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On boundedness and moduli spaces of
K-stable Calabi–Yau fibrations over curves
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We show boundedness of polarized Calabi–Yau fibrations over curves only with fixed volumes of general
fibers and Iitaka volumes. As its application, we construct a separated coarse moduli space of K-stable
Calabi–Yau fibrations over curves in an adiabatic sense (Hattori 2022) and show that all members
(resp. smooth members) of the moduli are simultaneously uniformly K-stable (resp. have cscK metrics)
for a certain choice of polarizations.

14J10; 14J17, 14J27, 14J40

1 Introduction

1.1 Moduli problem

Classification of higher-dimensional algebraic varieties by their geometries is one of the most important
problems in algebraic geometry. Moduli spaces, that are parameter spaces of specific classes of varieties,
are effective tools to classify varieties.

The moduli spaces of stable curves were constructed by Deligne and Mumford [1969] as Deligne–Mumford
stacks, and they are compactifications of the moduli spaces of smooth curves of general type of fixed
genus; see also Mumford, Fogarty and Kirwan [Mumford et al. 1994]. After [Deligne and Mumford 1969],
the moduli spaces of stable curves and the moduli spaces of canonically polarized surfaces with only
canonical singularities have been constructed by Mumford [1977] and Gieseker [1977], respectively. For
the construction, Mumford’s geometric invariant theory (GIT, for short, see [Mumford et al. 1994]) was
used, and the GIT-stability of those varieties was studied to apply the GIT. However, it is very difficult to
detect the GIT-stability — more precisely, the asymptotic Chow stability, see [Mumford 1977] — of other
kinds of polarized varieties. As an other strategy, Kollár and Shepherd-Barron [1988] (see also [Kollár
1990] and [Alexeev 1996b]) used the minimal model theory to construct the moduli spaces of stable
surfaces. By their works and [Alexeev 1996a], semi-log-canonical models turned out to be a suitable
higher-dimensional analog of stable curves to construct the moduli space. Their moduli spaces, called
KSBA-moduli, have been completed as a full generalization of the moduli of stable curves. For details,
see [Kollár 2023]. The recent developments of the minimal model theory [Birkar et al. 2010; Hacon
and Xu 2013; Hacon et al. 2018] are indispensable for the theory of KSBA-moduli. The construction in
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1620 Kenta Hashizume and Masafumi Hattori

[Gieseker 1977] using GIT does not work for the KSBA-moduli because there is a klt variety with the
ample canonical divisor that is asymptotically Chow unstable; see [Odaka 2012] for example.

We need a polarization when we discuss moduli theory of varieties whose canonical divisor is neither
ample nor antiample. See [Seiler 1987] and [Viehweg 1995] for the study of the moduli theory of good
minimal models with polarizations. In general, the moduli theory for noncanonically polarized varieties
is much more complicated. For example, we cannot directly apply the theories as above to construct
separated moduli of all polarized rational elliptic surfaces. The GIT-stability of rational Weierstrass
fibrations [Miranda 1981] and Halphen pencils [Miranda 1980; Zanardini 2023; Hattori and Zanardini
2022] was investigated to consider the moduli of rational elliptic surfaces from the viewpoint of GIT.
Seiler [1987] constructed the moduli space of some polarized elliptic surfaces by applying the GIT. He
treated not only elliptic surfaces with nef canonical divisors but also rational elliptic surfaces whose fibers
are reduced or of mIn-type. However, Seiler did not study the Chow stability of all polarized rational
elliptic surfaces. By [Hattori 2022, Corollary 5.7], the moduli constructed by Seiler does not contain a
polarized smooth rational elliptic surface .X;L/ of index two with a unique constant scalar curvature
Kähler (cscK, for short) metric. This .X;L/ is asymptotically Chow stable; see [Donaldson 2001]. Thus,
we naturally expect the existence of a moduli space parametrizing more polarized rational elliptic surfaces.

1.2 K-stability and K-moduli

K-stability was introduced by Tian [1997] and Donaldson [2002] in the context of the Kähler geometry to
detect the existence of cscK metrics, and the notion is closely related to the GIT. Odaka [2012] found a
relationship between the K-stability and the minimal model theory, and he proved that semi-log-canonical
models are K-stable. This implies that the KSBA-moduli is a kind of moduli of K-polystable varieties. A
moduli space parametrizing all K-polystable varieties is called a K-moduli. Odaka [2010, Conjecture 5.2]
proposed the following conjecture.

Conjecture 1.1 (K-moduli conjecture) There exists a quasiprojective moduli scheme parametrizing
all polarized K-polystable varieties with fixed some numerical data (eg genera of curves , or volumes of
polarizations).

This conjecture was motivated by the work of Fujiki and Schumacher [1990] on the construction and a
partial projectivity of moduli spaces of some projective manifolds with unique cscK metrics.

On the other hand, Dervan and Naumann [2018] constructed the moduli spaces of projective manifolds
admitting cscK metrics and nondiscrete automorphism groups. As the Yau–Tian–Donaldson conjecture
predicts that the K-polystability is equivalent to the existence of cscK metrics, the K-moduli can be
thought of as an algebrogeometric generalization of the moduli in [Fujiki and Schumacher 1990] and
[Dervan and Naumann 2018].
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On boundedness and moduli spaces of K-stable Calabi–Yau fibrations over curves 1621

For the K-stability of log Fano pairs, algebraic geometers and differential geometers have made remarkable
progress and they have constructed the projective moduli space of all K-polystable log Fano pairs; see Li,
Wang and Xu [Li et al. 2019], Alper, Blum, Halpern-Leistner and Xu [Alper et al. 2020], Xu and
Zhuang [2020] and Liu, Xu and Zhuang [Liu et al. 2022]. Moreover, quasiprojective moduli schemes of
polarized K-polystable Calabi–Yau varieties have already been constructed in several cases [Odaka 2021].
Thus, it seems that we can make use of the K-stability to construct moduli spaces of polarized varieties.
The following problems are keys to constructing the desired moduli spaces as Deligne–Mumford stacks.

(I) Boundedness Are polarized K-stable varieties parametrized by a scheme of finite type over C?

(II) Openness Do polarized K-stable varieties form an open subset of the Hilbert scheme?

(III) Separatedness Let C be a smooth curve, 0 2 C and .X ı;Lı/! C ı be a family of polarized
K-stable varieties over C ı D C n f0g. Let .X ;L/! C and .X 0;L0/! C be two extensions of this
family over C . If .X0;L0/ and .X 0

0
;L0

0
/ are K-stable, does it hold that .X ;L/Š .X 0;L0/?

In the case of (uniformly) K-stable Q-Fano varieties, these problems had been settled. More precisely, (I)
was solved by Jiang [2020] (see also [Xu and Zhuang 2021]), (II) was solved by Blum and Liu [2022], and
(III) was solved by Blumand Xu [2019]. Their proofs are based on the work of Blum and Jonsson [2020],
which shows that the ı-invariant introduced by Fujita and Odaka [2018] completely detects uniform
K-stability of log Fano pairs. However, there are few criteria of the K-stability for other kinds of polarized
varieties, and we do not know whether (I)–(III) hold or not.

1.3 Adiabatic K-stability and moduli

Adiabatic K-stability was introduced by the second author [Hattori 2024b] and it was inspired by the
works of Fine [2004; 2007] and Dervan and Sektnan [2021b; 2021a] on the existence problem of cscK
metrics of fibrations. Frankly speaking, uniform adiabatic K-stability [Hattori 2022, Definition 2.6] is
designed to be “uniform” K-stability of fiber spaces when their polarizations are very close to ample line
bundles on the base spaces. Such K-stability and cscK metrics on fiber spaces when their polarizations
are very close to ample line bundles on the base are studied in [Fine 2004; 2007] and [Dervan and
Sektnan 2021b; 2021a]. On the other hand, Dervan and Ross [2019] point out that there is a relationship
between adiabatic K-stability and “K-stability” of the base. More precisely, they show that adiabatic
K-semistability implies twisted K-semistability of the base. Recently, by replacing log twisted K-stability
with twisted K-stability, the second author [Hattori 2022] showed for klt–trivial fibrations over curves that
uniform adiabatic K-stability are equivalent to log-twisted K-stability of the base. Moreover, he showed
the existence of cscK metrics corresponding to the uniform adiabatic K-stability for klt–trivial fibrations
over curves. Using this criterion, the uniform adiabatic K-stability of elliptic surfaces is closely related to
the GIT-stability of rational Weierstrass fibrations and Halphen pencils; see [Hattori 2022, Section 5] and
[Hattori and Zanardini 2022, Remark 4.3]. Moreover, elliptic surfaces treated by Seiler are uniformly
adiabatically K-stable, and the result in [Hattori 2022] (cf Definition 2.23) gave a useful characterization
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of the uniform adiabatic K-stability for klt-trivial fibrations over curves. Quite recently, (III) was also
proved by the second author [Hattori 2024a] over C, thus we may expect a variant of Conjecture 1.1 for
the uniform adiabatic K-stability in an appropriate formulation.

The main purpose of this paper is to prove the following result.

Theorem 1.2 There exists a moduli space parametrizing uniformly adiabatically K-stable klt-trivial
fibrations over curves as a separated algebraic space of finite type.

To state the result more precisely, we prepare some notation. Let d be a positive integer, v a positive
rational number, and u a rational number. We set Zd;v;u to be8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
f W .X; �D 0;A/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f is a uniformly adiabatically K-stable polarized klt-trivial fibration
over a curve C ,

(ii) dim X D d ,

(iii) KX � uf �H for some line bundle H on C such that deg H D 1,

(iv) A is an f -ample line bundle on X such that .H �Ad�1/D v.

9>>>>>>>=>>>>>>>;
When u¤ 0, the boundedness result by Birkar [2023] implies the effectivity of the klt-trivial fibrations;
see Lemma 3.1. More precisely, there exists a positive integer r , depending only on d , u and v, such
that for any element f W .X; 0;A/! C of Zd;v;u, erKX is a basepoint-free Cartier divisor and the linear
system jerKX j defines f , where e WD u=juj. We can write the precise statement of Theorem 1.2 with
this notation.

Theorem 1.3 We fix d 2 Z>0, u 2Q<0, v 2Q>0 and r 2 Z>0 as above. For any locally Noetherian
scheme S over C, we define Md;v;u;r .S/ to be a groupoid whose objects are8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

.X ;A / f
//

�X
��

C

��

S

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) �X is a flat projective morphism and X is a scheme,

(ii) A 2 PicX=S .S/ (see Section 2.2) such that Axs is fxs-ample for any
geometric point xs 2 S ,

(iii) !
Œr �

X=S (see Definition 2.21) exists as a line bundle,

(iv) �X�!
Œ�lr �

X=S is locally free and it generates H 0.Xs;OXs
.�lrKXs

//

for any point s 2 S and any l 2 Z>0,

(v) f is the ample model of !Œ�r �

X=S over S and .Xxs; 0;Axs/!Cxs 2Zd;v;u

for any geometric point xs 2 S .

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
Here , we define an isomorphism ˛ W .f W .X ;A /! C/! .f 0 W .X 0;A 0/! C0/ of any two objects of
Md;v;u;r .S/ to be an S-isomorphism ˛ W X ! X 0 such that there exists B 2 PicC=S .S/ satisfying that
˛�A 0 D A ˝f �B as elements of PicX=S .S/.

Then Md;v;u;r is a separated Deligne–Mumford stack of finite type over C with a coarse moduli space.
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We emphasize that Axs are not assumed to be ample or the volumes of Axs in Md;v;u;r .S/ are not bounded
from above. Theorem 1.3 is the combination of the conditions (I)–(III) for the uniform adiabatic K-stability
([Hattori 2022, Theorem B], Corollary 3.8, Theorem 4.2, and Theorem 4.6) and Theorems 1.4 and 1.5
below, which are also key ingredients.

The first ingredient (Theorem 1.4 below) is the existence of a separated coarse moduli space that
parametrizes f W .X; 0;A/! C 2 Zd;v;u such that f is uniformly adiabatically K-stable and A is an
ample line bundle whose volume is bounded from above. We set

Zd;v;u;w WD ff W .X; 0;A/! C 2 Zd;v;u jA is (globally) ample and vol.A/� wg

for any positive rational number w. Then the following holds.

Theorem 1.4 (see Theorem 5.1) We fix d 2 Z>0, u 2 Q¤0 with e WD u=juj, v 2 Q>0, w 2 Q>0

and r 2 Z>0 as above. For any locally Noetherian scheme S over C, we define Md;v;u;w;r .S/ to be a
groupoid whose objects are8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

.X ;A / f
//

�X
��

C

��

S

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

(i) �X is a flat projective morphism and X is a scheme,

(ii) A 2 PicX=S .S/ such that Axs is ample for any geometric point xs 2 S ,

(iii) !
Œr �

X=S exists as a line bundle,

(iv) �X�!
Œler �

X=S is locally free and it generates H 0.Xs;OXs
.lerKXs

// for any
point s 2 S and any l 2 Z>0,

(v) f is the ample model of !Œer �

X=S over S and .Xxs; 0;Axs/! Cxs 2 Zd;v;u;w

for any geometric point xs 2 S .

9>>>>>>>>>>>>=>>>>>>>>>>>>;
Here , we define an isomorphism ˛ W .f W .X ;A /! C/! .f 0 W .X 0;A 0/! C0/ of any two objects of
Md;v;u;w;r .S/ to be an S -isomorphism ˛ W X ! X 0 such that ˛�A 0 D A as elements of PicX=S .S/.

Then Md;v;u;w;r is a separated Deligne–Mumford stack of finite type over C with a coarse moduli space.

When u> 0, Theorem 1.4 shows the existence of the moduli of the Iitaka fibrations from klt good minimal
models of Iitaka dimension one; see [Birkar 2022] for the related topic.

We note that the isomorphisms in Md;v;u;w;r are those in Md;v;u;r , but the converse is not necessarily
true. The choice of r in Lemma 3.1 is not unique and the stacks Md;v;u;r in Theorem 1.3 and Md;v;u;w;r

in Theorem 1.4 depend on the choice of r , however, their reduced structures are independent of r . For
details, see Remark 5.7.

The second ingredient (Theorem 1.5 below) is the boundedness of Md;v;u;r .Spec C/. In fact, we prove
the following much stronger assertion. Let d be a positive integer, ‚�Q a DCC set, v a positive rational
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1624 Kenta Hashizume and Masafumi Hattori

number, and u a rational number. We set

Dd;‚;v;u WD8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
f W .X; �;A/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f W .X; �/! C is a klt-trivial fibration over a curve C such that
KX C�� uf �H with a line bundle H of degree one,

(ii) dim X D d ,

(iii) the coefficients of � belong to ‚,

(iv) A is an f -ample Q-Cartier Weil divisor such that .H �Ad�1/D v.

9>>>>>>>=>>>>>>>;
,
�;

where � means relative linear equivalence of A over C . Let Œf W .X; �;A/! C � denote the equivalence
class. Consider also for any w > 0,

Gd;‚;v;u;w WD

�
f W .X; �;A/! C

ˇ̌̌̌
f satisfies the conditions (i)–(iv) such that A is (globally) ample
and vol.A/� w.

�

Theorem 1.5 (boundedness) Fix d 2 Z>0, a DCC set ‚�Q, v 2Q>0 and u 2Q. With notation as
above , the following hold.

(1) The set of klt pairs .X; �/ appearing in Dd;‚;v;u is log bounded.

(2) There exists w 2Q>0, depending only on d , ‚, v and u, such that the natural map

Gd;‚;v;u;w!Dd;‚;v;u

is surjective.

After the paper was completed, Birkar informed the authors that he and Hacon obtained Theorem 1.5(1)
independently. Theorem 1.5 not only shows the boundedness of Zd;v;u but also asserts that Md;v;u;r is of
finite type in Theorem 1.3. For the other statement of the boundedness, see Proposition 6.1.

We also study special K-stability, which was introduced by the second author [Hattori 2024a]. This is a
stronger condition than uniform K-stability. By [Hattori 2024a], there exists an explicit criterion of the
special K-stability without using test configurations, and the CM minimization conjecture, a numerical
and stronger assertion than (III), holds for the spacial K-stability. We note that a uniformly adiabatically
K-stable klt-trivial fibration over a curve is specially K-stable for a certain polarization [Hattori 2024a,
Theorem 3.12]. We show that all members of Gd;‚;v;u;w are simultaneously specially K-stable for a
certain choice of polarizations as follows.

Theorem 1.6 (uniformity of adiabatic K-stability) Let d 2 Z>0, ‚�Q, u 2Q and v 2Q>0 be as in
Theorem 1.5 and w be a positive rational number. Then , there exists an �0 2Q>0, depending only on d ,
‚, u, w and v, such that .X; �; �ACf �H / is specially K-stable for any rational number � 2 .0; �0/, line
bundle H on C of deg H D 1, and f W .X; �;A/! C 2Gd;‚;v;u;w.

Geometry & Topology, Volume 29 (2025)



On boundedness and moduli spaces of K-stable Calabi–Yau fibrations over curves 1625

Furthermore , there exists ˛ > 0 such that

M NA
� .X ;M/� ˛.J �ACf �H /NA.X ;M/

for any f W .X; �;A/! C 2 Gd;‚;v;u;w with a line bundle H on C of deg H D 1, normal semiample
test configuration .X ;M/ for .X; �ACf �H /, and rational number � 2 .0; �0/.

It is known by [Zhang 2024] that every specially K-stable smooth polarized manifold .X;L/ has a cscK
metric in the first Chern class c1.L/. By Theorems 1.5 and 1.6, we have the following corollary on the
“uniform” existence of cscK metrics.

Corollary 1.7 Let d 2Z>0,‚�Q, u2Q and v 2Q>0 be as in Theorem 1.5. Then there exists a w> 0,
depending only on d , ‚, u and v, satisfying the following: For any representative f W .X; �;A/! C

of any element of Dd;‚;v;u with a general fiber F of f , if vol.AC tF / � w for some t 2 Q then
.X; �;AC tF / is specially K-stable.

Furthermore , if X is smooth and �D 0, then X has a cscK metric ! in c1.AC tF /.

Furthermore, Corollary 1.7 states that there is a “universal” family U 0 over Md;v;u;r in Theorem 1.3 with
a polarization AU 0 whose geometric fibers are specially K-stable varieties. Here, the word “universal”
comes from the construction; see Remark 6.5.

1.4 Structure of this paper and overview of proof

The contents of this paper are as follows.

In Section 2, we collect notation and definitions in birational geometry, Hilbert schemes and stacks. To
discuss the Q-Gorensteinness of families, we explain the universal hull of coherent sheaves introduced
by Kollár [2023]. We also collect basic facts of K-stability and some results on J-stability and uniform
adiabatic K-stability [Hattori 2022], and we introduce a characterization of the uniform adiabatic K-
stability of klt-trivial fibrations over curves (Definition 2.23). We make use of this characterization to
construct our moduli spaces.

In Section 3, we prove Theorem 1.5. The idea is as follows: With notation in Theorem 1.5, we first give
an upper bound n of the Cartier indices of the log canonical divisors (see Lemma 3.1) and we reduce
Theorem 1.5 to the case where ‚D .1=n/Z\ Œ0; 1�. We also know that .X; �/ are .1=n/-lc. By using
the boundedness of singularities, we next find a lower bound of the ˛-invariants of AjF with respect to
.F; �jF / for the general fibers F of f (Lemma 3.2). Since .F; �jF / are .1=n/-lc pairs polarized by AjF ,
the existence of the lower bound is a consequence of Birkar’s result [2021b]. By using this lower bound
and the semipositivity theorem by Fujino [2018, Theorem 1.11], we find an m 2 Z such that ACmF is
ample and vol.ACmF / is universally bounded from above (Proposition 3.4, which is a special case of
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1626 Kenta Hashizume and Masafumi Hattori

Theorem 1.5(2)). Here m can be negative. From this result and [Birkar 2023], we obtain Theorem 1.5.
The boundedness problem (I) will be solved in this section. For the construction of our moduli, we also
prove a result on the finiteness of the Hilbert polynomials (Corollary 3.8).

In Section 4, we prove two important properties, ie the openness (Theorem 4.2) and the separatedness
(Theorem 4.6) of uniformly adiabatically K-stable klt-trivial fibrations over curves. The openness is a
direct consequence of the lower semicontinuity of the ı-invariants of the log twisted bases, which will be
proved in Theorem 4.2. Note that we cannot apply [Blum and Liu 2022] since the case of families of
polarized log pairs was studied in their paper. The separatedness has already been known by the second
author [Hattori 2024a] when the varieties are over C. In Theorem 4.6, we will give an alternative proof
of the separatedness, which is an enhancement of [Hattori 2024a, Corollary 3.22] and works for any
algebraically closed field of characteristic zero. These two results directly imply (II) and (III), respectively.
Thus, we can obtain all the key conditions (I)–(III) for the uniform adiabatic K-stability in Sections 3
and 4. We also discuss the invariance of (anti)plurigenera used in the construction of our moduli spaces;
see Theorem 4.8.

In Section 5, we prove Theorem 1.4; in other words, we construct the moduli space by using tools proved
in Sections 3 and 4. We also show Theorem 1.3 by applying Proposition 3.4.

In Section 6, we prove Theorem 1.6 and Corollary 1.7. For this, we first show that there exist finitely many
log Q-Gorenstein families parametrizing polarized klt-trivial fibrations over curves (Proposition 6.1).
Compared to Section 5, we deal with klt-trivial fibrations whose boundary divisors are not necessarily
zero. However, these log Q-Gorenstein families can be constructed by a similar argument to the proof of
Theorem 1.4. In the case of nef log canonical divisors, Theorem 1.6 follows from a simple observation of
J-stability in [Hattori 2021] (Theorem 6.2). For other case, we prove that the uniform “convergence of
the ı-invariant” (cf [Hattori 2022, Theorem D]) holds for members of a family of klt-trivial fibrations
(Proposition 6.3). Theorem 1.6 follows from these results, and Corollary 1.7 follows from Theorems 1.5
and 1.6.
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2 Preliminaries

Throughout this paper, we work over an algebraically closed field k of characteristic zero unless otherwise
stated.
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Notation and conventions

We collect notation and conventions used in this paper.

(1) A scheme means a locally Noetherian scheme over k. For a scheme X, we denote the induced
reduced scheme by Xred. A variety means an integral separated scheme of finite type over k. A curve
means a smooth variety of dimension one.

A geometric point of X is a morphism Spec�!X, where � is an algebraically closed field. For a point
x 2 X, xx denotes the geometric point of X which maps the unique point of Spec� to x. We simply
denote it by xx 2X.

(2) For any scheme S and positive integer d , we denote Pd
k �Spec k S by Pd

S
. We simply write Pd if

there is no risk of confusion, for example if S D Spec k or S is a geometric point of a scheme. Let
p WPd

S
!Pd

k be the projection. For any m2Z, we often denote p�OPd
k
.m/ by O.m/, and we sometimes

think O.m/ of a Cartier divisor on Pd
S

if there is no risk of confusion.

(3) A morphism f WX ! Y of schemes is called a contraction if f is projective and f�OX ŠOY . For
a morphism f WX ! Y of schemes and a (geometric) point y 2 Y , the fiber of f over y is denoted by
Xy . For a Q-divisor D on X, we denote the restriction of D to f �1.y/ by Dy when it is well-defined;
for example, when D is Q-Cartier at every codimension-one point of f �1.y/ and Supp D 6� f �1.y/.
We note that Dy does not coincide with the scheme-theoretic fiber in general.

(4) Let X be a smooth variety, D an snc divisor on X, and f W X ! Z a morphism to a scheme Z.
We say that .X;D/ is log smooth over Z or f W .X;D/!Z is log smooth if f is a smooth surjective
morphism and for any stratum T of .X;D/, the restriction f jT W T ! Z is also a smooth surjective
morphism.

(5) We say that a subset of R satisfies the descending chain condition (DCC, for short) if the subset does
not contain any strictly decreasing infinite sequence. We say that a subset of R satisfies the ascending
chain condition (ACC, for short) if the subset does not contain any strictly increasing infinite sequence. A
subset of R is called a DCC set (resp. an ACC set) if the subset satisfies the DCC (resp. ACC).

(6) Let a be a real number. Then we define dae to be the unique integer satisfying dae�1< a� dae. Let
X be a normal variety and let D be an R-divisor on X. Let D D

P
i diDi be the prime decomposition.

Then we define dDe WD
P

iddieDi . We say that D is a Weil divisor if every coefficients of D is an integer,
in other words, D D dDe holds. We define the reduced divisor Dred of D to be

P
i Di .

(7) Let X be a normal variety. For a line bundle (resp. Q-line bundle, R-line bundle) L on X, we often
think L of a Cartier (resp. Q-Cartier, R-Cartier) divisor on X. When L is a line bundle on X, we often
denote L˝m˝OX .D/ by OX .mLCD/ for every Weil divisor D on X.

