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1 Introduction

Let M be a closed, oriented, connected 3-manifold and N C M the complement of a tubular neighborhood
of a null-homologous knot. The goal of this paper is to associate a specific class of contact forms « to N,
to introduce relative embedded contact homology groups ECH(N, 0N, ) and E/(ﬁ{(N ,dN, ), and to
prove their isomorphism with the embedded contact homology groups ECH(M) and E/C\H(M ).

The embedded contact homology group ECH(M) of a closed 3-manifold M, due to Hutchings [2002]
partially in collaboration with Taubes [Hutchings and Taubes 2007; 2009a], is defined using a contact form
o« on M and an adapted almost complex structure J on the symplectization R x M. The variant E/C\H(M ),
called ECH hat, is defined as the mapping cone of a U-map (see Section 2.5). There is currently no direct
proof of the fact that these groups are invariants of M ; the only known proof, due to Taubes [2007; 2010],
is a consequence of the isomorphism between Seiberg—Witten Floer cohomology and embedded contact
homology, combined with the invariance of Seiberg—Witten Floer cohomology established by Kronheimer
and Mrowka [2007].

Embedded contact homology groups can be defined over the integers, following [Bourgeois and Mohnke
2004] or [Hutchings and Taubes 2009a, Section 9]. All results in this article hold over the integers as
explained in Proposition 4.5.5 and Remark 9.9.5, but we will write detailed proofs only over the field
F = 7 /27 for simplicity. Given a compact 3-manifold N with N ~ T2, let & be a contact form on N
which is nondegenerate on int(/N) and negative Morse—Bott on dN (see Definition 4.1.1). In particular, the
Reeb orbits on dN act as sinks for J-holomorphic curves in R x &, ie no nontrivial J-holomorphic curve
in R x N can have a positive end at an orbit in dN. Then there exist relative embedded contact homology
groups ECH(N, dN, o) and E/C\H(N ,ON, ), whose definitions will be given in Section 7. Moreover,
there is a chain map U on the complex defining ECH(N, 0N, o), and the homology of the cone of U is
isomorphic to E/C\H(N ,ON, ).

The embedded contact homology group of a contact manifold (M, £) has a natural decomposition as a
direct sum of groups ECH(M, £, A) indexed by homology classes' A € H{(M). This decomposition
depends on the contact structure &, although very weakly. For this reason we always specify £ together
with the homology class A.

Similarly, ECH(X, dN, @) and E/C\H(N, dN, @) decompose as direct sums of groups ECH(N, dN, «, A)
and E/C\H(N, dN, o, A) indexed by relative homology classes A € H{(N,dN). The maps U in both
ECH(M, £) and ECH(N, dN, @) preserve the splitting according to homology classes. Taking into
account the fact that K is null-homologous, excision and the relative homology long exact sequence give
an isomorphism w: Hy(N,dN) => H;(M), and the equivalence between ECH and relative ECH is
compatible with the corresponding decompositions.

The main result of this paper is the following:

1 Singular homology groups should always be understood over the integers if no coefficient group is explicitly indicated.
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Theorem 1.1.1 Let N C M be the complement of a tubular neighborhood int(V') of a null-homologous
knot K, where V ~ K x D?, £ a contact form on M which is transverse to the foliation K x {x} on V, and
a a contact form on N for the contact structure & |y . If the Reeb vector field R, of « is nondegenerate
on int(N), negative Morse—Bott on dN and foliates N by meridians, and all closed Reeb orbits in N
have nonnegative linking number with K, then, for all A € Hy(N, dN ; Z),

(1) ECH(N, oN,«a, A) ~ECH(M, &, w(A)), and
(2) ECH(N, N, «a, A) ~ ECH(M, £, w (A)).

Moreover, the first isomorphism is compatible with the U -maps on both sides.

The prototypical situation to which Theorem 1.1.1 applies is the case of an open book decomposition
with connected binding. In this case N is the mapping torus of a surface diffeomorphism 4: § = S
and V = M —int(N) is a tubular neighborhood of the binding. In other words, Theorem 1.1.1 allows
us to rewrite the embedded contact homology groups of M in terms of the relative embedded contact
homology groups on the complement of the binding. We remark here that [ Yau 2007; WendI 2008; 2005]
examined related issues.

Theorem 1.1.1, applied to the open book case, is the first step in the proof of the equivalence of embedded
contact homology and Heegaard Floer homology, a Floer homology theory for three-manifolds defined
by Ozsvith and Szabé [2004a; 2004b]. Once we express the embedded contact homology of M purely
in terms of N using Theorem 1.1.1, it is easier to define chain maps to and from the hat version of
Heegaard Floer homology. In fact, the Giroux correspondence [2002] — the bijection between open book
decompositions up to positive stabilization and isotopy classes of contact structures — provides a bridge
between the contact forms used in the definition of ECH and the Heegaard splittings used in the definition
of Heegaard Floer homology. We remark that the proof of the equivalence between Heegaard Floer
homology and ECH is independent of the hard part of the Giroux correspondence (ie the stabilization
equivalence of two open book decompositions which support the same contact structure). The rest of
the proof of the equivalence has been carried out in [Colin et al. 2024a; 2024b; 2024c]; see [Colin et al.
2011a] for an overview of the strategy.

Remark 1.1.2 An alternative proof of the equivalence of Heegaard Floer and embedded contact ho-
mologies, passing through Seiberg—Witten Floer homology, has been given by Kutluhan, Lee and Taubes
[Kutluhan et al. 2020a; 2020b; 2020c; 2020d; 2020¢].

In Section 10 we present some independent applications of the techniques developed here to the embedded
contact homology for sutured manifolds defined in [Colin et al. 2011b]. More precisely, we prove that ECH
of a sutured manifold is invariant of the contact form and the almost complex structure (Theorem 10.2.2)
and we finish the proof of [Colin et al. 2011b, Theorem 1.6] by showing that E/C\H(M ), defined as the
homology of the cone of the U-map, is isomorphic to the sutured ECH of the complement of a ball
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in M (Theorem 10.3.1). Theorem 10.2.2 has been independently proved by Kutluhan, Sivek and Taubes
[Kutluhan et al. 2022].

Organization of the paper Section 2 gives a brief review of ECH; in particular, we define the groups
ECH(M) and E/C\H(M ). We review some technicalities involving direct limits in Section 3 and some
Morse—Bott theory in the context of ECH in Section 4. In Section 5 we discuss topological constraints
of J-holomorphic curves arising from the positivity of intersections in dimension four. In Section 6
we construct contact forms on D? x S and T2 x [1, 2] which are used later. Section 7 is devoted to
the definitions of certain ECH groups for compact manifolds with torus boundary and in particular the
variants ECH(N, dN, ) and E/C\H(N , N, o) which appear in Theorem 1.1.1. In Section 8 we calculate
some ECH groups of solid tori which are used in the proof of Theorem 1.1.1. Section 9 then completes
the proof of Theorem 1.1.1. Finally, Section 10 relates some of the versions of ECH defined in Section 7
to some sutured ECH groups defined in [Colin et al. 2011b].

2 Review of embedded contact homology

In this paper all manifolds will be oriented and connected, unless stated otherwise.

In this section we briefly review the basic definitions of embedded contact homology (from now on
abbreviated ECH). For more details the reader is referred to [Hutchings 2002; 2009] or to [Hutchings
2014]. To avoid orienting the moduli spaces, we will work over F = Z /2Z.

2.1 Generators of the ECH chain complex

Let M be a closed, oriented and connected 3-manifold with a contact form «. We will denote by £ = ker o
the contact structure with contact form «. The Reeb vector field R = R, is nondegenerate if no Reeb
orbit? has 1 as eigenvalue of its linearized first return map. This is a generic condition which can
achieved by a generic C°°-small perturbation of the contact form; see for example [Colin and Honda
2013, Lemma 7.1]. For the rest of the section we will assume that « is nondegenerate. The linearization
of the first return map along a Reeb orbit is a symplectic transformation of the symplectic plane (£, do).
This implies that its eigenvalues are {1, A~!}, where A is either real or in the unit circle. Then a Reeb
orbit is

e hyperbolic if the eigenvalues of its linearized first return map are real; or
e elliptic if they lie on the unit circle.
These conditions are mutually exclusive because every orbit is assumed to be nondegenerate.

21n this paper we interchangeably use “Reeb orbit”, “closed orbit” and “closed Reeb orbit”. A Reeb orbit which is not necessarily
closed will be called a “Reeb trajectory”.
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Let P be the set of simple orbits of the Reeb vector field Ry. The ECH chain complex® ECC(M, ), as a
vector space, is generated over [F by finite sets y = {(y;,m;)}, called orbit sets, where

e yi€Pandy; #y;fori # j;
e m; is a positive integer; and
e if y; is a hyperbolic orbit, then m; = 1.

We will say that ECC(M, &) is constructed from P. An orbit set y will also be written multiplicatively as
I1 yim !, with the convention that yl-z = 0 whenever y; is hyperbolic. The empty orbit set & will be written
multiplicatively as 1.

The homology class of an orbit set y is
[y] =) milyil € Hi(M).
i
If we want to specify the direct summand generated by orbit sets of class A € Hy (M), then we write
ECC(M,a, A).

The action Ay (y;) of an orbit y; is given by /. v @ and the action of an orbit set y is given by

Aa(y) =D miAa(yi).

2.2 Moduli spaces
We choose an almost complex structure J on R x M, with R-coordinate s, which is adapted to the
symplectization of « (or adapted to ), ie
(1) J is s-invariant;
(i) J takes £ to itself on each {s} x Y
(iii) J maps ds to Ry;
(iv) J|g is da-compatible, ie do( -, J-) defines a Euclidean metric on &.

Let y = {(yi,m;)} and y" = {(y/, m})} be orbit sets with [y] = [y'] € H1(M). We denote by M (y, y’)
the set of holomorphic maps
u:(F,j)— RxM,J),

modulo holomorphic reparametrizations, which satisfy

(1) (F,j)is aclosed Riemann surface with a finite number of punctures removed;
(2) the neighborhoods of the punctures are mapped asymptotically to cylinders over Reeb orbits;

3The ECH differential depends on the choice of an adapted almost complex structure J (see Section 2.2), but the generators only
depend on «. Hence we suppress J from the notation for the moment.
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(3) at the positive end of R x M, u is asymptotic to R x y; with total multiplicity m; for each pair
(vi, m;i) (more precisely, if we list the positive ends of u that are asymptotic to some multiple cover
of R x y; and the covering degrees are m;1, ..., mjj;;, then m; = m;; +---+m;j;); and

(4) at the negative end of R x M, u is asymptotic to R x y/ with total multiplicity m for each pair
(yl.,’ m;)

We often refer to an element u of My (y, y’) as a J-holomorphic map (or curve) from y to y’. We stress
that, according to our definition, the genus, the number of connected components and the number of
punctures of F are not fixed a priori. If * is a property of J-holomorphic curves, we will denote by

M5 (v, y") the subset of My (y,y’) satisfying *. We can similarly define the “pointed” moduli space
My (y,y’; pt) as the set of holomorphic maps

u:(F,j,p)—> RxM,J),

modulo holomorphic reparametrizations, where p € F.

Definition 2.2.1 We say that J is regular if, for all orbit sets y and Y’ and u € My (y,y’) which has no
multiply covered components, M s (y, ') is transversely cut out near u (ie the linearized 5—operat0r Dy
at u from [Dragnev 2004, Proposition 2.10] is surjective).

Regular adapted almost complex structures form the complement of a first category set (and therefore
are dense) in the space of smooth adapted almost complex structures with respect to the C *°-topology
by a result of Dragnev [2004]. If no component of u is multiply covered and all components of u
are transversely cut out, then, in a neighborhood of u, the moduli space M j(y,y’) has the structure
of a finite-dimensional manifold of dimension ind(u), where the Fredholm index ind(u) is the formal
dimension of the moduli spaces computed as in the next paragraph; see [Dragnev 2004, Corollary 1]. Our
convention throughout the paper will be that the Fredholm index takes into account the dimensions of the
Deligne—-Mumford moduli space and the automorphism group of the domain of the map. In particular,
ind(u) = ind(Dy,) — 3x(F), where ind(D,) is the Fredholm index of the linearized Cauchy—Riemann
operator at u and y(F) is the Euler characteristic of the domain of u.

A J-holomorphic map u: F — R x M from y = {(y;,m;)} to y' = {(y/,m})} determines partitions

{m;;} of m; and {m -} of m) such that u is positively asymptotic to m;;-fold covers y; i

of the simple
Reeb orbits y; and negatlvely asymptotic to m; —fold covers (y; )" i/ of the simple Reeb orbits y/. Let t
be a trivialization of & along each orbit in the orblt sets y, ¥, let w.(8) denote the Conley—Zehnder index
of a cover § of an orbit in y or y’ with respect to 7, and let ¢ (u*&, T) denote the relative first Chern class

of u*& with respect to 7. Then the Fredholm index ind(u) is given by the formula

(2-2-1) ind(u) = —¢(F) + 21" . 1) + Y e (v]"7) = Y e (())™).
ij ij

(See the formula in [Dragnev 2004, Theorem 1.8].)
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2.3 The ECH index

The index which appears in the definition of ECH is not the Fredholm index, but the ECH index, which is
more topological in nature. In this subsection we will review its definition.

Let y = {(yi,m;)} and y’ = {(y/, m})} be orbit sets. We denote by H»(M, y, y’) the relative homology
classes of surfaces Z € Ha(M, (\; i) U (U; yiv)) such that 0Z =" m;[y;]— Y m}[y!], where

oo (U)o ()~ (U)o ()

l
is the connecting homomorphism of the relative homology exact sequence. By abuse of notation, Z
will also denote an embedded surface with boundary which represents that homology class. We pick a
trivialization 7 of £ along each orbit in the orbit sets y and y’, and define ¢ (§|z, 7) as the first Chern
class of £ evaluated on Z, relative to the trivialization T on dZ.

Ify= {(y,-,m,-)}f.‘=1 is an orbit set, then we define the “symmetric” Conley—Zehnder index (so called
because of its motivation from studying symplectomorphisms of a symmetric product of a surface) as

k m;

(2-3-1) Ae() =Y uey}).

i=1j=1
where )/l.j is the orbit which multiply covers y; with multiplicity j.

We define the relative intersection pairing Q(Z) as follows: Using the trivialization t, for each simple
orbit y; of y or y/, fix an identification of a sufficiently small neighborhood N(y;) of y; with y; x D2,
where D? has polar coordinates (r, §). Let X be an oriented surface and f: ¥ — [—1,1] x M a smooth
map which satisfies the following:

(1) f maps 0% to {—1,1} x M, f|inyx) is an embedding, and f is transverse to {—1, 1} x M.

(2) For all ¢ > 0 sufficiently small, f(2) N ({1 —e} x M) consists of m; disjoint circles of type

{r = ¢, 8 = const} in N(y;) for all i (and similarly for f(X) N ({—1+ &} x M)).
(3) The composition of f with the projection [—1,1] x M — M is a representative of the class

Z € Hy(M,y,y").

We then choose two maps f; and f> satisfying (1)—(3) above that are disjoint on {—1 +¢&,1 —&} x M
and transverse on [—1 + ¢, 1 —¢] x M. Then Q;(Z) is the signed intersection number of f; and f5 in
[—14¢e,1—¢]x M.

We are now in a position to define the ECH index.
Definition 2.3.1 [Hutchings 2002, Definition 1.5] The ECH index I(y, y’, Z) is given by
(2-3-2) 1(y.y". Z2) = c1(Elz.7) + Qu(Z) + [z (y) — B (¥).

The ECH index depends only on the relative homology class Z € H(M,y, y’) and not on a particular
surface representing it. Moreover, the ECH index is independent also of the choice of trivialization. If
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Z' € Hy(M, y,y') is another relative homology class, then, by [Hutchings 2014],
1.y, Z)=1(y.y'.Z) = <Z/ —Z,c1(6) + PD(Z mi [y,-])>,
i
where ) ; m;[y;] is the total homology class of y in Hy(M) and PD is the Poincaré duality map.

Remark 2.3.2 A finite-energy holomorphic map u with asymptotics y and y’ defines a relative homology
class Z € Hy(M,y,y’). Hence we can write I(u) = I(y,y’, Z).

The ECH index and the Fredholm index satisfy the following index inequality, which is one of the basic
tools of ECH:

Theorem 2.3.3 [Hutchings 2009, Theorem 4.15] If u is simply covered, then ind(u) < I(u).

2.4 The ECH differential

In this subsection we define the differential d for the ECH chain complex, after recalling some properties
of J-holomorphic maps with small ECH index. In the following we will say thatamap u: F - R x M
is the “disjoint union” of maps u;: F; - Rx M (with 1 <i <k)if F = FyU---U F} and the images
are pairwise disjoint. Here each F; can still be disconnected. A trivial cylinder over a (not necessarily
simple) orbit y with period T is the J-holomorphic map u: R x §2 — R x M, u(s,t) = (T's, y(T't)). By
abuse of notation, we will always denote the trivial cylinder over y by R x y.

Lemma 2.4.1 [Hutchings and Taubes 2007, Proposition 7.15] Let J be a regular almost complex
structure adapted to ««. Then:

(1) A J-holomorphic map u with I(u) = 0 is a disjoint union of branched covers of trivial cylinders
over simple Reeb orbits. (Such curves are called connectors.)

(2) A J-holomorphic map u with I(u) = 1 (resp. 2) from y to y’ is a disjoint union of a connector and
an embedding v’ with I(u’) = ind (') = 1 (resp. 2).

In this paper a “branched cover” will always refer to a “branched cover with possibly empty branch
locus”.

The ends of a J-holomorphic map u from y to y’ determine partitions of the multiplicities of the elliptic
orbits. It turns out that, when /(u) = 1 or I(u) = 2, these partitions must coincide with preferred
partitions, called the outgoing and incoming partitions for positive and negative ends, respectively. The
incoming and outgoing partitions can be computed from the dynamics of the linearized Reeb flow. For
their definition see [Hutchings 2002, Section 4.1] or [Hutchings 2009, Definition 4.14]. For the relation
between these partitions and the ECH index, see [Hutchings 2009, Theorem 4.15], for example. In this
article we will not need the precise definition of the incoming or the outgoing partition, except for the
following fact, which follows directly from [Hutchings 2009, Definition 4.14]:
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Fact 2.4.2 Let y be a simple elliptic orbit and suppose that its linearized Reeb flow rotates by an angle
27 6. If 0 < 6 < 1/m, then the incoming partition of (y, m) is (m) and the outgoing partition is (1, ..., 1).
On the other hand, if —1/m < 6 < 0, then the incoming partition of (y,m) is (1, ..., 1) and the outgoing
partition is (m).

The boundary operator in the ECH chain complex is defined by a count of J-holomorphic maps with
index I =1 for a regular almost complex structure J. In order to make the dependence on J explicit, we
write the complex as ECC(M, «, J). However, when J is clear from the context, it will be dropped from
the notation.

Definition 2.4.3 Let J be a regular almost complex structure adapted to . Then the boundary map
d:ECC(M,a,J) —>ECC(M,a, J) is defined as

dy =) (dy.y") 7.
)//
where (dy, y’) is the (mod 2) count of curves u € M§=1 (y, ¥")/R such that every connector component
of u is a trivial cylinder over a simple orbit.

The map d was shown to satisfy 9> = 0 by Hutchings and Taubes [2007; 2009a]. The homology
of the chain complex (ECC(M, a, J), 0) is the embedded contact homology group ECH(M, «, J). It
is independent of the choice of contact form «, the contact structure § and adapted almost complex
structure J by [Taubes 2010]. Hence we are justified in writing ECH(M ).

2.5 Definition of ECH(M)

In this subsection we define a map U : ECH(M ) — ECH(M) and a variant E/C\H(M ) of ECH(M), called
the ECH hat group, in analogy with well-known constructions in Heegaard Floer homology. An a priori
different group, also called E/C\H(M ), was defined in [Colin et al. 2011b] using sutured ECH (in analogy
with the sutured Floer homology of [Juhdsz 2006]). In Section 10 we will prove that the two approaches
yield isomorphic groups.

Definition 2.5.1 Let J be a regular almost complex structure and z € R x M a generic point such that
the evaluation map
evi MIZ2(y,y/ipt) = Rx M, (u, p) = u(p),

is transverse to z. We define the map U : ECC(M, «, J) - ECC(M, «, J) as

Uy => (Ur.Y)y
y/
where (Uy, y’) is the (mod 2) count of elements of ev—!(z) C M§=2(y, y’: pt) such that every connector
component of u is a trivial cylinder over a simple Reeb orbit.
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The same techniques used to show that 9% = 0 also show that U is a chain map; see [Hutchings and Taubes
2009b, Section 2.5] for more details on the U-map. Then E/C\H(M ,o, J) is defined as the homology of
the mapping cone of U.

3 Cobordism maps and direct limits

In this section we review the work of Hutchings and Taubes [2011] on maps on ECH induced by exact
symplectic cobordisms, which in turn makes it possible to define continuation maps and take direct limits
in ECH.

3.1 Maps induced by cobordisms

Given a contact 3-manifold (M, «) with & nondegenerate, let ECCE(M, ) be the subcomplex of
ECC(M, «) generated by orbit sets y of action Ag(y) < L, and ECHE (M, ) be the resulting homology
group. Given L < L', the inclusion of chain complexes ECCL (M, o) C ECCL/(M , o) induces a map

i ECHE (M, o) — ECHY (M, )
on the level of homology. An immediate consequence of the definition of a direct limit is

ECH(M, ) = lim ECHY(M, ).
L—o0

Let (M1, 1) and (M5, or2) be contact 3-manifolds. An exact symplectic cobordism (X, w) from* (M1, oi1)
to (M>, ap) is an exact symplectic manifold with boundary dX = M| — M5 and symplectic form v = d«,
where o restricts to o1 on M1 and oy on M>.

Given an exact symplectic cobordism (X, ), we form its completion ()/(\ , ) by attaching the half positive
symplectization of (M1, «;) along My C 0X and the half negative symplectization of (M5, «») along
M, C 0X.

Definition 3.1.1 Let ()? , @) be the completed symplectic cobordism with an almost complex structure J
which is compatible with @ and is adapted to «; and &, at the positive and negative ends. Then the image
of an embedding

¢: (R x U, d(eSag), Jo) = (X,d,J)

is called a product region if ¢« (d(e*ag)) = @, ¢p«Jo = J, Jo is adapted to g and, at the ends of R x U,
¢(s,x) = (s + Ci, ¢i(x)) fori = 1,2, for some embedding ¢; : U — M; and constant C;.

The main technical result of [Hutchings and Taubes 2013] is the following (the first item in (i) is a slight
improvement due to Cristofaro-Gardiner [2013, Theorem 5.1]):

“4This is the convention from symplectic field theory [Eliashberg et al. 2000] and is opposite from the one used in Heegaard Floer
homology, for example.
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Theorem 3.1.2 [Hutchings and Taubes 2013, Theorem 1.9] Let (M1,«1) and (M>, a3) be contact
3-manifolds and let (X, w) be an exact symplectic cobordism from (M1, 1) to (M>, oz). Suppose the
contact forms «1 and ap are nondegenerate. Then, for each positive real number L, there exists a map

&L (X, w): ECHY (M1, 1) — ECHE (M>, a0)
such that:

(i) LetJ be a regular almost complex structure on X which is @-compatible and is adapted to «; at
the positive and negative ends. Then ®L (X, w) is induced from a (noncanonical) chain map

L (X, 0, J): ECCE(My, 1, J |p,) = ECCE(My, aa. T |ar,).

which is supported on the J -holomorphic curves, ie:
. (CTDL (X,w,J)(y),y’) =0 if there is no I = 0, J-holomorphic building from y to y’ in X
e If the only J -holomorphic building in X from y to y’ is a union of covers of product cylinders
contained in a product region, then (&DL X,0,0)(y),y)=1.

(ii) The map ®L (X, w) only depends on L and (X,w), and not on any auxiliary almost complex
structure J on ()? ,®). Moreover, it depends on w only through its homotopy class as an exact
symplectic form.

(iii) If L < L', then the following diagram commutes:

oL (X,
ECHL(Ml, O{l) &) ECHL(Mz, 0[2)

G-1-1) iL.L/l liL.L’

, oL/ (X, /
ECHL (M, 1) —— 5, BCHL (Ms. )

Hence the maps pass to the direct limit
®(X,w): ECH(My, 1) —> ECH(M>, a3).

(iv) Suppose (X, w) is the composition of exact symplectic cobordisms (X1, w1) from (M1, a1) to
(M’,a’) and (X2, wy) from (M’, ') to (M2, «3), and o’ is nondegenerate. Then

L (X, 0) = BF (X2, w2) 0 DF (X1, 1),
(v) If ¢ > 0, then the diagram

oL(X,
ECHE (M1, 1) ) ECH” (M3, a2)

(3-1-2) sl sl

peL X,
ECHCL (M1 s COll) ﬂ) ECHCL (Mz, COlz)

commutes, where s is the canonical rescaling isomorphism.
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(vi) If X =[0,a] x M and w = d(e’«) with o nondegenerate, then
oL (X, w): ECHY (M, e%a) — ECHE (M, )
is equal to the composition

ECHE (M, e%a) <> ECH® “L (M, o) 2= ECHE (M, ).

Remark 3.1.3 The maps involved in this result are borrowed from Seiberg—Witten theory via Taubes’s
isomorphism, where one counts solutions of the perturbed Seiberg—Witten equations on the cobordism.
As we take a perturbation parameter r to be large, these solutions concentrate near a holomorphic building.
It is however not known yet how to reconstruct the count of solutions from just knowing the limit
holomorphic building. This explains why there is no direct definition of cobordism maps by a count of
holomorphic buildings and also why there is no direct proof of invariance for ECH.

Definition 3.1.4 A contact form « is called L-nondegenerate if all Reeb orbits of action less than L are
nondegenerate and there is no orbit set of action exactly L.

The action-truncated ECH groups ECHE (M, o) make sense for contact forms o which are L-nondegenerate
and Theorem 3.1.2(i), (ii) and (iv) hold for L-nondegenerate contact forms.
All exact cobordisms considered in this paper will be of the following type:
Definition 3.1.5 An interpolating cobordism from (M, 1) to (M, ap) is an exact symplectic cobordism
([0, 1] x M, A) from @1 to g such that A is of the form

A =0*(fa),

where « is the pullback to [0, 1] x M of a 1-form (also called @) on M, f:[0,1] x M — R is a positive
function with df/dt > 0, and ®: [0, 1] x M = [0, 1] x M is a diffeomorphism taking {i } x M to itself
fori =0,1.

In this article, interpolating cobordisms are all constructed as follows: Let ag and o1 be isotopic contact
forms on M and let {¢p;: M —> M };¢[o,1] be an isotopy such that

o ¢S (frao) =a; forallt €0, 1];
e {f:} and {«;} are 1-parameter families of functions and 1-forms on M; and
° ¢0=idandf0=1_

Then define ®: [0, 1] x M — [0,1] x M by ®(¢,x) = ¢¢(x), f:[0,1] x M — R by f(t,x) = fi(x),
and Ay := ®*(fap). If df; /0t > 0, then

([0,1] x M, Ay)
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is an interpolating cobordism. Interpolating cobordisms do not necessarily exist between any two isotopic
oo and o1, but one can always construct them at the small price of scaling one of the two forms by a
constant.

Lemma 3.1.6 Let ([0,1] x M,Ay) and ([0, 1] x M, )t:b) be interpolating cobordisms from (M, «1) to

(M, ap) defined by contact isotopies ¢ and ¢’, respectively. If the isotopies {¢;} and {¢;} are homotopic
relative to the endpoints, then Ay and k;s are homotopic as exact symplectic forms.

Proof Define (7, x) = ¢;(x) and ®'(z, x) = ¢;(x). Without loss of generality we can write Ag :=
Ay = *(fa) and Ay := A, = (¥')*(f'«) with the same form « in both definitions. Let {®;} be a
homotopy between ® and @’ such that

e O&y=oand &, =9,
o &y(0,x) =x and P4(1,x) = ¢1(x) = ¢ (x) forall s € [0, 1].
Also define Fg(¢t,x) = (1 —s) f(¢,x) +sf'(¢,x). Then
As = @7 (Fsa)
is a homotopy of exact symplectic forms because dFs/d¢ > 0 for all s € [0, 1]. m|
Lemma 3.1.7 Let « be a contact form, L, L’ > 0 real numbers, ¢;: M — M fort € [0, 1] an isotopy

such that ¢o = id, and f, f': M — R™ smooth functions such that Lf' < L' f. If fa and f’« are L-
and L’'-nondegenerate, respectively, then there is a map

ECHY (M, ¢¥ (fa)) — ECHY (M, f'a).

Moreover, this map depends only on the homotopy class of {¢;} relative to the endpoints and has the
following properties:
(a) If f = f’ and ¢; =1id for t € [0, 1], then the map is induced by the inclusion of chain complexes.

(b) IfL">0, f”: M —RT is another function such that L' " < L” f',and ¢;: M — M fort €[1,2]
is an extension of the isotopy, then the following triangle commutes:

ECHL (M, ¢3(fa)) ECHL" (M, f"a)

\ /

ECHL (M, ¢ (f'a))

Proof The inequality L/’ < L’ f implies that there is an interpolating cobordism with L’¢} ( fo) at the
positive end and L f”a at the negative end. We define the map ECHY (M, ¢7 (fa)) — ECHL/(M , fla)

Geometry & Topology, Volume 29 (2025)



3358 Vincent Colin, Paolo Ghiggini and Ko Honda

by the composition

ECHE (M. ¢} (fo)) —— ECHE'L (M, L'} (far))

|

ECHYL(M, Lf'a) —— ECHE (M, f'a),

where the map ECHL/L(M L fa) — ECHL'L (M, Lf'a) is the map induced by an interpolating cobor-
dism from L'¢}(fa) to Lf o and the horizontal maps are rescaling isomorphisms. The resulting map
depends only on the homotopy class of {¢;} relative to the endpoints by Lemma 3.1.6. The properties of
these maps are an immediate consequence of Theorem 3.1.2. |

3.2 Direct limits

One consequence of Theorem 3.1.2 is the following theorem, whose statement and proof were communi-
cated to the authors by Michael Hutchings:

Theorem 3.2.1 (Hutchings and Taubes) Let M be a closed oriented 3-manifold with a nondegenerate
contact form « and { f; }7° | a sequence of smooth positive functions such that 1 > f1 > f> >--- and f;a
is L;-nondegenerate for an increasing sequence of positive real numbers L; such that lim; o, L; = +00.
Then there is a canonical isomorphism
ECH(M,«) ~ lim ECHLY (M, fia).
1—>00
Proof We have a map
f:ECH(M,a) — lim ECHY (M, fia),
1 —>00

obtained by taking the direct limit of the cobordism maps

ECHL (M, o) — ECHY (M, fi).
Choose an increasing sequence of natural numbers c; such that L., f; > L;. Then there are maps

ECHL (M, fia) — ECHE< (M, )
by Lemma 3.1.7. These maps form a directed system, and, taking the direct limit, we obtain a map

g: lim ECHY (M, fia) - ECH(M, a).
1 —>00

The verification that the maps f and g are inverse of each other is a straightforward application of
Lemma 3.1.6. U

We can now quantify when it makes sense to take direct limits of a sequence of contact forms «; for
isotopic contact structures. In this case we can write ¢*(;) = f;a for some positive function f; and
diffeomorphism ¢; isotopic to the identity.

Definition 3.2.2 Let a be a contact form on M. A sequence {«; }72 of contact forms on M is com-
mensurate to « if there is a constant 0 < ¢ < 1, diffeomorphisms ¢; of M isotopic to the identity, and

functions f;: M — R”% such that ¢*e;; = fiw and ¢ < | fi|co < 1/c.
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A corollary of Theorem 3.2.1 is the following:

Corollary 3.2.3 Let {o;} be a sequence of contact 1-forms on M which is commensurate to « on M
with constant 0 < ¢ < 1. If L; — oo is a sequence which satisfies L; +1 > L; /c3 for all i, then the groups
ECHL (M, a;) form a directed system with the maps defined in Lemma 3.1.7 and we have

ECH(M) = lim ECHY (M, o).

Proof Define L;. = CZiLl- and g; = CZifl'. Then lim; o L; =+4ococand1>g; >:-->g;>--,50
we can apply Theorem 3.2.1 to the sequences L} and g;. O

4 Morse-Bott theory

In this section we discuss a special case of Morse—Bott theory as it applies to our context. In particular,
we explain how to use Theorem 3.2.1 to justify the Morse—Bott arguments which populate this paper.
For a more detailed discussion of Morse—Bott theory in contact homology, the reader is referred to
Bourgeois [2003; 2002].

4.1 Morse-Bott contact forms

Let o be a Morse—Bott contact form on M. For the purposes of this paper, this means that all the orbits
either are isolated and nondegenerate, or come in S!-families and are nondegenerate in the normal
direction. (In general, there is also the case where the Reeb orbits come in two-dimensional families, ie
are the fibers of a circle bundle; however, this will not occur here.) We denote a Morse—Bott family of
simple orbits by A and the Morse-Bott torus corresponding to N by Ty = (¢ X-

Let {v1, v2} be an oriented basis for £ at some point p € T such that v; is transverse to T and v, is
tangent to 7. The derivative of the first return map &, — &, of the Reeb flow is given by the matrix
( le (1)) with respect to the basis {v1, v2}. (Here a vector v = ajv; + av, is written as a column vector.)
The Morse—Bott condition implies that a # 0.

Definition 4.1.1 T, is called a positive Morse—Bott torus if a > 0 and a negative Morse—Bott torus if
a<0.

Let us identify a sufficiently small neighborhood of a Morse-Bott torus Ty with T2 x [—v, v] with
coordinates (6, ¢, y) such that the Reeb vector field is a positive constant times d; along Tyr = {y = 0}.
For a positive Morse—Bott torus, the Reeb vector field rotates in a counterclockwise manner as y goes
from v to —v (ie in the same direction as a positive contact structure), while for a negative Morse—Bott
torus it rotates in a clockwise manner.
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On each N~ S, we pick a Morse function gn-: ' — R with two critical points. After perturbing o
using these functions, each Morse—Bott family gives rise to an elliptic orbit ¢ and a hyperbolic orbit 4.

We choose specific o and perturbations «. as follows: Fix a real constant L > 0 such that no Reeb orbit
of @ has «-action equal to L and let V1, ..., N, be the Morse-Bott families consisting of simple orbits

with a-action less than L. On the small neighborhood 72 x [—v, v] of T, we set

4-1-1) a=Cdt+66(fdt+ydb), oac=Cdt+35(fcdt+ydb),

where € > 0 and § > 0 are small, C > 0 is the action of the Reeb orbits of N;, and:

(P1) f(y.0)==x2y%and fe(y.0) = £(1y2 + €d(y)Zn(0)), where the sign & depends on whether
we have a negative or positive Morse—Bott torus.

(P2) gn:R/Z — R is a perfect Morse function with maximum at % and minimum at —%. More

specifically, we assume that g),/(6) is 0 on 0 = :I:%, is linear with positive slope on [—%, —%], is
1

nondecreasing on [—, —%], and is equal to 1 on [—£, ¢]; and gxr(6) is an odd function about
0 =0.

(P3) ¢:[—v,v] — [0, 1] is an even bump function with support on [—a, a] and is equal to 1 on [—b, b],
where v > a > b > 0 are sufficiently small.

In particular, (P1) implies:

P4) Ase—>0, fe— finC™.

