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1 Introduction

LetM be a closed, oriented, connected 3-manifold andN �M the complement of a tubular neighborhood
of a null-homologous knot. The goal of this paper is to associate a specific class of contact forms ˛ to N,
to introduce relative embedded contact homology groups ECH.N; @N; ˛/ and bECH.N; @N; ˛/, and to
prove their isomorphism with the embedded contact homology groups ECH.M/ and bECH.M/.

The embedded contact homology group ECH.M/ of a closed 3-manifold M, due to Hutchings [2002]
partially in collaboration with Taubes [Hutchings and Taubes 2007; 2009a], is defined using a contact form
˛ on M and an adapted almost complex structure J on the symplectization R�M. The variant bECH.M/,
called ECH hat, is defined as the mapping cone of a U -map (see Section 2.5). There is currently no direct
proof of the fact that these groups are invariants of M ; the only known proof, due to Taubes [2007; 2010],
is a consequence of the isomorphism between Seiberg–Witten Floer cohomology and embedded contact
homology, combined with the invariance of Seiberg–Witten Floer cohomology established by Kronheimer
and Mrowka [2007].

Embedded contact homology groups can be defined over the integers, following [Bourgeois and Mohnke
2004] or [Hutchings and Taubes 2009a, Section 9]. All results in this article hold over the integers as
explained in Proposition 4.5.5 and Remark 9.9.5, but we will write detailed proofs only over the field
F D Z=2Z for simplicity. Given a compact 3-manifold N with @N ' T 2, let ˛ be a contact form on N
which is nondegenerate on int.N / and negative Morse–Bott on @N (see Definition 4.1.1). In particular, the
Reeb orbits on @N act as sinks for J -holomorphic curves in R�N, ie no nontrivial J -holomorphic curve
in R�N can have a positive end at an orbit in @N. Then there exist relative embedded contact homology
groups ECH.N; @N; ˛/ and bECH.N; @N; ˛/, whose definitions will be given in Section 7. Moreover,
there is a chain map U on the complex defining ECH.N; @N; ˛/, and the homology of the cone of U is
isomorphic to bECH.N; @N; ˛/.

The embedded contact homology group of a contact manifold .M; �/ has a natural decomposition as a
direct sum of groups ECH.M; �; A/ indexed by homology classes1 A 2 H1.M/. This decomposition
depends on the contact structure �, although very weakly. For this reason we always specify � together
with the homology class A.

Similarly, ECH.N; @N; ˛/ and bECH.N; @N; ˛/ decompose as direct sums of groups ECH.N; @N; ˛;A/
and bECH.N; @N; ˛;A/ indexed by relative homology classes A 2 H1.N; @N /. The maps U in both
ECH.M; �/ and ECH.N; @N; ˛/ preserve the splitting according to homology classes. Taking into
account the fact that K is null-homologous, excision and the relative homology long exact sequence give
an isomorphism $ W H1.N; @N /

'
�! H1.M/, and the equivalence between ECH and relative ECH is

compatible with the corresponding decompositions.

The main result of this paper is the following:

1Singular homology groups should always be understood over the integers if no coefficient group is explicitly indicated.
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Theorem 1.1.1 Let N �M be the complement of a tubular neighborhood int.V / of a null-homologous
knotK, where V 'K�D2, � a contact form onM which is transverse to the foliation K�f�g on V, and
˛ a contact form on N for the contact structure �jN . If the Reeb vector field R˛ of ˛ is nondegenerate
on int.N /, negative Morse–Bott on @N and foliates @N by meridians , and all closed Reeb orbits in N
have nonnegative linking number with K, then , for all A 2H1.N; @N IZ/,

(1) ECH.N; @N; ˛;A/' ECH.M; �;$.A//, and

(2) bECH.N; @N; ˛;A/' bECH.M; �;$.A//.

Moreover , the first isomorphism is compatible with the U -maps on both sides.

The prototypical situation to which Theorem 1.1.1 applies is the case of an open book decomposition
with connected binding. In this case N is the mapping torus of a surface diffeomorphism h W S '

�! S

and V DM � int.N / is a tubular neighborhood of the binding. In other words, Theorem 1.1.1 allows
us to rewrite the embedded contact homology groups of M in terms of the relative embedded contact
homology groups on the complement of the binding. We remark here that [Yau 2007; Wendl 2008; 2005]
examined related issues.

Theorem 1.1.1, applied to the open book case, is the first step in the proof of the equivalence of embedded
contact homology and Heegaard Floer homology, a Floer homology theory for three-manifolds defined
by Ozsváth and Szabó [2004a; 2004b]. Once we express the embedded contact homology of M purely
in terms of N using Theorem 1.1.1, it is easier to define chain maps to and from the hat version of
Heegaard Floer homology. In fact, the Giroux correspondence [2002] — the bijection between open book
decompositions up to positive stabilization and isotopy classes of contact structures — provides a bridge
between the contact forms used in the definition of ECH and the Heegaard splittings used in the definition
of Heegaard Floer homology. We remark that the proof of the equivalence between Heegaard Floer
homology and ECH is independent of the hard part of the Giroux correspondence (ie the stabilization
equivalence of two open book decompositions which support the same contact structure). The rest of
the proof of the equivalence has been carried out in [Colin et al. 2024a; 2024b; 2024c]; see [Colin et al.
2011a] for an overview of the strategy.

Remark 1.1.2 An alternative proof of the equivalence of Heegaard Floer and embedded contact ho-
mologies, passing through Seiberg–Witten Floer homology, has been given by Kutluhan, Lee and Taubes
[Kutluhan et al. 2020a; 2020b; 2020c; 2020d; 2020e].

In Section 10 we present some independent applications of the techniques developed here to the embedded
contact homology for sutured manifolds defined in [Colin et al. 2011b]. More precisely, we prove that ECH
of a sutured manifold is invariant of the contact form and the almost complex structure (Theorem 10.2.2)
and we finish the proof of [Colin et al. 2011b, Theorem 1.6] by showing that bECH.M/, defined as the
homology of the cone of the U -map, is isomorphic to the sutured ECH of the complement of a ball
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in M (Theorem 10.3.1). Theorem 10.2.2 has been independently proved by Kutluhan, Sivek and Taubes
[Kutluhan et al. 2022].

Organization of the paper Section 2 gives a brief review of ECH; in particular, we define the groups
ECH.M/ and bECH.M/. We review some technicalities involving direct limits in Section 3 and some
Morse–Bott theory in the context of ECH in Section 4. In Section 5 we discuss topological constraints
of J -holomorphic curves arising from the positivity of intersections in dimension four. In Section 6
we construct contact forms on D2 � S1 and T 2 � Œ1; 2� which are used later. Section 7 is devoted to
the definitions of certain ECH groups for compact manifolds with torus boundary and in particular the
variants ECH.N; @N; ˛/ and bECH.N; @N; ˛/ which appear in Theorem 1.1.1. In Section 8 we calculate
some ECH groups of solid tori which are used in the proof of Theorem 1.1.1. Section 9 then completes
the proof of Theorem 1.1.1. Finally, Section 10 relates some of the versions of ECH defined in Section 7
to some sutured ECH groups defined in [Colin et al. 2011b].

2 Review of embedded contact homology

In this paper all manifolds will be oriented and connected, unless stated otherwise.

In this section we briefly review the basic definitions of embedded contact homology (from now on
abbreviated ECH). For more details the reader is referred to [Hutchings 2002; 2009] or to [Hutchings
2014]. To avoid orienting the moduli spaces, we will work over F D Z=2Z.

2.1 Generators of the ECH chain complex

LetM be a closed, oriented and connected 3-manifold with a contact form ˛. We will denote by �D ker˛
the contact structure with contact form ˛. The Reeb vector field RD R˛ is nondegenerate if no Reeb
orbit2 has 1 as eigenvalue of its linearized first return map. This is a generic condition which can
achieved by a generic C1-small perturbation of the contact form; see for example [Colin and Honda
2013, Lemma 7.1]. For the rest of the section we will assume that ˛ is nondegenerate. The linearization
of the first return map along a Reeb orbit is a symplectic transformation of the symplectic plane .�; d˛/.
This implies that its eigenvalues are f�; ��1g, where � is either real or in the unit circle. Then a Reeb
orbit is

� hyperbolic if the eigenvalues of its linearized first return map are real; or

� elliptic if they lie on the unit circle.

These conditions are mutually exclusive because every orbit is assumed to be nondegenerate.

2In this paper we interchangeably use “Reeb orbit”, “closed orbit” and “closed Reeb orbit”. A Reeb orbit which is not necessarily
closed will be called a “Reeb trajectory”.
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Let P be the set of simple orbits of the Reeb vector field R˛ . The ECH chain complex3 ECC.M; ˛/, as a
vector space, is generated over F by finite sets 
 D f.
i ; mi /g, called orbit sets, where

� 
i 2 P and 
i ¤ 
j for i ¤ j ;

� mi is a positive integer; and

� if 
i is a hyperbolic orbit, then mi D 1.

We will say that ECC.M; ˛/ is constructed from P . An orbit set 
 will also be written multiplicatively asQ


mi
i , with the convention that 
2i D 0 whenever 
i is hyperbolic. The empty orbit set ¿ will be written

multiplicatively as 1.

The homology class of an orbit set 
 is

Œ
�D
X
i

mi Œ
i � 2H1.M/:

If we want to specify the direct summand generated by orbit sets of class A 2H1.M/, then we write
ECC.M; ˛;A/.

The action A˛.
i / of an orbit 
i is given by
R

i
˛, and the action of an orbit set 
 is given by

A˛.
/D
X
i

miA˛.
i /:

2.2 Moduli spaces

We choose an almost complex structure J on R �M, with R-coordinate s, which is adapted to the
symplectization of ˛ (or adapted to ˛), ie

(i) J is s-invariant;

(ii) J takes � to itself on each fsg �Y ;

(iii) J maps @s to R˛;

(iv) J j� is d˛-compatible, ie d˛. � ; J � / defines a Euclidean metric on �.

Let 
 D f.
i ; mi /g and 
 0 D f.
 0i ; m
0
i /g be orbit sets with Œ
�D Œ
 0� 2H1.M/. We denote by MJ .
; 


0/

the set of holomorphic maps
u W .F; j /! .R�M;J /;

modulo holomorphic reparametrizations, which satisfy

(1) .F; j / is a closed Riemann surface with a finite number of punctures removed;

(2) the neighborhoods of the punctures are mapped asymptotically to cylinders over Reeb orbits;

3The ECH differential depends on the choice of an adapted almost complex structure J (see Section 2.2), but the generators only
depend on ˛. Hence we suppress J from the notation for the moment.
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(3) at the positive end of R�M, u is asymptotic to R� 
i with total multiplicity mi for each pair
.
i ; mi / (more precisely, if we list the positive ends of u that are asymptotic to some multiple cover
of R� 
i and the covering degrees are mi1; : : : ; miji , then mi Dmi1C � � �Cmiji ); and

(4) at the negative end of R�M, u is asymptotic to R� 
 0i with total multiplicity m0i for each pair
.
 0i ; m

0
i /.

We often refer to an element u of MJ .
; 

0/ as a J -holomorphic map (or curve) from 
 to 
 0. We stress

that, according to our definition, the genus, the number of connected components and the number of
punctures of F are not fixed a priori. If � is a property of J -holomorphic curves, we will denote by
M�J .
; 
 0/ the subset of MJ .
; 


0/ satisfying �. We can similarly define the “pointed” moduli space
MJ .
; 


0I pt/ as the set of holomorphic maps

u W .F; j; p/! .R�M;J /;

modulo holomorphic reparametrizations, where p 2 F.

Definition 2.2.1 We say that J is regular if, for all orbit sets 
 and 
 0 and u 2MJ .
; 

0/ which has no

multiply covered components, MJ .
; 

0/ is transversely cut out near u (ie the linearized x@-operator Du

at u from [Dragnev 2004, Proposition 2.10] is surjective).

Regular adapted almost complex structures form the complement of a first category set (and therefore
are dense) in the space of smooth adapted almost complex structures with respect to the C1-topology
by a result of Dragnev [2004]. If no component of u is multiply covered and all components of u
are transversely cut out, then, in a neighborhood of u, the moduli space MJ .
; 


0/ has the structure
of a finite-dimensional manifold of dimension ind.u/, where the Fredholm index ind.u/ is the formal
dimension of the moduli spaces computed as in the next paragraph; see [Dragnev 2004, Corollary 1]. Our
convention throughout the paper will be that the Fredholm index takes into account the dimensions of the
Deligne–Mumford moduli space and the automorphism group of the domain of the map. In particular,
ind.u/D ind.Du/� 3�.F /, where ind.Du/ is the Fredholm index of the linearized Cauchy–Riemann
operator at u and �.F / is the Euler characteristic of the domain of u.

A J -holomorphic map u W F ! R�M from 
 D f.
i ; mi /g to 
 0 D f.
 0i ; m
0
i /g determines partitions

fmij g of mi and fm0ij g of m0i such that u is positively asymptotic to mij -fold covers 
miji of the simple
Reeb orbits 
i and negatively asymptotic to m0ij -fold covers .
 0i /

m0
ij of the simple Reeb orbits 
 0i . Let �

be a trivialization of � along each orbit in the orbit sets 
; 
 0, let �� .ı/ denote the Conley–Zehnder index
of a cover ı of an orbit in 
 or 
 0 with respect to � , and let c1.u��; �/ denote the relative first Chern class
of u�� with respect to � . Then the Fredholm index ind.u/ is given by the formula

(2-2-1) ind.u/D��.F /C 2c1.u��; �/C
X
ij

�� .

mij
i /�

X
ij

�� ..

0
i /
m0
ij /:

(See the formula in [Dragnev 2004, Theorem 1.8].)
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2.3 The ECH index

The index which appears in the definition of ECH is not the Fredholm index, but the ECH index, which is
more topological in nature. In this subsection we will review its definition.

Let 
 D f.
i ; mi /g and 
 0 D f.
 0i ; m
0
i /g be orbit sets. We denote by H2.M; 
; 
 0/ the relative homology

classes of surfaces Z 2H2
�
M;

�S
i 
i

�
[
�S

i 0 
i 0
��

such that @Z D
P
mi Œ
i ��

P
m0i Œ


0
i �, where

@ WH2

�
M;

�[
i


i

�
[

�[
i 0


i 0

��
!H1

��[
i


i

�
[

�[
i 0


i 0

��
is the connecting homomorphism of the relative homology exact sequence. By abuse of notation, Z
will also denote an embedded surface with boundary which represents that homology class. We pick a
trivialization � of � along each orbit in the orbit sets 
 and 
 0, and define c1.�jZ ; �/ as the first Chern
class of � evaluated on Z, relative to the trivialization � on @Z.

If 
 D f.
i ; mi /gkiD1 is an orbit set, then we define the “symmetric” Conley–Zehnder index (so called
because of its motivation from studying symplectomorphisms of a symmetric product of a surface) as

(2-3-1) z�� .
/D

kX
iD1

miX
jD1

�� .

j
i /;

where 
ji is the orbit which multiply covers 
i with multiplicity j.

We define the relative intersection pairing Q� .Z/ as follows: Using the trivialization � , for each simple
orbit 
i of 
 or 
 0, fix an identification of a sufficiently small neighborhood N.
i / of 
i with 
i �D2,
where D2 has polar coordinates .r; �/. Let † be an oriented surface and f W†! Œ�1; 1��M a smooth
map which satisfies the following:

(1) f maps @† to f�1; 1g �M, f jint.†/ is an embedding, and f is transverse to f�1; 1g �M.

(2) For all " > 0 sufficiently small, f .†/ \ .f1 � "g �M/ consists of mi disjoint circles of type
fr D "; � D constg in N.
i / for all i (and similarly for f .†/\ .f�1C "g �M/).

(3) The composition of f with the projection Œ�1; 1� �M ! M is a representative of the class
Z 2H2.M; 
; 


0/.

We then choose two maps f1 and f2 satisfying (1)–(3) above that are disjoint on f�1C "; 1� "g �M
and transverse on Œ�1C "; 1� "��M. Then Q� .Z/ is the signed intersection number of f1 and f2 in
Œ�1C "; 1� "��M.

We are now in a position to define the ECH index.

Definition 2.3.1 [Hutchings 2002, Definition 1.5] The ECH index I.
; 
 0; Z/ is given by

(2-3-2) I.
; 
 0; Z/D c1.�jZ ; �/CQ� .Z/C z�� .
/� z�� .

0/:

The ECH index depends only on the relative homology class Z 2H2.M; 
; 
 0/ and not on a particular
surface representing it. Moreover, the ECH index is independent also of the choice of trivialization. If
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Z0 2H2.M; 
; 

0/ is another relative homology class, then, by [Hutchings 2014],

I.
; 
 0; Z0/� I.
; 
 0; Z/D

�
Z0�Z; c1.�/CPD

�X
i

mi Œ
i �

��
;

where
P
i mi Œ
i � is the total homology class of 
 in H1.M/ and PD is the Poincaré duality map.

Remark 2.3.2 A finite-energy holomorphic map u with asymptotics 
 and 
 0 defines a relative homology
class Z 2H2.M; 
; 
 0/. Hence we can write I.u/D I.
; 
 0; Z/.

The ECH index and the Fredholm index satisfy the following index inequality, which is one of the basic
tools of ECH:

Theorem 2.3.3 [Hutchings 2009, Theorem 4.15] If u is simply covered , then ind.u/� I.u/.

2.4 The ECH differential

In this subsection we define the differential @ for the ECH chain complex, after recalling some properties
of J -holomorphic maps with small ECH index. In the following we will say that a map u W F !R�M

is the “disjoint union” of maps ui W Fi !R�M (with 1� i � k) if F D F1 t � � � tFk and the images
are pairwise disjoint. Here each Fi can still be disconnected. A trivial cylinder over a (not necessarily
simple) orbit 
 with period T is the J -holomorphic map u WR�S2!R�M, u.s; t/D .T s; 
.T t//. By
abuse of notation, we will always denote the trivial cylinder over 
 by R� 
 .

Lemma 2.4.1 [Hutchings and Taubes 2007, Proposition 7.15] Let J be a regular almost complex
structure adapted to ˛. Then:

(1) A J -holomorphic map u with I.u/D 0 is a disjoint union of branched covers of trivial cylinders
over simple Reeb orbits. (Such curves are called connectors.)

(2) A J -holomorphic map u with I.u/D 1 (resp. 2) from 
 to 
 0 is a disjoint union of a connector and
an embedding u0 with I.u0/D ind.u0/D 1 (resp. 2).

In this paper a “branched cover” will always refer to a “branched cover with possibly empty branch
locus”.

The ends of a J -holomorphic map u from 
 to 
 0 determine partitions of the multiplicities of the elliptic
orbits. It turns out that, when I.u/ D 1 or I.u/ D 2, these partitions must coincide with preferred
partitions, called the outgoing and incoming partitions for positive and negative ends, respectively. The
incoming and outgoing partitions can be computed from the dynamics of the linearized Reeb flow. For
their definition see [Hutchings 2002, Section 4.1] or [Hutchings 2009, Definition 4.14]. For the relation
between these partitions and the ECH index, see [Hutchings 2009, Theorem 4.15], for example. In this
article we will not need the precise definition of the incoming or the outgoing partition, except for the
following fact, which follows directly from [Hutchings 2009, Definition 4.14]:
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Fact 2.4.2 Let 
 be a simple elliptic orbit and suppose that its linearized Reeb flow rotates by an angle
2�� . If 0 < � < 1=m, then the incoming partition of .
;m/ is .m/ and the outgoing partition is .1; : : : ; 1/.
On the other hand , if �1=m < � < 0, then the incoming partition of .
;m/ is .1; : : : ; 1/ and the outgoing
partition is .m/.

The boundary operator in the ECH chain complex is defined by a count of J -holomorphic maps with
index I D 1 for a regular almost complex structure J. In order to make the dependence on J explicit, we
write the complex as ECC.M; ˛; J /. However, when J is clear from the context, it will be dropped from
the notation.

Definition 2.4.3 Let J be a regular almost complex structure adapted to ˛. Then the boundary map
@ W ECC.M; ˛; J /! ECC.M; ˛; J / is defined as

@
 D
X

 0

h@
; 
 0i 
 0;

where h@
; 
 0i is the (mod 2) count of curves u 2MID1
J .
; 
 0/=R such that every connector component

of u is a trivial cylinder over a simple orbit.

The map @ was shown to satisfy @2 D 0 by Hutchings and Taubes [2007; 2009a]. The homology
of the chain complex .ECC.M; ˛; J /; @/ is the embedded contact homology group ECH.M; ˛; J /. It
is independent of the choice of contact form ˛, the contact structure � and adapted almost complex
structure J by [Taubes 2010]. Hence we are justified in writing ECH.M/.

2.5 Definition of 1ECH.M/

In this subsection we define a map U W ECH.M/! ECH.M/ and a variant bECH.M/ of ECH.M/, called
the ECH hat group, in analogy with well-known constructions in Heegaard Floer homology. An a priori
different group, also called bECH.M/, was defined in [Colin et al. 2011b] using sutured ECH (in analogy
with the sutured Floer homology of [Juhász 2006]). In Section 10 we will prove that the two approaches
yield isomorphic groups.

Definition 2.5.1 Let J be a regular almost complex structure and z 2R�M a generic point such that
the evaluation map

ev WMID2
J .
; 
 0I pt/!R�M; .u; p/ 7! u.p/;

is transverse to z. We define the map U W ECC.M; ˛; J /! ECC.M; ˛; J / as

U
 D
X

 0

hU
; 
 0i
 0;

where hU
; 
 0i is the (mod 2) count of elements of ev�1.z/�MID2
J .
; 
 0I pt/ such that every connector

component of u is a trivial cylinder over a simple Reeb orbit.
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The same techniques used to show that @2D 0 also show that U is a chain map; see [Hutchings and Taubes
2009b, Section 2.5] for more details on the U -map. Then bECH.M; ˛; J / is defined as the homology of
the mapping cone of U.

3 Cobordism maps and direct limits

In this section we review the work of Hutchings and Taubes [2011] on maps on ECH induced by exact
symplectic cobordisms, which in turn makes it possible to define continuation maps and take direct limits
in ECH.

3.1 Maps induced by cobordisms

Given a contact 3-manifold .M; ˛/ with ˛ nondegenerate, let ECCL.M; ˛/ be the subcomplex of
ECC.M; ˛/ generated by orbit sets 
 of action A˛.
/ < L, and ECHL.M; ˛/ be the resulting homology
group. Given L< L0, the inclusion of chain complexes ECCL.M; ˛/� ECCL

0

.M; ˛/ induces a map

iL;L0 W ECHL.M; ˛/! ECHL
0

.M; ˛/

on the level of homology. An immediate consequence of the definition of a direct limit is

ECH.M; ˛/D lim
L!1

ECHL.M; ˛/:

Let .M1; ˛1/ and .M2; ˛2/ be contact 3-manifolds. An exact symplectic cobordism .X; !/ from4 .M1; ˛1/

to .M2; ˛2/ is an exact symplectic manifold with boundary @X DM1�M2 and symplectic form !D d˛,
where ˛ restricts to ˛1 on M1 and ˛2 on M2.

Given an exact symplectic cobordism .X; !/, we form its completion . yX; y!/ by attaching the half positive
symplectization of .M1; ˛1/ along M1 � @X and the half negative symplectization of .M2; ˛2/ along
M2 � @X.

Definition 3.1.1 Let . yX; y!/ be the completed symplectic cobordism with an almost complex structure J
which is compatible with y! and is adapted to ˛1 and ˛2 at the positive and negative ends. Then the image
of an embedding

� W .R�U; d.es˛0/; J0/ ,! . yX; y!; J /

is called a product region if ��.d.es˛0//D y!, ��J0 D J, J0 is adapted to ˛0 and, at the ends of R�U,
�.s; x/D .sCCi ; �i .x// for i D 1; 2, for some embedding �i W U !Mi and constant Ci .

The main technical result of [Hutchings and Taubes 2013] is the following (the first item in (i) is a slight
improvement due to Cristofaro-Gardiner [2013, Theorem 5.1]):

4This is the convention from symplectic field theory [Eliashberg et al. 2000] and is opposite from the one used in Heegaard Floer
homology, for example.
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Theorem 3.1.2 [Hutchings and Taubes 2013, Theorem 1.9] Let .M1; ˛1/ and .M2; ˛2/ be contact
3-manifolds and let .X; !/ be an exact symplectic cobordism from .M1; ˛1/ to .M2; ˛2/. Suppose the
contact forms ˛1 and ˛2 are nondegenerate. Then , for each positive real number L, there exists a map

ˆL.X; !/ W ECHL.M1; ˛1/! ECHL.M2; ˛2/

such that :

(i) Let J be a regular almost complex structure on yX which is y!-compatible and is adapted to ˛i at
the positive and negative ends. Then ˆL.X; !/ is induced from a (noncanonical ) chain map

ŷL.X; !; J / W ECCL.M1; ˛1; J jM1/! ECCL.M2; ˛2; J jM2/;

which is supported on the J -holomorphic curves , ie:
� h ŷL.X; !; J /.
/; 
 0i D 0 if there is no I D 0, J -holomorphic building from 
 to 
 0 in yX.
� If the only J -holomorphic building in yX from 
 to 
 0 is a union of covers of product cylinders

contained in a product region , then h ŷL.X; !; J /.
/; 
 0i D 1.

(ii) The map ˆL.X; !/ only depends on L and .X; !/, and not on any auxiliary almost complex
structure J on . yX; y!/. Moreover , it depends on ! only through its homotopy class as an exact
symplectic form.

(iii) If L< L0, then the following diagram commutes:

(3-1-1)

ECHL.M1; ˛1/
ˆL.X;!/

// ECHL.M2; ˛2/

��

iL;L0

��

iL;L0

ECHL
0

.M1; ˛1/
ˆL
0
.X;!/

// ECHL
0

.M2; ˛2/

Hence the maps pass to the direct limit

ˆ.X;!/ W ECH.M1; ˛1/! ECH.M2; ˛2/:

(iv) Suppose .X; !/ is the composition of exact symplectic cobordisms .X1; !1/ from .M1; ˛1/ to
.M 0; ˛0/ and .X2; !2/ from .M 0; ˛0/ to .M2; ˛2/, and ˛0 is nondegenerate. Then

ˆL.X; !/DˆL.X2; !2/ ıˆ
L.X1; !1/:

(v) If c > 0, then the diagram

(3-1-2)

ECHL.M1; ˛1/
ˆL.X;!/

// ECHL.M2; ˛2/

��

s

��

s

ECHcL.M1; c˛1/
ˆcL.X;c!/

// ECHcL.M2; c˛2/

commutes , where s is the canonical rescaling isomorphism.
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(vi) If X D Œ0; a��M and ! D d.es˛/ with ˛ nondegenerate , then

ˆL.X; !/ W ECHL.M; ea˛/! ECHL.M; ˛/

is equal to the composition

ECHL.M; ea˛/ s
�! ECHe

�aL.M; ˛/
ie�aL;L
�����! ECHL.M; ˛/:

Remark 3.1.3 The maps involved in this result are borrowed from Seiberg–Witten theory via Taubes’s
isomorphism, where one counts solutions of the perturbed Seiberg–Witten equations on the cobordism.
As we take a perturbation parameter r to be large, these solutions concentrate near a holomorphic building.
It is however not known yet how to reconstruct the count of solutions from just knowing the limit
holomorphic building. This explains why there is no direct definition of cobordism maps by a count of
holomorphic buildings and also why there is no direct proof of invariance for ECH.

Definition 3.1.4 A contact form ˛ is called L-nondegenerate if all Reeb orbits of action less than L are
nondegenerate and there is no orbit set of action exactly L.

The action-truncated ECH groups ECHL.M; ˛/make sense for contact forms ˛ which areL-nondegenerate
and Theorem 3.1.2(i), (ii) and (iv) hold for L-nondegenerate contact forms.

All exact cobordisms considered in this paper will be of the following type:

Definition 3.1.5 An interpolating cobordism from .M; ˛1/ to .M; ˛0/ is an exact symplectic cobordism
.Œ0; 1��M;�/ from ˛1 to ˛0 such that � is of the form

�Dˆ�.f ˛/;

where ˛ is the pullback to Œ0; 1��M of a 1-form (also called ˛) on M, f W Œ0; 1��M !R is a positive
function with @f=@t > 0, and ˆ W Œ0; 1��M ��! Œ0; 1��M is a diffeomorphism taking fig �M to itself
for i D 0; 1.

In this article, interpolating cobordisms are all constructed as follows: Let ˛0 and ˛1 be isotopic contact
forms on M and let f�t WM ��!M gt2Œ0;1� be an isotopy such that

� ��t .ft˛0/D ˛t for all t 2 Œ0; 1�;

� fftg and f˛tg are 1-parameter families of functions and 1-forms on M ; and

� �0 D id and f0 D 1.

Then define ˆ W Œ0; 1��M ! Œ0; 1��M by ˆ.t;x/ D �t .x/, f W Œ0; 1��M ! R by f .t;x/ D ft .x/,
and �� WDˆ�.f ˛0/. If @ft=@t > 0, then

.Œ0; 1��M;��/
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is an interpolating cobordism. Interpolating cobordisms do not necessarily exist between any two isotopic
˛0 and ˛1, but one can always construct them at the small price of scaling one of the two forms by a
constant.

Lemma 3.1.6 Let .Œ0; 1��M;��/ and .Œ0; 1��M;�0�/ be interpolating cobordisms from .M; ˛1/ to
.M; ˛0/ defined by contact isotopies � and �0, respectively. If the isotopies f�tg and f�0tg are homotopic
relative to the endpoints , then �� and �0� are homotopic as exact symplectic forms.

Proof Define ˆ.t;x/ D �t .x/ and ˆ0.t;x/ D �0t .x/. Without loss of generality we can write �0 WD
�� D ˆ

�.f ˛/ and �1 WD �0� D .ˆ
0/�.f 0˛/ with the same form ˛ in both definitions. Let fˆsg be a

homotopy between ˆ and ˆ0 such that

� ˆ0 Dˆ and ˆ1 Dˆ0;

� ˆs.0;x/D x and ˆs.1;x/D �1.x/D �01.x/ for all s 2 Œ0; 1�.

Also define Fs.t;x/D .1� s/f .t;x/C sf 0.t;x/. Then

�s Dˆ
�
s .Fs˛/

is a homotopy of exact symplectic forms because @Fs=@t > 0 for all s 2 Œ0; 1�.

Lemma 3.1.7 Let ˛ be a contact form , L;L0 > 0 real numbers , �t WM !M for t 2 Œ0; 1� an isotopy
such that �0 D id, and f; f 0 WM ! RC smooth functions such that Lf 0 < L0f. If f ˛ and f 0˛ are L-
and L0-nondegenerate , respectively, then there is a map

ECHL.M; ��1 .f ˛//! ECHL
0

.M; f 0˛/:

Moreover , this map depends only on the homotopy class of f�tg relative to the endpoints and has the
following properties:

(a) If f D f 0 and �t � id for t 2 Œ0; 1�, then the map is induced by the inclusion of chain complexes.

(b) If L00>0, f 00 WM!RC is another function such that L0f 00<L00f 0, and �t WM!M for t 2 Œ1; 2�
is an extension of the isotopy, then the following triangle commutes:

ECHL.M; ��2 .f ˛// //

))

ECHL
00

.M; f 00˛/

ECHL
0

.M; ��1 .f
0˛//

55

Proof The inequality Lf 0 <L0f implies that there is an interpolating cobordism with L0��1 .f ˛/ at the
positive end and Lf 0˛ at the negative end. We define the map ECHL.M; ��1 .f ˛//! ECHL

0

.M; f 0˛/
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by the composition

ECHL.M; ��1 .f ˛// // ECHL
0L.M;L0��1 .f ˛//

��

ECHL
0L.M;Lf 0˛/ // ECHL

0

.M; f 0˛/;

where the map ECHL
0L.M;L0f ˛/! ECHL

0L.M;Lf 0˛/ is the map induced by an interpolating cobor-
dism from L0��1 .f ˛/ to Lf 0˛ and the horizontal maps are rescaling isomorphisms. The resulting map
depends only on the homotopy class of f�tg relative to the endpoints by Lemma 3.1.6. The properties of
these maps are an immediate consequence of Theorem 3.1.2.

3.2 Direct limits

One consequence of Theorem 3.1.2 is the following theorem, whose statement and proof were communi-
cated to the authors by Michael Hutchings:

Theorem 3.2.1 (Hutchings and Taubes) Let M be a closed oriented 3-manifold with a nondegenerate
contact form ˛ and ffig1iD1 a sequence of smooth positive functions such that 1� f1 � f2 � � � � and fi˛
is Li -nondegenerate for an increasing sequence of positive real numbers Li such that limi!1Li DC1.
Then there is a canonical isomorphism

ECH.M; ˛/' lim
i!1

ECHLi .M; fi˛/:

Proof We have a map
f W ECH.M; ˛/! lim

i!1
ECHLi .M; fi˛/;

obtained by taking the direct limit of the cobordism maps

ECHLi .M; ˛/! ECHLi .M; fi˛/:

Choose an increasing sequence of natural numbers ci such that Lcifi >Li . Then there are maps

ECHLi .M; fi˛/! ECHLci .M; ˛/

by Lemma 3.1.7. These maps form a directed system, and, taking the direct limit, we obtain a map

g W lim
i!1

ECHLi .M; fi˛/! ECH.M; ˛/:

The verification that the maps f and g are inverse of each other is a straightforward application of
Lemma 3.1.6.

We can now quantify when it makes sense to take direct limits of a sequence of contact forms ˛i for
isotopic contact structures. In this case we can write ��i .˛i /D fi˛ for some positive function fi and
diffeomorphism �i isotopic to the identity.

Definition 3.2.2 Let ˛ be a contact form on M. A sequence f˛ig1iD1 of contact forms on M is com-
mensurate to ˛ if there is a constant 0 < c < 1, diffeomorphisms �i of M isotopic to the identity, and
functions fi WM !R>0 such that ��i ˛i D fi˛ and c < jfi jC0 < 1=c.
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A corollary of Theorem 3.2.1 is the following:

Corollary 3.2.3 Let f˛ig be a sequence of contact 1-forms on M which is commensurate to ˛ on M
with constant 0 < c < 1. If Li!1 is a sequence which satisfies LiC1 >Li=c3 for all i , then the groups
ECHLi .M; ˛i / form a directed system with the maps defined in Lemma 3.1.7 and we have

ECH.M/D lim
i!1

ECHLi .M; ˛i /:

Proof Define L0i D c
2iLi and gi D c2ifi . Then limi!1L0i DC1 and 1 > g1 > � � � > gi > � � � , so

we can apply Theorem 3.2.1 to the sequences L0i and gi .

4 Morse–Bott theory

In this section we discuss a special case of Morse–Bott theory as it applies to our context. In particular,
we explain how to use Theorem 3.2.1 to justify the Morse–Bott arguments which populate this paper.
For a more detailed discussion of Morse–Bott theory in contact homology, the reader is referred to
Bourgeois [2003; 2002].

4.1 Morse–Bott contact forms

Let ˛ be a Morse–Bott contact form on M. For the purposes of this paper, this means that all the orbits
either are isolated and nondegenerate, or come in S1-families and are nondegenerate in the normal
direction. (In general, there is also the case where the Reeb orbits come in two-dimensional families, ie
are the fibers of a circle bundle; however, this will not occur here.) We denote a Morse–Bott family of
simple orbits by N and the Morse–Bott torus corresponding to N by TN D

S
x2N x.

Let fv1; v2g be an oriented basis for � at some point p 2 TN such that v1 is transverse to TN and v2 is
tangent to TN . The derivative of the first return map �p ! �p of the Reeb flow is given by the matrix�
1
a
0
1

�
with respect to the basis fv1; v2g. (Here a vector v D a1v1C a2v2 is written as a column vector.)

The Morse–Bott condition implies that a¤ 0.

Definition 4.1.1 TN is called a positive Morse–Bott torus if a > 0 and a negative Morse–Bott torus if
a < 0.

Let us identify a sufficiently small neighborhood of a Morse–Bott torus TN with T 2 � Œ��; �� with
coordinates .�; t; y/ such that the Reeb vector field is a positive constant times @t along TN D fy D 0g.
For a positive Morse–Bott torus, the Reeb vector field rotates in a counterclockwise manner as y goes
from � to �� (ie in the same direction as a positive contact structure), while for a negative Morse–Bott
torus it rotates in a clockwise manner.
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On each N ' S1, we pick a Morse function NgN W N ! R with two critical points. After perturbing ˛
using these functions, each Morse–Bott family gives rise to an elliptic orbit e and a hyperbolic orbit h.

We choose specific ˛ and perturbations ˛� as follows: Fix a real constant L> 0 such that no Reeb orbit
of ˛ has ˛-action equal to L and let N1; : : : ;Nn be the Morse–Bott families consisting of simple orbits
with ˛-action less than L. On the small neighborhood T 2 � Œ��; �� of TNi , we set

(4-1-1) ˛ D C dt C ı.f dt Cy d�/; ˛� D C dt C ı.f� dt Cy d�/;

where � > 0 and ı > 0 are small, C > 0 is the action of the Reeb orbits of Ni , and:

(P1) f .y; �/D˙1
2
y2 and f�.y; �/D˙

�
1
2
y2C ��.y/ NgN .�/

�
, where the sign ˙ depends on whether

we have a negative or positive Morse–Bott torus.

(P2) NgN W R=Z ! R is a perfect Morse function with maximum at 1
4

and minimum at �1
4

. More
specifically, we assume that Ng0N .�/ is 0 on � D˙1

4
, is linear with positive slope on

�
�
1
4
;�1

5

�
, is

nondecreasing on
�
�
1
5
;�1

6

�
, and is equal to 1 on

�
�
1
6
; 1
6

�
; and NgN .�/ is an odd function about

� D 0.

(P3) � W Œ��; ��! Œ0; 1� is an even bump function with support on Œ�a; a� and is equal to 1 on Œ�b; b�,
where � > a > b > 0 are sufficiently small.

In particular, (P1) implies:

(P4) As �! 0, f�! f in C1.

Proposition 4.1.2 Let ˛ be a Morse–Bott contact form. After a small modification of ˛ near the Ni ,
which we still call ˛, for every L> 0 there exist ı > 0, � > 0 and � > 0 small such that :

(1) ˛� is L-nondegenerate and satisfies (4-1-1) and conditions (P1)–(P4).

(2) Each Ni is perturbed into a pair of nondegenerate Reeb orbits ei and hi of ˛�-action less than L.

(3) All multiples eki and hki of ˛�-action less than L have Conley–Zehnder indices 1 and 0 if Ni is
positive , and �1 and 0 if Ni is negative.

(4) All other orbits which are created have ˛�-action greater than L.

Here the Conley–Zehnder indices are computed with respect to the trivialization � induced from Ni .

Strictly speaking, we make the modification of ˛ in Proposition 4.1.2 so that it satisfies the conditions of
Lemma A.9.4.

