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Genus-one singularities in mean curvature flow

ADRIAN CHUN-PONG CHU
A0 SUN

We show that for certain one-parameter families of initial conditions in R3, when we run mean curvature
flow, a genus-one singularity must appear in one of the flows. Moreover, such a singularity is robust under
perturbation of the family of initial conditions. This contrasts sharply with the case of just a single flow.
As an application, we construct an embedded, genus-one self-shrinker with entropy lower than a shrinking
doughnut.
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1 Introduction

Mean curvature flow (MCF) is the most rapid process to decrease the area of a surface. With an initial
motivation from applied science, this geometric evolution equation has gained much interest recently due
to its potential for studying the geometry and topology of surfaces embedded in three-manifolds. As a
nonlinear geometric heat flow, MCF may have singularities, which may lead to changes in the geometry
and topology of the surfaces.

The blow-up method, pioneered by Huisken [1990], Ilmanen [1995] and White [1997], shows that the
singularities are modeled by a special class of surfaces called self-shrinkers. They satisfy the equation
H+ 3t /2 = 0. Determining the possible singularity models that can arise in an arbitrary MCF is
a challenging problem. With the convexity assumption, Huisken [1984] proved that the singularities
must be modeled by spheres. With the mean convexity assumption, White [1997; 2000; 2003] proved
that the singularities must be modeled by spheres and cylinders. However, in the absence of curvature
assumptions, the question of which types of singularities must arise in MCF remains widely open. In
this paper, we find a condition that guarantees the appearance of a singularity modeled by a genus-one
self-shrinker. To the best of our knowledge, this is the first result that produces a singularity that appears
in a non-self-shrinking flow and is modeled by a self-shrinker of nonzero genus.

Let us first explain the heuristics, which involves an interpolation argument. In Figure 1, we have a
one-parameter family { M *}s¢[o,1] of tori in the top row. Suppose that the initial torus M 0 has a thin
“inward neck”, which will eventually pinch under the MCF. On the other hand, the final torus M ! has a
thin “outward neck” in the middle, which will also pinch under MCF. Then, there should exist a critical
value s¢ € [0, 1] such that for the torus M *9, both the inward and outward necks pinch under MCF, giving
rise to a genus-one singularity.
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The following is our main theorem. We will provide a precise definition of “inward (or outward) torus
neck will pinch” later in Definition 1.8.

Theorem 1.1 Let {M*}¢[o,1] be a smooth family of tori in R3 such that for the MCF starting from M °©
(resp. M'Y), the inward (resp. outward) torus neck will pinch. Then there exists so € [0, 1] such that the
MCEF starting from M *° would develop a singularity that is not multiplicity-one cylindrical or multiplicity-
one spherical.

Note that, in precise terms, by MCF we actually refer to the level set flow; see Section 2. In fact, before the
flow encounters a genus-one singularity, it is possible that it passed through some cylindrical singularities or
spherical singularities. We also remark that Brendle [2016] proved that the only genus-zero self-shrinkers
are the spheres and the cylinders. In contrast, there are many higher-genus self-shrinkers, as constructed
in [Angenent 1992; Nguyen 2014; Kapouleas et al. 2018; Mgller 2011; Sun et al. 2024], among others.

Now, immediately, we can exclude the possibility of multiplicity if the entropy of each torus M* is less
than 2. The entropy of a surface X was defined by Colding and Minicozzi [2012]:

Ent(X) := sup (471[0)_1/ e_\X—x0\2/4t0.
b))

x0€R3,1p>0
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Corollary 1.2 In the setting of Theorem 1.1, if each initial torus M® has entropy less than 2, then
at the singularity concerned, every tangent flow is given by a multiplicity-one, embedded, genus-one
self-shrinker.

Recall that the tangent flow represents a specific blow-up limit of a MCF at a singularity, as discussed in
Section 2.2. By employing Huisken’s monotonicity formula [1990], Ilmanen [1995] and White [1997]
proved that the tangent flow must be a self-shrinker with multiplicity.

Let us now explicitly provide a family of tori that satisfies the assumption of Corollary 1.2. Consider the
rotationally symmetric, compact, genus-one self-shrinker in R3 constructed by Drugan and Nguyen [2018],
which we will denote by T'. It is worth noting that both T and the Angenent torus [1992] are referred to as
shrinking doughnuts, and they may be the same. Drugan and Nguyen [2018] showed that T has entropy
strictly less than 2, while Berchenko-Kogan [2021] provided numerical evidence that the Angenent torus
has an entropy of approximately 1.85.

Theorem 1.3 Let {M*}¢[o,1] be a smooth family of tori in R3 that are sufficiently close in C® to the
shrinking doughnut T, with M © strictly inside T while M ! is strictly outside. Then there exists so € [0, 1]
such that the MCF starting from M *° would develop a singularity at which every tangent flow is given by
a multiplicity-one, embedded, genus-one self-shrinker.

The idea of Theorem 1.3 can be traced back to the work of Lin and the second author in [Lin and Sun
2022]. In earlier work, Colding, Ilmanen, Minicozzi and White [Colding et al. 2013] observed that
one can perturb a closed embedded self-shrinker in R* such that the MCF has only neck and spherical
singularities. Lin and the second author observed a bifurcation phenomenon: Inward (resp. outward)
perturbations cause the MCF pinch from inside (resp. outside). After we completed this manuscript, we
were notified by the referee that the idea of Theorem 1.1 has been discussed and explained orally by
Edelen and White.

It is also interesting to compare our results with the recent developments in generic MCF [Colding and
Minicozzi 2012; Chodosh et al. 2024a; Chodosh et al. 2024b; Sun and Xue 2021a; Sun and Xue 2021b;
Chodosh et al. 2023; Sun 2023]. One can perturb a single MCF to avoid a singularity that is not spherical
or cylindrical. In contrast, our results imply that for a certain one-parameter family of MCFs, a singularity
that is modeled by a genus-one shrinker remains robust under perturbations.

It is natural to ask whether Theorem 1.1 extends to surfaces with genus two or above. Actually, it
would not: see a counterexample in Remark 5.2. Nevertheless, a similar theory might be established for a
multiparameter family of higher-genus surfaces; see Question 1.10.

Let us now present several applications of the above theorems.

Theorem 1.4 An embedded, genus-one self-shrinker in R? of the least entropy either is noncompact or
has index 5.
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Note that the existence of an entropy minimizer among all embedded, genus-g self-shrinkers in R3, with
a fixed g, was proved by Sun and Wang [2020].

Theorem 1.5 There exists an ancient MCF through cylindrical and spherical singularities {M (t)};<o
in R? such that

e ast — —oo, (1/+/—t)M(t) — T smoothly, and

e ast — 0, M(¢) hits a singularity at which every tangent flow is given by a multiplicity-one,
embedded, genus-one self-shrinker of lower entropy than T .

In fact, Theorem 1.5 remains valid even with T replaced by any other closed, embedded, rotationally
symmetric, genus-one shrinker (if they indeed exist), and the same proof will hold.

Recalling that the rotationally symmetric shrinker T must have index of at least 7, as shown by Liu [2016],
we can deduce the following corollary from Theorems 1.4 and 1.5.

Corollary 1.6 There exists an embedded, genus-one self-shrinker in R* with entropy lower than T .

Finally, the three self-shrinkers in R? with the lowest entropy are the plane, the sphere and the cylinder
[Colding et al. 2013; Bernstein and Wang 2017]. Notably, all three of them are rotationally symmetric.
Kleene and Mgller [2014] proved that all other rotationally symmetric smooth embedded self-shrinkers
are closed with genus 1.

Now, the space of smooth embedded self-shrinkers in R* with entropy less than some constant § < 2 is
known to be compact in the C;30 topology; see [Lee 2023]. Together with the rigidity of the cylinder as
a self-shrinker by [Colding et al. 2015], there exists a smooth embedded self-shrinker that minimizes
entropy among all smooth embedded self-shrinkers with entropy larger than that of the cylinder.

Corollary 1.7 A smooth embedded self-shrinker in R* with the fourth lowest entropy is not rotationally
symmetric.

1.1 Main ideas: change in homology under MCF

The major challenge of this paper is to introduce some new concepts to rigorously state and prove the
interpolation argument we outlined in Section 1 and Figure 1. In particular, it is crucial to describe the
topological change of the surfaces more precisely. Let il = { M (t)};>¢ be a MCF in R?, where the initial
condition M (0) is a closed, smooth, embedded surface. Since we would allow M (¢) to have singularities
and thus change its topology, [l is, more precisely, a level set flow. In this paper, we often use the phrases
MCF and level set flow interchangeably.

