for every q > 0. Thus, the Leray spectral
sequence implies

R1.f ıg/�OY .g
�DCdEe�g�F /ŠR1f�.g�OY .g

�.D�F /CdEe//DR1f�OX .D�F /;

where the last equality follows from that E is effective and g-exceptional. By applying the torsion-free
theorem [Fujino 2011, Theorem 6.3(i)] to f ıg W Y ! C , g�DCdEe�g�F and .Y; �Y CdEe�E/,
we see that R1f�OX .D�F / is torsion free. Now consider the exact sequence

f�OX .D/! f�OF .DjF /
ı
�!R1f�OX .D�F /

which is induced by
0!OX .D�F /!OX .D/!OF .DjF /! 0:
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Since R1f�OX .D�F / is torsion free and f�OF .DjF / is zero outside c, we see that ı is the zero map.
This implies that

f�OX .D/! f�OF .DjF /DH 0.F;OF .DjF //

is surjective.

Proof of Theorem 4.8 It is sufficient to prove that the equality

dim H 0.Xs;OXs
.enr.KXs

C�s///D dim H 0.Xs0 ;OXs0
.enr.KXs0

C�Xs0
///

holds for any two closed points s; s0 2 S . Let C � S be a connected (but not necessarily irreducible or
smooth) curve passing through s and s0; see [Mumford 2008, Section 6, Lemma]. Replacing S with the
normalization of any component of C , we may assume that S is a curve.

By the hypothesis, e.KX C�/ is f -nef. Since the restriction of e.KX C�/ to the geometric generic fiber
is semiample, e.KX C�/ is f -abundant [Fujino 2012, Definition 4.1]. By [Fujino 2012, Theorem 1.1],
e.KX C�/ is semiample over S . Then enr.KX C�/� .KX C�/ is also semiample over S for every
positive integer n. By Proposition 4.9, for every closed fiber F , the morphism

f�OX .enr.KX C�//!H 0.F;OF .enr.KF C�jF ///

is surjective. By the cohomology and base change theorem, dim H 0.Xt ;OXt
.enr.KXt

C �t /// is
independent of t 2 S .

5 Construction of moduli

In this section, we construct the moduli of uniformly adiabatically K-stable polarized klt-trivial fibrations
over curves such that the canonical divisor is not numerically trivial. Throughout this section, we fix
d 2 Z>0, u 2Q¤0 with e WD u=juj, v 2Q>0 and w 2Q>0. We define

Zd;v;u;w WD

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:
f W .X; �D 0;A/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f is a uniformly adiabatically K-stable polarized klt-
trivial fibration over a curve C ,

(ii) dim X D d ,

(iii) KX � uf �H for some line bundle H on C such that
deg H D 1,

(iv) A is an ample line bundle on X such that .KX �A
d�1/D

uv and vol.A/� w.

9>>>>>>>>>>>=>>>>>>>>>>>;
Then it is not difficult to check that if f W .X; �D 0;A/! C is an element of Zd;v;u;w then .X; 0/!
C 2 Gd;f0g;v;u, where Gd;f0g;v;u is the set Gd;‚;v;u in Section 3 with ‚ D f0g. By Lemma 3.1, there
exists an r 2Z>0, depending only on d , u and v, such that for any element f W .X; 0/! C of Gd;f0g;v;u,
we have erKX � f

�D for some very ample Cartier divisor D on C .
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The following theorem is the main result of this paper.

Theorem 5.1 We fix d 2Z>0, u 2Q¤0 with e WD u=juj, v 2Q>0, w 2Q>0 and r 2Z>0 in Lemma 3.1
for Gd;f0g;v;u. Let Md;v;u;w;r be a full subcategory of Pol such that for any locally Noetherian scheme S

over k, we define Md;v;u;w;r .S/ to be a groupoid whose objects are8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

.X ;A /
f

//

�X
��

C

��

S

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

(i) �X is a flat projective morphism and X is a scheme,

(ii) A 2 PicX=S .S/ such that Axs is ample for any geometric point xs 2 S ,

(iii) !
Œr �

X=S exists as a line bundle,

(iv) �X�!
Œler �

X=S is locally free and generates H 0.Xs;OXs
.lerKXs

// for any
point s 2 S and any l 2 Z>0,

(v) f is the ample model of!Œer �

X=S over S and fxs W .Xxs; 0;Axs/!Cxs 2Zd;v;u;w

for any geometric point xs 2 S .

9>>>>>>>>>>>>=>>>>>>>>>>>>;
Then Md;v;u;w;r is a separated Deligne–Mumford stack of finite type over k. Furthermore , there exists a
coarse moduli space of Md;v;u;w;r .

Remark 5.2 For any S -isomorphism g W X ! X 0 as above, we have a unique S -isomorphism h W C! C0

such that f 0 ıg D h ıf . This is the reason why we do not consider morphisms between C and C0.

In this section, for every object .X ;A /! C 2Md;v;u;w;r .S/, the structure morphism .X ;A /! S is
denoted by �X unless otherwise stated. When an object .XT ;AT /! CT of Md;v;u;w;r .T / is the base
change of .X ;A /! C by T ! S , the morphism �XT

is nothing but .�X /T as in (11) in Notation and
conventions.

Lemma 5.3 Md;v;u;w;r is a stack.

Proof We first check that Md;v;u;w;r is a category fibered in groupoids. It suffices to show that for
any �X W .X ;A /! C! S 2Md;v;u;w;r .S/ and any morphism h W T ! S of schemes, the base change
�XT
W .XT ;AT /! CT ! T is the pullback of � along h in the sense of [Olsson 2016, Definition 3.1.1].

By the conditions (iv) and (v) in the definition of Md;v;u;w;r and the theorem of cohomology and base
change, we see that

CT WD C �S T D ProjS

�M
l�0

�X�!
Œler �

X=S

�
�S T Š ProjT

�M
l�0

�XT �!
Œler �

XT =T

�
:

This shows .XT ;AT /!CT 2Md;v;u;w;r .T /. Hence, Md;v;u;w;r is indeed a category fibered in groupoids.

From now on, we check that Md;v;u;w;r is a stack. Since Definition 2.9(1) has been already checked in
Lemma 2.15, it suffices to show the condition of Definition 2.9 (2) for Md;v;u;w;r . We note that Md;v;u;w;r

satisfies the condition of Remark 2.10. Let g W S 0! S be an étale covering and .f 0 W .X 0;A 0/! C0; �/ a
descent datum with the structure morphism �X 0 W .X 0;A 0/! S 0. We will show that .f 0; �/ is effective.
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By Lemma 2.15, .�X 0 W .X 0;A 0/! S 0; �/ is a descent datum in Pol. Therefore, the datum comes from
some element � W .X ;A / ! S 2 Pol.S/. By the functoriality of !Œr �X 0=S 0 and [Fantechi et al. 2005,
Theorem 4.23], there exists a line bundle L on X such that

g�XL D !
Œr �

X 0=S 0 ;

and there exists a morphism !˝r
X=S !L whose pullback g�X!

˝r
X=S ! g�XL coincides with the natural

morphism !˝r
X 0=S 0 ! !

Œr �

X 0=S 0 . From these facts, we have that L D !
Œr �

X=S . By the faithful flatness of g

and the flat base change theorem [Hartshorne 1977, III, Proposition 9.3], the condition (iv) of Md;v;u;w;r

holds for � . Thus, !Œer �

X 0=S 0 is relatively semiample, and if we set C WD ProjS

�L
l�0 ��!

Œler �

X=S
�
, then

C �S S 0 Š ProjS 0

�M
l�0

�X 0�!
Œler �

X 0=S 0

�
D C0

by [Hartshorne 1977, III, Theorem 12.11]. Let f W X ! C be the canonical morphism. Then the base
change of f by S 0! S is isomorphic to f 0. From this, (v) of Md;v;u;w;r holds for f W .X ;A /! C. This
shows f W .X ;A /! C 2Md;v;u;w;r .S/, and hence .f 0; �/ is an effective descent datum.

Note that the set of all klt-trivial fibrations over k belonging to Zd;v;u;w coincides with the set of isomorphic
classes of Md;v;u;w;r .Spec k/. From now on, we fix I 2 Z>0 as in Corollary 3.8 for Gd;f0g;v;u;w. Note
that Zd;v;u;w �Gd;f0g;v;u;w.

Lemma 5.4 For any d1; d2; d3 2 Z>0 and h 2QŒt �, let Md1;d2;d3;h be a full subcategory of Md;v;u;w;r

such that for any locally Noetherian scheme S over k, we define a groupoid Md1;d2;d3;h.S/ whose
objects are8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂
f W .X ;A /! C 2Md;v;u;w;r .S/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

for every geometric point xs 2 S ,
� h0.Xxs;OXxs .IAxs//D d1,

� h0.Xxs;OXxs ..I C 1/Axs//D d2,

� h0.Xxs;OXxs .erKXxs //D d3,

� the Hilbert polynomial of Xxs with respect to
.2I C 1/AxsC erKXxs is h.

9>>>>>>>>>=>>>>>>>>>;
Then Md1;d2;d3;h is an open and closed substack of Md;v;u;w;r . Furthermore , there are only finitely many
d1; d2; d3 2 Z>0 and h 2QŒt � such that Md1;d2;d3;h is not an empty stack.

Proof By Theorem 4.8, any scheme S and f W .X ;A /! C 2Md;v;u;w;r .S/ satisfy the property that
h0.Xxs;OXxs .IAxs//, h0.Xxs;OXxs ..I C 1/Axs//, h0.Xxs;OXxs .erKXxs //, and the Hilbert polynomial of Xxs
with respect to .2I C 1/AxsC erKXxs are locally constant on s 2 S . The first assertion follows from this
fact. The second assertion follows from Lemma 3.1 and Corollary 3.8.
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The invariants h0.Xxs;OXxs .IAxs// and h0.Xxs;OXxs ..I C 1/Axs// in Lemma 5.4 are used to determine
A 2 PicX=S .S/.