Proposition 4.1.2 Let a be a Morse—Bott contact form. After a small modification of « near the N,
which we still call «, for every L > 0 there exist § > 0, v > 0 and € > 0 small such that:

(1) «e is L-nondegenerate and satisfies (4-1-1) and conditions (P1)—(P4).

(2) Each N is perturbed into a pair of nondegenerate Reeb orbits e; and h; of ac-action less than L.

(3) All multiples elk and hf-‘ of wa-action less than L have Conley—Zehnder indices 1 and 0 if N; is
positive, and —1 and 0 if N is negative.

(4) All other orbits which are created have o -action greater than L.

Here the Conley—Zehnder indices are computed with respect to the trivialization t induced from N;.

Strictly speaking, we make the modification of « in Proposition 4.1.2 so that it satisfies the conditions of
Lemma A.9.4.

Let P’ be the set of simple nondegenerate orbits of Ry and let Pyg = P’ U (Ul M) be the set of all
simple Reeb orbits of Ry, where N; denotes a Morse-Bott family of simple orbits. An orbit set y for the
Morse—Bott contact form « is an orbit set constructed from P = P’ U (Ul {hi,e; }), where h; is treated as
a hyperbolic orbit (in particular, its multiplicity cannot be greater than one) and e; is treated as an elliptic
orbit.
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4.2 Morse-Bott buildings

Let J be an almost complex structure on R x M which is adapted to the Morse—Bott contact form «. We
also assume the following:

(%) For each Morse—Bott torus Thr = T2, J is invariant in the s-, ¢- and @-directions on R x 72 x [—v, V]
and the projection of J |kero to (R/Z) x [—v, v] with coordinates (6, y) is the standard complex
structure d/dy > 9/06.

(Strictly speaking, we require « and J to satisfy the conditions of Lemma A.9.4; this can be arranged by
a small modification near the Morse—Bott torus.)

Remark 4.2.1 In [Bourgeois et al. 2003], Morse—Bott compactness was proved for slightly different
perturbations of «, namely for fec, but it still holds in our case.

Although the notation is a bit cumbersome, consider the moduli space
/\/lJ()/fL,...,)/l1 /\/IJr ./\/ 7 yl:/\/l_/\/'l:)

abbreviated My (y T, N, y~, N7), of J-holomorphic maps u in R x M which have positive ends at
orbits )/1"', e, y:, )71‘", e, )7; and negative ends at orbits y;~,.... ¥, Yioeeos )71.1, where yii covers a
simple orbit in P” with multiplicity / l.i > 1 and )"/'ii covers a simple orbit in the Morse—Bott family /\/l.jE
with multiplicity k= > 1.

We say that J satisfying (%) is Morse—Bott regular if, for all data y*, AT, y~ and N~ and any
u € My(yT,Nt,y~,N7) which has no multiply covered components, My (yT,NT,y~,N"7) is
transversely cut out (and hence is a manifold) near u. Since it suffices to perturb J outside of the
sufficiently small neighborhood R x T2 x [—v, v], a generic J satisfying (*) is regular.

We now give the definition of a Morse—Bott building. See [Bourgeois et al. 2003, Section 11.2] for a
similar definition.

Definition 4.2.2 Let y and y’ be orbit sets constructed from P. A Morse—Bott building i consists of a
set{uj: F; >RxM |i=1,...,n} of holomorphic maps with possibly disconnected domains F; and a
set {6; ; |i =0,...,n, j=1,..., j;} of gradient flow lines in _J; Ny such that the following hold:

(@) Fori =1,. 1 the negative ends 8 . of u; are paired with positive ends 51 +1 ;
Paired ends (S i +1 i ,) are asymptotic to ki, ;j-fold covers of simple orbits (y;" e yl Y ;) in the
same Morse—-Bott family and §;,; is a gradient flow line from y;~ ; to )/l Y1, (Here §;,; can be

L of ujgq.

viewed as a k;_j-fold unbranched cover of a cylinder connecting Yi,to yl.ﬁ_l )

(b) Positive ends €1+ j of u; and negative ends &, j of u, which are asymptotic to Reeb orbits in
N are augmented by gradient flow lines 8¢ ; and &, ; connecting the orbit from/to a critical
k 2 o
point of the appropriate Morse function gy, determined by y or y’.
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(c) A nondegenerate orbit is considered as a Morse—Bott family consisting of a single point, and in
this case the gradient flow line has length zero.

Given two orbit sets y and y’ constructed from P, the set of Morse—Bott buildings # from y to y’ will be
denoted by MY®(y,y’).

The collection of maps u; will be called the holomorphic part of the building. The restriction of any
map u; to a connected component of its domain will be called an irreducible holomorphic component of .

Definition 4.2.3 A Morse-Bott building # from y to y’ is simply covered if every multiply covered
irreducible holomorphic component of # is either
(i) a branched cover of a trivial cylinder over a simple orbit in P; or

(i1) an unbranched cover of a trivial cylinder over a simple orbit in Pyp — P.

Note that this definition allows connectors over the orbits e and % of every Morse—Bott torus, but not
connectors over any other Morse—Bott orbit, which would necessarily break a gradient flow line. This
second type of connector would make gluing more complicated.

4.3 ECH and Fredholm indices

In this subsection we define the ECH and Fredholm indices of a Morse—Bott building.

Definition 4.3.1 The ECH index I(y, y’, Z) in the Morse—Bott setting is defined, as in the nondegenerate

case, as
(v, Z) = c1Elz. ©) + Q(Z) + i (y) = i (¥),

where the symmetric Conley—Zehnder indices of y and )’ are computed with the convention that
ut(el.]) = 1 for all j and u.(h;) = 0 if N; is a positive Morse-Bott family and pu.(h;) = 0 and
ur(eij ) =—1forall j if \V; is a negative Morse—Bott family. Here 7| is the trivialization defined by ;.

Remark 4.3.2 The ECH index computed with this definition coincides with the limit of ECH indices
computed with respect to nondegenerate perturbations a¢ of the Morse-Bott contact form « as € — 1.

As in the nondegenerate case, a Morse—Bott building # from y to ¥’ determines a relative homology
class Z € Hy(M,y, y’) which is obtained from projecting the holomorphic part to M and gluing the
annuli corresponding to the gradient trajectories. In view of this construction, we will often write /()
for I(y,y', Z).

We can also define the Fredholm index of a Morse—Bott building as follows. To a building # we associate
amap ug: Fy — R x M by cutting the ends of the holomorphic components of # and connecting them with
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cylinders corresponding to the gradient trajectories. Then the Fredholm index of a Morse—Bott building %

which is positively asymptotic to Reeb orbits yl.mij and negatively asymptotic to Reeb orbits (y/ )" i is

(4-3-1) ind(it) = — ¢ (Fy) +2c1 (u}8. 1) + Y e (") = 3 (7)™,

ij ij
with the same convention for the Conley—Zehnder indices of 4;, ¢; and their iterates as in Definition 4.3.1.
(See [Bourgeois 2002, Corollary 5.4].)

4.4 Morse-Bott chain complex

In this subsection we introduce a Morse—Bott version of the ECH chain complex. Due to technical
difficulties concerning non-simply covered Morse—Bott buildings, we will develop an ECH Morse—Bott
theory only for special Morse—Bott contact forms, which we call nice.

Definition 4.4.1 (1) A Morse-Bott building  is nice if its holomorphic part has at most one irreducible
component which is not a connector. This irreducible component will be called the principal part
of u.
(2) A Morse—Bott building u is very nice if it is nice and every irreducible component besides the
principal part is an unbranched cover of a trivial cylinder.

(3) A Morse—Bott contact form o on M is nice if, for a generic almost complex structure J, all
J -holomorphic Morse—Bott buildings of ECH index / = 1 in the symplectization of (M, «) are

nice.

Remark 4.4.2 We will consider contact forms on manifolds with torus boundary which are non-
degenerate on the interior and Morse—Bott on the boundary. Such contact forms are automatically nice
(see Lemma 7.1.2). It is not clear whether nice contact forms with | J; N; # @ exist on closed manifolds.

Now we describe the relation between moduli spaces of J-holomorphic Morse—Bott buildings for a
Morse—Bott contact form « and moduli spaces of holomorphic maps for generic perturbations of «
following [Bourgeois 2002]. Our statement will be weaker than that of [Bourgeois 2002] because we are
going to state only what can be proved without resorting to abstract perturbations.

Let Jy be a Morse—Bott regular almost complex structure on R x M adapted to «, and let J¢ be almost
complex structures on R x M adapted to the contact forms o in Proposition 4.1.2 such that:

(¥*) For each Morse-Bott torus T = T2, J is invariant in the s- and ¢-directions on R x T2 x [—v, v]
and the projection of J¢|kero to (R/Z) x [—v, v] with coordinates (6, y) is the standard complex
structure d/dy +— 9/06.

In particular, lim¢—o Je = Jo in the C*°-topology.
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Theorem 4.4.3 Let o be a Morse—Bott contact form on M. Fix L > 0. Then there exist 8, v, € and o,
as in Proposition 4.1.2, Jo Morse—Bott regular satistying (), and a¢-adapted regular J satistying ()
as in the previous paragraph such that, for all orbit sets y,y’ € P with action less than L, the following
holds:

(1) For all sequences €; — 0 and u; € M Te; (y,y'), there is a subsequence u;, which converges to a
Morse—Bott building in MI}AOB v, y)-

(2) If u is a very nice, simply covered Morse—Bott building, then there is a Jc-holomorphic map
ue € My (y,y") which is “close to breaking” into i and a curve Ure corresponding to a gradient
trajectory T of fe alongy = 0.

(3) Ifind(it) = 1, then the mod 2 algebraic count of [u¢] € My _(y, y’)/R that are “close to breaking”
into 1 and u e is one.

(4) Ifind(u) = 2 and u passes through a generic point z € R x M, then the mod 2 algebraic count of
ue € My (y,y') that are “close to breaking” into i and ure and passing through z is one.

Proof (1) follows from Morse—Bott SFT compactness [Bourgeois et al. 2003; Bourgeois 2002]. The
proofs of (2) and (3) are given in the appendix; (4) is similar. O

Lemma 4.4.4 Let J be a Morse—Bott regular almost complex structure and let 1 € MI\J/IB (y,y') be a
very nice Morse—Bott building with I (1) = 1. Then u is simply covered and ind(it) = 1.

Proof Assume that % has no trivial cylinders. In the general case, removing the trivial cylinders of
might decrease the ECH index by [Hutchings 2009, Theorem 5.1] and positivity of intersection, but the
same argument holds.

We first consider the case when the principal part u of # is nonempty. Suppose that u is a k-fold branched
cover of a nontrivial simply covered J-holomorphic curve v. Let v be the Morse—Bott building obtained
by augmenting v with gradient trajectories. If the functions g s are chosen generically, then ind(9) > 0 by
the regularity of J. Since v is a very nice simply covered J-holomorphic building, by Theorem 4.4.3(2)
we can perturb it to a Jg-holomorphic map v, for ¢ small. Then /(v,) > ind(v) > 0 by the ECH index
inequality (Theorem 2.3.3), so /(v) > 0. Consider the J.-holomorphic curve v§ given by k translated
copies of v,. Since both 7 and vf represent the same relative homology class in Hy(M, y, y’), we have
1w)=1 (vf). Since 1 (vf) > kI(v.) by [Hutchings 2009, Theorem 5.1 and Proposition 5.6], it follows
that 7(1) > k. Hence k = 1 and u is simply covered.

Next let u¢ be the simply covered J¢-holomorphic map which corresponds to % under an arbitrarily small
generic perturbation of the Morse—Bott contact form by Theorem 4.4.3(2). Clearly I(u¢) = I(3i) =1, so
ind(u¢) = 1 and ind(i) = 1. This implies the lemma when the principal part of #% is nonempty.

If the principal part is empty, then % consists of a gradient trajectory on a Morse—Bott family and a
gradient trajectory has ECH index one. O
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Lemma 4.4.5 Let o be a nice Morse—Bott contact form. If we fix a regular almost complex structure Jo
adapted to «, then, for any orbit sets y and y’ and any € > 0 sufficiently small, there is a bijection

I=1, =1,
My T )R = MGT ()R

Here the modifier vn stands for “very nice” and the modifier tn means that all the connectors are trivial
cylinders.

Proof By Theorem 4.4.3 and Lemma 4.4.4, every very nice I = 1, Jop-holomorphic Morse—Bott building
can be deformed into an I = 1, J¢-holomorphic map all of whose connectors are trivial cylinders.

It remains to show that every sequence v; of J¢;-holomorphic maps with /(v;) = 1 and trivial cylinders
as connectors converges to a very nice Jo-holomorphic Morse—Bott building # as €; — 0, after possibly
passing to a subsequence. Suppose without loss of generality that the domains of the maps v; are
connected. (Indeed, since /(v;) = 1, discarding the possible trivial cylinders does not change /(v;) by
[Hutchings 2009, Theorem 5.1] and positivity of intersection.) By Theorem 4.4.3(1), the sequence v;
converges to a Morse—Bott building % with /(1) = 1. Since « is a nice Morse—Bott contact form, the
holomorphic part of 7 has at most one irreducible component which is not a connector. Assume there is
a nontrivial principal part ug; the case of uy = & is simpler and is left to the reader. We consider the
very nice Morse-Bott building #’ obtained by augmenting the Morse-Bott ends of u¢ with gradient flow
trajectories to the critical points of the Morse functions on the Morse-Bott tori. Then /(") = I(&1) = 1
because they represent the same relative homology class, and therefore Lemma 4.4.4 implies that u¢ is
simply covered.

We claim that every other irreducible component is a trivial cylinder over an orbit in P. Arguing by
contradiction, suppose there are nontrivial connectors that are connected to 1o by one or more finite-length
gradient flow trajectories. We will show that ind(27) > 1, which contradicts the fact that # is the limit of
curves v; with ind(v;) = 1. To this end we consider the Morse-Bott building #’ defined above. We recall
that %’ is very nice, simply covered and satisfies 1(%') = (&) = 1.

The ends of the building u satisfy the incoming/outcoming partitions because # is the limit of Jg,-
holomorphic maps v;, while the ends of the building @’ satisfy the incoming/outgoing partitions because
ii’ can be deformed to Jg; -holomorphic maps v} for i >> 0 by Theorem 4.4.3(2).

We now make the simplifying hypothesis that 1y has ends only at one Morse—Bott torus. (The general case
is more complicated only in the notation.) Then the ends of # and 7’ differ only for the multiplicity of e.
We denote by n and n_ the positive and negative multiplicities of e in u, respectively, and by n’+ and n’_
the corresponding multiplicities in #". Moreover, we denote by ji(e,n+) and ji(e, n’,) the contributions
of ends at e to the Fredholm indices of # and #’, respectively. (We recall that these contributions are
determined by the total multiplicities because 7 and #’ satisfy the incoming/outgoing partition conditions.)
We observe that ny > n’, and ny —n/, =n_—n’.
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Let F be the domain of v; and F’ the domain of vlf fori >> 0. Then, by the Fredholm index formula (4-3-1),

ind (i) — ind(@') = —(x(F) = x(F")) + (u(e.n4) — p(e.n-)) — (u(e.n’y) — pu(e. nl)).

The term y(F) — y(F’) is the sum of the Euler characteristics of the connector components of 1, so
—(x(F)—x(F')) > 0if # is not very nice. We claim that (u(e,n4)—pu(e,ny))—(u(e,n’)—pu(e,n’,))
is always nonnegative. To see this, first we compute the contributions of the ends at e to the Fredholm
index. If the Morse—Bott torus is positive, then

0 ifn_=0,
pleny)=nv.plen)= 1 0 o
On the other end, if the Morse—Bott torus is negative, then
0 ifny =0,
ple.ny) = . ple.n—)=—n—.
—1 ifngy >0,

Similar formulas hold for j(e, n’,).

Now we focus on the case of a positive Morse—Bott torus. (The negative case is completely symmetric.)
Then ((e. n4)—pu(e, n-))—(u(e.n’ )—u(e,n”)) =ny—n', >0ifn_,n’”_>0o0rn_=n’=0. Onthe
other hand, if n— > 0 but n”_ = 0, we have (u(e,n+)—pu(e,n-))—(u(e.n’y ) —u(e,n”)) =ny—n’y —1.
However, in this case, n4 —n/, =n_—n’ >0, so (u(e,n4)—pule,n-))—(u(e,n’ ) —ue,n_)) > 0.
This proves that, if # is not very nice, ind(#) > ind(#’). This is a contradiction because ind (i) = 1, as 1 is
a limit of ind = 1 maps v;, and ind(1) > O since Jg is a Morse—Bott regular almost complex structure. O

Definition 4.4.6 Let o« be a nice Morse—Bott contact form and J a Morse—Bott regular almost complex
structure adapted to the symplectization of «. Then the Morse-Bott chain complex (ECCyp(M, , J ), dmB)
is generated by orbit sets constructed from P and the differential counts very nice Morse—Bott buildings
with /(&) = 1. We denote by ECC{\“,[B (M, «, J) the subcomplex generated by orbit sets of action less
than L.

Proposition 4.4.7 Let o be a nice Morse—Bott contact form. If no Reeb orbit of « has action equal to a
fixed L > 0, then there is an isomorphism of chain complexes

ECCE (M. o, Jo) ~ ECCLL (M., . Jo)

for all sufficiently small € > 0. In particular, al%m =0.
Proof The isomorphism follows from Lemma 4.4.5. |

4.5 Comparison with the nondegenerate case

In this subsection we use a direct limit argument to prove the isomorphism between ECH of a nondegenerate
contact form and Morse—Bott ECH of a nice Morse—Bott form «.
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Let L; — oo be an increasing sequence such that each L; is positive and there is no Reeb orbit of «
with action equal to L;. Let N1, ..., N, () be the Morse-Bott families consisting of simple orbits with
a-action < L;. (In many useful cases, lim; 4o n(i) = +00.)

The following lemma provides a sequence of perturbing functions and is an immediate corollary of
Proposition 4.1.2 and Theorem 4.4.3:

Lemma 4.5.1 Let « be a nice Morse—Bott form and let L; be a sequence of positive constants such that
L; — +o00 and no Reeb orbit of « has action equal to L;. There exist sequences of positive numbers
¢; — 0 and functions g;: M — R=° such that f; = 1+ g; and:

(1) gi is supported in a union of disjoint neighborhoods of Ty, ..., T,

(2) The support of g; is disjoint from all nondegenerate Reeb orbits of o of «-action < L;.

(3) On a sufficiently small neighborhood T? x [—¢, €] of Ty; for j =1,...,n(i), there exist precisely
two simple orbits of f;a of action < L;, corresponding to elliptic and hyperbolic orbits of the
perturbed Morse—Bott family.

(4) limj_ 40 f; = 1 in the C¥-topology for k > 0.
(5) Foreveryi, the contact form f;o satisfies conditions (1)—(4) of Proposition 4.1.2 and the conclusion
of Theorem 4.4.3 for orbits of action < L;.

(6) fia (resp. fi+1a) has no Reeb orbits with f;a-action (resp. f;4iw-action) in [al-_zLi,al.zLi],
where a; = (1 + €;cg)? for some constant cq > 0.

Warning 4.5.2 For all i, Morse—Bott theory (and in particular Proposition 4.4.7) gives injections
ECCLi (M, f;a) — BCCLi+1(M, f;11a). However, the maps induced in homology by these injections
a priori could be different from the canonical maps given in Lemma 3.1.7, and it is with respect to the
latter that the direct limit must be taken. (A posteriori, they are shown to be the same in the proof of
Theorem 4.5.9.)

Observe that al._lfi < fi+1 <a; fi for all i. Then Lemma 3.1.7 gives maps
®.: ECHL (M, fia) — ECHYLi (M, fi410),
®_: ECHY L1 (M, f;110) — ECHYLi (M. fa0),
@ :ECH% Li(M, f41) - ECHL (M, fie).
Lemma 4.5.3 The map ® is an isomorphism.
Proof By Theorems 3.1.2(ii) and (iv), the composition
ECH" (M. a; fi+12) - ECH" (M. f0) - ECHY (M. a}”" fi110)

is equal to the cobordism map induced by a piece of symplectization. Then, by Theorem 3.1.2(vi), it
is a composition of a scaling with an inclusion. From this and Lemma 4.5.1(9), it follows easily that
®4 o ®” =id. Similarly, ®_ o ®; = id. Hence ® is an isomorphism. O
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Let ([0, 1] x M, d A;) be an interpolating cobordism from f;« to ai_1 fiv1oand (R x M, dxi) its comple-
tion. Let J; be a regular almost complex structure on (R x M, d ) i) which is d A;-compatible and adapted
to the symplectizations of f;« and al._l fi+1« at the ends. We denote the moduli space of fi—holomorphic
buildings in (R x M, d ;) from y to y' by ./\/ll} . v).

The following lemma, stated without proof, is a consequence of the Morse—Bott compactness theorem
[Bourgeois 2002] and the triviality of I < 0 moduli spaces in symplectizations.

Lemma 4.5.4 If ¢; > 0 is sufficiently small, then there is a regular almost complex structure J; such that,
if y and y’ have f;a-actions less than L;, then Mb~1 O()/, y’) and /\/lb~1 0()/’, y) are empty if y #y’ and

consist of branched covers of trivial ho]omorplnc cy]mders ify=y.

By Morse—Bott theory, there is an identification of complexes
e:BCCLi(M, fia, J;) => ECC%Li(M, fitia, Jit1).

In fact, ECCLi (M, fia) and ECC% Li(m, fi+1a) are generated by the same orbit sets and the moduli
spaces of I = 1 holomorphic curves (modulo R-translations) have the same cardinality, by Lemma 4.5.1
and Proposition 4.4.7. Let e, be the map induced by e on homology.

Proposition 4.5.5 ex = D4

Proof Let
®,:ECCLi (M, fia, J;) — BCCHLi(M, fi 1 1a, Ji41)

be a (noncanonical) chain map which induces @ and is given by Theorem 3.1.2 and Lemma 3.1.7.
Theorem 3.1.2(1) and Lemma 4.5.4 imply that Cf>+ is a diagonal map. Note that ECCli(M, fia) and
ECCY%Li(M, f; 1 a) are generated by the same orbit sets. The reason why we cannot conclude that
Cf>+ = e by Theorem 3.1.2(i) is that some of the / = 0 holomorphic cylinders in the interpolating
cobordism from (M, a; fia) to (M, f;+1«) are, strictly speaking, not contained in product regions.

For IF -coefficients we can use the following algebraic trick to finish the proof: Identify ECC% Li M, fit1a)
with ECCL (M, fij«) via e~!. Then

(e lody)o(elody)=elod,
over . Since @ and e, are isomorphisms, it follows that e, 1 o @4 = id and ®4 = ey. a
Now we give a sketch of the proof of Proposition 4.5.5 which applies to integer coefficients. The
uninterested reader can jump directly to Theorem 4.5.9. Given a pair (4, J) consisting of a nondegenerate

contact form A and a compatible J, Taubes [2010] first perturbs (A, J) into an L-flat pair (', J')
before identifying ECHL (), J') with Seiberg—Witten Floer cohomology. A pair (A’, J') is L-flat if
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near each Reeb orbit of length < L it satisfies the conditions in [Taubes 2010, equation (4-1)], and
L-flat perturbations are constructed in [Taubes 2010, Proposition 2.5 and Appendix]. (See [Taubes 2010,
Section 5.c, Part 2] for the reasons for introducing the L-flat condition.)

The following lemma is a slight rephrasing of [Hutchings and Taubes 2013, Lemma 3.4(d)] and will not
be proved:

Lemma 4.5.6 If (A',J!, L") for t € [0,1] is a 1-parameter family and (A*, J') is L'-flat, A is L*-
nondegenerate, and J' is L' -regular (ie Definition 2.2.1 holds for all y and y" with Ay:(y) < L") for all
t € [0, 1], then the ECH cobordism map

ECHL’ (M, 1°) — ECHL' (M, A1)

is induced by the isomorphism
ECCL’ (M, 1°, %) = ECCL' (M, AL, I 1)

given by the canonical bijection of generators.

Setting A = fia and A! = f; 1 1q, itis easy to find an extension A’ for ¢ € [0, 1] of the form fit+1°" where

Sy =/fi. i1 = fi+r,and f | satisfies the conditions of Lemma 4.5.1 with f; 1 replaced by f, ;.
By choosing fl-’ 1 to be sufficiently close to 1 and applying Lemma 4.4.5, there exist an extension L'
fort €[0,1]of L® = L; and L' = g; L; and an extension J? fort € [0, 1] of J* = J; and J! = J; 14
such that J? is adapted to A’ and is L’-regular.

Next we fix a Riemannian metric on M, with respect to which we measure distances. Assume for simplicity
that there is a unique Morse-Bott torus 7). Let y. and y, be the elliptic and hyperbolic orbits of A’
which are obtained by perturbing 7r, where we assume that y, LIy, is independent of z € [0, 1]. For each
& > 0 sufficiently small, we construct an L!-flat family (7 € [0, 1]) of perturbations (A"¢, J%¢) of (AL, J")
which are supported on an e-neighborhood of y, U yj,. Moreover, (A'¢, J¢) converges (uniformly in
t €10,1]) to (A*, J*) in the C°-topology as &€ — 0. The proof is a 1-parameter version of the construction
of L-flat perturbations in [Taubes 2010, Proposition 2.5 and Appendix] and will be omitted.

Claim 4.5.7 For ¢ > 0 sufficiently small, J"¢ is L' -regular for all t € [0, 1].

Proof We may assume that J* for ¢ € [0, 1] is a generic 1-parameter family of almost complex
structures. Arguing by contradiction, there exist orbit sets y and y’ and sequences ¢; — 0, t; € [0, 1] and
uj: F; — R x M, where:
(1) u; is a somewhere-injective J% ¢/ -holomorphic curve from y to y".
(2) y and y’ are constructed from the nondegenerate orbits of « together with y, and y; and
Agtje; (), Ayje; () < LY.

(3) wuj is not a connector and /(u;) =ind(u;) = 0.
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Claim 4.5.8 After passing to a subsequence, there exists an SFT limit u; — Uoso, Where I(Uoo) =
ind(#oo) = 0 and u o is not a connector.

A sketch of Claim 4.5.8 is given in Section 5.2. Since oo is a J °-holomorphic curve and J ! is L;-regular
for all 7 € [0, 1] by Lemma 4.4.5, we have a contradiction. This implies Claim 4.5.7. O

Claim 4.5.7 and Lemma 4.5.6 then imply Proposition 4.5.5 for integer coefficients.

By passing to direct limits, we obtain the main result of Morse—Bott theory.

Theorem 4.5.9 Let o be a nice Morse—Bott form and J a generic almost complex structure adapted to

the symplectization of «. Then
ECHMB(M, o, J) ~ ECH(M)

Proof Choose sequences of functions f;: M — R and constants L; — +o00 which satisfy the hypotheses
of Lemmas 4.5.1 and 4.5.4. Then

(4-5-1) ECH(M) = lim ECHY (M, fia)
1 —>00
by Corollary 3.2.3 and
(4-5-2) ECCLi (M, fia, J;) ~ ECle,["]3 (M, o, J)
for all i by Proposition 4.4.7. Also, tautologically,
ECCmp(M. . J) = lim ECCLL (M, . J).
1—>00

In order to take the direct limit on both sides of (4-5-2) on the level of homology, we need the commutativity
of the diagram
ECHL (M, ) ——=— ECHY (M, fia)

ECHLE (M, o) —=— ECHE+1 (M, fi410)

for all i, where the rightmost vertical arrow is the natural map defined in Lemma 3.1.7 from interpolating
cobordisms. This map coincides with @ followed by the map induced by the inclusion

ECC%%i (M, fi110) = ECCH+1 (M, fi110).

Therefore the diagram commutes by Proposition 4.5.5. a

5 Topological constraints on holomorphic curves

5.1 The winding number

In this subsection we recall the winding number from [Hofer et al. 1995, page 290]: Given a contact
manifold (M, ) with £ =ker «, an o-adapted almost complex structure J on R x M, and a J-holomorphic
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curve u: F — R x M between orbits sets, the winding number wind, (1) is an algebraic count of the
zeros of the section:
s: F — Homc (TF,u*§).

Here s is obtained by composing
TF 25 TR x M) M mpp 7 ¢

where ps: R x M — M is the projection onto the second factor and 7 is the projection along the Reeb
vector field Ry .

Hofer, Wysocki and Zehnder [Hofer et al. 1995] prove that wind,; (1) is finite. (This is analogous to the
elementary complex analysis fact that the number of zeros of a holomorphic function f: D? ¢ C — C,
counted with multiplicities, is equal to the winding number of f|5p2.) An immediate corollary is the
following lemma:

Lemma 5.1.1 The map ups = mpg ou is transverse to Ry away from a finite number of points on F. In
particular, it is an immersion outside a finite number of points on F.

Throughout the section we will use the notation uys = s o u.

5.2 Blocking lemma

In this subsection we discuss the topological restrictions that a torus foliated by Reeb trajectories imposes
on the J-holomorphic curves.

Let a be a contact form on M and 7' C M an oriented torus which is linearly foliated by Reeb trajectories
of a. The foliation can either have closed leaves or dense leaves. We denote by P H;(T'; R) the quotient
of Hy(T;R) — {0} by multiplication of positive real numbers. The Reeb flow on 7" will then have a
well-defined “slope” s € Pt H{(T;R).

Let {, ) be the intersection pairing on H1(T'; R). We then make the following definition:

Definition 5.2.1 If § € H{(T;Z), then we write § -5 > 0 (resp. § -5 = 0) if (§, y)} > 0 (resp. = 0) for any
representative y € H{(T;R) of s € PT H{(T;R).

Note that, if § - s = 0, then § represents the slope s or —s.

Let 72 x [—¢, ] be a neighborhood of the Morse—Bott torus 7 = 7'2 x {0} with coordinates (6, ¢, y). We
assume that the normal vector to 7" points in the direction of d,. Let u: F' — R x M be a J-holomorphic
curve such that

(Cy) F is a compact Riemann surface with boundary dF; and

(C2) up(OF)N(T? x [—s,¢]) = @.
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Then ups (F)NT only has a finite number of singularities by Lemma 5.1.1 and we denote by é € H1(T'; Z)
the homology class of ups (F) N T, where the smooth part of ups (F) N T is oriented as the boundary of
up (F) N (T? x [—¢,0]).

Lemma 5.2.2 (positivity of intersections in dimension three) Let T C M be an oriented torus which is
linearly foliated by Reeb trajectories of slope s. If u: F — R x M is a J-holomorphic curve satistying
(C1) and (Cy) and § = [up(F)NT] € Hi(T;7Z), then § -s > 0. Moreover, § -s = 0 if and only if
um(FYNT = @.

Proof We will prove this lemma in the harder case when T is foliated by orbits of irrational slope,
leaving the rational slope case to the reader.

By Lemma 5.1.1, ups (F) N T, if nonempty, is the union of a finite set of points and curves which are
immersed outside a finite number of singularities.

Assume first that ups (F) N T has a one-dimensional component. By abuse of notation, we do not
distinguish between the homology class § and its representative ups (F) N T. A generic finite-length Reeb
trajectory y on T intersects § in finitely many points away from the singularities and isolated points.
In fact, 5 Ny = apr (u(F) N (R xy)) and u(F) N (R x y) is a finite set by the intersection theory of
holomorphic curves in dimension four; see [Micallef and White 1995, Theorem 7.1]. Since all Reeb
trajectories are dense in 7, we can choose y arbitrarily long so that its endpoints are close to each other
and far away from 6. Hence we can complete y to a homologically nontrivial closed curve y without
introducing extra intersection points with §. Then the positivity of intersections in dimension four implies
that § - [y] > 0. In particular, § # 0 € H(T'; Z). Since we can make the slope of ¥ as close as we want
to s by taking y sufficiently long, and s is not an integral homology class, we conclude that § - s > 0.
(Recall that, if - s = 0, then § and either s or —s are parallel.)

Assume now that ups (F)NT is a finite set. We claim that ups (F)NT = @. Suppose that up (F)NT # @
by contradiction. Repeating the construction from the previous paragraph with a finite-length Reeb
trajectory y (resp. y’) which passes through a point in ups (F) N T (resp. is disjoint from ups (F) N T),
we obtain ¥ and y”. Then [u(F)]-[R x ¥] > 0 by the positivity of intersections, while [u(F)]-[R xy'] =0
because they are disjoint. Since R x ¥ and R x ¥’ are homologous, we have a contradiction. a

The following is an immediate consequence of Lemma 5.2.2:

Lemma 5.2.3 (blocking lemma) Let T C M be an oriented torus which is linearly foliated by Reeb
trajectories of slope s and let u: F — R x M be a finite-energy J -holomorphic map, where F is a closed
Riemann surface with a finite number of punctures removed. Then:

(1) If u is homotopic, by a compactly supported homotopy, to a map whose image is disjoint from Rx T,
thenupy (F)NT = @.
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(2) If T’ is a torus which is parallel to and disjoint from T, u has no end that limits to a Reeb orbit that
intersects the half-open region between T and T’ which includes T’ but not T, and the homology
class [upg (F) N T'] is nonzero and has slope s, then u has an end which is asymptotic to a Reeb
orbitin T.

We now sketch the proof of Claim 4.5.8.

Sketch of proof of Claim 4.5.8 The consideration that needs slight care is that as ¢; — 0, J¥*%/ —
J'° only in the C%-topology. Let Ne; (Ye U yp) be an gj-neighborhood of y. U yp, and let Fj’ =
uj_l (R X (M — Ng; (ye U yh))). By the Gromov—Taubes compactness theorem [Taubes 1998], which
requires no a priori bound on the genus and is local, there exists a limit uo, of 1| Fj as currents, after
passing to a subsequence. This implies that the homology class [u; (F;)] can be taken to be independent
of j. The argument from [Hutchings 2002, Theorem 10.1] then gives a bound on the genus of Fj.

We can then either appeal to the C °-Gromov compactness theorem of Ivashkovich and Shevchishin [2000]
or argue as follows using the blocking lemma. We make the simplifying assumptions that y and y’ do not
contain yp, and that u; does not intersect neighborhoods of R x y;, and leave the harder general case to
the reader.

We claim that —y(F jf ) is bounded above. Since we have a genus bound for F;, it suffices to show that
the number #8Fj’ of boundary components of F jf is bounded above. Let Vj’ = N¢, (ye) and let Tj’ = 8Vj’
with the boundary orientation. Choose an oriented identification Tj/ ~ R2/Z? such that the meridian has
slope 0 and the longitude is determined by the Morse—Bott family and has slope co. We may assume that
T/ is foliated by Reeb orbits of slope s’ >> 0 and that there exists a torus T/ "CM— V/ which is parallel
to T/ and is foliated by Reeb orbits of rational slope s”, where s” is 1ndependent of j and s > 5" >0.

Let Vj” C M be the solid torus bounded by Tj” and let Fj” = uj_l (Rx (M — VJ.”)). Let mpr :RxM — M be
the projection onto the second factor. By Lemma 5.2.2, if C is a component of dF, then wrprou; (C)-s’ <0.
Since [u; (F;)] is fixed and s” is rational, #9F must then be bounded above. On the other hand, let

(0) C V’ be a sufficiently small neighborhood of y., T .(O) = 8V(0) and F O _ u_1 (R x (M — V(O))).
SlIlCC [u; (F )] is fixed, #aF ©) s also bounded above by the p081t1v1ty of i 1ntersect10ns in dimension four
and the asymptotics of u; near their ends.