Let P 0 be the set of simple nondegenerate orbits of R˛ and let PMB D P 0 [
�S

i Ni
�

be the set of all
simple Reeb orbits of R˛ , where Ni denotes a Morse–Bott family of simple orbits. An orbit set 
 for the
Morse–Bott contact form ˛ is an orbit set constructed from P D P 0[

�S
ifhi ; eig

�
, where hi is treated as

a hyperbolic orbit (in particular, its multiplicity cannot be greater than one) and ei is treated as an elliptic
orbit.
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4.2 Morse–Bott buildings

Let J be an almost complex structure on R�M which is adapted to the Morse–Bott contact form ˛. We
also assume the following:

.�/ For each Morse–Bott torus TN DT 2, J is invariant in the s-, t - and � -directions on R�T 2�Œ��; ��

and the projection of J jker˛ to .R=Z/� Œ��; �� with coordinates .�; y/ is the standard complex
structure @=@y 7! @=@� .

(Strictly speaking, we require ˛ and J to satisfy the conditions of Lemma A.9.4; this can be arranged by
a small modification near the Morse–Bott torus.)

Remark 4.2.1 In [Bourgeois et al. 2003], Morse–Bott compactness was proved for slightly different
perturbations of ˛, namely for f�˛, but it still holds in our case.

Although the notation is a bit cumbersome, consider the moduli space

MJ .

C
1 ; : : : ; 


C
i1
INC1 ; : : : ;NCi2 I 


�
1 ; : : : ; 


�
i3
IN�1 ; : : : ;N�i4 /;

abbreviated MJ .

C;NC; 
�;N�/, of J -holomorphic maps u in R�M which have positive ends at

orbits 
C1 ; : : : ; 

C
i1
; z
C1 ; : : : ; z


C
i2

and negative ends at orbits 
�1 ; : : : ; 

�
i3
; z
�1 ; : : : ; z


�
i4

, where 
˙i covers a
simple orbit in P 0 with multiplicity l˙i � 1 and z
˙i covers a simple orbit in the Morse–Bott family N˙i
with multiplicity k˙i � 1.

We say that J satisfying .�/ is Morse–Bott regular if, for all data 
C, NC, 
� and N� and any
u 2 MJ .


C;NC; 
�;N�/ which has no multiply covered components, MJ .

C;NC; 
�;N�/ is

transversely cut out (and hence is a manifold) near u. Since it suffices to perturb J outside of the
sufficiently small neighborhood R�T 2 � Œ��; ��, a generic J satisfying .�/ is regular.

We now give the definition of a Morse–Bott building. See [Bourgeois et al. 2003, Section 11.2] for a
similar definition.

Definition 4.2.2 Let 
 and 
 0 be orbit sets constructed from P . A Morse–Bott building Qu consists of a
set fui W Fi !R�M j i D 1; : : : ; ng of holomorphic maps with possibly disconnected domains Fi and a
set fıi;j j i D 0; : : : ; n; j D 1; : : : ; jig of gradient flow lines in

S
k Nk such that the following hold:

(a) For i D 1; : : : ; n� 1, the negative ends E�i;j of ui are paired with positive ends ECiC1;j 0 of uiC1.
Paired ends .E�i;j ; E

C
iC1;j 0/ are asymptotic to ki;j -fold covers of simple orbits .
�i;j ; 


C
iC1;j 0/ in the

same Morse–Bott family and ıi;j is a gradient flow line from 
�i;j to 
CiC1;j 0 . (Here ıi;j can be
viewed as a ki;j -fold unbranched cover of a cylinder connecting 
�i;j to 
CiC1;j 0 .)

(b) Positive ends EC1;j of u1 and negative ends E�n;j of un which are asymptotic to Reeb orbits inS
k Nk are augmented by gradient flow lines ı0;j and ın;j connecting the orbit from/to a critical

point of the appropriate Morse function NgNk determined by 
 or 
 0.
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(c) A nondegenerate orbit is considered as a Morse–Bott family consisting of a single point, and in
this case the gradient flow line has length zero.

Given two orbit sets 
 and 
 0 constructed from P , the set of Morse–Bott buildings Qu from 
 to 
 0 will be
denoted by MMB

J .
; 
 0/.

The collection of maps ui will be called the holomorphic part of the building. The restriction of any
map ui to a connected component of its domain will be called an irreducible holomorphic component of Qu.

Definition 4.2.3 A Morse–Bott building Qu from 
 to 
 0 is simply covered if every multiply covered
irreducible holomorphic component of Qu is either

(i) a branched cover of a trivial cylinder over a simple orbit in P; or

(ii) an unbranched cover of a trivial cylinder over a simple orbit in PMB�P .

Note that this definition allows connectors over the orbits e and h of every Morse–Bott torus, but not
connectors over any other Morse–Bott orbit, which would necessarily break a gradient flow line. This
second type of connector would make gluing more complicated.

4.3 ECH and Fredholm indices

In this subsection we define the ECH and Fredholm indices of a Morse–Bott building.

Definition 4.3.1 The ECH index I.
; 
 0; Z/ in the Morse–Bott setting is defined, as in the nondegenerate
case, as

I.
; 
 0; Z/D c1.�jZ ; �/CQ� .Z/C z�� .
/� z�� .

0/;

where the symmetric Conley–Zehnder indices of 
 and 
 0 are computed with the convention that
�� .e

j
i / D 1 for all j and �� .hi / D 0 if Ni is a positive Morse–Bott family and �� .hi / D 0 and

�� .e
j
i /D�1 for all j if Ni is a negative Morse–Bott family. Here � jNi is the trivialization defined by Ni .

Remark 4.3.2 The ECH index computed with this definition coincides with the limit of ECH indices
computed with respect to nondegenerate perturbations ˛� of the Morse–Bott contact form ˛ as �! 1.

As in the nondegenerate case, a Morse–Bott building Qu from 
 to 
 0 determines a relative homology
class Z 2 H2.M; 
; 
 0/ which is obtained from projecting the holomorphic part to M and gluing the
annuli corresponding to the gradient trajectories. In view of this construction, we will often write I. Qu/
for I.
; 
 0; Z/.

We can also define the Fredholm index of a Morse–Bott building as follows. To a building Qu we associate
a map u# WF#!R�M by cutting the ends of the holomorphic components of u and connecting them with
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cylinders corresponding to the gradient trajectories. Then the Fredholm index of a Morse–Bott building Qu
which is positively asymptotic to Reeb orbits 
miji and negatively asymptotic to Reeb orbits .
 0i /

m0
ij is

(4-3-1) ind. Qu/D��.F#/C 2c1.u
�
# �; �/C

X
ij

�� .

mij
i /�

X
ij

�� ..

0
i /
m0
ij /;

with the same convention for the Conley–Zehnder indices of hi , ei and their iterates as in Definition 4.3.1.
(See [Bourgeois 2002, Corollary 5.4].)

4.4 Morse–Bott chain complex

In this subsection we introduce a Morse–Bott version of the ECH chain complex. Due to technical
difficulties concerning non-simply covered Morse–Bott buildings, we will develop an ECH Morse–Bott
theory only for special Morse–Bott contact forms, which we call nice.

Definition 4.4.1 (1) A Morse–Bott building Qu is nice if its holomorphic part has at most one irreducible
component which is not a connector. This irreducible component will be called the principal part
of Qu.

(2) A Morse–Bott building Qu is very nice if it is nice and every irreducible component besides the
principal part is an unbranched cover of a trivial cylinder.

(3) A Morse–Bott contact form ˛ on M is nice if, for a generic almost complex structure J, all
J -holomorphic Morse–Bott buildings of ECH index I D 1 in the symplectization of .M; ˛/ are
nice.

Remark 4.4.2 We will consider contact forms on manifolds with torus boundary which are non-
degenerate on the interior and Morse–Bott on the boundary. Such contact forms are automatically nice
(see Lemma 7.1.2). It is not clear whether nice contact forms with

S
i Ni ¤¿ exist on closed manifolds.

Now we describe the relation between moduli spaces of J -holomorphic Morse–Bott buildings for a
Morse–Bott contact form ˛ and moduli spaces of holomorphic maps for generic perturbations of ˛
following [Bourgeois 2002]. Our statement will be weaker than that of [Bourgeois 2002] because we are
going to state only what can be proved without resorting to abstract perturbations.

Let J0 be a Morse–Bott regular almost complex structure on R�M adapted to ˛, and let J� be almost
complex structures on R�M adapted to the contact forms ˛� in Proposition 4.1.2 such that:

.��/ For each Morse–Bott torus TN D T 2, J� is invariant in the s- and t -directions on R�T 2� Œ��; ��

and the projection of J�jker˛ to .R=Z/� Œ��; �� with coordinates .�; y/ is the standard complex
structure @=@y 7! @=@� .

In particular, lim�!0 J� D J0 in the C1-topology.
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Theorem 4.4.3 Let ˛ be a Morse–Bott contact form on M. Fix L> 0. Then there exist ı, �, � and ˛�
as in Proposition 4.1.2, J0 Morse–Bott regular satisfying .�/, and ˛�-adapted regular J� satisfying .��/
as in the previous paragraph such that , for all orbit sets 
; 
 0 2 P with action less than L, the following
holds:

(1) For all sequences �i ! 0 and ui 2MJ�i
.
; 
 0/, there is a subsequence uik which converges to a

Morse–Bott building in MMB
J0
.
; 
 0/.

(2) If Qu is a very nice , simply covered Morse–Bott building , then there is a J�-holomorphic map
u� 2MJ� .
; 


0/ which is “close to breaking” into Qu and a curve uT �0 corresponding to a gradient
trajectory T �0 of f� along y D 0.

(3) If ind. Qu/D 1, then the mod 2 algebraic count of Œu�� 2MJ� .
; 

0/=R that are “close to breaking”

into Qu and uT �0 is one.

(4) If ind. Qu/D 2 and Qu passes through a generic point z 2R�M, then the mod 2 algebraic count of
u� 2MJ� .
; 


0/ that are “close to breaking” into Qu and uT �0 and passing through z is one.

Proof (1) follows from Morse–Bott SFT compactness [Bourgeois et al. 2003; Bourgeois 2002]. The
proofs of (2) and (3) are given in the appendix; (4) is similar.

Lemma 4.4.4 Let J be a Morse–Bott regular almost complex structure and let Qu 2MMB
J .
; 
 0/ be a

very nice Morse–Bott building with I. Qu/D 1. Then Qu is simply covered and ind. Qu/D 1.

Proof Assume that Qu has no trivial cylinders. In the general case, removing the trivial cylinders of Qu
might decrease the ECH index by [Hutchings 2009, Theorem 5.1] and positivity of intersection, but the
same argument holds.

We first consider the case when the principal part u of Qu is nonempty. Suppose that u is a k-fold branched
cover of a nontrivial simply covered J -holomorphic curve v. Let Qv be the Morse–Bott building obtained
by augmenting v with gradient trajectories. If the functions NgN are chosen generically, then ind. Qv/ > 0 by
the regularity of J. Since Qv is a very nice simply covered J -holomorphic building, by Theorem 4.4.3(2)
we can perturb it to a J"-holomorphic map v" for " small. Then I.v"/� ind.v"/ > 0 by the ECH index
inequality (Theorem 2.3.3), so I. Qv/ > 0. Consider the J"-holomorphic curve vk" given by k translated
copies of v". Since both Qu and vk" represent the same relative homology class in H2.M; 
; 
 0/, we have
I. Qu/D I.vk" /. Since I.vk" /� kI.v"/ by [Hutchings 2009, Theorem 5.1 and Proposition 5.6], it follows
that I. Qu/� k. Hence k D 1 and u is simply covered.

Next let u� be the simply covered J�-holomorphic map which corresponds to Qu under an arbitrarily small
generic perturbation of the Morse–Bott contact form by Theorem 4.4.3(2). Clearly I.u�/D I. Qu/D 1, so
ind.u�/D 1 and ind. Qu/D 1. This implies the lemma when the principal part of Qu is nonempty.

If the principal part is empty, then Qu consists of a gradient trajectory on a Morse–Bott family and a
gradient trajectory has ECH index one.

Geometry & Topology, Volume 29 (2025)



Embedded contact homology and open book decompositions 3365

Lemma 4.4.5 Let ˛ be a nice Morse–Bott contact form. If we fix a regular almost complex structure J0
adapted to ˛, then , for any orbit sets 
 and 
 0 and any � > 0 sufficiently small , there is a bijection

MMB;ID1;vn
J0

.
; 
 0/=R'MID1;tn
J�

.
; 
 0/=R:

Here the modifier vn stands for “very nice” and the modifier tn means that all the connectors are trivial
cylinders.

Proof By Theorem 4.4.3 and Lemma 4.4.4, every very nice I D 1, J0-holomorphic Morse–Bott building
can be deformed into an I D 1, J�-holomorphic map all of whose connectors are trivial cylinders.

It remains to show that every sequence vi of J�i -holomorphic maps with I.vi /D 1 and trivial cylinders
as connectors converges to a very nice J0-holomorphic Morse–Bott building Qu as �i ! 0, after possibly
passing to a subsequence. Suppose without loss of generality that the domains of the maps vi are
connected. (Indeed, since I.vi /D 1, discarding the possible trivial cylinders does not change I.vi / by
[Hutchings 2009, Theorem 5.1] and positivity of intersection.) By Theorem 4.4.3(1), the sequence vi
converges to a Morse–Bott building Qu with I. Qu/D 1. Since ˛ is a nice Morse–Bott contact form, the
holomorphic part of Qu has at most one irreducible component which is not a connector. Assume there is
a nontrivial principal part u0; the case of u0 D ¿ is simpler and is left to the reader. We consider the
very nice Morse–Bott building Qu0 obtained by augmenting the Morse–Bott ends of u0 with gradient flow
trajectories to the critical points of the Morse functions on the Morse–Bott tori. Then I. Qu0/D I. Qu/D 1
because they represent the same relative homology class, and therefore Lemma 4.4.4 implies that u0 is
simply covered.

We claim that every other irreducible component is a trivial cylinder over an orbit in P . Arguing by
contradiction, suppose there are nontrivial connectors that are connected to u0 by one or more finite-length
gradient flow trajectories. We will show that ind. Qu/ > 1, which contradicts the fact that Qu is the limit of
curves vi with ind.vi /D 1. To this end we consider the Morse–Bott building Qu0 defined above. We recall
that Qu0 is very nice, simply covered and satisfies I. Qu0/D I. Qu/D 1.

The ends of the building Qu satisfy the incoming/outcoming partitions because Qu is the limit of J"i -
holomorphic maps vi , while the ends of the building Qu0 satisfy the incoming/outgoing partitions because
Qu0 can be deformed to J"i -holomorphic maps v0i for i � 0 by Theorem 4.4.3(2).

We now make the simplifying hypothesis that u0 has ends only at one Morse–Bott torus. (The general case
is more complicated only in the notation.) Then the ends of Qu and Qu0 differ only for the multiplicity of e.
We denote by nC and n� the positive and negative multiplicities of e in Qu, respectively, and by n0

C
and n0�

the corresponding multiplicities in Qu0. Moreover, we denote by �.e; n˙/ and �.e; n0
˙
/ the contributions

of ends at e to the Fredholm indices of Qu and Qu0, respectively. (We recall that these contributions are
determined by the total multiplicities because Qu and Qu0 satisfy the incoming/outgoing partition conditions.)
We observe that n˙ � n0˙ and nC�n0C D n��n

0
�.

Geometry & Topology, Volume 29 (2025)



3366 Vincent Colin, Paolo Ghiggini and Ko Honda

Let F be the domain of vi and F 0 the domain of v0i for i�0. Then, by the Fredholm index formula (4-3-1),

ind. Qu/� ind. Qu0/D�.�.F /��.F 0//C .�.e; nC/��.e; n�//� .�.e; n0C/��.e; n
0
�//:

The term �.F /� �.F 0/ is the sum of the Euler characteristics of the connector components of Qu, so
�.�.F /��.F 0// > 0 if Qu is not very nice. We claim that .�.e; nC/��.e; nC//�.�.e; n0C/��.e; n

0
C
//

is always nonnegative. To see this, first we compute the contributions of the ends at e to the Fredholm
index. If the Morse–Bott torus is positive, then

�.e; nC/D nC; �.e; n�/D

�
0 if n� D 0;
1 if n� > 0:

On the other end, if the Morse–Bott torus is negative, then

�.e; nC/D

�
0 if nC D 0;
�1 if nC > 0;

�.e; n�/D�n�:

Similar formulas hold for �.e; n0
˙
/.

Now we focus on the case of a positive Morse–Bott torus. (The negative case is completely symmetric.)
Then .�.e; nC/��.e; n�//�.�.e; n0C/��.e; n

0
�//DnC�n

0
C
�0 if n�; n0�>0 or n�Dn0�D0. On the

other hand, if n�>0 but n0�D 0, we have .�.e; nC/��.e; n�//�.�.e; n0C/��.e; n
0
�//D nC�n

0
C
�1.

However, in this case, nC�n0C D n��n
0
� > 0, so .�.e; nC/��.e; n�//� .�.e; n0C/��.e; n

0
�//� 0.

This proves that, if Qu is not very nice, ind. Qu/> ind. Qu0/. This is a contradiction because ind. Qu/D 1, as Qu is
a limit of indD 1 maps vi , and ind. Qu/ > 0 since J0 is a Morse–Bott regular almost complex structure.

Definition 4.4.6 Let ˛ be a nice Morse–Bott contact form and J a Morse–Bott regular almost complex
structure adapted to the symplectization of ˛. Then the Morse–Bott chain complex .ECCMB.M;˛;J /;@MB/

is generated by orbit sets constructed from P and the differential counts very nice Morse–Bott buildings
with I. Qu/ D 1. We denote by ECCLMB.M; ˛; J / the subcomplex generated by orbit sets of action less
than L.

Proposition 4.4.7 Let ˛ be a nice Morse–Bott contact form. If no Reeb orbit of ˛ has action equal to a
fixed L> 0, then there is an isomorphism of chain complexes

ECCL.M; ˛�; J�/' ECCLMB.M; ˛; J0/

for all sufficiently small � > 0. In particular , @2MB D 0.

Proof The isomorphism follows from Lemma 4.4.5.

4.5 Comparison with the nondegenerate case

In this subsection we use a direct limit argument to prove the isomorphism between ECH of a nondegenerate
contact form and Morse–Bott ECH of a nice Morse–Bott form ˛.
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Let Li !1 be an increasing sequence such that each Li is positive and there is no Reeb orbit of ˛
with action equal to Li . Let N1; : : : ;Nn.i/ be the Morse–Bott families consisting of simple orbits with
˛-action <Li . (In many useful cases, limi!C1 n.i/DC1.)

The following lemma provides a sequence of perturbing functions and is an immediate corollary of
Proposition 4.1.2 and Theorem 4.4.3:

Lemma 4.5.1 Let ˛ be a nice Morse–Bott form and let Li be a sequence of positive constants such that
Li !C1 and no Reeb orbit of ˛ has action equal to Li . There exist sequences of positive numbers
�i ! 0 and functions gi WM !R�0 such that fi D 1Cgi and :

(1) gi is supported in a union of disjoint neighborhoods of TN1 ; : : : ; TNn.i/ .

(2) The support of gi is disjoint from all nondegenerate Reeb orbits of ˛ of ˛-action <Li .

(3) On a sufficiently small neighborhood T 2� Œ�"; "� of TNj for j D 1; : : : ; n.i/, there exist precisely
two simple orbits of fi˛ of action � Li , corresponding to elliptic and hyperbolic orbits of the
perturbed Morse–Bott family.

(4) limi!C1 fi D 1 in the C k-topology for k� 0.

(5) For every i , the contact form fi˛ satisfies conditions (1)–(4) of Proposition 4.1.2 and the conclusion
of Theorem 4.4.3 for orbits of action � Li .

(6) fi˛ (resp. fiC1˛) has no Reeb orbits with fi˛-action (resp. fiC1˛-action) in Œa�2i Li ; a
2
i Li �,

where ai D .1C �ic0/2 for some constant c0 > 0.

Warning 4.5.2 For all i , Morse–Bott theory (and in particular Proposition 4.4.7) gives injections
ECCLi .M; fi˛/! ECCLiC1.M; fiC1˛/. However, the maps induced in homology by these injections
a priori could be different from the canonical maps given in Lemma 3.1.7, and it is with respect to the
latter that the direct limit must be taken. (A posteriori, they are shown to be the same in the proof of
Theorem 4.5.9.)

Observe that a�1i fi < fiC1 < aifi for all i . Then Lemma 3.1.7 gives maps

ˆC W ECHLi .M; fi˛/! ECHaiLi .M; fiC1˛/;

ˆ� W ECHaiLi .M; fiC1˛/! ECHa
2
i
Li .M; fi˛/;

ˆ0� W ECHa
�1
i
Li .M; fiC1˛/! ECHLi .M; fi˛/:

Lemma 4.5.3 The map ˆC is an isomorphism.

Proof By Theorems 3.1.2(ii) and (iv), the composition

ECHLi .M; aifiC1˛/! ECHLi .M; fi˛/! ECHLi .M; a�1i fiC1˛/

is equal to the cobordism map induced by a piece of symplectization. Then, by Theorem 3.1.2(vi), it
is a composition of a scaling with an inclusion. From this and Lemma 4.5.1(9), it follows easily that
ˆC ıˆ

0
� D id. Similarly, ˆ� ıˆC D id. Hence ˆC is an isomorphism.

Geometry & Topology, Volume 29 (2025)



3368 Vincent Colin, Paolo Ghiggini and Ko Honda

Let .Œ0; 1��M;d�i / be an interpolating cobordism from fi˛ to a�1i fiC1˛ and .R�M;dy�i / its comple-
tion. Let zJi be a regular almost complex structure on .R�M;dy�i / which is d�i -compatible and adapted
to the symplectizations of fi˛ and a�1i fiC1˛ at the ends. We denote the moduli space of zJi -holomorphic
buildings in .R�M;dy�i / from 
 to 
 0 by Mb

zJi
.
; 
 0/.

The following lemma, stated without proof, is a consequence of the Morse–Bott compactness theorem
[Bourgeois 2002] and the triviality of I < 0 moduli spaces in symplectizations.

Lemma 4.5.4 If �i >0 is sufficiently small , then there is a regular almost complex structure zJi such that ,
if 
 and 
 0 have fi˛-actions less thanLi , then Mb;ID0

zJi
.
; 
 0/ and Mb;ID0

zJi
.
 0; 
/ are empty if 
¤
 0 and

consist of branched covers of trivial holomorphic cylinders if 
 D 
 0.

By Morse–Bott theory, there is an identification of complexes

e W ECCLi .M; fi˛; Ji /
'
�! ECCaiLi .M; fiC1˛; JiC1/:

In fact, ECCLi .M; fi˛/ and ECCaiLi .M; fiC1˛/ are generated by the same orbit sets and the moduli
spaces of I D 1 holomorphic curves (modulo R-translations) have the same cardinality, by Lemma 4.5.1
and Proposition 4.4.7. Let e� be the map induced by e on homology.

Proposition 4.5.5 e� DˆC.

Proof Let
ŷ
C W ECCLi .M; fi˛; Ji /! ECCaiLi .M; fiC1˛; JiC1/

be a (noncanonical) chain map which induces ˆC and is given by Theorem 3.1.2 and Lemma 3.1.7.
Theorem 3.1.2(i) and Lemma 4.5.4 imply that ŷC is a diagonal map. Note that ECCLi .M; fi˛/ and
ECCaiLi .M; fiC1˛/ are generated by the same orbit sets. The reason why we cannot conclude that
ŷ
C D e by Theorem 3.1.2(i) is that some of the I D 0 holomorphic cylinders in the interpolating

cobordism from .M; aifi˛/ to .M; fiC1˛/ are, strictly speaking, not contained in product regions.

For F -coefficients we can use the following algebraic trick to finish the proof: Identify ECCaiLi.M;fiC1˛/
with ECCLi .M; fi˛/ via e�1. Then

.e�1 ı ŷC/ ı .e
�1
ı ŷC/D e

�1
ı ŷC

over F. Since ˆC and e� are isomorphisms, it follows that e�1� ıˆC D id and ˆC D e�.

Now we give a sketch of the proof of Proposition 4.5.5 which applies to integer coefficients. The
uninterested reader can jump directly to Theorem 4.5.9. Given a pair .�; J / consisting of a nondegenerate
contact form � and a compatible J, Taubes [2010] first perturbs .�; J / into an L-flat pair .�0; J 0/
before identifying ECHL.�0; J 0/ with Seiberg–Witten Floer cohomology. A pair .�0; J 0/ is L-flat if
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near each Reeb orbit of length < L it satisfies the conditions in [Taubes 2010, equation (4-1)], and
L-flat perturbations are constructed in [Taubes 2010, Proposition 2.5 and Appendix]. (See [Taubes 2010,
Section 5.c, Part 2] for the reasons for introducing the L-flat condition.)

The following lemma is a slight rephrasing of [Hutchings and Taubes 2013, Lemma 3.4(d)] and will not
be proved:

Lemma 4.5.6 If .�t ; J t ; Lt / for t 2 Œ0; 1� is a 1-parameter family and .�t ; J t / is Lt -flat , �t is Lt -
nondegenerate , and J t is Lt -regular (ie Definition 2.2.1 holds for all 
 and 
 0 with A�t .
/ < Lt ) for all
t 2 Œ0; 1�, then the ECH cobordism map

ECHL
0

.M; �0/! ECHL
1

.M; �1/

is induced by the isomorphism

ECCL
0

.M; �0; J 0/ ��! ECCL
1

.M; �1; J 1/

given by the canonical bijection of generators.

Setting �0Dfi˛ and �1DfiC1˛, it is easy to find an extension �t for t 2 Œ0; 1� of the form f tiC1˛, where
f 0iC1 D fi , f

1
iC1 D fiC1, and f tiC1 satisfies the conditions of Lemma 4.5.1 with fiC1 replaced by f tiC1.

By choosing f tiC1 to be sufficiently close to 1 and applying Lemma 4.4.5, there exist an extension Lt

for t 2 Œ0; 1� of L0 D Li and L1 D aiLi and an extension J t for t 2 Œ0; 1� of J 0 D Ji and J 1 D JiC1
such that J t is adapted to �t and is Lt -regular.

Next we fix a Riemannian metric onM, with respect to which we measure distances. Assume for simplicity
that there is a unique Morse–Bott torus TN . Let 
e and 
h be the elliptic and hyperbolic orbits of �t

which are obtained by perturbing TN , where we assume that 
e t
h is independent of t 2 Œ0; 1�. For each
" > 0 sufficiently small, we construct an Lt -flat family (t 2 Œ0; 1�) of perturbations .�t;"; J t;"/ of .�t ; J t /
which are supported on an "-neighborhood of 
e t 
h. Moreover, .�t;"; J t;"/ converges (uniformly in
t 2 Œ0; 1�) to .�t ; J t / in the C 0-topology as "! 0. The proof is a 1-parameter version of the construction
of L-flat perturbations in [Taubes 2010, Proposition 2.5 and Appendix] and will be omitted.

Claim 4.5.7 For " > 0 sufficiently small , J t;" is Lt -regular for all t 2 Œ0; 1�.

Proof We may assume that J t;" for t 2 Œ0; 1� is a generic 1-parameter family of almost complex
structures. Arguing by contradiction, there exist orbit sets 
 and 
 0 and sequences "j ! 0, tj 2 Œ0; 1� and
uj W Fj !R�M, where:

(1) uj is a somewhere-injective J tj ;"j -holomorphic curve from 
 to 
 0.

(2) 
 and 
 0 are constructed from the nondegenerate orbits of ˛ together with 
e and 
h and
A
�
tj ;"j .
/;A�tj ;"j .
 0/ < Ltj .

(3) uj is not a connector and I.uj /D ind.uj /D 0.
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Claim 4.5.8 After passing to a subsequence , there exists an SFT limit uj ! u1, where I.u1/ D
ind.u1/D 0 and u1 is not a connector.

A sketch of Claim 4.5.8 is given in Section 5.2. Since u1 is a J t0-holomorphic curve and J t is Lt -regular
for all t 2 Œ0; 1� by Lemma 4.4.5, we have a contradiction. This implies Claim 4.5.7.

Claim 4.5.7 and Lemma 4.5.6 then imply Proposition 4.5.5 for integer coefficients.

By passing to direct limits, we obtain the main result of Morse–Bott theory.

Theorem 4.5.9 Let ˛ be a nice Morse–Bott form and J a generic almost complex structure adapted to
the symplectization of ˛. Then

ECHMB.M; ˛; J /' ECH.M/:

Proof Choose sequences of functions fi WM !R and constants Li!C1 which satisfy the hypotheses
of Lemmas 4.5.1 and 4.5.4. Then

(4-5-1) ECH.M/D lim
i!1

ECHLi .M; fi˛/

by Corollary 3.2.3 and

(4-5-2) ECCLi .M; fi˛; Ji /' ECCLiMB.M; ˛; J /

for all i by Proposition 4.4.7. Also, tautologically,

ECCMB.M; ˛; J /D lim
i!1

ECCLiMB.M; ˛; J /:

In order to take the direct limit on both sides of (4-5-2) on the level of homology, we need the commutativity
of the diagram

ECHLiMB.M; ˛/
'

// ECHLi .M; fi˛/

�� ��

ECHLiC1MB .M; ˛/
'
// ECHLiC1.M; fiC1˛/

for all i , where the rightmost vertical arrow is the natural map defined in Lemma 3.1.7 from interpolating
cobordisms. This map coincides with ˆC followed by the map induced by the inclusion

ECCaiLi .M; fiC1˛/ ,! ECCLiC1.M; fiC1˛/:

Therefore the diagram commutes by Proposition 4.5.5.

5 Topological constraints on holomorphic curves

5.1 The winding number

In this subsection we recall the winding number from [Hofer et al. 1995, page 290]: Given a contact
manifold .M; �/ with �D ker˛, an ˛-adapted almost complex structure J on R�M, and a J -holomorphic
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curve u W F ! R�M between orbits sets, the winding number wind�.u/ is an algebraic count of the
zeros of the section:

s W F ! HomC.TF; u
��/:

Here s is obtained by composing

TF
u�
�! T .R�M/

.�M /�
����! TM

�
�! �;

where �M WR�M !M is the projection onto the second factor and � is the projection along the Reeb
vector field R˛.

Hofer, Wysocki and Zehnder [Hofer et al. 1995] prove that wind�.u/ is finite. (This is analogous to the
elementary complex analysis fact that the number of zeros of a holomorphic function f WD2 �C!C,
counted with multiplicities, is equal to the winding number of f j@D2 .) An immediate corollary is the
following lemma:

Lemma 5.1.1 The map uM D �M ıu is transverse to R˛ away from a finite number of points on F. In
particular , it is an immersion outside a finite number of points on F.

Throughout the section we will use the notation uM D �M ıu.

5.2 Blocking lemma

In this subsection we discuss the topological restrictions that a torus foliated by Reeb trajectories imposes
on the J -holomorphic curves.

Let ˛ be a contact form on M and T �M an oriented torus which is linearly foliated by Reeb trajectories
of ˛. The foliation can either have closed leaves or dense leaves. We denote by PCH1.T IR/ the quotient
of H1.T IR/� f0g by multiplication of positive real numbers. The Reeb flow on T will then have a
well-defined “slope” s 2 PCH1.T IR/.

Let h ; i be the intersection pairing on H1.T IR/. We then make the following definition:

Definition 5.2.1 If ı 2H1.T IZ/, then we write ı � s > 0 (resp. ı � s D 0) if hı; 
i> 0 (resp. D 0) for any
representative 
 2H1.T IR/ of s 2 PCH1.T IR/.

Note that, if ı � s D 0, then ı represents the slope s or �s.

Let T 2� Œ�"; "� be a neighborhood of the Morse–Bott torus T D T 2�f0g with coordinates .�; t; y/. We
assume that the normal vector to T points in the direction of @y . Let u W F !R�M be a J -holomorphic
curve such that

(C1) F is a compact Riemann surface with boundary @F ; and

(C2) uM .@F /\ .T
2 � Œ�"; "�/D¿.
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Then uM .F /\T only has a finite number of singularities by Lemma 5.1.1 and we denote by ı 2H1.T IZ/
the homology class of uM .F /\T, where the smooth part of uM .F /\T is oriented as the boundary of
uM .F /\ .T

2 � Œ�"; 0�/.

Lemma 5.2.2 (positivity of intersections in dimension three) Let T �M be an oriented torus which is
linearly foliated by Reeb trajectories of slope s. If u W F !R�M is a J -holomorphic curve satisfying
(C1) and (C2) and ı D ŒuM .F / \ T � 2 H1.T IZ/, then ı � s � 0. Moreover , ı � s D 0 if and only if
uM .F /\T D¿.

Proof We will prove this lemma in the harder case when T is foliated by orbits of irrational slope,
leaving the rational slope case to the reader.

By Lemma 5.1.1, uM .F /\ T, if nonempty, is the union of a finite set of points and curves which are
immersed outside a finite number of singularities.

Assume first that uM .F / \ T has a one-dimensional component. By abuse of notation, we do not
distinguish between the homology class ı and its representative uM .F /\T. A generic finite-length Reeb
trajectory 
 on T intersects ı in finitely many points away from the singularities and isolated points.
In fact, ı \ 
 D �M .u.F /\ .R� 
// and u.F /\ .R� 
/ is a finite set by the intersection theory of
holomorphic curves in dimension four; see [Micallef and White 1995, Theorem 7.1]. Since all Reeb
trajectories are dense in T, we can choose 
 arbitrarily long so that its endpoints are close to each other
and far away from ı. Hence we can complete 
 to a homologically nontrivial closed curve x
 without
introducing extra intersection points with ı. Then the positivity of intersections in dimension four implies
that ı � Œx
� > 0. In particular, ı ¤ 0 2H1.T IZ/. Since we can make the slope of x
 as close as we want
to s by taking 
 sufficiently long, and s is not an integral homology class, we conclude that ı � s > 0.
(Recall that, if ı � s D 0, then ı and either s or �s are parallel.)

Assume now that uM .F /\T is a finite set. We claim that uM .F /\T D¿. Suppose that uM .F /\T ¤¿
by contradiction. Repeating the construction from the previous paragraph with a finite-length Reeb
trajectory 
 (resp. 
 0) which passes through a point in uM .F /\T (resp. is disjoint from uM .F /\T ),
we obtain x
 and x
 0. Then Œu.F /� � ŒR� x
� > 0 by the positivity of intersections, while Œu.F /� � ŒR� x
 0�D 0
because they are disjoint. Since R� x
 and R� x
 0 are homologous, we have a contradiction.

The following is an immediate consequence of Lemma 5.2.2:

Lemma 5.2.3 (blocking lemma) Let T �M be an oriented torus which is linearly foliated by Reeb
trajectories of slope s and let u W F !R�M be a finite-energy J -holomorphic map , where F is a closed
Riemann surface with a finite number of punctures removed. Then:

(1) If u is homotopic , by a compactly supported homotopy, to a map whose image is disjoint from R�T,
then uM .F /\T D¿.
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(2) If T 0 is a torus which is parallel to and disjoint from T, u has no end that limits to a Reeb orbit that
intersects the half-open region between T and T 0 which includes T 0 but not T, and the homology
class ŒuM .F /\T 0� is nonzero and has slope˙s, then u has an end which is asymptotic to a Reeb
orbit in T.

We now sketch the proof of Claim 4.5.8.

Sketch of proof of Claim 4.5.8 The consideration that needs slight care is that as "j ! 0, J tj ;"j !
J t1 only in the C 0-topology. Let N"j .
e t 
h/ be an "j -neighborhood of 
e t 
h and let F 0j D
u�1j

�
R� .M �N"j .
e t 
h//

�
. By the Gromov–Taubes compactness theorem [Taubes 1998], which

requires no a priori bound on the genus and is local, there exists a limit u1 of uj jF 0
j

as currents, after
passing to a subsequence. This implies that the homology class Œuj .Fj /� can be taken to be independent
of j. The argument from [Hutchings 2002, Theorem 10.1] then gives a bound on the genus of Fj .

We can then either appeal to the C 0-Gromov compactness theorem of Ivashkovich and Shevchishin [2000]
or argue as follows using the blocking lemma. We make the simplifying assumptions that 
 and 
 0 do not
contain 
h and that uj does not intersect neighborhoods of R� 
h and leave the harder general case to
the reader.

We claim that ��.F 0j / is bounded above. Since we have a genus bound for Fj , it suffices to show that
the number #@F 0j of boundary components of F 0j is bounded above. Let V 0j DN"j .
e/ and let T 0j D @V

0
j

with the boundary orientation. Choose an oriented identification T 0j 'R2=Z2 such that the meridian has
slope 0 and the longitude is determined by the Morse–Bott family and has slope1. We may assume that
T 0j is foliated by Reeb orbits of slope s0j � 0 and that there exists a torus T 00j �M �V

0
j which is parallel

to T 0j and is foliated by Reeb orbits of rational slope s00, where s00 is independent of j and s0j > s
00 > 0.

Let V 00j �M be the solid torus bounded by T 00j and let F 00j Du
�1
j .R�.M�V 00j //. Let �M WR�M!M be

the projection onto the second factor. By Lemma 5.2.2, ifC is a component of @F 00j , then �M ıuj .C /�s0<0.
Since Œuj .Fj /� is fixed and s00 is rational, #@F 00j must then be bounded above. On the other hand, let
V
.0/
j � V 0j be a sufficiently small neighborhood of 
e , T

.0/
j D @V

.0/
j , and F .0/j D u�1j .R� .M �V .0/j //.

Since Œuj .Fj /� is fixed, #@F .0/j is also bounded above by the positivity of intersections in dimension four
and the asymptotics of uj near their ends.

To obtain the bound on #@F 0j , it then suffices to show that u�1j .R� .V 00j �V
0
j // and u�1j .R� .V 0j �V

.0/
j //

have no disk componentsD with �M ıuj .@D/�T 0j . By Lemma 5.2.2, �M ıuj .@D/ represents a nonzero
homology class in T 0j . On the other hand, the inclusion T 2 � f1g ! T 2 � Œ0; 1� induces an isomorphism
on homology, which is a contradiction. This proves the bound on #@F 0j and ��.F 0j /.

We then apply the SFT compactness theorem to uj jF 0
j

to obtain u1 W F1!R�M. If C is a component
of @F1, then u1.C /� 
e , which in turn implies that u1 is a constant. Hence @F1 D¿. The punctures
of F1 are either removable or limit to orbits in 
 and 
 0. Finally, since Œuj .Fj /� is not the class given by
a connector, u1 is also not a connector.
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5.3 Trapping lemma

In this subsection we analyze some topological restrictions on J -holomorphic curves with ends at a
Morse–Bott torus.

We fix coordinates .�; t; y/ on a neighborhood T 2� Œ�"; "� of a torus T D T 2�f0g and consider contact
forms of the type ˛ D g.�; t; y/ d� Cf .�; t; y/ dt such that:

� f .@yg/� .@yf /g > 0.

� f jyD0 D 1.

� @�f jyD0 D @tf jyD0 D @yf jyD0 D 0.

� @�gjyD0 D @tgjyD0 D 0 and @ygjyD0 D 1.

� @2yf jyD0 ¤ 0.

These conditions imply that T is a Morse–Bott torus and that the Reeb vector field R is given by @t on T.

