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Genus-one singularities in mean curvature flow
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We show that for certain one-parameter families of initial conditions in R3, when we run mean curvature
flow, a genus-one singularity must appear in one of the flows. Moreover, such a singularity is robust under
perturbation of the family of initial conditions. This contrasts sharply with the case of just a single flow.
As an application, we construct an embedded, genus-one self-shrinker with entropy lower than a shrinking
doughnut.

53E10

1 Introduction

Mean curvature flow (MCF) is the most rapid process to decrease the area of a surface. With an initial
motivation from applied science, this geometric evolution equation has gained much interest recently due
to its potential for studying the geometry and topology of surfaces embedded in three-manifolds. As a
nonlinear geometric heat flow, MCF may have singularities, which may lead to changes in the geometry
and topology of the surfaces.

The blow-up method, pioneered by Huisken [1990], Ilmanen [1995] and White [1997], shows that the
singularities are modeled by a special class of surfaces called self-shrinkers. They satisfy the equation
EH C Ex?=2 D 0. Determining the possible singularity models that can arise in an arbitrary MCF is

a challenging problem. With the convexity assumption, Huisken [1984] proved that the singularities
must be modeled by spheres. With the mean convexity assumption, White [1997; 2000; 2003] proved
that the singularities must be modeled by spheres and cylinders. However, in the absence of curvature
assumptions, the question of which types of singularities must arise in MCF remains widely open. In
this paper, we find a condition that guarantees the appearance of a singularity modeled by a genus-one
self-shrinker. To the best of our knowledge, this is the first result that produces a singularity that appears
in a non-self-shrinking flow and is modeled by a self-shrinker of nonzero genus.

Let us first explain the heuristics, which involves an interpolation argument. In Figure 1, we have a
one-parameter family fM sgs2Œ0;1� of tori in the top row. Suppose that the initial torus M 0 has a thin
“inward neck”, which will eventually pinch under the MCF. On the other hand, the final torus M 1 has a
thin “outward neck” in the middle, which will also pinch under MCF. Then, there should exist a critical
value s0 2 Œ0; 1� such that for the torus M s0 , both the inward and outward necks pinch under MCF, giving
rise to a genus-one singularity.
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Figure 1

The following is our main theorem. We will provide a precise definition of “inward (or outward) torus
neck will pinch” later in Definition 1.8.

Theorem 1.1 Let fM sgs2Œ0;1� be a smooth family of tori in R3 such that for the MCF starting from M 0

(resp. M 1), the inward (resp. outward ) torus neck will pinch. Then there exists s0 2 Œ0; 1� such that the
MCF starting from M s0 would develop a singularity that is not multiplicity-one cylindrical or multiplicity-
one spherical.

Note that, in precise terms, by MCF we actually refer to the level set flow; see Section 2. In fact, before the
flow encounters a genus-one singularity, it is possible that it passed through some cylindrical singularities or
spherical singularities. We also remark that Brendle [2016] proved that the only genus-zero self-shrinkers
are the spheres and the cylinders. In contrast, there are many higher-genus self-shrinkers, as constructed
in [Angenent 1992; Nguyen 2014; Kapouleas et al. 2018; Møller 2011; Sun et al. 2024], among others.

Now, immediately, we can exclude the possibility of multiplicity if the entropy of each torus M s is less
than 2. The entropy of a surface † was defined by Colding and Minicozzi [2012]:

Ent.†/ WD sup
x02R3;t0>0

.4� t0/
�1

Z
†

e�jx�x0j
2=4t0 :
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Corollary 1.2 In the setting of Theorem 1.1, if each initial torus M s has entropy less than 2, then
at the singularity concerned , every tangent flow is given by a multiplicity-one , embedded , genus-one
self-shrinker.

Recall that the tangent flow represents a specific blow-up limit of a MCF at a singularity, as discussed in
Section 2.2. By employing Huisken’s monotonicity formula [1990], Ilmanen [1995] and White [1997]
proved that the tangent flow must be a self-shrinker with multiplicity.

Let us now explicitly provide a family of tori that satisfies the assumption of Corollary 1.2. Consider the
rotationally symmetric, compact, genus-one self-shrinker in R3 constructed by Drugan and Nguyen [2018],
which we will denote by T . It is worth noting that both T and the Angenent torus [1992] are referred to as
shrinking doughnuts, and they may be the same. Drugan and Nguyen [2018] showed that T has entropy
strictly less than 2, while Berchenko-Kogan [2021] provided numerical evidence that the Angenent torus
has an entropy of approximately 1:85.

Theorem 1.3 Let fM sgs2Œ0;1� be a smooth family of tori in R3 that are sufficiently close in C1 to the
shrinking doughnut T , with M 0 strictly inside T while M 1 is strictly outside. Then there exists s0 2 Œ0; 1�

such that the MCF starting from M s0 would develop a singularity at which every tangent flow is given by
a multiplicity-one , embedded , genus-one self-shrinker.

The idea of Theorem 1.3 can be traced back to the work of Lin and the second author in [Lin and Sun
2022]. In earlier work, Colding, Ilmanen, Minicozzi and White [Colding et al. 2013] observed that
one can perturb a closed embedded self-shrinker in R3 such that the MCF has only neck and spherical
singularities. Lin and the second author observed a bifurcation phenomenon: Inward (resp. outward)
perturbations cause the MCF pinch from inside (resp. outside). After we completed this manuscript, we
were notified by the referee that the idea of Theorem 1.1 has been discussed and explained orally by
Edelen and White.

It is also interesting to compare our results with the recent developments in generic MCF [Colding and
Minicozzi 2012; Chodosh et al. 2024a; Chodosh et al. 2024b; Sun and Xue 2021a; Sun and Xue 2021b;
Chodosh et al. 2023; Sun 2023]. One can perturb a single MCF to avoid a singularity that is not spherical
or cylindrical. In contrast, our results imply that for a certain one-parameter family of MCFs, a singularity
that is modeled by a genus-one shrinker remains robust under perturbations.

It is natural to ask whether Theorem 1.1 extends to surfaces with genus two or above. Actually, it
would not: see a counterexample in Remark 5.2. Nevertheless, a similar theory might be established for a
multiparameter family of higher-genus surfaces; see Question 1.10.

Let us now present several applications of the above theorems.

Theorem 1.4 An embedded , genus-one self-shrinker in R3 of the least entropy either is noncompact or
has index 5.

Geometry & Topology, Volume 29 (2025)
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Note that the existence of an entropy minimizer among all embedded, genus-g self-shrinkers in R3, with
a fixed g, was proved by Sun and Wang [2020].

Theorem 1.5 There exists an ancient MCF through cylindrical and spherical singularities fM.t/gt<0

in R3 such that

� as t !�1, .1=
p
�t/M.t/! T smoothly, and

� as t ! 0, M.t/ hits a singularity at which every tangent flow is given by a multiplicity-one ,
embedded , genus-one self-shrinker of lower entropy than T .

In fact, Theorem 1.5 remains valid even with T replaced by any other closed, embedded, rotationally
symmetric, genus-one shrinker (if they indeed exist), and the same proof will hold.

Recalling that the rotationally symmetric shrinker T must have index of at least 7, as shown by Liu [2016],
we can deduce the following corollary from Theorems 1.4 and 1.5.

Corollary 1.6 There exists an embedded , genus-one self-shrinker in R3 with entropy lower than T .

Finally, the three self-shrinkers in R3 with the lowest entropy are the plane, the sphere and the cylinder
[Colding et al. 2013; Bernstein and Wang 2017]. Notably, all three of them are rotationally symmetric.
Kleene and Møller [2014] proved that all other rotationally symmetric smooth embedded self-shrinkers
are closed with genus 1.

Now, the space of smooth embedded self-shrinkers in R3 with entropy less than some constant ı < 2 is
known to be compact in the C1loc topology; see [Lee 2023]. Together with the rigidity of the cylinder as
a self-shrinker by [Colding et al. 2015], there exists a smooth embedded self-shrinker that minimizes
entropy among all smooth embedded self-shrinkers with entropy larger than that of the cylinder.

Corollary 1.7 A smooth embedded self-shrinker in R3 with the fourth lowest entropy is not rotationally
symmetric.

1.1 Main ideas: change in homology under MCF

The major challenge of this paper is to introduce some new concepts to rigorously state and prove the
interpolation argument we outlined in Section 1 and Figure 1. In particular, it is crucial to describe the
topological change of the surfaces more precisely. Let MD fM.t/gt�0 be a MCF in R3, where the initial
condition M.0/ is a closed, smooth, embedded surface. Since we would allow M.t/ to have singularities
and thus change its topology, M is, more precisely, a level set flow. In this paper, we often use the phrases
MCF and level set flow interchangeably.

It is known that the topology of M.t/ simplifies over time. White [1995] focused on describing the
complement R3nM.t/ (instead of M.t/ itself), and how it changes over time. For example, he showed that
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Genus-one singularities in mean curvature flow 4303

a

b

0

0

inward 
neck pinch

t = T3

t = 0
t = T1

t = T4
t = T5

t = T6

t = T2

t = T2

x

y

a1

b1

M 0

M 1

Σ 

γ

time t = 0

time t 

γ
0

Γ

x U
c (t)0

It -

-

↓
↓ I

↑

I

n· e
⑧

-

·So

I·#
=

5

I

t !
: ·

↑ ·Sp
X

①

a0 a1

b0 t D 0
b1

x

t D T1

t D T2

y

t D T3

Figure 2

rank.H1.R
3 nM.t/// is nonincreasing in t , where H1 denotes the first homology group in Z-coefficients.

Therefore, heuristically, the topology can only be destroyed but not created during the evolution of the
surface.

In this paper, we will further describe this phenomenon by keeping track of which elements of the initial
homology group H1.R

3 nM.0// are destroyed, and how they are destroyed. To illustrate, let us use the
flow depicted in Figure 2 as an example.

1.1.1 Heuristic observation Let us begin by providing some heuristic observations regarding Figure 2.
We will elaborate on them more precisely shortly. We fix four elements of H1.R

3 nM.0// at time t D 0,
as shown in the figure. Note that a0 and a1 are in the bounded region inside the genus two surface M.0/,
whereas b0 and b1 are in the region outside M.0/.

(1) At time t D T1, a0 is “broken” by the cylindrical singularity x of the flow. As a result, for later
time t > T1, a0 no longer exists. Apparently, it “terminates” at time T1.

(2) On the other hand, a1, b0 and b1 can all survive through time T1. For example, for b0, we can
clearly have a continuous family of loops, fˇtgt�0, where Œˇ0�D b0 and each ˇt is a loop outside
the surface M.t/. In this sense, b0 will survive for all time, although it becomes trivial after
time T1.

(3) As for b1, although it survives through t D T1, it will terminate at t D T2, when it is broken by the
cylindrical singularity y.

Let us now provide precise descriptions of these observations.

1.1.2 Three new concepts To our knowledge, these concepts are new, but they seem natural in the
context of geometric flows. We believe that these concepts may hold independent interest as well.

Geometry & Topology, Volume 29 (2025)
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Figure 3

To set up, for any two times t1 < t2, let us consider the complement of the spacetime track of the flow
within the time interval Œt1; t2�:

W Œt1; t2� WD
[

t2Œt1;t2�

.R3
nM.t//� ftg �R3

� Œt1; t2�:

In order to discuss the “termination” of an element c0 2H1.R
3 nM.0// under the flow, we first need to

relate elements of H1.R
3 nM.0// and elements of H1.R

3 nM.t// at some later time t > 0.

