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Using a geometric argument building on our new theory of graded sheaves, we compute the categor-
ical trace and Drinfel’d center of the (graded) finite Hecke category H

gr
W
D Chb.SBimW / in terms of

the category of (graded) unipotent character sheaves, upgrading results of Ben-Zvi and Nadler, and
Bezrukavnikov, Finkelberg, and Ostrik. In type A, we relate the categorical trace to the category of
2-periodic coherent sheaves on the Hilbert schemes Hilbn.C2/ of points on C2 (equivariant with respect to
the natural C��C� action), yielding a proof of (a 2-periodized version of) a conjecture of Gorsky, Negut,,
and Rasmussen which relates HOMFLY-PT link homology and the spaces of global sections of certain
coherent sheaves on Hilbn.C2/. As an important computational input, we also establish a conjecture of
Gorsky, Hogancamp, and Wedrich on the formality of the Hochschild homology of Hgr

W
.
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1 Introduction

1.1 Motivation

Let G be a (split) reductive group, T � B a fixed pair of a maximal torus and a Borel subgroup, and W

the associated Weyl group. The geometric finite Hecke category associated to G, defined to be the
category of B-biequivariant sheaves/D-modules on G, plays a central role in representation theory. Of
particular interest to us are results of Bezrukavnikov, Finkelberg, and Ostrik [12] (underived) and Ben-Zvi
and Nadler [9] (derived) which identify its categorical trace and Drinfel’d center with the category of
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2464 Quoc P Ho and Penghui Li

character sheaves constructed by Lusztig in a series of seminal papers [41; 42; 43; 44; 45] as a tool for
studying the characters of the finite group G.Fq/.

The finite Hecke category has a graded cousin Chb.SBimW /, the monoidal (DG-)category of bounded
chain complexes of Soergel bimodules.1 Like its geometric counterpart, (variations of) graded finite
Hecke categories play an important role in geometric representation theory, especially in Koszul duality
phenomena. See, for example, Achar, Makisumi, Riche, and Williamson [1], Beilinson, Ginzburg, and
Soergel [6], Bezrukavnikov and Yun [14], and Lusztig and Yun [46]. Of particular interest to us is the
role these categories play in one construction of the HOMFLY-PT link homology. See Bezrukavnikov
and Tolmachov [13], Khovanov [32], Trinh [57], and Webster and Williamson [59].

It is thus natural to study the categorical trace and Drinfel’d center of Chb.SBimW / with an eye toward
both categorified link invariants and character sheaves. Indeed, the categorical trace has been studied by
Beliakova, Putyra, and Wehrli [7] and Queffelec, Rose, and Sartori [51; 52] (underived), and Gorsky,
Hogancamp, and Wedrich [27] (derived) with applications to HOMFLY-PT link homology. Moreover, it
was proposed in [27] that an in-depth study of the categorical trace should yield a proof of a conjecture
by Gorsky, Negut,, and Rasmussen [29] which relates HOMFLY-PT link homology and global sections of
coherent sheaves on the Hilbert schemes of points Hilbn.C2/ on C2.

Despite their importance in both categorified link homology and geometric representation theory, many
questions are still left unanswered by these previous works:

(i) What is the Drinfel’d center of Chb.SBimW /?

(ii) How are the categorical trace and Drinfel’d center of Chb.SBimW / related to the category of
character sheaves?

(iii) In type A, how are the trace and centers related to the category of coherent sheaves on Hilbn.C2/?

Various aspects of these questions have been raised by the experts previously, but without a precise answer.
See Ben-Zvi and Nadler [9, Section 1.1.5], Webster and Williamson [58, discussion after Theorem A],
Gorsky, Hogancamp, and Wedrich [27, Section 1.5], and Gorsky, Kivinen, and Simental [28, Section 7.5].

Here we provide complete answers to the questions above (except the center case of (iii)) and as an
application, give a proof of a version (see Remark 1.5.12 for a precise comparison) of the conjecture
of Gorsky, Negut,, and Rasmussen.2 Moreover, as the main computational input for answering (iii)
above, we also establish a conjecture of Gorsky, Hogancamp, and Wedrich [27, Conjecture 1.7] on the
formality of the Hochschild homology of Chb.SBimW /, which is a consequence of the formality of the
Grothendieck–Springer sheaf in our geometric setup. This formality conjecture is the main obstacle
for [27] to make the trace of Chb.SBimW / more explicit.

1Note that the notation is somewhat abusive here since SBimW depends on the Coxeter system rather than just the Weyl group.
2The link between the Drinfel’d centers and Hilbert schemes of points on C2 requires an entirely different technique to establish.
The details will appear in a forthcoming paper. We will not need this fact here; see also Remark 1.5.9.
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1.2 The approach

1.2.1 Categorical traces and Drinfel’d centers Unlike Beliakova, Putyra, and Wehrli [7] and Gorsky,
Hogancamp, and Wedrich [27], our computations of the categorical traces and Drinfel’d centers are
completely geometric, inspired by the arguments of Ben-Zvi and Nadler found in [9] and our previous
work [30]. This is possible thanks to our new theory of graded sheaves developed in [31], which provides a
geometric realization of Chb.SBimW / (as the category Shvgr;c.BnG=B/ of B-biequivariant constructible
graded sheaves on G) within a sheaf theory with weight structures and perverse t -structures and sufficient
functoriality to do geometry and categorical algebra. Such a theory is indispensable for our strategy since
other geometric constructions of Chb.SBimW / via BnG=B, such as those of Beilinson, Ginzburg, and
Soergel [6], Eberhardt and Scholbach [19], Rider [53], and Soergel, Virk, and Wendt [55], have not been
extended to include those spaces such as G=B and G=G (with conjugation actions), geometric objects
that appear naturally in the study of categorical traces and Drinfel’d centers.

While the general idea for computing the categorical traces and Drinfel’d centers (see Theorem 1.5.2)
is similar to the one in [9; 30], the implementation is more involved. This is because compared to
quasicoherent sheaves or D-modules, the categorical Künneth formula fails much more frequently for
constructible sheaves. But now, with the modifications done in this paper, the proof of Theorem 1.5.2
works equally well with other sheaf-theoretic settings, such as D-modules (which recovers the result
of Ben-Zvi and Nadler in [9]) or sheaves with positive characteristic coefficients (either in the classical
analytic topology when the geometric objects involved are defined over C or in the étale topology when
working over Fq D Fpn for some prime number p and natural number n � 1, as long as ` ¤ p). We
choose to work with `-adic sheaves throughout due to the availability of the theory of graded sheaves in
this setting, crucial for applications to Soergel bimodules.

1.2.2 Formality of Hochschild homologies of Hecke categories An interesting feature of our approach
to the formality problem conjectured by Gorsky, Hogancamp, and Wedrich in [27] is that its solution does
not follow the usual “purity implies formality” route. This is not possible since the algebra of derived
endomorphisms of the Grothendieck–Springer sheaf is not pure, already for the simplest case when G

is a torus. Instead, it relies on a transcendental argument carried out by the second author in [36] and
a spreading argument. In type A, once the categories of graded unipotent character sheaves are computed
explicitly using the formality result, their relation to the Hilbert schemes of points on C2 can then be
deduced as a combination of Koszul duality and results of Bridgeland, King, and Reid [17] and Krug [35].

1.2.3 Hilbert schemes and link invariants In terms of link invariants, the categorical trace of Hgr
GLn

is
a universal receptacle for (derived) annular link invariants coming out of Hgr

GLn
. As such, HOMFLY-PT

homology factors through it. Using an argument involving weight structures in the sense of Bondarko and
Pauksztello, we prove a corepresentability result for the degree-a parts of the HOMFLY-PT homology.
Matching the corepresenting objects on the Hilbert scheme side, we obtain a proof of a version (see
Remark 1.5.12 for a precise comparison) of a conjecture of Gorsky, Negut,, and Rasmussen.

Geometry & Topology, Volume 29 (2025)
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1.2.4 The use of 1-categories and higher algebra The use of homotopical/categorical algebra and
1-categories as developed by Gaitsgory and Rozenblyum [25; 26] and Lurie [38; 39] is indispensable
to our approach at many levels, from the definitions/constructions of the objects and the formulation of
the statements to the actual proofs. While being sophisticated, the theory is packaged in such a clean and
convenient way that our arguments can still be followed by readers who are not familiar with it. The readers
might also consult Ho and Li [31, Appendix A], where most of the relevant background is reviewed.

Remark 1.2.5 Employing completely different techniques involving matrix factorizations, Oblomkov
and Rozansky proved a 2-periodized version of work of Gorsky, Negut,, and Rasmussen [29] in a
series of papers [48; 49; 50]. It is not clear to us how their work fits with known results in geometric
representation theory revolving around finite (as opposed to affine) Hecke categories and character sheaves.
The appearance of affine Hecke categories and their interactions with the finite ones in their work are
themselves extremely interesting and deserve a closer look.

Our approach, on the other hand, draws a direct connection between finite Hecke categories, character
sheaves, and categorified knot invariants, where the passage from the first to the last one is as in the original
construction of HOMFLY-PT homology theory via Soergel bimodules by Khovanov in [32]. In fact, our
main result is geometric representation theoretic: we compute both the trace and the Drinfel’d center of the
graded finite Hecke categories and relate them to character sheaves, upgrading previous results of Ben-Zvi
and Nadler in [9] and Bezrukavnikov, Finkelberg, and Ostrik in [12]. The relation to HOMFLY-PT
homology is then deduced as a consequence. We note that the geometric description of the finite Hecke
categories is still conjectural in their framework; see Oblomkov and Rozansky [49, Conjecture 7.3.1]).

Their work lives in the coherent world whereas our arguments happen in the constructible world. Under
the Langlands philosophy, there should be a duality between the objects considered in their work and ours.
We expect that the two approaches are related via a graded version of Bezrukavnikov’s theorem on two
geometric realizations of affine Hecke algebras [11]. We plan to revisit this question in a subsequent paper.

In the remainder of the introduction, we will recall the basic objects in Sections 1.3 and 1.4 and then
provide the precise statements of the main results in Section 1.5.

1.3 Notation and conventions

Let us now quickly review the basic notation and conventions used throughout the paper.

1.3.1 Category theory We work within the framework of .1; 1/-categories (or more briefly, 1-
categories) as developed by Lurie in [38; 39]. By default, our categories are all 1-categories. In
particular, we use the language of DG-categories as developed by Gaitsgory and Rozenblyum in this
framework [25; 26]. See also Ho and Li [31, Appendix A] for a quick recap. All of our functors and
categories are “derived” by default when it makes sense.

We let DGCatpres;cont denote the category whose objects are presentable DG-categories and whose mor-
phisms are continuous (ie colimit-preserving) functors. Similarly, we let DGCatidem;ex denote the category

Geometry & Topology, Volume 29 (2025)
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whose objects are idempotent complete DG-categories and whose morphisms are exact (ie finite colimit-
and limit-preserving) functors. Finally, let DGCatpres;cont;c denote the 1-full subcategory (see Gaitsgory
and Rozenblyum [25, Chapter 1, Section 1.2.5]) of DGpres;cont whose objects are compactly generated
and whose morphisms are quasiproper functors, ie compact-preserving functors. Each is equipped with a
symmetric monoidal structure — the Lurie tensor product. The operation Ind of taking ind-completion is
symmetric monoidal and factors as

DGCatidem;ex DGCatpres;cont;c DGCatpres;cont:

Ind

Ind0

Moreover, the first functor is an equivalence of categories.

We will informally refer to objects in DGCatpres;cont (resp. DGCatidem;ex) as “large”/“big” (resp. “small”)
categories.

1.3.2 Algebraic geometry Unless otherwise specified our stacks are Artin, with smooth affine stabilizers,
and are of finite type over Fq (or Fq , depending on the field of definition), where q D pk for some prime
number p. We let Stk and StkFq

denote the categories of such Artin stacks over Fq and Fq , respectively.

We write pt0D SpecFq and ptD SpecFq . Moreover, for any Artin stack Y over Fq , we usually use Y0 to
denote an Fq-form of Y. We will make heavy use of the theory of graded sheaves developed by Ho and
Li [31], obtained by categorically semisimplifying Frobenius actions in the category of mixed sheaves;
see Beilinson, Bernstein, Deligne, and Gabber [5]. All notation involving the theory of graded sheaves
will be the same as in [31]. We will now recall only the main pieces of notation from there.

As the theory of graded sheaves is built on top of the theory of mixed `-adic sheaves, we fix a prime
number ` ¤ p throughout this paper. For any Artin stack Y0 over Fq and Y its base change to Fq ,
we will use Shvm;c.Y0/, Shvm.Y0/, and Shvm.Y0/

ren WD Ind.Shvm;c.Y0// (resp. Shvgr;c.Y/, Shvgr.Y/, and
Shvgr.Y/

ren WD Ind.Shvgr;c.Y/
ren/) to denote the DG-category of constructible mixed (resp. graded) sheaves,

the DG-category of mixed (resp. graded) sheaves, and the renormalized DG-category of mixed (resp.
graded) sheaves on Y0 (resp. Y). The first one is an object in Shvm;c.pt0/-Mod (resp. Vectgr;c -Mod)
whereas the last two are objects in Shvm.pt0/-Mod (resp. Vectgr -Mod). All the usual operations on
sheaves, when defined, are linear over these categories. Note that here, Shvgr.pt/ ' Vectgr, the (1-
derived) symmetric monoidal category of graded chain complexes over Q`, and Shvgr;c.pt/' Vectgr;c ,
the full symmetric monoidal subcategory consisting of perfect complexes.

Shvgr;c.Y/ is equipped with a six-functor formalism, a perverse t -structure, and a weight/co-t -structure in
the sense of Bondarko and Pauksztello. Moreover, it fits into the diagram

Shvm;c.Y0/
grY0
���! Shvgr;c.Y/

oblvgr
���! Shvc.Y/;

which is compatible with the six-functor formalism, the perverse t -structures, and the Frobenius weights.
Furthermore, oblvgr ı grY0

is simply the pullback functor along Y! Y0. Roughly speaking, grY0
turns

Frobenius weights into an actual grading and oblvgr forgets this grading.

Geometry & Topology, Volume 29 (2025)
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For any F;G 2 Shvgr;c.Y/, one can talk about the graded Hom-space Hom
gr

Shvgr;c.Y/
.F;G/ 2 Vectgr, the

category of graded (chain complexes) of vector spaces over Q`, such that

HomShvc.Y/.oblvgr F; oblvgr G/' oblvgr Hom
gr

Shvgr;c.Y/
.F;G/'

M
k

Hom
gr

Shvgr;c.Y/
.F;G/k ;

where for any V 2 Vectgr, Vk 2 Vect denotes the k th graded component of V . We also write

End
gr

Shvgr;c.Y/
.F/ WDHom

gr

Shvgr;c.Y/
.F;F/:

See Ho and Li [31, Appendix A.2.6] for a quick review on enriched Hom-spaces.

Since we always make use of the renormalized categories of sheaves (for example, Shvm.Y0/
ren and its

graded counterpart Shvgr.Y/ren) introduced by Arinkin, Gaitsgory, Kazhdan, Raskin, Rozenblyum, and
Varshavsky [4] and used extensively in [31] rather than the usual categories, we will omit ren from the
notation of the various pull and push functors. For example, we will simply write f �, f�, f !, and f!

rather than f �ren, f�;ren, f !
ren, and f!;ren as in [31].

Remark 1.3.3 We deviate slightly from the convention used in [31] in two places:

(i) The category Vectgr -Mod of Vectgr-module categories is denoted by ModVectgr there.

(ii) An Fq-form of Y is denoted by Y1 there rather than Y0 as we do here. What we use here conforms
to the standard convention employed by, for example, Kiehl and Weissauer [33]. More generally, in [31],
Yn is used to denote an Fqn-form of Y. This is necessary because we have to deal with different forms of
the same stack over different fields of definition. For example, see [31, Section 2.7].

1.3.4 Grading conventions The different grading conventions appearing in the theory of HOMFLY-PT
link homology can be a source of confusion (at least to the authors). We will now collect the various
grading conventions we use and where they appear. Serving as a point of orientation, this subsubsection
should thus be skipped, to be returned to only when the need arises.

In Vectgr, we use X to denote the formal grading and C the cohomological grading. Sometimes, to
emphasize the grading convention in the presence of other gradings, we also use VectgrX in place of Vectgr.
As most DG-categories in this paper are module categories over Vectgr, given two objects c1 and c2 in
such a category C, the Vectgr-enriched Hom, Hom

gr
C .c1; c2/ 2 Vectgr is a graded chain complex. The

gradings X and C therefore also apply to Hom
gr
C .c1; c2/. We refer to this as the singly graded situation

(as the cohomological grading is not a formal grading). This is our default grading.

The 2-periodic construction in Section 4.3 allows one to exchange an extra grading with 2-periodization.
It is used in Section 4.4 to introduce an extra grading on (the Homgr in) any Vectgr-module category by
turning it into a VectgrX ;grY-module category. As the notation suggests, the extra grading is denoted by Y .
Moreover, all the cohomological shearing and 2-periodization in this paper will be with respect to this
Y -grading. In other words, the Y -grading is artificially introduced and then gets “canceled out.”

Geometry & Topology, Volume 29 (2025)
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small big/renormalized

mixed Hm
G0
WDShvm;c.B0nG0=B0/ H

m;ren
G0
WDShvm.B0nG0=B0/

ren WD Ind.Shvm;c.B0nG0=B0//' Ind.Hm
G0
/

graded H
gr
G WDShvgr;c.BnG=B/ H

gr;ren
G
WDShvgr.BnG=B/

ren WD Ind.Shvgr;c.BnG=B//' Ind.H
gr
G
/

ungraded HG WDShvc.BnG=B/ Hren
G WDShv.BnG=B/ren WD Ind.Shvc.BnG=B//' Ind.HG/

Table 1: Different versions of finite Hecke categories.

In Section 4.4.6, the zX ; zY -grading is introduced, which is related to the X;Y -grading via a linear change
of coordinates. This is the grading that is used in the statements of the main theorems regarding the
conjecture of Gorsky, Negut, and Rasmussen [29]. The switch is necessary to match with the usual grading
convention on the HOMFLY-PT homology side.

Finally, on the HOMFLY-PT homology, the most natural gradings, from our geometric point of view, are
given by Q0, A0, and T 0, defined in Section 5.2.4. The relations between Q0;A0;T 0, Q;A;T , and q; a; t

are also given there, where the last two grading conventions appear in work of Gorsky, Kivinen, and
Simental [28]. See also Remark 5.2.7 for the source of the difference between Q0;A0;T 0 and Q;A;T .

1.4 The main players

We will now recall the definitions of the various objects/constructions that appear in our main results.

1.4.1 The various versions of finite Hecke categories Let G0 be a split reductive group over Fq ,
equipped with a pair T0 � B0 of a maximal torus and a Borel subgroup. Let W be the associated Weyl
group. By convention, G, T , and B are the pullbacks of G0, T0, and B0 to Fq .

While our primary interest lies in the graded finite Hecke category H
gr
G
WD Shvgr;c.BnG=B/, which is

equivalent to Chb.SBimW / by Ho and Li [31, Theorem 4.4.1],3 it is necessary to consider its “big” or
renormalized version H

gr;ren
G

WD Ind.H
gr
G
/ because the “big” world possesses more functorial symmetries,

such as the adjoint functor theorem (see Lurie [38, Corollary 5.5.2.9]) and the fact that compactly generated
(presentable) stable1-categories are dualizable; see Gaitsgory and Rozenblyum [25, Proposition 7.3.2].4

Consequently, we will most of the time start with the renormalized case, from which we deduce the
corresponding result for the small variants.

Due to their geometric nature, our arguments apply equally well to other variants of the finite Hecke
categories, such as the mixed and ungraded versions, which are of independent interest. For the reader’s
convenience, we summarize all the different variants in Table 1 (see also Section 1.3.2 for our conventions
regarding algebraic geometry).

3See also note 1.
4Here, “big” refers to the fact that we are working with presentable categories. On the other hand, “renormalized” refers to the
fact that we use the renormalized sheaf theory on stacks.
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We also will adopt the notation H
?;ren
G

, H?
G , Shv?.pt/, and Shv?.Y/ etc in statements where ? can be

gr, m, or nothing/∅, that is, the ungraded case, eg H?
G D HG D Shvc.BnG=B/. In this notation,

H
?;ren
G
2 Alg.Shv?.pt/-Mod/ and H?

G 2 Alg.Shv?;c.pt/-Mod/. Unless otherwise specified, ? can be any of
the three.

Remark 1.4.2 (abuse of notation) The subscript 0 in, for example, G0, B0, T0, and pt0 etc can be
unwieldy and even conflicts with the use of ? introduced above. For example, Shv?.Y0/ is Shv.Y0/ in the
ungraded case, which does not really make sense, as it should be Shv.Y/ instead in this case. Therefore,
we will, in most cases, drop it altogether without fear of confusion. For example, Shvm.BG/ren and
Shvm.pt/ only make sense when we take BG and pt to be BG0 and pt0, respectively. Similarly, we will
use Hm

G and H
m;ren
G

rather than the more precise Hm
G0

and H
m;ren
G0

.

Remark 1.4.3 The ungraded renormalized Hecke category Hren
G is larger than that of Ben-Zvi and

Nadler [9]. Ignoring the distinction between D-modules and constructible sheaves, their category
corresponds to Shv.BnG=B/, the usual (as opposed to renormalized) category of sheaves on BnG=B.

1.4.4 Categorical trace and Drinfel’d center As mentioned earlier, our main goal is to study the
categorical trace and Drinfel’d center of Hgr

G
. Recall the following definition:

Definition 1.4.5 (Ben-Zvi, Francis and Nadler [8, Definition 5.1]) Let A be an associative algebra
object in a closed symmetric monoidal1-category C.

(i) The (derived) trace or categorical Hochschild homology of A, denoted by Tr.A/ 2 C, is the relative
tensor A A Arev A. It comes with a natural universal trace morphism tr W A! Tr.A/ given by
tr.a/D a 1A.

(ii) The (derived) Drinfel’d center or categorical Hochschild cohomology of A, denoted by Z.A/ 2 C,
is the endomorphism object EndA Arev.A/. It comes with a natural central morphism z W Z.A/!A

given by z.F /D F.1A/.

Here, we view A as a bimodule over itself. Moreover, Arev denotes an associative algebra with the same
underlying object as A but with reversed multiplications.5

Remark 1.4.6 The trace also has a natural S1-action. Moreover, the center is naturally equipped with
an E2-structure (Deligne’s conjecture), ie in the case of categories, it has a braided monoidal structure.
See Lurie [39, Sections 5.3 and 5.5].

Note that BnG=B ' BB �BG BB and the monoidal structures on the various versions of finite Hecke
categories are given by g!f

� (with the appropriate sheaf theory) in the following diagram:

.1.4.7/ BB �BG BB �BB �BG BB
f

id���id
 ������ BB �BG BB �BG BB

g
p13
��! BB �BG BB:

5In the literature, Aop is also used to denote Arev. We opt to use Arev since for a category A, Aop is usually already understood
as the opposite category.
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Depending on whether we work with the small or big/renormalized versions, these Hecke categories are
naturally algebra objects in Shv?;c.pt/-Mod or Shv?.pt/-Mod, where the symmetric monoidal structures
of the latter are given by relative tensors. See also Ho and Li [31, Appendices A.2 and A.7]. Their traces
and Drinfel’d centers are computed as objects in these symmetric monoidal categories. In other words,
the ambient categories C in Definition 1.4.5 that are relevant to us are the various categories of module
categories Shv?;c.pt/-Mod or Shv?.pt/-Mod.

1.5 The main results

1.5.1 Trace and center of Hecke categories We start with the computations of the trace and Drinfel’d
center. The result below upgrades the main result of Ben-Zvi and Nadler [9] to the graded setting.

Theorem 1.5.2 (Theorem 2.8.3) The trace Tr.H
?;ren
G

/ and center Z.H?;ren
G

/ of H?;ren
G

coincide with the
full subcategory Ch

u;?;ren
G

of Shv?.G=G/ren generated under colimits by the essential image of H?;ren
G

under
q!p
� in the correspondence

G=B

BnG=B G=G

p q

Moreover , under this identification , the canonical trace and center maps are adjoint tra z and are identified
with the adjoint pair q!p

� a p�q
!.

The trace Tr.H?
G/ coincides with the full subcategory Ch

u;?
G

of Ch
u;?;ren
G

spanned by compact objects.
Namely,

Ch
u;?
G
WD .Ch

u;?;ren
G

/c D Ch
u;?;ren
G

\ Shv?;c

�
G

G

�
:

Equivalently, they are generated under finite colimits and idempotent splittings by the essential image of
H?

G under q!p
�.

The center Z.H?
G/ is the full subcategory �Chu;?G of Ch

u;?;ren
G

spanned by the preimage of H?
G under the

central functor z.

Remark 1.5.3 The Drinfel’d center of H?
G , that is, working within the context of small categories, is

larger than its trace, unlike in the large category setting. This is true already in the case G D T is a torus;
see Remark 2.8.4. This seems to be new.

1.5.4 Formality of Hochschild homology By the description of the trace map above, the image of
the unit tr.1Hgr;ren

G
/ 2 Ch

u;gr
G

is, by definition, the (graded) Grothendieck–Springer sheaf Sprgr
G

, a graded
refinement of the usual Grothendieck–Springer sheaf, ie oblvgr.Spr

gr
G
/' SprG 2 Ch

u
G � Shvc.G=G/. By

Gaitsgory, Kazhdan, Rozenblyum, and Varshavsky [24, Theorem 3.8.5], the graded ring of endomorphisms
of this object is the Hochschild homology HH.H

gr;ren
G

/ of Hgr;ren
G

, where H
gr;ren
G

is viewed as a dualizable
object in Vectgr -Mod.
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Theorem 1.5.5 (Theorems 2.10.11 and 3.2.1, Gorsky, Hogancamp, and Wedrich [27, Conjecture 1.7])
The graded algebra HH.H

gr;ren
G

/ ' End
gr

Ch
u;gr;ren
G

.Spr
gr
G
/ 2 Alg.Vectgr/ is formal. Moreover , we have an

equivalence of algebras

End
gr

Ch
u;gr;ren
G

.Spr
gr
G
/' H�.End

gr

Ch
u;gr;ren
G

.Spr
gr
G
//' .H�gr.BT / H�gr.T // Q`ŒW �;

where H�gr.�/ is the functor of taking graded cohomology, ie we remember the Frobenius weights on the
cohomology (see Ho and Li [31, (4.2.1)]), and where the action of Q`ŒW � on the first factor is induced by
the natural actions of W on T and BT .

