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The conjugacy problem for UPG elements of Out.Fn/

MARK FEIGHN

MICHAEL HANDEL

An element � of the outer automorphism group Out.Fn/ of the rank n free group Fn is polynomially
growing if the word lengths of conjugacy classes in Fn grow at most polynomially under iteration by �. It
is unipotent if, additionally, its action on the first homology of Fn with integer coefficients is unipotent. In
particular, if � is polynomially growing and acts trivially on first homology with coefficients the integers
mod 3, then � is unipotent and also every polynomially growing element has a positive power that is
unipotent. We solve the conjugacy problem in Out.Fn/ for the subset of unipotent elements. Specifically,
there is an algorithm that decides if two such are conjugate in Out.Fn/.
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1694 Mark Feighn and Michael Handel

1 Introduction

In this paper, we consider the conjugacy problem for Out.Fn/, the group of outer automorphisms of
the free group of rank n. Namely, given �; 2 Out.Fn/, find an algorithm that decides if � and  are
conjugate in Out.Fn/.

The case in which � is fully irreducible, also known as iwip, was first solved by Sela [1995] using
his solution to the isomorphism problem for torsion-free word hyperbolic groups. This was recently
generalized, using a similar approach, by Dahmani [2016] to the case that � is hyperbolic, or equivalently,
that every nontrivial element of Fn has exponential growth under iteration by �. See also [Dahmani
2017]. An alternate approach to the fully irreducible case takes advantage of the fact that the finite set of
(unmarked) train track maps that represent a fully irreducible � is a complete invariant for the conjugacy
class of �. Los [1996] and Lustig [2007] (see also [Handel and Mosher 2011]) solved the conjugacy
problem for fully irreducible � by algorithmically constructing the set of (unmarked) train track maps
for �.

On the other end of the growth spectrum, the conjugacy problem for Dehn twists (equivalently rotationless,
linearly growing �) was solved by Cohen and Lustig [1999] using, among other things, Whitehead’s
algorithm (see below). Krstić, Lustig and Vogtmann [Krstić et al. 2001] proved an equivariant Whitehead
algorithm and used that to solve the conjugacy problem for all elements with linear growth.

Building on the approach of Sela mentioned above, Dahmani and Touikan [2021] reduce the conjugacy
problem for Out.Fn/ to a list of problems about mapping tori of polynomial growing elements. This
is applied in their solution to the conjugacy problem for outer automorphisms of free groups whose
polynomially growing part is unipotent linear [Dahmani and Touikan 2023].

Dahmani, Francaviglia, Martino and Touikan [Dahmani et al. 2025] solve the conjugacy problem for
Out.F3/.

Lustig [2000; 2001] posted preprints addressing the general case of the conjugacy problem but these have
never been published.

Our main theorem addresses the case that � is polynomially growing and rotationless, equivalently � is
polynomially growing and induces a unipotent action on H1.Fn;Z/; we write � 2 UPG.Fn/. Being an
element of UPG.Fn/ is a conjugacy invariant and can be checked algorithmically.

It is often the case, when studying Out.Fn/, that the techniques required to treat the UPG.Fn/ case are
very different from those needed for the cases in which there is exponential growth. For example, the
polynomially growing and exponentially growing cases of the Tits alternative for Out.Fn/ are proved in
separate papers; see Bestvina, Feighn and Handel [2005; 2000].

Theorem 1.1 There is an algorithm that takes as input �; 2UPG.Fn/ and outputs YES or NO depending
on whether or not there exists � 2 Out.Fn/ such that � D  � WD � ��1. Further , if YES then the
algorithm also outputs such a � .

Geometry & Topology, Volume 29 (2025)



The conjugacy problem for UPG elements of Out.Fn/ 1695

Remark 1.2 If one knows that � and  are conjugate, then a conjugator � can be produced by searching
a list of the elements of Out.Fn/. This is not what we do. Rather, the construction of a conjugator, when
one exists, is an integral part of the proof of the main statement of Theorem 1.1.

Remark 1.3 Theorem 1.1 is not an abstract existence theorem. It is proved by constructing an explicit
algorithm satisfying the conclusions of the theorem. The same is true for other results in this paper that
begin with, “There is an algorithm”.

A detailed description of the algorithm is given in Section 2 so we restrict ourselves here to four
results/observations that underlie our proof.

� Each � 2 UPG is rotationless (Lemma 3.18) and so can be represented by a particularly nice relative
train track map f WG!G call a CT; see Section 3.6. There is an algorithm (Theorem 3.20) to construct
one such f WG!G and from this we can compute all of the invariants used in this paper.

� A set equipped with an action by a group G is a G-set. A G-set X satisfies property W (for Whitehead)
if it comes equipped with an algorithm that takes as input x; y 2 X and outputs YES or NO depending
on whether or not there exists � 2G such that �.x/D y together with such a � if YES. We call such an
algorithm a W-algorithm. The Whitehead/Gersten algorithm is a W-algorithm for the Out.Fn/-set of finite
lists of conjugacy classes of finitely generated subgroups of Fn; see [Gersten 1984, Theorems W&M],
and also [Kalajdžievski 1992] and [Bestvina et al. 2023].

This can be applied directly to our problem by finding subgroups associated to elements of UPG. For
example, there is a free factor system F0.�/ characterized by the fact that a conjugacy class in Fn is
carried by F0.�/ if and only if it grows linearly under iteration by �. Since a free factor system is an
unordered list of conjugacy classes of free factors, we can check if there exists � 2 Out.Fn/ such that
F0. /D �.F0.�//. If no such � exists then � and  are not conjugate. If there is such a � then after
replacing  by  �

�1

, we may assume, as far as the conjugacy problem is concerned, that F0.�/DF0. /.
Moreover, any conjugator will preserve F0.�/D F0. /.

In Sections 10–15 we show that the Whitehead/Gersten algorithm can be used as the platform on which to
build other useful Out.Fn/-sets that satisfy property W. The Out.Fn/-set of finite lists of finitely generated
subgroups of Fn also satisfies property M (for McCool). Namely, it is equipped with an algorithm that
takes as input x 2X and outputs a finite presentation for Gx WD f� 2G j �.x/D xg. Although it is not
strictly necessary for solving the conjugacy problem, property M is important in its own right and we
show that all of the Out.Fn/-sets constructed in Sections 10–15 satisfy property M.

� Lemma 4.21, an adaptation of the recognition theorem [Feighn and Handel 2011, Theorem 5.3], gives
necessary and sufficient conditions for � 2Out.Fn/ to conjugate � 2UPG to  2UPG. The nonnumerical
condition is that �.L.�// D L. /, where L.�/ is a certain set of lines associated to � and similarly
for L. /. If f W G ! G is a CT representing � then L.�/ is the set of lines carried by a finite type
Stallings graph �.f / called the eigengraph for f . �.f / depends on f but the set of lines carried

Geometry & Topology, Volume 29 (2025)



1696 Mark Feighn and Michael Handel

by �.f / depends only on �. The numerical condition of Lemma 4.21 concerns the “twist coordinates”
associated to the linear parts of � and  and is relatively easy to handle; see Lemmas 17.1 and 17.8.
Almost all of the paper is concerned with the existence or not of � satisfying �.L.�//D L. /.

� A CT f WG!G comes equipped with a filtration Gi0 �Gi1 � � � � �Git , where for j > 0, each Gij
is an f -invariant core subgraph which is obtained from Gij�1 by adding a single topological arc, possibly
divided into two edges. Edges of Gij nGij�1 are said to have height j . �.f / has a compact core to
which finitely many rays fRE g are added, one for each nonfixed nonlinear edge E of G. Understanding
the structure of rays is an important step in understanding L.�/. Each RE has initial edge E and RE nE
is a ray that crosses only edges with height strictly less than that of E. (This is most definitely a UPG

phenomenon. If E belongs to an exponentially growing stratum then E occurs infinitely often in RE .)
Thus RE can be studied inductively, working up through the filtration. This is carried out in Section 5
and Sections 15–17.

Example 3.1 gives an illustrative element of UPG.Fn/ and is further developed as we progress through
the text.

Acknowledgements We are indebted to a referee for an exceptionally thorough and useful report.

Feighn was supported by the National Science Foundation under grant DMS-1406167 and also under
grant DMS-14401040 while in residence at the Mathematical Sciences Research Institute in Berkeley,
California, during the Fall 2016 semester. Handel was supported by National Science Foundation grant
DMS-1308710 and by PSC-CUNY grants in Program Years 47 and 49.

2 The algorithm

The logical structure of our proof of Theorem 1.1 is a series of reductions

Theorem 1.1 D)Proposition 14.7 D)Proposition 16.4 D)Proposition 17.2;

and a proof of Proposition 17.2. The above theorem and propositions produce algorithms that we denote by
ALG1:1, ALG14:7, ALG16:4 and ALG17:2, respectively. The proof of Theorem 1.1 D)Proposition 14.7
shows how to use ALG14:7 to construct ALG1:1, and similarly for the other implications. Thus ALG1:1
calls ALG14:7, which calls ALG16:4, which calls ALG17:2.

2.1 Theorem 1.1 D)Proposition 14.7

One way to make progress on the conjugacy problem for UPG is to find W-invariants for UPG; ie find
Out.Fn/-equivariant maps J W UPG ! X , where X is an Out.Fn/-set with a W-algorithm WX . � ; � /.
If WX .J.�/; J. // D NO, then � is not conjugate to  in Out.Fn/. If WX .J.�/; J. // D .YES; �/,
then J. �

�1

/ D J.�/. Replacing  by  �
�1

, we may assume that J.�/ D J. /. In this case, any �
conjugating � to  is contained in the subgroup of Out.Fn/ that fixes J.�/.

Geometry & Topology, Volume 29 (2025)
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In Sections 5–14 we construct seven such W-invariants and bundle them into a single invariant Ic.�/.
Once this is done, it is easy to use an algorithm satisfying the conclusions of Proposition 14.7 to produce
an algorithm satisfying the conclusions of Theorem 1.1. The details are given in the proof of Lemma 14.8.

Items (1)–(4) below outline how our ultimate W-invariant Ic W UPG! IS.A�/ is chosen. Item (5) refers
to shrinking the set of potential conjugators from the stabilizer of Ic.�/ to one of its finite-index sub-
groups Xc.�/.

(1) Dynamical invariants of � 2 UPG

� The finite multiset Fix.�/ of conjugacy classes of fixed subgroups of �; see Definition 3.14.
� The linear free factor system F0.�/; see Definition 6.5.
� The finite set fcg of special �-chains; see Section 6.1 and in particular Notation 6.8.
� The finite set Aor.�/ of axes for �; see Section 4.2.
� The finite set SA.�/ of strong axes for �; see Section 4.2.
� The finite set �NP.�/ of all nonperiodic limit lines for all eigenrays of �; see Section 5.
� For each one-edge extension e of each c, the set Le.�/ of added lines with respect to e; see

Definition 6.14.

The invariants in the first four items are algebraic in that they take values in Out.Fn/-sets that can be
expressed in terms of conjugacy classes of finitely generated subgroups of Fn or more generally are
iterated sets (Section 10.1). In particular, they take values in Out.Fn/-sets with W-algorithms and so can
be used as they are. The others must be modified.

(2) Algebraic versions of dynamical invariants For the last three dynamical invariants, define
corresponding (but weaker) algebraic invariants. The last two depend on a choice of special chain c;
see Section 13.1.
� The finite set of algebraic strong axes; see Section 13.6.
� The finite set fHc.L/ j L 2�NP.�/g of algebraic limit lines; see Section 13.8.
� For each one-edge extension e in c, the finite set He2c.�/ of algebraic added lines with respect

to e; see Section 13.7.

Remark 2.1 If the seven dynamical invariants in (1) take the same values on � and  then, using
Lemma 4.21, it is easy to check if � and  are conjugate. The same is not true for the seven algebraic
invariants in (1) and (2). Too much information was lost in translation.

(3) W-invariants Iterated sets, and in particular IS.A�/, are defined in Sections 10 and 11. By
construction, all of our algebraic invariants take values in the iterated set IS.A�/. We construct a
W-algorithm for IS.A�/ (and all other iterated sets).

(4) The total invariant Ic.�/ This is defined by combining the algebraic invariants in (1) and (2)
into a single algebraic invariant that takes values in IS.A�/; see Definition 13.13.

Geometry & Topology, Volume 29 (2025)



1698 Mark Feighn and Michael Handel

(5) Reduce potential conjugators Elements of Xc.�/ < Out.Fn/ not only stabilize the algebraic
invariants in (1) and (2) making up Ic.�/, they also induce trivial permutations on those invariants
that are finite sets; see Definition 14.1.

As mentioned above Lemma 14.8 is proved by constructing ALG1:1 using ALG14:7 and properties
of Ic.�/. Hence to prove Theorem 1.1, we are reduced to proving:

Proposition 14.7 There is an algorithm that takes as input �; 2 UPG.Fn/ and a chain c such that

� c is special for both � and  , and

� Ic.�/D Ic. /,

and that outputs YES or NO depending whether or not there is � 2 Xc.�/ conjugating � to  . Further , if
YES then such a � is produced.

2.2 Proposition 14.7 D)Proposition 16.4

ALG14:7 and ALG16:4 differ only in the subgroup of potential conjugators that must be considered. In
Proposition 14.7 it is Xc.�/ and in Proposition 16.4 it is an infinite-index subgroup Ker. xQ�/ < Xc.�/

defined in Definition 16.3. See statement of Proposition 14.7 below.

The set of (eigen)rays R.�/ (Definition 3.14) is a fundamental dynamical invariant of �. Each r 2R.�/
is the conjugacy class Œzr� of a point zr 2 @Fn. There is no W-algorithm for @Fn so we work with a weaker
algebraic invariant, the conjugacy class Fc.r/ of a free factor determined by r and a special chain c; see
Section 13.4. We do not list this in (2) because it is built into the set of algebraic lines and the set of
algebraic added lines. The great advantage of Ker. xQ�/ over Xc.�/ is that in the proof of Proposition 17.2
we need only consider conjugating elements that preserve r . (See Lemmas 15.45 and 17.9.) Instead of
having to check if two rays are conjugate, we need only check if they are equal.

The definition of xQ�.�/ for � 2 Xc is given in Definition 16.3. The key result, from the algorithmic point
of view, is:

Proposition 16.6 There is an algorithm that produces a finite set f�ig � X so that the union of the cosets
of Ker. xQ�/ determined by the �i contains each � 2 X that conjugates � to  .

The proof of Proposition 16.6 requires a detailed understanding of the structure of eigenrays and is the
most technical part of the paper. The proof of Lemma 16.5 shows how to quickly construct ALG14:7
using ALG16:4 and the coset representatives produced by the algorithm of Proposition 16.6. In other
words, to prove Proposition 14.7, we are reduced to proving:

Proposition 16.4 There is an algorithm that takes as input �; 2 UPG.Fn/ and a chain c such that

� c is a special chain for � and  , and

� Ic.�/D Ic. /,

and that outputs YES or NO depending on whether or not there is � 2Ker. xQ�/ conjugating � to  . Further ,
if YES then such a � is produced.

Geometry & Topology, Volume 29 (2025)
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2.3 Proposition 16.4 D)Proposition 17.2

This is an easy step. The details are given in the proof of Proposition 16.4 (assuming Lemma 17.1 and
Proposition 17.2) following the statement of Proposition 17.2. After this step, we may assume that the
restrictions of � and  to the linear free factor system F0.�/D F0. / are equal. This provides the basis
for an inductive argument completed in the next step.

2.4 Proof of Proposition 17.2

Proposition 17.2 is the inductive step of an argument up the filtration induced by c. There are six items
labeled (1)–(5), (7) that are sequentially checked. If any of these is false then return NO. Otherwise,
construct the desired conjugator following pages 1809–1811.

3 Background

3.1 Standard notation

The free group on n generators is denoted by Fn. For a 2 Fn, conjugation by a is denoted by ia,
ie ia.x/D axa�1 for x 2 Fn. The group of automorphisms of Fn, the group of inner automorphisms of
Fn and the group of outer automorphisms of Fn are denoted by Aut.Fn/, Inn.Fn/ WD fia j a 2 Fng and
Out.Fn/D Aut.Fn/=Inn.Fn/, respectively.

For subgroups H < Fn, ŒH � denotes the conjugacy class of H and, for elements a 2 Fn, Œa� denotes the
conjugacy class of a.

An outer automorphism � 2 Out.Fn/ has polynomial growth, written � 2 PG, if for each a 2 Fn there
is a polynomial P such that reduced word length of �k.Œa�/ with respect to a fixed set of generators
of Fn is bounded above by P.k/. Equivalently, the set of attracting laminations for � [Bestvina et al.
2000, Section 3] is empty. The set UPG.Fn/ of unipotent outer automorphisms is the subset of Out.Fn/

consisting of polynomially growing � whose induced action on H1.Fn;Z/ is unipotent. We sometimes
write � 2 UPG instead of � 2 UPG.Fn/. In Section 3.5 we show that � 2 UPG if and only if � 2 PG

and � is rotationless in the sense of [Feighn and Handel 2011, Definition 3.13] (where it is called
forward rotationless). There is Kn > 0 such that if � 2 PG then �Kn 2 UPG [Feighn and Handel 2018,
Corollary 3.14].

The graph with one vertex � and with n edges is the rose Rn. Making use of the standard identification
of �1.Rn;�/ with Fn, there are bijections between Aut.Fn/ and the group of pointed homotopy classes
of homotopy equivalences f W .Rn;�/! .Rn;�/ and between Out.Fn/ and the group of free homotopy
classes of homotopy equivalences f WRn!Rn.

If G is a graph without valence one vertices then a homotopy equivalence � WRn!G is called a marking
and G, equipped with a marking, is called a marked graph. A marking � induces an identification,

Geometry & Topology, Volume 29 (2025)
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a
b

cd
e

p

q

Figure 1: The graph G of Example 3.1.

well-defined up to inner automorphism, of the fundamental group of G with the fundamental group of Rn
and hence with Fn. This in turn induces an identification of the group of homotopy classes of homotopy
equivalences f WG!G with Out.Fn/. If � 2Out.Fn/ corresponds to the homotopy class of f WG!G

then we say that f WG!G represents �. In Section 3.6 we recall the existence of very well-behaved
homotopy equivalences f WG!G representing an element of UPG.Fn/.

Example 3.1 Here is an example of a homotopy equivalence f WG!G of a marked graph that represents
an element � of UPG.F5/. Let F5 be represented as the fundamental group of the rose R5, let G be the
subdivision of R5 pictured in Figure 1, and let f WG!G be given by a 7! a, b 7! ba, c 7! cb, d 7! db2,
e 7! eb3, p 7! pa2, q 7! qc. To see that � has polynomial growth, note that the edge q has cubic growth
in that

jf k.q/jD jq �c �f .c/ �f 2.c/ �f 3.c/ �: : : �f k�1.c/jD jq �c �cb �cbba �: : : �cbba : : : bak�1jD
k3C 5kC 6

6

and that no edge grows at a higher rate. In particular conjugacy classes of Fn have at most cubic growth.
As we progress through this paper, we will expand upon this example.

3.2 Paths, circuits and lines

A path in a marked graph G is a proper immersion of a closed interval into G. In this paper, we will
assume that the endpoints of a path, if any, are at vertices. If the interval is degenerate then the path is
trivial; if the interval is infinite or bi-infinite then the path is a ray or a line, respectively. We do not
distinguish between paths that differ only by a reparametrization of the domain interval. Thus, every
nontrivial path has a description as a concatenation of oriented edges and we will use this edge path
formulation without further mention. Reversing the orientation on a path � produces a path denoted by
either x� or ��1. A circuit is an immersion of S1 into G. Unless otherwise stated, a circuit is assumed to
have an orientation. Circuits have cyclic edge decompositions. Each conjugacy class in Fn is represented
by a unique circuit in G. The conjugacy class in Fn represented by the circuit � is denoted by Œ��.

Notation 3.2 Each ˆ 2 Aut.Fn/ induces an equivariant homeomorphism of @Fn. To simplify notation
somewhat, we refer to this extension as ˆ rather than, say, @ˆ. In situations where this might cause
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confusion, we write ˆj@Fn for the induced homeomorphism of @Fn. For example, Fix.ˆ/ is the subgroup
of Fn fixed by ˆ, and Fix.ˆj@Fn/ is the set of points in @Fn fixed by the induced homeomorphism.

The action of Fn on @Fn is by conjugation, ie by a �P D ia.P / for P 2 @Fn. For each nontrivial a 2 Fn,
ia fixes two points in @Fn: a repeller a� and an attractor aC.

A marking � induces an identification, well-defined up to inner automorphism, of the set of ends of zG
with @Fn, and likewise the group of covering translations of zG with Inn.Fn/. We choose such an
identification once and for all. The covering translation corresponding to ia is denoted by Ta as is the
extension of Ta to a homeomorphism of @Fn. We have Taj@Fn D iajFn. If f WG!G represents � then
each lift zf W zG! zG induces an equivariant homeomorphism, still called zf , of @Fn; see, for example,
Section 2.3 of [Feighn and Handel 2011]. There is a bijection between the set of lifts zf of f WG!G

and the set of automorphisms ˆ representing � defined by zf $ˆ if zf j@Fn Dˆj@Fn.

A line zL in the universal cover zG of a marked graph G is a bi-infinite edge path. The ends of zL determine
ends of zG and hence points in @Fn. In this way, the space of oriented lines in the tree zG can be identified
with the space zB of ordered pairs of distinct elements of @Fn. The space of oriented lines in G is then
identified with the space B of Fn-orbits of elements of zB. The topology on @Fn induces a topology on zB
and hence a topology on B called the weak topology.

3.3 Free factor systems

The subgroup system F D fŒA1�; : : : ; ŒAm�g is a free factor system if A1; : : : ; Am are nontrivial free
factors of Fn and either Fn DA1 � � � � �Am or Fn DA1 � � � � �Am �B for some nontrivial free factor B .
The ŒAi � are the components of F . If G is a marked graph and K is a subgraph whose noncontractible
components are K1; : : : ; Km then F.K;G/ WD fŒ�1.K1/�; : : : ; Œ�1.Km/�g is a free factor system that is
realized by K � G. Every free factor system A can be realized by K � G for some marked graph G
and some core subgraph K �G. Recall that a graph is core if through every edge there is an immersed
circuit and that the core of a graph is the union of the images of its immersed circuits.

We write F1 @ F2 and say that F1 is contained in F2 if for each component ŒAi � of F1 there is a
component ŒBj � of F2 so that Ai is conjugate to a subgroup of Bj . Equivalently, there is a marked
graph G with core subgraphs K1 �K2 such that F1DF.K1; G/ and F2DF.K2; G/. If one can choose
K1 andK2 so thatK2nK1 is a single edge then we say that F1@F2 is a one-edge extension. For example,
fŒA�g@ fŒB�g is a one-edge extension if and only if rank.B/D rank.A/C1 and fŒA1�; ŒA2�g@ fŒB�g is a
one-edge extension if and only if rank.B/D rank.A1/C rank.A2/.

Example 3.3 Suppose that H1 is a subgraph of a marked graph G, that H2 DH1 [E2 � G, where
E2 is an edge that forms a loop that is disjoint from H1, and that H3 DH2[E3, where E3 �G is an
edge with one endpoint in H1 and the other at the unique endpoint of E2. Then F.H1; G/@ F.H2; G/
and F.H2; G/ @ F.H3; G/ are proper inclusions and F.H1; G/ @ F.H3; G/ is a one-edge extension.
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This is essentially the only way in which a one-edge extension can be “reducible”. We record a specific
consequence of this in the following lemma.

Lemma 3.4 Suppose that F.H1; G/@ F.H2; G/ and F.H2; G/@ F.H3; G/ are proper inclusions and
that F.H1; G/ and F.H2; G/ have the same number of components. Then F.H1; G/@ F.H3; G/ is not
a one-edge extension.

Proof This follows from [Handel and Mosher 2020, Part 2, Definition 2.4 and Lemma 2.5].

If F D fŒA1�; : : : ; ŒAm�g and a 2 Fn is conjugate into some Ai then Œa� is carried by F . A line L 2 B is
carried by F if it is a limit of periodic lines corresponding to conjugacy classes that are carried by F .
Equivalently, Œa� or L is carried by F if for some, and hence every, K �G realizing F , the realization
of Œa� or L in G is contained in K. For every collection of conjugacy classes and lines there is a unique
minimal (with respect to @) free factor system that carries each element of the collection [Bestvina et al.
2000, Corollary 2.6.5].

Notation 3.5 Out.Fn/ acts on the set of conjugacy classes ŒF � of free factors F . If � 2 Out.Fn/

fixes ŒF � then we say that ŒF � is �-invariant and write �jŒF � for the restriction of � to ŒF � (which is
well-defined because F is its own normalizer in Fn). We often say that F is �-invariant and write �jF
just to simplify notation. [Bestvina et al. 2005, Proposition 4.44] implies that if � is UPG then �jF is
UPG. If F D fŒA1�; : : : ; ŒAm�g is a free factor system and each ŒAi � is �-invariant then we say that F is
�-invariant and denote f�jA1; : : : ; �jAmg by �jF .

3.4 FixN.�/, principal lifts and R.�/

We continue with Notation 3.2. If P 2 Fix.ˆj@Fn/ and if there is a neighborhood U of P in @Fn such
that ˆ.U / � U and such that

T1
iD1ˆ

i .U /D P then P is attracting. If P is an attracting fixed point
for ˆ�1j@Fn then it is a repelling fixed point for ˆj@Fn. By FixC.ˆ/; Fix�.ˆ/ and FixN.ˆ/ we denote
the set of attracting fixed points for ˆj@Fn, the set of repelling fixed points for ˆj@Fn and the set of
nonrepelling fixed points for ˆj@Fn, respectively; thus FixN.ˆ/D Fix.ˆj@Fn/nFix�.ˆ/. Note that all of
these sets are contained in @Fn.

If A<Fn is a finitely generated subgroup then the inclusion of A into Fn is a quasi-isometric embedding
and so extends to an inclusion of @A into @Fn with the property that fa˙ j nontrivial a 2 Ag is dense
in @A. In particular, since the subgroup Fix.ˆ/ consisting of elements in Fn that are fixed by ˆ is finitely
generated [Gersten 1987] (see also [Bestvina and Handel 1992]), we have @ Fix.ˆ/� @Fn. The following
lemma implies that @ Fix.ˆ/� Fix.ˆj@Fn/, and that FixC.ˆ/; Fix�.ˆ/ and FixN.ˆ/ are Fix.ˆ/-invariant.

Lemma 3.6 Let ˆ 2 Aut.Fn/ and 0¤ a 2 Fn. The following are equivalent :

� a 2 Fix.ˆ/.

� Either a� or aC is contained in @ Fix.ˆ/.

� Both a� and aC are contained in @ Fix.ˆ/.
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� The automorphism ia commutes with ˆ.

� The automorphism iaj@Fn commutes with ˆj@Fn.

Proof This is well known; see eg Lemmas 2.3 and 2.4 of [Bestvina et al. 2004] and Proposition I.1 of
[Gaboriau et al. 1998].

Lemma 3.7 If P 2 @Fn is fixed by automorphisms ˆ¤ˆ0 representing � 2 Out.Fn/ then P D a˙ for
some nontrivial a 2 Fn.

Proof There exists a nontrivial a 2 Fn such that ia Dˆ�1ˆ0 fixes P .

Definition 3.8 An automorphism ˆ representing � 2 UPG.Fn/ is principal if FixN.ˆ/ contains at least
two points and if FixN.ˆ/ ¤ fa

�; aCg for any nontrivial a 2 Fn. The set of principal automorphisms
representing � is denoted by P.�/. See Section 3.2 of [Feighn and Handel 2011] for complete details.

Lemma 3.9 If ˆ is principal then FixN.ˆ/ is the disjoint union of @ Fix.ˆ/ and FixC.ˆ/. Moreover ,
FixC.ˆ/ is a union of finitely many Fix.ˆ/ orbits.

Proof The first assertion follows from Proposition I.1 of [Gaboriau et al. 1998]. The second is obvious
if FixC.ˆ/ is finite and follows from Lemma 2.5 of [Bestvina et al. 2004] if FixC.ˆ/ is infinite.

Remark 3.10 We sometimes say that P 2 @Fn is periodic if it is fixed by ia for some nontrivial a 2 Fn.
Nonperiodic points are dense in FixN.ˆ/ for each ˆ 2 P.�/. Lemmas 3.6 and 3.9 imply that no element
of FixC.ˆ/ is periodic. If FixC.ˆ/¤∅ then FixC.�/ is dense in FixN.�/ and we are done. Otherwise,
Fix.ˆ/ has rank at least two and FixN.ˆ/D @ Fix.ˆ/.

Definition 3.11 Two automorphisms ˆ1 and ˆ2 are in the same isogredience class if there exists a 2 Fn
such that ˆ2 D iaˆ1i�1a , in which case FixN.ˆ2/D ia FixN.ˆ1/ and similarly for Fix�.ˆ2/; FixC.ˆ2/

and Fix.ˆ2/. It follows that if ˆ1 and ˆ2 are isogredient then ŒFix.ˆ1/�D ŒFix.ˆ2/� and ŒFixN.ˆ1/�D

ŒFixN.ˆ2/�, where Œ � denotes the orbit under the action of Fn on sets of points in @Fn. It is easy to see
that isogredience defines an equivalence relation on P.�/. The set of isogredience classes of P.�/ is
denoted by ŒP.�/�.

We recall the following result from Remark 3.9 of [Feighn and Handel 2011]; see also Lemma 3.25 of
this paper.

Lemma 3.12 P.�/ is a finite union of isogredience classes.

Our next lemma states that ŒFixN.ˆ/� determines the isogredience class of ˆ 2 P.�/.

Lemma 3.13 Suppose that ˆ1; ˆ2 2P.�/. Then ˆ1 and ˆ2 are isogredient if and only if ŒFixN.ˆ1/�D

ŒFixN.ˆ2/�. More precisely, ˆ2 D iaˆ1i�1a if and only if FixN.ˆ2/D ia FixN.ˆ1/.

Geometry & Topology, Volume 29 (2025)



1704 Mark Feighn and Michael Handel

Proof It is obvious that if ˆ2 D iaˆ1i�1a then FixN.ˆ2/D ia FixN.ˆ1/. For the converse note that if
FixN.ˆ2/D ia FixN.ˆ1/D FixN.iaˆ1i

�1
a / then ˆ�12 iaˆ1i

�1
a is an inner automorphism whose induced

action on @Fn fixes FixN.ˆ2/ and so is not equal to fa�; aCg for any nontrivial a. This proves that
ˆ�12 iaˆ1i

�1
a is trivial and so ˆ2 D iaˆ1i�1a .

Definition 3.14 Define sets

FixN.�/ WD fŒFixN.ˆ1/�; : : : ; ŒFixN.ˆm/�g and R.�/ WD
�
ŒP �

ˇ̌̌
P 2

m[
iD1

FixC.ˆi /

�
� @Fn=Fn ;

and a multiset (repeated elements allowed)

Fix.�/ WD fŒFix.ˆ1/�; : : : ; ŒFix.ˆm/�g;

where the ˆi are representatives of the isogredience classes in P.�/. Thus FixN.�/ is a finite set of
Fn-orbits of subsets of @Fn, and R.�/ is a finite set of Fn-orbits of points in @Fn.

Definition 3.15 For us a natural invariant of a group G is a map I WG!X , where X is a G-set and,
for all �; � 2G, we have I.�� /D �.I.�//.

The following lemma says that ŒP.�/�, Fix.�/, FixN.�/ and R.�/ are natural invariants of Out.Fn/.

Lemma 3.16 Suppose that ‚ 2 Aut.Fn/ represents � 2 Out.Fn/ and that  D ����1. Then:

(1) The map ˆ 7!‰ WD‚ˆ‚�1 defines a bijection between P.�/ and P. /, and induces a bijection
ŒP.�/�$ ŒP. /�.

(2) Fix.‰/D‚.Fix.ˆ//, FixN.‰/D‚.FixN.ˆ// and FixC.‰/D‚.FixC.ˆ//.

(3) Fix. /D �.Fix.�//, FixN. /D �.FixN.�// and R. /D �.R.�//.

Proof The automorphism ‰ represents ����1D 2Out.Fn/. If ˆ0D icˆi�1c then ‰0 WD‚ˆ0‚�1D
i‚.c/.‚ˆ‚

�1/i�1
‚.c/
D i‚.c/‰i

�1
‚.c/

so conjugation by ‚ maps isogredience classes of � to isogredience
classes of  . The items in (2) are easy standard facts about conjugation. Since ‚.a˙/D .‚.a//˙, it
follows that ‰ is principal if ˆ is principal. The induced map P.�/! P. / is obviously invertible
and is hence a bijection. This completes the proof of (1). If ‚ is replaced by ia‚ then ‰ is replaced
by ia‰i�1a and Fix.‰/, FixN.‰/ and FixC.‰/ are replaced by ia.Fix.‰//, ia.FixN.‰// and ia.FixC.‰//

respectively. Thus �.ŒFix.ˆ/�/ D ŒFix.‰/�, �.ŒFixN.ˆ/�/ D ŒFixN.‰/� and �.ŒFixC.ˆ/�/ D ŒFixC.‰/�.
This verifies (3).

The following lemma is used implicitly throughout the paper.

Lemma 3.17 If A is a �-invariant free factor then the inclusion of @A into @Fn induces an inclusion of
R.�jA/ into R.�/.
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Proof An automorphism ˆ0 W A ! A representing �jA extends to an automorphism ˆ W Fn ! Fn

representing �. We claim that if P 2 @A then P 2 FixC.ˆ
0/ if and only if P 2 FixC.ˆ/. Symmetrically,

P 2 Fix�.ˆ
0/ if and only if P 2 Fix�.ˆ/. It follows that FixN.ˆ

0/� FixN.ˆ/ and hence thatˆ is principal
if ˆ0 is principal. This will complete the proof of the lemma.

To prove the claim, extend a basis A for A to a basis B for Fn. Following [Gaboriau et al. 1998], we view
P 2 @Fn as an infinite word P D x1x2x3 � � � with each xi 2 B. For each i 2N, let x1; : : : ; xk.i/ be the
common initial segment of ˆ.x1 : : : xi / and P . Then P 2 FixC.ˆ/ if and only if k.i/� i!1 [Gaboriau
et al. 1998, Proposition I.1]. If P 2 @A then each xi 2A and each ˆ.x1 : : : xi /Dˆ0.x1 : : : xi / 2 A so
k.i/ is the same whether we compute using ˆ or ˆ0.

3.5 UPG is rotationless

Relative train track theory is most effective when applied to elements of Out.Fn/ that are rotationless as
defined in [Feighn and Handel 2011, Definition 3.13 and Remark 3.14]. In this section, we show that for
PG elements, � is rotationless if and only if � is UPG. The exact definition of rotationless plays no role
in this paper so is not repeated here.

Lemma 3.18 Each � 2 UPG is rotationless.

Proof By [Bestvina et al. 2000, Proposition 5.7.5], there is a sequence F0@F1@ � � �@FK of �-invariant
one-edge extensions where F0 is trivial and FK D fŒFn�g. We may assume without loss of generality that
F0 @ F1 @ � � �@ FK is a maximal such chain.

[Feighn and Handel 2011, Theorem 2.19], which makes no assumptions on �, proves the existence of
a relative train track map f WG!G and filtration ∅DG0 �G1 � � � � �GN DG representing � and
satisfying a certain list of five properties, two of which are denoted by (P) and (NEG). Additionally,
the filtration realizes F1 @ F2 @ � � � @ FK in the sense that each Fk is represented by a core filtration
element Gik . Since F0 @ F1 @ � � � @ FK is maximal, Gik is obtained from Gik�1 by adding either a
topological circle that is disjoint from Gik�1 or a topological arc with both endpoints in Gik�1 [Handel
and Mosher 2020, Part II, Lemma 2.5]. We denote the closure of Gik nGik�1 , equipped with the simplicial
structure inherited from Gik , by yHk . Since � is PG, there are no EG strata.

We use the following consequences of properties (P) and (NEG).

(1) The terminal endpoint of a nonperiodic edge in yHk is contained in Gik�1 .

(2) If yHk contains a periodic edge then it is a single periodic stratum [Feighn and Handel 2011,
Lemma 2.20(1)].

If yHk is a circle that is disjoint from Gik�1 , then its conjugacy class is fixed by some iterate of � and so
is fixed by � [Bestvina et al. 2005, Proposition 3.16]. There are two possibilities; yHk is a single fixed
edge; or yHk has more than one edge and f j yHk is a nontrivial rotation with one orbit of edges. In the
latter case, we say that yHk is a rotating circle.
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If yHk intersects Gik�1 then it is a topological arc Ek whose ends may or may not be identified. Either
f .Ek/D vkEkuk or f .Ek/D vk xEkuk for some paths uk; vk �Gik�1 [Bestvina et al. 2000, Corollary
3.2.2]. Since � is UPG, the latter is ruled out by [Bestvina et al. 2005, Proposition 5.7.5(2); see the second
paragraph on page 595]. If both uk and vk are trivial then Ek is a single fixed edge. If exactly one of
uk and vk is trivial then Ek is a single nonperiodic NEG edge. If neither uk and vk are trivial then Ek
consists of two nonperiodic NEG edges with a common fixed initial endpoint. In all three cases, the
directions determined by Ek and xEk are either nonperiodic or fixed.

An easy induction argument on k shows that:

(a) If a vertex v is not contained in a rotating circle then v is fixed by f and each periodic direction
based at v is fixed by f .

(b) Each rotating circle is a component of Per.f /, the set of periodic points for f , and each point in a
rotating circle has exactly two periodic directions.

These are exactly the conditions needed to verify that f WG!G is rotationless in the sense of [Feighn
and Handel 2011, Definition 3.18]. Proposition 3.19 of [loc. cit.] states that the existence of a rotationless
f W G! G satisfying the conclusions of [Feighn and Handel 2011, Theorem 2.19] is equivalent to �
being rotationless.

Remark 3.19 The converse of Lemma 3.18, that every rotationless PG � is UPG, is also true. We make
no use of this fact but include a proof for completeness. See Section 3.6 for a review of CTs. Since �
is rotationless and PG, it is represented by a CT f W G ! G without EG or zero strata. For any such
f WG!G, there is a filtration ∅DG0 �G1 � � � � �GN DG by f -invariant core subgraphs such that
Gi is obtained from Gi�1 by adding a single topological edge Ei whose image f .Ei /�Gi crosses Ei
exactly once and crosses xEi not at all. [Bestvina et al. 2000, Proposition 5.7.5] therefore implies that �
is UPG.

3.6 CTs

A CT is a particularly nice kind of homotopy equivalence f WG!G of a marked directed graph. Every
rotationless �, and in particular every � 2 UPG.Fn/, is represented by a CT; see [Feighn and Handel
2011, Theorem 4.28] or [Bestvina et al. 2000, Theorem 5.1.8]. Moreover, CTs are considerably simpler
in the UPG.Fn/-case than in the general case.

For the remainder of the section we assume that f WG!G is a CT representing an element of UPG.Fn/

and review its properties. Complete details can be found in [Feighn and Handel 2011] (see in particular
Section 4.1) and in [Feighn and Handel 2018]. The latter introduces the (Inheritance) property for a CT
f WG!G, which states that the restriction of f to each component of each core filtration element is also
a CT, and contains an algorithm to produce CTs satisfying (Inheritance). We say that f WG!G realizes
a chain F0 @ F1 @ � � �@ FK of �-invariant free factor systems if each Fj is realized by an f -invariant
core subgraph of G; see Section 3.3.
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Theorem 3.20 [Feighn and Handel 2018, Theorem 1.1] There is an algorithm whose input is a
rotationless � 2Out.Fn/ and whose output is a CT f WG!G that represents � and satisfies (Inheritance).
Moreover , for any chain C of �-invariant free factor systems , one can choose f WG!G to realize C.

We assume throughout this paper that our chosen CTs satisfy (Inheritance).

The marked graph G comes equipped with an f -invariant filtration ∅DG0 �G1 � � � � �GN DG by
subgraphs Gi in which each Gi is obtained from Gi�1 by adding a single oriented edge Ei . For each
Ei there is a (possibly trivial) closed path ui �Gi�1 such that f .Ei /DEiui ; if ui is nontrivial then it
forms a circuit. A path or circuit has height i if it crosses Ei , meaning that either Ei or xEi occurs in its
edge decomposition, but does not cross Ej for any j > i .

Example 3.1 (continued) The homotopy equivalence f W G! G is a CT with f -invariant filtration
∅DG0 �G1 � � � � �G7 DG given by adding one edge at a time in alphabetical order.

Every map ˛ into G with domain a closed interval or S1 and with endpoints, if any, at vertices is properly
homotopic rel endpoints to a path or circuit Œ˛�; we say that Œ˛� is obtained from ˛ by tightening. If � is
a path or circuit then we usually denote Œf .�/� by f#.�/. A decomposition into subpaths � D �1 ��2 � : : :
is a splitting if f k# .�/D f

k
# .�1/ � f

k
# .�2/ � : : : for all k � 1. In other words, f k.�/ can be tightened by

tightening each f k.�i /.

A finite path � is a Nielsen path if f#.�/D � ; it is an indivisible Nielsen path if it is not a fixed edge and
does not split into a nontrivial concatenation of Nielsen paths. Every Nielsen path has a splitting into
fixed edges and indivisible Nielsen paths. If f k# .�/D � for some k � 1 then � is a periodic Nielsen path.
In a CT, every periodic Nielsen path is a Nielsen path.

An edge Ei is linear if ui is a nontrivial Nielsen path. The set of oriented linear edges is denoted by
Lin.f / and the set obtained from Lin.f / by reversing orientation is denoted by Lin�1.f /. In our example,
Lin.f /D fb; pg.

Associated to a CT f WG!G is a finite set of nontrivial closed Nielsen paths called twist paths. This set
is well-defined up to a change of orientation on each path. In the remainder of this paragraph we recall
some useful properties of twist paths. Each twist path w determines a circuit Œw� in G representing a
root-free1 conjugacy class in Fn and distinct twist paths determine distinct unoriented circuits; ie circuits
whose cyclic edge decompositions differ by more than a change of orientation. For each twist path w, the
set Linw.f / of (necessarily linear) edges Ei such that f .Ei /DEiwdi for some di ¤ 0 is nonempty and
is called the linear family associated to w; note that f k# .Ei /DEiw

kdi grows linearly in k. Every linear
edge belongs to one of these linear families. If Ei 2 Linw.f / and p ¤ 0 then Eiwp xEi is an indivisible
Nielsen path. All indivisible Nielsen paths have this form. If Ei and Ej are distinct edges in Linw.f /

then di ¤ dj ; if di and dj have the same sign, then paths of the form Eiw
p xEj are exceptional paths

1Nontrivial a 2 Fn is root-free if x 2 Fn and xk D a implies k D˙1.
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associated to w. Note that f k# .Eiw
p xEj /DEiw

pCk.di�dj / xEj so these paths also grow linearly under
iteration. Exceptional paths have no nontrivial splittings (which would not be true if we allowed di and
dj to have the opposite sign).

Example 3.1 (continued) In our example, we choose our set of twist paths to be fag, as opposed
to fa�1g.

A splitting � D �1 ��2 � : : : is a complete splitting if each �i is either a single edge or an indivisible Nielsen
path or an exceptional path. If �i is not a Nielsen path then it is a growing term; if at least one �i is
growing then � is growing. We say that �i is a linear term if it is exceptional or equal to E or xE for some
E 2 Lin.f /. Complete splittings are unique when they exist [Feighn and Handel 2011, Lemma 4.11].
A path with a complete splitting is said to be completely split. For each edge Ei there is a complete
splitting of f .Ei / whose first term is Ei and whose remaining terms define a complete splitting of ui .
The image under f# of a completely split path or circuit is completely split. For each path or circuit � ,
the image f k# .�/ is completely split for all sufficiently large k [Feighn and Handel 2011, Lemma 4.25].

The set of oriented nonfixed nonlinear edges is denoted by Ef and the set obtained from Ef by reversing
orientation is denoted by E�1

f
. We say that an edge in Ef or E�1

f
has higher order. An easy induction

argument shows that, for each Ei 2 Ef and k � 1, f k# .Ei / is completely split and

f k# .Ei /DEi �ui �f#.ui / � : : : �f
k�1

# .ui /:

Thus f k�1# .Ei / is an initial segment of f k# .Ei / and the union

REi DE �ui �f#.ui / �f
2

# .ui / � : : :

of this nested sequence is an f#-invariant ray called the eigenray associated to Ei . The complete splittings
of the individual f k# .ui /’s define a complete splitting of REi .

Example 3.1 (continued) In our example, the edge a is fixed, the edges b and p are linear, and the
other edges have higher order, ie Ef D fc; d; e; qg. As an example of an eigenray,

Rq D q � c � cb � cbba � : : : � cbba : : : ba
k�1
� : : : :

Lemma 3.21 IfE 2 Ef [E�1f thenE is not crossed by any Nielsen path or exceptional path. In particular ,
each crossing of E by a completely split path is a term in the complete splitting of that path.

Proof Suppose that some Nielsen path � crosses E. Since � is a concatenation of fixed edges and
indivisible Nielsen paths and since every indivisible Nielsen path has the form Eiw

p xEi for some linear
edge and twist path w, E must be crossed by some Nielsen path w with height lower than � . The obvious
induction argument completes the proof.

Remark 3.22 One can define RE for a linear edge E in the same way that one does for a higher-order
edge. If f .E/ D Ewd for some twist path w then RE D Ew1 if d > 0 and RE D Ew�1 if d < 0.
These rays play a different role in the theory than eigenrays.
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3.7 Principal lifts from the CT point of view

Suppose that f W G ! G is a CT representing �. If ˆ is a principal lift for � then we say that the
corresponding zf is a principal lift of f WG!G.

Lemma 3.23 A lift zf W zG! zG is principal if and only if Fix. zf /¤∅ in which case Fix. zf / contains a
vertex.

Proof This follows from Corollary 3.17, Corollary 3.27 and Remark 4.9 of [Feighn and Handel 2011]
and the fact that Fix.f / is a union of vertices and fixed edges.

Lemma 3.24 Suppose that zf W zG ! zG is the lift of f W G ! G corresponding to ˆ 2 P.�/ and that
a 2 Fn. The following are equivalent :

� a 2 Fix.ˆ/;

� iaj@Fn D Taj@Fn commutes with ˆj@Fn D zf j@Fn;

� Taj zG commutes with zf j zG;

� Ta.Fix. zf j zG//D Fix. zf j zG/.

Proof This is well known. All but the equivalence of the third and fourth bullets can be found in
Lemma 2.4 of [Bestvina et al. 2004]. If Taj zG commutes with zf j zG then it preserves the fixed-point set
of zf j zG. Conversely, if zx; Ta.zx/ 2 Fix. zf j zG/ then zf j zG and Ta zf T �1a j zG both fix Ta.zx/ and so must be
equal. This proves the equivalence of the third and fourth bullets.

We say that lifts zf1 and zf2 are isogredient if they correspond to isogredient automorphisms ˆ1 and ˆ2.
Equivalently, zf2 D Ta zf1T �1a for some covering translation Ta. Recall that x; y 2 Fix.f / are Nielsen
equivalent if they are the endpoints of a Nielsen path or equivalently, if for each lift zx, the unique lift zf
that fixes zx also fixes some lift zy of y.

Lemma 3.25 The map which assigns to each principal lift zf W zG! zG the projection into G of Fix. zf /

induces a bijection between the set of isogredience classes of principal lifts and the set of Nielsen classes
for f . In particular , there are only finitely many isogredience classes of principal lifts.

Proof This follows from [Feighn and Handel 2011, Lemma 3.8] and Lemma 3.23.

Recall from Section 3.6 that for eachE 2Ef there is a closed completely split path u such that f .E/DE �u
is a splitting and such that the eigenray RE DE �u �f#.u/ �f

2
# .u/ � : : : is f#-invariant.

The following lemma is similar to [Feighn and Handel 2018, Lemma 3.10], which applies more generally
but has a weaker conclusion.

Lemma 3.26 Suppose that zf corresponds toˆ2P.�/. If zE is a lift ofE 2Ef and if the initial endpoint of
zE is contained in Fix. zf / then the lift zR zE of RE that begins with zE converges to a point in FixC.ˆ/. This

defines a bijection between FixC.ˆ/ and the set of all such zE and also a bijection between R.�/ and Ef .
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Proof zR zE converges to some P 2 FixN.ˆ/ by [Feighn and Handel 2011, Lemma 4.36(1)]. Since E is
not linear, u is not a Nielsen path and hence not a periodic Nielsen path. The length of f k# .u/ therefore
goes to infinity with k. Proposition I.1 of [Gaboriau et al. 1998] implies that P 2 FixC.ˆ/.

Suppose that zE1 and zE2 are distinct edges that project into Ef , that the initial endpoint zxi of zEi is fixed
by zf and that, for i D 1; 2, zRi is the lift of REi with initial edge zEi . The path that connects zx1 to zx2
projects to a Nielsen path � �G. If zR1 and zR2 converge to the same point in FixC.ˆ/ then � crosses E1
or E2 in contradiction to Lemma 3.21. This proves that the map f zEg 7! FixC.ˆ/ is injective; surjectivity
follows from [Feighn and Handel 2011, Lemma 4.36(2)]. The second bijection is obtained from the first
by projecting to the sets of Fn-orbits.

Example 3.1 (continued) Since Ef D fc; d; e; qg, R.�/ has four elements, denoted by frc ; rd ; re; rqg;
see Figure 2.

4 Recognizing a conjugator

Associated to each CT f WG!G representing a rotationless element � 2Out.Fn/ is a finite type labeled
graph �.f / that realizes FixN.�/. We refer to �.f / as the eigengraph for f WG!G. In Section 4.1 we
recall the construction and relevant properties of �.f / in the case that � 2 UPG.Fn/. Every �-invariant
conjugacy class Œa� is represented by an oriented circuit in �.f /. There is a finite set Aor.�/ of such Œa�
that are root-free and that are represented by more than one oriented circuit in �.f /. The “extra” circuits
correspond to the linear edges in f WG!G. In Section 4.2, we describe how the extra circuits can be
incorporated into an invariant SA.�/ of � that is independent of the choice of f W G ! G. Moreover,
certain pairs of elements of SA.�/ have twist coordinates that can be read off from the twist coordinates
on linear edges in f WG!G. Section 4.3 is an application of the recognition theorem of [Feighn and
Handel 2011]. Assuming that �; 2 UPG.Fn/, we use eigengraphs, SA.�/ and twist coordinates to give
necessary and sufficient conditions for a given � 2 Out.Fn/ to conjugate � to  .

4.1 The eigengraph �.f /

In this section, we recall a finite type labeled graph that captures many of the invariants of � that are
essential to our algorithm. For further details and more examples, see [Feighn and Handel 2018, Sections 9,
10 and 12].

A graph � without valence one vertices and equipped with a simplicial immersion p W �!G to a marked
graph G will be called a Stallings graph. We label the vertices and edges of � by their p-images in G.
Two Stallings graphs p1 W �1!G and p2 W �2!G are equivalent if there is a label-preserving simplicial
homeomorphism h W �1! �2. We will not distinguish between equivalent Stallings graphs. Since all
vertices have valence at least two, every edge in � is crossed by a line. We say that � has finite type if its
core is finite and if the complement of the core is a finite union of rays.
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Figure 2: The eigengraph �.f / of our example. Only the first edge of the eigenrays is labeled
here. For example, the eigenray Rc D cbbaba2ba3 : : : starts at the red vertex and only its first
edge is labeled (by c). Other aspects of this figure are explained later.

Given a CT f W G ! G representing �, we construct a finite type Stallings graph �.f /, called the
eigengraph for f WG!G, as follows. Let �0.f / be G with the interiors of all nonfixed edges removed.
In particular, �0.f / may contain isolated vertices. The labeling on �0.f / is the obvious one. For each
E 2 Lin.f /, first attach an edge, say E 0, to �0.f / by identifying the initial endpoint of E 0 with the initial
endpoint of E, thought of as a vertex in �0.f /. The label on E 0 is E. Then add a path ! by attaching
both of its endpoints to the terminal endpoint of E 0, which now has valence three. If w denotes the twist
path associated to E then we label ! by w, thought of as an edge path, and subdivide ! so that each
edge in ! is labeled by a single edge in G. The net effect is to add a lollipop to �0.f / for each edge
in Lin.f /. This labeling defines an immersion because w determines a circuit that does not cross the
edge E. Finally, for each E 2 Ef , attach a ray labeled RE (as defined in Section 3.6) by identifying the
initial endpoint of this ray with the initial endpoint of E, thought of as a vertex in �0.f /. We will also
use the term eigenray for this added ray. The resulting graph is denoted by �.f /. This labeling maintains
the immersion property because RE is an immersed ray in G and because no other edge labeled E has
initial vertex in �0.f /.

Example 3.1 (continued) The eigengraph for our running example is pictured in Figure 2.

The vertices of �.f / that are not in �0.f / have valence either two or three by construction. The valence
of v 2 �0.f / in �.f / is equal to the number of fixed directions based at v in G. If v, thought of as a
vertex in G, is not the terminal endpoint of an edge in Ef [ Lin.f /, then v has the same valence in �.f /
that it does in G. If v is the terminal endpoint of an edge in Ef [ Lin.f /, let Ei be the lowest such edge.
Then f .Ei /DEi �ui , where ui is a closed path based at v whose ends determine distinct fixed directions
at v by [Feighn and Handel 2011, Lemma 4.21]. This proves that v has valence at least two in �.f / and
hence that �.f / is a Stallings graph. It has finite type by construction.
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As noted in Section 3.6, each Nielsen path in G decomposes as a concatenation of fixed edges and
indivisible Nielsen paths and each indivisible Nielsen path is a closed path. It follows that two vertices
in Fix.f / are in the same Nielsen class if and only if they are connected by a sequence of fixed edges.
In particular, the vertices in each component of �0.f / form exactly one Nielsen class in Fix.f /. Since
the inclusion of �0.f / into �.f / induces a bijection of components, there is a bijection between the
set of components of �.f / and the set of Nielsen classes in Fix.f / and hence (Lemma 3.25) a bijection
between the set of components of �.f / and the set of isogredience classes in P.�/. We denote the
component of �.f / corresponding to the isogredience class Œˆ� by �Œˆ�.f / or by �. zf /, where zf is the
lift of f that corresponds to ˆ.

We say that a line is carried by �Œˆ�.f / if its realization L�G lifts into �Œˆ�.f / and is carried by �.f /
if it is carried by some component �Œˆ�.f /. The following lemma shows that the set of lines carried by
�.f / is independent of the choice of f WG!G. We will sometimes refer to these as principal lines.

Lemma 4.1 The following are equivalent for any CT f WG!G representing �, any ˆ 2 P.�/ and any
line L�G.

(1) L is carried by �Œˆ�.f / (resp. the core of �Œˆ�.f /).

(2) There is a lift zL� zG such that f@˙ zLg � FixN.ˆ/ (resp. f@˙ zLg � @ Fix.ˆ/).

Proof It suffices to prove the unbracketed statement. Let q W zG!G and q� W z�Œˆ�.f /! �Œˆ�.f / be the
universal covering maps. The labeling map p W�Œˆ�.f /!G is an immersion and so lifts to an embedding
zp W z�Œˆ�.f / ,! zG. If a line L�G lifts to a line L� � �Œˆ�.f / and if zL� � z�Œˆ�.f / is a lift of L� then
zL WD zp.zL�/� zG is a lift of L. Conversely, if L�G lifts to zL� zG and there exists zL� � z�Œˆ�.f / with
zp.zL�/D zL, then L� WD q�.zL�/ is a lift of L. The lemma therefore follows from [Feighn and Handel
2018, Lemma 12.4], which states that L�G lifts to zp.zL�/ if and only if (2) is satisfied.

An end of an immersed line in �.f / can either be an end of �.f / or can wrap infinitely around one of
the lollipop circuits or can cross a vertex in �0.f / infinitely often. This gives the following description
of lines that lift into �.f /.

Lemma 4.2 A line � �G lifts into �.f / if and only if it contains a (possibly trivial ) subpath ˇ that is a
concatenation of fixed edges and indivisible Nielsen paths and such that the complement of ˇ is 0; 1 or
2 rays , each of which is either Re for some higher-order edge e, or Ew˙1 for some twist path w and
some linear edge E 2 Linw.f /.

The following lemma, in conjunction with Lemma 4.1, implies that the set of conjugacy classes determined
by twist paths and their inverses is an invariant of �. This set is explored further in Section 4.2.
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Lemma 4.3 Suppose that f WG!G is a CT representing � and that Œa� is a root-free conjugacy class
that is fixed by � and that �a is the circuit in G representing Œa�.

(1) If Œa�D Œw� (resp. Œa�D Œ xw�) for some twist path w, then for each edge E 2 Linw.f / there is a lift
of �a to the loop ! (resp. x!) in the lollipop associated to E. Additionally there is a unique lift
of �a to a circuit in �.f / that is not contained in any lollipop.

(2) Otherwise , there is a unique lift of �a to a circuit in �.f /.

Proof We claim that if � 0 is a path in the core of �.f / that projects to a Nielsen path � in G and if the
initial vertex v00 of � 0 is not in �0.f /, then � 0 is contained in the loop ! of some lollipop. We may assume
without loss that the claim holds for paths with height less than that of � and that � is either a single fixed
edge or an indivisible Nielsen path. Since the core of �.f / is contained in the union of �0.f / with the
lollipops associated to the linear edges of G, there is a lollipop composed of an edge E 01 projecting to a
linear edge E1 �G and a loop ! projecting to its twist path w1 such that v00 2!. If � is a fixed edge then
� 0 is disjoint from the interior of E 01 and so is contained in !. If � is an indivisible Nielsen path then it
has the form E2w2

p xE2 for some linear edge E2 with twist path w2. There is an induced decomposition
� 0 D X 0w02Y

0, where X 0, w02 and Y 0 project to E2, wp2 and xE2, respectively. Since E2 ¤ xE1, we have
X 0 � ! and the initial vertex of w02

p is contained in !. Since w2 has height less than E2 and so height
less than � , w02

p
� !. Finally, since X 0 is contained in !, E2 has height less than E1 and in particular,

xE2 ¤ xE1. Thus Y 0 � !. This completes the proof of the claim.

Each � D �a as in the statement of the lemma has a cyclic splitting � D �1 � : : : � �m into fixed edges and
indivisible Nielsen paths �i . The above claim shows that if � 0 D � 01 � : : : ��

0
m is a lift to �.f / in which an

endpoint of some � 0i is not contained in �.f /0 then � 0 is entirely contained in the loop ! associated to
one of the lollipops.

To complete the proof we need only show each � has a unique lift in which the endpoints of each �i lift
into �0.f /. Since the vertices of G have unique lifts into �0.f /, it suffices to show that each �i has a
unique lift with endpoints in �0.f / and this is immediate from the construction of �0.f /.

4.2 Strong axes and twist coordinates

The following lemma describes the extent to which fixed subgroups fail to be malnormal.

Lemma 4.4 For distinct automorphisms ˆ1 and ˆ2 representing the same outer automorphism and for
any c 2 Fn:

(1) Fix.ˆ1/\ Fix.ˆ2/ is either trivial or a maximal cyclic subgroup.

(2) If c … Fix.ˆ1/ then Fix.ˆ1/\ .Fix.ˆ1//
c D Fix.ˆ1/\ Fix.icˆ1i

�1
c / is either trivial or a maximal

cyclic subgroup.

(3) Fix.ˆ1/ is its own normalizer.
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Proof If ˆ1 and ˆ2 are distinct automorphisms representing the same outer automorphism then ˆ�11 ˆ2

is a nontrivial inner automorphism and Fix.ˆ1/\Fix.ˆ2/ is a subgroup of the cyclic group Fix.ˆ�11 ˆ2/.
Maximality of Fix.ˆ1/\Fix.ˆ2/ follows from Lemma 3.6 and the fact that .ak/˙D a˙ for all nontrivial
a 2 Fn and all k � 1. This proves (1).

For (2) note that if c … Fix.ˆ1/ then icˆ1i�1c D icˆ1.c�1/ˆ1 ¤ ˆ1. Note also that Fix.icˆ1i
�1
c / D

.Fix.ˆ1//
c . Item (2) therefore follows from (1) applied with ˆ2 D icˆ1i�1c . In proving (3) we may

assume by (2) that Fix.ˆ1/D hai for some root-free a 2 Fn and in this case (3) is obvious.

The conjugacy class of a cyclic subgroup is determined by the conjugacy class of either of its generators.
As we have no way to canonically choose a generator, we work, for now, with unoriented conjugacy
classes. The following definition appeared as [Bestvina et al. 2004, Definition 4.6] under slightly different
hypotheses and in the paragraph before [Feighn and Handel 2011, Remark 4.39] in the CT context.

Definition 4.5 Elements a; b 2Fn are in the same unoriented conjugacy class if aD ic.b/ or aD ic.b�1/
for some c 2 Fn. An unoriented conjugacy class Œa�u of a nontrivial root-free a 2 Fn is an axis for � if
hai D Fix.ˆ1/\ Fix.ˆ2/ for distinct ˆ1; ˆ2 2 P.�/. The multiplicity of an axis Œa�u is the number of
distinct ˆi 2 P.�/ that fix a. The set of axes for � is denoted by A.�/. The set fŒa� j Œa�u 2 A.�/g is
denoted by Aor.�/.

There is a very useful description of A.�/ in terms of a CT f WG!G.

Lemma 4.6 If f W G ! G is a CT representing � and fwig is the set of twist paths for f , then
A.�/D fŒwi �ug. In particular , A.�/ is finite.

Proof This follows from [Feighn and Handel 2011, Lemma 4.40].

Notation 4.7 If Œa�u D Œw�u for some twist path w then, up to a reversal of orientation, the axis of the
covering translation Ta W zG! zG can be viewed as an infinite concatenation : : : zw�1 zw0 zw1 : : : of paths
that project to w. There is a principal lift zfa;0 W zG ! zG, called the base principal lift for a, that fixes
the endpoints of each zwl . The principal automorphism ˆa;0 corresponding to zfa;0 is called the base
principal automorphism for a. If a is an element of some basis for Fn then the base principal lift for a
depends on the choice of f WG!G, and not just on �.

For each edge Ej 2 Linw.f /, there is a principal lift zfa;j W zG! zG that fixes the initial endpoint of each
lift zEj with terminal endpoint equal to the initial endpoint of some zwl . (We write Ej rather than Ej
to emphasize that j is not an indicator of height in G.) The principal automorphism corresponding to
zfa;j is denoted by ˆa;j . Note that ˆa;0 Dˆa�1;0 and ˆa;j Dˆa�1;j . Further details can be found in

[Feighn and Handel 2011, Lemma 4.40] and the paragraph that precedes it.
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Lemma 4.8 Suppose that f WG!G is a CT representing �, that w is a twist path for f and that a 2 Fn
satisfies Œa�u D Œw�u. Suppose also that E1; : : : ; Em�1 are the edges in Linw.f /.

(1) fˆa;0; ˆa;1; : : : ; ˆa;m�1g is the set of principal automorphisms that fix a. In particular , the
multiplicity of each element of A.�/ is finite.

(2) If f .Ej /DEjwdj then ˆa;j D i
dj
a ˆa;0 if Œa�D Œw�, and ˆa;j D i

�dj
a ˆa;0 if Œa�D Œ xw�.

Proof This follows from Lemma 4.40 of [Feighn and Handel 2011].

Definition 4.9 Suppose that the group G acts on the sets Xi for i D 1; : : : ; k, and that xi 2Xi . The orbit
of .x1; : : : ; xk/ under the diagonal action of G on

Qk
iD1Xi , denoted by Œx1; : : : ; xk�G , is a conjugacy

k-tuple. If k D 2 then we say Œx1; x2�G is a conjugacy pair. We sometimes suppress the subscript, in
which case G D Fn.

Examples 4.10 Here are some examples of conjugacy pairs where G D Fn.

� We will often take Xi to be the set of finitely generated subgroups of Fn or Fn itself with the action
of Fn given by conjugation. If H < Fn (resp. x 2 Fn) then ŒH �Fn (resp. Œx�Fn) is the conjugacy
class of H in Fn (resp. x in Fn). Conjugacy pairs formed with these Xi will play an important
role in this paper, especially in Section 10.3.

� If X D @Fn and if x¤ y 2X , then .x; y/ 2X �X is an oriented line. The conjugacy pair Œx; y�Fn
is represents an oriented line in any marked graph.

� If X is the power set of @Fn and A and B are disjoint subsets of @Fn, then .A;B/2X �X denotes
the set of lines L with @�L 2 A and @CL 2 B . The conjugacy pair ŒA; B�Fn represents a set of
oriented lines in any marked graph.

We now define strong axes, the first of our invariants that is expressed as a conjugacy pair.

Definition 4.11 Let Aor.�/ be the set of conjugacy classes representing elements of A.�/, ie Œa�2Aor.�/

if fŒa�; Œa�1�g 2 A.�/. Fn acts on pairs .ˆ; a/ where ˆ 2 P.�/, a 2 Fix.ˆ/, and Œa� 2 Aor.�/ via
.ˆ; a/g D .ˆig ; ag/. The Fn-orbit, equivalently conjugacy pair, Œˆ; a�, is a strong axis for �. If
˛s D Œˆ; a� then we let ˛�1s WD Œˆ; a

�1�. The set of all strong axes for � is denoted by SA.�/. Aut.Fn/

acts on pairs .ˆ; a/ by ‚ � .ˆ; a/D .‚ˆ‚�1; ‚.a//. This descends to an action of Out.Fn/ on SA.�/.

We can partition SA.�/ according to the second coordinate: for each � 2 Aor.�/ let SA.�; �/ be the
subset of SA.�/ consisting of elements in which some, and hence every, representative .ˆ; a/ satisfies
Œa�D �.

Lemma 4.12 Suppose that a 2 Fn, that Œa� 2Aor.�/ and that ˆa;0; : : : ; ˆa;m�1 are as in Notation 4.7.
For each ˛s 2 SA.�; Œa�/, there is a unique ˆa;j such that ˛s D Œˆa;j ; a�. Thus

SA.�; Œa�/D fŒˆa;0; a�; Œˆa;1; a�; : : : ; Œˆa;m�1; a�g:
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Proof Each ˛s 2 SA.�; Œa�/ is represented by .ˆ; ac/ and hence by .icˆi�1c ; a/, for some c 2 Fn and
some ˆ 2 P.�/. Since a 2 Fix.icˆi

�1
c /, there exists j such that icˆi�1c D ĵ .

For uniqueness, note that if . ĵ ; a/D c � .ˆi ; a/ for some c 2Fn then cD ap for some p so ic commutes
with ĵ and c � .ˆi ; a/D .ˆi ; a/.

Remark 4.13 There is another useful description of Œˆa;j ; a� 2 SA.�; Œa�/ in terms of a CT f WG!G.
Letw be the twist path satisfying Œa�uD Œw�u and let v be the initial vertex ofw. There is an automorphism
fv# W �1.G; v/! �1.G; v/ that sends the homotopy class of the closed path � with basepoint v to the
homotopy class of the closed path f .�/ with basepoint v. Let � be the element of �1.G; v/ determined
by w if Œa�D Œw� and by xw if Œa�D Œ xw�. In both cases, � is fixed by fv#. There is an isomorphism from
�1.G; v/ to Fn that is well-defined up to postcomposition with an inner automorphism of Fn. The pair
.fv#; �/ determines a well-defined element, namely Œˆa;0; a�, of SA.�; Œa�/. Similarly if vj is the initial
endpoint of Ej 2 Linw.f /, let �j be the element of �1.G; vj / determined by Ejw xEj if Œa�D Œw� and
by Ej xw xEj if Œa�D Œ xw�. Then .fvj #; �j / determines Œˆa;j ; a�.

Continuing with this notation, we can relate SA.�; Œa�/ to circuits in the eigengraph �.f / that are lifts
of Œw�u. For j ¤ 0, Œˆa;j ; a� corresponds to the loop at the end of the lollipop in �.f / determined by Ej .
By Lemma 4.3 there is one more lift of Œw�u into �.f /, and this corresponds to Œˆa;0; a�.

Definition 4.14 Suppose that � 2Aor.�/ and that ˛s; ˛0s 2 SA.�; �/. Choose a 2 Fn such that Œa�D �
and let ˆ;ˆ0 2 P.�/ be the unique elements such that ˛s D Œˆ; a� and ˛0s D Œˆ

0; a�. Since ˆ and ˆ0 both
fix a there exists � 2 Z such that ˆ0 D i�aˆ; equivalently, ˆ0ˆ�1 D i�a . We say that � D �.˛0s; ˛s/ is the
twist coordinate associated to ˛0s and ˛s .

Example 3.1 (continued) In our example, SA.�; Œa�/ is represented in Figure 2 by the three circles
˛, ˛0, and ˛00 labeled a and drawn with thicker lines. SA.�/D SA.�; Œa�/[ SA.�; Œa�1�/. We have for
example �.˛0; ˛/D 1.

Lemma 4.15 Twist coordinates are well-defined.

Proof We have to show that �.˛0s; ˛s/ is independent of the choice of a representing �. If a is replaced
by ac then ˆ and ˆ0 are replaced by icˆi�1c and icˆ0i�1c , respectively, and so i�a Dˆ

0ˆ�1 is replaced
by icˆ0ˆ�1i�1c D ici

�
a i
�1
c D iac

� .

The following lemma allows us to compute twist coordinates for strong axes from a CT f WG!G. It is
an immediate consequence of Lemma 4.8 and the definitions.

Lemma 4.16 (1) If Œa�D Œw� and Ej 2 Linw.f / satisfies f .Ej /DEjwdj , then

�.Œˆa;j ; a�; Œˆa;0; a�/D dj :
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(2) Suppose that � 2Aor.�/ and that ˛s; ˇs; s 2 SA.�; �/. Then

(a) �.˛s; ˇs/D��.ˇs; ˛s/,

(b) �.˛s; s/D �.˛s; ˇs/C �.ˇs; s/,

(c) �.˛s; ˇs/D��.˛
�1
s ; ˇ�1s /.

The next lemma shows that A.�/, SA.�; Œa�/ and SA.�/ are natural invariants.

Lemma 4.17 Assume that  D ����1 and that ‚ represents � .

(1) The correspondence Œa�u$ .�Œa�/u defines a bijection A.�/$A. /.

(2) The correspondence .ˆ; a/$ .‚ˆ‚�1; ‚.a// induces a bijection SA.�; Œa�/$ SA. ; �.Œa�//

that preserves twist coordinates.

Proof If ˆ1; ˆ2 2 P.�/ fix a 2 Fn, then ‰1 WD‚ˆ1‚�1 and ‰2 WD‚ˆ2‚�1 in P. / fix ‚.a/. This
proves (1).

For (2), let ‰ D‚ˆ‚�1 and note that if ˆ 2 P.�/ and a 2 Fix.ˆ/ then ‰ 2 P. / and ‚.a/ 2 Fix.‰/.
Moreover,

c � .ˆ; a/D .icˆi
�1
c ; ac/ 7! .i‚.c/‰i

�1
‚.c/; ‚.a/

‚.c//D‚.c/ � .‰;‚.a//:

This proves that .ˆ; a/ 7! .‚ˆ‚�1; ‚.a// induces a well-defined map SA.�; Œa�/! SA. ; �.Œa�// that
is obviously invertible and is hence a bijection. If ˆi and ‰i are as in the proof of (1) and if ˆ2 D i�aˆ1,
then ‰2 D i�‚.a/‰1. This proves that twist coordinates are preserved.

We conclude this section with a conjugacy class of pairs construction that is better suited to the techniques
in Section 10 than the one in Definition 4.11 but is only applicable when the fixed subgroups in question
have rank at least two.

Definition 4.18 Given � 2 Out.Fn/, consider pairs .Fix.ˆ/; a/ where ˆ 2 P.�/, a 2 Fix.ˆ/ and
Œa�2Aor.�/. Using Fix.icˆi

�1
c /D ic.Fix.ˆ//, the action of Fn on such pairs is given by c �.Fix.ˆ/; a/D

.ic.Fix.ˆ//; ic.a//, giving a conjugacy pair ŒFix.ˆ/; a�. Similarly, Aut.Fn/ acts on pairs .Fix.ˆ/; a/ by
‚ � .Fix.ˆ/; a/D .‚.Fix.ˆ//;‚.a//. This descends to an action of Out.Fn/ on the set of such conjugacy
pairs.

Remark 4.19 Since Fix.ˆ/ is its own normalizer (Lemma 4.4(3)), ŒFix.ˆ/; a�D ŒFix.ˆ/; a0� if and only
if a0 D ic.a/ for some c 2 Fix.ˆ/; equivalently, a and a0 are conjugate as elements of Fix.ˆ/.

Lemma 4.20 Suppose that Fix.ˆ/ and Fix.ˆ0/ have rank at least two. Then

Œˆ; a�D Œˆ0; a0� () ŒFix.ˆ/; a�D ŒFix.ˆ0/; a0�:
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Proof By definition, Œˆ; a�D Œˆ0; a0� if and only if there exists c 2 Fn such that

ˆ0 D icˆi
�1
c and a0 D ic.a/:

Similarly, ŒFix.ˆ/; a�D ŒFix.ˆ0/; a0� if and only if there exists c 2 Fn such that Fix.ˆ0/D ic Fix.ˆ/ and
a0 D ic.a/. As we are assuming that Fix.ˆ/ and Fix.ˆ0/ have rank at least two, ˆ0 D icˆi�1c if and only
if Fix.ˆ0/D ic Fix.ˆ/.

4.3 Applying the recognition theorem

The recognition theorem [Feighn and Handel 2011, Theorem 5.1] gives invariants that completely
determine rotationless elements of Out.Fn/. In this paper, via the following lemma, we use it to give a
sufficient condition for two elements of UPG.Fn/ to be conjugate in Out.Fn/.

Lemma 4.21 Suppose that f WG!G and g WG0!G0 are CTs representing � and  respectively , that
� 2 Out.Fn/ and that a line L lifts into �.f / (meaning that the realization of L in G is the image of a
line in �.f /) if and only if �.L/ lifts into �.g/. Then for each ‚ 2 Aut.Fn/ representing � :

(1) There is a bijection BP W P.�/! P. / such that FixN.BP.ˆ// D ‚.FixN.ˆ// D FixN.ˆ
‚/. In

particular , Fix.BP.ˆ//D‚ Fix.ˆ/D Fix.ˆ‚/.

(2) The map Œˆ; a� 7! ŒBP.ˆ/;‚.a/� defines a bijection BSA W SA.�/! SA. /, independent of the
choice of ‚, such that �� D  if and only if BSA preserves twist coordinates.

Proof Given ˆ 2 P.�/, choose a line zL1 � zG with both ends nonperiodic and both ends in FixN.ˆ/.
(This is possible by Remark 3.10.) By Lemma 4.1, the projection L�G lifts to the component �Œˆ�.f /
of �.f / that corresponds to Œˆ�. By hypothesis, the line L01 � G

0 corresponding to �.L/ lifts to a
component of �.g/ and so by a second application of Lemma 4.1 there is a unique ‰ 2 P. / such that
FixN.‰/ contains the endpoints f‚.@˙ zL1/g of ‚.zL1/; moreover, L01 lifts into �Œ‰�.g/. To see that ‰ is
independent of the choice of zL1, suppose that we are given some other zL2 with both ends nonperiodic and
both ends in FixN.ˆ/. Let zL3 be the line connecting the terminal endpoint of zL1 to the initial endpoint
of zL2. Since zL1 and zL3 have a common endpoint, replacing zL1 with zL3 does not change ‰. For the
same reason, replacing zL3 with zL2 does not change ‰. We conclude that BP.ˆ/D‰ is well-defined.
This argument also shows that ‚ maps each nonperiodic element of FixN.ˆ/ to a nonperiodic element of
FixN.‰/. Since nonperiodic points in FixN.ˆ/ are dense in FixN.ˆ/, ‚.FixN.ˆ//� FixN.‰/. Reversing
the roles of � and  and replacing � with ��1, we see that ‚�1.FixN.‰//� FixN.ˆ/, which completes
the proof of (1). Note that if ‰ D BP.ˆ/ then for all c 2 Fn,

BP.icˆi
�1
c /D i‚.c/‰i

�1
‚.c/

because

‚.FixN.icˆi
�1
c //D‚.ic FixN.ˆ//D i‚.c/‚.FixN.ˆ//D i‚.c/ FixN.‰/D FixN.i‚.c/‰i

�1
‚.c//:
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For (2), suppose that Œa� 2Aor.�/, that ˆ 2 P.�/ fixes a and that ‰ D BP.ˆ/. Define

BSA.Œˆ; a�/D ŒBP.ˆ/;‚.a/�D Œ‰;‚.a/�:

Then for all c 2 Fn,

BSA.Œˆ; a�
c/D BSA.Œicˆi

�1
c ; ic.a/�/D Œi‚.c/‰i

�1
‚.c/; i‚.c/.‚.a//�D Œ‰; a�

‚.c/;

so BSA is well defined. By symmetry, BSA is a bijection. If ‚ is replaced by ib‚ for some b 2 Fn then
.‰;‚.a// is replaced by .ib‰i�1b ; ib‚.a//D b � .‰;‚.a//. This shows that BSA is independent of the
choice of ‚. It remains to show that �� D  if and only if BSA preserves twist coordinates.

Let � D �� . By Lemmas 3.16 and 4.17, conjugation by ‚ induces

� a bijection B 0P WP.�/!P.�/ defined by ˆ 7!‚ˆ‚�1 and satisfying FixN.B
0
P.ˆ//D‚ FixN.ˆ/,

� a bijection B 0SA W SA.�/! SA.�/ defined by Œˆ; a� 7! Œ‚ˆ‚�1; ‚.a/� that preserves twist coordi-
nates.

The bijections B 00P D BPB
0�1
P W P.�/! P. / and B 00SA D BSAB

0�1
SA W SA.�/! SA. / satisfy:

(a) FixN.B
00
P.‡//D FixN.‡/ for all ‡ 2 P.�/.

(b) B 00SA preserves twist coordinates if and only if BSA does.

Applying (b), it suffices to show that �� D  if and only if B 00SA preserves twist coordinates.

Suppose that Œb� 2Aor.�/, that b 2 Fix.‡/ and that ‡; ibd‡ 2 P.�/. Let aD‚�1.b/ and ˆD‚�1‡‚.
Then

B 00SAŒ‡; b�D BSAŒˆ; a�D ŒBP.ˆ/; b�;

and likewise

B 00SAŒi
d
b ‡; b�D BSAŒi

d
a ˆ; a�D ŒBP.i

d
a ˆ/; b�:

By definition, the twist coordinate for Œibd‡; b� and Œ‡; b� is d . It follows that B 00SA preserves twist
coordinates if and only if

BP.i
d
a ˆ/D ibdBP.ˆ/:

Since

BP.i
d
a ˆ/D B

00
P.i

d
b ‡/ and BP.ˆ/D B

00
P.‡/;

we conclude that B 00SA preserves twist coordinates if and only if

(c) B 00P.i
d
b
‡/D id

b
B 00P.‡/.

By the recognition theorem [Feighn and Handel 2011, Theorem 5.3], (a) and (c) are equivalent to �D .
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5 Limit lines�.r/� B

Each point P 2 @Fn determines a closed set of lines; see eg [Feighn and Handel 2011, Section 2.4],
where the closed set of lines is called the accumulation set of P . In this section we focus on the case that
P 2R.�/ and analyze these lines using CTs.

Definition 5.1 For each r 2 @Fn=Fn, we define the set �.r/� B of limit lines of r as follows. Choose a
lift zr 2 @Fn, a marked graph K and a ray zR � zK with terminal end zr . Let R �K be the projected image
of zR. Then L 2�.r/ (thought of as a line in K) if and only if the following equivalent conditions are
satisfied.

(1) Each finite subpath of L occurs as a subpath of R.

(2) For each lift zL� zK of L�K there are translates zRj of zR such that the initial endpoints of zRj
converge to the initial endpoint of zL and the terminal endpoints of zRj converge to the terminal
endpoint of zL.

Let �NP.r/ be the set of nonperiodic elements of �.r/.

Lemma 5.2 �.r/ and �NP.r/ are well-defined. Moreover , for each � 2 Out.Fn/, �.�.r//D�.�.r//
and �.�NP.r//D�NP.�.r//.

Proof If R0 is another ray with terminal end r , then R and R0 have a common terminal subray R00.
Let R D ˛R00 and R0 D ˛0R00. Given a finite subpath �2 � K of a line `, extend it to a finite subpath
�1�2 �K of `, where �1 is longer than both ˛ and ˛0. If �1�2 occurs in R then �2 occurs in R00. Since �2
was arbitrary, every finite subpath of ` occur in R if and only if every finite subpath of ` occurs in R00.
The same holds for R0 and R00. This proves that �.r/ is independent of the choice of R. Independence
of the choice of zR is obvious, as is the equivalence of (1) and (2).

Suppose that K 0 is another marked graph and that g WK!K 0 is a homotopy equivalence that preserves
markings and so represents the identity outer automorphism. Let zg W zK! zK 0 be a lift of g. If zL� zK is
a lift of L and zRj � zK is a sequence of translates of ray zR such that the initial and terminal endpoints
of zRj converge to those of zL, then the same is true of zL0 D zg#.zL/� zK

0 and zR0j D zg#. zRj /� zK
0. This

proves that �.r/ is independent of the choice of K.

For the moreover statement, choose a homotopy equivalence h WK!K that represents � and lifts zL� zK
and zh W zK! zK. If zRj � zK is a sequence of translates of zR whose initial and terminal endpoints converge
to those of zL, then the initial and terminal endpoints of zh#. zRj / converge to those of zh#.zL/� zK. This
proves that �.�NP.r//��NP.�.r//. The reverse inclusion follows by symmetry.

We now specialize to r 2R.�/.

Notation 5.3 For � 2 UPG.Fn/, let

�.�/D
[

r2R.�/

�.r/ and �NP.�/D
[

r2R.�/

�NP.r/:

Geometry & Topology, Volume 29 (2025)



The conjugacy problem for UPG elements of Out.Fn/ 1721

As an immediate consequence of Lemma 3.16 and the moreover statement of Lemma 5.2 we have:

Corollary 5.4 Suppose that � 2Out.Fn/ and that  D ����1 2 UPG.Fn/. Then �.�.�//D�. / and
�.�NP.�//D�NP. /.

For the remainder of the section we assume that f WG!G is a CT representing � 2 UPG.Fn/. Our goal
is to describe �.�/ and �NP.�/ in terms of f WG!G. See in particular Corollary 5.17.

One advantage of working in a CT is that we can work with finite paths and not just with lines and rays.

Definition 5.5 Given a path � �G, we say that a line L�G is contained in the accumulation set Acc.�/

of � with respect to f if every finite subpath of L occurs as a subpath of f k# .�/ for arbitrarily large k.

Notation 5.6 For each twist pathw, we writew1 for both the ray that is an infinite concatenation of copies
of w and the line that is a bi-infinite concatenation of copies of w, using context to distinguish between
the two. We use either xw1 or w�1 for the ray or line obtained from w1 by reversing orientation on w.

Examples 5.7 (1) If � is a Nielsen path, then Acc.�/D∅.

(2) Suppose that E 2 Lin.f / and f .E/DEwd .

(a) If d > 0 then Acc.E/D fw1g and Acc. xE/D f xw1g.

(b) If d < 0 then Acc.E/D f xw1g and Acc. xE/D fw1g.

(3) If Ei ; Ej 2 Lin.f / satisfy f .Ei /D Eiwdi and f .Ej /D Ejwdj for di ¤ dj then for all p 2 Z,
Acc.Eiw

p xEj /D fw
1g if di > dj , and Acc.Eiw

p xEj /D f xw
1g if di < dj .

Recall from Lemma 3.26 that there is a bijection between R.�/ and the set Ef of nonfixed nonlinear edges
ofG and that if r 2R.�/ corresponds toE 2Ef then the eigenrayREDE �uE �Œf .uE /��Œf 2.uE /�� : : :�G
has terminal end r . Thus, a line L � G is an element of �.r/ if and only if each finite subpath of L
occurs as a subpath of RE .

Limit lines of eigenrays are connected to accumulation sets as follows.

Lemma 5.8 If r 2R.�/ corresponds to E 2 Ef , and f .E/DE �uE , then

�.r/D Acc.E/D Acc.uE �f#.uE //D Acc
�
uE �f#.uE / � : : : �f

k
# .uE /

�
for any k � 1.

Proof The first equality is an immediate consequence of the definitions and the fact that E � f .E/�
f 2# .E/� � � � is an increasing sequence whose union is RE . Likewise,

Acc.uE �f#.uE //� Acc.uE �f#.uE / � : : : �f
k

# .uE //� Acc.f kC1# .E//D Acc.E/

is immediate. It therefore suffices to show that �.r/� Acc.uE �f#.uE //.

If L 2�.r/ then every finite subpath � of L occurs as a subpath of every subray of RE . Since the length
of f k# .uE / tends to infinity with k, each occurrence of � that is sufficiently far away from the initial
endpoint of RE is contained in some f k# .uE / �f

kC1
# .uE /D f

k
# .uE �f#.uE //. As the occurrence of �

moves farther down the ray, k!1.
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Notation 5.9 Define a partial order on the set Ef [E�1
f

by E1�E2 if E1 ¤E2 and if, for some k � 0,
E2 is crossed by f k# .E1/ and so by Lemma 3.21 is a term in the complete splitting of f k# .E1/. (In
Notation 6.1 we define a partial order > on Ef that does not distinguish between E and xE.)

As an immediate consequence of the definition, we have:

Lemma 5.10 If E;E 0 2 Ef [ E�1
f

and E�E 0, then the height of E 0 is less than the height of E, and
Acc.E 0/� Acc.E/.

The terms �i in the complete splitting of uE �f#.uE / are Nielsen paths, exceptional paths and single edges
with height strictly less than that of E. Each Acc.�i / is a subset of Acc.E/D�.r/. If �i 2 Ef [ E�1

f

then Acc.�i / can be understood inductively. The remaining Acc.�i / are given in Examples 5.7. The
work in identifying �.r/ D Acc.uE � f#.uE // is to determine what additional lines must be added toS

Acc.�i /.

Notation 5.11 For a path ˛�G, we say that f k# .˛/ converges to a ray R�G if for all m there exists K
such that the initial m-length segments of f k# .˛/ and of R are equal for all k � K. Note that R is
necessarily unique and f#-invariant. We sometimes write RD f1# .˛/.

Examples 5.12 (1) Suppose that E 2 Lin.f / and that f .E/DEwd .

(a) If d > 0 then f k# .E/ converges to Ew1 and f k# . xE/ converges to xw1.

(b) If d < 0 then f k# .E/ converges to E xw1 and f k# . xE/ converges to w1.

(2) If E 2 Ef then f k# .E/ converges to RE .

(3) If Ei ; Ej 2 Lin.f / satisfy f .Ei /D Eiwdi and f .Ej /D Ejwdj for di ¤ dj then for all p 2 Z,
f k# .Eiw

p xEj / converges to Eiw1 if di > dj and to Ei xw1 if di < dj .

Notation 5.13 If E 2 Ef , then the first growing term of f . xE/ has height less than that of E. It follows
that there exists M > 1 such that if �i is a growing term in the complete splitting of a path � and if
m�M , then the first growing term in the complete splitting of f m# .�i / is not an element of E�1

f
, and

the last growing term in the complete splitting of f m# .�i / is not an element of Ef . We refer to M as the
stabilization constant for f .

Lemma 5.14 Let M be the stabilization constant for f . If � is a completely split growing path , then
f k# .�/ converges to a ray f1# .�/D �R, where

(1) � is a (possibly trivial ) Nielsen path and one of the following holds:

(a) RDRE for some E 2 Ef .

(b) RDEw˙1 for some E 2 Linw.f /.

(c) RD w˙1 for some twist path w.
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(2) If � D �1 � �1 ��2 � : : : is the coarsening of the complete splitting of � into maximal (possibly
trivial ) Nielsen paths �i and single growing terms �i , then f1# .�/D �1f

1
# .�1/.

(3) In case (1c) there exists E 2 Linw.f / and a smallest k� �M such that the first growing term in
the coarsened complete splitting of f k# .�/ is xE for all k � k� . Moreover , if the first growing term
in the coarsened complete splitting of � is not an edge in E�1

f
then k� D 1.

Proof There is no loss in replacing � with its first growing term. The only case that does not follow
from Examples 5.12 is that � D xE 2 E�1

f
. This case follows from the definition of M and the obvious

induction argument.

Remark 5.15 The rays in Lemma 5.14 are finitely determined: in case (a) R is determined by the
edge E, in case (b) R is determined by E, w and a choice of ˙, and in case (c) R is determined by w
and a choice of ˙. From this data one can write down any finite initial subpath of R.

Lemma 5.16 Suppose that � � G is a completely split path and that � D ˛ � ˇ is a coarsening of the
complete splitting in which both ˛ and ˇ are growing. Let R� D f1# .x̨/, let RC D f1# .ˇ/ and let
`D .R�/�1RC. Then Acc.�/D Acc.˛/[Acc.ˇ/[f`g.

Proof The inclusion Acc.˛/[Acc.ˇ/�Acc.�/ follows from the fact that ˛ and ˇ occur as concatenation
of terms in a splitting of � . It is an immediate consequence of the definitions that ` 2 Acc./. It therefore
suffices to assume that L 2 Acc.�/ is not contained in Acc.˛/[Acc.ˇ/ and prove that LD `.

Choose a finite subpath L1 of L and K > 0 so that L1 does not occur as a subpath of f k# .˛/ or of f k# .ˇ/
for k � K. Extend L1 to an increasing sequence L1 � L2 � � � � of finite subpaths of L whose union
is L. For each j � 1, let Cj be the length of Lj . There exist arbitrarily large k so that Lj includes as a
subpath of f k# .�/D f

k
# .˛/ � f

k
# .ˇ/. The induced inclusion of L1 in f k# .�/ must intersect both f k# .˛/

and f k# .ˇ/ and so Lj is included as a subpath of the concatenation of the terminal segment of f k# .˛/ of
length Cj with the initial segment of f k# .ˇ/ of length Cj . If k is sufficiently large then the length Cj
initial segments of R� and of f k# .x̨/ agree and the length Cj initial segments of RC and of f k# .ˇ/ agree.
Thus each Lj can be included as a subpath of `. Since the induced inclusion of L1 contains the juncture
point between R� and RC, we may pass to a subsequence of Lj ’s and choose inclusions of Lj into ` so
that induced inclusion of L1 in ` is independent of j . It follows that if i < j then the inclusion of Li
into ` is the restriction of the inclusion of Lj into ` and hence that there is a well-defined inclusion of L
into `. This inclusion is necessarily onto and so LD `.

Corollary 5.17 For each r 2R.�/:

(1) Each L 2�.r/ decomposes as LD .R�/�1�RC where � is a (possibly trivial ) Nielsen path and
RC and R� satisfy (1a), (1b) or (1c) of Lemma 5.14. In particular , each L is �-invariant and is
finitely determined in the sense of Remark 5.15, and each periodic L equals w˙1 for some twist
path w.
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(2) �.r/ is a finite set and the finite data that determines each of its elements can be read off from
f WG!G.

(3) �NP.r/¤∅.

(4) For each L 2�.r/ and each lift zL, there exists ˆ 2 P.�/ such that @� zL; @C zL 2 FixN.ˆ/. Equiva-
lently, L lifts into �.f /.

Proof By Lemma 5.8 we can replace �.r/ with Acc.E/, where E 2 Ef corresponds to r . Lemma 5.8
also implies that Acc.E/D Acc.u �f#.u//, where f .E/DE �u. Let

u �f#.u/D �0 � �1 � �1 � �2 : : : �q � �q

be a coarsening of the complete splitting of u �f#.u/ so that each �i is a single growing term and so that
the �i are (possibly trivial) Nielsen paths. For 1 � i � q � 1, let R�i D f

1
# .x�i / and for 2 � i � q, let

RCi D f
1

# .�i /. For 1� i � q� 1, define `i D .R�i /
�1�iR

C
iC1. Lemma 5.16 and the obvious induction

argument imply that

�.r/D Acc.u �f#.u//D Acc.�1/[ `1[Acc.�2/[ � � � [ `q�1[Acc.�q/:

Lemma 5.14(1) implies that each `i satisfies (1). If �i is linear then Acc.�i / D w
˙1 for some twist

path w by Examples 5.7. The remaining �i have the form E 0 or xE 0 for some E 0 2 Ef with height less
than that of E. Downward induction on the height of E completes the proof of (1) and (2).

We now turn to (3), assuming at first that q > 2. If �2 is exceptional or an element of Ef [Lin.f / then `1
is nonperiodic. Otherwise, x�2 2 Ef [Lin.f / and `2 is nonperiodic. Both of these statements follow from
Lemma 5.14. If q D 2 then �1 is linear. One easily checks that `1 is nonperiodic in the various cases that
can occur. For example if �1 D E1 2 Lin.f / then �2 D E1 and `1 D xw˙1�1E1w˙1. The remaining
cases are left to the reader.

The equivalence of the two conditions in (4) follows from Lemma 4.1. To prove that L lifts into �.f /,
we make use of the fact that each vertex in G lifts uniquely to �0.f / and the fact that each Nielsen
path in G lifts uniquely into �.f / with one, and hence both, endpoints in �0.f /. These facts follow
immediately from the construction of �.f / and the fact that every Nielsen path is a concatenation of
fixed edges and (necessarily closed) indivisible Nielsen paths. Given these facts, we may assume that
L D .R�/�1�RC is not a concatenation of Nielsen paths and hence that the initial edge Ej of either
R� or RC is an element of Lin.f /[ Ef . The two cases are symmetric so we may assume that Ej is
the initial edge of R�. Let E 0j � �.f / be the unique lift of Ej with initial vertex v0 2 �0.f / and then
extend this to a lift of R� into �.f /. The Nielsen path � lifts to a path �0 � �0.f / with initial vertex v0

and terminal vertex, say w0. If RC is a concatenation of Nielsen paths then it lifts into �0.f / with initial
vertex w0. Otherwise we lift RC in the same way that we lifted R�.

Example 3.1 (continued) Recall Rq D q � c � cb � cbba � : : : � cbba : : : bak�1 � : : : and so �.rq/ D
fa1Rc ; a

1ba1; a1g and �NP.rq/D fa
1Rc ; a

1ba1g.
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6 Special free factor systems

6.1 A canonical collection of free factor systems

In this section, we define a canonical partial order < on R.�/ and then associate a nested sequence
EF.�;<T /D F0 @ F1 @ � � �@ Ft of �-invariant free factor systems to each total order <T on R.�/ that

extends <. The bottom free factor system F0 is the smallest free factor system that carries all conjugacy
classes that grow at most linearly and is independent of <T . The inclusions Fi�1 @ Fi are all one-edge
extensions. The CTs that represent � with filtrations that realize EF.�;<T / are easier to work with than
generic CTs; see Lemma 6.9.

Notation 6.1 Suppose that f WG!G is a CT representing � and that E1 and E2 are distinct elements
of Ef . If E1 or xE1 is a term of the complete splitting of f k# .E2/ for some k � 1, then we write E1 <E2.
Lemma 3.21 implies that < is a partial order on Ef . If E1 <E2 are consecutive elements in the partial
order then we write E1 <c E2. Note that if we define E1 <0 E2 to mean E1 or xE1 is a term of the
complete splitting of f .E2/ then < is the partial order determined from <0 by extending transitively.
Thus < can be computed.

If r1; r2 2R.�/ and r1 is an end of some element of �NP.r2/ then we write r1 < r2. Lemma 6.2 below
implies that < defines a partial order on R.�/. If r1 < r2 are consecutive elements in the partial order
then we write r1 <c r2.

Example 3.1 (continued) In our example, the only relation is rc < rq .

Recall from Lemma 3.26 that the map that sends E to the end of RE defines a bijection between Ef
and R.�/.

Lemma 6.2 For any CT f WG!G, the bijection between Ef and R.�/ preserves <.

Proof Suppose that E1; E2 2 Ef correspond to r1; r2 2R.�/, respectively.

If E1 < E2 and f .E2/ D E2 � u2, then E1 or xE1 is a term in the complete splitting of f k# .u2/ for
some, and hence all sufficiently large, k. By Lemma 5.8, there exists a completely split path  such that
�.r2/ D Acc./ and such that the complete splitting of  has a coarsening  D 1 � 2 � 3 into three
growing terms with 2 equal to either xE1 or E1. Lemma 5.16 therefore implies that RE1 is a terminal
ray of L or L�1 for some L 2�.r2/. Thus r1 < r2.

If r1 < r2 then RE1 is a terminal ray of L or L�1 for some L 2�.r2/ by Corollary 5.17(1). It follows
that f k# .E2/ crosses E1 or xE1 for all sufficiently large k. Lemma 3.21 implies that E1 <E2.

Lemma 6.3 If  D ����1 then the bijection R.�/!R. / induced by � (see Lemma 3.16) preserves
partial orders.

Proof By Lemmas 3.16 and 5.4, we have �.R.�// D R. / and �.�NP.r// D �NP.�.r// for each
r 2R.�/. The fact that � preserves the partial order now follows from the definition of the partial order.
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Notation 6.4 Extend the partial order < on R.�/ to a total order <T and write R.�/D fr1; : : : ; rsg,
where the elements are listed in increasing order. Given a CT f WG!G representing �, transfer the total
order <T on R.�/ to a total order (also called) <T on Ef D fE1; : : : ; Esg using the bijection between
Ef and R.�/ given in Lemma 3.26.

Recall from Section 4.1 that each component C of the eigengraph �.f / is constructed from a component
C0 of Fix.f / by first adding “lollipops”, one for each E 2 Lin.f / with initial vertex in C0, to form C1,
and then adding rays labeled RE , one for each E 2 Ef with initial vertex in C0. Each E 2 Ef contributes
exactly one ray to �.f / and we identify that ray with the eigenray RE ; it is the unique lift of RE to �.f /.
Each E 2 Lin.f / contributes exactly one lollipop to �.f /. Note that C is contractible if and only if C1
is contractible if and only if C0 is contractible and there are no E 2 Lin.f / with initial vertex in C0. In
this contractible case, C is obtained from a (possibly trivial) tree in Fix.f / by adding eigenrays and we
single out the ray RE � C whose associated edge E is lowest with respect to <T . These edges define
subsets R�.�/�R.�/ and E�

f
� Ef that correspond under the bijection between R.�/ and Ef .

Definition 6.5 A conjugacy class Œa� grows at most linearly under iteration by � if for some, and hence
every, set of generators there is a linear function P such that word length of �k.Œa�/ with respect to
those generators is bounded by P.k/. If f W G! G represents �, then word length of �k.Œa�/ can be
replaced by edge length of f k# .�/ in G, where � �G is the circuit representing Œa�. The linear growth
free factor system F0.�/ is the minimal free factor system that carries all conjugacy classes that grow at
most linearly under iteration by �.

Lemma 6.6 Suppose that f WG!G is a CT representing � and that <T and Ef D fE1; : : : ; Esg are as
in Notation 6.4. Let K0 �G be the subgraph consisting of all fixed and linear edges for f WG!G. For
1� j � s, inductively define Kj DKj�1[Ej . Then:

(1) F0.�/D F.K0; G/ (as defined at the beginning of Section 3.3).

(2) Each Kj is f -invariant.

(3) If Ej 2 E�
f

, then F.Kj ; G/ D F.Kj�1; G/; otherwise F.Kj�1; G/ @ F.Kj ; G/ is a proper
one-edge extension.

Proof In proving (1), we work with circuits � �G and edge length inG rather than conjugacy classes Œa�
and word length with respect to a set of generators of Fn. If E is an edge of K0, then f .E/DE �u for
some (possibly trivial) closed Nielsen path u. Lemma 3.21 implies that u � K0 and hence that K0 is
f -invariant. Each circuit in K0 grows at most linearly under iteration by f# since every edge in K0 does.
Thus F.K0; G/@ F0.�/.

After replacing � with f m# .�/ for some m� 0, we may assume by [Feighn and Handel 2011, Lemma
4.25] that � is completely split. Lemma 3.21 implies that if � is not contained in K0 then, up to reversal
of orientation, some term in the complete splitting of � is an edge E 2 Ef . In this case, � grows at least
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as fast as E does. If f .E/DE �u then the length of f k# .u/ goes to infinity with k and so the length of
f k# .E/ grows faster than any linear function. This proves that K0 contains every circuit that grows at
most linearly so F0.�/@ F.K0; G/. This completes the proof of (1).

For the remainder of the proof we may assume that j � 1. For Ej 2 Ef , the terms in the complete
splitting of f .Ej /, other than Ej itself, are exceptional paths, Nielsen paths and single edges Ei or xEi
that are either linear or satisfy Ei <Ej . Lemma 3.21 implies that the exceptional paths and Nielsen paths
are contained in K0. The single edge terms other than Ej are contained in Kj�1 by construction. Thus
f .Ej /�Kj and Kj is f -invariant. This proves (2).

The terminal endpoint of each Ej 2 Ef is contained in a noncontractible component of Kj�1 because
f .Ej / D Ejuj for a nontrivial closed path uj � Kj�1. If Ej 2 E�

f
with initial vertex vj then the

component of Kj�1 that contains vj is a contractible component of Fix.f /. In this case every line
in Kj is contained in Kj�1 so F.Kj ; G/D F.Kj�1; G/. Otherwise, vj is contained in a noncontractible
component of Kj�1 so F.Kj�1; G/@ F.Kj ; G/ is a proper inclusion. Obviously Kj is obtained from
Kj�1 by adding a single edge.

Recall from Lemma 4.1 that the set of lines that lift to �.f / is independent of the choice of CT f WG!G

representing �. The next lemma shows that the F.Kj ; G/ defined in Lemma 6.6 depend only on � and
<T and not on the choice of CT f WG!G.

Lemma 6.7 Continue with the notation of Lemma 6.6. For each rj …R�.�/, there exists at least one
line L.rj / that lifts to �.f /, whose terminal end is rj and whose initial end is not rl for any l � j .
Moreover , for any such choice of lines , F.Kj ; G/ is the smallest free factor system that contains F0.�/
and carries fL.rl/ j l � j and rl …R�.�/g.

Proof Let C DC.j / be the component of �.f / that containsREj , let C0�C1�C be as in Notation 6.4
and, for each 1 � q � s, let Aq � C be the union of C1 with the rays REl in C with El � Eq . By
construction, and by Lemma 6.6, REl is included in Aq if and only if REl �Kq . Since rj …R�.�/, either
C1 is noncontractible or Aj�1 contains at least one ray REl . In both cases, the ray REj � C extends by
a ray in Aj�1 to a line in Aj . The projection L.rj / of this line into Kj satisfies the conclusions of the
main statement of the lemma.

The “moreover” part of the lemma is proved by induction on j , with the base case j D 0 following
from Lemma 6.6(1). For the inductive case, let F 0j be the smallest free factor system that carries Kj�1
and L.rj /. Then F.Kj�1; G/@ F 0j @ F.Kj ; G/ with the first inclusion being proper and F 0j does not
have more components than F.Kj�1; G/. Lemma 3.4 implies that F 0j D F.Kj ; G/.

Notation 6.8 LetK0�K1� � � � �Ks DG be as in Lemma 6.6 and let EF.�;<T /DF0 @F1 @ � � �@Ft
be the increasing sequence of distinct free factor systems determined by the Kj . (Equivalently, EF.�;<T /
is the sequence determined by those Kj with rj …R�.�/.) We say that EF.�;<T / is the sequence of free
factor systems determined by � and <T . Lemma 6.7 justifies this description by showing that EF.�;<T /
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depends only on � and <T . To simplify notation a bit, we write Lk for L.r.j // where r.j / is the
kth-lowest element of R.�/ nR�.�/. Thus Fk is filled by F0 and L1; : : : ; Lk .

We sometimes refer to a nested sequence of free factor systems as a chain. A chain cD .F0 @ � � �@ Ft /
is special for � if c D EF.�;<T / for some extension <T of < to a total order on R.�/. A free factor
system F is special for � if F is an element of some special chain for �. The set of special free factor
systems for � is denoted by L.�/. A free factor F or its conjugacy class is special for � if ŒF � is an
element of some special free factor system for �. A pair e D .F� @ FC) of free factor systems is a
special one-edge extension for � if its appears as consecutive elements of some special chain for �.

By applying the existence theorem for CTs given in [Feighn and Handel 2018, Theorem 1.1], we can
choose a CT whose filtration realizes EF.�;<T / for any given <T . The following lemma shows that the
case analysis for a CT with this property is simpler than that of a random CT.

Lemma 6.9 Suppose that EF.�;<T /D F0 @ F1 @ � � �@ Ft and that f WG!G and ∅DG0 �G1 �
� � � �GN DG are a CT and filtration representing � and realizing EF.�;<T /; ie for all 0� k � t there is
an f -invariant core subgraph Gik such that Fk D F.Gik ; G/. Then Gik nGik�1 is a single topological
arc Ak with both endpoints in Gik�1 . Moreover , letting Dk be the element of Ef corresponding to
@CLk 2R.�/ (as in Lemma 6.7), Ak can be oriented so that one of the following is satisfied :

[HH] Ak D xCkDk , where Ck 2 Ef .

[LH] Ak D xCkDk , where Ck 2 Lin.f /.

[H] Ak DDk .

Proof By Lemma 6.6, each Fj�1 @ Fj is a one-edge extension. [Handel and Mosher 2020, Part II,
Lemma 2.5] therefore implies that Gik is constructed from Gik�1 in one of three ways: add a single
topological edge with both endpoints in Gik�1 ; add a single topological edge that forms a circuit that
is disjoint from Gik�1 ; add an edge forming a disjoint circuit and then add an edge connecting that
circuit to Gik�1 . In the second and third cases the circuit is f -invariant in contradiction to the fact that
K0 contains all �-invariant conjugacy classes. Thus Gik is obtained from Gik�1 by adding a single
topological arc Ak with both endpoints in Gik�1 .

The arc Ak consists of either one or two edges of G. Indeed, a “middle” edge cannot be fixed by the
(Periodic Edge) property [Feighn and Handel 2011, Definition 4.7(5)] of a CT and cannot be nonfixed
because in that case its terminal end would be contained in a core subgraph of Gik�1 by [Feighn and
Handel 2011, Lemma 4.21]. The (Periodic Edge) property also implies that if Ak consists of two edges,
then neither is fixed. To complete the proof, it suffices to show that Ak crosses Dk . We will do so by
showing that Dk is not contained in Gik�1 and is contained in Gik .

A line L�G that lifts to �.f / but is not contained in K0 either decomposes as the concatenation of a
ray in K0 and an eigenray RE 0 , or decomposes as the concatenation of a finite path in K0 and a pair of
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eigenrays RE 0 and RE 00 . In the former case, each E 2 Ef crossed by L satisfies E �E 0, and in the latter
case each E 2 Ef satisfies E �E 0 or E �E 00. It follows that every edge E 2 Ef crossed by

Sk�1
qD1Lq

satisfies E <T Dk . SinceK0 and L1; : : : ; Lk�1 fill Fk�1, we conclude thatDk is not contained in Gik�1 .
Since Lk lifts to �.f / and @CLk D @RDk , it follows that RDk is a terminal ray of Lk . In particular,
Lk crosses Dk . Lemma 6.7 implies that Lk �Gik and we are done.

Lemma 6.10 Let eD .F� @ FC/ be special for �.

(1) The types HH, LH or H of e as in Lemma 6.9 are mutually exclusive and independent of the special
chain EF.�;<T / containing e and the choice of CT f WG!G realizing EF.�;<T /.

(2) Suppose that e appears as consecutive elements Fk�1 @ Fk in EF.�;<T /, which is realized by
the CT f WG!G. Using terminology as in Lemma 6.9, say that e is , respectively , contractible,
infinite cyclic, or large depending on whether the component of the eigengraph �f jFk containing
the eigenray RDk is contractible , has infinite cyclic fundamental group , or has fundamental group
with rank at least two. The types contractible, infinite cyclic, or large of e are mutually exclusive
and independent of the choices of EF.�;<T / and f .

Proof (1) Suppose eD .Fk�1 @ Fk/ in EF.�;<T /. The difference between the cardinality of R.�jFk/
and the cardinality of R.�jFk�1/ is 2 in the [HH] case and 1 in the [LH] and [H] cases. In case [LH],
either the number of axes for �jFk is strictly larger than the number of axes for �jFk�1 or there is a
common axis of �jFk and �jFk�1 whose multiplicity in the former is strictly larger than in the latter.
Neither of these happens in case [H].

(2) Here is an invariant description. Let r 2� WDR.�jFk/ nR.�jFk�1/, for example we could take r
to be determined by RDk . Either � D frg or � D fr; sg and there is a �jFk-fixed line L whose ends
represent r and s. Let zr be a lift of r to @Fn and let zLD Œzr; zs� be a lift of L if �D fr; sg. By definition,
e is contractible, infinite cyclic or large if and only if Fix.ˆzr/ is trivial, infinite cyclic, or of rank at
least two, where ˆzr is the unique representative of � fixing zr . We are done by noting that ˆzr Dˆzs if
�D fr; sg.

Example 3.1 (continued) If we extend the partial order rc < rq on R.�/ to the total order rc <T rd <T
re <T rq we get the special chain c represented by the sequence of graphs in Figure 3. See the notation
in the examples on pages 1700 and 1707.

Example 6.11 Consider the CT f W G ! G given as follows: start with a rose with edges a and b.
Define f .a/D a and f .b/D ba. Add a new vertex v with adjacent edges c; d and define f .c/D cb
and f .d/ D db2. Add another new vertex v0 with adjacent edges c0 and d 0 with f .c0/ D c0b3 and
f .d 0/D d 0b4 finally add an f -fixed edge e with endpoints v and v0. The �-fixed free factor system F
represented by the complement of e in G is not in L.�/. Indeed, F @ fFng is 1-edge, but not of type H,
HH or LH, contradicting Lemma 6.9.
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Example 6.12 Suppose f WG!G is a CT containing a circle C with only one vertex x and such that
x is the initial endpoint of an H-edge, the terminal endpoint of a linear edge in an LH extension (so that
C is an axis), and there are no other edges containing x. Then �.f / has no components of rank at least
two containing an axis corresponding to C .

Lemma 6.13 Referring to Notation 6.8, suppose F , ŒF �, c and e are special for �. If � 2 Out.Fn/, then

� �.F/; �.ŒF �/; �.c/, and �.e/ are special for �� , and

� the types H, HH or LH and the types contractible, infinite cyclic or large of e and �.e/ are the
same.

Proof This is an immediate consequence of the fact (Lemma 6.3) that conjugation preserves partial
orders and the invariant description of types given in the proof of Lemma 6.10.

Definition 6.14 (added lines) Suppose that c is a special chain for � that is realized by f WG!G and
that eD .F� @ FC/ 2 c. Then R.�jFC/ nR.�jF�/ contains two elements if e has type HH and one
element otherwise. These elements are said to be new with respect to e. Similarly �.f jFC/ carries more
lines than �.f jF�/. The set of added lines with respect to e, denoted by Le.�/, is a �-invariant subset of
these lines. In case e is contractible, Le.�/ consists of all lines L in �.f jFC/ with @CL new. If e is not
contractible then we also require that @�L is not in R.�/. Le.�/ has an equivalent invariant description
as follows. Set ˆ WDˆzrC jF

C, where rC is new, zrC 2 @FC � @Fn, and ŒFC� is the component of FC

carrying rC. Define Le.�/ to be Œ@ Fix.ˆ/; zrC� if Fix.ˆ/ is nontrivial; else ŒFixN.ˆ/ n fzr
Cg; zrC� if there

is only one new eigenray; else the set consisting of the two lines with lifts with endpoints in FixN.ˆ/.
This invariant description shows that Le.�/ is independent of the special chain e 2 c, which is why c does
not appear in the notation.

Example 3.1 (continued) Referring to Figures 1, 2 and 3, if e1 WD .fŒG2�g@ fŒG3�g/ then Le1.�/ consists
of the infinitely many lines L in the third listed component of �.f / in Figure 2 that cross the oriented
edge c exactly once and c�1 not at all. If e2 WD .fŒG3�g@ fŒG5�g/ then Le2.�/ consists of two lines; they
are represented by .Rd /�1Re and its inverse. If e3 WD .fŒG5�g @ fŒG7�g/ then Le3.�/ consists of two
lines; they are represented by a1p�1Rq and a�1p�1Rq .

G2 G3 G5 G7

� � �

Figure 3: The special chain cD fŒG2�g@ fŒG3�g@ fŒG5�g@ fŒG7�g.
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Lemma 6.15 For � 2 Out.Fn/, �.Le.�//D L�.e/.�
� /.

Proof By Lemma 6.13, the �.e/ 2 �.c/ are special for �� . The set of new elements of R.�/ with respect
to e D .FC @ F�/ has the invariant description R.�jFC/ nR.�jF�/. In particular, � takes the new
elements with respect to � to those with respect to �� ; see Lemma 3.16. The equation in the lemma
then follows from the invariant definition of added lines in Definition 6.14 and the naturality results of
Lemma 3.16.

In the next lemma, we record some consequences of Lemmas 6.3, 6.6 and 6.7.

Lemma 6.16 (1) A conjugacy class grows at most linearly under iteration by � if and only if it is
carried by F0.�/.

(2) F0.�/D F.Fix.�//, ie F0.�/ is the smallest free factor system carrying Fix.�/.

Proof (1) By definition F0.�/ carries all conjugacy classes that grow at most linearly. Conversely, by
Lemma 6.6, F0.�/ is represented a graph K0 consisting of linear and fixed edges. Hence every conjugacy
class carried by F0.�/ grows at most linearly.

(2) By (1), F.Fix.�//@ F0.�/. Suppose @ is proper. By [Feighn and Handel 2018, Theorem 1.1], there
is a CT f W G! G realizing � with f -invariant core subgraphs Gk ¨ Gl representing these two free
factor systems and such that f jGl is a CT. By Lemma 6.6, every edge of Gl is fixed or linear. Let E
be an edge of Gl nGk . There is a Nielsen circuit � in Gl containing E. Indeed, by the construction of
eigengraphs in Section 4.1,

� every edge of a CT is the label of some edge in its eigengraph,

� the eigengraph of a linear growth CT is a compact core graph, and

� every circuit in an eigengraph is Nielsen.

The existence of � now follows from the defining property of a core graph that there is a circuit through
every edge. The fixed conjugacy class represented by � is not in F.Fix.�//, a contradiction.

6.2 The lattice of special free factor systems

This section is not needed for the rest of the paper and so could be skipped by the reader. Recall (second
paragraph of Notation 6.8) that L.�/ denotes the set of special free factor systems for �. The main results,
Lemmas 6.18 and 6.20, are that .L.�/;@/ is a lattice that is natural with respect to Out.Fn/ in the sense
that, for � 2 Out.Fn/,

�.L.�/;@/D .L.�� /;@/:

In this section, f WG!G will always denote a CT for �. We will conflate an element of R.�/ and its
image in Ef under the bijection R.�/$ Ef ; see Lemma 3.26. A subset S of R.�/ is admissible if it
satisfies

.q 2 S/^ .r < q/ D) r 2 S:
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If S �R.�/, then mimicking Lemma 6.6 we let K.S/ denote the union of K0 and the edges in S . Recall
that K0 is the union of the fixed and linear edges of G.

Lemma 6.17 The following are equivalent :

(1) F is special for �.

(2) F D F.K.S/;G/ for some admissible S �R.�/.

(3) F D F.H;G/ for some f -invariant H �G containing K0.

Proof (1) D) (2) By definition, a free factor system F is special if and only if there is a total order <T
extending < and an initial interval Œr1; : : : ; rk� of .R; <T / such that F D F.K.fr1; : : : ; rkg/; G/. Since
an initial interval is admissible, we may take S D fr1; : : : ; rkg.

(2) D) (3) We may take H DK.S/.

(3) D) (2) Let S be the set of edges in H that are not in K0. It is enough to show that S is admissible.
Let q 2 S and let r 2 R.�/ satisfy r < q. By definition of <, there is k > 1 so that the edge r or its
inverse is a term in the complete splitting of f k# .q/. Since the edge q is in H and H is f -invariant, the
edge r is also in H .

(2) D) (1) We claim that if S is admissible then there is an extension <T of < such that S is an initial
segment of .R.�/; <T /. Indeed, start with any total order <T extending < and iteratively interchange r
and s if r <T s are consecutive, s 2S and r …S . For such a <T , S represents an element of EF.�;<T /.

Lemma 6.18 Let F be a special free factor system for �.

(1) The set of admissible subsets of R.�/ is a sublattice of 2R.�/.

(2) There is a minimal admissible S�R.�/ such that FDF.K.S/;G/. We say that such an admissible
S is efficient for F . In fact , if S 0 is admissible then the set of edges of core.K.S 0// not in K0 is
efficient for F.K.S 0/; G/.

(3) S D
T
fS 0 j F D F.K.S 0/; G/g is efficient for F .

(4) S is efficient for F if and only if F DF.K.S/;G/ and through every edge representing an element
of S there is a circuit in K.S/.

(5) If S1 and S2 are efficient admissible and F.K.S1/; G/@ F.K.S2/; G/, then S1 � S2.

(6) .L.�/;@/ is a lattice.

(7) Every maximal chain in L.�/ is special.

(8) Every minimal2 pair eD .F� @ FC/ in L.�/ is special.

Proof (1) This follows directly from the definition of admissible.

2That is, if F is special and F� @ F @ FC, then F� D F or F D FC.
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(2) Suppose S1; S2 are admissible and K.S1/;K.S2/ each represent F . Hence C WD core.K.S1//D

core.K.S2// and, since G is a CT, C is f -invariant. (Indeed, by [Feighn and Handel 2011, Lemma 4.21],
the removal of an edge with a valence one vertex from an f -invariant subgraph results in an f -invariant
subgraph.) It follows that K0 [ C is the minimal f -invariant subgraph of G representing F and
containing K0; see Lemma 6.17. Hence S is the set of edges of K0[C not in K0.

(3), (4), (5) These follow easily from (2).

(6) Suppose S1 and S2 are efficient. Then using (4), S1[S2 is efficient. It follows that F.K.S1[S2/; G/
is the smallest (with respect to @) special free factor system for � containing F1 WD F.K.S1/; G/ and
F2 WD F.K.S2/; G/. Suppose S is efficient and F.K.S/;G/ @ Fi for i D 1; 2. By (5), S � S1 \ S2.
Since K.S1\S2/DK.S1/\K.S2/, the largest special free factor system F for � in each of F1 and F2
is represented by K.S1\S2/, ie by K.S/, where S is efficient for F.K.S1\S2/; G/.

(7) Let c be represented by K.S1/ � � � � � K.SN / with each Si efficient. By (5), Si � SiC1. An
argument similar to that in the proof of Lemma 6.17, (2) D) (1), shows that there is <T extending <
such that each Si is an initial interval in .R.�/; <T /. Hence c is special.

(8) This follows from (7) by enlarging e to a maximal chain.

Remark 6.19 L.Fn/ is not a sublattice of the lattice of all �-invariant free factor systems. For example,
reconsider Example 6.11. S D fc; dg and S 0 D fc0; d 0g are efficient. If F D F.K.S/;G/ and F 0 D
F.K.S 0/; G/ then the smallest �-invariant free factor system containing F and F 0 is represented by the
complement of the fixed edge e whereas the smallest element of L.�/ containing F and F 0 is Fn.

In the proof of Lemma 6.18 we noted that the union of efficient sets is efficient. The intersection need not
be efficient. For example, suppose highest-order edges a, b and c share an initial vertex of valence three.
Consider the complement S of a and the complement S 0 of b. The edge c is in S \S 0 and has initial
vertex of valence one in K.S \S 0/.

Lemma 6.20 � If eD .F� @ FC/ is minimal in L.�/, then e has a well-defined type H, HH or LH,
and a well-defined type contractible, infinite cyclic or large.

� For � 2 Out.Fn/, the map F 7! �.F/ induces a lattice isomorphism

.L.�/;@/! .L.�� /;@/

that preserves the above types.

Proof This follows Lemmas 6.18 and 6.13.

7 More on conjugacy pairs

Recall that conjugacy pairs were introduced in Definition 4.9. In this section we define some conjugacy
pairs that will be used to define invariants of elements of UPG.Fn/ and describe their properties.
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7.1 Œ@H; @K�

We will want to compare conjugacy pairs of subgroups ŒH;K� with the set of lines Œ@H; @K�; see
Examples 4.10. For this we will use the next lemma, which is a corollary of [Kapovich and Short 1996,
Lemma 3.9].

Lemma 7.1 Suppose that H < Fn is finitely generated. Then the stabilizer G in Fn of @H � @Fn is the
maximal K < Fn in which H has finite index.

Corollary 7.2 Suppose that finitely generated H < Fn is root-closed , ie ak 2H , k ¤ 0 implies a 2H .
Then H is the stabilizer in Fn of @H .

Proof If H <G has finite index and H ¤G, then H is not root-closed.

Corollary 7.3 (1) If H < Fn is a free factor , then H is the stabilizer of @H .

(2) If H D Fix.ˆ/ for ˆ 2 Aut.Fn/, then H is the stabilizer of @H .

(3) If a 2 Fn is root-free , then AD hai is the stabilizer of the two-point set @A.

Proof Free factors and the group generated by a root-free element are clearly root-closed. For (2),
ˆ.ak/D ak for k ¤ 0 implies that ˆ.a/ is a kth root of ak and so equals a.

Remark 7.4 Corollary 7.3, which contains the only cases that we need in this paper, does not require
the generality of Lemma 7.1. Item (3) is elementary. Items (1) and (2) follow from (3), and:

� For H;K < Fn finitely generated, @H \ @K D @.H \K/. See [Kapovich and Benakli 2002,
Theorem 12.2(9)] in the setting of hyperbolic groups or, for the case at hand, [Handel and Mosher
2020, Fact 1.2].

� If H is a nontrivial free factor, then H \Hg D f1g unless g 2H .

� Fix.ˆ/\ Fix.ˆ/g is cyclic unless g 2 Fix.ˆ/; see Lemma 4.4(1).

Corollary 7.5 Suppose that H;K < Fn are finitely generated and root-closed. Then ŒH;K� determines
Œ@H; @K�, and vice versa.

Proof Suppose that H 0; K 0 < Fn are finitely generated and root-closed.

If Œ@H; @K�D Œ@H 0; @K 0� then there is x 2Fn such that .x@H; x@K/D .@Hx; @Kx/D .@H 0; @K 0/. Hence

.Hx; Kx/D .Stab.@Hx/; Stab.@Kx//D .Stab.@H 0/; Stab.@K 0//D .H 0; K 0/:

So ŒH;K�D ŒH 0; K 0�.

Conversely, if ŒH;K�D ŒH 0; K 0� then there is x 2 Fn such that .Hx; Kx/D .H 0; K 0/. Hence

.@Hx; @Kx/D .x@H; x@K/D .@H 0; @K 0/;

and so Œ@H; @K�D Œ@H 0; @K 0�.
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Remark 7.6 If we are in the setting of Corollary 7.5 and @H \ @K D ∅, we will sometimes abuse
notation and think of ŒH;K� as the set of lines Œ@H; @K� and vice versa.

7.2 Some Stallings graph algorithms

In this section we assume that G is a marked graph with marking m W .Rn;�/! .G; b/, where � is the
unique vertex of the rose Rn and b D m.�/ is the basepoint for G. There is an induced identification
of Fn with �1.G; b/.

For each finitely generated subgroup H < Fn, Stallings [1983, 5.4] constructs a finite graph †b.H/
with basepoint bH and an immersion pH W .†b.H/; bH /! .G; b/ such that the image of the injection
�1.†b.H/; bH /! �1.G; b/ induced by pH equals H . The basepoint bH may have valence one but all
other vertices of †b.H/ have valence at least two. We equip †b.H/ with the CW-structure whose vertex
set is the preimage of the vertex set of G. The resulting edges of †b.H/, sometimes called edgelets, are
labeled by their image edges in G. The core of †b.H/ is denoted by †.H/. The minimal edgelet-path
from bH to †.H/ is denoted by ˇH . The terminal endpoint of ˇH is denoted by cH 2†.H/.

For finitely generated subgroupsK;H <Fn, let Imm.K;H/ be the set of immersions J W†.K/!†.H/

that maps edgelets to edgelets and preserves labels; we say that J preserves labels. We do not distinguish
between elements of Imm.K;H/ that induce the same map on the set of edgelets. Thus Imm.K;H/
is finite and can be computed by inspection. An equivalence is an element of Imm.K;H/ that is a
homeomorphism. Note that elements of Imm.K;H/ that agree on a vertex of K are equal.

Lemma 7.7 If K < H are finitely generated subgroups of Fn then there is a (necessarily unique)
label-preserving immersion JK;H W .†b.K/; bK/! .†b.H/; bH /.

Proof We recall Stallings’ construction [1983, 5.4] of †b.K/. Choose closed paths �1; : : : ; �m � G
based at b that represent generators of K < �1.G; b/. Define �1 to be a rose of rank m with unique
vertex b0 and define p1 W .�1; b01/! .G; b/ to be an immersion on edges, mapping the i th edge to �i .
Subdivide �1 into edgelets labeled by edges of G to obtain p2 W .�2; b02/! .G; b/. The map p2 factors
into a sequence of edgelet folds .�2; b02/ ! .�3; b

0
3/ ! � � � ! .�k; b

0
k
/ followed by an immersion

pk W .�k; b
0
k
/! .G; b/. Define .†b.K/; bK/D .�k; b0k/ and pH D pk .

SinceK<H , each �i lifts to a closed edgelet-path �0i in†b.H/ based at bH . Since the i th edge of �2 and
�0i agree as labeled edgelet-paths, there is an induced label-preserving map q2 W .�2; b0/! .†b.H/; bH /

satisfying p2 D pHq2. Since pH is an immersion, the edgelets that are identified by the folding maps
�2!�3!� � �!�k are also identified by q2. Thus, there exists a map JK;H W .�k; b0k/! .†b.H/; bH /

such that pK D pHqk . Since pH and pK are immersions, the same is true for JK;H .

Note that if a 2 Fn and Ka <H then Kha <H for all h 2H . Let RC.K;H/ be the set of right cosets
of H in Fn such that Ka <H for some (each) a representing that coset.
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Lemma 7.8 There is an algorithm with output a bijection Imm.K;H/$RC.K;H/. In particular , there
is an algorithm that produces coset representatives for the elements of RC.K;H/.

Proof (!) We associate a coset Ha 2 RC.K;H/ to J 2 Imm.K;H/ as follows. Choose a path
� �†.H/ from cH to J.cK/ and note that pK.cK/D pH .J.cK//. Let a 2 �1.G; b/ be represented by
the closed path ŒpH .ˇH �/pK. x̌K/��G, where Œ � � indicates tightening. Each x 2K is represented in
�1.G; b/ by pK.ˇK x̌K/ for some closed path  �†.K/ based at cK . It follows that xa is represented
in �1.G; b/ by

ŒpH .ˇH �/pK./pH .x� x̌H /�D ŒpH .ˇH �/pH .J.//pH .x� x̌H /�D pH .ˇH Œ�J./x�� x̌H /;

which represents an element inH . This proves thatKa<H . If � is replaced by another path � 0 connecting
cH to J.cK/ then a is replaced by ha, where h 2H is represented by ŒpH .ˇH � 0x� x̌H /�. Thus, Ha is
independent of the choice of � . If J is replaced with J 0¤ J and if ��†.H/ is a path connecting J.cK/
to J 0.cK/, then � is replaced with �� and a is replaced with a0 D da, where d is represented in �1.G; b/
by ŒpH .ˇH ��x� x̌H /�. Since � is not a closed path, d does not lift into †.H/ and a0 does not belong
to the same right coset of H as a. This shows that J 7!Ha defines an injection from Imm.K;H/ to
RC.K;H/.

( ) We begin the proof of surjectivity by constructing †b.Ka/ from †b.K/. Represent a in �1.G; b/
by a closed edge-path ˛ �G based at b and let ˇ0 be the edgelet path labeled by the path in G obtained
by tightening ˛pK.ˇK/. Define †0 from the disjoint union of ˇ0 and a copy .†0.K/; c0/ of .†.K/; cK/
by identifying the terminal endpoint of ˇ0 with c0. The labeling on edgelets induces p0 W .†0; b0/! .G; b/,
where b0 is the initial vertex of ˇ0. The image of the injection �1.†0; b0/! �1.G; b/ induced by p0

equals Ka. If p0 is an immersion then .†.Ka/; ˇKa ; cKa/D .†0; ˇ0; c0/. Otherwise, †.Ka/ is obtained
from †0 by folding a maximal initial edgelet-subpath of x̌0 with an edgelet-subpath � � †0.K/ that
begins at c0. In this case, bKa is the folded image of b0 and cKa is the terminal endpoint of �.

Continuing with the above notation, define the equivalence JK;a 2 Imm.K;Ka/ to be the identifying
homeomorphism from .†.K/; cK/ to .†0.K/; c0/. Assuming that Ka <H , apply Lemma 7.7 and define
Ja;K;H D JKa;H j†.K

a/ ı JK;a 2 Imm.K;H/. By construction, Œ˛pK.ˇK/� � G lifts to a the path in
†b.H/ from bH to Ja;K;H .cK/. Writing this path as ˇH �, we have that ŒpH .ˇH �/pK. x̌K/�D ˛ and
hence that (in the notation of the first paragraph of this proof) Ja;K;H 7!Ha.

We will need the following well-known result.

Corollary 7.9 If H < Fn is a finitely generated and Ha <H for a 2 Fn, then Ha DH .

Proof The obvious induction argument shows that Hap < Hap�1 < � � � < Ha < H for all p � 1.
Each Has for s � 1 is therefore an element RC.H;H/, which is finite by Lemma 7.8. It follows that
Has DHat for some s ¤ t and hence that ap 2H for some p � 1. Thus Hap DH , which implies that
H <Ha <H and hence that H DHa.

Geometry & Topology, Volume 29 (2025)



The conjugacy problem for UPG elements of Out.Fn/ 1737

The following three algorithms are easy consequences of Lemma 7.8.

Lemma 7.10 There is an algorithm that decides if a given pair H and K of finitely generated subgroups
of Fn are conjugate , and if so produces an element a 2 Fn satisfying Ka DH .

Proof We continue with notation from the proof of Lemma 7.8. If Ka DH then JKa;H is the identity
and hence Ja;K;H 2 Imm.K;H/ is an equivalence. This shows that if Imm.K;H/ does not contain
an equivalence then K and H are not conjugate. If Imm.K;H/ does contain an equivalence J , apply
Lemma 7.8 to J and J�1 2 Imm.H;K/ to produce a; b 2 Fn such that Ka < H and H b < K. From
Hab < H and Corollary 7.9 it follows that Hab DH and hence that H D .H b/a < Ka < H , which
implies that Ka DH .

Lemma 7.11 The normalizer N.H/ of a finitely generated subgroup H < Fn is finitely generated. We
have an algorithm that produces coset representatives fa1; : : : ; apg of H in N.H/.

Proof Corollary 7.9 implies that N.H/=H D RC.H;H/. Lemma 7.8 therefore completes the proof.

Lemma 7.12 If K <H < Fn are finitely generated subgroups then the set of subgroups of H that are
Fn-conjugate to K determine finitely many H -conjugacy classes. There is an algorithm that produces
representatives K1; : : : ; Kp of these H -conjugacy classes.

Proof If Ka1 ; Ka2 < H then Ka1 and Ka2 determine the same H -conjugacy class if and only if
ha1 D a2 for some h 2H . Lemma 7.8, which produces representatives of the elements of RC.K;H/,
therefore completes the proof.

7.3 Good conjugacy pairs

In addition to conjugacy classes of finitely generated subgroups of Fn, our adaptation of Gersten’s
algorithm will also take conjugacy pairs as input; see Notation 11.1. If H1 and H2 are subgroups of H
and the natural map H1 �H2!H is an isomorphism then we say that H is the internal free product
of H1 and H2. If A < B < Fn then ŒA�B denotes the conjugacy class of A in B . If B D Fn then we
sometimes suppress the subscript.

Definition 7.13 (good conjugacy pairs) For H1;H2 < Fn, the conjugacy pair ŒH1;H2�Fn is good if
hH1;H2i is the internal free product of H1 and H2.

The next lemma collects some facts about good pairs.

Lemma 7.14 Let H1;H2 < Fn be finitely generated.

(1) ŒH1;H2� is good if and only if rank.hH1;H2i/D rank.H1/C rank.H2/.

(2) If ŒH1;H2� is good , then @H1 and @H2 are disjoint.
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Proof The natural map H1 �H2 ! hH1;H2i is surjective. Since finitely generated free groups are
Hopfian (surjective endomorphisms are isomorphisms) [Magnus et al. 1966, Theorem 2.13], the “only if”
direction of (1) follows. The “if” direction of (1) is obvious.

(2) This follows from @H1\ @H2 D @.H1\H2/; see the first item in Remark 7.4.

Our next goal is necessary and sufficient conditions for two good conjugacy pairs to be equal. We begin
with an important special case.

Lemma 7.15 Suppose that K1; K2; L1; L2 <Fn are finitely generated , that ŒK1; K2�Fn and ŒL1; L2�Fn
are good conjugacy pairs , and that hK1; K2i D hL1; L2i D Fn. Then the following are equivalent.

(1) ŒK1; K2�Fn D ŒL1; L2�Fn .

(2) ŒK1�Fn D ŒL1�Fn and ŒK2�Fn D ŒL2�Fn .

Proof (1)D) (2) If ŒK1; K2�Fn D ŒL1; L2�Fn then by definition there is g 2Fn such that .Kg1 ; K
g
2 /D

.L1; L2/.

(2)D) (1) By hypothesis there are gi 2Fn such thatKgii DLi . In particular,� WD .ig1 jK1/�.ig2 jK2/2
Aut.Fn/ represents an element ı 2Out.Fn/. Let ri be the rank of Ki , let Ai be a rose with rank ri whose
petals are labeled by a basis forKi and let A be the rose of rank n obtained from A1 and A2 by identifying
their unique vertices v1 and v2 to a single vertex v. Blow up v to an arc. More precisely, let X be the
graph obtained from the disjoint union of A1; A2 and a vertex w by adding oriented edges E1 and E2
connecting w to v1 and v2, respectively. Denote the arc xE1E2 �X by E and the subgraph Ai [Ei �X
by Xi . Identify �1.Xi ; w/ with �1.Ai ; vi /DKi via the map qi W Xi ! Ai that collapses Ei to v. Let
q WX!A be the map that collapses E to v. If ˛i �A is the closed path based at v that represents gi then
there is a unique closed path ˇi �X based at w that satisfies q#.ˇi /D ˛i . The map f WX !X defined
by f jAi D identity and f .Ei /D ŒˇiEi � induces the automorphism � and so is a homotopy equivalence.
Homotop f rel A1 [A2 to a map f 0 W X ! X whose restriction to E is an immersion. Then f 0 is a
topological representative of ı and [Bestvina et al. 2000, Corollary 3.2.2] implies that f 0.E/D x1E2
for some (necessarily closed) paths i � Ai . If ki 2Ki is represented by the homotopy class of i , then
f 0 induces the automorphism �0 WD .ik1 jK1/� .ik2 jK2/. There exists h 2 Fn such that �D ih�0. We
have igi D ihki and hence ig1k�11 D ig2k�12 . Thus

ŒL1; L2�Fn D ŒK
g1
1 ; K

g2
2 �Fn D ŒK

g1
1 ; .K

g�11 g2
2 /g1 �Fn D ŒK1; K

g�11 g2
2 �Fn

D ŒK1; K
k�11 k2
2 �Fn D ŒK

k1
1 ; K

k2
2 �Fn D ŒK1; K2�Fn :

For each finitely generated L < Fn, we define a function fL as follows. The domain of fL is the set
of good conjugacy pairs ŒK1; K2� with K WD hK1; K2i conjugate to L. Any g 2 Fn such that Kg D L
is well-defined up to the normalizer N.L/ of L in Fn. That is, if LDKg DKg

0

then g0g�1 2 N.L/.
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Hence .ŒKg1 �L; ŒK
g
2 �L/ is well-defined up to the diagonal action of N.L/ (equivalently N.L/=L) on

the set of pairs of conjugacy classes of subgroups of L. We define fL.ŒK1; K2�/ to be the N.L/=L
orbit of .ŒKg1 �L; ŒK

g
2 �L/. Note that if K D L and �1; : : : ; �r are coset representatives of L in N.L/ then

fL.ŒK1; K2�/D f.ŒK
�1
1 �L; ŒK

�1
2 �L/; : : : ; .ŒK

�r
1 �L; ŒK

�r
2 �L/g.

Remark 7.16 Suppose x 2 Fn and Lx D L0. Then Domain.fL/ D Domain.fL0/ and conjugation ix
by x induces a bijection (which we give the same name) ix W Codomain.fL/! Codomain.fL0/ given by
mapping the N.L/-orbit of .ŒL1�L; ŒL2�L/ to the N.L0/-orbit of .ŒLx1 �L0 ; ŒL

x
2 �L0/. It is an easy check that

fL0 D ix ıfL.

Lemma 7.17 Suppose K1; K2; L1; L2 < Fn are finitely generated and that ŒK1; K2�Fn and ŒL1; L2�Fn
are good conjugacy pairs. Set K WD hK1; K2i and L WD hL1; L2i. Then the following are equivalent :

(1) ŒK1; K2�Fn D ŒL1; L2�Fn .

(2) There is g 2 Fn such that Kg D L, ŒKg1 �L D ŒL1�L and ŒKg2 �L D ŒL2�L.

(3) ŒK�D ŒL� and fL.ŒK1; K2�/D fL.ŒL1; L2�/.

(4) ŒK�D ŒL� and , for some (any) H < Fn with ŒH �D ŒL�D ŒK�, fH .ŒK1; K2�/D fH .ŒL1; L2�/.

Proof (1)D) (2) If ŒK1; K2�Fn D ŒL1; L2�Fn then by definition there is g 2Fn such that .Kg1 ; K
g
2 /D

.L1; L2/.

(2) D) (1) By Lemma 7.15 applied to Kgi and Li with L playing the role of Fn we have ŒKg1 ; K
g
2 �L D

ŒL1; L2�L. In particular, ŒK1; K2�Fn D ŒL1; L2�Fn .

(2) D) (3) This is clear from the definition of fL.

(3) D) (2) Suppose ŒK�D ŒL� and fL.ŒK1; K2�/D fL.ŒL1; L2�/. By the former there is g0 2 Fn such
that Kg

0

D L and by the latter there is n 2 N.L/ such that .ŒKg
0

1 �L; ŒK
g 0

2 �L/ D .ŒL
n
1�L; ŒL

n
2�L/. Take

g D n�1g0.

(3)() (4) This follows directly from Remark 7.16.

Corollary 7.18 There is an algorithm with input two good conjugacy pairs ŒK1; K2� and ŒL1; L2� of
finitely generated subgroups of Fn, and output YES or NO depending on whether or not ŒK1; K2� D
ŒL1; L2�.

Proof Apply Lemma 7.10 to decide if K and L are Fn-conjugate. If not, then output NO. Otherwise,
Lemma 7.10 gives x 2 Fn such that Kx D L and we replace K1 and K2 by Kx1 and Kx2 so that now
K D L. Apply Lemma 7.11 to produce coset representatives �1; : : : ; �r of L in N.L/. According to
Lemma 7.17, ŒK1; K2�D ŒL1; L2� if and only if ŒK�i1 �LD ŒL1�L and ŒK�i2 �LD ŒL2�L for some 1� i � r .
This can be checked by applying Lemma 7.10 with Fn replaced by L.
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The following lemma is used in Lemma 7.21 to determine which pairs of conjugacy classes correspond
to good conjugacy pairs.

Lemma 7.19 There is algorithm with input two finitely generated subgroups K1; K2 < Fn and output
YES or NO depending on whether or not there exist K 0i < Fn such that ŒK 0i �D ŒKi � and such that Fn is the
internal free product of K 01 and K 02. If YES then one such K 01 and K 02 are produced.

Proof Choose any finitely generated subgroups Ai such rank.Ai /D rank.Ki / and such that Fn is the
internal free product of A1 and A2. K 01 and K 02 exist if and only if there is a � 2 Out.Fn/ such that
�.ŒKi �/ D ŒAi �. The existence of such a � can be checked using Gersten’s generalization [1984] of
Whitehead’s theorem [Bestvina et al. 2023], which appears as Theorem 10.2 in this paper. Additionally,
the algorithm produces such a � if one exists; we take K 0i D‚

�1.Ai /, where ‚ 2 � .

Notation 7.20 C.Fn/ denotes the set of conjugacy classes of finitely generated subgroups of Fn.

To aid in working with good conjugacy pairs, we relate them to ordered triples in C.Fn/. Consider the
following map from good conjugacy pairs to ordered triples in C.Fn/:

(7-1) ŒH1;H2� 7! .ŒH1�; ŒH2�; ŒH �/; where H WD hH1;H2i:

Lemma 7.21 We have an algorithm with input a good conjugacy pair ŒH1;H2� and output a finite
enumeration of the fiber F of the above map (7-1) containing ŒH1;H2�.

Proof Consider the map induced by fH from F to f.ŒK1�H ; ŒK2�H /g=N.H/, where Ki ranges over
finitely generated subgroups of H such that Hi and Ki are conjugate in Fn. By Lemma 7.17, this map
is injective. So, it remains to produce an element of F for each element of the image. The ŒKi �H can
be finitely enumerated by Lemma 7.12. By Lemma 7.19 we can decide if .ŒK1�H ; ŒK2�H / represents
an element of the image. Applying Lemma 7.11 and then Lemma 7.10 (with Fn replaced by H ) we
can decide if two pairs .ŒK1�H ; ŒK2�H / and .ŒK 01�H ; ŒK

0
2�H / are in the same N.H/-orbit and so remove

redundancy from our list.

Lemma 7.22 We have an algorithm with input an ordered triple .ŒH1�; ŒH2�; ŒH �/ of elements of C.Fn/
and output YES or NO depending on whether or not the fiber F of the above map (7-1) is empty. Further ,
if NO, the algorithm also outputs an element of F .

Proof Our goal is to either find subgroups Ki in the same Fn conjugacy class as Hi such that Ki <H
and such that H is the internal free product of K1 and K2, or to conclude that no such Ki exist.

By Lemma 7.8, we can compute coset representatives for the elements of RC.Hi ;H/. If RC.H1;H/D∅,
then no element of the Fn-conjugacy of H1 is a subgroup of H and we return YES. Similarly, return YES
if RC.H2;H/D∅. Otherwise, choose bi representing a coset in RC.Hi ;H/. Replacing Hi by H bi

i we
may assume that Hi <H .
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Lemma 7.11 produces coset representatives fa1; : : : ; apg of H in N.H/. Thus a subgroup Ki <H is in
the same Fn conjugacy class as Hi if and only if it is in the same H -conjugacy class as Haj

i for some
1 � j � p. Order the pairs .Haj

1 ;H
ak
2 / lexicographically on 1 � j; k � p. Apply Lemma 7.19 with

Fn replaced by H and with .K1; K2/ replaced by the first pair on the list .Ha1
1 ;H

a1
2 / to either produce

K1; K2 <H such that

� K1 is in the same H conjugacy class as Ha1
1 ,

� K2 is in the same H conjugacy class as Ha1
2 ,

� H is the internal free product of K1 and K2,

or to conclude that no such K1 and K2 exist. In the former case return NO and ŒK1; K2�. In the latter
case proceed on to the next pair on the list. Continue until you either return NO and the desired ŒK1; K2�,
or reach the end of the list, in which case return YES.

Corollary 7.23 We have an algorithm with input an ordered triple .ŒH1�; ŒH2�; ŒH �/ of elements of
C.Fn/ and output a finite enumeration of the fiber F of the above map (7-1) over .ŒH1�; ŒH2�; ŒH �/.

Proof Use Lemma 7.22 to determine if F is empty or not and obtain an element ŒH 01;H
0
2� 2 F if not.

Input ŒH 01;H
0
2� into the algorithm of Lemma 7.21 to enumerate F .

We will also use conjugacy pairs that aren’t necessarily good.

Lemma 7.24 Consider the set of conjugacy pairs of the form ŒH;A� with A < H < Fn all finitely
generated and nontrivial. (In particular this pair is not good.)

(1) Two such ŒH;A� and ŒH 0; A0� are equal if and only if there is g 2 Fn such that Hg D H 0 and
ŒAg �H 0 D ŒA

0�H 0 . In particular , ŒH;A�D ŒH;A0� if and only if A and A0 are in the same orbit of
the action of N.H/ on H .

(2) The map from the set of such pairs to ordered sequences in C.Fn/ given by ŒH;A� 7! .ŒH�; ŒA�/

has fibers that can be finitely enumerated.

Proof (1) The “only if” direction is obvious. The “if” direction follows from the fact that if ŒAg �H 0 D
ŒA0�H 0 then there exists h0 2H 0 such that Ah

0g D A0 for some h0 2H 0.

(2) Given finitely generated nontrivial subgroupsK;L<Fn, compute RC.L;K/ by applying Lemma 7.8.
If RC.L;K/ D ∅, then L is not conjugate into K so the fiber over .ŒK�; ŒL�/ is empty. Otherwise,
choose b representing a coset in RC.L;K/. Replacing L by Lb we may assume that L < K. Apply
Lemma 7.11 to produce coset representatives �1; : : : ; �p of K in N.K/. The fiber containing ŒK;L�
equals fŒK;L�1 �; : : : ; ŒK;L�p �g by (1).
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8 Computable G -sets

The ultimate goal of this paper is to provide an algorithm solving the conjugacy problem for UPG.Fn/,
ie Theorem 1.1. We will need other algorithms as part of our solution. In this section and the following
two (Sections 8, 9 and 10), we formalize some of the algorithmic aspects present in the Out.Fn/-setting.
In particular, we provide what could be viewed as a “data structure” for the input and output of our
algorithms. These sections require no knowledge of Fn and are independent of the rest of the paper.

Definition 8.1 (computable) � A function f WX ! Y is computable if it comes equipped with an
algorithm with input x 2X and output f .x/ 2 Y .

� An enumeration of a set X is a surjection N ! X . A finite enumeration of X is a surjection
f1; 2; : : : ; N g !X . The index of x 2X is the minimal n such that n 7! x.

� A set X is computable if it comes equipped with a computable enumeration N ! X and an
algorithm with input x; x0 2 X and output YES or NO depending on whether or not x D x0. By
default, the empty set is computable. We sometimes write X D .x1; x2; : : : / to indicate the
enumeration. See Lemma 8.2.

� A group G is computable if the underlying set is computable and it comes equipped with a third
algorithm with input �; � 0; � 00 2G and output YES or NO depending on whether or not �� 0 D � 00.

� A G-set X is computable if G and X are computable and it comes equipped with yet another
algorithm with input � 2G, x; x0 2X and output YES or NO depending on whether or not �.x/D x0.

Lemma 8.2 If X D .x1; x2; : : :/ is a computable set then we have an algorithm with input x 2 X and
output the index of x.

Proof Starting with i D 1, iteratively check if x D xi .

To see how Out.Fn/ and our Out.Fn/-sets are enumerated and that they are computable, see Section 11.

A set Y of interest is often the quotient of a computable set X , ie Y D X=� for some equivalence
relation �. We want to use X to give Y the structure of a computable set. We view elements of X as
representatives of elements of Y and always give elements y 2 Y as y D Œx�, where x 2X and Œx� is the
equivalence class of x.

Lemma 8.3 Suppose X is a computable set and Y DX=� is a quotient of X . If we have an algorithm
with input x; x0 2X and output YES or NO depending on whether or not Œx�D Œx0�, then Y is computable.

There are the obvious generalizations for groups , etc.

Proof The computable enumeration of Y maps i 2N to Œxi � 2 Y . Given input y D Œx�, y0 D Œx0�, we
can use the algorithm in the hypothesis to output YES or NO depending on whether or not Œx� D Œx0�,
ie whether or not y D y0.
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Example 8.4 Suppose we are given a finite generating set for a group G. Elements of G are represented
as finite words in the generators and their inverses. This set X of finite words can be computably
enumerated, say using length, and X is computable. The composition of the enumeration for X and the
evaluation map e WX !G computably enumerates G. If we have an algorithm with input x; x0 2X and
output YES or NO depending on whether or not e.x/D e.x0/ then G is computable. This is the case, for
example, if we are given a finite presentation for G and an algorithm solving the word problem for this
presentation.

Lemma 8.5 (1) Suppose Z is a subset of the computable set X . If we have an algorithm with input
x 2X and output YES or NO depending on whether or not x 2Z, then Z is computable.

(2) If X and Y are computable sets then X �Y is a computable set.

There are the obvious generalizations for groups , etc.

Proof (1) If Z is empty then it is computable by definition. Suppose Z ¤ ∅. The computable
enumeration f WN!Z is given as follows. Applying the algorithm in the hypothesis a finite number of
times, we can find the minimal i 2N such that xi 2Z. Define f .j /D xi , for 1� j � i . If n > i , then
f .n/D xn if xn 2Z and f .n/D f .n� 1/ otherwise.

The proof of (2) is left to the reader.

In the setting of Lemma 8.5(1), we view elements of Z as given to us as elements of X that are in Z.
One reason for the rather odd looking enumeration f in the proof is that we have to make sure that f is
defined on all of N. (Consider the case where Z is finite.)

We now collect some basic properties of computable groups.

Lemma 8.6 Let G D .g1; g2; : : :/ and G0 D .g01; g
0
2; : : :/ be computable groups.

(1) We have algorithms

(a) with input g 2G and output the index of G,

(b) with input g; h 2G and output the index of gh,

(c) with output the index of 1, and

(d) with input g and output the index of g�1.

(2) We have an algorithm with input a finite word w in fg1; g2; : : : g˙1 and output the index of w in G.
In particular , we have an algorithm to solve the word problem in G.

(3) Suppose we are given a finite generating set G D fh1; : : : ; hN g � fg1; g2; : : : g for G. Then we
have an algorithm with input g 2G and output a word w with letters in G such that g D w in G.

(4) Suppose f WG!G0 is a homomorphism. If we are given a finite generating set G � fg1; g2; : : : g
for G and f .G/, then f is computable (with algorithm given in the proof ).

(5) If f WG!G0 is a computable homomorphism , then Ker.f / is computable.
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Proof (1) For (a), see Lemma 8.2. For (b), (c) and (d): starting with i D 1, iteratively use the algorithm
that comes with a computable group to respectively check: (b) if ghD gi ; (c) if gigi D gi ; and (d): if
ggi D 1.

(2) Use (d) to remove all negative exponents in w. Then use (b) to iteratively reduce the length of w by
replacing consecutive letters gigj with a single letter gk .

(3) Enumerate the words in G (say using length). Iteratively check if g is the N th word.

(4) To compute f .gi /, use (3) to write gi as a word w in G. Then f .w/ is a word in f .G/. Finally,
use (2) to find the index of f .w/.

(5) This follows from Lemma 8.5 since we can algorithmically check if f .gi /D 1 in G0.

Remark 8.7 Using Lemma 8.6(1), we may rewrite a given finite subset of fg1; g2; : : : g˙1 as a finite
subset of fg1; g2; : : : g. In particular, if G generates G then we may algorithmically compute a finite
subset of fg1; g2; : : : g that is a symmetric generating set.

Example 8.8 A computable group need not be finitely generated; a finitely generated computable group
need not be finitely presented; etc. Indeed, the kernel of f W .F2/n!Z which sends each basis element to
12Z has varying finiteness properties depending on n; see [Bestvina and Brady 1997]. By Lemma 8.6(5),
Ker.f / is computable.

Lemma 8.9 If the G-set X is computable and x 2X , then the stabilizer Gx in G D .g1; g2; : : :/ of x is
computable.

Proof This follows from Lemma 8.5 applied to Gx <G, since we can algorithmically check whether
gi .x/D x.

9 Finite presentations and finite-index subgroups

The following lemma is useful for finding presentations of finite-index subgroups of a finitely presented
group. It is well-known — see eg [Lyndon and Schupp 1977, Chapter 2, Section 4, The Reidemeister–
Schreier method] — but for completeness we provide a proof.

Lemma 9.1 There is an algorithm that takes as input

� a finite presentation for a computable group G D .g1; g2; : : :/,

� the multiplication table for a finite group Q,

� a computable surjection P WG!Q, and

� a subgroup Q0 of Q given as a finite list of elements of Q,
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and outputs

(1) a finite presentation for the subgroup G0 WD P�1.Q0/ of G, and

(2) finite sets of left and right coset representatives for G0 <G.

Remark 9.2 In some applications, G will act on a finite set S and so we have a homomorphism
G! Perm.S/ to the permutation group of S . The group Q will be the image of this map and P WG!Q

the induced map. This will allow us to compute the multiplication table for Q.

Proof of Lemma 9.1 (1) Let GD hh1; : : : ; hi j r1; : : : ; rj i be the given finite presentation for G, where
the generators are in fg1; : : : g and the relations are words in the generators; see Lemma 8.6(2). Let XG
denote its presentation 2-complex. We assume the reader is familiar with obtaining a finite presentation for
a groupH from a finite based 2-complex with fundamental groupH . Hence (1) is reduced to constructing
the finite based cover XG0 of XG whose fundamental group has image in the fundamental group of XG
equal to G0.

Set k WD ŒG W G0� D ŒQ W Q0� and note that k � jQj. Then every index k based cover of XG has k � i
1-cells and k � j 2-cells. Further, if jrqj denotes the length of rq as a word in fh1; : : : ; hig, then each
2-cell in the cover has boundary of length at most k �maxfjrqj j 1� q � j g. Hence we can construct all
based covers of XG of index k. Examine each in turn to check whether the image K of its fundamental
group in XG is G0. This can be done by checking whether the image in XG of a generating set for the
fundamental group of the cover has P -image contained in Q0. (Indeed, if so then K <G0 but both K
and G0 have the same index in G.) Since G0 has index k in G, we are guaranteed that one of these covers
satisfies K DG0. This completes the proof of (1).

(2) We find left coset representatives, the other case being symmetric. Using the hypotheses onQ, choose
a set SQ of left cosets representatives for Q0 <Q. Then SG � G is a set of left coset representatives
for G0 <G if the restriction P jSG is injective with image SQ. To find g 2G with P -image q 2Q, the
P -image of a set of generators for G generates Q and in Q we may write q in terms of these generators
for Q.

Given a short exact sequence 1!N !G
f
�!Q! 1, we are interested in finding a finite presentation

for G from finite presentations for N and Q.

Lemma 9.3 Suppose f WG!Q is a computable surjection between computable groups G and Q.

Suppose we are given

� a finite presentation for N WD Ker.f /, and

� a finite presentation for Q (for example if Q is finite and we are given the multiplication table for
Q then this item is satisfied ).

Then we may find a finite presentation for G. (In fact , one is constructed in the proof.)
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Proof Suppose that the finite presentation for N has generating set fgN;i j i 2 I g �G and set of relators
frN;j j j 2 J g and suppose that the finite presentation for Q has generating set fgQ;k j k 2Kg and set of
relators frQ;l j l 2 Lg.

For each gQ;k , find an element ygQ;k 2G with image gQ;k in Q. This can be done algorithmically by
iteratively searching for gi such that f .gi /D gQ;k .

Set yrQ;l D rQ;l.ygQ;k j k 2K/, ie rQ;l is a word in fgQ;k j k 2Kg and yrQ;l denotes the same word in
fygQ;k j k 2 Kg. The image of yrQ;l in Q represents 1Q and so there is a word nQ;l in fgN;i j i 2 I g
such that yrQ;l D nQ;l in G. Since N is normal, ygQ;k.gN;i /yg�1Q;k D nN;i;Q;k for some word nN;i;Q;k in
fgN;i j i 2 I g. Since G is computable, nQ;l and nN;i;Q;k can be found algorithmically; see Lemma 8.6(3).
By [Bridson and Wilton 2011, Lemma 2.1], there is a finite presentation for G with

� generating set fgN;i ; ygQ;k j i 2 I; k 2Kg, and

� set of relators that is the union of

– frN;j j j 2 J g,
– fyrQ;l D nQ;l j l 2 Lg, and

– fygQ;k.gN;i /yg�1Q;k D nN;i;Q;k j i 2 I; k 2Kg.

10 MW-algorithms

Our solution of the conjugacy problem for UPG.Fn/ in Out.Fn/ will use a generalization of an algorithm
of Gersten that in turn generalizes algorithms of Whitehead and McCool. This section is devoted to
describing these generalizations.

A set equipped with an action by a group G is a G-set. We will only consider computable G-sets; see
Definition 8.1.

Definition 10.1 (property MW) A computable G-set X satisfies property MW (for McCool and
Whitehead) if it comes equipped with an algorithm that takes as input x; y 2X and outputs

(M) finite presentations for Gx WD f� 2G j �.x/D xg and for Gy WD f� 2G j �.y/D yg, and

(W) YES or NO depending on whether or not there exists � 2G such that �.x/D y together with such
a � if YES.

We call such an algorithm an MW-algorithm. Sometimes we refer to an algorithm that satisfies item M
(resp. item W) as an M-algorithm (resp. W-algorithm). Recall that Gx and Gy are computable by
Lemma 8.9.

Of course our interest here is in the case G D Out.Fn/ where the second item is associated with
J H C Whitehead [1936a; 1936b] whose algorithm decides if there is � taking one finite ordered set of
conjugacy classes in Fn to another and produces such a � if one exists. The first item is associated with
McCool [1975], whose algorithm produces a finite presentation for the stabilizer of a finite ordered set of
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conjugacy classes of elements of Fn. S Gersten generalized the algorithms of Whitehead and McCool
to finite sequences in the Out.Fn/-set C.Fn/; see Notation 7.20. (C.Fn/ is shown to be a computable
Out.Fn/-set at the beginning of Section 11.) We state Gersten’s result in a slightly weakened form.

Theorem 10.2 ([Gersten 1984, Theorems W&M], see also [Kalajdžievski 1992] and [Bestvina et al.
2023]) The action of Out.Fn/ on the set of finite ordered sets in C.Fn/ satisfies property MW.

We will define algebraic invariants for elements of UPG.Fn/; see Section 13. An obstruction to �; 2
UPG.Fn/ being conjugate in Out.Fn/ is the existence of a � 2 Out.Fn/ taking the algebraic invariants
of � to those of  . More specifically, if such a � does not exist then � and  are not conjugate. If such a �
does exist, then we replace � by �� (or  by  .�

�1/) and reduce to the case where the algebraic invariants
of � and  agree. One step in our algorithm for the conjugacy problem for UPG.Fn/ in Out.Fn/ will be
to check whether such a � exists and to produce one if so.

Some of our invariants are elements of C.Fn/ and so fit nicely into the setting of Gersten’s theorem. We
will extend Gersten’s theorem so that it applies to all our invariants. These invariants are best described
in terms of iterated sets of elements of C.Fn/, or more generally in terms of sets with finite-to-one maps
to iterated sets. Roughly, an iterated set in a G-set A is a finite set consisting of elements of A and
previously produced iterated sets. The set may be ordered or not. We commonly take A to be C.Fn/.

There are two main results. The first, Proposition 10.14, promotes MW-algorithms for finite ordered sets
in A to MW-algorithms for the set IS.A/ (of equivalence classes) of iterated sets in A. More specifically,
it states that if the G-action on finite ordered subsets of A satisfies property MW then so does the G-action
on IS.A/. The second, Corollary 10.22, is a method for enlarging A.

After reviewing our invariants in Section 12 and defining the algebraic invariants in Section 13, we apply
our generalized Gersten’s algorithm to obtain a reduction of the conjugacy problem for UPG.Fn/ in
Out.Fn/ to Proposition 14.7 in Lemma 14.8.

10.1 Iterated sets and their equivalence classes

Definition 10.3 A rooted tree .T;�/ is a finite, simplicial, directed tree T with a basepoint � called the
root. A valence 0 vertex (ie T D f�g) or a valence one vertex that is not the root is a leaf. The set of
leaves in T is denoted by L.T /. All edges are oriented away from the root. The set of edges exiting a
vertex x 2 T is denoted by ET .x/. Paths are directed. We also may give some vertices an extra structure:
a vertex x that is not a leaf is ordered if an order has been imposed on ET .x/. A vertex that is not a leaf
and that is not ordered is unordered.

We view rooted trees .T;�/ as combinatorial objects. In particular, edges are specified by ordered pairs
of vertices. For technical reasons having to do with computability, we require that all vertices of the trees
we consider lie in a set V that we fix once and for all. (For our purposes, one can take V to be N.)
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Example 10.4 We will draw rooted trees with the root at the top. Ordered vertices are indicated by using
dashed lines for its exiting edges. The imposed ordering is displayed from left to right. In the rooted tree
below only the root is ordered. There are 4 leaves:

�

� � �

� �

................................................

...........................................

................................................
.......................................................................

................................................................................

Definition 10.5 (iterated set) An iterated set in a set A is a rooted tree such that each leaf is labeled by
an element of A. Specifically, an iterated set in A is a pair ..T;�/; �/ where .T;�/ is a rooted tree and
� W L.T /!A is a function. We do not assume that � is one-to-one. We will often use sans serif capital
letters for iterated sets and write, for example, XD ..T;�/; �/. The set of atoms of X is �.L.T //. We
sometimes refer to A as the set of atoms. For l 2 L.T /, we sometimes refer to �.l/ as the label or atom
of l . The set of iterated sets in A is denoted by IS.A/.

Example 10.6 If we take A D C.Fn/, then a nested sequence EF D F1 @ � � � @ FN of free factor
systems determines an iterated set in A as follows. First we identify each free factor system Fi D
fŒFi;1�; : : : ; ŒFi;mi �g with an iterated set:

�

�

ŒFi;1�
�

ŒFi;2�
�

ŒFi;mi �

................................................................................................................................ : : :

..............................................................................................

................................................................................................................................

Then EF determines the ordered set fF1; : : : ;FN g:

�

�

ŒF1;1�
�

ŒF1;2�
�

ŒF1;m1 �

................................................................................................................................................

..........................................................................................................

................................................................................................................................................

�

�

ŒFN;1�
�

ŒFN;2�
�

ŒFN;mN �

................................................................................................................................................

..........................................................................................................

................................................................................................................................................

�

: : : : : :

: : :

........................................................................................................................

........................................................................................................................

Definition 10.7 Let XD ..T;�/; �/ and X0 D ..T 0;�0/; �0/ be iterated sets in A.

� An order-preserving simplicial isomorphism f W .T;�/! .T 0;�0/ is a simplicial isomorphism that
satisfies:

(1) A vertex x of T is ordered if and only if f .x/ is ordered and the induced map ET .x/!
ET 0.f .x// is order-preserving.
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� An equivalence f W X! X0 is an order-preserving simplicial isomorphism f W .T;�/! .T 0;�0/ that
additionally satisfies:

(2) For l 2 L.T /, �.l/D �0.f .l//.
Clearly equivalence induces an equivalence relation on IS.A/.

� IS.A/ denotes the set of equivalence classes of iterated sets.

Remark 10.8 We will not need this, but if A is the set of objects of a category yA, then naturally so are
IS.A/ and IS.A/. A morphism ..T;�/; �/! ..T 0;�0/; �0/ is an order-preserving simplicial isomorphism
f W .T;�/! .T 0;�0/ together with a functionm W�.L.T // into the morphisms of yA such that, for l 2L.T /,
m.�.l// 2 Hom.�.l/; �0.f .l///. An earlier version of this paper used a simplified, but more restrictive
variant of this category, which was ultimately not needed.

10.2 Promoting property MW

Definition 10.9 Suppose G is a group and A is a G-set. Then IS.A/ and IS.A/ are G-sets with actions
given as follows. If � 2 G and X D ..T;�/; �/, then �.X/ WD ..T;�/; � ı �/, ie �.X/ is obtained by
relabeling L.T / according to � . The G-action descends to IS.A/.

We want IS.A/ and IS.A/ to be computable. This is the case if our set V of vertices and A are computable.

Lemma 10.10 (1) If V is a computable set , then the set of rooted trees with vertices in V is com-
putable.

(2) If additionally A is a computable set , then the sets IS.A/ and IS.A/ are computable.

(3) If additionally A is a computable G-set , then the G-sets IS.A/ and IS.A/ are computable.

Proof (1) We view rooted trees .T;�/ as combinatorial objects. In particular, edges are specified by
ordered pairs of vertices. To completely specify .T;�/ we also choose a root vertex, designate some
vertices as ordered and choose an order on exiting edges of those vertices. Rooted trees T with vertices
in V can be computably enumerated using, say, the sum jT j of the number of vertices and largest index
among the vertices of T . That is, to enumerate the set of rooted trees, first list all those with jT j D 1,
then 2, etc. Two rooted trees are equal if and only if the they have the same vertices, edges, root, ordered
vertices and same order on outgoing edges of ordered vertices.

(2) For an iterated set XD ..T;�/; �/, let jX j denote the sum of the number of vertices of jT j and the
largest index of a label (an element of �.L.T //). IS.A/ may be countably enumerated using jX j. To
enumerate IS.A/, for example, list all X with jX j D 1, then 2, etc. Two iterated sets are equal if and only
if the underlying rooted trees are equal and the functions on the leaves are equal. The first condition
can be checked by (1) and the second can be checked since A is computable. We can use the same
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enumeration for IS.A/. Here if X1 W D ..T1;�1/; �1/ and X2 WD ..T2;�2/; �2/ represent respectively Q1

and Q2 in IS.A/, then Q1 D Q2 if and only if X1 and X2 are equivalent and this is a finite check. Indeed,
finitely enumerate the set S of order-preserving simplicial isomorphisms f W .T1;�1/! .T2;�2/. If S is
empty then Q1¤Q2. Otherwise, if some f 2 S is an equivalence then Q1DQ2 and if not then Q1¤Q2.

(3) Since A is a computable G-set, it is a finite check whether �.X1/D X2 and also whether �.X1/ and
X2 are equivalent.

Assumption 10.11 Going forward, we assume that our fixed set V of vertices is computable; see
Definition 10.3. In all applications, A will be computable.

Notation 10.12 Unless otherwise specified,

� A denotes a computable G-set,

� X;X0; : : : denote elements ..T;�/; �/; ..T 0;�0/; �0/; : : : of IS.A/,

� Q;Q0; : : : denote elements of IS.A/ and are represented by X;X0; : : : , and

� an equivalence f W X! X0 is given by f W .T;�/! .T 0;�0/.

Notation 10.13 � The map A ! IS.A/ determined by a 7! ..�;�/;� 7! a/ is a G-equivariant
inclusion. In other words, map a to the trivial tree with vertex labeled a. Thus we may think of A

as a subset of IS.A/.

� Sor.A/ denotes the subset of IS.A/ represented by iterated sets in which � is ordered and � is
the initial endpoint of every edge of T . Sor.A/ is G-invariant. There is an obvious G-invariant
bijection between the set of nonempty, finite, ordered sequences in A and Sor.A/. We pass back
and forth between these two points of view whenever convenient.

� The G-set Sun.A/ is defined analogously where � is unordered. There is an obvious G-invariant
bijection between the set of nonempty, finite, multisets in A and Sun.A/.

Proposition 10.14 (promoting MW) Let A be a computable G-set. If Sor.A/ satisfies property MW,
then so does IS.A/.

Proof We follow the conventions in Notation 10.12. First we provide a W-algorithm for IS.A/; ie an
algorithm that either finds � 2 G satisfying �.Q/ D Q0 or concludes that there is no such � . Finitely
enumerate the set S of order-preserving simplicial isomorphisms f W .T;�/! .T 0;�0/. If S is empty
then return NO. Otherwise, start with the first element f of S . By hypothesis there is a W-algorithm that
either finds � 2G such that �.�.l//D �0.f .l// for each l 2 L.T / or concludes that no such � exists. If
� is found then f gives an equivalence �.X/! X0 and our W-algorithm returns YES and � . If no such �
exists, move on to the next element of S and try again. If after considering each element of the finite
set S we have not returned YES, then return NO. (Equivalently, we could make the queries indexed by S
in parallel. Note that a different choice of representatives X, X0 for Q, Q0 would give the same queries.)
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The stabilizer GQ in G of Q is computable by Lemma 8.9. For the M-algorithm, we will produce a finite
presentation for GQ by applying Lemma 9.3 to the short exact sequence induced by � WGQ! Perm.A/,
where A denotes the set �.L.X// of atoms of X. Since the kernel of � is the subgroup of G fixing each
element of A, we can use the M-algorithm for Sor.A/ to produce a finite presentation for this kernel.

To apply Lemma 9.3, it remains to produce an element of GQ realizing each element of the image of � .
This is done as follows. Given � 2Perm.A/, use the W-algorithm for Sor.A/ to produce � 2G realizing �
if such exists. If there is no such � then � is not in the image of � . Finally, use the computability of
IS.A/ (Lemma 10.10(3)) to check if �.X/ is equivalent to X. If it is then � is in the image of � (and is
realized by � ) and otherwise it is not. (As above with the W-algorithm, it is easy to see that the choice of
representative X for Q is immaterial. Also, the choice of � does not matter.)

For reference we record the following consequence of the previous proof (really just definitions).

Corollary 10.15 If X D ..T;�/; �/ represents Q 2 IS.A/, then the subgroup of G fixing each �.l/,
l 2 L.T /, has finite index in the stabilizer GQ of Q.

10.3 More atoms

Proposition 10.14 concludes, under conditions on A, that IS.A/ has property MW. In this section,
conclusions have the form IS.A0/ satisfies property MW, where A0 is a G-set constructed from A in
various ways. Intuitively, we are enlarging our collection of useful sets of atoms.

Notation 10.16 Suppose p W yY ! Y is an equivariant map of G-sets. For y 2 Y [resp. yy 2 yY ], let Gy
(resp. Gyy) denote the stabilizer of y (resp. yy) with respect to the action of G on Y (resp. yY ). Let Fy
denote the fiber p�1.y/. If p.yy/D y then by p-equivariance Gyy < Gy and Gy acts on Fy inducing a
homomorphism �y WGy! Perm.Fy/. (We declare the permutation group of the empty set to be trivial.)

In this setting, we say that p has explicit finite fibers if the G-sets Y and yY are computable and p comes
equipped with an algorithm with input y 2 Y and output a finite enumeration of Fy .