We recall that the asymptotic operator of a closed Reeb orbit 
 describes the action of the linearized
Reeb flow on sections of the (pullback of the) contact structure 
�� along the orbit. More precisely, the
linearized Reeb flow gives a symplectic connection rR for 
�� and the asymptotic operator is JrR,
where J is an almost complex structure on �; see [Hofer et al. 1996] for more details on the asymptotic
operator and Section 4.1 for the linearized Reeb vector field.

If we choose a generic almost complex structure J adapted to the symplectization of ˛ such that
@tJ jyD0 D 0, then there is a unitary trivialization of � along T such that the asymptotic operator of an
end of a holomorphic map converging to a Reeb orbit on T has the form

(5-3-1) AD�J0
d

dt
CJ0

�
0 0

a 0

�
;

where a>0 if T is a positive Morse–Bott torus, a<0 if T is a negative Morse–Bott torus, and J0D
�
0
1
�1
0

�
.

This unitary trivialization is obtained by projecting .@y ; @� / to � along @t .

Lemma 5.3.1 The eigenvalues of the asymptotic operator A are �0 D 0, �a D�a, and �n and ��n for
n2N, which are the positive and the negative solutions of the equation �.�Ca/Dn2. The eigenfunctions
that correspond to the eigenvalues �0 and �a are

f0.t/D

�
0

1

�
and fa.t/D

�
1

0

�
:

The eigenvalues �˙n for n� 1 are degenerate with multiplicity 2 and their eigenfunctions have winding
number˙n.

Proof The asymptotic operator is sufficiently simple that we can determine its spectrum by an explicit
computation: The eigenfunctions � of A are the 2�-periodic solutions of the differential equation

(5-3-2) P� D

�
0 ��

�Ca 0

�
�:
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If � D 0 or � D �a, which are the only cases when the matrix in (5-3-2) cannot be diagonalized, the
eigenfunctions are

f0.t/D

�
0

1

�
and fa.t/D

�
1

0

�
:

If �.�C a/ < 0, then (5-3-2) can be diagonalized over the real numbers, and it is easy to see that it has
no periodic solutions. If �.�C a/ > 0 a direct computation shows that solutions of (5-3-2) are of the
form �.t/Dˆ�.t/�0, where

ˆ�.t/D

0BB@ cos.
p
�.�C a/t/ �

�p
�.�Ca/

sin.
p
�.�C a/t/

�Cap
�.�Ca/

sin.
p
�.�C a/t/ cos.

p
�.�C a/t/

1CCA :
Then ˆ�.2�/ has eigenvalue 1 if and only if �.�Ca/D n2 2N, in which case ˆ�.2�/ is the identity.

If u is a J -holomorphic map with an end E which is asymptotic to a Morse–Bott torus T, we say that E is
one-sided if its projection to M does not intersect T.

Lemma 5.3.2 (trapping lemma) Let ˛ be a contact form , T an ˛-Morse–Bott torus , and E a one-sided
end of a J -holomorphic map which is asymptotic to a Reeb orbit in T. If T is positive (resp. negative),
then E is a positive (resp. negative) end.

Proof Suppose T is positive. By [Hofer et al. 1996, Theorem 1.3], a positive (resp. negative) end E of a
J -holomorphic curve approaches a Reeb orbit of T along an eigenfunction of the asymptotic operator
with negative (resp. positive) eigenvalue. By Lemma 5.3.1, the eigenfunction has a nonpositive eigenvalue
if and only if it has nonpositive winding number. On the other hand, if E is one-sided, then the asymptotic
eigenfunction must have winding number zero. Hence E must be a positive end. The case for T negative
is similar.

6 Construction of contact forms

In this section we construct some contact forms on T 2 � Œ1; 2� and D2 �S1 which will be used in the
proof of the main theorem.

6.1 Contact forms on T 2 � Œ1; 2�

Let .#; t; y/ be coordinates on
T 2 � Œ1; 2�' .R2=Z2/� Œ1; 2�:

Slopes of essential curves on T 2 will be measured with respect to .#; t/, ie with respect to the basis
of H1.T 2/ given by the homology classes of the curves # 7! .#;�/ and t 7! .�; t /. Let

(6-1-1) f̨;g D g.y/ d# Cf .y/ dt
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.f .1/; g.1//

f

g

.f .2/; g.2//

Figure 1: Trajectory of .fı.y/; gı.y//.

be a contact form on T 2 � Œ1; 2�, where f and g are functions on Œ1; 2�. We write f 0 D df=dy and
g0 D dg=dy.

The following is a straightforward calculation:

Lemma 6.1.1 The form f̨;g is a contact form if and only if

(6-1-2) fg0�f 0g > 0:

The kernel ker f̨;g is spanned by f@y ;�f @# Cg@tg. Assuming f̨;g is a contact form , the Reeb vector
field is given by

(6-1-3) R
f̨;g
D

1

fg0�gf 0
.�f 0@# Cg

0@t /:

In words, equation (6-1-2) says that the curve in R2 parametrized by .f; g/ is transverse to the radial
rays and rotates in the counterclockwise direction.

Later in the article will need the following family of contact forms on T 2 � Œ1; 2�:

Example 6.1.2 Given a (small) positive irrational parameter ı we consider pairs of functions .fı ; gı/
such that the following hold (see Figure 1):

(1) .fı ; gı/ satisfies (6-1-2).

(2) 0 � f 0
ı
.y/=g0

ı
.y/ � ı; f 0

ı
.y/=g0

ı
.y/ is increasing on

�
1; 3
2

�
and is decreasing on

�
3
2
; 2
�
, and is

equal to ı at y D 3
2

.

(3) .fı.y/; gı.y//D .fı.1/C .y � 1/
2; gı.1/C .y � 1// near y D 1.

(4) .fı.y/; gı.y//D .fı.2/� cı.y � 2/
2; gı.2/C cı.y � 2// near y D 2.

(5) .fı.1/; fı.1// is independent of ı and all the .fı.2/; fı.2// lie on the same line through the origin.

(6) The constants cı are chosen so that any two contact forms ˛ı and ˛ı 0 are constant multiples of one
another near y D 2.
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The contact form f̨ı;gı will also be called ˛ı . Its Reeb vector field R˛ı has Morse–Bott tori whose Reeb
orbits have rational slope in the interval Œ�1;�1=ı�; each rational slope occurs twice, once on the interval�
1; 3
2

�
and once on the interval

�
3
2
; 2
�
. Note that the Reeb orbits in the two Morse–Bott tori of infinite

slope have parallel directions and are in “elimination position”, ie assuming that .fı ; gı/ is extended
slightly to T 2� Œ1� "; 2C "� so that the Reeb orbits have positive slope on y 2 Œ1� "; 1/[ .2; 2C "�, one
could deform the pair .fı ; gı/ relative to fy D 1� "; 2C "g to make the slope of the Reeb vector field
always positive; during the deformation we would see the two Morse–Bott tori of infinite slope coming
close to each other and finally canceling. Also, by taking ı to be sufficiently small, all the Reeb orbits in
int.T 2 � Œ1; 2�/ can be made to have arbitrarily large action.

6.2 Contact forms onD2 �S 1

Let .�; �; �/ be cylindrical coordinates5 on the solid torus

D2 �S1 D f� � 1g � .R=2�Z/:

Let Tx� D f�D x�g �D2 �S1 for x� 2 .0; 1�.

Convention 6.2.1 Slopes of essential curves on the torus Tx� are measured with respect to .�; �/ instead
of .�; �/.

We consider contact forms which can be written as

(6-2-1) f̨;g D g.�/ d� Cf .�/ d�:

Here we need to choose .f .�/; g.�// so that f̨;g is smooth on all ofD2�S1, which means that f .0/D 0
and the derivatives of odd degree of both f and g at �D 0 vanish. We write f 0D df=d� and g0D dg=d�.
The analog of Lemma 6.1.1 is the following:

Lemma 6.2.2 The form f̨;g is a contact form if and only if

f 0g�fg0 > 0 for � > 0; and(6-2-2)

lim
�!0

f 0g�fg0

�
> 0:(6-2-3)

The kernel ker f̨;g is spanned by f@�;�f @� Cg@�g. Assuming f̨;g is a contact form , the Reeb vector
field is given by

(6-2-4) R
f̨;g
D

1

f 0g�fg0
.f 0@� �g

0@�/:

In particular , R
f̨;g

is parallel to @� at �D 0.

Each torus Tx� is linearly foliated by the Reeb flow of f̨;g .

5We are making a distinction between the symbols # and � .
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straight line

f

g

.f .1/; g.1//

.f .0/; g.0//

Figure 2: Trajectory of .f .�/; g.�//. Here the arrow points in the positive �-direction.

Since they will be useful later, we present a pair of constructions of contact forms on D2 � S1 of the
form given in (6-2-1).

Example 6.2.3 Given � > 0 and C > 1, let .f .�/; g.�//D .��2; C � �2/. This gives a smooth contact
form on D2 �S1 and the Reeb vector field on T� has slope �g0=f 0 D 1=� for all � > 0. In particular, if
� is irrational, then the only simple closed orbit of R

f̨;g
is the core curve f�D 0g.

Example 6.2.4 The following contact forms, which generalize those in Example 6.2.3, will be used later
in the paper. We define ˛ on D2 �S1 so that the following hold:

(1) .f; g/ satisfies (6-2-2).

(2) .f .�/; g.�//D .�2; C � �2/ near �D 0, where C > 0 is a large constant.

(3) .f .�/; g.�//D .f .1/� .�� 1/2; g.1/� .�� 1// near �D 1.6

(4) �g0=f 0 monotonically increases from 1 to C1 as � goes from 0 to 1.

The profile of the functions .f; g/ is shown in Figure 2.

On each torus T� �D2 �S1, the Reeb vector field R˛ gives a foliation by Reeb orbits of slope r in the
interval Œ1;1�, where there is a unique � for each slope r 2 .1;1�.

7 ECH for manifolds with torus boundary

In this section we define several ECH groups on a compact manifold M with torus boundary T D @M.
We fix an oriented identification T 'R2=Z2 so that we can refer to slopes of essential curves on T. Let
˛ be a contact form on M such that T is foliated by Reeb orbits of slope r . If r is rational, we assume
that T is Morse–Bott. All ECH groups on M and int.M/ are computed using a C1-small perturbation

6Here .f; g/j�D1 D .fı ; gı /jyD2. This allows us to extend ˛ı to D2 �S1 for all sufficiently small ı > 0 by writing .fı ; gı / as
a suitable constant multiple of .fı0 ; gı0/. This is possible because of condition (6) in the definition of ˛ı . Observe that the Reeb
orbits of ˛ı and ˛ı0 agree on V, modulo parametrization.
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of ˛ so that all Reeb orbits in int.M/ are nondegenerate. Let J be a Morse–Bott regular almost complex
structure on R�M adapted to ˛.

7.1 Definitions

We introduce several ECH groups:

(1) ECH.int.M/; ˛/ The ECH chain group ECC.int.M/; ˛/ is generated by orbit sets whose simple
orbits lie in the interior of M. In particular, we are discarding the Morse–Bott family of orbits on T if r is
rational. The differential @ is the usual one, ie it counts holomorphic curves of ECH index I.
; 
 0; Z/D 1
in R� int.M/ whose connector components are trivial cylinders. Since int.M/ is not closed, we need to
verify that ECC.int.M/; ˛/ is indeed a chain complex.

Lemma 7.1.1 @ is defined and @2 D 0.

Proof We claim that the SFT compactness theorem holds in R� int.M/. This implies that the arguments
used in [Hutchings and Taubes 2007; 2009a] to prove @2 D 0 will then carry over to our setting. Let
un be a sequence of J -holomorphic maps with image in R� int.M/. After passing to a subsequence,
un converges to a building u1 such that all its components have image in R�M. By the blocking lemma,
no component of u1 can intersect @M.

We claim that no component of u1 can have an end at a Reeb orbit in @M : indeed, if there is a component
with a positive (resp. negative) end at a Reeb orbit in @M, then there is another component of u1 with
a negative (resp. positive) end at a Reeb orbit in @M. By the trapping lemma, this is impossible if the
image of u1 is contained in R�M.

(2a) ECH.M;˛/ for r irrational This is defined to be ECH.int.M/; ˛/.

(2b) ECH.M;˛/ for r rational Let N be the set of simple Reeb orbits on T. The set N comes with
distinguished orbits e; h which become elliptic and hyperbolic after a suitable perturbation. Writing P
for the set of simple orbits in int.M/, ECC.M; ˛/ is the chain complex which is generated by orbit sets
constructed from P[fh; eg and whose differential counts Morse–Bott buildings of ECH index 1 in R�M.

Lemma 7.1.2 If ˛ is nondegenerate on int.M/, then it is nice.

Proof Suppose that @M is a negative Morse–Bott torus; the positive case is analogous. Let N be the
Morse–Bott family corresponding to @M. If ˛ is not nice, then there is a Morse–Bott building Qu in
R�M with ECH index I. Qu/D 1 whose holomorphic part u has more than one nonconnector irreducible
component. Assume that there are exactly two nonconnector components u1 and u2 (this is mostly to
simplify notation; the general case is treated in the same way). By the trapping lemma, the only ends of u1
and u2 that limit to @M are negative ends. We form the Morse–Bott buildings Qu1 and Qu2 by augmenting
the ends of u1 and u2 at @M with gradient flow lines and denote the union of these two buildings by Qu0.
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We claim that I. Qu/D I. Qu0/. Indeed, all the ends of u1 and u2 that limit to orbits on @M are connected
to critical points in N by gradient flow lines, with possible interruptions by connectors. Hence Qu
and Qu0 have the same ends in the ECH sense and define the same relative homology class. This implies
that I. Qu/D I. Qu0/.

On the other hand, let ui for i D 1; 2 be a ki th cover of a J -holomorphic curve vi , and define very nice,
simply covered buildings Qvi . By Theorem 4.4.3(2), we can perturb Qv1 and Qv2 to J�-holomorphic maps
v1;" and v2;", respectively. We denote by vkii;" the J�-holomorphic map made of ki parallel copies of vi;".
Then, by [Hutchings 2009, Theorem 5.1],

I. Qu/� I.v
k1
1;"/C I.v

k2
2;"/� k1I.v1;"/C k2I.v2;"/:

Since I.vi;"/ > 0 for i D 1; 2, this is a contradiction.

Lemma 7.1.2 implies that @2D 0, since it guarantees that the Morse–Bott gluing is done at a different end
from the gluing of connectors (ie the obstruction bundle gluing of Hutchings and Taubes [2007; 2009a])
and the two kinds of gluing can be done independently.

(3) ECH[.M;˛/ The chain complex ECC[.M; ˛/ is generated by orbit sets which are constructed from
P [feg. As in the case of ECC.M; ˛/, if N is a negative Morse–Bott family, no Morse–Bott building Qu
in R�M besides trivial cylinders can have e at the positive end. Hence the differential can be defined by
counting Morse–Bott buildings of ECH index 1 in R�M, whose orbit sets are constructed from P [feg.

The verification of @2 D 0 needs one extra consideration: an index 2 family of J -holomorphic curves
in R�M can break into a Morse–Bott building Qu which involves h at the negative end, followed by a
holomorphic cylinder from h to e. (Note that, by the trapping lemma, these holomorphic cylinders are
the only nontrivial holomorphic curves which go from h to e and so there are no other cases to consider.)

This type of breaking could be a problem because orbit sets containing h are not in the chain complex
ECC[.M; ˛/. However, since there are two gradient trajectories from h to e with ECH index I D 1 and
no other holomorphic curve (or building) with a positive end at h, the Morse–Bott building Qu can be
glued onto each of the two gradient trajectories. This proves that families breaking at h always come in
pairs, and therefore @2 D 0 holds even when we discard orbit sets which contain h.

If N is a positive Morse–Bott family, then e can only be at the positive end of a J -holomorphic curve
in R�M, and the proof of @2 D 0 remains the same with the obvious modifications.

(4) ECH].M;˛/ The chain complex ECC].M; ˛/ is generated by orbit sets which are constructed
from P [ fhg, and its differential counts ECH index 1 Morse–Bott buildings which are asymptotic to
orbit sets constructed from P [fhg.

Remark 7.1.3 The differentials of the ECH groups defined in this section preserve the total homology
class of the generators. Then we can define subgroups ECH.M; ˛;A/ for every A 2H1.M/. Similar
notation will be used for the variants of this group.
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7.2 Well-definition

In this subsection we prove that ECH.M; ˛/ is independent of the choice of ˛, provided the slope r is
irrational. The verification in the other cases will be omitted; we will be careful to use the invariance
of ECH groups for manifolds with torus boundary only in the case where it is proved. The main result
proved in this subsection is the following:

Proposition 7.2.1 Let ˛1 and ˛2 be contact forms on M which agree on @M to first order (and in
particular the Reeb vector fields and the characteristic foliations of ˛1 and ˛2 at @M are equal ) and define
contact structures �i D ker˛i which are isotopic relative to the boundary. If @M is foliated by Reeb orbits
of irrational slope , then there is an isomorphism

ECH.M; ˛1/' ECH.M; ˛2/:

The strategy of the proof is to extend .M; ˛i / for i D 1; 2 to closed contact manifolds and to use the
invariance of ECH for closed manifolds. Lemma 7.2.3 constructs the contact forms which are used to
extend .M; ˛i /. Then Lemma 7.2.6 shows that, up to some action L, the ECH groups of .M; ˛i / are
isomorphic to the ECH groups of their extension. Finally, Lemmas 7.2.7, 7.2.9 and 7.2.10 establish some
compatibility properties for the continuation maps between the extended forms, so that the proposition
can finally be proved by a direct limit argument.

Lemma 7.2.2 Let ˛ D g.�/ d� Cf .�/ d� be a contact form on D2 �S1 with cylindrical coordinates
.�; �; �/. Write v.�/D .f .�/; g.�// and let jv.�/j be the norm of v.�/ and �.�/ the angle between v.�/
and v0.�/, both measured with respect to the standard Euclidean structure on R2. Then , if the torus T� is
foliated by closed Reeb orbits , for every Reeb orbit 
 on T� we have

(7-2-1) A.
/� jv.�/jjsin �.�/j:

Proof Let J be the standard complex structure, � the standard inner product, and j � j the standard
Euclidean norm on R2. For every � 2 .0; 1� we trivialize the tangent bundle of the torus T� by .@� ; @� /
and measure the slope of curves on T� with respect to .�; �/.7

By Lemma 6.2.2, R is tangent to T� for all � 2 .0; 1� and can be written as

RD
.�g0; f 0/

.�g0; f 0/ � .f; g/
;

with respect to .@� ; @� /. If we write v D .f; g/, then Jv0 D .�g0; f 0/ and

jRj D

ˇ̌̌̌
.�g0; f 0/

.�g0; f 0/ � .f; g/

ˇ̌̌̌
D

ˇ̌̌̌
Jv0

Jv0 � v

ˇ̌̌̌
D

1

jvjjsin �j
;

7In the proof we are using a different convention from that of Convention 6.2.1.
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long line segment

Figure 3: Trajectory of .f .�/; g.�//. The arrow is in the direction of increasing �.

where �.�/ is the angle between v.�/ and v0.�/. Note that slope.R/D slope.J v0/D�f 0=g0.

Let � 2 .0; 1/ be such that R has rational slope on T� and let w be the shortest integer vector with that
slope. Then T� is foliated by Reeb orbits and each Reeb orbit 
 has action A.
/ D jwj=jRj. Since
jwj � 1, we have the bound

A.
/� 1

jRj
D jvjjsin �j:

Lemma 7.2.3 Given L> 0 and r > 0 irrational , there is a contact form ˛.r; L/D g.�/ d� Cf .�/ d�

on V DD2 �S1 with cylindrical coordinates .�; �; �/ such that

(a) on @V, the Reeb vector fieldR of ˛.r; L/ has slope �1=r and the characteristic foliation has infinite
slope; and

(b) all the closed orbits of R have ˛.r; L/-action larger than L.

Proof We describe ˛.r; L/ by describing the vector v.�/ D .f .�/; g.�//. We construct v.�/ D
.f .�/; g.�// “backwards”, starting with larger �, subject to the condition d jvj=d� < 0. The profile
of v.�/ is given in Figure 3.

(1) For �2
�
3
4
; 1
�
, define v.�/ so that it parametrizes a “long”8 segment andR is constant, has slope�1=r ,

and satisfies jRj D 1=K. Since r is irrational, there are no Reeb orbits on T� for � 2
�
3
4
; 1
�
.

(2) Fix an irrational slope �1=r 0 > �1=r such that all integer vectors with slope between �1=r 0

and �1=r have norm greater than 2L=K. For � 2
�
1
2
; 3
4

�
, define v.�/ so that jR.�/j < 2=K and

slope.R/D slope.J v0/ decreases monotonically from �1=r 0 to �1=r as � increases. One can achieve this
by making v.�/ vary sufficiently slowly for � 2

�
1
2
; 3
4

�
. Hence, if 
 is a Reeb orbit of T� with � 2

�
1
2
; 3
4

�
,

then
A.
/� K

2

2L

K
D L:

8The segment is chosen so that (7-2-2) from (2) is satisfied.
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Let x� be the clockwise angle from a line of slope �1=r 0 to a line of slope �1=r . By taking the “long”
segment to be sufficiently long, we may assume that

(7-2-2) jsin x�j>KL
ˇ̌
sin
�
�
�
3
4

��ˇ̌
:

(3) For � 2
�
1
4
; 1
2

�
, define v.�/ so that slope.J v0/ decreases monotonically from 1=r 00 > 0 to �1=r 0 as �

increases and jsin �.�/j � jsin x�j. We can achieve these properties by changing v.�/ slowly with respect
to the slope of v0.�/. Then, by (7-2-1) and (7-2-2),

(7-2-3) A.
/� jv.�/j �KL
ˇ̌
sin
�
�
�
3
4

��ˇ̌
�KL

ˇ̌
v
�
3
4

�ˇ̌
�
ˇ̌
sin
�
�
�
3
4

��ˇ̌
�KL

1

K
D L;

where 
 is a Reeb orbit of T�, � 2
�
1
4
; 1
2

�
.

(4) Finally, define v.�/ for � 2
�
0; 1
4

�
which parametrizes a segment of slope 1=r 00 and satisfies f .0/D 0.

A.
/� L follows from (7-2-3).

Remark 7.2.4 We will always assume that, when L0 <L1, each radial ray in the fg-plane intersects the
curve .f0.�/; g0.�// defining ˛.r; L0/ before or at the same time as the curve .f1.�/; g1.�// defining
˛.r; L1/. Then there exist a diffeomorphism � WD2�S1!D2�S1 such that �.�; �; �/D .�0.�/; �; �/
and a function h W Œ0; 1�!R�0 such that ˛.r; L1/D eh.�/��.r; ˛.L0//.

Let .M; ˛i / for i D 1; 2 be contact manifolds as in Proposition 7.2.1. We can choose coordinates
.#; t; y/ 2 .R2=Z2/� Œ�"; 0� on a small collar of @M such that @M corresponds to T 2 � f0g and the
contact forms ˛i can be written as

˛i D gi .#; t; y/ d# Cfi .#; t; y/ dt

with @fi=@# D @fi=@t D @gi=@# D @gi=@t D 0 at t D 0 (ie along @M ). Note that we have used the
assumption that ˛1 and ˛2 coincide to first order along @M to conclude that they can be put in this form
with the same choice of coordinates. Moreover, we assume that these coordinates have been chosen so
that, on @M, the Reeb vector fields of ˛1 and ˛2 have negative irrational slope �r and that the slopes of
the characteristic foliations of �i D ker˛i are nonnegative and sufficiently close to zero.9 Here the slope
is measured with respect to .#; t/.

For L0 > 0 sufficiently large, we embed .M; ˛i / into a closed contact manifold .M 0; ˛0i .L
0// such that

(1) M 0DM [V, where @M and @V are glued by the identifications �D 1�y, �D 2�t and � D 2�# ;
and

(2) ˛0i .L
0/jM D ˛i and ˛0i .L

0/jV is a C 1-small perturbation of ˛.r; L0/ near the boundary.

If the perturbation of the form ˛.r; L0/ is small enough in the C 1-topology, it does not create any closed
Reeb orbit of action less than L0. Since the size of the perturbation which is necessary to glue ˛i with

9Close enough that Claim 7.2.5 applies.
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˛.r; L0/ essentially depends on the slope of the characteristic foliation of ˛i on @M, we can claim the
following:

Claim 7.2.5 All closed Reeb orbits of .M 0; ˛i .L0// of action less than L0 are contained in M.

The next lemma identifies some ECH groups for .M; ˛i / with ECH groups for .M 0; ˛0i .L
0//.

Lemma 7.2.6 For all L � L0, if we choose the almost complex structure on the symplectization of
.M 0; ˛0i .L

0// to extend the almost complex structure picked on the symplectization of .M; ˛i /, then there
are isomorphisms

ECCL.M; ˛i /' ECCL.M 0; ˛0i .L
0//

of chain complexes.

Proof By Lemma 7.2.3, there is an isomorphism

ECCL.M; ˛i /' ECCL.M 0; ˛0i .L
0//

as vector spaces. To prove that the isomorphism holds as chain complexes, it suffices to show that every
holomorphic curve in R�M 0 which is positively asymptotic to an orbit set of R˛0

i
.L0/ of ˛0i .L

0/-action
less than L (which is equal to an orbit set of R˛i of ˛i -action less than L) has image in R�M. Let
u be a holomorphic map in R�M 0 connecting the orbit set 
 of R˛i in M with A˛i .
/ < L to the
orbit set 
 0 of R˛0

i
.L0/ in M 0. Since A˛i .
/ < L, 
 0 must be contained in M. Hence the homology class

of uM 0 \ @V in H1.@V / is a multiple of the class of the meridian of V. On the other hand, inside V
there is a concentric torus V 0 on which the Reeb orbits are meridians. (This torus corresponds to the
vertical tangency of the curve in Figure 3.) Then Lemma 5.2.3 (blocking lemma) implies that u must be
asymptotic to some orbits in V 0. This is not possible since all the ends of u limit to orbits of action less
than L. Hence the image of u is contained in R�M by Lemma 5.2.3(1).

The induced identification
ECHL.M; ˛i /' ECHL.M 0; ˛0i .L

0//

is independent of L0 in the following sense: Let L � L0 � L1 be positive numbers such that no Reeb
orbit in .M; ˛i / (for either i D 1 or i D 2) has action L. By Remark 7.2.4 and Lemma 3.1.7, there are
maps

‰
L;L0;L1
i W ECHL.M 0; ˛0i .L1//! ECHL.M 0; ˛0i .L0//

induced by interpolating cobordisms .W;�i / from .M 0; ˛0i .L1// at the positive end to .M 0; ˛0i .L0// at
the negative end. Then we have the following:

Lemma 7.2.7 The maps ‰L;L0;L1i restrict to the identity on ECHL.M; ˛i /.

Proof The cobordism W is topologically trivial, ie W ' Œ0; 1��M 0, and we can assume that .W;�i /
restricts to a piece of symplectization on Œ0; 1��M. We choose the almost complex structure J to be
R-invariant on R�M. As before, all orbit sets of ˛0i .Lj /-action less than L for j D 0; 1 are contained
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in M. Then the blocking lemma10 and the argument of Lemma 7.2.6 imply that all J -holomorphic maps
between orbit sets of action less than L are contained in R�M. If those J -holomorphic maps have ECH
index zero, then they are branched covers of trivial cylinders because .Œ0; 1��M;�i jŒ0;1��M / is a piece
of symplectization. Hence the map induced on ECHL.M; ˛/ is the identity by Theorem 3.1.2(i).

We will use the identifications ECHL.M; ˛i /' ECHL.M 0; ˛0i .L
0// to define a map

ˆ W ECH.M; ˛1/! ECH.M; ˛2/:

This involves two steps: the construction of maps

ˆL W ECHL.M; ˛1/! ECH�L.M; ˛2/

for some � > 1 and the taking of direct limits.

Let f WM !R be a smooth positive function such that ��.˛2/D f ˛1 for some diffeomorphism � of
M which is isotopic to the identity and restricts to the identity on @M. Then choose � > 1 such that
1=� � f � �. Given L0 >L, we consider the contact forms ˛0i .�L

0/ for i D 1; 2 on M 0 constructed in
Lemma 7.2.3. Then there is an interpolating cobordism .X; �L0/ from .M 0; ˛01.�L

0// at the positive end
to .M 0; ��1˛02.�L

0// at the negative end. Moreover, we can assume that .X; �L0/ restricts to a piece of
symplectization on a small neighborhood of Œ0; 1��V.

We define ˆL by imposing the commutativity of the diagram

(7-2-4)

ECHL.M 0; ˛01.�L
0//

ˆL
// ECH�L.M 0; ˛02.�L

0//

��
'

��
'

ECHL.M; ˛1/
ˆL

// ECH�L.M; ˛2/

where the vertical maps are the isomorphisms coming from Lemma 7.2.6 and the top map is induced by
the interpolating cobordisms .X; �L0/ via Lemma 3.1.7.

Remark 7.2.8 Using the blocking lemma, one can prove that the map ˆL is supported, in the sense on
Theorem 3.1.2(i), by holomorphic curves in R�M. See the proof of Lemma 7.2.6 for the details.

Lemma 7.2.9 ˆL is independent of the choice of L0 in diagram (7-2-4).

Proof Suppose L � L0 � L1, ˛1 has no orbit sets of action L, and ˛2 has no orbit sets of action �L.
Then the diagram

(7-2-5)

ECHL.M 0; ˛01.�L1//
ˆL

// ECH�L.M 0; ˛02.�L1//

��
‰
L;�L0;�L1
1

��
‰
L;�L0;�L1
2

ECHL.M 0; ˛01.�L0//
ˆL

// ECH�L.M 0; ˛02.�L0//

10This situation is slightly more general than that for which the blocking lemma has been stated and proved because we are in a
cobordism. However the lemma is still valid and the proof is unchanged.
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commutes by Theorem 3.1.2 since, by Lemma 3.1.6, the compositions of cobordisms .X; �0L0/ ı .W;�1/
and .W;�2/ ı .X; �0L1/ are homotopic. The maps ‰L;�L0;�L1i induce the identity on ECH.M; ˛i / by
Lemma 7.2.7, so the maps on the top and bottom of (7-2-5) define the same map ˆL W ECHL.M; ˛1/!
ECH�L.M; ˛2/.

Lemma 7.2.10 Let ˛1 and ˛2 be contact forms as in Proposition 7.2.1. If Li is an increasing sequence
of positive real numbers such that ˛1 has no orbit set of action Li and ˛2 has no orbit set of action �Li
for all i ,11 then the maps

ˆLi W ECHLi .M; ˛1/! ECH�Li .M; ˛2/

define a morphism of directed systems.

Proof For all L< L0 as above, the diagram

(7-2-6)

ECHL.M; ˛1/
ˆL

// ECH�L.M; ˛2/

�� ��

ECHL
0

.M; ˛1/
ˆL0

// ECH�L
0

.M; ˛2/

where the vertical arrows are maps induced by the inclusions of chain complexes, commutes by Lemmas
7.2.7 and 7.2.9.

By taking the direct limit of the maps ˆLi from Lemma 7.2.10, we obtain a linear map

ˆ W ECH.M; ˛1/! ECH.M; ˛2/:

Since the roles of ˛1 and ˛2 are interchangeable, the same arguments can be used to define a map
ˆ0 W ECH.M; ˛2/! ECH.M; ˛1/ as a direct limit of maps ˆ0

L0
j

.

Proof of Proposition 7.2.1 We prove that ˆ and ˆ0 are inverses of each other. We identify the
composition ˆ0�L ıˆL (after a proper rescaling) with the map induced by an interpolating cobordism
which is homotopic to a piece of symplectization. Then ˆ0�L ıˆLD iL;�2L, where iL;�2L is the inclusion
map. By taking the direct limit, we obtain ˆ0 ıˆD id. The proof of ˆ ıˆ0 D id is similar.

Remark 7.2.11 We sketch a possible strategy to prove the invariance of the group ECH.M; ˛/ when the
Reeb vector field of ˛ defines a foliation on @M with closed leaves. This result will not be used in the
rest of the article.

When @M is foliated by closed orbits of the Reeb vector field of ˛ we would like to view ECH.M; ˛/ as
a direct limit of ECH groups of nondegenerate contact forms as in (4-5-1). We pick L> 0 and slightly
extend .M; ˛/ to .M"; ˛"/ so that

� M" DM [ .T
2 � Œ0; "// where @M D T 2 � f0g;

� ˛"jM D ˛;

11This condition can be fulfilled due to the fact that the action spectrum is discrete for a generic contact form.
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� @M" is foliated by Reeb trajectories of ˛" with irrational slope; and

� there are no Reeb orbits of ˛" on M"�M with action � L.

We now consider the chain complexes ECCL.M"; fi˛"/, where fi WM"!R is as in Lemma 4.5.1 for
i � 0. Then

(7-2-7) ECCL.M; ˛/' ECCL.M"; fi˛"/

by Proposition 4.4.7. We then write the ECH group ECH.M;˛/ as a direct limit of groups ECHL.M";fi˛"/

as in Corollary 3.2.3. We extend .M"; fi˛"/ to a closed manifold by using Lemma 7.2.3 and apply the
(analogs of the) results of this section to define the ECH cobordism maps.

7.3 Variants of ECH relative to the boundary

The goal of this subsection is to define the homology groups ECH.M; @M; ˛/ and bECH.M; @M; ˛/ which
appear in the statement of Theorem 1.1.1. They are variants of ECH.M; ˛/ and in many ways can be
viewed as ECH groups relative to the boundary of M, whence the notation.

Let M be a manifold with @M ' T 2. Let ˛ be a contact form on M which is nondegenerate on int.M/

and such that @M is a negative Morse–Bott torus. Then the ECH groups introduced in Section 7.1
are defined for .M; ˛/ In the rest of this section we make the further assumption that there exists a
properly embedded oriented surface .†; @†/� .M; @M/ with connected boundary such that an orbit of
the Morse–Bott torus has algebraic intersection number one with †.

As before, we pick two orbits on @M and label them h and e. There is a perturbation of ˛ near @M which
makes h hyperbolic and e elliptic; h corresponds to the maximum and e to the minimum of the perturbing
Morse function.

Let P be the set of simple Reeb orbits of ˛ in the interior of M. Let ECC[j .M; ˛/ be the chain complex
generated by orbit sets 
 constructed from P [ feg, whose algebraic intersection number hŒ
�; †i is j.
By construction, ECC[j .M; ˛/ is a direct summand of ECC[.M; ˛/ and its differential is the restriction of
the differential for ECC[.M; ˛/.

In the same way we write ECCj .M; ˛/ for the chain complex generated by orbit sets 
 constructed from
P [fe; hg, whose algebraic intersection number hŒ
�; †i is j. By construction, ECCj .M; ˛/ is a direct
summand of ECC.M; ˛/ and its differential is the restriction of the differential for ECC.M; ˛/.

Lemma 7.3.1 There are inclusions of chain complexes

ECC[j .M; ˛/! ECC[jC1.M; ˛/; ECCj .M; ˛/! ECCjC1.M; ˛/

given by the map 
 7! e
 , where we are using multiplicative notation for orbit sets.
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Proof Let 
 be an orbit set in M and u a holomorphic map with image in R�M which is positively
asymptotic to e
 . Then u has an irreducible component which is mapped to the trivial cylinder over e. In
fact, by the trapping lemma, u cannot have nontrivial positive ends that limit to orbits on @M because M
is a negative Morse–Bott torus. Also, one can check that, Z0 2H2.M; e
; e
 0/ is obtained by adding a
trivial cylinder over e to Z 2H2.M; 
; 
 0/, then I.e
; e
 0; Z0/D 1 whenever I.
; 
 0; Z/D 1. This is a
consequence of [Hutchings 2002, Proposition 7.1], since the associated partitions satisfy the admissibility
conditions [Hutchings 2002, Definition 4.7, equations (23) and (24)]. It is crucial in the verification of the
admissibility condition that, in the Morse–Bott situation, the outgoing partition for e with multiplicity n
is .n/ and the incoming partition is .1; : : : ; 1/ for all n, together with the fact that every J -holomorphic
map in R�M with a positive end to e is a connector. Hence @[.e
/D e@[.
/ and @.e
/D e@.
/.

The homology of the chain complex ECC[j .M; ˛/ will be written as ECH[j .M; ˛/ and that of the chain
complex ECCj .M; ˛/ will be written as ECHj .M; ˛/.

Definition 7.3.2 We define

ECH.M; @M; ˛/D lim
j!1

ECH[j .M; ˛/; bECH.M; @M; ˛/D lim
j!1

ECHj .M; ˛/:

Remark 7.3.3 The groups ECH.M; @M; ˛/ and bECH.M; @M; ˛/ can also be interpreted as the homol-
ogy of the chain complexes obtained by taking the quotient of the chain complexes ECC[.M; ˛/ and
ECC.M; ˛/, respectively, by the subcomplexes generated by all elements of the form e
 � 
 , where 
 is
any orbit set constructed from P [feg in the case of ECH.M; @M; ˛/ or from P [fe; hg in the case of
bECH.M; @M; ˛/. This alternative definition, unlike Definition 7.3.2, does not need the assumption that

the Reeb orbits on the boundary have intersection one with a properly embedded surface.

Remark 7.3.4 The differentials in ECH.M; @M; ˛/ and bECH.M; @M; ˛/ preserve the total relative ho-
mology class of the generators. Then we can define subgroups ECH.M; @M; ˛;A/ and bECH.M; @M; ˛;A/
for every A 2H1.M; @M/.

8 ECH of the solid torus

8.1 Overview of the computation

In this section we calculate various versions of ECH of the solid torus with certain boundary conditions
and specific contact structures. We will write V DD2 �S1 and use Convention 6.2.1 to compute the
slope of essential curves in @V and in boundary-parallel tori contained in V.

The following lemma constructs the contact forms used in the main theorem. Let V0 � � � � � Vi � � � � � V
be an exhaustion by concentric solid tori, Ti D @Vi and T D

S
i Ti . Let .�; �; �/ be the cylindrical

coordinates on V DD2 �S1 from Section 6.2. We assume that Ti D f� D �ig. We will choose Vi so
that the Reeb flow foliates Ti D @Vi by orbits of irrational slope ri .
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Lemma 8.1.1 There exists a contact form ˛V on V D D2 � S1 which is an arbitrarily C1-small
perturbation of the contact form ˛ from Example 6.2.4 and which satisfies the following:

(a) The Reeb orbits of ˛V in int.V / are nondegenerate.

(b) ˛V and ˛ agree to infinite order along @V and along T . In particular , the Reeb flow of ˛V foliates
the tori Ti by orbits of irrational slope ri and @V by orbits of infinite slope.

(c) For every i , all orbits in V �Vi have slope greater than ri .

Proof Let Li !1 for i D 1; 2; : : : be an increasing sequence of real numbers and let d be a metric
on C1.V / inducing the C1-topology.12 Fix " > 0 sufficiently small.