To obtain the bound on #9F, . it then suffices to show that u; IR x (V’ ! V ) and u; (R x (V/ V(O)))
have no disk components D with pg ouj(0D) C Tj’ By Lemma 522, mpou; (BD) represents a nonzero
homology class in 77. On the other hand, the inclusion 7% x {1} — 7 x [0, 1] induces an isomorphism
on homology, which is a contradiction. This proves the bound on #3F "and — X(F .

We then apply the SFT compactness theorem to u; | F) to obtain Ueo: Foo — R x M. If C is a component
of 0F s, then uso(C) C ye, which in turn implies that Uso 18 a constant. Hence 0F s, = @. The punctures
of Fuo are either removable or limit to orbits in y and y’. Finally, since [u; (F;)] is not the class given by
a connector, 4 is also not a connector. O
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5.3 Trapping lemma

In this subsection we analyze some topological restrictions on J-holomorphic curves with ends at a
Morse-Bott torus.

We fix coordinates (6, ¢, y) on a neighborhood 72 x [—¢, €] of a torus T = T2 x {0} and consider contact
forms of the type o« = g(0,t,y)d0 + f(6,t, y) dt such that:

e f(9yg)— (9, f)g>0.
e fly=o=1
* 99 fly=0=10:f|y=0=10y fly=0=0.
* 998ly=0=0:gly=0 =0and dygly=0 = 1.
© 35 fly=0 #0.
These conditions imply that 7" is a Morse—Bott torus and that the Reeb vector field R is given by d; on T.

We recall that the asymptotic operator of a closed Reeb orbit y describes the action of the linearized
Reeb flow on sections of the (pullback of the) contact structure y*£ along the orbit. More precisely, the
linearized Reeb flow gives a symplectic connection VR for y*§& and the asymptotic operator is J VE,
where J is an almost complex structure on &; see [Hofer et al. 1996] for more details on the asymptotic
operator and Section 4.1 for the linearized Reeb vector field.

If we choose a generic almost complex structure J adapted to the symplectization of « such that
0¢J|y=0 = 0, then there is a unitary trivialization of £ along 7" such that the asymptotic operator of an
end of a holomorphic map converging to a Reeb orbit on 7" has the form

. d 00
(5-3-1) A=—Jo 5+ Jo (a 0),

where a > 0if T is a positive Morse—Bott torus, a <0 if T is a negative Morse—Bott torus, and Jo = ((1) _(1)).

This unitary trivialization is obtained by projecting (d,, dg) to & along 9;.

Lemma 5.3.1 The eigenvalues of the asymptotic operator A are Ao = 0, A\, = —a, and A, and A_, for
n € N, which are the positive and the negative solutions of the equation A(A +a) = n?. The eigenfunctions
that correspond to the eigenvalues Ao and A, are

fo(l)=((1)) and fa(z):((l)).

The eigenvalues A1, forn > 1 are degenerate with multiplicity 2 and their eigenfunctions have winding
number +n.

Proof The asymptotic operator is sufficiently simple that we can determine its spectrum by an explicit
computation: The eigenfunctions & of A are the 2mr-periodic solutions of the differential equation

(5-3-2) £ = (Aia _g) £.
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If A =0 or A = —a, which are the only cases when the matrix in (5-3-2) cannot be diagonalized, the

Jo(t) = ((1)) and  f,(t) = ((1)) .

If A(A 4+ a) <0, then (5-3-2) can be diagonalized over the real numbers, and it is easy to see that it has

eigenfunctions are

no periodic solutions. If A(A 4 a) > 0 a direct computation shows that solutions of (5-3-2) are of the
form £(¢) = @, (¢)&p, where

cos(VAA+a)1) —\/ﬁsin(\//\(k—ka)t)
D, (1) =
o A4 Gn( ARG Fa)0) cos(v/ACk +a)t)

A(A+a)
Then ®; (277) has eigenvalue 1 if and only if A(A +a) =n? € N, in which case ®, (27) is the identity. O

If u is a J-holomorphic map with an end £ which is asymptotic to a Morse—Bott torus 7, we say that £ is
one-sided if its projection to M does not intersect 7.

Lemma 5.3.2 (trapping lemma) Let o be a contact form, T an o.-Morse—Bott torus, and £ a one-sided
end of a J -holomorphic map which is asymptotic to a Reeb orbit in T. If T is positive (resp. negative),
then & is a positive (resp. negative) end.

Proof Suppose T is positive. By [Hofer et al. 1996, Theorem 1.3], a positive (resp. negative) end £ of a
J-holomorphic curve approaches a Reeb orbit of 7" along an eigenfunction of the asymptotic operator
with negative (resp. positive) eigenvalue. By Lemma 5.3.1, the eigenfunction has a nonpositive eigenvalue
if and only if it has nonpositive winding number. On the other hand, if £ is one-sided, then the asymptotic
eigenfunction must have winding number zero. Hence £ must be a positive end. The case for T negative
is similar. O

6 Construction of contact forms

In this section we construct some contact forms on 72 x [1,2] and D? x S which will be used in the
proof of the main theorem.

6.1 Contact forms on 72 x [1, 2]

Let (¢, ¢, y) be coordinates on
T?x[1,2] ~ (R?/Z?) x[1,2].

Slopes of essential curves on 72 will be measured with respect to (1%, ¢), ie with respect to the basis
of H1(T?) given by the homology classes of the curves & — (¥, %) and # — (, ). Let

(6-1-1) ape =g(y)do + f(y)dt

Geometry & Topology, Volume 29 (2025)



3376 Vincent Colin, Paolo Ghiggini and Ko Honda

(f(2).5(2)

(f(1). &)

y
>

/
Figure 1: Trajectory of (f5(»), gs(»)).

be a contact form on T2 x [1,2], where f and g are functions on [1,2]. We write f’ = df/dy and
g =dg/dy.

The following is a straightforward calculation:

Lemma 6.1.1 The form oy, is a contact form if and only if

(6-1-2) fg'—f'g>0.

The kernel ker o, is spanned by {3y, — f 0y + g0 }. Assuming af,¢ is a contact form, the Reeb vector
field is given by

1
(6-1-3) Ry, = m(—flaﬂ +8'90).

In words, equation (6-1-2) says that the curve in R? parametrized by ( f, g) is transverse to the radial
rays and rotates in the counterclockwise direction.

Later in the article will need the following family of contact forms on T2 x [1, 2]:

Example 6.1.2 Given a (small) positive irrational parameter § we consider pairs of functions ( fs, gs5)
such that the following hold (see Figure 1):
(1) (fs,gs) satisfies (6-1-2).

(2) 0= f{(»)/gs(y) <& f5(y)/gs(y) is increasing on (1, %) and is decreasing on (%,2), and is
equalto § at y = %

3) (fs1),850:)) = (fs()+(y—1? gs(1) + (y — 1)) near y = 1.

@ (f5(r),g5(0) = (f5(2) —cs(y —2)*, g5(2) +cs(y —2)) near y = 2.

(5) (fs(1), fs(1)) is independent of § and all the ( f5(2), f5(2)) lie on the same line through the origin.
(6) The constants cg are chosen so that any two contact forms ag and ag, are constant multiples of one

another near y = 2.
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The contact form az, ¢, will also be called ag. Its Reeb vector field Ry has Morse-Bott tori whose Reeb
orbits have rational slope in the interval [—co, —1/4]; each rational slope occurs twice, once on the interval
[1, %] and once on the interval [% 2]. Note that the Reeb orbits in the two Morse—Bott tori of infinite
slope have parallel directions and are in “elimination position”, ie assuming that ( f5, gs) is extended
slightly to T2 x [1 —e, 2 + €] so that the Reeb orbits have positive slope on y € [1 —e, 1) U (2,2 + ¢], one
could deform the pair ( f, g5) relative to {y = 1 —¢,2 4 ¢} to make the slope of the Reeb vector field
always positive; during the deformation we would see the two Morse—Bott tori of infinite slope coming
close to each other and finally canceling. Also, by taking § to be sufficiently small, all the Reeb orbits in
int(72 x [1,2]) can be made to have arbitrarily large action.

6.2 Contact forms on D2 x S'1

Let (p, ¢, 0) be cylindrical coordinates® on the solid torus
D2 xS ={p<1}x[R/27Z).
Let T5 = {p=p} C D?x S! for p € (0, 1].

Convention 6.2.1 Slopes of essential curves on the torus 75 are measured with respect to (¢, ¢) instead

of (¢, 9).
We consider contact forms which can be written as

(6-2-1) are =g(p)d0+ f(p)de.

Here we need to choose ( f(p), g(p)) so that oz, is smooth on all of D?x S, which means that £(0) =0
and the derivatives of odd degree of both " and g at p = 0 vanish. We write f' =df/dp and g’ =dg/dp.
The analog of Lemma 6.1.1 is the following:

Lemma 6.2.2 The form ay,, is a contact form if and only if
(6-2-2) f'g— fg' >0 for p>0, and
lo — f£o
(6-2-3) lim L 8=I8
p—>0 o
The kernel ker ay,g is spanned by {3,, — f g + g0y }. Assuming ay,¢ is a contact form, the Reeb vector
field is given by
1 / /
(6-2-4) Ry, = m(f dg —&'0g).

In particular, Ry, , is parallel to 9 at p = 0.

Each torus 77 is linearly foliated by the Reeb flow of a5 .

SWe are making a distinction between the symbols & and 6.
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A

) (f(0), g(0)) straight line

(f(1).gM)

7 >

Figure 2: Trajectory of (f(p), g(p)). Here the arrow points in the positive p-direction.

Since they will be useful later, we present a pair of constructions of contact forms on D? x S! of the
form given in (6-2-1).

Example 6.2.3 Given v > 0 and C > 1, let (f(p), g(p)) = (vp?, C — p?). This gives a smooth contact
form on D2 x S! and the Reeb vector field on 7}, has slope —g’/ /' = 1/v for all p > 0. In particular, if
v is irrational, then the only simple closed orbit of Ry, , is the core curve {o = 0}.

Example 6.2.4 The following contact forms, which generalize those in Example 6.2.3, will be used later
in the paper. We define o on D? x S! so that the following hold:

(1) (f, g) satisfies (6-2-2).

) (f(p).g(p)) = (p?,C — p?) near p = 0, where C > 0 is a large constant.
3) (f(p).g(P)=(fD)—(p—1)* g(1)—(p—1)) near p=1.°

(4) —g'/ f’ monotonically increases from 1 to +oc as p goes from 0 to 1.

The profile of the functions ( f, g) is shown in Figure 2.

On each torus T, C D? x S, the Reeb vector field Ry gives a foliation by Reeb orbits of slope 7 in the
interval [1, co], where there is a unique p for each slope r € (1, o0].

7 ECH for manifolds with torus boundary

In this section we define several ECH groups on a compact manifold M with torus boundary T = M.
We fix an oriented identification 7 ~ R?/Z? so that we can refer to slopes of essential curves on 7. Let
o be a contact form on M such that T is foliated by Reeb orbits of slope r. If r is rational, we assume
that T is Morse—Bott. All ECH groups on M and int(M ) are computed using a C *°-small perturbation
Here (£, g)|p=1 = (fs. gs)|y=2. This allows us to extend o to D2 x S for all sufficiently small § > 0 by writing ( f5, g5) as

a suitable constant multiple of (3, gs,,)- This is possible because of condition (6) in the definition of os. Observe that the Reeb
orbits of as and ag,, agree on V, modulo parametrization.
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of « so that all Reeb orbits in int(M ) are nondegenerate. Let J be a Morse-Bott regular almost complex
structure on R x M adapted to «.

7.1 Definitions

We introduce several ECH groups:

(1) ECH(int(M),«) The ECH chain group ECC(int(M), ) is generated by orbit sets whose simple
orbits lie in the interior of M. In particular, we are discarding the Morse—Bott family of orbits on 7" if r is
rational. The differential d is the usual one, ie it counts holomorphic curves of ECH index I(y,y’, Z) =1
in R x int(M) whose connector components are trivial cylinders. Since int(M) is not closed, we need to
verify that ECC(int(M ), @) is indeed a chain complex.

Lemma 7.1.1 9 is defined and 9% = 0.

Proof We claim that the SFT compactness theorem holds in R x int(M'). This implies that the arguments
used in [Hutchings and Taubes 2007; 2009a] to prove 3> = 0 will then carry over to our setting. Let
U, be a sequence of J-holomorphic maps with image in R x int(M). After passing to a subsequence,
u, converges to a building u, such that all its components have image in R x M. By the blocking lemma,
no component of #, can intersect dM.

We claim that no component of # s, can have an end at a Reeb orbit in dM : indeed, if there is a component
with a positive (resp. negative) end at a Reeb orbit in dM, then there is another component of 1, with
a negative (resp. positive) end at a Reeb orbit in dM. By the trapping lemma, this is impossible if the
image of U is contained in R x M. |

(2a) ECH(M, ) for r irrational This is defined to be ECH(int(M ), «).

(2b) ECH(M, o) for r rational Let N be the set of simple Reeb orbits on 7. The set /' comes with
distinguished orbits e, # which become elliptic and hyperbolic after a suitable perturbation. Writing P
for the set of simple orbits in int(M ), ECC(M, «) is the chain complex which is generated by orbit sets
constructed from P U {k, e} and whose differential counts Morse—Bott buildings of ECH index 1 in R x M.

Lemma 7.1.2 If « is nondegenerate on int(M), then it is nice.

Proof Suppose that M is a negative Morse—Bott torus; the positive case is analogous. Let A/ be the
Morse—Bott family corresponding to dM. If « is not nice, then there is a Morse—Bott building # in
R x M with ECH index (i) = 1 whose holomorphic part ¥ has more than one nonconnector irreducible
component. Assume that there are exactly two nonconnector components #; and u, (this is mostly to
simplify notation; the general case is treated in the same way). By the trapping lemma, the only ends of 1
and u, that limit to M are negative ends. We form the Morse-Bott buildings i; and u#, by augmenting
the ends of u; and u, at M with gradient flow lines and denote the union of these two buildings by "
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We claim that /(11) = I(@i’). Indeed, all the ends of u; and u5 that limit to orbits on dM are connected
to critical points in A/ by gradient flow lines, with possible interruptions by connectors. Hence u

and 7’ have the same ends in the ECH sense and define the same relative homology class. This implies
that I(z2) = I(@').

On the other hand, let u; fori = 1,2 be a k;™ cover of a J -holomorphic curve v;, and define very nice,
simply covered buildings v;. By Theorem 4.4.3(2), we can perturb ¢; and 0, to Je-holomorphic maps
v1,¢ and vy ¢, respectively. We denote by vlk; the Je-holomorphic map made of k; parallel copies of v; .
Then, by [Hutchings 2009, Theorem 5.1],

1(@) = 1(0¥) + 1(082) = ki1 (v1,6) + k2l (v2,0).

Since I(v; ) > 0 for i =1, 2, this is a contradiction. d

Lemma 7.1.2 implies that 32 = 0, since it guarantees that the Morse—Bott gluing is done at a different end
from the gluing of connectors (ie the obstruction bundle gluing of Hutchings and Taubes [2007; 2009a])
and the two kinds of gluing can be done independently.

3) ECH’ (M, ) The chain complex ECC’ (M, o) is generated by orbit sets which are constructed from
P U{e}. As in the case of ECC(M, @), if NV is a negative Morse-Bott family, no Morse-Bott building u
in R x M besides trivial cylinders can have e at the positive end. Hence the differential can be defined by
counting Morse-Bott buildings of ECH index 1 in R x M, whose orbit sets are constructed from P U {e}.

The verification of 3> = 0 needs one extra consideration: an index 2 family of J-holomorphic curves
in R x M can break into a Morse-Bott building # which involves / at the negative end, followed by a
holomorphic cylinder from /4 to e. (Note that, by the trapping lemma, these holomorphic cylinders are
the only nontrivial holomorphic curves which go from 4 to e and so there are no other cases to consider.)

This type of breaking could be a problem because orbit sets containing / are not in the chain complex
ECCb(M ,a). However, since there are rwo gradient trajectories from % to e with ECH index / = 1 and
no other holomorphic curve (or building) with a positive end at %, the Morse—Bott building #% can be
glued onto each of the two gradient trajectories. This proves that families breaking at 4 always come in
pairs, and therefore 3> = 0 holds even when we discard orbit sets which contain /.

If V is a positive Morse—Bott family, then e can only be at the positive end of a J-holomorphic curve
in R x M, and the proof of 9> = 0 remains the same with the obvious modifications.

(4) ECH* (M, a) The chain complex ECC* (M, @) is generated by orbit sets which are constructed
from P U {h}, and its differential counts ECH index 1 Morse—Bott buildings which are asymptotic to
orbit sets constructed from P U {h}.

Remark 7.1.3 The differentials of the ECH groups defined in this section preserve the total homology
class of the generators. Then we can define subgroups ECH(M, «, A) for every A € H{(M). Similar
notation will be used for the variants of this group.
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7.2 Well-definition

In this subsection we prove that ECH(M, «) is independent of the choice of «, provided the slope r is
irrational. The verification in the other cases will be omitted; we will be careful to use the invariance
of ECH groups for manifolds with torus boundary only in the case where it is proved. The main result
proved in this subsection is the following:

Proposition 7.2.1 Let o and ap be contact forms on M which agree on OM to first order (and in
particular the Reeb vector fields and the characteristic foliations of oy and ap at M are equal) and define
contact structures & = ker o; which are isotopic relative to the boundary. If dM is foliated by Reeb orbits
of irrational slope, then there is an isomorphism

ECH(M, Otl) o ECH(M, Otz).

The strategy of the proof is to extend (M, «;) for i = 1,2 to closed contact manifolds and to use the
invariance of ECH for closed manifolds. Lemma 7.2.3 constructs the contact forms which are used to
extend (M, ;). Then Lemma 7.2.6 shows that, up to some action L, the ECH groups of (M, «;) are
isomorphic to the ECH groups of their extension. Finally, Lemmas 7.2.7, 7.2.9 and 7.2.10 establish some
compatibility properties for the continuation maps between the extended forms, so that the proposition
can finally be proved by a direct limit argument.

Lemma 7.2.2 Leta = g(p)df + f(p) d¢ be a contact form on D? x S with cylindrical coordinates
(p,9,0). Write v(p) = (f(p), g(p)) and let |v(p)| be the norm of v(p) and {(p) the angle between v(p)
and v’(p), both measured with respect to the standard Euclidean structure on R2. Then, if the torus T, is
foliated by closed Reeb orbits, for every Reeb orbit y on T, we have

(7-2-1) A(y) = |v(p)[[sin(p)].

Proof Let J be the standard complex structure, - the standard inner product, and |-| the standard
Euclidean norm on R2. For every p € (0, 1] we trivialize the tangent bundle of the torus 7}, by (3, dg)
and measure the slope of curves on T, with respect to (¢, 0).”

By Lemma 6.2.2, R is tangent to T, for all p € (0, 1] and can be written as
R &7
(=g [ (f.8&)
with respect to (d¢, dg). If we write v = (f, g), then Jv' = (—¢’, f’) and
IR| = =8 /") z' LA N
(=g, /- (f.8) Jv'-v|  |ullsin¢|

In the proof we are using a different convention from that of Convention 6.2.1.

Geometry & Topology, Volume 29 (2025)



3382 Vincent Colin, Paolo Ghiggini and Ko Honda

long line segment

Y

Figure 3: Trajectory of (f(p), g(p)). The arrow is in the direction of increasing p.

where {(p) is the angle between v(p) and v'(p). Note that slope(R) = slope(Jv') = —f'/g’.

Let p € (0, 1) be such that R has rational slope on 7}, and let w be the shortest integer vector with that
slope. Then T, is foliated by Reeb orbits and each Reeb orbit y has action A(y) = |w|/|R|. Since
|w| > 1, we have the bound

Ay) z 57 = |vllsing]. 0

Bl

Lemma 7.2.3 Given L > 0 and r > 0 irrational, there is a contact form «(r, L) = g(p) d0 + f(p) d¢
onV = D? x S with cylindrical coordinates (p, ¢, 9) such that

(a) ondV, the Reeb vector field R of «(r, L) has slope —1/r and the characteristic foliation has infinite
slope; and

(b) all the closed orbits of R have «(r, L)-action larger than L.

Proof We describe a(r, L) by describing the vector v(p) = (f(p),g(p)). We construct v(p) =
(f(p), g(p)) “backwards”, starting with larger p, subject to the condition d|v|/dp < 0. The profile
of v(p) is given in Figure 3.

(1) Forpe [%, 1], define v(p) so that it parametrizes a “long”® segment and R is constant, has slope —1/r,
and satisfies |R| = 1/K. Since r is irrational, there are no Reeb orbits on 7, for p € [% 1].

(2) Fix an irrational slope —1/r’ > —1/r such that all integer vectors with slope between —1/r’

and —1/r have norm greater than 2L./K. For p € [%, %], define v(p) so that |R(p)| < 2/K and

slope(R) = slope(Jv") decreases monotonically from —1/r’ to —1/r as p increases. One can achieve this
by making v(p) vary sufficiently slowly for p € [% %] Hence, if y is a Reeb orbit of 7}, with p € [% %],
then

L

ol

Aly) =

8The segment is chosen so that (7-2-2) from (2) is satisfied.
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Let ¢ be the clockwise angle from a line of slope —1/7’ to a line of slope —1/r. By taking the “long”
segment to be sufficiently long, we may assume that

(7-2-2) |sin| > KL|sin(£(3))].

(3) Forpe [% %], define v(p) so that slope(Jv’) decreases monotonically from 1/r” > 0to —1/r’ as p
increases and [sin £(p)| > |sin¢|. We can achieve these properties by changing v(p) slowly with respect
to the slope of v’(p). Then, by (7-2-1) and (7-2-2),

T3 Az )] KLsin@ ()] = KL E)| - in(e(3)| = KL g = L,
where y is a Reeb orbit of T), p € [% %]

(4) Finally, define v(p) for p € [0, %] which parametrizes a segment of slope 1/r” and satisfies f(0) = 0.
A(y) > L follows from (7-2-3). O

Remark 7.2.4 We will always assume that, when Lo < L1, each radial ray in the fg-plane intersects the
curve (fo(p), go(p)) defining a(r, Lo) before or at the same time as the curve ( f1(p), g1(p)) defining
a(r, L1). Then there exist a diffeomorphism o: D% x S! — D2 x S such that 6 (p, ¢, 8) = (00(p). ¢, 0)
and a function &: [0, 1] = RZ? such that a(r, L) = e"®o*(r, a(Ly)).

Let (M, ;) for i = 1,2 be contact manifolds as in Proposition 7.2.1. We can choose coordinates
(0,1, y) € (R?/Z?) x [—&,0] on a small collar of M such that M corresponds to 72 x {0} and the
contact forms «; can be written as

ai = gi (D t,y)dd + fi(0t,y)dt

with df; /00 = df; /0t = dg; /00 = dg; /0t = 0 at t = 0 (ie along dM). Note that we have used the
assumption that «; and &, coincide to first order along dM to conclude that they can be put in this form
with the same choice of coordinates. Moreover, we assume that these coordinates have been chosen so
that, on dM, the Reeb vector fields of oy and «p have negative irrational slope —r and that the slopes of
the characteristic foliations of & = kera; are nonnegative and sufficiently close to zero.® Here the slope
is measured with respect to (9, ¢).

For L' > 0 sufficiently large, we embed (M, «;) into a closed contact manifold (M’, a(L’)) such that

(1) M'= MUYV, where dM and 9V are glued by the identifications p = 1—y, ¢ =27t and 6 =27 ¥;
and

() af(L")|my =«a; andaj(L))|y isa C 1_small perturbation of «(r, L") near the boundary.

If the perturbation of the form a(r, L’) is small enough in the C '-topology, it does not create any closed
Reeb orbit of action less than L’ Since the size of the perturbation which is necessary to glue «; with

9Close enough that Claim 7.2.5 applies.
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a(r, L") essentially depends on the slope of the characteristic foliation of @; on M, we can claim the
following:

Claim 7.2.5 All closed Reeb orbits of (M',a;(L’)) of action less than L' are contained in M.
The next lemma identifies some ECH groups for (M, «;) with ECH groups for (M, a/(L")).

Lemma 7.2.6 For all L < L, if we choose the almost complex structure on the symplectization of
(M’,a}(L")) to extend the almost complex structure picked on the symplectization of (M, «;), then there
are isomorphisms

ECCL(M, a;) ~ ECCE(M', o} (L")

of chain complexes.

Proof By Lemma 7.2.3, there is an isomorphism
ECCL(M, ;) ~ECCE (M, /(L))

as vector spaces. To prove that the isomorphism holds as chain complexes, it suffices to show that every
holomorphic curve in R x M’ which is positively asymptotic to an orbit set of Ry(y of a/(L’)-action
less than L (which is equal to an orbit set of Ry, of «;-action less than L) has ilmage in R x M. Let
u be a holomorphic map in R x M’ connecting the orbit set y of Ry, in M with Ay, (y) < L to the
orbit set y’ of Ry 1y in M ’. Since Ay, (y) < L, y’ must be contained in M. Hence the homology class
of uper N AV in Hy(dV') is a multiple of the class of the meridian of V. On the other hand, inside V/
there is a concentric torus ¥’ on which the Reeb orbits are meridians. (This torus corresponds to the
vertical tangency of the curve in Figure 3.) Then Lemma 5.2.3 (blocking lemma) implies that ¥ must be
asymptotic to some orbits in V. This is not possible since all the ends of u limit to orbits of action less
than L. Hence the image of u is contained in R x M by Lemma 5.2.3(1). |

The induced identification
ECHY (M, ;) ~ ECHE (M, (L))

is independent of L’ in the following sense: Let L < Lo < L; be positive numbers such that no Reeb
orbit in (M, «;) (for either i = 1 or i = 2) has action L. By Remark 7.2.4 and Lemma 3.1.7, there are
maps

wl-lolt ECHE (M, o/(L1)) — ECHE (M, o (Lo))
induced by interpolating cobordisms (W, ;) from (M’, o (L1)) at the positive end to (M’, ] (Lo)) at
the negative end. Then we have the following:

L,Lo,Ly
i

Lemma 7.2.7 The maps ¥ restrict to the identity on ECHY (M, «;).

Proof The cobordism W is topologically trivial, ie W ~ [0, 1] x M, and we can assume that (W, ;)
restricts to a piece of symplectization on [0, 1] x M. We choose the almost complex structure J to be
R-invariant on R x M. As before, all orbit sets of « (L ;)-action less than L for j =0, 1 are contained
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in M. Then the blocking lemma'® and the argument of Lemma 7.2.6 imply that all J-holomorphic maps
between orbit sets of action less than L are contained in R x M. If those J-holomorphic maps have ECH
index zero, then they are branched covers of trivial cylinders because ([0, 1] x M, w;|[0,1]xm ) is a piece
of symplectization. Hence the map induced on ECHE (M, @) is the identity by Theorem 3.1.2(i). |
We will use the identifications ECHE (M, ;) ~ ECHE (M, (L") to define a map
®: ECH(M, a1) —> ECH(M, a3).

This involves two steps: the construction of maps

®;: ECHL (M, 1) — ECH*E (M, )
for some x > 1 and the taking of direct limits.

Let f: M — R be a smooth positive function such that $*(a2) = fo; for some diffeomorphism ¢ of
M which is isotopic to the identity and restricts to the identity on dM. Then choose k > 1 such that
1/k < f <«. Given L' > L, we consider the contact forms o/ (kL') for i = 1,2 on M’ constructed in
Lemma 7.2.3. Then there is an interpolating cobordism (X, A7) from (M’, &} (xL’)) at the positive end
to (M’, /c_lo/z (kL)) at the negative end. Moreover, we can assume that (X, A7) restricts to a piece of
symplectization on a small neighborhood of [0, 1] x V.

We define ®;, by imposing the commutativity of the diagram
L ro / L kL ro /
ECH™(M’, o} (kL") ——— ECH**(M", a5 (kL"))
(7-2:4) zl lz
@
ECHL (M, a;) ———=—— ECH*L (M, )

where the vertical maps are the isomorphisms coming from Lemma 7.2.6 and the top map is induced by
the interpolating cobordisms (X, A7) via Lemma 3.1.7.

Remark 7.2.8 Using the blocking lemma, one can prove that the map ®;, is supported, in the sense on
Theorem 3.1.2(i), by holomorphic curves in R x M. See the proof of Lemma 7.2.6 for the details.

Lemma 7.2.9 & is independent of the choice of L' in diagram (7-2-4).

Proof Suppose L < L¢ < Li, o1 has no orbit sets of action L, and a, has no orbit sets of action «L.
Then the diagram

L
ECHE (M, o (kL1)) —=— ECHE (M’ b (kL 1))
(7_2_5) \IIIL.KL().KLI l J\pé.KL().KLl
ECHL (M, ! (kL " ECHL (M’ o, (kL
,051(’( 0) — (M’ oy (x 0)

10Thjs situation is slightly more general than that for which the blocking lemma has been stated and proved because we are in a
cobordism. However the lemma is still valid and the proof is unchanged.
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commutes by Theorem 3.1.2 since, by Lemma 3.1.6, the compositions of cobordisms (X, )ULO) o(W, 1)
and (W, j12) o (X, A7) are homotopic. The maps gLoxLokLt i duce the identity on ECH(M, ;) by

i
Lemma 7.2.7, so the maps on the top and bottom of (7-2-5) define the same map &y : ECHN (M, 01) —
ECH*L(M, ). O

Lemma 7.2.10 Let o1 and oy be contact forms as in Proposition 7.2.1. If L; is an increasing sequence
of positive real numbers such that «; has no orbit set of action L; and o has no orbit set of action kL;

for all i,'! then the maps
@y, : ECHL (M, a1) — ECHE (M, a,)

define a morphism of directed systems.

Proof For all L < L’ as above, the diagram

[
ECHL (M, o) ——— ECH*L (M, a2)

| |

’ D,/ ’
ECHL (M, a1) —=— ECH*Y' (M, a3)
where the vertical arrows are maps induced by the inclusions of chain complexes, commutes by Lemmas

7.2.7 and 7.2.9. O

By taking the direct limit of the maps ®;, from Lemma 7.2.10, we obtain a linear map
®: ECH(M, 1) —» ECH(M, a3).

Since the roles of o7 and o are interchangeable, the same arguments can be used to define a map
®’: ECH(M, a2) — ECH(M, 1) as a direct limit of maps @/, .
J

Proof of Proposition 7.2.1 We prove that ® and @’ are inverses of each other. We identify the
composition @, o ® (after a proper rescaling) with the map induced by an interpolating cobordism
which is homotopic to a piece of symplectization. Then &}, o®; =iy 27, where i L k21 18 the inclusion
map. By taking the direct limit, we obtain ®' o ® = id. The proof of ® o ®" = id is similar. |

Remark 7.2.11 We sketch a possible strategy to prove the invariance of the group ECH(M, «) when the
Reeb vector field of « defines a foliation on dM with closed leaves. This result will not be used in the
rest of the article.

When dM is foliated by closed orbits of the Reeb vector field of « we would like to view ECH(M, ) as
a direct limit of ECH groups of nondegenerate contact forms as in (4-5-1). We pick L > 0 and slightly
extend (M, «) to (M,, ag) so that

o My;=MU(T?x]0,¢)) where IM = T? x {0};
* gy =a;

This condition can be fulfilled due to the fact that the action spectrum is discrete for a generic contact form.
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e 0M, is foliated by Reeb trajectories of &, with irrational slope; and

¢ there are no Reeb orbits of o, on M, — M with action < L.

We now consider the chain complexes ECCE (M,, fia;), where f;: M, — R is as in Lemma 4.5.1 for
i > 0. Then

(7-2-7) ECCL(M, o) ~ BECCL(M,, fiay)

by Proposition 4.4.7. We then write the ECH group ECH(M, «) as a direct limit of groups ECHE (M, f; ;)
as in Corollary 3.2.3. We extend (M., fia.) to a closed manifold by using Lemma 7.2.3 and apply the
(analogs of the) results of this section to define the ECH cobordism maps.

7.3 Variants of ECH relative to the boundary

The goal of this subsection is to define the homology groups ECH(M, dM, ) and E/C\H(M , M, o) which
appear in the statement of Theorem 1.1.1. They are variants of ECH(M, «) and in many ways can be
viewed as ECH groups relative to the boundary of M, whence the notation.

Let M be a manifold with M ~ T'2. Let « be a contact form on M which is nondegenerate on int(M)
and such that dM is a negative Morse—Bott torus. Then the ECH groups introduced in Section 7.1
are defined for (M, ) In the rest of this section we make the further assumption that there exists a
properly embedded oriented surface (X, 0X) C (M, dM ) with connected boundary such that an orbit of
the Morse—Bott torus has algebraic intersection number one with 3.

As before, we pick two orbits on M and label them % and e. There is a perturbation of & near dM which
makes /1 hyperbolic and e elliptic; & corresponds to the maximum and e to the minimum of the perturbing
Morse function.

Let P be the set of simple Reeb orbits of « in the interior of M. Let ECC;’. (M, o) be the chain complex
generated by orbit sets y constructed from P U {e}, whose algebraic intersection number ([y], X) is j.
By construction, ECCB’- (M, @) is a direct summand of ECCb(M , o) and its differential is the restriction of
the differential for ECC”(M, ).

In the same way we write ECC; (M, ) for the chain complex generated by orbit sets y constructed from
P U {e, h}, whose algebraic intersection number ([y], X) is j. By construction, ECC; (M, @) is a direct
summand of ECC(M, «) and its differential is the restriction of the differential for ECC(M, ).
Lemma 7.3.1 There are inclusions of chain complexes

ECC}(M, ) —ECC} | (M.a), ECC;(M,a) > ECCj11(M, )
given by the map y — ey, where we are using multiplicative notation for orbit sets.
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Proof Let y be an orbit set in M and u a holomorphic map with image in R x M which is positively
asymptotic to ey. Then u has an irreducible component which is mapped to the trivial cylinder over e. In
fact, by the trapping lemma, u cannot have nontrivial positive ends that limit to orbits on dM because M
is a negative Morse-Bott torus. Also, one can check that, Z’ € H>(M, ey, ey’) is obtained by adding a
trivial cylinder over e to Z € Hy(M, y,y’), then I(ey,ey’, Z’) = 1 whenever I(y,y’, Z) = 1. This is a
consequence of [Hutchings 2002, Proposition 7.1], since the associated partitions satisfy the admissibility
conditions [Hutchings 2002, Definition 4.7, equations (23) and (24)]. It is crucial in the verification of the
admissibility condition that, in the Morse—Bott situation, the outgoing partition for e with multiplicity n
is (n) and the incoming partition is (1, ..., 1) for all n, together with the fact that every J-holomorphic
map in R x M with a positive end to e is a connector. Hence 8°(ey) = ¢d”(y) and d(ey) = ed(y). O

The homology of the chain complex ECCIJ’- (M, @) will be written as ECHIJ’. (M, @) and that of the chain
complex ECC; (M, o) will be written as ECH; (M, «).

Definition 7.3.2 We define
ECH(M, oM, «a) = lim ECHl}(M,oz), E/C\H(M, OM,a) = lim ECH;(M,a).
J >0 Jj—>00

Remark 7.3.3 The groups ECH(M, 0M, «) and E/C\H(M ,dM, ) can also be interpreted as the homol-
ogy of the chain complexes obtained by taking the quotient of the chain complexes ECCb(M ,o) and
ECC(M, a), respectively, by the subcomplexes generated by all elements of the form ey — y, where y is
any orbit set constructed from P U {e} in the case of ECH(M, dM, «) or from P U {e, h} in the case of
E/C\H(M ,dM, «). This alternative definition, unlike Definition 7.3.2, does not need the assumption that
the Reeb orbits on the boundary have intersection one with a properly embedded surface.