Lemma 10.17 Suppose the G-map p W yY ! Y has explicit finite fibers and that Y satisfies property M.
Then:

(1) There is an algorithm with input y 2 Y , � 2Gy and output �y.�/.

(2) There is an algorithm with input y 2 Y and output the multiplication table for �y.Gy/.

(3) yY satisfies property M.

Proof Let y 2 Y . By Lemma 8.9, Gy is computable. Since p has explicit finite fibers, we can compute
the finite list of elements of Fy . Since Y satisfies property M we can produce a finite presentation for Gy .

(1) Since yY is computable, we can compute the action of � on Fy � yY .

(2) This follows by applying (1) to our generators of Gy .
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(3) Since Gyy is the �y-preimage of the stabilizer S of yy in Perm.Fy/, we can find a finite presentation
for Gyy by applying Lemma 9.1, taking P to be the surjective homomorphism Gy ! �y.Gy/ and
Q0 WD �y.Gy/\S .

Lemma 10.18 Suppose f WZ! Y and g W Y !X each has explicit finite fibers. Then the composition
hD g ıf WZ!X has explicit finite fibers.

Proof Since each one of f and g has explicit finite fibers, the G-sets X , Y and Z are each computable.
Given x 2X , since g has explicit finite fibers, we can list the elements of g�1.x/. Since f has explicit
finite fibers, we can list the elements of f �1.y/ for each y 2 g�1.x/. We are done by noting that
h�1.x/D

F
ff �1.y/ j y 2 g�1.x/g.

Lemma 10.19 Suppose that p W yY ! Y is a G-equivariant map of G-sets such that

� p has explicit finite fibers , and

� Y satisfies property MW.

Then yY satisfies property MW.

Proof yY satisfies property M by Lemma 10.17(3).

For the W-algorithm, we use Notation 10.16. Suppose that yz 2 yY and that z D p.yz/. Since Y satisfies
property W we can check whether or not there is �0 such that �0.y/D z and we can compute such a �0
if it exists. If not, then return NO. If yes, then yy and ��10 .yz/ are in Fy and there is an element of G taking
yy to yz if and only if there is an element � 2G (necessarily in Gy) taking yy to ��10 .yz/. Our goal becomes
to check whether there is � 2Gy such that �y.�/ 2 Perm.Fy/ takes yy to ��10 .yz/, and to produce such a
� if so. This can be done using our finite generating set for Gy and its action on Fy . If there is no such �
then return NO. Otherwise return YES and �0 � � .

Construction 10.20 (canonical extension) Suppose that A and A0 are G-sets and that I WA0! IS.A/

is G-equivariant. We now define a G-equivariant map IIS W IS.A
0/! IS.A/ that restricts to I on A0; see

Notation 10.13. We call IIS the canonical extension of I :

A0 IS.A/

IS.A0/

....................................................................................................................................................................................................... ............
I

......................................................................................................................... ........
....

.......

.........

......
......
......
......
......
......
......
......
......
..................
............

IIS

From Q0 2 IS.A0/, we construct Q WD IIS.Q
0/ 2 IS.A/. We do this by constructing a representative

X D ..T;�/; �/ for Q from a representative X0 D ..T 0;�0/; �0/ for Q0 and, for each l 0 2 L.T 0/, a
representative Xl 0 D ..Tl 0 ;�l 0/; �l 0/ for Ql 0 WD I.�0.l 0// 2 IS.A/. Let T be the tree obtained from
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T 0t
�F
fTl 0 j l

0 2 L.T 0/g
�

by identifying l 0 2 T 0 and �l 0 2 Tl 0 . We declare the image of �0 in T to be the
root � of T . The leaves of T biject naturally with

F
fL.Tl 0/ j l 0 2 L.T 0/g and we define � W L.T /!A

by �jL.Tl 0/ WD �l 0 .

We next show that Q is independent of our choices of representatives, ie that Q0 7! Q is well-defined. Let
Y0 D ..S 0; ?0/; �0/ also represent Q0 and so we have a simplicial isomorphism f 0 W T 0! S 0 inducing an
equivalence X0! Y0. In particular, I.�0.l 0//D I.�0.f .l 0/// in IS.A/. Thus if Yf .l 0/ is a representative of
I.�0.f .l 0///, then we have equivalences Xl 0!Yf .l 0/ induced by simplicial isomorphisms fl 0 W .Tl 0 ;�l 0/!
.Sf .l 0/; ?f .l 0// between the underlying trees. The map f 0 and the fl 0 induce a map

T 0 t
�G
fTl 0 j l

0
2 L.T 0/g

�
! S 0 t

�G
fSfl0 .l 0/ j l

0
2 L.T 0/g

�
;

which descends to a simplicial isomorphism T ! S that induces an equivalence X! Y. Hence the map
IIS W IS.A

0/! IS.A/ given by Q0 7! Q is well-defined.

If we start the above construction with �.X0/ instead of X0, the only difference is that � is replaced by
� ı�, ie IIS is G-equivariant. Recall (Notation 10.13) that we identify A0 with the subset of elements of
IS.A0/ with underlying tree consisting of only the root. Thus I and IIS agree on A0.

Lemma 10.21 Let A and A0 be G-sets and suppose the G-map I WA0! IS.A/ has explicit finite fibers.
Then IIS W IS.A

0/! IS.A/ has explicit finite fibers. If additionally Sor.A/ satisfies property MW , then
IS.A0/ satisfies property MW.

Proof Since I has explicit finite fibers, the G-set A0 is computable. The G-set IS.A0/ is therefore
computable by Lemma 10.10(3). Let Q 2 IS.A/ be given and let X D ..T;�/; �/ 2 IS.A/ represent Q.
Using notation as in Construction 10.20, each Q0 in the fiber F of IIS over Q has a representative of the
form ..T 0;�/; �0/, where .T 0;�/ is a rooted subtree of .T;�/. Further, each leaf l 0 of T 0 then determines
a rooted tree .Tl 0 ; l 0/, where Tl 0 is the subtree of T spanned by l 0 and all leaves l of T with a directed
path from l 0 to l . We then get a representative ..Tl 0 ; l 0/; �l 0/ for an element Ql 0 of IS.A/, where �l 0 is the
restriction of � to the leaves of Tl 0 . If there are elements a0

l 0
2A0 such that I.a0

l 0
/D Ql 0 and if we define

�0.l 0/ WD a0
l 0

then ..T 0;�/; �0/ represents an element of F and all elements of F have this form (for some
choice of T 0). Since I has explicit finite fibers, we can finitely enumerate the fiber of I over Ql 0 and so
also find a finite list in IS.A0/ of representatives for the elements of F . (It is easy to see that a different
choice of representative X for Q produces F with a perhaps different enumeration.)

If additionally Sor.A/ satisfies property MW, then by Proposition 10.14 so does IS.A/. That IS.A0/

satisfies property MW is now a direct consequence of Lemma 10.19.

Corollary 10.22 Let A and Ai for i D 1; : : : ; k be G-sets with A computable. Suppose that Sor.A/

satisfies property MW and that Ii W Ai ! IS.A/ is G-equivariant and has explicit finite fibers. Then
the induced map

F
i Ai ! IS.A/ has explicit finite fibers , as does IS

�F
i Ai

�
! IS.A/, and IS

�F
i Ai

�
satisfies property MW.
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Proof It is apparent that, since Ii has explicit finite fibers, so does
F
i A0i ! IS.A/. The rest of the

corollary then follows directly from Lemma 10.21.

Corollary 10.23 Suppose A0 is a computable G-set and Sor.A0/ satisfies property MW. Then:

(1) For k D 2; 3; : : : , inductively define ISk.A
0/ WD IS.ISk�1.A

0//, where IS1.A0/ WD IS.A0/. The
G-set ISk.A

0/ satisfies property MW.

(2) Here we use Notation 10.13. For iD1; 2; : : : , let si 2fSor;Sung. Set S1.A0/ WD s1.A0/� IS.A0/ and
inductively define Sk.A0/ WD sk.Sk�1.A0//� ISk.A

0/. The G-set Sk.A0/ satisfies property MW.
The natural map Sk.A0/ � ISk.A

0/! ISk�1.A
0/! � � � ! IS.A0/ is injective , where ISi .A0/!

ISi�1.A0/ is the canonical extension (Construction 10.20) of the identity map of ISi�1.A0/.

Proof (1) An application of Proposition 10.14 gives that IS.A0/ satisfies property MW. Suppose that,
for k � 2, we have that ISk�1.A

0/ satisfies property MW. Since the identity map of ISk�1.A
0/ has explicit

finite fibers, so does ISk.A
0/! ISk�1.A

0/ by Lemma 10.21. By Lemma 10.19, ISk.A
0/ also satisfies

property MW.

(2) The first conclusion follows from (1) since Sk.A0/ � ISk.A
0/, and an MW-algorithm for ISk.A

0/

provides an MW-algorithm for Sk.A0/. To prove the injectivity statement by induction, we show that if A00

is aG-set and f WA00! IS.A0/ is injective, then the restriction of the canonical extension si .A00/! IS.A0/

is also injective for si 2 fSor;Sung.

Suppose that si D Sor and that .a1; : : : ; ar/; .b1; : : : ; bs/ 2 si .A00/. If the images .f .a1/; : : : ; f .ar// and
.f .b1/; : : : f .bs// under the canonical map are equal, then f .ak/D f .bk/, k D 1; : : : ; mD n. Since f
is injective, ak D bk . The case where si D Sun is similar. The inductive proof is left to the reader.

Remark 10.24 Via the natural map in Corollary 10.23(2), we sometimes view Sk.A
0/ as a subset of

IS.A0/.

Example 10.25 Let A D C.Fn/. A free factor system is a finite unordered set of free factors and so
may be interpreted as an element of Sun.A/; cf Example 10.6. A special chain is an ordered set of free
factor systems and so gives an element of SorSun.A/. The set of special chains associated to � gives an
element of SunSorSun.A/. We may view Sun.A/, SorSun.A/, and SunSorSun.A/ all as subsets of IS.A/

(Remark 10.24).

11 Our atoms

In this section we apply Section 10.3 to enlarge the set C.Fn/ (Notation 7.20) to the sets of atoms that we
will need for the remainder of the paper. See Lemma 11.2 and also Section 14.

To start, we need to know that some familiar sets are computable. Some proofs refer to the Stallings
graph associated to a finitely generated subgroup of Fn; see Stallings [1983, 5.4] and Section 7.2. The
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proofs also use Lemmas 8.3 and 8.5, sometimes without explicit mention. Let B be a basis for Fn. The
following objects are computable.

� The group Fn Elements of Fn are represented by words in BtB�1 and can be enumerated using
length. Multiplication is given by concatenation. An element is represented uniquely by a reduced
word, which can be found by iteratively canceling a letter and its inverse. See Example 8.4.

� The set of conjugacy classes of elements of Fn The enumeration of Fn serves also as an
enumeration of the set of conjugacy classes. An element is represented uniquely by a cyclically
reduced word.

� The set of finitely generated subgroups of Fn An enumeration is given by an enumeration
of finite sets of representatives of elements of Fn. Two such sets are equal if and only if they
determine the same based Stallings graph with labels in B, which can be found using the Stallings
folding algorithm.

� C.Fn/ The enumeration of the set of finitely generated subgroups of Fn also serves as an iteration
for C.Fn/. Two representatives are equal in C.Fn/ if and only if they determine the same (unbased)
Stallings graph with labels in B; see Lemma 7.10.

� The group Aut.Fn/ The set of endomorphisms of Fn is bijective with .Fn/B under the map
‚ 7! .b 7! ‚.b//. Using the Hopf property of Fn [Magnus et al. 1966, Theorem 2.13], an
endomorphism ‚ is an isomorphism if and only if it is surjective if and only if the based Stallings
graph of h‚.B/i is the rose with petals labeled by the elements of B. Thus an enumeration of
Aut.Fn/ can be obtained using the enumeration for endomorphisms.

� The group Out.Fn/ Our enumeration of automorphisms serves also as an enumeration of outer
automorphisms. Two automorphisms represent the same outer automorphisms if and only if they
have the same action on conjugacy classes of words of length at most two in BtB�1; see [Serre
1980].

� The Aut.Fn/-set Fn Representative endomorphisms act on representative words.

� The Out.Fn/-set of conjugacy classes of elements of Fn Representative endomorphisms act on
representative words.

� The Aut.Fn/-set of finitely generated subgroups of Fn Representative endomorphisms act on
representative finite subsets of Fn.

� The Out.Fn/-set C.Fn/ Representative endomorphisms act on representative finite subsets of Fn.

� The Out.Fn/-set IS.C.Fn// See Lemma 10.10(3).

� The Out.Fn/-sets Sor.C.Fn// and Sun.C.Fn// See Corollary 10.23.

Notation 11.1 In the remainder of the paper,GDOut.Fn/. We now define Out.Fn/-sets A0;A1; : : : ;A6
that will be used to express our algebraic invariants for elements of UPG.Fn/. At the same time we show
each Ai is computable and admits a map that has explicit finite fibers to a previously defined set.
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� A0 denotes C.Fn/, is computable (see the above itemized list), and has been identified (Notation 10.13)
as an Out.Fn/-subset of IS.A0/.

� A1 denotes the set of good conjugacy pairs of nontrivial finitely generated subgroups of Fn. We saw
above that the set of finitely generated subgroups of Fn is computable, hence (Lemma 8.5(2)) so is its
square. By Lemma 7.14(1), a pair .K1; K2/ represents a good ŒK1; K2� if and only if rank.hK1; K2i/D
rank.K1/C rank.K2/, and this can be checked using the Stallings graphs of ŒK1�, ŒK2� and ŒhK1; K2i�.
Hence (Lemma 8.5(1)) the subset of pairs representing good conjugacy pairs is computable. By
Corollary 7.18, there is an algorithm deciding whether good conjugacy pairs are equal. Hence, by
Lemma 8.3, A1 is computable.

By Corollary 7.23, the map A1! Sor.A0/ ,! IS.A0/ has explicit finite fibers where A1! Sor.A0/ is
given by ŒH1;H2� 7! .ŒH1�; ŒH2�; ŒhH1;H2i�/.

� A2 denotes the set of conjugacy pairs ŒH; a� where H is a nontrivial finitely generated subgroup
of Fn, a 2 Fn is nontrivial, and ŒH; hai� is good. It is clear that ŒH; a� D ŒH 0; a0� if and only if
ŒH; hai�D ŒH 0; ha0i� and a and a0 are conjugate. In particular, A2 is computable and the map A2!A1
given by ŒH; a� 7! ŒH; hai� has explicit finite fibers with fibers of size zero or two.

� A3 denotes the set of conjugacy pairs Œa;H� where H is a nontrivial finitely generated subgroup
of Fn, a 2 Fn is nontrivial, and ŒH; hai� is good. That A3 is computable and A3 ! A1 given by
Œa;H� 7! Œhai;H � has explicit finite fibers with fibers of size zero or two follows exactly as with A2.

� A4 is the set of conjugacy pairs Œa; b� of elements ofFn where ha; bi has rank 2. We have Œa; b�D Œa0; b0�
if and only if Œhai; hbi�D Œha0i; hb0i�, a and a0 are conjugate, and b and b0 are conjugate. It follows that
A4 is computable and A4!A1 given by Œa; b� 7! Œhai; hbi� has explicit finite fibers with fibers of size
zero or four.

� A5 is the set of conjugacy classes Œa� of nontrivial elements a 2 Fn. We saw earlier in this subsection
that A5 is computable. The map A5!A0 given by Œa� 7! Œhai� has explicit finite fibers with fibers of
size zero or two.

� A06 is the set of conjugacy pairs ŒH;A� with A < H < Fn all finitely generated and nontrivial. (In
particular, ŒH;A� is not good.) Using Lemma 7.24(1), the proof that A06 is computable is similar to the
proof that A1 is computable. By Lemma 7.24(2), A06! Sor.A0/ ,! IS.A0/ given by ŒH;A� 7! .ŒH�; ŒA�/

has explicit finite fibers. A06 is only used to define A6.

� A6 is the set of conjugacy pairs ŒH; a� where H is a nontrivial finitely generated subgroup of Fn and
a¤ 1 is in H . (In particular, ŒH; hai� is not good.) ŒH; a�D ŒH 0; a0� if and only if ŒH; hai�D ŒH 0; ha0i�
and a is conjugate to a0. Hence A6!A06 has explicit finite fibers with fibers of size zero or two.

� A� WDA0 tA1 tA2 tA3 tA4 tA5 tA6.

Lemma 11.2 Using Notation 11.1, the Out.Fn/-set IS.A�/ satisfies property MW.
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Proof Since Sor.A0/ satisfies property MW by Theorem 10.2, it follows from Corollary 10.22 that it is
enough to show that, for each i , we have that Ai admits G-equivariant map to IS.A0/ that has explicit
finite fibers. Using Notation 11.1, we see that each Ai admits a map to IS.A0/ that is a composition of
two maps, each of which has explicit finite fibers. We are done by Lemma 10.18.

12 List of dynamical invariants

In Section 13 we define algebraic invariants of � 2UPG.Fn/ that are derived from the dynamical invariants
of � established in the first five sections of this paper. For the convenience of the reader, we list those
dynamical invariants here and provide pointers to the relevant sections of the paper. Here f W G! G

always denotes a CT for � and �.f / its eigengraph; see Section 4.1. We also use the notation of conjugacy
pairs; recall Definition 4.9, Examples 4.10 and Section 7.

� P.�/ denotes the set of principal automorphisms for � (Definition 3.8) and ŒP.�/� denotes the
set of isogredience classes in P.�/ (Definition 3.11). ŒP.�/� parametrizes the components of �.f /.
Fix.�/D fŒFix.ˆ/� j Œˆ� 2 ŒP.�/�g. Since ŒP.�/� is finite, Fix.�/ is a finite multiset of (possibly trivial)
conjugacy classes of finitely generated subgroups of Fn. Geometrically it is the core of �.f /. Fix�2.�/ WD

fŒFix.ˆ/� j Œˆ� 2 ŒP.�/�; rank.Fix.ˆ//� 2g. See Sections 3.4, 3.7 and 4.2.

� We use c D EF.�;<T / to denote a special chain for � as in Notation 6.8. It is a set of free factor
systems naturally ordered by @. We usually work with a prechosen c. For example, the filtration of our
CT f W G ! G will usually realize c. If F 2 c (resp. ŒF � 2 F 2 c) and if the filtration of f W G ! G

realizes c then f jF (resp. f jŒF �) denotes the restriction of f to the core filtration element representing F
(resp. the component of the core filtration element representing ŒF �). The corresponding eigengraph is
denoted by �.f jF/ (resp. �.f jŒF �/).

� A free factor system is special if it is in some special chain. L.�/ denotes the set of special free factor
systems of �; see Notation 6.8. Each element of L.�/ is a free factor system and so is a set of conjugacy
classes of free factors in Fn. If ŒF � 2 F 2 L.�/ then F and ŒF � are also said to be special. The unique
minimal (with respect to @) element of L.�/, denoted by F0.�/, is the linear free factor system of �. It
is represented by the core of the subgraph of G that is the union of fixed and linear edges. An invariant
description of F0.�/ is F.Fix.�//, ie the smallest free factor system carrying Fix.�/; see Lemma 6.16.

� Define

R.�/ WD
�
ŒP �

ˇ̌̌
P 2

m[
iD1

FixC.ˆi /

�
� @Fn=Fn;

where the ˆi are representatives of the isogredience classes in P.�/. In other words, R.�/ is the set
of conjugacy classes of points in @Fn that are isolated fixed points for some principal lift of �. See
Section 3.4. In any CT f W G ! G representing � there is a bijection r $ E between R.�/ and the
set Ef of higher-order edges of G. The eigenray RE has terminal end r .
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� Let e 2 c denote a special 1-edge extension in c, ie eD .F� @ FC/ is a pair of consecutive elements
of c. Suppose f W G ! G realizes c. �.f jFC/ n �.f jF�/ has one or two ends; these represent the
new (with respect to e) elements of R.�/. The 1-edge extension e has type H, HH or LH. There are two
new elements if and only if e has type HH. A new element is often denoted by rC. Further, e can be
contractible, infinite cyclic, or large. See Section 6.1.

� Continuing the previous bullet point, if the filtration of f WG!G realizes c, then �.f jFC/ carries
more lines than �.f jF�/. The set of added lines with respect to e, denoted by Le.�/, is a �-invariant
subset of these lines. See Definition 6.14.

� �.�/D
S
r2R.�/�.r/ denotes the finite set of limit lines for �. See Section 5. Here �.r/ denotes

the accumulation set of r or equivalently of the eigenray in �.f / representing r . The elements of �.�/
are all represented as lines in �.f /. �NP.�/��.�/ is the subset of nonperiodic lines.

� Aor.�/ denotes the set of oriented axes of �, where a root-free conjugacy class Œa� of an element of
Fn is an axis if it has more than one representation in �.f /. An axis has an invariant description: Œa�
is an axis if there are ˆ1; ˆ2 2 P.�/ such that a 2 Fix.ˆ1/\ Fix.ˆ2/ and ˆ1 ¤ ˆ2. In this case, we
say the conjugacy pair Œˆ; a� is a strong axis; see Definition 4.11. It is represented geometrically as a
lift to �.f / of Œa�. The set of strong axes is denoted by SA.�/. Associated to each pair of strong axes
˛1 D Œˆ1; a�; ˛2 D Œˆ2; a� is a twist coordinate �.˛1; ˛2/ in Z. See Definition 4.14.

13 Algebraic data associated to invariants

In this section we define algebraic versions of some of our dynamical invariants. We also explain how the
algebraic versions can be computed and viewed as an element of IS.A�/; see Notation 11.1. The algebraic
invariants are typically weaker than their dynamic versions. However they have the advantage that they
are iterated sets and so fit into the framework of Section 10. Some of our invariants, for example chains,
are already algebraic in nature and so need no modification.

All of our algebraic invariants for � 2UPG will be computed using a CT f WG!G for �; see Section 3.6.
Additionally, the core of the eigengraph �.f / can be computed from f WG!G; see Section 4.1. In fact,
since �.f / is obtained from its core by adding the eigenrays of f and the eigenrays have a simple form
(Section 3.6), we can compute arbitrarily large neighborhoods of the core in �.f /.

13.1 Special chains

Recall from Notation 6.1 and Lemma 6.2 that there is a canonical partial order .R.�/; </ that can be
computed from any CT for �. Hence all extensions of < to a total order <T can also be computed. The
special chain EF.�;<T / for � can also be computed from any CT for �; see Notation 6.8. A special chain
is an element of SorSun.A0/� IS.A0/� IS.A�/; see Example 10.25 and Corollary 10.23(2). Similarly, the
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set of all special chains for � and the set L.�/ of all special free factor systems for � can be computed from
any CT for �. Note that the former set is in SunSorSun.A0/� IS.A�/ and L.�/ 2 SunSun.A0/� IS.A�/.
We will tacitly use Corollary 10.23(2) throughout the rest of Section 13.

� Throughout the rest of Section 13, � 2 UPG, c denotes a special chain for �, and f WG!G denotes a
CT that represents �, satisfies (Inheritance), and realizes c.

13.2 Fix.�/

The multiset Fix.�/ WDfŒFix.ˆ/� j Œˆ�2 ŒP.�/�g is already algebraic and is an element of Sun.A0/� IS.A�/.
As reviewed in Section 12, Fix.�/ is represented by the core of �.f / and so can be computed.

13.3 Axes

The set Aor.�/ of oriented axes of � (Definition 4.5) is already algebraic and is an element of Sun.A5/�

IS.A�/. In terms of f WG!G, Œa�2Aor.�/ if and only if either Œa� or Œa�1� is represented by a twist path,
which can be found by inspecting the linear edges of G; see Section 3.6. In terms of �.f /, Œa� 2Aor.�/

if and only if a is root-free and represented by more than one circuit in the core of �.f / with at least one
representative embedded.

13.4 Algebraic rays

Remark 13.1 If F is a free factor and zr 2 @F then we say that ŒF � carries r . Equivalently, if G is a
marked graph and H �G is a core subgraph representing ŒF �, then there is a ray in zG that converges to zr
and projects intoH . In the case that concerns us, r 2R.�/ corresponds to some E 2 Ef (see Lemma 3.26)
and ŒF � is a component of a free factor system in c. If C is the component of the core filtration element
of G corresponding to ŒF � then ŒF � carries r if and only if some subray of RE is contained in C . By
construction, RE D E � u � f#.u/ � : : : , where the closed path u satisfies f .E/ D E � u. The height of
f k# .u/ is independent of k, so r is carried by ŒF � if and only if u� C .

� (algebraic rays) For r 2R.�/, Fc.r/ denotes the minimal special free factor ŒF � 2 F 2 c carrying r .
If zr 2 @Fn is a lift of r then we also write Fc.zr/ WD F , where F is the unique representative of Fc.r/ that
contains zr . An algebraic ray Fc.r/ is an element of A0 � IS.A�/.

Remark 13.2 Continuing Remark 13.1, Fc.r/ is represented by the minimal component C of a core
filtration element of G containing u. In particular, we can compute Fc.r/ from our CT f . In our running
example (see pages 1700, 1707, 1725 and 1729), R.�/D frc ; rd ; re; rqg, the only relation is rc < rq , and
the choice of total order is rc <T rd <T re <T rq . We have ŒFc.rq/�D Œha; b; ci�.

Remark 13.3 We could work with all chains and define F.r/ to be the minimal special free factor
ŒF � 2 F 2 L.�/ carrying r . This would cause some extra work later in Lemma 17.19.
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13.5 Algebraic lines

Recall that Œ � ; � � denotes a conjugacy pair (see Definition 4.9, Examples 4.10 and Section 7) and, for
nontrivial a2Fn, aC 2 @Fn (resp. a�) denotes the attractor (resp. repeller) of iaj@Fn; see the beginning of
Section 3.4. Recall also that a line L is principal with respect to � if there is a lift zL whose endpoints are
contained in FixN.ˆ/ for some ˆ 2P.�/. Equivalently, L lifts into the eigengraph �.f /; see Lemma 4.1.
In this section, we define an algebraic version H�;c.L/ for a certain principal line L and associate to
H�;c.L/ a set of lines containing L that in turn determines H�;c.L/.

Definition 13.4 (algebraic lines) Suppose that L is a nonperiodic principal line for � and that the
nonperiodic ends of L are contained in R.�/. There are four possibilities.

[P-P] L has type P-P if some (hence every) lift zL has the form .a�; bC/ for some root-free a; b 2Fn
with a ¤ b˙1 in Fn. In particular, a and b are nontrivial. H�;c.L/ WD Œa; b�. To Œa; b� we
associate fLg. We also define H�;c.zL/ WD .a; b/ and associate to it f.a�; bC/g. In this case
H�;c.L/ determines L.

[P-NP] L has type P-NP if some (hence every) lift zL has the form .a�; zr/ for some root-free a 2 Fn
and a lift zr of some r 2R.�/. H�;c.L/ WD Œa; Fc.zr/�. To H�;c.L/ we associate the set of lines
Œa�; @Fc.zr/�. H�;c.zL/ WD .a; Fc.zr// and has the associated set of lines .a�; @Fc.zr//.

[NP-P] L has type NP-P if some (hence every) lift zL has the form .zr; bC/ for some root-free b 2 Fn
and a lift zr of some r 2R.�/. H�;c.L/ WD ŒFc.zr/; b�. To H�;c.L/ we associate the set of lines
Œ@Fc.zr/; b

C�. H�;c.zL/ WD .Fc.zr/; b/ with associated set of lines .@Fc.zr/; b
C/.

[NP-NP] L has type NP-NP if some (hence every) lift zL has the form .zr; zs/ for lifts zr of r 2 R.�/
and zs of s 2 R.�/. H�;c.zL/ WD ŒFc.zr/; Fc.zs/�. To H�;c.zL/ we associate the set of lines
Œ@Fc.zr/; @Fc.zs/�. H�;c.zL/ WD .Fc.zr/; Fc.zs// with associated set of lines .@Fc.zr/; @Fc.zs//.

Lemma 13.5 Suppose that L lifts to �.f / and has one of the types P-P, P-NP, NP-P, or NP-NP. Then
with notation as above:

[P-P] Œhai; hbi� is a good conjugacy pair.

[P-NP] Œhai; Fc.zr/� is a good conjugacy pair.

[NP-P] ŒFc.zr/; hbi� is a good conjugacy pair.

[NP-NP] ŒFc.zr/; Fc.zs/� is a good conjugacy pair.

Proof [P-P] Since a¤ b˙1 and a and b are root-free, ha; bi is a free group of rank 2. In particular,
Œhai; hbi� is good by Lemma 7.14(1).

[P-NP] Suppose L has the lift zLD .a�; zr/. Set AD hai. Since L lifts to �.f /, LD ˛1�RE for some
E 2 Ef , where ˛ is a circuit in the core of �.f / representing Œa� (Lemma 4.2). We choose � to have
minimal length. Let ? be the terminal vertex of E and let z? be the terminal vertex of the unique lift zE of
E in zL.
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The based labeled graph .C; ?/ as in Remark 13.2 immerses to .G; ?/, and similarly the based labeled graph
.GA; ?/ that is a lollipop formed by the union of a circle labeled ˛ and a segment labeled �E immerses
to .G; ?/. If we define .H; ?/ to be the one-point union of .GA; ?/ and .C; ?/ then by construction, the
immersions of .GA; ?/ and .C; ?/ to .GA; ?/ induce a map of H !G that does not admit any Stallings
folds and so, by [Stallings 1983, Proposition 5.3], induces an injection on the level of fundamental
groups. We now have an identification of .A; Fc.zr/; hA;Fc.zr/i/ and .�1.GA; ?/; �1.C; ?/; �1.H; ?//.
By Van Kampen, we see that hA;Fc.zr/i is the internal free product of A and Fc.zr/.

The cases [NP-P] and [NP-NP] are similar.

Remark 13.6 H�;c.L/ is an element of A1 tA2 tA3 tA4 � IS.A�/. Not all lines that lift to �.f / are
assigned a type. For each L that has a type, H�;c.L/ can be recovered from its associated set of lines.
In the NP-NP case, this is a direct application of Corollary 7.5, Remark 7.6 and Lemma 7.14(2). The
obvious modification needed for the other cases where hai is replaced by a is left to the reader. We often
conflate H�;c.L/ with its associated set of lines.

Example 3.1 (continued) If L is the upward line represented by the contractible component of �.f /
in Figure 2 then L has type NP-NP and H�;c.L/D Œha; bi; ha; bi

d�1e� consists of the set of lines in the
graph in Figure 4 that cross d�1e once and e�1d not at all.

Lemma 13.7 Suppose that c is a special chain for �, that L is a nonperiodic principal line for �
whose nonperiodic ends are contained in R.�/ and that � 2 Out.Fn/. Then �.c/ is a special chain
for �� , �.L/ is a nonperiodic principal line for �� whose nonperiodic ends are contained in R.�� / and
�.H�;c.L//D H�� ;�.c/.�.L//.

Proof We will do the case P-NP; the others are similar. Lemmas 6.13 and 3.16 imply that �.c/ is a special
chain for �� and that �.L/ is a principal line for �� . If‚2 � and zLD .a�; zr/, then‚.zL/D .‚.a/;‚.zr//
and

‚.H�;c.zL//D Œ‚.a/;‚.Fc.zr//�D Œ‚.a/; F‚.c/.‚.zr//�D H�� ;�.c/.‚.zL//:

Remark 13.8 For applications, it follows from definitions that if �.c/D c and e 2 c then �.e/D e.

In the next lemma we abuse notation and identify H�;c.L/ with its associated set of lines; see Remark 13.6.

a
b

a
b

d e

Figure 4
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Lemma 13.9 Suppose f WG!G is a CT for � that realizes c. If L is either an element of �NP.�/ or
an element of Le.�/ such that e is not large, then L is the only line in H�;c.L/ that lifts to �.f /.

Proof We assume at first that L 2�NP.�/. By Corollary 5.17(4), all elements of �NP.�/ lift to �.f /
and further, by Corollary 5.17(1), have one of the types P-P, P-NP, NP-P or NP-NP. In particular, H�;c.L/

is defined. We will do the case that LD Œa�; zr� is P-NP, the others being similar. By Corollary 5.17(1),
L has the form .R1/

�1RE , where R1 consists of only linear and fixed edges, and where E 2 Ef . In
particular, E is the highest edge of L.

Every line L0 2 H�;c.L/ has a lift of the form zL0 D .a�; zs/, where zs 2 Fc.zr/. Since f WG!G realizes c,
Fc.r/ is represented by a subgraph of G whose edges are all lower than E. If zr D zs then L0 D L and we
are done. We may therefore assume zL00 WD .zr; zs/ is a line with both endpoints in @Fc.zr/. Thus L00 only
crosses lifts of edges that are lower than E. It follows that L0 D .R1/�1ER2, where the ray R2 only
crosses edges that are lower than E. If L0 lifts to �.f / then E is the first higher-order edge it crosses
and so ER2 DRE and L0 D L. This completes the proof when L 2�NP.�/.

We now assume that L 2 Le.�/ and that e is not large. If e is contractible then, because L lifts to
�.f /, L has the form Œzr; zs�D R�1E1�RE2 , where � is a Nielsen path. By definition L0 2 H�;c.L/ has a
representative zL0 D .zr1; zr2/ such that either zr1 D zr or .zr1; zr/ is a line with both endpoints in @Fc.zr/ and
such that either zr2 D zs or .zs; zr2/ is a line with both endpoints in @Fc.zs/. We argue as above to conclude
that L0 D L if L0 lifts to �.f /. The case where e is infinite cyclic is similar.

Lemma 13.10 Suppose that L has one of the types P-P, P-NP, NP-P or NP-NP and that �.H�;c.L//D
H�;c.L/. If zL is a lift of L then there is a unique ‚ 2 � such that ‚.H�;c.zL//D H�;c.zL/.

Proof The existence of at least one such ‚ follows from the definitions.

(P-P) Suppose zLD .a�; bC/. If ‚1 ¤‚2 represent � and leave .a�; bC/ invariant then the difference
‚1‚

�1
2 has the form ix for some x ¤ 1 in Fn and leaves .a�; bC/ invariant. It follows that a, b and x

share a power. This is impossible since L is not periodic.

(NP-P) Suppose zL D .zr; bC/. If ‚1 ¤ ‚2 in � leave .Fc.zr/; b
C/ invariant, then ‚1‚�12 D ix for

some x ¤ 1 in Fn, ix
�
Fc.zr/

�
D Fc.zr/, and ix.b/D b. Hence x 2 Fc.zr/\ hbi, which is impossible since

@Fc.zr/\ @hbi D∅ by Lemma 13.5.

The cases P-NP and NP-NP are similar.

13.6 Algebraic strong axes

� (algebraic strong axes) If Œˆ; a� is a strong axis and Fix.ˆ/ is not cyclic (equivalently rank.Fix.ˆ//>1),
then ŒFix.ˆ/; a� is the associated algebraic strong axis.
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Remark 13.11 In (algebraic strong axes) above we are focusing only on strong axes for the restriction
of � to its linear free factor system F0.�/; see the proof of Lemma 17.1. By definition of strong axes,
a 2 Fix.ˆ/. In particular, ŒFix.ˆ/; a� is an element of A6 � IS.A�/ and is not good. The set of algebraic
strong axes of � is an element of Sun.A6/� IS.A�/. By Lemma 4.20, ŒFix.ˆ/; a� determines Œˆ; a�.

Remark 4.13 can be used to compute the algebraic strong axes from our CT f WG!G. Using the notation
there, the set SA.�/ of strong axes is in one-to-one correspondence with the set of nontrivial circuits in
the core of �.f / representing elements of Aor.�/. The strong axis Œˆa;0; a� corresponding to .fv# ; �/

has algebraic invariant represented by ŒFix.fv#/; a�. Fix.fv#/ is the image in �1.G; v/ of �1.�.f /; v/,
where v 2 �0.f / is viewed as an element of G; see the construction of �.f / in Section 4.1. The case
for .fvj #; vj / is similar.

In our running example (see page 1716), the algebraic invariants of ˛ and ˛0 are respectively represented
by the pairs .ha; abi; a/ and .ha; abi; ab/. The strong axis ˛00 doesn’t have an algebraic invariant since
the corresponding fix set is cyclic. This ends Remark 13.11.

13.7 Algebraic added lines

� (algebraic added lines with respect to e) We use notation as in Definition 6.14. He2c.�/ is defined to
be fH�;c.L/ jL 2 Le.�/g if Le.�/ is finite, and is defined to be the singleton fŒFix.ˆ/; Fc.zr

C/�g otherwise.
The proof that ŒFix.ˆ/; Fc.zr

C/� is good is similar to the proof of Lemma 13.5. He2c.�/ is an element of
Sun.A1 tA2 tA3/� IS.A�/.

In terms of our CT f WG!G, algebraic added lines can be computed as follows. We use the notation of
Definition 6.14. Since we already know how to compute algebraic lines, in the cases where the number
of added lines is finite, it is enough to describe the added lines. This is done in Definition 6.14 using the
eigengraph �.f jFC/. The case where there are infinitely many added lines is the intersection of [H]
and large in Lemma 6.10. Let v be the initial vertex of the edge E 2 Ef in �.f jFC/ corresponding
to rC. Then ŒFix.ˆ/; Fc.zr

C/� is represented by .Fix.fv#jF
C/; �1.C

E ; v//, where C is the connected,
core subgraph of G representing Fc.r

C/ and CE denotes the one-point union at the terminal endpoint of
E of C and an edge labeled E (so that CE immerses to G). See our running example on page 1730,
where e2 is contractible, e3 is infinite cyclic, e1 is large and

He12c.�/D fŒha; a
b
i; ha; bic�g;

He22c.�/D fŒha; bi; ha; bi
d�1e�; Œha; bi; ha; bie

�1d �g;

He32c.�/D fŒa
�1; ha; b; cip

�1q�; Œa; ha; b; cip
�1q�g:

13.8 Algebraic limit lines

� fHc.L/ j L 2�NP.�/g is the set of algebraic limit lines.
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The set of algebraic limit lines is an element of Sun.A1 tA2 tA3 tA4/ � IS.A�/. As in the case of
added lines, to compute algebraic limit lines, we only need to compute �NP.�/ from our CT f WG!G.
This is done in Section 5; see Corollary 5.17. Referring to our running example (see page 1724),
�NP.�/D�NP.rq/D fa

1Rc ; a
1ba1g and so Hc.�/D fŒa

�1; ha; bic�; Œa�1; ab�g.

13.9 Naturality

We will need the following naturality statements.

Lemma 13.12 Suppose e 2 c and ‚ 2 � 2 Out.Fn/. Then:

(1) �.fH�;c.L/ j L 2�NP.�/g/D fH�� ;�.c/.L
0/ j L0 2�NP.�

� /g.

(2) �.He2c.�//D H�.e/2�.c/.�
� /.

(3) ŒFix.ˆ/; a�$ �.ŒFix.ˆ/; a�/D .ŒFix.ˆ‚/;‚.a/� defines a bijection between the algebraic strong
axes for � and the algebraic strong axes for �� .

Proof (1) We have

�.fHc.L/ j L 2�NP.�/g/
def
D f�.Hc.L// j L 2�NP.�/g

D fH�.c/.�.L// j L 2�NP.�/g by Lemma 13.7,

D fH�.c/.L
0/ j L0 2�NP.�

� /g by Corollary 5.4.

(2) If Le.�/ is finite,

�.He2c.�//
def
D �.fHc.L/ j L 2 Le.�/g/

D f�.Hc.L// j L 2 Le.�/g/

D fH�.c/.�.L// j L 2 Le.�/g by Lemma 13.7,

D fH�.c/.L
0/ j L0 2 L�.e/.�

� /g by Lemma 6.15,
def
D H�.e/2�.c/.�

� /:

If Le.�/ is infinite,

�.He2c.�//
def
D �.fŒFix.ˆ/; Fc.zr

C/�g/

D fŒ‚.Fix.ˆ//;‚.Fc.zr
C//�g

D fŒFix.ˆ‚/; F�.c/.‚.zr
C//g by Lemma 6.13,

def
D H�.e/2�.c/.�

� /:

(3) Lemmas 4.17(2) and 3.16(2) imply that .ˆ; a/$ .ˆ‚; ‚.a// induces a bijection SA.�; Œa�/$

SA. ; �.Œa�// and that the ranks of Fix.ˆ/ and Fix.ˆ‚/ are equal. (3) therefore follows from

�.ŒFix.ˆ/; a�/
def
D Œ‚.Fix.ˆ//;‚.a/�D ŒFix.ˆ‚/;‚.a/�:
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13.10 The algebraic invariant of � rel c

In this subsection we collect our algebraic invariants into a single master algebraic invariant.

Definition 13.13 Fix a special chain c for � 2 UPG.

(1) The algebraic invariant of � rel c is the element of IS.A�/ that is the ordered set Ic.�/ consisting of
� c,
� Fix.�/,
� .He2c.�/ j e 2 c/, where the special 1-edge extensions e are ordered using c,
� fH�;c.L/ j L 2�NP.�/g,
� Aor.�/, and
� the set of algebraic strong axes for �.

The six elements in the ordered list Ic.�/ are the components of Ic.�/.

(2) Order (noncanonically) the elements of the union of the six sets defining Ic.�/. The resulting
element of IS.A�/ is denoted by J.

Remark 13.14 In light of Theorem 3.20, we have seen in this section that the set of special chains,
Ic.�/, and J can be computed. We stress that they take values in IS.A�/, which satisfies property MW by
Lemma 11.2.

14 Stabilizers of algebraic invariants

At this point, it is reasonably straightforward to reduce the conjugacy problem for UPG.Fn/ in Out.Fn/

to the problem of deciding whether �; 2 UPG.Fn/ with Ic.�/D Ic. / are conjugate by some � in the
stabilizer of Ic.�/. We want a little more. Namely, we want to restrict the set of potential conjugators to
those elements that stabilize Ic.�/ and induce trivial permutations on the components of Ic.�/. Continuing
with the notation of the previous section, we make this precise as follows.

Definition 14.1 (Xc.�/) Let � 2UPG.Fn/, c be a special chain for �, and let J be in Definition 13.13(2).
Let Xc.�/ denote the stabilizer OutJ.Fn/ of J in Out.Fn/.

Unraveling definitions, Xc.�/ also has a description as the subgroup of Out.Fn/ fixing each element in
the union of the following six sets:

(1) fŒF � j ŒF � 2 F 2 cg,
(2) Fix.�/,

(3)
S

e2c He2c.�/,

(4) fH�;c.L/ j L 2�NP.�/g,

(5) Aor.�/, and

(6) fŒFix.ˆ/; a� j Œˆ; a� 2 SA.�/; rank Fix.ˆ/� 2g.
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Remark 14.2 As noted in Definition 13.13(2), the construction of J was noncanonical. That is, there
were choices in its construction. Every choice has the same stabilizer and so Xc.�/ is independent of
choice.

In passing and for future use, we have the expected:

Lemma 14.3 � 2 Xc.�/.

Proof We have to check that � fixes each of the sets (1)–(6) above elementwise. In (1), (2), (5) and (6) this
is immediate from definitions. For set (4), this is because �.L/DL for allL2�NP.�/ (Corollary 5.17(4))
and Lemma 13.7. That the elements of set (3) are fixed follows from definitions and Lemmas 6.15 and
13.12(2).

Definition 14.4 A group G is of type F if it has a finite Eilenberg–Mac Lane space. G is of type VF if it
has a finite-index subgroup of type F.

Proposition 14.5 The stabilizer OutY.Fn/ of an element Y 2 IS.A�/ is of type VF.

Proof We saw in the proof of Lemma 11.2 that there is a map IS.A�/ ! IS.A0/ that has explicit
finite fibers (Notation 10.16). If Y is the image of Y, then OutY.Fn/ has finite index in OutY.Fn/. By
Corollary 10.15, the subgroup G of Out.Fn/ fixing each label of Y has finite index in OutY.Fn/. Also,
the subgroup G has type VF by [Bestvina et al. 2023, Theorem 1.1]. OutY.Fn/, being commensurate
with a group of type VF, also has type VF.

As usual, naturality will be important.

Lemma 14.6 Suppose � 2 Out.Fn/.

(1) .Xc.�//
� D X�.c/.��/.

(2) �.Ic.�//D I�.c/.�
�/.

Proof (1) By Lemma 6.13, �.c/ is special for �� and so the statement makes sense. The lemma follows
easily from the naturality of the quantities appearing in Definition 14.1. For example, we verify that if
� 2 Xc.�/, then ��.H�� ;�.c/.L//D H�� ;�.c/.L/ for all L 2�NP.�

�/. Indeed,

����1.H�� ;�.c/.L//D ��.H�;c.�
�1.L///D �.H�;c.�

�1.L///D H�� ;�.c/.L/;

where the first and third equalities use Lemma 13.7 and the second uses Corollary 5.4. The remainder of
the proof consists of similar checks and is left to the reader.

The proof of (2) is similar.

We next reduce the proof of the main result (Theorem 1.1) of this paper, ie the conjugacy problem for
UPG.Fn/ in Out.Fn/, to the proof of Proposition 14.7 stated immediately below.
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Proposition 14.7 There is an algorithm that takes as input �; 2 UPG.Fn/ and a chain c such that

� c is special for both � and  , and

� Ic.�/D Ic. /,

and that outputs YES or NO depending whether or not there is a � 2 Xc.�/ conjugating � to  . Further , if
YES then such a � is produced.

Proposition 14.7 is proved in Sections 16 and 17 below.

Lemma 14.8 Proposition 14.7 implies Theorem 1.1. That is , an algorithm that satisfies the conclusions
of Proposition 14.7 can be used to produce an algorithm that satisfies the conclusions of Theorem 1.1.

Proof Assume Proposition 14.7 holds and �; 2 UPG.Fn/.

View the multiset I.�/ WD fIc.�/ j c is a special chain for �} as an element of IS.A�/ as described in
Section 13.1. By Lemma 14.6(2), I.�/ is a conjugacy invariant of �. That is, if �� D then �.I.�//D I. /.
We may compute I.�/ and I. /; see Remark 13.14.

Since IS.A�/ satisfies property MW (Lemma 11.2), we can algorithmically check if there is � 0 2Out.Fn/

such that � 0.I.�//D I. /. If there is no such � 0 then � and  are not conjugate; return NO. If there is such
a � 0, then one is produced by the M-algorithm for IS.A�/. Note that � and  are conjugate in Out.Fn/ if
and only if � and  0 WD � 0�1 � 0 are conjugate in Out.Fn/ if and only if � and  0 are conjugate in the
stabilizer G WD OutI.�/.Fn/ of I.�/.

G acts by permutation on the set of labels of I.�/. Let G0 < G denote the subgroup fixing each label.
By the M-algorithm for IS.A�/, we may construct a finite presentation for G. Using our finite set of
generators for G, we may construct the image Q of G in our permutation group. By Lemma 9.1, we
can compute a finite set �i such that G D

F
i �iG

0. Hence, � and  0 are conjugate in Out.Fn/ if and
only if � and some ��1i  0�i are conjugate in Out.Fn/ if and only if � and some ��1i  0�i are conjugate
in G0. Since G0 < Xc.�/ < Out.Fn/ for all c, � and  0 are conjugate in Out.Fn/ if and only if � and
some ��1i  0�i are conjugate in Xc.�/. We may use the supposed algorithm of Proposition 14.7 to decide
whether or not this is the case and return a conjugator if it is. The returned conjugator allows us to
compute a conjugator for � and  .

15 Staple pairs

15.1 Limit lines�NP.�; zr/� zB

In Section 5, we associated a finite set �NP.r/� B of �-invariant nonperiodic lines to each r 2R.�/. In
this section we associate, to each lift zr of r , a subset �NP.�; zr/� zB of the full preimage of �NP.r/ and
then establish properties of �NP.�; zr/ that will be needed later in the paper.
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Definition 15.1 Choose a marked graph K. For each lift zr 2 @Fn of r 2 R.�/, let ˆzr be the unique
lift of � that fixes zr and let zR � zK be a ray with terminal end zr . If zL is a lift of L 2�NP.r/ then L is
�-invariant by Corollary 5.17(1) and so each ˆj

zr
.zL/ is a translate of zL, say ˆj

zr
.zL/D Tj .zL/ for some

unique Tj . Define zL to be in �NP.�; zr/ if for every finite subpath ž of zL there exists J. ž/ such that
Tj . ž/� zR— equivalently, ž � T �1j . zR/— for all j � J. ž/.

Remark 15.2 As defined, �NP.�; zr/ depends on ˆzr and hence on �, in contrast to �NP.r/, which is
independent of �.

Lemma 15.3 �NP.�; zr/ is well-defined and ˆzr -invariant. Moreover , if  D ����1 for some � 2
Out.Fn/ and if ‚ is a lift of � , then ‚.�NP.�; zr//D�NP. ; @‚.zr//.

Proof Replacing zR by a subray does not change �NP.�; zr/. Since any two rays with terminal end zr
share a common subray, �NP.�; zr/ is independent of the choice of zR.

As defined above, �NP.�; zr/ depends on the marked graph K so we write �NP.�; zr;K/ to make this
explicit. We will prove:

(�) ‚.�NP.�; zr;K// D �NP.���
�1; ‚.zr/;K 0/ for any marked graphs K and K 0 and any ‚ 2

Aut.Fn/ representing any � 2 Out.Fn/.

Applied with ‚D identity, (�) proves that �NP.�; zr;K/ is independent of K and hence that �NP.�; zr/ is
well defined. The moreover statement is equivalent to (�) andˆzr -invariance of�NP.�; zr/ is an immediate
consequence of the definitions. Thus the proof of the lemma will be complete once we prove (�).

Assume the notation of Definition 15.1. Let zr 0 D ‚.zr/ and  D ����1; note that ‰zr 0 D ‚ˆzr‚�1.
Choose a homotopy equivalence g WK!K 0 of marked graphs that represents � when �1.K/ and �1.K 0/
are identified with Fn via their markings. Let zg W zK ! zK 0 be the lift satisfying zgj@Fn D ‚j@Fn, let
zR0 D zg#. zR/ � zK

0, let zL0 D‚.zL/D zg#.zL/ and let T 0j W zK
0! zK 0 be the covering translation satisfying

T 0j j@Fn D .‚Tj‚
�1/j@Fn. Then

‰
j

zr 0
.zL0/\ zR0 D‰

j

zr 0
.zg#.zL//\ zg#. zR/D zg#.ˆ

j

zr
.zL//\ zg#. zR/:

By [Cooper 1987] (see also [Bestvina et al. 1997, Lemma 3.1]), there is a constant C , depending only
on g, such that zg#.ˆ

j

zr
.zL//\ zg#. zR/ contains the subpath of zg#.ˆ

j

zr
.zL/\ zR/ obtained by C -trimming

(ie removing the first and last C edges) and so contains the subpath of zg#.Tj . ž//D T
0
j zg#. ž/ obtained by

C -trimming for any chosen ž and all j � J. ž/. Given a finite subpath ž0 of zL0 choose a finite subpath ž

of zL such that the C -trimmed subpath of zg#. ž/ contains ž0. Then ‰j
zr 0
.zL0/\ zR0� T 0j .

ž0/ for all j � J. ž/.
Letting J. ž0/D J. ž/, we conclude that zL0 2�NP.�; zr/. By symmetry, we have proved (�).

Our goal in the remainder of this subsection is to understand �NP.�; zr/ from the CT point of view.
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Notation 15.4 Choose r 2R.�/ and a CT f WG!G representing �; let E 2 Ef correspond to r as in
Lemma 3.26. Following the proof of Corollary 5.17, let

RE DE � �0 � �1 � �1 � �2 � : : :

be the coarsened complete splitting ofRE , where each �i is a single growing term in the complete splitting
of RE and each �i is a (possibly trivial) Nielsen path. For future reference, note that if f .E/D E � u
then Eu is an initial subpath of RE whose terminal endpoint is a splitting vertex in the complete splitting
of RE and hence is contained in some �p.

Following Notation 5.11 and Lemma 5.14, define, for all i � 1,

R�i D f
1

# .x�i /; RCi D f
1

# .�i /; `i D .R
�
i /
�1�i .R

C
iC1/:

Choose a lift zr of r , let ˆzr be the automorphism representing � that fixes zr and let zf W zG! zG be the lift
corresponding to ˆzr . Let zR zE be the lift of RE whose terminal end converges to zr and whose initial edge
is denoted by zE, let

zR zE D
zE � z�0 � z�1 � z�1 � z�2 � : : :

be the induced decomposition and let z̀i be the lift of `i in which �i lifts to z�i . Thus

z̀
i D . zRi

�
/�1z�i zR

C
iC1;

where z�iC1 and zRCiC1 have the same initial endpoint and likewise for z��1i and zR�i . We say that lines
z̀
1; z̀2; : : : are visible in zR zE .

Lemma 15.5 Assume Notation 15.4.

(1) Each `i is an element of �.r/; see Definition 5.1.

(2) If `i 2�NP.r/, then z̀i 2�NP.�; zr/.

Proof Item (1) follows from Lemmas 5.8 and 5.16 applied with ˛ D �i and ˇ D �i�iC1.

When verifying that z̀i satisfies Definition 15.1, it suffices to consider finite subpaths ž D z��1z�iz� of z̀i
with projections ˇ D ��1�i�, where � is an initial segment of R�i D f

1
# .x�i / that is a concatenation of

terms in the coarsened complete splitting of R�i and � is an initial segment of RCiC1 D f
1

# .�iC1/ that
is a concatenation of terms in the coarsened complete splitting of RCiC1. It follows from the definition
of f1# (Notation 5.11) that for all sufficiently large j , the lift of �i to zf j# .z�i / extends to a lift of ˇ to a
path

ž
j �

zf
j

# .z�i / �
zf
j

# .z�i / �
zf
j

# .z�iC1/D
zf
j

# .z�i � z�i � z�iC1/�
zR zE :

Since f j# preserves �i , R�i and RCiC1, there is a covering translation Tj such that

Tj .z�i /D zf
j

# .z�i /; Tj . zR
�
i /D

zf
j

# .
zR�i /; Tj . zR

C
iC1/D

zf
j

# .
zRCiC1/;
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and so
Tj . z̀i /D zf

j
# .
z̀
i /:

From Tj .z�i / D zf
j

# .z�i / we conclude that Tj . ž/ D žj and so Tj . ž/ � zR zE . This completes the proof
of (2).

Our next result is a weak converse of Lemma 15.5(2), namely that if zL 2 �NP.�; zr/ then zL is in the
ˆzr -orbit of some z̀i .

Proposition 15.6 Assume Notation 15.4.

(1) For each zL 2 �NP.�; zr/ there exists K such that zf k# .zL/ 2 fz̀ig for all k � K. Moreover ,
�NP.�; zr/D

S
ˆm
zr
. z̀i /, where the union varies over all z̀i 2�NP.�; zr/ and all m 2 Z.

(2) For each L 2�NP.r/ there is a lift zL 2�NP.�; zr/.

We delay the proof of Proposition 15.6 for two needed lemmas.

Lemma 15.7 Given a CT f W G ! G, there exists M � 1 so that the following holds for each twist
path w, each nonfixed edge E and each k � 0: If jmj �M and ˛0 Dwm is a subpath of f k# .E/ then ˛0
extends to a subpath ˛1 of f k# .E/ satisfying the following two properties:

(1) ˛1 DE
0wq or ˛1 D wq xE 0 for some E 0 2 Linw.f /.

(2) ˛1 is not contained in any Nielsen subpath of f k# .E/.

Proof Let us first note that if the conclusions of the lemma hold for a subpath of ˛0Dwm of the form wt

then they also hold for ˛0. We may therefore shorten ˛0 whenever it is convenient. After replacing E by
xE if necessary, we may assume that E 2 Ef [ Lin.f /.

Choose M 00 > 0 so that if w1 ¤ w2 are twist paths then wM
00

1 is not a subpath of wm2 for any m 2 Z.
Items (1) and (2) hold for M DM 00 and E 2 Lin.f /. We may therefore assume that E 2 Ef and that
there exists M 0 �M 00 such that (1) and (2) hold for M DM 0 and for all edges E 0 2 Ef with height less
than that of E.

There is a path u with height less than that of E and a complete splitting

uD �1 � : : : � �s such that f k.E/DE �u �f#.u/ � : : : �f
k�1

# .u/

for all k � 1. Assuming without loss that M 0 is greater than the length of any �j , choose M1 � sM
0.

As a special case, we prove the lemma when jmj �M1 and when ˛0 D wm is contained in some f l# .u/.
In this case there exists 1� j � s and jm0j �M 0 and a subpath ˛00 D w

m0 of ˛0 such that ˛00 � f
l

# .�j /

for some 1 � l � k � 1. As observed above, we can replace ˛0 with ˛00. Since the length of �j is less
than M 0 and the length of f l# .�j / is at least M 0, �j is not a Nielsen path and so is either exceptional or an
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edge E 0 with height less than that of E. If �j is exceptional then its linear edges must be in the family
determined by w and we take ˛1 to be all of �j except for the terminal edge. If �j DE 0, then the inductive
hypothesis implies that ˛0 extends to a subpath ˛1 of f l# .E

0/ that is not contained in a Nielsen subpath
of f l# .E

0/ and that satisfies (1). The hard splitting property of a complete splitting (Lemma 4.11(2) of
[Feighn and Handel 2011]) implies that an indivisible Nielsen path in a completely split path is contained
in a single term of that splitting. Thus ˛1 is not contained in a Nielsen subpath of f k# .E/ and so (2) is
satisfied and we have completed the proof of the special case.

Now choose M so large that if jmj �M and ˛0 D wm is a subpath of f k# .E/ then there is a subpath
˛00 D w

m0 of ˛0 with m0 �M1 so that ˛00 � f
l

# .u/ for some l . The existence of M follows from the
fact that the length of f l# .u/ goes to infinity with l . Replacing ˛0 with ˛00, we are reduced to the special
case.

We choose a “central” subpath �L of L 2�NP.r/ as follows. By Corollary 5.17 LD .R�/�1 � � �RC,
where R˙ satisfy (1a), (1b) or (1c) of Lemma 5.14. In all three cases we will choose � D �L D ��1� ��C,
where �˙ is an initial segment of R˙. Let M be the constant from Lemma 15.7.

� In the case (1a), RC DRE 0 for some E 0 2 Ef and we take �C DE 0.

� In the case (1b), RC DE 0w˙1 for some E 0 2 Linw.f / and we take �C DE 0w˙M .

� In the case (1c), RC D w˙1 and we take �C D w˙M .

The subpath �� is defined symmetrically.

Lemma 15.8 Assume the notation of Notation 15.4 and of the previous paragraph. Suppose that z�L � zL
is a lift of �L � L and that z�L � zR zE . Then zLD z̀i for some i .

Proof As a first case, suppose that �C D E 0 2 Ef and so RC D RE 0 . Then z�C is a term z�iC1 in the
coarsened complete splitting of zR zE by Lemma 3.21 and RC D f1# .�iC1/ by Examples 5.12. There are
three subcases to consider, the first being that �� D E 00 2 Ef . In this subcase, z��1� is also a term z�j in
coarsened complete splitting. Since z�� is separated from z�iC1 D z�C by the Nielsen subpath z�, we have
z��1� D z�i and z�D z�i . Thus f1# .x�i /DR

� and zLD z̀i .

The second subcase is that ��DE 00w˙M , whereE 00 2 Linw.f /. By Lemma 15.7(2), ��1� is not contained
in a Nielsen subpath of RE . It follows that the terminal edge zE 00

�1
of z��1� is contained in a z�j that is

either a single edge or an exceptional path. As in the previous subcase, j D i . Also as in the previous
subcase, z�D z�i , f1# .x�i /D R� and z̀i D zL.

The third and final subcase is that �� D w˙M . Since z��1� is followed in zR zE by z� zE 0, it is not contained
in a subpath of zR zE of the form zwm zE�11 , where E1 2 Linw.f /. Items (1) and (2) of Lemma 15.7
imply that z�i D zE1, where E1 2 Linw.f /, and that z�i D zwt z� for some t . Examples 5.12 implies that
f1# .x�i /Dw

˙1 DR� and so z̀i D zL. We have now completed the proof in the case that �C DE 0 2 Ef .
Symmetric arguments apply in the case that �� DE 0 2 Ef .
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Our next case is that �C DE 0w˙M , where E 0 2 Linw.f / and RC DE 0w˙1. Lemma 15.7(2) implies
that the initial edge zE 0 of z�C is not contained in a Nielsen subpath of zR zE and so is either equal
to some z�iC1 or is the first edge in some z�iC1 that projects to an exceptional path. In either case
f1# .�iC1/DE

0w˙1 DRC. The remainder of the proof in this second case is exactly the same as in
the first case. Symmetric arguments apply in the case that �� DE 0w˙M with E 0 2 Linw.f /.

We are now reduced to the case that �C D w˙M2 ; RC D w
˙1
2 ; �� D w

˙M
1 and R� D w˙11 . Thus

z�D zw�M1 z� zw˙M2 . Ifw1Dw2 then � is not an iterate ofw1Dw2 becauseL is not periodic. Lemma 15.7(1)
implies that z� extends to a subpath zE1 zw

p
1 z� zw

q
2
zE�12 , where Ei 2 Linwi .f / and p; q 2 Z. It follows that

zE1 D z�i , z�i D zw
p
1 z� zw

q
2 and zE�12 D z�iC1 for some choice of i . As in the previous cases, z̀i D zL.

Proof of Proposition 15.6 The first statement of (1) follows from Lemma 15.8 and the definition
of �NP.�; zr/. The moreover statement of (1) follows from the first statement and ˆzr -invariance of
�NP.�; zr/.

For (2), let E 2 Ef correspond to r . Let �L � L be as in Lemma 15.8. Since L 2�NP.r/, �L lifts to a
subpath z�L � zR zE . Lemma 15.8 implies that the lift of �L to z�L extends to a lift of L to an element of
�NP.�; zr/.

Lemma 15.9 Continue with Notation 15.4.

(1) For all i � 1, there exists j D j.i/> i such that zf#. z̀i /D z̀j . More precisely , there exists j > i such
that zf#.z�i /� z�j and zf#. z̀i /D z̀j and there is a covering translation T such that T .z�i /D zf#.z�i /� z�j

and T . z̀i /D z̀j .

(2) The assignment i 7! j.i/ is order-preserving and j.1/ > p.

Proof It suffices to prove (2) and the “more precisely” statement of (1). We begin with the latter. Since
zf#.z�i / is a Nielsen path that is a concatenation of terms in the complete splitting of zR zE , there exists j

such that zf#.z�i /� z�j . Let T be the unique covering translation satisfying T .z�i /D zf#.z�i /. It suffices to
prove that zf#. z̀i /D z̀j and T . z̀i /D z̀j .

From zf#.z�i /� z�j it follows that
z�j D z̨ � zf#.z�i / � ž;

where z̨ and ž are, possibly trivial, Nielsen paths. Since z�i and z�iC1 are growing,

z�j � z�j � z�jC1 D z�j � z̨ � zf#.z�i / � ž � z�jC1 � zf#.z�i / � zf#.z�i / � zf#.z�iC1/:

By Lemma 5.14(2),

RCiC1 D f
1

# .�iC1/D f̌1# .�jC1/D ˇ �R
C
jC1 and R�i D f

1
# .x�i /D x̨f

1
# .x�j /D x̨ �R

�
j ;

which implies that

zf#. z̀i /D zf#.. zR
�
i /
�1
� z�i � zR

C
iC1/D .

zR�j /
�1
� z̨ � zf#.z�i / � ž � zR

C
jC1 D .

zR�j /
�1
� z�j � zR

C
jC1 D

z̀
j :

This completes the proof that zf#. z̀i /D z̀j .
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The covering translation T that carries z�i to zf#.z�i /� z�j also carries zRCiC1 to ž� zRCjC1 and R�i to z̨�1 � zR�j .
Thus T . z̀i /D z̀j .

Finally, note that j.i C 1/� j.i/ is equal to the number of growing terms in zf#.z�i /. This implies (2)
and hence also j.i/ > j . Since zE � zf#.zu/ � zf#.z�0/ �f#.z�1/ � zf#.z�1/ is an initial segment of zRE and since
zf#.z�0/� z�p, it follows that j.1/ > p.

We conclude this subsection by defining a total order on �NP.�; zr/.

Definition 15.10 Continue with Notation 15.4. Given distinct zL1; zL2 2�NP.�; zr/, choose k � 0 so that
zf k# .
zL1/D z̀i and zf k# .zL2/D z̀j for some i ¤ j . (The existence of k is guaranteed by Proposition 15.6.)

Define zL1 � zL2 if i < j .

Lemma 15.11 The relation� is a well-defined ,ˆzr -invariant total order on�NP.�; zr/ that is independent
of the choice of f WG!G representing �. Moreover , if  D ����1 for some � 2Out.Fn/ and if ‚ is a
lift of � , then ‚ W�NP.�; zr/!�NP. ;‚.zr// preserves �.

We delay the proof of Lemma 15.11 to state and prove a technical lemma that allows us to redefine �
with less dependence on the location of z�i and z�j in zR zE .

Lemma 15.12 Continue with Notation 15.4. Suppose that z̀i and z̀j are distinct nonperiodic visible lines.
For all k � 0, let z̀ik D zf

k
# .
z̀
i / and z̀jk D zf

k
# .
z̀
j /, and let zyi;k and zyj;k be the terminal endpoints of

z̀
ik \
zR zE and z̀jk \ zR zE , respectively. Then i < j if and only if the following two conditions are satisfied :

(1) z̀i …�NP.�; @C z̀j /.

(2) One of the following is satisfied :

(a) z̀j 2�NP.�; @C z̀i /.

(b) yj;k �yi;k!1, where yj;k �yi;k D˙ the number of edges in the subpath connecting zyi;k
to zyj;k , and the sign is C if and only if zy;jk > zyi;k in the orientation on zR zE .

Proof For the “only if” direction, assume that i < j . Lemma 15.9, and an obvious induction argument
imply that ik < jk and that there are unique covering translations Tk satisfying

Tk.z�i /� z�ik and Tk. z̀i /D zf
k

# .
z̀
i /D z̀ik ;

and Sk satisfying
Sk.z�j /� z�jk and Sk. z̀j /D zf

k
# .
z̀
j /D z̀jk :

Note that zhk WD S�1k
zf k is the lift of f k that preserves z̀j and so corresponds to the automorphism ˆ

k
@C z̀j .

Note also that S�1
k
Tk. z̀i / D S�1

k
zf k# .
z̀
i / D .zhk/#. z̀i /, and Tk.z�i / � z�ik is disjoint from z�jk zR

C
jkC1

.
The latter implies that S�1

k
Tk.z�i / is disjoint from z�j zRCjC1. It now follows from the definition that

z̀
i …�NP.�; @C z̀j /. This completes the proof of (1).
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For (2), we assume that z̀j …�NP.�; @C z̀i / and prove that zyj;k � zyi;k!1. Continuing with the above
notation, zgk WD T �1k

zf k corresponds to ˆk@C z̀i and T �1
k
Sk. z̀j /D zgk. z̀j /. We claim that there is a finite

subpath ž� z̀j so that for all k� 0, T �1
k
Sk. ž/š zR

C
iC1 and hence Sk. ž/šTk. zR

C
iC1/. If j̀ …�NP.@C`i /

then this follows from Definition 5.1 and the fact that T �1
k
Sk. z̀j / is a lift of j̀ . If j̀ 2�NP.@C`i / then

this follows from Lemmas 15.8 and 15.5.

On the other hand, Sk. ž/ � zR zE for all sufficiently large k. It follows that zyi;k precedes the terminal
endpoint of Sk. ž/ in zR zE . Since the number of edges in Sk. zR

C
jC1/ \

zR zE goes to infinity with k,
zyj;k � zyi;k!1.

For the “if” direction, we assume that j < i and we prove that either (1) or (2) fails. From the “only if”
direction we know that (1) with i and j reversed is satisfied. Thus (2a) fails. Similarly, either (2a) or (2b),
with the roles of i and j reversed, is satisfied. If the former holds then (1) fails and we are done. Suppose
then that (2b) with the roles of i and j reversed is satisfied. Then zyi;k � zyj;k!1 so (2b) fails.

Proof of Lemma 15.11 To make the dependence of � on f W G ! G explicit we will write �f .
Lemma 15.9 implies that �f is a well-defined, ˆzr -invariant total order on �NP.�; zr/.

Suppose that �;  and ‚ are as in the “moreover” statement, that f 0 WG0!G0 is a CT representing  ,
that g WG!G0 is a homotopy equivalence representing � and that zg W zG! zG0 is the lift corresponding
to ‚. Letting zr 0 D‚.zr/, we have ‚ˆzr D‰zr 0‚. By Lemma 15.3, ‚.�NP.�; zr//D�NP. ; zr

0/. Let zf 0

be the lift of f 0 corresponding to ‰zr 0 .

Given zL1; zL2 2�NP.�; zr/ such that zL1 �f zL2, we must show that zL01 �f 0 zL
0
2, where zL01 D‚.zL1/D

zg#.zL1/ and zL02 D‚.zL2/D zg#.zL2/. We may replace zL1 and zL2 with ˆk
zr
zL1 and ˆk

zr
zL2 for any k � 1.

This follows from the ˆzr -invariance of �f , the ‰zr 0-invariance of �f 0 and the fact that ‚ˆzr D ‰zr 0‚.
In particular, we may assume that there exists i < j and i 0 ¤ j 0 such that zL1 D z̀i ; zL2 D z̀j ; zL01 D z̀

0
i

and zL02 D z̀
0
j , where the z̀0i and z̀0j are visible lines determined for �NP. ; zr

0/ defined with respect to f 0.

To prove that i 0 < j 0, and thereby complete the proof of the lemma, we will verify items (1) and (2) of
Lemma 15.12 in the prime system, which we will call (1)0 and (2)0. Items (1)0 and (2a)0 follow from (1),
(2a) and Lemma 15.3. Item (2b)0 follows from (2b) and the bounded cancellation lemma applied to g.

We conclude this section with a result that will be used in Lemma 15.45.

Lemma 15.13 Suppose that F is a free factor , that zr 2 @F is a lift of r 2R.�/ and that ŒF � is �-invariant.
Then each endpoint of each z̀2�NP.�; zr/ is contained in @F .

Proof Choose a CT f W G ! G representing � in which F is realized by a component C of a core
filtration element H . By assumption, there is a ray R in C with terminal end r . For each ` 2�NP.r/,
each finite subpath of ` is contained in C and hence ` is contained in C . Let zC be the unique lift of C
whose boundary contains zr and note that @ zC D @F . Let zR � zC be the lift of R with terminal endpoint zr
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and let ˆzr be the automorphism representing � that fixes zr . From uniqueness of zC , it follows that @ zC is
ˆzr -invariant. For all sufficiently large j , ˆj

zr
. z̀/\ zR¤∅. Since `�C and distinct lifts of C are disjoint,

ˆ
j

zr
. z̀/� zC . It follows that the endpoints of ˆj

zr
. z̀/, and hence the endpoints of z̀, are contained in @F .

15.2 Topmost lines, translation numbers and offset numbers

We continue with Notation 15.4 and with the partial orders < on R.�/ and Ef given in Notation 6.1 and
Lemma 6.2.

Definition 15.14 An element L 2 �NP.r/ is �-topmost if one of the following mutually exclusive
properties is satisfied for the partial order < on R.�/:

(1) r is minimal in the partial order <.

(2) L has an end r1 2R.�/ such that r1 <c r .

If zL 2�NP.�; zr/ projects to a �-topmost element of �NP.r/, then zL is a topmost element of �NP.�; zr/.
Let T�;zr be the set of topmost elements of �NP.�; zr/.

Lemma 15.15 T�;zr is nonempty and ˆzr -invariant.

Proof Lemma 15.3 implies that �NP.�; zr/ is ˆzr -invariant. Since each element of R.�/ is �-invariant,
ˆzr -invariance of T�;zr follows from the definitions. If r is minimal with respect to < then every element
of �NP.�; zr/ is topmost and we are done. Otherwise, apply Lemma 6.2 to choose E 0 2 Ef such that
E 0 <c E. Either E 0 or xE 0 occurs as a term �j in the coarsened complete splitting of RE . In the former
case, z̀j�1 is topmost in �NP.�; zr/; in the latter case z̀j is topmost in �NP.�; zr/.

Lemma 15.16 There is an algorithm that lists the �-topmost elements of �NP.r/.

Proof Recall that the elements of �NP.r/ can be enumerated by Corollary 5.17(2) and that the partial
order on �NP.r/ can be computed by Notation 6.1. If r is minimal then every element of �NP.r/ is
topmost. Otherwise inspect the elements of �NP.r/ to see which ones satisfy 15.14(2).

Recall from Notation 15.4 that p is chosen so that zf#.�0/� z�p.

Lemma 15.17 Each zL 2 T�;zr is in the ˆzr -orbit of z̀j for some 1� j � p.

Proof By Proposition 15.6 and Lemma 15.15, we may assume that zL D z̀i for some i > p. By
Lemma 15.9, it suffices to show that there exist 1� j � p and k � 1 such that zf k# .z�j /� z�i . If this fails
then there exists 1� j 0 � p and k0 � 1 such that z�i separates zf k

0

# .z�j 0�1/ from zf k
0

# .z�j 0/. Assuming this
we argue towards a contradiction by showing that neither (1) nor (2) in Definition 15.14 is satisfied. First
note that z�i z�i z�iC1 � zf k

0

# .z�j 0/. It follows that �j 0 is not a linear term and so �j 0 D E 0 or xE 0 for some
E 0 2 Ef . Since E 0 <E, (1) is not satisfied. If an end r 00 of z̀i corresponds to an element E 00 2 Ef then
E 00 <E 0 <E and so (2) is not satisfied.
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Notation 15.18 The total order � on �NP.�; zr/ given in Definition 15.10 induces a total order (also
called) � on T�;zr . Let zL1; : : : ; zL�.�;zr/ be, in order, the elements of fz̀1; : : : ; z̀pg\ T�;zr . For k 2 Z and
1� j � �.�; zr/, define zLjCk�.�;zr/ Dˆkzr .zLj /.

The following lemma allows us to change our notation from �.�; zr/ to �.�; r/.

Lemma 15.19 The number �.�; zr/ depends only on � and r and not on the choice of zr .

Proof The definition of �.�; zr/ uses the lift zf W zG! zG corresponding to ˆzr , the lift zR zE of RE whose
terminal endpoint is zr , the lines fz̀ig determined by zR zE as described in Notation 15.4 and the integer p,
which depends only on E and f . If a 2 Fn and Ta W zG! zG is the corresponding covering translation,
then the data associated to zr 0 D azr is zf 0 D Ta zf T �1a , zR zE 0 D TaR zE , z̀0i D Ta z̀i and p. Since z̀i and z̀0i
are lifts of the same line, z̀i 2 T�;zr () z̀0i 2 T�;zr 0 . This proves that �.�; zr/D �.�; zr 0/, as desired.

Lemma 15.20 With notation as above ,

(1) s 7! zLs defines an order-preserving bijection between Z and T�;zr ,

(2) ˆzr.zLs/D zLsC�.�;r/ for all s, and

(3) zLs is visible if and only if s � 1.

Proof The map s 7! zLs is surjective by Lemma 15.17 and is order-preserving (and hence injective)
because zf# preserves � and because zL1 � zL2 � � � � � zL�.�;r/ � zf#.zL1/, where the last inequality follows
Lemma 15.9, which implies that zf#.zL1/ D z̀j for some j > p. Item (2) follows from the definitions.
Item (3) follows from Lemma 15.9.

For the next lemma, we must choose a CT f 0 WG0!G0 representing  and then define T ;zr 0 and �. ; r 0/
with respect to f 0 WG0!G0.

Lemma 15.21 Suppose that � 2 Out.Fn/ conjugates � to  , that �.r/ D r 0 2 R. /, that zr; zr 0 2 @Fn
represent r and r 0, respectively, and that ‚ is the lift of � such that ‚.zr/D zr 0. Then

(1) �.�; r/D �. ; r 0/, and

(2) there is an integer offset.�; r/ such that ‚.zLs/D zL0sCoffset.�;r/ for all s.

Proof Lemmas 15.3 and 15.11 imply that ‚ induces a �-preserving bijection between �NP.�; zr/ and
�NP. ; zr

0/. Lemma 6.3 implies that this bijection restricts to a bijection between T�;zr and T ;zr 0 . Since
the only order-preserving bijections of Z are translations, there is an integer offset.�; zr; zr 0/ such that
‚.zLs/D zL

0
sCoffset.�;zr;zr 0/ for all s. If we replace zr by another lift zr�D iazr then‚ is replaced by‚�D‚i�1a

and zLi 2 T�;zr is replaced by zL�i D ia zLi 2 T�;zr� ; see the proof of Lemma 15.19. It follows that‚�.L�i /D
‚.zLi / and hence that offset.�; zr; zr 0/ is independent of the choice of lift zr . The symmetric argument
implies that offset.�; zr; zr 0/ is also independent of the choice of zr 0. This completes the proof of (2).
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Item (1) therefore follows from

zL0sC�.�;r/Coffset.�;r/ D‚ˆzr
zLs D‰zr 0‚zLs D zL

0
sCoffset.�;r/C� 0. ;r 0/:

Remark 15.22 The bijection between Z and T�;zr depends on the notion of visible lines and so depends
on the choice of CT. On the other hand, Lemma 15.20(2) implies that �.�; r/ depends only on � and r
and not on the choice of a CT. As such it can be computed from any CT for �. The integer offset.�; r/

depends on the choices of CTs.

15.3 Staple pairs

We continue with Notation 15.4. We set further notation as follows.

Notation 15.23 If Ei and Ej are distinct elements of Linw.f / then there exist nonzero di ¤ dj such that
f .Ei /DEiw

di and f .Ej /DEjwdj . Recall that a path of the form Eiw
p xEj is called exceptional if di

and dj have the same sign. If di and dj have different signs then we say Eiwp xEj is quasi-exceptional.

Notation 15.24 We write L 2 S.�/ and say that L is a staple if L 2�NP.�/ has at least one periodic
end; if both ends of L are periodic then L is a linear staple. If zL 2�NP.�; zr/ projects to an element of
S.�/ for r 2R.�/ and lift zr , then we write zL 2 S.�; zr/ and L 2 S.�; r/ and we say that L and zL occur
in r and zr , respectively.

For each r 2R.�/, an ordered pair b D .L1; L2/ of elements of S.�; r/ is a staple pair if there are lifts
zL1; zL2 2 S.�; zr/ and a periodic line zA such that f@C zL1; @� zL2g � f@� zA; @C zAg. We write b 2 S2.�; r/
and zbD .zL1; zL2/ 2 S2.�; zr/ and say that b and zb occur in r and zr respectively and that zA is the common
axis of zb. By Corollary 5.17, zA corresponds to an element of A.�/. Define S2.�/D[S2.�; r/, where
the union is taken over all r 2R.�/.

Lemma 15.25 Each b 2 S2.�; r/ is �-invariant. The set S2.�; zr/ is ˆzr -invariant.

Proof The first statement follows from the second and the fact (Corollary 5.17(1)) that each element of
�NP.�/ is �-invariant. The second follows from the ˆzr -invariance of �NP.�; zr/ (Lemma 15.3) and the
definition of S2.�; zr/.

Example 3.1 (continued) In our example,

S.�/D fa1Rc ; a1ba1g and S2.�/D f.a1ba1; a1ba1/; .a1ba1; a1Rc/g:

Throughout this section, M is the stabilization constant defined in Notation 5.13.

Our next lemma explains how staple pairs occur in an eigenray zR zE .
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Lemma 15.26 Assume Notation 15.4.

(1) If �i�i�iC1 is quasi-exceptional , then . z̀i�1; z̀iC1/ 2 S2.�; zr/ with common axis z̀i .

(2) If one of the following holds:
(a) �i is exceptional , or
(b) �i 2 Linw.f / and `i is not periodic , or
(c) x�i 2 Linw.f / and `i�1 is not periodic;
then . z̀i�1; z̀i / 2 S2.�; zr/.

(3) If z̀i is periodic and neither �i nor x�iC1 is in Ef , then �i�i�iC1 is quasi-exceptional and so
. z̀i�1; z̀iC1/ 2 S2.�; zr/ with common axis z̀i . See also Remark 15.43.

(4) For each zb 2 S2.�; zr/, there exists K D K.zb/ such that ˆk
zr
.zb/ is as in (1) or (2) for all k � K.

Moreover , in case (b), R�i D w
˙1 and in case (c), RCi�1 D w

˙1.

Proof If �i�i�iC1 is quasi-exceptional then there are a twist curve w and edges E 0; E 00 2 Linw.f / such
that �i DE 0, �i Dwq for some q 2Z and �iC1D xE 00. Moreover, f .E 0/DE 0wd

0

and f .E 00/DE 00wd
00

,
where d 0 and d 00 have opposite signs. If z�i D zE 0, let zw be the lift of w that begins with the terminal
endpoint zx of zE 0. Extend zw to a periodic line zA that projects bi-infinitely to the circuit determined by w
and is oriented consistently with zw. Let zy 2 zA be the terminal endpoint of the lift of wq that begins at zx
and let zE 00 be the lift of E 00 that ends at zy. Then zRCi is the concatenation of zE 0 and a ray in zA beginning
at zx and terminating at @C zA if d 0 > 0 and at @� zA if d 0 < 0. Similarly, zR�iC1 is the concatenation of zE 00

and a ray in zA beginning at zy and terminating at @C zA if d 00 > 0 and at @� zA if d 00 < 0. Neither z̀i�1
nor z̀iC1 is periodic. Up to a change of orientation, z̀i D zA. Thus . z̀i�1; z̀iC1/ 2 S.�; zr/ with common
axis z̀i , and (1) is proved.

If �i is exceptional, then �i DE 0wq xE 00, where E 0; w and E 00 are as above except that d 0 and d 00 have
the same sign. Following the above notation, zRCi begins with zE 0, zR�i begins with zE 00 and both rays
terminate at the same endpoint of zA. Neither z̀i�1 nor z̀i is periodic. This completes the proof of (2a).

If �i DE 0 2 Linw.f /, then following the above notation, z̀i�1 is nonperiodic (because it crosses zE 0) with
terminal endpoint in f@� zA; @C zAg and zR�i has terminal endpoint in f@� zA; @C zAg. If z̀i is nonperiodic then
. z̀i�1; z̀i / 2 S2.�; zr/. This completes the proof of (2b). The proof of (2c) is similar.

Suppose that z̀i is as in (3). If x�i 2 Ef then zR�i is not asymptotic to a periodic line, in contradiction
to the assumption that z̀i is periodic. If x�i 2 Lin.f / or if �i is exceptional then R�i D Eiw

˙1, where
Ei 2 Linw.f /, again in contradiction to the assumption that z̀i is periodic. We conclude that �i DE 0 2
Lin.f /. The symmetric argument shows that �iC1 D xE 00 for some E 00 2 Lin.f /. Thus `i has the form
.w0/˙1�i .w

00/˙1, where w0 is the twist path for E 0 and w00 is the twist path for E 00. Since z̀i is a
periodic line, w0 D w00 and �i D .w0/q for some q 2 Z. This proves that �i�i�iC1 is quasi-exceptional,
which in conjunction with (1), completes the proof of (3).
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For (4), suppose that zb2S2.�; zr/. After replacing zb with someˆk
zr
.zb/, we may assume by Proposition 15.6

that zb D . z̀i�1; z̀j / for some i � 1 ¤ j . After replacing zb with ˆM
zr
.zb/, we may assume that x�i … Ef .

(To see this note that if zf M# .z�i�1/ � z�s�1 then zf M# . z̀i�1/D z̀s�1 and z�s is the first growing term of
zf M# .z�i /.) By assumption, @C zRCi is an endpoint of the common axis zA of zb. Lemma 5.14 therefore

implies that �i … Ef and hence that �i is linear. In other words, �i DEi or �i D xEi or �i DEiw�i xEl for
some twist path wi and for some Ei ; El 2 Linwi .f /. In all three cases, the terminal endpoint of zEi is
contained in zA. For the same reasons, we may assume that �j DEj or �j D xEj or �j DEmw�j xEj for
some twist path wj and for some Ej ; Em 2 Linwj .f /; moreover, the terminal endpoint of zEj is in zA.

The proof now proceeds by a case analysis. If �i DEiw�i xEl then the midpoint of zEi (resp. zE�1
l

) separates
zA from z�q for all q < i (resp. q > i ) so j D i and we are in case (a). The same argument, with the same

conclusion, applies if �j DEmw�j xEj . We may now assume that �i is either Ei or xEi and that �j is either
Ej or xEj . By considering the midpoints of �i and �j as in the previous case we see that:

(a) If �i DEi , then j � i .

(b) If �i D xEi , then j � i .

(c) If �j DEj , then i � j .

(d) If �j D xEj , then i � j .

If (a) and (c) are satisfied then j D i , we are in case (b) and R�i D w
˙1. Similarly, if (b) and (d) are

satisfied then j D i , we are in case (c) and RCi�1 D w
˙1. Suppose next that (a) and (d) are satisfied.

In this case, j � i , wi D wj and the interval z� of zA bounded by the terminal endpoints of zEi and zEj
equals zwqi for some q 2Z; in particular, � is a Nielsen path. It must be that � D �i and j D i C 1, which
is (1). Finally, suppose that (b) and (c) are satisfied. Then j � i , wi Dwj and the interval z� of zA bounded
by the terminal endpoints of zEj and zEi equals zwqi for some q 2 Z; in particular, � is a Nielsen path. It
must be that � D �i�1 and j D i � 1, which contradicts the fact that i � 1¤ j . Thus this last case does
not happen, and we are done.

Notation 15.27 We say that the staple pairs . z̀i�1; z̀iC1/ and . z̀i�1; z̀i / that occur in items (1) and (2)
of Lemma 15.26 are visible with index i or just visible if the index is not explicitly given. Note that if zb is
visible then ˆk

zr
.zb/ is visible for all k � 0.

Corollary 15.28 The set of visible elements of S2.�; zr/ is infinite.

Proof From ˆzr -invariance of S2.�; zr/ (Lemma 15.25) and Lemma 15.9, we need only show that
S2.�; zr/ contains a visible element. There are always linear edges crossed by RE . We are therefore
reduced, by Lemma 15.26, to the case that some z̀i is periodic. If zf M# .z�i /� z�j then z�j is the last growing
term in zf M# .z�i / and so �j … Ef . Similarly, z�jC1 is the first growing term in zf M# .z�iC1/ and so x�jC1 … Ef .
Lemma 15.26(3) implies that . z̀j�1; z̀jC1/ 2 S2.�; zr/ and we are done.
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Recall from Notation 15.4 that the z̀i are said to be visible.

Lemma 15.29 Suppose that zb D .zL1; zL2/ 2 S2.�; zr/ with common axis zA and that one of the following
two conditions are satisfied.

(a) Either zL1 or zL2 is visible and there exist k � 0 such that ˆk
zr
.zL1; zL2/D . z̀i�1; z̀i / for some i .

(b) Either zL1; zL2 or the common axis of zA is visible and there exist k � 0 such that ˆk
zr
.zL1; zL2/D

. z̀i�1; z̀iC1/ with common axis z̀i for some i .

Then ˆ2M
zr
.zb/ is visible.

Proof We begin by establishing the following properties for each visible line z̀j .

(1) Suppose that @C z̀j is periodic and that z̀s DˆMzr .
z̀
j /. Then ˆm

zr
. z̀s/ and ˆm

zr
. z̀sC1/ are consecutive

(ie their indices differ by 1) for all m� 0.

(2) Suppose that @� z̀j is periodic and that z̀s DˆMzr .
z̀
j /. Then ˆm

zr
. z̀s�1/ and ˆm

zr
. z̀s/ are consecutive

for all m� 0.

For (1), Lemma 15.9 implies that zf M# .z�j /� z�s and our choice ofM implies that z�sC1 … E�1f . Since @C z̀j
is periodic, the same is true for @C z̀s and so z�sC1 … Ef . We conclude that �sC1 is linear. In particular,
zf m# .z�sC1/ has exactly one growing term. If zf m# .z�s/� z�a then zf m# .z�sC1/� z�aC1. Lemma 15.9 implies

that ˆm
zr
. z̀s/ D z̀a and ˆm

zr
. z̀sC1/ D z̀aC1. This completes the proof of (1). Item (2) is proved by the

symmetric argument.

We now apply (1) and (2) to prove the lemma, assuming without loss that k >M . In case (a), we will
show that ˆM

zr
.zb/ is visible. If zL1 is visible let z̀s�1DˆMzr .zL1/. Since ˆk�M

zr
. z̀s�1/Dˆ

k
zr
.zL1/D z̀i�1,

property (1), applied with mD k�M , implies that ˆk�M
zr

. z̀s/D z̀i . Since ˆk�M
zr

.ˆM
zr
.zL2//D z̀i , we

have ˆM
zr
.zL2/ D z̀s . Thus ˆM

zr
.zb/ D .ˆM

zr
.zL1/; ˆ

M
zr
.zL2// D . z̀s�1; z̀s/ is visible. This completes the

proof when zL1 is visible. When zL2 is visible, a symmetric argument, using (2) instead of (1), shows that
ˆM
zr
.zL1/ and hence ˆM

zr
.zb/ is visible.

In case (b), note that @C zL1; @� zL2 and both ends of zA are periodic. If zL1 is visible then the above
argument shows that the common axis of ˆM

zr
.zb/ is visible and a second application shows that ˆ2M

zr
.zL2/

is visible. The other cases are similar.

Notation 15.30 Suppose that zb D .zL1; zL2/ 2 S2.�; zr/ projects to b 2 S2.�; r/. If z̀j � zL1 (see
Definition 15.10) then we write z̀j � zb. We say that b and zb are topmost elements of S2.�; r/ and
S2.�; zr/, respectively, if for all r1 < r (see Notation 6.1) neither b nor b�1 WD .L�12 ; L�11 / is an element
of S2.�; r1/. Since zb andˆzr.zb/ project to the same element of S2.�; r/ and since S2.�; r/ isˆzr -invariant,
it follows that the set of topmost element of S2.�; zr/ is ˆzr -invariant.

Lemma 15.31 The set of topmost elements of S2.�; zr/ is the union of a finite number of ˆzr -orbits.
Moreover , there exists a computable B.r/ > 0 such that each of these orbits has a visible representative
with index at most B.r/.

Geometry & Topology, Volume 29 (2025)



The conjugacy problem for UPG elements of Out.Fn/ 1781

Proof Define B.r/ > 2M by ˆ2M
zr
. z̀p/D z̀B.r/.

Suppose that zb is a topmost element of S2.�; zr/. After replacing zb with some ˆk
zr
.zb/, we may assume

by Lemma 15.26(4) that zb D . z̀i�1; z̀i / or zb D . z̀i�1; z̀iC1/ with common axis zli . We consider the
zb D . z̀i�1; z̀i / case first, assuming without loss that i > 2M . The proof below is similar to that of
Lemma 15.17.

Suppose that there exists 1�j 0�p and k0>0 so that z�i�1z�i�1z�i z�i z�iC1� zf k
0

# .z�j 0/. Then �j 0DE 0 or xE 0

for some E 0 2 Ef so either �i�1�i�1�i�i�iC1 or x�iC1x�ix�i x�i�1x�i�1 occurs as a concatenation of terms
in the coarsening of the complete splitting of RE 0 . Letting r 0 2R.�/ correspond to E 0, Lemma 15.26
implies that either b or b�1 is an element of S2.�; r 0/ in contradiction to the assumption that b is topmost
in S2.�; r/. Thus no such j 0 and k0 exist. It follows that there exists 1 � j � p and k > 0 such that
zf k# .z�j / is contained in either z�i�1 or z�i . Equivalently, ˆk

zr
. z̀j / is equal to either z̀i�1 or z̀i . Since z̀j is

one of the lines comprising the pair ˆ�k
zr
.zb/, Lemma 15.29 implies that ˆ2M�k

zr
.zb/Dˆ2M

zr
.ˆ�k
zr
.zb// is

visible with index at most B.r/.

In the remaining case, zb D . z̀i�1; z̀iC1/ with common axis z̀i . Arguing as in the first case, we conclude
that there exists k � 0 and 1� j � p such that ˆk

zr
. z̀j / is equal to either z̀i�1 or z̀i or z̀iC1. The proof

then concludes as in the first case.

Remark 15.32 The ˆzr -image of a visible topmost staple pair is a visible topmost staple pair. It follows
that if a topmost staple pair zb occurs in zr and if z̀B.r/ � zb then zb is visible.

Remark 15.33 The set of topmost elements of S2.�; r/ could be empty.

Lemma 15.34 If yr < r and b 2 S2.�; yr/, then either b 2 S2.�; r/ or b�1 2 S2.�; r/.

Proof The proof is similar to that of Lemma 15.31. Let yE be the higher-order edge corresponding to yr ,
let R yE D y�0 � y�1 � y�1 � : : : be the coarsening of the complete splitting into single growing terms and Nielsen
paths and let ỳ1; ỳ2; : : : be the associated visible lines. By Lemmas 15.26(4) and 15.25, there exists i � 1
such that b D . ỳi�1; ỳi / or b D . ỳi�1; ỳiC1/. Since yr < r , there exists j > 1 such that either �j D yE or
�j D yE

�1. The cases are symmetric so we assume that �j D yE�1 and leave the �j D yE case to the reader.
Since j̀ 2�NP.r/, the inverse of every finite subpath of R yE occurs as subpath of RE . In particular, the
inverse of y�i�2 � y�i�1 : : : � y�iC2y�iC2 occurs as a concatenation of terms in RE . Lemma 15.26 therefore
implies that b�1 2 S2.�; r/.

Lemma 15.35 Suppose that � 2 Out.Fn/ conjugates � to  , that �.r/ D r 0 2 R. /, that zr; zr 0 2 @Fn
represent r and r 0, respectively , and that ‚ is the lift of � such that ‚.zr/Dzr 0. Then ‚ induces a bijection
S2.�; zr/ 7! S2. ; zr 0/ that restricts to a bijection on topmost elements.

Proof This follows from Lemma 15.3, which provides a bijection between �NP.�; zr/ and �NP. ; zr
0/,

and the definitions.
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b

a

b

b

a

a

b

ˆ1

@C zL1 @C zL2

@� zL2@� zL1

Figure 5: The graphs here are parts of zG with each horizontal segment a lift of the edge b and
where vertical segments project into a1. zL1 and zL2 are lifts of the staple a1ba1 and .L1; L2/
is a staple pair. ˆ1 is the lift of � that fixes zL1. Intuitively zL2 slides away from zL1 under the
action of ˆ1 by 1 period and so m.L1;L2/

�
�
�
D 1

.

Definition 15.36 Given b D .L1; L2/ 2 S2.�; r/, choose lifts zL1; zL2 and a periodic line zA such that
f@C zL1; @� zL2g � f@� zA; @C zAg. Orient zA to be consistent with the twist path w to which it projects and
let a 2 Fn be the root-free element of Fn that stabilizes zA and satisfies aC D @C zA. Each � 2 Xc.�/

(Definition 14.1) satisfies �.H�;c.Li //D H�;c.Li / for i D 1; 2. Lemma 13.10 therefore implies that there
are unique ‚i 2 � such that ‚i .H�;c.zLi //D H�;c.zLi /. Since both ‚1 and ‚2 represent � and fix a there
exists mb.�/ 2 Z such that ‚1 D i

mb.�/
a ‚2.

Example 3.1 (continued) See Figure 5.

Lemma 15.37 For each bD .L1; L2/2S2.�/, the mapmb WXc.�/!Z is a well-defined homomorphism.

Proof We first check that mb.�/ is independent of the choice of zL1 and zL2 and so is well-defined.
Suppose that zL01 and zL02 are another choice with corresponding zA0, a0 and ‚0i . Choose c 2 Fn such that
ic.a/D a

0. For i D 1; 2, zL0i and ic.zLi / are lifts of Li with an endpoint in fa0�; a0Cg and so there exists
an ni such that

zL0i D i
ni
a0 ic.

zLi /D ici
ni
a .
zLi /:

By uniqueness,
‚0i D .ici

ni
a /‚i .ici

ni
a /
�1
D ici

ni
a ‚i i

�ni
a i�1c D ic‚i i

�1
c ;
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so

‚01‚
0�1
2 D ic‚1‚

�1
2 i�1c D ici

mb.�/
a i�1c D i

mb.�/
a0 ;

as desired.

To prove that mb.�/ defines a homomorphism, suppose that  2 Xc.�/ and ‰i satisfies ‰i .H�;c.zLi //D
H�;c.zLi /. Then ‰i‚i .H�;c.zLi //D H�;c.zLi / and

imb. �/a D‰1‚1‚
�1
2 ‰�11 D‰1i

mb.�/
a ‰�12 D‰1‰

�1
2 imb.�/a D imb. /a imb.�/a D imb. /Cmb.�/a ;

so mb. �/Dmb. /Cmb.�/.

Remark 15.38 The same proof shows that mb defines a homomorphism on both

f� 2 Out.Fn/ j �.Li /D Li for i D 1; 2g and f� 2 Out.Fn/ j �.H�;c.Li //D H�;c.Li / for i D 1; 2g:

The former is the stabilizer of b and the latter can be thought of as the “weak stabilizer” of b.

The next lemma relates mb.�/ to the twist coefficients of �.

Lemma 15.39 Suppose that bD.L1; L2/2S2.�; r/, whereL1D.R�1 /
�1�1R

C
1 andL2D.R�2 /

�1�2R
C
2

are the decompositions of Corollary 5.17(1). Suppose also thatw is a twist path and thatE 0; E 00 2Linw.f /

satisfy f .E 0/DE 0wd
0

and f .E 00/DE 00wd
00

.

(1) If RC1 DE
0w˙1 and R�2 DE

00w˙1, then mb.�/D d 0� d 00.

(2) If RC1 DE
0w˙1 and R�2 D w

˙1, then mb.�/D d 0.

(3) If RC1 D w
˙1 and R�2 DE

00w˙1, then mb.�/D�d 00.

In particular , mb.�/¤ 0 for all b 2 S2.�/.

Proof Choose lifts zL1 D . zR�1 /
�1z�1 zR

C
1 ;
zL2 D . zR�2 /

�1z�2 zR
C
2 and zA D zw1 so that @ zRC1 ; @ zR

�
2 2

f@� zA; @C zAg. Denote the initial endpoints of zRC1 and zR�2 by zx and zy, respectively. There existˆ1; ˆ2 2�
such thatˆ1 fixes the endpoints of zL1 andˆ2 fixes the endpoints of zL2. The corresponding lifts zf1 and zf2
fix zx and zy, respectively. In particular, zf1.zy/D i

mb.�/
a

zf2.zy/D i
mb.�/
a zy. In case (1), the path z� connecting

zx to zy equals zE 0 zwp. zE 00/�1 for some p 2Z and . zf1/#. zE 0 zwp. zE 00/�1/D zE 0 zwpCd
0�d 00. zE 00/�1. It follows

that zf1.zy/ D id
0�d 00

a zy and hence that mb.�/ D d 0 � d 00. In case (2), z� D zE 0 zwp and . zf1/#. zE 0 zwp/ D
zE 0 zwpCd

0

. Thus, zf1.zy/D id
0

a zy and mb.�/D d 0. Case (3) is proved similarly.

Lemma 15.26 implies that if b is as in case (1) then either b D .`i�1; `iC1/, where �i�i�iC1 is quasi-
exceptional, or b D .`i�1; `i /, where �i is exceptional. In either case, E 0 ¤ E 00 so d 0 ¤ d 00. This
completes the proof that mb.�/¤ 0 and hence the proof of the lemma.
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c

rc

Figure 6: An end of Rc D cbbaba2ba3 : : : is in a union of staple pairs, cf Figure 5. The relation
between staple pairs and RE for E of higher than quadratic growth is more complicated.

15.4 Spanning staple pairs

We continue with the notation of the preceding subsections; in particular, see Notation 15.4. In addition,
we let z�0; z�1 : : : be the sequence of lines obtained from z̀0; z̀1; : : : by removing all periodic lines. In
other words, z�0; z�1 : : : is the set of visible lines in �NP.�; zr/.

If E has quadratic growth (equivalently, each �i is linear) then every .z�t ; z�tC1/ is an element of S2.�; zr/
by Lemma 15.26; see Figure 6. This is not the case when E has higher order. We now define a related but
weaker property that does hold for every .z�t ; z�tC1/. Its utility is illustrated in the proof of Lemma 15.45,
which is applied in the proof of Lemma 17.9.

Definition 15.40 We say that an ordered pair .z�1; z�2/ of elements of �NP.�; zr/ is spanned by a staple
pair zb D .zL1; zL2/ 2 S2.�; zr/ if the following two conditions are satisfied:

� Either zL1 D z�1 or zL1 2�NP.�; @Cz�1/.

� Either zL2 D z�2 or zL�12 2�NP.�; @�z�2/.

Note that if .z�1; z�2/ is spanned by a staple pair then .ˆk
zr
z�1; ˆ

k
zr
z�2/ is spanned by a staple pair for all

k 2 Z.

Our next result uses techniques from the proofs of Lemmas 15.12 and 15.31.

Lemma 15.41 (1) Suppose that �i 2 Ef and that zri D @C z̀i�1 D @ zRCi . If z�j z�j z�jC1 is a subpath of
zf m# .z�i / for m> 0 and if z̀j is nonperiodic , then ˆ�m

zr
. z̀j / 2�NP.�; zri /.

(2) Suppose that �i 2 E�1f and that zri D @� z̀i D @ zR�i . If z�j z�j z�jC1 is a subpath of zf m# .z�i / for m> 0
and if z̀j is nonperiodic , then ˆ�m

zr
. z̀�1j / 2�NP.�; zri /.

Proof The two cases are symmetric so we prove (1) and leave (2) to the reader. Assuming that �i 2 Ef ,
let T W zG! zG be the covering translation that carries z�i to the initial edge of zf m# .z�i / and hence satisfies
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T . zRCi /D
zf m# . zRCi /Dˆ

m
zr
. zRCi /. Then T �1 zf m is the lift of f m that preserves the terminal endpoint zri

of zRCi and so i�1c ˆm
zr
Dˆm

zri
, where ic is the inner automorphism corresponding to T . Note that zf m# .z�i /

is a concatenation of terms in the complete splitting of zR zE whose first edge T .z�i / projects into Ef . Thus
zf m# .z�i /D z�a � z�a � : : : � z�b�1 � z�b � z� for some a � j < b and some (possibly trivial) Nielsen path z� that is

an initial segment of z�b . Note also that T �1 zf m# .z�i / is a concatenation of terms in the complete splitting
of zRCi . It follows that T �1z�a �T �1z�a � : : : �T �1z�b�1 �T �1z�b is a concatenation of terms in the coarsened
complete splitting of zRCi . In particular, T �1z�j � T �1z�j � T �1z�jC1 is a concatenation of terms in the
coarsened complete splitting of zRCi . Since z̀j is nonperiodic, the same is true for T �1. z̀j / and we conclude
that T �1. z̀j / 2�NP.�; zri /. Proposition 15.6 implies that ˆ�m

zr
. z̀j /Dˆ

�m
zri
i�1c . z̀j /Dˆ

�m
zri
.T �1. z̀j // is

an element of �NP.�; zri /.

Proposition 15.42 Each ordered pair .z�t ; z�tC1/ is spanned by an element .zL1; zL2/ 2 S2.�; zr/. If
@C z�t (resp. @� z�tC1) is periodic , then zL1 D z�t (resp. L2 D z�tC1).

Proof Set ˆ D ˆzr . We first show that if z̀i is periodic then z̀i�1 and z̀iC1 are nonperiodic and
.z�t ; z�tC1/ WD . z̀i�1; z̀iC1/ satisfies the conclusions of the lemma. Let M be the stabilization constant
for f (Notation 5.13). If zf M# .z�i /� z�j , then z�j is the last growing term in zf M# .z�i / and z�jC1 is the first
growing term in zf M# .z�iC1/. Moreover, Lemma 15.9 implies that z̀j D zf M# . z̀i / and so z̀j is periodic. By
our choice of M , z�j … Ef and z�jC1 … E�1f . Lemma 15.26(3) implies that z�j z�j z�jC1 is quasi-exceptional
and . z̀j�1; z̀jC1/2S2.�; zr/. Since �j 2Lin.f /, it follows that either �i 2 Lin.f / or �i 2 Ef . In the former
case, zf M# .z�i�1/� z�j�1 and zf M# . z̀i�1/D z̀j�1 so ˆ�M . z̀j�1/D z̀i�1; in particular, z̀i�1 is nonperiodic
and @C z̀i�1 is periodic. In the latter case, z�j�1z�j�1z�j is a terminal subpath of zf M# .z�i / so Lemma 15.41
implies that ˆ�M . z̀j�1/ 2�NP.�; @C z̀i�1/; note that in this latter case, @C z�t D @C z̀i�1 is not periodic.
A symmetric argument shows that either ˆ�M . z̀jC1/D z̀iC1 or ˆ�M . z̀�1jC1/ 2�NP.�; @� z̀iC1/. Thus
. z̀i�1; z̀iC1/ is spanned by ˆ�M . z̀j�1; z̀jC1/, and the “if” statement of the lemma is satisfied.

Remark 15.43 The above argument includes a proof that if z̀i is periodic and if z̀j D zf M# . z̀i /, then
z�j z�j z�jC1 is quasi-exceptional and z̀j is the common axis of . z̀j�1; z̀jC1/ 2 S2.�; zr/.

Continuing with the proof, we now know that for each .z�t ; z�tC1/ there exists i such that .z�t ; z�tC1/
is equal to either . z̀i�1; z̀i / or . z̀i�1; z̀iC1/. Moreover, the conclusions of the lemma hold in the latter
case so we may assume that .z�t ; z�tC1/ D . z̀i�1; z̀i /. Lemma 15.26(1) implies that �i�i�iC1 is not
quasi-exceptional. If �i is linear (ie �i is exceptional or �i 2 Lin.f / or x�i 2 Lin.f /) then .z�t ; z�tC1/D
. z̀i�1; z̀i / 2 S2.�; zr/ by Lemma 15.26(2).

It remains to consider the �i 2 Ef and �i 2 E�1f cases. These are symmetric so we assume that �i 2 Ef ,
and leave the �i 2 E�1

f
case to the reader. For the “if” statement, note that @C z̀i�1 is nonperiodic. As

above, there exists j > i such that zf M# .z�i / � z�j and z̀j D zf M# . z̀i /; in particular, z̀j is not periodic.
Since z�j is the last growing term in zf M# .z�i / and since zf M# .z�i / contains at least two growing terms,
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Lemma 15.41 implies that if z̀j�1 is nonperiodic thenˆ�M . z̀j�1/2�NP.�; @C z̀i�1/. If �j is exceptional
or �j 2 Lin.f / then another application of Lemma 15.26(2) shows that . z̀j�1; z̀j / 2 S2.�; zr/. In this case,
. z̀i�1; z̀i / is spanned by ˆ�M . z̀j�1; z̀j /D .ˆ�M . z̀j�1/; z̀i / and we are done. The same argument works
if x�j 2 Lin.f / and z̀j�1 is not periodic. Suppose then that x�j 2 Lin.f / and z̀j�1 is periodic. There exists
s > j such that zf M# .z�j /� z�s and z̀sD zf M# . z̀j /D zf

2M
# . z̀i /. Since z�j is linear, zf M# .z�j / contains a single

growing term and so zf M# .z�j�1/ � z�s�1. Thus z̀s�1 D zf M# . z̀j�1/ is periodic. Remark 15.43 implies
that z�s�1z�s�1z�s is quasi-exceptional and z̀s�1 is the common axis of . z̀s�2; z̀s/ 2 S2.�; zr/. Moreover,
z�s�2z�s�2z�s�1z�s�1z�s � f

2M
# .z�i /. The proof now concludes as in the previous case with . z̀i�1; z̀i /

spanned by ˆ�2M . z̀s�2; z̀s/D .ˆ�2M . z̀s�2/; z̀i /.

We may now assume that �j has higher order and so �j 2 E�1f by our choice of M . In particular, @� z̀j ,
and hence @� z̀i , is nonperiodic.

Choose k > 0 so that the coarsened complete splitting of zf k# .z�j / has at least one linear term z�s that
is neither the first nor second term nor the last or next to last growing term in that splitting. Thus
z�s�2 � z�s�2 � : : : � z�sC1 � z�sC2 is a subpath of zf k# .z�j / and hence also a subpath of zf MCk# .z�i /. By
Lemma 15.26, two of the three lines z̀s�1; z̀s; z̀sC1 form an element of S2.�; zr/ that we denote by
.zL1; zL2/. Lemma 15.41 implies that

ˆ�M�k.zL1/ 2�NP.�; @C z̀i�1/ and ˆ�k.zL�12 / 2�NP.�; @� z̀j /:

It follows that
ˆ�M�k.zL�12 / 2�NP.�; @� z̀i /;

and hence that ˆ�M�k..zL1; zL2// spans . z̀i�1; z̀i /.

In Lemma 15.45 below we use Proposition 15.42 to give conditions on � 2 Out.Fn/ which imply that
� fixes r . The proof of Lemma 15.45 is inductive and it is useful in the induction step to know that �
strongly fixes r in the following sense.

Definition 15.44 We say that � 2 Out.Fn/ strongly fixes r 2R.�/ if for some (and hence every) lift zr
there is a lift ‡ 2 � that fixes each element of �NP.�; zr/.

Lemma 15.45 Suppose that ŒF � is a �-invariant free factor conjugacy class , that r 2R.�/ is carried by
ŒF � and that � 2 Out.Fn/ is such that

(1) ŒF � is �-invariant ,

(2) � fixes each element of �NP.r/ and each r 0 < r (as defined in Notation 6.1),

(3) the restriction �jF commutes with �jF , and

(4) mb.�/D 0 for all b 2 S2.�; r/ (see Definition 15.36 and Remark 15.38),

then � strongly fixes r .
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Proof Given a lift zr , we continue with the z�i , z�i , z̀i , z�t and ˆzr notation. We may assume without loss
of generality that zr 2 @F . By uniqueness, F is ˆzr -invariant. By Lemma 15.13 each z�t has endpoints
in @F .

For each t � 1, item (2) implies the existence of a (necessarily unique) lift ‡t of � that fixes z�t . We
show below that ‡t is independent of t , say ‡t D‡ for all t . Assuming this for now, the proof concludes
as follows. Since the endpoints of the z�t limit on zr , we have ‡.zr/ D zr . From this and (1) it follows
that ‡.F / D F . Item (3) implies that the commutator Œˆzr jF;‡ jF � is inner. Since the commutator
Œˆzr jF;‡ jF � fixes zr , it must be trivial. Thus, ˆzr jF and ‡ jF commute and the same is true for ˆzr j@F
and ‡ j@F . Given zL 2�NP.�; zr/, there exist m� 0 and t � 1 such that ˆm

zr
.zL/D z�t by Proposition 15.6.

Since z�t has endpoints in @F , the same is true for zL. Thus

‡.zL/D .ˆ�m
zr ‡ˆm

zr /.
zL/Dˆ�m

zr ‡.ˆm
zr .
zL//Dˆ�m

zr ‡.z�t /Dˆ
�m
zr .z�t /D zL;

as desired.

It remains to prove that ‡t D ‡tC1 for all t � 1.

The proof is by induction on the height of r in the partial order < on R.�/. In the base case, r is a
minimal element of R.�/ so each �i is linear by Lemmas 6.2 and 3.21. In this case, each z�t 2 S.�; zr/
and each .z�t ; z�tC1/ 2 S2.�; zr/ by Lemma 15.26. Item (4) completes the proof.

For the inductive step, we use Proposition 15.42. Let �t D `i and �tC1 D j̀ . As a first case, suppose
that @C z̀i D zr 0 for some r 0 2 R.�/. Let E 0 2 Ef be the higher-order edge corresponding to r 0. Then
r > r 0 and Lemmas 6.2 and 3.21 imply that either E 0 or xE 0 occurs as a term in the complete splitting of
some f k# .E/. Thus either Acc.E 0/� Acc.E/ or Acc. xE 0/� Acc.E/. Lemma 5.8 therefore implies that
if L0 2�NP.r

0/ then either L0 2�NP.r/ or L0�1 2�NP.r/. From (2) we see that � fixes each element
of �NP.r

0/. Lemma 15.34 and (4) imply that mb.�/D 0 for all b 2 S2.�; r 0/ so r 0 and ŒF � satisfy the
hypotheses of this lemma. By the inductive hypothesis, there is a (necessarily unique) lift ‡ 0 that fixes
each element of �NP.�; zr

0/. As noted above, it follows that ‡ 0 fixes zr 0 and so ‡ 0 D ‡t .

There are two subcases. The first is that @� z̀j Dzr 00 for some r 00 2 Ef . Arguing as in the previous paragraph
we see that ‡tC1 fixes each element of �NP.�; zr

00/. By Proposition 15.42, there exist zL0 2�NP.�; zr
0/

and zL00
�1
2�NP.�; zr

00/ such that .zL0; zL00/ 2 S2.�; zr/. Item (4) implies that ‡t D ‡tC1.

The second subcase is that @� z̀j is the end of a periodic line and hence j̀ 2S.�; r/. By Proposition 15.42,
there exists zL0 2�NP.�; zr

0/ such that .zL0; z̀j / 2 S2.�; zr/. Once again, (4) implies that ‡t D‡tC1. This
completes the proof when @C z̀i projects into R.�/.

A symmetric argument handles the case that @� z̀j projects into R.�/. The remaining case is that both
@C z̀i and @� z̀j are endpoints of periodic lines. Proposition 15.42 implies that . z̀i ; z̀j / 2 S2.�; zr/ so (4)
completes the proof as in previous cases.
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16 The homomorphism xQ

Recall that our main theorem is reduced to Proposition 14.7 by Lemma 14.8.

For the rest of the paper, we assume the hypotheses of Proposition 14.7, ie �; 2 UPG.Fn/, c is a special
chain for � and  , and Ic.�/D Ic. /. Our goal is to find a conjugator � 2 Xc.�/ or prove that no such
conjugator exists.

Because � and c are fixed for the rest of the paper, we will often write X for Xc.�/. In fact, we will often
suppress c when it appears as a decoration.

Lemma 16.1 For each Fi 2 c and each r 2R.�jFi / there exists r 0 2R. jFi / such that �.r/D r 0 for
each � 2 X whose restriction � jFi conjugates �jFi to  jFi .

Proof Let eD F� @ FC 2 c be the one-edge extension with respect to which r is new (Definition 6.14).
In other words, r 2RC.e; �/ WDR.�jFC/ nR.�jF�/. Since � fixes c, it follows that � jF˙ conjugates
�jF˙ to  jF˙ and so � induces a bijection between RC.e; �/ and RC.e;  /. This completes the proof
if r is the only element of RC.e; �/. Otherwise RC.e; �/D fr; sg and RC.e;  /D fr 0; s0g and we are in
case HH. By definition, Le.�/DfL;L

�1g, where @�LD r and @CLD s. By Lemma 6.15, �.L/2 Le. /.
Since � 2 X , we get �.H�;c.L//D H�;c.L/D H ;c.�.L//. By Lemma 13.9, there is a unique L0 2 Le. /

that is in H ;c.�.L//. Hence �.L/D L0 and �.r/D r 0 WD @�L0.

We continue with the notation of Section 15 and also assume that a CT f 0 WG0!G0 representing  has
been chosen that realizes c. We use prime notation when working with  and r 0; for example, E 0 2 Ef 0
is the edge corresponding to r 0 and z̀01; z̀

0
2; : : : are the visible lines in zR0

zE 0
and ‰zr 0 is the lift ‰ 2  that

fixes zr 0.

Definition 16.2 Recall from Corollary 5.17, Definition 15.36 and Lemma 15.39 that S2.�/ is finite, that
for all b 2 S2.�/ there is a homomorphism mb W X ! Z and that mb.�/¤ 0. Define a homomorphism
Q� W X !QS2.�/ by letting the b-coordinate of Q�.�/ be Q�

b
.�/Dmb.�/=mb.�/.

Definition 16.3 Let � be the equivalence relation on S2.�/ generated by b � b0 if b and b0 occur in the
same r 2R.�/ (as defined in Notation 15.24), and let

S2.�/D S12 .�/tS
2
2 .�/t � � �

be the decomposition of S2.�/ into �-equivalence classes. For each i , consider the diagonal action of Z

on QSi2.�/, ie kEs D EsC k.1; 1; : : : /. Let xQ� denote the homomorphism

Xc.�/
Q�
�!QS2.�/!xQS2.�/ WD .QS12 .�/=Z/˚ .QS22 .�/=Z/˚ � � � :

For the rest of the paper, Q and xQ will always denote Q� and xQ� .

Geometry & Topology, Volume 29 (2025)



The conjugacy problem for UPG elements of Out.Fn/ 1789

We can now state the second reduction of the conjugacy problem for UPG.Fn/ in Out.Fn/.

Proposition 16.4 There is an algorithm that takes as input �; 2 UPG.Fn/ and a chain c such that

� c is a special chain for � and  , and

� Ic.�/D Ic. /,

and that outputs YES or NO depending on whether or not there is a � 2 Ker. xQ�/ conjugating � to  .
Further , if YES, then such a � is produced.

Lemma 16.5 Proposition 16.4 implies Proposition 14.7 and hence Theorem 1.1.

Proposition 16.4 is proved in Section 17.

Lemma 16.5 is proved by applying the following technical proposition, whose proof takes up the rest of
this section.

Proposition 16.6 We have an algorithm that produces a finite set f�ig � X so that the union of the cosets
of Ker. xQ/ determined by the �i contains each � 2 X that conjugates � to  .

Proof of Lemma 16.5, assuming Proposition 16.6 Let f�ig be the finite set produced by Proposition 16.6
and let  i D  .�

�1
i
/. It follows that �� D  if and only if ��

0
i D  i , where � 0i D �

�1
i � , and that � is in

the coset represented by �i if and only if � 0i 2 Ker. xQ/. Thus, by applying Proposition 16.4 to � and  1,
we can decide if there exists � in the coset represented by �1 that conjugates � to  . If YES then return
YES and one such � . Otherwise move on to �2 and repeat. If NO for each �i , then return NO.

The following two lemmas are proved in Sections 16.1 and 16.3, respectively. In the remainder of
this section we use them to prove Proposition 16.6. The definition of topmost staple pair appears in
Notation 15.30. The definition of offset.�; r/ is given in Lemma 15.21(2). The partial order < on R.�/
is defined in Notation 6.1.

Lemma 16.7 Suppose that b 2 S2.�; r/ is topmost and that � 2 X conjugates � to  . Then given an
upper bound for joffset.�; r/j one can compute an upper bound for jm� .b/j.

Lemma 16.8 Suppose that � 2 X conjugates � to  and that r; r1 2R.�/ satisfy r1 < r . Then given an
upper bound for joffset.�; r/j one can compute an upper bound for joffset.�; r1/j.

Proof of Proposition 16.6, assuming Lemmas 16.7 and 16.8 We begin by computing D DD.�; /
so that jQb1.�/�Qb2.�/j < D for all � 2 X that conjugate � to  and all b1; b2 2 S2.�/ satisfying
b1 � b2.

Given r 2 R.�/ we will find Dr such that jQb1.�/�Qb2.�/j < Dr for all � 2 X that conjugate � to
 and all b1; b2 2 S2.�; r/. We then take D D jR.�/jmaxfDrg, where the jR.�/j factor allows us to
consider equivalent staple pairs that do not occur in the same ray.
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For all s 2 Z, ��s is an element of X and conjugates � to  ; see Lemma 14.3. The translation number
�.�; r/ is defined in Notation 15.18. By definition and by Lemma 15.21 we have

offset.��s; r/D offset.�; r/C �.�s; r/D offset.�; r/C s�.�; r/:

Since
Qb1.��

s/�Qb2.��
s/D .Qb1.�/C s/� .Qb2.�/C s/DQb1.�/�Qb2.�/;

we may assume without loss of generality that

0� offset.�; r/� �.�; r/:

Using only this inequality we will produce an upper bound D0 for jm� .b/j when b 2 S2.�; r/. This
determines an upper bound for jQb.�/j when b 2 S2.�; r/, which when doubled gives the desired upper
bound Dr for jQb1.�/�Qb2.�/j when b1; b2 2 S2.�; r/.

If b is topmost in r then Lemma 16.7 gives us D0. Otherwise, choose r1 < r so that b is topmost in r1.
Apply Lemma 16.8 to find an upper bound for joffset.�; r1/j and then apply Lemma 16.7 to b and r1 to
produce D0 and hence D.

To complete the proof of Proposition 16.6, define

X .D/ WD f� 2 X j jQb1.�/�Qb2.�/j<D for all b1 � b2 2 S2.�/g:

Our choice of D guarantees that X .D/ contains all � 2 X that conjugate � to  . For each i , the image
of X .D/ by

Qi W X Q
�!QS2.�/!QSi2.�/

is discrete, Z-invariant, and contained in a bounded neighborhood of the diagonal in QSi2.�/. Hence the
image of X .D/ by

xQi W X Qi
�!QSi2.�/!QSi2.�/=Z

is finite and X .D/ is contained in finitely many cosets of Ker. xQi / and so also in finitely many cosets of
Ker. xQ/.

To get representatives of these cosets we must find, for each xq 2 xQ.X .D//, an element of X\ xQ�1.xq/. For
this, it is enough to express xq as a word in the xQ-image of the finite generating set GX for X D OutJ.Fn/

supplied by Lemma 11.2. To accomplish this, we find a finite subset S �QS2.�/ whose image in xQS2.�/

covers xQ.X .D// and then express the elements of S in terms of the Q.GX /. To find S , we first find finite
S i �QSi2.�/ whose image in QS i2.�/=Z covers xQi .X .D// and then take for S the direct sum of the S i , ie

S WD fq 2QS2.�/ j the projection of q to QSi2.�/ is in S ig:

We now find S i . By definition ofQ, the denominators of the coordinates of the image ofQ are bounded by
maxfmb.�/ j b 2 S2.�/g. For convenience, we assume we have cleared denominators and all coordinates
in the image of Q are integers. Each xqi in the image of xQi is represented by qi 2 QSi2.�/ with first

Geometry & Topology, Volume 29 (2025)



The conjugacy problem for UPG elements of Out.Fn/ 1791

coordinate equal to 0. Hence we may then take S i to be the set of vectors in QSi2.�/ with integer
coordinates of absolute value at most D and S to be the set of vectors in QS2.�/ with integer coordinates
of absolute value at most D.

The desired set of coset representatives can then be taken to be f�s j s 2S\Q.X .�//g where by definition
�s is a choice of element of X .�/ satisfyingQ.�s/D s. We compute S\Q.X .�// and �s as follows. First
compute Q.GX /. It remains to check which elements of S can be expressed as Z-linear combinations of
elements of this Q.GX / and to produce such a Z-linear combination if it exists. For this, recall that given
a finite set of vectors in ZN it is standard (see for example [Veblen and Franklin 1921]) to find compatible
bases B0 for the free Z-submodule they generate and B for ZN . (B0 and B are compatible if there is a
subset fbmg of B and integers nm such that B0 D fnm � bmg.) Without concern for efficiency, write each
element of S in terms of B and check using divisibility of coordinates if it can be written in terms of B0.

16.1 Proof of Lemma 16.7

Lemma 16.9 Assume that :

(1) � 2 X conjugates � to  .

(2) b 2 S2.�; r/ and b0 D �.b/ 2 S2. ; r 0/, where r 0 D �.r/.

(3) We are given

(a) a lift zr of r and a lift zb of b that is visible in zr with index i , and

(b) a lift zr 0 of r 0 and a lift zb0 of b0 that is visible in zr 0 with index i 0

such that ‚.zb/D zb0, where ‚ is the unique automorphism representing � and satisfying‚.zr/D zr 0.

Then one can compute mb.�/ up to an additive constant that is independent of � .

Proof We give a formula for mb.�/ up to an error of at most one in terms of quantities s and s0 (defined
below) and then show how to compute s and s0, up to a uniform additive constant, from i and i 0.

Let zb D .zL1; zL2/, where zL1 D z̀i�1 and zL2 D z̀i or z̀iC1 and let zA be the common axis for zb. By
Corollary 5.17, zA projects to a twist path w and we assume that the orientation on zA agrees with that
of w. Similarly, zb0 D .zL01; zL

0
2/, where zL01 D z̀

0
i 0�1 and zL02 D z̀

0
i 0 or z̀0i 0C1, and zA0 is the common axis

for zb0. Let zx1 be the nearest point on zA to the initial end @� zL1. (See Figure 7.) If L1 is not a linear
staple then H�;c.L1/D ŒF .@� zL1/; @C zL1�. In this case, the ray from zx1 to @� zL1 contains an edge z�i�1
of height greater than that of F.@� zL1/ and so zx1 is the nearest point on zA to any point in F.@� zL1/.

By hypothesis, �.L1/ D L01. Since � 2 X , it follows that L01 2 �.H�;c.L1// D H�;c.L1/. Choose
a homotopy equivalence h W G0 ! G that preserves markings. If L1 is linear then H�;c.L1/ D fL1g

so L01 D L1. In this case, we let zh1 W zG0 ! zG be the lift of h satisfying zh1.zL01/ D zL1. If L1 is not
linear then H�;c.L1/ D ŒFc.@� zL1/; @C zL1�. In this case, we let zh1 W zG0! zG be the lift of h satisfying
zh1#.
zL01/ 2 .@Fc.@� zL1/; @C zL1/. Let ‚1 be the unique lift of � satisfying ‚1.zL1/D zh1#.zL

0
1/ 2 H�;c.zL1/.
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z�i�1

zh1.@C zL
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@� zA zh2.@C zL
0
2/
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zh1.@� zL
0
1/

@� zL1

Figure 7

Let zx2 and zy2 be the nearest points on zA to the terminal ends @C zL2 and zh1#.@C zL
0
2/, respectively.

Arguing as above, there is a lift zh2 W zG0! zG such that zh2#. zA
0/D zA and such that zx2 is the nearest point

to zh2.@C zL02/. Moreover, there is a lift ‚2 of � such that zh2#.zL
0
2/ D ‚2.

zL2/ 2 .@�L2; @Fc.@C zL2//. It
follows from Definition 15.36 that the oriented path z̨ � zA from zx2 to zy2 has the form zwmb.�/.

Let ž and ž0 be the paths in zA connecting zx2 to zx1 and zx1 to zy2, respectively. Let s and s0 be the number
of complete copies of zw (counted with orientation) crossed by the paths ž and ž0, respectively. Then
jmb.�/� .s

0C s/j � 1.

Determining s from the index i is straightforward. We consider the cases of Lemma 15.26. In case (1),
�i�i�iC1 is quasi-exceptional and �i D ws , where w is the twist path for �i and x�iC1. In case (a),
�i D E

0ws xE 00 for some E 0; E 00 2 Linw.f /. In case (b), �i D E 0 is linear with twist path w and `i is
not periodic. If �i has an initial segment of the form wj for some j > 0 then s is the maximal such j ;
otherwise �s is the maximal j � 0 such that �i has an initial segment of the form w�j . In case (c),
x�iC1DE

0 is linear with twist path w and `i�1 is not periodic. In this case s is determined by the maximal
initial segment of x�i of the form w˙j as in the case (b).

Let zx01 and zx02 be the nearest points on zA0 to @� zL01 and @C zL01, respectively. Let zw0 be a fundamental
domain for the natural action of Z on zA0. Arguing as above, using G0 in place of G, we can compute the
number t 0 of complete copies of zw0 (counted with orientation) crossed by the path connecting zx02 to zx01.
We can also compute the bounded cancellation constant C 0 for h; see [Cooper 1987], also [Bestvina et al.
1997, Lemma 3.1]. Since js0� t 0j< 2C 0, mb.�/D t 0C s up to the additive constant C D 2C 0C 1.
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Proof of Lemma 16.7 By Lemma 15.31 and Remark 15.32 applied to  , b0 D �.b/ and r 0 D �.r/ we
can find B 0 so that each lift zb0 2S2. ; zr 0/ of b0 that satisfies z̀0B 0 �

zb0 is visible in zr 0. After increasing B 0 if
necessary, we may assume that z̀0B 0 is topmost in zr 0. Now apply Lemma 15.31 to find a lift zb0 2 S2.�; zr/
of b. Using the given upper bound C on joffset.�; r/j, choose q� 0 so that z̀0B 0 � �.ˆ

qzb0/. Let zbDˆqzb0.
From C and q we can compute an upper bound I 0 for the index of �.zb/. By Lemma 15.31, we can list
all visible zb0 with index at most I 0 and so have finitely many candidates for �.zb/. Applying Lemma 16.9
to b and each of these candidates gives us the desired upper bound for mb.�/.

16.2 Stabilizing a ray

Suppose that Ei is the unique edge of height i > 0 and that � �G is a path with height i whose endpoints,
if any, are not contained in the interior of Ei . Recall from Definition 4.1.3 and Lemma 4.1.4 of [Bestvina
et al. 2000] that � has a unique splitting, called the highest-edge splitting of � , whose splitting vertices
are the initial endpoints of each occurrence of Ei in � and the terminal vertices of each occurrence of xEi
in � . In particular, each term in the splitting has the form Ei xEi , Ei ,  xEi or  for some  �Gi�1.

The following lemma is used in the proof of Lemma 16.8. We make implicit use of [Feighn and Handel
2011, Lemma 4.6] which states that if f W G! G is completely split and a path � � G is completely
split then f k# .�/ is completely split for all k � 0.

Lemma 16.10 Suppose that f W G! G is a CT representing �, that the edge E corresponds to some
r 2R.�/, that � is a finite subpath with endpoints at vertices and that RD Œ�RE �. Equivalently , RD �R1
for some finite path � with endpoints at vertices and some subray R1 of RE . Then there exists a
computable k � 0 such that f k# .R/ is completely split.

Proof The proof is by induction on the height h of R, with the base case being vacuous because the
lowest stratum in the filtration is a fixed loop.

We are free to replace R by an iterate f l# .R/ whenever it is convenient. We also have a less obvious
replacement move.

(1) If there is a splitting RD � �R0 where � has endpoints at vertices then we may replace R by R0.

This follows from:

� [Feighn and Handel 2011, Lemma 4.25] For any finite path � with endpoints at vertices, f k# .�/ is
completely split for all sufficiently large k.

� [Feighn and Handel 2011, Lemma 4.11] If a path � has a decomposition � D �1�2 with �1 and
�2 completely split and the turn .x�1; �2/ legal then � D �1�2 is a complete splitting.

� One can check if a given finite path with endpoints at vertices has a complete splitting (because
there are only finitely many candidate decompositions).
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Let h1 be the height of R1. Each splitting vertex v for the highest-edge splitting of R1 is also a splitting
vertex for the complete splitting of RE and so determines a splitting of R1 into a finite initial subpath
followed by a completely split terminal ray  . If hD h1, then v determines a splitting of R into a finite
initial subpath followed by  . In this case, an application of (1) completes the proof.

We may therefore assume that h1 < h and so the highest-edge splitting of R is finite. Applying (1),
we may assume that the highest-edge splitting of R has just one term. Thus R D Eh�R1, where Eh
is the unique edge with height h and � has height less than h. Let h2 < h be the height of R2 D �R1.
(At various stages of the proof, we will let R2 be the ray obtained from R by removing its initial edge.
The exact edge description of R2 will vary with the context.)

Let uh be the path satisfying f .Eh/DEh �uh. If the height of uh is > h2 then f#.R/DEh � Œuhf#.R2/�

is a splitting so we may replace R by Œuhf#.R2/�, which has height less than h. In this case the induction
hypothesis completes the proof. If the height of uh is < h2 and R2 D �1 � �2 � : : : is the highest-edge
splitting of R2, then R D ŒEhuh�1� � �2 � : : : is a splitting and the same argument completes the proof.
We are now reduced to the case that the height of uh is h2, and we make this assumption for the rest of
the proof.

We claim that there exists k � 0 so that Ehuhf#.uh/ is an initial segment of f k# .R/. (Note that for any
given k, one can check if Ehuhf#.uh/ is an initial segment of f k# .R/ and so k with this property can
be computed once one knows that it exists.) Choose a lift zEh � zG of Eh, let � be the component of
the full preimage of Gh2 that contains the terminal zy endpoint of zEh and let zf W zG! zG be the lift of f
that fixes the initial endpoint zx of zEh. Then � is zf -invariant and the lift of R whose first edge is zEh
decomposes as zRD zEh zR2, where zR2 � � is a lift of R2. Let zuh be the lift of uh with initial endpoint zy.
Then zf . zEh/ D zEh � zuh and zR zEh n

zEh D zuh � f#.zuh/ � f
2

# .zuh/ � : : : is a ray of height h2 that converges
to an attracting fixed point Q 2 @� for the action of zf on @� . By Lemma 2.8(ii) of [Bestvina et al.
2004] there is another fixed point P ¤Q 2 @� for the action of @ zf . The line

��!
PQ � � from P to Q is

zf#-invariant and has height h2. Let V be the set of highest-edge splitting vertices of
��!
PQ with the order

induced by the orientation on
��!
PQ. Then zf# preserves the highest-edge splitting of

��!
PQ and so zf induces
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an order-preserving bijection of V . Our choice of Q guarantees that zf moves points in V away from
P and towards Q. Since zf induces an order-preserving injection of the set V 0 of highest-edge splitting
vertices of zR zEh n zEh into itself, it follows that V 0 � V . To see this, note that for each zv0 2 V 0 and all
sufficiently large m, zf m.zv0/ is a highest-edge splitting vertex for the common terminal ray of

��!
PQ and

R zEh n
zEh and so zf m.zv0/ 2 V . Since the restriction of zf m to the vertex set of � and the restriction of

zf m to V are bijections, zv0 2 V .

Since zr is an attractor for ˆzr , we get zr ¤ P . If zr DQ then the lemma is obvious so we may assume
that the nearest-point projection p.zr/ of zr to

��!
PQ is well-defined. The line

�!
zrQ intersects

��!
PQ in the

ray
����!
p.zr/Q. The set of highest-edge splitting vertices of

����!
p.zr/Q equals the intersection of the set of

highest-edge splitting vertices of
��!
PQ and the set of highest-edge splitting vertices of

�!
zrQ. It follows that

the set of highest-edge splitting vertices of
��������!
p. zf#.zr//Q is the zf#-image of the set of highest-edge splitting

vertices of
����!
p.zr/Q. Thus p.f k# .zr//!Q and, after replacing R by some zf k# .R/, we may assume that

p.zr/ is contained in f 2# .zuh/ �f
3

# .zuh/ � : : : . This completes the proof of the claim.

We now fix k satisfying the conclusions of the above claim and replace R by f k# .R/. Thus R D
Ehuhf#.uh/ � � � and we let R2 D uhf#.uh/ � � � be the terminal ray of R obtained by removing its initial
edge. We will prove that the decomposition of R determined by the highest-edge splitting vertices of R2
is a splitting of R. The proof then concludes as in previous cases.

We continue with the notation established in the proof of the claim. Choose zv 2 V \ zuh and decompose
zR as zRD z̨ žz , where

z̨ D
�!
zxzv; ž D

����!

zv zf .zv/ and z D
����!
zf .zv/zr:

Since z̨ ž is a subpath of zEh � zuh �f#.zuh/ �f
2

# .zuh/ � : : : , no edges of height h2 are canceled when zf .z̨ ž/
is tightened to zf#.z̨ ž/. Similarly, no edges of height h2 are canceled when zf . žz/ is tightened to zf#. žz/

because žz is a concatenation of terms in the highest-edge splitting of zR2. Since ž contains at least one
edge of height h2, it follows that no edges of height h2 are canceled when zf . zR/D zf .z̨ žz/ is tightened
to zf#.R/. This proves that the highest-edge splitting of zR2 is a splitting of zR, as desired.

16.3 Proof of Lemma 16.8

Recall from Notation 15.18 and Lemma 16.1 that T�;zr is the set of topmost elements of �NP.�; zr/ and
that r 0 D �.r/ and r 01 D �.r1/ are independent of � 2 X that conjugates � to  .

Suppose that zr1 and zr 01 are lifts of r1 and r 01, respectively, and that ‚ is the lift of � satisfying ‚.zr1/D zr 01.
If ‚.zL/D zL0, where zL 2 T�;zr1 has index s and zL0 2 T ;zr 01 has index s0, then offset.�; r1/D s

0� s. We
will not be able to find zL and zL0 whose indices we know exactly but we will be able to find zL and zL0

whose indices we know up to a uniform bound, and this is sufficient.
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Before beginning the formal proof, we introduce a way to find distinguished elements of T�;zr1 .

Notation 16.11 Suppose r1<c r (Notation 6.1) and that zr1 and zr are lifts such that T�;zr1\�NP.�; zr/¤∅.
The .zr; zr1/-extreme line is the element of T�;zr1 \�NP.�; zr/ that is maximal in the order on T�;zr1 .

The next lemma states that extreme lines behave well with respect to conjugation.

Lemma 16.12 Suppose that � conjugates � to  , that ‚ 2 � , that zr and zr1 are lifts of r >c r1 and that
zL2 2 T�;zr1 is .zr; zr1/-extreme. Then ‚.zL2/ is .‚.zr/;‚.zr1//-extreme.

Proof This follows from Lemmas 15.21 and 15.3, which imply that ‚ maps T�;zr1 to T ;‚.zr1/ preserving
order, and maps �NP.�; zr/ to �NP. ;‚.zr//.

Proof of Lemma 16.8 If C is an upper bound for joffset.�; r/j, it suffices to find, for each jcj � C ,
an upper bound C1;c for joffset.�; r1/j assuming that offset.�; r/D c. The desired upper bound C1 for
joffset.�; r1/j is then maxfC1;cg. Going forward we may therefore assume that we know joffset.�; r/j

exactly.

There is no loss of generality in assuming r1 <c r . Let E and E1 be the elements of Ef corresponding
to r and r1, respectively. We will assume that E1 occurs in RE ; the remaining case, in which xE1 but
not E1 itself occurs in RE , is similar and is left to the reader. Recall from Notation 15.18 that the
visible elements of T�;zr are enumerated zL1; zL2; : : : . For j � 0, define qj � 0 by zLj D z̀qj and so
zLj D . zR

�
qj
/�1z�qj

zRCqjC1.

The first step of the proof is to show that:

(a) There is a computable J > 0 so that if j � J and if zr1;j WD @C zLj is a lift of r1 (equivalently,
�qjC1 D E1 and RCqjC1 D RE1), then the line Sj connecting zr D @C zR zE to zr1;j is completely
split. See Figure 9.

zE

z�qjC1 zw0

zw4

SjTj

zR zE

zr

zr1;j

Figure 9
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Lemma 15.20 implies that zf k# .zLj /D zLjCk�.�;r/ and hence zf k# .Sj /D SjCk�.�;r/. It therefore suffices
to show that for each 0� j � �.�; r/, there is a computable K � 0 so that zf K# .Sj / (and hence zf k# .Sj /
for all k �K) is completely split.

The line Sj decomposes as a concatenation of (the inverse of) a ray in zR zE n zE and a proper subray of
a lift of RE1 . The height of the former is at least that of E1 and the height of the latter is at most that
of E1. Moreover, zR zE1 n

zE1 has height less than that of E1. It follows that zR zE n zE and Sj have the
same height and that each splitting vertex zv for the highest-edge splitting of Sj is contained in zR zE n zE
and is a splitting vertex for zR zE . Splitting Sj at one such zv we write Sj D zA�1j � zBj , where Aj is a
concatenation of terms in the complete splitting of RE , and Bj has a subray in common with RE1 . For
all k � 0, SjCk�.�;r/D zf k# .Sj /D zf

k
# .
zA�1j / � zf k# .

zBj /. By Lemma 16.10, we can find K so that f K# .Bj /

is completely split. It follows — see the second bullet point in the proof of Lemma 16.10 — that zf K# .Sj /

is completely split. This completes the first step.

Let T ;zr 0 D fzL01; zL
0
2; : : :g be the set of topmost elements of �NP. ; zr

0/. By definition, ‚.zLj / D
zL0jCoffset.�;r/. The following  and r 0 analogue of (a) is verified by the same arguments given for (a):

(b) There is a computable J 0 > 0 such that if j � J 0 and if zr 01;j WD @C
zL0j projects to r 01, then the line

S 0j connecting zr 0 to zr 01;j is completely split.

Note also that:

(c) For all j � 1, the line Tj connecting the initial vertex of zR zE to zr1;j is completely split, and
similarly for the line T 0j connecting the initial vertex of zR0

zE 0
to @C zL0j .

For j � 0, let Vj be the set of highest-edge splitting vertices of zRCqjC1 n z�qjC1 (which is a terminal ray
of zLj ) and V 0j be the set of highest-edge splitting vertices of zR0Cq0jC1 n z�

0
q0
j
C1. The second step of the proof

is to choose an index j so that the following four properties are satisfied:

(i) Sj is completely split.

(ii) There exist zw 2 Vj such that zw; zf . zw/; zf 2. zw/ 2 zRCqjC1\
zR zE .

(iii) Letting j 0 D j C offset.�; r/, the line S 0j 0 is completely split.

(iv) There exist zw0 2 V 0j 0 such that zw0; zg. zw0/; zg2. zw0/ 2 zR0
C

q0
j 0
C1\

zR0
zE 0

.

Items (i) and (iii) hold for all j � maxfJ; J 0 � offset.�; r/g. For (ii), write j D aj C cj �.�; r/, where
0 � aj < �.�; r/. Then zLj D zf

cj
# .zLaj /, and zLj \ zR zE contains an initial segment of zRCqjC1 whose

length goes to infinity with j . If cj is sufficiently large then (ii) is satisfied. Item (iv) is established in the
same way, completing the second step.

We have ‚.zr/ D zr 0 and ‚.zLj / D zL0j 0 . The latter implies that ‚.zr1;j / D zr 01;j 0 . Lemma 16.12 implies
that ‚ maps the .zr; zr1;j /-extreme line to the .zr 0; zr 01;j 0/-extreme line. Let sj be the index of the .zr; zr1;j /-
extreme line (as an element of Tzr1;j ) and let s0j 0 be the index of the .zr 0; zr 01;j 0/-extreme line (as an element
of Tzr 0

1;j 0
). Then offset.�; r1/D s

0
j 0 � sj . We will complete the proof by finding aj � sj � bj such that
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bj � aj � 3�.�; r1/, and a0j 0 � s
0
j 0 � b

0
j 0 such that b0j 0 � a

0
j 0 � 3�. ; r

0
1/D 3�.�; r1/. These allow us to

compute offset.�; r1/ with an error at most 6�.�; r1/ and hence compute an upper bound for offset.�; r1/.

Let h2 be the height of RE1 nE1 (which is the same as the height of zRCqjC1 n z�qjC1) and let E2 be the
unique edge of height h2. We claim that:

(d) Each zw 2 Vj \ zR zE is a splitting vertex for the complete splittings of Tj and zR zE .

It suffices to show that zw is not contained in the interior of a term z� in one of those splittings. Such
a z� would be an indivisible Nielsen path or exceptional path with height � h2 and whose first edge is
contained in zRCqjC1 n z�qjC1 (because z�qjC1 is a term in both splittings) and so has height at most h2.
Thus E2 would be a linear edge with twist path w2 and � would have one of the following forms:
E2w

p
2
xE2, E2w

p
2
xE3 or E3w

p
2
xE2, where p ¤ 0 and where E3 ¤E2 is a linear edge of height < h2 with

twist path w2. In none of these cases does the interior of � contain a vertex that is the initial endpoint
of E2 or the terminal endpoint of xE2. This completes the proof of (d).

A similar analysis shows that:

(e) Each zw 2 Vj that is disjoint from zR zE is a splitting vertex for the complete splittings of Sj and Tj .

Let zw0 be the last element of Vj such that zw1 D zf . zw0/ and zw2 D zf 2. zw0/ are contained in zR zE (and
hence contained in Vj \ zR zE ). Item (d) implies that the path z̨ connecting zw0 to zw2 inherits the same
complete splitting from zR zE and from zRCqjC1. Thus the lift z�a of E2 or xE2 with endpoint zw1 determines
an element zL1 of T�;zr1;j \�NP.�; zr/. (If z�a is a lift of E2 then zw1 is the initial endpoint of z�a and
zL1 D z̀a�1; if z�a is a lift of xE2 then zw1 is the terminal endpoint of z�a and then zL1 D z̀a1 .) In particular,
the index sj of the .zr; zr1;j /-extreme line (as an element of T�;zr1;j \�NP.�; zr/) is at least as big as that
of zL1.

Let zw3 D zf 3. zw0/ and zw4 D zf 4. zw0/, neither of which is contained in zR zE . The lift of E2 or xE2 with
endpoint zw4 determines an element zL4 in T�;zr1;j . Item (e) and the hard splitting property of a complete
splitting (Lemma 4.11 of [Feighn and Handel 2011]) implies that no point in the terminal ray of zRCqjC1
that begins with zw4 is ever identified, under iteration by zf , with a point in zR zE . It follows that zL4 is not
an element of �NP.�; zr/ and so sj is less than the index of zL4.

Combining the inequalities established in the preceding two paragraphs we are able to compute sj with
an error of at most 3�.�; r1/. The parallel argument allows us to compute the index s0j of the .zr 0; zr 01;j 0/-
extreme line (as an element of T�;zr1;j ) with an error of at most 3�. ; r 01/D 3�.�; r1/. As noted above,
this completes the proof.

17 Proof of Proposition 16.4

Some of our arguments are by induction up through the elements Fk of the chain c. We write �jFkD jFk
if �jŒF � D  jŒF � for each component ŒF � of Fk . Similarly, we say � jFk conjugates �jFk to  jFk
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if �� jFk D  jFk . If Gs is the core filtration element corresponding to Fk and if C is a component
of Gs with rank one, then ŒC � is a component of F0 and we define �.f jC/D C . With this convention,
�.f jGs/ is the disjoint union

F
�.f jCi / as Ci varies over the components of Gs . (See Section 4.1.)

We show below that Proposition 16.4 is a consequence of the following lemma and proposition. The
former addresses the restrictions to F0 and the latter provides the inductive step for the higher-order
one-edge extensions.

Lemma 17.1 Suppose that �; 2 UPG.Fn/ share the special chain c and satisfy Ic.�/ D Ic. /. Let
F0 D F0.�/D F0. /. Then

(1) �.L/D L for each � 2 X and each L 2�.�/ that is carried by F0, and

(2) if there exists �0 2 X such that ��0 jF0 D  jF0, then �jF0 D  jF0 and �� jF0 D  jF0 for all
� 2 X .

Proposition 17.2 Suppose that �; 2 UPG.Fn/ share the special chain c and satisfy Ic.�/D Ic. /, and
that the special one-edge extension eD .F� @ FC/ in c satisfies

(1) �jF� D  jF�,

(2) fL 2�.�/ j L� F�g D fL0 2�. / j L0 � F�g.

Then there is an algorithm to decide if there exists � 2 Ker. xQ/ < X such that the following are satisfied :

(3) �� jFC D  jFC,

(4) �.fL 2�.�/ j L� FCg/D fL0 2�. / j L0 � FCg.

Moreover , if such an element � exists , then one is produced.

Before proving Lemma 17.1 and Proposition 17.2, we use them to prove Proposition 16.4.

Proof of Proposition 16.4, assuming Lemma 17.1 and Proposition 17.2 If �jF0 ¤  jF0, then no
element of X conjugates � to  by Lemma 17.1(2) so we return NO and STOP. Otherwise, �� jF0D jF0
for all � 2 X .�/, and we define �0 Didentity and  0 D  .

Suppose cD.F0@F1@ � � �@Ft /. Apply Proposition 17.2 with .�;  0;F0;F1/ in place of .�;  ;F�;FC/.
If the 17.2-algorithm returns NO then there is no � as in the conclusion of Proposition 16.4 because
any such � would satisfy items (3) and (4) of Proposition 17.2; we return NO and STOP. Otherwise,
Proposition 17.2 gives us an element �1 2 Ker. xQ/. Letting  1 D  

.��11 /
0 we have that �jF1 D  1jF1

and fL 2 �.�/ j L � F1g D fL0 2 �. 1/ j L0 � F1g. From �1 2 X and Lemma 14.6, it follows that
I.�/D I. 1/.

Apply Proposition 17.2 with .�;  1;F1;F2/ in place of .�;  ;F�;FC/. Suppose that the 17.2-algorithm
returns NO. Then there are no elements of Ker. xQ/ that conjugate �jF2 to  1jF2, and so also no elements
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of Ker. xQ/ that conjugate � to  1. It follows also then that there are no elements � of Ker. xQ/ that
conjugate � to  . Indeed for such a � , ��11 � would conjugate � to  1. We therefore return NO and
STOP. Otherwise, Proposition 17.2 gives us an element �2 2 Ker. xQ/. Letting  2 D  .�2/

�1

1 we have
that �jF2 D  2jF2 and fL 2 �.�/ W L � F2g D fL0 2 �. 2/ W L0 � F2g. As in the previous case,
I.�/D I. 2/. Repeat this until either some application of Proposition 17.2 returns NO or until we reach
 t D 

.�1:::�t /
�1

satisfying �D �jFt D t jFt D t . In the former case there is no � as in the conclusion
of Proposition 16.4 and we return NO and STOP. In the latter case � D �1 : : : �t conjugates � to  and is
an element of Ker. xQ/; we return YES and � and then STOP.

Proof of Lemma 17.1 If L2�.�/ is carried by F0, then the ends of L are periodic. If L is periodic then
zLD a1 for some Œa� 2A.�/; see Corollary 5.17(1). By definition of X , �.Œa�/D Œa� and so �.L/D L.
Otherwise, L 2 �NP.�/ has type P-P, in which case H.L/ determines L; see Section 13. Again by
definition of X , �.H.L//D H.L/ and so �.L/D L. This verifies (1).

It suffices to show that if a free factor F represents a component of F0 then either �� jF D  jF for all
� 2 X .�/ (and in particular for � D identity) or �� jF D  jF is satisfied by no element of X .�/.

Let �F D �jF and  F D  jF . If F has rank one, then �F and  F are both the identity because � and
 are rotationless. We may therefore assume that F has rank at least two. Since R.�F /D∅, Lemma 3.9
implies that FixN.ˆF /D @ Fix.ˆF / for each ˆF 2P.�F /. Also, FixN.ˆF / contains at least three points,
so Fix.ˆF / has rank at least two and Fix.ˆF /¤ Fix.ˆ0F / for ˆF ¤ˆ0F 2 P.�F / by Lemma 4.4.

There is a uniqueˆ2P.�/ such thatˆF DˆjF . From I.�/D I. /, it follows that there exists‰ 2P. /
such that Fix.ˆ/D Fix.‰/. Since � 2 X , there exists ‚ representing � such that Fix.ˆ/ is ‚-invariant.
It follows that ‚.F / \ F is nontrivial and hence that ‚.F / D F (because F is a free factor and �
preserves ŒF �). Letting ‰F D‰jF and‚F D‚jF , we have that FixN.ˆF /D @ Fix.ˆF /D @ Fix.‰F /D

FixN.‰F / is ‚F -invariant.Lemma 4.1 implies that the eigengraphs for �F and for  F carry the same
lines and that � preserves this set of lines. Thus �F ,  F and �F satisfy the hypotheses of Lemma 4.21.

If a 2 F is fixed by distinct ˆF ; ˆ0F 2 P.�F / then ŒˆF ; a� is an element of SA.�F / and Œˆ; a� is an
element of SA.�/. Lemma 4.21 implies that

ŒˆF ; a� 7! Œ‰F ; ‚F .a/�

defines a bijection BSA;F W SA.�F /! SA. F / that is independent of the choice of ‚F representing �F
and preserving FixN.ˆF /. Since � 2 X , by Definition 14.1(6) we have ŒFix.ˆ/; a�D �.ŒFix.ˆ/; a�/D

Œ‚.Fix.ˆ//;‚.a/�D ŒFix.ˆ/;‚.a/�. Equivalently, there exists c 2Fn such that ic.Fix.ˆ//D Fix.ˆ/ and
ic‚.a/D a. Thus c 2 Fix.ˆ/ and after replacing ‚ by ic‚ we may assume that ‚.a/D a and hence
that ‚F .a/D a. We conclude that BSA;F is independent of � .

Check by inspection if BSA;F preserves twist coordinates. If it does then Lemma 4.21 implies that each
� 2 X .�/ conjugates �F to  F ; if not, then no element of X .�/ conjugates �F to  F .
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The rest of the paper is dedicated to the proof of Proposition 17.2.

Set cD .F0 @ F1 @ � � �@ Ft ) and thus e 2 c has the form F� @ FC, where F� D Fk�1 and FC D Fk
for some 1� k � t . (We will use these notations interchangeably depending on the context.)

Definition 17.3 For � D˙, X � is the set of � 2 X such that

(a) � 2 Ker. xQ/, and

(b) � jF� conjugates �jF� to  jF�.

By the next lemma, our goal is to produce an element of XC or deduce that XC is empty.

Lemma 17.4 An element � 2 Ker. xQ/ satisfies items (3) and (4) of Proposition 17.2 if and only if
� 2 XC.

Proof Comparing the definitions, it suffices to show that each � 2 XC satisfies Proposition 17.2(4);
namely, �.fL 2�.�/ j L � FCg/D fL0 2�. / j L0 � FCg. By symmetry, it suffices to show that if
L 2�.�/ is carried by FC then �.L/ 2�. / is carried by FC. Since FC is �-invariant, it suffices to
show that �.L/ 2�. /. If L is periodic then zLD a1 for some Œa� 2A.�/ by Corollary 5.17(1). Since
� 2X , one has that �.Œa�/D Œa� and �.L/DL2�. /. OtherwiseL2�NP.�/ and, as Ic.�/D Ic. /, there
exists L0 2�NP. / such that H.L/D H.L0/. Since � jFC conjugates �jFC to  jFC, Corollary 5.17(4)
and Lemmas 4.1 and 3.16 imply that �.L/ lifts into �.gu0/. Also, �.L/ 2 �

�
H.L/

�
D H.L/ D H.L0/

because � 2 X . Lemma 13.9 implies that �.L/D L0 2�NP. /, and we are done.

By [Feighn and Handel 2018, Theorem 7.4] we can choose CTs f WG!G and g WG0!G0 representing
� and  , respectively, such that each Fi is realized by a core filtration element and such that the core
filtration elements of G and G0 realizing F� D Fk�1 are identical as marked graphs and that after
identifying them to a common subgraph Gs , the restrictions fs D f jGs and gs D gjG0s are equal. In
particular,

(1) �.fs/D �.gs/.

Before describing fs and gs in more detail, we record some useful properties of X�. We define
R.�jF�/D[R.�jŒF �/ as ŒF � varies over the components of F�.

Lemma 17.5 Each � 2 X� satisfies the following properties:

(1) � jF� commutes with �jF� D  jF�.

(2) � fixes each element of �.�/ that is carried by F�.

(3) � fixes each element of R.�jF�/.
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Proof Property (1) follows from Definition 17.3(b) and the hypothesis that �jF�D jF�. For (2), note
that if L 2�.�/ is carried by F� then L lifts to �.fs/ by Corollary 5.17(4) so (1) and Lemmas 4.1 and
3.16 imply that �.L/ 2 �.gs/. Since �.L/D L if L is periodic and otherwise �.L/ 2 �.H.L//D H.L/,
(2) follows from (1) and Lemma 13.9. By (1) and Lemma 16.1, �.r/ is independent of � 2 X�. Item (3)
therefore follows from the fact that X� contains the identity.

Suppose that Gu �G and G0u0 �G
0 are the core filtration elements realizing FC D Fk . Let fu D f jGu

and gu0 D gjG0u0 . Since F� @ FC is a special one-edge extension, Gu is obtained from Gs by adding a
single topological arc E which is either a single edge D or is the union E D xCD of a pair of edges C
and D with common initial endpoint not in Gs . (We have previously denoted edges in G by E and now
we are using C and D instead and using E for a topological arc. This is more convenient for the current
argument and should not cause confusion.) By Lemma 6.9, there are three possibilities. In each case,
there is one component ��.fu/ of �.fu/ that is not a component of �.fs/.

[HH] (E D xCD consists of two higher-order edges) �.fu/ is obtained from �.fs/ by adding a new
component ��.fu/ which is a line labeled R�1C �RD .

[LH] (E D xCD where C is linear and D is higher-order) �.fu/ is obtained from �.fs/ by adding a
new component ��.fu/ which is a one-point union of a lollipop corresponding to C and a ray
labeled RD .

[H] (E D D, a higher-order edge) �.fu/ is a one-point union of �.fs/ and a ray labeled RD .
��.fu/ is the one-point union of a component ��.fs/ of �.fs/ and a ray labeled RD .

Similarly, we can orient the topological arc E 0 that is added to Gs DG0s to form G0u0 so that �.gu0/ is
obtained from �.gs/ in one of these three ways.

By Lemmas 6.10 and 6.13, we may assume:

(2) The extensions �.fs/� �.fu/ and �.gs/� �.gu0/ have the same type HH, LH or H.

For if not, then �jFC and  jFC are not conjugate by an element of X so we return NO and STOP.

Remark 17.6 A vertex v in G that is new in an HH extension, is not incident to any fixed or linear
edge. It therefore follows from the construction of �.f / given at the beginning of Section 4.1 that the
component �.f; v/ of �.f / corresponding to v is obtained from the disjoint union of eigenrays RE , one
for each E 2 E.f / with initial vertex v, by identifying their initial vertices. Similarly, if v is new in an
LH extension, then �.f; v/ is the one-point union of the lollipop associated to the unique linear edge with
v as initial vertex and the eigenrays RE associated to E 2 Ef with v as initial vertex.

Lemma 17.7 Suppose that e has type H and that XC ¤∅. Then ��.fs/D ��.gs/.
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Proof Assume that � 2 XC. Denote the set of lines that lift into a Stallings graph � by ƒ.�/. Lemmas
3.16 and 4.1 imply that �.ƒ.��.fu///Dƒ.��.fu0//. By construction,

ƒ.��.fs//D fL 2ƒ.��.fu// j L�Gsg and ƒ.��.gs//D fL 2ƒ.��.gu// j L�Gsg:

Thus �.ƒ.��.fs///Dƒ.��.fs//.

The proof now divides into cases. If ��.fs/ contains a ray corresponding to some r 2R.�/ thenƒ.��.fs//
contains a line that ends at r . Lemma 17.5(3) then implies that ƒ.��.gs// contains a line that ends at r
and hence that ��.fs/ contains a ray corresponding to r 2R.�/. This proves that ��.fs/D ��.gs/.

We may now assume that ��.fs/ is compact. If ��.fs/ has rank at least two then �1.��.fs// is a
component of Fix.�/ and is hence �-invariant. In this case, �1.��.fs//D �1.��.gs//. Lemma 4.4(1)
implies that ��.fs/D ��.gs/. The final case is that ��.fs/ has rank one and so is a topological circle
labeled by a component Y of G0 consisting of a single edge e. In this case, ƒ.��.fs//D fe1; e�1g,
which is � -invariant. It follows that ƒ.��.gs//D fe1; e�1g and hence that ��.fs/D ��.gs/.

We may therefore assume that:

(3) In the case H, ��.fs/D ��.gs/.

We next apply the recognition theorem to give criteria for an element in X� to be in XC.

Lemma 17.8 The following are equivalent for each � 2 X�:

(1) � 2 XC; equivalently, � jFC conjugates �jFC to  jFC.

(2) (a) A line L lifts into �.fu/ if and only if �.L/ lifts into �.gu0/.

(b) If F� @ FC has type LH then the twist index for C with respect to f equals the twist index
for C 0 with respect to g. Equivalently, if f .C /D Cwd , then g.C 0/D C 0wd .

Proof (1) implies (a) by Lemmas 4.1 and 3.16. We may therefore assume that (a) is satisfied and prove
that (1) is equivalent to (b).

If ŒF � is a component of FC that is also a component of F� then � jF conjugates �jF to  jF because
� 2 X�. We may therefore restrict our attention to the unique component of FC that is not also a
component of F�. In other words, we may assume that Gu is connected and so may assume that GuDG
and FC D fŒFn�g.

By Lemma 4.21, there is a bijection B W SA.�/! SA. / that preserves twist coordinates if and only if �
conjugates � to  . By definition of X , � preserves each element of Aor.�/. We are therefore reduced to
showing that (b) is satisfied if and only if the following is satisfied for each Œa� 2Aor.�/:

(�) The restricted bijection B W SA.�; Œa�/! SA. ; Œa�/ preserves twist coordinates.
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Since (�) is satisfied for Œa� if and only if it is satisfied for Œxa�, we may assume that the twist path w for
Œa�u satisfies Œa�D Œw�. Extending Notation 4.7, we define

P.�; a/ WD fˆa;0; : : : ; ˆa;m�1g:

In particular, ˆa;0 is the base principal lift for a (with respect to f ) and there is an order-preserving
bijection between the set fE1; : : : ; Em�1g of linear edges with axis Œa� and fˆa;1; : : : ; ˆa;m�1g. For
1 � j � m� 1, there exist distinct twist indices dj ¤ 0 such that f .Ej / D Ejwdj . Define d0 D 0.
Lemmas 4.8 and 4.12 imply that

SA.�; Œa�/D fŒˆa;0; a�; : : : ; Œˆa;m�1; a�g

and that the twist coefficient for the pair .Œˆa;i ; a�; Œˆa;j ; a�/ is di � dj .

We consider two cases. In the first, we assume that either

� F� @ FC has type LH and C … fE1; : : : ; Em�1g, or

� F� @ FC does not have type LH,

and we prove that (�) is satisfied.

In this case,

P. ; a/D f‰a;0; : : : ; ‰a;m�1g and SA. ; Œa�/D fŒ‰a;0; a�; : : : ; Œ‰a;m�1; a�g;

with the same sequence of linear edges fE1; : : : ; Em�1g and the same sequence of twist indices
fd0; : : : ; dm�1g. The bijection B W SA.�/! SA. / induces a permutation � of f0; : : : ; m� 1g satisfying
B.Œˆa;i ; a�/D Œ‰a;�.i/; a�. We will show that � is the identity and hence that B W SA.�; Œa�/! SA. ; Œa�/

preserves twist coordinates.

Choose an automorphism ‚ representing � and fixing a. By Lemma 4.21,

‚.FixN.ˆa;i //D FixN.‰a;�.i//:

Let Cs be the component of Gs that contains w, and hence contains each Ei , and let ŒF � be the
corresponding component of F�; we may assume without loss of generality that a 2 F . Applying
Notation 4.7 to �jF D  jF represented by the CT f jCs , we see that

P. jF; a/D P.�jF; a/ D fˆa;0jF; : : : ; ˆa;m�1jF g;

SA. jF; Œa�/D SA.�jF; Œa�/D fŒˆa;0jF; a�; : : : ; Œˆa;m�1jF; a�g;

with the same sequence of linear edges fE1; : : : ; Em�1g and the same sequence of twist indices
fd0; : : : ; dm�1g. Since Cs is f -invariant and ŒF � is �-invariant, (a) implies that the set of lines that
lift to �.fs/ is �-invariant. Applying Lemma 4.21 produces a permutation BF of SA.�jF; Œa�/ and
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an induced permutation �F of f0; : : : ; m � 1g. Since � jF commutes with �jF , BF preserves twist-
coordinates. Thus, di � dj D d�F .i/ � d�F .j / for all i and j . The only possibility is that �F is the
identity and so

FixN.‰a;�.i//\@F D‚.FixN.ˆa;i //\@F D .‚jF /.FixN.ˆa;i jF //D FixN.‰a;i jF /D FixN.‰a;i /\@F:

It follows that FixN.‰a;�.i//\ FixN.‰a;i / contains FixN.‰a;i /\ @F , which has cardinality at least three.
Lemma 3.7 implies that �.i/D i , as desired. This completes the first case.

For the second case, we assume that:

� F� @ FC has type LH and C 2 fE1; : : : ; Em�1g,

and prove that (�) is equivalent to (b).

Assuming without loss of generality that C D Em�1, the sequence of linear edges for  is given by
fE1; : : : ; Em�2; C 0g with twist indices fd0; : : : ; dm�2; d 0m�1g. Thus (b) is the statement that dm�1 D
d 0m�1 and we are reduced to showing that � is the identity.

If m> 2 then P.�jF; a/D P. jF; a/ is indexed by fE1; : : : ; Em�2g and the above analysis applies to
show that � restricts to the trivial permutation of f0; : : : ; m� 2g. It then follows that � must fix the one
remaining element m� 1 of f0; : : : ; m� 1g.

We are now reduced to the case that m D 2. In particular, Œa� … A.�jF /. By construction, the base
lift ˆa;0 restricts to an element of P.�jF; a/. It follows that ˆa;1 does not restrict to an element of
P.�jF; a/. The same holds for ‰a;0 and ‰a;1. Since conjugation by � jF preserves P.�jF; a/, it must
be that ˆ‚a;0 D‰a;0 and ˆ‚a;1 D‰a;1. This completes the proof of the lemma.

The next step in the algorithm is to check if the following condition is satisfied:

(4) If F� @ FC has type LH then the twist index for C with respect to f equals the twist index for
C 0 with respect to g.

If not, return NO and STOP. This is justified by Lemma 17.8.

Lemma 17.9 It holds that �.r/D r for all � 2 X� and r 2�R.�/DR.�jFC/ nR.�jF�/.

Proof Since � 2 Ker. xQ/, there exists p 2 Z such that Qb.�/ D p for all b 2 S2.�/ that occur in r .
Letting � D ��1�p, it follows that Qb.�/ D 0 for all b 2 S2.�/ that occur in r . Thus � satisfies
Lemma 15.45(4). Lemma 15.45(1) is obvious and the two remaining items in the hypotheses of that
lemma follow from Lemma 17.5. We may therefore apply Lemma 15.45 to conclude that �.r/D r and
hence that �.r/D ��.r/D �p.r/D r .

Corollary 17.10 If XC ¤∅, then �R.�/D�R. /.

Proof If � 2 XC then �R.�/D �.�R.�//D�R. /, where the first equality follows from XC � X�

and Lemma 17.9 and the second equality follows from Definition 17.3(b) and Lemma 3.16(3).
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Notation 17.11 One has that f .D/ D D � � for some completely split path � � Gs , and letting
SD D � � f#.�/ � : : : � f

j
# .�/ � : : : , the eigenray RD determined by D decomposes as RD D DSD . In

the HH case, SC is defined analogously and RC D CSC . The rays R0D0 , S
0
D0 , R

0
C 0 and S 0C 0 are defined

similarly using g WG0!G0 in place of f WG!G.

Each element of �R.�/ is represented by RD DDSD or RC D CRC and similarly for each element
of �R. /. [Feighn and Handel 2018, Lemma 6.3] therefore supplies an algorithm to decide if a given
r 2 �R.�/ and a given r 0 2 �R. / are equal. Applying this up to three times, we can decide if
�R.�/D�R. /. If �R.�/¤�R. / then XCD∅ by Corollary 17.10; return NO and STOP. We may
therefore assume that:

(5) �R.�/D�R. /. Denote this common set by �R. In the H and LH cases, the unique element
of �R corresponds to D and D0 and is denoted by rD . In the HH case, �RD frC ; rDg, where
rC corresponds to C and C 0, and rD corresponds to D and D0; this may require reversing the
orientation on E 0. Remark 13.1 implies that SD and S 0D0 are contained in the core filtration
element Gp that realizes F.rD/ and that, in the HH case, SC and S 0C 0 are contained in the core
filtration element Gq realizing F.rC /.

[Feighn and Handel 2018, Lemma 6.3] also gives us initial subpaths of SD and S 0D0 whose terminal
complements are equal. We may therefore assume:

(6) There is a finite path �D �Gp such that S 0D0 is obtained from �DSD by tightening. Similarly, in
the case HH, there is a finite path �C �Gq such that S 0C 0 is obtained from �CSC by tightening.

We record the following for convenient referencing.

Lemma 17.12 Suppose that f W G! G is a CT representing � and realizing c and that either L is an
element of �.�/ or L is an element of Le.�/, where e 2 c is not large. Let � be a line in H.L/. Then one
of the following (mutually exclusive) properties is satisfied :

� L does not cross any higher-order edges; � D L.

� LD ˇ�1Re (resp. R�1e ˇ) for some higher-order edge e and ray ˇ that does not cross any higher-
order edges; � D ˇ�1e� (resp. ��1xeˇ), where � is a ray in the core filtration element that realizes
F.re/.

� L D R�1e1 �Re2 , where e1; e2 are higher-order edges and � is a Nielsen path ; � D ��11 e�11 �e2�2,
where �1 is a ray in the core filtration element that realizes F.re1/ and �2 is a ray in the core
filtration element that realizes F.re2/.

Proof The description of L comes from Lemma 4.2 and the fact (Lemma 13.9) that each such L is
carried by �.f /. The description of � is immediate from the definitions of H.L/.

Geometry & Topology, Volume 29 (2025)



The conjugacy problem for UPG elements of Out.Fn/ 1807

Notation 17.13 Represent the trivial element of Out.Fn/ by a homotopy equivalence h WG!G0 that
restricts to the identity on Gs . We may assume that h.Gu/DG0u0 because Gu and G0u0 are core graphs
that represent FC. Recall from (5) that Gp is the core filtration element that realizes F.rD/ and that in
the HH case, Gq is the core filtration element realizing F.rC /.

Remark 17.14 If the endpoint set of E is equal to the endpoint set of E 0, then G and G0 differ only by
a marking change so one can view h, combinatorially, as a homotopy equivalence from G to G (that does
not preserve markings). In this case, [Bestvina et al. 2000, Corollary 3.2.2] implies that h.E/D x�E 0� or
h.E/D x� xE 0� for some paths �; � �Gs . The same conclusion holds if the endpoint sets of E and E 0 are
not equal, because one can fold initial and terminal segments of E 0 into Gs to arrange that the endpoint
set of E is equal to the endpoint set of E 0.

The next step in the algorithm is to check if the following statement is satisfied:

(7) If e has type HH, then h.E/D x�E 0� for some paths ��Gq and � �Gp.

If (7) fails then we return NO and STOP. We justify this by the following lemma.

Lemma 17.15 If e has type HH and XC ¤∅, then h.E/D x�E� for some paths �; � �Gs . Moreover ,
��Gq and � �Gp.