In type A, a result of Lusztig states that Chu;gr
G

is generated by Spr
gr
G

. As a consequence, we obtain the
following result:

Theorem 1.5.6 (Theorem 3.3.4) When G is of type A, we have

Ch
u;gr
G
' End

gr

Ch
u;gr
G

.Spr
gr
G
/-Mod.Vectgr/c ' .H�gr.BT / H�gr.T // Q`ŒW �-Mod.Vectgr/perf ;

where for any graded ring R 2 Alg.Vectgr/, R-Mod.Vectgr/ denotes the category of R-module objects
in Vectgr, ie the category of graded R-modules , and the superscript perf denotes the full subcategory
spanned by perfect complexes (or equivalently, compact objects).

1.5.7 The Hilbert scheme of points on C2 While the results above are of independent interest in
representation theory, their relation to the HOMFLY-PT link homology and the conjecture of Gorsky,
Negut,, and Rasmussen is one of our main motivations.

The first link is given by the following result, which relates the categories of unipotent character sheaves
and Hilbert schemes6 of points on C2. It is a consequence of Theorem 1.5.6, Koszul duality, and a result
of Krug in [35].

Theorem 1.5.8 (Theorem 4.4.15) When G DGLn, we have an equivalence of Vectgr zX ;gr zY ;2-per-module
categories (thus , also as DG-categories):

)Ch
u;gr;ren
G

'CŒ Qx; Qy� CŒSn�-Mod
gr zX ;gr zY ;2-per
nilp Qy

‰2-per

'
���! QCoh.Hilbn =G

2
m/

2-per
Hilbn; Qx

:

Similarly, we have the small variant , which is an equivalence of Vectgr zX ;gr zY ;2-per;c-module categories:

)Ch
u;gr
G
'CŒ Qx; Qy� CŒSn�-Mod

gr zX ;gr zY ;2-per
nilp Qy

‰2-per

'
���! Perf.Hilbn =G

2
m/

2-per
Hilbn; Qx

:

Here ,

(i) Vectgr zX ;gr zY ;2-per denotes the category of 2-periodic bigraded chain complexes (see Definition 4.4.11
for the precise definition);

(ii) Qx and Qy are multivariables ( Qx denotes Qx1; : : : ; Qxn and similarly for Qy) living in cohomological
degree 0 and bigraded degrees .1; 0/ and .0; 2/, respectively;

6Strictly speaking, the Hilbert schemes that appear in our paper are over Q`. However, we have an abstract isomorphism C'Q`

as fields. We will elide this inconsequential difference in the introduction section.
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(iii) similarly, the action of G2
m on Hilbn is induced by its action on A2, scaling the two axes with

weights .1; 0/ and .0; 2/, respectively;

(iv) the subscript nilpQy indicates the fact that we only consider the full subcategories where the variables
Qy act (ind-)nilpotently;

(v) the subscript Hilbn; Qx indicates the fact that we only consider quasicoherent sheaves with set-
theoretic supports on the closed subscheme of Hilbn consisting of points supported on the first axis
of A2 (see Section 4.2.9 for the precise definition); and

(vi) the superscripts) and 2-per denote cohomological shear and 2-periodization constructions (see
Sections 4.3 and 4.4 for an in-depth discussion on these constructions and Definition 4.4.10 for the
definitions of the 2-periodized categories of sheaves on the Hilbert schemes).

Remark 1.5.9 Theorem 1.5.8 above establishes the relation between the categorical trace of Hgr
GLn

and
the category of coherent sheaves on Hilbn set-theoretically supported “on the x-axis.” The center, on the
other hand, corresponds to the whole category of coherent sheaves on Hilbn without any support condition.
The details will appear in a forthcoming paper.

1.5.10 HOMFLY-PT link homology Using an argument involving weight structures in the sense of
Bondarko and Pauksztello, we prove a corepresentability result for the degree-a parts of the HOMFLY-PT
homology. Matching the corepresenting objects on the Hilbert scheme side, we obtain a proof of a version
of a conjecture of Gorsky, Negut,, and Rasmussen.

Theorem 1.5.11 (Theorem 5.4.6, Gorsky, Kivinen, and Simental [28, Conjecture 7.2(a)]) For any
Rˇ 2H

gr
n associated to a braid ˇ, there exists a natural Fˇ 2Perf.Hilbn =G2

m/
2-per
Hilbn; Qx

such that the a-degree
˛ component of the HOMFLY-PT homology of ˇ is given by

Hom
gr zX ;gr zY
Perf.Hilbn =G2

m/
2-per

�V˛
T2-per;Fˇ

�
;

where T is the tautological bundle. The two formal gradings (denoted by zX and zY ) coming from the G2
m

action coincide with q and
p

t . Moreover , the cohomological degree corresponds to
p

qt .

See Theorem 5.4.6 for a more precise formulation.

Remark 1.5.12 Theorem 1.5.11 differs from the conjecture of Gorsky, Negut,, and Rasmussen as
formulated in [28] in two important aspects. First, we work with the 2-periodized version of the Hilbert
scheme of points on C2 rather than the usual version; see Remark 1.5.13 below for brief discussion of
why this is necessary for us. And second, the degrees zX and zY correspond to q and

p
t for us rather than

q and t ; we believe that this is the correct torus action to consider. Moreover, compared to the conjecture
of Gorsky, Negut,, and Rasmussen as formulated in [29], our version and the version formulated in [28]
use the usual rather than the flagged version of the Hilbert scheme; see Remark 1.5.14 for a speculation
on how to relate the two.
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Remark 1.5.13 Theorem 1.5.8 relates the category of graded unipotent character sheaves for GLn

with the 2-periodic category of (quasi)coherent sheaves on Hilbn, equivariant with respect to the scaling
G2

m-action. As there is only one formal grading on the character sheaf side compared to the two Gm

actions on the Hilbert scheme side, 2-periodization is necessary to relate the two. Because of this, our
theorem regarding link invariants above relates HOMFLY-PT homology and 2-periodic quasicoherent
sheaves on Hilbert schemes rather than the precise version in [28]. The same phenomenon also appeared
in the work of Oblomkov and Rozansky.

A recent work of Elias [21] introduces an extra formal grading on the Hecke category. Even though it is
highly suggestive, we do not know how this helps remove the necessity of 2-periodization.

Remark 1.5.14 The main conjecture of [29] relates H
gr
n and the category of coherent sheaves on the

(derived) flag Hilbert scheme FHilbn of C2 via a pair of adjoint functors. More precisely, they relate
unbounded versions of these categories, which we expect to correspond to H

gr;ren
n and IndCoh.FHilbn/,

respectively. We also expect that their pair of adjoint functors fits with ours in the diagram

Hgr;ren
n � IndCoh.FHilbn/FHilbn;x

� IndCoh.Hilbn/Hilbn;x
' QCoh.Hilbn/Hilbn;x

;

where we suppress 2-periodization and equivariant parameter(s) altogether. Here, the compositions are
our trace and central functors. Moreover, the second adjoint pair should be given by pulling and pushing
along the natural map FHilbn! Hilbn.

In work of Elias [20], the category of coherent sheaves over FHilbn is speculated to be related to a
subcategory of the Hecke category generated by the Jucys–Murphy elements, which are themselves
certain relative centralizers. The methods developed in (the first part of) this paper could be extended
to study these relative centers geometrically. But it is unclear to us at the moment how to put all the
Jucys–Murphy elements together in a geometric way.

1.5.15 Support of Fˇ Thanks to the Hilbert–Chow morphism, Hilbn ! A2n==Sn, the geometric
realization of HOMFLY-PT link homology given in Theorem 1.5.11 implies that it admits an action of
the algebra of symmetric functions in n variables. More algebraically, the definition of HOMFLY-PT
homology via Soergel bimodules also affords such an action (see, for example, Gorsky, Kivinen, and
Simental [28, Section 5.1]). We show that these two are the same.

Theorem 1.5.16 (Theorem 5.5.1, part of [28, Conjecture 7.2(b)]) The two actions above coincide.

Theorem 1.5.16 is a statement about the “global” property of Fˇ as it contains information about Fˇ after
pushing forward to A2n==Sn. More precisely, by [28, Section 5.1], the supports of the various a-degree
parts of the HOMFLY-PT homology of a braid ˇ, as a sheaf over An==Sn, can be bounded above using
the number of connected components of the link associated to ˇ.

The support of Fˇ over Hilbn itself is, however, a more local (and hence more refined) property. To prove
a similar statement, we have to start by transporting the corresponding support condition on the Rouquier
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complex Rˇ. However, this does not quite make sense since there is no quasicoherent sheaf involved at
this stage yet. To circumvent this difficulty, we formulate this support condition using module category
structures and the notion of support developed by Benson, Iyengar, and Krause [10] and Arinkin and
Gaitsgory [3]. Transporting this structure around to the Hilbert scheme side, where it coincides with the
usual notion of support, we obtain the desired statement.

Theorem 1.5.17 (Theorem 5.6.4, [28, Conjecture 7.2(b) and (c)]) Let ˇ be a braid on n strands. Then
an upper bound for the support of Fˇ (as a sheaf over Hilbn) given in Theorem 1.5.11 is determined by
the number of connected components of the link obtained by closing up ˇ. See Theorem 5.6.4 for a more
precise formulation.

Outline

We will now give an outline of the paper. In Section 2, we study the categorical traces and Drinfel’d
centers of the various variants of the finite Hecke categories and relate them to the theory of character
sheaves. In Section 3, we prove the formality result for the graded Grothendieck–Springer sheaf, of
which formality of the Hochschild homologies of the graded finite Hecke categories is a consequence.
In type A, this result gives an explicit description of the categorical trace of Hgr;ren

n . This is followed by
Section 4, where the relation between unipotent character sheaves and Hilbert schemes of points on C2 is
established. We conclude with a proof of aversion (see Remark 1.5.12 for a precise comparison) of the
conjectures by Gorsky, Negut,, and Rasmussen in Section 5.

We note that the different sections are largely independent of each other, both in terms of techniques
and results. More precisely, the sections can be grouped as follows: (Section 2), (Section 3), (Sections 4
and 5). The reader can read each group mostly independently, referring to the other parts of the paper
mostly to look up the notation.

2 Categorical traces and Drinfel’d centers of (graded) finite Hecke
categories

This section is dedicated to the proof of the first main theorem, Theorem 1.5.2 (which appears as
Theorem 2.8.3 below), which relates the categorical trace and Drinfel’d center of a finite Hecke category
and the category of unipotent character sheaves. We work with mixed, graded, and ungraded versions and
in both settings of “big” and “small” categories. One interesting feature is that the trace and center of
a “big” (also known as renormalized) finite Hecke category coincide, whereas the center of the “small”
version is larger than its trace.

In what follows, Section 2.1 reviews basic definitions and outlines the basic strategy. In Sections 2.2
and 2.3, we study the categorical analog of Künneth formula for finite orbit stacks and the Beck–
Chevalley condition, respectively. As the trace/center is computed by the colimit/limit of a certain
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simplicial/cosimplicial category, the categorical Künneth formula allows one to interpret each term
in the (co)simplicial diagram algebro-geometrically, whereas the Beck–Chevalley condition acts as a
descent-type result which allows one to realize the colimit/limit more concretely in terms of sheaves on
some space. In Section 2.4, we formulate the monoidal structure of finite Hecke categories in terms of
1-manifolds, which is then used in Section 2.5 to formulate the cyclic bar simplicial category computing
the trace of a finite Hecke category in terms of the geometry of a circle. The geometric formulation
developed thus far is applied in Section 2.6 to verify the Beck–Chevalley conditions in a uniform way.
The computations of the traces and centers conclude in Section 2.7. In Section 2.8, we introduce the
various versions of the category of (graded) unipotent character sheaves and state our main results thus
far in terms of these categories. In Section 2.9, we show that Tr.Hgr

G
/ inherits the weight and perverse

t -structure from the ambient category Shvgr;c.G=G/. Finally, Section 2.10, which is mostly independent
of the rest of the paper, deduces several consequences for the trace and center of a finite Hecke category
from the rigidity of the latter.

2.1 Preliminaries

We will now review the basic definitions of the objects involved and outline the strategy employed to
prove Theorem 1.5.2.

2.1.1 Generalities regarding big vs small categories In the situation of Definition 1.4.5, the trace
Tr.A/DA A Arev A can be computed as the geometric realization (ie colimit) of the simplicial object
obtained from the cyclic bar construction. Namely,

Tr.A/D jA .�C1/
j WD colimA .�C1/;

where the last face map is given by multiplying the last and first factors of A and where the other face
maps are given by multiplying adjacent A factors; see also [8, Section 5.1.1; 39, Remark 5.5.3.13].

The small and big category settings are related by taking Ind via the following standard result:

Proposition 2.1.2 [9, Corollary 3.6 and Proposition 3.3] Let A 2 Alg.DGCatpres;cont/ be a compactly
generated rigid monoidal category (see [9, Definition 3.1]). Taking Ind-completion (resp. passing to right
adjoints , resp. passing to the full subcategory .�/c spanned by compact objects) induces a canonical
equivalence (i)!(ii) (resp. (ii)!(iii), resp. (ii)!(i)), between

(i) the category Ac-Mod of Ac-module categories in DGCatidem;ex, where Ac is full subcategory of A

spanned by compact objects ,

(ii) the category A-Modc of A-module categories in DGCatpres;cont;c ,

(iii) the opposite of the category whose objects are A-module categories in the category of compactly
generated DG-categories and whose morphisms are functors that are both cocontinuous (ie limit
preserving) and continuous.
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As mentioned earlier, we will work mostly in the setting of Proposition 2.1.2(ii) even though we are
most interested in the “small” setting described in Proposition 2.1.2(i) because the former has more
functoriality.

Remark 2.1.3 This result was also proved (but not explicitly stated) in [25, Chapter 1, Section 9]. Note
also that [9] proved the result above more generally for semirigid monoidal categories. We do not need
this level of generality here.

Remark 2.1.4 In the literature, the property of being rigid is usually applied to a “small” monoidal
DG-category. By definition, a category C0 2 Alg.DGCatidem;ex/ is rigid if all objects c 2 C0 have left and
right duals. By [25, Chapter 1, Lemma 9.1.5], such a category C0 is rigid if and only if C WD Ind.C0/ is
rigid in the sense of [25, Chapter 1, Definition 9.1.2]. In this case, C is compactly generated by definition.

We use the term rigid for both “big” and “small” categories. The context should make it clear in which
sense we use the term.

2.1.5 Computing colimits Recall that Ind WDGCatidem;ex!DGCatpres;cont preserves all colimits by [25,
Chapter 1, Corollary 7.2.7] and that the forgetful functor A-Mod! DGCatpres;cont preserves all colimits
by [39, Corollaries 4.2.3.5]. Proposition 2.1.2 then implies that the colimit colimi2I C0

i of a diagram
I !Ac-Mod can be computed as

colim
i2I

C0
i '

�
colim

i2I
Ind.C0

i /
�c
;

where .�/c denotes the procedure of taking the full subcategory spanned by compact objects. Moreover,
the category underlying the colimit on the right-hand side can be computed in DGCatpres;cont.7

2.1.6 Computing limits The forgetful functors A-Mod! DGCatpres;cont and DGCatpres;cont ! Cat

preserve all limits by [39, Corollary 4.2.3.3] and [38, Proposition 5.5.3.13], where Cat denotes the
category of all .1; 1/-categories. The underlying category of a limit in A-Mod can thus be computed in
the category of all categories.

However, Ind does not preserve limits. In fact, this is the reason why the renormalized category of sheaves
on a stack differs from the usual category. Moreover, as we shall see, this will also be responsible for the
fact that the Drinfel’d center of the “small” version of a finite Hecke category differs from its trace.

2.1.7 The strategy The trace of H?;ren
G

as an algebra object in Shv?.pt/-Mod is given by the geometric
realization of the cyclic bar construction

.2.1.8/ Tr.H
?;ren
G

/� WD .H
?;ren
G

/ Shv?.pt/.�C1/

' H
?;ren
G Shv?.pt/ H

?;ren
G Shv?.pt/ � � � Shv?.pt/ H

?;ren
G
2 .Shv?.pt/-Mod/�

op

:

In the next two subsections, we will discuss the two main technical ingredients used to understand the
geometric realization of the simplicial object above. First, the categorical Künneth formula for finite orbit

7Note, however, that colimits in the presentable setting are different from colimits in the category of all1-categories.
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stacks allows one to realize the terms in the simplicial object above as the categories of sheaves on certain
stacks. Second, the Beck–Chevalley condition on a simplicial category is essentially a descent-type result
that allows one to realize its geometric realization as a full subcategory of a more concrete category.

By a duality argument, we show that the Drinfel’d center of H?;ren
G

coincides with its trace. Finally, the
traces and Drinfel’d centers of the small versions H?

G are obtained from those of the renormalized versions.

2.2 The categorical Künneth formula for finite orbit stacks

This subsection is dedicated to the following result:

Proposition 2.2.1 Let Y0 and Z0 be Artin stacks over pt0. Suppose that Y0 is a finite orbit stack. Then
the external tensor product

.2.2.2/ Shv?.Y/
ren

Shv?.pt/ Shv?.Z/
ren �
'
�! Shv?.Y�Z/

ren

induces an equivalence of categories.

Proof We will treat the mixed case, ie ?Dm. The graded and ungraded cases can be treated similarly.

By [4, (F.18)], we know that (2.2.2) is fully faithful. By [31, Corollary A.4.13], we know that the left-hand
side of (2.2.2) is generated by objects of the form F0� G0 where F0 and G0 are constructible. Since
(2.2.2) is continuous, it suffices to show that F0�G0 2 Shvm.Y0�pt0 Z0/

ren generates the category. Using
excision and the fact that Y0 is a finite orbit stack, we reduce to the case where Y0 DBH0 for a (smooth)
algebraic group H0 over Fq . This case is treated in Lemma 2.2.3 below.

Lemma 2.2.3 Proposition 2.2.1 holds when Y0 D BH0, where H0 is a smooth algebraic group over pt0.

Proof It suffices to show that

Shvm;c.BH0/ Shvm;c.pt0/ Shvm;c.Z0/
�
�! Shvm;c.BH0 �pt0 Z0/

is an equivalence of categories.

By descent along the surjective smooth map Z0! BH0 �pt0 Z0 (using the .�/!-functor), we have

Shvm;c.BH0 �pt0 Z0/' Tot.Shvm;c.H
�pt0�

0
�pt0 Z0//:

Then [39, Proposition 4.7.5.1] provides an equivalence of categories

.2.2.4/ Shvm;c.BH0 �pt0 Z0/' ..�0/!.�0/
!Q`/-Mod.Shvm;c.Z0//;

where �0 WH0! pt0 and where .�0/!.�0/
!Q` 2Alg.Shvm;c.pt0//. Note that here, the algebra structure on

.�0/!.�0/
!Q` is obtained from the multiplication structure of H : indeed, .�0/!.�0/

!Q` is the homology
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C�.H / WD �!�
!Q` of H along with a Frobenius action, where � W H ! pt is the pullback of �0.

Equation (2.2.4) can thus be rewritten in the following more familiar form:

Shvm;c.BH0 �pt0 Z0/' C�.H /-Mod.Shvm;c.Z0//:

Note also that the action of Shvm;c.pt0/ on Shvm;c.Z0/ is used to make sense of the right side of (2.2.4).

Arguing similarly (see also [25, Chapter 1, Proposition 8.5.4]),

Shvm;c.BH0/ Shvm;c.pt0/ Shvm;c.Z0/' C�.H /-Mod.Shvm;c.pt0// Shvm;c.pt0/ Shvm;c.Z0/

' C�.H /-Mod.Shvm;c.Z0//:

2.3 The Beck–Chevalley condition

We will now turn to the Beck–Chevalley condition, a technical condition that allows one to realize
geometric realizations (ie colimits of simplicial objects) and totalizations (ie limits of cosimplicial objects)
of categories in more concrete terms.

Definition 2.3.1 [39, Definition 4.7.4.13] Suppose we have a diagram of1-categories

C D

C0 D0

H

V V 0

H 0

which commutes up to a specified equivalence ˛ W V 0 ıH '
�!H 0 ıV .

We say that this diagram is horizontally left (resp. right) adjointable if H and H 0 admit left (resp. right)
adjoints H L and H 0R (resp. H R and H 0R), respectively, and if the composite transformation

H 0L ıV 0!H 0L ıV 0 ıH ıH L ˛
'
�!H 0L ıH 0 ıV ıH L

! V ıH L

.resp. V ıH R
!H 0R ıH 0 ıV ıH R ˛�1

'
��!H 0R ıV 0 ıH ıH R

!H 0R ıV 0/

is an equivalence.

We say that this diagram is vertically left (resp. right) adjointable if the transposed diagram

C C0

D D0

V

H H 0

V 0

is horizontally left (resp. right) adjointable.

Remark 2.3.2 What we call horizontally left (resp. right) adjointable is simply called left (resp. right)
adjointable in [39]. This condition on a commutative square of categories is also commonly called the
Beck–Chevalley condition.
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We are now ready to give the main statement of this subsection.

Proposition 2.3.3 (Lurie) Let C� W�
op
C! DGCatpres;cont be an augmented simplicial diagram of DG-

categories. Let CD C�1, F W C0! C be the obvious functor , and G its right adjoint. Suppose that for
every morphism ˛ W Œn�! Œm� in�C which induces a morphism ˛C W ŒnC1�' Œ0�� Œn�! Œ0�� Œm�' ŒmC1�,
the diagram

.2.3.4/

CmC1 Cm

CnC1 Cn

d0

d0

is vertically right adjointable. Then the functor � W jC�j�op j ! C is fully faithful. When G is conservative ,
� is an equivalence of categories.

Proof We will deduce this proposition from its dual version [39, Corollary 4.7.5.3].

Passing to right adjoints, we get an augmented cosimplicial object C�. Note that for each n, Cn ' Cn as
only the functors change. By [38, Corollary 5.5.3.4] (see also [25, Chapter 1, Proposition 2.5.7]), we
have a canonical equivalence of categories

jC�j�op j ' Tot.C�j�/:

Moreover, the canonical functor C! Tot.C�j�/ is the right adjoint �R of � .

Observe that
CmC1 Cm

CnC1 Cn

d0

d0

is horizontally left adjointable as this is equivalent to (2.3.4) being vertically right adjointable. Thus
[39, Corollary 4.7.5.3] implies that � is a fully faithful embedding, and moreover, it is an equivalence of
categories when G is conservative.

Remark 2.3.5 The same proof goes through when we replace DGCatpres;cont by A-Mod, where A is a
rigid monoidal category, for example, when A is Shvm.pt0/ or Vectgr ' Shvgr.pt/. This is because the
forgetful functor A-Mod! DGCatpres;cont preserves all limits and colimits, by [39, Corollaries 4.2.3.3
and 4.2.3.5], and adjoints of an A-linear functor are automatically A-linear by [31, Corollary A.4.7].

2.4 H?;ren

G
as a functor out of 1-manifolds

While it is straightforward how to apply Proposition 2.2.1, the verification of the adjointability conditions
(aka Beck–Chevalley conditions) necessary for the application of Proposition 2.3.3 is more subtle. The
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argument can be made transparent by reformulating the simplicial object (2.1.8) geometrically in terms of
1-manifolds. In preparation for that, we will, in this subsection, upgrade H

?;ren
G

to a right-lax symmetric
monoidal functor coming out of the category of 1-manifolds. The construction found in this subsection is
a simplification of the one found in [30].

2.4.1 1-manifolds and their boundaries Let Mnfd1 denote the symmetric monoidal1-category of
1-dimensional manifolds with finitely many connected components whose morphisms are given by
embeddings and whose symmetric monoidal structure is given by disjoint unions. Note that the objects
are simply finite disjoint unions of lines and circles. Although these manifolds are, technically speaking,
without boundary, we will make use of their “boundaries” in our construction. We will now explain what
this means.

Let Mnfd01 be the1-category of compact 1-manifolds, usually denoted by M , with possibly nonempty
boundary, denoted by @M , such that VM WD M n @M 2 Mnfd1. Moreover, morphisms are given by
(necessarily closed) embeddings. Taking the interior gives a natural functor of1-categories

F WMnfd01!Mnfd1; M 7! VM :

Lemma 2.4.2 [30, Lemma 2.4.10] The functor F is an equivalence of categories. We write M 7!M to
denote an inverse of F .

Because of this equivalence, we will generally not make a distinction between 1-manifolds without
boundaries and compact 1-manifolds with possibly nonempty boundaries, unless confusion is likely to
occur. For instance, when M 2Mnfd1, by abuse of notation,

@M WD @M WDM nM

is used to denote the boundary of M .

We also use Disk1 to denote the full subcategory of Mnfd1 consisting of just lines. Moreover, the category
Disk01 WD Disk1 �Mnfd1

Mnfd01 consisting of compact line segments is equivalent to Disk1 itself.

2.4.3 H
?;ren

G
as a functor out of Mnfd1 Following [30, Section 3.1.2], we will now construct a right-lax

symmetric monoidal functor
H

?;ren
G
WMnfd1! Shv?.pt/-Mod;

whose restriction to Disk1 is symmetric monoidal. The functor H?;ren
G

is obtained as a composition8

.2.4.4/ Mnfd1
M
��! Corr.Stk/propIsm

Shv
�;ren
?;!

�����! Shv?.pt/-Mod :

We will now explain the various functors and categories that appear in the diagram above. We start with
the functor M , which is defined as the composition

.2.4.5/ Mnfd1
B
�! Corr..Spc�

1

fin /
op/

Map
���! Corr.Stk/:

8Even though we write Stk, it should be understood as StkFq
when we consider the mixed variant.
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2.4.6 Correspondences For any category C, Corr.C/ is the category of correspondences in C. A
morphism from c1 to c2 in Corr.C/ is illustrated, equivalently, by diagrams of the form

c1 c

c2

h

v or
c

c1 c2

h v or c1 c c2:
h v

Here, h and v stand for horizontal and vertical, respectively. As usual, compositions are given by pullbacks.

More generally, let vert and horiz be two collections of morphisms in C such that vert (resp. horiz) is
closed under pulling back along a morphism in horiz (resp. vert). Then we let Corr.C/vertIhoriz be the 1-full
subcategory of Corr.C/ consisting of the same objects, but for morphisms we require that v 2 vert and
h 2 horiz. See [30, Section 2.8.1] for more details.