We claim that, for i D 1; 2; : : : , there exists a function13 fi W V !R such that

(i) efi˛ is Li -nondegenerate,

(ii) d.fi ; fi�1/ < 2
�i", and

(iii) supp.fi �fi�1/� int.V /� .Oi�1[ T /,

where Oi is the union of all simple Reeb orbits of efi˛ with action less than Li . Here we are setting
f0 D 0, O0 D ¿ and L0 D 0. We define fi inductively: We choose gi such that fi D fi�1 C gi�1
satisfies (i)–(iii). In fact, as shown for example in the proof of [Colin and Honda 2013, Lemma 7.1], the
functions gi can be chosen arbitrarily close to 0 in the C1-topology and with support in arbitrarily small
neighborhoods of the Reeb orbits of action in ŒLi�1; Li �. The claim then follows. The sequence fi is a
Cauchy sequence, so we define f D limi!1 fi and ˛V D ef ˛. The contact form ˛v satisfies (a) and (b).

It remains to prove (c). But this is immediate since the slope in Example 6.2.4 is strictly increasing with
the radius on the region V �Vi and we are performing a C1-small perturbation so that this property is
preserved.

Now, @V is a positive ˛V -Morse–Bott torus. We can perturb ˛V so that the Morse–Bott family for @V
becomes a pair of nondegenerate Reeb orbits e0 and h0, where e0 is an elliptic orbit corresponding to the
maximum of the perturbing function and h0 is a hyperbolic orbit corresponding to the minimum. The
following is the main result of this section:

Theorem 8.1.2 Let ˛V be a contact form on V as constructed in Lemma 8.1.1. Then:

(1) ECH.int.V /; ˛V /' F, generated by ¿.

(2) ECH].V; ˛V /' 0.

(3) ECH.V; ˛V /' 0.

(4) ECH[.V; ˛V /' F Œe0�, where F Œe0� is the polynomial ring generated by e0 over F.

12For example, we can take d.f; g/D
P1
kD0 2

�kkf �gkCk=.1Ckf �gkCk /.
13The functions fi , gi and f introduced in this proof are, of course, unrelated to the functions f and g defining ˛ in
Example 6.2.4.

Geometry & Topology, Volume 29 (2025)



3390 Vincent Colin, Paolo Ghiggini and Ko Honda

Remark 8.1.3 Proposition 7.2.1 does not cover contact forms whose Reeb flow has rational slope on @V,
so we cannot claim that the computation in Theorem 8.1.2 is independent of the contact form. However,
the computation for the contact forms ˛V constructed in Lemma 8.1.1 will be sufficient for the proof of
Theorem 1.1.1.

The proof of (1) proceeds as follows: In Section 8.2 we compute ECH.Vi ; ˛V jVi /. Since the slope of
the Reeb flow of ˛V on Ti D @Vi is irrational, we can use Proposition 7.2.1 to replace the contact forms
˛V jVi with different forms for which the computation is easy. We also lift the relative grading on the
ECH groups given by the ECH index to an absolute grading which is compatible with the maps induced
by the interpolating cobordisms. In Section 8.3 we prove that the inclusions Vi � ViC1 induce inclusions
of chain complexes ECC.Vi ; ˛V jVi / � ECC.ViC1; ˛V jViC1/ as a consequence of the blocking lemma.
This implies that

ECH.int.V /; ˛V /D lim
i!1

ECH.Vi ; ˛V jVi /:

We then use the absolute grading to conclude the proof: the degrees of the generators of ECH.Vi ; ˛V jVi /
that are different from ¿ go to infinity as i !1, so only ¿ survives in the direct limit.

The proofs of (2)–(4) are given in Section 8.5 and use (1) and some results on holomorphic curves
in R�V due to Taubes and Wendl.

8.2 ECH.V; ˛) when the Reeb flow has irrational slope on the boundary

In this subsection we compute ECH.V; ˛/ for contact forms ˛ whose Reeb flow foliates @V by orbits of
irrational slope and whose underlying contact structure gives the standard contact neighborhood of a trans-
verse knot. For this boundary condition we have proved the invariance of ECH, so, by Proposition 7.2.1,
we can choose a particularly simple contact form to do the computation.

Let r > 0 be an irrational number. Pick a contact form ˛r on V 'D2�S1 as in Example 6.2.3 such that
the following hold:

� The boundary @V and all the concentric tori T� for �2 .0; 1� are foliated by Reeb orbits of irrational
slope r .

� The contact structure ker˛r is transverse to all the fibers fptg �S1.

There is only one simple closed orbit, namely the core c D f0g �S1. The orbit c is elliptic and all its
multiple covers cn are nondegenerate due to the irrationality of r . Note that Œcn�D nŒS1� 2H1.V /, so
we immediately have the following lemma:

Lemma 8.2.1 ECH.int.V /; ˛r InŒS1�/ ' F, generated by cn, if n � 0 (where cn D ¿ if n D 0) and
ECH.int.V /; ˛r InŒS1�/D 0 if n < 0.

In order to plug this computation into the direct limit in the proof of Theorem 8.1.2, we define an absolute
grading on the ECH groups of the solid torus in a way which is compatible with the cobordism maps.
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For simplicity we will consider only contact forms ˛ which satisfy the following assumption:

(?) The core of V is an elliptic Reeb orbit c, all of whose multiple covers are nondegenerate.

The contact forms ˛r in Lemma 8.2.1, as well as the contact forms ˛V jVi of Lemma 8.1.1, satisfy this
assumption.

Let � D ker˛. We chose a trivialization � of � such that its restriction to the core orbit e is homotopic
to the pullback of a basis of T0D2 and the linearized Reeb flow at e is a rotation by angle 2�� with
� 2R�Q.

Lemma 8.2.2 Let ˛ be a contact form on a solid torus V which satisfies (?). Then there is an absolute
grading I on ECC.int.V /; ˛/ such that :

(1) I.cn/D
Pn
kD1.2bk�cC 1/.

(2) If 
1 and 
2 are two orbit sets and Z is a surface from 
1 to 
2, then

I.
1; 
2; Z/D I.
1/� I.
2/:

Proof Given an orbit set 
 with Œ
�D nŒS2�, we choose a � -trivial surface Z from 
 to en and define

(8-2-1) I.
/ WD z�� .
/C c1.�jZ ; �/CQ� .Z/:

Since H2.V /D 0, I.
; cn; Z/ is independent of Z by [Hutchings 2002, Lemma 2.5(a)]. Hence I.
/ is
well defined.

(1) follows from the calculation z�� .cn/D
Pn
kD1.2bk�cC 1/ using [Hutchings 2009, formula 2.3] and

(2) follows from the additivity of the ECH index.

Lemma 8.2.3 Let ˛1 and ˛2 be contact forms on V which coincide on @V to first order and define
contact structures which are isotopic relatively to the boundary. If both ˛1 and ˛2 satisfy (?) and their
Reeb flows foliate @V by orbits of irrational slope , then the isomorphism ECH.V; ˛1/ ' ECH.V; ˛2/
from Proposition 7.2.1 preserves the absolute grading I.

Proof We denote by I1 and I2 the absolute grading on the groups ECH.V; ˛1/ and ECH.V; ˛2/, respec-
tively. We know from Remark 7.2.8 that the isomorphism ECH.V; ˛1/

'
�! ECH.V; ˛2/ is supported by

holomorphic buildings in a completed interpolating cobordism .Œ0; 1��V; �/ from .V; ˛1/ to .V; ˛2/.14

Moreover, by [Cristofaro-Gardiner 2013, Theorem 5.1], those buildings have total ECH index I D 0 for a
version of the ECH index in cobordisms; see [Hutchings 2009] for its definition. Then the lemma holds if

(8-2-2) I.
1; 
2; Z/D I1.
1/� I2.
2/

for all surfaces Z in Œ0; 1��V connecting an orbit set 
1 for ˛1 to an orbit set 
2 for ˛2.

14To add some confusion, what is called V here corresponds to M in Section 7.2.
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Since H2.V /D 0, we can assume that Z is the union of a surface Z1 from 
1 to cn (for some n), the
surfacesZn0 consisting of n copies of the cylinderZ0 over the core orbit c, and a surfaceZ2 from cn to 
2.
Moreover, we can assume thatZ1 andZ2 project to surfaces in V, so that I.
1; cn; Z1/D I1.
1/�I1.cn/
and I2.cn; 
2; Z2/D I2.cn/� I2.
2/. Then

I.
1; 
2; Z/D I1.
1/� I1.c
n/C I.cn; cn; Zn0 /C I2.cn/� I2.
2/

and consequently (8-2-2) holds if and only if

I.cn; cn; Zn0 /D I1.c
n/� I2.cn/

for every n� 0. This is however the case because

c1
�
T .Œ0; 1��V /jZn0 ; �

�
DQ� .Z

n
0 /D 0:

By combining Proposition 7.2.1 and Lemmas 8.2.1–8.2.3 we obtain:

Lemma 8.2.4 If ˛ is a contact form on V satisfying (?) and @V is foliated by Reeb orbits of irrational
slope r > 0, then

ECH.V; ˛; nŒS1�/'

8<:
F in degree I D

Pn
kD1.2bkrcC 1/ for n > 0;

F in degree I D 0 for nD 0;
0 for n < 0:

8.3 Computation of ECH.int.V /; ˛V /

The goal of this subsection is to compute ECH.int.V /; ˛V /, where ˛V is a contact form as constructed in
Lemma 8.1.1.

Lemma 8.3.1 The inclusions Vi � Vj for i < j induce inclusions of chain complexes

(8-3-1) ECC.Vi ; ˛V jVi /! ECC.Vj ; ˛V jVj /:

Moreover , the inclusions Vi � V induce inclusions of chain complexes

ECC.Vi ; ˛V jVi /! ECC.int.V /; ˛V /:

Proof Let 
 be an orbit set whose orbits are contained in Vi . We will prove that every J -holomorphic
map u W F ! R�V which has 
 at its positive end has image in R�Vi . Let 
 0 be the orbit set at the
negative end of u. We first prove that all the orbits of 
 0 must be contained in Vi . Arguing by contradiction,
suppose 
 0 D 
 0in


0
out, where the orbits of 
 0in are in Vi and the orbits of 
 0out ¤¿ are in V �Vi . The Reeb

vector field determines a homology class si 2 H1.Ti IR/, up to multiplication by a positive constant,
which has slope ri using Convention 6.2.1. We can also regard Œ
 0out� as a homology class in H1.Ti IR/
and the slope of Œ
 0out� is larger than ri because every Reeb orbit in V � Vi has slope larger than ri by
Lemma 8.1.1. This implies that Œ
 0out� � si > 0.

Denote by uV the composition of u with the projection R�V !V and let ı 2H1.Ti IR/ be the homology
class of the intersection uV .F /\ Ti , oriented as the boundary of uV restricted to Vi . (Recall that the
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tori Ti are foliated by Reeb orbits of irrational slope, so that u has no ends at Ti .) Then ı D�Œ
 0out�, so
ı �si <0. This contradicts the positivity of intersections in dimension three (Lemma 5.2.2) and therefore all
orbits in 
 0 are contained in V. Hence, Lemma 5.2.3(1) (blocking lemma) implies that u.F /�R�Vi .

With all these preliminary steps in place, the computation of ECH.int.V /; ˛V / is straightforward.

Proposition 8.3.2 ECH.int.V /; ˛V /' F and is generated by ¿.

Proof By Lemma 8.3.1,

(8-3-2) ECH.int.V /; ˛V /D lim
i!1

ECH.Vi ; ˛V jVi /:

Moreover, all the generators of ECH.Vi ; ˛V jVi / in Lemma 8.2.4 that are different from ¿ have degree
I > b2ricC 1. Since ri !1 and the inclusions

ECH.Vi ; ˛V jVi /! ECH.Vj ; ˛V jVj /

are degree-preserving, every generator different from ¿ eventually is mapped to zero in the directed
system. Hence ECH.int.V /; ˛V /' F and is generated by ¿.

8.4 Finite-energy foliations

In this subsection we study finite-energy foliations of R � V and R � T 2 � Œ1; 2� which have been
constructed by [Wendl 2008; 2005; Taubes 2002]. Finite-energy foliations were introduced in [Hofer
et al. 2003]; here we recall their definition.

Definition 8.4.1 A finite-energy foliation of a symplectic cobordism .W; !/ with an adapted almost
complex structure J is a codimension two foliation ofW such that every leaf is the image of an embedded
J -holomorphic map with finite energy.

Here we are using the notion of energy from [Bourgeois et al. 2003, Section 6.1]. The ends of a
finite-energy J -holomorphic map in W are asymptotic to cylinders over Reeb orbits.

The purpose of considering finite-energy foliations is twofold: they constrain holomorphic curves by the
positivity of intersections and contribute to the ECH differential via the Morse–Bott construction. The
foliation on R�V will be used in the proof of Theorem 8.1.2(2)–(4) and the foliation on R�T 2 � Œ1; 2�

will be used in the proofs of Lemmas 9.5.3 and 9.9.3.

8.4.1 Automatic transversality For certain moduli spaces of J -holomorphic maps in dimension four,
transversality holds for topological reasons and there is no need to perturb the almost complex structure.
In this subsection we describe such automatic transversality results of Wendl [2010]. We need to discuss
automatic transversality, since the finite-energy foliations that we consider are constructed for very
symmetric, and therefore nongeneric, almost complex structures.
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Let F D F � z, where F is a closed oriented surface and zD fz1; : : : ; zrg is a finite set of punctures.
Following Wendl [2010], we fix a partition PDfzCC ; z�C ; z

C

U ; z
�
U g of z. We use the superscriptC (resp. �)

to indicate the punctures which correspond to the positive (resp. negative) ends and define zC D zCC [ z
�
C

and zU D zCU [ z
�
U .

To any puncture z 2 zC we associate an orbit 
z (which can either be nondegenerate or belong to a
Morse–Bott family) and to any puncture z 2 zU we associate a Morse–Bott family Nz . We write

MP
DM.f
zgz2z

C

C

; fNzgz2z
C

U

; f
zgz2z�C
; fNzgz2z�U

/

for the moduli space of holomorphic maps u W .F; j /! .R�M;J /, which are positively asymptotic to
the orbits 
z for z 2 zCC and to the Morse–Bott families Nz for z 2 zCU and are negatively asymptotic to
the orbits 
z for z 2 z�C and to the Morse–Bott families Nz for z 2 z�U . Here we range over all complex
structures j on F and divide by automorphisms of the domain.

Ends which correspond to punctures in zC are called constrained ends and ends which correspond
to punctures in zU are called unconstrained ends. The definition of MP motivates this terminology:
constrained ends are asymptotic to a specific orbit, while unconstrained ends are asymptotic to ends which
can move in a Morse–Bott family.

The virtual dimension of MP at u will be denoted by ind.u;P/. Fix ı > 0 arbitrarily small. For every
puncture z 2 z, we define

cz D

�
ı if z 2 zC ;
�ı if z 2 zU :

Choose a symplectic trivialization � of �j
z which is complex linear with respect to J. Let A
z be
the asymptotic operator of 
z . With respect to the trivialization � , A
z can be written in the form
�J d=dt CS.t/, where J D

�
0
1
�1
0

�
, t is the direction of 
z , and S.t/ is a loop of symmetric matrices.

Also let AP

z
D A
z ˙ cz Id be the perturbed asymptotic operator of 
z , where we choose the positive

(resp. negative) sign if z 2 zC (resp. z 2 z�). This is equivalent to turning on negative (resp. positive)
exponential weights at positive unconstrained (resp. constrained) ends and negative constrained (resp.
unconstrained) ends.

The perturbed asymptotic operatorAP

z

yields a path of symplectic matricesˆP
z , and we define�� .
z;P/D

�.ˆP
z /. We say that a puncture z is even if �� .
z;P/ is even and we denote by #�0.u;P/ the number of

even punctures of .u;P/. By the properties of the Conley–Zehnder index the set of even punctures, and
therefore #�0.u;P/, does not depend on the trivialization � .

Theorem 8.4.2 [Wendl 2010, equation (1.1) and Remark 1.2] Let u W F !R�M be a J -holomorphic
map and P a partition of the ends of u. Then

(8-4-1) ind.u;P/D��.F /C 2c1.u��; �/C
X
z2zC

�� .
z;P/�
X
z2z�

�� .
z;P/:

Moreover , if u is an immersion , then it is a regular point of MP if

(8-4-2) ind.u;P/ > 2g.F /� 2C #�0.u;P/:
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The following lemma computes �� .
z;P/ in terms of the Conley–Zehnder index of a nondegenerate
perturbation of the Reeb orbit:

Lemma 8.4.3 Suppose ı > 0 is sufficiently small.

(1) If 
z is a nondegenerate orbit , then �� .
z;P/D �� .
z/.
(2) If 
z belongs to a Morse–Bott family N and 
min and 
max are the nondegenerate Reeb orbits

corresponding to a minimum and a maximum of a Morse function on N , then
� �� .
z;P/D �� .
min/ if z 2 zCC [ z

�
U , and

� �� .
z;P/D �� .
max/ if z 2 zCU [ z
�
C .

(3) #�0.u;P/ is the total number of
� ends at even nondegenerate orbits ,
� constrained positive ends and unconstrained negative ends at positive Morse–Bott tori , and
� unconstrained positive ends and constrained negative ends at negative Morse–Bott tori.

Proof (1) This is immediate.

(2) Let T D TN �M be the torus corresponding to N and let g WM !R and NgN WN !R be C1-small
functions satisfying (P1)–(P4) from Section 4.1. We denote the Morse–Bott form by ˛0 and its Reeb vector
field by R0. Then the Reeb vector field of the perturbed contact form .1Cg/˛0 is RD .1Cg/�1R0CX,
where X 2 � D ker˛0 is a solution of

iX d˛0 D .1Cg/
�2.dg� dg.R0/˛0/:

If we choose an almost complex structure J on � and a metric h on M which is compatible with J and ˛0
in the sense that R0 is a unit vector field which is orthogonal to � and hj�˝� D d˛0. � ; J � /, then

X D�.1Cg/�2J.rg� h.rg;R0/R0/:

Let 
 be an orbit in N which corresponds to a critical point of Ng, so that 
 is also a Reeb orbit for R. We
can associate two asymptotic operators to 
 : the operator A
 when we regard 
 as a Reeb orbit of R0,
and the operator A0
 when we regard 
 as a Reeb orbit of R.

Let � be the period of 
 as an orbit of R and assume for simplicity that the period of 
 as an orbit of R0
is 1. Then � is equal to the value of 1Cg at any point of 
 . If r is a symmetric connection, the asymptotic
operators can be written as

A
 D�J.rt �rR0/; A0
 D�J.rt � �rR/I

see [Wendl 2010, page 370]. Since dg D 0 and rg D 0 along 
 , we have

rRD .1Cg/�1rR0� .1Cg/
�2
r
�
J.rg� h.rg;R0/R0/

�
;

r
�
J.rg� h.rg;R0/R0/

�
D .rJ /.rg� h.rg;R0/R0/CJr.rg� h.rg;R0/R0/

D Jr.rg� h.rg;R0/R0/D JHg
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along 
 , where Hg is the Hessian of g restricted to the �-directions. Hence

A0
 D�J.rt �rR0C .1Cg/
�1JHg/D A
 C .1Cg/

�1Hg:

If Ng has a minimum at 
 , then Hg � 0 along 
 and A0
 has the same Conley–Zehnder index as A
 C ı.
On the other hand, if Ng has a maximum at 
 , then A0
 has the same Conley–Zehnder index as A
 � ı.

(3) is immediate from (2).

8.4.2 Foliations on R�V and R�T 2 � Œ1; 2� We first describe the finite-energy foliation on R�V.
The following is proven in [Wendl 2008]; see pages 594–600, especially the removal of singularities
argument on page 599; the gist of the proof is to reduce the J -holomorphic curve equation to an ODE
[loc. cit., equations (37a) and (37b)]).

Proposition 8.4.4 Let ˛ be a contact form on V as in Example 6.2.4 and J0 a “cylindrically symmetric”
almost complex structure on R�V (ie J0 depends only on the radial coordinate � of V ) which is adapted
to ˛. Then there is a finite-energy foliation Z0 of R�V such that :

(1) R� int.V / is foliated by J0-holomorphic planes which are positively asymptotic to the Reeb orbits
on @V.

(2) R� @V is foliated by trivial cylinders over Reeb orbits of @V.

Any orbit of @V is the limit of a unique 1-dimensional R-invariant family of noncylindrical leaves and the
projections of the leaves to int.V / foliate int.V / by meridian disks.

We will use a finite-energy foliation of R�V in the proof of Theorem 8.1.2(2)–(4). However, the contact
form used there is a small perturbation ˛V of ˛, and for this reason we need to show that Z0 persists if ˛
and J0 are deformed.

Proposition 8.4.5 If ˛V is the C1-small perturbation of ˛ from Lemma 8.1.1, then there is a finite-
energy foliation Z1 of .R�V; d.es˛V // which is isotopic to Z0 by the lift to R�V of an isotopy of V
relative to the boundary.

Proof A leaf u of Z0, considered as a J0-holomorphic map with a constrained end, has Fredholm index
one and is automatically transverse by Theorem 8.4.2. Indeed, by Lemma 8.4.3, the index of u, as a
J0-holomorphic map with constrained end, is equal to the index of a J"-holomorphic plane u" which
limits to a hyperbolic orbit h (ie the minimum of the Morse–Bott family) on the boundary for a perturbed
contact form. If � is the trivialization of � along h given by � \T @V, then �.D2/D 1, c1.u�" �; �/D 1,
�� .h/D 0, and therefore ind.u/D ind.u"/D 1. The same leaf u, considered as a J0-holomorphic map
with an unconstrained end, has Fredholm index two and is also automatically transverse.

Let M0 be the 2-dimensional moduli space of J0-holomorphic planes which are leaves of Z0. By the
unconstrained automatic transversality, if we perturb ˛ and the almost complex structure J0 slightly, then
each leaf of Z0 is deformed to a J -holomorphic curve for the new almost complex structure J and the
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space M1 of deformed J -holomorphic curves is diffeomorphic to M0. On the other hand, the constrained
automatically transversality implies that for each Reeb orbit in @V there is exactly one R-invariant family
of J -holomorphic maps in M1 positively asymptotic to that orbit.

The maps in M1 are embeddings because embeddedness is an open condition and the exponential decay
estimates imply that no self-intersection can be created near infinity. Moreover, the relative intersection
number of their images is zero and by the positivity of intersections, their images are pairwise disjoint, so
they define a finite-energy foliation Z1 of R�V.

Now we discuss a finite-energy foliation Z2 on a completed interpolating cobordism .R�T 2 � Œ1; 2�; �/

between two contact forms satisfying (6-1-1). In the case of a symplectization, this foliation was
constructed by Wendl [2008].

We assume that every slice fsg �T 2 � Œ1; 2� is a contact type hypersurface; Then we can write �D es˛s ,
where ˛s is a contact form on fsg � T 2 � Œ1; 2� given by (6-1-1) for pairs of functions .fs; gs/ which
depend on s and y. The forms ˛s will define a 2-plane field � and a vector field R on R� T 2 � Œ1; 2�

which restrict to the contact structure and the Reeb vector field on each slice fsg�T 2� Œ1; 2�. In particular,
R is tangent to the tori fsg�T 2�fyg. Moreover, we assume that ˛s is constant in s near R�T 2�f1; 2g

and that R is parallel to @t when y D 1; 2 and not parallel to it otherwise. Finally, we assume that the
tori fsg �T 2 � f1g and fsg �T 2 � f2g are foliated by Morse–Bott families N1 and N2, respectively, for
each s, where N1 is negative and N2 is positive.

We take an almost complex structure J on R � T 2 � Œ1; 2� with coordinates .s; #; t; y/ such that the
following hold:

� J is adapted to �.

� J is invariant in the s-direction on the cylindrical ends of the cobordism.

� J is invariant in the #; t-directions.

� J.@s/DR.

� J sends @y 2 � to the tangent space to fsg �T 2 � fyg.

For the existence of such an almost complex structure we need to verify that the plane distribution
generated by @s and R is d�-symplectic, and that @y belongs to its d�-orthogonal. The first property
is guaranteed if ˛s varies sufficiently slowly in s, while the second property follows from the fact that
˛s.@y/D 0 everywhere. Finally, the symmetries of J reflect the symmetries of the forms ˛s .

Lemma 8.4.6 Let .R�T 2� Œ1; 2�; �/ be an exact symplectic cobordism with an adapted almost complex
structure J as above. Then there is a 2-dimensional family Z2 of holomorphic cylinders Zs;# on
R�T 2� Œ1; 2� for .s; #/ 2R�R=Z which foliate R� int.T 2� Œ1; 2�/ and project to cylinders # D const
in int.T 2 � Œ1; 2�/. Each cylinder Zs;# is positively asymptotic to a Reeb orbit in N2 and negatively
asymptotic to a Reeb orbit in N1.
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Proof Let us write v D J.@y/. Our conditions on J and R imply that @t D a.s; y/vC b.s; y/R with
b.s; y/ ¤ 0 everywhere and a.s; y/ D 0 only when y D 1 or y D 2, in which case @a=@yjyD0;1 ¤ 0.
Then J.@t / D �a.s; y/@y � b.s; y/@s . The vector fields @t and Y.s; y/ D a.s; y/@y C b.s; y/@s span
a J -invariant 2-plane distribution on R � T 2 � Œ1; 2�. Since a and b do not depend on t and # , this
distribution is integrable and every integral submanifold in R�T 2 � Œ1; 2� is the product of R=Z with
coordinate t and an integral curve of Y on the strip R� Œ1; 2�.

The functions a and b are bounded in R� Œ0; 1� because @a=@sjjsj�0 D @b=@sjjsj�0 D 0. This implies
that Y is complete. Moreover, the maximal integral curves of Y on R� .1; 2/ project diffeomorphically
onto .1; 2/ and have vertical asymptotes for y! 1 and y! 2 because a.s; y/¤ 0 when y ¤ 1; 2.

Lemma 8.4.7 Let us;# W R � S1 ! R � T 2 � Œ1; 2� be a J -holomorphic map which parametrizes
the holomorphic cylinder Zs;# . Then .us;# ;P/ satisfies automatic transversality if at least one end is
unconstrained.

Proof By Theorem 8.4.2,
ind.us;# ;P/D �� .
2;P/��� .
1;P/;

where 
i 2Ni , so ind.us;# ;P/D 2� #�0.us;# ;P/ by Lemma 8.4.3. Hence the condition for automatic
transversality in Theorem 8.4.2 holds if #�0.us;# ;P/ < 2. Both the constrained negative end at N1 and
the constrained positive end at N2 are even and the lemma follows.

8.4.3 Constraints on holomorphic curves Finite-energy foliations constrain J -holomorphic maps
with the same asymptotics. The following lemma describes an instance of this phenomenon. A similar
situation has also been considered in [Wendl 2013].

Lemma 8.4.8 Let P be a compact oriented surface and ˛ a Morse–Bott contact form on S1 �P such
that S1 � @P is a union of Morse–Bott tori and f#g � @P is a union of Reeb orbits for each # 2 S1. If
R�S1�P has a finite-energy foliation Z on which R�S1 acts freely and transitively and is such that every
leaf projects diffeomorphically to int.P /, then every somewhere-injective finite-energy J -holomorphic
map u W F !R�S1 �P with no ends at a Reeb orbit in S1 � int.P / is a leaf of Z .

Proof Let Zs;# be the leaves of Z parametrized by .s; #/ 2 R � S1. Suppose first that there is a
leaf Zs0;#0 such that u.F /\Zs0;#0 ¤¿ and which is asymptotic to different Reeb orbits than u. The
intersection points in u.F /\Zs0;#0 are isolated and positive. However, u.F /\Zs00;#0 D ¿ if s00 is
sufficiently large, a contradiction. Hence there exists some #0 2S1 such that u.F /�

S
s2RZs;#0 and the

leaves Zs;#0 are asymptotic to the same Reeb orbits as u. If u.F / is not contained in a leaf, this forces the
intersection u.F /\Zs0;#0 to be one-dimensional for some s0 2R. This is too large an intersection, and
the unique continuation for J -holomorphic maps [McDuff and Salamon 2004, Theorem 2.3.2] implies
that u.F / is a leaf of Z .
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Remark 8.4.9 The proof of Lemma 8.4.8 goes through unchanged for the foliation Z2 constructed
in Lemma 8.4.6, even though the curves Zs;# and Zs0;# are not translations of one another unless
.R�T 2 � Œ1; 2�; �/ is a symplectization. In fact, they still project to the same annulus in T 2 � Œ1; 2� and,
given any point in that annulus, their preimages x 2Zs;# and x0 2Zs0;# become arbitrarily far apart in
the s-coordinate when js0 � sj ! C1. These properties of the foliation Z2 are sufficient to make the
proof of Lemma 8.4.8 work.

8.5 Completion of proof of Theorem 8.1.2

In this subsection we prove (2)–(4) of Theorem 8.1.2.

(2) The inclusion ECC.int.V /; ˛V / � ECC].V; ˛V / is an inclusion of chain complexes since no J -
holomorphic curve in R�V with all positive ends in int.V / can have a negative end on @V by the trapping
lemma. Moreover, the map

ECC].V; ˛V /! ECC.int.V /; ˛V /; 
 7! 0; h0
 7! 
;

where 
 is an orbit set constructed from orbits in int.V /, induces an isomorphism of complexes

ECC].V; ˛V /=ECC.int.V /; ˛V /' ECC.int.V /; ˛V /:

This is due to the fact that h0 is a hyperbolic orbit and appears with exponent at most one in a generator
of ECC].V; ˛V /. From this we have an exact triangle

ECH.int.V /; ˛V / // ECH.int.V /; ˛V /

vv

ECH].V; ˛V /

hh

which splits according to homology classes in H1.V /. Then Proposition 8.3.2 implies that

ECH].V; ˛V ; nŒS1�/D 0

when n¤ 0.

It remains to show that ECH].V; ˛V ; nŒS1�/'0 for nD0. Its chain complex ECC].V; ˛V ; 0/ is generated
by h0 and ¿. We claim that @h0 D ¿. By Proposition 8.4.5, there is a finite-energy foliation Z1 on
.R�V; d.es˛V // whose leaves (in R� int.V /) are J -holomorphic planes which are positively asymptotic
to the Morse–Bott family on @V. This foliation constrains the J -holomorphic curves that limit to orbits
on @V at the positive ends. Indeed, by Lemma 8.4.8, every holomorphic curve which is positively
asymptotic to a simple Reeb orbit on @V and has no negative ends must be a plane in Z1. The leaves of Z1
also contribute to the differential of ECC.V; ˛V / since they are automatically transverse by Theorem 8.4.2.
Hence @h0 D¿, which implies the vanishing of ECH].V; ˛V ; 0/.
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(3) We define a filtration F on ECC.V; ˛V / as follows: Given an orbit set .e0/m
 , where 
 does not
have any e0-terms, we set

F..e0/m
/Dm:

This defines an ascending filtration of chain complexes: since J -holomorphic maps to R�V can have only
positive ends at e0 by the trapping lemma, the differential of ECC.V; ˛V / cannot increase the exponent
of e0. The E1-term of the associated spectral sequence is isomorphic to ECH].V; ˛V / at each filtration
level. By (1), ECH].V; ˛V /D 0, and the spectral sequence converges to 0.

(4) The restriction of F to ECC[.V; ˛V / induces a filtration on ECC[.V; ˛V /, which we still denote
by F . The E1-term of the spectral sequence for F is isomorphic to

1M
mD0

ECH.int.V /; ˛V / � .e0/m:

Since ECH.int.V /; ˛V /' Ff¿g by Theorem 8.1.2, the E1-term of the spectral sequence is F Œe0�. All
higher differentials vanish for degree reasons: recall that ECH has a Z=2 grading in which generators with
no hyperbolic orbits have even grading. Hence E1 DE1 is the graded group of the induced filtration
on ECH[.V; ˛V /. Since the filtration F on ECC[.V; ˛V / is bounded below and exhaustive, the spectral
sequence converges by [Weibel 1994, Theorem 5.5.5] and therefore ECH[.V; ˛V /' F Œe0�.

9 Proof of Theorem 1.1.1

In this section we prove Theorem 1.1.1. The proof was greatly influenced by Michael Hutchings, who
encouraged us to look for an appropriate filtration.

9.1 Intuitive idea behind Theorem 1.1.1

We briefly explain the intuitive idea behind Theorem 1.1.1. We recall that M denotes a connected, closed,
oriented three-manifold and K is a null-homologous knot in M. Suppose for the moment that the contact
form ˛ on M, in a neighborhood V ' D2 � S1 of K, is given by Example 6.2.3. In other words, the
concentric tori T� � V, �¤ 0, are foliated by Reeb orbits of irrational slope 1=�. We would like to take
the limit as �! 0; in the limit @V is foliated by Reeb orbits of slope1. Let us write N DM � int.V /.
There should be a one-to-one correspondence, modulo R-translations, between holomorphic curves u
in R�M of ECH index 1 which intersect the binding k times, and holomorphic curves u0 in R�N of
ECH index 1 which have negative ends at an elliptic orbit e of slope1 with total multiplicity k. Also,
as we take ı! 0, the Conley–Zehnder index of the binding, measured with respect to the longitudinal
framing on V, ie the framing given by a Seifert surface † for K, goes to1. This suggests that we should
be able to effectively ignore the binding if we could take the limit.

The actual proof — at least the one we could find — is considerably more complicated, and uses three
ingredients:
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(i) the calculation of ECH on the solid torus from Section 8,

(ii) some understanding of holomorphic curves that project to a neighborhood of K, and

(iii) a filtration on ECC.M/.

9.2 Description of the contact forms

We start with a description of the contact forms and their Reeb orbits on M that we use in the proof of
Theorem 1.1.1. We fix a neighborhood V 'D2 �S1 of K and decompose M as

M DN [ .T 2 � Œ1; 2�/[V:

Since K is an oriented null-homologous knot, there is a properly embedded oriented surface S � N
whose boundary @S � @V is a longitude for K. On V we choose cylindrical coordinates .�; �; �/ such
that @V D f�D 1g and @S D f�D 1; � D �0g. On T 2� Œ1; 2�' .R2=Z2/� Œ1; 2� we choose coordinates
.#; t; y/ such that .#; t; 2/ is identified with .�; �; �/D .1; 2�t; 2�#/ 2 @V. We identify a neighborhood
of @N in N with T 2 � Œ0; 1� such that @N D T 2 � f1g and the coordinates .#; t; y/ on T 2 � Œ0; 1� extend
those on T 2 � Œ1; 2�; similarly, we identify a neighborhood of @V in V with T 2 �

�
2; 5
2

�
.

We will work with an increasing sequence Li !C1 and a sequence of Morse–Bott contact forms ˛i
on M such that

� ˛i jN is a fixed Morse–Bott contact form ˛ which is nondegenerate on int.N / and its Reeb vector
field is positively transverse to S ;

� ˛i jT 2�Œ1;2� is a contact form ˛ıi as in Example 6.1.2 which is chosen so that all the Reeb orbits in
T 2 � .1; 2/ have action larger than Li ; and

� ˛i jV D cıi˛V for a fixed contact form ˛V constructed as in Lemma 8.1.1 and a decreasing
sequence cıi which is bounded above by 1 and bounded below by a positive constant.

We also assume the following technical condition:

� There is a decreasing sequence �i ! 0 such that ˛i agrees with ˛iC1 on N [ .T 2 � Œ1; 1C �i �/
and with a constant positive multiple of ˛iC1 on V [ .T 2 � Œ2� �i ; 2�/.

We will refer to T 2 � .1; 2/ as the no man’s land.

The contact form ˛ on N can be constructed using the techniques developed in [Colin and Honda 2005;
Colin et al. 2011b]. The construction is described in Section 9.3.1 in the special case where K is the
binding of an open book decomposition of M and N is the mapping torus of a diffeomorphism of S.

The contact forms ˛i are Morse–Bott and all the Morse–Bott tori are of the form T 2�fyg with y 2 Œ1; 2�.
In particular, @N D T 2 � f1g is foliated by a negative Morse–Bott family N1 and @V D T 2 � f2g by a
positive Morse–Bott family N2. Both families have infinite slope, ie the Reeb orbits on both tori are
meridians of K.
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We construct Li -nondegenerate contact forms ˛0i D fi˛i , where the perturbing functions fi are as in
Section 4.5. We choose fi so that the Morse–Bott family N1 corresponding to @N is perturbed into an
elliptic orbit e and a hyperbolic orbit h, the Morse–Bott family N2 corresponding to @V is perturbed into
a hyperbolic orbit h0 and an elliptic orbit e0, no new closed orbits with action less than Li are created, and
fi � 1 in a neighborhood of all nondegenerate Reeb orbits of ˛i with action less than Li .

For all i we choose regular almost complex structures Ji adapted to ˛i and J 0i adapted to ˛0i such that
all the Ji are fixed on the contact structure outside T 2 � Œ1� �i ; 2C �i � and J 0i is an arbitrarily small
perturbation of Ji .

We will also consider interpolating cobordisms .R�M; y�i / from .M; ˛i / to a rescaling of .M; ˛iC1/
and .R�M; y�0i / from .M; ˛0i / to a rescaling of .M; ˛0iC1/. By construction, �0i is an arbitrarily small
perturbation of �i . We fix compatible almost complex structures yJi on .R�M; y�i / and yJ 0i on .R�M; y�0i /
such that they are both regular and yJ 0i is an arbitrarily small perturbation of yJi .

We assume that the perturbing functions are close enough to 1 that the following hold:

(MB1) For k D 1; 2, if 
C and 
� are generators of ECCLi .M; ˛0i / and u 2MIDk
J 0
i

.
C; 
�/, then there
is a corresponding u1 2MMB;IDk

Ji
.
C; 
�/.

(MB0) If 
C and 
� are generators of ECCLi .M; ˛0i / and ECCLiC1.M; ˛0iC1/, respectively, and u 2
MID0
yJ 0
i

.
C; 
�/, then there is a corresponding u1 2MMB;ID0
yJi

.
C; 
�/.

Recall from Definition 4.2.2 that MMB
J .
C; 
�/ denotes the set of Morse–Bott J -holomorphic buildings

from 
C to 
�.

For reference we enumerate the main properties of the Reeb vector fields of the contact forms ˛i and
their perturbations ˛0i :

(1) ˛i is Morse–Bott and ˛0i is Li -nondegenerate.

(2) R˛i is positively transverse to S �N and the meridian disks in int.V /.

(3) ˛i jN D ˛ and ˛i jV D cıi˛V , where the sequence cıi is decreasing, bounded above by 1 and
bounded below by a positive constant and the contact form ˛V is constructed as in Lemma 8.1.1.

(4) ˛i and ˛iC1 coincide on N [ .T 2 � Œ1; 1C �i �/ and are constant multiples of one another on
V [ .T 2 � Œ2� �i ; 2�/, where �i ! 0 is a decreasing sequence.

(5) The Reeb orbits of ˛i in the no man’s land come in Morse–Bott families of large negative slope
and their action is bounded below by Li .

(6) There are concentric solid tori V0 � V1 � � � � � V such that @Vj for j D 0; 1; : : : is foliated by
dense Reeb orbits of irrational slope rj > 0 with limj!1 rj DC1 for any contact form ˛i .