Proof By Remark 17.14, h.E/D x�E 0� or h.E/D x� xE 0� for some paths �; � � Gs , so for the main
statement, we just want to rule out the latter possibility. Let L D R�1C RD and L0 D R�1C 0RD0 . Then
Le.�/ D fL;L

�1g and Le. / D fL
0; L0

�1
g. Since XC ¤ ∅, there exists �0 2 X� such that �0jFC

conjugates �jFC to  jFC. Thus �0.Le.�//D Le. / and, by Lemma 17.9, L and �0.L/ have the same
initial ends and the same terminal ends. It follows that �0.L/DL0. Since h represents an element of X�,
h#.L/ 2 H.L0/. In particular, h#.R

�1
C RD/ does not cross xE 0, which implies that h.E/ does not cross xE 0.

This completes the proof of the main statement.

From h#.L/D h#.S
�1
C
xCDSD/D Œ xSC x�� xC

0D0Œ�SD� it follows that Œ�SD��Gp and Œ�SC ��Gq . Thus
� �Gp and ��Gq .

The remainder of the proof of Lemma 16.5 is the construction of an element �C 2 XC. By Lemma 17.8
and (4), it suffices to find � 2 X� that induces a bijection between lines that lift to �.fu/ and lines that
lift to �.gu0/.

The next lemma states that the conclusions of Lemma 17.15 are satisfied in the H and LH cases without
the assumption that XC ¤∅.

Lemma 17.16 It holds that h.E/D x�E 0� for some ��Gs and � �Gp. In the case HH, ��Gq .
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Proof The HH case follows from (7) so we consider only the H and LH cases.

By Remark 17.14, h.E/D x�E 0� or h.E/D x� xE 0� for some paths �; � �Gs . Each L 2 He.�/ (realized
in G) decomposes as LD x̨Eˇ for some rays ˛ �Gs and ˇ �Gp . Likewise each L0 2 He. / (realized
in G0) decomposes as L0 D x̨0E 0ˇ0 for some rays ˛0 � Gs and some ˇ0 � Gp. Since h represents an
element of X , Lemma 13.12 implies that h#.L/ 2 He. /. It follows that h#.L/ does not cross xE 0 and
hence that h.E/ does not cross xE 0. This proves that h.E/¤ x� xE 0� and so h.E/D x�E 0�. Note also that
h#.L/D Œx̨ x��E

0Œ�ˇ�, which implies that Œ�ˇ��Gp and hence that � �Gp.

Lemma 17.17 In the case H, the path � is a Nielsen path for f jGs D gjGs .

Proof There are three cases to consider, depending on the rank of ��.fu/, the component of �.fu/
containing the ray labeled RD . Let x be the initial vertex of D. Recall that F� D Fk�1 and FC D Fk .

In the first case, rank.��.fu//D 0 and we will show that � is trivial. By Remark 17.6, there exist edges
E1; : : : ; Em 2 Ef with m� 2 such that ��.fu/ is obtained from RD tRE1 t � � � tRDm by identifying
the initial endpoints of all of these rays. By construction, Le.�/D fL1; : : : ; Lmg, where Li DR�1Ei RD .
The description of ��.gu0/ and Le. / is similar with RD replaced by R0D0 . There is a permutation � of
f1; : : : ; mg such that H.Li /D H.L0

�.i/
/. Writing REi DEiSi for some ray Si with height less than that

of Ei , we have
h#.Li /D ŒS

�1
i
xEi x�D

0�SD0 �D ŒS
�1
i
xEi x��D

0Œ�SD0 �;

where Œ � � is the tightening operation. On the other hand, letting l D �.i/, we have h#.Li /D ˛
�1 xElD

0ˇ,
where ˛ (resp. ˇ) has height less than that of El (resp. D0) and so

Œ�EiSi �DEl˛:

Note that Si has a subray that is disjoint from El . Since Si D ui �f#.ui / �f
2

# .ui / � : : : is a coarsening of
the complete splitting of Si , it follows that Si is disjoint form El ; see Remark 13.1. If i ¤ l then El
is the first edge of �. If i D l then � is either trivial or has the form Ei� xEi . In either case, � is either
trivial or begins with El . As this is true for all 1� i �m, we conclude that � is trivial.

If rank.��.fu// D 1 then either x is contained in a circle component B of the core filtration element
realizing F0, or there exists j < k such that Fj�1 @ Fj is an LH extension realized by adding a linear
edge Cj and a higher-order edge Dj with “new” initial endpoint x; in the former case, we say that
D is type (i) and in the latter case we say that D is type (ii). If D is type (i) then B is a single
edge e by the (Periodic Edges) property of a CT, and Le.�/ D fe

1DSD; e
�1DSDg and likewise

Le. /D fe
1D0SD0 ; e

�1D0SD0g. Lemma 17.12 implies that h#.e
1DSD/D e

˙1D0ˇ0 for some ray
ˇ0 �G.rD/. We also have h#.e

1DSD/D Œe
1x��D0Œ�SD�. We conclude that �D em for some m and in

particular � is a Nielsen path. IfD is type (ii) then Le.�/Dfw
�1
j
xCjDSD; w

1
j
xCjDSDg and similarly for

Le. /. As in the previous case, h#.w
1
j
xCjDSD/ is equal to both w˙1j xCjD

0ˇ0 and Œw1j xCj x��D
0Œ�SD�.
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It follows that �Cjw1j D Cjw
˙1
j , which implies that � D Cjw

m
j
xCj . This completes the proof if

rank.��.fu//D 1.

For the final case, assume that rank.��.fu//� 2 and hence that x 2Gs . Given a lift zx 2 zG of the initial
endpoint x of D, we set notation as follows: zf W zG ! zG is the principal lift that fixes zx; ˆ 2 P.�/
is the principal automorphism satisfying ˆj@Fn D zf j@Fn; zD is the lift of D with initial endpoint zx;
zR zD is the lift of RD whose first edge is zD; zr zD is the terminal endpoint of zR zD; and zN is the set of lines
.Fix.ˆ/; F.zrD// and so is a lift of He.�/D fŒFix.ˆ/; F.zrD/�g. Similarly, given a lift zy 2 zG0 of the initial
endpoint y of D0, we have: zg W zG0! zG0, ‰, zD0, zR zD0 , zr

0
zD0

and zN 0. By Lemma 13.12, He.�/D He. / so
we may choose zy so that Fix.ˆ/D Fix.‰/ and F.zr zD/D F.zr

0
zD0
/. In particular, zN D zN 0.

Let Cs be the component of Gs that contains both x and y— which is possible because they are the
endpoints of ��Gs — and let zCs � zG be the lift that contains zx. Then zCs is zf -invariant and Fix. zf /� zCs

becauseGs contains all Nielsen paths inG with an endpoint at x. There is a free factor F representing ŒCs�
such that @F D @ zCs . Since @ Fix.ˆ/ is contained in the closure of Fix. zf /, we have @ Fix.ˆ/� @ zCs D @F .
Letting zC 0s � zG

0 be the lift of Cs that contains zy and F 0 the free factor satisfying @F 0 D @ zC 0s , the same
argument shows that @ Fix.‰/� @F 0. Since Fix.ˆ/D Fix.‰/ is nontrivial, F D F 0. Since �jF D  jF
and Fix.ˆ/D Fix.‰/ has rank at least two, ˆjF D‰jF .

Let zh W zG! zG0 be the lift of h WG!G0 that acts as the identity on @Fn and let p W zG!G and p0 W zG0!G0

be the covering projections. Then zhj zCs W zCs! zC 0s is a homeomorphism satisfying p0zh.zz/D p.zz/ for all
zz 2 zCs where, as usual, we are viewing Gs as a subgraph of both G and G0. Moreover, zh zf zh�1j zC 0s D zgj zC

0
s

because they both project to gjC 0s and induce ‰jF 0. In particular zg fixes zh.zx/. Choose zL 2 zN that
decomposes as zLD z̨ zR zD . Then h#.L/D Œh.˛/�

�1�D0� 0 for some ray � 0 with height lower than that
of D0. Since zh#.zL/ 2 zN

0 we have zh#.zL/D Œzh.z̨/z�
�1� zD0z� 0 for some lift z� � C 0s and some lift z� 0 with

height lower than that of zD0. In particular, z� connects zy to zh.zx/ and so is a Nielsen path for zg. Thus � is
a Nielsen path for gjGs D f jGs .

We will complete the proof by constructing a homotopy equivalence d W G0! G0 such that the outer
automorphism �C determined by dh W G ! G0 is an element of XC. By construction, d will be the
identity on the complement of E 0 and satisfy d.E 0/D x�0E 0�0, where �0; �0 �Gs are closed paths. In the
cases H and LH, �0 will be trivial.

Definition 17.18 We define �0, which always corresponds to D0, as follows. By (6), there is a finite path
�D � Gp such that S 0D0 is obtained from �DSD by tightening. By construction, h#.ESD/ is obtained
from x�E 0�SD by tightening. Letting

�0 D Œ�Dx��;

it follows that .dh/#.ESD/D Œx�x�0�E 0Œ�Dx��SD�D Œx�x�0�E 0S 0D0 . Thus, in the cases HH and LH we have

.dh/#.RD/DR
0
D0 ;
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and in the case H we have
.dh/#.RD/D Œx�x�

0�R0D0 D x�R
0
D0 ;

where the second equality comes from the fact that �0 is trivial (see below) in the case H. Since �; �D�Gp ,
we have:

� (control of �0) �0 �Gp.

In the cases LH and H, �0 is defined to be trivial. In the case HH we choose �0 as we did �0 replacing D
with C . The result is that in the case HH,

.dh/#.RC /DR
0
C 0 ;

and so
.dh/#.R

�1
C RD/DR

0
C 0
�1
R0D0 :

Also,

� (control of �0) In the case HH, �0 �Gq .

This completes the definition of d .

Lemma 17.19 The outer automorphism ı represented by d WG0!G0 is an element of Ker.Q/� X .

Proof We use the following properties of d WG0!G0 to prove that ı 2 X :

(a) The map d preserves every component of every filtration element of G0. In particular, ı preserves c
and every ŒF � 2 F 2 c.

(b) If e0 is not a higher-order edge in E 0, then d.e0/D e0.

These are both obvious from the definition.

(c) The map d# fixes each Nielsen path of g.

This follows from (b) and the fact that Nielsen paths do not cross higher-order edges.

� If e0 is a higher-order edge and G0p0 is the filtration element that realizes F.r 0e0/, then the set of
rays of the form e0ˇ0 with ˇ0 �G0p0 is mapped into itself by d#.

If e0 is neither C nor D then this follows from (a) and (b). Otherwise it follows from (a), (control of �0)
and (control of �0).

Item (c) implies that ı fixes each component of Fix.�/ and every element of A.�/ D A. /. Item (b)
implies that d jG0s Didentity and hence that ı fixes each element of SA.�jF0/ and so satisfies defining
property (6) of X . Suppose that either L0 is an element of �. / or L0 is an element of Le0. /, where
e0 2 c is not large. Then (b), (d) and Lemma 17.12 imply that H.L0/ is ı-invariant. Similarly, (c) and (d)
imply that if e0 is large then He0.�/ is ı-invariant. We have now shown that ı 2 X . In particular, ı is in
the domain of xQ.
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To prove that ı 2 Ker.Q/, suppose that zb0D .zL01; zL
0
2/ is a staple pair for  with common axis zA0. By (b),

there is a lift zd W zG0 ! zG0 of d that pointwise fixes zA0. We claim that zd preserves both H.zL01/ and
H.zL02/. The zL01 and zL02 cases are symmetric so we will consider L02. If both ends of L02 are periodic
then H.L02/ D fL

0
2g by Lemma 17.12. Moreover, zL02 does not cross any higher-order edges and so is

pointwise fixed by zd . We may therefore assume that there is a decomposition zL02 D z̨ zR
0
ze 02

, where ze02 is a
higher-order edge and z̨ does not cross any higher-order edges. It follows that zd pointwise fixes z̨ and
that ze2 is the initial edge of zd#. zR

0
ze02
/. Item (d) now implies that zd preserves H.zL02/. This completes the

proof of the claim. It now follows from the definitions that mb0.ı/D 0 and hence Qb0.ı/D 0. Since b0 is
arbitrary, ı 2 Ker.Q/.

The final step in the algorithm that proves Proposition 16.4 is to return YES and the outer automorphism
�C represented by dh WG!G0. In conjunction with Lemma 17.4, the following lemma justifies this step.

Lemma 17.20 The map dh WG!G0 represents an element �C 2 XC.

Proof Since h represents an element of Ker. xQ/, Lemma 17.19 implies that �C 2 Ker. xQ/� X . We are
therefore reduced to showing that �CjFC conjugates �jFC to  jFC. By Lemma 17.8 and (4), it suffices
to prove that:

(b1) A line L�G lifts to �.fu/ if and only if �C.L/�G0 lifts to �.gu0/.

Recall that �.fu/ is obtained from �.fs/ by either adding a single new component (the HH and LH
cases) or by adding a ray to one of the components ��.fs/ of �.fs/ (the H case). The same is true for
�.gu0/. The component of �.fu/ that is not a component of �.fs/ is denoted by ��.fu/; it is the unique
component that contains a ray labeled RD . Likewise, the “new” component ��.gu0/ of �.gu0/ is the one
that contains a ray labeled R0D0 . Recall also that fs D gs , that �.fs/D �.gs/, and that ��.fs/D ��.gs/.

Item (b1) is obvious if L lifts into a component of �.fs/ so we may assume, after reversing orientation
on L if necessary, that RD is a terminal ray of L.

In the case HH, LDR�1C RD so (b1) follows from .dh/#.R
�1
C RD/DR

0
C 0
�1
R0D0 ; see Definition 17.18.

In the case H, .dh/#.RD/D x�R0D0 by Definition 17.18. Let yx be the initial endpoint of the lift of RD into
�.fu/ and let x be its projection intoGs . Define yy and y similarly usingR0D0 in place ofRD . IfRD is also
a terminal ray ofL�1, thenLDR�1D �RD for some Nielsen path � and .dh/#.L/DR0�1D0 Œ�� x��R

0
D0 , which

lifts into �.gu0/ because Œ�� x�� is a Nielsen path by Lemma 17.17. The remaining case is thatLDˇ�1RD
for some ray ˇ �Gs that lifts to a ray in �.fs/ based at yx. In this case, .dh/#.L/D ˇ�1x�R0D0 , which
lifts into �0.gu0/ because � is a Nielsen path that lifts to a path in �.gs/ connecting yy to yx.

In the case LH, Le.�/ D fLC; L�g and Le. / D fL
0
C
; L0�g, where L˙ D w˙1 xCRD and L0

˙
D

w˙1 xC 0R0D0 . Since Ic.�/D Ic. / and �C 2 X , we have that �C.LC/ is contained in either H.L0
C
/ or

H.L0�/. By construction, �C.LC/D .dh/#.LC/D Œw1x�� xC 0R0D0 . Thus, �C.LC/2H.L0
C
/ and Œw1x��D

w1. It follows that � D wp for some p 2 Z and hence that �C.L˙/ D L0˙ and �p.R�1D wkRD/ D

R0�1D0 w
kR0D0 for all k. This completes the proof of (b1) and hence the proof of the lemma.
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Appendix More on Ker xQ

The main results of this appendix are that mb.�/ can be computed for � 2 X , that Ker xQ is of type VF

(Definition 14.4), and that a finite presentation for Ker xQ can be computed. This section is needed for
future work and is not used in the proof of the main theorem of this paper.

A.1 A Stallings graph for H�;c.zb/

We will need the following remark.

Remark A.1 Suppose that G is a marked graph and that for i D 1; 2, zAi is the axis of a covering
translation Ti W zG! zG and that the number of edges in a fundamental domain for zAi is si . If zA1\ zA2
contains at least s1C s2C 1 edges then zA1 D zA2. To see this, decompose zA1\ zA2 D e1e2 : : : into edges
and note that T1T2.e1/D es1Cs2C1 D T2T1.e1/. Since T1T2 and T2T1 agree on an edge they are equal,
and so T1 and T2 have the same axes.

Notation A.2 Let f W G ! G be a CT for � with zf W zG ! zG a lift to the universal cover. Assume
notation as in the definition of mb (Definition 15.36). In particular, b D .L1; L2/ 2 S2.�/, zb D .zL1; zL2/
are lifts of .L1; L2/ such that zLC1 ; zL

�
2 2 f

zA�; zACg, where zA is the common axis of zb and a 2 Fn is a
root-free element with axis zA and orientation chosen as in the definition. For � 2 X , ‚i 2 � is defined
uniquely by ‚i .H�;c.zLi //D H�;c.zLi / and mb.�/ is defined so that ‚1 D i

mb.�/
a ‚2.

If zLC2 D zr2 for some r2 2 R.�/, then define H2�;c.
zb/ D Fc.zr2/. Otherwise, zLC2 2 fc

�
2 ; c
C
2 g for some

root-free c2 2 Fn representing an element of A.�/ and H2�;c.
zb/ WD hc2i. Define H1�;c.

zb/ similarly using
zL�1 in place of zLC2 . Finally, define

H�;c.zb/D hH
1
�;c.
zb/;H2�;c.

zb/i:

The covering transformation corresponding to a is denoted by � . Additionally, H i WD Hi�;c.
zb/, T i

denotes the minimal subtree for H i , � i denotes the Stallings graph for H i , and zL.k/ denotes the line
ŒzL�1 ; �

k.zLC2 /�.

Remark A.3 Comparing definitions of H�;c.zLi / and H i , ‚i is the unique ‚ 2 � fixing hai and H i .

Lemma A.4 There is a k � 0 such that

� T 1\ �k.T 2/D∅, and

� the arc z� spanning between T 1 and �k.T 2/ contains more than two fundamental domains of zA
with orientation agreeing with that of z�.

Proof The ends zA are not ends of T i . Indeed, if zri is ray, then the associated higher-order edge
separates T i and the ends of zA. If not, then T i is the axis corresponding to the end of zLi that is not an
end of zA. Hence there is a neighborhood of zAC that is disjoint from Ti . Therefore, the conclusion holds
for all large k.
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Corollary A.5 We may compute:

(1) For all l 2 Z, the Stallings graph for hH 1; i la.H
2/i.

(2) An integer k � 0 as in Lemma A.4.

(3) For all � 2 X , mb.�/.

Proof (1) By Bass–Serre theory, for k as in Lemma A.4, the Stallings graph for hH 1; ika .H
2/i is

obtained by attaching at its endpoints a copy of the arc spanning between T 1 and �k.T 2/ to the Stallings
graphs for ŒH 1� and ŒikaH

2�D ŒH 2�.

These latter graphs can be computed. Indeed, if zL�1 is an eigenray, then, by definition, ŒH 1� has as its
Stallings graph a component of a stratum of G, and otherwise is a circle representing hc1i. There is a
symmetric argument for ŒH 2�. zL.k/ spans between T 1 and �k.T 2/. Hence the desired Stallings graph,
for large k, is the result of immersing the ends of zL.k/ into the Stallings graphs and then performing any
folding. By Lemma A.4, folding stops when the copy of z� is the spanning arc.

We see that, for large k, hH 1; ika .H
2/i is an internal free product. By Remark A.3, ˆs1.hH

1; ika .H
2/i/D

hH 1; i
smb.�/Ck
a .H 2/i is also a free product and its Stallings graph can be computed as above (but perhaps

the spanning arc is folded away). Recall (Lemma 15.39) thatmb.�/¤ 0. We note in passing that therefore
ŒH 1; i la.H

2/� is good (Definition 7.13).

(2) For lD0; 1; 2; : : : , iteratively start computing Stallings graphs for hH 1; i la.H
2/i. When, after folding

in zL.l/, more than two correctly oriented fundamental domains of zA\ zL.l/ remain in the spanning arc,
stop and set k D l .

(3) Let � 2 X and m WDmb.�/. If ‚1.H 1/DH 1, then by definition,

‚1.H
1; ika .H

2//D .H 1; ikCma .H 2//:

Hence, m can be read off by comparing the Stallings graphs for ŒhH 1; ika .H
2/i� and ŒhH 1; ikCma .H 2/i�

for large enough k. The latter, being the Stallings graph for �ŒhH 1; ika .H
2/i�, can be computed by repre-

senting � as a topological representative g WG!G, applying g to the Stallings graph for ŒhH 1; ika .H
2/i�,

tightening, and taking the core.

Corollary A.6 (1) ŒH1; i
l
aH2� is good for all l 2 Z.

(2) No nontrivial power of a is in hH1; i laH2i.

Proof (1) This was noted during the proof of Corollary A.5.

(2) Since ‚1.a/D a, for the second item it is enough to show that

a …‚l1.hH
1; i la.H

2/i/D hH 1; i lCma .H 2/i

for large l Cm. So assume that k > 0 is as in Lemma A.4. If a 2 hH 1; ika .H
2/i, then there is an

immersion of zA with image a closed loop into the Stallings graph for hH 1; ika .H
2/i and that overlaps
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the copy of z� in its intersection with zA. The immersion crosses this spanning arc at most once. Indeed,
otherwise there would be a covering translation of zG taking zA to itself reversing orientation, but a and
a�1 are not conjugate; see Remark A.1. Hence the image of zA is not a closed loop.

Corollary A.7 For � 2 X , mb.�/D 0 () ŒH�;c.zb/� is � -invariant.

Proof (D)) Suppose m WDmb.�/D 0. Using Remark A.3 we have

‚1.H�;c.zb//D‚1.hH
1;H 2

i/D h‚1.H
1/;‚1.H

2/i D hH 1; ima .H
2/i D hH 1;H 2

i:

( D)) Suppose m> 0, the case for m< 0 being similar. Choose l so that k WDml is as in Lemma A.4.
We saw in Corollary A.5 that the Stallings graph for ŒhH 1; imla .H 2/i� has an arc spanning between
Stallings graphs for ŒH 1� and ŒH 2� and that the Stallings graph for Œ‚lC11 .hH 1;H 2i/� is obtained by
inserting m copies of a fundamental domain for zA into this spanning arc. Since these Stallings graphs are
not equal, �.ŒhH 1;H 2i�/¤ ŒhH 1;H 2i�.

A.2 KerQ

Recall (Definition 16.2) the homomorphism QDQ� W X !QS2.�/ given by setting the bth coordinate
of Q.�/ equal to mb.�/=mb.�/.

Proposition A.8 A finite presentation for KerQ can be computed. KerQ is of type VF.

Proof We use the notation as in Section A.1. For each b 2 S2.�/, choose zb and replace it with ˆk1.zb/
and compute ŒH�;c.zb/�, where k is as in Lemma A.4. By Corollary A.7, � 2 KerQ if and only if � 2 X
and �.ŒH�;c.zb/�/D ŒH�;c.zb/� for each b. Hence � 2 KerQ if and only if � fixes the concatenation of the
sequences .J/ and .ŒH�;c.zb1/�; : : : ; ŒH�;c.zbN /�/, where .b1; : : : bN / is an ordering of S2.�/ and J is as in
Definition 14.1. This concatenation is an element of IS.A�/; see Notation 10.13. By Lemma 11.2, we can
compute a finite presentation for KerQ and, by Proposition 14.5, KerQ is of type VF.

A.3 Ker xQ

xQ is defined in Definition 16.3.

Proposition A.9 A finite presentation for Ker xQ can be computed. Ker xQ is of type VF.

Proof Let � denote the quotient map Q.X /! xQ.X /. Since we have a finite generating set for X , we
can compute a finite presentation for the free abelian group Ker� . Using Proposition A.8, Lemma 9.3 and

1! KerQ! Ker xQ! Ker�! 1;

we can compute a finite presentation for Ker xQ.

The above short exact sequence shows that Ker xQ is an extension of a group of type VF (Proposition A.8)
by a finitely generated abelian group. It follows from the proposition below that Ker xQ is of type VF.
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The following proposition is from Moritz Rodenhausen’s thesis. As far as we know, it is not published
and so for the reader’s convenience we copy his proof here.

Proposition A.10 [Rodenhausen 2013, Proposition 13.18] Suppose that in the short exact sequence
1!G0

i
!G

�
!G00! 1, the group G0 is of type VF and G00 is finitely generated abelian. Then G is of

type VF.

Proof Suppose first that G00 is infinite cyclic. Let H 0 be a subgroup of some finite index d in G0 such
that H 0 is of type F. The intersection K 0 of all (finitely many) index d subgroups of G0 also is of type F.
Furthermore, the group K 0 is a characteristic subgroup of G0. Let now t 2 G be an element such that
�.t/ generates G00. We denote by K the subgroup of G generated t and i.K 0/. It has finite index in G
and fits into a short exact sequence

1!K 0!K!G00! 1:

We see thatK is an extension of groups of type F and so has type F; see [Geoghegan 2008, Theorem 7.3.4].
Hence G is of type VF.

The case where G00 is isomorphic to Zm is proved by induction on m. Let A00 be an infinite cyclic
summand of G00, so G00=A00 Š Zm�1. The short exact sequences

1!G0! ��1.A00/! A00! 1 and 1! ��1.A00/!G!G00=A00! 1

together with the induction hypothesis completes the proof in the case G00 Š Zm.

For the general case, let H 00 be a free abelian subgroup of G00 of finite index and H D ��1.H 00/�G.
We obtain a short exact sequence

1!G0!H !H 00! 1:

Hence H , and so also G, is of type VF.
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The systole of large genus minimal surfaces in positive Ricci curvature

HENRIK MATTHIESEN

ANNA SIFFERT

We use Colding–Minicozzi lamination theory to show that the systole, and more generally any homology
systole, of a sequence of embedded minimal surfaces in an ambient three-manifold of positive Ricci
curvature tends to zero as the genus becomes unbounded.

53A10

1 Introduction

In this paper we study properties of compact, embedded minimal surfaces in a closed (ie compact without
boundary) ambient three-manifold M of positive Ricci curvature as their genus becomes unbounded.
This complements the celebrated theorem of Choi and Schoen [1985]. Recall that this states that for a
three-manifold M with positive Ricci curvature, the space of compact, embedded minimal surfaces in M

with bounded genus is compact in the C `-topology for any `� 2.

Our main result shows that the systole of such a sequence of minimal surfaces tends to zero. Recall that
the systole of a closed surface †�M is defined to be

sys.†/ WD infflength.c/ j c W S1
!† noncontractibleg:

Note that this takes into account all curves that do not bound a disk in †. Similarly, the homology systole
is given by

sysh.†/ WD infflength.c/ j 0¤ Œc� 2H1.†IZ=2Z/g;

taking into account only curves that are not a boundary in †. Clearly, we have

sys.†/� sysh.†/:

More generally, for k 2N�, let us define the k th homology systole by

sysh
k.†/ WD inf

n
max

iD1;:::;k
length.ci/ j rank.hc1; : : : cki/D k

o
;

where the span hc1; : : : ; cki is taken in H1.†IZ=2Z/.

We use Z=2Z-coefficients here to deal with orientable and nonorientable surfaces simultaneously. Of
course, for orientable surfaces we can equivalently use Z-coefficients.
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Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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We can now state our main result.

Theorem 1.1 Assume that .M;g/ is a three-manifold with positive Ricci curvature. Let k 2 N� and
consider a sequence .†j /j2N of closed , embedded minimal surfaces in M with �.†j /!�1 as j !1.
Then the k th homology systole satisfies

sysh
k.†j /! 0 as j !1:

Before putting this result into context we briefly discuss the different assumptions that we make.

The reader might wonder if the assumption of the surfaces being minimal is really required. This is
because we need to squish the large genus surfaces †j into the compact manifold M, which may force
the systole to tend to zero anyway.

Remark 1.2 There is a sequence .Sj /j2N� of embedded (and unknotted) surfaces in S3 such that
genus.Sj /!1 and sys.Sj /� c0 > 0 for some constant c0.

This can be constructed as follows: Take a surface Rj of genus j with systole sys.Rj /� 2c0 > 0. By the
Nash–Kuiper theorem, there is a C 1;˛-isometric embedding of Rj in an arbitrarily small ball Bı �R3,
where here and below we denote by Br the Euclidean ball of radius r > 0 centered at the origin. After
smoothing this and applying stereographic projection, we get a surface Sj � S3 of genus j that is closed,
unknotted, embedded and has sys.Sj /� c0.

Also the assumption on the surfaces being embedded is crucial, since high-degree covers of a given
minimal surface of positive genus provide trivial counterexamples to the immersed version.

Finally, the following example shows that Theorem 1.1 does not hold without any assumptions on the
ambient geometry.

Example 1.3 Denote by † a closed surface of genus  for  � 2. It is shown in [Tollefson 1969] (see
also [Neumann 1976] for a generalization) that the three-manifold M D S1 �† admits fiber bundles

.1.4/ †ı!M ! S1

for ıDCn.�1/ and n2N. Since �2.S
1/D0, the long exact sequence for homotopy groups associated

to these fibrations implies that †ı !M is incompressible, ie the induced map �1.†ı/! �1.M / is
injective. It follows from [Schoen and Yau 1979, Theorem 3.1] that there are immersed minimal surfaces Sı

in M which are diffeomorphic to †ı and the induced map on �1 is given by the inclusion of the fibers
from (1.4). Moreover, [Freedman et al. 1983, Theorem 5.1] implies that these are not only immersions
but even embeddings. Since �1.Sı/! �1.M / is injective, we have in particular that

sys.Sı/� sys.M / > 0:

This shows that Theorem 1.1 cannot hold for M.
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Remark 1.5 It follows from [Schoen and Yau 1979, Theorem 5.2] that M does not admit any metric
of positive scalar curvature, which leaves open the possibility to replace Ricci by scalar curvature in
Theorem 1.1.

Let us now put Theorem 1.1 into some more context.

Balacheff, Parlier and Sabourau [2012] provided general results on systoles of surfaces; see Section 2.1
for more details. As a consequence thereof, for any sequence .†j / of surfaces with �.†j /!�1 and
area growth in the genus  bounded by j j˛ for some ˛ < 1, and for any k 2N, the k th homology systole
tends to zero, ie sysh

k
.†j /! 0 as j !1. This motivates the following discussion about area bounds in

the genus.

Thanks to the recent work of Chodosh and Mantoulidis [2020] on the Allen–Cahn equation, any closed
three-manifold with positive Ricci curvature contains a sequence of embedded minimal surfaces with
unbounded genus; see also the related earlier work by Marques and Neves [2017] and Aiex [2018]. Their
construction gives a sequence of minimal surfaces .†p/p2N with

area.†p/� genus.†p/
1=3
� p1=3;

ie area growing sublinearly in the genus. In fact, the same result has now also been established using
Almgren–Pitts min-max theory through the works of Marques and Neves [2021] and Zhu [2020]. At this
point we also would like to point out Song’s work [2023] settling the general case of Yau’s conjecture and
the papers by Irie, Marques and Neves [Irie et al. 2018], Marques, Neves and Song [Marques et al. 2019],
and Liokumovich, Marques and Neves [Liokumovich et al. 2018] giving information on the distribution
of min-max minimal hypersurfaces in the ambient manifold for generic metrics. In a similar direction
Theorem 1.1 provides information on embedded minimal surfaces of high complexity. Because of the
sublinear growth of the area, Theorem 1.1 is automatically true for min-max minimal surfaces. However,
Theorem 1.1 applies to any family of minimal surfaces, not only those arising from min-max methods.

The best known bound for the area of embedded minimal surfaces in an ambient three manifold of positive
Ricci curvature is linear in the genus [Choi and Wang 1983]. More precisely, we have that

area.†/� C.genus.†/C 1/

for a constant C depending on the topology of M and the lower bound on the Ricci curvature. It is by
no means clear if this bound is sharp and Theorem 1.1 could be considered as some hint towards the
nonsharpness of the linear bound. It appears to be an interesting question to understand the maximal
possible area growth of a sequence of embedded, minimal surfaces with genus tending to infinity. To
the best knowledge of the authors, among all known families of minimal surfaces in S3 the Lawson
surfaces �m;m, see [Lawson 1970], exhibit the fastest area growth in terms of the genus. More precisely,
genus.�m;m/Dm2 while area.�m;m/�m.
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Main problems and strategy

Let us for simplicity focus on the case of M being simply connected, k D 1 and the systole instead of
the homology systole.

We want to argue by contradiction and consider a sequence of minimal surfaces †j �M with sys.†j /�

l0 > 0 and genus.†j /!1. In general, we would like to pass to a limit †j !L in the class of minimal
laminations (see eg Definition 3.1) and argue that L has a stable leaf, which would easily lead to a
contradiction since M has positive Ricci curvature.

The problem about this is that we can only do this outside the closed set at which jA†j j2 blows-up, where
A†j denotes the second fundamental form of †j . A priori, the blow-up set could even be all of M. Work
of Colding and Minicozzi gives strong structural information about the blow-up set if the surfaces in
question have bounded genus. The main step of our proof is to show that the sequence †j as above can
locally be dealt with in this framework.

The reason why this is not obvious is that we do not have ��†j d2.x; � /� 0 globally (as it is the case
for minimal surfaces in R3). Therefore, the assumption on sys.†j / does not directly imply that there is
R0 DR0.l0/ such that the intrinsic balls B†j .x;R0/ are contained in (intrinsic) disks in the intersection
B.x;R0/\†j with an extrinsic ball. Instead, B†j .x;R0/ is contained in some disk D

j
x �†j but D

j
x

could leave any mean-convex ball B.x; r/ centered at x. The main step is to show that this is impossible
after going to a (potentially much) smaller scale. The proof of this is of global nature and also relies on
the positivity of the Ricci curvature of M. It also proceeds by contradiction and follows broadly the same
strategy. Given a contradicting sequence we try to find a stable minimal surface in M. The key step to
achieve this is to show that †j serves as a good barrier for a minimization problem in M. This in turn is
shown by promoting information about singularities of †j for j !1 across scales using the maximum
principle.

The general case of the theorem follows similar steps but is technically more involved. This requires
for instances a more careful blow-up argument in the case k � 2 and also makes use of some additional
elementary topological arguments.

Organization

In Section 2 we give some rather elementary preliminaries on surfaces and topology and recall a fun-
damental result from systolic geometry which are needed in our arguments. In Section 3 we provide
necessary background from [Colding and Minicozzi 2015] on Colding–Minicozzi lamination theory of
minimal surfaces with some control on the topology. Section 4 contains two weak chord-arc properties
for minimal surfaces contained in small extrinsic balls of an ambient three-manifold. Our main result,
Theorem 1.1, is proved first in the case k D 1 in Section 5, and then in Section 6 in the general case.
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2 Some preliminaries on surfaces and topology

In this section we recall some elementary and well-known facts about the topology of surfaces. We also
recall some results from systolic geometry.

2.1 A result from systolic geometry

We will use the following result from systolic geometry, that relates the area and the k th homology systole.

Theorem 2.1 ([Balacheff et al. 2012, Theorem 1.2]; see also [Gromov 1996]) Let � W N ! N be a
function such that

� WD sup


�. /


< 1:

Then there exists a constant C� such that for every closed , orientable Riemannian surface † of genus  ,
we have

sysh
�./.†/� C�

log. C 1/
p


p
area.†/:

Recall that a nonorientable surface † can be written as a connected sum †D†1 #†2, with †1 closed,
orientable and †2 diffeomorphic to RP2 or RP2 # RP2. If we replace †2 by a disk, Theorem 2.1 easily
implies the following for nonorientable surfaces.

Corollary 2.2 Let � and � be as above. Then there is a constant C� such that for every closed ,
nonorientable surface of nonorientable genus ı, we have

sysh
�.ı/

.†/� C�
log.ıC 1/
p
ı

p
area.†/;

where ı D b.ı� 1/=2c.

We will only use the following consequence of these results.

Corollary 2.3 Let .†j / be a sequence of surfaces with ��.†j /!1. If area.†j /DO..��.†j //
˛/

for some 0� ˛ < 1, then , for any k 2N,

sysh
k.†j /! 0 as j !1:
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To put this into context, notice that the Choi–Wang bound [Choi and Wang 1983] implies, for a closed,
embedded, orientable, minimal surface †, that

area.†/� C.genus.†/C 1/;

where C D C.k/, if Ric.M /� k > 0.

2.2 Some elementary facts about the topology of surfaces

Lemma 2.4 Let † be a closed surface and c �† a simple closed curve. Then Œc�¤ 0 2H1.†IZ=2Z/ if
and only if c is nonseparating.

Proof If c is separating, then Œc�D 0 in H1.†;Z=2Z/. On the other hand, if c is nonseparating, there is
a curve d such that jc \ d j D 1. In particular, from the intersection pairing, Œc�¤ 0 2H1.†;Z=2Z/.

Lemma 2.5 Let † be a closed surface and let c1; : : : ; ck � † be simple closed curves. Assume
that ci �

Sk
iD1 Bi for pairwise disjoint balls Bi . Then , for a simple closed curve d � † such that

0 ¤ Œd � 2 hŒc1�; : : : ; Œck �i � H1.†;Z=2Z/ and d � M n
Sk

iD1 Bi , we have that d is separating in
†\

�
M n

Sk
iD1 Bi

�
.

Remark 2.6 In the case k D 1, this states that if c is nonseparating in † and c � B, then any curve in
M nB that is homologous to c separates in M nB.

Proof Write B D
Sk

iD1 Bi . If d is nonseparating in † nB we can find a closed curve e �† nB that
intersects d exactly once. On the other hand, ci \ e D∅ for any e, but this is impossible since d is in the
span of the ci .

Definition 2.7 Let † �M be an embedded surface, x 2M and r > 0. We say that c W S1 ! † is
contractible on scale r at x if there is a disk � WD!B.x; r/\† with �j

S1D c. If there is some x 2M

such that c is contractible on scale r at x, we say that c is contractible on scale r .

At this point it is worth recalling the following version of the maximum principle for minimal surfaces.

Theorem 2.8 Let N be a compact manifold with mean-convex boundary and † � N be a minimal
surface (possibly with boundary). Then .† n @†/\ @N D∅ or †� @N .

In the context of Definition 2.7 this has the following consequence, that we will make use of frequently.

Lemma 2.9 Choose r > 0 such that any ball B.x; s/ �M with s � r and x 2M is mean convex. If
†�M is a complete minimal surface and c �† is a simple closed curve that is contractible on scale r

(at x), then c is contractible on scale t (at x) for any t � r such that c � B.x; t/.

Lemma 2.10 Let † � M be a surface , x 2 † and R > 0. If any curve d W S1 ! B†.x;R/ with
length.d/ � 3R is contractible on scale r at x, then any curve c W S1 ! B†.x;R/ is contractible on
scale r at x.
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Proof Let c W S1! B†.x;R/ be a loop. Choose a subdivision

0D t0 < t1 < � � �< tk�1 < tk D 1

of Œ0; 1� such that
length.cjŒti ;tiC1�/�R:

Fix curves di W I ! B†.x;R/ with di.0/D x and di.1/D c.ti/ and such that

length.di/�R:

We can then write

c D .cjŒtk�1;tk � � dk�1/� .xdk�1 � cjŒtk�2;tk�1� � dk�2/� � � � � . xd2 � cjŒt1;t2� � d1/� . xd1 � cjŒt0;t1�/;

which implies the assertion.

Since the Hurewicz homomorphism �1.B
†.x;R/;x/!H1.B

†.x;R/IZ/ as well as the map

H1.B
†.x;R/IZ/!H1.B

†.x;R/IZ=2Z/

are surjective, we immediately get the following corollary.

Corollary 2.11 Let † be a surface , x 2† and R>0. Then the group H1.B
†.x;R/IZ=2Z/ is generated

by curves of length at most 3R.

Lemma 2.12 Let † be a closed surface and � W y†! † a covering. Consider a simple closed curve
c �† and its preimage yc D ��1.c/� y†. If c is separating , then also yc is separating.

Proof If c is separating, we can write † n c D†C[†� with connected surfaces †˙. Moreover, there
is a function f W†! Œ�1; 1� such that ff D 0g D c and †˙ D ff ? 0g. We can then consider the lifted
function yf D f ı� , which clearly satisfies f yf D 0g D yc. Therefore, yc separates y† into y†� D f yf < 0g

and y†C D f yf > 0g.

It will be important to keep in mind that the domains y†˙ might be disconnected and yc is potentially not
the boundary of a compact subsurface.

3 Background on Colding–Minicozzi lamination theory

Colding and Minicozzi developed a theory that describes how minimal surfaces of uniformly bounded
genus in an ambient three-manifold can degenerate in the absence of curvature bounds. We use this
section to provide a very brief introduction to those parts of their theory that will be relevant in the present
paper. We will focus here on the case of planar domains, since this is sufficient for our purposes.

We start by recalling the definition of a lamination.
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Definition 3.1 [Colding and Minicozzi 2004e, Appendix B] (1) A codimension-one lamination on a
three-manifold M is a collection L of smooth disjoint surfaces � �M, the so-called leaves, such
that

S
�2L � is closed. Furthermore, for each point x 2M, there exists an open neighborhood U

of x and a coordinate chart .U; ˆ/ with ˆ.U /�R3 so that in these coordinates the leaves in L

pass through ˆ.U / in slices of the form .R2 � ftg/\ˆ.U /.

(2) A foliation is a lamination for which one has M D
S
�2L � , ie the union of the leaves is all of M.

(3) A minimal lamination is a lamination whose leaves are minimal.

(4) A Lipschitz lamination is a lamination for which the chart maps ˆ are Lipschitz.

Given any sequence of minimal surfaces †j �M, we consider the singular or blow-up set

SD

�
z 2M

ˇ̌̌
inf
ı>0

sup
j

sup
B.z;ı/

jA†j j D1

�
;

ie the points z where the curvature blows up. Up to taking a subsequence one can always pass to a limit

†j ! L in M nS;

where the convergence is in C 0;˛ and the limit lamination is a minimal Lipschitz lamination.

In the case of minimal surfaces †j �B.0;Rj /�R3 with bounded genus and @†j � @B.0;Rj / one can
always extract a subsequence such that either Rj !1 or with Rj bounded. In the former case one can
reach much stronger conclusions on the structure of the limit lamination, see eg the example in [Colding
and Minicozzi 2004a]. Since we only deal with the local case, ie Rj DR is fixed, which in general only
allows us to draw significantly weaker conclusions about the structure of the limit lamination, we do not
discuss stronger conclusion valid in the global case.

We first consider the case when the †j are disks. Colding and Minicozzi [2004b; 2004c; 2004d; 2004e]
proved that every embedded minimal disk is either a graph of a function or is a double spiral staircase
where each staircase is a multivalued graph. More precisely, they show that if the curvature blows up
at some point (and thus the surface is not a graph), then the surface is a double spiral staircase like the
helicoid; see also [Colding and Minicozzi 2004e, Theorem 0.1].

Below we also want to deal with the case where†j are more general domains than disks, namely, so-called
uniformly locally simply connected (in short: ULSC) domains.

A sequence of minimal surfaces †j �M is called uniformly locally simply connected1 if given any
compact K �M there is some r > 0 such that

†j \B.x; r/ consists of disks for any x 2K:

1We remark that this is stronger than the definition of Colding–Minicozzi in the case of nonplanar domains.
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Moreover, we define

Sulsc WD fz 2 S j†j is ULSC near zg:

The main local structural result we need for (not necessarily globally planar or bounded genus) ULSC
sequences concerns so-called collapsed leaves, whose existence is described in the next lemma. We
assume that †j ! L0 in M nS, where †j is a ULSC sequence.

Lemma 3.2 [Colding and Minicozzi 2015, Lemma II.2.3] Given a point x 2 Sulsc, there exists r0 > 0

such that B.x; r0/\L0 has a component �x whose closure �x is a smooth minimal graph containing x
and with boundary in @B.x; r0/ (so x is a removable singularity for �x).

We want to emphasize that while [Colding and Minicozzi 2015] starting at the end of Section II.1 makes
the general assumption to be in the global case Rj !1 this does not apply to everything contained in
the following sections. In particular a look at the proof of Lemma II.2.3 show that this does not make use
of this assumption. Similarly, an inspection of the arguments shows the statements from Proposition 3.3
below are valid without this assumption.

The leaves of the limit lamination L0 may not be complete. A special type of incomplete leaves are
collapsed leaves. A leaf � of L0 is collapsed if there exists some x 2 Sulsc so that � contains the local
leaf �x given by Lemma 3.2; see Definition II.2.9 in [Colding and Minicozzi 2015].

Until the end of the section, we assume that the ambient manifold is given as N DM n fx1; : : : ;xkg,
where M is complete and xi 2M. In order to state the key structural results on collapsed leave we need
to introduce some notation. Given a leaf � � L0 we fix a point x 2 � and write

�clos D
[

R>0

B†.x;R/;

where the closure is taken in N .

Proposition 3.3 [Colding and Minicozzi 2015, Section II.3] Each collapsed leaf � of L0 has the
following properties:

(1) Given any y 2 �clos\Sulsc, there exists r0 > 0 such that the closure in M of each component of
� \B.y; r0/ is a compact embedded disk with boundary in @B.y; r0/. Furthermore , � \B.y; r0/

must contain the component �y given by Lemma 3.2, and �y is the only component of �\B.y; r0/

with y in its closure.

(2) � is a limit leaf.

(3) � extends to a complete minimal surface away from fx1; : : : ;xkg.2

2In other words, there is a � 0 containing � such that if a geodesic in � 0 cannot be extended, it limits to some xi .
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The sequences †j appearing in this manuscript will essentially all be ULSC. This is equivalent to the fact
that the singular set S is given by Sulsc, ie SD Sulsc. Although we will not directly apply the results for
non-ULSC surfaces here, some of our arguments (in particular the proof of Lemma 5.12) are inspired by
those in [Colding and Minicozzi 2015] for this case.

4 Chord arc properties

We need two weak chord-arc properties for minimal surfaces contained in small extrinsic balls of an
ambient three-manifold. Given x 2M and r > 0, we write B.x; r/ for the metric ball in .M;g/. If z 2†

and r > 0, we denote by B†.z; r/ the metric ball of radius r in † with respect to the induced Riemannian
metric.

Let .M;g/ be a closed Riemannian three-manifold. Let R0 > 0 be small, so that the metric in all balls of
radius R0 in M is sufficiently close to the Euclidean metric after rescaling to unit size. We will indicate
in the proof when making specific assumptions on how small R0 has to be but point out that all of this
will be only dependent on the geometry of M. A first assumption on R0 is that all balls in M of radius
r �R0 are mean convex so that Lemma 2.9 will be useful.

We consider minimal embedded disks † in B.x0;R0/ for some x0 2M. We write

†x0;r �†\B.x0; r/

for the connected component of †\B.x0; r/ that contains x0.

Theorem 4.1 There are R0 > 0 sufficiently small and ˛ > 0 (both depending only on M ) such that for
any embedded minimal disk †� B.x0;R0/�M with x0 2†, the following holds. For any R> 0 with
B†.x0;R/�† n @†, we have †x0;˛R � B†.x0;R=2/.

Remark 4.2 (1) This result is proven in [Colding and Minicozzi 2008, Proposition 1.1] for minimal
disks in R3. The proof applies here as well with one minor modification in [loc. cit., Proposition 3.4]
that we explain below.

(2) The following property of minimal surfaces in R3 was used in [loc. cit., Proposition 3.1]. Since
minimal surfaces in R3 have nonpositive curvature it follows that any intrinsic ball B in a minimal
disk D �R3 with B\ @D D∅ is itself a topological disk. This may not apply in our setting since
a minimal surface †�M can have points of positive curvature provided M has such points.

Proof The proof of [Colding and Minicozzi 2008, Proposition 1.1] applies to this setting as well with a
few minor modifications. We will provide an outline of the overall proof of [loc. cit., Proposition 1.1] and
indicate necessary alterations for the proof of Theorem 4.1.

The proof of [loc. cit., Proposition 1.1] consists of the following two main steps.
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Step 1 Colding and Minicozzi first provide this result under the additional assumptions that† is compact
and that @† is contained in the boundary of an extrinsic ball:

Proposition 4.3 [Colding and Minicozzi 2008, Proposition 2.1] Let †�R3 be a compact embedded
minimal disk. There exists a constant ı2 > 0 independent of † such that if x 2† and †� BR.x/ with
@†� @BR.x/, then the component †x;ı2R of Bı2R.x/\† containing x satisfies

†x;ı2R � B†
�
x; 1

2
R
�
:

The benefit of the above-mentioned additional assumptions is that the authors can directly apply previous
results which were provided by Colding and Minicozzi [2004b; 2004c; 2004d; 2004e]. Since this step
applies to our setting as well for R0 chosen sufficiently small depending only on the geometry of M, we
do not provide more details, but refer the interested reader to Chapter 2 of [Colding and Minicozzi 2008],
which consists of the proof of Proposition 2.1.

Step 2 Colding and Minicozzi [2008, Chapter 3] remove the additional assumptions from Step 1, ie that
† is compact and that @† is contained in the boundary of an extrinsic ball. In order to formulate the key
ingredient for Step 2, the authors define a weak chord arc property for intrinsic balls:

Definition 4.4 An intrinsic ball B†.x; s/�† n @† is said to be ı-weakly chord arc for some ı > 0 if
we have †x;ıs � B†.x; s=2/.

Furthermore, they need the following result.

Lemma 4.5 [Colding and Minicozzi 2008, Lemma 3.6] There exists C0 > 1 such that for every Ca > 0,
there exists � > 0 such that if B†.x1;C0/ and B†.x2;C0/ are disjoint intrinsic balls in † n @† with

sup
B†.x1;C0/[B†.x2;C0/

jAj2 � Ca and jx1�x2j< �;

then for i D 1, 2 we have
B10.xi/\ @B

†.xi ; 11/D∅:

The key result is as follows, where ı2 is the constant given in [loc. cit., Proposition 2.1], see Proposition 4.3
above:

Proposition 4.6 [Colding and Minicozzi 2008, Proposition 3.4] Assume that g is a metric that is
sufficiently close (depending only on M ) to the Euclidean metric on B2 and let † � .B1.0/;g/ be an
embedded minimal disk. There exists a constant Cb > 1 independent of † such that if B†.y;Cb R0/�

†n@† is an intrinsic ball and every intrinsic subball B†.z;R0/�B†.y;Cb R0/ is ı2-weakly chord arc ,
then , for every s � 5 R0, the intrinsic ball B†.y; s/ is ı2-weakly chord arc.

Proof The detailed proof can be found on pages 229–231 of [loc. cit.]. For convenience of the reader we
outline the main steps and emphasize where attention is required to apply the arguments in our setting.
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After rescaling and translating †, we can assume that R0D 1 and yD 0. It suffices to prove the following
claim, since applying [loc. cit., Proposition 2.1] to †0;5 then establishes [loc. cit., Proposition 3.4].

Claim There exists n such that

.4.7/ †0;5 � B†.0; .6nC 3/C0/;

where C0 > 1 is given by Lemma 4.5.

Colding and Minicozzi prove the claim, ie (4.7), by arguing by contradiction. So suppose that (4.7) fails
for some large n. Consequently, there exists a curve

.4.8/ � �†0;5 � B5

from 0 to a point in @B†.0; .6nC 3/C0/. For i D 1; : : : ; n, fix points

zi 2 @B
†.0; 6i C0/\ �:

It follows that the intrinsic balls B†.zi ; 3 C0/

� are disjoint, and

� have centers in B5 �R3.

Note, however, that these are not guaranteed to be topological disks in the presence of some positive
ambient curvature. We will return to this issue in a moment.

Since the n points fzig are all in the Euclidean ball B5 �R3, there exist integers i1 and i2 with

.4.9/ 0< jzi1
� zi2
j< C 0 n�1=3 :

Now we use that each intrinsic ball of radius one about any zi is ı-weakly chord arc by the assumption
that every intrinsic subball B†.z;R0/� B†.y;Cb R0/ is ı2-weakly chord arc. Recall that this means
that

.4.10/ †zij
;ı � B†

�
zij ;

1
2

�
for j D 1; 2:

By construction, the two intrinsic balls B†
�
zij ;

1
2

�
for j D 1; 2 are disjoint, which implies that also the

surfaces †zij
;ı for j D 1; 2 need to be disjoint.

We now return to the issue of intrinsic balls not necessarily being disks. Let †0 be a component of
B.zij ; ı/\† with †0\ @†D∅. Consider any simple closed curve c �†0. Since † is a disk, we know
that c is contractible within †. But in this scenario, the maximum principle, cf Lemma 2.9, implies that c

is contractible on scale ı. This in turn implies that c is contractible within †0. Since this applies to any
simple closed curve in †0, we find that †0 must be a disk.

Thanks to (4.10) this applies to the components †zij
;ı, proving that these are in fact topological disks

with
@†zij

;ı � @Bı.zij /:
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Consequently, for n large enough, (4.9) implies that the components †1 and †2 of

Bı=2.zi1
/\†

containing zi1
and zi2

, respectively, are compact and have

.4.11/ @†i � @Bı=2.zi1
/:

The rest of the proof will remain unchanged in our setting. Therefore we just outline the strategy; for
details we refer the reader to [Colding and Minicozzi 2008].

From (4.11) Colding and Minicozzi deduce a curvature bound on the intrinsic balls B†.zij ; ı.2c//;
namely they have previously shown that if two disjoint embedded minimal disks with boundary in the
boundary of a ball both come close to the center, then each has an interior curvature estimate. This
curvature bound in turn implies that there exists a constant r 0 D r 0.ı; c/ such that for n sufficiently
large, the intrinsic ball B†.zi2

; 3 r 0/ can be written as a normal exponential graph of a function u over a
domain �. Applying the Harnack inequality to u we obtain

supB†.zi1
;3 r 0/u�

zC 0n�1=3:

For n large enough, this inequality guarantees that we can repeat the previous argument with zi1
substituted

by a point in @B†.zi1
; r 0/. Thus, by repeatedly combining the above curvature bound and the Harnack

inequality, one can extend the curvature bound to larger intrinsic balls. Applying Lemma 4.5 then yields
a contradiction.

Thus the argument from (4.8) till (4.11) also works in our framework, whence the proof.

We also need a related chord arc property for uniformly locally simply connected surfaces.

Theorem 4.12 Let † � B.x0;R/ �M be a minimal surface with x0 2 †. Assume that there is an
r > 0 such that †\B.y; r/ consists only of proper disks for any y 2 B.x0;R� r/. Then , given k 2N

such that kr � R, there is a ˇk > 0 depending only on M such that if B†.x0; ˇkr/\ @† D ∅, then
@.†x0;kr /� @B.x0; kr/.

Remark 4.13 (1) This result is stated in [Colding and Minicozzi 2015, Appendix B.1] with the
uniformly locally simply connected assumption for intrinsic rather than extrinsic balls, ie it is
assumed that all intrinsic balls of a fixed radius are disks.

(2) As already mentioned in Remark 4.2, in our setting intrinsic balls that are contained in a disk
may not be disks themselves, which is why we use extrinsic balls in the uniformly locally simply
connected assumption.

Proof The argument is analogous to the proof of [Colding and Minicozzi 2008, Proposition 3.4] with
some changes that we now explain; compare also the proof of Theorem 4.1.
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For simplicity we scale everything so that r D 1.

We can follow the argument in [loc. cit., Proposition 3.4] up to (3.20) and consider two disjoint intrinsic
balls B†.zij ; 3C0/�†n @†. We first consider the surfaces †zij

;1, which are disks by assumption. Note
that clearly B†

�
zij ;

1
2

�
\ @†zij

;1 D ∅. Now we apply Theorem 4.1 with R D 1
2

. This gives that the
surfaces

†zij
;˛=2 � B†

�
zij ;

3
2
C0

�
are disjoint, proper disks, where ˛ is given by Theorem 4.1.

From here on we can again follow the argument in [loc. cit., Proposition 3.4].

5 Existence of one short curve

Throughout this section let .M;g/ be a closed three-manifold with positive Ricci curvature. In order to
prove Theorem 1.1, we want to argue by contradiction. Therefore, we study properties of a sequence
†j � .M;g/ of closed, embedded minimal surfaces with sysh

k
.†j /� l0 > 0. More precisely, we will be

concerned with a limit lamination
†j ! L in M nS

of such a sequence. For the sake of clarity, and since we need the corresponding arguments anyways, we
will focus first on the case k D 1, ie the first homology systole, and explain the necessary extensions to
handle the general case afterwards.

5.1 The singular set is nonempty

We start with a simple observation concerning the maximum of the curvature of a sequence of minimal
surfaces in M with unbounded genus. It says, that for a sequence of minimal surfaces of unbounded
genus †j �M, we necessarily have S¤∅. This works without any assumption on the systole.

Lemma 5.1 Let †j � .M;g/ be a sequence of closed , embedded minimal surfaces with �.†j /!�1.
Then there is a sequence of points zj 2†j such that jA†j j2.zj /!1.

Proof Assume that there is a constant C > 0, such that

.5.2/ sup
j

sup
†j

jA†j j2 � C:

By scaling we may for simplicity assume that the sectional curvature satisfies jsec.M /j � 1. Thus, by
minimality and the theorem of Gauss–Bonnet, the total curvature satisfies

.5.3/

Z
†j

jA†j j2 d�†j D�2

Z
†j

.K†j � sec.Tx†j // d�†j .x/� 4�j�.†j /j � 2 area.†j /:
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On the other hand we have

.5.4/

Z
†j

jA†j j2d�†j � C area.†j /

by assumption. Combining (5.3) and (5.4), we obtain

4�j�.†j /j � .C C 2/ area.†j /:

By assumption the left-hand side tends to infinity, therefore we find that

area.†j /!1 as j !1:

We consider the universal covering � W zM !M, where zM is compact by the Bonnet–Myers theorem.
Clearly, the minimal surfaces

y†j WD �
�1.†j /

also satisfy the pointwise curvature bound (5.2) and have diverging area,

.5.5/ area.y†j /!1:

The pointwise curvature bound (5.2) allows us to pass to a subsequence (not relabeled) such that

y†j ! L in C 0;˛. zM /;

where L is a Lipschitz lamination, whose leaves are smooth, complete minimal surfaces. Moreover,
since area.†j /!1, we can conclude that there needs to be at least one leaf � with stable universal
cover, which also implies that � is compact, hence diffeomorphic to S2 thanks to [Fischer-Colbrie and
Schoen 1980] and [Schoen and Yau 1983]. For the convenience of the reader we include the argument
here following the proof of [Chodosh et al. 2017, Theorem 1.3].

By passing to another subsequence and using (5.5) we find that there has to be a point p 2 � such that

lim inf
j!1

area.y†j \B.p; r//!1 for any r > 0:

Since the y†j are embedded and by the curvature bound (5.2), this implies that for j sufficiently large
and r > 0 sufficiently small (but only depending on the ambient geometry and the curvature bound),
y†j \B.p; r/ is given as the union of n.j /!C1 graphical components over � \B.p; r/. Let U � z�

be a bounded and simply connected subset of the universal cover z� of � with zp 2 U , where zp projects
to p. Using the curvature bound, a covering argument and the standard elliptic theory we find that for
j sufficiently large we can find at least two functions v1;j ; v2;j (out of the lifts of the n.j / components
above) defined on U such that the graphs define disjoint minimal surfaces over U and inf jv2;j�v1;j j! 0.
Using the Harnack inequality we find that wj D inf jv2;j � v1;j j

�1.v2;j � v1;j / converges to a nontrivial
signed solution of the Jacobi equation, hence U is stable. Since this applies to any such U it follows that
z� is stable.
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It follows from [Fischer-Colbrie and Schoen 1980] and [Schoen and Yau 1983] that for any disk D � z�

and any z 2D we have that

d.x; @D/�
2�
p

2
p

3�0

;

where Scal � �0 > 0 on D. Since this applies to any such disk it follows that z� is compact, hence a
sphere. Since zM is simply connected, it does not contain any embedded real projective plane. Therefore,
we need to have z� D � . In particular, � is a closed, two-sided, stable minimal surface in zM, which gives
the desired contradiction.

Remark 5.6 Under the additional assumption that sysh.†j /� l0 > 0, we could have used Corollary 2.3
instead of the theorem of Gauss–Bonnet to obtain that area.†j / has to be unbounded. However, this
relies on the assumption on the systole and is less elementary. We will exploit such an argument below,
in the proof of the existence of multiple pinching curves.

5.2 Localized systole and contractibility radius I

We now start to aim for Theorem 1.1 for k D 1, ie we show that there is at least one homologically
nontrivial curve that becomes arbitrarily short. By Lemma 5.1, in order to prove Theorem 1.1 using
a contradiction argument invoking a limit lamination, we are forced to study the structure of a limit
lamination of .†j /j2N in the presence of a nonempty singular set. In this subsection we use the global
positivity of the Ricci curvature to rule out rather general neck-pinch singularities under appropriate
assumptions.

We now fix r0 > 0 sufficiently small such that, firstly, the results from Section 4 apply in any ball B.x; r0/

and, secondly, all balls B.x; r/�M with r � r0 have strictly mean-convex boundary.

For an embedded closed surface †�M and a point x 2M we write

C.x; r/D C†.x; r/D fc W S1
!†\B.x; r/ j 0¤ Œc� 2 �1.†\B.x; r//g:

Note that c 2 C.x; r/ could still be globally contractible in †. We also write

C.x/D C†.x/D C.x; r0/:

At this point, recall that the maximum principle Lemma 2.9 says that if C.x; r/D∅ for some r � r0,
then C.x; s/D∅ for any s � r .

Definition 5.7 We call

c.†/D inf
x2M

supfr > 0 j �1.†\B.x; r/;x/D 0g

the contractibility radius of †, and

sysr .†/D inf
x2M

inf
c2C.x;r/

length.c/

the r -local systole of †.
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Figure 1: A surface with small r -local systole but not too small systole as the curve  is globally contractible.

While the two definitions seem closely related, there is an important difference to be pointed out. Note
that both of these are defined by looking at the intersection of † with extrinsic balls. However, the r -local
systole still refers to intrinsic distances, ie we only localize extrinsically. Also observe that we have

sysr .†/D inf
x2†

sys.†\B.x; r//:

Note that both the contractibility radius and the r -local systole refer to extrinsic balls of radius r . One of
the main challenges of our arguments is that in general there might be no strong connection between the
systole (which is intrinsic) and the extrinsic r -local systole as indicated in Figure 1.

The goal of this section is to show that if †�M is a minimal surface with homology systole bounded
below by some constant l0, then † is uniformly contractible on some potentially much smaller scale r1

that depends on the ambient geometry and l0 but not † otherwise; cf Proposition 5.21. Note that if
C.x/D∅ for any x 2†, then we automatically have that c.†/� r0, where we recall that r0 only depends
on the ambient geometry. Similarly, in this case we have that sysr .†/ D 1 for any r < r0. We are
therefore mainly concerned with the case C.x/¤∅ for some x 2M.

The next lemma is our key scale-breaking argument indicated in Figure 2. Via the maximum principle we
transfer some connectedness properties from the scale of certain singularities of a limit lamination to a
definite scale. Given a very short and separating curve we show that both connected components of the
complement have to extend a definite amount away.

Lemma 5.8 Let†�M be a closed minimal surface such that sysh.†/� l0. There is an l1D l1.M; l0/�

min.r0=4; l0=4/ with the following property. Suppose that sysr0
.†/ � l1 and that c 2 C.x/ is a simple

closed curve for some x 2M such that

length.c/� 2 sysr0
.†/:

Then † n c has two connected components †1 and †2, and these satisfy

†i \ @B.x; r0/¤∅ for i D 1; 2:
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Figure 2: The proof of Lemma 5.8: Because B.x; r/ is mean convex for any r � r0 at least one
component of † n c has to leave B.x; r0/, say †1. Once we can show that †2 is forced to leave
B.x; 9R0/ (still on the scale of c), the maximum principle gets us all the way to @B.x; r0/.

Proof Write R0 D length.c/=8 and also note that our assumptions on c, l0 and l1 imply that

length.c/� 2l1 �min
�

1
2
r0;

1
2
l0
�

thanks to our assumptions. Note the following two consequences of these choices.

Firstly, since the length of c is strictly below l0, we find that c is homologically trivial. This means that
† n c has two connected components, denoted by †1 and †2 with @†i D c.

Secondly, note that since x 2 c we have that

.5.9/ @†i � B.x; 4R0/� B
�
x; 1

4
r0

�
:

We first show that these choices imply that there is no nontrivial topology on intrinsic scales below R0.
More precisely, we let y 2†\B.x; r0=2/ and claim that there is a unique disk Dy �†\B.x; r0/ with

B†.y;R0/�Dy and @Dy � @B
†.y;R0/:

This can be seen as follows. By Lemma 2.10, if there were a curve � �B†.y;R0/ that is noncontractible
on scale r0 at x, we could find a simple closed curve � 0 � B†.y;R0/ also noncontractible on scale r0

at x, with
length.� 0/� 3R0 <

1
2

length.c/� sysr0
.†/

by our choice of the curve c, but this is impossible by the definition of the r0-local systole. We conclude
that any simple closed curve contained in B†.y;R0/ admits a filling disk contained in †\B.x; r0/,
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from which the existence of Dy follows. If † is not a sphere, it follows immediately that such a disk is
unique. In the case of † being a sphere there are two such disks in †. However, by the choice of r0 and
the maximum principle, these disks cannot both be entirely contained in B.x; r0/.

It follows from Theorem 4.1 and the convex hull property, that we can find some small ˛ > 0 such that

†\B.y; ˛R0/ consists of disks for any y 2 B
�
x; 1

2
r0

�
:

Now choose k 2N such that k˛ � 9, and let ˇk > 1 be given by Theorem 4.12. First assume that we can
find z 2†i such that

.5.10/ B†.z; ˇk˛R0/\ @†i D∅:

Also assume that

.5.11/ B†.z; ˇk˛R0/� B
�
x; 1

2
r0

�
;

since the conclusion otherwise follows from the maximum principle thanks to (5.9). Under these
assumptions it follows from Theorem 4.12 that

@..B†.z; ˇk˛R0//z;9R0
/� @B.z; 9R0/;

which clearly implies that

†i \ @B.x; 9R0/¤∅;

since †i is connected. Since on the other hand @†i � B.x; 4R0/, we then find from the maximum
principle that

†i \ @B.x; r0/¤∅:

Note that to go from one scale to the other scale the maximum principle is applied on all balls of radii
between the two scales.

We still need to justify why we can assume (5.10). Take l1 such that ˇk˛R0 � 16ˇk˛l1 �
1

12
r0: If with

these choices (5.10) fails for any z 2†i , we then have that

diam.†i/� 32ˇk˛l1 �
1
6
r0:

Suppose first that †i is a disk. In this case the diameter estimate implies that c is contractible on scale r0,
contradicting our choice of c.

If †i is not a disk it contains at least one nonseparating curve d , since @†i is connected. Thanks to the
diameter estimate, Corollary 2.11 then implies that we can find a nonseparating curve d 0 having

length.d 0/� 48ˇk˛R0 < l0;

contradicting the assumptions.
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†1
j

cj

�j

B.x; r0/

†2
j

Figure 3: The construction in the proof of Lemma 5.12. The surface †j is a good barrier for the
Plateau problem: Both components of †j n cj extend out of B.x; r0/ by Lemma 5.8.

Below, we solve a Plateau problem in M n† with boundary given by a curve c as above. In this situation,
Lemma 5.8 implies that † is a useful barrier.

Lemma 5.12 Given l0 > 0 there is an l2 D l2.M; l0/ > 0 with the following property. Let †�M be a
closed minimal surface with sysh.†/� l0. Then the r0-local systole satisfies

sysr0
.†/� l2:

Note that this achieves two things simultaneously. Firstly, it shows that the systole is bounded away
from zero if the homology systole is. Secondly, we also find that curves of controlled length which are
very short, but potentially on a much smaller scale than the systole, can be contracted in an extrinsically
controlled neighborhood.

This corresponds to the fact, already present in the argument for Lemma 5.8, that the proof handles two
types of curves. On the one hand, applied to homologically trivial noncontractible curves, this implies that
the homology systole of a sequence †j tends to 0 if we can show that the systole does so. On the other
hand, we will apply it to short curves bounding (large) disks in †j in order to understand the convergence
of †j to a limit lamination.

Proof Let us first consider the case of M being simply connected. Afterwards we reduce the general
case to this special case. We argue by contradiction and assume that we can find a sequence of minimal
surfaces .†j /j2N such that:

(1) All nonseparating curves in †j have length at least l0, ie sysh.†j /� l0.

(2) We have sysr0
.†j /! 0.

Geometry & Topology, Volume 29 (2025)



The systole of large genus minimal surfaces in positive Ricci curvature 1839

Up to taking a subsequence we then find x 2M, radii rj ! 0, and simple closed curves cj 2 C†j .x; rj /

such that

length.cj /� 2 sysr0
.†j /! 0:

Since M is simply connected, †j separates M into two mean-convex connected components

M n†j DM 1
j [M 2

j :

Clearly, once j is large enough such that 4 sysr0
.†j / � l0, we have that cj is null-homologous in the

closure of both of these components.

In addition, we claim that at least one of M 1
j and M 2

j has the following property: If length.cj /� l1 from
Lemma 5.8, then any minimal surface S �M i

j with @S D cj satisfies

.5.13/ S \ @B.x; r0/¤∅:

If this was not the case, we would find S1
j �M 1

j \B.x; r0/ and S2
j �M 2

j \B.x; r0/ such that @S i
j D cj .

The surface Sj D S1
j [ S2

j � B.x; r0/ is a closed surface and separates B.x; r0/ into two connected
components. Moreover, (5.13) does not hold for S , so that one of these components is contained in
B.x; r0 � ı/ for some small ı > 0. By construction, this component contains a component of †j n cj

contradicting Lemma 5.8.

Let M 1
j be the component having property (5.13). By [Hardt and Simon 1979] we can find a stable

minimal surface �j �M 1
j with @�j D cj which minimizes area among all surfaces in M 1

j which have
boundary cj . It follows from (5.13) that

.5.14/ �j \ @B.x; r0/¤∅

for j sufficiently large. Moreover, by the curvature estimates [Schoen 1983], there is a constant C such that

sup
j

sup
�j\.MnB.x;r//

.r � rj /
2
jA�j j2 � C

for any r > rj , where rj was defined such that cj 2C†j .x; rj /. In particular, we can pass to a subsequence
such that

�j ! L

in C
0;˛
loc .M n fxg/, where L is a minimal Lipschitz lamination. Since �j is stable, the same argument as

in [Chodosh et al. 2017, Lemma 4.1] implies3 that the lamination L extends to a lamination zL across fxg.

We claim that also zL has stable leaves thanks to a standard argument using the log cut-off trick. The
details are as follows. Let � be a leaf of zL passing through x. Let r > 0 such that on B.x; r/ we find

3If all leaves are two-sided this follows immediately from [Chodosh et al. 2017, Proposition D.3]. The argument in [Chodosh
et al. 2017, Lemma 4.1] explains how this can be assumed by passing to the double cover.
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Lipschitz coordinates for the lamination zL. We write �x for the component of � \B.x; r/ passing
through x. Fix some 0<R<min.r; 1/ and denote by �R W �! Œ0; 1� the log cut-off function given by

�R.y/D

8̂̂<̂
:̂

0 for d.x;y/�R2 and y 2 �x;

2�
log.d.x;y//

log.R/
for R2 < d.x;y/�R and y 2 �x;

1 else,

where d denotes the distance function in M. Moreover, for a smooth vector field X in the normal bundle
of � , we write

L�X D�N
� X CF.X /

for the stability operator of � . Here, F is a linear operator of order zero with smooth coefficients. The
precise form of F is irrelevant to the argument.

Let X be a smooth vector field in the normal bundle of � with compact support and such that jX j; jr�X j 2

L1.�/. Note that �x has bounded area by construction and that �R D 1 on � n .�x\B.x;R//. Since X

has compact support and the coefficients of F are locally bounded, it thus it follows from the dominated
convergence theorem that

.5.15/ lim
R!0

Z
�

hF.�RX /; �RX i D

Z
�

hF.X /;X i:

We now turn to the gradient term. First, note that

.5.16/

Z
�

jr�X j2�

Z
�

jr�.�RX /j2 D

Z
�x\B.x;R/

jr�X j2�

Z
�x\B.x;R/

jr�.�RX /j2:

Since
lim

R!0

Z
�x\B.x;R2/

jr�X j2 D 0D

Z
�x\B.x;R2/

jr�.�RX /j2;

thanks to dominated convergence once again, we are left with considering the contribution on the annulus
.B.x;R/ nB.x;R2//\�x .

From the dominated convergence theorem we have that

lim
R!0

Z
B.x;R/\�x

jr�X 2
j D 0;

which when combined with j�Rj � 1 and jr�.�RX /j2 � 2�2
R
jr�X j2C 2jr��Rj

2jX j2 implies that we
only have to estimate Z

.B.x;R/nB.x;R2//\�x

jX j2jr��Rj
2:

To this end, we decompose into dyadic annuli via

�
B.x;R/ nB.x;R2/

�
\�x D

dlog.1=R/e[
iD1

Ai ; where Ai �
�
xB.x; eiR2/ nB.x; ei�1R2/

�
\�x :
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Note that since �x has bounded area, we find from the monotonicity formula that

.5.17/ area.Ai/� area.B.x; eiR2/\�x/� Ce2iR4 area.�x/;

where C is a constant that depends on M and r . Also note that

.5.18/ jr��Rj �
1

ei�1R2 log.1=R/
on Ai :

We thus find from (5.17) and (5.18), also using that X is bounded, thatZ
. xB.x;ei R2/nB.x;ei�1R2//\�x

jX 2
jjr��Rj

2
�

C

log.1=R/2

dlog.1=R/eX
iD1

e2iR4

e2i�2R4
�

C

log.1=R/
:

We have thus shown that

.5.19/ lim
R!0

Z
�

jr�.�RX /j2 D

Z
�

jr�X j2:

Combining (5.15) and (5.19) and integrating by parts gives that

�

Z
�

hL�X;X i D

Z
�

.jr�X j2� hF.X /;X i/D lim
R!0

Z
�

�
jr�.�RX /j2� hF.�RX /; �RX i

�
� 0;

since �RX has compact support in � n fxg which is stable. This proves that � is stable.

From (5.14), we find that there is a leaf x� � zL with

x� \ @B.x; r0/¤∅:

In particular, x� is nonempty. Moreover, invoking [Fischer-Colbrie and Schoen 1980] and [Schoen and
Yau 1983] once again, x� is closed. Thus, since M is simply connected, we find that x� is two-sided. Since
M has positive Ricci curvature, this is a contradiction since x� is a nonempty, two-sided, closed, stable
minimal surface in M.

We now consider the general case in which we can assume that M is not simply connected. We can pass
to the universal covering � W zM !M, which is compact by the Bonnet–Myers theorem. In particular,
there is a finite group G acting freely on M such that M D zM =G. We obtain minimal surfaces

y†j D �
�1.†j /� zM:

Since M has positive Ricci curvature, by the Frankel property, the surfaces y†j are connected.

We may assume that r0 is chosen sufficiently small that

g.B.x; r0//\B.x; r0/D∅

for any g 2G n feg. If there is a noncontractible curve cj �†j \B.x; r0/, with

length.cj /� l0;
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we may again assume that cj is chosen to have properties (1) and (2) from above. It follows from our
assumption that cj is separating. Therefore, by Lemma 2.12, also ycj WD �

�1.cj / is separating. Moreover,
by the choice of r0, and recalling l0� r0, we see that ycj consists of jGj disjoint, closed curves. We can now
argue exactly as above and minimize area in the correct component of zM n y†j relative to the boundary ycj .
Finally, by Lemma 5.8,4 the limit lamination will be nonempty and we can conclude as in the first case.

Remark 5.20 For curves that are noncontractible in †\B.x; r/ but contractible in †, it should be
possible to extend Lemma 5.8 to bumpy metrics of positive scalar curvature. In this situation one
component of †j n cj is a planar domain and one can write large parts of this component as a graph
over �j . This can then be used to construct a nontrivial Jacobi field on � .

Proposition 5.21 For any l0 > 0 there is an r1 > 0 such that for any closed minimal surface †�M with
sysh.†/� l0, we have for the contractibility radius that c.†/� r1.

Proof If we apply Lemma 5.12 to † we get some l2 > 0 such that all curves in † of length at most l2

are contractible in the intersection of † with some mean-convex ball B.x; r0/. In particular, it follows
from Lemma 2.10 that any intrinsic ball B†.z; l2=3/ is contained in some disk Dz with

B†
�
z; 1

3
l2
�
�Dz �†j \B.z; r0/:

The claim now follows with r1 D
1
3
˛l2 from Theorem 4.1, where also ˛ > 0 is from Theorem 4.1.

5.3 The first homology systole

At this stage we are in a position to prove the special case k D 1 of our main result.

Proof of Theorem 1.1 for k D 1 We argue by contradiction and assume that we have a sequence of
minimal surfaces †j �M with ��.†j /!1 and

sysh.†j /� l0 > 0

for some positive constant l0. Thanks to Proposition 5.21 we find that the sequence .†j / is ULSC, ie

.5.22/ †j \B.x; r1/ consists of disks for any x 2M:

Clearly, after potentially decreasing r1, property (5.22) holds for the surfaces y†j �
zM as well. Therefore,

it suffices to derive a contradiction from (5.22) if M is simply connected.

Thanks to (5.22) and [White 2015] (see also [Colding and Minicozzi 2015] which gives Lipschitz curves),
we can pass to a subsequence such that

†j ! L in M nS

outside the singular set S which is contained in a union of C 1-curves. It follows from Lemma 5.1, that
S¤ ∅. In particular, we can pick x 2 S and the associated collapsed leaf �x . Moreover, since �x is

4We apply this to †j and observe that this trivially implies (5.14) for y†j .
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a limit leaf of L it is stable by [Meeks et al. 2010]. It follows from Proposition 3.3 that �x extends to
a complete minimal surface x� in M and that S\ x� is discrete. In particular, x� is also stable and by
[Fischer-Colbrie and Schoen 1980] and [Schoen and Yau 1983], its universal cover is diffeomorphic
to S2. Since M is simply connected, it does not contain any one-sided surfaces and we conclude that x�
is a two-sided, closed, stable minimal surface in M. This is clearly a contradiction, since M has positive
Ricci curvature.

6 Existence of multiple short curves

We now proceed to the proof of the general case of Theorem 1.1.

Recall that we assume M to be a closed three-manifold with positive Ricci curvature. Assume we have a
sequence of minimal surfaces .†j /j2N in M with the following properties. There is a natural number
k � 2 and for each j 2N a set fc1

j ; : : : ; c
k�1
j g of simple closed curves in †j such that

(1) length.ci
j /! 0 for i D 1; : : : ; k � 1 as j !1,

(2) rankhŒc1
j �; : : : ; Œc

k�1
j �i D k � 1 in H1.†j IZ=2Z/,

(3) there is an l0>0 such that if a closed curve dj �†j has length.dj /� l0, then Œdj �2hŒc
1
j �; : : : ; Œc

k�1
j �i.

Note that (3) allows for Œdj �D 0.

By taking a subsequence we may assume that ci
j � B.xi ; sj / for a sequence of radii sj ! 0.

We now follow the same steps that we used for the case of the first homology systole, but have to deal
with several new difficulties.

6.1 Additional points in the singular set

In a first step we show that the singular points arising from the curves ci
j do not comprise the entire

singular set. This is the analogue of Lemma 5.1. In contrast to Lemma 5.1 the argument in this case relies
on the assumption on the homology systole.

Lemma 6.1 We have S\M n
Sk�1

iD1 B.xi ; r3/¤∅ for some r3 > 0.

Proof Assume that S� fx1; : : : ;xk�1g. By Corollary 2.3, we can assume that area.†j / is unbounded.

For simplicity, let us scale M to have jsecj � 1, and write Bs D
Sk�1

iD1 B.xi ; s/. The monotonicity
formula then implies

area.†j \ .B2r3
nBr3

//D area.†j \B2r3
/� area.†j \Br3

/

�

�
4

e2r3
� 1

�
area.†j \Br3

/� area.†j \Br3
/

if r3 � log.2/=2, which in turn implies

.6.2/ 2 area.†j nBr3
/� area.†j nBr3

/C area.†j \ .B2r3
nBr3

//� area.†j /!1:
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Now we can argue exactly as in Lemma 5.1 and obtain a limit lamination L�M nS. Thanks to (6.2)
we can conclude that L has a leaf with stable universal cover. We then use stability to extend it across the
isolated singularities S and eventually use the log cut-off trick to conclude that this is still stable, which
gives the desired contradiction.

6.2 Localized systole and contractibility radius II

In a next step we prove that †j is ULSC off the set fx1; : : :xk�1g.

Proposition 6.3 Assume .†j /j2N is as above. Given r > 0 there is an r2 D r2.M;g; l0; r/ such that the
contractibility radius satisfies c

�
†j \

�
M n

Sk�1
iD1 B.xi ; 4r/

��
� r2 for j sufficiently large.

We want to follow the same strategy that we used to obtain Proposition 5.21, for which in turn Lemma 5.8
was the key input. Because of the short curves ci

j , we need to be more careful in how we select the scale
on which we work. Recall that in the case of Lemma 5.8 this was the smallest intrinsic scale of nontrivial
topology. It turns out that there are two cases to consider in the more general case, depending on whether
a potentially contradicting curve is separating or not. The instance of separating curves is more delicate,
and we introduce some notation here related to this case. In order to find the correct scale, we define
functions lj ; fj W†j ! Œ0;1/ as follows. For x 2†j , we consider the set C 0j of curves in †j given by

C 0j .x/ WD fc W S1!†j j 0¤ Œc� 2 �1.†j \B.x; r0/;x/; 0D Œc� 2H1.†j IZ=2Z/g:

Note that we only take into account separating curves here. Then the first function is defined via

lj .x/ WDmin
˚
1; infflength.c/ j c 2 C 0j .x/g

	
;

and fj is a scale-invariant version of (the inverse of) this, incorporating the distance to the short curves ci
j ,

given by
fj .x/D lj .x/

�1 dist.x; c1
j [ � � � [ ck�1

j /:

Proof of Proposition 6.3 We argue by contradiction and assume that we can find a simple closed curve
dj �†j such that

.6.4/ length.dj /! 0

and

.6.5/ dj �M n

k�1[
iD1

B.xi ; 2r/;

but

.6.6/ dj is noncontractible on scale r0:

If we cannot find such a curve, the assertion follows from Theorem 4.1 combined with Lemma 2.10 and
the convex hull property exactly as in the proof of Proposition 5.21.
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Up to taking a subsequence, by (6.4) and (6.5) we can assume that

dj ! y 2M n

k�1[
iD1

B.xi ; 2r/:

Observe that (6.4) combined with the assumption (3) implies that Œdj �2 hŒc
1
j �; : : : ; Œc

k�1
j �i for j sufficiently

large, which we simply assume to be the case from here on.

We have to distinguish the following two cases:

(a) The curve dj is nonseparating.

(b) The curve dj is separating, ie Œdj �D 0.

We start with case (a). In this case it follows from Lemma 2.5 that

†j \

�
M n

k�1[
iD1

B.xi ; sj /

�
D†1

j [†
2
j ;

where now †i
j are connected, disjoint minimal surfaces with

@†i
j � dj [

k�1[
iD1

@B.xi ; sj /:

Since dj is nonseparating in †j , it follows immediately that

.6.7/ †i
j \ @B.y; r0/¤∅

holds for i D 1; 2 and for j sufficiently large. By the same arguments as in the proof of Lemma 5.12
we may assume that M is simply connected. We now want to minimize area with boundary dj in
M n

Sk�1
iD1 B.xi ; sj / instead of all of M. In order to do so we first slightly modify the metric nearSk�1

iD1 @B.xi ; sj / to obtain a mean-convex domain. Using a partition of unity we may simply choose
a metric gj on M nB.xi ; sj / that agrees with the original metric outside of

Sk�1
iD1 B.xi ; 2sj / and has

mean-convex boundary. We can now solve the Plateau problem as before in
�
M n

Sk�1
iD1 B.xi ; sj /;gj

�
with prescribed boundary dj . After passing to a subsequential limit we find a nonempty (thanks to (6.7))
limit lamination in .M n fx1; : : : ;xk�1g;g/. By stability, the limit lamination extends also across the set
fx1; : : : ;xk�1g and we can argue as in the proof of Lemma 5.12.

For the remaining case (b), we prove the stronger assertion that fj is uniformly bounded. This handles
case (b) as follows. If fj � C , then for x 2M n

Sk�1
iD1 B.xi ; 2r/, we find that

lj .x/� C�1 dist.x; c1
j [ � � � [ ck�1

j /� C�1r

for j sufficiently large, which contradicts (6.4)–(6.6).

In order to show that fj is uniformly bounded, we argue by contradiction and assume that

.6.8/ lim inf
j!1

sup
†j

fj !1;
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which we simply assume to be a full limit after taking another subsequence. Note that fj � Cj for some
constant Cj > 0, since †j is a smooth and closed surface; therefore, we can pick5 zj 2†j such that

2fj .zj /� sup
†j

fj :

The assumption (6.8) implies that there is a loop ej 2C 0j .zj / based at zj that is noncontractible on scale r0

such that

.6.9/ length.ej /� o.dist.zj ; c
1
j [ � � � [ ck�1

j //:

We can assume that any other loop e0j 2 C 0j .zj / has

.6.10/ length.ej /� 2 length.e0j /;

since we could otherwise replace our original loop ej by an even shorter one satisfying all other assump-
tions.

For z 2†j \B.zj ; 2 length.ej ///, we find from (6.9) that

dist.z; c1
j [ � � � [ ck�1

j /� dist.zj ; c
1
j [ � � � [ ck�1

j /� 2 length.ej /�
1
2

dist.zj ; c
1
j [ � � � [ ck�1

j /

for j sufficiently large. Therefore, by the choice of zj , we have

.6.11/ 4lj .z/� lj .zj /

for any z 2†j \B.zj ; 2 length.ej ///.

Since ej is separating (recall that all curves in C 0j are separating by definition) we can write

† n ej D†
1
j [†

2
j

for connected minimal surfaces †i
j with boundary ej . We claim that

.6.12/ †i
j \ @B.zj ; r0/¤∅ for i D 1; 2:

For ease of notation, we prove (6.12) for †1
j ; the argument for †2

j is analogous.

We again distinguish two cases. In the first case we assume that there is a simple closed curve gj �†
1
j

with 0¤ Œgj � 2 hŒc
1
j �; : : : ; Œc

k�1
j �i. This case follows for homological reasons: We can pick a closed curve

hj �†j that intersects gj exactly once. Since ej is separating and gj �†
1
j , we can even choose hj with

hj �†
1
j . But then hj has to intersect at least one of the curves cl

j , which implies that

†1
j \B.xl ; sj /¤∅:

Thanks to (6.9) this implies that

†1
j \ @B.zj ; length.ej //¤∅:

Since @†1
j D ej � B.zj ; length.ej /=2/, we obtain (6.12) from the convex hull property applied to †1

j .

5This is the standard selection procedure for such scales adapted to our situation.
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In the remaining case we have that if gj �†
1
j is a simple closed curve with length.gj /� l0, then Œgj �D 0.

Moreover, the bound (6.11) combined with the choice (6.10) then implies that any simple closed curve
gj �†

1
j \B.zj ; 2 length.ej // with length.gj /� length.ej /=4 is contractible on scale 2 length.ej / at zj .

At this point we are (for †1
j \B.zj ; 2 length.ej //) in the setting of Lemma 5.8, and can simply repeat

the same argument to obtain
†1

j \ @B.zj ; 2 length.ej //¤∅;

which in turn implies (6.12) by the convex hull property using that @†1
j � B.zj ; length.ej //.

We can now once again argue as in the proof of Lemma 5.12 and conclude the proposition.

6.3 Proof of the main result

We now give the proof for the general case of our main result.

Proof of Theorem 1.1 For � W zM !M the universal covering, consider the surfaces y†j D �
�1.†j /

and write XD ��1.fx1; : : : ;xk�1g/. We can pass to a subsequential limit

y†j ! L in C
0;˛
loc .

zM nS/;

where clearly X�S. It follows from Proposition 6.3 that the surfaces are ULSC away from X. Moreover,
thanks to Lemma 6.1, we can find a collapsed leaf � �L, which extends across SnX by Proposition 3.3.
Moreover, since this is stable, it also extends across the isolated points X to a complete, stable minimal
surface, which implies a contradiction as in the case of the first homology systole.
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The Manhattan curve, ergodic theory of topological flows and rigidity

STEPHEN CANTRELL

RYOKICHI TANAKA

For every nonelementary hyperbolic group, we introduce the Manhattan curve associated to each pair
of left-invariant hyperbolic metrics which are quasi-isometric to a word metric. It is convex; we show
that it is continuously differentiable and moreover is a straight line if and only if the corresponding
two metrics are roughly similar, ie they are within bounded distance after multiplying by a positive
constant. Further, we prove that the Manhattan curve associated to two strongly hyperbolic metrics is
twice continuously differentiable. The proof is based on the ergodic theory of topological flows associated
to general hyperbolic groups and analyzing the multifractal structure of Patterson–Sullivan measures. We
exhibit some explicit examples including a hyperbolic triangle group and compute the exact value of the
mean distortion for pairs of word metrics.

20F67; 37D35, 37D40

1 Introduction

Let � be a nonelementary hyperbolic group. Given a pair of hyperbolic metrics d and d� which are
left-invariant and quasi-isometric to a word metric on � (hence they are quasi-isometric each other), we
determine exactly when they are roughly similar, ie d and d� are within bounded distance after rescaling
by a positive constant, in terms of the Manhattan curve for the pair of metrics.

For d (resp. d�), let us define the stable translation length by

`Œx� WD lim
n!1

1

n
d.o;xn/ for x 2 �;

(resp. `�Œx�), where the limit exists since the function n 7! d.o;xn/ is subadditive, and o denotes the
identity element in � . Note that the stable translation length for x depends only on the conjugacy class
of x, and thus defines the function on the set of conjugacy classes conj in � . Let us consider the series
with two parameters

Q.a; b/D
X

Œx�2conj

exp.�a`�Œx�� b`Œx�/ for a; b 2R:

The Manhattan curve CM for a pair .d; d�/ is defined by the boundary of the following convex set

f.a; b/ 2R2
W Q.a; b/ <1g:

This curve was introduced by Burger [1993] for a class of groups acting on a noncompact symmetric
space of rank one.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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1852 Stephen Cantrell and Ryokichi Tanaka

Let D� be the set of hyperbolic metrics which are left-invariant and quasi-isometric to some (equivalently,
every) word metric in � . Recall that for d; d� 2 D� , we say that d and d� are roughly similar if there
exist constants � > 0 and C � 0 such that

jd�.x;y/� �d.x;y/j � C for all x;y 2 �:

Theorem 1.1 Let � be a nonelementary hyperbolic group. For every pair .d; d�/ in D� , the Manhattan
curve CM for .d; d�/ is continuously differentiable , and it is a straight line if and only if d and d� are
roughly similar.

Note that, if v (resp. v�) is the abscissa of convergence for Q.0; b/ in b (resp. Q.a; 0/ in a), then

v WD lim
r!1

1

r
log #B.o; r/; where B.o; r/ WD fx 2 � W d.o;x/� rg;

(similarly v� for d�) and #B denotes the cardinality of B. In particular, .0; v/ and .v�; 0/ lie on CM ; see
Section 3.

Theorem 1.2 Let � be a nonelementary hyperbolic group. For every pair .d; d�/ in D� , the limit

(1-1) �.d�=d/ WD lim
r!1

1

#B.o; r/

X
x2B.o;r/

d�.o;x/

r

exists , where the balls B.o; r/ are defined for d , and we have

(1-2) �.d�=d/�
v

v�
:

Moreover , the following are equivalent :

(1) The equality �.d�=d/D v=v� holds.

(2) There exists a constant c > 0 such that `�Œx�D c`Œx� for all Œx� 2 conj.

(3) The metrics d and d� are roughly similar.

Let us call �.d�=d/ defined by (1-1) the mean distortion of d� over d , and the inequality (1-2) the
distortion inequality. The proof of Theorem 1.2 is based on Theorem 1.1 and relies on the following
property of the Manhattan curve CM : the slope of CM at .0; v/ is ��.d�=d/ (Theorem 3.12).

If both metrics d and d� are strongly hyperbolic (eg induced by an isometric cocompact action on a
CAT.�1/-space; see Definition 2.2), then we have the following.

Theorem 1.3 Let � be a nonelementary hyperbolic group. If d and d� are strongly hyperbolic metrics
in D� , then the Manhattan curve CM for .d; d�/ is twice continuously differentiable.
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We show this in Theorem 4.16 and prove the analogous result for pairs of word metrics in Theorem 4.14.

The various methods we use throughout our work allow us to connect the geometrical features of CM

with properties of the corresponding metrics. For example, by comparing our methods to those of the
first author in [Cantrell 2021], we connect the second differential of CM at .0; v/ with the variance of
a central limit theorem for uniform counting measures on spheres; see Theorem 4.17 and the remark
thereafter. We also connect the asymptotic gradients of CM with the dilation constants

Dil� WD inf
Œx�2conj>0

`�Œx�

`Œx�
and DilC WD sup

Œx�2conj>0

`�Œx�

`Œx�
;

where conj>0 is the set of Œx� 2 conj such that `Œx� (and hence `�Œx�) is nonzero. We also show that, for
every pair of word metrics, Dil� and DilC are rational (Proposition 4.22). Note that Dil� D DilC if and
only if �.d�=d/D v=v� by Theorem 1.2.

1.1 Historical backgrounds

Burger [1993] introduced the Manhattan curve associated to a finitely generated, nonelementary group �
which acts on a rank one symmetric space X properly discontinuously, convex cocompactly and without
fixed points. For each convex cocompact realization of � into the isometry group of X there is a natural
length function defined on the conjugacy classes of �: one can assign to each conjugacy class in � the
geometric length of the corresponding closed geodesic in the quotient. Burger’s Manhattan curve is
defined using two of these length functions. He showed that the curve is continuously differentiable and it
is a straight line if and only if the isomorphism of lattices associated to the two corresponding realizations
extends to an isomorphism of the ambient Lie groups; see [Burger 1993, Theorem 1]. An important
special case includes two isomorphic copies of torsion-free cocompact Fuchsian groups acting on the
hyperbolic plane. In this case, Sharp [1998] has shown that the associated Manhattan curve is real analytic
by employing thermodynamic formalism for geodesic flows. Recently, Kao [2020] has shown that the
Manhattan curve is real analytic for a class of noncompact hyperbolic surfaces. A similar rigidity problem
related to the Manhattan curve is discussed for cusped Hitchin representations in [Bray et al. 2022].

Kaimanovich, Kapovich and Schupp [Kaimanovich et al. 2007] have extensively studied similar problems
for a free group F of rank at least 2. They compared the pair of word metrics for the generating sets S

and �.S/, where S is the free generating set and � is an automorphism of F . They introduced the generic
stretching factor �.�/, which is defined as the average or typical growth rate of j�.xn/j=n when xn is
chosen uniformly at random from the words of length n in S . Using our terminology, it amounts to
considering �.S=�.S//D �.�/. An automorphism � of F is called simple if it is a composition of an
inner automorphism and a permutation of S . It has been shown [Kaimanovich et al. 2007, Theorem F]
that � is simple if and only if �.�/D 1 (in which case � gives rise to a rough similarity on the Cayley
graph of .F;S/). Sharp [2010] has pointed out its connection to the corresponding Manhattan curve: he
has identified �.�/ with the slope of the normal line at the point .log.2k�1/; 0/, where k is the rank of F .
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The mean distortion is a generalization of the generic stretching factor for hyperbolic groups and has
appeared in the work of Calegari and Fujiwara [2010] (though the identification is not immediately clear at
first sight). They have shown that for every pair of word metrics the distortion inequality holds [Calegari
and Fujiwara 2010, Remark 4.28], and also that the mean distortion is an algebraic integer [Calegari and
Fujiwara 2010, Corollary 4.27]. Furthermore, a (possibly degenerate) central limit theorem (CLT) has
been shown [Calegari and Fujiwara 2010, Theorem 4.25] (see also [Calegari 2013, Section 3.6]), and their
result has been generalized in [Cantrell 2021, Theorem 1.2] and [Gekhtman et al. 2022, Theorem 1.1].
Moreover, the variance of CLT is zero if and only if two metrics are roughly similar; see [Cantrell 2021,
Lemma 5.1] and [Gekhtman et al. 2022, Theorem 1.1].

Furman [2002] has proposed a general framework which can be used to compare metrics belonging to D�
when � is a torsion-free hyperbolic group. In his work he introduced an abstract geodesic flow in a
measurable category for a general hyperbolic group, and showed that two metrics are roughly similar if
and only if the associated Bowen–Margulis currents are not mutually singular on the boundary square @2�

(which is the set of two distinct ordered pairs of points in the Gromov boundary @�); see [Furman 2002,
Theorem 2]. He also claims that two metrics in D� are roughly similar if and only if their associated
translation length functions are proportional. A main motivation of the present paper is to incorporate
the properties of the Manhattan curve into rigidity statements that characterize rough similarity. As a
consequence we strengthen and generalize Furman’s result for all nonelementary hyperbolic groups.

1.2 Outline of proofs

Let us sketch the proof of Theorem 1.1. First we consider the following series in a; b 2R,

P.a; b/D
X
x2�

exp.�ad�.o;x/� bd.o;x//;

and identify the Manhattan curve CM with the graph of b D �.a/, where �.a/ is the abscissa of
convergence in b for each fixed a; see Proposition 3.1. In what follows, we also call the function �
which parametrizes CM the Manhattan curve. Next we perform the Patterson–Sullivan construction for
ad�C bd for .a; b/ with b D �.a/ and construct a one-parameter family of measures �a;b on @� for
.a; b/ 2 CM (Corollary 2.10). A key step in the proof of Theorem 1.1 is understanding the variation of
�a;b in a. Every measure �a;b (which is not necessarily unique) is ergodic with respect to the �-action
on @� for each fixed .a; b/ 2 CM and the proof of this is adapted from classical arguments in [Coornaert
1993]. Moreover, �a;b is doubly ergodic, ie �a;b˝�a;b is ergodic with respect to the diagonal action of
� on @2� . Proving this amounts to showing that the geodesic flow is ergodic if it is properly defined eg
in the case of manifolds (where we owe this idea to the work of Kaimanovich [1990]). Furman [2002]
has constructed a framework where machinery concerning geodesic flows works for general hyperbolic
groups (see also [Bader and Furman 2017]), but the space in his setup has only a measurable structure
and so difficulties arise when we discuss a family of flow-invariant measures (on the same space) and
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carry out limiting arguments with those measures. We employ a compact model of geodesic flow defined
by Mineyev [2005], and show that there exist associated flow-invariant probability measures ma;b (which
is unique) for each .a; b/ 2 CM and they are continuous in a 2R in the weak-star topology (Section 2.7).

Finally we define the local intersection number �.�/ at � 2 @� for a pair .d; d�/ as the limit of
d�.�.0/; �.t//=d.�.0/; �.t// as t!1, where � is a quasigeodesic such that �.t/! � as t!1, if
the limit exists. We show that the limit exists and is equal to a constant �a;b for �a;b-almost every � 2 @� .
Furthermore, �a;b is continuous in .a; b/ 2 CM (Section 3.2). In fact, � 0.a/D��a;b if � is differentiable
at a 2 R. Note that � is convex (as seen from the definition) and thus is continuous everywhere and
differentiable at all but at most countably many points. Since we have shown that �a;b is continuous
in a, the function � is C 1. In the last step, where we show that �a;b coincides with �� 0.a/ (if it exists),
we prove that �a;b assigns a full measure to the set where the local intersection number �.�/ is defined
and is equal to �� 0.a/. This discussion naturally leads us to study the multifractal spectrum of �.�/,
ie to determine all the possible values ˛ of �.�/ and the size of the level sets for which �.�/D ˛. This
spectrum is actually the multifractal profile of a Patterson–Sullivan measure for d�, where the Hausdorff
dimension is defined by a quasimetric associated with d (Theorem 3.8). Furthermore, the profile function
is the Legendre transform of the Manhattan curve and is defined on the interval .Dil�;DilC/. (It would
be interesting if it is defined on ŒDil�;DilC�, including the two extrema, which is indeed the case for
some special case, eg word metrics. See Remark 3.9 and our investigation of this point in Section 4.6.)
Based on this discussion, we show that the Manhattan curve CM for a pair .d; d�/ is a straight line if and
only if d and d� are roughly similar (Theorem 3.10) and thus conclude Theorem 1.1. The discussion also
yields Theorem 1.2 by identifying �� 0.0/ with the mean distortion �.d�=d/; see Theorem 3.12.

Let us briefly describe the proof of Theorem 1.3, as our methods are quite different to those used in the
proof of Theorem 1.1. We introduce a subshift of finite type coming from the coding built upon Cannon’s
automatic structure. This allows us to employ techniques from thermodynamic formalism, which we
apply within the strengthened thermodynamic framework of Gouëzel [2014]; see Section 4. This enables
us to relate CM to a family of real analytic (pressure) functions associated to suitable potentials on
the subshift. Unfortunately, in general, we do not know whether the subshift is topologically transitive,
ie whether Cannon’s automatic structure has a single recurrent component which is dominant. This
introduces additional difficulties. Since the automatic structure may contain various large components, our
pressure functions of interest are not coming from a single component. In particular, we must compare
the corresponding dominating eigenvalues of a collection of transfer operators, each of which depend on
one of these components. To overcome these difficulties we use the following ideas. First, we introduce a
multiparameter family of Patterson–Sullivan measures developed in Section 2.6. Second, we compare
these measures to a collection of pressure functions and show that the first and second-order partial
derivatives of these functions coincide at certain points; our proof of this latter part is developed upon an
argument of Calegari and Fujiwara [2010, Section 4.5]. This allows us to show that a function z�.a; b/,
which we obtain from gluing together our analytic pressure functions, is twice continuously differentiable.
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Finally, we realize CM as the solution to z�.a; b/D 0 and then apply the implicit function theorem to
conclude the proof.

After showing Theorem 1.3 (Theorem 4.16), we investigate further properties of the Manhattan curve for
strongly hyperbolic and word metrics. For a pair of word metrics, we obtain a finer version of Theorem 1.1
and show that two word metrics are not roughly similar if and only if the corresponding Manhattan curve
is globally strictly convex (Theorem 4.17). Furthermore we show that there are two lines, the slopes
of which we can express explicitly, which are within bounded distance of the Manhattan curve at ˙1
(Proposition 4.22). As an application we obtain a precise large deviation principle for d�.o;xn/=n when
xn uniformly distributes on the sphere d.o;x/D n, for word metrics d and d�. We identify the effective
domain (where the rate function is finite) with ŒDil�;DilC� (Theorem 4.23 and Corollary 4.25).

1.3 Organization of the paper

In Section 2.1, we review basic theory on hyperbolic groups, a classical Patterson–Sullivan construction
in a generalized form and a topological flow. In Section 3, we show Theorems 1.1 and 1.2. In Section 4,
we discuss thermodynamic formalism. We show Theorem 1.3 in Theorem 4.16, the analogous result for
word metrics in Theorem 4.14, a stronger version of Theorem 1.1 for word metrics in Theorem 4.17, and
that Dil� and DilC are rational for word metrics in Proposition 4.22. The proof of this proposition is
based on a finer analysis of a transfer operator in Proposition 4.20. We exhibit an application to a large
deviation principle in Theorem 4.23 and Corollary 4.25. In Section 5, we compute explicit examples:
the free group of rank 2 and the .3; 3; 4/-triangle group. In particular, in the case of the latter group, we
find a pair of word metrics for which the mean distortion is algebraic irrational. In the appendix, we
show Lemma 3.11, which we use in the proof of main rigidity result Theorem 3.10 (the second part of
Theorem 1.1).

Notation Throughout the article, we denote by C;C 0;C 00; : : : constants whose explicit values may
change from line to line, and by CR;C

0
R
;C 00

R
; : : : constants with subscript R to indicate their dependency

on a parameter R. For real-valued functions f .t/ and g.t/ in t 2R, we write f .t/� g.t/ if there exist
constants C1;C2 > 0 independent of t such that C1g.t/ � f .t/ � C2g.t/, and f .t/ �R g.t/ if those
constants C1 and C2 depend only on R. Further we use the big-O and small-o notation: f .t/DO.g.t//

if there exist constants C > 0 and T > 0 such that jf .t/j �C jg.t/j for all t � T , while f .t/DOR.g.t//

if the implied constant is CR , and f .t/D g.t/C o.t/ as t & 0 if jf .t/�g.t/j=t ! 0 as t ! 0 for t > 0.
We say that two measures �1 and �2 defined on the common measurable spaces are comparable if there
exists constant C > 0 such that C�1�1 � �2 � C�1. We use the notation #A which stands for the
cardinality of a set A.

Acknowledgements We thank Professor Richard Sharp for his suggestion in Remark 4.21, and the
referee for useful comments. Tanaka is partially supported by JSPS Grant-in-Aid for Scientific Research
JP20K03602 and JST, ACT-X grant JPMJAX190J, Japan.
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2 Preliminaries

2.1 Hyperbolic groups

We briefly review some fundamental material concerning hyperbolic groups. See the original work by
Gromov [1987] and Ghys and de la Harpe [1990] for background. Let .X; d/ be a metric space. The
Gromov product is defined by

.xjy/w WD
d.w;x/C d.w;y/� d.x;y/

2
for x;y; w 2X:

For ı � 0, a metric space .X; d/ is called ı-hyperbolic if

.xjy/w �minf.xjz/w; .zjy/wg� ı for all x;y; z; w 2X:

We say that a metric space is hyperbolic if it is ı-hyperbolic for some ı � 0.

Let � be a finitely generated group. We call a finite set of generators S of � symmetric if s�1 2 S

whenever s 2 S . The word metric associated to a symmetric finite set of generators S is defined by

dS .x;y/ WD jx
�1yjS for x;y 2 �;

where jxjS WD minfk � 0 W x D s1 � � � sk ; si 2 Sg and 0 for the identity element. We say that � is a
hyperbolic group if the pair .�; dS / is hyperbolic for some word metric dS . If .�; dS / is ı-hyperbolic,
then for every finite, symmetric set of generators S 0, the pair .�; dS 0/ is ı0-hyperbolic for some ı0. A
hyperbolic group is called nonelementary if it is nonamenable, and elementary otherwise. Elementary
hyperbolic groups are either finite groups or contain Z as a finite-index subgroup.

We say that two metrics d and d� on � are quasi-isometric if there exist constants L> 0 and C � 0 such
that

L�1d.x;y/�C � d�.x;y/�Ld.x;y/CC for all x;y 2 �;

and roughly similar if there exist constants � > 0 and C � 0 such that

�d.x;y/�C � d�.x;y/� �d.x;y/CC for all x;y 2 �:

Suppose that .�; d/ is ı-hyperbolic. If d� is roughly similar to d , then .�; d�/ is ı0-hyperbolic for
some (possibly different) ı0. However, if d� is just quasi-isometric to d , then .�; d�/ is not necessarily
hyperbolic. We will discuss a category of metrics which are hyperbolic and quasi-isometric to some
hyperbolic metric in � .

Let � be a nonelementary hyperbolic group. We define D� to be the set of metrics on � that are
left-invariant, ie d.gx;gy/D d.x;y/ for all x;y and g 2 � , hyperbolic, and quasi-isometric to some
(equivalently, every) word metric.
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Example 2.1 Let � be the fundamental group of a compact negatively curved manifold .M; dM /. The
group � acts on the universal cover . zM ; d zM / isometrically and freely. For each point p in zM , if we
define d.x;y/ WD d zM .xp;yp/ for x;y 2 � , then d yields a metric, which is left-invariant, hyperbolic
and quasi-isometric to a word metric by the Milnor–Švarc lemma. Such d therefore belongs to D� . More
generally, if � is a nonelementary hyperbolic group and acts on a CAT.�1/-space isometrically and freely
with a precompact fundamental domain, then as in the same way above the metric of the CAT.�1/-space
yields a metric on � in D� .

A particular subclass of metrics that we will be interested in are strongly hyperbolic metrics.

Definition 2.2 A hyperbolic metric d on � is called strongly hyperbolic if there exist L� 0, c > 0 and
R0 � 0 such that for all x;x0;y;y0 2 � and all R�R0, the condition

d.x;y/� d.x;x0/� d.y;y0/C d.x0;y0/�R

implies that

jd.x;y/� d.x0;y/� d.x;y0/C d.x0;y0/j �Le�cR:

Every hyperbolic group � admits a strongly hyperbolic metric in D� . This was shown by Mineyev [2005,
Theorem 32]; see also Nica and Špakula [2016]. We use the existence of such a metric in the course of
our proofs.

Let us consider a metric d on � . We say that for an interval I in R, a map  W I ! .�; d/ is an
.L;C /-quasigeodesic for constants L> 0 and C � 0 if it holds that

L�1
js� t j �C � d. .s/;  .t//�Ljs� t jCC for all s; t 2 I;

and a C -rough geodesic for C � 0 if it holds that

js� t j �C � d. .s/;  .t//� js� t jCC for all s; t 2 I:

A geodesic is a C -rough geodesic with C D 0. A metric d is called C -roughly geodesic if for all x;y 2�

there exists a C -rough geodesic  W Œa; b�! � such that  .a/ D x and  .b/ D y, and called roughly
geodesic if it is C -roughly geodesic for some C � 0. If d 2D� , then .�; d/ is not necessarily a geodesic
metric space, but it is a roughly geodesic space [Bonk and Schramm 2000, Proposition 5.6]. In many
places, we use the following fact which we refer to as the Morse lemma: if d is a proper (ie all balls
of finite radius consist of finitely many points) C0-roughly geodesic hyperbolic metric in � , then every
.L;C /-quasigeodesic  in .�; d/, there exists a C0-rough geodesic  0 such that  and  0 are within
Hausdorff distance D where D depends only on C0;L;C and the hyperbolic constant of d (cf [Ghys
and de la Harpe 1990, Théorèmes 21 et 25, Chapitre 5] and [Bonk and Schramm 2000, the proof of
Proposition 5.6]).
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2.2 Boundary at infinity

Let us define the (geometric) boundary of � . Let o be the identity element in � . Fix d 2D� and consider
the corresponding Gromov product in � . We say that a sequence fxng

1
nD0

is divergent if .xnjxm/o!1

as n;m!1, and define an equivalence relation in the set of divergent sequences by

fxng
1
nD0 � fx

0
ng
1
nD0 () .xnjx

0
m/o!1 as n;m!1:

Let us define @� the set of equivalence classes of divergent sequences in � and call it the boundary of
.�; d/. For � 2 @� , if fxng

1
nD0
2 � , then we write xn! � as n!1. We extend the Gromov product to

� [ @� by setting

.�j�/o WD sup
˚
lim inf
n!1

.xnjyn/o W fxng
1
nD0 2 �; fyng

1
nD0 2 �

	
;

where if � or � is in � , then .�j�/o is defined by taking the constant sequences �n D � or �n D �. Note
that if divergent sequences fxng

1
nD0

and fyng
1
nD0

are equivalent to fx0ng
1
nD0

and fy0ng
1
nD0

, respectively,
then

lim inf
n!1

.x0njy
0
n/o � lim sup

n!1
.xnjyn/o� 2ı:

This implies that for all �; �; � 2 � [ @� ,

.�j�/o �minf.�j�/o; .�j�/og� 3ı:

Let us define a quasimetric by

�.�; �/ WD e�.�j�/o for �; � 2 @�:

In general, � is not a metric in @� , but it satisfies that �.�; �/D 0 if and only if � D �, �.�; �/D �.�; �/
for all �; � 2 @� , and there exists a constant C > 0 such that

�.�; �/� C maxf�.�; �/; �.�; �/g for all �; �; � 2 @�:

The quasimetric � associated to d 2D� defines a topology on @� that is compact, separable and metrizable.
In fact, for arbitrary two metrics d; d� 2D� the corresponding boundaries with the topologies constructed
above are homeomorphic. We refer to @� the underlying topological space.

2.3 Shadows

For all R� 0 and x 2 � , we define the shadow by

O.x;R/ WD f� 2 @� W .�jx/o � d.o;x/�Rg:

Let us denote by B.�; r/ the ball of radius r � 0 centered at � in @� relative to the quasimetric �.�; �/D
e�.�j�/o . The ı-hyperbolic inequality yields the following comparison between balls and shadows.
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Lemma 2.3 Let .�; d/ be ı-hyperbolic for ı � 0. For each � � 0, if R� �C3ı, then for all � 2 @� and
all x 2 � such that .oj�/x � � , we have

B.�; e�3ıCR�d.o;x//�O.x;R/� B.�; e3ıCR�d.o;x//:

Proof See eg [Blachère et al. 2011, Proposition 2.1]; we omit the details.

Note that if d and d� are in D� and .L;C /-quasi-isometric, then for all R � 0 there exists R0 � 0

depending on L;C and their hyperbolicity constants such that

O.x;R/�O 0.x;R0/ for all x 2 �;

where O.x;R/ (resp. O 0.x;R0/) are the shadows defined by d (resp. d�). This follows from the stability
of rough geodesics and the fact that every pair of points in � [ @� are connected by a C -rough geodesic
in .�; d/ for some C . Therefore omitting the dependency on d in the shadow O.x;R/ will not cause any
confusion, up to changing the thickness parameter R.

2.4 Hausdorff dimension

For every d 2D� , let �.�; �/D exp.�.�j�/o/ be the corresponding quasimetric in @� . Although it is not
a metric in general, we may define the Hausdorff dimension of sets and measures in @� relative to � as in
the case of metrics. It is known that there exists a constant " > 0 such that �" is bi-Lipschitz to a genuine
metric d" (eg [Heinonen 2001, Proposition 14.5]), in which case the Hausdorff dimension relative to d"

will be 1=" times the Hausdorff dimension relative to �.

For every subset E in @� , let us denote by �.E/ WD supf�.�; �/ W �; � 2Eg. For all s � 0 and �> 0, we
define

Hs
�.E; �/ WD inf

� 1X
iD0

�.Ei/
s
WE �

1[
iD0

Ei and �.Ei/��

�
;

Hs.E; �/ WD sup
�>0

Hs
�.E; �/D lim

�!0
Hs
�.E; �/:

The Hausdorff dimension of a set E in .@�; �/ is defined by

dimH.E; �/ WD inffs � 0 WHs.E; �/D 0g D supfs � 0 WHs.E; �/ > 0g:

For every Borel measure � on @� , the (upper) Hausdorff dimension of � is defined by

dimH.�; �/ WD inffdimH.E; �/ W �.@� nE/D 0 and E is Borelg:

Lemma 2.4 (the Frostman-type lemma) Let � be a Borel probability measure on .@�; �/. For s1; s2� 0,
let

E.s1; s2/ WD

�
� 2 @� W s1 � lim inf

r!0

log �.B.�; r//
log r

� s2

�
;

where B.�; r/D f� 2 @� W �.�; �/� rg. If �.E.s1; s2//D 1, then

s1 � dimH.E.s1; s2/; �/� s2 and s1 � dimH.�; �/� s2:
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Proof It suffices to show that dimH.E.s1; s2/; �/� s2 and s1 � dimH.�; �/. These follow as in the case
when � is a metric; see eg [Heinonen 2001, Section 8.7].

2.5 Distance (Busemann) quasicocycles

For d 2 D� , let us define

ˇw.x; �/ WD sup
˚
lim sup
n!1

.d.x; �n/� d.w; �n// W f�ng
1
nD0 2 �

	
for w;x 2 � and for � 2 @� , and call ˇw W � � @�!R the Busemann function based at w. We note that

d.x; z/� d.o; z/D d.o;x/� 2.xjz/o for x; z 2 �;

and thus the ı-hyperbolicity implies that

jˇo.x; �/� .d.o;x/� 2.xj�/o/j � 2ı for .x; �/ 2 � � @�:

The Busemann function ˇo satisfies the following cocycle identity with an additive error:

jˇo.xy; �/� .ˇo.y;x
�1�/Cˇo.x; �//cj � 4ı for x;y 2 � and � 2 @�:

Let us consider a strongly hyperbolic metric yd in D� (Definition 2.2) and denote by hxjyio the corre-
sponding Gromov product. Then there exists a constant " > 0 such that

exp.�"hxjyiw/� exp.�"hxjziw/C exp.�"hzjyiw/ for all x;y; z; w 2 �;

by [Nica and Špakula 2016, Lemma 6.2, Definition 4.1] (in fact, this property characterizes the strong
hyperbolicity). This shows that the Gromov product based at o for a strongly hyperbolic metric extends
to � [ @� as genuine limits. This also shows that the corresponding Busemann function y̌o is defined as
limits and satisfies the cocycle identity,

y̌
o.xy; �/D y̌o.y;x

�1�/C y̌o.x; �/ for x;y 2 � and � 2 @�:

We use a strongly hyperbolic metric to construct an analogue of geodesic flow in Section 2.7.

2.6 Patterson–Sullivan construction

For d 2 D� , let us denote the ball of radius r centered at x relative to d by

B.x; r/ WD fy 2 � W d.x;y/� rg for x 2 � and r � 0:

We define the exponential volume growth rate relative to d as

v WD lim sup
r!1

1

r
log #B.o; r/:

Since � is nonamenable, v is finite and nonzero.
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We recall the classical construction of Patterson–Sullivan measures for d 2 D� . Consider the Dirichlet
series

P.s/ WD
X
x2�

e�sd.o;x/;

which has the divergence exponent v. Suppose for a moment that the series diverges at s D v. Then the
sequence of probability measures on � ,

�s WD
1

P.s/

X
x2�

e�sd.o;x/ıx;

where ıx is the Dirac measure at x, considered as measures on the compactified space � [ @� , has a
convergent subsequence as s& v. A limit point � is a probability measure supported on @� , and there
exists a constant Cı > 0 such that for x 2 � and for � 2 @� ,

(2-1) C�1
ı e�vˇo.x;�/ �

dx��

d�
.�/� Cıe

�vˇo.x;�/:

All limit points satisfy the above estimates (2-1). If the series P.s/ does not diverge at s D v, then a
slight modification yields a measure satisfying (2-1). We call a probability measure satisfying (2-1) a
Patterson–Sullivan measure for d 2 D� . For details, see [Coornaert 1993, Théorème 5.4].

The above construction applies to the following setting where the distance is replaced by a more general
function. Let us consider a function  W � ��!R and define

 .xjy/z WD
 .x; z/C .z;y/� .x;y/

2
for x;y; z 2 �;

as a generalization of the Gromov product. Note that the order of x;y; z matters since  may not satisfy
 .x;y/D  .y;x/. We assume that  . � j � /o admits a “quasiextension” to � � .� [ @�/, ie there exist a
function  . � j � /o W � � .� [ @�/!R and a constant C � 0 such that

(QE) lim sup
n!1

 .xj�n/o�C �  .xj�/o � lim inf
n!1

 .xj� 0n/oCC

for all .x; �/ 2 � � .� [ @�/ and for all f�ng1nD0
; f� 0ng

1
nD0
2 �. This allows us to define the following

function analogous to the Busemann function for .x; �/ 2 � � @� ,

ˇ o .x; �/ WD sup
˚
lim sup
n!1

. .x; �n/� .o; �n// W f�ng
1
nD0 2 �

	
:

Furthermore, if  is �-invariant, ie  .gx;gy/ D  .x;y/ for all g;x;y 2 � , then ˇ o satisfies the
quasicocycle relation:

jˇ o .xy; �/� .ˇ o .y;x
�1�/Cˇ o .x; �//j � 4C:

Recall that if d 2 D� , then .�; d/ is a C -rough geodesic metric space for some C � 0. Let us consider
the following “rough geodesic” condition: for all large enough C;R� 0, there exists C0 � 0 such that
for all C -rough geodesics  between x and y, and for all z in the R-neighborhood of  ,

(RG) j .x;y/� . .x; z/C .z;y//j � C0:
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If  satisfies (RG) relative to d 2 D� , then there exists a constant C 0 such that for a large enough R and
for all x 2 � ,

(2-2) jˇ o .x; �/C .o;x/j � C 0 for all � 2O.x;R/:

Definition 2.5 We say that a function  W � � � ! R is a tempered potential relative to d 2 D� if
 satisfies (QE) and (RG) relative to d .

Example 2.6 For all d; d� 2 D� , by the Morse lemma, d� satisfies (RG) relative to d . This implies that
for every a 2R, the function  a D ad� satisfies (RG) relative to d . Moreover  a satisfies (QE) and is
�-invariant. Therefore  a D ad� is a �-invariant tempered potential relative to d for every a 2R. The
same argument applies to an arbitrary triple d; d�; d�� 2 D� and every linear combination

 a;b WD ad�C bd for a; b 2R:

For every a; b 2R, the function  a;b is a �-invariant tempered potential relative to d��. The functions
 a and  a;b are the main tools in Sections 3.2 and 4.4, respectively.

For d 2 D� , let  be a �-invariant tempered potential relative to d . We say that a probability measure �
on @� satisfies the “quasiconformal” property with exponent � 2 R relative to . ; d/ if there exists a
constant C depending only on  and d such that

(QC) C�1
� exp.ˇ o .x; �/C �ˇo.x; �// �

dx��

d�
.�/� C

for all x 2 � and �-almost every � in @� , where ˇo is the Busemann function associated to d . We simply
say that � satisfies (QC) if � and . ; d/ are fixed and apparent from the context.

Proposition 2.7 For d 2 D� , let  be a �-invariant tempered potential relative to d . Then the abscissa
of convergence � of the series in s,

(2-3)
X
x2�

exp.� .o;x/� sd.o;x//;

is finite and there exists a probability measure � on @� satisfying (QC) with exponent � relative to
. ; d/. Moreover , every finite Borel measure � satisfying (QC) has the property

(2-4) C 0�1 exp.� .o;x/� �d.o;x//� �.O.x;R//� C 0 exp.� .o;x/� �d.o;x//

for all x 2 � , where C 0 is a constant depending on C , C0 and R.

Proof Note that � is given by

lim sup
n!1

1

n
log

X
x2S.n;R0/

e� .o;x/; where S.n;R0/D fx 2 � W jd.o;x/� nj �R0g:
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Since  satisfies (RG) relative to d and is �-invariant, then for all n;m� 0,X
x2S.nCm;R0/

e� .o;x/ � eC
X

x2S.n;R0/

e� .o;x/ �
X

x2S.m;R0/

e� .o;x/;

which implies that � is finite. Let us define the family of probability measures for s > � by

� ;s WD

P
x2� exp.� .o;x/� sd.o;x//ıxP

x2� exp.� .o;x/� sd.o;x//
:

If the series (2-3) diverges at � , then letting s& � yields a weak limit � after passing to a subsequence.
The measure � is supported on @� . For x;y 2 � , we have that

x�� ;s.y/D
exp.� .o;x�1y/� sd.o;x�1y//P

z2� exp.� .o; z/� sd.o; z//
D

exp.� .o;x�1y//

exp.� .o;y//
e�s.d.o;x�1y/�d.o;y//� ;s.y/:

By the assumption,  .x;y/�  .o;y/ is ˇ o .x; �/ up to a uniform additive constant as y tends to �.
Further, d.x;y/� d.o;y/ coincides with ˇo.x; �/ up to a constant depending only on the hyperbolicity
constant of d uniformly on a neighborhood of � in � [ @� . This yields (QC). If the series (2-3) does not
diverge at � , then the argument as in the classical setting provides (QC); cf [Coornaert 1993, Théorème 5.4]
and [Tanaka 2017, Theorem 3.3] for a special case.

Further, since  satisfies (RG) relative to d , we have (2-2). Suppose that a finite measure � satisfies
(QC), and � is a probability measure without loss of generality. Then for all x 2 � ,

x��.O.x;R//�C;� exp. .o;x/C �d.o;x//�.O.x;R//:

For all small enough 0< "0 < 1, there exists a large enough R such that

�.x�1O.x;R//� 1� "0 for all x 2 �

(cf [Coornaert 1993, Proposition 6.1]), and thereby we obtain (2-4).

Lemma 2.8 For d 2 D� , if  is a �-invariant tempered potential relative to d , then there exist constants
� 2R and C;R0 > 0 such that for all n� 0,

C�1e�n
�

X
x2S.n;R0/

e� .o;x/ � Ce�n;

where S.n;R0/ WD fx 2 � W jd.o;x/� nj �R0g.

We say that � is the exponent of . ; d/ abusing the notation; the proof actually shows that if there is a
finite Borel measure � satisfying (QC) relative to . ; d/ with some exponent, then that exponent has to
be � .

Proof For .�; d/, fix large enough constants R0;R> 0 so that for every n� 0 the shadows O.x;R/ for
x 2 S.n;R0/ cover @� . Since .�; d/ is hyperbolic, there exists a constant M such that for every n, each
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� 2 @� is included in at most M shadows O.x;R/ with x 2 S.n;R0/. By Proposition 2.7, there exists a
probability measure � which satisfies (2-4). The first inequality in (2-4) shows that for all n� 0,

e��.nCR0/
X

x2S.n;R0/

e� .o;x/ � C
X

x2S.n;R0/

� .O.x;R//� CM:

The second inequality in (2-4) shows that for all n� 0,

1D � .@�/�
X

x2S.n;R0/

� .O.x;R//� Ce��.n�R0/
X

x2S.n;R0/

e� .o;x/;

hence we obtain the claim.

We say that a (finite) Borel measure � on @� is doubling relative to a quasimetric � if �.B.�; r// > 0 for
all � 2 @� and for all r > 0, and there exists a C such that for every r � 0 and � 2 @� ,

�.B.�; 2r//� C�.B.�; r//;

where B.�; r/ is the ball defined by � in @� .

Lemma 2.9 For d 2 D� , if  is a �-invariant tempered potential relative to d , then every finite
Borel measure � on @� satisfying (QC) is doubling relative to a quasimetric �. Moreover , an arbitrary
pair of finite Borel measures on @� satisfying (QC) with the same exponent and . ; d/ are mutually
absolutely continuous and their densities are uniformly bounded from above and below. In particular ,
every measure � is ergodic with respect to the �-action on @� , ie every �-invariant Borel set A in @�
satisfies that either � .A/D 0 or � .@� nA/D 0.

Proof First, by Proposition 2.7, every finite Borel measure � with (QC) satisfies (2-4), which shows that
�.O.x;R// > 0 for all x 2 � and

�.O.x; 2R//�R �.O.x;R// for all x 2 �;

where R is a large enough fixed constant. Applying this estimate finitely many times if necessary, by
Lemma 2.3 we find that � is doubling relative to �.

Next, (2-4) implies that for arbitrary two finite Borel measures �;�0 satisfying (QC) with common
exponent and . ; d/, the ratio of the measures of balls relative to � and �0 are uniformly bounded from
above and below. Since both measures are doubling relative to �, the Vitali covering theorem [Heinonen
2001, Theorem 1.6], adapted to a quasimetric �, shows that � and �0 are mutually absolutely continuous
and their densities are uniformly bounded from above and below.

Finally, for � satisfying (QC), if A is an arbitrary �-invariant Borel set in @� such that �.A/ > 0, then
the restriction �jA also satisfies (QC) with the same exponent and . ; d/. Therefore what we have shown
implies that �jA � � and thus �.@� nA/D 0. This in particular applies to � .
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A central example of the construction is a family of measures �a;b for .a; b/ 2 CM associated to a
pair .d; d�/. Let us single out the following corollary, which we use in Section 2.7.

Corollary 2.10 Let us consider a pair d; d� 2 D� .

(1) For each .a; b/ 2 CM , there exists a probability measure �a;b on @� such that for all x 2 � ,

C�1
a;be�aˇ�o.x;�/�bˇo.x;�/ �

dx��a;b

d�a;b

.�/� Ca;be�aˇ�o.x;�/�bˇo.x;�/;

where ˇ�o and ˇo are Busemann functions for d� and d , respectively, and Ca;b is a constant of
the form Ca;b D C

jaj

d�
C
jbj

d
. Moreover , we have that

C 0�1 exp.�ad�.o;x/� bd.o;x//� �a;b.O.x;R//� C 0 exp.�ad�.o;x/� bd.o;x//

for all x 2 � , where C 0 is a constant depending on Ca;b and R.

(2) For every a 2R,

�.a/D lim
n!1

1

n
log

X
x2S.n;R0/

e�ad�.o;x/;

where S.n;R0/ WD fx 2� W jd.o;x/�nj �R0g for some constant R0, and the function � is convex
and continuous on R.

(3) For each .a; b/2CM , every probability measure �a;b is ergodic with respect to the �-action on @� .

Proof For each a 2 R, if we let  .x;y/ D ad�.x;y/, then  is a �-invariant tempered potential
(Example 2.6) and � D b for .a; b/ 2 CM . Therefore Proposition 2.7 implies (1), where the constant
Ca;b D C

jaj

d�
C
jbj

d
is obtained from the proof of Proposition 2.7. Lemma 2.8 and the Hölder inequality

imply that �.a/ is finite and convex in a 2R, hence � is continuous on R, showing (2), and Lemma 2.9
shows (3).

Note that letting v and v� be the exponential volume growth rates for d and d� respectively, we have
that .0; v/; .v�; 0/ 2 CM , and �0;v and �v�;0 are (classical) Patterson–Sullivan measures for d and d�,
respectively.

2.7 Topological flow

In this section, we follow the discussion in [Tanaka 2021, Section 3]. Let @2� WD .@�/2 n fdiagonalg,
where � acts on @2� by x � .�; �/ WD .x�;x�/ for x 2 � and .�; �/ 2 @2� . Consider the space @2� �R

and fix a strongly hyperbolic metric yd 2D� . There exists a constant C � 0 such that for each .�; �/2 @2�

there is a C -rough geodesic �;� WR! .�; yd / satisfying that �;�.�t/! � and �;�.t/! � as t !1,
respectively [Bonk and Schramm 2000, Proposition 5.2(3)]. Shifting the parameter t 7! tCT by some T

if necessary, we parametrize �;� in such a way that

yd.�;�.0/; o/Dmin
t2R
yd.�;�.t/; o/:
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We define

ev W @2� �R! � by ev.�; �; t/ WD �;�.t/:

Note that the map ev depends on the choice of C -rough geodesics; however, every other choice yields the
map whose image lies in a uniformly bounded distance: if �;� and  0

�;�
are two C -rough geodesics with

the same pair of extreme points, then

max
t2R
yd.�;�.t/; 

0
�;�.t// < C 0

for some positive constant C 0 depending only on the metric. Let us endow the space of C -rough geodesics
on .�; yd / with the pointwise convergence topology. We define ev W @2� �R! � as a measurable map
by assigning �;� to .�; �/ 2 @2� in a Borel measurable way: first fix a set of generators S in � and
an order on it; second, consider C -rough geodesics evaluated on the set of integers as sequences of
group elements and choose lexicographically minimal ones  0

�;�
for each .�; �/ 2 @2�; and finally, define

�;�.t/ WD 
0
�;�
.btc/ for t 2R, where btc stands for the largest integer at most t .

Letting y̌o W � � @�!R be the Busemann function based at o associated with yd , we define the cocycle

� W � � @2�!R; �.x; �; �/ WD 1
2
. y̌o.x

�1; �/� y̌o.x
�1; �//;

where the cocycle identity for � follows from that of y̌o (Section 2.5). Then, � acts on @2� �R through
� by

x � .�; �; t/ WD .x�;x�; t � �.�; �; t//:

Let us call this �-action the .�; �/-action on @2� �R. It is shown that the .�; �/-action on @2� �R is
properly discontinuous and cocompact, namely, the quotient topological space �n.@2� �R/ is compact
[Tanaka 2021, Lemma 3.2]. Let

F� WD �n.@
2� �R/;

where we define a continuous R-action as in the following. The R-action ẑ on @2� �R is defined by the
translation in the R-component,

ẑ
s.�; �; t/ WD .�; �; t C s/:

This action and the .�; �/-action commute, and thus the R-action ẑ descends to the quotient

ˆs Œ�; �; t � WD Œ�; �; t C s� for Œ�; �; t � 2 F� :

Then R acts on F� via ˆ continuously. We call the R-action ˆ on F� the topological flow (or, simply,
the flow) on F� .

Let us consider finite measures invariant under the flow on F� . Let ƒ be a �-invariant Radon measure
on @2� , ie x�ƒDƒ for all x 2 � and ƒ is Borel regular and finite on every compact set. Then every
measure of the form ƒ˝dt , where dt is the (normalized) Lebesgue measure on R, yields a flow-invariant
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finite measure on F� . Namely, for every �-invariant Radon measure ƒ on @2� , there exists a unique
finite Radon measure m invariant under the flow on F� such that

(2-5)
Z
@2��R

f dƒ˝ dt D

Z
F�

xf dm

for all compactly supported continuous functions f on @2� �R, where xf is the �-invariant function

xf .�; �; t/ WD
X
x2�

f .x � .�; �; t//;

considered as a function on F� [Tanaka 2021, Lemma 3.4] (and we further note that every continuous
function ' on F� is of the form ' D xf by invoking Urysohn’s lemma). If we take a Borel fundamental
domain D in @2� �R with respect to the .�; �/-action and a measurable section � W F�!D, then

ƒ˝ dt D
X
x2�

x�.��m/:

Note that it is not necessarily the case that the restriction ƒ˝ dt jD coincides with ��m unless the .�; �/-
action is free. We always normalize ƒ in such a way that the corresponding flow-invariant measure m

has total measure 1 (and so is a probability measure on F�).

For all d 2D� , an associated Patterson–Sullivan measure � on @� yields a �-invariant Radon measureƒd

on @2� equivalent to
exp.2v.�j�/o/�˝�;

with the Radon–Nikodym density uniformly bounded from above and from below by positive constants,
and the corresponding flow-invariant probability measure md on F� is ergodic with respect to the flow,
ie for every Borel set A such that ˆ�t .A/DA for all t 2R, either md .A/D 0 or 1; see [Tanaka 2021,
Proposition 2.11 and Theorem 3.6]. The same construction applies to measures �a;b for all .a; b/ 2 CM .

Proposition 2.11 For each .a; b/ 2 CM , there exists a �-invariant Radon measure ƒa;b on @2� which
is equivalent to

(2-6) exp.2a.�j�/�oC 2b.�j�/o/�a;b˝�a;b;

with the Radon–Nikodym density uniformly bounded from above and below by positive constants of the
form C

jaj

d�
C
jbj

d
. Moreover , ƒa;b is ergodic with respect to the �-action on @2� , ie for every �-invariant

Borel set A in @2� , either the set A or the complement has zero ƒa;b-measure , and the corresponding
flow-invariant probability measure ma;b is ergodic with respect to the flow on F� .

Proof If we denote the measure (2-6) by �, then we have that

C�1
�

dx��

d�
.�; �/� C

for all x 2 � and for �-almost all .�; �/ 2 @2� , where C is a positive constant of the form C
jaj

d�
C
jbj

d
. If

we define
'.�; �/ WD sup

x2�

dx��

d�
.�; �/;
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thenƒa;b WD'.�; �/� is a �-invariant Radon measure, as desired. The details follow as in Proposition 2.11,
Theorem 3.6 and Corollary 3.7 in [Tanaka 2021].

Lemma 2.12 If ƒ and ƒ0 are �-invariant ergodic Radon measures on @2� , then either ƒ and ƒ0 are
mutually singular , or there exists a positive constant c > 0 such that ƒD cƒ0.

Proof Let us decompose ƒ as a sum of two measures ƒDƒacCƒsing, where ƒac (resp. ƒsing) is the
absolutely continuous (resp. singular) part with respect to ƒ0. Note that ƒac and ƒsing are �-invariant
Radon measures since ƒ and ƒ0 are so. Suppose that ƒac ¤ 0. Then the Radon–Nikodym density
dƒac=dƒ

0 is locally integrable and �-invariant, and thus constant since ƒ0 is ergodic with respect to the
�-action. Hence there exists a positive constant c > 0 such that ƒac D cƒ0, and since ƒ is ergodic with
respect to the �-action, ƒsing D 0 and ƒD cƒ0, as desired.

Corollary 2.13 For each .a; b/ 2 CM , let ma;b be the flow-invariant probability measure on F� corre-
sponding to the (normalized ) �-invariant Radon measure ƒa;b on @2� . If .a; b/! .a0; b0/ in CM , then
ma;b weakly converges to ma0;b0

.

Proof If .a; b/! .a0; b0/, then up to taking a subsequence, there exists a normalized �-invariant Radon
measure ƒ� on @2� such that

R
@2� f dƒa;b converges to

R
@2� f dƒ� for each compactly supported

continuous function f on @2� (where we use the fact that @2� is �-compact). Let ƒ� be an arbitrary
such limit point. Taking a further subsequence, we have that �a;b weakly converges to some probability
measure ��, which is comparable to �a0;b0

by Proposition 2.7 (in the form of Corollary 2.10) and
Lemma 2.9. This together with Proposition 2.11 shows that ƒ� is equivalent to ƒa0;b0

. Lemma 2.12
implies that ƒ� coincides with ƒa0;b0

up to a multiplicative constant, and if they are normalized, then
ƒ� D ƒa0;b0

. Therefore by (2-5) for every limit point m� of ma;b as .a; b/! .a0; b0/, we have that
m� Dma0;b0

, hence ma;b weakly converges to ma0;b0
.

3 The Manhattan curve for general hyperbolic metrics

3.1 Fundamental properties of the Manhattan curve

For d 2 D� , we recall that the stable translation length of x 2 � with respect to d is given by `Œx� D
limn!1 d.o;xn/=n, where ` defines a function on the set of conjugacy classes conj and Œx� denotes the
conjugacy class of x 2 � . For d� 2 D� , we denote the corresponding function by `�. For a; b 2R, let

Q.a; b/ WD
X

Œx�2conj

exp.�a`�Œx�� b`Œx�/;

and for each fixed a 2R, we define ‚.a/ as the abscissa of convergence of Q.a; b/ in b. Recall that for
a 2R, we have defined �.a/ as the abscissa of convergence of P.a; b/ in b, where

P.a; b/D
X
x2�

exp.�ad�.o;x/� bd.o;x//:
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Proposition 3.1 For all a 2R, we have �.a/D‚.a/.

We will also call the functions � as well as ‚ the Manhattan curve for the pair .d; d�/. The proof follows
the ideas from [Coornaert and Knieper 2002, Section 5] and [Knieper 1983, Section II] (the latter is
indicated in [Burger 1993, Section 4.1]); we provide the main argument adapted to our setting for the
sake of completeness. We use the following lemma in the proof.

Lemma 3.2 For d 2D� , there exists a constant C0 such that for all x 2 � , if d.o;x/�2.xjx�1/o > C0,
then

j`Œx�� .d.o;x/� 2.xjx�1/o/j � C0;

and there exists p 2 � such that j`Œx�� d.p;xp/j � C0.

Sketch of proof Recall that if d 2D� , then .�; d/ is a C -rough geodesic metric space, ie for all x;y 2� ,
there exists a C -rough geodesic  W Œa; b�!� such that  .a/D x and  .b/D y. We provide an outline of
the proof when d is geodesic for the sake of convenience (a detailed proof is found in [Maher and Tiozzo
2018, Proposition 5.8]); the same argument applies to C -rough geodesic metrics with slight modifications.
For all x;y 2 � , let us denote by Œx;y� the image of a geodesic between x and y. On the one hand, for
each x 2 � , let us consider a geodesic triangle on o;x and x2, and take p as a midpoint of Œo;x�. If
d.o;x/� 2.xjx�1/o is large enough, then d.p;x/ > .xjx�1/o, and thus

(3-1) d.p;xp/� d.o;x/� 2.xjx�1/oC ı:

On the other hand, for an arbitrary positive integer n> 0, let us consider a geodesic  WD Œo;xn�. It holds
that if d.o;x/� 2.xjx�1/o is large enough, then

(3-2) max
0�k�n

d.xk ;  /� .xjx�1/oC 3ı:

Indeed, let us write xk WD xk for 0� k � n and use pk to denote a nearest point from xk on  . Suppose
that xk is one of the furthest points among x0; : : : ;xn from  . Consider a geodesic quadrangle on xk�1,
pk�1, pkC1 and xkC1, in this order. Let q be a nearest point from xk on Œxk�1;xkC1�. By ı-hyperbolicity
there is a point r with d.q; r/� 2ı on Œxk�1;pk�1�[ Œpk�1;pkC1�[ ŒpkC1;xkC1�, and we see that r is
in fact on Œpk�1;pkC1�; this shows (3-2).

Finally, (3-2) together with the triangle inequality implies that for all n> 0,

d.o;xn/� d.o;xn�1/C d.o;x/� 2.xjx�1/o� 6ı;

which yields `Œx� � d.o;x/ � 2.xjx�1/o � 6ı. Combining this with (3-1) shows the claim, since
`Œx�� d.p;xp/.

Proof of Proposition 3.1 To simplify the notation we write jxj WD d.o;x/ and jxj� WD d�.o;x/. Note
that for all large enough L� 0 and for each a 2R,

�.a/D lim sup
n!1

1

n
log

X
jjxj�nj�L

e�ajxj� and ‚.a/D lim sup
n!1

1

n
log

X
Œx�Wj`Œx��nj�L

e�a`�Œx�:
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Also note that for each x 2 � , there exists p 2 � such that

j`�Œx�� d�.p;xp/j � C1 and j`Œx�� d.p;xp/j � C2;

by the proof of Lemma 3.2, where C1 and C2 are constants depending only on the hyperbolicity constants
of d� and d . This yields �.a/�‚.a/ for each a 2R.

For a large enough R> 0 and all z; w 2 � , let

O.z; w;R/ WD fg 2 � [ @� W .zjg/w �Rg:

Let us take a pair of hyperbolic elements x;y such that n 7!xn and n 7!yn for n2Z yield quasigeodesics
and their extremes points are distinct; there exists such a pair since � is nonelementary (cf [Ghys and
de la Harpe 1990, 37.-Théorème in Section 3, Chapitre 8]). Taking large enough powers of x if necessary,
we define for a large enough R> 0,

U WDO.o;x�1;R/; V WDO.o;x;R/; zV WDO.x�3;x�2;R/ and zU WDO.x3;x2;R/;

such that
U \V D∅; .� [ @�/ nU � zV and .� [ @�/ nV � zU :

Further, taking large enough powers of y if necessary, we assume that U 0 WD yU , V 0 WD yV , U and V

are disjoint. For a fixed positive constant L> 0 and every positive integer n, let

Sn;L WD fz 2 � W jjzj � nj �Lg and Sn;L.U;V / WD fz 2 Sn;L W U \ zV D∅g;

and similarly, Sn;L.V;U / and Sn;L.U
0;V 0/.

First we note that if z 2 Sn;L.U;V /, then

.x3zx3/ zV � V and .x3zx3/�1 zU � U;

since .x3zx3/ zV D .x3z/V � x3.� [ @� nU /� x3 zV D V , and the latter is analogous. Therefore if we
define

Un;L.x;x
�1;R/ WD fz 2 Sn;L W z

�1
2O.o;x�1;R/; z 2O.o;x;R/g;

then

(3-3) x3Sn;L.U;V /x
3
� Un;LC6jxj.x;x

�1;R/;

since o 2 zU and o 2 zV . Moreover, we have that

(3-4) x3Sn;L.V;U /
�1x3

� Un;LC6jxj.x;x
�1;R/ and y�1Sn;L.U

0;V 0/y � Sn;LC2jyj.U;V /;

where the former follows from Sn;L.V;U /
�1DSn;L.U;V / and (3-3), and the latter holds by the definition

of U 0 and V 0. The map z 7! x3zx3 yields an injection from Sn;L.U;V / into Un;LC6jxj.x;x
�1;R/.

Similarly, the map z 7! x3z�1x3 yields an injection from Sn;L.V;U / into Un;LC6jxj.x;x
�1;R/, and

the map z 7! y�1zy yields an injection from Sn;L.U
0;V 0/ into Un;LC6jxjC2jyj.x;x

�1;R/.
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Second, let us show that there exists a finite set FU;V in � independent of n such that

(3-5) Sn;L nFU;V � Sn;L.U;V /[Sn;L.V;U /[Sn;L.U
0;V 0/:

Indeed, if z 2 Sn;L and z is not included in any one of Sn;L.U;V /, Sn;L.V;U / or Sn;L.U
0;V 0/, then

one has
U \ zV ¤∅; V \ zU ¤∅ and U 0\ zV 0 ¤∅:

Note that those elements z for which U �V �U 0 and z.V �U �V 0/ intersect are finite; this follows
since U �V �U 0 and V �U �V 0 are in .� [ @�/.3/, where

.� [ @�/.3/ WD f.�; �; �/ 2 .� [ @�/3 W �, � and � are distinctg;

and the diagonal action of � on .� [ @�/.3/ is properly discontinuous. (Note that it is more standard to
state that the diagonal action of � on the space of distinct ordered triples of points in the boundary @� is
properly discontinuous; the same proof works for the case of .�[@�/.3/ where we endow �[@� with the
compactified topology, cf [Gromov 1987, 8.2.M] and [Bowditch 1999, Lemma 1.2 and Proposition 1.12].)
Hence (3-5) holds for some finite set FU;V in � independent of n.

Finally, if z 2 Un;L.x;x
�1;R/, then since z 2 V DO.o;x;R/ and z�1 2 U DO.o;x�1;R/, we have

that by the ı-hyperbolicity,
j.zjz�1/o� .xjx

�1/oj � CR;ı:

Lemma 3.2 implies that for all such z,

`Œz�D jzj � 2.zjz�1/oCOR;ı.1/D jzjCOx;R;ı.1/:

The analogous relations hold for `�Œz�. Given z 2 Un;L.x;x
�1;R/, let us count the number of elements

in the set
Cn.zIx;L;R/ WD fghzi 2 �=hzi W gzg�1

2 Un;L.x;x
�1;R/g;

ie the number of g 2 � modulo powers of z such that gzg�1 2 Un;L.x;x
�1;R/; see Figure 1. Let Œo; z�

denote a C -rough geodesic segment between o and z (with respect to d ), and define  .z/ WD
S

k2Z zk Œo; z�,
which is (the image of) a .A;B/-quasigeodesic line invariant under z for some A;B > 0. Similarly,
 .gzg�1/ is a .A;B/-quasigeodesic line invariant under gzg�1. Note that g .z/ is also a .A;B/-
quasigeodesic line invariant under gzg�1, and thus g .z/ and  .gzg�1/ lie within a bounded Hausdorff
distance. This shows that if ghzi 2 Cn.zIx;L;R/, then g .z/ passes through near o within a bounded
distance CA;B;ı of o. Crucially, A and B depend only on the hyperbolicity constant and the x;R

used in Cn.zIx;L;R/. Since for all such g the inverse g�1 lies in a neighborhood of Œo; z� up to
translation by z, and  .z/ is z-invariant, counting such g�1 modulo the hzi-action on  .z/ yields
#Cn.zIx;L;R/� C 0

A;B;ı
n. Now we obtainX
z2Un;L.x;x�1;R/

e�ajzj� � C 0n
X

Œz�Wj`Œz��nj�L0

e�a`�Œz�;
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gz�1g�1

x�1

o

n

x

R

gzg�1

z

2L

Figure 1

where C 0 and L0 are constants depending only on a;x;R;L and the hyperbolicity constants of d and d�.
Therefore, noting thatˇ̌

jx3zx3
j�� jzj�

ˇ̌
� 6jxj�;

ˇ̌
jx3z�1x3

j�� jzj�
ˇ̌
� 6jxj� and

ˇ̌
jy�1zyj�� jzj�

ˇ̌
� 2jyj�;

we obtain by (3-3) and (3-4) together with (3-5), for all large enough n,X
z2Sn;LnFU;V

e�ajzj� � C n
X

Œz�Wj`Œz��nj�L0

e�a`�Œz�;

where L and L0 are large enough fixed constants depending only on x and y. Since FU;V is a finite set
of elements independent of n, we have that �.a/�‚.a/, as required.

Let
˛min WD � lim

a!1

�.a/

a
and ˛max WD � lim

a!�1

�.a/

a
;

where ˛min and ˛max are positive and finite since d and d� are quasi-isometric. Recall that

Dil� WD inf
Œx�2conj>0

`�Œx�

`Œx�
and DilC WD sup

Œx�2conj>0

`�Œx�

`Œx�

where conj>0 is the set of elements Œx� 2 conj such that `Œx� (and hence `�Œx�) is nonzero.

Corollary 3.3 For all d; d� 2 D� , we have

Dil� D ˛min and DilC D ˛max:

Proof Fix a large enough L> 0. For all a> 0 and all integers n� 0, we have thatX
Œx�W j`Œx��nj�L

e�a`�Œx� �

X
Œx�W j`Œx��nj�L

e�aDil� `Œx�;
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which together with Proposition 3.1 implies that �.a/� �aDil�CO.1/ and thus ˛min � Dil�. Further
for all " > 0, there exist infinitely many Œx� 2 conj>0 such that

`�Œx�

`Œx�
� Dil�C ":

Hence for all a> 0 and infinitely many integers n� 0,X
Œx�W j`Œx��nj�L

e�a`�Œx� � ce�a.Dil�C"/n;

where c is a positive constant independent of n, and thus by Proposition 3.1,

�.a/� �a.Dil�C "/:

Therefore ˛min � Dil�. We obtain ˛min D Dil�. Showing that ˛max D DilC is analogous.

Lemma 3.4 Let � be a nonelementary hyperbolic group and d; d� 2 D� . The following are equivalent :

(1) The Manhattan curve CM for the pair d and d� is a straight line.

(2) There exists a constant c > 0 such that `Œx�D c`�Œx� for all Œx� 2 conj.

Proof If the Manhattan curve CM is a straight line, then Dil� D DilC. Furthermore, �Dil� and �DilC
are equal to the gradient of the Manhattan curve. Since CM goes through the points .0; v/ and .v�; 0/,
this gradient is �v=v�, where v; v� > 0 if � is nonelementary. Hence for all Œx� 2 conj>0,

v

v�
D Dil� D inf

Œg�2conj>0

`�Œg�

`Œg�
�
`�Œx�

`Œx�
� sup
Œg�2conj>0

`�Œg�

`Œg�
D DilC D

v

v�
;

implying that v`Œx�D v�`�Œx� for all Œx�2 conj. The converse follows from the definition of the Manhattan
curve.

3.2 Proof of the C 1-regularity

Fix a pair of metrics d; d� 2D� . For each � 2 @� and quasigeodesic � W Œ0;1/! .�; d/ with �.t/! �

as t !1, we define

�inf.�/ WD lim inf
t!1

d�.�.0/; �.t//

d.�.0/; �.t//
and �sup.�/ WD lim sup

t!1

d�.�.0/; �.t//

d.�.0/; �.t//
:

The Morse lemma (applied to .�; d/) implies that �inf.�/ and �sup.�/ are independent of the choice of
quasigeodesics converging to �, or of their starting points, respectively. If �inf.�/ D �sup.�/, then we
denote the common value by �.�/ and call it the local intersection number at � for the pair .d; d�/.

Lemma 3.5 For each .a; b/ 2 CM , we have that �inf.�/ D �sup.�/ for �a;b-almost every � 2 @� , and
further , there exists a constant �a;b such that

�.�/D �a;b for �a;b-almost every � 2 @�:

Moreover , �a;b is continuous in .a; b/ 2 CM .
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Proof Let yd be a strongly hyperbolic metric in D� . We consider the map ev W @2� �R! .�; yd / and the
flow space F� , where � is the cocycle associated with yd defined in Section 2.7. We write wt WDˆt .w/

for w 2 F� . Taking a measurable section � W F�!D for a Borel fundamental domain D in @2� �R for
the .�; �/-action, we define zw WD �.w/ and set zwt WD

ẑ
t . zw/. Let

c�.ws; wt / WD d�.ev. zws/; ev. zwt //:

Then c�.ws; wt / is subadditive, ie for all t; s 2 Œ0;1/,

(3-6) c�.w0; wsCt /� c�.w0; ws/C c�.ws; wsCt /;

and superadditive up to an additive constant, ie there exists a C � 0 such that for all t; s 2 Œ0;1/,

(3-7) c�.w0; wsCt /� c�.w0; ws/C c�.ws; wsCt /�C;

by the Morse lemma on .�; d�/. Since ma;b is ergodic with respect to the flow on F� , the Kingman
subadditive ergodic theorem implies that there exists a constant ��.a; b/ such that

lim
t!1

1

t
c�.w0; wt /D ��.a; b/ for ma;b-almost every w in F� ;

lim
t!1

1

t

Z
F�

c�.w0; wt / dma;b D ��.a; b/:

Let us show that ��.a; b/ is continuous in .a; b/ 2 CM . For each .a0; b0/ 2 CM , if .a; b/! .a0; b0/,
then ma;b weakly converges to m0 WDma0;b0

by Corollary 2.13. Then the subadditivity (3-6) yields for
all .a; b/ 2 CM and all t > 0,

1

t

Z
F�

c�.w0; wt / dma;b � inf
t>0

1

t

Z
F�

c�.w0; wt / dma;b D ��.a; b/;

so we have that for each t � 0,

1

t

Z
F�

c�.w0; wt / dm0 � lim sup
a!a0

��.a; b/;

and similarly, (3-7) implies that for each t > 0,

1

t

Z
F�

.c�.w0; wt /�C / dm0 � lim inf
a!a0

��.a; b/:

Letting t !1, we obtain lima!a0
��.a; b/D ��.a0; b0/, ie ��.a; b/ is continuous in .a; b/ 2 CM .

We apply the same discussion to d : letting

c.ws; wt / WD d.ev. zws/; ev. zwt //;

we have that there exists a constant �.a; b/ such that

lim
t!1

1

t
c.w0; wt /D �.a; b/ for ma;b-almost every w in F� ;

and �.a; b/ is continuous in .a; b/ 2 CM .
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Therefore for ma;b-almost every w D Œ��; �C; t0� 2 F� ,

lim
t!1

c�.w0; wt /

c.w0; wt /
D
��.a; b/

�.a; b/
:

Recall that ƒa;b ˝ dt D
P

x2� x�.��ma;b/, ƒa;b is equivalent to �a;b ˝�a;b and that d� and d are
left-invariant. Hence if we define �a;b WD ��.a; b/=�.a; b/, then �inf.�/D �sup.�/ for �a;b-almost every
� 2 @� , and

�.�/D �a;b for �a;b-almost every � 2 @�:

Since �.a; b/ and ��.a; b/ are positive and continuous, �a;b is continuous in .a; b/ 2 CM , as required.

For every real value r 2R, let

Er WD
˚
� 2 @� W �inf.�/D �sup.�/D r

	
:

The set Er is possibly empty for some r . Note that a point � is in Er if and only if for some (equivalently,
every) quasigeodesic � converging to � , we have

lim
t!1

d�.�.0/; �.t//

d.�.0/; �.t//
D r:

Recall that the Manhattan curve CM is the graph of the function � , ie .a; b/2CM if and only if bD �.a/,
and since � is convex, it is differentiable except for at most countably many points.

Lemma 3.6 Fix a pair d; d� 2 D� . For each .a; b/ 2 CM , if � is differentiable at a and r D �� 0.a/,
then �a;b.Er /D 1.

Proof Fix a large enough constant C � 0. Let us endow the space of C -rough geodesic rays from o in
.�; d/ with the pointwise convergence topology. For each � 2 @� , we associate a C -rough geodesic �
from o to � , and define this correspondence in a Borel measurable way as in Section 2.7, where we have
done the same but for rough geodesics. For each nonnegative integer n and � 2 @� , we abbreviate notation
by writing �n WD �.n/ and j�nj WD d.o; �n/ (resp. j�nj� WD d�.o; �n/). We use O.x;R/ to denote the
shadows associated to the metric d , for a large enough thickness parameter R.

For .a; b/ 2 CM , let us suppose that r D�� 0.a/. For a Patterson–Sullivan measure �� for d�, we show
that

(3-8) lim inf
n!1

�
1

v�j�nj
log��.O.�n;R//� r for �a;b-almost every � 2 @�:

For every " > 0, the Markov inequality shows the following: for every s > 0, integrating

1f�2@�W��.O.�n;R//�e�.r�"/v�j�njg � ��.O.�n;R//
s
� es.r�"/v�j�nj

over � 2 @� with respect to �a;b yields

�a;b.f� 2 @� W ��.O.�n;R//� e�.r�"/v�j�njg/�

Z
@�

��.O.�n;R//
ses.r�"/v�j�nj d�a;b.�/:
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Since

��.O.�n;R//�R exp.�v�j�nj�/ and �a;b.O.�n;R//�R exp.�aj�nj�� bj�nj/;

the integral on the right-hand side is at most

(3-9) CR

X
x2S.n;R/

exp.�sv�jxj�C s.r � "/v�jxj � ajxj�� bjxj/;

where we recall that S.n;R/D fx 2 � W jd.o;x/� nj �Rg, up to a multiplicative constant depending
only on R and the ı-hyperbolicity constant of d . Moreover, (3-9) is at most

C 0R exp.s.r � "/v�n�bn/
X

x2S.n;R/

exp.�sv�jxj��ajxj�/� C 00R exp.s.r � "/v�n�bnC�.sv�Ca/n/;

where we have used Lemma 2.8:X
x2S.n;R/

exp.�sv�jxj�� ajxj�/� exp.�.sv�C a/n/:

Since b D �.a/ and r D�� 0.a/,

�.sv�C a/� �.a/D�rsv�C o.s/ as s& 0;

and we obtain

�a;b.f� 2 @� W ��.O.�n;R//� e�.r�"/v�j�njg/� C 00R exp.s.r � "/v�nC .�.sv�C a/� �.a//n/

� C 00R exp.�s"v�nC o.s/n/� C 00R exp.�c."; s/n/

for some constant c."; s/ > 0 for all n� 0. Hence the Borel–Cantelli lemma shows that

lim inf
n!1

�
1

v�j�nj
log��.O.�n;R//� r � " for �a;b-almost every � 2 @�;

and since this holds for every " > 0, we obtain (3-8).

Similarly, it holds that

(3-10) lim sup
n!1

�
1

v�j�nj
log��.O.�n;R//� r for �a;b-almost every � 2 @�:

Indeed, for every " > 0 and every s > 0, we have that

�a;b.f� 2 @� W ��.O.�n;R//� e�.rC"/v�j�njg/�

Z
@�

��.O.�n;R//
�se�s.rC"/v�j�nj d�a;b.�/;

and the rest follows as in the same way above; we omit the details.

Combining (3-8) and (3-10), we obtain

lim
n!1

j�nj�

j�nj
D lim

n!1
�

1

v�j�nj
log��.O.�n;R//D r

for �a;b-almost every � 2 @� . Therefore we have that �inf.�/D �sup.�/ for �a;b-almost every � 2 @� , and
�a;b.Er /D 1 if b D �.a/ and r D�� 0.a/, as required.
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Theorem 3.7 For every pair d; d�2D� , the Manhattan curve CM is C 1, ie the function � is continuously
differentiable on R. Moreover , � 0.a/D��a;b for all .a; b/ 2 CM .

Proof Recall that since � is convex, � is differentiable except for at most countably many points. For
each .a; b/ 2CM , if r D�� 0.a/, then Lemma 3.6 implies that �.�/D r for �a;b-almost every � 2 @�; on
the other hand, Lemma 3.5 implies that �.�/D �a;b for �a;b-almost every � 2 @� . Therefore if b D �.a/

and r D�� 0.a/, then
� 0.a/D��a;b:

Since this holds for Lebesgue almost every a in R and �a;b is continuous in .a; b/ 2 CM by Lemma 3.5,
� is differentiable everywhere and the derivative coincides with ��a;b , which is continuous.

The above proof yields the multifractal spectrum of every Patterson–Sullivan measure �� with respect to
�.�; �/D exp.�.�j�/o/ in @� , and the profile is the Legendre transform of the Manhattan curve.

Theorem 3.8 (the multifractal spectrum) For every pair d; d� 2 D� , let �� be an arbitrary Patterson–
Sullivan measure relative to d� and �.�; �/D exp.�.�j�/o/ be the quasimetric relative to d on @� . For
˛ 2R we define

E.˛/ WD

�
� 2 @� W lim

r!0

log��.B.�; r//
log r

D ˛

�
;

where B.�; r/D f� 2 @� W �.�; �/ < rg. Then we have

(3-11) dimH.E.v�˛/; �/D inf
a2R
fa˛C �.a/g for ˛ 2 .˛min; ˛max/;

where
˛min D� lim

a!1

�.a/

a
and ˛max D� lim

a!�1

�.a/

a
:

Proof Note that the function � is C 1 and � 0.a/D ��a;b for all .a; b/ 2 CM by Theorem 3.7. Hence
Lemmas 3.6 and 3.5 together with Lemma 2.3 imply that for all .a; b/ 2 CM ,

lim
r!0

log��.B.�; r//
log r

D v��a;b for �a;b-almost every � 2 @�;

lim
r!0

log�a;b.B.�; r//

log r
D a�a;bC b for �a;b-almost every � 2 @�;

where we have used �a;b.O.x;R// �R exp.�ad�.o;x/ � bd.o;x// for x 2 � . The Frostman-type
lemma (Lemma 2.4) shows that

dimH.E.v��a;b/; �/D a�a;bC b:

Since � is continuously differentiable and convex, for each ˛ 2 .˛min; ˛max/ there exists a 2R such that
˛ D�� 0.a/, and

dimH.E.v�˛/; �/D�a� 0.a/C �.a/;

where the right-hand side is the Legendre transform of � . Therefore we conclude the claim.
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Remark 3.9 If we have

�.a/D�a˛minCO.1/ as a!1 and �.a/D�a˛maxCO.1/ as a!�1;

then the formula (3-11) is valid for all ˛ 2 Œ˛min; ˛max� including two extreme points ˛min and ˛max. This
is the case for example when both d� and d are word metrics; see Proposition 4.22 in the following
Section 4.

3.3 Rough similarity rigidity

In this section we prove Theorem 1.2 and the rigidity statement in Theorem 1.1. We begin with the
following.

Theorem 3.10 For every pair d; d� 2 D� , the following are equivalent :

(i) The Manhattan curve CM is a straight line between .0; v/ and .v�; 0/, where v and v� are the
exponential volume growth rates of .�; d/ and .�; d�/, respectively.

(ii) The metrics d� and d are roughly similar.

We use the following lemma in the proof. Recall that d 2D� is a roughly geodesic metric and there exists
a constant C � 0 such that for all � 2 @� , one may take a C -rough geodesic ray � from o converging
to � on .�; d/.

Lemma 3.11 Let � be a finite Borel regular measure on @� and � be a doubling measure on @� relative
to a quasimetric � for d 2D� . If we decompose � D �acC �sing, where �ac is the absolutely continuous
part of � and �sing is the singular part of � relative to �, then for a large enough R> 0,

lim sup
n!1

�ac.O.�n;R//

�.O.�n;R//
<1 and lim sup

n!1

�sing.O.�n;R//

�.O.�n;R//
D 0

for �-almost every � 2 @� , where �n WD �.n/ for n� 1.

The proof of Lemma 3.11 follows from the classical Lebesgue differentiation theorem and the weak
maximal inequality — we include a proof for the sake of completeness in the appendix.

Proof of Theorem 3.10 If (ii) holds, then the Manhattan curve CM is actually a straight line on R

since �a;b D � for a constant � > 0 for all .a; b/ 2 CM by Lemma 3.5 and � 0.a/D�� for all a 2R by
Theorem 3.7 (or by Lemma 3.4).

Suppose that (i) holds. Then .a; b/ WD .v�=2; v=2/ 2 CM . By Corollary 2.10(1), we have that for all
x 2 � ,

�a;b.O.x;R//� exp
�
�
v�

2
jxj��

v

2
jxj

�
;

��.O.x;R//� exp.�v�jxj�/ and �.O.x;R//� exp.�vjxj/:(3-12)
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This implies that

(3-13)
��.O.x;R//

�a;b.O.x;R//
�
�.O.x;R//

�a;b.O.x;R//
� 1 for all x 2 �:

Fix a large enough R> 0. Letting �n WD �.n/ for integers n� 0, we have that

lim sup
n!1

��.O.�n;R//

�a;b.O.�n;R//
<1 and lim sup

n!1

�.O.�n;R//

�a;b.O.�n;R//
<1

for �a;b-almost every � 2 @� by Lemma 3.11. Here we are using that �� and � are finite Borel regular
measures and that �a;b is doubling relative to a quasimetric � in @� . Hence if either �� and �a;b , or �
and �a;b are mutually singular, then Lemma 3.11 together with (3-13) leads to a contradiction. Therefore
both �� and � have nonzero absolutely continuous parts relative to �a;b , and thus for the corresponding
�-invariant Radon measures ƒ�, ƒ and ƒa;b for ��, � and �a;b , respectively, both ƒ� and ƒ have
nonzero absolutely continuous parts relative to ƒa;b . By Lemma 2.12, there exist positive constants
c; c0 > 0 such that ƒ� D cƒa;b and ƒD c0ƒa;b . In particular, ƒ� D .c=c0/ƒ and this implies that ��
and � are mutually absolutely continuous. Letting ' WD d��=d�, we shall show that ' is uniformly
bounded away from 0 and from above. We have that

'.�/'.�/e2v�.�j�/�o � e2v.�j�/o for .�; �/ 2 @2�:

If ' is unbounded on B.�; "/ for all " > 0, then for a fixed �¤ � such that '.�/ > 0, it is possible that for
� 0 2B.�; "/, the value '.� 0/'.�/ is arbitrarily large; however, .� 0j�/�o and .� 0j�/o are uniformly bounded,
and this is a contradiction. This shows that �� � � and thus by the above estimates (3-12), there exists a
constant C � 0 such that

jv�jxj�� vjxjj � C for all x 2 �;

ie d� and d are roughly similar; we conclude the claim.

We can now conclude the proof of our first main result.

Proof of Theorem 1.1 Combining Theorems 3.7 and 3.10 concludes the proof of Theorem 1.1.

Let us now move on to the proof of Theorem 1.2. We will break the proof into two parts. For every pair
d; d� 2 D� define

�.d�=d/ WD lim sup
r!1

1

#B.o; r/

X
x2B.o;r/

d�.o;x/

r
;

where B.o; r/ WD fx 2 � W d.o;x/� rg for a real r > 0. We begin by proving the following.

Theorem 3.12 For every pair d; d� 2 D� , the following limit exists:

�.d�=d/D lim
r!1

1

#B.o; r/

X
x2B.o;r/

d�.o;x/

r
;
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and �0;v D �.d�=d/. Moreover , we have that

�.d�=d/�
v

v�
;

where v and v� are the exponential volume growth rates of .�; d/ and .�; d�/, respectively.

Proof Fix a pair d , d� 2 D� and consider the point .0; v/ on the associated Manhattan curve CM . By
Lemma 3.5, there exists a constant �0;v such that

�.�/D �0;v for �0;v-almost every � 2 @�;

where we note that �0;v is a Patterson–Sullivan measure for the metric d . In particular, for �0;v-almost
every � 2 @� , d�.o; �.n//=n! �0;v as n!1, where � is an arbitrary rough geodesic ray (with respect
to d ) starting from o. Let us define

An;" WD

�
x 2 � W

jd�.o;x/� n�0;vj

n
> "

�
for n� 0 and " > 0:

Consider S.n;R/ WD fx 2 � W jd.o;x/� nj �Rg and fix a sufficiently large R0 > 0. Since the shadows
O.x;R0/ for x 2 S.n;R/ cover the boundary @� with a bounded multiplicity, we have

#.An;"\S.n;R//

#S.n;R/
� C

X
x2An;"\S.n;R/

�0;v.O.x;R0//� C 0�0;v

� [
x2An;"\S.n;R/

O.x;R0/

�
:

Note that the last term tends to 0 as n!1 since if � belongs to O.x;R0/ for some x 2An;"\S.n;R/,
then jd�.o; �.n//� n�0;vj � "n�R0L�, where

L� WD supfd�.o;x/ W d.o;x/�R0g:

This shows that if x is sampled uniformly at random from S.n;R/, then for all " > 0 and for all large
enough n, we have jd�.o;x/� n�0;vj � "n with probability at least 1� ", implying that

�0;v D lim
n!1

1

#S.n;R/

X
x2S.n;R/

d�.o;x/

n

for all large enough R. For all real r > 0, let us take n WD brc the largest integer at most r . Note that if
xn is sampled uniformly at random from the ball B.o; r/, then we have xn 2 An;" with probability at
most O.e�vR/ for all large enough n, since the probability that x is not in S.n;R/ is at most O.e�vR/

(following from Lemma 2.8: #S.n;R/�R evn). Therefore first letting r !1 and then R!1, we
obtain

�0;v D lim
r!1

1

#B.o; r/

X
x2B.o;r/

d�.o;x/

r
;

and thus �.d�=d/D �0;v. Furthermore, this reasoning shows that for each fixed, sufficiently large R,

#B�.o; .�0;vC "/r/� .1�O.e�vR// � #B.o; r/ as r !1;

where B�.o;R/ stands for the ball of radius R centered at o with respect to d�. Therefore �.d�=d/�v=v�,
where v and v� are exponential volume growth rate relative to d and d�, respectively.
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We can now conclude the proof of Theorem 1.2.

Proof of Theorem 1.2 We have already proven the first part of the theorem in Theorem 3.12. Let us show
the equivalence of statements (1), (2) and (3). Note that the equivalence of (2) and (3) is a consequence
of Lemma 3.4 and Theorem 3.10. (If two metrics d; d� are roughly similar, then the corresponding
Manhattan curve is a straight line on the entire part, not just on the part connecting .0; v/ and .v�; 0/.)
We therefore just need to prove the equivalence of (1) and (3), which we prove below:

Consider the Manhattan curve CM and the function �.a/ for the pair .d; d�/ and recall that, by Theorem 3.7,
we have that � 0.0/D��.d�=d/. It follows, since the curve CM passes through .0; v/ and .v�; 0/, that
�.d�=d/D v=v� if and only if � is a straight line on Œ0; v��. By Theorem 3.10 this is the case if and only
if d and d� are roughly similar. This concludes the proof.

Let us record the following result on the asymptotics of a typical ratio between two stable translation
lengths, as it is of interest in its own right.

Corollary 3.13 For all d; d� 2 D� , we have that

`�Œ�.t/�

`Œ�.t/�
! �.d�=d/ as t !1 for �-almost every � 2 @�;

where � is a Patterson–Sullivan measure relative to d and � is a quasigeodesic ray � converging to �.

Proof This follows from Lemmas 3.2 and 3.5 since �0;v D �.d�=d/ by Theorem 3.12.

4 The C 2 regularity for strongly hyperbolic metrics

The aim of this section is to deduce better regularity (ie higher-order differentiability) for the Manhattan
curve under the additional assumption that d and d� are strongly hyperbolic metrics; see Definition 2.2 in
Section 2.1. The method we use also applies to word metrics, in which case it is (in principle) possible to
compute explicit examples; we provide some in the subsequent section (Section 5). We will use automatic
structures to introduce a symbolic coding for our group � . This will allow us to use techniques from
thermodynamic formalism. We begin with some introductory material on these techniques. For the
thermodynamic formalism on nontopologically transitive systems, we follow [Gouëzel 2014, Sections 3.2
and 3.3].

