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We define a hierarchy functor from the exact symplectic cobordism category to a totally ordered set from a
BL1 (Bi-Lie) formalism of the rational symplectic field theory (RSFT). The hierarchy functor consists of
three levels of structures, namely algebraic planar torsion, order of semidilation and planarity, all taking
values in N [ f1g, where algebraic planar torsion can be understood as the analogue of the algebraic
torsion of Latschev and Wendl (2011) in the context of RSFT. The hierarchy functor is well-defined
through a partial construction of RSFT and is within the scope of established virtual techniques. We
develop computational tools for those functors and prove that all three of them are surjective. In particular,
the planarity functor is surjective in all dimension � 3. Then we use the hierarchy functor to study the
existence of exact cobordisms. We discuss examples including iterated planar open books, spinal open
books, affine varieties with uniruled compactification and links of singularities.

53D10, 53D35, 53D42

1. Introduction 3465

2. L1 algebras and BL1 algebras 3475

3. Rational symplectic field theory 3493

4. Semidilations 3517

5. Lower bounds for planarity 3522

6. Upper bounds for planarity 3527

7. Examples and applications 3536

References 3561

1 Introduction

One central subject in symplectic and contact topology is the study of symplectic cobordisms. Unlike the
usual cobordism relation in differential topology, a symplectic cobordism is asymmetric; the collection of
such cobordisms endows the collection of contact manifolds with a structure similar to a partial order. The
fundamental dichotomy between overtwisted contact structures and tight contact structures discovered by
Eliashberg [28] in dimension 3, and Borman, Eliashberg and Murphy [7] in higher dimensions, is reflected
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3466 Agustin Moreno and Zhengyi Zhou

by the fact that overtwisted contact structures behave like least elements. (A least element in a poset is
an element that is smaller than any other elements; a minimal element in a poset is an element such that
there is no smaller element.) Namely, there is always an exact cobordism from an overtwisted contact
manifold to any other contact manifold in dimension 3 (see Etnyre and Honda [32]), and the same holds
for higher dimensions when the obvious topological obstructions vanish (see Eliashberg and Murphy [30]).
Moreover, the overtwisted contact 3-manifold behaves like minimal elements in the Weinstein cobordism
category, as any contact 3-manifold that is Weinstein cobordant to an overtwisted contact manifold is
overtwisted by Wand [79]. To explore the realm of the more mysterious class of tight contact structures,
the hierarchy imposed by the existence of symplectic cobordisms is a useful guiding principle, as the
complexity of contact topology should not decrease in a cobordism. In dimension 3, a further hierarchy in
the world of tight contact manifolds was discovered by Giroux [40] and Wendl [82]. In higher dimensions,
the notion of Giroux torsion was generalized by Massot, Niederkrüger and Wendl [58].

On the other hand, since contact manifolds and (exact) symplectic cobordisms form a natural category,
which we will refer to as the (exact) symplectic cobordism category Con, one natural approach to study
Con is by understanding functors from Con to some algebraic category, a.k.a. a field theory. Symplectic
field theory (SFT), as proposed by Eliashberg, Givental and Hofer in [29], is a very general framework
for defining such functors, and many invariants of contact manifolds and symplectic cobordisms can be
defined via suitable counts of punctured holomorphic curves which approach Reeb orbits at their punctures.
The formidable algebraic richness of the general theory, together with the serious technical difficulties
arising in building its analytical foundations, conspire to make explicit computations a complicated matter.
Therefore, rather than focusing on computing the full SFT invariant, one could focus on extracting simpler
invariants from the general theory whose computation is in principle approachable via currently available
techniques. An example of this philosophy is the notion of algebraic torsion introduced by Latschev and
Wendl in [51], which associates to every contact manifold a number in N [f1g and can be viewed as
the algebraic interpretation of the geometric concept of planar torsion defined by Wendl [82].

In this paper, we follow the same methodology of Latschev and Wendl to study the structure of Con.
Instead of the full SFT, we use the rational SFT (RSFT), ie we only consider genus 0 curves, to construct
a functor from Con to a totally ordered set. Our main theorem is the following.

Theorem A We have the following monoidal functors:

(1) Algebraic planar torsion (Definition 3.12) APT WCon!N[f1g, where the monoidal structure
on .N [f1g;�/ is given by a˝ b WDminfa; bg (Proposition 3.13).

(2) Planarity (Definition 3.22) P W Con!N[f1g, where the monoidal structure on .N[f1g;�/
is given by a˝ b WDmaxfa; bg if a; b ¤ 0 and 0˝ aD a˝ 0D 0 (Proposition 3.25).

(3) Order of semidilation (Equation (4-2)) SD W P�1.1/! .N [ f1g;�/, where the monoidal
structure on N [f1g is given by a˝ b WDmaxfa; bg (Proposition 4.5).
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When APT is finite, it is necessary to have PD 0, ie APT and SD are refinements of the cases with PD 0; 1.
Therefore we can assemble all three functors into a functor Hcx measuring the contact complexity,

Hcx W Con!H WD f0APT < 1APT < � � �<1APT„ ƒ‚ …
0P

< 0SD < 1SD < � � �<1SD„ ƒ‚ …
1P

< 2P < � � �<1P
g:

(There is a (unique) morphism a! b if and only if a� b, a; b 2H.) Here,

� kAPT stands for PD 0 and APTD k,

� kSD stands for PD 1 and SDD k,

� kP stands for PD k.

APT can be viewed as the analogue of algebraic torsion in the context of RSFT. In particular, finiteness
of APT.Y / implies that Y has no strong filling just like algebraic torsion. However, Hcx goes well
beyond nonfillable contact manifolds, ie SD and P provide measurements for fillable contact manifolds.
Roughly speaking, APT looks for rational curves without negative punctures and P looks for rational
curves with a point constraint in symplectizations. And SD is defined using the QŒU �-module structure
on linearized contact homology introduced by Bourgeois and Oancea [13]. APT measures the obstruction
to augmentations of RSFT, while SD and P can be phrased in the linearized theory, and hence require the
existence of augmentations. To make SD and P independent of the augmentation, we need to define SD
and P via traversing the set of all possible augmentations of the RSFT.

Of course, Theorem A as stated could be trivial, as the true content of the claim is contained in the
algebraic construction. The following results endow the functors with geometric content.

Theorem B The functors above have the following properties.

(1) If Y has planar k-torsion (Wendl [82]), then APT.Y /� k (Latschev and Wendl [51, Theorem 6],
Theorem 3.17).

(2) If Y is overtwisted then APT.Y /D 0 (Bourgeois and van Koert [10]).

(3) If Y has (higher-dimensional) Giroux torsion (Massot, Niederkrüger and Wendl [58]), then
APT.Y /� 1 (Moreno [64, Theorem 1.7], Theorem 3.21).

(4) If APT.Y / <1, then Y is not strongly fillable (Corollary 3.15). If Y admits an exact filling then
P.Y /� 1 (Proposition 3.14).

(5) If Y is an iterated planar open book (Acu [2]) where the initial page has k-punctures, then P.Y /�k

(Theorem 6.3).

(6) If Y has an exact filling that is not k-uniruled (McLean [60]), then P.Y /� kC 1 (Theorem 5.13).

(7) APT, SD, P are all surjective (Latschev and Wendl [51, Theorem 4], Theorem 3.18, Theorem 7.28,
Corollary 6.8). In particular, P is surjective in all odd dimensions � 3 (Corollary 6.8).
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1.1 Rational SFT

The original algebraic formalism of SFT in [29] packaged the full SFT into a super Weyl algebra with a
distinguished odd-degree Hamiltonian H such that H ?H D 0. Cieliebak and Latschev [22] reformulated
the algebra into a BV1 algebra, which was used in the definition of algebraic torsion in Latschev and
Wendl [51]. The BV1 algebra structure was further refined to an IBL1 (Involutive Bi-Lie infinity)
algebra by Cieliebak, Fukaya and Latschev [21], which, roughly speaking, is precisely the boundary
combinatorics for the SFT compactification in Bourgeois, Eliashberg, Hofer, Wysocki and Zehnder [9].
For rational SFT, the original algebraic formalism was a Poisson algebra with a distinguished odd-degree
Hamiltonian h such that fh;hg D 0. Analogous reformulations of the algebraic structure of RSFT can be
found in Hutchings’ “q-variable only RSFT” [44], and an L1 formalism of RSFT by Siegel [76]. In this
paper, we introduce a notion of BL1 (Bi-Lie infinity) algebra to describe RSFT, which precisely describes
the boundary combinatorics for rational curves in the SFT compactification and is a specialization of the
IBL1 formalism. By building functors from the category of BL1 algebras to totally ordered sets, we
can build the hierarchy functor in Theorem A by a composition

(1-1) Hcx W Con
RSFT
��! BL1(with additional structures up to homotopy)!H:

On the other hand, the general holomorphic curve theory in manifolds with contact boundaries faces serious
analytical challenges, which makes a complete construction of the first functor in (1-1) a difficult task.
To obtain a construction of SFT/RSFT, one needs to deploy more powerful virtual techniques, eg either
polyfold approaches by Fish and Hofer [33] and Hofer, Wysocki and Zehnder [43], implicit atlases and
virtual fundamental cycles by Pardon [71; 72], or Kuranishi approaches by Ishikawa [46]. However, for
the purpose of defining Hcx, it is sufficient to build RSFT partially. In particular, we do not need to discuss
compositions and homotopies for morphisms of BL1 algebras as H is a totally ordered set, where there is
no ambiguity for compositions and homotopy equivalences. This greatly simplifies our demands for virtual
machinery, as homotopies in SFT is a subtle subject. Moreover, the combinatorics for a BL1 algebra is
“tree-like”, which is very similar to the combinatorics for contact homology. As a consequence, we can use
Pardon’s construction [72] of contact homology to provide all the analytic foundation of the functor Hcx.
In particular, Theorem A is well-posed without any hidden hypotheses on virtual machinery (except for
Theorem A(3), for which we give a sketch and details will appear in a future work). Moreover, it is
expected that any other virtual technique will suffice for Theorem A. We will also explain how to obtain
another construction of Hcx from a small part of the polyfold construction of SFT by Fish and Hofer [33].

In general, a full computation of RSFT and SFT is very difficult, as we need to understand many moduli
spaces. On the other hand, the hierarchy functor Hcx extracts partial information from BL1 algebras,
so only partial knowledge of the moduli spaces is needed. In particular, Hcx is relatively computable. It is
a nontrivial question whether Hcx is independent of the choice of virtual technique. However, since every
virtual technique has the property that we can count a compactified moduli space geometrically if it is
cut out transversely in the classical sense, Theorem B does not depend on the choice of virtual technique.
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1.2 Foundational claims

For the sake of clarity, let us here make precise what our claims are, pertaining to the foundations of RSFT.
In particular, to avoid misunderstandings, we will clarify which parts of the necessary foundational work
are carried out in this paper, and which ones are not. The following claims are proven in Theorem 3.11.

� For a fixed choice of geometric data on a symplectization, there is a nonempty set of perturbation
data in the context of Pardon’s VFC package, which allow to define (virtual) counts of rigid rational
curves which satisfy a quadratic relation. RSFT can then be implemented as an instance of what we call a
BL1-algebra, where the differential is given by these counts.

� For a fixed choice of geometric data on an exact cobordism (compatible with choices at the ends)
there is a nonempty set of perturbation data (compatible with the perturbation data at the ends), which
allow one to define virtual counts of rigid rational curves in the cobordism satisfying a compatibility
relation with the previously defined counts at the ends. This gives a morphism from the BL1 algebra of
the convex end, to that of the concave end, ie this establishes functoriality of the theory.

� In both cases above, there are versions of virtual counts of rational curves with a point constraint, again
satisfying compatibility relations with the above differentials and morphisms.

� We make no claims about homotopies between morphisms obtained from different choices of geometric
data and/or perturbation data. In particular, we do not claim to prove independence of the resulting full
algebraic structures from the auxiliary choices (contact form, almost complex structure, perturbations).

� However, our invariants algebraic planar torsion and planarity, which are defined purely at the algebraic
level, ie for BL1 algebras, are well-defined for RSFT. In other words, invariance under homotopies is
not needed for their implementation. These invariants are, moreover, independent of the choice of virtual
perturbation scheme for applications in this paper, provided very mild requirements are satisfied by the
scheme (namely, that virtual counts coincide with geometric counts if transversality holds). All the results
pertaining to these invariants are therefore rigorous.

� A full implementation of the order of semidilation requires a rigorous implementation of the U -map in
linearized contact homology (cf Bourgeois and Oancea [13]), eg within the framework of Pardon’s VFC
package, or other virtual technique. We give a heuristic approach at the end of Section 4.1, which we
defer to later work, and precisely state what is needed to define the order of semidilation (see Claim 4.3).
All results pertaining to this invariant are therefore conditional on the unproven Claim 4.3. On the other
hand, implementation of homotopies is also not necessary for this invariant to be well-defined.

1.3 Applications

Since Hcx is a measurement of the complexity of contact topology, the main application of Hcx is
obstructing the existence of exact cobordisms. The following theorem answers a conjecture of Wendl [82]
affirmatively, although the invariant we use is P, whereas the original conjecture used algebraic torsion.
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Theorem C (Theorem A + Corollary 6.8) For any dimension � 3, there exists an infinite sequence of
contact manifolds Y1;Y2; : : : such that there is an exact cobordism from Yi to YiC1, but there is no exact
cobordism from YiC1 to Yi .

The above result was obtained in dimension 3 in Latschev and Wendl [51]. In fact, there are many
examples of Yi , the simplest example being the boundary of the product of n copies of Sk–2-spheres
with k disks removed, as we will show in Section 6 that P.@.Sk/

n/D k for n� 2. There are many more
examples for which Theorem C holds; see eg Theorem L below.

Following the definition of P, it is easy to see that if Y admits a contact structure without Reeb orbits,
then P.Y /D1. Therefore, as a corollary, we have the following.

Corollary D If P.Y / <1, then the Weinstein conjecture holds for Y.

In other words, counterexamples to the Weinstein conjecture (if any) should be looked for in the highest
complexity level 1P . In particular, the combination of (5) in Theorem B and Corollary D yields a
proof of the Weinstein conjecture for iterated planar open books, which was previously obtained for
dimension 3 in Abbas, Cieliebak and Hofer [1], and higher dimensions in Acu [2] and Acu and Moreno [5].
In some sense, the proof of Theorem B(5) endows the ruling holomorphic curve in [1; 2; 5] with a
homological meaning, ie the ruling curve defines a map that is visible on homology; in particular, such a
curve cannot be eliminated by perturbing the contact form. On the other hand, not every contact manifold
with finite planarity is iterated planar: for example P.T 3; �std/D 2 by Corollary 6.8, while .T 3; �std/ is
not supported by a planar open book, by Etnyre [31] (it is, however, supported by a planar spinal open
book, by Wendl [81] and Lisi, Van Horn-Morris and Wendl [57]). By functoriality, if there is an exact
cobordism from Y to Y 0 with P.Y 0/ <1, then the Weinstein conjecture holds for Y.

The study of planar open books in dimension 3 has a very long history, since they enjoy nice properties like
equivalence of weak fillability and Weinstein fillability; see Niederkrüger and Wendl [69] and Wendl [81].
We refer readers to the introduction of Acu, Capovilla-Searle, Gadbled, Marinković, Murphy, Starkston
and Wu [3] for a comprehensive summary on the subject. Obstructions to planar open book structures
were obtained in Etnyre [31] and Ozsváth, Stipsicz and Szabó [70]. In higher dimensions, obstructions
to supporting an iterated planar open book were found in Acu and Moreno [5]. By (5) of Theorem B,
infinite planarity is an obstruction to an iterated planar structure. In particular, we answer Question 1.14
of Acu, Etnyre and Ozbagci [4] negatively, by the following general result.

Corollary E (Corollary 7.37) In all dimensions � 5, consider .Y;J / an almost contact manifold which
has an exactly fillable contact representative .Y; �/. Then there is a contact structure � 0, in the homotopy
class of J , such that .Y; � 0/ is not iterated planar.

In particular, since every simply connected almost contact 5-manifold is almost Weinstein fillable by
Geiges [38], there is a contact structure in each homotopy class of almost complex structures that is not
iterated planar for every simply connected 5-manifold.
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1.4 Examples

In addition to Theorem B, there are many situations where we can compute or estimate Hcx. By (6) of
Theorem B, it is natural to look at affine varieties with a uniruled projective compactification. One special
case is affine varieties with a CPn compactification.

Theorem F (Theorem 7.6) Let D be k generic hyperplanes in CPn for n� 2. Then:

(1) P.@Dc/ � k C 1 � n for k > n C 1, where @Dc is the contact boundary of the affine variety
Dc WDCPnnD. (See Section 7.1.)

(2) P.@Dc/D kC 1� n for nC 1< k < 1
2
.3n� 1/ and n odd.

(3) P.@Dc/D 2 for k D nC 1.

(4) Hcx.@D
c/D 0SD for k � n.

The condition of n being odd (also for Theorems H and I below) is not essential. We use it to obtain
automatic closedness of a chain in the computation of planarity for any augmentation. In Remark 7.23, we
explain how one can drop this condition using polyfold techniques in Zhou [86]. On the other hand, the
role of k < 1

2
.3n� 1/ is more mysterious. Although it is unlikely to be optimal, whether an upper bound

is necessary is unclear. An extreme case is when nD 1, then @Dc is a disjoint union of circles, then we
have P.@Dc/D1 and unlike the situation in Theorem F there is no obstruction to exact cobordisms for
different k when nD 1. One difficulty of computing P and obtaining cobordism obstructions is that we
need to carry out computation for all hypothetical “fillings”, ie augmentations. Indeed, different choices
of augmentations will affect the computation dramatically. For example, there exists an affine variety
with a CPn compactification whose contact boundary has infinite planarity; cf Theorem 7.14. However,
if we use the augmentation from the affine variety, then the planarity is finite.

Remark 1.1 Based on the notion of asymptotically dynamically convex manifolds introduced by
Lazarev [52], the work of Zhou [90; 88] exploited the uniqueness of Z-graded (dga) augmentations to
the contact homology to obtain some cobordism obstructions. However, to maintain the effectiveness
of the Z-grading, one needs to make additional topological assumptions (vanishing of first Chern class,
injectivity of the fundamental groups etc) for the argument in [90; 88] to work. Dropping the Z-grading
condition will almost certainly result in multiple augmentations (if an augmentation exists). Moreover,
having a unique Z-graded BL1 augmentation requires an index assumption much more restrictive than
asymptotically dynamical convexity, which, in the context of flexibly fillable contact manifolds with
vanishing first Chern class, requires that the flexible filling has only 0; 1; 2; 3 handles. The strategy in this
paper is very different. Instead of using the uniqueness of certain augmentations, we search for examples
and structures on the RSFT that are independent of all augmentations (which are not unique). Showing
such independence is the main challenge in the proof of Theorem F.

On the other hand, Dc
k

embeds exactly into Dc
kC1

, which follows from a general construction, as follows.
Let L be a very ample line bundle over a smooth projective variety X . Then for any nonzero holomorphic
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section s 2H 0.L/, Xns�1.0/ is an affine variety whose contact boundary is denoted by Ys . The projective
space PH 0.L/ should be stratified1 by the singularity type of s�1.0/, with the top stratum corresponding
to the case where s�1.0/ is smooth with multiplicity 1. We say that there is a morphism from stratum A

to stratum B if we can change s�1.0/ from A to B by an arbitrarily small perturbation of the section s,
ie A is contained in the closure of B. Moreover, one obtains an exact cobordism from Ys to Ys0 , where s0

is the perturbed section. Then we have a natural functor from the category of strata to Con. As a concrete
example, consider LD O.2/ on CP2, then the category of stratification is the graph A1! A2! A3,
where A1, A2, A3 correspond to a double line, two generic lines and a smooth quadratic curve as the
divisor, respectively. The corresponding affine varieties as exact domains are C2, C �T �S1, T �RP2,
which clearly have the exact embedding relations as claimed.

In view of this, when we view one of the k hyperplanes in Dk as having multiplicity 2 (a “double”
hyperplane), we can get an exact cobordism from @Dc

k
to @Dc

kC1
, by perturbing the double hyperplane to

two distinct hyperplanes. Then Theorem F asserts that a reversed exact cobordism cannot be found if
n � k < 1

2
.3n� 1/ and n is odd. Note that the natural inclusion Dc

kC1
�Dc

k
is symplectic; hence we

always have a strong cobordism from @Dc
kC1

to @Dc
k

, which shows the essential difference between these
two notions of cobordisms and the obstruction from P is not topological. When k � n, Dc

k
is in fact

subcritical, and they can be embedded exactly into each other regardless of k.

As a concept closely related to Con, we introduce Con� as the under category of Con under ¿, ie the
objects of Con� are pairs of contact manifolds with exact fillings and morphisms are exact embeddings.
Then SD and P can be defined2 on Con� using the augmentation from the given exact filling. Moreover, we
recall another functor U, called the order of uniruledness, which is defined to be the minimal k such that an
exact domain W is k-uniruled in the sense of McLean [60]. That U is a functor from Con�!NC[f1g

was proven in [60]. By (6) of Theorem B, P.Y / is bounded below by U.W / for an exact filling W of Y.
The functor U measures the complexity of exact domains and serves as an exact embedding obstruction.
An interesting aspect of U is that the well-definedness and basic properties of U do not depend on any
Floer theory. As a byproduct of the proof of Theorem F, we have following for any n� 1.

Theorem G (Theorem 7.21) Let Dk denote the divisor of k generic hyperplanes in CPn for n � 1,
and let Dc

k
denote the complement affine variety. Then U.Dc

k
/ D maxf1; k C 1 � ng. In particular ,

Dc
kC1

cannot be embedded into Dc
k

exactly for k � n.

Remark 1.2 The same embedding question is studied independently by Ganatra and Siegel [36], where
more general normal crossing divisors in CPn are studied. The planarity for exact domains mentioned

1It is quite a nontrivial task to make this stratification precise, as in general we do not have a classification of the possible
singularities of the divisor.
2The functorial property of P requires a full construction of RSFT, including compositions and homotopies. In particular, it
makes more demands for virtual constructions than explained in this paper. On the other hand, the functorial property of SD
follows from the Viterbo transfer map of S1-equivariant symplectic cohomology and the isomorphism between the positive
S1-equivariant symplectic cohomology and the linearized contact homology in Bourgeois and Oancea [13].
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above is equivalent to Ghpi in [36]. The authors of [36] also consider holomorphic curves with local
tangent constraints to define functors GhT mpi on Con�. In view of the local tangent constraints, one can
define an analogous order of uniruledness with local tangent conditions, the well-definedness and functorial
property of such invariants follows from the same argument as [60]. Such a functor can also serve as an
embedding obstruction as U in Theorem G. It is an interesting question as to whether those geometric invari-
ants are the same as the algebraic invariants (defined via RSFT in [36]), which is the case for Theorem G.

In view of (6) of Theorem B, one can also consider affine varieties with uniruled compactification, in
particular those affine varieties with Fano hypersurfaces as compactification. In general, we have:

Theorem H (Theorem 7.24) Let X be a smooth degree m hypersurface in CPnC1, with m and n such
that 2�m< 1

2
.nC1/� n, and let D be k � n generic hyperplanes , ie DD .H1[� � �[Hk/\X , where

the Hi are hyperplanes in CPnC1 in generic position with each other and X . Then P.@Dc/D kCm� n

for n odd and kCm< 1
2
.3nC 1/.

The following results provide affine variety examples with nontrivial SD.

Theorem I (Theorem 7.22) Assume Ds is a smooth degree-k hypersurface in CPn for n� 3 odd and
with 2� k < n. Then .k � 1/SD � Hcx.@D

c
s/� .2k � 2/SD. When n is even and 2� k < 1

2
.nC 1/, then

we have Hcx.@D
c
s/� .2k � 2/SD.

As explained before, the difficultly of computing P and SD is from enumerating through all possible
augmentations. The strategy of proving Theorems F, H and I is finding the curve responsible for P and
SD with low energy, so that there is no room for the dependence on augmentations. This is the reason
why the results require that the hyperspaces to have low degrees. In particular, a degree m� n smooth
hypersurface in CPnC1 is uniruled by degree 1 curves. Our proof also uses somewhere injectivity of
degree 1 curves to obtain transversality in various places, hence this low degree condition is needed
for technical reasons as well. It is interesting to look at the case of degree nC 1 smooth hypersurfaces
in CPnC1, which is uniruled but not by degree 1 curves. A more systematic way to study Hcx is to
derive formulas for RSFT of affine varieties with normal crossing divisor complement using log/relative
Gromov–Witten invariants similar to the formula for symplectic cohomology in Diogo and Lisi [27].

Another rich class of contact manifolds comes from links of isolated singularities. They provide examples
with every order of semidilation based on computations in Zhou [90].

Theorem J (Theorem 7.28) We use LB.k; n/ to denote the contact link of the Brieskorn singularity
xk

0
C � � �Cxk

n D 0. Then Hcx.LB.k; n// is

(1) .k � 1/SD if k < n, and � .k � 1/SD if k D n;

(2) > 1P if k D nC 1;

(3) 1P if k > nC 1.
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Another type of singularity is the quotient singularity, whose contact links are not exact fillable in many
cases, by Zhou [87]. In fact, the symplectic aspect of the proof in [87] can be restated as a computation
of Hcx as follows.

Theorem K (Theorem 7.30) Let Y be the quotient .S2n�1=Zk ; �std/ by the diagonal action of e2� i=k

for n� 2.

(1) If n> k, we have Hcx.Y /D 0SD.

(2) If n� k, we have 0SD � Hcx.Y /� .n� 1/SD. When nD k, we have Hcx.Y /� 1SD.

The second case of the above theorem is another situation where the computation depends on the
augmentation. Roughly speaking, Hcx.Y / D 0SD means that any exact filling of Y has vanishing
symplectic cohomology. And if there is a (possibly strong) filling with vanishing symplectic cohomology,
then the order of semidilation using the induced augmentation from the filling3 is 0. The natural pre-
quantization bundle filling provides augmentations such that the symplectic cohomology vanishes [73].
On the other hand, there are other augmentations with positive orders of semidilation. For example the
exact filling T �S2 of .RP3; �std/ has order of semidilation 1, such a phenomenon was also explained in
[87, Remark 2.16].

Theorem L Let V be an exact domain with c1.V /D 0 and Sk be the k-punctured sphere. Then

(1) P.@.V �Sk//� k (Theorem 6.6).

(2) If V is an affine variety that is not .k�1/-uniruled , then P.@.V �Sk//D k (Corollary 6.8).

(3) Hcx.@.V �D//D 0SD (Theorem 7.33).

In particular, (2) in Theorem L provides many examples to Theorem C, and (3) is a reformulation of the
symplectic step in Zhou [91] for obtaining uniqueness results on fillings of @.V �D/.

Organization of the paper We introduce the concept of BL1 algebra in Section 2 and then define
algebraic planar torsion as well as planarity at the level of algebra. In Section 3, we implement Pardon’s
VFC [72] to define APT and P. We recall in Section 4 the QŒU � module structure on linearized contact
homology following Bourgeois and Oancea [13] to define SD and finish the proof of Theorem A. We
give a lower bound for P in Section 5, and an upper bound for P in Section 6. We discuss examples,
applications, and finish the proof of Theorem B in Section 7.

Acknowledgements We would like to express our gratitude to Helmut Hofer, Mark McLean, John
Pardon and Chris Wendl for helpful conversations. We are very grateful to the referee for the significant
effort put into assessing our paper and many suggestions that significantly improved the quality of the
work. Moreno acknowledges the support by the Swedish Research Council under grant 2016-06596, while
he was in residence at Institut Mittag-Leffler in Djursholm, Sweden. He also acknowledges the support of

3Assuming the filling is monotone, so that we can evaluate T D 1 in the Novikov coefficients to get back to Q-coefficients.

Geometry & Topology, Volume 29 (2025)



A landscape of contact manifolds via rational SFT 3475

the National Science Foundation under grant DMS-1926686, by the Sonderforschungsbereich TRR 191
Symplectic structures in geometry, algebra and dynamics, funded by the DFG (Projektnummer 281071066-
TRR 191), and also by the DFG under Germany’s Excellence Strategy EXC 2181/1-390900948 (the
Heidelberg STRUCTURES Excellence Cluster). Zhou is supported by National Key R&D Program of
China under grant 2023YFA1010500, National Science Foundation under grant DMS-1926686, and the
National Natural Science Foundation of China under grants 12288201 and 12231010.

2 L1 algebras and BL1 algebras

In this section, we recall the basics of L1 algebras and introduce BL1 algebras, which serve as the
underlying algebraic structures for rational symplectic field theory. The algebraic formalism here is
essentially the q-variable-only reformulation in [44] and the L1 algebra formalism on contact homology
algebra in [76], but we make the compatibility of the algebraic structure on the contact homology algebra
with the L1 structure more precise and define such an object as a BL1 algebra, which is a specialization
of the IBL1 algebra in [21] and the homotopic version of bi-Lie algebras, with (co)-curvature. The
algebraic relations in BL1 algebra are precisely the boundary combinatorics of the moduli spaces of
rational curves in the SFT compactification. We then introduce algebraic planar torsion and planarity at
the algebraic level.

2.1 L1 algebras

Throughout this section, we assume k is a field with characteristic 0 for simplicity, although the discussion
works for any commutative ring. Let V be a Z2-graded k-vector space. Then we have the Z2-graded
symmetric algebra SV WD

L
k�0 SkV and the nonunital symmetric algebra SV D

L
k�1 SkV, where

SkV D
Nk

V =Symk in the graded sense. In particular, we have

ab D .�1/jajjbjba

for homogeneous elements a; b in SV;SV. Therefore SkV is spanned by vectors of the form v1 � � � vk

with vi 2 V. However, to introduce the L1 algebra, we will view SV and SV as coalgebras by the
following co-product operation:

�.v1 � � � vk/D

k�1X
iD1

X
�2Sh.i;k�i/

.�1/˘.v�.1/ � � � v�.i//˝ .v�.iC1/ � � � v�.k//;

where Sh.i; k�i/ is the subset of permutations � such that �.1/< � � �<�.i/ and �.iC1/< � � �<�.k/ and

˘ D

X
1�i<j�k; �.i/>�.j/

jvi jjvj j:

Then both SV and SV satisfy the coassociativity property .id˝�/ ı � D .� ˝ id/ ı �, and the
cocommutativity property R ı� D �, where R W SV ˝ SV ! SV ˝ SV is given by R.x ˝ y/ D

.�1/jxjjyjy˝x for homogeneous elements x;y. A coderivation of the coalgebra .SV; �/ is a k-linear
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map ı WSV !SV satisfying the co-Leibniz rule�ııD .ı˝id/ı�C.id˝ı/ı�. Here we use the Koszul–
Quillen sign convention that .f ˝g/.x˝y/D .�1/jxjjgjf .x/˝g.y/ for x;y 2V;W and f;g 2V _;W _.

Definition 2.1 We use sV to denote V Œ1�. An L1 algebra structure on V is a degree 1 coderivation ỳ

on SsV satisfying ỳ2 D 0.

Note that we have a well-defined degree �1 map s W V ! sV. The coderivation property of ỳ implies that
it is determined by maps `k W SksV ! sV defined by the composition SksV ,! SsV

ỳ
! SsV ! sV,

where the first map is the natural inclusion and the last map is the natural projection, satisfying the
quadratic relation

(2-1)
nX

kD1

X
�2Sh.k;n�k/

.�1/˘
0

`n�kC1.`k.sv�.1/ � � � sv�.k//sv�.kC1/ � � � sv�.n//D 0;

where

˘
0
D

X
1�i<j�k; �.i/>�.j/

.jvi j � 1/.jvj j � 1/:

.SsV; ỳ/ is called the reduced bar complex. The word-length filtration B1sV � B2sV � � � � � SsV is
compatible with the differential, where BksV WD

Lk
jD1 Sj sV.

Definition 2.2 An L1 homomorphism from .V; `/ to .V 0; `0/ is a degree 0 coalgebra map y� W SsV !

SsV 0 such that y� ı ỳD ỳ0 ı y�.

Given �i W S
ki sV ! sV 0 for 1 � i � n and m D

Pn
iD1 ki , we define �1 � � ��n W S

msV ! SnsV 0 by
sending sv1 � � � svm to4

�

�X
�

.�1/˘
0

k1! � � � kn!
.�1˝ � � �˝�n/

�
.sv�.1/ � � � sv�.k1//˝ � � �˝ .sv�.m�knC1/ � � � sv�.m//

��
:

Here � is the natural map
Nk

sV ! SksV. By the coalgebra property, if y� is an L1 morphism, we
know that y� is determined by

f�k
W SksV ! SsV

y�
�! SsV 0! sV 0gk�1:

More explicitly, y� is defined by the formula

y�.sv1 � � � svn/D
X

k�1; i1C���CikDn

1

k!
.�i1 � � ��ik /.sv1 � � � svn/:

4The factorial here is a consequence of the redundant summing over all permutations. However, the construction works any
coefficient ring; this is easier to see using the tree description in Section 2.3.
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The relation y� ı ỳD ỳ0 ı y� can be written asX
pCqDnC1

X
�2Sh.q;n�q/

.�1/˘
0

�p.`q.sv�.1/ � � � sv�.q//sv�.qC1/ � � � sv�.n//

D

X
k�1; i1C���CikDn

1

k!
`k.�i1 � � ��ik /.sv1 � � � svn/:

In particular, y� preserves the word-length filtration. The composition of L1 homomorphism is the naive
composition y� ı y , which is clearly a coalgebra chain map. Unwrapping the definition, we have

.� ı /n D
X

k�1; i1C���CikDn

1

k!
�k.. i1 � � � ik /.sv1 � � � svn//:

2.2 BL1 algebras

In this section, we define the BL1 (bi-Lie-infinity) algebra structure on a Z2 graded vector space V,
which will govern the rational symplectic field theory. Let EV denote SSV. Given a linear operator
pk;l W SkV ! S lV for k � 1 and l � 0, we will define a map ypk;l W SkSV ! SV. To emphasize
the differences between products on two symmetric algebras, we use ˇ for the product on the outside
symmetric product S and � for the product on the inside symmetric product S when it cannot be
abbreviated. We will first describe the definition using formulas and then introduce a graph description,
which is very convenient to describe BL1 algebras as well as various related structures and also governs
all the signs and coefficients. Let w1; : : : ; wk 2 SV . Then ypk;l is defined by the following properties.