It is known that the topology of M (¢) simplifies over time. White [1995] focused on describing the
complement R3\ M (¢) (instead of M (¢) itself), and how it changes over time. For example, he showed that
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rank(H; (R3\ M(¢))) is nonincreasing in ¢, where H; denotes the first homology group in Z-coefficients.
Therefore, heuristically, the topology can only be destroyed but not created during the evolution of the
surface.

In this paper, we will further describe this phenomenon by keeping track of which elements of the initial
homology group Hy(R3\ M (0)) are destroyed, and how they are destroyed. To illustrate, let us use the
flow depicted in Figure 2 as an example.

1.1.1 Heuristic observation Let us begin by providing some heuristic observations regarding Figure 2.
We will elaborate on them more precisely shortly. We fix four elements of H;(R3\ M (0)) at time ¢t = 0,
as shown in the figure. Note that ¢y and a; are in the bounded region inside the genus two surface M (0),
whereas by and by are in the region outside M(0).

(1) Attime ¢t = T1, ag is “broken” by the cylindrical singularity x of the flow. As a result, for later
time ¢ > 77, ag no longer exists. Apparently, it “terminates” at time 77.

(2) On the other hand, a;, by and b; can all survive through time 7. For example, for by, we can
clearly have a continuous family of loops, {B;}:>0, where [8¢] = by and each B; is a loop outside
the surface M(¢). In this sense, by will survive for all time, although it becomes trivial after
time 77.

(3) As for by, although it survives through ¢ = T7, it will terminate at ¢ = 7, when it is broken by the
cylindrical singularity y.

Let us now provide precise descriptions of these observations.

1.1.2 Three new concepts To our knowledge, these concepts are new, but they seem natural in the
context of geometric flows. We believe that these concepts may hold independent interest as well.
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time ¢

Figure 3

To set up, for any two times ¢; < f,, let us consider the complement of the spacetime track of the flow
within the time interval [¢q, 7,]:

W)= ) ®R\M@©0)x{} CR*x[1y.5]

t€lty,12]
In order to discuss the “termination” of an element cq € H; (R3\ M (0)) under the flow, we first need to
relate elements of Hy(R3\ M (0)) and elements of H; (R3\ M (t)) at some later time ¢ > 0.
Homology descent (Definition 3.1) Given two elements cq € H; (R?\ M (0)) and ¢ € H;(R3\ M(z))
with ¢ > 0, we say that ¢ descends from ¢y, and write
co > C,
if the following holds: For every representative yy € ¢y and y € ¢, if we view them as subsets
vo C (RP\M(0) x {0}, y C (R>\ M(1)x {1},
then they bound some singular 2-chain I' C W0, ¢], ie yo —y = dI". (See Figure 3.)

As we will prove, the above notion satisfies some desirable properties. For example, given an element
co € Hi(R3\ M(0)), the element ¢ € H; (R3\ M(¢)) described above, if exists, turns out to be unique.
Consequently, we denote this unique element as cq(?).

This enables us to further define:

Homology termination (Definition 3.8) Let co € H;(R?\ M(0)). If
t(co) 1= sup{t > 0: co > ¢ for some ¢ € H; (R®\ M (1))}
is finite, then we say that co terminates at time t(cg).

For instance, in Figure 2, we observe that a¢ terminates at time 77, and b; terminates at time 75.
However, by never terminates, despite the fact that by(¢) becomes trivial for ¢ > T;. Similarly, a; also
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Figure 4: Left: the picture at time 7, for all # < T sufficiently close to 7. Right: first homology
generators ao and by.

never terminates, even though a; (¢) becomes trivial for # > T5. Note that @; would not terminate at time
T3: for any t > T3, any loop in R* \ M(¢) = R?® would bound a disc in R3, so it follows easily that
for any loop y € a1 and loop ¥ C R3 x {t}, yo — y would bound some two-dimensional chain in the
complement of the spacetime track.

Finally, we can describe what “a breaks at a cylindrical singularity x”’ means.
Homology breakage (Definition 3.12) Let ¢y € H{(R*\ M(0)), T > 0, and x € M(T). Suppose the
following holds:

o Foreacht €[0,T), the element co(t) € Hy(R3\ M(¢)) (such that c¢o > co(t)) exists.

e For every neighborhood U C R? of x, for each ¢t < T sufficiently close to T, every element of
co(?) intersects U.

Then we say that ¢y breaks at (x, T'). (See Figure 4.)
For example, in Figure 2, aq breaks at (x, T} ), while b; breaks at (y, T3).

As we will see, these three new concepts are quite useful and satisfy several nice properties. Here are a
few examples:
¢ A homology class cannot break at a regular point, nor at a spherical singularity of the flow
(Propositions 3.14 and 3.15).

o If the initial condition M (0) is a closed surface of nonzero genus, then some initial homology class
must terminate at finite time (Remark 4.10).

e Suppose { M (t)};>0 is a MCF with only spherical and cylindrical singularities. If a homology class
terminates at some time 7', then it must break at (x, 7") for some cylindrical singularity x € M (T)
(Theorem 4.5).

These properties are all crucial in proving the main theorems.

Finally, let us provide a precise definition of “inward (or outward) torus neck will pinch” in Theorem 1.1.

Definition 1.8 Given a torus M in R3, let aq (resp. bg) be a generator of the first homology group of
the interior (resp. exterior) region of M, which is isomorphic to Z; see Figure 4. We say that the inward
(resp. ourward) torus neck of M will pinch if ag (resp. bg) will terminate under MCF.

Clearly, ao (and bg) is unique up to a sign, and the above notion is independent of which sign we choose.
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1.2 Structure of cylindrical singularities

Once we establish the topological concepts to keep track of the homology classes under the MCF, another
challenge arises: we need to understand what happens to these homology classes as the MCF encounters
the cylindrical singularities.

Intuitively, a cylindrical singularity is just like a neck, and as we approach the singular time, the neck
pinches as in Figure 1. However, the actual situation can be much more complicated. For example,
consider the MCF of the boundary of a tubular neighborhood of a rotationally symmetric S! in R3. It
will shrink to a singular set that is a rotationally symmetric S, where each singular point is cylindrical,
but it does not look like a neck pinching.

First, one has the partial regularity of the singular set of cylindrical singularities, studied by White [1997]
and Colding and Minicozzi [2015; 2016]. This allows us to control the singular set. We can establish the
compactness of the singular set of cylindrical singularities that are inward (or outward), and know that
they only appear for a measure-zero set of time.

Another important theory is the mean convex neighborhood theory of cylindrical singularities by Choi,
Haslhofer and Hershkovits [Choi et al. 2022a], and a generalized version by Choi, Haslhofer, Hershkovits
and White [Choi et al. 2022b]. In these works, they classified the possible limit flows at a cylindrical
singularity. As a consequence, they derived a canonical neighborhood theorem at a cylindrical singularity,
which describes the local behavior of the MCF.

We will study the local behavior of MCF at cylindrical singularities based on these two theories. Nev-
ertheless, the particular local behavior we need to understand does not directly come from [Choi et al.
2022a; Choi et al. 2022b]. We present these relevant results in Section 2.3.

1.3 Outline of proofs

Proof of Theorem 1.1 We will prove them by contradiction. For each s € [0, 1], let 1® = {M5(¢)};>0
be the MCF (more precisely, a level set flow) with M ¥(0) = M ¥ as its initial condition. Let ag (resp. bg)
be a generator of the first homology group of the inside (resp. outside) region of each torus M* (recall
Definition 1.8). Assuming that Theorem 1.1 were false, .M* would be a MCF through cylindrical
and spherical singularities for each s. This flow is unique and well-defined by Choi, Haslhofer and
Hershkovits [Choi et al. 2022a]. Next, we show that for each s, either aqg or by will terminate, but not both.
This claim relies on the fact, mentioned above, that if a homology class will terminate, it must break at a
neck singularity. This crucial fact is established based on the mean convex neighborhood theorem and the
canonical neighborhood theorem by Choi, Haslhofer, Hershkovits and White [Choi et al. 2022a; Choi
et al. 2022b].

Thus, we can partition [0, 1] into a disjoint union ALl B, where A is the set of s for which a( will terminate,
and B is the set of s for which by will terminate. Furthermore, we will show that 4 and B are both
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closed sets. Recall that we are given 0 € 4 and 1 € B. Since [0, 1] is a connected interval, this leads to a
contradiction.