Notation 5.5 For each d1; d2; d3 2 Z>0 and h 2QŒt �, we set

H WD Hilb Pd1�1
�Pd2�1

�Pd3�1h;p�
1
O.1/˝p�

2
O.1/˝p�

3
O.1/

:

Let z� W U !H be the morphism from the universal family U . We set pi W U ! Pdi�1
H

as the morphism
induced by the projections Pd1�1

H
�H Pd2�1

H
�H Pd3�1

H
! Pdi�1

H
. We remark that H is of finite type

over k.

For any morphism T !H , the morphism z�T W UT ! T denotes the base change of z� by T !H .

Proposition 5.6 Fix I 2 Z>0 of Corollary 3.8. For all d1; d2; d3 2 Z>0 and h 2QŒt �, the following
H W .Sch=k/op ! Sets is a well-defined functor and H is represented by a locally closed subscheme
Nd1;d2;d3;h �H : For a scheme S , define

H.S/ WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
.f W .X ;A /! C; �1; �2; �3/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

f 2Md1;d2;d3;h.S/ is such that A is
represented by a line bundle, and
�1 W PS .�X�A

˝I /! Pd1�1
S

,
�2 W PS .�X�A

˝IC1/! Pd2�1
S

and

�3 W PS .�X�!
Œer �

X=S /! Pd3�1
S

are
isomorphisms

9>>>>>>>=>>>>>>>;
�
�;

where .f W .X ;A / ! C; �1; �2; �3/ � .f
0 W .X 0;A 0/ ! C0; �0

1
; �0

2
; �0

3
/ if and only if there exists an

isomorphism ˛ W .X ;A /! .X 0;A 0/ of Md;v;u;w;r .S/ (see the definition of Pol) such that the induced
isomorphisms

˛1 W PS .�X�A
˝I /! PS .�X 0�A

0˝I /;

˛2 W PS .�X�A
˝IC1/! PS .�X 0�A

0˝IC1/;

˛3 W PS .�X�!
Œer �

X=S /! PS .�X 0�!
Œer �

X 0=S /;

satisfy �0i ı˛i D �i for i D 1; 2; 3. Here , the structure morphisms X ! S and X 0! S are denoted by �X

and �X 0 respectively, and the line bundle representing A is denoted by A by abuse of notation.

In particular , Nd1;d2;d3;h inherits the PGL.d1/�PGL.d2/�PGL.d3/ action on H .

Proof We first note that PS .�X�A
˝I / and PS .�X�A

˝IC1/ are independent of a representative of A ;
see the claim in the proof of Lemma 2.15. The well-definedness of H follows from the fact that we can
define the pullback of .f; �1; �2; �3/ 2 H.S/ by any morphism S 0! S by using [Hartshorne 1977, III,
Theorem 12.11] and the condition (iv) of Md;v;u;w;r . Indeed, by the properties of I (see Corollary 3.8),
we have

hi.Xxs;OXxs .IAxs//D hi.Xxs;OXxs ..I C 1/Axs//D 0
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for every i > 0 and geometric point xs 2 S . Thus,

PS 0.�XS0�A
˝I

S 0
/Š PS .�X�A

˝I /�S S 0;

PS 0.�XS0�A
˝IC1

S 0
/Š PS .�X�A

˝IC1/�S S 0;

PS 0.�XS0�
!
Œer �

XS0=S
0/Š PS .�X�!

Œer �

X=S /�S S 0:

We will prove the proposition in several steps.

Step 1 In this step, we introduce a claim and give an explanation of the claim.

We will consider the following claim, which will be proved in Step 3.

Claim 1 There exists a locally closed subscheme N of H such that a morphism T !H factors through
N ,! H if and only if there exists a z�T -ample line bundle A 0 on UT such that A 0 and z�T W UT ! T

satisfy the following.

(a) Any geometric fiber of z�T is connected and normal.

(b) p1;xt and p2;xt are closed immersions for any geometric point xt 2 T .

(c) A 0˝I �T p�
1;T

O
P

d1�1

T

.1/ and A 0˝IC1 �T p�
2;T

O
P

d2�1

T

.1/.

(d) For any point t 2 T , the morphisms O˚d1

T
!H 0.Ut ;A

0˝I
t / and O˚d2

T
!H 0.Ut ;A

0˝IC1
t / are

surjective , h0.Ut ;A
0˝I
t /D d1 and h0.Ut ;A

0˝IC1
t /D d2.

(e) !
Œer �

UT =T
�T p�

3;T
O.1/.

(f) Uxt is a klt variety for any geometric point xt 2 T .

(g) z�T�!
Œler �

UT =T
!H 0.Ut ;OUt

.lerKUt
// is surjective for any point t 2 T and any l 2 Z>0.

(h) O˚d3

T
!H 0.Ut ;OUt

.erKUt
// is surjective and h0.Ut ;OUt

.erKUt
//D d3 for any point t 2 T .

(i) .Uxt ; 0;A 0xt /! zCxt 2 Zd;v;u;w for any geometric point xt 2 T , where UT ! zCT is the ample model of
!
Œer �

UT =T
.

Here , the morphism O˚d1

T
!H 0.Ut ;A

0˝I
t / in (d) is defined to be the composition

O˚d1

T
�! z�T�p

�
3;T O

P
d3�1

T

.1/ �!H 0.Ut ;p
�
3;tOPd3�1.1//

Š
�!H 0.Ut ;A

0˝I
t /;

where the last isomorphism is induced by A 0˝I �T p�
1;T

O
P

d1�1

T

.1/ in (c), and the other morphisms in
(d) and (h) are defined similarly.

We give a few words about the conditions (a)–(i). The roles of these conditions are as follows:

� (e), (g), and (i) are related to the conditions of Md;v;u;w;r .T /,

� (c), (d), (e) and (h) are utilized to prove the representability of H, and

� (a), (b) and (f) are extra and written just for the convenience of the proof.
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More precisely, (a), (b) and (f) immediately follow from (d), (i), and the properties of I in Corollary 3.8,
and there are the following correspondences:

� (e) implies (iii) of Md;v;u;w;r .T /,

� (g) corresponds to (iv) of Md;v;u;w;r .T /,

� (i) corresponds to (v) of Md;v;u;w;r .T /.

Thus, every morphism .UT ;A
0/! zCT satisfying (a)–(i) is an object of Md;v;u;w;r .T /.

Step 2 In this step, we prove Proposition 5.6 assuming the existence of N in Claim 1.

Let N be the scheme in Claim 1 and let UN � Pd1�1
N

�N Pd2�1
N

�N Pd3�1
N

be the universal subscheme.
We fix zAN as in Claim 1. By (c) and (e), we can find line bundles M1, M2 and M3 on N such that

p�1;NO.1/� z��NM1˝ zA ˝I
N
; p�2;NO.1/� z��NM2˝ zA ˝IC1

N
; p�3;NO.1/� z��NM3˝!

Œer �

UN =N
:

By (d) and (h) and applying [Mumford 1966, Lecture 7, Corollary 2] to the natural morphisms

O˚d1

N
! z�N�p

�
1;NO.1/ ŠM1˝ z�N�

zA ˝I
N
;

O˚d2

N
! z�N�p

�
2;NO.1/ŠM2˝ z�N�

zA ˝IC1
N

;

O˚d3

N
! z�N�p

�
3;NO.1/ ŠM3˝ z�N�!

Œer �

UN =N
;

we see that

O˚d1

N
ŠM1˝ z�N�

zA ˝I
N
; O˚d2

N
ŠM2˝ z�N�

zA ˝IC1
N

; O˚d3

N
ŠM3˝ z�N�!

Œer �

UN =N
:

From these relations, we obtain isomorphisms

z�1 W PN .z�N�
zA ˝I
N
/
Š
�! Pd1�1

N
;

z�2 W PN .z�N�
zA ˝IC1
N

/
Š
�! Pd2�1

N
;

z�3 W PN .z�N�!
Œer �

UN =N
/
Š
�! Pd3�1

N
:

This fact and the universal property of N show that there exists an injective map

�.S/ W Hom.S;N / ,! H.S/

which maps  W S !N to .fS W .US ; zAS /! zCS ; z�1;S ; z�2;S ; z�3;S /, where z�i;S is the base change of z�i

by S . Therefore we obtain a morphism � W Hom.�;N /! H.

It suffices to prove the surjectivity of �. In general, for two locally free sheaves E and E 0 on S with
an S-isomorphism g W PS .E/! PS .E 0/, we have g�OPS .E 0/.1/ �S OPS .E/.1/. Indeed, we put F WD
g�OPS .E 0/.1/˝OPS .E/.�1/. Then F is locally trivial over S by [Mumford et al. 1994, Section 0.5(b)].
Thus, the pushforward of F to S is an invertible sheaf. From this fact and the global generation of F over S ,
we have g�OPS .E 0/.1/�S OPS .E/.1/. By using this fact, for any object .f W .X ;A /! C; �1; �2; �3/ of
H.S/ with the canonical morphisms

f1 W X ! PS .�X�A
˝I /; f2 W X ! PS .�X�A

˝IC1/ and f3 W X ! PS .�X�!
Œer �

X=S /;
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we have

(I) .�1 ıf1/
�O.1/�S A ˝I ; .�2 ıf2/

�O.1/�S A ˝IC1 and .�3 ıf3/
�O.1/�S !

Œer �

X=S :

By the properties of I in Corollary 3.8 and the condition (iv) of Md;v;u;w;r with the aid of [Hartshorne
1977, III, Theorem 12.11], we see that the fibers of �X�A

˝I , �X�A
˝IC1 and �X�!

Œer �

X=S coincide with
H 0.Xxs;A ˝I

xs /, H 0.Xxs;A ˝IC1
xs / and H 0.Xxs;OXxs .erKXxs //, respectively, over every geometric point

xs 2 S . Then the three linear equivalences in (I) induce the surjective morphisms

(II) O˚d1

S
!H 0.Xs;A

˝I
s /; O˚d2

S
!H 0.Xs;A

˝IC1
s / and O˚d3

S
!H 0.Xs;OXs

.erKXs
//

for any point s 2 S .