2.4.7 The functor B When CD Spcfin, the category of finite CW-complexes, the functor

B W Spcfin! Corr..Spc�
1

fin /
op/;

(B stands for boundary) at the level of objects, is given by

B.M /D .@M !M / 2 Spc�
1

fin :

Moreover, B sends an open embedding N ,!M to the following morphism in Corr..Spc�
1

fin /
op/:

.2.4.8/

@N M nN @M

N M M
y

'

We will often suppress the morphisms and simply use, for example, .@M;M / to denote an object in
Spc�

1

fin to make diagrams and formulas more compact.

2.4.9 The functor Map We have a natural functor

Map W .Spc�
1

/op! Stk

which assigns to each object .N !M / 2 .Spc�
1

/op an object .BB;BG/N;M WD BBN �BGN BGM

(see also Remark 1.4.2 and note 8), which is precisely the stack of commutative squares

N BB

M BG

This functor upgrades naturally to an eponymous functor

Map W Corr..Spc�
1

/op/! Corr.Stk/;

used in (2.4.5) above.

By construction, Map turns colimits in Spc�
1

to limits in Stk.
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2.4.10 The functor M The functor M in (2.4.4) is given by the following result:

Lemma 2.4.11 The composition Map ıB factors through Corr.Stk/propIsm, ie the horizontal (resp. verti-
cal ) maps are smooth (resp. schematic and proper).

Proof Let N ,!M be a morphism in Mnfd1, ie it is an open embedding of 1-manifolds. We will now
show that the map

.2.4.12/ .BB;BG/MnN;M ' BBMnN
�

BGMnN BGM
! BB@N �BG@N BGN

' .BB;BG/@N;N ;

which is induced by the left square of (2.4.8), is smooth. Since the left square of (2.4.8) is a pushout, we have

.BB;BG/MnN;M ' .BB;BG/@N;N �BB@N BBMnN

and the map (2.4.12) identifies with the vertical map on the left of the following pullback diagram:

.BB;BG/MnN;M BBMnN

.BB;BG/@N;N BB@N

It thus suffices to show that the map

.2.4.13/ BBMnN
! BB@N

is smooth. Without loss of generality, we can assume that M is connected, in which case, M is either a
circle or a line.

When N is empty, it is clear that (2.4.13) is smooth since it is simply

BBM
! pt;

where BBM is either BB or B=B depending on whether M is a line or a circle. Thus, it remains to treat
the case where N is nonempty.

When M is a line, the desired statement follows from the fact that (2.4.13) is a product of (copies of) of
the smooth maps idBB and �BB W BB! BB �BB. When M is a circle, since the only embedding of a
circle into itself is a homeomorphism, N can only be a circle or a disjoint union of lines. In the first case,
the map under consideration is an equivalence, and hence it is smooth. In the second case, we also see
that (2.4.13) is a product of (copies of) the diagonal map �BB W BB! BB �BB, which is smooth.

Next, we will show that the map

.2.4.14/ .BB;BG/MnN;M 'BBMnN
�

BGMnN BGM
!BB@M �BG@M BGM

' .BB;BG/@M;M ;

induced by the right square of (2.4.8), is proper. As above, we can (and we will) assume that M is
connected. Note that when N is empty, (2.4.14) becomes

BBM
! BB@M �BG@M BGM ;
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which is equivalent to
B

B
' BBS1

!
G

G
when M ' S1, and to

BB! BB �BG BB

when M 'R. Both of these are easily seen to be proper.

When N is not empty, M nN and @M are homotopically equivalent to a (possibly empty) disjoint
union of points. Moreover, @M !M nN is homotopically equivalent to an inclusion of connected
components. We will thus treat them as disjoint unions of points in what follows. In particular, we can
write M nN ' @M t ..M nN / n @M /. The map (2.4.14) factors as

BBMnN
�

BGMnN BGM
' .BB@M �BG@M BGM /�

BGM .BB.MnN /n@M �
BG.MnN /n@M BGM /

! BB@M �BG@M BGM ;

where the last map is induced by BB.MnN /n@M ! BG.MnN /n@M , which is proper since it is just a
product of maps of the form BB! BG.

2.4.15 The functor H
?;ren

G
Applying the functor Shvren;�

?;!
of [31, (2.8.13) and Theorem 2.8.20], which

is right-lax symmetric monoidal, we complete (2.4.4). Note that in our case, we only need Shv
ren;�
?;!

to
encode (renormalized) �-pullbacks along smooth morphisms and (renormalized) !-pushforwards along
proper morphisms rather than the more general case described in [31].

2.4.16 Renormalized finite Hecke categories Being a right-lax symmetric monoidal functor, H?;ren
G

sends algebra objects to algebra objects. In particular,

H
?;ren
G

.R/' Shv?..BB �BB/�BG�BG BG/ren ' Shv?.BB �BG BB/ren

has an algebra structure, induced by the algebra structure on R 2 Mnfd1, whose multiplication is
given by Rt2 ,! R. Chasing through (2.4.8), we see that this is precisely the monoidal structure on
Shv?.BB �BG BB/ren defined earlier via the correspondence (1.4.7). This justifies the abuse of notation
where we use H

?;ren
G

to denote both the functor and its value on R.

2.4.17 Horocycle correspondence We will now explain how the horocycle correspondence appears
naturally from this point of view. First, observe that @S1 ' ∅, and hence H

?;ren
G

.S1/' Shv?.G=G/ren

since BGS1

'G=G, where the quotient is taken using the conjugation action.

Let  WR! S1 be an embedding. The functor B carries  to the diagram

ptt pt pt ∅

R S1 S1
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which is sent to
BnG=B ' BB �BG BB 

G

B
!

G

G

under Map, where we have used BB�BG .G=G/'G=B. This is the horocycle correspondence appearing
in Theorem 1.5.2.

2.5 Augmented cyclic bar construction via Mnfd1

Using the geometric picture of Section 2.4, we will now produce an augmented simplicial object that will
be used as the input for Proposition 2.3.3. The underlying simplicial object is the same as the one that
computes the categorical trace of H?;ren

G
introduced in (2.1.8).

2.5.1 Circle geometry and augmented simplicial sets Consider the over-category .Mnfd1/=S1 . Fix
a morphism  WR! S1, and consider .Mnfd1/ ==S1 WD ..Mnfd1/=S1/ =. We note that .Mnfd1/=S1 has
a final object, by construction, and moreover, it is precisely the category obtained from .Disk1/=S1 WD

Disk1 �Mnfd1
.Mnfd1/=S1 by adjoining a final object. Similarly, the category .Mnfd1/ ==S1 also has a final

object and is equivalent to the category obtained from .Disk1/ ==S1 by adjoining a final object.

We will now relate .Mnfd1/ ==S1 and �op
C using a variation of the construction in [39, Section 5.5.3].

Note that an object of .Mnfd1/ ==S1 is given by a diagram

R U

S1

 

j

 0

which commutes up to isotopy, where U is either S1 or a finite disjoint union of copies of R. The set of
components �0.S

1 n 0.U // is finite: empty when U is S1 and equal to the number of components of U

when it is a disjoint union of copies of R. Fix an orientation of the circle. We define a linear ordering �
on �0.S

1 n 0.U //: if x;y 2 S1 belong to different components of S1 n 0.U /, then we write x < y if
the three points .x;y;  0.j .0/// are arranged in clockwise order around the circle, and y < x otherwise.
This construction determines a functor from .Mnfd1/ ==S1 to the opposite of the category of finite linearly
ordered sets, which is �op

C.

Lemma 2.5.2 The above construction determines an equivalence of 1-categories

�C W .Mnfd1/ ==S1 !�
op
C;

which restricts to an equivalence of 1-categories

� WD �Cj.Disk1/ ==S1
W .Disk1/ ==S1 !�op:

Proof The second equivalence is [39, Lemma 5.5.3.10]. The first part is a direct extension of the second
by adjoining a final object.
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2.5.3 The augmented simplicial category We are now ready to construct the augmented simplicial
category. Let Tr.H?;ren

G
/� be the augmented simplicial category given by the following composition of

functors:

.2.5.4/ �
op
C

��1
C
��! .Mnfd1/ ==S1

'
�!Mnfd1

H
?;ren
G
���! Shv?.pt/-Mod :

Here ' is the obvious forgetful functor.

Since BB �BG BB ' BnG=B is a finite orbit stack by the Bruhat decomposition, Proposition 2.2.1
implies that Tr.H?;ren

G
/�j�op ' Tr.H

?;ren
G

/� of (2.1.8); see also [39, Remarks 5.5.3.13 and 5.5.3.14]. In
particular,

Tr.H
?;ren
G

/n ' Tr.H
?;ren
G

/n ' Shv?..BB �BG BB/nC1/ren for n� 0

and
Tr.H

?;ren
G

/�1 ' Shv?

�
G

G

�ren
where, by convention, G=G denotes the quotient of G by itself under the adjoint action.

2.5.5 “Small” variants We have “small” variants H?
G and Tr.H?

G/� of H?;ren
G

and Tr.H
?;ren
G

/�, given by
the following diagram:

�
op
C .Mnfd1/ ==S1 Mnfd1 Corr.Stk/propIsm Shv?;c.pt/-Mod

Tr.H?
G
/�

��1
C ' M

H?
G

Shv�
?;c;!

The only difference between the two versions is that in the last step, we use Shv�
?;c;!

rather than Shv
ren;�
?;!

.

2.6 Adjointability

We are now ready to show that Tr.H?;ren
G

/� satisfies the adjointability condition of Proposition 2.3.3. The
result follows from a simple geometric statement about topological 1-manifolds.

2.6.1 Adjointable squares in a category of correspondences For any category C, a commutative
square in Corr.C/, which illustrates two morphisms from x to y0 to be equivalent, has the shape

.2.6.2/

x cxy y

cxx0 cxy0 cyy0

x0 cx0y0 y0

2 1

3 4

where 1 and 3 are pullback squares.
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Definition 2.6.3 The commutative diagram in Corr.C/ (2.6.2) is called adjointable if 2 and 4 are also
pullback squares, ie all squares are pullback squares.

2.6.4 Let ˛ W Œn�! Œm� be a morphism in �C and M !N the corresponding morphism in Mnfd1 via
' ı ��1

C ; see (2.5.4). Let MC!NC be the morphism associated to ˛C W ŒnC 1�! ŒmC 1�. MC can be
obtained from M by deleting the image of Œ�"; "��R in M for some fixed ", and similarly for N . This
construction is functorial, and hence we obtain the map MC!NC.

We have the commutative diagram
MC M

NC N

in Mnfd1, which induces, via the B construction of Section 2.4.7, the following commutative diagram in
Corr..Spc�

1

fin /
op/:

.2.6.5/

.@MC;MC/ .M nMC;M / .@M;M /

.NC nMC;NC/ .N nMC;N / .N nM;N /

.@NC;NC/ .N nNC;N / .@N;N /

Applying the Map construction, we obtain the following commutative diagram in Corr.StkFq
/propIsm:

.2.6.6/

.BB;BG/@MC;MC .BB;BG/MnMC;M .BB;BG/@M;M

.BB;BG/NCnMC;NC .BB;BG/N nMC;N .BB;BG/N nM;N

.BB;BG/@NC;NC .BB;BG/N nNC;N .BB;BG/@N;N

2

f

1

g

3

p

q

f

4

p

q

g

p

q

f g

Lemma 2.6.7 The diagram (2.6.5) is adjointable in Corr..Spc�
1

fin /
op/. As a result , (2.6.6) is adjointable in

Corr.Stk/propIsm.

Proof The second part follows from the first part because Map turns colimits to limits, and hence,
in particular, it sends pushout squares to pullback squares. The first part is an explicit and elementary
statement about gluing 1-manifolds that is easier to check directly than to describe. We leave the details
to the reader.

Geometry & Topology, Volume 29 (2025)



2488 Quoc P Ho and Penghui Li

Proposition 2.6.8 The augmented simplicial object Tr.H?;ren
G

/� in Shv?.pt/-Mod satisfies the condition
of Proposition 2.3.3. Namely, for every ˛ W Œn�! Œm� in �C, the diagram

.2.6.9/

Tr.H
?;ren
G

/mC1 Tr.H
?;ren
G

/m

Tr.H
?;ren
G

/nC1 Tr.H
?;ren
G

/n

d0

d0

is vertically right adjointable.

Proof Note that (2.6.9) is obtained from (2.6.6) by applying Shv
�;ren
?;!

. By Lemma 2.4.11, in (2.6.6) the
morphisms f and p (resp. g and q) are smooth (resp. proper). To prove that (2.6.9) is vertically right
adjointable, it suffices to show that we have the natural equivalence

g!f
�p�q

! '
�! p�q

!g!f
�;

where we start from the bottom left of (2.6.6). Indeed, we have

g!f
�p�q

!
' g!p�f

�q!
' p�g!q

!f � ' p�q
!g!f

�;

where the first, second, and third equivalences are due to the following reasons, respectively:

� smooth base change for square 2, using the fact that f is smooth,

� commuting upper ! and upper � using the fact that f is smooth, and commuting lower ! and lower �
using the fact that g is proper, and

� using the fact that g is proper, the desired equivalence follows from g�q
! ' q!g�, which is the

Verdier dual of the usual proper base change result.

Remark 2.6.10 Unlike the “big” version, the “small” variant Tr.H?
G/� discussed in Section 2.5.5 does

not satisfy the adjointability condition of Proposition 2.3.3. This is because the right adjoint to the unit
map does not preserve constructibility. Indeed, the right adjoint is given by p�q

! in the following diagram:

BB

BB �BG BB pt:

q p

But now, note that p� does not preserve constructibility.

2.7 Traces and Drinfel’d centers of finite Hecke categories

We are now ready to complete the proof of the first main result. The trace case follows directly from the
discussion above and thus will be handled at the beginning of this subsection. We will then deduce the
Drinfel’d center case from the trace case.

2.7.1 Traces of finite Hecke categories We will now prove the trace part of the first main result:
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Theorem 2.7.2 The trace of H?;ren
G

(resp. H?
G) where H

?;ren
G

(resp. H?
G) is viewed as an algebra object

of Shv?.pt/-Mod (resp. Shv?;c.pt/-Mod) coincides with the full subcategory of Shv?.G=G/ren (resp.
Shv?;c.G=G/) generated under colimits (resp. finite colimits and idempotent completion) by the image of
H

?;ren
G

(resp. H?
G) via q!p

� in the horocycle correspondence (see Remark 1.4.2)

.2.7.3/

G=B

BnG=B G=G

p q

Moreover , under this identification , the natural functor tr W H?;ren
G
! Tr.H

?;ren
G

/ (resp. tr W H?
G! Tr.H?

G/) is
identified with q!p

�.

Proof We start with the “big” variant H?;ren
G

. Propositions 2.6.8 and 2.3.3 imply that the natural functor
Tr.H

?;ren
G

/! Shv?.G=G/ren is fully faithful. Moreover, the functor H?;ren
G
! Tr.H

?;ren
G

/ ,! Shv?.G=G/ren

identifies with q!p
� in the horocycle correspondence.

By [25, Chapter 1, Proposition 8.7.4], we know that Tr.H?;ren
G

/ is compactly generated by the essential
image of H?

G! H
?;ren
G
! Tr.H

?;ren
G

/. Note that the conditions required to apply this result amount to the
existence of the “small” variant introduced in Section 2.5.5.

Combining the two statements, we conclude that Tr.H?;ren
G

/ is identified with the full subcategory of
Shv?.G=G/ren compactly generated by the image of H?

G D Shv?;c.BnG=B/ under the horocycle corre-
spondence. In particular, it is generated by the image of H?;ren

G
under colimits.

The “small” variant is obtained from the first by taking the full subcategories of compact objects, using
Proposition 2.1.2. The statement regarding generation under finite colimits and idempotent splittings
follows from [25, Chapter 1, Lemma 7.2.4(100)].

2.7.4 Drinfel’d centers of the finite Hecke categories The case of Drinfel’d center is slightly more
subtle. Consider the following versions H

?;ren;!
G

(resp. H?;!
G

) of the Hecke categories where instead of
using Shv

ren;�
?;!

(resp. Shv�
?;c;!

), we use Shv
ren;!
?;�

(resp. Shv!
?;c;�

). More concretely, we use g�f
! in the

correspondence (1.4.7) to define the convolution monoidal structure.

Since f is smooth of relative dimension dim B, f ! ' f �Œ2 dim B�.dim B/ in the mixed case and
f ! ' f �Œ2 dim B�h2 dim Bi in the graded case, where .�/ denotes the Tate twist and h�i denotes
the grading shift defined in [31, Section 2.4.7].9 Note that in the ungraded setting, we simply have
f ! ' f �Œ2 dim B�. Thus, by cohomologically shifting and Tate twisting Œ�2 dim B�.� dim B/ for the
mixed case (resp. cohomologically shifting and grade shifting Œ�2 dim B�h�2 dim Bi for the graded case,
resp. cohomologically shifting Œ�2 dim B� for the ungraded case), we obtain an equivalence of monoidal
categories

H
?;ren
G

'
�! H

?;ren;!
G

(resp. H?
G
'
�! H

?;!
G
/:

9The factor 2 is there because weight is twice the Tate twist.
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Even though the !-version is equivalent to the usual version, it is, as we shall see, technically more
advantageous to use when studying the center.

2.7.5 Observe that the category H
?;ren;!
G

is self-dual as an object in Shv?.pt/-Mod. Indeed, first note that
any object Y 2 Corr.Stk/ is self-dual, with duality datum given by

pt Y! Y�Y and Y�Y Y! pt:

Thus, if Y is a finite orbit stack, such as YD BB �BG BB, Shvren;!
?;�

turns the self-duality datum above
into a self-duality datum of Shv?.X /

ren, using Proposition 2.2.1. In particular, H?;ren;!
G

is self dualizable.

Suppose
X Z! Y

is a morphism from X to Y in Corr.Stk/. The dual of this morphism is precisely

Y Z! X:

Thus, if X and Y are finite orbit stacks, then the functors Shv?.X/
ren ! Shv?.Y/

ren and Shv?.Y/
ren !

Shv?.X/
ren associated to the two correspondences above are dual to each other. Note that when following

the correspondences here, we use .�/�.�/!.

2.7.6 We are now ready to compute the Drinfel’d centers of H?;ren
G

.

Theorem 2.7.7 The Drinfel’d center Z.H?;ren
G

/ of H?;ren
G

, where the latter is viewed as an object in the
category Alg.Shv?.pt/-Mod/, coincides with its trace Tr.H

?;ren
G

/. Moreover , under the identification of
Tr.H

?;ren
G

/ as a full subcategory of Shv?.G=G/ren, the natural functor z WZ.H?;ren
G

/!H
?;ren
G

can be identified
with p�q

! in the horocycle correspondence (2.7.3). In particular , we have a pair of adjoint functors tr a z.

Proof To simplify the notation, we will write AD H
?;ren;!
G

and BD H
?;ren
G

. Moreover, unless otherwise
specified, all tensors and Hom are over Shv?.pt/. We will therefore omit Shv?.pt/ from the notation.

Recalling from Definition 1.4.5, we have

Z.A/'HomA Arev.A;A/;

ie the category of continuous A Arev-linear functors from A to itself. As in [8, Section 5.1.1], we have
an equivalence of categories A' jA .�C2/j. Thus,

HomA Arev.A;A/'HomA Arev.jA
.�C2/

j;A/

' Tot.HomA Arev.A
.�C2/;A//' Tot.Hom.A �;A//

' Tot.A .�C1//.2.7.8/

' jB .�C1/
j.2.7.9/

' Tr.B/:
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Here (2.7.8) is obtained by passing to the duals, using the discussion in Section 2.7.5. Moreover, (2.7.9)
is obtained by passing to left adjoints [38, Corollary 5.5.3.4] (see also [25, Chapter 1, Proposition 2.5.7]),
and noticing that the resulting diagram is precisely the diagram used to compute the trace of B WD H

?;ren
G

.
We deduce the corresponding statement for Z.B/ using the equivalence of monoidal categories A'B.

The second part regarding the identification of the functor z follows from the argument above.

2.7.10 We will now study the centers of the “small” version H?
G , which is more subtle than the case of

traces above.

Theorem 2.7.11 The Drinfel’d center Z.H?
G/ of H?

G 2 Alg.Shv?;c.pt/-Mod/ is equivalent to the full
subcategory of Z.H

?;ren
G

/ consisting of objects whose images under the natural central functor z are
constructible as sheaves on BnG=B.

Proof For brevity’s sake, we write AD H
?;ren;!
G

and A0 D H
?;!
G

. Moreover, all tensors and Hom, unless
otherwise specified, will be over Shv?.pt/ or Shv?;c.pt/ depending on whether we are working with “big”
or “small” categories, which should be clear from the context. We will thus not include Shv?.pt/ or
Shv?;c.pt/ in the notation.

By definition,
Z.A0/'HomA0 Arev

0
.A0;A0/;

the category of exact A0 Arev
0

-linear functors from A0 to itself. As in the proof of Theorem 2.7.7, we
have

Z.A0/' Tot.Hom.A
�

0
;A0//;

which naturally embeds into
Z.A/' Tot.Hom.A �;A//;

whose essential image is the full subcategory of Z.A/ consisting of objects whose images in Hom.A �;A/

are compact-preserving functors. Observe that all the functors between A � (which induces functors
between Tot.Hom.A �;A//) are compact preserving, since we only push along schematic (in fact proper)
morphisms, by Lemma 2.4.11. Thus Z.A0/ is, equivalently, the full subcategory of Z.A/ spanned by
objects whose images in

Hom.A 0;A/'Hom.Shv?.pt/;A/'A' Shvgr.BnG=B/
ren

are compact, ie constructible. But this functor is precisely the central functor z and is identified with p�q
!

in the horocycle correspondence (2.7.3), as in the proof of Theorem 2.7.7 above.

The statement for H?
G follows since H?

G ' H
?;!
G

and the proof concludes.

2.8 Character sheaves

We will now state our results in terms of character sheaves. We start with the following definition:
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Definition 2.8.1 The renormalized category of mixed (resp. graded, resp. ungraded) unipotent character
sheaves of G, denoted by Ch

u;?;ren
G

where ?Dm (resp. ?D gr, resp. ? is empty), is the full subcategory
of Shv?.G=G/ren generated by colimits by the image of H?;ren

G
under q!p

� in the horocycle correspon-
dence (2.7.3). Equivalently, it is compactly generated by the image of H?

G under this functor.

The category of mixed (resp. graded, resp. ungraded) unipotent character sheaves of G is the full
subcategory spanned by compact objects, ie

Ch
u;?
G
WD .Ch

u;?;ren
G

/c D Ch
u;?;ren
G

\ Shv?;c

�
G

G

�
:

Finally, the category of mixed (resp. graded, resp. ungraded) monodromic character sheaves, denoted by�Chu;?G , is the full subcategory of Chu;?;ren
G

consisting of objects whose images under p�q
! are constructible,

where p and q are defined in the horocycle correspondence (2.7.3).

Remark 2.8.2 The last equality in the definition of Chu;?
G

uses the following fact: if we have a fully
faithful and compact-preserving functor A ,! B, then Ac DA\Bc . Indeed, Ac �A\Bc due to the
compact preservation assumption. On the other hand, A\Bc �Ac is always true by the very definition
of compactness. In the case of interest, the fact that the functor involved is compact preserving is proved
in Theorem 2.7.2 above.

With the new notation, Theorems 2.7.2, 2.7.7, and 2.7.11 above can be summarized:

Theorem 2.8.3 The trace Tr.H
?;ren
G

/ and center Z.H?;ren
G

/ of H
?;ren
G

coincide with the full subcategory
Ch

u;?;ren
G

of Shv?.G=G/ren generated under colimits by the essential image of H?;ren
G

under q!p
� in the

correspondence
G=B

BnG=B G=G

p q

Moreover , under this identification , the canonical trace and center maps are adjoint tra z and are identified
with the adjoint pair q!p

� a p�q
!.

The trace Tr.H?
G/ coincides with the full subcategory Ch

u;?
G

of Ch
u;?;ren
G

spanned by compact objects.
Moreover , the center Z.H?

G/ is the full subcategory �Chu;?G of Ch
u;?;ren
G

spanned by the preimage of H?
G

under the central functor z.

Remark 2.8.4 It is easy to see that Chu;gr
G

is contained in �Chu;grG . In fact, the latter is strictly larger,
already when G D Gm, the multiplicative group. Indeed, in this case, Hgr;ren

Gm
' Shvgr.BGm/

ren and
Ch

u;gr;ren
Gm

is the full subcategory of Shvgr.Gm=Gm/
ren ' Shvgr.Gm �BGm/

ren generated by the constant
sheaf. Moreover, the natural central functor is simply given by p� where p W Gm �BGm ! BGm is
the projection onto the second factor. Thus, to see that �Chu;grG is larger than Ch

u;gr
G

, it suffices to realize
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that �� W LSugr.Gm/! Vectgr does not reflect constructibility, where LSugr.Gm/ is the full subcategory of
Shvgr.Gm/ consisting of unipotent local systems, ie it is generated by (grading shifts of) the constant
sheaves, and where � WGm! pt is the structure morphism.

By construction,10

LSugr.Gm/
Homgr.Q`;�/'��

'
������������! Endgr.Q`/

op-Mod.Vectgr/'Q`Œ˛�-Mod.Vectgr/;

where ˛2 D 0 and ˛ lives in cohomological degree 1 and graded degree 2. Under this equivalence, ��
corresponds to the forgetful functor Q`Œ˛�-Mod.Vectgr/! Vectgr ' Shvgr.pt/. But now, on the one hand,
the object Q` 2Q`Œ˛�-Mod.Vectgr/ is not compact, and hence it corresponds to a nonconstructible sheaf
on the left. On the other hand, its image in Vectgr is compact.

Remark 2.8.5 The restriction of the adjunction tr W H
?;ren
G
� Ch

u;?;ren
G

Wz to small categories yields the
commutative diagram

Ch
u;?
G

H?
G

�Chu;?G

�

z

tr

ztr

z

where ztr' � ı tr and z' z ı�.

2.9 Weight structure and perverse t-structure on Chu;gr

G

In this subsection, we will show that Chu;gr
G

inherits the weight structure and perverse t -structure from the
ambient category Shvgr;c.G=G/.

2.9.1 The perverse t-structure on Ch
u;?

G
We will now show that for ? 2 fgr;∅g, the category Ch

u;?
G

inherits the perverse t-structure from Shv?;c.G=G/. Moreover, Chu;gr
G

inherits the weight structure from
Shvgr;c.G=G/.

