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Using a geometric argument building on our new theory of graded sheaves, we compute the categor-
ical trace and Drinfel’d center of the (graded) finite Hecke category H}j, = Ch®(SBimy) in terms of
the category of (graded) unipotent character sheaves, upgrading results of Ben-Zvi and Nadler, and
Bezrukavnikov, Finkelberg, and Ostrik. In type A, we relate the categorical trace to the category of
2-periodic coherent sheaves on the Hilbert schemes Hilb,, (C?) of points on C? (equivariant with respect to
the natural C* x C* action), yielding a proof of (a 2-periodized version of) a conjecture of Gorsky, Negut,
and Rasmussen which relates HOMFLY-PT link homology and the spaces of global sections of certain
coherent sheaves on Hilb,(C?). As an important computational input, we also establish a conjecture of
Gorsky, Hogancamp, and Wedrich on the formality of the Hochschild homology of H%,Ir,.
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1 Introduction

1.1 Motivation

Let G be a (split) reductive group, 7' C B a fixed pair of a maximal torus and a Borel subgroup, and W
the associated Weyl group. The geometric finite Hecke category associated to G, defined to be the
category of B-biequivariant sheaves/ D-modules on G, plays a central role in representation theory. Of
particular interest to us are results of Bezrukavnikov, Finkelberg, and Ostrik [12] (underived) and Ben-Zvi
and Nadler [9] (derived) which identify its categorical trace and Drinfel’d center with the category of
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2464 Quoc P Ho and Penghui Li

character sheaves constructed by Lusztig in a series of seminal papers [41; 42; 43; 44; 45] as a tool for
studying the characters of the finite group G(IFy).

The finite Hecke category has a graded cousin Chb (SBimyy), the monoidal (DG-)category of bounded
chain complexes of Soergel bimodules.! Like its geometric counterpart, (variations of) graded finite
Hecke categories play an important role in geometric representation theory, especially in Koszul duality
phenomena. See, for example, Achar, Makisumi, Riche, and Williamson [1], Beilinson, Ginzburg, and
Soergel [6], Bezrukavnikov and Yun [14], and Lusztig and Yun [46]. Of particular interest to us is the
role these categories play in one construction of the HOMFLY-PT link homology. See Bezrukavnikov
and Tolmachov [13], Khovanov [32], Trinh [57], and Webster and Williamson [59].

It is thus natural to study the categorical trace and Drinfel’d center of Ch? (SBimp) with an eye toward
both categorified link invariants and character sheaves. Indeed, the categorical trace has been studied by
Beliakova, Putyra, and Wehrli [7] and Queftfelec, Rose, and Sartori [51; 52] (underived), and Gorsky,
Hogancamp, and Wedrich [27] (derived) with applications to HOMFLY-PT link homology. Moreover, it
was proposed in [27] that an in-depth study of the categorical trace should yield a proof of a conjecture
by Gorsky, Negut, and Rasmussen [29] which relates HOMFLY-PT link homology and global sections of
coherent sheaves on the Hilbert schemes of points Hilb,(C?) on C2.

Despite their importance in both categorified link homology and geometric representation theory, many
questions are still left unanswered by these previous works:

(i) What is the Drinfel’d center of Ch? (SBimyy)?

(ii)) How are the categorical trace and Drinfel’d center of Chb(SBimW) related to the category of
character sheaves?

(iii) In type A, how are the trace and centers related to the category of coherent sheaves on Hilb, (C?2)?

Various aspects of these questions have been raised by the experts previously, but without a precise answer.
See Ben-Zvi and Nadler [9, Section 1.1.5], Webster and Williamson [58, discussion after Theorem A],
Gorsky, Hogancamp, and Wedrich [27, Section 1.5], and Gorsky, Kivinen, and Simental [28, Section 7.5].

Here we provide complete answers to the questions above (except the center case of (iii)) and as an
application, give a proof of a version (see Remark 1.5.12 for a precise comparison) of the conjecture

of Gorsky, Negut, and Rasmussen.?

Moreover, as the main computational input for answering (iii)
above, we also establish a conjecture of Gorsky, Hogancamp, and Wedrich [27, Conjecture 1.7] on the
formality of the Hochschild homology of Ch?(SBimy), which is a consequence of the formality of the
Grothendieck—Springer sheaf in our geometric setup. This formality conjecture is the main obstacle

for [27] to make the trace of Ch® (SBimyy) more explicit.

INote that the notation is somewhat abusive here since SBimy depends on the Coxeter system rather than just the Weyl group.

2The link between the Drinfel’d centers and Hilbert schemes of points on C?2 requires an entirely different technique to establish.
The details will appear in a forthcoming paper. We will not need this fact here; see also Remark 1.5.9.
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1.2 The approach

1.2.1 Categorical traces and Drinfel’d centers Unlike Beliakova, Putyra, and Wehrli [7] and Gorsky,
Hogancamp, and Wedrich [27], our computations of the categorical traces and Drinfel’d centers are
completely geometric, inspired by the arguments of Ben-Zvi and Nadler found in [9] and our previous
work [30]. This is possible thanks to our new theory of graded sheaves developed in [31], which provides a
geometric realization of Ch?(SBimy) (as the category Shvg,c(B\G/B) of B-biequivariant constructible
graded sheaves on G) within a sheaf theory with weight structures and perverse ¢-structures and sufficient
functoriality to do geometry and categorical algebra. Such a theory is indispensable for our strategy since
other geometric constructions of Ch?(SBimy) via B\G/B, such as those of Beilinson, Ginzburg, and
Soergel [6], Eberhardt and Scholbach [19], Rider [53], and Soergel, Virk, and Wendt [55], have not been
extended to include those spaces such as G/B and G/G (with conjugation actions), geometric objects
that appear naturally in the study of categorical traces and Drinfel’d centers.

While the general idea for computing the categorical traces and Drinfel’d centers (see Theorem 1.5.2)
is similar to the one in [9; 30], the implementation is more involved. This is because compared to
quasicoherent sheaves or D-modules, the categorical Kiinneth formula fails much more frequently for
constructible sheaves. But now, with the modifications done in this paper, the proof of Theorem 1.5.2
works equally well with other sheaf-theoretic settings, such as D-modules (which recovers the result
of Ben-Zvi and Nadler in [9]) or sheaves with positive characteristic coefficients (either in the classical
analytic topology when the geometric objects involved are defined over C or in the étale topology when
working over FF; = F» for some prime number p and natural number n > 1, as long as £ # p). We
choose to work with £-adic sheaves throughout due to the availability of the theory of graded sheaves in
this setting, crucial for applications to Soergel bimodules.

1.2.2 Formality of Hochschild homologies of Hecke categories An interesting feature of our approach
to the formality problem conjectured by Gorsky, Hogancamp, and Wedrich in [27] is that its solution does
not follow the usual “purity implies formality” route. This is not possible since the algebra of derived
endomorphisms of the Grothendieck—Springer sheaf is not pure, already for the simplest case when G
is a torus. Instead, it relies on a transcendental argument carried out by the second author in [36] and
a spreading argument. In type A, once the categories of graded unipotent character sheaves are computed
explicitly using the formality result, their relation to the Hilbert schemes of points on C? can then be
deduced as a combination of Koszul duality and results of Bridgeland, King, and Reid [17] and Krug [35].

1.2.3 Hilbert schemes and link invariants In terms of link invariants, the categorical trace of H%}an is
a universal receptacle for (derived) annular link invariants coming out of HgLn. As such, HOMFLY-PT
homology factors through it. Using an argument involving weight structures in the sense of Bondarko and
Pauksztello, we prove a corepresentability result for the degree-a parts of the HOMFLY-PT homology.
Matching the corepresenting objects on the Hilbert scheme side, we obtain a proof of a version (see
Remark 1.5.12 for a precise comparison) of a conjecture of Gorsky, Negutf, and Rasmussen.
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1.2.4 The use of co-categories and higher algebra The use of homotopical/categorical algebra and
oo-categories as developed by Gaitsgory and Rozenblyum [25; 26] and Lurie [38; 39] is indispensable
to our approach at many levels, from the definitions/constructions of the objects and the formulation of
the statements to the actual proofs. While being sophisticated, the theory is packaged in such a clean and
convenient way that our arguments can still be followed by readers who are not familiar with it. The readers
might also consult Ho and Li [31, Appendix A], where most of the relevant background is reviewed.

Remark 1.2.5 Employing completely different techniques involving matrix factorizations, Oblomkov
and Rozansky proved a 2-periodized version of work of Gorsky, Neguf, and Rasmussen [29] in a
series of papers [48; 49; 50]. It is not clear to us how their work fits with known results in geometric
representation theory revolving around finite (as opposed to affine) Hecke categories and character sheaves.
The appearance of affine Hecke categories and their interactions with the finite ones in their work are
themselves extremely interesting and deserve a closer look.

Our approach, on the other hand, draws a direct connection between finite Hecke categories, character
sheaves, and categorified knot invariants, where the passage from the first to the last one is as in the original
construction of HOMFLY-PT homology theory via Soergel bimodules by Khovanov in [32]. In fact, our
main result is geometric representation theoretic: we compute both the trace and the Drinfel’d center of the
graded finite Hecke categories and relate them to character sheaves, upgrading previous results of Ben-Zvi
and Nadler in [9] and Bezrukavnikov, Finkelberg, and Ostrik in [12]. The relation to HOMFLY-PT
homology is then deduced as a consequence. We note that the geometric description of the finite Hecke
categories is still conjectural in their framework; see Oblomkov and Rozansky [49, Conjecture 7.3.1]).

Their work lives in the coherent world whereas our arguments happen in the constructible world. Under
the Langlands philosophy, there should be a duality between the objects considered in their work and ours.
We expect that the two approaches are related via a graded version of Bezrukavnikov’s theorem on two
geometric realizations of affine Hecke algebras [11]. We plan to revisit this question in a subsequent paper.

In the remainder of the introduction, we will recall the basic objects in Sections 1.3 and 1.4 and then
provide the precise statements of the main results in Section 1.5.

1.3 Notation and conventions
Let us now quickly review the basic notation and conventions used throughout the paper.

1.3.1 Category theory We work within the framework of (oo, 1)-categories (or more briefly, co-
categories) as developed by Lurie in [38; 39]. By default, our categories are all co-categories. In
particular, we use the language of DG-categories as developed by Gaitsgory and Rozenblyum in this
framework [25; 26]. See also Ho and Li [31, Appendix A] for a quick recap. All of our functors and
categories are “derived” by default when it makes sense.

We let DGCatpyes,cont denote the category whose objects are presentable DG-categories and whose mor-
phisms are continuous (ie colimit-preserving) functors. Similarly, we let DGCatigem,ex denote the category
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whose objects are idempotent complete DG-categories and whose morphisms are exact (ie finite colimit-
and limit-preserving) functors. Finally, let DGCatpres,cont,c denote the 1-full subcategory (see Gaitsgory
and Rozenblyum [25, Chapter 1, Section 1.2.5]) of DGpres,cont Whose objects are compactly generated
and whose morphisms are quasiproper functors, ie compact-preserving functors. Each is equipped with a
symmetric monoidal structure — the Lurie tensor product. The operation Ind of taking ind-completion is
symmetric monoidal and factors as

Ind’
DGcatidem,ex — DGcatpres,cont,c DGcatpres,cont-

Ind
Moreover, the first functor is an equivalence of categories.

We will informally refer to objects in DGCatpres,cont (resp. DGCatigem,ex) as “large”/“big” (resp. “small”)
categories.

1.3.2 Algebraic geometry Unless otherwise specified our stacks are Artin, with smooth affine stabilizers,
and are of finite type over [F; (or I[_Tq, depending on the field of definition), where ¢ = p* for some prime
number p. We let Stk and Stkp, denote the categories of such Artin stacks over g and Fq, respectively.

We write pty = SpeclF, and pt = Spec Fq. Moreover, for any Artin stack Y over IFq, we usually use Yg to
denote an Fy-form of YJ. We will make heavy use of the theory of graded sheaves developed by Ho and
Li [31], obtained by categorically semisimplifying Frobenius actions in the category of mixed sheaves;
see Beilinson, Bernstein, Deligne, and Gabber [5]. All notation involving the theory of graded sheaves
will be the same as in [31]. We will now recall only the main pieces of notation from there.

As the theory of graded sheaves is built on top of the theory of mixed £-adic sheaves, we fix a prime
number £ # p throughout this paper. For any Artin stack Yo over F; and Y its base change to Fq,
we will use Shvy, ¢(Y0), Shvim(Yo), and Shvi, (Yo)"™" := Ind(Shvm ¢ (Yo)) (resp. Shvg (Y), Shvg (Y), and
Shvg (Y)™" :=Ind(Shvg,c(¥)"™")) to denote the DG-category of constructible mixed (resp. graded) sheaves,
the DG-category of mixed (resp. graded) sheaves, and the renormalized DG-category of mixed (resp.
graded) sheaves on Yo (resp. Y). The first one is an object in Shvy, ¢(pty)-Mod (resp. Vect®"¢-Mod)
whereas the last two are objects in Shvp,(pty)-Mod (resp. Vect® -Mod). All the usual operations on
sheaves, when defined, are linear over these categories. Note that here, Shvg (pt) =~ Vect®, the (co-
derived) symmetric monoidal category of graded chain complexes over Qg, and Shvgr,c(pt) =~ Vect®"¢,
the full symmetric monoidal subcategory consisting of perfect complexes.

Shvgr,c(Y) is equipped with a six-functor formalism, a perverse 7-structure, and a weight/co-¢-structure in
the sense of Bondarko and Pauksztello. Moreover, it fits into the diagram

Shvim.c(Y0) 225 Shvgr ¢ (Y) 225 Shve (Y),

which is compatible with the six-functor formalism, the perverse ¢-structures, and the Frobenius weights.
Furthermore, oblvg, o gry, is simply the pullback functor along i — Y. Roughly speaking, gry, turns
Frobenius weights into an actual grading and oblv,, forgets this grading.
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For any J, G € Shvg, (), one can talk about the graded Hom-space %omgLv (y)(frl~ , §) € Vect?, the
. gr.c
category of graded (chain complexes) of vector spaces over Qg, such that

ff'fomgh\,c(xd)(oblvgr J, oblvg G) = oblvg, U—Comgngr.C(y)(?, 9) ~ @ U'Comg;vgm(y)(?, 9w,
k

where for any V € Vect®', V) € Vect denotes the k™ graded component of V. We also write

gr — gr
8ndSthr,C(y) (gj) T g{omSthr,c(y) (3’“, gj)'
See Ho and Li [31, Appendix A.2.6] for a quick review on enriched Hom-spaces.

Since we always make use of the renormalized categories of sheaves (for example, Shv,(Yo)™" and its
graded counterpart Shvg,(Y)™") introduced by Arinkin, Gaitsgory, Kazhdan, Raskin, Rozenblyum, and
Varshavsky [4] and used extensively in [31] rather than the usual categories, we will omit ren from the
notation of the various pull and push functors. For example, we will simply write f*, fx, f', and f;
rather than f% . fx.rens frons and fi ren as in [31].

Remark 1.3.3 We deviate slightly from the convention used in [31] in two places:
(i) The category Vect® -Mod of Vect® -module categories is denoted by Modyecter there.

(ii)) An [F4-form of Y is denoted by Y there rather than Yo as we do here. What we use here conforms
to the standard convention employed by, for example, Kiehl and Weissauer [33]. More generally, in [31],
Yn 1s used to denote an FFgn-form of Y. This is necessary because we have to deal with different forms of
the same stack over different fields of definition. For example, see [31, Section 2.7].

1.3.4 Grading conventions The different grading conventions appearing in the theory of HOMFLY-PT
link homology can be a source of confusion (at least to the authors). We will now collect the various
grading conventions we use and where they appear. Serving as a point of orientation, this subsubsection
should thus be skipped, to be returned to only when the need arises.

In Vect®', we use X to denote the formal grading and C the cohomological grading. Sometimes, to
emphasize the grading convention in the presence of other gradings, we also use Vect®X in place of Vect®".
As most DG-categories in this paper are module categories over Vect®', given two objects c¢; and ¢, in
such a category C, the Vect®-enriched Hom, Hom§ (¢, ¢2) € Vect® is a graded chain complex. The
gradings X and C therefore also apply to fHom%r(cl , ¢2). We refer to this as the singly graded situation
(as the cohomological grading is not a formal grading). This is our default grading.

The 2-periodic construction in Section 4.3 allows one to exchange an extra grading with 2-periodization.
It is used in Section 4.4 to introduce an extra grading on (the JHom®" in) any Vect®-module category by
turning it into a Vect®X-8"Y-module category. As the notation suggests, the extra grading is denoted by Y.
Moreover, all the cohomological shearing and 2-periodization in this paper will be with respect to this
Y-grading. In other words, the Y-grading is artificially introduced and then gets “canceled out.”

Geometry & Topology, Volume 29 (2025)
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small big/renormalized

mixed Hgo :=Shvpm.c(Bo\Go/Bo) Hgge” :=Shvn(Bo\Go/Bo)"™" ::Ind(Shvm,c(Bo\Go/Bo)):Ind(HEO)
graded HZ := Shvg, . (B\G/B) HE"" :=Shvg (B\G/B)™" :=Ind(Shvg,,. (B\G/B)) ~ Ind(Hg
ungraded | Hg :=Shv.(B\G/B) HE" :=Shv(B\G/B)"™" :=Ind(Shv.(B\G/B)) ~Ind(Hg)

Table 1: Different versions of finite Hecke categories.

In Section 4.4.6, the X, Y—grading is introduced, which is related to the X, Y -grading via a linear change
of coordinates. This is the grading that is used in the statements of the main theorems regarding the
conjecture of Gorsky, Negut and Rasmussen [29]. The switch is necessary to match with the usual grading
convention on the HOMFLY-PT homology side.

Finally, on the HOMFLY-PT homology, the most natural gradings, from our geometric point of view, are
given by Q’, A’, and T’, defined in Section 5.2.4. The relations between Q', A", T', O, A, T, and ¢, a,t
are also given there, where the last two grading conventions appear in work of Gorsky, Kivinen, and
Simental [28]. See also Remark 5.2.7 for the source of the difference between Q’, A’, T’ and Q, A, T.

1.4 The main players

We will now recall the definitions of the various objects/constructions that appear in our main results.

1.4.1 The various versions of finite Hecke categories Let G be a split reductive group over Fg,
equipped with a pair Ty € By of a maximal torus and a Borel subgroup. Let W be the associated Weyl
group. By convention, G, 7', and B are the pullbacks of G, Ty, and By to ﬁq.

While our primary interest lies in the graded finite Hecke category HgGr := Shvg, (B\G/B), which is
equivalent to Chb (SBimy) by Ho and Li [31, Theorem 4.4.1],% it is necessary to consider its “big” or
renormalized version Hg’ren = Ind(Hg&r) because the “big” world possesses more functorial symmetries,
such as the adjoint functor theorem (see Lurie [38, Corollary 5.5.2.9]) and the fact that compactly generated
(presentable) stable co-categories are dualizable; see Gaitsgory and Rozenblyum [25, Proposition 7.3.2].4
Consequently, we will most of the time start with the renormalized case, from which we deduce the
corresponding result for the small variants.

Due to their geometric nature, our arguments apply equally well to other variants of the finite Hecke
categories, such as the mixed and ungraded versions, which are of independent interest. For the reader’s
convenience, we summarize all the different variants in Table 1 (see also Section 1.3.2 for our conventions
regarding algebraic geometry).

3See also note 1.

4Here, “big” refers to the fact that we are working with presentable categories. On the other hand, “renormalized” refers to the
fact that we use the renormalized sheaf theory on stacks.
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We also will adopt the notation H?G’ren, H?G, Shvo(pt), and Shvo(Y) etc in statements where ? can be
gr, m, or nothing/@, that is, the ungraded case, eg H?G = Hg = Shv.(B\G/B). In this notation,
H?G’ren € Alg(Shvs(pt)-Mod) and HZ; € Alg(Shvs - (pt)-Mod). Unless otherwise specified, ? can be any of
the three.

Remark 1.4.2 (abuse of notation) The subscript 0 in, for example, Gy, By, 1o, and pt, etc can be
unwieldy and even conflicts with the use of ? introduced above. For example, Shvo(Yg) is Shv(Yp) in the
ungraded case, which does not really make sense, as it should be Shv(Y) instead in this case. Therefore,
we will, in most cases, drop it altogether without fear of confusion. For example, Shv,,(BG)"™" and
Shv, (pt) only make sense when we take BG and pt to be BG( and pt,, respectively. Similarly, we will
use HY and H>™" rather than the more precise HE, and Hg;'e".

Remark 1.4.3 The ungraded renormalized Hecke category HS" is larger than that of Ben-Zvi and
Nadler [9]. Ignoring the distinction between D-modules and constructible sheaves, their category
corresponds to Shv(B\G/ B), the usual (as opposed to renormalized) category of sheaves on B\G/B.

1.4.4 Categorical trace and Drinfel’d center As mentioned earlier, our main goal is to study the
categorical trace and Drinfel’d center of Hg . Recall the following definition:

Definition 1.4.5 (Ben-Zvi, Francis and Nadler [8, Definition 5.1]) Let A be an associative algebra
object in a closed symmetric monoidal co-category C.

(1) The (derived) trace or categorical Hochschild homology of A, denoted by Tr(A4) € C, is the relative
tensor A ® 4@ 4 A. It comes with a natural universal trace morphism tr: 4 — Tr(A) given by
tr(a) =a®ly4.

(ii) The (derived) Drinfel’d center or categorical Hochschild cohomology of A, denoted by 7(A4) € C,
is the endomorphism object End 4g grev (A). It comes with a natural central morphism z: 7(4) — 4
given by z(F) = F(ly4).

Here, we view A4 as a bimodule over itself. Moreover, A™¥ denotes an associative algebra with the same

underlying object as A but with reversed multiplications.’

Remark 1.4.6 The trace also has a natural S'-action. Moreover, the center is naturally equipped with
an E,-structure (Deligne’s conjecture), ie in the case of categories, it has a braided monoidal structure.
See Lurie [39, Sections 5.3 and 5.5].

Note that B\G/B ~ BB xpg BB and the monoidal structures on the various versions of finite Hecke
categories are given by g /* (with the appropriate sheaf theory) in the following diagram:

(1.4.7) BB xpG BB x BB xpg BB <—4— BB xpg BB xpc BB > BB x5 BB.

3In the literature, A°P is also used to denote A™. We opt to use A" since for a category A, A is usually already understood
as the opposite category.
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Depending on whether we work with the small or big/renormalized versions, these Hecke categories are
naturally algebra objects in Shvs . (pt)-Mod or Shvs(pt)-Mod, where the symmetric monoidal structures
of the latter are given by relative tensors. See also Ho and Li [31, Appendices A.2 and A.7]. Their traces
and Drinfel’d centers are computed as objects in these symmetric monoidal categories. In other words,
the ambient categories C in Definition 1.4.5 that are relevant to us are the various categories of module
categories Shvs . (pt)-Mod or Shv(pt)-Mod.

1.5 The main results

1.5.1 Trace and center of Hecke categories We start with the computations of the trace and Drinfel’d
center. The result below upgrades the main result of Ben-Zvi and Nadler [9] to the graded setting.

Theorem 1.5.2 (Theorem 2.8.3) The trace Tr(Hére") and center Z(Hye") of Hrg'e" coincide with the

?,ren

full subcategory Chg?’ren of Shva(G/G)™" generated under colimits by the essential image of H; ™" under

q1p* in the correspondence
G/B

p q
e N
B\G/B G/G
Moreover, under this identification, the canonical trace and center maps are adjoint tr — z and are identified
with the adjoint pair ¢\ p* = psq'.

en

The trace Tr(H%.) coincides with the full subcategory Chg? of Chg?’r
Namely,

spanned by compact objects.

u,? . u,?, u,?, G
Chg’ 1= (Chg"™)¢ = ChE™™" NShva ().

Equivalently, they are generated under finite colimits and idempotent splittings by the essential image of
H?G under ¢\ p*.

u,?,ren

~u,? .
The center Z(H(é) is the full subcategory Chg of Ch. spanned by the preimage of H?G under the
central functor z.

Remark 1.5.3 The Drinfel’d center of H?G, that is, working within the context of small categories, is
larger than its trace, unlike in the large category setting. This is true already in the case G = T is a torus;
see Remark 2.8.4. This seems to be new.