Proof of Theorem 1.3 We can apply Theorem 1.1 to prove Theorem 1.3, provided that we can show the
inward torus neck will pinch (ie ag will terminate) for the starting flow (s = 0), and the outward torus
neck will pinch (ie by will terminate) for the ending flow (s = 1). To prove, for instance, that ag will
terminate for the starting flow, we recall that M °(0) lies strictly inside the shrinker X. Then we will run
MCEF to these two surfaces and use the avoidance principle, which states that the distance between the

two surfaces will increase, to conclude that ay must terminate.

Proof of Theorem 1.4 Let X be an embedded, genus-one shrinker with the least entropy. Suppose
for the sake of contradiction that it is compact with index at least 6. Disregarding the four (orthogonal)
deformations induced by translation and scaling, there are still two other deformations that decrease
the entropy, one of which is the one-sided deformation given by the first eigenfunction of the Jacobi
operator. Thus, we can construct a one-parameter family of tori with entropy less than X, such that the
starting torus is inside X, and the ending torus is outside . Then, as in the proof of Theorem 1.3, we
apply Theorem 1.1 to obtain another genus-one shrinker with less entropy than X. This contradicts the
definition of X.

Proof of Theorem 1.5 According to Liu [2016], the shrinking doughnut T has an index of at least 7.
Consequently, based on the result of Choi and Mantoulidis [2022], there exists a one-parameter family of
ancient rescaled MCF originating from T that decreases the entropy. As before, we can apply Theorem 1.1
to immediately obtain the desired genus-one, self-shrinking tangent flow with lower entropy.

1.4 Open questions
We propose several open problems. The first one is motivated by generic MCF and min-max theory.

Conjecture 1.9 There exists an embedded, genus-one, index-5 self-shrinker in R? that is the “second
most generic” one.

We say a self-shrinker X is the “second most generic”, after the generic ones (the cylinder and the sphere),
in the following sense. Suppose we have a one-parameter family of embedded surfaces { M *}s¢[o,1] in R3.
Then, we can perturb this family such that when we run MCF for every M ®, every singularity is either
cylindrical, spherical, or modeled by X.

Note that Theorem 1.4 and its proof can be seen as evidence of a very “local” version of this conjecture:
they say that any closed, embedded, genus-one self-shrinker with an index of at least 6 is not the second
most generic.

Now, we note that Theorem 1.1 does not hold for initial conditions with genus greater than one; see
Remark 5.2.
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Question 1.10 Can Theorem 1.1 be generalized to the higher-genus case, possibly by considering
higher-parameter families of initial conditions?

Finally, notice that many concepts that we introduce in this paper heavily rely on the extrinsic structure
of mean curvature flow.

Question 1.11 Can the concepts of homology descent, homology termination, and homology breakage
be adapted to the setting of Ricci flow?

1.5 Organization

In Section 2, we will introduce the preliminary materials, including a refined canonical neighborhood
theorem. In Section 3, we will define the concepts of homology descent, homology termination and
homology breakage, and prove some relevant basic propositions. In Section 4, we focus on the case of
MCEF through cylindrical and spherical singularities, with a torus as the initial condition. In Section 5, we
prove the main theorems.

Acknowledgements We would like to thank Professor André Neves for all the fruitful discussions and
his constant support. We are grateful to Zhihan Wang for the valuable conversations. Chu would like to
thank Chi Cheuk Tsang for helpful discussions. We are also grateful to the referees for many helpful
comments and suggestions, especially the work by Edelen and White.

2 Preliminaries

In Section 2 we will set up the language and provide the necessary background to define MCF through
cylindrical and spherical singularities.

The classical mean curvature flow is a family of hypersurfaces {M(¢)}¢[o,1) in R”*1 satisfying the
equation

(2-1) 0 x = ﬁ(x),

where x is the position vector and H is the mean curvature vector. When the hypersurface is not C2, we
cannot define the mean curvature flow using this PDE, and we need to use some weak notions to define
the flow.

2.1 Weak solutions of MCF

Throughout this paper, we will focus on two different types of weak solution of MCF. One is a set-theoretic
weak solution defined by the level set flow, and another one is a geometric measure-theoretic weak solution
called Brakke flow. Readers interested in detailed discussions of level set flows can refer to [Evans and
Spruck 1991; Ilmanen 1992], while those interested in Brakke flow can refer to [Brakke 1978; Ilmanen
1994].
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The level set flow equation is a degenerate parabolic equation

D?u(Du, Du))

(2-2) 0ru = Au— ( Dul?

Suppose M (0) is a closed hypersurface in R”?T1. Then if u(-,?) solves (2-2) with initial condition
M(0) = {x e R" 1 : 4(-,0) = 0}, then M(¢) := {x € R"*! : 4(-,0) = 0} can be viewed as a weak
solution to MCF. In particular, when M (¢) is smooth, this weak solution coincides with the classical
solution of MCF.

The level set flow was introduced by Osher and Sethian [1988]. Chen, Giga and Goto [Chen et al. 1991]
and Evans and Spruck [1991] introduced the viscosity solutions to equation (2-2), and these solutions are
Lipschitz. Throughout this paper, when we refer to a level set function or a solution to the level set flow
equation, we mean a viscosity solution to equation (2-2).

The set-theoretic solution of a MCF will be called the level set flow or biggest flow. These notions are used
by Ilmanen [1992] and White [1995; 2000; 2003]. The term “biggest flow” is used to avoid ambiguity
when dealing with weak solutions for noncompact flows. Such a weak solution may have a nonempty

interior. In this case, we say the level set flow fattens.

Brakke flow is defined using geometric measure theory. Let X be a complete manifold without boundary.
The Brakke flow is a family of Radon measures {/;};>0, such that for any test function ¢ € C Cz (X) with
¢ =0,

lim sup
s—>t

(@) — e () _
S

D < [t 4 vy du,

where H is the mean curvature vector of j; whenever p; is rectifiable and has L2-mean curvature in the
varifold sense. Otherwise, the right-hand side is defined to be —oo.

In general, the Brakke flow starting from given initial data is not unique. We will be interested in unit
regular cyclic integral Brakke flows. For detailed discussions on these notions, we refer the readers to
[White 2009]. The existence of such a flow starting from a smooth surface is guaranteed by Ilmanen’s
elliptic regularization; see [Ilmanen 1994]. These flows have a well-established compactness theory.

2.2 Setting and notation

Let M (0) be a closed smooth n-dimensional hypersurface in R”*! that bounds a compact set K;,(0).
Let Ko (0) = R?+1\ K;,(0). Now, denote by

M)} =0, {Kin(®)}r=0 and {Kou(?)}r>o0

the level set flow (ie the biggest flow) with initial condition M (0), Kj,(0) and Koy (0), respectively. Then
we define their spacetime tracks

M={(x,t):xe M(t),t >0}, Hin={(x,1):x € Kin(t),t >0}, Houw=1{(x,2):x € Kou(t),7>0}.
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We then define the inner flow of M (0),
Min (1) = {x : (x,1) € 0%in},
and the outer flow of M (0),
Mo () = {x : (x,1) € 0Hout}-
Lemma 2.1 Letu:R"! x[0,00) — R be a level set function of M, with u(-,0) < 0 on Ki,(0). Then
RN\ Kin() = {x :u(x, 1) >0}, R"TI\ Kou(r) = {x 1 u(x,t) <0}

Proof For the first claim, we define ®: R — R by ®(x) = x if x > 0 and ®(x) = 0 otherwise. By the
relabeling lemma [Ilmanen 1992, Lemma 3.2], v := ® o u also satisfies the level set equation. Noting that
v(-,0) = 0 precisely on Kj,(0), which is compact, we know by the uniqueness of level set flow that v is
a level set function of ¥;,. Hence,

R*TIN Kin(£) = {x 1 u(x,1) > 0}.
The second claim is similar. We define ¥: R — R by W(x) = x if x < 0 and ¥(x) = 0 otherwise. Then
v = Wou satisfies the level set equation by the relabeling lemma, and {x : u(x,#) > 0} = {x : v(x, ) =0},

which is noncompact. Nevertheless, by Ilmanen [1992], because any level sets other than K, are
compact, {x : v(x,t) = 0} is the biggest flow, which is unique. Then the second claim will follow. 0O

Finally, we write

I/Vin(t) = Rn+1 \Kout(t), Wout(t) = R’H_l \Kin(l)a W(t) = I/Vin(l‘) U Wout(l)~
In fact, we will further define the spacetime track

t€to,t]

and we can similarly define Wy [to, 1] and W {ty, t1]. The reason we care about these sets is that their
topological changes are described by White [1995], which will be crucial for us later. We remark that,
when we need to specify the flow .Il, we will add a superscript “* to the symbols, eg we will write Wiﬁ/t(t)
in place of Wi,(z).
Let (x, T') be a singularity of J, and A; — co. Then any subsequential limit, in the sense of Brakke flow
(see [Ilmanen 1994, Section 7]), of the rescaled flows

MO+ T)— x)}_k];T<t<0

is called a tangent flow at (x, T'). The tangent flow is unique if it is the shrinking cylinder or has only
conical ends, by Colding and Minicozzi [2015] and Chodosh and Schulze [2021], respectively. Moreover,
the convergence is in C2° by Brakke’s regularity theorem; see [White 2005].