We start with a general lemma concerning t -structures.

Lemma 2.9.2 Let D be a triangulated category equipped with a bounded t-structure whose heart is
Artinian. Let C WD hLiii2I be the smallest full DG-subcategory of D containing a collection of simple
objects fLigi2I for some indexing set I . Then C is stable under the truncation of D, and hence it inherits
the t -structure on D. Consequently, C is idempotent complete.

Proof The argument is similar to that of [31, Proposition 3.6.2]. For F 2 Shv?;c.Y/, we will show that
the following conditions are equivalent:

(i) F 2 C.

(ii) The simple constituents of Hi.F/ belong to fLigi2I .

10The superscript gr in Homgr and Endgr denotes the Vectgr-enriched Hom-spaces; see [31, Appendix A.2.6].
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Indeed, suppose F satisfies (ii). Then F can be built from successive extensions of Li’s, which then
implies that F 2 C, ie F satisfies (i). The other direction is obtained by observing that (ii) is closed under
finite direct sums, shifts, and cones.

(ii) is clearly stable under the perverse truncations of Shv?;c.Y/, and hence C inherits the perverse
t -structure of Shv?;c.Y/. Because this t -structure is bounded, idempotent completeness of C follows from
[2, Corollary 2.14].

Corollary 2.9.3 For ? 2 fgr;∅g, that is , we are working in the graded or ungraded setting , the category
Ch

u;?
G

is stable under the perverse truncations of Shv?;c.G=G/, and hence it inherits the perverse t -structure
on Shv?;c.G=G/.

Proof We will argue for the graded case as the ungraded case is identical and is in fact well known.

By definition, Chu;gr
G

is the smallest idempotent complete full DG-subcategory of Shvgr;c.G=G/ containing
the images tr.K/ of K 2Hgr

G
that are irreducible perverse sheaves, ie they are (grading shifts of) Kazhdan–

Lusztig elements. Since tr is obtained by pulling back along a smooth map and pushing forward along
a proper map, tr.K/ decomposes into a finite direct sum of simple perverse sheaves.11 Let C be the
smallest full DG-subcategory containing these simple perverse sheaves. By Lemma 2.9.2, C inherits the
perverse t -structure on Shvgr;c.G=G/. It remains to show that CD Ch

u;gr
G

.

Clearly, C � Ch
u;gr
G

. Moreover, Chu;gr
G

is the idempotent completion of C. But by Lemma 2.9.2, C is
already idempotent complete.

2.9.4 Weight structure on Ch
u;gr

G

Lemma 2.9.5 The category Ch
u;gr
G

inherits the weight structure on Shvgr;c.G=G/. Consequently, the
trace functor tr W H

gr
G
! Ch

u;gr
G

is weight exact.

Proof As above, Chu;gr
G

is generated as a DG-category by tr.K/ where K 2 H
gr
G

is pure of weight 0. Note
that tr.K/ is pure of weight 0 in Shvgr;c.G=G/ since in the horocycle correspondence, we only pull back
along a smooth map and push forward along a proper map. Thus, the objects tr.K/ form a negatively
self-orthogonal collection in Shvgr;c.G=G/, and hence also in Chu;gr. By [16, Corollary 2.1.2] (see also
[22, Remark 2.2.6]), they form the weight heart of a weight structure on Ch

u;gr
G

. It is clear from the
definition of this weight structure that it is compatible with the one on Shvgr;c.G=G/.

2.10 Rigidity and consequences

In this subsection, we show that the finite Hecke categories are (compactly generated) rigid monoidal
categories from which we deduce various interesting consequences. This subsection is mostly independent
of the rest of the paper.

11Note that this is not necessarily the case if we work with the mixed sheaves, ie when ?Dm.
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2.10.1 Rigidity of finite Hecke categories The rigidity of Hecke categories has been established in [9].

Proposition 2.10.2 [9, Theorem 6.2] The category H
?;ren
G

is compactly generated rigid monoidal.

Proof H?;ren is compactly generated by construction. Rigidity follows from the same proof as that of
[9, Theorem 6.2]. Indeed, the same argument as over there implies that H?;ren

G
is semirigid. But since

we are working with the renormalized category of sheaves, all constructible sheaves are compact by
definition. In particular, the monoidal unit is compact. Thus, they are rigid, by [9, Proposition 3.3].

Remark 2.10.3 As a consequence of Proposition 2.10.2, H?
G is rigid as “small” monoidal categories in

the sense of Remark 2.1.4.

2.10.4 Rigidity of Drinfel’d centers The rigidity of finite Hecke categories implies that for their
Drinfel’d centers:

Proposition 2.10.5 The (braided ) monoidal category Z.H
?;ren
G

/ is semirigid. Moreover , the (braided )
monoidal category Z.H?

G/ is rigid (in the sense of Remark 2.1.4).

Proof The “small” case follows from [34, Remark 2.4.2]. For the “big” case, first note that by construction,
we have a (braided) monoidal functor Z.H?

G/ ,! Z.H
?;ren
G

/ whose image contains the compact generators
of Z.H?;ren

G
/; see also Remark 2.8.4. But since all objects of Z.H?

G/ are dualizable (as the category is
rigid), the compact generators of Z.H?;ren

G
/ are also dualizable. In other words, Z.H?;ren

G
/ is compactly

generated by dualizable objects, and hence is semirigid by definition; see [9, Definition 3.1].

Directly from Definition 1.4.5, we see that the Drinfel’d center always acts on the original category and
its trace. We will use to denote this action. In the case of Hecke categories, we have the following
compatibility:

Corollary 2.10.6 Using the same notation as in Remark 2.8.5, let a 2 H
?;ren
G

(resp. a 2 H?
G) and

b 2 Ch
u;?;ren
G

(resp. b 2 �Chu;?G ). Then we have a natural equivalence

tr.a z.b//' tr.a/ b .resp. ztr.a z.b//' ztr.a/ b/:

Proof This is equivalent to stating that the functor tr (resp. ztr) is a functor of Chu;?;ren
G

- (resp. �Chu;?G -)
modules. By [9, Lemma 3.5] (resp. [34, Remark 2.4.2]), this follows from the fact that the central functor z
is monoidal and that Chu;ren

G
(resp. ChuG) is semirigid (resp. rigid).

2.10.7 Hochschild homology Let c be a dualizable object, with dual c_, in a symmetric monoidal
category C (see [25, Chapter 1, Section 4] for an extended discussion on this topic).12 Then the trace

12Note that since we are working in a symmetric monoidal category, the left and right duals coincide.
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of c, also known as the Hochschild homology of c and denoted13 by HH.c/, is an element of EndC.1C/,
where 1C is the monoidal unit of C, given by the composition

1C
coevc
���! c c_ ' c_ c

evc
��! 1C;

where coevc and evc are, respectively, the coevaluation and evaluation maps coming from the duality
datum between c and c_.

The category C of interest to us is Shv?.pt/-Mod. Since Shv?.pt/ is a rigid symmetric monoidal category,
[25, Chapter 1, Propositions 7.3.2 and 9.4.4] imply that any compactly generated category in Shv?.pt/-Mod

is dualizable. Given such an object A in Shv?.pt/-Mod, its Hochschild homology HH.A/ is an object in
Shv?.pt/.

When A 2 Alg.Shv?.pt/-Mod/ is such that the underlying object A 2 Shv?.pt/-Mod is dualizable, HH.A/
acquires a natural algebra structure, ie HH.A/ 2 Alg.Shv?.pt//, by [24, Section 3.3.2].

2.10.8 We have the following result from [24, Theorem 3.8.5]. Note that the meanings of HH and Tr in
that paper are switched compared to ours. Note also that they prove it for the case where the ambient
category is DGCatpres;cont. However, the same proof carries through for Shv?.pt/-Mod.

Theorem 2.10.9 [24, Theorem 3.8.5] Let A be a rigid monoidal category in Shv?.pt/-Mod such that A
is dualizable. Then there is a canonical equivalence of associative algebras

HH.A/' End?
Tr.A/.tr.1A// 2 Alg.Shv?.pt//;

where the superscript ? in End, which is a placeholder for m (resp. gr, resp. nothing/∅), denotes the
Shvm.pt0/- (resp. Vectgr-, resp. Vect-) enriched Hom-spaces. See [31, Appendix A.2.6].

2.10.10 Let Spr?GD tr.1H?
G
/2Ch

u;?
G

denote the image of the monoidal unit of the finite Hecke category via
the natural functor. In the ungraded setting, this is known as the Grothendieck–Springer sheaf. In the mixed
(resp. graded) case, we will thus refer to this object as the mixed (resp. graded) Grothendieck–Springer
sheaf. Proposition 2.10.2 and Theorem 2.10.9 imply the following result:

Theorem 2.10.11 We have a natural equivalence of algebras

HH.H
?;ren
G

/' End?.Spr?G/ 2 Alg.Shv?.pt//:

3 Formality of the Grothendieck–Springer sheaf

The first main result of this section, Theorem 3.2.1, states that Endgr.Sprgr
G
/2Alg.Shvgr.pt//'Alg.Vectgr/

is formal. It is obtained by a spreading argument, taking as input the ungraded case, proved by the
second author using transcendental methods. Combining with a generation result of Lusztig in type A,

13This is not to be confused with the notion of trace used above. This is why we will exclusively use the term Hochschild
homology for the type of trace discussed here.
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the formality result provides a concrete realization of the category of graded unipotent character sheaves,
Theorem 3.3.4.

Below, the ungraded case is recalled in Section 3.1, followed by the proof of the graded case in Section 3.2
using a spreading argument. The section then concludes with Section 3.3, where everything can be made
more explicit, especially in type A.

3.1 The ungraded case via transcendental method

In this subsection, we will work over C; namely, the geometric objects are stacks over C and the sheaves
are in C-vector spaces. Let p W B=B! G=G, q W B=B! T=T , IndG

T�B WD p!q
�, and its right adjoint

ResGT�B WD q�p
!. We have SprG D p!CB=B D IndG

T�B CT=T 2 Ch
u
G . Here, all the quotients are obtained

by using the adjoint actions.

The category of all character sheaves ChG was explicitly computed in [36] (for simply connected groups)
and [37] (for reductive groups) by using a complex analytic cover of the adjoint quotient G=G to reduce
the calculation to generalized Springer theory. We need the following particular statement:

Theorem 3.1.1 [37] Let G be a reductive group.

(i) There is an equivalence of DG-algebras

End.SprG/' .H
�.BT / H�.T // CŒW �:

In particular , End.SprG/ is a formal DG-algebra.

(ii) There is a natural equivalence ResGT�B.SprG/'C˚W
T=T

. Moreover , the natural DG-algebra homo-
morphism End.SprG/! End.ResGT�B.SprG//' End.C˚W

T=T
/ can be expressed explicitly via the

commutative diagram

End.SprG/ End.ResG
T�B.SprG//

.H�.BT / H�.T // CŒW � .H�.BT / H�.T // EndC.CŒW �/

End.H�.BT / H�.T // CŒW �..H
�.BT / H�.T // CŒW �/ EndH�.BT / H�.T /..H

�.BT / H�.T // CŒW �/

' '

' '

where the bottom arrow is induced by the restriction of module structure along

H�.BT / H�.T /! .H�.BT / H�.T // CŒW �:

(iii) Similarly, the natural DG-algebra homomorphism End.CT=T /!End.SprG/ can be identified with

H�.BT / H�.T /! .H�.BT / H�.T // CŒW �:

Picking an abstract isomorphism of fields C ŠQ`, we see that Theorem 3.1.1 holds equally well for
cohomology with coefficients in Q`. In the rest of this section, we will work with Q` coefficients.
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3.2 Formality of the graded Grothendieck–Springer sheaf

The main goal of the current subsection is a graded version of Theorem 3.1.1 formulated in the following
theorem, whose proof will conclude in Section 3.2.11, after some preliminary preparation.

Theorem 3.2.1 Let G be a reductive group over Fq , T � B and W as before.

(i) There is an equivalence of DG-algebras

Endgr.Spr
gr
G
/' .H�gr.BT / H�gr.T // Q`ŒW �'Q`Œx; � � Q`ŒW �;

where x and � are generators of the cohomology rings H�gr.BT / and H�gr.T /, respectively. In
particular , Endgr.Sprgr

G
/ is formal. Moreover , x and � have degrees .2; 2/ and .2; 1/, respectively,

with the first (resp. second ) index indicating graded (resp. cohomological ) degrees.

(ii) There is a natural equivalence ResGT�B.Spr
gr
G
/'Q˚W

`;T=T
. Moreover , after taking cohomology, the

natural DG-algebra homomorphism Endgr.Spr
gr
G
/! Endgr.ResGT�B.Spr

gr
G
//' Endgr.Q˚W

`;T=T
/ can

be expressed explicitly via the commutative diagram

H�.Endgr.Spr
gr
G // H�.Endgr.ResG

T�B.Spr
gr
G ///

.H�gr.BT / H�gr.T // Q`ŒW � .H�gr.BT / H�gr.T // EndQ`
.Q`ŒW �/

End
gr

.H�gr.BT / H�gr.T // Q`ŒW �
..H�gr.BT / H�gr.T // Q`ŒW �/ End

gr

H�.BT / H�gr.T /
..H�gr.BT / H�gr.T // Q`ŒW �/

' '

' '

where the bottom arrow is induced by the restriction of module structure along

H�gr.BT / H�gr.T /! .H�gr.BT / H�gr.T // Q`ŒW �:

(iii) Similarly, after taking cohomology , the natural DG-algebra homomorphism Endgr.Q`;T=T /!

Endgr.SprG/ can be identified with

H�gr.BT / H�gr.T /! .H�gr.BT / H�gr.T // Q`ŒW �:

Combining with Theorem 2.10.11, we obtain the following result:

Corollary 3.2.2 The DG-algebra HH.H
gr;ren
G

/ is formal , and we have an equivalence of DG-algebras

HH.H
gr;ren
G

/'Q`Œx; � � Q`ŒW �;

where x and � have degrees .2; 2/ and .2; 1/, respectively, where the first (resp. second ) index indicates
graded (resp. cohomological ) degree.

3.2.3 The strategy for proving Theorem 3.2.1 The passage from Theorem 3.1.1 to Theorem 3.2.1
is via a spreading argument that we will now explain. Let R be a strictly Henselian discrete valuation
ring between ZŒ1=.lN /� and C, where N � 0. Let { W SpecFq ! SpecR and | W SpecC! SpecR be
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geometric points over the special and generic points of SpecR, respectively. Then we have the symmetric
monoidal equivalences of categories

Vect' Shv.SpecFq/
{�

'
 � LS.SpecR/

|�

'
�! Shv.SpecC/' Vect;

where LS.SpecR/ denotes the category of Q`-local systems on SpecR. This induces equivalences of
categories

.3.2.4/ Alg.Vect/' Alg.Shv.SpecFq//
{�

'
 � Alg.LS.SpecR//

|�

'
�! Alg.Shv.SpecC//' Alg.Vect/:

Thus, if we have an algebra in Alg.Shv.SpecFq// whose formality we would like to establish, it suffices
to produce a natural candidate in Alg.LS.SpecR// whose image under |� is known to be formal in
Alg.Shv.SpecC//.

The algebra in question is End.SprG/, which we will now spread out to SpecR.

3.2.5 Spreading out Let GR denote the split reductive group over SpecR given by the same root
datum as that of G. Fix TR � BR a pair of a maximal torus and a Borel subgroup. All the objects
considered above have natural relative versions over R. We will use the subscript R (resp. Fq , resp. C)
in the notation, for example, SprGR

(resp. SprGFq
, resp. SprGC

), when it is necessary to emphasize where
these objects live over, ie over R (resp. Fq , resp. C).

Let StGR
D BR=BR �GR=GR

BR=BR. Then we have the following composition of correspondences:

.3.2.6/

StGR

BR=BR BR=BR

TR=TR GR=GR TR=TR

r s

q p p q

Lemma 3.2.7 (Mackey filtration) StGR
has a locally closed stratification indexed by w 2W ,

StGR
D

G
w2W

StwGR
;

such that on StwGR
, (3.2.6) is identified with

Bw
R
=Bw

R

BR=BR BR=BR

TR=TR GR=GR TR=TR

i Adw

q p p q

where Bw
R
D BR \Ad�1

w .BR/.
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Proof Observe that for any stack Y, Map.S1;Y/' Y�Y�Y Y. Hence, if Z is a locally closed substack
of Y, then

Map.S1;Z/' Z�Z�Z Z' Z�Y�Y Z

is a locally closed substack of Y�Y�Y Y. Moreover, if YD
F

i Zi is a stratification of Y where the Zi are
locally closed substacks of Y, then

Map.S1;Y/' Y�Y�Y Y'
G
i;j

Zi �Y�Y Zj '

G
i

Zi �Y�Y Zi '

G
i

Zi �Zi�Zi
Zi '

G
i

Map.S1;Zi/

is a stratification of Y�Y�Y Y by locally closed substacks. Here, the third equivalence is due to the fact
that when i ¤ j , Zi �Y�Y Zj is empty.

Applying this to the case where YD BBR �BGR
BBR and the Bruhat stratification, we obtain

StGR
DMap.S1;BBR�BGR

BBR/DMap.S1;BRnGR=BR/D
G
w2W

Map.S1;BRnBRwBR=BR/

D

G
w2W

Map.S1;BBwR /D
G
w2W

BwR=B
w
R :

Corollary 3.2.8 Res
GR

TR�BR
SprGR

' Res
GR

TR�BR
Ind

GR

TR�BR
Q`;TR=TR

'Q˚W
`;TR=TR

.

Proof We first show that ResGR

TR�BR
SprGR

is a local system on TR=TR concentrated in cohomological
degree 0. The filtration in Lemma 3.2.7 implies that ResGR

TR�BR
SprGR

has a filtration whose associated
pieces are given by .q ı i/�Q`;Bw

R
=Bw

R
, which is simply Q`;TR=TR

. Thus, ResGR

TR�BR
SprGR

is a complex
of local systems. To see that it concentrates in degree 0, it suffices to check the stalk at a point in TC=TC .
But this is now a well-known statement; see, for example, [18, Proposition 3.2].

Generically on TR=TR, the map StGR
! TR=TR is a trivial W-cover. Thus, on this open dense

subset, ResGR

TR�BR
SprGR

is a trivial local system of rank jW j. This implies the same statement for
Res

GR

TR�BR
SprGR

itself, as it is the IC-extension of the local system on an open dense subset.

Corollary 3.2.9 We have that �GR=GR;� End.SprGR
/' �StGR

;�Q`;StGR
is a complex of local systems

on SpecR, ie an object in LS.SpecR/. Here End denotes the sheaf of endomorphisms , and for any
R-stack YR, �YR

W YR! SpecR denotes the structure map of YR.

Proof The equivalence �GR=GR;� End.SprGR
/' �StGR

;�Q`;StGR
is a standard statement. The second

claim follows from the first since

�StGR
;�Q`;StGR

' �TR=TR;�q�r�Q`;StGR
' �TR=TR;�Q

˚W
`;TR=TR

' .�TR=TR;�Q`;TR=TR
/˚W ;

where the second equivalence is due to Corollary 3.2.8, and

�TR=TR;�Q`;TR=TR;� ' �TR�BTR;�Q`;TR�BTR
;

which is a complex of local systems.
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Corollary 3.2.10 We have {��GR=GR;� End.SprGR
/' End.SprGFq

/ and |��GR=GR;� End.SprGR
/'

End.SprGC
/.

Proof We will prove the statement for |� only; the proof for {� is identical. By adjunction, we have a
natural map of algebras

|��GR=GR;� End.SprGR
/! �GC=GC;� End.SprGC

/' End.SprGC
/:

It suffices to show that this is an equivalence of the underlying chain complexes. But now, we have

|��GR=GR;� End.SprGR
/' |��StGR

;�Q`;StGR
' |��TR=TR;�Q

˚W
`;TR=TR

' �TC=TC;�Q
˚W
`;TC=TC

' End.SprGC
/:

Here, the third equivalence is by direct computation (as it only involves the torus) and the other equivalences
are due to Corollary 3.2.9, which holds equally over Fq and C.

3.2.11 Proof of Theorem 3.2.1 Applying the discussion in Section 3.2.3 to �GR=GR;� End.SprGR
/

using Corollaries 3.2.9 and 3.2.10 and the result over C, Theorem 3.1.1(i), we obtain the formality of the
algebra End.SprGFq

/. But since the formality of a graded DG-algebra can be detected at the ungraded level,

we obtain the formality of Endgr.Sprgr
G
/ as well. In particular, we have an equivalence of DG-algebras

Endgr.Spr
gr
G
/' H�.Endgr.Spr

gr
G
//'Q`Œx; � � Q`ŒW �

for some variables x and � whose cohomology degrees we know (ie 2 and 1, respectively) but whose
graded degrees still need to be computed.

We note that in the case of a torus, Sprgr
T
'Q`;T=T and we have

Endgr.Spr
gr
T
/' H�gr.BT / H�gr.T /'Q`Œx; � �;

where x and � have degrees .2; 2/ and .2; 1/, respectively. We will deduce the general case from this case.

Over Fq , we still have the equivalence ResGT�B.SprG/'Q˚W
`;T=T

, which is the precise statement of [18,
Proposition 3.2]. In fact, the ungraded version14 of Theorem 3.2.1(ii) follows from (3.2.4), Corollary 3.2.10
and the complex version, which is Theorem 3.1.1(ii). In particular, at the ungraded level, the natural
algebra map

End.SprG/! End.ResGT�B SprG/

is identified with

Q`Œx; � � Q`ŒW � ,! EndQ`
.Q`ŒW �/ .H�.BT / H�.T //'Q`Œx; � � EndQ`

.Q`ŒW �/:

The grading on the right is known, as this is the case of a torus. By degree considerations, x and � on the
left must have degrees .2; 2/ and .2; 1/, respectively.

The identifications of the algebra morphisms in Theorem 3.2.1(ii) and (iii) follow from the ungraded case.

14That is, we still work over Fq , but forget the grading. In other words, we work with Shv rather than Shvgr.
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Remark 3.2.12 In the above, we used the fact that the formality of a graded DG-algebra (ie a DG-algebra
with an extra formal grading) can be detected after forgetting the grading. This can be seen, for example,
by applying the main result of [47] and the fact that the formation of a certain spectral sequence in loc. cit.
commutes with forgetting the formal grading.

We expect that the same statement also holds for the formality of a morphism between formal graded
DG-algebras. However, we know neither how to prove this statement nor a place where it is proved.
Because of that, the statements appearing in Theorem 3.2.1(ii) and (iii) are only at the level of cohomology
groups.

3.3 An explicit presentation of Chu;gr

G

The main goal of this subsection is to give an explicit presentation of Chu;gr
G

. We will only fully work out
type A case.

3.3.1 A generation statement in type A We first recall the following result, which is well known to
experts. We include it here for the reader’s convenience.

Proposition 3.3.2 Let G be a reductive group of type A over Fq . Then ChuG is generated by the
Grothendieck–Springer sheaf SprG .

Proof Let F 2 ChuG . Then, by Corollary 2.9.3, we know that F can be built from successive extensions
of irreducible character sheaves. It thus suffices to show that when F is irreducible, it is a direct summand
of SprG .

By [41, Theorem 4.4(a)], F is a summand of IndG
L�P .K/ for some cuspidal character sheaf K on L,

the Levi factor of some parabolic subgroup P of G. The group A.G/ WDZ.G/=Z0.G/ acts on F via a
character �F which is the composition A.G/� A.L/

�K
��!Q`, where �K is the action of A.L/ on K.

Since F is a unipotent character sheaf, �F is trivial, and hence so is �K.

We claim that if L is not a torus, then K as above with trivial �K must be zero, which would force F to
be a summand of IndG

T�B.Q`/D SprG . Indeed, by [42, (7.1.3)], K' IC.†;E/Œdim†�, where .†;E/ is a
cuspidal pair of L in the sense of [40, Definition 2.4]. Moreover, by [40, Section 2.10], the classification
of cuspidal pairs of L is further reduced to the classification of unipotent cuspidal pairs of H , where
H D ZL0.s/, with the group L0 being the simply connected cover of L=Z0.L/ and s a semisimple
element in an isolated conjugacy class of L0. Now L is of type A, and hence H is also of type A (and is
not isomorphic to a torus). Therefore, by the classification of unipotent cuspidal pairs [40, beginning of
page 206], we see that �K must be nontrivial if K is nonzero (it is easy to see that �K ’s (non)triviality is
preserved under the above reductions).

We now turn to the graded version of the result above:
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Corollary 3.3.3 Let G be a reductive group of type A over Fq . Then Ch
u;gr
G

is generated by grading
shifts Sprgr

G
h�i of the graded Grothendieck–Springer sheaf. In other words , Chu;gr is generated by Spr

gr
G

as
a Vectgr;c-module category. Consequently, Chu;gr;ren

G
is compactly generated by Spr

gr
G

as a Vectgr-module
category.

Proof As above, it suffices to show that any irreducible perverse graded character sheaf K 2 Ch
u;gr
G

appears as a direct summand of Sprgr
G

up to a grading shift. However, this can be checked after forgetting
the grading since simplicity implies purity, and moreover we have a complete description of simple pure
graded perverse sheaves by [31, Theorem 3.2.19].

The last statement follows immediately since Ch
u;gr;ren
G

' Ind.Ch
u;gr
G
/.

Theorem 3.3.4 Let G be a reductive group of type A over Fq . Then taking Hom
gr

Ch
u;gr;ren
G

.Spr
gr
G
;�/

induces an equivalence of Vectgr-module categories

Ch
u;gr;ren
G

'Q`Œx; � � Q`ŒW �-Mod.Vectgr/DW .H�gr.BT / H�gr.T // Q`ŒW �-Modgr

' HH.H
gr;ren
G

/-Modgr :

Taking the full subcategory of compact objects , we get

Ch
u;gr
G
'Q`Œx; � � Q`ŒW �-Mod.Vectgr;c/perf DW .H�gr.BT / H�gr.T // Q`ŒW �-Modgr;perf

' HH.H
gr;ren
G

/-Modgr;perf :

Here , perf denotes the full subcategory consisting of perfect complexes.

Proof The first statement can be obtained by a standard Barr–Beck–Lurie argument using the generation
result in Corollary 3.3.3 and the identification of HH.Hgr;ren

G
/ in Corollary 3.2.2. The second statement

follows from the first by taking compact objects.