Remark 7.3.4 The differentials in ECH(M, M, «) and E/C\H(M ,0M, o) preserve the total relative ho-
mology class of the generators. Then we can define subgroups ECH(M, M, &, A) and E/C\H(M ,0M,a, A)
for every A € Hi(M,oM).

8 ECH of the solid torus

8.1 Overview of the computation

In this section we calculate various versions of ECH of the solid torus with certain boundary conditions
and specific contact structures. We will write V = D? x §' and use Convention 6.2.1 to compute the
slope of essential curves in dV and in boundary-parallel tori contained in V.

The following lemma constructs the contact forms used in the main theorem. Let Vo C---C V; C---CV
be an exhaustion by concentric solid tori, 7; = dV; and 7 = |J; T;. Let (p, ¢, 6) be the cylindrical
coordinates on V' = D2 x S from Section 6.2. We assume that T; = {p = p;}. We will choose V; so
that the Reeb flow foliates 7; = dV; by orbits of irrational slope r;.
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Lemma 8.1.1 There exists a contact form ay on V = D? x S! which is an arbitrarily C*°-small
perturbation of the contact form « from Example 6.2.4 and which satisfies the following:
(a) The Reeb orbits of ay inint(V') are nondegenerate.

(b) ay and o agree to infinite order along 0V and along T . In particular, the Reeb flow of oy foliates
the tori T; by orbits of irrational slope r; and 0V by orbits of infinite slope.

(c) Foreveryi, all orbits in V — V; have slope greater than ;.

Proof Let L; — oo fori =1,2,... be an increasing sequence of real numbers and let d be a metric
on C (V) inducing the C *°-topology.'? Fix ¢ > 0 sufficiently small.

We claim that, fori = 1,2, ..., there exists a function!® f;: VV — R such that

) efia is L;-nondegenerate,

(i) d(f;, fi—1) <27%, and

@iii) supp(fi — fi—1) Cint(V) —(Oi-1 UT),
where O; is the union of all simple Reeb orbits of e/ia with action less than L;. Here we are setting
fo=0, 09 =@ and Lo = 0. We define f; inductively: We choose g; such that f; = fi_; + gi—1
satisfies (i)—(iii). In fact, as shown for example in the proof of [Colin and Honda 2013, Lemma 7.1], the
functions g; can be chosen arbitrarily close to 0 in the C *°-topology and with support in arbitrarily small
neighborhoods of the Reeb orbits of action in [L;—1, L;]. The claim then follows. The sequence f; is a
Cauchy sequence, so we define f =1lim; .~ f; and oy = e/ «. The contact form oy satisfies (a) and (b).

It remains to prove (c). But this is immediate since the slope in Example 6.2.4 is strictly increasing with
the radius on the region V' — V; and we are performing a C °°-small perturbation so that this property is
preserved. |

Now, dV is a positive ay -Morse—Bott torus. We can perturb ay so that the Morse—Bott family for dV/
becomes a pair of nondegenerate Reeb orbits e’ and 4’, where e’ is an elliptic orbit corresponding to the
maximum of the perturbing function and A’ is a hyperbolic orbit corresponding to the minimum. The
following is the main result of this section:

Theorem 8.1.2 Let oy be a contact form on V' as constructed in Lemma 8.1.1. Then:
(1) ECH(int(V), ay) ~ I, generated by &.
(2) ECH*(V,ay) ~ 0.
(3) ECH(V,ay) ~ 0.
(4) ECH’(V,ay) ~ F[e'], where F[e¢'] is the polynomial ring generated by ¢’ over F.

!2For example, we can take d(f, ) = Y220 27 f = gllcx /(L + 11 f =&l cx)-
13The functions f;, g; and f introduced in this proof are, of course, unrelated to the functions f and g defining « in
Example 6.2.4.
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Remark 8.1.3 Proposition 7.2.1 does not cover contact forms whose Reeb flow has rational slope on dV,
so we cannot claim that the computation in Theorem 8.1.2 is independent of the contact form. However,
the computation for the contact forms «py constructed in Lemma 8.1.1 will be sufficient for the proof of
Theorem 1.1.1.

The proof of (1) proceeds as follows: In Section 8.2 we compute ECH(V;, ay|y;). Since the slope of
the Reeb flow of ay on T; = 0V} is irrational, we can use Proposition 7.2.1 to replace the contact forms
ay |y, with different forms for which the computation is easy. We also lift the relative grading on the
ECH groups given by the ECH index to an absolute grading which is compatible with the maps induced
by the interpolating cobordisms. In Section 8.3 we prove that the inclusions V; C V; 41 induce inclusions
of chain complexes ECC(V;, ay|y;) C ECC(Vi4+1,ayly,,,) as a consequence of the blocking lemma.

This implies that
ECH(int(V),y) = lim ECH(V;, ay|y;).
1 —>00

We then use the absolute grading to conclude the proof: the degrees of the generators of ECH(V;, ay |v;)
that are different from & go to infinity as i — oo, so only & survives in the direct limit.

The proofs of (2)—(4) are given in Section 8.5 and use (1) and some results on holomorphic curves
in R x V' due to Taubes and Wend]l.

8.2 ECH(V, o) when the Reeb flow has irrational slope on the boundary

In this subsection we compute ECH(V, «) for contact forms o whose Reeb flow foliates a1 by orbits of
irrational slope and whose underlying contact structure gives the standard contact neighborhood of a trans-
verse knot. For this boundary condition we have proved the invariance of ECH, so, by Proposition 7.2.1,
we can choose a particularly simple contact form to do the computation.

Let 7 > 0 be an irrational number. Pick a contact form o, on V ~ D2 x S! as in Example 6.2.3 such that
the following hold:

e The boundary V" and all the concentric tori T}, for p € (0, 1] are foliated by Reeb orbits of irrational
slope r.
 The contact structure ker o, is transverse to all the fibers {pt} x ST
There is only one simple closed orbit, namely the core ¢ = {0} x S!. The orbit ¢ is elliptic and all its

multiple covers ¢” are nondegenerate due to the irrationality of r. Note that [¢""] = n[S!] € H{(V), so
we immediately have the following lemma:

Lemma 8.2.1 ECH(int(V), a,;n[S']) ~ F, generated by c”, if n > 0 (where ¢" = @ if n = 0) and
ECH(int(V), or;n[S']) =0 if n < 0.

In order to plug this computation into the direct limit in the proof of Theorem 8.1.2, we define an absolute
grading on the ECH groups of the solid torus in a way which is compatible with the cobordism maps.
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For simplicity we will consider only contact forms « which satisfy the following assumption:
(x) The core of V is an elliptic Reeb orbit ¢, all of whose multiple covers are nondegenerate.

The contact forms «, in Lemma 8.2.1, as well as the contact forms ay |y; of Lemma 8.1.1, satisfy this
assumption.

Let & = ker . We chose a trivialization t of £ such that its restriction to the core orbit e is homotopic
to the pullback of a basis of ToD? and the linearized Reeb flow at e is a rotation by angle 2776 with
feR-Q.

Lemma 8.2.2 Let o be a contact form on a solid torus V' which satisfies (x). Then there is an absolute
grading I on ECC(int(V'), @) such that:

(1) I(c") =Y k=1 LkO] +1).

(2) If yq and y, are two orbit sets and Z is a surface from y; to y,, then
I(y1,y2,Z2) = 1(y1) — 1(y2).

Proof Given an orbit set y with [y] = n[S?], we choose a t-trivial surface Z from y to e” and define

(8-2-1) I(y) == [ic(y) +c16lz. 1) + Q(2).

Since Hy(V) =0, I(y,c", Z) is independent of Z by [Hutchings 2002, Lemma 2.5(a)]. Hence I(y) is
well defined.

(1) follows from the calculation fiz(c") = Yz _,(2|k6] + 1) using [Hutchings 2009, formula 2.3] and
(2) follows from the additivity of the ECH index. O

Lemma 8.2.3 Let oy and oo be contact forms on V' which coincide on dV to first order and define
contact structures which are isotopic relatively to the boundary. If both a1 and o satisfy (x) and their
Reeb flows foliate 0V by orbits of irrational slope, then the isomorphism ECH(V, «;) ~ ECH(V, o)
from Proposition 7.2.1 preserves the absolute grading 1.

Proof We denote by /1 and I, the absolute grading on the groups ECH(V, 1) and ECH(V, «»), respec-

tively. We know from Remark 7.2.8 that the isomorphism ECH(V, a;) => ECH(V, a5) is supported by

holomorphic buildings in a completed interpolating cobordism ([0, 1] x V, 1) from (V, 1) to (V, ap).14

Moreover, by [Cristofaro-Gardiner 2013, Theorem 5.1], those buildings have total ECH index I = 0 for a
version of the ECH index in cobordisms; see [Hutchings 2009] for its definition. Then the lemma holds if

(8-2-2) I(y1,v2,2) = Ii(y1) — 12(y2)
for all surfaces Z in [0, 1] X V' connecting an orbit set y; for @y to an orbit set y, for as.

14To add some confusion, what is called ¥ here corresponds to M in Section 7.2.
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Since H, (V) = 0, we can assume that Z is the union of a surface Z; from y; to ¢” (for some n), the
surfaces Z{j consisting of n copies of the cylinder Zo over the core orbit ¢, and a surface Z5 from ¢ to y».
Moreover, we can assume that Z; and Z, project to surfaces in V, so that I(y1,c", Z1) = I1(y1)—I1(c")
and I2(c", y2, Z2) = I2(c") — I2(y2). Then
I(y1.v2,Z) = Ii(y1) — i (") + 1(c", ", Zg) + I2(cn) — 12(y2)
and consequently (8-2-2) holds if and only if
I(c",c”, Zg) = 11(6‘”) — 12(Cn)

for every n > 0. This is however the case because

1 (T([0,1]x V)| zn, 7) = Q<(Zg) = 0. o

By combining Proposition 7.2.1 and Lemmas 8.2.1-8.2.3 we obtain:

Lemma 8.2.4 If « is a contact form on V satisfying (x) and 0V is foliated by Reeb orbits of irrational

slope r > 0, then
F indegreel =) j_,(2lkr|+1) for n >0,

ECH(V,a,n[S']) ~ {F indegree I =0 for n =0,
0 forn<O.

8.3 Computation of ECH(int(V), ay)

The goal of this subsection is to compute ECH(int(V'), «y ), where ay is a contact form as constructed in
Lemma 8.1.1.

Lemma 8.3.1 The inclusions V; C V; for i < j induce inclusions of chain complexes
(8-3-1) ECC(V;,ay|y;) — ECC(Vj,ay|y;).
Moreover, the inclusions V; C V induce inclusions of chain complexes

ECC(V;,ay|y,) = ECC(int(V), ay).

Proof Let y be an orbit set whose orbits are contained in V;. We will prove that every J-holomorphic
map u: F — R x V which has y at its positive end has image in R x V;. Let )’ be the orbit set at the
negative end of u. We first prove that all the orbits of y” must be contained in V;. Arguing by contradiction,
suppose ¥’ = y/ y5» Where the orbits of y/ are in V; and the orbits of y;, # @ are in V — V;. The Reeb
vector field determines a homology class s; € H{(7;;R), up to multiplication by a positive constant,
which has slope r; using Convention 6.2.1. We can also regard [y, ] as a homology class in H;(T;;R)
and the slope of [y.,] is larger than r; because every Reeb orbit in V — V; has slope larger than r; by
Lemma 8.1.1. This implies that [y ] -s; > 0.

Denote by uy the composition of u with the projection R x V' — V and let § € H(T;; R) be the homology
class of the intersection uy (F) N T;, oriented as the boundary of uy restricted to V;. (Recall that the
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tori 7; are foliated by Reeb orbits of irrational slope, so that u has no ends at 7;.) Then § = —[y.], so
8-s; < 0. This contradicts the positivity of intersections in dimension three (Lemma 5.2.2) and therefore all
orbits in )’ are contained in V. Hence, Lemma 5.2.3(1) (blocking lemma) implies that u(F) CR x V;. O

With all these preliminary steps in place, the computation of ECH(int(V'), ay/) is straightforward.
Proposition 8.3.2 ECH(int(V),ay) >~ F and is generated by &.

Proof By Lemma 8.3.1,
(8-3-2) ECH(int(V),ay) = lim ECH(V;, ay|y,).
1—>00

Moreover, all the generators of ECH(V;, @y |y;) in Lemma 8.2.4 that are different from & have degree
I > |2r;] + 1. Since r; — oo and the inclusions

ECH(V;,ay|y;) = ECH(V}, av|y;)

are degree-preserving, every generator different from & eventually is mapped to zero in the directed
system. Hence ECH(int(V'), «y) >~ IF and is generated by @. |

8.4 Finite-energy foliations

In this subsection we study finite-energy foliations of R x V and R x T2 x [1,2] which have been
constructed by [Wendl 2008; 2005; Taubes 2002]. Finite-energy foliations were introduced in [Hofer
et al. 2003]; here we recall their definition.

Definition 8.4.1 A finite-energy foliation of a symplectic cobordism (W, w) with an adapted almost
complex structure J is a codimension two foliation of W such that every leaf is the image of an embedded
J-holomorphic map with finite energy.

Here we are using the notion of energy from [Bourgeois et al. 2003, Section 6.1]. The ends of a
finite-energy J-holomorphic map in W are asymptotic to cylinders over Reeb orbits.

The purpose of considering finite-energy foliations is twofold: they constrain holomorphic curves by the
positivity of intersections and contribute to the ECH differential via the Morse—Bott construction. The
foliation on R x V will be used in the proof of Theorem 8.1.2(2)—(4) and the foliation on R x T2 x [1, 2]
will be used in the proofs of Lemmas 9.5.3 and 9.9.3.

8.4.1 Automatic transversality For certain moduli spaces of J-holomorphic maps in dimension four,
transversality holds for topological reasons and there is no need to perturb the almost complex structure.
In this subsection we describe such automatic transversality results of Wendl [2010]. We need to discuss
automatic transversality, since the finite-energy foliations that we consider are constructed for very
symmetric, and therefore nongeneric, almost complex structures.
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Let F = F — z, where F is a closed oriented surface and z = {z1,...,zr} is a finite set of punctures.
Following Wendl [2010], we fix a partition P = {zé, Zc, z;}, zy; 4 of z. We use the superscript + (resp. —)
to indicate the punctures which correspond to the positive (resp. negative) ends and define z¢ = zJCr Uzo
and zy = z$ Uzy.

To any puncture z € z¢ we associate an orbit y, (which can either be nondegenerate or belong to a
Morse—Bott family) and to any puncture z € zyy we associate a Morse-Bott family A;. We write

MP = M({Vz}zezér, {NZ}zezz;’ {vz}zezgs {Nz}zez{/)

for the moduli space of holomorphic maps u: (F, j) — (R x M, J), which are positively asymptotic to
the orbits y, for z € zg and to the Morse-Bott families N; for z € z$ and are negatively asymptotic to
the orbits y, for z € z; and to the Morse-Bott families \V; for z € z;. Here we range over all complex
structures j on F' and divide by automorphisms of the domain.

Ends which correspond to punctures in z¢ are called constrained ends and ends which correspond
to punctures in zy are called unconstrained ends. The definition of M” motivates this terminology:
constrained ends are asymptotic to a specific orbit, while unconstrained ends are asymptotic to ends which
can move in a Morse—Bott family.

The virtual dimension of M” at u will be denoted by ind(u, P). Fix § > 0 arbitrarily small. For every
puncture z € z, we define .
_[§ ifzezc,
= —§ ifzezy.
Choose a symplectic trivialization t of &|,. which is complex linear with respect to J. Let A,_ be
the asymptotic operator of y,. With respect to the trivialization 7, A,. can be written in the form
—Jd/dt+ S(t), where J = ((1) _(1)), t is the direction of y,, and S(¢) is a loop of symmetric matrices.
Also let AZ,’Z = A,_ £ c¢; 1d be the perturbed asymptotic operator of y,, where we choose the positive
(resp. negative) sign if z € z¥ (resp. z € z7). This is equivalent to turning on negative (resp. positive)
exponential weights at positive unconstrained (resp. constrained) ends and negative constrained (resp.
unconstrained) ends.

The perturbed asymptotic operator AZ,DZ yields a path of symplectic matrices ®7, and we define j;(yz, P) =
w(®T). We say that a puncture z is even if 1 (y, P) is even and we denote by #I(u, P) the number of
even punctures of (1, P). By the properties of the Conley—Zehnder index the set of even punctures, and
therefore #1(u, P), does not depend on the trivialization t.

Theorem 8.4.2 [Wendl 2010, equation (1.1) and Remark 1.2] Let u: FF — R x M be a J -holomorphic
map and P a partition of the ends of u. Then

(8-4-1) ind(u, P) = —x(F) + 216, 0) + ) pe(yz,P) = Y pa(yz, P).

zezt AS/ A

Moreover, if u is an immersion, then it is a regular point of M7 if

(8-4-2) ind(u, P) > 2g(F) — 2 + #To(u, P).
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The following lemma computes (. (yz,P) in terms of the Conley—Zehnder index of a nondegenerate
perturbation of the Reeb orbit:

Lemma 8.4.3 Suppose é§ > 0 is sufficiently small.

(1) If y, is a nondegenerate orbit, then p;(yz, P) = i (yz).

(2) If y, belongs to a Morse—Bott family N" and ymin and ymax are the nondegenerate Reeb orbits
corresponding to a minimum and a maximum of a Morse function on N, then

o pr(¥z, P) = pr(Ymin) ifZEZELUZE,aHd
* pr(¥z,P) = pr(Ymax) ifZ€Z$UZE'
(3) #Io(u,P) is the total number of
e ends at even nondegenerate orbits,
e constrained positive ends and unconstrained negative ends at positive Morse—Bott tori, and

¢ unconstrained positive ends and constrained negative ends at negative Morse—Bott tori.

Proof (1) This is immediate.

(2) Let T = Tx C M be the torus corresponding to N and let g: M — R and gar: N — R be C*°-small
functions satisfying (P1)—(P4) from Section 4.1. We denote the Morse—Bott form by ¢ and its Reeb vector
field by Ro. Then the Reeb vector field of the perturbed contact form (1 + g)ag is R = (1 +g) ' Ro + X,
where X € & = keray is a solution of

ix dag = (1+ g)~2(dg —dg(Ro)ap).

If we choose an almost complex structure J on £ and a metric # on M which is compatible with J and o
in the sense that Ry is a unit vector field which is orthogonal to § and h|¢ge = dag(-, J-), then

X =—(1+g)72J(Vg—h(Vg, Ro)Ro).

Let y be an orbit in A" which corresponds to a critical point of g, so that y is also a Reeb orbit for R. We
can associate two asymptotic operators to y: the operator A, when we regard y as a Reeb orbit of Ry,
and the operator Ag, when we regard y as a Reeb orbit of R.

Let 7 be the period of y as an orbit of R and assume for simplicity that the period of y as an orbit of Ry
is 1. Then t is equal to the value of 1+ g at any point of y. If V is a symmetric connection, the asymptotic
operators can be written as

Ay =—=J(V;—=VRyp), A;, =—-J(V; —1VR);
see [Wendl 2010, page 370]. Since dg = 0 and Vg = 0 along y, we have
VR=(1+¢)"'"VRo—(1+g)2V(J(Vg—h(Vg, Ro)Ro)).
V(J(Vg —h(Vg.Ro)Ro)) = (VJ)(Vg —h(Vg. Ro)Ro) + JV(Vg —1(Vg, Ro)Ro)
=JV(Vg—h(Vg,Ro)Ro) = JHg
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along y, where H g is the Hessian of g restricted to the £-directions. Hence
A;, =—J(Vi—=VRo+(1+g) 'JHg) = Ay +(1+ g) 'Hg.

If g has a minimum at y, then Hg > 0 along y and A;, has the same Conley—Zehnder index as A, + 6.
On the other hand, if g has a maximum at y, then A;, has the same Conley—Zehnder index as 4, —§.

(3) is immediate from (2). O

8.4.2 Foliationson R x V and R x T2 x [1,2] We first describe the finite-energy foliation on R x V.
The following is proven in [Wendl 2008]; see pages 594—600, especially the removal of singularities
argument on page 599; the gist of the proof is to reduce the J-holomorphic curve equation to an ODE
[loc. cit., equations (37a) and (37b)]).

Proposition 8.4.4 Let « be a contact form on V as in Example 6.2.4 and Jo a “cylindrically symmetric”
almost complex structure on R x V' (ie Jo depends only on the radial coordinate p of V') which is adapted
to «. Then there is a finite-energy foliation Zy of R x V' such that:

(1) R xint(V) is foliated by Jo-holomorphic planes which are positively asymptotic to the Reeb orbits
ondV.

(2) R x dV is foliated by trivial cylinders over Reeb orbits of dV.

Any orbit of dV is the limit of a unique 1-dimensional R-invariant family of noncylindrical leaves and the
projections of the leaves to int(V') foliate int(V') by meridian disks.

We will use a finite-energy foliation of R x V' in the proof of Theorem 8.1.2(2)-(4). However, the contact
form used there is a small perturbation oy of o, and for this reason we need to show that Zy persists if «
and Jy are deformed.

Proposition 8.4.5 If ay is the C°°-small perturbation of « from Lemma 8.1.1, then there is a finite-
energy foliation Z, of (R x V,d(e*ay)) which is isotopic to Z¢ by the lift to R x V of an isotopy of V
relative to the boundary.

Proof A leaf u of Zy, considered as a Jy-holomorphic map with a constrained end, has Fredholm index
one and is automatically transverse by Theorem 8.4.2. Indeed, by Lemma 8.4.3, the index of u, as a
Jo-holomorphic map with constrained end, is equal to the index of a Jg-holomorphic plane u, which
limits to a hyperbolic orbit 4 (ie the minimum of the Morse-Bott family) on the boundary for a perturbed
contact form. If 7 is the trivialization of £ along h given by £ N TV, then y(D?) =1, c1(u}£,7) = 1,
7 (h) =0, and therefore ind(#) = ind(u) = 1. The same leaf u, considered as a Jp-holomorphic map
with an unconstrained end, has Fredholm index two and is also automatically transverse.

Let My be the 2-dimensional moduli space of Jp-holomorphic planes which are leaves of Z. By the
unconstrained automatic transversality, if we perturb o and the almost complex structure Jy slightly, then
each leaf of Zy is deformed to a J-holomorphic curve for the new almost complex structure J and the
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space M of deformed J-holomorphic curves is diffeomorphic to M. On the other hand, the constrained
automatically transversality implies that for each Reeb orbit in dV there is exactly one R-invariant family
of J-holomorphic maps in M positively asymptotic to that orbit.

The maps in M are embeddings because embeddedness is an open condition and the exponential decay
estimates imply that no self-intersection can be created near infinity. Moreover, the relative intersection
number of their images is zero and by the positivity of intersections, their images are pairwise disjoint, so
they define a finite-energy foliation Z; of R x V. |

Now we discuss a finite-energy foliation Z, on a completed interpolating cobordism (R x T2 x [1,2], 1)
between two contact forms satisfying (6-1-1). In the case of a symplectization, this foliation was
constructed by Wendl [2008].

We assume that every slice {s} x T2 x [1, 2] is a contact type hypersurface; Then we can write A = e*a,
where a; is a contact form on {s} x T2 x [1,2] given by (6-1-1) for pairs of functions ( f, gs) which
depend on s and y. The forms a; will define a 2-plane field £ and a vector field R on R x T2 x [1, 2]
which restrict to the contact structure and the Reeb vector field on each slice {s}x T2 x[1, 2]. In particular,
R is tangent to the tori {s} x T2 x {y}. Moreover, we assume that oy is constant in s near R x 7% x {1, 2}
and that R is parallel to d; when y = 1,2 and not parallel to it otherwise. Finally, we assume that the
tori {s} x T2 x {1} and {s} x T2 x {2} are foliated by Morse—Bott families A/; and N>, respectively, for
each s, where N is negative and N5 is positive.

We take an almost complex structure J on R x T2 x [1, 2] with coordinates (s, ?,¢, y) such that the
following hold:

e J is adapted to A.

e J is invariant in the s-direction on the cylindrical ends of the cobordism.

e J is invariant in the &, ¢-directions.

e J(05) =R.

 J sends dy € £ to the tangent space to {s} x T2 x {y}.
For the existence of such an almost complex structure we need to verify that the plane distribution
generated by dy and R is d A-symplectic, and that d,, belongs to its d A-orthogonal. The first property

is guaranteed if o5 varies sufficiently slowly in s, while the second property follows from the fact that
a5 (0y) = 0 everywhere. Finally, the symmetries of J reflect the symmetries of the forms o.

Lemma 8.4.6 Let (R xT?x[1,2], ) be an exact symplectic cobordism with an adapted almost complex
structure J as above. Then there is a 2-dimensional family Z, of holomorphic cylinders Z 3 on
R x T2 x[1,2] for (s, %) € R x R/Z which foliate R x int(T? x [1, 2]) and project to cylinders 1 = const
in int(T? x [1,2]). Each cylinder Z y is positively asymptotic to a Reeb orbit in N> and negatively
asymptotic to a Reeb orbit in N7.
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Proof Let us write v = J(dy). Our conditions on J and R imply that 9; = a(s, y)v + b(s, y) R with
b(s,y) # 0 everywhere and a(s, y) = 0 only when y = 1 or y = 2, in which case da/dy|y=0,1 # 0.
Then J(0;) = —a(s,y)dy —b(s, y)ds. The vector fields d; and Y (s, y) = a(s, y)dy + b(s, y)ds span
a J-invariant 2-plane distribution on R x 72 x [1,2]. Since a and b do not depend on ¢ and ¥, this
distribution is integrable and every integral submanifold in R x 72 x [1, 2] is the product of R/Z with
coordinate ¢ and an integral curve of Y on the strip R x [1, 2].

The functions a and b are bounded in R x [0, 1] because da/ds||s»0 = 0b/0s|s;»0 = 0. This implies
that Y is complete. Moreover, the maximal integral curves of ¥ on R x (1, 2) project diffeomorphically
onto (1, 2) and have vertical asymptotes for y — 1 and y — 2 because a(s, y) #0 when y # 1,2. O

Lemma 8.4.7 Let ugp: R x S! — R x T2 x [1,2] be a J-holomorphic map which parametrizes
the holomorphic cylinder Zg 3. Then (uy ., P) satisfies automatic transversality if at least one end is
unconstrained.

Proof By Theorem 8.4.2,
ind(us,z?, P) = /Lr(y2» p) - /-’L‘C(yl ’ P)’

where y; € N, so ind(ug 9, P) = 2 —#I(us 9, P) by Lemma 8.4.3. Hence the condition for automatic
transversality in Theorem 8.4.2 holds if #Ip (5,9, P) < 2. Both the constrained negative end at /7 and
the constrained positive end at N, are even and the lemma follows. O

8.4.3 Constraints on holomorphic curves Finite-energy foliations constrain J-holomorphic maps
with the same asymptotics. The following lemma describes an instance of this phenomenon. A similar
situation has also been considered in [Wendl 2013].

Lemma 8.4.8 Let P be a compact oriented surface and o a Morse—Bott contact form on S x P such
that S x QP is a union of Morse—Bott tori and {¥} x dP is a union of Reeb orbits for each ¥ € S'. If
R xS x P has a finite-energy foliation Z on which R x S acts freely and transitively and is such that every
leaf projects diffeomorphically to int(P), then every somewhere-injective finite-energy J -holomorphic
mapu: F — R x S x P with no ends at a Reeb orbit in S' x int(P) is a leaf of Z.

Proof Let Z; 3 be the leaves of Z parametrized by (s,7) € R x § 1. Suppose first that there is a
leaf Z », such that u(F) N Z, s, # @ and which is asymptotic to different Reeb orbits than u. The
intersection points in u(F) N Zg, y, are isolated and positive. However, u(F) N Z s = 9 if 53 is
sufficiently large, a contradiction. Hence there exists some 99 € S! such that u(F) C |J seR Zs,9, and the
leaves Z; , are asymptotic to the same Reeb orbits as u. If u(F') is not contained in a leaf, this forces the
intersection u(F) N Zg, 5, to be one-dimensional for some so € R. This is too large an intersection, and
the unique continuation for J-holomorphic maps [McDuff and Salamon 2004, Theorem 2.3.2] implies
that u(F) is a leaf of Z. a
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Remark 8.4.9 The proof of Lemma 8.4.8 goes through unchanged for the foliation Z, constructed
in Lemma 8.4.6, even though the curves Z; 3 and Zy » are not translations of one another unless
(R x T? x[1,2],1) is a symplectization. In fact, they still project to the same annulus in 72 x [1, 2] and,
given any point in that annulus, their preimages x € Z; y and x’ € Zy » become arbitrarily far apart in
the s-coordinate when |s” — 5| — +o00. These properties of the foliation Z; are sufficient to make the
proof of Lemma 8.4.8 work.

8.5 Completion of proof of Theorem 8.1.2

In this subsection we prove (2)—(4) of Theorem 8.1.2.

(2) The inclusion ECC(int(V), ay) C ECCﬁ(V, ay) is an inclusion of chain complexes since no J-
holomorphic curve in R x V' with all positive ends in int(}') can have a negative end on dV by the trapping
lemma. Moreover, the map

ECC*(V,ay) — ECC(int(V),ay),  y+0, Wy,
where y is an orbit set constructed from orbits in int(}'), induces an isomorphism of complexes
ECC*(V, ay)/ ECC(int(V), ay’) ~ ECC(int(V), ay).

This is due to the fact that 4’ is a hyperbolic orbit and appears with exponent at most one in a generator
of ECC#(V, ay ). From this we have an exact triangle

ECH(int(V), ay) ECH(int(V), ay)

/

ECH*(V, ay)
which splits according to homology classes in H; (V). Then Proposition 8.3.2 implies that

ECH*(V,ay,n[S']) =0
when n # 0.

It remains to show that ECH*(V, ary, n [S1]) ~ 0 for n = 0. Its chain complex ECCH(V, ay, 0) is generated
by 4’ and @. We claim that 0’ = @&. By Proposition 8.4.5, there is a finite-energy foliation Z; on
(RxV,d(e*ay)) whose leaves (in R xint(}')) are J-holomorphic planes which are positively asymptotic
to the Morse—Bott family on dV. This foliation constrains the J-holomorphic curves that limit to orbits
on dV at the positive ends. Indeed, by Lemma 8.4.8, every holomorphic curve which is positively
asymptotic to a simple Reeb orbit on dV and has no negative ends must be a plane in Z;. The leaves of Z;
also contribute to the differential of ECC(V, ay) since they are automatically transverse by Theorem 8.4.2.
Hence 0h’ = @, which implies the vanishing of ECHﬁ(V, ay,0).
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(3) We define a filtration F on ECC(V, ay) as follows: Given an orbit set (¢’)™y, where y does not
have any e’-terms, we set

F(()™y) =m.
This defines an ascending filtration of chain complexes: since J-holomorphic maps to R x V' can have only
positive ends at ¢’ by the trapping lemma, the differential of ECC(V, ay’) cannot increase the exponent
of ¢’ The E!-term of the associated spectral sequence is isomorphic to ECHﬁ(V, ay) at each filtration
level. By (1), ECHu(V, ay) = 0, and the spectral sequence converges to 0.

(4) The restriction of F to ECCb(V, ay) induces a filtration on ECCI’(V, ay ), which we still denote
by F. The E!-term of the spectral sequence for F is isomorphic to

&P ECH(int(V). ap) - ()™
m=0

Since ECH(int(V), ay) ~ F{@} by Theorem 8.1.2, the E!-term of the spectral sequence is F[e’]. All
higher differentials vanish for degree reasons: recall that ECH has a Z /2 grading in which generators with
no hyperbolic orbits have even grading. Hence E' = E™ is the graded group of the induced filtration
on ECHb(V, ay ). Since the filtration F on ECCI’(V, ay) is bounded below and exhaustive, the spectral
sequence converges by [Weibel 1994, Theorem 5.5.5] and therefore ECHI’(V, ay) ~TF[e'].

9 Proof of Theorem 1.1.1

In this section we prove Theorem 1.1.1. The proof was greatly influenced by Michael Hutchings, who
encouraged us to look for an appropriate filtration.

9.1 Intuitive idea behind Theorem 1.1.1

We briefly explain the intuitive idea behind Theorem 1.1.1. We recall that M denotes a connected, closed,
oriented three-manifold and K is a null-homologous knot in M. Suppose for the moment that the contact
form o on M, in a neighborhood V' ~ D? x S! of K, is given by Example 6.2.3. In other words, the
concentric tori T, C V, p # 0, are foliated by Reeb orbits of irrational slope 1/v. We would like to take
the limit as v — 0; in the limit dV is foliated by Reeb orbits of slope co. Let us write N = M —int(V).
There should be a one-to-one correspondence, modulo R-translations, between holomorphic curves u
in R x M of ECH index 1 which intersect the binding k times, and holomorphic curves u” in R x N of
ECH index 1 which have negative ends at an elliptic orbit e of slope oo with total multiplicity k. Also,
as we take 6 — 0, the Conley—Zehnder index of the binding, measured with respect to the longitudinal
framing on V, ie the framing given by a Seifert surface X for K, goes to oo. This suggests that we should
be able to effectively ignore the binding if we could take the limit.

The actual proof — at least the one we could find —is considerably more complicated, and uses three
ingredients:
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(1) the calculation of ECH on the solid torus from Section 8,
(i) some understanding of holomorphic curves that project to a neighborhood of K, and

(iii) a filtration on ECC(M).
9.2 Description of the contact forms

We start with a description of the contact forms and their Reeb orbits on M that we use in the proof of
Theorem 1.1.1. We fix a neighborhood V ~ D? x S! of K and decompose M as

M=NU(T?*x[1,2))UV.

Since K is an oriented null-homologous knot, there is a properly embedded oriented surface S C N
whose boundary dS C dV is a longitude for K. On V' we choose cylindrical coordinates (p, ¢, #) such
that 0V ={p=1}and S ={p=1, ¢ = ¢o}. On T2 x [1,2] ~ (R2/Z?) x [1, 2] we choose coordinates
(0, ¢, y) such that (19, ¢, 2) is identified with (p, ¢, 0) = (1,2x¢,27w0) € dV. We identify a neighborhood
of AN in N with T2 x [0, 1] such that N = T2 x {1} and the coordinates (%,¢, y) on T2 x [0, 1] extend
those on 72 x [1, 2]; similarly, we identify a neighborhood of dV in V with T2 x [2, %]

We will work with an increasing sequence L; — +o00 and a sequence of Morse—Bott contact forms «;
on M such that

e «;|n is a fixed Morse—Bott contact form « which is nondegenerate on int(N ) and its Reeb vector
field is positively transverse to S;

* Qi|r24[1,2] 18 a contact form a; as in Example 6.1.2 which is chosen so that all the Reeb orbits in
T2 x (1,2) have action larger than L;; and

* a;jly = cs;ay for a fixed contact form ay constructed as in Lemma 8.1.1 and a decreasing
sequence ¢s; which is bounded above by 1 and bounded below by a positive constant.

We also assume the following technical condition:

e There is a decreasing sequence €; — 0 such that o; agrees with a; 11 on N U (T? x [1, 1 + ¢;])
and with a constant positive multiple of o; 11 on V U (T2 x [2 —¢;,2]).

We will refer to T2 x (1, 2) as the no man’s land.

The contact form o on N can be constructed using the techniques developed in [Colin and Honda 2005;
Colin et al. 2011b]. The construction is described in Section 9.3.1 in the special case where K is the
binding of an open book decomposition of M and N is the mapping torus of a diffeomorphism of S.