4.1 Automatic structures

Fix a finite (symmetric) set of generators S for � . An automaton AD .G; �;S/ is a triple consisting of a
finite directed graph GD .V;E; s�/, where s� is a distinguished vertex called the initial state, a labeling
� WE! S on edges by S and a finite (symmetric) set of generators S . Associated to every directed path
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! D .e0; e1; : : : ; en�1/ in the graph G where the terminus of ei is the origin of eiC1, there is a path �.!/
in the Cayley graph Cay.�;S/ issuing from the identity id, �.e0/, �.e0/�.e1/; : : : ; �.e0/ � � ��.en�1/.
Let us denote by ��.!/ the terminus of the path �.!/, ie ��.!/ WD �.e0/ � � ��.en�1/.

Definition 4.1 An automaton AD .G; �;S/, where GD .V;E; s�/ and � WE!S is a labeling, is called
a strongly Markov automatic structure if

(1) for every vertex v 2 V there is a directed path from the initial state s� to v,

(2) for every directed path ! in G the associated path �.!/ is a geodesic in the Cayley graph Cay.�;S/,
and

(3) the map �� evaluating the terminus of a path yields a bijection from the set of directed paths from
s� in G to � .

We sometimes abuse notation by identifying A with the underlying finite directed graph G. By a theorem
of Cannon [1984] every hyperbolic group admits a strongly Markov automatic structure for every finite
symmetric set of generators S ; cf [Calegari 2013]. Given an automatic structure AD .G; �;S/ for .�;S/,
we write †� for the set of finite directed paths in G (not necessarily starting from s�) and † for the set of
semi-infinite directed paths ! D .!i/iD0;1;::: in G. Let x† WD†�[†. The function �� W†�! � naturally
extends to

�� W x†! � [ @�; ! 7! ��.!/;

by mapping a sequence to the terminus of the geodesic segment or ray �.!/ starting at id in Cay.�;S/.
We define a metric dx† on x† by dx†.!; !

0/D 2�n if ! ¤ !0 and ! and !0 coincide up to the nth entry,
and dx†.!; !

0/D 0 if ! D !0.

4.2 Thermodynamic formalism

The shift map � W x†! x† takes a (possibly finite) sequence ! D .!o/iD0;1;::: and maps it to �.!/ D
.!iC1/iD0;1;:::. To ensure that � is well-defined, we include the empty path in x†. For every real-valued
Hölder continuous function ' W x†!R (which we call a potential), the transfer operator L' acting on the
space of continuous functions f on x† is defined by

L'f .!/D
X

�.!0/D!

e'.!
0/f .!0/;

where for the empty path ! D∅ the preimages of � are defined only by nonempty paths. We say that the
directed graph G is recurrent if there is a directed path between arbitrary two vertices. We say that G is
topologically mixing if there exists n such that every pair of vertices is connected by a path of length
n. If G is recurrent but not topologically mixing, then there is an integer p > 1 such that every loop
(ie path starting and ending at the same vertex) in G has length divisible by p. Furthermore the set of
vertices of G decomposes into p subsets V D

F
j2Z=pZ Vj , where every edge with the origin in Vj has

the terminus in VjC1. We call this decomposition a cyclic decomposition of V . Restricting �p to Vj ,
we obtain a topological mixing subshift of finite type. If G is not recurrent, then we decompose G into
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components — these are the maximal induced subgraphs which are recurrent. For each component C, we
define the transfer operator LC by restricting ' to the paths staying in C. The spectral radius of LC is
given by ePrC.'/ for some real value PrC.'/. This constant is obtained from the limit

(4-1) PrC.'; �/D lim
n!1

1

n
log

X
Œ!0;:::;!n�1�

exp.SŒ!0;:::;!n�1�.'//;

where the summation is taken over all the cylinder sets of length n,

SŒ!0;:::;!n�1�.'/ WD supfSn'.!/ W ! 2 Œ!0; : : : ; !n�1�g and Sn' WD

n�1X
iD0

' ı � i :

(See [Parry and Pollicott 1990, Theorem 2.2]; this follows from the Gibbs property of an eigenmeasure
for each component in the cyclic decomposition.)

Let
Pr.'/ WDmax

C
PrC.'/;

where the maximum is taken over all components C of G. We call a component C maximal if PrC.'/D

Pr.'/. Note that the set of maximal components depends on '. We are interested in potentials that satisfy
the following condition.

Definition 4.2 A potential ' is called semisimple if there are no directed paths from any maximal
component to any other maximal components.

We denote by H the space of Hölder continuous functions on x† with some fixed exponent, whose explicit
value is not used, and by k � kH the corresponding Hölder norm.

Theorem 4.3 [Gouëzel 2014, Theorem 3.8] Let ' be a semisimple potential and C1; : : : ;CI be the
corresponding maximal components , each with period pi and cyclic decomposition Ci D

F
j2Z=pi Z Ci;j .

Then there exist Hölder continuous functions hi;j and measures �i;j with
R
x† hi;j d�i;j D 1 such thatLn

'f � ePr.'/n
IX

iD1

X
j2Z=pi Z

�Z
x†

f d�i;.j�n mod pi /

�
hi;j


H

� Ckf kHe.Pr.'/�"0/n

for every Hölder continuous function f , where positive constants C and "0 > 0 are independent of f , and
the probability measures �i D .1=pi/

P
j2Z=pi Z hi;j�i;j are invariant under the shift � . The measures

�i are also ergodic.

Remark 4.4 In the statement of Theorem 4.3, if we define Ci;j ;! to be the set of edges which can be
reached by a path from Ci;j of length divisible by pi , and C!;i;j to be the set of edges which we can
reach Ci;j with a path of length divisible by pi , then the function hi;j is bounded from below on the
paths starting with edges in Ci;j ;! and the empty path, and takes 0 elsewhere. Furthermore the measure
�i;j is supported on the set of infinite paths starting with edges in C!;i;j and eventually staying in Ci .
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We will use both of the measures �i and �i WD
Ppi�1

jD0
�i;j for each i D 1; : : : ; I . They have different

supports on the space of paths x†, and �i is � -invariant while �i is not.

Lemma 4.5 [Gouëzel 2014, Lemma 3.9] In the notation in Theorem 4.3, let �i WD
Ppi�1

jD0
�i;j . Then

���i is absolutely continuous with respect to �i .

Proposition 4.6 [Gouëzel 2014, Proposition 3.10] Suppose that ' is a semisimple potential in H and
C1; : : : ;CI are the corresponding maximal components. Then there exist positive constants C; "0 > 0

such that for all small enough  2H, there exist Hölder continuous functions h
 
i;j and measures � i;j with

the same support as hi;j and �i;j , respectively, such thatLn
'C f �

IX
iD1

ePrCi
.'C /n

X
j2Z=pi Z

�Z
x†

f d�
 

i;.j�n mod pi /

�
h
 
i;j


H

� Ckf kHe.Pr.'/�"0/n

for all f 2H. Moreover , the maps  7! PrCi
.'C /,  7! h

 
i;j and  7! �

 
i;j (from H to R, H and the

dual of H, respectively) are each real analytic in a small neighborhood of 0 in H.

Let ŒE�� denote the set of paths in x† starting at s�. If 1ŒE�� denotes the corresponding indicator function,
then

Ln
'1ŒE��.∅/D

X
eSn'.!/; where Sn'.!/D

n�1X
kD0

'.�k.!//;

and the summation is taken over all paths ! of length n starting from s�.

Lemma 4.7 For every Hölder continuous potential ' and for every integer k � 1, if there exists a path
from s� in A containing edges successively from k different maximal components for ', then there exists
a constant C > 0 such that for all n� 1,

Ln
'1ŒE��.∅/� C nk�1enPr.'/:

On the other hand , if there are L components in A, then there exists a constant C > 0 such that for all
n� 1,

Ln
'1ŒE��.∅/� C nLenPr.'/:

Proof This lemma is a special case of [Gouëzel 2014, Lemma 3.7]; the proof of the second part is found
in [Tanaka 2017, Lemma 4.7].

4.3 Semisimple potentials

In this section we use thermodynamic formalism to link the geometric measures constructed in Section 2.6
to certain measures on x†. The key result that allows us to do this is the following.
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Lemma 4.8 Let  be a �-invariant tempered potential relative to dS on � with exponent � ; see
Definition 2.5. If for a strongly Markov automatic structure AD .G; �;S/ the corresponding shift space
.x†; �/ admits a Hölder continuous potential ‰ such that

(4-2) Sn‰.!/D

n�1X
iD0

‰.� i.!//D� .o; ��.!// for all ! D .!0; : : : ; !n�1/ 2†
�;

then ‰ is semisimple and Pr.‰/D � . Moreover , for each a 2R, the potential a‰ is semisimple.

Proof Note that for the potential ‰, we have that for all n,

Ln
‰1ŒE��.∅/D

X
jxjSDn

e� .o;x/:

Hence Lemmas 2.8 and 4.7 show that Pr.‰/D � . If the potential ‰ is not semisimple, then there is a
directed path in the automatic structure AD .G; �;S/ starting from s� passing through k distinct maximal
components for ‰ for k > 1. The first part of Lemma 4.7 implies that Ln

‰
1ŒE��.∅/� C nk�1enPr.‰/ for

all n � 0. This however contradicts Lemma 2.8. Therefore ‰ is semisimple. Furthermore, for every
a 2R, the same proof applies to a , and the potential a‰ is semisimple.

For each semisimple potential ‰ on x†, let Ci for i D 1; : : : ; I be the maximal components for ‰. Let �i;j

for i D 1; : : : ; I and j D 0; : : : ;pi be the measures obtained in Theorem 4.3 applied to the potential ‰.
We define �i WD

Ppi�1
jD0

�i;j and �‰ WD
PI

iD1 �i . Let us denote by � a finite Borel measure on @�
satisfying (QC) with exponent � relative to . ; d/ (which has been constructed in Proposition 2.7).

Lemma 4.9 Assume that  and ‰ are as in Lemma 4.8. Then the pushforward of �‰. � \ ŒE��/ by �� is
comparable to � .

Proof For all n, let zmn be the finite measure on x† defined by the positive linear functional f 7!
e�nPr.‰/ �Ln

‰
f .∅/. If the maximal components for the potential ‰ have periods pi for i D 1; : : : ; I , then

let p be the least common multiple of these periods. Theorem 4.3 shows that for every Hölder continuous
function f on x†, we have that for each q D 0; : : : ;p� 1,

e�.npCq/Pr.‰/
�L

npCq
‰

f .∅/!
IX

iD1

piX
jD0

Z
x†

f d�i;.j�q mod pi /hi;j .∅/ as n!1:

This convergence holds for all continuous functions f on x†; indeed, we approximate f by Hölder
continuous functions and use je�nPr.‰/ � Ln

‰
f .∅/j � Ckf k1 for all n, where k � k1 stands for the

supremum norm. This shows that zmnpCq weakly converges to a measure zmq for each q D 0; : : : ;p� 1.
Since c1 � hi;j .∅/� c2 for some c1; c2 > 0 (see Theorem 4.3 and Remark 4.4), all zmq are comparable
with

P
i;j �i;j . If we denote by zm1 the weak limit of

Pn
kD0 zmk. � \ ŒE��/=

Pn
kD0 zmk.ŒE��/, then the
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measure �� zm1 is actually � . Indeed, for every continuous function f on � [ @� , we have

e�nPr.‰/Ln
‰.1ŒE�� �f ı��/.∅/D e�nPr.‰/

X
! of length n from s�

eSn‰.!/f .��.!//

D e�nPr.‰/
X
jxjSDn

e� .o;x/f .x/;

where the last line follows since the map �� induces a bijection from the set of paths of length n

starting at s� to the set of x 2 � with jxjS D n and (4-2). Since Pr.‰/D � by Lemma 4.8, this shows
that the measure �� zm1 is comparable with � obtained by the Patterson–Sullivan procedure, and for
�‰ WD

P
i;j �i;j , the measure ���. � \ ŒE��/ is comparable with � .

Example 4.10 For every pair of finite symmetric sets of generators S and S�, there exist a strongly
Markov automatic structure AD .G; �;S/ and a function d�S� WE.G/! Z such that

j��.!/jS� D

n�1X
iD0

d�S�.!i/ for every path ! D .!0; : : : ; !n�1/ from s� on G;

where GD .V .G/;E.G// is the underlying directed graph of A. This is proved in [Calegari and Fujiwara
2010, Lemma 3.8]; see also [Calegari 2009, Theorem 6.39]. Let us define a function ‰S� W†!R by
setting

‰S�.!/D�d�S�.!0/ for ! 2 x†:

This function depends only on the first coordinate of ! and is Hölder continuous with respect to the
metric dx†. Further, by construction, for ! D .!0; : : : ; !n�1/ 2†

� we have that

Sn‰S�.!/D�

n�1X
iD0

d�S�.!i/D�dS�.o; ��.!//:

This shows that, on †�, the Birkhoff sums of ‰S� encode information about the metric dS� .

Example 4.11 Let d 2 D� be a strongly hyperbolic metric. For every finite (symmetric) set of gener-
ators S , we consider a subshift † arising from a strongly Markov structure A D .G; �;S/. Since the
Busemann function for a strongly hyperbolic metric is defined as limits (Section 2.6), if we define

ˇo.x;y/ WD d.x;y/� d.o;y/ for .x;y/ 2 � � .� [ @�/;

then its restriction on � � @� is the original Busemann function (based at o) for d . Let

‰.!/ WD ˇo.��.!0/; ��.!// for ! 2 x†:

Note that ‰ is Hölder continuous with respect to dx† by the definition of strong hyperbolicity; see
Section 2.6. Furthermore, for ! 2†�, if nD j��.!/jS , then we have that

Sn‰.!/D�d.o; ��.!//:
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Remark 4.12 It is important to note that for any strongly Markov structure A D .G; �;S/ and any
strongly hyperbolic metric d 2 D� , we can find a function ‰ on x† encoding d . It is not clear if we can
do the same when d is a word metric; in which case we only know the existence of some strongly Markov
structure and a function on x† encoding d ; see Example 4.10. We will exploit this freedom of choice for
strongly hyperbolic metrics in our proof of Theorem 1.3.

4.4 Proof of the C 2-regularity

In general, restricting to each component Ci , the pressure function PrCi
.‰/ is real analytic in ‰. Further-

more, for every ‰0; ‰ 2H,

PrCi
.‰0C s‰/D PrCi

.‰0/C s�i C
1
2
s2�2

i CO.s3/ as s! 0;

where

�i WD

Z
†

‰ d�i and �2
i WD lim

n!1

1

n

Z
†

.Sn‰� n�i/
2 d�i :

We will prove that the �i (resp. the �2
i ) coincide on all maximal components for ‰0.

Proposition 4.13 Let  be a �-invariant tempered potential relative to dS on � with exponent � , and

�.a/ WD lim
n!1

1

n
log

X
jxjSDn

e�a .o;x/ for a 2R:

Suppose that the shift space .x†; �/ corresponding to a strongly Markov automatic structure AD .G; �;S/

admits a Hölder continuous potential ‰ satisfying (4-2). Then the function �.a/ is twice continuously
differentiable in a 2R.

Proof By Lemma 4.8, we have that �.a/DmaxC PrC.a‰/ for every a2R. Proposition 4.6 shows that for
each maximal component Ci with i D 1; : : : ; I , for a‰ we have Pr0Ci

.a‰/D
R
†i
‰ d�i , where †i is the

set of paths staying in Ci for all time. Let us prove that
R
†i
‰ d�i D

R
†j
‰ d�j for all i; j 2 f1; : : : ; Ig.

For every � 2 R, let A.�/ be the set of boundary points � in @� for which there exists a unit-speed
geodesic ray �n in Cay.�;S/ converging to � such that

lim
n!1

1

n
 .o; �n/D��:

Note that if this convergence holds for some geodesic ray toward �, then in fact this holds for every
geodesic ray toward � since an arbitrary pair of geodesic rays converging to the same extreme point
are eventually within bounded distance up to shifting the parametrizations (where all geodesic rays are
parametrized with unit speed). This shows that the set A.�/ is �-invariant. Let �i WD

R
†i
‰ d�i , where

�i D .1=pi/
Ppi�1

jD0
hi;j�i;j . If we define

Ui WD

n
! 2†i W lim

n!1

1

n
Sn‰.!/D �i

o
;
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then ��.Ui/ � A.�i/ and the Birkhoff ergodic theorem implies that �i.Ui/ D 1 since �i is ergodic
by Theorem 4.3. We shall show that �i D �j for all i; j 2 f1; : : : ; Ig. Let U c

i WD
x† nUi . Since �i and

�i are equivalent on †i , we have �i.†i \U c
i / D 0. This implies that �i.U

c
i / D 0. Indeed, note that

�kU c
i � U c

i , and ��k†i \ U c
i D ��k.†i \ �

kU c
i / � �

�k.†i \ U c
i /. Since �i ı �

�1 is absolutely
continuous with respect to �i by Lemma 4.5, we have �i.�

�k†i\U c
i /D 0, and since x†D

S1
kD0 �

�k†i

modulo �i-null sets, we obtain �i.U
c
i /D 0.

We then have that �i.Ui \ ŒE��/ > 0 since Ui has full �i-measure and �i assigns positive measure to ŒE��
by Theorem 4.3. Therefore

�i.�
�1
� A.�i/\ ŒE��/� �i.Ui \ ŒE��/ > 0

and Lemma 4.9 implies that � .A.�i// > 0. As we have noted, A.�i/ is �-invariant, and since � is
ergodic with respect to the �-action on @� by Lemma 2.9, the set A.�i/ has the full � measure. Since
this is true for all i D 1; : : : ; I , all �i and thus Pr0Ci

.a‰/ coincide. This shows that �.a/ is differentiable
at every a 2R.

Let � be the common value of all of the �i at a 2 R. For each i D 1; : : : ; I , we have by [Parry and
Pollicott 1990, Proposition 4.11], Pr00Ci

.a‰/D a2�2
i , where

�2
i D lim

n!1

1

n

Z
†i

.Sn‰� n�/2 d�i :

We define the set B.�i/ of points � in @� for which there exists a (unit-speed) geodesic ray � in Cay.�;S/
converging to � such that the following double limits hold:

�2
i D lim

n!1

1

n
�2

i .n/; where �2
i .n/ WD lim

m!1

1

m

m�1X
kD0

.� .�k ; �nCk/� n�/2:

Note that B.�i/ is �-invariant since  is �-invariant. If we define � WD
PI

iD1 �i , then applying the
Birkhoff ergodic theorem countably many times on a dense subset of the space of continuous functions
on †, we have that for �-almost every ! 2 †, the measures .1=n/

Pn�1
kD0 ı�k! weakly converge to a

measure �! on †, and for �i-almost every ! 2†i one has �! D �i for each i D 1; : : : ; I . Note that

�! ı �
�1
D ��! D �! �-almost everywhere:

Let us define

Vi WD

�
! 2†i W �

2
i D lim

n!1

1

n

Z
†

.Sn‰� n�/2 d�!

�
:

We then have that ��.Vi/�B.�i/ since is a �-invariant tempered potential relative to dS and�i.Vi/D1.
Since Vi is �-invariant modulo �i-null sets, the same argument as above implies that � .B.�i// > 0

and all �2
i coincide. This shows that Pr00Ci

.a‰/ coincide for all i D 1; : : : ; I . Since each PrCi
.a/ is real

analytic and �.a/ coincides with the maximum of finitely many PrCi
.a/ on a neighborhood of a by

Proposition 4.6, the function �.a/ is twice continuously differentiable in a 2R.
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Theorem 4.14 For every pair of finite symmetric sets of generators S and S�, if

�S�=S .a/ WD lim
n!1

1

n
log

X
jxjSDn

e�ajxjS� for a 2R;

then �S�=S is twice continuously differentiable in a 2R.

Proof This follows from Proposition 4.13 and Example 4.10.

We now consider the case when d; d� 2 D� are both strongly hyperbolic and we want to show that the
associated Manhattan curve is C 2. In the previous part we exploited the fact that the subshift † encoded
one of the metrics d that we were considering. It is not clear how to exploit this fact when both metrics
are strongly hyperbolic. To get around this issue we take a word metric dS on � associated to a finite
symmetric set of generators S and use this to introduce a subshift † on which we are able to encode
information about the metrics d; d�.

For the rest of this section assume that we have two strongly hyperbolic metrics d; d� 2 D� and that
we have arbitrarily chosen a finite symmetric set of generators S for � . We begin by constructing a
useful two-parameter family of measures on @� . For each .a; b/ 2 R2, let z�.a; b/ be the abscissa of
convergence of X

x2�

exp.�ad�.o;x/� bd.o;x/� sdS .o;x//

as s varies.

To understand this summation we use the measures we constructed in Section 2.6. Since ad�C bd is a
�-invariant tempered potential relative to dS for each .a; b/ 2R2 (Example 2.6), Proposition 2.7 implies
that for each .a; b/ 2R2, there exists a measure �a;b;S on @� such that for x 2 � ,

C�1
a;b � exp.aˇ�o.x; �/C bˇo.x; �/C z�.a; b/ˇSo.x; �// �

dx��a;b;S

d�a;b;S

.�/� Ca;b;

where ˇ�o, ˇo and ˇSo are Busemann functions (based at o) for d�, d and dS respectively, and Ca;b is a
positive constant. By Lemma 2.8, we have that

(4-3)
X
jxjSDn

e�ad�.o;x/�bd.o;x/
�a;b exp.z�.a; b/n/ for all integers n� 0:

For each fixed a 2R, the function b 7! z�.a; b/ is continuous by the Hölder inequality. Note that for each
fixed a 2R,

b > �.a/ D) z�.a; b/ < 0 and b < �.a/ D) z�.a; b/ > 0:

Therefore, combining with the continuity of z�.a; b/ in b, we have that z�.a; b/D 0 if and only if bD �.a/.

Now consider the subshift of finite type† arising from a coding corresponding to S . Let‰;‰� W†!R be
Hölder continuous potentials that encode d and d�, respectively, as in Example 4.11. For each .a; b/2R2,
by Lemma 4.8 (adapted to (4-3)) the potential ‰a;b D a‰�C b‰ is semisimple and Pr.‰a;b/D z�.a; b/.
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Consider a point .a; b/ 2 R2 and take a maximal component C for ‰a;b . Let �C denote the measure
corresponding to ‰a;b on C from applying Theorem 4.3. Since for each C, the function ‰a;b is real
analytic in .a; b/ 2 R2, it admits a Taylor expansion with Jacobian JC.a; b/ and a symmetric Hessian
CovC.a; b/. More precisely, letting ‰1 WD ‰� and ‰2 WD ‰, we have JC.a; b/ D .J1.a; b/;J2.a; b//,
where

Ji.a; b/ WD

Z
†C

‰i d�C D
@

@si

ˇ̌̌
.a;b/

PrC.‰s1;s2
/ for i D 1; 2;

and CovC.a; b/ has entries

CovC.a; b/i;j D
@2

@si@sj

ˇ̌̌
.a;b/

PrC.‰s1;s2
/

D lim
n!1

1

n

Z
†C

.Sn‰i.!/� nJi.a; b//.Sn‰j .!/� nJj .a; b// d�C.!/

for i; j D 1; 2; this follows from the one-parameter case by considering s 7!‰aCs;bCs and differentiating
at s D 0 [Parry and Pollicott 1990, Proposition 4.11]. We know that the potentials ‰1 and ‰2 satisfy
a (possibly degenerate) multidimensional central limit theorem with respect to �C on †C. That is, the
distribution of

.Sn‰1.!/;Sn‰2.!//� nJC.a; b/
p

n

under �C weakly converges to a two-dimensional Gaussian distribution with covariance matrix CovC.a; b/

as n!1. It is useful to keep this in mind throughout the following. Furthermore, we note that ‰
and ‰� may vanish at certain points; however, there exists n such that Sn‰ and Sn‰� are strictly
negative functions. Therefore for ‰a;b and for the corresponding on maximal components C, we have
that JC.a; b/¤ .0; 0/ whenever bD �.a/ for all a2R. This fact is crucial when we appeal to the implicit
function theorem later in our discussion.

Proposition 4.15 For every .a; b/ 2 R2, the Jacobian JC.a; b/ and the Hessian matrix CovC.a; b/ do
not depend on the choice of maximal component C.

Proof Showing that JC.a; b/ is independent of the choice of maximal component C for‰a;b is analogous
to the first part in the proof of Proposition 4.13; we omit the details. We will show that CovC.a; b/

is independent of the maximal component C. The proof follows the same lines as in the proof of
Proposition 4.13 but we need to adapt the arguments to the multidimensional setting.

To simplify the following exposition, let us fix a and b and suppress their dependence in the notation. We
also write d1 WD d� and d2 WD d , and denote the corresponding potentials by ‰1 D‰� and ‰2 D‰. For
CovC D .�i;j /i;jD1;2, we define the set B.CovC/ of points in @� for which there exists a geodesic ray
� 2 Cay.�;S/ converging to � such that for all i; j D 1; 2, we have

�i;j D lim
n!1

1

n
�i;j .n/;
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where

�i;j .n/D lim
m!1

1

m

m�1X
kD0

.�di.�k ; �nCk/� nJi/.�dj .�k ; �nCk/� nJj /:

For each ‰a;b we have a measure �a;b by Lemma 4.9 such that the pushforward of �a;b restricted on
ŒE�� by �� is comparable to �a;b;S , which is ergodic with respect to the �-action on @� by Lemma 2.9.
By comparing the set B.CovC/ to the set

VC WD

\
i;jD1;2

�
! 2†C W �i;j D lim

n!1

1

n

Z
†

.Sn‰i � nJi/.Sn‰j � nJj /d�!

�
;

where �! is as in the proof of Proposition 4.13, we see that the matrix CovC does not depend on the
component C. This concludes the proof.

Theorem 4.16 For every pair of strongly hyperbolic metrics d and d� on � , the corresponding function
�.a/ is twice continuously differentiable in a 2R.

Proof For each .a; b/ 2 R2, let C be a maximal component for the potential ‰a;b . Proposition 4.15
shows that PrC.‰s1;s2

/ admits the Taylor expansion whose terms up to the second order are independent
of the choice of C. This implies that since Pr.‰a;b/ is given by the maximum over finitely many
functions PrC.‰a;b/ and Pr.‰a;b/D z�.a; b/, the function z�.a; b/ is twice continuously differentiable in
.a; b/ 2R2. Note that z�.a; b/D 0 if and only if b D �.a/ for all .a; b/ 2R2, and for every .a; b/ 2R2

with z�.a; b/D 0 and for every maximal component C, we have that JC.a; b/¤ .0; 0/; see the discussion
just before Proposition 4.15. Therefore the implicit function theorem implies that � is twice continuously
differentiable.

Now Theorem 1.3 follows from Theorem 4.16.

Note that this result and the arguments we applied to prove it are independent of the choice of S . However
in the case when � admits a finite symmetric set of generators S such that the underlying directed
graph of an automaton has only one recurrent component, then the Manhattan curve associated to two
strongly hyperbolic metrics in D� is real analytic. This is because, in this case, Pr.‰a;b/ is real analytic
in .a; b/ 2R as there is only one maximal component which is recurrent and all the others are transient
(not recurrent). For example, the fundamental groups of closed orientable surface of genus at least 2

admit such automata with the standard set of generators since they have a single relator. For more general
cocompact Fuchsian groups, see [Series 1981].

4.5 Pairs of word metrics

In this section we deduce further rigidity results for word metrics. Recall that the Manhattan curve
�S�=S WR!R associated to every pair of word metrics dS , dS� is twice continuously differentiable.
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Theorem 4.17 Let � be a nonelementary hyperbolic group and dS and dS� be word metrics associated
to finite symmetric sets of generators S and S�, respectively. If we denote the Manhattan curve for the
pair .dS ; dS�/ by

CM D f.a; b/ 2R2
W b D �S�=S .a/g;

then the following are equivalent :

(1) The metrics dS and dS� are not roughly similar.

(2) The Manhattan curve CM is strictly convex at 0, ie � 00
S�=S

.0/ > 0.

(3) The Manhattan curve CM is strictly convex at every point , ie � 00
S�=S

.a/ > 0 for every a 2R.

Remark 4.18 Let Sn D fx 2 � W jxjS D ng. If one of the equivalence statements in Theorem 4.17 holds,
then the law of

(4-4)
dS�.o;xn/� n�.S�=S/

p
n

;

where xn is chosen uniformly at random from Sn, converges, as n!1, to the normal distribution
with mean 0 and variance � 00

S�=S
.0/ > 0. This follows from [Cantrell 2021, Theorems 1.1 and 1.2] and

[Gekhtman et al. 2022, Theorem 1.1] (where Gekhtman et al. have established their result in a more
general setting). Observe that if dS and dS� are roughly similar, then the limiting distribution of (4-4) is
the Dirac mass at 0.

Let † denote a subshift of finite type associated to a strongly Markov automatic structure AD .G; �;S/.

Lemma 4.19 Let ‰� W†!R be a Hölder continuous function such that

Sn‰�.!/D�dS�.o; �.!0/ � � ��.!n�1// for ! D .!0; : : : ; !n�1/ 2†
�;

as in Example 4.10. The function ‰� W†C!R is cohomologous to a constant on a maximal component C,
ie there exist a constant c0 2R and a Hölder continuous function u W†C!R such that

‰� D c0Cu�u ı �

if and only if dS and dS� are roughly similar.

Proof For a maximal component C, let �C be the set of group elements that are realized as the image of
a word corresponding to a finite path in C. Recall that ‰� is cohomologous to a constant on †C if and
only if there exists � 2R such that the set

fSn‰�.!/C n� W ! 2†C and n� 0, n 2 Zg

is a bounded subset of R. By the definition of ‰�, this holds if and only if

fdS�.o;x/� �dS .o;x/ W x 2 �Cg

is a bounded subset of R. We show that this is equivalent to the fact that dS and dS� are roughly similar.
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Let us prove that for each maximal component C there exists a finite set of group elements B � � such
that B�CBD� . This claim, which concludes the proof, is essentially observed in Lemma 4.6 of [Gouëzel
et al. 2018]; we provide a proof below for the sake of completeness.

For an element w 2 � and a real number � � 0, we say that an S-geodesic word �-contains w if it
contains a subword h such that h D h1wh2 for some h1; h2 2 � with jh1jS ; jh2jS � �. Let Yw;� be
the set of group elements x 2 � such that x is represented by some S-geodesic word which does not
�-contain w. It is known that there exists �0 > 0 such that for all w 2 � ,

lim
n!1

#.Yw;�0
\Sn/

#Sn
D 0;

see [Arzhantseva and Lysenok 2002, Theorem 3]. Since C is a maximal component in the underlying
directed graph G and thus the spectral radius is the exponential volume growth rate relative to S , the
upper density of �C is strictly positive, ie

lim sup
n!1

#.�C\Sn/

#Sn
> 0:

Fix w 2� . Since �C has positive upper density and Yw;�0
has vanishing density, �CnYw;�0

¤∅, ie there
is an element x of �C whose every S-geodesic representation �0-contains w, in particular there exists
y 2 �C (corresponding to a subword) such that y D h1wh2 with jh1jS ; jh2jS ��0. Hence if we let B

denote the ball of radius �0 with respect to dS centered at the identity in � , then � D B�CB.

Proof of Theorem 4.17 First let us show that .1/ () .2/. By Theorem 4.14 (see the proof of
Proposition 4.13), the second derivative � 00

S�=S
.0/ coincides with the second derivative at t D 0 of the

function PrC.t‰�/ for each fixed maximal component C (at t D 0). By Proposition 4.12 of [Parry and
Pollicott 1990] this second derivative is strictly positive if and only if ‰� W†C!R is not cohomologous
to a constant. Lemma 4.19 implies that this is true if and only if dS and dS� are not roughly similar.

Next let us show that .2/() .3/. We shall in fact show that if � 00
S�=S

.t/ > 0 for some t 2 R, then
� 00

S�=S
.t/ > 0 for all t 2R. Let us fix t0 2R and let C1; : : : ;CI be the maximal components of t‰� at

t D t0. By Proposition 4.6 there exists " > 0 such that

�S�=S .t/D max
iD1;:::;I

PrCi
.t‰�/

for all jt � t0j< ". Since each PrCi
.t‰�/ is real analytic in t 2R, changing " > 0 if necessary we find at

most two components C1 and C2 (possibly C1 D C2) such that

(4-5) �S�=S .t/D

�
PrC1

.t‰�/ for t0 � t < t0C ";

PrC2
.t‰�/ for t0� " < t � t0:

Moreover, PrC1
.t‰�/ (resp. PrC2

.t‰�/) is strictly convex at all points if and only if it is strictly convex
at some point, since this is equivalent to the fact that ‰� is not cohomologous to a constant function
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on †C1
(resp. †C2

) [Parry and Pollicott 1990, Proposition 4.12]. It follows that if � 00
S�=S

.t0/ > 0, then
both PrC1

.t‰�/ and PrC2
.t‰�/ are strictly convex at all points, since

� 00S�=S .t0/D Pr00C1
.t‰�/jtDt0

D Pr00C2
.t‰�/jtDt0

> 0

by the proof of Proposition 4.13. Note that since there are only finitely many components in the underlying
directed graph, the set of t0 2R where (4-5) holds for two distinct C1 and C2 is at most countable and
discrete in R. Applying the same argument to such t0 at most countably many times, we see that if �S�=S

is strictly convex at some point, then it is strictly convex at all points, as desired.

4.6 Tightness of the tangent lines at infinity for the Manhattan curve

In this section we prove an inequality for pressure curves that will be a useful tool in understanding
the asymptotic properties of CM . This inequality will have subsequent applications to a large deviation
principle (Theorem 4.23), our results on the multifractal spectrum (Theorem 3.8) and to proving the
rationality of the dilation constants associated to word metrics (Proposition 4.22).

Proposition 4.20 Let .†; �/ be a transitive subshift of finite type and ‰ W†!R be a Hölder continuous
function. If we define

P1.‰/ WD sup
�

exp
�

Sn‰.!/

n

�
W �n! D ! for ! 2† and n� 1

�
;

then we have that
1

�A

ePr.t‰/
� P1.t‰/� ePr.t‰/ for all t 2R;

where Pr.t‰/ is the pressure for t‰ and �A is the spectral radius of the adjacency matrix for .†; �/.

In particular , it holds that

Pr.t‰/D t log P1.‰/CO.1/ and Pr.�t‰/D t log P1.�‰/CO.1/ as t !1:

Proof Let E be a finite set of alphabets and AD .Ae;e0/e;e02E be the adjacency matrix which defines the
transitive subshift of finite type .†; �/ on E. We consider the associated finite directed graph G whose set
of edges is E. Let us denote by �E the set of cycles in G, ie the set of finite paths w D .!0; : : : ; !n�1/

whose terminus coincides with the origin, and by jwj D n the length of w. Recall that the transfer operator

L‰f .!/D
X

�.!0/D!

e‰.!
0/f .!0/ for f W†!R

has spectral radius ePr.‰/.

First we consider a special case (from which the general case will be reduced); ‰ W†!R depends only
on the first coordinate, ie ‰.!/D  .!0/ for some function  WE!R. Let

(4-6) Pmax. / WDmax
� Y

e2w

e .e/=jwj W w 2�E

�
;
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where we note that the maximum is attained by some simple cycle (ie a cycle consisting of pairwise
distinct vertices). Then we have that

Pmax. /� ePr.‰/

by the definition of spectral radius, and moreover,

ePr.‰/
� �A �Pmax. /;

where �A stands for the spectral radius of the adjacency matrix A by [Friedland 1986, Theorem 2] — we
have applied the nonnegative matrix .e .e/Ae;e0/e;e02E; note that we have �A D ePr.0/. Therefore we
obtain

(4-7) Pmax.t /� ePr.t‰/
� �A �Pmax.t / for all t 2R:

Next we consider the general case. Since‰ is Hölder continuous, for all ">0 sufficiently small there exists
a function ‰0 W†!R such that ‰0 depends on finitely many coordinates and satisfies k‰0�‰k1 � ".
Let us recode the subshift †, where an induced potential depends only on the first coordinate: if ‰0

depends only on at most the first K coordinates for some K > 0, then we replace all K-length strings
allowed by A with a new symbol. We thereby obtain a new transitive subshift †B with an adjacency
matrix B. Note that the natural bijective map †!†B , ! D .!i/

1
iD0
7! z! D .!i!iC1 � � �!iCK�1/

1
iD0

,
defined by concatenation of subsequent K-alphabets yields an isomorphism between the shifts. If we
define ‰0

0
W †B ! R by ‰0

0
.z!/ D ‰0.!/, then ‰0

0
.z!/ D  .z!0/ for some function  on †B , and the

spectral radii of transfer operators for ‰0 and ‰0
0

coincide, therefore so do those of the adjacency matrices
A and B. Applying (4-7), we obtain

ePr.t‰0/ � �B �Pmax.t /:

Further, since �A D �B and the inequality

(4-8) jPr.t‰/�Pr.t‰0/j � kt‰� t‰0k1 for all t 2R;

which follows from (4-1), we have that

ePr.t‰/
� e"jt j�A �Pmax.t /:

Combining with

Pmax.t /� e"jt j sup
�

exp
�

tSn‰.!/

n

�
W �n! D ! for ! 2† and n� 1

�
;

which follows from the definition (4-6) and (4-8), we obtain ePr.t‰/ � e2"jt j�A �P1.t‰/. Noting that
this estimate is uniform in t 2R as "! 0, we have that ePr.t‰/ � �A �P1.t‰/ for all t 2R. Similarly,
by using (4-7) we have P1.t‰/� ePr.t‰/ for all t 2R, concluding the first claim. Further noting that
P1.t‰/D P1.‰/

t for all t � 0, we obtain the second claim.
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Remark 4.21 Richard Sharp has suggested that the above proof can be simplified by appealing to the fact
that the set of uniform measures on periodic orbits is dense in the set of all � -invariant Borel probability
measures in the weak topology [Sigmund 1970, Theorem 1]. We have provided a more elementary
approach which gives a clearer insight into the following proposition.

Proposition 4.22 For every pair of word metrics dS and dS� associated to finite symmetric sets of
generators S and S�, respectively, the corresponding Manhattan curve satisfies

�S�=S .t/D�˛mint CO.1/ as t !1 and �S�=S .t/D�˛maxt CO.1/ as t !�1:

Moreover , ˛min and ˛max are rational.

Proof We apply Proposition 4.20 to each transitive component in the subshift in Example 4.10; for each
t 2R, we have that

�S�=S .t/Dmax
C

PrC.t‰S�/;

where C is a component in the underlying directed graph by Lemma 4.8. Although the components
which attain the maximum can depend on the t , since we have ˛min D�limt!1 �S�=S .t/=t and there
are only finitely many components, there exists C such that ˛min D � log P1.‰S�jC/, where ‰S�jC

is the restriction of ‰S� to †C. Therefore �S�=S .t/ D �˛mint CO.1/ as t !1. Similarly, we have
˛maxD log P1.�‰S�jC/ for a possibly different C, implying that �S�=S .t/D�˛maxtCO.1/ as t!�1.

Furthermore, since ‰S�.!/D�d�S�.!0/ for ! 2† and d�S� takes integer values (Example 4.10), by
(4-6) in the proof of Proposition 4.20, we have that

˛min D
X
e2w

d�S�.e/

jwj
for a cycle w D .e0; : : : ; ek�1/ and k D jwj;

and ˛max has a similar form. Hence ˛min and ˛max are rational.

4.7 An application to large deviations

In Section 3 we compared the typical growth rates of two metrics d; d� 2 D� by studying two related
limits. In Lemma 3.5 we studied the limiting ratio of the metrics as we travel along “typical” quasigeodesic
rays. We then, in Theorem 3.12, considered the limiting average of the ratio of two metrics, where we
average over n-balls in one of the metrics. In this section we investigate a finer statistical result that
compares a metric d 2D� with a word metric dS . More precisely, we study the distribution of d.o;x/=n

when x is sampled uniformly at random from the set of all words of length n in dS .

It has been shown that if d 2 D� is a word metric or is strongly hyperbolic, then there exists a positive
real number � such that

(4-9)
1

#Sn

X
jxjSDn

d.o;x/

n
! � as n!1;
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where Sn D fx 2 � W jxjS D ng; see [Cantrell 2021, Theorem 1.1]. (In fact, a stronger result was shown:
the left-hand side of (4-9) is � CO.1=n/ as n!1.) Furthermore, the values d.o;x/=n concentrate
exponentially near � , ie for all " > 0,

lim sup
n!1

1

n
log
�

1

#Sn
#
�

x 2 Sn W

ˇ̌̌̌
d.o;x/

n
� �

ˇ̌̌̌
> "

��
< 0:

A detailed analysis of the Manhattan curve allows us to establish a precise global large deviation result
that is valid for every metric d 2 D� .

Theorem 4.23 Let � be a nonelementary hyperbolic group equipped with a finite symmetric set of
generators S . Let Sn WD fx 2 � W jxjS D ng for nonnegative integers n � 0. If d 2 D� , then for every
open set U and every closed set V in R such that U � V , we have that

� inf
s2U

I.s/� lim inf
n!1

1

n
log
�

1

#Sn
#
�

x 2 Sn W
d.o;x/

n
2 U

��
� lim sup

n!1

1

n
log
�

1

#Sn
#
�

x 2 Sn W
d.o;x/

n
2 V

��
� � inf

s2V
I.s/;

where
I.s/D �d=dS

.0/C sup
t2R
fts� �d=dS

.�t/g;

and �d=dS
is the Manhattan curve for the pair of metrics d and dS . Furthermore , I has a unique zero at

the mean distortion �.d=dS /, is finite on .˛min; ˛max/, and infinite outside of Œ˛min; ˛max�, where

˛min D� lim
a!1

�d=dS
.a/

a
and ˛max D� lim

a!�1

�d=dS
.a/

a
:

Remark 4.24 In a recent work, Gekhtman, Taylor and Tiozzo [Gekhtman et al. 2022, Theorem 1.1]
have established the corresponding central limit theorem in the case when d is a (not necessarily proper)
hyperbolic metric; we are not aware of the corresponding large deviation principle in the nonproper
setting, see eg [Gekhtman et al. 2018, Theorem 7.3] (for a recent analogous result on random walks, see
[Boulanger et al. 2023]).

Proof of Theorem 4.23 For every t 2R, we have that

lim
n!1

1

n
log
�

1

#Sn

X
jxjSDn

etd.o;x/

�
D �d=dS

.�t/� �d=dS
.0/

by Lemma 2.8, and furthermore the right-hand side is continuously differentiable by Theorem 3.7. The
theorem then follows from the Gärtner–Ellis theorem (eg [Dembo and Zeitouni 1998, Theorem 2.3.6])
and the definitions of I and �d=dS

.

Corollary 4.25 Suppose d; dS 2 D� are as in Theorem 4.23. Further assume that d is a word metric
associated to a finite symmetric set of generators S�, ie d D dS� . Then I.˛min/; I.˛max/ <1 and further ,
˛min and ˛max are rational.
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Proof This follows from Proposition 4.22.

Remark 4.26 If we take a strongly hyperbolic metric d in Theorem 4.23, then I.˛min/; I.˛max/ <1

by Proposition 4.20 and by the first part in the proof of Proposition 4.22. We are unsure whether both
I.˛min/ and I.˛max/ are finite for all d 2 D� , which we leave open.

5 Examples

In this section we compute the Manhattan curve for two examples, focusing on a pair of word metrics. In
the first, we provide an exact formula for a Manhattan curve associated to a free group. In the second,
we analyze a hyperbolic triangle group, which is another explicit class of hyperbolic groups other than
free groups. We obtain a Manhattan curve as an implicit function for some pair of word metrics in the
.3; 3; 4/-triangle group. For both cases, we use the GAP package [GAP Group 2020] to produce explicit
forms of automatic structures.

5.1 The free group of rank 2

The following example is considered in [Calegari 2009, Example 6.5.5]. We extend the discussion found
in [Calegari 2009] by commenting on the Manhattan curve. Let F D ha; b ji be the free group of rank 2.
We consider the standard set of generators S D fa; b; a�1; b�1g and another symmetric set of generators

S� WD fa; b; c; a
�1; b�1; c�1

g; where c WD ab:

Our aim is to compute the Manhattan curve �S=S� . Note that a word on S� is reduced if and only if it
contains no subword of the form a�1c; cb�1; c�1a; bc�1, and furthermore each element in F has a unique
reduced word representative on S�. Henceforth we use A;B;C to denote a�1; b�1; c�1 respectively. An
automatic structure for .F;S/ (resp. for .F;S�/) is given in Figure 2 (resp. Figure 3). (In the figures the
arrows are solid if they are in the strongly connected component, and dotted otherwise. The initial state is
denoted by “1”.)

1

2

5

4
3

a

a

A

B

B

A

B
B
a

A

A

b

b

b

a

b

Figure 2: An automatic structure for .�;S/ in Section 5.1.
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1 2

3

4

a

B

B

a

b

c

c

a c
b

b

A

C

B

C

A

A

C

Figure 3: An automatic structure for .�;S�/ in Section 5.1.

The word-length with respect to S is computed by setting

d�S .e/D

�
1 if e has the label a; b;A;B;

2 if e has the label c;C ;

where d�S is defined as in Example 4.10. The adjacency matrix of this directed graph is of size 12

(because we use all the edges in the strongly connected component as indices), but it is enough to deal
with a smaller one: we observe that the “flip” of the labels by c $ C , a$ B and b $ A keeps the
directed graph structure with labeling. This allows us to consider the following matrix of size 6, where
indices correspond to the set of labels a; b; c;A;B;C :

a b c A B C0BBBBBB@

1CCCCCCA

a 1 0 1 0 1 1

b 1 1 1 1 0 0

c 1 1 1 1 0 0

A 0 1 0 1 1 1

B 1 0 1 0 1 1

C 0 1 0 1 1 1

Then the Manhattan curve is computed as �S=S�.t/D log P .e�t /, where P .s/ is the spectral radius of
the matrix 0BBBBBB@

1CCCCCCA

s 0 s2 0 s s2

s s s2 s 0 0

s s s2 s 0 0

0 s 0 s s s2

s 0 s2 0 s s2

0 s 0 s s s2
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10 20�10�20

�10

�20

Figure 4: The Manhattan curve (solid) for the example in Section 5.1 and the tangent line at 0

(dotted) for comparison.

(see Lemma 4.8). Hence we obtain

�S=S�.t/D log
�

1
2
e�t .e�t

C
p

e�t .e�t C 8/C 4/
�
;

˛max D lim
t!�1

�
1

t
�S=S�.t/D 2 and ˛min D lim

t!1
�

1

t
�S=S�.t/D 1;

see Figure 4. Moreover, the mean distortion �.S=S�/ and v�=v, where v (resp. v�) is the exponential
volume growth rate for .�;S/ (resp. .�;S�/), are given by

�.S=S�/D��
0
S=S�

.0/D
4

3
D 1:33333 : : : and

v�

v
D

log 4

log 3
D 1:26186 : : : :

5.2 The .3; 3; 4/-triangle group

We now turn our attention to computing a Manhattan curve for a pair of word metrics in the case of the
.3; 3; 4/-triangle group. Let

� WD ha; b; c j a3; b3; c4; abci;

where we denote the standard set of generators by

S WD fa; b; c; a�1; b�1; c�1
g;

and another symmetric set of generators by

S� WD fa; b; c; d; a
�1; b�1; c�1; d�1

g; where d WD c2:

Note that � has a presentation with respect to S� given by

ha; b; c; d j a3; b3; c4; abc; d�1c2
i:
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B
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C
c

C

C

C

c

a

a

10

9
11 14C

A

C

c
b

c
b

b

C
a

c

Figure 5: An automatic structure for .�;S/ in Section 5.2.

Based on these presentations for � , we compute the exponential growth rate v (resp. v�) for .�;S/
(resp. .�;S�/) to be

v D 0:674756 : : : and v� D 0:732858 : : : ;

and we have produced automatic structures for .�;S/ and for .�;S�/ in Figures 5 and 6.

Following the method in Section 5.1, we find a matrix representation of the transfer operator, which is
read off from the strongly connected component with appropriately defined weights in Figure 7. The
characteristic polynomial of the transfer matrix of size 21 is

�e�9sx13.�1C esx/.1C esx/.1C esxC e2sx2/.1� esx� e2sx2
� e3sx2

� e4sx3
C e5sx4/:

1

4

9

2

8

6
10

3 5

7

C
b

a
C

c

d

d

B
C

b

B

C

A

B

c

d

11

12

a

b

d

c

d

A
d

a
B

Bd

c

c

Figure 6: An automatic structure for .�;S�/ in Section 5.2.
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a

a

b b
c

c

c

d

d

d

d

d
A

A
B

B

B

C

C

C

Figure 7: The strongly connected component of the automatic structure for .�;S�/ in Figure 6.
The weight 1 is assigned on the directed edges with labels a;A; b;B; c;C , and the weight 2 is
assigned on the directed edge with label d .

Let s 7! r.s/ be the branch given as a root of

e3s
� e4sx� e5sx2

�x6sx2
� e7sx3

C e8sx4

such that r.s/ coincides with the spectral radius of the transfer operator at s D 0. Then the Manhattan
curve is obtained by �S=S�.s/D log r.s/; see Figure 8. We find that ˛max D

3
2

and ˛min D 1. Moreover,
the expansion of �S=S�.s/ at 0 has the form

�S=S�.s/D 0:732858 � � � � 1:18937 : : : sC 0:0515301 : : : s2
CO.s3/;

and the mean distortion �.S=S�/ and v�=v are given by

�.S=S�/D
1

68
.85�

p
17/D 1:18937 : : : and

v�

v
D 1:08611 : : : :

1

2

3

�1

�1�2 1 2

Figure 8: The Manhattan curve (solid) for the example in Section 5.2, and the tangent line at 0

(dotted) for comparison.
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Note that �.S=S�/ is quadratic irrational although it is a priori a root of a higher-degree polynomial with
rational coefficients. We are still far from having a systematic understanding of the exact class of numbers
to which �.S=S�/ can belong in general. We believe that this deserves further investigation.

Appendix Proof of Lemma 3.11

In this section we will refer to some fundamental facts from [Heinonen 2001]. Let X be a topological
space endowed with a quasimetric � which is compatible with the topology on X , and let us call .X; �/ a
quasimetric space. Let � be a Borel regular measure on a topological space .X; �/. For r > 0 and x 2X ,
we denote the ball of radius r centered at x relative to the quasimetric � by

B.x; r/ WD fy 2X W �.x;y/ < rg:

A measure � is called doubling if all balls have finite and positive �-measure and there exists a constant
C.�/> 0 such that �.B.x; 2r//�C.�/�.B.x; r// for every ball B.x; r/ in X . We call C.�/ a doubling
constant of �.

Let .X; �/ be a quasimetric space which admits a doubling measure �. For every Borel regular finite
(nonnegative) measure � on X , ie �.X / <1, let us decompose

� D �acC �sing;

where �ac is the absolutely continuous part of � and �sing is the singular part of � relative to �. Since � is
finite, �ac is also finite and thus d�ac=d� is integrable.

Lemma A.1 For �-almost every x 2X , we have that

lim
r!0

�ac.B.x; r//

�.B.x; r//
D

d�ac

d�
.x/ <1 and lim sup

r!0

�sing.B.x; r//

�.B.x; r//
D 0:

Proof By adapting the proof of the Lebesgue differentiation theorem [Heinonen 2001, Theorem 1.8] to
a quasimetric, we have

lim
r!0

�ac.B.x; r//

�.B.x; r//
D

d�ac

d�
.x/ for �-almost every x 2X:

Now we show the second claim. Let us write � D �sing. Since � and � are mutually singular, there exists
a measurable set N in X such that �.N /D �.X / and �.N /D 0. Further, (the singular part) � is also
Borel regular and the inner regularity implies that for all " > 0 there exists a compact set K" in N such
that �.N nK"/ < ". Let �" WD �jX nK" be the restriction of � on X nK", for which �".X / < ". For all
x 2X nK", there exists a small enough r > 0 such that B.x; r/�X nK". If we define

L�.x/ WD lim sup
r!0

�.B.x; r//

�.B.x; r//
and M�".x/ WD sup

r>0

�".B.x; r//

�.B.x; r//
for x 2X;

then for all t > 0,
fL� > tg �K"[fM�" > tg:
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The weak maximal inequality shows that

�.fM�" > tg/�
C�

t
�".X /

for all t > 0 and for a constant C� depending only on the doubling constant of � (where the proof follows
exactly as for (2.3) in [Heinonen 2001, Theorem 2.2]), and thus

�.fL� > tg/� �.K"/C�.fM�" > tg/�
C�

t
�".X / <

C�

t
";

where we have used the fact that �.K"/��.N /D 0. Therefore for each t > 0, letting "! 0, we have that

�.fL� > tg/D 0;

and this shows that L�.x/D 0 for �-almost every x 2X , as required.

Remark A.2 The above fact is standard in metric spaces with doubling measures, and the part adapted
to a quasimetric is mainly the place where we use Vitali’s covering theorem. We avoid repeating all the
details: see [Heinonen 2001, Chapters 1 and 2].

Proof of Lemma 3.11 If we fix a large enough R> 0 given C for which d 2D� is a C -rough geodesic
metric, then Lemma 2.3 and Lemma A.1 together with the fact that � is doubling show that

lim sup
n!1

�ac.O.�n;R//

�.O.�n;R//
� C�;R

d�ac

d�
.�/ <1 and lim sup

n!1

�sing.O.�n;R//

�.O.�n;R//
D 0

for �-almost every � in @� , where C�;R;ı is a positive constant depending only on a doubling constant
of � and R as well as the ı-hyperbolicity constant of d , and we recall that �nD �.n/ for n� 1 and � is
a C -rough geodesic ray from o converging to �. This concludes the claim.
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Realizability in tropical geometry
and unobstructedness of Lagrangian submanifolds

JEFFREY HICKS

We say that a tropical subvariety V �Rn is B-realizable if it can be lifted to an analytic subset of .ƒ�/n.
When V is a smooth curve or hypersurface, there always exists a Lagrangian submanifold liftLV � .C�/n.
We prove that whenever LV has well-defined Floer cohomology, we can find for each point of V a
Lagrangian torus brane whose Lagrangian intersection Floer cohomology with LV is nonvanishing.
Assuming an appropriate homological mirror symmetry result holds for toric varieties, it follows that
whenever LV is a Lagrangian submanifold that can be made unobstructed by a bounding cochain, the
tropical subvariety V is B-realizable.

As an application, we show that the Lagrangian lift of a genus-0 tropical curve is unobstructed, thereby
giving a purely symplectic argument for Nishinou and Siebert’s proof that genus-0 tropical curves are
B-realizable. We also prove that tropical curves inside tropical abelian surfaces are B-realizable.

14T20, 53D37

1 Introduction

Mirror symmetry is a collection of equivalences between symplectic geometry (A-model) and algebraic
geometry (B-model) on a pair of mirror spaces. A general proposal for constructing mirror pairs of
a symplectic space XA and algebraic space XB comes from Strominger, Yau, and Zaslow [56], who
conjectured that mirror pairs can be presented as dual torus fibrations over an integral affine manifold Q.
One relation between these spaces arises in the form of Kontsevich’s homological mirror symmetry (HMS)
conjecture [36], which predicts an equivalence between the Fukaya category of XA and the category
of coherent sheaves on a mirror manifold XB . Roughly, the objects of the Fukaya category of XA are
Lagrangian submanifolds L � XA. A blueprint for mirror symmetry is that Lagrangian submanifolds
of XA relate to sheaves supported on a subvariety of XB via mutual comparison to tropical subvarieties
on the base Q.

We consider the relatively well-understood example of XA D T �Rn=T �ZRn, XB D .ƒ�/n, and QDRn.
On the A side, it will be convenient for us to identify XA with .C�/n, which has holomorphic coordinates

© 2025 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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xi D e
qiCi�i and standard symplectic form

Pn
iD1 dqi ^ d�i . Note that XA does not naturally come with

a complex structure. On the B-side, we take ƒ to be the Novikov field

ƒ WD

� 1X
iD0

aiT
�i
ˇ̌̌
ai 2C; � 2R; lim

i!1
�i D1

�
;

whose valuation map val Wƒ!R[f1g is the smallest exponent appearing the expansion of
P1
iD0 aiT

�i .
On the A-side, the torus fibration is given by

�A WXA!Q; .x1; : : : ; xn/ 7! .logjx1j; : : : ; logjxnj/D .q1; : : : ; qn/;

whose fibers are Lagrangian tori. The dual fibration TropB WXB !Q is given by taking coordinatewise
valuation

TropB WXB !Q; .z1; : : : ; zn/ 7! .val.z1/; : : : ; val.zn//:

Instead of using tropical geometry as an intuition for HMS, we use HMS and our understanding of
the tropical-to-A correspondence to study the tropical-to-B correspondence. We now review these
correspondences before stating our results.

Tropical-to-B correspondence The tropical-to-complex correspondence and its applications to enumer-
ative geometry have been a particularly rich field of study since the pioneering work of Mikhalkin [41],
which related counts of tropical curves in R2 to counts of curves in the complex algebraic torus (as
opposed to the ƒ analytic torus we study). This relation consists of two parts: tropicalization, which
associates to a holomorphic curve in .C�/2 a tropical curve in R2, and realization, which lifts every
tropical curve V �R2 to a holomorphic curve in .C�/2. Both of these constructions have been extended
to greater generality; we provide a coarse overview of the constructions here:

� B-Tropicalization The tropicalization map associates to a closed analytic subset Y �XB its tropi-
calization TropB.Y /�Q. The expectation (which holds for algebraic subvarieties by work of Bieri and
Groves [11]) is that the tropicalization is a tropical subvariety (Definition 2.2.1).

� B-Realization Starting with V � Q a tropical subvariety, we say that V is B-realizable if there
exists a closed analytic subset Y �XB with TropB.Y /D V .

One goal of tropical geometry is to determine which tropical subvarieties V � Q are B-realizable.
Examples such as that of Mikhalkin [40, Example 5.12] show that there exist tropical curves V � Rn

for n > 2 that are nonrealizable. In some cases, there are criteria determining if a tropical subvariety is
B-realizable.

For example, if V � Q is a tropical hypersurface, then there exists a tropical polynomial (piecewise
integral affine convex function) f W Q ! R such that V is the locus of points where f is nonaffine.
The function f is called a tropical polynomial as it can be written using the tropical sum and product
operations:

˚W .R[f1g/� .R[f1g/! .R[f1g/; q1˚ q2 Dmin.q1; q2/;

ˇW .R[f1g/� .R[f1g/! .R[f1g/; q1ˇ q2 D q1C q2:

Geometry & Topology, Volume 29 (2025)
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Let f D
L
˛2Nn a˛ˇ q

ˇ˛ be a tropical polynomial whose nonaffine locus is V . Let ƒ be a complete
non-Archimedean valued field, and letXB D .ƒ�/n be the algebraic torus. For each a˛ , select a coefficient
c˛ 2 ƒ whose valuation is val.c˛/ D a˛. Then the zero set of the polynomial

P
˛2Nn c˛z

˛ defines a
subvariety ofXB which is theB-realization of V . Note that this construction does not produce a unique lift.

The other examples where we have B-realization criteria are tropical curves. In [45], Nishinou and Siebert
showed that if V �Q is a trivalent tropical curve of genus 0, then V is realizable. This was extended
to all balanced maps from trees by Ranganathan [50]. In higher genus, the space of deformations of a
tropical curve may have higher dimension than the expected dimension of a possible B-realization. In this
case, we say that the tropical curve is superabundant; see Mikhalkin [41]. We expect that a generically
chosen superabundant curve is not B-realizable. It is known that all 3-valent nonsuperabundant curves
are realizable; see Cheung, Fantini, Park, and Ulirsch [14]. In the superabundant setting, Speyer [55,
Theorem 3.4] established that if V �Q is a tropical curve of genus 1 and satisfies a condition called
well-spacedness, then V is realizable.

Tropical-to-A correspondence The tropical-to-Lagrangian correspondence is a more recent construction,
independently arrived at by Hicks [30], Mak and Ruddat [38], Matessi [39], and Mikhalkin [42]. Each
of the papers associates to a (certain type of) tropical subvariety V � Q a Lagrangian submanifold
L"V �XA whose projection to the base of the Lagrangian torus fibration �A.L"V / is contained within an
�-neighborhood of the tropical subvariety V . We call this a geometric Lagrangian lift of V . When V is
a hypersurface, [30] proves that under homological mirror symmetry L"V � .C

�/n is identified with a
sheaf whose support is a hypersurface Y � .ƒ�/n.

In contrast to B-realization, the constructions in [30; 38; 39; 42] can construct a geometric Lagrangian
lift LV of any smooth tropical curve V �Q. This difference occurs because the map �A WXA!Q does
not provide a good tropicalization map. For example, for any subset U �Q and " > 0 there exists a
Lagrangian submanifold L�XA with the property that the Hausdorff distance between �A.L/ and U is
less than ". Additionally, it would be desirable to have a tropicalization map that only depends on the
Hamiltonian isotopy class of the Lagrangian submanifold — and �A.L/ can change substantially when
we apply a Hamiltonian isotopy to L.

To obtain a correspondence from Lagrangian submanifolds to tropical subsets of Q, and justify why the
Lagrangian LV is the “correct” A-model realization of a tropical curve V , one needs to employ techniques
from Floer theory. Not all Lagrangian submanifolds are amenable to such analysis. We call a Lagrangian
submanifold unobstructed if its filtered A1 algebra CF�.L/ admits a bounding cochain. The pair .L; b/
of Lagrangian submanifold equipped with a bounding cochain is called a Lagrangian brane. Examples of
unobstructed Lagrangian submanifolds include those which bound no pseudoholomorphic disks for a
given choice of almost complex structure. In particular, if L is exact, it is unobstructed.

If .L1; b1/ and .L2; b2/ are Lagrangian branes then there exists a cochain complex CF�..L1; b1/; .L2; b2//
generated by the intersections of L1 and L2, and whose cohomology groups HF�..L1; b1/; .L2; b2// are
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invariant under Hamiltonian isotopies of either L1 or L2. We can use this to define A-tropicalization and
A-realization.

� A-Tropicalization Starting with the fibration XA!Q and a Lagrangian brane .L; b/ � XA, we
define the A-tropicalization

TropA.L; b/ WD fq 2Q j 9.Fq;r/ with HF�..L; b/; .Fq;r//¤ 0g;

where FqD��1A .q/ is equipped with a unitary local systemr, and HF�..L; b/; .Fq;r// is the Lagrangian
intersection Floer cohomology of .L; b/ with Fq deformed by the local system r. An advantage of
TropA.L; b/ over �A.L/ is that the former depends only on the Hamiltonian isotopy class of L.

� A-Realizability In light of the definition of A-tropicalization, we say that V �Q is A-realizable if
there exists a Lagrangian brane .L; b/�XA with TropA.L/D V .

The Lagrangian submanifold L"V associated to V provides a geometric candidate for an A-realization
of V . However, to verify A-realizability, one still needs to check that L"V is unobstructed with bounding
cochain b and that TropA.LV ; b/D V . We call this last condition faithfulness.

1.1 Results

The three components (geometric realizability, unobstructedness, and faithfulness) of the A-realizability
problem and its implications for the B-realizability problem in QDRn are summarized in Figure 1.

tropical subvariety
V �Q

geometric Lagrangian
LV �XA

complex of sheaves
FV

subvariety
YV �XB

Lagrangian brane
.LV ; b/

A-tropicalization

Section 3 geometric A-realizability

HMS

cohomological support

B-realizability

B-tropicalization

Section 4 unobstructedness

Section 5 faithfulness

Section 6 HMS and support

Figure 1
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The correspondences given by solid black lines always exist. Geometric A-realizability (the solid red
arrow) is only known to exist for certain examples of tropical subvarieties of Q. For the applications
we consider (smooth tropical hypersurfaces and curves) we always have geometric A-realizability. We
conjecture that every tropical subvariety of Q is geometrically A-realizable. For any given tropical
subvariety V �Q, there is no reason for either of the dashed arrows to hold. However, the following
conjecture seems natural:

Conjecture 1.1.1 Let V �Rn be a tropical curve. Then a geometric Lagrangian lift LV is unobstructed
if and only if V is B-realizable.

The main step in proving the forward direction of the conjecture is to establish the faithfulness of the
Lagrangian brane lift, that is showing that TropA..LV ; b//DV . Our primary result is to prove faithfulness
(for all tropical subvarieties admitting unobstructed Lagrangian lifts).

Theorem A (restatement of Lemma 5.2.2) Let V � Q be a tropical subvariety. Let .L"V ; b/ be a
Lagrangian brane lift of V . Then TropA.L"V ; b/D V .

When we can apply homological mirror symmetry, we obtain the forward direction of Conjecture 1.1.1.
Depending on the affine manifold Q and Lagrangian LV , we may require Assumption 6.1.2, which states
that the family Floer construction of Abouzaid [6] extends to the noncompact and unobstructed setting.

Theorem B (restatement of Corollary 6.2.1) Suppose Assumption 6.1.2. Let V � Rn be a tropical
subvariety. Suppose there exists .LV ; b/� .C�/n a Lagrangian brane lift of V . Then V is B-realizable.

Our second goal is to show that this can be used to produce realizability criteria. We first recover a
theorem of Nishinou and Siebert [45]:

Corollary C (restatement of Corollary 4.3.3) Suppose Assumption 6.1.2. Every smooth genus-0
tropical curve V �Rn has a Lagrangian brane lift .LV ; b/ and is , therefore , B-realizable.

The results of Nishinou [44] give necessary and sufficient conditions for when a tropical curve can be
realized by a family of algebraic curves in a degenerating family of complex tori. In contrast to those
results, our results show that every 3-valent tropical curve can be realized by a closed analytic subset.
The following result does not assume Assumption 6.1.2:

Corollary D (restatement of Corollary 6.2.4) Let QD T 2 be a tropical abelian surface. Let V �Q be
a 3-valent tropical curve. V has a Lagrangian brane lift .LV ; 0/, and is , therefore , B-realizable.

In summary, we can recover B-realizability results using unobstructedness for the first five cases in
Table 1. We also provide some insight into the existence of holomorphic curves with boundary on tropical
Lagrangian submanifolds.
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V and Q A-model (unobstructedness) B-model (realizability) HMS status

curves in abelian surfaces Corollary 6.2.4 [44]1 X
curves in R2 [31] [41] .�/

hypersurfaces of Rn [31] folklore .�/C .��/

hypersurfaces in abelian varieties Corollary 6.2.3 — .��/

genus-0 curves in Rn Theorem C [45] .�/C .��/

compact genus-0 curves in dim.Q/D 3 [38] [45] —
well-spaced genus-1 curves spec. in Section 6.4 [55] .�/C .��/

Table 1: Relating A-unobstructedness to B-realizability. Here (�) and (��) refer to the needed
extensions of family Floer cohomology (Assumption 6.1.2) to the noncompact and nontautologically
unobstructed settings.

Example E (restatement of Example 6.3.2) Let Vc �R3 be a generic tropical line. The Lagrangian LVc
is unobstructed, but not tautologically unobstructed.

Outline In Section 2, we give a toy computation that explores the entire roadmap above for a simple
example, Vpants �R2, the tropical pair of pants. In addition to providing context for the remainder of the
paper, the computation reviews some background for tropical geometry and symplectic geometry. We
also use this section to fix notation. It is our hope that this section will be accessible to both tropical and
symplectic geometers.

Section 3 discusses the geometric lifting problem. Definition 3.0.2 specifies when a family of Lagrangian
submanifolds L"V is a geometric Lagrangian lift of a tropical subvariety V . We show that Definition 3.0.2
distinguishes tropical subvarieties among all polyhedral complexes as the ones which permit geometric
Lagrangian lifts. Definition 3.0.2 requires that geometric Lagrangian lifts are monomially admissible,
graded, and spin. In Sections 3.1–3.3, we show that known constructions of geometric Lagrangian lifts of
tropical subvarieties of Hicks [30], Matessi [39], and Mikhalkin [42] satisfy these conditions. We also
prove Lemma 3.3.1, which shows that for smooth genus-0 tropical curves, the mapH 2.LV /!H 2.@LV /

is an injection.

Section 4 investigates Lagrangian submanifolds which can be unobstructed by a bounding cochain
(Lagrangian branes). We provide a brief overview of the pearly model for Lagrangian submanifolds in
Section 4.1. This is followed by examples of unobstructed geometric Lagrangian lifts (Lagrangian brane
lifts) of tropical subvarieties in Section 4.2 (summarized in Table 1). Section 4.3 gives a new method for
checking unobstructedness of Lagrangian submanifolds inside noncompact symplectic spaces which have
a potential function W WXA!C (see Definition A.0.1).

1The realization result of Nishinou and Siebert [45] considers B-tropicalizations coming from degenerating families of abelian
surfaces so that a tropical curve is realized by a parametrized algebraic curve. The B-realization we take is by closed analytic
subsets. In the setting of genus-0 stable tropical curves in toric varieties, these tropicalizations can be related by Ranganathan [50].
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Theorem F (restatement of Theorem 4.3.1) Let W W XA! C be a symplectic fibration outside of a
compact set of C. Let L�XA be a W-admissible Lagrangian submanifold with boundary M �W �1.t/
for t 2R�0. Suppose M is a tautologically unobstructed Lagrangian submanifold of W �1.t/, and the
connecting map H 1.M/!H 2.L;M/ is surjective. Then there exists a bounding cochain b such that
.L; b/ is a Lagrangian brane.

The proof uses a lemma on filtered A1 algebras (Lemma B.2.8). Since we have previously proven
in Lemma 3.3.1 that the geometric Lagrangian lifts LV of smooth genus-0 tropical curves satisfy the
criterion of Theorem 4.3.1, we obtain that such LV are unobstructed (Corollary 4.3.3).

In Section 5, we prove faithfulness (Lemma 5.2.2), which shows that the A-tropicalization (Floer-theoretic
support) of a Lagrangian brane lift LV is V . The proof uses that the Lagrangian intersection Floer
cohomology between .LV ; b/ and Fq is a deformation of the cohomology of a subtorus of Fq . An
application of Lemma B.3.1 shows that this can be “undeformed” by a bounding cochain, so that
HF0..L;r0; b0/; .Fq;r; b//Dƒ.

Section 6 applies the previous constructions to address questions of realizability for tropical subvarieties.
Abouzaid [5, Remark 1.1] states that we expect that the family Floer functor can be adapted to include
unobstructed Lagrangians. We instead use Assumption 6.1.2 — the weaker assumption that the family Floer
construction of Abouzaid [6] can be employed for unobstructed Lagrangian submanifolds in the Lagrangian
torus fibration .C�/n ! Rn to construct a sheaf on the mirror space. We give a brief outline of the
modifications to [6] which would be required to prove Assumption 6.1.2. With this assumption, we prove
the forward direction of Conjecture 1.1.1 in Corollary 6.2.1. We also discuss the first five cases in Table 1.

Finally, we discuss evidence towards the reverse direction of Conjecture 1.1.1. This requires us to
understand some of the holomorphic disks which appear on Lagrangian lifts of tropical subvarieties.
In Example 6.3.2, we show that the lift of the tropical line in R3 bounds a holomorphic disk whose
symplectic area is dictated by the internal edge length on the tropical line. We also discuss applications
of B nonrealizability to obstructedness in Section 6.4. We consider the superabundant tropical elliptic
curve V �R3 of Mikhalkin [40, Example 5.12] and provide a sketch for how Speyer’s well-spacedness
criterion might be recovered from holomorphic disk counts on LV . Section 6.5 looks at how to relate
tropical line bundles on tropical curves to Lagrangian isotopies of their geometric Lagrangian lifts. We
conjecture a relation between superabundance of a tropical curve V and the relative ranks of HF.LV ; b/
and H.LV / (wide versus nonwide).

We provide some auxiliary results in the appendices. Appendix A discusses how to adapt the pearly model
of Floer cohomology of Charest and Woodward [12] to the setting of noncompact spaces equipped with a
potential W WX !C. In Appendix B, we prove the results on filtered A1 algebras used in this paper.
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2 A guided calculation to the support of the Lagrangian pair of pants

This section contains an expository computation that is designed to frame the main ideas of the paper,
provide background, and fix notation. The exposition here is not intended to be comprehensive, although
we hope that through explicit examples, direct computations, and additional references, we’ve made this
section accessible to both the tropical and symplectic geometry communities. As a result, the materials
outside of Sections 2.5 and 2.5 are expository. As we will frequently use notation from Examples 2.4.3
and 2.4.4, we suggest that the readers take a look at these computations of Lagrangian intersection Floer
cohomology for conormal bundles in the cotangent bundle of the torus.

2.1 A-model, B-model, and Lagrangian torus fibrations

We provide a high-level overview of the viewpoint of [26; 56] on mirror symmetry. Let Q be an integral
affine manifold, that is, a manifold equipped with a choice of integrable full-rank lattice TZQ � TQ.
This identifies a dual lattice T �ZQ � T

�Q, and also a flat connection on TQ. There are three kinds of
geometries that we may associate withQ: symplectic geometry, complex geometry, and tropical geometry.

A-model A symplectic manifold is a 2n-manifold XA with a choice of 2-form ! 2�2.XA/ which is
closed (d! D 0) and nondegenerate (!n ¤ 0). The submanifolds of interest for us in XA are Lagrangian
submanifolds L�XA, which are n-dimensional submanifolds on which the symplectic form vanishes
(!jL D 0). For any manifold Q, the cotangent bundle T �Q (whose local coordinates are .q; p/) carries
a canonical symplectic form

Pn
iD1 dqi ^ dpi . This descends to a symplectic form on the quotient

XA WD T
�Q=T �ZQ.

Given an integral affine submanifold V �Q such that TZV � TZQ, the periodized conormal bundle
LV WDN

�V =N �ZV �XA is an example of a Lagrangian submanifold. The simplest example is when we
pick a point q 2Q such that

(1) Lq DN
�q=N �Zq D T

�
q Q=T

�
q;ZQ
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is a Lagrangian torus of XA. We will call this Lagrangian torus Fq � XA. For this reason, we call the
projection �A WXA!Q a Lagrangian torus fibration.

B-model We can also build an almost-complex manifold from the data of Q. An almost complex
structure on XC

B is an endomorphism J W TXC
B ! TXC

B which squares to �id. The submanifolds of
interest in the B-model are the almost-complex submanifolds Y C �XC

B whose tangent spaces are fixed
under the almost complex structure, so that J.TyY C/D TyY

C .

As Q is integral affine, there exists a connection on TQ whose flat sections are locally constant sections
of TZQ. This provides a splitting T .TQ/D TqQ˚ ker.�/. We define an almost complex structure on
TQ which interchanges the components of this splitting with a sign:

J WD

�
0 �id
id 0

�
:

The almost complex structure on TQ descends to an almost complex structure on XC
B WD T

�Q=T �ZQ;
the fibers of �B WXC

B !Q are real tori.

Given an integral affine submanifold V �Q, the periodized tangent bundle

Y C
V WD T V =TZV �X

C
B

is an example of an almost-complex submanifold. If we start with q �Q a point, we see that Yq �XC
B

is a point of XC
B .

Mirror symmetry from Lagrangian torus fibrations We now describe in more detail the relationship
between the Lagrangian tori of XA and the points of XC

B . First, we note that for fixed q 2Q, there are a
torus worth of points z in XC

B with the property that �B.z/D q.

In contrast to the complex lift, there is only one Lagrangian torus Fq �XA with �A.Fq/D fqg. To get a
matching family of Lagrangian lifts to our complex lift, we consider Lagrangian tori equipped with the
additional data of a local system. Let .Fq;r/ be a pair consisting of a Lagrangian torus Fq and a choice
of U.1/ local system on Fq . Then there is a bijection between pairs .Fq;r/�XA and points z 2XC

B .
A similar story holds for the Lagrangian and complex lifts of integral affine subspace V �Q.

To generalize beyond the submanifolds V , LV , and YV discussed above, we need to look at tropical
geometry.

Notation 2.1.1 Unless otherwise stated, we only considerQDRn, so thatXAD .C�/n andXC
B D .C

�/n.

2.2 A quick introduction to tropical geometry and B-tropicalization

A convex polyhedral domain is the intersection of finitely many closed half-spaces in Rn,

V D fq 2Q j hq; Evi i � �ig;
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Figure 2: The tropical pair of pants (left) approximates the Amoeba of a curve (sketched on the right).

where Evi is a collection of vectors in Rn, and �i is some set of constants in R. We say that this is a
rational convex domain if Evi 2 Zn for all i , equivalently if there is a full lattice TZV � T V which is a
sublattice of TZQ. A tropical subvariety is built out of these pieces.

Definition 2.2.1 A k-dimensional tropical subvariety V �Q is a collection of k-dimensional rational
convex polyhedral domains fV s �Qg and weights fws 2Ng which are required to satisfy the following
conditions:

� Polyhedral complex condition At each pair of rational convex polyhedral domains, the intersection
V s \V t is either empty, or a boundary facet of both V s and V t .

� Balancing condition At facets W � V s , let V 1; : : : ; V k be the rational polyhedral domains contain-
ing W . Consider lattices TZW , each of which is a sublattice of TZV i for each i 2 f1; : : : ; kg. Select for
each i a vector Evi 2 TZV i such that TZV i D TZW ˚hEvi i as oriented lattices. We require thatX

i

wi Evi � 0 2 TZQ=TZW :

Example 2.2.2 Consider the polyhedral domains in QDR2

V 1 D f.�t; 0/ j t 2R�0g; V 2 D f.0;�t / j t 2R�0g; V 3 D f.t; t/ j t 2R�0g:

As the directions h�1; 0i, h0;�1i, and h1; 1i sum to zero this is balanced and gives us a tropical curve.
The collection of these three polyhedral domains is called the standard tropical pair of pants. The curve
Vpants �R2 is drawn in Figure 2, left.

We say that a tropical curve V �Rn is smooth if every 0-dimensional stratum is locally modeled after
the pair of pants.

Notation 2.2.3 Given V �Q a tropical subvariety, we will use V .0/ to denote the union of the interiors
of the V s , and V .1/ to denote the union of the interiors of the boundaries of the V s; more generally we
will use V .i/ to denote the codimension-i linearity strata of V . For any W � V .i/, let star.W / be the set
of all strata which contain W . If V is a tropical curve, we will usually call the strata vertices and edges,
and use v and w for vertices and e and f for edges.
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2.3 B-tropicalization

B-tropicalization is the process of taking a subvariety of XC
B and obtaining a tropical subvariety of Q.

The first approach one considers is the image of Y C �XC
B under the B-torus fibration

�B WX
C
B !Q:

Under good conditions, �B.Y C/ � Q approximates a tropical subvariety of Y ; see for instance [40].
The image �B.Y C/ is called the amoeba of Y C , which computationally can be checked to approach the
tropical curve (see Figure 2, right).

To obtain a theory where the tropicalization of a subvariety is a tropical subvariety, we look to non-
Archimedean geometry. Let ƒ be the Novikov field. Given M a rank-n lattice, denote by XB the torus
SpecƒŒM�. The points of XB can be identified with n-tuples of invertible elements of ƒ, so we will
frequently write

XB D f.z1; : : : ; zn/ j zi 2ƒ
�
g:

We build a tropicalization map by taking the valuation coordinatewise:

TropB WXB !M ˝RDQ; .z1; : : : ; zn/ 7! .val.z1/; : : : ; val.zn//:

Given a Y �XB a closed analytic subset, we call the image TropA.Y /�Q its tropicalization.

Example 2.3.1 Consider M DR2, and the closed analytic subset Y � .ƒ�/2 given by

Y D f.z1; z2/ j 1C z1C z2 D 0g:

We compute the valuation of such a point .z1; z2/ 2 Y . Since

val.1C z1C z2/�min.val.1/; val.z1/; val.z2//;

with equality holding whenever the valuations differ, we obtain that for all .z1; z2/ 2 Y at least one of the
following equalities hold:

val.z1/D val.z2/; val.z1/D val.1/; val.z2/D val.1/:

This means that the image of TropB.Y / agrees with Vpants �R2 from Example 2.2.2. It follows that V is
B-realizable.

This phenomenon holds much more broadly:

Theorem 2.3.2 [11; 27] Let Y �XB be an irreducible k-dimensional analytic subset. Then TropB.Y /
is a k-dimensional polyhedral complex.

It is expected that when Y is an irreducible k-dimensional analytic subset, TropB.Y / is a k-dimensional
tropical subvariety. To our knowledge, this result has not appeared in the literature. A discussion on the
current status of tropicalization for analytic subsets is included in [53, Section 5.3].
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2.4 Floer cohomology and A-tropicalization

The definition of the A-tropicalization of a Lagrangian submanifold requires a little more exposition
because we wish to do some computations of the A-tropicalization. Our goal is to replace the Lagrangian
torus fibration map �A WXA!Q with a correspondence of subsets

TropA W fLagrangian branesg ! fsubsets of Qg

which only depends on the Hamiltonian isotopy class of the Lagrangian brane.

2.4.1 Lagrangian intersection Floer cohomology Our main computational tool will be Lagrangian
intersection Floer cohomology. We first equip a symplectic manifold .X; !/ with an !-compatible choice
of almost complex structure J .

Definition 2.4.1 [19] Suppose we have a pair of transversely intersecting Lagrangian submanifolds
L0; L1 �X and choice of almost complex structure J such that

(i) X , L1, and L2 are compact,

(ii) the symplectic area of all disks with boundary on Li vanish !.�2.X;Li //D 0,

(iii) the Lagrangians Li are equipped with spin structures,

(iv) the Lagrangians Li are graded (in the sense of [52]),

(v) the moduli spaces of J -holomorphic strips in (2) are regular.

Then the Lagrangian intersection Floer cohomology is a chain complex where:

� The generators are the points of intersection between L0 and L1, so that as a vector space

CF�.L0; L1/ WD
M

x2L0\L1

ƒx;

where ƒ is the Novikov field. The grading deg.x/ of an intersection point x 2 L0\L1 is determined by
the Maslov index.

� The differential on this complex is defined by a count of holomorphic strips with boundary on L0[L1
and ends limiting to the intersection points. Namely, let x˙ 2 L0\L1 be two intersection points, and
ˇ 2H 2.X;L0[L1/. Let Mˇ .L0; L1; xC; x�/ denote the moduli space

(2)

(
u WRs � Œ0; 1�t!XA

ˇ̌̌̌ u.s; 0/2L0; u.s; 1/2L1; lim
s!˙1

u.s; t/D x˙;

N@JuD 0; Œu�Dˇ 2H2.XA; L0[L1/

)ı
.s 7! sC c/

of holomorphic strips with ends limiting to x˙ in the relative homology class ˇ, up to reparametrization
of the strip along the s-coordinate. Using the grading data on L0 and L1, one can compute that

dim.Mˇ .L0; L1; xC; x�//D deg.x�/� deg.xC/� 1:
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The spin structures on L0 and L1 provide orientations for the spaces Mˇ .L0; L1; xC; x�/; in particular
if deg.xC/C 1 D deg.x�/, then dim.Mˇ .L0; L1; xC; x�// D 0 and we can count the points in this
moduli space with signs. The structure coefficients of the differential d W CF�.L0; L1/! CF�.L0; L1/
are obtained by counting the elements in Mˇ .L0; L1; xC; x�/,

hd.xC/; x�i D
X

ˇ2H2.X;L0[L1/

T !.ˇ/#Mˇ .L0; L1; xC; x�/;

where # is the signed count of points with orientation and T !.ˇ/ records the symplectic area of the strip
u whose homology class is ˇ.

The proof that this is a chain complex proceeds in a similar method to Morse theory. Because of (i), one can
use Gromov compactness to prove that the 1-dimensional moduli spaces of strips have compactifications
whose boundaries are given by products of the 0-dimensional moduli spaces of strips

@Mˇ .L0; L1; xC; x�/D
G

x02L0\L1

Mˇ .L0; L1; xC; x0/�Mˇ .L0; L1; x0; x�/:

To ensure that the only broken configurations which show up in the compactification are given by strips
breaking (as opposed to disk bubbling), we use (ii), which states that there are no holomorphic disks with
boundary on either L0 or L1. The compactification is compatible with the orientations given to the moduli
spaces of holomorphic strips. Since the signed count of boundary components of a 1-dimensional manifold
is zero, hd2.xC/; x�iD0. Unless otherwise stated, all Lagrangians we consider will be Z-graded and spin.
A major feature of Lagrangian intersection Floer cohomology is its invariance under Hamiltonian isotopy.

Theorem 2.4.2 [19] Let L0 and L1 be Lagrangian submanifolds of .X; !/ satisfying (i)–(v). Let
� WX !X be a Hamiltonian isotopy. Suppose that L0 and L1 intersect transversely and we’ve picked �
in such a way that �.L0/ and L1 intersect transversely. Then HF�.L0; L1/D HF�.�.L0/; L1/.

For this reason, wheneverL0 andL1 do not intersect transversely, we can compute their Floer cohomology
by taking a Hamiltonian perturbation which makes their intersection transverse; the resulting cohomology
groups are independent of the choice of perturbation taken. One can similarly show that it does not
depend on the choice of an almost complex structure.

The conditions (i) and (ii) can be weakened. For example, (i) — which is required to prove that the
moduli spaces of strips admit compactifications — can be replaced with the weaker condition of monomial
admissibility (Definition 3.1.1) or W-admissibility (Definition A.0.1). Later we will look at weakening (ii)
to unobstructedness (Section 4). We now drop (i) and compute the Lagrangian intersection Floer
cohomology between two Lagrangians in a cotangent bundle. The computation we give is a direct
generalization of [54, Example 3.1].
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Example 2.4.3 (running example) Let F0 D T n be the n-dimensional torus. Let T n�k � F0 be the
subtorus spanning the first n� k coordinates on T n. Then T �F0 is an example of an exact symplectic
manifold. The zero section F0 and the conormal bundle N �T n�k are examples of exact Lagrangian sub-
manifolds. Lagrangian intersection Floer cohomology requires that our Lagrangians intersect transversely,
so we will apply a Hamiltonian perturbation to one of the Lagrangians to achieve transverse intersections.
Pick �0 2R>0. Consider the Hamiltonian function

(3) H D

n�kX
iD1

�0 cos.�i /

on T �F0. Let � W T �F0! T �F0 be the time-1 Hamiltonian flow of H . The resulting intersections of
�.N �T n�k/ with F0 are the points

�.N �T n�k/\F0 D f.a1�; : : : ; an�k�; 0; : : : ; 0/ j ai 2 f0; 1gg;

and the index of each intersection point x is given by deg.x/D
Pn�k
iD1 ai . We will call the corresponding

generators of Floer cohomology xI , where ai D 1 whenever i 2 I � f1; : : : ; n� kg. Write I É J if
I D J [fxig for some i . As a vector space CF�.�.N �T n�k/; F0/ matches CM�.T n�k/ for the Morse
function H .

The differential on CF�.�.N �T n�k/; Fq/ is related to the Morse differential. Let jI j C 1 D jJ j,
meaning that deg.xI / and deg.xJ / differ by one. If I and J differ at more than two elements, then
Mˇ .�.N

�T n�k/; F0; xI ; xJ / has nonzero dimension. If I ÉJ differ at a single element j , then there
are exactly two holomorphic strips traveling between xI and xJ ,

M.�.N �T n�k/; F0; xI ; xJ /D fu
C

IÉJ ; u
�
IÉJ g;

which as points receive opposite orientations. By our choice of perturbation, the symplectic areas of the
strips u�IÉJ and u�IÉJ agree (and are exactly �0). Therefore

hd.xI /; xJ i D

�
T !.u

C

IÉJ /�T !.u
�
IÉJ / D 0 if I ÉJ;

0 otherwise;
and we conclude that

HF�.�.N �T n�k/; Fq/DƒhxI i D
^

i2f1;:::;n�kg

ƒhxi i:

The example relates to the discussion of tropicalization as T �F0 can be identified with XA D .C�/n D
T �Q=T �ZQ. If T n�k is a linear subtorus of Fq , it corresponds to an .n�k/-dimensional subspace of
zT n�k � T �0 Q; let V � T0Q correspond to the set of vectors which are annihilated by zT n�k . By abuse of
notation, we use V to denote the integral affine subspace of Q with prescribed tangent space at 0. Under
this identification, N �T n�k � T �F0 is LV �XA. Using that Lagrangian intersection Floer cohomology
is invariant under symplectomorphisms, and noting that if q … V then Fq \LV D∅, we have computed

HF�.LV ; Fq/D
�V

i2f1;:::;n�kgƒhxi i if q 2 V ;
0 if q … V :
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2.4.2 Local systems Recall that the points of XB are in bijection with pairs .Fq;r/ of Lagrangian
torus fibers equipped with local systems. We now discuss how to incorporate this data into Lagrangian
intersection Floer cohomology. The unitary Novikov elements

Uƒ WD

�
a0C

1X
iD1

aiT
�i
ˇ̌̌

lim
i!1

�i D1; �i > 0; a0 2C�; ai 2C

�
are those elements whose nonzero lowest-order term is a constant. We now consider .Li ;ri /, which are
Lagrangian submanifolds with the additional choice of a trivialƒ-line bundleEi and a Uƒ local system ri .
Given L0 and L1 which intersect transversely satisfying (i)–(v) we define CF�..L0;r0/; .L1;r1// to be
the chain complex where:

� The underlying vector space is
L
x2L0\L1

hom..E0/x; .E1/x/.

� The differential is given by taking a ri -weighted count of the holomorphic strips with boundary in
L0[L1. More precisely, let @iu be the boundary of u contained in Li , and let Pri W .Ei /.0/! .Ei /.1/

be the parallel transport induced by the local system along a path  W Œ0; 1�! Li .

As in the definition of Lagrangian intersection Floer cohomology without local systems, let xC; x� 2
L0\L1 be intersection points with deg.xC/C 1D deg.x�/. Given �x 2 hom..E0/xC ; .E1/xC/ and a
holomorphic strip u 2Mˇ .L0; L1; xC; x�/ we obtain a map between the fibers above x0,

P
r1

.@1u/
ı�xC ıP

r0

.@0u/�1
2 hom..E0/x� ; .E1/x�/:

The differential on CF�.L0; L1/ is defined by taking the contributions u ��xC over all holomorphic strips
between xC and x�, weighted by the symplectic area,

dr0;r1.�xC/ WD
X

x�jdeg.x�/Ddeg.xC/C1

X
u2Mˇ.L0;L1;xC;x�/

˙T !.ˇ/P
r1

.@1u/
ı�xC ıP

r0

.@0u/�1
;

where the sign is determined by the orientation of the moduli space.

When ri are the trivial local systems, this recovers CF�.L0; L1/.

Example 2.4.4 (running example, continued) We now return to Example 2.4.3. Fix coordinates on
Fq , and let fc1; : : : ; cng be generators of H 1.Fq;Z/ associated to the coordinate directions. A local
system on Fq is determined completely by its monodromy on the ci . Given a ƒ-unitary local system r1
on Fq , we write zi DP

r1
ci . Let r0 be the trivial local system on LV . We now compute the differential on

CF�..LV ;r0/; .Fq;r1//. Given �xI 2 hom..E0/xI ; .E1/xI /, and I ÉJ an index which differs at one
spot j , we have

dr0;r1.�I /D .T
!.u
C

IÉJ /P
r1

.@1u
C

IÉJ /
ı�I ıP

r0

.@0u
C

IÉJ /
�1
/� .T !.u

�
IÉJ /P

r1

.@1u�IÉJ /
ı�I ıP

r0

.@0u�IÉJ /
�1/:

Recall that all of the holomorphic strips between intersection points differing in index by 1 have the same
area �0 D !.uCIÉJ /D !.u

�
IÉJ /. Using that r0 is the trivial local system, we get

T �0P
r1

.@1u
C

IÉJ /
.id�Pr1cj / ı�I ıP

id
@0u
C

IÉJ
:
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This vanishes if and only if Pr1cj D zj D 1 for all 1� j � n� k. We conclude that

HF�..LV ; id/; .Fq;r1//D
�
H �.T n�k/zj D 1 for all 1� j � n� k;

0 otherwise:

Notation 2.4.5 Given two Lagrangians L0 and L1 which intersect transversely, we will pick at each
intersection point x 2 L0 \L1 an isomorphism in hom..E0/x; .E1/x/; by abuse of notation, we will
denote this isomorphism also by x 2 hom..E0/x; .E1/x/. We can in this way write

CF�.L0; L1/Dƒhxi;

and the differential on this complex will be given by the structure coefficients

hd.x/; yi D
X

u2Mˇ.L0;L1;x;y/

T !.ˇ/P
r1;r2
@u

;

where Pr1;r2
@u

2 Uƒ is a unitary element determined by Pr1;r2
@u

�y D P
r1

.@1u/
ı x ıP

r0

.@0u/�1
. This allows

us to use the simpler (and more commonly employed) notation from Definition 2.4.1.

2.4.3 A-tropicalization When considering a complex space XC
B on the B side, we used the projection

�B W X
C
B ! Q to obtain from each subvariety of XC

B an amoeba which approximated the tropical
subvariety. Just as with the B-tropicalization, given a Lagrangian submanifold L�Q we could consider
the Lagrangian torus fibration image of a Lagrangian submanifold �A.L/ �Q. However, since even
Hamiltonian isotopic Lagrangian submanifolds can have different projections to the base of the Lagrangian
torus fibration, this does not provide a very good definition ofA-tropicalization. Instead, we use Lagrangian
intersection Floer theory to define the A-tropicalization.

Definition 2.4.6 (preliminary) Let L�XA be a Lagrangian submanifold satisfying the conditions of
Definition 2.4.1. We define the A-tropicalization or Floer-theoretic support of L to be the set

TropA.L/ WD fq 2Q j there exists a Lagrangian brane .Fq;r/ with HF�.L; .Fq;r//¤ 0g:

The A-tropicalization is a decategorification of a much more powerful invariant captured by family Floer
theory due to [5; 20]. From this viewpoint, the chain complexes CF�.L; .Fq;r// should be considered
as the stalks of a sheaf which are appropriately bundled together into a sheaf on XB . This viewpoint on
tropicalization is also employed in [53]. The A-tropicalization is a refinement of projection to the base of
the Lagrangian torus fibration in the following sense:

Proposition 2.4.7 Let L�XA be a Lagrangian brane. Then TropA.L/� �A.L/.

Proof Suppose that q …�A.L/. Then FqD��1A .q/ is disjoint from L. As the Floer intersection complex
is generated on the intersection points, CF�.L; .Fq;r//D 0.
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While TropA.L/��A.L/ always holds, it will rarely be the case that �A.L/�TropA.L/. By invariance
of TropA.L/ under Hamiltonian isotopies, we obtain that

TropA.L/�
\

�2Ham.XA/

.�A.�.L///;

where Ham.XA/ is the set of Hamiltonian isotopies of XA. However, there is no reason to expect even
this to be equality. Section 5 proves that when L is a Lagrangian constructed from the data of a tropical
subvariety of Q, the above inclusion becomes equality. We see a toy version of this statement below.

Example 2.4.8 (running example, continued) We now are able to compute the A-tropicalization
of a Lagrangian submanifold. Let V � Q be an integral affine k-subspace, so that LV � XA is a
T n�k �Rk Lagrangian submanifold. We now compute the A-tropicalization of q. Since �A.LV /D V ,
by Proposition 2.4.7 TropA.LV /� V . By Example 2.4.4, whenever q 2 V there exists a local system
such that HF�.LV ; .Fq;r1//¤ 0. Therefore TropA.LV /D V .

In this example, we see there are three steps of the A-realizability problem.

(i) First, we constructed a geometric lift LV of V .

(ii) The second step is to show that we have well-defined Floer cohomology groups. In the example
above, this follows from �2.XA; LV / D 0, but more generally amounts to showing that the
Lagrangian LV is unobstructed.

(iii) Finally, the computation of support from Example 2.4.4 proves that this is a faithful lift of V .

In the example of the lift of V , we can do slightly more than compute the tropicalization of LV . We
compute the A-support, which is the set of pairs .Fq;r/ which have nontrivial pairing with LV :

(4) SuppA.LV /D f.Fq;r/ j q 2 V ; Prc D 0 for c �V D 0g:

Here we identify H1.Fq;Z/ with T �Z.Q/. At each point q 2 V , there is a .Uƒ/k choice of local systems
satisfying the above criteria. The support can be identified with the set SuppA.LV / D V � .Uƒ/k D
.ƒ�/k �XB .

2.5 A-tropicalization for the pair of pants

In this subsection, we carry out the entire A-realizability process with the tropical curve Vpants from
Example 2.2.2. This computation first appeared in unpublished work from [30, Section 4.3], and stems from
a discussion with Diego Matessi. We use this example computation to outline the remainder of the paper.

Geometric realizability: Section 3 We first discuss the process of building a Lagrangian submanifold
which geometrically is a lift of V in the sense that �A.LVpants/ approximates Vpants. In dimension 2, one can
obtain Lagrangian submanifolds in .C�/2 by hyper-Kähler rotation of complex curves.2 We therefore can
build a Lagrangian lift of Vpants by starting with the holomorphic lift f.z1; z2/ j 1Cz1Cz2D 0g � .C�/2

2We only use this construction for the ease by which it builds a Lagrangian pair of pants in dimension 2; we emphasize at this
juncture that hyper-Kähler rotation is not mirror symmetry.
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and applying hyper-Kähler rotation. For every � > 0, we can find a Lagrangian submanifold L"Vpants
�XA

Hamiltonian isotopic to our hyper-Kähler rotation with the following properties:

� When restricted to the complement of a neighborhood of 0 2Q, we have

L"Vpants
n��1A .B".0//D LV 1 [LV 2 [LV 3 n�

�1
A .B".0//:

This is one of the properties which characterizes a Lagrangian lift of a tropical curve.

� Furthermore, we can construct this Lagrangian so that it is symmetric under the permutation of
coordinates .z1; z2/ on XA.

Unobstructedness: Section 4 The next step to the A-realization process is to show that the Lagrangian
submanifold one builds can be analyzed with Floer theory. In this example, LVpants is exact and so
!.�2.XA; LVpants// vanishes. It follows that HF�.LVpants ; Fq/ will be well defined.

Faithfulness: Section 5 We now compute TropA.LVpants/. Consider the Lagrangian pair of pants LVpants ,
the Lagrangian fiber Fq , and the holomorphic cylinder z1 D z2 as drawn in Figure 3, left. We take
Hamiltonian perturbations so that the Lagrangian submanifolds intersect transversely. Nearby the point q,
the Lagrangian LVpants agrees with LV 3 ; therefore Fq \LVpants D Fq \LV 3 . Following the notation from
Example 2.4.4, we call the degree-0 intersection point x∅, and the degree-1 intersection point x1. In
addition to the agreement of intersection points, there are two “small strips” contributing to the differential
on CF�.LVpants ; Fq/ which match the strips in the differential of CF�.LV 3 ; Fq/. We call these holomorphic
strips uCx∅<x1 and u�x∅<x1 .

From the symmetry of our setup, the Lagrangian LVpants intersects the complex plane z1D z2 cleanly along
a curve. Furthermore, the holomorphic cylinder z1D z2 intersects Fq along a circle; therefore the portion
of z1 D z2 bounded by LVpants and Fq gives an example of a holomorphic strip with boundary on LVpants

and Fq . The ends of this holomorphic strip limit toward x∅ and x1. The valuation projection of this strip

Q

z1 D z2

L�Vpants

Fq

�
e3

e1

e2

x∅

x1

LV

Figure 3: Left: the intersection of the blue holomorphic cylinder and the tropical Lagrangian
pair of pants is clean, and gives a holomorphic strip with boundary on LVpants and Fq . Right: the
argument projection of LVpants to Fq . The intersection points are labeled. The three holomorphic
strips are denoted by the arrows, with uqv drawn in blue.
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is a line segment connecting the point q with the vertex of the tropical pair of pants. For this reason, we
will call this holomorphic strip uqv . The area of this strip is the length of the line segment corresponding
to �A.uqv/. The three holomorphic strips are more readily seen by considering the argument projection
of LVpants to Fq as in Figure 3, right.

We will think of uqv as being a “big strip” as we can choose �0 small enough that �0 D !.uCx∅<x1/D
!.u�x∅<x1/� !.uqv/. If no local systems are used, the differential on CF�.LVpants ; Fq/ is

d.x∅/D .T
!.u
C
x∅<x1 /�T

!.u�x∅<x1 /CT !.uqv// � x:

This does not vanish, so HF�.LVpants ; Fq/D 0.

However, to compute the A-support we must compute Lagrangian intersection Floer cohomology where
we equip Fq with a local system. We characterize the local system r on Fq in terms of its holonomy
along the arg.z1/ and arg.z2/ loops of Fq , giving us quantities .exp.b1/; exp.b2// 2 .Uƒ/2. We’ll denote
this nonunitary local system by rb1;b2 . Given a point q D .�a;�a/ 2 V 3, we compute the quantities

!.uCx∅<x1/D �0; !.u�x∅<x1/D �0; !.uqv/D�aC�0;

P
rb1;b2

@u
C
x∅<x1

D exp
�
1
2
.b1� b2/

�
; P

rb1;b2
@u�x∅<x1

D exp
�
1
2
.b2� b1/

�
; Pr@uqv D exp.1

2
.b1C b2//:

The weights given by the local system are determined by the paths drawn in Figure 3, right, from which
we obtain the differential on the CF�.LVpants ; .Fq;rb1;b2//:

hdrb1;b2 .x∅/; x1i D

small strips near q‚ …„ ƒ
.P
rb1;b2

@u
C
x∅<x1

�T
!.u
C
x∅<x1 /�P

rb1;b2
@u�x∅<x1

�T
!.@u�x∅<x1 //C

large strips‚ …„ ƒ
Pr@uqv �T

!.uqv/

D T �0
�
exp

�
1
2
.b1� b2/

�
� exp

�
1
2
.b2� b1/

�
C exp

�
1
2
.b1C b2/

�
�T �a

�
D T �aC�0 exp

�
�
1
2
.�b1� b2/

�
.T a exp.b1/�T a exp.b2/C 1/:

This always has a Uƒ-worth of solutions obtained by setting b1 D log.T �a.T a exp.b2/� 1//. Therefore
.�a;�a/ 2 TropA.LVpants/. From this we conclude that TropA.LVpants/D Vpants.

This is one of the rare situations where we can compute the Floer-theoretic support explicitly: under
the substitution z1 D T a1 exp.b1/; z2 D T a2 exp.b2/, the Lagrangian tori .Fa1;a2 ;rb1;b2/ belong to the
support of LVpants if and only if z1� z2C 1D 0. This should be compared with the computation of the
B-realization of Vpants from Example 2.2.2.

B-realizability: Section 6 The matching of the supports of the A- and B-realizations of Vpants can be
captured in the language of homological mirror symmetry. This requires a description of the Fukaya
category of a symplectic manifold. We define the Fukaya precategory of a compact symplectic manifold
.X; !/:

� Objects are given by mutually transverse Lagrangian submanifolds L�X which are graded, spin, and
tautologically unobstructed (Section 4).
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� For L0 ¤ L1, the morphisms hom.L0; L1/ are given by Lagrangian intersection Floer cochains
CF�.L0; L1/.

� k-compositions of morphisms

mk W

k�1O
iD0

homgi .Li ; LiC1/D hom2�kC
P
gi .L0; Lk/

are given by counts of holomorphic polygons with boundary on the Lk .

This is an A1 precategory, meaning that for every collection of objects L0; : : : ; Lk , the filtered A1
relations hold: X

j1CjCj2Dk

.�1/|mj1C1Cj2.id˝j1 ˝mj ˝ id˝j2/D 0:

Here |D j1C
Pj1
1 gi , and k � 1.

The precategory can be appropriately completed to give a triangulated A1 category, the Fukaya category
Fuk.XA/. Some of the hypotheses of the construction can be dropped or modified: for example, if XA is
a cotangent bundle (and not compact) there is a version of the Fukaya category (the wrapped Fukaya
category, W.XA/) which can be defined with appropriate Lagrangian submanifolds. XAD .C�/nDT �F0
is one of these cases.

The homological mirror symmetry conjecture predicts that on mirror spaces the Fukaya category and
derived category of coherent sheaves are derived equivalent.

Theorem Let XA D .C�/n and XC
B D .C

�/n. There is an equivalence of derived categories

F WW.XA/!Dbdg Coh.XC
B /

between the wrapped Fukaya category of exact admissible Lagrangian submanifolds of XA and the
bounded derived category of coherent sheaves on XC

B .

The proof of the theorem first shows that the zero section L.0/ of �A W XA ! Q is a Lagrangian
submanifold that generates Fuk.XA/. Then HF�.L.0/; L.0// is shown to be the algebra CŒ.Z/n� D

hom.O.C�/n ;O.C�/n/. Since this generatesDb
dg

Coh.XC
B /, these two categories are equivalent. However,

this proof is nonconstructive: given an arbitrary exact Lagrangian submanifold L � XA, there is no
immediate way of determining the corresponding mirror sheaf in Db

dg
Coh.XC

B /. There are a few objects
which we can match up under this functor. Let .Fq;r/ be an exact fiber of the Lagrangian torus fibration.
Then F.Fq;r/'Oz for some z 2XC

B . From here, we obtain the following toy result, whose extension
to the general V is the objective of the remainder of this paper.

Theorem 2.5.1 Vpants �R2 is B-realizable.

Proof From Section 2.5, we proved that Vpants is A-realizable by a Lagrangian LVpants . The support of
the mirror sheaf F.LVpants/ is a B-realization of Vpants.
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Remark 2.5.2 There are other approaches to homological mirror symmetry which would yield the same
theorem. A stronger result than what is given here would be to show that Vpants is realizable, and its
realization compactifies to a subvariety (a line) in the projective plane. To prove this result, one would
first show that LV belongs to an appropriate “partially wrapped Fukaya category”, and apply homological
mirror symmetry theorems for toric varieties for the appropriate partially wrapped Fukaya category; see
[37; 23] or [2; 28; 29]. Then one would need a mirror symmetry statement for the exact Lagrangian torus
fiber equipped with nonunitary local systems, and replicate the argument of Section 2.5.

3 Geometric realization

The flexibility of Lagrangian submanifolds both complicates and simplifies the construction of a Lagrangian
lift of a tropical subvariety. The additional flexibility means that we have a lot of wiggle room to construct
a potential lift; however, identifying a Lagrangian submanifold as “the” lift of a tropical subvariety
becomes impossible. For example, given any candidate lift LV of a tropical subvariety V , one could
apply a Hamiltonian isotopy to V to obtain a new Lagrangian submanifold. More generally, each
potential Lagrangian lift LV of V is supposed to represent the data of a sheaf on XB whose support has
tropicalization V ; there are many such sheaves!

Despite all of this flexibility, we already have a good idea of what the Lagrangian lift LV of V should look
like from (1). Recall that V .0/ is the union of the interiors of the top-dimensional polyhedral domains V
defining V . At each component we can take the conormal torus construction to obtain a Lagrangian chain:

LV .0/ WD
[

V�V .0/

LV :

Intuitively, a geometric Lagrangian lift of V should approximate the chain LV .0/ .

Remark 3.0.1 Fix an orientation on Fq , a fiber of the SYZ fibration. Then LV inherits an orientation
(which in local coordinates comes from dq1 ^ � � � ^ dqk ^ dpkC1 ^ � � � ^ dpn). We will assume that we
have fixed an orientation on Fq in advance so that LV is equipped with a standard orientation.

We propose the following definition for a geometric Lagrangian lift of a tropical subvariety (which is
similar to that proposed in [42, Definition 2.1]):

Definition 3.0.2 A family of oriented Lagrangian submanifolds L"V for " > 0 is a geometric Lagrangian
lift of a weight-1 polyhedral complex V �Q if the following conditions hold:

(i) The Lagrangians L"V are all Hamiltonian isotopic,

(ii) Let V .i/ be the collection of codimension-i strata of V . We require that

(5) L"V n�
�1
A .B".V

.1///D LV .0/ n�
�1
A .B".V

.1///

away from the codimension-1 strata, as oriented submanifolds.

(iii) The Lagrangians L"V are embedded, graded, spin, and admissible (in the sense of Definition 3.1.1).
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Remark 3.0.3 Definition 3.0.2 has two simplifying requirements; one is included due to current technical
limitations in the definition of Floer cohomology, and the second is for convenience.

The requirement that L�V is embedded is a technically needed assumption; we believe that this condition
can be dropped without modifying our main results. Our reason for restricting ourselves to the embedded
setting is that the Charest–Woodward pearly model as written does not include a description of Floer
cohomology for immersed Lagrangian submanifolds.

While Definition 3.0.2 looks only at weight-1 polyhedral complexes, one can extend the story to weighted
polyhedral complexes by asking that at each top-dimensional stratum V � V .0/ with weight m, the
realization LV is m-disjoint copies of N �V =N �ZV . All results in this paper can be extended to the
weighted setting.

The constructions from [30; 38; 39; 42] all satisfy Definition 3.0.2(i)–(ii). To prove that the previous
definitions give examples of geometric Lagrangian lifts, we need to additionally show that they are
admissible, graded, and spin. We prove these properties for certain examples of Lagrangian lifts in
Sections 3.1–3.3.

While Definition 3.0.2 only asks that we take the lift of a weight-1 polyhedral complex, the only polyhedral
complexes which admit such lifts are tropical ones.

Proposition 3.0.4 Let V be a weight-1 rational polyhedral complex , and suppose that it has a Lagrangian
lift L"V satisfying Definition 3.0.2(i)–(ii). Then V is a tropical subvariety.

Proof Select an interior point r 2 W � V .1/ of the codimension-1 stratum of V . Pick Ur � TrQ a
rational subspace such that Ur˚TrW D TrQ. Let R�Q be a small polyhedral domain passing through
r with tangent space Ur . Then V jR is a weight-1 rational polyhedral curve. By taking R small enough,
V jR has a single vertex and edges pointing in directions v1; : : : ; vk corresponding to facets F1; : : : ; Fk
containing W . We need to prove that

Pk
iD1 vi D 0; see Figure 4.

r

W

R

v1

v2

vk

Figure 4: The Polyhedral complexes discussed in Proposition 3.0.4.
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Consider the symplectic manifold YA WD T �R=T �ZR � T
�Q=T �ZQ, with the Lagrangian torus fibration

�YA W YA!R. Let i WR!Q be the inclusion. Select " small enough that B".W /\R is an interior set
of R. Given a Lagrangian submanifold L� T �Q=T �ZQ, we can take a Hamiltonian perturbation of L
so that

Li� ıL WD f.r; i
�.p// j .r; p/ 2 L; r 2Rg

is a Lagrangian submanifold of YA. See [29, Section 5.2] for a more general discussion of this construction
from the perspective of Lagrangian correspondences. By definition �YA.Li� ıL/ D �YA.L/\R, so
L"
V jR
WDLi� ıL

"
V is a geometric realization of V jR �R. We therefore have reduced to the setting which

is the lift of a tropical curve with a single vertex.

Given a tropical curve V jR �R with a single vertex v, the Lagrangian L"
V jR

is a manifold with boundary.
Consider the projection argR WYA!Fr DT

�
r R=T

�
Z;rR. Considering argR.L

"
V jR

/ as a dim.Fr/�1 chain,
we obtain the relation in homology

0D ŒargR.@.L
"
V jR

//� 2HdimFr �1.Fr/:

There is an identification (as vector spaces) that sends an integral basis e1; : : : ; en to the class of the
perpendicular subtorus

TrR!HdimFr �1.Fr/; ei 7! Œf� 2 T �r R j �.ei /D 0g�:

Since the boundary of L"
V jR

lies in the region where (5) holds and we have an agreement of oriented
submanifolds, we can therefore compute

ŒargR.@.L
"
V jR

//�D

kX
iD1

Œf� 2 T �r R j �.ei /D 0g�;

proving that
P
ei D 0.

Notation 3.0.5 From here on, we will drop the " in L"V and simply write LV for a Lagrangian which
belongs to such a family.

3.1 Geometric Lagrangian lifts: admissibility

When Lagrangian submanifolds are noncompact, we need to place taming conditions on them so that
they are Floer-theoretically well-behaved.

Definition 3.1.1 [28] Let W† WXA!C be a Laurent polynomial whose monomials are indexed by A,
the set of rays of a fan †. A monomial division �† for W† D

P
˛2A c˛z

˛ is an assignment of a closed
set U˛ �Q to each monomial ˛ 2 A so that the following conditions hold:

� The sets U˛ cover the complement of a compact subset of QDRn.
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� There exist constants k˛ 2R>0 such that for all z with val.z/ 2 U˛ the expression

max
˛2A

.jc˛z
˛
j
k˛ /

is always achieved by jc˛z˛jk˛ .

� U˛ is a subset of the open star of the ray ˛ in the fan †.

A Lagrangian L�XA is �†-monomially admissible if over ��1A .U˛/ the argument of c˛z˛ restricted to
L is zero outside of a compact set.

We will always assume that arg.c˛/D 0. An advantage of using the monomial admissibility condition
for Lagrangian submanifolds is that it is a relatively simple check to see if a Lagrangian submanifold
satisfies the condition.

Theorem [31, Theorem 3.1.7] Suppose that V is the tropicalization of a hypersurface whose Newton
polytope has dual fan †. Then the construction of LV from [30] is �†-monomially admissible.

Let V �Q be a tropical curve. We say that V is adapted to † if each semi-infinite edge of V points in
the direction of a ray of †.

Claim 3.1.2 Suppose that V �Rn is a weight-1 tropical curve adapted to †. Any Lagrangian lift LV is
�†-monomially admissible.

Proof Let V .0/1 D feigkiD1 denote the semi-infinite edges of V . We note that there exists a compact set
K�Q such thatLC n��1A .K/D

F
e2V

.0/
1
Len�

�1
A .K/. Furthermore,K can be chosen so that enK�U˛

if and only if e points in the direction ˛ 2†. Over this region, we observe that arg.z˛/jN�e=N�Ze D 0.

Remark 3.1.3 If some of the semi-infinite edges of V are weighted, we must replace the last condition
in monomially admissible with “there exists a discrete set of values f�ig such that the argument of
c˛z

˛j.L\C/˛ is a subset of f�ig”. The Floer-theoretic arguments in [28] can be applied to this setting as
well (simply by letting �i be k-roots of unity, and replacing ˛ with k˛).

3.2 Geometric Lagrangian lifts: homologically minimal and graded

The additional amount of flexibility that symplectic geometry affords us means that there are many
geometric Lagrangian lifts of a single tropical subvariety. Some of these lifts differ for unimportant
reasons: for instance, we could have included some extra topology in our Lagrangian by attaching a
Lagrangian with vanishing Floer cohomology to a previously constructed lift. The following condition is
imposed to weed out some of these worst offenders:

Definition 3.2.1 Let j WLV .0/ n�
�1
A .B�.V

.1/// ,!LV be the inclusion that is induced from the inclusion
of the codimension-0 strata of V into V . We say that a lifting is homologically minimal if there exists a
section i W V ! LV �XA such that H1.LV / is generated by the images of

.i/� WH1.V /!H1.LV /; .j /� WH1.LV .0/ n�
�1
A B�.V

.1///!H1.LV /:
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Let iLV W LV ! XA be the inclusion of our Lagrangian submanifold. We say that LV is an untwisted
realization of V if the composition

V
.iLV ıi/�����!XA

arg
�! Fq

is nullhomologous (for any choice of q 2Q).

Remark 3.2.2 For a fixed tropical subvariety V , there can be several geometric Lagrangian lifts of V
which are meaningfully different. We expand on how these different choices of lifts correspond to tropical
line bundles of V in Section 6.5.

The homologically minimal condition places some constraints on our Lagrangian submanifolds.

Lemma 3.2.3 If LV is homologically minimal and untwisted , then LV is graded.

Proof We recall the definition of graded from [52, Example 2.9]. Since c1.XA/ D 0, we can take a
section

Vn
iD1.dqi C id�i /

˝2 of ƒn.TXA; J /˝2. This determines a map

det2 ı sL W L! S1; x 7!
�^

.dqi C id�i /.TxL/
�2

A Lagrangian is Z graded if this map can be lifted to R.

Consider a homologically minimal Lagrangian and untwisted Lagrangian LV . There exist generators
fŒ˛k�; Œˇl �g for H1.LV / such that ˛k is in the image of i and ˇl is in the image of j . Since the
compositions

det2 ı sLV ı i W V ! S1; det2 ı sLV ı j W .LV .0//! S1

are constantly 0, it follows that there is no obstruction to lifting det2 ı sLV W LV ! S1 to R.

Proposition 3.2.4 Suppose that V �Rn is either a smooth tropical curve or a smooth tropical hypersur-
face. Then the construction of LV given by [30; 39; 42] produces a homologically minimal Lagrangian
lift LV . The lifts are therefore graded.

Proof In the cases of tropical curves, this follows from computing the homology of LV from a cover
given by Lstar.v/. For hypersurfaces, this is proven in [31, Proposition 3.18].

Unless otherwise specified, the lift of a smooth tropical curve or hypersurface will always be the one
given by [30; 39; 42].

3.3 Geometric Lagrangian lifts: spin

We start with a lemma on the topology of lifts of smooth genus-0 tropical curves.

Lemma 3.3.1 Let V �Rn be a smooth genus-0 tropical curve.

(i) For any semi-infinite edge f 2 V .0/1 , the restriction map resV
f
WH 1.LV /!H 1.Lf / is a surjection.

(ii) For any semi-infinite edge f , the restriction map resV
V1nf

W H 2.LV /!
L
g¤f H

2.Lg/ is an
injection.
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f

e

W

star.v/

Figure 5: Covering our tropical curve V with two charts: W and a pair of pants star.v/ centered at v.

Proof We prove (i) and (ii) by induction on the number of vertices in V .

Base case Suppose that V has one vertex. Then V is planar, and there exists a splitting of .C�/n D
.C�/2� .C�/n�2 such that LV DLpants�T

n�2, where Lpants � .C�/2 is the standard pair of pants. The
boundary of the pair of pants is S1e1 [S

1
e2
[S1e3 , where e1, e2, and e3 label the three edges of the pair of

pants. A direct computation shows that

H 0.Lpants/!H 0.S1e1/; H 1.Lpants/!H 1.S1e1/;

surjects, and that

H 0.Lpants/!H 0.S1e1 [S
1
e2
/; H 1.Lpants/!H 1.S1e1 [S

1
e2
/;

injects. An application of the Künneth formula gives (i) and (ii) for LV .

Inductive step Let f 2 V .0/1 be any semi-infinite edge and let v be the vertex of V belonging to that
edge. Let W be the tropical curve given by vertices not equal to v, so that Lstar.v/ and LW cover LV
with intersection Lstar.v/\LW D Le D T

n�1 � e, as in Figure 5. This can be done because V is a tree.

(i) We use Lstar.v/ and LW to compute the first cohomology of LV using Mayer–Vietoris, and show
that the red arrow in the diagram below is a surjection:

H 1.LV / H 1.Lstar.v//˚H
1.LW / H 1.Le/

H 1.Lf / H 1.Lf /˚ 0

resVstar.v/˚ resVW resstar.v/
e � resWe

resstar.v/
f

˚0

From the base case, given ˛ 2H 1.Lf /, there exists ˛0 2H 1.Lstar.v// with resstar.v/
f

.˛0/D ˛. From the
induction hypothesis, there exists ˇ0 2 H 1.LW / with resWe .ˇ

0/ D resstar.v/
e .˛0/. Therefore .˛0; ˇ0/ 2

ker.resstar.v/
e � resWe /, and by exactness of the rows is in the image of resVstar.v/˚ resVW . Let ˛00 be in the

preimage of .˛0; ˇ0/. By commutativity of the below diagram, we conclude resV
f
.˛00/D ˛.
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(ii) We compute H 2.LV / using Mayer–Vietoris, and show that the blue arrow of the following diagram
is injective:

H 1.Lstar.v//˚H
1.LW / H 1.Le/ H 2.LV / H 2.Lstar.v//˚H

2.LW /

L
g2V

.0/
1

g¤f

H 2.Lg/
L
g2star.v/.0/1
g¤e;f

H 2.Lg/˚
L
g2W

.0/
1

g¤e

H 2.Lg/

0

resVstar.v/˚ resV
W

L
g¤f resVg C˚D

By (i), the leftmost arrow is surjective. By the exactness of the sequence, resVstar.v/˚ resVW is injective
on the second cohomology groups. Let C D

L
g2star.v/.0/1 ;g¤e;f

resstar.v/
g and D D

L
g2W

.0/
1 ;g¤e

resWg .
Now consider a class ˛ 2 H 2.LV /. Suppose that

L
g¤f resVg .˛/ D 0. We will show that ˛ D 0.

By commutativity of the diagram, .C ˚ D/ ı .resVstar.v/˚ resVW / D 0. Because D is injective and
.resVstar.v/˚ resVW / is injective, C ı resVstar.v/.˛/D 0 and resVW .˛/D 0. We now break into two cases:

Case I resV
star.v/

.˛/D0 This implies .resVstar.v/˚ resVW /.˛/D0, which by injectivity of resVstar.v/˚ resVW
tells us that ˛ D 0.

Case II resV
star.v/

.˛/ ¤ 0 Observe that .C ˚ resstar.v/
e / ı resVstar.v/ is injective from the base case, so

resstar.v/
e ı resVstar.v/.˛/¤ 0. Since resVW .˛/D 0, we obtain that

.resstar.v/
e ˚ resWe / ı .resVstar.v/˚ resVW /.˛/¤ 0:

This violates the exactness of the top row, so Case II cannot occur.

Proposition 3.3.2 In the setting where V � Rn has genus 0, the constructions of [30; 39; 42] give
homologically minimal untwisted geometric Lagrangian lifts LV of V .

Proof We prove that this Lagrangian submanifold is homologically minimal because the homology of the
pair of pants is generated by the homology of the legs. If nD 2, then LV is a surface, and therefore spin.

To prove that the n� 3 cases are spin, we induct on the number of vertices in V . For the 1-vertex case,
Lstar.v/'Lpants�T

n�2. The manifolds Lpants;v �T
n�2 have trivializations given by embedding Lpants;v

into R2, and is therefore spin.

As in the proof of Lemma 3.3.1, write V D LW [Lstar.v/, where e is the common edge LW \Lstar.v/.
By the induction hypothesis we have a spin structure on LW . By pullback, this gives a spin structure
over Le . SinceH 1.Lstar.v/;Z=2Z/!H 1.Le/ surjects, there is no obstruction to picking a spin structure
on Lstar.v/ agreeing with the prescribed spin structure on Le.

This method of proof can be extended to a slightly larger set of examples. We say that a smooth tropical
curve V has planar genus if there exist cycles c1; : : : ; ck � V such that fŒc1�; : : : ; Œck�g generate H1.V /,
and there exist 2-dimensional planes V k �Rn such that ci � V k .
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Corollary 3.3.3 If V �Rn is a smooth tropical curve V with planar genus , then LV is spin.

The other setting where tropical Lagrangian lifts have been studied is the setting of hypersurfaces.

Lemma 3.3.4 If V �Rn is a smooth tropical hypersurface , the construction of [31; 39] of LV is spin.

Proof We break into several cases.

� If nD 2, then LV is a punctured surface (and therefore spin).

� If nD 3, then LV is an orientable 3-manifold (and therefore spin).

� If n � 4, then by [31] the Lagrangian LV is the connected sum of two copies of Rn at several
contractible regions U˛ indexed by �, the Newton polytope of the defining tropical polynomial for V .
Assume that dim.�/ D n � 4 (as otherwise, we may reduce to one of the previous cases). Following
[31, Proposition 3.18], we take two charts Lr ; Ls ' Rn n

S
˛2� U˛ such that LV D Lr [Ls . The Lr

and Ls are homotopic to V . Then Lr \Ls '
S
˛2� @U˛ , where each @U˛ is homotopic to either Sn�1

or Dn�1. By Mayer–Vietoris, we computeM
˛2�

H 1.@U˛/!H 2.LV ;Z=2Z/!H 2.Lr ;Z=2Z/˚H
2.LrZ=2Z/:

The left and right terms are zero when n� 4, so H 2.LV ;Z=2Z/D 0 and our Lagrangian is spin.

4 Unobstructed Lagrangian lifts of tropical subvarieties

Since the geometric Lagrangian lifts LV we construct will not be exact, to obtain a Lagrangian Floer
cohomology theory we need to show that these Lagrangian submanifolds have ƒ-filtered A1 algebra
which can be unobstructed.

4.1 Pearly model for Floer cohomology

We will adopt the model employed in [12] to define CF�.L/.

Theorem [12] Let L � X be a compact relative spin and graded Lagrangian submanifold inside
a rational compact symplectic manifold X . Pick h W L ! R a Morse function , and D � X n L a
stabilizing divisor. There exists a choice of perturbation datum P which defines a filtered A1 algebra
CF�.L; h;P;D/ where:

� Chains are given by the Morse cochains of L, so that CF�.L; h;P;D/DƒhCrit.h/i.

� Product structures come from counting configurations of treed disks. More precisely, given a
collection of critical points x D .x1; : : : ; xk/, we define the structure coefficients

hmk.x1˝ � � �˝ xk/; x0i D
X

ˇ2H2.X;L/

.�1/~.�.u/Š/�1T !.ˇ/ � #MP.X;L;D; x; ˇ/
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which determine the A1 product structure. Here #MP.X;L;D; x; ˇ/ is the count of points in
the moduli space of P-perturbed pseudoholomorphic treed disks , �.u/ denotes the number of
stabilizing points on each of these treed disks , and ~D

Pk
iD1 i jxi j.

The ƒ-filtered A1 homotopy class does not depend on the choices of perturbation , divisor , and Morse
function taken in the construction.

When the choices of h;P , and D are unimportant, we will write CF�.L/ instead of CF�.L; h;P;D/. The
most visible difference between the tautologically unobstructed setting and this more general definition is
that there now exists a curvature term m0 Wƒ! CF�.L/, which obstructs the squaring of the differential
to zero. We say that L is unobstructed if CF�.L/ has a bounding cochain b 2 CF�.L/; see Section B.1.
When L is unobstructed, the deformed A1 structure on CF�.L; b/ is a chain complex.

In this section we discuss whether a geometric Lagrangian liftLV of a tropical subvariety is an unobstructed
Lagrangian submanifold. We give an example computation in the pearly disk model to fix notation.

Example 4.1.1 (running example, continued) Returning to Example 2.4.4, we first examine CF�.Fq;r1/.
Since Fq bounds no topological disks, it does not bound any holomorphic disks. Therefore the Floer
complex is the Morse-tree algebra of Fq . Give Fq the Morse function

(6) f D

nX
iD1

cos.�i /:

We label the generators of
CF�.Fq;r1/Dƒhy1I i;

where I � f1; : : : ; ng. The differential is given by m1.y1I /D 0, and for a particular set of perturbations
the product structure is

m2.y1I ˝y
1
J /D

�
˙y1I[J if I \J D∅;
0 otherwise;

where the sign is determined by the number of transpositions required to reorder I [J .

Remark 4.1.2 To our knowledge, it is unknown if there exists a perturbation scheme for Morse flow
trees such that all higher products mk W CM�.S1/˝k! CM�.S1/Œ2� k� vanish.

To work in the setting where XA is noncompact, we need to place restrictions on the noncompact behavior
of the Lagrangian L to ensure that the moduli spaces of pseudoholomorphic treed-disks considered
by [12] remain compact. A natural condition to impose is that L�XA is admissible (Definition A.0.1)
with respect to a potential function W W XA! C, so that the projection W.L/ fibers over the real axis
R>0 outside of a compact set. Let YA DW �1.t/ for t 2R�0. Choices of different sufficiently large t
yield fibers which are symplectomorphic. The restriction of L to a large fiber will be called M WD LjYA ;
this is a Lagrangian submanifold of YA. By Theorem A.0.2 there exists a treed-disk model for Lagrangian
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Floer cohomology CF�.L/ for W-admissible Lagrangians L. Furthermore, there exist compatible choices
of perturbation data such the standard projection

CF�.L/! CF�.M/

is a ƒ-filtered map of A1 algebras.

A useful lemma of [28] states that when we have a monomially admissible Lagrangian L, there exists
a potential function W such that L is W-admissible. From the data of a fan and t 2 R, [3] constructs
tropicalized potential, which is a symplectic fibration W t;1

† W .C
�/n!C outside of a compact set.

Lemma 4.1.3 [28, Section 4.4; 29, Remark 2.10] Suppose that L is a Lagrangian submanifold that is
monomially admissible with respect to a monomial division adapted to† (in the sense of Definition 3.1.1).
Then L can be made admissible for the tropicalized potential.

4.2 Geometric Lagrangians versus Lagrangian branes

Definition 4.2.1 We say that an unobstructed Lagrangian submanifold .LV ; b/ is a Lagrangian brane
lift of V if LV is a geometric Lagrangian lift of V .

Before developing constructions of bounding cochains for geometric Lagrangian lifts, we give some
examples of geometric Lagrangian lifts which are known to be unobstructed (or tautologically unobstructed)
Lagrangian submanifolds.

Example 4.2.2 (Lagrangian pair of pants) In [39], it was shown that the tropical pair of pants centered
at the origin is an exact Lagrangian submanifold; a similar proof was given in [33], which showed that all
tropical Lagrangian submanifolds constructed from the data of a dimer are exact.

Claim 4.2.3 Let V � Rn be a tropical variety such that 0 2 V i for all facets V i � V . Let L"V be a
homologically minimal lift of V . Then L"V is exact.

Proof Let �D pdq be the primitive for ! on XA D T �T n. We need to show that � is exact on L"V ;
equivalently we show that �./D0 for all Œ�2H1.L"V /. Observe thatL"V retracts ontoL"V \�

�1
A .B�.0//.

Therefore, for every loop  2 H1.L"V /, there exists  0 which is homotopic to  and lives within in
��1A .B�.0//; by letting �! 0 we obtain Œ 0�D Œ� and  0 � F0. As F0 is exact, �. 0/D 0.

Since these Lagrangians are exact, they are tautologically unobstructed and we can conclude that L"V is a
tropical Lagrangian brane.

In some cases, one obtains tautological unobstructedness (or unobstructedness) of the Lagrangian sub-
manifold for free.
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Example 4.2.4 We can obtain tautological unobstructedness for curves V �R2. Since LV is a graded
Lagrangian submanifold, the only holomorphic curves which might cause us difficulty are Maslov index
0 curves. However, the expected dimension of Maslov index 0 disks with boundary on a 2-dimensional
Lagrangian is negative, therefore for a generic choice of almost complex structure these disks disappear
and L"V is tautologically unobstructed.

It is possible for nonregular Maslov index 0 disks to appear with boundary onL"V , even in simple examples
(see Example 4.2.11). More generally, [33] shows that there exists a “wall-crossing” phenomenon which
occurs for isotopies between tropical Lagrangian submanifolds, and that the count of these Maslov index 0
holomorphic disks play a crucial role in understanding coordinates on the moduli space of tropical
Lagrangian submanifolds.

Example 4.2.5 We now examine a setting outside of the mirrors to toric varieties. Let Q be any tropical
abelian surface; then XA WD T �Q=TZQ is a symplectic 4-torus. Given any tropical curve V �Q, there
is a Lagrangian surface L"V �XA. By the same reasoning as above, LV is tautologically unobstructed
for generic choice of almost complex structure.

Example 4.2.6 We also know unobstructedness for geometric Lagrangian lifts is [38]. In that setting,
the base of the Lagrangian torus fibration has nontrivial discriminant locus, and the tropical Lagrangians
constructed are lifts of compact genus-0 tropical curves in the base. Mak and Ruddat show that the
associated tropical Lagrangians are homology spheres and therefore are always unobstructed by a choice
of bounding cochain [22].

In general, other techniques are required to prove that a geometric Lagrangian lift of a tropical subvariety
is unobstructed.

Example 4.2.7 Given any smooth tropical hypersurface V �Rn, [30] shows that the tropical Lagrangian
lift can be equipped with a bounding cochain so that .LV ; b/ is an unobstructed Lagrangian submanifold
of .C�/n. The proof uses that LV can be constructed as a mapping cone of two Lagrangian sections in the
Fukaya category; as these sections bound no holomorphic strips or disks, one expects that their Lagrangian
connected sum can be equipped with a bounding cochain. In practice, the process of constructing the
bounding cochain is delicate.

We furthermore expect that similar methods should show that given V D V1 \ � � � \ Vk a transverse
intersection of tropical hypersurfaces Vi , there exists LV an unobstructed Lagrangian lift of V . The
Lagrangian LV is constructed by using the fiberwise sum of the lifts [29; 57], so that

LV D LV1 CQ � � � CQ LVk :

While the resulting Lagrangian submanifold LV may be immersed, over the top-dimensional stratum of
V the Lagrangian submanifold LV satisfies Definition 3.0.2. This provides the geometric realization. To

Geometry & Topology, Volume 29 (2025)



1940 Jeffrey Hicks

obtain unobstructedness, we can also write LV as the geometric composition of unobstructed Lagrangian
correspondences (each giving the fiberwise sum withLVi ). It is expected (from [21; 60]) that the geometric
composition of unobstructed Lagrangian correspondences is unobstructed in this setting, from which it
follows that LV is unobstructed by the pushforward bounding cochain.

Example 4.2.8 Given a smooth tropical hypersurface V of a tropical abelian variety Q D Rn=MZ,
[30, Example 5.2.0.7] constructs an unobstructed Lagrangian lift .LV ; b/ inside the symplectic torus
T �Q=T �ZQ. The proof of unobstructedness is easier than the hypersurface setting (as one does not need
to worry about issues of compactness).

The next two examples were suggested by Dhruv Ranganathan.

Example 4.2.9 Let L1 � X1 and L2 � X2 be tautologically unobstructed Lagrangian submanifolds.
Then L1�L2 �X1�X2 is again a tautologically unobstructed Lagrangian submanifold. Furthermore, if
the methods in [7] can be adapted to the Charest–Woodward model of Floer cohomology that we use, then
the product of unobstructed Lagrangians is unobstructed. It follows that when Vi �Qi have Lagrangian
brane lifts, then so does V1 �V2 �Q1 �Q2.

Example 4.2.10 Suppose for t 2 Œ0; 1� we have geometric Lagrangian lifts LVt of a family of tropical
subvarieties Vt . Furthermore, suppose that for t 2 Œ0; 1/ the lift is a Lagrangian brane lift. Then LV1 is
a Lagrangian brane lift of V1. The proof uses Fukaya’s trick to choose perturbation data so that for t
close to 1, the LVt all have the same moduli spaces of pseudoholomorphic disks. Then there exists a
subsequence of bounding cochains for the Lt which converge to a bounding cochain on L1.

There are few general criteria for determining if a Lagrangian submanifold is unobstructed. To highlight
some of the subtlety of the problems, we exhibit a tropical Lagrangian which bounds a nonregular Maslov
index 0 disk.

Example 4.2.11 Consider the projection to the base of the Lagrangian torus fibration of the tropical
Lagrangian submanifold LV4 drawn in Figure 6. Let ` be the dashed red line. Take the standard metric
on R2 so we may identify TR2 with T �R2. Provided that one takes a symmetric construction of the
Lagrangian pairs of pants (for example, using the construction of [39]), the holomorphic cylinder T `=TZ`

tropicalizing to the line ` intersects the Lagrangian LV4 cleanly along an S1. This yields an isolated
holomorphic disk with boundary on LV4 . This is not a regular holomorphic disk.

Further examples of nonregular Maslov index 0 disks are given in [32]. In Section 6.3, we give examples
of geometric Lagrangians lifts which are unobstructed, but not tautologically unobstructed for any choice
of admissible almost complex structure on .C�/n. In Section 6.4, we show that there exists V such that
LV is obstructed.
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V4

`

Figure 6: The projection to the base of the Lagrangian torus fibration of a tropical Lagrangian.
The holomorphic cylinder above the red dashed line cleanly intersects the tropical Lagrangian.

4.3 Unobstructedness at the boundary

We now give a method for constructing a bounding cochain for a Lagrangian which is W-admissible. By
Lemma 4.1.3, for every L a �†-monomially admissible Lagrangian there exists a tropicalized potential
W
t;1
† W .C

�/n!C such that L is W t;1
† -admissible. We state our results for W-admissible Lagrangians as

the methods may be of interest beyond the monomially admissible setting.

Theorem 4.3.1 Let W WX!C be a potential function , and suppose that L is aW-admissible Lagrangian
submanifold whose restriction to a large fiber is M D L\ .W �1.t//, where t 2R�0. Suppose that there
exists M0 �M a union of connected components of M with the property that

(i) the Lagrangian M0 bounds no holomorphic disks , and

(ii) the map H 1.M0/!H 2.L;M0/ is surjective.

Then L is unobstructed.

The idea of the proof is to construct the bounding cochain for L by “lifting the curvature term of L to the
boundary M0”. The condition that H 1.M0/!H 2.L;M0/ shows that the curvature term (which takes
values in the subcomplex H 2.L;M/) is the coboundary of something coming from the boundary M0

of L. The algebraic content of this statement is Lemma B.2.8.

Proof We show that the A1 algebras A D CF�.L;M0/, B D CF�.L/, and C D CF�.M0/ satisfy
Lemma B.2.8(i)–(iii). From Theorem A.0.2, the sequence A ! B ! C is exact, and A is an A1
ideal. Since M0 bounds no holomorphic disks, C is tautologically unobstructed and A is a strong
ideal, giving us Lemma B.2.8(i). Because M0 bounds no holomorphic disks, CF�.M0/ D CM�.M0/,
which is quasi-isomorphic to ��.M/. Thus we have Lemma B.2.8(ii). Finally, the hypothesis that
H 1.M0/!H 2.L;M0/ surjects is exactly Lemma B.2.8(iii).

We give an example that relates to the discussion in [18, Section 5.2]:
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h1; 0; 0i

h0; 0; 1i

h0; 1; 0i h1; 1; 1

LA

u

Figure 7: The projection of the AV Lagrangian LA to the base .R�0/3 of the Lagrangian torus
fibration of the Aganagic–Vafa Lagrangian LA �C3. We also draw the projection of the single
simple holomorphic disk which contributes to a bounding cochain for LA.

Example 4.3.2 (Aganagic–Vafa brane) Let A 2R>0 be some constant. The Aganagic–Vafa (AV) brane
is a Lagrangian submanifold LA �C3 parametrized by

D2 �S1!C3; .r1; �1; �2/ 7! ..
p
A2C r2/e�i.�1C�2/; rei�1 ; rei�1/:

The Lagrangian LA is admissible for the potential function W.z1; z2; z3/D z1z2z3. The restriction to
the fiber MA �W �1.s/D .C�/� .C�/ is a product-type torus, so it bounds no holomorphic disks, and
we may apply Theorem 4.3.1 to conclude that this Lagrangian is unobstructed by a bounding cochain.

The bounding cochain corrects this Lagrangian submanifold so that it agrees with predictions from mirror
symmetry. By application of the open mapping theorem, the only holomorphic disks with boundary on
LA for the standard complex structure must lie in the fiber W �1.0/; in fact, the only simple holomorphic
disk with boundary on LA is parametrized by

u W .D2; @D2/! .C2; LA/; z 7! .Az; 0; 0/:

A computation shows that the partial Maslov indices of this disk are .2;�1;�1/ and therefore this is a
regular Maslov index 0 disk by [46]. This shows that the bounding cochain constructed by Theorem 4.3.1
is nontrivial.

Under an additional assumption [34, Assumption 5.2.3] one can compute the m0-term, which counts the
multiple covers of the disk u with an appropriate weight. The bounding cochain is

P1
kD1.1=k/T

k!.u/x,
where x 2 CM�.MA/ is a meridional class of the torus.

We remark that the Lagrangian LA is an example of a tropical Lagrangian submanifold considered in [42],
and the projection of LA under the moment map C3!QDR3

�0 is the ray .jAj2; 0; 0/C th1; 1; 1i.

Corollary 4.3.3 Let V �Q be a genus-0 smooth tropical curve. Let LV be a homologically minimal
geometric Lagrangian lift of V . Then LV is unobstructed , so there exists .LV ; b/ a Lagrangian brane lift
of V .
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Proof We show that the Lagrangian LV satisfies the criteria of Theorem 4.3.1. Let V .0/1 � V be the set
of semi-infinite edges of V . The boundary of this tropical Lagrangian realization M � YA is contained
within the lift of the semi-infinite edges

F
e2V

.0/
1
Le D T

n�1
e � e. Therefore M is the disjoint union of

tori indexed by the semi-infinite edges of V ,
S
e2V

.0/
1
T n�1e . At each edge, we see that �2.XA; Le/D 0.

It follows that M � YA bounds no holomorphic disks, so we satisfy Theorem 4.3.1(i). Select f 2 V .0/1
any edge, and let M0 D

S
g2V

.0/
1 ;g¤f

T n�1.

It remains to prove Theorem 4.3.1(ii), that the image of H 1.M0/ generates H 2.LV ;M0/. From
Lemma 3.3.1, for any semi-infinite edge f of V , resV

V1nf
W H 2.LV / !

L
g2V

.0/
1 ;g¤f

H 2.Lg/ is
an injection. From the long exact sequence for relative cohomology,M

g2V
.0/
1

g¤f

H 1.Lg/!H 2.LV ;M0/
0
�!H 2.LV / ,!

M
g2V

.0/
1

g¤f

H 2.Lg/;

the leftmost arrow surjects.

5 Faithfulness: unobstructed lifts as A-realizations

Given a Lagrangian torus fibration XA ! Q, the A-tropicalization of a tautologically unobstructed
Lagrangian submanifold L is the set of points q 2Q such that HF�.L; .Fq;r// ¤ 0 for some choice
of local system r on Fq; see (4). We now describe the A-tropicalization when L is unobstructed by
a bounding cochain. Because we again work in the scenario where the space X is noncompact, we
must apply a taming condition at infinity to study Floer cohomology. By the same arguments as for
Theorem A.0.2, whenever L0 is admissible and L1 is compact for a potential W WXA!C, there exists
a well-defined CF�.L0;r0/�CF�.L1;r1/ bimodule CF�..L0;r0/; .L1;r1// given by [12]. As in the
setting of Definition 2.4.1, CF�..L0;r0/; .L1;r1// is generated on the transverse intersections between
L0 and L1. The A1 bimodule structure comes from counting pseudoholomorphic treed strips. We require
L1 to be compact to avoid issues of determining how to apply wrapping Hamiltonians in the definition.

Example 5.0.1 (running example, continued) We return to Example 4.1.1. Now we bring in the second
Lagrangian .LV ;r0/, which we give the trivial local system. The bimodule CF�..LV ;r0/; .Fq;r1//
has the same generators as Example 2.4.4; following Notation 2.4.5, we call these generators x01J ,
where J � f0; : : : ; n� kg. Since neither Fq nor LV bounds a holomorphic disk, the differential agrees
with Example 2.4.4,

m1.x01I /D
X
IÉJ

˙T �0.id�Pr1cj /xJ :

where �0 is the area of the small holomorphic strips.

We now describe the module product structure. This is given by counts of configurations of a Morse
flow-line on Fq which are incident to a strip with boundary on Fq [LV . Recall that the Hamiltonian
pushoff for LV is given by (3) while the Morse function for Fq is given by (6). As before, we use
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y1∅

y11x011

x01∅uC

Figure 8: The treed strip contributing to the bimodule product m2.x01∅ ˝y
1
1/D x

01
1 .

fy1I gI�f1;:::;ng to label the critical points of f W Fq!R. The moduli space of strips from x01I and xJ is
nonempty when I < J ; the boundary of the strips sweep out the subtorus spanned by the indices of J n I .
The downward flow space of yK is the subtorus spanned by indices f1; : : : ; ng nK. These two subtori
intersect transversely only when .J n I /t .f1; : : : ; ng nK/D f1; : : : ; ng, which can be rephrased as

J DK [ I; K \ I D∅:

See Figure 8 for a treed strip that contributes to the product. From this, it follows that the module product
structure is given by

m2.x01I ˝y
1
J /D

�
P
r1

@uC
T jJ j�0x01I[J if I \J D∅ and I [J � f0; : : : ; n� kg;
0 otherwise:

Here jJ j�0 is the area of a holomorphic strip from x01i to x01I[J , and Pr1
@u

is the holonomy of the local
system along the Fq boundary of the strip. We remark that when J D∅, the same formula holds (simply
that uC is regarded as the constant strip at x01I ). The map

m2.x01∅ ;�/ W HF1..Fq;r0//! T �0 HF1..LV ;r0/; .Fq;r1//

surjects whenever the local system r1 has holonomy of the form idCT �1A along all the Fq boundary of
all strips.

5.1 Definition of support

When Lagrangians .L0;r0/ and .L1;r1/ are unobstructed by bounding cochains b0 and b1, we can
deform the Lagrangian intersection Floer cohomology CF�..L0;r0/; .L1;r1// by these bounding
cochains to obtain CF�..L0;r0; b0/; .L1;r1; b1//, a CF�.L0;r0; b0/�CF�.L1;r1; b1/ bimodule. Since
CF�.Lj ;r0; bi / has no curvature, the differential

m1 W CF�..L0;r0; b0/; .L1;r1; b1//! CF�..L0;r0; b0/; .L1;r1; b1//

squares to zero, giving us cohomology groups which we can study.

Definition 5.1.1 Let .L;r; b/ � XA be an admissible Lagrangian brane. The A-tropicalization of
.L;r; b/ is the set

TropA.L;r; b/ WD fq j 9.Fq;r 0/ such that HF�..L;r; b/; .Fq;r 0//¤ 0g:
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Remark 5.1.2 Suppose that there is a bounding cochain b0 for Fq such that

HF�..L;r; b/; .Fq;r 0; b0/¤ 0:

As Fq is tautologically unobstructed, a general principle of Lagrangian Floer cohomology (the divisor
axiom) states that there exists a local system called r 00 such that

(7) HF�..L;r; b/; .Fq;r 00//D HF�..L;r; b/; .Fq;r 0; b0//:

The local system r 00 is usually denoted by exp.b0/. To our knowledge, the divisor axiom has not been
proven for the [12] model of Lagrangian intersection Floer cohomology. In [9] a proof of the divisor
axiom was given for the de Rham version of open Gromov–Witten invariants. The central idea of the
proof is that the coefficients in the exponential function make an appearance through the application of the
“forgetting boundary points” relation between moduli spaces of holomorphic disks. The coefficients 1=kŠ
in the expansion of the exponential function show up via the number of ways one can forget boundary
marked points. Under the assumptions that Auroux uses, the forgetful axiom for pseudoholomorphic
disks holds. In the Charest–Woodward model for CF�.L0; L1/ we do not expect that perturbations for
Morse theory admit a “forgetting marked point” axiom. In our setting (where !.�2.XA; Fq//D 0) the
arguments used in Lemma 5.2.2 show that for all .Fq;r 0; b0/ there exists .Fq;r 00/ such that the identity
on .Fq;r 0; b0/ factors through .Fq;r 00/ and vice-versa. Provided that a Charest–Woodward model of
the Fukaya category with homotopy unit exists, this would prove (7) (although not give the closed-form
expression for r 0 as the exponential of the bounding cochain, as in the de Rham version). From the
divisor axiom, it follows that the A-tropicalization can be rewritten as

(8) TropA.L;r; b/D fq j 9.Fq;r 0; b0/ with HF�..L;r; b/; .Fq;r 0; b0//¤ 0g:

There remain some subtle differences between bounding cochains and local systems in general. It is
clear that we can only expect to replace bounding cochains with local systems in the setting where L is
tautologically unobstructed. Furthermore, we do not expect that when L is tautologically unobstructed
that we can replace .L;r/ with .L; b/. This is because val.b/ > 0, so it can only be expected to represent
local systems whose holonomy is of the form idCT �A where A 2 Uƒ and � > 0. In the specialization
to Lagrangian tori in a Lagrangian torus fibration, we believe that the requirement that val.b/ > 0 may
be loosened to val.b/ � 0 by application of the reverse isoperimetric inequality (in the same way that
the reverse isoperimetric inequality is used to prove that the family Floer sheaf has structure coefficients
defined over an affinoid algebra).

5.2 A-tropicalization of tropical Lagrangian lifts

In general, it is difficult to compute TropA.L; b/, as it requires having a very good understanding of the
differential on CF�..L; b/; .Fq; b0//. In Section 2.5 we performed this computation for the pair of pants
V �R2. Computation of the A-tropicalization is more tractable when the Lagrangian LV is a geometric
lift of a tropical subvariety because we have good control of leading-order contributions to the differential.
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The main tool that we use to compute the A-tropicalization is the following lemma:

Lemma 5.2.1 Let LV be a Lagrangian lift of a tropical curve , and let U �Q be an open set such that
Lj��1A .U / D LV j��1A .U /. For q 2 U , let R.q/ be the distance from q to Q nU . There exists a function
ALV ;U WR�0!R such that every holomorphic strip u with boundary on L[Fq with q 2 U is either

� “small” and has image contained within ��1A .U /, and therefore describes a holomorphic strip with
boundary on LV [Fq , or

� “large” and has symplectic energy greater than ALV ;U .R.q//.

Furthermore , there exists a constant CLV ;U such that

lim
R!1

ALV ;U .R/

R
D 2CLV ;U :

Additionally, we may replace Fq with a small Hamiltonian pushoff of Fq while preserving the bound.

Proof The lemma is an application of the reverse isoperimetric inequality from [25]. We use the proof
for holomorphic strips which is employed by [13] following [6; 16]. Recall that the reverse isoperimetric
inequality states that given a LagrangianL and choice of almost complex structure J there exists a constant
AL;J such that we can lower-bound the energy of pseudoholomorphic disks u with boundary on L by

(9) AL;J `.@u/�

Z
u

!;

where ` is the length as computed by the metric determined by J and !. The reverse isoperimetric
inequality for pseudoholomorphic strips requires the intersections of our Lagrangians LV and Fq to
be “locally standard” [13, Definition II.1]. Any Fq and LV satisfy this criterion, so whenever q 2 U ,
the Lagrangian submanifolds LV and Fq have locally standard intersection. The reverse isoperimetric
inequality from [13] can be stated as

(10) sALV ;Fq`.@u\B.C/
c/� !.u\ zUs/;

where C is chosen so that the radius-s normal neighborhoods Ns.LV / and Ns.Fq/ are defined for all
s < C , and

zUs DNs.LV /[Ns.Fq/; B.C /DNC .LV /\NC .Fq/:

We obtain a weaker but more applicable bound by making the replacement B.C/ WD ��1A .BC .q//, for
which Fq is a subset. With this substitution, the left-hand side of (10) only depends on the length
of the boundary of u in LV . As the excluded neighborhood B.C/ is monotonic in C , if we choose
C.R/ < min

�
1
4
R;CLV ;U

�
where CLV ;U is the injectivity radius of LV we can impose the additional

condition that �A.B.C.R///�U . We now bound the constant ALV ;Fq , called K in [13, Corollary II.11].
It is the product of the constants

� C1 and C�12 from [13, Proposition II.8], which provide constants of domination between the
pseudometric given by a particular plurisubharmonic function h and the standard metric, and

� A, which provides a bound for jgrad hj over zUs .
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A special feature of tropical Lagrangian submanifolds is that over the region ��1A .U /nB.C/, the function h
agrees with the distance to LV . As LV is totally geodesic over ��1A .U /, we obtain that dd ch.�;

p
�1�/

agrees with the metric induced by the standard metric over this chart. Therefore the constants C1, C�12 ,
and A are all 1 over this region. By restricting the integral on the penultimate line of [13, (9)] to the region
��1A .U /, we may replace ALV ;Fq with 1 to obtain the bound C.R/`.@u\B.C.R//c\��1A .U //�!.u/.

We now show that every strip is either “small” or “large”:

� Suppose that @u� ��1A .U /. Then u describes a strip with boundary on LV [F0; we know that all
such strips are contained within ��1A .U / and have an upper bound for their energy.

� Otherwise @u š ��1A .U /. Let `Q be distance as measured on Q. Observe that for any path  with
one endpoint in Fq and another endpoint in X n��1A .U / we have the bound

R�C.R/� `Q.�A. \B.C/
c//� `. \B.C/c/:

Since the boundary of u must have at least two such paths,

ALV ;U .R/ WD 2C.R/.R�C.R// < !.u/:

As R!1, we have that C.R/! CLV ;U , from which we obtain the asymptotic behavior of ALV ;U .

The constant CLV ;U giving the injectivity radius of LV can be computed from the tropical data of V . In
the 2-dimensional setting, we obtain the following nice relation. At a top-dimensional stratum (edge) e
with integral primitive direction Ev, the constant CLV ;U in Lemma 5.2.1 is 1=.2jEvj/. The bound for the
holomorphic energy of the strips becomes

2C.R�CLV ;U /D
R�CLV ;U

jEvj
:

We observe that R=jEvj is the affine radius of the neighborhood around the point q. This can be observed
in Section 2.5 and Example 6.3.2, where the affine lengths of edges in tropical curves govern the areas of
holomorphic disks and strips which appear in those computations.

Lemma 5.2.2 Let U �Q be a neighborhood of q. Suppose that .L;r; b0/�XA is a Lagrangian brane
whose restriction to ��1A .U / is

Lj��1A .U / D LV ;mj��1A .U /;

where V � U is a k-dimensional linear subspace , and m the multiplicity. Then there exists a choice of
bounding cochain and local system on Fq such that

HF0..L;r0; b0/; .Fq;r; b//Dƒ:

Proof To reduce notation in the proof, we will take the same simplifying assumptions as in Lemma 5.2.1.
Additionally, we assume that the local system r0 and bounding cochain b0 on L are trivial.
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We see that Lj��1A .U / \ Fq cleanly intersect along a T n�k � F0; morally we now apply the spectral

sequence of [48; 51] to compute the Floer cohomology of CF�.L; F0/ as a deformation of C �.T n�k/.
Because Lj��1A .U / D LV j��1A .U /, we can apply Lemma 5.2.1. Following Example 5.0.1, apply a
Hamiltonian isotopy to L so that L and Fq intersect transversely. Take the perturbation small enough that
the area of the holomorphic strips �0 is less than the bound �1 WD ALV ;U .R/ provided by Lemma 5.2.1.
By Lemma 5.2.1, the map m2 W CF�.LV ; Fq/˝CF�.Fq/! CF�.LV ; Fq/ agrees with Example 5.0.1 at
valuation less than �1:

(11) m2.x01I ˝ x
1
J /�

�
T �0x01I[J if I \J D∅ and I [J � f0; : : : ; n� kg;

0 otherwise;
mod T �1 :

Let CF�.Fq; ƒ�0/ and CF�.LV ; Fq; ƒ�0/ be the filtered A1 algebra and bimodule where we use ƒ�0
rather than ƒ-coefficients. It follows that the map on chains

m2 W .x01∅ /˝CF1.Fq; ƒ�0/! CF1.LV ; Fq; ƒ��0/=CF1.LV ; Fq; ƒ��1/

surjects. Hence CF�.LV ; Fq; ƒ�0/ as a right CF�.Fq; ƒ�0/module satisfies the criterion of Lemma B.3.1
and there exists b 2 CF�.Fq/ such that HF0.LV ; .Fq; b//¤ 0.

To extend to the setting where L has a local system r0, we simply require that Fq be equipped with a
local system r1 which agrees with r0 on the torus spanned by the classes fc1; : : : ; cn�kg.

Remark 5.2.3 The constant �0 can be taken to zero provided that one works with a model of CF�.LV ; Fq/
which allows for clean intersections between LV and Fq; the proof of Lemma B.3.1 becomes slightly
simpler in that setting. The pearly model developed by [12] allows for such configurations of Lagrangian
submanifolds.

Corollary 5.2.4 Let .L;r0; b0/ and .Fq;r; b/ be as above. Then

HF�..L;r0; b0/; .Fq;r; b//D
^

i2f1;:::;n�kg

ƒhxi i:

Proof Again for expositional purposes, we assume that r0 and r are trivial local systems, assume that
the multiplicity of the local model V is 1, and suppress the bounding cochain on L. On chains, the action
of CF�.Fq; b/ on CF�.L; .Fq; b// is a deformation of the action of CF�.Fq; b/ on CF�.L; .Fq; b//. By
using an argument on filtration similar to the one above, the map

m2.x∅;�/ W CF�..Fq; b//! CF�.L; .Fq; b//

is a surjection. As every class in CF�..Fq; b// is closed and we’ve proven that x∅ is closed, every
element in CF�.L; .Fq; b// is closed. This proves that m1CF�.L;.Fq ;b0//

D 0, and that HF�.L; .Fq; b//D
CF�.L; .Fq; b//D

V
i2f1;:::;n�kgƒhxi i.

Corollary 5.2.5 Let .LV ; b/ be an unobstructed geometric Lagrangian lift of V . Then V .0/ nV .1/ �
TropA.LV ; b/.

If we assume (8), this immediately follows.
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Proof The proof of Lemma 5.2.2 can be modified to replace the bounding systems everywhere with
local systems. The needed observation is that the map from the space of local systems

H 1.Fq; Uƒ/! CF1.LV ; Fq; ƒ��0/=CF1.LV ; Fq; ƒ��1/; r 7!m1.Fq ;r/.x∅/;

is surjective. The same argument as in Lemma B.3.1 can be used to construct a local system term by term
so that m1

.Fq ;r/
.x∅/D 0. See also [53, Proposition 5.13], which proves a similar statement for tropical

curves using the implicit function theorem [1, Section 10.8].

6 B-realizability and unobstructedness

6.1 HMS for .C�/n

6.1.1 Construction of the mirror space Given �A WXA!Q a Lagrangian torus fibration, there is a
rigid analytic space XB with a tropicalization map TropB WXB!Q. As a set, XB is the set of Lagrangian
torus fibers equipped with a Uƒ local system,

XB WD f.Fq;r/g

which comes with a map �B WXB !Q given by .Fq;r/ 7! q. When QDRn, the points of XB are in
bijection with .ƒ�/n. We now describe, following [4; 17], how this can be realized as the set of points of
a rigid analytic space. We also recommend the discussion in [53, Section 5.1].

The Tate algebra in n-variables over ƒ is the set of formal power series

Tn WD

� X
A2Zn

fAz
A
ˇ̌̌
fA 2ƒ; val.fA/!1 as jAj !1

�
;

which is equipped with the sup-norm X
A2Zn

fAz
A

 WDmax
A
jfAj � 0:

We note that the maximal ideals of Tn are f.f1; : : : ; fn/ j val.fi /� 1g.

To build our spaces we will glue together affinoid algebras, which are quotients of the Tate algebra. The
affinoid algebras we will look at are the polytope algebras. Given a bounded rational polytope P �Rn,
define

OP WD
� X
A2Zn

fAz
A
ˇ̌̌

val.fA/CAp!1 as kAk!1 for all p 2 P
�
:

This is the affinoid algebra. The elements of this affinoid algebra have the property that they converge
when evaluated on z 2 .ƒ�/n with val.z/ 2 P . Furthermore, the points of OP are seen to be in bijection
with the points of ��1B .P /. When Q is compact XB can be covered by finitely many sets ��1B .P /, giving
XB the structure of a rigid analytic space.
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6.1.2 From Lagrangians to coherent sheaves Due to the limitations on currently existing constructions
for Fukaya categories, we do not have homological mirror symmetry for a category of nonexact Lagrangian
submanifolds in .C�/n. However, different aspects of this homological mirror symmetry statement exist
in the literature with strengthened hypotheses.

� The family Floer functor associates to a compact Lagrangian torus fibration �A WXA!Q a rigid analytic
space XB !Q whose points are in bijection with Lagrangian tori Fq �XA equipped with a Uƒ local
system. Furthermore, [5, Theorem 2.10] constructs a faithful A1 functor F W Fuktaut.XA/! Perf.XB/.
Here Fuktaut.XA/ is the Fukaya category of tautologically unobstructed Lagrangian submanifolds.

� In the exact setting, we have a complete proof of homological mirror symmetry for .C�/n. The proof
comes from recasting a section L.0/ of the fibration �A W .C�/n ! Q as a cotangent fiber in T �T n,
which is known to generate the exact Fukaya category. A computation shows that the A1 algebra
CF�.L.0/; L.0// is homotopy equivalent to hom.OCn ;OCn/. In fact, we have a little bit more: it is
known that the partially wrapped Fukaya category is mirror to the derived category of coherent sheaves
on a toric variety [2; 37].

For this paper, we will only compute CF�..LV ; b/; .Fq;r//, which means that we need substantially less
than an HMS functor of [5].

Theorem 6.1.1 [4] Consider the Lagrangian torus fibration �A WXA!Q, with Q compact. From this
data we can construct a rigid analytic mirror space XB whose points z are in bijection with pairs .Fq;r/.
For any tautologically unobstructed Lagrangian brane L�XA, there exists a coherent sheaf F.L/ on
XB such that

hom.F.L/;Oz/D HF0.L; .Fq;r//:

Assumption 6.1.2 Theorem 6.1.1 still holds under the following weakened assumptions:

(�) The base is allowed to beQDRn, and we additionally require that the LagrangianL be monomially
admissible.

(��) The Lagrangian L is allowed to be unobstructed by bounding cochains, in which case there exists
a coherent sheaf F.L; b/ on XB such that

hom.F.L; b/;Oz/D HF0..L; b/; .Fq;r//:

We now discuss the difficulties, expectations, and progress of proving the assumption. The primary
difficulties arise from noncompactness and unobstructedness.

Noncompactness presents three immediate issues. The first is Gromov compactness. We expect that after
one places appropriate taming conditions on our Lagrangian submanifolds (as in Appendix A) the moduli
spaces needed to construct the family Floer functor can be given appropriate compactifications.
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The second more difficult issue regards the role that wrapping plays in computing the Floer cohomology
between two noncompact Lagrangians. In the exact setting, the morphism space between two Lagrangians
is computed as the limit of CF�.�i .L0/; Li /, where �i is a wrapping Hamiltonian, and the limit is taken
over continuation maps. In the nonexact setting, these continuation maps have a nonzero valuation, and
only have inverses defined over the Novikov field (with possibly negative valuation). To our knowledge,
this version of the Fukaya category has not been constructed. However, since for our application we only
need to compute Floer cohomology against Lagrangian torus fibers (which are compact), we can ignore
the issues of the wrapping Hamiltonian.

Finally, there is the issue of coherence of F.L; b/. Here we use the monomial admissibility condition. We
recall the proof of coherence whenQ is compact. The sheaf F.L; b/ is constructed by defining it over affi-
noid domains on the mirror, which correspond to convex domains U �Q. The convex domain U is “small
enough” if there exists a Hamiltonian isotopy of L such that it intersects all Lagrangian torus fibers Fq
with q 2U transversely. Over each small enough U , the sheaf is computed by CF�..L; b/; .Fq;r//˝OU ,
where OU is the affinoid ring of the affinoid domain XU;B associated to the convex domain U . Since
CF�..L; b/; .Fq;r// is finitely generated, and (in the compact setting) we can cover Q with finitely many
such U , we obtain that the mirror sheaf is coherent. If we drop the condition of Q being compact, and
impose the condition that L is monomially admissible, we can still cover Q with a finite set of convex
(possibly noncompact) small enough domains U �Q by using invariance of the Lagrangian submanifold
under symplectic flow in the direction of the monomial ray over each monomial region.

We now remark upon the difficulty of unobstructedness. Remark 1.1 of [5] states that the “tautologically
unobstructed” hypothesis for construction of the family Floer functor is technical in nature, and it is
expected that the family Floer functor should carry through using unobstructed Lagrangian submanifolds.
As we do not require functoriality, such an adaptation of family Floer cohomology to the Charest–
Woodward model would not require studying moduli spaces beyond those already studied in [12]. We
believe the main items left to prove for this construction are the following:

� It must be shown that “Fukaya’s trick” for pulling back a perturbation datum between Lagrangian
fibers over sufficiently small convex domains can be worked out in the more technically challenging
setting of domain-dependent perturbations. This does not appear to present a problem when working
with the setup of [12].

� It must be shown that “homotopies of continuation maps” exist in the version of Lagrangian intersection
Floer cohomology one is working with. In [12], continuation maps are constructed using holomorphic
quilts. There is also an additional challenge of showing that one can construct homotopies of continuation
maps corresponding to changes in the choice of stabilizing divisor.

Finally, we note that the work in progress of Abouzaid, Groman, and Varolgunes generalizing [24; 59] to
the Fukaya category will prove homological mirror symmetry for unobstructed Lagrangian submanifolds
of .C�/n, giving us Assumption 6.1.2.
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Remark 6.1.3 A different approach that would bypass family Floer theory would be to expand homologi-
cal mirror symmetry for toric varieties [2; 37] in the nonexact setting. This would involve developing [23]
to the nonexact setting. While there is no clear obstruction to expanding the Liouville sector framework
to include obstructed Lagrangian submanifolds that are geometrically bounded, there are at least two
technical and challenging issues that would need to be overcome. Many of the arguments used in [23]
would have to be carefully redone by replacing geometric bounds obtained by energy and exactness
with other methods for bounding holomorphic disks. In fact, these techniques are already employed in a
limited capacity in [23] for the proof of the Künneth formula (as products of cylindrical Lagrangians
are usually not cylindrical). The second issue is understanding how to incorporate curvature into the
homological algebra constructions employed by [23]. One possible workaround would be to first construct
the partially wrapped precategory of Lagrangian branes that are equipped with bounding cochains (which
is an uncurved filtered A1 precategory) and localize at continuation maps to construct the partially
wrapped category. This already requires some care, as it is not immediately clear how the filtration
would play a role in this localization (the continuation maps would have positive energy, so there may be
convergence issues). The second, more ambitious approach would be to attempt to construct a “curved
partially wrapped Fukaya category”, by starting with a partially wrapped Fukaya precategory whose
objects are (potentially obstructed) Lagrangian submanifolds. This second approach would require one to
understand what a filtered A1 precategory is and also to construct localizations of these categories.

6.2 Unobstructed Lagrangian lift implies B-realizability

By employing [6] (with the possible extensions stated in Assumption 6.1.2) we can associate to each
Lagrangian brane .LV ; b/ a closed analytic subset of XB :

Y.LV ; b/ WD Supp.H 0.F.LV ; b///:

Corollary 6.2.1 Consider the Lagrangian torus fibration �A W .C�/nDXA!Q and a tropical subvariety
V �Q. Suppose that .LV ; b/ is a Lagrangian brane lift of V . Then

� .LV ; b/ is an A-realization of V in the sense that TropA.LV ; b/D V ,

� V is B-realizable.

Proof By Assumption 6.1.2, TropA.LV ; b/ D TropB.Y.LV ; b//. In Corollary 5.2.5, we proved that
V .0/ � TropA.LV ; b/� V . Since Y.LV ; b/ is a closed analytic subset, TropB.Y.LV ; b// is the union of
closed rational polyhedra in NR [27, Proposition 5.2]. As a result, TropB is closed and contains V .0/DV .
It follows that Y.LV ; b/ is a closed analytic subset of XB which realizes V .

Corollary 6.2.2 Assuming Assumption 6.1.2(�)–(��), let V be a smooth hypersurface or a smooth
genus-0 tropical curve in Rn. Then V is B-realizable.

Corollary 6.2.3 Assuming Assumption 6.1.2(��), let V be a smooth tropical hypersurface of a tropical
abelian variety QDRn=MZ. Then V is B-realizable.
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Corollary 6.2.4 Without assuming any portion of Assumption 6.1.2, let V be a 3-valent tropical curve
in a tropical abelian surface Q. Then V is B-realizable.

Proof The condition of 3-valency comes from using

� [35] to build an affine dimer model associated to each 3-valent vertex, and

� [33] to build tropical Lagrangian lifts from a dimer model.

We now address why Assumption 6.1.2 may be dropped. Since Q is a tropical abelian surface (and is
therefore compact), the symplectic manifold XA is compact. Since the Lagrangian lift LV is graded of
dimension 2, it is tautologically unobstructed for a generic choice of almost complex structure (as Maslov
index 0 disks appear in expected dimension �1).

6.3 Nonplanar tropical curves do not have tautologically unobstructed lifts

Even in the setting where V is a genus-0 tropical curve, it is rare for the Lagrangian lift LV to be a
tautologically unobstructed Lagrangian submanifold.

Before constructing an example, we observe that the valuations of the “big-strips” in Lemma 5.2.2
are dictated by the radius of the neighborhood Uq that we can construct around the point q which is
disjoint from V .1/. In particular, this can be applied to [53, Proposition 5.10] to show that tautologi-
cally unobstructed Lagrangian lifts of tropical curves have supports that extend to an appropriate toric
compactification of the mirror algebraic torus.

Proposition 6.3.1 Let † be a fan. Suppose that V is a tropical curve with semi-infinite edges in the
directions of the rays of †. Suppose the fan of † has the additional property that h˛; ˇi � 0 for all
1-dimensional cones ˛ ¤ ˇ and h�;�i is the standard inner product. Then Y..LV ; b/; 0/ compactifies to
a rigid analytic space inside XB.†/, the rigid analytic toric variety with fan †.

Proof We first describe the rigid analytic structure on XB.†/ given by [49]. From [47], the space
XB.†/ comes with a fibration TropB W XB.†/!Q.†/, which is a partial compactification of Q; see
[49, Definition 3.6]. Rabinoff then covers XB.†/ with charts given by the max-spec of affinoid algebras.

Let P� �Q denote a convex set which can be written as P 0C � for � 2† and some convex compact
polytope P 0 �Q. Associated to P� is a subset P � �Q.†/, and an affinoid algebra

OP� WD
� X
A2.�_\Zn/

fAz
A
ˇ̌̌

val.fa/C ap!1 as kAk!1 for all p 2 P�

�
:

We can cover XB.†/ with charts given by the max-spec of OP� (which covers TropB�1.P � //.