(8) Let f WX ! Y be a morphism of schemes. Let L1 and L2 be line bundles on X. We say that L1

and L2 are linearly equivalent over Y , denoted by L1 �Y L2, if there is a line bundle L on Y such that
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L1ŠL2˝f
�L. When Y is a point, we simply say that L1 and L2 are linearly equivalent and we write

L1 �L2.

Suppose that X is a normal variety. Let D1 and D2 be Q-Cartier Q-divisors on X. We say that D1

and D2 are Q-linearly equivalent over Y , denoted by D1 �Q;Y D2, if there exists a positive integer m

such that both mD1 and mD2 are Cartier and OX .mD1/�Y OX .mD2/. This definition is not standard.
However, the definition coincides with the usual definition of the relative Q-linear equivalence when Y

is a variety (eg f is a contraction). When Y is a point, we simply say that D1 and D2 are Q-linearly
equivalent and we write D1 �Q D2.

(9) Let X be a projective scheme over k, let A be a Cartier divisor of X, and let �jAj be a rational map
X Ü Ph0.X ;OX .A//�1 defined by the linear system jAj. If A is semiample, �jmAj induces a contraction
for every sufficiently large and divisible m> 0, and this is a kind of ample model defined in [Birkar et al.
2010, Lemma 3.6.5(3)]. Similarly, for a projective morphism � W X ! S of schemes and a �-semiample
line bundle A on X , we call a morphism f W X ! ProjS

�L
l�0 ��A

˝l
�

the ample model of A over S .

(10) Let f1 WX1! Y1 and f2 WX2! Y2 be morphisms of schemes over a scheme S . Then the induced
morphism X1�S X2! Y1�S Y2 from f1 and f2 is denoted by f1�S f2. When S D Spec k, we simply
write f1 �f2 WX1 �X2! Y1 �Y2.

(11) For any morphisms f W X ! S and h W T ! S , we denote X �S T by XT and the base change
XT ! T by fT . For any coherent sheaf A on X , we denote .h�S idX /

�A by AT . For an f -ample line
bundle H on X and a polynomial p, if �.As.tHs//D p.t/ for every t 2 Z, then we say that As has the
Hilbert polynomial p with respect to H .

(12) Let f W Y ! C be a contraction from a normal variety to a curve and D a Q-divisor on Y . Then
we can decompose D into DvertCDhor, where the support of Dhor is flat over C and the support of Dvert

has zero-dimensional image in C .

Definition 2.1 Let S be a Noetherian scheme and let S1; : : : ;Sl be locally closed subschemes of S

that are disjoint in each other and
Fl

1D1 Si D S set-theoretically. Then we call the natural inclusionFl
1D1 Si ! S a locally closed decomposition. A subset F � S is called a constructible subset if F is a

finite union of locally closed subsets.

Lemma 2.2 Let S be a scheme of finite type over k. Suppose that F � S is a constructible subset. Then
F is closed if and only if the following holds.

� For any morphism ' W C ! S from an affine curve C , if '�1.F / is dense , then '.C /� F .

Proof The assertion is local and we may assume that S is affine. Suppose that the condition holds. Let F

be the Zariski closure and assume that there exists a point s 2F nF . Take an irreducible component Z of
F containing s. It is easy to see that F contains a nonempty open subset of Z; cf [Matsumura 1980, 6.C].
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On the other hand, since fsg\F is not dense in fsg, there is a closed point s0 2 fsg nF . By [Mumford
2008, Section 6, Lemma], there exists a morphism ' W C !Z from an affine curve such that '�1.F / is
dense and s0 2 '.C /. Thus, s0 2 F by the condition and this is a contradiction.

2.1 Birational geometry

In this subsection, we collect definitions concerned with singularities of pairs, klt-trivial fibration, and
boundedness.

Definition 2.3 (singularities of pairs) A subpair .X; �/ consists of a proper normal variety X and a
Q-divisor � on X such that KX C� is Q-Cartier. A subpair is called a pair if the coefficients of �
are positive. Let F be a prime divisor over X and take � W Y ! X a proper birational morphism from
a normal variety such that F appears as a divisor on Y . Then we define the log discrepancy of F with
respect to .X; �/ by

A.X ;�/.F / WD 1C ordF .KY ��
�.KX C�//;

where ordF is the divisorial valuation associated to F with ordF .F /D 1. It is easy to see that A.X ;�/.F /

is independent of � . A (sub)pair .X; �/ is called (sub)klt (resp. (sub)lc, �-(sub)lc) if A.X ;�/.F / > 0

(resp. � 0, � �) for every prime divisor F over X. We say that a proper normal variety V is a klt variety
if .V; 0/ is a klt pair.

For an effective Q-Cartier Q-divisor M on a normal variety X, the log canonical threshold of M with
respect to a subpair .X; �/, denoted by lct.X; �IM /, is defined as follows: If there exists a t such that
.X;BC tM / is sublc, then

lct.X; �IM / WD supft 2Q j .X; �C tM / is sublcg;

and otherwise we set lct.X; �IM / WD �1.

Definition 2.4 (Iitaka volume) Let X be a normal projective variety and let D be a Q-Cartier divisor
on X such that the Iitaka dimension �.X;D/ is nonnegative. Then the Iitaka volume of D, denoted by
Ivol.D/, is defined by

Ivol.D/ WD lim sup
m!1

dim H 0.X;OX .bmDc//

m�.X ;D/=�.X;D/!
:

When D is big, the Iitaka volume of D coincides with the usual volume. By definition, we can easily
check that Ivol.rD/D r�.X ;D/ � Ivol.D/ for every r 2 Z>0.

Definition 2.5 (klt-trivial fibration) Let .X; �/ be a klt pair, and let f W X ! C be a contraction of
normal projective varieties. Then f W .X; �/! C is called a klt-trivial fibration if KX C��Q;C 0.

For a klt-trivial fibration f W .X; �/! C , we define the discriminant Q-divisor BC and the moduli
Q-divisor MC on C as follows: For every prime divisor P on C , let bP be the largest real number such
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that after shrinking C around the generic point � of P , the pair .X; �C bPf
�P / is lc. Note that bP is

well-defined since P is Cartier at �. Then we define the discriminant Q-divisor BC by

BC WD

X
P

.1� bP /P;

where P runs over prime divisors on C . Next, fix a Q-Cartier Q-divisor L on C such that KXC��Qf
�L.

Then the moduli Q-divisor MC is defined by

MC WDL� .KC CBC /:

Note that MC is only defined up to Q-linear equivalence class. We call

KX C��Q f �.KC CBC CMC /

the canonical bundle formula.

In general, we can define klt-trivial fibrations for subpairs and contractions, cf [Ambro 2004]. However,
for simplicity we always assume that .X; �/ in klt-trivial fibrations are klt pairs.

We make use of the following fundamental fact.

Theorem 2.6 [Ambro 2004, Theorem 0.1] If dim C D 1, then MC is a semiample Q-Cartier Q-divisor.

Definition 2.7 (discriminant Q-divisor with respect to contraction) By extending the notion of the
discriminant Q-divisors in Definition 2.5, for every sublc pair .X; �/ with a contraction f WX !Z of
normal varieties, we define the discriminant Q-divisor with respect to f W .X; �/!Z as follows: For
each prime divisor P on Z, we define

�P WD supf
 2R j .X; �C 
f �P / is sublc over the generic point of Pg:

We may assume that f �P is well-defined since we may shrink Z around the generic point of P . Define

B WD
X
P

.1��P /P;

where P runs over prime divisors on Z.

It is easy to see that this definition coincides with the discriminant Q-divisor in Definition 2.5 when
f W .X; �/!Z is a klt-trivial fibration.

Definition 2.8 (boundedness) We say a set Q of normal projective varieties is bounded if there exist
finitely many projective morphisms Vi ! Ti of varieties such that for each X 2Q there exist an index i ,
a closed point t 2 Ti , and an isomorphism � W .Vi/t !X.

A couple .X;S/ consists of a normal projective variety X and a reduced divisor S on X. We use the term
couple because KX CS is not assumed to be Q-Cartier. We say that a set P of couples is bounded if there
exist finitely many projective morphisms Vi! Ti of varieties and a reduced divisor C on each Vi such
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that for any .X;S/ 2P there exist an index i , a closed point t 2 Ti , and an isomorphism � W .Vi/t !X

such that ..Vi/t ;Ct / is a couple and Ct D �
�1
� S .

Finally, we say that a set R of projective pairs .X; �/ is log bounded if the set of the corresponding
couples .X;Supp�/ is bounded.

2.2 Hilbert schemes

Let f WX!S be a proper morphism of schemes and A an f -ample line bundle on X . Then HilbX=Sp;A

denotes the scheme representing the following functor Hilbp;A

X=S . For any morphism T ! S , we attain

Hilb
p;A

X=S .T / WD

�
Z � XT

ˇ̌̌̌ Z is a closed subscheme of XT flat over T whose fibers have
the same Hilbert polynomial p with respect to A .

�
We remark that HilbX=Sp;A exists as a locally projective scheme over S . Indeed, it is well-known that
if A is further f -very ample, then HilbX=Sp;A is projective over S entirely; cf [Fantechi et al. 2005,
Section 5]. Therefore, for any quasicompact open subset U � S , by taking m> 0 such that A ˝mjXU

is
fU -very ample, we see that

HilbXU =U p;A jXU D HilbXU =U q;A˝mjXU

exists as a projective scheme over S , where q.n/Dp.mn/ for any n2Z. By patching HilbXU =U p;A jXU

together over S , we obtain a unique locally projective scheme HilbX=Sp;A over S up to isomorphism.
In this paper, we call HilbX=Sp;A the Hilbert scheme. When S D Spec k, we simply write HilbXp;A .
We write

F
p HilbX=Sp;A by HilbX=S , where p runs over polynomials.

Next, we assume that f is flat and it has geometrically connected and normal fibers. Let g W Y! S be
another proper morphism of schemes and B a g-ample line bundle on Y such that the fibers of g have
the Hilbert polynomial p with respect to B. For any S -scheme T , we set

IsomS .X ;Y/.T /D fh W XT ! YT is a T -isomorphismg;

IsomS ..X ;A /; .Y;B//.T /D fh 2 IsomS .X ;Y/.T / j h�BT �T AT g:

By [Fantechi et al. 2005, Theorem 5.23] and Corollary 2.20, which we will treat later, the functor
IsomS .X ;Y/ (resp. IsomS ..X ;A /; .Y;B//) is represented by a locally closed subscheme IsomS .X ;Y/
(resp. IsomS ..X ;A /; .Y;B//) of HilbX �S Y=S (resp. Hilb

q;p�
1

A˝p�
2

B

X�SY=S ), where q is the polynomial
defined by q.m/Dp.2m/ and p1 WX�SY!X (resp. p2 WX�SY!Y) is the first (resp. second) projection.
Thus, we see that IsomS ..X ;A /; .Y;B// is locally quasiprojective over S . If .X ;A /D .Y;B/, we set

AutS .X ;A / WD IsomS ..X ;A /; .X ;A //:

For details, we refer to [Fantechi et al. 2005, Section 5.6]. We note that if we define

Aut.Pn
Z/.T / WD fT -automorphisms of Pn

T g
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for any locally Noetherian scheme T , then it is well-known that the functor Aut.Pn
Z/ is represented by

PGL.nC 1;Z/ (cf [Mumford et al. 1994, Section 0.5(b)]).

On the other hand, we define a presheaf PicX=S as follows: For any morphism T ! S , we attain the
following set

PicX=S .T /D fL: a line bundle on XT g=�T :

In other words, PicX=S .T / is the set of all relative linear equivalence classes of line bundles on XT

over T . In general, PicX=S is not an étale sheaf. However, it is well-known (see [Mumford et al. 1994,
Section 0.5] and [Fantechi et al. 2005, Section 9]) that under the same assumption on X ! S as the
previous paragraph, there exists a separated scheme PicX=S locally of finite type over S such that there
exist the maps for all T ! S ,

PicX=S .T / ,! HomS .T;PicX=S /;

that are injective and induce the étale sheafification PicX=S ! HomS .�;PicX=S / of PicX=S . Moreover,
if X ! S has a section, then PicX=S coincides with HomS .�;PicX=S /.

2.3 Stacks

We refer to [Olsson 2016, Sections 3 and 5] and [Stacks 2005–] for the notation of fibered categories
and algebraic spaces. Let Sets be the category of sets and Sch=S the category of (locally Noetherian)
schemes over S . If S D Spec k, we write Sch=k. For any scheme S , we endow Sch=S with the étale
topology. We recall the definition of stacks; see [Olsson 2016, Proposition 4.6.2].

Definition 2.9 (stacks) Let p W C ! Sch=S be a category fibered in groupoids. C is called a stack
over S if the following two conditions hold (cf [Olsson 2016, Definition 4.6.1]).

(1) For any S-scheme X and any two objects x;y 2 C .X / WD p�1.X /, the presheaf IsomX .x;y/,
defined by

IsomX .x;y/.f W Y !X / WD IsomY .f
�x; f �y/;

where the right-hand side is the set of all isomorphisms g such that p.g/D idY , is an étale sheaf.

(2) For any étale covering in Sch=S , all descent data with respect to the covering are effective; cf [Olsson
2016, Definition 4.2.6].

Remark 2.10 In the situation of Definition 2.9, we consider the following condition.

� For any set of S -schemes fXigi2I , the natural functor

C

�G
i2I

Xi

�
!

Y
i2I

C .Xi/

is an equivalence of categories.
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We note that all stacks we treat in this paper satisfy this condition. Here, we explain the definition of
descent data when C satisfies the above condition. We say that a surjective morphism f WX 0!X is an
étale covering if X 0 WD

F
i2I Xi and f jXi

WXi!X is étale for any i 2 I . For any étale covering f , let

p1;p2 WX
0
�X X 0!X 0 and p12;p23;p13 WX

0
�X X 0 �X X 0!X 0 �X X 0

be the projections. A pair .u0 2 C .X 0/; �/ is called a descent datum with respect to f W X 0 ! X if
� 2 IsomX 0�X X 0.p

�
1
u0;p�

2
u0/ such that p�

23
� ıp�

12
� D p�

13
� . Note that for any u 2 C .X /, there exists

a canonical isomorphism �can 2 IsomX 0�X X 0.p
�
1
f �u;p�

2
f �u/ such that .f �u; �can/ is a descent datum.

If there is u 2 C .X / such that � ıp�
1
gD p�

2
g ı�can for some g 2 Isom.f �u;u0/, then we call .u0; �/ an

effective descent datum. We see that our definition and the original definition [Olsson 2016, Definition
4.2.6] of descent data are the same in this situation by [Olsson 2016, Lemma 4.2.7].

Definition 2.11 (Artin stacks, Deligne–Mumford stacks) Let C be a stack over k. C is called a
Deligne–Mumford (resp. Artin) stack if the following hold.

(i) The diagonal � W C ! C �C is representable, ie for any morphism U ! C �C from a scheme,
U �C�C C is an algebraic space.

(ii) There exists an étale (resp. smooth) surjective morphism � WX ! C from a scheme.

If C is a Noetherian Artin stack, we can define coherent sheaves on C in the way of [Olsson 2016,
Definition 9.1.14]. If L is a coherent sheaf on C and there exists a smooth surjection g W T ! C such
that g�L is a line bundle, we say that L is a line bundle on C ; see also [Olsson 2016, Section 9.3].

Example 2.12 It is well-known that Sch=S has the natural stack structure over k for any scheme S ; see
[Deligne and Mumford 1969, page 97]. We simply denote this stack by S . For any scheme T , we know
that Sch=S .T /D Hom.T;S/. We denote this by S.T /.

Example 2.13 Let X be a scheme of finite type over k and G be a linear algebraic group over k. Then
there exists a quotient stack ŒX=G� defined as [Olsson 2016, Example 8.1.12]. We remark that ŒX=G� is
an Artin stack of finite type over k; cf [Stacks 2005–, Tag 036O]. Note that X is quasicompact. Moreover,
for any G-equivariant line bundle L on X, we can find a line bundle L on ŒX=G� such that ��L DL,
where � WX ! ŒX=G� is the canonical projection; see [Olsson 2016, Exercise 9.H]. This L is unique up
to isomorphism.

The following category will be used in Section 5.

Definition 2.14 Let Pol be the category such that the collection of objects is8̂̂<̂
:̂f W .X ;A /! S

ˇ̌̌̌
ˇ̌̌̌
f is a surjective proper flat morphism of schemes whose geometric fibers
are normal and connected, and A 2 PicX=S .S/ such that there exists an étale
covering S 0! S by which the pullback of A to X �S S 0 is represented by a
relatively ample line bundle over S 0,

9>>=>>;
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and an arrow .g; ˛/ W .f W .X ;A /! S/! .f 0 W .X 0;A 0/! S 0/ is defined in the way that ˛ W S! S 0 is a
morphism and g W X ! X 0�S 0 S is an isomorphism such that g�˛�X 0A

0 DA as elements of PicX 0=S 0.S/.

It is easy to see that there exists a natural functor p WPol! Sch=k such that Pol is a category fibered in
groupoids. We further show the following.

Lemma 2.15 Pol is a stack over k.

Proof It suffices to check the conditions (1) and (2) of Definition 2.9 for Pol. We first treat (1). Take
objects f W .X ;A /! S and f 0 W .X 0;A 0/! S . Then IsomS .X ;X 0/ is represented by a locally closed
subscheme of HilbX �S X 0=S ; see [Fantechi et al. 2005, Section 5.6]. Since PicX=S is separated, we
see that IsomS .f; f

0/ ,! IsomS .X ;X 0/ is a closed immersion. Therefore IsomS .f; f
0/ is represented

by a scheme. In particular, it is an étale sheaf. Hence, (1) holds.

Next, we treat (2). One can check that for any set of schemes fXigi2I , the natural functor

Pol

�G
i2I

Xi

�
!

Y
i2I

Pol.Xi/

is an equivalence of categories. By Remark 2.10, it suffices to show the following: For any étale covering
S 0! S with the projections

p1; p2 W S
0
�S S 0! S 0 and p12; p23; p13 W S

0
�S S 0 �S S 0! S 0 �S S 0;

any descent datum .f 0 W .X 0;A 0/ ! S 0; �/ is effective. Here, � 2 IsomS 0�S S 0.p
�
1
f 0;p�

2
f 0/. If the

pullback of .f 0; �/ by an étale covering T ! S is effective, then so is .f 0; �/ by the condition (1). From
this fact, by replacing S 0 with a scheme T admitting an étale covering T ! S 0, we may assume that A 0

is an f 0-ample line bundle.

By the f 0-ampleness, there exists m 2 Z>0 such that H i.X 0s;A 0˝m
s /D 0 for every s 2 S 0 and i > 0 and

the natural morphism X 0! PS 0.f
0
�A
0˝m/ is a closed immersion. We note that for any flat morphism

g W T ! S , we have the natural isomorphism

f 0T�g
�
XA 0˝m

Š g�f 0�A
0˝m

by [Hartshorne 1977, III, Proposition 9.3]. Thus, we may identify f 0
T�

g�XA 0˝m with g�f 0�A
0˝m.

Furthermore, f 0�A
0˝m is locally free by [Hartshorne 1977, III, Theorem 12.11]. On the other hand, there

exist a line bundle M and an isomorphism

h W ��p�2;X 0A
0
Š p�1;X 0A

0
˝ .p�1f

0/�M;

where p1;X 0 W X 0 �S S 0! X 0 (resp. p2;X 0 W X 0 �S S 0! X 0) is the morphism induced from base change
of p1 (resp. p2) by the canonical morphism X 0! S 0, and p�

1
f 0 (resp. p�

2
f 0) is the base change of f 0

by p1 (resp. p2). Then h induces the isomorphism

' W PS 0�S S 0.p
�
1f
0
�A
0˝m/D PS 0�S S 0.p

�
1f
0
�A
0˝m
˝M˝m/

Š
�! PS 0�S S 0.p

�
2f
0
�A
0˝m/:

Here, the first equality is via the canonical isomorphism in [Hartshorne 1977, II, Lemma 7.9].
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The following easy claim implies that ' is independent of the choice of h.

Claim Let p W Y! T be a proper flat surjective morphism whose geometric fibers are connected and
normal , and let L be a line bundle on X . Suppose that p�L is locally free. Any isomorphism � WL !L

induces the identity morphism of PT .p�L /.

Proof Now � 2 Hom.L ;L /, and Hom.L ;L /ŠH 0.Y;OY/ŠH 0.T;OT / by [Fantechi et al. 2005,
9.3.11]. Since � is an isomorphism, we may regard � as an element of H 0.T;O�

T
/. Then the argument in

the proof of [Hartshorne 1977, II, Lemma 7.9] works without any change.

We continue to prove Lemma 2.15. We will show that ' defines a descent datum, ie p�
23
' ıp�

12
' D p�

13
'.

Clearly, this is equivalent to that .p�
13
'/�1 ıp�

23
' ıp�

12
' is the identity. We note that if the base change

of the morphism � in the decent datum .f 0; �/ by p12 (resp. p23, p13) is denoted by p�
12
� (resp. p�

23
� ,

p�
13
� ), then p�

23
� ıp�

12
�Dp�

13
� holds. This follows from the definition of descent data. We also note that

the relative linear equivalence p�ij h induces p�ij' for any 1� i < j � 3. Thus, .p�
13
'/�1 ıp�

23
' ıp�

12
'

is induced from the linear equivalence over S 0 �S S 0 �S S 0

p�12;X 0�S S 0p
�
1;X 0A

0
D .p�13�/

�..p�23�/
�1/�..p�12�/

�1/�p�12;X 0�S S 0p
�
1;X 0A

0

�S 0�S S 0�S S 0 .p
�
13�/

�..p�23�/
�1/�p�12;S 0�SX 0p

�
2;X 0A

0

D .p�13�/
�..p�23�/

�1/�p�23;X 0�S S 0p
�
1;X 0A

0

�S 0�S S 0�S S 0 .p
�
13�/

�p�13;S 0�SX 0p
�
2;X 0A

0

�S 0�S S 0�S S 0 p
�
12;X 0�S S 0p

�
1;X 0A

0;

where p12;X 0�S S 0 W X 0 �S S 0 �S S 0! X 0 �S S 0 is the base change of p12 by the canonical morphism
X 0�S S 0! S 0�S S 0, and p23;X 0�S S 0 WX 0�S S 0�S S 0!X 0�S S 0 and p13;X 0�S S 0 WX 0�S S 0�S S 0!

X 0 �S S 0 are defined similarly. By Claim, it immediately follows that .p�
13
'/�1 ıp�

23
' ıp�

12
' is the

identity morphism. Thus p�
23
' ıp�

12
' D p�

13
'.

On the other hand, �KPS0 .f
0
�A
0˝m/=S 0 is relatively ample over S . Hence, applying [Olsson 2016,

Proposition 4.4.12] to PS 0.f
0
�A
0˝m/ and �KPS0 .f

0
�A
0˝m/=S 0 , we may find a scheme P and a projective

flat surjective morphism P!S that canonically defines a descent datum isomorphic to .PS 0.f
0
�A
0˝m/; '/.

Note that P is not a projective bundle but every geometric fiber over S is a projective space. By applying
[Olsson 2016, Proposition 4.4.3] to the closed immersion X 0 ,! PS 0.f

0
�A
0˝m/, we obtain a closed

immersion X ,! P whose base change by S 0! S coincides with X 0 ,! PS 0.f
0
�A
0˝m/. On the other

hand, by the definition of the Picard scheme, there exists a unique element A 2 PicX=S .S/ such that the
pullback of A to X �S S 0 coincides with A 0.

From the above facts, .f 0; �/ is effective. We finish the proof of Lemma 2.15.

Remark 2.16 Let f W X ! S be a proper surjective flat morphism of schemes whose geometric fibers
are normal and connected. We fix A 2 PicX=S . Then .X ;A /! S is an object of Pol if and only if Axs

is ample for any geometric point xs 2 S . Indeed, we may replace f by X �S S 0! S 0 for some étale
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covering S 0! S , thus we may assume that A is a line bundle. Then A is f -ample if and only if Axs is
ample for any geometric point xs 2 S ; see [Kollár and Mori 1998, Proposition 1.41]. The converse is easy.

The following theorem is well-known to experts and holds since we assume that char.k/D 0; cf [Mumford
2008, Section 11, Theorem].

Theorem 2.17 [Olsson 2016, Remark 8.3.4; Keel and Mori 1997] Let C be an Artin stack of finite type
over k. If the diagonal morphism � W C ! C �C is finite , then C is a separated Deligne–Mumford stack.
Furthermore , there exists a separated coarse moduli space of finite type over k.