(7) @N is foliated by a negative Morse–Bott family N1 of Reeb orbits of ˛i of slope 1. After
perturbation, N1 becomes a pair of orbits e and h. Their Conley–Zehnder indices with respect to
the framing coming from @N (given by T .@N /\ �) are �.e/D�1 and �.h/D 0.
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(8) @V is foliated by a positive Morse–Bott family N2 of slope1. After perturbation, N2 becomes a
pair of orbits e0 and h0. Their Conley–Zehnder indices with respect to the framing coming from @V

are �.e0/D 1 and �.h0/D 0.

9.3 Construction of the contact forms

In this subsection we construct the contact forms ˛i whenK is the binding of an open book decomposition.
In this case N is the mapping torus of a diffeomorphism h W S ! S such that hj@S D id. This means that

N D .S � Œ0; 1�/=.x; 1/� .h.x/; 0/;

where x 2 S and t is the coordinate for Œ0; 1�. Using the coordinates .�; �/ from Section 9.2 we identify
the isotopy classes of simple closed curves in @N (and in all parallel tori) with rational numbers so that
the meridian has slope1 and @S has slope 0.

Remark 9.3.1 The above slope convention is the same as the usual surgery convention for performing
surgery along the binding.

9.3.1 Construction of the contact form onN We take a 1-form ˇ on S such that ! D dˇ is a positive
area form on S and ˇ D cy d� in a neighborhood N.@S/� S of @S. Here c > 0 is a small constant and
N.@S/ is identified with Œ1� ı; 1��R=Z with coordinates .y; �/.

We assume that the diffeomorphism h W S ��! S satisfies hjN.@S/ D id. Let Symp.S; @S; !/ be the group
of symplectomorphisms of .S; !/ which restrict to the identity on a neighborhood of @S. By Moser’s
lemma, there is an isotopy of h relative to @S such that the resulting diffeomorphism — also called h by
abuse of notation — is in Symp.S; @S; !/.

Lemma 9.3.2 (Giroux) Given h 2Symp.S; @S; !/, there exists an isotopy fhtgt2Œ0;1� in Symp.S; @S; !/
such that h0 D h and h�1ˇ�ˇ D df for some positive function f on S.

Proof Let �D h�ˇ�ˇ and let Y be the vector field which satisfies iY! D��. By Cartan’s formula,
we compute that LY! D iY d! C d.iY!/ D �d� D 0 and LY� D iY d�C d.iY�/ D 0. Hence the
flow �t of Y preserves ! and �. Moreover, �t is equal to the identity near @S, where �D 0.

Now let ht D h ı�t . We then compute that

d

dt
h�t ˇ D �

�
t .LY h�ˇ/D d.��t .iY h�ˇ//C��t .iY d.h

�ˇ//D dgt C�
�
t .iY!/D dgt ��

�
t �D dgt ��;

where gt D ��t .iY h�ˇ/. Hence

(9-3-1) d

dt
h�t ˇ D dgt Cˇ� h�ˇ:

Integrating (9-3-1) yields h�1ˇ�ˇ D df, where f D
R 1
0 gt dt CC for a sufficiently large constant C.
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By Lemma 9.3.2, we assume that h 2 Symp.S; @S; !/ satisfies h�ˇ�ˇD df. Next we construct a contact
form on N whose corresponding Reeb vector field is transverse to the fibers and has first return map h .

Lemma 9.3.3 Let h be a diffeomorphism in Symp.S; @S; !/ which satisfies h�ˇ � ˇ D df for some
function f on S. Then there is a contact form ˛ D ft dt C ˇt on N, where ft is a family of positive
functions on S and ˇt is a family of 1-forms on S, such that the corresponding Reeb vector field R˛ is
transverse to all the fibers S � ftg and h is the first return map of R˛.

For a more complete discussion of the realizability of surface symplectomorphisms as the first return map
of a Reeb vector field, we refer the reader to [Colin et al. 2008].

Proof Consider the 1-form ˛Dft dtCˇt on S�Œ0; 1�, where ft is to be determined, ˇ0Dˇ, ˇ1D h�ˇ,
and

ˇt D �.t/ˇ1C .1��.t//ˇ0

interpolates between ˇ0 and ˇ1. Here we take � W Œ0; 1�! Œ0; 1� such that �.0/D 0, �.1/D 1, d�.t/=dt D
P�.t/� 0 and � is constant near 0 and 1.

Using the condition h�ˇ�ˇ D dSf, we verify that the 1-form P̌t is exact on S :

P̌
t D P�.t/.ˇ1�ˇ0/D P�.t/.dSf /D dS . P�.t/f /:

Here dS is the exterior derivative on S. We then take ft D P�.t/f C c, where c is an arbitrary positive
constant such that ft > 0 (and is different from the c in ˇ D cy d� from the beginning of Section 9.3.1).
Then P̌t D dSft . Since � is constant near t D 0 and t D 1, ft is also constant, and so is ˇt . In particular,
h�f1 D f0.

We now compute that

d˛ D dSft ^ dt C dSˇt C dt ^ P̌t D dSft ^ dt C!C dt ^ dSft D !:

Hence ˛ is a contact form, its Reeb vector field is parallel to @t on S�Œ0; 1�, and its first return map is h .

Now we make a slight modification to ˛ so that @N becomes a negative Morse–Bott family — one that
behaves like a sink for J -holomorphic maps in R�N.

On T1 D @N, the germ of ˛ is given by f .y/ dt C g.y/ d� , where f .y/ D C and g.y/ D cy. Here
c > 0 is a small constant and C > 0 is a large constant. We extend ˛ to T 2 � Œ1; 1C "� by extending
.f .y/; g.y// to y 2 Œ1; 1C "� as follows:

(1) .f .y/; g.y// satisfies (6-1-2).

(2) .f .y/; g.y// for y 2 Œ1; 1C "� is close to .f .1/; g.1//.

(3) .f .y/; g.y//D
�
f .1C "/C .y � .1C "//2; g.1C "/C .y � .1C "//

�
near y D 1C ".
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.f .1/; g.1//

f

g

.f .1C "/; g.1C "//

Figure 4: Trajectory of .f .y/; g.y//. The f -axis and g-axis do not necessarily intersect at .0; 0/
in this figure.

See Figure 4. In particular, condition (3) implies that .f 0.1C "/; g0.1C "// is parallel to .0; 1/. Hence
T1C" is foliated by a Morse–Bott family of Reeb orbits of slope1. We write ˛ for the extension of ˛ to
N [ .T 2 � Œ1; 1C "�/.

We now consider the deformation retract

� WN [ .T 2 � Œ1; 1C "�/ ��!N;

obtained by flowing along the vector field X D�a.y/@y , where a.y/D 1 on T 2 � Œ1; 1C "� and damps
out to zero on T 2 � Œ1� "; 1�. Finally, we perturb ��˛ on N so that all Reeb orbits in int.N / become
nondegenerate, while keeping @N Morse–Bott. The resulting form will be called ˛ in the rest of the paper.

9.3.2 Extension toM The contact form ˛ has the form

˛ D .bC .y � 1// d� C .aC .y � 1/2/ dt

in some collar T 2 � Œ1� �; 1� of @N. Here � is different from the " in Section 9.3.1.

Choose a decreasing sequence of irrational numbers ıi ! 0 and a contact form ˛ıi on T 2 � Œ1; 2� for
each i as in Example 6.1.2 with f .1/D a and g.1/D b. Then ˛ on N and ˛ıi on T 2 � Œ1; 2� glue to a
smooth contact form on N [ .T 2 � Œ1; 2�/. Moreover, there is an increasing sequence Li !C1 such
that all Reeb orbits of ˛ıi in T 2 � .1; 2/ have action greater than Li .

Fix a contact form f̨;g on V ' D2 � S1 as in Example 6.2.4. For each i , a multiple of f̨;g glues
smoothly to the contact form ˛ıi on T 2 � Œ1; 2�. Let cıi be the scaling factor. Then ˛ıi glues smoothly
also to cıi˛V , where ˛V is the contact form obtained by applying the construction of Lemma 8.1.1 to f̨;g .
By putting all three pieces together we obtain the contact forms ˛i on M.

9.4 The filtrations Fi

For each i we define a filtration Fi on ECCLi .M; ˛0i /. We first identify ECCLi .M; ˛0i /, as a vector space,
with a subspace of

ECC.V; ˛V /˝ECC.N; ˛/:
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This is possible because the Reeb orbits of ˛0i in the no man’s land have actions greater than Li and those
in V coincide with the Reeb orbits of ˛V , up to reparametrization. The generators of ECCLi .V; ˛0i / will
be denoted by 
 ˝� , where 
 2 ECC.V; ˛V / and � 2 ECC.N; ˛/. Choose an identification

� WH1.V IZ/ ��! Z

so that the homology class of the null-homologous knot K is mapped to 1. Then we define the ascending
filtration Fi W ECCLi .M; ˛0i /! Z�0 as

Fi
�X
n


n˝�n

�
Dmax

n
�.Œ
n�/:

We define Fpi as Fpi D fx 2 ECCLi .M; ˛0i / W Fi .x/ � pg. Note that these filtrations are uniformly
bounded below because Fpi D 0 for p < 0.

Lemma 9.4.1 Let u WF !R�M be a J 0i -holomorphic map which is asymptotic to 
˝� at the positive
end and to 
 0˝� 0 at the negative end. Then

Fi .
 ˝�/� Fi .
 0˝� 0/:

Proof By (MB1) there is a Ji -holomorphic Morse–Bott building from 
˝� to 
 0˝� 0. Let Nu WF!R�M

be the holomorphic part of this building — which may be disconnected because ˛i is not necessarily
nice — and denote the projection to M by NuM .

We will use the tori Tn D @Vn in V from Lemma 8.1.1 to constrain the ends of Nu. We recall that Tn
is foliated by dense Reeb orbits of irrational slope rn with rn!C1. Let ın be the homology class
of NuM .F /\ Tn, oriented as the boundary of NuM .F /\Vn. If n is sufficiently large, then all the orbits
in 
 and 
 0 that are not in the Morse–Bott family on @V are contained in Vn. Hence the sequence ın is
constant for n� 0 and �.ın/D �.
 0/� �.
/.

Regarding both ın and rn as homology classes in H1.TnIR/ and orienting Tn as the boundary of Vn, for
n� 0 we obtain ın � rn � 0 by the positivity of intersections in dimension three (Lemma 5.2.2). Taking
the limit n!1 and using the fact that the sequence rn converges to the slope of the Reeb vector field
on @V, we obtain �.ın/� 0 for n� 0. This implies Fi .
 ˝�/� Fi .
 0˝� 0/.

Corollary 9.4.2 The differential of ECCLi .M; ˛0i / respects the filtration Fi .

For each i the filtration Fi induces a spectral sequence Er.Fi / which converges to ECHLi .M; ˛0i /. The
terms E0.Fi / correspond to the graded complexes associated to Fi and can be identified (as vector spaces)
with subspaces of ECC.V; ˛V /˝ECC.N; ˛N /. The differential @0 on E0.Fi / is the filtration-preserving
component of the differential on ECCLi .M; ˛0i /. Every sheet Er.Fi / has a grading coming from Fi , and
the component in degree p of Er.Fi / will be denoted by Erp.Fi /.
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9.5 Description of the differential on E0.Fi /

In this subsection we compute the differential @0 on E0.Fi / using Morse–Bott techniques. This is
possible, in spite of the fact that the contact forms ˛i are not necessarily nice, because of the following
lemma:

Lemma 9.5.1 Let Qu be a Morse–Bott building from 
 ˝� to 
 0˝� 0 in the symplectization of .M; ˛i /
and let u be its holomorphic part. If u has a positive end at @N or a negative end at @V, then Fi .
 0˝� 0/<
Fi .
 ˝�/.

Proof We recall that K denotes the core of V and that S �N is a properly embedded surface such that
@S defines a longitude of K. In the case of an open book decomposition, K is the binding and S is a
page.

Let U ' T 2� Œ1��; 2C���M be a small neighborhood of the no man’s land T 2� Œ1; 2� such that u has
no ends at Reeb orbits intersecting U, except at orbits in N1 or N2. Assume without loss of generality that
the ends of u limit to distinct orbits �1; : : : ; �n. Then we let Uk be a small tubular neighborhood of �k
for k D 1; : : : ; n and let U D U � .U1 [ � � � [Un/. Let Bk D �@Uk for k D 1; : : : ; n, B0 D .@U /\ V
and BnC1 D .@U /\N. We orient each Bk , for k D 0; : : : ; nC 1, using the boundary orientation of U.

On each Bk for k D 0; : : : ; nC 1, we choose an oriented basis of curves .�k; �k/ as follows: On B0
and BnC1 we choose �0 and �nC1 so that they are longitudes of K coming from S and �0 and �nC1 so
that they are meridians of K. On each Bk for k D 1; : : : ; n, we choose �k so that it is the longitude of
the Reeb orbit in Uk induced by the Morse–Bott torus (which is either @N or @V ) and �k so that it is a
meridian of Uk . The curves �k for k D 0; : : : ; nC 1 are oriented by the vector field @t and the curves �k
for k D 0; : : : ; nC 1 are oriented by �k � �k D 1.

By abuse of notation, we identify the oriented curves �k and �k with their homology classes in H1.U IZ/.
With this convention, �0 D �1 D � � � D �nC1 and �0C�1C � � �C�nC1 D 0. Moreover, these relations
generate the kernel of the map

nC1M
kD0

H1.BkIZ/!H1.U IZ/

induced by the inclusion. Let C D Im.uM /\U. Then @C D ı0C � � �C ınC1, where ık � Bk is given
the orientation induced by C. We will view ık either as an element of H1.BkIZ/ or as an element of
H1.U IZ/. Then ı0C � � �C ınC1 D 0 in H1.U IZ/. For each k we write ık D ak�kC bk�k .

By the trapping lemma and the positivity of intersections in dimension three, we have ık � �k � 0 for
k D 1; : : : ; n, because the curves �k can be represented by Reeb orbits. (Here we are using a variation of
Lemma 5.2.2 which is an immediate consequence of the positivity of intersections in dimension four.)
Then, for all k D 1; : : : ; n, ak � 0; moreover, if ık corresponds either to a positive end at T1 or to a
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negative end at T2, then ak > 0. The relations in H1.U IZ/ among the curves �k and �k imply that
a0 D � � � D anC1, so a0 > 0 if u has either a positive end at @N or a negative end at @V. Then

a0 D �.
/� �.

0/D Fi .
 ˝�/�F.
 0˝� 0/ > 0:

Corollary 9.5.2 Let 
 ˝� and 
 0˝� 0 be generators of ECCLi .M; ˛0i /. If Fi .
 ˝�/D Fi .
 0˝� 0/
and Qu is a Morse–Bott building with I. Qu/D 1 in the symplectization of .M; ˛i / from 
 ˝� to 
 0˝� 0,
then the holomorphic part of Qu has at most one nontrivial irreducible component.

Proof Let u be the holomorphic part of Qu. By Lemma 9.5.1, all ends of u at @N are negative and all
ends of u at @V are positive. Then the structure of Qu is simple enough that the argument of Lemma 7.1.2
implies that u has a unique irreducible component which is not a connector.

Corollary 9.5.2 implies that, for the purpose of computing the differential @0 of E0.Fi /, we can use
Morse–Bott theory as if the contact forms ˛i were nice.

In order to describe the differential concisely we introduce the following notation. Given two orbit sets

 0 D

Q


m0
i

i and 
 D
Q


mi
i (in multiplicative notation), we set 
=
 0 D

Q


mi�m

0
i

i if m0i �mi for all i ;
otherwise we set 
=
 0 D 0. We also call T1 D @N and T2 D @V.

We now prove the following lemma, which describes the differential @0 on E0 in some detail:

Lemma 9.5.3 After identifyingE0.Fi /, as a vector space , with a subspace of ECC.V; ˛V /˝ECC.N; ˛/,
the differential @0 is given by

(9-5-1) @0.
 ˝�/D .@V 
/˝�C .
=e
0/˝ h�C .
=h0/˝ e�C 
 ˝ .@N�/:

Here 
 is an orbit set of V ; if h divides � , then h� is understood to be 0; and @X is the differential on the
subset X �M.

Proof Corollary 9.5.2 and Proposition 4.4.7 imply that @0 on E0.Fi / can be computed by counting I D 1
very nice Morse–Bott buildings in the symplectization of .M; ˛i / which do not decrease the filtration
level.

The differential @0 does not count holomorphic curves which cross R�T1DR�@N or R�T2DR�@V :
Indeed, if u is a holomorphic curve which contributes to @0 and uM its projection toM, then the homology
classes ŒIm.uM /\T1˙"� 2H1.T1˙"/ and ŒIm.uM /\T2˙"� 2H1.T2˙"/ (for " > 0 small) have slope1,
and we apply the blocking lemma (Lemma 5.2.3(2)). This still allows for the possibility of curves that are
negatively asymptotic to orbits of T1 or positively asymptotic to orbits in T2. (Curves which are positively
asymptotic to orbits of T1 or negatively asymptotic to orbits of T2 are ruled out by Lemma 9.5.1 because
they have been shown to decrease the filtration level.) Such curves are contained in R�V, R�T 2� Œ1; 2�,
or R�N by a combination of the trapping lemma (Lemma 5.3.2) and the blocking lemma (Lemma 5.2.3).
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Curves in R� V contribute to the term .@V 
/˝ � , while curves in R�N contribute to 
 ˝ @N .�/.
Note that there are two cylinders from e0 to h0 and two cylinders from h to e corresponding to gradient
trajectories on N2 and N1; these give @0.e0˝ 1/D 0 and @0.1˝ h/D 0.

Next we consider curves in R� int.T 2 � Œ1; 2�/. By Lemma 8.4.8, the only somewhere-injective curves
in R� int.T 2 � Œ1; 2�/ are the cylinders Zs;� defined in Lemma 8.4.6. (Remember that we are ignoring
the curves which are asymptotic to the orbits in int.T 2 � Œ1; 2�/ because they have action larger than Li .)
By Lemma 8.4.7, the cylinders Zs;� satisfy automatic transversality as long as at least one of the ends
is treated as unconstrained. Branched covers of Zs;� of degree > 1 are not counted in the differential
since they have I > 1 (after augmenting them with cylinders corresponding to gradient trajectories).
Modulo translations in the s-direction, there is a unique I D 1 Morse–Bott building from h0 to e, which
gives the term .
=h0/˝ e� , and a unique I D 1 Morse–Bott building from e0 to h, which gives the term
.
=e0/˝h� (adding trivial cylinders to these buildings does not change their ECH index because they
satisfy the admissibility conditions from [Hutchings 2002, Proposition 7.1, equations (23) and (24)]).

9.6 Direct limit

In this subsection we use a direct limit argument to exclude the Reeb orbits in the no man’s land from the
complex computing ECH.M/. The limit will be compatible with the filtrations Fi , so the end result will be
a spectral sequence Er converging to ECH.M/. The following lemma is immediate from Corollary 3.2.3
and the construction of the contact forms ˛0i :

Lemma 9.6.1 For an appropriate choice of contact forms ˛0i and action thresholds Li , we have

ECH.M/D lim
i!1

ECHLi .M; ˛0i /:

The direct limit is taken with respect to maps

ˆi W ECHLi .M; ˛0i /! ECHLiC1.M; ˛0iC1/

induced by interpolating cobordisms via Lemma 3.1.7.

Lemma 9.6.2 The map ˆi is induced by a noncanonical chain map

ŷ
i W ECCLi .M; ˛0i /! ECCLiC1.M; ˛0iC1/; 
 ˝� 7! 
 ˝�C r.
 ˝�/;

where FiC1.r.
 ˝�// < FiC1.
 ˝�/.

Proof The map ˆi is induced by an interpolating cobordism from ˛0i to (a rescaling of) ˛0iC1. We
degenerate this cobordism into a two-level cobordism such that the top level interpolates from ˛0i D fi˛i

to fiC1˛i and the bottom level interpolates from fiC1˛i to ˛0iC1 D fiC1˛iC1. Then ˆi Dˆ0i ıˆ
00
i by

Theorem 3.1.2, where

ˆ00i W ECHLi .M; ˛0i /! ECHLi .M; fiC1˛i /; ˆ0i W ECHLi .M; fiC1˛i /! ECHLiC1.M; ˛0iC1/:
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The maps ˆ0i and ˆ00i are induced by noncanonical chain maps ŷ 0i and ŷ 00i . By Proposition 4.5.5 we can
assume that ŷ 00i is the identity map.

Next we claim that the filtration-nondecreasing part of ŷ 0i only counts trivial cylinders. Let .Œ0; 1��M;�0i /
be an interpolating cobordism from fiC1˛i to ˛0iC1 and .R�M; y�0i / its completion. By Theorem 3.1.2,
ŷ 0
i is “supported” on the I D 0 holomorphic buildings of .R �M; y�0i /. We are assuming that y�0i

is sufficiently close to y�i , where .Œ0; 1� �M;�i / is an interpolating cobordism from ˛i to ˛iC1 and
.R�M; y�i / is its completion. Hence, by (MB0), if h ŷ 0i .
˝�/; 


0˝� 0i ¤ 0, then there is a Morse–Bott
building in .R�M; y�i / connecting 
˝� to 
 0˝� 0. Since the 2-form d�i agrees with a symplectization
on a neighborhood of R�.N [V /, we can repeat the argument of Lemma 9.4.1 to show that Fi .
˝�/�
FiC1.
 0˝� 0/. Moreover, if Fi .
˝�/DFiC1.
 0˝� 0/, then the holomorphic buildings in .R�M; y�i /
cannot cross the no man’s land by Lemma 8.4.6 and Remark 8.4.9. Therefore they are contained in the
part of the cobordism .R�M; y�i / which is diffeomorphic to a symplectization. This implies the claim.

Lemma 9.6.3 The chain maps ŷ i WECCLi .M; ˛0i /!ECCLiC1.M; ˛0iC1/ induce chain maps Er.Fi /!
Er.FiC1/. The direct limits

Er.F/D lim
i!1

Er.Fi /

form a spectral sequence converging to ECH.M/. The page E0.F/ can be identified , as a vector space ,
with ECC.V; ˛/˝ECC.N; ˛/ and the differential @0 on E0.F/ is described by (9-5-1).

Proof By Lemma 9.6.2, the continuation maps ŷ i are morphisms of chain complexes. Since the
construction of the spectral sequence associated to a filtered complex is functorial (see [Weibel 1994,
Proposition 5.9.2]), the maps ŷ i induce a morphism of spectral sequences

Er.Fi /!Er.FiC1/:

We define Er.F/ D limi!1Er.Fi /. Since direct limit is an exact functor from the category of di-
rected systems of abelian groups to the category of abelian groups (see for example [Weibel 1994,
Theorem 2.6.15]), the limits Er.F/ still form a spectral sequence.

We claim now that E1.F/ D limi!1E1.Fi /. First we recall the definition of the E1 term of a
spectral sequence: on E1 there is a sequence of subgroups

f0g D B1 � B2 � � � � Br � � � � �Zr � � � � �Z2 �Z1 DE1

such that Er 'Zr=Br ; then we define

Z1 D
\
r�1

Zr ; B1 D
[
r�1

Br and E1 DZ1=B1:

By going through the construction of the spectral sequence, one can see that

Br.F/D lim
i!1

Br.Fi / and Zr.F/D lim
i!1

Zr.Fi /
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because the direct limit is an exact functor. (The description of Br and Zr given in [Weibel 1994,
Exercise 5.9.1] can be useful to prove this.)

Then, in order to prove the claim, it is enough to prove that

lim
i!1

�[
r�1

Br.Fi /
�
D

[
r�1

�
lim
i!1

Br.Fi /
�
;(9-6-1)

lim
i!1

�\
r�1

Zr.Fi /
�
D

\
r�1

�
lim
i!1

Zr.Fi /
�
:(9-6-2)

Equation (9-6-1) is not problematic because direct limits commute with countable unions. In fact countable
unions can themselves be seen as direct limits, and direct limits commute as a consequence of their
universal property [Lang 2002, Exercise 20]. On the other hand, in general, direct limits do not commute
with infinite intersections, so we need more work to prove (9-6-2).

The spectral sequence of a filtered complex has a grading coming from the filtration: we can decompose
Er.Fi / D

L
Erp.Fi /, Br.Fi / D

L
Brp.Fi / and Zr.Fi / D

L
Zrp.Fi /. Since Fpi D 0 if p < 0, it

follows from the construction of the spectral sequence that Z1p .Fi / D Zrp.Fi / provided that r � p.
(Again [Weibel 1994, Exercise 5.9.1] can be useful here.) Taking the direct limit, we obtain that
limi!1E1p .Fi /DE1p .F/ and this proves the claim.

The filtrations Fi induce filtrations on ECHLi .M; ˛0i /; taking direct limits we obtain a filtration on
ECH.M/ whose the graded group is the limit of the graded groups of the filtrations on ECHLi .M; ˛0i /
(again because direct limit is an exact functor). Since the filtrations Fi are bounded below and exhaustive,
the classical convergence theorem [Weibel 1994, Theorem 5.5.5] implies that Er.Fi / converges to
ECHLi .M; ˛0i / (ie E1.Fi / is isomorphic to the graded group of ECHLi .M; ˛0i /). Taking a direct limit,
we then conclude that Er.F/ converges to ECH.M/.

Here the notation Er.F/ does not mean that the spectral sequence comes from some filtration F , but
only remembers the fact that it is the direct limit of the spectral sequences induced by the filtrations Fi —
in fact Er.F/ is a spectral sequence of a filtration because a direct limit of filtered complexes is a filtered
complex; however, the limit complex defining Er.F/ is too abstract to be useful. This notation will be
useful in the next section, when we will introduce another spectral sequence.

We now rewrite the differential @0 in a way which highlights the roles played by the orbits h and h0; this
will be used extensively in the following subsections. By factoring out the terms h0 and h, we can write
the differentials @V and @N as

(9-6-3) @V 
D@[V 
; @V .h
0
/Dh0@[V 
C@

0
V .h
0
/ and @N�D@

[
N�Ch@

0
N�; @N .h�/Dh@

[
N�;

where 
 2 ECC[.V; ˛V /, � 2 ECC[.N; ˛/, @[V and @[N are the differentials for the chain complexes
ECC[.V; ˛V / and ECC[.N; ˛/, and the terms @0V .h

0
/ and @0N� do not contain h0.
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9.7 The map ��

In this subsection we define an explicit map

�� W ECH.N; @N; ˛/! ECH.M/

and in the next one we will prove that it is an isomorphism. It will be easy to see that �� preserves the
decomposition by (relative) homology classes; namely, if $ WH1.N; @N /!H1.M/ is the isomorphism
described in the introduction, �� maps ECH.N; @N;A/ to ECH.M;$.A// for every A 2H1.N; @N /.

We introduce the following notation, which will be used in this and in the following sections. Given a set
of Reeb orbits e1; : : : ; en; h1; : : : ; hm, where e1; : : : ; en are elliptic and h1; : : : ; hm are hyperbolic, we
define

RŒe1; : : : ; en; h1; : : : ; hm� WD F Œe1; : : : ; en; h1; : : : ; hm�=.h
2
1; : : : ; h

2
m/I

ie in RŒe1; : : : ; en; h1; : : : ; hm� the elliptic orbits are free variables and the hyperbolic orbits are nilpotent
variables of order two. Whenever we use the notation RŒe1; : : : ; en; h1; : : : ; hm� in this paper, we will
assume fe1; : : : ; eng � fe; e0g and fh1; : : : ; hmg � fh; h0g.

Define ECC\.N; ˛/ as RŒh0�˝ECC[.N; ˛/ with differential

@\.
 ˝�/D 
 ˝ @[�C 
=h0˝ .1C e/�:

Lemma 9.7.1 ECH\.N; ˛/' ECH.N; @N; ˛/.

Proof ECC\.N; ˛/ can be identified with the cone of the multiplication map � .1C e/ on ECC[.N; ˛/.
Hence there is an exact triangle

(9-7-1)

ECH[.N; ˛/
�.1Ce/

// ECH[.N; ˛/

ww

ECH\.N; ˛/

gg

The map � .1C e/ is injective on homology since � and e� belong to different singular homology classes
for all � 2 ECC[.N; ˛/. Then the exact triangle implies that

ECH\.N; ˛/'
ECH[.N; ˛/

.1C e/ECH[.N; ˛/
' ECH.N; @N; ˛/:

We denote by ECC\;L
�k
.N; ˛/ the subcomplex of ECC\.N; ˛/ generated by orbit sets 
 ˝� which have

linking number less than or equal to k with K and action less than L. We fix an increasing sequence
L0
k
!C1 and let c D supk A˛0k .e

0/. Then, for every k, we choose ik so that Lik � kL
0
k
C ck2.
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In the following, we will rename Lik D Lk , ˛0ik D ˛
0
k

and Fik D Fk . Also, the composition ŷ ikC1�1 ı
� � � ı ŷ ik will be renamed as

ŷ
k W ECCLk .M; ˛0k/! ECCLkC1.M; ˛0kC1/:

For any integer k, we define

�k W ECC
\;L0

k

�k
.N; ˛/! ECCLk .M; ˛0k/; 
 ˝� 7!

1X
iD0

.e0/i
 ˝ .@0N /
i�;

where @0N is defined by (9-6-3) and 
 D 1 or h0.

These maps are well defined because the map @0N is nilpotent. In fact, @0N decreases the linking number
with the binding, so .@0N /

kC1 D 0 on ECC[
�k.N; ˛/.

Remark 9.7.2 This and the analogous construction in Section 9.9 are the only places where we use
the hypothesis that the Reeb flow is transverse to a fixed Seifert surface for K. In fact, while we could
deduce the nilpotency of @0N from an action argument, by choosing to work with the action we would
lose the estimate on the nilpotency order of @0N and, consequently, on the action of �k.
 ˝�/. However,
in view of the heuristic argument described in Section 9.1, we suspect that this hypothesis is actually not
necessary.

Lemma 9.7.3 The maps �k are chain maps and form a directed system , ie the following diagram
commutes:

(9-7-2)

ECC
\;L0

k

�k
.N; ˛/

�k
//

�k
��

ECCLk .M; ˛0
k
/

ŷ
k

��

ECC
\;L0

kC1

�kC1
.N; ˛/

�kC1
// ECCLkC1.M; ˛0

kC1
/

Here �k is the inclusion.

Proof (1) We first show that �k is a chain map. Since �k takes values in the lowest level for the
filtration Fk (recall 
 D 1 or h0), we have @.�k.�//D @0.�k.�//, where @0 is given by (9-5-1). Using
the decomposition of @N in (9-6-3) and @V ..e0/i
/D .e0/i
=h0 for 
 D 1, h0, we obtain

@0.�k.
 ˝�//D @0

� 1X
iD0

.e0/i
 ˝ .@0N /
i�

�

D

1X
iD0

.e0/i
=h0˝ .@0N /
i�C

1X
iD0

.e0/i
 ˝ .@[N .@
0
N /
i�C h.@0N /

iC1�/

C

1X
iD1

.e0/i�1
 ˝ h.@0N /
i�C

1X
iD0

.e0/i
=h0˝ e.@0N /
i�:
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Rearranging the sum and using the fact that @0N commutes with @[N and with the multiplication by 1C e
gives

@0.�k.
 ˝�//D

1X
iD0

�
.e0/i
 ˝ .@0N /

i@[N�C .e
0/i
=h0˝ .@0N /

i ..1C e/�/
�
:

Hence @.�k.
 ˝�//D @0.�k.
 ˝�//D �k.@\.
 ˝�//.

(2) Diagram (9-7-2) commutes because we have shown in Lemma 9.6.2 that the continuation maps are
induced by the identity at the chain level on the lowest filtration level.

Taking homology first and then direct limits in diagram (9-7-2), we obtain a map

�� W ECH.N; @N; ˛/' ECH\.N; ˛/! ECH.M/:

The maps �k also induce maps

�0 W ECC\.N; ˛/!E0.F/; 
 ˝� 7!

1X
iD0

.e0/i
 ˝ .@0N /
i�;

and
�r W ECH.N; @N /' ECH\.N; ˛/!Er.F/; r > 0:

9.8 Computation of E1.F/

In this subsection we compute the term E1.F/ of the spectral sequence that converges to ECH.M/ and
prove the first half of Theorem 1.1.1.

Recall from Lemma 9.6.3 that E0.F/'ECC.V; ˛/˝ECC.N; ˛/ as a vector space and the differential @0
is given by (9-5-1) and (9-6-3). If we write

Ck;k0 D .h
0/k
0

ECC[.V; ˛/˝ hk ECC[.N; ˛/;

then
E0.F/' ECC.V; ˛/˝ECC.N; ˛/D C0;0˚C0;1˚C1;0˚C1;1:

We can organize all components of the differential @0 besides @[V ˝ 1 and 1˝ @[N in the diagram

(9-8-1)

C0;1
1˝h@0NC�=e

0˝h
//

@0V˝1C�=h
0˝e

��

C1;1

@0V˝1C�=h
0˝e

��

C0;0
1˝h@0NC�=e

0˝h
// C1;0

9.8.1 The filtration G We introduce a filtration G of length 3 on

.E0.F/; @0/D .ECC.V; ˛/˝ECC.N; ˛/; @0/;

which is defined as
G0 D C1;0; G1 D C0;0˚C1;1; G2 D C0;1:
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This filtration induces a spectral sequence Er.G/ which converges to E1.F/. The groups Er.G/ have
two gradings: one inherited from the grading on E0.F/ (which, in turn, is induced by the filtrations Fi /
and one induced by the filtration G. We will denote the homogeneous components of Er.G/ by Erpq.G/,
where p is the degree inherited from E0.F/ and q is the degree induced by G. We also write Erp.G/, in
which case p is the degree inherited from E0.F/.

9.8.2 Determination of .E1.G/; @01/ The graded complex associated to G is

.E0.G/; @00/' .RŒh0; h�˝ECC[.V; ˛/˝ECC[.N; ˛/; 1˝ @[V ˝ 1C 1˝ 1˝ @
[
N /:

Then .E0.G/; @00/ is a product complex and its homology can be computed by the Künneth formula:

E1.G/DRŒh0; h�˝ECH[.V; ˛/˝ECH[.N; ˛/:

Taking into account the grading inherited from E0.F/ and the computation of ECH[.V; ˛/ from Theorem
8.1.2(4), we obtain

E1p.G/'
�RŒe0; h0; h�˝ECH[.N; ˛/ when p D 0;
0 when p > 0:

Then E1p.F/D 0 for p >0 and standard properties of spectral sequences immediately imply the following
lemma:

Lemma 9.8.1 There is an isomorphism E10 .F/' ECH.M/ which is induced by the direct limit of the
inclusion maps E00 .Fi / ,! ECCLi .M; ˛0i /.

The differential @01 on E1.G/ is induced by the components of @0 between consecutive filtration levels.
By Proposition 8.4.5 and Lemma 8.4.8, the only J -holomorphic map in R�V with an end at h0 is a disk
in the foliation Z1, which has ECH index I D 1. Therefore @0V .h

0.e0/i /D .e0/i . Then the differential @01
on E10;�.G/ is described by the commutative diagram

(9-8-2)

h0RŒe0�˝ECH[.N; ˛/
1˝h@0NC�=e

0˝h
//

�=h0˝.1Ce/
��

h0RŒe0�˝ hECH[.N; ˛/

�=h0˝.1Ce/
��

RŒe0�˝ECH[.N; ˛/
1˝h@0NC�=e

0˝h
// RŒe0�˝ hECH[.N; ˛/

9.8.3 Homological algebra lemma The following elementary lemma in homological algebra will be
used in the proof of Theorem 9.8.3:

Lemma 9.8.2 Let A be an abelian group and f; g W A! A commuting morphisms. Consider the chain
complex

C� D .0! C2
@2
�! C1

@1
�! C0! 0/D .0! A

.fg/
�! A2

.g;�f /
�����! A! 0/:

If f has a right inverse s W A! A (ie f ı s D id) such that g ı s D s ıg, then

H2.C�/' kerf \ kerg; H1.C�/' kerf =g.kerf /; H0.C�/D 0:
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Proof H2.C�/' kerf \ kerg is immediate and H0.C�/D 0 follows from the surjectivity of f.

Next consider H1.C�/. By definition, we have ker @1 D f.x; y/ 2 A2 j g.x/ D f .y/g and Im.@2/ D
f.f .z/; g.z// 2 A2 j z 2 Ag. If we define the map

� W A! A2; x 7! .x; g ı s.x//D .f ı s.x/; g ı s.x//;

then we can write Im.@2/D Im.�/˚g.kerf / and ker.@1/D Im.�/˚ kerf. The details are left to the
reader. Hence H1.C�/' kerf =g.kerf /.

9.8.4 Completion of proof of Theorem 1.1.1(1) We use a comparison theorem for spectral sequences
(eg [Eisenbud 1995, Exercise A3.41]) to prove Theorem 9.8.3, establishing Theorem 1.1.1(1).

Theorem 9.8.3 The map �� W ECH.N; @N; ˛/! ECH.M/ is an isomorphism.

Proof Since �k takes values in the lowest level of the filtration Fk , �� factors through the map

�1 W ECH.N; @N; ˛/' ECH\.N; ˛/!E10 .F/:

By Lemma 9.8.1, it suffices to show that �1 is an isomorphism.

Recall the filtration G on E0.F/ from Section 9.8.1. On ECC\.N; ˛/ we define an analogous filtration G\
such that

G\.
 ˝�/D
�
2 if 
 D h0;
1 if 
 D¿:

This filtration induces a spectral sequence Er.G\/ such that E1q .G\/' ECH[.N; ˛/ for q D 1; 2 and d1
is the multiplication by 1C e. This is simply a reformulation of exact triangle (9-7-1) in the language of
spectral sequences. The map �0 is compatible with the filtrations G\ and G and induces a map

x� WE1.G\/!E1.G/:

We now compute the homology of .E1.G/; @01/ using Lemma 9.8.2. We set

ADRŒe0�˝ECH[.N; ˛/; f D 1˝ @0N C � =e
0
˝ 1 and g D 1˝ .1C e/;

where fg D gf by diagram (9-8-2). Define the map

s WRŒe0�˝ECH[.N; ˛/!RŒe0�˝ECH[.N; ˛/; .e0/k˝� 7! .e0/k
1X
iD1

.e0/i ˝ .@0N /
i�1�;

where � denotes an element of ECH[.N; ˛/ and not an orbit set as usual. Then s is well defined since @0N
is nilpotent. Moreover, f sD id and gsD sg. Then E200.G/DE202.G/D 0 because the map g is injective.
Next consider E201.G/D kerf =g.kerf /. An element of kerf has the form

.e0/n˝�nC .e
0/n�1˝�n�1C � � �C 1˝�0;
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where �i 2 ECH[.N; ˛/ and �iC1 D @0N�i for i D 0; 1; : : : . Hence the map

x� W ECH[.N; ˛/!RŒe0�˝ECH[.N; ˛/; � 7!