Homology descent (Definition 3.1) Given two elements c0 2H1.R
3 nM.0// and c 2H1.R

3 nM.t//

with t > 0, we say that c descends from c0, and write

c0 � c;

if the following holds: For every representative 
0 2 c0 and 
 2 c, if we view them as subsets


0 � .R
3
nM.0//� f0g; 
 � .R3

nM.t//� ftg;

then they bound some singular 2-chain � �W Œ0; t �, ie 
0� 
 D @� . (See Figure 3.)

As we will prove, the above notion satisfies some desirable properties. For example, given an element
c0 2H1.R

3 nM.0//, the element c 2H1.R
3 nM.t// described above, if exists, turns out to be unique.

Consequently, we denote this unique element as c0.t/.

This enables us to further define:

Homology termination (Definition 3.8) Let c0 2H1.R
3 nM.0//. If

t.c0/ WD supft � 0 W c0 � c for some c 2H1.R
3
nM.t//g

is finite, then we say that c0 terminates at time t.c0/.

For instance, in Figure 2, we observe that a0 terminates at time T1, and b1 terminates at time T2.
However, b0 never terminates, despite the fact that b0.t/ becomes trivial for t > T1. Similarly, a1 also
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x U

c0.t/

b0
a0

Figure 4: Left: the picture at time t , for all t < T sufficiently close to T . Right: first homology
generators a0 and b0.

never terminates, even though a1.t/ becomes trivial for t > T2. Note that a1 would not terminate at time
T3: for any t > T3, any loop in R3 nM.t/ D R3 would bound a disc in R3, so it follows easily that
for any loop 
0 2 a1 and loop 
 � R3 � ftg, 
0 � 
 would bound some two-dimensional chain in the
complement of the spacetime track.

Finally, we can describe what “a0 breaks at a cylindrical singularity x” means.

Homology breakage (Definition 3.12) Let c0 2H1.R
3 nM.0//, T > 0, and x 2M.T /. Suppose the

following holds:

� For each t 2 Œ0;T /, the element c0.t/ 2H1.R
3 nM.t// (such that c0 � c0.t/) exists.

� For every neighborhood U � R3 of x, for each t < T sufficiently close to T , every element of
c0.t/ intersects U .

Then we say that c0 breaks at .x;T /. (See Figure 4.)

For example, in Figure 2, a0 breaks at .x;T1/, while b1 breaks at .y;T2/.

As we will see, these three new concepts are quite useful and satisfy several nice properties. Here are a
few examples:

� A homology class cannot break at a regular point, nor at a spherical singularity of the flow
(Propositions 3.14 and 3.15).

� If the initial condition M.0/ is a closed surface of nonzero genus, then some initial homology class
must terminate at finite time (Remark 4.10).

� Suppose fM.t/gt�0 is a MCF with only spherical and cylindrical singularities. If a homology class
terminates at some time T , then it must break at .x;T / for some cylindrical singularity x 2M.T /

(Theorem 4.5).

These properties are all crucial in proving the main theorems.

Finally, let us provide a precise definition of “inward (or outward) torus neck will pinch” in Theorem 1.1.

Definition 1.8 Given a torus M in R3, let a0 (resp. b0) be a generator of the first homology group of
the interior (resp. exterior) region of M , which is isomorphic to Z; see Figure 4. We say that the inward
(resp. outward) torus neck of M will pinch if a0 (resp. b0) will terminate under MCF.

Clearly, a0 (and b0) is unique up to a sign, and the above notion is independent of which sign we choose.

Geometry & Topology, Volume 29 (2025)
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1.2 Structure of cylindrical singularities

Once we establish the topological concepts to keep track of the homology classes under the MCF, another
challenge arises: we need to understand what happens to these homology classes as the MCF encounters
the cylindrical singularities.

Intuitively, a cylindrical singularity is just like a neck, and as we approach the singular time, the neck
pinches as in Figure 1. However, the actual situation can be much more complicated. For example,
consider the MCF of the boundary of a tubular neighborhood of a rotationally symmetric S1 in R3. It
will shrink to a singular set that is a rotationally symmetric S1, where each singular point is cylindrical,
but it does not look like a neck pinching.

First, one has the partial regularity of the singular set of cylindrical singularities, studied by White [1997]
and Colding and Minicozzi [2015; 2016]. This allows us to control the singular set. We can establish the
compactness of the singular set of cylindrical singularities that are inward (or outward), and know that
they only appear for a measure-zero set of time.

Another important theory is the mean convex neighborhood theory of cylindrical singularities by Choi,
Haslhofer and Hershkovits [Choi et al. 2022a], and a generalized version by Choi, Haslhofer, Hershkovits
and White [Choi et al. 2022b]. In these works, they classified the possible limit flows at a cylindrical
singularity. As a consequence, they derived a canonical neighborhood theorem at a cylindrical singularity,
which describes the local behavior of the MCF.

We will study the local behavior of MCF at cylindrical singularities based on these two theories. Nev-
ertheless, the particular local behavior we need to understand does not directly come from [Choi et al.
2022a; Choi et al. 2022b]. We present these relevant results in Section 2.3.

1.3 Outline of proofs

Proof of Theorem 1.1 We will prove them by contradiction. For each s 2 Œ0; 1�, let Ms D fM s.t/gt�0

be the MCF (more precisely, a level set flow) with M s.0/DM s as its initial condition. Let a0 (resp. b0/

be a generator of the first homology group of the inside (resp. outside) region of each torus M s (recall
Definition 1.8). Assuming that Theorem 1.1 were false, Ms would be a MCF through cylindrical
and spherical singularities for each s. This flow is unique and well-defined by Choi, Haslhofer and
Hershkovits [Choi et al. 2022a]. Next, we show that for each s, either a0 or b0 will terminate, but not both.
This claim relies on the fact, mentioned above, that if a homology class will terminate, it must break at a
neck singularity. This crucial fact is established based on the mean convex neighborhood theorem and the
canonical neighborhood theorem by Choi, Haslhofer, Hershkovits and White [Choi et al. 2022a; Choi
et al. 2022b].

Thus, we can partition Œ0; 1� into a disjoint union AtB, where A is the set of s for which a0 will terminate,
and B is the set of s for which b0 will terminate. Furthermore, we will show that A and B are both
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closed sets. Recall that we are given 0 2A and 1 2 B. Since Œ0; 1� is a connected interval, this leads to a
contradiction.

Proof of Theorem 1.3 We can apply Theorem 1.1 to prove Theorem 1.3, provided that we can show the
inward torus neck will pinch (ie a0 will terminate) for the starting flow (s D 0), and the outward torus
neck will pinch (ie b0 will terminate) for the ending flow (s D 1). To prove, for instance, that a0 will
terminate for the starting flow, we recall that M 0.0/ lies strictly inside the shrinker †. Then we will run
MCF to these two surfaces and use the avoidance principle, which states that the distance between the
two surfaces will increase, to conclude that a0 must terminate.

Proof of Theorem 1.4 Let † be an embedded, genus-one shrinker with the least entropy. Suppose
for the sake of contradiction that it is compact with index at least 6. Disregarding the four (orthogonal)
deformations induced by translation and scaling, there are still two other deformations that decrease
the entropy, one of which is the one-sided deformation given by the first eigenfunction of the Jacobi
operator. Thus, we can construct a one-parameter family of tori with entropy less than †, such that the
starting torus is inside †, and the ending torus is outside †. Then, as in the proof of Theorem 1.3, we
apply Theorem 1.1 to obtain another genus-one shrinker with less entropy than †. This contradicts the
definition of †.

Proof of Theorem 1.5 According to Liu [2016], the shrinking doughnut T has an index of at least 7.
Consequently, based on the result of Choi and Mantoulidis [2022], there exists a one-parameter family of
ancient rescaled MCF originating from T that decreases the entropy. As before, we can apply Theorem 1.1
to immediately obtain the desired genus-one, self-shrinking tangent flow with lower entropy.

1.4 Open questions

We propose several open problems. The first one is motivated by generic MCF and min-max theory.

Conjecture 1.9 There exists an embedded , genus-one , index-5 self-shrinker in R3 that is the “second
most generic” one.

We say a self-shrinker † is the “second most generic”, after the generic ones (the cylinder and the sphere),
in the following sense. Suppose we have a one-parameter family of embedded surfaces fM sgs2Œ0;1� in R3.
Then, we can perturb this family such that when we run MCF for every M s , every singularity is either
cylindrical, spherical, or modeled by †.

Note that Theorem 1.4 and its proof can be seen as evidence of a very “local” version of this conjecture:
they say that any closed, embedded, genus-one self-shrinker with an index of at least 6 is not the second
most generic.

Now, we note that Theorem 1.1 does not hold for initial conditions with genus greater than one; see
Remark 5.2.
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Question 1.10 Can Theorem 1.1 be generalized to the higher-genus case, possibly by considering
higher-parameter families of initial conditions?

Finally, notice that many concepts that we introduce in this paper heavily rely on the extrinsic structure
of mean curvature flow.

Question 1.11 Can the concepts of homology descent, homology termination, and homology breakage
be adapted to the setting of Ricci flow?

1.5 Organization

In Section 2, we will introduce the preliminary materials, including a refined canonical neighborhood
theorem. In Section 3, we will define the concepts of homology descent, homology termination and
homology breakage, and prove some relevant basic propositions. In Section 4, we focus on the case of
MCF through cylindrical and spherical singularities, with a torus as the initial condition. In Section 5, we
prove the main theorems.

Acknowledgements We would like to thank Professor André Neves for all the fruitful discussions and
his constant support. We are grateful to Zhihan Wang for the valuable conversations. Chu would like to
thank Chi Cheuk Tsang for helpful discussions. We are also grateful to the referees for many helpful
comments and suggestions, especially the work by Edelen and White.

2 Preliminaries

In Section 2 we will set up the language and provide the necessary background to define MCF through
cylindrical and spherical singularities.

The classical mean curvature flow is a family of hypersurfaces fM.t/gt2Œ0;T / in RnC1 satisfying the
equation

(2-1) @tx D EH .x/;

where x is the position vector and EH is the mean curvature vector. When the hypersurface is not C 2, we
cannot define the mean curvature flow using this PDE, and we need to use some weak notions to define
the flow.

2.1 Weak solutions of MCF

Throughout this paper, we will focus on two different types of weak solution of MCF. One is a set-theoretic
weak solution defined by the level set flow, and another one is a geometric measure-theoretic weak solution
called Brakke flow. Readers interested in detailed discussions of level set flows can refer to [Evans and
Spruck 1991; Ilmanen 1992], while those interested in Brakke flow can refer to [Brakke 1978; Ilmanen
1994].
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The level set flow equation is a degenerate parabolic equation

(2-2) @tuD�u�

�
D2u.Du;Du/

jDuj2

�
:

Suppose M.0/ is a closed hypersurface in RnC1. Then if u. � ; t/ solves (2-2) with initial condition
M.0/ D fx 2 RnC1 W u. � ; 0/ D 0g, then M.t/ WD fx 2 RnC1 W u. � ; 0/ D 0g can be viewed as a weak
solution to MCF. In particular, when M.t/ is smooth, this weak solution coincides with the classical
solution of MCF.

The level set flow was introduced by Osher and Sethian [1988]. Chen, Giga and Goto [Chen et al. 1991]
and Evans and Spruck [1991] introduced the viscosity solutions to equation (2-2), and these solutions are
Lipschitz. Throughout this paper, when we refer to a level set function or a solution to the level set flow
equation, we mean a viscosity solution to equation (2-2).

The set-theoretic solution of a MCF will be called the level set flow or biggest flow. These notions are used
by Ilmanen [1992] and White [1995; 2000; 2003]. The term “biggest flow” is used to avoid ambiguity
when dealing with weak solutions for noncompact flows. Such a weak solution may have a nonempty
interior. In this case, we say the level set flow fattens.