4 A coherent realization of character sheaves via Hilbert schemes of points
on C2

Working in type A, ie GDGLn for some n, this section’s main result, Theorem 4.4.15, relates the category
of graded unipotent character sheaves Ch

u;gr
G
' Tr.H

gr
G
/ and the Hilbert scheme of n points on C2. The

passage from the categorical trace to the Hilbert scheme of points on C2 is given by Koszul duality and a
result of Krug [35], both of which will be reviewed in Sections 4.1 and 4.2. In Section 4.3, we recall
the categorical constructions of cohomological shearing and 2-periodization. The relation between the
two allows us to introduce an extra formal grading at the cost of having to work with 2-periodic objects.
All of these results are then used in Section 4.4 to prove the main result of this section, Theorem 4.4.15.
Finally, in Section 4.5, we match various objects on the two sides, to be used in Section 5 to realize the
HOMFLY-PT homology of a link geometrically via Hilbert schemes of points.

In this section, we will work exclusively with the case G D GLn and adopt the notation H
gr
n WD H

gr
GLn
'

Chb.SBimn/.
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4.1 Koszul duality: a recollection

We will now recall an equivalence of categories coming out of Koszul duality. The materials presented
here are classical, but it can also be viewed as a particularly simple case of the theory developed by
Arinkin and Gaitsgory in [3]; for example, see Section 1.3.5 therein.

4.1.1 A t-structure on Ch
u;gr;ren

G
By shearing, we obtain an equivalence of DG-categories

Ch
u;gr;ren
G

'Q`Œx; � � Q`ŒSn�-Modgr 'Q`Œ Qx; Q�� Q`ŒSn�-Modgr;

where Qx and Q� live in degrees .2; 0/ and .2;�1/, respectively. Here we follow the same convention as in
Theorem 3.2.1.

The latter category has a natural t-structure which makes the forgetful functor to Vectgr t-exact, where
Vectgr is equipped with the standard t-structure. The equivalence of categories above then endows
Ch

u;gr;ren
G

'Q`Œx; � � Q`ŒW �-Modgr with a t -structure compatible with the sheared t -structure on Vectgr,
namely, the t-heart of Vectgr in this t-structure consisting of complexes whose support lie in degrees
.k; k/ for k 2 Z.

Note that the algebra Q`Œx; � � Q`ŒSn� is connective with respect to this sheared t-structure on Vectgr,
whereas the algebra Q`Œ Qx; Q�� Q`ŒSn� is connective in the usual t -structure. In fact, by shearing, we have
a t -exact equivalence of DG-categories

Ch
u;gr;ren
G

' QCoh..An
�AnŒ�1�/=.Gm �Sn//;

where Gm scales all coordinates with degree 2.

4.1.2 Coherent objects Following [23], we define

Q`Œx; � � Q`ŒSn�-Modgr;coh �Q`Œx; � � Q`ŒSn�-Modgr ' Ch
u;gr;ren
G

to be the full subcategory spanned by objects of bounded cohomological amplitude and coherent coho-
mologies (with respect to the t -structure defined in the previous subsubsection). This category is generated
by Q`Œx� Q`ŒSn� under finite (co)limits, idempotent splittings, and grading shifts.

4.1.3 Relative Koszul duality Consider the functor of taking � -invariants,

inv� WDHom
gr

Q`Œx;�� Q`ŒSn�-Modgr;coh
.Q`Œx� Q`ŒSn�;�/ WQ`Œx; � � Q`ŒSn�-Modgr;coh! Vectgr :

Since the category on the left is generated by Q`Œx� Q`ŒSn�, an application of the Barr–Beck–Lurie
theorem as in Theorem 3.3.4 above implies that we have an equivalence of categories

Q`Œx; � � Q`ŒSn�-Modgr;coh
invenh
�

'
���! End

gr

Q`Œx;�� Q`ŒSn�-Modgr;coh
.Q`Œx� Q`ŒSn�/-Modgr;perf

'Q`Œx;y� Q`ŒSn�-Modgr;perf ;

where the y live in degrees .�2; 0/.

We refer to this equivalence as the (relative) Koszul duality.
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4.1.4 To simplify the notation, we let V denote a graded vector space of dimension n living in graded
degree 2 and cohomological degree 0, equipped with a basis and hence also a permutation representation
of W D Sn. Then

Q`Œ� �' SymV� Œ�1�; Q`Œx�' SymVx Œ�2�; Q`Œy�' SymV _y ;

where the subscripts x, � , and y are there just to make it easy to keep track of the names of the variables.
To further simplify the notation, we define

An WD Sym.Vx Œ�2�˚V� Œ�1�/ Q`ŒSn�

and
Bn WD Sym.Vx Œ�2�˚V _y / Q`ŒSn�:

The equivalence of categories above then becomes

invenh� WAn-Modgr;coh '�!Bn-Modgr;perf :

4.1.5 Let
triv� WD SymVx Œ�2� Q`ŒSn� 2An-Modgr;coh;

where the � act trivially, ie by 0. Directly from the construction, we have

invenh� .triv� /'Bn:

Moreover, the inverse functor to invenh
�

is given by taking y-coinvariants:

coinvenhy WDQ` SymV _y
�:

4.1.6 Twisting For our purposes, it is convenient to twist invenh
�

and coinvenhy by the sign representation
of Sn. We let finvenh� WD Symn V _Œ1� invenh� and ecoinvenhy WD Symn V Œ�1� coinvenhy

be mutually inverse functors

.4.1.7/ finvenh� WAn-Modgr;coh�Bn-Modgr;perf W ecoinvenhy :

4.1.8 Restricting to An-Modgr;perf Let

trivy WD Sym.Vx Œ�2�/ Q`ŒSn� 2Bn-Modgr;perf ;

where y act trivially, ie by 0. An easy computation using the self-duality of the Koszul complex shows
that

ecoinvenhy .trivy/'An;

and hence, finvenh� .An/' trivy ' Sym.Vx Œ�2�/ Q`ŒSn�:

In other words, finvenh� simply “kills” the variables � in An.
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This implies that finvenh� and ecoinvenhy restrict to a pair of (eponymous) mutually inverse functors

.4.1.9/ finvenh� WAn-Modgr;perf�Bn-Mod
gr;perf
nilpy

W ecoinvenhy ;

where the subscript nilpy denotes the fact that the variables y act nilpotently. This is because on the one
hand, the left side is generated by An under finite (co)limits, idempotent splittings, and grading shifts and
on the other hand, An is sent to trivy on which the y act by 0.

The equivalence (4.1.9) is in fact a particularly simple case of the theory of singular support developed
in [3], where perfect complexes have 0-singular support.

4.1.10 Unipotent character sheaves The discussion above gives the following Koszul dual descriptions
of Chu;gr

G
and Ch

u;gr;ren
G

when G D GLn:

Proposition 4.1.11 Let G D GLn be the general linear group of rank n over Fq . Then we have an
equivalence of Vectgr;c-module categories

Ch
u;gr
G
'Bn-Mod

gr;perf
nilpy

:

Taking Ind-completion , we get an equivalence of Vectgr-module categories

Ch
u;gr;ren
G

'Bn-Mod
gr
nilpy

:

Proof The second statement follows from the first by taking the Ind-completion on both sides. The first
statement follows from Theorem 3.3.4 and (4.1.9).

4.2 The Hilbert scheme of points on C2

We will now recall the main results of [35], which give an explicit presentation of the categories of
quasicoherent sheaves on the Hilbert schemes of points on C2. This will allow us to relate Hilbert schemes
of points on C2, Chu;gr

G
, and Ch

u;gr;ren
G

(when G D GLn), which will be discussed in Section 4.3.

As we have been working over Q` rather than C, our Hilbert schemes are in fact Hilbn.Q2
`
/, which live

over Q`. Although the two are isomorphic as abstract varieties due to the isomorphism Q` 'C, we will
keep using Q` for the sake of consistency. In fact, all varieties appearing in this subsection are over Q`,
and hence we will employ base-field-agnostic notation as much as possible; for example, A2 will be used
to denote the 2-dimensional affine space over Q`.

4.2.1 The isospectral Hilbert scheme Let Hilbn denote the Hilbert scheme of points on A2, A2n=SnD

.A2/n=Sn the stack quotient of A2n by the permutation action of Sn, and A2n==Sn the GIT quotient.
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There is a natural map g W A2n=Sn! A2n==Sn and the Hilbert–Chow morphism H W Hilbn! A2n==Sn.
The isospectral Hilbert scheme is the reduced pullback

Ison A2n

Hilbn A2n==Sn

Ison has a natural Sn-action compatible with the permutation Sn-action on A2n and the trivial Sn-action
on Hilbn. Thus, we obtain the following commutative diagram:

.4.2.2/

Ison=Sn A2n=Sn

Hilbn A2n==Sn:

q

p

g

H

4.2.3 A derived equivalence In the notation above, one of the main results of [35] (which is itself a
variant of [17] but has a more convenient form for us) takes the following form:

Theorem 4.2.4 [35, Proposition 2.8] The functor ‰ WD q�p
� W QCoh.A2n=Sn/! QCoh.Hilbn/ is an

equivalence of categories , where all functors are derived and where QCoh.�/ denotes the (1-)derived
category of quasicoherent sheaves.

Passing to the full subcategories spanned by compact objects , we obtain an equivalence

‰ W Perf.A2n=Sn/
'
�! Perf.Hilbn/:

4.2.5 Gm-equivariant structures Each of the terms in (4.2.2) has a natural G2
m-action induced by the

action of G2
m on A2 where the first (resp. second) factor of G2

m scales the first (resp. second) factor of A2

by weight 1 (resp. 2). Moreover, all maps are compatible with this action. We thus obtain an equivariant
form of the theorem above. By abuse of notation, we will employ the same notation for the equivariant
case as the nonequivariant case above. Note also that the category QCoh.Hilbn =.G2

m// below also appears
as QCohG2

m
.Hilbn/ (or some variant thereof) in the literature.

Corollary 4.2.6 The functor‰ WDq�p
� WQCoh.A2n=.Sn�G2

m//!QCoh.Hilbn =.G2
m// is an equivalence

of categories. The same statement applies when restricted to the full subcategories of compact objects (ie
perfect complexes).

This equivalence allows us to have an explicit presentation of QCoh.Hilbn =.G2
m// as a plain (as opposed

to a symmetric monoidal) DG-category.

Proposition 4.2.7 We have an equivalence of categories

QCoh.Hilbn =.G
2
m//

‰�1

���! QCoh.A2n=.Sn �G2
m//'Q`Œ Qx; Qy� Q`ŒSn�-Modgr;gr;
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where the superscript gr; gr indicates the fact that we are working with bigraded complexes. Moreover , Qx
and Qy have cohomological degree 0 and bidegrees (with respect to the superscript gr; gr) .1; 0/ and .0; 2/,
respectively.

Proof Only the last equivalence needs to be proved. Applying Barr–Beck–Lurie to the adjunction

QCoh.A2n=.Sn �G2
m//

p�

p�
�� ��!�� QCoh.B.Sn �G2

m//'Q`ŒSn�-Modgr;gr;

where p WA2n=.Sn �G2
m/! B.Sn �G2

m/ is the natural map, we obtain an equivalence of categories

QCoh.A2n=.Sn �G2
m//'Q`Œ Qx; Qy�-Mod.Q`ŒSn�-Modgr;gr/:

But the latter is equivalent to
Q`Œ Qx; Qy� Q`ŒSn�-Modgr;gr :

Remark 4.2.8 Instead of .1; 0/ and .0; 2/, we could have chosen any other bigradings for the Qx and Qy
variables. As we will see, these specific choices are made because of the connection to character sheaves
and HOMFLY-PT homology. For example, see Section 4.4.6 for the relation to the grading on the category
of graded unipotent character sheaves.

4.2.9 Supports Let i Qx WA
n
Qx
=Sn!A2n=Sn denote the closed subscheme defined by the vanishing of all

the Qy-coordinates. Let Hilbn; Qx be the pullback

Hilbn; Qx Hilbn

An
Qx
=Sn A2n=Sn

i Qx

For any closed embedding of schemes (or in fact stacks) Z � X , we let QCoh.X /Z denote the full
subcategory of QCoh.X / consisting of objects whose supports lie in Z. Similarly, we let Perf.X /Z
denote the full subcategory of Perf.X / spanned by objects whose supports lie in Z.

Lemma 4.2.10 The equivalence ‰ above restricts to the following equivalences of categories:

Q`Œ Qx; Qy� Q`ŒSn�-Mod
gr;gr
nilp Qy
' QCoh.A2n=.Sn �G2

m//An
Qx
=.Sn�G2

m/
‰
�! QCoh.Hilbn =.G

2
m//Hilbn; Qx =.G2

m/
:

The same statement applies when restricted to the full subcategories of compact objects (ie perfect
complexes).

Proof For brevity’s sake, we suppress the Gm-equivariant structures (ie the gradings) from the notation.

From (4.2.2), we see that ‰ is compatible with the action of QCoh.A2n=Sn/. Now, we note that the full
subcategories of interest are cut out precisely by the condition that the variables Qy (from A2n=Sn) act
nilpotently.
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Alternatively (and more categorically), one can use the theory of support as discussed in, for example,
[3, Section 3.5], to conclude:

QCoh.A2n=Sn/An
Qx
=Sn
'QCoh.A2n=Sn/ QCoh.A2n==Sn/

QCoh.A2n==Sn/An
Qx
==Sn

'QCoh.Hilbn/ QCoh.A2n==Sn/
QCoh.A2n==Sn/An

Qx
==Sn
'QCoh.Hilbn/Hilbn; Qx

:

4.3 Cohomological shearing and 2-periodization

The algebra Q`Œ Qx; Qy� Q`ŒSn� appearing in Proposition 4.2.7 and the algebra Bn DQ`Œx;y� Q`ŒSn�

appearing in Section 4.1.4 are almost the same, except for the mismatch in the cohomological gradings
and the number of formal gradings.

In this subsection, we will discuss two general categorical constructions which will allow us, in Section 4.4,
to relate the categories of modules over these two rings, and hence also to relate the category of
(quasi)coherent sheaves on Hilbn and Ch

u;gr;ren
G

for G D GLn. One of them, known as cohomological
shearing, reduces the number of formal gradings whereas the other, 2-periodization, increases the number
of gradings. As it turns out, these two are equivalent, which is the content of Proposition 4.3.16 below.

The materials presented here are more or less standard, at least among the experts. We include it here
since we cannot find a place where everything is written down in a way that is convenient for us.

The discussion in this subsection applies to both small and large categories. For brevity’s sake, we will
only discuss the large category case. As usual, the small case can be obtained by passing to compact
objects.

4.3.1 Shearing functors on Vectgr Consider the shear functors

sh( W Vectgr! Vectgr; .Vi/i 7! .Vi Œ2i �/i and sh) W Vectgr! Vectgr; .Vi/i 7! .Vi Œ�2i �/i :

Note that these are equivalences of symmetric monoidal categories.

For Agr 2 Vectgr, we let Agr;( WD sh(.Agr/ 2 Vectgr and Agr;) WD sh).Agr/ 2 Vectgr. Since sh(

and sh) are symmetric monoidal equivalences, Agr;( (resp. Agr;)) is equipped with a natural algebra
structure if and only if Agr is.

4.3.2 Shearing a Vectgr-module structure Since Vectgr is symmetric monoidal, any Cgr 2Vectgr -Mod

can be upgraded naturally to a Vectgr-bimodule category C 2 Vectgr -BiMod. We visualize them as Vectgr

acting on the left and on the right even though they all come from the left module structure.

Remark 4.3.3 For us, the right Vectgr-module structure is important only for the purpose of taking
relative tensor products. We will generally ignore this structure unless the formation of relative tensor
products is involved.
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For each of the left/right module structures, we can precompose the action of Vectgr with sh( to obtain a
new module structure. For example, )Cgr;( has the following Vectgr-bimodule structure:15

Q`hii� c�Q`hj i 7! chi C j iŒ2i � 2j �:

Here, the positions of the arrows with respect to the category indicate which of the left or right module
structure we are shearing, and the directions of the arrows indicate which shear we use. A missing arrow
indicates that shearing does not occur; for example, Cgr;( has a sheared Vectgr-action on the right while
keeping the action on the left unchanged. Note that these modifications only change the action of Vectgr

while keeping the underlying DG-category intact.

4.3.4 The following diagram demonstrates how the functors sh( and sh) interact with Vectgr-bimodule
structures:

) Vectgr;)
sh(

sh)
�� ����!�� Vectgr

sh(

sh)
�� ����!��

( Vectgr;( :

Here all functors are equivalences as morphisms in Vectgr -BiMod. Similarly, we can mix and match the
directions of the arrows. For example,

sh( W Vectgr;) '
�!
( Vectgr :

Shearing Vectgr-bimodule structures can be written naturally in terms of relative tensors. For example,

Cgr;(
' Cgr

Vectgr Vect
gr;( and )Cgr

'
) Vectgr VectgrC

gr:

4.3.5 Shearing Agr-Modgr Let Agr be a graded DG-algebra, ie Agr 2Alg.Vectgr/. Then the category of
graded Agr-modules, Agr-Modgr WDAgr-Mod.Vectgr/2Vectgr -Mod, is naturally a Vectgr-module category,
and hence also an object in Vectgr -BiMod, as discussed above. A similar discussion as in the case of
Vectgr gives the following equivalences of objects in Vectgr -Mod:

).Agr;)-Modgr;)/
sh(

sh)
�� ����!�� Agr-Modgr

sh(

sh)
�� ����!��

(.Agr;(-Modgr;(/:

Moreover, as above, we can mix and match the directions of the arrows.

Replacing Agr by Agr;(, we obtain the following equivalences of objects in Vectgr -BiMod:

Agr-Modgr;)
sh(

sh)
�� ����!��

(.Agr;(-Modgr/ and Agr-Modgr;(
sh)

sh(
�� ����!��

).Agr;)-Modgr/:

4.3.6 Sheared degrading Let Cgr 2 Vectgr -Mod. Then we can form the degraded version C of Cgr,

C WD Vect VectgrC
gr;

15Note that the formula below is compatible with the definitions of sh) and sh( since, for example, Q`hii lives in graded
degree �i .

Geometry & Topology, Volume 29 (2025)



Graded character sheaves, HOMFLY-PT homology, and Hilbert schemes of points on C2 2511

where the Vectgr-module structure on Vect is given by the symmetric monoidal functor

oblvgr W Vect
gr
! Vect; .Vi/i 7!

M
i

Vi ;

which forgets the grading on Vectgr.

We note that the functor of forgetting the grading is also defined for Cgr:

oblvgr W C
gr
' Vectgr VectgrC

gr oblvgr idCgr

��������! Vect VectgrC
gr
' C:

4.3.7 The sheared degradings of Cgr, denoted by CW and CV, are defined to be the usual degradings of
)Cgr and (Cgr, respectively (note the reversal of the arrows!):

CV WD Vect Vectgr
(Cgr and CW WD Vect Vectgr

)Cgr:

Remark 4.3.8 In general, C, CW, and CV are different as DG-categories. However, the case where
Cgr D Vectgr is special as we always have an equivalence of DG-categories

.4.3.9/
Vect

V 7!V�Q`
'

�������! Vect Vectgr
( Vectgr DW VectV;

Vect
V 7!V�Q`
'

�������! Vect Vectgr
) Vectgr DW VectW :

Since Vect has a natural Vectgr-module category structure, we can shear this action and obtain, for
example, Vect( and Vect). These two are in fact equivalent to VectW and VectV, respectively, which
explains the reversal of the arrows in the definition of the sheared degrading procedure.

Indeed, the right action of Vectgr on VectV is as follows: Q`hiiŒj � sends V �Q` to

V � .Q`hiiŒj �/' V � .Q`hiiŒ�2i �Œj C 2i �/' .V Œj C 2i �/�Q`;

which corresponds to V Œj C 2i � 2 Vect under the equivalence of categories (4.3.9). But this is precisely
the)-sheared action of Vectgr on Vect on the right.

4.3.10 We can write sheared degradings in a natural way as relative tensors of categories

CW ' Vect Vectgr
)Cgr

' Vect Vectgr
) Vectgr VectgrC

gr
' Vect( VectgrC

gr
' VectW VectgrC

gr:

Similarly,
CV ' Vect) VectgrC

gr
' VectV VectgrC

gr:

4.3.11 Sheared degrading Agr-Mod Let Agr 2 Alg.Vectgr/ be as above and consider the category of
(ungraded) Agr-modules, denoted by oblvgr.A

gr/-Mod. By abuse of notation, when confusion is unlikely,
we also write Agr-Mod WD oblvgr.A

gr/-Mod.

Clearly, Agr-Mod ' Vect VectgrA
gr-Modgr is a degrading of Agr-Modgr. But we also have sheared

degradings as defined in Section 4.3.6. Namely,

Agr-ModW WDVect Vectgr
).Agr-Modgr/

idVect sh(

'
�������!Vect VectgrA

gr;(-Modgr;('oblvgr.A
gr;(/-Mod(;

and similarly for Agr-Mod).
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Ignoring the right Vectgr-actions (see also Remark 4.3.3), we have the following equivalences of DG-
categories:

.4.3.12/ Agr-ModW ' oblvgr.A
gr;(/-Mod and Agr-ModV ' oblvgr.A

gr;)/-Mod :

4.3.13 2-periodization We start with the simplest example of 2-periodization and its interaction with
sheared degrading.

Let Q`Œu;u
�1� 2 ComAlg.Vectgr/ be a commutative algebra object where u is in graded degree 1 and

cohomological degree 0. It is easy to see that the functor of extracting the graded degree 0 part

Q`Œu;u
�1�-Modgr

.Mi /i 7!M0

'
��������! Vect

is an equivalence of Vectgr-module categories where the actions of Vectgr are the obvious ones (ie no
shearing). The inverse functor is given by V 7!Q`Œu;u

�1� V .

The discussion above thus gives us the equivalences

VectW ' Vect( Q`Œu;u
�1�-Modgr;( ).Q`Œu;u

�1�)-Modgr/

Q`Œu;u�1�)˝�

Q`Œu;u�1�˝�

'

sh)

'

and

VectV ' Vect) Q`Œu;u
�1�-Modgr;) (.Q`Œu;u

�1�(-Modgr/:

Q`Œu;u�1�(˝�

Q`Œu;u�1�˝�

'

sh(

'

Here, by construction, Q`Œu;u
�1�) (resp. Q`Œu;u

�1�() is the algebra of Laurent polynomials generated
by one element living in graded degree 1 and cohomological degree 2 (resp. �2).

In particular, we have

.4.3.14/ (VectW'(Vect('Q`Œu;u
�1�)-Modgr; )VectV')Vect)'Q`Œu;u

�1�(-Modgr :

4.3.15 We will now turn to the general case.

Let Cgr 2Vectgr -Mod be as above. Then the positive and negative 2-periodizations of Cgr are defined to be

Cgr;2-perC WDQ`Œu;u
�1�)-Modgr VectgrC

gr
'Q`Œu;u

�1�)-Mod.Cgr/

and
Cgr;2-per� WDQ`Œu;u

�1�(-Modgr VectgrC
gr
'Q`Œu;u

�1�(-Mod.Cgr/;

respectively.

Note that Q`Œu;u
�1�( (resp. Q`Œu;u

�1�)) is equivalent to Q`Œˇ; ˇ
�1� where ˇ lives in graded degree 1

and cohomological degree �2 (resp. 2). The category of module objects over Q`Œˇ; ˇ
�1� is thus the

category of (graded) 2-periodic objects appearing in the literature.

The grading allows one to absorb 2-periodicity. In fact, the 2-periodization construction agrees with the
sheared degrading construction from above.
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Proposition 4.3.16 Let Cgr 2 Vectgr -Mod. Then we have natural equivalences of Vectgr-module cate-
gories

Cgr;2-per� ').CV/ and Cgr;2-perC '(.CW/:

Proof We treat the case of 2-per�, as the other case is similar. We have

Cgr;2-per� WDQ`Œu;u
�1�(-Modgr VectgrC

gr
'
) VectV VectgrC

gr
'
)CV;

where the second and third equivalences are due to (4.3.14) and Section 4.3.10, respectively.

Remark 4.3.17 We have the following commutative diagrams of symmetric monoidal categories:

Vectgr Vect

Q`Œu;u
�1�(-Modgr Vectgr;2-per�

oblvgrısh
)

Q`Œu;u�1�(˝�
M 7!M0

Vectgr Vect

Q`Œu;u
�1�)-Modgr Vectgr;2-perC

oblvgrısh
(

Q`Œu;u�1�)˝�
M 7!M0

Thus, by construction, the action of Vectgr on ).CV/ (resp. (.CW/) factors through Vectgr;2-per�

(resp. Vectgr;2-perC). On the other hand, Cgr;2-per� (resp. Cgr;2-perC) is equipped with a natural action of
Vectgr;2-per� (resp. Vectgr;2-perC).

Chasing through the definitions, it is easy to see that the two actions are compatible. In other words,
the two equivalences in Proposition 4.3.16 are equivalences of Vectgr;2-per�-(resp. Vectgr;2-perC-)module
categories.

4.3.18 More formal gradings In the above, the “background category” is Vect in the sense that all
categories are DG-categories, ie they are Vect-module categories. Then we work with categories with
one extra grading, ie with Vectgr-module categories, and consider various categorical operations using
this structure. We could have started with Vectgr-module categories but still added another grading and
worked with Vectgr;gr-module categories. Everything discussed above still goes through, except that
now everything has one more grading. For example, degrading goes from Vectgr;gr-module categories to
Vectgr-categories.16 This is the setting that we will work with below.

4.4 2-periodic Hilbert schemes and character sheaves

We will now relate Hilbert schemes of points and character sheaves, using the procedure of 2-periodization
discussed above to make the precise statement.

4.4.1 Introduce an extra grading By default, all of our categories are singly graded in the sense that they
are Vectgr-(or, if we work with the small variant, Vectgr;c-)module categories. Note that any DG-category
can be viewed as a Vectgr-module category via the symmetric monoidal functor oblvgr W Vectgr! Vect. In
particular, any Vectgr-module category is a Vectgr;gr-module category, where the second Vectgr acts by

16In fact, we could, more generally, work with .Vectgr/ n-module categories and then add one more grading to get nC 1

gradings. We will not need this generality here.
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forgetting the formal grading. By convention, we use X to denote the default grading and Y the extra
grading we just introduced. We will also use the notation VectgrX ;grY if we want to make it clear which
grading convention we are using.