Remark 2.18 The authors in [Olsson 2016] and [Stacks 2005–] treat the category of schemes that are
not necessarily locally Noetherian, but our theory works even if we treat Sch=k. For example, we can
extend Pol to a stack over the category of all schemes, including schemes that are not locally Noetherian;
see [Vakil 2010, 28.2.12]. We can also apply Theorem 2.17 to ŒN=PGL.d1/ � PGL.d2/ � PGL.d3/�,
which is defined on the category of all schemes, in the proof of Theorem 5.1.

2.4 Universal hull and Q-Gorenstein family

For any scheme X and coherent sheaf F on X of pure dimension, we can define the S2-hull of F , which
we denote by F Œ���. For details, we refer to [Huybrechts and Lehn 1997, Section 1.1]. If X is a normal
variety of dimension d and F is of pure dimension d , then F Œ��� DHomOX

.HomOX
.F ;OX /;OX /.

Let f W X ! S be a flat projective surjective morphism between locally Noetherian schemes such that
the relative dimension of f is d and all geometric fibers of f are normal and connected. Then there is
a closed reduced subscheme Z � X such that f is smooth on X nZ and the fiber Zs over any s 2 S

satisfies codimXs
.Zs/� 2. Let F be a coherent sheaf on X such that F jXnZ is an invertible sheaf. We

define a (universal) hull of F , which we also denote by F Œ���, to be a coherent sheaf with the following
properties (cf [Kollár 2008] or [Kollár 2023, Section 9]):

� F Œ��� is flat over S .

� There exists a morphism q WF !F Œ��� that is an isomorphism outside Z.

� For any point s 2 S , the morphism F Œ���jXs
! F

Œ���
s induced by q is an isomorphism, where

F
Œ���
s is the S2-hull of Fs WDF jXs

.

A universal hull does not always exist for the sheaf F as above, but if it exists then F Œ��� Š j�.F jXnZ /,
where j WX nZ ,!X is the inclusion. Indeed, for any p2X and any affine open neighborhood U �X of p,
let IZ �OX be the ideal sheaf corresponding to Z. Take a regular sequence xa; xb 2 IZ˝OU\Xs

.U \Xs/

of F
Œ���
s for s WD f .p/, ie xa is a nonzero divisor in F

Œ���
s and xb is a nonzero divisor in F

Œ���
s =xaF

Œ���
s . If

xa; xb are the restrictions of a; b 2 IZ .U /, then a; b is also a regular sequence of F Œ��� around Xs \U by
[Matsumura 1980, (20.E)]. Thus, shrinking U if necessary, we may assume that there exists a regular
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sequence a; b 2 IZ .U / of F Œ���. Now the natural map F Œ���! j�.F jXnZ / is injective over U, and the
surjectivity can be proved as follows: Let m 2 j�.F jXnZ / be a local section over U. By the assumption,
there exists two sections ma; mb 2F Œ���.U / such that mDma=aDmb=b. Here, we applied [Matsumura
1980, Theorem 27] and assumed that b is also a nonzero divisor by shrinking U. Thus, bma D amb as
elements of F Œ���.U /. From this and the fact that b is a nonzero divisor in .F Œ���=aF Œ���/.U /, we have
m 2F Œ���.U /.

Hence, if a universal hull of F exists, then F Œ��� Š j�.F jXnZ /, and furthermore we have .F Œ���/T D

.FT /
Œ��� for any morphism g W T ! S . We denote this by F

Œ���
T

.

By applying Kollár’s theory [2023] to our setup, we obtain the following theorem.

Theorem 2.19 (cf [Kollár 2023, Theorem 9.40]) Let f WX !S be a flat projective surjective morphism
between schemes of finite type over k such that the relative dimension of f is d and the geometric fibers
of f are normal and connected. Let Z � X be a closed subset such that f is smooth on X nZ and the
fiber Zs over any s 2 S satisfies codimXs

.Zs/� 2. Let F be a coherent sheaf on X such that F jXnZ is
an invertible sheaf on X nZ. Let H be an f -ample line bundle on X .

Then there exist finitely many distinct polynomials p1; : : : ;pl with corresponding locally closed sub-
schemes S1; : : : ;Sl of S satisfying the following:

� S D
Fl

iD1 Si set-theoretically.

� For each 1� i � l , there exists the universal hull F
Œ���
Si

of FSi
such that the Hilbert polynomial of

F
Œ���
s with respect to H is pi for all s 2 Si .

� For any morphism g WT !S from a locally Noetherian scheme T , if FT has a universal hull F
Œ���
T

such that all fibers F
Œ���
t have the same Hilbert polynomial p with respect to Ht , then p D pi and

g factors through Si for some i .

The following result was proved by Hassett and Kovács [2004, Theorem 3.11] when the fibers are
Cohen–Macaulay, and Kollár [2023, Proposition 9.42] proved a more general statement. Thus, we omit
the proof.

Corollary 2.20 Let f W X ! S , F , and H be as in Theorem 2.19. For any line bundle L on X , there
exists a locally closed subscheme Su � S such that a morphism g W T ! S from a locally Noetherian
scheme T factors through Su ,! S if and only if the universal hull F

Œ���
T

exists and LT ˝f
�

T
M ŠF

Œ���
T

for some line bundle M on T .

From now on, we deal with the relative dualizing sheaf. Let f W X ! S be a flat projective surjective
morphism of schemes of finite type over k whose geometric fibers are normal and connected, and let
U �X be the largest open subscheme such that f is smooth at every point of U. Let !X=S be the relative
dualizing sheaf. Then !˝m

X=S is a coherent sheaf and !˝m
X=S jU is an invertible sheaf for every m 2 Z.
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Hence, we may use the previous results to !˝m
X=S . For each m 2 Z, if the universal hull of !˝m

X=S exists,
then !Œm�X=S denotes the (universal) hull. We also have !Œm�XT =T

D .h�S idX /
�!

Œm�

X=S for every morphism
h W T ! S since !U=S D !X=S jU is a line bundle that commutes with the base change.

Definition 2.21 (Q-Gorenstein family, log Q-Gorenstein family) Let f W X ! S be a flat projective
surjective morphism of schemes of finite type over k whose geometric fibers are normal and connected.
We say that f W X ! S is a Q-Gorenstein family over S if there exists m 2Z>0 such that !Œm�X=S exists as
a line bundle.

For any f W X ! S as above, if S is normal, then X is also normal, !X=S is reflexive and !X=S D

OX .KX=S / for some Weil divisor KX=S on X ; see [Patakfalvi et al. 2018, Proposition A10] and [Codogni
and Patakfalvi 2021, Section 2].

Let f W X ! S be as above. Suppose that S is normal. Let � be an effective Q-divisor on X such that
the support of � contains no fiber of f . We say that f W .X ; �/! S is a log Q-Gorenstein family if
KX=S C� is Q-Cartier.

Remark 2.22 Let f W X ! S be as above. Suppose that S is normal.

� Let U � X be the open locus on which f is smooth. If f W .X ; �/! S is a log Q-Gorenstein
family, then !X=S jU D !U=S is an invertible sheaf (cf [Stacks 2005–, 0E9Z]), and thus �jU is
Q-Cartier. For any morphism h W T ! S from a normal variety T and the induced morphism
� WXT !X , we define �T as a unique extension of ��.�jU / on U �S T . Then we can check that

KXT =T C�T D �
�.KX=S C�/

by applying [Conrad 2000, Theorem 3.6.1] to U �S T ! U. See also [Codogni and Patakfalvi
2021, Section 2].

� Let D be an effective Weil divisor on X such that D is flat over S as a scheme and it has only
geometrically integral fibers over S . Then the scheme-theoretic fiber Ds for any s 2 S is also a
Weil divisor, OX .�D/ is also flat and the restriction OX .�D/jU is locally free by [Huybrechts and
Lehn 1997, Lemma 2.1.7].

� Let � be an effective Q-divisor on X such that the support of � contains no fiber of f . Here,
we do not assume that f W .X ; �/! S is a log Q-Gorenstein family. Let j W U ,! X be the
open immersion. We fix m 2 Z>0 such that m� is a Weil divisor on X . If a universal hull of
OX .m.KX=S C�// exists, then the S2 condition of OX .m.KX=S C�// implies

OX .m.KX=S C�//D j�OU .m.KU=S C�jU //DOX .m.KX=S C�//
Œ���:

Moreover, if any irreducible component of � is flat over S as a reduced scheme and it has only
geometrically integral fibers over S , then OX .m.KX=S C�//jU is locally free. Then, we can
apply Corollary 2.20 to OX .m.KX=S C�// and any line bundle L on X to construct a locally
closed subscheme Su � S satisfying the property of Corollary 2.20.
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2.5 K-stability

In this subsection, we collect some definitions and known results on K-stability.

A polarized variety .X;L/ consists of a proper normal variety X and an ample Q-line bundle L on it.
The notation of polarized varieties and subpairs are the same, however, we adopt this notation because
both are standard. We will mainly deal with subpairs in Sections 3, 4 and 6, whereas we will deal with
polarized varieties in Section 5.

Let � be a Q-divisor such that .X; �/ is a pair. We call .X; �;L/ a polarized pair. We denote the
algebraic group

fg 2 Aut.X / j g��D�; g�L�Q Lg

by Aut.X; �;L/. This is a closed subscheme of fg 2 Aut.X / j g�L�Q Lg, which is a group scheme
of finite type over k since �.X;L˝m˝g�L˝n/D �.X;L˝mCn/ for every sufficiently divisible m and
n 2 Z>0; see [Fantechi et al. 2005, Section 5.6]. Hence, the above algebraic group is also of finite
type over k. We can check that Aut.X; �;L/ is a linear algebraic group. Indeed, for any sufficiently
divisible m 2 Z>0, since there exists a well-defined closed immersion Gm ,! PGL.h0.X;L˝m//, the
group scheme

Gm WD fg 2 Aut.X / j g��D�; g�L˝m
�L˝m

g

is affine. Since Aut.X; �;L/ is an algebraic group and

Aut.X; �;L/D
[

mW sufficiently divisible

Gm

as sets, we have Aut.X; �;L/DGm for some m. Hence, Aut.X; �;L/ is affine.

We say that f W .X; �;A/! C is a polarized klt-trivial fibration over a curve if f W .X; �/! C is a
klt-trivial fibration over a proper curve and A is an f -ample Q-line bundle on X.

We give the following ad hoc definition of uniform adiabatic K-stability of f .

Definition 2.23 (uniform adiabatic K-stability) We say that a polarized klt-trivial fibration over a curve
f W .X; �;A/! C is uniformly adiabatically K-stable if one of the following hold:

� KX C��Q f �.KC CBC CMC / is nef, or

� C D P1, KX C��Q uf �.O.1// for some u< 0, and maxp2P1 ordp.BC / < 1C 1
2
u, where BC

is the discriminant Q-divisor with respect to f .

Here, BC and MC are Q-divisors defined in Definition 2.5.

We note that the uniform adiabatic K-stability is a condition of .C;BC ;MC /, which we call a log-twisted
pair, rather than f .

Next, we recall the definition of K-stability, but we do not need it except in Section 6.
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Definition 2.24 (K-stability) Let .X; �;L/ be a polarized log pair of dimension d . We say that
� W .X ;L/!A1 is a (semi)ample test configuration if the following hold.

� � W X !A1 is a proper and flat morphism of schemes.

� L is a (semi)ample Q-line bundle on X .

� Gm acts on .X ;L/ so that � is Gm-equivariant where Gm acts on A1 by multiplication.

� .��1.1/;Lj��1.1//Š .X;L/.

We will write � W .X ;L/!A1 by .X ;L/ for simplicity. In this paper, we only treat test configurations
.X ;L/ such that X is normal. A test configuration .X ;L/ is trivial if X is Gm-equivariantly isomorphic
to X �A1 and we denote X by XA1 in this case. Let p WXA1!X be the canonical projection. It is well-
known that for any semiample test configuration .X ;L/, there is a normal semiample test configuration
.Y; ��L/ together with two Gm-equivariant morphisms � W Y! X and � W Y!XA1 that are the identity
morphisms over A1 n f0g. Let H be an R-line bundle on X and D be the closure of ��Gm � X . Then
we define the non-Archimedean Mabuchi functional and the non-Archimedean JH -functional by

M NA
� .X ;L/ WD .KX=P1 CDCX0;red�X0/ �Ld

�
d.KX C�/ �L

d�1

.d C 1/Ld
�LdC1;

.J H /NA.X ;L/ WD .p ı �/�H � ��Ld
�

dH �Ld�1

.d C 1/Ld
�LdC1:

Here the bar denotes the canonical compactification; cf [Boucksom et al. 2017, Sections 3 and 7]. It
is easy to see that M NA

�
.X ;L/ DM NA

�
.Y; ��L/ and .J H /NA.X ;L/ D .J H /NA.Y; ��L/. Hence, the

functionals are well-defined. We say that .X;B;L/ is uniformly K-stable (resp. .X;L/ is uniformly
JH -stable) if there exists a positive constant � > 0 such that

M NA
� .X ;L/� �.J L/NA.X ;L/ .resp. .J H /NA.X ;L/� �.J L/NA.X ;L//

for any normal semiample test configuration.

We note that .J L/NA.X ;L/ � 0, and .J L/NA.X ;L/D 0 if and only if .X ;L/ is trivial for any ample
normal test configuration (cf [Boucksom et al. 2017, Proposition 7.8]). In [Boucksom et al. 2017],
.J L/NA is introduced and denoted by INA�J NA. This coincides with the minimum norm independently
introduced in [Dervan 2016].

Definition 2.25 Let .X; �;L/ be a klt polarized pair. Let r be a positive integer such that rL is a line
bundle. For any m 2 Z>0, a Q-divisor Dmr is called a mr -basis type divisor of L if

Dmr D
1

mrh0.X;OX .mrL//

h0.X ;OX .mrL//X
iD1

Ei
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such that the Ei form a basis of H 0.X;OX .mrL//. We define ımr and ı-invariants as

ımr;.X ;�/.L/ WD inf
Dmr

lct.X; �IDmr / and ı.X ;�/.L/ WD lim
m!1

ımr;.X ;�/.L/;

where Dmr runs over all mr -basis type divisors; cf [Fujita and Odaka 2018] and [Blum and Jonsson
2020]. By [Blum and Jonsson 2020], the above limit exists.

For any prime divisor F over X with a projective birational morphism � W Y !X such that F appears as
a prime divisor on Y , we define

SL.F / WD
1

Ln

Z 1
0

vol.L� tF / dt;

where vol.L� tF / denotes vol.��L� tF / by abuse of notation. We set

Smr;L.F / WDmax
Dmr

ordF .Dmr /D

P
i�1 h0.Y;OY .mr��L� iF //

mrh0.X;OX .mrL//
;

where Dmr runs over all mr -basis type divisors; cf [Fujita and Odaka 2018, Lemma 2.2]. It is well-known
[Blum and Jonsson 2020, Lemma 2.9] that

lim
m!1

Smr;L.F /D SL.F /:

Furthermore, we have

ı.X ;�/.L/D inf
F

A.X ;�/.F /

SL.F /

by [Blum and Jonsson 2020], where F runs over all prime divisors over X.

Definition 2.26 (˛-invariant) Let .X; �;L/ be a klt polarized pair. We define the ˛-invariant, denoted
by ˛.X ;�/.L/, by

˛.X ;�/.L/ WD infflct.X; �ID/ jD 2 jLjQg D infflct.X; �ID/ jD 2 jLjRg:

This notion was introduced by Tian [1987] (and restated in [Tian 1990]) to obtain a sufficiency condition
for the existence of Kähler–Einstein metrics on Fano manifolds.

The following fact is well-known.

Lemma 2.27 (cf [Boucksom et al. 2017, Theorem 9.14; Fujita 2019, Proposition 2.1, Lemma 2.2]) Let
.X; �;L/ be a d -dimensional klt polarized pair. Then

0<
d C 1

d
˛.X ;�/.L/� ı.X ;�/.L/� .d C 1/˛.X ;�/.L/:

Example 2.28 When X is a curve, we can easily compute ı.X ;�/.L/ as follows: Since every prime
divisor over X is a point P 2X, we have

SL.P /D
1

deg L

Z deg L

0

.deg L� t/ dt D
deg L

2
:
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Thus, we have

ı.X ;�/.L/D
2

deg L
inf
P

A.X ;�/.P /D 2
.1�maxP2X ordP .�//

deg L
:

In this case we have
˛.X ;�/.L/D

1�maxP2X ordP .�/

deg L
D

1

2
ı.X ;�/.L/:

The following notion from [Hattori 2024a] will also be used in this paper.

Definition 2.29 (special K-stability) We say that a klt polarized pair .X; �;L/ is specially K-stable if
ı.X ;�/.L/LCKX C� is ample and .X;L/ is uniformly Jı.X;�/.L/LCKXC�-stable.

Note that the special K-stability depends only on the numerical class of L since so do ı.X ;�/.L/ and the
uniform Jı.X;�/.L/LCKXC�-stability.

By the following, we know that the special K-stability implies the uniform K-stability.

Theorem 2.30 [Hattori 2024a, Corollary 3.21] Let .X; �;L/ be a klt polarized variety and .X ;L/ be a
normal semiample test configuration for .X;L/. Then ,

M NA
� .X ;L/� .J ı.X;�/.L/LCKXC�/NA.X ;L/:

Over C, there exists an intrinsic criterion for J-stability and special K-stability without using test configu-
rations.

Theorem 2.31 Let .X;L/ be a polarized variety over C of dimension d , and let H be an ample R-line
bundle on X. Then .X;L/ is uniformly JH -stable if and only if there exists � > 0 such that�

d
H �Ld�1

Ld
L�pH

�
�Lp�1

�V � �.d �p/Lp
�V

for any p-dimensional subvariety V � X with 0 < p < d . In particular , if .X; �;L/ is a polarized klt
pair and H WD ı.X ;�/.L/LCKX C� is ample , then the specially K-stability of .X; �;L/ is equivalent
to the existence of � > 0 such that the above inequality holds for any subvariety V �X.

The above theorem was first proved in the case of Kähler manifolds by Chen [2021], but currently the
theorem holds for all polarized varieties by Hattori [2021, Theorem 8.12]. For polarized (resp. Kähler)
manifolds, it was shown by Datar and Pingali [2021] (resp. Song [2020]) that uniform JH -stability is
equivalent to a certain weaker condition.

Roughly speaking, the uniform adiabatic K-stability of f W .X; �;A/! C was originally defined to
be the uniform K-stability of .X; �; �ACL/ with fixed some ample Q-line bundle L on C for any
sufficiently small � > 0. The original definition [Hattori 2022, Definition 2.6] and the ad hoc definition
coincide by the following theorems. Furthermore, we do not have to fix L on C by what we stated after
Definition 2.29.
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Theorem 2.32 [Hattori 2021, Theorem 8.15] Let .X; �;A/ be a klt polarized pair over C. If KX C�

is nef , then there exists a real number C > 0, depending only on the intersection numbers Ai � .KX C

�/dim X�i for 0 � i � dim X, such that .X; �ACKX C�/ is uniformly JKXC�CC�.�ACKXC�/-stable
for every � > 0. Furthermore , there exist real numbers �0 > 0 and ˛ > 0 such that .X; �; �ACKX C�/

is specially K-stable and
M NA
� .X ;M/� ˛.J �ACKXC�/NA.X ;M/

for any 0< � < �0 and normal semiample test configuration .X ;M/ for .X; �ACKX C�/.

Theorem 2.33 [Hattori 2022, Theorem B] Let f W .X; �;A/! .P1;O.1// be a polarized klt trivial
fibration over C such that KX C��Q uf �.O.1// for some u< 0.

Then , f is uniformly adiabatically K-stable if and only if there exist real numbers �0 > 0 and ˛ > 0 such
that .X; �; �A� .KX C�// is specially K-stable and

M NA
� .X ;M/� ˛.J �A�.KXC�//NA.X ;M/

for any 0< � < �0 and for any normal semiample test configuration .X ;M/ for .X; �A� .KX C�//.

We remark that Theorem 2.32 follows from the proof of [Hattori 2021, Theorem 8.15]. On the other hand,
the equalities

lim
�!0

ı.X ;�/.�A� .KX C�//D 2
.maxp2P1 ordp.BP1/� 1/

u
D ı.P1;BP1 /

.�KP1 �BP1 �MP1/

are key steps to show Theorem 2.33; cf [Hattori 2022, Theorem D]. We will show Theorem 1.6 in
Section 6 with them in mind.

3 Boundedness

In this section, we prove results of the boundedness of certain classes.

Let d be a positive integer, v a positive rational number, u¤ 0 a rational number, and ‚�Q�0 a DCC
set. We set e WD u=juj (thus euD juj). We consider the following sets:

Fd;‚;v WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
f W .X; �/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f is a klt-trivial fibration over a curve C ,

(ii) dim X D d ,

(iii) the coefficients of � belong to ‚,

(iv) there is an f -ample Q-Cartier Weil divisor A on X such
that vol.AjF /D v, where F is a general fiber of f ,

9>>>>>>>=>>>>>>>;
Gd;‚;v;u WD

�
f W .X; �/! C 2 Fd;‚;v

ˇ̌̌ KX C�� uf �H for some Cartier divisor H with
deg H D 1.

�
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Lemma 3.1 below is crucial for the boundedness and the lemma will be used in Section 5.

Lemma 3.1 There exists a positive integer r , depending only on d , ‚, v and u, such that for any element
f W .X; �/! C of Gd;‚;v;u, we have er.KX C�/ � f

�D for some very ample Cartier divisor D

on C . In particular , er.KX C�/ is a basepoint-free Cartier divisor and the linear system jer.KX C�/j

defines f . Furthermore , there are only finitely many possibilities of dim H 0.X;OX .er.KX C�///.

Proof We fix an element f W .X; �/! C of Gd;‚;v;u, and we pick a Weil divisor A on X as in (iv) of
Fd;‚;v.

Let F be a general fiber of f , and pick a Cartier divisor H on C with deg H D 1. By applying [Birkar
2023, Corollary 1.4] to .F; �jF / and AjF , we can find m 2 Z>0, depending only on d and ‚, such that
H 0.F;OX .mAjF //¤ 0. Then there is a sufficiently large positive integer t such that

E �mAC tf �H

for some effective Weil divisor E on X. By construction, we have vol.EjF / D md�1v. By applying
[Birkar 2021a, Lemma 7.4] to .X; �/! C and E, we can find a positive integer q, depending only on d ,
‚ and v, such that we can write

q.KX C�/� qf �.KC CBCM /;

where B (resp. M ) is the discriminant part (resp. moduli part) of the canonical bundle formula, such that
qM is Cartier. Then we have deg.KC CBCM / � eu. By definition of the discriminant part of the
canonical bundle formula and the ACC for lc thresholds [Hacon et al. 2014, Theorem 1.1], we see that
the coefficients of B belong to a DCC set of Q>0 depending only on d and ‚, which we denote by ‰.
Let q0 be the smallest positive integer such that q0u is an integer and q divides q0. Since deg KC � �2

and deg M 2 .1=q/Z�0 by Theorem 2.6, we see that

deg.q0B/ 2 f0; 1; : : : ; eq0uC 2q0g:

We define ı WD inf‰, which is a positive rational number because‰ satisfies the DCC. Since deg B�euC2,
the number of components of B is not greater than .euC 2/=ı. Thus, all the coefficients of B belong to
the set

‰0 WD

�
a0�

lX
iD1

ai

ˇ̌̌
a0 2

1

q0
Z\ Œ0; euC 2�; ai 2‰; l �

euC 2

ı

�
:

We can easily check that ‰0 satisfies the ACC because .1=q0/Z\ Œ0; euC 2� is a finite set and ‰ satisfies
the DCC. Hence ‰\‰0 satisfies the ACC and the DCC, which implies that ‰\‰0 is a finite set.

From these facts, we can find q00, depending only on ‰ \ ‰0, such that q00B is a Weil divisor. By
construction, ‰\‰0 depends only on d , ‚, v and u. Since q divides q0 by construction, we have

q0q00.KX C�/� q0q00f �.KC CBCM /;

and the right-hand side is Cartier. The integer q0q00 depends only on d , ‚, v, and u.
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Since eq0q00.KC CBCM / is ample and Cartier, there is a positive integer r , depending only on d , ‚, v
and u, such that r is divided by q0q00 and er.KC CBCM / is very ample. Then this r is the desired
positive integer. We put D WD er.KC CB CM /. The finiteness of dim H 0.X;OX .er.KX C�///

follows from

0� dim H 0.X;OX .er.KX C�///D dim H 0.C;OC .D//

D dim H 1.C;OC .D//C deg DC�.C;OC /

D eruC 1C
�
dim H 0.C;OC .KC �D//� dim H 0.C;OC .KC //

�
� eruC 1

by the Riemann–Roch theorem.