Brakke flow is defined using geometric measure theory. Let X be a complete manifold without boundary.
The Brakke flow is a family of Radon measures f�tgt�0, such that for any test function � 2 C 2

c .X / with
� � 0,

lim sup
s!t

�s.�/��t .�/

s� t
�

Z
.��H 2

Cr
?
� EH / d�t ;

where EH is the mean curvature vector of �t whenever �t is rectifiable and has L2-mean curvature in the
varifold sense. Otherwise, the right-hand side is defined to be �1.

In general, the Brakke flow starting from given initial data is not unique. We will be interested in unit
regular cyclic integral Brakke flows. For detailed discussions on these notions, we refer the readers to
[White 2009]. The existence of such a flow starting from a smooth surface is guaranteed by Ilmanen’s
elliptic regularization; see [Ilmanen 1994]. These flows have a well-established compactness theory.

2.2 Setting and notation

Let M.0/ be a closed smooth n-dimensional hypersurface in RnC1 that bounds a compact set Kin.0/.
Let Kout.0/DRnC1 nKin.0/. Now, denote by

fM.t/gt�0; fKin.t/gt�0 and fKout.t/gt�0

the level set flow (ie the biggest flow) with initial condition M.0/, Kin.0/ and Kout.0/, respectively. Then
we define their spacetime tracks

MD f.x; t/ W x 2M.t/; t � 0g; KinD f.x; t/ W x 2Kin.t/; t � 0g; KoutD f.x; t/ W x 2Kout.t/; t � 0g:
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We then define the inner flow of M.0/,

Min.t/D fx W .x; t/ 2 @King;

and the outer flow of M.0/,
Mout.t/D fx W .x; t/ 2 @Koutg:

Lemma 2.1 Let u WRnC1 � Œ0;1/!R be a level set function of M, with u. � ; 0/� 0 on Kin.0/. Then

RnC1
nKin.t/D fx W u.x; t/ > 0g; RnC1

nKout.t/D fx W u.x; t/ < 0g:

Proof For the first claim, we define ˆ WR!R by ˆ.x/D x if x > 0 and ˆ.x/D 0 otherwise. By the
relabeling lemma [Ilmanen 1992, Lemma 3.2], v WDˆıu also satisfies the level set equation. Noting that
v. � ; 0/D 0 precisely on Kin.0/, which is compact, we know by the uniqueness of level set flow that v is
a level set function of Kin. Hence,

RnC1
nKin.t/D fx W u.x; t/ > 0g:

The second claim is similar. We define ‰ WR!R by ‰.x/D x if x < 0 and ‰.x/D 0 otherwise. Then
vD‰ıu satisfies the level set equation by the relabeling lemma, and fx W u.x; t/� 0gD fx W v.x; t/D 0g,
which is noncompact. Nevertheless, by Ilmanen [1992], because any level sets other than Kout are
compact, fx W v.x; t/D 0g is the biggest flow, which is unique. Then the second claim will follow.

Finally, we write

Win.t/DRnC1
nKout.t/; Wout.t/DRnC1

nKin.t/; W .t/DWin.t/[Wout.t/:

In fact, we will further define the spacetime track

WinŒt0; t1�D
[

t2Œt0;t1�

Win.t/� ftg;

and we can similarly define WoutŒt0; t1� and W Œt0; t1�. The reason we care about these sets is that their
topological changes are described by White [1995], which will be crucial for us later. We remark that,
when we need to specify the flow M, we will add a superscript M to the symbols, eg we will write W M

in .t/

in place of Win.t/.

Let .x;T / be a singularity of M, and �j !1. Then any subsequential limit, in the sense of Brakke flow
(see [Ilmanen 1994, Section 7]), of the rescaled flows

f�j .M.��2
j t CT /�x/g

��2
j

T<t<0

is called a tangent flow at .x;T /. The tangent flow is unique if it is the shrinking cylinder or has only
conical ends, by Colding and Minicozzi [2015] and Chodosh and Schulze [2021], respectively. Moreover,
the convergence is in C1loc by Brakke’s regularity theorem; see [White 2005].

Now, following [Choi et al. 2022b], we call .x;T / an inward neck singularity of M if, as �!1, the
rescaled flows

f�.Kin.�
�2t CT /�x/g��2T<t<0
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converge locally smoothly with multiplicity one to the solid shrinking cylinder

fBn.
p
�2.n� 1/t/�Rgt<0

up to rotation and translation. Similarly, we can define an outward neck singularity. If, instead, those
rescaled flows converge with multiplicity one to the solid shrinking ball

fBnC1.
p
�2nt/gt<0

up to translation, then we call .x;T / an inward spherical singularity. We can again similarly define an
outward spherical singularity.

2.3 MCF through cylindrical and spherical singularities

If every singularity of M is a neck or a spherical singularity, then we call M a MCF through cylindrical
and spherical singularities. In this case, building on Hershkovits and White [2020], Choi, Haslhofer,
Hershkovits and White [Choi et al. 2022b, Theorem 1.19] showed that M.t/;Min.t/ and Mout.t/ are all
the same, ie fattening does not occur.

Neck singularities are well understood after the work of many researchers; see, among others, Huisken and
Sinestrari [1999a; 1999b], White [2000; 2003], Sheng and Wang [2009]; Wang [2011]; Andrews [2012];
Brendle [2015]; Colding and Minicozzi [2015]; Haslhofer and Kleiner [2017]; Angenent, Daskalopoulos
and Sesum [2019; 2020]; Choi, Haslhofer and Hershkovits [Choi et al. 2022a] and Choi, Haslhofer,
Hershkovits and White [Choi et al. 2022b]. In Theorem 2.4, we will state the canonical neighborhood
theorem of [Choi et al. 2022b]. Using that, we obtain a more detailed topological description of neck
singularities in Theorem 2.5.

Definition 2.2 Let X D .x;T / be a regular point in a level-set flow M. Let � WD jH .x/j. Suppose there
exists an ancient MCF f†.t/g that is, up to spacetime translation and parabolic rescaling, one of

� the shrinking sphere,

� the shrinking cylinder with axis `,

� the translating bowl with axis `, or

� the ancient oval with axis `,

such that for each t 2 .�1=�2; 0� and inside B1=�.0/�RnC1,

�.M.��2t CT /�x/ and †.t/

are �-close in C b1=�c. Then we call �
T �

1

�2�2
;T

�
�B1=.��/.x/

an �-canonical neighborhood of X with axis `.
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We will also have a weaker definition, for situations when we focus on a time slice:

Definition 2.3 Let x be a regular point in a subset M . Let � WD jH .x/j. Suppose there exists a
hypersurface † that is, up to translation and rescaling, a time slice of one of

� the shrinking sphere,

� the shrinking cylinder with axis `,

� the translating bowl with axis `, or

� the ancient oval with axis `,

such that inside B1=�.0/ � RnC1, �.M � x/ and † are �-close in C b1=�c. Then we call B1=.��/.x/ an
�-canonical neighborhood of x with axis `.

One can compare the above with the notion of �-canonical neighborhoods in three-dimensional Ricci
flow [Morgan and Fong 2010, Lecture 2].

Theorem 2.4 (canonical neighborhood) Let .x;T / be a neck singularity of a MCF through cylindrical
and spherical singularities M, and let ` be the axis of the cylindrical tangent flow at .x;T /. Then for
every � > 0, there exists ı; xı > 0 such that every regular point of M in B2ı.x/� .T � xı;T Cxı/ has an
�-canonical neighborhood with axis ` in the sense of Definition 2.2.

We used balls of radius 2ı (instead of ı); this is solely for the sake of notational convenience, so that it
can be directly quoted in Theorem 2.5.

Proof This is from [Choi et al. 2022b, Corollary 1.18]. Note that all limit flows at .x;T / have the same
axis [Choi et al. 2022b, page 163].

2.4 Consequence of almost all time regularity

Recall that throughout this paper, a cylindrical singularity has tangent flow given by the cylinder Sn�1�R.
By White’s stratification [1997; 2003] of singular set of MCF, at almost every time, the time-slice of a
MCF through cylindrical and spherical singularities is smooth. Based on this, in items (3)–(6) of the
following theorem, we will obtain a topologically more refined picture of neck-pinches. The shapes of
the surfaces described in items (3)–(6) are illustrated in Figure 5.

Theorem 2.5 There exists a universal constant R0 DR0.n/ with the following significance. Let .x;T /
be an inward neck singularity of a MCF through cylindrical and spherical singularities M in RnC1, and let
` be the axis of the cylindrical tangent flow at .x;T /. For every ı0 > 0 and every R >R0, there exists
ı 2 .0; ı0/ and xı > 0 with the following properties.

(1) Let B D Bı.x/. Then the set M.T �xı/\B

� is , up to scaling and translation , .1=R/-close in C1 to the cylinder (Š Sn�1 �R) in BR.0/

with axis ` and radius 1;
� as a topological cylinder has Kin.T �xı/\B on its inside;
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� satisfies xı! 0 as R!1.

(2) (mean convex neighborhood ) For every T �xı < t1 < t2 < T Cxı,

Kin.t2/\B �Kin.t1/ nM.t1/:

Moreover , there exists some countable dense set J � ŒT �xı;TCxı�with T �xı2J such that for every t 2J :

(3) M.t/ is smooth , and intersects @B transversely.

(4) Each connected component of Kin.t/\ @B is a convex n-ball in @B.

(5) Denote the two connected components of Kin.T �xı/\ @B by D1 and D2. Then M.t/\Di has
at most one connected component for i D 1; 2.

(6) Let K be a connected component of Kin.t/\B. Then K satisfies one of the following:
� @K is a connected component of M.t/\B that is a sphere.
� @K consists of a connected component of M.t/\B that is an n-ball and another ball on @B.
� @K consists of a connected component of M.t/\B that is a cylinderŠ Sn�1� .0; 1/ and two

balls on @B.

The case for outward neck singularities is analogous.

Proof We will just prove the case of inward neck singularity.

To obtain (1) and (2) Let us first arbitrarily pick some �;R> 0, which we will further specify later. Let
ı; xı > 0 be obtained from applying the canonical neighborhood theorem (Theorem 2.4) to .x;T / and �.
We can decrease xı so that it lies in the range .0; ı0/.

By possibly further decreasing ı; xı, we can guarantee (2) by the mean convex neighborhood theorem of
Choi, Haslhofer, Hershkovits and White [Choi et al. 2022b, Theorem 1.17]. In fact, further decreasing
ı; xı, we can, by the definition of neck singularity, assume that M.T �xı/\B2ı.x/

� is, up to scaling and translation, .1=R/-close in C1 to the cylinder (Š Sn�1�R) in B2R.0/ with
axis ` and radius 1, and

� as a topological cylinder has Kin.T �xı/\B2ı.x/ on its inside.

In particular, (1) is fulfilled.
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To define J and obtain (3) Note that using [Colding and Minicozzi 2016, Corollary 0.6], for some
set I1 � ŒT � xı;T C xı� of full measure, M.t/ is smooth for all t 2 I1. Then (3) just follows from a
standard transversality argument. Namely, for each t 2 I1, via the transversality theorem, Br .x/ intersects
M.t/ transversely for a.e. r 2 .ı=2; ı/. Hence, for some countable dense subset J � I1 and some set
I2 � .ı=2; ı/ of full measure, for all .t; r/ 2 J � I2, Br .x/ intersects M.t/ transversely. Hence, by
slightly decreasing ı, (3) can be fulfilled.

To obtain (4) Let us first state a lemma, which gives us the constant R0 we need.

Lemma 2.6 There exist constants R0 > 2, and �0; �1 > 0, all depending only on n, with the following
significance.