In this subsection, unless otherwise specified, all the shearing and 2-periodization constructions will be
with respect to the Y -grading, even when we start with Cgr 2 VectgrX -Mod, which has only one grading.
In this case, we simply view C as an object in VectgrX ;grY -Mod, where VectgrY acts via the symmetric
monoidal functor oblvgrY W Vect

grY ! Vect. In particular, if we forget the VectgrY-action, Cgr, (Cgr, and
)Cgr are equivalent as objects in VectgrX -Mod (and hence also as DG-categories). The difference in the
VectgrY-module structures can be seen by looking at VectgrX ;grY-enriched Hom, denoted by HomgrX ;grY .

More precisely, for c1; c2 2 C
gr, on the one hand, we have

Hom
grX ;grY
Cgr .c1; c2/'

M
k

Hom
grX
Cgr .c1; c2/hkiY 'Q`Œu;u

�1� Hom
grX
Cgr .c1; c2/ 2 Vect

grX ;grY :

Here, in the tensor formula, the grX -enriched Homs are put in Y -degree 0. In other words, it is simply
copies of the VectgrX-enriched Hom, put in all Y -degrees. On the other hand, a simple argument using
adjunctions gives the following identification, which is essentially the same as Proposition 4.3.16 but
with one extra grading (see also Remark 4.3.17):

Lemma 4.4.2 In the situation above , we have natural equivalences

Hom
grX ;grY
(Cgr .c1; c2/' sh).Hom

grX ;grY
Cgr .c1; c2//'Q`Œu;u

�1�) Hom
grX
Cgr .c1; c2/ 2 Vect

grX ;grY ;2-perC

and

Hom
grX ;grY
)Cgr .c1; c2/' sh(.Hom

grX ;grY
Cgr .c1; c2//'Q`Œu;u

�1�( Hom
grX
Cgr .c1; c2/ 2 Vect

grX ;grY ;2-per� ;

where sh) and sh( are with respect to the Y -grading. Moreover , in the tensor formula , the grX -enriched
Homs are put in Y -degree 0.

4.4.3 The algebra Bn and variants Let Bgr
n D Q`Œx;y� Q`ŒSn� 2 Alg.VectgrX ;grY / be a bigraded

DG-algebra, where the variables x (resp. y) live in cohomological degree 2 (resp. 0) and graded degrees
.2; 1/ (resp. .�2; 0/). Here, the first (resp. second) coordinate represents the X -(resp. Y -)grading. Note
that the Y -grading is the extra grading whereas the X -grading came from the above.

By construction, we have an equivalence of (singly graded) DG-algebras oblvgrY .B
gr
n /'Bn2Alg.Vect

grX/,
where Bn is the graded DG-algebra defined in Section 4.1.4. Let zBgr

n WDB
gr;(
n and zBn WD oblvgrY .

zB
gr
n /,

where the shear is with respect to the Y -grading. Then

zBgr
n 'Q`Œ Qx; Qy� Q`ŒSn� 2 Alg.Vect

grX ;grY /;

where the variables Qx (resp. Qy) live in cohomological degree 0 and graded degrees .2; 1/ (resp. .�2; 0/).
Moreover,

zBn WD oblvgrY .B
gr
n /'Q`Œ Qx; Qy� Q`ŒSn� 2 Alg.Vect

grX /;

where the Qx (resp. Qy) live in cohomological degree 0 and graded degree 2 (resp. �2).
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Lemma 4.4.4 We have the following equivalence of VectgrX-categories:

Bn-ModgrX ' zBgr
n -ModgrX ;V :

Proof We have
Bn ' oblvgrY .B

gr
n /' oblvgrY .

zBgr;)
n /

and hence, by (4.3.12), we have the equivalence of VectgrX-module categories

Bn-ModgrX ' oblvgrY .
zBgr;)

n /-ModgrX ' zBgr
n -ModgrX ;V;

where, by convention, all shears are with respect to the Y -grading.

Corollary 4.4.5 We have a natural equivalence of VectgrX ;grY-module categories

).Bn-ModgrX /' zBgr
n -ModgrX ;grY ;2-per� ;

where the VectgrY-module structure on the right-hand side is the obvious one. Moreover , the shear on the
left-hand side is with respect to the VectgrY-module structure. Namely, VectgrY acts on the left via

VectgrY sh(
���! VectgrY

oblvgrY
����! Vect;

as in Proposition 4.3.16. Consequently, by Remark 4.3.17, the equivalence above is an equivalence of
VectgrX ;grY ;2-per�-module categories , where 2-per� is with respect to the Y -grading.

Proof We have

).Bn-ModgrX /').zBgr
n -ModgrX ;V/' zBgr

n -ModgrX ;grY ;2-per� ;

where the first and second equivalences are due to Lemma 4.4.4 and Proposition 4.3.16, respectively. By
convention, shearing and 2-periodization are with respect to the Y -grading.

The last statement is due to Remark 4.3.17.

4.4.6 Change of gradings The gradings X and Y used above need to be changed to match with the
one used in [28]. We denote the new gradings by zX and zY , where

zX DX 2Y and zY DX�1;

or equivalently,
X D zY �1 and Y D zX zY 2:

Under this change of gradings, we have

zBgr
n 'Q`Œ Qx; Qy� Q`ŒSn� 2 Alg.Vect

gr zX ;gr zY /;

where the variables Qx (resp. Qy) live in cohomological degree 0 and graded degrees .1; 0/ (resp. .0; 2/).
We note that this algebra matches precisely with the algebra appearing in Proposition 4.2.7.
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Remark 4.4.7 In the rest of this paper, unless otherwise specified, all the shears and 2-periodizations
are still with respect to the Y -grading (in the .X;Y /-grading system), even when we are working with
the . zX ; zY /-grading. As different grading conventions in the HOMFLY-PT homology theory cause a lot
of confusion, at least, to the authors of the current paper, we write down explicit examples below.

4.4.8 2-per� in terms of . zX ; zY /-grading In terms of the . zX ; zY /-grading, negative periodization
2-per� in the Y -direction with respect to the .X;Y /-grading (such as the one appearing in Corollary 4.4.5)
takes the following form. For C 2 VectgrX ;grY -Mod' Vectgr zX ;gr zY -Mod,

C2-per� 'Q`Œˇ; ˇ
�1�-Mod.C/;

where ˇ lives in cohomological degree �2 and graded degrees .0; 1/ in terms of the .X;Y /-grading or
equivalently, .1; 2/ in terms of the . zX ; zY /-grading. Since this is the only 2-periodization that we will use
in connection to the . zX ; zY /-grading, we will adopt the notation

C2-per
WD C2-per� 'Q`Œˇ; ˇ

�1�-Mod.C/

in the rest of the paper, where, as above, ˇ lives in cohomological degree �2 and graded degrees .0; 1/ in
terms of the .X;Y /-grading or, equivalently, .1; 2/ in terms of the . zX ; zY /-grading.

Below are a couple of examples that are important to us.

Definition 4.4.9 (2-periodizing an object) For C 2 VectgrX ;grY -Mod' Vectgr zX ;gr zY -Mod and c 2 C, the
corresponding 2-periodized object c2-per 2 C2-per is defined to be Q`Œˇ; ˇ

�1� c.

Definition 4.4.10 (2-periodized Hilbert schemes) Let G2
m act on A2 by scaling the coordinate axes Qx

and Qy with weights .1; 0/ and .0; 2/, respectively (in the . zX ; zY /-grading). This induces an action of G2
m

on Hilbn WD Hilbn.A2/ for any n. The 2-periodized category of quasicoherent sheaves on Hilbn is defined
to be

QCoh.Hilbn =G
2
m/

2-per
WDQ`Œˇ; ˇ

�1�-Mod.QCoh.Hilbn =G
2
m//;

where ˇ lives in cohomological degree �2 and bigraded degrees .1; 2/. Taking the compact objects, we
define17

Perf.Hilbn =G
2
m/

2-per
WD .Q`Œˇ; ˇ

�1�-Mod.QCoh.Hilbn =Gm///
perf :

The full subcategories QCoh.Hilbn =G2
m/

2-per
Hilbn; Qx =G2

m
and Perf.Hilbn =G2

m/
2-per
Hilbn; Qx =G2

m
are defined analo-

gously (see also Section 4.2.9).

Definition 4.4.11 (2-periodized bigraded chain complexes) We define

Vectgr zX ;gr zY ;2-per
WDQ`Œˇ; ˇ

�1�-Modgr zX ;gr zY ;

17Note that since the Hilbert scheme is smooth, we could replace Perf by Coh.
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where ˇ lives in cohomological degree �2 and bigraded degrees .1; 2/. The full subcategory spanned by
compact objects is defined analogously and is denoted by

Vectgr zX ;gr zY ;2-per;c
WDQ`Œˇ; ˇ

�1�-Modgr zX ;gr zY ;perf :

More generally, for any algebra B 2 Alg.Vectgr zX ;gr zY /, we let

B-Modgr zX ;gr zY ;2-per
WDQ`Œˇ; ˇ

�1�-Mod.B-Modgr zX ;gr zY /;

and similarly for the full subcategory spanned by the compact objects

B-Modgr zX ;gr zY ;2-per;perf
WDQ`Œˇ; ˇ

�1�-Mod.B-Modgr zX ;gr zY /perf :

4.4.12 Shearing in terms of zX ; zY -grading Let C2VectgrX ;grY -Mod'Vectgr zX ;gr zY -Mod. Then, unless
otherwise specified, all shears are considered to be with respect to the Y -grading. For example, the action
of Vectgr zX ;gr zY on )C is given by

Q`hki zX �Q`hli zY � c 7!Q`h2k � liX �Q`hkiY � c 7! ch2k � liX hkiY Œ2k�:

Here chmiX denotes the result obtained by Q`hmiX acting on c (and similarly for chmiY ). Moreover,
the square bracket denotes cohomological shift, which appears here due to the shear.

By Remark 4.3.17, )C is equipped with a natural action of Vectgr zX ;gr zY ;2-per (see Definition 4.4.11).

4.4.13 The Hilbert scheme of points and graded unipotent character sheaves The relation between
Hilbert schemes of points and graded unipotent character sheaves can now be deduced in a straightforward
way from the discussion above.

We start with a 2-periodized form of Proposition 4.2.7:

Lemma 4.4.14 We have the equivalences of Vectgr zX ;gr zY ;2-per-module categories

QCoh.Hilbn =G
2
m/

2-per
' zBgr

n -Modgr zX ;gr zY ;2-per and QCoh.Hilbn =G
2
m/

2-per
Hilbn; Qx

' zBgr
n -Mod

gr zX ;gr zY ;2-per
nilp Qy

;

and similarly for the full subcategories of perfect complexes.

Proof The second equivalence follows from the first. The first follows from applying the 2-periodization
construction 2-per described in Section 4.4.8 to Proposition 4.2.7.

Theorem 4.4.15 When G D GLn, we have the equivalence of Vectgr zX ;gr zY ;2-per-module categories

)Ch
u;gr;ren
G

' zBgr
n -Mod

gr zX ;gr zY ;2-per
nilp Qy

‰2-per
���! QCoh.Hilbn =G

2
m/

2-per
Hilbn; Qx

;

and similarly, we have the small variant , which is an equivalence of Vectgr zX ;gr zY ;2-per;c-module categories ,

)Ch
u;gr
G
' zBgr

n -Mod
gr zX ;gr zY ;2-per
nilp Qy

‰2-per
���! Perf.Hilbn =G

2
m/

2-per
Hilbn; Qx

:
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Proof The second statement follows from the first one by taking the full subcategories spanned by
compact objects. For the first one, we have

)Ch
u;gr;ren
G

'
).Bn-Mod

grX
nilpy

/' zBgr
n -Mod

grX ;grY ;2-per�
nilp Qy

' zBgr
n -Mod

gr zX ;gr zY ;2-per
nilp Qy

' QCoh.Hilbn =G
2
m/

2-per
Hilbn; Qx

;

where

� the first equivalence is due to Proposition 4.1.11 (after adding a sheared action of VectgrY ),

� the second equivalence is due to Corollary 4.4.5,

� the third equivalence is by definition (see also Section 4.4.8),

� and finally, the last equivalence is due to Lemma 4.4.14.

4.5 Matching objects

Let T denote the tautological bundle over Hilbn. By abuse of notation, we will use the same symbol
to denote its equivariant version, ie a vector bundle of rank n over Hilbn =G2

m. We will now match its
exterior powers

V˛
T under the equivalences of categories stated in Proposition 4.2.7 and Lemma 4.4.14.

This subsection is merely a recollection of the results proved in [35], stated in our notation.

4.5.1 Exterior powers of the permutation representation Let

T 2 zBn-Modgr zX ;gr zY ' QCoh.A2n=.Sn �G2
m//

denote the tensor of the structure sheaf with the permutation representation. More explicitly,

T WDQ`Œ Qx; Qy� P 2 zBn-Modgr zX ;gr zY ;

where P 2 RepSn is the permutation representation. More geometrically, if we let

p WA2n=.Sn �G2
m/! B.Sn �G2

m/;

then T WD p�.P /, where P 2QCoh.B.Sn�G2
m// is the permutation of Sn put in bigraded degrees .0; 0/

and cohomological degree 0. More generally, we have
V˛

T ' p�
�V˛

P
�
.

We have the following elementary lemma:

Lemma 4.5.2 For any 0� ˛ � n, we have a natural isomorphism of Sn-representations

IndSn

S˛�Sn�˛
.sign˛� trivn�˛/'

V˛
P;

where sign˛ is the sign representation of S˛ and trivn�˛ is the 1-dimensional trivial representation
of Sn�˛.

Proof Let v1; : : : ; vn be the natural basis of P as the permutation representation of Sn and v a basis of
sign˛� trivn�˛. We have a natural morphism between .S˛�Sn�˛/-representations

sign˛� trivn�˛!
V˛

P; v 7! v1 ^ � � � ^ v˛:
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Since v1 ^ � � � ^ v˛ generates
V˛

P as a representation of Sn, we obtain a surjective map

IndSn

S˛�Sn�˛
.sign˛� trivn�˛/!

V˛
P:

Comparing the dimensions, we see that this must be an isomorphism.

4.5.3 Wedges of the tautological bundle and wedges of the permutation representation We will
now match the wedges on both sides.

Theorem 4.5.4 [35, Theorem 3.9] Under the equivalence of categories stated in Proposition 4.2.7,V˛
T 2 zBn-Modgr zX ;gr zY ' QCoh.A2n=.Sn �G2

m// corresponds to
V˛

T 2 QCoh.Hilbn =G2
m/.

Proof This is [35, Theorem 3.9] in the case where the line bundle involved is just the structure sheaf.
Lemma 4.5.2 allows us to match the wedges

V˛
T with the W ˛.�/ construction in [35, Definition 3.4].

4.5.5 2-periodization We will need the 2-periodized version of Theorem 4.5.4 below.

Corollary 4.5.6 Under the equivalence of categories stated in Lemma 4.4.14,�V˛
T
�2-per

2 zBn-Modgr zX ;gr zY ;2-per
' QCoh.A2n=.Sn �G2

m//
2-per

corresponds to
�V˛

T
�2-per

2 QCoh.Hilbn =G2
m/

2-per. Here the superscript 2-per denotes the procedure of
2-periodizing an object (see Definition 4.4.9).

Proof This follows from 2-periodizing Theorem 4.5.4.

5 HOMFLY-PT homology via Hilbert schemes of points on C2

We will now use the results above to obtain a proof of a version of a conjecture of Gorsky, Negut,, and
Rasmussen [29] which predicts a remarkable way to realize HOMFLY-PT homology as the cohomology
of a certain coherent sheaf on the Hilbert scheme of points on C2. The precise version of the conjecture
that we prove appeared as [28, Conjecture 7.2] with some modifications emphasized in Remark 1.5.12.
In particular, we will prove parts (a), (b), and (c) of [28, Conjecture 7.2].

Below, in Section 5.1, we use weight structures to describe a general mechanism to turn a cohomological
grading into a formal grading and interpret the construction of the HOMFLY-PT homology theory in these
terms (this is what happens with the a-degree). It is followed by Section 5.2, where we describe how
HOMFLY-PT can be obtained from the categorical trace of Hgr

n . In Section 5.3, we explicitly compute all
the functors involved in the factorization of HOMFLY-PT homology through the categorical trace of Hgr

n

in terms of the explicit description of the category of the latter, which was obtained in Theorem 3.3.4. In
Section 5.4, transporting these computations to the Hilbert scheme side using Koszul duality and Krug’s
result (which are encapsulated in Section 4), we arrive at Theorem 5.4.6 (part (a) of [28, Conjecture 7.2])
which associates to each braid ˇ on n strands a (2-periodic) coherent sheaf Fˇ on Hilbn whose global
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sections (after being tensored by the dual of various exterior powers of the tautological bundle) recover
the HOMFLY-PT homology of the link associated by ˇ. Finally, in Sections 5.5 and 5.6 we study the
actions of symmetric functions on HOMFLY-PT homology and the support of Fˇ on Hilbn in relation
to the number of connected components the braid closure of ˇ has. These appear as Theorems 5.5.1
and 5.6.4, which are parts (b) and (c) of [28, Conjecture 7.2].

5.1 Restricting to and extending from the weight heart

Let Rˇ 2 Chb.SBimn/ be the Rouquier complex associated to a braid ˇ. Recall that the HOMFLY-PT
homology of the associated braid closure of ˇ is obtained by taking Hochschild homology termwise and
then taking the cohomology of the resulting complexes. The final answer thus has three gradings: internal
grading, complex grading (from Chb.SBimn/), and the Hochschild grading. From the point of view of
homological algebra, this is quite unusual: one does not normally apply a derived functor termwise to a
complex.

There have been many interpretations of this construction, for example, [13; 57; 59]. In this subsection,
we offer a general paradigm to understand this type of construction using weight structures and then
apply it to the case of HOMFLY-PT homology. This allows one to see more clearly what is happening
conceptually, especially on the Koszul dual side, which will be discussed in Section 5.4 below.

As we will use weight structures in a crucial way, the reader might find it beneficial to take a quick look
at [31, Section 3.1] for a quick review of the theory.

5.1.1 Extending from the weight heart One salient feature of the theory of weights is that given an
idempotent complete stable1-category C with a bounded weight structure, the category C along with the
weight structure can be reconstructed from its weight heart C~w .18 In a precise sense, C is the free stable
1-category generated by its weight heart. Namely, C' .C~w /fin, where for any additive category A,
Afin is the stabilization of the sifted-completion of A (see [22] for more details). We note that the .�/fin

procedure generalizes the construction Chb.�/ in the following sense: if A is a classical additive category,
then Afin ' Chb.A/.

Lemma 5.1.2 Let C and D be idempotent complete stable1-categories such that C is equipped with a
bounded weight structure. Then restricting along � W C~w ! C gives an equivalence of categories

.5.1.3/ Funex.C;D/ �
!

�! Funadd.C~w ;D/;

where Funex denotes the category of exact functors (ie those that preserve all finite (co)limits) and Funadd

denotes the category of additive functors (ie those that preserve all finite direct sums).

18A DG-structure is not necessary for this discussion in this subsection. However, the reader should feel free to replace all
occurrences of stable1-categories with DG-categories if they prefer.
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Proof This is essentially [56, Proposition 3.3, part 2] (but see also [22, Theorem 2.2.9] for a variant).
We will thus only indicate the main steps.

We will first show the equivalence of categories

.5.1.4/ Funex.C; Ind.D// �
!

�! Funadd.C~w ; Ind.D//;

where Ind.D/ is the Ind-completion of D. Here �! admits a left adjoint �! given by left Kan extending
along �. Since left Kan extending along a fully faithful embedding is fully faithful, �! is fully faithful. It
remains to show that �! is also fully faithful. Namely, we want to show that the natural map �!�!F ! F is
an equivalence for any F 2 Funex.C;D/.

Since �!�!�!F ' �!F by full faithfulness of �!, we see that �!�!F.c/' F.c/ for all c 2 C~w . But since both
sides of �!�!F ! F preserve all finite (co)limits and since C is generated by C~w under finite (co)limits,
we are done.

To obtain (5.1.3) from (5.1.4) we only need to show that �! and �! restrict to the corresponding full
subcategories on both sides. But this is immediate using the fact that C is generated by C~w under finite
(co)limits.

We will also need the following result, which is a consequence of the lemma above:

Corollary 5.1.5 [22, Theorem 2.2.9] Let C and D be idempotent complete stable1-categories such
that both C and D are each equipped with a bounded weight structure. Then restricting along � W C~w ! C

gives an equivalence of categories

Funex;w-ex.C;D/ �
!

�! Funadd.C~w ;D~w /;

where w-ex denotes weight exactness , ie we consider the category of exact functors which send weight
heart to weight heart.

Consequently, when D~w is classical , we have the following equivalences:

Funex;w-ex.C;D/' Funadd.C~w ;D~w /' Funadd.hC~w ;D~w /' Funex;w-ex.Chb.hC~w/;D/:

5.1.6 Turning cohomological grading into a formal grading In situations where D also has a t-
structure, the procedure of restricting and extending along C~w ,! C also allows one to create an extra
grading. Indeed, let C and D be as in Lemma 5.1.2 and F W C!D be an exact functor. Suppose that D is
equipped with a t -structure. Then we obtain a functor

H�.F jC~w / W C
~w

F j
C~w
�����!D H�

��!D~t ;gr;

where D~t ;gr is the category of Z-graded objects in D~t . Applying the .�/fin construction and using
Corollary 5.1.5, we obtain a functor

zF W C! .D~t ;gr/fin ' Chb.D~t ;gr/! Chb.D~t /gr;
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where the equivalence is due to the fact that D~t ;gr is classical, ie it does not have negative Exts. In fact,
since D~t ;gr is classical, C~w !D~t ;gr factors through C~w ! hC~w and hence zF factors as follows:

.5.1.7/

C Chb.D~t /gr

Chb.hC~w /

wt

zF

F

Here hC~w is the homotopy category of C~w , obtained from C~w by killing negative Exts,19 and wt

denotes the weight complex functor (see [31, Remark 3.1.12] for a quick review). Note that hC~w is
always a classical category whereas C~w might have nontrivial1-categorical structures. Moreover, F is
given by applying H�.F / termwise.

5.1.8 When C~w is already classical, ie C~w ' hC~w , the weight complex functor is an equivalence of
categories

wt W C '�! Chb.C~w /:

Under this identification, the functor zF is identified with F , which is given by applying H�.F / termwise
to the chain complexes in C~w .

5.1.9 The category D that is of interest to us is D' Vectgr. Given an exact functor F W C! Vectgr, the
construction above thus produces a functor zF W C! Vectgr;gr whose target is the DG-category of chain
complexes in doubly graded vector spaces. We can take cohomology another time and obtain triply graded
vector spaces. As we will soon see, further specializing to the case where C D H

gr
n ' Chb.H

gr;~w
n / '

Chb.SBimn/ and F is the functor of taking Hochschild homology, we recover the usual construction of
the triply graded HOMFLY-PT homology theory.

5.1.10 The last observation is a tautology, but a powerful one when combined with Lemma 5.1.2 which
allows one to compare functors by restricting to the weight heart of the source. This point of view is
especially useful when the weight structure is not evident, as is the case on the Hilbert scheme side.
Indeed, as we shall see below, Lemma 5.1.2 allows us to identify HH˛ and the functor corepresented by
the ˛th exterior of the tautological bundle on the Hilbert scheme.

5.2 HOMFLY-PT homology via Tr.Hgr
n /

We will now describe how HOMFLY-PT homology can be obtained from Tr.H
gr
n /' Ch

u;gr
G

. Everything in
this subsection has essentially been proved in [59], but in different language: they use the chromatographic
complex construction (which is not known to be functorial) of which the weight complex functor is a
functorial upgrade. See also [54, Section 6.4] for a presentation that is closer to ours (but still does not
use weight structures).

19For an additive1-category A, the homotopy category hA of A is obtained from A by taking �0 of the Hom spaces. This
is not to be confused with the homotopy category Kb.B/ WD hChb.B/ of bounded chain complexes of a (classical) additive
category B, which is also sometimes referred to as, somewhat confusingly, the homotopy category of B.
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5.2.1 A geometric interpretation of HOMFLY-PT homology We start with a formulation of HOMFLY-
PT homology in terms of graded sheaves on BB�BG BB DBnG=B. Consider the commutative diagram

BB �BG BB G=B G=G pt

BB �BB BB

�

p

�

q

p

where the square is Cartesian. We have the following functor:

.5.2.2/ HH W Hgr
n ' Shvgr;c.BB �BG BB/

��
��! Shvgr;c.BB �BB/

p�
��! Shvgr;c.BB/

C�gr.BB;�/
�������! Vectgr :

Applying the construction in Section 5.1.6, we obtain a functorfHH W Hgr
n ! Vectgr;gr :

Taking cohomology one more time, we get

HHH WD H�.fHH/ W Hgr
n ! Vect~t ;gr;gr;gr;

the category of triply graded vector spaces.

Lemma 5.2.3 Let Rˇ 2 H
gr
n be associated to a braid ˇ. Then up to a change of grading (to be discussed

in Section 5.2.4 below), H�.fHH.Rˇ// is the triply graded HOMFLY-PT link homology of ˇ.

Proof (sketch) This is the main theorem of [59], phrased in our language. See also [54, Section 6.4] for
a presentation that is closer to ours. We will thus only indicate the main steps here.

The construction in Section 5.1.6 amounts to saying that fHH.Rˇ/ is obtained by applying p��� termwise
to Rˇ 2 H

gr
n ' Chb.H

gr;~w
n /. By [31, Proposition 4.3.5], Shvgr;c.BB �BB/ (resp. Shvgr;c.BB/) corre-

sponds to the category of (perfect complexes of) graded bimodules (resp. modules) over C�gr.BB/ '

C
gr
� .BT /' Sym.V Œ�2�/, where V is the graded vector space of dimension n living in graded degree 2

and cohomological degree 0 (see also Section 4.1.4). Moreover, by [31, Section 4.3.4], pulling back along
p W BB! BB �BB corresponds to taking Hochschild homology. Finally, by [31, (4.4.4)], ��jHgr;~w

n
is

identified with the forgetful functor from Soergel bimodules to bimodules over Cgr
� .BB/' C

gr
� .BT /.

5.2.4 Gradings We let Q0 and A0 denote the two formal gradings on Vectgr;gr (the target of the
functor fHH) and T 0 the cohomological grading. To keep track of these gradings, we will from now on
adopt the notation VectgrQ0 ;grA0 rather than simply Vectgr;gr as above. We use Œn�Q0 , hniA0 , and fngT 0 to
denote the grading shifts.