(1) ypk;l jˇkV�SkSV is defined by pk;l .

(2) If wi 2 k, then ypk;l.w1ˇ � � �ˇwk/D 0.

(3) ypk;l satisfies the Leibniz rule in each argument, ie we have

(2-2) ypk;l.w1ˇ � � �ˇwk/D

mX
jD1

.�1/�v1 � � � vj�1 yp
k;l.w1ˇ � � �ˇ vj ˇ � � �ˇwk/vjC1 � � � vm:

Here wi D v1 � � � vm, and

(2-3) �D
i�1X
sD1

jwsj �

j�1X
sD1

jvsjC

j�1X
sD1

jvsjjp
k;l
jC

nX
sDiC1

jwsj �

mX
sDjC1

jvsj:

It is clear from the definition that ypk;l is determined uniquely by the above three conditions. More
explicitly, ypk;l is defined by

(2-4) w1ˇ � � �ˇwk 7!

X
.i1;��� ;ik/; 1�ij�nj

.�1/
pk;l.v1
i1
ˇ � � �ˇ vk

ik
/ {w1 � � � {wk ;

where wj D v
j
1
� � � v

j
nj , {wj D v

j
1
� � � {v

j
ij
� � � v

j
nj and w1 � � �wk D .�1/
v1

i1
� � � vk

ik
{w1 � � � {wk . Then we
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define ypk W SkSV ! SV by
L

l�0 yp
k;l . To ensure it is well-defined, we need to assume that for any

v1; : : : ; vk 2 V, there are at most finitely many l such that pk;l.v1ˇ � � �ˇ vk/¤ 0. Then we can define
yp WEV !EV by

(2-5) w1ˇ � � �ˇwn 7!

nX
kD1

X
�2Sh.k;n�k/

.�1/˘ ypk.w�.1/ˇ � � �ˇw�.k//ˇw�.kC1/ˇ � � �ˇw�.n/;

ie following the same rule of ỳ from `k .

Definition 2.3 .V; fpk;lgk�1;l�0/ is a BL1 algebra if yp ı yp D 0 and j ypj D 1.

To explain the terminology, assume p1;0 D 0;p2;0 D 0. Then p1;1 defines a differential on V, such
that p2;1 defines a Lie bracket on the homology of .V;p1;1/ and p1;2 defines a Lie cobracket on the
homology. The compatibility is that p1;2 ı p2;1 D 0 on the homology level. The main difference
with the IBL1 algebra [21, Definition 2.3] is that we will not consider the compatibility condition on
p2;1 ı p1;2 D 0, which will increase genus.5 A direct consequence of the definition is that .SV; yp1/

is a chain complex and the ypk define an L1 structure on .SV /Œ�1�. As noted in [76, Remark 3.12],
SV carries a natural commutative algebra structure, the Leibniz rule in the definition of ypk;l implies
the L1 structure is compatible with the algebra structure, and .SV /Œ�1� should be some version of a
G1 algebra. Definition 2.3 can be viewed as one method of making the compatibility precise.

Remark 2.4 (shift vs no shift) The degree shift in Section 2.1 is the classical sign convention introduced
by Stasheff [77, page 133], as L1 algebra is a higher generalization of Lie algebra, where the Lie bracket
is skew-symmetric and has degree 0. The IBL1 formalism in [21] kept such a tradition of shifting degrees
by 1; as a result, in the SFT context, generators are graded by the SFT degree shifted by 1 [21, Section 7]
to cancel the shift in the definition. Here, we choose to drop the degree shift in Definition 2.3, so that
our generators will be graded by the SFT degree in the context of SFT, since operations from counting
holomorphic curves are naturally supersymmetric with respect to the SFT degrees, due to the orientation
scheme in SFT. As a consequence, ..SV /Œ�1�; f ypkg/ and .V Œ�1�; fpk;1g/ (assuming all other pk;l is
zero in the latter case) are L1 algebras in the sense of Definition 2.1. If we use a degree-shifted version
of Definition 2.3, .V; fpk;1g/ (under the same vanishing assumption) is an L1 algebra, while neither
SV nor SsV are L1 algebras, ie extra shift is inevitable. All shifts can go away if one is willing to
adopt a version of L1 algebra without degree shift.

Remark 2.5 BL1 algebra is not a “direct” specialization of the IBL1 algebra as introduced in [21].
However, there is an equivalent reformulation of the IBL1 relations,6 from which one can see that
an IBL1 algebra contains a BL1 algebra, as well as algebras with any genus upper bound; see
[67, Section 5.2, Proposition 5.10 and Corollary 5.12] for details.
5The other difference is that the IBL1 algebra in [21] describes the algebra for linearized SFT, where pk;0;g D 0 for any number
of positive punctures k and genus g.
6In the special case of setting � D 1 in [21, Definition 2.3].

Geometry & Topology, Volume 29 (2025)



A landscape of contact manifolds via rational SFT 3479

2.3 The rules for tree calculus

A useful way to explain the combinatorics of operations is the following description using graphs, which
appeared in [76, Section 3.4.2]. The combinatorics is also relevant in the virtual technique setup; see
Section 3.6. The main advantage of such graphical language is in freeing us from the book-keeping of
signs and explicit components of compositions, eg in (2-2), which are governed by graphs.

Let w 2 SkV. We can represent w by an element xw in
Nk

V, that is, xw D
PN

iD1 civ
i
1
˝ � � � ˝ vi

k
for

ci 2 k and v�� 2 V, such that �. xw/D w for � W
Nk

V ! SkV. We represent it by a rooted tree with k

leaves (represented by �) labeled by xw. The leaves are ordered from left to right to indicate the k copies
of V in

Nk
V. When x! D v1˝ � � �˝ vk , we may label the leaves by v1; : : : ; vk to mean the same thing.

We can view a general labeled tree as a formal linear combination of such trees with leaves labeled.

xw 2
N3

V

v1 v2 v3

Now let s 2 SkSV. We can represent s by xs 2�kT V, where T V D
L

k2N

�Nk
V
�
. Here we use � to

differentiate it from the inner tensor ˝. We write

xs D

NX
iD1

ci xw
i
1� � � �� xw

i
k ; where ci 2 k; xw�� 2

m��O
V:

We represent xwi
1
� � � �� xwi

k
by an ordered forest of labeled trees as in Figure 1. Then xs is a formal linear

combination of such forests.

We represent the operation pk;l W SkV ! S lV by a graph with kC l C 1 vertices, k top input vertices, l

bottom output vertices and one middle vertex labeled by pk;l representing the operation type:

p2;3

So far the discussion is completely formal without any actual content, the real content is in the following
interpretation of a glued graph, whose definition will be clear from one example.

xw1 2
N3

V xw2 2
N3

V xw3 2
N2

V

Figure 1: Forest of labeled trees.
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v1 v2 v3 v4 v5 v6 v7 v8

Figure 2: Gluing forests” applying operations.

v1 v2 v3 v4 v5 v6 v7 v8

Figure 3: If we switch the output order, it still represents the same glued forest as Figure 2.

The glued graph in Figure 2 represents a forest: we first fix a representative xp of p2;3.v3v4/ in
N3

V.
The glued forest in Figure 2 represents ˙.v1˝ v2˝ xp˝ v5˝ v6/� .v7˝ v8/. In the gluing, we do
not create cycles in the glued graph, each dashed line represents the identity map, and each connected
component represents a tree in the output.

The trees and forests are considered as abstract trees and forests, the inclusion into the plane/space is not
part of the information. Drawing the input element as a forest of ordered trees with ordered leaves means
that we are choosing representatives from the tensor product, not the symmetric product.

Finally, when we draw the glued graph as in Figure 2, ie choosing an order of the trees and leaves (hence
edges will cross over each other if we draw it on a plane), this will determine a representative in the
tensor product. In other words, we view different orders as equivalent up to the obvious sign change. For
example, Figure 3 is an equivalent gluing as that in Figure 2 but with an extra sign when viewing it in the
tensor product. The extra sign is .�1/jv5jjb3j if the representative xp is b1˝ b2˝ b3.

The sign is determined similarly to (2-3); in the case shown in Figure 2, the sign is .�1/.jv1jCjv2j/jp
2;3j.

In a formal description, we apply order changes to the input forest (edges can cross when it is drawn
in a row), then we glue pk;l so that there is no new edge crossing (this corresponds to that pk;l acts
on k consecutive leaves), and finally, we change the output order back to the chosen one (eg an order
prescribed in Figure 3); the final sign is given by the product of the sign changes of the two order changes
and the sign of the composition using the Koszul–Quillen convention.

Example 2.6 In the following, we work out an explicit example which involves the features explained
above. We consider the following glued graph representing a component of p2;3 acting on v1v2v3ˇ

v4v5v6ˇ v7v8:
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v1 v2 v3 v4 v5 v6 v7
v8

p2;3

We first switch the input leaves of the input forest, so that the insertion of p2;3 will not create crossings at the
input edges of p2;3 as follows, this will pick up a sign .�1/jv5j.jv2jCjv3jCjv4j/Cjv8j.jv2jCjv3jCjv4jCjv6jCjv7j/.

v1

v5

v8 v2 v3 v4 v6 v7

p2;3

Now the composition with p2;3 has no sign from the Koszul–Quillen convention, the output is a forest,
which is a single tree here, representing

(2-6) .�1/jv5j.jv2jCjv3jCjv4j/Cjv8j.jv2jCjv3jCjv4jCjv6jCjv7j/p2;3.v1v5v8/v2v3v4v6v7:

Alternatively, we can do the following switch of the input leaves

v2

v5

v8v3 v4 v1 v6 v7

p2;3

resulting in a sign change by

.�1/jv1j.jv2jCjv3jCjv4j/Cjv8j.jv6jCjv7j/:
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Now the composition will pick up a sign .�1/jp
2;3j.jv2jCjv3jCjv4j/ by the Koszul–Quillen convention, so

the output is

.�1/jv1j.jv2jCjv3jCjv4j/Cjv8j.jv6jCjv7j/Cjp
2;3j.jv2jCjv3jCjv4j/v2v3v4p2;3.v1v5v8/v6v7;

which is

.�1/jv1j.jv2jCjv3jCjv4j/Cjv8j.jv6jCjv7j/Cjp
2;3j.jv2jCjv3jCjv4j/C.jp

2;3jCjv1jCjv5jCjv8j/.jv2jCjv3jCjv4j/

�p2;3.v1v5v8/v2v3v4v6v7:

This expression is exactly (2-6), as there are sign cancellations. And indeed they are the same glued
tree/forest, as the different ordering is just choosing a different representative in the tensor product. There
is more freedom in terms of choosing representatives, eg switching the leaves in the input for pk;l , and
switching as in Figure 3. They all result in choosing different representatives in the same equivalence
class of the same glued forests. We can also have part of the forest not interacting with pk;l (although
after choosing an order, it can have crossings with the part interacting with pk;l ), but this will not change
the discussion. In other words, since everything is graded and supercommutative, the application of
the Koszul–Quillen convention guarantees that everything is well-defined as equivalence classes in the
symmetric product.

Writing the forest using a glued graph as in Figure 2 contains slightly more refined information than just
labeling the forest as in Figure 1, namely we keep track of which leaves are from pk;l in a representative.
From the discussion in Example 2.6, the following observation is tautological.

Proposition 2.7 The output of a glued forest is well-defined in EV.

To enumerate all admissible gluings, each output leaf and tree are considered as different. However,
we do not differentiate between the input leaves of pk;l . Therefore when we glue a pk;l component,
we pick k trees — this is Sh.k; n� k/ in (2-5) — from the forest and then one leaf from each chosen
tree — that is, 1� ij � nj in (2-4) — to glue to pk;l . For example, in the situation of Figure 2, we have
3� 3C 3� 2C 3� 2D 21 direct ways to glue p2;3. The ambiguity from choosing a representative of the
input is then eliminated by summing over all possible gluings, by the following tautological observation.

Proposition 2.8 When summed over all possible gluings of one pk;l, the output is independent of the
choice of representatives of the input forest.

Combining the above two propositions, we see that gluing forests corresponds to operations on EV.
Indeed, the language of trees and forests is just packaging the signs and components in (2-2), (2-4) and
(2-5) by providing geometric intuition. The translation into forests makes it easier to understand algebraic
relations; for example, many relations come from interpreting the same glued forests in two different
ways. Table 1 is the dictionary of the algebraic formulae in Section 2.2 in terms of forests, where the
signs can be compared directly from the rule convention before Example 2.6 and signs in Section 2.2.
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ypk;l onˇkV (unique) gluing of pk;l to a forest of k trees of single leaf

ypk;l in (2-4) sum of gluing of pk;l to a forest of k trees to get a tree

ypk sum of gluing of pk;� to a forest of k trees to get a tree

yp in (2-5) sum of gluing of p�;� to a forest to get a forest

ypk;l .w1ˇ � � �ˇwk/D 0 if wi 2 k no way to glue pk;l to a forest with a tree without leaf to get a tree

Table 1

We use p
k;l
2
W SkV ! S lV for k � 1 and l � 0 to denote the sum of all connected graphs with two levels

of vertices, k input vertices and l output vertices as follows:

In terms of a formula, we have that p
k;l
2
D �1;l ı yp

2jˇkV , where �1;l denotes the projection EV !

S1SV ! S lV. This follows from that elements in ˇkV are represented by forests consisting of trees of
a single leaf, to get a single tree after applying yp2, we must have the two p�;� components connected to
each other directly. Note that, in the applications we have in mind, ie rational SFT, p

k;l
2

can be viewed as
the codimension-one boundary of the rational SFT moduli space. The following proposition shows that
the BL1 algebra structure captures exactly such combinatorics.

Proposition 2.9 The set fpk;lgk�1; l�0 forms a BL1 algebra if and only if p
k;l
2
D 0 for k � 1 and l � 0.

Proof Since p
k;l
2
D �1;l ı yp

2jˇkV , if fpk;lgk�1; l�0 forms a BL1 algebra then p
k;l
2
D 0 for k � 1 and

l � 0. Now assume p
k;l
2
D 0 for k � 1 and l � 0. In the glued forests representing yp2 acting on an

element in EV, there are two cases:

(1) The two p�;�-components are glued to each other directly, those are zero because p
k;l
2
D 0.

(2) The two p�;� components are not glued to each other (but they could be in the same tree after
gluing), by switching the levels of those two p�;�-components, we see that they pair up and cancel
with each other as jp�;�j D 1:

: : :: : : : : : : : :: : : : : :
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2.4 BL1 morphisms

In the following, we define morphisms between BL1 algebras. Given a family of operators

f�k;l
W SkV ! S lV 0gk�1;l�0

of degree 0 2 Z2 such that for any v1 � � � vk 2 SkV, there are at most finitely many l such that
�k;l.v1 � � � vk/ ¤ 0. To explain the map y� W EV ! EV 0, we will use the description of graphs. To
represent �k;l , we use a graph similar to the one representing pk;l but replace by to indicate that
they are maps of different roles.

Then y� is represented by the sum of all possible gluing of a whole layer or �k;l such that no cycles are
created and every leaf of the input forest is glued. Unlike the definition of yp, where we need to glue
exactly one pk;l graph, it is possible that we do not glue in any �k;l graphs. This is the case when the
input is in ˇmk, ie the input is represented by trees without leaves. In particular, y� is the identity in such
a case, ie y�.1ˇ � � �ˇ 1/D 1ˇ � � �ˇ 1. All the rules, like orders, signs, and the well-definedness on EV ,
are similar to the yp case.

In terms of formulae, we first define y�k W SkSV ! SV 0. It is determined by the following:

(1) y�kC1.w1ˇ � � �ˇwk ˇ 1/D 0 for k � 1 and y�1.1/D 1.

(2) y�k W ˇkV � SkSV ! SV 0 is defined by
P

l�0 �
k;l .

(3) Let fij g1�j�k be a sequence of positive integers. We define N WD
Pk

jD1 ij and Ni WD
Pi

jD1 ij .
Let wi D vNi�1C1 � � � vNi

. The following sum is over all partitions J1t� � �tJb Df1; : : : ;N g such
that the graph with kC bCN vertices A1; : : : ;Ak ;B1; : : : ;Bb; v1; : : : ; vN , with Ai connected
to vNi�1C1; : : : ; vNi

and Bi connected to vj if and only if j 2 Ji , is connected and has no cycles:

y�k.w1ˇ � � �ˇwk/D
X

admissible partitions
J1t���tJb

.�1/


b!

1X
l1;:::;lbD0

�jJ1j;l1.vJ1/� � � � ��jJb j;lb .vJb /;

where w1 � � �wk D .�1/
vJ1 � � � vJb . There is no extra sign as we assume �k;l has degree 0 2Z2.
The reduction by b! is because a different order of the partition does not count as a different gluing,
but the order will affect the sign when viewing it as elements in the tensor product. The appearance
of such a factor is precisely the reason why we want to use tree descriptions, as algebraic formulae
(when not phrased in an optimal form) might give us the wrong impression that such structure can
only defined over a coefficient ring where b!¤ 0. The number of such partitions divided by b! is
exactly the number of ways of gluing a layer of

P1
lD0 �

�;l .

Then we define y� from y�k just like the L1 morphism y� built from �k . Table 2 is a dictionary between
algebraic description and tree description.
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y�kC1.w1ˇ � � �ˇwk ˇ 1/D 0
no way to glue a forest with at least two trees with one of them having
no leaves, to a single tree

y�1.1/D 1 trivial/empty gluing to a leafless tree

y�k onˇkV
sum of gluings of �k;� to a forest of k trees of single leaf, one gluing
for each � 2N

y�k sum of gluing of �k;� to a forest of k trees to get a tree

y� sum of gluing of ��;� to a forest to get a forest

Table 2

Definition 2.10 The collection f�k;lgk�1;l�0 is a BL1 morphism from .V;p/ to .V 0;p0/ if y�ı ypD yp0ı y�
and j y�j D 0.

The composition of � W V ! V 0 and  W V 0! V 00 is defined by

. ı�/k;l D �1;l ı
y ı y�jˇkV :

The more explicit algebraic description is as follows. Let I D f1; : : : ; kg and I1t� � �tIa be any partition
of I (any partition is admissible as the input is a forest of single-leaf trees), then

. ı�/k;l.v1 � � � vk/D �l

� X
partitions I1t���tIa

y a

�
.�1/


a!

1X
l1;:::;laD0

�jI1j;l1.vI1/ˇ � � �ˇ�jIaj;la.vIa/

��
;

where v1 � � � vk D .�1/
vI1 � � � vIa and �l is the projection SV 00 ! S lV 00. It is clear that the graph
representing y ı y� has no cycle, and that . ı�/k;l is represented by connected graphs without cycles
glued from one level from � and one level from  . It is clear from the graph description that 1 ı�D y ı y�.
It is simply two ways to interpret the same gluing of two layers.

Similar to the definition of pk;2, we define .� ı p/k;l WD �1;l ı
y� ı ypjˇkV , where �1;l denotes the

projection EV ! S1SV ! S lV, and we define .p ı�/k;l WD �1;l ı yp ı y�jˇkV . Therefore, .� ıp/k;l is
the sum of all connected graphs with first a level of a single vertex followed by a level of vertices,
similarly for .p ı�/k;l . Similar to Proposition 2.9, we have the following result, which allows us to only
consider degeneration from connected curves in an analytical setup.

v1 v2 v3 v4 v5 v6 v7 v8

A1 A2 A3

B1 B2 B3 B4 B5 B6

Figure 4: A component of y�, left, and an admissible partition, right.
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Proposition 2.11 f�k;lgk�1; l�0 forms a BL1 morphism from fV; fpk;lgk�1; l�0g to fU; fqk;lgk�1; l�0g

if and only if .� ıp/k;l D .q ı�/k;l for k � 1; l � 0.

To motivate the proof below, we first work out a simple example by applying y� ı yp and yq ı y� to
v1v2ˇu 2 S2V ˇS1V for v1; v2;u 2 V.

(2-7) y� ı yp.v1v2ˇu/D .�1/jv1j

� 1X
lD0

�1;l.v1/

1X
lD0

.� ıp/2;l.v2ˇu/

�

C .�1/jv2jjuj

� 1X
lD0

.� ıp/2;l.v1ˇu/

1X
lD0

�1;l.v2/

�

C

� 1X
lD0

.� ıp/1;l.v1/

1X
lD0

�1;l.v2/

�
ˇ

1X
lD0

�1;l.u/

C .�1/jv1j

� 1X
lD0

�1;l.v2/

1X
lD0

.� ıp/1;l.v2/

�
ˇ

1X
lD0

�1;l.u/

C .�1/jv1jCjv2j

� 1X
lD0

�1;l.v1/

1X
lD0

�1;l.v2/

�
ˇ

1X
lD0

.� ıp/1;l.u/:

On the other hand, we have

(2-8) yq ı y�.v1v2ˇu/D .�1/jv1j

� 1X
lD0

�1;l.v1/

1X
lD0

.q ı�/2;l.v2ˇu/

�

C .�1/jv2jjuj

� 1X
lD0

.q ı�/2;l.v1ˇu/

1X
lD0

�1;l.v2/

�

C

� 1X
lD0

.q ı�/1;l.v1/

1X
lD0

�1;l.v2/

�
ˇ

1X
lD0

�1;l.u/

C .�1/jv1j

� 1X
lD0

�1;l.v2/

1X
lD0

.q ı�/1;l.v2/

�
ˇ

1X
lD0

�1;l.u/

C .�1/jv1jCjv2j

� 1X
lD0

�1;l.v1/

1X
lD0

�1;l.v2/

�
ˇ

1X
lD0

.q ı�/1;l.u/:

Therefore, we have that .� ıp/k;l D .q ı�/k;l for k D 1; 2 and l � 0 implies that

y� ı yp.v1v2ˇu/D yq ı y�.v1v2ˇu/:

Here we emphasize that �1;l.v1=v2=u/ in (2-7) is represented by a dashed line (identity map) in the
upper level glued with some �1;l in y� ı yp, while �1;l.v1=v2=u/ in (2-8) is represented by some �1;l

glued with a level of dashed lines in yq ı y�. In terms of forests, they are identified through shifting the
isolated �1;l components (in the sense of not being connected to the tree representing .� ıp/k;l ) to the
upper level and replacing .� ıp/k;l by .q ı�/k;l .
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a component of .� ıp/3;2 a component of .q ı�/3;2

an isolated �1;2an isolated �1;1

Figure 5: Components of y� ı yp and yq ı y� and the pairing by shifting up isolated ��;� components
and replacing the .� ıp/k;l by .q ı�/k;l .

Proof If f�k;lgk�1; l�0 forms a BL1 morphism, then

.� ıp/k;l � .q ı�/k;l D �1;l ı .y� ı yp� yq ı y�/
ˇ̌
ˇkV
D 0:

Conversely, we assume that .� ıp/k;l D .q ı�/k;l . In the glued forests representing y� ı yp, by looking at
the levels containing p�;� and ��;�, there is exactly one connected graph representing a component in
.� ıp/k;l , and many ��;� components in the second level. Fixing the .� ıp/k;l component, by shifting
the remaining isolated ��;� components up to the upper level and replacing the .� ıp/k;l component by
.q ı�/k;l , we find a correspondence between components in y� ı yp involving .� ıp/k;l and components
in yq ı y� involving .q ı�/k;l as in the concrete example before the proof (or Figure 5). They evaluate to
the same value as .� ıp/k;l D .q ı �/k;l and there is no extra sign from this shifting (ie changing the
order of applying the operations) since j��;�j D 0.

Remark 2.12 There are different notions of homotopies between BL1 morphisms if we wish to define
notions of homotopy equivalences of BL1 algebras. In practice, we cannot associate a canonical BL1
algebra to a contact manifold but one depends on various choices and is only well-defined up to homotopy.
However, for the purpose of this paper, as we are constructing functors from Con to a totally ordered set,
homotopy invariance is not needed. The homotopy in SFT is one of most subtle aspects of the theory
both algebraically and analytically. Nevertheless, we have the following brief remarks on homotopy.

(1) One can define a notion of homotopy, which is a homotopy on the bar/cobar complex. That is,
one can define a map by counting rigid but disconnected curves in a one-parameter family. One
advantage of such definition is that it is easier to construct as we will neglect the structures from
each connected component. Any homological structure on the level of bar/cobar complex will be
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an invariant. For example, the contact homology in [72] used this notion of homotopy. However,
homotopic augmentations in this sense do not give rise to homotopic linearized theory.

(2) Another notion of homotopy is defined through the notion of path objects, eg [21, Definition 4.1],
see also [76, Definition 2.9] for the homotopy in the L1 context with a specific path object model.
This definition is the right one to discuss linearized theory but is more involved to get in the
construction of SFT. In particular, homotopic augmentations give rise to homotopic linearized
theories with such a notion of homotopy. Such a homotopy is expected to be derived from the
homotopy used in [29, Section 2.4]. However, from the curve counting point of view, such a
construction is more subtle.

2.5 Augmentations

When V D f0g, it has a unique trivial BL1 algebra structure by pk;l D 0. We use 0 to denote this trivial
BL1 algebra. Note that 0 is the initial object in the category of BL1 algebras, with 0! V defined by
�k;l D 0.

Definition 2.13 A BL1 augmentation is a BL1 morphism � W V ! 0, ie a family of operators
�k W SkV ! k satisfying Definition 2.10.

For a BL1 algebra V, we define EkV D BkSV, which is a filtration on EV compatible with the
differential yp. Note that E0D k˚S2k˚C � � � with yp D 0, and we have H�.E0/DE0. Similarly we
have H�.E

k0/DEk0 for all k � 1. We define 10 be the generator in E10, so 10 ¤ 0 2H�.E
k0/ for all

k � 1. Then we define 1V 2H�.E
kV / to be the image of 10 under the chain map Ek0!EkV induced

by the trivial BL1 morphism 0! V.

Proposition 2.14 If there is a k � 1 such that 1V 2H�.E
kV / is zero , then V has no BL1 augmentation.

Proof If there is an augmentation � W V ! 0, then the sequences of BL1 morphisms 0! V
�
! 0 induce

a chain morphism Ek0 7!EkV 7!Ek0. It is direct to check the composition is identity by definition. If
1V 2H�.EkV / is zero, then we have a contradiction since 10 ¤ 0 2H�.Ek0/.

Definition 2.15 We define the torsion of a BL1 algebra V to be

T.V / WDminfk � 1 j 1V D 0 2H�.EkV /; k � 1g:

Here the minimum of an empty set is defined to be1.

By definition, we have that T.V /D 0 if and only if 1V 2H�.SV; yp1/ is zero. Since H�.SV; yp1/ is an
algebra with 1V a unit, we have H�.SV; yp1/D 0. In the context of SFT, T.V /D 0 if and only if the
contact homology vanishes, ie algebraically overtwisted [12].
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Since a BL1 morphism preserves the word filtration on the bar complex, we know that if there is a BL1
morphism from V to V 0 then T.V /� T.V 0/. Therefore we have the following obvious property, which
is crucial for the invariant property for our applications in symplectic topology.

Proposition 2.16 If there are BL1 morphisms between V and V 0 in both directions , then we have
T.V /D T.V 0/.

Given a BL1 augmentation �, we can linearize with respect to � by the following procedure. More
precisely, there is a change of coordinate to kill off all constant terms pk;0. We define F

1;1
� D idV

and F
k;0
� D �k and all other F

k;l
� D 0. Then following the recipe of constructing y� from �k;l , we can

define yF� on EV. Then yF� preserves the word-length filtration and on the diagonal �k ı
yF�jSkSV is

ˇk yF1
� , where yF1

� is an algebra isomorphism determined by yF1
� .x/D xC �1.x/ and �k is the projection

EV ! SkSV. Indeed the inverse is given by the following proposition.

Proposition 2.17 Let yF�� denote the map on EV defined by F
1;1
�� D idV and F

k;0
�� D ��

k;0 and all
other F

k;l
�� D 0, then yF�� is the inverse of yF�.

Proof In the gluing of forests representing yF�� ı yF�.x/, the � and �� components are not connected
directly as they have no outputs. Therefore we can shift up a �� in the second layer to �, which is still an
admissible gluing, or reversely, eg the figure below:

: : : : : : : : : : : :

�2

: : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : :
: : : : : : : : : : : :

id id

��2

: : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : :

We can group all gluings into those that can be related by these moves. Then there is one group containing
the unique gluing containing id only. All other groups have 2N gluings, where N > 0 is the number of
˙� involved. It is clear that we pair up gluings in a group such that they cancel with each other by a move
at a chosen position, eg the figure above. Therefore we have yF�� ı yF� D id, similarly for yF� ı yF�� D id.

We use yF� as a change of coordinate on EV and consider yp� WD yF� ı yp ı yF�� WEV !EV, so yp2
� D 0.

We can define
pk;l
� WD �1;l ı

yF� ı yp ı yF��jˇkV ;

where �1;l is the projection EV ! S1S lV. We claim that p
k;l
� D �1;l ı

yF� ı ypjˇkV . To see this, note
that yF�� restricted onˇkV is the identity map plus extra terms landing in .ˇmV /ˇ.ˇlk/ for lCm� k

and l > 0. When we apply yp on the extra term, we must have that the output is in im ypjˇmV ˇ .ˇ
lk/.
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�2 �2

p2;3

Figure 6: A component of p
4;1
� .

The image after applying �1;l ı
yF� must be zero since it contains at least two ˇ components. In other

words, those extra terms represent disconnected graphs in the description of yF� ı yp ı yF��jˇkV , hence is
projected to zero by �1;l . Then p

k;l
� is represented by the sum of connected graphs without cycle with k

inputs, l outputs, one
 component and possibly several components from �; see Figure 6.

Proposition 2.18 The map yp� is determined by p
k;l
� following the same recipe as for yp from pk;l .

Moreover , we have p
k;0
� D 0 for all k.

Proof In the graph representation of yF� ı yp ı yF�� on S i1V ˇ� � �ˇS ik V, there is exactly one component
containing a p

k;l
� as a subgraph. All the other ˙� components (ie those not in p

k;l
� ) are not connected

to the p�;� component directly (they could be in the same tree), we call them isolated ˙� components.
Similar to the proof of Proposition 2.17, we get collections of gluings that can be related by moving
up/down the isolated ˙� components. Hence those with isolated ˙ components in yF� ı yp ı yF�� sum to
zero, that is, yF� ı yp ı yF�� D yp� is determined by gluing only p

k;l
� .

Finally, because � is an augmentation, we have �1;0ı yF�ı ypDy�ı ypD0. Therefore p
k;0
� D�

1;0ı yF�ı ypjˇkV

for all k.

As a corollary of Proposition 2.18, `k
� WD p

k;1
� defines an L1 structure on V Œ�1�. Next we introduce

the structure which will be relevant to the definition of planarity. Let pk;l
�
W SkV ! S lV for k � 1

and l � 0 be a family of linear maps. We can define ypk;l
�

and yp� just like ypk;l and yp (see (2-2)), ie by
componentwise Leibniz rule and co-Leibniz rule with the modification that jpk;l

�
j is not necessarily

1 2 Z2.

Definition 2.19 We say that fpk;l
�
g is a pointed map if yp� ı yp D .�1/j yp�j yp ı yp�.

Proposition 2.20 The map fpk;l
�
g is a pointed map if and only if

�1;l ı . yp� ı yp� .�1/j yp�j yp ı yp�/jˇkV
D 0 for all k � 1 and l � 0:

Proof The proof is identical to the proof of Proposition 2.9; the extra sign is consistent with the fact that
jp�;�j D 1 in view of the pairing from switching levels.
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The relation �1;l ı . yp� ı yp� .�1/j yp�j yp ı yp�/jˇkVD 0 only involves degeneration from connected curves
in an analytical setup. In applications, pk;l

�
will come from counting holomorphic curves with one interior

marked point subject to a constraint from H�.Y /. The degree of p� is the same as the degree of the
constraint. Typically we will only consider a point constraint, then the degree is 0. Note that it does not
define BL1 morphisms as the combinatorics for packaging yp� is different from y�. Nevertheless, yp� still
defines a morphism on the bar complex and preserves the word-length filtration.