� Consider some ball B2R0
.x/, and fix a diameter line `. Let C�B2R0

.x/ be the solid cylinder with
radius 2 and axis `.

� Let x0 be a regular point of some time-slice M.t/ of a level set flow in RnC1, and x0 has an
�0-canonical neighborhood with axis `.

� Assume x0 2 BR0
.x/, M.t/\B2R0

.x/� C.

� Let S be a smooth n-disc properly embedded in C, with @S lying on and transversely intersecting
the cylindrical part of @C, and with x0 2 S , such that

� S is �1-close in C1 to some planar n-disc perpendicular to `. (See Figure 6.)

Then:

� If M.t/ intersects S transversely at x0, then the connected component D of Kin.t/\S that contains
x0 is a convex n-disc in S , and M.t/\D D @D with the intersection being transverse.

� If M.t/ does not intersect S transversely at x0, then D is just the point x0.
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Proof By an inspection of the geometry of the sphere, cylinder, bowl, and ancient oval, for all sufficiently
large R0 and small �0, if M.t/\B2R0

.x/� C then

M.t/\B2R0
.x/\ .�0-canonical neighborhood of x0/

has curvature jAj > 1
2

. Thus, if the smooth n-disc S is sufficiently planar, the desired claim follows
easily.

Now we begin proving (4). Let us assume the R; � we chose satisfy R > R0 and � < �0, with R0; �0

from the above lemma. By how we chose R in the proof of (1) above, we can rescale M.T �xı/ by some
factor � such that

�.M.T �xı/�x/\B2R.0/

lies in the solid cylinder C � B2R.0/ with axis ` and radius 2. Thus, by the mean convex neighborhood
property (2), for all t 2 .T �xı;T Cxı/,

�.M.t/�x/\B2R.0/� C:

Now, remember that we should focus on those t 2 J � .T � xı;T C xı/. By Theorem 2.4 and � < �0,
M.t/ has an �0-canonical neighborhood with `, and so does �.M.t/�x/ since the property is independent
of scaling and translation. Let S be a connected component of @BR.0/\C . By increasing R, we can
make S arbitrarily close to being planar. Hence, we can apply Lemma 2.6. Then (4) follows immediately.

To obtain (5) We will just do the case for D1. Let

T1 WD supft 2 J WM.t/\D1 has only one connected componentg:

Note that T1>T �xı by (1) and T �xı 2J . To prove that M.t/\D1 has at most one connected component
for each t 2 J , it suffices to prove that T1D T Cxı. Suppose otherwise, ie T1 < T Cxı so that there exists
a sequence in J , t1; t2; : : : # T1, such that M.ti/\D1 contains at least two components.

Now, let

K1 D

\
T�xı<t<T1

Kin.t/\D1; K2 DKin.T1/\D1; K3 D

[
i

Kin.ti/\D1:

Note that K1 �K2 �K3 by the mean convex neighborhood property (2).

Proposition 2.7 K1 is a convex n-ball in @B, K1 DK2, and K3 is dense in K1.

Proof By the mean convex property,

K1 D

\
t2J ;t<T1

Kin.t/\D1:

Then by (4), K1 is a convex n-ball.
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To prove K1 D K2, it suffices to prove K1 � K2. Note that by Lemma 2.1, for every x 2 K1 and
t 2 .T � xı;T1/ we have u.x; t/ � 0, where u is a level set function for M. Since u is continuous,
u.x;T1/� 0, implying x 2K2 by Lemma 2.1.

Finally, to prove K3 is dense in K1, it suffices to prove K1 nK3 has empty interior (as a subset of @B)
since K1 is a convex n-ball. We claim that K2 nK3 �Min.T1/. Indeed, if x 2K2 nK3, then for every
spacetime neighborhood U of .x;T1/ in RnC1 �R, for each i , U contains the point

.x; ti/ 2 .R
nC1
�R/ nKin:

Thus, .x;T1/ 2 @Kin, and so x 2Min.T1/.

As a result,
K1 nK3 DK2 nK3 �Min.T1/\D1 DM.T1/\D1;

where the last equality is by the nonfattening of M [Choi et al. 2022b, Theorem 1.19]. We will prove that
M.T1/\D1 consists entirely of singularities (of M), and then immediately we would know M.T1/\D1

has empty interior using [Colding and Minicozzi 2016, Theorem 0.1], which says that the singular set of
M is contained in finitely many compact embedded Lipschitz submanifolds each of dimension at most
n� 1 together with a set of dimension n� 2.

Suppose for the sake of contradiction that M.T1/\D1 contains some regular point p. So around some
neighborhood of p in RnC1, M.T1/ is a smooth surface, with Kin.T1/ on one side. Thus, we have
p 2 @K2, with K2 a convex n-ball. Then we repeat the argument in the above proof of (4) to apply
Lemma 2.6 around the point p, and conclude that

� @K2 is a smooth .n�1/-sphere and consists entirely of regular points,

� the interior of K2 does not intersect M.T1/, and

� M.T1/ intersects D1 transversely along @K2.

So, for some short amount of time after T1, M.T1/\D1 would still have only one connected component
by pseudolocality of (locally) smooth MCF; see [Ilmanen et al. 2019, Theorem 1.5]. This contradicts the
definition of T1.

Let us continue the proof of (5). Now, for each i , Kin.ti/\D1 has finitely many connected components
by transversality (3). Let Ei be the one with the maximal diameter (measured inside @B) denoted by di .
Then by the canonical neighborhood property Theorem 2.4, assuming � small, for some geodesic ball
zEi � @B of diameter 3di , zEi \Kin.ti/DEi .

Now, note that di is increasing in i by the mean convex neighborhood property (2). Let d D limi di .
There are two cases: (a) d � diam.K1/=2, and (b) d < diam.K1/=2. For case (a), by the definition of ti ,
we know for sufficiently large i , the neighborhood zEi would then need to contain a connected component
of Kin.ti/\D1 other than Ei , contradicting the definition of zEi . So case (a) is impossible. Case (b) is
also impossible since it, together with the existence of zEi , violates Proposition 2.7, which says K3 is
dense in K1. This finishes the proof of (5).
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To obtain (6) Choose a connected component K of Kin.t/\Bı.x/. Let us foliate B2ı.x/ with planar
n-discs that are perpendicular to the axis `. Then as in the proof of (4), we apply Lemma 2.6 to characterize
the intersection of K with every such planar n-discs. Namely, every such set of intersections consists
of convex n-discs and isolated points. Viewing these sets of intersection as level sets of some function
defined on K, Morse theory then immediately implies (6).

This finishes the proof of Theorem 2.5.

Finally, we discuss some convergence theorems of MCF through cylindrical and spherical singularities.

Proposition 2.8 Let Mi D fM i.t/gt�0, with i D 1; 2; : : : , and MD fM.t/gt�0 be MCF through neck
and spherical singularities in RnC1. Assume that each M i.0/ and M.0/ are smooth , closed hypersurfaces ,
with M i.0/!M.0/ in C1. Then:

(1) For a.e. t , M i.t/!M.t/ in C1.

(2) The spacetime tracks Mi!M in the Hausdorff sense.

Proof By Ilmanen’s elliptic regularization (see [Ilmanen 1994; White 2009]), for any closed smooth
hypersurface M i.0/, there exists a unit regular cyclic Brakke flow f�i

tgt�0 such that �i
0
DM i.0/bHn,

where Hn is the n-dimensional Hausdorff measure. By the mean convex neighborhood theorem [Choi
et al. 2022a] and the nonfattening of level set flow with singularities that have mean convex neighborhood
[Hershkovits and White 2020], f�i

tgt�0 is supported on Mi . Then the compactness of Brakke flows
[Ilmanen 1994; White 2009] implies that f�i

tgt�0 subsequentially converges to a limit unit regular cyclic
Brakke flow f�1t gt�0.

Because M i.0/!M.0/ smoothly, �1
0
D �0, and by the uniqueness of unit regular cyclic Brakke flow,

�1t D �t a.e. for all t � 0. In particular, the regular part of �1t equals the regular part of �t . Then by
Brakke’s regularity theorem and a.e. time regularity of Mi with neck and spherical singularities we have,
for a.e. t , that M i.t/!M.t/.

The compactness of weak set flow shows that Mi subsequentially converges to a limit weak set flow M1

in Hausdorff distance. Because f�tgt�0 is supported on M1, we have M�M1. Meanwhile, M is the
biggest flow, therefore M1 �M. Thus, M1DM. This also shows the uniqueness of the limit. Therefore,
Mi converges to M in Hausdorff distance.

3 Homology descent, homology termination and homology breakage

In this section, we consider general level set flows MDfM.t/gt�0 in RnC1, where M.0/ is not necessarily
a closed hypersurface. We will introduce three new concepts. For a heuristic explanation of them, see
Section 1.1.

Let Hk. � / denote the k th homology group in Z-coefficients.
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Definition 3.1 (homology descent) We define a relation � on the disjoint unionG
t�0

Hn�1.W .t//;

as follows. Given two times T0�T1, and two homology classes c0 2Hn�1.W .T0//, c1 2Hn�1.W .T1//,
we say that c1 descends from c0, and write

c0 � c1;

if every representative 
0 2 c0 and 
1 2 c1 together bound some n-chain � �W ŒT0;T1�, ie 
0�
1D @� .
(See Figure 3.)

Clearly, in the above definition, we can interchangeably replace “every representative” with “some
representative”. Note that we are using singular homology, which means that 
0, 
1 and � are just
singular chains.

Remark 3.2 The relation � is a partial order. Indeed, let ci 2 Hn�1.W .Ti// for i D 0; 1; 2. Clearly
c0 � c0. If c0 � c1 and c1 � c0, then T0 D T1, implying c0 D c1. Moreover, if c0 � c1 and c1 � c2, then
T0 � T2 and it readily follows from definition that c0 � c2.

This relation has certain favorable properties.

Proposition 3.3 Let c0 2Hn�1.W .T0// and T0 � T1. Then there exists at most one c1 2Hn�1.W .T1//

such that c0 � c1.

Proof Suppose c1; c2 2 Hn�1.W .T1// satisfy c0 � c1 and c0 � c2. Our aim is to show c1 D c2.
Choose 
i 2 ci for i D 0; 1; 2. Then by definition, 
0� 
1 D @A for some A�W ŒT0;T1�, and similarly

0� 
2 D @B for some B �W ŒT0;T1�. Thus, 
1 and 
2 bound A�B �W ŒT0;T1�. Since the map

Hn�1.W .T1//!Hn�1.W ŒT0;T1�/

induced by the inclusion W .T1/!W ŒT0;T1� is injective by White [1995, Theorem 1(iii)], we deduce
that 
1 and 
2 are homologous within W .T1/. Consequently, c1 D c2.

Remark 3.4 In the above it is possible that there does not exist any c1 2 Hn�1.W .T1// for which
c0 � c1. As illustrated in Figure 7, after time T , no homology class c1 satisfies a0 � c1.

a0

b0

t D 0 t D T t D T1 t D T2

x

Figure 7
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Remark 3.5 On the other hand, there may be multiple homology classes c0 2H1.W .T0// satisfying
the relation c0 � c1. As an example, consider the flow shown in Figure 7, where both b0 2H1.Wout.0//

and the trivial element of H1.Wout.0// descend to the trivial element of H1.Wout.T1//.

In fact, precisely because of Proposition 3.3 and Remark 3.5, we chose the symbol � (instead of �) to
pictographically reflect that more than one homology class may descend into one, but not the other way
around.

Proposition 3.6 We focus on the case nD 2. Let c1 2H1.W .T1// and T0 � T1. Then there exists at
least one c0 2H1.W .T0// such that c0 � c1.