Let n be a positive integer. We define

Fd;n;v WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
f W .X; �/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f is a klt-trivial fibration over a curve C ,

(ii) dim X D d ,

(iii) n� is a Weil divisor,

(iv) there is an f -ample Q-Cartier Weil divisor A on X such that
vol.AjF /D v, where F is a general fiber of f .

9>>>>>>>=>>>>>>>;
Then Lemma 3.1 shows the existence of an n 2 Z>0 such that Gd;‚;v;u is a subset of the set

Gd;n;v;u WD ff W .X; �/!C 2 Fd;n;v jKX C�� uf �H for some Cartier divisor H with deg H D 1g:

Moreover, there exists a positive integer r , depending only on d , n, v and u, such that for any element
f W .X; �/! C of Gd;n;v;u, the divisor er.KX C�/ is a basepoint-free Cartier divisor and the linear
system jer.KX C�/j defines f .

In the rest of this section, we will deal with Fd;n;v and Gd;n;v;u for the fixed d; n 2 Z>0, v 2Q>0 and
u 2Q¤0.

The following lemma gives a lower bound of the ˛-invariants for general fibers of the elements of Fd;n;v .

Lemma 3.2 There exists a positive integer N, depending only on d , n and v, such that for any element
f W .X; �/! C of Fd;n;v and any Q-Cartier Weil divisor A on X as in (iv) of Fd;n;v, we have the
inequality

˛.F;�jF /.AjF /�
1

N
;

where F is a general fiber of f .

Proof We fix f W .X; �/! C 2 Fd;n;v and A as in the final condition of Fd;n;v. Let F be a general
fiber of f . We put �F D�jF .
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By applying [Birkar 2023, Corollary 1.4] to .F; �F / and AjF , we can find an m 2 Z>0, depending only
on d and n, such that

mAjF �EF

for some effective Weil divisor EF on F . Then we have vol.EF / D md�1v. By applying [Birkar
2023, Corollary 1.6] to .F; �F / and EF , we see that .F;Supp.�F CEF // belongs to a bounded family
depending only on d , n, v, and m. By [Birkar 2019, Lemma 2.24], there exists m0 2 Z>0, depending
only on d , n, v and m, such that m0EF �m0mAjF is Cartier. Then m0m depends only on d , n and v.

Because the divisor m0mAjF � .KF C�F / is ample, we may apply the effective basepoint-freeness
[Kollár 1993, Theorem 1.1] and the effective very ampleness [Fujino 2017, Lemma 7.1]. Hence, there
exists m00 2 Z>0, depending only on d , n and v, such that m00AjF is very ample. Taking a small
Q-factorialization of X and applying the length of extremal rays, we see that KF C 3dm00AjF is the
pushdown of a big divisor; cf [Birkar 2019, Lemma 2.46]. Because we have

3dm00AjF ��F �Q 3dm00AjF CKF ;

we see that 3dm00AjF ��F is the pushdown of a big divisor. We also have

vol.3dm00AjF /D .3dm00/d�1v:

By the ACC for numerically trivial pairs [Hacon et al. 2014, Theorem 1.5], we can find a positive real
number ı > 0, depending only on d � 1 and n, such that .F; �F / is ı-lc.

From the above discussion, we may apply [Birkar 2021b, Theorem 1.8] to .F; �F / and AjF , and we can
find � 2R>0, depending only on d � 1, ı and .3dm00/d�1v, such that

˛.F;�jF /.AjF /� �:

Construction of m00 and ı implies that � depends only on d , n and v. Finally, we define N to be the
minimum positive integer satisfying � > 1=N . Then N satisfies the condition of Lemma 3.2.

Definition 3.3 Let N be the positive integer in Lemma 3.2. We define

˛ WD d.4N CdeuN e/v:

Note that ˛ depends only on d , n, v and u.

The following result is a crucial step for the boundedness and a special form of Theorem 1.5(2).

Proposition 3.4 For any element f W .X; �/! C of Gd;n;v;u and any Q-Cartier Weil divisor A on X as
in (iv) of Fd;n;v, there exists a Cartier divisor D on C such that ACf �D is ample and vol.ACf �D/�˛.

Proof We fix an element f W .X; �/! C of Gd;n;v;u, and we pick a Weil divisor A on X as in (iv) of
Fd;n;v. Let H be a Cartier divisor on C such that deg H D 1.
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We define � to be the smallest integer such that AC �f �H is big. Note that � is well-defined since H is
not numerically trivial and AC tf �H is ample for all t � 0. We fix an effective Q-divisor

A0 �Q AC �f �H:

Let N 2 Z>0 be as in Lemma 3.2. By the property of N in Lemma 3.2, there is a nonempty open subset
U � C such that .X; �C .1=N /A0/ is lc on f �1.U /.

Because A0 is ample over C and KX C��Q;C 0, we can find a positive integer l such that

ˆ WD l
�
KX C��f

�KC C
1

N
A0
�

is Cartier and basepoint-free over C and ˆ defines an embedding into PC .f�OX .ˆ//. By applying
[Fujino 2018, Theorem 1.11] to f W X ! C and ˆ, we see that f�OX .ˆ/ is nef. In other words, the
Cartier divisor corresponding to OPC .f�OX .ˆ//.1/ is nef. Because OX .ˆ/ coincides with the pullback of
OPC .f�OX .ˆ//.1/ to X, it follows that ˆ is nef.

Since f W .X; �/! C is an element of Gd;n;v;u, it follows that the divisor

euf �H � .KX C�/

is nef. Since deg H D 1, we see that 2H CKC is nef. Therefore, the divisor�
2C euC

�

N

�
f �H C

1

N
A�Q .2C eu/f �H C

1

N
A0

D

�
KX C��f

�KC C
1

N
A0
�
� .KX C�/Cf

�KC C .2C eu/f �H

D
1

l
ˆCf �.2H CKC /C .euf �H � .KX C�//

is nef. Thus, AC .N.2C eu/C �/f �H is nef. Since A is f -ample, we see that

AC .3N C euN C �/f �H DAC .N.2C eu/C �/f �H CNf �H

is ample.

By definition of � , the divisor AC .� � 1/f �H is not big. Hence, we have

vol.AC .� �N /f �H /D 0:

Since KX C��uf �H , by the canonical bundle formula, we have eu� deg KC . Then .4NCdeuN e/H

is very ample.

We put A00 WDAC .� �N /f �H and N 0 WD 4N CdeuN e. Let G 2 jN 0f �H j be a member consisting of
N 0 general fibers. Then vol.A00/D 0 and A00jG DAjG by definition. For each m 2 Z>0 and 0< k �m,
we consider the exact sequence

0!H 0.X;OX .mA00C .k � 1/N 0f �H //!H 0.X;OX .mA00C kN 0f �H //!H 0.G;OG.mAjG//
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induced by

0!OX .mA00C kN 0f �H �G/!OX .mA00C kN 0f �H /!OG.mAjG/! 0:

By similar arguments to [Jiang 2018, Proof of Lemma 2.5], we have

dim H 0.X;OX .mA00CmN 0f �H //� dim H 0.X;OX .mA00//Cm � dim H 0.G;OG.mAjG//:

Since G consists of N 0 general fibers, taking the limit m!1 we have

vol.A00CN 0f �H /� vol.A00/C dN 0 � vol.AjF /D 0C dN 0v:

Here, we used that vol.A00/D 0 and vol.AjF /D v. We put

D D .3N CdeuN eC �/H:

By recalling the definitions of A00, N 0 and ˛ (see Definition 3.3), we obtain

vol.ACf �D/D vol.A00CN 0f �H /� dN 0v D ˛:

Thus D is the desired Cartier divisor on C .

Definition 3.5 Let ˛ be the positive real number in Definition 3.3. For any element f W .X; �/! C of
Gd;n;v;u and any Q-Cartier Weil divisor A on X as in (iv) of Fd;n;v, we pick a Cartier divisor H on C

with deg H D 1 and we define

m.f;A/ WDmaxfm 2 Z jACmf �H is ample, vol.ACmf �H /� ˛g:

Note that m.f;A/ is well-defined by Proposition 3.4. We may have m.f;A/ � 0. We define

L.f;A/ WDACm.f;A/f
�H:

Now we are ready to prove the boundedness.

Theorem 3.6 (boundedness) The set of klt pairs .X; �/ appearing in Gd;n;v;u is log bounded. Further-
more , there exists a positive integer I0, depending only on d , n, v and u, such that I0L.f;A/ is an ample
Cartier divisor on X. In particular , I0A is Cartier.

Proof We pick f W .X; �/! C 2 Gd;n;v;u and a Q-Cartier Weil divisor A on X as in (iv) of Fd;n;v.
By Lemma 3.1, we can find a positive integer r , depending only on d , n, v and u, such that .X; �/ is
.1=r/-lc. By [Birkar et al. 2010, Corollary 1.4.3], there is a small Q-factorization � WX 0!X of X. Then
.X 0; 0/ is an .1=r/-lc pair and 3d��L.f;A/�KX 0 is big. By applying [Birkar 2023, Theorem 1.1] to X 0

and 3d��L.f;A/, we can find a positive integer m, depending only on d , n, v and u, such that

H 0.X 0;OX 0.m�
�L.f;A///¤ 0:

Thus, we can find an effective Weil divisor E �mL.f;A/. We have

vol.E/�md˛:
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For each f W .X; �/ ! C 2 Gd;n;v;u, we fix E � mL.f;A/ as above, and we prove that the set of
.X;Supp.�CE// is bounded. If u < 0, then we have eu � 2 by the canonical bundle formula; see
cf Theorem 2.6. By taking a reduced divisor G on X consisting of three general fibers of f , we get
a klt Calabi–Yau pair .X; �C 1

3
euG/. By applying [Birkar 2023, Corollary 1.6] to .X; �C 1

3
euG/

and E, we see that the set of such couples .X;Supp.�CGCE// is bounded. In particular, the set of
.X;Supp.�CE// for some f W .X; �/! C 2 Gd;n;v;u is bounded. If u > 0, then we pick a Cartier
divisor H on C such that deg H D 1 and KX C� � uf �H . Since the volume depends only on the
numerical class, we have

vol.KX C�CE/D .KX C�CE/d D d.uf �H �Ed�1/C .Ed /

D duf �H � .mL.f;A//
d�1
C vol.E/

� dumd�1vCmd˛:

Since .X; �/ is .1=r/-lc by Lemma 3.1 and n� is a Weil divisor by definition, we may apply [Birkar
2023, Theorem 1.5] to .X; �/ and E, and the set of .X;Supp.�CE// is bounded. By these arguments,
we obtain the boundedness of the set of .X;Supp.�CE//.

The first statement of Theorem 3.6 immediately follows from the above discussion. Moreover, [Birkar
2019, Lemma 2.24] implies the existence of a positive integer I 0, depending only on d , n, v and u, such
that I 0E is Cartier. Set I0 WD I 0m. Then I0 depends only on d , n, v and u, and I0L.f;A/ is Cartier.

Remark 3.7 We define

Gd;n;v;0 WD ff W .X; �/! C 2 Fd;n;v jKX C�� 0g;

Vd;n;v WD f.X; �/ j .X; �/ is a klt pair and f W .X; �/! C 2Gd;n;v;0 for some f g:

Then the same argument as in this section implies that Vd;n;v is log bounded. Indeed, applying the
argument in Lemma 3.1, we can find a positive integer r , depending only on d , n and v, such that
r.KX C�/� 0. We define ˛ WD 4dNv; see Definition 3.3. By the same argument as in Proposition 3.4,
for any element f W .X; �/! C of Gd;n;v;0 and any Q-Cartier Weil divisor A on X as in (iv) of Fd;n;v ,
there exists a Cartier divisor D on C such that AC f �D is ample and vol.AC f �D/ � ˛. Then we
can define the line bundle L.f;A/ as in Definition 3.5. Then the argument in Theorem 3.6 implies that
Vd;n;v is log bounded. Moreover, there exists a positive integer I0, depending only on d , n and v, such
that I0L.f;A/ is an ample Cartier divisor; see Theorem 3.6.

Proof of Theorem 1.5 By Lemma 3.1, we may assume that ‚ D .1=n/Z\ Œ0; 1� for some n 2 Z>0.
Then the assertion immediately follows from Theorem 3.6, Remark 3.7, and the existence of L.f;A/ as in
Definition 3.5.

We make use of the following result to construct moduli spaces in Section 5.
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Corollary 3.8 Fix d 2 Z>0, a DCC subset ‚�Q\ Œ0; 1� and rational numbers u; v 2Q, where v > 0.
For any w 2Q>0, consider the set

Gd;‚;v;u;w WD

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:
f W .X; �;A/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f is a klt-trivial fibration over a curve C such that
KX C� � uf �H with a line bundle H on C of
deg H D 1,

(ii) dim X D d ,

(iii) the coefficients of � belong to ‚,

(iv) A is an ample Q-Cartier Weil divisor on X such
that .H �Ad�1/D v and vol.A/� w.

9>>>>>>>>>>>=>>>>>>>>>>>;
We also fix w0 2Q>0. Then , there exist

� a positive integer I , depending only on d , ‚, u, v and w, and

� finitely many polynomials P1; : : : ;Pl , depending only on d , ‚, u, v, w and w0,

satisfying the following. For any f W .X; �;A/! C 2Gd;‚;v;u;w and nef Cartier divisor M on X,

� IACM is very ample ,

� H j .X;OX .m.IACM ///D 0 for every j > 0 and m 2 Z>0, and

� if vol.IACM /� w0, then there is 1� i � l such that

�.X;OX .m.IACM ///D Pi.m/ for every m 2 Z>0:

Before the proof, we show the following criterion for very ampleness and finiteness of Hilbert polynomials.

Lemma 3.9 Fix d 2Z>0 and w 2R>0. Then there are finitely many polynomials P1; : : : ;Pl , depending
only on d and w, such that for any d -dimensional projective klt pair .X; �/, very ample Cartier divisor A

on X, and nef Cartier divisor M on X, if A� .KX C�/ is nef and big and vol..dC2/ACM /�w, then

� .d C 2/ACM is very ample ,

� H j .X;OX .m..d C 2/ACM ///D 0 for every j > 0 and m 2 Z>0, and

� there is a 1� i � l such that

�.X;OX .m..d C 2/ACM ///D Pi.m/ for every m 2 Z>0:

Proof Put A0 D .d C 2/ACM . By the Kawamata–Viehweg vanishing theorem, we have

H j .X;OX .mA0� kA//D 0

for every m 2 Z>0, 0� k � d C 1 and j > 0. By [Fantechi et al. 2005, Lemma 5.1], A0�A is globally
generated, and

�.X;OX .mA0//D dim H 0.X;OX .mA0// for every m 2 Z>0:

Since A is very ample, so is A0 D .A0�A/CA. Furthermore, we can check the following claim:
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Claim For every m 2 Z>0, we have

dim H 0.X;OX .mA0//� d Cmdw:

Proof Let Y �mA0 be a general hyperplane section. Then we have

0!OX !OX .mA0/!OY .mA0jY /! 0;

hence we see that
H 0.X;OX .mA0//� 1CH 0.Y;OY .mA0jY ///:

This relation implies the case of dim X D 1 in the claim, and the general case follows from the relation
and induction on the dimension of X.

Thus, if we put P .m/D�.X;OX .mA0//, there are only finitely many possibilities of P .1/; : : : ;P .dC1/

depending only on d and w. In particular, they do not depend on M . Lemma 3.9 follows from this fact.

Proof of Corollary 3.8 By Lemma 3.1, we can find r , depending only on d , ‚, v and u, such that
‚D Œ0; 1�\ .1=r/Z and r.KX C�/ is Cartier for all f W .X; �;A/! C 2Gd;‚;v;u;w . By Theorem 3.6
and Remark 3.7, there exists I0, depending only on d , ‚, v and u, such that I0A is Cartier for all
f W .X; �;A/! C 2 Gd;‚;v;u;w. Note that 3dI0ACKX C� is ample by [Kollár and Mori 1998,
Theorem 3.7]. Set

A0 WD 3drI0AC r.KX C�/ and A00 WDA0C 3drI0A:

Then A0, A0 � .KX C�/, A00, A00 � .KX C�/ are ample. By the effective basepoint-freeness [Kollár
1993, Theorem 1.1] and the effective very ampleness [Fujino 2017, Lemma 7.1], there exists I1 2 Z>0,
depending only on d , such that I1A0 and I1A00 are very ample. Now

vol..d C 2/I1.A
0
CA00//D ..d C 2/I1/

d vol.A0CA00/

� ..d C 2/I1/
d
�
.6drI0/

dwC .6drI0/
d�1drvu

�
;

hence Lemma 3.9 implies that there are only finitely many possibilities of the Hilbert polynomials

m 7! �
�
X;OX

�
m..d C 2/I1.A

0
CA00//

��
for the elements f W .X; �;A/! C 2 Gd;‚;v;u;w. Similarly, Lemma 3.9 implies that there are only
finitely many possibilities of the Hilbert polynomials

m 7! �
�
X;OX

�
m..d C 2/I1A0/

��
and m 7! �

�
X;OX

�
m..d C 2/I1A00/

��
for the elements f W .X; �;A/! C 2Gd;‚;v;u;w . In particular, there exist positive integers N1 and N2,
depending only on d , ‚, u, v and w, such that

dim H 0.X;OX ..d C 2/I1A0//�N1 and dim H 0.X;OX ..d C 2/I1A00//�N2
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for every f W .X; �;A/! C 2 Gd;‚;v;u;w. From this fact, there exists a closed immersion ' W X ,!

PN1 �PN2 such that

'�p�1OPN1 .1/ŠOX ..d C 2/I1A0/ and '�p�2OPN2 .1/ŠOX ..d C 2/I1A00/;

where p1 W P
N1 �PN2 ! PN1 and p2 W P

N1 �PN2 ! PN2 are the projections. By the theory of Hilbert
schemes, there exist a scheme S of finite type over k and a closed subscheme X � PN1 � PN2 � S ,
which is flat over S , such that for any f W .X; �;A/! C 2 Gd;‚;v;u;w, there is a closed point s 2 S

satisfying X Š Xs and the condition that the immersion Xs � PN1 �PN2 coincides with '.

By the definitions of A0 and A00 and shrinking S if necessary, we may assume that�
p�1OPN1 .�1/˝p�2OPN2 .1/

�ˇ̌
X

is ample over S ; see [Kollár and Mori 1998, Corollary 1.41]. Then there exists a positive integer N 0,
depending only on d ,‚, u, v andw, such that the line bundle

�
p�

1
OPN1 .�N 0�2/˝p�

2
OPN2 .N

0C1/
�ˇ̌

X
is ample over S . This fact and the definitions of A0 and A00 imply that

�.N 0C 2/.d C 2/I1A0C .N 0C 1/.d C 2/I1A0 D .d C 2/I1.�A0C .N 0C 1/ � 3drI0A/

D .d C 2/I1.3drI0N 0A� r.KX C�//

D .d C 2/I1r.3dI0N 0A� .KX C�//

is ample for all f W .X; �;A/! C 2Gd;‚;v;u;w, therefore 3dI0N 0A� .KX C�/ is ample.

Recall from the definition of I0 (see Theorem 3.6 and Remark 3.7) that I0A is Cartier. By the effective
basepoint-freeness [Kollár 1993, Theorem 1.1] and the effective very ampleness [Fujino 2017, Lemma 7.1],
there exists I2 2 Z>0, depending only on d , such that I2A is very ample for every f W .X; �;A/! C 2

Gd;‚;v;u;w. Now define

I WD .d C 2/3dI0N 0I2;

which depends only on d , ‚, u, v and w. Then .1=.d C 2//IA is a very ample Cartier divisor and
.1=.d C 2//IA� .KX C�/ is ample for all f W .X; �;A/! C 2Gd;‚;v;u;w. By Lemma 3.9, we see
that this I is the desired positive integer.

4 Tools for construction of the moduli spaces

In this section we prove some results to construct the moduli spaces in this paper.

4.1 Openness

In this subsection, we prove the openness of uniformly adiabatically K-stable klt-trivial fibrations.
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Lemma 4.1 Let X ! S and Z ! S be flat projective surjective morphisms of normal varieties such
that all the geometric fibers of the morphisms are normal and connected. Let f W X ! Z be a contraction
over S . Let .X ;D/ be a pair such that KX CD �Q;Z 0, SuppD does not contain any fiber of X ! S ,
and .Xxs;Dxs/ is a klt pair for every geometric point xs 2 S . Let x� 2 S be the geometric generic point.

Then there exists an open subset U � S such that for every closed point t 2 U, the discriminant Q-
divisors B, Bx� and Bt with respect to f W .X ;D/ ! Z , fx� W .Xx�;Dx�/ ! Zx� and ft W .Xt ;Dt / ! Zt

respectively satisfy

max
P

coeffP .Bx�/Dmax
P

coeffP .BjZ�S U /Dmax
P 0

coeffP 0.Bt /;

where P (resp. P , P 0) runs over prime divisors on Zx� (resp. Z �S U, Zt ). Furthermore , BjZt
is well-

defined and BjZt
D Bt for any closed point t 2 U.

Proof First, note that we may shrink S whenever we focus on an open subset of S . Moreover, as in
[Ambro 2004, Lemma 5.1], we see that maxP coeffP .BjZ�S U / is not changed for any U � S even if
we replace .X ;D/! Z! S with the base change by any étale surjective morphism S 0! S . Thus, in
the rest of the proof, we will freely shrink S and take the base change of .X ;D/! Z! S by an étale
surjective morphism if necessary.

By shrinking S , we may assume that S is smooth, SuppB does not contain any fiber of Z! S and the
codimension of Sing.Z/\Zs in Zs is at least two for every s 2 S . In particular, we can define Bx�, and
we can also define Bs for every closed point s 2 S .

In this paragraph, we show the first equality of Lemma 4.1. We denote the morphism x�! S by � . By
shrinking S , we can find a finite morphism ' W S 0! S and a morphism  W x�! S 0 such that � D ' ı 
and for any component Q of Bx�, there is a prime divisor Q0 on Z �S S 0 whose pullback to Zx� is Q. By
shrinking S , we may assume that ' is étale. By replacing .X ;D/! Z! S with the base change by ',
we may assume that for any component Q of Bx�, there is a prime divisor Q on S such that ��QDQ.
Let Bx� and B be Q-divisors as in Lemma 4.1. By shrinking S and replacing .X ;D/! Z! S with an
étale base change, we may assume ��.KZ C B/ D KZx� CBx�. Then Bx� D Bx�. Shrinking S , we may
further assume that any component of B dominates S . Then

max
P

coeffP .B/Dmax
P

coeffP .Bx�/;

where P (resp. P ) runs over prime divisors on Z (resp. Zx�).

From now on, we show the second equality of Lemma 4.1. We construct a diagram of projective morphisms

Y g
//

f 0

��

X
f
��

W h
// Z

where Y and W are smooth varieties, and snc divisors † on W and „ on Y such that

� h is birational and g is a log resolution of .X ;D/,
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� f 0 is a contraction,

� „� f 0�†[g�1
� D[Ex.g/ and the vertical part of „ with respect to f 0 maps into †, and

� .Y; „/ is log smooth over W n†, in other words, the restriction of f 0 W .Y; „/!W over W n†
is log smooth.

By shrinking S , we may assume that for every closed point t 2 S , the restricted diagram

.Yt ; „t /
gt
//

f 0t
��

.Xt ;Dt /

ft

��

.Wt ; †t /
ht

// Zt

satisfies the same conditions as stated above. We define DY by KYCDY D g�.KX CD/ and g�DY DD.
Let � be the discriminant Q-divisor with respect to f 0 W .Y;DY/!W . For each closed point t 2S , let Gt

be the discriminant Q-divisor with respect to f 0t W .Yt ;DYt
/!Wt . Then h��DB and ht�Gt DBt , where

Bt is the discriminant Q-divisor with respect to the klt-trivial fibration ft W .Xt ;Dt /! Zt . Shrinking S ,
we may assume �t D Gt for every closed point t 2 S . Then Bt D ht��t D ht�Gt D Bt , and the snc
condition of †t implies that

max
P

coeffP .B/max
P 0

coeffP 0.Bt /;

where P (resp. P 0) runs over prime divisors on Z (resp. Zt ).

By the above discussion, Lemma 4.1 holds.

Theorem 4.2 (openness of uniform adiabatic K-stability) Let S be a normal variety , � W .X ;D/! S

a log Q-Gorenstein family, and let f W X ! P be a contraction over S , where P is a scheme that is
projective and smooth over S . Let H be an f -ample Q-divisor on X , and let L be a Cartier divisor on P .
Suppose that there exists an integer m> 0 such that .Pxs;Lxs/D .P1;O.m// for any geometric point xs 2 S .
Assume that �.KX=S CD/�Q;S .u=m/f �L for some u 2Q>0 and all the geometric fibers of � are klt.