Now, following [Choi et al. 2022b], we call (x, T') an inward neck singularity of J if, as A — oo, the

rescaled flows
MKin(A 2+ T) = X)}_j27<r<0
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converge locally smoothly with multiplicity one to the solid shrinking cylinder

{B"(v/—2(n—1)t) xR};<o

up to rotation and translation. Similarly, we can define an outward neck singularity. If, instead, those
rescaled flows converge with multiplicity one to the solid shrinking ball

{B"T1(V=2n1)}, <o

up to translation, then we call (x, T') an inward spherical singularity. We can again similarly define an

outward spherical singularity.

2.3 MCEF through cylindrical and spherical singularities

If every singularity of [l is a neck or a spherical singularity, then we call M a MCF through cylindrical
and spherical singularities. In this case, building on Hershkovits and White [2020], Choi, Haslhofer,
Hershkovits and White [Choi et al. 2022b, Theorem 1.19] showed that M (¢), Min(¢) and My (¢) are all
the same, ie fattening does not occur.

Neck singularities are well understood after the work of many researchers; see, among others, Huisken and
Sinestrari [1999a; 1999b], White [2000; 2003], Sheng and Wang [2009]; Wang [2011]; Andrews [2012];
Brendle [2015]; Colding and Minicozzi [2015]; Haslhofer and Kleiner [2017]; Angenent, Daskalopoulos
and Sesum [2019; 2020]; Choi, Haslhofer and Hershkovits [Choi et al. 2022a] and Choi, Haslhofer,
Hershkovits and White [Choi et al. 2022b]. In Theorem 2.4, we will state the canonical neighborhood
theorem of [Choi et al. 2022b]. Using that, we obtain a more detailed topological description of neck
singularities in Theorem 2.5.

Definition 2.2 Let X = (x, T') be a regular point in a level-set flow M. Let A := |H (x)|. Suppose there
exists an ancient MCF {X(¢)} that is, up to spacetime translation and parabolic rescaling, one of

¢ the shrinking sphere,
e the shrinking cylinder with axis £,
e the translating bowl with axis £, or

¢ the ancient oval with axis £,
such that for each ¢ € (—1/€2,0] and inside By/c(0) C R,
AMGA 2 +T)—x) and X(1)

are e-close in C /€], Then we call

1
T — m, T | x Bl/(ke)(x)

an e-canonical neighborhood of X with axis £.
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‘We will also have a weaker definition, for situations when we focus on a time slice:

Definition 2.3 Let x be a regular point in a subset M. Let A := |H (x)|. Suppose there exists a
hypersurface X that is, up to translation and rescaling, a time slice of one of

¢ the shrinking sphere,

e the shrinking cylinder with axis £,

e the translating bowl with axis £, or

¢ the ancient oval with axis £,

such that inside Bj/¢(0) C Rt A(M —x) and ¥ are e-close in CL1/€]. Then we call Bi/(e)(x) an
€-canonical neighborhood of x with axis {£.

One can compare the above with the notion of e-canonical neighborhoods in three-dimensional Ricci
flow [Morgan and Fong 2010, Lecture 2].

Theorem 2.4 (canonical neighborhood) Let (x, T") be a neck singularity of a MCF through cylindrical
and spherical singularities M, and let £ be the axis of the cylindrical tangent flow at (x, T'). Then for
every € > 0, there exists §, 8§ > 0 such that every regular point of M in Bys(x) x (T — 8, T + 8) has an
e-canonical neighborhood with axis £ in the sense of Definition 2.2.

We used balls of radius 2§ (instead of §); this is solely for the sake of notational convenience, so that it
can be directly quoted in Theorem 2.5.

Proof This is from [Choi et al. 2022b, Corollary 1.18]. Note that all limit flows at (x, 7') have the same
axis [Choi et al. 2022b, page 163]. O

2.4 Consequence of almost all time regularity

Recall that throughout this paper, a cylindrical singularity has tangent flow given by the cylinder S”~! xR.
By White’s stratification [1997; 2003] of singular set of MCF, at almost every time, the time-slice of a
MCEF through cylindrical and spherical singularities is smooth. Based on this, in items (3)—(6) of the
following theorem, we will obtain a topologically more refined picture of neck-pinches. The shapes of
the surfaces described in items (3)—(6) are illustrated in Figure 5.

Theorem 2.5 There exists a universal constant Ry = Ry (n) with the following significance. Let (x, T)
be an inward neck singularity of a MCF through cylindrical and spherical singularities M in R"T1, and let
£ be the axis of the cylindrical tangent How at (x, T'). For every §g > 0 and every R > Ry, there exists
§ € (0,80) and § > 0 with the following properties.
(1) Let B = Bg(x). Then the set M(T —8) N B
e s, up to scaling and translation, (1/R)-close in C® to the cylinder (= S"~! x R) in Bg(0)
with axis ¢ and radius 1;

e as a topological cylinder has Ki,(T —8) N B on its inside;
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0B B

e 2 ID> T <P

Figure 5

e satisfies § — 0 as R — o00.

(2) (mean convex neighborhood) Forevery T — §< hH<th<T+ 5,
Kin(t2) N B C Kin(f1) \ M (7).
Moreover, there exists some countable dense set J C [T -8, T +8_] with T —8 € J such that for everyt € J:
(3) M(¢) is smooth, and intersects dB transversely.

(4) Each connected component of Ki,(t) N dB is a convex n-ball in 0B.

(5) Denote the two connected components of Kiy(T —8) N dB by Dy and D,. Then M(t) N D; has
at most one connected component fori =1, 2.

(6) Let K be a connected component of Ki,(t) N B. Then K satisfies one of the following:
e 0K is a connected component of M (¢t) N B that is a sphere.
e 0K consists of a connected component of M (t) N B that is an n-ball and another ball on 8.

0K consists of a connected component of M (t) N B that is a cylinder = S"~1 x (0, 1) and two
balls on 0B.

The case for outward neck singularities is analogous.

Proof We will just prove the case of inward neck singularity.

To obtain (1) and (2) Let us first arbitrarily pick some €, R > 0, which we will further specify later. Let
8,8 > 0 be obtained from applying the canonical neighborhood theorem (Theorem 2.4) to (x, T) and €.
We can decrease § so that it lies in the range (0, §o).

By possibly further decreasing 8, §, we can guarantee (2) by the mean convex neighborhood theorem of
Choi, Haslhofer, Hershkovits and White [Choi et al. 2022b, Theorem 1.17]. In fact, further decreasing
8,8, we can, by the definition of neck singularity, assume that M (7T — 8_) N Bys(x)

e is, up to scaling and translation, (1/R)-close in C® to the cylinder (= S”~! x R) in B, g(0) with
axis £ and radius 1, and

¢ as a topological cylinder has K, (7T — 8) N Bys(x) on its inside.
In particular, (1) is fulfilled.
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BZR() (X)

BRO (X)

= M(1)

cylinder C [

(b

Figure 6

To define J and obtain (3) Note that using [Colding and Minicozzi 2016, Corollary 0.6], for some
set I1 C [T — 5, T + g] of full measure, M (t) is smooth for all ¢ € I1. Then (3) just follows from a
standard transversality argument. Namely, for each 7 € I, via the transversality theorem, B, (x) intersects
M (t) transversely for a.e. r € (6/2,§). Hence, for some countable dense subset J C I; and some set
I, C (§/2,6) of full measure, for all (¢,r) € J x I, B,(x) intersects M (t) transversely. Hence, by
slightly decreasing &, (3) can be fulfilled.

To obtain (4) Let us first state a lemma, which gives us the constant Ry we need.

Lemma 2.6 There exist constants Ry > 2, and €y, €; > 0, all depending only on n, with the following
significance.