Proof Choose some 
 2 c1. By White [1995, Theorem 1(ii)], 
 can be homotoped through W ŒT0;T1�

to some loop 
 0 in W .T0/. So c0 WD Œ

0�� c1.

The following proposition says that a homology class cannot disappear and then reappear later.

Proposition 3.7 Let T0 < T1, c0 2Hn�1.W .T0// and c1 2Hn�1.W .T1// with c0 � c1. Then for every
t 2 ŒT0;T1� there exists a unique c 2H1.W .t// such that c0 � c � c1.

Proof We only need to prove existence, as then uniqueness would follow from Proposition 3.3.

Under our assumption, we have 
0 2 c0 and 
1 2 c1 such that they together bound some n-chain C in
W ŒT0;T1�. Since W ŒT0;T1� is an open subset of Euclidean space, we can choose a representative of
the n-chain C as a polyhedron chain. By tilting the faces appropriately, we can ensure that they do not
lie entirely within any specific slice RnC1 � ftg. This enables us to find ˇt D fx W .x; t/ 2 C g as an
.n�1/-chain without a boundary for each t 2 ŒT0;T1�. Consequently, we have Œˇt � 2Hn�1.W .t//, and
c0 � Œˇt �� c1.

Based on Proposition 3.7, the following definition is well-defined.

Definition 3.8 (homology termination) Let c0 2Hn�1.W .T0//.

� If
t.c0/ WD supft � T0 W c0 � c for some c 2Hn�1.W .t//g

is finite, then we say that c0 terminates at time t.c0/; otherwise, we say c0 never terminates.

� For each t � T0, the unique c 2Hn�1.W .t// such that c0 � c, if it exists, is denoted by c0.t/.

If needed, we use tM in place of t to specify the flow.

Note that since W is open, if c0 terminates at time t.c0/ then there is no c 2Hn�1.W .t.c0/// such that
c0 � c. So c0.t.c0// is not well-defined, and no c0 2Hn�1.W .T0// terminates at time T0. Therefore,
one can interpret the time interval ŒT0; t.c0// as the “maximal interval of existence” for c0.
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b0
a0

t D 0 t D T t D T1 t D T2

x

Figure 8

Remark 3.9 (trivial homology classes) Let us also elaborate on trivial homology classes. At each
time t , Hn�1.W .t// has a unique trivial homology class 0t . This is true even for situations like Figure 7
when the surfaces have inside and outside regions: the trivial elements of H1.Win.t// and H1.Wout.t//

are viewed as the same.

However, 0t is considered distinct for different t , because we used disjoint union in Definition 3.1.
Nonetheless, for any t1 < t2, it is vacuously true that 0t1

� 0t2
. Thus, we can denote each 0t as 0.t/,

following the notation in Definition 3.8. In addition, clearly, the trivial homology class never terminates.

Example 3.10 Let us revisit Figure 7. It is clear that a0 terminates at time T , whereas b0 does not. In
fact, b0 will never terminate: b0.t/ would just become trivial for each t > T .

Example 3.11 Let us now instead consider the flow in Figure 8. At time T , b0 terminates while a0 does
not. In fact, a0.t/ becomes trivial after time T , and thus it will never terminate.

Now, we introduce another concept. In Figure 7, a0 terminates at time T because, intuitively, it “breaks”
at the cylindrical singularity x. Similarly, in Figure 8, b0 terminates at time T because it “breaks” at
the outward cylindrical singularity. The following definition provides a precise characterization of this
breakage phenomenon.

Definition 3.12 (homology breakage) Let c0 2 Hn�1.W .T0//, T1 > T0, and let K �M.T1/ be a
compact set. Suppose the following holds:

� For each T0 � t < T1, there exists c0.t/ 2Hn�1.W .t// such that c0 � c0.t/.

� For every neighborhood U � RnC1 of K, and for each t < T1 sufficiently close to T1, every
element of c0.t/ intersects U . (Recall Figure 4.)

Then we say that c0 breaks in .K;T1/. We will often be concerned with the case when K is just a point
x 2M.T /, for which we say that c0 breaks at .x;T1/.

One might wonder why Definition 3.12 does not require c0 to terminate at time T1. This is because it is
not necessary:

Geometry & Topology, Volume 29 (2025)



Genus-one singularities in mean curvature flow 4321

Proposition 3.13 If a homology class c0 2Hn�1.W .T0// breaks in some .K;T1/, then c0 terminates at
time T1.

Proof Suppose otherwise: that there exists T2>T1 and c2 2Hn�1.W .T2// such that c0� c2. Then there
exists 
0 2 c0 and 
2 2 c2 that together in W ŒT0;T2� bound some n-chain C . Without loss of generality
we can assume that ˇt WD fx W .x; t/ 2 C g is an .n�1/-chain without boundary for each t 2 ŒT0;T2�, as in
the proof of Proposition 3.7. Then c0.t/D Œˇt � 2Hn�1.W Œt �/ satisfies c0 � c0.t/.

By assumption, c0 breaks in some .K;T1/ with K�M.T1/. Therefore, K\C D¿. Since K is compact
and C is closed, there exists a neighborhood of K in RnC1 �R of the form Br .K/� ŒT1 � ı;T1C ı�

that does not intersect C . Consequently, for all t 2 ŒT1� ı;T1C ı�, ˇt avoids Br .K/. This contradicts
the assumption that c0 breaks at .K;T1/.

Note that, vacuously, the trivial homology class does not break in any .K;T /. Moreover, if a homology
class breaks in .K1;T / and K1 �K2 �M.T /, then it also breaks in .K2;T /.

One might wonder whether the converse of the above proposition is true. Actually, in the case of two-
dimensional MCF through cylindrical and spherical singularities, if a homology class terminates at some
time T , then it actually breaks at some cylindrical singularity .x;T /. This is the statement of Theorem 4.5,
which is one of the main results in Section 4. However, we are unsure whether the converse is true in
general.

Proposition 3.14 No homology class breaks at a regular point.

Proof Suppose .x;T / is a regular point. Then there exists a small ball B around x such that for all t

close to T , Mt \B is a smooth n-disk. It is clear that every n-chain can be homotoped to avoid B.
Therefore, no homology class breaks at .x;T /.

Proposition 3.15 No homology class breaks at a spherical singularity.

Proof Suppose otherwise. Without loss of generality, suppose some c0 2Hn�1.W .T0// breaks at some
spherical singularity .x;T /. Then there exists a small ball B around x such that for all t < T close
to T , M.t/\B is a smooth sphere. For each such t , let 
 be a representative of c0.t/. By removing the
components of 
 inside the sphere M.t/\B, we can assume that 
 lies outside the sphere. Thus clearly

 can be homotoped within W .t/ to avoid B. This again contradicts the assumption that c0 breaks at
.x;T /.

We conclude this section with the following proposition, which provides us with a scenario where we
know that the inside homology classes must terminate. Namely, if we take a compact shrinker and push it
inward, then all nontrivial inside homology classes will terminate, while the outward ones will not. This
proposition will be crucial for us when we use Theorem 1.1 to prove other main theorems.
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Proposition 3.16 The setting is as follows.

� Let † be a smooth , embedded , compact shrinker in R3.

� Let S0.�1/ be a surface , lying strictly inside †, given by deforming † within the inside region
of †.

� Let S1.�1/ be a surface , lying strictly outside †, given by deforming † within the outside region
of †.

� Note that the first homology groups of

R3
n†; R3

nS0.�1/ and R3
nS1.�1/

can be canonically identified.

� Let
SD f

p
�t†g�1�t�0; S0

D fS0.t/gt��1 and S1
D fS1.t/gt��1

be the associated level set flows.

Then there exist times T; zT 2 .�1; 0/ such that :

(1) For each nontrivial element a0 2H1.W
S0

in .�1//, t.a0/� zT .

(2) For each element b0 2H1.W
S0

out .�1//, b0. zT / exists and is trivial.

(3) For each element a1 2H1.W
S1

in .�1//, a1.T / exists and is trivial.

(4) For each nontrivial element b1 2H1.W
S1

out .�1//, t.b1/� T .

Proof For the first claim, note that

� S0.�1/ is inside †,

� dist.
p
�t†;S0.t// is nondecreasing in t by [Evans and Spruck 1991, Theorem 7.3], and

� † shrinks self-similarly under the flow.

Thus, we can deduce the existence of zT < 0 such that for every t � zT , S0.t/ is empty. Consequently, for
any nontrivial element a0 2H1.W

S0

in .�1//, either t.a0/� zT , or a0. zT / still exists but is trivial. Suppose
for the sake of contradiction that the latter holds. Then we can pick some ˛0 2 a0 such that ˛0 D @A for
some

A�W S0

in .Œ�1; zT �/�W S
in .Œ�1; zT �/:

By rescaling each time slice of A, we can ensure that ˛0 bounds some

zA� .interior region of †/� Œ�1; zT �:

Projecting zA into the interior region of †, we have that ˛0 is homologically trivial, which contradicts the
definition of ˛0. This concludes the proof of the first claim.
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For the second claim, since † shrinks self-similarly under the flow, we know that b0 has not terminated by
the time zT .< 0/ for the flow

p
�t†. Then by the fact that S0.t/ lies inside

p
�t† for each t 2 Œ�1; zT �,

which is a result of the avoidance principle, we can deduce that b0. zT / still exists for the flow S0. However,
as S0. zT / is empty, it follows that b0. zT / must be trivial.

Let us define
� D dist.†;S1.�1//:

Pick a loop ˇ1 2 b1. Define B�.
p
�t†/ as the �-neighborhood of

p
�t†, and write

Y .t/ WDR3
nB�.

p
�t†/; Y Œt1; t2� WD

[
t2Œt1;t2�

.R3
nB�.

p
�t†//� ftg:

We prove the fourth claim before the third. In order to prove the fourth claim, it suffices to show that for
some �1< T < 0, there exists no 2-chain C �W S1

out Œ0;T � such that @C D ˇ1�ˇ2, where ˇ2 is a closed
1-chain outside S1.T /. Since S1.�1/ lies outside †, by the avoidance principle it suffices to prove that:

Lemma 3.17 For some �1<T < 0, there does not exist a 2-chain C �Y Œ�1;T � such that @C Dˇ1�ˇ2

for some closed 1-chain ˇ2 � Y .T /.

Proof Choose a value of T that is sufficiently close to 0 such that diam.
p
�T†/ < �. With this choice,

the set B�.
p
�T†/ is star-shaped with respect to any point on

p
�T†. Thus, the boundary @B�.

p
�T†/

has genus 0.

Suppose for the sake of contradiction that there exists a 2-chain C � Y Œ�1;T � such that @C Dˇ1�ˇ2 for
some closed 1-chain ˇ2 � Y .T /. By rescaling C at each time slice t , we can construct another 2-chain zC
outside † such that @ zC D ˇ1�

p
�T ˇ2.

Since ˇ1, which lies outside †, is homologically nontrivial, we can pick a nontrivial loop ˛ inside †
such that Œˇ1� 2H1.R

3 n˛/ is nontrivial. Then by the existence of zC , we have Œˇ2�¤ 0 in H1.R
3 n˛/

too. However, this is impossible because
p
�T ˇ2 lies outside B

�=
p
�T
.†/ while ˛ lies inside, and

@B
�=
p
�T
.†/ has genus 0 by the first paragraph of this proof.

This finishes proving the fourth claim of Proposition 3.16. Finally, for the third claim, since a1.T / exists
for the flow f

p
�t†gt�0, it follows from the avoidance principle that a1.T / exists for S1. Moreover, since

the inside of S1.T / contains B�.
p
�T†/, which is star-shaped, we know a1.T /D 0 in H1.W

S1

.T //.