Then by the same argument in Proposition 2.18, we can define yp�;� WD yF�ı yp�ı yF�� and yp�;� is determined
by p

k;l
�;� , which is defined similarly to p

k;l
� . Note that we also have yp� ı yp�;� D yp�;� ı yp�. However, it

is not necessarily true that p
k;0
�;� D 0. In fact, the failure of this property on the homological level will

be another hierarchy that we are interested in. We define `k;0
�;� by p

k;0
�;� . Then ỳ�;� WD

P
k�0 `

k;0
�;� defines

a chain morphism .SV; ỳ�/! k. That ỳ�;� ı ỳ� D 0 follows from 0D �k ı yp� ı yp�;� D �k ı yp�;� ı yp�

restricted to SV D SS1V �EV , and �k is the projection from EV to k� S1SV �EV.

Definition 2.21 Given a BL1 augmentation and a pointed map p�, the .�;p�/ order of V is defined
to be

O.V; �;p�/ WDminfk j 1 2 im ỳ�;�jH�.BkV; ỳ�/
g;

where the minimum of an empty set is defined to be1.

Next, we need to compare the construction under BL1 morphisms. Given a BL1 morphism � W .V;p/!

.V 0; q/ and a family of morphisms �k;l
�
W SkV ! S lV 0, we can define y�� WEV !EV 0 by the same rule

of y� with exactly one �k;l
�

component and all the others �k;l components. Since we must have one �k;l
�

component, we have y��.1ˇ � � �ˇ 1/D 0.

In terms of formulae, we define y�k
�
W SkSV ! SV 0, which corresponds to the tree component of y�

containing ��;�
�

. It is determined by the following.

(1) y�k
�
.w1ˇ � � �ˇwk�1ˇ 1/D 0 for k � 0.

(2) y�k
�
W ˇkV � SkSV ! SV 0 is defined by

P
l�0 �

k;l
�

.

(3) Let fij g1�j�k be a sequence of positive integers. We define N WD
Pk

jD1 ij and Ni WD
Pi

jD1 ij .
Let wi D vNi�1C1 � � � vNi

. The following sum is over all partitions J1t� � �tJb Df1; : : : ;N g such
that the graph with kC bCN vertices A1; : : : ;Ak ;B1; : : : ;Bb; v1; : : : ; vN with Ai connected to
vNi�1C1; : : : ; vNi

and Bi connected to vj if and only if j 2 Ji , is connected and has no cycles:

y�k
�
.w1ˇ� � �ˇwk/D

X
admissible partitions

J1t���tJb

.�1/


.b� 1/!

1X
l1;:::;lbD0

�jJ1j;l1
�

.vJ1/��jJ2j;l2.vJ2/� � � � ��jJb j;lb .vJb /;

where w1 � � �wk D .�1/
vJ1 � � � vJb . There is no extra sign as we assume �k;l has degree 0 2Z2.
The reduction by .b�1/! is because a different order of the partition for the ��;� components does
not count as a different gluing. As a consequence, y�k

�
is the sum of glued trees from a forest of

k trees glued with one ��;�
�

component and multiple ��;� components.

Geometry & Topology, Volume 29 (2025)



3492 Agustin Moreno and Zhengyi Zhou

We define y�� WEV !EV 0 similarly to y�, but with exactly one y��
�

term. In terms of formulae, we have

y��.w1ˇ � � �ˇwn/D
X
k�1

i1C���CikDn

1

.k � 1/!
.y�i1
�
y�i2 � � � y�ik /.w1ˇ � � �ˇwn/;

where .y�i1
�
y�i2 � � � y�ik / is defined after Definition 2.2, with sV replaced by SV here.

Definition 2.22 Assume that p� and q� are two pointed maps of .V;p/ and .V 0; q/, respectively, of the
same degree, and � is a BL1 morphism from .V;p/ to .V 0; q/. We say that p�, q� and � are compatible
if there is a family of �k;l

�
such that

yq� ı y� � .�1/jyq�j y� ı yp� D yq ı y��� .�1/j
y��j y�� ı yp and j y��j D j yp�jC 1:

Proposition 2.23 The maps p�, q� and � are compatible using �� if and only if

�1;l

�
yq� ı y� � .�1/jyq�j y� ı yp�� yq ı y��C .�1/j

y��j y�� ı yp
�
jˇkVD 0

for all k � 1 and l � 0.

Proof The proof is similar to the proof of Proposition 2.11 with one difference: in the middle two levels
presenting

yq� ı y� � .�1/jyq�j y� ı yp�� yq ı y��C .�1/j
y��j y�� ı yp;

the p�;� and q�;� components may not glue to the ��;�
�

components. However, those pieces correspond to
.� ıp/k;l and .q ı�/k;l along with one ��;�

�
and multiple ��;� components. Since .� ıp/k;l D .q ı�/k;l

from Proposition 2.11, those extra terms sum to zero as jp�;�j D 1.

In practice, �k;l
�

is defined by counting connected rational holomorphic curves in the cobordism with
a marked point passing through a cobordism between the constraints in the definition of p� and q�. In
our typical case of point constraint, the cobordism will be a path connecting the point constraints, where
we have j y��j D 1. In principle, we can consider the category consisting of pairs .p;p�/ with morphisms
given by pairs .�; ��/ with a suitable definition of composition. Then the definition of orders is functorial.
For our purpose, we only need the following property without the precise definition of a composition.7

Proposition 2.24 Assume that p� and q� are two pointed maps of degree 0 of .V;p/ and .V 0; q/,
respectively , and that � is a BL1-morphism from .V;p/ to .V 0; q/ such that p�, q� and � are compatible.
Then for any BL1 augmentation � of V 0, we have O.V; � ı�;p�/�O.V 0; �; q�/.

Proof By the definition of compatibility, we compose yF� in the front and yF��ı� in the bottom to have

(2-9) yq�;� ı yF� ı y� ı yF��ı�� yF� ı y� ı yF��ı� ı yp�;�ı� D yF� ı y�� ı yF��ı� ı yp�ı�Cyq� ı yF� ı y�� ı yF��ı� :

7It is easy to spell out the composition using the graph description.
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We have a diagram (not commutative)

SV
ỳ
�;�ı�

//

y�1
�
��

k

id
��

SV 0
ỳ
�;�

// k

where y�1
� is determined by the L1 morphism �

k;1
� since �k;0

� D 0. In other words,

y�1
� jˇkV D

X
l�1

�l;1 ı
y��jˇkV ;

where �l;1 is the projection from EV to ˇlV. We claim that the diagram is commutative up to homotopy
y�0
�;� W SV ! k defined by

P
k�1 �

k;0
�;� , where �k;0

�;� D �k ı
yF� ı y�� ı yF��ı� jˇkV . Indeed, this homotopy

relation is exactly (2-9) restricted to SV D
L1

kD1ˇ
kV and then projected to k. It is clear that y�1

� ;
y�0
�;�

preserve the length filtration, therefore 1 2 im ỳ�;�ı� jH�.BkV; ỳ�ı�/ implies that 1 2 im ỳ�;�jH�.BkV 0; ỳ�/.
Hence O.V; � ı�;p�/�O.V 0; �; q�/.

Remark 2.25 There are various generalizations of O.V; �;p�/; some of the associated spectral invariants
are Siegel’s higher symplectic capacities with multiple point constraints [76]. See [67, Section 5.1] for
details of the construction and relation.

3 Rational symplectic field theory

In this section, we explain the construction of rational symplectic field theory (RSFT) as BL1 algebras.
RSFT was original packaged into a Poisson algebra with a distinguished odd-degree class h such that
fh;hg D 0 in [29, Section 2.1]. However for the purpose of building hierarchy functors from contact
manifolds, it is useful to reformulate RSFT as BL1 algebras. It is important to note that we will use the
same moduli spaces of holomorphic curves as the original RSFT but reinterpret the relations as other
algebraic structures.

3.1 Notations on symplectic topology

We first briefly recall the basics of symplectic and contact topology. A (co-oriented) contact manifold
.Y; �/ is a .2n�1/-dimensional manifold with a (co-oriented) hyperplane distribution � such that there
is a one-form ˛ with � D ker˛ and ˛ ^ .d˛/n�1 ¤ 0 and ˛ induces the co-orientation on �. Such a
one-form ˛ is called a contact form and we will call .Y; ˛/ a strict contact manifold. The manifold Y will
always be assumed to be closed. Given a contact form ˛, the Reeb vector field R˛ is characterized by
˛.R˛/D 1 and �R˛d˛ D 0. We say a contact form ˛ is nondegenerate if and only if all Reeb orbits are
nondegenerate. Any contact form can be perturbed into a nondegenerate contact form and in particular,
every contact manifold admits nondegenerate contact forms. Throughout this paper, .Y; ˛/ is always
assumed to be a strict contact manifold with a nondegenerate contact form unless specified otherwise.
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Definition 3.1 A compact symplectic manifold .X; !/ with @W D Y� tYC is

(1) a strong cobordism from .Y�; ��/ to .YC; �C/ if and only if ! D d�˙ near Y˙ with �˙ D ker�˙
such that, if we define V˙ by �V˙! D �˙, then VC points outwards along YC and V� points
inwards along Y�;

(2) an exact cobordism from .Y�; ��/ to .YC; �C/ if, moreover, ! D d� on X (the vector field V

defined by �V ! D � is called the Liouville vector field);

(3) a Weinstein cobordism from .Y�; ��/ to .YC; �C/ if, moreover, the Liouville vector field is gradient-
like for some Morse function � with Y˙ as the regular level sets of maximum/minimum value
for �.

We say a cobordism .X; !/ from .Y�; ˛�/ to .Y; ˛C/ is strict if and only if �˙jY˙ D ˛˙. It is clear
from definition that we can glue strict cobordisms to get a strict cobordism. In general, given two exact
cobordisms W1 and W2 from Y1 and Y2 to Y2 and Y3, respectively, the composition W2 ıW1 from
Y1 to Y3 is not uniquely defined, but up to homotopies of Liouville structures [20, Section 11.2], it is
well-defined. The central geometric object of our interests is the following cobordism category.

Definition 3.2 The exact cobordism category of contact manifolds Con is defined to be the category whose
objects are contact manifolds and morphisms are exact cobordisms up to homotopy. The composition
is given by gluing cobordisms. We will use Con2k�1 to denote the subcategory of .2k�1/-dimensional
contact manifolds. Similarly, we use ConW to denote the Weinstein cobordism category and ConS to
denote the strong cobordism category.

All of the categories above have monoidal structures given by the disjoint union. It is clear that we have
natural functors ConW ! Con! ConS , which are identities on the object level.

Remark 3.3 There is a forgetful functor from Con to the cobordism category of almost contact manifolds,
where the cobordisms are almost symplectic cobordisms. In the case of ConW , there is a forgetful map
to the almost Weinstein cobordism category of almost contact manifolds. These are purely topological
objects; the latter was studied thoroughly in [17; 18].

Roughly speaking, the principle in the symplectic cobordism category is that the complexity of contact
geometry increases in the direction of the cobordism. In view of this, we can introduce the following
category, which only remembers if there exists a cobordism.

Definition 3.4 We define Con� to be the category of contact manifolds, such that there is at most one
arrow between two contact manifolds and the arrow exists if and only if there is an exact cobordism.
Similarly, we can define Con�;W and Con�;S .
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It is a natural question to ask whether Con� is a poset. It is clear that we only need to prove that Y1 � Y2

and Y2 � Y1 implies that Y1 D Y2. Unfortunately, this is not the case, as we may take Y1 and Y2 to be
two different three-dimensional overtwisted contact manifolds [32] or suitable flexibly fillable contact
manifolds. One extreme case is that Y1 can be different from Y2 (as smooth manifolds) even if the
cobordisms are inverse to each other [25]. However, we can mod out this ambiguity to get a poset. It is
clear that the existence of (exact) cobordisms between Y1 and Y2 in both directions defines an equivalence
relation. We denote by ŒY � the corresponding equivalence class of the contact manifold Y.

Definition 3.5 We define Con� to be the poset whose objects are the equivalence classes of contact
manifolds with respect to the above equivalence relation, and there is a morphism ŒY1�� ŒY2� if and only
if there is an exact cobordism from Y1 to Y2. Similarly, we can define the posets Con�;W and Con�;S .

Under this condition, all three-dimensional overtwisted contact manifolds become the same least object
in Con�; see [32]. In higher dimensions, overtwisted contact manifolds are least objects up to topological
constraints [30]. It is clear that we have functors Con! Con�! Con�. The theme of this paper is to
construct functors from Con to some totally ordered set. Since it always descends to Con�, results in this
paper can be understood as some structures on the poset Con�. It is also a natural question as to whether
Con� is a totally ordered set,8 which is addressed in the negative [39] using exact orbifolds.

An exact (Weinstein, strong) cobordism from ¿ to Y is called an exact (Weinstein, strong) filling of Y.
We also introduce a category Con� as the under category under the empty set.

Definition 3.6 The objects of Con� are pairs .Y;W /, where W is an exact filling of Y up to homotopy.
A morphism from .Y1;W1/ to .Y2;W2/ is an exact cobordism X from Y1 to Y2 such that X ıW1 DW2

up to homotopy, or equivalently an exact embedding of W1 into W2 up to homotopy.

Example 3.7 The symplectic cohomology is a functor from Con� to the category of BV algebras, where
the functoriality follows from the Viterbo transfer map. The S1-equivariant symplectic cochain complex
is also a functor Con� to the homotopy category of S1-cochain complexes. The order of dilation and the
order of semidilation in [90, Corollary D] are functors from Con� to N [f1g.

3.2 Geometric setups for holomorphic curves

As usual, an almost complex structure J on the symplectization .Rs �Y; d.es˛// is said to be admissible
if and only if

(1) J is invariant under s-translation and restricts to a tame almost complex structure on .�D ker˛; d˛/,

(2) J sends @s to the Reeb vector R˛.

8For the total order, we will not consider ¿ as an object in Con�, as overtwisted contact manifolds and ¿ are not comparable in
Con�, by well-known results.
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Let .W; �/ be an exact filling and .X; �/ an exact cobordism. An almost complex structure J on
completions . yW ; y�/ or . yX ; y�/ is admissible if and only if

(1) J is tame for dy�,

(2) J is admissible on cylindrical ends.

Occasionally, we will also consider strong fillings .W; !/, where the definition of admissible almost
complex structure on yW is similar. For each Reeb orbit 
 , we can fix a basepoint b
 on the image. Now
fix an admissible J , and consider two collections of Reeb orbits 
C

1
; : : : ; 
C

sC
and 
�

1
; : : : ; 
�s� , possibly

with duplicates. A pseudoholomorphic map in the symplectization R� Y or completions yW ; yX with
positive asymptotics 
C

1
; : : : ; 
C

sC
and negative asymptotics 
�

1
; : : : ; 
�s� consists of:

(1) a sphere †, with a complex structure denoted by j ,

(2) a collection of pairwise distinct points zC
1
; : : : ; zC

sC
; z�

1
; : : : ; z�s� 2 †, each equipped with an

asymptotic marker, ie a direction in the tangent sphere bundle S
z˙

i

†,

(3) a map P†! R� Y; yW ; yX satisfying du ı j D J ı du, where P† denotes the punctured Riemann
surface †nfzC

1
; : : : ; zC

sC
; z�

1
; : : : ; z�s�g,

(4) for each zCi with corresponding polar coordinates .r; �/ around zCi such that the asymptotic marker
corresponds to � D 0, we have

(3-1) lim
r!0

.�R ıu/.rei� /DC1 and u
z
C

i

.�/ WD lim
r!0

.�Y ıu/.rei� /D 
Ci

�
�

1

2�
TCi �

�
;

where TCi is the period of the parametrized orbit 
Ci and 
Ci .0/D b
C
i

,

(5) for each z�i with corresponding polar coordinates .r; �/ compatible with asymptotic marker, we
have

(3-2) lim
r!0

.�R ıu/.rei� /D�1 and uz�
i
.�/ WD lim

r!0
.�Y ıu/.rei� /D 
�i

�
1

2�
T �i �

�
;

where T �i is the period of the parametrized orbit 
�i and 
�i .0/D b


C

i

.

A holomorphic curve is an equivalence of holomorphic maps modulo biholomorphisms of † commuting
with all the data. Throughout this paper, we will work with Z2-grading unless specified otherwise.
Let �C D f
C

1
; : : : ; 
C

sC
g and �� D f
�

1
; : : : ; 
�s�g be two ordered sets of Reeb orbits possibly with

duplicates. Choosing trivializations of � over orbits in �C and ��, we can assign the Conley–Zehnder
index �CZ.


˙
i / to each orbit. With such a trivialization, we have a relative first Chern class

c1 WH2.Y; �
C
[��IZ/! Z;

and similarly for W and X . Let A be a relative homology class representing the curve u. Then the
Fredholm index of the Cauchy Riemann operator at u minus the dimension of the automorphism group
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(ie biholomorphisms of † commuting with all the data) is

ind.u/D .n� 3/.2� sC� s�/C

sCX
iD1

�CZ.

C
i /�

s�X
iD1

�CZ.

�
i /C 2c1.A/:

In this paper, we will consider the following moduli spaces.

(1) MY;A.�
C; ��/ is the moduli space of rational holomorphic curves in the symplectization, modulo

automorphism and the R translation. The expected dimension is ind.u/� 1.

(2) MW ;A.�
C;¿/ (resp. MX ;A.�

C; ��/)are the moduli spaces of rational holomorphic curves in
the filling (resp. cobordism), modulo automorphism. The expected dimension is ind.u/.

(3) MY;A;o.�
C; ��/ is the moduli space of rational holomorphic curves with one interior marked

point in the symplectization modulo automorphisms. Here the marked point is required to be
mapped to .0; o/ 2R�Y for a point o 2 Y. The expected dimension is ind.u/C 2� 2n.

(4) MW ;A;o.�
C;¿/ is the moduli space of rational holomorphic curves with one interior marked

point in the filling modulo automorphism. And the marked point is required to be mapped to o 2W.
The expected dimension is ind.u/C 2� 2n.

(5) MX ;A;
 .�
C; ��/ is the moduli space of rational curves with one interior marked point in the

exact cobordism X modulo automorphism. The marked point is required to go through a path y
 ,
which is the completion of a path 
 from a point in YC to a point in Y�, ie extension by constant
maps in each slice in the cylindrical ends. The expected dimension is ind.u/C 3� 2n.

Another fact that is important for our later proof is that

(3-3)
Z
�C

˛�

Z
��
˛ � 0

whenever MY;A.�
C; ��/ or MY;A;o.�

C; ��/ are not empty. All of the moduli spaces above have a
SFT building compactification by [9], denoted by M. The orientation convention follows [11], and we
need to require that all asymptotic Reeb orbits are good [84, Definition 11.6] to orient M. One property of
this convention is that if we switch two orbits 
1; 
2 that are next to each other in �C or ��, the induced
orientation is changed by .�1/j�CZ.
1/Cn�3j�j�CZ.
2/Cn�3j; see [84, Section 11.2]. In the following, we
will count zero-dimensional moduli spaces to define coefficients in the structural maps. First of all, this
requires an orientation, hence we can only count when all asymptotic Reeb orbits are good.9 Next we
need transversality, where the count is an honest count of orbifold points, or a virtual machinery, where
the count is a count of weighted orbifold points in perturbed moduli spaces [33; 46] or an algebraic count
after fixing some auxiliary data [72]. For simplicity, we will just use #M to denote the count.

9Alternatively, the count is evaluated in the fixed space of an orientation line with a group action, the appearance of a bad orbit is
exactly when the group action is not trivial; see [72, Remark 4.15] for details.
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3.3 Contact homology algebra

We will first recall the definition of the contact homology algebra. Let V˛ denote the free Q-module
generated by formal variables q
 for each good orbit 
 of .Y; ˛/. We grade q
 by �CZ.
 /Cn�3, which
should be understood as a well-defined Z2 grading in general. The contact homology algebra CHA.Y / is
the free symmetric algebra SV˛. The differential is defined as

(3-4) @l.q
 /D
X
jŒ��jDl

#MY;A.f
 g; �/
1

����
q� ;

where the number #M should be understood as a virtual counting once the virtual machinery is chosen,
the same applies to the discussion on RSFT in the next subsection. The sum is over all multisets Œ��, ie
sets with duplicates, of size l . And � is an ordered representation of Œ��, eg

� D f�1; : : : ; �1„ ƒ‚ …
i1

; : : : ; �m; : : : ; �m„ ƒ‚ …
im

g

is an ordered set of good orbits with �i ¤ �j for i ¤ j and
P

ij D l . We write �� D i1! � � � im!, and
�� D �

i1
�1
� � � �

im
�m

is the product of multiplicities, and q� D q�1
� � � q�m

. We mod out �� as we should
count holomorphic curves with unordered punctures, and mod out �� to compensate for having �

different ways to glue when we have a breaking at 
 . The orientation property of MY;A.f
 g; �/ implies
that (3-4) is independent of the representative � . The differential on a single generators is defined by

@.q
 /D

1X
lD0

@l.q
 /;

which is always a finite sum by (3-3). Then the differential on CHA.Y / is defined by the Leibniz rule

@.q
1
� � � q
l

/D

lX
jD1

.�1/
jq
1
jC���Cjq
j�1

j
q
1
� � � q
j�1

@.q
j /q
jC1
� � � q
l

:

The relation @2 D 0 follows from the boundary configuration of MY;A.f
 g; �/ with virtual dimension 1

appropriately interpreted in the chosen virtual machinery.

Given an exact cobordism .X; �/ from Y� to YC, we have an algebra map � from CHA.YC/ to CHA.Y�/,
which on generators is defined by

�.q
 /D

1X
lD0

X
jŒ��jDl

#MX ;A.f
 g; �/
1

����
q� ;

where � is a collection of good orbits of Y�. The boundary configuration of MX ;A.f
 g; �/ with virtual
dimension 1 gives the relation @ ı � D � ı @. Then we have a functor from Con to the category of
supercommutative differential graded algebras.
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T

Tp2;2

p2;2

Figure 7: Showing yp ı yp D 0, where T stands for a trivial cylinder.

Theorem 3.8 [72, functor (1.22)] The homology H�.CHA.Y // above realized in VFC gives a monoidal
functor from Con to the category of (super)commutative algebras.

Remark 3.9 Using semiglobal Kuranishi charts, Bao and Honda [6] gave an alternative definition of
contact homology enjoying the same invariance and functorial properties.

3.4 Rational SFT as BL1 algebras

To assign BL1 algebras to strict contact manifolds, we need to consider moduli spaces with multiple
inputs and multiple outputs. In the following, we give an informal description of the BL1 structure
arising from counting holomorphic curves, neglecting any transversality issues. We use MY;A.�

C; ��/

to denote the compactified moduli space of rational curves in class A with positive asymptotics �C and
negative asymptotics �� in the symplectization R�Y. Then we can define pk;l by10

(3-5) pk;l.q�
C

/D
X
jŒ���jDl

#MY;A.�
C; ��/

1

������
q�
�

:

Here Œ��� is a multiset with �� an ordered set representative and j�Cj D k. In particular, the orientation
property of MY;A.�

C; ��/ implies that pk;l is a map from SkV˛ to S lV˛. The count #M is a virtual
count, which will be made precise after the virtual setup in Section 3.6. For simplicity, we pretend the
moduli spaces are cut out transversely and #M is the geometric count of oriented orbifold points. When
transversality and gluing holds, the boundary of the one-dimensional moduli spaces MY;A.�

C; ��/

yields that fpk;lg is a BL1 algebra RSFT.Y / (showed schematically by the pictures); see Theorem 3.11
for details.

10A previous version of this paper made a mistake with an extra 1=��C in the coefficient.
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Remark 3.10 In the original formalism of the full SFT given by Eliashberg, Givental and Hofer
[33, Section 2.2.3], the Hamiltonian H is defined as

H D
X

A;Œ�C�;Œ���

„g�1

��C�����C���
#MY;g;A.�C; ��/q

��p�C

in the Weyl algebra W of power series in the variables „ and p
 , with coefficients that are polynomial
in the variables q
 . MY;g;A.�C; ��/ is the genus g analogue of MY;A.�C; ��/. W is equipped with
the associative product � in which all variables supercommute according to their gradings except for the
variables p
 and q
 corresponding to the same Reeb orbit 
 , for which we have

p
 � q
 � .�1/jp
 jjq
 jq
 �p
 D �
„:

In the BV1 reformalism of the full SFT introduced by Cieliebak and Latschev [22, Section 6], the
differential DSFT on SV˛ ŒŒ„�� is defined as

DSFT.s/D
X

A;Œ�C�;Œ���

„g�1

��C�����C���
#MY;g;A.�C; ��/q

��
Y

i2�C

�
�
i
„
@

@q
i

�
s:

In view of the relation between the Weyl algebra formalism and the IBL1 formalism by Cieliebak,
Fukaya and Latschev following [21, (7.4)], the operation pk;l;g is defined by

pk;l;g.q�C/D
X

A;Œ���

1

��C�����C���
#MY;g;A.�C; ��/q

��
Y

i2�C

�
�
i
„
@

@q
i

�
q�
C

D

X
A;Œ���

1

������
#MY;g;A.�C; ��/q

�� :

In view of [67, Corollary 5.12], since IBL1 algebras restrict to BL1 algebras, our rational SFT formalism
in (3-5) has consistent coefficients with [22; 21; 33]. Heuristically, ������ is the order of the “isotropy
group” of the output orbit set ��.

Similarly, for a strict exact cobordism X from Y� to YC, by considering the moduli spaces MX ;A.�
C; ��/

of rational curves in X , we can define a BL1 morphism from RSFT.YC/ to RSFT.Y�/ by

(3-6) �k;l.q�
C

/D
X
jŒ���jDl

#MX ;A.�
C; ��/

1

������
q�
�

;

where j�Cj D k. Then the boundary of the one-dimensional moduli spaces MX ;A.�
C; ��/ yields that

f�k;lg is a BL1 morphism RSFT.YC/! RSFT.Y�/. In Figure 8, C indicates the cobordism level.

If we fix a point o in Y, then by considering moduli spaces MY;A;o.�
C; ��/ we can define a pointed

morphism p� by

(3-7) pk;l
�
.q�
C

/D
X
jŒ���jDl

#MY;A;o.�
C; ��/

1

������
q�
�

:
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T

�1;1�2;2

p2;2

C

�1;1

Tp2;2

�2;2C

Figure 8: Showing y� ı yp D yp ı y�.

Then the boundary of the one-dimensional moduli spaces MY;A;o.�
C; ��/ yields that fpk;l

�
g is a

pointed morphism of degree 0. Note that MY;A;o.�
C; ��/ consists of holomorphic curves with a point

constraint in the symplectization with a s-independent J , therefore in the level containing an element of
MY;A;o.�

C; ��/ in a rigid breaking, there is only one nontrivial component.

For a strict exact cobordism X from Y� to YC, if we choose a path 
 from o� 2 Y� to oC 2 YC, then we
can complete the path 
 to a proper y
 path in yX by constants in the cylindrical ends. Then we claim that
the pointed morphisms p�; q� determined by o�; oC and the BL1 morphism � are compatible, with ��
given by

(3-8) �k;l
�
.q�
C

/D
X
jŒ���jDl

#MX ;A;
 .�
C; ��/

1

������
q�
�

:

T

Tp
2;2
�

p2;2 T

Tp2;2

p
2;2
�

Figure 9: Showing yp� ı yp D yp ı yp�.
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T

�1;1�2;2

q
2;2
�

C

�1;1

Tp
2;2
�

�2;2C T

�1;1�
2;2
�

q2;2

C

�
1;1
�

Tp2;2

�2;2C

Figure 10: Showing yq� ı y� � y� ı yp� D y�� ı ypC yq ı y��.

In order to turn the above informal discussion into a rigorous construction, we need to make sense of #M
such that they have the desired relations. The main theorem of this section is that after fixing auxiliary
choices depending on the choice of virtual machinery, we almost have a functor from strict contact
cobordism category (with auxiliary choices) to the category of BL1 algebras (the composition is not
discussed, nor is it needed for our applications).
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Theorem 3.11 Let .Y; ˛/ be a strict contact manifold with a nondegenerate contact form , then we have
the following.

(1) There exists a nonempty set of auxiliary data ‚ such that for each � 2‚we have a BL1 algebra p�

(Definition 2.3) on V˛.

(2) For any point o 2 Y, there exists a set of auxiliary data ‚o with a surjective map ‚o!‚, such
that for any �o 2‚o, we have a pointed map p�;�o

(Definition 2.19) for p� , where � is the image
of �o in ‚o!‚.

(3) Assume there is a strict exact cobordism X from .Y 0; ˛0/ to .Y; ˛/. Let ‚ and ‚0 be the sets
of auxiliary data for ˛ and ˛0. Then there exists a set of auxiliary data „, with a surjective map
„!‚�‚0, such that for � 2„, there is a BL1 morphism �� (Definition 2.10) from .V˛;p� / to
.V˛0 ;p� 0/, where .�; � 0/ is the image of � under „!‚�‚0.

(4) Assume in addition that we fix a point o0 2 Y 0 that is in the same component of o in X. Then
for any compatible auxiliary data �; � 0; �o; �o0 ; �, we have that p�;�o

;p�;�o0
; �� are compatible

(Definition 2.22).

(5) For compatible auxiliary data �; �o, there exists compatible auxiliary data k�; k�o for .Y; k˛/ for
k 2RC such that pk� and p�;k�o

are identified with p� and p�;�o
by the canonical identification

between V˛ and Vk˛.

To make sense of #M we need to fix a choice of virtual machinery, and the meaning of auxiliary data also
depends on the choice. If one adopts the perturbative scheme in [33; 46], Theorem 3.11 is a special case
of their main constructions. On the other hand, since we only consider rational curves, the combinatorics
is not essentially different from the construction of differentials and morphisms in [72]. In particular,
Pardon’s VFC works in a verbatim account. We will explain the VFC construction to prove Theorem 3.11
and discuss other virtual techniques in Section 3.6.

3.5 Augmentations and linearized theories

Definition 3.12 For a strict contact manifold .Y; ˛/, we fix an auxiliary choice � 2‚, then we define
algebraic planar torsion APT.Y; ˛; �/ to be the torsion of the BL1 algebra .V˛;p� / over Q.

As a consequence of Proposition 2.16 and Theorem 3.11, we have APT.Y; ˛; �/ is an invariant for Y in
the following sense.

Proposition 3.13 APT.Y; ˛; �/ is independent of ˛ and � , hence can be abbreviated as APT.Y /. More-
over , APT W Con!N [f1g is a monoidal functor , where the monoidal structure on N [f1g is given
by a˝ b Dminfa; bg.

Proof By (5) of Theorem 3.11, .V˛;p� /D .Vk˛;pk� / for any k 2RC. Let ˛0 be another contact form,
and � 0 corresponding auxiliary data. Then there exist k1 and k2 such that there are strict cobordisms
from .Y; k1˛/ and .Y; ˛0/ to .Y; ˛0/ and .Y; k2˛/, respectively. Then by (3) of Theorem 3.11 and
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Proposition 2.16, APT.Y; ˛; �/DAPT.Y; ˛0; � 0/. For .Y1; ˛1; �1/ and .Y2; ˛2; �2/, the BL1 algebra for
the disjoint union .Y1tY2; ˛1t˛2; �1t�2/ is given by .V˛1

˚V˛2
; fp

k;l
�1
˚p

k;l
�2
g/, ie there are no mixed

structural maps. Then, clearly, APT.V˛1
˚V˛2

; fp
k;l
�1
˚p

k;l
�2
g/DminfAPT.V˛1

;p�1
/;APT.V˛2

;p�2
/g.

That APT is a functor follows from (3) of Theorem 3.11.

When APT.Y / D 0, it is equivalent to H�.CHA.Y // D 0, which is also known as algebraically over-
twisted [12] or 0-algebraic torsion [51], and is implied by overtwistedness [10; 85]. Since finite order of
torsion is an obstruction to augmentations, finite algebraic planar torsion is an obstruction to symplectic
fillings in view of the following.

Proposition 3.14 Let .Y; ˛/ be a strict contact manifold with an auxiliary data � . If .W; d�/ is a strict
exact filling , then there is a BL1 augmentation of .V˛;p� / over Q.

Proof We define
�k.q�

C

/ WD
X
A

#MW ;A.�
C;¿/

for j�Cj D k. Then by the third claim of Theorem 3.11, f�kgk�1 defines a BL1 augmentation.

Corollary 3.15 If APT.Y / <1, then Y has no strong filling.

Proof Proposition 3.14 implies that Y has no exact filling. For the case of strong filling, we consider
BL1 algebras over V˛˝Qƒ, where ƒ is the Novikov field

ƒD

� 1X
iD1

aiT
�i

ˇ̌̌
ai 2Q; lim

i!1
�i DC1

�
:

The structural maps in (3-5) need an additional factor of T
R

u d˛ for u 2MY;A.�
C; ��/; we use p

k;l
ƒ

to
denote such structural maps. If APT.Y /<1, we have x2EkV, such that yp.x/D1. Let F denote the map
V˛! V˛˝Qƒ sending q
 to T �

R

�˛q
 . Then we have an induced map EkF WEkV !Ek.V ˝Qƒ/.

Since
R

u�˛ D
P

2�C

R

 �˛�

P

2��

R

 �˛, it is straightforward to check that ypƒ.EkF.x//D 1.

Hence .V˛˝Qƒ;p
k;l
ƒ
/ has no augmentations. On the other hand, given a strict strong filling .W; !/, by

a similar argument of the filling case of Theorem 3.11,

�k.q�
C

/D
X
A

#MW ;A.�
C;¿/T

R
u�x!

defines an augmentation of .V˛ ˝Q ƒ;p
k;l
ƒ
/, where j�Cj D k and x! is the two-form on yW that is !

on W and d˛ on the cylindrical end. As a consequence, there is no strong filling.