1X
iD0

.e0/i ˝ .@0N /
i�;

is an isomorphism with kerf. The diagram

ECH[.N; ˛/ x�
//

�.1Ce/
��

kerf

�.1Ce/Dg

��

ECH[.N; ˛/ x�
// kerf

commutes because @0N .e�/D e@
0
N .�/ for all � 2 ECH[.N; ˛/ by the trapping lemma. Hence x� induces

an isomorphism

E2.G\/' ECH[.N; ˛/=.�C e�/ ��!E2.G/' kerf =g.kerf /:

By the comparison theorem for spectral sequences, �1 is an isomorphism.

9.9 The U -map

In this subsection we prove that �� intertwines the map U on ECH.M/ with the map induced by @0N on
ECH.N; @N; ˛/. This will allow us to deduce Theorem 1.1.1(2) from algebraic considerations. Let Lk
and L0

k
be as in Section 9.7.

We define the map
U \ W ECC\.N; ˛/! ECC\.N; ˛/; 
 ˝� 7! 
 ˝ @0N�:

Since U \.ECC
\;L0

k

�k
.N; ˛//� ECC

\;L0
k

�k
.N; ˛/, we can define

U
\

k
W ECC

\;L0
k

�k
.N; ˛/! ECC

\;L0
k

�k
.N; ˛/

as the restriction of U \ to ECC
\;L0

k

�k
.N; ˛/.

We also define the chain complex

bECC\.N; ˛/DRŒh0�˝ECC.N; ˛/

with differential
y@\.
 ˝�/D 
 ˝ @N�C 
=h

0
˝ .1C e/�:

The following lemma is similar to Lemma 9.7.1 and its proof will be omitted:

Lemma 9.9.1 bECH\.N; ˛/' bECH.N; @N; ˛/.

The decomposition of the differential @N described in (9-6-3) implies the following lemma:
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Lemma 9.9.2 bECC\.N; ˛/ is isomorphic to the cone of U \. If L0
k
!1 is an increasing sequence and

bECC
\;L0

k

�k
.N; ˛/ is the cone of U \

k
, then

lim
k!1

bECC
\;L0

k

�k
.N; ˛/' bECC\.N; ˛/:

Let z be a generic point in the interior of R�V. We denote by Uk the U -map on ECCLk .M; ˛0
k
/ defined

with respect to z.

Lemma 9.9.3 The map Uk preserves the filtration Fk for each k. On the lowest filtration level , generated
by orbit sets 
 ˝� such that 
 2RŒe0; h0�, Uk is given by

(9-9-1) Uk.
 ˝�/D 
=e
0
˝�:

Proof Fix k. By Lemma 9.4.1, the map Uk preserves the filtration Fk . Moreover, by Lemma 9.5.1
(see also Corollary 9.5.2), curves which contribute to Uk and do not decrease the filtration level do not
cross R� Ti (for i D 1; 2). This implies that Uk.
 ˝�/D Uk.
/˝� when 
 2RŒe0; h0�, and Uk.
/
counts index I D 2 curves in V passing through z. We will use the ECH index and the Fredholm index
to constrain such curves.

Let u be an I D 2, J 0
k

-holomorphic map in R � V with 
C D .e0/aC.h0/bC at the positive end and

� D .e

0/a�.h0/b� at the negative end; of course b˙ 2 f0; 1g. If we denote by De0 and Dh0 the meridian
disks of V with boundary on e0 and h0, respectively, and by Z 2H2.V; 
C; 
�/ the relative homology
class determined by u, we have Z D .˛C�˛�/ŒDe0 �C .ˇC�ˇ�/ŒDh0 �.

We compute I.
C; 
�; Z/ using (2-3-2). On e0 and h0 we consider the trivialization � induced by @V.
The Conley–Zehnder indices are �� ..e0/i / D 1 for i D 1; : : : ; k and �� .h0/ D 0 by Definition 4.3.1,
because they are on a slight perturbation of a positive Morse–Bott torus. The relative Chern class is
c1.�jŒDe0 �; �/D c1.�jŒDh0 �; �/D 1. Putting everything together,

I.
C; 
�; Z/D 2.aC� a�/C .bC� b�/:

Then I.
C; 
�; Z/D 2 implies eC � a� D 1 and bC � b� D 0, because bC � b� 2 f�1; 0; 1g. We call
b D bC D b�.

Negative ends at e0 cannot be contained in R � V by the trapping lemma, Lemma 5.3.2. (While the
trapping lemma was proved for orbits on a Morse–Bott torus, it still holds for e0 which is a slight elliptic
perturbation.) Therefore u consists of a cover of a trivial cylinder over e0 of degree a�, together with
a J 0

k
-holomorphic map u W F ! R� V with positive asymptotics to e0.h0/b and negative asymptotics

to .h0/b and representing the relative homology class ŒDe0 �. Since ind.u/D 2, the index formula (2-2-1)
implies that �.F /D 1. This leaves only two possibilities: either u consists of a Fredholm index 2 plane
which is positively asymptotic to e0 together with a trivial cylinder over h0, or it consists of a Fredholm
index one cylinder from e0 to h0 together with a Fredholm index one plane which is positively asymptotic
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to h0. The second configuration cannot pass through a generic point z and therefore has to be discarded.
The problem of computing Uk in the lowest filtration level is thus reduced to the count of J 0

k
-holomorphic

planes in R�V asymptotic to e0 and passing through a generic point.

If we degenerate the contact forms ˛0
k

toward the Morse–Bott contact forms ˛k and the almost complex
structures J 0

k
toward the almost complex structures Jk , the J 0

k
-holomorphic curves described above

converge to very nice Jk-holomorphic Morse–Bott buildings because the topology of the domain does
not allow the creation of branched covers of trivial cylinders (with nonempty branch locus) connected
to Morse trajectories. Then, by Theorem 4.4.3(4), the count of I D 2, J 0

k
-holomorphic planes on R�V

which are positively asymptotic to e0 and pass through a generic point z is the same as the count of
Morse–Bott buildings consisting of a Jk-holomorphic plane on R�V which passes through a generic
point z and is positively asymptotic to an orbit of @V, augmented by a Reeb trajectory from e0 to that orbit.

By Lemma 8.4.8, the principal part of such a Morse–Bott building must be a leaf of the finite-energy
foliation Z1. Since there is a unique leaf through any point, this proves that Uk.
 ˝�/D 
=e0˝� .

Corollary 9.9.4 The following diagram commutes for each k:

(9-9-2)

ECC
\;L0

k

�k
.N; ˛/

�k
//

U
\

k
��

ECCLk .M; ˛0
k
/

Uk

��

ECC
\;L0

k

�k
.N; ˛/

�k
// ECCLk .M; ˛0

k
/

Proof Since �k takes values in the lowest level of the filtration Fk , we can use (9-9-1) to compute
Uk ı �k . Then, for 
 ˝� 2 ECC

\;L0
k

�k
.N; ˛/, we have

Uk.�k.
 ˝�//D Uk

� 1X
iD0

.e0/i
 ˝ .@0N /
i�

�
D

1X
iD1

.e0/i�1
 ˝ .@0N /
i�;

�k.U
\

k
.
 ˝�//D �k.
 ˝ @

0
N�/D

1X
iD0

.e0/i
 ˝ .@0N /
iC1�:

Hence Uk ı �k D �k ıU
\

k
.

Proof of Theorem 1.1.1(2) By Lemma 9.9.2, diagram (9-9-2), and the naturality property of mapping
cones, there is a chain map

y�k W bECH
\;L0

k

�k
.N; ˛/! bECCLk .M; ˛0k/

for each k. Taking homology (with the help of Lemma 9.9.1) and direct limits over k, we obtain a map

y�� W bECH.N; @N; ˛/' bECH\.N; ˛/! bECH.M/:
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This map fits into the U -map exact sequences by properties of mapping cones:

� � �
U \
//

��

��

ECH.N; @N / //

��

��

bECH.N; @N / //

y��
��

ECH.N; @N /

��

��

U \
// � � �

��

��
� � �

U
// ECH.M/ // bECH.M/ // ECH.M/

U
// � � �

The five lemma then implies that y�� is an isomorphism. Moreover, y�� preserves the decompositions of
bECH.N; @N; ˛/ and bECH.M/ according to (relative) homology classes.

Remark 9.9.5 Embedded contact homology can be defined over the integers by choosing a coherent
orientation system for the moduli spaces. For its definition or construction we refer to [Bourgeois and
Mohnke 2004; Hutchings and Taubes 2009a, Section 9]. Different choices of coherent orientation systems
yield isomorphic chain complexes.

All results of this article carry over with integer coefficients, and with the same proofs, if there is a
coherent orientation system such that

� the holomorphic plane with positive asymptotics at h0 and the holomorphic plane with positive
asymptotics at e0 and passing through a generic point count positively;

� the holomorphic cylinders from e0 to h and from h0 to e count positively; and

� the holomorphic cylinders from e0 to h0 and from h to e have opposite signs, so that they cancel
each other in the differentials.

The first two items can be easily obtained by automorphisms of the complexes adjusting the signs of
the generators e0, h0, e and h, and the third item follows from the identification of orientations of moduli
spaces of Morse trajectories with orientations of the corresponding moduli spaces of holomorphic maps,
as sketched in the first paragraph of the proof of [Bourgeois 2002, Lemma7.6].

10 Applications to sutured ECH

In this section we apply Theorem 1.1.1 to sutured ECH.

10.1 Sutured ECH

In this subsection we briefly review sutured ECH, referring the reader to [Colin et al. 2011b] for more
details.

A sutured manifold is a pair .M; �/, where M is a 3-manifold with boundary and corners, � � @M
is a possibly disconnected 1-manifold,15 N.�/ is an annular neighborhood of � , and @M admits the
decomposition into two-dimensional strata

@M DRC.�/[R�.�/[N.�/

15In this section, � will denote a suture, not an orbit set.
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as in [Colin et al. 2011b, Definition 2.7]. Note that our definition does not allow for “torus sutures” as in
Gabai’s original definition [1983, Definition 2.6].

A sutured contact form x̨ on .M; �/16 (see [Colin et al. 2011b, Definition 2.8]) is, roughly speaking, a
contact form x̨ on M whose Reeb vector field Rx̨ is positively transverse to RC.�/, negatively transverse
to R�.�/, and tangent to N.�/, and such that the trajectories of Rx̨jN.�/ are arcs from @R�.�/ to
@RC.�/. One can easily verify that .M; �/ admits a sutured contact form if and only if it is balanced,
ie �.RC.�// D �.R�.�//. A sutured contact manifold .M; �; x̨/ admits a completion .M �; x̨�/; see
[Colin et al. 2011b, Section 2.4].

Let .M; �; x̨/ be a sutured contact manifold. We now describe the sutured ECH group ECH.M; �; x̨; J /.
Its chain group17 ECC.M; �; x̨; J / is generated by orbit sets constructed from simple Reeb orbits
in int.M/ and the differential counts ECH index one J -holomorphic maps in the symplectization of
.M �; x̨�/ for an almost complex structure J which is adapted to the symplectization and satisfies
properties (A0)–(A2) from [Colin et al. 2011b, Section 3.1]. Almost complex structures of this type are
said to be tailored to .M; �; x̨/.

Completions are not necessary in dimension three by the following lemma:

Lemma 10.1.1 Let J be tailored to .M; �; x̨/. Then all J -holomorphic curves in .M �; x̨�/ which are
asymptotic to closed Reeb orbits in int.M/ are contained in R� int.M/.

Proof This follows from the proofs of [Colin et al. 2011b, Lemma 5.6 and Corollary 5.7], and relies on
the fact that RC.�/ and R�.�/ automatically admit Stein structures.

We finish this review of sutured ECH by recalling a useful result from [Colin et al. 2011b] and sketching
a simpler proof in dimension three.

Definition 10.1.2 [Colin et al. 2011b, Section 9] Let .M; �; x̨/ be a sutured contact manifold. An
interval-fibered extension is a contact embedding

.M; �; x̨/ ,! .M 0; � 0; x̨0/

such that M 0� int.M/DW � Œ0; 1�, where

� W is a cobordism from � 0 to � , and

� x̨0jW�Œ0;1� D c dt Cˇ for a Liouville form ˇ on W and c > 0.

Lemma 10.1.3 [Colin et al. 2011b, Theorem 9.1] Let .M; �; x̨/ ,! .M 0; � 0; x̨0/ be an interval-fibered
extension. Then there is a canonical isomorphism of chain complexes between ECC.M; �; x̨/ and
ECC.M 0; � 0; x̨0/.

16We use x̨ to denote an unspecified sutured contact form because ˛ is reserved, in Section 9, to the contact form on N. Such
contact form will appear again later in this section.
17We will often write ECC.M; �; x̨/ and ECH.M; �; x̨/ for simplicity.
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Proof All closed Reeb orbits in M 0 are contained in M because all Reeb trajectories in M 0� int.M/ go
from R�.�

0/ to RC.� 0/. Moreover, J -holomorphic curves in R�M 0 between orbit sets in int.M/ are
contained in R�M. In fact, if a J -holomorphic curve nontrivially intersects R�.M 0�M/DR�W �Œ0; 1�,
then its projection to W is surjective by the positivity of intersections with the Reeb vector field. This
implies that the curve touches R� @M 0, which is impossible by Lemma 10.1.1.

10.2 Topological invariance of sutured ECH

In this subsection we pay off a debt from [Colin et al. 2011b], namely we sketch a proof that sutured
ECH depends only on the sutured manifold and the contact structure. A more detailed proof can be found
in [Kutluhan et al. 2022]. In view of [Colin et al. 2011b, Conjecture 1.5], we expect sutured ECH to be
independent also of the contact structure.

Lemma 10.2.1 Let .M; �; x̨/ be a sutured contact manifold such that � is connected. Then , for every
L� 0, we can embed .M; �; x̨/ into a closed contact manifold . �M; z̨L/ such that

ECHL
0

.M; �; x̨/' ECHL
0

. �M; z̨L/

for every L0 �L. Moreover , �M, up to diffeomorphism , depends only on .M; �/ and , if x̨0 and x̨1 define
isotopic contact structures on .M; �/, then z̨L0 and z̨L1 define isotopic contact structures on �M.

Proof Since .M; �/ is balanced and � is connected, RC.�/ and R�.�/ have the same genus and are
diffeomorphic. We identify @RC.�/ and @R�.�/ by a diffeomorphism @h0 W @RC.�/ ��! @R�.�/, which
is defined by the Reeb flow on N.�/, and fix a diffeomorphism h0 WRC.�/ ��!R�.�/ which extends
@h0. Let us write ˇC D x̨jRC.�/ and ˇ� D x̨jR�.�/. Then the contact form x̨, on a neighborhood
RC.�/� Œ1� �; 1� or R�.�/� Œ�1;�1C �� of R˙.�/DR˙.�/�f˙1g with coordinates .x; t/, has the
form c dt Cˇ˙ for some c > 0 (see [Colin et al. 2011b, Definition 2.8]). Here � > 0 is small.

By Moser’s theorem and Lemma 9.3.2, there is a diffeomorphism h WRC.�/ ��!R�.�/ isotopic to h0
relative to @h0, such that h�ˇ� � ˇC D df for some function f W RC.�/! R which is constant near
@RC.�/.

Let us write RDRC.�/. By repeating the proof of Lemma 9.3.3, we construct a contact form ft dtCˇt

on R� Œ1; 2� such that ft >0, ft dtCˇt D c dtCˇC on R� Œ1; 1C��, and ft dtCˇt D c dtCh�ˇ� on
R�Œ2��; 2�. Pick a bump function ' W Œ1; 2�! Œ1; 2� and consider the contact forms .ftCCL'.t// dtCˇt
on R� Œ1; 2� for some large positive constant CL to be determined later.

We obtain the manifold M 0 by gluing R�f1g to RC.�/ by the identity and R�f2g to R�.�/ by h . The
contact forms x̨ on M and .ft CCL'.t// dt C ˇt on R� Œ1; 2� match near the gluing region, so they
define a contact form on M 0. Finally, we obtain �M by gluing a solid torus V to M 0 along the boundary
so that a meridian of the solid torus is identified with a Reeb orbit on @M 0. The contact form on M 0 can
be extended to a contact form z̨L on �M by taking the contact form on V as in Example 6.2.4.
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By taking CL sufficiently large, we ensure that Reeb trajectories from RC.�/ to R�.�/ and closed Reeb
orbits in V have action larger than L; for Reeb orbits in V this is a simpler application of the arguments
in the proof of Lemma 7.2.3. Hence ECCL

0

.M; �; x̨/ D ECCL
0

. �M; z̨L/ as abelian groups if L0 � L.
Any tailored almost complex structure J on R�M can be extended to an almost complex structure J on
R� �M which is adapted to the symplectization of z̨L.

Next we claim that a J -holomorphic map u W F ! R� �M which is asymptotic to orbit sets in M has
image in R�M. These orbit sets have trivial linking number with the core of V, so Im.u/�R�M 0 by
the blocking lemma. On the other hand, Im.u/\ .R�R� Œ1; 2�/D¿: Observe that R˙.�/ can be lifted
to an family vs for s 2R of J -holomorphic maps in R�M 0 which foliate R�R˙.�/. By the positivity
of intersections, if u intersects some vs , then it intersects all vs . However Im.uM 0/\R˙.�/ is compact
and u cannot intersect vs for s� 0, a contradiction. Hence Im.u/�R�M.

The remaining claims in the statement are straightforward.

Theorem 10.2.2 Let x̨1 and x̨2 be sutured contact forms on a sutured three-manifold .M; �/ and let
J1 and J2 be almost complex structures on R�M such that Ji is tailored to .M; �; x̨i / for i D 1; 2. If
�1 D ker x̨1 and �2 D ker x̨2 are isotopic through contact structures adapted to the sutures , then

ECH.M; �; x̨1; J1/' ECH.M; �; x̨2; J2/:

Moreover , this isomorphism preserves the decomposition of the sutured ECH groups as direct sums of
subgroups indexed by homology classes in H1.M/.

Proof We may assume that � is connected, since otherwise we can make � connected by gluing
an interval-fibered extension, which does not change the sutured ECH groups by Lemma 10.1.3. We
extend .M; �; x̨i / to . �M; z̨Li / as in Lemma 10.2.1 and follow the proof of Proposition 7.2.1 step by step.
The statement about the decomposition according to homology classes follows from the fact that the
isomorphism is supported on holomorphic buildings contained in R�M in the sense of Theorem 3.1.2(i).

10.3 Applications

If M is a closed 3-manifold and B �M is an embedded open 3-ball, we define the sutured manifold

M.1/D .M �B;�0/;

where �0 is a connected simple closed curve in @.M �B/. If K �M is a knot and N.K/ is an open
tubular neighborhood of K, we define the sutured manifold

M.K/D .M �N.K/; �K/;

where �K consists of two disjoint copies of a meridian ofK. When consideringM.1/, we will assume that
K nB is connected and goes from R�.�/ to RC.�/. If x̨ is a contact form on M �B or M �N.K/ sat-
isfying the conditions in [Colin et al. 2011b, Definition 2.8], then the sutured ECH groups ECH.M.1/; x̨/
and ECH.M.K/; x̨/ are defined.
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e0

h0

h

e

K

hi .�/@�

Figure 5: The Reeb vector field R0i on N0.K/D .T 2 � Œ1; 2�/[V. The top and the bottom are identified.

Theorem 10.3.1 bECH.M/' ECH.M.1/; x̨/.

This theorem concludes the proof of [Colin et al. 2011b, Theorem 1.6].

Proof Let � be a contact structure on M extending x� D ker x̨ such that K �M is a �-transverse knot.
Recall the decomposition

M DN [ .T 2 � Œ1; 2�/[V

from previous sections, where we take N0.K/D .T 2 � Œ1; 2�/[V to be a neighborhood of K.

There exists a sequence of contact forms ˛0i for i D 0; 1; : : : for � (up to isotopy) and associated Reeb
vector fields R0i , satisfying properties (1)–(8) of Section 9.2. Figure 5 depicts R0i on N0.K/'D2.2/�S1

with cylindrical coordinates .�; �; �/, where D2.�0/D f� � �0g and V 'D2.1/�S1. The Reeb vector
field R0i is @�-invariant and of the form R0i D Y C hi .�/@� , where Y is tangent to the slices f� D constg
as given in Figure 5 and hi .�/ > 0 for � > 0.

Choose almost complex structures J 0i adapted to ˛0i as in Section 9.2 so that J 0i is @�-invariant on N0.K/
and is close to the almost complex structure J0 from Proposition 8.4.4 on V.

We describe a concave ball B in M whose complement is M.1/; see Figure 6. Let D be a meridian
disk in V which bounds e0 and is the projection to V of an I D 2, J 0i -holomorphic plane u asymptotic
to e0 at the positive end. The plane u corresponds to a leaf of the finite-energy foliation Z0 of R� V

from Proposition 8.4.4. Let N.e0/ be a neighborhood of e0 whose boundary is tangent to R0i . We then
set B DN.D/[N.e0/, where N.D/ is a small neighborhood of D, chosen so that @B decomposes into
three parts:

� two disks R˙.�0/ transverse to R0i that are parallel copies of a small retract of D; and

� an annulus N.�0/� @N.e0/ tangent to Ri .
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B

h0

h

e

Figure 6: The concave ball B, obtained by rotating the shaded region about the vertical axis.

We assume that the I D 1, J 0i -holomorphic plane asymptotic to h0 has image in R� .V �B/ and that
R˙.�0/ are also chosen to be restrictions of projections toM of I D 2, J 0i -holomorphic planes asymptotic
to e0. The trajectories of Ri flow from one boundary component of N.�0/ to the other.

The manifold .M.1/; �0; ˛0i / is a sutured contact manifold and, by Theorem 10.2.2, ECH.M.1/; �0; ˛0i /
is isomorphic to ECH.M.1/; �0; x̨/. By construction, the orbit e0 does not belong to M.1/ and all the
orbits in V are now chords from @M.1/ to @M.1/. The Reeb orbits of R0i that are contained in M.1/ are

(1) all Reeb orbits in N ;

(2) e, h and h0; and

(3) orbits longer than Li in the no man’s land.

By taking direct limits as in Section 9.6, we can discard orbits in the no man’s land. The use of direct
limits in this context is justified by Theorem 10.2.2.

By our choice of J 0i , if u is a holomorphic curve in R�M between orbit sets constructed from orbits
of type (1) and (2) in M.1/, then Im.u/ � R�M.1/. (The orbits of type (1) and (2) have the lowest
Fi -filtration level and we can use the blocking and trapping lemmas.) In particular, there are exactly two
I D 1 curves that limit to h0 at the positive end, as it is in R�N0.K/: one plane from h0 to ¿ and one
cylinder from h0 to e. Therefore we obtain an identification

lim
i!1

�
ECCLi .M.1/; �0; ˛0i /; @

�
' .bECC\.N; ˛/; y@\/;

which, in view of Lemma 9.9.1 and Theorem 1.1.1(2), implies the theorem.

If the contact form x̨ is chosen carefully, a null-homologous knot K �M induces a filtration on the
chain complex ECC.M.1/; x̨/ and the associated graded group is ECC.M.K/; x̨/. This construction was
described in [Colin et al. 2011b, Section 7.2]. If N DM �N0.K/ as above, there is a filtration E on
bECC.N; @N; ˛/ defined as follows: Let P be the set of simple Reeb orbits in int.N /. The generators of
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N.K/

h0

h

e

Figure 7: Construction of the concave neighborhood .N.K/; �K/, obtained by rotating the shaded
region about the vertical axis

bECC.N; @N; ˛/ are equivalence classes of orbit sets � constructed from P [fh; eg, up to the equivalence
relation � � e� . To the equivalence class of � we can uniquely associate an orbit set � 0 constructed
from P [fhg. Then we define E.�/ as the algebraic intersection of � 0 with a Seifert surface of K. The
differential of bECC.N; @N; ˛/ preserves E by the trapping lemma and it is easy to identify the graded
group of this filtration with ECC].N; ˛/.

Theorem 10.3.2 If K �M is a null-homologous knot , then there is a contact form x̨ on M for which
the isomorphism in Theorem 10.3.1 preserves the filtrations and induces an isomorphism

ECH.M.K/; x̨/' ECH].N; ˛/:

Proof LetK�M be a null-homologous knot and† a genus-minimizing Seifert surface forK. Following
[Colin and Honda 2005], we construct a family of contact forms ˛0i onM as in the proof of Theorem 10.3.1
on N0.K/, with the additional property that the Reeb vector fields R0i are positively transverse to int.†/.
The construction is done in two steps: first on N by a direct application of [Colin and Honda 2005],
where we use † as the first decomposing surface of a taut sutured hierarchy of N, and then on N0.K/,
where we extend the form by the explicit model already described in Section 9.3.2.

We obtain a concave neighborhood .N.K/; �K/ of K by taking N.K/D B [N�.K/, where N�.K/ is
a very small neighborhood of K whose boundary is tangent to R0i , as in Figure 7, and B is the ball
constructed in the proof of Theorem 10.3.1.

The suture �K corresponds to the core curves of the two annuli in @N.K/ tangent to R0i . At this point,
.M �N.K/; �K/ is not yet a convex sutured manifold, because @N.K/ is not convex for the dividing set
given by the two curves of �K . In fact, on the component A of @N.K/ coming from N�.K/, ker˛0i jA is
negatively transverse to the core of A (oriented as the boundary of RC.�K/). To correct this, we glue a
collar of the form .A� Œa; b�; dt Cf .y/ dx/, @f=@y < 0, to .M �N.K/; ˛0i / along ADA�fag, where
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A� Œa; b�D Œ0; 1��S1� Œa; b� has coordinates .t; x; y/. Then the Reeb vector field remains @t while the
contact plane rotates until ker˛0i jA�fbg is positively transverse to the core of A.

The positive transversality of the Reeb vector fields with the Seifert surface† ensures that the isomorphism
of Theorem 10.3.1 preserves the filtrations given by the linking number with K.

Passing from M.1/ to M.K/ has the effect of killing the “meridian” holomorphic disk from h0 which
passes through R�K. After passing to direct limits, we obtain the desired isomorphism.

Appendix Morse–Bott gluing
by Vincent Colin, Paolo Ghiggini, Ko Honda and Yuan Yao

The goal of this appendix is to prove Parts (2) and (3) of Theorem 4.4.3. The proof of Part (4) is similar
and will be omitted. The proof involves working out Morse–Bott gluing in a special case, which easily
generalizes to one-level cascades in ECH. Yao [2022b; 2022a] will prove the general ECH Morse–Bott
gluing theorem in the presence of Morse–Bott tori and multiple-level cascades. There are slight differences
in packaging, but our strategy and the one from [Yao 2022b; 2022a] for 1-level cascades are essentially
equivalent.

For simplicity we assume there is only one Morse–Bott torus TN and that it is a negative Morse–Bott
torus. It is generally acknowledged that the proof of Morse–Bott gluing in [Bourgeois 2002] is incomplete,
but instead of fixing this, we carry out a different pregluing with a smaller error term. At first we will
use a stable Hamiltonian structure whose hyperplane distribution is integrable near the Morse–Bott torus
to simplify the gluing estimates in various ways. In Section A.9 we will explain how to derive a similar
statement for contact structures from Theorem A.2.1.

A.1 Stable Hamiltonian structures, almost complex structures and moduli spaces

Let Œ�1; 1� � T 2 D Œ�1; 1� � .R2=Z2/ be a neighborhood of the negative Morse–Bott torus TN with
coordinates .y; .�; t// such that TN D f0g �T 2, and let N be the Morse–Bott family of simple orbits of
the form fy D 0; � D constg. Also let Ay0 D Œ�y0; y0��R=Z be an annulus with coordinates .y; �/.

Morse–Bott perturbation of the stable Hamiltonian vector field The construction will depend on
parameters c, a, b0, b and � which will be made more specific during the course of this appendix and
when we make specific choices they will be indicated by (�0)–(�3). The parameters c, a and b0 (chosen
in this order) will describe the data of the problem and will be chosen once and for all at the beginning to
satisfy

0 < 4b0 < a < c < 1:

The constant c depends on the action level, a depends on the Morse–Bott moduli spaces we want to glue —
morally speaking it determines the region where the first nonconstant term in the Fourier expansion of
the negative end is not dominated by the higher-order terms; see (�1) — and b0 is arbitrary, as long as it
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is sufficiently smaller than a. The perturbation of the Morse–Bott Reeb vector field and pregluing will
depend on the parameters b 2

�
0; 1
2
b0
�

and � > 0 (chosen in this order). The parameter b will determine
the support of the perturbation and the parameter � the size. Then, by the usual contraction mapping
argument, we will prove that, for every b sufficiently small and every � sufficiently small compared to b,
the preglued curve can be deformed to a holomorphic curve.

On Œ�c; c�� T 2 consider the stable Hamiltonian structure consisting of the 1-form dt and the 2-form
!H D dH ^ dt C dy ^ d� , where H W Ac ! R is a function of .y; �/ (and is independent of t). The
stable Hamiltonian vector field RH is then

(A-1-1) RH D
@

@t
CXH ; where iXH dy ^ d� D dH:

Let JH be the adapted almost complex structure on R � Œ�c; c� � T 2 which sends @=@s 7! RH ,
RH 7! �@=@s, @=@y 7! @=@� and @=@� 7! �@=@y, where s is the R-coordinate.

We specialize the smooth function H to

(A-1-2) f .y; �/D 1
2
y2 or f�.y; �/D

1
2
y2C ��.y/ NgN .�/;

where � > 0 is small, the domain of NgN .�/ is S1 viewed as the interval
�
�
1
2
; 1
2

�
with the endpoints

identified, and the following hold:

(P2) NgN W R=Z ! R is a perfect Morse function with maximum at 1
4

and minimum at �1
4

. More
specifically, we assume that Ng0N .�/D 0 on � D˙1

4
, is linear with positive slope on

�
�
1
4
;�1

5

�
, is

nondecreasing on
�
�
1
5
;�1

6

�
, and is equal to 1 on

�
�
1
6
; 1
6

�
; and NgN .�/ is an odd function about

� D 0.

(P30) � W Œ�c; c�! Œ0; 1� is an even function which has support on Œ�2b0; 2b0� and is equal to 1 on
Œ�b0; b0�.

Here (P2) is exactly the same as (P2) from Section 4.1 and (P30) is a tweaking of (P3). We observe that
f�! f in C1 as �! 0.

The torus TN is a negative Morse–Bott torus with respect to Rf . After perturbing to Rf� , the Morse–Bott
family of stable Hamiltonian orbits becomes a pair e and h of stable Hamiltonian orbits over

�
0;�1

4

�
and�

0; 1
4

�
in Ac . See Figure 8.

The Morse–Bott perturbation is performed below a fixed action L, which is later sent to infinity by a
direct limit process. The action of a stable Hamiltonian orbit in Œ�c; c��T 2 depends on how many times
it intersects an annulus Ac � ftg and therefore, instead of working below an action level L, we work
below an intersection number N.

(�0) The constant c is chosen so that 0 < c < 1 and all closed orbits of Rf in Ac �S1 that intersect
Ac � ftg at most N times are covers of orbits in TN . The constant � > 0 will always be small
enough that all closed orbits of Rf� in Ac �S1 that intersect Ac � ftg at most N times are covers
of e and h.
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0

1
4

1
2

�
1
2

�
1
4

e

h

T �1T �0

�c 0 cb0�b0

B

Figure 8: The annulus Ac D Œ�c; c��R=Z with some gradient trajectories of f� . The top and
the bottom are identified. The dotted rectangle is the boundary of B D Œ�b0; b0��

�
�
1
6
; 1
6

�
, on

which �.y/D 1 and Ng0N .�/D 1.

The next lemma follows from the explicit constructions in Section A.9 and Claim A.9.3.

Lemma A.1.1 There exist stable Hamiltonian structures .˛; !/ and .˛; !�/ on M and almost complex
structures Jf and Jf� on R�M such that :

(1) On Œ�a; a��T 2, .˛; !/D .dt; !f / and .˛; !�/D .dt; !f� /.

(2) On M � .Œ�a; a�� T 2/, ! D !� is a multiple of d˛ by a positive function (and therefore ˛ is a
contact form).

(3) On M � .Œ�c; c��T 2/, ! D !� D d˛.

(4) Jf and Jf� are adapted to .˛;!f / and .˛;!f�/, respectively , and Jf DJf� outside of R�Œ�a;a��T 2.

Simplification A.1.2 From now on we will consider only the case N D 1 because it contains already all
the relevant ideas.

Moduli spaces Let
MMB

WDMMB
Jf
WDMIDindD1

Jf
.
IN /

be the moduli space of (finite-energy) Jf -holomorphic maps uC W . PF ; j /! R �M modulo domain
automorphisms, where

(C0) . PF ; j / is a closed Riemann surface with a finite number of punctures removed and we are ranging
over all complex structures j with a fixed topological type PF ;

(C1) uC limits to the orbit set 
 at the positive end, where 
 does not involve any orbits of the Morse–Bott
family N ;
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(C2) uC limits to some orbit in the Morse–Bott family N at the negative end; and

(C3) uC has “unconstrained” Fredholm and ECH index 1 (the negative end is unconstrained); see
Section 8.4.1 for more details.

By (C3) we mean that, if we concatenate uC with a cylinder corresponding to an upward gradient
trajectory that starts at

�
0;�1

4

�
so that we have a map C from 
 to e, then the Fredholm and ECH indices

of C are 1. (C3) implies that curves of MMB are isolated modulo R-translation and are embedded.

Next let
M� WDMJf�

WDMIDindD1
Jf�

.
; e/

be the moduli space of Jf� -holomorphic maps u W . PF ; j /! R �M modulo domain automorphisms,
where (C0), (C1) (with u instead of uC) and the following hold:

(C20) u limits to the negative elliptic orbit e obtained by perturbing the Morse–Bott family.

(C30) u has Fredholm and ECH index 1.

We also remark that the moduli spaces MMB and M� can be made Morse–Bott regular or regular by
perturbing Jf and Jf� outside of Œ�c; c��T 2.

Holomorphic curves near the Morse–Bott torus

Claim A.1.3 The equation x@Jf�uD 0 for a map18

u W ŒQs0; Qs1��S
1
!R�S1t �Ac ; u.s; t/D .s; t; �.s; t//;

is equivalent to the equation

(A-1-3) D�� WD
@�

@s
C j0

@�

@t
�rf�.�/D 0;

where j0 D
�
0
1
�1
0

�
is the standard almost complex structure on Ac .

Proof We apply x@Jf� D @sCJf�@t to .s; t; �.s; t// to obtain

(A-1-4)

0@ 1

0

@�=@s

1ACJf�
0@ 0

1

@�=@t

1AD
0@ 1

0

@�=@s

1AC
0@ �1

0

j0@�=@t �rf�.�/

1A :
This is because Jf� .@t /D�@s � j0Xf� and j0Xf� Drf� (recall the sign in (A-1-1)). Hence

Jf�

0@01
0

1AD
0@ �10
�rf�

1A :
18We abuse notation and use coordinates .s; t/ for both the cylindrical part of the domain and R�S1. We also change the order
of the coordinates from .y; �; t/ to .t; y; �/. This has no effect on the orientations of M and Ac .
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The claim holds also for � D 0: the equation x@Jf�u D 0 for a map u.s; t/ D .s; t; �.s; t// as above is
equivalent to D0�D 0, where

D0�D
@�

@s
C j0

@�

@t
�rf .�/:

Remark A.1.4 To treat the case N > 1 we need to consider maps u W ŒQs0; Qs1� � S1 ! R � S1t �Ac
which wind k times around S1t for k �N. In that case we should write u.s; t/D .ks; kt; �.s; t//, but all
estimates on � remain unchanged.

The following easy consequence of Claim A.1.3 provides the link between gradient trajectories and
holomorphic curves:

Lemma A.1.5 Every gradient trajectory T of f� (here we are allowing � D 0 and f0 D f ) admits
a unique lift to a simply covered Jf� -holomorphic cylinder uT whose projection to Ac is T modulo
reparametrization of the domain and R-translations of uT .

Proof If � W ŒQs0; Qs1� ! Ac is a parametrization of T satisfying d�=ds D rf�.�/, then uT .s; t/ WD
.s; t; �.s// satisfies x@Jf�uT D 0 by Claim A.1.3. On the other hand, one can immediately check that a
simply covered map to R�S1�Ac that projects to T must be of the form .s; t/ 7! .s; t; �.s// for some �
up to reparametrizations and translations.

A.2 Main result

The main result of the appendix is the following:

Theorem A.2.1 If MMB
Jf

is Morse–Bott regular , then , for a; b0 > 0 sufficiently small , there exist

� J 0
f

that agrees with Jf on Œ�c; c��T 2 and is arbitrarily close to Jf on M � .Œ�c; c��T 2/,

� � > 0 that is sufficiently small , and

� J 0
f�

that agrees with Jf� on Œ�c; c��T 2 and with J 0
f

on M � .Œ�c; c��T 2/

such that MMB
J 0
f

is Morse–Bott regular , MJ 0
f�

is regular , and there is a bijection between MMB
J 0
f

and MJ 0
f�

.

Remark A.2.2 In the case where MMB
Jf

satisfies (C0), (C1), and the unconstrained end is replaced by a
constrained end in (C2) and (C3), ie the negative end limits to a hyperbolic orbit after perturbation, we can
simply glue in a trivial cylinder at the said end, since having constrained index means not including z@�
in (A-5-15) and Morse–Bott gluing then reduces to standard gluing.

Brief discussion on regularity We will not prove that, for all � > 0 sufficiently small, M� is regular if
MMB is Morse–Bott regular, although that is true. It suffices for our purposes to know that “for some
� > 0 small and some J 0

f
and J 0

f�
, there is a bijection between MMB

J 0
f

which is Morse–Bott regular and
MJ 0

f�
which is regular”.
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We will explain the existence of J 0
f

and J 0
f�

such that MMB
J 0
f

is Morse–Bott regular and MJ 0
f�

is regular:
Since Jf is Morse–Bott regular for MMB

Jf
, the same holds for all J 0

f
that are sufficiently close to Jf on

M �.Œ�c; c��T 2/ and agree with Jf on Œ�c; c��T 2. Next, we perturb Jf� to J 0
f�

onM �.Œ�c; c��T 2/
so that MJ 0

f�
is regular. This is possible because the only Reeb orbits of .˛; !J� / inside Œ�c; c�� T 2

come from the perturbation of the Morse–Bott torus, and therefore every holomorphic curve in MJ 0
f�

intersects M � .Œ�c; c� � T 2/, except for the two curves corresponding to the two flow lines on the
Morse–Bott family, whose regularity can be easily checked by hand.

Let us fix an R-invariant Riemannian metric on R�M that agrees with the flat metric ds2Cdt2Cdy2Cd�2

on R� Œ�1; 1��T 2. All distances will be measured with respect to this metric.

Definition A.2.3 Let � > 0. A curve u W PF !R�M in M� is �-close to breaking into uC W PF !R�M

in MMB and uT � W .�1; 0��S1!R�M , where T � is an upward gradient trajectory of f�, if

(i) on the complement of a negative cylindrical end .�1; 0��S1 of PF, the maps u and u�
C

(obtained
from uC by a suitable translation in the domain if PF is a cylinder and a suitable R-translation in
the target) are a distance � � apart;

(ii) on .�1; 0��S1, the maps u and u�T � (obtained from uT � by a suitable R-translation in the target)
are a distance � � apart.