 Consider some ball By g,(x), and fix a diameter line £. Let € C B, g, (x) be the solid cylinder with
radius 2 and axis {.

e Let x’ be a regular point of some time-slice M (t) of a level set flow in R"*1, and x’ has an
€o-canonical neighborhood with axis £.

e Assume x’ € Bp,(x), M(t) N Byg,(x) C 6.

e Let S be a smooth n-disc properly embedded in 6, with dS lying on and transversely intersecting
the cylindrical part of 9%, and with x’ € S, such that

e S isej-close in C* to some planar n-disc perpendicular to £. (See Figure 6.)

o If M(¢) intersects S transversely at x’, then the connected component D of Ki, (1) NS that contains
x' is a convex n-disc in S, and M (t) N D = dD with the intersection being transverse.

e If M(t) does not intersect S transversely at x’, then D is just the point x’.
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Proof By an inspection of the geometry of the sphere, cylinder, bowl, and ancient oval, for all sufficiently
large R and small €, if M (t) N By, (x) C € then

M (1) N By g, (x) N (€o-canonical neighborhood of x”)
has curvature | 4| > % Thus, if the smooth n-disc S is sufficiently planar, the desired claim follows

easily. a

Now we begin proving (4). Let us assume the R, e we chose satisfy R > Ry and € < ¢, with Ry, €g
from the above lemma. By how we chose R in the proof of (1) above, we can rescale M (T — g) by some
factor A such that

MM (T —8) —x) N B2 (0)

lies in the solid cylinder C C B, g(0) with axis £ and radius 2. Thus, by the mean convex neighborhood
property (2), forall t € (T — 6, T +6),

AM()—x)N Byg(0) C C.

Now, remember that we should focus on those t € J C (T — g, T+ g). By Theorem 2.4 and € < €y,
M (t) has an €j-canonical neighborhood with £, and so does A (M () —x) since the property is independent
of scaling and translation. Let S be a connected component of dBg(0) N C. By increasing R, we can
make S arbitrarily close to being planar. Hence, we can apply Lemma 2.6. Then (4) follows immediately.

To obtain (5) We will just do the case for D;. Let
Ty :=sup{t € J : M(¢) N Dq has only one connected component}.

Note that 7y > T -5 by (1)and T —5eJ. To prove that M (1) N D has at most one connected component
for each ¢ € J, it suffices to prove that 77 = T + 8. Suppose otherwise, ie 77 < T + § so that there exists

a sequence in J, t1,1,... | T}, such that M (z;) N D; contains at least two components.
Now, let
Ki= () Kn@®NDy. Ky=Kn(T)NDy. Ks;=|JKin)ND.
T—8<t<T i

Note that K1 D K7 D K3 by the mean convex neighborhood property (2).
Proposition 2.7 K, is a convex n-ball in 0B, K; = K,, and K3 is dense in K.

Proof By the mean convex property,

K = ﬂ Kin(1) N Dy.
fEJ,t<T1

Then by (4), K; is a convex n-ball.
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To prove K; = K, it suffices to prove K; C K,. Note that by Lemma 2.1, for every x € K; and
t € (T —§,Ty) we have u(x,t) < 0, where u is a level set function for .. Since u is continuous,
u(x,Ty) <0, implying x € K, by Lemma 2.1.

Finally, to prove K3 is dense in Ky, it suffices to prove K; \ K3 has empty interior (as a subset of dB)
since K is a convex n-ball. We claim that K, \ K3 C M;,(T7). Indeed, if x € K, \ K3, then for every
spacetime neighborhood U of (x, T;) in R*T! x R, for each i, U contains the point

(x,4) € R" xR)\ Hip.
Thus, (x, T1) € 0%y, and so x € M, (7).

As a result,

K1\ K3 = K>\ K3 C Min(T1) N Dy = M(T1) N Dy,
where the last equality is by the nonfattening of Jl [Choi et al. 2022b, Theorem 1.19]. We will prove that
M (T1) N Dy consists entirely of singularities (of (), and then immediately we would know M (T7) N D,
has empty interior using [Colding and Minicozzi 2016, Theorem 0.1], which says that the singular set of
J is contained in finitely many compact embedded Lipschitz submanifolds each of dimension at most
n — 1 together with a set of dimension n — 2.

Suppose for the sake of contradiction that M (77) N Dy contains some regular point p. So around some
neighborhood of p in R*T1, M(T}) is a smooth surface, with K;,(7;) on one side. Thus, we have
p € 0K,, with K, a convex n-ball. Then we repeat the argument in the above proof of (4) to apply
Lemma 2.6 around the point p, and conclude that

e 0K, is a smooth (n—1)-sphere and consists entirely of regular points,
¢ the interior of K, does not intersect M (7T}), and

e M(Ty) intersects D; transversely along dK5.

So, for some short amount of time after 7, M (77) N D; would still have only one connected component
by pseudolocality of (locally) smooth MCF; see [Ilmanen et al. 2019, Theorem 1.5]. This contradicts the
definition of T7. O

Let us continue the proof of (5). Now, for each i, Ki,(#;) N Dy has finitely many connected components
by transversality (3). Let E; be the one with the maximal diameter (measured inside dB) denoted by d;.
Then by the canonical neighborhood property Theorem 2.4, assuming € small, for some geodesic ball
E; C 3B of diameter 3d;, E; N Ki(t) = E;.

Now, note that d; is increasing in i by the mean convex neighborhood property (2). Let d = lim; d;.
There are two cases: (a) d > diam(K;)/2, and (b) d < diam(K;)/2. For case (a), by the definition of #;,
we know for sufficiently large 7, the neighborhood E; would then need to contain a connected component
of Kin(¢;) N Dy other than E;, contradicting the definition of E i. So case (a) is impossible. Case (b) is
also impossible since it, together with the existence of E;, violates Proposition 2.7, which says K3 is
dense in K. This finishes the proof of (5).
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To obtain (6) Choose a connected component K of Kj,(¢) N Bs(x). Let us foliate B,5(x) with planar
n-discs that are perpendicular to the axis £. Then as in the proof of (4), we apply Lemma 2.6 to characterize
the intersection of K with every such planar n-discs. Namely, every such set of intersections consists
of convex n-discs and isolated points. Viewing these sets of intersection as level sets of some function
defined on K, Morse theory then immediately implies (6).

This finishes the proof of Theorem 2.5. |
Finally, we discuss some convergence theorems of MCF through cylindrical and spherical singularities.

Proposition 2.8 Let M} = {M"(t)};>0, withi =1,2,..., and M = {M(t)};>¢ be MCF through neck
and spherical singularities in R"*!. Assume that each M (0) and M (0) are smooth, closed hypersurfaces,
with M*(0) — M (0) in C*°. Then:

(1) Forae.t, M'(t) = M(t) in C*®.
(2) The spacetime tracks M? — A in the Hausdorff sense.

Proof By Ilmanen’s elliptic regularization (see [[lmanen 1994; White 2009]), for any closed smooth
hypersurface M (0), there exists a unit regular cyclic Brakke flow {/,L’;} >0 such that /1,6 = M (0)] 9",
where #" is the n-dimensional Hausdorff measure. By the mean convex neighborhood theorem [Choi
et al. 2022a] and the nonfattening of level set flow with singularities that have mean convex neighborhood
[Hershkovits and White 2020], {yf;},zo is supported on .l/. Then the compactness of Brakke flows
[[lmanen 1994; White 2009] implies that {u’;} t>0 subsequentially converges to a limit unit regular cyclic
Brakke flow {t9°};>0.

Because M’ (0) — M (0) smoothly, K1g® = Mo, and by the uniqueness of unit regular cyclic Brakke flow,
we® =, ae. for all # > 0. In particular, the regular part of ;1?° equals the regular part of ;. Then by
Brakke’s regularity theorem and a.e. time regularity of .’ with neck and spherical singularities we have,
for a.e. ¢, that M (1) — M(¢).

The compactness of weak set flow shows that /(' subsequentially converges to a limit weak set flow >
in Hausdorff distance. Because {4/ };>¢ is supported on >, we have Jl C M. Meanwhile, JL is the
biggest flow, therefore M C M. Thus, M = . This also shows the uniqueness of the limit. Therefore,
M converges to .l in Hausdorff distance. a

3 Homology descent, homology termination and homology breakage

In this section, we consider general level set flows Jl = { M (¢)};>¢ in R*T1, where M (0) is not necessarily
a closed hypersurface. We will introduce three new concepts. For a heuristic explanation of them, see
Section 1.1.

Let Hy () denote the k™ homology group in Z-coefficients.
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Definition 3.1 (homology descent) We define a relation > on the disjoint union
| | Huor (W ().
>0
as follows. Given two times Ty < 77, and two homology classes co € H,—1 (W(Ty)), c1 € Hy,—1 (W(Ty)),

we say that c¢; descends from cg, and write
Ccop > Cq1,

if every representative yq € ¢ and y; € ¢; together bound some r-chain I' C W([Ty, T}], ie yo—y1 = dT.

(See Figure 3.)