The contact forms «; are Morse—Bott and all the Morse—Bott tori are of the form T2 x {y} with y € [1,2].
In particular, N = T2 x {1} is foliated by a negative Morse-Bott family A; and 3V = T2 x {2} by a
positive Morse—Bott family M. Both families have infinite slope, ie the Reeb orbits on both tori are
meridians of K.
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We construct L;-nondegenerate contact forms o, = f;a;, where the perturbing functions f; are as in
Section 4.5. We choose f; so that the Morse—Bott family A/ corresponding to dN is perturbed into an
elliptic orbit ¢ and a hyperbolic orbit /1, the Morse-Bott family A5 corresponding to dV is perturbed into
a hyperbolic orbit 4" and an elliptic orbit ¢/, no new closed orbits with action less than L; are created, and
fi = 1 in a neighborhood of all nondegenerate Reeb orbits of «; with action less than L;.

For all i we choose regular almost complex structures J; adapted to ; and J; adapted to o such that
all the J; are fixed on the contact structure outside 72 x [1 —¢;,2 + ¢;] and J} is an arbitrarily small
perturbation of J;.

We will also consider interpolating cobordisms (R x M, ;\\i) from (M, «;) to a rescaling of (M, aj+1)
and (R x M, X;) from (M, ;) to a rescaling of (M,a;_ ;). By construction, A; is an arbitrarily small
perturbation of ;. We fix compatible almost complex structures J; on (R x M, A;) and J; on (R x M, 1})
such that they are both regular and flf is an arbitrarily small perturbation of Ji.

We assume that the perturbing functions are close enough to 1 that the following hold:

(MB;) For k =1,2,if y+ and y_ are generators of ECCLi (M, o)) and u € Mg,zk (y+,y—), then there

is a corresponding U € M%BJ:k Y+, 7-).
(MByg) If y4 and y_ are generators of ECCLi (M, o) and ECCLi+1(M, ), respectively, and u €

MB,I=0

M},zo()ur, y—), then there is a corresponding 1, € MJA_ Y+, y-).

Recall from Definition 4.2.2 that MY®(y, y—) denotes the set of Morse—Bott J-holomorphic buildings
from y4 to y—.

For reference we enumerate the main properties of the Reeb vector fields of the contact forms «; and
their perturbations o/

(1) «; is Morse-Bott and o/ is L;-nondegenerate.

(2) Ry, is positively transverse to S C N and the meridian disks in int(V').

(3) ai|lny = a and a;|y = cs,ay, where the sequence cs; is decreasing, bounded above by 1 and
bounded below by a positive constant and the contact form «y is constructed as in Lemma 8.1.1.

(4) o; and o4 coincide on N U (T2 x [1,1 + €;]) and are constant multiples of one another on
V U(T? x [2—¢;,2]), where €; — 0 is a decreasing sequence.

(5) The Reeb orbits of o; in the no man’s land come in Morse—Bott families of large negative slope
and their action is bounded below by L;.

(6) There are concentric solid tori Vo C Vi C--- C V such that 0V, for j = 0,1, ... is foliated by
dense Reeb orbits of irrational slope r; > 0 with lim; o r; = +00 for any contact form ;.

(7) ON is foliated by a negative Morse—Bott family N of Reeb orbits of «; of slope co. After
perturbation, A7 becomes a pair of orbits e and /. Their Conley—Zehnder indices with respect to
the framing coming from dN (given by T (dN) N &) are p(e) = —1 and u(h) = 0.
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(8) 0V is foliated by a positive Morse—-Bott family N> of slope co. After perturbation, AV, becomes a
pair of orbits ¢’ and /. Their Conley—Zehnder indices with respect to the framing coming from 9V
are u(e’) =1 and u(h') = 0.

9.3 Construction of the contact forms

In this subsection we construct the contact forms «; when K is the binding of an open book decomposition.
In this case N is the mapping torus of a diffeomorphism £: S — § such that £|yg = id. This means that

= (S x[0.1])/(x. 1) ~ (A(x).0),

where x € S and ¢ is the coordinate for [0, 1]. Using the coordinates (6, ¢) from Section 9.2 we identify
the isotopy classes of simple closed curves in dN (and in all parallel tori) with rational numbers so that
the meridian has slope oo and S has slope 0.

Remark 9.3.1 The above slope convention is the same as the usual surgery convention for performing
surgery along the binding.

9.3.1 Construction of the contact form on V' We take a 1-form 8 on S such that w = df is a positive
area form on S and 8 = cy d6 in a neighborhood N(dS) C S of dS. Here ¢ > 0 is a small constant and
N(9S) is identified with [1 —§, 1] x R/Z with coordinates (y, 0).

We assume that the diffeomorphism 4: § = S satisfies f|y(3s) = id. Let Symp(S, 95, w) be the group
of symplectomorphisms of (S, w) which restrict to the identity on a neighborhood of 9S. By Moser’s
lemma, there is an isotopy of £ relative to d.S such that the resulting diffeomorphism — also called # by
abuse of notation —is in Symp(S, 0S5, ®).

Lemma9.3.2 (Giroux) GivenfeSymp(S,dS,w), there exists an isotopy {fs }se[o,1] in Symp(S, S, )
such that iy = h and h{ B — B = df for some positive function f on S.

Proof Let u = A*B — f and let Y be the vector field which satisfies iyw = —u. By Cartan’s formula,
we compute that Lyw = iy dw + d(iyw) = —du =0 and Lyu =iy du + d(iy ) = 0. Hence the
flow ¢; of Y preserves w and p. Moreover, ¢; is equal to the identity near 95, where u = 0.

Now let ; = fio¢;. We then compute that

%ﬁ;"ﬁ =¢; (Ly £ B) = d(¢/ (iy A"B)) + ¢/ (iyd(K*B)) = dg: + ¢/ (iyw) = dg: — ¢, 1L = dg: — 1,
where g; = ¢/ (iy £*B). Hence

(9-3-1) —ﬁ*ﬂ dgi + B —£*P.

Integrating (9-3-1) yields 4B — B = df, where f = fo g: dt + C for a sufficiently large constant C. O
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By Lemma 9.3.2, we assume that # € Symp(S, 95, w) satisfies £*f — B = df. Next we construct a contact
form on N whose corresponding Reeb vector field is transverse to the fibers and has first return map 4.

Lemma 9.3.3 Let 4 be a diffeomorphism in Symp(S, 0S, w) which satisfies i*f — f = df for some
function f on S. Then there is a contact form o = f; dt + B; on N, where f; is a tamily of positive
functions on S and B; is a family of 1-forms on S, such that the corresponding Reeb vector field Ry, is
transverse to all the fibers S x {t} and h is the first return map of Ry.

For a more complete discussion of the realizability of surface symplectomorphisms as the first return map
of a Reeb vector field, we refer the reader to [Colin et al. 2008].

Proof Consider the 1-form o = f; dt + 8, on S x [0, 1], where f; is to be determined, 8o = 8, 81 = A* 8,
and

Br = x@)B1+ (1—x())Bo
interpolates between B¢ and 1. Here we take y:[0, 1] — [0, 1] such that y(0) =0, y(1)=1,dx(t)/dt =

x(t) > 0 and y is constant near 0 and 1.

Using the condition £*B — B = dg f, we verify that the 1-form ,3 s isexacton S:

B = 1) (B1—Bo) = }()(ds /) = ds(}(1) f).

Here dg is the exterior derivative on S. We then take f; = x(¢) f + ¢, where c is an arbitrary positive
constant such that f; > 0 (and is different from the ¢ in 8 = cy d8 from the beginning of Section 9.3.1).
Then B; = ds f;. Since y is constant near 7 = 0 and 7 = 1, f; is also constant, and so is ;. In particular,

£ f1 = fo.
We now compute that

da =ds fi ndt +dsBe +dt ABr =ds fy ANdt + o+ di Nds f; = o.

Hence « is a contact form, its Reeb vector field is parallel to d; on S x [0, 1], and its first return map is 4. O

Now we make a slight modification to « so that dN becomes a negative Morse-Bott family — one that
behaves like a sink for J-holomorphic maps in R x N.

On T; = 0N, the germ of « is given by f(y)dt + g(y)d6f, where f(y) = C and g(y) = cy. Here
¢ > 0 is a small constant and C > 0 is a large constant. We extend « to 72 x [1, 1 4+ €] by extending

(f(y).g(y)) toy e[l,1+¢] as follows:

(1) (f(»), g(»)) satisfies (6-1-2).
(2) (f(y),g(y)) fory € [1,1+¢]is close to (f(1), g(1)).
3 (f().g0N)=(fU+e)+ (-0 +e)2g(l+e)+(y—(1+¢))neary =1+e.
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A

(f(I+e).g(1+¢)

(f(1).gM)

y
>

f

Figure 4: Trajectory of (f(y), g(y)). The f-axis and g-axis do not necessarily intersect at (0, 0)
in this figure.

See Figure 4. In particular, condition (3) implies that ( f'(1 + ¢), g’(1 + ¢)) is parallel to (0, 1). Hence
T1+¢ is foliated by a Morse—Bott family of Reeb orbits of slope co. We write « for the extension of « to
N U(T?x[1,1+¢]).

We now consider the deformation retract
¢: NU(T?x[1,1+4¢]) => N,

obtained by flowing along the vector field X = —a(y)d,, where a(y) =1 on T? x [1, 1 + ¢] and damps
out to zero on T2 x [1 — ¢, 1]. Finally, we perturb ¢ on N so that all Reeb orbits in int(N) become
nondegenerate, while keeping dN Morse-Bott. The resulting form will be called « in the rest of the paper.

9.3.2 Extension to M The contact form « has the form
a=0b+y-1)do+(a+(y—1)>*dt
in some collar 72 x [1 — ¢, 1] of dN. Here € is different from the ¢ in Section 9.3.1.

Choose a decreasing sequence of irrational numbers §; — 0 and a contact form o, on T2 x [1,2] for
each i as in Example 6.1.2 with f(1) =a and g(1) = b. Then « on N and a5, on T2 x[1,2] glue to a
smooth contact form on N U (T2 x [1, 2]). Moreover, there is an increasing sequence L; — +00 such
that all Reeb orbits of s, in T2 x (1,2) have action greater than L;.

Fix a contact form af, on V' =~ D? x S' as in Example 6.2.4. For each i, a multiple of afg glues
smoothly to the contact form «s; on T2 x[1,2]. Let cs; be the scaling factor. Then «g; glues smoothly
also to ¢5; ay, where ay is the contact form obtained by applying the construction of Lemma 8.1.1 to a5 .
By putting all three pieces together we obtain the contact forms «; on M.

9.4 The filtrations F;

For each i we define a filtration ; on ECCLi (M, o). We first identify ECCLli(M, o), as a vector space,

with a subspace of
ECC(V,ay) @ ECC(N, «).
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This is possible because the Reeb orbits of «] in the no man’s land have actions greater than L; and those
in V coincide with the Reeb orbits of a7, up to reparametrization. The generators of ECClLi (Vo) will
be denoted by y ® I', where y € ECC(V, ay) and I' € ECC(V, o). Choose an identification

n:Hi(V;2) = Z

so that the homology class of the null-homologous knot K is mapped to 1. Then we define the ascending
filtration F; : ECCLi (M, af) > 270 as

7 (L) =maxn(im).

We define ]-"l.p as ]-'l.p = {x € ECCLi (M, af) : Fi(x) < p}. Note that these filtrations are uniformly
bounded below because J-"ip =0for p <O0.

Lemma 9.4.1 Letu: F — R x M be a J/-holomorphic map which is asymptotic to y ® I" at the positive
end and to y’ @ I'” at the negative end. Then

FiyeD)>F@/' or).

Proof By (MB) there is a J; -holomorphic Morse—Bott building from y ® " to ' ®T". Letii: F —RxM
be the holomorphic part of this building— which may be disconnected because «; is not necessarily
nice — and denote the projection to M by uyy.

We will use the tori 7, = 0V, in V from Lemma 8.1.1 to constrain the ends of #. We recall that T,
is foliated by dense Reeb orbits of irrational slope r, with r, — +00. Let §, be the homology class
of iipr (F) N Ty, oriented as the boundary of ips (F) N V,,. If n is sufficiently large, then all the orbits
in y and y’ that are not in the Morse-Bott family on dV are contained in V},. Hence the sequence &y is
constant for n 3> 0 and 7(8,) = n(y") — n(y).

Regarding both §,, and r, as homology classes in H1(Ty;R) and orienting T}, as the boundary of V,, for
n > 0 we obtain §, - r, > 0 by the positivity of intersections in dimension three (Lemma 5.2.2). Taking
the limit » — oo and using the fact that the sequence r, converges to the slope of the Reeb vector field
on 9V, we obtain 7(8,) < 0 for n > 0. This implies F;(y ') > Fi (y' @ I'). O

Corollary 9.4.2 The differential of ECCLi (M, o)) respects the filtration F;.

For each i the filtration F; induces a spectral sequence E” (F;) which converges to ECHZL (M, ;). The
terms E°(F;) correspond to the graded complexes associated to F; and can be identified (as vector spaces)
with subspaces of ECC(V, ay) ® ECC(N, ay). The differential g on E°(F;) is the filtration-preserving
component of the differential on ECCL (M, o). Every sheet E”(F;) has a grading coming from F;, and
the component in degree p of E” (F;) will be denoted by E},(F;).
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9.5 Description of the differential on E°(F;)

In this subsection we compute the differential 99 on E®(F;) using Morse—Bott techniques. This is
possible, in spite of the fact that the contact forms ¢; are not necessarily nice, because of the following
lemma:

Lemma 9.5.1 Let i be a Morse-Bott building fromy @ " to y’ ® '’ in the symplectization of (M, «;)
and let u be its holomorphic part. If u has a positive end at ON or a negative end at 3V, then F; (y' @ I'') <
Fily®T).

Proof We recall that K denotes the core of V' and that S C N is a properly embedded surface such that
dS defines a longitude of K. In the case of an open book decomposition, K is the binding and S is a

page.

Let U ~ T? x[1—¢,2+¢] C M be a small neighborhood of the no man’s land 72 x [1, 2] such that u has
no ends at Reeb orbits intersecting U, except at orbits in A7 or 3. Assume without loss of generality that
the ends of u limit to distinct orbits 7y, ..., n,. Then we let Uy be a small tubular neighborhood of 7y
fork=1,...,nandletU =U — (U U---UUy,). Let By = —dUy fork =1,...,n, Bo=0U)NV
and B,41 = (0U) N N. We orient each By, for k =0, ...,n + 1, using the boundary orientation of U.

On each By for k =0,...,n + 1, we choose an oriented basis of curves (g, vi) as follows: On By
and B, 1 we choose o and py,+1 so that they are longitudes of K coming from S and vy and v, 41 so
that they are meridians of K. On each By for k = 1,...,n, we choose v so that it is the longitude of
the Reeb orbit in U, induced by the Morse—Bott torus (which is either dN or dV') and p so that it is a
meridian of Uy. The curves v for k =0,...,n + 1 are oriented by the vector field d; and the curves pj
fork =0,...,n+ 1 are oriented by g -vi = 1.

By abuse of notation, we identify the oriented curves p; and vi with their homology classes in H1(U; Z).

With this convention, v = vy =:-- =v,4+1 and o + w1 + -+ + Un+1 = 0. Moreover, these relations
generate the kernel of the map

n+1

P Hi(Br:2) > H\(U: Z)

k=0

induced by the inclusion. Let C = Im(uys) N U. Then 0C =8¢ + - - - + 8,+1, where 8 C By is given
the orientation induced by C. We will view §; either as an element of H1(Bj;Z) or as an element of
H{(U;Z). Then §g + -+ 4+ 8p+1 = 01in H{(U;Z). For each k we write §; = ay iy + by k.-

By the trapping lemma and the positivity of intersections in dimension three, we have 8 - v > 0 for
k =1,...,n, because the curves v can be represented by Reeb orbits. (Here we are using a variation of
Lemma 5.2.2 which is an immediate consequence of the positivity of intersections in dimension four.)
Then, for all k = 1,...,n, a > 0; moreover, if §; corresponds either to a positive end at 77 or to a
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negative end at 7>, then a; > 0. The relations in H;(U; Z) among the curves u; and vy imply that
ag =---=dn+1, 50 ag > 0 if u has either a positive end at dN or a negative end at dV. Then

ao=ny)—n(y)=F(y®T)-F@F' &TI')>0. O

Corollary 9.5.2 Let y ® T and y' ® T be generators of ECCLi (M, o). If Fi(y@T) =Fi(y ®T)
and 1 is a Morse—Bott building with I (1) = 1 in the symplectization of (M, a;) fromy @ ' toy’ ® I,
then the holomorphic part of 1 has at most one nontrivial irreducible component.

Proof Let u be the holomorphic part of #. By Lemma 9.5.1, all ends of u at dN are negative and all
ends of u at dV are positive. Then the structure of # is simple enough that the argument of Lemma 7.1.2
implies that u has a unique irreducible component which is not a connector. |

Corollary 9.5.2 implies that, for the purpose of computing the differential o of E°(F;), we can use
Morse—Bott theory as if the contact forms a; were nice.

In order to descrlbe the differential concisely we introduce the following notatlon Given two orbit sets
Y =11v; i andy =[]y ™ (in multiplicative notation), we set y/y’ =[] yl T m}; < m; for all i;
otherwise we set y/y’ = 0. We also call Ty = N and T, = V.

We now prove the following lemma, which describes the differential 99 on E° in some detail:

Lemma 9.5.3 After identifying Eo(F;), as a vector space, with a subspace of ECC(V, ay) ECC(N, «),
the differential d¢ is given by

(9-5-1) d(y@T)=0yy) T +(y/e)@hT + (y/h)®el +y ® (InT).

Here y is an orbit set of V'; if h divides T, then hT" is understood to be 0; and Jx is the differential on the
subset X C M.

Proof Corollary 9.5.2 and Proposition 4.4.7 imply that d¢ on E°(F;) can be computed by counting / = 1
very nice Morse—Bott buildings in the symplectization of (M, «;) which do not decrease the filtration
level.

The differential dg does not count holomorphic curves which cross Rx 71 =R xdN or Rx T =R xdV:
Indeed, if u is a holomorphic curve which contributes to dg and u s its projection to M, then the homology
classes [Im(upr) NT14e] € H1(T14+e) and [Im(upr) N To1,] € H1(T24¢) (for € > 0 small) have slope oo,
and we apply the blocking lemma (Lemma 5.2.3(2)). This still allows for the possibility of curves that are
negatively asymptotic to orbits of 77 or positively asymptotic to orbits in 75. (Curves which are positively
asymptotic to orbits of 77 or negatively asymptotic to orbits of 73 are ruled out by Lemma 9.5.1 because
they have been shown to decrease the filtration level.) Such curves are contained in R x V, R x T2 x [1, 2],
or R x N by a combination of the trapping lemma (Lemma 5.3.2) and the blocking lemma (Lemma 5.2.3).
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Curves in R x V' contribute to the term (dyy) ® I', while curves in R x N contribute to y ® dx (T").
Note that there are two cylinders from e’ to 4’ and two cylinders from / to e corresponding to gradient
trajectories on N and A7; these give dg(¢/ ® 1) = 0 and do(1 ® h) = 0.

Next we consider curves in R x int(7? x [1,2]). By Lemma 8.4.8, the only somewhere-injective curves
in R x int(7'2? x [1, 2]) are the cylinders Z 5,0 defined in Lemma 8.4.6. (Remember that we are ignoring
the curves which are asymptotic to the orbits in int(7'? x [1, 2]) because they have action larger than L;.)
By Lemma 8.4.7, the cylinders Z; g satisfy automatic transversality as long as at least one of the ends
is treated as unconstrained. Branched covers of Z; g of degree > 1 are not counted in the differential
since they have I > 1 (after augmenting them with cylinders corresponding to gradient trajectories).
Modulo translations in the s-direction, there is a unique / = 1 Morse-Bott building from 4’ to e, which
gives the term (y/h’) ® el", and a unique I = 1 Morse-Bott building from e’ to /&, which gives the term
(y/e') ® hT" (adding trivial cylinders to these buildings does not change their ECH index because they
satisfy the admissibility conditions from [Hutchings 2002, Proposition 7.1, equations (23) and (24)]). O

9.6 Direct limit

In this subsection we use a direct limit argument to exclude the Reeb orbits in the no man’s land from the
complex computing ECH(M). The limit will be compatible with the filtrations F;, so the end result will be
a spectral sequence E” converging to ECH(M). The following lemma is immediate from Corollary 3.2.3
and the construction of the contact forms o}

Lemma 9.6.1 For an appropriate choice of contact forms o and action thresholds L;, we have

ECH(M) = lim ECHL! (M, o).

The direct limit is taken with respect to maps
®;: ECHY (M, o)) — ECHY i+ (M, o] )

induced by interpolating cobordisms via Lemma 3.1.7.

Lemma 9.6.2 The map ®; is induced by a noncanonical chain map
®;: ECcLi(m, o)) —> ECCLi+i(Mm, 1), YT H—>y®T+r(y®l),
where Fi11(r(y ®T)) < Fit1(y ®T).

Proof The map ®; is induced by an interpolating cobordism from «/ to (a rescaling of) o] 11 We
degenerate this cobordism into a two-level cobordism such that the top level interpolates from «; = f;«;
to fi+1; and the bottom level interpolates from f;1¢; to @ = fi+10+1. Then ®; = @} o @} by

Theorem 3.1.2, where
®/: ECHY (M, a}) — ECHY (M, fiy10i),  ®}:ECHY (M, fit104) — ECHY 1 (M, o) ).
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The maps @, and @7 are induced by noncanonical chain maps CTD: and EIS;’ . By Proposition 4.5.5 we can
assume that EIB?’ is the identity map.

Next we claim that the filtration-nondecreasing part of &D; only counts trivial cylinders. Let ([0, 1] x M, A7)
be an interpolating cobordism from f; y1e; to @] 41 and (Rx M, i;) its completion. By Theorem 3.1.2,
&\); is “supported” on the / = 0 holomorphic buildings of (R x M, X;) We are assuming that X;
is sufficiently close to j\ti, where ([0, 1] x M, ;) is an interpolating cobordism from «; to @;4+; and
(R x M, A;) s its completion. Hence, by (MBy), if (&); (y®T),y" ®T’) # 0, then there is a Morse-Bott
building in (R x M, 2 ;) connecting y @ I' to y’ ® I'. Since the 2-form d A; agrees with a symplectization
on a neighborhood of R x (N U V'), we can repeat the argument of Lemma 9.4.1 to show that ; (y ® I') >
Fit1(y' ®T). Moreover, if Fi (y ® ) = Fi+1(y’ ® I'"), then the holomorphic buildings in (R x M, 1;)
cannot cross the no man’s land by Lemma 8.4.6 and Remark 8.4.9. Therefore they are contained in the
part of the cobordism (R x M, ) i) which is diffeomorphic to a symplectization. This implies the claim. O

Lemma 9.6.3 The chain maps ®,:EcclLi (M, o)) — ECCLi+1(M, al’-+1) induce chain maps E" (F;) —
E" (Fi+1). The direct limits
E"(F)= lim E"(F;)
I—>00

form a spectral sequence converging to ECH(M). The page E°(F) can be identified, as a vector space,
with ECC(V, ) ® ECC(N, ) and the differential g on E°(F) is described by (9-5-1).

Proof By Lemma 9.6.2, the continuation maps ®; are morphisms of chain complexes. Since the
construction of the spectral sequence associated to a filtered complex is functorial (see [Weibel 1994,

Proposition 5.9.2]), the maps &Di induce a morphism of spectral sequences
E"(Fi) = E"(Fi41).

We define E”(F) = lim;j o0 E”(F;). Since direct limit is an exact functor from the category of di-
rected systems of abelian groups to the category of abelian groups (see for example [Weibel 1994,
Theorem 2.6.15]), the limits E” (F) still form a spectral sequence.

We claim now that E°°(F) = lim;_cc E°°(F;). First we recall the definition of the £ term of a

spectral sequence: on E! there is a sequence of subgroups
{0y=B'cB?...cB"c.-.czZ' c---cz?cz'=E!
such that E" >~ Z" /B”; then we define
z®=()2z". B®=|JB" and E®=Z%/B*.

r>1 r>1

By going through the construction of the spectral sequence, one can see that
B"(F)= lim B"(F;) and Z"(F)= lim Z"(F;)
1 —>00 1 —>00
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because the direct limit is an exact functor. (The description of B” and Z”" given in [Weibel 1994,
Exercise 5.9.1] can be useful to prove this.)

Then, in order to prove the claim, it is enough to prove that

(9-6-1) lim (U B’(f,-)) = L_J(1_1>nolo B (Fi)).

i—00

r>1 r>=1
(9-6-2) lim (ﬂ Z’(fi)) = () (lim_Z"(F)).
1 —>0Q er er 1 —>00

Equation (9-6-1) is not problematic because direct limits commute with countable unions. In fact countable
unions can themselves be seen as direct limits, and direct limits commute as a consequence of their
universal property [Lang 2002, Exercise 20]. On the other hand, in general, direct limits do not commute
with infinite intersections, so we need more work to prove (9-6-2).

The spectral sequence of a filtered complex has a grading coming from the filtration: we can decompose
E"(Fi) = @ E;(Fi), B'(Fi) = @ By(F) and Z"(F;) = @ Z,(F;). Since F/ = 0if p <0, it
follows from the construction of the spectral sequence that Z °(F;) = Z,(F;) provided that r > p.
(Again [Weibel 1994, Exercise 5.9.1] can be useful here.) Taking the direct limit, we obtain that
lim; 00 E,°(F;) = E;°(F) and this proves the claim.

The filtrations 7; induce filtrations on ECH% (M, «}); taking direct limits we obtain a filtration on
ECH(M) whose the graded group is the limit of the graded groups of the filtrations on ECHZ (M, o)
(again because direct limit is an exact functor). Since the filtrations F; are bounded below and exhaustive,
the classical convergence theorem [Weibel 1994, Theorem 5.5.5] implies that E”(F;) converges to
ECHL (M, o)) (ie E%(F;) is isomorphic to the graded group of ECHL (M, a)). Taking a direct limit,
we then conclude that E” (F) converges to ECH(M ). a

Here the notation E” (F) does not mean that the spectral sequence comes from some filtration F, but
only remembers the fact that it is the direct limit of the spectral sequences induced by the filtrations F; —
in fact E”(F) is a spectral sequence of a filtration because a direct limit of filtered complexes is a filtered
complex; however, the limit complex defining E” (F) is too abstract to be useful. This notation will be
useful in the next section, when we will introduce another spectral sequence.

We now rewrite the differential dg in a way which highlights the roles played by the orbits 4 and /’; this
will be used extensively in the following subsections. By factoring out the terms 4’ and &, we can write
the differentials dy and dy as

(9-6-3) dyy =y, dy(h'y)=h'dyy+d,(h'y) and dNT = T+hd\T, dnhT)=hd\T,

where y € ECC*(V,ay), T’ € ECC* (N, ), 8';, and 8'}] are the differentials for the chain complexes
ECC(V, ay) and ECC’(N, «), and the terms 07, (h'y) and 9’y T do not contain A’
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9.7 The map o,

In this subsection we define an explicit map
ox: ECH(N, 0N, a) — ECH(M)

and in the next one we will prove that it is an isomorphism. It will be easy to see that o, preserves the
decomposition by (relative) homology classes; namely, if @w: H{(N,dN) — H{(M) is the isomorphism
described in the introduction, o« maps ECH(N, dN, A) to ECH(M, w (A)) for every A € H1(N, dN).

We introduce the following notation, which will be used in this and in the following sections. Given a set
of Reeb orbits ey, ...,eu, h1,...,hm, where eq, ..., e, are elliptic and k1, ..., hy, are hyperbolic, we
define

Rlets....enhive.o hml:=Flet.....en 1. )/ (B2, ... h2):

iein Rley,...,en, h1,..., hy] the elliptic orbits are free variables and the hyperbolic orbits are nilpotent
variables of order two. Whenever we use the notation Rley, ..., ey, 1, ..., hy] in this paper, we will
assume {ey,...,ey} Cle,e'}and {hy, ... hy} S {h, 1},

Define ECC!(N, o) as R[h'] ® ECC’(N, «) with differential

FyT)=yRPT+y/h'®(1+e)T.
Lemma 9.7.1 ECH!(N, o) ~ ECH(N, 9N, a).

Proof ECCY(N, «) can be identified with the cone of the multiplication map - (1 4 ¢) on ECCb(N , o).
Hence there is an exact triangle

‘(1+e)

ECH®(N, o) ECH®(N, a)
(9-7-1) \ /
ECH!(N, )

The map - (1 + e) is injective on homology since I" and eI belong to different singular homology classes
for all T € ECC’(N, «). Then the exact triangle implies that
ECH®(N, o)
(1+ ¢) ECH*(N, &)

ECHY(N, a) ~ ~ ECH(N, dN, a). 0

We denote by ECCEi (N, a) the subcomplex of ECC“(N , o) generated by orbit sets y ® I" which have
linking number less than or equal to & with K and action less than L. We fix an increasing sequence
L;c — +o00 and let ¢ = sup;, Aa;( (¢’). Then, for every k, we choose iy so that L;, > kL}c + ck?.
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In the following, we will rename L;, = Ly, o; = Ot]/C and F;, = Fi. Also, the composition &)ik+1—1 o
-0 ®; « Will be renamed as

&y ECCLA (M, o) — ECCLA+1 (M, o) ).

For any integer k, we define

Ok ECCH’ o (N, a) — ECCL* (M, o), )/®I‘»—>Z(e) Y ® (dy )T,
=0

where 0’y is defined by (9-6-3) and y = 1 or /"

These maps are well defined because the map 9’y is nilpotent. In fact, 'y, decreases the linking number
with the binding, so (8’1\',)"+1 =0 on ECC" k(N o).

Remark 9.7.2 This and the analogous construction in Section 9.9 are the only places where we use
the hypothesis that the Reeb flow is transverse to a fixed Seifert surface for K. In fact, while we could
deduce the nilpotency of 9y, from an action argument, by choosing to work with the action we would
lose the estimate on the nilpotency order of 8/N and, consequently, on the action of oy (y ® I'). However,
in view of the heuristic argument described in Section 9.1, we suspect that this hypothesis is actually not
necessary.

Lemma 9.7.3 The maps oy are chain maps and form a directed system, ie the following diagram
commutes:

ECC "(N o) — 2 L BCccLr(m, )

(9-7-2) Jlk F)k

’L/
ECCH LA (V. @) 22 BCCha+ (Mo, )

Here iy, is the inclusion.

Proof (1) We first show that oy is a chain map. Since g takes values in the lowest level for the
filtration Fy (recall y = 1 or &’), we have d(oy (I')) = dg(0x(T")), where dg is given by (9-5-1). Using
the decomposition of d in (9-6-3) and dy ((¢')'y) = (e’)'y/ K’ for y = 1, I, we obtain

ao(ak(ym))—ao(Z(e)y@(a )'T )
i=0

=Ze>’y/h/®<a )lHZ(e)’y@(a Oy)'T +h(@y)'T'T)

+Z(e)’ Ly ®@h@)y )’F+Z(e)y/h'®e(8 )T.

i=1 i=0
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Rearranging the sum and using the fact that 0, commutes with 8'3\, and with the multiplication by 1 4 e

gives ~

Bo(ok(y ®T) = 3 () y ® @) T + () y/H ® @y) (1 +e)D)).
i=0

Hence d(0x (y ® I')) = do(0x (y @ T)) = 0 (3*(y @ I)).

(2) Diagram (9-7-2) commutes because we have shown in Lemma 9.6.2 that the continuation maps are
induced by the identity at the chain level on the lowest filtration level. O

Taking homology first and then direct limits in diagram (9-7-2), we obtain a map
ox: ECH(N, dN, ) ~ ECH'(N, &) — ECH(M).

The maps oy also induce maps

o0
o* ECCHN,a) > E°(F). y®T Y (€)y® @)
i=0
and

o’ : ECH(N, dN) ~ ECHY(N, @) — E"(F), r>0.
9.8 Computation of E ' (F)

In this subsection we compute the term E!(F) of the spectral sequence that converges to ECH(M ) and
prove the first half of Theorem 1.1.1.

Recall from Lemma 9.6.3 that E°(F) ~ ECC(V, a) @ ECC(N, ) as a vector space and the differential dg
is given by (9-5-1) and (9-6-3). If we write
Cr = (K BCC®(V, @) ® h* ECC*(N, a),
then
E%(F) ~ECC(V,a) ® ECC(N, o) = Co,0® Co,1 D C1,0 D C1.1.
We can organize all components of the differential d¢y besides 8%, ®land 1 ® 85\, in the diagram

1Qhdy +-/e'®h
Co1 Cia

(9-8-1) a’V®1+-/h’®el
1®hdy +/e’®h

0,0 1,0

la§,®1+~/h/®e

9.8.1 The filtration G We introduce a filtration G of length 3 on
(E°(F). d9) = (ECC(V,a) ® ECC(N, ), do).

which is defined as
G"=Cro, G'=Coo®C11, G*=Co,.
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This filtration induces a spectral sequence E”(G) which converges to E1(F). The groups E”(G) have
two gradings: one inherited from the grading on E®(F) (which, in turn, is induced by the filtrations ;)
and one induced by the filtration G. We will denote the homogeneous components of E”(G) by E},(9),
where p is the degree inherited from E°(F) and g is the degree induced by G. We also write E 1’, (9), in
which case p is the degree inherited from E°(F).

9.8.2 Determination of (E1(G), 391) The graded complex associated to G is
(E(G), d00) =~ (R[I', h] ® ECC"(V, ) R ECC* (N, ), 1@ 3}, @ 1 + 1@ 1 ® dy).
Then (E%(G), dgo) is a product complex and its homology can be computed by the Kiinneth formula:
EY(G) = R[N, h]  ECH’(V,«) ® ECH’ (N, ).

Taking into account the grading inherited from E°(F) and the computation of ECH"(V, «) from Theorem

8.1.2(4), we obtain

E)(G) ~ R[e’, ', )] @ ECH’(N,«) when p =0,
L () when p > 0.

Then £ ; (F) =0 for p > 0 and standard properties of spectral sequences immediately imply the following

lemma:

Lemma 9.8.1 There is an isomorphism Eé (F) ~ ECH(M) which is induced by the direct limit of the
inclusion maps EQ(F;) < ECCLli(M, o).

The differential dg; on E!(G) is induced by the components of dg between consecutive filtration levels.
By Proposition 8.4.5 and Lemma 8.4.8, the only J-holomorphic map in R x V' with an end at 2’ is a disk
in the foliation Z1, which has ECH index I = 1. Therefore 07, (1’ (e’ )') = (¢’)’. Then the differential dg;
on E(}’.(g) is described by the commutative diagram

LQhYy, +/e'®h
W'R[e'| ® ECH (N, o) —— """, j/Rle'] @ h ECH (N, o)

(9-8-2) -/h/®(1+e)l L/h/®(1+e)

1@y +-/e’ ®h

R[e']  ECH’(N, ) R[e'] ® hECH® (N, o)

9.8.3 Homological algebra lemma The following elementary lemma in homological algebra will be
used in the proof of Theorem 9.8.3:

Lemma 9.8.2 Let A be an abelian group and f, g: A — A commuting morphisms. Consider the chain
complex

f
Com (0= Cr 25y s Gy 0) = (0 A Eh 42 &= 4 )
If f has a right inverse s: A — A (ie f os = id) such that gos = s o g, then
H>(C,) ~ker f Nkerg, H1(C,)~ker f/g(ker f), Hy(C,) =0.
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Proof H»(C,) >~ ker f Nker g is immediate and Hy(C,) = 0 follows from the surjectivity of f.