We now unpack what it means for a Lagrangian submanifold .L; b/ constructed via family Floer theory
to give a coherent sheaf F..L; b// on the rigid analytic space XB.†/. In the family Floer construction,
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for a sufficiently small convex polytope P in the base of Q, one takes a Hamiltonian perturbation LP of
L so that LP j��1A .P / is a disjoint set of flat sections of ��1A .P /! P , and that the bounding cochain is
similarly parallel to the flat section. As a result, we may identify the chains CF�..LP ; b/; .Fq;r// for all
q 2 P . Additionally, for q 2 P , one can appropriately choose almost complex structures (using Fukaya’s
trick) so that the moduli spaces of strips contributing to the differential on CF�..L; b/; .Fq;r// does not
depend on q. Because the bounding cochain on L is parallel to the flat section, the contribution of b to
the differential on CF�..L; b/; .Fq;r// does not depend on q 2 P . As a consequence, the dependence of
the structure coefficients hm1

.L;b/;.Fq ;r/
.x/; yi on .Fq;r/ factors through the flux homomorphism. Pick

a basepoint x0 on Fq and for each x 2 L\Fq a path x from x0 to x. By identifying .Fq;r/ with a
point z 2 TropB�1.P /, we obtain that

hm1z.x/; yi D
X

a2H1.Fq/

caz
a;

where ca is the area and local-system weighted count of pseudoholomorphic strips u such that

Œx@Fqu
�1
y �D a:

The Lagrangian L defines a complex of sheaves F.L/ over .XB jP / if these structure coefficients belong
to OP . The restriction maps compose up to homotopy of the chain complex. This is proven using the
reverse isoperimetric inequality to bound the area of holomorphic strips u (which govern convergence)
below by the winding of the Fq boundary component of U (which governs the exponent appearing
in za). To obtain a coherent sheaf of complexes on XB , one must be able to cover Q with finitely many
sufficiently small sets P . When Q is compact, this is always possible. In the setting we study, we must
take some of the sets P to be of the form P� in order to construct a finite cover.

We now perform this construction for LV our tautologically unobstructed Lagrangian lift of a tropical
curve V . Let e be a semi-infinite edge of V pointing in the ˛ direction, where ˛ 2† is a 1-dimensional
cone. Then there exists a P˛ such that V jP˛ is a 1-dimensional ray. Since h˛; ˇi<0 for all 1-dimensional
rays ˇ¤˛, the projection �˛ WXA!C given by the ˛-monomial has the property that the �˛jLV WLV !C

fibers over a real ray outside of a compact set. This is the main input needed in [53, Proposition 5.10]

C

P�Fq
C

�˛.LV /

Fq

Figure 9: Monomial admissibility forces strips with h@u; ˛i > 0 to have large symplectic area.
Left: condition on a tropical curve. Right: projection on �˛ WXA!C.
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to show that the differential on CF�.LV ; .Fq;r// is of the form
P
a2H1.Fq/;ha;˛i�0

caz
a, and that

val.ca/C ap!1 as kAk!1 for all p 2 P˛. It follows that hm1z.x/; yi 2OP˛ .

We can choose a finite cover of Q by sets of the form P� so that �A.LV /� P� if and only if j� j � 1. It
follows that F.LV / defines a sheaf on XB.†/.

In the setting above (where LV is tautologically unobstructed and equipped with the trivial local system),
the above computation not only shows that F.LV / extends to XB.†/ but also shows that we can compute
the points in the compactifying locus. For a semi-infinite edge e, let P˛ D P Ch˛i be a convex polytope
whose only intersection with V is along the edge e. Without loss of generality, we will assume that the
edge e is of the form .t; 0; : : : ; 0/�QDRn, with t tending to1. We can write the max-spec of P˛ as

f.z1; : : : ; zn/ 2ƒ� .ƒ
�/n�1 j val.z1; : : : ; zn/ 2 P ˛ � .R[1/�Rn�1g:

We prove that .0; 1; : : : ; 1/2Supp.F.LV //. The ha; ˛iD0 terms of hm1z.x∅/; xI i agree with holomorphic
strips for the differential on CF�.Le; .Fq;r//, so we can write

hm1z.x∅/; xI i D .1� z
hI;ai/C

X
a2H1.Fq/;ha;˛i>0

caz
a:

When we have a sequence of points fzkgk2N with the property that m1
zk
.x∅/D 0 (ie zk 2 Supp.F.LV //)

and limk!1 val.zk1 /D1 (so that the limit belongs to the compactifying toric divisor), the above equation
states that limk!1 val.zki /D 1 for all i ¤ 1. We conclude that the closure of Supp.F.LV // inside of
XB.†/ contains the point .0; 1; : : : ; 1/.

We now construct an example of a Lagrangian brane lift of a tropical curve that is unobstructed, but not
tautologically unobstructed.

Example 6.3.2 Consider the tropical line Vc 2 R3 drawn in Figure 10. The tropical line Vc has two
pants centered at the points .0; 0; 0/ and .�c;�c; 0/, whose legs at .0; 0; 0/ point in the directions

e1 D h1; 0; 0i; e2 D h0; 1; 0i; ec D h�1;�1; 0i;

and whose legs at .�c;�c; 0/ point in the directions

e3 D h0; 0; 1i; e4 D h�1;�1;�1i; �ec D h1; 1; 0i:

We prove that LVc bounds a holomorphic disk for all but at most 1 value of c.

Assume for contradiction that for all values of c the Lagrangian submanifold LVc is tautologically
unobstructed, and requires no bounding cochain. Then the Lagrangians LVc satisfy the conditions of
Proposition 6.3.1, so each YVc WD Supp.F.LVc // compactifies to give a curve inside of P3. Since this
curve intersects each of the toric divisors at a single point, we conclude that every YVc is a line in P3.
Furthermore, every one of these lines contains the points .1 W 0 W 0 W 0/ and .0 W 1 W 0 W 0/ in P3. Since a
line in P3 is determined by two points, this implies that YVc D YVc0 . However, as Vc ¤ Vc0 , they cannot
be realized by the same subvariety, a contradiction.
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e1

e2

e3

e4

c

Figure 10: A tropical line Vc . The Lagrangian lift LVc necessarily bounds a holomorphic disk;
we conjecture that the projection to the base of the Lagrangian torus fibration of this holomorphic
disk lives over the red edge and has area controlled by the affine length c.

This doesn’t contradict the realizability of Vc . Indeed, by Corollary 4.3.3, the bounding cochain on LVc
need only be supported on three of the four legs of LVc . However, the above argument shows that one
cannot construct a bounding cochain for LVc which restricts to zero on the two semi-infinite edges which
share a vertex (which implies that the bounding cochain cannot be zero).

Using mirror symmetry, we can “back solve” for the valuation of the holomorphic disk, which necessitates
the use of a bounding cochain on LVc . We may assume that the bounding cochain has trivial restriction
to the e1 edge. It follows that the tropical line YVc may intersect toric divisors at the points .0; 1; 1/,
.1C exp.b1/; 0; 1C exp.b3// and .z�c C exp.c1/; z�c C exp.c2/; 0/. Since these have to satisfy the
equation of a line, there exists t such that

.1� t /.0; 1; 1/C t .exp.b1/; 0; exp.b2//D .z�c.exp.c1//; z�c.exp.c2//; 0/:

From examining the third term, t D .1� exp.b2//�1, we already see that b2 ¤ 0. From examining the
third term,

.1� exp.b2//�1 exp.b1/D zc.exp.c1//;

from which we see that val.b2/D c. From this, we conclude that there exists a pseudoholomorphic disk
of energy c on LVc .

6.4 Speculation on Speyer’s well-spacedness criterion

Corollary 6.2.1 proves the forward direction of Conjecture 1.1.1. To investigate the reverse direction, we
look at an example of a nonrealizable tropical curve. In [40] it was observed that every cubic curve in
CP3 is planar (Figure 11, left). Consequently, the example drawn in Figure 11, right — a tropical cubic
which is not contained within any tropical plane — cannot arise as the tropicalization of any curve in CP3.
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Figure 11: Left: A well-spaced tropical curve. The affine lengths of the red and green match.
Right: A nonrealizable tropical curve. The affine length of the green segment is uniquely minimal
among all paths from the cycle to the nonlinearity locus of the curve.

Corollary 6.4.1 Let V be the tropical curve from [40, Example 5.12]. Then the standard lift of LV is an
obstructed Lagrangian.

A general criterion for understanding this phenomenon was stated in [55]:

Theorem (Speyer’s well-spacedness) Let V be a genus-1 tropical curve whose cycle is contained
within a linear subspace H . Let d1; : : : ; dk be the affine lengths of paths along the edges of V to the
boundary of V \H . If the minimal distance occurs at least twice , the curve V is realizable.

We now speculate on how Speyer’s well-spacedness criterion can be understood in terms of holomorphic
disks with boundary on LV . For LV to be unobstructed, it is necessary for the lowest-energy terms in m0

to be nullhomologous. In particular, the setn
u
ˇ̌
!.u/� min

0¤Œ@u0�2H2.L;M/
!.u0/

o
of minimal-area nonnullhomologous disks must contain at least two elements. This matches the “two
minimal distance” criterion of Speyer’s well-spacedness theorem.

In [32], we saw that tropical cycles on W � R2 are related to nonregular Maslov index 0 disks with
boundaries on the Lagrangian lifts LW ; it was speculated that these Maslov index 0 disks could appear
regularly if they were glued onto a regular holomorphic disk or strip. In Example 6.3.2 we saw that the
Lagrangian brane lift of a small neighborhood of the green segment in Figure 11, right, must have a
regular disk with energy given by the affine length of the edge.

In the example given by Figure 11, right, we conjecture that there are regular holomorphic disks with
boundaries on LV whose projections under the moment map are:

� the union of the blue hexagon (a nonregular disk) and green path (a regular disk), call this speculative
disk u1, and

� the union of the blue hexagon (a nonregular disk) and red path (a regular disk), call this speculative
disk u2.
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Using that the area of homology classes of disks with boundary on LV correspond to affine length,
the disks u1 and u2 have matching symplectic area if the affine lengths of the green and blue paths
match. In this case, the homology class of Œ@u1�� Œ@u2� doesn’t wrap around the portion of the homology
of LV which arises from V , and by a similar argument to that used in Corollary 4.3.3 we see that
Œ@u1�� Œ@u2� �H1.LV .0/1

/. We could then apply the methods used in the proof of Corollary 4.3.3 to
conclude that LV is unobstructed.

In the event that !.u2/ is uniquely minimal, the boundary of @.u2/ is a nontrivial homology class in
H1.LV /, suggesting that the contribution to m0 2 CF�.LV / is a nonremovable obstruction.

6.5 Deformations, superabundance, and not-wide

6.5.1 Geometric deformations ofL and .V;L/ Given V �Rn a tropical subvariety, a Lagrangian LV
should correspond to a lift of V equipped with a line bundle. In this section, we examine how the
deformations of LV up to Hamiltonian isotopy match deformations of a tropical curve equipped with a
line bundle .V;L/.

Given a fixed tropical line bundle L! V we can identify deformations of L with H 1.V;R/; this is
because deformations of invertible locally integral affine functions from U to R correspond to constant
differences. Similarly, the deformations of V � Rn as a smooth tropical subvariety can be computed
sheaf-theoretically. We choose a cover conducive to this computation. For each v 2 V , let star.v/ be the
union of the edges that contain v. We allow v to be a leaf (at the end of a semi-infinite edge). Then the
star.v/ form a cover of V , with star.v/\ star.w/D V vw whenever vw is an edge. There are two types
of vertices v that we must consider:

� If v is an internal vertex, then the deformations of star.v/ are identified with the integral affine
space Nv D TvRn DRn.

� If v1 is a boundary vertex incident to edge e, then the deformations of star.v1/ are identified
with the integral affine space Rn�1 perpendicular to the semi-infinite edge attached to v1.

Over each edge e, the deformations of the tropical curve are given by the normal bundle to e. In summary,
let DefV be the sheaf of deformations of the tropical embedding of V , and let DefL be the deformations
of a fixed line bundle L over V . We have:

DefV .star.v//DRn; DefV .star.v1//D e?v1 ; DefV .star.e//D e?:

For compact Lagrangian L, the infinitesimal deformations of L up to Hamiltonian isotopy are described
by classes in H 1.L;R/. Since LV is noncompact, we only consider the admissible deformations of
noncompact LV which preserve the condition in Definition 3.1.1. Let �1admis.LV ;R/ be the 1-forms on
LV with the property that

� for each monomial region U˛, the 1-form �jLV\U˛ is invariant under the flow in the ˛-direction,

� �.˛/D 0.
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We let �0admis.LV ;R/ be those functions which, outside of a compact set, are invariant under the flow in
the ˛ direction of the corresponding monomial region from Definition 3.1.1.

We can similarly decompose LV into sets Lstar.v/, which we will take to be

� the standard Lagrangian pair of pants when v in an interior vertex such thatLstar.v/\Lstar.w/DLV vw ,
in which case �iadmis.LV ;R/D�

i .LV ;R/,

� a noncompact cylinder extending to the boundary whenever w is a vertex at a noncompact edge.

We then compute H 1.��admis.LV //. The cohomology is the same as the first cohomology of the total
complex; the first page in the spectral sequence isL

v2V H
0.��.Lv//

L
v2V H

1.��.Lv// � � �

L
e2V H

0.��.Le//
L
e2V H

1.��.Le// � � �

0 0

We now start to identify these with deformations of tropical curves,

DefV .star.v//DH 1.��.Lv//; DefV .star.e//DH 1.��.Le//;

RDH 0.��.Lv//; RDH 0.��.Le//;

turning the first page of the spectral sequence intoL
v2V R

L
v2V DefV .e/ � � �

L
e2V R

L
e2V DefV � � �

0 0

The spectral sequence for H 1.��.L// converges at the second page for this covering, so

H 1.��.LV //DH
0.V;DefV //˚H 1.V;R/DH 0.V;DefV /˚H 0.V;DefL/:

In general, understanding the moduli space of Lagrangian submanifolds isotopic to LV modulo Hamilton-
ian isotopy is a difficult question. In the setting of Lagrangian torus fibrations, there is a smaller class of
isotopies that we can hope to understand. We say that a Lagrangian isotopy it W LV !XA is a fiberwise
isotopy if �A.it .q// is constant for all q 2 LV .

Conjecture 6.5.1 Let LV be a homologically minimal Lagrangian lift of a tropical curve V . Then the
subspace of H 1.LV ;R/ arising from the flux classes of fiberwise Lagrangian isotopies is identified with
H 0.V;DefL/. Additionally,

ffiberwise isotopiesg=ffiberwise Hamiltonian isotopiesg 'H 1.V;Aff�V /0;
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where Aff�V .U / is the sheaf of invertible locally integral affine functions from U to R, and H 1.V;Aff�V /0
is the connected component of the group which contains the identity.

Previous work of Mikhalkin [43] identifies the tropical Picard group of V with H 1.V;Aff�V /. Mirror
symmetry, therefore, identifies fiberwise isotopies of a tropical Lagrangian LV with modifications of the
line bundle on the mirror curve YV .

6.5.2 Not-wide and superabundance A tropical curve is called superabundant if the space of defor-
mations DefV has a higher dimension than the expected dimension of deformations of the B-realization.
Superabundance is a computable criterion that indicates that a curve may not be realizable. For example,
the tropical curve examined in Section 6.4 is a superabundant curve. It is known in certain cases [14] that
nonsuperabundant implies realizable.

In symplectic geometry there are two ways to make sense of deformations of Lagrangian submanifolds. The
first is the deformation of geometric Lagrangian submanifolds up to Hamiltonian isotopy. The infinitesimal
deformations of Lagrangian submanifolds modulo Hamiltonian isotopy are given by H 1.L;R/. The
second is the component of the moduli space of objects at L [58]. The tangent space to this moduli space
is HF1.L/. We note that as CF�.L/ is a deformation of C �.L/, we have that dim HF1.L/� HF1.L/. If
dim HF.L/D dimH.L/, then the Lagrangian L is called wide.

As the previous section identifies infinitesimal deformations of the pair .V;L/ with H 1.LV /, we are led
to conjecture:

Conjecture 6.5.2 Let V be a smooth tropical curve , and let LV be its Lagrangian lift. Then V is
superabundant if and only if LV is not wide.

Appendix A The pearly model in symplectic fibrations

Given a compact, spin, and graded Lagrangian L inside of a rational compact symplectic manifold X , [12]
constructs a filtered A1 algebra CF�.L; h;P;D/. In [12] it is assumed that the space X is compact. In
this appendix, we outline how to extend [12] to the setting where X is noncompact and equipped with a
potential function W WX!C, and L is a Lagrangian submanifold which is admissible with respect to W .

Definition A.0.1 Let X be a symplectic manifold, and let W WX!C be a function. We say that W is a
potential if there exists a compact subset U �C such that

� W �1.U / is compact, and

� the restriction W WX nW �1.U /!C nU is a symplectic fibration with compact fibers.

We say that a Lagrangian L is W-admissible if there exists R 2R such that W.L/\fz j jzj>Rg �R>R.
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Given a W-admissible L, we say that a Morse function h W L! R is admissible if there exists R0 > R
such that

W.Crit.h//\fz j jzj>Rg � fR0g;

and grad h points outwards from R0 under the projection W .

Let Y D W �1.R0/. Given a W-admissible Lagrangian submanifold L, the restriction to the fiber
M WDL\Y is a Lagrangian submanifold of Y . Because h points outwards along the collarM�R>R0 �L,
the Morse complex CM�.L; h/ is well defined. The compatibility of the Morse function with the potential
function means that hC WD hjM is a Morse function for M and that we have a map of A1 algebras

� W CM�.L; h/! CM�.M; hC/:

This should be interpreted as the pullback map of the inclusion of the boundary.

We show that [12] extends to the setting of W-admissible Lagrangian submanifolds:

Theorem A.0.2 Let W WX !C be a potential function. Let L be a W-admissible Lagrangian submani-
fold whose restriction to a large fiber is M � Y DW �1.t/. Let h W L!R and hC WD hjM WM !R be
admissible Morse functions. There exist

� stabilizing symplectic divisors DX �X;DY � Y , and

� regular choices for perturbation systems PL and PM for L and M ,

such that the construction of [12] can be applied to give a well-defined A1 algebra CF�.L; h;PL;DX /.
Furthermore , the choices of perturbations and divisors can be taken so that the projection on chains

� W CF�.L; h;PL;DX /! CF�.M; hC;PM ;DY /

is a ƒ-filtered A1 algebra homomorphism.

The theorem consists of two statements: the construction of a pearly model of stabilized treed disks in
the setting of Lagrangians which are admissible for a potential function, and the compatibility between
the pearly model of total space of the fibration and the pearly model of the fiber. These are analogous to
[34, Corollary C.4.2 and Theorem C.5.1] which handle the setting where X D Y �C and W WX !C is
projection to the second factor. In this appendix, we prove that CF�.L; h;PL;DX / is well defined; the
existence of the projection � W CF�.L; h;PL;DX /! CF�.M; hC;PM ;DY / is the same as the proof of
[34, Theorem C.5.1].

To construct CF�.L; h;PL;DX / one needs to

(1) construct a stabilizing divisor for X which is suitably compatible with the potential W WX !C,

(2) show that we can pick perturbations for the almost complex structure so that the map W WX !C

is holomorphic outside of a compact set, and

(3) prove that for such choices of perturbations the moduli spaces have appropriate Gromov compacti-
fications.
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Item (1): constructing a stabilizing divisor

Pick R sufficiently large so that outside of U D BR.0/�C the Lagrangian submanifold L fibers over
the positive real ray, and the map X nW �1.U /!C nU is a symplectic fibration. For � 2 Œ0; 2�� and
r �R we take a path

�;r.t/D

�
Rei�.2t/ t 2

�
0; 1
2

�
;

.RC .2t � 1/.r �R//ei� t 2
�
1
2
; 1
�
;

which travels first in the angular, then radial direction fromR to rei� . For every path .t/ W I!Cjzj>R we
have a symplectic parallel transport map P W Y.0/! Y.1/. Consider the monodromy P2�;R W YR! YR

given by parallel transport around the loop Rei� in the positive direction. Pick a path of !Y -tamed
almost complex structures JYR;� W Œ0; 2��! J� .YR; !Y / such that P �2�;RJ2� D J0. This gives us an
endomorphism of the subbundle of the tangent spaces to the fibers

Jrei� W T Yrei� ! T Yrei� ; Jrei� D P
�
�;r

JYR;� :

Since over every point with jzj>Rwe have a splitting T.y;z/XDTyY˚TzC, we can give T .XnW �1.U //
the tame almost complex structure locally defined by Jrei� ˚ |C .

Definition A.0.3 We say that an !-tame almost complex structure on X is W-admissible if, when
restricted to W �1.U /, it can be written as Jrei� ˚ |C for some path of almost complex structures
JYR;� 2 J� .YR; !/. We denote the space of such almost complex structures J�;W;R.X; !X /.

The goal will to be to construct a stabilizing divisor DX � X in such a way that DX is transverse to
all Yrei� with r � R, and subsequently show that there exists an open dense set of almost complex
structures belonging to J�;W;R.X; !X / which are E-stabilized by DX [12, Definition 4.24]. In the setting
of Lagrangian cobordisms, the comparable statements are proven in [34, Appendix C.3 and Lemma C.1.3].

We first construct the divisor DX . Take EX !X a vector bundle whose first Chern class is 1
2
�Œ!X �, so

that the pullbackEY !Y is a vector bundle whose first Chern class is 1
2
�Œ!Y �. Pick a family of Hermitian

structures onEY;�!YRei� depending on � so that the curvature is�i!Y and so that P �2�;REY;2�DEY;0
as Hermitian line bundles. Let i�0 W YRei�0 !X be the inclusion of the fiber over Rei�0 . Take a Hermitian
structure on EX ! X with curvature �i!X and the property that i��0P ��0;r jŒ1=2;1�

EX D EY;�0 as
Hermitian line bundles.

We will construct the stabilizing divisor DX as the zero locus of an asymptotically holomorphic section
sk;X WX !EkX . First, using [10] we can pick asymptotically holomorphic sections sk;Y W Y !EkY with
the property that s�1

k;Y
.0/ is disjoint from M . We obtain a second asymptotically holomorphic section by

pullback P �2�;Rsk;Y . By [8] we can find a family sk;Y;� of such sections satisfying sk;Y;0 D sk;Y and
sk;Y;2� D P

�
2�;R

sk;Y .

Using this family of sections, we create an asymptotically holomorphic section sk;X;out WX !EkX which
is given by

sk;X;out WD �k;RC1.jzj/P
�
�;r

sk;Y;� ;
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where �k;RC1.jzj/ WC!R is a function which is concentrated (in the sense of [10, Definition 2]) at the
circle of radius RC 1. The zero set s�1

k;X;out.0/ enjoys the properties that

� s�1
k;X;out.0/ is disjoint from L,

� for k sufficiently large, s�1
k;X;out.0/ is a symplectic divisor in W �1.fz j jzj>Rg/, and

� s�1
k;X;out.0/ intersects Yrei� transversely for all r > R.

This constructs the sections taking the place of sk;X�C;out in [34, Appendix C.3.2]. The remainder of
the construction of DX involves subsequently perturbing this section over the region W �1.U /, which
exactly follows [34, Appendix C.3.2].

Item (2): finding perturbations

The construction of an open dense set of E-stabilized almost complex structures proceeds in the same
fashion as [34, Section C.3.3], which is itself based on the argument of [12, Section 4.5]. The main
tool needed for the argument to run is to show that the space of almost complex structures regularizing
holomorphic disks of energy up to E is dense in J�;W;R.X; !X /. By application of the open mapping
principle to W , every pseudoholomorphic disk in consideration must either

� pass through W �1.U /, where they can be made regular through perturbations confined to the region
W �1.U / by application of [15, Lemma 5.6], or

� be confined to a fiberW �1.t/ with t 2U , in which case they can be made regular through perturbations
constrained in the fiberwise direction, and since the fiber is compact, the set of such perturbations is open
and dense.

Item (3): compactness of moduli spaces

The proof that the moduli spaces of pseudoholomorphic treed disks considered are compact uses that we
may apply open-mapping principle type arguments for perturbations chosen from J�;W;R.X; !X /, and
that the Morse flow line components of treed disks point outwards at the boundary [34, Proposition C.4.1].

Remark A.0.4 In the examples we consider (potentials coming from tropicalized superpotentials as-
sociated to a monomial admissibility data), the fibers of the potential will in general not be compact.
However, the monomially admissible condition ensures that the restriction of monomially admissible
L�X to M � Y will be compact. As a result, all pseudoholomorphic disks contributing to treed disks
will have boundary contained within a compact subset of X ; we conclude that the moduli space of treed
disks has compactification given by broken treed disks.

Appendix B Auxiliary results for filtered A1 algebras and modules

In this section, we give some background for filtered A1 algebras and bimodules, as well as provide
some methods for constructing bounding cochains using the filtration on the A1 algebra.
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B.1 A short review of bounding cochains

The Novikov ring with C-coefficients is the ring of formal power series

ƒ�0 WD

� 1X
iD0

aiT
�i
ˇ̌̌
ai 2C; � 2R�0; lim

i!1
�i D1

�
:

The field of fractions is the Novikov field ƒ. A filtered A1 algebra .A;mkA/ is a free graded ƒ�0-module
A� equipped with ƒ�0-linear products

mk W .A�/˝k! .A�C2�k/

for each k�0. These are required to satisfy the axioms of [22, Definition 3.2.20]. Among these axioms are

� the quadratic filtered A1 relationship

0D
X

k1Ck0Ck2Dk

.�1/|.x;k1/.mk1C1Ck2/ ı .id˝k1 ˝mk
0

˝ id˝k2/.x1; : : : ; xk/;

where the sign is determined by |.x; k1/ WD k1C
Pk1
jD1 deg.xj /,

� eachAi has a filtrationF �Ai respecting that ofƒ�0, and a basis belonging toF 0.Ai /n
S
�>0 F

�Ai .

Given a filtered A1 algebra, we can also consider theƒ-linear products on A˝ƒ�0ƒ. We call A˝ƒ�0ƒ
a ƒ-filtered A1 algebra.

Let .A;mkA/ and .B;mkB/ be A1 algebras. A filtered A1 homomorphism from A to B is a sequence of
filtered graded maps

f k W A˝k! B

satisfying the quadratic A1 homomorphism relationsX
k1Ck0Ck2Dk

.�1/|.x;k1/f k1C1Ck2 ı .id˝k1 ˝mk
0

A ˝ idk2/D
X

i1C���CijDk

m
j
B ı .f

i1 ˝ � � �˝f ij /:

There similarly exists a notion of a homotopy between filtered A1 homomorphisms.

The main difficulty with filtered A1 algebras is that they do not have cohomology groups, as

.m1A/
2
Dm2A.m

0
A˝ id/˙m2A.id˝m

0
A/:

Whenm0AD 0, the right-hand side of the relation is zero and we say that A is a tautologically unobstructed
A1 algebra.

It is desirable to work with tautologically unobstructed A1 algebras as they can be studied with the
standard tools employed for cochain complexes. Therefore, one might restrict one’s study to tautologically
unobstructed filtered A1 algebras. Problematically, tautologically unobstructed filtered A1 algebras are
not closed under the relation of filtered A1 homotopy equivalence. This can be remedied by considering
filtered A1 algebras equipped with bounding cochains.
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Let A be a filtered A1 algebra. A deforming cochain is an element d 2 A1 with val.d/ > 0. The
d -deformation of A is the filtered A1 algebra .A; d/ whose

� underlying chain groups agree with A, and

� composition maps are given by the d -deformed A1 products,

(12) mk.A;d/ D

1X
lD0

X
j0C���CjkDl

mkClA .d˝j0 ˝ id˝d˝j1 ˝ � � �˝ id˝d˝jk /:

Definition B.1.1 When m0
.A;b/

D 0, we say that b is a bounding cochain, and we say that the algebra A
is unobstructed.

Given f W A! B a filtered A1 homomorphism and b 2 A a bounding cochain, there is a pushforward
bounding cochain f�.b/ 2 B such that .B; f�.b// is unobstructed. When f k D 0 for k ¤ 1, then
f�.b/ D f .b/. The existence of a pushforward bounding cochain shows that unobstructedness is a
property of filtered A1 algebras which is preserved under the equivalence relation of filtered A1
homotopy equivalence.

In applications, we use ƒ-filtered A1 algebras as opposed to filtered A1 algebras.3 However, the
homological algebra of filtered A1 algebras is notationally easier to describe (as there exist elements
living in a minimal filtration level). A computation allows us to understand deformations and bounding
cochains for the former (defined using (12)) in terms of the latter.

Claim B.1.2 Suppose that A is a filtered A1 algebra and b a bounding cochain for A. Then b˝ 1 2
A˝ƒ�0 ƒ is a bounding cochain for the ƒ-filtered A1 algebra A˝ƒ�0 ƒ.

B.2 Extending an unobstructed ideal

Following ideas from [22], we will provide a method for constructing bounding cochains by inducting on
the valuation. In order to do this, we need a slight refinement of a filtered A1 algebra which states that
the valuation of the structure coefficients is ordered by a monoid. A gapped A1 algebra is a filtered A1
algebra for which there exists a finitely generated monoid G and a monoid homomorphism ! WG!R�0
such that !.ˇ/D 0 implies that ˇ D 0, and we have the decomposition

mk D
X
ˇ2G

T !.ˇ/mk;ˇ ;

where mk;ˇ are graded with respect to the filtration. We say that it satisfies the gapped A1 relations if
for all ˇ 2G, X

ˇ1Cˇ2Dˇ

X
j1CjCj2Dk

.�1/|mj1C1Cj2;ˇ1.id˝j1 ˝mj;ˇ2 ˝ id˝j2/D 0:

3This is because the continuation maps in Lagrangian intersection Floer cohomology are usually only weakly filtered.
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Given b D
P
ˇ2Gnf0g bˇ , we can deform the product structure by

m
k;ˇ

.B;b/
D

X
ˇ0C���CˇkDˇ

ˇiD
Pli
jD1

ˇi;j

mkClB .ˇ0;0˝ � � �˝ˇ0;l0 ˝ id˝ � � �˝ id˝ˇk;0˝ � � �˝ˇk;lk /;

so that mk
.B;b/

WD
P
ˇ2G T

!.ˇ/m
k;ˇ
B gives a G-gapped A1 algebra satisfying the gapped A1 relations.

There similarly exist G-gapped filtered A1 homomorphisms, which also contain the data of a morphism
of monoids � WGA!GB .

We will also need some basic statements about ideals in filtered A1 algebras:

Definition B.2.1 A subspace A� B is a weak A1 ideal if for all k D k1C 1C k2 > 0, the map

mk W B˝k1 ˝A˝B˝k2 ! B

has image contained in A.

Notably, we do not require that the curvature term m0A be an element of A. As a result, it is not necessarily
the case that A is itself a filtered A1 algebra. We say that A is a strong A1 ideal if additionally m0B 2A.

Claim B.2.2 Let A�B be an A1 ideal. The quotient C DA=B inherits a filtered A1 structure. A is a
strong A1 ideal if and only if C is tautologically unobstructed.

Proof The filtered A1 structure is the natural one:

mkC .Œx1�˝ � � �˝ Œxk�/ WD Œm
k
B.x1˝ � � �˝ xk/�:

Because the mkB are multilinear, we see that if Œxi � D Œx0i �, then mkC .Œx1�˝ � � � ˝ Œxi �˝ � � � ˝ Œxk�/ D
mkC .Œx1�˝ � � �˝ Œx

0
i �˝ � � �˝ Œxk�/. A is a strong A1 ideal if and only if m0C D Œm

0
B �D Œ0�.

Example B.2.3 Given a formal filtered A1 morphism f W B ! C (so that f k D 0 for all k ¤ 1) the
kernel of f is a weak A1 ideal.

Example B.2.4 Given a filtered A1 algebra A, the set A>0 of positively filtered elements is an example
of a strong A1 ideal. The quotient A WD A=A>0 is an example of a tautologically unobstructed A1
algebra. A relevant example comes from Lagrangian Floer cohomology, where CF�.L/D CM�.L/.

Claim B.2.5 Suppose that A � B is an A1 ideal , and d 2 B is a deforming cochain. Then A is an
A1 ideal of .B; d/. If A� B is a strong A1 ideal , and m0

d
2 A, then A is a strong A1 ideal of B . In

particular , if d 2 A then A is a strong A1 ideal of .B; d/.

Proof Suppose that a 2 A is some element. Then

mk.B;d/.x1˝� � �˝a˝� � �˝xk/D

1X
lD0

X
j0C���CjkDl

mkClA .d˝j1˝id˝d˝j1˝� � �˝a˝� � �˝id˝d˝jk /2A;

proving that A is an A1 ideal of .B; d/.
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The vector space H 1.A/ is a lowest-order approximation to the space of bounding cochains. When C is
an anticommutative differential graded algebra, elements of H 1.C / are bounding cochains.

Claim B.2.6 Suppose that C is tautologically unobstructed. Suppose that f W C ! C is an A1 map
with gapped A1 homotopy inverse g W C ! C . Assume that C is an anticommutative differential graded
algebra. Then for every class Œc� 2H 1.C / with val.c/ > 0, there exists a bounding cochain c0 2 C and
� > val.c0/ with Œc0�D Œc� 2H 1.C=T �C/.

Proof Since C and C are gapped, we can select � > val.c/ such that !.ˇ/ < � implies !.ˇ/� val.c/.
We observe that f .c/ 2 C is closed, and therefore provides a bounding cochain for C , as

m0
.C ;f .c//

Dm1
C
.f .c//Cm2

C
.f .c/; f .c//D 0:

We then take c0 to be the pushforward bounding cochain

g�.f .c//D

1X
kD1

gk..f .c//˝k/:

Since c0 D .g ıf /.c/ mod T �, we obtain that Œc�D Œc0� 2H 1.C=T �C/.

Claim B.2.7 [34, Claim A.4.8] Suppose that A0D .A; a/. Given a deforming cochain a0 2A0, the chain
a00 D aC a0 2 A is a deforming cochain such that .A0; a0/D .A; a00/.

We now come to the main lemma of this appendix. Suppose that we have an exact sequence (on the chain
level) A! B! C . If A is a strong A1 ideal containing the curvature of B , then we prove that there is
no obstruction to finding a bounding cochain for B . The argument is in the style of [22, Theorem 3.6.18].

Lemma B.2.8 Consider a G-gapped A1 algebra B satisfying the gapped A1 relations. Suppose that :

(i) A is a strong A1 ideal of B and C D B=A, giving us an exact sequence A i
�! B �

�! C of gapped
A1 algebras ,

(ii) there exists C which is A1 homotopic to C and is an anticommutative DGA ,

(iii) the connecting map ı WH 1.C /!H 2.A/ surjects.

Then for every � > 0 there exists a deforming cochain b D
P
ˇ2Gnf0g bˇ for B such that for all ˇ with

!.ˇ/� �, we have m0;ˇ
.B;b/

D 0.

Proof Because A;, B , and C are gapped A1 algebras, there exists f�igniD1 an ordering of the image
!.G/ 2 Œ0; ��.

We prove the statement by induction on �i . Suppose that A0 D .A; ai�1/, B 0 D .B; bi�1/, and C 0 D
.C; ci�1/ are G-gapped A1 algebras satisfying (i)–(iii) and additionally

(iv) the curvature has large valuation, val.m0B 0/ > �i�1.
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The inductive step will construct deforming cochains a0, b0, and c0 such that the algebras .A0; a0/, .B 0; b0/,
and .C 0; c0/ satisfy (i)–(iv), where �i�1 is replaced with �i . By Claim B.2.7, we can then construct the
A1 algebras .A; ai /, .B; bi /, and .C; ci /.

Write m0B 0 D
P1
jDi

P
!.ˇ/D�j

bj;ˇT
�j , where the bj;ˇ are elements of B 0 D B of degree 2. Because A

is a strong A1 ideal, we can find ai;ˇ 2 A with i.ai;ˇ /D bi;ˇ .

We examine the lowest-order terms of the A1 relation m1A0 ım
0
A0 D 0, and obtain

m1A0.ai;ˇ /D 0:

Since Œai;ˇ � 2 H 2.A/, by (iii) Œbi;ˇ � D 0. Therefore there exists Obi;ˇ such that m1B 0.
Obi;ˇ / D bi;ˇ .

The class ci;ˇ WD �. Obi;ˇ / is closed. Using Claim B.2.6, we can find c0
j;ˇ

with j � i such that
c0 D

P1
jDi

P
ˇ j!.ˇ/D�i

c0
j;ˇ
T �j is a bounding cochain for C 0 with the property that Œc0

i;ˇ
� D Œci;ˇ � 2

H 1.C 0=T �iC1C 0/.

Because � W B! C surjects, we can find for all j � i cochains b0
ˇ;j
2 B with �.b0

j;ˇ
/D c00

j;ˇ
. Let

b0 D�

1X
jDi

X
ˇ j!.ˇ/D�i

b0i;ˇT
�i :

This constructed b0 satisfies the property

m1B 0.b
0/��m0B 0 mod T �iC1 :

Since � is a filtered A1 homomorphism without higher terms, the pushforward ��.b0/ equals c0 and

� ım0.B;b0/ Dm
0
.C;c0/ D 0:

Therefore m0
.B 0;b0/

is contained in A0, and we write a0 for the corresponding element in A0. Claim B.2.5
states that .A0; a0/ is a strong A1 ideal of .B 0; b0/, whose quotient is .C 0; c0/.

This gives us the G-gapped A1 algebras .A0; b0/, .B 0; b0/, and .C 0; c0/, which we’ve shown satisfy (i).
We now show that these algebras satisfy (ii)–(iv). For (ii), observe that deformations by Maurer–Cartan
classes preserve having an anticommutative model. Since the deformation occurs at valuation greater
than 0, the map H 1.C /!H 2.A/ continues to surject, proving (iii).

To check (iv),

val.m0.B 0;b0//D val
� 1X
kD0

mkB 0..b
0/˝k/

�
�min

�
val.m0B 0 Cm

1
B 0.b

0//;

1X
kD2

mkB 0..b
0/˝k/

�
:

Given that m0B 0 �m
1
B 0.b

0/ mod T �i ,

val.m0.B 0;b0//� �iC1:

Corollary B.2.9 Let A, B , and C be A1 algebras as in Lemma B.2.8. Then there exists a bounding
cochain for B .
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Proof The deforming cochains constructed in the above proof satisfy the condition that

bi � biC1 mod T �i :

It follows that if we use the inductive procedure to build a sequence of deforming cochains fbig1iD0 such
that val.m0

.B;bi /
/ > �i , the limit limi!1 bi is a bounding cochain.

B.3 A1 bimodules and bounding cochains

Let A and B be A1 algebras. An .A;B/- bimodule is a filtered graded ƒ�0-module M , along with a set
of maps for all k1; k2 � 0,

m
k1j1jk2
AjM jB

W A˝k1 ˝M ˝B˝k2 !M;

satisfying filtered quadratic A1 module relations for each triple .k1j1jk2/:

0D
X

j1CjCj2Dk1C1Ck2
j1Cj�k1

m
k1�jC1j1jk2
AjM jB

ı .id˝j1A ˝m
j
A˝ id˝k1�j1�j ˝ idM ˝ idk2B /

C

X
j1CjCj2Dk1C1Ck2
j1�k1�j1Cj�1

m
j1j1jj2
AjM jB

ı .id˝j1A ˝m
k1�j1j1jk2�j2
AjM jB

˝ id˝j2B /

C

X
j1CjCj2Dk1C1Ck2

k1C1<j1

m
k1j1jk2�jC1

AjM jB
ı .id˝k1A ˝ idM ˝ idk2�j2�jB ˝m

j
B ˝ id˝j2B /:

There is a G-gapped version of an A1 bimodule, where we have the data of a map of monoids
! WGM!R�0 and ourA1 bimodule products can be decomposed asmk1j1jk2;ˇ

AjM jB
; we also have morphisms

�A=B WGA=B !GM which intertwine with !.

If M is a filtered .A;B/ bimodule, and a 2 A and b 2 B are deforming cochains, then the filtered A1
bimodule products on M can be deformed to give it the structure of an ..A; a/; .B; b// bimodule. As in
the setting of ƒ-filtered A1 algebras, we can define ƒ-filtered A1 bimodules.

Lemma B.3.1 Let M be a G-gapped .A;B/ bimodule. Suppose that A and B are tautologically
unobstructed and that A has an anticommutative DGA model A as in Claim B.2.6. Suppose that there
exist �0 < �1 2R such that

(i) the maps mkj1j0
AjM jB

W A˝k˝M !M all have image contained within T �0M , and

(ii) there exists Œe� 2H 1.M/ an element such that the map

H 1.A/!H 1.T �0M=T �1M/; Œa� 7! Œm
1j1j0

AjM jB
.a˝ e/�

is surjective.

Then there exists a choice of bounding cochain a 2A1 and element e 2M 0 such that m0j1j0
.A;a/jM jB

.e/D 0.
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Proof We again use the gapped structure and induct on valuations. For simplicity of exposition, we will
assume that the monoid G is N, so that !.G/ D fn� j n 2 Ng � R. We will construct a sequence of
bounding cochains ai and elements ei 2M 0 with the property that

(iii) ai are bounding cochains,

(iv) m
0j1j0

.A;ai /jM jB
.ei / 2 T

�0Ci�1M , and

(v) for i > 1, ai � ai�1 2 T �0Ci�1A and ei � ei�1 2 T �0Ci�1M .

Base case Let a0 D 0 and e0 D e. Items (i) and (ii) are given by the hypothesis, (iii) is trivial, (iv)
follows from the gapped structure, and (v) has no content.

Inductive step Suppose we have constructed ai and ei satisfying the induction hypothesis. By (iv), we
can write m0j1j0

.A;ai /jM jB
.ei /� ci mod T �0C.iC1/�1 , where ci 2 T �0Ci�1M . At order T �0C.iC1/�1 ,

m
0j1j0

AjM jB
.ci /�m

0j1j0

.A;ai /jM jB
.ci /�m

0j1j0

.A;ai /jM jB
ım

0j1j0

.A;ai /jM jB
.ei /D 0 mod T �0C.iC1/�1 :

We therefore obtain a class Œci � 2 T �0Ci�1H 1.M/. Using (ii), we have a homology class a 2 T �0Ci�1A
with

Œm
1j1j0

AjM jB
.a˝ e/�� Œci � mod T �0C.iC1/�1 :

By Claim B.2.6, there exists a bounding cochain a0 2 T i�1A1 for the product structures mk
.A;ai /

satisfying

a0 � a mod T �0C.iC1/�1 ; Œm
1j1j0

AjM jB
.a0˝ e/�D Œci � in H 1.T �0Ci�1M=T �0C.iC1/�1M/:

Writem1j1j0
AjM jB

.a0˝e/DciCm
0j1j0

AjM jB
e0, where e02T �0Ci�1 . Then let eiC1DeiCe0 and let aiC1Dai�a0.

By construction, we satisfy (v). By Claim B.2.7, aiC1 is a bounding cochain for A, and we therefore
obtain (iii). Conditions (i) and (ii) are unchanged by deformations. It remains to prove (iv):

m
1j1j0

.A;aiC1/jM jB
.eiC1/

�m
0j1j0

.A;ai /jM jB
.ei /�m

1j1j0

AjM jB
.a0; e/Cm

0j1j0

AjM jB
.e0/�m

1j1j0

AjM jB
.a0; e0/ mod T �0C.iC1/�1

� 0 mod T �0C.iC1/�1 :

To complete the proof of the lemma, we can take the bounding cochain a and element e to be

aD lim
i!1

ai ; e D lim
i!1

ei :
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Relations in singular instanton homology

PETER B KRONHEIMER

TOMASZ S MROWKA

We calculate the singular instanton homology with local coefficients for the simplest n-strand braids in
S1 � S2 for all odd n, describing these homology groups and their module structures in terms of the
coordinate rings of explicit algebraic curves. The calculation is expected to be equivalent to computing the
quantum cohomology ring of a certain Fano variety, namely a moduli space of stable parabolic bundles on
a sphere with n marked points.
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1 Introduction

1.1 Background

A pair .Y;K/, consisting of a closed, oriented 3-manifold and an embedded link, gives rise to a 3-
dimensional orbifold Z DZ.Y;K/ whose underlying topology is that of Y and whose singular locus
consists of the locus K where the orbifold structure has local stabilizers of order 2. The pair .Y;K/, or
the orbifold Z, is admissible if ŒK� has odd pairing with some integer homology class. To an admissible
orbifold Z, there is associated its singular instanton homology (Kronheimer and Mrowka [20]), constructed
from the Morse theory of the Chern–Simons functional on the space of SO.3/ orbifold connections modulo
a determinant-1 gauge group. With rational coefficients, we denote the singular instanton homology
by I.ZIQ/.
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A deformation of this instanton homology is described in [21]. It can be viewed as an instanton homology
group with values in a local coefficient system on the space of connections modulo gauge, and it appears
in this paper as I.ZI�/, where � denotes a local system of free rank-1 modules over the ring of Laurent
polynomials

RDQŒ�˙1�:

The variable � should be seen as a deformation parameter, with the specialization � D 1 recovering the
original case of Q coefficients. (See Section 2.2.)

A choice of a 2-dimensional homology class in Z gives rise to an operator ˛, on both I.ZIQ/ and
I.ZI�/. For each choice of basepoint p 2K, there is also an operator ıp, depending on the connected
component of K on which p lies and a choice of local orientation at p. These operators commute, and
make I.ZIQ/ and I.ZI�/ into modules over the rings QŒ˛; ı1; : : : ; ın� and RŒ˛; ı1; : : : ; ın� respectively,
where n is the number of connected components of K.

In [32], Street completely described the instanton homology I.ZIQ/ and its module structure in the case
that Z is the product

Zn D S1
�S2

n :

Here S2
n denotes the 2-sphere with n orbifold points. An extension of Street’s result to the case of

S1�†g;n was obtained by Xie and Zhang [36], and an earlier model for both of these calculations is the
work of Muñoz [28; 27] on the case of S1 �†g (where the orbifold locus is empty).

The purpose of this paper is to extend Street’s calculation to the case of instanton homology with local
coefficients � . Alongside Zn, a closely related calculation is for the instanton homology of an orbifold
we call Zn;1. If the n orbifold points in S2

n are arranged symmetrically around a circle, then a rotation h

through 2�=n is an automorphism of S2
n which permutes the orbifold points, and we write Zn;1 for its

mapping torus:
Zn;1 DMh; h W S2

n ! S2
n :

Since the orbifold locus in Zn;1 is connected, there is only one operator ıD ıp in this case, and I.Zn;1I�/

is a module for an algebra RŒ˛; ı�, where R is again a ring of Laurent polynomials. We can summarize
the main theme of this paper as the solution to the following.

Problem (?) Describe I.ZnI�/ and I.Zn;1I�/ explicitly as modules for the algebras RŒ˛; ı1; : : : ; ın�
and RŒ˛; ı� respectively.

The motivation for studying this question came from a desire to calculate a variant of the singular instanton
homology of torus knots, I \.Tn;qI�/, as studied in our paper [24], and the related knot concordance
invariants of these. In [24], the base ring always had characteristic 2, as necessitated by the construction
there. An alternative formulation allows characteristic 0, and the results of this paper are a main step. We
return to this discussion briefly in Section 7.
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1.2 Statement of the result

We shall give a complete answer to .?/, and to give a flavor of the result here, we describe I.Zn;1I�/.
First, there is an involution on the configuration space of connections on both of these orbifolds, defined
by multiplying the holonomy on the S1 factor in S1�S2 by �1 2 SU.2/. This gives rise to an operator �
on instanton homology, and there is therefore a decomposition

I.Zn;1I�/D I.Zn;1I�/
C
˚ I.Zn;1I�/

�

into the eigenspaces of �. As modules, these two are related by changing the variable � 2R to �� . Each
of the two summands is a cyclic module for RŒ˛; ı� and they are therefore characterized by their ideals of
relations, J˙

n;1
in the algebra:

I.Zn;1I�/
C
ŠRŒ˛; ı�=JC

n;1
; I.Zn;1I�/

�
ŠRŒ˛; ı�=J�n;1:

Over the field C, we can regard JC
n;1

and J�
n;1

as the defining ideals of possibly nonreduced curves

DCn ;D
�
n �C� �C �C

with coordinates .�; ˛; ı/. Our final description of these curves is as determinantal varieties: they are
the loci of points where particular m� .mC 1/ matrices SC and S� with entries in RŒ˛; ı� fail to have
full rank. Here m D 1

2
.n� 1/. Equivalently, J˙n;1 is the ideal generated by the m�m minors of S˙.

Explicitly when nD 11 and mD 5, the matrix S˙ is given by S0˙S1, where S0 is the matrix0BBBB@
�˛� ı=2 ˛� 19ı=2 0 0 0 0

0 �˛� 5ı=2 ˛� 15ı=2 0 0 0

0 0 �˛� 9ı=2 ˛� 11ı=2 0 0

0 0 0 �˛� 13ı=2 ˛� 7ı=2 0

0 0 0 0 �˛� 17ı=2 ˛� 3ı=2

1CCCCA
and S1 is the matrix0BBBB@

�7 0 0 0 0

0 �3 0 0 0

0 0 1=� 0 0

0 0 0 1=�5 0

0 0 0 0 1=�9

1CCCCA �
0BBBB@

0 0 0 0 �9 5�4C 4

0 0 0 �7 3�4C 2 2�4

0 0 �5 �4 4�4 0

0 �3 ��4� 2 6�4 0 0

�1 �3�4� 4 8�4 0 0 0

1CCCCA :
Although the matrices may look elaborate at first glance, they follow a fairly simple pattern that is readily
described for general n. (See Section 6.3.) Note in particular that S0 is a 2-band matrix with entries that
are linear forms in .˛; ı/, while the entries of S1 depend only on � . On setting � D 1 in S0 above, one
recovers generators for the ideal that is identified by Street in [32]. For a general fixed value of � , the
corresponding locus is a subscheme of the .˛; ı/-plane of length m.mC 1/. A picture of the real locus
of D˙n for nD 7 is given in Figure 1, together with the set of points on D˙n where � D 0:6.
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Figure 1: The blue curve is the projection of the real locus of D˙n to the .ı; ˛/ plane for nD 7.
The green points are the points where � D 0:6, showing the simultaneous eigenvalues of the
operators ı and ˛ for this value of � . There are 12 of these, only 8 of which are real. The pink
points indicate the subscheme of total length 12 defined by the minors of S0˙S1 when � D 1,
which is the case described by Street [32]. Although the real curve looks rather smooth at ˛D˙1,
it has a uni-branch triple point there: in local analytic coordinates, the equation of the curve has
the form y3 D x7.

Remark This description of D˙n as a determinantal variety means that the corresponding ideal J˙
n;1

is
generated by mC 1 elements, for this is the number of m�m minors. We shall see in fact that each of
these ideals can be generated by just two of the minors.

As in Muñoz [28; 27], Street [32] and Xie and Zhang [36], the starting point for the calculation is an
explicit generating set for the ideal of relations in the ordinary cohomology of a representation variety: in
our case, as in [36], these are the “Mumford relations” in the cohomology of the representation variety
associated to S2

n . (See Earl and Kirwan [8] for example.) We obtain simple explicit formulae for these
relations as products of linear forms in the variables ˛ and ıi . The matrix S0 above arises as a matrix of
syzygies for the Mumford relations. To compute the deforming term S1, it is only necessary to understand
the contributions of moduli spaces of instantons on R�Zn of smallest nonzero action (action 1

4
in the

normalization where the standard instanton on R4 has action 1). The contributions of these moduli spaces
can be understood quite explicitly by a wall-crossing argument. A closely related phenomenon is present
in [27].
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1.3 Outline

In Section 2 we recall the definition of singular instanton homology with local coefficients and the
construction of the operators that act on it in general. (Note that from Section 2 onwards, we simply
write I.Z/ for the homology group referred to as I.ZI�/ above, without explicit mention of the local
coefficients.) In Section 3, we introduce Zn and Zn;˙1 and study the ordinary cohomology of the relevant
representation varieties and instanton homologies, enough to show that these can be described as cyclic
modules for the algebra of operators which act on them. This material is quite standard.

In Section 4, we describe the Mumford relations in the ordinary cohomology of the representation variety
of Zn. We derive a very explicit formula for generators of the ideal of relations in these cohomology
groups. The relations in the ordinary cohomology ring of the representation variety of Zn admit a
deformation which yields relations in the instanton homology I.Zn/. The existence of this deformation
is established in Section 5 together with a calculation of the subleading term using a wall-crossing
calculation rather as in [27].

Knowledge of the subleading term turns out to be sufficient to obtain a complete answer, and the description
of I.Zn;1/ (or equivalently I.Zn;�1/) that is outlined earlier in this introduction is derived in Section 6.
Some further remarks are contained in Section 7 at the end of the paper.
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2 A version of singular instanton homology

In this section we review the construction of instanton homology with local coefficients, for admissible
bifolds. General references include [20] and [23].

2.1 Bifolds and their Floer homology

For economy of notation, we will typically write simply Z for a pair consisting of a connected, oriented
3-manifold Y and an embedded (unoriented) link K D K.Z/ � Y . Following [20] and [19], we will
regard Z as determining an orbifold (a bifold in the terminology of [22]) whose underlying topological
space is Y and whose singular set is K.Z/. The local stabilizer of the orbifold geometry at points of
K.Z/ is of order 2. When talking of (for example) Riemannian metrics on Z, we will always mean
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orbifold Riemannian metrics. A bifold Z is admissible if there is an element of H 1.Y IZ/ which has
nonzero mod-2 pairing with the class ŒK.Z/� 2H1.Y IZ=2/.

Associated to a 3-dimensional bifold Z, we have a space of bifold connections B.Z/. In this paper, B.Z/
will always consist of the bifold SO.3/ connections with w2 D 0 modulo the determinant-1 gauge group.
In the language of [23, Section 2], this is the space of marked bifold connections in which the marking
region is the complement of the singular set K.Z/ and the bundle has w2 D 0 on the marking region.

Remark The space B.Z/ can be identified with the space of gauge equivalence classes of SU.2/
connections on the complement of the singular set K.Z/ such that the associated SO.3/ bundle extends
to an orbifold SO.3/ bundle on Z with nontrivial monodromy (of order 2) at the singular points. When
interpreted as SU.2/ connections in this way, the limiting holonomy of the SU.2/ connections on small
loops linking the singular locus has order 4. This is the viewpoint adopted, for example, in [17; 18].

Definition 2.1 We write Rep.Z/�B.Z/ for the space of flat bifold connections modulo the determinant-1
gauge group. If Z is admissible, then Rep.Z/ consists only of irreducible connections.

2.2 A local coefficient system

For each component Ki �K.Z/, after choosing a framing, we obtain a map to S1,

hi W B.Z/! S1;

as in [20] and [23, Section 2.2]. Specifically, following [20], given ŒA� 2 B.Z/, we may restrict the
connection ŒA� to the boundary of the framed �-tubular neighborhood of Ki and obtain, in the limit as
�! 0, a flat SO.3/ connection on the torus, whose structure group reduces to SO.2/. The holonomy of
the SO.2/ connection along the longitude defines hi.ŒA�/.

An orientation of Ki is not needed here, because the orientation of the SO.2/ bundle also depends on an
orientation of Ki . (That is, the orientation of Ki is used twice in this construction.) The framing is also
inessential, as a change of framing will change hi by a half-period.

Taking the product over the set of all components of K, we define a single map h W B.Z/! S1 by

hD�ihi :

Over the circle S1, there is a standard local system with fiber the ring of finite Laurent series

(1) RDQŒ�˙1�

such that the monodromy of the local system around the positive generator of S1 is multiplication by � .
Then by pulling back this local system by the map h, we obtain a local system � on B.Z/. We summarize
this construction with a definition.

Definition 2.2 Unless otherwise stated, the notation R will denote the ring QŒ�˙1�, and � will denote
the corresponding local system of free rank-1 R-modules over B.Z/, for any 3-dimensional bifold Z.
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If Z is admissible, then by the standard construction (see [20; 21]), we obtain an instanton homology
group for admissible bifolds:

Definition 2.3 Let Z be an admissible bifold of dimension 3. After choosing a Riemannian metric and
perturbation to achieve a Morse–Smale condition for the gradient flow of the Chern–Simons functional
on B.Z/, we obtain an instanton Floer complex CI.ZI�/ of free R-modules whose homology I.ZI�/

is the instanton homology of Z. We will generally write I.Z/ and omit � from the notation, unless the
context demands otherwise. This is a Z=4 graded module.

2.3 Functoriality and operators

We consider 4-dimensional bifolds W as cobordisms between 3-dimensional bifolds. In the context of
this paper, the singular locus †D †.W / of the orbifold W will always be an embedded surface (not
necessarily orientable). In particular, we do not consider foams — singular surfaces — as in [22]. The
Floer homology groups I.Z/ are functorial in the sense that a bifold cobordism W from Z0 to Z1 gives
rise to a map

I.W / W I.Z0/! I.Z1/

compatible with compositions.

The map I.W / is obtained from suitable weighted counts of solutions to the perturbed anti-self-duality
equations on the bifold W , after attaching cylindrical ends. This construction initially gives rise only to
a projective functor, in that the overall sign of I.W / is ambiguous. When †.W / is oriented, the sign
ambiguity can be resolved by choosing a homology orientation for W in the sense of [20]. In the case that
†.W / is not necessarily orientable, an appropriate substitute is the notion of an {-orientation introduced
in [19]. (The sign ambiguity in the nonorientable case will not particularly concern us in this paper.)

Recall that in the present context I.Z/ denotes the instanton homology with coefficients in the local
system � . That being so, the solutions A to the perturbed anti-self-duality equations on W are counted
not just with signs ˙1, but with weights that are units in the ring R. More precisely, if �0 and �1 are
critical points of the perturbed Chern–Simons functional in B.Z0/ and B.Z1/, and if ŒA� is a solution of
the perturbed equations on W with cylindrical ends, asymptotic to �0 and �1, then ŒA� contributes to the
matrix entry of the map I.W / at the chain level with a contribution˙�.A/, where �.A/ W�.�0/!�.�1/

is given by

(2) �.A/D �
�.A/C

1
2
.†�†/

:

Here � is obtained from a curvature integral on the 2-dimensional singular set † D †.W /, and the
self-intersection number † �† is computed relative to chosen framings of the singular sets K.Z0/ and
K.Z1/. The expression on the right-hand side of (2) is not an element of R itself, because the exponent is
not generally an integer. It is, however, a homomorphism between the rank-1 R-modules �.�0/! �.�1/

in a natural way. For details of this construction see, for example, [20, Section 3.9] and [23]. As explained
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there, the choice of framings is essentially immaterial. Consistent with our notation I.Z/ in which
the local coefficient system � is implied, we will continue to write simply I.W / for the R-module
homomorphism between these instanton homology groups.

As well as the map I.W / above, we have the generalizations obtained by cutting down the moduli spaces
on W by cohomology classes in the configuration space of bifold connections B.W /. Here B.W / is a
space of SO.3/ bifold connections modulo the determinant-1 gauge group, and in the language of [23],
this is the space of marked bifold connections in which the marking region is the complement of the
singular set †.W / and the bundle has w2 D 0 on the marking region.

To describe the relevant cohomology classes more specifically, and to fix conventions, there is a universal
orbifold SO.3/ bundle,

E! B�.W /�W;

which has an orbifold Pontryagin class,

porb
1 .E/ 2H 4.B�.W /�W IQ/:

We adopt the convention that our preferred 4-dimensional characteristic class is �1
4
porb

1
.E/, which

coincides with corb
2
.zE/ in the case that there is a lift to an SU.2/ bundle zE. Given a class  in H 2.W IQ/

or H 0.W IQ/, we obtain classes

(3) �
1
4
porb

1 .E/=Œ �

in H 2.B�.W /IQ/ or H 4.B�.W /IQ/ respectively.

In addition to the classes (3), if p is a point of the orbifold locus †.W /, then the restriction of E to
B�.W /� fpg has a decomposition

Ep DR˚Vp;

where Vp is a 2-plane bundle. An orientation of Vp depends on a choice of normal orientation to the
orbifold locus at p. Having chosen such an orientation, a class ıp 2H 2.B�.W /IQ/ is then defined as

(4) ıp D
1
2
e.Vp/:

We can regard ı here as depending on a choice of an element in H0.†.W /IO/, where O is the orientation
bundle of †.W / with rational coefficients.

Combining the classes (3) for  2H i.W IQ/ and the classes ıp , we obtain homomorphisms of R-modules

(5) I.W; a/ W I.Z0/! I.Z1/

depending linearly on

(6) a 2 Sym�
�
H2.W IQ/˚H0.W IQ/˚H0.†.W /IO/

�
:

Since I.Z0/ and I.Z1/ are R-modules, we may extend linearly over R to allow also

(7) a 2 Sym�
�
H2.W IQ/˚H0.W IQ/˚H0.†.W /IO/

�
˝R:
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The construction of the operators I.W; a/ is suitably functorial. In particular, this means for us that, in
the case that W is a cylinder Œ0; 1��Z, we have

I.W; a1a2/D I.W; a1/I.W; a2/:

We will always be dealing with the case that W is connected, so there is only one class Œw� in H0.W IQ/.
From [16; 20], we note the following relation among the homomorphisms I.W; a/.

Proposition 2.4 Let p a point in †.W / with a chosen orientation of Tp†.W /, representing a class in
H0.†.W /IO/ in the algebra (6). Let w be a point in W, representing a class in H0.W IQ/. Then we
have a relation

I
�
W; .p2

Cw� �2
� ��2/b

�
D 0

for any b in the algebra (6).

Corollary 2.5 The map I.W;p2b/ is independent of the choice of oriented point p 2†.W /.

Remark The relation in Proposition 2.4 reflects (in part) a relation in the cohomology ring of B�.W /,
where we have a 2-dimensional class ıp and a 4-dimensional class�1

4
porb

1
.E/=Œw�. From their construction

as characteristic classes, these satisfy

(8)

The extra terms �2C ��2 in the proposition arise from instanton bubbling contributions [16].

Proposition 2.4 also tells that the generator corresponding to Œw� 2H0.W IQ/ is redundant. We obtain
the most general homomorphism I.W; a/ if we only take a in the smaller algebra

(9) Sym�
�
H2.W IQ/˚H0.†.W /IO/

�
:

There is an additional construction we can make if we are given a distinguished class e 2H2.W IZ/. We
consider the space B.W /e of marked bifold SO.3/ connections on W where the marking region is again
the complement of †.W / and where the marking data has

w2 D PD.e/jW n†.W / mod 2:

After attaching cylindrical ends, the instantons in B.W /e provide us with maps

(10) I.W; a/e W I.Z0/! I.Z1/:

When the singular set †.W / is oriented, the integer lift e in homology, together with the homology-
orientation of W, is used to orient the moduli spaces and determines the overall sign of the map I.W; a/e .
If e� e0 D 2v, so that e and e0 define the same mod 2 class, then (as in [6]) we have

(11) I.W; a/e
0

D .�1/v�vI.W; a/e:

Remark As discussed for example in [19], one can more generally consider the case that e is a relative
class so that @e 2H1.†.W //, but the more restrictive version here is required because we wish to use
the local coefficient system � , which is otherwise not defined. See also [23, Section 2.2].
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3 Torus braids in S 1 � S 2

3.1 The torus braids

The following examples play an important role for us.

Definition 3.1 Let � D fp1; : : : ;png be n points arranged symmetrically around the equator of S2.
We write Zn for the bifold whose underlying 3-manifold Y is the product S1 �S2 and whose singular
locus K is the n-component link

Kn D S1
�� � S1

�S2:

Definition 3.2 For any q 2 Z, we define a bifold Zn;q as follows. The 3-manifold Y is again S1 �S2.
If ' 2R=.2�Z/ denotes an angular coordinate on the equator of S2, and � a coordinate on the S1 factor,
then K DKn;q will be the link determined by n' D q� .mod 2�/.

The bifold Zn;q is admissible when n is odd. The link Kn;q � S1�S2 is connected (a knot) when n and
q are coprime. When q D 0, the orbifold Zn;0 coincides with Zn above.

When needed, we orient the singular set Kn �Zn as the boundary of n disks in the product 4-manifold
D2 �S2, and we orient Kn;q similarly using the fact that they have the same infinite cyclic cover.

It is evident from the definitions that the orbifold Zn;q is isomorphic to Zn;�q by an orientation-reversing
map. With a little more thought, one can see that there is also an orientation-preserving isomorphism:

Lemma 3.3 The link Kn;q is isotopic in S1 � S2 to the link Kn;�q . As a consequence , there is an
orientation-preserving isomorphism of bifolds from Zn;q to Zn;�q , preserving the orientation of the
singular set.

Proof Let L be an oriented axis in R3 passing through two points of the equatorial circle in the above
description of Kn;q . Let �t be the rotation of S2 about this axis through angle 2� t , and let 1� �t be the
resulting map S1 �S2! S1 �S2. Then the link

Kt D .1� �t /.Kn;�q/� S1
�S2

coincides with Kn;�q when t D 0 and with Kn;q when t D 1
2

.

We aim to give a description of I.Zn/ (the instanton homology with local coefficients) as an R-module,
together with a description of the operators

I.Œ0; 1��Zn; a/ W I.Zn/! I.Zn/ and I.Œ0; 1��Zn; a/
e
W I.Zn/! I.Zn/

arising from classes a by the general construction (5) and (10), where e is the 2-dimensional class in
H2.ZnIQ/.
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3.2 The representation variety of S 2
n

Let us assume henceforth that n is odd, so that the orbifold Zn described above is admissible. We may
describe Zn as a product S1 �S2

n , where S2
n is a 2-dimensional bifold of genus 0, and we begin with

some observations about the representation variety Rep.S2
n /, drawn from [3; 35; 32]. Note that we can

identify Rep.S2
n / with the space of flat SU.2/ connections on the complement of the n singular points

such that the monodromy at each puncture has order 4. (See the remark in Section 2.1.)

First, as n is odd, the variety Rep.S2
n / consists entirely of irreducible connections. It is a smooth, compact,

connected manifold of dimension 2n� 6 for n � 3, and is empty for n D 1. We have no need for a
detailed description of their topology, but we record the fact that Rep.S2

3
/ is a single point and Rep.S2

5
/

is diffeomorphic to the blow up of CP2 at 5 points. It will be convenient to make use of the following
result, which the authors believe has the status of folklore. The statement and proof are very minor
adaptations of the main result of [13]. See also [33].

Lemma 3.4 For any odd n, the manifold Rep.S2
n / admits a Morse function with critical points only in

even index.

Proof Following [13], we present a proof by induction on n. So assume the result is true for a particular n,
and consider Rep.S2

nC2
/. Let C � SU.2/ be the subset of elements of order 4, ie the unit sphere of

imaginary quaternions. Let zR� C nC2 be the locus

f.i1; : : : ; inC2/ 2 C nC2
j i1i2 � � � inC2 D 1g;

so that the representation variety Rep.S2
nC1

/ is the quotient of zR by conjugation. For i 2 zR, there is a
unique � 2 Œ0; �� such that

inC1inC2 �

�
ei� 0

0 e�i�

�
and we have a smooth function

hD cos.�/D 1
2

tr.inC1inC2/;

which descends to a smooth function

h W Rep.S2
nC2/! Œ�1; 1�:

We consider separately the loci h�1.1/, h�1.�1/ and h�1..�1; 1//.

If i 2 h�1.1/, then inC1inC2 D 1, and it follows that i1i2 � � � in D 1. So these remaining n points define a
point in Rep.S2

n /. The remaining choice of inC1 exhibits h�1.1/ as a 2-sphere bundle over Rep.S2
n /. As

in [13], we may use the induction hypothesis to show that a perturbation of h has critical points only of
even index near hD 1. The situation at h�1.�1/ is essentially the same: multiplying i1 and inC2 by �1

interchanges these two loci.
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On the locus h�1..�1; 1//, the function h itself is Morse and its critical points can be described as follows.
Let i , j , k in C be the standard unit quaternions with ij k D �1. Given any element of h�1..�1; 1//

we can use the action of conjugation to uniquely put in standard form with inC1 D i and inC2 lying in
the interior of the semicircle  which joins i to �i and passes through j . In this standard form, there
is a circle action on h�1..�1; 1// which fixes inC1 and inC2 and rotates the points i1; : : : ; in about the
axis through k. The function � D cos�1.h/ is smooth on this locus and is the moment map of the circle
action. The critical points of h are therefore precisely the fixed points of this circle action. These fixed
points are the points which in standard form have inC1 D i , inC2 D j and im D˙k for all other m. The
constraint i1i2 � � � inC1 D 1 means that im D�k for an even number of indices m in the range 1; : : : ; n.
As a general property of moment maps, because these fixed points are isolated, they are Morse critical
points for h, of even index.

Remark The proof of the lemma above gives a little bit more, for we can easily identify the indices of
the critical points, and hence establish the recursive formula for the Poincaré polynomial of Rep.S2

n /

which is given in [32]. The loci h�1.1/ and h�1.�1/, which are the 2-sphere bundles over Rep.S2
n /

inside Rep.S2
nC2

/, are the minima and maxima of h and together make a contribution

.1C t2/2Pn.t/

to the Poincaré polynomial PnC2 for Rep.S2
nC2

/. Using the symmetries of Rep.S2
nC2

/ obtained by
multiplying an even number of the il by �1, it is easy to see that the remaining critical points in
h�1..�1; 1// all have the same index and that this index is the middle dimension .n�1/. There are 2n�1

of these critical points, so we recover the recursive formula from [32],

(12) PnC2.t/D .1C t2/2Pn.t/C .2t/n�1:

Atiyah and Bott [1] described standard generators for the cohomology ring of representation varieties
of surfaces in the nonorbifold case (a smooth surface of genus g), and there is an extension of those
techniques for the orbifold case, developed in [2]. For the specific case of S2

n , the results are given in [32].

In this description, the generators of the cohomology ring H�.Rep.S2
n IQ// are classes

(13) ˛ 2H 2.Rep.S2
n /IQ/; ˇ 2H 4.Rep.S2

n /IQ/; ıp 2H 2.Rep.S2
n /IQ/ for p 2 �;

which are the restrictions to Rep.S2
n / of classes defined on the space of irreducible bifold connections,

B�.S2
n /, arising from the slant product construction (3). More specifically, the classes ˛ and ˇ arise from

the fundamental 2-dimensional class ŒS2
n � 2H2.S

2
n / and the point class Œw� 2H0.S

2
n / respectively, while

ıp is defined as in (4):

(14) ˛ D�1
4
porb

1 .E/=ŒS2
n �; ˇ D�1

4
porb

1 .E/=Œw�; ıp D
1
2
e.Vp/:

We will sometimes write
ı1; : : : ; ın

for the classes ıpi
as pi runs through � .
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The classes ˛ and ˇ can also be seen as arising from the Künneth decomposition in H 4.B�.S2
n /�S2

n IQ/,

�
1
4
porb

1 .E/D ˇ� 1C˛� v;

where v is the generator of H 2.S2
n IQ/. The generator ˇ is redundant, because of the relation

ı2
p D�ˇ for all p 2 �;

which is a restatement of (8) in the current situation.

In the rational cohomology ring of B�.S2
n /, there are no further relations: the cohomology ring is the

algebra

(15) H�.B�.S2
n /IQ/DQŒ˛; ı1; : : : ; ın�=hı

2
k � ı

2
l ik;l :

We have a surjective homomorphism

(16) ' WH�.B�.S2
n /IQ/!H�.Rep.S2

n /IQ/:

Definition 3.5 We write An for the algebra

An DH�.B�.S2
n /IQ/DQŒ˛; ı1; : : : ; ın�=hı

2
k � ı

2
l ik;l ;

and we write
jn �An

for the kernel of the surjective homomorphism '.

Generators for the ideal jn are described in detail in [32], which leads to a complete description of the
cohomology ring,

(17) H�.Rep.S2
n /IQ/DAn=jn:

See also Proposition 4.8.

3.3 The representation variety of Zn

The flat bifold connections on Zn are of two sorts, which we call the “plus” and “minus” components,
which can be distinguished by examining the holonomy of the flat connection along the S1 factor in
ZnDS1�S2

n . The representations in the plus component are pulled back from S2
n . The representations in

the minus component are obtained from these by multiplication by a flat real line bundle with holonomy�1

on the S1 factor. Thus we have

(18) Rep.Zn/D Rep.Zn/C[Rep.Zn/� D Rep.S2
n /[Rep.S2

n /:

Because of this, the description (17) of the cohomology ring of Rep.S2
n / leads immediately to a description

of the cohomology of Rep.Zn/. We are also eventually interested in the cohomology of the representation
variety with constant coefficients R rather than Q (because of our interest in instanton homology with
local coefficients �). With this in mind, let

� WH�.Rep.Zn/IR/!H�.Rep.Zn/IR/
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be the map obtained from interchanging the two copies, so that �2 D 1. We write An for the algebra

(19) An DRŒ˛; ı1; : : : ; ın; �� =h�2
� 1; ı2

k � ı
2
l ik;l :

That is, we extend the coefficient ring of the algebra (17) from Q to R, and we adjoin the element � with
square 1. This provides us with the following description. In the statement below, we write

1C 2H 0.Rep.Zn//

for the element Poincaré dual to the fundamental class of the component Rep.Zn/C.

Proposition 3.6 The cohomology of the representation variety Rep.Zn/ with coefficients in R is a cyclic
module for the algebra An with generator the element 1 2H 0.Rep.Zn/IR/. We have

(20) H�.Rep.Zn/IR/ŠAn=Jn; where Jn D .jnC �jn/˝R;

and jn is the ideal in (17). Using Poincaré duality, the homology H�.Rep.Zn/IR/ can equivalently be
described as a cyclic An-module with generator the class ŒRep.Zn/C�, with the classes ˛ and ık acting
by cap product.

We regard An as a graded algebra with the generators ˛ and ık in grading 1 (not 2) and � in grading 0.
From the grading, An obtains an increasing filtration, which for future reference we record as

(21) A.0/n �A.1/n �A.2/n � � � � �An;

where A.s/n is the R-submodule generated by elements in grading less than or equal to s.

From the explicit description of the generators of jn given in [32] (for rational coefficients), we can read
off that there are no relations between the generators up to the middle dimension of Rep.Zn/:

Proposition 3.7 For s � .n� 3/=2, we have Jn\A.s/n D f0g.

3.4 The instanton homology of Zn

The instanton homology I.ZnIQ/ with rational coefficients was described, together with its ring structure,
by Street [32] drawing on work of Boden [3] and Weitsman [35]. We summarize part of these results
here, adapted to the case of I.Zn/ (by which we continue to mean the instanton homology with local
coefficients).

The representation variety Rep.Zn/ is a Morse–Bott critical locus for the Chern–Simons functional.
By Lemma 3.4, there is a Morse function on Rep.Zn/ with critical points only in even index. The
proof of that lemma allows one to construct such a Morse function as a linear combination of traces of
holonomies around loops in Zn. We may use such a Morse function as a holonomy perturbation for the
Chern–Simons functional, so that the critical points of the perturbed Chern–Simons functional correspond
to the critical points of the Morse function on Rep.Zn/. After making such a perturbation, the set of
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critical points forms a natural basis both for the ordinary homology of Rep.Zn/ as a Q-vector space, and
for the instanton homology I.Zn/ as an R-module. We therefore obtain an isomorphism

I.Zn/DH�.Rep.Zn//˝R:

In the Z=4 grading of the instanton homology, the minus component Rep.S2
n /� is shifted by 2 relative to

the plus component. This is established in [32] for rational coefficients, but the argument extends to any
coefficients, including our local coefficient system � . We record this in the following proposition.

Proposition 3.8 As R-modules with Z=4 grading , we have an isomorphism ,

ƒ W I�.Zn/DH�.Rep.S2
n /IR/˚H�.Rep.S2

n /IR/Œ2�

for all odd n� 1. In particular , the instanton homology is a free R-module and is nonzero only in even
degrees mod 4.

The isomorphism ƒ in the above proposition depends on the choice of perturbation (at least a priori),
because the isomorphism goes by identifying both sides with the free R-module generated by the critical
points. The following two propositions add some additional structure. In the statement of the first
proposition below, we write 1C 2 I.Zn/ for the relative invariant of the 4-dimensional orbifold D2 �S2

n

with boundary Zn:
1C D I.D2

�S2
n /:

Proposition 3.9 The instanton homology I.Zn/ is a cyclic module for the filtered algebra An in (19),
with cyclic generator the element 1C.

This proposition (whose proof is given below) prompts the following definition.

Definition 3.10 We write Jn �An for the annihilator of the cyclic module I.Zn/, so that

I.Zn/ŠAn=Jn:

From this description, the instanton homology I.Zn/ inherits an increasing filtration from the filtration
of An:

I.Zn/
.m/
D .A.m/n CJn/=Jn:

Proposition 3.11 The isomorphism ƒ of Proposition 3.8 respects the filtrations , and the isomorphism on
the associated graded is an isomorphism of An-modules , independent of the choice of perturbations.

We begin the proof of the two propositions above by describing the An-module structure of I.Zn/. Recall
that the An-module structure of H�.Rep.Zn/IR/ arises from operators ˛, ı1; : : : ; ın (acting by cap
product) and �. The instanton homology I.Zn/ carries parallel operators which we now make explicit.
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First, the classes ˛, ˇ and ıp in H�.B�.Zn/IQ/ correspond to operators on the Floer homology I.Zn/

by the general construction (5). We write these operators as

(22) z̨ W I�.Zn/! I��2.Zn/; žW I�.Zn/! I��4.Zn/D I�.Zn/; zıp W I�.Zn/! I��2.Zn/;

where the subscripts denote the mod 4 grading. In the notation of (5), these are the operators

z̨ D I.Œ0; 1��Zn; ŒS
2
n �/;

ž D I.Œ0; 1��Zn; Œw�/ for Œw� 2H0.Œ0; 1��Zn/;

zıp D I.Œ0; 1��Zn; Œp�/ for Œp� 2H0.Œ0; 1��Kn/:

Remark According to the results of [16], the operator 2zıp can be realized as the map corresponding to a
cobordism W1 from Z to Z, derived from the product cobordism I �Z by summing a standard torus to
I �K at the point

�
1
2
;p
�
. The local orientation of K is used to fix a homology orientation of the torus.

The counterpart of the operator � is a special case of the construction of I.W; a/e . Specifically, following
Street [32], it is the map (10) in the special case that W is the cylindrical cobordism, the element a is 1,
and e is the class Œfpointg �S2

n �:
z� D I.Œ0; 1��S2

n /
e:

In order for the operators z̨, zıp and z� to make the instanton homology I.Zn/ into a module over the
algebra An, we need to see that they satisfy the relations that are baked into the definition of An. We turn
to this next. The relation in Proposition 2.4 specializes to the following:

Lemma 3.12 With RDQŒ�˙1� as usual , the actions of the operators zıp and ž on the R-module I.Zn/

are related by
zı2
p D�

žC �2
C ��2:

In particular , zı2
p is independent of the chosen point p on the singular set of Zn.

The element � in An has square 1 by definition, so we need the following lemma also.

Lemma 3.13 The operator z� WI.Zn/!I.Zn/ has square 1, and under the isomorphism of Proposition 3.8
it corresponds to the interchange of the two summands.

Proof This is proved in [32] for rational coefficients, except that an ambiguity in the orientation of the
moduli spaces left the sign of z�2 unresolved there. (See also the proof of Proposition 3.14 below.) In our
present context we have

z�2
D I.Œ0; 1��S2

n /
e
ı I.Œ0; 1��S2

n /
e
D I.Œ0; 1��S2

n /
2e
D .�1/e�eI.Œ0; 1��S2

n /D 1;

where the second equality is by functoriality and the third equality is from (11).

The relations in Lemmas 3.12 and 3.13 are the same relations satisfied by the elements � and ık in the
algebra An, so we can indeed use these operators to define an An-module structure on I.Zn/ by

(23) ˛ 7! z̨; ıi 7! zıi for i D 1; : : : ; n; � 7! z�:
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Having described the module structure of I.Zn/, the fact that it is a cyclic module generated by 1C
(Proposition 3.9) and the assertions of Proposition 3.11 are both consequences of the fact that, under
the isomorphism of Proposition 3.8, the operators z̨, zıp and z� agree with the operators ˛, ıp and � on
H�.Rep.S2

n // in their leading terms. This is the assertion of the proposition below, which is the final
proposition of this subsection.

Proposition 3.14 Let ƒ be the isomorphism of Proposition 3.8. Then for any � 2 I.Zn/
.m/ and u2A.k/n ,

we have

(24) ƒ.u�/D uƒ.�/ mod I.Zn/
.mCk�1/;

and ƒ.1C/D 1C.

Proof It is enough to verify (24) in the case that u is one of the generators, ˛, ıp or �. The essential
point is that u� is defined using instantons on the cylinder R�Zn and that the leading term is defined by
(perturbations of) the flat connections, while the nonleading terms are defined by instantons with positive
action.

In more detail, let us write Rep.Zn/ D RC [R�, as an abbreviation for the components Rep.Zn/˙.
Before any perturbations are made, we have seen that the two components RC[R� are copies of the
representation variety Rep.S2

n / of the orbifold sphere (equation (18)). For each � > 0, let us write

M�.R˙;R˙/

for the moduli space of (unperturbed) instanton trajectories from one component of Rep.Zn/ to another,
with action �.

Lemma 3.15 (i) The moduli spaces M�.RC;RC/ and M�.R�;R�/ are nonempty only for � 2 1
2
Z.

(ii) The moduli spaces M�.RC;R�/ and M�.R�;RC/ are nonempty only for � 2 1
2
ZC 1

4
.

(iii) The formal dimension of the moduli space , in every case , is 8�C .2n� 6/.

Proof The moduli spaces M�.RC;RC/ and M�.R�;R�/ are nonempty when � D 0, consisting then
of constant trajectories on the cylinder and forming a regular moduli space of dimension 2n� 6 (the
dimension of the representation variety). For other values of �, these moduli spaces are related to each
other by gluing in instantons and monopoles, which will change � by multiples of 1

2
while always changing

the formal dimension by 8�; see [17; 20].

The formal dimension and action � for the moduli spaces M�.RC;R�/ and M�.R�;RC/ are the same
as for moduli spaces on the closed bifold S1 �Zn D T 2 �S2

n for a bundle with marking data where
w2.E/ is dual to the class T 2 � fpointg. The action in this case is equal to 1

4
n modulo 1

2
, or in other

words belongs to 1
4
C

1
2
Z since n is odd. (In the language of [17], the monopole number on each of the

n components of the singular set is a half-integer.) The formula for the formal dimension in terms of the
action � is unchanged.
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After perturbation of the Chern–Simons functional, the manifolds RC and R� each become a finite set of
nondegenerate critical points, CC and C�. The action of the perturbed instantons will be close to integer
multiples of 1

4
if the perturbation is small, so for critical points c and c0 and � 2 1

4
Z we continue to write

M�.c; c
0/ for the perturbed moduli spaces. We have the dimension formula

dim M�.c; c
0/D 8�C index.c/� index.c0/;

where index denotes the ordinary Morse index for the Morse function on R˙. Furthermore, the moduli
space is nonempty only if � 2 1

2
Z in the case that c; c0 both belong to CC or to C�, and only if � 2 1

4
C

1
2
Z

otherwise.

Consider now the operator z̨ for example. (The case of zıp is no different.) When � D 0, the moduli space
M0.c; c

0/ between critical points c; c0 2 CC or c; c0 2 C� coincides with a perturbation of the space of
ordinary Morse trajectories between the critical points in R˙. The construction of z̨ means that we can
write it as a sum

(25) z̨ D

X
�2 1

4
Z; ��0

z̨.�/

according to the contributions of the different moduli spaces M� . The matrix entry of z̨.0/ is the evaluation
of the cohomology class ˛ on the Morse trajectory space M0.c; c

0/ between critical points on RC or R�

with index.c/� index.c0/D 2. This is the cap product by the class ˛, under the isomorphism between
Morse homology and singular homology. Thus we have

ƒ.z̨.0/�/D ˛ƒ.�/;

where � is the class corresponding to the critical point c. The dimension formula shows that the remaining
terms ƒ.z̨.�/�/ for positive � correspond to 2-dimensional moduli spaces M�.c; c

00/ where the index
difference index.c/� index.c00/ is 4 or more.

In the case of z�, the equality (24) holds exactly. This is the content of Lemma 3.13. In the present context
it can be understood by the same argument as applies to z̨ and zıp , but with the additional observation that
the moduli spaces of positive action contribute zero because of the action of translation on these moduli
spaces.

If we keep track of the difference between RC and R� which is highlighted in part (ii) of Lemma 3.15,
then we can extract a slightly more detailed statement from the proof of the proposition above. Recall
that Jn �An is the annihilator of H�.Rep.Zn//. (See Proposition 3.6.) In the following corollary, we
also write

ACn �An

for the subalgebra generated over R by ˛ and ı1; : : : ; ın, so that

An DACn C �A
C
n :
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Corollary 3.16 For any element w 2 Jn\A.m/n , there exists ! 2 Jn\A.m/n with

! �w 2A.m�1/
n :

More particularly, if w is a homogeneous element of degree m in the graded algebra An, then ! can be
taken to have the form

! D w.0/Cw.2/Cw.4/C � � �C �
�
w.1/Cw.3/C � � �

�
;

where w.0/ D w and w.i/ 2 A.m�i/
n \ACn is homogeneous of degree m� i for all i . Furthermore , if

m� 1
2
.n� 1/, then ! is uniquely determined by w.

Proof This follows from the proposition above and Proposition 3.7.

3.5 The instanton homology of Zn;�1

We now examine the bifold Zn;�1; see Definition 3.2. The singular locus K.Zn;�1/ in this case is a knot
in S1 �S2, with winding number n. We still require n to be odd, so that this is an admissible bifold.

Proposition 3.17 The representation variety of Zn;�1 is nondegenerate and consists of 1
4
.n2� 1/ points.

Proof The orbifold Zn;�1 is a fiber bundle over the circle, with fiber the orbifold sphere S2
n . The

restriction map to the fiber,
Rep.Zn;�1/! Rep.S2

n /;

has image the set of representations in Rep.S2
n / which are invariant under the action h� of the monodromy

of the circle bundle, h W S2
n ! S2

n . The latter is the map which rotates the sphere through 2�=n. The
restriction map is two-to-one, just as it is for Zn, and for the same reason.

The fixed points of h� are representations of the orbifold fundamental group of the quotient †D S2
n=hhi.

This orbifold surface has one orbifold point of order 2 and two orbifold points of order n. For a spherical
orbifold with three singular points, the representation variety consists of isolated points, and this is
essentially the situation considered in [10] (for example). The enumeration of representations, as in [10],
becomes an enumeration of lattice points in a region. (The same conclusion can also be reached by
identifying the representations with stable parabolic bundles on a curve of genus 0 with appropriate
parabolic structure at the orbifold points. See Section 4.1.) In this particular case, the number of
representations of the orbifold fundamental group of S2

n=hhi is 1
8
.n2 � 1/, and Rep.Zn;�1/ therefore

consists of 1
4
.n2�1/ points. The nondegeneracy of the former leads to the nondegeneracy of the latter.

We can view K.Zn;�1/ as the closure of a braid in S1 �D2 � S1 � S2 whose braid diagram has
n� 1 negative crossings. There is therefore a cobordism W of bifolds, from Zn;�1 to Zn, obtained by
smoothing each of the crossings. We can write W as a composite of n� 1 cobordisms, W1; : : : ;Wn�1,

Geometry & Topology, Volume 29 (2025)



1994 Peter B Kronheimer and Tomasz S Mrowka

Figure 2: The composite cobordism from Zn;�1 to Zn, illustrated for nD 5.

in the order illustrated in Figure 2. The intermediate bifolds each correspond to braids with k “straight”
strands and n�k braided strands: a side-by-side juxtaposition of Zk and Zn�k;�1, which we temporarily
denote by Zk �Zn�k;�1 (with the understanding that Z0 is S1 �S2 with an empty link). So we have

I.Wk/ W I.Zk�1 �Zn�kC1;�1/! I.Zk �Zn�k;�1/ for k D 1; : : : ; n� 1:

(Note that, when k D n� 1, we have Zk �Zn�k;�1 ŠZn.)

Proposition 3.18 For each odd n and each k � n�1, the induced map I.Wk/ is an inclusion of one free
R-module in another , as a direct summand.

Proof The cobordism Wk is one map in a skein exact triangle [23; 19], in which the third instanton
homology group is I.Xn;k/, where Xn;k is a braid as shown in Figure 3. Thus,

(26) : : :
c
! I.Zk�1 �Zn�kC1;�1/! I.Zk �Zn�k;�1/! I.Xn;k/

c
! � � �

is a long exact sequence.

After an isotopy, we have, for k � n� 2,

(27) Xn;k DZk�1 �Zn�2�kC1;�1:

Figure 3: The third braid Xn;k in the exact triangle, illustrated in the case nD 5 and k D 2. The
shaded region (which is connected in a projection of S1�S2) can be eliminated by a Reidemeister I
move.

Geometry & Topology, Volume 29 (2025)



Relations in singular instanton homology 1995

The case k D n� 1 is slightly different: in this case Xn;n�1 is the connected sum of Zn�2 and the bifold
obtained from an unknot in S3. (See Figure 3 again.) From another application of the skein triangle, we
have an exact sequence

� � � ! I.Zn�2/! I.Xn;n�1/! I.Zn�2/! � � � :

The connecting homomorphism I.Zn�2/!I.Zn�2/ has odd degree in the mod 2 grading, while I.Zn�2/

is supported in even gradings only. So the connecting homomorphism is zero and so

rankR I.Xn;n�1/D 2 rankR I.Zn�2/:

For brevity, let us write

f .n; k/D rankR I.Zk �Zn�k;�1/ and x.n; k/D rankR I.Xn�k/:

From the long exact sequence (26), we obtain

f .n; k/� f .n; k � 1/Cx.n; k/

with equality if and only if the connecting homomorphism c has rank zero. We have also seen that

x.n; k/D

�
f .n� 2; k � 1/ if k � n� 2;

2f .n� 2; n� 2/ if k D n� 1:

From these we inductively obtain

(28) f .n; n/�

.n�1/=2X
pD0

� n

p

�
f .n� 2p; 0/:

The quantities f .n� 2p; 0/ are the ranks of the instanton homologies of Zn�2p;�1, which are bounded
above by the number of generators, which in turn can be read off from Proposition 3.17:

(29) f .n� 2p; 0/� 1
4
..n� 2p/2� 1/:

Combining this with the previous inequality we have

(30) f .n; n/�

.n�1/=2X
pD0

� n

p

�
�

1
4
..n� 2p/2� 1/:

On the other hand, we know what f .n; n/ is: it is twice P .1/, where P is the Poincaré polynomial of the
representation variety of S2

n , given by the recursive formula (12). From that recursion, we can verify the
closed formula

(31) f .n; n/D 2n�3.n� 1/:

But the sum on the right-hand side of (30) is also 2n�3.n� 1/, as is easily verified by comparing it to
the second derivative of .t C t�1/n at t D 1. It follows that the inequalities above are all equalities. In
particular, from the equality in (30), we learn that I.Zn;�1/ is a free module of rank .n2�1/=4. It follows
that the connecting homomorphisms c in the exact sequences (26) all have rank zero. An inductive
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argument now shows the modules in the exact sequences are all free R-modules and the connecting
homomorphisms are all zero. The proposition follows.

The following corollary summarizes the conclusions of the previous propositions.

Corollary 3.19 The instanton homology I.Zn;�1/ with local coefficients is a free R-module of rank
.n2� 1/=4, supported in even degrees mod 4. The cobordism W WZn;�1!Zn induces a map I.W / on
instanton homology with local coefficients ,

I.W / W I.Zn;�1/! I.Zn/;

which is an inclusion of this free R-module as a direct summand.

The bifold obtained from Zn;�k by reversing the orientation is Zn;k , and by dualizing the above corollary
we obtain:

Corollary 3.20 The instanton homology I.Zn;1/ with local coefficients is also a free R-module of rank
.n2�1/=4. The cobordism W | WZn!Zn;1 induces a surjective map I.W |/ on these free modules.

On the other hand, we have Lemma 3.3 which identifies Zn;�1 and Zn;1 in an orientation-preserving
manner by an isotopy. So we have another variant of the corollary:

Corollary 3.21 There is a surjective homomorphism of free R-modules from I.Zn/ to I.Zn;�1/ obtained
from a cobordism between the links K.Zn/ and K.Zn;�1/ inside Œ0; 1��S1 �S2.

Like Zn, the bifold Zn;�1 contains a copy S of the orbifold sphere S2
n intersecting the singular locus

in n points. By the general constructions of Section 2.3, this gives rise to operators z̨, zı1; : : : ; zın and z�,
acting on I.Zn;�1/ just as in the case of I.Zn/, making I.Zn;�1/ also an An-module. Note that the
n points of intersection with S all lie on the same component of the singular locus K.Zn;�1/ (which is
now a knot, not a link). The operators zıp are therefore all equal on I.Zn;�1/, and we will sometimes
write this operator as zı.

Proposition 3.22 With the instanton module structure in which ˛; ıi ; � 2 An act by the operators z̨,
zı and z�, the instanton homology I.Zn;�1/ is a cyclic module for the algebra An and can therefore be
described as a quotient ,

I.Zn;�1/ŠAn=Jn;�1:

The ideal Jn;�1 contains the ideal Jn as well as the elements ıi � ıj .

Proof We have seen that there is a cobordism from Zn to Zn;�1 inducing a surjection on instanton
homology (Corollary 3.21). The proposition follows from this and the above remark that the actions of
the zıi are all equal.
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It is helpful here to introduce the smaller algebra

xADAn=hıi � ıj ii;j ;

which we can write simply as

(32) xADRŒ˛; ı; ��=h�2
� 1i;

where ı denotes the image of the ıi in the quotient ring. The algebra xA described this way is independent
of n. The above proposition then can be recast as

(33) I.Zn;�1/Š xA= xJn;�1;

where xJn;�1 is the image of Jn;�1 in xA.

Our main goal in this paper is to identify I.Zn/ and I.Zn;�1/ completely, by describing the ideals
Jn �An and xJn;�1 � xA. In particular, as described in the introduction, we will eventually provide a set
of generators of xJn;�1 in closed form, as minors of an explicit matrix.

4 Relations in ordinary cohomology

4.1 Loci in families of parabolic bundles on S 2
n

Recall from Proposition 3.6 the description of the cohomology ring of the representation variety

Rep.Zn/D Rep.S2
n /[Rep.S2

n /

as a quotient An=Jn, where Jn is an ideal. (The coefficient ring here, as in Proposition 3.6, is R, though at
this point our calculations will involve only Q, so rational coefficients would suffice.) The Betti numbers
of Rep.S2

n / were calculated recursively by Boden [3], and a full presentation of the cohomology ring
(in a more general case) is described in [8]. Generators for the ideal of relations in the specific case of
Rep.S2

n / are given by Street [32]. We shall describe a particular source of such relations, arising from a
mechanism first pointed out by Mumford in the smooth case [1]. (In [8] it is shown that essentially the
same mechanism gives rise to a complete set of relations in the orbifold case.)

As stated earlier, although we have taken SO.3/ connections as our starting point, the representation
variety Rep.S2

n / can be identified with the space of flat SU.2/ connections having monodromy of order 4

at each of the n punctures. In turn, this representation variety can be identified with a moduli space of
stable parabolic bundles by the results of [25]. We adopt the following conventions to make this more
specific in the rank-2 case, following [17; 18].

We consider a compact Riemann surface S equipped with a set of distinguished points � D fp1; : : : ;png,
and a parameter ˛ 2

�
0; 1

2

�
. Given a fixed holomorphic line bundle ‚! S (usually trivial in our case),

we study rank-2 holomorphic bundles E ! S with ƒ2E D ‚, together with a filtration of the rank-2
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fiber at each p 2 � determined by a choice of a one-dimensional subspace (a line) Lp � Ep. The data
.E ;Lp1

; : : : ;Lpn
; ˛/ is a bundle with parabolic structure. Given a line subbundle F � E , the parabolic

degree of F is defined by

(34) par-degF D c1.F/ŒS �C
X
�

˙˛;

where we take C˛ in the sum when F contains Lp at p and �˛ when it does not. The parabolic bundle
is semistable if

par-degF � 1
2

deg‚

for every line subbundle F , and is stable if strict inequality holds. At present we will take ‚ to be trivial
and we are only concerned with the special case ˛D 1

4
. In this case, when n is odd, all semistable bundles

are strictly stable, and the moduli space of stable parabolic bundles is a projective variety of complex
dimension 3g� 3C n. In the case of genus 0, we write M.S2

n / for this projective variety: the moduli
space of stable parabolic bundles, with parabolic structure at the n marked points and ˛ D 1

4
.

With this notation understood, the theorem of [25] identifies the representation variety Rep.S2
n / for odd n

with the moduli space of stable parabolic bundles:

Rep.S2
n /ŠM.S2

n /:

Suppose now that we have a family of parabolic bundles on S2
n parametrized by a space T . This means

that we have a rank-2 bundle,

E! T �S2;

with ƒ2E Š ˆ�‚ (with ‚ still trivial on S2 at the moment, but ˆ a nontrivial line bundle on the
base T ), together with line subbundles

Lp � EjT�p for p 2 �:

The bundle E is equipped with a holomorphic structure on each ftg � S2, giving rise to parabolic
bundles Et .

In such a family over T , we can consider the locus of those t 2 T where the parabolic bundle Et is
unstable (for ˛ D 1

4
). From the definition at (34), being unstable means the following.

(i) We have a holomorphic line bundle F ! S2, of degree f say, necessarily the bundle O.f /.

(ii) We have a subset �� � , whose cardinality we denote by h.

(iii) There is a nonzero holomorphic map � W F ! Et such that �.F jp/� Lt jp for all p 2 �.

(iv) We have f C 1
4
.2h� n/ > 0.

Altering this slightly, given any � 2R, we make the following definition.
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Definition 4.1 Let �� � D fp1; : : : ;png be any subset, and write hD j�j for its cardinality. Let � be
an odd multiple of 1

4
satisfying the additional constraint that

(35) hD 1
2
.n� 4�/ .mod 2/:

This being so, there is f 2 Z such that

(36) f C 1
4
.2h� n/D��:

Let F ! S2 be the line bundle O.f /. Given a family of parabolic bundles on S2
n parametrized by T as

above, we define

(37) T
�

�
� T

to be the locus of points t 2T such that there is a nonzero holomorphic map � WF! Et with �.F jp/�Lt jp

for all p 2 �.

This definition is set up so that the unstable locus is the union[
�I���

1
4

T
�

�
:

The definition of the locus T
�

�
is readily rephrased as the statement that a certain Fredholm operator Pt

(defined below at (41), and determined by the parabolic bundle Et and the choice of � and �) has nonzero
kernel. If we suppose that the resulting map

P W T ! Fred

is transverse to the stratification of the space of Fredholm operators by the dimension of the kernel, then
the locus T

�

�
� T will itself be a stratified space whose Poincaré dual is a cohomology class that one can

calculate using the index theorem for families. With slight abuse of notation, we write (37) as

T
�

�
D T \U

�

�
;

where U
�

�
denotes the locus where the Fredholm operator has kernel. It will also be useful to group

together the different subsets � according to their size h D j�j, so that we write (with a slight further
abuse of notation),

U h
� D

[
j�jDh

U
�

�
and T h

� D T \U h
� :

Again, this locus is nonempty only if h satisfies the parity condition (35).

We now compute the Chern classes of the index of the family of operators P in order to derive a formula
for the class dual to the stratum T

�

�
. Note that if P is a family of complex Fredholm operators of index

�kC 1, then (assuming transversality) the locus where Pt has kernel is dual to

(38) ck.�index.P // 2H 2k.T /:

(This is the first case of Porteous’s formula in the case of Fredholm maps [29; 15].)
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It is evident from the definition that the locus T
�

�
is unchanged if the family of bundles E is modified by

tensoring with a line bundle pulled back from the base T . Recall that we have written ƒ2E Dˆ�‚,
where ˆ! T is a line bundle and ‚ is taken to be trivial. If ˆ has a square root, we may tensor by
ˆ�1=2 to make c1.E/D 0. Although a square root will not exist in general, the calculation below is not
invalidated by assuming that c1.E/D 0, and we will make this simplification from here on. This means
in particular that c2.E/D�p1.adE/=4. Let us then write

c2.E/D ˇ� 1C y̨ � v 2H 4.T �S2/;

where v is the unit volume form on S2. From the binomial theorem, we have

(39) c2.E/r D ˇr
� 1C r y̨ˇr�1

� v:

The class y̨ here does not quite correspond to the class ˛ in (14), because the latter was defined using the
orbifold Pontryagin class. The relation between the two is:

(40) y̨ D ˛�
1

2

X
p2�

ıp:

For each p 2 � we also have the line subbundle Lp and the quotient line bundle Qp D .EjT�p/=Lp , and
from these we obtain the cohomology class

ıp D
1
2
.c1.Qp/� c1.Lp//:

The definition is set up so that 2ıp coincides with the Euler class of the oriented rank-2 subbundle of
ad.EjT�p/ determined by Lp.

Fix a holomorphic line bundle F ŠO.f / on S2. We are seeking a nonzero holomorphic map � W F ! Et

such that the composite with the quotient map,

F ! Et
�p
�!Q.t;p/;

vanishes for all p 2 �. That is, � 2�0;0.F�˝ Et / lies in the kernel of the map

(41) Pt W�
0;0.F�˝ Et /!�0;1.F�˝ Et /˚

�M
p2�

Q.t;p/
�

given by � 7!
�
x@�;
P

p2� �p ı �.p/
�
. So, for the family of Fredholm operators P that we are interested in,

index.P /D index.x@F�˝E/�
X
p2�

ŒQp �;

where the first part is the ordinary family x@ operators. From the index theorem for families, we have

(42) ch.index.P //D
��

Todd.S2/Y ch.F�˝E/
�
=ŒS2�

�
�

X
p2�

ch.Qp/:
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To compute the Chern characters that appear on the right-hand side of this formula, we introduce formal
Chern roots ˙� 2H 2.T �S2IQ/ so that c2.E/D��2. Then we can write

ch.E/D e��C e� D 2 cosh.
p
�c2.E//;

and a short calculation using (39) yields

ch.E/D 2 cosh.
p
�ˇ/� v

sinh.
p
�ˇ/p
�ˇ

y̨:

We also have
ch.F�/D 1�f v and ch.Qp/D eıp :

Finally, on the right-hand side of (42) we have Todd.S2/D 1C v. Assembling these and calculating the
slant product by ŒS2�, we find

ch.index.P //D .2� 2f � h/ cosh.
p
�ˇ/�

sinh.
p
�ˇ/p
�ˇ

�
y̨ C

X
p2�

ıp

�
;

where h is the number of elements of �. If we use the equality of (36), and if we substitute ˛ for y̨ using
the relation (40), we obtain:

(43) ch.�index.P //D
�

1
2
n� 2�� 2

�
cosh.

p
�ˇ/C

sinh.
p
�ˇ/p
�ˇ

�
˛C

1

2

X
p2�

ıp �
1

2

X
p 62�

ıp

�
:

If we recall that ı2
p D�ˇ for all p, then we can equivalently write this formula as

(44) ch.�index.P //D
�

1
2
n� 2�� 2

�
cosh.ı1/C

sinh.ı1/
ı1

�
˛C

1

2

X
p2�

ıp �
1

2

X
p 62�

ıp

�
;

or in abbreviated form as

(45) ch.�index.P //D i� cosh.ı1/C
sinh.ı1/
ı1

B�;

where i� and B� are the indicated subexpressions of (44). Note that i� is minus the numerical index of P .

The above formula defines a graded infinite sum of elements of the algebra

An DQŒ˛; ı1; : : : ; ın�=hı
2
i � ı

2
j ii;j DH�.B�.S2

n /IQ/

(see Definition 3.5), thus an element of the formal completionbH�.B�.S2
n /IQ/�H�.B�.S2

n /IQ/:

By the usual formulae expressing elementary symmetric polynomials in terms of power sums, there is a
map

ck W
bH�.B�.S2

n /IQ/!H 2k.B�.S2
n /IQ/

such that ck.ch.V //D ck.V / for any V , and so we have explicit formulae for

ck.�index.P // 2H�.B�.S2
n /IQ/;
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given as ck.r/, where r is the right-hand side of (44). The case we are interested in from (38) is the Chern
class ck , where �kC 1 is the numerical index of P . From the constant term in the formula for the Chern
character above, we read

(46) k D 1
2
n� 2�� 1:

So we make the following definition.

Definition 4.2 Given � an odd multiple of 1
4

and given a subset �� � D fp1; : : : ;png of size h, where
h satisfies the parity condition (35), let k be the integer given by (46), and denote by

wk
n;� 2H�.B�.S2

n /IQ/�An

the element ck.r/, where r is the right-hand side of (44).

To illustrate the general shape of the answers here, we take nD 5. When �D �1
4

, the value of k is 2.
The parity condition allows the size of � to be 1, 3 or 5, and we have

w2
5;� D

1
2

��
˛C 1

2
.˙ı1˙ ı2˙ ı3˙ ı4˙ ı5/

�
2
� ı2

1

�
;

where the sign is C when pi 2 � and � otherwise. When � D 1
4

, the value of k is 1, and the parity
condition allows the size of � to be 0, 2 or 4. We have

w1
5;� D ˛C

1
2
.˙ı1˙ ı2˙ ı3˙ ı4˙ ı5/:

Our definition means that, in H�.T IQ/, we have ck.�index P /D '.wk
n;�/, where ' WAn!H�.T IQ/

is the natural map (given, with slight abuse of notation, by ˛ 7! ˛ and ıp 7! ıp).

Corollary 4.3 Let .E;L/! T �S2 be a family of parabolic bundles on S2
n parametrized by T . Let �

and � be given , satisfying the conditions in Definition 4.2, and let T
�

�
� T be the locus defined by (37).

Assume that the corresponding family of Fredholm operators P is transverse to the stratification by the
dimension of the kernel. Then the cohomology class dual to this stratum is given by

PDŒT �

�
�D '.wk

n;�/;

where ' is the natural linear map An!H�.T IQ/, and k is given in terms of n and � by (46).

Remarks In Definition 4.1, the loci T
�

�
are characterized by the existence of a holomorphic map � WF!E

satisfying additional constraints at the distinguished points �� � . In the language of parabolic bundles,
we can regard F as a line bundle with parabolic structure described by a subsheaf F1 � F such that in a
neighborhood Up of each p 2 � we have

F1jUp
D F jUp

if p 2 �;

F1jUp
D .F ˝OŒ�p�/jUp

if p 62 �:

In these terms, what T
�

�
describes is the existence of a map F ! E of parabolic bundles: ie a map which

respects the filtrations. When regarded as a line bundle with parabolic structure in this way, we shall call
�� � the set of “hits” for F .
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4.2 The Mumford relations

As a consequence of Corollary 4.3, we have the following statement, which is the essential mechanism in
Mumford’s relations. (See the discussion in [1] for the earlier history of such relations.)

Proposition 4.4 Let .E;L/ be a family of parabolic bundles on S2
n parametrized by a space T as in the

previous subsection. Suppose that for every t 2 T the parabolic bundle .Et ;Lt / on S2
n is stable (with

˛ D 1
4

as always). Then for any � and � satisfying the conditions in Definition 4.2, with � < 0, we have

'.wk
n;�/D 0 in H 2k.T IQ/;

where k D 1
2
n � 2� � 1 and ' W H�.B�.S2

n /IQ/! H�.T IQ/ is the natural map determined by the
characteristic classes of E and L.

Proof When � < 0, the stratum T
�

�
consists of unstable parabolic bundles, so the hypothesis of the

proposition means that such strata are empty. The transversality condition is then vacuously satisfied and
the result follows from Corollary 4.3.

Proposition 4.5 Let �D�1
4

and let �� � D fp1; : : : ;png be a subset whose size h satisfies

(47) hD 1
2
.nC 1/ mod 2 and 0� h� n:

(The first condition is the parity condition (35) for �D�1
4

.) As in Definition 3.5, let jn be the kernel of
the restriction map to cohomology of the representation variety, H�.Rep.S2

n /IQ/. Then we have

wm
n;� 2 jn

for mD 1
2
.n� 1/. That is , wm

n;� is a relation in the cohomology ring of Rep.S2
n /.

Proof This follows from the previous proposition by specializing to the case �D�1
4

, because Rep.S2
n /Š

M.S2
n / parametrizes a family of stable parabolic bundles.

Definition 4.6 Let jn � An be again the ideal of relations in the cohomology of Rep.S2
n /. With

mD 1
2
.n� 1/ and �� � a subset whose size h satisfies the parity condition (47), we refer to the relation

wm
n;� 2 jn as a Mumford relation. The collection of all these, as � varies, are the Mumford relations in the

cohomology ring of Rep.S2
n /.

4.3 Explicit formulae

The elements wm
n;� 2 An appearing as the Mumford relations, and more generally the cohomology

classes wk
n;�, have been described using a characterization that does not immediately yield explicit

formulae. In particular, wk
n;� is defined in terms of a Chern class of an index element, while the explicit

formula (44) provides the Chern character in closed form.

As a first step towards a closed formula for wk
n;�, as in [36] for example, and following [37], a formula

for the total Chern class can be derived as the formal series

(48)
1X

kD0

ck.�index.P //D .1Cˇ/i�=2

�
1C ı1

1� ı1

�B�=.2ı1/

;
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where i� and B� are as in (44):

(49) i� D
�

1
2
n� 2�� 2

�
and B� D ˛C

1

2

X
p2�

ıp �
1

2

X
p 62�

ıp:

(See [37] for the interpretation of the right-hand side of this formula.) We can therefore write

(50) wk
n;� D

1

k!

�
dk

dtk

�ˇ̌̌̌
tD0

�
.1C t2ˇ/i�=2

�
1C tı1

1� tı1

�B�=.2ı1/
�
:

Note here that i� is minus the numerical index of P , and that in the definition of wk
n;� the integer k is

�index.P /C 1, so we can write

(51) wk
n;� D

1

k!

�
dk

dtk

�ˇ̌̌̌
tD0

�
.1C t2ˇ/.k�1/=2

�
1C tı1

1� tı1

�B�=.2ı1/
�
:

The following proposition gives a closed formula for this k th term in the power series.

Proposition 4.7 k!wk
n;� D

k�1Y
jD�kC1

jD�kC1 mod 2

.B�C j ı1/.

Proof Let us write

Ck D k!wk
n;� D

�
dk

dtk

�ˇ̌̌̌
tD0

Gk�1.t/; where Gk�1.t/D .1C t2ˇ/.k�1/=2

�
1C tı

1� tı

�B=.2ı/

;

and we have abbreviated
B D B� and ı D ı1

to streamline the notation.

Let yCk denote the right-hand side in the proposition,

yCk D

k�1Y
jD�kC1

jD�kC1 mod 2

.BC j ı/;

so that what we aim to prove is that Ck and yCk are equal. We shall prove in fact that

(52)
dk

dtk
Gk�1.t/D yCkG�k�1.t/;

which yields the desired equality Ck D
yCk on substituting t D 0, since Gl.0/D 1 for all l .

We prove (52) by induction on k: specifically, assuming that (52) holds for k, we prove the result for
kC 2. The seed cases, k D 0; 1, are clear. Note first that yCk satisfies a recurrence relation

(53) yCkC2 D .B
2
C .kC 1/2ˇ/ yCk D .B

2
� .kC 1/2ı2/ yCk :
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Next we examine the first two derivatives of Gk.t/: by induction on k and using the fact that Gk.t/D

.1C t2ˇ/Gk�2, we obtain the following identity for the first derivative:

(54)
d

dt
Gk.t/D .B � kı2t/Gk�2.t/:

Applying this twice, we obtain an identity for the second derivative:

(55)
d2

dt2
Gk.t/D

�
B2
� kı2

� 2.k � 1/Bı2t C k.k � 1/ı4t2
�
Gk�4.t/:

Using these identities for the first two derivatives, together with the induction hypothesis (52) and the
recurrence relation (53), we compute

dkC2

dtkC2
GkC1.t/

D
dkC2.1�ı2t2/Gk�1.t/

dtkC2

D .1�ı2t2/
dkC2Gk�1.t/

dtkC2
�2.kC2/ı2t

dkC1Gk�1.t/

dtkC1
�.kC2/.kC1/ı2 dkGk�1.t/

dtk

D

�
.1�ı2t2/

d2

dt2
�2.kC2/ı2t

d

dt
�.kC2/.kC1/ı2

�
dkGk�1.t/

dtk

D

�
.1�ı2t2/

d2

dt2
�2.kC2/ı2t

d

dt
�.kC2/.kC1/ı2

�
yCkG�k�1.t/

D
�
.B2
Cı2.kC1/C2.kC2/Bı2tC.kC1/.kC2/ı4t2/�2.kC2/ı2t.BC.kC1/ı2t/

�.kC2/.kC1/ı2.1�ı2t2/
�
yCkG�k�3.t/

D .B2
�.kC1/2ı2/ yCkG�k�3.t/D yCkC2G�k�3.t/;

as required.

4.4 The Mumford relations as generators of the ideal

In [32], a presentation of the cohomology ring of Rep.S2
n / is given by exhibiting a complete set of

generators for the ideal of relations jn �An, all of which have degree mD 1
2
.n� 1/. We now show that

the elements wm
n;� also generate the ideal, by relating them to the generators in [32].

Remark The statement that the elements ws
n;�, for s �m, generate the ideal is a counterpart of Kirwan’s

result [14] in the case of a (nonorbifold) surface of genus g. Kirwan’s result was strengthened by
Kiem [12], who showed that the relations in the middle dimension (ie the case s Dm in our context) are
sufficient. The results of [14] were extended to the case of parabolic bundles on surfaces of genus g � 2

with one marked point by Earl and Kirwan [8].
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Proposition 4.8 Fix n� 3 odd , and write nD 2mC 1. Then as � runs through all subsets of � whose
size h D j�j satisfies the parity condition (47), the elements wm

n;� 2 An form a set of generators of the
ideal jn. That is , the elements wm

n;� form a complete set of relations for the cohomology of Rep.S2
n / as a

quotient of the algebra An.

Proof From the results of [32], in the ideal jn, there is an element rm that has degree m and belongs
to the subalgebra QŒ˛; ˇ�� An, where ˇ D�ı2

p . The element rm is unique up to scale. According to
[32, Corollary 1.6.2], the ideal jn is generated by the elements

Rm
� D rm�j�j.˛; ˇ/

Y
p2�

ıp;

where � runs through all subsets of � of size 0� j�j �m. These elements all have degree m.

As we vary �, we obtain 2n�1 expressions wm
n;�, all of which are elements of jn of degree m. Because m

is the lowest degree in which relations exist, each wm
n;� is a Q-linear combination of the generators Rm

�
.

The number of generators Rm
�

is also 2n�1; so in order to see that the elements wm
n;� generate the ideal jn,

it will be enough if we show that they are linearly independent over Q.

The fact that the elements wm
n;� are linearly independent can be deduced through a direct examination of

the formulae which define it, as follows. Let us specialize the formulae by setting ˇ D 0, in which case
the expression (48) for the total Chern class of �index.P / simplifies to

.1C 2ı1/
B�=.2ı1/ D exp B�

because ı2
1
D 0. The element wm

n;� therefore specializes to Bm
� =m!, or if we further specialize by setting

˛ D 1, to
1

m!

�
1C

X
p

�pıp

�m

;

where �p D 1 for p 2 � and �p D�1 otherwise. We can expand this asX
j�j�m

C�;�

�Y
p2�

ıp

�
;

where the rational coefficient C�;� is given by

C�;� D
1

.m� j�j/!

�Y
p2�

�p

�
:

We wish to see that the matrix C D .C�;�/, which is square of size 2n�1, is nonsingular. To do this, we
compute the dot product of the columns of C corresponding to different subsets �1 and �2. For fixed �
we have

C�;�1
C�;�2

D
1�

m� j�1j
�
!
�
m� j�2j

�
!
�

�
C1 if j�\ .�1	 �2/cj is even,
�1 if j�\ .�1	 �2/cj is odd,

where the superscript c denotes the complement and 	 means the symmetric difference. Since �1 and �2
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are distinct subsets of size strictly less than n=2, their symmetric difference is a nonempty proper subset
of � . The number of subsets � of a given parity for which the intersection is even and the number for
which it is odd are therefore equal, and we see thatX

�

C�;�1
C�;�2

D 0:

The columns are therefore orthogonal, showing that the square matrix C is nonsingular, as required.

Remarks An alternative verification of the linear independence of the elements wm
n;�, not depending on

an examination of the formula, will be seen later, in the remarks at the end of Section 5.4.

5 Relations in instanton homology

5.1 Deforming the Mumford relation with instanton terms

The element wm
n;� 2 jn in Proposition 4.5 is a relation in the ordinary cohomology ring H�.Rep.S2

n /IQ/.
Via its description in terms of the multiplicative generators ˛ and ıp, as an explicit element of the ring

QŒ˛; ı1; : : : ; ın�=hı
2
i � ı

2
j ii;j ;

we may regard wm
n;� also as an element of the ideal Jn �An of Proposition 3.6, where it is a relation in

the ordinary cohomology ring H�.Rep.Zn/IR/. As � varies over all subsets of � satisfying the parity
condition, the elements wm

n;� 2 Jn form a set of generators of the ideal, as follows immediately from the
corresponding statement for Rep.S2

n / (Proposition 4.8).

The following proposition promotes wm
n;� to a relation between the corresponding operators on the

instanton homology I.Zn/ by adding terms of lower degree. Recall that Jn �An is the annihilator of
I.Zn/ as an An-module.

Proposition 5.1 Let n be odd and let �� � be a subset whose size h satisfies the parity condition (47).
Write mD 1

2
.n� 1/ and let wm

n;� 2 jn � Jn be as in Proposition 4.5, regarded as a relation in the ordinary
cohomology of the representation variety Rep.Zn/. Then there is a unique element W m

� 2 Jn � An in
filtration degree m whose leading term is wm

n;�:

W m
� D w

m
n;� .mod A.m�1/

n /:

As � varies over all subsets satisfying the parity condition , these elements W m
� form a set of generators

for the ideal of relations Jn.

Remark Our notation for W m
� does not include n, since n is always related to m in this context by

nD 2mC 1.
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Proof of Proposition 5.1 Corollary 3.16 gives the existence of W m
� 2 Jn with leading term wm

n;�. The
uniqueness assertion is a consequence of Proposition 3.7. The fact that these are a complete set of
generators for the ideal follows from the corresponding statement for the elements wm

n;� 2 Jn together
with the fact that An=Jn and An=Jn are free modules of the same rank, because they are respectively the
ordinary homology of Rep.Zn/ and the instanton homology of Zn (Proposition 3.8).

We aim to give an algorithm for computing W m
� as a deformation of wm

n;�, and our first main step will be
to determine the subleading term. That is, Corollary 3.16 provides the existence of w.1/ with

W m
� D w

m
n;�C �w.1/ .mod A.m�2/

n /;

and we wish to determine w.1/.

Proposition 5.2 The subleading term of W m
� is given by ��n�2hwm�1

n;�0 , where �0 is the complement
� n � and hD j�j, so

W m
� D w

m
n;�C ��

n�2hwm�1
n;�0 .mod A.m�2/

n /:

The proof of this proposition will require some preparation. To understand how to characterize the
subleading term �w.1/, we draw on the mechanism behind Proposition 3.14 and Corollary 3.16. Let 1C
again be the standard cyclic generator of I.Zn/ from Proposition 3.9, and let 1� D z�1C. Let ƒ be the
R-module isomorphism in Proposition 3.14, and let 1˙ Dƒ.1˙/ 2H�.Rep.Zn/IR/. Then w.1/ is a
homogeneous polynomial of degree m� 1 in ˛ and the ıp, with coefficients in R, such that

ƒ.wm
n;�1�/�w

m
n;�1� D w.1/1C mod

M
k�2.m�2/

H k.Rep.Zn/IR/:

(The right-hand side is the .m� 2/th step of the increasing filtration of H�.Rep.ZnIR/.)

Recall next we have an expansion of the operator z̨ according to the action � 2 1
4
Z, as in (25) and

Proposition 3.14. There is a similar expansion of each zıp. This gives a �-expansion of any monomial
in z̨ and the zıp , and therefore of the multiplication operator of any u 2An acting on I.Zn/. That is, we
may write

u� D
X
�2

1
4

Z

u�� �:

This description is set up so that if u 2An is in grading k and ƒ.�/ 2H 2l.Rep.Zn/IR/, then

ƒ.u�� �/ 2H 2.lCk/�8�.Rep.Zn/IR/:

The description of w.1/ then becomes

(56) w.1/1C Dƒ.w
m
n;� �1=4 1�/:

Computation of w.1/ in this form therefore depends directly on understanding the instantons on the
cylinder R�Zn with action 1

4
. We address this calculation in the following subsection, where the proof

of Proposition 5.2 will be completed.
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5.2 Characterizing the subleading term

From the discussion above, we are interested in the moduli space M�.R�Zn/ of anti-self-dual bifold
SU.2/ connections on the cylinder, particularly for � D 1

4
. By attaching a copy of the bifold D2 �S2

n to
each of the two ends, we form from the cylinder a compact bifold

X D S2
�S2

n :

For clarity in distinguishing the two factors here, we will write

X D B �C;

where B is S2 and C is the bifold S2
n . We write M�.X / for the moduli space of anti-self-dual SU.2/

connections on the bifold X , with action �, and we write M e
� .X / for the moduli space corresponding

to w2 D Œe�, where Œe� D fbg � C . The moduli spaces depend, of course, on a choice of conformal
structure on X . The moduli space M�.X / is nonempty only if � 2 1

2
Z, while M e

� .X / is nonempty only
if � 2 1

2
ZC 1

4
. The moduli spaces have formal dimension

d.�/D 8�C 2n� 6:

For any element u 2An of degree d.�/=2 in the variables ˛ and ıi , we can seek to evaluate a Donaldson
polynomial invariant by evaluating the corresponding cohomology class on M�.X / or M e

� .X /. Because
we are working with local coefficients � , our Donaldson invariants should also involve R-valued weights.
By the formula (2), the local system � defines a locally constant function

(57) � WM�.X /!R�;

and so the moduli spaces are a collection of oriented, weighted manifolds.

However, the bifold X has bC
2
D 1, so the appearance of reducibles in one-parameter families means

that the Donaldson invariant depends on a choice of chamber in the space of Riemannian metrics on X .
We consider a product metric in which the area of B is very large compared to the area of C , and we
call this the B-chamber. (This means that the self-dual 2-form for the Riemannian metric on X is nearly
Poincaré dual to a multiple of PDŒC �.) Similarly there is a distinguished chamber, the C -chamber, in
which the area of C is very large compared to B. There is then a well-defined Donaldson invariant qB

� in
the B-chamber,

u 7! qB
� .X Iu/; An!R;

calculated using either the moduli space M�.X / or the moduli space M e
� .X /, depending on whether 4�

is even or odd respectively. Our notation again makes no explicit mention of the local coefficient system,
but the contributions of the various components of the moduli spaces are to be weighted by the locally
constant function (57).

These Donaldson invariants of X are related to the action of u on I.Zn/ by a gluing argument, because
of the description of X as the union of the cylinder Œ�1; 1� � Zn and the two copies of D2 � S2

n .
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More specifically, let 1C 2 I.Zn/ be once more the cyclic generator obtained as the relative invariant of
the manifold D2 �S2

n , and let 1|
C be the element of the instanton cohomology group I�.Zn/ obtained

by regarding D2 �Zn as a manifold with boundary �Zn. Then for � 2 1
2
Z and u 2ACn , we can write

qB
� .X Iu/D hu�� 1C; 1

|
Ci;

where the pairing on the right is the R-valued pairing between I.Zn/ and I�.Zn/. For �2 1
4
C

1
2
Z, we have

qB
� .X I �u/D hu�� 1C;1

|
�i:

From this relationship and Poincaré duality, it follows that (56) is equivalent to

(58) qB
1=4.w.0/v/D qB

0 .�w.1/v/

for all v 2An of degree

deg.v/D 1
2
d
�

1
4

�
� deg.w.0//D n� 2�mDm� 1;

where nD 2mC 1 as usual.

The situation is somewhat simplified now because the moduli spaces M0.X / and M e
1=4
.X / are compact.

This is because noncompactness of the moduli space arises only from bubbling, and bubbles decrease � by
multiples of 1

2
. So for � � 1

4
, the Donaldson invariants are simply evaluations on ŒM�.X /� or ŒM e

� .X /� of
ordinary cohomology classes in H�.B�.X /IR/, weighted by the function locally constant (57). We will
write Œ� �M�.X /� and Œ� �M e

� .X /� for these weighted fundamental classes, as elements of the ordinary
homology H�.B�.X /IR/.

Via the relationship between An and H�.B�.Zn/IR/, we have an inclusion

An ,!H�.B�.X /IR/:

The relation (58) can therefore be stated in terms of ordinary pairings, between these cohomology classes
and the fundamental classes of the moduli spaces:

hw.0/v; Œ� �M e
1=4.X /�i D hw.1/v; Œ� �M0.X /�i:

The assertion in Proposition 5.2 concerning the value of the subleading term w.1/ can therefore be restated
as the following proposition.

Proposition 5.3 Let nD 2mC 1 as usual let v 2An be any element of degree m� 1. Let wk
n;� 2An be

the explicit polynomials described in Definition 4.2. Then we have

hwm
n;�v; Œ� �M

e
1=4.X /�i D h�

n�2j�jwm�1
n;�0 v; Œ� �M0.X /�i;

where the (compact) moduli space M e
1=4
.X / is computed using a metric on X in the B-chamber , and

M0.X / is the moduli space of flat bifold connections , a copy of Rep.S2
n /.

The proof of Proposition 5.3 is given in Section 5.4, after a digression on the wall-crossing behavior of
moduli spaces on X .
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5.3 A wall-crossing argument

The structure of our argument up to this point is closely related to the work of Muñoz [27], in which a key
step is the calculation of the contribution of the first nonflat moduli space (our M e

1=4
.X / in the present

context). In [27], the relevant moduli space was of the form M e
1=2
.S2 �†g/ for a smooth surface †g,

and the key observation is that this moduli space is empty in one chamber (when the area of the S2

factor is small, corresponding to the C -chamber in our notation) and undergoes a single wall-crossing
where the metric passes to the B-chamber. (See [27, Proposition 2].) The description of the wall-crossing
for S2 �†g leads to a description of the moduli space on the B side of the wall as a bundle over the
Jacobian J.†g/ with fiber a complex projective space.

Such a description has an exact parallel in our orbifold context, with the Jacobian J.†g/ in Muñoz’s
situation replaced now by the finite set of bifold line bundles on S2

n of a fixed bifold degree. That is, the
wall-crossing contributes to M e

1=4
.X / a finite number of copies of a complex projective space, where an

explicit understanding of the cohomology classes allows a calculation of the Donaldson invariant. We
now turn to the details of this calculation.

Lemma 5.4 In the C -chamber , the Donaldson invariants qC
� .u/ are zero when � is in 1

4
C

1
2
Z.

Proof The bifold X decomposes into two parts along a copy of B �S1 � B �C , ie an S2 �S1. The
bundle has w2 nonzero on this S2�S1 when � is in 1

2
ZC 1

4
, so there are no flat connections on B �S1.

A stretching argument therefore shows that the anti-self-dual moduli space is empty when the metric
on X contains a long neck Œ�T;T ��B �S1. A metric with such a long neck lies in the C -chamber, so
the invariant in this chamber is zero.

Lemma 5.5 For the moduli spaces M e
� .X / with � � 1

4
, in a 1-parameter family of product metrics on

X D B �C passing from the C -chamber to the B-chamber , exactly one wall is crossed.

Proof The only nonempty moduli space M e
� .X / with � � 1

4
is the moduli space M e

1=4
.X /, and a wall

is crossed when the Riemannian metric allows the existence of a reducible anti-self-dual connection in
this moduli space. We are therefore looking for a reduction of the bifold adjoint SO.3/ bundle as R˚K,
where K is a bifold 2-plane bundle. Let us write the bifold Euler class eul.K/ as

PD eul.K/D xŒB�CyŒC �:

Here y is an odd integer because eul.K/ŒB� is odd. On the curve C , the bundle K has n bifold points,
and n is odd; so 2x is also an odd integer. For a given Riemannian metric, let us write the class of the
self-dual 2-form as

PDŒ!C�D ŒB�C t ŒC �;

suitably normalized. The condition that the curvature of K is anti-self-dual imposes the constraint that
eul.K/ and Œ!C� are orthogonal, which is to say

y D�tx:
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The action � is �eul.K/2=4 which is �xy=2. Using the orthogonality condition, we write this as
� D tx2=2. With � D 1

4
, our constraints therefore become

(i) tx and 2x are odd integers, and

(ii) tx2 D
1
2

.

These constraints force x D˙1
2

and t D 2. The orientation of K is indeterminate, and the sign of x can
therefore be taken to be positive. A path of Riemannian metrics passing from the C chamber to the B

chamber is a path in which t begins close to 0 and ends close to C1, and the wall is crossed at t D 2.

The proof the lemma shows that the wall-crossing occurs when there is an orbifold 2-plane bundle K with

PD eul.K/D 1
2
ŒB�� ŒC �:

The degree of K on C D S2
n is thus 1

2
. In terms of an SU.2/ lift on the curve fbg�C then, we can write

the bundle as
F ˚F�1;

where F is a complex line bundle with limiting holonomy˙i on the linking circles at the n singular points.
We orient K as F�2. The Chern–Weil integral for the first Chern class of the singular connection on F

is �1
4

. As a parabolic bundle on S2
n we can write the underlying rank-2 vector bundle as E D F ˚F�1,

and for each p 2 � the distinguished line Lp � Ep is the summand Fp if the limiting holonomy is �i ,
and F�1

p otherwise. Write � � � for the set where the holonomy is �i . Then

c1.F/ŒC �C 1
4
j�j � 1

4
.n� j�j/D�1

4
:

This constraint imposes the parity condition j�j D 1
2
.n� 1/ mod 2, which allows 2n�1 possibilities for � .

We summarize this with another lemma.

Lemma 5.6 When the Riemannian metric on X DB�C lies on the wall between the two chambers , the
moduli space M e

� .X / consists of 2n�1 reducible anti-self-dual connections , corresponding to the subsets
� � � whose size j�j has the same parity as 1

2
.n� 1/.

Let A0 denote any one of the reducible connections described in the lemma. The formal dimension of the
moduli space M e

1=4
.X / is 2n� 4. If we write the orbifold adjoint bundle as R˚K now on the whole

of X , then in the deformation theory of A0 we have a contribution of 1 to the dimension of H 0
A0

coming
from the R summand because A0 is reducible, and there is a similar contribution of 1 to the dimension
of H 2

A0
from the R summand because bC

2
D 1. If we assume that the deformation theory is otherwise

unobstructed (an assumption which we will see later is justified for product metrics on B �C , without
the need for perturbing the equations), then it follows that H 1

A0
has dimension 2n� 2 and that this comes

from the K summand of the adjoint bundle. With this in place, the standard model for wall-crossing
describes the moduli space M e

1=4
.X Igt / for a Riemannian metric gt whose conformal parameter t is

2C � for small � as a copy of CPn�2 in a neighborhood of each reducible A0. We therefore have the
following proposition.
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Proposition 5.7 For a product metric on X which lies in the B-chamber and is close to the wall , the
moduli space M e

1=4
.X / consists of 2n�1 copies of CPn�2.

As mentioned earlier, this is a close counterpart to the result [27, Proposition 2], where the corresponding
description of the moduli space of smallest positive action is a bundle of projective spaces over the
Jacobian of a smooth curve.

5.4 A proof of Proposition 5.3

From their definition, wm
n;� and wm�1

n;�0 represent cohomology classes dual to loci U
�

�1=4
and U

�0

1=4
in the

space of bifold connections B�.S2
n /. If we select a fiber

fb0g �S2
n � B �S2

n DX;

then we obtain by restriction corresponding loci in the spaces of bifold connections on X :

U
�

�1=4
.b0/� B�.X /e; U

�0

1=4
.b0/� B�.X /:

In this way we can interpret the equality to be proved in Proposition 5.3 as

(59) hv; Œ� �M e
1=4.X /\U

�

�1=4
.b0/�i D �

n�2j�j
hv; Œ� �M0.X /\U

�0

1=4
.b0/�i;

provided that the loci are transverse to the filtration of the space of Fredholm operators by the dimension
of the kernel. The moduli spaces on X should be obtained from metrics in the B-chamber as always.

We can obtain more information about M e
1=4
.X / and the loci on both sides of (59) by interpreting the

moduli space of bifold anti-self-dual connections as a moduli space of stable parabolic bundles on the
pair .X; †/ where † is the singular locus B � � � X . To this end, we adopt the notation and results
of [18] to identify M e

1=4
.X / with the moduli space of parabolic bundles .E ;L/ with � D 1

4
satisfying the

parabolic stability condition with parameter ˛ D 1
4

. Here we can write � as kC l=2 following [17; 18],
where in this case

(60) k D
�
c2.E/� 1

4
c1.E/2

�
ŒX �; l D

�
1
2
c1.E/� c1.L/

�
Œ†�:

(The quantities k and l are the “instanton number” and “monopole number” in the notation of [17].) The
rank-2 bundle E should have c1.E/ŒB� odd, so we take

ƒ2.E/DO.1; 0/;

by which we mean the holomorphic line bundle with degree 1 on B. The moduli space M0.X / is similarly
a moduli space of stable parabolic bundles on X , now with ƒ2.E/DO and � D 0. These bundles are the
pullbacks of the stable parabolic bundles on the curve C D S2

n .

The loci on either side of (59) have the following interpretations. Let F! C be the parabolic line bundle
whose set of hits is � and whose parabolic degree is par-degF D 1

4
. (See the remarks at the end of

Section 4.1.) The dual parabolic bundle F� has parabolic degree �1
4

and its set of hits is �0 D � n �.
Given a stable parabolic bundle E on X , let Eb be the parabolic bundle obtained by restriction to fbg�C .
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Lemma 5.8 Let F be the parabolic line bundle described above and F� its dual. Then:

(i) The locus M e
1=4
.X /\U

�

�1=4
.b0/ is the locus of stable parabolic bundles E 2M e

1=4
.X / such that

there exists a nonzero holomorphic map of parabolic bundles

F ! Eb0
:

(ii) The locus M0.X /\U
�0

1=4
.b0/ is the locus of stable parabolic bundles E 2M0.X / such that there

exists a nonzero holomorphic map of parabolic bundles

F�! Eb0
:

Proof These statements follow directly from the definitions.

Going beyond the above lemma, we have the following constructions for the relevant bundles.

Lemma 5.9 (i) The locus M e
1=4
.X /\U

�

�1=4
.b0/ consists of parabolic bundles E ! X D B � C

which are nonsplit extensions

O.1/�F�! E! F

such that the extension class vanishes on fb0g �C .

(ii) The locus M0.X /\U
�0

1=4
.b0/ is the locus of parabolic bundles E 2M0.X / which are nonsplit

extensions
F�! E! F :

In both cases , all bundles obtained as such extensions are stable in the B-chamber on X .

Proof In (ii), the bundles in M0.X / are pulled from the stable parabolic bundles on C , and the existence
of a nonzero map of parabolic bundles � W F�! E is the definition of the locus U

�0

1=4
. The map � must

be an inclusion of a parabolic line subbundle, for otherwise this map would destabilize E . So E is an
extension of parabolic line bundles as described. The extension must be nonsplit, for otherwise E is
destabilized by �.

For (i), the first task is to verify that every stable parabolic bundle in M e
1=4
.X / in the B-chamber is a

nonsplit extension

(61) O.1/�G�! E! G;

where par-degG D�1
4

and the set of hits for G is a subset � � � which is arbitrary, except for the parity
constraint (35). There are 2n�1 choices for � , and once � is given, the nonsplit extensions are parametrized
by a projective space, in this case of dimension n�2. In this way we find 2n�1 copies of CPn�2 in M e

1=4
,

and it is straightforward to see that these are disjoint, because a given bundle E cannot be presented as an
extension of this sort in two different ways. The verification that these 2n�1 copies of CPn�2 comprise
the entire moduli space M e

1=4
.X / in the B-chamber is the holomorphic analog of wall-crossing result

described in Proposition 5.7, and it is proved in essentially the same way. This is also the content of
[27, Proposition 2] in the slightly different context of that paper, which serves the same purpose there.
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For an extension such as (61), the restriction to fb0g �C is an extension of parabolic line bundles on C ,

G�! Eb0
! G;

and because par-deg.F/D par-deg.G/ > par-deg.G�/, there can be a nonzero map F! Eb0
only if F D G

and the extension class is zero on fb0g �C .

The extensions that arise in (ii) are parametrized by the projective space

(62) P
�
H 1.C I .F�/˝2/

�
;

where the cohomology group is interpreted as the cohomology of a sheaf on a bifold. The extensions that
arise in (i) are parametrized by the subset of the projective space

P
�
H 0.BIO.1//˝H 1.C I .F�/˝2/

�
corresponding to elements vanishing at b0. If Zb0

� H 0.BIO.1// is the one-dimensional space of
sections vanishing at b0, then this is the space

P
�
Zb0
˝H 1.C I .F�/˝2/

�
;

which is canonically identified with (62). Both spaces of extensions are copies of CPm�1.

We have now seen that there is a canonical identification of the two loci,

M e
1=4.X /\U

�

�1=4
.b0/DM0.X /\U

�0

1=4
.b0/;

both of which are projective spaces. Furthermore, for any b¤b0 in B, the restrictions of the corresponding
bundles in these loci to fbg �C agree. Indeed they are the same family of nonsplit extensions of F by
F� on C . The cohomology classes v arising from elements of the algebra An can be regarded as being
pulled back via the restriction to fbg�C , so it follows that the evaluation of such a class v is the same in
the two cases.

Before accounting for the weights arising from the local system � , we therefore have an equality

(63) hv; ŒM e
1=4.X /\U

�

�1=4
.b0/�i D hv; ŒM0.X /\U

�0

1=4
.b0/�i:

However, while M e
1=4
.X / \ U

�

�1=4
.b0/ and M0.X / \ U

�0

1=4
.b0/ are both copies of CPm�1 and are

canonically identified, the (constant) functions

� WM e
1=4.X /\U

�

�1=4
.b0/!R and � WM0.X /\U

�0

1=4
.b0/!R

are different. The next lemma provides these values.

Lemma 5.10 (i) On M0.X /\U
�0

1=4
.b0/, the value of � is 1.

(ii) On M e
1=4
.X /\U

�

�1=4
.b0/, the value of � is �n�2j�j.

Proof The singular set † � X is a collection of spheres with trivial normal bundle, so there is no
self-intersection term in the formula (2), and we simply have

�.A/D ��.A/;
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where �.A/ is a 2-dimensional Chern–Weil integral on †. In the case of M0.X /, the connections are flat
and �.A/D 0. So � D 1 in this case, as stated in the first item of the lemma.

In the case of a closed manifold, the value �.A/ is �2l , where l is the “monopole number” of the
bundle (60). The bundles that contribute to the moduli space M1=4.X /

e \U
�

�1=4
.b0/ are described in

Lemma 5.9. From there we read off that c1.E/Œ†p �D 1 for each of the n components †p �†, so that
c1.E/Œ†� D n. For p 2 �0, the distinguished line subbundle L � Ej†p

coincides with the image of the
subbundle O.1/�F� on †p , which has degree 1. For p 2 �, the distinguished line subbundle L on †p

maps isomorphically to the restriction of F in the extension in Lemma 5.9, so has degree 0. In all then,

c1.L/Œ†�D j�0j:

The formula for the monopole number l in (60) therefore gives .n=2/� j�0j, which is j�j � .n=2/. Since
�.A/D�2l , we have �.A/D n� 2j�j, as the lemma claims.

From the lemma, we see that

Œ� �M e
1=4.X /\U

�

�1=4
.b0/�D �

n�2hŒM e
1=4.X /\U

�

�1=4
.b0/�;

while
Œ� �M0.X /\U

�0

1=4
.b0/�D ŒM0.X /\U

�0

1=4
.b0/�:

The equality to be proved in Proposition 5.3 now follows from the unweighted equality (63), and this
completes the proof of the proposition.

Remark In the course of these arguments, we have seen first that M e
1=4
.X / is a disjoint union of

2n�1 copies of CPn�2 and second that the class wm
n;� restricts to be nonzero on exactly one of them,

being dual to a CPm�1 in exactly one of the copies of CPn�1. The components CPn�2 of M e
1=4
.X / are

in one-to-one correspondence with the subsets �� � of the correct parity, so let us write them as CPn�2
� .

If we choose a class v which has nonzero pairing (say 1) with each CPm�1 �CPn�2
� , then we have

hwm
n;�Y v; ŒCPn�2

� �i D

�
1 if �D �;
0 otherwise,

from which it follows that the classes wm
n;� are linearly independent in An. This provides an alternative

verification of the result used in the proof of Proposition 4.8.

5.5 Changing the orientation of the singular set

Recall that in defining the bifold Zn we gave a standard orientation to the n circles comprising the singular
set Kn. Let Z�n denote the same bifold but with some of the circles of Kn equipped with the opposite
orientation. Let f be the number of search circles. The construction of the operators ıp depends on an
orientation of the singular set at p, so in a straightforward way the corresponding operators ı�p on I.Z�n /

differ in sign from the operators ıp if we define ı�p using the new orientations. But there is also a more
subtle way in which the module structures differ.
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Both I.Zn/ and I.Z�n / are An-modules by our constructions. Let us continue to denote by ˛, ıp and �
the operators on I.Zn/, and let us denote by ˛�, ı�p and �� the operators which define the An-module
structure of I.Z�n /.

Proposition 5.11 There is an identification of the R-modules I.Z�n / and I.Zn/ which is canonical up to
overall sign-change. Under either one of this canonical pairs of identifications , the operators ˛� etc on
I.Z�n / are related to the operators on I.Zn/ by:

(i) ˛� D ˛;

(ii) ı�p D˙ıp, according to whether or not the corresponding circles of Kn have the standard orientation
in Z�n ;

(iii) �� D .�1/f �, where f as above is the number of circles which have the nonstandard orientation.

Proof First let us recall that the SU.2/ instanton moduli spaces Mk.X / for a closed Riemannian
manifold X are orientable and are oriented by a choice of an element from a 2-element set ƒ.X /, which
can be identified with the set of homology orientations of X . In the case of a closed bifold with orientable
singular set, if we regard the moduli space as the space of singular SU.2/ connections Mk;l.X; †/ in the
sense of [17; 18] and [20], then an element of the 2-element orientation set ƒ.X; †/ can be specified by
a choice of homology orientation of X together with an orientation of †. Changing the orientation of †
changes the sign of the element of ƒ.X; †/ by .�1/�=2, where � is the Euler number. (See [18].) To
briefly explain why this is so, the conventions of [18] identify the difference between ƒ.X / and ƒ.X; †/
as the set ƒ.†/ of orientations of the real determinant line of the index of the x@ operator on † coupled to
a line bundle of degree 2l . The index of the x@ operator is 2l ��.†/=2. Changing the orientation of †
changes the index element to its complex conjugate and therefore changes the orientation of the real
determinant line by .�1/2l��=2 D .�1/�=2. A similar formula holds if the orientation of † is changed
only on certain components.

In the case that .X; †/ is a product S1� .Y;K/, there is a canonical homology orientation for X and the
components of † are tori; so there is a canonical element of ƒ.X; †/ in this case, independent of the
orientation of the components of †.

Continuing with the closed case, we consider next the moduli space Mk;l.X; †/
e corresponding to an

SO.3/ bundle whose w2 has an integer lift e. As usual the gauge group is the determinant-1 gauge group.
In the absence of †, the orientation set ƒ.X /e is still canonically identified with the set of homology
orientations of X , as in [6]. The difference between ƒ.X /e and ƒ.X; †/e is again identified with the
real determinant line of the same x@ operator. The difference now however is that the monopole number l

is in 1
2
CZ on any component of † having odd pairing with e. Changing the orientation of a component

†1�† therefore changes the orientation element in ƒ.X; †/e by .�1/g.†1/�1 if e has even pairing with
†1 and by .�1/g.†1/ if the pairing is odd. In the special case that .X; †/D S1 � .Y;K/, an orientation
of the moduli spaces M.X; †/e therefore depends on the orientation of the components of the singular
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set if and only if they have odd pairing with e. If the pairings are even, all orientations of moduli spaces
are canonical and do not depend on the orientation of the singular set.

To apply these observations to the instanton homology, we recall the standard approach to orientations
in Floer homology, described for example in [20, Section 3.6]. Let B� denote the space of irreducible
singular SU.2/ connections on the bifold .Y;K/. To each pair of points a; b 2 B� and each path �
joining them, we may associate a 2-element set ƒ�.a; b/ as the set of orientations of the determinant
line of a Fredholm operator P .a; b/, in such a way that ƒ�.a; b/ orients the moduli space of trajectories
if a and b are nondegenerate critical points. If �1 and �2 are two different paths, then ƒ�1

.a; b/ and
ƒ�2

.a; b/ are canonically identified, because their difference can be identified with ƒ.X; †/, where
.X; †/DS1�.Y;K/. We can therefore define ƒ.a; b/ without issue. No orientation of K is needed here.

Given a basepoint � in B�, one may then define ƒ.a/D ƒ.a; �/ for all a. The chain complex for the
singular instanton homology with local coefficients � is thenM

a

.Zƒ.a//˝�a;

where the sum is over perturbed flat connections in a Morse perturbation of the Chern–Simons functional.
Two different choices of basepoints � and � 0 will give rise to complexes which are identified up to an overall
factor of �1: that ambiguity is a choice of element from ƒ.�; � 0/. A canonical choice of basepoint is pos-
sible when K is oriented, as described in [20], making I.Y;K/ well-defined up to canonical isomorphism.
The modules I.Zn/ and I.Z0n/ are identified only up to overall sign, because the basepoints are different.

The remaining interesting point is the final assertion of the proposition. To determine the sign of the
matrix entries of the endomorphism � between critical points a and b, one uses the canonical orientation
of the product

Zƒ.a; b/e ˝ Zƒ.a/ ˝ Zƒ.b/:

Orienting this product is equivalent to orienting the moduli spaces M.X; †/e for the product .X; †/D
S1 � .Y;K/. We have described above how these moduli spaces are canonically oriented once one has
an orientation of the components of † (which are tori). Here the class e has pairing 1 with each of
the components. So changing the orientation of any component changes the canonical orientation of
M.X; †/e and changes the sign of all the matrix entries of �.

5.6 Passing to Zn;�1

Recall that the algebra xA is defined as the quotient of An in which all the ıi are equal (see equation (32)),
and let wk

n;� 2 An be the elements from Definition 4.2. The image of wk
n;� in xA depends only on the

cardinality of the subset �� � , not otherwise on its elements, and we write this element of xA as

(64) xwk
n;h D w

k
n;�Chıi � ıj ii;j 2 xA

when j�j D h. Recall from (33) that we can write I.Zn;�1/ as An=Jn;�1 or as xA= xJn;�1 and that Jn;�1

contains Jn (Proposition 3.22). Propositions 5.1 and 5.2 therefore yield the following version for Zn;�1.
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Proposition 5.12 Write nD 2mC 1, let h be an integer satisfying the conditions (47), and let xwm
n;h

be
defined as above. Then there is an element W m

h
2 xJn;�1 of the filtered algebra xA in filtration degree m

whose leading term is xwm
n;h

. The subleading term of W m
h

is given by ��n�2h xwm�1
n;h0

, where h0 D n� h.
Thus

W m
h D xw

m
n;hC ��

n�2h
xwm�1

n;h0 .mod xA.m�2//:

The element W m
h

in xA is the image of W m
� 2 Jn under the quotient map An! xA.

We have not yet established that xJn;�1 is the image of Jn, so we do not know yet that the elements W m
h

generate the ideal of relations xJn;�1 for I.Zn;�1/. We turn to this next.

Proposition 5.13 When nD 2mC 1, the elements W m
h

for h in the range 0� h� n with hD 1
2
.nC 1/

mod 2 are a set of generators for the ideal xJn;�1 � xA. In particular , xJn;�1 is the image of Jn in xA.

Proof The quotient xA= xJn;�1 is I.Zn;�1/ which we know to be a free R-module of rank 1
4
.n2 � 1/

by Corollary 3.19. If J 0 � xJn;�1 denotes the ideal generated by the elements W m
h

, then the desired
equality J 0 D xJn;�1 will follow if we can prove that xA=J 0 has the same rank. The leading mth-degree
terms of the elements W m

h
are the elements xwm

n;h
, so let us denote by xJn � xA the ideal generated by these

leading terms. (This is the image in xA of the ideal of relations Jn �An for the ordinary cohomology ring
H�.Rep.Zn/IR/ in (20).) It will therefore suffice to show that A= xJn has rank 1

4
.n2� 1/, and this is the

content of the lemma below, which completes the proof.

Lemma 5.14 Write n D 2mC 1 again and let xJn � xA be as above , generated by the elements xwm
n;h

.
Then xJn is the mth power h˛; ıim of the ideal h˛; ıi. In particular , the rank of xA= xJn is m.mC 1/, which
is also equal to 1

4
.n2� 1/.

Remark The quotient of a polynomial algebra in two variables by the mth power of the maximal ideal
at 0 has rank 1

2
m.mC 1/. The extra factor of two in the lemma arises because of the extra generator � in

the algebra xA.

Proof Recall that wm
n;� arises from the formal computation of cm.�index.P //, where P is a family of

Fredholm operators, Definition 4.2. The formula (44) for the Chern character of �index.P / becomes the
following, after passing to the formal completion of the quotient ring xA in which all the ıi are equal:

(65) .m� 1/ cosh.ı/C
sinh.ı/
ı

�
˛C

�
h� 1

2
n
�
ı
�
:

Passing from the Chern character to the mth Chern class, we find that the image of cm.�index.P // in xA
has the form

Vm.Bh; ı/;

where Vm.x;y/ is a homogeneous polynomial of degree m in two variables and Bh D ˛C
�
�hC 1

2
n
�
ı.

Furthermore the coefficient of xm in Vm is 1=m!.
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Thus xJn is generated by the elements Vm.Bh; ı/, for h in the range 0 � h � n with h D 1
2
.nC 1/

mod 2. The assertion of the lemma is equivalent to the statement that the homogeneous polynomials
Vm

�
xC

�
h� 1

2
n
�
y;y

�
in QŒx;y� span the space of homogeneous degree-m polynomials. This in turn is

true because h� 1
2
n runs through mC1 distinct values in Q as h runs through its allowed range. (This is

the same assertion as the statement that any mC 1 distinct translates of a polynomial f .x/ of degree m

are necessarily independent.)

6 Calculation of the ideals

6.1 Hilbert schemes of points in the plane

We present here and in Section 6.2 below some material on Hilbert schemes of points in the plane,
specialized to the particular situation for which we have application. General references are [26] for
Section 6.1 and [9] for Section 6.2.

Let A be the algebra kŒx;y�, with k a field, which we may take to be C. Let An �A be the subspace of
homogeneous polynomials of degree n, and let A.n/D

L
k�n Ak . Let m�A be the maximal ideal hx;yi,

and consider the mth power mm, which has generators

(66) mm
D hxm;xm�1y; : : : ;ym

i:

The colength of mm (the dimension of the quotient A=mm as a k-vector space) is N D 1
2
m.mC 1/, and

a vector space complement is the linear subspace A.m�1/:

ADmm
˚A.m�1/:

We can consider mm as defining a point in the Hilbert scheme HN which parametrizes all ideals of
colength N in A. In the Hilbert scheme, there is an open neighborhood U 3mm defined as

(67) U D fI 2HN
jAD I ˚A.m�1/

g:

For I 2 U , there is the projection to the second factor, A!A.m�1/ with kernel I :

'I WA!A.m�1/:

It is an elementary matter to check that the restriction of 'I to Am completely determines I , and that I is
in fact generated by

I D ha�'I .a/ j a 2Ami:

We have in particular aD 'I .a/ mod I for all a 2Am.

The map 'D'I is constrained by the condition that its kernel is an ideal rather than just a codimension-N
linear subspace in A. To see how, consider elements a; a0 2Am with

xaD ya0:
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We have aD '.a/ mod I , and therefore xaD x'.a/, and applying ' again

xaD '.x'.a// .mod I/:

Similarly with ya0 so '.y'.a0//D '.x'.a// mod I . However both sides of the last equality lie in the
complementary subspace A.m�1/, so in fact

(68) '.y'.a0//D '.x'.a//:

Conversely, if we are given a linear map  W Am ! A.m�1/ satisfying the constraint (68), then there
exists a unique (well-defined) extension to a linear map ' WA!A.m�1/ characterized by '.xiyj a/D

'.xiyj'.a//, and the kernel of ' is then an ideal I belonging to U �HN .

To expand on the constraint (68), write

'jAm
D '1C'2C � � �C'm;

where 'r WAm!Am�r , and use the fact that 'jAk
D 1 for k <m to obtain

'.y'1.a
0//Cy'2.a

0/C � � �Cy'm.a
0/D '.x'1.a//Cx'2.a/C � � �Cx'm.a/:

Finally compare terms of like degree to see that

(69) y'rC1.a
0/�x'rC1.a/D�'r .y'1.a

0//C'r .x'1.a//

for all r � 1 and all a; a0 2 Am with ya0 D xa. If we write a0 D xb and a D yb for b 2 Am�1, the
constraint becomes

y'rC1.xb/�x'rC1.yb/D�'r .y'1.xb//C'r .x'1.yb//;

which we can express as

(70) Lr .'rC1/DQr .'1; 'r /;

where Lr W Hom.Am;Am�r�1/! Hom.Am�1;Am�r / is a linear map and Qr is a bilinear expression.
It is easy to verify that the operator Lr is injective (see below), so the constraints determine 'rC1 once
'r and '1 are known.

We have shown:

Lemma 6.1 Given a k-linear map '1 WAm!Am�1, there exists at most one linear map ' D '1C'2C

� � �C'm, with 'r WAm!Am�r , such that constraints (69) hold. The ideal I generated by the elements
fa�'.a/ j a 2Amg then belongs to the open set U �HN. Every ideal in U arises in this way.

The lemma exhibits U as a closed subset of the vector space Homk.Am;Am�1/, which has dimension
m.mC 1/ D 2N . This subset is also invariant under the action by scalars. It will follow that U Š

Homk.Am;Am�1/ if it can be shown that U has dimension 2N . To do this, one can show that U contains
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an ideal I whose zero set consists of N distinct points in the plane k2. Such an ideal can be realized as
the “distraction” of mm. This is the ideal I generated by the elements

uh D

� Y
0�j<h

.x� j /

�� Y
0�l<m�h

.y � l/

�
for hD 0; : : : ;m;

(allowing that one of the products may be empty). Its zero-set is the set of lattice points .j ; l/ in the first
quadrant with j C l <m.

Proposition 6.2 Given a k-linear map '1 WAm!Am�1 there exists exactly one linear map ' D '1C

'2C� � �C'm, with 'r WAm!Am�r , such that the ideal I generated by the elements fa�'.a/ j a2Amg

has colength N . The matrix entries of 'r for r � 2 can be expressed as polynomials in the matrix entries
of '1.

The proposition tells us that, at each stage r in the equations (70), the right-hand side Qr .'1; 'r / is in the
image of the linear operator Lr . If we choose a right-inverse Pr for Lr , then we can express the iterative
solution as

(71) 'rC1 D Pr Qr .'1; 'r /:

To give Pr explicitly, let us temporarily make our polynomials inhomogeneous by setting y D 1, so
identifying Am with the polynomials in x of degree at most m, and let us write

uk D 'rC1.x
k/

as a polynomial of degree at most m� r � 1 in x. Then the equations (70) take the form

ukC1�xuk D vk

for k D 0; : : : ;m� 1, where vk is a given polynomial in x of degree at most m� r and the equations are
to be solved for uk of degree at most m� r � 1. If a solution exists, then

um D vm�1Cxvm�2C � � �Cxm�1v0Cxmu0:

Since all polynomials uk and vk here have degree less than m, this equation determines the coefficients
of u0 as linear combinations of the coefficients of the vk :

u0 D�.x
�mvm�1Cx�mC1vm�2C � � �Cx�1v0/C;

where the subscript C means to discard the negative powers of x. Having found u0, we can express the
complete solution, if it exists, by the recurrence

ukC1 D truncm�r�1.vk Cxuk/;

where truncm�r�1 is the truncation of the polynomial to the given degree. Whether or not a solution
exists, this process defines uk as a linear function of the v’s, and so defines a right inverse Pr for the
linear map Lr . In this form, the coefficients of Pr are integers, and this allows us to pass to any ring.
These leads to the following version.
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Proposition 6.3 Let R be a Noetherian ring , let ADRŒx;y� and let I �A be an ideal such that

� A=I is a free R-module of rank N D 1
2
m.mC 1/;

� there is an R-module homomorphism ' WAm!A.m�1/ such that a�'.a/ 2 I for all a 2Am.

Then I is generated by the elements a�'.a/ for a 2Am. Furthermore , if we write

' D '1C'2C � � �C'm;

with 'r W Am! Am�r , then 'r for r � 2 is determined by '1 through the iterative solution (71). This
establishes a bijection between ideals I satisfying the above two constraints and module homomorphisms
'1 WAm!Am�1.

Proof If I satisfies the second condition, the relations aD'.a/mod I show that the map A.m�1/!A=I

is surjective. The first of the two conditions tells us that these are free R-modules of equal rank, and it
follows that the map is an isomorphism because R is Noetherian. Thus we have a direct sum decomposition
AD I˚A.m�1/. As before, the constraints then lead to the relations (71), which determine 'r for r �2.

6.2 Syzygies

Proposition 6.3, which determines ' entirely in terms of '1, will be applied in Section 6.3 to see that the
generators W m

h
of the ideal xJn;�1 can be determined completely in terms of the leading and subleading

terms. (The subleading terms are already supplied by Proposition 5.12.) This will provide a complete
description of the instanton homology I.Zn;�1/. First, however, we pursue further our discussion of
the Hilbert scheme of points in the plane, to explain that the way in which '1 determines ' can be
packaged by considering the syzygies of the module A=I . This will lead to quite explicit formulae for
the generators.

We return temporarily to the case A D kŒx;y� as above, and we take k D C. Fix m again and write
N D 1

2
m.mC 1/. Let U �HN be as before (67). An ideal I 2 U contains no nonzero polynomials of

degree less than m and is generated by mC 1 elements whose leading terms are a basis for Am. Choose
a basis for Am so as to identify Am DA˚.mC1/, say the monomial basis (66). We then have generators
for I in the form

gi D xm�iyi
�'.xm�iyi/:

Because A has dimension 2, a resolution of A=I has only one more step, and we therefore have a
presentation of the ideal I in the form

(72) 0!A˚m S
�!A˚.mC1/ g

�! I ! 0:

Here g D .gi/ is given by the generators (the relations in A=I ) and S is the matrix of syzygies.
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In the special case that I Dmm and gi D xm�iyi the syzygy matrix can be taken to be

(73) S0 D

0BBBBBBB@

�y 0 0 : : : 0

x �y 0 : : : 0

0 x �y : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : �y

0 0 0 : : : x

1CCCCCCCA
:

Lemma 6.4 For a general I 2 U , the syzygy matrix S has the form S D S0CS1, where S0 is as above
and S1 is a matrix of scalars (polynomials of degree 0).

Proof Write g D g.0/C g.1/C � � � C g.m/, where g.r/ is a vector of homogeneous polynomials of
degree m� r and g.0/ is the basis of monomials of degree m. (So the entries of g.r/ are the polynomials
�'r .x

m�iyi/.) Let
gt
D g.0/C tg.1/C t2g.2/C � � � ;

and let I t be the ideal generated by the entries of gt . Because the colength of I D I1 is the same as
that of I0, this is a flat family, and the syzygy matrix S0 for g0 therefore lifts to a syzygy matrix S t ,
whose entries are polynomials in .x;y; t/ and which coincides with S0 at t D 0. Because the entries of
gt are homogeneous (of degree m) in .t;x;y/, we may assume that S t is also homogeneous. Since S0

has homogeneous degree 1, so too does S t , and it follows that

S t
D S0C tS1;

where the entries of S1 have degree 0 in .x;y/.

Note that in the above lemma, the matrix S1 is entirely determined by the leading term g.0/ and the
subleading term g.1/ (or equivalently by '1 WAm!Am�1) via the condition

(74) g.0/ �S1Cg.1/ �S0 D 0:

Quite concretely, taking g.0/ to be again the standard monomial basis, taking S0 as above, and writing
the subleading terms gi.1/ as

gi.1/D

m�1X
jD0

Gij xm�1�j yj ;

then

(75) S1 D

0BBBBB@
�G1;0 �G2;0 : : : �Gm;0

G0;0�G1;1 G1;0�G2;1 : : : Gm�1;0�Gm;1
:::

:::
: : :

:::

G0;m�2�G1;m�1 G1;m�2�G2;m�1 : : : Gm�1;m�2�Gm;m�1

G0;m�1 G1;m�1 : : : Gm�1;m�1

1CCCCCA :
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Proposition 6.5 Let S D S0CS1 be the syzygy matrix as above , so that S0 is the matrix of syzygies of
the standard monomial ideal mm and S1 is determined by the subleading terms gi.1/ by (75). Then the
generators g0; : : : ;gm of the ideal I are precisely the m�m minors of the .mC 1/�m matrix S (ie the
determinants of the matrices obtained by deleting a single row of S , with alternating sign).

Proof Let h D .h0; h1; : : : ; hm/ be the minors. We have both h � S D 0 (by standard properties of
determinants) and g �S D 0 (by construction), and it follows that ahD bg for some a and b in A, because
the rank of the kernel of ST is 1. On the other hand, by inspection, the leading term of hi is the same as
that of gi , namely xm�iyi . So hD g.

Finally, we can pass from the case of kŒx;y� to more general coefficients without difficulty. The next
proposition summarizes the situation.

Proposition 6.6 As in Proposition 6.3, let R be a Noetherian ring , let ADRŒx;y� and let I �A be an
ideal such that

� A=I is a free R-module of rank N D 1
2
m.mC 1/;

� there is an R-module homomorphism ' WAm!A.m�1/ such that a�'.a/ 2 I for all a 2Am.

Let .g0.0/; : : : ;gm.0// be a basis for Am ŠA˚.mC1/ and let

gi D gi.0/�'.gi.0//D gi.0/Cgi.1/Cgi.2/C � � �Cgi.m/;

where gi.j / is homogeneous of degree m� j . Then the elements .g0; : : : ;gm/ are generators of the
ideal I . Furthermore , let S0 be a matrix of syzygies for the leading parts gi.0/, with entries which are
homogeneous of degree 1, and let S1 be the matrix of scalars determined by the subleading parts gi.1/

via equation (74). Then:

(i) The matrix S DS0CS1 is the matrix of syzygies for the generators .g0;g1; : : : ;gm/ of the ideal I .

(ii) If h0; : : : ; hm are the m�m minors of the matrix S , then .h0; h1; : : : ; hm/ is a set of generators
for I .

(iii) If S0 is chosen so that its minors are the leading terms .g0.0/; : : : ;gm.0//, then the generators gi

for I are equal to the minors hi of S .

In this way, the generators g are determined by their leading and subleading terms , g.0/ and g.1/.

Proof We may take it that g.0/ is the standard monomial basis and that S0 is given (73). The matrix S1

is then given by (75) where the terms Gi;j are the coefficients of the subleading terms g.1/. According
to Proposition 6.3, the lower terms in the entries of g are expressible as universal polynomials in the
coefficients of g.1/. On the other hand, the recipe in terms of the minors of S expresses the lower terms
of g as polynomials in the coefficients of g.1/, at least when R is a field k. The polynomials occurring
in the minors have integer coefficients, and must coincide with the polynomials in Proposition 6.3.
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6.3 Equations for the curve Dn

Let RDQŒ�; ��1�. Let R temporarily denote the ring

RDRŒ��=h�2
� 1i:

The algebra xA in (32) is RŒ˛; ı� and the instanton homology I.Zn;�1/ is described as a quotient xA= xJn;�1

in (33). We know that I.Zn;�1/ is a free R-module of rank 1
4
.n2� 1/Dm.mC 1/ from Corollary 3.19,

and it is a free R-module of rank 1
2
m.mC1/. We know that there are elements W m

h
in xJn;�1 of degree m

in .˛; ı/ having the form

(76) W m
h D w.0/hC �w.1/hC � � � D xw

m
n;hC � xw

m�1
n;h0 C � � � :

(see Proposition 5.12). The leading and subleading termsw.0/ and �w.1/ are known from Proposition 5.12
and Definition 4.2. We also know that the leading terms w.0/h are a basis for the mth power of the
maximal ideal, h˛; ıim, by Lemma 5.14.

The ideal xJn;�1 �RŒ˛; ı� therefore satisfies the hypotheses of Propositions 6.3 and 6.6. In the notation of
Proposition 6.6, we know '1 explicitly, as it is determined by the subleading terms �w.1/h. We therefore
have the following result as a corollary. In this statement, we write nD 2mC 1 as usual.

Theorem 6.7 Let xJn;�1 be the ideal of relations for the instanton homology I.Zn;�1/ with local
coefficients , and let

W m
h D w.0/hCw.1/hC � � �Cw.m/h; with 0� h� n and hDmC 1 mod 2;

be the generators for this ideal , as in (76). There are explicit polynomial formulae which express the
coefficients of all the lower terms w.r/h for r � 2 in terms of the leading and subleading terms

w.0/h D xw
m
n;h and w.1/h D � xw

m�1
n;n�h

in Proposition 5.12. If the syzygy matrix

S D S0CS1

is constructed as in Proposition 6.6, as a matrix whose entries are inhomogeneous linear forms in .˛; ı/
with coefficients in RDRŒ��=h�2� 1i, then the generators W m

h
are the m�m minors of S .

To obtain a final form for the generators, we now need to find an explicit formula for the syzygy matrix S ,
starting from our formulae for w.0/h and w.1/h. In Section 6.2 above, we illustrated the calculation
when the leading terms of the generators were the standard monomial basis in the polynomials in two
variables, so that the term S0 was the standard syzygy matrix (73). The leading terms w.0/h are not
monomials in our case, so we must first write down a suitable matrix of syzygies S0 for these.
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From Proposition 4.7, on setting all ıi equal to ı to pass from the ring Aj to xA, we obtain an expression
for w.0/h D xwm

n;h
as a product of linear factors. It is convenient to remove the combinatorial factor of

1=m! and write
g.0/h Dm!w.0/h Dm! xwm

n;h;

for which Proposition 4.7 yields the formula

g.0/h D

m�1Y
jD�mC1

jD�mC1 mod 2

�
˛C 1

2
.2h� n� 2j /ı

�
;

D
�
˛C 1

2
.2h� 3/ı

��
˛C 1

2
.2h� 7/ı

�
� � �
�
˛C 1

2
.2h� 4mC 1/ı

�
:

We introduce some abbreviated notation, setting

L.k/D .˛C kı=2/ and P .k; l/DL.k/L.kC 4/L.kC 8/ � � �L.l/:

(The latter notation will be used only when k D l mod 4.) Then we can write

g.0/h D P .2h� 4mC 1; 2h� 3/:

If we compare g.0/h to g.0/hC2, only the first and last factors in this product differ, so we have a relation

�L.2hC 1/g.0/hCL.2h� 4mC 1/g.0/hC2 D 0:

That is, for h0 in the range 0� h0 � n� 2 with h0 DmC 1 mod 2, we haveX
h

Sh0h
0 g.0/h D 0;

where

(77) Sh0h
0 D

8<:
�L.2h0C 1/ if hD h0;

L.2h0� 4mC 1/ if hD h0C 2;

0 otherwise:

This is therefore the leading part S0 of the required syzygy matrix S D S0CS1. It is straightforward to
verify that the minors of Sh0h

0
are the terms g.0/h, as required.

We normalize the subleading terms just as we did the leading terms, so that

g.1/h Dm!w.1/h Dm!��n�2h
xwm�1

n;n�h;

from Proposition 5.2. We then have the explicit formulae again from Proposition 4.7 (noting that
j�0j D n� h),

g.1/h Dm��n�2h
m�2Y

jD�mC2
jDm mod 2

�
˛C 1

2
.n� 2h� 2j /ı

�
Dm��n�2hP .�2hC 5;�2hC 4m� 3/:
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To obtain the other term S1 in the syzygy matrix, we need to solve the following equations for Sh0h
1

:X
h

Sh0h
1 g.0/hC

X
h

Sh0h
0 g.1/h D 0;

where h; h0 D mC 1 mod 2, with 0 � h � n and 0 � h0 � n� 2. Using the formulae for g.0/h, g.1/h

and Sh0h
0

, we write this out as

0D
X

h

Sh0h
1 P .2h� 4mC 1; 2h� 3/

�m��n�2h0L.2h0C 1/P .�2h0C 5;�2h0C 4m� 3/

Cm��n�2h0�4L.2h0� 4mC 1/P .�2h0C 1;�2h0C 4m� 7/:

The solution Sh0h
1

consisting of scalars in R is unique, because the terms g.0/h are a basis for the
homogeneous polynomials of degree m in .˛; ı/.