1.5.4 Formality of Hochschild homology By the description of the trace map above, the image of
the unit tr(1ee) € Chg®' is, by definition, the (graded) Grothendieck—Springer sheaf Spr¢., a graded
refinement of the usual Grothendieck—Springer sheaf, ie oblvg,(Sprér ) > Sprg € Chg; € Shve(G/G). By
Gaitsgory, Kazhdan, Rozenblyum, and Varshavsky [24, Theorem 3.8.5], the graded ring of endomorphisms
of this object is the Hochschild homology HH(HgGr’ren) of HgGr’ren, where Hg&r’ren is viewed as a dualizable
object in Vect® -Mod.
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Theorem 1.5.5 (Theorems 2.10.11 and 3.2.1, Gorsky, Hogancamp, and Wedrich [27, Conjecture 1.7])

The graded algebra HH(HE™") ~ Endg, v.gr.ren (Sprg) € Alg(Vect®") is formal. Moreover, we have an
G

equivalence of algebras

8ndirhl&gr,ren (Sprg) >~ H*(End¥ (Sprg)) =~ (H3 (BT)®H (T)) QW]

Chl&gr,ren
where H;‘r(—) is the functor of taking graded cohomology, ie we remember the Frobenius weights on the
cohomology (see Ho and Li [31, (4.2.1)]), and where the action of @ ¢[W] on the first tactor is induced by
the natural actions of W on T and BT .

u,gr

In type A, a result of Lusztig states that Ch;" is generated by Sprgr . As a consequence, we obtain the
following result:

Theorem 1.5.6 (Theorem 3.3.4) When G is of type A, we have
Chg® ~ End¥ .o (Spr)-Mod(Vect®) ~ (H, (BT) ®Hy, (T)) ® Q¢[W]-Mod(Vect& )P,
G

where for any graded ring R € Alg(Vect®"), R-Mod(Vect®") denotes the category of R-module objects
in Vect®', ie the category of graded R-modules, and the superscript perf denotes the full subcategory
spanned by perfect complexes (or equivalently, compact objects).

1.5.7 The Hilbert scheme of points on C2 While the results above are of independent interest in
representation theory, their relation to the HOMFLY-PT link homology and the conjecture of Gorsky,
Negut, and Rasmussen is one of our main motivations.

The first link is given by the following result, which relates the categories of unipotent character sheaves
and Hilbert schemes® of points on C2. It is a consequence of Theorem 1.5.6, Koszul duality, and a result
of Krug in [35].

Theorem 1.5.8 (Theorem 4.4.15) When G = GL,,, we have an equivalence of Vect® X 8'¥2"P¢"_module

categories (thus, also as DG-categories):

@ ChigE"™" = C[E. 7] CISul-Modgs TP ¥2% QCoh(Hilb, /G2)her .

nilpy

,2-per,C

Similarly, we have the small variant, which is an equivalence of Vect® %8’y -module categories:

u ~ o~ r & ,8rs,2-per _per ) i
O = CIS. F18 C[SalMody 5777 225 Perf(Hilby /GLAE

Here,
(i) Vect8 X-87:2Per denotes the category of 2-periodic bigraded chain complexes (see Definition 4.4.11
for the precise definition);
(i) X and i/ are multivariables (X denotes X1, ..., Xy and similarly for i/) living in cohomological

degree 0 and bigraded degrees (1,0) and (0, 2), respectively;

6Strictly speaking, the Hilbert schemes that appear in our paper are over Q. However, we have an abstract isomorphism C ~ Q,
as fields. We will elide this inconsequential difference in the introduction section.
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(iii) similarly, the action of G2 on Hilb, is induced by its action on A2, scaling the two axes with
weights (1,0) and (0, 2), respectively;

(iv) the subscript nilp; indicates the fact that we only consider the full subcategories where the variables
J act (ind-)nilpotently;

(v) the subscript Hilb, 3 indicates the fact that we only consider quasicoherent sheaves with set-

theoretic supports on the closed subscheme of Hilb, consisting of points supported on the first axis
of A? (see Section 4.2.9 for the precise definition); and

(vi) the superscripts = and 2-per denote cohomological shear and 2-periodization constructions (see
Sections 4.3 and 4.4 for an in-depth discussion on these constructions and Definition 4.4.10 for the
definitions of the 2-periodized categories of sheaves on the Hilbert schemes).

Remark 1.5.9 Theorem 1.5.8 above establishes the relation between the categorical trace of HgLn and
the category of coherent sheaves on Hilb,, set-theoretically supported “on the x-axis.” The center, on the
other hand, corresponds to the whole category of coherent sheaves on Hilb, without any support condition.
The details will appear in a forthcoming paper.

1.5.10 HOMFLY-PT link homology Using an argument involving weight structures in the sense of
Bondarko and Pauksztello, we prove a corepresentability result for the degree-a parts of the HOMFLY-PT
homology. Matching the corepresenting objects on the Hilbert scheme side, we obtain a proof of a version
of a conjecture of Gorsky, Negut, and Rasmussen.

Theorem 1.5.11 (Theorem 5.4.6, Gorsky, Kivinen, and Simental [28, Conjecture 7.2(a)]) For any
Rpge HS" associated to a braid B, there exists a natural F g € Perf(Hilb, / G2 2H'i'|°§’: . such that the a-degree

a component of the HOMFLY-PT homology of f is given by

gry.8ry & 2-per
FHomp it (it /G2)y2ver (N*T>Per, Fp),

where T is the tautological bundle. The two formal gradings (denoted by X and Y) coming from the G%
action coincide with q and /t. Moreover, the cohomological degree corresponds to /g .

See Theorem 5.4.6 for a more precise formulation.

Remark 1.5.12 Theorem 1.5.11 differs from the conjecture of Gorsky, Negut, and Rasmussen as
formulated in [28] in two important aspects. First, we work with the 2-periodized version of the Hilbert
scheme of points on C? rather than the usual version; see Remark 1.5.13 below for brief discussion of
why this is necessary for us. And second, the degrees X and Y correspond to g and /7 for us rather than
q and t; we believe that this is the correct torus action to consider. Moreover, compared to the conjecture
of Gorsky, Negut, and Rasmussen as formulated in [29], our version and the version formulated in [28]
use the usual rather than the flagged version of the Hilbert scheme; see Remark 1.5.14 for a speculation
on how to relate the two.
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Remark 1.5.13 Theorem 1.5.8 relates the category of graded unipotent character sheaves for GL,
with the 2-periodic category of (quasi)coherent sheaves on Hilb,, equivariant with respect to the scaling
G2 -action. As there is only one formal grading on the character sheaf side compared to the two G,
actions on the Hilbert scheme side, 2-periodization is necessary to relate the two. Because of this, our
theorem regarding link invariants above relates HOMFLY-PT homology and 2-periodic quasicoherent
sheaves on Hilbert schemes rather than the precise version in [28]. The same phenomenon also appeared
in the work of Oblomkov and Rozansky.

A recent work of Elias [21] introduces an extra formal grading on the Hecke category. Even though it is
highly suggestive, we do not know how this helps remove the necessity of 2-periodization.

Remark 1.5.14 The main conjecture of [29] relates HS and the category of coherent sheaves on the
(derived) flag Hilbert scheme FHilb, of C? via a pair of adjoint functors. More precisely, they relate
unbounded versions of these categories, which we expect to correspond to H5""" and IndCoh(FHilb,,),
respectively. We also expect that their pair of adjoint functors fits with ours in the diagram

H%r,ren <__) IndCOh(FHilbn)FHilbn,é <__) |ndCOh(Hi|bn)Hi|bn’£ x>~ QCOh(H“bn)H“bné,

where we suppress 2-periodization and equivariant parameter(s) altogether. Here, the compositions are
our trace and central functors. Moreover, the second adjoint pair should be given by pulling and pushing
along the natural map FHilb,, — Hilb,,.

In work of Elias [20], the category of coherent sheaves over FHilb, is speculated to be related to a
subcategory of the Hecke category generated by the Jucys—Murphy elements, which are themselves
certain relative centralizers. The methods developed in (the first part of) this paper could be extended
to study these relative centers geometrically. But it is unclear to us at the moment how to put all the
Jucys—Murphy elements fogether in a geometric way.

1.5.15 Support of Fg Thanks to the Hilbert—-Chow morphism, Hilb, — A?"/S,, the geometric
realization of HOMFLY-PT link homology given in Theorem 1.5.11 implies that it admits an action of
the algebra of symmetric functions in n variables. More algebraically, the definition of HOMFLY-PT
homology via Soergel bimodules also affords such an action (see, for example, Gorsky, Kivinen, and
Simental [28, Section 5.1]). We show that these two are the same.

Theorem 1.5.16 (Theorem 5.5.1, part of [28, Conjecture 7.2(b)]) The two actions above coincide.

Theorem 1.5.16 is a statement about the “global” property of Fg as it contains information about Fg after
pushing forward to A%" //S,,. More precisely, by [28, Section 5.1], the supports of the various a-degree
parts of the HOMFLY-PT homology of a braid §, as a sheaf over A" /S,,, can be bounded above using
the number of connected components of the link associated to 5.

The support of Fg over Hilby, itself is, however, a more local (and hence more refined) property. To prove
a similar statement, we have to start by transporting the corresponding support condition on the Rouquier
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complex Rg. However, this does not quite make sense since there is no quasicoherent sheaf involved at
this stage yet. To circumvent this difficulty, we formulate this support condition using module category
structures and the notion of support developed by Benson, Iyengar, and Krause [10] and Arinkin and
Gaitsgory [3]. Transporting this structure around to the Hilbert scheme side, where it coincides with the
usual notion of support, we obtain the desired statement.

Theorem 1.5.17 (Theorem 5.6.4, [28, Conjecture 7.2(b) and (¢)]) Let B be a braid on n strands. Then
an upper bound for the support of Fg (as a sheaf over Hilb,) given in Theorem 1.5.11 is determined by
the number of connected components of the link obtained by closing up 8. See Theorem 5.6.4 for a more
precise formulation.

Outline

We will now give an outline of the paper. In Section 2, we study the categorical traces and Drinfel’d
centers of the various variants of the finite Hecke categories and relate them to the theory of character
sheaves. In Section 3, we prove the formality result for the graded Grothendieck—Springer sheaf, of
which formality of the Hochschild homologies of the graded finite Hecke categories is a consequence.
In type A, this result gives an explicit description of the categorical trace of H5""™". This is followed by
Section 4, where the relation between unipotent character sheaves and Hilbert schemes of points on C? is
established. We conclude with a proof of aversion (see Remark 1.5.12 for a precise comparison) of the
conjectures by Gorsky, Negut, and Rasmussen in Section 5.

We note that the different sections are largely independent of each other, both in terms of techniques
and results. More precisely, the sections can be grouped as follows: (Section 2), (Section 3), (Sections 4
and 5). The reader can read each group mostly independently, referring to the other parts of the paper
mostly to look up the notation.

2 Categorical traces and Drinfel’d centers of (graded) finite Hecke
categories

This section is dedicated to the proof of the first main theorem, Theorem 1.5.2 (which appears as
Theorem 2.8.3 below), which relates the categorical trace and Drinfel’d center of a finite Hecke category
and the category of unipotent character sheaves. We work with mixed, graded, and ungraded versions and
in both settings of “big” and “small” categories. One interesting feature is that the trace and center of
a “big” (also known as renormalized) finite Hecke category coincide, whereas the center of the “small”
version is larger than its trace.

In what follows, Section 2.1 reviews basic definitions and outlines the basic strategy. In Sections 2.2
and 2.3, we study the categorical analog of Kiinneth formula for finite orbit stacks and the Beck—
Chevalley condition, respectively. As the trace/center is computed by the colimit/limit of a certain
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simplicial/cosimplicial category, the categorical Kiinneth formula allows one to interpret each term
in the (co)simplicial diagram algebro-geometrically, whereas the Beck—Chevalley condition acts as a
descent-type result which allows one to realize the colimit/limit more concretely in terms of sheaves on
some space. In Section 2.4, we formulate the monoidal structure of finite Hecke categories in terms of
1-manifolds, which is then used in Section 2.5 to formulate the cyclic bar simplicial category computing
the trace of a finite Hecke category in terms of the geometry of a circle. The geometric formulation
developed thus far is applied in Section 2.6 to verify the Beck—Chevalley conditions in a uniform way.
The computations of the traces and centers conclude in Section 2.7. In Section 2.8, we introduce the
various versions of the category of (graded) unipotent character sheaves and state our main results thus
far in terms of these categories. In Section 2.9, we show that Tr(HgGr) inherits the weight and perverse
t-structure from the ambient category Shvg, (G/G). Finally, Section 2.10, which is mostly independent
of the rest of the paper, deduces several consequences for the trace and center of a finite Hecke category
from the rigidity of the latter.

2.1 Preliminaries

We will now review the basic definitions of the objects involved and outline the strategy employed to
prove Theorem 1.5.2.

2.1.1 Generalities regarding big vs small categories In the situation of Definition 1.4.5, the trace
Tr(A) = A®4g4~ A can be computed as the geometric realization (ie colimit) of the simplicial object
obtained from the cyclic bar construction. Namely,

Tr(4) = [A®CTD] = colim A®CTD,
where the last face map is given by multiplying the last and first factors of A and where the other face
maps are given by multiplying adjacent A factors; see also [8, Section 5.1.1; 39, Remark 5.5.3.13].

The small and big category settings are related by taking Ind via the following standard result:

Proposition 2.1.2 [9, Corollary 3.6 and Proposition 3.3] Let A € Alg(DGCatpres,cont) be a compactly
generated rigid monoidal category (see [9, Definition 3.1]). Taking Ind-completion (resp. passing to right
adjoints, resp. passing to the full subcategory (—)¢ spanned by compact objects) induces a canonical
equivalence (i)— (ii) (resp. (ii)—(iii), resp. (ii)—(i)), between
(i) the category A°-Mod of A€-module categories in DGCatigem,ex, Where A€ is full subcategory of A
spanned by compact objects,
(ii) the category A-Mod. of A-module categories in DGCatpyres cont,c>

(iii) the opposite of the category whose objects are A-module categories in the category of compactly
generated DG-categories and whose morphisms are functors that are both cocontinuous (ie limit
preserving) and continuous.
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As mentioned earlier, we will work mostly in the setting of Proposition 2.1.2(ii) even though we are
most interested in the “small” setting described in Proposition 2.1.2(i) because the former has more
functoriality.

Remark 2.1.3 This result was also proved (but not explicitly stated) in [25, Chapter 1, Section 9]. Note
also that [9] proved the result above more generally for semirigid monoidal categories. We do not need
this level of generality here.

Remark 2.1.4 In the literature, the property of being rigid is usually applied to a “small” monoidal
DG-category. By definition, a category Co € Alg(DGCatigem,ex) 1s rigid if all objects ¢ € Cy have left and
right duals. By [25, Chapter 1, Lemma 9.1.5], such a category Cy is rigid if and only if € := Ind(Cy) is
rigid in the sense of [25, Chapter 1, Definition 9.1.2]. In this case, € is compactly generated by definition.

We use the term rigid for both “big” and “small” categories. The context should make it clear in which
sense we use the term.

2.1.5 Computing colimits Recall that Ind: DGCatigem,ex — DGCatpres,cont preserves all colimits by [25,
Chapter 1, Corollary 7.2.7] and that the forgetful functor A-Mod — DGCatpyes,cont preserves all colimits
by [39, Corollaries 4.2.3.5]. Proposition 2.1.2 then implies that the colimit colim;cf (‘3? of a diagram
I — A°-Mod can be computed as

c?elilm C‘?? ~ (cioelilm Ind((??))c,
where (—)¢ denotes the procedure of taking the full subcategory spanned by compact objects. Moreover,
the category underlying the colimit on the right-hand side can be computed in DGCatpres,cont.7

2.1.6 Computing limits The forgetful functors A-Mod — DGCatpyes cont and DGCatpres,cont — Cat
preserve all limits by [39, Corollary 4.2.3.3] and [38, Proposition 5.5.3.13], where Cat denotes the
category of all (oo, 1)-categories. The underlying category of a limit in \A-Mod can thus be computed in
the category of all categories.

However, Ind does not preserve limits. In fact, this is the reason why the renormalized category of sheaves
on a stack differs from the usual category. Moreover, as we shall see, this will also be responsible for the
fact that the Drinfel’d center of the “small” version of a finite Hecke category differs from its trace.

2.1.7 The strategy The trace of Hrge" as an algebra object in Shve(pt)-Mod is given by the geometric
realization of the cyclic bar construction

Q2.1.8) Tr(HE™"), := (HErem)@snao(e+1)
?ren %,ren ?,ren o
~Hg ) ®shv(pt) Hé y ®shvs(pt) *** Bshvs(pt) HE e (Shv?(pt)—Mod)A .

In the next two subsections, we will discuss the two main technical ingredients used to understand the
geometric realization of the simplicial object above. First, the categorical Kiinneth formula for finite orbit

7Note, however, that colimits in the presentable setting are different from colimits in the category of all co-categories.
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stacks allows one to realize the terms in the simplicial object above as the categories of sheaves on certain
stacks. Second, the Beck—Chevalley condition on a simplicial category is essentially a descent-type result
that allows one to realize its geometric realization as a full subcategory of a more concrete category.

?,ren

By a duality argument, we show that the Drinfel’d center of H; ™ coincides with its trace. Finally, the

traces and Drinfel’d centers of the small versions H?G are obtained from those of the renormalized versions.

2.2 The categorical Kiinneth formula for finite orbit stacks

This subsection is dedicated to the following result:

Proposition 2.2.1 Let Yy and Z¢ be Artin stacks over pt,. Suppose that Y is a finite orbit stack. Then
the external tensor product

(2.2.2) Shva(Y)™” ®shyy (o) SIV2(2)™" 2> Shva (Y x Z)""

induces an equivalence of categories.

Proof We will treat the mixed case, ie ? = m. The graded and ungraded cases can be treated similarly.

By [4, (F.18)], we know that (2.2.2) is fully faithful. By [31, Corollary A.4.13], we know that the left-hand
side of (2.2.2) is generated by objects of the form Fy X Gy where Fy and G are constructible. Since
(2.2.2) is continuous, it suffices to show that Fo X Gg € Shvm (Yo Xpy, Z0)™" generates the category. Using
excision and the fact that Y is a finite orbit stack, we reduce to the case where Yo = BH, for a (smooth)
algebraic group Hy over ;. This case is treated in Lemma 2.2.3 below. O

Lemma 2.2.3 Proposition 2.2.1 holds when Yo = BH,, where Hy is a smooth algebraic group over pt,.

Proof It suffices to show that
Shvim,c(BHo) ®shv,, o (ptg) SMVm,e(Z0) B> Shvinc (BHo Xpty Zo)
is an equivalence of categories.
By descent along the surjective smooth map Zo — BHg X, 20 (using the (—)'-functor), we have
Shvim,c (BHo Xpy 20) = Tot(Shvm e (Hy ™" Xpty Z0))-
Then [39, Proposition 4.7.5.1] provides an equivalence of categories
(2.24) Shvin.e (BHo %pty Z0) = ((70)1(70) Qe)-Mod (Shvim,c (20)).

where ¢ : Hy — pt, and where (77¢), (70)'Qyq € Alg(Shvm,¢(pty)). Note that here, the algebra structure on
(770)1(70)'Qy is obtained from the multiplication structure of H: indeed, (1¢)1(7ro)'Qy is the homology
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C+(H) := mn'Q of H along with a Frobenius action, where w: H — pt is the pullback of 7.
Equation (2.2.4) can thus be rewritten in the following more familiar form:

Shvm,c (BHp Xpy, Z0) 22 Cx(H)-Mod(Shv ¢ (Z0)).
Note also that the action of Shvy, ¢(pty) on Shvy, (Z¢) is used to make sense of the right side of (2.2.4).
Arguing similarly (see also [25, Chapter 1, Proposition 8.5.4]),

Shvm,c(BH)p) ®Shvm.c (pto) Shvim,c(Z0) > Cx(H)-Mod(Shvm ¢ (pty)) ®Shvm.c (pto) Shvim,c(Z0)
~ Cx(H)-Mod(Shvm,c(Z9)). |

2.3 The Beck—Chevalley condition

We will now turn to the Beck—Chevalley condition, a technical condition that allows one to realize
geometric realizations (ie colimits of simplicial objects) and totalizations (ie limits of cosimplicial objects)

of categories in more concrete terms.

Definition 2.3.1 [39, Definition 4.7.4.13] Suppose we have a diagram of co-categories
c—2,0p
L
¢

which commutes up to a specified equivalence o: Vo H = H'o V.

We say that this diagram is horizontally left (resp. right) adjointable if H and H' admit left (resp. right)
adjoints HL and H'R (resp. HR and H'R), respectively, and if the composite transformation

H" oV > H YoV oHo H* & H o H' oVoHN —» Vo HE
(resp. VOHR%H’ROH/OVOHR%H/ROV/oHoHR—>H’RoV/)
is an equivalence.

We say that this diagram is vertically left (resp. right) adjointable if the transposed diagram
c Vs ¢
v |w
Vv’ /
D——D
is horizontally left (resp. right) adjointable.
Remark 2.3.2 What we call horizontally left (resp. right) adjointable is simply called left (resp. right)

adjointable in [39]. This condition on a commutative square of categories is also commonly called the
Beck—Chevalley condition.
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We are now ready to give the main statement of this subsection.

Proposition 2.3.3 (Lurie) Let C,: A°_E — DGCatpres,cont be an augmented simplicial diagram of DG-
categories. Let € = C_q, F: Cy — C be the obvious functor, and G its right adjoint. Suppose that for
every morphism « : [n] — [m] in A4+ which induces a morphism a4 : [n+ 1] >~ [0]x[n] — [0]*[m] >~ [m + 1],
the diagram

d
€m+1 —O) Cm

(2.3.4) l l

d
Cpt1 —— €y

is vertically right adjointable. Then the functor 0 : |C.| | — C is fully faithful. When G is conservative,
0 is an equivalence of categories.

Proof We will deduce this proposition from its dual version [39, Corollary 4.7.5.3].

Passing to right adjoints, we get an augmented cosimplicial object C*. Note that for each n, C" ~ G, as
only the functors change. By [38, Corollary 5.5.3.4] (see also [25, Chapter 1, Proposition 2.5.7]), we
have a canonical equivalence of categories

|e. |Aop| ~ Tot(e.|A)
Moreover, the canonical functor € — Tot(C*|A) is the right adjoint 6 & of 6.

Observe that
em+1 ¢ d° em
Gn—i—l ¢ d° en
is horizontally left adjointable as this is equivalent to (2.3.4) being vertically right adjointable. Thus

[39, Corollary 4.7.5.3] implies that 6 is a fully faithful embedding, and moreover, it is an equivalence of
categories when G is conservative. O

Remark 2.3.5 The same proof goes through when we replace DGCatpyes cont by A-Mod, where A is a
rigid monoidal category, for example, when A is Shv, (pty) or Vect® = Shvg, (pt). This is because the
forgetful functor A-Mod — DGCatprescont preserves all limits and colimits, by [39, Corollaries 4.2.3.3
and 4.2.3.5], and adjoints of an A-linear functor are automatically A-linear by [31, Corollary A.4.7].

2.4 nge" as a functor out of 1-manifolds

While it is straightforward how to apply Proposition 2.2.1, the verification of the adjointability conditions
(aka Beck—Chevalley conditions) necessary for the application of Proposition 2.3.3 is more subtle. The
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argument can be made transparent by reformulating the simplicial object (2.1.8) geometrically in terms of
. . . . . . ?,ren . .

1-manifolds. In preparation for that, we will, in this subsection, upgrade H; ™" to a right-lax symmetric

monoidal functor coming out of the category of 1-manifolds. The construction found in this subsection is

a simplification of the one found in [30].

2.4.1 1-manifolds and their boundaries Let Mnfd; denote the symmetric monoidal co-category of
1-dimensional manifolds with finitely many connected components whose morphisms are given by
embeddings and whose symmetric monoidal structure is given by disjoint unions. Note that the objects
are simply finite disjoint unions of lines and circles. Although these manifolds are, technically speaking,
without boundary, we will make use of their “boundaries” in our construction. We will now explain what
this means.

Let Mm‘d/1 be the co-category of compact 1-manifolds, usually denoted by M, with possibly nonempty
boundary, denoted by oM, such that M := M \ M € Mnfd;. Moreover, morphisms are given by
(necessarily closed) embeddings. Taking the interior gives a natural functor of co-categories

F:Mnfd| > Mnfd;, M > M.

Lemma 2.4.2 [30, Lemma 2.4.10] The functor F is an equivalence of categories. We write M + M to
denote an inverse of F.

Because of this equivalence, we will generally not make a distinction between 1-manifolds without
boundaries and compact 1-manifolds with possibly nonempty boundaries, unless confusion is likely to
occur. For instance, when M € Mnfd;, by abuse of notation,

OM :=0M =M\ M
is used to denote the boundary of M.

We also use Disk; to denote the full subcategory of Mnfd; consisting of just lines. Moreover, the category
Disk’1 := Disky XMnfd, Mnfd’1 consisting of compact line segments is equivalent to Disk; itself.

2.4.3 H?G’ren as a functor out of Mnfd; Following [30, Section 3.1.2], we will now construct a right-lax
symmetric monoidal functor
HL™": Mnfd; — Shva(pt)-Mod,

?,ren

whose restriction to Disk; is symmetric monoidal. The functor H 8

is obtained as a composition

*k,ren

Shv,
(2.4.4) Mnfd; 5 Corr(Stk) prop:sm —=—> Shva(pt)-Mod .