We set pi WD �i ı fi . By the properties of I in Corollary 3.8, p1;xs is a closed immersion for every
geometric point xs 2 S . Thus,

p1 �p2 �p3 W X ,! Pd1�1
S

�S Pd2�1
S

�S Pd3�1
S

is a closed immersion. The morphism  W S ! H corresponding to p1 � p2 � p3 factors through N

since (I) (resp. (II)) corresponds to (c) and (e) (resp. (d) and (h)). Then it immediately follows that �.S/
is surjective and hence � is an isomorphism.

Therefore, H is represented by N and hence Proposition 5.6 holds if Claim 1 holds. We finish this step.

Step 3 In this final step, we prove Claim 1. To prove Claim 1, it suffices to check that (a)–(i) are locally
closed conditions.

We first deal with (a) and (b). By [Grothendieck 1966, Théorème (12.2.1) and (12.2.4)], the subset

U1 WD fs 2H j Us is geometrically connected and geometrically normalg

is open. By [Görtz and Wedhorn 2010, Proposition 12.93], the subset

U2 WD fs 2 U1 j p1;s W Us! Pd1�1
s and p2;s W Us! Pd2�1

s are closed immersionsg � U1

is also open.

Next, we treat (c). We put

zA D p�2;U2
O

P
d2�1

U2

.1/˝p�1;U2
O

P
d1�1

U2

.�1/:

Then the condition (c) implies that

A 0 �T p�1;T O
P

d1�1

T

.�1/˝p�2;T O
P

d2�1

T

.1/D zAT :

Hence, the existence of A 0 satisfying (c) is equivalent to the z�T -ampleness of zAT and the relations

zA ˝I
T
�T p�1;T O

P
d1�1

T

.1/ and zA ˝IC1
T

�T p�2;T O
P

d2�1

T

.1/:
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By Corollary 2.20, there exists a locally closed subscheme

U3 � U2

such that a morphism T ! U2 factors through U3 ,! U2 if and only if the relations

zA ˝I
T
�T p�1;T O

P
d1�1

T

.1/ and zA ˝IC1
T

�T p�2;T O
P

d2�1

T

.1/

hold true. Since p1;U3
is a closed immersion, zAU3

is z�U3
-ample.

For (d), set

U4 WD

8̂<̂
:s 2 U3

ˇ̌̌̌
ˇ̌̌ � h0.Us; zA

˝I
s /D d1,

� h0.Us; zA
˝IC1

s /D d2, and
� both O˚d1

U3
!H 0.Us; zA

˝I
s / and O˚d2

U3
!H 0.Us; zA

˝IC1
s / are surjective.

9>=>;
Then U4 is open. Indeed, pick a point s 2 U4. We take a line bundle M on U3 such that

z��U3
M˝ zA ˝I

U3
� p�1;UU3

Od1�1
P .1/:

By the third condition in U4 and the construction of O˚d1

U3
!H 0.Us; zA

˝I
s /, we have that

z�U3�p
�
1;U3

O.1/ŠM˝OU3
z�U3�

zA ˝I
U3
!H 0.Us; zA

˝I
s /

is surjective. By [Hartshorne 1977, III, Theorem 12.11], M˝OU3
z�U3�

zA ˝I
U3

is locally free near s and

M˝OU3
z�U3�

zA ˝I
U3
˝OU3

OU3;s0=ms0 !H 0.Us0 ; zA
˝I

s0 /

is an isomorphism for every point s0 2 U3 on some neighborhood of s, where ms0 is the maximal ideal
of OU3;s0 . Therefore we have that h0.Us0 ; zA

˝I
s0 /D d1 for every point s0 on some neighborhood of s, and

the third condition on U4 implies that O˚d1

U3
!M˝OU3

z�U3�
zA ˝I
U3

is surjective at s. Then the morphism

O˚d1

U3
! z�U3�p

�
1;U3

O.1/ŠM˝OU3
z�U3�

zA ˝I
U3
!H 0.Us0 ; zA

˝I
s0 /

is surjective for every point s0 on some neighborhood of s. By the same argument, we see that
h0.Us0 ; zA

˝I
s0 /D d2 and O˚d2

U3
!H 0.Us0 ; zA

˝IC1
s0 / is surjective for every point s0 on some neighborhood

of s. In this way, if s 2 U4 then a neighborhood of s is contained in U4, which implies the openness
of U4.

In this paragraph, we discuss the conditions (e) and (f). By Corollary 2.20, we may find a locally closed
subscheme

U5 � U4

such that a morphism T ! U4 factors through U5 if and only if !Œer �

UT =T
�T p�

3;T
O.1/. Furthermore, the

subset
U6 D ft 2 U5 j Uxt is kltg

is open since !Œr �UT =T
is a line bundle; see [Kollár 2013, Corollary 4.10].
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We will discuss condition (g) for three paragraphs. We fix an l 2Z>0, and we will discuss the surjectivity
of z�T�!

Œler �

UT =T
!H 0.Ut ;OUt

.lerKUt
// for every t 2T , which we call condition (g)l . For any Noetherian

affine scheme xU with a morphism xU !U8, we define functors F0
xU

and F1
xU

that send an affine scheme U 0

over xU to z�U 0�!
Œler �

UU 0=U 0
and R1z�U 0�!

Œler �

UU 0=U 0
, respectively. These are the same functors as discussed in

[Hartshorne 1977, III, Section 12], and the functor F0
xU

is always left exact by the flatness of z�U6�!
Œler �

UU6
=U6

.
Pick an affine open subset U �U6. We pick a Grothendieck complex .K�; d�/ for !Œler �

UU =U
. This is the same

complex as in [Mumford 2008, Section 5, Lemma 1]; see also [Hartshorne 1977, III, Proposition 12.2].
We define a coherent sheaf

W 1
WD Coker .d0

WK0
!K1/

on U. For any affine morphism g W T ! U, the pullback of the complex .g�K�;g�d�/ is a Grothendieck
complex with respect to !Œler �

UT =T
and

g�W 1
D Coker .g�d0

W g�K0
! g�K1/:

By applying Theorem 4.8 and [Mumford 2008, Section 5, Corollary 2] to the normalization of U6, we
see that z�U6;red satisfies (g)l . By [Hartshorne 1977, III, Corollary 12.6 and Proposition 12,10], F0

Ured
is

exact and hence F1
Ured

is left exact. By [Hartshorne 1977, III, Proposition 12,4], W 1˝OU
OUred is flat for

any choice of .K�; d�/. By this fact and the flattening stratification for W 1, we get a closed subscheme
ZU � U such that a morphism g W T ! U factors through ZU ,! U if and only if g�W 1 is flat, which
is equivalent to the exactness of F0

T
by [Hartshorne 1977, III, Proposition 12.4]. From this, we can check

that ZU is independent of the choice of .K�; d�/ and hence ZU jU 0 DZU 0 for any affine open embedding
U 0 ,! U. By these facts, we can construct a closed subscheme

U
.l/
7
� U6

by gluing all ZU for affine open subsets U � U6.

By construction, a morphism g0 W T 0! U6 factors through U
.l/
7
,! U6 if and only if g0�

V
W 1 is flat for

any affine open subsets V � T 0 and U � U6 with the induced morphism g0
V
W V ! U. By [Hartshorne

1977, III, Proposition 12.4], g0�
V

W 1 is flat if and only if F1
V

is left exact. By recalling that F0
V

is always
left exact, we see that F1

V
is left exact if and only if F0

V
is exact. Thus, g0 W T 0! U6 factors through

U
.l/
7
,!U6 if and only if F0

V
is exact for any affine open subset V � T 0. By the argument of cohomology

and base change [Hartshorne 1977, III, Proposition 12.5, Corollary 12.6 and Proposition 12.10], the
exactness of F0

V
for every V � T 0 is equivalent to the condition (g)l . In this way, g0 W T 0! U6 factors

through U
.l/
7
,! U6 if and only if the morphism z�T 0 W UT 0 ! T 0 satisfies (g)l .

By the above argument, we have a sequence of closed subschemes of U6

U6 � U
.1/
7
� U

.1/
7
\U

.2/
7
WD U

.1/
7
�U6

U
.2/
7
� � � � ;

and the Noetherian property of U6 implies that the above sequence is stationary and

U7 WD

\
l2Z>0

U
.l/
7
� U6
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is well-defined as a closed subscheme. By the construction of U
.l/
7

, a morphism T ! U7 factors through
U7 ,! U6 if and only if UT ! T satisfies (g). We have finished discussing (g).

By Theorem 4.8 and applying the same argument as in the construction of U4, we see that

U8 WD fs 2 U7 jO
˚d3

U7
!H 0.Us;OUs

.erKUs
// is surjective, h0.Uxs;OUxs .erKUxs //D d3g

is open. This corresponds to (h).

Finally, we discuss the condition (i). We put

zC WD ProjU8

�M
l�0

z�U8�!
Œler �
UU8=U8

�
:

Let f W UU8
! zC be the induced morphism. Now the sheaf !Œer �

UT =T
is z�T -semiample by the construction

of U5. Furthermore,
zCT D ProjT

�M
l�0

z�T�!
Œler �

UT =T

�
for any morphism T !U8 by the condition (g) and [Hartshorne 1977, Theorem 12.11]. Thus, fxs WUxs!zCxs
is the contraction induced by eKUxs for any geometric point xs 2 U8. We consider the set

U9 WD

�
s 2 U8

ˇ̌̌̌
.p�

3;xs
O.1/2 � zA d�2

xs /D 0, .p�
3;xs

O.1/� zA d�1
xs /D eruv,

vol. zAxs/� w and Ivol.erKUxs /D eru.