4 Homology breakage of MCF through cylindrical and spherical
singularities

4.1 MCF through cylindrical and spherical singularities

In this section, we focus on two-dimensional MCF MD fM.t/gt�0 through cylindrical and spherical
singularities in R3, where the initial condition M.0/ is a smooth, closed surface.
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Proposition 4.1 For any T0 � 0, no element of H1.Wout.T0// can break at an inward neck singularity ,
and no element of H1.Win.T0// can break at an outward neck singularity.

Proof Let us just prove the first claim. Suppose for the sake of contradiction that some c02H1.Wout.T0//

breaks at an inward neck singularity .x;T /, with T > T0. Applying Theorem 2.5 to .x;T / with ı0 D 1

and any R > R0, we obtain constants ı; xı > 0 and a dense subset J � ŒT � xı;T C xı� satisfying the
properties in Theorem 2.5. Let B D Bı.x/.

Pick a time t 2 J \ ŒT � xı;T /. Since c0 breaks at T , c0.t/ still exists. Pick a loop 
 2 c0.t/. By
Theorem 2.5(6) (and recall Figure 5), we can homotope 
 within Wout.t/ to avoid B. This can be done
for all t in J \ ŒT �xı;T /, which is dense in ŒT �xı;T /. So we obtain a contradiction to the fact that c0

breaks at .x;T /.

In the following proposition, we provide a more detailed description of the shape around a neck pinch at
which homology class breaks. Namely, in this case, prior to the singular time, only the last bullet point of
Theorem 2.5(6) can occur, ie M.t/\B is a cylinder.

Proposition 4.2 There exists a universal constant R0 > 0 with the following significance. Suppose
c0 2 H1.Win.T0// breaks at some inward neck singularity .x;T /. Let ı0 > 0. Then for each R > R0,
there exist constants ı 2 .0; ı0/, xı > 0, and a dense subset J � .T �xı;T Cxı/ with T �xı 2 J , such that :

(1) The first five items of Theorem 2.5 hold.

(2) For each t 2 J \ ŒT �xı;T /, Kin.t/\Bı.x/ is a solid cylinder such that its boundary consists of a
connected component of M.t/\Bı.x/ that is a cylinder and two disks D1;D2 on @Bı.x/.

(3) Moreover , for such t , every element 
 2 c0.t/ has a nonzero intersection number (in Z-coefficients)
with each Di .

The outward case is analogous.

Proof We will just prove the inward case. Let us apply Theorem 2.5 to .x;T / to obtain the constants ı; xı
and the subset J � ŒT � xı;T C xı�. Let B D Bı.x/. In addition the first five items of Theorem 2.5
will hold.

We need to show that for each t 2 J \ .T0;T / sufficiently close to T , Kin.t/ \ Bı.x/ satisfies the
description in (2): after that we could just shrink xı and the set J to guarantee (2). Suppose for the
sake of contradiction that there exists a sequence in J , t1; t2; : : : " T such that Kin.ti/\Bı.x/ violates
the description in (2). Fix one ti . Note that Theorem 2.5(5) and (6) together imply that Kin.ti/\B

can have at most one cylindrical component. Thus, in our case, Kin.ti/\B actually has no cylindrical
component. As a result, any connected component K of Kin.ti/\B satisfies either one of the following
by Theorem 2.5(6):

� @K is a connected component of M.t/\B that is a sphere.

� @K consists of a connected component of M.t/\B that is an disc and another disc on @B.
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In either situation, any element of c0.ti/ can be perturbed to avoid B. Applying this argument to each ti ,
we obtain a contradiction to the fact that c0 breaks at .x;T /.

Finally, to prove (3), it suffices to show that for each t 2 J \.T0;T / sufficiently close to T , c0.t/ satisfies
the description of (3): then we could just shrink J , and we would be done. Suppose otherwise, so that
there exists a sequence in J , t1; t2; : : : " T such that c0.ti/ violates the description of (3). Then for
each ti , we can find a loop 
 2 c0.ti/ with intersection number zero with some connected component of
Kin.ti/\ @B. In fact, since Kin.ti/\B is a cylinder by (2), 
 has intersection number zero with both
connected components D1;D2 of Kin.ti/\ @B (which are discs). To contradict the fact that c0 breaks
at .x;T /, it suffices to find another element of c0.ti/ that avoids B.

Indeed, this can be proved as follows. We can assume 
 intersects @B transversely. Since 
 has intersection
number zero with D1, we can pair up each positive intersection point of 
 \D1 with a negative one.
Now fix a pair, and draw a line segment L on D1 to connect the pair of points. Adding L and �L

to 
 , and slightly pushing the resulting curve away from D1 around L and �L, we can obtain another
representative of c0.ti/ that avoids this pair of intersection points. And we do this for each pair. Then
at the end, we get a curve belonging to c0.ti/ that avoids D1 completely. Then, we repeat this process
with D2, to get a curve that avoids D2 too. Lastly, we discard all connected components of the curve that
are in K, which are all trivial as K is a solid cylinder, to obtain an element of c0.ti/ that avoids B, as
desired.

Denote by Sin
sphere the set of inward spherical singularities of M, and by Sin

neck the set of inward neck
singularities of M. Similarly, we define Sout

sphere and Sout
neck. Then, we denote by S in

sphere.t/�R3 the slice
of Sin

sphere at time t , and proceed similarly for the other three sets.

Lemma 4.3 S in
neck.T / and Sout

neck.T / are compact sets.

Proof We only show S in
neck.T / is compact and the proof for Sout

neck.T / is the same. It suffices to show that
S in

neck.T /D S in
neck.T /. By the semicontinuity of the Gaussian density, a limit point p of S in

neck.T / must
be a neck singularity. Hence it suffices to show p 2 S in

neck.T /. We prove it by contradiction: suppose not,
then p 2 Sout

neck.T /, and by the mean convex neighborhood theorem, there is a neighborhood U of p and
ı > 0 such that the MCF fMtgt2ŒT�ı;TCı� in U moves outward. This contradicts the assumption that p

is a limit point of S in
neck.T /.

Proposition 4.4 Suppose c0 2 H1.Win.T0// terminates at some time T > T0. Then c0 breaks in
.S in

neck.T /;T /. The outward case is analogous.

Proof We will only prove the inward case, as the outward case follows analogously. Suppose otherwise:
that there exist a neighborhood U of S in

neck.T / in R3, an increasing sequence of times t1; t2; : : : " T , and
elements 
i 2 c0.ti/ such that each 
i is disjoint from U .
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By the mean convex neighborhood theorem and the compactness of S in
neck.T / and Sout

neck.T / from
Lemma 4.3, we can further pick open neighborhoods Uin; zUin with

S in
neck.T /� Uin b zUin b U;

an open neighborhood Uout of Sout
neck.T /, and two times T1 < T < T2 such that

� zUin and Uout are disjoint, and

� in the time interval .T1;T2/, M.t/\ zUin evolves inward, ie

Kin.t2/\ zUin �Kin.t1/ nM.t/

for every T1 < t1 < t2 < T2, while M.t/\Uout evolves outward.

By Huisken’s analysis of spherical singularities (see also the special case of [Colding and Minicozzi 2016,
Theorem 4.6]), each spherical singularity is isolated in spacetime. Therefore, the limit points of spherical
singularities can only be cylindrical singularities.

We claim that after appropriately shrinking the time interval ŒT1;T2�,

.R3
n .Uin[Uout//� ŒT1;T2�

has only finitely many singular points, and we can thus assume such singular points are all spherical
singularities at time T . In fact, suppose not, so there exists a sequence of distinct singular points fpig

1
iD1

outside Uin[Uout, with singular time ti!T . By the compactness of the singular set of M and the previous
paragraph, there is a subsequence converging to a cylindrical singularity in .S in

neck.T /[Sout
neck.T //� fT g.

This contradicts our choice of the pi .

As a consequence of the claim, by shrinking ŒT1;T2� and the neighborhoods zUin and Uout, we can assume

zUin nUin � ŒT1;T2�

consists only of smooth points. Furthermore, we can choose a neighborhood Vin of S in
sphere.T / n

zUin

such that M.t/\ Vin is a finite union of convex smooth spheres for each t 2 ŒT1;T2�, using what we
proved in the previous paragraph. Similarly, we can find a neighborhood Vout for Sout

sphere.T / n
zUout with

analogous properties. We can assume that the closures of zUin;Uout;Vin;Vout are all disjoint. Moreover,
M.t/ n .Uin[Uout[Vin[Vout/ evolves smoothly for t 2 ŒT1;T2�.

To derive a contradiction to t.c0/ D T , we are going to prove that for some ti there exists a smooth
deformation of 
i , f
 t �Win.t/gt2Œti ;T � with 
 ti D 
i , thereby letting 
i “survive” up to time T . Note that:

� By the smoothness of M.t/ in zUin nUin for t 2 ŒT1;T2�,

C WD sup
t2ŒT1;T2�;x2M.t/\ zUinnUin

jAj<1:
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Thus, the velocity of the flow in this spacetime region is bounded by C . Thus, since 
i avoids zUin,
we can take a ti 2 .T1;T / sufficiently close to T such that there is not enough time for any point
of M.ti/ n zUin to be pushed into Uin by time T .

� Note that M.t/ evolves outward in zUout for t 2 ŒT1;T2�.

� Since Vin and Vout consists of spheres, we can remove the components of 
i inside the spheres,
so we may assume 
i avoids Vin and Vout.

Combining the above observations, we can construct a smooth deformation of 
i , f
 t �Win.t/gt2Œti ;T �,
using the evolution of MCF, with 
 ti D 
i . This contradicts that t.c0/D T .

Here comes a key theorem, which supports that our definition of homology termination and breakage
accurately describes the heuristic phenomenon shown in Figure 7.

Theorem 4.5 Suppose c0 2 H1.Win.T0// terminates at some time T > T0. Then c0 breaks at some
inward neck singularity .x;T /.

The outward case is analogous.

Note that such x may be nonunique: consider a flow that is a thin torus collapsing into a closed curve
consisting entirely of neck singularities.

Proof We prove the inward case as the outward case is analogous. We will prove it by contradiction.
Suppose that the theorem is false, meaning:

Assumption (?) For every inward neck singularity .x;T /, there is a neighborhood Ux of x such that it
is not true that “for every time t < T close enough to T , every element of c0.t/ intersects Ux”.

Applying Theorem 2.5 to each inward neck singularity .x;T /, with a constant ı0.x/ > 0 such that
Bı0.x/.x/�Ux and an R>maxfR0; 100g, we obtain constants ı.x/; xı.x/ > 0 and a set of full measure
J.x/� ŒT �xı.x/;T Cxı.x/� satisfying the properties of Theorem 2.5.

Since S in
neck.T / is compact by Lemma 4.3, there exist x1; : : : ;xn 2 S in

neck.T / such that

Bı.x1/=2.x1/; : : : ;Bı.xn/=2.xn/

cover S in
neck.T /. For simplicity, we denote those balls by 1

2
B1; : : : ;

1
2
Bn, while

B1 WD Bı.x1/.x1/; : : : ;Bn WD Bı.xn/.xn/:

Since c0 terminates at time T , we know that c0 breaks in .S in
neck.T /;T / by Proposition 4.4. Thus, by

definition, there exists a time T1 with maxi T � xı.xi/ < T1 < T such that for each t 2 ŒT1;T /, every
element of c0.t/ intersects

S
i

1
2
Bi . We can assume T1 2\iJ.xi/ so that M.T1/ is smooth and intersects

each @Bi transversely by Theorem 2.5(3).
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Lemma 4.6 Let D be a connected component of Kin.T1/\@Bi (of which there are at most two according
to Theorem 2.5(5)), and 
 2 c0.T1/. Then , it follows that the linking number satisfies link.
; @D/D 0.