We will now explain the various functors and categories that appear in the diagram above. We start with
the functor M, which is defined as the composition

(2.4.5) Mnfd; 2> Corr((Spc )°P) 2285 Corr(Stk).

8Even though we write Stk, it should be understood as Stk , When we consider the mixed variant.
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2.4.6 Correspondences For any category C, Corr(C) is the category of correspondences in C. A
morphism from ¢y to ¢ in Corr(C) is illustrated, equivalently, by diagrams of the form
C1 (h— c c
lv or Z/ \’; or c1<LcL>cz.
() 5] 2
Here, i and v stand for horizontal and vertical, respectively. As usual, compositions are given by pullbacks.
More generally, let vert and horiz be two collections of morphisms in € such that vert (resp. horiz) is
closed under pulling back along a morphism in horiz (resp. vert). Then we let Corr(€)yert:horiz be the 1-full
subcategory of Corr(C) consisting of the same objects, but for morphisms we require that v € vert and
h € horiz. See [30, Section 2.8.1] for more details.
2.4.7 The functor 5 When C = Spcg,,, the category of finite CW-complexes, the functor
B: Spcg, — Corr((Spcf?:)"p),
(*B stands for boundary) at the level of objects, is given by
B(M) = (0M — M) € Spcl. .
Moreover, B sends an open embedding N < M to the following morphism in Corr((SpcﬁAn1 )°P):
OIN —— M\ N +—— M

(2.4.8) l J l l

N s M +—— M

We will often suppress the morphisms and simply use, for example, (M, M) to denote an object in
Spcﬁnl to make diagrams and formulas more compact.
2.4.9 The functor Map We have a natural functor

Map: (SpcA1)°p — Stk

which assigns to each object (N — M) € (SpcA1)°p an object (BB, BG)N'M .= BBN XBGN BGM
(see also Remark 1.4.2 and note 8), which is precisely the stack of commutative squares

N —— BB

L

M —— BG

This functor upgrades naturally to an eponymous functor

Map: Corr((SpcA1)°p) — Corr(Stk),
used in (2.4.5) above.

By construction, Map turns colimits in Spc® to limits in Stk.
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2.4.10 The functor M The functor M in (2.4.4) is given by the following result:

Lemma 2.4.11 The composition Map o8 factors through Corr(Stk)prop;sm, i€ the horizontal (resp. verti-
cal) maps are smooth (resp. schematic and proper).

Proof Let N < M be a morphism in Mnfd, ie it is an open embedding of 1-manifolds. We will now

show that the map

(24.12) (BB, BG)M\NM ~ ppM\N o BGM — BB x goon BGN ~ (BB, BG)™N,

which is induced by the left square of (2.4.8), is smooth. Since the left square of (2.4.8) is a pushout, we have
(BB, BG)M\N-M ~ (BB BG)MN x pon BBM\N

and the map (2.4.12) identifies with the vertical map on the left of the following pullback diagram:

(BB, BG)M\N-M __, ppM\N
(BB, BG)N:-N —____, ppdN
It thus suffices to show that the map
(2.4.13) BBM\N _, ppdN

is smooth. Without loss of generality, we can assume that M is connected, in which case, M is either a
circle or a line.

When N is empty, it is clear that (2.4.13) is smooth since it is simply

BBM pt,
where BBM is either BB or B /B depending on whether M is a line or a circle. Thus, it remains to treat

the case where N is nonempty.

When M is a line, the desired statement follows from the fact that (2.4.13) is a product of (copies of) of
the smooth maps idpp and App: BB — BB x BB. When M is a circle, since the only embedding of a
circle into itself is a homeomorphism, N can only be a circle or a disjoint union of lines. In the first case,
the map under consideration is an equivalence, and hence it is smooth. In the second case, we also see
that (2.4.13) is a product of (copies of) the diagonal map Agp: BB — BB x BB, which is smooth.

Next, we will show that the map
(24.14) (BB, BG)M\N-M ~ ppM\N o BGM — BB™ x poons BGM ~ (BB, BG)"MM,
BGM\ BG

induced by the right square of (2.4.8), is proper. As above, we can (and we will) assume that M is
connected. Note that when N is empty, (2.4.14) becomes

BBM s BBM y p v BGM,
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which is equivalent to

B sl G
— ~ BB® — —
B G
when M ~ S!, and to

BB — BB xpg BB
when M ~ R. Both of these are easily seen to be proper.

When N is not empty, M \ N and 9M are homotopically equivalent to a (possibly empty) disjoint
union of points. Moreover, dM — M \ N is homotopically equivalent to an inclusion of connected
components. We will thus treat them as disjoint unions of points in what follows. In particular, we can
write M \ N ~ 0M U ((M \ N)\ dM). The map (2.4.14) factors as

BBMN x  sin BGM = (BB™ xgoont BGM) x i (BBM\NNIM 5 - i vnons BGM)

— BBM X pGoM BGM,

where the last map is induced by BBM\N\OM _, pG(M\N)\oM , which is proper since it is just a
product of maps of the form BB — BG. |

2.4.15 The functor H?G’ren Applying the functor Shvy"* of [31, (2.8.13) and Theorem 2.8.20], which
is right-lax symmetric monoidal, we complete (2.4.4). Note that in our case, we only need Shv;e;1 * to
encode (renormalized) *-pullbacks along smooth morphisms and (renormalized) !-pushforwards along

proper morphisms rather than the more general case described in [31].

2.4.16 Renormalized finite Hecke categories Being a right-lax symmetric monoidal functor, Hére”
sends algebra objects to algebra objects. In particular,

He'“"(R) = Shvo((BB x BB) XpGx8G BG)™ ~ Shva(BB xpg BB)"™"

has an algebra structure, induced by the algebra structure on R € Mnfd;, whose multiplication is
given by RY2 < R. Chasing through (2.4.8), we see that this is precisely the monoidal structure on
Shve(BB xgg BB)™" defined earlier via the correspondence (1.4.7). This justifies the abuse of notation
where we use Hére" to denote both the functor and its value on R.

2.4.17 Horocycle correspondence We will now explain how the horocycle correspondence appears
naturally from this point of view. First, observe that 3S! ~ &, and hence Hére"(S 1) ~ Shva(G/G)e"
since BGS' ~ G/ G, where the quotient is taken using the conjugation action.

Let ¥: R — S! be an embedding. The functor B carries v to the diagram

ptL pt > pt < %}
R s ST« S1
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which is sent to c c
under Map, where we have used BB xgg (G/G) ~ G/ B. This is the horocycle correspondence appearing
in Theorem 1.5.2.

2.5 Augmented cyclic bar construction via Mnfd,

Using the geometric picture of Section 2.4, we will now produce an augmented simplicial object that will
be used as the input for Proposition 2.3.3. The underlying simplicial object is the same as the one that
computes the categorical trace of H?G’ren introduced in (2.1.8).

2.5.1 Circle geometry and augmented simplicial sets Consider the over-category (Mnfd;),g1. Fix
a morphism ¥ : R — S'!, and consider (Mnfdy)yys1 = ((Mnfdy),51)y/. We note that (Mnfd;), g1 has
a final object, by construction, and moreover, it is precisely the category obtained from (Disk;) /g1 :=
Disk1 Xmnfd; (Mnfdy), g1 by adjoining a final object. Similarly, the category (Mnfd;),, 1 also has a final
object and is equivalent to the category obtained from (Disk;)y,ss1 by adjoining a final object.

We will now relate (M nfdl)v, /81 and A°+" using a variation of the construction in [39, Section 5.5.3].
Note that an object of (Mnfdy),, /g1 is given by a diagram

R—)U

m/w

which commutes up to isotopy, where U is either S! or a finite disjoint union of copies of R. The set of
components 7o(S !\ ¥/ (U)) is finite: empty when U is S! and equal to the number of components of U
when it is a disjoint union of copies of R. Fix an orientation of the circle. We define a linear ordering <
on o (ST \ ¥/(U)): if x, y € S! belong to different components of S\ y/(U), then we write x < y if
the three points (x, y, ¥'(j(0))) are arranged in clockwise order around the circle, and y < x otherwise.
This construction determines a functor from (Mnfd),, /51 to the opposite of the category of finite linearly
ordered sets, which is A’}

Lemma 2.5.2 The above construction determines an equivalence of co-categories
. op
9+ . (Mnfdl)w//sl — A+,
which restricts to an equivalence of co-categories

6 .= 9+|(Di5k1)u///sl . (DiSkl)’l/j//Sl — A°P,

Proof The second equivalence is [39, Lemma 5.5.3.10]. The first part is a direct extension of the second
by adjoining a final object. |
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2.5.3 The augmented simplicial category We are now ready to construct the augmented simplicial
?,ren

category. Let ﬁ(H‘G )e be the augmented simplicial category given by the following composition of

functors:
9—1 ?,ren
(2.5.4) A% s (Mnfdy )y 51 % Mnfd; —S— Shus(pt)-Mod .

Here ¢ is the obvious forgetful functor.

Since BB xpg BB ~ B\G/B is a finite orbit stack by the Bruhat decomposition, Proposition 2.2.1
implies that Tr(HZ*")a|am = Tr(H5"), of (2.1.8); see also [39, Remarks 5.5.3.13 and 5.5.3.14]. In
particular,
Tr(HG™)n = Tr(HZ™"), ~ Shva((BB x g BB)" 7)™ for n >0
and
Tr(HE ) ~ sw,(%)ren

where, by convention, G/G denotes the quotient of G by itself under the adjoint action.

2.5.5 “Small” variants We have “small” variants H?G and ﬁ(H?G). of H?G’ren and ﬁ(H?G"e")., given by
the following diagram:

o

HG
o 5 v S
AT —— (Mnfdy)y /51 —> Mnfd; —— Corr(Stk)prop;sm Shve ¢ (pt)-Mod

Tr(HL)e

The only difference between the two versions is that in the last step, we use Shvy ., rather than Shvf_,e!n *

2.6 Adjointability

ren

We are now ready to show that ﬁ(Hé ). satisfies the adjointability condition of Proposition 2.3.3. The

result follows from a simple geometric statement about topological 1-manifolds.

2.6.1 Adjointable squares in a category of correspondences For any category C, a commutative
square in Corr(C), which illustrates two morphisms from x to )’ to be equivalent, has the shape

X < Cxy a4
[ =7
(2.6.2) Cxx' 4 Cxy’ > Cyy
I
x4 Cxly >y

where 1 and 3 are pullback squares.
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Definition 2.6.3 The commutative diagram in Corr(C) (2.6.2) is called adjointable if 2 and 4 are also
pullback squares, ie all squares are pullback squares.

2.6.4 Leto:[n] — [m] be a morphism in A} and M — N the corresponding morphism in Mnfd; via
@o 9_,‘_1; see (2.5.4). Let M+ — Ny be the morphism associated to : [+ 1] — [m + 1]. M4 can be
obtained from M by deleting the image of [—¢, ] C R in M for some fixed ¢, and similarly for N. This

construction is functorial, and hence we obtain the map M4 — N4.

We have the commutative diagram
My — M

Ny —— N
in Mnfd{, which induces, via the B construction of Section 2.4.7, the following commutative diagram in
Corr((Spcﬁn1 )°P):
My M y) —— (M\ My, M) ¢ (0M, M)

! l |

(2.6.5) (Ny\ My Ny) —— (N\ My N) «— (N\ M. N)

I I I

(3N+,N+) E— (]V\N+,N) — (E)N,]V)
Applying the Map construction, we obtain the following commutative diagram in Corr(Stkp, )prop;sm:

(BB, BGYM+M+ 1 (gp pG)yM\M+.M _£_, (pp pG)"M.M

A > 7| i A
(2.6.6) (BB, BG)N+\M+-N+ L (pp pG)N\M+.N £, (pp pG)N\M.N
Ql/ 3 ‘Il 4 Ql/

(BB, BG)N+N+ « L (BB BG)N\W+N £ (gg BG)IN:N

Lemma 2.6.7 The diagram (2.6.5) is adjointable in Corr((Spcff‘n1 )°P). As a result, (2.6.6) is adjointable in
Corr(Stk) prop:sm-

Proof The second part follows from the first part because Map turns colimits to limits, and hence,
in particular, it sends pushout squares to pullback squares. The first part is an explicit and elementary
statement about gluing 1-manifolds that is easier to check directly than to describe. We leave the details

to the reader. O
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Proposition 2.6.8 The augmented simplicial object ﬁ(Hére"). in Shvs(pt)-Mod satisfies the condition
of Proposition 2.3.3. Namely, for every a: [n] — [m] in A4, the diagram

= ren d = f,ren

Tr(HG 1 = Tr(HG

(2.6.9) l l

TH(HE a1 — Tr(HG ™)
is vertically right adjointable.

Proof Note that (2.6.9) is obtained from (2.6.6) by applying Shv,7*". By Lemma 2.4.11, in (2.6.6) the
morphisms f and p (resp. g and g) are smooth (resp. proper). To prove that (2.6.9) is vertically right
adjointable, it suffices to show that we have the natural equivalence

. | ~ !
8/ pxd” = prq' g1 S
where we start from the bottom left of (2.6.6). Indeed, we have
g ped = aps 14 = pigid' [ = pud'ai /7
where the first, second, and third equivalences are due to the following reasons, respectively:

e smooth base change for square 2, using the fact that f is smooth,

e commuting upper ! and upper * using the fact that f is smooth, and commuting lower ! and lower *
using the fact that g is proper, and

e using the fact that g is proper, the desired equivalence follows from g*q! i~ q! gx, which is the
Verdier dual of the usual proper base change result. a

Remark 2.6.10 Unlike the “big” version, the “small” variant ﬁ(Hg). discussed in Section 2.5.5 does
not satisfy the adjointability condition of Proposition 2.3.3. This is because the right adjoint to the unit
map does not preserve constructibility. Indeed, the right adjoint is given by p«q' in the following diagram:

BB
2N
BB xgg BB pt.
But now, note that p, does not preserve constructibility.

2.7 Traces and Drinfel’d centers of finite Hecke categories

We are now ready to complete the proof of the first main result. The trace case follows directly from the
discussion above and thus will be handled at the beginning of this subsection. We will then deduce the
Drinfel’d center case from the trace case.

2.7.1 Traces of finite Hecke categories We will now prove the trace part of the first main result:
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Theorem 2.7.2 The trace of H?G’ren (resp. HZ;) where H?G’ren (resp. H?G) is viewed as an algebra object
of Shva(pt)-Mod (resp. Shvs .(pt)-Mod) coincides with the full subcategory of Shvo(G/G)™" (resp.
Shve .(G/G)) generated under colimits (resp. finite colimits and idempotent completion) by the image of
Hz;re” (resp. H?G) via ¢, p* in the horocycle correspondence (see Remark 1.4.2)

G/B

(2.7.3) / x

B\G/B G/G

.. . . ?, ?, cu? ? .
Moreover, under this identification, the natural functor tr: HZ" — Tr(H™") (resp. tr: Hi; — Tr(H;)) is
identified with ¢\ p*.

Proof We start with the “big” variant H?G"e”. Propositions 2.6.8 and 2.3.3 imply that the natural functor
Tr(Hrge") — Shve(G/G)"™" is fully faithful. Moreover, the functor Hére” — Tr(Hére") < Shvo(G/G)"en
identifies with ¢, p™ in the horocycle correspondence.

By [25, Chapter 1, Proposition 8.7.4], we know that Tr(H?G’ren) is compactly generated by the essential
image of H?G — H‘ge" — Tr(Héfe”). Note that the conditions required to apply this result amount to the
existence of the “small” variant introduced in Section 2.5.5.

.. ?
Combining the two statements, we conclude that Tr(HZ"™"

) is identified with the full subcategory of
Shve(G/G)™" compactly generated by the image of H?G = Shvs .(B\ G/ B) under the horocycle corre-

: . . ? .
spondence. In particular, it is generated by the image of H'G’ren under colimits.

The “small” variant is obtained from the first by taking the full subcategories of compact objects, using
Proposition 2.1.2. The statement regarding generation under finite colimits and idempotent splittings
follows from [25, Chapter 1, Lemma 7.2.4(1")]. m|

2.7.4 Drinfel’d centers of the finite Hecke categories The case of Drinfel’d center is slightly more
subtle. Consider the following versions Hére"’! (resp. Hé!) of the Hecke categories where instead of
using Shva ™" (resp. Shvj ), we use Shvf?e:’! (resp. Shv!? c.%)- More concretely, we use g+ [ in the

correspondence (1.4.7) to define the convolution monoidal structure.

Since f is smooth of relative dimension dim B, f' ~ f*[2dim B](dim B) in the mixed case and
/'~ f*[2dim B](2dim B) in the graded case, where (—) denotes the Tate twist and (—) denotes
the grading shift defined in [31, Section 2.4.7].° Note that in the ungraded setting, we simply have
/'~ f*[2dim B]. Thus, by cohomologically shifting and Tate twisting [—2 dim B](— dim B) for the
mixed case (resp. cohomologically shifting and grade shifting [—2 dim B]{(—2 dim B) for the graded case,
resp. cohomologically shifting [-2 dim B] for the ungraded case), we obtain an equivalence of monoidal
categories

2,ren ~ ?,ren,! 7?7 ~ 2!
Hg™ = Hg (resp. Hg = Hg).

9The factor 2 is there because weight is twice the Tate twist.
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Even though the !-version is equivalent to the usual version, it is, as we shall see, technically more
advantageous to use when studying the center.

en,!

2.7.5 Observe that the category H('ér ** is self-dual as an object in Shve(pt)-Mod. Indeed, first note that

any object Y € Corr(Stk) is self-dual, with duality datum given by
pt<Y—->YxY and YxY<«Y—pt

Thus, if Y is a finite orbit stack, such as Y = BB xgg BB, Shv;en turns the self- duahty datum above
into a self-duality datum of Shvq(X)™", using Proposition 2.2.1. In particular, H Lren.! is self dualizable.

Suppose
X<«—2Z—->Y

is a morphism from X to Y in Corr(Stk). The dual of this morphism is precisely
Y« 22— X.

Thus, if X and Y are finite orbit stacks, then the functors Shve(X)™" — Shvy(Y)™" and Shve(Y)™" —
Shvs(X)™" associated to the two correspondences above are dual to each other. Note that when following
the correspondences here, we use (=)(—)".

,ren

2.7.6 We are now ready to compute the Drinfel’d centers of H

Theorem 2.7.7 The Drinfel’d center Z(Hére”) of Hrge", where the latter is viewed as an object in the
categozy Alg(Shvo(pt)-Mod), coincides with its trace Tr(H?’re") Moreover, under the identification of
Tr(H, ’re") as a full subcategory of Shva(G/G)™", the natural functorz: 7 (H Gre") 'e” can be identified
with p.q' in the horocycle correspondence (2.7.3). In particular, we have a pair of ad]omt functors tr 4 z.

Proof To simplify the notation, we will write A = H rent and B = Hére”. Moreover, unless otherwise
specified, all tensors and Jom are over Shvy(pt). We W111 therefore omit Shvy(pt) from the notation.
Recalling from Definition 1.4.5, we have

Z(A) =~ Hom g 4rev (A, A),

ie the category of continuous A ® A"V-linear functors from A to itself. As in [8, Section 5.1.1], we have
an equivalence of categories A ~ [A®(C+2)| Thus,

Hom g e (A, A) = Fom yg e (ABCTD |, A)
~ Tot(Hom 4g g (ABCTD, A)) = Tot(FHom(A%*, A))

(2.7.8) ~ Tot(A®C+D)
(2.7.9) ~ |B®E+D)
~ Tr(B).
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Here (2.7.8) is obtained by passing to the duals, using the discussion in Section 2.7.5. Moreover, (2.7.9)
is obtained by passing to left adjoints [38, Corollary 5.5.3.4] (see also [25, Chapter 1, Proposition 2.5.7]),

?,ren
¢ -
We deduce the corresponding statement for Z(B) using the equivalence of monoidal categories A ~ B.

and noticing that the resulting diagram is precisely the diagram used to compute the trace of B :=H

The second part regarding the identification of the functor z follows from the argument above. |

2.7.10 We will now study the centers of the “small” version H?G, which is more subtle than the case of
traces above.

Theorem 2.7.11 The Drinfel’d center Z(H7G) of H?G € Alg(Shvs ¢ (pt)-Mod) is equivalent to the full
?,ren .. . .

subcategory of Z(H; ") consisting of objects whose images under the natural central functor z are

constructible as sheaves on B\G/B.

Proof For brevity’s sake, we write A = H?ére"’! and Ay = H{g. Moreover, all tensors and Hom, unless
otherwise specified, will be over Shvy(pt) or Shvs .(pt) depending on whether we are working with “big”
or “small” categories, which should be clear from the context. We will thus not include Shvq(pt) or
Shvy (pt) in the notation.

By definition,
Z(Ao) =~ Hom g @ (Ao, Ao),

the category of exact Ao ® Af"-linear functors from Ay to itself. As in the proof of Theorem 2.7.7, we
have
Z(Ao) = Tot(Hom(AF". Ao)).
which naturally embeds into
Z(A) ~ Tot(Hom(A®", A)),

whose essential image is the full subcategory of Z(A) consisting of objects whose images in Hom(A®*, A)
are compact-preserving functors. Observe that all the functors between A®* (which induces functors
between Tot(Fom(A®*, A))) are compact preserving, since we only push along schematic (in fact proper)
morphisms, by Lemma 2.4.11. Thus Z(Ay) is, equivalently, the full subcategory of Z(A) spanned by
objects whose images in

Hom(AB?, A) ~ Hom(Shva(pt), A) ~ A ~ Shvg (B\G/B)™"

are compact, ie constructible. But this functor is precisely the central functor z and is identified with p.q*
in the horocycle correspondence (2.7.3), as in the proof of Theorem 2.7.7 above.

The statement for H?G follows since HZ; ~ H?G’! and the proof concludes. |

2.8 Character sheaves

We will now state our results in terms of character sheaves. We start with the following definition:
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Definition 2.8.1 The renormalized category of mixed (resp. graded, resp. ungraded) unipotent character
sheaves of G, denoted by Chg?’ren where ? = m (resp. ? = gr, resp. ? is empty), is the full subcategory

?,ren

of Shva(G/G)"™" generated by colimits by the image of H;™" under ¢;p* in the horocycle correspon-

dence (2.7.3). Equivalently, it is compactly generated by the image of H?G under this functor.

The category of mixed (resp. graded, resp. ungraded) unipotent character sheaves of G is the full
subcategory spanned by compact objects, ie

Chi” = (ChPrem)e = chibren Shv?,c(g).
Finally, the category of mixed (resp. graded, resp. ungraded) monodromic character sheaves, denoted by
aug', is the full subcategory of Chg?’ren consisting of objects whose images under pg' are constructible,

where p and ¢ are defined in the horocycle correspondence (2.7.3).

Remark 2.8.2 The last equality in the definition of Chg? uses the following fact: if we have a fully
faithful and compact-preserving functor 4 < B, then A = A N B€. Indeed, A° € AN B¢ due to the
compact preservation assumption. On the other hand, 4 N B¢ C A€ is always true by the very definition
of compactness. In the case of interest, the fact that the functor involved is compact preserving is proved
in Theorem 2.7.2 above.

With the new notation, Theorems 2.7.2, 2.7.7, and 2.7.11 above can be summarized:

Theorem 2.8.3 The trace Tr(Hére") and center Z(Hére") of Hére" coincide with the full subcategory
Chg?’ren of Shve(G/G)"™" generated under colimits by the essential image of Hére" under ¢\ p* in the

P

B\G/B G/G

COI‘I‘GSpOHdCHCC

Moreover, under this identification, the canonical trace and center maps are adjoint tr - z and are identified
with the adjoint pair i p* = pxq'.

The trace Tr(H?G) coincides with the full subcategory C?hg? of Chg?’ren spanned by compact objects.

?,ren

Moreover, the center Z(H?G) is the full subcategory aqu of Chg spanned by the preimage of H?G

under the central functor z.

Remark 2.8.4 It is easy to see that Ch®" is contained in Che®'. In fact, the latter is strictly larger,
already when G = G, the multiplicative group. Indeed, in this case, HE"™" > Shvg (BGp)™" and
Ch:&fﬂr’re" is the full subcategory of Shvg (Gm/Gm)™" = Shvg (G X BG,)™" generated by the constant
sheaf. Moreover, the natural central functor is simply given by psx where p: G, x BG,, - BG,, is

the projection onto the second factor. Thus, to see that (':thg’ is larger than Chggr, it suffices to realize
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that 74 : LS, (Gm) — Vect® does not reflect constructibility, where LS, (Gr) is the full subcategory of
Shvg (G, ) consisting of unipotent local systems, ie it is generated by (grading shifts of) the constant
sheaves, and where 7 : G, — pt is the structure morphism.