�
We note that if the Iitaka dimension of eKUxs is one, we have Ivol.erKUxs /D r � Ivol.eKUxs /. This fact and
(e) show that a point s 2U8 is contained U9 if and only if .Uxs; zAxs/! zCxs satisfies (ii)–(iv) of Zd;v;u;w . We
will check that U9 is open. By applying Theorem 4.8 to the normalization of U8, we see that the function

U8 3 s 7! h0.Uxs;OUxs .emrKUxs //

is locally constant for every m 2 Z>0. We also see that

U8 3 s 7!
�
.p�3;sO.1/

2
� zA d�2

s /; .p�3;sO.1/ � zA
d�1

s /; vol. zAs/
�
2Q3

is locally constant by the flatness. Therefore, we see that U9 is open. Now it suffices to show the uniform
adiabatic K-stability of fxs for any geometric point xs 2 U9. If u> 0, every fxs is uniformly adiabatically
K-stable and hence we may set N WD U9. If u< 0, then we apply Theorem 4.2 and Example 2.28 to the
normalization U �

9
of U9 and UU �

9
! zCU �

9
, and we obtain an open subset

W � U �
9

such that s 2U �
9

is contained in W if and only if fxs is uniformly adiabatically K-stable. Let � WU �
9
!U9

be the morphism of the normalization. Since � is surjective and closed and W D ��1.�.W //, the set

N D �.W /

is open. Moreover, a geometric point xs 2 U9 is a point of N if and only if fxs is uniformly adiabatically
K-stable. Thus, we have finished discussing the condition (i).
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By the above argument, a morphism T !H factors through N ,!H , if and only if there exists A 0 as in
Claim 1 such that z�T W UT ! T and A 0 satisfy (a)–(i). We have finished the proof of Claim 1.

This completes the proof of Proposition 5.6.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1 By Lemma 5.3, Md;v;u;w;r is a stack. We have

Md;v;u;w;r D

G
d1;d2;d3;h

Md1;d2;d3;h

as stacks. Thanks to Lemma 5.4, it suffices to check that Md1;d2;d3;h is a separated Deligne–Mumford
stack of finite type over k for the fixed d1, d2, d3 and h.

Fix d1, d2, d3 and h. We put N WD Nd1;d2;d3;h, where Nd1;d2;d3;h is in Proposition 5.6, and let
�N W .UN ; zAN /!N be the universal family in Proposition 5.6. We check that

Md1;d2;d3;h Š ŒN=PGL.d1/�PGL.d2/�PGL.d3/�:

We first construct a morphism from Md1;d2;d3;h to ŒN=PGL.d1/�PGL.d2/�PGL.d3/�. By regarding
N and Md1;d2;d3;h as stacks and using .UN ; zAN /!N, we get a morphism N !Md1;d2;d3;h between
stacks. Take a scheme S and g W .X ;A / ! C 2 Md1;d2;d3;h.S/. By the 2-Yoneda lemma [Olsson
2016, Proposition 3.2.2] and regarding S and Md1;d2;d3;h as stacks, we can find a morphism S !

Md1;d2;d3;h that corresponds to g W .X ;A /! C. For any étale covering S 0! S such that the pullback
of A is represented by a �XS0

-ample line bundle A 0, the definition of Md;v;u;w;r and [Hartshorne
1977, III, Theorem 12.11] imply that �XS0�

A 0˝I , �XS0�
A 0˝IC1 and �XS0�!

Œer �

XS0=S
0 are locally free

sheaves of ranks d1, d2 and d3, respectively. Since N is the scheme representing H (Proposition 5.6),
S 0 �Md1;d2;d3;h

N is represented by

V.XS0 ;AS0 /
WD IsomS 0.PS 0.�XS0�

A 0˝I /;Pd1�1
S 0

/�S 0 IsomS 0.PS 0.�XS0�
A 0˝IC1/;Pd2�1

S 0
/

�S 0 IsomS 0.PS 0.�XS0�
!
Œer �

XS0=S
0/;P

d3�1
S 0

/:

Thus, we can think S 0 �Md1;d2;d3;h
N of a principal PGL.d1/ � PGL.d2/ � PGL.d3/-bundle over S 0.

In particular, S 0 �Md1;d2;d3;h
N is affine over S 0. Hence, S �Md1;d2;d3;h

N is represented by an affine
scheme over S [Olsson 2016, Proposition 4.4.9]. Then S �Md1;d2;d3;h

N is a principal PGL.d1/ �

PGL.d2/� PGL.d3/-bundle over S [Fantechi et al. 2005, Proposition 2.36], and the natural morphism
S �Md1;d2;d3;h

N ! N is PGL.d1/ � PGL.d2/ � PGL.d3/-equivariant by Proposition 5.6. For each
scheme S , by considering the map

.S !Md1;d2;d3;h/ 7! .S �Md1;d2;d3;h
N !N /

and using the 2-Yoneda lemma on the left-hand side, we obtain a morphism

� WMd1;d2;d3;h! ŒN=PGL.d1/�PGL.d2/�PGL.d3/�

between stacks.
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In this paragraph we prove that � is an isomorphism. By [Olsson 2016, Proposition 3.1.10], it suffices to
show the full faithfulness and the essential surjectivity of

�.S/ WD �jMd1;d2;d3;h
.S/ WMd1;d2;d3;h.S/! ŒN=PGL.d1/�PGL.d2/�PGL.d3/�.S/

for a fixed scheme S . To prove the full faithfulness, we pick objects g W .X ;A /! C and g0 W .X 0;A 0/! C0

of Md1;d2;d3;h.S/. Taking an étale covering of S , we may assume that A and A 0 are line bundles. By
construction, �.S/ defines a map

IsomS ..X ;A /; .X 0;A 0//! Hom.V.X ;A /;V.X 0;A 0//;

� 7!
�
.�1; �2; �3/ 7! .�1 ı�

�1; �2 ı�
�1; �3 ı�

�1/
�
:

From this, the full faithfulness of �.S/ follows. For the essential surjectivity, we pick any object ˛ WP!N

of ŒN=PGL.d1/�PGL.d2/�PGL.d3/�.S/. Here, P is a principal PGL.d1/�PGL.d2/�PGL.d3/-bundle
over S and ˛ is PGL.d1/�PGL.d2/�PGL.d3/-equivariant. By [Olsson 2016, Corollary 1.3.10], there
exists an étale covering ˇ WS 0!S such that S 0�SP has a section S 0!S 0�SP . Let � WS 0!S 0�SP!N

be the composition of the section and the natural morphism, and let .US 0 ; zAS 0/! zCS 0 be an object
of Md1;d2;d3;h.S

0/ defined by the pullback of the universal family .UN ; zAN / ! zCN via � . Then
there exists an S 0 � N -isomorphism S 0 �S P ! S 0 �Md1;d2;d3;h

N, where S 0 ! Md1;d2;d3;h is the
morphism corresponding to .US 0 ; zAS 0/ ! zCS 0 . By this discussion and the full faithfulness, �.S/ is
essentially surjective. Thus � is an isomorphism. In this way, Md1;d2;d3;h is categorically equivalent to
ŒN=PGL.d1/�PGL.d2/�PGL.d3/�. Thus, Md1;d2;d3;h is an Artin stack of finite type over k.

In the rest of the proof, we will prove that Md1;d2;d3;h is a separated Deligne–Mumford stack with
a coarse moduli space. By Theorem 2.17, it suffices to prove that the diagonal morphism is finite.
By Corollaries 4.5 and 4.7, we only need to prove that the diagonal morphism is proper. For any
scheme S and gi W .Xi ;Ai/ ! Ci 2 Md1;d2;d3;h.S/ for i D 1; 2, it suffices to show that the scheme
I WD IsomS ..X1;A1/; .X2;A2// is proper over S . By [Fantechi et al. 2005, Proposition 2.36] and taking
an étale covering of S , we may assume that A1 and A2 are represented by line bundles. By abuse
of notation, we denote them by A1 and A2, respectively. Then I is locally quasiprojective over S

(Section 2.2).

Since the problem is local, by shrinking S , we may assume that I is quasiprojective over S and there
exist morphisms i W S ! N for i D 1; 2 such that  �i .fN W .UN ; zAN /! zCN / D gi , where fN is the
canonical morphism of the ample model of !Œer �

UT =T
. By the morphism S ! N �N naturally induced

from 1 and 2, we obtain

I D IsomN�N

�
.U1;A1/; .U2;A2/

�
�N�N S;

where U1 (resp. U2) is the base change UN �N .N�N / by the first (resp. second) projection N�N !N,
and A1 (resp. A2) is the pullback of zA . From this, we may replace S by N �N. Hence, we may assume
that S is of finite type over k. By [Görtz and Wedhorn 2010, Corollary 13.101], it suffices to prove
that the natural morphism I �S .S �An/! S �An, denoted by ', is a closed map for every n 2 Z>0.
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We pick a closed subset Z � I �An. Note that '.Z/ is constructible. By Lemma 2.2, to prove the
closedness of '.Z/ it suffices to show that for any morphism q W C ! '.Z/ from a curve C such that
q�1.'.Z// is dense in C , we have q.C /� '.Z/. Consider the scheme

J WD .I �An/�S�An C ŠI �S C:

Since J is quasiprojective, we can find a curve D with a morphism D!J such that the composition
D!J ! C is a dominant morphism. By considering a compactification of D over C , we obtain a
curve D such that D! C is surjective and D is an open subset of D. Then I �S D is an open subset
of I �S D, and I �S D ŠJ �C D!D has a section D0 �I �S D. This section can be extended to
a section D0 of .I �An/�S�An D ŠI �S D!D. Indeed, this fact follows from Proposition 4.4 if
u > 0. If u < 0, then CD of any object f W .X;A/! CD of Md1;d2;d3;h.D/ is a P1-bundle over D by
Tsen’s theorem; see [Hartshorne 1977, V Section 2]. Thus, we can apply Theorem 4.6 and obtain D0.
Then

p.C /D Im.D! C ! S �An/D Im
�
D0 ,! .I �An/�S�An D!I �An '

�! S �An
�
� '.Z/:

Hence, ' is a closed map, which implies that the diagonal morphism is proper. It follows from this that
Md1;d2;d3;h is separated.

By the above argument, Md1;d2;d3;h is a separated Deligne–Mumford stack of finite type over k with the
coarse moduli space.

Now we prove Theorem 1.3. More specifically, we prove that Md;v;u;r is an open and closed substack of
Md;v;u;r;w for some w 2 Z>0.

Proof of Theorem 1.3 We will freely use the notation Zd;v;u and Zd;v;u;w in Section 1.