Remark 3.16 ƒ is equipped with a decreasing filtration ƒ�1
�ƒ�2

if �1 � �2, where ƒ� consists of
those elements with �i � �. ƒ is complete with respect to such a filtration. We view elements in V˛ as
having filtration 0. Then V ˝Q ƒ, SV ˝Q ƒ and EV ˝Q ƒ all have induced filtrations, and we use
V ˝Qƒ, SV ˝Qƒ and EV ˝Qƒ to denote the completions. In the context of SFT, due to the feature
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of the compactness result, the structural maps pk;l and �k;l may only be well-defined on the completion.
It is necessary to use the completion to describe Maurer–Cartan elements [22], and functoriality for
strong cobordisms [67], as well as the SFT for a stable Hamiltonian structure [51]. The situation in
Corollary 3.15 is a rather special case of strong cobordisms where a naive version of Novikov coefficient
without completion is sufficient.

Roughly speaking the algebraic planar torsion looks for rigid curves with multiple positive punctures
and no negative puncture. One particular situation, where we can infer information of algebraic planar
torsion, is the planar torsion introduced by Wendl [82, Definition 2.13], which generalizes overtwisted
contact structures and the Giroux torsion in dimension 3. The following two results were essentially
proven in [51].

Theorem 3.17 If Y is a three-dimensional contact manifold with planar torsion of order k, then
APT.Y /� k.

Proof This follows from the same argument of [51, Theorem 6] based on a precise description of
low-energy curves in [51, Proposition 3.6]; see also [82]. In fact, we do not need the genus > 0 assertion
from the fifth property of [51, Proposition 3.6], as we do not consider higher-genus curves.

Theorem 3.18 For any k 2N, there exists a three-dimensional contact manifold Y with APT.Y /D k.

Proof This follows from the same argument of [51, Theorem 4]. In fact, we only need the genus-zero
part of [51, Lemma 4.15] to get a lower bound.

Remark 3.19 As follows from [51, Corollary 1], there are examples of three-dimensional contact
manifolds Yi with planar torsion of order k such that there is an exact cobordism from Yi to YiC1 but no
exact cobordism from YiC1 to Yi . On the other hand, there is always a strong cobordism from YiC1 to Yi

by [83, Theorem 1]. We will see similar phenomena in higher dimensions in Sections 6 and 7.

Remark 3.20 It is an interesting question to understand the relations between algebraic planar tor-
sion and algebraic torsion. The BV1 reformulation of SFT is recalled in Remark 3.10. Following
[51, Definition 1.1], Y has algebraic torsion k if k is the smallest number such that „k is 0 in the
homology of .SV˛ ŒŒ„��;DSFT/.

Let us consider the simplest case with an algebraic planar 1-torsion, in which there are two generators q1

and q2 such that p2;0.q1q2/D 1, p2;l.q1q2/D 0 for all l > 0, and p1;l.qi/D 0 for all l � 0 and i D 1; 2.
The natural candidate for algebraic torsion is q1q2, and we compute

DSFTq1q2 D „C

1X
gD1

X
A;Œ��

„gC1

����
#MY;g;A.f
1; 
2g; �/q

�

C

1X
gD1

X
A;Œ��

„g

����

�
#MY;g;A.f
1g; �/q

�q
2
C .�1/jq
1

j#MY;g;A.f
2g; �/q
1
q�
�
:

Geometry & Topology, Volume 29 (2025)



3506 Agustin Moreno and Zhengyi Zhou

p3;3 T

�1
�2

Figure 11: A component of `4
� .

Since we have no knowledge of MY;g;A for g> 0 in RSFT, one should not expect that q1q2 is a primitive
of „ under DSFT. We note here that the above consideration is a very special case and in general algebraic
planar k-torsion is not equivalent to „k being the image of the genus 0 term of DSFT unless k D 0. In fact,
algebraic torsion and algebraic planar torsion can be viewed as two “independent” axes in a grid of
torsions, which make different requirements on holomorphic curves; see [67, Section 5.2] for details.

The notion of Giroux torsion was generalized to higher dimensions in [58]; the following theorem is a
reformulation of [64, Theorem 1.7].

Theorem 3.21 If Y has Giroux torsion , then APT.Y /� 1.

Now we assume .V˛;p� / does have a BL1 augmentation � over Q. Then APT.Y / is1. In view of
Section 2 and Theorem 3.11, a point o 2 Y and an auxiliary data �o give rise to a pointed morphism p�;�o

.
Hence we can define the order O.V˛; �;p�;�o

/. In the following, we use AugQ.V˛/ to denote the set of
BL1 augmentations of V˛ over Q.

Definition 3.22 For a strict contact manifold .Y; ˛/ with auxiliary data � , we define

O.Y; ˛; �/ WDmaxfO.V˛; �;p�;�o
/ j � 2 AugQ.V˛/; o 2 Y; �o 2‚og;

where the maximum of an empty set is defined to be zero.

Proposition 3.23 O.Y; ˛; �/ is independent of ˛ and � .

Proof We first show that if there is a strict exact cobordism X from .Y�; ˛�/ to .YC; ˛C/, then
O.YC; ˛C; �C/ � O.Y�; ˛�; ��/ for any �C; ��. For any o� 2 Y�, there exists a point oC 2 YC such
that there is a path in X connecting oC and o�. Then by (4) of Theorem 3.11 and Proposition 2.24, for
any augmentation � to V˛� and auxiliary data �o� , there exists an auxiliary data � 2„ and �oC such that
O.V˛C ; � ı �� ;p�;�oC

/ � O.V˛� ; �;p�;�o�
/. Hence O.Y; ˛C; �C/ � O.Y; ˛�; ��/. Then by the same

argument in Proposition 3.13, O.Y; ˛; �/ is independent of ˛ and � .

Definition 3.24 The planarity P.Y / of a contact manifold Y is defined to be O.Y; ˛; �/.
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Proposition 3.25 P W Con!N [f1g is a monoidal functor , where the monoidal structure on N [f1g

is given by 0˝ aD 0 for all a, and a˝ b Dmaxfa; bg for all a; b � 1.

Proof That P is a functor is proven in Proposition 3.23. To prove the monoidal structure, we first note
that .V1˚V2;p1˚p2/ has an augmentation if and only if V1 and V2 both have augmentations, since
the natural inclusion V1! V1˚V2 defines a BL1 morphism. This verifies the case for 0˝ a. When
both Y1 and Y2 have augmentations, it follows from definition that P.Y1 tY2/DmaxfP.Y1/;P.Y2/g.

Since finite algebraic planar torsion is an obstruction to BL1 augmentations, we have that APT.Y /�1
implies that P.Y / D 0. Since P.Y / D 0 corresponds precisely to those contact manifolds without
augmentations, algebraic planar torsion is the inner hierarchy inside P.Y /D 0. However it is still possible
(at least on the algebraic level, eg by exploiting the nonclosedness of Q algebraically) that P.Y /D 0 but
APT.Y /D1, ie there is no augmentation, nor is there finite algebraic planar torsion.

3.6 Implementation of virtual techniques

In the following, we will explain how to get the algebraic count of moduli spaces in Theorem 3.11 using
virtual techniques. Any choice of virtual machinery should give a construction of P and APT with the
claimed properties, although it is not clear whether different virtual techniques give rise to the same P
and APT. However, the geometric results, examples and applications in this paper, do not depend on
the choice, as we have the following axiom for virtual machinery, which holds for any of the virtual
techniques mentioned in this paper.

Axiom 3.26 A virtual implementation of a holomorphic curve theory has the property that the virtual
count of a compactified moduli space equals the geometric count , when transversality holds for that
moduli space.

In the following, we will finish the proof of Theorem 3.11 by implementing Pardon’s implicit atlas and
virtual fundamental cycles [71; 72]. The construction is essentially the constructions of contact homology
algebra and morphisms in [72]. As explained in [72, Section 1.8], the only difference that one needs to pay
attention to is the underlying combinatorics for holomorphic curves. One needs to show that an implicit
atlas with cell-like stratification still exists for RSFT, in particular the space of gluing parameters has a
cell-like stratification. However, the combinatorics for RSFT is also “tree-like” like contact homology,
hence the construction is a verbatim account of [72]. More precisely, the only places we need to pay
attention to because of the differences of the combinatorics are that the gluing parameter spaces are
cell-like stratified and virtual fundamental cycles gives rise to the right coefficient in BL1 coefficient. In
the following, we give a brief description of the construction.

3.6.1 R-modules We first introduce a category R which will play the same role of SI in [72, Section 2.1]
to govern the combinatorics of rational holomorphic curves in the symplectization. The objects of R are
connected nonempty directed graphs without cycles, such that each vertex has at least one incoming edge.
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Edges with missing source, ie input edges, and edges with missing sink, ie output edges, are allowed.
Those edges are called external edges and all other edges are called interior edges. The graph T is
equipped with decorations as follows.

(1) For each edge e 2E.T /, a Reeb orbit 
e.

(2) For each vertex v 2V .T /, a relative homology class ˇv 2H2.Y; f
eCgeC2EC.v/tf
e�ge�2E�.v//,
where we denote by EC.v/ the set of incoming edges at v and E�.v/ the set of outgoing edges
at v, which can be empty.

(3) For each external edge e 2Eext.T /, a basepoint be 2 im 
e.

A morphism � W T ! T 0 in R consists first of a contraction of the underlying graph of T to T 0 by
collapsing some of the interior edges of T . The decorations have the following property.

(1) For each noncontracted edge e 2E.T /, we have 
�.e/ D 
e.

(2) For each vertex v0 2 V .T 0/, we have ˇv0 D
P
�.v/Dv0 ˇv.

Finally, we specify for each external edge e 2 Eext.T / D Eext.T 0/ a path along im 
e between the
basepoints be and b0e modulo the relation that identifies two such paths if and only if their difference
lifts 
e . In particular, there are exactly �
e

different equivalence classes of paths. Then the automorphism
group of T with a single vertex is a product of cyclic groups and symmetric groups with cardinality
��C�����C��� . For T ! T 0, we use Aut.T=T 0/ to denote the subgroup of Aut.T / compatible with
T ! T 0.

A concatenation in R consists of a finite nonempty collection of objects Ti 2R along a matching between
some pairs of output edges and input edges with matching orbit label, such that the resulting gluing is
a directed graph without cycles, along with a choice of paths between the basepoints for each pair of
matching edges. Given a concatenation fTigi in R, there is a resulting object #i Ti 2R. A morphism of
concatenations fTigi! fT

0
i gi means a collection of morphisms Ti! T 0i covering a bijection of index

sets. Then a morphism fTigi! fT
0
i gi induces a morphism #i Ti! #i T 0i . If fTigi is a concatenation

and Ti D #j Tij for some concatenation fTij gj , then there is a resulting composite concatenation fTij gij

with natural isomorphisms #ij Tij D #i #j Tij D #i Ti . We use Aut.fTigi= #i Ti/ to represent the
group of automorphisms of fTigi acting trivially on #i Ti , ie the product

Q
e Z�
e

over junction edges.

The key concept to organize the moduli spaces, implicit atlases, and virtual fundamental cycles is the
following R-module.

Definition 3.27 [72, Definition 4.5] A R-module X valued in a symmetric monoidal category C˝
consists of the following data.

(1) A functor X WR! C.
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(2) For every concatenation fTigi in R, a morphismN
i X.Ti/!X.#i Ti/

such that the diagramsN
i X.Ti/ //

��

X.#i Ti/

��N
i X.T 0i /

// X.#i T 0i /

N
i X.Ti/

&&N
i;j X.Tij / //

77

X.#ij Tij /

commute for any morphism of concatenations and composition of concatenations.

Example 3.28 A holomorphic building of type T 2R consists of the following data.

(1) For every vertex v, a closed, connected nodal genus-zero Riemann surface Cv , along with distinct
points fpv;e 2Cvge indexed by the edges incident at v and a J holomorphic map uv WCvnfpv;ege!

R�Y up to R-translation.

(2) Each map uv converges to 
eC near pv;eC in the sense of (3-1) for eC 2 EC.v/ and converges
to 
e� near pv;e� in the sense of (3-2) for e� 2E�.v/. We use .uv/pv;e W S

1! Y to denote the
Y -component of the limit map at the puncture pv;e, ie the corresponding orbit.

(3) For every input/output edge e, an asymptotic marker Le 2 Spv;e Cv, which is mapped to the
basepoint be by .uv/pv;e .

(4) For every interior edge v e
! v0, a matching isomorphism me W Spv;e Cv! Spv0;e Cv0 intertwining

.uv/pv;e and .uv0/pv0;e .

An isomorphism between two buildings is a collection of isomorphisms between Cv commuting with all
the data. Then we define M.T / to be the set of isomorphism classes of holomorphic buildings of type T .
Note that Aut.T / acts on M.T / by changing markings. Then we define

M.T / WD
G

T 0!T

M.T 0/=Aut.T 0=T /:

The union is over the set of isomorphism classes in the over category R=T . Moreover, M.T / is endowed
with the Gromov topology and is a compact Hausdorff space [72, Sections 2.9 and 2.10]. Note that here
for each v 2 V .T /, we view uv as a curve in its own copy of the symplectization. In particular, we
have no level structure and the topology is slightly different from the buildings in [9] by forgetting all
trivial cylinders. However this poses no difference for the compactness. In particular, there is a surjective
map from the compactification in [9] to M.T / by collapsing the boundary configurations containing
levels with multiple disconnected nontrivial curves into corners. The functor M is an R-module in
the category of compact Hausdorff spaces with disjoint union as the monoidal structure. The natural
map M.T / ! R=T is a stratification in the sense of [72, Definition 2.15]. We define vdim.T / asP
v2V .T /.ind.uv/�1/ and codim.T 0=T / is the number of interior edges collapsed in T 0! T . Then we

have codim.T 0=T /C vdim.T 0/D vdim.T /.
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Example 3.29 Definition 2.46 of [72] constructs, for each nondegenerate Reeb orbit 
 (good or bad)
and basepoint b 2 im 
 , a canonical Z2 graded line o
;b with grading �CZ.
 /C n� 3 mod 2. Any path
b! b0 gives rise to a functorial isomorphism o
;b! o
;b0 , two paths induces the same isomorphism if
the difference is a lift of 
 . As a consequence, Z�
 acts on o
;b . Then 
 is good if and only if the action is
trivial. Let T be a tree, then we have the determinant line oı

T
jv of the linearized Cauchy–Riemann operator

at the vertex v and a canonical isomorphism from oı
T
jv to

N
eC2EC.v/ o
eC

;b
eC
˝
N

e�2E�.v/ o
_

e� ;be�

.

Moreover, oı is an R-module [71, Example 4.7]. We define oT by oı
T
˝ .o_R/

V .T /, where the line oR

comes from linearizing the R translation; oT will be canonically isomorphic to the orientation sheaf
of M.T /. Moreover, for T 0! T , there is an induced isomorphism oT 0 ! oT by [72, (2.61)] from an
orientation of the gluing parameter space.

Example 3.30 In the construction of the implicit atlas [72, Definition 3.2] for moduli spaces M.T /,
we need to construct a thickened moduli space, which roughly speaking consists of solutions to pseudo-
holomorphic curve equation up to a finite-dimensional error. The choices involved in defining implicit
atlas, called thickening data as defined in [72, Definition 3.9], work verbatim for our purpose. Then we
have the set of thickening data A.T /, and we may define

A.T / WD
G

T 0�T

A.T 0/;

where the disjoint union is over all connected subgraphs that are in R. Then clearly A is an Rop-module
to the category of sets.

Proposition 3.31 M.T / is equipped with an implicit atlas A.T / with oriented cell-like stratification.

Proof First of all, we have the space of gluing parameters GT= that associates to each interior edge
a number in .0;1�. Since there are no cycles in T , there are no relations among those gluing pa-
rameters. In particular, GT= has a cell-like stratification [72, Definition 3.1] over RT= like .GI /T= in
[72, Lemma 3.5]. Then the claim follows from the same proof of [72, Theorem 3.23]. The analogues of
[72, Theorems 3.31 and 3.32] hold for our setup since we only glue one puncture at a time, hence the
gluing analysis in [72, Section 5] applies verbatim.

With the existence of an implicit atlas with cell-like stratification, the machinery of virtual fundamental
cycles induces a pushforward map

(3-9) C
�Cvdim.T /
vir .M.T / rel @IA.T //! C��.EIA.T //;

where E is part of the data in A.T / and C��.EIA.T // is quasi-isomorphic to the Q concentrated
in degree 0, and H�vir.M.T / rel @IA.T // is isomorphic to {H�.M.T /; orel @/ with orel @ D j!o for the
orientation bundle o and j WM.T /n@M.T /!M.T /.11 Heuristically, the pushforward map can be
viewed as integration of a compactly supported degree-vdim.T / cohomology class on M.T /.

11Here @M.T / is the preimage of R<T in the stratification M.T /!R=T .
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The construction of virtual fundamental cycles for BL1 algebra requires combining single pushfor-
ward/virtual fundamental class with respect to the combinatorics of R. The proof hinges on an induction
argument, which in particular requires certain finiteness. An object T 2R is called effective if and only
if M.T /¤¿. Then for any morphism T ! T 0, if T is effective, so is T 0. For any concatenation fTigi ,
every Ti is effective if and only if #i Ti is effective. In the following, R will mean the full subcategory
spanned by effective objects, which depends on J . Then R has the following properties, which allows
one to apply inductive constructions.

(1) Every T can be written as a concatenation of maximal elements #i Ti , where an element Ti is
maximal if and only if every morphism mapping out of Ti is an isomorphism. That is, Ti has only
one interior vertex.

(2) Let T;T 0 2 R. We say T 0 4 T if and only if there is a morphism #i Ti ! T with some Ti

isomorphic to T 0. Then there are no infinite strictly decreasing sequences (in the effective version).
This is a consequence of compactness or positivity of contact energy (3-3) in the exact cobordism
setting of this paper.

As a consequence, a lot of the constructions can be built inductively from the minimal elements in .R;4/.
Note that maximal T is not necessarily maximal in 4, ie commodification of the moduli spaces of curves
in yY might involve breaking. But minimal elements of .R;4/ are necessarily maximal, ie compactified
moduli spaces without breaking are necessarily without breaking. The induction will typically start at
minimal elements of .R;4/ and the induction process for any tree T will terminate since there are no
infinite strictly decreasing sequence.

Following the same procedure of [72, Definition 4.19], there is a canonical construction of R-module
C �Cvdim

vir .M rel @/ by homotopy colimit in the category of cochain complexes such that

C
�Cvdim.T /
vir .M.T / rel @/ is quasi-isomorphic to C

�Cvdim.T /
vir .M.T / rel @IA.T //:

Similarly, by the homotopy colimit as in [72, Definition 4.20], there is an R-module C�.E/ and (3-9)
leads to a canonical map of R-modules C �Cvdim

vir .M rel @/! C��.E/. Similar to [72, Definition 4.14],
there is an R-module QŒR� governing the boundary information,

QŒR�.T / WDQŒR=T �D
M

T 0!T

oT 0 Œvdim.T 0/�;

with the differential given by the sum of all codimension-one maps T 00 ! T 0 in R=T of boundary
map oT 0 ! oT 00 in Example 3.29.12 The R-module structure on QŒR� is described in [72, (4.37)
and (4.38)]. Then a virtual fundamental class recording the combinatorics of R is simply an R-module
map QŒR�!Q. Namely, for every T , the image of oT Œvdim T ��QŒR�.T /!Q determines an element
of .o_

T
/Aut.T / (the Aut.T / invariant part13 of o_

T
) if vdim.T /D 0. On the other hand, it is not hard to

12It should be viewed as multiplying an additional 1=jAut.T 00=T 0/j D 1.
13The Aut.T /-invariance forces the vanishing of the virtual fundamental cycle at T if one of the input/output edges of T is
labeled with a bad Reeb orbit.
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believe that the right virtual fundamental cycle should be the pushforward of 1. By [72, Lemma 4.23],
HomR=T

.QŒR�;C �Cvdim
vir .M rel @// is an Rop module of complexes whose cohomology is isomorphic to

the Rop module T ! {H�.M.T //. In particular, by the same argument of [72, Lemma 4.31], there is an
R-module map QŒR�! C �Cvdim

vir .M rel @/ representing 1 2H 0.M.T // for all T .

In order to build an R module map QŒR�!Q following QŒR�! C �Cvdim
vir .M rel @/! C��.E/, we

need to find a quasi-isomorphism of R-module from C�.E/ to the trivial R-module Q to evaluate at the
chain level. Instead of building a direct quasi-isomorphism, this can be done with a cofibrant replacement,
ie a diagram of quasi-isomorphisms of R modules,

C�.E/
�
 � C cof

� .E/
�
�!Q;

where C cof
� .E/ is cofibrant in the sense of [72, Definition 4.24]. The construction of C cof

� .E/ follows
from the same recipe as for [72, Definition 4.28] by induction on 4. QŒR� is again cofibrant in the sense
of [72, Definition 4.24] by the argument of [72, Lemma 4.26]. Now we can introduce the auxiliary data
in the VFC setup of RSFT.

Definition 3.32 Given ˛ and J , an element of ‚.˛;J / is a commuting diagram of R-modules

(3-10)

QŒR� zw�
//

w�
��

C cof
��.E/

�

��

p�
// Q

C �Cvdim
vir .M rel @/ // C��.E/

satisfying the following properties:

(1) p� induces the canonical isomorphism H cof
� .E/DH�.E/DQ,

(2) w� is such that for any T 2 R, w� 2 HomR=T
.QŒR�;C �Cvdim

vir .M rel @// on cohomology level
represents the constant function 1 2 {H 0.M.T // under the identification in [72, Lemma 4.23].

Proof of Theorem 3.11(1) In the context of VFC, ‚.˛/ D
F

J ‚.J; ‚.˛;J //. Moreover, ‚.˛;J /
is not empty. The existence of p� follows from [72, Lemma 4.30], the existence of w� follows from
[72, Lemma 4.31], and the existence of lifting zw� follows from the cofibrant property and induction on 4
as in [72, Proposition 4.34].

Given a diagram (3-10), we have an R-module map p� ı zw� WQŒR�!Q that assigns to each T with
vdim.T /D 0 an element #M.T /vir 2 .o_

T
/Aut.T / which, after fixing a trivialization of o
;b for every Reeb

orbits, is a rational number. If an exterior edge of T is labeled by a bad orbit, then being Aut.T /-invariant
implies that #M.T /vir D 0. #M.T /vir is the virtual count of the moduli space of holomorphic curves
modeled by the tree T with labels, ie of M.T /. If T is a maximal tree (without interior edges), then
#M.T /vir (after choosing invariant trivializations of o
;b) is interpreted as #MY;A.�C; ��/ in (3-5),

Geometry & Topology, Volume 29 (2025)



A landscape of contact manifolds via rational SFT 3513

where the marking of T is determined by A, �C and ��. Finally, being an R-module implies that

0D
X

codim.T 0=T /D1

1

jAut.T 0=T /j
#M.T 0/vir(3-11)

D

X
codim.T 0=T /D1

#M.T 0/vir; since Aut.T 0=T /D 1,

#M.#i Ti/
vir D

1

jAut.fTigi=#Ti/j

Y
i

#M.Ti/
vir:(3-12)

Let T be a tree with one interior vertex labeled by homology class ˇ, with k input edges labeled by �C,
and with l output edges labeled by ��. If vdim.T /D 0, then we define q�

�

coefficient of pk;l.q�
C

/, ie

hpk;l.q�
C

/; q�
�

i D

X
T

��C��C

jAut.T /j
#M.T /vir

D

X
T

1

������
#M.T /vir;

where the sum is over isomorphism classes of such maximal trees with vdimD 0.

In view of Proposition 2.9, we need to prove that hpk;l
2
.q�
C

/; q�
�

i is zero for any multisets �C and ��

with j�Cj D k and j��j D l . We claim that

(3-13) hp
k;l
2
.q�
C

/; q�
�

i D
1

������

X
T

X
codim.T 0=T /D1

#M.T 0/vir
D 0;

where the first sum is over the isomorphism classes of maximal T with vdim.T /D 1 with marking given
by �C, �� and all possible homology classes. Recall from Section 2.3, when we apply pk;l as gluing
trees, we choose a representative of input by ordering the vertices, while the output is understood as an
equivalence class, or unordered. More precisely, by the definition of pk;l before Proposition 2.9, we have

hpk;l.q�
C

/; q�
�

i D

X
˙hpj�

C

1
j;j��

1
jC1.q�

C

1 /; q�
�
1 q
 i � hp

j�
C

2
jC1;j��

2
j.q
q�

C

1 /; q�
�
2 i;

where the sum is over divisions of �C as an ordered set into �C
1
[�C

2
with j�C

1
j � 1 (hence 2j�

Cj� 1

such divisions), divisions of Œ��� as a unordered multiset into Œ��
1
�[ Œ��

2
� and good Reeb orbits 
 and

a choice of output vertices in pj�
C

1
j;j��

1
jC1 marked with 
 . Here the sign is determined by the rule in

Section 2.3 from switching orders. In other words, hpk;l.q�
C

/; q�
�

i is

(3-14)
X

�CD�
C

1
[�
C

2

Œ���DŒ�1�
�[Œ��

2
�;


˙hpj�
C

1
j;j��

1
jC1.q�

C

1 /; q�
�
1 q
 i � n.
; �

�
1 / � hp

j�
C

2
jC1;j��

2
j.q
q�

C

1 /; q�
�
2 i;

where n.
; ��
1
/ is the number of 
 in ��

1
plus 1, which is the number of choices for 
 -vertices. They

have the same sign when jq
 j D 0, and when jq
 j D 1 the claim is tautological as q2

 D 0.

Now assume

�C WD f

k1‚ …„ ƒ

1; : : : ; 
1; : : : ;

km‚ …„ ƒ

m; : : : ; 
mg; �� WD f

l1‚ …„ ƒ
�1; : : : ; �1; : : : ;

ls‚ …„ ƒ
�s; : : : ; �sg

for
Pm

iD1 ki D k,
Ps

iD1 li D l and 
i ¤ 
j , �i ¤ �j for i ¤ j . Note that every T 0 with codim.T 0=T /D 1
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is determined by ordered divisions �CD �C
1
[�C

2
and ��D �C

1
[��

2
and one connecting interior edge

marked with 
 . Every unordered division Œ��� D Œ��
1
�[ Œ��

2
� appears

Qs
iD1

�li

l 0
i

�
times in the ordered

divisions, where

Œ��2 �D Œf

l 0
1‚ …„ ƒ

�1; : : : ; �1; : : : ;

l 0s‚ …„ ƒ
�s; : : : ; �sg�

for l 0i � 0. We can cut out the interior edge to obtain T 0
1

and T 0
2

with the interior edge turning into an
output edge for T 0

1
marked with 
 , ie T 0 D T 0

1
# T 0

2
. Note that by (3-12), we have

#M.T 0/vir
D

1

�

#M.T 01/

vir #M.T 02/
vir:

Therefore we have

(3-15)
1

������

X
codim.T 0=T /D1

#M.T 0/vir
D

1

������

X
�CD�

C

1
[�
C

2

��D��
1
[��

2
;


#M.T 0/vir

D

X
�CD�

C

1
[�
C

2

��D��
1
[��

2
;


1

�������

#M.T 01/

vir#M.T 02/
vir

D

X
�CD�

C

1
[�
C

2

Œ���DŒ�1�
�[Œ��

2
�;


1

�������


sY
iD1

� li
l 0i

�
#M.T 01/

vir#M.T 02/
vir:

Since
1

���

sY
iD1

� li
l 0i

�
D

n.
; �1
�/

���
1
[f
 g���2

;

equations (3-14) and (3-15) imply the claim (3-13) as the extra signs from switching order in (3-14) are
encoded in the operations on .o_

T
/Aut.T / to write (3-11) and (3-12). Hence pk;l gives a BL1 structure.

The next proposition follows from [72, Proposition 4.33]. It is Axiom 3.26 in the context of VFC.

Proposition 3.33 If M.T / is cut out transversely with vdim.T / D 0, then #M.T /vir D #M.T / D

#M.T / for any � 2‚.˛;J /.

3.6.2 RII, R
� and R�

II modules In the following, we introduce RII;R� and R�II to govern moduli
spaces as well virtual fundamental cycles for BL1 morphisms, pointed maps and the homotopy in
Definition 2.22.

(1) The category RII is the analogue of SII in [72, Section 2.1]. The objects of RII are graphs without
cycles as before, but now each edge e 2E.T / is labeled with a symbol �.e/ 2 f0; 1g such that all
input edges are labeled with 0 and all output edges are labeled with 1. For each vertex v 2V .T /, we
associate it with a pair of symbols �˙.v/2 f0; 1g such that �C.v/���.v/ and �.e˙.v//D�˙.v/.
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If �C.v/D��.v/, then v is called a symplectization vertex and if �C.v/ < ��.v/, then v is called
a cobordism vertex. Given an exact cobordism X from Y� to YC, for every T 2 RII, we can
similarly define the moduli space MII.T /, where the curve attached to a symplectization vertex v
with �˙.v/D 0 is a holomorphic curve in R�YC modulo R-translation, the curve attached to a
symplectization vertex v with �˙.v/D 1 is a holomorphic curve in R�Y� modulo R-translation,
and the curve attached to a cobordism vertex v is a holomorphic curve in yX . Then we have the
analogous compactification MII.T / using the over category over T , which is an RII-module.

(2) The category R� is similar to R but with exactly one vertex labeled by �. The morphisms in
R� consist again of contractions of graphs such that the � vertex is mapped to the � vertex. For
every T 2R�, we can associate a moduli space M�.T /, which is defined similarly as M.T / but
the map associated to � vertex is a holomorphic curve with a marked point mapped to the fixed
point .0; o/ 2R�Y. We can similarly define the compactified moduli spaces M�.T /, which is an
R�-module.

(3) The category R�II is the combination of RII and R�, ie the objects are the same as RII but one of
the vertices is marked with �. In the definition of M�

II.T /, the curve attached to the � vertex is a
curve in the symplectization with a point constraint if the vertex is a symplectization vertex, and is
a curve in the cobordism with a path constraint if the vertex is a cobordism vertex.

Proof of the rest of Theorem 3.11 We need to argue that MII.T /, M�.T / and M�

II.T / are equipped
with implicit atlases with oriented cell-like stratification. For this, we only need to argue that the gluing
parameter spaces are cell-like, the remaining of the argument is the same as [72, Theorem 3.23]. The
gluing parameter space .G�/T= for R�

T=
is same as the GT=, ie .0;1�E

int.T /, since there are no relations
among gluing parameters. The gluing parameter space .GII/T= for .RII/T= is defined as a subset of˚

.fgege; fgvgv/ 2 .0;1�
Eint;0.T /

� Œ�1; 0/E
int;1.T /

� .0;1�V00.T / � Œ�1; 0/V11.T /
	

subject to the constraints

gv D geCgv0 for v e
! v0 with � .e/D 0;

gv0 D geCgv for v e
! v0 with � .e/D 1:

where gv is interpreted as 0 if v 2 V01.T /, while Vij .T / is the set of vertices with �C.v/ D i and
��.v/D j , and Eint;i.T / is the set of interior edges e such that �.e/D i . Then gv can be viewed as the
height of the vertex v for v 2 Vij .T /, where the heights of all cobordism vertices are 0, as all of them are
placed in the same level. Following the argument of [72, Lemma 3.6], it is sufficient to prove .GII/T= is a
topological manifold with boundary. We can perform the same change of coordinates hD e�g 2 Œ0; 1/ for
v 2 V00.T /, e 2Eint;0.T /, and hD eg 2 Œ0; 1/ for v 2 V11.V /; e 2Eint;1.T /. We allow h 2 Œ0;1/ for
convenience. Then the relation becomes hv D hehv0 for �.e/D 0 and hv0 D hehv for �.e/D 1. Now the
difference with [72, Lemma 3.6] is that we do not have vmax, which in contact homology corresponds to
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the vertex with the input edge. In our case, the subgraph generated V00.T / is a disjoint union of graphs
fT 0

i gi2I 0 and the subgraph generated V11.T / is a disjoint union of graphs fT 1
i gi2I 1 . We pick vertices

v0
i and v1

i in T 0
i and T 1

i , respectively. Since T 0
i has no cycles and we can view v0

i as a root, we can
parametrize the gluing parameters associated to T 0

i by hv0
i
2 Œ0;1/, qe D h2

e � h2
v0 2 R if e is in the

same direction with the direction pointed away from the root v0
i , and he 2 Œ0;1/ if e is the opposite

direction with the tree direction. In the same-direction case, hv 2 Œ0;1/ and qe D h2
e �h2

v0 2R determine
he; hv0 2 Œ0;1/ as in [72, Lemma 3.6]. It is clear that such a change of coordinates parametrizes the
gluing parameters by Œ0;1/�Rjfejin same directiongj � Œ0;1/jfejin opposite directiongj. Similarly we parametrize
the gluing parameters on T 1

i by hv1
i
2 Œ0;1/, he 2 Œ0;1/ if e is in the same direction with the tree

direction, and qe D h2
e � h2

v 2R if e is the opposite direction with the tree direction. As a consequence
.GII/T= is the product of the such parametrization of T 0

i and T 1
i , which is a topological manifold with

boundary, and the top stratum corresponds to the interior. The gluing parameter space .G�II/T= is the same
as .GII/T=. Therefore MII.T /, M�.T / and M�

II.T / are equipped with implicit atlases with oriented
cell-like stratification.