By construction, !©

LSE (G ) ZomTQeDZTe, ¢ g8 (Q)°P-Mod (Vect®") ~ @ [a]-Mod(Vect),

where @2 = 0 and « lives in cohomological degree 1 and graded degree 2. Under this equivalence, s
corresponds to the forgetful functor Qg[a]-Mod(Vect8") — Vect8" ~ Shvg, (pt). But now, on the one hand,
the object Q; € Q[a]-Mod(Vect&") is not compact, and hence it corresponds to a nonconstructible sheaf
on the left. On the other hand, its image in Vect®" is compact.

?,ren

Remark 2.8.5 The restriction of the adjunction tr: HZ™" 2 Chg?’re" :z to small categories yields the

commutative diagram
u,?
Ch¢

tr \[L

~u,?

~Z
9 tr
)
where tr ~ totrand Z >~ z 1.

u,gr

2.9 Weight structure and perverse 7-structure on Ch /

u,gr

In this subsection, we will show that Ch* inherits the weight structure and perverse ¢-structure from the
ambient category Shvg, (G/G).

2.9.1 The perverse t-structure on Chg? We will now show that for ? € {gr, @}, the category Chg?
inherits the perverse ¢-structure from Shvs .(G/G). Moreover, Chggr inherits the weight structure from
Shvg,c(G/G).

We start with a general lemma concerning #-structures.
Lemma 2.9.2 Let D be a triangulated category equipped with a bounded t-structure whose heart is
Artinian. Let C := (L;);c1 be the smallest full DG-subcategory of D containing a collection of simple

objects {L;};ey for some indexing set I. Then C is stable under the truncation of D, and hence it inherits
the t-structure on D. Consequently, C is idempotent complete.

Proof The argument is similar to that of [31, Proposition 3.6.2]. For F € Shvy .(Y), we will show that
the following conditions are equivalent:

i) Fec.

(i) The simple constituents of H (F) belong to {L;}iey.

10The superscript gr in Hom®" and End8" denotes the Vect® -enriched Hom-spaces; see [31, Appendix A.2.6].
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Indeed, suppose J satisfies (ii). Then J can be built from successive extensions of £;’s, which then
implies that F € C, ie J satisfies (i). The other direction is obtained by observing that (ii) is closed under
finite direct sums, shifts, and cones.

(ii) is clearly stable under the perverse truncations of Shvs (YY), and hence C inherits the perverse
t-structure of Shvs (). Because this 7-structure is bounded, idempotent completeness of € follows from
[2, Corollary 2.14]. O

Corollary 2.9.3 For? € {gr, &}, that is, we are working in the graded or ungraded setting, the category
Chg? is stable under the perverse truncations of Shvs .(G/G), and hence it inherits the perverse t -structure
on Shve .(G/G).

Proof We will argue for the graded case as the ungraded case is identical and is in fact well known.

By definition, Chggr is the smallest idempotent complete full DG-subcategory of Shvg, (G/G) containing
the images tr(X) of K € HgGr that are irreducible perverse sheaves, ie they are (grading shifts of) Kazhdan—
Lusztig elements. Since tr is obtained by pulling back along a smooth map and pushing forward along
a proper map, tr()X) decomposes into a finite direct sum of simple perverse sheaves.!! Let € be the
smallest full DG-subcategory containing these simple perverse sheaves. By Lemma 2.9.2, € inherits the
perverse -structure on Shvg, . (G/G). It remains to show that € = Ch®".

Clearly, € € Chg¥. Moreover, Chi®" is the idempotent completion of C. But by Lemma 2.9.2, C is
already idempotent complete. O

2.9.4 Weight structure on Ch*

Lemma 2.9.5 The category Chggr inherits the weight structure on Shvg, (G/G). Consequently, the
trace functor tr: HE, — Ch®' is weight exact.

Proof As above, Ch®" is generated as a DG-category by tr(X) where X € HZ, is pure of weight 0. Note
that tr(X) is pure of weight 0 in Shvg, (G/G) since in the horocycle correspondence, we only pull back
along a smooth map and push forward along a proper map. Thus, the objects tr(X) form a negatively
self-orthogonal collection in Shvg, (G/G), and hence also in Ch*-#". By [16, Corollary 2.1.2] (see also
[22, Remark 2.2.6]), they form the weight heart of a weight structure on Chggr. It is clear from the
definition of this weight structure that it is compatible with the one on Shvg, . (G/G). |

2.10 Rigidity and consequences

In this subsection, we show that the finite Hecke categories are (compactly generated) rigid monoidal
categories from which we deduce various interesting consequences. This subsection is mostly independent
of the rest of the paper.

HNote that this is not necessarily the case if we work with the mixed sheaves, ie when ? = m.

Geometry & Topology, Volume 29 (2025)



Graded character sheaves, HOMFLY-PT homology, and Hilbert schemes of points on C? 2495

2.10.1 Rigidity of finite Hecke categories The rigidity of Hecke categories has been established in [9].
Proposition 2.10.2 [9, Theorem 6.2] The category Hére" is compactly generated rigid monoidal.

Proof H»™" is compactly generated by construction. Rigidity follows from the same proof as that of
[9, Theorem 6.2]. Indeed, the same argument as over there implies that H?G’ren is semirigid. But since
we are working with the renormalized category of sheaves, all constructible sheaves are compact by
definition. In particular, the monoidal unit is compact. Thus, they are rigid, by [9, Proposition 3.3]. O

Remark 2.10.3 As a consequence of Proposition 2.10.2, H?G is rigid as “small” monoidal categories in
the sense of Remark 2.1.4.

2.10.4 Rigidity of Drinfel’d centers The rigidity of finite Hecke categories implies that for their
Drinfel’d centers:

Proposition 2.10.5 The (braided) monoidal category Z(H?G’re") is semirigid. Moreover, the (braided)
monoidal category Z(H?G) is rigid (in the sense of Remark 2.1.4).

Proof The “small” case follows from [34, Remark 2.4.2]. For the “big” case, first note that by construction,

we have a (braided) monoidal functor Z(HZ;) — Z(Héren) whose image contains the compact generators

of Z(H?Gre”) see also Remark 2.8.4. But since all objects of Z(HZ;) are dualizable (as the category is
ren ren

rigid), the compact generators of Z(HG ) are also dualizable. In other words, Z(HG ) is compactly
generated by dualizable objects, and hence is semirigid by definition; see [9, Definition 3.1]. O

Directly from Definition 1.4.5, we see that the Drinfel’d center always acts on the original category and
its trace. We will use ® to denote this action. In the case of Hecke categories, we have the following
compatibility:

Corollary 2.10.6 Usmg the same notation as in Remark 2.8.5, let a € H/ Lren (resp. a € H? ) and
be Ch“’ "N (resp. b € ChG ). Then we have a natural equivalence

tr(a®z(bh)) ~tr(a) @b (resp. tr(a®@z(b)) ~ tr(a) ®b).

~u?
Proof This is equivalent to stating that the functor tr (resp. tr) is a functor of Ch Bren_ (resp. Chg -)
modules. By [9, Lemma 3.5] (resp. [34, Remark 2.4.2]), this follows from the fact that the central functor z

u,ren

is monoidal and that Ch ™" (resp. Chg;) is semirigid (resp. rigid). a

2.10.7 Hochschild homology Let ¢ be a dualizable object, with dual ¢V, in a symmetric monoidal
category C (see [25, Chapter 1, Section 4] for an extended discussion on this topic).!? Then the trace

12Note that since we are working in a symmetric monoidal category, the left and right duals coincide.
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of ¢, also known as the Hochschild homology of ¢ and denoted!® by HH(c), is an element of Ende(1¢),
where 1e is the monoidal unit of €, given by the composition

le =% c@cY ~ ¥V ®@c =5 1e,

where coev. and ev, are, respectively, the coevaluation and evaluation maps coming from the duality

datum between ¢ and cV.

The category € of interest to us is Shvy(pt)-Mod. Since Shvo(pt) is a rigid symmetric monoidal category,
[25, Chapter 1, Propositions 7.3.2 and 9.4.4] imply that any compactly generated category in Shvs(pt)-Mod
is dualizable. Given such an object A in Shvq(pt)-Mod, its Hochschild homology HH(A) is an object in
Shve (pt).

When A € Alg(Shvs(pt)-Mod) is such that the underlying object A € Shvq(pt)-Mod is dualizable, HH(A)
acquires a natural algebra structure, ie HH(A) € Alg(Shvs(pt)), by [24, Section 3.3.2].

2.10.8 We have the following result from [24, Theorem 3.8.5]. Note that the meanings of HH and Tr in
that paper are switched compared to ours. Note also that they prove it for the case where the ambient
category is DGCatpyes,cont. However, the same proof carries through for Shvq(pt)-Mod.

Theorem 2.10.9 [24, Theorem 3.8.5] Let A be a rigid monoidal category in Shvs(pt)-Mod such that A
is dualizable. Then there is a canonical equivalence of associative algebras

HH(A) =~ End} 4 (tr(14)) € Alg(Shva(pt)).
where the superscript ? in End, which is a placeholder for m (resp. gr, resp. nothing/&), denotes the

Shve, (pty)- (resp. Vect® -, resp. Vect-) enriched Hom-spaces. See [31, Appendix A.2.6].

2.10.10 Let Sprré; =tr(1 HL, )e Chg? denote the image of the monoidal unit of the finite Hecke category via
the natural functor. In the ungraded setting, this is known as the Grothendieck—Springer sheaf. In the mixed
(resp. graded) case, we will thus refer to this object as the mixed (resp. graded) Grothendieck—Springer
sheaf. Proposition 2.10.2 and Theorem 2.10.9 imply the following result:

Theorem 2.10.11 We have a natural equivalence of algebras

HH(HZ®") = &nd’ (Spri;) € Alg(Shva(pt)).

3 Formality of the Grothendieck—Springer sheaf

The first main result of this section, Theorem 3.2.1, states that Endgr(Spr%r ) € Alg(Shvg, (pt)) = Alg(Vects")
is formal. It is obtained by a spreading argument, taking as input the ungraded case, proved by the
second author using transcendental methods. Combining with a generation result of Lusztig in type 4,

I3This is not to be confused with the notion of trace used above. This is why we will exclusively use the term Hochschild
homology for the type of trace discussed here.
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the formality result provides a concrete realization of the category of graded unipotent character sheaves,
Theorem 3.3.4.

Below, the ungraded case is recalled in Section 3.1, followed by the proof of the graded case in Section 3.2
using a spreading argument. The section then concludes with Section 3.3, where everything can be made
more explicit, especially in type A.

3.1 The ungraded case via transcendental method

In this subsection, we will work over C; namely, the geometric objects are stacks over C and the sheaves
are in C-vector spaces. Let p: B/B—> G/G,q: B/B—>T/T, Indch := g™, and its right adjoint
Resch := g« p'. We have Sprg = pCp/p = Indch Cr/1 € Chg;. Here, all the quotients are obtained
by using the adjoint actions.

The category of all character sheaves Chg was explicitly computed in [36] (for simply connected groups)
and [37] (for reductive groups) by using a complex analytic cover of the adjoint quotient G/ G to reduce
the calculation to generalized Springer theory. We need the following particular statement:

Theorem 3.1.1 [37] Let G be a reductive group.
(i) There is an equivalence of DG-algebras
€nd(Sprg) =~ (H*(BT)®H™(T)) 9 C[W].
In particular, End(Spr) is a formal DG-algebra.

(ii) There is a natural equivalence Resg cp(Sprg) = (C;‘?/W;. Moreover, the natural DG-algebra homo-

morphism End(Sprg) — Snd(Resch(SprG)) ~ €nd((C?/u]{) can be expressed explicitly via the
commutative diagram

&nd(Sprg) > End(Res% _p(Sprg))
(H*(BT)®H*(T))3C[W] » (H*(BT)®H*(T))®Endc (C[W])

Endw+(a@u* (rygem (H(BT)@H™(T))RC[W]) — Endyxprygn* (1) (H* (BT)QH*(T))C[W])

where the bottom arrow is induced by the restriction of module structure along
H*(BT)®@H*(T) — (H*(BT)®H*(T)) 3 C[W].
(iii) Similarly, the natural DG-algebra homomorphism End(Cr,7) — End(Sprg) can be identified with
H*(BT)®@H™(T) — (H*(BT)®H"(T)) 3 C[W].
Picking an abstract isomorphism of fields C = Q,, we see that Theorem 3.1.1 holds equally well for

cohomology with coefficients in Q. In the rest of this section, we will work with Q, coefficients.
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3.2 Formality of the graded Grothendieck—Springer sheaf

The main goal of the current subsection is a graded version of Theorem 3.1.1 formulated in the following
theorem, whose proof will conclude in Section 3.2.11, after some preliminary preparation.

Theorem 3.2.1 Let G be a reductive group over F g> T C B and W as before.

(i) There is an equivalence of DG-algebras
End®" (Spr§) == (Hy (BT) @ H (7)) 9 Qq[W] 2= Qilx. 019 Qe[ W],

where x and ¢ are generators of the cohomology rings H; (BT) and Hg,(T'), respectively. In
particular, <‘indgr(Sprér ) is formal. Moreover, x and 0 have degrees (2,2) and (2, 1), respectively,
with the first (resp. second) index indicating graded (resp. cohomological) degrees.

(i) There is a natural equivalence Resg c B(Sprg ) ~ @?IW/T' Moreover, after taking cohomology, the
natural DG-algebra homomorphism Endgr(Sprg) — Sndgr(Resch(Sprg)) ~ 8ndgr(@?i%T) can
be expressed explicitly via the commutative diagram

H* (End® (Spré) > H*(End® (Res§ 5 (Sprg)))
(H: (BT)®HZ (T)RQ¢[W] > (Hy.(BT)®H; (T)®Endg, (Q[W])

s s

end® (HE (BT)®HE(TNBTWD — Enc gy cry (5 (BTIBHZ (T)3T W)

(H;<BT>®H;(T>)®@@[W1(
where the bottom arrow is induced by the restriction of module structure along
H; (BT) ®H,(T) — (Hy(BT) @ HL (1)) 9 Q[W].

(iii) Similarly, after taking cohomology, the natural DG-algebra homomorphism Endgr(@g’T /T) =
End® (Sprg) can be identified with

Har (BT ) ®Hy, (T) — (Hy (BT) @ Hy (T)) 3 Q[ W],
Combining with Theorem 2.10.11, we obtain the following result:
Corollary 3.2.2 The DG-algebra HH(HE'™") is formal, and we have an equivalence of DG-algebras

HH(HE™") >~ Qg[x. 8] Q¢ [W],

where x and 6 have degrees (2, 2) and (2, 1), respectively, where the first (resp. second) index indicates
graded (resp. cohomological) degree.

3.2.3 The strategy for proving Theorem 3.2.1 The passage from Theorem 3.1.1 to Theorem 3.2.1
is via a spreading argument that we will now explain. Let R be a strictly Henselian discrete valuation
ring between Z[1/(IN)] and C, where N > 0. Let 1: Spec Fq — Spec R and j: Spec C — Spec R be
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geometric points over the special and generic points of Spec R, respectively. Then we have the symmetric
monoidal equivalences of categories

Vect >~ Shv(Spec Fq) <’—,_V* LS(Spec R) % Shv(Spec C) ~ Vect,

where LS(Spec R) denotes the category of Q,-local systems on Spec R. This induces equivalences of
categories

(3.24)  Alg(Vect) ~ Alg(Shv(Spec Fq)) <—’§ Alg(LS(Spec R)) % Alg(Shv(Spec C)) ~ Alg(Vect).

Thus, if we have an algebra in Alg(Shv(Spec Fq)) whose formality we would like to establish, it suffices
to produce a natural candidate in Alg(LS(Spec R)) whose image under ;* is known to be formal in
Alg(Shv(Spec ©)).

The algebra in question is End(Spr¢), which we will now spread out to Spec R.

3.2.5 Spreading out Let Gg denote the split reductive group over Spec R given by the same root
datum as that of G. Fix Tg C Bp a pair of a maximal torus and a Borel subgroup. All the objects
considered above have natural relative versions over R. We will use the subscript R (resp. IFq, resp. C)
in the notation, for example, Sprg (resp;SprGFq, resp. Sprg.. ), when it is necessary to emphasize where
these objects live over, ie over R (resp. [y, resp. C).

Let Stgr, = BR/BR XGr/Gr Br/BR. Then we have the following composition of correspondences:

StGR
’/ \S
(3.2.6) Br/Br BRr/Br
SN N
Tr/Tr GRr/GR TR/ Tr

Lemma 3.2.7 (Mackey filtration) Stg, has a locally closed stratification indexed by w € W,

Step = | | St&,.

wew
such that on Sth, (3.2.6) is identified with
By /BR
l Ady
v ™~
. Br/BRr , , Br/BRr
TR/ TR Gr/GRr TR/ Tg

where BY = Bgr N Ady' (Bg).

Geometry & Topology, Volume 29 (2025)



2500 Quoc P Ho and Penghui Li

Proof Observe that for any stack Y, Map(S',Y) ~ Y xyxy Y. Hence, if Z is a locally closed substack
of Y, then
Map(S', 2) ~ Z xaxz Z ~ Z xyxy Z

is a locally closed substack of Y xyxy Y. Moreover, if Y = |_|i Z; 18 a stratification of Y where the Z; are
locally closed substacks of Y, then
Map(S',Y) = Y xyxy Y ~ |_| Zii Xyxy Lj |_| Zi Xyxy Zi =~ |_| Zoj X, x2; Zi = |_| Map(S', Z;)
i,j i i i
is a stratification of Y xyxy Y by locally closed substacks. Here, the third equivalence is due to the fact
that when 7 # j, Z; Xyxy Z; is empty.

Applying this to the case where Y = BB X G, BBg and the Bruhat stratification, we obtain

Stgr =Map(S'. BB xpgx BBr)=Map(S', Bg\Gr/Bg)= | | Map(S'. Bx\BrwBg/Br)
wew
= | | Map(s'. BBR)= | | BR/B}. O
wew wew

GRr ~ GRr GRr 0 ~ Doew
Corollary 3.2.8 ResTRcBR Sprgp = ReSTRcBR IndTRcBR Qe,1r/TR = QK,TR/TR'

Proof We first show that Resglfc Bx Sprg, is a local system on T'g / Tg concentrated in cohomological
degree 0. The filtration in Lemma 3.2.7 implies that Res%’jc Br Sprg has a filtration whose associated
pieces are given by (g o i)*@g,B%/B%, which is simply @Z,TR/TR' Thus, Resg;:cBR Sprg is a complex
of local systems. To see that it concentrates in degree 0, it suffices to check the stalk at a point in 7¢/ Tc.
But this is now a well-known statement; see, for example, [18, Proposition 3.2].

Generically on Tg/Tg, the map Stg, — Tg/Tg is a trivial W-cover. Thus, on this open dense
subzet, Res%’:c Br Sprg, is a trivial local system of rank |W|. This implies the same statement for
ResTII;'C B Sprg itself, as it is the IC-extension of the local system on an open dense subset. |

Corollary 3.2.9 We have that 716G /G .+ €nd(Sprg ) >~ TSt a*@f,StcR is a complex of local systems
on Spec R, ie an object in LS(Spec R). Here End denotes the sheaf of endomorphisms, and for any
R-stack Yg, my,: Yr — Spec R denotes the structure map of Y.

Proof The equivalence G /G + End(Sprg,) =~ TStG *@ £.StG is a standard statement. The second
claim follows from the first since

o) ~ 0O ~ oW ~ o) ew
st ok QU st = AT/ TrodxT* Qe st =TT/ TR Qp T 1 = (TR TR Qe TR/ TR)™
where the second equivalence is due to Corollary 3.2.8, and

TTr/Tr,* QU Tr/Tr.% = TTrxBTr,+Qt, Trx BTk

which is a complex of local systems. |
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Corollary 3.2.10 We have 1* 716G /G 5« €nd(Sprg ) =~ End(Sprg., ) and TG R/ G, ENA(Sprg,) =
q
End(Sprg)-

Proof We will prove the statement for ;* only; the proof for :* is identical. By adjunction, we have a
natural map of algebras

7 TG R/ Grox ENA(SPrG ) = TG /Ge s End(Sprge) =~ End(Sprg,.).
It suffices to show that this is an equivalence of the underlying chain complexes. But now, we have

o) oW ~NoeWw
J GG ENA(SPrG ) = 1 stk Qs , = 1 7T/ ok QF 1 7 = 7T/ Te Qi 1 70
>~ &nd(Sprg)-

Here, the third equivalence is by direct computation (as it only involves the torus) and the other equivalences

are due to Corollary 3.2.9, which holds equally over E] and C. |

3.2.11 Proof of Theorem 3.2.1 Applying the discussion in Section 3.2.3 t0 7G5 /G, End(Sprg,,)

using Corollaries 3.2.9 and 3.2.10 and the result over C, Theorem 3.1.1(i), we obtain the formality of the

algebra End(S PrGg ). But since the formality of a graded DG-algebra can be detected at the ungraded level,
q

we obtain the formality of <‘3ndgr(Sprér ) as well. In particular, we have an equivalence of DG-algebras
End®" (Sprgy) ~ H* (End® (Sprg)) =~ Qylx, 819 Q¢[W]

for some variables x and 6 whose cohomology degrees we know (ie 2 and 1, respectively) but whose
graded degrees still need to be computed.

We note that in the case of a torus, Spr%r ~ @g’T/T and we have
End®"(Spr) ~ HZ (BT) @HX(T) =~ Qylx. 0],
where x and 6 have degrees (2, 2) and (2, 1), respectively. We will deduce the general case from this case.

Over Fq, we still have the equivalence Resg cp(Sprg) = @?%T, which is the precise statement of [18,
Proposition 3.2]. In fact, the ungraded version!* of Theorem 3.2.1(ii) follows from (3.2.4), Corollary 3.2.10
and the complex version, which is Theorem 3.1.1(ii). In particular, at the ungraded level, the natural
algebra map
End(Sprg) — End(Resch Sprg)

is identified with

Qelx, 018 Qe[W] > Endg, QW] ® (H*(BT)@H™(T)) = Qlx, 01® Endg, (Qe[W)).
The grading on the right is known, as this is the case of a torus. By degree considerations, x and 8 on the
left must have degrees (2,2) and (2, 1), respectively.

The identifications of the algebra morphisms in Theorem 3.2.1(ii) and (iii) follow from the ungraded case. O

14That is, we still work over Fq, but forget the grading. In other words, we work with Shv rather than Shvg,.
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Remark 3.2.12 In the above, we used the fact that the formality of a graded DG-algebra (ie a DG-algebra
with an extra formal grading) can be detected after forgetting the grading. This can be seen, for example,
by applying the main result of [47] and the fact that the formation of a certain spectral sequence in loc. cit.
commutes with forgetting the formal grading.

We expect that the same statement also holds for the formality of a morphism between formal graded
DG-algebras. However, we know neither how to prove this statement nor a place where it is proved.
Because of that, the statements appearing in Theorem 3.2.1(ii) and (iii) are only at the level of cohomology
groups.

3.3 An explicit presentation of Ch\>*'

The main goal of this subsection is to give an explicit presentation of Chggr. We will only fully work out
type A case.

3.3.1 A generation statement in type 4 We first recall the following result, which is well known to
experts. We include it here for the reader’s convenience.

Proposition 3.3.2 Let G be a reductive group of type A over Fq. Then Chg; is generated by the
Grothendieck—Springer sheaf Sprg.

Proof Let F € Chg;. Then, by Corollary 2.9.3, we know that F can be built from successive extensions
of irreducible character sheaves. It thus suffices to show that when & is irreducible, it is a direct summand
of Sprg.

By [41, Theorem 4.4(a)], F is a summand of IndgC p(X) for some cuspidal character sheaf X on L,
the Levi factor of some parabolic subgroup P of G. The group A(G) := Z(G)/Z°(G) acts on F via a
character x5 which is the composition 4(G) — A(L) X% Q,, where xx is the action of A(L) on X.
Since J is a unipotent character sheaf, yg is trivial, and hence so is xx.

We claim that if L is not a torus, then X as above with trivial x g must be zero, which would force F to
be a summand of Ind$ _ 5(Q;) = Sprg. Indeed, by [42, (7.1.3)], X ~ IC(Z, &)[dim X], where (, &) is a
cuspidal pair of L in the sense of [40, Definition 2.4]. Moreover, by [40, Section 2.10], the classification
of cuspidal pairs of L is further reduced to the classification of unipotent cuspidal pairs of H, where
H = Z/(s), with the group L’ being the simply connected cover of L/Z%(L) and s a semisimple
element in an isolated conjugacy class of L’. Now L is of type A4, and hence H is also of type A4 (and is
not isomorphic to a torus). Therefore, by the classification of unipotent cuspidal pairs [40, beginning of
page 206], we see that y ¢ must be nontrivial if K is nonzero (it is easy to see that y x’s (non)triviality is
preserved under the above reductions). |

We now turn to the graded version of the result above:
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u,gr

Corollary 3.3.3 Let G be a reductive group of type A over Fq. Then Ch;™" is generated by grading
shifts Sprér (—) of the graded Grothendieck—Springer sheaf. In other words, Ch*-8" is generated by Sprér as
a Vect®"¢-module category. Consequently, Ch:®”"™" is compactly generated by Spr¢. as a Vect® -module

category.