Proof Suppose otherwise, ie that there exists some D as above, and 
 2 c0.t0/ such that link.
; @D/¤ 0.
Now, pick any t1 2 ŒT1;T / and 
1 2 c0.t1/. By definition, 
1 is homologous to 
 within WinŒT1; t1�. Thus,

1 is homologous to 
 within R3 n @D, as the mean convex neighborhood property (Theorem 2.5(2))
implies that @D � R3 nWin.t/ for all t 2 ŒT1; t1�. Therefore, link.
1; @D/ ¤ 0, which implies that 
1

must intersect D. However, since D � xBi � Uxi
, this implies that for all t1 2 ŒT1;T /, any element of

c0.t1/ must intersect Uxi
. This contradicts the assumption (?).

Let �1 WDmini ı.xi/=2. Let 
 2 c0.T1/ be such that

(4-1) length.
 / < inf

 02c0.T1/

length.
 0/C 1
100
�1:

Without loss of generality, we can assume that 
 intersects all @Bi transversely. To finish the proof, it
suffices to show that 
 avoids

S
i

1
2
Bi : This would contradict the definition of T1.

Lemma 4.7 The curve 
 does not intersect
S

i
1
2
Bi .

Proof We prove by contradiction. Suppose that 
 intersects some 1
2
Bi . We will produce an element of

c0.T1/ whose length is too small.

Without loss of generality, we can assume that no connected component of 
 \ Bi is a closed loop.
This is because we could just remove all such loops from 
 , and the resulting curve is still in c0.T1/ by
Theorem 2.5(6). Hence, letting ˇ be a connected component of 
 \Bi , we can assume that ˇ is a line
segment.

Now, by Theorem 2.5(5) and our choice that T1 2 \iJ.xi/, Win.T1/\ @Bi consists of at most two disks.
There are two cases: Either

(1) ˇ starts and ends on the same disk, say D1, or

(2) ˇ starts and ends on different disks, D1 and D2.

We will show that both are impossible.

For case (1), since ˇ intersects 1
2
Bi , whose distance to @Bi is ı.xi/=2, we know that length.ˇ/ is at

least ı.xi/. On the other hand, note that by Theorem 2.5(1), (2) and (4), D1 is a convex disc on @Bi with
diameter less than ı.xi/=50 (recall R> 100). Thus, we can join the end points of ˇ, from ˇ.1/ to ˇ.0/,
by a segment ˇ1 on D1 of length less than ı.xi/=50: see Figure 9, left. Then, we consider the new loop

 � ˇ � ˇ0, which replaces ˇ � 
 with ˇ0. This loop lies in c0.T1/, because ˇC ˇ0 bounds a disc in
Win.T1/\ xBi by Theorem 2.5(6).
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Figure 9

Moreover, this new loop is impossibly short:

length.
 �ˇ�ˇ0/� length.
 /� ı.xi/C
1

50
ı.xi/

< length.
 /� 1
2
ı.xi/

� length.
 /� �1

< inf

 02c0.T1/

length.
 0/;

in which the last inequality is from the definition of 
 . Thus, a contradiction arises, and case (1) is
impossible.

For case (2), suppose the starting point ˇ.0/ is in D1 and the ending point ˇ.1/ is in D2. We claim that
there is another connected component y̌ of 
 \Bi such that starting point y̌.0/ is in D2 and ending
point y̌.1/ is in 2D1. This claim follows immediately from the following facts:

� By Theorem 2.5 (6), M.T1/\ @Bi is a cylinder.

� By Lemma 4.6, link.
; @D1/D link.
; @D2/D 0.

� Case (1) was proven impossible.

Finally, let ˇ1 be a segment on D1 connecting y̌.1/ to ˇ.0/, and ˇ2 be a segment on D2 connecting y̌.0/
to ˇ.1/; see Figure 9, right. As in case (1), we can guarantee length.ˇ1/; length.ˇ2/ < ı.xi/=50. Hence,
we consider the new loop 
 �ˇ� y̌�ˇ1�ˇ2, which replaces ˇC y̌� 
 with �ˇ1�ˇ2. This new loop
lies in c0.T1/, because ˇC y̌Cˇ1Cˇ2 bounds a disc in Win.T1/\ xBi by Theorem 2.5(6). Moreover,
as in case (1), we can show that

length.
 �ˇ� y̌�ˇ1�ˇ2/ < inf

 02c0.T1/

length.
 0/;

which is a contradiction. Therefore, case (2) is also impossible. This leads to a contradiction.

This finishes the proof of Theorem 4.5.
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4.2 MCF through cylindrical and spherical singularities from torus

In Section 4.2 , we will focus on two-dimensional MCF MDfM.t/gt�0 through cylindrical and spherical
singularities in R3, where M.0/ is a smooth torus. The main goal of Section 4.2 is to prove the following.

Theorem 4.8 The setting is as follows.

� Let fM.t/gt�0 be a MCF through cylindrical and spherical singularities with M.0/ a smooth torus
in R3.

� Let a0 be a generator of H1.Win.0//Š Z, and b0 be a generator of H1.Wout.0//Š Z.

� Let T Dminft.a0/; t.b0/g.

Then T <1, and genus.M.t// D 1 for a.e. t < T , while genus.M.t// D 0 or M.t/ is empty for a.e.
t > T .

Throughout Section 4.2, we will retain the notation in this theorem.

Let us first sketch the proof. By [Colding and Minicozzi 2016], M.t/ is smooth for a.e. time. And by
[White 1995], genus.M.t//, when well-defined, is nonincreasing in t . Thus, there exists some time Tg

such that genus.M.t// D 1 for a.e. t < Tg, while genus.M.t// D 0 or M.t/ is empty for a.e. t > Tg.
Our goal is to show T D Tg.

The proof consists of proving the following six claims one-by-one:

� T <1.

� Let t � 0. If M.t/ is a smooth torus and a0.t/ exists, then a0.t/ generates H1.Win.t//. And the
case for b0 is analogous.

� Tg � T .

� t.a0/¤ t.b0/.

� If t.a0/ < t.b0/, then b0.t/ is trivial for each t > t.a0/. And if t.b0/ < t.a0/, then a0.t/ is trivial
for each t > t.b0/.

� Tg � T .

We now begin the proof of Theorem 4.8.

Proposition 4.9 T <1.

Proof Suppose otherwise, ie that a0 and b0 both never terminate. Since M.0/ is compact, eventually
Kout.t/D R3. So a0.T / and b0.T / both become trivial for some large T > 0. As a result, if we pick
some loops ˛0 2 a0 and ˇ0 2 b0, then there exist 2-chains A�WinŒ0;T � and B �WoutŒ0;T � such that
@AD ˛0 and @B D ˇ0.

Now, denote by yB � R3 � Œ�T; 0� the reflection of B across R3 � f0g. Let zB D B [ yB, which can be
viewed as a closed 2-chain in R4. Then we view A�R4 n zB. Thus, to derive a contradiction, it suffices
to show that ˛0 is homologically nontrivial in R4 n zB.
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Without loss of generality, we can assume that zB is connected by discarding all those connected components
that do not contain ˇ0. By Alexander duality,

H1.R
4
n zB/ŠH 2. zB/Š Z:

One can check that ˛0 �R4 n zB actually generates Z as the linking number link.a0; b0/D 1. This shows
that ˛0 is homologically nontrivial in R4 n zB, contradicting the existence of A.

Remark 4.10 The above proof works also in the case when M.0/ is a closed surface of any genus with
a0 2H1.Win.0// and b0 2H1.Wout.0// linked, and the flow fM.t/gt�0 is a general level set flow (whose
singularities are not necessarily cylindrical or spherical).

Proposition 4.11 Let t � 0. If M.t/ is a smooth torus and a0.t/ exists , then a0.t/ generates H1.Win.t//.
The case for b0 is analogous.

Proof We will just prove the case for a0. Let xa be a generator of H1.Win.t//Š Z. It suffices to show
that xaD a0.t/ up to a sign.

By definition, there exist ˛0 2 a0 and ˛1 2 a0.t/ such that ˛0 � ˛1 D @A for some A � W Œ0; t �. On
the other hand, pick a loop x̨1 2 xa, then by [White 1995, Theorem 1(ii)], there exists a homotopy H in
W Œ0;T � joining x̨1 back to some loop x̨0 �W .0/ (which means @H D x̨1� x̨0). So Œx̨0�D ka0 for some
integer k, and so x̨0� k˛0 D @A0 for some A0 �W .0/. If we manage to show a0 D Œx̨0� or �Œx̨0�, then
by the fact that a0 can only descend into one class at time t (Proposition 3.3), we would know a0.t/D xa

or �xa, as desired. Hence, it suffices to show that k D˙1.

Let us glue H;A0 and kA together, so that we have

x̨1� k˛1 D @.H CA0C kA/:

Thus, since the inclusion H1.Win.t// ! H1.WinŒ0; t �/ is injective by [White 1995, Theorem 1(iii)],
xaD k˛0.t/ in H1.Win.t//. Since xa is a generator by definition, k D˙1, as desired.

Proposition 4.12 Tg � T .

Proof Let us assume that T D t.a0/, as the other case, T D t.b0/, is analogous. Recall that we have
shown T <1. Since genus.M.t//, if well-defined, is nonincreasing in t , it suffices to prove that there
exists T1 < T such that for a dense set of t 2 .T1;T /, genus.M.t//D 1.

By Theorem 4.5, T D t.a0/ implies that a0 breaks at some inward neck singularity .x;T /. Then,
applying Proposition 4.2 to .x;T / with ı0 D 1 and an R>R0, we obtain constants ı; xı and a dense set
J � ŒT �xı;T Cxı� with T �xı 2 J . We let T1 D T �xı, and B D Bı.x/.

Now, fix any t 2 .T1;T /, and D let be one of the two connected components of Kin.t/\ @B: recall
that Kin.t/ \ B is a solid cylinder by Proposition 4.2. By Proposition 4.2, some element ˛ 2 a0.t/

has a nonzero intersection number with D. Now, we push @D slightly into Kout.t/\B and call that
loop ˇ. Then the linking number link.ˇ; ˛/ is nonzero, with ˛ inside M.t/ and ˇ outside M.t/. Hence,
genus.M.t// is nonzero, and thus has to be one, as desired.
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Proposition 4.13 t.a0/¤ t.b0/.

Proof If t.b0/ < t.a0/, we are done. So let us assume t.a0/� t.b0/ and aim to show t.b0/ > t.a0/.

Let us focus on the time t D T1, with T1 WD T �xı, as defined in the proof of Proposition 4.12. We know
that genus.M.T1//D1 from before. Now, consider the loops ˛ 2a0.T1/ and ˇ�Wout.T1/\B defined in
the previous proof. Then by Proposition 4.11, ˛ is a generator of H1.Win.T1//, and from the construction
of ˇ it is clear link.ˇ; ˛/D˙1. So ˇ actually generates H1.Wout.T1//. Then by Proposition 4.11 again
and the assumption t.b0/� t.a0/, we have Œˇ�D b0.T1/, possibly after changing the orientation of ˇ.

Finally, by the mean convex neighborhood property, ˇ �Wout.T1/\B will survive after time T . So
t.b0/ > t.a0/.

Proposition 4.14 If t.a0/ < t.b0/, then b0.t/ exists and is trivial for each t > t.a0/. If t.b0/ < t.a0/,
then a0.t/ exists and is trivial for each t > t.b0/.

Proof We prove the first statement, and the second statement is similar. Let us retain the notation from
the previous proof. By Proposition 4.2, M.T1/\B (recall that T1 D T �xı) is close to a round cylinder.
Now, enclose this cylinder by an Angenent torus, and run the MCF. Note that:

� Since the time interval around T given by the mean convex neighborhood property is independent
of R (in Proposition 4.2), we can, by making R very large and thus the Angenent torus very small,
assume that the mean convex neighborhood property still holds at the moment the Angenent torus
vanishes.