The virtual fundamental cycles for BL1 morphisms, pointed maps and homotopies are module morphisms
QŒRII�!Q, QŒR��!Q and QŒR�II�!Q, respectively, that are derived from diagrams like (3-10). The
nonemptiness of such diagrams and surjectivity of the projections of admissible auxiliary data follows
from [72, Proposition 4.34]. Combined with Propositions 2.11, 2.20 and 2.23, it follows from the same
proof as that of Theorem 3.11(1) that module morphisms QŒRII�! Q, QŒR��! Q and QŒR�II�! Q

give rise counts to BL1 morphisms, pointed maps and homotopies. For (5) of Theorem 3.11, it is clear
the whole construction for ˛ can be identified with the construction for k˛ as long as we use the same
admissible almost complex structure J for k > 0.

3.6.3 Polyfold approach The polyfold construction of SFT [33], which is described in [34], will imply
Theorem 3.11 as well. However, we cannot use the “tree-like” compactification as in M.T / because
the gluing parameter space is only topological manifold with boundary. For the analytic requirement
in a polyfold, it is important to use the building compactification in [9] so that all gluing parameters
are independent and form a smooth manifold with boundary and corners. To implement the polyfold
construction for our purpose, it is sufficient to build polyfold strong bundles with sc-Fredholm sections
for the SFT building compactification, which is sketched in [34].

Since we will not need to discuss more subtle cases like neck-stretching and homotopies, the abstract
theory of polyfold developed in [43] suffices to provide transverse perturbations by the similar induction
on .R;4/ starting from minimal elements in 4, which are polyfolds without boundaries. The nonempty
set ‚ in Theorem 3.11 now consists pairs .J; �/, where J is an admissible almost complex structure and
� is a family of compatible scC-multisections in general position. Then (3-11) and (3-12) follow from
the Stokes’ theorem in [43], where the coefficients can be explained as being the discrepancies of isotropy
among polyfolds with their boundary polyfolds and boundary polyfolds with product polyfolds.
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To verify Axiom 3.26, we first note that classical transversality implies polyfold transversality by definition.
If M.T / is cut out transversely for vdim.T /D 0, we may still need to perturb the sc-Fredholm section on
the associated polyfold, because we construct perturbations by induction. Even though we know that the
section is transverse on the boundary polyfolds, but the section can be nontransverse on some factor of the
boundary, which will be perturbed before we construct perturbations for M.T /. However, we can choose
our perturbations small enough to get the local invariance of #M.T / when vdim.T /D 0. In other words,
Axiom 3.26 holds if we choose sufficiently small perturbations. This matches with Proposition 3.33, as
‚.˛;J / in VFC can be understood as “infinitesimal” perturbations.

Remark 3.34 (Kuranishi approach) The Kuranishi approach of SFT [46] would also imply Theorem 3.11.
Axiom 3.26 should follow from the same argument above for small enough perturbations in a reasonable
measurement.

4 Semidilations

In this section, we introduce an inner hierarchy called the order of semidilation for the PD 1 case.

Remark 4.1 As explained in Section 1.2, a full implementation of the order of semidilation is dependent
on the unproven Claim 4.3 below, as it requires a rigorous implementation of the U -map, which we defer
to later work.

If P.Y /D 1, then RSFT.Y / admits BL1 augmentations and for any BL1 augmentation �, then the order
is 1 for any point in Y. Note that .B1V˛; ỳ�/ is the chain complex .V˛; `1

� / for the linearized contact
homology. Since P.Y /D 1, for any point in Y, we have an class x 2H�.V˛; `

1
� / such that `1

�;�.x/D 1.

If the augmentation �W is from an exact filling W, then by [13; 16], the linearized contact homology
LCH�.Y; �W /D LCH�.W / WDH�.V˛; `

1
�W
/ is isomorphic to the equivariant symplectic (co)homology,

which as an S1-equivariant theory carries a H�.BS1/DQŒU �-module structure and fits into the following
Gysin sequences:

� � � // SH2n�3�k
C .W / //

��

LCHk.W /
U
//

'

��

LCHk�2.W / //

'

��

SH2n�2�k
C .W /

��

// � � �

� � � // SH2n�3�k
C .W / // SH2n�3�k

C;S1 .W /
U
// SH2n�1�k
C;S1 .W / // SH2n�2�k

C .W / // � � �

As we use homological convention in this paper, U has degree �2 in the case with a Z grading for LCH.
And U has degree 2 for the S1-equivariant symplectic cohomology, which is graded by n��CZ.

Strictly speaking, the papers [13; 16] make several transversality assumptions which limit the collection
of exact fillings where the isomorphism is rigorously established. However, the geometric ideas behind
[13; 16] should work when implemented using a suitable virtual machinery to prove isomorphisms for
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general cases. We first carry out the discussion neglecting the foundational issues for now. The U map is
defined on the linearized contact homology H�.V˛; `

1
� / for any augmentation �. And for any element

x 2H�.V˛; `
1
� / there exists k 2NC such that U k.x/D 0. In the following, we first recall the definition

of U -map for linearized contact homology.

4.1 H�.V˛; `
1
� / as a QŒU �-module

To explain the U -map, we recall the following two moduli spaces from [13, Section 7.2]. In some sense,
the following moduli spaces should be viewed as a version of cascade moduli spaces.

4.1.1 M1
Y;A

.
C; 
�; ��/ Let 
C and 
� be two good Reeb orbits and �� be an ordered multiset of
good Reeb orbits of cardinality k � 0. Then an element in M1

Y;A
.
C; 
�; ��/ consists of the following

data.

(1) A sphere .†; j /, with one positive puncture zC and 1C k negative punctures z�; z�
1
; : : : ; z�

k
. We

pick an asymptotic marker on zC, then by choosing a global polar coordinate on †nfzC; z�g, there
is a canonically induced asymptotic marker on z� by requiring it to have the same angle as the
asymptotic marker at zC in the polar coordinate. We also pick free asymptotic markers on z�i for
1� i � k.

(2) A map u W P†! R � Y such that du ı j D J ı du and Œu� D A modulo automorphism and the
R-translation, where P† is the .2Ck/-punctured sphere.

(3) u is asymptotic to 
C, 
� and �� near zC; z� and fz�i gi with respect to the asymptotic markers
and the chosen marked points on the image of Reeb orbits as before.

We use M1
Y;A

.
C; 
�; ��/ to denote the compactification of M1
Y;A

.
C; 
�; ��/. Then for an exact
cobordism X , we can similarly define M1

X ;A
.
C; 
�; ��/, where we do not mod out by the R translation.

4.1.2 M2
Y;A

.
C; 
; 
�; ��
1
; ��

2
/ Let 
C and 
� be two good Reeb orbits, let 
 be a Reeb orbit that

could be bad,14 and let ��
1

and ��
2

be two ordered multisets of good Reeb orbits of cardinality k1; k2 � 0.
Then an element in M2

Y;A
.
C; 
; 
�; ��

1
; ��

2
/ consists of the following data.

(1) Two spheres .†; j / and .z†; j /, each with one positive puncture zC and zzC, and respectively with
1C k1 negative punctures z�; z�

1
; : : : ; z�

k1
, and 1C k2 negative punctures zz�; zz�

1
; : : : ; zz�

k
. Each

puncture is equipped with an asymptotic marker.

(2) Two holomorphic curves u and zu from P† and Pz† to R�Y modulo automorphism and R-translations,
such that Œu� #
 Œzu�DA.

(3) The curve u is asymptotic to 
C, 
 and ��
1

, and zu is asymptotic to 
 , 
� and ��
2

.

14The necessity of 
 being potentially bad is explained in [15, Section 2].
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(4) Let L� and LC be two asymptotic markers on z� and zzC that are induced from the chosen
asymptotic markers on zC and zz� by global polar coordinates.15 We can define evL�.u/ and
evLC.zu/ to be the limit point in the Y component evaluated along the asymptotic markers L�

and LC. Then we require .b
 ; evL�.u/; evLC.zu// to be the natural order on im 
 , where b
 is the
chosen marked point on im 
 .

We use M2
Y;A

.
C; 
; 
�; ��
1
; ��

2
/ to denote the compactification. Note that we need to add in the stratum

corresponding to the collision of .b
 ; evL�.u/; evLC.zu// in addition to usual building structures. We can
similarly define M2;"

X ;A
.
C; 
; 
�; ��

1
; ��

2
/ and M2;#

X ;A
.
C; 
; 
�; ��

1
; ��

2
/ for an exact cobordism X .

The difference is that the former one has u in yX and the latter one has zu in yX .

Given a dga augmentation �1 to CHA.Y /, ie a map �1 W V˛ ! Q which extends to an algebra map
y�1 W CHA.Y /!Q such that y�1 ı yp1 D 0, the map U W V˛! V˛ is defined by

(4-1) U.q
C/ WD
X


�;Œ���

1

�
�������
#M1

Y;A.

C; 
�; ��/

Y

 02��

�.
 0/q
�

C

X

�;
;

Œ��
1
�;Œ��

2
�

1

N
#M2

Y;A.

C; 
; 
�; ��1 ; �

�
2 /

Y

 02��

1
[��

2

�.
 0/q
� ;

where N D �
��
���
1
���

2
���

1
���

2
.

Remark 4.2 The M2
Y;A

in [13, Section 7.2] requires modding by an equivalence

.L�;LC/'

�
L�C

2�

�

;LCC

2�

�


�
;

ie the moduli space of “glued” two-level buildings. Here we do not introduce the equivalence, the
discrepancy is just the extra 1=�
 in (4-1) compared to [13, (85)].16

The reason that U is a chain map from .V˛; `
1
� / to itself follows from the boundary of one-dimensional

M1
Y;A

and M2
Y;A

. More precisely, the codimension-one boundary of M1
Y;A

consists of

(1) a level breaking where the lower level does not contain z�, and

(2) a level breaking where the lower level contains z�.

For case (1), such a contribution is zero when capping �� off with �1 by the relation y�1 ı yp1 D 0. For
case (2), the contribution will cancel with the codimension-one boundary part of M2

Y;A
corresponding

to the collision of evL�.u/ and evLC.zu/. The other parts of the codimension-one boundary of M2
Y;A

consists of:

(1) A level breaking of u where the lower level does not contain z�. This is again killed by the capping
off with �1.

15In particular, they may be different from the chosen asymptotic markers on z� and zzC.
16The extra coefficient �� comes from considering � as an ordered set, and �� is the size of the isotropy coming from
permutation.
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(2) A level breaking of u where the lower level contains z�. This corresponds to a component of
`1
� ıU , where the U part is contributed by a M2

Y;A
.

(3) Similar level breakings for zu.

(4) The collision of b
 and evL�.u/. This corresponds to a component of `1
� ıU , where the U part is

contributed by a M1
Y;A

, similarly, the collision of b
 and evLC.zu/ is the remaining part of U ı `1
� .

Similarly, given an exact cobordism, we can show that the chain morphism �
1;1
� W V˛! V˛0 commutes

with U up to homotopy, where the homotopy is defined by M1
X ;A

, M2;"
X ;A

, and M2;#
X ;A

by a formula
similar to (4-1) with a similar argument.

In order to define the order of semidilation, we need to define the U -map to the following extent.

Claim 4.3 Let .Y; ˛/ be a nondegenerate contact manifold and � be an auxiliary datum which is used in
defining a BL1 structure p� .

(1) There is an auxiliary datum �U for the definition of U such that for any BL1 augmentation � of
.V˛;p� /, we have a map U�U

W H�.V˛; `
1
� /! H��2.V˛; `

1
� /, and for any x 2 H�.V˛; `

1
� / there

exists k such that U k
�U
.x/D 0. (This nilpotent property follows from the fact that U decreases the

contact action for nondegenerate ˛.)

(2) When there is a strict exact cobordism X from .Y 0; ˛0/ to .Y; ˛/ with admissible auxiliary data
�; � 0; �U ; �

0
U

for ˛, ˛0 and their U -maps , respectively, then there exists an auxiliary datum �

such that the map �1;1
�;�
WH�.V˛; `

1
�ı��

/!H�.V˛0 ; `
1
� / commutes with the U -maps for any BL1

augmentation � for .V˛0 ;p� 0/.

(3) For any k 2RC, there exists a k�U such that Uk�U
is canonically identified with U�U

.

(4) When the augmentation is from an exact filling W, then there is an isomorphism H�.V˛; `
1
� /!

SH2n�3��
C;S1 .W / preserving the U -map.

Remark 4.4 In Claim 4.3, we are not claiming that linearized contact homology for all possible
augmentations forms a contact invariant, which requires establishing the homotopy property of contact
homology.

Assuming Claim 4.3, let Y be a contact manifold with P .Y / D 1. Define the order of semidilation
SD.Y / by

(4-2) SD.Y / WDmax
˚
minfk j U kC1.x/D 0;x 2H�.V˛; `

1
� /; `

1
�;�.x/D 1g

ˇ̌
o 2 Y; � 2 AugQ.V˛/

	
:

Proposition 4.5 For those contact manifolds Y with P.Y /D 1, the assignment SD.Y / is well-defined
and is a monoidal functor from the full subcategory P�1.1/ of Con to N [ f1g, where the monoidal
structure on N [f1g is defined by a˝ b Dmaxfa; bg.

Proof That SD.Y / is independent of all choices follows from the same argument of Proposition 3.13. The
monoidal structure follows from H�.V ˚V 0; `1

�˚`
1
�0/DH�.V; `

1
� /˚H�.V

0; `1
�0/ as QŒU �-modules.
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Proof of Theorem A It follows from Propositions 3.13, 3.23 and 4.5.

Although Claim 4.3 is expected to hold in any virtual implementation of SFT, it does not follow from a
direct generalization of Pardon’s construction [72] of (linearized) contact homology. One of the main
issues is the different perspectives of the contact homology, namely as a quotient theory in [72] versus as
an equivariant theory in [13]. More precisely, in the definition of contact homology or RSFT, the count
#MY;A.�

C; ��/ does not depend on the specific choice of basepoint b
 for 
 2 �C[��. This is clear
if MY;A.�

C; ��/ is geometrically cut out transversely and it is also true for the VFC construction by the
definition of R-module (different choices of b
 give rise to isomorphic objects in R). On the other hand,
the definition of M1

Y;A
and M2

Y;A
is actually sensitive to the choice of b
 both geometrically and in

virtual constructions. For example, as we explained, the collision of b
 with evL�.u/ should correspond
to a component of `1

� ıU , where the U part is contributed by a M1
Y;A

, with one caveat that we must
have evLC.zu/¤ b
 , for otherwise such a degeneration would be from a corner component instead of
a boundary component of the compactification of M2

Y;A
. If zu is cut out transversely, we can certainly

arrange this by choosing a slightly different b
� . This shows the crucial dependence on basepoints, and
we cannot count zu from #MY;A.
; f


�g[��
2
/vir defined in [72], which is independent of the choice of

basepoints. In particular, the virtual implementation of U -map cannot be built directly on the contact
homology algebra in [72].

Instead of making sense of #M1
Y;A

and #M2
Y;A

directly and facing the difficulties mentioned above, we
can follow an alternative way using the methods in [13]. More precisely, we can first define a positive
S1-equivariant symplectic cohomology for algebraic augmentations using VFC, where the U -map is
more natural. Then there is an isomorphism from the positive S1-equivariant symplectic cohomology to
the linearized contact homology following the idea in [13], and we can transfer the U -map on the positive
S1-equivariant symplectic cohomology to the linearized contact homology. Indeed, this is how the U -map
on linearized contact homology in [13, Section 7.2] is motivated. By taking this detour, we do not need
to modify the construction of contact homology, while the construction of the positive S1-equivariant
symplectic cohomology and the isomorphism do not exceed the techniques provided in [71; 72]. For the
sake of simplicity, we will defer this alternative approach to Claim 4.3 for later work.

4.2 Order of semidilation for fillings

The notions of k-dilation and k-semidilation were introduced in [90] as structures on S1-equivariant
symplectic cohomology, which are generalizations of the symplectic dilation of Seidel and Solomon [75].
More precisely, an exact domain W carries a k-dilation if and only if there is a class x 2 SH�

C;S1.W /

such that x is sent to 1 by SH�
C;S1.W /!H�C1

S1 .W / and U kC1.x/D 0, where

H�
S1.W / WDH�.W /˝ .QŒU;U�1�=ŒU �/:

W carries a k-semidilation if and only if x is sent to 1 in SH�
C;S1.W /! H�C1

S1 .W /! H 0.W / and
U kC1.x/D 1. Under the isomorphism SH�

C;S1.W /DLCH2n�3��.W / of [13; 16] stated in Theorem 4.6
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below, the element we are looking for in (4-2) is exactly the k-semidilation in [90]. It is natural to expect
that examples with nontrivial SD come from examples with nontrivial k-(semi)dilation found in [90].
Indeed, it is the case, and we will show in Section 7 that SD is surjective. The only extra thing we need
to argue, compared to [90, Definition 3.4], is that the computation is independent of the augmentation. To
make the connection, we restate the main theorem of [13] as follows. We use LCH<A

� .Y; �/ to denote the
truncated linearized contact homology generated by Reeb orbits of period smaller than A.

Theorem 4.6 [13] Let W be a strict exact filling of .Y; ˛/. Assume LCH<A
� .Y; �W / is defined using

a generic J , where �W is the augmentation from W (for instance assume either the conditions in [15],
or that Reeb orbits with period smaller than A are simple). Then LCH<A

� .Y; �W / is isomorphic to the
positive S1-equivariant symplectic cohomology SH�;<A

C;S1 .W / of W using a Hamiltonian of slope A as
QŒU �-modules. Assume Y is connected , under this isomorphism. Then `1

�;�W
W LCH<A

� .Y; �W /!Q is
isomorphic to SH�;<A

C;S1 .W /!H�C1
S1 .W /DH�C1.W /˝ .QŒU;U�1�=U /!H 0.W /DQ.

Then item (4) of Claim 4.3 implies that we can use the U -map on positive S1-equivariant symplectic
cohomology to estimate SD in (4-2).

Remark 4.7 From the Viterbo transfer map, a functor SD from Con� ! N [ f1g was defined in
[90, Corollary D] using S1-equivariant symplectic cohomology. In the context of this paper, the order
of semidilation in [90] is (4-2), using an augmentation from the exact filling. One can similarly define
planarity of an exact filling. However, to establish the well-definedness and functoriality, we need to
introduce the notation of homotopy between BL1 augmentations for linearized theories, which is beyond
the scope of this paper. The trick in Propositions 3.13, 3.23 and 4.5 cannot help dropping the dependence
on contact forms or auxiliary data, since it requires comparing the composition of the morphism from
an exact cobordism X and the augmentation from an exact filling W to an augmentation from X ıW.
However this is essentially a BL1 homotopy from neck-stretching.

5 Lower bounds for planarity

As explained in Section 3, the curve responsible for finiteness of planarity is a curve with multiple positive
punctures and a point constraint. Since planarity does not depend on the choice of the point, one should
expect that finiteness of planarity implies uniruledness. In this section, we will prove such an implication
and a lower bound for planarity. We first recall the notion of uniruledness from [60].

5.1 Order of uniruledness

Definition 5.1 [60, Section 2] Let .W; �/ be an exact domain. A d�-compatible almost complex
structure J on W is convex if and only if there is a function � such that

(1) � attains its maximum on @W and @W is a regular level set, and

(2) � ıJ D d� near @W.
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Definition 5.2 [60, Definition 2.2] Let k > 0 be an integer and ƒ > 0 a real number. We say that
an exact domain .W; �/ is .k; ƒ/-uniruled if, for every convex almost complex structure J on W and
every p 2W ı (the interior of W ) where J is integrable near p, there is a proper J -holomorphic map
u W S !W ı passing through p, and the following holds:

(1) S is a genus-0 Riemann surface and rank.H1.S IQ//� k � 1,

(2)
R

S u�d��ƒ.

We say W is k-uniruled if W is .k; ƒ/-uniruled for some ƒ> 0.

The number ƒ depends on the Liouville form �; this is not relevant for our purposes. However, the
number k only depends on the Liouville structure up to homotopy.

Definition 5.3 Let W be an exact domain. We define the order of uniruledness by

U.W / WDminfk jW is k-uniruledg:

The following was (inexplicitly) proven by McLean [60].

Proposition 5.4 U is a functor from Con� to NC[f1g.

Proof Let V �W be an exact subdomain. Then U.V /�U.W / by [60, Proposition 3.1]. It is clear from
definition that U.V; �/D U.V; t�/ for t > 0. Since for any Liouville structure � on V that is homotopic
to �, we have exact embeddings .V; t�1�/� .V; �/� .V; t�/ for t� 0, it follows that U is a well-defined
functor on Con�.

Remark 5.5 A point worth noting is that the definition and functorial property of U do not depend on any
Floer theory. However, U gives a measurement of “complexity” of exact domains. By [90, Theorem 3.27],
the existence of a k-(semi)dilation implies that the order of uniruledness is 1. Hence the order of
(semi)dilation in [90, Corollary D] is a refined hierarchy in UD 1.

For an affine variety V, we define the order of algebraically uniruledness AU.V / to be the minimal
number k such that V is algebraically k uniruled, ie through every generic p 2 V there is a polynomial
map S ! V passing through p, where S is a punctured CP1 with at most k punctures.

Proposition 5.6 [60, Theorem 2.5] Let V be an affine variety. Then U.V /� AU.V /.

Example 5.7 Let Sk be the sphere with k disjoint disks removed. Then U.Sk/D k. Let †g;k be the
genus g � 1 surface with k disjoint disks removed. Then U.†g;k/ D 1. It is clear that Sk embeds
exactly into SkC1. However, SkC1 can only be embedded in Sk symplectically, not exactly.
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In general, we have the following.

Theorem 5.8 We have U..Sk/
n/D k and U..†g;k/

n/D1 for g � 1. In particular , U is a surjective
functor in any dimension � 2.

Proof Sn
k

has a projective compactification .CP1/n, so we may assume the symplectic form is a product
of the same symplectic form on CP1. Then, for any compatible almost complex structure J on .CP1/n,
there is a holomorphic curve passing through any fixed point, in the class ŒCP1 � fptg � � � � � fptg� and
intersecting each divisor fpig � .CP1/n�1 exactly once for 1� i � k, where pi is the i th puncture. We
may assume J is an extension of a convex almost complex structure on Sn

k
(which is not necessarily

split). Therefore U..Sk/
n/� k, by neck-stretching.

On the other hand, the affine varieties corresponding to .Sk/
n and .†g;k/

n are .CP1nfp1; : : : ;pkg/
n

and .†gnfp1; : : : ;pkg/
n. A rational algebraic curve in .CP1nfp1; : : : ;pkg/

n and .†gnfp1; : : : ;pkg/
n

projects to each factor as a rational algebraic curve. Then every rational curve must have at least k punctures.
Therefore AU..Sk/

n/D k and AU..†g;k/
n/D1, and the claim follows from Proposition 5.6.

As a consequence, we find in each dimension a nested sequence of exact domains V1 � V2 � � � such that
Vi cannot be embedded into Vj exactly if i > j . Sequences with such a property in dimensions � 10

were also obtained in [54, Corollary 1.5].

Remark 5.9 In Section 6, we will show that P.@.Sk/
n/D k if n � 2. Therefore not only is there no

exact embedding from .SkC1/
n to .Sk/

n, but also there is no exact cobordism from @.SkC1/
n to @.Sk/

n.

Remark 5.10 From U on Con�, we can build a functor U@ on Con via

U@.Y / WDmaxfU.W / jW is an exact filling of Y g;

where the maximum of the empty set is defined as zero. Then Corollary 5.15 below implies that
U@ � P. The equality does not always hold. For example, U@.RP2n�1; �std/ D 0 for n ¤ 2k by [87],
but P.RP2n�1; �std/D 1 when n� 3 by Theorem 7.30. Those discrepancies come from the difference
between fillings and augmentations. It is possible to generalize the notions of order of uniruledness U
and U@ to strong fillings or even weak fillings, but we will not pursue this in this paper.

In the following, we introduce an alternative definition of k-uniruledness but on the completion yW, which
is suitable to be related to SFT.

Definition 5.11 Let .W; �/ be an exact filling with a nondegenerate contact boundary. We say that the
completion yW is k-uniruled if there exists ƒ> 0 such that for every p 2W ı and every admissible almost
complex structure J that is integrable near p, there is a rational holomorphic curve passing through p

with at most k positive punctures and contact energy of the curve is at most ƒ.
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Proposition 5.12 An exact filling .W; �/ is k-uniruled if and only if yW� is k-uniruled , where W� is
Liouville homotopic to W with a nondegenerate contact boundary.

Proof We first show that .W; �/ is k-uniruled implies yW� is k-uniruled. Without loss of generality, we
can take W� �W, since we can rescale W� . By assumption there is a ƒ> 0 such that for any p 2W ı� and
any J integrable near p and convex near @W, there is a J -rational curve u WS!W with

R
S u�d�<ƒ and

H1.S IQ/� k � 1. In particular, we can choose J to be cylindrical convex near @W� . Then by applying
neck-stretching along @W�, we must have a rational holomorphic curve u W S�! yW� passing through p

with contact energy smaller than ƒ. We know that S� is a punctured sphere, as @W� is nondegenerate.
It is sufficient to prove rank H1.S�IZ/D rank H1.S�IQ/ � k � 1. Assume otherwise. Then we know
that H1.S�IZ/!H1.S IZ/ is not injective, for if not, we have rank H1.S IQ/� rank H1.S�IQ/� k.
Therefore we find a class Œ
 � 2H1.S�IZ/ such that Œ
 � is represented by a disjoint union 
 of possibly
multiply covered loops around punctures of S�, and there is an immersed surface A in SnS� whose
boundary is 
 . Then in the fully stretched case, ujA corresponds to a holomorphic building with only
negative punctures, which is impossible for energy reasons.

Now assume yW� is k-uniruled. Without loss of generality, assume W �W�. By [88, Proposition 5.3],
any convex almost complex structure on W can be extended to an admissible almost complex structure
on yW�. By assumption, there is a rational curve u W S ! yW� passing through the chosen point p 2W

with S an at most k-punctured sphere and the contact energy of u is at most ƒ. Let S 0 be the connected
component of u�1.W ı/ containing the point mapped to p. It clear that the area of ujS 0 is bounded by ƒ.
We claim that H1.S

0IZ/! H1.S IZ/ is injective. For otherwise, there is a class A 2 H2.S;S
0IZ/

mapped to a nontrivial element by H2.S;S
0IZ/! H1.S

0IZ/. Then we can find an S 00 � S 0 such
that � ı J D d� on ujS 0nS 00 , where � is the function in Definition 5.1. Then by excision, we have A

represented by an immersed surface in SnS 00 not contained completely in S 0nS 00 with boundary in S 0nS 00.
Let y� be the extension of � on yW� by [88, Proposition 5.3]. In particular, the maximum principle holds
for y�. Then we arrive at a contradiction, since y�.u/j@A < max y�.u/jA. Since Q is flat, we know that
H1.S

0IQ/!H1.S IQ/ is also injective, hence rank H1.S
0IQ/� rank H1.S IQ/� k � 1.

5.2 Uniruledness and planarity

The main theorem of this section is the following.

Theorem 5.13 If P.Y /D k, then any exact filling of Y is k-uniruled.

An exact filling W gives rise to a BL1 augmentation �W over Q. As a consequence we have a chain
morphism ỳ�;�W

W BV !Q after fixing a point o in Y and auxiliary data. We can define a different map
�W W BV !Q by

(5-1) �W .q
�C/D

X
A

#MW ;A;p.�
C;¿/

for a fixed point p 2W such that p and o are in the same connected component of W, and j�Cj D k.
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Proposition 5.14 The map �W is a chain morphism and is homotopic to ỳ�;�W
with appropriate choices of

auxiliary data , where �W is the augmentation from W. Moreover , �W is compatible with the word-length
filtration , ie for k � 1, the following diagram is commutative up to homotopy H :

.BkV; ỳ�W
/
ỳ
�;�W

//

id

��

H

 (

.Q; 0/

id

��

.BkV; ỳ�W
/

�W
// .Q; 0/

Proof That �W defines a chain morphism, ie �W ı
ỳ
�W
D0, follows from the boundary of one-dimensional

MW ;A;p.�
C;¿/. Let 
 be a path in W connecting p to o and use y
 to denote the completion ray of 


in yW. Then the homotopy H W BV !Q is defined by

H.q�
C

/D
X
A

#MW ;A;
 .�
C;¿/;

where MW ;A;
 .�
C;¿/ is defined similarly to (5) before (3-3). The realization of those operators

using virtual techniques is similar to �� in (4) of Theorem 3.11 in Section 3.6. The homotopy relation,
ỳ
�;�W
� �W DH ı ỳ�W

, comes from the boundary of one-dimensional MW ;A;
 .�
C;¿/. It is clear that

both �W and H are compatible with the word-length filtration.

Proof of Theorem 5.13 The theory of BL1 algebras considered for contact manifolds is equipped
with a filtration by the contact action, where the action A.q
 / of a generator is

R

 �˛. Then the action

can be extended to EV and SV by declaring that the action of a monomial in SV , or a monomial of
monomials in EV using the fq
 g as basis, is the sum of the actions, and the action of an element using
those monomials as basis is the maximum of the actions of the monomials with nonzero coefficients. Then
all of the operators for contact manifolds and exact cobordisms will decrease the action. It may not be true
that the spectral invariant for P.Y /D k is bounded for all BL1 augmentations, but for an augmentation
�W coming from an exact filling W, we have that the spectral invariant is bounded, ie there is a ƒ> 0

and an x 2 BkV with A.x/ � ƒ, ỳ�W
.x/D 0, and ỳ�;�W

.x/D 1. Then by Proposition 5.14, we have
�W .x/D 1. We must have that the unperturbed/geometric MW ;A;p.�C;¿/ is not empty for some �C
with j�Cj � k and

P

2�C

R

 �˛ � ƒ, for otherwise we would have �W .x/ D 0 by Axiom 3.26. It

is clear from the proof of Proposition 5.14 that p can be any point in W. This shows that yW is .k; ƒ/
uniruled; by Proposition 5.12, W is k-uniruled.

Theorem 5.13 provides a lower bound for P.

Corollary 5.15 Let W be an exact filling of Y. Then P.Y / � U.W /. If W is an affine variety, then
P.Y /� AU.W /.
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6 Upper bounds for planarity

In this section, we will obtain upper bounds of P for the following two cases.

6.1 Iterated planar open books

Definition 6.1 [2, Definition 2.2] An iterated planar Lefschetz fibration f W .W 2n; !/ ! D on a
2n-dimensional Weinstein domain .W 2n; !/ is an exact symplectic Lefschetz fibration satisfying the
following properties:

(1) There exists a sequence of exact symplectic Lefschetz fibrations fi W .W
2i ; !i/!D for iD2; : : : ; n

with f D fn.

(2) The total space .W 2i ; !i/ of fi is a regular fiber of fiC1 for i D 2; : : : ; n� 1.

(3) f2 W .W
4; !2/!D is a planar Lefschetz fibration, ie the regular fiber of f2 is a genus-zero surface

with nonempty boundary, which we denote by W 2.

Definition 6.2 [2, Definitions 2.3 and 2.4] An iterated planar open book decomposition of a contact
manifold .Y 2nC1; �/ is an open book decomposition for Y whose page W admits an iterated planar
Lefschetz fibration which supports the contact structure � in the sense of Giroux. We say that .Y; �/ is
iterated planar (IP).

If the number of boundary components of W 2 in the above definition is k, we say that .Y; �/ is k-
iterated planar or k-IP. We remark that the collection of IP contact manifolds is already a large class of
examples, as for instance the fundamental group is not an obstruction in any fixed dimension at least 5;
see [4, Theorem 1.4].

Theorem 6.3 Let .Y; �/ be a k-IP contact manifold. Then P.Y /� k.

The strategy for obtaining an upper bound P.Y /� k on the planarity of a contact manifold .Y; �/ is via
the following algebrogeometric condition.

Lemma 6.4 Let .Y; �/ be a contact manifold. Assume the following holds.

.?/k There exists a point o 2R�Y, a contact form ˛ for � , a choice of ˛-compatible cylindrical almost
complex structure J on R � Y, and some collection � D .
1; : : : ; 
k/ of precisely k distinct ,
nondegenerate and simply covered ˛-Reeb orbits , for which the following holds.

.1/k If �C � � and �� ¤¿, then MY;A.�
C; ��/D¿ for every homology class A.

.2/k The moduli space MY;A;o.�;¿/ is transversely cut out for every A with expected dimension 0.

.3/k For some choice of coherent orientations , the algebraic count of the k-punctured spheres inS
A;vdimD0 MY;A;o.�;¿/ is nonzero.

Then P.Y /� k.
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Proof By the first property, we have MY;A;o.�
C; ��/D¿ for any �C � � and ��¤¿. Therefore by

Axiom 3.26, the second and third conditions imply that ỳ�;�.q�
C

/¤ 0 for any augmentation � (if there
is no augmentation, then P.Y /D 0 by definition). Moreover, by the first property, we have that q�

C

is
closed in .SV; ỳ�/ for any augmentation �. Then the claim follows.

Proof of Theorem 6.3 We proceed by induction on dimension.