Proof As above, it suffices to show that any irreducible perverse graded character sheaf K € Chggr

appears as a direct summand of Sprér up to a grading shift. However, this can be checked after forgetting
the grading since simplicity implies purity, and moreover we have a complete description of simple pure
graded perverse sheaves by [31, Theorem 3.2.19].

The last statement follows immediately since Ch3®""" ~ Ind(Ch;®"). O

Theorem 3.3.4 Let G be a reductive group of type A over F,. Then taking iHomgCrhggr,ren (Sprér. —)
induces an equivalence of Vect® -module categories
ChE"™" ~ Qy[x. 019 Q¢[W]-Mod(Vect®) =: (H} (BT ) @ Hy,(T)) 8 Q¢[W]-Mod®
~ HH(HE"™")-Mod®" .
Taking the full subcategory of compact objects, we get
Chg® = Qqlx. 0]® Q[W]-Mod(Vect®")**" =: (H (BT) @ Hg (T) 8 Q¢ [W]-Mode"Pe"
~ HH(HE"")-Mod8"Pe

Here, perf denotes the full subcategory consisting of perfect complexes.

Proof The first statement can be obtained by a standard Barr—Beck—Lurie argument using the generation
result in Corollary 3.3.3 and the identification of HH(Hg™") in Corollary 3.2.2. The second statement
follows from the first by taking compact objects. a

4 A coherent realization of character sheaves via Hilbert schemes of points
on C?

Working in type A4, ie G = GL, for some #, this section’s main result, Theorem 4.4.15, relates the category
of graded unipotent character sheaves ChZ® =~ Tr(HZ) and the Hilbert scheme of n points on C2. The
passage from the categorical trace to the Hilbert scheme of points on C? is given by Koszul duality and a
result of Krug [35], both of which will be reviewed in Sections 4.1 and 4.2. In Section 4.3, we recall
the categorical constructions of cohomological shearing and 2-periodization. The relation between the
two allows us to introduce an extra formal grading at the cost of having to work with 2-periodic objects.
All of these results are then used in Section 4.4 to prove the main result of this section, Theorem 4.4.15.
Finally, in Section 4.5, we match various objects on the two sides, to be used in Section 5 to realize the
HOMFLY-PT homology of a link geometrically via Hilbert schemes of points.

In this section, we will work exclusively with the case G = GL,, and adopt the notation H§' := H%}an ~
Ch®(SBimy,,).
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4.1 Koszul duality: a recollection

We will now recall an equivalence of categories coming out of Koszul duality. The materials presented
here are classical, but it can also be viewed as a particularly simple case of the theory developed by
Arinkin and Gaitsgory in [3]; for example, see Section 1.3.5 therein.

4.1.1 A t-structure on Ch2®""™" By shearing, we obtain an equivalence of DG-categories
Chg®"" = Qlx. 6] Q¢[Su]-Mod®" = Qy[%. 8]® Q¢[Sn]-Mod®",

where X and _é live in degrees (2, 0) and (2, —1), respectively. Here we follow the same convention as in
Theorem 3.2.1.

The latter category has a natural ¢-structure which makes the forgetful functor to Vect®" ¢-exact, where
Vect®" is equipped with the standard ¢-structure. The equivalence of categories above then endows
Chg®™"™" ~ Qqlx, 8] Q¢[W]-ModE" with a ¢-structure compatible with the sheared -structure on Vect®",
namely, the 7-heart of Vect®" in this z-structure consisting of complexes whose support lie in degrees
(k. k) fork eZ.

Note that the algebra Qg[x, ]2 Q¢[S,] is connective with respect to this sheared z-structure on Vect®",
whereas the algebra Qg[X, 8]® Q[S,] is connective in the usual ¢-structure. In fact, by shearing, we have
a r-exact equivalence of DG-categories

ChGE ™" ~ QCOh((A” x A"[~1])/(Gm X ),

where G, scales all coordinates with degree 2.

4.1.2 Coherent objects Following [23], we define
Qelx, 819 Q¢[Sn]-Mod®" " C Qy[ix, 018 Q[Sn]-Mod®" =~ ChizE"""

to be the full subcategory spanned by objects of bounded cohomological amplitude and coherent coho-
mologies (with respect to the #-structure defined in the previous subsubsection). This category is generated
by Q¢[x]® Q¢[Sx] under finite (co)limits, idempotent splittings, and grading shifts.

4.1.3 Relative Koszul duality Consider the functor of taking §-invariants,

oo QXD Qe[Sn]. =) : Qelx, 019 Q[Sn]-Mod® " — Vect®" .

. P gr
inve := Jomg, 1+ 018G, [s,]1-Mo

Since the category on the left is generated by Q[x]® Q¢[S,], an application of the Barr—-Beck—Lurie
theorem as in Theorem 3.3.4 above implies that we have an equivalence of categories

inve

f— — I'I"I f— f—
Qlx. 018 Q[Snl-Mod®™*" =L End¥ yorcon (Qe[x] 9 Qe[Sa])-ModE"Pert

= Q¢[x,819Q¢[Sn]-Mo
~ Qqlx. y]® Qy[Sul-Mod#"Per,
where the y live in degrees (=2, 0).

We refer to this equivalence as the (relative) Koszul duality.
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4.1.4 To simplify the notation, we let V' denote a graded vector space of dimension # living in graded
degree 2 and cohomological degree 0, equipped with a basis and hence also a permutation representation
of W =S,,. Then

Qel0] ~ Sym Vg[—-1],  Qe[x] ~ Sym Vx[-2], Qq[y]~SymV)’,

where the subscripts x, 8, and y are there just to make it easy to keep track of the names of the variables.
To further simplify the notation, we define

An = Sym(Va[=2]@ V5[—1]) 9 Qs[Sn]
and
The equivalence of categories above then becomes

inv‘énh - A,-Mod®&©h =5 B, _Mods"Per .

4.1.5 Let
trive = Sym Vx[_z]g@ﬁ[sn] c An-MOdgr’COh,

where the 6 act trivially, ie by 0. Directly from the construction, we have

invgnh (trivg) >~ B,.

Moreover, the inverse functor to inv‘(";nh is given by taking y-coinvariants:

enh

coinvy™ 1= Q¢ @sym p —-

4.1.6 Twisting For our purposes, it is convenient to twist invt‘;nh and coinv;nh by the sign representation

of S;;. We let
ﬁznh :=Sym" VV[1]®@invg™ and CBTrTvJe,nh := Sym" V[—l]QZ)coiane,"h

be mutually inverse functors

4.1.7) vy : Ay-Mode™" 2 B, -Mode™Perf :CBTEV;”'".
4.1.8 Restricting to A,-Mods"Pef Let
trivy, := Sym(Vy[—2]) 9 Q¢[Sn] € Bp-Mode™Per,

where y act trivially, ie by 0. An easy computation using the self-duality of the Koszul complex shows
that
—— enh |
coinv), (trivy) >~ Ay,
and hence,
vy (Ap) = triv, =~ Sym(Vi[—2]) 8 Q¢[Sal.

In other words, i’rT\J/Znh simply “kills” the variables 6 in A,.
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.. . ~ ~—~— enh
This implies that |nv2,nh and coinv,,

y  restrict to a pair of (eponymous) mutually inverse functors

~—enh f gr,perf | enh
gr,per
4.1.9) invg  : Ay-Mod = B, ModnIIp tcoinv),

where the subscript nilp,, denotes the fact that the variables y act nilpotently. This is because on the one
hand, the left side is generated by A, under finite (co)limits, idempotent splittings, and grading shifts and
on the other hand, A, is sent to trivy, on which the Y act by 0.

The equivalence (4.1.9) is in fact a particularly simple case of the theory of singular support developed
in [3], where perfect complexes have 0-singular support.

4.1.10 Unipotent character sheaves The discussion above gives the following Koszul dual descriptions
of Ch®" and Ch®"™" when G = GLj:

Proposition 4.1.11 Let G = GL,, be the general linear group of rank n over Fq. Then we have an
equivalence of Vect®"“-module categories

ChisE ~ B,-Mo df{,;’erf.

Taking Ind-completion, we get an equivalence of Vect®" -module categories

u,gr,ren ~ gr
Chg®""" = By-Modfy, .

Proof The second statement follows from the first by taking the Ind-completion on both sides. The first
statement follows from Theorem 3.3.4 and (4.1.9). O

4.2 The Hilbert scheme of points on C?

We will now recall the main results of [35], which give an explicit presentation of the categories of
quasicoherent sheaves on the Hilbert schemes of points on C2. This will allow us to relate Hilbert schemes
of points on C2, ChZ#, and ChZ8""" (when G = GL,), which will be discussed in Section 4.3.

As we have been working over Q rather than C, our Hilbert schemes are in fact Hilb,, (Q ), which live
over Q. Although the two are isomorphic as abstract varieties due to the isomorphism Q; ~ C, we will
keep using Q for the sake of consistency. In fact, all varieties appearing in this subsection are over Qg,
and hence we will employ base-field-agnostic notation as much as possible; for example, A? will be used
to denote the 2-dimensional affine space over Q.

4.2.1 The isospectral Hilbert scheme Let Hilb, denote the Hilbert scheme of points on A%, A2"/S, =
(A2)"/S, the stack quotient of A" by the permutation action of S,, and A" /S, the GIT quotient.
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There is a natural map g: A2"/S, — A2" /S, and the Hilbert—-Chow morphism H : Hilb,, — A2"//S,,.
The isospectral Hilbert scheme is the reduced pullback

Iso, —— A2"

| |

Hilb, — A2"//S,

Iso, has a natural S,-action compatible with the permutation S,-action on A?” and the trivial S,-action
on Hilb,. Thus, we obtain the following commutative diagram:

lson/Sp —2— A21/S,

(4.2.2) ql lg

Hilb, —2— A21/S,.

4.2.3 A derived equivalence In the notation above, one of the main results of [35] (which is itself a
variant of [17] but has a more convenient form for us) takes the following form:

Theorem 4.2.4 [35, Proposition 2.8] The functor ¥ := ¢4 p*: QCoh(A2%"/S,) — QCoh(Hilb,) is an
equivalence of categories, where all functors are derived and where QCoh(—) denotes the (co-)derived
category of quasicoherent sheaves.

Passing to the full subcategories spanned by compact objects, we obtain an equivalence

W: Perf(A2"/S,) => Perf(Hilb,).

4.2.5 Gp-equivariant structures Each of the terms in (4.2.2) has a natural G%—action induced by the
action of G% on A? where the first (resp. second) factor of G,%., scales the first (resp. second) factor of A2
by weight 1 (resp. 2). Moreover, all maps are compatible with this action. We thus obtain an equivariant
form of the theorem above. By abuse of notation, we will employ the same notation for the equivariant
case as the nonequivariant case above. Note also that the category QCoh(Hilb, /(G?2)) below also appears
as QCth% (Hilby,) (or some variant thereof) in the literature.

Corollary 4.2.6 The functor ¥ := g4 p*: QCoh(A%" / (S, xG2)) — QCoh(Hilb, /(G?2)) is an equivalence
of categories. The same statement applies when restricted to the full subcategories of compact objects (ie
perfect complexes).

This equivalence allows us to have an explicit presentation of QCoh(Hilb, /(G?2)) as a plain (as opposed
to a symmetric monoidal) DG-category.

Proposition 4.2.7 We have an equivalence of categories
QCoh(Hilb, /(G2)) ¥ QCoh(A2"/(Sy x G2)) = Qyl%. 718 Q[Snl-Mode™",
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where the superscript gr, gr indicates the fact that we are working with bigraded complexes. Moreover, X
and y have cohomological degree 0 and bidegrees (with respect to the superscript gr, gr) (1, 0) and (0, 2),
respectively.

Proof Only the last equivalence needs to be proved. Applying Barr—Beck—Lurie to the adjunction
QCoh(A"/(Sy x G2)) <= QCoh(B(Sy x G2)) = Qi[Sal-Mod®"#"
where p: A?"/(S, x G2) — B(Sy x G2) is the natural map, we obtain an equivalence of categories
QCoh(A"/(Sy x G2)) ~ Qu[X, J1-Mod (Q¢[Sn]-Mod®"").
But the latter is equivalent to

QelX, 19 Q¢[Snl-ModE"e". O

Remark 4.2.8 Instead of (1,0) and (0, 2), we could have chosen any other bigradings for the X and »
variables. As we will see, these specific choices are made because of the connection to character sheaves
and HOMFLY-PT homology. For example, see Section 4.4.6 for the relation to the grading on the category
of graded unipotent character sheaves.

4.2.9 Supports Letiz:AL/S, — A2"/S,, denote the closed subscheme defined by the vanishing of all
the y-coordinates. Let Hilb, 3 be the pullback

Hilby, . —— Hilb,
A"ls 5, A2ys
ZC/ n——7 /n

For any closed embedding of schemes (or in fact stacks) Z C X, we let QCoh(X)~z denote the full
subcategory of QCoh(X) consisting of objects whose supports lie in Z. Similarly, we let Perf(X) 7
denote the full subcategory of Perf(X) spanned by objects whose supports lie in Z.

Lemma 4.2.10 The equivalence W above restricts to the following equivalences of categories:

QlE. 718 Qe[Sal-ModZ" = QCoh(A"/(Sy X G ) an /s, xc2) ~> QCoh(Hilbn /(Ga)wi, /@3-
The same statement applies when restricted to the full subcategories of compact objects (ie perfect
complexes).

Proof For brevity’s sake, we suppress the G,-equivariant structures (ie the gradings) from the notation.

From (4.2.2), we see that ¥ is compatible with the action of QCoh(A2"/S,). Now, we note that the full
subcategories of interest are cut out precisely by the condition that the variables y (from A2"/S,) act
nilpotently.
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Alternatively (and more categorically), one can use the theory of support as discussed in, for example,

[3, Section 3.5], to conclude:
QCoh(A"/Sn) an s, = QCoh(A*" /Sn) ®qcon(az s,) QEON(A" /Sn)an s,
~ QCoh(Hilbn) ®qcon(a2n /s,) QCoh (A" /Sy) a1 s, = QCoh(Hilby)ti, ;- O

4.3 Cohomological shearing and 2-periodization

The algebra Q[%, V] ® Q[S»] appearing in Proposition 4.2.7 and the algebra B, = @g[)_c,z] 2 Qy[Sx]
appearing in Section 4.1.4 are almost the same, except for the mismatch in the cohomological gradings

and the number of formal gradings.

In this subsection, we will discuss two general categorical constructions which will allow us, in Section 4.4,
to relate the categories of modules over these two rings, and hence also to relate the category of
(quasi)coherent sheaves on Hilb, and Ch#""" for G = GL,. One of them, known as cohomological
shearing, reduces the number of formal gradings whereas the other, 2-periodization, increases the number
of gradings. As it turns out, these two are equivalent, which is the content of Proposition 4.3.16 below.

The materials presented here are more or less standard, at least among the experts. We include it here
since we cannot find a place where everything is written down in a way that is convenient for us.

The discussion in this subsection applies to both small and large categories. For brevity’s sake, we will
only discuss the large category case. As usual, the small case can be obtained by passing to compact

objects.

4.3.1 Shearing functors on Vect® Consider the shear functors

sh<: Vect® — Vect®, (V}); — (Vi[2i]); and sh™: Vect® — Vect®, (V;); — (Vi[-2i]);.
Note that these are equivalences of symmetric monoidal categories.

For A% € Vect®, we let A8~ := sh(A48") € Vect® and A&~ := sh™ (A&") € Vect®. Since sh™
and sh™ are symmetric monoidal equivalences, A8~ (resp. A8~7) is equipped with a natural algebra

structure if and only if A4%" is.

4.3.2 Shearing a Vect®"-module structure Since Vect® is symmetric monoidal, any C&" € Vect®" -Mod
can be upgraded naturally to a Vect®-bimodule category € € Vect® -BiMod. We visualize them as Vect®"
acting on the left and on the right even though they all come from the left module structure.

Remark 4.3.3 For us, the right Vect® -module structure is important only for the purpose of taking
relative tensor products. We will generally ignore this structure unless the formation of relative tensor
products is involved.
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For each of the left/right module structures, we can precompose the action of Vect® with sh to obtain a

new module structure. For example, = @&~ has the following Vect® -bimodule structure:!>

Qi) e ®Q(j) > cli + j)2i —2/]

Here, the positions of the arrows with respect to the category indicate which of the left or right module
structure we are shearing, and the directions of the arrows indicate which shear we use. A missing arrow
indicates that shearing does not occur; for example, & has a sheared Vect® -action on the right while
keeping the action on the left unchanged. Note that these modifications only change the action of Vect®"
while keeping the underlying DG-category intact.

4.3.4 The following diagram demonstrates how the functors sh= and sh™ interact with Vect® -bimodule

structures:

h< h<
= Vects"™ (%) Vect®" <S:> = Vects <,

sh sh™

Here all functors are equivalences as morphisms in Vect® -BiMod. Similarly, we can mix and match the
directions of the arrows. For example,

sh<: Vect®"™ = < Vect®' .
Shearing Vect® -bimodule structures can be written naturally in terms of relative tensors. For example,
CE" S ~ C8 @yecer Vect®" < and T CE ~ 7 Vect? ®yecre CE'.
4.3.5 Shearing A%'-Mod®" Let 48" be a graded DG-algebra, ie A8" € Alg(Vect®"). Then the category of
graded A% -modules, A8"-Mod®" := A8"-Mod(Vect®") € Vect® -Mod, is naturally a Vect®"-module category,

and hence also an object in Vect® -BiMod, as discussed above. A similar discussion as in the case of
Vect®" gives the following equivalences of objects in Vect® -Mod:

= (A% -Mod®"™) 2= == A¥-Mod®" 2= == = S (48 ModehE),
Moreover, as above, we can mix and match the directions of the arrows.
Replacing A8 by A8, we obtain the following equivalences of objects in Vect®" -BiMod:

A -Mod®"™ s S (48"S_Mod®) and  A®-Mod8" s = (48> _Mod®").

sh sh

4.3.6 Sheared degrading Let C& € Vect® -Mod. Then we can form the degraded version € of C8",
C := Vect Qyecte C8,

I5Note that the formula below is compatible with the definitions of sh= and sh*= since, for example, Q ¢ (i) lives in graded
degree —i.

Geometry & Topology, Volume 29 (2025)



Graded character sheaves, HOMFLY-PT homology, and Hilbert schemes of points on C? 2511

where the Vect®'-module structure on Vect is given by the symmetric monoidal functor
oblvg : Vect® — Vect, (V) @ Vi,
i

which forgets the grading on Vect®'.

We note that the functor of forgetting the grading is also defined for C&":

e oblvg Rid cer
—e

oblvg, : C& = Vect® @yecter Vect @vecter C& >~ C.

4.3.7 The sheared degradings of C&", denoted by C< and €=, are defined to be the usual degradings of
= 8" and <€, respectively (note the reversal of the arrows!):

C= = Vect®vecter €& and C< := Vect Quecer ~ C¥'.
Remark 4.3.8 In general, C, €<, and €= are different as DG-categories. However, the case where

C&" = Vect®' is special as we always have an equivalence of DG-categories
VHV&@[

Vect ——=5 Vect ®vecer & Vect® =: Vect™,
4.3.9) o
Vect HTQ@ Vect ®vecrer ~ Vect® =: Vect™ .

Since Vect has a natural Vect® -module category structure, we can shear this action and obtain, for
example, Vect and Vect™. These two are in fact equivalent to Vect = and Vect=, respectively, which
explains the reversal of the arrows in the definition of the sheared degrading procedure.

Indeed, the right action of Vect® on Vect= is as follows: Qg (i)[j] sends V X Qy to
VR(Qe ()] = V R(Qe(i)[-2i][j +2i]) = (V[j +2i) R Qy,
which corresponds to V[j + 2i] € Vect under the equivalence of categories (4.3.9). But this is precisely
the =-sheared action of Vect®" on Vect on the right.
4.3.10 We can write sheared degradings in a natural way as relative tensors of categories
C= ~ Vect Qvects ~ C8 =~ Vect @vecter ~ Vect® @vectsr 8 = Vect ™ ®vecrer C8 =~ Vect S Qyecrer C8.
Similarly,

C= ~ Vect™ ®vecte C& =~ Vect™ @vecre C8'.

4.3.11 Sheared degrading 48"-Mod Let 48" € Alg(Vect®") be as above and consider the category of
(ungraded) A8"-modules, denoted by oblvg, (A8")-Mod. By abuse of notation, when confusion is unlikely,
we also write A8"-Mod := oblv,(A48")-Mod.

Clearly, A%"-Mod =~ Vect ®vecter A5-Mod®" is a degrading of A&-Mod®". But we also have sheared
degradings as defined in Section 4.3.6. Namely,

. <~
AF-Mod S : = Vect ®vecs ™ (A5 -Mod?") 22BN, vt @ per A5 -Mod®™ ~ oblvg, (45" )-Mod =,

and similarly for A8"-Mod™.
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Ignoring the right Vect® -actions (see also Remark 4.3.3), we have the following equivalences of DG-
categories:

4.3.12) A" -Mod = =~ oblvg, (48"<)-Mod and A%-Mod= = oblvg,(A%"~)-Mod.

4.3.13 2-periodization We start with the simplest example of 2-periodization and its interaction with
sheared degrading.

Let Qg[u, u~'] € ComAlg(Vect&) be a commutative algebra object where u is in graded degree 1 and
cohomological degree 0. It is easy to see that the functor of extracting the graded degree 0 part

Qglu, u™1]-Mod®" L) Vect
is an equivalence of Vect®-module categories where the actions of Vect®" are the obvious ones (ie no
shearing). The inverse functor is given by V — Qglu, u"']@ V.
The discussion above thus gives us the equivalences

Vect™ ~ Vect™ (M) Qu, u=1]-Mode" < %} = (Qq[u, u=17-Mod®")

Qeluu= 117 ®-
and

Vect™ ~ Vect= 2102 5 1 i1 Moden= —h" (@[, u~1]E-Mode").
\//_%
Qeluu'1=®~
Here, by construction, Q[u, u=']™ (resp. Qg[u, u~1]¥) is the algebra of Laurent polynomials generated
by one element living in graded degree 1 and cohomological degree 2 (resp. —2).
In particular, we have

(4.3.14) < VectS ~ Vet T ~Qyfu,u™']7-Mod®, = Vect™ >~ Vect™ ~ Qyfu, u ' ]T-Mod®" .

4.3.15 We will now turn to the general case.
Let C&" € Vect® -Mod be as above. Then the positive and negative 2-periodizations of C&" are defined to be
&2t = Qyu, u 7 -Mod® @vecrer C& ~ Qylu, u™ '™ -Mod(CE")
and
Ce"2Per— = Qylu, u™ T -Mod® @vectz C& ~ Qylu, u™']T-Mod(CE"),
respectively.
Note that Q[u, u™ '] (resp. Q[u, u~']7) is equivalent to Q[B, '] where B lives in graded degree 1
and cohomological degree —2 (resp. 2). The category of module objects over Qg[8, 1] is thus the
category of (graded) 2-periodic objects appearing in the literature.

The grading allows one to absorb 2-periodicity. In fact, the 2-periodization construction agrees with the
sheared degrading construction from above.
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Proposition 4.3.16 Let C&" € Vect® -Mod. Then we have natural equivalences of Vect® -module cate-

gories
egr,2—per, ~ =>(GB) and egr,Z—per+ ~ <=(€€)

Proof We treat the case of 2-per_, as the other case is similar. We have
e&n2Per— = Qyu, u_1]<:—Modgr ®vecter C8 >~ T Vect™ @vecter C8 ~ 7C,

where the second and third equivalences are due to (4.3.14) and Section 4.3.10, respectively. |

Remark 4.3.17 We have the following commutative diagrams of symmetric monoidal categories:

oblvg0sh™ oblvg0sh <
Vect®" £ > Vect Vect®" £ > Vect
Qlu, u™'1S-Mod8" =—— Vect8"2Pe'~ Qglut, u™17 -Mod8" == Vect8"-2Pe"+

Thus, by construction, the action of Vect® on = (C=) (resp. <(C*)) factors through Vect&"2-Per—
(resp. Vect®2Pe+) On the other hand, C&"2Per— (resp. C&82Pe"+) is equipped with a natural action of
Vect82Pe~ (resp. Vect8H2Per+),

Chasing through the definitions, it is easy to see that the two actions are compatible. In other words,
the two equivalences in Proposition 4.3.16 are equivalences of Vect®2P'—_(resp. Vect®2P+-)module
categories.