We first check that for any scheme S and f W .X ;A /! C 2Md;v;u;r .S/, there exists L 2 PicC=S .S/
such that Lxs DOP1.1/ for any geometric point xs 2 S . Since u < 0, the morphism C! S is a smooth
morphism whose geometric fibers are P1; see Theorem 2.6. Thus, there is an étale covering S 0! S

such that C �S S 0 Š P1
S 0

; see the first paragraph of the proof of Theorem 4.2. Then OP1
S0
.1/ satisfies

p�
1;P1

S0

OP1
S0
.1/Š p�

2;P1
S0

OP1
S0
.1/;

where p1 W S
0 �S S 0! S 0 (resp. p2 W S

0 �S S 0! S 0) is the first (resp. second) projection. Since PicC=S
is an étale sheaf, there exists L 2 PicC=S .S/ that corresponds to OP1

S0
.1/ under the canonical injection

PicC=S .S/! PicC=S .S 0/. By definition, it is easy to check that Lxs D OP1.1/ for any geometric point
xs 2 S .

By the same argument as in the proof of Lemma 5.3, it follows that Md;v;u;r is a category fibered in
groupoids. By Proposition 3.4, we can find a positive integer w0, depending only on d , v and u, such that
for any f W .X; 0;A/! C 2 Zd;v;u together with a general fiber F of f , the divisor AC tAF is ample
and vol.AC tAF /� w0 for some integer tA. Then

f W .X; 0;AC tAF /! C 2 Zd;v;u;w0 :
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Pick integers w1; : : : ; wk 2 .w
0; w0Cdv� such that for each 1� i � k there is an object fi W .Xi ; 0;Ai/!

Ci 2 Zd;v;u;w0Cdv such that vol.Ai/ D wi . Note that vol.A0/ 2 Z for every f 0 W .X 0; 0;A0/! C 0 2

Zd;v;u;w0Cdv because A0 is a line bundle. Hence, we have

vol.A0/D wi

for some i if vol.A0/ > w0.

For each 1 � i � k, we set Mwi
as the open and closed substack of Md;v;u;w0Cdv;r that parametrizes

f W .X ;A /! C such that vol.Axs/Dwi for all geometric points xs 2 S . Then there is a natural morphism

 WMw1
t � � � tMwk

�!Md;v;u;r

between categories fibered in groupoids. If  is an isomorphism, then Md;v;u;r is an open and closed
substack of Md;v;u;w0Cdv;r , and Theorem 1.3 immediately follows from Theorem 5.1. Therefore, it
suffices to prove that  is an isomorphism.

For a scheme S , we regard f W .X ;A /! C 2Mwj .S/ as an object of Md;v;u;r .S/. It suffices to show
the full faithfulness and the essential surjectivity of

 .S/ WD  jMw1
t���tMwk

.S/

for any scheme S . Firstly, we prove the full faithfulness. By the definitions of Md;v;u;r and Md;v;u;w0Cdv;r ,
we see that  .S/ is faithful. To show the fullness, take two objects f W .X ;A /! C and f 0 W .X 0;A 0/! C0

of Mw1
t � � � tMwk

.S/ and an isomorphism ˛ W f ! f 0 in Md;v;u;r .S/. This means that ˛ W X ! X 0 is
an S-isomorphism and there exists an element B 2 PicC=S .S/ such that ˛�A 0 D A ˝ f �B. To show
that ˛ comes from an isomorphism in Mw1

t � � � tMwk
, it suffices to prove B D 0 as an element of

PicC=S .S/. For any geometric point xs 2 S , we have Bxs �OP1.m/ for some m 2 Z and

vol.A 0xs /D vol.Axs/C dmv:

By the property of w1; : : : ; wk , there exist two indices i and j such that wi D vol.Axs/ and wj D vol.A 0
xs /.

Since jwi �wj j < dv, we have that mD 0. This implies Bxs � OP1 . By the proof of [Mumford et al.
1994, Section 0.5(b)], we see that BD 0 as an element of PicC=S .S/. From this, it follows that  .S/ is a
fully faithful functor.

Secondly, we prove the essential surjectivity of  .S/. We fix an object f W .X ;A /! C of Md;v;u;r .S/

and a geometric point xs 2S . As in the third paragraph of this proof, there is p 2Z such that Axs˝f
�
xs L

˝p
xs

is ample and
vol.Axs˝f �xs L

˝p
xs /� w0

for every geometric point xs 2 S . Then there exists an open neighborhood U of xs such that Axt ˝f
�
xt

L
˝p
xt

is ample for any geometric point xt 2 U. By shrinking U, we may assume that vol.Axt ˝ f
�
xt

L
˝p
xt

/ is
independent of xt 2 U. This is because the function

U 3 t 7! vol.Axt ˝f
�
xt

L
˝p
xt

/ 2 Z>0
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is locally constant. Take a positive integer q such that Axt ˝f
�
xt

L
˝pCq
xt

is ample and

w0 < vol.Axt ˝f
�
xt

L
˝pCq
xt

/D vol.Axt ˝f
�
xt

L
˝p
xt

/C dqv � w0C dv

for any geometric point xt 2U. Then we see that vol.Axt˝f
�
xt

L
˝pCq
xt

/Dwi for some i . The above argument
shows that for any geometric point xs 2 S , there exists an open neighborhood U of xs such that f jU comes
from Mw1

t � � � tMwk
.U /. More precisely, there exists a set of open subsets fU� � Sg�2ƒ with q� 2Z

such that there exists an integer i 2 Œ1; k� such that Axs˝f
�
xs L

˝q�
xs is ample and vol.Axs˝f �xs L

˝q�
xs /Dwi

for any geometric point xs 2 U�. For any �; �0 2ƒ, if U�\U�0 ¤∅, then

vol.Axs˝f �xs L
˝q�
xs /D vol.Axs˝f �xs L

˝q�0
xs /C d.q�� q�0/v

for any geometric point xs2U�\U�0 . Since we have jd.q��q�0/vj<dv by construction, we have q�Dq�0 .
Then we can glue A ˝f �L˝q� j��1

X .U�/, and we obtain A 0 2 PicX=S .S/. By construction, there exists
an element B 2 PicC=S .S/ such that A ˝f �BDA 0 and f W .X ;A 0/! C 2Mw1

t� � �tMwk
.S/. This

means that  .S/ is essentially surjective. Thus, we conclude that  is an isomorphism.

Remark 5.7 In Theorem 5.1, we have constructed the moduli spaces depending on the choice of r of
Lemma 3.1. However, the reduced structures of these moduli stacks are independent of r . To see this, it
suffices to show the following:

(�) Fix r as in Lemma 3.1 and l 2 Z>0. For every reduced scheme S , every object f W .X ;A /! C 2
Md;v;u;w;lr .S/ is an object of Md;v;u;w;r .S/.

To show (�), we only need to check (iii) and (iv) of Md;v;u;w;r .S/ for f W .X ;A /! C 2Md;v;u;w;lr .S/

as above.

We first check (iii). Note that the function S 3 s 7! �.Xs;OXs
.lerKXs

CmAs// is locally constant for
every m 2 Z. By the basepoint-freeness of erKXxs and considering the exact sequence

0!OXxs .kerKXxs CmAxs/!OXxs ..kC 1/erKXxs CmAxs/!OD.mAxsjD/! 0

for every k � 0, where D 2 jerKXxs j is a general member, we have

�.Xs;OXs
.kerKXs

CmAs//D �.Xs;OXs
.mAs//C k�.D;OD.mAsjD//

for every m 2Z. Considering the case k D l , we see that �.D;OD.mAsjD// is locally constant on s 2 S .
Therefore, the function

S 3 s 7! �.Xs;OXs
.kerKXs

CmAs//

is locally constant for every m 2 Z and k 2 Z�0. By Theorem 2.19, there is the universal hull !Œr �X=S . By
the definition of r in Lemma 3.1, the sheaf !Œr �Xxs is invertible for any geometric point xs 2 S . From this,
!
Œr �

X=S exists as a line bundle. Therefore (iii) of Md;v;u;w;r .S/ is satisfied.
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Next, we check (iv) of Md;v;u;w;r .S/. By applying Theorem 4.8 to the normalization of S , the function

S 3 s 7! dim H 0.Xs;OXs
.kerKXs

//

is locally constant for every k � 0. By [Mumford 2008, Section 5, Corollary 2] and the reducedness of S ,
we see that (iv) of Md;v;u;w;r .S/ is satisfied.

From the above discussion, we have f W .X ;A /! C 2Md;v;u;w;r .S/. Thus, we see that (�) holds and the
reduced structures of Md;v;u;w;lr and Md;v;u;w;r are the same. As we saw in the proof of Theorem 1.3,
Md;v;u;r is an open and closed substack of Md;v;u;w;r and hence its reduced structure does not depend
on the choice of r .

6 Uniformity of adiabatic K-stability

This section is devoted to show Theorem 1.6 and Corollary 1.7. Throughout this section, we work over
the field of complex numbers C, and we will use Fd;n;v and Gd;n;v;u in Section 3. We fix d; n 2 Z>0,
u 2Q and v 2Q>0. For any w 2Q>0 we consider the set

GCar
d;n;v;u;w WD

�
f W .X; �;A/! C

ˇ̌̌̌
f W .X; �/!C 2Gd;n;v;u and A is an ample Cartier
divisor satisfying (iv) of Fd;n;v such that vol.A/�w.

�
Recall from by Theorem 3.6 and Remark 3.7 that there exists m 2Z>0, depending only on d , n, u and v,
such that for any element f W .X; �;A/!C of Gd;.1=n/Z\Œ0;1�;v;u;w , mA is Cartier. Thus, we can regard
f W .X; �;mA/! C as an element of GCar

d;n;md�1v;u;mdw
.

First, we parametrize all elements of GCar
d;n;v;u;w

when u¤ 0.