� By the avoidance principle, the distance between the Angenent torus and M.t/ is nondecreasing.

Hence, when the Angenent torus vanishes, the neck M.t/\B has already been “cut into disconnected
pieces”. As a result, the loop ˇ, which remains disjoint from the evolving surface, would have become
trivial at the moment the Angenent torus disappears.

Finally, note that as R!1, xı! 0; see Theorem 2.5(1). By the definition of cylindrical singularity, we
know that T1 D T �xı! T and M.T �xı/\B tends to be an actual round cylinder after rescaling by
the factor R. This shows that the moment when the Angenent torus vanishes will tend to T . Therefore,
b0.t/ is trivial for each t > T .

Finally, since we have already proven Tg � T , to complete the proof of Theorem 4.8, it remains to show:

Proposition 4.15 Tg � T .

Proof Suppose for the sake of contradiction that Tg > T . Again, we can just consider the case
t.a0/ < t.b0/. By Proposition 4.14, we can pick a time T2 2 .T;Tg/ when M.T2/ is a smooth torus
and b0.T2/ exists and is trivial. This contradicts Proposition 4.11, which says that b0.T2/ generates
H1.Wout.T2//.

This completes the proof of Theorem 4.8.
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4.3 Termination time of limit of MCF

Finally, in Section 4.3, let us mention a proposition that describes a relationship between the termination
time and a convergent sequence of initial conditions.

Proposition 4.16 The setting is as follows.

� Let Mi D fM i.t/gt�0 for i D 1; 2; : : : , and MD fM.t/gt�0 all be MCF through cylindrical and
spherical singularities , such that each M i.0/ and M.0/ are smooth , closed hypersurfaces.

� For each i , assume M i.0/ is sufficiently close in C1 to M.0/ so that each H1.W
Mi

.0// can be
canonically identified with H1.W

M.0//. Moreover , M i.0/!M.0/ in C1.

� Let c0 2H1.W
M.0//. Note that c0 can be viewed as an element of H1.W

Mi

.0// for each i too.

Then
lim inf

i
tM

i

.c0/� tM.c0/:

Proof Let T D tM.c0/.

We first consider the case T <1. Suppose for the sake of contradiction that there exists a subsequence
fikg
1
kD1

and some T1 < T such that tM
ik .c0/ � T1 for each k. Pick some element 
0 �W M.0/ with

Œ
0� D c0, and 
1 � W M
�

1
2
.T1 C T /

�
with Œ
1� D c0

�
1
2
.T1 C T /

�
. By definition, 
0 and 
1 together

bound some � �W M
�
0; 1

2
.T1CT /

�
.

Now, recall that Mi !M in the Hausdorff sense by Proposition 2.8. Thus, since � is compact, for all
sufficiently large i , � �W Mi �

0; 1
2
.T1CT /

�
. Moreover, 
0 represents c0 2H1.W

Mi

.0// for such large i .
This contradicts that tM

ik .c0/� T1 for each k.

Lastly, the case T D1 can be done similarly using the fact that the flow M vanishes in finite time.

5 Proof of main theorems

5.1 Proof of Theorem 1.1

Suppose for the sake of contradiction that for each s 2 Œ0; 1�, fM s.t/gt�0 is a MCF through cylindrical
and spherical singularities. For each s 2 Œ0; 1�, let

T s
DminftM

s

.a0/; t
Ms

.b0/g:

Furthermore, Propositions 4.13 and 4.14 show that either a0 or b0 will terminate, but not both. As a result,
we can represent Œ0; 1� as a disjoint union AtB, where A contains those s for which T s D tM

s

.a0/, and
B contains those s for which T s D tM

s

.b0/. Note that 0 2 A and 1 2 B by the assumption. Thus, the
following lemma leads us directly to a contradiction.
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Figure 10

Lemma 5.1 The sets A and B are both closed.

Proof We will just prove that A is closed. Let s 2 Œ0; 1� be an accumulation point of A, and pick a
sequence si in A with si! s. Note that:

� For each i , by Theorem 4.8, genus.M si .t//D 1 for a.e. t < T si , and genus.M si .t//D 0 for a.e.
t > T si .

� Similarly, genus.M s.t//D 1 for a.e. t < T s , and genus.M s.t//D 0 for a.e. t > T s .

Thus, together with Proposition 2.8, which says M s
i .t/!M s.t/ in C1 for a.e. t �0, we know T si!T s .

Hence,
T s
D lim inf

i
T si D lim inf

i
tM

si
.a0/� tM

s

.a0/:

Note that the second equality holds because si 2A, and the inequality holds by Proposition 4.16. Thus,
we know T s D tM

s

.a0/, which means for the flow Ms , a0 will terminate but b0 will not. So s 2A. This
shows that A is closed.

This finishes the proof of Theorem 1.1.

Remark 5.2 Let us explain why Theorem 1.1 would not hold if the initial conditions had genus greater
than one. For example, consider the genus-2 surface depicted in Figure 10, left, where a0 and b0 are
linked as shown. Then, the MCF actually could develop both inward and outward cylindrical singularities
simultaneously, with a0 breaking at the inward one and b0 breaking at the outward one. This phenomenon
may prevent a genus-one singularity from showing up in any intermediate flow between fM 0.t/gt�0 and
fM 1.t/gt�0, in the setting of Theorem 1.1.

One might think that if we were to choose a0 and b0 better, like in Figure 10, right, then the conclusion
of Theorem 1.1 might hold. However, the left and right diagrams in Figure 10 are actually homotopic to
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each other. In conclusion, in a genus-two surface, we cannot force a genus-one singularity to appear just
by topology: the geometry of the initial conditions must play a role.

5.2 Proof of Corollary 1.2

Let Ms WD fM s.t/gt�0 be the level set flow starting from M s.0/ WDM s. We can apply Theorem 1.1 to
the flows Ms with s 2 Œ0; 1�, which shows there exists s0 2 Œ0; 1� such that Ms0 has a singularity .x;T / that
is not (multiplicity one) cylindrical or spherical. In other words, every tangent flow M0 at .x;T / is not the
shrinking cylinder or sphere of multiplicity one. Recall that by [Ilmanen 1995], M0 is a smooth, embedded,
self-shrinking flow f

p
�tm†0gt<0 with genus at most one and multiplicity m. But the multiplicity can

only be 1 by the entropy bound Ent.M s0/ < 2 and the monotonicity formula. Thus, †0 has genus 1.

5.3 Proof of Theorem 1.3

Note that we have Ent.M s/ < 2 for each s as M s is close to T , which has entropy less than 2. To
apply Corollary 1.2, it suffices to show that for the MCF starting from M 0 (resp. M 1), the inward
(resp. outward) torus neck will pinch. But this is given by Proposition 3.16.

5.4 Proof of Theorem 1.4

Let †1 be a genus-one embedded shrinker in R3 with the least entropy. Recall that by [Colding and
Minicozzi 2012], index.†1/� 5. Therefore, in order to prove Theorem 1.4, let us suppose for the sake of
contradiction that †1 is compact with index at least 6.

We first need a family of initial conditions to run MCF. That will be provided by the following lemma.

Lemma 5.3 Let †n by any smooth , embedded , compact , n-dimensional shrinker in RnC1 with index at
least 6. Let � > 0 be sufficiently small. Then there exists a one-parameter family of smooth , compact ,
embedded surfaces fM s.0/gs2Œ0;1� such that :

(1) The family varies continuous in the C1-topology, and each M s.0/ is �-close to C1 to †.

(2) Each M s.0/ has entropy less than that of †.

(3) M 0.0/, M 1.0/ and † are all disjoint , with M 0.0/ inside † and M 1.0/ outside.

Proof Fix an outward unit normal vector field n to †. Since index.†/ � 6, the eigenfunctions of its
Jacobi operator, with respect to the Gaussian metric, that have negative eigenvalues include

� three induced by translation in R3,

� one by scaling,

� the unique one-sided one which has the lowest eigenvalue, denoted by �0, and

� at least one more, denoted by �1,

all of which are orthonormal under the L2-inner product. We will choose �0 > 0.
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Let � > 0, and define M s.0/ to be the following perturbation of †:

M s.0/ WD†C �.� cos.s�/�0C sin.s�/�1/n:

Thus, if � > 0 is sufficiently small, clearly the family fM s.0/gs2Œ0;1� is smooth. Item (3) holds because
�0 > 0. Finally, (2) holds because �0 and �1 are not induced by translation or scaling; see [Colding and
Minicozzi 2012, Theorem 0.15].

Applying the above lemma to †1, we obtain a one-parameter family fM s.0/gs2Œ0;1� of tori. Then

Ent.M s.0// < Ent.†1/� Ent.T / < 2:

Thus, applying Corollary 1.2, and by the monotonicity formula, we obtain another embedded genus-one
shrinker with entropy less than †1, which contradicts the definition of †1.

5.5 Proof of Theorem 1.5

Since T is rotationally symmetric, by [Liu 2016], it has index at least 7. Again, we need a family of MCF.
We will apply [Choi and Mantoulidis 2022, Theorem 1.6]. Namely, since T is a minimal surface with
index at least 6 under the Gaussian metric, it has, as we saw in the proof of Lemma 5.3, two orthonormal
eigenfunctions �0; �1 to the Jacobi operator that

� have negative eigenvalues, and

� are both orthogonal to the other 4 eigenfunctions induced by translation and scaling.

Now, pick an � > 0. Applying [Choi and Mantoulidis 2022, Theorem 1.6] to the two-dimensional function
space spanned by �0 and �1, we obtain a one-parameter family of smooth ancient rescaled MCF (ie MCF
under the Gaussian metric) zMs D f zM s.�/g��0 with s 2 Œ0; 1�, such that:

� For each s, zM s.t/! T in C1 as t !�1.

� zM 0.0/ lies inside T , while zM 1.0/ lies outside.

� f zM s.0/gs2Œ0;1� is a smooth family of tori, each �-close to T in C1; see [Choi and Mantoulidis
2022, Corollary 3.4].

If � is small enough, we can apply Theorem 1.3 to the family f zM s.0/gs2Œ0;1� to obtain an s0 2 Œ0; 1� such
that the level set flow fM.t/gt�0 with initial condition M.0/D zM s.0/ would develop a singularity at
which every tangent flow is given by a multiplicity-one, embedded, genus-one self-shrinker.

Finally, we define an ancient smooth MCF f yM .t/gt��1 by rescaling the rescaled MCF f zM s0.�/g��0:

yM .t/D
p
�t zM .�log.�t// for t � �1:

Note that yM .�1/D zM .0/DM.0/. Hence, combining the two flows f yM .t/gt��1 and fM.t/gt�0, we
obtain an ancient MCF satisfying Theorem 1.5.
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5.6 Proof of Corollary 1.7

Let † be an embedded shrinker with the fourth least entropy in R3, whose existence was established
in Section 1 already. Suppose for the sake of contradiction that † is rotationally symmetric. Then by
Kleene and Møller [2014], † is closed with genus one. Moreover, † has entropy less than 2 since the
shrinking doughnut T in [Drugan and Nguyen 2018] does, and by [Liu 2016], † has index at least 7.
Therefore, Theorem 1.5 still holds with T replaced by †: the exact same proof will work. As a result,
we obtain a genus-one shrinker with entropy strictly lower than †. However, the self-shrinkers with the
three lowest entropy are the plane, the sphere, and the cylinder [Colding et al. 2013; Bernstein and Wang
2017]; contradiction arises.
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