4.3.18 More formal gradings In the above, the “background category” is Vect in the sense that all
categories are DG-categories, ie they are Vect-module categories. Then we work with categories with
one extra grading, ie with Vect® -module categories, and consider various categorical operations using
this structure. We could have started with Vect® -module categories but still added another grading and
worked with Vect®"#'-module categories. Everything discussed above still goes through, except that
now everything has one more grading. For example, degrading goes from Vect®"&"-module categories to
Vect® -categories.!® This is the setting that we will work with below.

4.4 2-periodic Hilbert schemes and character sheaves

We will now relate Hilbert schemes of points and character sheaves, using the procedure of 2-periodization
discussed above to make the precise statement.

4.4.1 Introduce an extra grading By default, all of our categories are singly graded in the sense that they
are Vect® -(or, if we work with the small variant, Vect®"¢-)module categories. Note that any DG-category
can be viewed as a Vect®'-module category via the symmetric monoidal functor oblvg,: Vect® — Vect. In
particular, any Vect®'-module category is a Vect®"#"-module category, where the second Vect®" acts by

1611 fact, we could, more generally, work with (Vectg')®”-module categories and then add one more grading to get n + 1
gradings. We will not need this generality here.
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forgetting the formal grading. By convention, we use X to denote the default grading and Y the extra
grading we just introduced. We will also use the notation Vect®X €Y if we want to make it clear which
grading convention we are using.

In this subsection, unless otherwise specified, all the shearing and 2-periodization constructions will be
with respect to the Y-grading, even when we start with C&" € Vect®X -Mod, which has only one grading.
In this case, we simply view C as an object in Vect®X-8'Y -Mod, where Vect®'Y acts via the symmetric
monoidal functor oblvg,, : Vect®"Y — Vect. In particular, if we forget the Vect®'Y-action, C8', =@, and
= (& are equivalent as objects in Vect®X -Mod (and hence also as DG-categories). The difference in the

Vect®Y-module structures can be seen by looking at Vect® X 8Y-enriched Hom, denoted by Hom?®& X €Y

More precisely, for ¢y, c; € €&, on the one hand, we have

HomE &Y (1. ¢2) ~ @D HomE¥ (c1. c2) (k) y ~ Qylu. u™" @ HomE¥ (1. ¢2) € VectEX &Y
k

Here, in the tensor formula, the gry-enriched Homs are put in Y-degree 0. In other words, it is simply
copies of the Vect®X-enriched Hom, put in all Y-degrees. On the other hand, a simple argument using
adjunctions gives the following identification, which is essentially the same as Proposition 4.3.16 but

with one extra grading (see also Remark 4.3.17):

Lemma 4.4.2 In the situation above, we have natural equivalences

ry ,gr ry ,gr ~ —1 r , ,2-
.‘Homffe;; Y(c1,2) = sh™ (HomEX &Y (c1. ¢2)) > Qlu, u™"]7 ® Hom%eX (c1., ¢2) € Vect8X &y -2pert
and

ry,gr ry ,gr oy -1 r 2-per_
HomZGE™ (e1, ¢2) = sh (FHom#™ (c1, ¢2)) = Qelu, u™' [T @Hom§! (c1, ¢2) € Vectsx -2 Per—,
where sh™ and sh*" are with respect to the Y -grading. Moreover, in the tensor formula, the gry -enriched

Homs are put in Y -degree 0.

4.4.3 The algebra B, and variants Let B = Qy[x, ] ® Q/[S,] € Alg(Vect®x-8Y) be a bigraded
DG-algebra, where the variables x (resp. y) live in cohom(:logical degree 2 (resp. 0) and graded degrees
(2, 1) (resp. (—2,0)). Here, the first (resp_. second) coordinate represents the X -(resp. Y-)grading. Note
that the Y-grading is the extra grading whereas the X -grading came from the above.

By construction, we have an equivalence of (singly graded) DG-algebras oblvg,, (Bf ) ~ B, € Alg(Vect&x),
where B, is the graded DG-algebra defined in Section 4.1.4. Let BE := BE"< and B, := oblvgr, (BY),
where the shear is with respect to the Y-grading. Then

By = Qelx. 719 Qe[Su] € Alg(Vect&'x &),
where the variables X (resp. ) live in cohomological degree 0 and graded degrees (2, 1) (resp. (=2, 0)).

Moreover, . B
By 1= oblvge, (BY) =~ Qq[X, Y]®Q[Sn] € Alg(Vect®'¥),

where the X (resp. J) live in cohomological degree 0 and graded degree 2 (resp. —2).
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Lemma 4.4.4 We have the following equivalence of Vect®X-categories:
Bp-Mode™ ~ BE_Mode™ "=
Proof We have
B = oblvgy, (BE) =~ oblvg,, (BE=)
and hence, by (4.3.12), we have the equivalence of Vect®*¥-module categories
By-Mod8™® =~ oblvg,, (BE")-Mod&™* ~ BE-Modsx-=,

where, by convention, all shears are with respect to the Y -grading. |

Corollary 4.4.5 We have a natural equivalence of Vect®X #'Y-module categories
é(Bn-MOdng) ~ @%V_Modgrx ,gl'y,2—per_’

where the Vect®"Y-module structure on the right-hand side is the obvious one. Moreover, the shear on the
left-hand side is with respect to the Vect®'Y-module structure. Namely, Vect®'Y acts on the left via

blvgr
Vect®Y sh= Vect8Y ey Vect,
as in Proposition 4.3.16. Consequently, by Remark 4.3.17, the equivalence above is an equivalence of
Vect8™x 8"Y:2"Pe—_module categories, where 2-per_ is with respect to the Y -grading.
Proof We have
= (By-Mod®'X) ~ = (BE"-Mod&"™X*=) ~ BE'-Mod&"X &y -2Per—

where the first and second equivalences are due to Lemma 4.4.4 and Proposition 4.3.16, respectively. By
convention, shearing and 2-periodization are with respect to the Y-grading.

The last statement is due to Remark 4.3.17. O
4.4.6 Change of gradings The gradings X and Y used above need to be changed to match with the
one used in [28]. We denote the new gradings by X and Y, where

X=X?Y and Y=Xx71,

or equivalently,
X=Y" and Y=X72

Under this change of gradings, we have
BE ~ QuIx. 718 QulSn] € Alg(Vect®' £-57),

where the variables X (resp. y) live in cohomological degree 0 and graded degrees (1, 0) (resp. (0, 2)).
We note that this algebra matches precisely with the algebra appearing in Proposition 4.2.7.
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Remark 4.4.7 In the rest of this paper, unless otherwise specified, all the shears and 2-periodizations
are still with respect to the Y-grading (in the (X, Y)-grading system), even when we are working with
the (f , Y)—grading. As different grading conventions in the HOMFLY-PT homology theory cause a lot
of confusion, at least, to the authors of the current paper, we write down explicit examples below.

4.4.8 2-per_ in terms of (f , ?)-grading In terms of the (f , Y)-grading, negative periodization
2-per_ in the Y-direction with respect to the (X, Y')-grading (such as the one appearing in Corollary 4.4.5)
takes the following form. For € € Vect®X -8V -Mod ~ Vect® ¥-8'¥ -Mod,

2P = Qq[B. B~ ]-Mod(©),

where B lives in cohomological degree —2 and graded degrees (0, 1) in terms of the (X, Y)-grading or
equivalently, (1, 2) in terms of the (AA; , ?)—grading. Since this is the only 2-periodization that we will use
in connection to the (f , ?)—grading, we will adopt the notation

@2-per . E2-per— ~ @([:B’ ﬁ_l]—MOd(G)

in the rest of the paper, where, as above, 8 lives in cohomological degree —2 and graded degrees (0, 1) in
terms of the (X, Y)-grading or, equivalently, (1, 2) in terms of the (X~ , ?)-grading.

Below are a couple of examples that are important to us.

Definition 4.4.9 (2-periodizing an object) For C € Vect®X-8"Y -Mod ~ Vect® ¥8'¥ -Mod and ¢ € C, the
corresponding 2-periodized object c2P¢" € 2P is defined to be Q[B, B~ '|®c.

Definition 4.4.10 (2-periodized Hilbert schemes) Let G2 act on A? by scaling the coordinate axes X
and y with weights (1, 0) and (0, 2), respectively (in the (f , ?)-grading). This induces an action of G2
on Hilb,, := Hilb, (A?) for any n. The 2-periodized category of quasicoherent sheaves on Hilb,, is defined
to be

QCoh(Hilb, /G2)*P" := Qy[B. B7']-Mod(QCoh(Hilb, /G2)),

where B lives in cohomological degree —2 and bigraded degrees (1, 2). Taking the compact objects, we
define!”’
Perf (Hilb, /G2)%P" := (Qq[B, B~ ']-Mod(QCoh(Hilby, /G )))Pe".

The full subcategories QCoh(Hilb, /<Grr2n)2|4|'i':’ber _ /g2 and Perf(Hilb, /Gr%w)ﬁiﬁfr _ /g2 are defined analo-

gously (see also Section 4.2.9).

Definition 4.4.11 (2-periodized bigraded chain complexes) We define
Vects' %872 :— Q [, B ]-Mod® £ &7,
17Note that since the Hilbert scheme is smooth, we could replace Perf by Coh.
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where B lives in cohomological degree —2 and bigraded degrees (1, 2). The full subcategory spanned by
compact objects is defined analogously and is denoted by

Vects/ £ &7 27e0¢ = Q[, B - Mode" £ 577 Per
More generally, for any algebra B € Alg(Vect® %-87), we let
B-Mod®" S 7 274 .= [, B~ |-Mod(B-Mod®' ¥ &77),
and similarly for the full subcategory spanned by the compact objects

B-Mod®" %8729 Pl .= Q8. ' Mod(B-Mod¥' ¥ &'7 )Per.

4.4.12 Shearing in terms of X R f-grading Let € € Vect®X8'Y -Mod =~ Vect® X°8'¥ -Mod. Then, unless
otherwise specified, all shears are considered to be with respect to the Y-grading. For example, the action
of Vect® %-8'¥ on = C is given by

Qek) g ®Qe(l) § K> Qq(2k —1)x RQq(k)y B> c(2k —1)x (k) y[2Kk].

Here c(m)y denotes the result obtained by Q (m)x acting on ¢ (and similarly for ¢(m)y). Moreover,
the square bracket denotes cohomological shift, which appears here due to the shear.

By Remark 4.3.17, = € is equipped with a natural action of Vect8 %:8'7-2P¢" (see Definition 4.4.11).

4.4.13 The Hilbert scheme of points and graded unipotent character sheaves The relation between
Hilbert schemes of points and graded unipotent character sheaves can now be deduced in a straightforward
way from the discussion above.

We start with a 2-periodized form of Proposition 4.2.7:

Lemma 4.4.14 We have the equivalences of Vect8 87> P _module categories

QCoh(Hilby /G2)*P*" ~ BE-ModS #8727 and  QCoh(Hilb, /G2)ZE" =~ %gf-Modii’,ff’?’z'per,

and similarly for the full subcategories of perfect complexes.

Proof The second equivalence follows from the first. The first follows from applying the 2-periodization
construction 2-per described in Section 4.4.8 to Proposition 4.2.7. |

Theorem 4.4.15 When G = GL,,, we have the equivalence of Vect® % -8'¥-2"P*_module categories

r,ren r rys2-per wper ‘
7 Chig®"" o BE-Mod i &7 255 QCoh(Hilby /G L),

2-per,c

and similarly, we have the small variant, which is an equivalence of Vect8 X-8'y> -module categories,

r 5 ,8r,2-per \Jy2-per
= Chi® ~ BE-Mo dﬁll’p{gY P, Perf(Hilby /G2 )i .
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Proof The second statement follows from the first one by taking the full subcategories spanned by
compact objects. For the first one, we have
= ~pugrren = gX \ T grx gry.2-per— & g 81y »2-per
Chg ~ (Bn—Modn”pz) ~ B%r—Modn”pj ~ B%r—Modn”pE
~ QCoh(Hilb, /G2)iife: .
where

e the first equivalence is due to Proposition 4.1.11 (after adding a sheared action of Vect8'Y),
¢ the second equivalence is due to Corollary 4.4.5,
e the third equivalence is by definition (see also Section 4.4.8),

¢ and finally, the last equivalence is due to Lemma 4.4.14. |

4.5 Matching objects

Let T denote the tautological bundle over Hilb,. By abuse of notation, we will use the same symbol
to denote its equivariant version, ie a vector bundle of rank 7 over Hilb, /G2. We will now match its
exterior powers /\*T under the equivalences of categories stated in Proposition 4.2.7 and Lemma 4.4.14.
This subsection is merely a recollection of the results proved in [35], stated in our notation.

4.5.1 Exterior powers of the permutation representation Let
T € By-Mod® %87 ~ QCoh(A%"/(S, x G2))
denote the tensor of the structure sheaf with the permutation representation. More explicitly,
T :=Qy[X.7]® P € B,-Mods' T &7,
where P € Rep S;, is the permutation representation. More geometrically, if we let
P A /(SuxGl) — B(Sy xGP),

then T := p*(P), where P € QCoh(B(S, x G2)) is the permutation of S, put in bigraded degrees (0, 0)
and cohomological degree 0. More generally, we have A\*T ~ p* (/\“P).

We have the following elementary lemma:
Lemma 4.5.2 For any 0 < o < n, we have a natural isomorphism of S;-representations
Indgzxsn_a (signg W trivy—g) ~ NA* P,

where sign,, is the sign representation of Sy and triv,—y is the 1-dimensional trivial representation
of S;—q.

Proof Letvy,..., v, be the natural basis of P as the permutation representation of S,, and v a basis of
sign, X triv,—q. We have a natural morphism between (Sq xS, —q)-representations

signg M trivy—g — A*P, V>V A Ag.
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Since vy A--- A vy generates /\* P as a representation of S,, we obtain a surjective map
S . . o
Indg” s, (Signg R trive—g) — /A" P.

Comparing the dimensions, we see that this must be an isomorphism. |

4.5.3 Wedges of the tautological bundle and wedges of the permutation representation We will
now match the wedges on both sides.

Theorem 4.5.4 [35, Theorem 3.9] Under the equivalence of categories stated in Proposition 4.2.7,
N*T € B,-Mod® %-8F ~ QCoh(A2"/(S, x G2)) corresponds to A*T € QCoh(Hilb, /G2).

Proof This is [35, Theorem 3.9] in the case where the line bundle involved is just the structure sheaf.
Lemma 4.5.2 allows us to match the wedges A\ 7" with the W% (—) construction in [35, Definition 3.4]. O

4.5.5 2-periodization We will need the 2-periodized version of Theorem 4.5.4 below.

Corollary 4.5.6 Under the equivalence of categories stated in Lemma 4.4.14,

(N*T)*P*" € B,-Mod® %:7:2P¢ ~ QCoh(A%"/(S, x G2))>P*"

2-per

corresponds to (/\*T)
2-periodizing an object (see Definition 4.4.9).

€ QCoh(Hilby, /Gr2n)2—per. Here the superscript 2-per denotes the procedure of

Proof This follows from 2-periodizing Theorem 4.5.4. |

5 HOMFLY-PT homology via Hilbert schemes of points on C?

We will now use the results above to obtain a proof of a version of a conjecture of Gorsky, Negut, and
Rasmussen [29] which predicts a remarkable way to realize HOMFLY-PT homology as the cohomology
of a certain coherent sheaf on the Hilbert scheme of points on C2. The precise version of the conjecture
that we prove appeared as [28, Conjecture 7.2] with some modifications emphasized in Remark 1.5.12.
In particular, we will prove parts (a), (b), and (c) of [28, Conjecture 7.2].

Below, in Section 5.1, we use weight structures to describe a general mechanism to turn a cohomological
grading into a formal grading and interpret the construction of the HOMFLY-PT homology theory in these
terms (this is what happens with the a-degree). It is followed by Section 5.2, where we describe how
HOMFLY-PT can be obtained from the categorical trace of H$ . In Section 5.3, we explicitly compute all
the functors involved in the factorization of HOMFLY-PT homology through the categorical trace of H'
in terms of the explicit description of the category of the latter, which was obtained in Theorem 3.3.4. In
Section 5.4, transporting these computations to the Hilbert scheme side using Koszul duality and Krug’s
result (which are encapsulated in Section 4), we arrive at Theorem 5.4.6 (part (a) of [28, Conjecture 7.2])
which associates to each braid B on n strands a (2-periodic) coherent sheaf Fg on Hilb, whose global
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sections (after being tensored by the dual of various exterior powers of the tautological bundle) recover
the HOMFLY-PT homology of the link associated by . Finally, in Sections 5.5 and 5.6 we study the
actions of symmetric functions on HOMFLY-PT homology and the support of Fg on Hilb, in relation
to the number of connected components the braid closure of § has. These appear as Theorems 5.5.1
and 5.6.4, which are parts (b) and (c) of [28, Conjecture 7.2].

5.1 Restricting to and extending from the weight heart

Let Rg € Ch? (SBimj,) be the Rouquier complex associated to a braid §. Recall that the HOMFLY-PT
homology of the associated braid closure of § is obtained by taking Hochschild homology termwise and
then taking the cohomology of the resulting complexes. The final answer thus has three gradings: internal
grading, complex grading (from Ch?(SBim,)), and the Hochschild grading. From the point of view of
homological algebra, this is quite unusual: one does not normally apply a derived functor termwise to a
complex.

There have been many interpretations of this construction, for example, [13; 57; 59]. In this subsection,
we offer a general paradigm to understand this type of construction using weight structures and then
apply it to the case of HOMFLY-PT homology. This allows one to see more clearly what is happening
conceptually, especially on the Koszul dual side, which will be discussed in Section 5.4 below.

As we will use weight structures in a crucial way, the reader might find it beneficial to take a quick look
at [31, Section 3.1] for a quick review of the theory.

5.1.1 Extending from the weight heart One salient feature of the theory of weights is that given an
idempotent complete stable co-category C with a bounded weight structure, the category € along with the
weight structure can be reconstructed from its weight heart €“» 18 In a precise sense, € is the free stable
oo-category generated by its weight heart. Namely, € ~ (€V»)fin where for any additive category A,
Afin is the stabilization of the sifted-completion of A (see [22] for more details). We note that the (—)fin
procedure generalizes the construction Chb (—) in the following sense: if A is a classical additive category,
then Afi" ~ Chb(A).

Lemma 5.1.2 Let C and D be idempotent complete stable co-categories such that C is equipped with a
bounded weight structure. Then restricting along t: €“» — € gives an equivalence of categories

(5.1.3) Fun®™(C, D) £ Fun®d (% D),

where Fun® denotes the category of exact functors (ie those that preserve all finite (co)limits) and Fu nadd
denotes the category of additive functors (ie those that preserve all finite direct sums).

18 A DG-structure is not necessary for this discussion in this subsection. However, the reader should feel free to replace all
occurrences of stable co-categories with DG-categories if they prefer.
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Proof This is essentially [56, Proposition 3.3, part 2] (but see also [22, Theorem 2.2.9] for a variant).
We will thus only indicate the main steps.

We will first show the equivalence of categories
(5.1.4) Fun®™(C, Ind(D)) > Fun®¥ (€% | Ind(D)),

where Ind(D) is the Ind-completion of D. Here ¢' admits a left adjoint ¢ given by left Kan extending
along ¢. Since left Kan extending along a fully faithful embedding is fully faithful, ¢, is fully faithful. It
remains to show that (' is also fully faithful. Namely, we want to show that the natural map ti' F — F is
an equivalence for any F' € Fun®(C, D).

Since ‘11! F ~ (' F by full faithfulness of 11, we see that ;1! F(c) ~ F(c) for all ¢ € €¥» . But since both
sides of L!L!F — F preserve all finite (co)limits and since € is generated by €% under finite (co)limits,
we are done.

To obtain (5.1.3) from (5.1.4) we only need to show that ! and 1y restrict to the corresponding full
subcategories on both sides. But this is immediate using the fact that C is generated by €“» under finite
(co)limits. O

We will also need the following result, which is a consequence of the lemma above:

Corollary 5.1.5 [22, Theorem 2.2.9] Let € and D be idempotent complete stable oco-categories such
that both @ and D are each equipped with a bounded weight structure. Then restricting along t: €% — @
gives an equivalence of categories

Funex,w—eX(e’ D) L) Funadd (e@w ’ 'Dow),

where w-ex denotes weight exactness, ie we consider the category of exact functors which send weight
heart to weight heart.

Consequently, when D%v is classical, we have the following equivalences:

Fun®®-¢X(@, D) ~ Fun®¥(€%  DVw) ~ Fun®*(he¥w D) ~ Fun®™¥-X(Ch® (h€Y), D).
5.1.6 Turning cohomological grading into a formal grading In situations where D also has a ¢-
structure, the procedure of restricting and extending along ¥ <> € also allows one to create an extra

grading. Indeed, let € and D be as in Lemma 5.1.2 and F': € — D be an exact functor. Suppose that D is
equipped with a 7-structure. Then we obtain a functor

F
H* (Fleou): €% Z120, p B, 1y00sr,

where DV€" is the category of Z-graded objects in D% . Applying the (—)f construction and using
Corollary 5.1.5, we obtain a functor

F:€— (DVre)fin o Chb (DVrer) — chb (D )e,
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where the equivalence is due to the fact that DV1&" is classical, ie it does not have negative Exts. In fact,
since DV¢+#" is classical, C¥» — DV factors through €”» — h€“» and hence F factors as follows:

e F » Chb(DOn)er

(5.1.7) N /F

Ch? (hEOw)

Here hC¥» is the homotopy category of ¥, obtained from €“» by killing negative Exts,'® and wt
denotes the weight complex functor (see [31, Remark 3.1.12] for a quick review). Note that h€“w is
always a classical category whereas C¥» might have nontrivial co-categorical structures. Moreover, F is
given by applying H*(F) termwise.

5.1.8 When €% is already classical, ie €¥» ~ hC%», the weight complex functor is an equivalence of
categories

wt: € = Chb (%),
Under this identification, the functor F is identified with F, which is given by applying H*(F) termwise
to the chain complexes in CV».

5.1.9 The category D that is of interest to us is D >~ Vect®". Given an exact functor F': C — Vect®, the
construction above thus produces a functor F: € = Vectt"& whose target is the DG-category of chain
complexes in doubly graded vector spaces. We can take cohomology another time and obtain triply graded
vector spaces. As we will soon see, further specializing to the case where € = HE ~ Ch® (HE"Vv) ~
Ch?(SBim,,) and F is the functor of taking Hochschild homology, we recover the usual construction of
the triply graded HOMFLY-PT homology theory.

5.1.10 The last observation is a tautology, but a powerful one when combined with Lemma 5.1.2 which
allows one to compare functors by restricting to the weight heart of the source. This point of view is
especially useful when the weight structure is not evident, as is the case on the Hilbert scheme side.
Indeed, as we shall see below, Lemma 5.1.2 allows us to identify HH, and the functor corepresented by
the o™ exterior of the tautological bundle on the Hilbert scheme.

5.2 HOMFLY-PT homology via Tr(H%)

We will now describe how HOMFLY-PT homology can be obtained from Tr(H5') =~ Ch®". Everything in
this subsection has essentially been proved in [59], but in different language: they use the chromatographic
complex construction (which is not known to be functorial) of which the weight complex functor is a
functorial upgrade. See also [54, Section 6.4] for a presentation that is closer to ours (but still does not
use weight structures).

19For an additive co-category A, the homotopy category hA of A is obtained from A by taking 1 of the Hom spaces. This

is not to be confused with the homotopy category Kb (B):=h Ch® (B) of bounded chain complexes of a (classical) additive
category B, which is also sometimes referred to as, somewhat confusingly, the homotopy category of B.
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5.2.1 A geometric interpretation of HOMFLY-PT homology We start with a formulation of HOMFLY-
PT homology in terms of graded sheaves on BB xgg BB = B\ G/ B. Consider the commutative diagram

BB xgg BB +2— G/B —1 G/G 5 pt

I= I=
BB x BB +~— BB

where the square is Cartesian. We have the following functor:

C:(BB,-)

(5.22) HH: HE =~ Shvy, (BB x G BB) % Shvg, (BB x BB) £ Shvy, . (BB) Vect®' .

Applying the construction in Section 5.1.6, we obtain a functor
HH: HE" — Vect®"&" .
Taking cohomology one more time, we get
HHH := H*(HH): HE — VectVr-gnener,
the category of triply graded vector spaces.

Lemma 5.2.3 Let Rg € H% be associated to a braid 8. Then up to a change of grading (to be discussed
in Section 5.2.4 below), H* (I?H(R ) is the triply graded HOMFLY-PT link homology of f3.

Proof (sketch) This is the main theorem of [59], phrased in our language. See also [54, Section 6.4] for
a presentation that is closer to ours. We will thus only indicate the main steps here.