Clearly, in the above definition, we can interchangeably replace “every representative” with “some
representative”. Note that we are using singular homology, which means that yy, y; and I' are just
singular chains.

Remark 3.2 The relation > is a partial order. Indeed, let ¢; € H,—1(W(T;)) fori =0, 1, 2. Clearly
co > co. If ¢ > ¢ and ¢1 > ¢, then Ty = T4, implying ¢y = ¢;. Moreover, if ¢y > ¢; and ¢; > ¢3, then
Ty < T5 and it readily follows from definition that cg > ¢;.

This relation has certain favorable properties.

Proposition 3.3 Letcg € H,_1(W(Ty)) and Ty < T;. Then there exists at most one ¢1 € H,_1(W(T1))
such that ¢y > ¢y.

Proof Suppose c¢1,cr € H,—1(W(Ty)) satisfy ¢g > ¢ and ¢ > ¢;. Our aim is to show ¢; = ¢;.
Choose y; € ¢; fori =0, 1, 2. Then by definition, yg — 31 = dA for some A C W|[Ty, T1], and similarly
Yo — ¥2 = 0B for some B C W|[Ty, T1]. Thus, y; and y, bound A — B C W|[Ty, T;]. Since the map

Hy— (W(T1)) » Hp—1(W[To, T1])
induced by the inclusion W(T) — W|[Ty, T}] is injective by White [1995, Theorem 1(iii)], we deduce

that y; and y, are homologous within W(77). Consequently, ¢; = c5. O

Remark 3.4 In the above it is possible that there does not exist any ¢; € Hy,—;(W(Ty)) for which
co > c1. As illustrated in Figure 7, after time 7', no homology class ¢ satisfies ag > ¢y.

0
t=T

t=1T, t=1T,

Figure 7
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Remark 3.5 On the other hand, there may be multiple homology classes ¢y € Hi (W (Tp)) satisfying
the relation ¢g > ¢;. As an example, consider the flow shown in Figure 7, where both by € H; (W (0))
and the trivial element of H{ (W, (0)) descend to the trivial element of Hy (W (T1)).

In fact, precisely because of Proposition 3.3 and Remark 3.5, we chose the symbol > (instead of <) to
pictographically reflect that more than one homology class may descend into one, but not the other way
around.

Proposition 3.6 We focus on the casen = 2. Let ¢c; € Hy(W(Ty)) and Ty < T,. Then there exists at
least one ¢y € Hy (W (Ty)) such that ¢y > cy.

Proof Choose some y € ¢;. By White [1995, Theorem 1(ii)], ¥ can be homotoped through W [Ty, T1]
to some loop ¥’ in W(Ty). So ¢o :=[y'] > ¢1. O

The following proposition says that a homology class cannot disappear and then reappear later.

Proposition 3.7 Let Ty < Ty, ¢ € Hy—1(W(Ty)) and ¢y € H,—1(W(T1)) with ¢ > ¢q. Then for every
t € [Ty, T1] there exists a unique ¢ € Hy{ (W (t)) such that ¢y > ¢ > c;.

Proof We only need to prove existence, as then uniqueness would follow from Proposition 3.3.

Under our assumption, we have yg € co and y; € ¢; such that they together bound some #n-chain C in
WITy, T1]. Since W|[Ty, T,] is an open subset of Euclidean space, we can choose a representative of
the n-chain C as a polyhedron chain. By tilting the faces appropriately, we can ensure that they do not
lie entirely within any specific slice R”*! x {r}. This enables us to find B; = {x : (x,#) € C} as an
(n—1)-chain without a boundary for each ¢t € [Ty, T1]. Consequently, we have [B;] € H,—; (W (¢)), and
co > [Be] > 1. a

Based on Proposition 3.7, the following definition is well-defined.

Definition 3.8 (homology termination) Let cg € H,—1(W(1p)).

o If
t(co) :=sup{t = Ty : ¢o > ¢ for some c € H,_1(W(t))}

is finite, then we say that ¢ ferminates at time t(cg); otherwise, we say co never terminates.

e For each t > Ty, the unique ¢ € H,_1(W(t)) such that ¢g > ¢, if it exists, is denoted by cq(?).

If needed, we use ¢! in place of t to specify the flow.

Note that since W is open, if ¢ terminates at time t(cq) then there is no ¢ € H,—1 (W (t(cp))) such that
co > ¢. So co(t(cp)) is not well-defined, and no ¢y € H,—1(W(Ty)) terminates at time 7. Therefore,
one can interpret the time interval [Ty, t(cg)) as the “maximal interval of existence” for cy.
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Figure 8

Remark 3.9 (trivial homology classes) Let us also elaborate on trivial homology classes. At each
time ¢, H,—1(W(¢)) has a unique trivial homology class 0;. This is true even for situations like Figure 7
when the surfaces have inside and outside regions: the trivial elements of Hy (Wi, (¢)) and Hy(Wou(?))
are viewed as the same.

However, 0; is considered distinct for different 7, because we used disjoint union in Definition 3.1.
Nonetheless, for any #; < t,, it is vacuously true that 0;, > 0,. Thus, we can denote each 0, as 0(¢),
following the notation in Definition 3.8. In addition, clearly, the trivial homology class never terminates.

Example 3.10 Let us revisit Figure 7. It is clear that ¢( terminates at time 7', whereas by does not. In
fact, bg will never terminate: bo(¢) would just become trivial for each ¢ > T.

Example 3.11 Let us now instead consider the flow in Figure 8. At time T, by terminates while aq does
not. In fact, ao(¢) becomes trivial after time 7', and thus it will never terminate.

Now, we introduce another concept. In Figure 7, a( terminates at time 7" because, intuitively, it “breaks”
at the cylindrical singularity x. Similarly, in Figure 8, by terminates at time 7" because it “breaks” at
the outward cylindrical singularity. The following definition provides a precise characterization of this
breakage phenomenon.

Definition 3.12 (homology breakage) Let c¢q € H,—1(W(Ty)), T1 > Ty, and let K C M(T}) be a
compact set. Suppose the following holds:

e For each Ty <t < T1, there exists co(t) € H,—1(W(¢)) such that ¢g > co(?).

e For every neighborhood U C R”*! of K, and for each ¢ < T sufficiently close to T}, every
element of cq(¢) intersects U. (Recall Figure 4.)

Then we say that co breaks in (K, T1). We will often be concerned with the case when K is just a point
x € M(T), for which we say that ¢ breaks at (x, T}).
One might wonder why Definition 3.12 does not require cq to terminate at time 77. This is because it is

not necessary:
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Proposition 3.13 If a homology class co € H,—1(W(T)y)) breaks in some (K, T1), then c( terminates at
time T7.

Proof Suppose otherwise: that there exists 7, > T and ¢, € H,—1 (W(T3)) such that ¢g > ¢,. Then there
exists ¥y € ¢o and y, € ¢, that together in W[Ty, T>] bound some n-chain C. Without loss of generality
we can assume that 8; := {x : (x,¢) € C} is an (n—1)-chain without boundary for each ¢ € [Ty, T>], as in
the proof of Proposition 3.7. Then c¢o(¢) = [B¢] € Hy—1(W]t]) satisfies ¢g > ¢o(2).

By assumption, ¢g breaks in some (K, T7) with K C M (T}). Therefore, KNC = @. Since K is compact
and C is closed, there exists a neighborhood of K in R”*! x R of the form B, (K) x[T; —§, T} + §]
that does not intersect C. Consequently, for all ¢ € [T} — 8, T + 8], B avoids B, (K). This contradicts
the assumption that ¢y breaks at (K, 77). m]

Note that, vacuously, the trivial homology class does not break in any (K, 7). Moreover, if a homology
class breaks in (K1, 7) and K; C Ky C M(T), then it also breaks in (K, 7).

One might wonder whether the converse of the above proposition is true. Actually, in the case of two-
dimensional MCF through cylindrical and spherical singularities, if a homology class terminates at some
time 7', then it actually breaks at some cylindrical singularity (x, 7"). This is the statement of Theorem 4.5,
which is one of the main results in Section 4. However, we are unsure whether the converse is true in
general.

Proposition 3.14 No homology class breaks at a regular point.

Proof Suppose (x, T) is a regular point. Then there exists a small ball B around x such that for all ¢
close to T', M; N B is a smooth n-disk. It is clear that every n-chain can be homotoped to avoid B.
Therefore, no homology class breaks at (x, 7). m|

Proposition 3.15 No homology class breaks at a spherical singularity.