The last two of the three terms above have at least m� 2 common linear factors L.k/, and have m� 1

common factors in two edge cases. The m� 2 factors are the expression

Q.h0/D P .�2h0C 5;�2h0C 4m� 7/:

The edge cases are h0 D 0 (which only occurs when m is odd), and h0 D n� 2 (which occurs only when
m is even). In these two edge cases the m� 1 common factors are respectively,

QC DL.1/Q.0/D P .1; 4m� 7/ and Q� DL.�1/Q.n� 2/D P .�4mC 7;�1/:

We seek a solution Sh0h
1

to the above equations in the special form where, for each h0, the coefficients
Sh0h

1
are nonzero only for those values of h for which g.0/h is divisible by Q.h0/ (respectively QC or

Q� in the edge cases). Excluding the edge cases, there are three such values of h, namely

(78) h 2 fn� h0� 3; n� h0� 1; n� h0C 1g; where 0< h0 < n� 2:

In each of the edge cases, there are two such values of h:

(79) h 2

�
fn� 3; n� 1g if h0 D 0;

f1; 3g if h0 D n� 2:

In the nonedge cases, the equations for the nonzero coefficients Sh0h
1

then take the general shape

(80) S
h0;n�h0�3
1

ACS
h0;n�h0�1
1

BCS
h0;n�h0C1
1

C CD D 0;

where A, B and C are the homogeneous quadratic polynomials in .˛; ı/ given by

g.0/h=Q.h
0/; where h 2 fn� h0� 3; n� h0� 1; n� h0C 1g;

and D is a quadratic polynomial

D D
�
S

h0;h0

0
g.1/h0 CS

h0;h0C2
0

g.1/h0C2

�
=Q.h0/:
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Explicitly,

ADL.�2h0� 3/L.�2h0C 1/;

B DL.�2h0C 1/L.�2h0C 4m� 3/;

C DL.�2h0C 4m� 3/L.�2h0C 4mC 1/;

D Dm��n�2h0
�
�L.2h0C 1/L.�2h0C 4m� 3/C ��4L.2h0� 4mC 1/L.�2h0C 1/

�
:

The three polynomials A, B and C are independent, and we know there to be a unique solution, which
we can now find by equating coefficients of ˛2, ˛ı and ı2 in (80). The two edge cases are similar. Thus
in the case h0 D 0, the equations for the two unknown coefficients of S1 take the form

(81) S
0;n�3
1

X CS0 n�1
1 Y DZ;

where X , Y and Z are homogeneous linear forms in .˛; ı/, while in the case h0 D n� 2 we have similar
equations

(82) S
n�2;1
1

X 0CS
n�2;3
1

Y 0 DZ0:

Solving the equations (80)–(82) for the coefficients Sh0h
1

leads to the following answer, valid for all h0,
whether or not we are in an edge case. We find

(83) Sh0h
1 D

8̂̂̂<̂
ˆ̂:
��n�4�2h0.�nC 2C h0/ if hD n� h0� 3;

��n�4�2h0.m� h0� 1C .m� h0/�4/ if hD n� h0� 1;

��n�2h0h0 if hD n� h0C 1;

0 otherwise;

for all h0; h in the range 0� h� n and 0� h0 � n�2 with the parity constraint hD h0 DmC1 .mod 2/.
So we have obtained the desired closed form for the generators of the ideal xJn;�1 for the instanton
homology I.Zn;�1/:

Theorem 6.8 Let S D S0CS1 be an m� .mC 1/ with rows indexed by h0 and columns indexed by h

in the range 0 � h � n and 0 � h0 � n� 2 with the parity constraint hD h0 D mC 1 .mod 2/. Let the
entries of S0 be given by (77) and the entries of S1 be given by (83), so that the entries of S belong to
the ring xADQŒ�; ��1; �; ˛; ı�=h�2 D 1i. Then the normalized generators m!W m

h
of the ideal xJn;�1 are

given by the m�m minors of S .

Remark The matrix the matrix S has mC 1 different m�m minors, and explicitly the generators of
the ideal can be expressed as

m!W m
h D˙ det S Œh�;

where S Œh� is obtained from S by deleting the column indexed by h. (Recall again that the indexing of the
columns is by only those integers h with hDmC 1 mod 2.) The signs alternate as usual. Although there
are mC 1 generators in this description, in fact only two generators suffice, as the following proposition
states.
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Proposition 6.9 The ideal xJn;�1 is generated by the two elements W m
m�1

and W m
mC1

, or equivalently
by the two determinants

G1.n/D det S Œm� 1� and G2.n/D det S ŒmC 1�:

Proof It is sufficient to show that the matrix S Œm�1;mC1� obtained by deleting both columns hDm�1

and hDmC 1 has full rank m� 1. To do this, let us examine the .m� 1/� .m� 1/ matrix T obtained
from S Œm� 1;mC 1� by deleting either the first or last row, according as m is odd or even respectively.
An inspection of the entries of S reveals first that the entries of T on the contra-diagonal are all units
in xA: they are nonzero integers times powers of � . Furthermore, a reordering of the rows and columns
makes T triangular, with these same units on the diagonal. The determinant of T is therefore nonzero,
which shows that S Œm� 1;mC 1� indeed has full rank as desired.

As illustration, when mD 3 (ie nD 7) the two generators G1.7/ and G2.7/ are

1
48

�
8˛3
C 36˛2ıC 22˛ı2

� 21ı3
C 24��3˛2

� 72��3˛ıC 30��3ı2
� .88�2

C 16��2/˛

� .52�2
C 56��2/ı� 24��5

� 96��
�

and

1
48

�
8˛3
� 12˛2ı� 26˛ı2

C 15ı3
C 24���1˛2

C 24���1˛ı� 18���1ı2
� .40�2

C 64��2/˛

C .68�2
� 32��2/ı� 72�� � 48���3

�
:

6.4 Relating different values of n

Theorem 6.8 provides a complete description of the instanton homology of Zn;�1 with local coefficients,
but we have not yet presented a full description for the case of Zn. As preliminary material for this, we
describe how the functoriality of instanton homology can be used to obtain relations between the ideal of
relations in Zn for different values of n.

The fact that the ideal Jn annihilates I.Zn/ leads, via a standard approach, to the interpretation of the
elements of Jn as universal relations that hold for the maps defined by general bifold cobordisms. To spell
this out, let W be a homology-oriented bifold cobordism from Z0 to Z1, both of which are admissible.
We have seen in Section 2.3 that W gives rise to homomorphisms of R-modules

I.W; a/ W I.Z0/! I.Z1/

depending linearly on
a 2 Sym�

�
H2.W IQ/˚H0.†.W /IO/

�
˝R;

where O is the orientation bundle of the singular set †.W / with coefficients Q. Further, given a
distinguished 2-dimensional class e we can use marked connections with nonzero w2 to define maps

I.W; a/e W I.Z0/! I.Z1/:
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Using ıp to denote the generator of the symmetric algebra corresponding the homology class of a point
p 2†.W / with local orientation, let us imitate the definition of An and write

A.W /D
�
Sym�

�
H2.W IQ/˚H0.†.W /IO/

�
˝RŒ��

�
=h�2
� 1; ı2

p � ı
2
qip;q

where the indexing in the ideal runs through all pairs of points p; q in †.W /. We obtain a linear map

(84) ‰ WA.W /! Hom.I.Z0/; I.Z1// by a1C �a2 7! I.W; a1/C I.W; a2/
e:

This construction has been phrased so that, in the special case that W is the product cobordism from Zn

to itself and e is the generator of H2, the algebra A.W / coincides with An as defined above, and the
map ‰ is the action of the algebra An on the module I.Zn/ via the instanton module structure.

Continuing with the case of a general cobordism W, we suppose now that we have an embedded orbifold
sphere S �W meeting the singular set in n orbifold points fp1; : : : ;png. Choose an orientation for S

and define local orientations for the singular set in the neighborhood of the n points of intersection in
such a way that the intersections are all positive. In this way we obtain elements ıpk

2A.W /, where for
the class e in the definition of A.W / we take the fundamental class ŒS �. Let the singular set of W also be
oriented globally, and let the operators ı�pk

be defined using this global orientation of the singular set. We
then have

ı�pk
D �kıpk

;

where �k D˙1 according to whether the orientations agree or not.

Let us suppose that the normal bundle of S is trivial so that the boundary of the tubular neighborhood of
S is a copy of Zn. From the definitions, there is a natural map

i� WAn!A.W /

arising from the inclusion, which we define so that i�.ıpk
/D �kı

�
pk

for all k, while i�.˛/D ŒS �2H2.W /

and i�.�/D .�1/f �, where f is the number of signs �k which are �1.

Proposition 6.10 For an embedded orbifold sphere S �W as above , the ideal Jn lies in the kernel of
the map ‰ defined at (84). That is , for aD a1C �a2 2 Jn �An, we have

I.W; i�.a1//C .�1/f I.W; i�.a2//
e
D 0:

More generally, if b is another class in A.W / which an be expressed as a polynomial in cycles disjoint
from S , then we have

I.W; i�.a1/b/C .�1/f I.W; i�.a2/b/
e
D 0:

Proof In its structure, this is a standard argument based on the observation that we can factor the
cobordism W as a composite cobordism in which the first factor is the cobordism from Z0 to Z0qZn.
For the disjoint union, we can construct the instanton homology as a tensor product, and then we apply
functoriality. See [22] and [32], for example, for similar arguments. The details of the signs, in particular
the sign .�1/f come from Proposition 5.11.
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Our application of Proposition 6.10 is equivalent to [32, Corollary 2.6.8]. (A closely related result appears
in [28].) Suppose that

nD n0C 2f; where f � 0:

Consider an embedding of the orbifold sphere S D S2
n in the trivial cobordism W D Œ0; 1� � Zn0 ,

representing the generator in homology. This means that S meets the singular locus Œ0; 1� �K.Zn0/

geometrically in n0 C 2f points, while the algebraic intersection number is n0. There are therefore
2f signed intersection points that cancel in pairs. Such a sphere S � Œ0; 1��Zn0 can be constructed
by taking the standard generating sphere S 0 � Zn0 and introducing 2f extra intersection points by
doing f “finger moves” to the sphere S 0. We take these extra intersection points to be the orbifold
points numbered n0 C 1; : : : ; n0 C 2f in S Š S2

n , and we suppose that they all lie on the component
Œ0; 1��Kn0 � Œ0; 1��K.Zn0/. Among these 2f points, there are f of them that have negative intersection
number, and we can take it that these are the points numbered n0Cf C 1; : : : ; n0C 2f in S2

n . There is a
corresponding map

i
n;n0

� WAn!An0 ; where nD n0C 2f;

and our choice of numbering means that it is given by

i
n;n0

� .˛/D ˛; i
n;n0

� .�/D .�1/f � and i
n;n0

� .ık/D

8<:
ık if 1� k � n0;

ın0 if n0C 1� k � n0Cf;

�ın0 if n0Cf C 1� k � n0C 2f:

Proposition 6.10 now yields the following.

Corollary 6.11 [32, Corollary 2.6.8] When nD n0C 2f and i
n;n0

� WAn!An0 is defined as above , we
have an inclusion of ideals ,

i
n;n0

� Jn � Jn0 :

With a little more work and an examination of the explicit formulae for the leading and subleading terms
of the generators of Jn (Proposition 4.7), we can strengthen the above corollary as follows.

Proposition 6.12 In the situation of Corollary 6.11 above , we have inclusions

.�4
� 1/f Jn0 � i

n;n0

� Jn � Jn0 :

In particular , the ideals i
n;n0

� Jn and Jn0 become equal after tensoring with the field of fractions of the ring
RDQŒ�; ��1�.

Proof It suffices to treat the case f D 1, so n0D n�2. Let �0� 1; : : : ; n� 2, and let �1; �2� f1; : : : ; ng

be respectively the same as �0 and �0[fn� 1; n� 2g. From the explicit formulae, we see

i
n;n�2
� .wm

n;�1
/D i

n;n�2
� .wm

n;�2
/;

because i
n;n�2
� .B�1

/D i
n;n�2
� .B�2

/. Similarly

i
n;n�2
� .wm�1

n;�0
1
/D i

n;n�2
� .wm�1

n;�0
2
/:
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We therefore have (using the general shape of the subleading term)

i
n;n�2
� .W m

�1
�W m

�2
/D .�1/f �.�n�2h

� �n�2h�4/i
n;n�2
� .wm�1

n;�0
1

/C lower terms

D u.�4
� 1/i

n;n�2
� .wm�1

n;�0
1

/C lower terms;

where u is a unit in QŒ�; ��1�. By the previous corollary, these belong to Jn�2. It is now enough to
show that the elements i

n;n�2
� .wm�1

n;�0
1
/ generate the ideal jn�2 of relations in the ordinary cohomology of

Rep.S2
n�2

/, because the statement about instanton homology will follow as before. From the formulae in
Proposition 4.7, we see that this is the same as showing that the elements wm�1

n�2;�0
0

generate the ideal jn�2,
which has already been established (as the case n� 2) in Proposition 4.8.

The homomorphism i
n;n0

� does not pass to a homomorphism between the quotient rings xA. But we can at
least compose with the quotient map An0 ! xA to get the following immediate corollary. In the statement
of the corollary, we note that the choices of sign in the definition of i

n;n0

� are arbitrary and can be replaced
by a more general phrasing.

Corollary 6.13 Let � 2 f˙1gn be any choice of signs. Write n0 D
P
�i and assume n0 � 1. Consider

the homomorphism x{� WAn! xA defined by x{�.ıi/D �iı for all i , and x{�.�/D .�1/.n�n0/=2�. Then we
have an inclusions of ideals in xADRŒı; ˛; ��=h�2� 1i,

.�4
� 1/.n�n0/=2 xJn0;�1 �x{�.Jn/� xJn0;�1:

We refer to the relations between the ideals in Corollaries 6.11 and 6.13 as “finger-move relations”,
because of the interpretation of the sphere S as having been obtained from the standard sphere S 0 �W

by finger moves.

Remark A second application of Proposition 6.10 will be given in the proof of Proposition 7.1 later in
this paper.

6.5 Decomposition of the instanton curve

We are now ready to harness our understanding of I.Zn;�1/ from Theorem 6.8 to obtain a description
of I.Zn/. Write

Vn D Spec QŒ�; ��1; ˛; ı1; : : : ; ın; ��:

The set of complex-valued points Vn.C/ is C� �CnC2, with � a coordinate on the first factor. We can
describe the An-module I.Zn/ geometrically as the coordinate ring of the closed subscheme

Cn � Vn

defined by the vanishing of the elements of the ideal Jn together with the additional relations that define
the algebra An, namely the vanishing of ı2

i � ı
2
j and �2 � 1. We can write Cn D Spec.I.Zn//, where

I.Zn/ is considered as a quotient ring of the algebra An. To describe I.Zn/ as an An-module, we can
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therefore use geometrical language to describe the subscheme Cn. Note that the relation �2 D 1 means
that Cn is contained in the union of the two hyperplanes � D 1 and � D�1, so we may write

Cn D CCn [C�n :

In a similar way, let us write
xV D Spec QŒ�; ��1; ˛; ı; ��;

so that the instanton homology group I.Zn;�1/ defines, (via its ideal of relations xJn;�1 and the relation
�2 D 1), a subscheme Dn D Spec.I.Zn;�1//, which is a closed subscheme of xV :

(85) Dn DDCn [D�n �
xV :

We can interpret Corollary 6.13 as describing a relation between the curves Cn for I.Zn/ and Dn for
I.Zn;�1/. First, given any choice of signs � 2 f˙1gn, write n0 D

P
�i

, and suppose henceforth that this
odd integer n0 is positive. Write f D .n� n0/=2. Define a morphism

x{�� W
xV ! Vn

by ıi 7! �iı and � 7! .�1/f �. Write
Vn;� � Vn

for the image of {�� . This is the linear subvariety cut out by the linear conditions �iıi D �jıj . Their union
is the subvariety defined by ı2

i D ı
2
j for all i , j ; so we have

Cn �

[
�

Vn;� :

We have an isomorphic copy of the affine scheme Dn0 as the image of Dn0 under the embedding {�� :

(86) {�� .Dn0/� Vn;� :

Proposition 6.14 The subscheme Cn � Vn is the union of the subschemes (86) as � runs through all
choices of sign f˙1gn with n0.�/ > 0:

(87) Cn D

[
�I n0Dn0.�/>0

x{�� .Dn0/:

The curves Dn0 are completely known via their defining equations from Theorem 6.8, so the proposition
above is a complete characterization of the curve Cn for I.Zn/. In the language of the defining ideals,
this proposition is a converse to Corollary 6.13. In other words, we have the following:

Corollary 6.15 In the notation of Corollary 6.13, the defining ideal Jn for I.Zn/ can be characterized as

Jn D fw 2An j x{�.w/ 2 xJn0.�/;�1 for all �g:

Thus I.Zn/ is determined as an An-module by the finger-move constraints , once I.Zn0;�1/ is known for
all odd n0 � n.
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Proof of Proposition 6.14 Let us write C 0 for the union on the right-hand side of (87). The inclusion of
ideals x{�.Jn/� xJn0;�1 in Corollary 6.13 says that the curve Cn contains C 0.

The coordinate ring of the scheme on the left-hand side of (87) is I.Zn/, and if we temporarily write
I 0 for the coordinate ring of the affine scheme C 0, then the inclusion of schemes means that we have a
surjection of rings,

I.Zn/! I 0:

We know that I.Zn/ is a free R-module of finite rank, where RDQŒ�; ��1�. So to prove that the rings are
isomorphic, and to complete the proof of the proposition, it will suffice to prove that these two R-modules
have the same rank, or in geometrical language,

deg Cn D deg C 0;

where deg denotes the degree of the projection to the � coordinate. (The inclusion one way means that
we already have deg Cn � deg C 0.)

To prove this last equality we note that

(88) deg Cn �

X
�I n0.�/>0

deg.Cn\Vn;�/;

with equality if and only if the schemes Cn\Vn;� for different � have no common component of positive
degree. The two-way inclusions of Corollary 6.13 tell us that Cn\Vn;� and i�� .

xCn0/ coincide over the
locus where �4� 1 is nonzero. In particular,

deg.Cn\Vn;�/D deg.i�� .Dn0//;

and if the schemes on the left have no common component of positive degree for different �, then the
same is true of the schemes on the right. From (88) we therefore obtain

(89) deg Cn �

X
�I n0.�/>0

deg Dn0 ;

with equality if and only if the schemes on the right-hand side of (87) have no common component of
nonzero degree.

In terms of instanton homology, the inequality (88) can be restated as

(90) rankR I.Zn/�
X

�I n0.�/>0

rankR I.Zn0;�1/:

On the other hand we can verify directly that we have equality here:

(91) rankR I.Zn/D
X

�I n0.�/>0

rankR I.Zn0;�1/:

Indeed, the right-hand side can be calculated by Corollary 3.19, and is
.n�1/=2X
fD0

� n

f

�
�

1
4

�
.n� 2f /2� 1

�
:
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The left-hand side of (91) is twice the rank of the ordinary cohomology of the representation variety
Rep.S2

n / calculated by Boden [3], and can be expressed as

rankR I.Zn/D 2n�3.n� 1/D 1
8
.F 00.1/�F.1//;

where F.t/D .t C t�1/n. Equality with the right-hand side of (91) can be seen easily from the binomial
expansion of F.t/.

It follows that the parts making up the union C 0 on the right-hand side of (87) have no common components
of positive degree, and we therefore have, as required,

deg C 0 D
X
�

deg Dn0.�/ D deg Cn:

Remark In the course of the proof, we have seen that Cn has pure dimension 1, and we refer to it as the
instanton curve for Zn. Although it has no embedded points, we have not shown that the curve Cn is
reduced: it may perhaps have components with multiplicity larger than 1, but the authors have not seen
this arise in calculations.

6.6 Equations for the curve Cn

We now have a geometric description of I.Zn/ as a module, namely as the coordinate ring of an affine
curve Cn. The curve Cn is a union of curves each of which is isomorphic to some Dn0 . However, although
we have an explicit description of the defining relations for the Dn0 , the resulting description of Cn does
not immediately provide explicit generators for the corresponding ideal Jn �An. Instead, it describes
the ideal Jn as an intersection of known ideals (expressed essentially in Corollary 6.15).

To practically compute the intersection of the ideals in this particular context, we can leverage what we
know about Jn. From Propositions 5.1 and 5.2, we know the ideal Jn is generated by elements W m

�

which can be written in the form

(92) W m
� D w.0/C �w.1/Cw.2/C �w.3/C � � � ;

where w.i/ is a homogeneous polynomial of degree m� i in .˛; ı1; : : : ; ın/, and furthermore

w.0/D wm
n;� and w.1/D wm�1

n;n��:

Furthermore, the element W m
� is the unique element of the ideal having leading term w.0/. The lower

terms in W m
� are therefore uniquely characterized by the linear constraints of Corollary 6.15, namely that

x{�.W
m
� / belongs to the known ideal xJn0.�/;�1, for all �. Solving this large linear system provides the

generators.

There is an alternative way to package the calculation of W m
� , which does not explicitly pass through a

determination of the ideals xJn;�1, albeit the same ingredients are used. To set this up, the terms in (92)
which are as yet unknown are the terms which belong to a lower part of the increasing filtration of An,
and with this in mind we write

Lm
� D w.2/C �w.3/C � � � ;
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so that

(93) W m
h D w.0/C �w.1/CLm

� ; where Lm
� 2A

.m�2/
n :

There is some symmetry that can be usefully exploited. The braid group B� for the n-element subset
� � S2 acts on I.Zn/ because of its interpretation as a mapping class group. This action factors through
the symmetric group S� , as one can see from the description of I.Zn/ as a cyclic module for the
algebra An. Indeed, given a permutation � 2S� , we obtain an automorphism �� WAn!An permuting the
generators ıp and preserving the ideal Jn �An, so establishing the automorphism �� W I.Zn/! I.Zn/.
From this, we can see that

��.W
m
� /DW m

�.�/:

In particular, the element W m
� 2An is invariant under the action of group of permutations S��S�0 � S� .

The lower terms Lm
� therefore have the same symmetry. Furthermore, it will be enough if we determine

Lm
� for just one subset �� � of each cardinality h satisfying the parity condition (35). Note also that the

expression Lm
� is empty unless m is at least 2 (ie n is at least 5).

The proposed recursive procedure for identifying the lower terms Lm
� is to again use Corollary 6.11,

which gives us the finger-move relation

(94) i
n;n�2
� .W m

� / 2 Jn�2:

We would like to see that, if the ideal Jn�2 is already known, then the constraint (94) will be sufficient
to determine the lower terms. In line with the remarks above, since either � or �0 can be assumed to
have at least mC 1 elements (ie more than half), we will assume that the indices fm;mC 1; : : : ; ng all
belong either to � or to �0. In particular this means that W m

� and its lower terms Lm
� are invariant under

the symmetric group SmC1 acting by permutation of the variables fım; ımC1; : : : ; ıng. (These indices
include the three indices fn� 2; n� 1; ng, which are involved in the definition of the finger move in;n�2.)

Lemma 6.16 Write nD 2mC 1 and let L 2 A.m�2/
n be an element that is symmetric in the variables

ımC1; : : : ; ın�1; ın (ie more than half of the variables). Suppose L satisfies

(95) i
n;n�2
� .L/ 2 Jn�2:

Then LD 0.

Proof Let �k be the k th symmetric polynomial in ımC1; : : : ; ın, and let � 0
k

be the symmetric polynomial
in ımC1; : : : ; ın�2, regarded as elements of An and An�2 respectively. From Proposition 3.7, we know
that Jn�2\Am�2

n�2
D 0, so the hypothesis i

n;n�2
� .L/ 2 Jn�2 actually means that i

n;n�2
� .L/ is zero. We

compute what i
n;n�2
� does to �k , and we find

i
n;n�2
� .�k/D

8<:
� 0

k
if k D 0; 1;

� 0
k
Cˇ� 0

k�2
if 2� k �m� 1;

ˇ� 0
k�2

if k Dm;mC 1;

where ˇ D�ı2
p (independent of p).
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Because L has degree at most m� 2, we can write it as

LD

m�2X
kD0

Pk�k ;

where each Pk is an expression in Am, ie involving only ı1; : : : ; ım. Thus

i
n;n�2
� .L/D

m�2X
kD0

.Pk CˇPkC2/�
0.k/;

where we set Pj D 0 for j > m� 2. The injectivity of i
n;n�2
� is now clear from the upper triangular

nature of this linear transformation, because the symmetric functions � 0.k/ are nonzero in this range.

The lemma tells us that the finger-move constraint can be used to determine the lower terms Lm
� uniquely.

So we obtain a procedure which determines the ideals Jn recursively for all odd n, as follows.

(i) In the base case nD 1, the ideal J1 is h1i.

(ii) For general n� 3 (and n odd as always), assume that the ideal Jn0 is already known for n0 < n.

(iii) Write m D 1
2
.n � 1/. According to Propositions 5.1 and 5.2, for each � satisfying the parity

condition (47), there exists an element W m
� 2 Jn which can be written in the form (93):

W m
h D w.0/C �w.1/Cw.2/C �w.3/C � � � D w.0/C �w.1/CLm

� ; where Lm
� 2A

.m�2/
n :

The first terms w.0/C�w.1/ are known because w.0/ is the Mumford relation and Proposition 5.2
provides the term w.1/.

(iv) According to Lemma 6.16, the unknown terms Lm
� in W m

� are uniquely determined by the finger-
move relations (94), which impose linear conditions on the coefficients of Lm

� . Solving these linear
equations determines Lm

� and hence determines W m
� 2An.

(v) As � runs through the subsets satisfying (47), the elements W m
� generate the ideal Jn � An

according to Proposition 5.1. So we have a known set of generators for Jn. This determines Jn

and completes the inductive step.

7 Further remarks

7.1 Singularities of the instanton curve

When the local coefficient system � is replaced by constant coefficients Q, we obtain a description of the
instanton homology I.ZnIQ/ which was earlier completely determined by Street [32]. Those results
therefore provide a description of the scheme-theoretic intersection of the curve Cn with the hyperplane
� D 1. It is shown in [32] that the simultaneous eigenvalues of the pair of operators .˛; ı/ on I.ZnIQ/

are of the form .�; ı/, where � runs through the odd integers in the range j�j< n. The multiplicities of
the eigenspaces are also computed.
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We can apply these results to learn that the curve Dn corresponding to I.Zn;�1I�/ intersects the plane
� D 1 in the points x� with coordinates

.�; ˛; ı; �/D .1; �; 0;˙1/;

where � runs through the same odd integers, and the sign of � is .�1/.�C1/=2. We also learn that the
intersection multiplicity at x� is �� D 1

2
.n� j�j/.

Knowing the intersection multiplicity puts an upper bound on the order of a possible singular point of the
curve at x�. In particular, it means that Dn is smooth at the points x� for the two extreme values of �,
namely �D˙.n� 2/, because the intersection multiplicity is 1 at those points.

A little experimentation suggests that equality holds at all the points x� where Dn meets � D 1: that is,

(96) ord.Dn;x�/D �� D
1
2
.n� j�j/:

With the understanding that these results have been verified only experimentally for modest values of n,
one can describe the singularity of Dn at x� in greater detail. First of all, we have seen that the ideal
xJn;�1 which defines Dn has just two generators G1.n/ and G2.n/ (Proposition 6.9), and it follows that the

singularity of Dn at x� is a local complete intersection. Indeed, each of DCn and D�n is cut out as a global
complete intersection inside the variety defined by � D˙1 and � ¤ 0. Experiment also indicates that the
surfaces defined by the vanishing of G1.n/ and G2.n/ are both smooth at x�. Indeed, the ˛-derivative
of both is nonzero. By the implicit function theorem, the zero-sets of G1.n/ and G2.n/ are therefore
described in a local analytic neighborhood of x� by

˛ D �Cfn;�;1.ı; �/ and ˛ D �Cfn;�;2.ı; �/

for two analytic functions fn;�;1 and fn;�;2. At the singular points (that is, when j�j < n � 2), the
derivatives of both fn;�;1 and fn;�;2 vanish at .ı; �/D .0; 1/. The singular germ .Dn;x�/ is therefore
analytically isomorphic to the germ of the analytic plane singularity

gn;�.ı; �/D 0; gn;� D fn;�;1�fn;�;2;

at .ı; �/D .0; 1/.

In computations up to nD 31, the function gn;� vanishes to order �� at .0; 1/, verifying that �� is indeed
the order of the singular point. Furthermore we find

gn;�.ı; �/D const:
�
ı˙ 2.� � 1/

���
CO.ı; � � 1/��C1;

where the sign depends on � and �. This means that the tangent cone to the singular point is the line
ı˙ 2.� � 1/D 0, with multiplicity ��.

The highest-order singular points on the curve are the points x� with �D˙1, where the order of the
singularity is mD 1

2
.n� 1/. At these points, the analytic form of the singularity is xm D ymC1, where

x D ı˙ 2.� � 1/. In particular the singularity is unibranch. The authors have not determined (even
experimentally) whether the singularity is unibranch at other singular points. Note, however, that the entire
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curves D˙n are reducible when n is composite (as discussed below) and it follows that the singularities
are not unibranch when � and n have a common factor.

One further experimental observation is that the local form of the surface Gi.n/ D 0, given by ˛ D
�C fn;�;i.ı; �/ at x�, appears to approach a smooth limit as n increases with � fixed. Indeed, after
scaling by �, we find that the limit is independent of � also. That is, there is a convergent power series
F.ı; �/, independent of n, � and i D 1; 2, such that

�Cfn;�;i.ı; �/! �F.ı; �/:

The difference vanishes at .0; 1/ to order .ı; � � 1/O.n/. Up to terms of degree 5, the series F is

F.ı; 1C �/D 1� 1
16
ı2C

31
4
ı� C 1

4
�2�

31
8
ı�2�

1
4
�3�

5
1024

ı4C
31

128
ı3� C 5

128
ı2�2C

31
32
ı�3

C
15
64
�4�

31
256
ı3�2�

5
128
ı2�3C

31
64
ı�4�

7
32
�5C � � � :

7.2 Reducibility when n is composite

The curves DCn and D�n arising as Spec.I.Zn;�1// are irreducible when n is prime in all cases that
the authors have calculated. It seems to be an interesting conjecture whether this holds in general. For
composite n, however, the curves DCn and D�n are reducible, as the following result implies.

Proposition 7.1 If n0 divides the odd integer n, then the curves DCn and D�n contain  .DCn0 / and  .D�n0/
respectively, where  is the map on the ambient space xV given by

 .�; ��1; ı; ˛; �/D .�; ��1; ı; .n=n0/˛; �/:

Proof This is an application of the general principal described by Proposition 6.10. In the context of that
proposition, take W to be the product cobordism Œ0; 1��Zn0 . Write l D n=n0. We can embed a sphere
S ,!W representing l times the generator of H2.W / and meeting the singular set in ln0 points, all with
the same orientation. The relevant map ‰ in Proposition 6.10 is then the homomorphism of algebras

‰l WAn!An0

which is given (with our standardly named generators, and suitably numbering the intersection points) by

‰l.˛/D l˛; ‰l.ık/D ı.k mod n0/:

The conclusion of Proposition 6.10 is that we have an inclusion of ideals ‰l.Jn/� Jn0 .

Passing to the quotient rings xA in which all the ık are equal, and using the fact that xJn;�1 is the image of
Jn in the quotient ring (Proposition 5.13), we obtain an inclusion of ideals  l. xJn;�1/ � xJn0;�1 when
nD ln0, where  l is algebra homomorphism the with  l.˛/D l˛ and  l.ı/D ı. Proposition 7.1 is just a
restatement of this inclusion of ideals, in the geometrical language of the subschemes that they define.
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7.3 Interpretation as the quantum cohomology ring

For every odd n, the representation variety M D Rep.S2
n / is naturally a smooth symplectic manifold,

by a standard construction [11]. If n points in CP1 are chosen, then M becomes also a smooth complex-
algebraic variety of dimension n� 3, as a consequence of its interpretation as a moduli space of stable
parabolic bundles. With the symplectic form, it is a Kähler manifold, and the cohomology class of
the Kähler form is a negative multiple of the canonical class. The latter assertion is the statement of
“monotonicity” for the symplectic structure. It can be deduced as a particularly simple case from [20], for
example, or it can be deduced from the fact that there is only one class in H 2 which is invariant under
the “flip” symmetries [32]. This is therefore a Fano variety. (A concrete description is discussed in [4].)

The quantum cohomology ring of such a Fano variety is defined using a deformation of the usual triple
intersection product. Given cycles A, B, C , the quantum intersection product is a scalar which is a
weighted count of isolated pseudoholomorphic curves u W CP1!M , with the constraint that u maps
three marked points to A, B and C . For our purposes, the weight will be of the form � Œu��T for a suitable
2-dimensional cohomology class T D 2

P
ıi . This leads to a quantum cohomology ring QH.M / which

is a module over the ring of Laurent polynomials R. In the spirit of results from [27] and [7], one should
expect that the � D 1 component of I.Zn/ is isomorphic to QH.M / as an algebra.

The special case nD 5 in particular is discussed in [31], where the symplectic manifold M is the blow-up
of CP2 at five points, and the quantum cup-product is computed. Also relevant from [30; 31] is Seidel’s
long exact sequence [31, Proposition 3.5]. In the special case that M is CP2 # 5 xCP

2
, this long exact

sequence essentially recovers the skein exact sequence in the proof of Proposition 3.18, involving the
orbifold X5;4 from Figure 3, restricted to the C1 eigenspace of �. The orbifold X5;4 plays the role of
H�.S

2Iƒ/ in [31, Proposition 3.5]. Seidel’s exact sequence is generalized by Wehrheim and Woodward
in [34, Theorem 6.12], motivated by the application to skein triangles, and the generalization is relevant
to the case of the skein triangle involving Xn;n�1 for larger n.

7.4 General local coefficients

As an alternative to the local coefficient system � for I.Zn/, there is a larger local coefficient system �n

that can be used. Rather than being a system of rank-1 modules over RDQŒ��1; � �, the ground ring
for �n is the ring of finite Laurent series in n distinct variables �1; : : : ; �n attached to the n components
of the singular set of Zn:

Rn DQŒ�1; �
�1
1 ; : : : ; �n; �

�1
n �:

The instanton homology I.ZnI�n/ is then a module over the ring

RnŒı1; : : : ; ın; ˛; ��:

It is no longer true that ı2
i D ı

2
j ; instead we have

ı2
i � �

2
i � �

�2
i D ı2

j � �
2
j � �

�2
j for all i; j:
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It should be possible to compute I.ZnI�n/ by adapting the ideas of this paper. As the simplest example,
our two generators for the relations in I.Z3;�1/, where all ıi and all �i are equal, were

˛C 3
2
ıC ��3 and ˛� 1

2
ıC ���1:

For I.Z3I�3/ the corresponding relations are

˛C 1
2
.ı1C ı2C ı3/C ��1�2�3 and ˛C 1

2
.ı1� ı2� ı3/C ��1�

�1
2 ��1

3 ;

together with cyclic rotations of the second one. The instanton homology I.Z3I�3/ is a free R3-module
of rank 2.

There is an additional symmetry present when using �n, which comes from the flip relation. So the ideal
of generators is invariant under the symmetry which changes the sign of ıi and ıj for any two distinct
indices while changing �i and �j to ��1

i and ��1
j . In the example of I.Z3I�3/ there are four generators

corresponding to the four subsets � � f1; 2; 3g of even parity, and the corresponding relations are all
obtained from the first one (corresponding to � D ¿) by applying flips. For larger n, the leading and
subleading terms follow the same pattern. So the adaptation of Proposition 5.2 to the case of �n has the
same leading term while the factor of �n�2h in front of the subleading term is replaced byY

i 62�

�i

Y
i2�

��1
i :

7.5 Instanton homology for torus knots

As mentioned in the introduction, a motivation for this paper comes from wishing to calculate variants
of framed instanton homology for torus knots. In [24], concordance invariants of knots were defined
using a version of framed instanton homology I ]. In that paper, for a knot K � Y , the framed instanton
homology is defined using the connected sum .Y;K/ # .S3; ‚/, where ‚ is a theta-graph in S3. A local
coefficient system is used in [24], where the ground ring is the Laurent polynomials in three variables �i

corresponding to the three edges of ‚. Because of the phenomenon of bubbling in codimension 2 which
arises from the vertices of ‚, it was necessary in [24] to use a ring of characteristic 2.

It is possible instead to work in characteristic zero by abandoning the pair .S3; ‚/ and using the pair
Z3 instead (as described just above). The local coefficient system comes from �3. Because I.Z3I�3/

has rank 2, one should take just the C1 eigenspace of � to obtain a rank-1 module. Thus one can define
I ].ZI�3/ for general bifolds Z as being I.Z # Z3I�3/C. The connected sum is of the 3-manifolds, not
a connected sum of pairs. But a connected sum of pairs can be used instead to define a reduced version
I \.ZI�3/.

A variant of the connected sum theorem from [5] allows one to pass to I \.Zn;�1I�3/ starting from the
calculation of I.Zn;�1/ in this paper. Using the surgery exact triangle for instanton homology, one can
therefore take the calculation of I.Zn;�1/ as a first step towards understanding the reduced instanton
homology with local coefficients for torus knots in S3. The authors hope to return to this in a future paper.

Geometry & Topology, Volume 29 (2025)



Relations in singular instanton homology 2043

7.6 Universal relations

The relations in the instanton homology of Zn and Zn;�1 give rise to universal relations for general
admissible bifolds .Y;K/ containing spheres. The following is an illustration.

Proposition 7.2 Let .Y;K/ be a bifold and suppose that the singular set K is a knot meeting an embedded
sphere S � Y transversely with odd geometric intersection number n and algebraic intersection number n0.
Orient the sphere and K so that 0< n0 � n. Let ˛ be the operator on I.Y;K/ corresponding the sphere S

and let ı be the operator arising from a point on K. Let �� be the involution on I.Y;K/ arising from S ,
and let � D .�1/.n�n0/=2��. Let � denote the automorphism of the algebra xAn determined by �W � 7! ��.
Then the elements of the ideal

�.�4
� 1/.n�n0/=2 xJn0;�1 �RŒı; ˛; ��=h�2

� 1i

annihilate I.Y;K/.

Proof Let ı1; : : : ; ın be the operators corresponding the intersection points of K with S , all oriented
with the normal orientation to S . From an application of the general principle of Proposition 6.10, the
instanton homology I.Y;K/ is annihilated by the ideal Jn in the algebra An. On the other hand, because
K is a knot, all the operators ıi are equal up to sign, so the action of the algebra An factors through the
quotient xA D RŒı; ˛; ��=h�2 � 1i in which we set ıi D ˙ı according to the sign of the corresponding
intersection point of K with S . From Corollaries 6.11 and 6.13 the image of Jn in the quotient contains
the ideal described in the proposition.

As a simplest example, if K is a knot in Y D S1 �S2 which has geometric intersection 3 and algebraic
intersection 1 with S2, then I.Y;K/ is a torsion R-module annihilated by �4 � 1. In general, the
proposition provides a lower bound on the geometric intersection number of K and S2.

Corollary 7.3 Let Y contain an oriented 2-sphere S , and let K � Y be a knot having odd algebraic
intersection number n0 > 0 with S . Then a lower bound for the transverse geometric intersection number
K\S for any knot isotopic to K is n0C 2f , where

f DminfF � 0 j .�4
� 1/F Gi.n

0/ annihilates I.Y;K/ for i D 1; 2g:

Here G1.n
0/ and G2.n

0/ are the two generators in Proposition 6.9.

In light of the results from [36] concerning higher-genus orbifolds, it is possible that the bound n0C 2f

defined in the corollary is not particularly strong. It may be that n0C 2f is a lower bound for ngC 2g,
where ng is the geometric intersection number with a surface Sg of genus g homologous to S . It is easy
to visualize examples where n1C 2 is much smaller than n0, for example.

In the case that n D n0 in Proposition 7.2 (ie when algebraic and geometric intersection numbers are
equal), the xA-module I.Y;K/ is annihilated by the defining ideal of the curve Dn. This means that we
can interpret I.Y;K/ as a coherent sheaf on Dn.

Geometry & Topology, Volume 29 (2025)
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Y

Z

�

Y

Z

�

Figure 4: The real loci defined by the vanishing of the generators G1.n/, left, and G2.n/, right,
for nD 7 in the coordinates .�;Y;Z/. Only the part with � D 1 is shown. The part with � D�1

is obtained by changing the sign of Y and Z. These are smooth affine cubic surfaces.

7.7 The degrees of the relations

The two generators G1.n/, G2.n/ for the ideal of relations for I.Zn;�1/ both have total degree mD 1
2
.n�1/

in .˛; ı/ but larger degree in � . However, a substitution simplifies the polynomials a little: if we substitute

Z D �˛ and Y D �ı

then, after clearing unnecessary powers of � from the denominator, we obtain a polynomial in Z, Y

and �4. Writing � D �4, the total degree of the generators Gi.n/ in .�;Z;Y / is m. The real loci defined
by the vanishing of these two polynomials in .�;Y;Z/ are shown in Figure 4 for nD 7.
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We undertake a detailed study of the geometry of Bottacin’s Poisson structures on Hilbert schemes
of points in Poisson surfaces, ie smooth complex surfaces equipped with an effective anticanonical
divisor. We focus on three themes that, while logically independent, are linked by the interplay between
(characteristic) symplectic leaves and deformation theory. Firstly, we construct the symplectic groupoids
of the Hilbert schemes and develop the classification of their symplectic leaves, using the methods
of derived symplectic geometry. Secondly, we establish local normal forms for the Poisson brackets,
and combine them with a toric degeneration argument to verify that Hilbert schemes satisfy our recent
conjecture characterizing holonomic Poisson manifolds in terms of the geometry of the modular vector
field. Finally, using constructible sheaf methods, we compute the space of first-order Poisson deformations
when the anticanonical divisor is reduced and has only quasihomogeneous singularities. (The latter is
automatic if the surface is projective.) Along the way, we find a tight connection between the Poisson
geometry of the Hilbert schemes and the finite-dimensional Lie algebras of affine transformations, which
is mediated by syzygies. In particular, we find that the Hilbert scheme has a natural subvariety that serves
as a global counterpart of the nilpotent cone, and we prove that the Lie algebras of affine transformations
have holonomic dual spaces — the first such series of Lie algebras to be discovered.
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1 Introduction

Let X be a Poisson surface, ie a smooth connected complex variety or analytic space of dimension two,
equipped with a holomorphic Poisson bivector (a section of the anticanonical line bundle). In [5], Bottacin
constructed a natural Poisson structure on the Hilbert scheme XŒn� parametrizing zero-dimensional
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subschemes of X, generalizing the celebrated symplectic structure on the Hilbert schemes of K3 and
abelian surfaces due to Beauville [2, Section 6] and Mukai [28]. Concretely, this Poisson manifold is
obtained by resolving the singularities of the symmetric power X.n/ D Xn=Sn, but it also has a natural
interpretation as a moduli space. Our goal in this paper is to develop some of the beautiful geometry of
Bottacin’s Poisson structures, focusing on the following three themes:

(1) symplectic leaves and symplectic groupoids,

(2) local normal forms and holonomicity,

(3) deformation theory.

In so doing, we encounter connections with a range of topics, from combinatorial linear algebra and Lie
theory, to D-modules and derived algebraic geometry.

As we shall see, the three themes listed above are closely intertwined on a conceptual level. However,
the results we establish for each of them (summarized in Sections 1.1 through 1.3 below, respectively)
are based on different techniques and are essentially logically independent. Thus, for instance, while we
make use of the formalism of derived geometry and shifted symplectic structures for the first theme, and
this informs our intuition throughout the paper, the results in the second theme are proven using classical
techniques of Poisson geometry and toric degeneration, and those in the third theme use constructible
sheaves.

1.1 Symplectic leaves and the Hilbert groupoid

Bottacin’s description of XŒn� as a moduli space gives rise to an explicit description of the Poisson bivector
as a pairing on Ext groups, which when combined with a deformation-theoretic argument, leads to a
modular description of its symplectic leaves. Namely, the vanishing locus of the Poisson structure on
X is a curve D � X, and two elements Z1;Z2 2 XŒn� lie on the same symplectic leaf if and only if the
restrictions of their ideal sheaves to D are isomorphic as OD-modules; see eg Pym and Rains [36] and
Rains [38; 39], where such results are established in the more general context of moduli spaces of perfect
complexes on noncommutative surfaces, although for Hilbert schemes we obtain this by different means
below, as a direct consequence of Theorem 1.1.

It is natural to ask for a geometric (rather than module-theoretic) interpretation of the leaves. For instance,
one can check that the map sending an element Z 2 XŒn� to the intersection Z\ D is invariant under
Hamiltonian flow, and hence if two elements Z1;Z2 lie on the same symplectic leaf, we must have
Z1\DD Z2\D. Over the open set of XŒn� corresponding to collections of n distinct points of X, this
characterizes the symplectic leaves completely, but the situation in general is not so simple. Indeed, even
for a smooth curve D, there exist pairs Z1;Z2 2 XŒn� that have the same scheme-theoretic intersection
with D, but lie on different symplectic leaves.

Geometry & Topology, Volume 29 (2025)
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The reason for this subtlety is that the intersection Z\D, if nonempty, is never transverse. Hence, it
is natural to consider the derived intersection Z\h D, which enhances the naive algebra of functions
OZ\DŠOZ˝OX OD to the dg algebra OZ\hD WDOZ˝

L
OX

OD, whose cohomology gives the Tor modules
T orOX

�
.OZ;OD/. An important feature is that the derived intersection Z\hD can have nontrivial automor-

phisms that preserve the embedding Z\h D ,! D, so that the notion of the equality Z1\DD Z2\D of
ordinary scheme-theoretic intersections is enhanced to a whole space of equivalences Z1\

h D� Z2\
h D

of derived subschemes of D, which we call D-equivalences of the pair .Z1;Z2/; these turn out to be the
same as determinant-one OD-module isomorphisms between the restrictions of their ideal sheaves to D.
These equivalences can be composed, giving a groupoid .X;D/Œn� whose objects are elements of XŒn� and
whose morphisms are homotopy classes of D-equivalences. We call this groupoid the Hilbert groupoid
of the pair .X;D/, and develop its structure in Sections 2 and 3 below. We summarize these results as
follows:

Theorem 1.1 Let X be a smooth complex surface , and let D� X be any curve (which may be singular
or even nonreduced ). Then .X;D/Œn� naturally has the structure of a smooth groupoid (ie a complex Lie
groupoid ), which is birationally equivalent to the product XŒn� � XŒn�. If , in addition , the curve D is
anticanonical , then a choice of Poisson structure on X whose vanishing locus is D endows .X;D/Œn� with
a natural symplectic structure , making it into a symplectic groupoid that integrates Bottacin’s Poisson
structure on XŒn�. In particular , the symplectic leaves are the connected components of the D-equivalence
classes , and these are locally closed subvarieties of XŒn�.

We remark that although the output of the construction is an ordinary smooth variety, the proof we
present takes full advantage of the derived geometry toolbox, particularly foundational results on moduli
stacks of sheaves and shifted symplectic structures from Brav and Dyckerhoff [6], Calaque [9], Pantev,
Toën, Vaquié and Vezzosi [34], Toën and Vaquié [46] and Schürg, Toën and Vezzosi [43]. Such an
approach naturally (and rather easily) constructs .X;D/Œn� as a derived stack; our main new addition is a
representability statement, which shows that this derived stack is in fact a smooth variety. Combining
this with normal forms for sheaves on smooth and nodal curves, we obtain a classification of symplectic
leaves in the case that D has only nodal singularities. For smooth curves, this problem was also treated in
[38, Section 11.2]; we expand on the results in [38], emphasizing connections with the combinatorics of
Young diagrams and monomial ideals.

1.2 Local models and holonomicity

In Section 4 we turn to our second theme, namely the construction of explicit local models for the Poisson
manifold XŒn� and its symplectic groupoid.

The guiding principle here is that the derived intersection Z\h D can be described in purely classical
terms using the Hilbert–Burch resolution of the structure sheaf OZ, which expresses the ideal defining
Z locally as the maximal minors of a .kC 1/� k matrix with entries in OX (the “syzygy matrix”). As

Geometry & Topology, Volume 29 (2025)
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explained by Ellingsrud and Strømme [12] one can construct natural coordinates on XŒn� by choosing
suitable normal forms for the syzygy matrices. We use these coordinates to establish a tight connection
between the local structure of the Poisson manifolds XŒn� and the Lie algebras affk.C/Š glk.C/ËCk of
affine transformations of Ck , for k � 1. Indeed, by passing to open subsets and taking products, one can
reduce the problem of understanding the local structure of the Hilbert schemes to the case of open balls
around the elements ZD p.k/ 2 XŒn� that correspond to the kth order neighbourhoods of points p 2 X,
where k � 1, for which we establish the following description.

Theorem 1.2 A choice of log Darboux coordinates on X at p induces an analytic Poisson isomorphism
from a neighbourhood of p.k/ in XŒk.kC1/=2� to a neighbourhood of the origin in affk.C/

_, where the
latter is equipped with the following Poisson structure:

� a constant symplectic structure with explicit Darboux coordinates , if p 2 X nD,

� the Lie–Poisson structure , if p is a smooth point of D, or

� a Lie-compatible quadratic Poisson structure , if p is a node of D.

As a consequence, when D is smooth, the symplectic groupoid affk.C/
_ ÌAffk.C/ of affk.C/_ locally

integrates the Poisson structure; in fact, we show that this a local model for the groupoid .X;D/Œn�

constructed in Theorem 1.1, when nD 1
2
k.kC 1/. Another interesting aspect of this case is that we can

identify a natural subvariety in XŒk.kC1/=2� that globalizes the embedding glk.C/
_ � affk.C/

_, namely
the locus W of schemes whose intersection with D has length k. The resulting map W! Symk D locally
encodes the universal Poisson deformation of the nilpotent cone, giving a link to Springer theory — in
particular, the fibre over k �p is a global version of the nilpotent cone; see Remark 4.9.

Of the three cases in Theorem 1.2, the third one is the most subtle. The quadratic Poisson structure
in question seems to be new, and has the remarkable property that it admits a canonical isotrivial toric
degeneration. The construction of this degeneration involves a careful analysis of the combinatorics of the
weights of a natural torus action on affk.C/, which we recast visually as a sort of “game of dominoes”;
see Section 4.6.

As an application of our local models, we show that the Hilbert schemes give new examples of Poisson
manifolds satisfying a natural and subtle nondegeneracy condition, called holonomicity. (This was the
problem that motivated the broader investigation we present in this paper.) The notion of holonomicity
was introduced by the second- and third-named authors in [37], motivated by deformation theory; it is
roughly equivalent to the statement that for each point in the Poisson manifold, the space of derived
Poisson deformations of its germ is finite-dimensional. This notion was further developed and applied in
our joint work [27], where we emphasized the importance of a certain collection of symplectic leaves,
which we call “characteristic”: these are the symplectic leaves that are preserved by the flow of the
modular vector field. In particular, while the original definition of holonomicity involves D-modules, we
conjectured that it is equivalent to a simple geometric criterion:

Geometry & Topology, Volume 29 (2025)
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Conjecture 1.3 [27] A Poisson manifold is holonomic if and only if its germ at any point has only
finitely many characteristic symplectic leaves.

In the present work, we show that the symplectic leaf through a point Z 2 XŒn� is characteristic if and
only if the corresponding derived intersection Z\h D is preserved by the flow of the modular vector field
on D. Once again, this can be turned into a concrete local computation in examples without relying on
derived techniques. Combining such concrete calculations with the results in [27; 37], the aforementioned
toric degenerations, and some subtle combinatorial linear algebra, we establish our conjecture in (almost)
complete generality for Hilbert schemes:

Theorem 1.4 For a Poisson surface X whose vanishing locus is the anticanonical divisor D � X, the
following statements are equivalent :

(1) For every n� 0, the induced Poisson structure on the Hilbert scheme XŒn� is holonomic.

(2) For every n � 0, the germ of XŒn� at any point has only finitely many characteristic symplectic
leaves.

(3) The only singularities of D are nodes.

Note that the order of the quantifiers in statements (1) and (2) is important: for n < 6 there exist some
exceptions for which XŒn� has finitely many characteristic leaves, but D has nonnodal singularities.
However, we can treat most of these cases directly, leaving only one case left to determine whether
Conjecture 1.3 holds for all Hilbert schemes, namely the case when nD 5 and D has only A2-singularities
(cusps).

On the other hand, combining Theorem 1.4 with Theorem 1.2, we obtain the first (and so far only known)
infinite series of holonomic Lie algebras:

Corollary 1.5 The Lie–Poisson structure on affk.C/
_ is holonomic for any k � 1, and in particular , its

Poisson cohomology is finite-dimensional.

It would be interesting to know if there are other series of Lie algebras with holonomic duals. Note
that such Lie algebras must have an open coadjoint orbit, ie they are Frobenius. However, many of the
Frobenius Lie algebras known to us are not holonomic.

1.3 Deformation theory

We close the paper in Section 5 by discussing the Poisson deformations of XŒn�. Such deformations are
governed by the Poisson cohomology H�

� Œn�
.XŒn�/, which in turn is controlled by the geometry of the open

symplectic leaf and the codimension-two characteristic leaves. We compute the Poisson cohomology
in low degrees under the additional assumption that D has only quasihomogeneous singularities (which
includes all cases where X is projective and D is reduced). This extends earlier work of Ran [40], who
treated the case where D is smooth. In particular, we determine space of first-order deformations (the
second Poisson cohomology):
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Theorem 1.6 Assume that X is connected , and that the anticanonical divisor D is reduced and has only
quasihomogeneous singularities. Then the second Poisson cohomology of XŒn�, is given , for all n� 2, by

H2
� Œn�

.XŒn�/Š H2..X nD/Œn�IC/˚H0.K_X jDsing/Š H2� .X/˚^
2H1.X nDIC/˚C � ŒE�;

where K_X is the anticanonical bundle and ŒE� is the Poisson Chern class of the exceptional divisor of the
Hilbert–Chow morphism.

This decomposition of the deformation space has the following interpretation. The summand H2� .X/

corresponds to deformations of XŒn� induced by applying Bottacin’s construction to a deformation of X
itself. Meanwhile the summand ^2H1.X nDIC/ gives deformations in which the symplectic form on the
open symplectic leaf .X nD/Œn� is deformed by the pullback of a closed two-form along the Albanese
map .X nD/Œn�! H1.X nDIC/_=H1.X nDIZ/. Finally, the deformations in the direction C � ŒE� should
correspond to Hilbert schemes of noncommutative surfaces given by deformation quantization of .X; �/
as in [38; 39]. In the case X D P2 and D is an elliptic curve, this interpretation was established by
Hitchin [21], who proved that the resulting deformations are exactly the Hilbert schemes of Sklyanin
algebras introduced by Nevins and Stafford [32].
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2 Hilbert groupoids of curves in surfaces

2.1 Hilbert schemes of surfaces

Throughout this paper, by a C-scheme we mean a separated scheme of finite type over C or a complex
analytic space. By a smooth (complex) surface, we mean a smooth C-scheme of dimension two.

Let X be a smooth complex surface and suppose that n 2Z>0 is a positive integer. We denote by XŒn� the
Hilbert scheme (or Douady space) parametrizing zero-dimensional subschemes of X of total length n.
There are many equivalent presentations of this space, each of which will be useful in what follows:
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� As a functor of points: if S is a C-scheme, the set of maps from S to XŒn� is given by

XŒn�.S/ WD fsubschemes of S�X that are finite and flat of length n over Sg:

It is a theorem of Fogarty [13] that this functor is representable by a smooth scheme.

� As a resolution of singularities: let X.n/ be the nth symmetric power of X, ie the quotient of Xn

by the permutations of the factors; it is a singular variety when n � 2. There is a natural map
XŒn� ! X.n/, called the Hilbert–Chow morphism, which sends a length-n subscheme Z � X to
its support (the collection of points in Z, counted with multiplicity). This map is a resolution of
singularities that is crepant [2, proof of Proposition 5] and strictly semismall [22, Theorem 2.12].

� As a moduli space of sheaves: a point Z 2 XŒn� is equivalent to the data of its ideal sheaf IZ �OX.
We may view IZ as a perfect complex of coherent sheaves on X. This complex is canonically
isomorphic to OX away from Z, and this induces a canonical trivialization of the determinant det IZ
away from Z, which extends to all of X since X is smooth and Z has codimension two. In this way,
we identify XŒn� with an open substack of the derived stack Perf0.X/ of perfect complexes with
trivialized determinant [43]. Note that the tangent complex of XŒn� at Z is then given by

TZX
Œn�
Š TIZPerf0.X/Š R�.REnd.IZ/0/Œ1�;

where REnd.IZ/0 is the homotopy fibre of the Illusie trace map REnd.IZ/!OX. The cohomology
of this complex is concentrated in degree zero, giving the tangent space of XŒn� at Z as

(2-1) TZX
Œn�
Š H1.R�.REnd.IZ/0//DW Ext1X.IZ; IZ/0 Š HomX.IZ;OZ/:

2.2 Derived intersection of subschemes with curves

If X is a smooth surface, a curve in X is an effective divisor D� X; unless otherwise specified, we allow
the possibility that D is singular, or even nonreduced.

Suppose that i WD ,!X is a curve. If Z�X is a length-n subscheme, then the scheme-theoretic intersection
Z\D � D is a closed subscheme of D of length at most n, with structure sheaf OZ\D Š OZ˝OX

OD.
The derived intersection Z\h D, is the derived subscheme of D obtained as the spectrum of the sheaf of
commutative dg OD-algebras OZ\hD WDOZ˝

L
OX

OD, where ˝L denotes the derived tensor product. In
other words, we consider the dg algebra Li�OZ, where

Li� W Perf.X/! Perf.D/; Li�E WD i�1E
L
˝

i�1OX

OD;

is the derived restriction of perfect complexes. Resolving OD by the Koszul complex

OD Š .OX.�D/!OX/

we have concretely that

(2-2) OZ\hD Š .OX.�D/jZ!OZ/;

with OZ placed in cohomological degree zero.
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Remark 2.1 The number of points of intersection, counted with multiplicity, is equal to

(2-3) #.Z\D/ WD dimC H0.OZ\D/

by definition. For the derived intersection, it is natural to consider the virtual count of points, defined by
the Euler characteristic of OZ\hD, rather than its zeroth cohomology. Using the Koszul resolution (2-2),
we find

#vir.Z
h
\D/ WD �.H�.OZ\hD//D dimC H0.OZ/� dimC H0.OX.�D/jZ/D 0

for all Z, since Z is zero-dimensional and OX.�D/jZ is an invertible OZ-module, in accordance with the
general principle that derived intersection numbers are deformation-invariant. ˙

We now determine when two elements Z1;Z2 2 X
Œn� have equivalent derived intersection with D. Note

that since the ideal sheaf IZ is torsion-free, we have T orj .IZ;OD/ D 0 for j > 0, so the natural map
Li�IZ! i�IZ comparing the derived and ordinary pullbacks is a quasi-isomorphism. Hence we obtain
an exact triangle

(2-4) i�IZ!OD! Li�OZ

of perfect complexes on D, corresponding to the exact sequence

(2-5) 0! T orOX

1 .OZ;OD/! i�IZ!OD!OZ\D! 0

of coherent sheaves. Note that T or1.OZ;OD/ is a torsion module on D. Since OD is torsion-free (by
definition), the image

i�I tf
Z WD image.i�IZ!OD/Š i

�IZ=T orOX

1 .OZ;OD/

is the maximal torsion-free quotient of i�IZ. We then have the following.

Lemma 2.2 For any .Z1;Z2/ 2 XŒn�, the following spaces are canonically homotopy equivalent :

(1) The space of equivalences Z1\h D ��! Z2\
h D of derived subschemes of D.

(2) The space of quasi-isomorphisms Li�OZ1
��! Li�OZ2 of commutative differential graded OD-

algebras.

(3) The space of quasi-isomorphisms Li�OZ1
��! Li�OZ2 of perfect complexes of OD-modules ,

commuting up to coherent homotopy with the natural maps Li�OZ1  OD! Li�OZ2 .

(4) The space of equivalences i�IZ1 ��! i�IZ2 in Perf0.D/.

(5) The discrete set of isomorphisms i�IZ1 ��! i�IZ2 commuting with the natural maps i�IZ1 !
OD i�IZ2 .

(6) The discrete set of isomorphisms i�IZ1 ��! i�IZ2 that induce the identity map on the maximal
torsion-free quotients i�I tf

Zj
�OD.

In particular , all of these spaces are equivalent to their discrete sets of connected components.
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Proof The spaces in (1) and (2) are equivalent by definition of the derived intersection.

For the equivalence of (2) and (3), choose an arbitrary cofibrant resolution E�!OZ1 of OZ1 as a sheaf
of OX-dg algebras concentrated in degrees � 0, with degree zero term E0 D OX. The dg OD-algebra
i�E Š E� ˝OX OD is then also cofibrant. Meanwhile, we may resolve OD by the Koszul complex
BD WD .OX.�D/ ! OX/. The space of equivalences Li�OZ1 Š Li�OZ2 of dg OD-algebras is then
equivalent to the space of dg OD-algebra maps i�E�! i�.OZ2 ˝BD/. By degree considerations, such
a dg algebra map is equivalent to a map of complexes whose degree zero part is the natural projection
OD!OZ2 , as desired. Note further that the full space of equivalences is modelled by the simplicial set
of dg algebra maps

(2-6) i�E! i�.OZ2 ˝BD/˝�
�

�;

where ��� is the simplicial dg algebra of polynomial differential forms on simplices, and the degree-zero
part is the canonical map OD!OZ2 (constant in the simplex direction). Similar considerations now show
that the sets of higher simplices of spaces (2) and (3) are the same, and agree with the set of 0-simplices,
so that these spaces are equivalent and both discrete. Namely, examining the degrees and using the
compatibility with the differentials, we see that if a map (2-6) has degree-zero part the map OD!OZ2 , it
must take values in the subspace i�.OZ2˝BD/˝�

0;cl
� Š i

�.OZ2˝BD/, so that it reduces to a 0-simplex,
as desired.

The equivalence of (3) and (4) follows from the exact triangle (2-4), using the fact that the trivialization of
the determinant of IZ is defined by the inclusion IZ ,!OX. Note that it is also clear that the space (4) is
discrete: since i�IZ1 ; i�IZ2 are sheaves concentrated in degree zero, the complex RHom.i�IZ1 ; i�IZ2/
is concentrated in nonnegative degrees, so there are no nontrivial homotopies between morphisms, and
similarly for the determinants.

Finally, (5) and (6) are clearly equivalent by definition of i�I tf
Z , and they are equivalent to (4) because for

an arbitrary morphism � W IZ1 ! IZ2 , the diagram

IZ1
�
//

��

// IZ2

��

OD
det�

//// OD

is commutative.

Definition 2.3 We refer to any of the equivalent discrete sets in Lemma 2.2 as the set of D-equivalences
from Z1 to Z2. We say that Z1 and Z2 are D-equivalent if there exists a D-equivalence from Z1 to Z2.

Evidently D-equivalence defines an equivalence relation on XŒn�. If we are just interested in the equivalence
classes, an a priori weaker notion will suffice:

Lemma 2.4 Two elements Z1;Z2 2X
Œn� are D-equivalent if and only if the OD-modules i�IZ1 and i�IZ2

are isomorphic.
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Proof By part (4) of Lemma 2.2, it suffices to show that i�IZ1 and i�IZ2 are isomorphic as OD-modules
if and only if they are isomorphic by a map with trivial determinant. But if � W i�IZ1 ! i�IZ2 is any
isomorphism, then its determinant gives an isomorphism

OD Š det IZ1 ��! det IZ2 ŠOD;

or equivalently an invertible element g WD det� 2 H0.O�D/. Since the rank of an ideal sheaf is equal to
one, the determinant is a linear functional on endomorphisms and we have

det.g�1�/D g�1 det.�/D det.�/�1 det.�/D 1:

Therefore g�1� W IZ1 ! IZ2 is an isomorphism with trivial determinant, as desired.

Remark 2.5 For the rest of the paper, we work almost exclusively with the spaces 4–6 in Lemma 2.2;
in those cases, as explained in the proof, the discreteness is immediate because the objects involved are
sheaves concentrated in degree zero, so there is no room for higher homotopies. ˙

Remark 2.6 Lemma 2.2 holds in much more general circumstances, with essentially the same proof.
Namely, statements (1), (2), (3), (5) and (6) are equivalent for any pair of subschemes Z1;Z2 in a scheme X

with an effective Cartier divisor D. For the equivalence with (4), we need to speak about trivialization of
the determinant being determined away from codimension two subsets, and for this we need to assume in
addition that X is S2 (eg smooth or more generally normal) and that the subschemes Z1, Z2 � X have
codimension at least two. ˙

Remark 2.7 In the proof, the discreteness of the space (1) is deduced from the equivalence with the
other spaces. We can also argue directly using standard results on mapping spaces for derived schemes,
as follows.

Let U D Z1 \
h D and let V D Z2 \

h D. By definition, space (1) is the space of equivalences U ��! V

commuting with the inclusions into D, ie it is the homotopy fibre of the map Maps.U;V/!Maps.U;D/

induced by composition with the inclusion V ,! D. Now observe that

Maps.U;V/ŠMaps
�
U;Zj

h
�
X
D
�
ŠMaps.U;Z2/

h
�

Maps.U;X/
Maps.U;D/I

hence the homotopy fibre in question is equivalent to the homotopy fibre W of the map Maps.U;Z2/!

Maps.U;X/. It thus suffices to show that the homotopy groups �i .W/ are trivial for i > 0. By the long
exact sequence of homotopy, it suffices to show that

(a) �i .Maps.U;Z2//D �i .Maps.U;X//D 0 for i > 1, and

(b) the map �1.Maps.U;Z2//! �1.Maps.U;X// is injective.

For this, we use that U is affine with �i .O.U// WD H�i .O.U// D 0 for i > 1, and that Z2 and X are
ordinary schemes. Moreover, without loss of generality, the latter are affine, hence .�1/-geometric as
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derived stacks. Thus (a) follows immediately from [46, Corollary 2.2.4.6]. Furthermore from the proof
of [loc. cit.] using the Postnikov system for U, one sees that the map on fundamental groups in (b) is
identified with the canonical map

(2-7) Hom.LZ2 ;F/! Hom.LX;F/;

where F WD H�1.OU/. Since Z2 and X are schemes, their cotangent complexes are concentrated in
nonpositive degrees, with zeroth cohomology the Kähler differentials �1. Hence (2-7) is, in turn,
identified with the map Hom.�1Z2 ;F/! Hom.�1X;F/ induced by the quotient �1X!�1Z2 , giving the
desired injectivity. ˙

2.3 The Hilbert groupoid

Evidently D-equivalences between points of XŒn� can be composed, so that they form the arrows of a
groupoid whose objects are the points of XŒn�. We will now show that this defines a smooth groupoid
scheme (or in the analytic context, a Lie groupoid).

More precisely, let

.X;D/Œn� WD XŒn� �
Perf0.D/

XŒn� � Perf0.X/ �
Perf0.D/

Perf0.X/

be the derived stack defined as the homotopy fibre product of XŒn� with itself along the map sending a
subscheme Z to i�IZ, where IZ is the ideal sheaf of Z equipped with the canonical trivialization of det IZ.
By definition of the homotopy fibre product, points of .X;D/Œn� consist of triples .Z1;Z2; �/, where Z1;Z2

are points of XŒn�, and � W Z1\h D ��! Z2\
h D is a D-equivalence. Composing the D-equivalences gives

.X;D/Œn� the structure of a groupoid in the category of derived stacks.

Definition 2.8 The groupoid .X;D/Œn� over XŒn� is the nth Hilbert groupoid of .X;D/.

In fact, this object is a classical smooth variety:

Theorem 2.9 The derived stack .X;D/Œn� is a smooth classical scheme. The projections s; t W .X;D/Œn�!
XŒn� are smooth morphisms , so that .X;D/Œn� defines a smooth groupoid scheme over XŒn� whose orbits
are the D-equivalence classes. Moreover , the induced map .s; t/ W .X;D/Œn�! XŒn� �XŒn� restricts to an
isomorphism over the Zariski open set .X nD/Œn� � .X nD/Œn�, and is therefore birational.

Proof To prove representability, we will use the interpretation of D-equivalences from part (5) of
Lemma 2.2: the fibre of .X;D/Œn� over a point .Z1;Z2/2XŒn��XŒn� is the set of isomorphisms IZ1˝OD!

IZ2˝OD commuting with the natural maps to OD. Recall that there is a universal ideal sheaf I on XŒn��X

whose restriction to any slice fZg�XŠX is the ideal defining Z. Let zX WDXŒn��XŒn��X and let I1; I2�OzX
be the pullbacks of I along the two projections to XŒn� �X. Let zD WD XŒn� �XŒn� �D � zX. Finally, let
p W zX! XŒn� �XŒn� be the projection. Observe that composition with the map I2!OzX!OzD gives a
natural map p�Hom.I1˝OzD; I2˝OzD/! p�Hom.I1;OzD/ of quasicoherent sheaves on XŒn� �XŒn�,
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and that the morphisms I1 ˝OzD ! I2 ˝OzD compatible with the maps to OzD form a torsor for the
quasicoherent sheaf

E WD ker
�
p�Hom.I1˝OzD; I2˝OzD/! p�Hom.I1;OzD/

�
:

We claim that E is, in fact, a coherent sheaf. Indeed, applying the exact sequence (2-5) to the universal
scheme Z2 � zX given by the vanishing of I2, we see that E is identified with the image of the canonical
map

p�Hom.I1˝OzD; T or1.OZ2 ;OzD//! p�Hom.I1˝OzD; I2˝OzD/:

Since T or1.OZ2 ;OzD/ is supported on Z2, and the latter is proper over XŒn� � XŒn�, it follows that
p�Hom.I1˝OzD; T or1.OZ2 ;OzD// is coherent, and hence so is E , as claimed. It now follows that the
total space Tot.E/ is a scheme that is relatively affine over XŒn� � XŒn�, and hence so is the torsor in
question. The invertible morphisms then form an open subscheme of the torsor, as desired.

To establish the smoothness of s; t , it is now enough to check that their relative tangent complexes Ts;Tt

at any closed point of .X;D/Œn� are concentrated in degree zero; note that this statement is independent
from the details of the explicit construction of the scheme above, and is indeed proved most easily from
the abstract definition as a derived stack. We will prove the smoothness for s; the argument for t is
identical.

We have the commutative diagram of tangent complexes

Ts //

��

T.X;D/Œn�

��

// s�TXŒn�

t�TXŒn� //

��

s�TXŒn�˚ t�TXŒn� //

��

s�TXŒn�

��

.Li�/�TPerf0.D/ .Li�/�TPerf0.D/ // 0

where Ts denotes the relative tangent complex of the map s W .X;D/Œn�! XŒn�. Since homotopy fibre
products of stacks give homotopy fibre sequences of tangent complexes, all three rows and the right two
columns are fibre sequences, from which we deduce that

(2-8) Ts Š fibre
�
t�TXŒn�! .Li�/�TPerf0.D/

�
:

Suppose that .Z1;Z2; �/ 2 .X;D/Œn� is a closed point. Let I D IZ2 be the ideal defining Z2. Identifying
the tangent complexes of XŒn� � Perf0.X/ and Perf0.D/ in (2-8) with the complexes of traceless derived
endomorphisms of I and Li�I respectively, we have

T.Z1;Z2;�/s Š fibre
�
R�.REndX.I/0/! R�.REndD.Li

�I//0
�
Œ1�

Š R�.REndX.I/0.�D//Œ1�;
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where the second equivalence is induced by tensoring the complex REndX.I/0 with the exact sequence
for the quotient OD ŠOX=OX.�D/. As explained in [5, Corollary 2.6], we have

REndX.I/0Œ1�ŠHomX.I;OZ2/;

so that
REndX.I/0.�D/Œ1�ŠHomX.I;OZ2/˝OX OX.�D/

is a skyscraper sheaf concentrated on the zero-dimensional scheme Z2. Therefore

T.Z1;Z2;�/s Š R�.Hom.I;OZ2/˝OX OX.�D//

Š HomX.I;OZ2.�D//

is concentrated in degree zero, as desired.

Example 2.10 The construction of the Hilbert groupoid is already interesting in the case when D is
smooth and nD 1, where it recovers a known construction of Lie groupoids associated with curves in
surfaces [11; 18], or more precisely a groupoid integrating the Lie algebroid TX.�D/ of vector fields
vanishing on D, via blowing up. Namely, a length-one subscheme is simply a point of X with the reduced
scheme structure, so that XŒ1� D X, and hence by Theorem 2.9, we have a natural birational map

.s; t/ W .X;D/Œ1�! X�X:

A pair of points in XŒ1� are D-equivalent if and only if one of two things occurs: either they both lie in XnD,
or they are the same point of D. It follows that the isotropy groups of points p 2 D are two-dimensional,
and so the preimage of the diagonal embedding of D under the map .s; t/ is a hypersurface in .X;D/Œ1�.
Hence .s; t/ factors through the blowup of X�X along the diagonal copy of D. One can check (eg using
Theorem 4.7 below) that this identifies .X;D/Œ1� with the complement of the strict transforms of D�X
and X�D in the blowup. It would be interesting to give a similarly explicit description of the birational
map .X;D/Œn�! X�X when n > 1 or D is singular. ˙

2.4 Stabilizer groups

Definition 2.11 We denote by GZ;D the stabilizer group algebra of Z 2 XŒn� in the groupoid .X;D/Œn�,
ie the group of homotopy classes of infinitesimal self D-equivalences of Z, and by gZ;D its Lie algebra.

By Lemma 2.2, GZ;D can be identified with the group of automorphisms of i�IZ that act as the identity
on the maximal torsion-free quotient i�I tf

Z . Correspondingly, gZ;D is identified with the endomorphisms
of i�IZ that act by zero on i�I tf

Z . Since the maximal torsion subsheaf

�Z;D WD T orOX

1 .OZ;OD/DH�1.OZ\hD/

of i�IZ is preserved by any endomorphism, we immediately deduce the following:
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Lemma 2.12 There is a canonical exact sequence of groups

0! HomD.i
�I tf

Z ; �Z;D/! GZ;D! AutD.�Z;D/;

where the group law on HomD.i
�I tf

Z ; �Z;D/ is addition. Correspondingly we have an exact sequence of
Lie algebras

0! HomD.i
�I tf

Z ; �Z;D/! gZ;D! EndD.�Z;D/;

where HomD.i
�I tf

Z ; �Z;D/ is abelian.

2.5 Syzygy matrices and orbit data

We now turn to the classification of the orbits of .X;D/Œn�, ie the enumeration of the D-equivalence classes.
In light of Lemma 2.4, this is equivalent to the classification of OD-modules F such that F Š i�IZ for
some Z 2 XŒn�.

In order to characterize such modules, note that since X is smooth of dimension two the stalk of IZ at any
point p 2 X is an OX;p-module of projective dimension at most two; indeed, if p … Z then IZ;p DOX;p ,
while if p 2 Z, the classical Hilbert–Burch theorem states that the minimal resolution has the form

(2-9) 0!O˚kX;p
S
�!O˚.kC1/X

M.S/
���! IZ;p! 0;

where S is a .kC 1/�k-matrix of elements of the maximal ideal mX;p <OX;p , called the syzygy matrix,
and M.S/ is the row vector formed from the maximal minors of S with alternating signs, ie

M.S/D
�
det.S0/ �det.S1/ � � � .�1/k det.Sk/

�
;

where Sj is the k � k submatrix obtained by removing the .j C 1/st row from S . The matrix S is
determined by Z and p up to multiplication on the left and right by elements in GLkC1.OX;p/ and
GLk.OX;p/, respectively.

Applying the functor Li� to (2-9), we obtain a minimal resolution

(2-10) 0!O˚kD;p

S jD
��!O˚.kC1/D;p

M.S jD/
����! i�IZ;p! 0

for any p 2 D, so that the D-equivalence class of Z near p is controlled by the equivalence class of the
matrix S jD. For instance, S jD can be used to construct an explicit model for OZ\hD as a dg OD-algebra.
Namely, by extending (2-9) one step to the right we obtain a minimal resolution of OZ;p , which carries a
canonical dg algebra structure due to Herzog [20] (see also [3, Section 6]), whose structure constants are
determined by S . Tensoring the resolution with OD;p, we obtain an explicit model for OZ\hD;p as an
OD;p-algebra.

This motivates the following definition. Note that in this definition, there is a unique local orbit datum of
size k D 0, corresponding to the case in which the point p 2 D does not lie in Z and S jD is the zero map
0!OD;p, which we think of as a matrix of size 1� 0.
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Definition 2.13 A local orbit datum supported at p 2D of size k � 0 is an element of the double quotient

(2-11) GLkC1.OD;p/nm
.kC1/�k
D;p =GLk.OD;p/;

which can be realized as the restriction to D of the syzygy matrix of a zero-dimensional subscheme Z� X.
We denote the set of local orbit data of size k by OrbDatk.D; p/, and set

OrbDat.D; p/ WD
G
k�0

OrbDatk.D; p/:

A (global) orbit datum is an assignment � W p 7! �.p/ of a local orbit datum �.p/ 2 OrbDatk.D; p/ to
every point p 2 D such that there are only finitely many p with �.p/ of positive size.

Note that every global orbit datum can be realized by a zero-dimensional subscheme, simply by taking
the disjoint union of the zero-dimensional subschemes at each p where �.p/ has positive size.

If Z 2 XŒn�, we denote by
ŒZ�p 2 OrbDat.D; p/

the image of the syzygy matrix of Z, which is well-defined. If � is a global orbit datum, we define a
subset

X
Œn�
� WD fZ 2 X

Œn�
j ŒZ�p D �.p/ for all p 2 Dg:

Then clearly X
Œn�
� , if nonempty, is a D-equivalence class, ie an orbit of .X;D/Œn�, and every D-equivalence

class arises in this way.

2.6 Classification of orbits

2.6.1 Smooth points Let p 2 D be a smooth point of D and suppose that Z 2 XŒn�. Then the ring OD;p

of analytic germs at p is a principal ideal domain, isomorphic to the ring Cfxg of convergent power
series in a coordinate x centred at p. Then since i�IZ;p is a finitely generated module whose free part
has rank one, it must have the form

(2-12) i�IZ;p ŠOD;p˚

kM
jD1

OD;p=m
�j
D;p ŠCfxg˚

kM
jD1

CŒx�=x�j

for a unique collection �D .�1 � �2 � � � � / of positive integers. Correspondingly, the syzygy matrix
can be put in the Smith normal form

(2-13) S jD � S�.x/ WD

0BBBBBBB@

x�1 0 0 : : : 0

0 x�2 0 : : : 0

0 0 x�3 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : x�k

0 0 0 : : : 0

1CCCCCCCA
:

Recall the following definition.

Geometry & Topology, Volume 29 (2025)



2062 Mykola Matviichuk, Brent Pym and Travis Schedler

Definition 2.14 A Young diagram (of length k) is a decreasing sequence �D .�1 � � � � ��k/ of positive
integers. Its size is its sum:

j�j D �1C � � �C�k :

By convention, we set �j D 0 for j > k.

We depict a Young diagram � by placing �j boxes in the j th row, starting the numbering of rows from 1,
for example

.4; 2; 2; 1/ $

is a Young diagram of length four and size nine.

Rephrasing the above, we have the following characterization of the local orbit data at p:

Lemma 2.15 If p 2 D is a smooth point , the map sending a Young diagram � to the equivalence class of
the corresponding Smith normal form matrix gives a canonical bijection

OrbDatk.D; p/Š fYoung diagrams of length kg:

In particular , if D is smooth , then the global orbit data are in bijection with functions from D to the set of
Young diagrams of arbitrary size.

We now describe the basic characteristics of the orbit datum corresponding to a Young diagram �. In
order to do so, we introduce the following auxiliary notion:

Definition 2.16 We say that a Young diagram �D .�1 � �2 � � � � / is horizontally convex if �i ��iC1 �
�iC1��iC2 for every i > 0.

For instance, the following Young diagrams are horizontally convex:

whereas the following are not horizontally convex:

For a Young diagram �, let hc.�/ be the unique Young diagram � such that �j ��jC1D�j for all j > 0,
or equivalently �j D

P
l�j �l . Then hc.�/ is horizontally convex, and evidently every horizontally

convex diagram can be obtained in this way. For example,

(2-14) �D 7! hc.�/D
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Note that the number of boxes of hc.�/ is given by

(2-15) jhc.�/j D
X
j�1

j�j ;

which will be useful below.

Given a Young diagram � and a smooth point p 2 D, we define a zero-dimensional subscheme

Z�p � X

supported at p, as follows. First, choose coordinates .x; y/ centred at p, such that D is given locally by
the equation y D 0, and let �D hc.�/. Then set

(2-16) Z�p WD the vanishing locus of the monomials xjyl for j � �lC1:

Using the horizontal convexity of �, it is straightforward to verify that this definition is independent of
the choice of coordinates .x; y/.

Evidently the algebra OZ
�
p
Š CŒx; y�=.xjyl/j<�lC1 has a basis given by the monomials xjyl , where

j < �lC1 for l D 0; : : : ; k� 1. The following is therefore immediate:

Lemma 2.17 The algebra OZ
�
p

has a basis indexed by the boxes of the Young diagram hc.�/. In
particular , the length of the scheme Z

�
p is given by

#Z�p D jhc.�/j:

Remark 2.18 Z
�
p can be defined in a coordinate-free fashion as follows. Let �T be the transpose of �,

defined by �Tj D #fl >0 j�l � j g, and let kT D�1 be its length. For a collection p1; : : : ; pkT of pairwise
distinct points in D, consider the subscheme given by the disjoint union of .�Tj /

th order neighbourhoods
of pj for 1� j � kT . Taking the limit as the points p1; : : : ; pkT ! p we obtain the subscheme Z

�
p .

For example, consider the Young diagrams

� WD � WD hc.�/D �T D

Then Z
�
p is obtained as the limit of the schemes defined by the intersection of the ideals m4X;p1 , m4X;p2 ,

m2X;p3 , m2X;p4 , m2X;p5 , mX;p6 when all points pi 2 D tend to p while remaining distinct. Pictorially, this
corresponds to the fact that the Young diagram � can be obtained by taking the Young diagrams

and piling their boxes onto one another horizontally. ˙
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The importance of the subscheme Z
�
p is that it gives a canonical representative of the corresponding orbit

datum:

Proposition 2.19 Let � be a Young diagram. Then ŒZ�p �D � 2 OrbDat.D; p/.

Proof Let ZD Z
�
p . In light of the above, i�IZ;p is determined up to isomorphism by its torsion subsheaf,

which is isomorphic as an OD-module to T or1.OZ;OD/. In local coordinates .x; y/ such that D is the
vanishing locus of y, we can use the Koszul resolution of OD to compute

T or1.OZ;OD/Š ker.OZ
y�
�!OZ/:

Using the basis of OZ indexed by the boxes of � WD hc.�/ as above, the operator y corresponds to a
translation upwards by one step. Therefore T or1.OZ;OD/ has a C-basis indexed by the boxes of � that sit
at the top of the columns, and these are in bijection with the boxes of �, as illustrated in (2-14). Moreover,
x restricts to a coordinate on D, identifying OD;p ŠCfxg. The action of x on the basis corresponds to
translation rightwards by one step in the Young diagram, and in this way we deduce that T or1.OX;OD/

is isomorphic to the direct sum of the modules Cfxg=.x�j / for j D 1; : : : ; k, as desired.

Proposition 2.20 If Z 2 XŒn� is any element whose orbit datum at p is the Young diagram �, then Z
�
p is

a subscheme of Z. Moreover , the orbit of Z contains as a Zariski open dense subset the locus of elements
of the form Z0 tZ

�
p such that p … Z0.

Proof Choose local coordinates .x; y/ centred at p for which DD fy D 0g. By assumption, the syzygy
matrix for Z is equivalent to one of the form

SZ D S�.x/CyM D

kX
jD1

x�jEj CyM;

where Ej is whose .j; j /-entry is 1 and whose other entries are zero, M is in O.kC1/�kX;p and S�.x/ is the
Smith normal form matrix (2-13). Moreover Z is given locally by the vanishing of the maximal minors
of SZ. Using the skew-multilinearity of the minors of a matrix, we deduce that each maximal minor is a
sum of terms the form x�j1 � � � x�jl yk�l det.Mj1;:::;jl / for a .k� l/� .k� l/ submatrix Mj1;:::;jl of M ,
where the indices jl ; : : : ; jl are pairwise distinct. Since �k � �k�1 � � � � , each such term is divisible by
x�kC���C�k�lC1yk�l D xhc.�/l�1yk�l and hence IZ is contained in the ideal defining Z

�
p , or equivalently

Z
�
p � Z, as desired.

For the second statement, first note that the Zariski open property follows by upper semicontinuity of the
multiplicity of the point p; this upper semicontinuity follows from the continuity of the Hilbert–Chow
morphism, and the fact that multiplicity is clearly upper semicontinuous on the base. So we only need to
prove that the given locus is dense. The problem localizes around the points of Z, so we may assume
without loss of generality that XDC2; in this case D is anticanonical so by Corollary 3.5 below, the orbits
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are disjoint unions of symplectic leaves of one of Bottacin’s Poisson structures on XŒn�. Furthermore,
we may assume that Z is supported at a point p 2 D, with Z¤ Z

�
p . Hence #Z > #Z�p D jhc.�/j, so by

Lemma 2.17 above and Lemma 2.22 below, the orbit of Z has positive dimension. Since the monomial
ideals give isolated points in XŒn�, we may assume in addition that the ideal defining Z is not generated by
monomials. Then the vector field on XŒn� induced by the Euler vector field E D

Pn
iD1 yi@yi generating

the standard C� action in coordinates is nonzero at Z; see eg [29, Proposition 7.4]. Pick a locally defined
function g 2OXŒn� such that E.g/D 1. Then we have fg; hg D 1, where h is the locally defined function
on XŒn� sending Z to the sum of the x-coordinates of its support. Therefore, the Hamiltonian vector field
of g pushes Z away from the locus where

Pn
iD1 xi D 0. In particular, it pushes Z away from the set of

elements of .C2/Œn� supported at p. Since the flow cannot change the intersection with D, we deduce that
Z is equivalent to a scheme of the form Z0tZ00, where Z0 ¤¿ is disjoint from p and Z00 � Z

�
p . The result

follows by downward induction on the length of Z.

Remark 2.21 In the above proof, we cite Corollary 3.5 below. There is no circular logic because the
above proposition is not used after the present subsection. Moreover Corollary 3.5 (and all of Section 3.2)
do not require anything from the present Section 2.6. ˙

In light of (2-12) we have a (noncanonical) splitting i�IZ;p Š i�I tf
Z;p˚ �Z;D, where

i�I tf
Z;p ŠOD;p ŠCfxg and �Z;D;p Š

kM
jD1

OD;p=m
�j
D;p Š

kM
jD1

CŒx�=.x�j /

are the torsion-free and torsion parts, respectively. It follows immediately that the natural map GZ;D!

AutD.�Z;D/ is a split surjection, with kernel Hom.i�I tf
Z ; �Z;D/ŠH0.�Z;D/, giving the following description

of the stabilizer group:

Lemma 2.22 Suppose Z\D is supported in the smooth locus of D. Then the stabilizer group of Z in
.X;D/Œn� is given by

GZ;D Š AutD.�Z;D/ËH0.�Z;D/;

where H0.�Z;D/ is viewed as an abelian group under addition. In particular , the orbit of Z has codimension

codim..X;D/Œn� �Z/D 2
X
p2Z

jhc.�.p//j;

where �.p/ is the Young diagram representing the orbit datum ŒZ�p for all p 2 D.

Proof It remains to establish the formula for the codimension of the orbit, or equivalently the dimension
of the Lie algebra gZ;D of GZ;D. But the latter is the sum of the dimensions of the vector spaces

H0.�Z;D/Š

kM
jD1

CŒx�=.x�j / and EndD.�Z;D/Š

kM
j;lD1

HomCŒx�.CŒx�=.x
�j /;CŒx�=.x�l //:
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Note that dim CŒx�=.x�j /D �j , while dimHomCŒx�.CŒx�=.x
�j /;CŒx�=.x�l //Dminf�j ; �lg.

Therefore,

dimGG;Z D

X
j�1

�j C
X
j;l�1

minf�j ; �lg D
X
j�1

�j C
X
j�1

.2j � 1/�j D 2
X
j�1

j�j D 2jhc.�/j;

by (2-15).

Combined with Lemma 2.17, we deduce the following:

Corollary 2.23 The zero-dimensional orbits of .X;D/Œn� are exactly the elements of the form Z DF
p2D Z

�.p/
p , such that

P
p2D jhc.�.p//j D n.

Combining these results, we have obtained the following description of the orbits in the case where D is
smooth:

Theorem 2.24 Suppose that D � X is smooth. Then the orbits of .X;D/Œn� are in bijection with
functions � from D to the set of all Young diagrams , such thatX

p2D

jhc.�.p//j � n:

Moreover , for any such �, the set�
Z0 t

G
p2Z

Z�.p/p

ˇ̌̌
Z0 � X nD

�
Š .X nD/Œn�

P
p jhc.�.p/j�

is open and dense in the corresponding orbit XŒn�� . In particular , if X is connected , then all orbits are
connected.

Remark 2.25 In addition, one can show that the orbit XŒn�� lies in the closure of the orbit XŒn�
z�

if and only
if z�� � in the dominance order on Young diagrams. However the proof uses more refined information
about the local structure of XŒn�, so we postpone it; see Proposition 4.10. ˙

2.6.2 Nodes We now briefly describe the classification of the orbit data at a nodal singularity p 2 D.

Choose coordinates .x; y/ centred at p, so that DD fxy D 0g, giving an isomorphism

OD;p ŠCfx; yg=.xy/:

The classification of finitely generated modules over this ring is known: the torsion modules were classified
in [14] (see also [4]), and the classification of all finitely generated modules over CŒx; y�=.xy/ was done
in [25; 26], based on earlier works [30; 31]. In particular, every finitely generated module decomposes as
a direct sum of indecomposable ones, and this decomposition can be determined algorithmically [24].
Furthermore, the minimal resolutions of the indecomposables are presented in [8, Appendix A]. Of
these, only two families have projective dimension at most one, namely those listed as (1) and (3) on
pages 224–225 of [8]:
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� A “continuous series” of torsion modules, expressed as the cokernels of the square matrices

M.d ; k; u/ WD

0BBBBB@
x�1Ik 0 0 � � � y�lJk.u/

y�1Ik x�2Ik 0 � � � 0

0 y�2Ik x�3Ik � � � 0
:::

:::
:::

: : :
:::

0 0 � � � y�l�1Ik x�lIk

1CCCCCA
of size k � l , where d D .�1; �1/; .�2; �2/; : : : ; .�l ; �l/ is a nonperiodic sequence of pairs of
positive integers, Ik denotes the identity matrix of size k and Jk.u/ is a maximal Jordan block
of size k with eigenvalue u ¤ 0. We include here the degenerate case l D 1, in which case
M.d ; k; u/D x�1Ik �y

�1Jk.u/.

� A “discrete series” of rank-one modules, expressed as the cokernels of the .kC 1/� k matrices

D.d/ WD

0BBBBBBBB@

x�1 0 0 � � � 0

y�1 x�2 0 � � � 0

0 y�2 x�3 � � � 0

0 0 y�3
: : :

:::
:::

:::
:::

: : : x�k

0 0 0 � � � y�k

1CCCCCCCCA
;

where d D .�1; �1/; : : : ; .�k; �k/ is a sequence of pairs of positive integers. We include here the
degenerate case k D 0, which corresponds to the trivial module.

Since for any Z 2 XŒn�, the module i�IZ;p has rank one and projective dimension at most one, we have
the following classification of the orbit data:

Proposition 2.26 If p is a node , then each local orbit datum is presented as the direct sum of a single
matrix of the form D.d/ and at most finitely many matrices of the form M.d ; k; u/. This presentation is
unique up to permutation of the summands.

Remark 2.27 By choosing suitable lifts of the direct sums of the matrices D.d/ and M.d ; k; u/ to
matrices valued in OX;p, one can show that all direct sums as in Proposition 2.26 are realized as orbit
data for sufficiently large n. It would be interesting to know the minimal n for which a given direct sum
can occur. ˙

Remark 2.28 It is straightforward to check that the indecomposable rank-one modules in the discrete
series above are determined up to isomorphism by their torsion submodules, which have infinite projective
dimension and form the discrete series described in item (2) on page 225 of [8]. Hence, if the singularities
of D are at worst nodal, the orbit type of an element Z2XŒn� is completely determined by the isomorphism
class of the torsion submodule �Z;D of IZ. ˙
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3 Symplectic and Poisson structures

3.1 Bottacin’s Poisson structure

From now on, consider the particular case in which the divisor D� X is anticanonical, and fix a nonzero
section

� 2 H0.K_X /

vanishing on D. Thus � is a Poisson structure on X having the open set X nD as a two-dimensional
symplectic leaf, and the points of D as zero-dimensional symplectic leaves. In [5], Bottacin shows that for
every n� 0, the induced Poisson structure � .n/ on the symmetric power X.n/ lifts along the Hilbert–Chow
morphism to a Poisson structure on the Hilbert scheme XŒn�, and that the corresponding bivector

� Œn� 2 H0.^2TXŒn�/

has the following description: using the various identifications (2-1) of the tangent space at Z 2 XŒn�, and
the corresponding Serre dual descriptions of the cotangent space, the anchor map .� Œn�/] WT�ZX

Œn�!TZX
Œn�

is determined by the following commutative diagram:

T�ZX
Œn� �

//

.� Œn�/]

��

Ext1X.IZ; IZ˝KX/0

�

��

�
// HomX.IZ;OZ˝KX/

�

��

TZX
Œn� ExtX1.IZ; IZ/0�
oo HomX.IZ;OZ/�

oo

3.2 Symplectic groupoid and symplectic leaves

We now sketch an alternative approach to the construction of Bottacin’s Poisson structure � Œn�, based on
the formalism of shifted symplectic structures from [34], and the now standard correspondence between
Poisson structures, symplectic groupoids and shifted Lagrangian morphisms. This conceptual approach
has the advantage of immediately yielding a description of the symplectic groupoid and symplectic leaves
of � Œn�, and is indeed how we arrived at the definition of the groupoid .X;D/Œn�. However, a posteriori one
can construct the symplectic structure on the groupoid without invoking the theory of shifted symplectic
structures; see Remark 3.4 below.

We will assume here that X is algebraic, since the cited references make this assumption. However, the
constructions are effectively local in X, so that the result holds also in the nonalgebraic setting with
essentially the same arguments.

First, we observe that if D� X is an anticanonical divisor, the map Li� W Perf.X/! Perf.D/ of derived
stacks carries a one-shifted Lagrangian structure in a neighbourhood of any perfect complex on X with
proper support. If X itself is proper, this can be obtained by viewing the anticanonical section � as a
relative orientation on the inclusion D! X, in the sense of [9], and combining the main result of [9] with
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the 2-shifted symplectic structure on the stack Perf.�/ of perfect complexes from [34]. More generally,
one can invoke the results of [6]. We may then pull this Lagrangian structure back along the square

Perf0.X/ //

��

Perf.X/

��

Perf0.D/ // Perf.D/

thus obtaining a canonical isotropic structure on the map Perf0.X/!Perf0.D/ over the locus of complexes
with proper support.

Lemma 3.1 The induced isotropic structure on Perf0.X/! Perf0.D/ is nondegenerate , ie a Lagrangian
structure.

Since the construction of Lagrangian structures on mapping stacks is functorial for maps of the shifted
symplectic structures on the target, the lemma is an immediate consequence of the definitions and the
following basic fact:

Proposition 3.2 The pullback of the 2-shifted symplectic structure on Perf.�/ along the canonical map
Perf0.�/! Perf.�/ is nondegenerate , and thus defines a 2-shifted symplectic structure on Perf0.�/.

Proof Let Pic.�/D BGm be the Picard stack. Then by definition

Perf0.�/Š Perf.�/ �
Pic.�/

�

is the fibre of the derived determinant map det W Perf.�/! Pic.�/ from [43] at the point � ! Pic.�/

corresponding to the universal trivial line bundle. Let x W Spec.A/! Perf0.�/ be the point classifying a
perfect complex E on Spec.A/ with trivialized determinant. By [43, Proposition 3.2], we have a homotopy
fibre sequence

x�TPerf0.�/!REndA.E/
tr
�! A

of complexes on X, where tr is the Illusie trace map, so that

x�TPerf0.�/ŠREndA.E/0 WD fibre.REndA.E/
tr
�! A/

is the complex of “traceless” derived endomorphisms. Meanwhile, as constructed in [34, Section 2.3], the
two-form underlying the 2-shifted symplectic structure on Perf.�/ is given by the trace pairing

! WREndA.E/
L
˝
A
REndA.E/!REndA.E/

tr
�! A:

Hence the induced two-form on Perf0.�/ is given by the restriction of the pairing ! to the traceless
endomorphisms REndA.E/0. But by definition, every element of Perf.A/ is equivalent to a strictly perfect
one, ie a dg module E whose underlying module is projective of finite type, ie a graded vector bundle.
Hence the statement reduces to the classical nondegeneracy of the trace pairing on traceless matrices.
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Restricting to the open substack XŒn� � Perf0.X/, we deduce that the map XŒn�! Perf0.D/ is one-shifted
Lagrangian, so that our groupoid

.X;D/Œn� Š XŒn� �
Perf0.D/

XŒn�

carries a zero-shifted symplectic structure by the Lagrangian intersection theorem [34, Theorem 2.9]. But
by Theorem 2.9, the derived stack .X;D/Œn� is a smooth classical scheme, so by [34, pages 297–298] this
0-shifted symplectic structure is an ordinary symplectic structure in the classical sense. Moreover, by
definition, this symplectic structure on .X;D/Œn� is the difference of the pullbacks of the isotropic structure
on XŒn� along the two maps s; t W .X;D/Œn�! XŒn�. It is therefore automatically multiplicative, so that
.X;D/Œn� has the structure of a symplectic groupoid. As for any symplectic groupoid, the embedding of the
identity arrows XŒn� ,! .X;D/Œn� is Lagrangian, giving an identification LXŒn�jZŠTsj.Z;Z;id/. The induced
Poisson bivector on XŒn� is the composition of this isomorphism with the differential Tsj.Z;Z;id/!TXŒn�jZ

of the target map. Considering the definition of the symplectic structure in terms of Serre duality and
using the identifications of the (relative) tangent spaces from the proof of Theorem 2.9, we deduce that
this Poisson structure is exactly the one defined by Bottacin.

In summary, we have the following:

Theorem 3.3 Let .X; �/ be a Poisson surface with degeneracy curve DD ��1.0/� X. Then .X;D/Œn�

carries a canonical symplectic structure , making it a symplectic groupoid over XŒn� that integrates
Bottacin’s Poisson structure � Œn� on XŒn�.

Remark 3.4 The symplectic structure on .X;D/Œn� constructed above is the unique two-form for which the
map .s; t/ W .X;D/Œn�!XŒn��XŒn� is a symplectomorphism over the open dense set .X nD/Œn��.X nD/Œn�,
where the latter is equipped with the symplectic form � WD pr�1 ! � pr�2 ! obtained by pulling back
the symplectic form ! on X nDŒn� along the two projections pr1; pr2. Thus, to prove that .X;D/Œn� is
symplectic, one simply needs to check that the pullback of � to .X;D/Œn� has no poles, and similarly that
the pullback of �n has no zeroes.

These properties can be verified directly in at least two ways, giving a construction of the symplectic form
that does not rely on the theory of shifted symplectic structures. The first way is to explicitly write down
the induced nondegenerate pairing on the tangent space at any point of .X;D/Œn� using Grothendieck
duality for coherent sheaves, and see directly that it agrees with the pullback of �. The second way
begins with the observation that the desired properties are local and can be checked in codimension one.
Thus, using Weinstein’s splitting theorem, one can reduce the problem to the case in which nD 1, and
the reduced curve underlying D is smooth. In this case, the desired properties can be obtained by direct
calculation using the explicit description of .X;D/Œ1�! X�X in terms of blowups from Example 2.10, in
the spirit of [18, Section 2.4], which treats the reduced case. ˙

Since the connected components of the orbits of any symplectic groupoid are exactly the symplectic
leaves of the corresponding Poisson structure, and moreover the orbits of any smooth algebraic groupoid
are locally closed algebraic subvarieties, Theorem 3.3 has the following immediate consequences.
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Corollary 3.5 The symplectic leaves of .XŒn�; � Œn�/ are the connected components of the D-equivalence
classes. In particular , they are locally closed in the Zariski topology when .X; �/ is algebraic , and if D is
smooth they are in bijection with Young-diagram-valued functions on D as in Theorem 2.24.

Note that the stabilizer groups in .X;D/Œn� are exactly the self D-equivalences, and meanwhile, as for
any symplectic groupoid, the Lie algebras of these groups are exactly the conormal Lie algebras of the
Poisson structure (ie the linearization of the Poisson structure in the direction transverse to the symplectic
leaves) so we have the following:

Corollary 3.6 If Z 2 XŒn� is any point , then its conormal Lie algebra

ker
�
.� Œn�/] W T�ZX

Œn�
! TZX

Œn�
�

is canonically identified with the Lie algebra gZ;D of infinitesimal self-D-equivalences defined in Definition
2.11 and described in Lemma 2.12.

3.3 Characteristic leaves

Of particular interest to us are the symplectic leaves that are “characteristic” in the sense of [27]; let us
recall the definition. First, recall from [7; 35; 47] the notion of the modular vector field of a Poisson
structure � on a manifold W with respect to a volume form �: it is the derivation of OW sending a
function f to the �-divergence of the Hamiltonian vector field of f . The modular vector field is an
infinitesimal symmetry of the Poisson structure, and is independent of� up to the addition of a Hamiltonian
vector field, so that its projection to the normal space of any symplectic leaf is unambiguously defined.
We then have the following.

Definition 3.7 [27] A symplectic leaf of a Poisson manifold is characteristic if it is preserved by the
flow of the modular vector field, ie the projection of the modular vector field to the normal bundle of the
leaf is identically zero.

Now suppose that .X; �/ is a Poisson surface, and let D � X be the anticanonical divisor on which �
vanishes. Then the restriction of the modular vector field to D is independent of the choice of volume
form, giving a canonically defined global vector field

� 2 H0.TD/:

The characteristic leaves in the Hilbert scheme then have the following description.

Proposition 3.8 The symplectic leaf of � Œn� through a point Z 2 XŒn� is characteristic if and only if the
derived subscheme Z\h D� D is preserved (up to equivalence) by the flow of �.

Proof The problem is local in X around Z, so we may assume without loss of generality that X

admits a global volume form � and let z� be the corresponding modular vector field, so that z�jD D �
by definition of �. Consider the product Xn and let pi W Xn ! X be the i th projection. For a tensor �
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on X let �n D p�1�C � � �Cp
�
n� denote its symmetric lift to Xn. Then �n, �n and z�n are, respectively, a

Poisson structure, a volume form, and the corresponding modular vector field on Xn. These are invariant
under permutation, and hence descend to the symmetric power X.n/, giving a Poisson structure � .n/, a
trivialization �.n/ of the canonical sheaf, and a vector field z�.n/, which agrees with the modular vector
field over the smooth locus of X.n/. We claim that these structures lift to corresponding structures on
the Hilbert scheme under the Hilbert–Chow morphism XŒn� ! X.n/. Indeed, � .n/ lifts to Bottacin’s
structure � Œn� by definition, and �.n/ lifts to a volume form �Œn� since the Hilbert–Chow morphism is
crepant. We may then form the modular vector field z�.n/ of � Œn� with respect to �Œn�, which must agree
with z�.n/ over the smooth locus of X.n/, and hence it must be a lift of z�.n/ (which is necessarily unique).
It follows that the modular flow on XŒn� is given by pulling back subschemes Z� X along the flow of z�
on X. The result now follows immediately, since z�jD D �.

Remark 3.9 Let us sketch an interpretation of this result in terms of derived symplectic geometry. We
first remark, following a discussion with P Safronov, that the modular vector field of a Poisson manifold
can be thought of as the “Hamiltonian vector field of the first Chern class of the leaf space”, in the
following sense. If Y is a one-shifted symplectic stack, then the symplectic form induces an isomorphism
TY Š LYŒ1�. Under the induced isomorphism H1.LY/ Š H0.LYŒ1�/ Š H0.TY/, the first Chern class
c1.Y/ 2 H

1.LY/ corresponds to a canonical vector field � 2 H0.TY/ (its “Hamiltonian vector field”). If
p WW! Y is a Lagrangian morphism, then W inherits a 0-shifted Poisson structure whose symplectic
leaves are the fibres of p, and the vector field � agrees up to a constant factor with the projection of the
modular vector field to the leaf space. In particular, the characteristic symplectic leaves in W correspond
to fixed points of � in Y.

In the case at hand, we have YD Perf0.D/, and TY is the complex of traceless derived endomorphisms
of the universal sheaf. One can then compute the first Chern class of Y using the Grothendieck–Riemann–
Roch theorem, and show that the corresponding vector field � generates the one-parameter group of
automorphisms of Y given by pulling back complexes along the modular vector field on the curve D as
above, recovering Proposition 3.8. ˙

Corollary 3.10 Let X be a Poisson surface with anticanonical divisor D. If Z2XŒn� lies on a characteristic
symplectic leaf , then Z\D is contained in the singular locus of D.

Proof The modular vector field is nonzero at any smooth point of D. Hence if the support of Z\D

contains a smooth point, it will not be fixed by the flow of the modular vector field.

Lemma 3.11 If X is connected , the codimension-two characteristic leaves are exactly the subvarieties of
the form fZ 2 XŒn� j Z\DD fpg as schemesg, where p is a singular point of D.

Proof If Z lies on a characteristic leaf of codimension two, then by Corollary 3.10, Z\ D must be
contained in the singular locus of D. If #.Z\D/ > 1, then the symplectic leaf through Z has codimension
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greater than two, so can assume that Z\DD fpg for some singular point p 2D. Since p 2D is a singular
point, it follows that Z itself is reduced at p, and hence ZD fpgtZ0, where Z0 � X nD. Hence the leaf is
exactly an embedded copy of the symplectic variety .X nD/Œn�1�. The transverse germ is isomorphic to
the germ of X at p, and hence any such subvariety is a characteristic leaf.

Proposition 3.12 If D has only nodal singularities , then each germ of XŒn� has only finitely many
characteristic symplectic leaves.

Proof The problem is local and invariant under rescaling the Poisson structure by a constant, so by the
log Darboux theorem it is enough to treat the case in which XDC2 and � D xy @x ^ @y (eg see [1]), in
which case the modular vector field is given by �Dy@y�x@x and its flow integrates to the C�-action on X

given by t � .x; y/D .tx; t�1y/. It is straightforward to verify that this action preserves the equivalence
class of the matrices D.d/, and changes the equivalence classes of the matrices M.d ; k; u/ by a suitable
rescaling of u. Hence according to Proposition 2.26, the orbit data for XŒn� that are fixed by the modular
flow are exactly those given by a single matrix from the series D.d/, of which only finitely many can
occur in XŒn�. Hence there are only finitely many characteristic leaves globally in XŒn�. But the leaves are
algebraic subvarieties (locally closed in the Zariski topology), so the analytic germ at every point can
have only finitely many connected components (bounded by the number of irreducible components in the
analytic or formal germ of the leaf closure), as desired.

For nD 1, the characteristic leaves are given by the open leaf XnD and the singular points of D, and hence
are locally finite as long as D is reduced. However if D has nonnodal singularities and n is sufficiently
large, one finds the existence of infinitely many characteristic symplectic leaves in XŒn�. Recall that a
point p 2 D is a double point if the multiplicity of D at p is exactly two, ie the defining equation vanishes
to order exactly two, in which case it is an Ak singularity for some k � 1, meaning that there exists
coordinates such that D is given locally by the equation

y2� xkC1 D 0:

We have the following:

Proposition 3.13 Let X be a Poisson surface with anticanonical divisor D. Then the following statements
hold :

(1) XŒ2� has finitely many characteristic symplectic leaves if and only if the only singularities of D are
double points.

(2) If D has a nonnodal singularity , then XŒn� has infinitely many characteristic leaves for every
n� n.D/, where

n.D/ WD

8<:
2 if D has a triple point ,
3 if D has a singularity of type Ak for some k � 3;
6 if D has an A2 singularity:
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Proof Suppose Z 2 XŒ2�. If Z is reduced, then ZD fp1; p2g is a pair of distinct points and XŒ2� is locally
isomorphic to a neighbourhood of .p1; p2/ in the product X�X, and hence there are only finitely many
characteristic leaves in a neighbourhood of Z.

If Z is not reduced, then it is the image of an embedding Spec.CŒ��=�2/! X and is therefore classified
by a pair .p; L/ where p 2 X and L< TpX is a line. By Corollary 3.10 we need only consider the case in
which p is a singular point of D, in which case Z is contained entirely in D, so that � vanishes at Z. Let us
choose local coordinates x; y on X centred at p so that the bivector on X has the form � Df .x; y/ @x^@y .
The modular vector field is then given in terms of the partial derivatives fx; fy by the formula

� D fx@y �fy@x

and hence the linearization of � at p is given by the matrix�
�fxy.0/ �fyy.0/

fxx.0/ fxy.0/

�
If f vanishes to order three or more, then this matrix is zero. Hence every line L< TpX is preserved by
the flow of �, and we obtain infinitely many characteristic leaves in XŒ2�, and hence also in XŒn� for n > 2.
On the other hand, if f vanishes to order two, this matrix is nonzero. Since it is traceless, it preserves at
most two lines in TpX and so the set of characteristic leaves with support at p is finite.

Now suppose that D has an Ak-singularity at p 2 X. Then we may choose coordinates .x; y/ centred at p
such that f .x; y/D h.x; y/.y2�xkC1/ and h.0; 0/ 6D 0. Then the modular vector field of � is given by

� D h.x; y/
�
�2y@x � .kC 1/x

k@y
�
C .y2� xkC1/

�
hx.x; y/@y � hy.x; y/@x

�
:

Suppose first that k � 3, and consider the ideal Ia WD .yCax2; x3/, where a 2C. Then each Ia defines
a point in XŒ3� and contains the ideal ID D .y2 � xkC1/ defining D. Therefore, multiplication by f
annihilates Hom.Ia;OX=Ia/, and so � Œ3� vanishes at Ia. Moreover, the modular vector field � sends
each generator of Ia to another element of Ia. Therefore, the vector field �Œ3� on XŒ3� vanishes at Ia, so
that the singleton fIag is a characteristic leaf for all a 2C.

Finally, assume k D 2. Then we can assume h.x; y/D 1 in the expression for � above by a theorem of
Arnol’d [1]. For a 2C, consider the ideal Ja D .y2C ax3; x2y; xy2/, which defines an element of XŒ6�.
We claim that multiplication by f D y2� x3 annihilates each element ' 2 Hom.Ja;OX=Ja/ for each
a 2C. Denoting the generators by g1 D y2C ax3, g2 D x2y, g3 D xy2, we have

y'.g2/� x'.g3/D 0 and � xy'.g1/C ax
2'.g2/Cy'.g3/D 0:

It is easy to deduce from these equations that the image of any such ' lies inside .x; y/OX=Ja, which is
clearly annihilated by multiplication by f . Therefore, the Poisson tensor � Œ6� vanishes at Ja. Moreover,
the vector field � D �2y@x � 3x2@y sends each generator of Ja to another element of Ja. Therefore,
�Œ6� vanishes at Ja, so that the singleton fJag is a characteristic symplectic leaf for each a 2C.
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4 Local models and holonomicity

4.1 Coordinates on the Hilbert scheme

There are two well-known methods for constructing coordinate charts on the Hilbert schemes, indexed by
Young diagrams: the Haiman coordinates [19], and the Ellingsrud–Strømme coordinates [12]. In this
section we use these coordinate systems to describe the local behaviour of Bottacin’s Poisson structures.
Of particular relevance to us are the charts associated to the “triangular” Young diagrams

� � �

which are defined as follows.

Choose a point p 2 X and an integer k > 0, and let p.k/ be the kth order neighbourhood of p, ie the
vanishing locus of the ideal mkC1p < OX where mp is the maximal ideal corresponding to p. In local
coordinates .x; y/ on an open set U centred at p, the scheme p.k/ is expressed as the vanishing locus of
the monomials xjyl where j C l � k, so that Op.k/;p has a basis given by the monomials xjyl with
j C l < k. The latter are in bijection with the boxes of the triangular Young diagram

WD .k > k� 1 > k� 2 > � � � /

so that
p.k/ 2 XŒn�;

where
n WD j j D 1

2
k.kC 1/

is the size of . The point p.k/ 2 XŒn� then has an open neighbourhood U � UŒn� � XŒn� given by

U WD fZ 2 UŒn� j the monomials .xjyl/jZ for j C l < k form a basis for H0.OZ/g � XŒn�;

and the two coordinate systems on these charts are defined as follows.

� Ellingsrud–Strømme coordinates If E 2C.kC1/�k is a .kC 1/� k matrix, let

(4-1) SE .x; y/ WDEC

0BBBBBBBB@

�x 0 0 � � � 0

y �x 0 � � � 0

0 y �x � � � 0

0 0 y
: : :

:::
:::

:::
:::
: : : �x

0 0 0 � � � y

1CCCCCCCCA
DE � x

�
Ik
0

�
Cy

�
0

Ik

�
;

and define a subscheme Z.E/� X by the formula

Z.E/ WD vanishing locus of the maximal minors of SE .x; y/:
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Then the map E 7! Z.E/ identifies a neighbourhood of the origin in C.kC1/�k with U . Note
that SE .x; y/ is a Hilbert–Burch syzygy matrix for Z.E/. The functions

E
j
i W U !C for 0� i � k� 1 and 0� j � k

sending Z.E/ to the .j; i/-entry of the corresponding matrix E are the Ellingsrud–Strømme
coordinates on U . Note that here we start numbering of rows and columns from 0.

� Haiman coordinates For every Z 2 U , the ideal IZ is generated by functions of the form

(4-2) fZ;j D x
jyk�j �

X
aCb�k�1

c
j

ab
.Z/xayb for 0� j � k;

where cj
ab

are certain regular functions on U called Haiman’s functions. Haiman’s coordinates
are then given by the collection

C
j
i WD c

j

i;k�1�i
for 0� i � k� 1 and 0� j � k:

These coordinate systems are related by the linear transformations

E
j
i D C

iC1
j �C ij�1 and C

j
i D

�
Eij�1CE

i�1
j�2C � � �CE

0
j�i�1 if j � i C 1;

�EiC1j �EiC2jC1� � � � �E
k
jCk�i�1

if j � i;

where we use the convention that C j
�1 D C

j

k
D 0 for any j . One way to explicitly verify the second

transformation is by expanding the maximal minors of SE .x; y/, considering only the linear term in E
(equivalently, total degree k� 1 in x; y).

Remark 4.1 Each set of coordinates Eji and C ji splits into two halves: j � i and j � i C 1. In the
formula above, the E-coordinates in one half are expressed in terms of the C -coordinates in the other
half, and vice versa. ˙

Remark 4.2 In the particular case where XDC2 and .x; y/ are the standard coordinates, these charts
are defined on the whole space of .kC 1/� k-matrices, giving open embeddings C.kC1/�k ,! .C2/

Œn�

for all k > 0. ˙

An important feature of these coordinate charts is that their construction is C�-equivariant, in the following
sense. Define an action of C� on the germ of X at p by dilation of the coordinates we chose:

u � .x; y/D .ux; uy/ for u 2C�:

By functoriality, we have an induced action on the germ of XŒn� at p.k/.

Lemma 4.3 The Ellingsrud–Strømme and Haiman coordinates have weight one with respect to the
induced C�-action , ie

u �E
j
i D uE

j
i and u �C

j
i D uC

j
i

for all indices i; j and all u 2C�.
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Proof Since the two coordinate systems are related by a linear transformation, it suffices to prove the
statement for one of them; we do so for the Ellingsrud–Strømme coordinates. For this, note that

SE .ux; uy/DE �ux

�
Ik
0

�
Cuy

�
0

Ik

�
D u

�
u�1E � x

�
Ik
0

�
Cy

�
0

Ik

��
D uSu�1E .x; y/:

Hence the ideals generated by the minors of the matrices SE .ux; uy/ and Su�1E .x; y/ are the same,
which implies that the Ellingsrud–Strømme coordinates scale linearly, as desired.

4.2 Expression for the Poisson structure

Our interest in the triangular charts stems, in part, from the fact that they exhibit all possible local
behaviours of Bottacin’s Poisson structures. Assume as before that � is a nonzero Poisson structure on a
surface X, vanishing on the anticanonical divisor D. Recall from [27] that two germs W1 and W2 of Poisson
manifolds are stably equivalent if there exist symplectic germs S1 and S2 such that W1 � S1 ŠW2 � S2.
Then we have the following:

Lemma 4.4 Let .X; �/ be a Poisson surface as above and suppose Z 2 XŒm� for some m� 0. Then the
germ of .XŒm�; � Œm�/ at Z is stably equivalent to a product of germs of points in the triangular charts of
Hilbert schemes XŒk.kC1/=2� for k � 0.

Proof Any element Z 2 XŒm� has an analytic neighbourhood consisting of products of neighbourhoods
of its connected components, so we may assume without loss of generality that Z is supported at a single
point p 2 D. It suffices to show that there exists an integer k > 0 and a subscheme Z0 � X nD such that
ZtZ0 lies in the triangular chart U � XŒk.kC1/=2�, since in this case the germ at Z0 is symplectic and
hence the germs at Z and at ZtZ0 are stably equivalent.

To see this choose local coordinates on an open set U centred at p and choose k large enough that H0.OZ/

is spanned by the images of the monomials AD fxjyl j j C l < kg � H0.OU/. Now choose a collection
of distinct points p1; p2; : : : 2 Un .U\D/ such that the evaluation maps evpj W H

0.OU/!C form a basis
for span.A/_. After reordering, we can assume by linear independence that evp1 ; : : : ; evpk�m restrict to
a basis of

�
ker.span.A/! H0.OZ//

�_
D coker

�
H0.OZ/

_! span.A/_
�
, and then Z0 D fp1; : : : ; pk�mg

is the desired subscheme.

An explicit expression for the Poisson bracket can be obtained via the following algorithm:

(1) First obtain a formula in the case of the Poisson structure �0 WD @x ^ @y ; we do so in Section 4.3
below.

(2) Define the recursion operators Jx; Jy to be the endomorphisms of the tangent bundle given by the
action of x; y on the tangent spaces under the identification

TZU Š HomU.IZ;OZ/:
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Note that these operators have weight one, which implies they are linear in Ellingsrud–Strømme
or Haiman coordinates. Explicitly, they are given as follows (we postpone their derivation to
Section 4.4):

(4-3)

Jx � @C j
i
D

kX
bD0

Ebi @Ebj�1 �

k�1X
aD0

Eja@E
iC1
a
;

Jy � @C j
i
D

kX
bD0

Ebi @Ebj �

k�1X
aD0

Eja@E ia :

(3) Now given an arbitrary Poisson structure

� D f .x; y/@x ^ @y D f .x; y/�0

on U, it follows from Bottacin’s formula that � Œn� is the bivector corresponding to the linear map
.� Œn�/] W T�U ! TU given by the formula

.� Œn�/] D f .Jx; Jy/.�
Œn�
0 /]:

Note that the pair .� Œn�; � Œn�0 / is a nondegenerate bi-Hamiltonian structure and f .Jx; Jy/ is its
associated recursion operator in the sense of integrable systems; this is the source of our name for
Jx and Jy .

In the following sections we describe the local structure in the cases in which D has at worst nodal
singularities; by the Darboux theorem and its generalizations, this corresponds to the case in which � is
homogeneous of nonpositive weight in a suitable chart .x; y/.

4.3 Darboux coordinates

Suppose that p 2XnD. Then � is nondegenerate at p, so by the Darboux theorem there exists coordinates
.x; y/ centred at p such that

� D @x ^ @y :

In particular � has weight �2, ie is constant, and hence the corresponding Poisson structure � Œn� is
induced by a constant symplectic structure !Œn� in the chart U . Natural Darboux coordinates for !Œn�

are then given by the following.

Proposition 4.5 The Ellingsrud–Strømme and Haiman coordinates on U are symplectically dual , in
the sense that

fE
j
i ; C

j 0

i 0 g D

�
1 if i D i 0 and j D j 0;
0 otherwise.

Hence Eji and C ji for j � i form Darboux coordinates , ie

!Œn� D
X

0�j�i�k�1

dC
j
i ^ dE

j
i :
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Proof U has an open dense set consisting of reduced schemes Z lying in U. Near such an element
we have Darboux coordinates x1; y1; : : : ; xn; yn indicating the x and y coordinates of the support the
subscheme Z0 near Z. Thus

!Œn� D

nX
iD1

dyi ^ dxi D Tr.dMy ^ dMx/;

where Mx and My are the matrices of functions representing the operators of multiplication by x and y
on H0.OZ/ in the basis of indicator functions of the points of Z. By Lemma 4.6 below, the right-hand
side may in fact by computed using the same formula with respect to any basis for H0.OZ/. In particular,
in U we may choose the basis of monomials eij WD xiyj , with i C j � k� 1, and compute the actions
x and y using Haiman’s defining relations (4-2) for OZ:

x � eij D

�
eiC1;j if i C j � k� 2;P
aCb�k�1 c

k
ab
eab if i C j D k� 1;

y � eij D

�
ei;jC1 if i C j � k� 2;P
aCb�k�1 c

k
ab
eab if i C j D k� 1;

from which we deduce that

!Œn� D Tr.dMy ^ dMx/D
X

iCj;aCb�k�1

d hy � eij ; e
�
abi ^ d hx � eab; e

�
ij i D

k�1X
i;aD0

dC ia ^ dC
aC1
i :

Therefore

(4-4) !Œn�.@C j
i
;�/D dC iC1j � dC ij�1 D dE

j
i ;

so that the Hamiltonian vector field of Eji is @
C
j

i

, as claimed.

To prove the claim about the Darboux coordinates, note that due to Remark 4.1 we have fEji ; E
j 0

i 0 g D

fC
j
i ; C

j 0

i 0 g D 0 for all j � i , j 0 � i 0.

Lemma 4.6 Let A and B be a pair of commuting square matrices with functional entries. Then the
two-form Tr.dA^ dB/ is invariant under simultaneous conjugation of A and B via an invertible matrix
with functional entries.

Proof We learned this from the preprint version of [45, proof of Proposition C.1]. Since the published
version does not contain the proof, we include it here for completeness. Let zAD gAg�1, zB D gBg�1

for some invertible matrix of functions g. Then we have

Tr.d zA^ d zB/D Tr.dA^ dB/�Tr d.ŒA;B� g�1dg/:

which gives the result.
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4.4 Recursion operators

In this subsection, we derive the formulae for the recursion operators (4-3) in the triangular chart of the
Hilbert scheme of XDC2. Note that since x and y have weight one with respect to the natural C�-action,
the operators Jx and Jy also have weight one, and in particular they send the basis vector fields @C j

i
in

Haiman coordinates to linear vector fields. By applying the automorphism that interchanges x and y
(which has the form E

j
i 7! �E

k�j

k�i�1
in Ellingsrud–Strømme coordinates) the calculation of Jx reduces

to that of Jy , so we will just explain how to do the latter.

The tangent vector @C j
i

, with 0� i � k� 1 and 0� j � k, corresponds to an element 'ji 2 Hom.I;OZ/

of the form

'
j
i .fr/D

X
aCb�k�1


rj

abi
xayb mod I;

where fr D fZ;r for r D 0; 1; : : : ; k are the generators (4-2) of I. Note that each fr is a homogeneous
polynomial of degree k in variables x, y and the Haiman coordinates C ji . Therefore, each rj

abi
is a

homogeneous polynomial of degree k� 1� a� b in Haiman coordinates. By definition of the Haiman
coordinates, we have

(4-5) '
j
i .fr/D ıjrx

iyk�1�i C

k�2X
aD0

�
rj
ai x

ayk�2�a mod V3;

where ıjr is the Kronecker delta symbol, �rjai are linear functions in Haiman coordinates, and for l � 0
we denote by

Vl WD I˚
M

cCd�k�l

C � xcyd �CŒx; y�

the linear subspace generated by I and the monomials of degree at most k� l .

By using the equalities 'ji .xfr �yfrC1/D x'
j
i .fr/�y'

j
i .frC1/ for r D 0; 1; : : : ; k� 1, and looking

the terms modulo V2, we obtain the following linear equations on  :

�
rC1;j
ai � �

rj
a�1;i D ırjC

iC1
a � ırC1;jC

i
a � ıai .C

rC1
j �C rj�1/ for 0� i; r � k� 1 and 0� j; a � k:

Here and below we adopt the convention that if an index of C or � falls outside the allowed range, then
we declare the value of such C or � to be zero.

Finally, to compute Jy � @C j
i

, we need to calculate y'ji . By (4-5), one has

y'
j
i .fb/D ıjbx

iyk�i C

k�2X
aD0

�
bj
ai x

ayk�1�a D ıbj

k�1X
aD0

C iax
ayk�1�aC

k�2X
aD0

�
bj
ai x

ayk�1�a

D

k�1X
aD0

.ıbjC
i
aC �

bj
ai /x

ayk�1�a mod V2:
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This implies that

Jy � @C j
i
D

kX
bD0

k�1X
aD0

.ıbjC
i
aC �

bj
ai /

@

@C ba
;

and therefore

hJy � @C j
i
; dEba i D

� kX
ˇD0

k�1X
˛D0

.ıˇjC
i
˛C �

ˇj
˛i /

@

@C
ˇ
˛

; dC aC1
b
� dC ab�1

�
D ıaC1;jC

i
b � ıajC

i
b�1C �

aC1;j

b;i
� �

a;j

b�1;i

D ıaC1;jC
i
b � ıajC

i
b�1C ıajC

iC1
b
� ıaC1;jC

i
b � ıbi .C

aC1
j �C aj�1/

D ıaj .C
iC1
b
�C ib�1/� ıbi .C

aC1
j �C aj�1/

D ıajE
b
i � ıbiE

j
a ;

as desired.

4.5 Smooth curves and the Lie algebra affk.C/

Now suppose that p 2 D is a smooth point. Then by the log Darboux theorem there exist coordinates
.x; y/ centred at p such that D is given by y D 0 and

� D y@x ^ @y

In particular � is linear in these coordinates, thus � Œn� is linear in the corresponding Haiman/Ellingsrud–
Strømme coordinates, so that it corresponds dually to a Lie algebra structure on the space of .kC 1/� k
matrices.

We claim that this is precisely the Lie algebra affk.C/Šglk.C/ËCk of the group Affk.C/ŠGLk.C/ËCk

of affine transformations of Ck . To see this, we use the natural embedding

 W Affk.C/ ,! GLkC1.C/;  .g; v/D

�
g v

0 1

�
;

where g 2 GLk.C/ and v 2Ck , which identifies affk.C/ with C.kC1/�k . Identifying the duals via the
trace pairing, the coadjoint action of Affk.C/ on the vector space affk.C/

_ ŠC.kC1/�k is given by the
formula

.g; v/ �E WD  .g; v/Eg�1:

Now if E 2 C.kC1/�k , the syzygy matrix of the scheme Z.E/ is the matrix SE .x; y/ from (4-1), and
hence i�IZ.E/ is presented as the cokernel of the matrix

SE .x; y/jD D SE .x; 0/DE � x

�
Ik
0

�
;
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and direct computation shows that

 .g; v/SE .x; 0/g
�1
D S.g;v/�E .x; 0/;

so that .g; v/ induces a D-equivalence from Z.E/ to Z..g; v/ �E/. This defines a map of groupoids
between Affk.C/Ëaffk.C/_ and .X;D/Œn� over the open sets corresponding to U , giving a local model
for the symplectic groupoid .X;D/Œn�:

Theorem 4.7 The map E! Z.E/ gives a Poisson isomorphism from an open set in affk.C/
_ to U ,

and the corresponding map of groupoids is a symplectomorphism onto its image.

Proof We first prove that the map E 7! Z.E/ is Poisson. For this we compute the Poisson bivector on
U following the algorithm of Section 4.2. From the formulae in Proposition 4.5 and (4-3) we have
fE

j
i ; E

b
a gD hJy �@C

j

i
; dEba i D ıajE

b
i �ıbiE

j
a , which is exactly the formula for the bracket on affk.C/

_

in the given basis, as desired. Hence the map E 7! Z.E/ is Poisson.

This implies immediately that the map of groupoids is compatible with symplectic structures, and hence
it is étale onto its image. It remains to check that it is injective. That the map is injective on objects
of the groupoid is simply the statement that U is a chart, so we only need to show injectivity on the
target (or source) fibres. Thus, it suffices to fix E 2 affk.C/

_ and show that we obtain an injective
map from Affk.C/� fEg to D-equivalences. For this, we note that any element .g; v/ 2 Affk.C/ can
be recovered from the corresponding D-equivalence, where the latter is viewed as an automorphism
of the first two terms of the resolution (2-9). Indeed, evaluating the aforementioned complex at p and
considering the endomorphism of the second term, O˚.kC1/

fpg
, we obtain a .kC 1/� .kC 1/-matrix lying

in Affk.C/. This evaluation is well-defined modulo isomorphisms of D-equivalences, ie, depends only on
the homotopy class of the map of cochain complexes, because the nontrivial differential in the two-term
complex becomes zero after restriction to p.

Corollary 4.8 For X D U D C2 and � D y@x ^ @y , we have U Š affk.C/
_ as Poisson manifolds.

Under this identification:

(1) The symplectic leaves in U are identified with the coadjoint orbits of affk.C/.

(2) The linear subspace glk.C/_ � affk.C/
_ corresponds to the set Ak of elements Z 2 U such that

#.Z\D/D k.

(3) The nilpotent cone in glk.C/
_ is identified with the set of elements Z 2 U such that IZ\D D

.xk; y/.

Proof It remains to establish points (2) and (3) above. For this, note that the subspace glk.C/
_ is cut

out by the k equations Eki D 0 for i D 0; 1; : : : ; k � 1. If Eki 6D 0 for some 0 � i � k � 1, then the
.k� i/th minor of SE .x; 0/ is a polynomial whose highest-degree term is ˙Eki x

k�1. Since this function
vanishes on Z\D, we deduce that #Z\D< k. Conversely, if Eki D 0 for all i , then all maximal minors
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of SE .x; 0/ are zero, except the last one, which is equal to the characteristic polynomial of the square
matrix zE WD .Eji /

k�1
i;jD0, which has degree exactly k. Hence #.Z\D/D k, which establishes statement (2).

Statement (3) follows immediately since zE lies in the nilpotent cone if and only if its characteristic
polynomial is xk .

Remark 4.9 More generally, if .X; �/ is a Poisson surface with smooth zero divisor D, then for any
k � n one can define a locally closed Poisson submanifold W � XŒn� as the locus of elements Z 2 XŒn�

such that #.Z\D/D k, and one has a natural projection W! D.k/, whose fibres are Poisson subvarieties
of XŒn�. Away from the big diagonal in D.k/, the fibres are smooth and symplectic, but in general they
can be singular. Corollary 4.8 implies that the singularities are products of slices of nilpotent orbits in
slm.C/ for m � k. These singularities are all symplectic. Near a most singular fibre .Z\D/ D k � p

with n� 1
2
k.kC 1/, the family restricts to the universal Poisson deformation of the nilpotent cone (times

a parameter giving the centre of mass of Z, which makes sense in local coordinates). We expect it to
have a unique simultaneous resolution eW!W, giving a global analogue of the Grothendieck–Springer
resolution, which restricted to the fibre over k �p is a global analogue of the Springer resolution. It would
be interesting to further study these objects. For example, are all Poisson deformations of W; eW given by
deformations of the Hilbert scheme? And are all Poisson deformations of the fibre over k �p 2D given
by deforming the Hilbert scheme and moving the point in D.k/ (at least infinitesimally)? ˙

Using this result, we obtain a complete characterization of the closure relation between symplectic leaves
as a condition on the corresponding Young diagrams. Note that the necessity of this condition was proven
by Rains in [38, Section 11.2], but our proof of sufficiency uses our local normal form in an essential way.

Proposition 4.10 Let .X; �/ be a Poisson surface with a smooth zero divisor D, and let �; z� be global
orbit data as in Lemma 2.15. Then the closure of the symplectic leaf X

Œn�
� contains XŒn�

z�
if and only if for

every p 2D, we have the inclusion hc.�.p//� hc.z�.p//, or equivalently, �.p/� z�.p/ in the dominance
order on Young diagrams.

Proof The second equivalence is a simple consequence of the definitions. Let us prove the first
equivalence.

Let us start by remarking for any ideal Z 2 XŒm�, with m< n, the set

fZ0 2 XŒn� j Z0 � Zg

is a closed subvariety. By Theorem 2.24, every element Z 2 XŒn�� satisfies Z�
F
p2D Z

�.p/
p . Therefore,

if XŒn�
z�

lies in the closure of XŒn�� , then we have Z
z�.p/
p � Z

�.p/
p for each p 2 D.

For the converse, suppose that �� z�. We wish to show that XŒn�
z�
� X

Œn�
� . It suffices to prove this result in

the complex topology, since it is finer.

It is enough to consider the case when both � and z� consist of one nontrivial Young diagram each,
concentrated at the same point p 2D. By abuse of notation, we denote these diagrams simply by � and z�.
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We can also, without loss of generality, take XDC2 equipped with the Poisson bivector, � D y @x ^ @y ,
and p D .0; 0/. Furthermore, note that by Theorem 2.24 it suffices to prove the closure relation for the
open dense sets consisting of subschemes of the form Z

�.p/
p tZ0, where Z0 � X nD is reduced. Such an

element has an analytic neighbourhood of the form UŒk� �VŒn�k�, where U is an analytic neighbourhood
of p and V is an analytic neighbourhood of Z0 such that V � X nD and U\V D ¿. Hence by adding
or removing points from Z0, we see that it is enough to prove the statement for any single value of
n� jhc.z�/j.

Let �D hc.�/ and z�D hc.z�/. We consider two special cases for the pair .�; z�/ below, and then explain
how the general case follows from these.

Case 1 (�1 < z�1, but �i D z�i , for i > 1) In this case, by induction on the difference z�1��1, we may
assume without loss of generality that �1C 1D z�1. In other words, the Young diagram z� is obtained
from � by adding one box to the first row. For instance:

�D z�D

We may assume without loss of generality that nD j�jC 1D jz�j. Then X
Œn�

z�
consists of only one point

given by Z
z�
p , whereas XŒn�� is two-dimensional and its generic point is of the form Z

�
p tf.x1; y1/g, y1 6D 0.

The idea is to send the point .x1; y1/ to the origin along a curve that is tangent to the divisor fy D 0g to a
high enough order, so that the limiting ideal will be Zz�p . Here is the calculation that makes this heuristic
precise.

Let us write
IZ�p D .x

aj yj ; j D 0; 1; : : : ; `/;

where aj D �jC1 for j D 0; 1; : : : ; ` and `D �T1 . Let x1 D ", and y1 D "N , where " 2C�, and N is a
large positive integer to be determined in a moment. Then

IZ�ptf.x1;y1/g D .x
aj yj ; j D 0; 1; : : : ; `/\ .x� "; y � "N /

D .xa0C1� "xa0 ; xaj yj � "bj xa0 ; j D 1; 2; : : : ; `/;

where bj D jN C aj � a0 for j D 1; 2; : : : ; `. Now choose N so that bj > 0 for all j . Then

Z�p t f.x1; y1/g ! Zz�p as "! 0:

Case 2 (�1 D z�1) In this case, we cannot assume that jz�j D j�j C 1, because we must maintain the
condition that the Young diagrams involved are horizontally convex. For instance, in the following example
there are no intermediate horizontally convex diagrams between � and z�, even though jz�j D j�jC 3:

�D z�D
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We may assume without loss of generality that n D 1
2
k.k C 1/, where k is the common value of �1

and z�1. It is then enough to show that

X
Œn�

z�
\U � X

Œn�
� \U ;

where U is the triangular chart in .C2/Œn�. But under the isomorphism Ak Š glk.C/
_, described in

Corollary 4.8(2), the symplectic leaves X
Œn�
� \U and X

Œn�

z�
\U correspond to the conjugacy classes

of nilpotent Jordan type � and z�, respectively. Recall that the condition � � z� implies that � � z�
in the dominance order. Hence the result follows from the classical Gerstenhaber–Hesselink theorem;
see eg [33].

General case Note that for any pair �� z�, we can find an intermediate diagramb� such that ��b� falls
into Case 1 andb�� z� falls into Case 2. This completes the proof.

4.6 Nodal points and toric degenerations

Now suppose that p 2 D is a nodal singularity. Then by [1], there exist coordinates .x; y/ such that, after
rescaling � by a nonzero constant, we have

� D xy @x ^ @y :

Applying the algorithm from Section 4.2 to compute the bracket � Œn� D JxJy�
Œn�
0 , we find after a

straightforward but tedious calculation that

(4-6) fEji ; E
b
a g D ıa�j

aX
pD0

E
pCj�a
i Ebp �

aX
pDi

E
j
aCi�pE

b
p

� ıaC1�j

k�1X
pDaC1

E
pCj�a
i Ebp C

i�1X
pDaC1

E
j
aCi�pE

b
p C

min.j;b�1/X
qD0

E
bCj�q
i Eqa

� ıb�i

b�1X
qD0

E
j

qCi�b
Eqa �

kX
qDmax.jC1;b/

E
bCj�q
i Eqa C ıb�1�i

kX
qDb

E
j

qCi�b
Eqa :

A remarkable feature of this quadratic Poisson structure is that it admits a canonical toric degeneration,
as we now explain.

4.6.1 The torus-invariant part Consider the action of the torus .C�/2n D .C�/k.kC1/ on the germ
of U by independent dilation of the Ellingsrud–Strømme coordinates. The induced action on the space
of germs of bivectors preserves the space of quadratic bivectors, and hence we may project � Œn� onto its
torus-invariant part, which is also quadratic.

Definition 4.11 We denote by � Œn�� the torus-invariant part of � Œn�.
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.0; 0/
.0; 1/

.0; 2/

.1; 0/
.1; 1/

.1; 2/

.2; 0/
.2; 1/

.2; 2/

.3; 0/
.3; 1/

.3; 2/

Figure 1: Ordering the indices of a matrix.

Explicitly, we have
�
Œn�
� D

X
i;j;a;b

…
jb
ia E

j
i E

b
a@E

j

i
^ @Eba ;

where the coefficients are given by

(4-7) …
jb
ia D ıa�j � ıa�i � ıbj ıa�iC1C ıb�jC1 ıai � ıb�jC1C ıb�iC1:

This bivector is generically nondegenerate, and degenerates along the union of the coordinate hyperplanes.
The inverse log symplectic form is then given by

!
Œn�
� D

X
i;j;a;b

B
jb
ia

dEji
E
j
i

^
dEba
Eba

;

where

(4-8) B
jb
ia D�ıaCb;iCj ıa�iC1� ıaCb;iCjC1 ıa�i C ıaCb;iCj ıa�i�1 C ıaCb;iCj�1 ıa�i

is the “biresidue” of !�Œn� along the intersection of hyperplanes Eji DE
b
a D 0 in Ck.kC1/. To understand

more clearly the structure of the biresidues, it is helpful to order the coordinates according to their position
in the syzygy matrix as follows: first order by the sum of the indices, and then order by the column index
to break ties, ie

(4-9) .0; 0/� .1; 0/� .0; 1/� .2; 0/� .1; 1/� .0; 2/� � � � :

For instance, the case k D 3 is illustrated in Figure 1. With this ordering the biresidues Bjbia form a
skew-symmetric matrix B of size m WD k.kC 1/ with the following property, which will be useful in our
study of holonomicity in Section 4.7:

Definition 4.12 A skew-symmetric m�m matrix .b˛;ˇ /m˛;ˇD1 is cyclically monotone if, perhaps after
multiplying all of its entries by the same nonzero constant, we have

b˛;˛C1 � b˛;˛C2 � � � � � b˛;m � b˛;1 � b˛;2 � � � � � b˛;˛�1

for each 1� ˛ � n.
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For instance, for k D 2, we have

B D

0BBBBBBB@

0 1 0 0 0 0

�1 0 1 1 0 0

0 �1 0 1 1 0

0 �1 �1 0 1 0

0 0 �1 �1 0 1

0 0 0 0 �1 0

1CCCCCCCA
4.6.2 Toric degeneration: a game of dominoes We will prove the following:

Theorem 4.13 There exists a rank-one subtorus GŠC� ,! .C�/.kC1/�k such that

lim
g2G;g!0

g � � Œn� D �
Œn�
� :

Remark 4.14 In light of this result, we can view � Œn� as a one-parameter deformation of the toric log
symplectic structure � Œn�� . As explained in [27], such deformations are obtained by smoothing out the
nodal singularities along pairwise intersections of hyperplanes. The combinatorics of this process can be
encoded in a “smoothing diagram” where we draw a vertex corresponding to each hyperplane, a coloured
edge joining two vertices when the corresponding intersection is smoothed, and decorating triangle with
angles that indicate the order to which the smoothing degenerates along triple intersections. In the case
at hand, the hyperplanes are given by the equations Eji D 0 and are in bijection with the positions in a
.kC 1/� k matrix; the corresponding smoothing diagram is shown in Figure 2. ˙

Figure 2: Smoothing diagram encoding the deformation from �
Œn�
� to � Œn� for a nodal curve in the

triangular chart (with kD 4). The k.kC1/ hyperplanes on which � Œn�� degenerates merge into two
irreducible components corresponding to the two components of the node xy D 0; accordingly,
the corresponding vertices are joined by two collections of solid blue lines. The solid dashed line
corresponds to an additional possible deformation, which is induced by smoothing xy D 0 to
xy D � ¤ 0 in X, so that the divisor becomes irreducible.
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We will prove Theorem 4.13 by analyzing the decomposition of the space of quadratic bivectors into
weight spaces for the torus action. Namely, the theorem is equivalent to the statement that � Œn� � � Œn��
is a sum of weight vectors of the torus action, whose weights with respect to the subtorus G are strictly
positive. Note that since the torus action on U is defined by rescaling matrix entries, it is natural to
depict the weights of the action as matrices of the same size with integer coefficients. With this convention,
the weight of a monomial bivector of the form

(4-10) E
j
i E

l
k@Eba ^ @Edc

is obtained by starting with the zero matrix, adding 1 to the positions .i; j / and .k; l/ in turn, and then
subtracting 1 from the positions .a; b/ and .c; d/ in turn.

In the Poisson bracket (4-6), only certain weights can appear. We will describe them in terms of the
following objects.

Definition 4.15 A .kC 1/� k matrix is a domino if it has exactly two nonzero entries, one of which is
C1 and the other of which is �1, and they lie either on the same row or on the same column. We refer
to the position of the entries C1 and �1 as the head and tail of the domino, respectively. We say that a
domino is oriented to the north (resp. south, east or west) if its head is above (resp. below, right of, or
left of) its tail. See Figure 3.

This size of a domino is the distance between its head and tail, and the valuation is defined as follows:

� If the domino is oriented north or south, its valuation is the number of vertical translations required
to move it so that its uppermost nonzero entry lies in the top column.

� If the domino is oriented east or west, its valuation is the number of horizontal translations required
to move it so that its leftmost nonzero entry lies in the leftmost column, plus 1

2
.

Definition 4.16 A rectangular weight is a .kC 1/� k matrix given by a sum of two dominoes with
opposite orientations, whose heads and tails form the vertices of a rectangle, with a head in the top left
corner as in Figure 4.

−+

−

+
−+

−

+

west south east north

Figure 3: Four examples of dominoes, one from each possible orientation. Reading from left to
right, the lengths are 2; 3; 1 and 5, and the valuations are 1C 1

2
, 1, 4C 1

2
and 0, respectively.
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+

−
−
+

Figure 4: A rectangular weight.

Definition 4.17 An ordered pair of dominoes is admissible if both dominoes have the same length, the
first domino is directed west or south, the second is directed east or north, and the valuation of the first is
greater than the valuation of the second.

By direct inspection of the formula (4-6), we have the following:

Lemma 4.18 The weight of every monomial appearing in � Œn� is either rectangular , or the sum of an
admissible pair of dominoes.

We will reduce such weights to sums of the following elementary ones, which correspond to the weights
of the first-order deformations of � Œn�� that smooth a given pairwise intersection of divisor components
(ie to the smoothable strata in the sense of [27]).

Definition 4.19 A smoothable weight is a .k C 1/ � k matrix given by a sum of two dominoes of
length one placed in one of the following configurations:

� Type I The two dominoes are adjacent, forming a square-shaped rectangular weight.

� Type IIa A south–east admissible pair of dominoes concentrated in the leftmost column and top
row such that the tail of the first lies on the same diagonal as the head of the second.

� Type IIb A west–north admissible pair of dominoes concentrated in the bottom row and rightmost
column such that the head of the first lies on the same diagonal as the tail of the second.

Such matrices are depicted in Figure 5. We remark that for each smoothable weight of type IIa or IIb, the
valuation of the southwestern domino is only 1

2
higher than the valuation of the northeastern domino,

which is the minimum possible for the pair to be admissible.

−
+−

+ −
+

−+

+−

+
−

Figure 5: Smoothable weights; from left to right, the types are I, IIa and IIb.
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−

+

−

+

+

−

−

+

Figure 6: Pushing a southern domino to the leftmost column.

Lemma 4.20 The set of smoothable weights is linearly independent.

Proof Consider the square matrix of size k.kC1/ formed from the biresidues Bjqip (4-8) of the toric log
symplectic form with indices ordered as in (4-9). Then every smoothable weight can be expressed as
the difference of a unique pair of consecutive rows of Bjqip . But this matrix is invertible, and hence the
differences of its consecutive rows are linearly independent.

Lemma 4.21 Any rectangular weight is a sum of smoothable weights of Type 1 with nonnegative integer
coefficients.

Proof Consider the sum of all smoothable weights of Type I that are contained inside the rectangle; this
sum telescopes, so that only the vertices of the rectangle remain.

Proposition 4.22 The sum of any admissible pair of dominoes is a linear combination of smoothable
quadratic weights with nonnegative integer coefficients.

Proof The proof is a sort of game, in which we translate dominoes in the plane by certain admissible
operations, which correspond mathematically to subtracting collections of smoothable weights. We will
show that by repeated application of such moves, every admissible pair may be reduced to zero.

Firstly, by subtracting a rectangular weight, we can push any southern domino all the way to the leftmost
column, as illustrated in Figure 6. Therefore, whenever we have an admissible pair of dominoes, one of
which is southern, we can assume without loss of generality that the southern domino is located in the
leftmost column. Likewise, we can assume that every northern domino in an admissible pair is located in
the rightmost column, every eastern domino in the top row, and every western domino in the bottom row
(just as the dominoes in the smoothable weights of type II).

Secondly, we claim that by subtracting several rectangles and smoothable weights of types IIa and IIb,
we can move any southern domino in the leftmost column one step to the north. For this, we proceed in
three steps. In the first step, we subtract some smoothable weights of type IIa to turn the domino to the
west, as in Figure 7. In the second step, we subtract a rectangular weight to push the obtained western
domino to the bottom row as in Figure 8. Finally, in the third step, we subtract some smoothable weights
of type IIb to turn the western domino back to the south, as in Figure 9. Because the matrix has one more
row than it has columns, the domino is now one step northwards from where it started, as desired.
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−

+

− +

+

−

+ −

Figure 7: Pushing a southern domino to the north, step 1.

+ − + −

− + + −

Figure 8: Pushing a southern domino to the north, step 2.

+ −
−

+

+ −
+

−

Figure 9: Pushing an eastern domino to the west, step 3.

Using these operations, we are free to push any southern domino in an admissible pair to the north,
without changing the second domino in the pair, as long as the pair stays admissible. Similarly, we may
push any western domino to the east, any northern domino to the south and any eastern domino to the
west.

Now by definition, there are four types of admissible pairs of dominoes: south–east, south–north, west–
north, and west–east. Note that by subtracting smoothable weights of type II as in Figure 7, we can
convert any admissible south–north pair into an admissible west–north pair, and similarly we may convert
any admissible west–east pair into an admissible south–east pair, so it suffices to treat the south–east and
west–north cases.

To this end, consider a south–east pair and assume without loss of generality that the southern domino is
in the left column, while the eastern one is in the top row. Pushing the southern one as far as possible to
the north, we can reduce its valuation to the minimum value for which the pair remains admissible. In this
way we obtain an admissible pair that is evidently a telescoping sum of smoothable weights of type IIa.
Similarly, pushing a west–north pair to the bottom row and right column, and moving the northern domino
south to maximize its valuation, we obtain a sum of smoothable weights of type IIb.

We can now complete the construction of the toric degeneration:
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Proof of Theorem 4.13 By Lemma 4.20 there exists a coweight w of the torus .C�/.kC1/k that pairs
with each smoothable weight to give a positive integer. By construction, the corresponding one-parameter
subgroup G Š C� then acts with positive weight on every smoothable weight space, and hence by
Lemma 4.21 and Proposition 4.22 acts with positive weight on the weights spaces corresponding to
rectangular weights or admissible pairs of dominoes.

4.7 Holonomicity

Recall from [37] that every holomorphic Poisson manifold .W; �/ has an associated characteristic variety

Char.�/� T�W

defined as the singular support of the complex of DW-modules associated to the deformation complex
of .W; �/. We say that .W; �/ is holonomic if its characteristic variety is Lagrangian. This is a local
property that depends only on the stable equivalence classes of the germs of � . It was shown in [37]
that if .W; �/ is holonomic then every point has a neighbourhood with only finitely many characteristic
symplectic leaves and that the converse holds when dimWD 2. In [27], we conjectured that the converse
holds in all dimensions, and we proved this when .W; �/ is generically symplectic and degenerates along
a normal crossing divisor. In this section, we give further evidence for the conjecture.

Considering the invariance under stable equivalence and the results in Section 3.3, there are three cases
one must consider in order to verify the conjecture for all Hilbert schemes: either

(a) D has at worst nodal singularities and n is arbitrary,

(b) D has only double points and nD 2, or

(c) D has only A2 singularities and nD 5.

We shall treat the cases (a) and (b); we do not know whether the conjecture holds in case (c) but have no
reason to doubt it. Case (a) is the subject of the following theorem, whose proof will occupy most of this
section. Note that it implies that XŒn� is holonomic if D is smooth; a more direct proof is possible in this
case, but we omit it. The smooth case allows us to immediately treat case (b) as a corollary.

Theorem 4.23 For a Poisson surface X whose vanishing locus is the anticanonical divisor D� X, the
following statements are equivalent :

(1) For every n� 0, the induced Poisson structure on the Hilbert scheme XŒn� is holonomic.

(2) For every n � 0, the germ of XŒn� at any point has only finitely many characteristic symplectic
leaves.

(3) The only singularities of D are nodes.

Corollary 4.24 Let X be a Poisson surface with reduced anticanonical divisor D � X. Then XŒ2� is
holonomic if and only if every singular point of D is a double point.
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Proof of Corollary 4.24 Let V�XŒ2� be the set of elements set-theoretically supported at a single singular
point of D. Then V is the disjoint union of several copies of P1, one for each singular point, and XŒ2�nV is
holonomic by Theorem 4.23. It therefore suffices to show that Char.� Œ2�/\.T�XŒ2�/jV has pure dimension
four. But since all singular points are double points, Proposition 3.8 implies that the zeros of the modular
vector field in V are isolated, so it defines a function on the smooth five-dimension variety T�XŒ2�jV

that is nonzero on every connected component. Its vanishing locus contains Char.� Œ2�/\T�XŒ2�jV by
[37, Theorem 3.4, part 1], and hence the latter has dimension four, as desired.

We now proceed with the proof of Theorem 4.23. The equivalence of statements (2) and (3) was proven in
Section 3.3, so in light of the above it remains only to prove that if D is nodal, then XŒn� is holonomic for
all n. The problem is local and invariant under stable equivalence and taking products, so by Lemma 4.4,
it suffices to prove these statements for the triangular chart. Moreover, in light of Lemma 4.25 below and
Theorem 4.13, the problem reduces to proving the statement for the toric degeneration � Œn�� :

Lemma 4.25 Let �t for t 2C be a polynomial family of quadratic Poisson tensors on C2n such that
�0 is holonomic. Then �t is holonomic for all but finitely many t ¤ 0.

Proof Let Vt � TC2n ŠC4n be the characteristic variety of the complex of D-modules M�

�t
, which is

thus invariant under the action of C� by dilation of the fibres. Additionally, since all Poisson structures �t
are quadratic, each Vt is also invariant under the dilation on the base C2n. Combining these two
symmetries, we get that all Vt are invariant under the uniform dilation of all directions C4n. In other
words, the projectivization P .Vt /� P4n�1 is well-defined for each t . Since �t is assumed holonomic,
we have dimC P .Vt / D 2n� 1. Then by semicontinuity of dimension for proper maps, we have that
dimC P .Vt /� 2n� 1 for t in a Zariski neighbourhood of the origin, as desired.

The toric degeneration � Œn�� is a log symplectic manifold with normal crossings boundary, so the results
of our earlier work [27] apply. In particular, by condition (4) of [27, Theorem 1.5], and by the cyclic
monotonicity property of the biresidues of � Œn�� (Definition 4.12), it suffices to prove the following
linear-algebraic statement:

Lemma 4.26 Let B be a cyclically monotone matrix of odd size , with only zeros and ones above the
diagonal. Then the row span of B does not contain the constant vector .1; 1; : : : ; 1/ 2Cm.

Although the statement is elementary, we did not manage to find an easy direct proof. We will instead
prove a more general statement, that is amenable to an inductive argument. For a tuple J D .J1; : : : ; Jm/
of nonempty open intervals J1 D .c1; d1/; : : : ; Jm D .cm; dm/�R, such that all the endpoints of Ji are
distinct, let

`.J / WD .d1� c1; d2� c2; : : : ; dm� cm/
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be the vector of their lengths. Let us say that J˛ overlaps Jˇ on the left (resp. right) if c˛ < cˇ <d˛ <dˇ
(resp. cˇ < c˛ < dˇ < d˛). Define an m�m skew-symmetric matrix B.J / by the formula

(4-11) B.J /˛ˇ D

8<:
1 if J˛ overlaps Jˇ on the left,
�1 if J˛ overlaps Jˇ on the right,
0 otherwise:

Lemma 4.27 Every matrix B as in Lemma 4.26 is of the form B D B.J / for some collection J of
intervals of lengths `.J /D .1; : : : ; 1/.

Proof For 1 � ˇ � m, let kˇ be the row index of the uppermost 1 in the ˇth column of B , with the
convention that if there are no ones in the ˇth column, we define kˇ D ˇ. Set J1 D .0; 1/, and choose
intervals J2; : : : ; Jm of length one inductively by choosing the left endpoint cˇ > cˇ�1C1 if kˇ D ˇ and
cˇ 2 .maxfcˇ�1; ckˇ�1C 1g; ckˇ C 1/ if kˇ < ˇ. Then `.J /D .1; : : : ; 1/ and B.J /D B , as desired.

Proposition 4.28 Let J D .J1; : : : ; Jm/ be a tuple of intervals , where m is odd and the endpoints of Ji
are distinct. Then the vector `.J / 2Rm of their lengths does not lie in the row span of B.J /.

Proof We proceed by induction on the odd integer m. The base case mD 1 is obvious, so assume the
proposition holds for some odd integer m� 2; we will prove that it holds for m.

Let view B.J / as a bivector B.J / 2 ^2Rm so that we have

B.J / WD
X

1�˛<ˇ�m

B.J /˛;ˇe˛ ^ eˇ and `.J /D

mX
˛D1

`.J /˛e˛;

where e1; e2; : : : is the standard basis of Rm.

By permuting the indices, we may assume without loss of generality that the sequence of left endpoints
of the intervals is strictly increasing. Then if ˛ < ˇ, the interval J˛ can never overlap Jˇ on the right,
and hence B.J /˛;ˇ 2 f0; 1g for ˛ < ˇ.

If no interval J with  <m overlaps Jm, then B.J /˛;mD 0 for all ˛, and since `.J /m > 0 we conclude
that `.J / is not in the row span of B.J /, as desired. Hence we may assume without loss of generality that
there exists a maximal index  < m such that J overlaps Jm on the left. Define a new basis ze1; : : : ; zem
for Rm by the formula

ze˛ WD

8<:
e �

P
ˇ 6D;mB.J /m;ˇ � eˇ if ˛ D ;

emC
P
ˇ 6D;mB.J /;ˇ � eˇ if ˛ Dm;

e˛ otherwise:

It is tedious but straightforward to check that in this new basis, we have

B.J /D ze ^ zemC
X

˛;ˇ;;m distinctI˛<ˇ

B. zJ /˛;ˇ ze˛ ^ zeˇ and `D a1ze C a2zemC
X
˛¤;m

`. zJ /˛ze˛;
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c cm

D D

d dm

Figure 10: The interval exchange transformation T .

where a1; a2 2 Z, and zJ D .T �J1; : : : ; 1T �J ; : : : ; T �Jm�1/ is the collection of m� 2 intervals defined
as follows. First, define the “interval exchange transformation” to be the bijection T W R! R which
translates the intervals between the endpoints of J D .c ; d / and JmD .cm; dm/ as shown in Figure 10,
and acts as the identity on the rest of the real line. Then T �J˛ D .T .c˛/; T .d˛// is the interval spanned
by the T -images of the endpoints of J˛ . By induction, `. zJ / is not in the image of B. zJ /, and hence `.J /
is not in the image of B.J /, as desired.

5 Deformation theory

In this section we address some aspects of the deformation theory of Bottacin’s Poisson structures. Recall
that if .W; �/ is a holomorphic Poisson manifold, then the sheaf X �

W D^
�TW of polyvector fields comes

equipped with a differential d� WD Œ�;��. The hypercohomology H�� .W/ of this complex (called the
Poisson cohomology) controls deformations of W as a holomorphic Poisson manifold, or more generally,
as a generalized complex manifold.

We shall compute the Poisson cohomology of XŒn� in low degrees, and in particular determine the
deformation space, under the assumption that D is reduced, and has only quasihomogeneous singularities
(ie is locally the zero set of a quasihomogeneous polynomial). As remarked in [37, Section 4.4], the
quasihomogeneity is automatic if X is projective, thanks to the classification in [23, Section 7], or by
analysis of the minimal models and their blowups.

The basic technique, developed in [27; 37], is to decompose the complex X �

XŒn�
(in the derived category)

into pieces supported on characteristic symplectic leaves; the only pieces that contribute to the cohomology
in low degree are the ones supported on leaves of small codimension. We start with the surface case
nD 1, and then bootstrap from there to treat the general case.

5.1 Surface case

Let us briefly recall the description of the Poisson cohomology in the case nD 1 from [37, Section 4.4]
and [15]. Let us denote by U WD X nD the open symplectic leaf, and by

j W U ,! X
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its open embedding. Since � is symplectic over U, we have a canonical isomorphism

j �.X �

X ; d� /Š .�
�

U; d/ŠCU

in the constructible derived category of U, which gives, by adjunction, a natural map

(5-1) .X �

X ; d� /!Rj�CU

in the constructible derived category of X.

On the other hand, let Dsing � D denote the scheme-theoretic singular locus of D, cut out locally by the
vanishing of a defining equation for D and its partial derivatives, and let

i W Dsing ,! X

be the corresponding closed embedding. Its image is the union of all codimension-two characteristic
symplectic leaves in X. One easily checks that the restriction of bivectors on X to Dsing annihilates the
image of d� , and hence there is a canonical map

(5-2) .X �

X ; d� /! i�i
�K_X Œ�2�;

where the right-hand side is a skyscraper sheaf supported on Dsing, viewed as a complex concentrated in
degree two with trivial differential. Its stalk at a point p 2 Dsing is canonically identified with the tangent
cohomology H1.TD;p/, ie the space of smoothings of the singularities of D at p.

The maps (5-1) and (5-2) determine the Poisson cohomology as follows:

Theorem 5.1 [37, Theorem 4.7] If D is reduced with only quasihomogeneous singularities , then the
canonical map

.X �

X ; d� /!Rj�CU˚ i�i
�K_X Œ�2�

is a quasi-isomorphism. In particular ,

H�� .X/Š H�.UIC/˚H0.Dsing; i
�K_X /Œ�2�:

as graded vector spaces.

5.2 Higher-dimensional case

We now use the results in the previous section to treat the case n > 1. Since we are interested in
cohomology in degrees up to 2, we need to understand the contributions made by characteristic leaves of
codimension � 2. According to Lemma 3.11, these are given by the open symplectic leaf UŒn� � XŒn�, and
the elements Z� XŒn� whose intersection with D is a single singular point of D. The latter give several
copies UŒn�1�, one for each singular point. We treat the contributions from these leaves as follows.
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� The open leaf We have the natural open embedding

j Œn� W UŒn� ,! XŒn�;

identifying UŒn� with the open symplectic leaf in XŒn�. This gives a natural map

(5-3) .X �

XŒn�
; d� Œn�/!Rj�CUŒn� :

� The codimension-two leaves We have a Poisson rational map

XŒn�1� �XÜ XŒn�

given by .Z; p/ 7! Zt fpg whenever p … Z. Since U and Dsing are disjoint by definition, this map
restricts to an embedding

i Œn� W UŒn�1� �Dsing ,! XŒn�

with trivial normal bundle. By Lemma 3.11, the image of this embedding is the union of the
codimension-two characteristic symplectic leaves of XŒn�. Since UŒn�1� is symplectic, we have by
Künneth decomposition and Theorem 5.1 that

.i Œn�/�.X �

XŒn�
; d� Œn�/ŠCUŒn�1� � i�.Rj�CU˚K_X Œ�2�/

Š .i Œn�/�Rj
Œn�
� CUŒn� ˚ .CUŒn�1� � i�K_X Œ�2�/;

where � denotes the external tensor product of sheaves on the product UŒn�1� �Dsing. Projecting
onto the second summand, we obtain a natural map

(5-4) .X �

XŒn�
; d� Œn�/! i

Œn�
� .CUŒn�1� � i�K_X /Œ�2�:

Combining (5-3) and (5-4), we obtain a canonical map

(5-5) � W .X �

XŒn�
; d� Œn�/!Rj�CUŒn� ˚ i

Œn�
� .CUŒn�1� � i�K_X /Œ�2�

that encapsulates the contributions to X �

XŒn�
made by characteristic leaves of codimension � 2.

Theorem 5.2 If D is reduced and has only quasihomogeneous singularities , then the induced map

Hj .�/ W H
j

� Œn�
.XŒn�/! Hj .UŒn�IC/˚ .Hj�2.UŒn�1�IC/˝H0.i�K_X //

is an isomorphism for j � 2.

Before giving the proof, which will occupy the rest of this section, let us note that the cohomology
H�.UŒn�IC/ can be computed from H�.UIC/ using the Göttsche–Soergel formula [16]. In particular,
applying the theorem to the degree-two hypercohomology, we obtain the following.
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Corollary 5.3 If D is reduced and has only quasihomogeneous singularities , then the space of first-order
deformations of .XŒn�; � Œn�/ is given , for all n� 2, by

H2
� Œn�

.XŒn�/Š H2.UŒn�IC/˚H0.i�K_X /

Š .H2.UIC/˚^2H1.UIC/˚C � ŒE�/˚H0.i�K_X /

Š H2� .X/˚^
2H1.UIC/˚C � ŒE�;

where ŒE� 2 H2.UŒn�IC/ is the first Chern class of the exceptional divisor of the Hilbert–Chow morphism.

Before proving Theorem 5.2, we summarize the strategy as follows. The key observation is that, by a
generalization of Hartogs’ principle, the Poisson cohomology in degree �m is unchanged if we discard a
subset of codimension � mC 2, and the restriction map is injective to the complement of a subset of
codimension �mC 1. Thus, it is enough to show that

(1) the isomorphism holds outside a subset of codimension three, and

(2) � is surjective in degree two.

For (1), the open subset we use is the locus of elements Z 2 XŒn� for which the intersection Z\D consists
of at most two reduced smooth points of D, or one reduced singular point of D. Both conditions are
codimension at most two, so it is a natural subset to consider. Moreover, the case where Z does not touch
the singular locus is normal crossings so that it is handled by the results of [27], and the case of a single
singular point is immediate. For (2), we will explicitly exhibit the two summands of the codomain of �
as the image of elements of �.

Proceeding with the proof, let

DŒn� WD XŒn� nUŒn� Š fZ 2 XŒn� j Z\D¤¿g

be the degeneracy divisor of the Poisson structure on XŒn�. (Note that despite the notation, it is not
isomorphic to the Hilbert scheme of D.) Let ��

XŒn�
.logDŒn�/ be the sheaf of logarithmic differential forms

in the sense of K Saito [42]. Then, as for any log symplectic manifold, the natural map �] W�1X! TX
induces a commutative triangle

(5-6)

.��
XŒn�

.logDŒn�/; d/

vv ''

.X �

X ; d� / // Rj�CU

where all maps are quasi-isomorphisms away from the singular locus D
Œn�
sing of DŒn�; see [37, page 695].

For our purposes, it suffices to understand these complexes along the generic part of the singular locus.
To this end, define locally closed subvarieties S1; S2 � D

Œn�
sing by

S1 WD fZ 2 X
Œn�
j Z\D consists of two reduced pointsg and S2 WD i

Œn�.UŒn�1� �Dsing/:

Evidently S1 and S2 are disjoint. Moreover, we have the following.
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Lemma 5.4 The subset
W WD XŒn� n .UŒn� tDŒn�reg t S1 t S2/

is a closed subvariety of codimension three.

Proof If Z 2W then Z contains at least one of the following configurations: three distinct points of D;
a singular point and a smooth point; or a nonreduced point tangent to D. Each of these conditions
defines a locally closed subvariety of XŒn� that maps birationally onto its image in X.n/, which clearly has
codimension three.

Lemma 5.5 The morphism � from (5-5) restricts to a quasi-isomorphism over XŒn� nW.

Proof It is already a quasi-isomorphism away from D
Œn�
sing, and is furthermore a quasi-isomorphism

over the image of i Œn�, so it suffices to show that it is an isomorphism over S1. Since S1 is disjoint
from the support of i Œn�� .CUŒn�1� � i�K_X /, this is equivalent to showing that the map (5-3) is a quasi-
isomorphism there. But in a neighbourhood of this locus, DŒn� has only normal crossings singularities,
and the only characteristic leaf is the open one. Hence the result follows from our computation of the
Poisson cohomology in the normal crossings case [27]; see also [41].

Since W has codimension three and X �

X is locally free and concentrated in nonnegative degree, the
restriction map from Poisson cohomology of XŒn� to that of X nWŒn� is an isomorphism in degrees 0
and 1, and injective in degree 2, by a standard local cohomology argument (a generalization of Hartogs’
principle). Since UŒn� and i Œn�.UŒn�1� �Dsing/ are disjoint from W we have the following.

Corollary 5.6 The map Hj .�/ on hypercohomology is an isomorphism in degree 0 and 1, and injective
in degree 2.

Hence to prove Theorem 5.2, it remains to show that the map H2.�/ is surjective. To this end, we require
a lemma:

Lemma 5.7 If D has only quasihomogeneous singularities , then the natural map

Hj .��
XŒn�

.logDŒn�//! Hj .UŒn�IC/

is surjective for j � 2.

Proof The argument is a de Rham analogue of the approach of Göttsche and Soergel [16]. We have the
natural maps

UŒn�

j Œn�

��

// U.n/

j .n/

��

Unoo

jn

��

XŒn�
r
// X.n/ Xn

q
oo

and corresponding divisors DŒn�;D.n/ and Dn; for instance, Dn is the set of n-tuples .p1; : : : ; pn/ 2 Xn

such that pi 2 D for some i .
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Since X.n/DXn=Sn is a finite quotient, it has only rational klt singularities, and hence by [44, Lemma 1.8]
and [17, Theorem 1.4] we have

r��
�

XŒn�
D .q��

�

Xn/
Sn ;

where on the right-hand side we have taken invariants with respect to the symmetric group action on Xn.
An identical statement holds replacing X everywhere with U. Note that since the exceptional divisor
E� XŒn� is not contained in DŒn�, a form ! 2��

UŒn�
extends to a logarithmic form on XŒn� if and only if it

extends to a logarithmic form on XŒn� nE that has no poles on E. Since the maps r and q are étale away
from r.E/ and relate the corresponding divisors, we conclude that

.r��
�

XŒn�
.logDŒn�/; d/Š .q���Xn.logDn/Sn ; d/

Š .q�R.j
n
� /CUn/

Sn

ŠRj
.n/
� CU.n/ ;

where the second isomorphism is a consequence of the Künneth decomposition and the results of [10]
(using that D is quasihomogeneous).

Passing to hypercohomology, we obtain a commutative diagram

H�.r��
�

XŒn�
.logDŒn�/; d/ //

�

��

H�.��
XŒn�

.logDŒn�/; d/

��

H�.��
XŒn�

/oo

�

��

H�.UnIC/Sn Š H�.U.n/IC/ // H�.UŒn�IC/ H�.XŒn�IC/
.j Œn�/�

oo

where the bottom left arrow is the inclusion given by the codimension-zero contribution to the Göttsche–
Soergel formula. Said map is an isomorphism in degrees zero and one, and in degree two it is an injection
with complement spanned by the class of the exceptional divisor E � UŒn�. Since the latter extends
canonically to X, it follows that the map H�.��

XŒn�
.logDŒn�/; d/! H�.UŒn�IC/ is surjective in degree

two.

Now let us observe that by applying Bottacin’s construction in families, any Poisson deformation of
.X; �/ induces a Poisson deformation of .XŒn�; � Œn�/. Under this correspondence, deformations of the
singularities of D� X induce identical deformations of the singularities of DŒn� � XŒn� transverse to the
codimension-two characteristic leaves. Applied to first-order deformations, this means that we have a
canonical morphism H2� .X/! H2

� Œn�
.XŒn�/ such that the composition

H0.i�K_X / ,! H2
� Œn�

.XŒn�/
�
! H2.UŒn�IC/˚H0.i�K_X /! H0.i�K_X /

is the identity map. Furthermore, the image of H0.i�K_X / in H2
� Œn�

.XŒn�/ is complementary to the image of
H2.��

XŒn�
.logDŒn�//, because the latter can only produce deformations in which the divisor DŒn� deforms

locally trivially. It follows that H2.�/ is surjective, as desired. This completes the proof of Theorem 5.2.
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Mutations and faces of the Thurston norm ball
dynamically represented by multiple distinct flows

ANNA PARLAK

A pseudo-Anosov flow on a hyperbolic 3-manifold dynamically represents a top-dimensional face F of the
Thurston norm ball if the cone on F is dual to the cone spanned by the homology classes of closed orbits of
the flow. Fried showed that for every fibered face of the Thurston norm ball there is a unique, up to isotopy
and reparametrization, flow which dynamically represents the face. Using veering triangulations we have
found that there are nonfibered faces of the Thurston norm ball which are dynamically represented by
multiple topologically inequivalent flows. This raises the question of how distinct flows representing the
same face are related.