Then the function
h W S 3 s 7!max

Pxs
coeffPxs .Bxs/;

where Pxs runs over prime divisors on P1
xs , is constructible and upper semicontinuous. In particular , the

subset
W D fs 2 S j fxs W .Xxs;Dxs;Hxs/! Pxs is uniformly adiabatically K-stableg

is open and there exists a positive real number v such that

ı.P1;Bxs/
.�KP1 �Bxs �Mxs/� 1C v

for every geometric point xs 2 W, where Bxs and Mxs are the discriminant Q-divisor and the moduli
Q-divisor with respect to fxs , respectively.
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Proof We first reduce Theorem 4.2 to the case where P Š P1
S

, m D 1 and L D OP1
S
.1/. For every

closed point s 2 S , there exists an étale morphism gs W T s ! S such that s 2 gs.T s/ and PT s ! T s

has a section �s W T s ! PT s ; see [Olsson 2016, Corollary 1.3.10]. By considering T D
F

si
T si for

some finitely many closed points si 2 S , we obtain an étale surjective morphism g W T ! S such that
h W PT ! T has a section � W T ! PT . Then �.T / is a Cartier divisor on PT ; see [Fantechi et al. 2005,
Lemma 9.3.4] and [Kollár 2023, Definition–Lemma 4.20]. By [Hartshorne 1977, III, Corollary 12.9], the
sheaf h�OPT

.�.T // is locally free of rank two and

h�h�OP.�.T //!H 0.Pt ;OPt
.�.T /jPt

//

is surjective. Therefore, we obtain a morphism PT ! PT .h�OPT
.�.T ///. Then the right-hand side is a

P1-bundle, and the morphism is an isomorphism. Since g is open and surjective, if Theorem 4.2 holds
for T , then Theorem 4.2 also holds for S . Thus, we may assume that P is a P1-bundle over S . Since
the problem is local, we may assume that P D P1

S
by shrinking S . Then L �S OP1

S
.m/. It is easy to

see that we may replace L by OP1
S
.m/. In this way, we may assume that LDOP1

S
.m/. By replacing u

with u=m, we may assume mD 1.

Next, we show that h is constructible. By [Matsumura 1980, (6,C)], it suffices to show that h�1.w/

contains a nonempty open subset of S under the assumption that S is a variety and that h�1.w/ is dense
for every w 2Q>0. We pick an open subset V � S nSing.S/. Since the fibers of � W X ! S are normal,
we have K��1.V /=V DK��1.V /� .�j��1.V //

�KV . Thus, K��1.V /CDj��1.V / is Q-Cartier. Let � be
the generic point of S . By Lemma 4.1 and shrinking V if necessary, we may assume

max
P

coeffP .Bx�/Dmax
P

coeffP .Bt /

for every closed point t 2 V, where P (resp. P ) runs over prime divisors on P1
x� (resp. P1

t ). For any
point s 2 V, by applying Lemma 4.1 to fsg \ V, we see that maxPxs coeffPxs .Bxs/ are determined by
ft W .Xt ;Dt /! P1

t for general closed points t 2 fsg\V. This means that h is constant on V. Thus the
constructibility holds.

From now on we prove the upper semicontinuity. The constructibility of h implies that h takes only finitely
many values. We fix w 2Q>0. By Lemma 2.2, we may assume that S is a curve and h.s/�w for every
general point s 2 S . Then S is smooth, and hence we may write KX=S DKX ��

�KS . Thus KX CD is
Q-Cartier. Let B be the discriminant Q-divisor with respect to f W .X ;D/! P1

S
. By Lemma 4.1, we can

find an open subset V � S such that

max
Q

coeffQ.B/Dmax
P

coeffP .Bt /

for every closed point t 2V, where Q (resp. P ) runs over prime divisors on P1
S

(resp. P1
t ). Since h.s/�w

for general points s 2 S , we have

max
Q

coeffQ.B/� u:
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In our situation, the klt property of the geometric fibers of � and the inversion of adjunction [Kawakita
2007] imply that .X ;DCXs/ is lc for every closed point s 2 S . Therefore, every component of B is
horizontal over S . By our assumption, there exists a component T of B such that

coeffT .B/Dmax
Q

coeffQ.B/� u:

Since every component of B dominates S , by [Ambro 2004, Lemma 5.1], this fact is preserved even if
we take any finite base change of .X ;D/! P1

S
! S . Let  W T �! S be the natural morphism, where

T � is the normalization of T . We consider the base change of .X ;D/! P1
S
! S by  , which we

denote by .XT � ;DT � /! P1
T �
! T � , with the morphism  P1 W P1

T �
! P1

S
. By construction,  �

P1T has
a component isomorphic to T � . Since we only need to deal with closed points of S , we may replace
.X ;D/! P1

S
! S with .XT � ;DT � /! P1

T �
! T � . By this replacement, we may assume that T ! S

is an isomorphism. We put 
 D 1� coeffT .B/. Then there is a prime divisor E over X such that E
maps onto T and A.X ;DCu0f �T /.E/ < 0 for any real number u0 > 
 . Since T dominates S , for every
closed point c 2 S , the pair .X ;DCu0f �T CXc/ is not lc around Xc . By the inversion of adjunction
[Kawakita 2007], the pair .Xc ;DcCu0f �c T jP1

c
/ is not lc for any u0 > 
 . Since P1

S
is smooth and T ! S

is an isomorphism, T jP1
c

is a prime divisor on P1
c . Thus, the discriminant Q-divisor Bc with respect to

fc W .Xc ;Dc/! P1
c has a component whose coefficient is at least 1� 
 . This shows that for every closed

point c 2 S ,
u�max

Q
coeffQ.B/D 1� 
 �max

P 0
coeffP 0.Bc/;

where P 0 runs over prime divisors on P1
c . Thus the upper semicontinuity of h holds. The final statement

of Theorem 4.2 follows from this fact and Example 2.28.

4.2 Separatedness

In this subsection we show the separatedness of the moduli spaces that we will construct in Section 5.

Notation 4.3 Let C be an affine curve. We say that f W .X; �;L/! C is a polarized Q-Gorenstein
family if f W .X; �/! C is a log Q-Gorenstein family over C and L is an f -ample line bundle. Let
0 2 C be a closed point and C ı D C n f0g the punctured curve. We put

.X; �;L/�C C ı D .X �C C ı; ��C C ı;LjX�C C ı/:

For another polarized Q-Gorenstein family f 0 W .X 0; �0;L0/! C , we define

g W .X; �;L/! .X 0; �0;L0/

to be a C -isomorphism g W X ! X 0 such that f 0 ı g D f , g�� D �0 and g�L0 �C L. We define
C ı-isomorphisms between .X; �;L/�C C ı and .X 0; �0;L0/�C C ı similarly.

Let f W .X; �;L/! C and f 0 W .X 0; �0;L0/! C be polarized Q-Gorenstein families. For contractions
� W .X; �;L/! .P1

C
;O.1// and � 0 W .X 0; �0;L0/! .P1

C
;O.1// over C , we define .˛; ˇ/ W � ! � 0 as

a pair of C -isomorphisms ˛ W .X; �;L/ ! .X 0; �0;L0/ and ˇ W .P1
C
;O.1// ! .P1

C
;O.1// such that

� 0 ı˛ D ˇ ı� .
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The following was shown by Boucksom when � D 0, but we write here the proof for the sake of
completeness.

Proposition 4.4 [Boucksom 2014, Theorem 1.1; Blum and Xu 2019, Theorem 3.1 and Remark 3.6] Let
C be an affine curve. Let f W .X; �;L/! C and f 0 W .X 0; �0;L0/! C be two polarized Q-Gorenstein
families. Suppose that there exists a C ı-isomorphism

gı W .X; �;L/�C C ı! .X 0; �0;L0/�C C ı

and both KX C� and KX 0 C�
0 are nef over C . If .X0; �0/ is klt and .X 0

0
; �0

0
/ is lc , then gı can be

extended to a C -isomorphism g W .X; �;L/! .X 0; �0;L0/.

Proof Let g W X Ü X 0 be the birational map induced by gı. It is sufficient to prove that g is a
C -isomorphism.

We first show that g and g�1 do not contract any divisor. We apply the argument in [Boucksom 2014].
By the inversion of adjunction [Kawakita 2007] and shrinking C around 0 2 C , we may assume that
.X; �CX0/ is plt and .X 0; �0CX 0

0
/ is lc. Take a common log resolution � WY !X and � 0 WY !X 0 of g.

By construction, gı ı�jY �C C ı coincides with � 0jY �C C ı . Let � be the sum of �jY �C C ı-exceptional
prime divisors, and let x� be the closure in Y . Then x� is �-exceptional and also � 0-exceptional. By the
log canonicity of .X; �CX0/, the Q-divisor

E WDKY C�
�1
� �C x�CY0;red��

�.KX C�CX0/

is effective and �-exceptional. Similarly, we see that

E0 WDKY C�
�1
� �C x�CY0;red��

0�.KX 0 C�
0
CX 00/

is effective and � 0-exceptional. Since KX C� is nef over C , by applying the negativity lemma to � 0 and
E�E0, we see that E�E0 is effective. Similarly, we see that E0�E is effective. These facts imply that
E DE0 and hence

��.KX C�CX0/D �
0�.KX 0 C�

0
CX 00/:

Therefore, A.X ;�CX0/.F /DA.X 0;�0CX 0
0
/.F / for every prime divisor F on Y . Recalling that .X; �CX0/

is plt, we see that A.X ;�CX0/.F /D 0 if and only if F D ��1
� X0. Now

A.X ;�CX0/.�
0�1
� X 00/DA.X 0;�0CX 0

0
/.�
0�1
� X 00/

D 1� coeffX 0
0
.�0CX 00/D 0:

From these facts, we have ��� 0�1
� X 0

0
DX0. Since X0 (resp. X 0

0
) is the fiber of f (resp. f 0) over 0 2 C ,

we see that g and g�1 do not contract any divisor.

We now prove that g is a C -isomorphism. Consider L0 as a Cartier divisor on X 0, and put D D g�1
� L0.

By our hypothesis, we have LjX�C C ı �C ı .g
ı/�LjX 0�C C ı . Since g does not contract any divisor, we
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have D �C L; see [Hartshorne 1977, II, Proposition 6.5]. Thus, by Serre’s S2-condition, g induces

X D ProjC

�M
m�0

f�L
˝m

�
D ProjC

�M
m�0

f�OX .mD/

�
Š ProjC

�M
m�0

f 0�L
0˝m

�
DX 0:

This shows that g is indeed a C -isomorphism.

Corollary 4.5 Let .X; �;L/ be a polarized klt pair such that KX C� is nef. Then Aut.X; �;L/ is
finite.

Proof It follows from Proposition 4.4 as [Blum and Xu 2019, Corollary 3.5].

We are ready to prove the main theorem of this subsection.

Theorem 4.6 (separatedness) Let � W .X; �;H /! C and � 0 W .X 0; �0;H 0/! C be two polarized
Q-Gorenstein families over a curve such that .X0; �0/ is klt and .X 0

0
; �0

0
/ is lc. Let

g W .X; �;H /! .P1
C ;O.1// and g0 W .X 0; �0;H 0/! .P1

C ;O.1//

be contractions over C such that KX C��Q;P1
C

0 and KX 0C�
0 �Q;P1

C
0. Let 0 2 C be a closed point ,

and let g0 WX0! P1 (resp. g0
0
WX 0

0
! P1) be the restriction of g (resp. g0) to 0 2 C . Suppose that there

exists an isomorphism .˛ı; ˇı/ W gjX�C C ı Š g0jX 0�C C ı over C ı such that

� g0 W .X0; �0;H0/! P1 is uniformly adiabatically K-stable ,

� for the discriminant Q-divisor B0
0

and the moduli Q-divisor M 0
0

with respect to g0
0
W .X 0

0
; �0

0
/!P1,

we have ı.P1;B0
0
/.�KP1 �B0

0
�M 0

0
/� 1, and

� we have �KX �� �C;Q wg�OP1
C
.1/ and �KX 0 ��

0 �C;Q w0g0�OP1
C
.1/ for some positive

rational numbers w and w0.

Then .˛ı; ˇı/ can be extended to an isomorphism .˛; ˇ/ W g! g0 over C .

Proof We will reduce the theorem to Proposition 4.4 as in [Blum and Xu 2019, Theorem 3.1]. By
our hypothesis of .˛ı; ˇı/, it is easy to see that w D w0. Denote the bases of g and g0 by C and C0,
respectively. Note that C and C0 are isomorphic to P1

C
. Let L (resp. L0) be the line bundle on C (resp. C0)

isomorphic to O.1/. We denote the structure morphisms C! C and C0! C by � and �0, respectively.

Replacing L by LC dC0 for some sufficiently large d 2 Z>0, we may assume that the birational map
.C;L/ Ü .C0;L0/ over C induces an inclusion �0�L0 � ��L as sheaves of OC -modules. Now OC;0 is
a divisorial valuation ring and both ��L˝OC;0 and �0�L0˝OC;0 are free OC;0-modules of rank two.
Hence, by fixing a generator t of the maximal ideal of OC;0, we may find free bases fs;ug � ��L˝OC;0

and fs0;u0g � �0�L0˝OC;0 such that s0 D t�s and u0 D t�u for some �;� 2 Z�0.

By shrinking C around 0, we may assume that t , s, u, s0, and u0 are global sections. By definition, s

and u correspond to prime divisors E1 and E2 on C respectively such that E1jC0
¤ E2jC0

. Similarly,
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s0 and u0 correspond to prime divisors E0
1

and E0
2

on C0 respectively such that E0
1
jC0

0
¤E0

2
jC0

0
. We put

D D 1
2
w.E1CE2/ and D0 D 1

2
w.E0

1
CE0

2
/. Then D is the strict transform of D0 since they coincide

over C ı. Note that .X0; �0C g�
0
D0/ is klt and .X 0

0
; �0

0
C g0�

0
D0

0
/ is lc. Indeed, .P1;B0

0
CD0

0
/ is lc

since
˛.P1;B0

0
/.�KP1 �B00�M 0

0/D
1
2
ı.P1;B0

0
/.�KP1 �B00�M 0

0/�
1
2

by Example 2.28 and the second assumption of Theorem 4.6. Then the log canonicity of .X 0
0
; �0

0
Cg0�

0
D0

0
/

follows from the log canonicity of .P1;B0
0
CD0

0
/ in the same way as [Ambro 2004, Theorem 3.1].

Similarly, we have

˛.P1;B0/
.�KP1 �B0�M0/D

1
2
ı.P1;B0/

.�KP1 �B0�M0/ >
1
2

by Example 2.28 and the first assumption of Theorem 4.6, where B0 (resp. M0) is the discriminant Q-
divisor (resp. moduli Q-divisor) with respect to the klt-trivial fibration g0. We see that .X0; �0Cg�

0
D0/

is klt in the same way. We also have the relations KX C�Cg�D�C;Q 0 and KX 0C�
0Cg0�D0�C;Q 0.

Thus, we have a unique extension

˛ W .X; �Cg�D;H /Š .X 0; �0Cg0�D0;H 0/

of ˛ı over C by Proposition 4.4. Here, ˛�g0�D0Dg�D. Thus, ˛�g0�E0
1
Dg�E1 and ˛�g0�E0

2
Dg�E2

hold and they generate the pencils defining the two contractions g0 ı ˛ and g. Therefore, we have a
natural extension ˇ W .C;L/Š .C0;L0/ of ˇı. It is easy to see that .˛; ˇ/ is an isomorphism from g to g0

over C .

To construct our moduli spaces, we only need Theorem 4.6 for uniformly adiabatically K-stable g0
0
. In

this case, Theorem 4.6 follows from [Hattori 2024a, Corollary 3.22] when k D C. Since we do not
know whether .X 0

0
; �0

0
; �H 0

0
Cg0�

0
O.1// is specially K-semistable or not, we cannot apply [Hattori 2024a,

Corollary 3.22] directly. Theorem 4.6 is applicable to the case when g0
0

is an adiabatically K-semistable
klt-trivial fibration; see [Hattori 2022, Theorem A].

The following is also important for construction of our moduli spaces.

Corollary 4.7 (finiteness of stabilizers) Let f W .X; �;H / ! P1 be a polarized uniformly adia-
batically K-stable klt-trivial fibration such that �.KX C�/ is nef and not numerically trivial. Then
Aut .f W .X; �;H /! .P1;OP1.1/// is a finite group.

Proof Since Aut .f W .X; �;H / ! .P1;OP1.1/// is represented by a closed subgroup of a linear
algebraic group Aut .X; �;H /�Aut .P1;OP1.1// [Fantechi et al. 2005, Section 5.6], it is sufficient to
show that Aut .f W .X; �;H /! .P1;OP1.1/// is proper. Let C be an arbitrary affine curve and fix a
closed point 0 2 C . Set C ı WD C n f0g and take an arbitrary isomorphism

'ı 2 Aut .f j.X ;�;H /�C ı W .X; �;H /�C ı! .P1;OP1.1//�C ı/:

By Theorem 4.6, we extend 'ı to ' over C entirely.
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4.3 Invariance of plurigenera

In this subsection we prove a result on the invariance of plurigenera, which is a generalization of
[Nakayama 1986] and a key statement to construct our moduli spaces.

Theorem 4.8 Let f W .X; �/!S be a log Q-Gorenstein family such that S is a normal variety. Suppose
that there is e 2 f1;�1g such that for every geometric point xs 2 S , .Xxs; �xs/ is a klt pair and e.KXxs C�xs/

is semiample. Let r be a positive integer such that r.KX=S C�/ is Cartier. Then , for every positive
integer n, the function

S 3 t 7! dim H 0.Xt ;OXt
.enr.KXt

C�t ///

is constant.

First, we treat the case when S is a curve.

Proposition 4.9 Let f W .X; �/! C be a log Q-Gorenstein family such that C is a curve and all closed
fibers of f are klt pairs. Let D be a Cartier divisor on X such that D� .KX C�/ is semiample over C .
Then , for every closed fiber F of f , the natural morphism f�OX .D/!H 0.F;OF .DjF // is surjective.

Proof Note that X is a normal variety. The klt property of the closed fibers of f and the inversion of
adjunction [Kawakita 2007] imply that .X; �/ is klt. Let g W Y !X be a log resolution of .X; �/. We
can write

KY C�Y D g�.KX C�/CE

for some effective Q-divisors �Y and E which have no common component. Then .Y; �Y CdEe�E/

is a log smooth klt pair. Let c 2 C be an arbitrary closed point with the fiber F WD f �c. Then

.g�DCdEe�g�F /� .KY C .�Y CdEe�E//D g�.D� .KX C��F //:

Thus, .g�DCdEe�g�F /�.KY C.�Y CdEe�E// is nef and big over X, and the divisor is semiample
over C because D � .KX C�/ is semiample over C by the hypothesis. By the Kawamata–Viehweg
vanishing theorem, we have Rqg�OY .g

�DCdEe�g�F /D 0 for every q > 0. Thus, the Leray spectral
sequence implies

R1.f ıg/�OY .g
�DCdEe�g�F /ŠR1f�.g�OY .g

�.D�F /CdEe//DR1f�OX .D�F /;

where the last equality follows from that E is effective and g-exceptional. By applying the torsion-free
theorem [Fujino 2011, Theorem 6.3(i)] to f ıg W Y ! C , g�DCdEe�g�F and .Y; �Y CdEe�E/,
we see that R1f�OX .D�F / is torsion free. Now consider the exact sequence

f�OX .D/! f�OF .DjF /
ı
�!R1f�OX .D�F /

which is induced by
0!OX .D�F /!OX .D/!OF .DjF /! 0:
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Since R1f�OX .D�F / is torsion free and f�OF .DjF / is zero outside c, we see that ı is the zero map.
This implies that

f�OX .D/! f�OF .DjF /DH 0.F;OF .DjF //

is surjective.

Proof of Theorem 4.8 It is sufficient to prove that the equality

dim H 0.Xs;OXs
.enr.KXs

C�s///D dim H 0.Xs0 ;OXs0
.enr.KXs0

C�Xs0
///

holds for any two closed points s; s0 2 S . Let C � S be a connected (but not necessarily irreducible or
smooth) curve passing through s and s0; see [Mumford 2008, Section 6, Lemma]. Replacing S with the
normalization of any component of C , we may assume that S is a curve.

By the hypothesis, e.KX C�/ is f -nef. Since the restriction of e.KX C�/ to the geometric generic fiber
is semiample, e.KX C�/ is f -abundant [Fujino 2012, Definition 4.1]. By [Fujino 2012, Theorem 1.1],
e.KX C�/ is semiample over S . Then enr.KX C�/� .KX C�/ is also semiample over S for every
positive integer n. By Proposition 4.9, for every closed fiber F , the morphism

f�OX .enr.KX C�//!H 0.F;OF .enr.KF C�jF ///

is surjective. By the cohomology and base change theorem, dim H 0.Xt ;OXt
.enr.KXt

C �t /// is
independent of t 2 S .

5 Construction of moduli

In this section, we construct the moduli of uniformly adiabatically K-stable polarized klt-trivial fibrations
over curves such that the canonical divisor is not numerically trivial. Throughout this section, we fix
d 2 Z>0, u 2Q¤0 with e WD u=juj, v 2Q>0 and w 2Q>0. We define

Zd;v;u;w WD

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:
f W .X; �D 0;A/! C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(i) f is a uniformly adiabatically K-stable polarized klt-
trivial fibration over a curve C ,

(ii) dim X D d ,

(iii) KX � uf �H for some line bundle H on C such that
deg H D 1,

(iv) A is an ample line bundle on X such that .KX �A
d�1/D

uv and vol.A/� w.

9>>>>>>>>>>>=>>>>>>>>>>>;
Then it is not difficult to check that if f W .X; �D 0;A/! C is an element of Zd;v;u;w then .X; 0/!
C 2 Gd;f0g;v;u, where Gd;f0g;v;u is the set Gd;‚;v;u in Section 3 with ‚ D f0g. By Lemma 3.1, there
exists an r 2Z>0, depending only on d , u and v, such that for any element f W .X; 0/! C of Gd;f0g;v;u,
we have erKX � f

�D for some very ample Cartier divisor D on C .
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The following theorem is the main result of this paper.

Theorem 5.1 We fix d 2Z>0, u 2Q¤0 with e WD u=juj, v 2Q>0, w 2Q>0 and r 2Z>0 in Lemma 3.1
for Gd;f0g;v;u. Let Md;v;u;w;r be a full subcategory of Pol such that for any locally Noetherian scheme S

over k, we define Md;v;u;w;r .S/ to be a groupoid whose objects are8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

.X ;A / f
//

�X
��

C

��

S

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

(i) �X is a flat projective morphism and X is a scheme,

(ii) A 2 PicX=S .S/ such that Axs is ample for any geometric point xs 2 S ,

(iii) !
Œr �

X=S exists as a line bundle,

(iv) �X�!
Œler �

X=S is locally free and generates H 0.Xs;OXs
.lerKXs

// for any
point s 2 S and any l 2 Z>0,

(v) f is the ample model of!Œer �

X=S over S and fxs W .Xxs; 0;Axs/!Cxs 2Zd;v;u;w

for any geometric point xs 2 S .

9>>>>>>>>>>>>=>>>>>>>>>>>>;
Then Md;v;u;w;r is a separated Deligne–Mumford stack of finite type over k. Furthermore , there exists a
coarse moduli space of Md;v;u;w;r .

Remark 5.2 For any S -isomorphism g W X ! X 0 as above, we have a unique S -isomorphism h W C! C0
such that f 0 ıg D h ıf . This is the reason why we do not consider morphisms between C and C0.

In this section, for every object .X ;A /! C 2Md;v;u;w;r .S/, the structure morphism .X ;A /! S is
denoted by �X unless otherwise stated. When an object .XT ;AT /! CT of Md;v;u;w;r .T / is the base
change of .X ;A /! C by T ! S , the morphism �XT

is nothing but .�X /T as in (11) in Notation and
conventions.

Lemma 5.3 Md;v;u;w;r is a stack.

Proof We first check that Md;v;u;w;r is a category fibered in groupoids. It suffices to show that for
any �X W .X ;A /! C! S 2Md;v;u;w;r .S/ and any morphism h W T ! S of schemes, the base change
�XT
W .XT ;AT /! CT ! T is the pullback of � along h in the sense of [Olsson 2016, Definition 3.1.1].