If dim Y D 3, then an IP contact 3-manifold is simply a planar contact 3-manifold. Fix a choice of
planar open book supporting the contact structure, with page a sphere with k-disks removed, and so with
binding consisting of k circles. One then constructs an adapted Giroux form so that each component of
the binding is a nondegenerate and simply covered orbit, and a holomorphic open book as for instance
in [80]. This provides a Fredholm-regular foliation of R�Y whose leaves are either trivial cylinders over
the binding, or holomorphic Fredholm-regular k-punctured spheres projecting to pages and asymptotic to
the binding. One can prove via standard four-dimensional arguments coming from Siefring intersection
theory (the same as in higher-dimensions, as used below), that any curve whose positive asymptotics are
a subset of the binding is a leaf of this foliation. The argument is as follows: given such a curve v, let u

be a leaf in the foliation which is not a trivial cylinder (and therefore has no negative ends). Denote the
set of positive asymptotics of v by �Cv . By [51, Lemma 4.9], the Siefring intersection between u and v is
given by

(6-1) u� v D
X

�2�

C
v

u� .R� 
�/:

In a suitable trivialization, we have that the Conley–Zehnder index of every binding component is
�CZ.
 / D 1. Moreover, we have the relation �CZ.
 / D 2˛�.
 /C p.
 /, where ˛�.
 / is the largest
winding number of an eigenfunction of negative eigenvalue for the asymptotic operator of 
 , and p.
 / is
the parity of the Conley–Zehnder index. We conclude that ˛�.
 /D 0. This coincides with the asymptotic
winding number of u about each 
 , which is therefore an extremal winding number. This means that
there are no intersections between u and R�
 coming from infinity, ie u� .R�
�/D 0 for each binding
component 
 . Combining with (6-1), we conclude that u� v D 0. On the other hand, if v were not a leaf
in the foliation, by positivity of intersections we would have u� v > 0 for some leaf u; a contradiction.

While this a priori holds for an almost complex structure which is compatible with a SHS deforming
the contact form, one may perturb this SHS to nearby contact data without changing the isotopy class
of the contact form, and for which the binding still consists of closed Reeb orbits. After perturbing
the original almost complex structure J0 to a J which is compatible with this nearby contact data and
generic, the curves in the foliation survive by Fredholm regularity (an open condition). Moreover, the
uniqueness statement still holds if the perturbation is small enough, ie every holomorphic curve whose
positive asymptotics are a subset of the binding is a perturbation of a leaf in the original foliation. Indeed,
if vk is a sequence of such Jk-holomorphic curves with Jk ! J0, by SFT compactness we obtain a
building v1 as a limit configuration. Applying uniqueness for J0 to the topmost floor, we conclude that
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v1 is a noncylindrical leaf in the foliation. By Fredholm regularity, it follows that vk is a perturbed leaf
of the foliation for J0 if k is sufficiently large.

In particular, .1/k and .2/k in Lemma 6.4 hold for the perturbed J . In this case the geometric (and hence
the algebraic) count of these curves with a point constraint is 1 for any generic point o, and so .3/k is
also satisfied. We fix such an o for which we have this uniqueness property.

If dim Y � 5, we fix an IP open book � W Y nB! S1 supporting � , with binding B � Y, a codimension-2
contact submanifold. Since B is also k-IP if Y is, we may assume by induction that .?/k holds for B. We
may then extend the Giroux contact form ˛B on B for which .?/k holds to a Giroux contact form ˛ on Y,
in such a way that all k Reeb orbits � D .
1; : : : ; 
k/ from the induction step are still nondegenerate
orbits in Y. Indeed, one can do this in a local model near the binding: take a collar neighborhood B �D

of B, and let ˛ D .1� r2/.˛B C r2d�/, where .r; �/ are polar coordinates on the D2-factor; then ˛ is
extended to the mapping torus piece as in Giroux’s construction. The Reeb vector field of ˛ coincides with
that of ˛B along B, and so each 
i is still an orbit for ˛. Moreover, the linearized Reeb flow for each 
i

splits into components tangent and normal to B. The first component is nondegenerate by assumption;
the second one is too, since the Hessian of the function 1� r2 is nondegenerate at the critical value r D 0.

On the other hand, the holomorphic open book construction can also be done in arbitrary dimensions —
again, after deforming the Giroux form away from B to a stable Hamiltonian structure; cf [19, Appendix A]
and [64; 65]. The choice of almost complex structure can be taken to agree with the one from the inductive
step along HB WD R � B, which is then a holomorphic submanifold. The leaves of the resulting
codimension-2 foliation are now either HB , or a codimension-2 holomorphic submanifold which is a
copy of the Liouville completion of the page, and which is asymptotic to HB at infinity in the sense
of [66]. We let F denote this codimension-2 foliation on R�Y. The moduli space MB of k-punctured
spheres defined on R�B in the inductive step extends to a moduli space MY on R�Y, consisting of
curves having the same positive asymptotics as curves in MB . An application of Siefring intersection
theory as in [65; 66] — this is exactly the same argument as in the three-dimensional case done above —
shows that any holomorphic curve u whose positive asymptotics are a subset of � either completely lies
in HB , or its image lies completely in a noncylindrical leaf H of F . In the first case, u cannot have
negative ends by .1/k applied to B. In the second case, since H has no negative ends, neither does u,
and so .1/k holds on R�Y. This also shows that MY;A;o.�;¿/DMB;A;o.�;¿/ for every o 2HB . If
moreover we take o 2HB to be the point given by the inductive step, for which (by the base case) we may
assume that we have the uniqueness property that curves in MB;A;o.�I¿/ are necessarily elements in
MB (for every A), and in particular transversely cut out inside HB , then the same analysis as carried out
in [64, Lemma 4.13] (by splitting the normal linearized CR-operator into tangent and normal components
with respect to HB , and using automatic transversality on the normal summand) shows that curves in
MB are transversely cut out in R�Y. Then .2/k holds, and .3/k also (and in fact the geometric count
is 1 for our particular choice of o). Note that all of these conditions still hold after perturbing to nearby
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contact data, via the same argument as above, ie using SFT compactness and using uniqueness on the
topmost level together with Fredholm regularity. An appeal to Lemma 6.4 finishes the proof.

It is clear from the definition that the Weinstein conjecture holds for contact manifolds with finite planarity.
In the case of iterated planar open books, the Weinstein conjectures was proven for dimension 3 in [1]
and higher dimensions in [2; 5]. In view of the proof of Weinstein conjecture, Theorem 6.3 is of the same
spirit as the proofs in [1; 2; 5]. However, more importantly, Theorem 6.3 endows the holomorphic curve
with SFT meaning. We further remark that the proof of the above theorem in the 5-dimensional case
actually provides a foliation, as opposed to a homological one, as shown in [65].

Theorem 6.3 can be viewed as a special case of the following conjecture.

Conjecture 6.5 Let Y be an open book whose page is W. Then P.Y /� P.W / and SD.Y /� SD.W /.

In the context of semidilations in symplectic cohomology, [90, Proposition 3.31] proved such a claim for
Lefschetz fibrations. The geometric intuition behind the conjecture is clear and was used in Theorem 6.3,
the difficulty lies in making the virtual machinery compatible with the geometry for general Y and W.

6.2 Trivial planar SOBDs

We now consider a related example as to the ones considered above. Fix .Sk ; d�/ a sphere with k-disks
removed together with a Liouville form �, and let .M; d˛/ be any 2n-dimensional Liouville domain.
Define .V WD Sk �M; ! D d.�C ˛//, endowed with the product Liouville domain structure. Let
.Y D @V; � D ker.˛C�// be the contact manifold filled by V.

Theorem 6.6 If c1.M /D 0 or M supports a perfect exhausting Morse function , then we have P.Y /� k.

We first note that Y admits a supporting (trivial) SOBD, as considered in [57; 64]. In other words, we
have a decomposition

Y D YS [YP ;

where YS D @Sk �M is the spine and YP D Sk � @M is the paper, and we have trivial fibrations

�S W YS !M and �P W YP ! @M:

We view the first one as a contact fibration over a Liouville domain, and the second as a Liouville fibration
over a contact manifold (its fibers are called the pages). By choosing a small Morse function H on
the vertebrae M (the base of the spine) which vanishes near @M and has a unique maximum and no
minimum (as critical points), we may perturb the contact form along YS to eH .˛C�/.

As explained in [64, Section 3.1], each critical point p 2M of H gives rise to k nondegenerate Reeb
orbits of the form 
p;i D S1 � fpg � YS , where S1 is the boundary of the i th puncture of Sk . One then
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deforms the contact form to a stable Hamiltonian structure which coincides with HD .˛; d.˛C�// on YP ,
and so its kernel there is TSk˚ker˛, tangent to Sk . After this, one can construct a compatible cylindrical
almost complex structure J0 which preserves the splitting T .R�YP /D .T R˚hR˛i/˚TSk ˚ ker˛.
We first prove the following proposition, which constrains the possible holomorphic curves:

Proposition 6.7 Let � D f
p1;j1
; : : : ; 
ps ;js

g be a set of simple Reeb orbits such that pi is a critical
point of H and 1� j1 < j2 < � � �< js � k. Then there exists an almost complex structure J such that if
H is chosen sufficiently C 2-small , then any rational J -holomorphic curve u in R� Y whose positive
asymptotics form a subset of � is one of the following.

(1) A trivial cylinder over 
p;i .

(2) A cylinder u from 
p;j to 
q;j in R� S1 �M � R� YS , where S1 is the boundary of the j th

puncture of Sk . Moreover , there is a one-to-one correspondence from such cylinders to negative
gradient flow lines of H from p to q.

(3) � D f
p1;1; : : : ; 
pk ;kg and u has no negative puncture.

Proof We first prove the claim for the stable Hamiltonian structure H. First of all, one can achieve that
all orbits below a fixed action threshold correspond to critical points of the Morse function. For energy
reasons, and using that the number of positive ends of u is a priori bounded by k, one can choose the
action threshold large enough (depending on k) so that the negative ends of u also necessarily correspond
to critical points, and the number of negative ends (counted with covering multiplicity) is bounded above
by the number of positive ends; cf [64, Lemma 3.8]. We then separate into two cases: either the image
of u is fully contained in R�YS (case A), or it is not (case B).

Case A Since YS has k connected components, by the assumptions on � , u has precisely one positive
end, and by the above discussion, we have that u has at most one negative end. Since orbits 
p;i are not
contractible in YS , we then see that u has precisely one negative end, which is simply covered.

We now argue via holomorphic cascades. In the degenerate case, where H � 0, the trivial projection
�S WR�YS !M is actually J0-holomorphic. Therefore v D �S ıu is a holomorphic curve in M. The
asymptotics of u project to points in M, so v extends to a holomorphic map on a closed surface. But M

is exact, and so v is constant, and we deduce that u is a trivial cylinder.

If we take Ht D tH , we denote by Jt the corresponding almost complex structure (which only differs
in that it intertwines the varying Rt with the R-direction). If we assume we have a sequence fung of
Jtn

-holomorphic maps with tn! 0, with one positive and negative simply covered orbits corresponding to
critical points p˙, then we obtain a stable holomorphic cascade uH

1 as a limiting object; see [8]. Since the
positive end of un is simply covered, for energy reasons as explained above, every Reeb orbit appearing in
uH
1 is simply covered, and therefore each of its holomorphic map components cannot be multiply covered.

Stability of the cascade means that it does not have trivial cylinder components. We conclude that the
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space of holomorphic cascades which glue to curves as in our hypothesis consists solely of flow-lines,
which are regular by the Morse–Smale condition, and come in an .indpC.H /� indp�.H /�1/-dimensional
family. Note that such flow-line cylinders can always be glued to another flow-line cylinder. The implicit
function theorem then implies that u is a flow-line cylinder if H is sufficiently small. Indeed, we can
argue as follows. Consider the parametric moduli space

M WDM.R�MY ; fJtgt2Œ0;1�I 
pC ; 
p�/D f.t;u/ j t 2 Œ0; 1�;u 2M.R�MY ;Jt I 
pC ; 
p�/g;

where M.R�MY ;Jt I 
pC ; 
p�/ denotes the Gromov-compactified moduli space of Jt -holomorphic
curves in R�MY (of any genus) which have simply covered positive asymptotic 
pC , and negative
asymptotic 
p� , and where the compactification at t D 0 corresponds to stable holomorphic cascades.
Since the Reeb orbits are simply covered, curves in the parametric moduli are somewhere injective.
Then, by the Morse–Smale condition and the implicit function theorem, the parametric moduli space is,
for sufficiently small H , an .indpC.H /� indp�.H //-dimensional compact manifold whose boundary
contains M.R�MY ;J

0I 
pC ; 
p�/, only consisting of flow line cylinders. The flow-line parametric
moduli space

Mflow-line WDMflow-line.R�MY ; fJtgt2Œ0;1�I 
pC ; 
p�/

WD f.t;u/ j t 2 Œ0; 1�;u corresponds to a flow-line in M.R�MY ;Jt I 
pC ; 
p�/g

is, a priori, a submanifold of M.R�MY ; fJtgt2Œ0;1�I 
pC ; 
p�/, which shares the boundary component
M.R�MY ;J

0I 
pC ; 
p�/, and has its same dimension. By thinking of M as a collar neighborhood of
this boundary component, we obtain

MDMflow-line;

from which our uniqueness follows. Observe that since there are finitely many critical points, we can
take H (or � > 0) uniformly small.

In what follows, we start with a J D Jt corresponding to t sufficiently small.

Case B We argue via energy considerations. Denote by Z˙ �† the positive/negative punctures of u,
where † is a closed Riemann surface, and P†D†n.ZC[Z�/ is the domain of u. Since orbits associated
to ZC correspond to critical points of H , so does every orbit associated to Z� (which may a priori be
multiply covered). For z 2Z˙, denote by 
 �z

pz
the corresponding orbit, where pz 2 crit.H /, and �z � 1

is the covering multiplicity (�z D 1 for all z 2 ZC). By assumption, #ZC � k D #�0.YS /. We now
estimate the�-energy of u, where HD .ˇ;�/ is the SHS, and� is exact, the primitive being eH .˛Cd�/

along YS . Using Stokes’ theorem, we obtain

E.u/ WD

Z
P†

u��D 2�

� X
z2ZC

eH .pz /�

X
z2Z�

�zeH .pz /

�
� 2�keH

kC 0#ZC � 2�kkeH
kC 0 :

We now bound E.u/ from below. The projection p WR�YP ! Sk is also holomorphic. Moreover, the
same is true in a small closed �-neighborhood of R�YP inside R�Y, which intersects R�YS along a collar
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of the form R�@Sk � Œ0; ���@M , along which ˇ picks up a d� component. Let S WD Sk [@ @Sk � Œ0; ��

this small extension of Sk . For each s 2 S , Es WD R� fsg � @M is a holomorphic hypersurface, the
fiber of p over s. By assumption, u has nontrivial intersection with R�YP , which is foliated by these
holomorphic hypersurfaces Es . By Sard’s theorem, we may shrink � if necessary so that u is transverse
to R� @S �M . Therefore †0 WD u�1.R� S �M / is a smooth (possibly disconnected) surface with
boundary. Note that since the asymptotics of u are away from S , the intersection of u with any of the Es

consists of a finite collection of points in the domain of u, which are away from the punctures. We then
see that the algebraic intersection deg.u/ WD u �Es is positive, independent of s, and in fact is the degree
of F WD p ıu W†0! S , which is a holomorphic branched cover.

Write @†0 D
Sl

iD1 Ci , oriented with the boundary orientation, where Ci is a simple closed curve whose
image under F wraps around one of the boundary components of S with winding number ni ¤ 0

(measured with respect to d� ). By holomorphicity of F , one easily sees that ni > 0. Since u intersects Es

for every s 2 @S , we have l � k. By counting preimages of a point s 2 @S , we obtainZ
@†0

u�d� D 2�

lX
iD1

ni D 2�k deg.u/:

Using that �D d˛C d� along S , that �D et d� near @S where t 2 Œ0; ��, that u�d˛ � 0 by choice of J0,
and Stokes’ theorem, we see that

E.u/�

Z
†0

u��D

Z
†0

u�.d˛C d�/�
Z
†0

u�d�D e�
Z
@†0

u�d� D 2�ke� deg.u/:

Combining with the previous upper bound for E.u/, we obtain

2�k � 2�ke� deg.u/� 2�

� X
z2ZC

eH .pz /�

X
z2Z�

�zeH .pz /

�
� 2�keH

kC 0#ZC � 2�kkeH
kC 0 :

Since H can be taken arbitrarily close to 0, we see that #ZCD k, #Z�D 0 and deg.u/D 1. This proves
the proposition for the SHS H and J0. It is clear the same holds for any nearby contact structure and
almost complex structure.

Proof of Theorem 6.6 If �C is set of Reeb orbits in form of 
p;i of cardinality at most k, then
Proposition 6.7 implies that MY .�

C; ��/ is empty if �� ¤ ¿, unless �C D f
p;ig and �� D f
q;ig

with ind p > ind q. In particular, this implies that ỳ�.q�
C

/ is independent of �. Moreover, we have
vdimMY;o.f
p;ig; f
q;ig/ D ind.p/� ind.q/� 2n < 0, hence ỳ�;�.q�

C

/ is also independent of �. As
a result, it suffices to find one � and one �C such that ỳ�.q�

C

/ D 0 and ỳ�;�.q�
C

/ ¤ 0. In view of
Proposition 5.14, the latter condition is satisfied if �M�Sk

.q�
C

/¤ 0. In particular, we can work with the
nice exact filling M �Sk .

Assume we start with a Liouville form on Sk such that the simple Reeb orbits on each boundary component
have period 1 and hence the area of Sk is k. Following [91, Section 2.1], by choosing the Liouville form
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on M sufficiently large, ie the Reeb orbits on @M have sufficiently large period, we may assume all
Reeb orbits below a period threshold are of the form 
m

p;i , ie the mth multiple cover of the Reeb orbit over
the critical point p of H and the i th boundary of Sk , so that the period of 
m

p;i is approximately m. On
homology level (both in H1.@.M �Sk// and H1.M �Sk/), the only relations are

Œ
m
p;i �DmŒ
p;i �; Œ
p;i �D Œ
q;i � and

kX
iD1

Œ
p;i �D 0:

Using the existence of symplectic caps (see [24, Theorem 1.6], [53, Corollary 1.14] and [56, Theorem 3.2]),
we know that there exists an exact embedding of M into W, where the contact boundary @W is the
contact boundary of some affine variety. Then we consider a projective compactification of the affine
variety by adding simple normal crossing divisors D, but instead we add the divisors D to W to obtain W.
Then W is a closed symplectic manifold whose symplectic form is Poincaré dual to D. Now we consider
holomorphic curves in W �CP1, which contains M � Sk as a domain with contact boundary; here
the symplectic area of CP1 is slightly bigger than k so as to contain Sk . We use MJ ;o to denote
the compactified moduli spaces of holomorphic spheres passing through o 2M �Sk with homology
class AC Œ��CP1� for A 2H2.M / with c1.A/D 0. We can form such a compactification, since M

is exact; in particular, those curves have uniformly bounded symplectic area. If we pick J to be the
split almost complex structure on W �CP1, then MJ ;o is cut out transversely and consists of exactly
one point. Then we deform the almost complex structure so that it coincides with the almost complex
structure in Proposition 6.7 near @.M �Sk/, and also apply neck-stretching along @.M �Sk/. We claim
transversality holds for this process for generic choices. First we will prove that the moduli space of
curves in class AC Œ� �CP1� for A 2 H2.M / (hence A has zero symplectic area) with c1.A/ D 0

has no bubble degeneration in the compactification. For this, we pick an almost complex structure that
makes D�CP1 holomorphic and is in split form near D�CP1. Suppose there is a bubble degeneration
with a component in class BC kŒ��CP1� for B 2H2.W /. If B has negative symplectic area, ie the
intersection with D �CP1 is negative, by the positivity of intersection, we have that the component is
contained in D �CP1. Since the almost complex structure is split, the projection to D has negative
symplectic area, a contradiction. Therefore all components in a hypothetical bubble degeneration are
of the form B C kŒ� �CP1� where the symplectic area of B is zero. Now since ŒCP1� in H2.CP1/

cannot be decomposed into multiple components with positive symplectic area, we see that there is no
bubble degeneration. Note that the region where we make assumptions on the almost complex structure
is outside the contact boundary that we apply neck-stretching to. In the fully stretched case, due to action
and first homology class reasons, we must have that the bottom curve, the one with the point constraint,
has asymptotics in the form of �C D f
p1;1; : : : ; 
pk ;kg. Moreover, since all relevant Reeb orbits are
simple, we may assume the full-stretched moduli space is also cut out transversely.

For �C D f
p1;1; : : : ; 
pk ;kg, we first note that vdimMM�Sk ;A;o.�
C;¿/ is

(6-2) 2hc1.M /;AiC

kX
iD1

ind.pi/� 2nk;
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where we view the relative homology class A as in H2.M /. To see this, we first consider Sk . Let 
i be
the Reeb orbit on the i th boundary, using a trivialization of the symplectic vector bundle over Sk , the
Conley–Zehnder indices satisfy

kX
iD1

�CZ.
i/D 2.2� k/:

Following [88, Proof of Theorem 6.3], in the product M �Sk , the normal direction picks up an extra
Conley–Zehnder index of ind.pi/� n, ie using the trivialization over the bounding surface Sk , we have

kX
iD1

�CZ.
pi ;i/D

kX
iD1

.ind.pi/� n/C 2.2� k/:

Hence

vdimMM�Sk ;A;o D 2hc1.M /;AiC .n� 2/.2� k/C

kX
iD1

�CZ.
pi ;i/� 2nD (6-2):

Next we separate the proof into two cases.

(1) If c1.M /D 0, then vdimMM�Sk ;A;o.�
C;¿/ is independent of the relative homology class A.

Moreover, the expected dimension in (6-2) is nonpositive and is zero if and only if p1 D � � � D pk

is the unique maximum pmax of H . Then the above neck-stretching argument implies that[
A

MM�Sk ;A;o.�
C;¿/D

[
A

MM�Sk ;A;o.�
C;¿/;

which has nontrivial algebraic count for�CDf
pmax;1; : : : ; 
pmax;kg. In particular, �M�Sk
.q�
C

/¤0.
By Proposition 6.7, we have

ỳ
�.q

�C/D

kX
iD1

X
ind qD2n�1

#MY .f
pmax;ig; f
q;ig/q
pmax;1
� � � q
q;i

� � � q
pmax;k
D 0;

since pmax is the unique maximum. Hence we have P.Y /� k.

(2) If M supports a perfect exhausting Morse function, then we can assume the perturbation H is
perfect. Since c1.M / is not necessarily 0, the neck-stretching argument above only gives us[
2c1.A/C

kP
iD1

ind.pi /�2nkD0

MM�Sk ;A;o.�
C;¿/D

[
2c1.A/C

kP
iD1

ind.pi /�2nkD0

MM�Sk ;A;o.�
C;¿/;

with nontrivial algebraic count for some �C D f
p1;1; : : : ; 
pk ;kg. Since H is perfect, ie the count
of rigid gradient flow lines between every pair of critical points is zero, Proposition 6.7 implies
that ỳ�.q�

C

/D 0. Therefore we have P.Y /� k.

Corollary 6.8 Let V be an affine variety with c1.V /D 0 such that AU.V /� k. Then P.@.Sk �V //D k.

Proof By Theorem 6.6, P.@.Sk �V //� k. On the other hand it is easy to see that AU.Sk �V /D k, as
every algebraic curve in V �Sk projects to an algebraic curve in both V and Sk . Then the claim follows
from Corollary 5.15.
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7 Examples and applications

In this section, we will discuss two more classes of examples, where we can compute the hierarchy
functors. The first case is smooth affine varieties with a CPn compactification, or more generally a Fano
hypersurface compactification. The second case is links of singularities, including links of Brieskorn
singularities and quotient singularities by the diagonal action of cyclic groups. In particular, we will finish
the proof of Theorem B.

7.1 Affine varieties

Let V be a smooth affine variety. Then V is naturally a Weinstein manifold by viewing V � CN, and
the function jx �x0j

2 on CN restricted to V is a Morse function with finitely many critical points for a
generic x0 2CN ; see [63, Section 6]. In particular, we obtain a contact manifold by taking the intersection
of V with the boundary of a large enough ball. We will use @V to denote the contact boundary of the
intersection; the interior of the intersection is called the associated Liouville domain. Both notions up to
homotopy are independent of the size of the large ball.

An alternative way of associating a Weinstein structure to V is by using a smooth projective compactifi-
cation V, with an ample line bundle L with a holomorphic section s such that s�1.0/ is a normal crossing
divisor such that V D V ns�1.0/. We choose a metric on L such that the curvature is a Kähler form !

on V. Then by [74, Lemma 4.3], hD�log jsj and �dCh defines a Weinstein structure (possibly after a
compactly supported perturbation) on V. The equivalence of these two definitions can be found in [60].

We first give a description of the embedding relations of affine varieties with the same projective
compactification.

Lemma 7.1 Let X be a smooth projective variety with a very ample line bundle L endowed with a
Hermitian metric. For s 2 H 0.L/, we use Vs to denote the Liouville domain associated to the affine
variety Xns�1.0/. Then for s¤ 02H 0.L/, there exists � > 0 such that for all t 2H 0.L/ with js� t j< �,
Vs embeds exactly into Vt .

Proof With the very ample line bundle L, X can be embedded in PH 0.L/ such that every s 2H 0.L/
corresponds to a hyperplane Hs � PH 0.L/ and s�1.0/DX \Hs . We can view the Liouville domain Vs

as the intersection of X with a large ball in the identification of CN with PH 0.L/nHs . Then for t

sufficiently close to s, ie Ht sufficiently close to Hs , the Liouville form of Vt restricted to Vs \SR is
a contact form, where SR is the radius R� 0 sphere in CN. The Gray stability theorem implies that
all of them induce the same contact structure on Vs \SR for t sufficiently close to s, and the Liouville
form of Vt restricted to Vs \BR is homotopic to the Liouville structure on Vs; hence Vs embeds exactly
into Vt .
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Remark 7.2 In principle, the exact embedding from Vs to Vt should be built from a Weinstein cobordism.
Hence one expects a more precise description of the Weinstein cobordism, which depends on the
deformation from s to t . Some results in this direction can be found in [3; 68].

Roughly speaking, we should have a stratification on PH 0.L/ indexed by the singularity type of s�1.0/.
The index set forms a category by declaring there to be a morphism from stratum A to stratum B if the
closure of B contains A. Then Lemma 7.1 implies that we have a functor from the index set (which
should be a poset) to Con�. Making such description precise is not easy, as we do not have a classification
of singularities of s�1.0/ in general. However, we can describe some subcategory of the index set. The
following lemma is also very useful in understanding the embedding relations of affine varieties which
arise from different line bundles.

Lemma 7.3 [74, Lemma 4.4] Assume that the smooth affine variety V has a smooth projective
compactification V. Assume there are two ample line bundles Li with sections si such that s�1

1
.0/ D

s�1
2
.0/DV nV is normal crossings , but possibly with different multiplicities. Then the Liouville structures

on V defined by the si are homotopic.

Example 7.4 CPn minus k generic hyperplanes can be viewed as the complement of .s1˝� � �˝sk/
�1.0/

for generic sections si of O.1/. On the other hand, CPn minus k � 1 generic hyperplanes can be viewed
as the complement of .s1˝ s1˝ s3˝� � �˝ sk/

�1.0/ by Lemma 7.3. As a consequence of Lemma 7.1, we
have an exact embedding of CPn minus k � 1 generic hyperplanes to CPn minus k generic hyperplanes.
As a simple example, CP2 minus a line is C2, CP2 minus two generic lines is C �T �S1, and CP2

minus three generic lines is T �T 2. It is clear that we have the embedding relations. Moreover, some
of the relations cannot be reversed, eg T �T 2 cannot be embedded exactly into C2 or C �T �S1. But
C � T �S1 can be embedded back into C2 by adding a 2-handle corresponding to the positive Dehn
twist in the trivial open book for @.C �T �S1/. More generally, CPn minus k generic hyperplanes is
CnC1�k �T �T k�1 for k � n, and they can be embedded into each other exactly.

Example 7.5 CP2 minus 3 hyperplanes passing through the same point is C � S3, where S3 is the
thrice punctured sphere. Since CP2 minus 2 hyperplanes can still be viewed as a further degeneration,
we have that C �T �S1 embeds to C �S3, which is obviously true. On the other hand, CP2 minus 3

generic hyperplanes, ie T �T 2, contains C �S3 as an exact subdomain. Moreover, CP2 minus a smooth
degree-2 curve is T �RP2, which is obtained from attaching a 2-handle to C � T �S1, ie CP2 minus
2 generic lines. CP2 minus a smooth degree-3 curve can be described as attaching three 2-handles
to T �T 2; see [3] for details. It is not obvious if the complement of a smooth degree-2 curve embeds
exactly into the complement of a smooth degree-3 curve. However, the former embeds exactly into the
complement of a smooth degree-4 curve by Lemmas 7.1 and 7.3.

Let D be a divisor. We use Dc to denote the complement affine variety. Our main theorem in this section
is the following.
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Theorem 7.6 Let D be k generic hyperplanes in CPn for n� 2. Then we have the following.

(1) P.@Dc/� kC 1� n for k > nC 1.

(2) P.@Dc/D kC 1� n for nC 1< k < 1
2
.3n� 1/ and n odd.

(3) P.@Dc/D 2 for k D nC 1.

(4) Hcx.@D
c/D 0SD for k � n.

The strategy to obtain Theorem 7.6 is to first prove P.@Dc/�maxf1; kC 1� ng by index computations.
Then we obtain that the planarity of the affine variety Dc is at most maxf1; kC 1� ng by looking at the
affine variety Dc

s , where Ds is the smoothing of D, ie a smooth degree-k hypersurface. Finally, we use
index computations to show that the relevant portion of the computation of planarity is independent of
the BL1 augmentation for RSFT.@Dc/ when nC 1 < k < 1

2
.3n� 1/. The benefit of considering the

smoothing is twofold. First, the relevant holomorphic curve theory for the pair .CPn;Ds/ is easier both in
terms of analysis and computation. In particular, we can use the computation of relative Gromov–Witten
invariants in [37] to supply the holomorphic curve we need. Second, @Dc carries more complicated
Reeb dynamics than @Dc

s , which makes it harder to prove the independence of augmentations by looking
at @Dc alone. More precisely, for any augmentation of RSFT.@Dc

s/ given by the composition of the BL1
morphism from RSFT.@Dc

s/ to RSFT.@Dc/ with an augmentation of RSFT.@Dc/, we will show that the
planarity for RSFT.@Dc

s/ of that augmentation is maxf1; kC 1� ng. Then, planarity of RSFT.@Dc/ is
maxf1; k C 1 � ng for any augmentation by functoriality. The condition of n being odd is to obtain
automatic closedness of a suitable chain in SV@Dc

s
for any augmentation, and is expected to be irrelevant.

However, to drop this constraint, we need to use stronger transversality properties supplied by [86];
see Remark 7.23 for more discussion. The nC 1 < k < 1

2
.3n� 1/ condition is likely not optimal but

possibly necessary. It is a difficult task to compute planarity for all augmentations. There are many affine
varieties with a CPn compactification such that the contact boundary has infinite planarity, while the
planarity of the affine variety, ie using the augmentation from the affine variety, is finite; see Theorem 7.14.
In particular, different augmentations do make a difference in general. Therefore it is a subtle question to
determine which affine variety has finite planarity. In general, we need to develop a computation method
of RSFT from log/relative Gromov–Witten invariants like the symplectic (co)homology computation
in [27].

7.1.1 Reeb dynamics on the divisor complement In this part, we describe the Reeb dynamics on the
boundary of a tubular neighborhood of a simple normal crossing divisor. The general description was
obtained in [59, Section 5], but see also [35, Section 2.1], [61], [78] or [36, Section 2.4]. In the following,
we state the special cases for Theorem 7.6.

Case 1 (a smooth degree-k hypersurface in CPn for n� 2) Let D be a smooth degree-k hypersurface
in CPn. Then the contact boundary is the concave boundary of the O.k/ line bundle over D, which
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carries a natural Morse–Bott contact form whose Reeb flow is the S1 action on the circle bundle. Consider
the hypersurface r D f in O.k/, where r is the radial coordinate. Given an action threshold C , one can
choose a C 2-small and positive Morse function f such that all Reeb orbits in this hypersurface, of action
less than C , have the following properties.

(1) There is a simple Reeb orbit 
p over every critical point p of f and these are all of the simple Reeb
orbits. We use 
m

p to denote the mth cover of 
p . All of the Reeb orbits are good and nondegenerate.
The period of 
m

p is greater than the period of 
 l
q if and only if m D l and f .p/ < f .q/ or

m> l . (Note that f is the r -coordinate of the perturbed hypersurface in the symplectic cap O.k/,
hence larger value of f means smaller period of the S1-fiber.) As the contact structure is the
Boothby–Wang contact structure, computation can be found in eg van Koert’s note [49]. It is also
a special case of the more general normal crossing case in [36, Theorem 2.7].

(2) Using the obvious disk cap17 bounded by 
m
q in the symplectic cap O.k/jD that intersects D once

with order m, which induces a trivialization of detC �, the Conley–Zehnder index satisfies

(7-1) n� 3��CZ.

m

p /D 2m� 2C ind.p/;

where ind.p/ is the Morse index of p. This is a special case of [36, Proposition 2.10].