We define combinatorial mutations of veering triangulations along surfaces that they carry. We give
sufficient and necessary conditions for the mutant triangulation to be veering. After appropriate Dehn
filling, these veering mutations correspond to transforming one 3-manifold M with a pseudo-Anosov flow
transverse to an embedded surface S into another 3-manifold admitting a pseudo-Anosov flow transverse
to a surface homeomorphic to S . We show that a nonfibered face of the Thurston norm ball can be
dynamically represented by two distinct flows that differ by a veering mutation. Furthermore, one of
the discussed pairs of homeomorphic veering mutants can be used to construct counterexamples to the
classification theorem of Anosov flows on Bonatti–Langevin manifolds published in the 90s.
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1 Introduction

Let M be a compact oriented 3-manifold M whose interior admits a complete hyperbolic structure. The
Thurston norm on H2.M; @M IR/ measures the minimal topological complexity of surfaces that represent

© 2025 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/gt.2025.29.2105
http://www.ams.org/mathscinet/search/mscdoc.html?code=57K30, 57Q15, 37D20, 57K32
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


2106 Anna Parlak

a homology class; see Thurston [50]. It has been intensively studied in various different contexts. It
is related to finite depth foliations (see Gabai [18]), the Alexander polynomial (see Dunfield [9] and
McMullen [35]), the L2-torsion function (see Friedl and Lück [16]), Floer homology (see Ozsváth and
Szabó [43]) and many other aspects of 3-dimensional topology. Here we focus on the connection between
the Thurston norm on H2.M; @M IR/ and nonsingular flows on M . Originally this connection was drawn
by Fried [13; 14] and Mosher [41; 42]. The topic has reemerged recently in work of Landry [28; 29; 30]
and Landry, Minsky and Taylor [31; 32], where they relate the Thurston norm with veering triangulations.

Since the unit norm ball BTh of the Thurston norm is a compact polytope [50, Theorem 2], we can speak
about its faces. Thurston proved that all ways in which M fibers over the circle are encoded by finitely
many, potentially zero, top-dimensional faces of BTh, called fibered faces [50, Theorem 3]. The first
known connection between pseudo-Anosov flows and the Thurston norm concerned only these faces.
Assuming that M is closed, Fried proved that associated to a fibered face F there is a unique, up to isotopy
and reparametrization, pseudo-Anosov flow ‰ on M with the property that a class � 2H2.M IZ/ can be
represented by a cross-section to ‰ if and only if � is in the interior of the cone RC � F [14, Theorem 7].
Mosher extended Fried’s result by showing that � 2H2.M IZ/ can be represented by a surface that is
almost transverse to ‰ if and only if � is in RC � F [40, Theorem 1.4]. Results of Fried and Mosher are
stated for closed manifolds, but they can be generalized to the case of flows on 3-manifolds with toroidal
boundary whose interior admits a complete hyperbolic structure; see [30, Theorem 3.5]. In this case, the
relevant flows are obtained from pseudo-Anosov flows by blowing-up finitely many closed orbits into
toroidal boundary components; see Mosher [42, Section 3.2] and Bonatti and Iakovoglou [4, Section 3.6].

The relationship between pseudo-Anosov flows and the Thurston norm extends beyond the fibered
case. In this more general setup, we consider flows which do not admit cross-sections. Such flows
are called noncircular. Given a potentially noncircular flow ‰ on M denote, by C.‰/ the cone in
H2.M; @M IR/ spanned by the homology classes whose algebraic intersection with the homology classes
of closed orbits of ‰ is nonnegative. Following Mosher [41], we say that ‰ dynamically represents a (not
necessarily fibered, not necessarily top-dimensional) face F of the Thurston norm ball inH2.M; @M IR/ if
C.‰/DRC �F and RC �F is the maximal cone in H2.M; @M IR/ in which the Thurston norm agrees with
the minus Euler class of the normal plane bundle to ‰. From the results of Fried and Mosher mentioned
in the last paragraph, it follows that every fibered face is dynamically represented by a flow which is
unique up to isotopy and reparametrization. In the nonfibered case, Mosher found sufficient conditions
on a noncircular flow to dynamically represent a face of the Thurston norm ball [41, Theorem 2.7] and
showed that there are noncircular flows representing nonfibered faces [41, Section 4]. However, the
question of whether, for every nonfibered face F of the Thurston norm ball in H2.M; @M IR/, there is a
(blown-up) pseudo-Anosov flow ‰ which dynamically represents F remains open.

We answer two closely related questions. First, if there is a flow which dynamically represents a nonfibered
face, is this flow necessarily unique, up to isotopy and reparametrization? In Section 5 we give explicit
examples of flows which represent the same nonfibered face of the Thurston norm ball but are not even
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topologically equivalent, thus showing that the answer to this question is negative; see Theorem 5.2. These
examples have been found using veering triangulations, a combinatorial tool to study pseudo-Anosov
flows. We refer the reader to Section 2.3 for an outline of the connection between veering triangulations
and pseudo-Anosov flows.

Once we know that a nonfibered face can be dynamically represented by two topologically inequivalent
flows we may ask how the two distinct flows which dynamically represent the same face are related. Veering
triangulations can be helpful in solving this problem as well. The veering census (see Giannopolous,
Schleimer and Segerman [20]) and other computational tools to study triangulations [7; 8; 47] can be
used to find many examples of veering triangulations that combinatorially represent the same face of the
Thurston norm ball. At the beginning of Section 4 and in Section 4.2 we briefly outline what the search
for appropriate examples boils down to. Since veering triangulations are finite objects that satisfy very
restrictive conditions, comparing two veering triangulations is easier than comparing their underlying
flows. An analysis of certain examples of veering triangulations which combinatorially represent the
same face of the Thurston norm ball led us to define combinatorial mutations of veering triangulations
along surfaces that they carry. Our main goal is to carefully study these operations and demonstrate that
in special cases they can yield distinct flows representing the same face of the Thurston norm ball.

1.1 Combinatorial mutations of veering triangulations

A veering triangulation V of a 3-manifold M is determined by three pieces of combinatorial data: an
ideal triangulation T , a taut structure ˛ on T and a smoothing of the dual spine of T into a branched
surface B with certain properties; see Definitions 2.1 and 2.5. Associated to .T ; ˛/ there is a finite system
of branch equations such that if w is a nonzero nonnegative integral solution to this system then w
determines a surface Sw which is carried by .T ; ˛/; see Section 2.1.3. We also say that Sw is carried
by V . We will restrict our attention to those carried surfaces whose boundary components lying in the
same boundary component of M have the same orientation. We say that such surfaces are properly
carried. We characterize surfaces properly carried by a veering triangulation in Corollary 2.14. If Sw is
properly carried then the result of cutting M along a surface S�w properly embedded in M and homotopic
to Sw is a sutured manifold; see Section 3.3. We denote it by M jS�w .

The surface S�w is naturally equipped with an ideal triangulation QV;w induced from V . Let AutC.QV;w/ be
the group of orientation-preserving combinatorial automorphisms of QV;w . Associated to ' 2AutC.QV;w/

there always is a mutant manifold M ' , obtained from the sutured manifold M jS�w by identifying the two
copies of S�w in its boundary via '. Our goal is to mimic this construction in the combinatorial setup of
triangulations. Unfortunately, it is not as straightforward as it may sound. The main difficulty is the fact
that Sw is often not embedded. Thus we may view cutting T along Sw as equivalent to cutting it along a
certain branched surface Fw which fully carries Sw ; see Section 3.4. This in turn causes the problem of
not being able to use ' directly to reglue the top boundary FCw of T jFw to its bottom boundary F�w . In
Section 3.5 we define a regluing map r.'/ W FCw ! F�w determined by ' and use it to define a mutant
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triangulation T ' . Without further assumptions on ', not only can this triangulation fail to be veering, but
it also might not be a triangulation of M ' . We deal with these issues in Sections 3.6 and 3.7.

Studying mutations has a long history, particularly in knot theory; see for instance Dunfield, Garo-
ufalidis, Shumakovitch and Thistlethwaite [10], Kirk and Livingston [26], Millichap [37] and Morton
and Traczyk [39]. Mutant knots share many properties, and much work on mutations concentrates on
establishing which knot invariants distinguish mutants. Another thread in the theory is finding sufficient
conditions on a surface S and its homeomorphism ' so thatM andM ' share some property. For instance,
in [48, Theorem 4.4] Ruberman considered mutations of hyperbolic 3-manifolds and found sufficient
conditions for the mutant manifold M ' to be hyperbolic and have the same hyperbolic volume as M . Our
goal to find conditions under which T ' is a veering triangulation of M ' fits into this second framework.

1.2 Properties of the mutant triangulation

To analyze the homeomorphism type of the manifold underlying T ' , we introduce the notion of edge
product disks, a special type of product disks in the sutured manifold M jS�w ; see Section 3.4. Then we
define what it means for ' 2 AutC.QV;w/ to misalign edge product disks; see Definition 3.8. Using this
we prove:

Theorem 3.10 The mutant triangulation T ' is an ideal triangulation of M ' if and only if ' misaligns
edge product disks.

To find sufficient conditions for the mutant triangulation to be veering, we first need to ensure that it
admits a taut structure. It turns out that for this it also suffices to assume that ' misaligns edge product
disks. However, we prove a slightly stronger result:

Proposition 3.16 The mutant triangulation T ' admits a taut structure if and only if every vertical annulus
or Möbius band in M ' lies in a prismatic region of M ' .

The backward direction of Proposition 3.16 is proved by explicitly constructing a taut structure ˛' on T '

from the taut structure ˛ on T . We say that .T ; ˛/ and .T ' ; ˛'/ are taut mutants.

Intuitively, the condition that appears in the above proposition means that ' might align edge product disks,
but it does so in a way which is not visible from the perspective of T ' ; see Lemma 3.15. Nonetheless, in
light of Theorem 3.10 it is convenient to assume that ' misalign edge product disks, so that we deal only
with triangulations of M ' . This assumption is further justified by the fact that in Proposition 3.17 we
prove that when ' aligns edge product disks M ' cannot admit a veering triangulation.

To obtain sufficient conditions on the taut triangulation .T ' ; ˛'/ to admit a veering structure, we make
use of the branched surface B defining the veering structure on V D .T ; ˛;B/. This branched surface
intersects the 2-skeleton of T in a train track; see Figure 6. Therefore any surface Sw carried by V inherits
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a train track �V;w which is dual to its ideal triangulation QV;w . By AutC.QV;w j �V;w/ we denote the
subgroup of AutC.QV;w/ consisting of orientation-preserving combinatorial automorphisms of QV;w

which preserve �V;w .

Theorem 3.19 Let Sw be a surface properly carried by a veering triangulation V D .T ; ˛;B/ of M .
Suppose that ' 2 AutC.QV;w/ misaligns edge product disks. If additionally ' 2 AutC.QV;w j �V;w/ then
.T ' ; ˛'/ admits a veering structure.

Under the assumptions of this theorem, the branched surface B dual to T mutates into a branched
surface B' that is dual to T ' and satisfies Definition 2.5. We say that V' D .T ' ; ˛' ;B'/ is obtained
from V D .T ; ˛;B/ by a veering mutation or that V' and V are veering mutants.

Observe that Theorem 3.19 gives a sufficient condition for a taut mutant .T ' ; ˛'/ to be veering. It is,
however, possible that .T ' ; ˛'/ admits a veering structure even when ' … AutC.QV;w j �V;w/. This can
happen whenever, after cutting T along Fw , the cut triangulation T jFw admits a veering structure B�jFw
which mutates into a branched surface that is dual to T ' and satisfies Definition 2.5. If B�jFw ¤ BjFw
we do not consider such triangulations to be veering mutants. This construction can be used to prove a
generalization of Theorem 3.19 giving a sufficient and necessary conditions on a taut mutant of a veering
triangulation to be veering.

Theorem 3.21 Let Sw be a surface properly carried by a veering triangulation V D .T ; ˛;B/ of M .
Suppose that ' 2 AutC.QV;w/ misaligns edge product disks. The taut triangulation .T ' ; ˛'/ admits
a veering structure if and only if there is a veering structure B�jFw on .T jFw ; ˛jFw/ such that the
isomorphism ' WQCV;w !Q�V;w sends �� CV;w to �� �V;w .

In Section 3.8 we give an example of a pair of veering triangulations which are taut mutants but not veering
mutants. This proves that the generalization appearing in Theorem 3.21 is not just theoretical, but actually
arises in practice. In the same subsection we also define a veering mutation with insertion, a certain
generalization of a veering mutation where the related triangulations have different numbers of tetrahedra.

1.3 Homeomorphic veering mutants

In Section 4 we analyze a few examples of homeomorphic veering mutants. Apart from illustrating our
constructions, we use these examples to establish the following facts connecting veering mutations and
faces of the Thurston norm ball:

Fact 4.2 (Veering mutations and faces of the Thurston norm ball) (1) There are nonfibered faces of the
Thurston norm ball that can be represented by two combinatorially nonisomorphic veering mutants.

(2) A veering mutation along a surface representing a class lying at the boundary of the cone on a
fibered face may yield a veering triangulation representing a nonfibered face of the Thurston norm
ball of the mutant manifold.
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Analyzing two veering mutants of the complement of the 10312 link leads to the following discovery:

Fact 4.7 The complement of the 10312 link admits two fibrations over the circle such that :

� The fiber is a genus-two surface with four punctures.

� The monodromy of one fibration is obtained from the monodromy of the other fibration by post-
composing it with an involution. In particular , the stretch factors of the monodromies are equal.

� The monodromies are not conjugate in the mapping class group of a genus-two surface with four
punctures.

The last part of Fact 4.7 follows from the observation that the Euler classes of the two fibrations lie in
different orbits under the action of Homeo.M/ on H 2.M; @M IR/. Examples of such fibrations of the
same manifold were known previously; see for instance McMullen and Taubes [36, Theorem 1.2]. What
is new here is that we get fiber bundles which are not isomorphic, even though both their total spaces and
fibers are homeomorphic, and the stretch factors of their monodromies are the same.

1.4 Multiple distinct flows dynamically representing the same face of the Thurston norm
ball

Given a veering triangulation V of M , it is possible to construct a transitive pseudo-Anosov flow ‰ on
a closed Dehn filling N of M , provided that a certain natural condition on the Dehn filling slopes is
satisfied; see Agol and Tsang [1, Theorem 5.1], stated here as Theorem 2.20. Let ‰ı be the blown-up
flow on M . If V combinatorially represents a face F of the Thurston norm ball in H2.M; @M IR/ then ‰ı

dynamically represents F; see Landry, Minsky and Taylor [31, Theorem 6.1], stated here as Theorem 2.29.
Under additional assumptions on the Dehn filling slopes, there is also a face FN of the Thurston norm
ball in H2.N IR/ such that RC � FN D C.‰/; see Landry [29, Theorem A], stated here as Theorem 2.30.
These results are the main ingredients to prove the following theorem:

Theorem 5.2 There are nonfibered faces of the Thurston norm ball that can be dynamically represented
by two topologically inequivalent flows.

In the case of manifolds with nonempty boundary, we show that a nonfibered face can be dynamically
represented by two topologically inequivalent blown-up Anosov flows constructed from a pair of homeo-
morphic veering mutants. Unfortunately, the corresponding Anosov flows on the Dehn-filled manifold
cannot be used to prove the theorem in the closed case because the manifold is toroidal. For this reason,
we refer to a different pair of veering triangulations which represent the same face of the Thurston norm
ball and, after appropriate Dehn filling, yield transitive pseudo-Anosov flows on a hyperbolic 3-manifold.
These veering triangulations are not related by a veering mutation; see Fact 4.6. In particular, it is worth
emphasizing that not all pairs of veering triangulations combinatorially representing the same face of the
Thurston norm ball are related by a veering mutation or even a veering mutation with insertion.
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Remark Although Anosov flows underlying homeomorphic veering mutants V and V%� discussed in
Section 4.1 cannot be used to prove Theorem 5.2 in the closed case, they have another interesting feature.
The closed manifold N obtained by Dehn filling M ŠM %� along the boundary of the mutating surface
is a graph manifold constructed from the orientable circle bundle over a 2-holed RP 2 by identifying its
two toroidal boundary components. In [2] Barbot calls such manifolds BL-manifolds. The Anosov flows
‰ and ‰%� on N built from V and V%� , respectively, are counterexamples to the claim, which appears
as [2, Theorem B(2)], that all non-R-covered Anosov flows on a fixed BL-manifold are topologically
equivalent; see Remark 5.3.

1.5 Polynomial invariants of veering triangulations representing the same face of the
Thurston norm ball

In [32] Landry, Minsky, and Taylor introduced two polynomial invariants of veering triangulations: the taut
polynomial and the veering polynomial. They proved that the taut polynomial generalizes the Teichmüller
polynomial, an invariant of a fibered face of the Thurston norm ball defined by McMullen in [34], to faces
of the Thurston norm ball that are combinatorially represented by veering triangulations [32, Theorem 7.1].
In Table 3 we list the taut and veering polynomials of veering triangulations representing the same face of
the Thurston norm ball that we discussed in Section 4. We deduce that in the nonfibered case the taut and
veering polynomials are not invariants of faces of the Thurston norm ball combinatorially represented by
veering triangulations.

Fact 6.1 There are nonfibered faces of the Thurston norm ball that can be combinatorially represented by
two distinct veering triangulations with different taut polynomials , and different veering polynomials.

1.6 Further questions

In Section 7 we speculate about what happens on the level of flows when we perform a veering mutation.
We also ask a few questions concerning veering mutations, faces of the Thurston norm ball dynamically
represented by multiple distinct flows, connections between this work and a recent result of Barthelmé,
Frankel and Mann [3] characterizing topologically inequivalent pseudo-Anosov flows on a fixed manifold,
and hyperbolic volumes of veering mutants.
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2 Veering triangulations and pseudo-Anosov flows

Let M be a compact oriented 3-manifold. By an ideal triangulation of M we mean an expression of
M � @M as a collection of finitely many ideal tetrahedra with triangular faces identified in pairs by
homeomorphisms which send vertices to vertices. Links of ideal vertices of the triangulation correspond
to boundary components of M .

Let T be a finite ideal triangulation of M . Every triangular face of T has two embeddings into two, not
necessarily distinct, tetrahedra. Every edge of T has finitely many embeddings into tetrahedra of T and
the same number of embeddings into faces of T . By edges of a triangle/tetrahedron or triangles of a
tetrahedron we mean embeddings of these ideal simplices into the boundary of a higher-dimensional ideal
simplex. Similarly, by triangles/tetrahedra attached to an edge we mean triangles/tetrahedra in which the
edge is embedded, together with this embedding. Observe that triangles/tetrahedra attached to an edge can
be circularly ordered, and hence we can speak about consecutive triangles/tetrahedra attached to an edge.

Every ideal triangulation T determines a 2-dimensional complex D dual to T , called the dual spine of T .
For every tetrahedron t of T there is a vertex v D v.t/ of D. If tetrahedra t1 and t2 of T admit faces f1
and f2, respectively, which are identified in T , then in D there is an edge joining their dual vertices v1
and v2. Finally, each edge e of T gives a 2-cell of D which is glued along the edges of D that are dual
to the consecutive triangles attached to e. Since there are no higher-dimensional cells in D, and 0- and
1-cells have special names, we will often refer to the 2-cells of D as just “cells”.

Translating between properties of an ideal triangulation and properties of its dual spine is straightforward.
Throughout the paper we freely alternate between these two perspectives depending on which one is more
useful in a given context.

2.1 Taut triangulations

In [27, Introduction] Lackenby introduced taut ideal triangulations of 3-manifolds. Using the duality
between an ideal triangulation and its dual spine we define tautness of an ideal triangulation in terms of
properties of its dual spine.

Definition 2.1 A taut structure ˛ on an ideal triangulation T is a choice of orientations on the edges of
its dual spine D such that

(1) every vertex v of D has two incoming edges and two outgoing edges,

(2) every cell s of D has exactly one vertex bs such that the two edges of s adjacent to v both point
out of bs ,

(3) every cell s of D has exactly one vertex ts such that the two edges of s adjacent to v both point
into ts .
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Figure 1: The taut tetrahedron.

A taut triangulation is a pair .T ; ˛/, where T is an ideal triangulation, and ˛ is a taut structure on T . If
.T ; ˛/ is taut then for every cell s of the dual spine of T the vertex from Definition 2.1(2) is called the
bottom vertex of s, and the vertex from Definition 2.1(3) is called the top vertex of s.

Remark 2.2 Taut triangulations are often called transverse taut triangulations; see eg [12; 45; 46].

Intuitively, tautness of an ideal triangulation gives an upwards direction which is consistent throughout
the whole triangulation. Under the duality, orientations on the edges of D translate into coorientations
on the faces of T . If .T ; ˛/ is taut then, by Definition 2.1(1), every tetrahedron t of T has two faces
whose coorientations point into t , and two faces whose coorientations point out of t . We call the pair of
faces whose coorientations point out of t the top faces of t and the pair of faces whose coorientations
point into t the bottom faces of t . We also define the top diagonal of t to be the common edge of the
two top faces of t and the bottom diagonal of t to be the common edge of the two bottom faces of t . By
Definition 2.1(2), every edge of T is embedded as the top diagonal in precisely one tetrahedron of T .
Similarly, Definition 2.1(3) implies that every edge of T is embedded as the bottom diagonal in precisely
one tetrahedron of T . We encode a taut structure on a tetrahedron by drawing it as a quadrilateral with
two diagonals — one on top of the other; see Figure 1. Then the convention is that coorientations on all
faces point towards the reader. In other words, we view the tetrahedron from above.

2.1.1 The horizontal branched surface Let e be an edge of a taut triangulation .T ; ˛/. To every
embedding �.e/ of e into a tetrahedron t of T we assign a dihedral angle 0 or � in the following way.
If �.e/ is either the top or the bottom diagonal of t we assign to �.e/ the angle � . Otherwise we assign
to �.e/ the angle 0. This equips the 2-skeleton of T with a structure of a branched surface with branch
locus equal to the 1-skeleton of T ; see Figure 2. We call it the horizontal branched surface associated
to T , and denote it by H.

Let �˛ denote the taut structure on T obtained by reversing orientations of all edges of the dual spine D
of T . Taut triangulations .T ; ˛/ and .T ;�˛/ determine the same dihedral angles between consecutive
faces attached to edges of T and thus the same horizontal branched surface. We call .T ;˙˛/ a taut angle
structure on T . This term will appear in Section 2.2.3.

2.1.2 The boundary track Recall that boundary components of M correspond to links of vertices
of T . An ideal vertex of tetrahedron t of T meets three faces of t . Thus an ideal triangulation T of M
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Figure 2: The horizontal branched surface associated to a taut triangulation.

determines a triangulation @T of @M . If T is additionally taut, the smoothing of the 2-skeleton T .2/ into
the horizontal branched surface determines a smoothing of @T into a train track. We call this train track
the boundary track of T and denote it by ˇ. If an ideal vertex of t meets faces f1, f2 and f3 of t then
exactly one pair .fi ; fj /, for i ¤ j , is adjacent either along the top or along the bottom diagonal of t . In
the construction of the horizontal branched surface of T we assign to such a pair the dihedral angle � ,
and to the remaining pairs we assign the dihedral angle 0. Thus every complementary region of ˇ is a
bigon. This has important implications for the topology of @M . If � is a train track in a surface S without
boundary then the Euler characteristic of S is equal to half the sum of indices of all complementary
regions of � in S , where the index of a complementary region C is the quantity

index.C /D 2�.C /� #cusps in @C :

It follows that any surface admitting a bigon train track has zero Euler characteristic. Among closed
orientable surfaces only the torus satisfies this condition. Below we state this observation as a lemma. We
will refer to it in the proof of Proposition 3.16 to show that in some situations the mutant triangulation
does not admit a taut structure.

Lemma 2.3 Suppose that an oriented 3-manifold M admits a taut ideal triangulation. Then the boundary
of M is nonempty and consists of tori.

2.1.3 Surfaces carried by a taut triangulation Let .T ; ˛/ be a taut triangulation of an oriented
3-manifold M , with the set T of tetrahedra, the set F of faces and the set E of edges. Recall from
Section 2.1.1 that ˛ determines a branched surface structure on T .2/, which we call the horizontal
branched surface and denote by H; see Figure 2. The 1-skeleton of T is the branch locus of H. Thus
each (oriented) edge e of .T ; ˛/ determines a branch equation defined as follows. Let f1; f2; : : : ; fk
be triangles attached to e on the left side, ordered from the bottom to the top. Let f 01; f

0
2; : : : ; f

0
l

be
triangles attached to e on the right side, also ordered from the bottom to the top. Then the branch equation
determined by e is given by

.2.4/ f1Cf2C � � �Cfk D f
0
1Cf

0
2C � � �Cf

0
l :

Let wD .wf /f 2F be a nonzero nonnegative integral solution to the system of branch equations of .T ; ˛/.
We call the number wf the weight of f and w a weight system on .T ; ˛/. Using weights of triangles
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2

2

0

3

1
Figure 3: From a solution to branch equations to an embedded surface.

we can define the weight we of an edge e 2E as the sum of weights of faces attached to e on one of its
sides. For an edge satisfying the branch equation (2.4) we have

we D

kX
iD1

wfi D

lX
jD1

wf 0
j
:

Equip the triangles of T with an orientation determined by their coorientation via the right-hand rule.
Then the (relative) 2-chain

Sw D
X
f 2F

wf f

is a 2-cycle giving an oriented surface properly immersed in M . It is embedded if and only if we � 1 for
every e 2 E. Let x 2 E [F . If wx > 1 then multiple copies of x are pinched together. Pulling these
overlapping regions of Sw slightly apart yields an oriented surface S�w which is properly embedded in M ;
see Figure 3. We say that S�w is carried by .T ; ˛/. If additionally for every boundary component T
of M all connected components of S�w \T have the same orientation, we say that S�w (or Sw ) is properly
carried by .T ; ˛/.

More generally, we say that a surface S properly embedded in M is carried by .T ; ˛/ if there exists a
nonzero nonnegative integral solution w D .wf /f 2F to the system of branch equations of .T ; ˛/ such
that S is homotopic to the relative 2-cycle Sw . If Sw is properly carried then we say that S is properly
carried. Note that the same properly embedded surface S can be carried by .T ; ˛/ in multiple different
ways. When we write Sw or S�w we always mean a surface in a fixed carried position corresponding to
the weight system w.

If there exists a strictly positive integral solution w to the system of branch equations of .T ; ˛/, we say
that .T ; ˛/ is layered. If there exists a nonnegative nonzero integral solution, but no strictly positive
integral solution, then we say that .T ; ˛/ is measurable. If there is no nonnegative nonzero solution to
the system of branch equations of .T ; ˛/ then we say that .T ; ˛/ is nonmeasurable.

2.1.4 The Euler class of a taut triangulation A taut triangulation .T ; ˛/ of M determines the Euler
class �.T ;˛/, an element ofH 2.M; @M IR/ which satisfies �.T ;˛/.ŒS�/D�.S/ for every surface S carried
by .T ; ˛/; see [27, page 390; 32, Section 5.2]. It can be defined as follows. Let � be the 1-skeleton of the
dual spine of .T ; ˛/. By Definition 2.1(1), every vertex v of � has two incoming edges and two outgoing
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Figure 4: The dual spine of a veering triangulation can be smoothed into a branched surface
which around every vertex looks like one of the above configurations. Orientation on the edges of
the branch locus is relevant.

edges. Therefore � forms a 1-cycle. Let Œ�� be the associated homology class in H1.M IR/. The Euler
class �.T ;˛/ is defined by the equality

�.T ;˛/. � /D�
1
2
hŒ��; � i;

where h � ; � i denotes the algebraic intersection pairing.

2.2 Veering triangulations

Taut triangulations are abundant in 3-manifolds [27, Theorem 1]. In contrast, veering triangulations, a
subclass of taut triangulations defined below, are very rare. It is conjectured that any hyperbolic 3-manifold
with toroidal boundary admits only finitely many, potentially zero.

Definition 2.5 A veering structure on a taut ideal triangulation is a smoothing of its dual spine into a
branched surface B which locally around every vertex looks as in either of the pictures in Figure 4.

A veering triangulation is a taut ideal triangulation with a veering structure. We call the branched
surface B from Definition 2.5 the stable branched surface of a veering triangulation. We emphasize that
its branch locus is oriented by the taut structure on the triangulation.

The stable branched surface B of a veering triangulation can be transversely orientable or not. If B is
transversely orientable, we say that V is edge-orientable. Otherwise we say that V is not edge-orientable.
We refer the reader to [45] for more information about edge-orientability and how it affects certain
polynomial invariants of veering triangulations.

Remark 2.6 In [51] a branched surface which locally around every vertex looks like in Figure 4, and has
only solid tori or torus shells as complementary regions, is called a veering branched surface. However,
the author of [51] orients the branch locus of this branched surface in the opposite direction.

Definition 2.5 implies that a veering triangulation is determined by three pieces of combinatorial data:

(1) an ideal triangulation T ,

(2) a taut structure ˛; see Definition 2.1,

(3) a veering structure B; see Definition 2.5.
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one-sheeted side two-sheeted side

right

left

Figure 5: One of the sectors on the two-sheeted side veers to the right, the other veers to the left.

For brevity, we typically denote a veering triangulation by a calligraphic letter V , potentially with some
sub- or superscript, by which we mean V D .T ; ˛;B/.

Definition 2.5 is “dual” to the now-standard definition of a veering triangulation that requires the existence
of a certain coloring on the edges of triangulation; see [12, Definition 5.1]. Below we explain how
to translate between the two definitions. When viewing the dual spine of a veering triangulation as a
branched surface, we call its 2-cells sectors. Every edge d of B is adjacent to three sectors of B. The
structure of a branched surface on B determines the one-sheeted side of d and the two-sheeted side of d ;
see Figure 5. We say that a sector s adjacent to d is large relative to d if it is on the one-sheeted side
of d . Otherwise we say that s is small relative to d . Thus two out of three sectors adjacent to d are small
relative to d . Since d is oriented, and the manifold underlying V is oriented, we can detect in which
direction (right/left) each of these small sectors veers. One of them veers to the right of d , and the other
to the left of d . These directions are marked in Figure 5.

Lemma 2.7 Let s be a sector of the stable branched surface of a veering triangulation. Let d1 and d2 be
two consecutive edges of s. Let v be the common vertex of d1 and d2.

(1) If the orientations of d1 and d2 both point into v, then s is large relative to both d1 and d2.

(2) If the orientations of d1 and d2 both point out of v, then s is small relative to both d1 and d2, and
if it veers right (respectively, left) of d1, then it veers right (respectively, left) of d2.

(3) If the orientation of d1 points into v and the orientation of d2 points out of v, then either s is small
relative to d1 and large relative to d2, or s is small relative to both d1 and d2, in which case if it
veers right (respectively, left) of d1, then it veers right (respectively, left) of d2.

In particular , s has at least four edges.

Proof The statement of this lemma is a verbalization of the local picture of B presented in Figure 4.

Lemma 2.7 says that if s veers to the right (respectively, left) of d then for every other edge d 0 of s such
that s is small relative to d 0, s veers to the right (respectively, left) of d 0. Since, by Lemma 2.7(2), s is
small relative to at least two of its edges, the veering direction of s is well defined. We can therefore assign
colors, red and blue, to the sectors of B so that right-veering sectors are colored blue and left-veering
sectors are colored red; see Figure 5. We call them the veering colors on B. Dually, we obtain a coloring
on the edges of V .
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Corollary 2.8 Let V be a veering triangulation. The veering colors on sectors of the stable branched
surface of V determine colors on edges of V such that for every tetrahedron t of V the following two
conditions hold :

� Let e0, e1 and e2 be edges of a top face of t , ordered counterclockwise as viewed from above and
so that e0 is the top diagonal of t. Then e1 is red and e2 is blue.

� Let e0, e1 and e2 be edges of a bottom face of t , ordered counterclockwise as viewed from above
and so that e0 is the bottom diagonal of t . Then e1 is blue and e2 is red.

The conditions from Corollary 2.8 are exactly the veeringness conditions that appear in [12, Definition 5.1].
Therefore if a triangulation is veering in the sense of Definition 2.5 then it is veering in the sense of
[12, Definition 5.1]. The converse also holds. This can be seen by observing that colors on edges of a
veering tetrahedron t that satisfy the conditions listed in Corollary 2.8 determine how to smooth the dual
spine of t into a branched surface which locally around its vertices looks like the one presented in Figure 4:
blue edges are dual to right veering sectors, and red edges are dual to left veering sectors; see Figure 5.

Remark 2.9 The dual spine of a veering triangulation V can be smoothed into another branched surface,
called the unstable branched surface of V . We denote it by Bu; see [12, Section 6.1]. It is also encoded
by the colors on edges of V . If t is a tetrahedron of V whose bottom diagonal is blue (respectively, red)
then But D Bu\ t is obtained from Figure 4, left (respectively, Figure 4, right), by rotating it by � in the
plane of the page and then reversing orientations of all edges in the branch locus.

Remark 2.10 IfM admits a veering triangulation VD .T ; ˛;B/ then it also admits a veering triangulation
�V D .T ;�˛;�Bu/, where �˛ is obtained from ˛ by reversing orientations of all edges of the dual spine
of T , and �Bu is the unstable branched surface of V with orientation on the branch locus given by �˛.

In Proposition 3.17 we will use the following crucial fact about veering triangulations:

Theorem 2.11 (Hodgson, Rubinstein, Segerman and Tillmann [23, Theorem 1.5]) Suppose that M
is a compact oriented 3-manifold that admits a veering triangulation. Then the interior of M admits a
complete hyperbolic metric.

2.2.1 The stable train track of a veering triangulation Let B be the stable branched surface of a
veering triangulation V . For every face f of V the intersection of B with f is a train track with one
switch vf in the interior of f and three branches, each joining vf with the midpoint of an edge of f .
The union of all these train tracks in faces of V gives a train track in the horizontal branched surface of V .
We call it the stable train track of V , and denote it by � . A picture of � restricted to the faces of one
veering tetrahedron is presented in Figure 6.

Let �f D � \f . It is a trivalent train track with one large branch and two small branches. We say that an
edge e of f is the large edge of f if it is dual to the large branch of �f . Otherwise we say that e is a
small edge of f . The key property of the stable train track is stated in the following lemma:
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Figure 6: Left column: a veering tetrahedron with blue top diagonal. Right column: a veering
tetrahedron with red top diagonal. Top faces are presented in the top row, bottom faces in the
bottom row. The stable train track is in green. Oriented arcs around vertices correspond to
branches of the boundary track.

Lemma 2.12 Let f be a top face of a tetrahedron t of a veering triangulation V . Then the large edge of
f is identified with the bottom diagonal of the tetrahedron immediately above f .

Proof Let t 0 be the tetrahedron immediately above f . There is a bottom face f 0 of t 0 such that the large
edge of f is identified with an edge e0 of f 0. The picture of the stable train track in the bottom faces of a
veering tetrahedron (Figure 6) indicates that e0 must be the bottom diagonal of t 0.

The stable branched surface and the stable train track carry the same combinatorial information. However,
it is beneficial to have both these perspectives on the same object, as they have different applications
in this paper. In Section 3.7 we use the stable train track to define a certain subgroup of the group of
orientation-preserving combinatorial automorphisms of a surface carried by a veering triangulation. The
whole branched surface is more natural to use in the proof of Theorem 3.19, which says that under certain
conditions a mutant of a veering triangulation is veering.

2.2.2 The boundary track of a veering triangulation Let V D .T ; ˛;B/ be a veering triangulation of
a 3-manifold M . In Section 2.1.2 we defined the boundary track ˇ of .T ; ˛/. A (bigon) complementary
region r of ˇ has three switches, corresponding to three edges of some tetrahedron t meeting at a vertex
of that tetrahedron. A switch in the boundary of r is smooth if and only if it is an endpoint of either the
top or the bottom diagonal of t . We say that r is ascending if its smooth switch is an endpoint of the top
diagonal of t . Otherwise we say that r is descending.

Now that we have a veering structure on the triangulation as well, we can color the switches and branches
of the boundary track using the colors of edges determined by Corollary 2.8 and the following rules. If a
switch s of ˇ is an endpoint of an edge e we color s by the color of e. If a branch b of ˇ corresponds to an
arc around a vertex v of a triangle f we color b by the color of the edge of f opposite to v; see Figure 6.
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This coloring on the boundary track of a veering triangulation was first introduced by Futer and Guéritaud
in [17, Section 2]. We orient b using the coorientation on f and the right-hand rule. With this orientation,
if Sw is a surface carried by V , as defined in Section 2.1.3, then @Sw is an oriented smooth 1-cycle in ˇ.

If b connects two switches of the same color (necessarily of a different color than b; see Corollary 2.8), we
say that b is a ladderpole branch. In Figure 6 ladderpole branches are shown as arcs connecting a diagonal
edge to a nondiagonal edge of the same color, or vice versa. Since every edge of V is the top diagonal of
exactly one tetrahedron and the bottom diagonal of exactly one tetrahedron, every switch of ˇ is adjacent
to exactly two ladderpole branches. It follows that the union of all ladderpole branches is a disjoint
union of simple closed curves on @M . We call these curves the ladderpole curves of V . We say that a
ladderpole curve l is red (respectively, blue) if it consists of red (respectively, blue) ladderpole branches.
Each boundary component of M contains an even number of ladderpole curves which alternate in color.

Let S�w be a surface properly embedded in M obtained by slightly pulling apart the overlapping regions
of Sw . Recall from Section 2.1.3 that Sw is not properly carried if there is a boundary component T
of M such that two connected components S�w \T have opposite orientations. In the following lemma
we characterize the boundary slopes of such surfaces.

Lemma 2.13 A surface Sw carried by a veering triangulation of M is not properly carried if and only if
there is a boundary component T of M such that @Sw runs both along a blue ladderpole curve of T and
along a red ladderpole curve of T .

Proof Using Figure 6 we can make the following observations:

(1) Let lb be a blue ladderpole branch. Let ra
b

and rd
b

be the ascending and the descending complementary
region of ˇ adjacent to lb , respectively. Then lb is oriented from the smooth switch of ra

b
to the smooth

switch of rd
b

. The remaining branches of ra
b

are oriented towards lb , while the remaining branches of rd
b

are oriented away from lb .

(2) Let lr be a red ladderpole branch. Let rar and rdr be the ascending and the descending complementary
region of ˇ adjacent to lr , respectively. Then lr is oriented from the smooth switch of rdr to the smooth
switch of rar . The remaining branches of rar are oriented away from lr , while the remaining branches
of rdr are oriented towards lb .

It follows that two smooth parallel cycles in ˇ contained in the same boundary component of M have
opposite orientations if and only if one of them runs along a red ladderpole curve and the other runs along
a blue ladderpole curve.

Observe that a surface Sw carried by V inherits from V both an ideal triangulation and the stable train track.
We denote these structures in Sw by QV;w and �V;w , respectively. It turns out that one can recognize
whether Sw is properly carried by analyzing the complementary regions of �V;w . If a boundary component
of Sw runs along a blue ladderpole slope then the corresponding vertex of QV;w is contained in a cusp-free
complementary region r of �V;w ; see Figure 6. Moreover, the boundary of r crosses only red edges. We will
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say that r is red. Analogously, if a boundary component of Sw runs along a red ladderpole slope then the
corresponding vertex of QV;w is contained in a cusp-free complementary region of �V;w whose boundary
crosses only blue edges. We will say that such complementary regions are blue. Using this terminology,
Lemma 2.13 implies the following characterization of carried surfaces which are not properly carried:

Corollary 2.14 Let Sw be a surface carried by a veering triangulation V of M . The surface Sw is
properly carried by V if and only if any two cusp-free complementary regions of �V;w that have different
color intersect different boundary components of M .

2.2.3 The veering census Data on veering triangulations of orientable 3-manifolds consisting of up to
16 tetrahedra is available in the veering census [20]. A veering triangulation in the census is described by
a string of the form

.2.15/ [isoSig]_[taut angle structure]:

The first part of this string is the isomorphism signature of the triangulation. It identifies a triangulation
uniquely up to combinatorial isomorphism [6, Section 3]. The second part of the string records a taut
angle structure, that is a taut structure up to reversing the orientation of all dual edges. A string of
the form (2.15) is called a taut signature and we use it whenever we refer to any particular veering
triangulation from the veering census.

The following lemma has been well known since the development of the veering census. It explains why
there is at most one veering triangulation with a fixed underlying taut ideal triangulation. We include its
proof here because we will use it in Section 3.8.

Lemma 2.16 Suppose that .T ; ˛/ is a taut triangulation. If .T ; ˛/ admits a veering structure then this
structure is unique.

Proof Suppose that there are two veering triangulations V D .T ; ˛;B/ and V 0 D .T ; ˛;B0/. If they are
distinct then there is a tetrahedron t of T such that Bt D B \ t and B0t D B0 \ t are different. Let f
be a top face of t . Let �f and � 0

f
be the stable train tracks in f determined by B and B0, respectively.

Definition 2.5 and the assumption that Bt ¤ B0t imply that �f ¤ � 0f . In particular, there is an edge e1 of f
which is dual to the large branch of �f and a distinct edge e2 of f , of a different color than e1, which is
dual to the large branch of � 0

f
. Applying Lemma 2.12 to V yields that e1 is identified with the bottom

diagonal of the tetrahedron immediately above f , and applying it to V 0 yields that e2 is identified with the
bottom diagonal of the tetrahedron immediately above f . Since e1 and e2 cannot be identified in T , this
is a contradiction to the assumption that the taut ideal triangulations underlying V and V 0 are the same.

2.3 The connection with pseudo-Anosov flows

Recall from the introduction that veering triangulations are combinatorial tools to study pseudo-Anosov
flows. In this subsection we will make this statement more precise.
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Definition 2.17 A continuous flow ‰ WN �R!N on a closed 3-manifold N is pseudo-Anosov if there
are 2-dimensional singular foliations Fs and Fu on N with the following properties:

� Fs and Fu intersect along the flow lines of ‰.

� ‰ admits finitely many (potentially zero) isolated closed orbits `1; : : : ; `k such that for i D 1; 2; : : : ; k
in a sufficiently small tubular neighborhood of `i the foliation Fs=u is isotopic to the mapping torus of
the .2�mi=pi /-rotation of the pi -pronged foliation of a disk (with the prong singularity in the center),
for some pi � 3 and mi 2 Z. These orbits are called the singular orbits of ‰.

� Away from the singular orbits of ‰, foliations Fs and Fu are nonsingular and transverse to each other.

� Two flow lines contained in the same leaf of Fs are forward asymptotic, and two flow lines contained
in the same leaf of Fu are backward asymptotic.

If ‰ has a dense orbit then we say that ‰ is transitive. If ‰ does not have any singular orbits then it is
called an Anosov flow. We will not pay much attention to the parametrization of a flow. In fact, we will
consider two flows which are topologically equivalent to be the same; see definition below.

Definition 2.18 Two flows ‰ and ‰0 on N are topologically equivalent (or orbit equivalent) if there is a
homeomorphism h WN !N which takes oriented orbits of ‰ to oriented orbits of ‰0.

In the literature there is also a notion of a smooth pseudo-Anosov flow; see [1, Definition 5.8]. Recently
Shannon proved that any continuous transitive Anosov flow is topologically equivalent to a smooth Anosov
flow [49, Section 5]; see Definition 2.18. His methods generalize to transitive continuous pseudo-Anosov
flows [1, Theorem 5.10]. Thus up to topological equivalence we may assume that our flows are smooth.
The reason we prefer the above definition is that it focuses on topological properties of pseudo-Anosov
flows which are crucial for our purposes — namely, the existence of foliations Fs and Fu with prescribed
behavior. These foliations are called the stable and unstable foliations of the flow, respectively. If ` is
a p-pronged orbit of ‰, where p � 2 and p D 2 corresponds to a nonsingular orbit, the compact core
of N � ` has a boundary torus T` which meets the singular leaves of Fs along p parallel simple closed
curves, and similarly for the singular leaves of Fu. We call all these 2p parallel curves the prong curves
of ‰ in T`. Splitting Fs and Fu open along their singular leaves yields a pair of laminations Ls and Lu

in N , called the stable and unstable laminations of ‰. Leaves of Ls=u are open annuli, open Möbius
bands or planes. Möbius bands appear if and only if Ls=u is not transversely orientable.

The simplest examples of pseudo-Anosov flows are the suspension flows of pseudo-Anosov homeo-
morphisms of closed surfaces on their mapping tori. Their stable/unstable foliations are formed by the
mapping tori of the stable/unstable foliations of the monodromy of the fibration. Suspension flows have
an additional property: an embedded surface which intersects every flow line with positive sign. Such a
surface is called a cross-section to the flow. Any flow which admits a cross-section is called circular.
From the suspension flow of a pseudo-Anosov homeomorphism one can construct infinitely many other
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pseudo-Anosov flows via the Goodman–Fried surgery [15; 21]. In particular, Goodman–Fried surgery
can be used to construct noncircular pseudo-Anosov flows, including pseudo-Anosov flows on nonfibered
3-manifolds.

Let ‰ be a pseudo-Anosov flow on a closed 3-manifold N . Fix a finite nonempty collection ƒ of closed
orbits of‰ which includes all singular orbits of‰. To be able to construct a veering triangulation ofN�ƒ
encoding‰ a technical condition, called no perfect fits relative toƒ, has to be satisfied. We refer the reader
to [1, Definition 5.12] for a precise definition of this term. Here we will work combinatorially with veering
triangulations, and deduce appropriate statements concerning flows using the following two theorems.

Theorem 2.19 (Agol and Guéritaud, unpublished) Let ‰ be a pseudo-Anosov flow on a closed 3-
manifold N . Suppose that ƒ is a finite nonempty collection of closed orbits of ‰ which includes all
singular orbits of ‰ and such that ‰ has no perfect fits relative to ƒ. Then N �ƒ admits a veering
triangulation V such that the stable (respectively, unstable) branched surface of V , when embedded in N
via the inclusion .N �ƒ/ ,! N , fully carries the stable (respectively, unstable) lamination of ‰. The
ladderpole curves of V are homotopic to the prong curves of ‰ in @.N �ƒ/.

If V arises from ‰ via the Agol–Guéritaud construction we will say that V encodes ‰. Tsang proved
that every pseudo-Anosov flow ‰ is without perfect fits relative to some collection ƒ of closed orbits
of ‰ which contains all singular orbits and one additional orbit [53, Proposition 2.7]. Thus every pseudo-
Anosov flow can be encoded by some veering triangulation. The situation is the cleanest when ‰ is
not an Anosov flow and does not have perfect fits relative to its collection Sing.‰/ of singular orbits.
Then the veering triangulation of N � Sing.‰/ obtained via the Agol–Guéritaud construction can be
considered to be canonical for ‰. In the remaining cases, there might be many choices for an additional
orbit to be added to the set ƒ, and thus no canonical veering triangulations encoding the flow. The proof
of Theorem 2.19 appears in [31, Section 4]. The theorem is stated there only for the case when ‰ does
not have perfect fits relative to Sing.‰/, but the proof applies equally well to the case when the set ƒ
only properly contains Sing.‰/.

Another theorem connecting veering triangulations and pseudo-Anosov flows says that one can go also in
the other direction: use veering triangulations to construct pseudo-Anosov flows.

Theorem 2.20 (Agol and Tsang [1, Theorem 5.1]) Let V be a veering triangulation of a 3-manifold M .
Suppose that M has k boundary components T1; : : : ; Tk . Let li be the collection of blue ladderpole curves
of V on Ti , and let si be a connected simple closed curve on Ti . If pi D jh`i ; si ij is greater than one for
every i D 1; 2; : : : ; k, then the Dehn filled manifold M.s1; : : : ; sk/ admits a transitive pseudo-Anosov
flow ‰ with the following properties:

� ‰ is without perfect fits relative to a collection ƒD f`1; : : : ; `kg of closed orbits isotopic to the
cores of the filling solid tori.

Geometry & Topology, Volume 29 (2025)



2124 Anna Parlak

� The orbit `i is pi -pronged for i D 1; 2; : : : ; k.

� The stable (respectively, unstable) lamination of ‰ is fully carried by the stable (respectively,
unstable) branched surface of V .

The fact that the stable lamination of ‰ is fully carried by the stable branched surface of the veering
triangulation is not explicitly stated in [1, Theorem 5.1] but it follows from [1, Proposition 5.13]. (Note
that the authors call the stable branched surface from Definition 2.5 the unstable branched surface, and
orient the edges of its branch locus in the opposite direction.) If V is a veering triangulation ofM and ‰ is
a pseudo-Anosov flow on some closed Dehn filling N of M constructed by the Agol–Tsang construction
we will say that ‰ is built from V . The fact that Agol and Guéritaud’s construction and Agol and Tsang’s
construction are each other’s inverses appears in [52, Theorem 2.1]; see also the program of Schleimer
and Segerman outlined in [12, Section 1.2].

Let V be a veering triangulation of M encoding a pseudo-Anosov flow ‰ on some closed Dehn filling N
of M . If we view M as a cusped 3-manifold N �ƒ, then it is naturally equipped with a flow ‰N�ƒ,
the restriction of ‰ to the complement of ƒ. The flow ‰N�ƒ is not pseudo-Anosov: orbits of ‰ that
are asymptotic to an element of ƒ become orbits of ‰N�ƒ that escape to infinity. Alternatively, we can
view M as a manifold obtained from N by blowing up elements of ƒ into toroidal boundary components.
There is a notion of the blown-up flow ‰ı on M [42, Section 3.2]. See also [4, Section 3.6] for the
construction of ‰ı in the context of smooth flows. The orbits of ‰ that are asymptotic to an element of ƒ
become orbits of ‰ı that are asymptotic to a prong curve on some boundary component of M (which is
an orbit of ‰ı). By splitting the stable/unstable foliations of ‰ open along the leaves through each orbit
of ƒ we obtain a pair of laminations in M . We will call these laminations the stable/unstable laminations
of ‰ı, respectively. Theorem 2.20 immediately implies the following statement:

Corollary 2.21 Suppose that a pseudo-Anosov flow ‰ is built from a veering triangulation V of M . The
following statements are equivalent.

� V is edge-orientable.

� The stable lamination of ‰ is transversely orientable.

� The stable lamination of ‰ı is transversely orientable.

Given a flow ‰ on an oriented 3-manifold N and an oriented surface S properly embedded in N , we will
say that S is transverse to ‰ if S is transverse to the orbits of ‰ and the orientation on TS ˚T‰ agrees
with the orientation of M . Another useful connection between veering triangulations and pseudo-Anosov
flows says that if a veering triangulation V is built from a pseudo-Anosov flow ‰ then all surfaces carried
by V are transverse to the blown-up flow ‰ı.

Theorem 2.22 (Landry, Minsky and Taylor [31, Theorem 5.1]) Suppose that V is a veering triangulation
of M encoding a pseudo-Anosov flow ‰ on some closed Dehn filling N of M . Then any surface carried
by V is transverse to the blown-up flow ‰ı on M .
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2.4 Veering triangulations and the Thurston norm

Given a compact oriented 3-manifold M , Thurston defined a seminorm k � kTh on H2.M; @M IR/ as
follows. Every integral class � 2 H2.M; @M IZ/ can be represented by a properly embedded surface
S �M [50, Lemma 1]. If S is connected, we set

��.S/Dmaxf0;��.S/g;

where �.S/ denotes the Euler characteristic of S . Otherwise, denote by S1; S2; : : : ; Sk connected
components of S and set

��.S/D

kX
iD1

��.Si /:

We define a quantity k�kTh as the infimum of ��.S/ over all surfaces S which are properly embedded
in M and represent �. The function k � kTh can be extended to H2.M; @M IQ/ by requiring linearity
on each ray through the origin in H2.M; @M IR/, and then to H2.M; @M IR/ by requiring continuity
[50, Section 1]. If every surface representing a nonzero class in H2.M; @M IZ/ has negative Euler
characteristic then k � kTh is a norm [50, Theorem 1], called the Thurston norm. If a properly embedded
surface S does not have any homologically trivial components and satisfies ��.S/D�k�kTh then it is
called a taut representative of � or a Thurston norm minimizing representative of �. The unit norm ball
BTh of k � kTh is a polytope with rational vertices [50, Theorem 2]. Thus we can speak about faces of the
Thurston norm ball.

A connection between the Thurston norm and pseudo-Anosov flows on closed hyperbolic 3-manifolds
was established by Fried and Mosher in the 80s and 90s. The first result in that direction concerned only
fibered faces:

Theorem 2.23 (Fried [13, Theorem 7]) Let N be a closed hyperbolic 3-manifold. Let F be a fibered
face of the Thurston norm ball in H2.N IR/. There is a unique , up to isotopy and reparametrization ,
circular pseudo-Anosov flow ‰ such that a class � 2H2.N IZ/ can be represented by a cross-section to ‰
if and only if � is in the interior of RC � F.

The importance of this result lies in the fact that when b1.N / > 1 there are infinitely many fibrations
lying over F, and thus one can construct infinitely many suspension flows on N : one for each fibration.
Theorem 2.23 implies that all these flows are the same up to isotopy and reparametrization. We will say
that the unique flow ‰ associated to a fibered face F dynamically represents F.

Mosher extended Fried’s result by showing that if a circular flow‰ dynamically represents a fibered face F
then � 2H2.N IZ/ can be represented by a surface that is almost transverse to ‰ if and only if � is in
RC �F [40, Theorem 1.4]. Almost transversality means that the surface is transverse to a slightly modified
flow ‰# obtained by dynamically blowing up finitely many closed orbits of ‰ into a collection of annuli;
see [41, Section 1.3] for details. If S is almost transverse to ‰ then the algebraic intersection of ŒS�
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with the homology class Œ� of every closed orbit  of ‰ is nonnegative. Conversely, if � 2H2.M IZ/ is
such that h�; Œ�i � 0 for every closed orbit  of ‰ then � can be represented by a taut surface which is
almost transverse to ‰ [41, Theorem 1.3.2]. Using these facts, Mosher extended the notion of dynamical
representation of faces of the Thurston norm ball to nonfibered faces [41]. Given a pseudo-Anosov flow ‰

on a closed 3-manifold N let C.‰/�H2.N IR/ be the nonnegative span of the second homology classes
whose algebraic intersection with the homology class of every closed orbit of ‰ is nonnegative. By the
aforementioned result [41, Theorem 1.3.2], we can think of C.‰/ as the cone of homology classes of
surfaces that are almost transverse to ‰. Associated to ‰ there is also a second cohomology class, the
Euler class of the normal plane bundle to ‰, denoted by �‰; see [41, Section 2.4] for a formula for the
computation of �‰. Its main feature is that it correctly computes the Thurston norm of surfaces that are
almost transverse to ‰ in the sense that if � 2 C.‰/ then k�kTh D��‰.�/ [41, page 262].

Definition 2.24 We say that a pseudo-Anosov flow ‰ on a closed hyperbolic 3-manifold N dynamically
represents a face F of the Thurston norm ball BTh in H2.N IR/ if C.‰/DRC � F and F is the maximal
face of BTh over which the Thurston norm agrees with ��‰.

By our earlier discussion and the fact that fibered faces are always top dimensional, the circular flow ‰

associated to a fibered face F as in Theorem 2.23 dynamically represents F. Furthermore, Mosher found
sufficient conditions on a noncircular pseudo-Anosov flow to dynamically represent a nonfibered face of
the Thurston norm ball in [41, Theorem 2.7]. In [41, Section 4] he presented an example of a noncircular
pseudo-Anosov flow which dynamically represents a top-dimensional nonfibered face of the Thurston
norm ball, as well as an example of a pseudo-Anosov flow which does not dynamically represent any
face of the Thurston norm ball. In the latter case C.‰/ is properly contained in the cone on some face of
the Thurston norm ball [40, Theorem 2.8]. The results of Mosher raise the following two questions:

Question 1 Let N be a closed 3-manifold. Given a nonfibered face F of the Thurston norm ball in
H2.N IR/, is there a pseudo-Anosov flow ‰ on N which dynamically represents F?

Question 2 Suppose that a nonfibered face F of the Thurston norm ball is dynamically represented by ‰.
Is the flow ‰ unique, up to isotopy and reparametrization?

Question 1 is still open. In Section 5 we will use veering triangulations to show that for some nonfibered
faces the answer to Question 2 is negative. Once we know that a face of the Thurston norm ball can be
represented by multiple distinct flows, we may ask another question:

Question 3 Suppose that a face F of the Thurston norm ball is dynamically represented by two topologi-
cally inequivalent flows ‰ and ‰0. How are ‰ and ‰0 related?

This problem also can be approached by employing veering triangulations. We partially answer this
question in the case of nonfibered faces of manifolds with nonempty boundary in Section 5.
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Both Fried and Mosher worked in the setup of closed 3-manifolds. However, the Thurston norm can be
defined for any compact oriented atoroidal 3-manifold M . Thus we can ask Questions 1–3 also in the
context of faces of the Thurston norm ball in H2.M; @M IR/ when @M ¤∅. Since we will work with
veering triangulations, considering 3-manifolds with @M ¤∅ is in fact more natural, and is a necessary
intermediate step when trying to answer the questions in the closed case. Instead of pseudo-Anosov
flows we then consider blown-up pseudo-Anosov flows. Definition 2.24 can be generalized to these flows
in a natural way. The fact that suspension flows of pseudo-Anosov homeomorphisms of surfaces with
boundary dynamically represent fibered faces of the Thurston norm ball of their mapping tori (ie an
analogue of Fried’s Theorem 2.23) was proved by Landry in [30, Theorem 3.5].

We will rely on results of Landry, Minsky and Taylor, stated below, connecting the Thurston norm directly
with veering triangulations. Recall from Section 2.1.3 that a veering triangulation V of M may carry
surfaces properly embedded in M . Each such surface is a Thurston norm minimizing representative of its
homology class [27, Theorem 3], and is transverse to the blown-up flow encoded by V [31, Theorem 5.1]
(stated here as Theorem 2.22). In analogy to the cone C.‰/ of homology classes of surfaces almost
transverse to a flow ‰, let C.V/ be the cone of homology classes of surfaces carried by V .

Definition 2.25 A veering triangulation V of M combinatorially represents a face F of the Thurston
norm ball in H2.M; @M IR/ if C.V/DRC � F.

When defining dynamical representation (Definition 2.24) we require not only equality of appropriate cones,
but also that F is the maximal face over which the Thurston norm agrees with minus the Euler class of the
normal plane bundle to the flow. In the setup of veering triangulations, maximality is always satisfied: C.V/
is equal to the cone where the Thurston norm agrees with minus the Euler class of V [32, Theorem 5.12].

Theorem 2.26 (Landry, Minsky and Taylor [32, Theorems 5.12 and 5.15]) If V is a layered or
measurable veering triangulation of M , then there is a (not necessarily top-dimensional ) face F of the
Thurston norm ball in H2.M; @M IR/ with C.V/DRC � .F/. Furthermore , F is fibered if and only if V
is layered.

The above theorem says that layered and measurable veering triangulations always combinatorially
represent some face of the Thurston norm ball. This is in contrast with pseudo-Anosov flows, for which it
is possible that C.‰/ is nonempty, but is a proper subset of the cone on some face of the Thurston norm
ball [41, Section 4]. It is also known that if a fibered face is combinatorially represented by a veering
triangulation, then this veering triangulation is unique [38, Proposition 2.7]. Note that not every fibered
face is combinatorially represented by some veering triangulation, because the circular flow associated to
the face might have singular orbits.

Remark 2.27 In the proof of [32, Theorem 5.12] the authors show that if RC �FD C.V/ then V not only
carries some taut representative of every � 2RC � F, but it carries every taut representative of �. Thus in
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particular if C.V/D C.V 0/ for some veering triangulations V and V 0 of a fixed manifold, then V carries S
if and only if V 0 carries S .

Remark 2.28 For a taut triangulation .T ; ˛/ let AutC.T j ˛/ denote the group of orientation-preserving
combinatorial automorphisms of T which preserve ˛. Recall from Section 2.2.3 that if V D .T ; ˛;B/ is
veering and � 2 AutC.T j ˛/ then V and �.V/D .�.T /; �.˛/; �.B// have the same taut signature in the
veering census. Thus the same entry in the veering census may encode multiple veering triangulations
representing different faces of the Thurston norm ball which lie in the same orbit of the action of
HomeoC.M/ on H2.M; @M IR/. Furthermore, veering triangulations V and �V also have the same taut
signature. They satisfy C.V/D�C.V/ and represent a pair of opposite faces of the Thurston norm ball.

Landry, Minsky and Taylor defined the flow graph of a veering triangulation V whose oriented cycles
correspond to orbits of the flow encoded by V . We refer the reader to [32, Section 4] for the definition of
the flow graph, and to [31, Section 6] for an explanation of the relationship between the flow graph of V
and orbits of the flow encoded by V . From their results it follows that the blown-up pseudo-Anosov flow
on the 3-manifold underlying a layered or measurable veering triangulation dynamically encodes a face
of the Thurston norm ball.

Theorem 2.29 (Landry, Minsky and Taylor [31, Theorem 6.1; 32, Theorem 5.1]) Let V be a veering
triangulation of M . Suppose that V encodes a pseudo-Anosov flow ‰ on some closed Dehn filling N
of M . Let ‰ı be the associated blown-up flow on M . Then

C.‰ı/D C.V/:

Under additional assumptions, we also have an analogous theorem concerning the pseudo-Anosov
flow ‰ on N . There is a (potentially empty) subcone C.VjN/ � C.V/ �H2.M; @M IR/ of homology
classes of surfaces carried by V whose boundary components have slopes consistent with the Dehn
filling slopes yielding N out of M . These surfaces cap off to embedded surfaces in N . We denote by
CN .V/�H2.N IR/ the nonnegative span of homology classes of these capped-off surfaces.

Theorem 2.30 (Landry [29, Theorem A] and Landry, Minsky and Taylor [31, Theorem 6.1]) Let V be
a veering triangulation of M . Suppose that V encodes a pseudo-Anosov flow ‰ on some closed Dehn
filling N of M such that the core curves of the filling solid tori are singular orbits of ‰ with at least three
prongs. Then N is hyperbolic. Furthermore , if CN .V/¤∅, there is a face F of the Thurston norm ball in
H2.N IR/ such that RC � FD CN .V/D C.‰/.

The face F is determined by the Euler class �‰ of the normal plane bundle to ‰ in the sense that
�‰.�/ D �k�kTh for every � 2 RC � F. Mosher’s example of a pseudo-Anosov flow ‰ on a closed
hyperbolic 3-manifold N which does not dynamically represent a whole face of the Thurston norm ball
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in H2.N IR/ is such that there is a class � 2 H2.N IR/ for which �‰.�/ D �k�kTh, but which pairs
negatively with the homology class of some nonsingular closed orbit of ‰ [41, Section 4]. In this case
C.‰/ is a proper subset of the cone on some face of the Thurston norm ball inH2.N IR/. This “pathology”
does not happen under the assumptions of Theorem 2.30 because of Theorem 2.29 and the fact that if
h�; Œ�i< 0 for a singular orbit  with at least three prongs then �‰.�/ < k�kTh; see [41, pages 259–261].

3 Mutations of veering triangulations

For the remainder of this paper by X jY we denote the metric completion of X �Y with respect to the
path metric on X �Y induced from X .

Let S be an oriented surface properly embedded in an oriented compact 3-manifold M so that any two
boundary components of S contained in the same boundary component of M have the same orientation.
We say that M jS is the cut manifold obtained from M by decomposing it along S . The orientation on S
determines a transverse orientation on S via the right-hand rule. By SC we denote the boundary copy of
S in M jS which is cooriented out of M jS , and by S� we denote the boundary copy of S in M jS which
is cooriented into M jS . Any homeomorphism ' W SC! S� gives rise to a mutant manifold M ' obtained
fromM jS by gluing SC to S� via '. This manifold admits an embedded surface S' homeomorphic to S .
We say thatM ' is obtained fromM by mutating it along S via '. We also say that S is a mutating surface.

In this section we approach the following problem: assuming that M admits a veering triangulation V D
.T ; ˛;B/, when does the mutant manifoldM ' admit a veering triangulation? We restrict our considerations
to the case when the mutating surface is carried by V with weights wD .wf /f 2F and the homeomorphism
' comes from an orientation-preserving combinatorial automorphism ' of the ideal triangulation QV;w

of Sw ; we discuss this triangulation in detail in Section 3.2. In Sections 3.1 and 3.3 we recall the notions
of combinatorial isomorphisms of triangulations and sutured manifolds, respectively. Section 3.4 is
devoted to analyzing a certain cut triangulation T jFw and its relation to the cut manifold M jS�w . In
Section 3.5, given a pair .Sw ; '/, we define a mutant triangulation T ' of T . In Section 3.6 we find a
sufficient and necessary condition on ' that guarantees T ' is an ideal triangulation of M ' . In Section 3.7
we find a sufficient and necessary condition for the existence of a taut structure ˛' on T ' , and furthermore
conditions which ensure that .T ' ; ˛'/ admits a veering structure B' . In Section 3.8 we generalize this
result to give sufficient and necessary conditions on .T ' ; ˛'/ to admit a veering structure. We also
generalize a veering mutation .T ; ˛;B/ .T ' ; ˛' ; B'/ to a veering mutation with insertion.

3.1 Triangulations: face identifications and combinatorial automorphisms

We will use a taut ideal triangulation .T ; ˛/ of a 3-manifold to construct another ideal triangulation of a,
typically different, 3-manifold using a combinatorial automorphism of a surface carried by .T ; ˛/. In this
subsection we explain the standard conventions used to encode triangulations and their combinatorial
automorphisms.
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Recall from Section 2 that by an ideal triangulation of a compact 3-manifold M we mean an expression
of M � @M as a collection of finitely many ideal tetrahedra with triangular faces identified in pairs by
homeomorphisms which send vertices to vertices. An identification between a face f of tetrahedron t and
a face f 0 of tetrahedron t 0 can be encoded by a bijection between their vertices. In our construction we
will “forget” identifications between a subset of faces of the triangulation, and replace them with different
ones. The whole procedure will be governed by a combinatorial automorphism of a carried surface.

Suppose that Sw is a surface carried by .T ; ˛/ as in Section 2.1.3. Since Sw is built out of triangles and
edges of T , it inherits an ideal triangulation from T . We discuss this triangulation in detail in Section 3.2.
For now, we will denote this triangulation of Sw by Q. Similarly as in the case of a 3-dimensional
triangulation, Q is an expression of Sw � @Sw as a collection of finitely many ideal triangles with edges
identified in pairs by homeomorphisms which send vertices to vertices.

We recall the definition of a combinatorial isomorphism between a pair of 2-dimensional triangulations:

Definition 3.1 Let Q1 and Q2 be finite (ideal) 2-dimensional triangulations. For i D 1; 2 let Fi and Ei
denote the sets of triangles and edges of Qi , respectively. A combinatorial isomorphism from Q1 to Q2
consists of

� a bijection ' W F1! F2,

� for each f 2F1 a bijection 'f between the edges of f and edges of '.f / such that if edges e of f
and e0 of f 0 are identified in Q1 then edges 'f .e/ of '.f / and 'f 0.e0/ of '.f 0/ are identified in Q2.

If for every triangle of Q1 and Q2 we fix a bijection between its edges and vertices, we can view 'f as a
bijection between vertices of f and vertices of f 0. It is standard to fix this bijection so that a vertex v
of f is associated to the edge of f opposite to v.

Different combinatorial isomorphisms from Q1 to Q2 may have the same bijection ' WF1!F2. Nonethe-
less, for simplicity we often abuse the notation and denote a combinatorial isomorphism by ' WQ1!Q2,
understanding that it carries information about both a bijection ' W F1! F2 and bijections f'f j f 2 F1g.

If Q is an ideal triangulation then a combinatorial isomorphism ' W Q! Q is called a combinatorial
automorphism of Q. We denote the group of orientation-preserving combinatorial automorphism of Q by
AutC.Q/. It follows directly from Definition 3.1 that AutC.Q/ is finite.

We sometimes refer to two 3-dimensional ideal triangulations as either combinatorially isomorphic or
not. A combinatorial isomorphism between a pair of 3-dimensional ideal triangulations T1 and T2 is
determined by a bijection ' from the set of tetrahedra of T1 to the set of tetrahedra of T2 and a collection
of permutations 't , one for each tetrahedron t of T1, between the faces of tetrahedron t of T1 and faces
of tetrahedron '.t/ such that if faces f of t and f 0 of t 0 are identified in T1 then faces 't .f / of '.t/ and
't 0.f

0/ of '.t 0/ are identified in T2. In other words, it suffices to replace in Definition 3.1 triangles by
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wf D 3

f
Lf WD L.f /

a. Lf /

a2. Lf /D U.f /

Figure 7: A face f with weight 3. Coorientation on f determines an order on the copies of f
in QV;w . Shaded edges are ak. Le/, akC1. Le/ and akC2. Le/, from bottom to top, for an edge e of f
and some 0� k � we � 3.

tetrahedra and edges by triangular faces. The pair .'; f'tg/ determines images of edges of T1 because,
under the bijection which sends face f of t to a vertex of t opposite to f , permutations 't contain
information about where the vertices are sent, and thus where the pairs of vertices are sent.

3.2 Triangulation of a surface carried by a veering triangulation

Let V D .T ; ˛;B/ be a finite veering triangulation of M with the set T of tetrahedra, the set F of
2-dimensional faces and the set E of edges. Let w D .wf /f 2F be a weight system on .T ; ˛/. We denote
the triangulation of Sw inherited from T by QV;w . A properly embedded surface S�w obtained by slightly
pulling apart overlapping regions of Sw also can be seen as triangulated by QV;w . Recall that each
triangle of V is equipped with a trivalent train track; see Figure 6. Therefore the surfaces Sw and S�w
come equipped with a train track dual to their triangulation QV;w . We will denote this train track by �V;w
and call it the stable train track of Sw or S�w .

Let Fw D ff 2 F j wf > 0g and Ew D fe 2 E j we > 0g. Given f 2 Fw there are wf copies of f in
the triangulation QV;w , and given e 2Ew there are we copies of e in QV;w . Coorientation on the faces
of V and a fixed embedding of S�w in M determine a linear order on the copies of a given simplex of
V in QV;w : from the lowermost to the uppermost; see Figure 7. Denote by FV;w and EV;w the sets of
triangles and edges of QV;w , respectively. We define maps

L W Fw [Ew ! FV;w [EV;w and U W Fw [Ew ! FV;w [EV;w

such that, given a simplex x 2 Fw [Ew , the simplex L.x/ denotes the lowermost copy of x in QV;w and
U.x/ denotes the uppermost copy of x in QV;w . Observe that both L and U are injective. To simplify
notation we will sometimes denote L.x/ by Lx. Given f 2Fw we will denote by �L

f
and �U

f
the bijections

between the edges of f and the corresponding edges of L.f / and U.f /, respectively. Furthermore
we define

a W .FV;w [EV;w/�U.Fw [Ew/! .FV;w [EV;w/�L.Fw [Ew/
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such that if y … U.Fw [Ew/ then a.y/ is the simplex of QV;w which is a copy of the same simplex of
V as y and lies immediately above y in M ; see Figure 7. Simplex a.y/ exists by the assumption that
y … U.Fw [Ew/ (is not uppermost), and is never in L.Fw [Ew/, because lowermost copies do not
have copies of the same simplex below them. If wx D k � 0 then a0. Lx/, a. Lx/; : : : ; ak�1. Lx/ are defined,
where by a0. Lx/ we mean Lx.

3.3 Sutured manifolds

Let S be an oriented surface properly embedded in an oriented 3-manifold M with empty or toroidal
boundary. Assume additionally that any two boundary components of S contained in the same boundary
component of M have the same orientation. Then the cut manifold M jS is an example of a sutured
manifold, defined below.

Definition 3.2 [19, Definition 3.1] A sutured manifold .N; / is a compact oriented 3-manifold N
together with a set  � @N of pairwise-disjoint annuli A./, called sutured annuli, and tori T ./, called
sutured tori, such that

� the interior of each component of A./ contains a homologically nontrivial oriented simple closed
curve called a suture,

� every connected component of R./D @N � int./ is oriented so that every connected component
of @R./ when equipped with the boundary orientation represents the same homology class in
H1./ as some suture.

A fixed orientation of .N; / endows R./ with coorientation. This determines a decomposition of R./
into RC./, where the coorientation points out of N , and R�./ where the coorientation points into N .
We call RC./ the top boundary of the sutured manifold N , and R�./ its bottom boundary. We also
denote them by @CN and @�N , respectively. A boundary component of a sutured annulus A of .N; /
that is contained in @CN (respectively, @�N ) is called its top (respectively, bottom) boundary and denoted
by @CA (respectively, @�A).

The pair .M jS; @M j@S/ is an example of a sutured manifold. Its sutured tori correspond to the boundary
tori of M that are disjoint from S . A boundary torus of M containing k boundary components of S gives
rise to k sutured annuli in .M jS; @M j@S/. For brevity, we often say that M jS is a sutured manifold,
without explicitly indicating its sutured tori and annuli.

3.4 Cutting veering triangulations along carried surfaces

Let V be a finite veering triangulation of a 3-manifold M with the set T of tetrahedra, the set F of
triangular faces and the set E of edges. Let Sw be a surface properly carried by V with weights .wf /f 2F .
As in Section 3.2, we denote by Fw the set of f 2 F for which wf > 0.

Recall from Section 2.2 that the calligraphic letter V implicitly denotes three pieces of combinatorial
data: an ideal triangulation T , a taut structure ˛ and a veering structure B. We denote the result of
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decomposing T along Fw by T jFw . All faces of T jFw inherit coorientations from V D .T ; ˛;B/. We
denote this choice of coorientations on the faces of T jFw by ˛jFw . By FCw we denote the boundary
triangles of T jFw which are cooriented out of T jFw and by F�w the boundary triangles of T jFw which
are cooriented into T jFw . Finally, after cutting the stable branched surface B along B\Fw , we obtain a
branched surface BjFw . For simplicity, we denote the triple .T jFw ; ˛jFw ;BjFw/ by VjFw . In Sections
3.4–3.6 we do not make use of this (partial) veering structure, and consider only the pair .T jFw ; ˛jFw/.

The set Fw can be seen as a branched surface embedded in M which fully carries S�w . We denote the
(sutured) manifold underlying T jFw by M jFw . Note that T jFw is not an ideal triangulation of M jFw
in the sense introduced at the beginning of Section 2. The manifold M jFw is expressed as a union of
ideal tetrahedra of T jFw , but only some of their faces are identified in pairs by homeomorphisms sending
vertices to vertices. The remaining faces make up the triangulations of the top and bottom boundaries
of M jFw . To avoid any confusion we call T jFw a cut triangulation. In this section we will establish a
relationship between M jFw and M jS�w .

Recall from Section 3.2 that S�w is triangulated by QV;w . We denote the corresponding triangulations of
S�Cw and S��w in M jS�w by QCV;w and Q�V;w , respectively. Given a simplex x of QV;w we denote by xC

and x� the corresponding simplices of QCV;w and Q�V;w , respectively. Notation that we use below was
introduced in Section 3.2.

Let e 2Ew D fe 2E j we > 0g. Recall that Le is a shorthand for L.e/, the lowermost copy of e in QV;w .
Suppose that we D k � 2. Then for i D 1; 2; : : : ; k� 1 there is a disk Dei properly embedded in M jS�w
whose boundary decomposes into four arcs: one arc corresponding to the edge ai�1. Le/� of Q�V;w , one
arc corresponding to the edge ai . Le/C of QCV;w and two arcs each of which joins ai�1. Le/� to ai . Le/C and
intersects a suture of .M jS�w ; @M j@S

�
w/ exactly once; see Figure 8. We call ai�1. Le/� the bottom base

of the disk Dei and ai . Le/C its top base. We denote them by @�Dei and @CDei , respectively. The set
@vD

e
i D @D

e
i � int.@CDei /� int.@�Dei / is called the vertical boundary of Dei .

we D 3

Le

a. Le/

a2. Le/

LeC

a. Le/C

a2. Le/C

Le�

a. Le/�

a2. Le/�

De
1

De
2

Figure 8: Two edge product disks De
1 and De

2 associated to an edge e 2E of weight 3. For each
copy of e in QV;w we draw only one triangle attached to it so that the disksDe

1 andDe
2 are clearly

visible. To simplify notation we denote L.e/ by Le.
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M M jFw

Fw
1

1

1

2
0

1

M M jS�w Mw

S�w Dw

Figure 9: Top: Cutting along Fw . A weight on a face is indicated by the number immediately
above the face. Bottom: First arrow: cutting along an embedded surface S�w . Second arrow:
cutting along edge product disks.

Disk Dei intersects the sutures of .M jS�w ; @M j@S
�
w/ exactly twice. In the theory of sutured manifolds,

properly embedded disks with this property are called product disks.

Let Dw denote the set of product disks in M jS�w associated to the edges of V with we > 1. We say that
an element of Dw is an edge product disk. Note that M jS�w can admit more product disks, which are
not elements of Dw . Let Mw D .M jS

�
w/jDw . Since Mw arises as a result of decomposing a sutured

manifold along finitely many product disks, it is also a sutured manifold; see [19, Definition 3.8]. Figure 9
illustrates the relationship between M jFw and Mw that we formalize in Lemma 3.4, after introducing
necessary notation below.

Triangulations QCV;w ;Q
�
V;w �M jS

�
w determine a pair of triangulations QCV;w and Q�V;w in the top and

the bottom boundary of Mw , respectively. For any triangle g˙ of Q˙V;w there is an associated triangle g˙

of Q˙V;w . We will always assume that the indexing of edges/vertices of g˙ is the same as in g˙. The
only difference between Q˙V;w and Q˙V;w is that there might be triangles g˙1 and g˙2 of Q˙V;w which are
identified along an edge e1 of g˙1 and an edge e2 of g˙2 such that the corresponding edges Ne1 of g˙1
and Ne2 of g˙2 are not identified in Q˙V;w . This happens if and only if the common edge of g˙1 and g˙2 is
the top or bottom base of an edge product disk from Dw .

For any f 2 F with wf > 1, the sutured manifold Mw admits .wf � 1/ connected components of
the form f � Œ0; 1�. We call them triangular prisms, and denote the set of such triangular prisms in
Mw by Pw . Each P 2 Pw is a sutured 3-ball, so we can speak about its top and bottom boundaries
@CP and @�P , respectively. Observe that if @�P D g� 2 F�V;w then @CP D a.g/C 2 FCV;w . We call
@vP D @P � int.@CP /� int.@�P / the vertical boundary of P .
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Figure 10: Left: the product D disk in M jS�w . Right: two disks contained in a sutured annulus of
Mw arising from cutting M jS�w along D.

Each edge product diskD 2Dw gives rise to two disksD0 andD00 contained in the sutured annuli ofMw ;
see Figure 10. We denote the set of such disks contained in the sutured annuli of Mw by D.Mw/. Let

.3.3/ coll WMw ! coll.Mw/

be the map which vertically collapses every D 2D.Mw/ to @�D and every P 2 Pw to @�P .

Lemma 3.4 The image of Mw�Pw under coll is homeomorphic toM jFw . Furthermore , for any f 2Fw ,

� if gC is a triangle of @C.Mw �Pw/ with coll.gC/D f C then gC D L.f /C,

� if g� is a triangle of @�.Mw �Pw/ with coll.g�/D f � then g� D U.f /�.

Proof The manifold Mw can be seen as a sutured manifold M j.S�w [Dw/. Observe that S�w [Dw can
be obtained from Fw in the following three steps:

(1) Replace every edge e in the branch locus of Fw by e� Œ0; 1�, keeping the triangles that were on the
two sides of e attached to e� f0g � e� Œ0; 1�.

(2) For every f 2 Fw with wf > 1 add an additional .wf � 1/ copies of f and for every edge e of f
attach them along e� f0g immediately above f .

(3) For every e � Œ0; 1� that occurs as a result of (1), spread the triangles that are on the two sides of
e� f0g evenly along e� Œ0; 1�.

The last step is possible because edges in the branch locus of Fw correspond to the edges of V with
weight greater than one, and thus there are at least two triangles attached to either side of e� Œ0; 1�.

It follows that collapsing every D 2 D.Mw/ vertically to @�D collapses S�w [Dw into a branched
surface whose branch locus can be identified with that of Fw , but which has multiple parallel copies
of f 2 Fw whenever wf > 1. Each region between two parallel copies of f corresponds a triangular
prism P with its vertical boundary collapsed and such that @�P D ak. Lf /� and @CP D akC1. Lf /C for
some 0 � k � wf � 2 (recall that Lf D L.f /). Therefore collapsing each such P into @�P results in
collapsing them all to the lowermost copy of f . Performing this for all f 2 Fw yields Fw . It follows
that coll.Mw �Pw/ can be identified with M jFw .
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The “furthermore” part follows from the observation that L.f /C is the only copy of f in QCV;w which
does not have a triangular prism below it, and U.f /� is the only copy of f in Q�V;w which does not have
a triangular prism above it.

3.5 The mutant triangulation

In this subsection we explain how to construct the mutant triangulation T ' out of the cut triangulation
.T jFw ; ˛jFw/, defined in Section 3.4, and a combinatorial automorphism ' 2AutC.QV;w/. This mutant
triangulation is not guaranteed to be veering even when we do have a partial veering structure BjFw on
.T jFw ; ˛jFw/. In Section 3.6 we give sufficient and necessary conditions on ' that guarantee T ' is an
ideal triangulation of M ' . In Section 3.7 we put additional restrictions on ' which allow us to define taut
and veering structures on T ' , thus resulting in a veering triangulation V' D .T ' ; ˛' ;B'/.

Recall from Section 3.2 that FV;w denotes the set of triangles of QV;w . A combinatorial automorphism
' 2AutC.QV;w/ gives a bijection ' WFV;w!FV;w and a set of bijections f'ggg2FV;w between the edges
of g 2 FV;w and the edges of '.g/ 2 FV;w . Using the natural correspondence between the triangulations
QCV;w and Q�V;w in the top and bottom boundaries of M jS�w , respectively, we can view ' 2 AutC.QV;w/

as a combinatorial isomorphism ' WQCV;w!Q�V;w . Thus we can use ' to construct a mutant manifoldM '

out of M jS�w .

However, as explained in Section 3.4, when we work with the triangulation .T ; ˛/ of M , we generally
do not cut along S�w , but along Fw . Thus to construct the mutant triangulation T ' we need to specify
a regluing map r.'/ D .r' W FCw ! F�w ; .r

'

fC
/
fC2F

C
w
/ determined by ', consisting of a bijection

r' W FCw ! F�w and a family of bijections .r'
fC
/
fC2F

C
w

between edges of f C 2 FCw and edges of
r'.f C/ 2 F�w . The map r.'/ has to be such that T ' obtained from .T jFw ; ˛jFw/ by identifying FCw
with F�w via r.'/ is, at least under certain conditions, a triangulation of M ' . In this section we will
define r.'/. A sufficient and necessary condition on ' for the mutant triangulation to be a triangulation
of M ' appears in Theorem 3.10.

Below we use notation introduced in Section 3.2. In particular, recall that given f 2 Fw , by U.f / and
L.f / we denote the uppermost and the lowermost copies of f in QV;w , respectively. Furthermore, let
� WMw !M jS�w be the surjective immersion, induced by cutting M jS�w along Dw , which sends gC

to gC and g� to g� for every g 2 FV;w . Given P 2 Pw we will say that �.P / is a triangular prism in
M jS�w . To simplify notation, we set P � D �.P / and @˙P � D �.@˙P /.

Before we formally define r.'/ let us briefly explain the idea behind its definition. A triangle gC of QCV;w
does not have a triangular prism below it if and only if it is in L.Fw/C; see Figure 7. Thus there is
a natural identification between L.Fw/C and FCw . In particular, r'.f C/ will depend on '.L.f /C/.
Similarly, a triangle g� of Q�V;w does not have a triangular prism above it if and only if it is in U.Fw/�.
Therefore we can identify U.Fw/� with F�w . If '.L.f /C/ is the bottom base of a triangular prism P �
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then it is not immediately clear to which triangle of F�w the map r' should send f C. In this case we flow
upwards through the prism P � and look at '.@CP �/. If it is in U.Fw/� then the image of f C under r'

will be the triangle f 0� with U.f 0/� D '.@CP �/. Otherwise, we continue flowing upwards through
triangular prisms. Below we describe this procedure more formally and prove that it always terminates.

Given f 2Fw we define a sequence g'.f /D .gi /i�1 of triangles of QV;w as follows. The first element g1
is equal to '.L.f //. For i � 1 if gi 2 U.Fw/ we are done. Otherwise, there is another triangle a.gi /

of QV;w which is a copy of the same triangle of .T ; ˛/ as gi and lies immediately above gi . Then we set
giC1 D '.a.gi //.

Lemma 3.5 For every f 2 Fw the sequence g'.f / is finite. Furthermore , if f; f 0 2 Fw are distinct
then the last elements of g'.f / and g'.f 0/ are distinct.

Proof Since the triangulation QV;w consists of finitely many triangles and gi completely determines giC1,
if the sequence g'.f / is infinite then it is eventually periodic. That is, there are integers m � 0 and
N � 1 such that gmCj D gmCkNCj for any j 2 f1; 2; : : : ; N g and k � 0. Pick minimal such m and N .
We can write g'.f / as

g'.f /D g1; g2; : : : ; gm; .h1; : : : ; hN /; .h1; h2; : : : ; hN /; : : : :

First observe that we can assume that m<N . Otherwise, using the definition of g'.f / and the fact that '
is a bijection on the set of triangles of QV;w , we get that gm�kDhN�k for any k 2 f0; 1; : : : ; N �1g. This
means that the period .h1; : : : ; hN / starts immediately after gm�N if m>N , or there is no preperiodic
sequence at all if mDN . This is a contradiction with the minimality of m. On the other hand, if m<N
we obtain the equality L.f / D a.hN�m/. This is a contradiction, because the lowermost copy of f
in QV;w does not have any copies of f below it, so in particular it cannot lie immediately above hN�m.
Thus g'.f / is finite.

Now suppose that for some 1� k � l we have

g'.f /D .g1; g2; : : : ; gk/ and g'.f /D .g01; g
0
2; : : : ; g

0
l/:

If gk D g0l then g1 D g0l�kC1. If l < k we get L.f /D a.g0
l�k

/, which is a contradiction, because L.f /
is the lowermost copy of f in QV;w while a.g0

l�k
/ lies above g0

l�k
. If k D l we get L.f /D L.f 0/ and

thus f D f 0 by the injectivity of L.

Let f 2 Fw . Denote by k � 1 the length of the sequence g'.f /. By definition, gi … U.Fw/ for all
i 2f1; 2; : : : ; k�1g and gk 2U.Fw/. SinceU is injective, there is a unique f 02Fw such that gkDU.f 0/.
Let f C and f 0� be the triangles corresponding to f and f 0 in FCw and F�w , respectively, and set

r'.f C/D f 0� 2 F�w :

Lemma 3.5 and injectivity of U imply that r' is a bijection. Thus it determines a pairing between faces
of the top boundary FCw of the cut triangulation .T jFw ; ˛jFw/ and faces of the bottom boundary F�w
of .T jFw ; ˛jFw/. To define a mutant triangulation built out of .T jFw ; ˛jFw/ it therefore remains to
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specify, for every f 2 Fw , a bijection r'
fC

between the edges of f C and that of f 0�. As in Section 3.2,
to simplify notation we will denote L.f / by Lf . Recall from Definition 3.1 that ' associates to Lf a
bijection ' Lf between the edges of Lf and edges of g1 D '. Lf /. Analogously, for i D 1; 2; : : : ; k � 1
there is a bijection 'i between the edges of a.gi / and edges of giC1 D '.a.gi //. Let ıi be the bijection
between the edges of gi and edges of a.gi / such that ıi .e/ D a.e/ for any edge e of gi . Recall from
Section 3.2 that �L

f
and �U

f
denote the bijections between the edges of f and edges of L.f / and U.f /,

respectively. Using this we set

r
'

fC
D .�Uf 0 /

�1
ı'k�1 ı ık�1 ı'k�2 ı ık�2 ı � � � ı'1 ı ı1 ı' Lf ı �

L
f :

We will also write r'
fC
D .�U

f 0
/�1ı.'iııi /

k�1
iD1 ı' Lf ı�

L
f

for brevity. We define the mutant triangulation T '

as the triangulation obtained from .T jFw ; ˛jFw/ by identifying a triangle f C 2 FCw with the triangle
r'.f C/ 2 F�w in such a way that an edge e of f C is identified with the edge r'

fC
.e/ of r'.f C/.

Observe that T ' is an ideal triangulation of M r.'/ which is not necessarily homeomorphic to M ' .
We explore this problem in the next subsection. For now, we state the relationship between r.'/ D
.r' W FCw ! F�w ; .r

'

fC
/
fC2F

C
w
/ and ' D .' WQCV;w !Q�V;w ; .'g/gC2FCV;w /.

Lemma 3.6 Let f 2 Fw . Suppose that

r'.f C/D f 0� and r
'

fC
D .�Uf 0 /

�1
ı .'i ı ıi /

k�1
iD1 ı' Lf ı �

L
f :

Then:

(1) k D 1 if and only if '.L.f /C/D U.f 0/� and their vertices are identified by ' Lf .

(2) k � 2 if and only if there is a sequence .P �1; : : : ; P
�
k�1

/ of triangular prisms in M jS�w with the
following properties:
� '.L.f /C/D @�P �1 and their vertices are identified by ' Lf ,

� the vertex v of @�P �i is below the vertex ıi .v/ of @CP �i for i D 1; 2; : : : ; k� 1,
� '.@CP �i /D @

�P �iC1 and their vertices are identified by 'i for i D 1; 2; : : : ; k� 2,
� '.@CP �

k�1
/D U.f 0/� and their vertices are identified by 'k�1.

Denote by P.f / the quotient space of L.f /C[
�Sk�1

iD1 P
�
i

�
[U.f 0/� by the identifications listed

above. Vertically collapsing P.f / results in an identification of L.f /C with U.f 0/� with vertex
correspondence given by .'i ı ıi /k�1iD1 ı' Lf .

Proof We view ' as a combinatorial automorphism ' W QCV;w ! Q�V;w . The assumption on r'
fC

implies that g'.f / has length k. Let g'.f / D .g1; : : : ; gk/. By the definition of g'.f / we get that
'.L.f /C/2U.Fw/

� if and only if kD 1. In this case indeed '.L.f /C/D g�1 DU.f
0/� and the vertex

correspondence between these triangles is given by ' Lf .

For the case k � 2 the existence of P �1; P
�
2; : : : ; P

�
k�1

follows from the definition of g'.f /. Namely,
since g�i … U.Fw/

� and g�iC1 D '.a.gi /
C/ for 1� i � k� 1, there are prisms P �1; : : : ; P

�
k�1

in M jS�w
satisfying @�P �i D g

�
i and @CP �i D a.gi /

C, and such that identifications on @˙P �i are as required.
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combinatorially .T ; ˛/ .T jFw ; ˛jFw/ T '

topologically M M jFw M r.'/

M jS�w M '

Mw M
x'
w

Fw

Š

r.'/

Š Š

Fw

S�w

r.'/

'

Dw

x'

Figure 11: Each straight arrow corresponds to cutting the 3-manifold on the left of the arrow
open along the set specified above the arrow. Each squiggly arrow corresponds to gluing the top
boundary of the sutured manifold on the left of the arrow to its bottom boundary via the map
specified above the arrow.

3.6 The manifold underlying the mutant triangulation

The mutant triangulation T ' defined in Section 3.5 is an ideal triangulation of M r.'/. In this section we
study the relationship between M r.'/ and M ' , and derive sufficient and necessary condition for them to
be homeomorphic.

Recall from Lemma 3.4 that M jFw is more closely related to Mw D .M jS
�
w/jDw than it is to M jS�w . As

in Section 3.4, we will denote the triangulations in the top and bottom boundary ofMw by QCV;w and Q�V;w ,
respectively. A combinatorial isomorphism ' WQCV;w !Q�V;w determines a map x' WQCV;w !Q�V;w via
x'. Nf /D'.f / and x' Nf D'f . Note that x' is not a combinatorial automorphism in the sense of Definition 3.1,
as it can map a pair nonadjacent triangles to a pair of adjacent triangles, and vice versa. Nonetheless,
we can use x' to construct a mutant manifold M x'w out of Mw . Figure 11 summarizes relationships
between M ' , M r.'/ and M x'w .

The relationship between M ' and M x'w is the easiest to state:

Lemma 3.7 M
x'
w is obtained from M ' by cutting it along finitely many (potentially zero) disks , annuli

and Möbius bands.

Proof Recall that Mw D .M jS
�
w/jDw is obtained from M jS�w by cutting it along finitely many product

disks. These cuts persists in the mutant manifold M x'w . Since x' maps Nf to '.f / with vertex correspon-
dence 'f , these cuts are the only difference between M ' and M x'w .

Observe that under ' the top boundary of an edge product disk D 2Dw can be mapped to the bottom
boundary of an edge product disk D0 2Dw . Thus edge product disks can match up into annuli or Möbius
bands in M ' which are cut in M x'w .

We will say that the disks, annuli and Möbius bands in M ' coming from edge product disks are vertical.
Below we define a property of ' which ensures the existence of vertical annuli or Möbius bands:
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Definition 3.8 Let Sw be a surface properly carried by a veering triangulation V . We say ' 2AutC.QV;w/

aligns edge product disks if there is a sequence of edge product disks .Di /i2I �Dw in M jS�w which
glue up to an annulus or a Möbius band in M ' . Otherwise we say that ' misaligns edge product disks.

In Theorem 3.10 we will prove that the mutant triangulation T ' is an ideal triangulation of M ' if and
only if ' misaligns edge product disks. The forward direction will rely on an observation that when '
aligns edge product disks, M ' and M r.'/ either have different numbers of connected components or
have nonhomeomorphic boundaries. The boundary of M ' is composed of sutured annuli and tori of
M jS�w . Since S�w is an oriented surface in an oriented 3-manifold M , it induces orientations on the
boundaries of sutured annuli of M jS�w . Furthermore, since ' is orientation preserving, it sends a top
boundary of a sutured annulus of M jS�w to a bottom boundary of a sutured annulus of M jS�w in an
orientation-preserving way. It follows that all boundary components of M ' are tori.

Lemma 3.4 implies that by identifying, for every f 2 Fw , f C with L.f /C and f � with U.f /�, we
can view M r.'/ as a quotient space of coll.Mw �Pw/. Therefore boundary components of M r.'/ are
composed of the images of sutured annuli and tori of Mw �Pw under the collapsing map (3.3). Given
a sutured annulus A of M jS�w the image coll.��1.A// is either an annulus or a disjoint union of bigon
disks and intervals. The latter option happens if and only if A\Dw ¤∅. In this case Dw separates A
into finitely many rectangles that we call Dw -rectangles.

Definition 3.9 Let A be a sutured annulus of M jS�w . We say that a subset R � A is a Dw -rectangle if
there are edge product disks D;D0 2Dw such that the boundary of R decomposes into four arcs: one arc
@CR contained in @CA, one arc @�R contained in @�A, one arc contained in @vD and one arc contained
in @vD0. We call the last two arcs in the boundary of R the vertical sides of R.

We say that a Dw -rectangle R is prismatic if there is a triangular prism P 2 Pw such that P \ ��1.R/D
��1.R/. Otherwise we say that R is nonprismatic. If R is nonprismatic then coll.��1.R// is a bigon
disk. In this case the boundary of coll.��1.R// decomposes into the positive boundary @C coll.��1.R//D
coll.��1.@CR//, and the negative boundary @� coll.��1.R//D coll.��1.@�R//; see Figure 22. When R
is prismatic, coll.��1.R// is an interval.

Theorem 3.10 The mutant triangulation T ' is an ideal triangulation of M ' if and only if ' misaligns
edge product disks.

Proof By Lemma 3.4, we can view M r.'/ as a quotient space of coll.Mw �Pw/. The map

@C.coll.Mw �Pw//! @�.coll.Mw �Pw//

by which we quotient coll.Mw �Pw/ to get M r.'/ is obtained from

r.'/D .r' W FCw ! F�w ; .r
'

fC
/
fC2F

C
w
/
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R

(nonprismatic)
coll.��1.R//

@C coll.��1.R/

@� coll.��1.R/

R

(prismatic)
coll.��1.R//

Figure 12: Top: a nonprismatic Dw -rectangle and its image under coll. Bottom: a prismatic
Dw -rectangle and its image under coll. Red vertical intervals correspond to the intersection of R
with Dw .

by modifying the bijections r'
fC

to make up for the identifications f C � L.f /C and f � � U.f /�. For
simplicity, we abuse the notation and denote this map by r.'/. Let V 'w denote the set of vertical annuli
and Möbius bands in M ' . This set is nonempty if and only if ' aligns edge product disks.

First suppose that ' aligns edge product disks.

Case 1 There is a boundary torus T of M ' such that T \V 'w ¤∅ and T is not composed entirely of
prismatic Dw -rectangles.

Observe that T \ V 'w consists of finitely many parallel simple closed curves in T . We denote the
connected components of T \V 'w by d1; : : : ; dr for r � 1, and we assume that they are circularly ordered
so that di and diC1 cobound an annulus Xi � T whose interior is disjoint from V

'
w (the subscript r is

taken modulo r). Let A1; : : : ; AN be sutured annuli of M jS�w such that '.@CAj /D @�AjC1 for every
j D 1; 2; : : : ; N (the subscript j is taken modulo N ) and T is the quotient of A1 tA2 t � � � tAN by '.
Each Aj \Xi consists of finitely many Dw -rectangles; see Figure 13, left. Let Rji be the collection of
Dw -rectangles making up Aj \Xi (in Figure 13, left, that would be all rectangles in one row) and let Ri
be the union of all Rji . By the assumption that T is not composed entirely of prismatic Dw -rectangles,
there must be i 2 f1; 2; : : : ; rg such that Ri contains a nonprismatic Dw -rectangle.

If every nonprismatic Dw -rectangle R 2Ri has both vertical sides contained in di [ diC1 then each Rji
either contains only prismatic Dw -rectangles or contains exactly one nonprismatic Dw -rectangle. Fur-
thermore, since there is at least one nonprismatic Dw -rectangle in Ri , there is at least one Rji of the
latter type. Thus, by the definition of r.'/, there are nonprismatic Dw -rectangles R1; : : : ; Rn 2 Ri
for 1� n�N such that r.'/.@C coll.��1.Rj ///D @� coll.��1.RjC1//, where the subscript j is taken
modulo n. Since the image of a nonprismatic Dw -rectangle under coll is a bigon disk (see Figure 12),
this gives us a sequence of bigon disks glued to each other top to bottom. The bigons coll.��1.Rj //
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di diC1

A1\Xi

A2\Xi

A3\Xi

A4\Xi

A5\Xi

A6\Xi

1

2 3

4

5 6

7

1

2 34
5 6

7

Figure 13: Left: An annular subset Xi of a boundary torus T of M ' cobounded by a pair
of vertical annuli or Möbius bands. Red intervals correspond to the intersection of Xi with
edge product disks. Prismatic Dw -rectangles are shaded gray. Nonprismatic Dw -rectangles are
numbered. Right: Spherical boundary component of M r.'/ corresponding to Xi . A bigon arising
as a result of collapsing a nonprismatic Dw -rectangle labeled with i on the left is labeled with i .

inherit orientation on their boundary from Rj . Thus the assumption that ' is orientation preserving
together with Lemma 3.6 imply that the quotient space of coll.��1.Ri // by r.'/ is a sphere. This means
that M r.'/ admits a spherical boundary component. Since M ' has only toroidal boundary components,
these manifolds cannot be homeomorphic.

Now suppose that R 2Ri is a nonprismatic Dw -rectangle which has a vertical side d that is disjoint from
di[diC1. An example of such a situation is presented in Figure 13. The assumption that int.Xi /\V

'
w D∅

implies that there is a nonprismatic Dw -rectangle R0 2 Ri such that r.'/ identifies coll.��1.d// with
an interior point of @� coll.��1.R0//. Therefore the quotient space of coll.��1.Ri // by r.'/ is again a
sphere, and thus M r.'/ is not homeomorphic to M ' .

Case 2 For every boundary torus T of M ' either T \V 'w D∅ or T is composed entirely of prismatic
Dw -rectangles.

Since V 'w ¤∅, the assumption of this case implies that there is a connected component of M ' consisting
entirely of the images of triangular prisms under �. In particular, M ' has strictly more connected
components than M r.'/, so these manifolds are not homeomorphic. (Note, however, that M r.'/ may be
homeomorphic to the union of other connected components of M ' .)

Now suppose that ' misaligns edge product disks. Then there are no vertical annuli or Möbius bands
inM ' , and hence, by Lemma 3.7, M x'w can be obtained fromM ' by cutting it along finitely many vertical
disks. Equivalently, M ' is the quotient space of coll.Mw/ by x'.

Lemma 3.6 explains how the definition of the regluing map simulates the process of collapsing triangular
prisms into their bottom triangles. Thus r.'/ on FCw respects not only the identification between L.f /C

Geometry & Topology, Volume 29 (2025)



Mutations and faces of the Thurston norm ball dynamically represented by multiple distinct flows 2143

and '.L.f /C/, for all f 2 Fw , but also the identification between gC and '.gC/ for all g 2 FV;w such
that either g or a�1.g/ appears in the sequence g'.f / for some f 2 Fw . If there is g 2 FV;w �L.Fw/

such that for every f 2 Fw neither g nor a�1.g/ appears in g'.f /, then there are triangular prisms of
Mw D .M jS

�
w/jDw through which we have not passed when defining r.'/. These triangular prisms

would arrange into solid tori components of M x'w consisting entirely of triangular prisms. However, the
assumption that ' misaligns edge product disks implies thatM x'w does not admit such solid tori components.
Therefore when ' misaligns edge product disks Lemma 3.6 implies that the quotient space of coll.Mw/

by x' is homeomorphic to the quotient space of coll.Mw �Pw/ by r.'/. The latter is M r.'/, while the
former — as explained in the previous paragraph — is M ' . Thus M r.'/ is homeomorphic to M ' .

Remark 3.11 In the proof of Theorem 3.10 we constructed a sphere out of bigon disks. This may look
like a contradiction to the fact, mentioned in Section 2.1, that only surfaces with zero Euler characteristic
can admit a bigon train track. However, the obtained decomposition of S2 into bigons is not a bigon track
in the usual sense. If � is a train track on S then for every switch v of � which is not contained in @S
there must be two complementary regions of � which meet v along a smooth point in their boundary. In
the construction we get two points in the sphere which meet only cusps of bigons.

3.7 Veeringness of the mutant triangulation

In Section 3.6 we found a sufficient and necessary condition on ' for the mutant triangulation T ' to be a
triangulation of M ' . In this subsection we are interested in endowing T ' with a veering structure.

By tautness, edges of the dual spine D of .T ; ˛/ admit orientations such that every vertex v of D has
exactly two incoming edges and two outgoing edges; this is Definition 2.1(1). When we construct T '

out of .T jFw ; ˛jFw/ we always identify a face f C 2 FCw with a face r'.f C/ 2 F�w . Therefore there
is a natural orientation on the edges of the dual spine D' of T ' that is induced from the orientation on
the edges of the dual spine of T . With this orientation D' satisfies Definition 2.1(1). To obtain a taut
structure on T ' it suffices to find a sufficient condition on r.'/ that guarantees every 2-cell of D' has
exactly one top vertex and exactly one bottom vertex. To derive such a condition it is helpful to analyze
the structure of DjFw and its relationship to .T jFw ; ˛jFw/. First, observe that edges of .T jFw ; ˛jFw/
can be classified into four types. We say that an edge e of .T jFw ; ˛jFw/, or VjFw , is

� internal if e is neither an edge of a triangle from FCw nor an edge of a triangle from F�w ,

� positive if e is an edge of a triangle from FCw and is not edge of a triangle from F�w ,

� negative if e is an edge of a triangle from F�w and is not an edge of a triangle from FCw ,

� mixed if e is an edge of a triangle from FCw and also an edge of a triangle from F�w .

Assume that T and D are embedded in M so that they are dual to one another. For every 2-cell p of
DjFw there is a 2-cell s of D such that p is a connected component of sjFw . If s\Fw D∅ then we say
that p is an internal cell of DjFw . Now suppose that s\Fw ¤∅. If p contains the top vertex of s we say
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Figure 14: Left: negative cell of DjFw . Center: positive cell of DjFw . Right: mixed cell of
DjFw . The number of vertices in the interiors of ı1, ı2 and ı may vary.

that p is a negative cell of DjFw ; see Figure 14, left. If p contains the bottom vertex of s we say that p
is a positive cell of DjFw ; see Figure 14, center. If p contains neither the top nor the bottom vertex of s
we say that p is a mixed cell of DjFw ; see Figure 14, right. Naturally, an internal/positive/negative/mixed
cell of DjFw is dual to an internal/positive/negative/mixed edge of .T jFw ; ˛jFw/.

For every cell s of D such that s\Fw ¤∅, we denote by es the intersection of s with its dual edge in
.T ; ˛/. Then every connected component p of sjFw has a point in its boundary corresponding to es that
we will denote by eps . If p is negative then there is a point tps in the boundary of p corresponding to the
top vertex ts of s. If p is positive then there is a point bps in the boundary of p corresponding to the
bottom vertex bs of s.

If p is a negative cell of DjFw then its boundary decomposes into

� two arcs �1 and �2 meeting at eps , both cooriented into p,

� two arcs ı1 and ı2 meeting at tps , both oriented so that they point into tps .

See Figure 14, left. We say that �1 and �2 are maximal negative arcs in the boundary of p.

If p is a positive cell of DjFw then its boundary decomposes into

� two arcs C1 and C2 meeting at eps , both cooriented out of p,

� two arcs ı1 and ı2 meeting at bps , both oriented so that they point out of bps .

See Figure 14, center. We say that C1 and C2 are maximal positive arcs in the boundary of p.

If p is a mixed cell of DjFw then its boundary decomposes into

� two arcs @Cp and @�p meeting at eps , such that @Cp is cooriented out of p and @�p is cooriented
into p,

� one arc ı oriented from @�p to @Cp.

See Figure 14, right. We say that @Cp is the maximal positive arc in the boundary of p, and that @�p is
the maximal negative arc in the boundary of p.
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If ˙ is a maximal positive/negative arc in the boundary of a cell p of DjFw we say that eps is the internal
endpoint of ˙.

Via duality between internal/positive/negative/mixed cells of DjFw and internal/positive/negative/mixed
edges of .T jFw ; ˛jFw/, respectively, we get a combinatorial sufficient condition on r.'/ that guarantees
T ' admits a taut structure in Lemma 3.12. In Lemma 3.15 we explain how this condition relates to the
matching of edge product disks of M jS�w under '.

Lemma 3.12 If for every mixed edge e of .T jFw ; ˛jFw/ there is a positive edge eC of .T jFw ; ˛jFw/
and a negative edge e� of .T jFw ; ˛jFw/ such that e, eC and e� are identified in T ' then the triangulation
T ' admits a taut structure.

Proof We assume that the 1-skeleton of D' is equipped with the orientation induced by ˛jFw . It suffices
to show that under the assumption of the lemma, every 2-cell ofD' has exactly one top vertex and exactly
one bottom vertex; see Definition 2.1.

Denote by �C (respectively, ��) the set of maximal positive (respectively, negative) arcs in the boundaries
of cells of DjFw . Recall that T ' is the quotient space of .T jFw ; ˛jFw/ under the regluing map r.'/.
Dually we get a regluing map �.'/D f�' W �C! ��; .�

'

C
/C2�Cg, where �' is a bijection between

�C and �� and �'
C

is a bijection between the endpoints of C and the endpoints of �'.C/, such
that the quotient of DjFw by �.'/ gives D' . Since the 1-skeleton of D' arises from recombining the
1-skeleton of D, we get that �'

C
must send the internal endpoint of C to the internal endpoint of �'.C/.

Let p be a positive cell of DjFw . Denote by C1 and C2 the two distinct maximal positive arcs in
the boundary of p. For i D 1; 2 the bijection �' can send Ci only to a maximal negative arc in the
boundary of a mixed cell or to a maximal negative arc in the boundary of a negative cell. Let q1; : : : ; qm
be the maximal collection of mixed cells of DjFw such that �'.C1 /D @

�q1 and �'.@Cqi /D @�qiC1
for i D 1; 2; : : : ; m � 1. Let q01; : : : ; q

0
n be the maximal collection of mixed cells of DjFw such that

�'.C2 /D @
�q01 and �'.@Cq0j /D @

�q0jC1 for j D 1; 2; : : : ; n� 1. First assume that these collections
of mixed cells are nonempty, that is m; n � 1. By maximality and the fact that positive cells do not
have arcs in ��, there are negative cells p0 and p00 of DjFw such that �'.@Cqm/ is a maximal negative
arc in the boundary of p0 and �'.@Cq0n/ is a maximal negative arc in the boundary of p00. The cells
q1; : : : ; qm; q

0
1; : : : ; q

0
n must all be distinct, and hence �'.@Cqm/ and �'.@Cq0n/ are distinct. Since �.'/

sends internal endpoints of arcs to internal endpoints of arcs, we must have p0 D p00. Thus we obtain
a cell of D' composed of p; q1; : : : ; qm; q01; : : : ; q

0
n; p
0 D p00. Such a cell has exactly one top vertex

(coming from p0 D p00) and exactly one bottom vertex (coming from p). If mD 0 it suffices to replace
�'.@Cqm/ with �'.C1 /, and if nD 0 it suffices to replace �'.@Cq0n/ with �'.C2 /, to still get a cell
of D' with precisely one top vertex and precisely one bottom vertex.

It follows that every 2-cell of D' is either

� composed of one internal cell of DjFw , or
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Figure 15: Gluing mixed cells of DjFw cyclically yields a cell of D' whose edges are cyclically oriented.

� composed of one positive cell of DjFw , one negative cell of DjFw and finitely many (potentially
zero) mixed cells of DjFw , or

� composed of finitely many mixed cells of DjFw .

The last type of cells of D' have cyclically oriented edges in their boundary; see Figure 15. These are the
only cells of D' that do not satisfy Definition 2.1. Using the duality between positive/negative/mixed
cells of DjFw and positive/negative/mixed edges of .T jFw ; ˛jFw/ it is easy to see that if for every
mixed edge e of .T jFw ; ˛jFw/ there is a positive edge eC of .T jFw ; ˛jFw/ and a negative edge e� of
.T jFw ; ˛jFw/ such that e, eC and e� are identified in T ' then D' does not admit such cells. Thus under
this assumption, ˛jFw induces a taut structure on T ' .

We will devote the rest of this subsection to restate the condition of Lemma 3.12 in terms of ' and then
prove that it is not only sufficient but also necessary for the existence of a taut structure on T ' . Recall
that by D.Mw/ we denote the set of disks contained in the sutured annuli of Mw arising from cutting
M jS�w along Dw . Let D.Mw � Pw/ be the subset of D.Mw/ consisting only of those disks which
are not contained in the sutured annuli of triangular prisms of Mw . Lemma 3.4 implies the following
relationship between mixed edges of .T jFw ; ˛jFw/ and disks D.Mw �Pw/ contained in the sutured
annuli of Mw �Pw :

Corollary 3.13 For every one sided-edge e of .T jFw ; ˛jFw/ there is precisely one D0 2D.Mw �Pw/

such that e D coll.D0/.

However, we are mainly interested in the relationship between mixed edges of .T jFw ; ˛jFw/ and edge
product disks in M jS�w .

Definition 3.14 Let D0;D00 2D.Mw/ be such that �.D0/D �.D00/DD 2Dw . We say that the edge
product disk D

� has prisms on both sides if there are triangular prisms P 0; P 00 2 Pw such that D0 is contained in
the sutured annulus of P 0 and D00 is contained in the sutured annulus of P 00,

� has a prism on one side if exactly one disk out of D0 and D00 is contained in the sutured annulus of
some triangular prism of Mw ,

� does not have a prism on either side if D;D0 2D.Mw �Pw/.
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Using this definition, we can restate Corollary 3.13 and say that an edge product diskD 2Dw corresponds
to two, one or zero mixed edges of .T jFw ; ˛jFw/ if and only if D does not have a prism on either side,
has a prism on one side or has prisms on both sides, respectively.

Let V be a vertical annulus or a vertical Möbius band in M ' . Let D1; : : : ;DN be edge product disks of
M jS�w such that V is the quotient space of D1 t � � � tDN by '. We say that V lies in a prismatic region
of M ' if Di has prisms on both sides for every 1� i �N . Using this terminology we can now restate
the assumption of Lemma 3.12 in terms of topological properties of M ' :

Lemma 3.15 The following statements are equivalent :

(1) For every mixed edge e of .T jFw ; ˛jFw/ there is a positive edge eC of .T jFw ; ˛jFw/ and a
negative edge e� of .T jFw ; ˛jFw/ such that e, eC and e� are identified in T ' .

(2) Every vertical annulus or Möbius band in M ' lies in a prismatic region of M ' .

Proof We show both directions by contraposition. First we show that (2) implies (1). Observe that if e
is an edge of triangle from FCw then the edge r.'/.e/ might not be well defined, because a positive edge
can be mapped to two different mixed edges. However, if e is a mixed edge then r.'/.e/ is well defined,
because e is an edge of only one f C 2 FCw .

In what follows the subscript i is taken modulo n. Suppose that there is a collection e1; : : : ; en of mixed
edges of .T jFw ; ˛jFw/ such that r.'/.ei / D eiC1 for every 1 � i � n. By Corollary 3.13, there is
a collection D01; : : : ;D

0
n 2 D.Mw � Pw/ of disks contained in the sutured annuli of Mw � Pw such

that coll.D0i / D ei . Let Di D �.D0i / 2 Dw . By the definition of r.'/, for every 1 � i � n either
'.@CDi / D @

�DiC1 or there is ki � 1 and a collection of edge product disks D.1/i ; : : : ;D
.ki /
i 2 Dw

(which all have prisms on at least one side) such that '.@CDi /D @�D
.1/
i and '.@CD.j /i /D @�D

.jC1/
i

for every 1� j � ki � 1 and '.@CD.ki /i /D @�DiC1. Therefore the quotient of
Fn
iD1Di t

Fki
jD1D

.j /
i

by ' is a vertical annulus or Möbius band V in M ' . Since D0i 2D.Mw �Pw/, Di does not have prisms
on both sides. It follows that V does not lie in a prismatic region of M ' .

Now let D1; : : : ;Dn 2Dw be a collection of edge product disks in M jS�w such that '.@CDi /D @�DiC1
for every 1 � i � n. Denote by V the quotient space of D1 t � � � tDn by '. If V does not lie in a
prismatic region of M ' there is 1 � k � n and a sequence 1 � i1 < i2 < � � � < ik � n such that Dij
does not have prisms on both sides for every 1 � j � k, and for every l … fi1; i2; : : : ; ikg the edge
product disk Dl has prisms on both sides. For 1 � j � k if Dij does not have a prism on either side
there are disks D0ij ;D

00
ij
2D.Mw �Pw/ such that �.D0ij /D �.D

00
ij
/DDij . If Dij has a prism on one

side, there is D0ij 2 D.Mw �Pw/ such that �.D0ij / D Dij . By Corollary 3.13 there are mixed edges
eij D coll.D0ij / and e0ij D coll.D00ij / of .T jFw ; ˛jFw/. By the definition of r.'/, after possibly switching
eij with e0ij for some 1 � j � k, there is m � 1 and a sequence 1 � l1 < l2 < � � � < lm � k such that
r.'/.eilj

/D eiljC1
for every 1� j �m. This gives an edge of T ' which is composed entirely of mixed

edges of .T jFw ; ˛jFw/.
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Proposition 3.16 The mutant triangulation T ' admits a taut structure if and only if every vertical annulus
or Möbius band in M ' lies in a prismatic region of M ' .

Proof The fact that when every vertical annulus or Möbius band in M ' lies in a prismatic region of M '

then T ' admits a taut structure follows from Lemmas 3.12 and 3.15.

We prove the other direction by contraposition. Suppose that there is a vertical annulus or a Möbius
band V in M ' which does not lie in a prismatic region of M ' . Let T be a boundary torus of M such
that T \ V ¤ ∅. Since V does not consist entirely of edge product disks which have prisms on both
sides, T does not consist entirely of prismatic Dw -rectangles. It follows from the proof of Theorem 3.10
(Case 1) that M r.'/, the manifold underlying T ' , admits a spherical boundary component. Therefore, by
Lemma 2.3, M r.'/ does not have a taut triangulation. In particular, T ' does not admit a taut structure.

It follows that T ' admits a taut structure if and only if orientations on the edges of the dual spine D'

inherited from .T jFw ; ˛jFw/ determine a taut structure on T ' . In this case we denote the taut structure
on T ' by ˛' . We also say that .T ; ˛/ and .T ' ; ˛'/ are taut mutants.

The assumption that ' misaligns edge product disks is stronger than the assumption that every vertical
annulus or Möbius band in M ' lies in a prismatic region of M ' . However, since it is a necessary
condition for T ' to be an ideal triangulation of M ' (Theorem 3.10), it is reasonable to assume this
stronger condition for the rest of the paper. Below we also prove that when ' aligns edge product disks
then M ' does not admit a veering triangulation. This further justifies restricting our considerations only
to automorphisms which misalign edge product disks.

Proposition 3.17 If ' 2 AutC.QV;w/ aligns edge product disks then M ' does not admit a veering
triangulation.

Proof Since only hyperbolic manifolds can admit veering triangulations [23, Theorem 1.5] (stated here
as Theorem 2.11), it suffices to show that M ' is not hyperbolic. Recall that when ' aligns edge product
disks M ' must admit a vertical annulus or a vertical Möbius band. By passing to a finite cover, we can
assume that there is a vertical annulus A in M ' . We will show that A is essential, that is, incompressible,
boundary-incompressible and not boundary parallel. First we will prove that M ' is irreducible and
boundary-irreducible.

Claim 3.17.1 M ' is irreducible and boundary-irreducible.

Proof of Claim 3.17.1 Lackenby proved that every 3-manifold with a taut triangulation is irreducible and
boundary-irreducible [27, Proposition 10]. Therefore it suffices to show that M ' has a taut triangulation.

If every vertical annulus and Möbius band lies in a prismatic region of M ' then, by Proposition 3.16, T '

admits a taut structure, and we are done. To construct a taut triangulation on M ' when there are vertical
annuli or Möbius bands outside of the prismatic region of M ' we first modify the triangulation .T ; ˛/
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�!

Figure 16: The 0-2 Pachner move. If f and g are on opposite sides of e we can cut .T ; ˛/ along
f [g and glue in a “taut pillow”, producing a new taut triangulation of M .

of M using 0-2 Pachner moves. Such a move can be performed on any pair of adjacent triangles f and g
which are on opposite sides of an edge e of .T ; ˛/. First, we cut .T ; ˛/ along f [g. The resulting cut
triangulation has four boundary faces: f C, gC, f � and g�. Using two additional taut tetrahedra t and t 0

we construct a “taut pillow” by identifying the square consisting of the top faces of t with the square
consisting of the bottom faces of t 0 so that the top diagonal of t is identified with the bottom diagonal
of t 0; see Figure 16, right. Now there is a natural way to identify f C[ gC with the bottom faces of t
and the top faces of t 0 with f � [ g� to get a new taut triangulation of M . The key feature of the 0-2
moves is that by applying them finitely many times above pairs of triangles adjacent to edges with weight
greater than one, we can construct a taut triangulation .T�; ˛�/ of M with the following properties:

(a) .T�; ˛�/ carries a surface Sw� whose induced triangulation Q� is combinatorially isomorphic to QV;w .

(b) The weight system w� on .T�; ˛�/ is such that no edge of .T�; ˛�/ has weight greater than one.

(c) Each edge product disk D 2Dw gives a pair of edges of .T�; ˛�/ which are homotopic to each other
(while keeping their endpoints on the boundary tori); one of these edges corresponds to @�D, and the
other to @CD; see Figure 16.

From (a) it follows that there is '� 2 AutC.Q/ such that M ' DM '� . Part (b) implies that M jS�w� does
not admit any edge product disks and thus '� misaligns edge product disks. Therefore, by Proposition 3.16
and Theorem 3.10, we can use '� to construct a taut triangulation .T '�� ; ˛

'�
� / of M ' DM '� .

By construction, the core curve c of the vertical annulus A of M ' is homotopic to an essential simple
closed curve on some boundary torus T of M ' . Claim 3.17.1 implies that T is incompressible, and
thus A is incompressible.

Since A is composed entirely of edge product disks in M jS�w , an essential arc  in A is homotopic to
the image of the bottom boundary @�D of some edge product disk D 2 Dw under the quotient map
M jS�w !M ' . By property (c) of the triangulation .T�; ˛�/ constructed in the proof of Claim 3.17.1,
there is an edge of .T '�� ; ˛

'�
� / which is homotopic to  . This implies that A cannot be boundary parallel,

because in a taut triangulation an edge is never homotopic into a vertex neighborhood while keeping its
ends in the vertex neighborhood [24, Theorem 6.1]. If there was a boundary-compression disk for A, A
would compress into a properly embedded disk D. By boundary-irreducibility of M ' (Claim 3.17.1), D
must be boundary parallel. HenceAmust be boundary parallel, which contradicts our previous observation
that it is not. Thus A is boundary-incompressible.
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We showed that, up to passing to a finite cover, M ' admits an essential annulus. So it either contains
an essential torus or is a small Seifert fibered manifold [33, Lemma 11.2.10]. In either case, M ' is not
hyperbolic, and thus cannot admit a veering triangulation.

From now on we assume that ' misaligns edge product disks. The taut triangulation .T ' ; ˛'/ is veering if
and only if its dual spine D' has a smoothing into a branched surface which locally looks like in Figure 4;
see Definition 2.5. One way of ensuring that is to construct the required branched surface structure on D'

using the branched surface structure BjFw on DjFw . Extending the (partial) veering structure BjFw to a
veering structure on D' is possible only if for every f C 2 FCw the regluing map r.'/ maps the large
edge of f C to the large edge of r'.f C/. For this reason we define the group AutC.QV;w j �V;w/ of
orientation-preserving combinatorial automorphisms of QV;w which preserve �V;w .

Lemma 3.18 Let ' 2 AutC.QV;w j �V;w/. If e is the large edge of f C 2 FCw then r'
fC
.e/ is the large

edge of r'.f C/ 2 F�w .

Proof Suppose that g'.f /D .g1; : : : ; gk/. Then g1D '.L.f //, giC1D '.a.gi // for i D 1; : : : ; k�1,
and r'.f C/ is the triangle f 0� 2 F�w such that U.f 0/D gk . Furthermore, r.'/ maps e to

..�Uf 0 /
�1
ı .'i ı ıi /

k�1
iD1 ı' Lf ı �

L
f /.e/:

We refer the reader to Sections 3.2 and 3.5 to recall the notation.

The large edge of L.f / is given by �L
f
.e/. Since ' 2AutC.QV;w j �V;w/, we get that .' Lf ı�

L
f
/.e/ is the

large edge of g1. By the definition of ıi , .ı1ı' Lf ı�
L
f
/.e/ is the large edge of a.g1/. Again, the assumption

that ' 2 AutC.QV;w j �V;w/ implies that .'1 ı ı1 ı' Lf ı �
L
f
/.e/ is the large edge of g2. Continuing this

way, ..'i ı ıi /k�1iD1 ı' Lf ı �
L
f
/.e/ is the large edge of gk , and thus ..�U

f 0
/�1 ı .'i ı ıi /

k�1
iD1 ı' Lf ı �

L
f
/.e/

is the large edge of r'.f C/D f 0�.

The above lemma gives a sufficient condition for when the dual spine of T ' admits a smoothing into a
branched surface. Combining it with Proposition 3.16 gives sufficient conditions for the existence of a
veering structure on T ' .

Theorem 3.19 Let Sw be a surface properly carried by a veering triangulation V D .T ; ˛;B/ of M .
Suppose that ' 2 AutC.QV;w/ misaligns edge product disks. If additionally ' 2 AutC.QV;w j �V;w/ then
.T ' ; ˛'/ admits a veering structure.

Proof By Proposition 3.16, the assumption that ' misaligns edge product disks implies the existence of a
taut structure ˛' on T ' . If ' 2AutC.QV;w j �V;w/ then, by Lemma 3.18, for every f C 2FCw the regluing
map r.'/ maps the large edge of f C to the large edge of r'.f C/. Thus the branched surface BjFw can
be extended to a branched surface B' which combinatorially is just the dual spine D' of .T ' ; ˛'/. For
every tetrahedron t of T ' the branched surface B't D B' \ t looks as in Figure 4, because there is a
tetrahedron t 0 of V with Bt 0 D B\ t 0 DB't and .T ; ˛;B/ is veering. Thus B' satisfies Definition 2.5 and
V' D .T ' ; ˛' ;B'/ is veering.
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We say that V' D .T ' ; ˛' ;B'/ is obtained from V D .T ; ˛;B/ by a veering mutation, or that V' and V
are veering mutants. For instance, the first two veering triangulations in the veering census, the veering
triangulation cPcbbbdxm_10 of the figure eight knot sister (manifold m003 in the SnapPy census [8])
and the veering triangulation cPcbbbiht_12 of the figure eight knot (m004), are veering mutants.

Remark 3.20 By Lemma 3.18, a combinatorial automorphism ' 2 AutC.QV;w j �V;w/ is uniquely
determined by the associated bijection ' W FV;w ! FV;w . For this reason, when discussing examples of
veering mutants in Section 4 we will not label the vertices of tetrahedra nor talk about bijections between
vertices of identified triangles.

Theorem 3.19 gives a sufficient condition for veeringness of a taut mutant, but this condition is not
necessary. It is possible that .T ' ; ˛'/ admits a veering structure even though ' … AutC.QV;w j �V;w/.
We discuss this possibility briefly, and give an example of this phenomenon, in the next subsection.

3.8 Generalizations

We say that .T jFw ; ˛jFw/ admits a veering structure if it is possible to smooth its dual spine DjFw
into a branched surface which locally around every vertex looks like one of the options in Figure 4.
Suppose that .T jFw ; ˛jFw/ admits a veering structure B�jFw . Let t be a tetrahedron of .T jFw ; ˛jFw/.
Let B�t D B�jFw \ t . By �B�t we denote the other possible veering structure on t ; see Figure 4 to see the
two options. Lemma 2.12 implies that if t has a top face f which is a bottom face of some tetrahedron
of .T jFw ; ˛jFw/ then we cannot change the veering structure on t from B�t to �B�t without destroying
veeringness. On the other hand, if both top faces of t are in FCw then we can freely change B�t to �B�t
and the resulting branched surface still defines a veering structure on .T jFw ; ˛jFw/.

Let �� CV;w and �� �V;w be the train tracks in QCV;w and Q�V;w , respectively, induced by B�jFw . Using the
same arguments as in the proof of Theorem 3.19 we can show that if ' 2 AutC.QV;w/ misaligns edge
product disks and sends �� CV;w to �� �V;w then the veering structure B�jFw on .T jFw ; ˛jFw/ glues up into a
veering structure on .T ' ; ˛'/. The advantage of considering this more general setup is that now we can
derive both sufficient and necessary conditions for veeringness of a taut mutant.

Theorem 3.21 Let Sw be a surface properly carried by a veering triangulation V D .T ; ˛;B/ of M .
Suppose that ' 2 AutC.QV;w/ misaligns edge product disks. The taut triangulation .T ' ; ˛'/ admits
a veering structure if and only if there is a veering structure B�jFw on .T jFw ; ˛jFw/ such that the
isomorphism ' WQCV;w !Q�V;w sends �� CV;w to �� �V;w .

Proof The backward direction can be proved exactly as Theorem 3.19. If .T ' ; ˛'/ has a veering
structure B� then .T jFw ; ˛jFw/ must have a veering structure B�jFw such that r.'/ sends the train track
on FCw induced by B�jFw to the train track induced by B�jFw on F�w . Since ' misaligns edge product
disks, for every g 2QV;w we have a trichotomy: g 2 L.Fw/, g appears in g'.f / for some f 2 Fw , or
a.g/ appears in g'.f / for some f 2 Fw . Equivalently, when constructing r.'/ from ' we have passed
through every triangular prism of Mw . Therefore Lemma 3.6 implies that ' sends �� CV;w to �� �V;w .
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The more general setup of Theorem 3.21 is not just theoretical. There are veering triangulations .T ; ˛;B/
and .T ' ; ˛' ;B0/ which are taut mutants but not veering mutants. One such pair is given by the veer-
ing triangulation gLMzQbcdefffhhhqxdu_122100 of the manifold s463 and the veering triangulation
gLMzQbcdefffhhhqxti_122100 of the manifold s639.

Another generalization we might consider is a veering mutation with insertion. Let .T jFw ; ˛jFw ;BjFw/
be a veering cut triangulation. If there are two triangles f C1 ; f

C
2 2 F

C
w which are adjacent along an edge

which is large in both f C1 and f C2 , we might stack another veering tetrahedron on top of f C1 [f
C
2 . We

then obtain another cut triangulation with a veering structure which has more tetrahedra than T jFw . We
can also add a new veering tetrahedron on top of two faces f C1 ; f

C
2 2 F

C
w whose large edges are mixed.

Suppose that .T �jFw� ; ˛�jFw� ;B�jFw�/ is obtained from .T jFw ; ˛jFw ;BjFw/ by adding finitely many
veering tetrahedra on top of FCw . If there is a map r W FCw� ! F�w� such that identifying FCw� with F�w�
yields a veering triangulation Vr D .T r ; ˛r ;Br/ then we say that Vr is obtained from V by a veering
mutation with insertion. For instance, the veering triangulation dLQbccchhfo_122 of the manifold m009
is obtained from the veering triangulation cPcbbbiht_12 of the manifold m004 (the figure eight knot
complement) by a veering mutation with insertion.

4 Homeomorphic veering mutants

A manifold M and its mutant M ' can be homeomorphic. This can happen for instance for many graph
manifolds mutated along one of their decomposing tori. If veering mutants V and V' live on the same
manifold, they might be combinatorially isomorphic or combinatorially distinct. For instance, the veering
triangulation eLMkbcddddedde_2100 of the 622 link complement carries a four-times punctured sphere
such that mutating the triangulation along it via an involution yields eLMkbcddddedde_2100 back. We
discuss a few examples of combinatorially distinct veering mutants of the same manifold in Sections 4.1,
4.2 and 4.4.

Recall from Theorem 2.26 that veering triangulations combinatorially represent faces of the Thurston norm
ball. A pair of veering mutants on a 3-manifold M may represent either the same face or different faces of
the Thurston norm ball in H2.M; @M IR/. The main obstacle to finding examples of measurable veering
mutants which represent the same face of the Thurston norm ball is that when b1.M/>1 there are infinitely
many distinct bases for H2.M; @M IZ/. While it is relatively easy to find the cones C.V/ and C.V'/ of
homology classes of surfaces carried by V and V' , respectively (this is explained in [44, Section 11.2]),
it is not always straightforward to figure out whether they are the same up to a change of basis.

The above problem does not appear in the b1.M/ D 1 case. Then, up to � 7! ��, there is only one
(0-dimensional) face of the Thurston norm ball in H2.M; @M IR/. If M admits a pair of veering mutants
V and V' then neither C.V/ nor C.V'/ is empty. Hence V and V' must combinatorially represent the
same face of the Thurston norm ball; see Remark 4.1. When b1.M/ > 1 it is sometimes possible to verify
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if C.V/D C.V'/ using the combinatorics of the Thurston norm ball. We do this in Sections 4.2 (where
the faces are the same) and 4.4 (where the faces are different).

Remark 4.1 Recall that veering triangulations come in pairs V and �V having the same taut signature
and representing opposite faces of the Thurston norm ball; see Remarks 2.10 and 2.28. In what follows
we will refer to veering triangulations using their taut signatures, without specifying coorientations on the
faces. Thus when we say that two veering triangulations V and V 0 represent the same face of the Thurston
norm ball, or write C.V/D C.V 0/, we really mean C.V/[ C.�V/D C.V 0/[ C.�V 0/.

In this section we will establish the following facts connecting veering mutations and faces of the Thurston
norm ball:

Fact 4.2 (Veering mutations and faces of the Thurston norm ball) (1) There are nonfibered faces of the
Thurston norm ball that can be represented by two combinatorially nonisomorphic veering mutants.

(2) A veering mutation along a surface representing a class lying at the boundary of the cone on a
fibered face may yield a veering triangulation representing a nonfibered face of the Thurston norm
ball of the mutant manifold.

Proof In Section 4.1 we discuss four veering mutants V , V%, V� and V%� such that V and V%� represent
the same nonfibered face of the Thurston norm ball in a certain manifold M with b1.M/D 1, and V%

and V� represent adjacent fibered faces of M % Š M � with b1.M %/ D 2. Triangulations V and V%�

prove (1) in the b1.M/D 1 case, while triangulations V% and V�% prove (2); see also Proposition 4.4.
Veering mutants proving (1) in the case b1.M/ > 1 are discussed in Section 4.2.

4.1 Two veering mutants representing the same face of the Thurston norm ball when
b1.M/ D 1

Let M be the manifold t12488 from the SnapPy census. This manifold is not fibered and H1.M IZ/D
Z˚Z=8. It also admits a pair of distinct measurable veering triangulations which, since b1.M/D 1,
must represent the same face of the Thurston norm ball; see Remark 4.1. We will show that they differ by
a veering mutation.

Let V be a veering triangulation of M with the taut signature

iLLLPQccdgefhhghqrqqssvof_02221000:

We present the tetrahedra of V in Figure 17.

By solving the system of branch equations associated to V one can verify that V carries four surfaces that
can be expressed as the following (relative) 2-cycles (which we identify with the induced triangulations):

Q0 D f2Cf5Cf7Cf11; Q1 D f1Cf5Cf8Cf11;

Q2 D f2Cf7Cf10Cf12; Q3 D f1Cf8Cf10Cf12:
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Figure 17: Veering triangulation iLLLPQccdgefhhghqrqqssvof_02221000 of the manifold t12488.

All these surfaces are twice punctured tori. Triangulations Q0 and Q3 are presented in Figure 18. Since
the first Betti number of M is equal to one, these punctured tori are homologous. In fact, it is easy to
see that they are all homotopic. Q0 consists of two bottom faces of tetrahedron 2 and two bottom faces
of tetrahedron 4. By performing the diagonal exchange corresponding to tetrahedron 2, one obtains
triangulation Q1. By performing the diagonal exchange corresponding to tetrahedron 4, one obtains
triangulation Q2. Triangulation Q3 can be obtained from Q0 by performing diagonal exchanges through
both tetrahedra 2 and 4.

Let �i be the train track dual to Qi induced by the stable train track of V . That is, �i D �V;wi where wi is
the weight system on V determining Qi . As visible in Figure 18, the complementary regions of �i are
punctured bigons, and thus, by Corollary 2.14, Qi is properly carried. Let AutC.Qi j �i / be the group of
orientation-preserving combinatorial automorphisms of Qi which preserve �i . Then

AutC.Q0 j �0/D Z=2˚Z=2; AutC.Q1 j �1/D Z=2;

AutC.Q2 j �2/D Z=2; AutC.Q3 j �3/D Z=2:

The group AutC.Q0 j �0/ is generated by a rotation by � about the center of the red edge between
faces f7 and f11 and a “shift by one square” map; see Figure 18, left. We denote these combinatorial
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f5
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f12 f10

Figure 18: Left: the triangulation Q0D f2Cf5Cf7Cf11 and its dual stable track �0. The group
AutC.Q0 j �0/ is generated by a rotation % by � about the center of the red edge between faces f7
and f11 and a “shift by one square” map � . Right: the triangulation Q3 D f1C f8C f10C f12
and its dual stable track �3. The group AutC.Q3 j �3/ is generated by �� only.

isomorphisms of Q0 by % and � , respectively. For i D 1; 2; 3 the group AutC.Qi j �i / is generated by %� ;
see Figure 18, right, for the i D 3 case. The fact that AutC.Q0 j �0/ is the largest is not surprising; the
surface underlying Q0 is the lowermost carried representative of the generator of H2.M; @M IZ/, and
thus the stable train track �0 has the most large branches (is minimally split).

Since Q0 does not traverse any edge of V more than once, we automatically get that %, � and %� do
not align edge product disks. Thus by Theorem 3.19 we get three veering mutants V%, V� and V%�

of V . Information about the regluing maps r.%/, r.�/ and r.%�/ is presented in Table 1. Recall from
Remark 3.20 that since we are looking only at elements of AutC.Q0 j �0/, the regluing maps are uniquely
determined by their associated bijections ff C2 ; f

C
5 ; f

C
7 ; f

C
11g ! ff

�
2 ; f

�
5 ; f

�
7 ; f

�
11g. In Figure 19 we

present taut signatures of the four mutants, as well some additional information about their underlying
manifolds.

Proposition 4.3 A nonfibered face F of the Thurston norm ball of the t12488 manifold can be combina-
torially represented by two combinatorially distinct veering mutants.

Proof Triangulations V and V%� are two combinatorially distinct measurable veering mutants. Since
there is a sequence of Pachner moves from V to V%� , their underlying manifolds are homeomorphic. (One
can use Regina [7] to verify that the shortest such path has length four and consists of two 2-3 moves and
two 3-2 moves.) Both these triangulations carry a twice punctured torus, which in particular means that
the cones C.V/ and C.V%� / are nonempty. Since the first Betti number of M is equal to 1, up to � 7! ��
there is only one face F of the Thurston norm ball in H 1.M IR/. After possibly switching coorientations
on faces of one of the triangulations we get that C.V/D C.V%� /DRC � .F/; see Remark 4.1.

f C f C2 f C5 f C7 f C11
r%.f C/ f �5 f �2 f �11 f �7
r� .f C/ f �11 f �7 f �5 f �2
r%� .f C/ f �7 f �11 f �2 f �5

Table 1: The regluing maps determined by %, � and %� .
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iLLLPQccdgefhhghqrqqssvof
02221000
t12488

edge-orientable
measurable
Z˚Z=8

ivLLQQccfhfeghghwadiwadrv
20110220
t12487

not edge-orientable
layered
Z˚Z

ivLLQQccdhghgfhggrqlipigb
12020011
t12487

edge-orientable
layered
Z˚Z

iLLLPQccdgefhhghhrhajsvss
02221000
t12488

not edge-orientable
measurable
Z˚Z=8

%

� �

%

Figure 19: Four veering mutants. Each dataset consists of the isomorphism signature of the
triangulation (first row), the taut angle structure (second row), the name of the underlying
manifold in the SnapPy’s census (third row), information about edge-orientability (fourth row),
the type of the triangulation (fifth row) and the first homology group with integer coefficients of
the underlying manifold (sixth row).

Another conclusion that we can draw from Figure 19 is that a mutant of a measurable veering triangulation
does not have to be measurable. Observe however that if a layered veering triangulation V admits a
measurable veering mutant V' then the homology class of the mutating surface must lie in the boundary
of the fibered cone represented by V .

Proposition 4.4 Let V be a finite layered veering triangulation of a 3-manifold M . Suppose that V!V'

is a veering mutation such that V' is measurable. Then the homology class of the mutating surface lies in
the boundary of the cone on the fibered face represented by V .

Proof Since V is layered, the face F of the Thurston norm ball represented by V is fibered; see
[32, Theorem 5.15], stated here as Theorem 2.26. Denote by Sw the surface carried by V that can be
used to mutate V into V' , and by S�w the embedded surface obtained from Sw by slightly pulling apart
overlapping regions of Sw . The surface S�w is a Thurston norm minimizing representative of its homology
class [27, Theorem 3]. If that homology class lies in the interior of RC � .F/ then M jS�w is a product
sutured manifold [50, Theorem 3]. Therefore the mutant manifold M ' is fibered over the circle with
the mutating surface being the fiber. The assumption that V! V' is a veering mutation implies that '
misaligns edge product disks, and therefore, by Theorems 3.10 and 3.19, V' is a veering triangulation
of M ' . Therefore V' carries a fiber of a fibration of M ' over the circle. But a veering triangulation that
carries fibers of fibrations over the circle is layered [32, Theorem 5.15]. This is a contradiction with the
assumption that V' is measurable.

The other two mutants, V% and V� , both live on the same 3-manifold t12487, which is the L11n222 link
complement. Since we cannot have two combinatorially distinct veering triangulations representing the
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same fibered face of the Thurston norm ball [38, Proposition 2.7], we deduce that V% and V� represent
different faces of the Thurston norm ball. In particular, it is possible that two different fibered faces of the
Thurston norm ball of the same manifold are related by a veering mutation.

Let F% and F� be the fibered faces represented by V% and V� , respectively. The Thurston norm ball of
the L11n222 link complement is a quadrilateral with two pairs of fibered faces. Therefore the mutating
twice punctured torus S represents the primitive integral class lying either on the ray RC � F%\RC � F�

or on the ray RC � F% \ .�RC � F� /. Since the stable train tracks �% and �� on S induced from V%

and V� , respectively, are equal, under the same mutation (eg by %) two different veering triangulations
on t12487 mutate into two different veering triangulations on t12488. It is the fact that the first Betti
number of t12488 is equal to one that makes these two distinct veering triangulations represent the same
top-dimensional face of the Thurston norm ball. In other words, in this example the phenomenon of
a top-dimensional nonfibered face of the Thurston norm ball represented by multiple distinct veering
triangulations arises from mutating a fibered 3-manifold with a higher first Betti number along a surface
representing a class lying at the intersection of multiple fibered faces.

Remark 4.5 In the veering census there are 110 manifolds with the first Betti number equal to one which
admit two measurable veering triangulations. Among those, (at least) 87 differ by a veering mutation
along a connected surface. The mutating surface is either a four times punctures sphere (8 cases), a twice
punctured torus (75 cases) or a four times punctured torus (4 cases).

4.2 Two veering mutants representing the same face of the Thurston norm ball when
b1.M/ D 2

As explained at the beginning of this section, finding examples of two different measurable veering
triangulations representing the same face of the Thurston norm ball is harder when b1.M/ > 1 because
then H2.M; @M IR/ admits infinitely many distinct bases. A possible approach to overcome this problem
is to focus on manifolds for which any two nonfibered nonopposite faces of the Thurston norm ball have
different combinatorics, or which have only one pair of opposite nonfibered faces. For instance, we
searched for a cusped hyperbolic 3-manifold M such that

� b1.M/D 2,

� the Thurston norm ball in H2.M; @M IR/ is a quadrilateral,

� M is fibered,

� M admits at least two measurable veering triangulations V and V 0 with different taut signatures
and such that the cones C.V/ and C.V 0/ are 2-dimensional.

When the first three conditions are satisfied, the Thurston norm ball of M admits only one pair of
top-dimensional nonfibered faces. Therefore if additionally M admits at least two measurable veering
triangulations whose cones of homology classes of carried surfaces are 2-dimensional, they either represent
the same nonfibered face or opposite nonfibered faces; see Remark 4.1. If they represent opposite faces
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f22 f31 f3 f14

f15 f5

f28 f18

Figure 20: Ideal triangulation QV1;w and the stable train track �V1;w of a four times punctured
torus carried by V1.

then switching coorientations on faces of one of the triangulations makes them represent the same face.
In the veering census [20] there is a 3-manifold M which satisfies all these conditions. It admits (at least)
three veering triangulations V1, V2 and V3 with the taut signatures

qLLLzvQMQLMkbeeekljjlmljonppphhhhaaahhahhaahha_0111022221111001;

qLLLzvQMQLMkbeeekljjlmljonppphhhhaaahhahhaahha_1200111112020112;

qLLLzvQMQLMkbeeekljjlmljonppphhhhaaahhahhaahha_2111200001111221;

respectively. Observe that V1, V2 and V3 are combinatorially isomorphic as triangulations, but they have
different taut structures. Triangulations V1 and V3 are measurable, and V2 is layered. Using tnorm [54]
we can verify that M indeed has only two pairs of faces of the Thurston norm ball. One pair has to be
fibered because M admits a layered veering triangulation. Thus, after possibly replacing V1 by �V1, we
must have that C.V1/D C.V3/.

Triangulations V1 and V3 not only represent the same nonfibered face of the Thurston norm ball, but they
are also each other’s mutants. Triangulation V1 carries a four times punctured torus which, using the
same labels as in the veering census, can be represented by the 2-cycle

Sw D f3Cf5Cf14Cf15Cf18Cf22Cf28Cf31:

To save some space, we do not include the picture of the tetrahedra of V1 (this is a triangulation with 16
tetrahedra). We do, however, present the induced triangulation QV1;w and the induced train track �V1;w in
Figure 20. Since all complementary regions of �V1;w are punctured bigons, Sw is properly carried by V1;
see Corollary 2.14. We have

AutC.QV1;w j �V1;w/D Z=2˚Z=2˚Z=2:

The group AutC.QV1;w j �V1;w/ is generated by the rotation by � around the center of Figure 20, which
we denote by %, the shift by one “layer” in the northeast direction �C, and the shift by one “layer” in the
northwest direction ��. The surface Sw does not traverse any edge of V1 more than once, and thus there
are no edge product disks in M jS�w . Consequently, we can construct eight veering mutants of V1. They
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qvvLPQwAPLQkfghffjiklnm
popopoqaaaqaaqqqqaaqaqa

1202011111002211
not edge-orientable

layered
Z˚Z˚Z=4˚Z=4

qLLLzvQMQLMkbeeekljjlml
jonppphhhhaaahhahhaahha

0111022221111001
not edge-orientable

measurable
Z˚Z˚Z=2˚Z=4

qvvLPQwAPLQkfghffjilkmn
popopoaaaaaaaaaaaaaaaaa

1020211111220011
not edge-orientable

layered
Z˚Z˚Z˚Z

qvvLPQwAPLQkfghffjiklnm
popopoqaaaqaaqqqqaaqaqa

1020211111220011
edge-orientable

layered
Z˚Z˚Z=4˚Z=4

qLLLzvQMQLMkbeeekljjlml
jonppphhhhaaahhahhaahha

2111200001111221
edge-orientable

measurable
Z˚Z˚Z=2˚Z=4

qvvLPQwAPLQkfghffjilkmn
popopoaaaaaaaaaaaaaaaaa

1202011111002211
edge-orientable

layered
Z˚Z˚Z˚Z

�C ��ı�C

%ı�C %ı��ı�C
% %ı��

��

Figure 21: Six veering mutants of V1. Each dataset consists of the isomorphism signature
of the triangulation (split into the first and second row), the taut angle structure (third row),
information about edge-orientability (fourth row), the type of the triangulation (fifth row) and the
first homology group with integer coefficients of the underlying manifold (sixth row).

do not have pairwise-distinct taut signatures. In particular, V3 has the same taut signature as both V%1
and V%��1 . Data on the remaining mutants of V1 is available in Figure 21. Observe that in each column
we have veering triangulations with the same isomorphism signature but different taut structure. Thus in
each column we have two veering triangulations of the same manifold. The manifold in the right column
is the complement of the L14n62847 link.

It is worth mentioning that in this example the mutating surface represents a homology class that lies in the
interior of the cone C.V1/D C.V3/, and thus in the interior of the cone over a face of the Thurston norm
ball, but over a vertex of the Alexander norm ball. See [35] for the relationship between the Thurston and
Alexander norms on H2.M; @M IR/. The Alexander polynomial of M is equal to

�M D a
2b2C 2a2bC 4abC 4aC 2bC 6C 2b�1C 4a�1C 4a�1b�1C 2a�2b�1C a�2b�2:

Using this we present the Alexander norm ball ofM in Figure 22. We also marked the cones C.V1/, C.V2/
and C.V3/ of homology classes carried by V1, V2 and V3, respectively. We can see that C.V1/D C.V3/,
and that this cone is a cone on two adjacent faces of the Alexander norm ball, but one face of the Thurston
norm ball. The homology class of the mutating surface lies over a vertex of the Alexander norm ball.

4.3 Nonmutants representing the same nonfibered face

Even though the focus of this paper is on veering mutants, it is important to note that there are faces of
the Thurston norm ball which are combinatorially represented by two combinatorially nonisomorphic
veering triangulations which do not differ by a mutation.
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C.V1/D C.V3/

C.V2/

Figure 22: The unit norm ball of the Alexander norm on H2.M; @M IR/ has vertices at�
˙
1
2
;�1

2

�
;
�
˙
1
4
;�1

2

�
and

�
˙
1
4
; 0
�
. Its boundary is marked green. The unit norm ball of the

Thurston norm has vertices at
�
˙
1
4
;�1

2

�
and

�
˙
1
4
; 0
�
. The part of its boundary which does not

overlap with the boundary of the Alexander norm ball is marked blue. The cones of homology
classes carried by V1 and V3 are equal to the cone on two adjacent faces of the Alexander norm
ball. The surface mutating V1 to V3 represents the class .�1; 1/ lying over the vertex

�
�
1
2
; 1
2

�
of

the Alexander norm ball (marked orange).

Fact 4.6 There are nonfibered faces of the Thurston norm ball that can be combinatorially represented by
two distinct veering triangulations which do not differ by a mutation or a mutation with insertion.

Proof Let V1 and V2 be veering triangulations with the taut signatures

lLLvLMQQccdjgkihhijkkqrwsdcfkfjdq_02221000012;

pvLLALLAPQQcdhehlkjmonmoonnwrawwaewaamgwwvn_122221111122002;

respectively. These are two measurable veering triangulations on a 3-manifold M with H1.M IZ/ D
Z˚Z=4. Thus they must represent the same face of the Thurston norm ball. Since V1 and V2 have
different numbers of tetrahedra (the strings describing their taut angle structures have different length),
they cannot be mutants.

To show that V2 is not obtained from V1 by a single mutation with insertion, consider the set Fmax of
faces of V1 which have a nonzero weight for some weight system on V1. If V2 was obtained from V1 by
a single mutation with insertion then the dual graph �2 of V2 would have a subgraph isomorphic to the
graph �max

1 D �1�Fmax obtained from the dual graph �1 of V1 by deleting all its edges dual to the faces
from Fmax. The graph �max

1 has three simple cycles: one of length three, and two of length four. The
unique simple cycle of length three shares an edge with one of the cycles of length four. The graph �2
has four simple cycles of length three and six simple cycles of length four, but none of the cycles of
length three shares an edge with any cycle of length four. Thus V2 cannot be obtained from V1 by a single
mutation with insertion.
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f12 f7 f16 f15 f14 f10 f17 f13

f13
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f9

f12

f15

f11

f16

Figure 23: Veering triangulation jLLAvQQcedehihiihiinasmkutn_011220000.

4.4 Mutating along a higher-genus surface

In Sections 4.1 and 4.2 we discussed pairs of homeomorphic veering mutants for which the mutating
surface was of genus one. In Remark 4.5 we also mentioned homeomorphic mutants with mutating
surface of genus zero. In this subsection we discuss a pair of veering triangulations of the same manifold
which differ by a mutation along a surface of genus two. This example differs from the previous ones not
only by the genus of the mutating surface, but also by the fact that this surface is a fiber of a fibration
over the circle. Moreover, the sutured manifold M jS�w has edge product disks.

Let V and V 0 be veering triangulations with taut signatures

jLLAvQQcedehihiihiinasmkutn_011220000; jvLLAQQdfghhfgiiijttmtltrcr_201102102;

respectively. These are two veering triangulations of the 10312 link complement. We present tetrahedra
of V in Figure 23.

Let Sw D 2f0 C f2 C f6 C 2f7 C 2f9 C 2f11 C f12 C f16. This is a genus-two surface with four
punctures; see Figure 24. The stable train track �V;w has two complementary regions with five cusps and
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f2 f6

Lf11 Lf9

Lf0 Lf7

f12 f16

f9

f11

f7

f0
a

b

ccd

b

e

d

f

g g a

f

e

Figure 24: Ideal triangulation QV;w and the stable train track �V;w of a four times punctured
genus-two surface Sw properly carried by V . An edge e of QV;w is shaded yellow (respectively,
purple) if the edge eC of QCV;w (respectively, edge e� of Q�V;w ) is the top (respectively, the bottom)
base of an edge product disk in M jS�w . To distinguish between the two copies of fi 2 Fw in
QV;w when wfi > 1, we denote the lowermost copy of fi by Lfi . The letters a, b, c, d , e, f and g
indicate side identifications. The only nontrivial element of AutC.QV;w j �V;w/ is the rotation by
� around the center of the edge between Lf9 and Lf0. It misaligns edge product disks, because no
edge shaded yellow is mapped to an edge shaded purple.

two complementary regions with one cusp. Thus, by Corollary 2.14, Sw is properly carried. Let % be the
generator of AutC.QV;w j �V;w/D Z=2. Information on the bijection r% W FCw ! F�w determined by % is
included in Table 2. In this example M jS�w admits edge product disks — in Figure 24 their top bases are
shaded yellow and their bottom bases are shaded purple. We can directly check that no edge which is
the top base of some edge product disk in M jS�w is mapped by % to an edge which is the bottom base
of some edge product disk in M jS�w . This means that % misaligns edge product disks. Therefore, by
Theorems 3.10 and 3.19, V% is a veering triangulation of M %. Using Regina [7] we can verify that V% is
combinatorially isomorphic to V 0, and thus M % is homeomorphic to M .

With some choice of basis forH2.M; @M IZ/ the cone C.V/ is spanned by .0; 0; 1/, .0; 1;�1/ and .1; 0; 0/,
and the homology class of Sw is then given by .1; 2;�1/. In particular, S�w is a fiber of a fibration of M
over the circle. The taut polynomial of V and its specialization at ŒS�w � are equal to

‚.a; b; c/D a2b3c2� a2b2c2� ab3c2� a2b2cC ab2cC abc � bc � a� bC 1;

‚.1;2;�1/.z/D‚.z1; z2; z�1/D z6� 2z5� 2zC 1;

f C f C0 f C2 f C6 f C7 f C9 f C11 f C12 f C16
r� .f C/ f �0 f �16 f �12 f �7 f �9 f �11 f �6 f �2

Table 2: The regluing map determined by � .
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respectively. It follows from [32, Theorem 7.1; 34, Theorem 4.2] that the stretch factor � of the
monodromy f of the fibration with fiber S�w is equal to the largest real root of ‚.1;2;�1/.z/, that is

�D 1
4
.1C
p
17C

p
2.1C

p
17//� 2:081:

The mutating surface in V% is a fiber of a fibration of M over the circle with monodromy %f and thus the
same stretch factor. The fibered faces F and F% represented by V and V%, respectively, must be different
because there is at most one veering triangulation associated to a fibered face F of the Thurston norm
ball (zero if the associated circular flow has singular orbits); see [38, Proposition 2.7]. In this case we
can actually deduce a stronger statement, that there is no automorphism ˆ of H2.M; @M IR/ that sends
F to F%. This follows from the fact that F is a triangle, while F% is a pentagon. Thus %f and f are not
conjugate in the mapping class group of a genus-two surface with four punctures.

Fact 4.7 Let M be the complement of the 10312 link.

� M fibers in two different ways with fiber being a genus-two surface with four punctures and such
that the monodromy of one fibration is obtained from the monodromy of the other fibration by
postcomposing it with an involution %.

� The two fibrations lie over different faces of the Thurston norm ball , and no automorphism of
H2.M; @M IR/ sends one face to the other. Thus the monodromies are not conjugate in the mapping
class group of a genus-two surface with four punctures.

5 Flows representing the same face of the Thurston norm ball

We will show that the flows built from some of the combinatorially nonisomorphic veering triangulations
discussed in Section 4 are topologically inequivalent using the following lemma:

Lemma 5.1 Let ‰1 and ‰2 be two pseudo-Anosov flows on a closed 3-manifold N . If the stable
lamination of ‰1 is transversely orientable and the stable lamination of ‰2 is not , then ‰1 and ‰2 are
not topologically equivalent. An analogous statement holds for blown-up flows ‰ı1 and ‰ı2.

Proof If ‰1 and ‰2 are topologically equivalent there is a homeomorphism h WM !M taking oriented
orbits of ‰1 to oriented orbits of ‰2 (see Definition 2.18). This homeomorphism must take leaves
of the stable lamination of ‰1 to the leaves of the stable lamination of ‰2. But the stable lamination
of ‰2 admits Möbius band leaves, while the stable lamination of ‰1 has only planar and annular leaves.
Therefore ‰1 and ‰2 cannot be topologically equivalent.

Thus if a face F of the Thurston norm ball is combinatorially represented by two veering triangulations
one of which is edge-orientable and the other is not, Lemma 5.1 together with Corollary 2.21 imply that
the flows built out of these veering triangulations have to be topologically inequivalent.
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Theorem 5.2 There are nonfibered faces of the Thurston norm ball that can be dynamically represented
by two topologically inequivalent flows.

Proof For the cusped case apply Lemma 5.1 and Corollary 2.21 to the blown-up flows built from the
veering mutants V and V%� discussed in Section 4.1 (for the b1 D 1 case) or from the veering mutants
V1;V3D V%1 discussed in Section 4.2 (for the b1D 2 case) using Theorem 2.20. The maximality condition
from Definition 2.24 is satisfied in both cases because the faces are top dimensional.

Both these pairs of veering mutants differ by a mutation along a punctured torus. Thus Dehn filling
their underlying 3-manifolds along the slopes determined by the boundaries of these tori yields toroidal
3-manifolds. Consequently, these veering triangulations cannot be used to construct two distinct pseudo-
Anosov flows on a closed hyperbolic 3-manifold which represent the same face of the Thurston norm ball.
However, to do so we can use veering triangulations V1 and V2 that we discussed in the proof of Fact 4.6:

(a) V1 and V2 are two measurable veering triangulations of the same manifold M with H1.M IZ/D
Z˚Z=4.

(b) V1 is edge-orientable, while V2 is not.

(c) For i D 1; 2 every connected surface S carried by Vi has genus three and four punctures, and all
complementary regions of its stable train track have four cusps.

It follows from (a) that V1 and V2 represent the same face of the Thurston norm ball in H2.M; @M IR/.
Part (c) and Remark 2.27 imply that both V1 and V2 carry a surface S of genus three with four punctures
such that each boundary component of S intersects the ladderpole curves of Vi four times. Thus, by
Theorem 2.30, the 3-manifold N obtained from M by Dehn filling it along the slope determined by @S
is hyperbolic.

For i D 1; 2 let ‰i be the pseudo-Anosov flow on N built from Vi via the Agol–Tsang construction.
Since triangulations V1 and V2 represent the same face of the Thurston norm ball in H2.M; @M IR/ and
both carry S , Theorem 2.30 implies that C.‰1/D C.‰2/¤ ∅. By (a) and the fact that N contains an
incompressible surface, b1.N /D 1. Thus the maximality condition from Definition 2.24 must be satisfied.
Therefore ‰1 and ‰2 dynamically represent the same face of the Thurston norm ball in H2.N IR/. The
fact that they are not topologically equivalent follows from (b), Lemma 5.1 and Corollary 2.21.

Remark 5.3 In Section 4.1 we constructed a pair of veering mutants V and V%� on the manifold t12488.
Let N denote the manifold obtained from t12488 by Dehn filling it along the boundary of the mutating
surface. Using Regina [7] it is possible to verify that N is a graph manifold obtained from the orientable
circle bundle N0 over a 2-holed RP 2 by identifying its two toroidal boundary components. Thus N is a
so-called BL-manifold, as defined by Barbot in [2].

Langevin and Bonatti constructed an Anosov flow on one BL-manifold in [5]; a description of this flow
written in English can be found in [25]. Barbot generalized the construction to most other BL-manifolds
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[2, Theorem A] and called the resulting Anosov flows BL-flows. If a BL-manifold is not a circle bundle
then the constructed flow is not R-covered, because it is not circular but is transverse to a torus.

In [2, Theorem B(2)] Barbot claims that all non-R-covered Anosov flows on a fixed BL-manifold which
is not a circle bundle are topologically equivalent. This is in contradiction with our results. It follows
from Theorem 2.20 and Lemma 5.1 that N admits a pair of topologically inequivalent BL-flows — one
constructed from V and the other constructed from V%� . We denote them by ‰ and ‰%� , respectively.
The flows ‰ and ‰%� are constructed from the same semiflow ˆ0 on N0, but — unsurprisingly, given
that V and V%� are mutants — by gluing the two boundary tori in different ways. More specifically, if
for i D 1; 2 we choose a basis .oi ; fi / on the boundary torus Ti of N0 so that fi is a fiber of a Seifert
fibration while oi corresponds to the boundary of the 2-holed RP 2 contained in Ti , then one gluing
T1! T2 can be represented by a matrix

AD

�
1 1

1 0

�
;

and the other by �A. These two gluings result in the same manifold N because N0 admits an involution
which fixes .o1; f1/ and sends .o2; f2/ to .�o2;�f2/. This involution can be obtained as the composition
of the reflection across the stable leaf through the periodic orbit of ˆ0 missing Ti and the reflection which
fixes every fiber of the Seifert fibration, but reverses their orientation.

In Remark 4.5 we mentioned 79 pairs of veering mutants on manifolds with first Betti number equal to
one for which the mutating surface is a punctured torus. In most cases Regina recognizes their appropriate
Dehn fillings as BL-manifolds.

6 Polynomial invariants of veering triangulations

In [34] McMullen introduced a polynomial invariant of fibered faces of the Thurston norm ball called the
Teichmüller polynomial. Recall that associated to a fibered face F there is a unique circular flow ‰; see
[13, Theorem 7], stated here as Theorem 2.23. The Teichmüller polynomial of F is an invariant of the
module of transversals to the preimage of the stable lamination of ‰ in the maximal free abelian cover
of the manifold [34, Section 3]. Its main feature is that it can be used to compute the stretch factors of
monodromies of all fibrations lying over F [34, Theorem 4.2].

McMullen asked whether it is possible to define a similar invariant for nonfibered faces. If a nonfibered
face is dynamically represented by a pseudo-Anosov flow ‰, one could try to replicate the definition of
the Teichmüller polynomial using the stable lamination of ‰. Landry, Minsky and Taylor used veering
triangulations to devise such a polynomial invariant [32]. In fact, they defined two polynomial invariants
of veering triangulations: the taut polynomial and the veering polynomial. Furthermore, they showed
that if a face F of the Thurston norm ball represented by a veering triangulation V is fibered, then the
taut polynomial of V is equal to the Teichmüller polynomial of F [32, Theorem 7.1]. Therefore the taut
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iLLLPQccdgefhhghqrqqssvof_02221000
‚ 4.aC 1/

V .a� 1/3‚

iLLLPQccdgefhhghhrhajsvss_02221000
‚ 4.a� 1/

V .a� 1/2.aC 1/‚

qLLLzvQMQLMkbeeekljjlmljonppphhhhaaahhahhaahha_0111022221111001
‚ a2b2� 2a2bC 4ab� 4a� 2bC 6� 2b�1� 4a�1C 4a�1b�1� 2a�2b�1C a�2b�2

V 0

qLLLzvQMQLMkbeeekljjlmljonppphhhhaaahhahhaahha_2111200001111221
‚ a2b2C 2a2bC 4abC 4aC 2bC 6C 2b�1C 4a�1C 4a�1b�1C 2a�2b�1C a�2b�2

V 0

lLLvLMQQccdjgkihhijkkqrwsdcfkfjdq_02221000012
‚ .aC 1/.a2C 1/.a2� aC 1/2

V .aC 1/.a� 1/2.a2C 1/.a4C a3C a2C aC 1/.a6C a5C a4C a3C a2C aC 1/‚

pvLLALLAPQQcdhehlkjmonmoonnwrawwaewaamgwwvn_122221111122002
‚ .a� 1/.a2C 1/.a2C aC 1/2

V 0

Table 3: The taut and veering polynomials of pairs of veering triangulations representing the
same face of the Thurston norm ball discussed in Section 4. ‚ denotes the taut polynomial
and V denotes the veering polynomial. The variables correspond to the basis elements of
H D H1.M IZ/=torsion. The invariants are well defined up to a change of basis of H and
multiplication by˙h for h 2H .

polynomial (and its specializations under Dehn fillings) can be seen as a generalization of the Teichmüller
polynomial to (some) nonfibered faces.

However, in Section 4 we showed that a veering triangulation representing a nonfibered face of the
Thurston norm ball is not necessarily unique. This means that the taut and veering polynomials of a
veering triangulation might actually not be invariants of the face represented by the triangulation.

An algorithm to compute the taut and veering polynomials of a veering triangulation is explained in [46]. A
much faster algorithm for the computation of the taut polynomial follows from the fact that it is equal to the
Alexander polynomial of the underlying manifold twisted by a certain representation ! W �1.M/! Z=2

[45, Proposition 5.7] and can therefore be computed using Fox calculus. Both algorithms have been
implemented by the author, Saul Schleimer and Henry Segerman; see Veering on GitHub [47]. Using this
software, we computed the taut and veering polynomials of the pairs of veering triangulations representing
the same face of the Thurston norm ball discussed in Section 4. We include this data in Table 3.

Fact 6.1 A nonfibered face of the Thurston norm ball can be combinatorially represented by two distinct
veering triangulations with different taut polynomials , and different veering polynomials.
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Proof See Table 3.

The only pair of veering triangulations from Table 3 which have different both taut and veering polynomials
are not veering mutants; see Fact 4.6. Hence the question still remains whether two homeomorphic veering
mutants representing the same face of the Thurston norm ball can have different both taut and veering
polynomials. The answer to this question is positive. One such pair consists of veering triangulations is

mvLLMvQQQegffhijkllkklreuegggvvrggr_120200111111;

mvLLMvQQQegffhjikllkklreuegrrvvrwwr_120200111111:

They differ by a veering mutation along a four times punctured torus. Their taut polynomials are 8.aC1/
and 8.a � 1/, respectively, and their veering polynomials are 8.a � 1/.aC 1/3 and 8.a � 1/3.aC 1/,
respectively.

7 Further questions

7.1 Operations on flows underlying veering mutations

Throughout the paper we worked combinatorially with veering triangulations and used existing literature
[1; 31; 32] to deduce statements about pseudo-Anosov flows on closed manifolds or their blow-ups on
manifolds with toroidal boundary. We have intentionally avoided discussing how the flows underlying
veering mutants are related. A naive expectation would be that the flows differ by a mutation of (blown-up)
pseudo-Anosov flows. In the closed case this would be a mutation along a surface transverse to a pseudo-
Anosov flow whose intersections with the stable and unstable foliations of the flow are invariant under
some nontrivial symmetry. Mutating these foliations via this symmetry gives a pair of 2-dimensional
singular foliations intersecting along “recombined flow lines”. It remains to find sufficient conditions for
a flow along recombined flow lines (a mutant flow) to admit a parametrization which makes it pseudo-
Anosov. When @M ¤ ∅ one could expect a similar operation performed on the stable and unstable
laminations of a blown-up pseudo-Anosov flow.

However, examples presented in Section 4.1 suggest that the problem may be more complicated. Namely,
let V be a veering triangulation with taut signature iLLLPQccdgefhhghqrqqssvof_02221000. We
showed that V admits four veering mutants: V , V%, V� and V%� . Denote by M the manifold underlying V .
By [1, Theorem 5.1], there is a transitive Anosov flow ‰ on the manifold obtained from M by Dehn
filling it along the boundary of the mutating surface, and the blown-up flow ‰ı on M . It can be deduced
from Figure 18, right, that the intersection L‰ı;S of the mutating twice punctured torus S with the stable
lamination of ‰ı has two closed leaves and the remaining leaves spiral into them; we approximate this
lamination in Figure 25. It is clear from Figure 25 that L‰ı;S is invariant only under the identity and %� .
This means that even though we can mutate the veering branched surface carrying the stable lamination
of ‰ı in four different ways, the lamination itself can only be mutated in two different ways.
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Figure 25: The intersection of the stable lamination of the blown-up Anosov flow determined
by the veering triangulation iLLLPQccdgefhhghqrqqssvof_02221000 and a twice punctured
torus carried by this triangulation.

Working with veering triangulations as opposed to working directly with flows has both advantages and
disadvantages. On one hand, it allowed us to find explicit examples of topologically inequivalent flows
on the same manifold which differ by a veering mutation and represent the same face of the Thurston
norm ball (Theorem 5.2). On the other hand, the fact that veering triangulations exist only on hyperbolic
3-manifolds means that if a mutation along a surface transverse to some (blown-up) pseudo-Anosov flow
yields a (blown-up) pseudo-Anosov flow on a nonhyperbolic manifold, there will not be a corresponding
mutation on the level of triangulations. This can happen when we mutate along ' 2 AutC.QV;w j �V;w/

which aligns edge product disks; see Proposition 3.17. Another obstruction for a veering mutation that
would not be an obstruction for a mutation of flows is the “no perfect fits” condition. It is possible that a
flow which is without perfect fits relative to a finite collection ƒ of closed orbits mutates into a flow which
does have perfect fits relative to the recombined collection of orbits ƒ' . In this case again we do not have
a corresponding veering mutation. For these reasons, it is still of interest to properly define and study
mutations of pseudo-Anosov flows (and possibly other operations underlying veering mutations) without
referring to veering triangulations. This would fit into a more general framework of constructing new flows
out of old, similarly to the Goodman–Fried surgery [15; 21], and Handel–Thurston shearing along tori [22].

7.2 The orbit spaces of mutant flows and recognizing mutative flows

Associated to a pseudo-Anosov flow ‰ there is a bifoliated plane called the orbit space of ‰; see
[11, Proposition 4.1]. Suppose that flows ‰ and ‰' differ by a mutation along a transverse surface S in
the sense introduced in Section 7.1. If S is a fiber of a fibration over the circle there is a homeomorphism
from the orbit space of ‰ to the orbit space of ‰' which sends foliations of one to the foliations of the
other; this follows from the fact these orbit spaces are the universal covers of S and S' equipped with the
invariant foliations lifted from S and S' , respectively. It is not immediately clear how the orbit spaces
differ when S is not a virtual fiber. More generally, it would be advantageous to have an invariant which
is equal for flows which are mutative, that is, differ by a finite number of mutations, and distinguishes
flows which are not mutative.
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7.3 A general result on the relationship between two flows representing the same face of
the Thurston norm ball

We showed that two blown-up Anosov flows representing the same face of the Thurston norm ball can
differ by a veering mutation (Sections 4.1 and 4.2). However, we also noted that there are examples
of veering triangulations that represent the same face of the Thurston norm ball and do not differ by a
veering mutation or even a veering mutation with insertion (Fact 4.6). We have not explained how these
veering triangulations, or their underlying flows, are related. Ideally, we would like to have a theorem
that describes all possible ways in which two distinct flows can represent the same face of the Thurston
norm ball.

7.4 Homology classes versus free homotopy classes of closed orbits of flows

In recent work Barthelmé, Frankel and Mann found an invariant which distinguishes distinct transitive
pseudo-Anosov flows, provided that their orbit spaces satisfy a technical condition called no tree of
scalloped regions; see [3, Definition 3.21]. More precisely, they showed that two such flows ‰1 and ‰2
on N are isotopically equivalent if and only if the sets P.‰1/ and P.‰2/ of unoriented free homotopy
classes of their closed orbits are equal, and topologically equivalent if these sets differ by an automorphism
of �1.N /; see [3, Theorem 1.1].