Next consider H;(C,). By definition, we have kerd; = {(x,y) € 4% | g(x) = f(y)} and Im(d,) =
{(f(2),g(2)) € A% | z € A}. If we define the map

¢:A— A%, x> (x,g05(x))=(fos(x),gos(x)),

then we can write Im(d;) = Im(¢p) @ g(ker f) and ker(d1) = Im(¢) @ ker f. The details are left to the
reader. Hence H1(C,) ~ ker f/g(ker f). O

9.8.4 Completion of proof of Theorem 1.1.1(1) We use a comparison theorem for spectral sequences
(eg [Eisenbud 1995, Exercise A3.41]) to prove Theorem 9.8.3, establishing Theorem 1.1.1(1).

Theorem 9.8.3 The map o«: ECH(N, 0N, o) — ECH(M) is an isomorphism.

Proof Since oy takes values in the lowest level of the filtration F, o« factors through the map
o': ECH(N, dN, o) ~ ECH (N, o) — E} (F).
By Lemma 9.8.1, it suffices to show that ¢! is an isomorphism.

Recall the filtration G on E°(F) from Section 9.8.1. On ECC”(N , o) we define an analogous filtration G

such that 2 ify= I,

i =
Grel =1, ify = .

This filtration induces a spectral sequence E” (G") such that E (} (G ~ ECHP (N,a) forg = 1,2 and d4
is the multiplication by 1 + e. This is simply a reformulation of exact triangle (9-7-1) in the language of
spectral sequences. The map ¢ is compatible with the filtrations G¥ and G and induces a map

a:E'GYH —> EL(Q).
We now compute the homology of (E!(G), d91) using Lemma 9.8.2. We set
A=R[]®ECH (N,a), f=1®¥+ -/®1 and g=1(1+e),

where fg = gf by diagram (9-8-2). Define the map

s: R[] @ ECH'(N.@) > R[] QECH' (N.). (N ®T > ()¢ Y (¢ ® (@) 'T.

i=1

where I denotes an element of ECH” (N, o) and not an orbit set as usual. Then s is well defined since 8;\,
is nilpotent. Moreover, fs =1id and gs = sg. Then Ego 9) = Egz(g) = 0 because the map g is injective.
Next consider Egl (G) =ker f/g(ker f). An element of ker f has the form

@V, + ()" '@T_1+--+1QT,
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where I} € ECHb(N, a)and [ 41 = 8/NI’,~ fori =0,1,.... Hence the map

5:ECH"(N, @) — R[e']  ECHY (N, &), FI—)Z(e ) ® (3y)'T,
i=0

is an isomorphism with ker f. The diagram

ECHb(N, a) N ker f
-(1+e)l J/-(H—e):g
ECH’(N, o) —Z— ker f

commutes because d'y (eI') = ed’y (") for all T € ECH® (N, o) by the trapping lemma. Hence & induces
an isomorphism

E?(G") ~ ECH*(N, &) /(T + eT") => E2(G) ~ ker f /g (ker f).

1

By the comparison theorem for spectral sequences, o~ is an isomorphism. a

9.9 The U-map

In this subsection we prove that o intertwines the map U on ECH(M) with the map induced by 9’y on
ECH(N, dN, o). This will allow us to deduce Theorem 1.1.1(2) from algebraic considerations. Let Lj
and L) be as in Section 9.7.

We define the map
U": ECC'(N,a) - ECC'(N, @), y®T >y QT

Since Uu(ECC Li (N,a)) € ECCILk"(N a), we can define

U BCCTH (N, @) - ECCEEF (V. )

as the restriction of U to ECC k (N, a).
We also define the chain complex

ECCY(N,a) = R[I'] ® ECC(N, )
with differential
My =yRINT+y/h & (1 +e)l.

The following lemma is similar to Lemma 9.7.1 and its proof will be omitted:
Lemma 9.9.1 ECH'(N, &) ~ ECH(N, dN, o).

The decomposition of the differential d,y described in (9-6-3) implies the following lemma:
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Lemma 9.9.2 ECC”(N «) is isomorphic to the cone of U™. 0oIf L/ — 00 i$ an increasing sequence and
ECCu k(N ) is the cone of U’ then

Jim ECCY L4 (N. @) ~ ECCY(N. ).

Let z be a generic point in the interior of R x V. We denote by Uy the U-map on ECCLx (M, oz]’() defined

with respect to z.

Lemma 9.9.3 The map Uy, preserves the filtration F for each k. On the lowest filtration level, generated
by orbit sets y ® I' such that y € Rle’, h'], Uy, is given by

(9-9-1) Uy @T) =y/e’ @T.

Proof Fix k. By Lemma 9.4.1, the map U preserves the filtration ;. Moreover, by Lemma 9.5.1
(see also Corollary 9.5.2), curves which contribute to Uy and do not decrease the filtration level do not
cross R x T; (for i = 1,2). This implies that Ux(y ® T') = Ur(y) ® I when y € R[e’, h'], and Uy (y)
counts index I = 2 curves in V passing through z. We will use the ECH index and the Fredholm index
to constrain such curves.

Letu bean I =2, J -holomorphic map in R x V with y+ = (¢/)%+(h b+ at the positive end and

= ()% (W)’ at the negative end; of course b1 € {0, 1}. If we denote by D,/ and Dy the meridian
disks of V with boundary on ¢’ and /’, respectively, and by Z € H»(V, y+, y—) the relative homology
class determined by u, we have Z = (a4 —a—)[De’] + (B+ — B=)[Dy].

We compute (Y4, y—, Z) using (2-3-2). On ¢’ and i’ we consider the trivialization T induced by dV.
The Conley—Zehnder indices are p;((e’)’) =1 fori = 1,...,k and u;(h’) = 0 by Definition 4.3.1,
because they are on a slight perturbation of a positive Morse—Bott torus. The relative Chern class is
c1(lp,1,7) = c1(§l[p,1- ) = . Putting everything together,

I(y+.7-.Z2) =2(ay+ —a-) + (b4 —b-).

Then I(y+,y—, Z) =2 implies e —a— =1 and b4 —b_ = 0, because b+ —b_ € {—1,0, 1}. We call
b=by=>b_.

Negative ends at ¢’ cannot be contained in R x V' by the trapping lemma, Lemma 5.3.2. (While the
trapping lemma was proved for orbits on a Morse-Bott torus, it still holds for e’ which is a slight elliptic
perturbation.) Therefore u consists of a cover of a trivial cylinder over e’ of degree a_, together with
alJ ]é—holomorphic map u: F — R x V with positive asymptotics to e’ (h’ )b and negative asymptotics
to (h')? and representing the relative homology class [D,/]. Since ind() = 2, the index formula (2-2-1)
implies that y (F) = 1. This leaves only two possibilities: either u consists of a Fredholm index 2 plane
which is positively asymptotic to e’ together with a trivial cylinder over %/, or it consists of a Fredholm

index one cylinder from e’ to 4’ together with a Fredholm index one plane which is positively asymptotic
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to i’. The second configuration cannot pass through a generic point z and therefore has to be discarded.
The problem of computing Uy, in the lowest filtration level is thus reduced to the count of J ,é -holomorphic
planes in R x V asymptotic to ¢’ and passing through a generic point.

If we degenerate the contact forms oz,’C toward the Morse—Bott contact forms o and the almost complex
structures Jlé toward the almost complex structures J, the J ,i—holomorphic curves described above
converge to very nice Jx-holomorphic Morse—Bott buildings because the topology of the domain does
not allow the creation of branched covers of trivial cylinders (with nonempty branch locus) connected
to Morse trajectories. Then, by Theorem 4.4.3(4), the countof I =2, J lé—holomorphic planeson R x V'
which are positively asymptotic to ¢’ and pass through a generic point z is the same as the count of
Morse—Bott buildings consisting of a Ji-holomorphic plane on R x V' which passes through a generic
point z and is positively asymptotic to an orbit of dV, augmented by a Reeb trajectory from e’ to that orbit.

By Lemma 8.4.8, the principal part of such a Morse—Bott building must be a leaf of the finite-energy

foliation Zj. Since there is a unique leaf through any point, this proves that Up(y  T) = y/e’ ® . O

Corollary 9.9.4 The following diagram commutes for each k:

ECCh k(N @) —% BCCLE (M, o))

(9-9-2) U,El luk

BCCETH (N, o) —2 BCCH* (M, o))

Proof Since oy takes values i 1n the lowest level of the filtration Fj, we can use (9-9-1) to compute
Ui oog. Then, fory @ I' € ECC (N a), we have

Uk(ok<y®r))—Uk(Z(e>y®<a ) ZW 'y @ @y)'T,
i=0 i=1

ak(U,E()/ Q) =0 (y®yI) = Z(el)iy ® (@) *IT.
i=0

Hence Uy, o oy, =okonn. O

Proof of Theorem 1.1.1(2) By Lemma 9.9.2, diagram (9-9-2), and the naturality property of mapping
cones, there is a chain map

& ECH“’ KN, @) — ECCL (M, o))
for each k. Taking homology (with the help of Lemma 9.9.1) and direct limits over k, we obtain a map
6+: ECH(N, 0N, /) ~ ECHY(N, o) — ECH(M).
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This map fits into the U-map exact sequences by properties of mapping cones:

. U ECH(N, ON) —— ECH(N, 9N) —— ECH(N, aN) —L ...
U*‘ O'*l 3*\[ O'*l U*l
S Y JECH(M) — ECH(M) — S ECHM) — Y .~.

The five lemma then implies that 6, is an isomorphism. Moreover, 0, preserves the decompositions of
E/C\H(N ,ON, «) and E/C\H(M ) according to (relative) homology classes. |

Remark 9.9.5 Embedded contact homology can be defined over the integers by choosing a coherent
orientation system for the moduli spaces. For its definition or construction we refer to [Bourgeois and
Mohnke 2004; Hutchings and Taubes 2009a, Section 9]. Different choices of coherent orientation systems
yield isomorphic chain complexes.

All results of this article carry over with integer coefficients, and with the same proofs, if there is a
coherent orientation system such that

e the holomorphic plane with positive asymptotics at 4’ and the holomorphic plane with positive
asymptotics at ¢’ and passing through a generic point count positively;

« the holomorphic cylinders from e’ to & and from 4’ to e count positively; and

* the holomorphic cylinders from e’ to 4’ and from 4 to e have opposite signs, so that they cancel

each other in the differentials.

The first two items can be easily obtained by automorphisms of the complexes adjusting the signs of
the generators ¢’, 4/, e and h, and the third item follows from the identification of orientations of moduli
spaces of Morse trajectories with orientations of the corresponding moduli spaces of holomorphic maps,
as sketched in the first paragraph of the proof of [Bourgeois 2002, Lemma?7.6].

10 Applications to sutured ECH

In this section we apply Theorem 1.1.1 to sutured ECH.
10.1 Sutured ECH

In this subsection we briefly review sutured ECH, referring the reader to [Colin et al. 2011b] for more
details.

A sutured manifold is a pair (M, "), where M is a 3-manifold with boundary and corners, I' C oM
is a possibly disconnected 1-manifold,!> N(T") is an annular neighborhood of T', and dM admits the
decomposition into two-dimensional strata

M = R4 (I')U R_(I") U N(T')

151 this section, T will denote a suture, not an orbit set.
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as in [Colin et al. 2011b, Definition 2.7]. Note that our definition does not allow for “torus sutures” as in
Gabai’s original definition [1983, Definition 2.6].

A sutured contact form & on (M, T')'® (see [Colin et al. 201 1b, Definition 2.8]) is, roughly speaking, a
contact form & on M whose Reeb vector field Ry is positively transverse to R4 (I'), negatively transverse
to R_(I'), and tangent to N(I"), and such that the trajectories of Rg|x () are arcs from dR—_(T") to
dR(T"). One can easily verify that (M, I') admits a sutured contact form if and only if it is balanced,
ie Y(R4+(T")) = y(R—(I")). A sutured contact manifold (M, I, @) admits a completion (M *,a*); see
[Colin et al. 2011b, Section 2.4].

Let (M, T, @) be a sutured contact manifold. We now describe the sutured ECH group ECH(M, T, &, J).
Its chain group!” ECC(M,T,a, J) is generated by orbit sets constructed from simple Reeb orbits
in int(M) and the differential counts ECH index one J-holomorphic maps in the symplectization of
(M*,a*) for an almost complex structure J which is adapted to the symplectization and satisfies
properties (Ag)—(A3) from [Colin et al. 2011b, Section 3.1]. Almost complex structures of this type are
said to be tailored to (M, ', @).

Completions are not necessary in dimension three by the following lemma:

Lemma 10.1.1 Let J be tailored to (M, T, &@). Then all J -holomorphic curves in (M *,@*) which are
asymptotic to closed Reeb orbits in int(M ) are contained in R x int(M).

Proof This follows from the proofs of [Colin et al. 2011b, Lemma 5.6 and Corollary 5.7], and relies on
the fact that R4 (I") and R_(I") automatically admit Stein structures. m|

We finish this review of sutured ECH by recalling a useful result from [Colin et al. 2011b] and sketching
a simpler proof in dimension three.

Definition 10.1.2 [Colin et al. 2011b, Section 9] Let (M, T, &) be a sutured contact manifold. An
interval-fibered extension is a contact embedding
(M, T,@) — (M', T, a’)
such that M’ —int(M) = W x [0, 1], where
e W is a cobordism from I’ to ", and

o &'|wx[o,1] = cdt + B for a Liouville form g on W and ¢ > 0.

Lemma 10.1.3 [Colin et al. 2011b, Theorem 9.1] Let (M, T,a) < (M’,T"’,&’) be an interval-fibered
extension. Then there is a canonical isomorphism of chain complexes between ECC(M, I, «) and
ECC(M', T, &).

16We use @ to denote an unspecified sutured contact form because « is reserved, in Section 9, to the contact form on N. Such
contact form will appear again later in this section.
17We will often write ECC(M, T, &) and ECH(M, T, &) for simplicity.
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Proof All closed Reeb orbits in M’ are contained in M because all Reeb trajectories in M’ —int(M) go
from R_(T"") to R4+ (I"’). Moreover, J-holomorphic curves in R x M’ between orbit sets in int(M) are
contained in R x M. In fact, if a J -holomorphic curve nontrivially intersects R x (M’'—M) =R x W x[0, 1],
then its projection to W is surjective by the positivity of intersections with the Reeb vector field. This
implies that the curve touches R x dM’, which is impossible by Lemma 10.1.1. a

10.2 Topological invariance of sutured ECH

In this subsection we pay off a debt from [Colin et al. 2011b], namely we sketch a proof that sutured
ECH depends only on the sutured manifold and the contact structure. A more detailed proof can be found
in [Kutluhan et al. 2022]. In view of [Colin et al. 2011b, Conjecture 1.5], we expect sutured ECH to be
independent also of the contact structure.

Lemma 10.2.1 Let (M, T, &) be a sutured contact manifold such that " is connected. Then, for every
L > 0, we can embed (M, I', @) into a closed contact manifold (M aL) such that

ECHY (M, T, &) ~ ECHY (M, &%)

for every L' < L. Moreover, M, up to d1ffeom01phlsm depends only on (M, I') and, if a¢ and &1 define
isotopic contact structures on (M, T"), then & 050 and o 0‘1 define isotopic contact structures on M.

Proof Since (M, T') is balanced and T is connected, R4 (I") and R_(I") have the same genus and are
diffeomorphic. We identify R (I") and dR_(T") by a diffeomorphism 049 : IR (I") => dR_(T"), which
is defined by the Reeb flow on N(I'), and fix a diffeomorphism fy: R+(I") = R_(I") which extends
dho. Let us write B = &|g, (1) and f— = a|g_(r)- Then the contact form &, on a neighborhood
Ri(T)x[1—¢,1]or R_(T")x[-1,—1+¢€] of RL(T") = Ry (") x {&1} with coordinates (x, ¢), has the
form ¢ dt + B+ for some ¢ > 0 (see [Colin et al. 2011b, Definition 2.8]). Here € > 0 is small.

By Moser’s theorem and Lemma 9.3.2, there is a diffeomorphism 4: Ry (I") = R_(I") isotopic to Ay
relative to dfg, such that £#*B_ — B+ = df for some function f: Ry (I") — R which is constant near
OR4+(T).

Let us write R = R (T"). By repeating the proof of Lemma 9.3.3, we construct a contact form f; dt + B¢
on Rx[1,2] suchthat f; >0, fydt+B;=cdt+ P+ on Rx[l,1+¢€],and f; dt+B;=cdt+h*f_on
R x[2—¢,2]. Pick a bump function ¢: [1, 2] — [1, 2] and consider the contact forms ( f; +Cr¢(¢)) dt + B¢
on R x [1,2] for some large positive constant Cz, to be determined later.

We obtain the manifold M’ by gluing R x {1} to R4+ (T") by the identity and R x {2} to R_(T") by 4. The
contact forms @ on M and (f; + Cre(t)) dt + B; on R x [1,2] match near the gluing region, so they
define a contact form on M’. Finally, we obtain M by gluing a solid torus V to M’ along the boundary
so that a meridian of the solid torus is identified with a Reeb orbit on dM’. The contact form on M’ can
be extended to a contact form &~ on M by taking the contact form on V' as in Example 6.2.4.
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By taking Cy, sufficiently large, we ensure that Reeb trajectories from Ry (I') to R—(I") and closed Reeb
orbits in V' have action larger than L; for Reeb orbits in V' this is a simpler application of the arguments
in the proof of Lemma 7.2.3. Hence ECCL/(M, Ia)= ECCL/(Z\?, a’) as abelian groups if L' < L.
Any tailored almost complex structure J on R x M can be extended to an almost complex structure J on
R x M which is adapted to the symplectization of &L.

Next we claim that a J-holomorphic map u: F — R x M which is asymptotic to orbit sets in M has
image in R x M. These orbit sets have trivial linking number with the core of V, so Im(u) C R x M’ by
the blocking lemma. On the other hand, Im(u) N (R x R x [1, 2]) = @: Observe that R4 (") can be lifted
to an family vg for s € R of J-holomorphic maps in R x M’ which foliate R x R4 (T"). By the positivity
of intersections, if u intersects some vy, then it intersects all vy. However Im(ups/) N R4 (T7) is compact
and u cannot intersect vy for s >> 0, a contradiction. Hence Im(u) C R x M.

The remaining claims in the statement are straightforward. |

Theorem 10.2.2 Let &y and oy be sutured contact forms on a sutured three-manifold (M, I) and let
J1 and J, be almost complex structures on R x M such that J; is tailored to (M, T',@;) fori = 1,2. If
&1 = kera; and &; = ker &y are isotopic through contact structures adapted to the sutures, then

ECH(M, T, &, J1) ~ ECH(M, T, @y, J»).

Moreover, this isomorphism preserves the decomposition of the sutured ECH groups as direct sums of
subgroups indexed by homology classes in Hi(M).

Proof We may assume that I" is connected, since otherwise we can make I" connected by gluing
an interval-fibered extension, which does not change the sutured ECH groups by Lemma 10.1.3. We
extend (M, T, ;) to (1\7 , &iL) as in Lemma 10.2.1 and follow the proof of Proposition 7.2.1 step by step.
The statement about the decomposition according to homology classes follows from the fact that the
isomorphism is supported on holomorphic buildings contained in R x M in the sense of Theorem 3.1.2(i). O

10.3 Applications

If M is a closed 3-manifold and B C M is an embedded open 3-ball, we define the sutured manifold
M(1) = (M — B, Ip),

where T} is a connected simple closed curve in d(M — B). If K C M is a knot and N(K) is an open
tubular neighborhood of K, we define the sutured manifold

M(K) = (M — N(K).Tk).

where 'k consists of two disjoint copies of a meridian of K. When considering M (1), we will assume that
K\ B is connected and goes from R_(T") to R4 (T"). If & is a contact form on M — B or M — N(K) sat-
isfying the conditions in [Colin et al. 2011b, Definition 2.8], then the sutured ECH groups ECH(M (1), @)
and ECH(M (K), @) are defined.
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Figure 5: The Reeb vector field R] on No(K) = (T? x[1,2]) U V. The top and the bottom are identified.
Theorem 10.3.1 ECH(M) ~ ECH(M(1), @).
This theorem concludes the proof of [Colin et al. 2011b, Theorem 1.6].

Proof Let £ be a contact structure on M extending E: ker & such that K C M is a &-transverse knot.
Recall the decomposition
M=NU(T?x[1,2)uV

from previous sections, where we take No(K) = (T2 x [1,2]) U V to be a neighborhood of K.

There exists a sequence of contact forms o fori =0, 1,... for £ (up to isotopy) and associated Reeb
vector fields R, satisfying properties (1)~(8) of Section 9.2. Figure 5 depicts R} on No(K) =~ D?2(2)x S!
with cylindrical coordinates (p, ¢, #), where D?(pg) = {p < po} and VV ~ D?(1) x S'. The Reeb vector
field R} is dg-invariant and of the form R} =Y + h;(p)dg, where Y is tangent to the slices {¢ = const}
as given in Figure 5 and %; (p) > 0 for p > 0.

Choose almost complex structures J; adapted to «; as in Section 9.2 so that J/ is dg-invariant on No(K)
and is close to the almost complex structure Jy from Proposition 8.4.4 on V.

We describe a concave ball B in M whose complement is M (1); see Figure 6. Let D be a meridian
disk in V' which bounds e’ and is the projection to V" of an I = 2, J/-holomorphic plane u asymptotic
to ¢’ at the positive end. The plane u corresponds to a leaf of the finite-energy foliation Zy of R x V
from Proposition 8.4.4. Let N(e’) be a neighborhood of e’ whose boundary is tangent to R’. We then
set B = N(D)U N(¢e’), where N(D) is a small neighborhood of D, chosen so that dB decomposes into
three parts:

o two disks R+ (Tp) transverse to R; that are parallel copies of a small retract of D; and

e an annulus N(Ip) C IN(e’) tangent to R;.
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Figure 6: The concave ball B, obtained by rotating the shaded region about the vertical axis.

We assume that the / = 1, J/-holomorphic plane asymptotic to /" has image in R x (V — B) and that
R (T) are also chosen to be restrictions of projections to M of / =2, J/-holomorphic planes asymptotic
to ¢’. The trajectories of R; flow from one boundary component of N(I) to the other.

The manifold (M (1), To, }) is a sutured contact manifold and, by Theorem 10.2.2, ECH(M(1), Iy, o))
is isomorphic to ECH(M(1), Iy, @). By construction, the orbit ¢’ does not belong to M (1) and all the
orbits in V' are now chords from dM (1) to dM(1). The Reeb orbits of Rl/- that are contained in M (1) are

(1) all Reeb orbits in N;

(2) e, hand /’; and

(3) orbits longer than L; in the no man’s land.

By taking direct limits as in Section 9.6, we can discard orbits in the no man’s land. The use of direct
limits in this context is justified by Theorem 10.2.2.

By our choice of J/, if u is a holomorphic curve in R x M between orbit sets constructed from orbits
of type (1) and (2) in M(1), then Im(u) C R x M(1). (The orbits of type (1) and (2) have the lowest
F;-filtration level and we can use the blocking and trapping lemmas.) In particular, there are exactly two
I =1 curves that limit to /4’ at the positive end, as it is in R X No(K): one plane from 4’ to & and one
cylinder from /4’ to e. Therefore we obtain an identification

lim (ECCLi (M (1), Ty, @}), 8) ~ (ECCH(N, a), 3",
1—>00

which, in view of Lemma 9.9.1 and Theorem 1.1.1(2), implies the theorem. O

If the contact form « is chosen carefully, a null-homologous knot K C M induces a filtration on the
chain complex ECC(M (1), @) and the associated graded group is ECC(M(K), ). This construction was
described in [Colin et al. 2011b, Section 7.2]. If N = M — Ny(K) as above, there is a filtration £ on
E/C\C(N , ON, ) defined as follows: Let P be the set of simple Reeb orbits in int(N). The generators of
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Figure 7: Construction of the concave neighborhood (N(K), I'r), obtained by rotating the shaded
region about the vertical axis

E/C\C(N , 0N, o) are equivalence classes of orbit sets I constructed from P U {, e}, up to the equivalence
relation I ~ eI". To the equivalence class of I' we can uniquely associate an orbit set I’ constructed
from P U {h}. Then we define £(T") as the algebraic intersection of I with a Seifert surface of K. The
differential of E/C\C(N , ON, o) preserves £ by the trapping lemma and it is easy to identify the graded
group of this filtration with ECC? (N, a).

Theorem 10.3.2 If K C M is a null-homologous knot, then there is a contact form & on M for which
the isomorphism in Theorem 10.3.1 preserves the filtrations and induces an isomorphism

ECH(M(K), &) ~ ECH*(N, a).

Proof Let K C M be anull-homologous knot and X a genus-minimizing Seifert surface for K. Following
[Colin and Honda 2005], we construct a family of contact forms ozl’- on M as in the proof of Theorem 10.3.1
on No(K), with the additional property that the Reeb vector fields R} are positively transverse to int(X).
The construction is done in two steps: first on N by a direct application of [Colin and Honda 2005],
where we use X as the first decomposing surface of a taut sutured hierarchy of &, and then on No(K),
where we extend the form by the explicit model already described in Section 9.3.2.

We obtain a concave neighborhood (N (K), I'x) of K by taking N(K) = B U N¢(K), where N¢(K) is
a very small neighborhood of K whose boundary is tangent to R}, as in Figure 7, and B is the ball
constructed in the proof of Theorem 10.3.1.

The suture I'x corresponds to the core curves of the two annuli in N (K) tangent to R;. At this point,
(M — N(K), I'r) is not yet a convex sutured manifold, because N (K) is not convex for the dividing set
given by the two curves of Tx. In fact, on the component A of N (K) coming from N¢(K), ker o] |4 is
negatively transverse to the core of A (oriented as the boundary of R (I'x)). To correct this, we glue a
collar of the form (A x [a, b], dt + f(y)dx), df/dy <0, to (M —N(K),«’) along A = A x {a}, where
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Ax[a,b]=[0,1]x S x [a, b] has coordinates (¢, x, y). Then the Reeb vector field remains d, while the
contact plane rotates until ker o/ |4xpy is positively transverse to the core of A.

The positive transversality of the Reeb vector fields with the Seifert surface X ensures that the isomorphism
of Theorem 10.3.1 preserves the filtrations given by the linking number with K.

Passing from M (1) to M(K) has the effect of killing the “meridian” holomorphic disk from 4’ which
passes through R x K. After passing to direct limits, we obtain the desired isomorphism. a

Appendix Morse-Bott gluing
by Vincent Colin, Paolo Ghiggini, Ko Honda and Yuan Yao

The goal of this appendix is to prove Parts (2) and (3) of Theorem 4.4.3. The proof of Part (4) is similar
and will be omitted. The proof involves working out Morse—Bott gluing in a special case, which easily
generalizes to one-level cascades in ECH. Yao [2022b; 2022a] will prove the general ECH Morse—Bott
gluing theorem in the presence of Morse—Bott tori and multiple-level cascades. There are slight differences
in packaging, but our strategy and the one from [Yao 2022b; 2022a] for 1-level cascades are essentially
equivalent.

For simplicity we assume there is only one Morse—Bott torus 7 and that it is a negative Morse—Bott
torus. It is generally acknowledged that the proof of Morse—Bott gluing in [Bourgeois 2002] is incomplete,
but instead of fixing this, we carry out a different pregluing with a smaller error term. At first we will
use a stable Hamiltonian structure whose hyperplane distribution is integrable near the Morse—Bott torus
to simplify the gluing estimates in various ways. In Section A.9 we will explain how to derive a similar
statement for contact structures from Theorem A.2.1.

A.1 Stable Hamiltonian structures, almost complex structures and moduli spaces

Let [—1,1] x T? = [—1,1] x (R?/Z?) be a neighborhood of the negative Morse—Bott torus T with
coordinates (y, (6,t)) such that Ty = {0} x T2, and let A" be the Morse—Bott family of simple orbits of
the form {y = 0, 6 = const}. Also let Ay, = [—Y0, yo] X R/Z be an annulus with coordinates (y, 0).

Morse-Bott perturbation of the stable Hamiltonian vector field The construction will depend on
parameters ¢, a, by, b and € which will be made more specific during the course of this appendix and
when we make specific choices they will be indicated by (F9)—(3). The parameters ¢, a and by (chosen
in this order) will describe the data of the problem and will be chosen once and for all at the beginning to

satisfy
0<4dby<a<c<l.

The constant ¢ depends on the action level, a depends on the Morse—-Bott moduli spaces we want to glue —
morally speaking it determines the region where the first nonconstant term in the Fourier expansion of
the negative end is not dominated by the higher-order terms; see (1) —and by is arbitrary, as long as it
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is sufficiently smaller than a. The perturbation of the Morse—Bott Reeb vector field and pregluing will
depend on the parameters b € ((), %bo) and € > 0 (chosen in this order). The parameter b will determine
the support of the perturbation and the parameter € the size. Then, by the usual contraction mapping
argument, we will prove that, for every b sufficiently small and every € sufficiently small compared to b,
the preglued curve can be deformed to a holomorphic curve.

On [—c, c] x T? consider the stable Hamiltonian structure consisting of the 1-form d¢ and the 2-form
wg =dH ANdt +dy AdB, where H: A. — R is a function of (y, #) (and is independent of ¢). The
stable Hamiltonian vector field Rz is then

(A-1-1) RH=%+XH, where iy, dy NdO = dH.

Let Jy be the adapted almost complex structure on R x [—c,¢] x T? which sends 9/ds — Ry,

Ry +— —0d/0s,0/dy +— d/06 and d/00 — —0d/dy, where s is the R-coordinate.
We specialize the smooth function H to
(A-1-2) f.0) =3 or fe(y.0) =37 +€p(1)En(),

where € > 0 is small, the domain of gx-(9) is S! viewed as the interval [—
identified, and the following hold:

3+ %] with the endpoints
(P2) gn:R/Z — R is a perfect Morse function with maximum at % and minimum at —%. More
specifically, we assume that g)/(6) = 0 on 6 = =1, is linear with positive slope on [+, —1], is

nondecreasing on [—1 —é], and is equal to 1 on [—%, é]; and gxr(0) is an odd function about

3>
0=0.
(P3’) ¢:[—c,c] — [0,1] is an even function which has support on [—2bg, 2b¢] and is equal to 1 on

Here (P2) is exactly the same as (P2) from Section 4.1 and (P3’) is a tweaking of (P3). We observe that
fe— finC*®ase—0.

The torus T}y is a negative Morse-Bott torus with respect to Ry. After perturbing to Ry, , the Morse-Bott
family of stable Hamiltonian orbits becomes a pair e and / of stable Hamiltonian orbits over ((), —%) and
(0, %) in A.. See Figure 8.

The Morse—Bott perturbation is performed below a fixed action L, which is later sent to infinity by a
direct limit process. The action of a stable Hamiltonian orbit in [—c, ¢] x T'? depends on how many times
it intersects an annulus A, X {z} and therefore, instead of working below an action level L, we work
below an intersection number N.

(To) The constant ¢ is chosen so that 0 < ¢ < 1 and all closed orbits of Ry in A¢ x § 1 that intersect
Ac x {t} at most N times are covers of orbits in Txs. The constant € > 0 will always be small
enough that all closed orbits of Ry, in A¢ X § 1 that intersect A. x {t} at most N times are covers
of e and .
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Figure 8: The annulus A, = [—c, ¢] x R/Z with some gradient trajectories of f.. The top and
the bottom are identified. The dotted rectangle is the boundary of B = [—by, bg] x [—é, é], on

which ¢(y) = 1 and g),(0) = 1.
The next lemma follows from the explicit constructions in Section A.9 and Claim A.9.3.

Lemma A.1.1 There exist stable Hamiltonian structures (o, ) and (a, we) on M and almost complex
structures Jy and Jy. on R x M such that:

(1) On[—a,a]xT?, (a,w) = (dt, wy) and (o, we) = (dt, wy,).

(2) On M —([—a,a] x T?), w = we is a multiple of du by a positive function (and therefore « is a
contact form).

(3) OnM —([—c,c]xT?), w = we = da.

(4) Jr and Jy, are adapted to (o, wy) and (a, wy, ), respectively, and Jy = Jy_ outside of Rx[—a,a]xT?.

Simplification A.1.2 From now on we will consider only the case N = 1 because it contains already all
the relevant ideas.

Moduli spaces Let

MMB = Ml}/_[/B = Mﬂfind:l(y;/\/)
be the moduli space of (finite-energy) Jr-holomorphic maps u 4 : (F,j) — R x M modulo domain
automorphisms, where

(CO) (F, ) is a closed Riemann surface with a finite number of punctures removed and we are ranging
over all complex structures j with a fixed topological type F;

(C1) u4 limits to the orbit set p at the positive end, where y does not involve any orbits of the Morse—Bott
family N
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(C2) wu4 limits to some orbit in the Morse-Bott family A\ at the negative end; and

(C3) wu4 has “unconstrained” Fredholm and ECH index 1 (the negative end is unconstrained); see
Section 8.4.1 for more details.

By (C3) we mean that, if we concatenate ¥4 with a cylinder corresponding to an upward gradient
trajectory that starts at (0, —%) so that we have a map C from y to e, then the Fredholm and ECH indices
of C are 1. (C3) implies that curves of MMB are isolated modulo R-translation and are embedded.

Next let
Me:=My, = Mﬂ:md:l(y, e)

be the moduli space of Jy, -holomorphic maps u: (F, j) = R x M modulo domain automorphisms,
where (CO0), (C1) (with u instead of 4 ) and the following hold:

(C2) u limits to the negative elliptic orbit e obtained by perturbing the Morse-Bott family.
(C3") u has Fredholm and ECH index 1.

We also remark that the moduli spaces MMB and M, can be made Morse-Bott regular or regular by
perturbing J¢ and Jy. outside of [—c, ¢] x T2.

Holomorphic curves near the Morse-Bott torus

Claim A.1.3 The equation 51/'5” = 0 for a map'®
u: 50,511 x ST > R x St1 X Ae, u(s,t) =(s,t,n(s,1)),

is equivalent to the equation
0 .0
(A-13) Deni= 50 + jo's — Vfe(n) =0,
as at
0-1

where jo = (1 0) is the standard almost complex structure on Ac.

Proof We apply 5Jf6 =05 + Jy.0¢ to (s,2,7(s, 1)) to obtain

1 0 1 -1
(A-1-4) 0 + Jy. 1 = 0 + 0
dn/ds dan/ ot dn/ds Jodn/dt — Vfe(n)
This is because Jy, (0;) = —05 — JoXyr. and joXy = V/fe (recall the sign in (A-1-1)). Hence
0 -1
Jr. | 1] = 0 1. O
O _vfg

18We abuse notation and use coordinates (s, ¢) for both the cylindrical part of the domain and R x S!. We also change the order
of the coordinates from (y, 6,1) to (¢, y, ). This has no effect on the orientations of M and A..
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The claim holds also for € = 0: the equation d Jy.u =0 for a map u(s,t) = (s,£,n(s, 1)) as above is

equivalent to Don = 0, where

dn . oy
Don = — L _V£m).
on=--+Jjoo f(n)

Remark A.1.4 To treat the case N > 1 we need to consider maps u: [5o,51] x S! — R x S} x 4,
which wind k times around S} for k < N. In that case we should write u(s, 1) = (ks, kt,7(s, 1)), but all
estimates on 7 remain unchanged.