By the conditions (iv) and (v) in the definition of Md;v;u;w;r and the theorem of cohomology and base
change, we see that

CT WD C �S T D ProjS

�M
l�0

�X�!
Œler �

X=S

�
�S T Š ProjT

�M
l�0

�XT �!
Œler �

XT =T

�
:

This shows .XT ;AT /!CT 2Md;v;u;w;r .T /. Hence, Md;v;u;w;r is indeed a category fibered in groupoids.

From now on, we check that Md;v;u;w;r is a stack. Since Definition 2.9(1) has been already checked in
Lemma 2.15, it suffices to show the condition of Definition 2.9 (2) for Md;v;u;w;r . We note that Md;v;u;w;r

satisfies the condition of Remark 2.10. Let g W S 0! S be an étale covering and .f 0 W .X 0;A 0/! C0; �/ a
descent datum with the structure morphism �X 0 W .X 0;A 0/! S 0. We will show that .f 0; �/ is effective.
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By Lemma 2.15, .�X 0 W .X 0;A 0/! S 0; �/ is a descent datum in Pol. Therefore, the datum comes from
some element � W .X ;A / ! S 2 Pol.S/. By the functoriality of !Œr �X 0=S 0 and [Fantechi et al. 2005,
Theorem 4.23], there exists a line bundle L on X such that

g�XL D !
Œr �

X 0=S 0 ;

and there exists a morphism !˝r
X=S !L whose pullback g�X!

˝r
X=S ! g�XL coincides with the natural

morphism !˝r
X 0=S 0 ! !

Œr �

X 0=S 0 . From these facts, we have that L D !
Œr �

X=S . By the faithful flatness of g

and the flat base change theorem [Hartshorne 1977, III, Proposition 9.3], the condition (iv) of Md;v;u;w;r

holds for � . Thus, !Œer �

X 0=S 0 is relatively semiample, and if we set C WD ProjS

�L
l�0 ��!

Œler �

X=S
�
, then

C �S S 0 Š ProjS 0

�M
l�0

�X 0�!
Œler �

X 0=S 0

�
D C0

by [Hartshorne 1977, III, Theorem 12.11]. Let f W X ! C be the canonical morphism. Then the base
change of f by S 0! S is isomorphic to f 0. From this, (v) of Md;v;u;w;r holds for f W .X ;A /! C. This
shows f W .X ;A /! C 2Md;v;u;w;r .S/, and hence .f 0; �/ is an effective descent datum.

Note that the set of all klt-trivial fibrations over k belonging to Zd;v;u;w coincides with the set of isomorphic
classes of Md;v;u;w;r .Spec k/. From now on, we fix I 2 Z>0 as in Corollary 3.8 for Gd;f0g;v;u;w. Note
that Zd;v;u;w �Gd;f0g;v;u;w.

Lemma 5.4 For any d1; d2; d3 2 Z>0 and h 2QŒt �, let Md1;d2;d3;h be a full subcategory of Md;v;u;w;r

such that for any locally Noetherian scheme S over k, we define a groupoid Md1;d2;d3;h.S/ whose
objects are8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂
f W .X ;A /! C 2Md;v;u;w;r .S/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

for every geometric point xs 2 S ,
� h0.Xxs;OXxs .IAxs//D d1,

� h0.Xxs;OXxs ..I C 1/Axs//D d2,

� h0.Xxs;OXxs .erKXxs //D d3,

� the Hilbert polynomial of Xxs with respect to
.2I C 1/AxsC erKXxs is h.

9>>>>>>>>>=>>>>>>>>>;
Then Md1;d2;d3;h is an open and closed substack of Md;v;u;w;r . Furthermore , there are only finitely many
d1; d2; d3 2 Z>0 and h 2QŒt � such that Md1;d2;d3;h is not an empty stack.

Proof By Theorem 4.8, any scheme S and f W .X ;A /! C 2Md;v;u;w;r .S/ satisfy the property that
h0.Xxs;OXxs .IAxs//, h0.Xxs;OXxs ..I C 1/Axs//, h0.Xxs;OXxs .erKXxs //, and the Hilbert polynomial of Xxs
with respect to .2I C 1/AxsC erKXxs are locally constant on s 2 S . The first assertion follows from this
fact. The second assertion follows from Lemma 3.1 and Corollary 3.8.
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The invariants h0.Xxs;OXxs .IAxs// and h0.Xxs;OXxs ..I C 1/Axs// in Lemma 5.4 are used to determine
A 2 PicX=S .S/.

Notation 5.5 For each d1; d2; d3 2 Z>0 and h 2QŒt �, we set

H WD Hilb Pd1�1
�Pd2�1

�Pd3�1h;p�
1
O.1/˝p�

2
O.1/˝p�

3
O.1/

:

Let z� W U !H be the morphism from the universal family U . We set pi W U ! Pdi�1
H

as the morphism
induced by the projections Pd1�1

H
�H Pd2�1

H
�H Pd3�1

H
! Pdi�1

H
. We remark that H is of finite type

over k.

For any morphism T !H , the morphism z�T W UT ! T denotes the base change of z� by T !H .

Proposition 5.6 Fix I 2 Z>0 of Corollary 3.8. For all d1; d2; d3 2 Z>0 and h 2QŒt �, the following
H W .Sch=k/op ! Sets is a well-defined functor and H is represented by a locally closed subscheme
Nd1;d2;d3;h �H : For a scheme S , define

H.S/ WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
.f W .X ;A /! C; �1; �2; �3/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

f 2Md1;d2;d3;h.S/ is such that A is
represented by a line bundle, and
�1 W PS .�X�A

˝I /! Pd1�1
S

,
�2 W PS .�X�A

˝IC1/! Pd2�1
S

and

�3 W PS .�X�!
Œer �

X=S /! Pd3�1
S

are
isomorphisms

9>>>>>>>=>>>>>>>;
�
�;

where .f W .X ;A / ! C; �1; �2; �3/ � .f
0 W .X 0;A 0/ ! C0; �0

1
; �0

2
; �0

3
/ if and only if there exists an

isomorphism ˛ W .X ;A /! .X 0;A 0/ of Md;v;u;w;r .S/ (see the definition of Pol) such that the induced
isomorphisms

˛1 W PS .�X�A
˝I /! PS .�X 0�A

0˝I /;

˛2 W PS .�X�A
˝IC1/! PS .�X 0�A

0˝IC1/;

˛3 W PS .�X�!
Œer �

X=S /! PS .�X 0�!
Œer �

X 0=S /;

satisfy �0i ı˛i D �i for i D 1; 2; 3. Here , the structure morphisms X ! S and X 0! S are denoted by �X

and �X 0 respectively, and the line bundle representing A is denoted by A by abuse of notation.

In particular , Nd1;d2;d3;h inherits the PGL.d1/�PGL.d2/�PGL.d3/ action on H .

Proof We first note that PS .�X�A
˝I / and PS .�X�A

˝IC1/ are independent of a representative of A ;
see the claim in the proof of Lemma 2.15. The well-definedness of H follows from the fact that we can
define the pullback of .f; �1; �2; �3/ 2 H.S/ by any morphism S 0! S by using [Hartshorne 1977, III,
Theorem 12.11] and the condition (iv) of Md;v;u;w;r . Indeed, by the properties of I (see Corollary 3.8),
we have

hi.Xxs;OXxs .IAxs//D hi.Xxs;OXxs ..I C 1/Axs//D 0
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for every i > 0 and geometric point xs 2 S . Thus,

PS 0.�XS0�A
˝I

S 0
/Š PS .�X�A

˝I /�S S 0;

PS 0.�XS0�A
˝IC1

S 0
/Š PS .�X�A

˝IC1/�S S 0;

PS 0.�XS0�
!
Œer �

XS0=S
0/Š PS .�X�!

Œer �

X=S /�S S 0:

We will prove the proposition in several steps.

Step 1 In this step, we introduce a claim and give an explanation of the claim.

We will consider the following claim, which will be proved in Step 3.

Claim 1 There exists a locally closed subscheme N of H such that a morphism T !H factors through
N ,! H if and only if there exists a z�T -ample line bundle A 0 on UT such that A 0 and z�T W UT ! T

satisfy the following.

(a) Any geometric fiber of z�T is connected and normal.

(b) p1;xt and p2;xt are closed immersions for any geometric point xt 2 T .

(c) A 0˝I �T p�
1;T

O
P

d1�1

T

.1/ and A 0˝IC1 �T p�
2;T

O
P

d2�1

T

.1/.

(d) For any point t 2 T , the morphisms O˚d1

T
!H 0.Ut ;A

0˝I
t / and O˚d2

T
!H 0.Ut ;A

0˝IC1
t / are

surjective , h0.Ut ;A
0˝I
t /D d1 and h0.Ut ;A

0˝IC1
t /D d2.

(e) !
Œer �

UT =T
�T p�

3;T
O.1/.

(f) Uxt is a klt variety for any geometric point xt 2 T .

(g) z�T�!
Œler �

UT =T
!H 0.Ut ;OUt

.lerKUt
// is surjective for any point t 2 T and any l 2 Z>0.

(h) O˚d3

T
!H 0.Ut ;OUt

.erKUt
// is surjective and h0.Ut ;OUt

.erKUt
//D d3 for any point t 2 T .

(i) .Uxt ; 0;A 0xt /! zCxt 2 Zd;v;u;w for any geometric point xt 2 T , where UT ! zCT is the ample model of
!
Œer �

UT =T
.

Here , the morphism O˚d1

T
!H 0.Ut ;A

0˝I
t / in (d) is defined to be the composition

O˚d1

T
�! z�T�p

�
3;T O

P
d3�1

T

.1/ �!H 0.Ut ;p
�
3;tOPd3�1.1//

Š
�!H 0.Ut ;A

0˝I
t /;

where the last isomorphism is induced by A 0˝I �T p�
1;T

O
P

d1�1

T

.1/ in (c), and the other morphisms in
(d) and (h) are defined similarly.

We give a few words about the conditions (a)–(i). The roles of these conditions are as follows:

� (e), (g), and (i) are related to the conditions of Md;v;u;w;r .T /,

� (c), (d), (e) and (h) are utilized to prove the representability of H, and

� (a), (b) and (f) are extra and written just for the convenience of the proof.
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More precisely, (a), (b) and (f) immediately follow from (d), (i), and the properties of I in Corollary 3.8,
and there are the following correspondences:

� (e) implies (iii) of Md;v;u;w;r .T /,

� (g) corresponds to (iv) of Md;v;u;w;r .T /,

� (i) corresponds to (v) of Md;v;u;w;r .T /.

Thus, every morphism .UT ;A
0/! zCT satisfying (a)–(i) is an object of Md;v;u;w;r .T /.

Step 2 In this step, we prove Proposition 5.6 assuming the existence of N in Claim 1.

Let N be the scheme in Claim 1 and let UN � Pd1�1
N

�N Pd2�1
N

�N Pd3�1
N

be the universal subscheme.
We fix zAN as in Claim 1. By (c) and (e), we can find line bundles M1, M2 and M3 on N such that

p�1;NO.1/� z��NM1˝ zA ˝I
N
; p�2;NO.1/� z��NM2˝ zA ˝IC1

N
; p�3;NO.1/� z��NM3˝!

Œer �

UN =N
:

By (d) and (h) and applying [Mumford 1966, Lecture 7, Corollary 2] to the natural morphisms

O˚d1

N
! z�N�p

�
1;NO.1/ ŠM1˝ z�N�

zA ˝I
N
;

O˚d2

N
! z�N�p

�
2;NO.1/ŠM2˝ z�N�

zA ˝IC1
N

;

O˚d3

N
! z�N�p

�
3;NO.1/ ŠM3˝ z�N�!

Œer �

UN =N
;

we see that

O˚d1

N
ŠM1˝ z�N�

zA ˝I
N
; O˚d2

N
ŠM2˝ z�N�

zA ˝IC1
N

; O˚d3

N
ŠM3˝ z�N�!

Œer �

UN =N
:

From these relations, we obtain isomorphisms

z�1 W PN .z�N�
zA ˝I
N
/
Š
�! Pd1�1

N
;

z�2 W PN .z�N�
zA ˝IC1
N

/
Š
�! Pd2�1

N
;

z�3 W PN .z�N�!
Œer �

UN =N
/
Š
�! Pd3�1

N
:

This fact and the universal property of N show that there exists an injective map

�.S/ W Hom.S;N / ,! H.S/

which maps 
 W S !N to .fS W .US ; zAS /! zCS ; z�1;S ; z�2;S ; z�3;S /, where z�i;S is the base change of z�i

by S . Therefore we obtain a morphism � W Hom.�;N /! H.

It suffices to prove the surjectivity of �. In general, for two locally free sheaves E and E 0 on S with
an S-isomorphism g W PS .E/! PS .E 0/, we have g�OPS .E 0/.1/ �S OPS .E/.1/. Indeed, we put F WD
g�OPS .E 0/.1/˝OPS .E/.�1/. Then F is locally trivial over S by [Mumford et al. 1994, Section 0.5(b)].
Thus, the pushforward of F to S is an invertible sheaf. From this fact and the global generation of F over S ,
we have g�OPS .E 0/.1/�S OPS .E/.1/. By using this fact, for any object .f W .X ;A /! C; �1; �2; �3/ of
H.S/ with the canonical morphisms

f1 W X ! PS .�X�A
˝I /; f2 W X ! PS .�X�A

˝IC1/ and f3 W X ! PS .�X�!
Œer �

X=S /;
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we have

(I) .�1 ıf1/
�O.1/�S A ˝I ; .�2 ıf2/

�O.1/�S A ˝IC1 and .�3 ıf3/
�O.1/�S !

Œer �

X=S :

By the properties of I in Corollary 3.8 and the condition (iv) of Md;v;u;w;r with the aid of [Hartshorne
1977, III, Theorem 12.11], we see that the fibers of �X�A

˝I , �X�A
˝IC1 and �X�!

Œer �

X=S coincide with
H 0.Xxs;A ˝I

xs /, H 0.Xxs;A ˝IC1
xs / and H 0.Xxs;OXxs .erKXxs //, respectively, over every geometric point

xs 2 S . Then the three linear equivalences in (I) induce the surjective morphisms

(II) O˚d1

S
!H 0.Xs;A

˝I
s /; O˚d2

S
!H 0.Xs;A

˝IC1
s / and O˚d3

S
!H 0.Xs;OXs

.erKXs
//

for any point s 2 S .

We set pi WD �i ı fi . By the properties of I in Corollary 3.8, p1;xs is a closed immersion for every
geometric point xs 2 S . Thus,

p1 �p2 �p3 W X ,! Pd1�1
S

�S Pd2�1
S

�S Pd3�1
S

is a closed immersion. The morphism 
 W S ! H corresponding to p1 � p2 � p3 factors through N

since (I) (resp. (II)) corresponds to (c) and (e) (resp. (d) and (h)). Then it immediately follows that �.S/
is surjective and hence � is an isomorphism.

Therefore, H is represented by N and hence Proposition 5.6 holds if Claim 1 holds. We finish this step.

Step 3 In this final step, we prove Claim 1. To prove Claim 1, it suffices to check that (a)–(i) are locally
closed conditions.

We first deal with (a) and (b). By [Grothendieck 1966, Théorème (12.2.1) and (12.2.4)], the subset

U1 WD fs 2H j Us is geometrically connected and geometrically normalg

is open. By [Görtz and Wedhorn 2010, Proposition 12.93], the subset

U2 WD fs 2 U1 j p1;s W Us! Pd1�1
s and p2;s W Us! Pd2�1

s are closed immersionsg � U1

is also open.

Next, we treat (c). We put

zA D p�2;U2
O

P
d2�1

U2

.1/˝p�1;U2
O

P
d1�1

U2

.�1/:

Then the condition (c) implies that

A 0 �T p�1;T O
P

d1�1

T

.�1/˝p�2;T O
P

d2�1

T

.1/D zAT :

Hence, the existence of A 0 satisfying (c) is equivalent to the z�T -ampleness of zAT and the relations

zA ˝I
T
�T p�1;T O

P
d1�1

T

.1/ and zA ˝IC1
T

�T p�2;T O
P

d2�1

T

.1/:
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By Corollary 2.20, there exists a locally closed subscheme

U3 � U2

such that a morphism T ! U2 factors through U3 ,! U2 if and only if the relations

zA ˝I
T
�T p�1;T O

P
d1�1

T

.1/ and zA ˝IC1
T

�T p�2;T O
P

d2�1

T

.1/

hold true. Since p1;U3
is a closed immersion, zAU3

is z�U3
-ample.

For (d), set

U4 WD

8̂<̂
:s 2 U3

ˇ̌̌̌
ˇ̌̌ � h0.Us; zA

˝I
s /D d1,

� h0.Us; zA
˝IC1

s /D d2, and
� both O˚d1

U3
!H 0.Us; zA

˝I
s / and O˚d2

U3
!H 0.Us; zA

˝IC1
s / are surjective.

9>=>;
Then U4 is open. Indeed, pick a point s 2 U4. We take a line bundle M on U3 such that

z��U3
M˝ zA ˝I

U3
� p�1;UU3

Od1�1
P .1/:

By the third condition in U4 and the construction of O˚d1

U3
!H 0.Us; zA

˝I
s /, we have that

z�U3�p
�
1;U3

O.1/ŠM˝OU3
z�U3�

zA ˝I
U3
!H 0.Us; zA

˝I
s /

is surjective. By [Hartshorne 1977, III, Theorem 12.11], M˝OU3
z�U3�

zA ˝I
U3

is locally free near s and

M˝OU3
z�U3�

zA ˝I
U3
˝OU3

OU3;s0=ms0 !H 0.Us0 ; zA
˝I

s0 /

is an isomorphism for every point s0 2 U3 on some neighborhood of s, where ms0 is the maximal ideal
of OU3;s0 . Therefore we have that h0.Us0 ; zA

˝I
s0 /D d1 for every point s0 on some neighborhood of s, and

the third condition on U4 implies that O˚d1

U3
!M˝OU3

z�U3�
zA ˝I
U3

is surjective at s. Then the morphism

O˚d1

U3
! z�U3�p

�
1;U3

O.1/ŠM˝OU3
z�U3�

zA ˝I
U3
!H 0.Us0 ; zA

˝I
s0 /

is surjective for every point s0 on some neighborhood of s. By the same argument, we see that
h0.Us0 ; zA

˝I
s0 /D d2 and O˚d2

U3
!H 0.Us0 ; zA

˝IC1
s0 / is surjective for every point s0 on some neighborhood

of s. In this way, if s 2 U4 then a neighborhood of s is contained in U4, which implies the openness
of U4.

In this paragraph, we discuss the conditions (e) and (f). By Corollary 2.20, we may find a locally closed
subscheme

U5 � U4

such that a morphism T ! U4 factors through U5 if and only if !Œer �

UT =T
�T p�

3;T
O.1/. Furthermore, the

subset
U6 D ft 2 U5 j Uxt is kltg

is open since !Œr �UT =T
is a line bundle; see [Kollár 2013, Corollary 4.10].
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We will discuss condition (g) for three paragraphs. We fix an l 2Z>0, and we will discuss the surjectivity
of z�T�!

Œler �

UT =T
!H 0.Ut ;OUt

.lerKUt
// for every t 2T , which we call condition (g)l . For any Noetherian

affine scheme xU with a morphism xU !U8, we define functors F0
xU

and F1
xU

that send an affine scheme U 0

over xU to z�U 0�!
Œler �

UU 0=U 0
and R1z�U 0�!

Œler �

UU 0=U 0
, respectively. These are the same functors as discussed in

[Hartshorne 1977, III, Section 12], and the functor F0
xU

is always left exact by the flatness of z�U6�!
Œler �

UU6
=U6

.
Pick an affine open subset U �U6. We pick a Grothendieck complex .K�; d�/ for !Œler �

UU =U
. This is the same

complex as in [Mumford 2008, Section 5, Lemma 1]; see also [Hartshorne 1977, III, Proposition 12.2].
We define a coherent sheaf

W 1
WD Coker .d0

WK0
!K1/

on U. For any affine morphism g W T ! U, the pullback of the complex .g�K�;g�d�/ is a Grothendieck
complex with respect to !Œler �

UT =T
and

g�W 1
D Coker .g�d0

W g�K0
! g�K1/:

By applying Theorem 4.8 and [Mumford 2008, Section 5, Corollary 2] to the normalization of U6, we
see that z�U6;red satisfies (g)l . By [Hartshorne 1977, III, Corollary 12.6 and Proposition 12,10], F0

Ured
is

exact and hence F1
Ured

is left exact. By [Hartshorne 1977, III, Proposition 12,4], W 1˝OU
OUred is flat for

any choice of .K�; d�/. By this fact and the flattening stratification for W 1, we get a closed subscheme
ZU � U such that a morphism g W T ! U factors through ZU ,! U if and only if g�W 1 is flat, which
is equivalent to the exactness of F0

T
by [Hartshorne 1977, III, Proposition 12.4]. From this, we can check

that ZU is independent of the choice of .K�; d�/ and hence ZU jU 0 DZU 0 for any affine open embedding
U 0 ,! U. By these facts, we can construct a closed subscheme

U
.l/
7
� U6

by gluing all ZU for affine open subsets U � U6.

By construction, a morphism g0 W T 0! U6 factors through U
.l/
7
,! U6 if and only if g0�

V
W 1 is flat for

any affine open subsets V � T 0 and U � U6 with the induced morphism g0
V
W V ! U. By [Hartshorne

1977, III, Proposition 12.4], g0�
V

W 1 is flat if and only if F1
V

is left exact. By recalling that F0
V

is always
left exact, we see that F1

V
is left exact if and only if F0

V
is exact. Thus, g0 W T 0! U6 factors through

U
.l/
7
,!U6 if and only if F0

V
is exact for any affine open subset V � T 0. By the argument of cohomology

and base change [Hartshorne 1977, III, Proposition 12.5, Corollary 12.6 and Proposition 12.10], the
exactness of F0

V
for every V � T 0 is equivalent to the condition (g)l . In this way, g0 W T 0! U6 factors

through U
.l/
7
,! U6 if and only if the morphism z�T 0 W UT 0 ! T 0 satisfies (g)l .

By the above argument, we have a sequence of closed subschemes of U6

U6 � U
.1/
7
� U

.1/
7
\U

.2/
7
WD U

.1/
7
�U6

U
.2/
7
� � � � ;

and the Noetherian property of U6 implies that the above sequence is stationary and

U7 WD

\
l2Z>0

U
.l/
7
� U6
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is well-defined as a closed subscheme. By the construction of U
.l/
7

, a morphism T ! U7 factors through
U7 ,! U6 if and only if UT ! T satisfies (g). We have finished discussing (g).

By Theorem 4.8 and applying the same argument as in the construction of U4, we see that

U8 WD fs 2 U7 jO˚d3

U7
!H 0.Us;OUs

.erKUs
// is surjective, h0.Uxs;OUxs .erKUxs //D d3g

is open. This corresponds to (h).

Finally, we discuss the condition (i). We put

zC WD ProjU8

�M
l�0

z�U8�!
Œler �
UU8=U8

�
:

Let f W UU8
! zC be the induced morphism. Now the sheaf !Œer �

UT =T
is z�T -semiample by the construction

of U5. Furthermore,
zCT D ProjT

�M
l�0

z�T�!
Œler �

UT =T

�
for any morphism T !U8 by the condition (g) and [Hartshorne 1977, Theorem 12.11]. Thus, fxs WUxs!zCxs
is the contraction induced by eKUxs for any geometric point xs 2 U8. We consider the set

U9 WD

�
s 2 U8

ˇ̌̌̌
.p�

3;xs
O.1/2 � zA d�2

xs /D 0, .p�
3;xs

O.1/� zA d�1
xs /D eruv,

vol. zAxs/� w and Ivol.erKUxs /D eru.

�
We note that if the Iitaka dimension of eKUxs is one, we have Ivol.erKUxs /D r � Ivol.eKUxs /. This fact and
(e) show that a point s 2U8 is contained U9 if and only if .Uxs; zAxs/! zCxs satisfies (ii)–(iv) of Zd;v;u;w . We
will check that U9 is open. By applying Theorem 4.8 to the normalization of U8, we see that the function

U8 3 s 7! h0.Uxs;OUxs .emrKUxs //

is locally constant for every m 2 Z>0. We also see that

U8 3 s 7!
�
.p�3;sO.1/2 � zA d�2

s /; .p�3;sO.1/ � zA d�1
s /; vol. zAs/

�
2Q3

is locally constant by the flatness. Therefore, we see that U9 is open. Now it suffices to show the uniform
adiabatic K-stability of fxs for any geometric point xs 2 U9. If u> 0, every fxs is uniformly adiabatically
K-stable and hence we may set N WD U9. If u< 0, then we apply Theorem 4.2 and Example 2.28 to the
normalization U �

9
of U9 and UU �

9
! zCU �

9
, and we obtain an open subset

W � U �
9

such that s 2U �
9

is contained in W if and only if fxs is uniformly adiabatically K-stable. Let � WU �
9
!U9

be the morphism of the normalization. Since � is surjective and closed and W D ��1.�.W //, the set

N D �.W /

is open. Moreover, a geometric point xs 2 U9 is a point of N if and only if fxs is uniformly adiabatically
K-stable. Thus, we have finished discussing the condition (i).
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By the above argument, a morphism T !H factors through N ,!H , if and only if there exists A 0 as in
Claim 1 such that z�T W UT ! T and A 0 satisfy (a)–(i). We have finished the proof of Claim 1.