In the proof of Theorem 5.2 we discussed veering triangulations which, after appropriate Dehn filling, yield
topologically inequivalent transitive pseudo-Anosov flows ‰1 and ‰2 on a closed hyperbolic 3-manifold
N representing the same face of the Thurston norm ball in H2.N;R/. By [3, Proposition 1.2], the orbit
spaces of ‰1 and ‰2 do not have trees of scalloped regions. Thus it follows from [3, Theorem 1.1] that
P.‰1/ ¤ ˆP.‰2/ for any ˆ 2 Aut.�1.N //. On the other hand, we know that the homology classes
of closed orbits of ‰1 and ‰2 span the same rational cone in H1.N IR/. This motivates the question
of how exactly the sets P.‰1/ and P.‰2/ differ, not just for these particular flows from the proof of
Theorem 5.2, but for any two flows which represent the same face of the Thurston norm ball.

7.5 Many distinct flows representing the same face of the Thurston norm ball in the
b1.M/ D 1 case

Suppose that S is a Thurston norm minimizing surface representing a primitive integral class lying at the
intersection of two fibered cones RC � F1 and RC � F2. Let ‰1 and ‰2 be the circular flows associated
to F1 and F2 as in Theorem 2.23. If the intersections of S with the stable and unstable foliations of ‰1
and ‰2 are isotopic, we may be able to perform a mutation along S which yields two distinct noncircular
flows ‰'1 and ‰'2 representing the same top-dimensional nonfibered face in the mutant manifold. A
combinatorial version of this phenomenon occurs for manifolds t12487 and t12488; see Section 4.1. This
leads to a question: given k > 2 is there a 3-manifold M with b1.M/ > 2 such that

� M admits k fibered faces, intersecting at a point ˛, dynamically represented by topologically
inequivalent circular flows ‰1; ‰2; : : : ; ‰k ,
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taut signature volume

gLLPQccdfeffhggaagb_201022 5.33348956689812
gLLPQccdfeffhwraarw_201022 5.33348956689812
gLLPQbefefefhhxhqhh_211120 5.07470803204827
gLLPQbefefefhhhhhha_011102 5.07470803204827

Table 4: Veering mutants of gLLPQccdfeffhggaagb_201022.

� the primitive integral class on RC �˛ can be represented by a Thurston norm minimizing surface
S such that mutating M along S gives a nonfibered 3-manifold M ' with b1.M '/ D 1 and
ŒS' � 2 C.‰'i / for i D 1; 2; : : : ; k?

More generally, can a face of the Thurston norm ball be dynamically represented by more than two
topologically inequivalent flows? Can it be represented by infinitely many flows?

7.6 Veering mutants and hyperbolic geometry

Recall that if V and V' are veering mutants then they are both hyperbolic [23, Theorem 1.5]. However,
they do not always have the same hyperbolic volume. In Table 4 we list the taut signatures and volumes
of certain veering mutants of the veering triangulation gLLPQccdfeffhggaagb_201022 of the 623 link
complement. The mutating surface is a twice punctured torus with the induced triangulation QV;w and
the stable train track �V;w satisfying AutC.QV;w j �V;w/Š Z=2˚Z=2.

Ruberman studied mutations of hyperbolic 3-manifolds and found sufficient conditions for a mutant of a
hyperbolic 3-manifold to be a hyperbolic 3-manifold of the same volume. One of his results concerns only
mutating via very special types of involutions of certain surfaces [48, Theorem 1.3]; another concerns
only mutating along surfaces which are not virtual fibers [48, Theorem 4.4]. Conditions of neither of
these theorems are satisfied when mutating the first triangulation from the table to either the third or the
fourth one; the mutating involutions are not of the type required by [48, Theorem 1.3], and the mutating
surface is a fiber of a fibration over the circle. Nonetheless, there are plenty of veering mutants with the
same hyperbolic volume. In particular, all nonhomeomorphic veering mutants discussed in Section 4 have
the same volume. It would be interesting to know if it is possible to figure out purely combinatorially
when a veering mutation along a carried surface results in a hyperbolic 3-manifold of the same volume.
The relationship between a veering structure and a hyperbolic structure is still not well understood, and
perhaps analyzing it in this fairly narrow setup of mutations would give some new insight on the matter.
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Unit inclusion in a (nonsemisimple) braided tensor category
and (noncompact) relative TQFTs

BENJAMIN HAÏOUN

The inclusion of the unit in a braided tensor category V induces a 1-morphism in the Morita 4-category of
braided tensor categories BRTENS. We give criteria for the dualizability of this morphism.

When V is a semisimple (resp. nonsemisimple) modular category, we show that the unit inclusion induces,
under the cobordism hypothesis, a (resp. noncompact) relative 3-dimensional topological quantum field
theory. Following Jordan, Reutter and Safronov, we conjecture that these relative field theories together
with their bulk theories recover Witten–Reshetikhin–Turaev (resp. De Renzi–Gainutdinov–Geer–Patureau-
Mirand–Runkel) theories, in a fully extended setting. In particular, we argue that these theories can be
obtained by the cobordism hypothesis.
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1 Introduction

This paper is motivated by the quest to bridge topological and higher-categorical constructions of
Topological Quantum Field Theories (TQFTs). In the first approach one explicitly defines an n-manifold
invariant and works their way to a TQFT, adding structure or extra conditions as necessary. This is the
approach behind Reshetikhin and Turaev’s construction [1994] of the 3-TQFTs predicted by Witten [1989],
and their nonsemisimple variants [De Renzi et al. 2022]. The second approach classifies “vanilla” TQFTs,
ie fully extended and without the extra structures/conditions of the above examples, using the cobordism
hypothesis [Baez and Dolan 1995; Lurie 2009]. This classification is in terms of fully dualizable objects
in a higher category. To bridge the two approaches, we must answer the questions:

Can the cobordism hypothesis recover the interesting , hand-built examples that we know?

If so , do we know what the relevant dualizable objects are?
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There is evidence that the answer is yes if one allows for relative and noncompact versions of the cobordism
hypothesis. The relevant dualizable objects were predicted to be those induced by the unit inclusion
mentioned in this paper’s title. This follows ideas of Walker, Freed and Teleman in the semisimple case,
and was predicted to extend to the nonsemisimple case by Jordan, Reutter and Safronov. The whole
story has mainly been communicated in talks; the only written references we are aware of are Walker’s
notes [2006] and Freed’s slides [2011]. An obstacle to obtaining the Witten–Reshetikhin–Turaev theories
from the cobordism hypothesis is that these theories are defined on a category of cobordisms equipped
with some extra structure, which morally comes from the data of a bounding higher manifold. It was
noticed by Walker and Freed–Teleman that this extra data is actually obtained from the Crane–Yetter
4-TQFT on the bounding manifold. Therefore the WRT theory should be thought of as a boundary theory
for the Crane–Yetter theory. We do not know of a formal proof of this statement. An adequate description
of relative field theory was given by Freed and Teleman [2014] and formalized by Johnson-Freyd and
Scheimbauer [2017].

Another obstacle is that the nonsemisimple variants are defined on a restricted class of cobordisms,
namely every 3-cobordism must have nonempty incoming boundary in every connected component. We
need to use a noncompact version of the cobordism hypothesis to work with this restricted category
of cobordisms. This noncompact version appears as an intermediate step in the sketch of proof of the
cobordism hypothesis proposed by Hopkins and Lurie; see [Lurie 2009]. Note that there is independent
work in progress of Reutter–Walker and Schommer-Pries in this direction.

A final obstacle is that WRT theories are not fully extended. It is known that they extend to the circle, but
work of Douglas, Schommer-Pries and Snyder [Douglas et al. 2020] (see also [Freed and Teleman 2021])
shows that they extend to the point if and only if they are of Turaev–Viro type. This can be explained by
the fact that they come from a relative setting, namely are defined on a category of cobordisms equipped
with a bounding higher manifold, which we call filled cobordisms, and the point cannot be equipped with
a bounding 1-manifold.

Summing up, one should be able to recover the WRT theories (resp. their nonsemisimple variants) from a
4-TQFT and a boundary (resp. noncompact boundary) theory for this 4-TQFT, both of which are fully ex-
tended and obtained from the cobordism hypothesis. It was proposed by Freed and Teleman in the semisim-
ple case that the 4-TQFT is induced by the modular tensor category V , and the boundary theory by the inclu-
sion if the unit in V ; see the last slide of [Freed 2011]. It was proven in [Brochier et al. 2021a] that a possibly
nonsemisimple modular tensor category VD Ind.V / is indeed 4-dualizable in the even higher Morita
4-category of braided tensor categories BRTENS, and therefore induces a 4-TQFT under the cobordism
hypothesis. It was conjectured by Jordan, Reutter, Safronov and Walker in 2019 that this 4-TQFT together
with the relative theory induced by the unit inclusion will also recover the nonsemisimple variants of WRT.

This paper gives the first step towards executing the above program. We use the framework of [Johnson-
Freyd and Scheimbauer 2017] to prove that the unit inclusion is 3-dualizable (resp. noncompact-3-
dualizable), and therefore induces a (resp. noncompact) relative 3-TQFT under the cobordism hypothesis.
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In the last section we explain how one can obtain a theory defined on filled cobordisms from a relative
theory together with its bulk theory. We state the conjectures that these recover the WRT theories and their
nonsemisimple variants. Proving these conjectures would answer both questions above in the affirmative.

Context

The cobordism hypothesis formulated in [Baez and Dolan 1995], see [Lurie 2009] for a sketch of proof,
provides a new angle to study and construct topological quantum field theories. One simply has to find a
fully dualizable object in a higher category, and it induces a framed fully extended TQFT. We will study
here one particular example of target category, the 4-category BRTENS of braided tensor categories and
bimodules between them, or more precisely the even higher Morita category ALG2.PR/ of E2-algebras
in some 2-category of cocomplete categories.

Even higher Morita categories are defined in [Johnson-Freyd and Scheimbauer 2017]; see also [Sche-
imbauer 2014] and [Haugseng 2017]. They form an .nCk/-fold Segal space, which we will abbreviate
.nCk/-category, ALGn.S/ for S a k-category. It is shown in [Gwilliam and Scheimbauer 2018] that
every object in ALGn.S/ is n-dualizable. We study the case SD PR, the 2-category locally presentable
k-linear categories, cocontinuous functors and natural transformations, over a field k of characteristic
zero. It was shown in [Brochier et al. 2021b, Theorem 5.21] that fusion categories provide a family of
fully dualizable objects in BRTENS,1 and later in [Brochier et al. 2021a, Theorem 1.1] that possibly
nonsemisimple modular tensor categories are invertible, and hence also fully dualizable. Provided that we
can endow these objects with the extra orientation structure needed for the oriented cobordism hypothesis,
the TQFTs induced by fusion categories are expected to coincide with the Crane–Yetter theories. The
TQFTs induced by nonsemisimple modular tensor categories are expected to coincide with the ones
constructed in [Costantino et al. 2023].

There is another version of the cobordism hypothesis for relative field theories. Actually, there are multiple
versions as there are multiple notions of relative TQFT. Lurie [2009, Example 4.3.23] proposed a definition
of a domain wall based on a category of bipartite cobordisms, and proves the relative cobordism hypothesis
under the assumption that the ambient category has duals. Stolz and Teichner [2011] define a notion of
twisted quantum field theories in the context of topological algebras. Freed and Teleman [2014] describe
relative n-TQFTs as morphisms between truncations of fully extended, ideally invertible, .nC1/-TQFTs.
Johnson-Freyd and Scheimbauer [2017] give an explicit definition of what a morphism between TQFTs
is and exhibit three different notions of strong-, lax- and oplax-twisted quantum field theories, which also
makes sense when the bulk theories are only .nC"/-TQFTs. We will be mostly interested in their notion
of oplax-twisted quantum field theory.

We consider the category BRTENS! of arrows in our chosen target category, where morphisms are
“oplax” squares filled by a 2-morphism. There is a well-defined notion of source and target for objects
and morphisms in this arrow category. Given Z a fully extended .nC"/-TQFT, a relative theory to Z is a

1This is where the characteristic-zero assumption is needed.
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symmetric monoidal functor R W BORDn! BRTENS! whose source is trivial and whose target coincides
with Z. The cobordism hypothesis applies directly in this context, namely R can be reconstructed from
its value on the point R.pt/ W 1! Z.pt/ which has to be fully dualizable in BRTENS!. We say that the
1-morphism R.pt/ has to be fully oplax-dualizable.

In this paper we study the dualizability of the 1-morphism induced by the inclusion of the unit � WVectk!V.
The braided monoidal functor � induces a Vectk-V-central algebra A� which is V as a tensor category
with bimodule structure induced by �. When it is oplax-dualizable, it induces a relative TQFT to the one
of V. There is a stronger notion of dualizability for a 1-morphism needed to induced a domain wall in the
sense of Lurie. It is already known that the 1-morphism A� is always 1-dualizable in the strong sense, by
[Gwilliam and Scheimbauer 2018], 2-dualizable as soon as V is cp-rigid, and 3-dualizable as soon as V

is fusion, by [Brochier et al. 2021b].

We show that fusion is a criterion for 3-dualizability, but not for 3-oplax-dualizability, emphasizing the
difference between these notions. We study oplax-dualizability in detail, including the nonsemisimple
cases. It is expected that the induced oplax-twisted theory corresponds to the Witten–Reshetikhin–Turaev
TQFT seen as relative to the Crane–Yetter 4-TQFT in Walker’s [2006] and Freed–Teleman’s picture as in
[Freed 2011].

In the modular nonsemisimple case, we will show that A� is not 3-oplax-dualizable. We can only hope
for a partial dualizability, and a partially defined TQFT. It turns out that Lurie’s sketch of proof of the
cobordism hypothesis is building a TQFT inductively from the dualizability data of the value on the point,
and if this object is not fully dualizable, this process will simply stop partway through. Note again related
ongoing work of Reutter–Walker and Schommer-Pries. In our case this process will stop before the very
last step, and we obtain a theory defined on cobordisms with outgoing boundary in every connected
component, which we call a noncompact TQFT; see Section 2.3.2.

Results

The unit inclusion in a braided tensor category V2BRTENS gives a braided monoidal functor � WVectk!V.
We work over a field k of characteristic zero. Using Definition 3.8, it induces a Vectk-V-central algebra A�,
ie a 1-morphism in BRTENS. When we see this morphism as an object of the oplax arrow category
BRTENS!, we denote it by A[

�. We are interested in the adjunctibility of A� and in its oplax-dualizability,
ie in the dualizability of A[

�.

We recall Lurie’s sketch of proof of the noncompact cobordism hypothesis, and introduce the corresponding
notion of noncompact-n-dualizable object in Section 2.3.2. We characterize oplax-dualizability of the
unit inclusion:

Theorem 1.1 (Theorems 3.18, 3.21 and 3.20) Let V 2 BRTENS be a braided tensor category, and A[
�

the object of BRTENS! induced by the inclusion of the unit. Then:

(1) A[
� is always 2-dualizable.

Geometry & Topology, Volume 29 (2025)
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If V has enough compact-projectives , then:

(2) A[
� is noncompact-3-dualizable if and only if V is cp-rigid.

(3) A[
� is 3-dualizable if and only if V is the free cocompletion of a small rigid braided monoidal

category if and only if V is cp-rigid with compact-projective unit.

In particular, for the examples of interest for Section 4:

Corollary 1.2 Let V be a modular tensor category in the sense of [De Renzi et al. 2022], let V WD Ind.V /
be its Ind-completion , and A[

� be induced by the unit inclusion in V. Then:

(1) If V is semisimple , A[
� is 3-dualizable and induces a 3-TQFT RV with values in BRTENS!.

(2) If V is nonsemisimple , A[
� is not 3-dualizable , but is noncompact-3-dualizable and induces a

noncompact-3-TQFT RV with values in BRTENS!.

We describe the dualizability data of A[
� explicitly, which gives the values of RV on elementary handles.

In dimension 2, the handle of index 2 is mapped to some mate of the unit inclusion �. The handle of
index 1 is mapped to some mate of the tensor product T . And the handle of index 0 is mapped to some
mate of the “balanced tensor product”

Tbal W V �
V�V

V! V

which is induced by T on the relative tensor product.

To determine this dualizability data, we use the fact that the dualizability of A[
� is equivalent to the dualiz-

ability of V and the right-adjunctibility of A�; see [Johnson-Freyd and Scheimbauer 2017, Theorem 7.6]
and Section 2.2.3. We remark that the adjunctibility of A� often implies the relevant dualizability of V,
see Remark 3.25, which is a priori a phenomenon specific to the unit inclusion.

Freed and Teleman [2021, Theorem B] study the dualizability of the unit inclusion in the 3-category
ALG1.RexC/. Here RexC is the 2-category of finitely cocomplete categories and finitely cocontinuous
functors. They show that V 2 ALG1.RexC/ is finite rigid semisimple if and only if M� is 2-dualizable,
ie lies in a subcategory with duals. The forward implication is [Douglas et al. 2020]. We can give an
analogous statement one categorical number higher:

Theorem 1.3 (Theorem 3.22) Suppose V 2 BRTENS has enough compact-projectives. Then A� is
3-dualizable if and only if V is finite rigid semisimple.

Note that the full dualizability of A� is indeed stronger that its oplax-dualizability. They are however
expected to be equivalent when V is itself fully dualizable; see Remark 2.22. This actually implies some
nondualizability results on V; see Remark 3.24

Geometry & Topology, Volume 29 (2025)
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Figure 1: Adjunctibility data of the unit inclusion. The whole description (including gray) holds
for V cp-rigid (Proposition 3.26), and the black subset holds when V has enough compact-
projectives (Theorem 3.18). The functor z�R is the essentially unique cocontinuous functor that
agrees with �R on the compact-projectives.

We study in Section 3.2 the dualizability of the 1- (resp. 2-) morphism induced by a braided monoidal (resp.
bimodule monoidal) functor F , which we denote by AF (resp. MF ). This allows us to give explicitly the
adjunctibility data of A�; see Figure 1. We will use the notation

morphism

counit j unit counit j unit

right adjointleft adjoint

to depict adjunctibility data. We will give a further example explaining this notation in Figure 2.

We studied the unit inclusion, but a version of our arguments still work for any bimodule induced by
a braided monoidal functor. Instead of a necessary and sufficient condition, we only have a sufficient
condition:

Theorem 1.4 (Theorem 3.28) Let F W V! W be a braided monoidal functor between two objects
of BRTENS. Then the object A[

F
2 BRTENS! induced by F is 2-dualizable. It is noncompact-3-

dualizable as soon as V and W are cp-rigid. In this case , it is 3-dualizable if and only if F preserves
compact-projectives.

Applications

Nonsemisimple variants of Witten–Reshetikhin–Turaev TQFTs were introduced in [Blanchet et al. 2016]
and [De Renzi et al. 2022]. They are defined on a restricted class of decorated cobordisms, including
in particular cobordisms with incoming boundary in every connected component. This matches the
notion of noncompact TQFT from Lurie, up to orientation reversal, and this is the part of the theory
that we expect to obtain. We will focus on the TQFTs from [De Renzi et al. 2022] here, and actually
their extension to the circle by [De Renzi 2021]. They are defined for possibly nonsemisimple modular
categories, whose Ind-completions have been found to be 4-dualizable, and actually invertible, in BRTENS

by [Brochier et al. 2021a]. Using the cobordism hypothesis, for V a modular tensor category and V WD
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Ind.V / its Ind-completion, there is an essentially unique framed 4-TQFT ZV W BORDfr
4 ! BRTENS with

ZV.pt/D V.

We know from Corollary 1.2 that if V is semisimple (resp. nonsemisimple) the unit inclusion is 3-oplax-
dualizable (resp. noncompact-3-oplax-dualizable). Using the cobordism hypothesis, it induces a framed
(resp. noncompact) 3-TQFT RV W BORDfr

3 ! BRTENS! (resp. RV W BORDfr;nc
3
! BRTENS!) relative

to ZV. We give conjectures that these theories can be oriented.

Conjecture 1.5 (Conjectures 4.11 and 4.13) Let V be a modular tensor category and V D Ind.V /,
which is invertible and in particular 5-dualizable by [Brochier et al. 2021a]. Then:

(1) The ribbon structure of V induces an SO.3/-homotopy-fixed-point structure on V.

(2) The ribbon structure of � induces an SO.3/-homotopy-fixed-point structure on A[
�.

(3) A choice of modified trace t on V induces an SO.4/-homotopy-fixed-point structure on V.

Given a modified trace t, let d.V /t denote the global dimension of V computed using t, defined as the
value on S4 of the .3C1/-TQFT of [Costantino et al. 2023] with the same input.

(4) Exactly two modified traces induce SO.5/-homotopy-fixed-point structures on V, namely ˙D�1
t t

for Dt a square root of the global dimension d.V /t.

Let us include here the conjecture that the TQFTs of [Costantino et al. 2023] compute the (3+1)-part of
the fully extended TQFT associated with V , which we can state now that we have conjectured orientation
structures.

Conjecture 1.6 Let V be a modular tensor category. Choose t a modified trace on V and let ZV be the
associated oriented 4-TQFT. Then one has a natural isomorphism

SV ' h1�
3ZV

between the .3C1/-TQFT defined in [Costantino et al. 2023] and the (3+1)-part of ZV.

We construct the “anomalous” theory AV W BORDfilled
3 ! TENS associated with RV and ZV. It is defined

on a 3-category of cobordisms equipped with a filling, ie a bounding higher manifold, which degenerates
to the more usual eCob on which WRT-type theories are defined. The anomalous theory is noncompact
when RV is.

We can now state the main conjectures. We claim that one can recover WRT and DGGPR theories from
the cobordism hypothesis using the construction we described:

Conjecture 1.7 (Conjecture 4.16) Let V be a semisimple modular tensor category with a chosen square
root of its global dimension. The anomalous theory AV induced by the associated oriented 4-TQFT ZV

and oriented oplax-ZV-twisted 3-TQFT RV recovers the once-extended Witten–Reshetikhin–Turaev
theory as its 321-part.
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Conjecture 1.8 (Conjecture 4.17) Let V be a nonsemisimple modular tensor category with a chosen
modified trace t and square root of its global dimension. The anomalous theory AV induced by the
associated oriented 4-TQFT ZV and oriented noncompact oplax-ZV-twisted 3-TQFT RV recovers the
once-extended DGGPR theory for cobordisms with trivial decoration as its 321-part.

We show that the values on the circle coincide by computing RV explicitly and using the factorization
homology description of ZV. For higher dimensions, one needs to identify the values of ZV on 3-manifolds
with skein modules, which is at this day still conjectural [Johnson-Freyd 2021, Conjecture 9.10].

An interesting consequence of these conjectures is that since the WRT and DGGPR theories only
correspond to the 321-part of AV, they actually extend down. They do not descend to the point, which is
not null-bordant, but to the pair of points S0.

Note that we use both the oplax-twisted 3-TQFT and the 4-TQFT in this construction. Therefore, not every
case of 3-oplax-dualizability in Theorem 1.1 induces such a theory. We also need V to be 4-dualizable.
The assumption that ZV is invertible however can be dropped. The anomalous theory would then strongly
depend on the filling, and give interesting invariants of 4-manifolds with boundary.

The construction of the anomalous theory AV using a bounding manifold is needed to recover the usual
constructions of WRT and DGGPR theories. It is also necessary for some applications, eg to obtain
a scalar invariant of 3-manifold. However, one could argue that the more fundamental object is the
fully extended twisted 3-TQFT RV. It does not assign a scalar to a 3-manifold, but an element in a
one-dimensional vector space: the state space of the invertible Crane–Yetter TQFT. If one is happy to
allow this feature, then one can argue that WRT is a fully extended theory, with values in the oplax arrow
category BRTENS!.

Acknowledgements I would like to thank my advisors Francesco Costantino and David Jordan for their
invaluable help and encouragements. I am grateful to Pavel Safronov for many helpful discussions and to
the anonymous referee for many useful remarks on a first version of this article. This research is part of
my PhD thesis and took place both at the Université Toulouse 3 Paul Sabatier and at the University of
Edinburgh.

2 Relative and noncompact TQFTs

In this paper we will study the dualizability of a 1-morphism. What exact kind of dualizability we are
interested in is dictated by the relative cobordism hypothesis: we want a 1-morphism that will induce
a relative TQFT. It turns out that there are multiple notions of relative TQFTs, and therefore multiple
interesting notions of dualizability for a 1-morphism.

Throughout, we will use the expression n-category to mean .1; n/-category, and more precisely complete
n-fold Segal space. For j � k, we write ık for the composition of j -morphisms in the direction of
k-morphisms. We write Idk

f for taking k-times the identity of f .
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2.1 Review of relative TQFTs

We recall the notions of relative TQFTs that will be our motivation. Let C be a symmetric monoidal
n-category. We distinguish two flavors.

The first is purely topological. Lurie [2009, Example 4.3.23] defines a category BORDdw
n of bipartite

cobordisms with two different colors for the bulk and interfaces between them. There are in particular
manifolds with only one color and without interfaces. This induces two inclusions BORDn! BORDdw

n .

Definition 2.1 (Lurie) A domain wall between two theories Z1;Z2 W BORDn ! C is a symmetric
monoidal functor BORDdw

n ! C that restricts to Z1 and Z2 on manifolds with one color.

In particular, the interval with an interface point in the middle induces a morphism Z1.pt/! Z2.pt/.
Freed and Teleman [2014] describe a notion of relative TQFT by means of such morphisms for every
values of Z1 and Z2 on manifolds of dimension strictly less than n. They mention that their notion should
be equivalent to Lurie’s notion of domain wall. A more detailed comparison will appear in William
Stewart’s PhD thesis.

The second notion focuses on the algebraic flavor of Freed–Teleman’s description. One can drop the
assumption that Z1 and Z2 are well defined on n-manifolds because these don’t appear. Johnson-Freyd
and Scheimbauer define three different notions of an n-category of arrows in an n-category. We will focus
on the oplax one C!.

Definition 2.2 (sketch, see Definition 5.14 in [Johnson-Freyd and Scheimbauer 2017]) Let C be a
symmetric monoidal n-category. The symmetric monoidal n-category C! of oplax arrows in C has:

� Objects Triples f D .sf ; tf ; f
#/, where sf and tf are objects of C and f # W sf ! tf is a 1-

morphism.

� 1-morphisms, f ! g Triples hD .sh; th; h
#/, where sh W sf ! sg and th W tf ! tg are 1-morphisms,

and h# W g# ı sh) th ıf
# is a 2-morphism.

:::

� k-morphisms, a !b Triples f D .sf ; tf ; f #/, where sf W sa! sb and tf W ta! tb are k-morphisms
in C, and f # is a kC1-morphism in C from the composition of some whiskerings of b# and sf to
the composition of some whiskerings of tf and a#.

It has two symmetric monoidal functors s; t W C!! C.

To avoid confusion, when we see a 1-morphism f of C as an object of C! we will denote it by f [. The
notation comes from .f [/# D f .
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Definition 2.3 [Johnson-Freyd and Scheimbauer 2017, Definition 5.16] Let C be a symmetric monoidal
n-category and Z1;Z2 W BORDn�1! C two categorified .n�1/-TQFTs. An oplax-Z1-Z2-twisted .n�1/-
TQFT is a symmetric monoidal functor

R W BORDn�1! C!

such that s.R/D Z1 and t.R/D Z2.

The name and strategy come from [Stolz and Teichner 2011].

We will use the formalism of Johnson-Freyd and Scheimbauer in this paper. For applications, see Section 4,
we are interested in the case where Z1 is the trivial theory and Z2 is well-defined on n-manifolds. If
Z W BORDn!C is defined on n-manifolds, we will say oplax-Z-twisted theory for oplax-Triv-ZjBORDn�1

-
twisted theory. Under this extra hypothesis, which was made in [Freed and Teleman 2014], the notion of
oplax-twisted field theory should agree with Lurie’s notion of domain walls; see Remark 2.22.

2.2 Dualizability data

Let us first recall the multiple notions of dualizability and adjunctibility for morphisms in a symmetric
monoidal n-category C.

2.2.1 Definitions

Definition 2.4 Let C be a bicategory, and f W x ! y a 1-morphism in C. A right adjoint for f
is a morphism f R W y ! x together with two 2-morphisms " W f ı f R ) Idy called the counit and
� W Idx) f R ıf called the unit, satisfying the so-called snake identities:

x

x

Idx

y

f

x

y

x

f

fR

y

f

x

y

f

y

Idy

�

"

D

D

x

y

f

x

y

f' ' D Idf ;

y

x

x

Idy

fR

x

y

x

y

f

fR

fR

y

y

x

fR

Idy

�

"

D

Dy

x

fR

y

x

fR' ' D IdfR :

We say that f has a right adjoint f R and that f R has a left adjoint f .
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This definition extends to higher categories. Let C be an n-category, 2 � k � n and f W x ! y a
k-morphism between two k�1-morphisms x;y W a! b in C. A right adjoint for f is a right adjoint for
f seen as a 1-morphism in the bicategory h2.HomC.a; b//. If k D 1 then we demand a right adjoint
of f in h2.C/. If k D 0 and C is a monoidal category then we demand a right adjoint of f in h2.BC/,
where BC is the one object nC1-category with endomorphisms of the object being C, and composition
the monoidal structure of C, ie X ı0 Y WDX ˝Y .

Definition 2.5 Let C be a symmetric monoidal n-category. It is said to have duals up to level m if every
k-morphism of C, for 0� k <m, has both a left and a right adjoint. It is said to have duals if it has duals
up to level n.

An object X 2 C is said m-dualizable if it lies in a sub-n-category with duals up to level m. It is called
fully dualizable if it is n-dualizable.

There are multiple notions of dualizability, or adjunctibility, for morphisms and higher morphisms in C.
Following [Lurie 2009] one defines:

Definition 2.6 A k-morphism f of C is said m-dualizable if it lies in a sub-n-category with duals up to
level mC k. It is called fully dualizable if it is .n�k/-dualizable.

Following [Johnson-Freyd and Scheimbauer 2017] one gets a few more notions. For simplicity we focus
on 1-morphisms.

Definition 2.7 A 1-morphism f W X ! Y of C is said m-oplax-dualizable if it is m-dualizable as an
object f [ of C!. It is said m-lax-dualizable if it is m-dualizable as an object of C#, where C# is the
category of lax arrows defined in [Johnson-Freyd and Scheimbauer 2017, Definition 5.14].

Definition 2.8 A k-morphism f is said to be left (resp. right) adjunctible if it has a left (resp. right)
adjoint, and adjunctible if it has arbitrary left and right adjoints (.f L/L, .f R/R and so on). It is said
to be m-times (resp. left, right) adjunctible if it is m�1-times (resp. left, right) adjunctible and every
unit/counit witnessing this are themselves (resp. left, right) adjunctible. We sometimes abbreviate m-times
adjunctible as m-adjunctible.

Note that being (left, right) adjunctible is only a condition on the morphism while being (lax, oplax)
dualizable is also a condition on its source and target.

Theorem 2.9 [Johnson-Freyd and Scheimbauer 2017, Theorem 7.6] A 1-morphism f WX ! Y of C is
m-oplax-dualizable if and only if X and Y are both m-dualizable and f is m-times right adjunctible.

Similarly, it is m-lax-dualizable if and only if X and Y are both m-dualizable and f is m-times left
adjunctible.

Similarly, a 1-morphism f WX ! Y is m-dualizable if and only if it is m-times adjunctible and its source
and targets are .mC1/-dualizable.
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j j

Figure 2: Example of the notation for the adjunctibility data of the cup Ô

W∅! �� t �C in the
bicategory Cob0;1;2 of 0, 1 and 2-dimensional oriented cobordisms.

2.2.2 Redundancy in the dualizability data The dualizability data of a morphism grows very fast:
there are four units/counits for the left and right adjunctions, and this does not consider taking the right
adjoint of the right adjoint and so on. In particular, checking n-adjunctibility of a morphism seems tedious.
It turns out that there is a lot of redundancy in this data, especially if we are only interested in dualizability
properties.

Let us begin with some notation. Let f be a k-morphism in an n-category. We say that Radj.f /
(resp. Ladj.f /) exists if f has a right (resp. left) adjoint, in which case we denote this adjoint by Radj.f /
(resp. Ladj.f /), and the unit and counit of the adjunction by Ru.f / and Rco.f / (resp. Lu.f / and
Lco.f /). When these adjoints exist we will display the right and left dualizability data as

f

Rco.f /jRu.f /

Radj.f / and
f

Lco.f /jLu.f /

Ladj.f / :

See Figure 2 for an example. Note that adjoints, units and counits are only defined up to isomorphism,
and we may write Radj.f /, Ru.f /, Rco.f / for any choice of adjoint, unit, counit. The fact that these
choices do not matter will be shown in point (1) of Proposition 2.13.

Definition 2.10 We say that two k-morphisms f and g have same dualizability properties, which we
denote by f :

D g, if for every finite sequence .ai/i2f1;:::;mg, with ai 2 fRadj;Ladj;Ru;Rco;Lu;Lcog,

am.� � � a2.a1.f // � � � / exists if and only if am.� � � a2.a1.g// � � � / exists,

and this for any choice of adjoints, units and counits.

We will show that dualizability properties are preserved by isomorphisms and “higher mating” defined in
Definition 2.12. Let us describe formally this second notion.

Proposition 2.11 Let f W x! y be a k-morphism in an n-category C with adjoint .f R; "; �/. Then for
any other k-morphisms g W z! x and h W z! y, one has an equivalence between the .n�k�1/-categories
of .kC1/-morphisms:

ˆ
f

g;h
W

8̂<̂
:

HomC.f ık g; h/
�
�! HomC.g; f

R
ık h/;

N W f ık g! h 7! .IdfR ıkN / ıkC1 .� ık Idg/;

.kCj /-morphism ˛ 7! .Idj

fR ık˛/ ıkC1 .Id
j�1
� ık Idj

g/:

9>=>;
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Similarly, for any g W x! z and h W y! z, one gets an equivalence

‰
f

g;h
D .�ık Idf / ıkC1 .Idg ık�/ W HomC.g ık f

R; h/
�
�! HomC.g; h ık f /:

Proof Its inverse is given by

.ˆ
f

g;h
/�1
W

8̂<̂
:

HomC.g; f
R
ık h/

�
�! HomC.f ık g; h/;

M W g! f R
ık h 7! ." ık Idh/ ıkC1 .Idf ıkM /;

.kCj /-morphism ˇ 7! .Idj�1
" ık Idj

h
/ ıkC1 .Id

j

f
ıkˇ/:

9>=>;
The composition ˆf

g;h
ı .ˆ

f

g;h
/�1 (resp. .ˆf

g;h
/�1 ıˆ

f

g;h
) is postcomposition (resp. precomposition) by

a snake identity. Similarly, we have .‰f
g;h
/�1 D .Idg ık"/ ıkC1 .�ık IdfR /.

Definition 2.12 For a .kC1/-morphism N W f ık g! h, we say that N and ˆf
g;h
.N / are mates. For

a higher morphism ˛ in HomC.f ık g; h/, we say that ˛ and ˆf
g;h
.˛/ are higher mates. Similarly, for

N and ˛ in HomC.g ık f
R; h/ we call N and ‰f

g;h
.N / mates, and ˛ and ‰f

g;h
.˛/ higher mates. More

generally we say that N and M are mates (resp. ˛ and ˇ are higher mates) if they can be linked by a
chain of matings (resp. higher matings) and isomorphisms.

For a k-morphism f , we say that g is obtained from f by whiskering if it can be written as a composition
of f with identities of lower morphisms. Note that if ˛ and ˇ are higher mates, each is obtained from the
other by whiskering.

Proposition 2.13 Let f and g be k-morphisms in an n-category. Then:

(1) f
:
D f .

(2) If f
'
' g are isomorphic , then f :

D g.

(3) If f D g ık h for an isomorphism h, then f :
D g.

(4) If f and g are higher mates , then f :
D g.

Proof What we have to prove for point (1) is that existence of higher adjoints in the adjunctibility data
does not depend on the choices made in the adjunctions. This kind of result is known as a coherence
statement in the literature and is usually stated as contractibility of a space of dualizability data; see [Lurie
2017, Lemma 4.6.1.10] or [Riehl and Verity 2016], though our statement here is more elementary.

Let us discuss only right adjoints and right units below, every other notion being related by taking
appropriate opposite categories.

The adjunctibility data of f is unique up to isomorphism. This means that if g1 and g2 are both right
adjoints to f , with units u1 and u2, then there is an isomorphism ' W g1

�
�! g2 such that u2 is isomorphic

to .' ık Idf / ıkC1 u1.
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We observe that any choice of right adjoint or right unit of f are related by a sequence of either point (2)
(isomorphism) or point (3) (composing with an isomorphism). The strategy of the proof is to show more
generally that if f and g are related by a sequence of either point (2) or point (3), then f is right adjunctible
if and only if g is, and their adjoints, units and counits are again related by a sequence of either point (2)
or point (3). The result then follows by induction on m the number of letters in am.� � � a2.a1.f // � � � /.
For point (4) we show similarly that if f is related to g by a sequence of points (2), (3) and (4), then so
are their adjoints, units and counits.

(2) If f
'
' g are isomorphic, then f has a right (resp. left) adjoint if and only if g does, in which case

one can choose

Radj.g/DRadj.f /; Ru.g/D .IdRadj.f / ık'/ıkC1Ru.f /; Rco.g/D .'�1
ık IdRadj.f //ıkC1Rco.f /:

(3) If f Dgıkh is obtained as a composition, then f has a right (resp. left) adjoint as soon as g and h do, in
which case one can choose Radj.f /DRadj.h/ıkRadj.g/, Ru.f /D .IdRadj.h/ ık Ru.g/ık Idh/ıkC1Ru.h/
and Rco.f / D .Idg ık Rco.h/ ık IdRadj.g// ıkC1 Rco.h/. In particular, if h is an isomorphism, then
g ' f ık h�1, and f has a right (resp. left) adjoint if and only if g does.

(4) If f D g ıj h is obtained as a composition in the direction of j -morphisms for j < k, then f has a
right (resp. left) adjoint as soon as g and h do, in which case one can choose Radj.f /DRadj.g/ıj Radj.h/,
Ru.f /D Ru.g/ ıj Ru.h/ and Rco.f /D Rco.g/ ıj Rco.h/. In particular, if h is an identity of a lower
morphism, then f has a right (resp. left) adjoint as soon as g does. So, if f and g are higher mates, they
both can be obtained as composition of the other with identities of lower morphisms, and f has a right
(resp. left) adjoint if and only if g does.

We can now describe the redundancy in the dualizability data:

Proposition 2.14 Let f be a k-morphism in an n-category C, and suppose that Radj.f /, Radj.Rco.f //
and Radj.Ru.f // exist. Then

(1) f is 1-adjunctible , and one can choose Ladj.f /DRadj.f /, Lu.f /DRadj.Rco.f // and Lco.f /D
Radj.Ru.f //, and

(2) Rco.Ru.f // :D Ru.Rco.f //.

Suppose moreover that Radj.Lco.f // and Radj.Lu.f // exist. Then

(3) f is 2-adjunctible , and Rco.f / :D Radj.Radj.Rco.f /// and Ru.f / :D Radj.Radj.Ru.f ///.

In particular , if f DX is an object in a symmetric monoidal n-category, then

(4) X is 1-adjunctible if and only if it has a dual. It is 2-adjunctible if and only if evX WD Rco.X /
and coevX WD Ru.X / have right adjoints. More generally, it is m-adjunctible if and only if
Radj.Rcok.Rum�1�k.X /// exist for all 0� k �m� 1.
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Proof Point (1) is [Lurie 2009, Remark 3.4.22], or [Schommer-Pries 2014, Lemma 20.1]. One directly
checks that the right adjoints of the right counit and unit satisfy the snake relations, because taking right
adjoints behaves well with composition, and exhibit Radj.f / as the left adjoint of f .

Point (2) is [Lurie 2009, Proposition 3.4.21]. It is shown that Rco.Ru.f // and Ru.Rco.f // are higher
mates, so in particular Rco.Ru.f // :D Ru.Rco.f //.

Point (3) is [Johnson-Freyd and Scheimbauer 2017, Lemma 7.11]. Let us recall the argument to illustrate
what we mean by redundancy in the dualizability data. First, by point (1) we can take Lco.f / and Lu.f /
to be the right adjoints of Ru.f / and Rco.f /. Now by a left-handed version of point (1) we can also
obtain a unit and counit for the right adjunction of f as the right adjoints of Lco.f / and Lu.f /. Therefore
both Rco.f / and its double right adjoint are counits for the right adjunction of f : there is a redundancy in
the dualizability data. By the proposition above, they have the same dualizability properties, and similarly
for the right unit.

For point (4), by [Johnson-Freyd and Scheimbauer 2017, Corollary 7.12] we have to check that X

is dualizable and that its evaluation and coevaluation maps are .m�1/-times right adjunctible, ie that
Radj.a1.� � � am�1.X / � � � / exists for any .ai/i 2 fRco;Rugm�1. Using point (2), we know that Ru and
Rco commute as far as existence of adjoints is concerned, so there are only m different .m�1/-morphisms
whose adjunctibility should be checked, Rcok.Rum�1�k.X // for 0� k �m� 1.

2.2.3 Oplax dualizability data We investigate the proof of Theorem 2.9 and explain how to get from
adjunctibility data in C to dualizability data in C!.

Theorem 2.15 (Johnson-Freyd–Scheimbauer) Let f D .sf ; tf ; f #/ W aD .sa; ta; a
#/! b D .sb; tb; b

#/

be a k-morphism in C! so sf W sa! sb and tf W ta! tb are k-morphism in C, and f # is a .kC1/-morphism
in C from the composition of some whiskerings of b# and sf to the composition of some whiskerings
of tf and a#. Then

f has a right adjoint in C! if and only if sf ; tf and f # have right adjoints in C.

In this case ,

� Radj.f /D .Radj.sf /;Radj.tf /;g/ where g is a mate of Radj.f #/,

� Ru.f /D .Ru.sf /;Ru.tf /;u/ where u is a higher mate of Rco.f #/, and

� Rco.f /D .Rco.sf /;Rco.tf /; v/ where v is a higher mate of Ru.f #/.

In particular , if we only look at the right dualizability data , and only take right adjoints once , then

for all i; j 2N, Radj.Rcoi.Ruj .f /// exists if and only if Radj.Rcoi.Ruj .sf ///, Radj.Rcoi.Ruj .tf ///

and Radj.Rui.Rcoj .f #/// exist.

Geometry & Topology, Volume 29 (2025)



2190 Benjamin Haïoun

Proof The description of the right adjunctibility of a morphism in C! is [Johnson-Freyd and Scheimbauer
2017, Proposition 7.13], in the oplax case.

For the last statement, remember that u
:
D Rco.f #/ and v :

D Ru.f #/ by Proposition 2.13.4. The first
statement implies by induction that Rcoi.Ruj .f // is of the form .s; t; w/, where s

:
D Rcoi.Ruj .sf //,

t
:
D Rcoi.Ruj .tf // and w :

D Rui.Rcoj .f //.

Indeed increasing j for i D 0 we have RujC1.f / D .Ru.s/;Ru.t/;U /, which have the same du-
alizability properties as, respectively, .RujC1.sf /;RujC1.tf /;RcojC1.f #//. Increasing i we have
RcoiC1 Ruj .f / D .Rco.s/;Rco.t/;V / which have the same dualizability properties as, respectively,
.RcoiC1 Ruj .sf /;RcoiC1 Ruj .tf /;RuiC1 Rcoj .f #//.

Example 2.16 (k D 0) An object f D .X;Y;A WX ! Y / of C! is dualizable if and only if X and Y

are dualizable, and A has a right adjoint Radj.A/. Then

� f � D .X �;Y �;Radj.A/� WD .IdY � ˝ evX / ı .Id�Y ˝Radj.A/˝ IdX �/ ı .coevY ˝ IdX �//,

� coevf D .coevX ; coevY ; .Rco.A/˝ IdIdY �
/ ı1 IdcoevY

/, and

� evf D .evX ; evY ; IdevX
ı1.Ru.A/˝ IdIdX�

//.

A surprising consequence of this result is that if f is 2-dualizable, the right counit and unit of A are
biadjoints up to isomorphisms and mating. A drawing for this is given in Figure 4.

2.3 Cobordism hypotheses

The cobordism hypothesis describes fully extended topological quantum field theories with values in a
higher category C in terms of fully dualizable objects of C. We also recall relative versions that describes
relative TQFTs, and a noncompact version that describes partially defined TQFTs. The cobordism
hypothesis was formulated in [Baez and Dolan 1995]. A sketch of proof was given in [Lurie 2009], a
more formal version is work in progress of Schommer-Pries. An independent proof of a more general
result appears in the preprint [Grady and Pavlov 2021]. Another independent proof using factorization
homology is work in progress, see [Ayala and Francis 2017].

Conjecture 2.17 (the cobordism hypothesis, Theorems 2.4.6 and 2.4.26 in [Lurie 2009]) Let C be a
symmetric monoidal n-category. Evaluation at the point induces equivalences of1-groupoids

Fun˝.BORDfr
n ;C/' .C

fd/�

between framed fully extended n-TQFTs with values in C and the underlying1-groupoid of the subcate-
gory of fully dualizable objects of C, and

Fun˝.BORDn;C/' ..C
fd/�/SO.n/

between oriented fully extended n-TQFTs with values in C and SO.n/-homotopy-fixed-points in .Cfd/�,
where SO.n/ acts on the n-category BORDfr

n by changing the framing and therefore on .Cfd/� by the first
equivalence.
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For X 2 C a fully dualizable object, we denote by ZX (a choice of representative of) the associated fully
extended framed n-TQFT.

2.3.1 The relative cobordism hypothesis Lurie proposes a result classifying his notion of domain
wall.

Conjecture 2.18 [Lurie 2009, Theorem 4.3.11 and Example 4.3.23] Let C be a symmetric monoidal
n-category and X;Y 2 Cfd. There is a bijection between isomorphism classes of framed domain walls
between ZX and ZY and isomorphism classes of fully dualizable 1-morphisms f W X ! Y , given by
evaluation at the interval with an interface point in the middle.

There is an oriented version asking that f preserve orientation structures.

On the other hand, the notions in [Johnson-Freyd and Scheimbauer 2017] of a twisted quantum field theory
are already classified by the usual cobordism hypothesis. Note however that [loc. cit., Definition 5.16] is
surprisingly strict because it demands that the source and target of the functor R W BORDn�1! C agree
strictly with Z1 and Z2. Equivalently, we could have asked that R come equipped with isomorphisms
s.R/' Z1 and t.R/' Z2. In both cases, it is clear that the cobordism hypothesis does not apply on the
nose. The fix is easy.

Definition 2.19 Let C be a symmetric monoidal n-category and X;Y 2 C. Denote by .C!/�
X ;Y

the
homotopy pullback

.C!/�
X ;Y

.C!/�

� .C�/�2

yh
s;t

X ;Y

Similarly, for Z1;Z2 W BORDfr
n�1! C denote by Fun˝.BORDfr

n�1;C
!/Z1;Z2

the homotopy pullback

Fun˝.BORDfr
n�1;C

!/Z1;Z2
Fun˝.BORDfr

n�1;C
!/

� .Fun˝.BORDfr
n�1;C//

�2

yh
s;t

Z1;Z2

called the space of framed oplax-Z1-Z2-twisted-.n�1/-TQFTs.

Note that both are also strict pullbacks, as taking source and target induces a fibration of spaces.

Corollary 2.20 (of the cobordism hypothesis) Let C be a symmetric monoidal n-category and X;Y 2C.
Choose two TQFTs ZX ;ZY W BORDfr

n�1 ! C associated with X and Y by the cobordism hypothesis.
Evaluation at the point induces an equivalence

Fun˝.BORDfr
n�1;C

!/ZX ;ZY
' .C!/�X ;Y :
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Proof The cobordism hypothesis on C and C! gives a commutative diagram of horizontal equivalences

Fun˝.BORDfr
n�1;C

!/ .C!/�

.Fun˝.BORDfr
n�1;C//

�2 .C�/�2

� �

s;t

evpt

s;t

evpt � evpt

ZX ;ZY X ;Y

inducing an equivalence between homotopy pullbacks.

Remark 2.21 There is an oriented version well. The maps

s; t W Fun˝.BORDfr
n�1;C

!/! Fun˝.BORDfr
n�1;C/

are SO.n�1/-equivariant because SO.n� 1/ acts on the source BORDfr
n�1. The maps s; t W .C!/�!

C� are therefore also equivariant, and descend to maps between the SO.n�1/-homotopy-fixed points
s; t W .C!/�;SO.n�1/!C�;SO.n�1/. Given two objects X;Y 2C equipped with SO.n�1/-homotopy-fixed
point structure, one can reproduce exactly the whole paragraph above and define .C!/�;SO.n�1/

X ;Y
as a

pullback. We get
Fun˝.BORDn�1;C

!/ZX ;ZY
' .C!/

�;SO.n�1/
X ;Y

by the same proof, using the oriented cobordism hypothesis.

Remark 2.22 Results to appear in the PhD thesis of William Stewart show that if we assume that the
source and target objects X and Y are fully dualizable then a morphism f W X ! Y is .n�1/-oplax
dualizable if and only if it is .n�1/-dualizable. In particular, if we restrict the notion of oplax twisted
TQFTs to the case where the “twisting” theories Z1 and Z2 extend to BORDn, which is the setting in
[Freed and Teleman 2014], then this notion, using the cobordism hypothesis twice, is equivalent to Lurie’s
notion of domain walls.

2.3.2 Noncompact TQFTs To study nonsemisimple variants of Witten–Reshetikhin–Turaev TQFTs,
we will be interested in theories defined on a restricted class of cobordisms, namely where top-dimensional
cobordisms have nonempty outgoing boundary in every connected component.

Lurie’s sketch of proof of the cobordism hypothesis is done by induction on the handle indices allowed.
One starts with only opening balls, then allows more and more complex cobordisms. Eventually one
allows every cobordism but closing balls, namely cobordisms with outgoing boundary in every connected
component. Finally one allows every cobordism, obtaining a TQFT. We call it a noncompact TQFT when
we stop at this ante-last step. Lurie’s proof then gives an algebraic criterion classifying these.

We follow [Lurie 2009, Section 3.4] and state the results there in a form fitted for our use. It should be
noted that the proofs of the statements below are not very formal.
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Definition 2.23 Let BORDfr;nc
n � BORDfr

n denote the subcategory where n-dimensional bordisms have
nonempty outgoing boundary in every connected component.

A framed fully extended noncompact n-TQFT with values in a symmetric monoidal n-category C is a
symmetric monoidal functor Z W BORDfr;nc

n ! C.

Lurie [2009, Definition 3.4.9] defines an n-category Fk of � n-dimensional bordisms where all n-
manifolds are equipped with a decomposition into handles of index � k. Here bordisms are actually
equipped with a framed function without certain kinds of critical points.

We denote by ˛m
k
DDk �Dm�k W Sk�1 �Dm�k !Dk �Sm�k�1 the m-dimensional index k handle

attachment, seen as an m-morphism in BORDfr
m, or in Fk if m D n. Let x D Sk�2 � Dn�k and

y D Dk�1 � Sn�k�1 be seen as .n�2/-morphisms ∅ ! Sk�2 � Sn�k�1 in BORDfr
n�1. Note that

˛n�1
k�1
W x ! y and ˛n�1

n�k
W y ! x for 1 � k � n. Then, ˛n

k�1
can be seen (up to higher mating) as a

morphism Idx! ˛n�1
n�k
ı˛n�1

k�1
and ˛n

k
as a morphism ˛n�1

k�1
ı˛n�1

n�k
! Idy , and they form a unit/counit

pair in Fk ; see [Lurie 2009, Claim 3.4.17]. Namely, Radj.˛n�1
k�1

/ D ˛n�1
n�k

, Ru.˛n�1
k�1

/ D ˛n
k�1

and
Rco.˛n�1

k�1
/D ˛n

k
, or, in our diagrammatic notation,

˛n�1
k�1

˛n
k
j ˛n

k�1

˛n�1
n�k

By induction, Rcok.Rum�k.pt//D ˛m
k

.

Conjecture 2.24 (index-k cobordism hypothesis, Lurie) A symmetric monoidal functor

Z0 W BORDfr
n�1! C

extends to Z W Fk ! C for 1 � k � n if and only if the images of every .n�1/-dimensional handle of
index � k � 1 is right adjunctible.

This extension is essentially unique: there is an isomorphism Z) Z0 between any two such extensions.
This isomorphism may not be the identity on BORDfr

n�1.

Sketch For k D 0, one can extend Z0 W BORDfr
n�1! C with any n-morphism Z.˛n

0
/ W 1! Z0.S

n�1/;
see [Lurie 2009, Claim 3.4.13]. Note that Lurie works in the unoriented case there, and demands an
O.n/-equivariant morphism, and we look at the framed case.

Now, for 1� k � n, a symmetric monoidal functor Z0 W Fk�1! C extends to Z W Fk ! C if and only if
˛n

k�1
is mapped to a unit of an adjunction between ˛n�1

k�1
and ˛n�1

n�k
; see [loc. cit., Proposition 3.4.19]. In

this case, the extension is essentially unique, and ˛n
k

is mapped to the counit of the adjunction.

For k D 1, this gives little choice for the n-morphism Z.˛n
0
/: it has to be the unit of an adjunction and is

therefore determined up to isomorphism. Then, ˛n
1

will be sent to the counit.
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For k � 2, we want Z.˛n
k�1

/, which is so far defined as the counit of the adjunction between Z.˛n�1
k�2

/

and Z.˛n�1
n�kC1

/, to be also the unit of the adjunction between Z.˛n�1
k�1

/ and Z.˛n�1
n�k

/. This in particular
implies that the .n�1/-dimensional handle of index k � 1 is right adjunctible, as stated in the conjecture.
For the converse, we use [Lurie 2009, Proposition 3.4.20] (which we recalled in Proposition 2.14(2)),
which states that provided the adjunction exists, ˛n

k�1
must map to (a higher mate of) the unit.

Definition 2.25 Let C be a symmetric monoidal n-category. An object X in C is .n; k/-dualizable if
it is .n�1/-dualizable and the .n�1/-morphisms Run�1.X /;Rco.Run�2.X //, : : : ;Rcok�1.Run�k.X //

have right adjoints. We say X is noncompact-n-dualizable if it is .n; n�1/-dualizable.

For example, for nD 3 and k D 2, we want X to have a dual .X �; evX ; coevX /, both its evaluation and
coevaluation maps to have right adjoints .evR

X
; a; b/ and .coevR

X
; c; d/, and the unit and counit of the

right adjunction of the coevaluation to have right adjoints cR and dR.

We can now state the noncompact version of the cobordism hypothesis, which we will assume in Section 4.
A formal proof is work-in-progress of Schommer-Pries.

Conjecture 2.26 (noncompact cobordism hypothesis) Let C be a symmetric monoidal n-category, with
n� 2. There is a bijection between isomorphism classes of framed fully extended noncompact n-TQFTs
with values in C and isomorphism classes of noncompact-n-dualizable objects of C, given by evaluation
at the point.

There is an oriented version as well, stating that oriented noncompact theories are classified by SO.n/-
homotopy-fixed points in the space of noncompact-n-dualizable objects.

3 Dualizability of the unit inclusion

Let V 2 BRTENS be a braided tensor category. We consider the inclusion of the unit � W Vectk!V. It is
a braided monoidal functor and we define an associated Vectk-V-central algebra A�, which is simply
the category V seen as the regular right V-module; see Definition 3.8. We study the dualizability of this
1-morphism in BRTENS. First, we recall some context and develop some properties of bimodules induced
by functors. Then we describe all the dualizability data explicitly and give criteria for dualizability.

3.1 Cocomplete braided tensor categories

We will work in the even higher Morita category ALG2.PR/. This category have been formally defined
in [Johnson-Freyd and Scheimbauer 2017], and described more explicitly in [Brochier et al. 2021b] under
the name BRTENS.

3.1.1 Cocomplete categories We begin by recalling some properties of the 2-category PR. Let k be a
field of characteristic zero.
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Let Catk denote the 2-category of small k-linear categories, and PR denote the 2-category of cocomplete
locally presentable k-linear categories [Adámek and Rosický 1994, Defintion 1.17], k-linear cocontinuous
functors and k-linear natural transformations, equipped with the Kelly tensor product �. We denote
by FreeD HomCatk..�/

op;Vectk/ W Catk! PR the symmetric monoidal free cocompletion functor. Its
essential image is denoted by Bimodk.2

An object C 2 C is called compact-projective (which we abbreviate cp) if the functor HomC.C;�/ is
cocontinuous. The category C is said to have enough compact-projectives if its full subcategory Ccp

of cp objects generates C under colimits, or equivalently if the canonical functor Free.Ccp/! C is an
equivalence, or if it lies in Bimodk. A monoidal category C is called cp-rigid if it has enough cp and all
its cp objects are left and right dualizable.

Proposition 3.1 A 1-morphism F W C!D in PR between two categories with enough cp has a cocontin-
uous right adjoint if and only if it preserves cp.

Proof If FR is cocontinuous, then for C 2 Ccp and D D colimi Di obtained as a colimit,

HomD.F.C /;D/' HomC.C;F
R.D//

' HomC.C; colimi FR.Di// since FR is cocontinuous

' colimi HomC.C;F
R.Di// since C is cp

' colimi HomD.F.C /;Di/;

and F.C / is compact-projective.

The other direction is a classical construction; see [Bartlett et al. 2015, Lemma 2.10].

Remark 3.2 The condition of F preserving cp, namely of F being the cocontinuous extension of a
functor f on the subcategories of cp objects, is very similar to that of a bimodule being induced by a
functor in Section 3.2. When F preserves cp then FR is associated with the “mirrored” bimodule induced
by f , with unit induced by f , and counit induced by composition in D. This is again very similar to
what happens in Section 3.2.

3.1.2 BRTENS and ALG2.PR/ The higher Morita n-category ALGn.S/ associated with an1-category
S was introduced in [Haugseng 2017] using a combinatorial/operadic description. A pointed version
was introduced in [Scheimbauer 2014] using very geometric means, namely factorization algebras. This
geometric description allows for a good description of dualizability in ALGn.S/, but the pointing prevents
any higher dualizability; see [Gwilliam and Scheimbauer 2018]. Even higher Morita categories are
defined in [Johnson-Freyd and Scheimbauer 2017], for pointed and unpointed versions. They form an

2The name comes from the Eilenberg–Watts theorem, which describes cocontinuous functors between categories of modules
over two algebras as bimodules.
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.nCk/-category ALGn.S/ for S a k-category. We consider the unpointed even higher Morita 4-category
ALG2.PR/, which we denote by BRTENS for reasons that will be made explicit below. Even though we
are not formally in this context, we will sometimes use factorization algebra drawings to illustrate our
point.

One represents an E2-algebra V as and the Vectk–V-algebra A� as . Let us recall the description
of BRTENS from [Brochier et al. 2021b].

Definition 3.3 [Brochier et al. 2021b, Section 2.4] An object V of BRTENS is a locally presentable
cocomplete k-linear braided monoidal category. We call these braided tensor categories here, even though
this name has many uses. Equivalently, it is an E2-algebra in PR.

In the factorization algebra picture , one can read that a 1-morphism between two braided tensor
categories V (in red, on top) and W (in blue, below) is a monoidal category A 2 PR (the horizontal line)
with a top V-action and a bottom W-action that commute with respect to each other and that commute
with the monoidal structure of A in a coherent way. Note that as A is monoidal, such a V-action B is
determined by a monoidal functor V!A that maps V to V B 1A. See [Brochier et al. 2021b, Figure 2].

Definition 3.4 [Brochier et al. 2021b, Definition–Proposition 3.2] A 1-morphism between V and W

in BRTENS is a V-W-central algebra A. Namely, it is an monoidal category A 2 PR equipped with a
braided monoidal functor

.FA; �
A/ W V�W� op

!Z.A/

to the Drinfeld center of A.

Recall that the Drinfeld center of A has objects pairs .y; ˇ/, where y is an object of A and ˇ W �˝y
�
H)

y ˝� is a natural isomorphism. Here FA gives the object and �A gives the half braiding. We write
V BA WD FA.V /˝A and AC V WDA˝FA.V /.

Composition of 1-morphism is relative tensor product over the corresponding braided tensor category, see
[Brochier et al. 2021b, Section 3.4].

Again in the factorization algebra picture � , a 2-morphism M between two V-W-central algebras A and
B is a A-B-bimodule category where V (resp. W) acts similarly when acting through A or through B.

Definition 3.5 [Brochier et al. 2021b, Definition 3.9] A 2-morphism between A and B in BRTENS

is a V-W-centered A-B-bimodule category. Namely, it is an A-B-bimodule category M equipped with
natural isomorphisms

�v;m W FA.v/Bm
�
�! mC FB.v/ for v 2 V and m 2M;

satisfying coherences with the tensor product in V and with the half braidings in A and B.

Horizontal and vertical composition are again relative tensor product over the corresponding monoidal
category.
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Definition 3.6 [Brochier et al. 2021b, Section 3.6] A 3-morphism F W M! N is a functor of A-B-
bimodules categories that preserves the V-W-centered structure.

A 4-morphism � W F )G is a natural transformation of bimodule functors.

3.1.3 Previous dualizability results We will define in Definition 3.8 the 1-morphism A� W Vectk!V

induced by the unit inclusion in a braided tensor category V. It is V as a monoidal category with obvious
actions. Let us recall previously known results about its dualizability. The following is [Gwilliam and
Scheimbauer 2018, Theorem 5.1], [Brochier et al. 2021b, Theorem 5.16] and [Brochier et al. 2021b,
Theorem 5.21], respectively.

Theorem 3.7 The 1-morphism A� is always 1-dualizable. It is 2-dualizable as soon as V is cp-rigid , and
3-dualizable as soon as V is fusion.

Note that the fusion requirement can easily be relaxed to rigid finite semisimple, without the assumption
that the unit is simple; see the proof of Theorem 3.22.

3.2 Bimodules induced by functors

We give basic definitions and facts about bimodules induced by (braided) monoidal functors, and show
how to compute their adjoints.

3.2.1 Definition and coherence We show that the notion of bimodules induced by functors behaves
as expected in BRTENS. Namely, the Morita category, whose morphisms are bimodules, extends the
category whose morphisms are functors.

Definition 3.8 Let A and B be two objects of BRTENS. A braided monoidal functor F WA!B induces
an A-B-central algebra AF , which is given by B as a monoidal category on which A acts on the top
using F.�/˝� and B acts on the bottom using �˝�. More formally its structure of A-B-central
algebra is given by

A�B� op
!Z.B/; .A;B/ 7! .F.A/˝B; .IdF.A/˝�

�1
B;�/ ı .��;F.A/˝ IdB//;

where � is the braiding in B. It is braided monoidal because F is braided monoidal.

It also induces a B-A-central algebra xAF which is also given by B as a monoidal category on which A

acts on the bottom using �˝F.�/ and B acts on the top using �˝�.

When the functor F is understood, we may write ABB for AF and BBA for xAF .

Proposition 3.9 The above induced-central-algebra construction preserves composition. Given two
braided monoidal functors F WA!B and G WB!C, one has AG ıAF 'AGıF and xAF ı

xAG '
xAGıF .
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AF D

B

F. A /

B xAF D

B

F. A /

B

Figure 3: The 1-morphisms AF and xAF .

Proof We want to prove that ABB�
B

BCC'ACC. This is true on the underlying categories as B�
B

C
ˆ
'C

with equivalence given on pure tensors by ˆ.B�C /DG.B/˝C . This assignment is balanced as G is
monoidal:

ˆ..B˝B0/�C /DG.B˝B0/˝C 'G.B/˝G.B0/˝C Dˆ.B� .G.B0/˝C //:

It is monoidal (the monoidal structure on the relative tensor product is described in [Brochier et al. 2021b,
Definition–Proposition 3.6]) by

ˆ.B�C /˝ˆ.B0�C 0/DG.B/˝C˝G.B0/˝C 0
�C;B0

���!
�

G.B/˝G.B0/˝C˝C 0'ˆ..B�C /˝.B0�C 0//:

The bottom action of C is unchanged, and the top action of A is preserved by ˆ:

AB .B�C / WD .AB 1/˝ .B�C /D .F.A/˝B/�C
ˆ
7!G.F.A//˝G.B/˝C DABˆ.B�C /:

Finally, let us show that ˆ preserves the central structure. The central structure in the composed bimodule
AF�

B
AG is given by

.B�C /CA WD .B�C /˝.F.A/�1C/D .B˝F.A//�C
�B

B;F.A/
�IdC

���������!
�

.F.A/˝B/�C DAB .B�C /:

This maps under ˆ, using that G is braided monoidal, to �C
G.B/;G.F.A//

˝ IdC . And indeed, the following
diagram, where the horizontal arrows are the central structures and the vertical arrow monoidality of ˆ,
commutes:

ˆ..AB 1/˝ .B�C //ˆ..B�C /˝ .1CA//

ˆ.AB 1/˝ˆ.B�C /ˆ.B�C /˝ˆ.1CA/
�C
.G.B/˝C /;G.F.A//

IdG.B/˝�
C
C;G.F.A//

�C
G.B/;G.F.A//

˝ IdC

Id

The xA case is similar.

Definition 3.10 Let C and D be A-B-central algebras, ie 1-morphisms of BRTENS. A bimodule monoidal
functor F W C! D preserving the A-B-central structures induces an A-B-centered C-D-bimodule MF ,
which is given by D as a category on which C acts on the left using F.�/˝� and D act on the right
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using �˝�. The A-B-centered structure on MF is induced by the A-B-central structure of D, and the
fact that F is a bimodule functor:

F.AB 1C C B/˝M ' .AB 1D C B/˝M
�D

'M ˝ .AB 1D C B/:

It also induces an A-B-centered D-C-bimodule MF which is again given by D as a monoidal category
on which C acts on the right using �˝F.�/ and D act on the left using �˝�.

When the functor F is understood, we may write CDD for MF and DDC for MF

Proposition 3.11 The above induced-bimodule construction preserves:

(1) Horizontal composition Given two A-B-bimodule monoidal functors F W C! D and G W D! E

preserving central structures , one has MG ıMF 'MGıF and MF ıMG 'MGıF .

(2) Vertical composition Given C and D two A1-A2-central algebras , C0 and D0 two A2-A3 central
algebras , F W C! D an A1-A2-bimodule monoidal functor and F 0 W C0! D0 an A2-A3-bimodule
monoidal functor preserving central structures , one has

MF �
A2

MF 0 'MF�
A2

F 0 and MF �
A2

MF 0 'MF�
A2

F 0 :

Proof The first point is similar to the last proposition. We proved that CDD�
D

DEE
ˆ
'CEE, as bimodules.

Recall from [Brochier et al. 2021b, Definition–Proposition 3.13] that the centered structure on the
composition of bimodules D�

D
E is given by the composition of the centered structure and a balancing.

In our case on some A, D and E, this is

D� .E˝A/
IdD ��

E
E;A

�������!
�

D� .A˝E/' .D˝A/�E
�D

D;A
�IdE

�������!
�

.A˝D/�E;

which maps by ˆ to .G.�D
D;A

/˝ IdE/ ı .IdG.D/˝�
E
E;A

/. The centered structure of CEE is given by
�E

G.D/˝E;A
. They coincide as G preserves central structures.

The second point is not surprising either. We want

CDD �
A2

C0D
0
D0 ' C�

A2

C0D�
A2

D0D�
A2

D0 ;

which is true on the underlying categories. Because F and F 0 are bimodule functors, the functor

F �F 0 W C�C0! D�D0� D�
A2

D0

is B-balanced and descends to the relative tensor product C�
A2

C0. We then see that the left C�
A2

C0-action
is the one induced by F �F 0 on the relative tensor product, namely action by F �

A2

F 0. The centered
structures are both given by the central structure of D�

A2

D0 and coincide.
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3.2.2 Dualizability Given a braided monoidal functor F WA!B, we will prove that both adjoints of
AF are given by xAF . For the right adjunction, the counit should go:

AF ı
xAF D BBA�

A
ABB! IdB D BBB:

We actually have a functor going this way, the tensor product T in B, which is A-balanced and descends
to the relative tensor product. We denote it by Tbal W B�

A
B! B, and it is indeed a B-B-bimodule

monoidal functor. The central structures on both sides are given by braiding in B, which is preserved
by T . Hence we can construct a B-B-centered BBA�

A
ABB-BBB-bimodule MTbal using Definition 3.10.

The unit should go:
IdA D AAA!

xAF ıAF D ABB�
B

BBA ' ABA:

Again we have a functor F WA!B which is an A-A-module monoidal functor. The central structure on
the left is given by braiding in A, and on the right by braiding in B. The first is sent on the latter because
F is braided monoidal, and the central structures are preserved. Therefore we also have an A-A-centered

AAA-ABA-bimodule MF .

Note also that the identity of AF is the bimodule induced by IdB seen as an A-B-bimodule monoidal
functor.

Proposition 3.12 The 1-morphism AF has right adjoint given by xAF , with counit MTbal and unit MF .
Its left adjoint is also given by xAF , with counit MF and unit MTbal .

Proof We directly check the snake. We repeatedly use Proposition 3.11:

A

A

AAA

B

ABB

A

B

A

ABB

BBA

B

ABB

A

B

ABB

B

BBB

MF
MIdB

MTbal
MIdB

A

B

ABB

A

B

ABB' '

'

A

A

AAA

B

ABB

A

B

A

ABB

BBA

B
ABB

A

B

ABB

B

BBB

MF�
A

IdB
MIdB�

B
Tbal

A

B

ABB

A

B

ABBM1A�� M�˝�
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which is the bimodule induced by the composition

B! A�
A

B !B�
B

B�
A

B !B�
B

B !B;

X 7! .1A;X / 7! .1B;1B;X / 7! .1B;X / 7!X;

which is indeed the identity.

Every other snake identity is similar, with functors going in the other direction for the left adjunction.

Proposition 3.13 Let F W C! D be an A-B-bimodule monoidal functor. The bimodule MF has right
adjoint given by MF , with counit Tbal WD�

C
D!D seen as a D-D-bimodule functor and unit F seen as a

C-C-bimodule functor.

Proof The proof is the same as above, except that the horizontal morphisms are now the functors instead
of the bimodules induced by the functors. The snake identities read

(1) .IdD�
D

Tbal/ ı .F �
C

IdD/' IdMF
and .Tbal�

D
IdD/ ı .IdD�

C
F /' IdMF

;

as has been used above. Here IdD is seen alternatively as a C-D-bimodule functor and as a D-C-bimodule
functor.

We would like to apply Proposition 2.14.1, to have the left adjoint of MF . We need F and Tbal to have
right adjoints in BRTENS. There is a well-known sufficient condition for this.

Proposition 3.14 [Brochier et al. 2021b, Proposition 4.2 and Corollary 4.3] Let F WM!N be an A-B-
centered C-D-bimodule functor , so a 3-morphism in BRTENS. Suppose that M and N have enough cp ,
that A, B, C and D are cp-rigid , and that F preserves cp. Then FR W N ! M is an A-B-centered
C-D-bimodule functor , and is the right adjoint of F in BRTENS.

All we need to check is that both F and Tbal preserve cp.

Lemma 3.15 Let M and N be right and left modules over C and F W M�N! P be a cocontinuous
C-balanced functor. Suppose M and N have enough cp , C is cp-rigid and F preserves cp. Then the
induced functor Fbal WM�

C
N! P preserves cp.

In particular , if A and B are cp-rigid , then Tbal WB�
A

B!B preserves cp.

Proof Following the proof of closure under composition of 1-morphisms [Brochier et al. 2021b, Sec-
tion 4.2], the cp objects of M�

C
N are generated by pure tensors of cp objects. These are sent to cp objects

in P.

For the second point, Tbal is induced by T which preserves cp as B is cp-rigid.
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We can summarize the result as follows:

Proposition 3.16 Let F W C! D be an A-B-bimodule monoidal functor which preserves cp , where
A, B, C and D are cp-rigid. The bimodule MF has left adjoint given by MF , with counit FR seen as a
C-C-bimodule functor and unit T R

bal seen as a D-D-bimodule functor.

3.3 Unit inclusion

We give explicitly the dualizability data of the 1-morphism induced by the unit inclusion in a braided
tensor category V, and criteria for dualizability when V has enough cp.

Definition 3.17 Let V 2 BRTENS be an E2-algebra in PR. We denote by T W V�V! V its monoidal
structure, and � W Vectk!V the inclusion of the unit. The functor � is braided monoidal and induces a
Vectk-V-central algebra A�, namely a 1-morphism in BRTENS. Recall that we denote by A[

�2BRTENS!

the associated object in the oplax arrow category.

Theorem 3.18 The 1-morphism A� is both twice left and twice right adjunctible , with adjunctibility
data as displayed :

A�

j jMT M�M� MT

T j� TbaljT TbaljT T j�

xA�xA�

MT M�M� MT

where Tbal W V �
V�V

V! V is induced by T on the relative tensor product.

Proof We use the results of Section 3.2. By Proposition 3.12, the 1-morphism A� has left and right
adjoints given by xA�, with units and counits as displayed in the second line above, with � WVectk!V now
seen as a Vectk-Vectk-bimodule monoidal functor, and T W V �

Vectk
V! V the tensor product balanced

over Vectk so not balanced.

Then by Proposition 3.13 each of these bimodules has either a left or a right adjoint, with units and
counits as displayed, with Tbal WMT �

V�V
MT D V �

V�V
V! V induced by T .

Corollary 3.19 The object A[
� is 2-dualizable in BRTENS!, and :

� Ru.Ru.A[
�// has a right adjoint if and only if both Tbal and Ru.Ru.V// do.

� Rco.Ru.A[
�// has a right adjoint if and only if both T and Rco.Ru.V// do.

� Rco.Rco.A[
�// has a right adjoint if and only if both � and Rco.Rco.V// do.
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Proof For 2-dualizability, we use the criterion of [Johnson-Freyd and Scheimbauer 2017, Theorem 7.6],
we know that V is 2-dualizable by [Gwilliam and Scheimbauer 2018, Theorem 5.1] and A� is twice right
adjunctible by the theorem above. The rest is Theorem 2.15 on the right dualizability data of A�.

Theorem 3.20 Suppose that V has enough cp , then A[
� is 3-dualizable if and only if V the free cocom-

pletion of a small rigid braided monoidal category.

Proof The heart of the proof is to notice that T appears in the dualizability data, and by [Brochier et al.
2021b, Proposition 4.1] when V has enough cp, it is cp-rigid if and only if T has a bimodule cocontinuous
right adjoint.

If A[
� is 3-dualizable then Ru.Ru.A[

�//, Rco.Ru.A[
�// and Rco.Rco.A[

�// have right adjoints, so Tbal,
T and � have bimodule cocontinuous right adjoints. The functors T and � preserving cp mean that they
are well-defined on V WD Vcp and endow it with a monoidal structure, and V is rigid as V is cp-rigid.
Therefore V is the free cocompletion of a small rigid braided monoidal category.

On the other hand if V is the free cocompletion of a small rigid braided monoidal category then it is
cp-rigid and hence 3-dualizable [Brochier et al. 2021b, Theorem 5.16]. The functors T and �, and also
Tbal by Lemma 3.15, preserve cp, and have bimodule cocontinuous right adjoints by Proposition 3.14.
We get that A� is 3-times right adjunctible and its source and targets are 3-dualizable, so A[

� 3-dualizable
by [Johnson-Freyd and Scheimbauer 2017, Theorem 7.6].

Theorem 3.21 Suppose that V has enough cp. Then A[
� is noncompact-3-dualizable if and only if V is

cp-rigid.

Proof If V is cp-rigid, then V is 3-dualizable and T and Tbal have right adjoints in BRTENS. By
Corollary 3.19, A[

� is noncompact-3-dualizable.

Suppose now that A[
� is noncompact-3-dualizable. Then T has a bimodule cocontinuous right adjoint,

and V is cp-rigid.

Theorem 3.22 Let V be a braided tensor category with enough cp. Then the following are equivalent :

(1) A� is 3-dualizable.

(2) A� is 3-adjunctible.

(3) V is rigid finite semisimple.

Proof The implication .1/D) .2/ is immediate: for a 1-morphism 3-dualizable demands 3-adjunctibility
and 4-dualizablility of the source and target.

The implication .3/ D) .1/ is essentially [Brochier et al. 2021b, Theorem 5.21]. If V is fusion, then
V and A� lie in BRFUS, which has duals. Now fusion demands simplicity of the unit, which may not
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be the case here. This is easily solved by noticing that coproduct agrees with product in PR and ought
to be called direct sum [Brandenburg et al. 2015, Remark 2.5], and that braided rigid finite semisimple
categories are direct sums of fusion categories [Etingof et al. 2015, Section 4.3].

Let us prove .2/ D) .3/. If A� is 3-adjunctible, then M� and M�, which are respectively Ru.A�/

and Lco.A�/ by Theorem 3.20, must be 2-adjunctible. Hence their composite M��
V

M� has to be
2-adjunctible in the symmetric monoidal 2-category ��BRTENS ' PR. This composition is just
V�

V
V ' V as a category, and by our assumption that it has enough cp, it actually lies in the full

subcategory Bimodk � PR. By [Bartlett et al. 2015, Theorem A.22], the 2-dualizable objects of Bimodk

are finite semisimple categories. We already saw that V has to be cp-rigid, so Vcp is rigid finite semisimple,
and so is V' Free.Vcp/.

Remark 3.23 A very similar result one categorical dimension down, in ALG1.RexC/, is proven in
[Freed and Teleman 2021, Theorem B]. The proof is similar too, but we couldn’t directly use their result
on M�, as we work in Bimodk and not in RexC .

Remark 3.24 Both results need the full adjunctibility of A�: oplax dualizability does not imply
semisimplicity, one can take the free cocompletion of a nonsemisimple ribbon category in Theorem 3.20.
Semisimplicity is not needed for 4-dualizability either, as proven in [Brochier et al. 2021a]. However,
if we assume that V is 4-dualizable and A� is 3-oplax-dualizable, which is the case of interest for
Section 4, then work-to-appear of William Stewart shows that A� is 3-adjunctible. This has an interesting
consequence: the free cocompletion of a ribbon category which is not semisimple cannot be 4-dualizable.
Indeed if it were, Stewart’s result would apply and V would have to be semisimple. This justifies that,
given a nonsemisimple ribbon tensor category as in [Costantino et al. 2023], we want to work with its
Ind-completions, and not its free cocompletion.

Remark 3.25 Being dualizable for a morphism is both a condition on its adjunctibility and on the
dualizability of its source and target. However, we saw in the proof of Theorem 3.20 that A� is 3-right-
adjunctible if and only if A� is 3-oplax-dualizable, and in the theorem above that A� is 3-adjunctible if
and only if A� is 3-dualizable. This phenomenon seems to be specific to the unit inclusion.

Proposition 3.26 Suppose that V is cp-rigid. Then A� is 2-adjunctible with the following adjunctibility
data in BRTENS:

A�

j jMT M�M� MT

T j� z�RjT R TbaljT T RjT R
bal T RjT R

bal TbaljT z�RjT R T j�

xA�xA�

MT MT M� M�M� M� MT MT

where z�R is the essentially unique cocontinuous functor that agrees with �R on cp objects.
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Proof The snake for T R and z�R comes from the following. Write V D Vcp. Then T R is computed as
the coend

T R.1V/D

Z .V;W /2V ˝2

.V �W /˝HomV.V ˝W;1V/'

Z V 2V

V �V �;

and more generally

T R.X /'

Z V 2V

.X ˝V /�V � '

Z V 2V

V � .V �˝X /:

For X cp, the snake goes

.z�R �
Vectk

IdV/ ı .IdV�
V

T R/.X /'

Z V 2V

z�R.X ˝V /�V � D

Z V 2V

Hom.1V;X ˝V /˝V �

'

Z V 2V

Hom.V �;X /˝V � 'X:

The part with T R and T R
bal is given by Proposition 3.16. Indeed T , and hence Tbal, preserves cp as V is

cp-rigid.

That this is sufficient for 2-adjunctibility is [Johnson-Freyd and Scheimbauer 2017, Lemma 7.11].

Remark 3.27 We studied the oplax-dualizability of A� above, but Johnson-Freyd and Scheimbauer [2017]
also define a notion of lax-dualizability. We are interested in the oplax-dualizability for our applications,
but let us include the lax version of our results. By Theorem 3.18, A� is always 2-lax-dualizable, and it is
3-times left adjunctible if and only if �, T and Tbal have left adjoints in BRTENS. Using the proposition
above, we can also get another characterization of adjunctibility: every morphism appearing there must
have a right adjoint. If V has enough cp, then A� is 3-adjunctible if and only if V is cp-rigid and �, �R,
T R and T R

bal preserve cp.

We studied the unit inclusion, but similar arguments work for any bimodule induced by a functor. Instead
of a necessary and sufficient condition, we only have a sufficient condition because T no longer appears
in the dualizability data, only some balanced version does.

Theorem 3.28 Let F WV!W be a braided monoidal functor between two objects of BRTENS. Then the
object A[

F
2 BRTENS! induced by the 1-morphism AF is 2-dualizable. It is noncompact-3-dualizable

as soon as V and W are cp-rigid. In this case , it is 3-dualizable if and only if F preserves cp.

Proof We know that Radj.AF /D xAF with Ru.AF /DMF and Rco.AF /DMTV-bal by Proposition 3.12,
where TV-bal WW�

V
W!W is induced by the monoidal structure on W.

Then, Radj.MTV-bal/DMTV-bal with Ru.MTV-bal/D TV-bal and Rco.MTV-bal/D T2 bal by Proposition 3.13,
where

T2 bal WW �
W�

V
W

W!W

is induced by the monoidal structure on W.

Similarly, Radj.MF /DMF with Ru.MF /D F and Rco.MF /D TV-bal.
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We know by Theorem 2.15 that the existence and right adjunctibility of Ru.Ru.A[
F
//, Rco.Ru.A[

F
// and

Rco.Rco.A[
F
// is equivalent to that of, respectively, T2 bal, TV-bal and F , and of the same units/counits

of the source and target. So A[
F

is noncompact-3-dualizable if and only if TV-bal and T2 bal have right
adjoints in BRTENS, and both V and W are noncompact-3-dualizable. This is true as soon as V and W

are cp-rigid by Lemma 3.15 and [Brochier et al. 2021b, Theorem 5.6].

It is 3-dualizable if and only if F , TV-bal and T2 bal have right adjoints and V and W are 3-dualizable. If
V and W are cp-rigid, this is true if and only if F preserves cp.

3.4 The relative theory on the circle

We compute the value on the circle of the relative TQFT RV induced by A[
� under the cobordism

hypothesis, for any V. Namely, we write S1
nb D evpt ı coevpt, compute the images of evpt and coevpt

under RV, which are evA[� and coevA[� , and compose them. Note that it is S1 with nonbounding framing
that we are computing.3 We need the symmetric monoidal structure of C to compose evX W 1!X ˝X �

and coevX WX ˝X � 'X �˝X ! 1. We know that the evaluation and coevaluation for A[
� are mates of

the unit and counit for the right adjunction of A�, namely M� and MT . It might sound surprising that
one can compose them, but indeed up to whiskering and mating they are composable; see Figure 4.

We know from [Brochier et al. 2021a, Theorem 2.19] that the evaluation and coevaluation for V are
respectively V�V� opVVectk and VectkVV� op�V. Then, Example 2.16 gives:

RV.evpt/D

Vectk V˝V� op

Vectk Vectk

A�˝ . xA�/
�

Vectk

Id evV

M�

and RV.coevpt/D

Vectk Vectk

Vectk V˝V� op

Vectk

A�˝ . xA�/
�

Id coevV

.MT
˝ IdV

� op / ı1
IdcoevV

Their composition is vertical stacking, and gives that RV.S
1
nb/ is the following composition. The blue

lines give the connection with Figure 4, with correct framing:

Vectk Vectk Vectk Vectk Vectk

Vectk Vectk Vectk Vectk Vectk

V

V Vectk˝

V V� op V˝ ˝

Vectk V˝

V V� op˝

Vectk

V V� op˝

Id

A�

xA�

A�

Id coevV

IdevV

xA�

coevV

xA�

A�

Id

evV

ZV.S
1
nb/

M�

)
snake
'

sym.
'

IdcoevV

ı1

.MT ˝ IdV� op/
ı1

IdevV

)

3In dimension 3, there are two framings on the circle, only one of which bounds a framed disk.
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�

M�

�

MT

A�

m
atingxA�

Vectk V

Figure 4: The unit and the counit compose up to mating. Beware that the framing is not faithfully
represented in this picture.

Note that every bimodule above is induced by a functor as displayed here:

Vectk
�
�! V�

V
V
�
�! .V˝V/ �

V˝V� op˝V
.V˝V/

�
�! V � V

Vectk˝V� op

IdV�.T˝Id/�IdV
������������!V � V

V˝V� op
;

k 7�! 1�1 7�! .1˝1/� .1˝1/ 7�! 1�1 7�! 1�1:

So RV.S
1
nb/ is induced by the monoidal functor given by inclusion of the unit in ZV.S

1
nb/.

4 Nonsemisimple WRT relative to CY

We can now state the conjectures which are the main motivation for the study above. The main idea is
that the Witten–Reshetikhin–Turaev theories and their nonsemisimple variants can be obtained in a fully
extended setting from a 3D theory relative to an invertible 4D anomaly. In particular, they are defined
in a setting where the cobordism hypothesis applies, and can be rebuilt out of their value at the point.
These would be a not necessarily semisimple modular tensor category for the invertible 4-TQFT and
the 1-morphism induced by the inclusion of the unit for the relative 3-TQFT. As shown above, in the
nonsemisimple case the unit inclusion is only partially dualizable, and induces a noncompact TQFT.

These conjectures follow ideas of Walker [2006], Freed and Teleman [Freed 2011] in the semisimple case,
and of Jordan, Reutter and Safronov in the nonsemisimple case. We do not know of a formal statement in
the existing literature and propose one here.

4.1 Bulk + Relative = Anomalous

Remember that the WRT theories, and their nonsemisimple variants, are defined on a category of
cobordisms equipped with some extra structure. They morally come from the data of a bounding higher
manifold. Three-manifolds come equipped with an integer, which corresponds to the signature of the
bounding 4-manifold, and surfaces come equipped with a Lagrangian in their first cohomology group,
which corresponds to the data of the contractible curves in a bounding handlebody. In this setting, this
extra structure is used to resolve an anomaly, and is due to Walker. We describe below how this kind of
extra structure arises in the setting of relative field theories.
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Definition 4.1 The .n�1/-category of filled bordisms

BORDfilled
n�1 � BORD!n

is the .n�1/-subcategory of bordisms that map to the empty manifold under the target functor BORD!n !

BORDn and to BORDn�1 under the source functor. These are k-bordisms, where k � n� 1, equipped
with a bounding .kC1/-bordism which we call the filling. We denote by

Hollow W BORDfilled
n�1 ! BORDn�1

the functor that forgets the filling, namely the source functor.

The .n�1/-category of noncompact filled bordisms

BORDnc;filled
n�1

� BORD!n

is the .n�1/-subcategory of bordisms that map to the empty under the target functor and to BORDnc
n�1

under the source functor.

Definition 4.2 An n-relative pair .Z;R/ is the data of

� an n-TQFT Z W BORDn! C, and

� an oplax-Z-twisted-.n�1/-TQFT R W BORDn�1! C!, namely an oplax transformation Triv)
ZjBORDn�1

.

Such a pair is called a noncompact n-relative pair if R is a noncompact theory.

Given an n-relative pair .Z;R/ one has two symmetric monoidal functors BORDfilled
n�1 ! C!. One is

given by applying functoriality of .�/! on Z, namely applying Z to any diagram in BORDn to get a
diagram of the same shape in C. It has trivial target and gives an oplax transformation

Z!1
W ZjBORDn�1

ıHollow) Triv

between functors BORDfilled
n�1 ! C.

The other one is given by applying the relative field theory on the hollowed out bordism, it is an oplax
transformation

R ıHollow W Triv) ZjBORDn�1
ıHollow :

Definition 4.3 The anomalous .n�1/-theory A induced by the n-relative pair .Z;R/ is the composition
Z!1 ı .R ıHollow/ of these two oplax transformations. It gives an oplax transformation Triv) Triv,
which by [Johnson-Freyd and Scheimbauer 2017, Theorem 7.4 and Remark 7.5] is equivalent to a
symmetric monoidal functor

A W BORDfilled
n�1 ! .�C/odd opp;

where odd opp means we take opposite of k-morphisms for k odd, and �C WD EndC.1/ is the delooping
.n�1/-category.

If .Z;R/ is a noncompact n-relative pair, the same construction on the appropriate subcategories gives an
anomalous theory A W BORDnc;filled

n�1
! .�C/odd opp.
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For comparison with WRT theories, we will need to restrict to a once extended theory, namely look
at endomorphisms of the trivial in BORDfilled

n�1 , and to check that the anomalous theory descends to the
quotient where one only remembers signatures and Lagrangians out of the fillings. We will also move
this odd opposite to the source category.

Definition 4.4 The bicategory of simply filled 3-2-1-cobordisms, which we denote by Cobfilled
321 , is

the subcategory of h2.�BORD
filled;odd opp
3

/ where circles can only be filled by disks, and surfaces by
handlebodies. Taking the opposite orientation for 1- and 2-manifolds (which will have the effect of
switching the source and target of a 3-bordism), one can identify this bicategory as:

Cobfilled
321 '

8<:
objects .tnS1;tnD2 W tnS1!∅/ for n 2N;

1-morphisms .† W tn1S1!tn2S1;H W∅! .tn1D2/[†[ .tn2D2//;

2-morphisms .M W†1!†2;W WH1[M [H 2!∅/:

The analogous definition in the noncompact case Cobnc;filled
321

� h2.�BORD
nc;filled;odd opp
3

/ will require a
3-bordism to have nonempty incoming boundary in every connected component, as source and targets of
3-manifolds are switched. To facilitate comparison with the existing literature, we also require that all
surfaces have nonempty incoming boundary, although in our setting this is purely artificial.

This bicategory is to be compared with:

Definition 4.5 The bicategory eCob321 (resp. eCobnc
321

) is the bicategory of circles, surface bordisms (resp.
surface bordisms with nonempty incoming boundary) equipped with a Lagrangian subspace in their first
homology group, and 3-bordisms (resp. 3-bordisms with nonempty incoming boundary) equipped with
an integer. Composition is given by usual composition on the underlying bordisms, plus:

� taking the sum of the Lagrangian subspaces for composition of surfaces,

� adding the integers plus some Maslov index for composition of 3-bordisms,

� just adding the integers for composition of 3-bordisms in the direction of 1-morphisms.

See [De Renzi 2021, Section 3] for a precise definition. The bordisms there are decorated by objects of a
ribbon category, and we are looking at the subcategory where every decoration is empty. The category
eCob

nc
321 corresponds to admissible bordisms there.

Proposition 4.6 The assignment

�321 W

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Cobfilled
321 !

eCob321;

.tnS1;tnD2/ 7! tnS1;

.†;H / 7! .†; ker.i� WH1.†/!H1.H ///;

.M;W / 7! .M; �.W //

is a symmetric monoidal functor.
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Proof For composition of 1-morphisms we want to show that the kernel of a gluing is the sum of the
kernels. One inclusion is immediate and the other one follows by dimensions since both are Lagrangians;
see [De Renzi 2017, Propositions B.6.5 and B.6.6].

For composition of 2-morphisms we use Wall’s theorem; see [De Renzi 2017, Theorem B.6.1] for a
statement in our context.

For composition of 2-morphisms in the direction of 1-morphisms we use that filled surfaces only glue on
disks, and hence filled 3-manifolds on 3-balls, so the signature of the filling simply adds.

Similarly, one can restrict to noncompact cobordisms and get

�nc
321 W Cobnc;filled

321
! eCobnc

321:

If we restrict eCob321 to surfaces equipped with Lagrangians that are induced by some handlebody, these
functors are essentially surjective, hence the name.

4.2 Conjectures

We want to relate the Witten–Reshetikhin–Turaev theories and their nonsemisimple variants to the ones
induced by the cobordism hypothesis. We want to say that the anomalous theory induced the relative pair
.ZV;RV/ factors through eCob321 and recovers WRT and DGGPR theories.

It has long been a folklore result that WRT theories extend to the circle [Walker 1991; Gelca 1997]; see
also [Kirillov and Balsam 2010] for Turaev–Viro theories. Once-extended 3-TQFTs are classified in the
preprint [Bartlett et al. 2015, Theorem 3], and the following result can be obtained from [Bartlett et al.
2015, Proposition 6.1] (in our case the unit is simple). We give the statement of [De Renzi 2017, Theorem
1.1.1] restricted to trivially decorated bordisms.

Theorem 4.7 For a semisimple modular tensor category V with a chosen square root of its global
dimension , the Witten–Reshetikhin–Turaev TQFT extends to the circle as a symmetric monoidal functor

WRTV W
eCob321!

cCatk;

where cCatk is the category of Cauchy-complete categories.

Similarly, restricting the statement of [De Renzi 2021] to trivially decorated bordisms:

Theorem 4.8 [De Renzi 2021, Theorem 1.1] For a nonsemisimple modular tensor category V with a
chosen square root of its global dimension , the nonsemisimple TQFT from [De Renzi et al. 2022] extends
to the circle as a symmetric monoidal functor

DGGPRV W
eCob

nc
321!

cCatk
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On the other hand, using the cobordism hypothesis:

Theorem 4.9 (Brochier–Jordan–Safronov–Snyder) For a semisimple or nonsemisimple modular tensor
category V , its Ind-cocompletion V2BRTENS is 4-dualizable and induces under the cobordism hypothesis
a 4-TQFT ZV W BORDfr

4 ! BRTENS.

The main result of this paper can be stated in this context.

Theorem 4.10 For a semisimple modular tensor category V , the arrow A[
� 2 BRTENS! induced by the

unit inclusion � W Vectk! V WD Ind.V / is 3-dualizable and induces under the cobordism hypothesis a
framed oplax-ZV-twisted 3-TQFT

RV W BORDfr
3 ! BRTENS! :

For V a nonsemisimple modular tensor category, A[
� is not 3-dualizable but is noncompact-3-dualizable

and induces under the noncompact cobordism hypothesis a framed noncompact oplax-ZV-twisted 3-TQFT

RV W BORDfr;nc
3
! BRTENS! :

Proof If V is semisimple, VD Ind.V /D Free.V / and Theorem 3.20 applies. If V is not semisimple,
the unit is not projective in V , nor in V D Ind.V /, so A[

� is not 3-dualizable. But V is cp-rigid and
Theorem 3.21 applies.

To compare the two sides, we need all theories to be oriented. We assume the following:

Conjecture 4.11 Let V be a ribbon tensor category and V WD Ind.V /. Then:

� The ribbon structure of V induces an SO.3/-homotopy-fixed-point structure on V.

� The ribbon structure of � induces an SO.3/-homotopy-fixed-point structure on A[
�.

The first statement is expected by experts. The second one follows [Lurie 2009, Example 4.3.23]. Note
that in the second statement we really mean an SO.3/-homotopy-fixed-point structure compatible with
the one on V, as in Remark 2.21.

Remark 4.12 The fact that the anomalous theory AV would factor through eCob321 is not too surprising.
As was pointed to me by Pavel Safronov, we know from [Brochier et al. 2021a] that V is not only
4-dualizable, but invertible, and hence 5-dualizable. But BRTENS has no nontrivial 5-morphisms, and
hence the 5-theory induced by V is trivial on 5-bordisms. This means that ZV should give the same value
on cobordant 4-manifolds. If this story can be made oriented, it means it depends only on the signature of
4-manifolds.

It was observed by Walker [2006, Chapter 9] in the semisimple case that there is a scalar choice of ways
to extend ZV from BORDor

3 to BORDor
4 , namely ZV.B

4/, and that exactly two of these scalars yield
theories which are cobordant-invariant on 4-manifolds. He observes that these scalars are exactly the
two square roots of the global dimension among which one has to choose when defining WRT theories.
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This motivates the following conjecture. In the nonsemisimple case, it is supported by the fact that the
constructions of the (3+1)-TQFTs of [Costantino et al. 2023] need exactly the choice of a modified trace.

Conjecture 4.13 Let V be a modular tensor category and V WD Ind.V /. Then:

� A choice of modified trace on V induces an SO.4/-homotopy-fixed-point structure on V.

� A modified trace induces an SO.5/-homotopy-fixed-point structure on V if and only if the global
dimension SV ;t.S

4/D 1 with this choice of modified trace in the construction of [Costantino et al.
2023].

In particular, we conjecture that every modular tensor category has an SO.5/-homotopy-fixed-point
structure. Indeed let V be a modular tensor category and choose t a nondegenerate modified trace on V ,
which exists and is unique up to scalar by [Geer et al. 2022, Corollary 5.6]. Choose a square root Dt of its
global dimension d.V /t WDSV ;t.S

4/D�C�� as defined in [Costantino et al. 2023] (and denoted by �
there). Then the modified traces ˙D�1

t t are the only two modified traces satisfying SV ;˙D�1
t t.S

4/D 1

by [Costantino et al. 2023, Proposition 5.7].

Remark 4.14 Let us try to give a conceptual reason for why SO.5/-structures correspond to square roots
of the global dimension. As V is an invertible object, the oriented theory ZV is an invertible 4-TQFT
and these are known to give invariants which only depend on the signature and Euler characteristic of
4-manifolds. Two closed 4-manifold are cobordant if and only if they have the same signature, so to get
a cobordant-invariant theory we need to kill the dependence on the Euler characteristic. Changing the
choice of modified traces by a scalar � alters this dependence by a factor ��.W / [Costantino et al. 2023,
Proposition 5.7],4 and a well-chosen scalar � will kill it. We need to ask that for any closed 4-manifold W

with signature zero, ZV.W / D 1. However there is no closed 4-manifold with signature 0 and Euler
characteristic 1, they always have same parity. It is sufficient to ask that ZV.S

4/D 1. The 4-sphere has
Euler characteristic 2, hence there are exactly two solutions for �, the two square roots of the global
dimension.

Corollary 4.15 (of conjectures) Both ZV and RV give oriented TQFTs by the oriented cobordism
hypothesis.

We now assume that this corollary is true, that the choice of square root of the global dimension has been
made, and that ZV and RV are oriented.

In the semisimple case, the relative pair

.ZV W BORD4! BRTENS; RV W BORD3! BRTENS!/

induces an anomalous theory

AV W BORD
filled;odd opp
3

! TENS WD�BRTENS:

4We assume Conjecture 1.6 here.
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Its restriction on Cobfilled
321 gives a 2-functor

A321
V W Cobfilled

321 !�TENS' PR :

Conjecture 4.16 For a semisimple modular tensor category V , the anomalous theory induced by
.ZV;RV/ recovers the Witten–Reshetikhin–Turaev theory. Namely,

Cobfilled
321

eCob321
cCatk

PR

�321

A321
V

WRTV

Free

commutes up to isomorphism.

In the nonsemisimple case, the relative pair

.ZV W BORD4! BRTENS; RV W BORDnc
3 ! BRTENS!/

induces an anomalous theory

AV W BORD
nc;filled;odd opp
3

! TENS WD�BRTENS:

Its restriction on Cobnc;filled
321

gives a 2-functor

A321
V W Cobnc;filled

321
!�TENS' PR :

Conjecture 4.17 For a nonsemisimple modular tensor category V , the noncompact anomalous the-
ory induced by .ZV;RV/ recovers the De Renzi–Gainutdinov–Geer–Patureau-Mirand–Runkel theory.
Namely,

Cobnc;filled
321

eCob
nc
321

cCatk

PR

�nc
321

A321
V

DGGPRV

Free

commutes up to isomorphism.

We know how to check these conjectures on the circle. We have WRTV .S
1/DV whose free cocompletion

is equivalent to V because V is semisimple. Similarly, DGGPRV .S
1/DProj.V /whose free cocompletion

is equivalent to V. On the other side, we know that in dimension two ZV coincides with factorization
homology, and we computed RV.S

1/ in Section 3.4. So

A321
V .S1;D2/DRV.S

1/ �
ZV.S1/

ZV.D
2/' VectkZV.S

1/ �
ZV.S1/

VVectk ' VectkVVectk :

Computing the values of the theories induced by the cobordism hypothesis on higher-dimensional bordisms
comes down to computing some adjoints in BRTENS and composing them in various ways. This will be
carried out in future work.
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Corollary 4.18 (of conjectures) Both WRTV and DGGPRV extend to S0.

Proof Indeed, the anomalous theory AV is really defined as a functor between the 3-categories
BORDfilled

3 ! TENS (resp. BORDnc;filled
3

! TENS in the nonsemisimple case). The two points S0

are bordant, by a cap, and therefore give an object .S0;\/ 2 BORDfilled
3 (resp. BORDnc;filled

3
).

It is easy to compute the value of the anomalous theory on this object, namely

AV.S
0;\/DRV.S

0/ ıZV.\/D .A�� . xA�/
�/ �

V�V� op
V' V

seen as a Vectk-Vectk-central algebra.

Remark 4.19 This corollary is to be compared with results of [Douglas et al. 2020], which shows that
WRTV extends to the point if and only if V ' Z.C / is a Drinfeld center, in which case the point is
mapped to C . In the modular case, the Drinfeld center Z.C / is isomorphic to C ˝C � op, and the two
descriptions agree on S0. Therefore it appears that WRTV always extends to S0, and extends to the point
if and only if one can find a “square root” for its value on S0. This is also related to ongoing work of
Freed, Teleman and Scheimbauer.

Note however that the statement above is a bit informal, because it is really Free ıWRTV ı�321 that
extends to S0, so WRT indeed but with different source and target. In particular, the results of [Douglas
et al. 2020] do not apply directly in this context.
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We prove that directions of closed geodesics in every dilation surface form a dense subset of the circle.
The proof draws on a study of the degenerations of the Delaunay triangulation of dilation surfaces under
the action of Teichmüller flow in the moduli space.
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1 Introduction

We consider the problem of the existence of regular closed geodesics in dilation surfaces. Our main
theorem is the following:

Theorem 1.1 For any closed dilation surface †, there is a dense set of directions � such that the
directional foliation F� has a periodic leaf. Equivalently, the set of directions covered by a cylinder is
dense in RP1.

In particular, any dilation surface † carries at least one closed geodesic. This generalizes to the context
of dilation surfaces a celebrated theorem of Masur [4] for translation surfaces.

As the two equivalent formulations of Theorem 1.1 suggest, it can be viewed from either a dynamical
or geometric perspective. From the geometric point of view, it guarantees that every dilation surface
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contains the simplest building block that can be imagined, a cylinder, thus giving valuable insight into the
geometric structure of the arbitrary dilation surface.

On the dynamical side, this theorem guarantees the ubiquity of periodic orbits in some particular (but
very natural) one-parameter families of one-dimensional dynamical systems, in the form of the following
corollary:

Corollary 1.2 For every affine interval exchange transformation T0 W Œ0; 1�! Œ0; 1�, the set of parameters t

such that the map x 7! T0.x/C t mod 1 has a periodic orbit is dense in R.

Results about particular families of dynamical systems of this type are usually difficult to prove; a result
analogous to Corollary 1.2 where T0 is an arbitrary generalized interval exchange map seems out of reach
of current methods.

1.1 Affine structures on surfaces

The question of the existence of closed geodesics can be considered in the wider context of affine (complex
or real) structures on surfaces.1 For Riemannian structures, the existence of closed geodesics has been
known for a long time (see for example Gromoll and Meyer [2]). The case of translation surfaces, which
lies in the intersection of the affine and Riemannian world, is now very well understood. On the contrary,
for general affine structures very little is known. We therefore pose the following problem.

Problem 1.3 Characterize the affine structures on closed surfaces which carry a regular2 closed geodesic.

Note that a complete solution to this problem is likely to be very difficult, as it contains as a particular
case the notoriously hard question of determining whether the billiard flow of every polygonal table has a
periodic orbit.

1.2 Dilation surfaces vs general affine surfaces

Dilation surfaces are particular complex affine surfaces whose structural group is the set of transformations
of the form z 7! azCb where a is a positive real number and b 2C. Although it is expected that generic
complex affine surfaces do not have any closed geodesics, our main theorem predicts that any dilation
surface does.

We explain what the condition on the structural group defining dilation surfaces implies at the dynamical
level. Every (complex or real) affine structure induces a geodesic foliation on T 1† the unit tangent
bundle of the surface. T 1† is a three-dimensional manifold, thus the dynamical system induced by the
foliation is essentially two-dimensional. Indeed, for a given Poincaré section, the first return map may
change both the direction and the position of the intersection of the leaf with the interval.

1A real (resp. complex) affine structure on a surface is an atlas of charts taking values in R2 (resp. C) such that transition maps
lie in the group of real affine transformations GLC.2;R/Ë R2 (resp. complex affine transformations C� Ë C), with possibly
finitely many cone-type singularities.
2A regular closed geodesic is a closed geodesic that does not contain any singularity of the affine structure.
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In the particular case of dilation surfaces, T 1† decomposes into a one-parameter family of invariant
surfaces for the foliation. While this gives no indication as to which affine structures always have periodic
leaves, it explains why dilation surfaces are essentially different from the general case:

� the problem for dilation surfaces is about finding periodic orbits in one-parameter families of
one-dimensional dynamical systems,

� the problem for the generic affine surface is about finding a periodic orbit for a given two-dimensional
dynamical system.

The analysis of two-dimensional dynamical systems is far more intricate than that of their one-dimensional
counterparts; furthermore with dilation surfaces we have an entire one-parameter family of one-dimensional
dynamical systems (which are easier to analyze) to find a periodic orbit. This discussion also explains
why, despite the fact that in principle it is plausible that a lot of real affine surfaces carry closed geodesics,
the dilation case is of a different nature and probably easier to analyze.

1.3 The action of SL.2 ; R/ and strategy of proof

We now explain the ideas behind the proof of Theorem 1.1. It is very much inspired by the translation
case, and we remind the reader of the general structure of its proof. We refer to Masur [4] for the original
proof in the translation case.

Both moduli spaces of dilation and translation surfaces carry an action of the group SL.2;R/. This action
is naturally defined by the postcomposition of the charts defining the dilation/translation structure. It has
the following important property: two surfaces are on the same SL.2;R/-orbit if and only if they define
the same underlying real affine structure. In particular, if a surface has a closed geodesic, it is the case for
every surface in its SL.2;R/-orbit.

In the translation case, the proof goes by induction on the combinatorial complexity of the surface.3

(1) It is easy to check that translation surfaces of lowest complexity (flat tori) always carry closed
geodesics.

(2) Assume that we know that all surfaces of complexity less than k do carry closed geodesics, and
consider a translation surface † of complexity k. It is not hard to find a sequence .†n/n2N of translation
surfaces in the SL.2;R/-orbit of † which diverges, ie leaves any compact subset in the moduli space of
surfaces of complexity k.

(3) Geometric tools building on the Riemannian structure of translation surfaces allow us to show the
following dichotomy: either .†n/n2N Gromov–Hausdorff converges (up to passing to a subsequence)
towards a translation surface of less complexity, or the Riemannian diameter of †n tends to infinity.

3We define the complexity to be the number of triangles in a triangulation whose set of vertices is the set of singular points of the
surface.
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(4) In the first case, having a cylinder is a property that is open in parameter space, and by the induction
hypothesis, for n large enough, †n has a closed geodesic. Since †n has the same real affine structure
as †, so does †.

(5) In the second case, an elegant lemma due to Masur and Smillie [5, Corollary 5.5] ensures that a
translation surface of large diameter contains a long flat cylinder and thus contains a closed geodesic,
which concludes the proof.

This strategy relies heavily on the Riemannian nature of translation surfaces to get a rather simple analysis
of the ways a sequence of translation surfaces can degenerate; this part of the proof breaks down when
trying to generalize it to the case of dilation surfaces. Most of the work done here is to replace the last
three points of the strategy outlined above by a suitable analysis of the different ways a sequence of
dilation surfaces can degenerate. We will give a precise roadmap of the proof in Section 4. The three key
technical steps of the proof (Propositions 4.1, 4.3 and 4.4) are proved respectively in Sections 5, 6 and 7.

1.4 An important shortcoming and an open problem

We prove that every dilation surface contains a closed geodesic, but unfortunately we were not able to
infer anything concerning the nature of the cylinder carrying this closed geodesic. In particular, our
proof does not preclude the existence of a dilation surface which is not a translation surface all of whose
cylinders are flat (although the existence of such a surface seems highly unlikely).

Problem 1.4 Show that a dilation surface whose cylinders are all flat is a translation surface.

Acknowledgements Ghazouani is greatly indebted to Bertrand Deroin for introducing him to the topic
of affine structures on surfaces and asking him the question that lead to the present article. Tahar would
like to thank Dmitry Novikov for interesting feedback. The authors are grateful to the referee for valuable
remarks and discussions.

2 Dilation surfaces

The symbol † will always stand for a compact surface of genus g � 0 with a finite number of boundary
components.

2.1 Dilation cones

Singularities of dilation surfaces are modeled on singularities of dilation cones.

For any k 2N�, a flat cone of angle 2k� is obtained as the cyclic cover of C of degree k ramified at 0.
The vertex 0 is a cone point of angle 2k� in the flat cone.

For any k 2N� and any � 2R�, a dilation cone of angle 2k� and multiplier � is obtained from a flat
cone of angle 2k� by cutting a slit along a half-line starting from the vertex 0 and identifying the left
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side with the right side by a homothety of multiplier �. The vertex 0 is then a cone point of angle 2k�

and dilation multiplier �.

In particular, for the affine structure induced by the gluing, the holonomy of any closed simple loop
around the vertex is a homothety of dilation multiplier �.

2.2 Generalities

The main objects we will deal with are dilation structures, defined as follows:

Definition 2.1 A marked topological surface is a topological surface †— possibly with boundary —
with a nonempty finite set S � † of marked points such that each boundary component contains an
element of S .

A dilation structure on a marked topological surface .†;S/ is an atlas of charts A D .Ui ; 'i/i2I on
† nS such that

� the transition maps are locally restrictions of elements of AffR�
C
.C/D fz 7! azC b j a 2R�C; b 2Cg,

� each marked point in the interior of † has a punctured neighborhood which is affinely equivalent to a
punctured neighborhood of the cone point of a dilation cone,

� each marked point on the boundary of † has a punctured neighborhood which is affinely equivalent to
a neighborhood of the center of a Euclidean angular sector of arbitrary angle,

� unless it is a marked point, each point of the boundary of † has a punctured neighborhood which is
affinely equivalent to a neighborhood of the center of a Euclidean angular sector of angle � .

Elements of S are the singularities of the dilation structure.

A particularly simple way of constructing a dilation surface is to glue planar polygons together by using
translations and dilations as illustrated in Figure 1. We will see that, up to addition of finitely many
singularities with an angle of 2� and a trivial dilation multiplier, every dilation surface can be constructed
in this way.

Note that the notion of a straight line on the surface is well defined, since changes of coordinates are
affine maps. Moreover, in any direction � 2 RP1, the foliation by straight lines of C in the direction
defined by � being invariant by dilation maps, it gives rise to a well-defined oriented foliation F� on any
dilation surface. Such a foliation is called a directional foliation. We call the resulting family of foliations
the directional foliations; it is indexed by RP1 and denoted by .F� /�2RP1 . We shall call any oriented
leaf of one of these foliations a trajectory.

Definition 2.2 Let † be a dilation surface.

� A closed geodesic in † is a periodic leaf of a directional foliation.
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Figure 1: The sides of the two polygons are glued according to their names. Topologically, the
resulting surface has genus two and has only one singularity, which corresponds to the extremal
points of these two polygons.

� A saddle connection is a topological segment on the surface † nS which is also a straight line (a
piece of leaf of a directional foliation) and whose boundary consists of two singularities (possibly
identical).

We conclude this subsection with the following definition, which we will use to measure the complexity
of a dilation surface:

Lemma 2.3 We consider a compact topological surface X of genus g with b boundary components , ni

marked points in its interior and nb marked points on its boundary.

Assuming nb C ni � 1 and that every boundary component contains at least one marked point , any
topological triangulation of X whose set of vertices coincides with the marked points of X is formed by
exactly 4gC 2ni C 2bC nb � 4 topological triangles.

Proof The Euler characteristic �.X / of surface X is 2� 2g� b. For any such topological triangulation,
the number of vertices is niCnb . Thus 2�2g�bDT �ACniCnb , where T is the number of triangles
in the triangulation and A is the number of arcs.

Connected components of the boundary are loops. Thus the number of boundary arcs is exactly nb .
Every arc has two sides (excepted the boundary arcs). Thus 3T D 2A� nb . We have 4� 4g � 2b D

2T �2AC2niC2nb . It follows that 4�4g�2bD�TC2niCnb and thus T D4gC2niC2bCnb�4.

Definition 2.4 The complexity of a marked topological surface is the number of triangles of any topolog-
ical triangulation whose set of vertices is exactly the set of marked points. By convention, we define the
complexity of the empty set to be zero.
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Figure 2: Left: a flat cylinder with a closed geodesic represented by the dashed line (corresponding
to the only direction in which there is a closed geodesic). Right: a dilation cylinder with two
closed geodesics of two different directions.

We define the complexity of a dilation surface as the complexity of the underlying marked topological
surface.

2.3 Cylinders

Cylinders are the geometric counterpart of the periodic leaves of the directional foliations as, in particular,
each cylinder contains a closed geodesic. Conversely, any neighborhood of a closed geodesic contains a
portion of cylinder. Here we always understand cylinders as maximal: we say that a cylinder is maximal
if it is not included in any cylinder but itself.

A flat cylinder is a dilation surface with boundary obtained by gluing a pair of opposite sides of a
parallelogram embedded in R2.

A dilation cylinder is a dilation surface (with boundary) obtained by cutting a sector C� of angle � in
the universal cover of C�. The quotient of C� by the dilation z 7! �z with � > 1 real is called a dilation
cylinder (see Figure 2).

2.4 Moduli of cylinders

In this subsection we give an interpretation of conformal moduli of cylinders in dilation structures.

� Recall that the modulus of a flat cylinder obtained from a rectangle of base .z1; z2/ 2C2 where
the sides glued together are those corresponding to z2 is by definition jz2j=jz1j.

� A dilation cylinder of angle � and dilation multiplier �> 1 is biholomorphic (using the exponential
map) to the flat cylinder obtained from a rectangle of base .ln.�/; i�/. Its conformal modulus is
thus �=ln.�/.

We call a closed geodesic within a cylinder a waist curve of this cylinder.

Lemma 2.5 There is an absolute constant M > 0 such that for any pair of cylinders C1 and C2 of
conformal modulus at least M in a dilation surface †, either C1 and C2 are disjoint , or their waist curves
are in the same homotopy class.
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Proof A consequence of the Margulis lemma is the existence of a universal constant � such that in
any hyperbolic surface of unit area, closed geodesics of length smaller than � are automatically disjoint
(see [3, Section 4.2.4] for a reference).

In the conformal class of † (punctured at the singularities), we consider the unique hyperbolic metric of
unit area. In the homotopy class of waist curves of cylinder C1 (resp. C2), there is a unique simple closed
geodesic 1 (resp. 2). We denote by l.1/ and l.2/ the lengths of geodesics 1 and 2. Assuming that
waist curves of C1 and C2 do not belong to the same homotopy class, 1 and 2 are distinct.

Following the interpretation of conformal modulus in terms of extremal length, if the conformal modulus
of C1 is strictly bigger than M D ��2, then l.1/ < �. The same holds for C2 and l.2/. Thus 1 and 2

are disjoint, and waist curves of C1 and C2 do not intersect.

Corollary 2.6 For any dilation surface †, there exists a constant M.†/ > 0 such that any cylinder in †
has conformal modulus smaller than M.†/.

Proof We assume for contradiction that † contains an infinite family of cylinders of arbitrarily large
moduli. Since two different cylinders always define two different free homotopy classes, we can always
find intersecting cylinders with arbitrarily large moduli. This contradicts Lemma 2.5.

2.5 Pencils

Pencils were studied in [7] to make explicit the geometric properties of strict dilation surfaces in comparison
with translation surfaces. We gather the needed results in this section.

Definition 2.7 A pencil is a continuous family of oriented trajectories starting from the same point.
Let x be a (possibly singular) point of a dilation surface †, and I an open interval of RP1. The notation
P .x; I/ will refer to a pencil of trajectories starting at x and covering directions of I .

It should be noted that there are usually several pencils for a given pair .x; I/.

The following statement provides a geometric criterion for the existence of dilation cylinders:

Lemma 2.8 [7, Lemma 3.3] Let x be a point in a dilation surface † (possibly with boundary) and I be
an open interval of RP1. For a given pencil P .x; I/, at least one of the following statements must hold :

(1) a trajectory of P .x; I/ hits a singularity,

(2) there exists a closed geodesic whose direction belongs to the interval I ,

(3) there is an open subset J � I such that trajectories of the restricted pencil P .x;J / cross the
interior of a boundary component of †.

Note that in the case where † is without boundary then only the two first items can hold.
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�

Figure 3: A fundamental domain for the action of z 7! 2z on a cone of angle � >� . Any trajectory
entering the cylinder is trapped within it forever regardless of the direction of the trajectory, as the
one represented here. This property prevents a polygonation from “connecting” both sides of the
cylinder.

A second result proves the existence of dilation cylinders in dilation surfaces with nonempty boundary
where trajectories of a pencil avoid the boundary:

Proposition 2.9 [7, Corollary 4.6] Let † be a connected dilation surface with a nonempty boundary, a
point x 2† and an open interval I in RP1. Then at least one of following statements holds:

(1) there is an open interval J � I such that every trajectory of the restricted pencil P .x;J / accumu-
lates on a closed geodesic of a dilation cylinder of †,

(2) there is an open interval J � I such that every trajectory of P .x;J / crosses the interior of a
boundary saddle connection of †.

2.6 Nonpolygonable surfaces

Definition 2.10 A polygonation of a dilation surface † is family of saddle connections 1; : : : ; k

such that

(i) interiors of saddle connections 1; : : : ; k are disjoint,

(ii) connected components of † n
Sk

iD1 i are flat polygons without any interior singularity.

A surface † is polygonable if it admits a polygonation.

Veech’s criterion provides a geometric characterization of polygonable surfaces. This theorem is optimal
since cylinders of angle at least � are not polygonable, as shown in Figure 3.

Theorem 2.11 (Veech’s criterion [1]) For a closed dilation surface † containing at least one singularity ,
the three following propositions are equivalent :

� † is polygonable ,

� † does not contain a dilation cylinder of angle at least � ,

� every affine immersion of the open unit disk D �C in † extends continuously to its closure D.
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Remark 2.12 Up to adding enough singularities of angle 2� and trivial dilation multiplier, we can
nevertheless decompose cylinders of angle at least � into smaller cylinders and then into polygons.

For our purpose, Theorem 2.11 proves in particular that every dilation surface that is not polygonable
carries cylinders, and one can focus on polygonable surfaces.

2.7 The action of SL.2 ; R/

We now define a natural action of SL.2;R/ on the space of dilation surfaces.

Let † be a dilation surface and consider A 2 SL.2;R/. Let .Ui ; 'i/i2I be a maximal atlas defining the
dilation structure of†. Define A† to be the dilation structure defined by the maximal atlas .Ui ;Aı'i/i2I

where A acts on C via the standard identification C ' R2. This new atlas indeed defines a dilation
structure, as SL.2;R/ centralizes the group formed by maps z 7! azC b where a 2R�C and b 2C.

If the dilation surface was given by gluing a bunch of polygons together, the new surface is also polygonable.
Indeed, the image of the initial set of polygons with edges identified is mapped by the linear action of the
matrix A to another set of polygons. Since A is linear, the sides of the polygon that were parallel are
still parallel after applying the matrix A, so that one can still glue them using dilations of the plane. The
resulting dilation surface is the image of † under the matrix A.

A remarkable subgroup of SL.2;R/ is formed by matrices

gt D

�
et 0

0 e�t

�
for t 2R. The flow expands the horizontal direction and contracts the vertical direction.

3 Delaunay polygonations

3.1 Delaunay polygonation

The goal of this subsection is to define the Delaunay polygonation of a (polygonable) dilation surface.
The construction we will give actually is Veech’s proof of Theorem 2.11. To show that surfaces that do
not carry cylinders of angle larger than � are polygonable, he proved that the following construction
defines a polygonation. We refer to [1] for the full proof and will only describe it here.

The vertices of this polygonation are by definition the singularities of †. The edges of the polygonation
are saddle connections: a given saddle connection between singularities s1 and s2 belongs to the edges
of the Delaunay triangulation if there is a closed disk immersed in † such that s1 and s2 belong to the
boundary circle of this disk and such that there are no other singularities in its interior. A disk in † is
said to be Delaunay if it does not contain any singularities in its interior but at least three on its boundary.
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Figure 4: A Delaunay disk with four boundary singularities. Their convex hull in the disk is a
face of the Delaunay polygonation.

The faces correspond to what is left after suppressing the edges and the vertices: they are convex polygons
whose extremal points all belong to the same Delaunay disks. Figure 4 illustrates the construction: the
disk is a Delaunay disk whose boundary contains singularities s1, s2, s3 and s4. The quadrilateral is one
of the faces of the polygonation while its four sides are edges.

Note that the Delaunay polygonation gives you a way to recover from an “abstract” polygonable dilation
surface a concrete set of polygons that defines it.

Remark 3.1 Here, even if surfaces with boundary may appear, we will only consider Delaunay polygo-
nations of dilation surfaces without boundary.

3.2 Polygons up to dilation and their limits

In this subsection we consider the space of polygons with exactly p � 3 vertices arising from Delaunay
polygonation. We consider these polygons as marked and up to dilation, which means that

� we think of Delaunay polygons as within the unit circle, as we can use a dilation to map the
Delaunay circle to the unit one,

� we keep track of the role of each side and each vertex, which is what we mean by marked,

� a polygon and its image under a rotation are considered to be different (because polygons are
considered up to dilation and not similarity).

We denote the set described above by Pp. Each polygon is characterized by a p-tuple .�1; : : : ; �p/ 2

.R=2�Z/p, where � i is the angle of vertex i in the Delaunay circle and � i ¤ �j for i ¤ j .

Definition 3.2 Let p be fixed. Consider a sequence of polygons .Pn/n2N in Pp. We say that this
sequence is Delaunay-convergent if the following conditions hold:

� the cyclic ordering of the vertices in the circle is constant,

� each vertex .� i
n/n2N converges in the circle.
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Figure 5: The three first polygons of a degenerating sequence of type 1 whose vertices all converge
toward s1.

Besides, a Delaunay-convergent polygon is

� a polygon of type 1 if all the vertices of .Pn/n2N converge towards a given point s1 of the circle
containing all vertices of Pn (see Figure 5),

� a polygon of type 2 if the set of vertices of .Pn/n2N converges towards a set of exactly two points
s1
1 and s2

1 of the Delaunay circle (see Figure 6),

� a polygon of type 3 if the set of vertices of .Pn/n2N converges towards a set of at least three
vertices.

In the second case, the slope of the limit edge in RP1, relating the two remaining vertices, is called the
limit slope.

By compactness, one can from any sequence of polygons .Pn/n2N extract a Delaunay-convergent
subsequence.

We now introduce the following terminology which will be useful when proving our main theorem:

Definition 3.3 If .Pn/n2N is of type 1, the longest side of the polygon, corresponding to the closest one
from the center of the circle in which it is inscribed, is called the long side, while the other sides will be
called short. The direction of the polygon in RP1 is the direction given by its long side

long sides

s1
1

s2
1

s1
1

s2
1

s1
1

s2
1

long side

long side long side

long side

Figure 6: The three first polygons of a degenerating sequence of type 2 whose vertices all converge
toward either s1

1 or s2
1.
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If .Pn/n2N is of type 2 or 3, the longest sides whose vertices converge to different limit point will be
called the long sides while the others sides are called short. In the type-2 case, the directions tangent
to the circle at the two remaining vertices are called the short side limit slopes as the short sides are
asymptotic to this direction.

Be aware that the terminology is about sequences of polygons, and more precisely about their asymptotic
behavior: one can change finitely many polygons of the sequence without changing its long or short sides.

By a harmless abuse of notation, we will refer to a sequence of polygons .Pn/n2N in a Delaunay-
convergent sequence as a polygon. We will use the terms of degenerating polygons. The terms long sides
and short sides for these polygons will refer similarly to sequences of edges.

3.3 Delaunay-convergent sequences of dilation surfaces

In this subsection we consider sequences of dilation surfaces of fixed topological type (the underlying
marked topological surfaces are isomorphic).

Let .†n/n2N be a sequence of dilation surfaces of same topological type. Up to extracting a subsequence,
we can assume that their Delaunay polygonations are all combinatorially equivalent. Precisely, this means
that for any n 2N their Delaunay polygonations have the same pattern. We label for each n the set I of
polygons .Pi;n/i2I in such a way that

� the sequence .Pi;n/n2N has always the same numbers of sides,

� one can mark the sides of the polygons so that the gluing pattern of the sides of the marked polygons
.Pi;n/n2N is constant with respect to the marking.

In that case we say that sequence of surfaces .†n/n2N has constant Delaunay pattern.

Definition 3.4 A sequence .†n/n2N is said to be Delaunay-convergent if

(1) the sequence .†n/n2N has constant Delaunay pattern,

(2) every polygon .Pi;n/n2N is Delaunay convergent (see Definition 3.2).

We refer to the edges of these polygons as the Delaunay edges of the pattern.

For a given sequence of dilation surfaces of fixed topological type there are finitely many Delaunay
patterns, so we can always extract a Delaunay-convergent subsequence.

3.4 Maximal domains of type 1

Properties of Delaunay polygonations induce constraints on the Delaunay patterns involving polygons of
type 1.
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Figure 7: Left: A configuration of two polygons of type 1. None of the singularities lie inside the
two Delaunay disks. As the polygons shrink, the Delaunay disks tend to cover half a plane. Right:
A forbidden configuration. The gray dot lies inside a large Delaunay disk.

Proposition 3.5 In a Delaunay-convergent sequence .†n/n2N of polygonable dilation surfaces , the
long side .Ln/n2N of a polygon .Pn/n2N of type 1 can only be incident to a short side of a polygon (of
any type).

Proof We assume that in addition to being a side of .Pn/n2N , the edge .Ln/n2N is a long side of a
polygon .Qn/n2N . In these cases, vertices of .Pn/n2N distinct from the ends of .Ln/n2N are included
for n large enough in the interior of the Delaunay disk of polygons .Qn/n2N ; see Figure 7. This is a
contradiction.

Following Proposition 3.5, the long side of a polygon of type 1 is always incident to the short side of
another polygon. We say that two polygons of type 1 belong to the same domain of type 1 if the long side
of the first is incident to a short side of the second. The equivalence relation generated by these relations
defines classes. This way, each polygon of type 1 belongs to a unique maximal domain of type 1.

Besides, in a maximal domain of type 1, any internal edge is a long side of a polygon while being a
short side of another (it may happen that the polygons coincide). Thus the incidence graph of a maximal
domain is actually an oriented graph with a unique oriented edge leaving each vertex (since each polygon
of type 1 has a unique long side). It follows from that there are two types of maximal domains of type 1:

� noncyclic domains, where the incidence graph is a rooted tree (the edges being oriented towards
the root),

� cyclic domains, where the oriented incidence graph contains a unique (oriented) cycle.

Since a maximal domain of type 1 is connected, there is no other type of graphs of incidence.

3.5 Maximal domains of type 2

Polygons of type 2 have two long sides. Two polygons of type 2 glued along an edge that is a long side
for each of them belong to a same domain of type 2. This way, each polygon of type 2 belongs to a

Geometry & Topology, Volume 29 (2025)



Closed geodesics in dilation surfaces 2231

Figure 8: Left: An admissible configuration of four degenerating polygons of type 2. None of the
singularities lie inside the Delaunay disks. As the polygons shrink, the Delaunay disks tend to
cover a half-plane. Right: A forbidden configuration. The gray dot lies inside a large Delaunay
disk.

unique maximal domain of type 2. These domains can be cyclic or not. In the noncyclic case we call the
two long edges that are not glued with another polygon of type 2 the extremal edges.

Remark 3.6 The case of a long side of a polygon of type 2 glued along a short side of another polygon
of type 2 can happen. We can obtain such a configuration in a variant of the degeneration presented in
Figure 9. If the modulus of the connecting flat cylinder decreases to zero (instead of going to infinity),
the cylinder is a maximal domain of type 2 and its upper extremal edge is glued on the short side of a
polygon of type 2.

An observation that will be needed in the proof of Theorem 1.1 is that short sides of maximal domains of
type 2 form “concavely shaped” curves, as shown in Figure 8. It proceeds from the following statement:

Proposition 3.7 We consider a Delaunay-convergent sequence .†n/n2N of polygonable dilation surfaces.
In the polygon formed by two degenerating polygons of type 2 or 3 glued along a common long side , the
magnitude of the limit inner angle between two consecutive short sides is at least � .

Proof Two consecutive short sides belonging to the same polygon of type 2 or 3 have the same limit
slope because their endpoints converge to the same limit point in the Delaunay circle (see Definition 3.3).
Therefore, the limit inner angle between them is equal to � .

Now we consider the case of two consecutive short sides ŒAn;Bn�n2N and ŒBn;Cn�n2N belonging
respectively to two distinct incident degenerating polygons .P1

n /n2N and .P2
n /n2N of type 2 or 3. These

two sides have well-defined limit slopes (corresponding to the slope of the tangent line at their limit point
in their Delaunay circle). We will assume for contradiction that the limit inner angle � between these
sides at Bn is strictly smaller than � .
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Figure 9: The three first drawings represent some terms of a degenerating dilation surface of
genus two with one singularity whose “connecting” flat cylinder degenerates as its modulus
goes to infinity. At the level of the Delaunay polygonation, the two parts left after removing the
connecting cylinder converge to: (i) a flat torus which is the “Delaunay limit” of the upper part,
(ii) a torus with one horizontal boundary component (in bold).

It follows that there is N > 0 such that for any n � N , the segment ŒBnCn� intersects the Delaunay
diskD1

n of P1
n . Since by hypothesis Cn cannot belong to P1

n , the segment ŒBnCn� intersects the boundary
of P1

n in some point C 0n. The triangle AnBnC 0n is inscribed in the Delaunay circle that bounds D1
n.

Since P1
n [ P2

n is contractible, it can be endowed with a flat metric in such a way that ŒAn;Bn�n2N

and ŒBn;Cn�n2N have meaningful lengths. The latter metric is normalized by fixing the radius of the
Delaunay disk D1

n to 1. As n!C1, the length of ŒAn;Bn� shrinks to zero. Since the inner angle at Bn

converges to � < � , the length of ŒBnC 0n� converges to some nonzero limit. It follows that the length of
ŒBnCn� cannot decrease to zero as n tends to infinity. In .P2

n /n2N , the length of ŒBnCn� does not become
negligible in comparison with the length of the common edge between .P1

n /n2N and .P2
n /n2N . In other

words, ŒBnCn� is not a short side of .P2
n /n2N , and we get a contradiction.

3.6 Delaunay limits

For any Delaunay-convergent sequence .†n/n2N of closed dilation surfaces, we can define a Delaunay
limit †1 formed by the polygons that do not completely degenerate; see Figure 9 for an example.

The limit surface †1 will be a polygonable dilation surface. However, we should be careful. The limit
surface can have several connected components. It can also have a boundary, and it can even be empty.

Definition 3.8 Let .†n/n2N be a Delaunay-convergent sequence of closed dilation surfaces. We define
the Delaunay limit †1 in the following way:

� †1 is the union of limits of polygons of type 3 in .†n/n2N ,
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Figure 10: The bands here are shaded. Left: the neighborhood of some periodic orbit. Right: the
corresponding band, defined by using the affine identificationAn of the edges.

� two sides of limit polygons of .†n/n2N are identified to each other if they are incident in the
Delaunay pattern of the sequence,

� the sides of limit polygons are also identified to each other if they are connected by a noncyclic
maximal domain of type 2 (see Section 3.5).

As they degenerate to polygons with empty interior, polygons of type 1 and 2 completely disappear in the
Delaunay limit †1 (see Figures 9 and 11).

The simple, but key, feature about this notion of limit is that “carrying a cylinder” is an open property.
Namely, if a sequence of dilation surfaces has a Delaunay limit which carries a cylinder, then for any
large enough index of the sequence the corresponding surface also carries a cylinder.

Proposition 3.9 We consider a Delaunay-convergent sequence .†n/n2N . If its Delaunay limit †1 is
nonempty and contains a closed geodesic in some direction � 2RP1, then for any � > 0, there is N > 0

such that for any n�N , †n contains a closed geodesic in a direction of �� � �; � C �Œ.

Proof We denote by  a closed geodesic of slope � in the limit surface †1. Such a geodesic must
cross an edge of the Delaunay polygonation as there is no closed geodesic contained in the interior of
a Delaunay polygon. Let us denote by ŒA;B� an edge crossed by  and by ŒA;B� the intersection of
ŒA;B� with  . By definition, closed geodesics do not contain any singularity. It follows that ŒA;B�
belongs to the interior of ŒA;B� (it is not a singularity). Moreover, as ŒA;B� belongs to a periodic leaf
of F� , the foliation F� on †1 has a well-defined first return map on a neighborhood ŒC;D� of ŒA;B� ;
see Figure 10.

By definition of the Delaunay limit, the edge ŒA;B� is the limit edge of a sequence of long sides
.ŒAn;Bn�/n2N of a polygon of type 3 in the Delaunay polygonation of .†n/n2N . As the polygons
converge, the unique (up to translation) complex affine mapping An of the plane that maps ŒAn;Bn� to
ŒA;B� converges to the identity as n!1. We set xn WDA

�1
n .ŒA;B� /. Note that xn! ŒA;B� as n!1.
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For n large enough, the leaf of the foliation F� in †n starting at xn crosses the edges corresponding to the
edges crossed by  in †1 (several edges of †n can correspond to the same edge of †1 if they are long
sides of the same noncyclic maximal domain of type 2) and then crosses back ŒAn;Bn� at some point.

As the finitely many polygons encountered converge toward nondegenerate polygons or degenerates
toward “edges”, there is a bound N > 0 such that for any n�N , the first return map Tn of ŒAn;Bn� is
well defined on a neighborhood ŒCn;Dn� WDA

�1
n .ŒC;D�/.

All the oriented leaves of F� starting from ŒCn;Dn�, taken up to their first return on ŒAn;Bn�, give rise
to a band Bn (a parallelogram) whose sides contained in ŒAn;Bn� partially coincide. In particular, Bn

contains a closed geodesic. Similarly, we define B1 in †1.

For an arbitrarily small � > 0, we can choose a neighborhood ŒC;D� of ŒA;B� such that the slopes of
the two diagonals of B1 are contained in �� � �; � C �Œ. Then, provided n is large enough, the slopes of
the diagonals of Bn can be made arbitrarily close to slopes of the diagonals of B1. The slope of a closed
geodesic contained in Bn belongs to an interval whose ends are the slopes of the diagonals of Bn. It
follows that for any � > 0, there is N > 0 such that for any n�N , Bn contains a closed geodesic whose
slope is contained in �� � �; � C �Œ.

We also need to keep track of the polygons involved in the Delaunay limit. To this purpose, we introduce
the notion of core sequence:

Definition 3.10 For a given Delaunay-convergent sequence .†n/n2N , the core sequence .C†n/n2N is
defined for each n as the union of

� polygons of type 3,

� noncyclic maximal domains of type 2 in which at least one extremal edge is incident to a long side
of a polygon of type 3.

Remark 3.11 It follows from Definitions 3.8 and 3.10 that each connected component of†1 corresponds
to a unique connected component of C†n. Boundary saddle connections of †1 correspond to long
boundary edges of the core.

Maximal domains of type 1, maximal domains of type 2 and connected components of the core are the
fundamental pieces of the decomposition we will use in the proof of Theorem 1.1.

Definition 3.12 Polygons of .†n/n2N are grouped into Delaunay pieces that are:

� the connected components of the core .C†n/n2N ,

� the maximal domains of type 1,

� the maximal domains of type 2 that do not belong to the core.

It follows from Definition 3.10 that every polygon of .†n/n2N belongs to a unique Delaunay piece.
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Figure 11: Left: The surface C†n of the core sequence with two boundary components. The
exterior boundary component contains three long sides, while the interior boundary component is
formed by short sides only. Right: The Delaunay limit †1 with an exterior boundary formed by
three sides and a singularity at the center.

The important feature of the decomposition into Delaunay pieces is that their boundary edges cannot be
long sides for both of their incident polygons.

Lemma 3.13 If a Delaunay edge .Ln/n2N of .†n/n2N is a long side for its two incident polygons , then
it cannot belong to the boundary of a Delaunay piece.

Proof It follows from Proposition 3.5 that neither of the incident polygons of .Ln/n2N can be polygons
of type 1. If both of them are polygons of type 2, then they belong to the same maximal domain and
.Ln/n2N is not a boundary edge of a Delaunay piece. If at least one of the two polygons incident to
.Ln/n2N is of type 3, then it follows from Definition 3.10 that .Ln/n2N is an interior edge of some
connected component of the core .C†n/n2N .

4 Overview of the proof of Theorem 1.1

As mentioned above, we will argue by induction on the complexity of the closed surface † (see
Definition 2.4). It is easy to deal with the case of smallest complexity: the flat tori formed by a
pair of triangles. The induction assumption is that any closed dilation surface of complexity lower than k

carries cylinders in a dense set of directions. We want to show that it is still the case for surfaces of
complexity kC 1.

It follows from Lemma 2.8 that for a dilation surface † without boundary, an open set of RP1 that does
not contain any direction of saddle connection contains the direction of a closed geodesic. Therefore, it
remains to prove that any direction � 2RP1 that is approached by directions of saddle connections is
also approached by directions of closed geodesics. In other words, any open subset of RP1 containing
the direction of a saddle connection should also contain the direction of a closed geodesic. Up to the
action of an element of SL2.R/, we can assume that † contains a vertical saddle connection  and U is
an open subset of RP1 containing the vertical direction.
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To rely on the induction assumption, we will use the Teichmüller flow gt that contracts the vertical
direction, and therefore the saddle connection  , and that expands the horizontal direction. We have seen
in Section 3.3 that one can extract a sequence of times tn!C1 such that the sequence .†n/n2N WD

.gtn
†/n2N is Delaunay convergent. We are doing induction on closed surfaces, and this is why the case

where †1 has a boundary will need to be handled separately. We first rule out the case in which .†n/n2N

Delaunay-converges toward a closed surface †1 of the same complexity (see Section 3.6 for a precise
definition of Delaunay limits).

Proposition 4.1 Let † be a closed dilation surface that carries a vertical saddle connection and a sequence
of times tn !C1 such that .gtn

†/n2N Delaunay-converges toward a surface †1. Then one of the
following statements holds:

� for any � > 0, † carries a cylinder whose direction belongs to
�

1
2
� � �; 1

2
� C �

�
,

� †1 is of strictly smaller complexity than †.

Proposition 4.1 is proved in Section 5. Note that in the first case there is nothing more to be proven. In
the second case, as soon as †1 is nonempty and contains a component without boundary, we can also
conclude. Indeed, the induction assumption guarantees that directions of closed geodesics of †1 are
dense in RP1. In particular, †1 contains closed geodesics whose directions are arbitrarily close to the
vertical direction.

One can now conclude using Proposition 3.9 that provided n is large enough, †n contains a closed
geodesic whose direction is arbitrarily close to the vertical direction. It follows that †D gtn

†n contains
a closed geodesic whose direction is even closer to the vertical direction.

It then remains to deal with two cases:

� †1 is empty,

� every connected component of †1 has a nonempty boundary.

We will deal with these two cases at once by thoroughly examining how the Delaunay polygonations, and
especially the Delaunay pieces, degenerate under the Teichmüller flow.

The key notion here is that of short and long boundary. We will say that a Delaunay piece (see
Definition 3.12) has a long boundary side if one of its boundary sides is the long boundary (in the sense
of Definition 3.3) of a Delaunay polygon that belongs to the Delaunay piece.

Recall that a Delaunay piece is either a component of the core, or a maximal domain of type 1 or 2. A
boundary side of the core can be short or long, but the short ones disappear in †1 by construction. In
particular, if the limit of a Delaunay piece that belongs to the core has a boundary side, then the Delaunay
piece in question must have a long boundary side. A maximal domain of type 1 or 2 must have, by
construction, a long boundary side, except in the case where it is cyclic. We summarize the content of
this discussion within the following structural lemma:
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Lemma 4.2 Let † be a dilation surface and tn!C1 be such that .gtn
†/n2N Delaunay-converges to-

ward a surface†1 of strictly smaller complexity than†. Then at least one the following conditions holds:

(1) one of the Delaunay pieces converges toward a closed nonempty dilation surface of smaller
complexity,

(2) one of the Delaunay pieces is a cyclic maximal domain of type 1 or of type 2,

(3) all the Delaunay pieces have at least one long boundary side.

As mentioned above, the first case is dealt with using the induction assumption. The second case will
follow from the next result, which will be proven in Section 6.

Proposition 4.3 Let † be a dilation surface , and tn!C1 be such that .gtn
†/n2N Delaunay-converges

and such that at least one of its Delaunay pieces is a cyclic maximal domain of type 1 or of type 2. Then
for any � > 0, † carries a cylinder whose direction belongs to

�
1
2
� � �; 1

2
� C �

�
.

One is then left to analyze the last case, in which all the Delaunay pieces have at least one long boundary
side. This is the most subtle part of the article.

Proposition 4.4 Let † be a dilation surface , and tn!C1 be such that .gtn
†/n2N Delaunay-converges

and such that all the Delaunay pieces in .gtn
†/n2N have at least one long boundary side.

Then , for any open set U �RP1, there is N > 0 such that for any n�N , †n contains closed geodesics
whose directions belong to U .

The above proposition shows in particular that † carries closed geodesics whose directions are as close
as we want to the vertical one as, as usual, nonhorizontal closed geodesics of †n are images of almost
vertical ones of † under the Teichmüller flow. This proves that any open set of RP1 containing the
vertical direction contains the direction of a closed geodesic of †. The three cases of Lemma 4.2 are
settled, and Theorem 1.1 is now proven.

The proof of Proposition 4.4 will be given in Section 7.

5 The nondegenerating case (proof of Proposition 4.1)

In this section, we apply the Teichmüller flow to a closed dilation surface † containing a vertical saddle
connection. For a sequence of times tn ! C1 such that .gtn

†/n2N Delaunay-converges to a limit
surface †1 with the same complexity as †, we prove that †1 (and subsequently †) contains closed
geodesics whose directions are arbitrarily close to 1

2
� .

Remark 5.1 Before entering the proof of the above proposition, let us mention that there is a class of
dilation surfaces, called quasi-Hopf surfaces (see [6] for details), having a vertical saddle connection and
whose Teichmüller orbit is periodic. These surfaces decompose into disjoint dilation cylinders whose
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boundary saddle connections are either horizontal or vertical. We cannot extract from the Teichmüller
orbit of these surfaces a sequence that Delaunay-converges to a surface of smaller complexity.

We recall that for positive times, the Teichmüller flow expands the horizontal direction and contracts the
vertical direction. We first prove the existence of a vertical saddle connection 1 in †1.

Lemma 5.2 Let † be a closed dilation surface that carries a vertical saddle connection and a sequence
of times tn ! C1 such that .gtn

†/n2N Delaunay-converges toward a surface †1 having the same
complexity as †. Then the limit surface †1 carries at least one vertical saddle connection.

Proof We first prove that for n large enough the vertical saddle connection of gtn
† belongs to an edge

of the Delaunay polygonation. Indeed, in the dilation surface †, there is an affine immersion of an elliptic
domain D of eccentricity e < 1 such that vertical saddle connection  coincides with the image of the
major axis. The ratio of lengths between the (horizontal) semiminor axis and the (vertical) semimajor axis
is
p

1� e2. Teichmüller flow will deform the ellipse. For T D�1
4

ln.1� e2/ > 0, the saddle connection
gT  in the surface gT† is the vertical diameter of the immersed disk gT D. Consequently, for any t � T ,
gt is an edge of the Delaunay polygonation of the dilation surface gt†.

We now prove that the limit surface carries indeed a vertical saddle connection (that belongs to the
Delaunay polygonation). By definition of being Delaunay-convergent, all the Delaunay polygons of the
sequence gtn

† converge toward a limit polygon of †1. A polygon cannot converge toward a polygon
with more sides, so the complexity can only decrease. Assuming that the complexity of †1 and † are the
same, all the limit polygons keep the same number of sides. In particular, the side corresponding to the
vertical connection does not vanish, and the limit surface carries a vertical saddle connection as well.

On a dilation surface, vertical saddle connections have a top and a bottom endpoint. For any vertical
saddle connection  , we denote by R. / the vertical ray satisfying the following properties:

� The starting point M of R. / is the top endpoint of the saddle connection  .

� At M , R. / and  form an angular sector of amplitude � contained in the right half-plane (by
convention). In other words, R. / is obtained from  by turning counterclockwise around M by
an angle of � .

We will prove that †1 contains a cylinder with vertical boundary saddle connection by exhibiting a
cyclic sequence of vertical saddle connections.

Lemma 5.3 For any vertical saddle connection  in the limit surface †1, R. / is a vertical saddle
connection too.

Proof We argue by contradiction, assuming that †1 contains a vertical saddle connection  such that
R. / is not a saddle connection. We denote by stop the top singularity of  and choose a continuous
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smin
top .n/

smin
top

stop

stop.n/

smin
top .m/

stop.m/

stop.n/

gtn�tm

Figure 12: Left: In green, the maximal disk defining the singularity smin
top . The red dots correspond

to the singularities encountered on an R-orbit in †1. The blue dots correspond to the associated
singularities in †n. Right: The left part corresponds to the surface †n as the right one to †m. The
shadow of the closest singularity on †m is mapped within a 2� shorter disk of †n.

parametrization �.t/ of the ray R. / with �.0/D stop; see Figure 12. For t small enough, we define Dt

to be the unique immersed disk whose center is �.t/ and whose radius is given by the segment Œstop; �.t/�.
Note that for any t > t 0 we have Dt 0 �Dt . We then define the “closest” singularity smin

top to 1 as the
first singularity encountered when considering the increasing sequence of disks .Dt /t�0. Note that such
a sequence must actually encounter a singularity because of Theorem 2.11.

By hypothesis, smin
top does not belong to R. /. We will reach our contradiction by showing that there is a

closer singularity to stop than smin
top . In order to do so, we rely on the assumption that †1 is the Delaunay

limit of .gtn
†/n2N . All polygons of the Delaunay triangulation converge toward their limit polygon,

and all the quantities indexed by n must converge toward their1-indexed corresponding quantity. For
N > 0 large enough, any surface gtn

† contains a well-defined saddle connection n corresponding to
1 in †1. Analogously we denote by stop.n/ and smin

top .n/ the top singularity of such a sequence and the
singularity in gtn

† corresponding to smin
top ; see Figure 12.

Then let m > n such that tm � tn > 0. By construction gtn�tm
†m D †n. Note that tn � tm < 0 so that

the Teichmüller flow is now expanding (by a definite amount independent of n, m and �) in the vertical
direction and contracting the horizontal one. Note also that the image of smin

top .m/ under gtn�tm
must be a

singularity of †n. Since � is arbitrary, one can take it as small as for the singularity gtn�tm
.smin

top .m// to
be inside the disk centered at the same point as the maximal disk defining smin

top but of radius 2� shorter.
This contradicts our initial assumption: as gtn�tm

.smin
top .m// must be � close to a singularity of †1, this

new singularity would be inside the maximal disk defining smin
top ; see Figure 12.
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Proof of Proposition 4.1 Assuming that †1 and † have the same complexity, Lemma 5.2 proves that
†1 contains a vertical saddle connection 1. Using repeatedly Lemma 5.3, we get that 1 belongs to a
periodic sequence of vertical saddle connections. In other words, two consecutive saddle connections in
this sequence differ by an angle of � . The curve formed by these saddle connections becomes simple if
moved slightly toward the right. Such a simple curve must be the boundary of a cylinder. Consequently,
the vertical saddle connection 1 belongs to the boundary of some cylinder of †1. Proposition 3.9
guarantees that for any � > 0 there is N > 0 such that for any n�N , gtn

† contains a closed geodesic
whose direction belongs to

�
1
2
� � �; 1

2
� C �

�
. For positive times, the Teichmüller flow gt expands the

horizontal direction and shrinks the vertical direction. Thus, a fortiori, the same holds for †.

6 Cyclic maximal domains of type 1 and 2 (proof of Proposition 4.3)

We will show that the existence of a cyclic maximal domain of type 1 or 2 (see Sections 3.4 and 3.5) in
the Delaunay limit †1 of a Delaunay-convergent subsequence .gtn

†/n2N of positive Teichmüller orbit
of a dilation surface † implies the existence of closed geodesic in † whose direction is arbitrarily close
to the vertical direction.

We will prove Proposition 4.3 by contradiction. We first give estimates on the moduli and directions of
cylinders in surfaces of the positive Teichmüller orbit of a dilation surface without closed geodesics in a
neighborhood of the vertical direction.

Lemma 6.1 For ı > 0, we consider a closed dilation surface † that does not contain any closed geodesic
whose direction belongs to the interval

�
1
2
� � �; 1

2
� C �

�
.

Then there is a positive constant Cı > 0 such that for any t � 0 the modulus of any cylinder of the surface
gt† is bounded above by Cı.

Besides , for any � > 0, there is a time T� such that for any t � T� directions of closed geodesics of gt†

are contained in Œ� � �; ��.

Proof The second claim follows immediately from the action of the Teichmüller flow on the interval�
1
2
� � �; 1

2
� C �

�
in RP1.

Recall that Corollary 2.6 asserts that every cylinder of† is of modulus at most M for some M >0. We will
prove that the moduli of cylinders of surfaces .gt†/t2RC satisfy a global upper bound Cı DM=sin2.ı/.
Note that cylinders of gt† correspond to cylinders of †.

We first consider a flat cylinder C of †. Normalizing its area to 1, its modulus is equal to h�2 where h is
the (normalized) length of its closed geodesics. These geodesics have a direction � which is ı far away
from 1

2
� by assumption. Now we consider the images of C under the action of the Teichmüller flow. The

normalized area remains identical while the lengths ht of closed geodesics of gtC satisfy

ht

h
D

p
e2t cos2.�/C e�2t sin2.�/:
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Figure 13: A maximal domain of type 1 containing a dilation cylinder.

It follows that
1

ht
�

1

sin2.ı/h
;

which is desired result.

It then remains to deal with the case where the cylinder C is a dilation cylinder of † whose directions of
closed geodesics is the interval ��1; �2Œ�

�
�

1
2
�C ı; 1

2
� � ı

�
. We denote by � > 1 the dilation multiplier

of C. Recall that the modulus M of such a cylinder is given by the relation

M D
j�2� �1j

ln.�/
:

The action of the Teichmüller flow preserves the dilation multiplier. On the other hand, gt transforms any
slope � into

arctan.e�2t tan.�//:

Using that for any x;y < 0, we have jarctan.y/�arctan.x/j � jy�xj, we get that the size j�1.t/��2.t/j

of the interval gt .�.�1; �2Œ/ satisfies

j�1.t/� �2.t/j � e�2t
jtan.�1/� tan.�2/j � j�1� �2j sup

�2���=2Cı;�=2�ıŒ

jtan0.�/j:

Actually, sup�2���=2Cı;�=2�ıŒjtan0.�/j D 1=sin2.ı/, so we have

j�1.t/� �2.t/j �
j�1� �2j

sin2.ı/
:

Thus the modulus of the image cylinder is bounded above by M=sin2.ı/.

We split the proof of Proposition 4.3 in two statements, corresponding to the maximal domains of type 1
and type 2.

6.1 Cyclic maximal domains of type 1

Polygons of type 1 assemble into maximal domains of type 1 (see Section 3.4). Following Proposition 3.5,
the (unique) long side of a degenerating polygon of type 1 must be glued to the short side of any other
polygon. A cyclic maximal domain is formed by polygons of type 1 glued long side on short side, as in
Figure 13.

We prove that cyclic maximal domains of type 1 contain dilation cylinders whose angular amplitude is
bounded below.
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Proposition 6.2 Let † be a dilation surface , and tn!C1 be such that .gtn
†/n2N Delaunay-converges

and such that at least one of its Delaunay pieces is a cyclic maximal domain of type 1. Then for any � > 0,
† carries a cylinder whose direction belongs to

�
1
2
� � �; 1

2
� C �

�
.

Proof Assuming for contradiction that for some � > 0, the interval
�

1
2
� � �; 1

2
� C �

�
does not contain

any direction of a closed geodesic of †, we use Lemma 6.1 to prove that the maximal angular amplitude
of dilation cylinders of †n D gtn

† becomes arbitrarily small as n tends to infinity. We will obtain a
contradiction by proving that the cyclic maximal domain of type 2 .Xn/n2N in .†n/n�N contains a
dilation cylinder whose angular amplitude is bounded below provided n is large enough.

The incidence graph of .Xn/n2N is connected and contains a unique (oriented) cycle C (see Section 3.4
for details). For any n 2N, Xn is a topological cylinder. We consider an edge .Ln/n2N between two
polygons of the cycle C .

Cutting along the edge .Ln/n2N in .Xn/n2N , we obtain a sequence of simply connected flat surfaces
.Pn/n2N with a unique boundary component. It is formed by the gluing of polygons of type 1 according
to an incidence graph which is a tree.

By definition of a polygon of type 1 (see Definition 3.2), all the sides of .Pn/n2N have the same limit
direction in RP1. We normalize .Pn/n2N in such a way that all the sides tend to be horizontal and every
surface Pn has unit area. In particular, provided n is large enough, Pn is a planar polygon in the classical
sense.

Since every polygon of type 1 has a unique long side (see Definition 3.3), provided that n is large enough,
Pn has a unique upper side Sn (or a unique lower side, depending on the normalization) and several lower
sides T 1

n ; : : : ;T
p�1
n (where p is the number of sides of Pn for any n).

The edge .Ln/n2N corresponds to the identification of the unique upper side .Sn/n2N with some lower
side .T i0

n /n2N . Since Sn and T
i0
n have the same slope, they cannot be adjacent in the boundary of Pn.

Thus the corner angles and the ends of T
i0
n tend to � as n tends to infinity. Provided that n is large

enough, rays starting from the ends of the side T
i0
n in directions 1

4
� and 3

4
� intersect Sn and there exists

a trapezoid Mn in Pn formed by T
i0
n (the lower side of Mn), a side of slope 1

4
� , a portion of Sn (the

upper side of Mn) and a side of slope 3
4
� .

Since any point of the upper side of Mn is identified with a point of T
i0
n , the lift of the trapezoid Mn in

Xn contains a family of closed geodesics whose slopes sweep an interval of length at least 1
2
� in RP1

(see Figure 13). Thus, for any large enough n, the surface †n contains a dilation cylinder of angle at
least 1

2
� . This is the desired contradiction.

6.2 Cyclic maximal domains of type 2

In Section 3.5, we defined maximal domains of type 2 as collections of polygons of type 2 glued along
their long boundary sides. Such a maximal domain is cyclic if the polygons are glued according to a
cyclic graph, as in Figure 14.
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Figure 14: A maximal domain of type 2 containing a cylinder of large modulus (shaded).

We prove that cyclic maximal domains of type 2 contain cylinders of arbitrarily large modulus.

Proposition 6.3 Let † be a dilation surface , and tn!C1 be such that .gtn
†/n2N Delaunay-converges

and such that at least one of its Delaunay pieces is a cyclic maximal domain of type 2. Then for any � > 0,
† carries a cylinder whose direction belongs to

�
1
2
� � �; 1

2
� C �

�
.

Proof We proceed similarly as when proving Proposition 6.2. Assuming for contradiction that for some
� > 0, the interval

�
1
2
� � �; 1

2
� C �

�
does not contain any direction of a closed geodesic of †, we use

Lemma 6.1 to obtain an upper bound M > 0 on the modulus of any cylinder in any dilation surface
†n D gtn

†. We will prove that the cyclic maximal domain of type 2 .Xn/n2N in .†n/n2N contains
cylinders of arbitrarily large modulus as n tends to infinity.

In particular, for any n 2N, Xn is a topological cylinder. We cut along some edge .Ln/n2N and obtain
a sequence of polygons .Pn/n2N . We normalize each polygon Pn in such a way that the two sides
corresponding to edge Ln are vertical and Pn has unit area. These two vertical sides will be referred to
as Sn (for the left side) and Tn (for the right side).

In a polygon of type 2 (see Definition 3.2), the ratio between the length jSnj of Sn and the length jTnj of
Tn converges to 1, and the length of any other side of Pn becomes negligible in comparison with jSnj

and jTnj (see Figure 14). Since Pn has unit area for any n 2N, jSnj and jTnj tend to infinity while the
distance between Sn and Tn tends to zero as n!C1.

It follows that for any � > 0, there is N > 0 such that for any n�N , the polygon Pn contains a rectangle
Rn satisfying the following conditions:

� sides of Rn are either vertical or horizontal,
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� the vertical left and right sides are portions of Sn and Tn,

� the length of the vertical sides of Rn is at least .1� �/jSnj,

� the length of the vertical sides of Rn tend to infinity as n!C1,

� the length of the horizontal sides of Rn tend to zero as n!C1.

Since the sides Sn and Tn are identified, the lift of the rectangle Rn in Xn contains a family of closed
geodesics covering most of the rectangle Rn (the complement of a part of arbitrarily small relative area).
Therefore, provided that n is large enough, Xn contains a cylinder of arbitrarily large modulus (see
Figure 14).

7 Long sides and short sides (proof of Proposition 4.4)

We will actually prove the following slightly stronger version of Proposition 4.4, which does not involve
the Teichmüller flow:

Proposition 4.4 Let .†n/n2N be a Delaunay-convergent sequence of dilation surfaces such that all its
Delaunay pieces have at least one long boundary side. Then , for any open set U �RP1, there is N > 0

such that for any n�N , †n contains closed geodesics whose directions belong to U .

The proof is based on Proposition 2.9. This proposition asserts that, in the case of a dilation surface with
boundary, either a given open set of directions contains a cylinder, or a set of trajectories having these
directions, a pencil to be precise, must leave across a boundary component of the dilation surface. This
proposition then shows that we can concentrate on the case where each trajectory of a Delaunay piece
(see Definition 3.12) leaves it by hitting the boundary. It can do it by crossing either a long edge or a short
one. We will actually rule out the short edge case in Sections 7.1 and 7.2. Indeed, these boundaries are by
definition very small compared to the long edges and it will be unlucky to leave the piece through such a
short side. The trajectories of the pencil will then have to leave the Delaunay piece through a long side
and then enter a new Delaunay piece through a short side (as by construction Delaunay pieces are glued
to one another short side to long side; see Lemma 3.13). If the pencil does not enter in a cylinder, one
can repeat the argument to get a sequence of Delaunay pieces such that the pencil enters them by short
sides and leaves them by long sides. As there are only finitely many boundary components, such a pencil
will cross a given edge twice. The first return map on such an edge is a very dilating mapping, as going
from short sides to long sides induces a huge contraction. This concludes the argument, as contracting
mappings have periodic orbits.

7.1 Trajectories inside maximal domains of type 1 or 2

For a trajectory whose slope is far enough from the limit directions of the (finitely many) Delaunay edges,
we have some control on its behavior in Delaunay pieces formed by degenerating polygons.

Geometry & Topology, Volume 29 (2025)



Closed geodesics in dilation surfaces 2245

Definition 7.1 For any � > 0, ‚� � RP1 is the open subset of slopes whose distance to any limit
direction of a Delaunay edge of .†n/n2N is strictly bigger than �.

The following proposition asserts that a for a given direction in‚� a trajectory entering a maximal domain
of type 1 by a small edge must exit it through a long one, provided that n is large enough.

Proposition 7.2 Let .En/n2N be a short boundary edge of a maximal domain of type 1 .Xn/n2N that
has at least one boundary long edge.

For any � 2
�
0; 1

2
�
�
, there is a long boundary edge .Mn/n2N of .Xn/n2N and N > 0 such that for any

n�N , any trajectory of Xn whose direction belongs to‚� starting from En eventually leaves Xn through
the interior of Mn.

Proof Since a maximal domain of type 1 is formed by polygons of type 1, Delaunay edges have the
same limit slope. Without loss of generality, we will assume that this unique limit slope is horizontal.

We start by discussing the case of a polygon of type 1. Note that for any ı > 0, there is Nı 2N such that
for any n�Nı, every (convex) Delaunay polygon Pn of Xn satisfies the following properties:

� the slope of every Delaunay edge belongs to ��ı; ıŒ�RP1,

� the inner angle between two short sides of Pn is at least � � ı,

� the inner angle between a short side and a long side of Pn is at most ı.

If a trajectory of Pn starts from a short side and leaves Pn through another short side, then it cuts out Pn

into two polygons. Computing the sum of the inner angles in each of them, we deduce that the slope
of t belongs to Œ�pı;pı�, where p is the number of sides of Pn. Thus, by choosing ı � �=q where q is
the number of Delaunay edges of Pn, one makes sure that for n�Nı , a trajectory of polygon Pn whose
slope belongs to ‚� starting from a short side of Pn leaves it through the interior of its unique long side.

The proof of the noncyclic domain of type 1 follows the exact same line. The key remark being that
type-1 polygons piled up long side to short side form a polygon that satisfies the three points above (see
Figure 13). Therefore, if we set ı D �=m where m is the total number of edges that are short sides of at
least one polygon of Xn, following the argumentation above, we see that there is Nı large enough that for
n�Nı the trajectory visits finitely many long boundaries of Xn and exits Xn, as otherwise the domain
would be cyclic.

We now address the case of maximal domains of type 2.

Proposition 7.3 Let .En/n2N be a short boundary edge of a maximal domain of type 2 .Xn/n2N that
has at least one boundary long edge. We also consider a nonempty open interval I�‚� for some � > 0.

There is a long boundary edge .Mn/n2N of .Xn/n2N and N > 0 such that for any n�N , any trajectory
of Xn whose direction belongs to I starting from En eventually leaves Xn through the interior of Mn.
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Figure 15: A maximal domain of type 2 with trajectories starting from short sides in a direction
far from that of the long sides.

Proof A maximal domain of type 2 with at least one boundary edge actually has two long boundary
edges, since its graph of incidence is linear (see Section 3.5). Without loss of generality, we assume
that the limit slope of the long Delaunay edges of .Xn/n2N is vertical. Therefore, we will refer to the
boundary edges of Xn (which is a polygon) as the long left side, the long right side, the short upper sides
and the short lower sides.

There is N > 0 such that for any n�N , the slope of any straight segment joining an upper vertex and
a lower vertex of Xn is contained in

�
1
2
� � �; 1

2
��C �

�
. It follows that the slope of a trajectory of Xn

joining a short upper side and a short lower side cannot belong to ‚� for n�N . It remains to consider
the case of a trajectory t joining two upper (or lower) short sides of Xn.

It follows from Proposition 3.7 that for any ı > 0, there is Nı such that for any n�Nı, the inner angle
between two consecutive upper (or lower) short sides of Xn is at least � � ı. Any trajectory t cuts out Xn

into two polygons. Computing the sum of inner angles in each of them, we deduce that the trajectory t

forms an angle of magnitude smaller than pı with one of the short sides of Xn (here p is the number of
sides of Xn). Since ı can be made arbitrarily small, there exists a bound N 0 > 0 such that for any n�N 0,
a trajectory joining two upper (or lower) short sides of Xn cannot belong to ‚�.

Consequently, for any n satisfying n�max.N;N 0/, any trajectory starting from a short boundary edge
En of Xn eventually leaves Xn through the interior of one of its two extremal edges (see Figure 15). If
we restrict ourselves to trajectories whose slope belongs to a connected open subset U of ‚� , a continuity
argument proves that two trajectories starting from En leave Xn through the same extremal edge.
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7.2 Trajectories inside connected components of the core

The case of Delaunay pieces that are connected components of the core .C†n/n2N is a bit more compli-
cated. In order to find an open set of directions where trajectories starting from the same short boundary
edge leave a component of C†n through the same long boundary edge, we first prove the analogous result
for connected components of the limit surface †1, which is an easy consequence of Proposition 2.9.

Lemma 7.4 For any nonempty open subset U �RP1 and any connected component X1 of †1 with a
nonempty boundary, one of the following statements holds:

� there exists a closed geodesic in X1 whose slope is contained in U ,

� there is a nonempty open subset V � U such that every trajectory starting from a singularity x of
X1 in a direction of V eventually leaves X1 through the interior of a boundary saddle connection.

Proof Let Sx;U be the set of (oriented) trajectories starting from the singularity x with a slope in U . The
topology of Sx;U is induced by the canonical projection �x to RP1. Assuming that no closed geodesic
of X1 belongs to a direction of U , it has been proved in Proposition 2.9 that trajectories of Sx;U leaving
X1 through the interior of a boundary saddle connection form an open dense subset of Sx;U . Since there
are finitely many such singularities in †1 and projections �x have finitely many preimages, there is an
open dense subset V of U such that every trajectory starting from such a singularity x in a direction of V

leaves its component through the interior of a boundary saddle connection.

Since short boundary edges of connected components of the core degenerate to singular points in the
Delaunay limit, we obtain a result about trajectories in the connected components of the core:

Proposition 7.5 Let .Xn/n2N be a connected component of the core .C†n/n2N with at least one long
boundary edge. Let .En/n2N be a short boundary edge of .Xn/n2N . For any nonempty open subset
U �RP1, one of the following statements holds:

� there is a bound N > 0 such that for any n�N , there exists a closed geodesic in Xn whose slope
is contained in U ,

� there is a nonempty open subset V � U , a bound N > 0 and a long boundary edge .Mn/n2N of
.Xn/n2N such that for any n � N , any trajectory of Xn in a direction � 2 V starting from En

eventually leaves Xn through the interior of Mn.

Proof We first decompose the proof into two subcases, depending whether †1 contains a closed
geodesic whose direction belongs to U or not. In the first case, we deduce from Proposition 3.9 that there
exists N > 0 such that for any n�N , †n contains a closed geodesic whose direction belongs to U .

In the second case, we fix � small enough that U \‚� is nonempty. Lemma 7.4 then proves the existence
of a nonempty open subset V of U \‚� such that any trajectory of the Delaunay limit X1 of .Xn/n2N
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whose direction belongs to V and that starts from a singularity leaves X1 through the interior of a
boundary saddle connection.

Let .En/n2N be a short boundary edge of .Xn/n2N . By construction this short boundary edge converges
toward a point x of X1 in the limit. For any interval I in V , we consider the two-parameter family
P .En; I/ of trajectories starting from the edge En and whose directions belong to I . This family of
trajectories accumulates on a pencil P .x; I/ of X1 as n tends to infinity.

The edge .En/n2N is a short edge of a chain of polygons of type 2 belonging to .Xn/n2N (see Figure 11).
Using Proposition 3.7 as in the proof of Proposition 6.3, we deduce that provided that n is large enough,
trajectories of P .En; I/ leave each of these polygons of type 2 through one of its long side (the hypothesis
that I is disjoint from ‚� is crucial here). Then these trajectories finally enter a polygon of type 3
of .Xn/n2N . A continuity argument proves that trajectories of the pencil P .x; I/ leave X1 through
the interior of the same boundary saddle connection M1 which is the limit of a long boundary edge
.Mn/n2N of .Xn/n2N . Up to replacing I by a smaller open interval, we can assume that the intersection
of trajectories of P .x; I/ with M1 is disjoint from a neighborhood of the endpoints of M1. We deduce
that, provided n is large enough, trajectories of P .En; I/ leave Xn through the interior of Mn.

We combine the previous results to exhibit a set of directions and a lower bound that hold for every
Delaunay piece of .†n/n2N :

Corollary 7.6 For any nonempty open subset U �RP1, one of the following statements holds:

� there is a bound N > 0 such that for any n�N , there exists a closed geodesic in †n whose slope
is contained in U ,

� there is a nonempty open subset V � U and a bound N > 0 such that for any n�N and any short
boundary edge En in any Delaunay piece Xn of †n having a long boundary edge , there is a long
boundary edge Mn such that every trajectory of Xn starting from En and whose slope belongs to
U eventually leaves Xn through the interior of Mn.

Proof Provided � is small enough, ‚�\U is nonempty. For such a small �, we consider an open interval
I �‚� \U . Since there are finitely many Delaunay pieces and Delaunay edges in .†n/n2N , there is a
global bound N0 such that the second statement holds for trajectories whose slope is in the interval I

for any short boundary edge in any Delaunay piece Xn that is a maximal domain of type 1 or 2 (see
Propositions 7.2 and 7.3).

Then we apply Proposition 7.5 to a boundary short edge .En/n2N in a connected component .Xn/n2N of
the core. If Xn contains a closed geodesic, provided n is large enough, then the first statement of our
proposition holds. Otherwise, the second statement of Proposition 7.5 provides a nonempty open subset
I 0 of I and a new bound such that the property also holds for this edge. After finitely many steps, we
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Figure 16: From left to right: a maximal domain D1 of type 1, a maximal domain D2 of type
2 and a component C of the core. The orange edge on the left corresponds to En. The ribbon
of parallel trajectories leaves D1 to enter D2 through its short side which goes to C from a long
side of D2. When the ribbon enters back into D1 it has been contracted by an amount that goes to
infinity when n!C1.

obtain a nonempty open subset V of RP1 and a bound N > 0 such that the property holds of trajectories
whose slope belongs to V for every short boundary edge in every Delaunay piece having a long boundary
edge (provided that n�N ).

Proof of Proposition 4.4 Corollary 7.6 shows that it is enough to prove that any direction d such that
for n large enough any trajectory starting from any short edge of any Delaunay piece exits the Delaunay
piece through one of its long sides carries a cylinder. As we only have finitely many Delaunay pieces,
any such trajectory will have to cross twice some boundary edge .En/n2N of two Delaunay pieces (one
for which it is a short side and one for which it is a long side).

Given a direction d and a short edge .En/n2N , we denote by P .En; d/ the set of trajectories starting
from a point of .En/n2N of direction d pointing inside the Delaunay piece for which .En/n2N is the
short side.

By definition of En, there is a trajectory t of P .En; d/ which crosses back En for n large enough. We
claim that all the trajectories of P .En; d/ cross En alongside t . Indeed, as any trajectory of P .En; d/

only exits a Delaunay piece by its long side and enters one by its short side, the contraction ratio of the
first return map on a neighborhood of En converges to 0 as n!C1. In particular, for n large enough,
the image of En must be fully contained in En, which implies that it has a periodic point. This periodic
point of the first return map corresponds to a closed geodesic.
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