Proposition 6.1 Fix d , n, u, v and w as above such that u ¤ 0. Then there exist a log Q-Gorenstein
family f W .X ;D/! S , an f -ample Carter divisor A on X , and an S -morphism g W X ! C such that S is
a normal scheme of finite type over C, C is a normal scheme which is smooth and projective over S , and
moreover ,

� we have gs W .Xs;Ds;As/! Cs 2G
Car
d;n;v;u;w

for any closed point s 2 S , and

� for any element h W .X; �;A/!C 2GCar
d;n;v;u;w

, there exist a closed point s 2 S and isomorphisms
˛ W .Xs;Ds/! .X; �/ and ˇ W Cs! C satisfying h ı˛ D ˇ ıgs and ˛�A� As .

Proof The case when the boundary � is zero in the proposition easily follows from Proposition 5.6. In
the general case, the proposition holds true by the standard argument of the boundedness and the idea in
the proof of Proposition 5.6.

The following is the key step to showing Theorem 1.6 for the case when u> 0.
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Theorem 6.2 Let f W .X ;D/! S be a log Q-Gorenstein family and A an f -ample line bundle on X .
Suppose that KX=S CD is nef over S and the fiber .Xs;Ds/ over any closed point s 2 S is klt.

Then there exists a positive rational number �0 such that .Xs;Ds; �AsCKXs
CDs/ is specially K-stable

for the fiber .Xs;Ds;As/ over any closed point s 2 S and any rational number � 2 .0; �0/. Furthermore ,
there exists a positive rational number ˛ such that

M NA
Ds
.Y;M/� ˛.J �AsCKXsCDs /NA.Y;M/

for any rational number � 2 .0; �0/, closed point s 2 S , and normal semiample test configuration .Y;M/

for .Xs; �AsCKXs
CDs/.

Proof First, we note that ACKX=S CD is f -ample. By [Blum and Liu 2022, Proposition 5.3], there
exists ı0 > 0 such that ˛.Xs ;Ds/.AsCKXs

CDs/� ı0 for any closed point s 2 S . We also have

˛.Xs ;Ds/.AsCKXs
CDs/� ˛.Xs ;Ds/.�AsCKXs

CDs/

for � 2 .0; 1/. We put d as the relative dimension of f . By Lemma 2.27, we have

(6-1) ı.Xs ;Ds/.�AsCKXs
CDs/�

d C 1

d
˛.Xs ;Ds/.�AsCKXs

CDs/

�
d C 1

d
˛.Xs ;Ds/.AsCKXs

CDs/�
d C 1

d
ı0:

By Theorem 2.32, there exists a positive rational number C , which depends only on the numbers
.KX C�/

d�i �Ai for 0� i � d , such that .X; �ACKX C�/ is uniformly JKXC�CC�.�ACKXC�/-stable
for any � > 0 and d-dimensional polarized klt pair .X; �;L/ such that KX C� is nef. By the flatness
of f , the .KXs

CDs/
d�i �Ai

s are independent of s, hence we can choose C so that .Xs; �AsCKXs
CDs/ is

JKXsCDsCC�.�AsCKXsCDs/-stable for any s 2S . By taking �0 such that 0<�0<minf.dC1/ı0=.dC /; 1g,
we have

M NA
Ds
.Y;M/�

�
.d C 1/ı0

d
�C�0

�
.J �AsCKXsCDs /NA.Y;M/

for any rational number � 2 .0; �0/, closed point s 2 S and normal semiample test configuration .Y;M/

for .Xs; �AsCKXs
CDs/.

Now we assume u< 0. In this case, we need to show that the uniform “convergence of the ı-invariant”
(cf [Hattori 2022, Theorem D]) holds for all polarized klt-trivial fibrations belonging to one family.

Proposition 6.3 Let S be a normal variety and f W X ! P1
S

be a contraction of normal varieties over S .
Suppose that � W .X ;D/! S is a log Q-Gorenstein family such that any geometric fiber is a klt pair. Let
H be a �-ample Cartier divisor on X . Suppose further that there exists a positive real number u such that

lim
�!0

ı.Xxs ;Dxs/.�HxsCf
�
xs O.1//� u

for any geometric fiber fxs W .Xxs;Dxs;Hxs/! P1 over xs 2 S .

Geometry & Topology, Volume 29 (2025)



1678 Kenta Hashizume and Masafumi Hattori

Then for any ı0 > 0, there exists a positive real number �0 such that

ı.Xxs ;Dxs/.�HxsCf
�
xs O.1//� u� ı0

for any rational number � 2 .0; �0/ and geometric point xs 2 S .

Proof By [Blum and Liu 2022, Theorem 6.6], if

ı.Xs ;Ds/.�HsCf
�

s O.1//� u� ı0

holds for any closed point s 2 S , then

ı.Xxs ;Dxs/.�HxsCf
�
xs O.1//� u� ı0

also holds for any geometric point xs 2S since the set of all closed points is Zariski dense. Thus, it suffices
to show the assertion for all closed points of S .

First, we note that to show the assertion, we may freely shrink S or replace S by S 0 with an étale
morphism S 0! S . Indeed, if we can prove Proposition 6.3 for a nonempty open subset U � S , then the
assertion for S follows from Noetherian induction. Thus, we may assume as in the proof of Lemma 4.1
that S is smooth and there exists a diagram

(6-2)

Y
g
//

f 0

��

X

f
��

W h
// P1

S

of projective morphisms, where Y and W are smooth varieties, with snc divisors † on W and „ on Y ,
respectively, such that

(i) h is birational and g is a log resolution of .X ;D/,

(ii) f 0 is a contraction,

(iii) „� f 0�†[Supp.g�1
� D/[Ex.g/ and the vertical part of †Y with respect to f 0 maps into †,

(iv) the restriction of f 0 W .Y; „/!W over W n† is log smooth.

Since W is isomorphic to P1
S

over any codimension one point of P1
S

, we may shrink S and assume that
W Š P1

S
. Taking a suitable étale morphism T ! S and replacing S by T , we may further assume that

(v) .Y; „/ and .P1
S
; †/ are log smooth over S and any stratum of „ or † has geometrically integral

fibers over S .

Then we apply Lemma 4.1 to S and we conclude by shrinking S that Bs D Bs for any closed point
s 2 S , where B (resp. Bs) is the discriminant divisor with respect to f (resp. fs). We may also assume
by shrinking S that there exists a section S 0 of P1

S
! S disjoint from †. Then, we show the following

claim.
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Claim 2 There exist positive real numbers c and �0
0

that satisfy the following for any closed point s 2 S

and rational number � 2 .0; �0
0
/.

(i) We have supp multp.g�s D/hor � c� for any effective Q-divisor D that is Q-linearly equivalent to
�HsCf

�
s O.1/ (see (12) in Notation and conventions), where p 2 Ys runs over all closed points.

Here , we set multp.D0/D ordE.�
�D0���1

� D0/ for any Q-divisor D0, where � is the blowup of
Ys at p and E is the exceptional divisor.

(ii) There exists a positive integer m� such that m��2Z and such that for any irreducible component Gs

of a fiber Fs of fs ıgs , and m 2 Z>0 such that m�jm,

Sm;�HsCf
�

s O.1/.Gs/�
1
2
Tf �s O.1/.Gs/C c�C c.m�/�1:

Here , we set Tf �s O.1/.Gs/ WD ordGs
.Fs/.

Proof Let †D
P

j Fj and .f ıg/�Fj D
P

aij G
.j/
i be the irreducible decompositions. Note that G

.j/
i

has only smooth and irreducible fibers over S by condition (v) of the diagram (6-2). Note also that we
may shrink S freely by the same reason as in the second paragraph of the proof of Proposition 6.3. We
may further assume that S is quasiprojective and hence there exists a very ample line bundle A on Y . Set
d as the relative dimension of f throughout this proof.

First, we deal with (i). We take m0
1
2Z>0 such that m0

1
A�KY=S�G0 is ample, where G0 is an irreducible

component of .f ı g/�Fj or .f ı g/�.S 0/. Since all smooth fibers of fs ı gs are linearly equivalent
to ..f ı g/�.S 0//jYs

, m0
1
As �KYs

�Gs is also ample for any irreducible component Gs of a fiber of
fs ıgs and for any s 2 S . On the other hand, we obtain m00

1
2 Z>0 such that for any closed point p 2 Y

and the blowup � W zY ! Y at p with the exceptional divisor E, ��.m00
1
A/�E is ample by applying

[Lazarsfeld 2004, 1.4.14] to a suitable projective compactification of .Y;A/. Let s D � ı g.p/ and Z
be an irreducible component of zYs such that �jZ W Z ! Ys is the blowup at p 2 Ys . Then E \ Z is
the �jZ-exceptional divisor. Now we fix an irreducible component Gs of a fiber of fs ı gs such that
p 2Gs . Restricting divisors to Z , we can check that m1 WDm0

1
C .d � 1/m00

1
satisfies that for any closed

points s 2 S and p 2 Ys , both �j�Z.m1As �KYs
�Gs/� .d �1/.E\Z/ and �j�Z.m1As/� .E\Z/ are

ample. Let zGs WD .�jZ/
�1
� Gs and note that zGs is smooth. Hence, there exists a positive integer m2 > 0

depending only on d such that m2.m1�j
�
ZAs�E\Z/j zGs

is globally generated by applying the effective

basepoint-freeness [Kollár 1993, Theorem 1.1] to zGs since

.�j�Z.m1As �KYs
�Gs/� .d � 1/.E \Z//j zGs

D .m1�j
�
ZAs � .E \Z//j zGs

�K zGs

is ample. Then for any D effective Q-divisor Q-linearly equivalent to �HsCf
�

s O.1/, let  0 WD
Td�2

iD1 Di

and  WD .�jZ/� 0 for sufficiently general Di 2 jm2.m1�j
�
ZAs � .E \Z//j zGs

j such that  6� .g�s D/hor

and  0 6�E\Z . Since m1�j
�
ZAs�E\Z is ample,  0 intersects with E\Z . Hence,  passes through p.
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On the other hand, we see that

 � .g�s D/hor D 
0
� .�jZ/

�..g�s D/hor/

D .m2.m1.�jZ/
�As � .E \Z///d�2

� zGs � .�jZ/
�..g�s D/hor/

D .m2m1As/
d�2
�Gs � .g

�
s D/hor

� .m2m1As/
d�2
� .Tf �s O.1/.Gs/g

�
s f
�

s O.1// � .g�s D/hor

� .m2m1As/
d�2
� .Tf �s O.1/.Gs/g

�
s f
�

s O.1// �g�s D

D �.m1m2/
d�2Tf �s O.1/.Gs/.Ad�2

s �g�s Hs �g
�
s f
�

s O.1//:

Let T D maxGs
Tf �s O.1/.Gs/. Then we see that T is independent of s 2 S by the conditions of the

diagram (6-2). Let M WD .m1m2/
d�2T .Ad�2

s � g�s Hs � g
�
s f
�

s O.1// > 0. Then, we see that this M is
independent of s 2 S and that multp..g�s D/hor/ �M� for any closed points s 2 S and p 2 Ys , and
any effective Q-divisor D that is Q-linearly equivalent to �HsC f

�
s O.1/. Indeed, we saw in the above

argument that there exists a curve  6� .g�s D/hor passing through p such that  � .g�s D/hor �M�. Then,
we have

multp..g�s D/hor/� 
0
���..g�s D/hor/D  � .g

�
s D/hor �M�:

Thus, we obtain the assertion (i).