The following easy consequence of Claim A.1.3 provides the link between gradient trajectories and
holomorphic curves:

Lemma A.1.5 Every gradient trajectory T of f. (here we are allowing ¢ = 0 and fo = f) admits
a unique lift to a simply covered Jy_-holomorphic cylinder u7 whose projection to A is T modulo
reparametrization of the domain and R-translations of uy.

Proof If n: [So,51] — Ac is a parametrization of 7 satisfying dn/ds = Vfe(n), then ur(s,t) :=
(s, 1,n(s)) satisfies 97 . ur = 0 by Claim A.1.3. On the other hand, one can immediately check that a
simply covered map to R x S x A, that projects to 7 must be of the form (s, ) —> (s, ¢, n(s)) for some 7
up to reparametrizations and translations. a

A.2 Main result

The main result of the appendix is the following:

Theorem A.2.1 If MI}A/B is Morse—Bott regular, then, for a, by > 0 sufficiently small, there exist

. JJL that agrees with J¢ on [—c, c] X T? and is arbitrarily close to Jron M —([—c,c] x T?),

e ¢ > 0 that is sufficiently small, and

. JJQE that agrees with Jz_ on [—c, c] x T? and with J]/" on M — ([—c,c] xT?)

such that M'YP is Morse-Bott regular, M g is regular, and there is a bijection between MNB and M 7
i Je ¥ e

Remark A.2.2 In the case where Ml}’I/B satisfies (C0), (C1), and the unconstrained end is replaced by a
constrained end in (C2) and (C3), ie the negative end limits to a hyperbolic orbit after perturbation, we can
simply glue in a trivial cylinder at the said end, since having constrained index means not including 59
in (A-5-15) and Morse—Bott gluing then reduces to standard gluing.

Brief discussion on regularity We will not prove that, for all € > 0 sufficiently small, M is regular if
MMB is Morse—Bott regular, although that is true. It suffices for our purposes to know that “for some
€ > 0 small and some J Ji and J }6, there is a bijection between /\/ll}’l,B which is Morse—Bott regular and

L s
M 7, which is regular”.
Je€
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We will explain the existence of J /. and J % such that M B is Morse—Bott regular and M A is regular:
Since Jy is Morse-Bott regular for MMJP, the same holds for all J j/p that are sufficiently close to Jy on
M —([—c, c] x T?) and agree with Jr on[—c,c]x T?2. Next, we perturb Jr to in on M —([—c,c]xT?)
so that M 7). is regular. This is possible because the only Reeb orbits of (o, wy, ) inside [—c, c] x T2
come from the perturbation of the Morse—Bott torus, and therefore every holomorphic curve in M g,

intersects M — ([—c, c] x T?), except for the two curves corresponding to the two flow lines on the

Morse—Bott family, whose regularity can be easily checked by hand.

Let us fix an R-invariant Riemannian metric on R x M that agrees with the flat metric ds?+dt%4dy?+d6?
on R x [—1, 1] x T2. All distances will be measured with respect to this metric.

Definition A.2.3 Let« > 0. A curve u: F — R x M in M is k-close to breaking intouy: F — R x M
in MMB and ure: (—00,0] x S' — R x M, where T¢ is an upward gradient trajectory of f, if

(i) on the complement of a negative cylindrical end (—o0o, 0] x S! of F, the maps u and u’; (obtained
from u 4 by a suitable translation in the domain if Fisa cylinder and a suitable R-translation in
the target) are a distance < x apart;

(ii) on (—o0o,0] x S, the maps u and U’ (obtained from u7e by a suitable R-translation in the target)
are a distance < k apart.

Let uy: (F,j) — R x M be an element of MMB_ In what follows, we may assume without loss of
generality that:

(C4) u4 limits to the Morse—Bott orbit o over the point (0,0) from the positive y-direction at the
negative end.

This is justified as follows: The quotient MMB /R by R-translations in the target is a finite set by (C3).
Let £: MMB/R — A be the map that sends [u] to the orbit of A that u limits to at the negative end.
Since the image of £ is a finite set, we can parametrize N' = R/Z such that £([u]) € [—%, %] for all
u € MMB_ Since our proof works in the same way as long as £([u]) is in the interior of the interval
{0 e R/Z | g\,(0) = 1} (refer to (P2) for the definition of gxr), we normalize £([u]) = 0. Moreover,
approaching 8 = 0 from the positive y-direction and the negative y-direction can be treated in the same
way.

Notation A.2.4 Let 75 denote the (upward) gradient trajectory of f that goes from (O, —%) to (0, 0).

Theorem A.2.1 is an immediate consequence of the following theorems, which are proved in Sections A.7
and A.8, together with the above discussion on regularity:

Theorem A.2.5 Suppose a,bg > 0 are small. If MMB is Morse—Bott regular, then, for all € > 0
sufficiently small, there exists u € M, that is k-close to breaking into u4 and UTE .
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Theorem A.2.6 Suppose a, by > 0 are small. If MMB is Morse-Bott regular and M¢ is regular, then
there exists k > 0 such that, for all € > 0 sufficiently small and u, v € Mg that are k -close to breaking into
U4 and UTE, U = modulo R-translation in the target and domain translation if the domain is R x S1.

Remark A.2.7 The assumptions

(i) there is only one Morse—Bott torus 7 and it is negative, and
(ii) u4 limits to y at the positive end and N at the negative end,
are only to make the notation simpler, since gluing each pair of ends can be done more or less independently.

This is due to the fact that the magnitude of the error that comes from a pair B3 of glued ends and needs to
be inverted in the Newton iteration decays exponentially with respect to the distance to the gluing region

of .
A.3 Asymptotic operator

On B := [—by, bo] X [—%, %] C Ac, we have g).(6) = 1 by (P2) and ¢(y) = 1 by (P3). Then Vf, =
Y0y + €0 and the equation D¢n = 0 becomes the linear equation

dn , . 0n m

all i =0

3s+108t (e '
or

an (0 .0 10
(Jr.) g—An—(é), An——Jo§+(0 o)"’

0
1

to the Morse—Bott family V. Here we are regarding S! as [—% %] C R, so that n C A is regarded in

where jo = ( _(1)), n = (n1,1n2), and A is the asymptotic operator for the negative end of u that goes

R2 and the matrix multiplication by ( J) makes sense.

Similarly, a J¢-holomorphic map (s, 1) = (s, , (s, 1)) with n(s,z) € A is equivalent to

an
J Don=——An=0.
(f) (i 95 n

Remark A.3.1 In the region where Den = 0 is equivalent to (Jz,), a solution of (J¢) can be converted
to a solution of (Jy,) by adding (esic).

From now on we will write the components of 7 as row vectors if there is no confusion.

Claim A.3.2 The eigenfunctions of A can be arranged as
v 8—2,8-1,80=1(0,1), g1 =(1,0), g2, ...,
normalized to have unit L? norm, with corresponding eigenvalues
<A <A <Ap=0<A;=1<Ay<--,
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where, if A is any of Aop = Aopt1 OF A—2p = A_opit1, then A(A — 1) = (27 n)? and

g2n 1s a multiple of ( 2rn

cos(2mnt), sin(27rnt)),
Aon—1

gon+1 Is a multiple of (Znn sin(27mt),—cos(2nnt)).

Aan—1

Proof If A is an eigenvalue of A, then

01\ (y'@) yO\ _, (y©
(10) (o) + (5') =)
which is equivalent to 8’(t) = (A — 1)y (¢), —y'(t) = A6(t). Hence 0”(¢t) = (1 —A)A0(¢). If O(¢) is to

be 1-periodic, A = 0,1, A > 1 or A < 0. In the latter two cases, 6(¢) is a translate of sin(2wnt) and
y(t) =2mn/(A—1) times a translate of cos(2nt) and (2rn)? = A(A —1). |

We can then write a solution 7(s, 7) of (J¢) as a Fourier series

(A-3-1) nGs.0)= Y cetSgi).

I =—00
A clarification of the meaning of (A-3-1) is in order: the eigenfunctions g; take values in T ) A = R2,
while 7 takes values in A = [—c, ¢] x S!. Thus, in the equality we have tacitly identified a neighborhood
of (0,0) in T,y Ac with a neighborhood of (0, 0) in A, using the identification of § 1 with a quotient of
[—1.1] fixed at the beginning of the appendix.

A4 Pregluing

Letu: F — Rx M be a Jy-holomorphic map representing an element of MMB. We fix a cylindrical end
(=00, 50] x S of F corresponding to the orbit 0 on which u 4 takes the form u (s, 1) = (s, ¢, n4+(s,t)),
n+(s,t) € Ac. In view of (C4) we can write

o0
(A-4-1) Ni(s.0) =Y cie*gi(0),

i=1
where ¢; > 0. The condition ¢ # 0 holds for a generic J; because the moduli space MMB is one-
dimensional. This is proved in the same way as [Hutchings and Taubes 2009a, Theorem 4.1], which treats

the contact case. We further assume that ¢; > 0 since the ¢; < 0 case can be treated in the same way.
Finally, we can assume that (A-4-1) has no i = 0 term because we assumed that o is the orbit over (0, 0).

Definition A.4.1 Let Ty = To(a) and T1 = T7(b) be real numbers such that

(A-4-2) cle_)“TOgl = (%a,O), cle_A‘T‘gl = (b,0).

Note that T (b) — oo as b — 0.

(1) We choose a, by > 0, with by < %a, to be sufficiently small that Ty > 0 and, for all b < by,
Ntls<—To C A, N+4|-To<s<so C Ac N{y >2bo} and ni|s<—1, C B.
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The choice of a is made possible by the fact that ) ;o , cieris gi(¢) decays exponentially at a rate which

A]S

is faster than c1e*15g1(¢). From now on, a and Ty are fixed constants, while b and Ty (b) are, for the

moment, still allowed to vary and will be fixed at a later time.

Remark A.4.2 Since the perturbation of f, and therefore of Ry, given in (A-1-2) depends on a and by
by conditions (P2) and (P3’), it is important that MMB g finite, so that we can find a and by which

satisfy (+1) for every uy € MMB,
Let n€ : R — A, be a parametrization of the gradient flow trajectory of f. from (0, —%) to (0, %) solving
the Cauchy problem dné
n_
d = VfG (776—) ’
S

n<(=T1) = (0,0),
and let u€ (s,¢) = (s, ¢, 7 (s)). We trivially extend 7€ to a function 7€ : Rx S — A, by 1€ (s, 1) =1 (s).

Definition A.4.3 Let 7, = T>(¢) be a real number such that 77 < 73 and 1 |_1,<s<—7, C B.

Note that T5(¢) — 400 as € — 0.

Let 8: R — [0, 1] be a nondecreasing function such that §(s) =0 if s <0 and S(s) = 1if s > 1. The
pregluing u5’® (note the Fraktur symbol a is different from the parameter a) will depend on € and an extra
real parameter a € [—ag, ag], where ag is independent of b and ¢, and small enough that n€ (—77 + a/€)
is contained in B, where Vfc is constant. Then we define

1t F — (=00, —Tp] x S,
(A-4-3) uSt (s 1) = 1S on F = (=oo. =To] x
(s,t,ny"(s,1)) on (—oo,—Tp| xS,
where T
s+ 1o
1 ——)(0, T —s—T0)(0, —T1,—To]xS1,
ety o5,y — | O DB ) O G4 TN +B(=s—To) 0. ) on [=T1, Tl x
n<(s+a/e.1)+p(s+T2)-n4(s.1) on (—oo, =T1]x S™.
Observe that 7€ (s + a/e,t) = (0,e(s + T1) + a) on [-T», —T1] x S! since Vfi(y,0) = (y,€) and
n€ (=Ty,t) = (0,0). Hence the two definitions agree along s = —T7. Therefore u5" coincides with

uy for s > —Tp, with the lift of a gradient trajectory of f¢ for s < —T5, and interpolates between
the two for s € [-T>, —Tp]. The interpolation is performed in three steps: for s € [-Tp — 1, —Tp] the
holomorphic curve is pushed in the 6-direction (ie along the Morse—Bott family) by a small amount a;
for s € [-T1,—Tp] a perturbation corresponding to the gradient trajectory is slowly turned on and added
to uy; for s € [T + 1, —T1] the preglued curve u$" is the sum of u 4 and the lift of a gradient trajectory
of f¢; and for s € [-T>, —T5 + 1] the contribution of u 4 is turned off.

(t2) We choose € = €¢(b) > 0 such that
lim e(0)eT' O Ty () = 0.
b—0
Note that Ty has become a constant after we fixed a, while 77 depends on b and 7, depends on €.
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Lemma A.4.4 If u$® is defined by (A-4-3) and (A-4-4), then 0 . us" is supported on
() (T2, -T2+ 1]x SYHU([-T1,—To] x S'); and
(2) the “thick” parts of the domain of u., ie F — (—o0, Ty] x S, where the curve may still enter the
region y € [~2bg, 2bo]."°
Proof Note that 9 7 ut =0
(a) on F — (=00, —Tp] x S, away from the region described in (2), where u3® = u and f; = f, and

(b) on (—oo, —T»] x S, where u$® coincides with the F] J,.-holomorphic lift of a gradient trajectory

of fe.
(For (a), note that fe and f differ only when y € [—2bg, 2bo] by (A-1-2) and (P3’), but we are as-
suming (11), which ensures that 74 (To, ¢) has y-coordinate > 2bg.) Therefore 9 I ug® is supported
in [-T5,—To] x S!, where 5Jf€ uy® = 0 is equivalent to Deny® = 0. We claim that D" = 0 on
[-T> +1,—T1] x S!. In fact, in that region,
et =02ty
by (A-4-4) and the definition of 8. Moreover, 15" takes values in B by condition (1) and Definition A.4.3,

and in B we have
DG = DO + (O’ 8)’
where Dy is linear by (Jy.). Thus,

De(19%) = Do(n2") + Do(n+) + (0. €) = De(u&") +Do(n+) =0
because De(u&") = Do(n+) =0. O
A.5 Function spaces

Let us introduce the notation
(A_S_l) nia(‘g?t):r]e—(s—'_a/e?t)? ue—,a(s’l) = (S’tane—’a(svt))‘
In this subsection we describe the linearized 5—operators D4 and D&* for u4 and u€"°.

Since we are assuming that the ECH and Fredholm indices of u 4 and u€:* are both 1, they are embedded
and admit normal bundles. Let N4 be a J¢-invariant normal bundle to u4 in R X M such that Ny =TA,
on (—oo, —Tp] X S let N&% = TA, be the normal bundle to #€-® in R x [—a,a] x T2, and let N*° be the
normal bundle to u$® that agrees with Ny on F — (—oo, —Tp] x S and with TA, on (—oo, —Tp] x S1.

A.5.1 Exponential maps Let D, Ny denote the disk bundle of N4 of radius « > 0, measured with
respect to g. Writing an element of N4 as (x, £(x)), where x € F and &(x) € N4 (u4(x)), for k > 0
small we choose an exponential map

expy, (DNt —> R xM
191 this case the error is extremely small, of total size Ce, and we will not mention it further.
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such that exp,, (x,0) = u4(x), d(x,0) eXPy (0,¢) = ¢ (uy(x)) for a section ¢ of N, and
exp, (x,§(x)) = (s(x),7(x), n+(x) +§(x))
when 14 (x) = (s(x), 1(x), n4(x)) and x € (—oo, —Tp] x S!. We also define
expyen: De NS = Rx [—a,a] x T2, (x,£(x)) = (s(x), 1(x), 2 (x) + £(x)).
Finally, we define exp,,c.a on Dy Ny*® so that it agrees with exp,, L on F — (—o0, —To] x S and satisfies

(x.§(x)) > (s(x). 1(x), 1Y (x) + §(x))

on (—oo, —Tp] x S1. In particular, expye¢-e coincides with expye.. on (—o0, —=73) x St

A.5.2 Normal 3-equations Instead of using the full 5—operator on sections of u T(R x M) and
wEM*T (R x M), following [Hutchings and Taubes 2009a] we will use the normal d-operators which
act on sections of Ny and N€-®. The primary purpose of using the normal 5-operat0rs, assuming the
curves are embedded, is to simplify the notation, since the Teichmiiller space parameters are automatically
taken care of. More precisely, let L be the total linearized 5—0perator—this includes the Teichmiiller
space parameters —and let Ly be the normal linearized 5—operator Ly. Then coker L ~ coker Ly
and ker Ly ~ (ker L)/ V, where V is the subspace generated by the infinitesimal generators of the
reparametrizations of the domain.

By standard local existence results of holomorphic disks, for « > 0 small there exists a foliation of
expy,, (D N4 ) by Jy-holomorphic disks such that the holomorphic disk passing through w4 (x) is
tangent to N (14 (x)). We can therefore adjust the map exp,, . so that the fibers of D, N are mapped
to holomorphic disks, use local coordinates (o, 7, §) on exp, N (D¢ N4+), where o + i t are holomorphic
coordinates on F' and £ is the fiber coordinate, and write

J(0.7.§) 0)’

Jr(o,t,§) = (X(g, 7,€) Jo

where j (o, 7,0) = jo and X (o, 7,0) = 0. Since j% = —I, we have

a(o,t,€) c(o,T, 5))

NCARIE (b(O, 7,€) —a(o,1,§)

anddet j = 1. Also X j + joX = 0.
We derive the normal 5—equati0n for a section £ of N4 such that
(A-5-2) a7, exp,, £=0.

We recall that 9 Jou=du+Jroduo j, where j is a complex structure on the domain of u, and therefore
(A-5-2) is an equation for a pair (J, £), where j is a complex structure on F. Then solving (A-5-2) is
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equivalent to solving for A(o, 1, &), B(o,1,§), and £(0, 7) in

o
(A-5-3) (% + . n.5)(Aw.r g)% + B(o, 1, 5)%)) | =o.
3

Here the adjustment of the domain complex structure is equivalent to solving for A(o, t, §) and B(o, 1, §).
One easily verifies that

A(o,1,6) =a(o,1,§) and B(o,1,&)=b(0,1,§)

are the unique functions such that the (o, t)-component of (A-5-3) holds. Then the £-component of
(A-5-3) is the normal 5—equation for the section & of Ny:

(A-5-4) I, rki= % + Jjo (a(a, z, s)% +b(o, 1, g:)%) + X(0,1,£) (ZEZ z g) —0
such that
(A-5-5) a(o,1,00=0, b(o,7,0)=1, and X(o,7,0)=0.
Next we derive the normal d-equation for the section £ of N9 such that
51./'5 expye.a & =0.

Recall that we write expye.. € = (5,7, 7¢% + &) on R x [—a,a] x T?. Since 5er u©® = 0, the normal
5—equation for £ has the explicit expression

(A-5-6) Onea £.E:=De(N" +£) = De(n©° + £) — De(©%)
d 0
= 2 4 oo~V ) + VLG =0
s ot

by Claim A.1.3.

Finally, gN:“,feE for the section £ of Ny agrees with 5N+,f5 on F — (=00, —Tp] x S! and with
De(nx + £) on (—oo0, —Ty] x S by Claim A.1.3.

The linearized operators for 3y S e, f.»and F] nee 5. will be denoted by D, D€, and D", Next
we will describe the proper function-theoretic setup for these operators.

A.5.3 Morrey spaces The function spaces that we use are Morrey spaces, following [Hutchings and
Taubes 2009a, Section 5.5]. Let u: F — R x M be a finite-energy holomorphic curve. On F we choose a
Riemannian metric such that the ends are isometric to R/Z x [0, oo) with the product metric. On R x M
we continue to use the R-invariant Riemannian metric from before.

The Morrey space HO(F ,A®1N,) is the Banach space which is the completion of the compactly
supported sections of A%! N, with respect to the norm

1/2 1/2
(A5-7) ||s||=(f. |s|2) +(sup sup o2 |§|2) ,
F xeF p€(0,1] By (x)
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where B(x) C F is the ball of radius p about x. Similarly, %1 (F, N ) is the completion of the compactly
supported sections of N4 with respect to

(A-5-8) €015 = IIVEN + 1IE]I-

Although Morrey spaces are not used as frequently as Sobolev spaces, they satisfy the analog of the usual
Sobolev embedding theorem (Lemma A.5.1) and have the advantage that we only need to do elementary

L?-type estimates instead of more complicated LP-type estimates.

The analog of the usual Sobolev embedding theorem is the following:2°

Lemma A.5.1 There is a bounded linear map

H(F,Ny)— COUF,Ny)NL®(F,Ny), ErE&.

Proof If £ e H1(F,Ny) and K C F is a subdomain, then let us define
§(x) —§O)|

0.1/4 = Su
|E|C K px#yGK |x_y|1/4

The lemma is a consequence of [Morrey 1966, Theorem 3.5.2], which implies?! that, for any compact
subdomain K C F, there exists C 'k such that

1/2
(A-59) fleorax =i s s 572 [ we) < crlel
xeF p€(0,1] B,(x)
This implies that any & € H1(F, N4) is continuous.
Since F has cylindrical ends, we can write F = KoUK; UK, U---, where all the K; are compact

connected subdomains and K1, K», ... are annuli of the form R/Z times a unit interval. For each K;
and x # y € K;, we have

(A-5-10) |E(x) —E)] < Ck, [Ell|x — y"* < C(CHV* €],

where C = max{Ck,, Ck, }, since Cx, = Cg, =--- and C' is the supremum of the diameters of K; for
i =0,1,.... Since £ is continuous, on each K; there exists x; such that

(A-5-11) & (xi)| = |, 2 /vol(K;) < [[Ell«/C”,

where C” = inf; vol(K;) > 0. Inequalities (A-5-10) and (A-5-11) together imply that there exists a
constant ¢ > 0 which is independent of £ and such that |£(x)| < ¢||&||« for all x € F. ad

20The lemma is stated slightly differently from [Hutchings and Taubes 2009a, Lemma 5.3].

2IMorrey’s theorem is stated for a Euclidean ball of radius R, but applies equally well to our setting. We take p =2, v = 2 and
= % in the theorem.

Geometry & Topology, Volume 29 (2025)



3440 Appendix by Vincent Colin, Paolo Ghiggini, Ko Honda and Yuan Yao

Given § > 0 sufficiently small, we define a smooth weight function
gs(x) =1 on F —(—o0o, =Ty + 1] x S,

A-5-12 :F > RT,
( ) gs F— g5(s, 1) = &sHTol for s < T,

Also define the smooth weight function
(A-5-13) hs:RxS!' > R™T, (s,t)»—>e_8(S+T°).

Note that /15 agrees with gg for s <—Ty. We recall that Ty has been fixed once and for all in Definition A.4.1
and (fo). For our purposes we define A := min(A1,|A_1|) and take § such that 5§ < A.

We also define the weighted Morrey spaces H1, g (F,Ny) and Ho,gs (F,A%'Ny) as the spaces of
sections & (of the respective bundles) such that the weighted Morrey norms

(A-5-14) [1€1lx.g5 := 1§ - &5 ll%. 1€ llgs := 1€ - g5

are finite. Observe that, since we are using normal bundles, it is not necessary to use weights except at
the end which limits to the Morse-Bott orbit. The Morrey spaces for N® and N5*® (with and without

weights) are defined analogously.

A.5.4 Linearized operators Let 59 be a smooth section of N4 which is equal to S(—s — Tp)dg on
s < —Tp and is zero elsewhere. We view D as a bounded linear operator

(A-5-15) DS Hy gy (F,Ny) ®R(Dg) — Ho g5 (F, A Ny),  (£,¢39) > D4 (£ + cdg).

The term R(gg) is included since Di is the linearized operator for the Morse-Bott family MMB =
Mﬁfind:l (y; N) with an unconstrained negative end but the infinitesimal deformations parallel to the
Morse—Bott family do not belong to the Morrey space with weights.

We write
(A-5-16) His=Hig(F.Ny) and H z=D5(MHys) CHog(F AN,
and let 5‘1 THys— H’_i_, s be the map induced by Di by restriction.
Let us define
(A-5-17) V= —B'(—s—To)dg.
Then v has compact support in {—Tp — 1 <s < —Tp} and satisfies
D3(0,1) = D4 (3g) = v.

Also observe that v ¢ ’H/+,5 because Di is surjective and ind(D‘i) = 1 with ker Di CH45,and v # 0.
Then we can define the projection

(A-5-18) T: Ho,gs (F, A% ' Ny) — !, g

with v € ker I1. Note that v has compact support in {—Tp — 1 < s < —Tp}, where it can be written as
v =—p'(—s —To)d.
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Remark A.5.2 The domain of Di is the tangent space to the Banach manifold
Higs (F R x M) = {exp, (£) | u € C. § € Higs (F. NI},

where C is the space of smooth embeddings u : F — R x M that agree with holomorphic maps parametrizing
trivial holomorphic half-cylinders near each of the punctures; the positive ends of # and u 4 agree and the
negative end of u limits to \; and N is the Jz-invariant normal bundle to u.

Linearizing (A-5-6), we obtain

9 . 0§
A-5-19 peog =2 4 5
( ) =% 55 T/05;

(H f)(nZME.

where H f¢ is the Hessian of f.

We view D€:® as a bounded linear operator

(A-5-20) D& H (R x ST, NS — Ho(R x ST AGINE®).

Since the normal bundles N€* are trivialized, we can identify the domains and codomains of D® for
different values of € and a. We abbreviate H_ = H1(R x S!, N&%) and H" = Ho(R x S1, AGINE9),
Both D3 and D&* are Fredholm of index 1.

We consider also operators
D&y (R x STUNE®) — Ho (R x ST AN

which have the same expression as D€ but act on the Morrey spaces with weights. We abbreviate
H_s = Hins (R x S, N&%) and H s = Ho,ns (R x ST AGINE®),

Remark A.5.3 Sections § € H_ 5 can diverge as s — +oo and therefore exp,.e..(§) may not be
well defined. This makes the spaces H_ s unsuitable for the nonlinear analysis of the moduli space
containing u€%. However, they can still be used in the proof of Theorem A.2.1 because, for the purposes
of gluing, what happens near the positive end of u:® is irrelevant. The reason we are using the operators
D8 is so that we can take the limit of D€®® as ¢ — 0 and obtain a Fredholm operator D%8 of the
same index in the limit. This would not be true if we worked without weights, as the operators D€®
converge, for € — 0, to an operator which is not Fredholm.

Lemma A.5.4 If §, ap = ao(§) and €9 = €o(8, ap) are sufficiently small subject to 0 < ¢y < §, and
(a, €) € [—ag, ag] x [0, €o], then the operators D% are invertible. Moreover, for a fixed §, the norms of
the inverse operators (D€®%)~! are uniformly bounded on [—ay, ag] x [0, €o].

Proof The operators DES . Hos—>H_ s (including for € = a = 0, which is well defined because Hy
is constant on {y = 0}) are conjugated to the operators
DE™S = DO 4 §1d: Ho — H..
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The operator

s o 0 (146 0
0,068 _ 91 . 9N
b= as+J°az+( 0 3)

is Fredholm because, for § small, its asymptotic operators are invertible. Moreover, D298 has no spectral
flow, and therefore ind(D%%) = 0. Hence D% is also a Fredholm operator of index zero.

By elliptic regularity all elements of ker D08 are smooth solutions of (J r), and from the Fourier series
expansion (A-3-1) we see that no such solution has the correct growth for s — 00 to belong to H_ 5.
Then D%%9 is injective and therefore, having index zero, is invertible. Since

,0,8 0,0,8
IDE2E — D208 g < €C |1l g

for a constant C which is independent of € and a and invertibility is an open condition, for a fixed 8, all
operators D3 are invertible when the conditions of the lemma are met. The uniform bound on the
norms of (D€%%)~1 then follows by the continuity of taking the inverse. |

A.6 Setting up the gluing

The gluing setup will follow [Bao and Honda 2023], which in turn is based on [Hutchings and Taubes
2009a].

Define smooth cutoff functions
(A-6-1) B+.B—:R—[0,1]

such that B4+ + f— =1 and B4+ (s) =0 for s <—T7 and B4+ (s) = 1 for s > —Ty — 1. The cutoff functions
B+ will depend on the parameter » and will be denoted by fl: when we want to make the dependence
explicit. Let us write —T (b) for —T viewed as a function of . Then:

(t3) Ifa > 0is fixed but we take b — 0, then —T7(b) — —oo and we take ,Bft such that |(,3b)/i|C0 -0
as b — 0.

Let ¥4 and ¥ be sections in #4 s and H_ s of sufficiently small norm. The goal is to deform the
pregluing u3’* to

(A-6-2) u? =expyea(B+ Y+ + B-yEY),

and solve for ¥4 and £ in the equation 10 ye.a £ (B+ ¥+ + B-¥E") = 0 when € is sufficiently small.
(Recall the identifications of the normal bundles made at the beginning of Section A.5 that justify writing
B+V+ + %) The solutions will determine functions p¢: [—ag, ag] — R such that

(A-6-3) ON,, f. (B+V+ + B-¥E") = pe(a)v.

Finally, we will solve the equation p¢(a) = 0.
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In the following lemmas we will repeatedly use Taylor expansions of the form

@ $(x) = ¢0) + D Li(x)xi,
(In) $(x) =pO0) + Y 0ipO)x; + Y g4 (X)xjx%
i J.k

for a smooth function ¢: R” — R.

Lemma A.6.1 Over the domain (—oo, —Tg] x S, we can expand

(A6-4) Do g (B4t + B-YE") =Den® + B4 (D4 ¥t + LY, ¥E) + Qp (¥4, YET)
+B-(DEYE + LY YT + Q- (Y. Y ),

where:
(1) D44 =0y /0s+ jodY4 /0t — Hf(n4)Y+.
(2) D&YW =9y /ds + jo oSt /dt — H fe(nS*)yren.

(3) LWy, are linear in Y4 and & with coefficients which are smooth coefficients of {4
and V&%, are supported in [Ty, —To] x S! and (—oo, =Ty — 1] x S, respectively, and satisfy

(A-6-5) L4 (Y4 (x), YE ()| < (e1(@)e + c2(b)) - 1Y+ ()| + [YE(x)]),

at every point x of the domain, c1(a) is a constant which depends only on a, c2(b) depends only
on b, and limy_, c2(b) = 0.

(4) Q4 are quadratic functions of Y4 and ¥€-* with coefficients which are smooth functions of 4
and y¢-°, and there exists C > 0 such that

(A-6-6) Q4 (¥4 (x), ¥4 ()| < C 1Y+ ()1 + [WE () ?)
at every point x of the domain.

(5) L+ =0and Q4+ =0 fors <—T1 and L_, Q_ can be extended smoothly to L_ =0 and Q_ =0
for s > —Ty.

Proof Over the domain (—oo, —Tp] x S, we have

Ines g (B +B_YE") = De(ng + BVt + By <)
by Claim A.1.3. Writing 7% = 1% + B+ ¥+ + B—¥E® we expand

Den® = 219+ Bty +BUE) + o (15 + Btrs + By <)~ V(S + By +Fy ).

Using the Taylor expansion of type (II), we write

VIS + B+ +B-vED) =V + B+ Hfc Vs +B-H fe(nyHIVET— QB Yy, B-vET),
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where Q is a quadratic function of B4y, B_yS* with coefficients which are smooth functions of

B+¥+, B—¥E". Then

ang" 877*
as Jo

(A-6-7) Den®" = ( —Vie(ny a))

3 8 €,a 8 €,a
+B+ (ﬁ-i-Jo——Hf(fHWJr)-i-ﬁ ( WS +Jo %t_ —er(’f—’a)wi’u)

+B+(Hf(n4)—HfeZ N+ +B—(H fe (2 — H fe 12 YET

+BL ()Y +BL()YE"

+Q(B+V+, B-YET).
The right-hand side of the first line is Deny and the second line is B4+ D4y + B_DE <%, Let us
define g(y,0) = ¢(y)gn(6). We write

(A-6-8) c1=|Hglco and c2(b) = max{|B]|co.|B |co}.

Using the fact that 3%, 74 and n€® take values in A4, where H f is constant, for s < —Tp, the terms of
the third and fourth lines can be bounded as follows:

1B ()Y (x) + BL)YE(x)] < c2(B) ([ 4 ()] + [¥E%(x)])
(A-6-9) |B+(H f(n+) — Hfe(™) ¥+ (x)] < €c1B+|¥+(x)].
|B—(H fe(n=") — H fe(ng"NYET(xX)| < 2€c1 B[ E0(x)].

We then set
(A-6-10) LWy, v = (Hf(n3) — Hf-IEN Y+ + (B () V4 + BL()WED),
(A-6-11) LDy, &) = (Hfe(nE®) — HfeENYE + (B4 ()Yt + BL()YED),

and B+ £$)(w+, Y& satisfies inequality (A-6-5). The terms ES}) and £ are not necessarily supported
in[-T1,—To] xS and (—oo, =Ty — 1] x S, respectively, and therefore we rearrange

BrL + B LD =By (B +B LY +B-(Br+BLD =B Ly Yy Y + Lo (Y YD),
where

LWy v =pALY +28,p-£L + B p-c D,

Loy v = B +2B4p-D + 2D,

the same inequalities hold for EEE) and L4 and (5) holds for £4+. However, the constants c; and c; in the

(A-6-12)

statement are closely related to the constants c¢; and ¢, in (A-6-9) but not exactly the same. Finally we
can decompose and rearrange so that

QB+Y+.B-YE) =B Q1 (Y Y ED) + O (V4. YY),
inequality (A-6-6) holds, and (5) holds for Q. O
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In particular, equation (A-6-3) is satisfied on (—oo, —Tp] x S! if the following pair of equations hold:
(A-6-13) Deny® + Dy + Ly (Y, ¥E°) + Q1 (U, Y ET) = pe(a)v,

(A-6-14) DenS® + DEYE + L (Y, ¥EI) + Q- (Y4, ¥E°) = av.

The term av in the second equation is legitimate because v is supported on [Ty — 1, —=Tp] x S where

B_ = 0. It was chosen to make D¢7%" — av small (independent of a) in the sense of estimate (A-7-2).

Remark A.6.2 More in line with the obstruction gluing of [Hutchings and Taubes 2007], equation (A-6-3)

can be split into s
Doy + TI(Deny® + Lo (Y4, ¥ E") + O (Y4, ¥E)) =0,

(1 - H)(Defli’a + 'C+(w+v Wi’a) + Q+ (W—h wi,a)) = Pe(a)v’
DEMIYE 4 (Denfg® —av) + Lo (Y, Y ) + Q- (Y4, Y9 =0,
where IT: Ho g4 (F,A®'Ny) — ’H/+ s 1s the projection from Section A.5.4 and the second equation is

always satisfied.

We say that Q(V4) is type 1 quadratic if it can be written as

QW+) =PW4)+ W) VY,

where there exists a constant C > 0 such that | P (¥4 (x))| < C|¥+(x)|? and |Q(¥+)(x)| < C|¥r4(x)]
at every point x of the domain.

Remark A.6.3 The reason for the different treatment of the term 59 compared to the other infinitesimal
deformations of the map u is that the term B’(s)dy which would appear in (A-6-9) cannot be made
small in Ho g4 (F,A%'N,) by choosing b and € small.

Lemma A.6.4 Over the domain F — (—oo, —Tp) x S, we can expand

(A-6-15) Oy £ (BYE 4+ Brvy) =Dy + Q(W4).

where Q(V+) is type 1 quadratic, and (A-6-4) and (A-6-15) agree along s = —Ty.