(3) The class Œ
p � 2H1.D
c/ is a generator of order k, as the intersection of a generic line A'CP1 �

CPn with Dc shows that kŒ
p � is null-homologous. On the other hand, if l Œ
p � is null-homologous
in Dc for l < k, by gluing with the obvious caps, we get a second homology class in CPn whose
intersection number with D is l , a contradiction.

One way to understand (7-1) is following: n � 3 � �CZ.

m

p / is the virtual dimension of the moduli
space of holomorphic disks in O.k/ with the same relative homology class as the bounding disk. Then
n� 3��CZ.


m
p /C 2� 2m is the virtual dimension of the moduli spaces of holomorphic disks in the

bounding disk homology class, with one marked point intersecting D with order m. In the Morse–Bott
case, ie when the contact form is Boothby–Wang and f is used in a cascades model, then the moduli
space mentioned above is cut out transversely and is identified with the stable manifold of p, whose
dimension is ind.p/. When pmin is the unique minimum of f , by the argument in [14] and transversality
for the cascade model, we know that the moduli space of holomorphic disks in the cap O.k/ asymptotic
to 
m

pmin
with one marked point intersecting D of order m and homology class the bounding disk is cut

out transversely, compact, with algebraic count ˙1.

Case 2 (k generic hyperplanes in CPn for k � nC 1) Let D1; : : : ;Dk denote the k hyperplanes. Let
I � f1; : : : ; kg be a set of cardinality at most n. We define DI to be the intersection

T
i2I Di , which is a

copy of CPn�jI j. We define {DI by DIn
�
DI \

S
i 62I Di

�
. Let Ni be the normal disk bundle over Di .

Then
L

i2I @Ni jDI
is a T jI j bundle over DI . Then the contact boundary is topologically decomposed as

17That is, map from CP1nD and view the boundary as a negative end. In other words, it is the unit disk D mapped to O.k/jD ,
such that the induced boundary map with the usual boundary orientation is �
m

q .
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I�f1;:::;kg

L
i2I @Ni j {DI

. We pick an exhausting Morse function fI on each {DI , ie the gradient of fI

points out along @ {DI . The Reeb dynamics has the following properties.

(1) For each critical point p of fI and any function t W f1; : : : ; kg ! N with supp t D I , we have a
T jI j�1 Morse–Bott family of Reeb orbits 
 t

p. The homology class of 
 t
p is given by the image of

t 2H1.T
jI j/DZjI j in H1.D

c/ by inclusion, where T jI j is the T jI j fiber of
L

i2I @Ni j {DI
over p.

This follows from [59, Section 5] or [78, Theorem 2.17], which is summarized in [36, Theorem 2.7].

(2) H1.D
c/ is generated by the simple circles Œˇi � wrapping around Di once (ie the oriented boundary

of small disks that intersect with Di negatively once) subject to the relation
Pk

iD1Œˇi �D 0; see
[55, Proposition 2.3]. The homology class Œ
 t

p � over {DI is
P

i2I t.i/Œˇi �; see [36, Theorem 2.7(5)].
Moreover, there is a natural disk cap with boundary 
 t

p intersecting Di of order t.i/ (by cap instead
of disk/filling, we emphasize the boundary map with induced orientation is �
 t

p.).

(3) The generalized Conley–Zehnder index, using the obvious disk cap whose intersection number
with Di is t.i/ for i 2 I , is given by18

n� 3��CZ.

t

p/D 2
X
i2I

t.i/� 2C ind.p/C 1
2
.jI j � 1/:

In the following, we use
P

t as a shorthand for
P

i2I t.i/. After a perturbation, the T jI j�1

family of Reeb orbits degenerate to 2jI j�1 nondegenerate orbits corresponding to generators of
H�.T

jI j�1/, and the Conley–Zehnder indices span the region

(7-2) n� 3��CZ 2

h
2
X

t � 2C ind.p/; 2
X

t � 2C ind.p/CjI j � 1
i
:

This follows from [36, Proposition 2.10]. We use {
 t
p to denote the orbit with n� 3��CZ.{


t
p/D

2
P

t�2C ind.p/, and y
 t
p to denote the orbit with n�3��CZ.y


t
p/D 2

P
t�2C ind.p/CjI j�1.

Remark 7.7 Following [59, Lemmas 5.17 and 5.18], the period of 
 t
p is close to (smaller than)

P
i2I t.i/

with a small discrepancy depending on the symplectic size of the neighborhood of D that is removed and
a smaller discrepancy from the perturbation from f , with the property that the period of 
 t

p is smaller than
that of 
 t

q if and only if f .p/ > f .q/. In particular,
P

t can be thought as the period of the Morse–Bott
family with the “ideal” case of only removing the divisor D. The period will be further perturbed after we
perfect the T jI j�1 family into nondegenerate orbits. Those newly created orbits have periods arbitrarily
close to the period of 
 t

p and the period of {
 t
p is larger than the period of y
 t

p. In the general case, for
s 2H 0.L/ with s�1.0/ normal crossings, and s�1.0/D

Pk
iD1 aiDi as a divisor, when we use �dC log jsj

as the Liouville structure on Xns�1.0/, after the deformation as in [59, Lemma 5.17] to organize the
Liouville form nicely near the boundary, we have a similar description of Reeb orbits as the above, and

18The extra 1
2
.jI j � 1/ is from the T jI j�1 Morse–Bott family, which after perturbation spans the region of Morse indices of the

Morse function T jI j�1 as in (7-2). It particular, it is analogous to Case 1 for smooth divisors. An analogous situation can be
found in [62, Theorem 5,16]. The two situations are different in the sense that [62] considered the symplectic filling by normal
crossing divisors instead of a symplectic cap and used a preferred global trivialization of a power of the contact distribution.
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the period of the Reeb orbits with intersection order t W f1; : : : ; kg!N with supp t D I over {DI is given
by
Pk

iD1 ai t.i/ minus a (arbitrarily) small discrepancy.

7.1.2 Lower bound of P.@Dc/

Proposition 7.8 Let D DD1[ � � � [Dk denote the k > nC 1 generic hyperplanes in CPn for n� 2.

(1) For any Reeb orbits set � WD f
1; : : : ; 
r g for r < kC 1� n with
P
Œ
i �D 0 2H1.D

c/, the virtual
dimension of the moduli space MDc;A;o.�;¿/ is less than 0 for any A.

(2) For any Reeb orbits set � WD f
1; : : : ; 
kC1�ng with
P
Œ
i �D 0 2H1.D

c/ and such that the virtual
dimension of the moduli space MDc;A;o.�;¿/ is nonnegative , there is a partition of f1; : : : ; kg
into subsets I1; : : : ; IkC1�n such that � D f{


�Ii
pi;mingi , where pi;min is the minimum on {DIi

and �Ii

is the indication function supported on Ii , ie �Ii
.j /D 1 if j 2 Ii and is otherwise zero.

Proof Since c1.D
c/D 0, the virtual dimension does not depend on A, and we will suppress it from the

notation in the following discussion (the same applies everywhere in this subsection). Given a curve u

in the same homotopy class of a curve in MDc;o.�;¿/, we use ui to denote the natural disk cap of 
i .
Then we have

ind.u/C
rX

iD1

.n� 3��CZ.
i//D 2c1

�
u #

r

#
iD1

ui

�
C 2.n� 3/� 2nC 2

D 2c1

�
u #

r

#
iD1

ui

�
� 4:

Here, note that the �2nC 2 comes from the point constraint. We assume 
i is of the form 

ti

pi
after

perturbations. Since
Pr

iD1Œ
i �D 0 in homology, if we view each ti as a k-dimensional integral vector,
we have

Pr
iD1 ti D .N; : : : ;N / for some N 2NC. Since ti keeps track of the intersection of the natural

disk ui with D, we know that Œu # #r
iD1 ui �\D is N k points. In particular, Œu # #r

iD1 ui � is N times the
generator in H2.CPn/, and c1.u # #r

iD1 ui/DN.nC 1/. Then

ind.u/� 2N.nC 1/� 4�

rX
iD1

�
2
X

ti � 2C ind.pi/
�

(7-3)

� 2N.nC 1/� 4� 2

rX
iD1

X
ti C 2r(7-4)

D 2N.nC 1� k/� 4C 2r

D 2.N � 1/.nC 1� k/C 2.r C n� k � 1/ < 0 when r < kC 1� n.

If r D kC 1� n, to have ind.u/� 0, we must have N D 1. In this case, both inequalities (7-3) and (7-4)
must be equalities. In particular, ind.pi/D 0 and 
i must be a check orbit {
pi

, ie the claim holds.
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Then by Proposition 5.14, we have the following.

Corollary 7.9 (lower bound on P.@Dc/) If D denotes k generic hyperplanes for k > nC 1 and n� 2,
then P.@Dc/� kC 1� n. The same holds for @Vs if s is a perturbation of such a D.

Proof Let D be k generic hyperplanes as in the statement. Then �Dc on Br V@Dc in Proposition 5.14 is
zero for r < kC 1� n by Proposition 7.8. Therefore P.@Dc/� kC 1� n. The remainder of the claim
follows from Lemma 7.1 and the functorial property of P.

In the following, we will separate the proof of the upper bound of P.@Dc/ into two steps, namely, we will
first show the existence of a holomorphic curve that is responsible for the finite planarity, and then we
will argue that the phenomenon is independent of augmentations for certain k.

7.1.3 Step one for the upper bound of P.@Dc/: source of holomorphic curves

Proposition 7.10 Let Ds be a smooth degree-k hypersurfaces in CPn. Then the following holds.

(1) If k � n, for a point o 2Dc
s , there is a Reeb orbit 
 k

p with ind.p/D 2.n� k/ and an admissible
complex structure such that MDc

s ;o.f

k

p g;¿/ is cut out transversely and #MDc
s ;o.f


k
p g;¿/¤ 0.

(2) If k � nC 1, for a point o 2Dc
s , there are two Reeb orbits 
 n

pmin
and 
pmin , with pmin the unique

minimum on Ds , and an admissible almost complex structure such that

MDc
s ;o.f


n
pmin

; 
pmin ; : : : ; 
pmin„ ƒ‚ …
k�n

g;¿/

is cut out transversely with nontrivial algebraic count.

Proof This follows from applying neck-stretching to CPn along @Dc
s . We denote by

GWCPn;Ds

0;k;.s1;:::;sl /;A
.C1; : : : ;Ck ;E1; : : : ;El/

the relative Gromov–Witten invariant that counts genus-zero holomorphic curves in class A with k marked
points going through C1; : : : ;Ck 2H�.CPn/ and l marked points going through E1; : : : ;El 2H�.Ds/

and which intersect Ds with multiplicity at least s1; : : : ; sl , respectively; see [45]. The source of
holomorphic curves is the nonvanishing relative Gromov–Witten invariants

GWCPn;Ds

0;1;.k/;A
.Œpt�; ŒDs �\

n�k ŒH �/ for k � n;

GWCPn;Ds

0;1;.n;1;:::;1/;A
.Œpt�; ŒDs �; : : : ; ŒDs �/ for k > n;

respectively, from [37], where H 2 H2n�2.CPn/ is the hyperplane class and A is the generator of
H2.CPn/. More precisely, when k > n, by the divisor axiom we have

GWCPn;Ds

0;1;.n;1;:::;1/;A
.Œpt�; ŒDs �; : : : ; ŒDs �/D .k/

k�n GWCPn;Ds

0;1;.n/;A
.Œpt�; ŒDs �/:
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By applying [37, Theorem 2.6] n� 1 times,19 we have

GWCPn;Ds

0;1;.n/;A
.Œpt�; ŒDs �/D

Z
M0;2.CPn;A/

ev�1 PD.Œpt�/^ ev�2 PD.ŒDs �/^

n�1Y
iD1

�
ev�2 PD.ŒDs �/C i 

�
D

Z
M0;2.CPn;A;pt/

ev�2 PD.ŒDs �/^

n�1Y
iD1

�
ev�2 PD.ŒDs �/C i 

�
;

where M0;2.CPn;A/ is the compactified moduli space of holomorphic spheres in class A 2H2.CPn/

with two marked points (ev1 and ev2 are two evaluation maps), and M0;2.CPn;A; pt/ is the one where
the first marked point is subject to a point constraint, while  is the psi class [37, page 183] in descendant
Gromov–Witten invariants [48, Section 4.5.5]. Note that M0;2.CPn;A; pt/' CPn and  is the first
Chern class of the tautological line bundle. As a consequence, we have

GWCPn;Ds

0;1;.n/;A
.Œpt�; ŒDs �/D

nY
iD1

.k � i/ > 0:

Similarly, when k < n, we have

GWCPn;Ds

0;1;.k/;A
.Œpt�; ŒDs �\

n�k ŒH �/D

Z
M0;2.CPn;A;pt/

ev�2 PD.ŒDs �\
n�k ŒH �/^

k�1Y
iD1

�
ev�2 PD.ŒDs �/Ci 

�
D k!:

Since a curve in class A is necessarily somewhere injective and not contained in Ds because we can
choose the Œpt� class in Dc

s , one can assume transversality in the process of neck-stretching. In the fully
stretched picture, each connected component of the bottom curve has at most maxf1; kC 1� ng positive
punctures, for otherwise genus has to be created. If the component of the bottom curve with the point
constraint has 0 < r < maxf1; k C 1� ng positive punctures, in particular, k � nC 1, we assume the
positive asymptotics are �C D f
 di

pi
g1�i�r . Since

P
Œ


di
pi
�D 0 in homology, and Œ
pi

� is the generator of
H1.D

c
s/ of order k, we have

P
di D km for some m. Then the expected dimension of MDc

s ;o.�
C;¿/

is given by

ind.u/D 2m.nC 1/� 4�

rX
iD1

.n� 3��CZ.

di

pi
//D 2m.nC 1/� 4�

rX
iD1

.2di � 2C ind.pi//

� 2m.nC 1/� 4� 2

rX
iD1

di C 2r D 2m.nC 1� k/C 2r � 4

D 2.m� 1/.nC 1� k/C 2.r C n� k � 1/ < 0:

Therefore the component of the bottom curve with the point constraint must have maxf1; k C 1� ng

positive punctures. Moreover, from the above computation, we separate the proof into three cases.

19D˛;k.X; ˇ/ in [37, Theorem 2.6], ie those bubble trees with a subtree contained in the divisor, is empty, as we are considering
degree 1 curves.
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Case 1 (k > nC1) To have ind.u/� 0, we must have that pi is the minimum pmin and mD 1. That is,
the positive asymptotics of the bottom curve are f
 di

pming1�i�kC1�n with
P

di D k. Next, we consider the
curves in the symplectic cap. Because a curve in the symplectic cap must intersect Ds , there are at most
kC 1�n connected components of the top curve. If there are less than kC 1�n connected components
of the top curve, genus must be created because the bottom curve component with a point constraint
has maxf1; kC 1� ng positive punctures. As a consequence, one component intersects Ds with order n,
and k � n components intersect Ds with order 1. Note that the component v in the symplectic cap that
intersects Ds with order n must be asymptotic to f
 n1

q1
; : : : ; 


nl
ql
g for critical points q� with

Pl
iD1 ni D n.

Assume, otherwise, that the sum of multiplicity is nC km for m� 1. Then the relative homology class
of v is the same as the sum of the natural disk of 
 nCkm

q and �mA for the positive generator A2H2.Ds/

that is mapped to the generator of H2.CPn/. Then the symplectic area of v is the sum of the area of the
natural disk and �m!CPn.A/. Since the symplectic area of the natural disk can be arbitrarily small if
we only remove a sufficiently small neighborhood of the divisor, the symplectic area of v is negative, a
contradiction. Similarly, the component intersecting Ds with order 1 must be a sphere with one negative
puncture asymptotic to 
q for a critical point q. The component intersecting Ds with order n must be a
sphere with one negative puncture asymptotic to 
 n

q for a (potentially different) critical point q. Assume
otherwise; then to glue to a sphere in CPn, we must have at least another component in the bottom level.
Since the total symplectic area of the curves outside the symplectic cap is approximately k times the
period of 
q , which is approximately the symplectic area of the bottom curve with a point constraint, there
is no action room for another bottom-level curve. Therefore the curves in the middle symplectization
level must be cylinders, we must have .d1; : : : dkC1�n/D .n; 1; : : : ; 1/. Moreover, since 
 n

pmin
and 
pmin

have the maximum period in their respective homology classes, there is no room for nontrivial curves in
the symplectization level. The bottom curve moduli space

MDc
s ;o.f


n
pmin

; 
pmin ; : : : ; 
pmin„ ƒ‚ …
k�n

g;¿/

consists of somewhere injective curves; for otherwise, assuming u2MDc
s ;o.f


n
pmin

; 
pmin ; : : : ; 
pming;¿/ is
a branched cover over u0, we can cap off u0 with natural disks to obtain a homology class A in H2.CP2/

with A\Ds <k, which is a contradiction. It is direct to check that the holomorphic disks in the symplectic
cap (ie disk fibers) are cut out transversely (see the discussion after (7-1)), hence transversality holds for
the fully stretched situation. Therefore we have

#MDc
s ;o.f


n
pmin

; 
pmin ; : : : ; 
pming;¿/¤ 0:

Case 2 (k D nC 1) To have ind.u/� 0, we must have that pi is the minimum of pmin but m� 1. By
the same area argument as for the cap, the total contact action of negative asymptotics of curves in the
symplectic cap is close to k. On the other hand, the total contact action of f
 di

pi
g1�i�2 is close to mk.

Hence we must have mD 1 and curves in the symplectic cap must be once punctured spheres that are
asymptotic to 
 n

q and 
q0 . The remainder of the argument is the same as before.
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Case 3 (k � n) Since the bottom level with the point constraint has one positive puncture, it is
asymptotic to 
 km

q . By the same area and action argument, we have mD 1 and the both top and bottom
level have one component with one puncture. Assume the negative asymptotics of the disk cap is 
 k

p .
Then we must have ind.p/� 2.n�k/, to have nonnegative expected dimension for the disk. On the other
hand, for the bottom curve, we must have ind.q/� 2.n� k/, to have nonnegative expected dimension.
Therefore if p ¤ q, the expected dimension of the cylinders in the symplectization is negative. Hence
we have p D q with ind.p/D 2.n� k/. Then we know that there is at least one critical point p with
ind.p/D 2.n� k/ such that #MDc

s ;o.f

k

p g;¿/¤ 0 and the unstable manifold of p represents multiples
of ŒDs �\

n�k ŒH �.

Remark 7.11 (algebraic Gromov–Witten invariants vs symplectic Gromov–Witten invariants) The
proof of Proposition 7.10 makes an inexplicit assumption that the algebraically defined Gromov–Witten
invariants used in [37] are the same as the symplectic version, where we only use a compatible almost
complex structure. Without such an assumption, the above argument only shows that moduli spaces in
Proposition 7.10 are not empty by compactness, but the algebraic count might be zero. Such equivalence is
expected, but not established. However, for the very special case of degree-one curves in Proposition 7.10,
such an equivalence is easier to establish. Here we only mention two strategies to establish this special
equivalence to make Proposition 7.10 completely self-contained:

(1) Translate the proofs in [37] into the symplectic version.

(2) Interpret the algebraic Gromov–Witten invariants in Proposition 7.10 as Euler classes of an obstruc-
tion bundle over M0;2.CPn;A; pt/' CPn, then establish the equivalence with the symplectic
version.

We will not pursue the details of those arguments in this paper.

Corollary 7.12 Let Ds be the smooth degree-k hypersurface in CPn for k > nC 1 and n � 2. Then
�Dc

s
.q
n

pmin
qk�n

pmin

/¤ 0 and q
n
pmin

qk�n

pmin

is closed in .BkC1�nV@Dc ; ỳ�Dc
s
/.

Proof We may assume the Morse function on Ds is perfect; this follows from a direct check for nD 2,
from [42] for nD 3, and the Lefschetz hyperplane theorem and the h-cobordism theorem for n� 4. Then
Proposition 7.10 implies that �Dc

s
.q
n

pmin
qk�n

pmin

/¤ 0. It suffices to prove that q
n
pmin

qk�n

pmin

is closed. Since
the parity of the SFT grading is the same as the Morse index, and q
n

pmin
qk�n

pmin

has even grading, we only
need to consider if ỳ�Dc

s
.q
n

pmin
qk�n

pmin

/ contains any q
m
p

with ind.p/D n�1 for n even. As a consequence,
we need to consider

M@Dc
s
.�C; ��/ for �C � f
 n

pmin
; 
pmin ; : : : ; 
pming and �� D f
m

p ; 

d1

p1
; : : : ; 
 ds

ps
g;

then we close off f
 di
pi
g1�i�s and a subset of the complement of �C by the augmentation from Dc

s .
On the other hand, for homology reasons, we know the sum of multiplicities of �� equals the sum of
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multiplicities of �C. As a consequence, there is no subset of f
 di
pi
g1�i�s whose sum with a subset of

the complement of �C represents a null-homologous class in Dc
s . In particular, there is no room for

augmentation from Dc
s to apply, and we only need to consider M@Dc

s
.�C; f
m

p g/, where m is the sum
of the multiplicities of �C. It is direct to check that the expected dimension of this moduli space is
.n� 2/C 2j�Cj � 2, which is strictly positive whenever n� 3. When nD 2, it is a direct check that the
only cases with expected dimension 0 are M@Dc

s
.f
 2

pmin
g; f
 2

p g/ and M@Dc
s
.f
pming; f
pg/, each of them

corresponding to a moduli space of gradient trajectories from minimum pmin to the index-one critical
point p, whose algebraic count is zero, as our Morse function is perfect. Therefore q
n

pmin
qk�n

pmin

is closed
in .BkC1�nV@Dc

s
; ỳ�Dc

s
/.

Remark 7.13 Corollary 7.12 and Proposition 7.8 essentially imply that the planarity of Dc
s is kC 1� n

for k > nC1. In the proof of Corollary 7.12, we use the topology of the filling Dc
s to get some restrictions

on the augmentation; in particular, the augmentation respects the homology classes of orbits. However,
we cannot run such an argument for general augmentations to obtain Theorem F.

7.1.4 Step two for the upper bound of P.@Dc/: independence of augmentations So far, we have
proved that P.Dc

s/ � k C 1� n (the planarity using the augmentation from the exact filling Dc
s) for a

smooth degree k > nC 1 divisor Ds . Even if we assume the functoriality of P for exact domains in
Remark 4.7 was proven, and then we have that P.Dc/� kC 1� n for D the k generic hyperplanes, we
still need to argue that the computation is independent of augmentations. In the following, we first show
that the independence of augmentation is not tautological.

Theorem 7.14 Let Ds be a smooth degree k > 2n� 3 hypersurface in CPn. Then P.@Dc
s/D1.

Proof We claim #M@Dc
s
.�C;¿/D 0 and #M@Dc

s ;o.�
C;¿/D 0. For this we use a cascades model (but

only the compactness), ie we consider the Boothby–Wang contact form on @Dc
s . Following the compactness

argument in [14], if we degenerate the contact form on Ds (as perturbed by the Morse function) to the
Boothby–Wang contact form, the curves in M@Dc

s
.�C;¿/;M@Dc

s ;A;o.�
C;¿/ degenerate to cascades.

But since j�Cj ¤¿, there is one level containing nontrivial holomorphic curves in the symplectization
of the Boothby–Wang contact form, which projects to a holomorphic sphere in Ds . However since
k > 2n� 3, there is no holomorphic sphere in Ds . Hence the claim follows. Now #M@Dc

s
.�C;¿/D 0

implies that �k D 0 for all k � 1 form a BL1 augmentation. Then #M@Dc
s ;o.�

C;¿/D 0 implies that
the planarity is1 using such augmentation.

If one applies neck-stretching to the curve found in Proposition 7.10, we will get an SFT building, which
might contain curves with negative punctures subject to a point constraint and augmentation curves in
the filling. Theorem 7.14 is a situation where the augmentation from the natural filling and the trivial
algebraic augmentation yield different computations. The following proposition singles out the module
spaces for @Dc

s that might influence the computation of planarity for different augmentations.
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Proposition 7.15 Let Ds be a smooth degree k � nC1 hypersurface in CPn. Assume �C is a subset of

f
 n
pmin

; 
pmin ; : : : ; 
pmin„ ƒ‚ …
k�n

g:

Then for ��¤¿, one has #M@Dc
s ;o.�

C; ��/D0 unless �CDf
 n
pmin
g and ��Df
 n

pmax
g, or �CDf
pming

and �� D f
pmaxg.

Proof We can assume �� D f
 d1
p1
; : : : ; 


dr
pr
g with

P
di is the total multiplicity of �C (which is at

most k) by homology and action reasons, as the total multiplicity of �� is at most the total multiplicity
of �C with the difference a multiple of k. Then we can run the Morse–Bott compactness argument as in
Theorem 7.14 for M@Dc

s ;o.�
C; ��/, and in the limit cascades moduli space, the holomorphic curve part

necessarily has zero energy and hence is constant. Therefore due to the generic point constraint o, we
must have p1 D � � � D pr D pmax. Then the expected dimension of such moduli space is computed by

2k � 2j�CjC vdimM@Dc
s ;A;o.�

C; ��/� 2j��j � 2k D�4:

Hence vdimM@Dc
s ;A;o.�

C; ��/ D 2j�Cj C 2j��j � 4, which is zero if and only if j�Cj D j��j D 1.
The claim follows.

Remark 7.16 In the case considered in Proposition 7.15, the only nonempty moduli spaces contributing
to the pointed map are M@Dc

s ;o.

n

pmin
; 
 n

pmax
/ and M@Dc

s ;o.
pmin ; 
pmax/. Moreover, the algebraic count is
not zero as the gradient trajectories from pmin to pmax traverse the whole manifold. This follows from a
cascades construction with gluing as in [14].

Theorem 7.14 along with Corollary 7.12 shows that computation of planarity can depend on the augmenta-
tions. In the special case of the contact boundary of smooth divisor complements, Proposition 7.15 isolates
how this dependence works, ie BL1 augmentations to q
n

pmax
qk�n

pmin

and q
n
pmin

q
pmax
qk�n�1

pmin

determine
whether

f
 n
pmin

;

k�n‚ …„ ƒ

pmin ; : : : ; 
pming

contributes to finite planarity. Indeed applying neck-stretching to the moduli space for �Dc
s
.q
n

pmin
qk�n

pmin

/¤0

in Corollary 7.12 with the point constraint picked from the contact boundary along a copy of the contact
boundary that is pushed in a bit, Proposition 7.15 and the proof of Theorem 7.14 imply that we must
have nontrivial augmentations20 to q
n

pmax
qk�n

pmin

or q
n
pmin

q
pmax
qk�n�1

pmin

using the standard filling21 Dc
s .

However, in Theorem 7.14, we choose the trivial augmentation, which kills the planarity.

20Indeed, this is case. Roughly speaking, the augmentation to q
n
pmax

qk�n

pmin

.
21Indeed, the augmentation to q
n

pmax
qk�n

pmin

(up to a multiple related to the multiplicity of Reeb orbits) counts degree-1 curves in
CPn passing through a fixed point of the divisor Ds with multiplicity n and k � n marked points passing through Ds , and using
the divisor axiom and [23, Proposition 3.4], such counting should be .n� 1/!kk�n ¤ 0.
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Let D be k generic hyperplanes. To prove the upper bounds for Theorem 7.6, we need to

(1) find a collection of Reeb orbits on @Dc that bounds a rational curve with a point constraint;

(2) show that the collection of Reeb orbits represents a closed class in .B�V; ỳ�/ for any augmentation;

(3) show that the nontrivial planarity also does not depend on augmentation.

Although there is an obvious candidate for step (1), to establish results in the spirit of Corollary 7.12,
we need to understand curves in the symplectic cap/neighborhood of the normal crossing divisors. In
principle, one should be able to set up a relation between RSFT curves in an affine variety (complement
of simple normal crossing divisors) with the log Gromov–Witten invariants. However, this is technically
much harder than relating the relative Gromov–Witten invariants with RSFT curves of the complement
of a smooth divisor in Corollary 7.12. For steps (2) and (3), as the contact boundary @Dc has a much
more complicated Reeb dynamics compared to the smooth case, it is highly nontrivial to establish them.
Therefore the strategy to obtain the upper bounds in Theorem 7.6 is to take advantage of simple Reeb
dynamics on @Dc

s and functoriality, where Ds is a degree-k smooth hypersurface. More precisely, we
use X to denote the exact cobordism from @Dc to @Dc

s from Lemma 7.1. From the discussion above
the planarity of @Dc

s depends on augmentations, and it is still possible for the planarity for @Dc
s to be

finite if we only use augmentation in the form of � ı�, where � is the augmentation of RSFT.@Dc/ and
� is the BL1 morphism from X ; this the content of Proposition 7.19. Then we use the functoriality
in Proposition 2.24 and argue that the computation we did with the filling Dc

s in Corollary 7.12 is in
the form �Dc ı �, where �Dc is the augmentation of RSFT.@Dc/ from Dc. In principle, this involves
a homotopy argument by neck-stretching. To avoid the overhead of introducing homotopies of BL1
morphisms, we show that the formula can be identified on the nose, due to the fact that when transversality
in neck-stretching holds, we can identify a fully stretched moduli space with a sufficiently stretched
moduli space by classical gluing. This is the content of Proposition 7.18. In the following, we first prove
a property explaining the role of k < 1

2
.3n� 1/.

Proposition 7.17 Let X be the cobordism from @Dc to @Dc
s as above. If �C D f
 k1

pmax ; 

k2

pmin ; : : : ; 

ks

pming

for
Ps

iD1 ki � k, we have vdimMX .�
C; ��/ < 0, or MX .�

C; ��/D¿ if �� ¤¿ and s < 1
2
.nC 1/.

Proof Let��Df
�r gr2R , where f
�r gr2R are perturbations from f
 tr
pr
gr2R such that MX .�

C; ��/¤¿.
Then we have

P
r2R

P
tr D

Ps
iD1 ki mod k by homology reasons. On the other hand, as explained

in Remark 7.7, the total contact action of �� is close to
P

r2R

P
tr . If we choose the smoothing Ds

contained in the neighborhood of D that is removed to get the nice contact boundary to construct the exact
cobordism X , the total contact energy of �C is approximately

Ps
iD1 ki and hence

P
r2R

P
tr �

Ps
iD1 ki .

Therefore
P

r2R

P
tr D

Ps
iD1 ki . Then the expected dimension of MX ;A.�

C; ��/, ie ind.u/ for
u 2MX ;A.�

C; ��/, satisfies

2n� 2C

sX
iD1

2.ki � 1/C ind.u/C
RX

rD1

.�CZ.

�
r /C n� 3/D 2n� 6:
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Since .�CZ.

�
r /Cn�3/� 2n�3�2

P
tr � ind.pr /�jsupp tr j and {Dsupp tr

is Weinstein by k � nC1,
we have ind.pr /� n� jsupp tr j and .�CZ.


�
r /C n� 3/� .n� 3/� 2

P
tr . As a consequence, we have

ind.u/� �4� jRj.n� 3/C 2s:

In particular, ind.u/ < 0 if jRj ¤ 0 and s < 1
2
.nC 1/.

Proposition 7.18 Let � denote the BL1 morphism from the cobordisms X , and let �Dc
s

and �Dc denote
the augmentations from Dc

s and Dc, respectively. Then we have

ỳ
�;�Dc

s
.q
n

pmin
qk�n

pmin

/D ỳ�;�Dcı�.q
n
pmin

qk�n

pmin

/

D ỳ�;�Dc ı
y�1
�Dc .q
n

pmin
qk�n

pmin

/ by Proposition 2.24

¤ 0;

where y�1
�Dc is defined in Proposition 2.24, ie the map on the bar complex for the linearized L1 morphism

from .V@Dc
s
; f`k

�Dcı�
gk�1/ to .V@Dc ; f`k

�Dc gk�1/ induced by �.

Proof We will apply a neck-stretching for MDc
s ;o.f


n
pmin

; 
pmin ; : : : ; 
pming;¿/ in Proposition 7.10(2)
along @Dc for o2Dc. We first claim that every curve in MDc

s ;o.f

n

pmin
; 
pmin ; : : : ; 
pming;¿/ is somewhere

injective. For otherwise, assume u 2MDc
s ;o.f


n
pmin

; 
pmin ; : : : ; 
pming;¿/ is a branched cover over u0, then
we can cap off u0 with natural disks to obtain a homology class A in H2.CP2/ with A\Ds < k, which is
a contradiction. Therefore it is safe to assume MDc

s ;o.f

n

pmin
; 
pmin ; : : : ; 
pming;¿/ is cut out transversely

for the stretching Jt . In the fully stretched picture, the bottom level containing the marked point o must
have kC1�n positive punctures. This is because we must have the number of positive punctures no larger
than kC1�n for otherwise genus has to be created. If there are fewer punctures, then by Proposition 7.8,
the curve cannot exist by dimension reasons. By the dimension computation in Proposition 7.8, the
only possible bottom level is described in Proposition 7.8. Then by the same capping argument, we
know that the bottom curve is necessarily somewhere injective. As a consequence, all the levels above
the bottom level must be unions of cylinders because of the number of positive punctures. Then by
considering homology of the cobordism X , the positive asymptotics of the bottom level must be of the
form {
 �I

pI;min [f
pi;mingi2I c , where I � f1; : : : ; kg is a subset of size n, and pI;min;pi;min are minimums.
Next we still have multiple symplectization levels of cylinders for @Dc and one level of cylinders in X .
Since {
 �I

pI;min [ f
pi;mingi2I c have the maximal period in their respective homology classes, there is no
action room for the symplectization levels. The top level cylinders in X , ie MX .f


n
pmin
g; f{


�I
pI;ming/ and

MX .f
pming; f
pi;ming/ for i 2 I c, are rigid and cut out transversely, as the negative asymptotic orbits are
simple. Therefore, the fully stretched moduli space is cut out transversely. The transversality of neck-
stretching implies that this two-level breaking can be identified with MDc

s ;o.f

n

pmin
; 
pmin ; : : : ; 
pming;¿/

for sufficiently stretched Jt . By Axiom 3.26, we can count them to obtain that

�Dc
s
.q
n

pmin
qk�n

pmin

/D �Dc ı y�1
�Dc .q
n

pmin
qk�n

pmin

/:
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 n
pmin


pmin 
pmin 
pmin

p
1;1
�


 n
pmax

�2;3 �2;1

�1 �1 �2

Figure 12: One generic example of many possible configurations which contribute to
ỳ
�;�ı�.q
n

pmin
qk�n

pmin

/ with influence from �. The light gray part has negative dimension.