Let uC W . PF ; j /! R�M be an element of MMB. In what follows, we may assume without loss of
generality that:

(C4) uC limits to the Morse–Bott orbit o over the point .0; 0/ from the positive y-direction at the
negative end.

This is justified as follows: The quotient MMB=R by R-translations in the target is a finite set by (C3).
Let E WMMB=R! N be the map that sends Œu� to the orbit of N that u limits to at the negative end.
Since the image of E is a finite set, we can parametrize N Š R=Z such that E.Œu�/ 2

�
�
1
6
; 1
6

�
for all

u 2MMB. Since our proof works in the same way as long as E.Œu�/ is in the interior of the interval
f� 2 R=Z j Ng0N .�/ D 1g (refer to (P2) for the definition of NgN ), we normalize E.Œu�/ D 0. Moreover,
approaching � D 0 from the positive y-direction and the negative y-direction can be treated in the same
way.

Notation A.2.4 Let T �0 denote the (upward) gradient trajectory of f� that goes from
�
0;�1

4

�
to .0; 0/.

Theorem A.2.1 is an immediate consequence of the following theorems, which are proved in Sections A.7
and A.8, together with the above discussion on regularity:

Theorem A.2.5 Suppose a; b0 > 0 are small. If MMB is Morse–Bott regular , then , for all � > 0

sufficiently small , there exists u 2M� that is �-close to breaking into uC and uT �0 .
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Theorem A.2.6 Suppose a; b0 > 0 are small. If MMB is Morse–Bott regular and M� is regular , then
there exists � > 0 such that , for all � > 0 sufficiently small and u; v 2M� that are �-close to breaking into
uC and uT �0 , uD v modulo R-translation in the target and domain translation if the domain is R�S1.

Remark A.2.7 The assumptions

(i) there is only one Morse–Bott torus TN and it is negative, and

(ii) uC limits to 
 at the positive end and N at the negative end,

are only to make the notation simpler, since gluing each pair of ends can be done more or less independently.
This is due to the fact that the magnitude of the error that comes from a pair P of glued ends and needs to
be inverted in the Newton iteration decays exponentially with respect to the distance to the gluing region
of P.

A.3 Asymptotic operator

On B WD Œ�b0; b0��
�
�
1
6
; 1
6

�
� Ac , we have Ng0N .�/D 1 by (P2) and �.y/D 1 by (P30). Then rf� D

y@y C �@� and the equation D��D 0 becomes the linear equation

@�

@s
C j0

@�

@t
�

�
�1
�

�
D 0;

or

(Jf� )
@�

@s
�A�D

�
0

�

�
; A�D�j0

@�

@t
C

�
1 0

0 0

�
�;

where j0 D
�
0
1
�1
0

�
, �D .�1; �2/, and A is the asymptotic operator for the negative end of uC that goes

to the Morse–Bott family N . Here we are regarding S1 as
�
�
1
2
; 1
2

�
�R, so that �� Ac is regarded in

R2 and the matrix multiplication by
�
1
0
0
0

�
makes sense.

Similarly, a Jf -holomorphic map .s; t/ 7! .s; t; �.s; t// with �.s; t/ 2 Ac is equivalent to

(Jf ) D0�D
@�

@s
�A�D 0:

Remark A.3.1 In the region where D��D 0 is equivalent to (Jf� ), a solution of (Jf ) can be converted
to a solution of (Jf� ) by adding

�
0

�sCC

�
.

From now on we will write the components of � as row vectors if there is no confusion.

Claim A.3.2 The eigenfunctions of A can be arranged as

: : : ; g�2; g�1; g0 D .0; 1/; g1 D .1; 0/; g2; : : : ;

normalized to have unit L2 norm , with corresponding eigenvalues

� � � � ��2 � ��1 < �0 D 0 < �1 D 1 < �2 � � � � ;
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where , if � is any of �2n D �2nC1 or ��2n D ��2nC1, then �.�� 1/D .2�n/2 and

g2n is a multiple of
�
2�n

�2n�1
cos.2�nt/; sin.2�nt/

�
;

g2nC1 is a multiple of
�
2�n

�2n�1
sin.2�nt/;�cos.2�nt/

�
:

Proof If � is an eigenvalue of A, then�
0 1

�1 0

��
y0.t/

� 0.t/

�
C

�
y.t/

0

�
D �

�
y.t/

�.t/

�
;

which is equivalent to � 0.t/D .�� 1/y.t/, �y0.t/D ��.t/. Hence � 00.t/D .1��/��.t/. If �.t/ is to
be 1-periodic, � D 0; 1, � > 1 or � < 0. In the latter two cases, �.t/ is a translate of sin.2�nt/ and
y.t/D 2�n=.�� 1/ times a translate of cos.2�nt/ and .2�n/2 D �.�� 1/.

We can then write a solution �.s; t/ of (Jf ) as a Fourier series

(A-3-1) �.s; t/D

1X
iD�1

cie
�isgi .t/:

A clarification of the meaning of (A-3-1) is in order: the eigenfunctions gi take values in T.0;0/Ac ŠR2,
while � takes values in Ac Š Œ�c; c��S1. Thus, in the equality we have tacitly identified a neighborhood
of .0; 0/ in T.0;0/Ac with a neighborhood of .0; 0/ in Ac using the identification of S1 with a quotient of�
�
1
2
; 1
2

�
fixed at the beginning of the appendix.

A.4 Pregluing

Let uC W PF !R�M be a Jf -holomorphic map representing an element of MMB. We fix a cylindrical end
.�1; s0��S

1 of PF corresponding to the orbit o on which uC takes the form uC.s; t/D .s; t; �C.s; t//,
�C.s; t/ 2 Ac . In view of (C4) we can write

(A-4-1) �C.s; t/D

1X
iD1

cie
�isgi .t/;

where c1 > 0. The condition c1 ¤ 0 holds for a generic Jf because the moduli space MMB is one-
dimensional. This is proved in the same way as [Hutchings and Taubes 2009a, Theorem 4.1], which treats
the contact case. We further assume that c1 > 0 since the c1 < 0 case can be treated in the same way.
Finally, we can assume that (A-4-1) has no i D 0 term because we assumed that o is the orbit over .0; 0/.

Definition A.4.1 Let T0 D T0.a/ and T1 D T1.b/ be real numbers such that

(A-4-2) c1e
��1T0g1 D

�
1
2
a; 0

�
; c1e

��1T1g1 D .b; 0/:

Note that T1.b/!1 as b! 0.

(�1) We choose a; b0 > 0, with b0 < 1
4
a, to be sufficiently small that T0 > 0 and, for all b < b0,

�Cjs��T0 � Aa; �Cj�T0�s�s0 � Ac \fy > 2b0g and �Cjs��T1 � B:
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The choice of a is made possible by the fact that
P1
iD2 cie

�isgi .t/ decays exponentially at a rate which
is faster than c1e�1sg1.t/. From now on, a and T0 are fixed constants, while b and T1.b/ are, for the
moment, still allowed to vary and will be fixed at a later time.

Remark A.4.2 Since the perturbation of f, and therefore of Rf , given in (A-1-2) depends on a and b0
by conditions (P2) and (P30), it is important that MMB is finite, so that we can find a and b0 which
satisfy (�1) for every uC 2MMB.

Let ��� WR!Aa be a parametrization of the gradient flow trajectory of f� from
�
0;�1

4

�
to
�
0; 1
4

�
solving

the Cauchy problem (d���
ds
Drf�.�

�
�/;

���.�T1/D .0; 0/;

and let u��.s; t/D .s; t; �
�
�.s//. We trivially extend ��� to a function ��� WR�S

1!Aa by ���.s; t/D�
�
�.s/.

Definition A.4.3 Let T2 D T2.�/ be a real number such that T1 < T2 and ���j�T2�s��T1 � B.

Note that T2.�/!C1 as �! 0.

Let ˇ W R! Œ0; 1� be a nondecreasing function such that ˇ.s/D 0 if s � 0 and ˇ.s/D 1 if s � 1. The
pregluing u�;a� (note the Fraktur symbol a is different from the parameter a) will depend on � and an extra
real parameter a 2 Œ�a0; a0�, where a0 is independent of b and �, and small enough that ���.�T1C a=�/

is contained in B, where rf� is constant. Then we define

(A-4-3) u�;a� .s; t/ WD

�
uC.s; t/ on PF � .�1;�T0��S1;
.s; t; �

�;a
� .s; t// on .�1;�T0��S1;

where

(A-4-4) ��;a� .s; t/D

(
�C.s; t/Cˇ

� sCT0

�T1CT0

�
.0; �.sCT1//Cˇ.�s�T0/.0; a/ on Œ�T1;�T0��S1;

���.sCa=�; t/Cˇ.sCT2/��C.s; t/ on .�1;�T1��S1:

Observe that ���.s C a=�; t/ D .0; �.s C T1/C a/ on Œ�T2;�T1� � S1 since rf�.y; �/ D .y; �/ and
���.�T1; t / D .0; 0/. Hence the two definitions agree along s D �T1. Therefore u�;a� coincides with
uC for s � �T0, with the lift of a gradient trajectory of f� for s � �T2, and interpolates between
the two for s 2 Œ�T2;�T0�. The interpolation is performed in three steps: for s 2 Œ�T0 � 1;�T0� the
holomorphic curve is pushed in the �-direction (ie along the Morse–Bott family) by a small amount a;
for s 2 Œ�T1;�T0� a perturbation corresponding to the gradient trajectory is slowly turned on and added
to uC; for s 2 Œ�T2C1;�T1� the preglued curve u�;a� is the sum of uC and the lift of a gradient trajectory
of f�; and for s 2 Œ�T2;�T2C 1� the contribution of uC is turned off.

(�2) We choose � D �.b/ > 0 such that

lim
b!0

�.b/eT1.b/T1.b/D 0:

Note that T0 has become a constant after we fixed a, while T1 depends on b and T2 depends on �.
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Lemma A.4.4 If u�;a� is defined by (A-4-3) and (A-4-4), then x@Jf�u
�;a
� is supported on

(1) .Œ�T2;�T2C 1��S
1/[ .Œ�T1;�T0��S

1/; and

(2) the “thick” parts of the domain of uC, ie PF � .�1; T0��S1, where the curve may still enter the
region y 2 Œ�2b0; 2b0�.19

Proof Note that x@Jf�u
�;a
� D 0

(a) on PF � .�1;�T0��S1, away from the region described in (2), where u�;a� D uC and f� D f, and

(b) on .�1;�T2��S1, where u�;a� coincides with the x@Jf� -holomorphic lift of a gradient trajectory
of f�.

(For (a), note that f� and f differ only when y 2 Œ�2b0; 2b0� by (A-1-2) and (P30), but we are as-
suming (�1), which ensures that �C.T0; t / has y-coordinate > 2b0.) Therefore x@Jf�u

�;a
� is supported

in Œ�T2;�T0� � S1, where x@Jf�u
�;a
� D 0 is equivalent to D���;a� D 0. We claim that D���;a� D 0 on

Œ�T2C 1;�T1��S
1. In fact, in that region,

��;a� D �
�;a
� C �C

by (A-4-4) and the definition of ˇ. Moreover, ��;a� takes values inB by condition (�1) and Definition A.4.3,
and in B we have

D� D D0C .0; "/;
where D0 is linear by (Jf� ). Thus,

D�.��;a� /D D0.��;a� /CD0.�C/C .0; �/D D�.u�;a� /CD0.�C/D 0

because D�.u�;a� /D D0.�C/D 0.

A.5 Function spaces

Let us introduce the notation

(A-5-1) ��;a� .s; t/D �
�
�.sC a=�; t/; u�;a� .s; t/D .s; t; �

�;a
� .s; t//:

In this subsection we describe the linearized x@-operators DC and D�;a� for uC and u�;a� .

Since we are assuming that the ECH and Fredholm indices of uC and u�;a� are both 1, they are embedded
and admit normal bundles. Let NC be a Jf -invariant normal bundle to uC in R�M such that NCD TAa
on .�1;�T0��S1, let N �;a

� D TAa be the normal bundle to u�;a� in R� Œ�a; a��T 2, and let N �;a
� be the

normal bundle to u�;a� that agrees with NC on PF � .�1;�T0��S1 and with TAa on .�1;�T0��S1.

A.5.1 Exponential maps Let D�NC denote the disk bundle of NC of radius � > 0, measured with
respect to g. Writing an element of NC as .x; �.x//, where x 2 PF and �.x/ 2 NC.uC.x//, for � > 0
small we choose an exponential map

expuC WD�NC!R�M

19In this case the error is extremely small, of total size C�, and we will not mention it further.
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such that expuC.x; 0/D uC.x/, d.x;0/ expuC.0; �/D �.uC.x// for a section � of NC, and

expuC.x; �.x//D .s.x/; t.x/; �C.x/C �.x//

when uC.x/D .s.x/; t.x/; �C.x// and x 2 .�1;�T0��S1. We also define

expu�;a� WD�N
�;a
� !R� Œ�a; a��T 2; .x; �.x// 7! .s.x/; t.x/; ��;a� .x/C �.x//:

Finally, we define expu�;a� on D�N
�;a
� so that it agrees with expuC on PF � .�1;�T0��S1 and satisfies

.x; �.x// 7! .s.x/; t.x/; ��;a� .x/C �.x//

on .�1;�T0��S1. In particular, expu�;a� coincides with expu�;a� on .�1;�T2/�S1.

A.5.2 Normal x@-equations Instead of using the full x@-operator on sections of u�
C
T .R �M/ and

.u�;a� /
�T .R�M/, following [Hutchings and Taubes 2009a] we will use the normal x@-operators which

act on sections of NC and N �;a
� . The primary purpose of using the normal x@-operators, assuming the

curves are embedded, is to simplify the notation, since the Teichmüller space parameters are automatically
taken care of. More precisely, let L be the total linearized x@-operator — this includes the Teichmüller
space parameters — and let LN be the normal linearized x@-operator LN . Then cokerL ' cokerLN
and kerLN ' .kerL/=V, where V is the subspace generated by the infinitesimal generators of the
reparametrizations of the domain.

By standard local existence results of holomorphic disks, for � > 0 small there exists a foliation of
expuC.D�NC/ by Jf -holomorphic disks such that the holomorphic disk passing through uC.x/ is
tangent to NC.uC.x//. We can therefore adjust the map expuC so that the fibers of D�NC are mapped
to holomorphic disks, use local coordinates .�; �; �/ on expuC.D�NC/, where � C i� are holomorphic
coordinates on PF and � is the fiber coordinate, and write

Jf .�; �; �/D

�
Q|.�; �; �/ 0

X.�; �; �/ j0

�
;

where Q|.�; �; 0/D j0 and X.�; �; 0/D 0. Since Q|2 D�I, we have

Q|.�; �; �/D

�
a.�; �; �/ c.�; �; �/

b.�; �; �/ �a.�; �; �/

�
and det Q| D 1. Also X Q| C j0X D 0.

We derive the normal x@-equation for a section � of NC such that

(A-5-2) x@Jf expuC � D 0:

We recall that x@Jf uD duCJf ıduıj, where j is a complex structure on the domain of u, and therefore
(A-5-2) is an equation for a pair .j; �/, where j is a complex structure on PF. Then solving (A-5-2) is
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equivalent to solving for A.�; �; �/, B.�; �; �/, and �.�; �/ in

(A-5-3)
�
@

@�
CJf .�; �; �/

�
A.�; �; �/

@

@�
CB.�; �; �/

@

@�

��0@��
�

1AD 0:
Here the adjustment of the domain complex structure is equivalent to solving for A.�; �; �/ and B.�; �; �/.
One easily verifies that

A.�; �; �/D a.�; �; �/ and B.�; �; �/D b.�; �; �/

are the unique functions such that the .�; �/-component of (A-5-3) holds. Then the �-component of
(A-5-3) is the normal x@-equation for the section � of NC:

(A-5-4) x@NC;f � WD
@�

@�
C j0

�
a.�; �; �/

@�

@�
C b.�; �; �/

@�

@�

�
CX.�; �; �/

�
a.�; �; �/

b.�; �; �/

�
D 0

such that

(A-5-5) a.�; �; 0/D 0; b.�; �; 0/D 1; and X.�; �; 0/D 0:

Next we derive the normal x@-equation for the section � of N �;a
� such that

x@Jf� expu�;a� � D 0:

Recall that we write expu�;a� � D .s; t; ��;a� C �/ on R� Œ�a; a�� T 2. Since x@Jf�u
�;a
� D 0, the normal

x@-equation for � has the explicit expression

(A-5-6) x@N �;a� ;f�� WD D�.��;a� C �/D D�.��;a� C �/�D�.��;a� /

D
@�

@s
C j0

@�

@t
�rf�.�

�;a
� C �/Crf�.�

�;a
� /D 0;

by Claim A.1.3.

Finally, x@N �;a� ;f�
� for the section � of N �;a

� agrees with x@NC;f � on PF � .�1;�T0� � S1 and with
D�.��C �/ on .�1;�T0��S1 by Claim A.1.3.

The linearized operators for x@NC;f , x@N �;a� ;f� , and x@N �;a� ;f�
will be denoted by DC, D�;a� , and D�;a� . Next

we will describe the proper function-theoretic setup for these operators.

A.5.3 Morrey spaces The function spaces that we use are Morrey spaces, following [Hutchings and
Taubes 2009a, Section 5.5]. Let u W PF !R�M be a finite-energy holomorphic curve. On PF we choose a
Riemannian metric such that the ends are isometric to R=Z� Œ0;1/ with the product metric. On R�M

we continue to use the R-invariant Riemannian metric from before.

The Morrey space H0. PF ;ƒ0;1NC/ is the Banach space which is the completion of the compactly
supported sections of ƒ0;1NC with respect to the norm

(A-5-7) k�k D

�Z
PF

j�j2
�1=2
C

�
sup
x2 PF

sup
�2.0;1�

��1=2
Z
B�.x/

j�j2
�1=2

;
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where B�.x/� PF is the ball of radius � about x. Similarly, H1. PF ;NC/ is the completion of the compactly
supported sections of NC with respect to

(A-5-8) k�k� D kr�kCk�k:

Although Morrey spaces are not used as frequently as Sobolev spaces, they satisfy the analog of the usual
Sobolev embedding theorem (Lemma A.5.1) and have the advantage that we only need to do elementary
L2-type estimates instead of more complicated Lp-type estimates.

The analog of the usual Sobolev embedding theorem is the following:20

Lemma A.5.1 There is a bounded linear map

H1. PF ;NC/! C 0. PF ;NC/\L
1. PF ;NC/; � 7! �:

Proof If � 2H1. PF ;NC/ and K � PF is a subdomain, then let us define

j�jC0;1=4;K D supx¤y2K
j�.x/� �.y/j

jx�yj1=4
:

The lemma is a consequence of [Morrey 1966, Theorem 3.5.2], which implies21 that, for any compact
subdomain K � PF, there exists CK such that

(A-5-9) j�jC0;1=4;K � CK

�
sup
x2 PF

sup
�2.0;1�

��1=2
Z
B�.x/

jr�j2
�1=2
� CKk�k�:

This implies that any � 2H1. PF ;NC/ is continuous.

Since PF has cylindrical ends, we can write PF D K0 [K1 [K2 [ � � � , where all the Ki are compact
connected subdomains and K1; K2; : : : are annuli of the form R=Z times a unit interval. For each Ki
and x ¤ y 2Ki , we have

(A-5-10) j�.x/� �.y/j � CKik�k�jx�yj
1=4
� C.C 0/1=4k�k�;

where C DmaxfCK0 ; CK1g, since CK1 D CK2 D � � � and C 0 is the supremum of the diameters of Ki for
i D 0; 1; : : : . Since � is continuous, on each Ki there exists xi such that

(A-5-11) j�.xi /j D k�jKikL2=vol.Ki /� k�k�=C 00;

where C 00 D infi vol.Ki / > 0. Inequalities (A-5-10) and (A-5-11) together imply that there exists a
constant c > 0 which is independent of � and such that j�.x/j � ck�k� for all x 2 PF.

20The lemma is stated slightly differently from [Hutchings and Taubes 2009a, Lemma 5.3].
21Morrey’s theorem is stated for a Euclidean ball of radius R, but applies equally well to our setting. We take p D 2, � D 2 and
�D 1

4 in the theorem.
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Given ı > 0 sufficiently small, we define a smooth weight function

(A-5-12) gı W PF !RC;

�
gı.x/D 1 on PF � .�1;�T0C 1��S1;
gı.s; t/D e

ıjsCT0j for s � �T0:

Also define the smooth weight function

(A-5-13) hı WR�S
1
!RC; .s; t/ 7! e�ı.sCT0/:

Note that hı agrees with gı for s��T0. We recall that T0 has been fixed once and for all in Definition A.4.1
and (�0). For our purposes we define � WDmin.�1; j��1j/ and take ı such that 5ı < �.

We also define the weighted Morrey spaces H1;gı . PF ;NC/ and H0;gı . PF ;ƒ0;1NC/ as the spaces of
sections � (of the respective bundles) such that the weighted Morrey norms

(A-5-14) k�k�;gı WD k� �gık�; k�kgı WD k� �gık

are finite. Observe that, since we are using normal bundles, it is not necessary to use weights except at
the end which limits to the Morse–Bott orbit. The Morrey spaces for N �;a

� and N �;a
� (with and without

weights) are defined analogously.

A.5.4 Linearized operators Let z@� be a smooth section of NC which is equal to ˇ.�s � T0/@� on
s � �T0 and is zero elsewhere. We view DC as a bounded linear operator

(A-5-15) DıC WH1;gı . PF ;NC/˚Rhz@� i !H0;gı . PF ;ƒ0;1NC/; .�; cz@� / 7!DC.�C cz@� /:

The term Rhz@� i is included since Dı
C

is the linearized operator for the Morse–Bott family MMB D

MIDindD1
Jf

.
IN / with an unconstrained negative end but the infinitesimal deformations parallel to the
Morse–Bott family do not belong to the Morrey space with weights.

We write

(A-5-16) HC;ı DH1;gı . PF ;NC/ and H0
C;ı DD

ı
C.HC;ı/�H0;gı . PF ;ƒ0;1NC/;

and let Dı
C
WHC;ı !H0

C;ı
be the map induced by Dı

C
by restriction.

Let us define

(A-5-17) � WD �ˇ0.�s�T0/@� :

Then � has compact support in f�T0� 1� s � �T0g and satisfies

DıC.0; 1/DDC.
z@� /D �:

Also observe that � …H0
C;ı

because Dı
C

is surjective and ind.Dı
C
/D 1 with kerDı

C
�HC;ı , and � ¤ 0.

Then we can define the projection

(A-5-18) … WH0;gı . PF ;ƒ0;1NC/!H0
C;ı

with � 2 ker…. Note that � has compact support in f�T0 � 1 � s � �T0g, where it can be written as
� D�ˇ0.�s�T0/@� .
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Remark A.5.2 The domain of Dı
C

is the tangent space to the Banach manifold

H1;gı . PF ;R�M/ WD fexpu.�/ j u 2 C; � 2H1;gı . PF ;N u
C/g;

where C is the space of smooth embeddings u W PF!R�M that agree with holomorphic maps parametrizing
trivial holomorphic half-cylinders near each of the punctures; the positive ends of u and uC agree and the
negative end of u limits to N ; and N u

C
is the Jf -invariant normal bundle to u.

Linearizing (A-5-6), we obtain

(A-5-19) D�;a� � D
@�

@s
C j0

@�

@t
� .H f�/.�

�;a
� /�;

where H f� is the Hessian of f�.

We view D�;a� as a bounded linear operator

(A-5-20) D�;a� WH1.R�S1; N �;a
� /!H0.R�S1; ƒ0;1N �;a

� /:

Since the normal bundles N �;a
� are trivialized, we can identify the domains and codomains of D�;a for

different values of � and a. We abbreviate H� DH1.R�S1; N �;a
� / and H0� DH0.R�S1; ƒ0;1N �;a

� /.
Both Dı

C
and D�;a� are Fredholm of index 1.

We consider also operators

D�;a;ı� WH1;hı .R�S1; N �;a
� /!H0;hı .R�S1; ƒ0;1N �;a

� /

which have the same expression as D�;a� but act on the Morrey spaces with weights. We abbreviate
H�;ı DH1;hı .R�S1; N �;a

� / and H0
�;ı
DH0;hı .R�S1; ƒ0;1N �;a

� /.

Remark A.5.3 Sections � 2 H�;ı can diverge as s ! C1 and therefore expu�;a� .�/ may not be
well defined. This makes the spaces H�;ı unsuitable for the nonlinear analysis of the moduli space
containing u�;a� . However, they can still be used in the proof of Theorem A.2.1 because, for the purposes
of gluing, what happens near the positive end of u�;a� is irrelevant. The reason we are using the operators
D�;a;ı� is so that we can take the limit of D�;a;ı� as �! 0 and obtain a Fredholm operator D0;a;ı� of the
same index in the limit. This would not be true if we worked without weights, as the operators D�;a�
converge, for �! 0, to an operator which is not Fredholm.

Lemma A.5.4 If ı, a0 D a0.ı/ and �0 D �0.ı; a0/ are sufficiently small subject to 0 � �0 < ı, and
.a; �/ 2 Œ�a0; a0�� Œ0; �0�, then the operators D�;a;ı� are invertible. Moreover , for a fixed ı, the norms of
the inverse operators .D�;a;ı� /�1 are uniformly bounded on Œ�a0; a0�� Œ0; �0�.

Proof The operators D�;a;ı� WH�;ı !H0
�;ı

(including for � D aD 0, which is well defined because Hf
is constant on fy D 0g) are conjugated to the operators

zD�;a;ı� DD�;a� C ı Id WH�!H0�:
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The operator

zD0;0;ı� D
@�

@s
C j0

@�

@t
C

�
�1Cı 0

0 ı

�
is Fredholm because, for ı small, its asymptotic operators are invertible. Moreover, zD0;0;ı� has no spectral
flow, and therefore ind. zD0;0;ı� /D 0. Hence D0;0;ı� is also a Fredholm operator of index zero.

By elliptic regularity all elements of kerD0;0;ı� are smooth solutions of (Jf ), and from the Fourier series
expansion (A-3-1) we see that no such solution has the correct growth for s!˙1 to belong to H�;ı .
Then D0;0;ı� is injective and therefore, having index zero, is invertible. Since

kD�;a;ı� � �D0;0;ı� �khı � �Ck�k�;hı

for a constant C which is independent of � and a and invertibility is an open condition, for a fixed ı, all
operators D�;a;ı� are invertible when the conditions of the lemma are met. The uniform bound on the
norms of .D�;a;ı� /�1 then follows by the continuity of taking the inverse.

A.6 Setting up the gluing

The gluing setup will follow [Bao and Honda 2023], which in turn is based on [Hutchings and Taubes
2009a].

Define smooth cutoff functions

(A-6-1) ˇC; ˇ� WR! Œ0; 1�

such that ˇCCˇ�D 1 and ˇC.s/D 0 for s ��T1 and ˇC.s/D 1 for s ��T0�1. The cutoff functions
ˇ˙ will depend on the parameter b and will be denoted by ˇb

˙
when we want to make the dependence

explicit. Let us write �T1.b/ for �T1 viewed as a function of b. Then:

(�3) If a > 0 is fixed but we take b! 0, then �T1.b/!�1 and we take ˇb
˙

such that j.ˇb/0
˙
jC0! 0

as b! 0.

Let  C and  �;a� be sections in HC;ı and H�;ı of sufficiently small norm. The goal is to deform the
pregluing u�;a� to

(A-6-2) u�;a D expu�;a� .ˇC CCˇ� 
�;a
� /;

and solve for  C and  �;a� in the equation …@N �;a� ;f�
.ˇC CCˇ� 

�;a
� /D 0 when � is sufficiently small.

(Recall the identifications of the normal bundles made at the beginning of Section A.5 that justify writing
ˇC CCˇ� 

�;a
� .) The solutions will determine functions p� W Œ�a0; a0�!R such that

(A-6-3) @N�;f� .ˇC CCˇ� 
�;a
� /D p�.a/�:

Finally, we will solve the equation p�.a/D 0.
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In the following lemmas we will repeatedly use Taylor expansions of the form

�.x/D �.0/C
X
i

`i .x/xi ;(I)

�.x/D �.0/C
X
i

@i�.0/xi C
X
j;k

qj;k.x/xjxk(II)

for a smooth function � WRn!R.

Lemma A.6.1 Over the domain .�1;�T0��S1, we can expand

(A-6-4) x@N �;a� ;f�
.ˇC CCˇ� 

�;a
� /D D���;a� CˇC.DC CCLC. C;  �;a� /CQC. C;  �;a� //

Cˇ�.D
�;a
�  

�;a
� CL�. C;  �;a� /CQ�. C;  �;a� //;

where:

(1) DC C D @ C=@sC j0 @ C=@t �Hf .�C/ C.

(2) D�;a�  
�;a
� D @ 

�;a
� =@sC j0 @ 

�;a
� =@t �Hf�.�

�;a
� / 

�;a
� .

(3) L˙. C;  �;a� / are linear in  C and  �;a� with coefficients which are smooth coefficients of  C
and  �;a� , are supported in Œ�T1;�T0��S1 and .�1;�T0� 1��S1, respectively, and satisfy

(A-6-5) jL˙. C.x/;  �;a� .x//j< .c1.a/�C c2.b// �
�
j C.x/jC j 

�;a
� .x/j

�
;

at every point x of the domain , c1.a/ is a constant which depends only on a, c2.b/ depends only
on b, and limb!0 c2.b/D 0.

(4) Q˙ are quadratic functions of  C and  �;a� with coefficients which are smooth functions of  C
and  �;a� , and there exists C > 0 such that

(A-6-6) jQ˙. C.x/;  �;a� .x//j< C
�
j C.x/j

2
Cj �;a� .x/j2

�
at every point x of the domain.

(5) LC D 0 and QC D 0 for s � �T1 and L�;Q� can be extended smoothly to L� D 0 and Q� D 0
for s � �T0.

Proof Over the domain .�1;�T0��S1, we have

x@N �;a� ;f�
.ˇC CCˇ� 

�;a
� /D D�.��;a� CˇC CCˇ� �;a� /

by Claim A.1.3. Writing ��;a D ��;a� CˇC CCˇ� �;a� we expand

D���;aD @

@s
.��;a� CˇC CCˇ� 

�;a
� /Cj0

@

@t
.��;a� CˇC CCˇ� 

�;a
� /�rf�.�

�;a
� CˇC CCˇ� 

�;a
� /:

Using the Taylor expansion of type (II), we write

rf�.�
�;a
� CˇC CCˇ� 

�;a
� /Drf�.�

�;a
� /CˇCHf�.�

�;a
� / CCˇ�Hf�.�

�;a
� / 

�;a
� �Q.ˇC C; ˇ� �;a� /;
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where Q is a quadratic function of ˇC C; ˇ� �;a� with coefficients which are smooth functions of
ˇC C; ˇ� 

�;a
� . Then

(A-6-7) D���;a D
�
@�
�;a
�

@s
Cj0

@�
�;a
�

@t
�rf�.�

�;a
� /

�
CˇC

�
@ C

@s
Cj0

@ C

@t
�Hf .�C/ C

�
Cˇ�

�
@ �;a�
@s
Cj0

@ �;a�
@t
�Hf�.�

�;a
� / 

�;a
�

�
CˇC.Hf .�C/�Hf�.�

�;a
� // CCˇ�.Hf�.�

�;a
� /�Hf�.�

�;a
� // 

�;a
�

Cˇ0C.s/ CCˇ
0
�.s/ 

�;a
�

CQ.ˇC C; ˇ� �;a� /:

The right-hand side of the first line is D��� and the second line is ˇCDC C C ˇ�D�;a�  
�;a
� . Let us

define g.y; �/D �.y/ NgN .�/. We write

(A-6-8) c1 D jH gjC0 and c2.b/Dmaxfjˇ0CjC0 ; jˇ
0
�jC0g:

Using the fact that ��;a� , �C and ��;a� take values in Aa, where Hf is constant, for s � �T0, the terms of
the third and fourth lines can be bounded as follows:

(A-6-9)

jˇ0C.s/ C.x/Cˇ
0
�.s/ 

�;a
� .x/j � c2.b/

�
j C.x/jC j 

�;a
� .x/j

�
jˇC.Hf .�C/�Hf�.�

�;a
� // C.x/j � �c1ˇCj C.x/j;

jˇ�.Hf�.�
�;a
� /�Hf�.�

�;a
� // 

�;a
� .x/j � 2�c1ˇ�j 

�;a
� .x/j:

We then set

L.1/
C
. C;  

�;a
� /D .Hf .�C/�Hf�.�

�;a
� // CC .ˇ

0
C.s/ CCˇ

0
�.s/ 

�;a
� /;(A-6-10)

L.1/� . C;  �;a� /D .Hf�.�
�;a
� /�Hf�.�

�;a
� // 

�;a
� C .ˇ

0
C.s/ CCˇ

0
�.s/ 

�;a
� /;(A-6-11)

and ˇ˙L.1/˙ . C;  �;a� / satisfies inequality (A-6-5). The terms L.1/
C

and L.1/� are not necessarily supported
in Œ�T1;�T0��S1 and .�1;�T0� 1��S1, respectively, and therefore we rearrange

ˇCL.1/C Cˇ�L.1/� D ˇC.ˇCCˇ�/2L
.1/
C
Cˇ�.ˇCCˇ�/

2L.1/� D ˇCLC. C;  �;a� /Cˇ�L�. C;  �;a� /;

where

(A-6-12)
LC. C;  �;a� /D ˇ2CL

.1/
C
C 2ˇCˇ�L.1/C CˇCˇ�L.1/� ;

L�. C;  �;a� /D ˇCˇ�L.1/C C 2ˇCˇ�L.1/� Cˇ2�L.1/� ;

the same inequalities hold for L.1/
˙

and L˙ and (5) holds for L˙. However, the constants c1 and c2 in the
statement are closely related to the constants c1 and c2 in (A-6-9) but not exactly the same. Finally we
can decompose and rearrange so that

Q.ˇC C; ˇ� �;a� /D ˇCQC. C;  �;a� /Cˇ�Q�. C;  �;a� /;

inequality (A-6-6) holds, and (5) holds for Q˙.
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In particular, equation (A-6-3) is satisfied on .�1;�T0��S1 if the following pair of equations hold:

D���;a� CDC CCLC. C;  �;a� /CQC. C;  �;a� /D p�.a/�;(A-6-13)

D���;a� CD�;a�  �;a� CL�. C;  �;a� /CQ�. C;  �;a� /D a�:(A-6-14)

The term a� in the second equation is legitimate because � is supported on Œ�T0� 1;�T0��S1 where
ˇ� D 0. It was chosen to make D���;a� � a� small (independent of a) in the sense of estimate (A-7-2).

Remark A.6.2 More in line with the obstruction gluing of [Hutchings and Taubes 2007], equation (A-6-3)
can be split into

DıC CC….D���;a� CLC. C;  �;a� /CQC. C;  �;a� //D 0;

.1�…/.D���;a� CLC. C;  �;a� /CQC. C;  �;a� //D p�.a/�;

D�;a;ı�  �;a� C .D���;a� � a�/CL�. C;  �;a� /CQ�. C;  �;a� /D 0;

where … WH0;gı . PF ;ƒ0;1NC/!H0
C;ı

is the projection from Section A.5.4 and the second equation is
always satisfied.

We say that Q. C/ is type 1 quadratic if it can be written as

Q. C/D P. C/CQ. C/ � r C;

where there exists a constant C > 0 such that jP. C.x//j< C j C.x/j2 and jQ. C/.x/j � C j C.x/j
at every point x of the domain.

Remark A.6.3 The reason for the different treatment of the term z@� compared to the other infinitesimal
deformations of the map uC is that the term ˇ0.s/z@� which would appear in (A-6-9) cannot be made
small in H0;gı . PF ;ƒ0;1NC/ by choosing b and � small.

Lemma A.6.4 Over the domain PF � .�1;�T0/�S1, we can expand

(A-6-15) x@N �;a� ;f�
.ˇ� 

�;a
� CˇC C/DDC CCQ. C/;

where Q. C/ is type 1 quadratic , and (A-6-4) and (A-6-15) agree along s D�T0.

Proof Over the domain PF � .�1;�T0/�S1, ˇC D 1, ˇ� D 0, u�;a� D uC and u�;a D expu�;a�  C D

expuC  C. Hence  C satisfies (A-5-4) with  C instead of � and .�; �/D .s; t/. Equation (A-6-15) then
follows from (A-5-4) together with (A-5-5) by applying the Taylor expansion of type (I) to a, b and X.
The agreement of (A-6-4) and (A-6-15) along s D�T0 is a consequence of the definition of expuC for
s � �T0.

A.7 Proof of Theorem A.2.5

In this subsection and the next, we use the convention that constants such as C, c1, c2.b/ may change
from line to line when making estimates. Recall that

(A-7-1) � WDmin.�1; j��1j/ > 5ı:
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Lemma A.7.1 There exists a constant C > 0 such that

(A-7-2) kD���;a� � a�kgı � C.e
.ı��/T2.�/C �T1e

ıT1/:

Proof By Lemma A.4.4, it suffices to estimate kD���;a� kgı on Œ�T2;�T2C1��S1 and Œ�T1;�T0��S1.
We will use the simple fact that the Morrey norm of a continuous function on a compact domain is
dominated by the C 0 norm.

First we estimate D���;a� � a� on Œ�T2;�T2 C 1� � S
1, where � D 0. By the definition of ��;a�

(equation (A-4-4)) and (Jf� ), and with the understanding that all maps and norms are restricted to
Œ�T2;�T2C1��S

1 (on which f�.y; �/D 1
2
y2C � NgN .�/, rf� D y@yC �@� and D0 is linear), we have

D�.��;a� /D D�.��;a� /Cˇ.sCT2/D0.�C/Cˇ0.sCT2/�C D ˇ0.sCT2/�C
and therefore

(A-7-3) kD���;a� kgı � C




 1X
iD1

cie
�isgi .t/






gı

� Ce.ı��/.T2.�/�T0/ � Ce.ı��/T2.�/:

Next we estimate D���;a� �a� on Œ�T1;�T0��S1. The restriction of ��;a� to Œ�T1;�T0��S1 takes values
in the region where rf� no longer has the simple expression which leads to (Jf� ), but from (A-1-2) we
obtain

(A-7-4) D�.��;a� /D D0.��;a� /� �rg.��;a� /;

where g.y; �/D�.y/ NgN .�/. By the definition of ��;a� and �, equation (A-7-4), and with the understanding
that all maps and norms are restricted to Œ�T1;�T0��S1, we have

(A-7-5) kD���;a� Cˇ0.�s�T0/ �.0; a/kgı �




 @@s

�
ˇ

�
sCT0

�T1CT0

�
.0; �.sCT1//

�




gı

C�krg.��;a� /kgı

� C�T1e
ıT1 :

Estimates (A-7-3) and (A-7-5) imply estimate (A-7-2).

Remark A.7.2 Since D���;a� Cˇ0.�s�T0/ � .0; a/ is supported in .�1;�T0��S1, where gı and hı
coincide, we can also regard it as an element of H0

�;ı
with norm

kD���;a� Cˇ0.�s�T0/ � .0; a/khı D kD���;a� Cˇ0.�s�T0/ � .0; a/kgı :

Let .Dı
C
/�1 be the inverse of Dı

C
, viewed as a map to the orthogonal complement H?