Proof Over the domain F — (=00, —Tp) x S', B+ =1, = = 0, u$® = uy and u° = expyce Y =
exp,, V+. Hence ¥ satisfies (A-5-4) with ¥4 instead of ¢ and (0, 1) = (s,t). Equation (A-6-15) then
follows from (A-5-4) together with (A-5-5) by applying the Taylor expansion of type (I) to a, b and X.
The agreement of (A-6-4) and (A-6-15) along s = —Tp is a consequence of the definition of exp,, , for
s < —Tp. O

A.7 Proof of Theorem A.2.5

In this subsection and the next, we use the convention that constants such as C, ¢y, ¢2(b) may change
from line to line when making estimates. Recall that

(A-7-1) A= min(A1, [A_1]) > 56.
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Lemma A.7.1 There exists a constant C > 0 such that

(A-7-2) [Dens® — av|gy < CeCMT2E) e85,

Proof By Lemma A.4.4, it suffices to estimate || Dens®||lgs on [=T2, —T2 + 1] x St and [-T1, —To] x S*.
We will use the simple fact that the Morrey norm of a continuous function on a compact domain is
dominated by the C° norm.

First we estimate Deny® — av on [—T5, —T» + 1] x S, where v = 0. By the definition of 7%°

(equation (A-4-4)) and (Jy,), and with the understanding that all maps and norms are restricted to

[~T>, —T>+ 1] x S! (on which fe(y,0) = 1y2 +€gn(0), Vfe = ydy + €dg and Dy is linear), we have
De(1%®) = De(n®) + B(s + T2)Do(n+) + B'(s + T2)nt = B'(s + T2)n+

and therefore

< C =M (T2()=To) < Ce8—MT2(e)

o0
D cietitgi()

i=1

(A-7-3) IDen’ llgs = C

85

Next we estimate Deny* —av on [T, —Tp] x S. The restriction of 15 to [-T7, —To] x S takes values
in the region where V f¢ no longer has the simple expression which leads to (Jz, ), but from (A-1-2) we
obtain

(A-7-4) De(ny®) = Do(ns") —eVg (e,

where g(y,0) = ¢(y)gn(6). By the definition of 5 and v, equation (A-7-4), and with the understanding
that all maps and norms are restricted to [T, —Tp] x S, we have

d s+To
3 (,3 (m)(o» e(s+ Tl)))

< CeTleSTl.

Estimates (A-7-3) and (A-7-5) imply estimate (A-7-2). O

(A-7-5) | Deng®+ B (—=s—To)-(0,a) g5 <

+€llVemylgs

&8

Remark A.7.2 Since Deny® + B/ (—s — To) - (0, a) is supported in (—oo, —Tp] x S, where g5 and A
coincide, we can also regard it as an element of H’ s With norm

IDens® + B'(=s = To) - (0. a) [y = Den® + B' (=5 — To) - (0. 1)l g

Let (5‘1)_1 be the inverse of 5‘1, viewed as a map to the orthogonal complement Hi s of ker 5‘1, and
let (D€®%)~! be the inverse of D™ Recall that the norm of (D€%%)~1 is uniformly bounded in €
and a by Lemma A.5.4. Let

(A-7-6) B4 = closed ball of radius € in ’Hi’ 5

(A-7-7) B— = closed ball of radius € in H_ g,

where the small constant € > 0 is to be determined more precisely later.
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LetZy: By xB_ — Hi g and I_: By x B_ — H_ 5 be maps given by

(A-7-8) T (4 ¥ &%) = (D) IUFL (4. ¥ <),
(A-7-9) I (Y4, Y& = =(DES) T (Fo (P4, ¥E)),
where
car . | Den + Lo (Y, &) 4+ Qy (Y ¥EY)  on (—o0, —To] x ST,
Fr ey = {Q(W+) on F — (—oco, —To] x S1,
cay . | Denst —av + LoV, ) + Q- (Y4, ¥EY)  on (—oo, —Tp] x S,
Py )'_{0 on [-Tp, 00) x ST.

Here the definitions of Fy (¥4, ¥€%) agree on {—Tp} x S! by Lemma A.6.4 and the definitions of
F_ (Y4, ¥&") agree on {—Tp} x S! by Lemmas A.6.1(5) and A.4.4.

Solving (A-6-13) and (A-6-14) is then equivalent to solving the equations

(A-7-10) Vi =T (Y4, <),

(A-7-11) SO=T_ (Y4, Y.

The following two lemmas provide the necessary estimates to apply the contraction mapping theorem to

(A-7-10) and (A-7-11).

Notation A.7.3 We will sometimes write

(A-7-12) [ P RE N [PPIY O I PP

depending on the context.

Lemma A.7.4 If (Y, yS%) € By x B_, then

(A-7-13) [|Ze (W1, V&) w5 < CeCPT2E ey (5)e T O 1 (cretea®) (V4 |l w,gs + 1V E ws)

+ CUA gy + 1V 12 ),
where c1 is constant and limy_,q c(b) = 0.

Proof We will carry out estimates on the (—oo, —To] x S! portion, with the understanding that the norms
are restricted to (—oo, —Tp] x S, where gs = hs. (This justifies the use of the weight g throughout
the proof, even where one should expect /15.) The estimates on the F — (=00, —To] x S portion, which
involve only 74 and ¥4, are straightforward and are left to the reader.

By the definitions of Z (Y4, ¥&%),

(AT-14) 1 Ze (Y4 ¥ EDlngs = C(IDenx — avligs + 1L (W, VED) g5 + 1Qx (W, VEN) I g5)
since (Eﬁr)_l is bounded, (D&%%)~! are uniformly bounded, and I1(D¢7«) = [I(Deny — av).
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We will make frequent use of the estimate

(A-7-15) 1€lco = ClIE]l+,gs

which follows from Lemma A.5.1 and |||« < ||| «,¢5 since gs > 1.

By (A-7-2),

(A-7-16) [Dens® — av|gy < C(eC T2 L eTy8T,

Next, since L4 satisfies estimate (A-6-5),

(A-7-17) LW+, YED) g5 < (1€ + 2D (1Y+lgs + 1P g5)-
Finally, since Q1 satisfies estimate (A-6-6),
(A-7-18) [Qx (V4. ¥ o gs < C(V+lcollV+llgs + ¥ E ol E Ml gs)

< CUY+lwgs 1V lgs + 1 g5 1S M g5)-

using estimate (A-7-15). We explain the first line of estimate (A-7-18). The first term of the Morrey norm
is the weighted L2 norm, and we can bound

/. 310+ (W4, ¥EM? < [ G2C2 (Y |* + [vetlh)
F F

<C?y 2, [F Bl P+ C2ly o2, /F 2y,

1/2 1/2 1/2
(/_g§|9+<w+,wi’“>|2) sC|w+|co(/,g§|w+|2) +C|W5’u|co(/_g§|wi’a|2) .
F F F

The bound for the second term of the Morrey norm is similar, since it is of L? type.

Estimates (A-7-14) and (A-7-16)—(A-7-18), together with estimate (A-7-14), give estimate (A-7-13). Here
we are using the trivial observation || - [|g5 < || - [|%,g5- ]
Lemma A.7.5 If (Y4, V%), (Y4, ¥ &%) € By x B, then

(AT-19) e (W, YD) =T (Y, YE a5 < (c1e+02(D) FCEOIY =Vt gy TV E =V E L y)-

Proof Again we carry out the estimate on the (—oo, —Tp] x S! portion, with the understanding that the
norms are restricted to (—oo, —Tp] x S, and leave the estimate on the F — (—oo, —Tp] x S portion to
the reader.

In the following equation © 4 stands for either 5‘1 or D&%%_ We have
T (Y4, &) =T (Y4, YE°)
= =D (L. ¥ = LW YED) + (Qe (Y. Yo — Qi (V4. YD)
By (A-6-10), (A-6-11), (A-6-12), as well as an analog of estimate (A-6-5), we have
1L£ W, WED) = LL (P, YED) [lgs < (c1€ + 2D (V4 — Yt gy + 1WET = PE0Igy)-
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By Lemma A.6.1(4), Q+ (¥4, ¥%) is a quadratic function of ¥, €% with uniformly bounded coeffi-
cients which are smooth functions of v, ¥ €-%. Therefore

” Q:l: (W—h Wi’a) - Q:l: (]Z-‘r? &i’a)||88
< C(1Y+ = V+lco + WE =¥ co) [Vt llgs + 1V E gy + 10+ llgs + 150 lgs)-

Combining the two estimates and using (A-7-15) and || - ||g5 < || - ||+,g5, We obtain estimate (A-7-19). O

Proposition A.7.6 There exists € > 0 sufficiently small that, for all b, ag and €9 = €g(ag, b) sufficiently
small (in particular satisfying (7)) and for all (a, €) € [—ag, ag]x (0, €o], there exists a unique (Y4, %) €
B4 x B_ satisfying

(A-7-20) i+, 98 =¥+, -4,y =y~

Moreover, the solutions of (A-7-20) satisfy the estimate

(A7-21) 19+ lesgy + 19 iy = CCDTO 4 Ty (5)edTI®)),

Proof LetZ = (Z4+,7-): By x B — ’Hi s X H—s. Lemmas A.7.4 and A.7.5 imply that, for
sufficiently small €, there are sufficiently small constants b, ag and €9 = €o(ag) such that, for all
(a,€) € [—ap, ag] X (0, €¢], we have estimates

(A722) e (Wi, YY) s < CO™MT2O L ey (b)eSTVO) 4 L(|[yy [lags + 1V E i),
(A-7-23) IZ (Y W) = T (U YED s < F UV — Yt llergs + 1V E = VE i)

and 7 is a contraction of By x B_ (for the metric induced by the sum of the norms). Then the contraction
mapping theorem implies that there is a unique pair (Y4, ¥$%) € B4 x B_ such that Z(yr, ¢ &%) =
(¥4, ¥©%). Finally, estimate (A-7-21) is obtained by plugging (A-7-20) in (A-7-22), rearranging the
terms, and renaming the constant C. |

Proposition A.7.6 produces, provided b, ag and €9 = €g(ap) are sufficiently small, a map

Ut = expyea(B+ v+ + f-y<T)

for all (a, €) € [—ag, ag] X (0, €¢] and a continuous function p. : [—ag, ag] = R such that 51_/.6 Ut =pe(ay
for all € € (0, €g]. Moreover, by (A-7-2) and (A-7-21),

[pe(@) —a] < C([Ipe(@v —avllg,) < C(1ds, uS* =8y, us gy + 18, 15" —av|gy)
= C1Y+llx,gs + 1V E N ,ns) + CUDeny® — avlgy)
< C(e(S—k)Tz(E) +eTy (b)eSTl (b)).

In order to bound ||§Jf€ Ut — 5er uy"|lgs we used Lemmas A.6.1 and A.6.4 and (A-7-21).

If €¢ is sufficiently small, then pe(—ap) < 0 and pe(ap) > 0, and therefore pe has an odd number of zeros
in the interval [—ag, a].
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A.8 Proof of Theorem A.2.6

From now on, until the end of the appendix, we fix a b such that Proposition A.7.6 holds. Therefore, from
now on, b and Ty (b) are to be considered constants.

Remark A.8.1 In [Yao 2022b], the strategy for the proof of Theorem A.2.6 is slightly different: one
can actually differentiate the 1-parameter family of functions €% with respect to a to show that pe(a) is
C!-close to a and hence that the zero is unique.

Arguing by contradiction, suppose there are sequences {k; }72 ., {€; }7,, {u®}72, and {v/ |72 (with a,
b, ¢ and €’ small but fixed) such that

(1) ki >0ande¢; — 0,

(2) u€i, v (F,ji)—>RxM are d J,.. ~holomorphic and are not related by R-translations in the target
(and possibly the domain), and

(3) u€ and v€ are k;-close to breaking into #4 and a cylinder over 7:;" .

After translating the 4 and v€ in the target and possibly in the domain, we can find 77 > 0 such that
U |(—oo,—1] @nd V! |(_oo,—7,] have image in R x [-b — €', b + €'] x T? and u®i |s—_r, and v |s—_r,
have image in R x [b, b 4+ €'] x T2. On (—o0, —T1] x S we write

usi(s, 1) = (s, 6,7" " (s,1)) and vi(s,1) = (5,2, 0" (s,1)).

Recall that 7 and "' satisfy (A-1-3), which we repeat here:

an an
—+ \V, =
95 Oal fe(n) =0.

and n”ei to any cylinder [T (¢;), —T1] x S ! such that their images are in B, then

€i

If we restrict n¥

(A-1-3) specializes to (J fq) and their difference € (s, 1) = n*" (s,1) — g (s, t) satisfies the linear

equation (Jr):

acei
as

Next, by the definition of «;-close to breaking and estimates on derivatives in the proof of Gromov—Hofer

(A-8-1)

—ArGi =0,

compactness, after applying the relevant translations in the domain or in the target and passing to a
subsequence, we can choose a sequence T, (€;) — oo such that —T(¢;) < —T and there are rough initial
estimates

(A-8-2) 165 (=T1 = D2 < cexiv 159 (T3> < cxi,

where ¢ > 0 is independent of ¢; or ;.

Normalization We normalize u€ so that, at s = —T7, the g term of the Fourier series of n“ei is equal to
(b, 0) and the go term is equal to (0, i, ), where he, — 0 as i — oo. This is possible because " (=Ty),
before normalization, is close to (b, 0) and the g¢ term in the Fourier series for the negative end of v
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vanishes. Similarly, we normalize v by translating slightly in the target R-direction, so that the g; term
of ¢€ is zero.

Definition A.8.2 An element of ker Dﬁ_ or ker D€i-®8 (from Section A.5.4) is a nontranslation element
if it is nonzero and does not correspond to an R-translation of the domain or target.

A sufficient condition for detecting a nontranslation element of ker Di is given in Lemma A.8.6 in terms
of the coefficient of g; in the Fourier expansion.

Idea of proof The idea of the proof is to start with v¢/ —u® for €; > 0 small and construct a nontranslation
element of ker Dﬂ_ or ker D€:%% (taking a = 0 suffices) by damping out and inverting the error. The
damping out occurs on a long neck region [—T3(¢;), —T1] x S! (with —T3(¢;) defined later) that is
mapped to B by n”ei and r;”ei. The Di and D08 cases respectively correspond to Cases 1 and 2 below.
(There is a slight complication in the DEi-98 case, which will be explained in Case 2.) The existence of a
nontranslation element is a contradiction.

By (A-8-1), £ [[_15(¢;),—T1]xs1 can be written as a Fourier series
o0

(A-8-3) (i =3 difetig ).

Jj=—00
We write (-)_, (-)o and (- )4 for the L2-projections of (-) = ¢€ etc to the negative, null and positive
eigenspaces of A, and write (-)(so) for (-)|s=s,. By our normalization we may assume that d f 1 =0.
Lemma A.8.3 Fix T| € [T1 + 1, T,(¢;)]. Forall s € [-T{,—T1],
(A-8-4) 165 ®) 2 < 185 (=Tl -*¢FT,
(A-8-5) 125 ()12 < 165 (=Tl - e HEFTD,

where A = min(A1, |A—1]) and L? refers to the L*-Sobolev space with one derivative.

Proof We prove the first inequality. By the Fourier expansion (A-8-3) and Parseval’s identity, we have

€ 2 _ 2 2y ,22; € 2 2A(s+T1) _ 2 2y,2(A=A;)T1+2A
||§+(5)||L%—Zdj (L+27)e™%, I8 TI)HL% e~ T _Zdj (1+247)e ADTi+2As
Jj=1 j>1
Then (A-8-4) follows from the inequality

e)LjS < €(A_A'i)T1 +AS’

which holds for j > 0. To prove this inequality we divide the second term by the first and observe that
eP=2)(T+9) > 1 because A —A;<0and T +s <0.

Geometry & Topology, Volume 29 (2025)



3452 Appendix by Vincent Colin, Paolo Ghiggini, Ko Honda and Yuan Yao

Now we prove the second inequality. We have

1672 =Y dF A+ DS, e (=TI, e 2T =3 TP (1 427)e 2R WT=2As,
Jj<0 j<0

Then (A-8-4) follows from the inequality

hiS < o= FDT{=As

which holds for j <0 because A +1; <0and s + 7] > 0. O

There are two cases to consider:
(D) g (-Th—1)+ é‘i (-7 — D”L% > || (—Tz/(fi))”L% holds for infinitely many indices i, or
2 15 (T =) + L (=T1 =) 12 = 88 (=T3(€)) ] .2 holds for infinitely many indices 7.
Note that the two cases are not mutually exclusive.
Case 1 Up to extracting a subsequence, we assume that, for every i,
(A-8-6) 156/ (=T = 1) + 5§ (=T1 = Dll 2 = 184 (= T3 ()l -
By (A-8-5) with T{ = T;(¢;) and s = —T1 — 1,
(A-8-) 185 (=T = Dllg2 < 182 (<T3(e) |z - HTETTHD
< g6 =Ty = 1) + L5 =Ty = Dl 2 - HETEEFTIHD,
Let £ = (£7',&5) € Hi,g5(F, Ny) @® R (dy) be such that

. _ o e ' o o .
o on F—(—o0,—T1]x S, &% =¥ —p*"', where u€i =exp,, N7, v =exp,, ¥, and g
and 7°" are viewed as sections of the normal bundle N to 1 ;

e on (—oo,—T;]x ST, &€ :ﬂ(S+T1+1)§§(s,t)+§Si(s,t)+§i(s,t) and SE" = (G)i'

Recall on the negative end of u we are identifying Ny ~ TA, ~ R? with coordinates y, 6. As before,
B:R — [0, 1] is a nondecreasing function such that 8(s) =0 if s <0 and B(s) = 1 if s > 1. Informally,

we are damping out the £¢ term to zero for s < —T7, under the condition that it is much smaller than
€;

o+ ats =—T.

Notation A.8.4 We denote the norm on R(gg) by || - [|o and the norm on 1 g4 (F.N1) @ R(gg) by
1€ e = 15T 15,5 + 1185 [lo-

Lemma A.8.5 There exist constants C; > 0 with lim; 4o C; = 0 such that

1D g5 < Ci(IEY 14,5 + 15 llo) = GillES .
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Proof On (—oo, —T1] x S!, we use the fact that Di{ii =0 for * = —, 0, 4, to bound the contribution
to ||D‘j_§€i ||¢s from above as follows:
(A-8-8) [ DE(B(s +T1+ DS (5.1) g5

= B'(s + T1 + DEE (s, 1) | s

<C( sup gsIEE ()2 + sup g5 ()18 (s) o)

s€[-T1—1,-T1] se[-T1—1,-T1]
<C s @I
se[-T1—1,—-T]

< Cgs(=T1 = D[S (=T1 = D2
< Cgs (=T TN L8 (T — 1) + L5 (=T = D2
< CHTTEDFID(If | gy + 1185 [o)-

The first line to the second follows from the definition of || - || (equation (A-5-7)) and an easy C °-bound of
the right-hand term of the definition of || - ||; the second line to the third uses a standard Sobolev inequality
(ie there is a bounded inclusion map L%(S 1y — C%(S1)); the third line to the fourth follows from (A-8-5)
applied to T = T1 + 1; and the fourth line to the fifth uses (A-8-7). The fifth line to the sixth follows
from

161 1e.gs = 167 I[— 7y 1~y 1x51 g5 = IS N7 —1 ~ Ty s e,

1/2 1/2
ZC/ /g2|c€"|2) +C(/ [g2|vsz|2)
([—Tl—l,—Tl] Sl §+ [—Tl—l,—Tl] Sl § +

> Cgs (=T (165 (=T1 = Dll> + IVEE (=T1 = D|2).
On the other hand, writing || - ||, and || - ||, for the restrictions of || - ||¢, to F — (=00, —T1]x S! and
[~T1,—To] xS, writing vé = exp,,e; (P_lgei) on F—(—o0, —T1]x S, where P is the parallel transport
of the appropriate bundles from u€ to v, and using the fact that

EG = £ 4 B ES) 4 Q(E€),

where B(n*i , £5) is bilinear in 7% and £ and Q(£€) is quadratic in £, both with coefficients which
are smooth coefficients of 7% and £ , the contribution to || Dié € |l gs on F’ is bounded above by

IDYE NIy, = I DEET — Py, expye (PTHED) |,
< | DL€ — PDJe PTUE gy + | P(Dje PT1ET =3y, expyer PTIE) |,
+11P@y,,, expye PTUET =0y, expya PTEDl,
< GillE Iy gy < CilllET s + 185717 g) =< Ci(1ET 1,5 + €T TONIET o),

where lim; o0 C; = 0. (Recall that b and T} (b) are constants that were fixed at the beginning of
Section A.8.)

The two estimates together imply the lemma. O
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In view of Lemma A.8.5, inverting the error using (Di)_l (as before the image of (Di)_l is L2-
orthogonal to ker D‘j_) yields
(N =¢ - (Di)_l(Dﬁ_EE") eker D¢,
so that [|E€ ||, > ||(Di)_1(Di§€i)||., which implies that (§/)€ # 0. We define
R O (0
- GOLE S
16 )< Il 1)< Il

Lemma A.8.6 There exists a nontranslation element of ker Di.

Proof So far we have constructed sequences {Eei} and {(5/ )€} such that
(1) the Fourier coefficient relative to gy is d 16 i =0 for all gei ;
@ 1EH . =1
(3) (€) eker D% ; and
@) [I(E)S —&Si]ls — 0asi — oo.

Since ker Di is finite-dimensional, the unit ball of ker Di is compact and, after possibly passing to
a subsequence (£')€, converges to a nonzero &’ € ker D‘i. Then (4) implies that ||£€ — £’[|, — 0 and
therefore, from Lemma A.5.1, we obtain &€ (—=77) — £'(—Ty) in C. This in turn implies that dj' — dj,
where d f " and d{ are the Fourier coefficients of g in §€i and &’; this is because the Fourier coefficients
can be extracted by integration. Hence d] = 0.

Finally we explain why d; = 0 implies that £’ is a nontranslation element: Recall that u (s, 1) =
(s, 1LY 72 c,-ekisg,- (t)) with ¢; > 0 at the negative end (see the beginning of Section A.4). Let u9 be
the translate of u4 by o € R in the symplectization direction. Then, at the negative end,

[e.¢]
u%(s.1) = (s +o.1.) ciehity (t)),
i=1
or, after the change of coordinates (s + o, ¢) + (s, t) at the negative end of F,

o0
ug (s, 1) = (s, , Z cieti= g, (t)).

i=1
Then a translation element is a nontrivial multiple of the projection of du9 /d0|s=o to the normal
bundle Ny, ie —> jo, ciAie*iSgi (1), and has nontrivial g (r)-coefficient. |

The existence of a nontranslation element of ker Di is a contradiction.

Case 2 Up to extracting a subsequence, we assume that, for every i,

(A-8-9) 166" (=T1 = 1) + ¢ (=T = Dl 22 = 89 (=T3(&)) 2.

Let —T4(¢;) < —T3(€;) < —T,(€;) be such that T3(e;) — T, (€;), Ta(e;) — T3(€;) — oo as i — oo and
Imusmrye) C{=6 SO = —g +xi}. ImuSlmrye) C {5 -k <0 < -5},
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where Im denotes the image. Using (A-8-5) with T] = T3(¢;) and s = —T»(¢;), we have
(A-8-10) 185" (= T1 = D)+ ¢§ (<71 = D) 5 = CHTTEOTTEN 15 (T3 () | ..

Complication There is one complication. By (A-1-3), the 5—operator D, is linear on —% <6<-1
u€i

with respect to (y, 0+ %), because g\ (0) = C (9 4 i), and each of n = *“,

an . dn m
Deill = — + jomr — =0,
@l =5 Ty, (Gic(ﬁz+%)

where n = (91, 12), ie 11 is the y-coordinate and 7, the 6-coordinate of n. Hence ¢ (s, ) admits a

satisfies the equation

Fourier expansion at the negative end whose leading term has the form (k;e®, k; »e€C%) for constants k;;

and k;». However, a section with growth rate e<Cs

as s — oo is not in Hj p (R x S1, N€:9) since we
have been assuming that 0 < ¢; C < §; in fact, €; — 0 while § is constant. To circumvent this difficulty
we switch to

DOy (Rx STUNGO) - Hyp  (Rx ST ACINGO),
where § > 0 is sufficiently small. The analog of Lemma A.5.4 also holds for /i_g, ie the operators D€i:0-—%

are invertible with bounded inverses that are uniform with respect to ¢; .
Let £€ be the section of the normal bundle N€-% = T4, to u€-? such that
o £€ =(% on (—o0,—T3(e;)] x ST,

o EP=(1-BG+T1+1)EE (s, )+ (1-B(s+T3(€))) (5o (5,1)+L5 (5, 0)) on [=T3(ei), =T1]x S
(here we write {4, {o, {— for the L2-projections of ¢ to the positive, null, and negative eigenspaces
of A); and

o £ =0on[-T1,00) xS
Informally, we damp out ¢ to zero for s > —T; and é‘ff + é‘jf to zero for s > —T3(¢;) + 1 so that the
damped-out ¢¢ dominates. By the previous paragraph, £ € H; 5 (R x S', N€-9). Also DEi-0-— 3 gei
has support on
(A-8-11) {—=Tu(e;) <s <—-T3(e;)+ 1} U{-T1 — 1 <5 <-T}.

One can compute, using (A-8-11), estimate (A-8-10), the method of estimating (A-8-8), and the error
estimate between D% ~% and the actual normal 9 J,.. ~operator, that

| DO ||, E ey

Hence inverting the error using (D% ~%)~1 yields

(Sl)ei — gei _ (DS,O,—S)—I(DS,O,—SEG[) e ker Dij,O,—S’
so that [|£9 ||, p_, > [(DE-0—8)"1(D&-0=8g<i)|, -, which implies that (£')€/ # 0.
The existence of a nontrivial element of ker D€i:0-—8
of Theorem A.2.6.

contradicts Lemma A.5.4. This completes the proof
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A.9 How to recover the contact case

In this subsection we explain how to recover the contact case from the stable Hamiltonian case. The brief
idea is to start with the stable Hamiltonian case for which Morse-Bott gluing holds, perturb it to the
contact case, and use the bifurcation method to establish Morse—Bott gluing in the contact case.

Let a and ¢ be the positive numbers satisfying 0 < b < a < ¢ < 1 introduced in Section A.1 and subject
to the conditions (1) and (f1). Recall the smooth functions

fife [F1L1]xT* >R
given by (A-1-2).

Warning A.9.1 The following have different meanings in this subsection from the previous subsections
of the appendix: the real parameter § in this subsection is unrelated to the weight appearing in the Morrey
norms, and the functions g, &, gg and hg appearing in this subsection are unrelated to the functions with
the same names appearing in the previous subsections of the appendix.

‘We then define smooth functions
g h:[-1,1] >R,
such that

(i) g isodd,

(i) g(y) =0on [—a,a],
(iii) g’(y) >O0on (a,1] and [-1, —a),
(iv) g(y)=yony=candy=<-—c,
(v) h(0) =0, and

vi) h'(y)=g'(y)af/dy =g'(y)y.
In particular, 2(y) = 0 on [—a, a].
We define differential forms
(A-9-1) a=dt+h(y)dt+g(y)db, w=df ndt+dyrdb, we=dfeAdt+dyndo
on [—1,1] x T?2. (Here without loss of generality we are suppressing some constants that appeared
in (4-1-1).)

Claim A.9.2 The pairs (o, w) and («, we) on [—1, 1] x T? are stable Hamiltonian structures.

Proof It is immediate that dw = dw, = 0.

Next we show that ker do D ker w and ker do O ker we. We have

doa=h'(y)dy ndt + g'(y)dy ndB = g'(y)g—]; dy ndt + g'(y)dy nd6.
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On —a <y <a, da =0 and hence ker da D ker w. Outside of —a < y <a, g’(y) # 0 and

3 _9f 9

kerdo = R<§ —$@> =kerw.

Moreover, outside of —a <y <a, fe = f and w = w.

Finally,

aAw=aAwe=dt Ndy NdO >0

on —a <y <a and

0
oc/\a)=oz/\a)e=(1+h(y)—g(y)%)dt/\dy/\d9=(1+h(y)—g(y)y)dt/\dy/\d9

outside of —a <y < a. By (vi), (h(y) —g(y)y)" = —g(y). Since |g(y)| < 1 except when y = 1,
1+h(y)—g()y>0.

Hence (o, w) and (o, we) are both stable Hamiltonian structures. |

Claim A.9.3 (Al) On[—a,a]xT?,

(A2)

(A3)

(0, 0) = (dt,df Adt +dy AdB), (a,wc) = (dt,df. Adt+dy Adb).

On ([—1, —a) U (a, 1]) x T2, the stable Hamiltonian structures (o, ) and («, we) agree and do is
a positive function g’(y) times ® = we.

On ([—1, —c) U (c, 1]) xT?,g'(y) =1, and (o, w) and (a, w¢) are contact.

Proof This is immediate from the definitions and the proof of Claim A.9.2. |

In view of Claim A.9.3, there exists an extension of (&, ) = (&, w¢) to (o, der) on M — ([—1, 1] x T?).

(In practice, we start with a contact form « on all of M and modify it to the stable Hamiltonian structures
(o, w) and (o, we) on [—1, 1] x T2.)

Let Jr and Jy. be almost complex structures on R x M such that

(A4)

(A5)
(A6)

on the complement of R x [—a,a] x T?, J s and Jyr. agree and are adapted to the same contact

structure;
on Rx[—1, 1] x T2, 7 ' and Jy, are adapted to the stable Hamiltonian structures (&, ) and (o, we);

Jr is Morse-Bott regular, Jy, is regular (at least for the moduli spaces that are involved in the
Morse—Bott gluing), and the pair satisfies Morse—Bott gluing (ie Theorem 4.4.3(2)—(3)).

The existence of such J and Jy_ follows from Theorem A.2.1.

The key point is the following lemma, which allows us to perturb to the contact case:
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Lemma A.9.4 There exist almost complex structures J ]’, s andJ ]’,e s thatare C _close to J s and Jy_ and
contact forms aé and ozg s that are C L_close to o (here the size of the perturbations depend on § > 0) such
that:

(1) On the complement of R x [—c,c]x T2, Jy, Jy,, J}S and J’e s all agree.
2) J ji s and J JLE’ s are adapted to ag and o, s> Tespectively.

(3) The stable Hamiltonian vector fields corresponding to Jy and J f/ s (and those corresponding to J,
and J JQE s) are parallel.

4) OnR x[—a,a]x T2, oz(’S and oe; 5 are as given in (4-1-1) and (P1)—(P4) in Section 4.1 with C =1

and J}S and J}e s satisfy (x) in Section 4.2 and (*x) in Section 4.4.

Proof For § > 0 small, let g5: [—1, 1] = R be a smooth function which is a perturbation of g such that
(i) gs is odd,
(i) gs(y) =dy on[—a.a],
and (iii) and (iv) still hold. We define
ay =dt +8(fdt +ydb) if y €[—a,a],
a s =dt+8(fedt +ydo) if y €[—a,al,
oy = 0‘2,8 =dt +hs(y)dt + gs(y)do if y ¢ [—a,a],

and h(y) = gg(v) df/dy for y ¢ [~a,a] and hs(+a) = §f(+a). If ¢ > a, then it is not hard to see
that we can choose gg such that hg(£c) = h(%c). Then (oz(’g, w) and (a;, s> @e) are stable Hamiltonian
structures corresponding to contact structures, and are close to («, ) and (o, we). (Strictly speaking,
dog = ¢ and da;,g = ¢rw for some functions ¢ and ¢».)

We verify the contact property for Ot:s and ozé s: Fory € [—a,a],
ag Aday=(1+8f)dt ASdy df+8ydo ASdf dt >0,

since we are assuming that § > 0 is small. Similarly, & 4 is contact by replacing f by fe on [~a,a]. For
y ¢ [—a,a], o5 = ac s and

agAdag = (1+hs)dings(y)dy dO+gs(y) dOnhg(y) dy dt = g5()[(1+hs)—gs(y)yldt dy d6 >0
as in the proof of Claim A.9.2.

Let J JL s and J }6’ s be the corresponding adapted almost complex structures that are close to J¢ and Jy,

and subject to the condition that the projections of J ]’, slkera’ and J }e slkeray to [—1,1] x (R/Z) with
coordinates (y, 8) is the standard complex structure d/dy + d/96.

The C!-closeness and (1)—(4) are immediate from the construction. O
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For the next lemma we introduce the following notation:

Notation A.9.5 If M is a moduli space of J-holomorphic curves in a symplectization for a cylindri-
cal almost complex structure J, we denote by M:=M /R the quotient of M by translations in the
symplectization direction.

Lemma A.9.6 There exist § > 0 sufficiently small and €y = €o(§) > 0 such that Theorem 4.4.3(2)—(3)
hold for any € satisfying 0 < € < €9, with Jy and J¢ replaced by Jf’5 and JJQ 5

Proof Consider the / = ind = 1, unconstrained, Morse—Bott regular moduli space MI =ind=1(y: \)
from Section A.1. Then M§ ', ind=1

is small, then J } s 1s also Morse-Bott regular since it is close to J and

~ I =ind=1 I =ind=1
(A-9-2) My T N = My T (),

where ~~ indicates a bijection. (If signs were done carefully, they would be preserved by the bijection.)

(¥; N) consists of a finite number of holomorphic maps uy. If6>0

Next, there exists € > 0 small such that Jy, is regular (after possibly perturbing Jy) and there exists
8 = 8(¢) > 0 such that J f s 1s close to Jy, and hence is regular and

~ I =ind=1 ~ I =ind=1
(A-9-3) My e =My (e,
where e is the negative elliptic orbit obtained by perturbing the Morse—Bott family. Also, for the same

€ > 0 small, the Morse—Bott gluing theorem in the stable Hamiltonian case (Theorem A.2.1) gives a

bijection

~ I=ind=1 ~ I=ind=1
(A-9-4) MJf (y:N) ~ MJf (v.e).
Combining (A-9-2), (A-9-3) and (A-9-4) gives

~ I =ind=1 ~ I =ind=1
(A-9-5) My, Ny =My o (y.e)

for some € > 0 small and § = §(¢) > 0 small. The difficulty is that we want € to depend on &, not the
other way around.

To remedy this we start with €; > 0 small, choose § = §(€1) > 0 small such that (A-9-3) holds with € = €1,

and apply the bifurcation method to the 1-parameter family { 8}66(0 ¢;]- We may assume that J el 8 is

regular and that {J 8}66(0 €] 18 regular as a family. By (A-9- 2) (A-9-5), ./\/lJ/_md !

finite number of holomorph1c maps (up to translation in the target) that are close to breaking and is in

bijection with ./\/lﬂf ind= 1( s N).

We claim that, for €; and § sufficiently small,

~ [ =ind=1
#MJ; H; (y,e)= #M.I]/ mds 1(y,e) mod 2

(y.,e) con51sts of a

for all € € (0, €1]. To this end we consider the 1-dimensional parametric moduli space which, slightly

~ [=ind=1

abusing notation, we denote by ]_[ee(O al My A (¥, e). Note that the Reeb orbits do not vary as €

varies by Lemma A.9.4(2). The claim is a consequence of the following claim: For €; and § small there

isno ug € 8(]_[66(0 al Méf nd= 1(y, e)), where u¢ is a limit J]’,g’s -holomorphic curve/building for some
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€ € (0, €1). Arguing by contradiction, suppose there exist sequences {(§;, €;)}7>, and {ug, 72, such that
(i, €;) — (0,0) and ug, converges to a J¢-holomorphic limit curve u which is
(i) a 2-level holomorphic building ; U ti,, one of whose components — say 71 — satisfies /(1) =
ind(it1) = 0; or

(i) a multiple cover of a holomorphic map v with /(?) = ind(v) = 0;

and neither can occur since u is Jy-holomorphic and J is regular. a
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