Next, we deal with (ii). Fix � > 0 so that Ad�1
s � g�s .Hs � �f

�
s O.1// < 0 for some closed point s 2 S .

Then, Hs � �f
�

s O.1/ is not pseudoeffective for any s 2 S . Furthermore, take m0 2 Z>0 such that
m0H� .KX=S CD/ is �-ample.

We first treat the case when Gs is a smooth fiber of fs ıgs for any closed point s 2 S . Then, it follows
from [Fujita and Odaka 2018, Lemma 2.2] that

mh0.Xs;m�HsCmf �s O.1//Sm;�HsCf
�

s O.1/.Gs/

�

1X
kD1

h0.Ys;g
�
s .m�HsCmf �s O.1//� kGs/

�

mX
kD1

h0.Ys;g
�
s .m�HsC .m� k/f �s O.1///C

dm��eX
kD1

h0.Ys;g
�
s .m�Hs//:

Recall that m�H�KX=S �D is �-ample for any m 2 Z>0 such that m� 2 Z and m� �m0. Then

h0.Ys;g
�
s .m�HsC kf �s O.1///D �.Xs;m�HsC kf �s O.1//

by the Kawamata–Viehweg vanishing theorem for any k � 0 and any closed point s 2 S . Hence,
h0.Ys;g

�
s .m�HsC kf �s O.1/// is independent of s 2 S . We further have that

�.Xs;m�HsC kf �s O.1//D �.Xs;m�Hs/C k�.Gs;m�HsjGs
/:
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Here, we note that �.Gs;m�HsjGs
/ is also independent of s 2 S . Thus,

(6-3) h0.Ys;g
�
s .m�HsCmf �s O.1///D

md�d�1

.d � 1/!
..Hd�1

s �f �s O.1//CO.�/CO..m�/�1//:

Furthermore, we have by [Kollár and Mori 1998, Theorem 1.36] that for sufficiently large m� and ��1,

(6-4)
mX

kD1

h0.Ys;g
�
s .m�HsC .m� k/f �s O.1///C

dm��eX
kD1

h0.Ys;g
�
s .m�Hs//

D
m.m� 1/

2
�.Gs;m�HsjGs

/C .mCdm��e/�.Xs;m�Hs/

D
mdC1�d�1

2.d � 1/!
..Hd�1

s �f �s O.1//CO.�/CO..m�/�1//:

By (6-3) and (6-4), we see that there exist positive real numbers C0, C 0
0

and C 00
0

such that

(6-5) Sm;�HsCf
�

s O.1/.Gs/�
1
2
CC 00�CC 000 .m�/

�1

for any rational number 0 < � < C�1
0

, positive integer m such that m� 2 Z and m� > maxfC0;m0g,
closed point s 2 S , and smooth fiber Gs of fs ıgs .

Next, we deal with the case when Gs is an irreducible component of a singular fiber of fs ıgs for three
paragraphs. Recall that .f ıg/�Fj D

Prj
iD0

aij G
.j/
i is the irreducible decomposition. Then, we see that

Gs D .G
.j/
i /jYs

for some j and i . By renumbering G
.j/
i , we may assume that G DG

.j/
0

. We note that a
matrix .G.j/

k;s
�G

.j/

l;s
�Ad�2

s /1�k;l�rj is negative definite [Li and Xu 2014, Lemma 1]. Thus, there exists a
Cartier divisor F 0 D

Prj
iD1

eiG .j/
i

such that

G
.j/
i;s �A

d�2
s � .g�s HsCF 0s/ < 0

for i > 0 and for some closed point s 2 S . For some b 2Z>0, F 00 WDF 0Cb.f ıg/�Fj is effective. Then
the inequality

(6-6) G
.j/
i;s �A

d�2
s � .g�s HsCF 00s / < 0

also holds for F 00 and for any closed point s 2 S . Fix a positive integer a such that a.f ıg/�Fj �F 00 is
effective. We claim that for any closed point s 2 S , m 2 Z>0 such that m� 2 Z and k � 0,

(6-7) Ys;m�F
00
s Cg�s .m�HsCmf �s O.1//�ka0j Gs/D h0.Ys;m�F

00
s Cg�s .m�HsC.m�k/f �s O.1///:

Indeed, note that

m.fs ıgs/
�Fj ;s � ka0j Gs D .m� k/.fs ıgs/

�Fj ;sC k
X
i>0

aij G
.j/
i;s ;

and we claim that k
P

i>0 aij G
.j/
i;s is contained in the fixed part of the linear system

jm�F 00s Cg�s .m�HsCmf �s O.1//� ka0j Gsj:
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For this, it suffices to show for any nonzero effective divisor M D
P

i>0 miG
.j/
i;s and l 2 Z�0 that the

fixed part of the linear system jm�F 00s Cg�s .m�HsClf �s O.1//CM j contains some G
.j/
i;s such that mi > 0.

Here, we see that

G
.j/
i;s �A

d�2
s � .m�F 00s Cg�s .m�HsC lf �s O.1//CM / <G

.j/
i;s �A

d�2
s �M

by (6-6), and G
.j/
i;s �A

d�2
s �M < 0 for some i > 0 such that mi > 0 by [Li and Xu 2014, Lemma 1]. This

means that G .j/
i;s

is contained in the fixed part and thus we obtain the equality (6-7).

By equation (6-7) and the fact that a.f ıg/�Fj �F 00 is effective, we have

mh0.Xs;m�HsCmf �s O.1//Sm;�HsCf
�

s O.1/.Gs/

�

1X
kD1

a0j�1X
lD0

h0.Ys;g
�
s .m�HsCmf �s O.1//� .ka0j � l/Gs/

� a0j

1X
kD1

h0.Ys;g
�
s .m�HsCmf �s O.1//� ka0j Gs/

� a0j

1X
kD0

h0.Ys;m�F
00
s Cg�s .m�HsC .m� k/f �s O.1///

� a0j

mX
kD0

h0.Ys;g
�
s .m�HsC .m� kCm�a/f �s O.1///

C a0j

dm�.�Ca/eX
kD1

h0.Ys;g
�
s .m�.HsC af �s O.1///� kg�s f

�
s O.1//:

By (6-3) and estimating the right-hand side of the above inequality as (6-4), we see that there exist positive
real numbers CG

.j /

0
;C 0G.j /

0
and C 00G.j /

0
> 0 such that

(6-8) Sm;�HsCf
�

s O.1/.G
.j/
0;s
/� 1

2
a0j CC 0

G
.j /

0

�CC 00
G
.j /

0

.m�/�1

for any rational number 0< � < C�1

G
.j /

0

, positive integer m such that m� 2 Z and m� >maxfCG
.j /

0
;m0g

and closed point s 2 S .

Since there exist only finitely many possibilities of G
.j/
i , we see by the inequalities (6-5) and (6-8) that

there exist positive real numbers �0
0

and c such that

Sm;�HsCf
�

s O.1/.Gs/�
1
2
Tf �s O.1/.Gs/C c�C c.m�/�1

for any rational number 0< � < �0
0
, closed point s 2 S , irreducible component Gs of a fiber of fs ıgs

and m 2 Z>0 such that m� > �0�1
0

and m� 2 Z. Thus, we obtain the assertion (ii) by taking m� 2 Z for
any rational number 0< � < �0

0
such that m�� > �

0�1
0

and m�� 2 Z.

Finally, we show that Claim 2 implies Proposition 6.3. Take an arbitrary constant 0 < ı0 < u. Let c

and �0
0

be as in Claim 2 and take m� 2 Z>0 for any rational number 0 < � < �0
0

as (ii). Let Dm be an
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m-basis type divisor of �HsCf
�

s O.1/ for any m 2 Z>0 such that m�jm and � be a Q-divisor such that
gs�� D Ds and

KYs
C� D g�s .KXs

CDs/

for any closed point s 2 S . Now, we have

A.Xs ;Ds/.Gs/�
1
2
uTf �s O.1/.Gs/

by [Hattori 2022, Theorem D] for any irreducible component Gs of any fiber Fs of fs ıgs . We note that
there exists a positive integer r such that r.KX=S CD/ is Cartier. Then we see that for any geometric
point xs 2 S , .Xxs;Dxs/ is .1=r/-lc. Let

�000 WDmin
�
�00;

ı0

8c.u� ı0/

�
and ı00 WDmin

�
ı0

4
;
1

r

�
:

For any 0<�<�00
0

and m2Z>0 such that m�jm and m�>�00�1
0

, we claim that .Ys; �C.u�ı0/.g
�
s Dm/vert/

is log smooth and ı0
0
-sublc. Indeed, this follows from the conditions of the diagram (6-2), [Kollár and

Mori 1998, Corollary 2.31] and

AYs
.Gs/� ordGs

.�C .u� ı0/.g
�
s Dm/vert/�AYs

.Gs/� ordGs
.�/� .u� ı0/Sm;�HsCf

�
s O.1/.Gs/

�A.Xs ;Ds/.Gs/� .u� ı0/.
Tf �s O.1/.Gs/

2
C c�C c.m�/�1/

�
1
2
ı0Tf �s O.1/.Gs/� .u� ı0/.c�C c.m�/�1/ > 1

4
ı0:

Let ‚D .� C .g�s Dm/vert/red. Since .1� ı0
0
/‚ � � C .u� ı0/.g

�
s Dm/vert and .Ys; ‚/ is a log smooth

pair, we further have as the argument of [Boucksom et al. 2017, Step 2 in Proof of 9.14] that

AYs
.E/� ordE.�C .u� ı0/.g

�
s Dm/vert/� ı

0
0 AYs

.E/

for any prime divisor E over Xs . On the other hand, Claim 2(i) and Skoda’s theorem [loc. cit., Step 1] show
that

c�AYs
.E/� ordE..g

�
s Dm/hor/:

Let �0 WDminfı0
0
=..u� ı0/c/; �

00
0
g. Then we have for any prime divisor E over Xs and 0< � < �0,

A.Xs ;DsC.u�ı0/Dm/.E/DAYs
.E/� ordE.�C .u� ı0/..g

�
s Dm/vertC .g

�
s Dm/hor//

� .ı00� .u� ı0/c�/AYs
.E/ > 0:

In other words, we conclude that .Xs;DsC .u�ı0/Dm/ is klt for any closed point s 2S , rational number
� 2 .0; �0/, m 2 Z such that m�jm and m > .��00

0
/�1, and m-basis type divisor Dm of �Hs C f

�
s O.1/.