The construction in Section 5.1.6 amounts to saying that I-TI:I(R p) is obtained by applying p* . termwise
to Rg € Hy ~ Chb(Hir’O“’). By [31, Proposition 4.3.5], Shvg (BB x BB) (resp. Shvg, (BB)) corre-
sponds to the category of (perfect complexes of) graded bimodules (resp. modules) over C;‘r(BB) -~
C¥(BT) ~ Sym(V[-2]), where V is the graded vector space of dimension # living in graded degree 2
and cohomological degree 0 (see also Section 4.1.4). Moreover, by [31, Section 4.3.4], pulling back along
p: BB — BB x BB corresponds to taking Hochschild homology. Finally, by [31, (4.4.4)], n*|H§l,,@w is
identified with the forgetful functor from Soergel bimodules to bimodules over C§ (BB) ~ C§ (BT). O

5.2.4 Gradings We let Q' and A’ denote the two formal gradings on Vect®"8" (the target of the
functor ﬁﬁ) and 7' the cohomological grading. To keep track of these gradings, we will from now on
adopt the notation Vect®'0"-6"4" rather than simply Vect®"®" as above. We use [1]g’, (1) 4/, and {n}7 to
denote the grading shifts.

The relations between the Q’, A’, and T’ gradings and the Q, A, and T of [28] are as follows (written
multiplicatively):

Q'=4710, A =4 T =T.
Note, however, that [28] uses Hochschild cohomology rather than homology to define the HOMFLY-PT
link homology. Thus, for the unknot we get (1+Q"?4’)/(1—Q"?4"?) = (1+ 0?4~ 1)/(1— 0?) whereas
they get (1 + 0724)/(1 - 0?).
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We also use the ¢, ¢, and a gradings, where
q — Q2 — Q/ZA/Z’ a= Q2A_1 — Q/ZA/, t = T2Q-2 — T/zQ/_ZA/_z.

In terms of ¢, a, and ¢, the unknot gives (1 +a)/(1 —gq).

5.2.5 OnH§, Chg® =~ A,-Mode™Pf and A,-Mod&"<" there are two grading shift operators for each
n € 7, the cohomological shift [#] and the grading shift (n), and both are compatible with the various
functors between these categories. In terms of the grading convention of Section 4.4, this formal grading
is the X -grading over there.

5.2.6 Unwinding the construction, we see that the functor HH relates the grading shift operators on H%'
and those on Vect80'+84" as follows:2?

[n] > Anjpr, (n) > [nlar(n) o i=niTr,  [n](n) v> [nle(n) g

Remark 5.2.7 The difference between Q’, A’, T' and Q, A, T comes from the fact that the identification
H5 :=Shvg.c(B\G/B) ~ Ch? (SBim,,) involves a shear. More concretely, objects in H5 are most naturally
viewed as graded Cg,(BB)-bimodules, where the generators of C3, (BB) =~ C5 (BT) =~ Sym V[-2] live
in graded (resp. cohomological) degree 2 (resp. 2). On the other hand, the generators of the polynomial
ring used to define Soergel bimodules are, by convention, put in graded (resp. cohomological) degrees 2
(resp. 0). See [31, Section 4] for a more in-depth discussion.

5.2.8 HOMFLY-PT homology via truncated categorical trace By smooth base change, we see that
the functor HH of (5.2.2) admits an alternative construction
* ~a C*(G/G,—
HH: HE" ~ Shvg, o (BB x g BB) 2> Shvgc (%) 9220, Shyy, o (g) SGIGD ooy,
which is the same as
5.2.9 . 8er tr g ~ C u,gr C;(G/Gs_) gr
(5.2.9) HH: HE = Tr(HE) ~ Chg® < Shvg (G/G) —— Vect®'.
Since the functor tr: Hy — Ch® is weight exact, it commutes with the weight complex functors. Thus,
to construct HH from HH, we can apply the construction from Section 5.1.6 to the last step of (5.2.9). As
a result, we obtain the factorization of HH
oy

/\

HE —_— Chggr — Vect8' o’ 874/
(5.2.10) lwt

Ch? (h ChiE~ )

T

20The first and last are easiest to see from the definition, from which the middle one could be deduced. Alternatively, the middle
one can also be seen by looking at the weight complex functor.
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where I is obtained by applying the construction from Section 5.1.6 to the functor C;‘r(G/ G,—)and T is
the induced functor; see (5.1.7). The category Ch?(h Chggr’o"’) (resp. h Chggr’o“’) can be thought of as a
truncation of Chggr (resp. Ch*€~“w) which justifies the name truncated trace. It is also referred to as
the underived trace and is denoted by Tro(H%) in [27].

5.3 Explicit computation of functors

In what follows, we will compute the functors I', T, and wt in (5.2.9) explicitly in terms of the identification
ChgE ~ Qqlx. 819 Q¢[Sn]-Mod®"Pe" = A, -Mod8"Pe'"

of Theorem 3.3.4. In particular, we apply Lemma 5.1.2 to deduce a corepresentability statement similar to
the main result of [13; 57].2! Moreover, our computation identifies the weight complex functor wt with
the functor of restricting to the nilpotent cone, explaining conceptually why the latter appears in [57]; see
Section 5.3.5.

u,gr

G
of the functor wt appearing in (5.2.10) in terms of modules over A,. Consider the functor

5.3.1 Identifying the weight complex functor wt for Ch We will now give a concrete interpretation

invg := Sym” VV[1]®invg: A,-Mod®-Pef — A,-Mod8&"-Pe,
where invg is defined in Section 4.1 and where we define
An = Qq[x]®Q¢[Sn] > Sym Vi [-2] 9 Q([Sx].
See also Section 4.1.4 for the definitions of V' and A,.

Note that invg is originally defined on A,-Mod&"°". So strictly speaking, in the above, we restrict this
functor to the full subcategory of perfect complexes. It is easy to see that ifrT\J/g is given precisely by
applying ifrT\//Znh followed by the functor of forgetting the action by the variables y.

The goal now is to identify wt: Ch® — Ch®(h Chggr’ow) with invg.

5.3.2 By Lemma 2.9.5, we see that in type 4, Ch® =~ A,-Mod&"P" is equipped with a weight structure
whose weight heart is spanned under finite direct sums of direct summands of Sprér [k]{k) (for all k € Z),
which corresponds to A,[k](k) (for all k € Z) under this equivalence of categories. Here [k] and (k)
denote cohomological and grading shifts, respectively.

A similar statement is true for A,-Mods"Perf,

Lemma 5.3.3 The category A,-Mod8"P*f has a natural weight structure whose weight heart is spanned
by finite direct sums of direct summands of A,[k](k) for all k € Z.

21t is in fact possible to reprove the corepresentability statement of [13] using the computation presented here. The details will
appear in a forthcoming paper.
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Moreover, the weight heart A,-Mod&Pe"-Pw js classical, and hence the weight complex functor induces
an equivalence of categories

wt: A,-Modghperf =, ch? (f[n_Modgr,perf,Ow)‘

Proof It is easy to see that the direct summands of A,[k](k) generate the category under finite
(co)limits. Moreover, as there are no positive Exts between them, the weight structure is obtained
by invoking [15, Theorem 4.3.2.11]. The second part follows by observing that there are no negative Exts
between these objects either; see also [31, Section 3.1.9]. O

We are now ready to identify wt and iF\?g.

Proposition 5.3.4 The functor invg induces an equivalence of categories invy as given in the following
commutative diagram:

invg

An_Modgr,perf N ﬁn_Modgr,perf

Ch® (hA,-Modser-perf-Ou)

Proof The computation in Section 4.1.8 shows that i’rT\//g (A,) ~ A, and hence ﬁ/@ is weight exact. By
Corollary 5.1.5, i?\?g fits into the following commutative diagram:

inve

An-Moderperf 0 A, Modseert

[ -}

Chb(h.An—MOdgr’perf’Ow) ﬂ) Chb (ﬁn_Modgr,perf,@w)
It remains to show that invg is an equivalence of categories.

The diagram above is determined by the following commutative diagram involving the weight hearts:

~Quw
Ay _Modgr,perf,Ow mv—9> ‘Zln _Modgr,perf,(?w

—w

hAn_Modgr,perf,Ow nvg s ﬁn_Modgr,perf,ow

By Corollary 5.1.5, it suffices to show that Wgw is an equivalence of categories. But this is clear since
both
iHomAn_ModgnperﬁOw (An, Anlk](k)) — Homhﬂn_Modgr»Perﬂ@w (woAn, moAnlk](k))
and
fHornAn_|\/|oc|gnpe'fﬁ7w (An, Anlkl{k)) — }Comﬁn_Modgr»Perf»@w ("Zln» Jc_[n [k](k))

realize the right side by killing off 8 from the left side. |
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5.3.5 Restricting to the nilpotent cone The discussion above has a geometric interpretation in terms
of character sheaves and sheaves on the nilpotent cone of G. It gives an explanation for why the nilpotent
cone should appear at all in [57]. The materials presented here are of independent interest and are not
needed anywhere else in the paper; we include them here mostly for the sake of completeness. The reader
should feel free to skip to Section 5.3.11.

Let N denote the nilpotent cone of the group G = GL,, equipped with the conjugation action of G. Let
in: N < G denote the closed embedding. Then we have the following functor:

i5: Chg® — Shvgr «(N/G).
We let S_pr%;r =1y Sprgr denote the (graded) Springer sheaf.
The starting point is the following formality result of Rider, which was formulated in different language:
Theorem 5.3.6 [53, Theorem 7.9] The functor fHomgLv o /G)(S_prgGr, —) induces an equivalence of
gr.c
Vect®"€ -categories
Shvg,.c(N/G) ~ End® (Sprgg)-Mode"Perf ~ A, -Mode"Pet .
The next input is a theorem of Trinh which compares the graded derived endomorphism rings of Sprér
and Sprg::
Theorem 5.3.7 [57, Theorem 1] The morphism of algebras
End®" (Spr&) — End& (L% Spré) ~ End&" (Spr;)

identifies with the natural quotient A, — f_ln.
The following is thus a direct consequence of the two theorems above and Theorem 3.3.4:

Corollary 5.3.8 We have a commutative diagram

CheE — 2 Shyg, «(N/G)

gr gr —r
g‘fomchggr (Sprg; ,—)l/: :l/?(omg:wgr’c N/G) (Sprg,—)

inveg

Ap-Moderpert 0, 7, Modsr-pert

5.3.9 The category Shvg (N/G) has a natural weight structure whose weight heart is spanned by
finite direct sums of summands of S_prg[k](k), k € 7. This corresponds to the natural weight structure
on A,-Mode"Pef which is spanned by finite direct sums of summands of A,[k](k) for k € Z. Since
Li(Sprg ) ~ S_prgGr, L) is weight exact (as can also be seen at the level of ifrT\ng).
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Proposition 5.3.10 We have a commutative diagram

ChiE I > Shg.c(N/G)

Ch? (h ChiEO»)

where all functors are weight-exact.
Proof This follows from Corollary 5.3.8 and the identification of wt with ifn\\//g in Proposition 5.3.4. O

In [59], the HOMFLY-PT homology groups are given via the chromatographic complex construction, which
is a triangulated (as opposed to DG) version of the weight complex functor; see also [31, Remark 3.1.12].
In [57], the HOMFLY-PT homology construction is then proved to factor through the nilpotent cone.
Proposition 5.3.10 above puts these two results into context by identifying the weight complex functor
itself and the functor ¢ of restricting to the nilpotent cone, explaining why the nilpotent cone appears.
Moreover, the equivalence h Chggr’ow ~ Shvg.(N/G)P» formulates precisely the sense in which
Shvgr,c(N/G) is the truncated trace of Hj , as was speculated in [57].

5.3.11 Identifying the functor I We will now compute I appearing in (5.2.10) more explicitly: we
decompose it into a direct sum (according to the a-degrees) of corepresentable functors. In other words,
the o' piece captures the part of I that is o away from being pure.
For each integer «, consider

Go: 7 — 12
such that
We define the associated functors iy, (g : Vect®" — Vect®'0-8'4" given by ¢g, « and ¢s, both followed
by a cohomological shear to the left whose amount is given by the X-degree. More precisely, for
(Vx)xez € Vect® (note that T is the cohomological degree of Vect89':8"4’ see Section 5.2.4),
VxiXir if (Q', A") = ga(X),
0 otherwise,
VX{X}T’ if (Q/’ A,) = QO(X),
0 otherwise.

lo((Vx)xez) o, ar = {

((Vx)xez) o, a0 = {

Note that the shear to the left by X is there to account for the fact that something in graded degree X and
cohomological degree X in Vect®' is sent to something of cohomological degree 0 when we apply the
construction in Section 5.1.6 to turn a cohomological grading to a formal grading.

Proposition 5.3.12 The functor I : A,-Mod&"Pef — Vect8"0":8"4" breaks up into a finite direct sum
T @hond | e POTlx].-))
o
where P € Rep S;, is the permutation representation.
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Proof By Lemma 5.1.2, T is determined by its restriction to the source’s weight heart,

T : A, -Mod&Perf:Quw s VectVr 870/ 84" s \ectso/ e’
This functor, in turn, is determined by its action on A,. Under the equivalence of categories in
Theorem 3.3.4, the constant sheaf corresponds to Q[x, 8], from which we obtain the natural equivalence

IO (Ay) ~ T(An) ~ P 1o (A" P& Qqlx])

o

~ Pia(Fomd | perow (N POQelx]. Qelx]®Ql[Snl))

o
~ @ o (ﬂiomi{n_Modghperf’ow (NP Qelx], f_ln)),
o

where we have implicitly picked an isomorphism of S,-representations P ~ PV. Moreover, the factor
(2a, @) in @ is to account for the degrees of § in A, which are not there anymore in A* P: these are
precisely the (Q’, A’)-degrees of homogeneous wedges of 6 of order «. Thus we have an equivalence of
functors

T 7 0 -1 5 f9 5 )
[Ow ~ @ o (f]-fomJg{n_Modgnperf!@w (/\aP ® Qylx], —)) : Ap-Mod8"Pe" Ow s VectVr-gronera
o

But now, the second functor has an extension to the whole of A,-Mod&"P"f which is given by

@ ly (j'fomir Modénrer (/\a P® @g [x], —)) : f_l,,—Modgr’pe”c — Vect8'o/-8M4"
o

The proof thus concludes by Lemma 5.1.2. |

Definition 5.3.13 We define
T, = fHomi{n_Modghperf (@g[)_(]@ NP, —) - A,-Mod®&Pef s Vect®
I, :=T,owt~T,o0 ifn\\l/g : Ap-Mod8"Pef 5 Vect®",
I-TI:Ia =Ty otr: H" — Vect®".
Here wt is the weight complex functor of Ch®" =~ A,-Mod&"Pe", which is identified with invg by
Proposition 5.3.4.

As a direct consequence of the direct sum decomposition of T in Proposition 5.3.12, we get the following
direct sum decompositions of I" and HH:

Corollary 5.3.14 We have the following equivalences of functors:
f:@faofa, FZEBZaOFa and Hﬁ:@zao%.
o o o

5.3.15 Gradings By construction, for any integer «, i, sends a graded vector space of graded degree X
and cohomological degree C to an object of (Q’, A’, T')-degree (X + 2a, X + a,C — X). Written
multiplicatively (see also Section 5.2.4), this object has degree

Q/X+2(XA/X+0[T/C—X — Q/Z(MA/O[ Q/XA/XT/C—X — aa QXTC—X
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In other words, the target of 7y has a-degree «. Consequently, iy, © Ty, iy Ty, and Iy o I:I\HO, all land in the
a-degree o part. This justifies the notation given in Definition 5.3.13: Ty, Ty, and HH, are the a-degree
o parts of I, T, and HH, respectively.

Observe that the factor (2, ) in @4 is responsible precisely for the a-degree. In what follows, we will

treat each a-degree separately, and for each a-degree we will ignore the a-factor and consider only the
(Q, T)-degrees. Proposition 5.3.12 thus has the following reformulation:

Corollary 5.3.16 The a-degree o part T, of T is given by j{omi{n-modgnperf (/\“P ® Qy[x]. —) € Vect®',

where the degree (X, C) corresponds to (X, C — X) in the (Q, T')-grading. Here X is the graded degree
and C is the cohomological degree in Vect®'.

5.3.17 Identifying the functor I' Our goal is now to show an analog of Corollary 5.3.16 for the
functor I" appearing in (5.2.10). We already saw in Corollary 5.3.14 above that I" is decomposed into a
direct sum of ¢, 0 I},. We will now show that the I}, are corepresentable, except that now, the corepresenting
objects live in A,-Mod&"" C A,,-Mod®" ~ Ind(A,-Mod&"Pef). In other words, they are corepresented

by ind-objects (which happen to be coherent)!
Recall the functor
trivg := Sym” V[—1]®trivg : A,-Mod&"Pe — A,-Mode" ",

where trivg sends a perfect A, complex to a coherent object where § act by 0. This functor has a partially
defined right adjoint

nve := Sym" VV[1]@invg: A,-Mod®Pert > A, -Mod8"Per,

where A,-Mod&"P"f is naturally a full subcategory of A,-Mod®&"". This pair of partial adjoints comes
from the standard adjunction pair trivg - invg between the Ind-completed categories A,-Mod&" =
Ind(A,-Mod®"Pef) and Ind(A,-Mode" "),

Remark 5.3.18 (abuse of notation) In what follows, we will abuse notation and implicitly view objects
of A,-Modse"Pe'f as living in A,-Mod&" " whenever necessary. For example, when ¢ € A,-Modg""
and p € Ay-Mod8" P, we write

gr R gr
i]-Comﬂ'n_,\/lodgr.coh (C, p) T g{omAn_Modgr.coh (C, Lperf;)Cth)’

where (perfescoh: Anp-Mode™Perf <5 A _Mod8&<°" is the natural inclusion.
In view of Corollaries 5.3.14 and 5.3.16, we have the following analog of Proposition 5.3.12 for I":

Proposition 5.3.19 The a-degree « part I, of T is given by

Iy >~ Hom® ercon (NP ®Sym™ V[-1]® Qg[x], —): Ap-Mod&Pef s Vect®,

Apn-Mod
where the degree (X, C) in Vect®" corresponds to (X, C — X)) in the (Q, T')-grading. Here X is the graded
degree and C is the cohomological degree in Vect®'.
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Proof Using the adjunction t?i(/g — ifrT\J/g discussed above, for any M € A,-Mod&"Pf, we have

FOC (M) = g_{:omi{n_Modgr,perf (/\O[P ®@€[3_C]’ rrT\;QM) = g-comi{n_Modgr,coh (/\a P ®{|’\|-\I/0 (@[[)_C]), M)
o Hom® 1 reon (NP ®Sym” V[=1]®@Qq[x]. M). O

We are now ready to state the main theorem of this subsection, which is a direct consequence of the
results proved so far.

Theorem 5.3.20 The a-degree  part HHy of HH is given by

Afly ~3tom® | (N POQ L], iivg tr() = Fom® (A P@Sym" V[~ 110 Lx], tr(-))

as functors H§ — Vect®, where the degree (X, C) corresponds to (X, C — X) in the (Q, T')-grading,
where X is the graded degree and C is the cohomological degree in Vect®'.

Proof This follows directly from the computation of I}, in Proposition 5.3.19 and the fact that HHy =
[, otr (see Definition 5.3.13 and Corollary 5.3.14). O

Example 5.3.21 The a-degree o part of the HOMFLY-PT link homology of the unlink of » components
is given by

FHom® e (N POQu[], invg tr(1) = Hom® | (A P@Sym™ VI-1]@ Qlx], tr(1)),

where 1 is the monoidal unit of H§' and where the Q and T gradings are given as in Theorem 5.3.20.
Now, recall that ifE\ng tr(1) ~ A,. The computation in the proof of Proposition 5.3.12 then shows that the
left-hand side of the equivalence above is simply A* P ® Q[x]. The associated three-variable polynomial

() ze) = (5) = ()

a=0

is thus

5.4 HOMFLY-PT homology via Hilb(C?)

We will now finally establish the realization of HOMFLY-PT homology via Hilbert schemes of points
on C2. The main point is to transport Theorem 5.3.20 to the Hilbert scheme side via Koszul duality and
the result of Krug as encapsulated in Section 4.

5.4.1 Koszul duality We will now reformulate Theorem 5.3.20 using Koszul duality, which is an
equivalence of categories (4.1.7). We start with the following matching of objects:

Lemma 5.4.2 Under the equivalence of categories (4.1.7), we have the following matching of objects:
ivg" (A P@Sym" VI-1]@Qelx]) = A* P@Qylx. y] = A" P@Sym(Vx[-2]® V') € By-Mode"P="
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Proof Directly from the construction (see also Section 4.1.5), we have

invg"™ (Qelx]) ~ Qg[x. y].
Thus,
invg" (@elx]) := Sym” VV[1]@invg™ (@[x]) = Sym”" V¥ [1]@Qy[x. y]

Since all functors involved are linear over Q[S,]-Mod®&"P*f, we get

i’ﬁxg"h(/\“P®sym” V[-11@ Q¢lx]) ~ A" P@®Qqlx. y] € By-Mod&Pe" | o

Corollary 5.4.3 The a-degree o part HHe of HH is given by the cohomology of
. = ~enh
HHy (Rp) >~ .‘J—fomggrn_,vlodgnperf (/\aP ® Qq[x, y], invg' (tr(Rﬁ))) € Vect?,

where the degree (X, C) corresponds to (X, C — X) in the (Q, T')-grading. Here X is the graded degree
and C is the cohomological degree in Vect®'.

Proof This is simply Theorem 5.3.20 transported to B,-Mod®"P*f using the equivalence of categories
(4.1.7) and the matching of objects done in Lemma 5.4.2. |

5.4.4 HOMFLY-PT homology via 2-periodized Hilbert schemes We will now relate HOMFLY-PT
homology and 2-periodized Hilbert schemes of points. Since there are now multiple gradings, we will
include them in the notation. Recall that on the B,-Mod&"P¢"" side, there are two sets of gradings: (X, Y)
and (X~ , 17). Here X is the original grading coming from graded sheaves whereas Y is the extra grading
(to be “canceled out” by 2-periodization). Moreover, the (X~ , ?)—grading is related to the (X, Y)-grading
via a simple change of coordinates; see Sections 4.4.1 and 4.4.6.

Definition 5.4.5 We define
(1;2-per r ey —1 r r r ry ,2-per r & ,gre,2-per
HH, "t HE — Q[B. B~ [-Mod®™X 8"Y —: Vect8 X -E8TY>TPEr— ~ \/ect8 X 877> PC

by Q/[B, B7']® HH,, where B lives in cohomological degree —2 and (X, Y')-degree (0, 1), and where
HHy is viewed as a complex with two formal gradings by setting the Y-degree to 0 while keeping
the X -degree the same. See also Section 4.4.8 for the various definitions and grading conventions for

2-periodization.

We note that HH H, 2Per and HHg contain the same amount of information. The introduction of 2-periodization
allows us to introduce a formal grading Y that is twice the cohomological degree. For example, the
= [ part of HO(HH2 per

multlphcatlve notation) if we use C to denote the cohomological degree. All the cohomology groups of
T 2- per

(—)) is precisely HZI(Fma(—)). In this precise sense, we have Y = C? (in

HHg can then be recovered by looking only at H® and H! of HH,,
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Theorem 5.4.6 [28, Conjecture 7.2(a)] We have the equivalence of functors from Hy' — Vect8' -8 2-Per

s grg 8y 2-per _per ;~—enh -per
HH,, PEr ~ J-Compe);(Hi’lfbn /G%)Q,pe,((/\a‘:r) Per 2P (invg (tr(—))2 P )),

where T is the tautological bundle on Hilb,. The (X.Y) -grading matches with the (q, t)-grading as
follows: X = q and Y = \/i. Moreover, the cohomological degree C on the right corresponds to \/qt.

Note also that for any R € HY', \If2‘per(ifr7\//2nh(tr(R))2‘pe') € Perf(Hilb, /G2, ﬁi?t:f ie it is supported along

the x-axis.
In particular, for any Rg € HY associated to a braid f, there exists a natural

Fpg 1= WP (invg " (tr(Rp))* ) € Perf(Hilb, /G2 )ﬁ,,ﬁ’;j
such that the a-degree o« component of the HOMFLY-PT homology of B is given by

gry.8ry o -2-per
Hompeﬁ(mﬁn /GR)>Per (/\ g ’SFB)-

Proof For any R € HE', we have the natural equivalences

2 per

(R) := Q[B. B~ 1® AHu (R)
~ QlB, B 1@HomE™ e (N POy, yl.invg" (tr(R)))
~ HomEXEY ey (NP @QLx, yL,invg " (tr(R)))

r rs 2- ——enh
~ j{om%; g dgr 2 per,perf ((/\a T) per ( en (tr(R)))2 per)
r g8y 2-per h
~ g_comlgDei(f(i”bn /G%)z_per((/\a ) pe 1112 per(mven (tr(R))2 per))

where the first follows from Corollary 5.4.3, the second from Lemma 4.4.2, the third from Corollary 4.4.5,
and the last from Theorem 4.4.15 and Corollary 4.5.6. Note that as before, we implicitly passed from
(X, Y)-grading to ()?, ?)—grading.