C;ı
of kerDı

C
, and

let .D�;a;ı� /�1 be the inverse of D�;a;ı� . Recall that the norm of .D�;a;ı� /�1 is uniformly bounded in �
and a by Lemma A.5.4. Let

BC D closed ball of radius Q� in H?
C;ı
;(A-7-6)

B� D closed ball of radius Q� in H�;ı ;(A-7-7)

where the small constant Q� > 0 is to be determined more precisely later.
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Let IC W BC �B�!H?
C;ı

and I� W BC �B�!H�;ı be maps given by

IC. C;  �;a� /D�.DıC/
�1….FC. C;  �;a� //;(A-7-8)

I�. C;  �;a� /D�.D�;a;ı� /�1.F�. C;  �;a� //;(A-7-9)

where

FC. C;  �;a� / WD

�D���;a� CLC. C;  �;a� /CQC. C;  �;a� / on .�1;�T0��S1,
Q. C/ on PF � .�1;�T0��S1;

F�. C;  �;a� / WD

�D���;a� � a�CL�. C;  �;a� /CQ�. C;  �;a� / on .�1;�T0��S1,
0 on Œ�T0;1/�S1:

Here the definitions of FC. C;  �;a� / agree on f�T0g � S1 by Lemma A.6.4 and the definitions of
F�. C;  �;a� / agree on f�T0g �S1 by Lemmas A.6.1(5) and A.4.4.

Solving (A-6-13) and (A-6-14) is then equivalent to solving the equations

 C D IC. C;  �;a� /;(A-7-10)

 �;a� D I�. C;  �;a� /:(A-7-11)

The following two lemmas provide the necessary estimates to apply the contraction mapping theorem to
(A-7-10) and (A-7-11).

Notation A.7.3 We will sometimes write

(A-7-12) k � k�;ı WD k � k�;gı or k � k�;hı ;

depending on the context.

Lemma A.7.4 If . C;  �;a� / 2 BC �B�, then

(A-7-13) kI˙. C; �;a� /k�;ı�C.e
.ı��/T2.�/C�T1.b/e

ıT1.b//C.c1�Cc2.b//.k Ck�;gıCk 
�;a
� k�;hı /

CC.k Ck
2
�;gı
Ck �;a� k

2
�;hı

/;

where c1 is constant and limb!0 c2.b/D 0.

Proof We will carry out estimates on the .�1;�T0��S1 portion, with the understanding that the norms
are restricted to .�1;�T0�� S1, where gı D hı . (This justifies the use of the weight gı throughout
the proof, even where one should expect hı .) The estimates on the PF � .�1;�T0��S1 portion, which
involve only IC and  C, are straightforward and are left to the reader.

By the definitions of I˙. C;  �;a� /,

(A-7-14) kI˙. C;  �;a� /k�;gı � C
�
kD���� a�kgı CkL˙. C;  �;a� /kgı CkQ˙. C;  �;a� /kgı

�
;

since .Dı
C
/�1 is bounded, .D�;a;ı� /�1 are uniformly bounded, and ….D���/D….D���� a�/.
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We will make frequent use of the estimate

(A-7-15) j�jC0 � Ck�k�;gı ;

which follows from Lemma A.5.1 and k�k� � k�k�;gı since gı > 1.

By (A-7-2),

(A-7-16) kD���;a� � a�kgı � C.e
.ı��/T2.�/C �T1e

ıT1/:

Next, since L˙ satisfies estimate (A-6-5),

(A-7-17) kL˙. C;  �;a� /kgı � .c1�C c2.b//.k Ckgı Ck 
�;a
� kgı /:

Finally, since Q˙ satisfies estimate (A-6-6),

(A-7-18) kQ˙. C;  �;a� /kgı � C.j CjC0k Ckgı Cj 
�;a
� jC0k 

�;a
� kgı /

� C.k Ck�;gık Ckgı Ck 
�;a
� k�;gık 

�;a
� kgı /;

using estimate (A-7-15). We explain the first line of estimate (A-7-18). The first term of the Morrey norm
is the weighted L2 norm, and we can boundZ

PF

g2ı jQC. C;  
�;a
� /j2 �

Z
PF

g2ıC
2.j Cj

4
Cj �;a� j

4/

� C 2j Cj
2
C0

Z
PF

g2ı j Cj
2
CC 2j �;a� j

2
C0

Z
PF

g2ı j 
�;a
� j

2;�Z
PF

g2ı jQC. C;  
�;a
� /j2

�1=2
� C j CjC0

�Z
PF

g2ı j Cj
2

�1=2
CC j �;a� jC0

�Z
PF

g2ı j 
�;a
� j

2

�1=2
:

The bound for the second term of the Morrey norm is similar, since it is of L2 type.

Estimates (A-7-14) and (A-7-16)–(A-7-18), together with estimate (A-7-14), give estimate (A-7-13). Here
we are using the trivial observation k � kgı � k � k�;gı .

Lemma A.7.5 If . C;  �;a� /; . x C; x 
�;a
� / 2 BC �B�, then

(A-7-19) kI˙. C;  �;a� /�I˙. x C; x �;a� /k�;ı�.c1�Cc2.b/CC Q�/.k C�x Ck�;gıCk 
�;a
� �
x �;a� k�;hı /:

Proof Again we carry out the estimate on the .�1;�T0��S1 portion, with the understanding that the
norms are restricted to .�1;�T0��S1, and leave the estimate on the PF � .�1;�T0��S1 portion to
the reader.

In the following equation D˙ stands for either Dı
C

or D�;a;ı� . We have

I˙. C;  �;a� /� I˙. x C; x �;a� /

D�D�1˙
�
.L˙. C;  �;a� /�L˙. x C; x �;a� //C .Q˙. C;  �;a� /�Q˙. x C; x �;a� //

�
:

By (A-6-10), (A-6-11), (A-6-12), as well as an analog of estimate (A-6-5), we have

kL˙. C;  �;a� /�L˙. x C; x �;a� /kgı � .c1�C c2.b//.k C�
x Ckgı Ck 

�;a
� �

x �;a� kgı /:
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By Lemma A.6.1(4), Q˙. C;  �;a� / is a quadratic function of  C;  �;a� with uniformly bounded coeffi-
cients which are smooth functions of  C;  �;a� . Therefore

kQ˙. C;  �;a� /�Q˙. x C; x �;a� /kgı

� C.j C� x CjC0 Cj 
�;a
� �

x �;a� jC0/.k Ckgı Ck 
�;a
� kgı Ck

x Ckgı Ck
x �;a� kgı /:

Combining the two estimates and using (A-7-15) and k � kgı � k � k�;gı , we obtain estimate (A-7-19).

Proposition A.7.6 There exists Q� > 0 sufficiently small that , for all b, a0 and �0 D �0.a0; b/ sufficiently
small (in particular satisfying (�2)) and for all .a; �/2 Œ�a0; a0��.0; �0�, there exists a unique . C;  �;a� /2

BC �B� satisfying

(A-7-20) IC. C;  �;a� /D  C; I�. C;  �;a� /D  �;a� :

Moreover , the solutions of (A-7-20) satisfy the estimate

(A-7-21) k Ck�;gı Ck 
�;a
� k�;hı � C.e

.ı��/T2.�/C �T1.b/e
ıT1.b//:

Proof Let I D .IC; I�/ W BC � B� ! H?
C;ı
� H�;ı . Lemmas A.7.4 and A.7.5 imply that, for

sufficiently small Q�, there are sufficiently small constants b, a0 and �0 D �0.a0/ such that, for all
.a; �/ 2 Œ�a0; a0�� .0; �0�, we have estimates

kI˙. C;  �;a� /k�;ı � C.e
.ı��/T2.�/C �T1.b/e

ıT1.b//C 1
4
.k Ck�;gı Ck 

�;a
� k�;hı /;(A-7-22)

kI˙. C;  �;a� /� I˙. x C; x �;a� /k�;ı �
1
4
.k C� x Ck�;gı Ck 

�;a
� �

x �;a� k�;hı /(A-7-23)

and I is a contraction of BC�B� (for the metric induced by the sum of the norms). Then the contraction
mapping theorem implies that there is a unique pair . C;  �;a� / 2 BC � B� such that I. C;  �;a� / D

. C;  
�;a
� /. Finally, estimate (A-7-21) is obtained by plugging (A-7-20) in (A-7-22), rearranging the

terms, and renaming the constant C.

Proposition A.7.6 produces, provided b, a0 and �0 D �0.a0/ are sufficiently small, a map

u�;a D expu�;a� .ˇC CCˇ� 
�;a
� /

for all .a; �/2 Œ�a0; a0��.0; �0� and a continuous function p� W Œ�a0; a0�!R such that x@Jf�u
�;aD p�.a/�

for all � 2 .0; �0�. Moreover, by (A-7-2) and (A-7-21),

jp�.a/� aj � C
�
kp�.a/� � a�kgı

�
� C.kx@Jf�u

�;a
�x@Jf�u

�;a
� kgı Ck

x@Jf�u
�;a
� � a�kgı /

� C.k Ck�;gı Ck 
�;a
� k�;hı /CC.kD���;a� � a�kgı /

� C.e.ı��/T2.�/C �T1.b/e
ıT1.b//:

In order to bound kx@Jf�u
�;a�x@Jf�u

�;a
� kgı we used Lemmas A.6.1 and A.6.4 and (A-7-21).

If �0 is sufficiently small, then p�.�a0/ < 0 and p�.a0/ > 0, and therefore p� has an odd number of zeros
in the interval Œ�a0; a0�.
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A.8 Proof of Theorem A.2.6

From now on, until the end of the appendix, we fix a b such that Proposition A.7.6 holds. Therefore, from
now on, b and T1.b/ are to be considered constants.

Remark A.8.1 In [Yao 2022b], the strategy for the proof of Theorem A.2.6 is slightly different: one
can actually differentiate the 1-parameter family of functions  �;a� with respect to a to show that p�.a/ is
C 1-close to a and hence that the zero is unique.

Arguing by contradiction, suppose there are sequences f�ig1iD1, f�ig1iD1, fu�i g1iD1 and fv�i g1iD1 (with a,
b, c and �0 small but fixed) such that

(1) �i ! 0 and �i ! 0,

(2) u�i ; v�i W . PF ; ji /!R�M are x@Jf�i -holomorphic and are not related by R-translations in the target
(and possibly the domain), and

(3) u�i and v�i are �i -close to breaking into uC and a cylinder over T �i0 .

After translating the u�i and v�i in the target and possibly in the domain, we can find T1 > 0 such that
u�i j.�1;�T1� and v�i j.�1;�T1� have image in R� Œ�b� �0; bC �0��T 2 and u�i jsD�T1 and v�i jsD�T1
have image in R� Œb; bC �0��T 2. On .�1;�T1��S1 we write

u�i .s; t/D .s; t; �u
�i
.s; t// and v�i .s; t/D .s; t; �v

�i
.s; t//:

Recall that �u
�i and �v

�i satisfy (A-1-3), which we repeat here:

@�

@s
C j0

@�

@t
�rf�.�/D 0:

If we restrict �u
�i and �v

�i to any cylinder Œ�T 01.�i /;�T1�� S
1 such that their images are in B, then

(A-1-3) specializes to (Jf�i ) and their difference ��i .s; t/ D �v
�i .s; t/ � �u

�i .s; t/ satisfies the linear
equation (Jf ):

(A-8-1)
@��i

@s
�A��i D 0:

Next, by the definition of �i -close to breaking and estimates on derivatives in the proof of Gromov–Hofer
compactness, after applying the relevant translations in the domain or in the target and passing to a
subsequence, we can choose a sequence T 02.�i /!1 such that �T 02.�i / <�T1 and there are rough initial
estimates

(A-8-2) k�
�i
C
.�T1� 1/kL2 � c�i ; k�

�i
� .�T

0
2.�i //kL2 � c�i ;

where c > 0 is independent of �i or �i .

Normalization We normalize u�i so that, at sD�T1, the g1 term of the Fourier series of �u
�i is equal to

.b; 0/ and the g0 term is equal to .0; h�i /, where h�i ! 0 as i!1. This is possible because �u
�i .�T1/,

before normalization, is close to .b; 0/ and the g0 term in the Fourier series for the negative end of uC
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vanishes. Similarly, we normalize v�i by translating slightly in the target R-direction, so that the g1 term
of ��i is zero.

Definition A.8.2 An element of kerDı
C

or kerD�i ;a;ı� (from Section A.5.4) is a nontranslation element
if it is nonzero and does not correspond to an R-translation of the domain or target.

A sufficient condition for detecting a nontranslation element of kerDı
C

is given in Lemma A.8.6 in terms
of the coefficient of g1 in the Fourier expansion.

Idea of proof The idea of the proof is to start with v�i�u�i for �i >0 small and construct a nontranslation
element of kerDı

C
or kerD�i ;0;ı� (taking a D 0 suffices) by damping out and inverting the error. The

damping out occurs on a long neck region Œ�T3.�i /;�T1� � S1 (with �T3.�i / defined later) that is
mapped to B by �u

�i and �v
�i . TheDı

C
andD�i ;0;ı� cases respectively correspond to Cases 1 and 2 below.

(There is a slight complication in the D�i ;0;ı� case, which will be explained in Case 2.) The existence of a
nontranslation element is a contradiction.

By (A-8-1), ��i jŒ�T3.�i /;�T1��S1 can be written as a Fourier series

(A-8-3) ��i .s; t/D

1X
jD�1

d
�i
j e

�j sgj .t/:

We write . � /�, . � /0 and . � /C for the L2-projections of . � /D ��i etc to the negative, null and positive
eigenspaces of A, and write . � /.s0/ for . � /jsDs0 . By our normalization we may assume that d �i1 D 0.

Lemma A.8.3 Fix T 01 2 ŒT1C 1; T
0
2.�i /�. For all s 2 Œ�T 01;�T1�,

k�
�i
C
.s/kL21

� k�
�i
C
.�T1/kL21

� e�.sCT1/;(A-8-4)

k��i� .s/kL21
� k��i� .�T

0
1/kL21

� e��.sCT
0
1/;(A-8-5)

where �Dmin.�1; j��1j/ and L21 refers to the L2-Sobolev space with one derivative.

Proof We prove the first inequality. By the Fourier expansion (A-8-3) and Parseval’s identity, we have

k�
�i
C
.s/k2

L21
D

X
j�1

d2j .1C�
2
j /e

2�j s; k�
�i
C
.�T1/k

2
L21
� e2�.sCT1/ D

X
j�1

d2j .1C�
2
j /e

2.���j /T1C2�s:

Then (A-8-4) follows from the inequality

e�j s � e.���j /T1C�s;

which holds for j > 0. To prove this inequality we divide the second term by the first and observe that
e.���j /.T1Cs/ � 1 because ���j � 0 and T1C s � 0.
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Now we prove the second inequality. We have

k��i� .s/k
2
L21
D

X
j<0

d2j .1C�
2
j /e

2�j s; k��i� .�T
0
1/k

2
L21
� e�2�.sCT

0
1/ D

X
j<0

d2j .1C�
2
j /e
�2.�jC�/T

0
1�2�s:

Then (A-8-4) follows from the inequality

e�j s � e�.�jC�/T
0
1��s;

which holds for j < 0 because �C�j � 0 and sCT 01 � 0.

There are two cases to consider:

(1) k��i0 .�T1� 1/C �
�i
C
.�T1� 1/kL21

� k��i� .�T
0
2.�i //kL21

holds for infinitely many indices i , or

(2) k��i0 .�T1� 1/C �
�i
C
.�T1� 1/kL21

� k��i� .�T
0
2.�i //kL21

holds for infinitely many indices i .

Note that the two cases are not mutually exclusive.

Case 1 Up to extracting a subsequence, we assume that, for every i ,

(A-8-6) k�
�i
0 .�T1� 1/C �

�i
C
.�T1� 1/kL21

� k��i� .�T
0
2.�i //kL21

:

By (A-8-5) with T 01 D T
0
2.�i / and s D�T1� 1,

(A-8-7) k��i� .�T1� 1/kL21
� k��i� .�T

0
2.�i //kL21

� e�.�T
0
2.�i /CT1C1/

� k�
�i
0 .�T1� 1/C �

�i
C
.�T1� 1/kL21

� e�.�T
0
2.�i /CT1C1/:

Let ��i D .��i1 ; �
�i
2 / 2H1;gı . PF ;NC/˚Rhz@� i be such that

� on PF � .�1;�T1��S1, ��i D �v
�i
��u

�i , where u�i D expuC �
u�i , v�i D expuC �

v�i , and �u
�i

and �v
�i are viewed as sections of the normal bundle NC to uC;

� on .�1;�T1��S1, ��i D ˇ.sCT1C 1/��i� .s; t/C �
�i
0 .s; t/C �

�i
C
.s; t/ and ��i2 D �

�i
0 .

Recall on the negative end of uC we are identifying NC ' TAa 'R2 with coordinates y; � . As before,
ˇ WR! Œ0; 1� is a nondecreasing function such that ˇ.s/D 0 if s � 0 and ˇ.s/D 1 if s � 1. Informally,
we are damping out the ��i� term to zero for s < �T1, under the condition that it is much smaller than
�
�i
0 C �

�i
C

at s D�T1.

Notation A.8.4 We denote the norm on Rhz@� i by k � kı and the norm on H1;gı . PF ;NC/˚Rhz@� i by
k��ik� D k�

�i
1 k�;gı Ck�

�i
2 kı.

Lemma A.8.5 There exist constants Ci > 0 with limi!C1 Ci D 0 such that

kDıC�
�ikgı � Ci .k�

�i
1 k�;gı Ck�

�i
2 kı/D Cik�

�ik�:
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Proof On .�1;�T1��S1, we use the fact that Dı
C
�
�i
� D 0 for � D �; 0;C, to bound the contribution

to kDı
C
��ikgı from above as follows:

(A-8-8) kDıC.ˇ.sCT1C 1/�
�i
� .s; t//kgı

D kˇ0.sCT1C 1/�
�i
� .s; t/kgı

� C
�

sup
s2Œ�T1�1;�T1�

gı.s/k�
�i
� .s/kL2 C sup

s2Œ�T1�1;�T1�

gı.s/j�
�i
� .s/jC0

�
� C sup

s2Œ�T1�1;�T1�

gı.s/k�
�i
� .s/kL21

� Cgı.�T1� 1/k�
�i
� .�T1� 1/kL21

� Cgı.�T1/e
�.�T 02.�i /CT1C1/k�

�i
0 .�T1� 1/C �

�i
C
.�T1� 1/kL21

� Ce�.�T
0
2.�i /CT1/.k�

�i
1 k�;gı Ck�

�i
2 kı/:

The first line to the second follows from the definition of k � k (equation (A-5-7)) and an easy C 0-bound of
the right-hand term of the definition of k � k; the second line to the third uses a standard Sobolev inequality
(ie there is a bounded inclusion map L21.S

1/!C 0.S1/); the third line to the fourth follows from (A-8-5)
applied to T 01 D T1C 1; and the fourth line to the fifth uses (A-8-7). The fifth line to the sixth follows
from

k�
�i
1 k�;gı � k�

�i
1 jŒ�T1�1;�T1��S1k�;gı � k�

�i
C
jŒ�T1�1;�T1��S1k�;gı

� C

�Z
Œ�T1�1;�T1�

Z
S1
g2ı j�

�i
C
j
2

�1=2
CC

�Z
Œ�T1�1;�T1�

Z
S1
g2ı jr�

�i
C
j
2

�1=2
� Cgı.�T1/

�
k�
�i
C
.�T1� 1/kL2 Ckr�

�i
C
.�T1� 1/kL2

�
:

On the other hand, writing k � k0gı and k � k00gı for the restrictions of k � kgı to PF � .�1;�T1��S1 and
Œ�T1;�T0��S

1, writing v�i D expu�i .P
�1z��i / on PF �.�1;�T1��S1, where P is the parallel transport

of the appropriate bundles from u�i to uC, and using the fact that

z��i D ��i CB.�u�i ; ��i /CQ.��i /;

where B.�u�i ; ��i / is bilinear in �u
�i and ��i and Q.��i / is quadratic in ��i , both with coefficients which

are smooth coefficients of �u
�i and ��i , the contribution to kDı

C
��ikgı on F 0 is bounded above by

kDıC�
�ik
0
gı
D kDıC�

�i �Px@Jf�i
expu�i .P

�1z��i /k0gı

� kDıC�
�i �PDıu�iP

�1��ik0gı CkP.D
ı
u�iP

�1��i �x@Jf�i
expu�i P

�1��i /k0gı

CkP.x@Jf�i
expu�i P

�1��i �x@Jf�i
expu�i P

�1z��i /k0gı

� Cik�
�ik
0
�;gı
� Ci .k�

�i
1 k�;gı Ck�

�i
2 k
00
�;gı

/� Ci .k�
�i
1 k�;gı C e

ı.T1�T0/k�
�i
2 kı/;

where limi!1 Ci D 0. (Recall that b and T1.b/ are constants that were fixed at the beginning of
Section A.8.)

The two estimates together imply the lemma.

Geometry & Topology, Volume 29 (2025)



3454 Appendix by Vincent Colin, Paolo Ghiggini, Ko Honda and Yuan Yao

In view of Lemma A.8.5, inverting the error using .Dı
C
/�1 (as before the image of .Dı

C
/�1 is L2-

orthogonal to kerDı
C

) yields

.� 0/�i D ��i � .DıC/
�1.DıC�

�i / 2 kerDıC;

so that k��ik��k.DıC/
�1.Dı

C
��i /k�, which implies that .� 0/�i ¤ 0. We define

x��i D
��i

k.� 0/�ik�
; .x� 0/�i D

.� 0/�i

k.� 0/�ik�
:

Lemma A.8.6 There exists a nontranslation element of kerDı
C

.

Proof So far we have constructed sequences fx��i g and f.x� 0/�i g such that

(1) the Fourier coefficient relative to g1 is Nd �i1 D 0 for all x��i ;

(2) k.x� 0/�ik� D 1;

(3) .x� 0/�i 2 kerDı
C

; and

(4) k.x� 0/�i � x��ik�! 0 as i !1.

Since kerDı
C

is finite-dimensional, the unit ball of kerDı
C

is compact and, after possibly passing to
a subsequence .x� 0/�i , converges to a nonzero � 0 2 kerDı

C
. Then (4) implies that kx��i � � 0k�! 0 and

therefore, from Lemma A.5.1, we obtain x��i .�T1/! � 0.�T1/ in C 0. This in turn implies that Nd �i1 ! d 01,
where Nd �i1 and d 01 are the Fourier coefficients of g1 in x��i and � 0; this is because the Fourier coefficients
can be extracted by integration. Hence d 01 D 0.

Finally we explain why d 01 D 0 implies that � 0 is a nontranslation element: Recall that uC.s; t/ D�
s; t;

P1
iD1 cie

�isgi .t/
�

with c1 > 0 at the negative end (see the beginning of Section A.4). Let u�
C

be
the translate of uC by � 2R in the symplectization direction. Then, at the negative end,

u�C.s; t/D

�
sC �; t;

1X
iD1

cie
�isgi .t/

�
;

or, after the change of coordinates .sC �; t/ 7! .s; t/ at the negative end of PF,

u�C.s; t/D

�
s; t;

1X
iD1

cie
�i .s��/gi .t/

�
:

Then a translation element is a nontrivial multiple of the projection of @u�
C
=@� j�D0 to the normal

bundle NC, ie �
P1
iD1 ci�ie

�isgi .t/, and has nontrivial g1.t/-coefficient.

The existence of a nontranslation element of kerDı
C

is a contradiction.

Case 2 Up to extracting a subsequence, we assume that, for every i ,

(A-8-9) k�
�i
0 .�T1� 1/C �

�i
C
.�T1� 1/kL21

� k��i� .�T
0
2.�i //kL21

:

Let �T4.�i / < �T3.�i / < �T 02.�i / be such that T3.�i /�T 02.�i /; T4.�i /�T3.�i /!1 as i !1 and

Imu�i jsD�T3.�i / �
˚
�
1
6
� � � �1

6
C �i

	
; Imu�i jsD�T4.�i / �

˚
�
1
5
� �i � � � �

1
5

	
;
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where Im denotes the image. Using (A-8-5) with T 01 D T3.�i / and s D�T2.�i /, we have

(A-8-10) k�
�i
0 .�T1� 1/C �

�i
C
.�T1� 1/kL21

� Ce�.�T3.�i /CT
0
2.�i // � k��i� .�T3.�i //kL21

:

Complication There is one complication. By (A-1-3), the x@-operator D�i is linear on �1
4
� � � �1

5
,

with respect to
�
y; � C 1

4

�
, because Ng0N .�/D C

�
� C 1

4

�
, and each of �D �v

�i , �u
�i satisfies the equation

D�i�D
@�

@s
C j0

@�

@t
�

�
�1

�iC
�
�2C

1
4

��D 0;
where � D .�1; �2/, ie �1 is the y-coordinate and �2 the �-coordinate of �. Hence ��i .s; t/ admits a
Fourier expansion at the negative end whose leading term has the form .ki1e

s; ki2e
�Cs/ for constants ki1

and ki2. However, a section with growth rate e�Cs as s!1 is not in H1;hı .R�S1; N �i ;0
� / since we

have been assuming that 0 < �iC < ı; in fact, �i ! 0 while ı is constant. To circumvent this difficulty
we switch to

D�i ;0;�ı� WH1;h�ı .R�S1; N �i ;0
� /!H1;h�ı .R�S1; ƒ0;1N �i ;0

� /;

where ı > 0 is sufficiently small. The analog of Lemma A.5.4 also holds for h�ı , ie the operatorsD�i ;0;�ı�

are invertible with bounded inverses that are uniform with respect to �i .

Let ��i be the section of the normal bundle N �i ;0
� D TAa to u�i ;0� such that

� ��i D ��i on .�1;�T3.�i /��S1;

� ��i D .1�ˇ.sCT1C1//�
�i
� .s; t/C

�
1�ˇ.sCT3.�i //

�
.�
�i
0 .s; t/C�

�i
C
.s; t// on Œ�T3.�i /;�T1��S1

(here we write �C; �0; �� for the L2-projections of � to the positive, null, and negative eigenspaces
of A); and

� ��i D 0 on Œ�T1;1/�S1.

Informally, we damp out ��i� to zero for s � �T1 and ��i0 C �
�i
C

to zero for s � �T3.�i /C 1 so that the
damped-out ��i� dominates. By the previous paragraph, ��i 2H1;h�ı .R�S1; N �i ;0

� /. Also D�i ;0;�ı� ��i

has support on

(A-8-11) f�T4.�i /� s � �T3.�i /C 1g[ f�T1� 1� s � �T1g:

One can compute, using (A-8-11), estimate (A-8-10), the method of estimating (A-8-8), and the error
estimate between D�i ;0;�ı� and the actual normal x@Jf�i -operator, that

kD�i ;0;�ı� ��ikh�ı �k�
�ik�;h�ı :

Hence inverting the error using .D�i ;0;�ı� /�1 yields

.� 0/�i D ��i � .D�i ;0;�ı� /�1.D�i ;0;�ı� ��i / 2 kerD�i ;0;�ı� ;

so that k��ik�;h�ı �k.D
�i ;0;�ı
� /�1.D�i ;0;�ı� ��i /k�;h�ı , which implies that .� 0/�i ¤ 0.

The existence of a nontrivial element of kerD�i ;0;�ı� contradicts Lemma A.5.4. This completes the proof
of Theorem A.2.6.
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A.9 How to recover the contact case

In this subsection we explain how to recover the contact case from the stable Hamiltonian case. The brief
idea is to start with the stable Hamiltonian case for which Morse–Bott gluing holds, perturb it to the
contact case, and use the bifurcation method to establish Morse–Bott gluing in the contact case.

Let a and c be the positive numbers satisfying 0 < b < a < c < 1 introduced in Section A.1 and subject
to the conditions (�0) and (�1). Recall the smooth functions

f; f� W Œ�1; 1��T
2
!R

given by (A-1-2).

Warning A.9.1 The following have different meanings in this subsection from the previous subsections
of the appendix: the real parameter ı in this subsection is unrelated to the weight appearing in the Morrey
norms, and the functions g, h, gı and hı appearing in this subsection are unrelated to the functions with
the same names appearing in the previous subsections of the appendix.

We then define smooth functions
g; h W Œ�1; 1�!R;

such that

(i) g is odd,

(ii) g.y/D 0 on Œ�a; a�,

(iii) g0.y/ > 0 on .a; 1� and Œ�1;�a/,

(iv) g.y/D y on y � c and y � �c,

(v) h.0/D 0, and

(vi) h0.y/D g0.y/ @f=@y D g0.y/y.

In particular, h.y/D 0 on Œ�a; a�.

We define differential forms

(A-9-1) ˛ D dt C h.y/ dt Cg.y/ d�; ! D df ^ dt C dy ^ d�; !� D df� ^ dt C dy ^ d�

on Œ�1; 1� � T 2. (Here without loss of generality we are suppressing some constants that appeared
in (4-1-1).)

Claim A.9.2 The pairs .˛; !/ and .˛; !�/ on Œ�1; 1��T 2 are stable Hamiltonian structures.

Proof It is immediate that d! D d!� D 0.

Next we show that ker d˛ � ker! and ker d˛ � ker!�. We have

d˛ D h0.y/ dy ^ dt Cg0.y/dy ^ d� D g0.y/
@f

@y
dy ^ dt Cg0.y/ dy ^ d�:
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On �a � y � a, d˛ D 0 and hence ker d˛ � ker!. Outside of �a � y � a, g0.y/¤ 0 and

ker d˛ DR

�
@

@t
�
@f

@y

@

@�

�
D ker!:

Moreover, outside of �a � y � a, f� D f and ! D !�.

Finally,
˛^! D ˛^!� D dt ^ dy ^ d� > 0

on �a � y � a and

˛^! D ˛^!� D .1C h.y/�g.y/
@f

@y
/ dt ^ dy ^ d� D .1C h.y/�g.y/y/ dt ^ dy ^ d�

outside of �a � y � a. By (vi), .h.y/ � g.y/y/0 D �g.y/. Since jg.y/j < 1 except when y D 1,
1C h.y/�g.y/y > 0.

Hence .˛; !/ and .˛; !�/ are both stable Hamiltonian structures.

Claim A.9.3 (A1) On Œ�a; a��T 2,

.˛; !/D .dt; df ^ dt C dy ^ d�/; .˛; !�/D .dt; df� ^ dt C dy ^ d�/:

(A2) On
�
Œ�1;�a/[ .a; 1�

�
�T 2, the stable Hamiltonian structures .˛; !/ and .˛; !�/ agree and d˛ is

a positive function g0.y/ times ! D !�.

(A3) On
�
Œ�1;�c/[ .c; 1�

�
�T 2, g0.y/D 1, and .˛; !/ and .˛; !�/ are contact.

Proof This is immediate from the definitions and the proof of Claim A.9.2.

In view of Claim A.9.3, there exists an extension of .˛; !/D .˛; !�/ to .˛; d˛/ on M � .Œ�1; 1��T 2/.
(In practice, we start with a contact form ˛ on all of M and modify it to the stable Hamiltonian structures
.˛; !/ and .˛; !�/ on Œ�1; 1��T 2.)

Let Jf and Jf� be almost complex structures on R�M such that

(A4) on the complement of R� Œ�a; a�� T 2, Jf and Jf� agree and are adapted to the same contact
structure;

(A5) on R� Œ�1; 1��T 2, Jf and Jf� are adapted to the stable Hamiltonian structures .˛; !/ and .˛; !�/;

(A6) Jf is Morse–Bott regular, Jf� is regular (at least for the moduli spaces that are involved in the
Morse–Bott gluing), and the pair satisfies Morse–Bott gluing (ie Theorem 4.4.3(2)–(3)).

The existence of such Jf and Jf� follows from Theorem A.2.1.

The key point is the following lemma, which allows us to perturb to the contact case:
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Lemma A.9.4 There exist almost complex structures J 0
f;ı

and J 0
f�;ı

that are C 1-close to Jf and Jf� and
contact forms ˛0

ı
and ˛0

�;ı
that are C 1-close to ˛ (here the size of the perturbations depend on ı > 0) such

that :

(1) On the complement of R� Œ�c; c��T 2, Jf , Jf� , J
0
f;ı

and J 0
f�;ı

all agree.

(2) J 0
f;ı

and J 0
f�;ı

are adapted to ˛0
ı

and ˛0
�;ı

, respectively.

(3) The stable Hamiltonian vector fields corresponding to Jf and J 0
f;ı

(and those corresponding to Jf�
and J 0

f�;ı
) are parallel.

(4) On R� Œ�a; a��T 2, ˛0
ı

and ˛0
�;ı

are as given in (4-1-1) and (P1)–(P4) in Section 4.1 with C D 1
and J 0

f;ı
and J 0

f�;ı
satisfy .�/ in Section 4.2 and .��/ in Section 4.4.

Proof For ı > 0 small, let gı W Œ�1; 1�!R be a smooth function which is a perturbation of g such that

(i) gı is odd,

(ii0) gı.y/D ıy on Œ�a; a�,

and (iii) and (iv) still hold. We define

˛0ı D dt C ı.f dt Cy d�/ if y 2 Œ�a; a�;

˛0�;ı D dt C ı.f� dt Cy d�/ if y 2 Œ�a; a�;

˛0ı D ˛
0
�;ı D dt C hı.y/ dt Cgı.y/ d� if y … Œ�a; a�;

and h0
ı
.y/ D g0

ı
.y/ @f=@y for y … Œ�a; a� and hı.˙a/ D ıf .˙a/. If c� a, then it is not hard to see

that we can choose gı such that hı.˙c/D h.˙c/. Then .˛0
ı
; !/ and .˛0

�;ı
; !�/ are stable Hamiltonian

structures corresponding to contact structures, and are close to .˛; !/ and .˛; !�/. (Strictly speaking,
d˛0

ı
D �1! and d˛0

�;ı
D �2!� for some functions �1 and �2.)

We verify the contact property for ˛0
ı

and ˛0
�;ı

: For y 2 Œ�a; a�,

˛0ı ^ d˛
0
ı D .1C ıf / dt ^ ı dy d� C ıy d� ^ ı df dt > 0;

since we are assuming that ı > 0 is small. Similarly, ˛0
�;ı

is contact by replacing f by f� on Œ�a; a�. For
y … Œ�a; a�, ˛0

ı
D ˛�;ı and

˛0ı^d˛
0
ıD .1Chı/ dt^g

0
ı.y/ dy d�Cgı.y/ d�^h

0
ı.y/ dy dtDg

0
ı.y/Œ.1Chı/�gı.y/y� dt dy d� >0

as in the proof of Claim A.9.2.

Let J 0
f;ı

and J 0
f�;ı

be the corresponding adapted almost complex structures that are close to Jf and Jf�
and subject to the condition that the projections of J 0

f;ı
jker˛0 and J 0

f�;ı
jker˛0� to Œ�1; 1� � .R=Z/ with

coordinates .y; �/ is the standard complex structure @=@y 7! @=@� .

The C 1-closeness and (1)–(4) are immediate from the construction.
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For the next lemma we introduce the following notation:

Notation A.9.5 If M is a moduli space of J -holomorphic curves in a symplectization for a cylindri-
cal almost complex structure J, we denote by �M WDM=R the quotient of M by translations in the
symplectization direction.

Lemma A.9.6 There exist ı > 0 sufficiently small and �0 D �0.ı/ > 0 such that Theorem 4.4.3(2)–(3)
hold for any � satisfying 0 < � < �0, with J0 and J� replaced by J 0

f;ı
and J 0

f�;ı
.

Proof Consider the I D indD 1, unconstrained, Morse–Bott regular moduli space MIDindD1
Jf

.
IN /
from Section A.1. Then �MIDindD1

Jf
.
IN / consists of a finite number of holomorphic maps uC. If ı > 0

is small, then J 0
f;ı

is also Morse–Bott regular since it is close to Jf and

(A-9-2) �MIDindD1
Jf

.
IN /' �MIDindD1
J 0
f;ı

.
IN /;
where ' indicates a bijection. (If signs were done carefully, they would be preserved by the bijection.)
Next, there exists � > 0 small such that Jf� is regular (after possibly perturbing Jf ) and there exists
ı D ı.�/ > 0 such that J 0

f�;ı
is close to Jf� and hence is regular and

(A-9-3) �MIDindD1
Jf�

.
; e/' �MIDindD1
J 0
f�;ı

.
; e/;

where e is the negative elliptic orbit obtained by perturbing the Morse–Bott family. Also, for the same
� > 0 small, the Morse–Bott gluing theorem in the stable Hamiltonian case (Theorem A.2.1) gives a
bijection

(A-9-4) �MIDindD1
Jf

.
IN /' �MIDindD1
Jf�

.
; e/:

Combining (A-9-2), (A-9-3) and (A-9-4) gives

(A-9-5) �MIDindD1
J 0
f;ı

.
IN /' �MIDindD1
J 0
f�;ı

.
; e/

for some � > 0 small and ı D ı.�/ > 0 small. The difficulty is that we want � to depend on ı, not the
other way around.

To remedy this we start with �1>0 small, choose ıD ı.�1/ > 0 small such that (A-9-3) holds with �D �1,
and apply the bifurcation method to the 1-parameter family fJ 0

f�;ı
g�2.0;�1�. We may assume that J 0

f�1 ;ı
is

regular and that fJ 0
f�;ı
g�2.0;�1� is regular as a family. By (A-9-2)–(A-9-5), �MIDindD1

J 0
f�1

;ı
.
; e/ consists of a

finite number of holomorphic maps (up to translation in the target) that are close to breaking and is in
bijection with �MIDindD1

Jf
.
IN /.

We claim that, for �1 and ı sufficiently small,

# �MIDindD1
J 0
f�;ı

.
; e/� # �MIDindD1
J 0
f�1

;ı
.
; e/ mod 2

for all � 2 .0; �1�. To this end we consider the 1-dimensional parametric moduli space which, slightly
abusing notation, we denote by

`
�2.0;�1�

�MIDindD1
J 0
f�;ı

.
; e/. Note that the Reeb orbits do not vary as �
varies by Lemma A.9.4(2). The claim is a consequence of the following claim: For �1 and ı small there
is no uQ� 2 @

�`
�2.0;�1�

�MIDindD1
J 0
f�;ı

.
; e/
�
, where uQ� is a limit J 0

fQ�;ı
-holomorphic curve/building for some
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Q� 2 .0; �1/. Arguing by contradiction, suppose there exist sequences f.ıi ; Q�i /g1iD1 and fuQ�i g
1
iD1 such that

.ıi ; Q�i /! .0; 0/ and uQ�i converges to a Jf -holomorphic limit curve u which is

(i) a 2-level holomorphic building Qu1[ Qu2, one of whose components — say Qu1 — satisfies I. Qu1/D
ind. Qu1/D 0; or

(ii) a multiple cover of a holomorphic map Qv with I. Qv/D ind. Qv/D 0;

and neither can occur since u is Jf -holomorphic and Jf is regular.
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