This completes the proof of Proposition 5.6.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1 By Lemma 5.3, Md;v;u;w;r is a stack. We have

Md;v;u;w;r D

G
d1;d2;d3;h

Md1;d2;d3;h

as stacks. Thanks to Lemma 5.4, it suffices to check that Md1;d2;d3;h is a separated Deligne–Mumford
stack of finite type over k for the fixed d1, d2, d3 and h.

Fix d1, d2, d3 and h. We put N WD Nd1;d2;d3;h, where Nd1;d2;d3;h is in Proposition 5.6, and let
�N W .UN ; zAN /!N be the universal family in Proposition 5.6. We check that

Md1;d2;d3;h Š ŒN=PGL.d1/�PGL.d2/�PGL.d3/�:

We first construct a morphism from Md1;d2;d3;h to ŒN=PGL.d1/�PGL.d2/�PGL.d3/�. By regarding
N and Md1;d2;d3;h as stacks and using .UN ; zAN /!N, we get a morphism N !Md1;d2;d3;h between
stacks. Take a scheme S and g W .X ;A / ! C 2 Md1;d2;d3;h.S/. By the 2-Yoneda lemma [Olsson
2016, Proposition 3.2.2] and regarding S and Md1;d2;d3;h as stacks, we can find a morphism S !

Md1;d2;d3;h that corresponds to g W .X ;A /! C. For any étale covering S 0! S such that the pullback
of A is represented by a �XS0

-ample line bundle A 0, the definition of Md;v;u;w;r and [Hartshorne
1977, III, Theorem 12.11] imply that �XS0�

A 0˝I , �XS0�
A 0˝IC1 and �XS0�!

Œer �

XS0=S
0 are locally free

sheaves of ranks d1, d2 and d3, respectively. Since N is the scheme representing H (Proposition 5.6),
S 0 �Md1;d2;d3;h

N is represented by

V.XS0 ;AS0 /
WD IsomS 0.PS 0.�XS0�

A 0˝I /;Pd1�1
S 0

/�S 0 IsomS 0.PS 0.�XS0�
A 0˝IC1/;Pd2�1

S 0
/

�S 0 IsomS 0.PS 0.�XS0�
!
Œer �

XS0=S
0/;P

d3�1
S 0

/:

Thus, we can think S 0 �Md1;d2;d3;h
N of a principal PGL.d1/ � PGL.d2/ � PGL.d3/-bundle over S 0.

In particular, S 0 �Md1;d2;d3;h
N is affine over S 0. Hence, S �Md1;d2;d3;h

N is represented by an affine
scheme over S [Olsson 2016, Proposition 4.4.9]. Then S �Md1;d2;d3;h

N is a principal PGL.d1/ �

PGL.d2/� PGL.d3/-bundle over S [Fantechi et al. 2005, Proposition 2.36], and the natural morphism
S �Md1;d2;d3;h

N ! N is PGL.d1/ � PGL.d2/ � PGL.d3/-equivariant by Proposition 5.6. For each
scheme S , by considering the map

.S !Md1;d2;d3;h/ 7! .S �Md1;d2;d3;h
N !N /

and using the 2-Yoneda lemma on the left-hand side, we obtain a morphism

� WMd1;d2;d3;h! ŒN=PGL.d1/�PGL.d2/�PGL.d3/�

between stacks.
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In this paragraph we prove that � is an isomorphism. By [Olsson 2016, Proposition 3.1.10], it suffices to
show the full faithfulness and the essential surjectivity of

�.S/ WD �jMd1;d2;d3;h
.S/ WMd1;d2;d3;h.S/! ŒN=PGL.d1/�PGL.d2/�PGL.d3/�.S/

for a fixed scheme S . To prove the full faithfulness, we pick objects g W .X ;A /! C and g0 W .X 0;A 0/! C0
of Md1;d2;d3;h.S/. Taking an étale covering of S , we may assume that A and A 0 are line bundles. By
construction, �.S/ defines a map

IsomS ..X ;A /; .X 0;A 0//! Hom.V.X ;A /;V.X 0;A 0//;

� 7!
�
.�1; �2; �3/ 7! .�1 ı�

�1; �2 ı�
�1; �3 ı�

�1/
�
:

From this, the full faithfulness of �.S/ follows. For the essential surjectivity, we pick any object ˛ WP!N

of ŒN=PGL.d1/�PGL.d2/�PGL.d3/�.S/. Here, P is a principal PGL.d1/�PGL.d2/�PGL.d3/-bundle
over S and ˛ is PGL.d1/�PGL.d2/�PGL.d3/-equivariant. By [Olsson 2016, Corollary 1.3.10], there
exists an étale covering ˇ WS 0!S such that S 0�SP has a section S 0!S 0�SP . Let � WS 0!S 0�SP!N

be the composition of the section and the natural morphism, and let .US 0 ; zAS 0/! zCS 0 be an object
of Md1;d2;d3;h.S

0/ defined by the pullback of the universal family .UN ; zAN / ! zCN via � . Then
there exists an S 0 � N -isomorphism S 0 �S P ! S 0 �Md1;d2;d3;h

N, where S 0 ! Md1;d2;d3;h is the
morphism corresponding to .US 0 ; zAS 0/ ! zCS 0 . By this discussion and the full faithfulness, �.S/ is
essentially surjective. Thus � is an isomorphism. In this way, Md1;d2;d3;h is categorically equivalent to
ŒN=PGL.d1/�PGL.d2/�PGL.d3/�. Thus, Md1;d2;d3;h is an Artin stack of finite type over k.

In the rest of the proof, we will prove that Md1;d2;d3;h is a separated Deligne–Mumford stack with
a coarse moduli space. By Theorem 2.17, it suffices to prove that the diagonal morphism is finite.
By Corollaries 4.5 and 4.7, we only need to prove that the diagonal morphism is proper. For any
scheme S and gi W .Xi ;Ai/ ! Ci 2 Md1;d2;d3;h.S/ for i D 1; 2, it suffices to show that the scheme
I WD IsomS ..X1;A1/; .X2;A2// is proper over S . By [Fantechi et al. 2005, Proposition 2.36] and taking
an étale covering of S , we may assume that A1 and A2 are represented by line bundles. By abuse
of notation, we denote them by A1 and A2, respectively. Then I is locally quasiprojective over S

(Section 2.2).

Since the problem is local, by shrinking S , we may assume that I is quasiprojective over S and there
exist morphisms 
i W S ! N for i D 1; 2 such that 
 �i .fN W .UN ; zAN /! zCN / D gi , where fN is the
canonical morphism of the ample model of !Œer �

UT =T
. By the morphism S ! N �N naturally induced

from 
1 and 
2, we obtain

I D IsomN�N

�
.U1;A1/; .U2;A2/

�
�N�N S;

where U1 (resp. U2) is the base change UN �N .N�N / by the first (resp. second) projection N�N !N,
and A1 (resp. A2) is the pullback of zA . From this, we may replace S by N �N. Hence, we may assume
that S is of finite type over k. By [Görtz and Wedhorn 2010, Corollary 13.101], it suffices to prove
that the natural morphism I �S .S �An/! S �An, denoted by ', is a closed map for every n 2 Z>0.
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We pick a closed subset Z � I �An. Note that '.Z/ is constructible. By Lemma 2.2, to prove the
closedness of '.Z/ it suffices to show that for any morphism q W C ! '.Z/ from a curve C such that
q�1.'.Z// is dense in C , we have q.C /� '.Z/. Consider the scheme

J WD .I �An/�S�An C ŠI �S C:

Since J is quasiprojective, we can find a curve D with a morphism D!J such that the composition
D!J ! C is a dominant morphism. By considering a compactification of D over C , we obtain a
curve D such that D! C is surjective and D is an open subset of D. Then I �S D is an open subset
of I �S D, and I �S D ŠJ �C D!D has a section D0 �I �S D. This section can be extended to
a section D0 of .I �An/�S�An D ŠI �S D!D. Indeed, this fact follows from Proposition 4.4 if
u > 0. If u < 0, then CD of any object f W .X;A/! CD of Md1;d2;d3;h.D/ is a P1-bundle over D by
Tsen’s theorem; see [Hartshorne 1977, V Section 2]. Thus, we can apply Theorem 4.6 and obtain D0.
Then

p.C /D Im.D! C ! S �An/D Im
�
D0 ,! .I �An/�S�An D!I �An '

�! S �An
�
� '.Z/:

Hence, ' is a closed map, which implies that the diagonal morphism is proper. It follows from this that
Md1;d2;d3;h is separated.

By the above argument, Md1;d2;d3;h is a separated Deligne–Mumford stack of finite type over k with the
coarse moduli space.

Now we prove Theorem 1.3. More specifically, we prove that Md;v;u;r is an open and closed substack of
Md;v;u;r;w for some w 2 Z>0.

Proof of Theorem 1.3 We will freely use the notation Zd;v;u and Zd;v;u;w in Section 1.

We first check that for any scheme S and f W .X ;A /! C 2Md;v;u;r .S/, there exists L 2 PicC=S .S/
such that Lxs DOP1.1/ for any geometric point xs 2 S . Since u < 0, the morphism C! S is a smooth
morphism whose geometric fibers are P1; see Theorem 2.6. Thus, there is an étale covering S 0! S

such that C �S S 0 Š P1
S 0

; see the first paragraph of the proof of Theorem 4.2. Then OP1
S0
.1/ satisfies

p�
1;P1

S0

OP1
S0
.1/Š p�

2;P1
S0

OP1
S0
.1/;

where p1 W S
0 �S S 0! S 0 (resp. p2 W S

0 �S S 0! S 0) is the first (resp. second) projection. Since PicC=S
is an étale sheaf, there exists L 2 PicC=S .S/ that corresponds to OP1

S0
.1/ under the canonical injection

PicC=S .S/! PicC=S .S 0/. By definition, it is easy to check that Lxs D OP1.1/ for any geometric point
xs 2 S .

By the same argument as in the proof of Lemma 5.3, it follows that Md;v;u;r is a category fibered in
groupoids. By Proposition 3.4, we can find a positive integer w0, depending only on d , v and u, such that
for any f W .X; 0;A/! C 2 Zd;v;u together with a general fiber F of f , the divisor AC tAF is ample
and vol.AC tAF /� w0 for some integer tA. Then

f W .X; 0;AC tAF /! C 2 Zd;v;u;w0 :
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Pick integers w1; : : : ; wk 2 .w
0; w0Cdv� such that for each 1� i � k there is an object fi W .Xi ; 0;Ai/!

Ci 2 Zd;v;u;w0Cdv such that vol.Ai/ D wi . Note that vol.A0/ 2 Z for every f 0 W .X 0; 0;A0/! C 0 2

Zd;v;u;w0Cdv because A0 is a line bundle. Hence, we have

vol.A0/D wi

for some i if vol.A0/ > w0.

For each 1 � i � k, we set Mwi
as the open and closed substack of Md;v;u;w0Cdv;r that parametrizes

f W .X ;A /! C such that vol.Axs/Dwi for all geometric points xs 2 S . Then there is a natural morphism


 WMw1
t � � � tMwk

�!Md;v;u;r

between categories fibered in groupoids. If 
 is an isomorphism, then Md;v;u;r is an open and closed
substack of Md;v;u;w0Cdv;r , and Theorem 1.3 immediately follows from Theorem 5.1. Therefore, it
suffices to prove that 
 is an isomorphism.

For a scheme S , we regard f W .X ;A /! C 2Mwj .S/ as an object of Md;v;u;r .S/. It suffices to show
the full faithfulness and the essential surjectivity of


 .S/ WD 
 jMw1
t���tMwk

.S/

for any scheme S . Firstly, we prove the full faithfulness. By the definitions of Md;v;u;r and Md;v;u;w0Cdv;r ,
we see that 
 .S/ is faithful. To show the fullness, take two objects f W .X ;A /! C and f 0 W .X 0;A 0/! C0
of Mw1

t � � � tMwk
.S/ and an isomorphism ˛ W f ! f 0 in Md;v;u;r .S/. This means that ˛ W X ! X 0 is

an S-isomorphism and there exists an element B 2 PicC=S .S/ such that ˛�A 0 D A ˝ f �B. To show
that ˛ comes from an isomorphism in Mw1

t � � � tMwk
, it suffices to prove B D 0 as an element of

PicC=S .S/. For any geometric point xs 2 S , we have Bxs �OP1.m/ for some m 2 Z and

vol.A 0xs /D vol.Axs/C dmv:

By the property of w1; : : : ; wk , there exist two indices i and j such that wi D vol.Axs/ and wj D vol.A 0
xs /.

Since jwi �wj j < dv, we have that mD 0. This implies Bxs � OP1 . By the proof of [Mumford et al.
1994, Section 0.5(b)], we see that BD 0 as an element of PicC=S .S/. From this, it follows that 
 .S/ is a
fully faithful functor.

Secondly, we prove the essential surjectivity of 
 .S/. We fix an object f W .X ;A /! C of Md;v;u;r .S/

and a geometric point xs 2S . As in the third paragraph of this proof, there is p 2Z such that Axs˝f
�
xs L

˝p
xs

is ample and
vol.Axs˝f �xs L

˝p
xs /� w0

for every geometric point xs 2 S . Then there exists an open neighborhood U of xs such that Axt ˝f
�
xt

L
˝p
xt

is ample for any geometric point xt 2 U. By shrinking U, we may assume that vol.Axt ˝ f
�
xt

L
˝p
xt

/ is
independent of xt 2 U. This is because the function

U 3 t 7! vol.Axt ˝f
�
xt

L
˝p
xt

/ 2 Z>0
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is locally constant. Take a positive integer q such that Axt ˝f
�
xt

L
˝pCq
xt

is ample and

w0 < vol.Axt ˝f
�
xt

L
˝pCq
xt

/D vol.Axt ˝f
�
xt

L
˝p
xt

/C dqv � w0C dv

for any geometric point xt 2U. Then we see that vol.Axt˝f
�
xt

L
˝pCq
xt

/Dwi for some i . The above argument
shows that for any geometric point xs 2 S , there exists an open neighborhood U of xs such that f jU comes
from Mw1

t � � � tMwk
.U /. More precisely, there exists a set of open subsets fU� � Sg�2ƒ with q� 2Z

such that there exists an integer i 2 Œ1; k� such that Axs˝f
�
xs L

˝q�
xs is ample and vol.Axs˝f �xs L

˝q�
xs /Dwi

for any geometric point xs 2 U�. For any �; �0 2ƒ, if U�\U�0 ¤∅, then

vol.Axs˝f �xs L
˝q�
xs /D vol.Axs˝f �xs L

˝q�0
xs /C d.q�� q�0/v

for any geometric point xs2U�\U�0 . Since we have jd.q��q�0/vj<dv by construction, we have q�Dq�0 .
Then we can glue A ˝f �L˝q� j��1

X .U�/, and we obtain A 0 2 PicX=S .S/. By construction, there exists
an element B 2 PicC=S .S/ such that A ˝f �BDA 0 and f W .X ;A 0/! C 2Mw1

t� � �tMwk
.S/. This

means that 
 .S/ is essentially surjective. Thus, we conclude that 
 is an isomorphism.

Remark 5.7 In Theorem 5.1, we have constructed the moduli spaces depending on the choice of r of
Lemma 3.1. However, the reduced structures of these moduli stacks are independent of r . To see this, it
suffices to show the following:

(�) Fix r as in Lemma 3.1 and l 2 Z>0. For every reduced scheme S , every object f W .X ;A /! C 2
Md;v;u;w;lr .S/ is an object of Md;v;u;w;r .S/.

To show (�), we only need to check (iii) and (iv) of Md;v;u;w;r .S/ for f W .X ;A /! C 2Md;v;u;w;lr .S/

as above.

We first check (iii). Note that the function S 3 s 7! �.Xs;OXs
.lerKXs

CmAs// is locally constant for
every m 2 Z. By the basepoint-freeness of erKXxs and considering the exact sequence

0!OXxs .kerKXxs CmAxs/!OXxs ..kC 1/erKXxs CmAxs/!OD.mAxsjD/! 0

for every k � 0, where D 2 jerKXxs j is a general member, we have

�.Xs;OXs
.kerKXs

CmAs//D �.Xs;OXs
.mAs//C k�.D;OD.mAsjD//

for every m 2Z. Considering the case k D l , we see that �.D;OD.mAsjD// is locally constant on s 2 S .
Therefore, the function

S 3 s 7! �.Xs;OXs
.kerKXs

CmAs//

is locally constant for every m 2 Z and k 2 Z�0. By Theorem 2.19, there is the universal hull !Œr �X=S . By
the definition of r in Lemma 3.1, the sheaf !Œr �Xxs is invertible for any geometric point xs 2 S . From this,
!
Œr �

X=S exists as a line bundle. Therefore (iii) of Md;v;u;w;r .S/ is satisfied.
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Next, we check (iv) of Md;v;u;w;r .S/. By applying Theorem 4.8 to the normalization of S , the function

S 3 s 7! dim H 0.Xs;OXs
.kerKXs

//

is locally constant for every k � 0. By [Mumford 2008, Section 5, Corollary 2] and the reducedness of S ,
we see that (iv) of Md;v;u;w;r .S/ is satisfied.

From the above discussion, we have f W .X ;A /! C 2Md;v;u;w;r .S/. Thus, we see that (�) holds and the
reduced structures of Md;v;u;w;lr and Md;v;u;w;r are the same. As we saw in the proof of Theorem 1.3,
Md;v;u;r is an open and closed substack of Md;v;u;w;r and hence its reduced structure does not depend
on the choice of r .

6 Uniformity of adiabatic K-stability

This section is devoted to show Theorem 1.6 and Corollary 1.7. Throughout this section, we work over
the field of complex numbers C, and we will use Fd;n;v and Gd;n;v;u in Section 3. We fix d; n 2 Z>0,
u 2Q and v 2Q>0. For any w 2Q>0 we consider the set

GCar
d;n;v;u;w WD

�
f W .X; �;A/! C

ˇ̌̌̌
f W .X; �/!C 2Gd;n;v;u and A is an ample Cartier
divisor satisfying (iv) of Fd;n;v such that vol.A/�w.

�
Recall from by Theorem 3.6 and Remark 3.7 that there exists m 2Z>0, depending only on d , n, u and v,
such that for any element f W .X; �;A/!C of Gd;.1=n/Z\Œ0;1�;v;u;w , mA is Cartier. Thus, we can regard
f W .X; �;mA/! C as an element of GCar

d;n;md�1v;u;mdw
.

First, we parametrize all elements of GCar
d;n;v;u;w

when u¤ 0.

Proposition 6.1 Fix d , n, u, v and w as above such that u ¤ 0. Then there exist a log Q-Gorenstein
family f W .X ;D/! S , an f -ample Carter divisor A on X , and an S -morphism g W X ! C such that S is
a normal scheme of finite type over C, C is a normal scheme which is smooth and projective over S , and
moreover ,

� we have gs W .Xs;Ds;As/! Cs 2G
Car
d;n;v;u;w

for any closed point s 2 S , and

� for any element h W .X; �;A/!C 2GCar
d;n;v;u;w

, there exist a closed point s 2 S and isomorphisms
˛ W .Xs;Ds/! .X; �/ and ˇ W Cs! C satisfying h ı˛ D ˇ ıgs and ˛�A� As .

Proof The case when the boundary � is zero in the proposition easily follows from Proposition 5.6. In
the general case, the proposition holds true by the standard argument of the boundedness and the idea in
the proof of Proposition 5.6.

The following is the key step to showing Theorem 1.6 for the case when u> 0.
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Theorem 6.2 Let f W .X ;D/! S be a log Q-Gorenstein family and A an f -ample line bundle on X .
Suppose that KX=S CD is nef over S and the fiber .Xs;Ds/ over any closed point s 2 S is klt.

Then there exists a positive rational number �0 such that .Xs;Ds; �AsCKXs
CDs/ is specially K-stable

for the fiber .Xs;Ds;As/ over any closed point s 2 S and any rational number � 2 .0; �0/. Furthermore ,
there exists a positive rational number ˛ such that

M NA
Ds
.Y;M/� ˛.J �AsCKXsCDs /NA.Y;M/

for any rational number � 2 .0; �0/, closed point s 2 S , and normal semiample test configuration .Y;M/

for .Xs; �AsCKXs
CDs/.

Proof First, we note that ACKX=S CD is f -ample. By [Blum and Liu 2022, Proposition 5.3], there
exists ı0 > 0 such that ˛.Xs ;Ds/.AsCKXs

CDs/� ı0 for any closed point s 2 S . We also have

˛.Xs ;Ds/.AsCKXs
CDs/� ˛.Xs ;Ds/.�AsCKXs

CDs/

for � 2 .0; 1/. We put d as the relative dimension of f . By Lemma 2.27, we have

(6-1) ı.Xs ;Ds/.�AsCKXs
CDs/�

d C 1

d
˛.Xs ;Ds/.�AsCKXs

CDs/

�
d C 1

d
˛.Xs ;Ds/.AsCKXs

CDs/�
d C 1

d
ı0:

By Theorem 2.32, there exists a positive rational number C , which depends only on the numbers
.KX C�/

d�i �Ai for 0� i � d , such that .X; �ACKX C�/ is uniformly JKXC�CC�.�ACKXC�/-stable
for any � > 0 and d-dimensional polarized klt pair .X; �;L/ such that KX C� is nef. By the flatness
of f , the .KXs

CDs/
d�i �Ai

s are independent of s, hence we can choose C so that .Xs; �AsCKXs
CDs/ is

JKXsCDsCC�.�AsCKXsCDs/-stable for any s 2S . By taking �0 such that 0<�0<minf.dC1/ı0=.dC /; 1g,
we have

M NA
Ds
.Y;M/�

�
.d C 1/ı0

d
�C�0

�
.J �AsCKXsCDs /NA.Y;M/

for any rational number � 2 .0; �0/, closed point s 2 S and normal semiample test configuration .Y;M/

for .Xs; �AsCKXs
CDs/.

Now we assume u< 0. In this case, we need to show that the uniform “convergence of the ı-invariant”
(cf [Hattori 2022, Theorem D]) holds for all polarized klt-trivial fibrations belonging to one family.

Proposition 6.3 Let S be a normal variety and f W X ! P1
S

be a contraction of normal varieties over S .
Suppose that � W .X ;D/! S is a log Q-Gorenstein family such that any geometric fiber is a klt pair. Let
H be a �-ample Cartier divisor on X . Suppose further that there exists a positive real number u such that

lim
�!0

ı.Xxs ;Dxs/.�HxsCf �xs O.1//� u

for any geometric fiber fxs W .Xxs;Dxs;Hxs/! P1 over xs 2 S .
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Then for any ı0 > 0, there exists a positive real number �0 such that

ı.Xxs ;Dxs/.�HxsCf �xs O.1//� u� ı0

for any rational number � 2 .0; �0/ and geometric point xs 2 S .

Proof By [Blum and Liu 2022, Theorem 6.6], if

ı.Xs ;Ds/.�HsCf
�

s O.1//� u� ı0

holds for any closed point s 2 S , then

ı.Xxs ;Dxs/.�HxsCf �xs O.1//� u� ı0

also holds for any geometric point xs 2S since the set of all closed points is Zariski dense. Thus, it suffices
to show the assertion for all closed points of S .

First, we note that to show the assertion, we may freely shrink S or replace S by S 0 with an étale
morphism S 0! S . Indeed, if we can prove Proposition 6.3 for a nonempty open subset U � S , then the
assertion for S follows from Noetherian induction. Thus, we may assume as in the proof of Lemma 4.1
that S is smooth and there exists a diagram

(6-2)

Y g
//

f 0

��

X

f
��

W h
// P1

S

of projective morphisms, where Y and W are smooth varieties, with snc divisors † on W and „ on Y ,
respectively, such that

(i) h is birational and g is a log resolution of .X ;D/,
(ii) f 0 is a contraction,

(iii) „� f 0�†[Supp.g�1
� D/[Ex.g/ and the vertical part of †Y with respect to f 0 maps into †,

(iv) the restriction of f 0 W .Y; „/!W over W n† is log smooth.