Then we can use Proposition 5.14 to relate � back to ỳ�;� , since by Corollary 7.12 q
n
pmin

qk�n

pmin

is closed in
.BkC1�nV@Dc

s
; ỳ�Dc

s
/. The nonvanishing follows from Corollary 7.12.

Proposition 7.19 If nC 1� k < 1
2
.3n� 1/, then ỳ�;�ı�.q
n

pmin
qk�n

pmin

/¤ 0 is independent of the augmen-
tation � of RSFT.@Dc/.

Proof When k < 1
2
.3n� 1/, we have 1C k � n < 1

2
.nC 1/. By Proposition 7.15, a component to

ỳ
�;�ı�.q
n

pmin
qk�n

pmin

/ with influence from � is described in the graph below (Figure 12), which does not
exist by dimension reasons by Proposition 7.17. Therefore ỳ�;�ı�.q
n

pmin
qk�n

pmin

/ is independent of �. The
nonvanishing then follows from Proposition 7.18 by taking � D �Dc .

Proof of Theorem 7.6 If k�n, then DcDT �T k�1�Cn�kC1, then Hcx.@D
c/D0SD by Theorem 7.33. If

k D nC1, then P.@Dc/D 2 by Corollary 6.8. For k > nC1, the lower bound follows from Corollary 7.9.
When k < 1

2
.3n � 1/ and n is odd, for any augmentation � of RSFT.@Dc/, q
n

pmin
qk�n

pmin

represents
a closed class in .BkC1�nV@Dc

s
; ỳ�ı�/, as the SFT grading of RSFT.@Dc

s/ is even for all generators.
In particular, y�1

� .q
n
pmin

qk�n

pmin

/ is closed in .BkC1�nV@Dc ; ỳ�/ for any �. Then by Proposition 7.19,
ỳ
�;�ı�.q
n

pmin
qk�n

pmin

/¤ 0 for any �, and we conclude that P.@Dc/D kC 1� n if nC 1 < k < 1
2
.3n� 1/

by Proposition 2.24.

Remark 7.20 Our computation method above can be summarized as finding a curve contributing to
the planarity by relative Gromov–Witten invariants and then arguing independence of augmentation by
index computations. The trick we use is arguing closedness in the smooth divisor, where generators
are simpler, proving the upper bounds using the functoriality, and arguing that everything interesting
about the functoriality happens purely in X (ie does not depend on augmentation for RSFT.@Dc/).
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A more systematic way of computing planarity is deriving a formula for the BL1 algebra as well as
the augmentation from the affine variety using log/relative Gromov–Witten invariants. In the context of
symplectic (co)homology, such a formula was obtained in [27].

Even though Theorem 7.6 depends on the parity of n and the size of k, things get easier if we only
consider the augmentation from the affine variety (Corollary 7.12). The following can be viewed as
the geometric reinterpretation of Corollary 7.12, which does not depend on n; k and is sufficient for
obstructing exact embeddings.

Theorem 7.21 Let D be k generic hyperplanes in CPn for n� 1. Then U.Dc/Dmaxf1; kC 1� ng.

Proof The nD 1 case is obvious. For n� 2, we can use Proposition 7.8 to claim that MDc;o.�
C;¿/D¿

for generic J as along as j�Cj < maxf1; k C 1 � ng. This is because we can obtain the classical
transversality of MDc;o.�

C;¿/D¿, as every curve is a branched cover of a somewhere injective curve
with negative expected dimension. Therefore, we have U.Dc/�maxf1; kC 1� ng by Proposition 5.12.
On the other hand, the nontrivial relative Gromov–Witten invariant used in Proposition 7.10 implies that
U.Dc/�maxf1; kC 1� ng by neck-stretching.

7.1.5 Examples with nontrivial SD when k is small

Theorem 7.22 Assume Ds is a smooth degree 2 � k < n hypersurface in CPn for n � 3 odd. Then
.k�1/SD�Hcx.@D

c
s/� .2k�2/SD. When n is even and 2�k< 1

2
.nC1/, we have Hcx.@D

c
s/� .2k�2/SD.

Proof Let p be the critical point in Proposition 7.10(1). Then we have �Dc
s
.q
k

p
/ ¤ 0 by the same

argument of Corollary 7.12. We can pick the Morse function on Ds to be perfect and self-indexing,
similar to [87, Proposition 3.1], and we can choose the perturbation Morse function such that if

(7-5)
Z
˛�
 d

p �

jX
iD1

Z
˛�
 di

pi
� 0

for d � k and
P

di D d , then for every i we have ind.pi/� ind.p/. This energy constraint will help us
exclude certain configurations.

Note that in our setup here, higher f .p/ or ind.p/ means smaller contact action, since we apply the
perturbation in the cap of the positive prequantization bundle instead of the filling of the negative
prequantization bundle. In particular, the order is reversed compared to [87, Section 2.1] and the proof of
Theorem 7.30 below.

Claim The class q
k
p

is closed in .B1V@Dc
s
; `1
� / for any augmentation � for 2� k < 1

2
.nC 1/, or n odd

with 2� k < n.
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Proof The parity of the SFT grading of 
 d
q is the same as the parity of ind.q/. As a consequence, we

only need to consider h`1
� .q
k

p
/; q
d

q
i for ind.q/ D n� 1 when n is even. In other words, we need to

consider M WDM@Dc
s
.f
 k

p g; f

d
q g[f


di
qi
g1�i�r / for dC

P
di D k. By (7-5), to have M¤¿, we must

have ind.qi/; ind.q/� ind.p/D 2n�2k. By k < 1
2
.nC1/, we have ind.p/D 2n�2k > ind.q/D n�1

and M is empty. Hence the claim follows.

Claim The value of `1
�;�.q
k

p
/ is independent of �.

Proof It suffices to show that M@Dc
s ;o.f


k
p g; �

�/ is empty for �� ¤ ¿. If �� ¤ ¿, then �� D

f

di

pi
g1�i�r with

P
di D k and ind.pi/� ind.p/ for every i . The claim follows from the argument of

Proposition 7.15 and ind.p/ > 0.

Claim Hcx.@D
c
s/� .2k � 2/SD.

Proof We need to show that U 2k�1.q
k
p
/D 0 for any augmentation. Note that the U map decreases

contact action. For homology reasons and the contact action property (7-5), for any augmentation
and d � k, U.q
d

q
/ can only have nontrivial coefficient for q
d 0

q0
for d 0 < d and ind.q0/ � ind.q/ and

ind.q0/ D ind.q/ mod 2, or for q
d
q0

for ind.q0/ D ind.q/ C 2. Therefore, U 2k�1.q
k
p
/ D 0 for any

augmentation.

Claim When n is odd , Hcx.@D
c
s/� .k � 1/SD.

Proof The linearized contact homology/positive S1-equivariant symplectic cohomology has a contact
action filtration such that the filtered theory around period

R
.
 k

p /
�˛ D k

R

 �p ˛ is generated by the

k th covered orbits. The U map on this filtered theory is represented by multiplying c1.O.k/jD/ to the
cochain represented by the critical point, ie the Poincaré dual of the unstable manifold. Using (4) of
Claim 4.3, we can consider the U map on positive S1-equivariant symplectic cohomology. In fact, one
can prove the filtered linearized contact homology (up to k th multiples of simple orbits) is isomorphic to
the filtered S1 positive symplectic cohomology following [13] as there is no room for the influence of
augmentations and transversality can be achieved. Then the U -map on the filtered S1 positive symplectic
cohomology is given by multiplying the first Chern class by a standard Morse–Bott argument, eg [90,
Proposition 5.9]. Therefore, by the argument in the second claim,

U k�1.q
k
p
/D kk�1q
k

pmax
C terms with lower multiplicities

for the unique maximum pmax with ind.pmax/D 2n� 2. When n is odd, all generators have even SFT
degree and represent nontrivial classes in the linearized contact homology, hence U k�1.q
k

p
/ ¤ 0 in

homology.

Remark 7.23 The n being odd condition in Theorems 7.6, 7.14 and 7.22 as well as 7.24 below is not
necessary, as one can show q
n

pmin
qk�n

pmin

is always closed. This is because a differential from q
n
pmin

qk�n

pmin
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involves counting MY .�
C; ��/, with �C a subset of f
 n

pmin
; 
pmin ; : : : ; 
pming and �� D f
 di

pi
g1�i�r forP

di D k. Therefore if we use the Morse–Bott contact form and cascades construction, the relevant
holomorphic curve must be covers of trivial cylinders. Then the moduli space MY .�

C; ��/ is the fiber
product of D �M with unstable/stable manifolds of pmin and pi , where M before compactification is
the space of meromorphic functions on CP1 with a pole of order n and k � n simple poles and a zero
with order di for all 1� i � r modulo the R rescaling on meromorphic functions and the automorphism
of the punctured Riemann surface. Then by the nontrivial S1-action on meromorphic functions, we
expect to have #MY .�

C; ��/ D 0 unless j�Cj D j��j D 1. If j�Cj D j��j D 1, MY .�
C; ��/ is

identified with Morse trajectories (here the S1-action on meromorphic function is identical with the
S1-action in the automorphism group of surface, hence is trivial on the quotient), whose algebraic count
is zero, as we assume the Morse function is perfect. To make this precise, one can follow a Morse
perturbation of the contact form as before. And using a J that is S1-invariant under the rotation in the
fiber direction, then applying the S1-equivariant transversality for quotients from [86], we can argue
that #MY .�

C; ��/D 0 unless j�Cj D j��j D 1, similar to Floer’s proof of the isomorphism between
Hamiltonian Floer cohomology and Morse cohomology. This argument requires building our functors
using polyfolds as in [33].

7.1.6 Generalization to Fano hypersurfaces In the following, we will generalize Theorem 7.6 to
some affine varieties contained in a Fano hypersurface in CPnC1.

Theorem 7.24 Let X be a smooth degree m hypersurface in CPnC1 for 2�m< 1
2
.nC 1/� n and D

be k � n generic hyperplanes , ie D D .H1[ � � � [Hk/\X for Hi is a hyperplane in CPnC1 in generic
position with each other and X . Then P.@Dc/D kCm� n for n odd and kCm< 1

2
.3nC 1/.

Proof We separate the proof into several steps. The Reeb dynamics on @Dc has the same property with
the CPn case, with the only difference being that the minimal Chern number of X is nC 2�m, which
will enter into the computation of virtual dimensions.

Claim For any set of Reeb orbits � WD f
1; : : : ; 
r g for r < kCm� n with
P
Œ
i �D 0 2H1.D

c/, the
virtual dimension of the moduli space MDc;A;o.�;¿/ is negative for any A.

Proof This follows from the same argument in Proposition 7.8, with the difference that c1.u##r
iD1 ui/D

2N.nC 2�m/. Therefore we have

ind.u/� 2N.nC 2�m/� 4�

rX
iD1

�
2
X

ti � 2C ind.pi/
�

� 2N.nC 2�m/� 4� 2kN � 4C 2r

D 2.N � 1/.nC 2�m� k/C 2.r C n�m� k/ < 0;

since r < mC k � n and k � n;m � 2. This computation also implies the lower bound of P.@Dc/ is
kCm� n.

Geometry & Topology, Volume 29 (2025)



3554 Agustin Moreno and Zhengyi Zhou

Claim Assume Ds in the generic intersection of a degree-k hypersurface in CPnC1 with X . Then

�Dc
s
.q



nC1�m
pmin

qkCm�n�1

pmin

/¤ 0;

and q



nC1�m
pmin

qkCm�n�1

pmin

is closed in .BkCm�nV@Dc
s
; ỳ�Dc

s
/.

Proof That �Dc
s
.qkCm�n�1

p

q
n
p
/¤ 0 follows from the nonvanishing of

GWX ;D
0;1;.nC1�m;1;:::;1/;A

.Œpt�; ŒDs �; : : : ; ŒDs �„ ƒ‚ …
kCm�n

/

from [37], for A is the positive generator of H2.X / that is mapped to the generator of H2.CPnC1/,
and the same argument as in Proposition 7.10. The remainder of the argument is exactly the same as
Corollary 7.12. To see the nonvanishing of the Gromov–Witten invariants, we have

GWX ;D
0;1;.nC1�m;1;:::;1/;A

.Œpt�; ŒDs �; : : : ; ŒDs �„ ƒ‚ …
kCm�n

/D .k/kCm�n�1 GWX ;D
0;1;.nC1�m/;A

.Œpt�; ŒDs �/

by the divisor axiom. Then by [37, Theorem 2.6],

GWX ;D
0;1;.nC1�m/;A

.Œpt�; ŒDs �/D

Z
ŒM0;2.X ;A;pt/�vir

nC1�mY
iD0

.ev�2 PD.ŒDs �/C i /:

Following the strategy in [37, Corollary 5.7], by taking ˛ D .1;m/ in [37, (8)] we have

..m� 1/ C ev�2 PD.ŒX �// � ŒM0;.1;m�1/.CPnC1;A; pt/�vir
D ŒM0;2.X;A; pt/�vir;

where the point constraint is in X �CPnC1. Then we apply [37, Theorem 2.6] for another m� 2 times,
to get

GWX ;D
0;1;.nC1�m/;A

.Œpt�; ŒDs �/D

Z
ŒM0;2.CPnC1;A;pt/�vir

nC1�mY
iD0

.ev�2 PD.kŒH �/Ci /

m�1Y
iD1

.ev�2 PD.ŒX �/Ci /

D
k!m!

.kCm�n�1/!

where H is the hyperplane class in CPnC1.

Then by the same neck-stretching argument as in Proposition 7.18, we have

ỳ
�;�Dc

s
.q



nC1�m
pmin

qkCm�n�1

pmin

/D ỳ�;�Dcı�.q
nC1�m
pmin

qkCm�n�1

pmin

/

D ỳ�;�Dc ı
y�1
�Dc .q
nC1�m

pmin
qkCm�n�1

pmin

/¤ 0:

Next, Propositions 7.15 and 7.17 also hold, as the dimension computation there is essentially for trivial
homology class, which does not depend on m. It is important to note that in the proof of Proposition 7.17,
we use that {DI is Weinstein to obtain an upper bound of Morse indices. Such a property also holds here
as we assume k � n. Then the remainder of the proof is the same as Theorem 7.6.
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From the proof above, the source of holomorphic curves is supplied by the degree-1 holomorphic curves
in X for m� n. For mD nC 1, the degree-1 curve does not unirule X anymore, but a degree-2 curve
unirules X . In the proofs of Theorems 7.6 and 7.24, being degree 1 is used in several places to obtain
somewhere injectivity (the capping argument). Indeed, for mD nC 1, the situation is different: we will
prove P.@Dc/ � 2 for D is a generic intersection of X with a hyperplane in CPnC1. For m � nC 2,
X is not uniruled, which implies Dc is not k uniruled for any k by [60]; therefore P.@Dc/ D 1 by
Corollary 5.15.

In view of Theorems 5.13, 7.6, 7.21 and 7.24, we make the following conjecture.

Conjecture 7.25 V is a k-uniruled affine variety then P.V / <1 and P.V /D U.V /D AU.V /.

On the other hand, by Theorem 7.14, it is not true that any uniruled affine variety has a contact boundary
with finite planarity. It is a subtle question to determine which affine variety with a CPn compactification
has a finite planarity boundary.

Question 7.26 Let D be k generic hyperplanes in CPn. Is P.@Dc/ always finite?

Theorems 7.6 and 7.24 along with Lemmas 7.1 and 7.3 imply that there are many sequences of contact
manifolds where exact cobordisms only exist in one direction. On the other hand, exact embedding
problems in the flavor of Theorem 7.21 are studied in [36]. It is an interesting question to determine
whether those embedding obstructions can lift to cobordism obstructions.

7.2 Links of singularities

Another natural source of contact manifolds is links of isolated singularities. In the following, we will
consider the Brieskorn singularities and quotient singularities from diagonal cyclic actions on Cn.

7.2.1 Brieskorn singularities A Brieskorn singularity is of the form

x
a0

0
C � � �Cxan

n D 0

for 2� a0 � : : :� an. We use xa to denote the sequence, the link LB.xa/ is defined to be the intersection
LB.xa/ WD f.x0; : : : ;xn/ 2CnC1jx

a0

0
C� � �Cx

an
n D 0g\S2nC1, which is a .2n�1/-dimensional contact

manifold. Moreover, LB.xa/ is exactly fillable by the smooth affine variety x
a0

0
C � � �Cx

an
n D 1, which is

called the Brieskorn variety. We refer readers to [50] for more details on the contact topology of Brieskorn
manifolds. We have the following fact about embedding relations for Brieskorn varieties.

Proposition 7.27 [47, Lemma 9.9] We say xa � xb if and only if ai � bi for all i . Then if xa � xb, the
Brieskorn variety of xa embeds exactly into the Brieskorn variety of xb. In particular , LB.xa/ � LB.xb/
in Con�.
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Many Brieskorn varieties were showed in [90, Theorem A] to support k-dilations. Some of the computation
in [90] can be improved to be the computation of Hcx, ie independent of BL1 augmentations. In particular,
we will have either a computation or an estimate of Hcx.LB.xa// for any xa from the theorem below and
Proposition 7.27.

Theorem 7.28 Using LB.k; n/ to denote the contact link of the Brieskorn singularity xk
0
C� � �Cxk

n D 0,
then Hcx.LB.k; n// is

(1) .k � 1/SD if k < n, and is � .k � 1/SD if k D n,

(2) > 1P if k D nC 1,

(3) 1P if k > nC 1.

Proof If k D nC 1, since the log-Kodaira dimension of the corresponding Brieskorn variety V is 0,
we know that V is not algebraically 1-uniruled. Hence the planarity is greater than 1 by Corollary 5.15.
When k > nC 1, the Brieskorn variety admits a compactification that is not uniruled, hence the planarity
is infinity by Corollary 5.15.

When k � n, the associated Brieskorn variety V .k; n/ carries a k � 1 (semi)dilation by [90, Theorem A]
using the definition with S1-equivariant symplectic cohomology. Moreover, the k � 1 semidilation is
observed by the truncated S1-equivariant symplectic cohomology generated by simple Reeb orbits. By
Theorem 4.6, this means the order of semidilation using a augmentation from the Brieskorn variety is
k � 1. Then we have at least SD� k � 1.

Note that the Brieskorn variety is an affine variety XnD, where X is the smooth projective variety
xk

0
C � � �Cxk

n D xk
nC1

in CPnC1 and D is the smooth divisor X \fxnC1 D 0g. We will adopt the same
notation for Reeb orbits on a smooth divisor complement as before. The semidilation is provided by a
simple Reeb orbit 
p with ind.p/D 2n� 2k by [90, Theorem A].

Next we will argue that the semidilation supplied by 
p with ind.p/D 2n� 2k is independent of the
augmentation when k < n. To see that, we first claim that the q
p

contribution to PD 1 is independent
of augmentation. If not, we have a nonempty moduli space MLB.k;n/;o.f
pg; f
qg/ whose expected
dimension is ind.q/� ind.p/C 2� 2nD ind.q/C 2kC 2� 4n < 0 when k < n since ind.q/ � 2n� 2.
Therefore planarity of LB.k; n/ is always 1 if k < n. Moreover, U i.q
p

/ is independent of augmentation
as we are at the minimal period; there is no room for U to depend on augmentations. Therefore we have
Hcx.LB.k; n//� .k � 1/SD if k < n. Hence the claim follows.

Remark 7.29 If Conjecture 6.5 was proven, one can get a better estimate for Hcx.LB.xa// by writing
LB.xa/ as an open book with a Brieskorn variety page. In the context of symplectic cohomology,
computation in such a spirit can be found in [90, Section 5].

Proof of Theorem B This theorem is a combination of Theorem 3.17, Theorem 3.18, Theorem 3.21,
Corollary 5.15, Theorem 6.3, Corollary 6.8 and Theorem 7.28.

Geometry & Topology, Volume 29 (2025)



A landscape of contact manifolds via rational SFT 3557

7.2.2 Quotient singularities by cyclic groups. Let Zk act on Cn by the diagonal action multiplying by
e2� i=k . Then the link of the quotient singularity Cn=Zk is the quotient contact manifold .S2n�1=Zk ; �std/.
Such contact manifolds provide many examples of strongly fillable but not exactly fillable contact
manifolds [87]. In fact, the symplectic part of [87] is a computation of the hierarchy functor Hcx in the
context of symplectic cohomology, which will be rephrased as follows.

Theorem 7.30 Let Y be the quotient .S2n�1=Zk ; �std/ by the diagonal action by e2� i=k for n� 2.

(1) If n> k, we have Hcx.Y /D 0SD.

(2) If n� k, we have 0SD � Hcx.Y /� .n� 1/SD. When nD k, we have Hcx.Y /� 1SD.

Proof We follow the same setup as in [87, Proposition 3.1]. We have a nondegenerate contact form on
�std by perturbing with a C 2-small perfect Morse function f on CPn�1 so that the Reeb orbits are the
following.

(1) Reeb orbits of period smaller than k C 1 are 
 j
i for 0 � i � n� 1 and 1 � j � k, where 
 j

i is
the j -multiple cover of 
i and 
i projects to the i th critical point qi of f with ind.qi/D 2i . (It is
important to note that now we perturb the contact form using that f is the prequantization filling
in O.�k/, following the convention in [87]; therefore higher Morse index means larger period,
which is reverse to Theorem 7.6.)

(2) The period of 
j is 1C �j .

(3) �j < �jC1=k and �j � 1.

(4) The Conley–Zehnder index of 
 j
i with the natural disk in O.�k/ satisfies �CZ.


j
i /C n� 3 D

2i C 2j � 2.

Claim P.Y /D 1 for n� 2 and for all k.

Proof By the same argument as [87, Step 3 of Proposition 3.1], we have #MY;o.f

k
0
g;¿/ D k for

n� 2, which is induced from the holomorphic curve in the symplectization of the standard sphere. When
�� ¤¿, we have #MY;o.f


k
0
g; ��/D¿ by action and homology reasons, unless �� D f
 di

0
g1�i�r forP

di D k. In this case, a curve in MY;o.f

k
0
g; ��/ is necessarily a branched cover over a trivial cylinder.

In particular, MY;o.f

k
0
g; ��/D¿ for generic o. Since all Reeb orbits have even SFT degree, q
k

0
is

closed in any linearized contact homology, and the planarity is 1 for any augmentation (which exists in
abundance as all SFT gradings are even) by q
k

0
.

Claim If k < n, then Hcx.Y /D 0SD.

Proof For action reasons, U.q
k
0
/ can only have nontrivial coefficients in q
d

0
for d < k. Note that

the filtered linearized contact homology/S1-equivariant symplectic cohomology with action supported
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around d is generated by q
d
r

for 0� r � n� 1. In particular, the homology is H�.CPn�1/ with the U

map is the multiplication by c1.O.k//. As a consequence, for action reasons,

U.q
d
r
/D kq
d

r�1
C

d�1X
iD1

rX
jD0

aij q
 i
j
:

Therefore for any augmentation, there exist cij such that U
�
q
k

0
C
Pk�1

iD1

Pk�i
jD1 cij q
 i

j

�
D 0 by the same

argument as [87, (3.2)]. In order to finish the proof, it is sufficient to prove MY;o.

i

j ; �
�/D¿ for iCj �k

and j > 0. This follows from the same dimension computation as in [87, Step 7 of Proposition 3.1] and
is the place where n> k is essential. Then q
k

0
C
Pk�1

iD1

Pk�i
jD1 cij q
 i

j
also contributes PD 1 and is killed

by U . In particular, Hcx.Y /D 0SD.

Claim If k � n, then 0SD � Hcx.Y /� .n� 1/SD.

Proof First note that all generators have even degree, hence any maps f�kgk�1 form an augmentation.
By the argument in Remark 7.16, we have that #MY;o.f


d
n�1
g; f
 d

0
g/ D 1 for 1 � d � k � 1. On

the other hand, following the argument to obtain [27, h@. {pkC/; ypk�i in Theorem 9.1, Lemma 9.4],
we know that hU.q
kC

i
/; q
k�

i
i D .kC � k�/�

1.q
kC�k�
0

/ for augmentation f�kgk�1.22 If for every
1� i � k�n we have �1.q
 i

0
/D 0, then for d � k, we have U.q
d

0
/D

Pd�1Cn�k
jD1 .d�j /�1.q
d�j

0
/q
 j

0
.

Therefore we have U n.q
k
0
/D 0. Otherwise, we assume i is the minimum among f1; : : : ; k�ng such that

�1.q
 i
0
/¤ 0. As a consequence, we have planarity 1 contributed by q
 i

2n�2
by #MY;o.f


i
n�1
g; f
 i

0
g/D 1.

Since i is the minimal one with nontrivial augmentation, we know that U n.q
 i
n�1
/D 0. Hence we have

Hcx.Y /� .n� 1/SD.

Claim If k D n, then Hcx.Y /� 1SD.

Proof It suffices to find one augmentation such that the order of semidilation is 1. We choose our
augmentation to be �1.q
0

/ D �n and �k D 0 in all other cases. We first list the following expected
dimensions of various moduli spaces:

(1) vdimMY;o.f

nm

pi
g;¿/D 2i C 2n.m� 1/ � 0, which is positive unless i D 0 and mD 1, where

we know #MY;o.f

n
0
g;¿/D n.

(2) For l > 0,

vdimMY;o.f

mnCl

pi
g; f

l‚ …„ ƒ

p0
; : : : ; 
p0

g/D 2i C 2l C 2n.m� 1/:

Then it is zero if and only if

(i) i D n� 1, l D 1 and mD 0, then #MY;o.f
2n�2g; f
0g/D 1; or

(ii) i < n�1, l D n� i > 1 and mD 0, then MY;o.f

l

pn�l
g; f
p0

; : : : ; 
p0
g/D¿ by the argument

of Proposition 7.15.

22Although such a structure originally appears as part of the differential in the symplectic cochain complex, it contributes to the
U -map in the S1-equivariant symplectic cohomology; see [89, Section 5] for a discussion.
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(3) For l > 0,

vdimM1
Y .


nmCl
pi

; 
 l
pj
;¿/D vdimM2

Y .

nmCl

pi
; 
 �� ; 


l
pj
;¿;¿/D 2mnC 2i � 2j � 2:

It is zero if and only if

(i) mD 0 and i D j C 1, which corresponds to hU.q
 l
iC1
/; q
 l

i
i D n; or

(ii) mD 1, i D 0 and j D n� 1, assuming hU.q



nCl
0

/; q
 l
n�1
i D al .

(4) For l; s > 0,

vdimM1
Y .


nmClCs
pi

; 
 l
pj
; f

s‚ …„ ƒ

p0
; : : : ; 
p0

g/D 2mnC 2sC 2i � 2j � 2:

It is zero if and only if m D 0 and j D s C i � 1. In this case we have M1 as well as the
corresponding M2 are possibly nonempty if and only if sD 1, for otherwise, we have sC i �1> i .
Then we can use the compactness argument in Proposition 7.15 and the fact that the stable manifold
of qi does not intersect with unstable manifold of qsCi�1. When m D 0, s D 1 and j D i , this
corresponds to hU.q
 lC1

i
/; q
 l

i
i D �1.q
0

/D�n.

By (1) and (2), to supply for planarity 1, we must have aq
n
0
C bq
n�1

with a � b ¤ 0. Note that
U.aq
n

0
Cbq
n�1

/D�anq
n�1
0
Cbnq
n�2

¤0. Therefore if the order of semidilation of this augmentation
is smaller than 1, then there exists A generated by generators other than q
n

0
; q
n�1

such that U.A/D

anq
n�1
0
� bnq
n�2

. The only way to eliminate �bnq
n�2
is having bq
2

n�2
in A, which adds bnq
2

n�3

to U.A/. The only way to compensate for such a term is add a bq
3
n�3

to A. We can keep the argument
going, and claim that A must be b

Pn�1
iD2 qi


n�i
; then U.A/D bnq
n�1

0
�bnq
n�2

¤ anq
n�1
0
�bnq
n�2

,
since a� b ¤ 0. The claim follows.

When n � k, there are augmentations with zero order of semidilation. For example, one can use the
augmentation from natural prequantization bundle filling, then the order of semidilation is 0 since the
symplectic cohomology vanishes [73]. However, we conjecture that Hcx.Y /� 1SD whenever n� k. It is
possible that there are BL1 augmentations that are not from (even singular) fillings. Note that n> k is
the region where the quotient singularity is terminal. Hence we ask whether there is a relation between
this algebrogeometric property with the contact property of the link via the hierarchy functor Hcx.

Conjecture 7.31 For discrete G � U.n/, if Cn=G is an isolated singularity then

Hcx.S
2n�1=G; �std/D 0SD

if the singularity is terminal.

Combining with Theorem 7.28, we can also ask the following question.

Question 7.32 Is the planarity of an isolated terminal singularity always 1? Is it true for terminal
hypersurface singularities?

Geometry & Topology, Volume 29 (2025)



3560 Agustin Moreno and Zhengyi Zhou

Similarly to Theorem 7.30, [91, Theorem 1.1(2)] can be rephrased as follows.

Theorem 7.33 Let V be an exact domain , then Hcx.@.V �D//D 0SD.

7.3 An obstruction to IP

In dimension 3, obstructions to planar open book decomposition were studied from many different
perspectives in [31; 70]. In higher dimensions, obstructions to supporting an iterated planar structure
were found in [5]. By Corollary 5.15 and Theorem 6.3, we get the following easy-to-check obstruction to
iterated planar structure.

Corollary 7.34 If a contact manifold Y admits an exact filling that is not k-uniruled for any k, then Y is
not iterated planar.

As an application of this corollary, we have the following.

Corollary 7.35 Let Q be a hyperbolic manifold of dimension � 3. Then S�Q is not iterated planar.

Proof The claim follows from a result of Viterbo [29, Theorem 1.7.5] that T �Q is not k-uniruled for
any k.

For other classes of cosphere bundles, by Theorem 7.28, Hcx.S
�Sn/D 1SD for n� 2. By Corollary 6.8,

Hcx.S
�T n/D 2P for n� 2. By Theorem 4.6, since SH�.T �Q/¤ 0 for any Q, we know Hcx.S

�Q/> 0SD

(assuming Claim 4.3). As a consequence, there is no exact cobordism from S�Q to @.V �D/ for any
Liouville domain V, which is a generalization of a result of Gromov [41]. By [90, Proposition 5.1],
T �Q admits a k-dilation for some k � 1 for a rationally inessential n-manifold Q; ie if Hn.QIQ/!

Hn.B�1.Q/IQ/ vanishes, then we can update the estimate Hcx.S
�Q/ by figuring out k. For a Lagrangian

Q that is a K.�; 1/ space, we have Hcx.S
�Q/� 2P, since T �Q carries no k-semidilation for any k.

Corollary 7.36 For every n � 3, there exists a tight S2n�1 with the standard almost contact structure
that is not iterated planar.

Proof Note that the contact boundary of the Brieskorn variety xnC2
0
C � � � C xnC2

n D 1 has planarity
order1 by Theorem 7.28. By [50, Proposition 3.6], there are ai � nC 2 such that Y WD LB.a0; : : : ; an/

is an exotic sphere. Proposition 7.27 implies that P.Y /D1. Then there exists k such that #kY is the
standard smooth sphere, where # is the contact connected sum. However, the almost contact structure,
which can be computed from [50, (19) and (20)], may not be standard. By [26, Theorem 1.2], there exists
a Weinstein fillable contact sphere Y 0 such that #kY # Y 0 is the standard almost contact sphere. Then
P.#kY # Y 0/� P.Y /˝P.Y /˝ � � �˝P.Y 0/D1 as P.Y 0/� 1, and the claim follows.
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Corollary 7.37 In all dimensions � 5, if .Y;J / is an almost contact manifold which has an exactly
fillable contact representation .Y; �/, then there is a contact structure � 0 in the homotopy class of J such
that .Y; � 0/ is not iterated planar. In particular , any almost contact simply connected 5-manifold admits a
contact representation which is not iterated planar.

Proof Let Y 0 be the tight sphere from Corollary 7.36. Since P.Y; �/ > 0 as .Y; �/ has an exact filling,
Hcx.Y # Y 0/D1P. By Corollary 7.34, Y # Y 0 is not iterated planar. The last claim follows from any
almost contact simply connected 5-manifold being almost Weinstein fillable [38]; in particular, there is a
contact representation that is Weinstein fillable by [20].
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