Proof Suppose otherwise. Without loss of generality, suppose some ¢o € H,—1(W(T)) breaks at some
spherical singularity (x, 7). Then there exists a small ball B around x such that for all # < T close
to 7', M(¢) N B is a smooth sphere. For each such ¢, let y be a representative of ¢ (¢). By removing the
components of y inside the sphere M (¢) N B, we can assume that y lies outside the sphere. Thus clearly
y can be homotoped within W(¢) to avoid B. This again contradicts the assumption that co breaks at
(x,T). a

We conclude this section with the following proposition, which provides us with a scenario where we
know that the inside homology classes must terminate. Namely, if we take a compact shrinker and push it
inward, then all nontrivial inside homology classes will terminate, while the outward ones will not. This
proposition will be crucial for us when we use Theorem 1.1 to prove other main theorems.
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Proposition 3.16 The setting is as follows.

e Let X be a smooth, embedded, compact shrinker in R3.

o Let S°(—1) be a surface, lying strictly inside X, given by deforming ¥ within the inside region
of X.

o Let S1(—1) be a surface, lying strictly outside X, given by deforming ¥ within the outside region
of X.

¢ Note that the first homology groups of
R3\ =, R3\S%-1) and R3\S'(-1)
can be canonically identified.

o Jet
f={V—tZ}1<<0. P ={S°O}=—1 and F' ={S'()}=

be the associated level set flows.
Then there exist times T, T € (=1, 0) such that:

(1) For each nontrivial element ag € H1(Wigo (=1)), t(ag) <T.
(2) For each element by € H; (WO%? (=1), bo(f) exists and is trivial.
(3) For each element a; € H; (Wiffl (=1)), a1 (T') exists and is trivial.

(4) For each nontrivial element by € H; (Woit1 (=1),t(by) <T.

Proof For the first claim, note that
o S9(—1)is inside %,
o dist(~/—1X, S°(1)) is nondecreasing in ¢ by [Evans and Spruck 1991, Theorem 7.3], and

e ¥ shrinks self-similarly under the flow.

Thus, we can deduce the existence of 7' < 0 such that for every t > T.S O(t) is empty. Consequently, for
any nontrivial element ay € H; (Wl:{ 0(—1)), either t(ag) < T, or ao(T) still exists but is trivial. Suppose
for the sake of contradiction that the latter holds. Then we can pick some «g € a¢ such that oy = 0A for
some

Acw (-1.T) c wd(-1.7).

By rescaling each time slice of A, we can ensure that «g bounds some
A C (interior region of ) x [-1, T7.

Projecting A into the interior region of X, we have that g is homologically trivial, which contradicts the
definition of «y. This concludes the proof of the first claim.
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For the second claim, since X shrinks self-similarly under the flow, we know that b has not terminated by
the time T (< 0) for the flow +/—¢%. Then by the fact that S°(¢) lies inside /—¢% for each ¢ € [—1, T I,
which is a result of the avoidance principle, we can deduce that bo(f“) still exists for the flow $°. However,
as S O(T ) is empty, it follows that bo(f) must be trivial.

Let us define
e =dist(T, S1(=1)).

Pick a loop f1 € b;. Define B¢(+/—tX) as the e-neighborhood of 4/—¢X, and write
Y()) =R\ Be(V=12). Y[n.n):= ) R\Be(vV=r2)x{1}.
t€lty,12]
We prove the fourth claim before the third. In order to prove the fourth claim, it suffices to show that for

some —1 < T < 0, there exists no 2-chain C C w [0, T'] such that dC = 81 — B,, where 8, is a closed

out

1-chain outside S'(7"). Since S!(—1) lies outside X, by the avoidance principle it suffices to prove that:

Lemma 3.17 For some —1 < T < 0, there does not exist a 2-chain C C Y[—1, T] such that 0C = 51— 3,
for some closed 1-chain 8, C Y(T).

Proof Choose a value of T that is sufficiently close to 0 such that diam(~/—7 X) < €. With this choice,
the set B¢ (+/—T X)) is star-shaped with respect to any point on ~/—7" X. Thus, the boundary dB¢ (v —T X)
has genus 0.

Suppose for the sake of contradiction that there exists a 2-chain C C Y [—1, T'] such that dC = 81 — 8, for
some closed 1-chain 8, C Y(T'). By rescaling C at each time slice ¢, we can construct another 2-chain C
outside ¥ such that 3C = B1—~—=TPB,.

Since f1, which lies outside X, is homologically nontrivial, we can pick a nontrivial loop « inside X
such that [8;] € H;(R? \ «) is nontrivial. Then by the existence of C, we have [B2] # 0in H{ (R3\ )
too. However, this is impossible because +/—T B, lies outside B, / ﬁ(E) while « lies inside, and
0B, / +—7 () has genus 0 by the first paragraph of this proof. m|

This finishes proving the fourth claim of Proposition 3.16. Finally, for the third claim, since a;(7") exists
for the flow {+/—1 X };<o, it follows from the avoidance principle that @ (T') exists for ¥!. Moreover, since
the inside of S!(7") contains Be¢(+/—T X), which is star-shaped, we know a(T) =0 in H; (W‘ql (T)). O

4 Homology breakage of MCF through cylindrical and spherical
singularities

4.1 MCF through cylindrical and spherical singularities

In this section, we focus on two-dimensional MCF M = {M(¢)};>¢o through cylindrical and spherical
singularities in R, where the initial condition M (0) is a smooth, closed surface.
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Proposition 4.1 For any Ty > 0, no element of H; (W, (7y)) can break at an inward neck singularity,
and no element of Hy(W;y(Ty)) can break at an outward neck singularity.

Proof Let us just prove the first claim. Suppose for the sake of contradiction that some ¢g € Hy (Wou (7))
breaks at an inward neck singularity (x, 7°), with 7" > T,. Applying Theorem 2.5 to (x, 7') with §o = 1
and any R > R, we obtain constants §,8 > 0 and a dense subset J C [T'— 8, T + §] satisfying the
properties in Theorem 2.5. Let B = Bg(x).

Pick a time 7 € J N [T — 8, T). Since c¢o breaks at T', ¢o(¢) still exists. Pick a loop y € ¢o(7). By
Theorem 2.5(6) (and recall Figure 5), we can homotope y within Wy (¢) to avoid B. This can be done
forall 7 in J N[T =8, T), which is dense in [T — 8, T'). So we obtain a contradiction to the fact that ¢,
breaks at (x, 7). |

In the following proposition, we provide a more detailed description of the shape around a neck pinch at
which homology class breaks. Namely, in this case, prior to the singular time, only the last bullet point of
Theorem 2.5(6) can occur, ie M (t) N B is a cylinder.

Proposition 4.2 There exists a universal constant Ry > 0 with the following significance. Suppose
co € Hi(Win(Ty)) breaks at some inward neck singularity (x, T). Let 8o > 0. Then for each R > Ry,
there exist constants § € (0, 8¢), 8 > 0, and a dense subset J C (T’ =8, T +8) with T —§ € J, such that:

(1) The first five items of Theorem 2.5 hold.

(2) Foreachte JN|[T — 5, T ), Kin(t) N Bg(x) is a solid cylinder such that its boundary consists of a
connected component of M (¢t) N Bg(x) that is a cylinder and two disks D1, D, on dBg(x).

(3) Moreover, for sucht, every element y € co(t) has a nonzero intersection number (in Z-coefficients)

with each D;.

The outward case is analogous.

Proof We will just prove the inward case. Let us apply Theorem 2.5 to (x, T") to obtain the constants §, §
and the subset J C [T —8, T +8]. Let B = Bs(x). In addition the first five items of Theorem 2.5
will hold.

We need to show that for each ¢t € J N (Ty, T') sufficiently close to T', Ki,(¢) N Bg(x) satisfies the
description in (2): after that we could just shrink § and the set J to guarantee (2). Suppose for the
sake of contradiction that there exists a sequence in J, t1,1;,... 1 T such that Kj,(#;) N Bg(x) violates
the description in (2). Fix one ¢#;. Note that Theorem 2.5(5) and (6) together imply that K;,(z;) N B
can have atr most one cylindrical component. Thus, in our case, Kj,(¢;) N B actually has no cylindrical
component. As a result, any connected component K of Kj,(¢;) N B satisfies either one of the following
by Theorem 2.5(6):

e 0K is a connected component of M (¢) N B that is a sphere.

e 0K consists of a connected component of M (z) N B that is an disc and another disc on dB.
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In either situation, any element of ¢y (#;) can be perturbed to avoid B. Applying this argument to each ¢;,
we obtain a contradiction to the fact that ¢q breaks at (x, T').