Since W is isomorphic to P1
S

over any codimension one point of P1
S

, we may shrink S and assume that
W Š P1

S
. Taking a suitable étale morphism T ! S and replacing S by T , we may further assume that

(v) .Y; „/ and .P1
S
; †/ are log smooth over S and any stratum of „ or † has geometrically integral

fibers over S .

Then we apply Lemma 4.1 to S and we conclude by shrinking S that Bs D Bs for any closed point
s 2 S , where B (resp. Bs) is the discriminant divisor with respect to f (resp. fs). We may also assume
by shrinking S that there exists a section S 0 of P1

S
! S disjoint from †. Then, we show the following

claim.
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Claim 2 There exist positive real numbers c and �0
0

that satisfy the following for any closed point s 2 S

and rational number � 2 .0; �0
0
/.

(i) We have supp multp.g�s D/hor � c� for any effective Q-divisor D that is Q-linearly equivalent to
�HsCf

�
s O.1/ (see (12) in Notation and conventions), where p 2 Ys runs over all closed points.

Here , we set multp.D0/D ordE.�
�D0���1

� D0/ for any Q-divisor D0, where � is the blowup of
Ys at p and E is the exceptional divisor.

(ii) There exists a positive integer m� such that m��2Z and such that for any irreducible component Gs

of a fiber Fs of fs ıgs , and m 2 Z>0 such that m�jm,

Sm;�HsCf
�

s O.1/.Gs/�
1
2
Tf �s O.1/.Gs/C c�C c.m�/�1:

Here , we set Tf �s O.1/.Gs/ WD ordGs
.Fs/.

Proof Let †D
P

j Fj and .f ıg/�Fj D
P

aij G
.j/
i be the irreducible decompositions. Note that G

.j/
i

has only smooth and irreducible fibers over S by condition (v) of the diagram (6-2). Note also that we
may shrink S freely by the same reason as in the second paragraph of the proof of Proposition 6.3. We
may further assume that S is quasiprojective and hence there exists a very ample line bundle A on Y . Set
d as the relative dimension of f throughout this proof.

First, we deal with (i). We take m0
1
2Z>0 such that m0

1
A�KY=S�G0 is ample, where G0 is an irreducible

component of .f ı g/�Fj or .f ı g/�.S 0/. Since all smooth fibers of fs ı gs are linearly equivalent
to ..f ı g/�.S 0//jYs

, m0
1
As �KYs

�Gs is also ample for any irreducible component Gs of a fiber of
fs ıgs and for any s 2 S . On the other hand, we obtain m00

1
2 Z>0 such that for any closed point p 2 Y

and the blowup � W zY ! Y at p with the exceptional divisor E, ��.m00
1
A/�E is ample by applying

[Lazarsfeld 2004, 1.4.14] to a suitable projective compactification of .Y;A/. Let s D � ı g.p/ and Z
be an irreducible component of zYs such that �jZ W Z ! Ys is the blowup at p 2 Ys . Then E \ Z is
the �jZ-exceptional divisor. Now we fix an irreducible component Gs of a fiber of fs ı gs such that
p 2Gs . Restricting divisors to Z , we can check that m1 WDm0

1
C .d � 1/m00

1
satisfies that for any closed

points s 2 S and p 2 Ys , both �j�Z.m1As �KYs
�Gs/� .d �1/.E\Z/ and �j�Z.m1As/� .E\Z/ are

ample. Let zGs WD .�jZ/
�1
� Gs and note that zGs is smooth. Hence, there exists a positive integer m2 > 0

depending only on d such that m2.m1�j
�
ZAs�E\Z/j zGs

is globally generated by applying the effective

basepoint-freeness [Kollár 1993, Theorem 1.1] to zGs since

.�j�Z.m1As �KYs
�Gs/� .d � 1/.E \Z//j zGs

D .m1�j
�
ZAs � .E \Z//j zGs

�K zGs

is ample. Then for any D effective Q-divisor Q-linearly equivalent to �HsCf
�

s O.1/, let 
 0 WD
Td�2

iD1 Di

and 
 WD .�jZ/�
 0 for sufficiently general Di 2 jm2.m1�j
�
ZAs � .E \Z//j zGs

j such that 
 6� .g�s D/hor

and 
 0 6�E\Z . Since m1�j
�
ZAs�E\Z is ample, 
 0 intersects with E\Z . Hence, 
 passes through p.
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On the other hand, we see that


 � .g�s D/hor D 

0
� .�jZ/

�..g�s D/hor/

D .m2.m1.�jZ/
�As � .E \Z///d�2

� zGs � .�jZ/
�..g�s D/hor/

D .m2m1As/
d�2
�Gs � .g

�
s D/hor

� .m2m1As/
d�2
� .Tf �s O.1/.Gs/g

�
s f
�

s O.1// � .g�s D/hor

� .m2m1As/
d�2
� .Tf �s O.1/.Gs/g

�
s f
�

s O.1// �g�s D

D �.m1m2/
d�2Tf �s O.1/.Gs/.Ad�2

s �g�s Hs �g
�
s f
�

s O.1//:

Let T D maxGs
Tf �s O.1/.Gs/. Then we see that T is independent of s 2 S by the conditions of the

diagram (6-2). Let M WD .m1m2/
d�2T .Ad�2

s � g�s Hs � g
�
s f
�

s O.1// > 0. Then, we see that this M is
independent of s 2 S and that multp..g�s D/hor/ �M� for any closed points s 2 S and p 2 Ys , and
any effective Q-divisor D that is Q-linearly equivalent to �HsC f

�
s O.1/. Indeed, we saw in the above

argument that there exists a curve 
 6� .g�s D/hor passing through p such that 
 � .g�s D/hor �M�. Then,
we have

multp..g�s D/hor/� 

0
���..g�s D/hor/D 
 � .g

�
s D/hor �M�:

Thus, we obtain the assertion (i).

Next, we deal with (ii). Fix � > 0 so that Ad�1
s � g�s .Hs � �f

�
s O.1// < 0 for some closed point s 2 S .

Then, Hs � �f
�

s O.1/ is not pseudoeffective for any s 2 S . Furthermore, take m0 2 Z>0 such that
m0H� .KX=S CD/ is �-ample.

We first treat the case when Gs is a smooth fiber of fs ıgs for any closed point s 2 S . Then, it follows
from [Fujita and Odaka 2018, Lemma 2.2] that

mh0.Xs;m�HsCmf �s O.1//Sm;�HsCf
�

s O.1/.Gs/

�

1X
kD1

h0.Ys;g
�
s .m�HsCmf �s O.1//� kGs/

�

mX
kD1

h0.Ys;g
�
s .m�HsC .m� k/f �s O.1///C

dm��eX
kD1

h0.Ys;g
�
s .m�Hs//:

Recall that m�H�KX=S �D is �-ample for any m 2 Z>0 such that m� 2 Z and m� �m0. Then

h0.Ys;g
�
s .m�HsC kf �s O.1///D �.Xs;m�HsC kf �s O.1//

by the Kawamata–Viehweg vanishing theorem for any k � 0 and any closed point s 2 S . Hence,
h0.Ys;g

�
s .m�HsC kf �s O.1/// is independent of s 2 S . We further have that

�.Xs;m�HsC kf �s O.1//D �.Xs;m�Hs/C k�.Gs;m�HsjGs
/:

Geometry & Topology, Volume 29 (2025)



On boundedness and moduli spaces of K-stable Calabi–Yau fibrations over curves 1681

Here, we note that �.Gs;m�HsjGs
/ is also independent of s 2 S . Thus,

(6-3) h0.Ys;g
�
s .m�HsCmf �s O.1///D md�d�1

.d � 1/!
..Hd�1

s �f �s O.1//CO.�/CO..m�/�1//:

Furthermore, we have by [Kollár and Mori 1998, Theorem 1.36] that for sufficiently large m� and ��1,

(6-4)
mX

kD1

h0.Ys;g
�
s .m�HsC .m� k/f �s O.1///C

dm��eX
kD1

h0.Ys;g
�
s .m�Hs//

D
m.m� 1/

2
�.Gs;m�HsjGs

/C .mCdm��e/�.Xs;m�Hs/

D
mdC1�d�1

2.d � 1/!
..Hd�1

s �f �s O.1//CO.�/CO..m�/�1//:

By (6-3) and (6-4), we see that there exist positive real numbers C0, C 0
0

and C 00
0

such that

(6-5) Sm;�HsCf
�

s O.1/.Gs/�
1
2
CC 00�CC 000 .m�/

�1

for any rational number 0 < � < C�1
0

, positive integer m such that m� 2 Z and m� > maxfC0;m0g,
closed point s 2 S , and smooth fiber Gs of fs ıgs .

Next, we deal with the case when Gs is an irreducible component of a singular fiber of fs ıgs for three
paragraphs. Recall that .f ıg/�Fj D

Prj
iD0

aij G
.j/
i is the irreducible decomposition. Then, we see that

Gs D .G
.j/
i /jYs

for some j and i . By renumbering G
.j/
i , we may assume that G DG

.j/
0

. We note that a
matrix .G.j/

k;s
�G

.j/

l;s
�Ad�2

s /1�k;l�rj is negative definite [Li and Xu 2014, Lemma 1]. Thus, there exists a
Cartier divisor F 0 D

Prj
iD1

eiG .j/
i

such that

G
.j/
i;s �A

d�2
s � .g�s HsCF 0s/ < 0

for i > 0 and for some closed point s 2 S . For some b 2Z>0, F 00 WDF 0Cb.f ıg/�Fj is effective. Then
the inequality

(6-6) G
.j/
i;s �A

d�2
s � .g�s HsCF 00s / < 0

also holds for F 00 and for any closed point s 2 S . Fix a positive integer a such that a.f ıg/�Fj �F 00 is
effective. We claim that for any closed point s 2 S , m 2 Z>0 such that m� 2 Z and k � 0,

(6-7) Ys;m�F
00
s Cg�s .m�HsCmf �s O.1//�ka0j Gs/D h0.Ys;m�F

00
s Cg�s .m�HsC.m�k/f �s O.1///:

Indeed, note that

m.fs ıgs/
�Fj ;s � ka0j Gs D .m� k/.fs ıgs/

�Fj ;sC k
X
i>0

aij G
.j/
i;s ;

and we claim that k
P

i>0 aij G
.j/
i;s is contained in the fixed part of the linear system

jm�F 00s Cg�s .m�HsCmf �s O.1//� ka0j Gsj:
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For this, it suffices to show for any nonzero effective divisor M D
P

i>0 miG
.j/
i;s and l 2 Z�0 that the

fixed part of the linear system jm�F 00s Cg�s .m�HsClf �s O.1//CM j contains some G
.j/
i;s such that mi > 0.

Here, we see that

G
.j/
i;s �A

d�2
s � .m�F 00s Cg�s .m�HsC lf �s O.1//CM / <G

.j/
i;s �A

d�2
s �M

by (6-6), and G
.j/
i;s �Ad�2

s �M < 0 for some i > 0 such that mi > 0 by [Li and Xu 2014, Lemma 1]. This
means that G .j/

i;s
is contained in the fixed part and thus we obtain the equality (6-7).

By equation (6-7) and the fact that a.f ıg/�Fj �F 00 is effective, we have

mh0.Xs;m�HsCmf �s O.1//Sm;�HsCf
�

s O.1/.Gs/

�

1X
kD1

a0j�1X
lD0

h0.Ys;g
�
s .m�HsCmf �s O.1//� .ka0j � l/Gs/

� a0j

1X
kD1

h0.Ys;g
�
s .m�HsCmf �s O.1//� ka0j Gs/

� a0j

1X
kD0

h0.Ys;m�F
00
s Cg�s .m�HsC .m� k/f �s O.1///

� a0j

mX
kD0

h0.Ys;g
�
s .m�HsC .m� kCm�a/f �s O.1///

C a0j

dm�.�Ca/eX
kD1

h0.Ys;g
�
s .m�.HsC af �s O.1///� kg�s f

�
s O.1//:

By (6-3) and estimating the right-hand side of the above inequality as (6-4), we see that there exist positive
real numbers CG

.j /

0
;C 0G.j /

0
and C 00G.j /

0
> 0 such that

(6-8) Sm;�HsCf
�

s O.1/.G
.j/
0;s
/� 1

2
a0j CC 0

G
.j /

0

�CC 00
G
.j /

0

.m�/�1

for any rational number 0< � < C�1

G
.j /

0

, positive integer m such that m� 2 Z and m� >maxfCG
.j /

0
;m0g

and closed point s 2 S .

Since there exist only finitely many possibilities of G
.j/
i , we see by the inequalities (6-5) and (6-8) that

there exist positive real numbers �0
0

and c such that

Sm;�HsCf
�

s O.1/.Gs/�
1
2
Tf �s O.1/.Gs/C c�C c.m�/�1

for any rational number 0< � < �0
0
, closed point s 2 S , irreducible component Gs of a fiber of fs ıgs

and m 2 Z>0 such that m� > �0�1
0

and m� 2 Z. Thus, we obtain the assertion (ii) by taking m� 2 Z for
any rational number 0< � < �0

0
such that m�� > �

0�1
0

and m�� 2 Z.

Finally, we show that Claim 2 implies Proposition 6.3. Take an arbitrary constant 0 < ı0 < u. Let c

and �0
0

be as in Claim 2 and take m� 2 Z>0 for any rational number 0 < � < �0
0

as (ii). Let Dm be an
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m-basis type divisor of �HsCf
�

s O.1/ for any m 2 Z>0 such that m�jm and � be a Q-divisor such that
gs�� D Ds and

KYs
C� D g�s .KXs

CDs/

for any closed point s 2 S . Now, we have

A.Xs ;Ds/.Gs/�
1
2
uTf �s O.1/.Gs/

by [Hattori 2022, Theorem D] for any irreducible component Gs of any fiber Fs of fs ıgs . We note that
there exists a positive integer r such that r.KX=S CD/ is Cartier. Then we see that for any geometric
point xs 2 S , .Xxs;Dxs/ is .1=r/-lc. Let

�000 WDmin
�
�00;

ı0

8c.u� ı0/

�
and ı00 WDmin

�
ı0

4
;
1

r

�
:

For any 0<�<�00
0

and m2Z>0 such that m�jm and m�>�00�1
0

, we claim that .Ys; �C.u�ı0/.g
�
s Dm/vert/

is log smooth and ı0
0
-sublc. Indeed, this follows from the conditions of the diagram (6-2), [Kollár and

Mori 1998, Corollary 2.31] and

AYs
.Gs/� ordGs

.�C .u� ı0/.g
�
s Dm/vert/�AYs

.Gs/� ordGs
.�/� .u� ı0/Sm;�HsCf

�
s O.1/.Gs/

�A.Xs ;Ds/.Gs/� .u� ı0/.
Tf �s O.1/.Gs/

2
C c�C c.m�/�1/

�
1
2
ı0Tf �s O.1/.Gs/� .u� ı0/.c�C c.m�/�1/ > 1

4
ı0:

Let ‚D .� C .g�s Dm/vert/red. Since .1� ı0
0
/‚ � � C .u� ı0/.g

�
s Dm/vert and .Ys; ‚/ is a log smooth

pair, we further have as the argument of [Boucksom et al. 2017, Step 2 in Proof of 9.14] that

AYs
.E/� ordE.�C .u� ı0/.g

�
s Dm/vert/� ı

0
0 AYs

.E/

for any prime divisor E over Xs . On the other hand, Claim 2(i) and Skoda’s theorem [loc. cit., Step 1] show
that

c�AYs
.E/� ordE..g

�
s Dm/hor/:

Let �0 WDminfı0
0
=..u� ı0/c/; �

00
0
g. Then we have for any prime divisor E over Xs and 0< � < �0,

A.Xs ;DsC.u�ı0/Dm/.E/DAYs
.E/� ordE.�C .u� ı0/..g

�
s Dm/vertC .g

�
s Dm/hor//

� .ı00� .u� ı0/c�/AYs
.E/ > 0:

In other words, we conclude that .Xs;DsC .u�ı0/Dm/ is klt for any closed point s 2S , rational number
� 2 .0; �0/, m 2 Z such that m�jm and m > .��00

0
/�1, and m-basis type divisor Dm of �Hs C f

�
s O.1/.

Thus, we obtain that

ı.Xs ;Ds/.�HsCf
�

s O.1//D lim
l!1

ılm�;.Xs ;Ds/.�HsCf
�

s O.1//� u� ı0

for any � 2Q\ .0; �0/ and closed point s 2 S .

Now, we are ready to show Theorem 1.6 for the case when u< 0.
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Theorem 6.4 Let � W .X ;D/! S be a log Q-Gorenstein family and f W X ! P a contraction over S ,
where P is a scheme that is projective and smooth over S . Let H be a �-ample Q-divisor on X and
L a Cartier divisor on P . Suppose that there exists an m 2 Z>0 such that .Pxs;Lxs/ D .P1;O.m// for
any geometric point xs 2 S . Assume that �.KX=S CD/ �Q;S .u=m/f �L for some u 2Q>0, and that
fs W .Xs;Ds;Hs/! .P1;O.1// is uniformly adiabatically K-stable for any closed point s 2 S .

Then there exists a positive rational number �0 such that .Xs;Ds; �HsC f
�

s O.1// is specially K-stable
for any closed point s 2 S and rational number � 2 .0; �0/. Furthermore , there exists a positive rational
number ˛ such that

M NA
Ds
.Y;M/� ˛.J �HsCf

�
s O.1//NA.Y;M/

for any rational number � 2 .0; �0/, closed point s 2 S , and normal semiample test configuration .Y;M/

for .Xs; �HsCf
�

s O.1//.

Proof As the argument in the second paragraph of the proof of Proposition 6.3, we may freely shrink or
replacing S by S 0 with an étale morphism S 0! S . Thus, by the argument as in the first paragraph of the
proof of Theorem 4.2, we may assume that P D P1

S
, LDO.1/ and mD 1.

By Theorem 4.2 and [Hattori 2022, Theorem 4.4], there exists a positive rational number ı0 such that

ı.P1;Bs/
.O.1//D lim

�!0
ı.Xs ;Ds/.�HsCf

�
s O.1//� uC ı0

for any closed point s 2 S , where Bs is the discriminant divisor of fs W .Xs;Ds/! P1. From now on, we
set L�;s WD �HsC f

�
s O.1/ and ı.�; s/ WD ı.Xs ;Ds/.L�;s/ for any closed point s 2 S . By Proposition 6.3,

there exists a positive rational number �0, which is independent of s 2 S , such that

ı.�; s/� uC 1
2
ı0

for any � 2 .0; �0/. Then this �0 satisfies the assertion of Theorem 6.4. Indeed, for any normal semiample
test configuration .Y;M/ for .Xs;L�;s/, we have

M NA
Ds
.Y;M/� .J KXsCDsCı.�;s/L�;s /NA.Y;M/

by Theorem 2.30. We also have

KXs
CDsC

�
uC 1

2
ı0
�
L�;s �Q

1
2
ı0L�;sCu�Hs:

By the ampleness of Hs and the argument in the proof of [Hattori 2022, Lemma 4.5], we see that
.Xs;L�;s/ is JHs -semistable. Thus, we obtain

.J KXsCDsCı.�;s/L�;s /NA.Y;M/� 1
2
ı0.J L�;s /NA.Y;M/

for any rational number � 2 .0; �0/.

Proof of Theorem 1.6 We first treat the case when u¤ 0. By Lemma 3.1, Theorem 3.6 and Remark 3.7,
it is sufficient to discuss the assertion of Theorem 1.6 for GCar

d;n;md�1v;u;mdw
for some n and m instead

Geometry & Topology, Volume 29 (2025)



On boundedness and moduli spaces of K-stable Calabi–Yau fibrations over curves 1685

of Gd;‚;v;u;w. In this situation, the assertion of Theorem 1.6 immediately follows from Theorem 4.2,
Proposition 6.1 and Theorems 6.2 and 6.4.

Next, we deal with the case when uD 0. As in the previous paragraph, it is enough to show the assertion
for GCar

d;‚;v;0;w
. There exist I 2 Z>0 and r 2 Z>0 in Corollary 3.8 and Remark 3.7 respectively, such

that for any element f W .X; �;A/ ! C 2 GCar
d;‚;v;0;w

and any line bundle H on C of degree one,
r.KX C�/ is Cartier and I.ACf �H / is very ample. In particular, .X; �/ is .1=r/-lc. Taking a small
Q-factorialization of X and applying the length of extremal rays, we see that KX C 3dI.ACf �H / is
the pushdown of a big divisor; see [Birkar 2019, Lemma 2.46]. Because we have

3dI.ACf �H /���Q 3dI.ACf �H /CKX ;

we see that 3dI.ACf �H /�� is the pushdown of a big divisor. We also have

vol.3dI.ACf �H //� .3dI/d .wC dv/:

Thus, we may apply [Birkar 2021b, Theorem 1.8] to .X; �/ and 3dI.AC f �H /, and we obtain ı0 > 0,
depending only on d , ‚, v and w, such that

˛.X ;�/.ACf
�H /� ı0:

Here, we use the fact that ˛.X ;�/.3dI.AC f �H // D .3dI/�1˛.X ;�/.AC f
�H /. By the inequality

(6-1) in the proof of Theorem 6.2, we obtain

ı.X ;�/.�ACf
�H /�

d C 1

d
ı0 for any 0< � < 1:

By Theorem 2.30 and the fact that KX C� �Q 0, for any element f W .X; �;A/! C 2 GCar
d;‚;v;0;w

,
.X; �; �ACf �H / is specially K-stable and

M NA
� .X ;M/�

d C 1

d
ı0.J �ACf

�H /NA.X ;M/

for any normal semiample test configuration .X ;M/ for .X; �AC f �H /, degree-one line bundle H

on C , and rational number � 2 .0; 1/.

Proof of Corollary 1.7 By Theorem 1.5(2), there exists a positive integer w0, depending only on d ,
v and u, such that for any f W .X; �;A/! C as assumption and the general fiber F of f , AC t 0

A
F

is ample and vol.AC t 0
A

F / � w0 for some integer t 0
A

. For some positive rational number t 00
A

, we have
vol.AC .t 0

A
C t 00

A
/F /D w0. We set

tA WD t 0AC t 00A 2Q>0:

Note that ACt 0
A

F is a Q-Cartier Weil divisor. Then Theorem 1.6 shows that there exists �0> 0, depending
only on d , v and u, such that .X; �; .�=.1C�t 00

A
//.AC t 0

A
F /CF / is specially K-stable for any 0<�� �0

and any f . Then so is .X; �;AC .tAC ��1/F /. Here, we use the fact that
�

1C �t 00
A

.AC t 0AF /CF D
�

1C �t 00
A

.AC .tAC �
�1/F /:
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Since
w WD vol.AC .tAC ��1

0 /F /D w0C d��1
0 v

is independent of f , it follows that .X; �;AC tF / is specially K-stable if vol.AC tF /� w.

As noted in the proof of [Hattori 2022, Theorem 4.6], the last assertion follows from the special K-stability
and [Chen 2021, Theorem 1.1; Zhang 2024, Corollary 5.2; Chen and Cheng 2021, Theorem 1.3].

Finally, we remark that Corollary 1.7 states that Md;v;u;r has a family whose geometric fibers are specially
K-stable in the following sense.

Remark 6.5 As in [Deligne and Mumford 1969, Section 5], we can construct the universal family
.U ;AU / over Md;v;u;w;r as follows. In the proof of Theorem 5.1, Md;v;u;w;r is the disjoint union of
finitely many Md1;d2;d3;h. Thus, we can construct a (Deligne–Mumford) stack

U WD
G

d1;d2;d3;h

ŒUNd1;d2;d3;h
=PGL.d1/�PGL.d2/�PGL.d3/�;

where UNd1;d2;d3;h
is the universal family of Nd1;d2;d3;h. Let zANd1;d2;d3;h

be the line bundle on UNd1;d2;d3;h

as in the proof of Claim 1. Note that zANd1;d2;d3;h
is ample over Nd1;d2;d3;h. By construction, we see that

zANd1;d2;d3;h
is PGL.d1/�PGL.d2/�PGL.d3/-equivariant. By Example 2.13, we can construct AU as

the line bundle on U whose restriction to ŒUNd1;d2;d3;h
=PGL.d1/� PGL.d2/� PGL.d3/� corresponds to

zANd1;d2;d3;h
.

In the proof of Theorem 1.3, we have proved that Md;v;u;r is an open and closed substack of Md;v;u;w0Cdv;r

for some w0 > 0. Using this fact, we obtain a family

.U 0;AU 0/ WD .U �Md;v;u;w0Cdv;r
Md;v;u;r ;AU jU 0/

over Md;v;u;r . If we take w0 larger than w in Corollary 1.7, then all geometric fibers of .U 0;AU 0/ over
Md;v;u;r are specially K-stable.
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