For the matching of gradings, observe that Xkyl = x2kykx—1 — xy2k-Ic2k corresponds to
Q2k—lT2k—2k+l — Q2k lTl Q2kQ lTl =q (\/_)l

in the (g, t)-degree. In other words, (A7 , ?)—grading corresponds to (¢, +/7)-grading precisely. Moreover,
cohomological degree 1, which is C, corresponds to

T=007'T=qt. O

Remark 5.4.7 When decategorified, a term in cohomological degree 1 of I:|\I/-I§['per contributes a factor
of —./qt. The sign is there because of the odd cohomological degree.
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Example 5.4.8 We now rephrase Example 5.3.21 in terms of 2-periodic complexes. By Definition 5.4.5,
the a-degree a part of the 2-periodized HOMFLY-PT homology is given by

~~—2_per — _ —
HH, ™" = Q¢[B. 7' 1@ \" P @ Qy[x].
Since there’s no odd cohomological degree, the associated polynomial is extracted from
~ 0 —
HO(HH, ™) ~ A" P@Qq[Bx].

where B8x has cohomological degree 0 and (X, Y)-degree (2, 1), or equivalently (f , ?)—degree (1,0),
which is the same as (g, t)-degree (1, 0). The associated polynomial is thus

(2 () - ()

5.5 Matching the actions of Q[x]*"

In [28, Section 5.1], an action of the variables x (or equivalently, X, depending on whether we are working
with the sheared or the 2-periodized version) on HHH is constructed. In particular, symmetric functions
on x (or equivalently, X) also act. On the other hand, by construction, the geometric realization of HR>P
via Hilbert schemes in Theorem 5.4.6 automatically equips it with an action of Q[%, i/]S" = HO(Hilb,, ).

In particular, it admits an action of Q[¥]" C Q[X, i/]S".

This subsection is dedicated to showing the following result, whose proof will conclude in Section 5.5.16:
Theorem 5.5.1 (part of [28, Conjecture 7.2(b)]) The two actions above coincide.

The proof is a simple matter of chasing through the construction. To keep the main ideas evident, we
will elide the difference between sheared and 2-periodic versions. For example, we will pass seamlessly
between x, y and X, J.

The argument can be most conceptually and conveniently phrased in terms of module categories. For
example, instead of saying that a (graded) commutative ring R acts on objects of a (Vect®-module)
category C, we formulate everything in terms of the symmetric monoidal category O = R-Mod (or
O = R-Mod®#") acting on C itself. Then the core of the argument revolves around observing that all
functors involved are linear over O.

5.5.2 Module categories and actions of a commutative ring We start with some generalities regarding
module categories and actions of commutative rings.

Let O and O’ be compactly generated rigid symmetric monoidal categories equipped with a symmetric
monoidal functor F: O — O’ and a right adjoint G, which is necessarily right-lax symmetric monoidal.
The symmetric monoidal functor F equips O" with the structure of an O-module category. F can thus
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be written as ' = — @ lp. The functor G can thus be written as G =~ ﬂ{omg,(lo/, —), where the
superscript O in Hom denotes the O-enriched Hom. See [31, Appendix A.2.6] for a quick review on
enriched Hom-spaces.

Lemma 5.5.3 Let O and O’ be as above, and C an O'-module category. Then, for any cy,c, € C,
ﬂ{omg(cl , C2) has a natural Endg/(lo/)-module structure. Moreover, this module structure is compatible
with
(i) O’-linear functors: if F: € — D is a morphism of O’-module categories, then J-Comg(cl ,C2) —
J—Com%(F(cl), F(cy)) is a morphism of modules over Endg,(lo/);
(ii) the restriction of structure via a symmetric monoidal functor F': O" — O”: if the O'-module
structure on C comes from restricting an O” -module structure, then the Endg/(lo/)—module struc-

ture on %omg(cl , C2) 1Is obtained by restriction of scalars along the commutative algebra map
Endd (o) — Endd (1o7).

Proof We have fHomg (c1,c2) € O, and thus it naturally has a module structure over 1. Since G is
right-lax symmetric monoidal, G f}{omg (c1, ¢») has a natural module structure over G(1¢7) >~ Endg/(lo/).
But, by adjunction, G J—Comgl (c1,02) J—Comg(cl ,C2) and we are done.

The second part regarding various compatibilities is an easy diagram chase. O
Lemma 5.5.4 Let O, O/, and C be as above. Then for any c there is a natural map of algebra objects in O
@c: Endg,(lo/) — Endg(c).

Moreover, this map is compatible with O’-linear functors and with restriction of structure via a symmetric

monoidal functor O’ — O”.

Proof 8nd8/ (¢) is an algebra object in ©’, and hence it receives a natural algebra map from 1¢/ since
1¢ is the initial algebra object. Applying G to this map, we obtain the desire map of algebras in O.
The second part follows from Lemma 5.5.3. |

Remark 5.5.5 In the case where O = Vect (resp. O = Vect®"), Lemma 5.5.4 states that any object ¢ € C
admits a natural action (resp. a graded action) of Endy/(1¢/) (resp. Snd(g(_)r/(lo/)).

Corollary 5.5.6 Let O, O, and C be as above. Then for any ¢y, ¢, € C the action of 8nd8/(lor) on
J—Comg(cl , ¢2) factors through Sndg(cl)re" and Endg(cz). Here the superscript rev denotes the reverse
multiplication.

Proof Since 1¢ is the initial algebra object in ', the action of 1¢/ on fHomg/ (c1, ¢p) factors through
the natural actions of Endgl(cl)'e" and Endg/(cz). Applying G, we obtain the desired conclusion. |

In what follows, we will apply the statements above to the case where O’ = R-Mod®" for some commutative
ring R and O = Vect®". Moreover, F is the functor of taking free R-modules and G is the forgetful functor.
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Remark 5.5.7 In the situations that we are interested in, the functor F' and all the actions (in various
module category structures) are compact preserving. Note, however, that G does not preserve compactness.
Thus, when working with the small full subcategory spanned by compact objects, Lemmas 5.5.3 and 5.5.4
and Corollary 5.5.6 still apply, except that the enriched Homs are not necessarily compact.

5.5.8 The action of @g [x]on HHH We will now recast the action of Q[x] on HHH as described in
[28, Section 5.1] in the categorical language above. To start, observe that Hf =~ Shv,, (BB xgg BB)
has an action of Shvg, (BB x BB) =~ Q/[x]®2-Mode"Pef where the two factors act on the left and the
right, respectively. The usual action of Q[x]®? on any R € H' (ie any Soergel bimodule) can thus be
recovered from Lemma 5.5.3. Note also that the commutative diagram

BB xpg BB —— BB

| |

BB — BG

implies that the induced actions of Shvg, (BG) ~ C;‘r(BG)—Modg“pe”c ~ Q[x]%-Mode"Pe" via these
two actions (on the left and right) agree. In particular, the two actions of C;r(B G) on any R € HY obtained
from restricting the two actions of C;‘r(BB) along C;‘r(BG) — C;‘r(BB) agree; see also [28, Lemma 5.1].

5.5.9 Reducing to the weight heart By construction HHH is obtained by applying Hochschild homology
termwise (via the weight complex functor) to an element R € H$'. This was formulated geometrically in
Section 5.2.1. Since all the categorical actions are weight exact, for the purpose of describing the action
of Q¢[x] on HHH, we can assume that R € H,g{’ow and forget about the weight complex functor. The
action of Q[x] ~ C;r(BB) on HHH(R) can thus be obtained by applying Lemma 5.5.3 where O = Vect®',
O" = Shvg, (BB)™", C = Shvg, (G/B)™", ¢y = Qq,G/B. and c; = p* R. Indeed, this is because HHH(R)
is given by (the cohomology of)

Co (BB, mxp*R) ~ ﬂ{oméngr'c(G/B)(@g,G/B, P*R).

5.5.10 The action of Q, [x]5" on HHH WEe can restrict the action of Q[x] on HHH to Q[x]3" € Qg[x]
and obtain an action of Qg[x]%, which is the action described in [28]. We will now realize this action
more geometrically. We start with the following result:

Lemma 5.5.11 For R € Hy"¥" the action of Qq[x]>" = C%,(BG) on
HHH(R) = H*(ﬂ{omgngnc(G y B)(@g, P*R))

is given by the Shvg, (B G)-module structure on Shvg, (G/B) via Lemma 5.5.3, where the former acts
via pulling back along G/B — BB — BG.

Geometry & Topology, Volume 29 (2025)



Graded character sheaves, HOMFLY-PT homology, and Hilbert schemes of points on C? 2537

Proof By definition, the C3 (BG)-action is given by restricting along C3 (BG) — Cg (BB). The
result thus follows by applying Lemma 5.5.3(ii) to the case where O = Vect®, O’ = Shvg, (BG)™",
0" = Shvg,(BB)™", € = Shvg(G/B)™", ¢; = Qq.g/p, and ¢; is p*R. o

Lemma 5.5.12 For R € H‘,g,r’O“’, the action of C;(B G) on HHH(R) described above agrees with the one
coming from the Shvg, (B G)-module structure on Shvg, (G/G) via Lemma 5.5.3 and the equivalence

HHH(R) = H* (fHOmShV (G/G)(QK,G/G’C]*P*R)) = H*(%Omirhggr(@é,G/Gvtr(R)))-

Proof Consider the (non-Cartesian) commutative square

/\

BB XBG BB
BG

where p and ¢ form the horocycle correspondence. Note that p* and ¢g* are Shvg, (BG)-linear. By
rigidity of Shvg, . (BG), px and g« are also Shvg, (B G)-linear. But now, we have a natural equivalence

Shvg (BG)™" Shvg,(BG)

Hom MShvg (G/B)ren(QZ P*R) ~ Mshy,, (G/B)ren(q QZ P*R)

Shvg (BG)™"

~ Homgne (o oy (@4 0™ R) € Shvgee () < Shuge (2)

The proof concludes by applying CHomgng“c(G /G) (Qg, —) as in Lemma 5.5.3 and using Lemma 5.5.11. O

The action above has a more explicit description in terms of Theorem 3.3.4. We start with the following
result:

Lemma 5.5.13 We have an equivalence of Qg[x]%*-Mod#"P*"f-module categories (or equivalently, of
Shvgr,c (BG)-module categories)

Homg e (Sprg;, —): Chg™ = = Qqlx. 019 Q¢[Sn]-Mod&"Pe
where the Shvy, (B G)-module structure on the left-hand side is inherited from the embedding Ch ; e
Shvg,(G/G) and where the Cgr(BG) Modg"Pe"-module structure on the right-hand side comes from the

natural morphism of algebras

(5514 Q" = CL(BG) = ndf,  (36)(@0) > EndE, e (Spré)) = Qelx. 68 Q4[S]

given by Lemma 5.5.4. Moreover, this morphism of algebra is the obvious one, given by the embedding
of symmetric polynomials on x to all polynomials.
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Proof Instead of running the proof of Theorem 3.3.4 relatively over Vect®', we could have run it relatively
over Shvg, (BG)™". Then we obtain an equivalence of Shvg, (BG)™"-module categories (or equivalently,
of Q[x]%"-module categories)

Chg®""™" = Qylx. 0]® Q¢[Sn]-Mod(Shvg (BG)™™") ~ Qg[x. 8] ® Qy[Sn]-Mod(Q¢[x]*-Mod),

where the category on the right-hand side is formed using the natural morphism of algebras (5.5.14), by
Corollary 5.5.6. Note also that the equivalence of categories in Theorem 3.3.4 is obtained by further
composing with the forgetful functor

QeLx. 012 Qe[Sn]-Mod(Shvg (BG)™) ~ Qy[ix. 0] 9 Q[Sn]-Mod(Q[x]*"-Mod)
I, Qelx. 019 Qy[Snl-Mod (Vect®') = Qylix. 0] Qg[S]-Mod®" .

Now, observe that the forgetful functor is in fact an equivalence of categories. The proof of the first part
thus concludes.

We will compute the morphism (5.5.14) explicitly, as stated in the last sentence of the lemma. Consider
the following (non-Cartesian) commutative diagram:

B/B —15 G/G

I I

BB —% 3 BG

Now, applying Lemma 5.5.4 and the fact that Sprgr ~ ¢+Qy, we see that the natural algebra morphism

Car(BG) = &ndg, 5y Q) > Endgy  6/6,(SPrE)
factors as

C’gkr(BG) S C (BB) —— &nd® hvg L(B/B)(Qe) — &nd hv ((G/G)(SprG)
| | | |
QuxPPr —— Qulx] ————— Qq[x. 0] ——————— Qqlx, 0] Q¢[Sx]

where the maps in the bottom row are the obvious ones. The commutativity of the third square is due to
Theorem 3.2.1(iii). The commutativity of the other two squares is obvious. The desired statement then
follows from the commutativity of the outer square in the diagram above. O

We obtain the following refinement of Theorem 4.4.15:

Corollary 5.5.15 We have an equivalence of Q[X]5"-Mod8' % -&"7-2-Per-Perf_module categories

=>Chu ,8r ~ .Bgr Mo di:'l);:gl’}’az per lIIZ per QCOh(HIIbn /GZ)IQ_'ITI:’;%’

where the Q[x]%"-Mod®&" % -&7-2-Per-Perf_module category structure on the first two (resp. last) categories
(resp. category) is given by Lemma 5.5.13 (resp. by the Hilbert-Chow map and forgetting the y-variables).

Similarly, we have the corresponding statement for the small category variant by passing to the full
subcategories of compact objects.
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Proof Lemma 5.5.13 above, combined with Koszul duality, implies that we have an equivalence of
Q[X]3"-Mod® % -&r7-2Per-perf_module categories

gr ,8r,2-per
7 ChigE™" = BY-Mod o E TP

where on the right, the module structure is induced by the algebra map
Qe[EP" — Q(I%, 1" — QulX, 719 Qe[Sn] =: B,
which is geometrically realized as coming from the natural morphism
A2"/S, — A S, — A" //S,.

The commutative diagram (4.2.2) implies that W2P*" s linear over Q[X, j}]S” Mod® 8772 (see also
[35, Remark 3.11]), where the Qg[X, 7]3"-Mod® %:8"#:2P¢"_module category structure is given by the
Hilbert-Chow morphism Hilb, — AZ"//S,,. In particular, W2-P*" is linear over Q[¥]>"-Mod8' % -&"7>2-Per,
Thus we obtain an equivalence of Q[X]37-Mod®& % :8"#:2P¢"_module categories

BE-Modp 7% L%, QCoh(Hilby /G2 )iher .- O
5.5.16 Completing the proof of Theorem 5.5.1 InLemma 5.5.12, we show that the action of Q[x]%" on
HHH as given in [28] comes from the Shvg, (B G)-module category structure on Ch®". In Lemma 5.5.13,
we show that this module category structure is induced by an explicit map of algebras, which is then used
in Corollary 5.5.15 to show that this module structure is compatible with the one on the Hilbert scheme
side, where the structure is induced by the Hilbert—-Chow morphism. But now, this structure is responsible
for the geometric construction of the action of Q;[x]%" on HHH and the proof concludes. a

5.6 The support of Fg on Hilb,

We will now show that for a braid B, the support of Fg on Hilby,, where Fyg is as in Theorem 5.4.6, can
be bounded above using the number of components of the link associated to 8. This is the content of
[28, Conjecture 7.2(b) and (c)]. Unlike what is implied over there, however, we do not deduce this as a
consequence of Theorem 5.5.1. The obstacle is that Theorem 5.5.1 is a statement about global sections of
a sheaf, whereas the statement we are after is one about the support before taking global sections, which
is more local in nature. The route we take is thus via the theory of supports as developed in [3; 10], which
is inherently local.

As in the previous subsection, to keep the exposition light, we will elide the difference between the
2-periodic and sheared versions of the various categories involved, passing seamlessly between, for
instance, x, y and X, J.

5.6.1 Subspaces of Hilb, and supports of g We start with some notation regarding various subspaces
of Hilb, which will appear as supports of Fg.
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Definition 5.6.2 (i) For € Br, a braid on n strands, we define wg € Sy to be the corresponding
permutation.

(ii) For each w € S,, we let A2" C A2" denote the closed subscheme of A2” defined by the relations
w y
Xi = Xy, Where Xy, ..., Xn, X}, ..., X, are the coordinates of the A2n 22

(iii) We let A? = Aﬁ,” x 2n A" be the closed subscheme of the diagonal A”, where A" — A2" is
the diagonal map. Alternatively, if we let the x; denote the coordinates of the diagonal A", then A7, is
defined by the relations x; = xy,(;).

(iv) For each w € S,, we let w denote its conjugacy class, (A%)/S, € A" /S, the image of Aj, in
A" Sy, and A% C A" the preimage of (A7) /S, in A”. In other words, A7 is the orbit of A7 under the
S» action and A’ /S, its GIT quotient.

(v) For each w € Sy, we let Hilb, i € Hilb, denote the preimage of A%//Sn under Hilb,, — AZ”//S,, —
A" /S, where the first map is the Hilbert-Chow map and the second mayp is the projection onto the first
factor.

(vi) For each w € S,, we let Hilb, 5 i be the closed subscheme of Hilby, fitting in the Cartesian square

Hilb, 5.5 — Hilb, x —— Hilb,

| | |

AL Sy —— A")S, —— A*/S,

where the bottom right horizontal map is induced by A” >~ A” x {0} — A?". Equivalently, Hilby, x5 =
Hilb,, x N Hilb, .

Note that all of these subschemes are stable under the scaling action of G,. It thus makes sense to talk
about G,-equivariant (quasi)coherent sheaves on these spaces.

Remark 5.6.3 Since these schemes are used for the sole purpose of making statements about set-
theoretical supports of (quasi)coherent sheaves, any possible nonreduced or derived structure is not
relevant to us. For definiteness, we take the underlying reduced classical schemes if any nonreduced or
derived structure is present.

With the definitions in place, we are now ready to state the main result of this subsection, whose proof
will conclude in Section 5.6.12 below.

Theorem 5.6.4 [28, Conjecture 7.2(b) and (c)] Let B be a braid on n strands and wg € Sy, the associated

permutation. Then Fg € Perf(Hilb, / Gr%])aiﬁf; . (see Theorem 5.4.6) is set-theoretically supported on

Hilby, 5,3, ie Fp € Perf(Hilb, /G2)ihe" y

22Note that A%U” has dimension #; the superscript is simply to indicate that it is a closed subscheme of A 2",
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5.6.5 Support in DG-categories As in Section 5.5, the proof is most conceptually explained in terms
of module category structures. These structures are naturally in contact with support conditions in the
sense of Arinkin and Gaitsgory in [3].

More precisely, let O = A-Mod&"P"f be a symmetric monoidal category where A is a graded commutative
(DG) algebra and € an O-module category. Consider the commutative algebra A = P, H2"(A) which is
doubly graded. Equivalently, Spec A is equipped with an action of G2. Then, for any G2 -invariant closed
subset Y of Spec 4, [3] defines the full subcategory Cy of C consisting of objects supported along Y.

The algebras A in our cases are of the forms C’g"r(BB X BB) ~ Qg[x, x'], C’g"r(BB) ~ Qg[x], and
C;(BG) ~ Qg[x]%, which are pure and concentrate in only even degrees. The two G, actions thus
coincide, and moreover the algebra A is simply a shear of A. We can therefore ignore one of the gradings
and the closed subsets Y we will consider are simply G,-invariant closed subsets of A2”, A" and A" /S,,.
These are precisely the ones that appear in Definition 5.6.2.

Remark 5.6.6 Since these are the only cases that we are interested in, we will assume that all of our
commutative graded DG-algebras A used to study supports are pure and concentrated in even degrees.

Remark 5.6.7 Strictly speaking, [3] works with big categories whereas we formulate everything using
small categories. This is not a problem, however, since all of our categories are compactly generated and
all actions are compact preserving. Alternatively, we could formulate everything using big categories by
working with, for example, H; """ and Shv,, (BG)™", etc. We chose not to do so since, for example, Hy
is a much more familiar object than H5"™".

5.6.8 Supports of Rouquier complexes We will now formulate the support conditions satisfied by
Rouquier complexes. Recall that for a braid 8 on 7 strands, we use Rg € H};' to denote the associated
Rouquier complex. As seen above, Hy := Shvg, (BB xpg BB) has a natural module category structure
over Shvg, (BB x BB) =~ Qq[x, x']-Mod#"Pef_ By [3, Section 3.5 and E.3.2], it makes sense to talk about
the support of any element in HE' relative to Qg[x, x']-Mod&"Pe"f. More precisely, given any conical closed
subset Y C A2" (with respect to the usual scaling action of G,), we can talk about the full subcategory

r r r 0 r,perf r
(H}g1 )Y ~ H& ®Shvg,!c(BBXBB) Sthr,c (BB X BB)Y ~ He ®@EB’§/]_Modgr~Peere[)_ﬂ)_C/]'MOde et e H;g1
of objects supported on Y.

The main computational input is the following result:

Proposition 5.6.9 Let 8 € Br, be a braid on n strands. Then Rg € HE' is supported on Azw”ﬁ with respect
to the action of Shvg, (BB x BB) on HY'.

Proof This is essentially [28, Theorem 5.2] but formulated in a more “local” way. For the sake of
completeness, let us also sketch a more geometric proof, which follows the usual strategy. Namely, we
decompose B into a product of simple crossings.
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We thus start with the case of a single simple crossing ;. Then wg, is a simple permutation. Consider
the stack B\ Bwg, B/ B. Observe that

Cor(B\Bwg, B/ B) =~ Qq[x, X/ (xk — Xuy. ()
and hence, _
Shvgr.c(B\Bwg, B/ B) = Q[x, x'l/ (X — Xuy, k))-Mod®"-Pe'".

Consequently, any object in Shvg, (B\ Bwg, B/ B) is supported on Alzl,';_ , relative to
C}.(BB) ® C}, (BB)-Mod®"P*"" ~ Shv,, (BB x BB).
Now, let juy, : B\Bwg, B/B — B\G/B. Then by rigidity of Shvg, (BB x BB),
Jwg, % Jwg, 1 Shvgr,c(B\Bwg, B/B) — Shvg, (B\G/B)

are linear over Shv,, (BB x BB), and hence they both preserve supports. In particular, the Rouquier
complexes Rpg, and Rg—1 are both supported on Aﬁj’;. .

For a general braid 8, we write 8 = B ... B;u. Then Rpg is obtained using the usual convolution diagram
for Hecke categories. The proof concludes by applying [3, Proposition 3.5.9] to the convolution diagram
realizing Rg as a product of Rg,. |

5.6.10 The support of tr(Rg) The rest of the proof of Theorem 5.6.4 is straightforward and follows
essentially the same strategy as the one used in Section 5.5. Namely, it amounts to transporting the
support condition on Rg established in Proposition 5.6.9 around to Chggr and then to Hilb,,. We will now
consider the first part.

Corollary 5.6.11 Let Rg be the Rouquier complex associated to a braid 8. Then the support of
tr(Rpg) € Ch®', relative to Shvg, . (BG) =~ Qg[x]"-Mod&"P*""  Jies inside A% //S,.

Proof Recall that tr = ¢, p*, where p and ¢ are given in the following diagram:
BB xpg BB +2— G/B -1 G/G

! I

BB x BB < BB > BG
Applying [3, Proposition 3.5.9] and the fact that supports are preserved under functors compatible

with module category structures, we see that p* Rg has support in A} 5= Aﬁ)’; X p2n A" relative to
Shvgr,c(BB), as a consequence of Proposition 5.6.9. Applying [3, Proposition 3.5.9] again, we see that
P* R has support A%ﬁ /S relative to Shvg, . (BG). Now, the proof concludes by using the fact that ¢
is Shvgy ¢ (BG)-linear. |

5.6.12 Completing the proof of Theorem 5.6.4 First, recall that in geometric settings, ie when all
categories involved are QCoh of Artin stacks of finite type and module category structures are given by
pulling back along morphisms of stacks, categorical support in the sense above agrees with the usual
notion of set-theoretic support. Thus it suffices to show that the sheaf Fg is supported on A%B /Sy relative
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to A" /S, Indeed, this is equivalent to stating that Fg is set-theoretically supported on Hilb, 5 C Hilby,
and hence also on Hilb, 3 i = Hilb, 5z N Hilb, i since Fg is known to have support on Hilb, 3 by
Theorem 5.4.6 already.

But now, by Corollary 5.5.15 and, again, the fact that supports are preserved by functors that are
compatible with the module category structures, this support condition is equivalent to the one proved in
Corollary 5.6.11 above. |
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