Thus, we obtain that

ı.Xs ;Ds/.�HsCf
�

s O.1//D lim
l!1

ılm�;.Xs ;Ds/.�HsCf
�

s O.1//� u� ı0

for any � 2Q\ .0; �0/ and closed point s 2 S .

Now, we are ready to show Theorem 1.6 for the case when u< 0.
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Theorem 6.4 Let � W .X ;D/! S be a log Q-Gorenstein family and f W X ! P a contraction over S ,
where P is a scheme that is projective and smooth over S . Let H be a �-ample Q-divisor on X and
L a Cartier divisor on P . Suppose that there exists an m 2 Z>0 such that .Pxs;Lxs/ D .P1;O.m// for
any geometric point xs 2 S . Assume that �.KX=S CD/ �Q;S .u=m/f �L for some u 2Q>0, and that
fs W .Xs;Ds;Hs/! .P1;O.1// is uniformly adiabatically K-stable for any closed point s 2 S .

Then there exists a positive rational number �0 such that .Xs;Ds; �HsC f
�

s O.1// is specially K-stable
for any closed point s 2 S and rational number � 2 .0; �0/. Furthermore , there exists a positive rational
number ˛ such that

M NA
Ds
.Y;M/� ˛.J �HsCf

�
s O.1//NA.Y;M/

for any rational number � 2 .0; �0/, closed point s 2 S , and normal semiample test configuration .Y;M/

for .Xs; �HsCf
�

s O.1//.

Proof As the argument in the second paragraph of the proof of Proposition 6.3, we may freely shrink or
replacing S by S 0 with an étale morphism S 0! S . Thus, by the argument as in the first paragraph of the
proof of Theorem 4.2, we may assume that P D P1

S
, LDO.1/ and mD 1.

By Theorem 4.2 and [Hattori 2022, Theorem 4.4], there exists a positive rational number ı0 such that

ı.P1;Bs/
.O.1//D lim

�!0
ı.Xs ;Ds/.�HsCf

�
s O.1//� uC ı0

for any closed point s 2 S , where Bs is the discriminant divisor of fs W .Xs;Ds/! P1. From now on, we
set L�;s WD �HsC f

�
s O.1/ and ı.�; s/ WD ı.Xs ;Ds/.L�;s/ for any closed point s 2 S . By Proposition 6.3,

there exists a positive rational number �0, which is independent of s 2 S , such that

ı.�; s/� uC 1
2
ı0

for any � 2 .0; �0/. Then this �0 satisfies the assertion of Theorem 6.4. Indeed, for any normal semiample
test configuration .Y;M/ for .Xs;L�;s/, we have

M NA
Ds
.Y;M/� .J KXsCDsCı.�;s/L�;s /NA.Y;M/

by Theorem 2.30. We also have

KXs
CDsC

�
uC 1

2
ı0
�
L�;s �Q

1
2
ı0L�;sCu�Hs:

By the ampleness of Hs and the argument in the proof of [Hattori 2022, Lemma 4.5], we see that
.Xs;L�;s/ is JHs -semistable. Thus, we obtain

.J KXsCDsCı.�;s/L�;s /NA.Y;M/� 1
2
ı0.J L�;s /NA.Y;M/

for any rational number � 2 .0; �0/.

Proof of Theorem 1.6 We first treat the case when u¤ 0. By Lemma 3.1, Theorem 3.6 and Remark 3.7,
it is sufficient to discuss the assertion of Theorem 1.6 for GCar

d;n;md�1v;u;mdw
for some n and m instead
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of Gd;‚;v;u;w. In this situation, the assertion of Theorem 1.6 immediately follows from Theorem 4.2,
Proposition 6.1 and Theorems 6.2 and 6.4.

Next, we deal with the case when uD 0. As in the previous paragraph, it is enough to show the assertion
for GCar

d;‚;v;0;w
. There exist I 2 Z>0 and r 2 Z>0 in Corollary 3.8 and Remark 3.7 respectively, such

that for any element f W .X; �;A/ ! C 2 GCar
d;‚;v;0;w

and any line bundle H on C of degree one,
r.KX C�/ is Cartier and I.ACf �H / is very ample. In particular, .X; �/ is .1=r/-lc. Taking a small
Q-factorialization of X and applying the length of extremal rays, we see that KX C 3dI.ACf �H / is
the pushdown of a big divisor; see [Birkar 2019, Lemma 2.46]. Because we have

3dI.ACf �H /���Q 3dI.ACf �H /CKX ;

we see that 3dI.ACf �H /�� is the pushdown of a big divisor. We also have

vol.3dI.ACf �H //� .3dI/d .wC dv/:

Thus, we may apply [Birkar 2021b, Theorem 1.8] to .X; �/ and 3dI.AC f �H /, and we obtain ı0 > 0,
depending only on d , ‚, v and w, such that

˛.X ;�/.ACf
�H /� ı0:

Here, we use the fact that ˛.X ;�/.3dI.AC f �H // D .3dI/�1˛.X ;�/.AC f
�H /. By the inequality

(6-1) in the proof of Theorem 6.2, we obtain

ı.X ;�/.�ACf
�H /�

d C 1

d
ı0 for any 0< � < 1:

By Theorem 2.30 and the fact that KX C� �Q 0, for any element f W .X; �;A/! C 2 GCar
d;‚;v;0;w

,
.X; �; �ACf �H / is specially K-stable and

M NA
� .X ;M/�

d C 1

d
ı0.J �ACf

�H /NA.X ;M/

for any normal semiample test configuration .X ;M/ for .X; �AC f �H /, degree-one line bundle H

on C , and rational number � 2 .0; 1/.

Proof of Corollary 1.7 By Theorem 1.5(2), there exists a positive integer w0, depending only on d ,
v and u, such that for any f W .X; �;A/! C as assumption and the general fiber F of f , AC t 0

A
F

is ample and vol.AC t 0
A

F / � w0 for some integer t 0
A

. For some positive rational number t 00
A

, we have
vol.AC .t 0

A
C t 00

A
/F /D w0. We set

tA WD t 0AC t 00A 2Q>0:

Note that ACt 0
A

F is a Q-Cartier Weil divisor. Then Theorem 1.6 shows that there exists �0> 0, depending
only on d , v and u, such that .X; �; .�=.1C�t 00

A
//.AC t 0

A
F /CF / is specially K-stable for any 0<�� �0

and any f . Then so is .X; �;AC .tAC ��1/F /. Here, we use the fact that
�

1C �t 00
A

.AC t 0AF /CF D
�

1C �t 00
A

.AC .tAC �
�1/F /:
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Since
w WD vol.AC .tAC ��1

0 /F /D w0C d��1
0 v

is independent of f , it follows that .X; �;AC tF / is specially K-stable if vol.AC tF /� w.

As noted in the proof of [Hattori 2022, Theorem 4.6], the last assertion follows from the special K-stability
and [Chen 2021, Theorem 1.1; Zhang 2024, Corollary 5.2; Chen and Cheng 2021, Theorem 1.3].

Finally, we remark that Corollary 1.7 states that Md;v;u;r has a family whose geometric fibers are specially
K-stable in the following sense.

Remark 6.5 As in [Deligne and Mumford 1969, Section 5], we can construct the universal family
.U ;AU / over Md;v;u;w;r as follows. In the proof of Theorem 5.1, Md;v;u;w;r is the disjoint union of
finitely many Md1;d2;d3;h. Thus, we can construct a (Deligne–Mumford) stack

U WD
G

d1;d2;d3;h

ŒUNd1;d2;d3;h
=PGL.d1/�PGL.d2/�PGL.d3/�;

where UNd1;d2;d3;h
is the universal family of Nd1;d2;d3;h. Let zANd1;d2;d3;h

be the line bundle on UNd1;d2;d3;h

as in the proof of Claim 1. Note that zANd1;d2;d3;h
is ample over Nd1;d2;d3;h. By construction, we see that

zANd1;d2;d3;h
is PGL.d1/�PGL.d2/�PGL.d3/-equivariant. By Example 2.13, we can construct AU as

the line bundle on U whose restriction to ŒUNd1;d2;d3;h
=PGL.d1/� PGL.d2/� PGL.d3/� corresponds to

zANd1;d2;d3;h
.

In the proof of Theorem 1.3, we have proved that Md;v;u;r is an open and closed substack of Md;v;u;w0Cdv;r

for some w0 > 0. Using this fact, we obtain a family

.U 0;AU 0/ WD .U �Md;v;u;w0Cdv;r
Md;v;u;r ;AU jU 0/

over Md;v;u;r . If we take w0 larger than w in Corollary 1.7, then all geometric fibers of .U 0;AU 0/ over
Md;v;u;r are specially K-stable.
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