The relations between the Q0, A0, and T 0 gradings and the Q, A, and T of [28] are as follows (written
multiplicatively):

Q0 DA�1Q; A0 DA; T 0 D T:

Note, however, that [28] uses Hochschild cohomology rather than homology to define the HOMFLY-PT
link homology. Thus, for the unknot we get .1CQ02A0/=.1�Q02A02/D .1CQ2A�1/=.1�Q2/ whereas
they get .1CQ�2A/=.1�Q2/.
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We also use the q, t , and a gradings, where

q DQ2
DQ02A02; aDQ2A�1

DQ02A0; t D T 2Q�2
D T 02Q0�2A0�2:

In terms of q, a, and t , the unknot gives .1C a/=.1� q/.

5.2.5 On H
gr
n , Chu;gr

G
'An-Modgr;perf , and An-Modgr;coh there are two grading shift operators for each

n 2 Z, the cohomological shift Œn� and the grading shift hni, and both are compatible with the various
functors between these categories. In terms of the grading convention of Section 4.4, this formal grading
is the X -grading over there.

5.2.6 Unwinding the construction, we see that the functor fHH relates the grading shift operators on H
gr
n

and those on VectgrQ0 ;grA0 as follows:20

Œn� fngT 0 ; hni Œn�A0hniQ0f�ngT 0 ; Œn�hni Œn�A0hniQ0 :

Remark 5.2.7 The difference between Q0, A0, T 0 and Q, A, T comes from the fact that the identification
H
gr
n WDShvgr;c.BnG=B/'Chb.SBimn/ involves a shear. More concretely, objects in H

gr
n are most naturally

viewed as graded C�gr.BB/-bimodules, where the generators of C�gr.BB/' C�gr.BT /' SymV Œ�2� live
in graded (resp. cohomological) degree 2 (resp. 2). On the other hand, the generators of the polynomial
ring used to define Soergel bimodules are, by convention, put in graded (resp. cohomological) degrees 2

(resp. 0). See [31, Section 4] for a more in-depth discussion.

5.2.8 HOMFLY-PT homology via truncated categorical trace By smooth base change, we see that
the functor HH of (5.2.2) admits an alternative construction

HH W Hgr
n ' Shvgr;c.BB �BG BB/

p�
��! Shvgr;c

�
G

B

�
q�'q!
����! Shvgr;c

�
G

G

�
C�gr.G=G;�/
��������! Vectgr;

which is the same as

.5.2.9/ HH W Hgr
n

tr
�! Tr.Hgr

n /' Ch
u;gr
G

,! Shvgr;c.G=G/
C�gr.G=G;�/
��������! Vectgr :

Since the functor tr W Hgr
n ! Ch

u;gr
G

is weight exact, it commutes with the weight complex functors. Thus,
to construct fHH from HH, we can apply the construction from Section 5.1.6 to the last step of (5.2.9). As
a result, we obtain the factorization of fHH

.5.2.10/

H
gr
n Ch

u;gr
G

VectgrQ0 ;grA0

Chb.h Ch
u;gr;~w
G

/

gHH

tr �

wt
�

20The first and last are easiest to see from the definition, from which the middle one could be deduced. Alternatively, the middle
one can also be seen by looking at the weight complex functor.
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where � is obtained by applying the construction from Section 5.1.6 to the functor C�gr.G=G;�/ and � is
the induced functor; see (5.1.7). The category Chb.h Ch

u;gr;~w
G

/ (resp. h Chu;gr;~w
G

) can be thought of as a
truncation of Chu;gr

G
(resp. Chu;gr;~w ), which justifies the name truncated trace. It is also referred to as

the underived trace and is denoted by Tr0.H
gr
G
/ in [27].

5.3 Explicit computation of functors

In what follows, we will compute the functors � , � , and wt in (5.2.9) explicitly in terms of the identification

Ch
u;gr
G
'Q`Œx; � � Q`ŒSn�-Modgr;perf DAn-Modgr;perf

of Theorem 3.3.4. In particular, we apply Lemma 5.1.2 to deduce a corepresentability statement similar to
the main result of [13; 57].21 Moreover, our computation identifies the weight complex functor wt with
the functor of restricting to the nilpotent cone, explaining conceptually why the latter appears in [57]; see
Section 5.3.5.

5.3.1 Identifying the weight complex functor wt for Chu;gr
G

We will now give a concrete interpretation
of the functor wt appearing in (5.2.10) in terms of modules over An. Consider the functorfinv� WD Symn V _Œ1� inv� WAn-Modgr;perf !An-Modgr;perf ;

where inv� is defined in Section 4.1 and where we define

An WDQ`Œx� Q`ŒSn�' SymVx Œ�2� Q`ŒSn�:

See also Section 4.1.4 for the definitions of V and An.

Note that inv� is originally defined on An-Modgr;coh. So strictly speaking, in the above, we restrict this
functor to the full subcategory of perfect complexes. It is easy to see that finv� is given precisely by
applying finvenh� followed by the functor of forgetting the action by the variables y.

The goal now is to identify wt W Ch
u;gr
G
! Chb.h Ch

u;gr;~w
G

/ with finv� .

5.3.2 By Lemma 2.9.5, we see that in type A, Chu;gr
G
'An-Modgr;perf is equipped with a weight structure

whose weight heart is spanned under finite direct sums of direct summands of Sprgr
G
Œk�hki (for all k 2Z),

which corresponds to AnŒk�hki (for all k 2 Z) under this equivalence of categories. Here Œk� and hki
denote cohomological and grading shifts, respectively.

A similar statement is true for An-Modgr;perf .

Lemma 5.3.3 The category An-Modgr;perf has a natural weight structure whose weight heart is spanned
by finite direct sums of direct summands of AnŒk�hki for all k 2 Z.

21It is in fact possible to reprove the corepresentability statement of [13] using the computation presented here. The details will
appear in a forthcoming paper.
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Moreover , the weight heart An-Modgr;perf;~w is classical , and hence the weight complex functor induces
an equivalence of categories

wt WAn-Modgr;perf '�! Chb.An-Modgr;perf;~w /:

Proof It is easy to see that the direct summands of AnŒk�hki generate the category under finite
(co)limits. Moreover, as there are no positive Exts between them, the weight structure is obtained
by invoking [15, Theorem 4.3.2.II]. The second part follows by observing that there are no negative Exts
between these objects either; see also [31, Section 3.1.9].

We are now ready to identify wt and finv� .

Proposition 5.3.4 The functor finv� induces an equivalence of categories inv� as given in the following
commutative diagram:

An-Modgr;perf An-Modgr;perf

Chb.hAn-Modgr;perf;~w /

wt

finv�
'

inv�

Proof The computation in Section 4.1.8 shows that finv� .An/'An and hence finv� is weight exact. By
Corollary 5.1.5, finv� fits into the following commutative diagram:

An-Modgr;perf An-Modgr;perf

Chb.hAn-Modgr;perf;~w / Chb.An-Modgr;perf;~w /

wt

finv�
wt'

inv�

It remains to show that inv� is an equivalence of categories.

The diagram above is determined by the following commutative diagram involving the weight hearts:

An-Modgr;perf;~w An-Modgr;perf;~w

hAn-Modgr;perf;~w An-Modgr;perf;~w

�0

finv~w�

inv
~w
�

By Corollary 5.1.5, it suffices to show that inv~w� is an equivalence of categories. But this is clear since
both

HomAn-Modgr;perf;~w .An;AnŒk�hki/!HomhAn-Modgr;perf;~w .�0An; �0AnŒk�hki/

and
HomAn-Modgr;perf;~w .An;AnŒk�hki/!HomAn-Modgr;perf;~w .An;AnŒk�hki/

realize the right side by killing off � from the left side.
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5.3.5 Restricting to the nilpotent cone The discussion above has a geometric interpretation in terms
of character sheaves and sheaves on the nilpotent cone of G. It gives an explanation for why the nilpotent
cone should appear at all in [57]. The materials presented here are of independent interest and are not
needed anywhere else in the paper; we include them here mostly for the sake of completeness. The reader
should feel free to skip to Section 5.3.11.

Let N denote the nilpotent cone of the group G D GLn, equipped with the conjugation action of G. Let
�N WN ,!G denote the closed embedding. Then we have the following functor:

��N W Ch
u;gr
G
! Shvgr;c.N=G/:

We let Spr
gr
G WD �

�
N Spr

gr
G

denote the (graded) Springer sheaf.

The starting point is the following formality result of Rider, which was formulated in different language:

Theorem 5.3.6 [53, Theorem 7.9] The functor Hom
gr

Shvgr;c.N=G/
.Spr

gr
G ;�/ induces an equivalence of

Vectgr;c-categories

Shvgr;c.N=G/' Endgr.Spr
gr
G/-Modgr;perf 'An-Modgr;perf :

The next input is a theorem of Trinh which compares the graded derived endomorphism rings of Sprgr
G

and Spr
gr
G :

Theorem 5.3.7 [57, Theorem 1] The morphism of algebras

Endgr.Spr
gr
G
/! Endgr.��N Spr

gr
G
/' Endgr.Spr

gr
G/

identifies with the natural quotient An!An.

The following is thus a direct consequence of the two theorems above and Theorem 3.3.4:

Corollary 5.3.8 We have a commutative diagram

Ch
u;gr
G

Shvgr;c.N=G/

An-Modgr;perf An-Modgr;perf

��N

'Hom
gr

Ch
u;gr
G

.Spr
gr
G
;�/ ' Hom

gr
Shvgr;c.N=G/

.Spr
gr
G ;�/finv�

5.3.9 The category Shvgr;c.N=G/ has a natural weight structure whose weight heart is spanned by
finite direct sums of summands of Spr

gr
G Œk�hki; k 2 Z. This corresponds to the natural weight structure

on An-Modgr;perf which is spanned by finite direct sums of summands of AnŒk�hki for k 2 Z. Since
��N.Spr

gr
G
/' Spr

gr
G , ��N is weight exact (as can also be seen at the level of finv� ).
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Proposition 5.3.10 We have a commutative diagram

Ch
u;gr
G

Shvgr;c.N=G/

Chb.h Ch
u;gr;~w
G

/

wt

��N

'

where all functors are weight-exact.

Proof This follows from Corollary 5.3.8 and the identification of wt with finv� in Proposition 5.3.4.

In [59], the HOMFLY-PT homology groups are given via the chromatographic complex construction, which
is a triangulated (as opposed to DG) version of the weight complex functor; see also [31, Remark 3.1.12].
In [57], the HOMFLY-PT homology construction is then proved to factor through the nilpotent cone.
Proposition 5.3.10 above puts these two results into context by identifying the weight complex functor
itself and the functor ��N of restricting to the nilpotent cone, explaining why the nilpotent cone appears.
Moreover, the equivalence h Ch

u;gr;~w
G

' Shvgr;c.N=G/~w formulates precisely the sense in which
Shvgr;c.N=G/ is the truncated trace of Hgr

n , as was speculated in [57].

5.3.11 Identifying the functor � We will now compute � appearing in (5.2.10) more explicitly: we
decompose it into a direct sum (according to the a-degrees) of corepresentable functors. In other words,
the ˛th piece captures the part of � that is ˛ away from being pure.

For each integer ˛, consider
Q'˛ W Z! Z2

such that
Q'˛.X / WD �˛C'.X / WD .2˛; ˛/C .X;X /; X 2 Z:

We define the associated functors Q�˛; �˛ W Vectgr ! VectgrQ0 ;grA0 given by Q'˛;� and '�, both followed
by a cohomological shear to the left whose amount is given by the X -degree. More precisely, for
.VX /X2Z 2 Vect

gr (note that T 0 is the cohomological degree of VectgrQ0 ;grA0 , see Section 5.2.4),

Q�˛..VX /X2Z/Q0;A0 D

�
VX fX gT 0 if .Q0;A0/D Q'˛.X /;
0 otherwise;

�˛..VX /X2Z/Q0;A0 D

�
VX fX gT 0 if .Q0;A0/D '.X /;
0 otherwise:

Note that the shear to the left by X is there to account for the fact that something in graded degree X and
cohomological degree X in Vectgr is sent to something of cohomological degree 0 when we apply the
construction in Section 5.1.6 to turn a cohomological grading to a formal grading.

Proposition 5.3.12 The functor � WAn-Modgr;perf ! VectgrQ0 ;grA0 breaks up into a finite direct sum

� '
M
˛

Q�˛.Hom
gr

An-Modgr;perf

�V˛
P Q`Œx�;�

�
/;

where P 2 RepSn is the permutation representation.
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Proof By Lemma 5.1.2, � is determined by its restriction to the source’s weight heart,

�~w WAn-Modgr;perf;~w ! Vect~t ;grQ0 ;grA0 ! VectgrQ0 ;grA0 :

This functor, in turn, is determined by its action on An. Under the equivalence of categories in
Theorem 3.3.4, the constant sheaf corresponds to Q`Œx; � �, from which we obtain the natural equivalence

�~w .An/' �.An/'
M
˛

Q�˛
�V˛

P Q`Œx�
�

'

M
˛

Q�˛
�
Hom

gr

An-Modgr;perf;~w

�V˛
P Q`Œx�;Q`Œx� Q`ŒSn�

��
'

M
˛

Q�˛
�
Hom

gr

An-Modgr;perf;~w

�V˛
P Q`Œx�;An

��
;

where we have implicitly picked an isomorphism of Sn-representations P ' P_. Moreover, the factor
.2˛; ˛/ in Q'˛ is to account for the degrees of � in An which are not there anymore in

V˛
P : these are

precisely the .Q0;A0/-degrees of homogeneous wedges of � of order ˛. Thus we have an equivalence of
functors

�~w '
M
˛

Q�˛
�
Hom

gr

An-Modgr;perf;~w

�V˛
P Q`Œx�;�

��
WAn-Modgr;perf;~w ! Vect~t ;grQ0 ;grA0 :

But now, the second functor has an extension to the whole of An-Modgr;perf , which is given byM
˛

Q�˛
�
Hom

gr

An-Modgr;perf

�V˛
P Q`Œx�;�

��
WAn-Modgr;perf ! VectgrQ0 ;grA0 :

The proof thus concludes by Lemma 5.1.2.

Definition 5.3.13 We define
�˛ WDHom

gr

An-Modgr;perf

�
Q`Œx�

V˛
P;�

�
WAn-Modgr;perf ! Vectgr;

�̨ WD �˛ ıwt' �˛ ıfinv� WAn-Modgr;perf ! Vectgr;fHH˛ WD �̨ ı tr W Hgr
n ! Vectgr :

Here wt is the weight complex functor of Ch
u;gr
G
' An-Modgr;perf , which is identified with finv� by

Proposition 5.3.4.

As a direct consequence of the direct sum decomposition of � in Proposition 5.3.12, we get the following
direct sum decompositions of � and fHH:

Corollary 5.3.14 We have the following equivalences of functors:

� '
M
˛

Q�˛ ı�˛; � '
M
˛

Q�˛ ı �̨ and fHH'M
˛

Q�˛ ıfHH˛:
5.3.15 Gradings By construction, for any integer ˛, Q�˛ sends a graded vector space of graded degree X

and cohomological degree C to an object of .Q0;A0;T 0/-degree .X C 2˛;X C ˛;C � X /. Written
multiplicatively (see also Section 5.2.4), this object has degree

Q0XC2˛A0XC˛T 0C�X
DQ02˛A0˛Q0X A0X T 0C�X

D a˛QX T C�X :
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In other words, the target of Q�˛ has a-degree ˛. Consequently, Q�˛ ı�˛ , Q�˛ ı �̨ , and Q�˛ ıfHH˛ all land in the
a-degree ˛ part. This justifies the notation given in Definition 5.3.13: �˛ , �̨ , and fHH˛ are the a-degree
˛ parts of � , � , and fHH, respectively.

Observe that the factor .2˛; ˛/ in Q'˛ is responsible precisely for the a-degree. In what follows, we will
treat each a-degree separately, and for each a-degree we will ignore the a-factor and consider only the
.Q;T /-degrees. Proposition 5.3.12 thus has the following reformulation:

Corollary 5.3.16 The a-degree ˛ part �˛ of � is given by Hom
gr

An-Modgr;perf

�V˛
P Q`Œx�;�

�
2 Vectgr,

where the degree .X;C / corresponds to .X;C �X / in the .Q;T /-grading. Here X is the graded degree
and C is the cohomological degree in Vectgr.

5.3.17 Identifying the functor � Our goal is now to show an analog of Corollary 5.3.16 for the
functor � appearing in (5.2.10). We already saw in Corollary 5.3.14 above that � is decomposed into a
direct sum of �˛ı�̨ . We will now show that the �̨ are corepresentable, except that now, the corepresenting
objects live in An-Modgr;coh �An-Modgr ' Ind.An-Modgr;perf/. In other words, they are corepresented
by ind-objects (which happen to be coherent)!

Recall the functor ftriv� WD Symn V Œ�1� triv� WAn-Modgr;perf !An-Modgr;coh;

where triv� sends a perfect An complex to a coherent object where � act by 0. This functor has a partially
defined right adjoint finv� WD Symn V _Œ1� inv� WAn-Modgr;perf !An-Modgr;perf ;

where An-Modgr;perf is naturally a full subcategory of An-Modgr;coh. This pair of partial adjoints comes
from the standard adjunction pair triv� a inv� between the Ind-completed categories An-Modgr D

Ind.An-Modgr;perf/ and Ind.An-Modgr;coh/.

Remark 5.3.18 (abuse of notation) In what follows, we will abuse notation and implicitly view objects
of An-Modgr;perf as living in An-Modgr;coh whenever necessary. For example, when c 2 An-Modgr;coh

and p 2An-Modgr;perf , we write

Hom
gr

An-Modgr;coh
.c;p/ WDHom

gr

An-Modgr;coh
.c; �perf,!cohp/;

where �perf,!coh WAn-Modgr;perf ,!An-Modgr;coh is the natural inclusion.

In view of Corollaries 5.3.14 and 5.3.16, we have the following analog of Proposition 5.3.12 for �:

Proposition 5.3.19 The a-degree ˛ part �̨ of � is given by

�̨ 'Hom
gr

An-Modgr;coh

�V˛
P Symn V Œ�1� Q`Œx�;�

�
WAn-Modgr;perf ! Vectgr;

where the degree .X;C / in Vectgr corresponds to .X;C �X / in the .Q;T /-grading. Here X is the graded
degree and C is the cohomological degree in Vectgr.
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Proof Using the adjunction ftriv� afinv� discussed above, for any M 2An-Modgr;perf , we have

�̨ .M /'Hom
gr

An-Modgr;perf

�V˛
P Q`Œx�;finv�M

�
'Hom

gr

An-Modgr;coh

�V˛
P ftriv� .Q`Œx�/;M

�
'Hom

gr

An-Modgr;coh

�V˛
P Symn V Œ�1� Q`Œx�;M

�
:

We are now ready to state the main theorem of this subsection, which is a direct consequence of the
results proved so far.

Theorem 5.3.20 The a-degree ˛ part fHH˛ of fHH is given byfHH˛'Hom
gr

An-Modgr;perf

�V˛
P Q`Œx�;finv� tr.�/�'Hom

gr

An-Modgr;coh

�V˛
P Symn V Œ�1� Q`Œx�; tr.�/

�
as functors H

gr
n ! Vectgr, where the degree .X;C / corresponds to .X;C �X / in the .Q;T /-grading ,

where X is the graded degree and C is the cohomological degree in Vectgr.

Proof This follows directly from the computation of �̨ in Proposition 5.3.19 and the fact that fHH˛ D
�̨ ı tr (see Definition 5.3.13 and Corollary 5.3.14).

Example 5.3.21 The a-degree ˛ part of the HOMFLY-PT link homology of the unlink of n components
is given by

Hom
gr

An-Modgr;perf

�V˛
P Q`Œx�;finv� tr.1/�'Hom

gr

An-Modgr;coh

�V˛
P Symn V Œ�1� Q`Œx�; tr.1/

�
;

where 1 is the monoidal unit of Hgr
n and where the Q and T gradings are given as in Theorem 5.3.20.

Now, recall that finv� tr.1/'An. The computation in the proof of Proposition 5.3.12 then shows that the
left-hand side of the equivalence above is simply

V˛
P Q`Œx�. The associated three-variable polynomial

is thus � nX
˛D0

�n

˛

�
a˛
�� 1X

lD0

Q2l

�n

D

�
1C a

1�Q2

�n

D

�
1C a

1� q

�n

:

5.4 HOMFLY-PT homology via Hilb.C2/

We will now finally establish the realization of HOMFLY-PT homology via Hilbert schemes of points
on C2. The main point is to transport Theorem 5.3.20 to the Hilbert scheme side via Koszul duality and
the result of Krug as encapsulated in Section 4.

5.4.1 Koszul duality We will now reformulate Theorem 5.3.20 using Koszul duality, which is an
equivalence of categories (4.1.7). We start with the following matching of objects:

Lemma 5.4.2 Under the equivalence of categories (4.1.7), we have the following matching of objects:

finvenh� �V˛
P Symn V Œ�1� Q`Œx�

�
'
V˛

P Q`Œx;y�'
V˛

P Sym.Vx Œ�2�˚V _y / 2Bn-Modgr;perf :
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Proof Directly from the construction (see also Section 4.1.5), we have

invenh� .Q`Œx�/'Q`Œx;y�:

Thus, finvenh� .Q`Œx�/ WD Symn V _Œ1� invenh� .Q`Œx�/' Symn V _Œ1� Q`Œx;y�:

Since all functors involved are linear over Q`ŒSn�-Modgr;perf , we get

finvenh� �V˛
P Symn V Œ�1� Q`Œx�

�
'
V˛

P Q`Œx;y� 2Bn-Modgr;perf :

Corollary 5.4.3 The a-degree ˛ part fHH˛ of fHH is given by the cohomology of

fHH˛.Rˇ/'Hom
gr

Bn-Modgr;perf

�V˛
P Q`Œx;y�;finvenh� .tr.Rˇ//

�
2 Vectgr;

where the degree .X;C / corresponds to .X;C �X / in the .Q;T /-grading. Here X is the graded degree
and C is the cohomological degree in Vectgr.

Proof This is simply Theorem 5.3.20 transported to Bn-Modgr;perf using the equivalence of categories
(4.1.7) and the matching of objects done in Lemma 5.4.2.

5.4.4 HOMFLY-PT homology via 2-periodized Hilbert schemes We will now relate HOMFLY-PT
homology and 2-periodized Hilbert schemes of points. Since there are now multiple gradings, we will
include them in the notation. Recall that on the Bn-Modgr;perf side, there are two sets of gradings: .X;Y /
and . zX ; zY /. Here X is the original grading coming from graded sheaves whereas Y is the extra grading
(to be “canceled out” by 2-periodization). Moreover, the . zX ; zY /-grading is related to the .X;Y /-grading
via a simple change of coordinates; see Sections 4.4.1 and 4.4.6.

Definition 5.4.5 We define

fHH2-per
˛ W Hgr

n !Q`Œˇ; ˇ
�1�-ModgrX ;grY DW VectgrX ;grY ;2-per� ' Vectgr zX ;gr zY ;2-per

by Q`Œˇ; ˇ
�1� fHH˛, where ˇ lives in cohomological degree �2 and .X;Y /-degree .0; 1/, and wherefHH˛ is viewed as a complex with two formal gradings by setting the Y -degree to 0 while keeping

the X -degree the same. See also Section 4.4.8 for the various definitions and grading conventions for
2-periodization.

We note that fHH2-per
˛ and fHH˛ contain the same amount of information. The introduction of 2-periodization

allows us to introduce a formal grading Y that is twice the cohomological degree. For example, the
Y D l part of H0.fHH2-per

˛ .�// is precisely H2l.fHH˛.�//. In this precise sense, we have Y D C 2 (in
multiplicative notation) if we use C to denote the cohomological degree. All the cohomology groups offHH˛ can then be recovered by looking only at H0 and H1 of fHH2-per

˛ .
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Theorem 5.4.6 [28, Conjecture 7.2(a)] We have the equivalence of functors from H
gr
n !Vectgr zX ;gr zY ;2-per

fHH2-per
˛ 'Hom

gr zX ;gr zY
Perf.Hilbn =G2

m/
2-per

��V˛
T
�2-per

; ‰2-per.finvenh� .tr.�//2-per/
�
;

where T is the tautological bundle on Hilbn. The . zX ; zY /-grading matches with the .q; t/-grading as
follows: zX D q and zY D

p
t . Moreover , the cohomological degree C on the right corresponds to

p
qt .

Note also that for any R2H
gr
n ,‰2-per.finvenh� .tr.R//2-per/2Perf.Hilbn =G2

m/
2-per
Hilbn;x

, ie it is supported along
the x-axis.

In particular , for any Rˇ 2 H
gr
n associated to a braid ˇ, there exists a natural

Fˇ WD‰
2-per.finvenh� .tr.Rˇ//

2-per/ 2 Perf.Hilbn =G
2
m/

2-per
Hilbn; Qx

such that the a-degree ˛ component of the HOMFLY-PT homology of ˇ is given by

Hom
gr zX ;gr zY
Perf.Hilbn =G2

m/
2-per

�V˛
T2-per;Fˇ

�
:

Proof For any R 2 H
gr
n , we have the natural equivalences

fHH2-per
˛ .R/ WDQ`Œˇ; ˇ

�1� fHH˛.R/
'Q`Œˇ; ˇ

�1� Hom
grX
Bn-Modgr;perf

�V˛
P Q`Œx;y�;finvenh� .tr.R//

�
'Hom

grX ;grY
).Bn-Modgr;perf/

�V˛
P Q`Œx;y�;finvenh� .tr.R//

�
'Hom

gr zX ;gr zY
zB
gr
n -Mod

gr zX
;gr zY

;2-per;perf

��V˛
T
�2-per

; .finvenh� .tr.R///2-per�
'Hom

gr zX ;gr zY
Perf.Hilbn =G2

m/
2-per

��V˛
T
�2-per

; ‰2-per.finvenh� .tr.R//2-per/
�
;

where the first follows from Corollary 5.4.3, the second from Lemma 4.4.2, the third from Corollary 4.4.5,
and the last from Theorem 4.4.15 and Corollary 4.5.6. Note that as before, we implicitly passed from
.X;Y /-grading to . zX ; zY /-grading.

For the matching of gradings, observe that zX k zY l DX 2kY kX�l DX 2k�lC 2k corresponds to

Q2k�lT 2k�2kCl
DQ2k�lT l

DQ2kQ�lT l
D qk.

p
t/l

in the .q; t/-degree. In other words, . zX ; zY /-grading corresponds to .q;
p

t/-grading precisely. Moreover,
cohomological degree 1, which is C , corresponds to

T DQQ�1T D
p

qt :

Remark 5.4.7 When decategorified, a term in cohomological degree 1 of fHH2-per
˛ contributes a factor

of �
p

qt . The sign is there because of the odd cohomological degree.
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Example 5.4.8 We now rephrase Example 5.3.21 in terms of 2-periodic complexes. By Definition 5.4.5,
the a-degree ˛ part of the 2-periodized HOMFLY-PT homology is given byfHH2-per

˛ DQ`Œˇ; ˇ
�1�

V˛
P Q`Œx�:

Since there’s no odd cohomological degree, the associated polynomial is extracted from

H0.fHH2-per
˛ /'

V˛
P Q`Œˇx�;

where ˇx has cohomological degree 0 and .X;Y /-degree .2; 1/, or equivalently . zX ; zY /-degree .1; 0/,
which is the same as .q; t/-degree .1; 0/. The associated polynomial is thus� nX

˛D0

�n

˛

�
a˛
�� 1X

lD0

ql

�n

D

�
1C a

1� q

�n

:

5.5 Matching the actions of Q`Œx�Sn

In [28, Section 5.1], an action of the variables x (or equivalently, Qx, depending on whether we are working
with the sheared or the 2-periodized version) on HHH is constructed. In particular, symmetric functions
on x (or equivalently, Qx) also act. On the other hand, by construction, the geometric realization of fHH2-per

via Hilbert schemes in Theorem 5.4.6 automatically equips it with an action of Q`Œ Qx; Qy�
Sn DH0.Hilbn;O/.

In particular, it admits an action of Q`Œ Qx�
Sn �Q`Œ Qx; Qy�

Sn .

This subsection is dedicated to showing the following result, whose proof will conclude in Section 5.5.16:

Theorem 5.5.1 (part of [28, Conjecture 7.2(b)]) The two actions above coincide.

The proof is a simple matter of chasing through the construction. To keep the main ideas evident, we
will elide the difference between sheared and 2-periodic versions. For example, we will pass seamlessly
between x;y and Qx; Qy.

The argument can be most conceptually and conveniently phrased in terms of module categories. For
example, instead of saying that a (graded) commutative ring R acts on objects of a (Vectgr-module)
category C, we formulate everything in terms of the symmetric monoidal category O D R-Mod (or
O D R-Modgr) acting on C itself. Then the core of the argument revolves around observing that all
functors involved are linear over O.

5.5.2 Module categories and actions of a commutative ring We start with some generalities regarding
module categories and actions of commutative rings.

Let O and O0 be compactly generated rigid symmetric monoidal categories equipped with a symmetric
monoidal functor F W O! O0 and a right adjoint G, which is necessarily right-lax symmetric monoidal.
The symmetric monoidal functor F equips O0 with the structure of an O-module category. F can thus
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be written as F D � 1O0 . The functor G can thus be written as G ' HomO
O0.1O0 ;�/, where the

superscript O in Hom denotes the O-enriched Hom. See [31, Appendix A.2.6] for a quick review on
enriched Hom-spaces.

Lemma 5.5.3 Let O and O0 be as above , and C an O0-module category. Then , for any c1; c2 2 C,
HomO

C .c1; c2/ has a natural EndOO0.1O0/-module structure. Moreover , this module structure is compatible
with

(i) O0-linear functors: if F W C!D is a morphism of O0-module categories , then HomO
C .c1; c2/!

HomO
D.F.c1/;F.c2// is a morphism of modules over EndOO0.1O0/;

(ii) the restriction of structure via a symmetric monoidal functor F 0 W O0 ! O00: if the O0-module
structure on C comes from restricting an O00-module structure , then the EndOO0.1O0/-module struc-
ture on HomO

C .c1; c2/ is obtained by restriction of scalars along the commutative algebra map
EndOO0.1O0/! EndOO00.1O00/.

Proof We have HomO0

C .c1; c2/ 2 O
0, and thus it naturally has a module structure over 1O0 . Since G is

right-lax symmetric monoidal, G HomO0

C .c1; c2/ has a natural module structure over G.1O0/'EndOO0.1O0/.
But, by adjunction, G HomO0

C .c1; c2/'HomO
C .c1; c2/ and we are done.

The second part regarding various compatibilities is an easy diagram chase.

Lemma 5.5.4 Let O, O0, and C be as above. Then for any c there is a natural map of algebra objects in O

'c W End
O
O0.1O0/! EndOC .c/:

Moreover , this map is compatible with O0-linear functors and with restriction of structure via a symmetric
monoidal functor O0! O00.

Proof EndO
0

C .c/ is an algebra object in O0, and hence it receives a natural algebra map from 1O0 since
1O0 is the initial algebra object. Applying G to this map, we obtain the desire map of algebras in O.

The second part follows from Lemma 5.5.3.

Remark 5.5.5 In the case where OD Vect (resp. OD Vectgr), Lemma 5.5.4 states that any object c 2 C

admits a natural action (resp. a graded action) of EndO0.1O0/ (resp. EndgrO0.1O0/).

Corollary 5.5.6 Let O, O0, and C be as above. Then for any c1; c2 2 C the action of EndOO0.1O0/ on
HomO

C .c1; c2/ factors through EndOC .c1/
rev and EndOC .c2/. Here the superscript rev denotes the reverse

multiplication.

Proof Since 1O0 is the initial algebra object in O0, the action of 1O0 on HomO0

C .c1; c2/ factors through
the natural actions of EndO

0

C .c1/
rev and EndO

0

C .c2/. Applying G, we obtain the desired conclusion.

In what follows, we will apply the statements above to the case where O0DR-Modgr for some commutative
ring R and ODVectgr. Moreover, F is the functor of taking free R-modules and G is the forgetful functor.
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Remark 5.5.7 In the situations that we are interested in, the functor F and all the actions (in various
module category structures) are compact preserving. Note, however, that G does not preserve compactness.
Thus, when working with the small full subcategory spanned by compact objects, Lemmas 5.5.3 and 5.5.4
and Corollary 5.5.6 still apply, except that the enriched Homs are not necessarily compact.

5.5.8 The action of Q`Œx� on HHH We will now recast the action of Q`Œx� on HHH as described in
[28, Section 5.1] in the categorical language above. To start, observe that Hgr

n ' Shvgr;c.BB �BG BB/

has an action of Shvgr;c.BB �BB/'Q`Œx�
2-Modgr;perf where the two factors act on the left and the

right, respectively. The usual action of Q`Œx�
2 on any R 2 H

gr
n (ie any Soergel bimodule) can thus be

recovered from Lemma 5.5.3. Note also that the commutative diagram

BB �BG BB BB

BB BG

implies that the induced actions of Shvgr;c.BG/' C�gr.BG/-Modgr;perf 'Q`Œx�
Sn-Modgr;perf via these

two actions (on the left and right) agree. In particular, the two actions of C�gr.BG/ on any R2H
gr
n obtained

from restricting the two actions of C�gr.BB/ along C�gr.BG/! C�gr.BB/ agree; see also [28, Lemma 5.1].

5.5.9 Reducing to the weight heart By construction HHH is obtained by applying Hochschild homology
termwise (via the weight complex functor) to an element R 2 H

gr
n . This was formulated geometrically in

Section 5.2.1. Since all the categorical actions are weight exact, for the purpose of describing the action
of Q`Œx� on HHH, we can assume that R 2 H

gr;~w
n and forget about the weight complex functor. The

action of Q`Œx�'C�gr.BB/ on HHH.R/ can thus be obtained by applying Lemma 5.5.3 where ODVectgr,
O0 D Shvgr.BB/ren, CD Shvgr.G=B/

ren, c1 DQ`;G=B , and c2 D p�R. Indeed, this is because HHH.R/

is given by (the cohomology of)

C�gr.BB; ��p
�R/'Hom

gr

Shvgr;c.G=B/
.Q`;G=B;p

�R/:

5.5.10 The action of Q`Œx�Sn on HHH We can restrict the action of Q`Œx� on HHH to Q`Œx�
Sn �Q`Œx�

and obtain an action of Q`Œx�
Sn , which is the action described in [28]. We will now realize this action

more geometrically. We start with the following result:

Lemma 5.5.11 For R 2 H
gr;~w
n , the action of Q`Œx�

Sn D C�gr.BG/ on

HHH.R/D H�.Hom
gr

Shvgr;c.G=B/
.Q`;p

�R//

is given by the Shvgr;c.BG/-module structure on Shvgr;c.G=B/ via Lemma 5.5.3, where the former acts
via pulling back along G=B! BB! BG.
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Proof By definition, the C�gr.BG/-action is given by restricting along C�gr.BG/ ! C�gr.BB/. The
result thus follows by applying Lemma 5.5.3(ii) to the case where O D Vectgr, O0 D Shvgr.BG/ren,
O00 D Shvgr.BB/ren, CD Shvgr.G=B/

ren, c1 DQ`;G=B , and c2 is p�R.

Lemma 5.5.12 For R 2 H
gr;~w
n , the action of C�gr.BG/ on HHH.R/ described above agrees with the one

coming from the Shvgr;c.BG/-module structure on Shvgr;c.G=G/ via Lemma 5.5.3 and the equivalence

HHH.R/D H�.Hom
gr

Shvgr;c.G=G/
.Q`;G=G ; q�p

�R//' H�.Hom
gr

Ch
u;gr
G

.Q`;G=G ; tr.R///:

Proof Consider the (non-Cartesian) commutative square

G=B

BB �BG BB G=G

BG

p q

where p and q form the horocycle correspondence. Note that p� and q� are Shvgr;c.BG/-linear. By
rigidity of Shvgr;c.BG/, p� and q� are also Shvgr;c.BG/-linear. But now, we have a natural equivalence

Hom
Shvgr.BG/ren

Shvgr.G=B/ren
.Q`;p

�R/'Hom
Shvgr.BG/ren

Shvgr.G=B/ren
.q�Q`;p

�R/

'Hom
Shvgr.BG/ren

Shvgr.G=G/ren
.Q`; q�p

�R/ 2 Shvgr;c

�
G

G

�
� Shvgr

�
G

G

�ren
:

The proof concludes by applying Hom
gr

Shvgr;c.G=G/
.Q`;�/ as in Lemma 5.5.3 and using Lemma 5.5.11.

The action above has a more explicit description in terms of Theorem 3.3.4. We start with the following
result:

Lemma 5.5.13 We have an equivalence of Q`Œx�
Sn-Modgr;perf-module categories (or equivalently, of

Shvgr;c.BG/-module categories)

Hom
gr

Ch
u;gr
G

.Spr
gr
G
;�/ W Ch

u;gr
G

'
�!Q`Œx; � � Q`ŒSn�-Modgr;perf ;

where the Shvgr;c.BG/-module structure on the left-hand side is inherited from the embedding Ch
u;gr
G

,!

Shvgr;c.G=G/ and where the C�gr.BG/-Modgr;perf-module structure on the right-hand side comes from the
natural morphism of algebras

.5.5.14/ Q`Œx�
Sn ' C�gr.BG/' End

gr

Shvgr;c.BG/
.Q`/! End

gr

Ch
u;gr
G

.Spr
gr
G
/'Q`Œx; � � Q`ŒSn�

given by Lemma 5.5.4. Moreover , this morphism of algebra is the obvious one , given by the embedding
of symmetric polynomials on x to all polynomials.
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Proof Instead of running the proof of Theorem 3.3.4 relatively over Vectgr, we could have run it relatively
over Shvgr.BG/ren. Then we obtain an equivalence of Shvgr.BG/ren-module categories (or equivalently,
of Q`Œx�

Sn-module categories)

Ch
u;gr;ren
G

'
�!Q`Œx; � � Q`ŒSn�-Mod.Shvgr.BG/ren/'Q`Œx; � � Q`ŒSn�-Mod.Q`Œx�

Sn-Mod/;

where the category on the right-hand side is formed using the natural morphism of algebras (5.5.14), by
Corollary 5.5.6. Note also that the equivalence of categories in Theorem 3.3.4 is obtained by further
composing with the forgetful functor

Q`Œx; � � Q`ŒSn�-Mod.Shvgr.BG/ren/'Q`Œx; � � Q`ŒSn�-Mod.Q`Œx�
Sn-Mod/

forgetful
�����!Q`Œx; � � Q`ŒSn�-Mod.Vectgr/'Q`Œx; � � Q`ŒSn�-Modgr :

Now, observe that the forgetful functor is in fact an equivalence of categories. The proof of the first part
thus concludes.

We will compute the morphism (5.5.14) explicitly, as stated in the last sentence of the lemma. Consider
the following (non-Cartesian) commutative diagram:

B=B G=G

BB BG

h

q

h

q

Now, applying Lemma 5.5.4 and the fact that Sprgr
G
' q�Q`, we see that the natural algebra morphism

C�gr.BG/' End
gr

Shvgr;c.BG/
.Q`/! End

gr

Shvgr;c.G=G/
.Spr

gr
G
/

factors as

C�gr.BG/ C�gr.BB/ End
gr

Shvgr;c.B=B/
.Q`/ End

gr

Shvgr;c.G=G/
.Spr

gr
G
/

Q`Œx�
Sn Q`Œx� Q`Œx; � � Q`Œx; � � Q`ŒSn�

where the maps in the bottom row are the obvious ones. The commutativity of the third square is due to
Theorem 3.2.1(iii). The commutativity of the other two squares is obvious. The desired statement then
follows from the commutativity of the outer square in the diagram above.

We obtain the following refinement of Theorem 4.4.15:

Corollary 5.5.15 We have an equivalence of Q`Œ Qx�
Sn-Modgr zX ;gr zY ;2-per;perf-module categories

)Ch
u;gr
G
' zBgr

n -Mod
gr zX ;gr zY ;2-per
nilp Qy

‰2-per

'
���! QCoh.Hilbn =G

2
m/

2-per
Hilbn; Qx

;

where the Q`Œx�
Sn-Modgr zX ;gr zY ;2-per;perf-module category structure on the first two (resp. last) categories

(resp. category) is given by Lemma 5.5.13 (resp. by the Hilbert–Chow map and forgetting the Qy-variables).

Similarly, we have the corresponding statement for the small category variant by passing to the full
subcategories of compact objects.
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Proof Lemma 5.5.13 above, combined with Koszul duality, implies that we have an equivalence of
Q`Œ Qx�

Sn-Modgr zX ;gr zY ;2-per;perf-module categories

)Ch
u;gr;ren
G

' zBgr
n -Mod

gr zX ;gr zY ;2-per
nilp Qy

;

where on the right, the module structure is induced by the algebra map

Q`Œ Qx�
Sn !Q`Œ Qx; Qy�

Sn !Q`Œ Qx; Qy� Q`ŒSn�DW zB
gr
n ;

which is geometrically realized as coming from the natural morphism

A2n=Sn!A2n==Sn!An==Sn:

The commutative diagram (4.2.2) implies that ‰2-per is linear over Q`Œ Qx; Qy�
Sn-Modgr zX ;gr zY ;2-per (see also

[35, Remark 3.11]), where the Q`Œ Qx; Qy�
Sn-Modgr zX ;gr zY ;2-per-module category structure is given by the

Hilbert–Chow morphism Hilbn!A2n==Sn. In particular, ‰2-per is linear over Q`Œ Qx�
Sn-Modgr zX ;gr zY ;2-per.

Thus we obtain an equivalence of Q`Œ Qx�
Sn-Modgr zX ;gr zY ;2-per-module categories

zBgr
n -Mod

gr zX ;gr zY ;2-per
nilp Qy

‰2-per

'
���! QCoh.Hilbn =G

2
m/

2-per
Hilbn; Qx

:

5.5.16 Completing the proof of Theorem 5.5.1 In Lemma 5.5.12, we show that the action of Q`Œx�
Sn on

HHH as given in [28] comes from the Shvgr;c.BG/-module category structure on Ch
u;gr
G

. In Lemma 5.5.13,
we show that this module category structure is induced by an explicit map of algebras, which is then used
in Corollary 5.5.15 to show that this module structure is compatible with the one on the Hilbert scheme
side, where the structure is induced by the Hilbert–Chow morphism. But now, this structure is responsible
for the geometric construction of the action of Q`Œx�

Sn on HHH and the proof concludes.

5.6 The support of Fˇ on Hilbn

We will now show that for a braid ˇ, the support of Fˇ on Hilbn, where Fˇ is as in Theorem 5.4.6, can
be bounded above using the number of components of the link associated to ˇ. This is the content of
[28, Conjecture 7.2(b) and (c)]. Unlike what is implied over there, however, we do not deduce this as a
consequence of Theorem 5.5.1. The obstacle is that Theorem 5.5.1 is a statement about global sections of
a sheaf, whereas the statement we are after is one about the support before taking global sections, which
is more local in nature. The route we take is thus via the theory of supports as developed in [3; 10], which
is inherently local.

As in the previous subsection, to keep the exposition light, we will elide the difference between the
2-periodic and sheared versions of the various categories involved, passing seamlessly between, for
instance, x;y and Qx; Qy.

5.6.1 Subspaces of Hilbn and supports of Fˇ We start with some notation regarding various subspaces
of Hilbn which will appear as supports of Fˇ.
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Definition 5.6.2 (i) For ˇ 2 Brn a braid on n strands, we define wˇ 2 Sn to be the corresponding
permutation.

(ii) For each w 2 Sn, we let A2n
w �A2n denote the closed subscheme of A2n defined by the relations

xi D x0
w.i/

, where x1; : : : ;xn;x
0
1
; : : : ;x0n are the coordinates of the A2n.22

(iii) We let An
w WD A2n

w �A2n An be the closed subscheme of the diagonal An, where An ! A2n is
the diagonal map. Alternatively, if we let the xi denote the coordinates of the diagonal An, then An

w is
defined by the relations xi D xw.i/.

(iv) For each w 2 Sn, we let xw denote its conjugacy class, .An
xw/==Sn � An==Sn the image of An

w in
An==Sn, and An

xw �An the preimage of .An
xw/==Sn in An. In other words, An

xw is the orbit of An
w under the

Sn action and An
xw==Sn its GIT quotient.

(v) For each w 2 Sn, we let Hilbn; xw � Hilbn denote the preimage of An
xw==Sn under Hilbn!A2n==Sn!

An==Sn, where the first map is the Hilbert–Chow map and the second map is the projection onto the first
factor.

(vi) For each w 2 Sn, we let Hilbn; Qx; xw be the closed subscheme of Hilbn fitting in the Cartesian square

Hilbn; Qx; xw Hilbn; Qx Hilbn

An
xw==Sn An==Sn A2n==Sn

where the bottom right horizontal map is induced by An 'An � f0g !A2n. Equivalently, Hilbn; Qx; xw D

Hilbn; Qx \Hilbn; xw.

Note that all of these subschemes are stable under the scaling action of Gm. It thus makes sense to talk
about Gm-equivariant (quasi)coherent sheaves on these spaces.

Remark 5.6.3 Since these schemes are used for the sole purpose of making statements about set-
theoretical supports of (quasi)coherent sheaves, any possible nonreduced or derived structure is not
relevant to us. For definiteness, we take the underlying reduced classical schemes if any nonreduced or
derived structure is present.

With the definitions in place, we are now ready to state the main result of this subsection, whose proof
will conclude in Section 5.6.12 below.

Theorem 5.6.4 [28, Conjecture 7.2(b) and (c)] Let ˇ be a braid on n strands and wˇ 2 Sn the associated
permutation. Then Fˇ 2 Perf.Hilbn =G2

m/
2-per
Hilbn; Qx

(see Theorem 5.4.6) is set-theoretically supported on
Hilbn; Qx; xwˇ , ie Fˇ 2 Perf.Hilbn =G2

m/
2-per
Hilbn; Qx; xwˇ

.
22Note that A2n

w has dimension n; the superscript is simply to indicate that it is a closed subscheme of A2n.
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5.6.5 Support in DG-categories As in Section 5.5, the proof is most conceptually explained in terms
of module category structures. These structures are naturally in contact with support conditions in the
sense of Arinkin and Gaitsgory in [3].

More precisely, let ODA-Modgr;perf be a symmetric monoidal category where A is a graded commutative
(DG) algebra and C an O-module category. Consider the commutative algebra AD

L
n H2n.A/ which is

doubly graded. Equivalently, SpecA is equipped with an action of G2
m. Then, for any G2

m-invariant closed
subset Y of SpecA, [3] defines the full subcategory CY of C consisting of objects supported along Y .

The algebras A in our cases are of the forms C�gr.BB � BB/ ' Q`Œx;x
0�, C�gr.BB/ ' Q`Œx�, and

C�gr.BG/ ' Q`Œx�
Sn , which are pure and concentrate in only even degrees. The two Gm actions thus

coincide, and moreover the algebra A is simply a shear of A. We can therefore ignore one of the gradings
and the closed subsets Y we will consider are simply Gm-invariant closed subsets of A2n, An, and An==Sn.
These are precisely the ones that appear in Definition 5.6.2.

Remark 5.6.6 Since these are the only cases that we are interested in, we will assume that all of our
commutative graded DG-algebras A used to study supports are pure and concentrated in even degrees.

Remark 5.6.7 Strictly speaking, [3] works with big categories whereas we formulate everything using
small categories. This is not a problem, however, since all of our categories are compactly generated and
all actions are compact preserving. Alternatively, we could formulate everything using big categories by
working with, for example, Hgr;ren

n and Shvgr.BG/ren, etc. We chose not to do so since, for example, Hgr
n

is a much more familiar object than H
gr;ren
n .

5.6.8 Supports of Rouquier complexes We will now formulate the support conditions satisfied by
Rouquier complexes. Recall that for a braid ˇ on n strands, we use Rˇ 2 H

gr
n to denote the associated

Rouquier complex. As seen above, Hgr
n WD Shvgr;c.BB �BG BB/ has a natural module category structure

over Shvgr;c.BB�BB/'Q`Œx;x
0�-Modgr;perf . By [3, Section 3.5 and E.3.2], it makes sense to talk about

the support of any element in H
gr
n relative to Q`Œx;x

0�-Modgr;perf . More precisely, given any conical closed
subset Y �A2n (with respect to the usual scaling action of Gm), we can talk about the full subcategory

.Hgr
n /Y ' Hgr

Shvgr;c.BB�BB/ Shvgr;c.BB �BB/Y ' Hgr
Q`Œx;x0�-Modgr;perfQ`Œx;x

0�-Mod
gr;perf
Y

,! Hgr
n

of objects supported on Y .

The main computational input is the following result:

Proposition 5.6.9 Let ˇ 2 Brn be a braid on n strands. Then Rˇ 2 H
gr
n is supported on A2n

wˇ
with respect

to the action of Shvgr;c.BB �BB/ on H
gr
n .

Proof This is essentially [28, Theorem 5.2] but formulated in a more “local” way. For the sake of
completeness, let us also sketch a more geometric proof, which follows the usual strategy. Namely, we
decompose ˇ into a product of simple crossings.
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We thus start with the case of a single simple crossing ˇi . Then wˇi
is a simple permutation. Consider

the stack BnBwˇi
B=B. Observe that

C�gr.BnBwˇi
B=B/'Q`Œx;x

0�=.xk �xwˇi
.k//;

and hence,
Shvgr;c.BnBwˇi

B=B/'Q`Œx;x
0�=.xk �xwˇi

.k//-Modgr;perf :

Consequently, any object in Shvgr;c.BnBwˇi
B=B/ is supported on A2n

wˇi
, relative to

C�gr.BB/ C�gr.BB/-Modgr;perf ' Shvgr;c.BB �BB/:

Now, let jwˇi
W BnBwˇi

B=B! BnG=B. Then by rigidity of Shvgr;c.BB �BB/,

jwˇi
;�; jwˇi

;! W Shvgr;c.BnBwˇi
B=B/! Shvgr;c.BnG=B/

are linear over Shvgr;c.BB �BB/, and hence they both preserve supports. In particular, the Rouquier
complexes Rˇi

and Rˇ�1
i

are both supported on A2n
wˇi

.

For a general braid ˇ, we write ˇ D ˇ1 : : : ˇm. Then Rˇ is obtained using the usual convolution diagram
for Hecke categories. The proof concludes by applying [3, Proposition 3.5.9] to the convolution diagram
realizing Rˇ as a product of Rˇi

.

5.6.10 The support of tr.Rˇ/ The rest of the proof of Theorem 5.6.4 is straightforward and follows
essentially the same strategy as the one used in Section 5.5. Namely, it amounts to transporting the
support condition on Rˇ established in Proposition 5.6.9 around to Ch

u;gr
G

and then to Hilbn. We will now
consider the first part.

Corollary 5.6.11 Let Rˇ be the Rouquier complex associated to a braid ˇ. Then the support of
tr.Rˇ/ 2 Ch

u;gr
G

, relative to Shvgr;c.BG/'Q`Œx�
Sn-Modgr;perf , lies inside An

xw==Sn.

Proof Recall that trD q!p
�, where p and q are given in the following diagram:

BB �BG BB G=B G=G

BB �BB BB BG

p q

Applying [3, Proposition 3.5.9] and the fact that supports are preserved under functors compatible
with module category structures, we see that p�Rˇ has support in An

wˇ
WD A2n

wˇ
�A2n An relative to

Shvgr;c.BB/, as a consequence of Proposition 5.6.9. Applying [3, Proposition 3.5.9] again, we see that
p�Rˇ has support An

xwˇ
==Sn relative to Shvgr;c.BG/. Now, the proof concludes by using the fact that q!

is Shvgr;c.BG/-linear.

5.6.12 Completing the proof of Theorem 5.6.4 First, recall that in geometric settings, ie when all
categories involved are QCoh of Artin stacks of finite type and module category structures are given by
pulling back along morphisms of stacks, categorical support in the sense above agrees with the usual
notion of set-theoretic support. Thus it suffices to show that the sheaf Fˇ is supported on An

xwˇ
==Sn relative
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to An==Sn. Indeed, this is equivalent to stating that Fˇ is set-theoretically supported on Hilbn; xw � Hilbn,
and hence also on Hilbn; Qx; xw D Hilbn; Qx \Hilbn; xw since Fˇ is known to have support on Hilbn; Qx by
Theorem 5.4.6 already.

But now, by Corollary 5.5.15 and, again, the fact that supports are preserved by functors that are
compatible with the module category structures, this support condition is equivalent to the one proved in
Corollary 5.6.11 above.
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