Finally, to prove (3), it suffices to show that for each ¢t € J N (T}, T') sufficiently close to 7', co(¢) satisfies
the description of (3): then we could just shrink J, and we would be done. Suppose otherwise, so that
there exists a sequence in J, f1,%,... 1 T such that co(¢;) violates the description of (3). Then for
each ¢;, we can find a loop y € ¢o(#;) with intersection number zero with some connected component of
Kin(t;) N dB. In fact, since Ki,(¢;) N B is a cylinder by (2), ¥ has intersection number zero with both
connected components Dy, D, of Ki,(¢;) N dB (which are discs). To contradict the fact that ¢y breaks
at (x, T), it suffices to find another element of ¢ (¢;) that avoids B.

Indeed, this can be proved as follows. We can assume y intersects dB transversely. Since y has intersection
number zero with D1, we can pair up each positive intersection point of y N Dy with a negative one.
Now fix a pair, and draw a line segment L on D; to connect the pair of points. Adding L and —L
to y, and slightly pushing the resulting curve away from D; around L and —L, we can obtain another
representative of ¢ (¢;) that avoids this pair of intersection points. And we do this for each pair. Then
at the end, we get a curve belonging to co(#;) that avoids D completely. Then, we repeat this process
with D5, to get a curve that avoids D, too. Lastly, we discard all connected components of the curve that
are in K, which are all trivial as K is a solid cylinder, to obtain an element of ¢ (#;) that avoids B, as
desired. O

Denote by ™ the set of inward spherical singularities of .Il, and by E/’géck the set of inward neck

sphere ]
singglarities of /. Similarly, we define Ef’g}‘)’}‘lere and o4 . Then, we denote by Ss‘ghere(l) C R3 the slice
of SDgpl)here at time 7, and proceed similarly for the other three sets.

Lemma4.3 S

neck

T) and S°% (T) are compact sets.
( p

neck

Proof We only show Sriféck(T ) is compact and the proof for SO (7') is the same. It suffices to show that
Spea(T) = Sli:éck (T") must
be a neck singularity. Hence it suffices to show p € Srilgck(T). We prove it by contradiction: suppose not,

(T). By the semicontinuity of the Gaussian density, a limit point p of Srilgck
then p € SO (T'), and by the mean convex neighborhood theorem, there is a neighborhood U of p and
8 > 0 such that the MCF { M };c[r—s,7+5) in U moves outward. This contradicts the assumption that p
is a limit point of Srilgck(T). |

Proposition 4.4 Suppose ¢y € Hy(Win(Ty)) terminates at some time T > Ty. Then cy breaks in
( Sin

neck (T, T'). The outward case is analogous.

Proof We will only prove the inward case, as the outward case follows analogously. Suppose otherwise:
that there exist a neighborhood U of Sril‘elck(T) in R3, an increasing sequence of times 1,,,...1 T, and
elements y; € co(#;) such that each y; is disjoint from U'.
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By the mean convex neighborhood theorem and the compactness of Sril‘;ck(T ) and S (T') from

Lemma 4.3, we can further pick open neighborhoods Uj,, ﬁin with

in (T)C Uy €UpneU,

neck

an open neighborhood Uy of S (T'), and two times 77 < T' < T5 such that

neck

e U, and Uy are disjoint, and

¢ in the time interval (77, T5), M () N l7in evolves inward, ie
Kin(tz2) N Uin C Kin(t1) \ M (2)
for every T7 < t; <ty < T, while M (¢) N Uyy evolves outward.

By Huisken’s analysis of spherical singularities (see also the special case of [Colding and Minicozzi 2016,
Theorem 4.6]), each spherical singularity is isolated in spacetime. Therefore, the limit points of spherical
singularities can only be cylindrical singularities.

We claim that after appropriately shrinking the time interval [T, T3],
B\ (Uin U Uow)) X [T1. T]
has only finitely many singular points, and we can thus assume such singular points are all spherical

0
i=1

outside Uj, U Uyy, with singular time #; — 7T'. By the compactness of the singular set of /M and the previous

singularities at time 7". In fact, suppose not, so there exists a sequence of distinct singular points { p;

out

paragraph, there is a subsequence converging to a cylindrical singularity in (S;gck(T YU S (T)) x{T}.
This contradicts our choice of the p;.

As a consequence of the claim, by shrinking [T, T;] and the neighborhoods ﬁin and U,,, we can assume
izn \ Lﬁn X []Hv 7&]

(T)\ Uiy

such that M (¢) N Vj, is a finite union of convex smooth spheres for each ¢ € [T, T3], using what we

consists only of smooth points. Furthermore, we can choose a neighborhood Vi, of Ssighere

proved in the previous paragraph. Similarly, we can find a neighborhood V¢ for S:;ﬁere(T) \ Uput with
analogous properties. We can assume that the closures of ﬁin, Uouts Vin, Vour are all disjoint. Moreover,

M (1) \ (Uin U Ugye U Vip U Vi) evolves smoothly for ¢ € [T, T5].

To derive a contradiction to t(co) = T, we are going to prove that for some #; there exists a smooth
deformation of y;, {y* C Wi, (2)} reft;, 7] With y'i = y;, thereby letting y; “survive” up to time 7T'. Note that:

¢ By the smoothness of M (¢) in ﬁin \ Ui, for t € [T1, T5],

C:= sup |A| < oo.
te[T1,T>], xeM ()NUx\ Uiy
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Thus, the velocity of the flow in this spacetime region is bounded by C. Thus, since y; avoids Unn,
we can take a #; € (T, T') sufficiently close to 7" such that there is not enough time for any point
of M(#;)\ Usn to be pushed into Uj, by time 7.

¢ Note that M (¢) evolves outward in Ugye for 1 € [Ty, T>].

e Since Vi, and V¢ consists of spheres, we can remove the components of y; inside the spheres,
so we may assume y; avoids Vi, and V.

Combining the above observations, we can construct a smooth deformation of y;, {y* C Wi (1)} teft; T
using the evolution of MCF, with y% = y;. This contradicts that t(co) = T'. |

Here comes a key theorem, which supports that our definition of homology termination and breakage
accurately describes the heuristic phenomenon shown in Figure 7.

Theorem 4.5 Suppose co € H;(Win(Tp)) terminates at some time T > Ty. Then ¢y breaks at some
inward neck singularity (x, T').

The outward case is analogous.

Note that such x may be nonunique: consider a flow that is a thin torus collapsing into a closed curve
consisting entirely of neck singularities.

Proof We prove the inward case as the outward case is analogous. We will prove it by contradiction.
Suppose that the theorem is false, meaning:

Assumption (%) For every inward neck singularity (x, T), there is a neighborhood Uy of x such that it
is not true that “for every time ¢t < T close enough to 7', every element of c((¢) intersects U .

Applying Theorem 2.5 to each inward neck singularity (x, 7)), with a constant §o(x) > 0 such that
Bs,(x)(x) C Uy and an R > max{ Ry, 100}, we obtain constants §(x), 8(x) > 0 and a set of full measure
J(x) C [T —68(x), T + 8(x)] satisfying the properties of Theorem 2.5.

Since Sli‘;ck(T) is compact by Lemma 4.3, there exist x,..., X, € S]igc

(T') such that
Bsx)/2(X1)s - s Bs(xy)/2(Xn)

cover Slilgck(T). For simplicity, we denote those balls by %Bl, e %Bn, while

By = Bi(x)(X1). ... Bn = Bi(x,) (xn).

Since ¢ terminates at time 7', we know that ¢y breaks in (Sril‘gck(T), T) by Proposition 4.4. Thus, by
definition, there exists a time 7} with max; T — 8(x;) < Ty < T such that for each ¢ € [T1,T), every
element of ¢ () intersects |_J; %B,-. We can assume 77 € N; J(x;) so that M (T7) is smooth and intersects

each dB; transversely by Theorem 2.5(3).
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Lemma 4.6 Let D be a connected component of K, (T1) NdB; (of which there are at most two according
to Theorem 2.5(5)), and y € co(T1). Then, it follows that the linking number satisfies link(y, dD) = 0.

Proof Suppose otherwise, ie that there exists some D as above, and y € cg(#p) such that link(y, 0D) # 0.
Now, pick any #; € [Ty, T') and y; € co(¢1). By definition, y; is homologous to y within Wi,[T7, ¢;]. Thus,
¥1 is homologous to y within R? \ 9D, as the mean convex neighborhood property (Theorem 2.5(2))
implies that 3D C R3 \ Wi,(¢) for all ¢ € [Ty, t;]. Therefore, link(y;, D) # 0, which implies that y,
must intersect D. However, since D C E,- C Uy;, this implies that for all #; € [T}, T'), any element of
co(?1) must intersect Uy, . This contradicts the assumption (x). O

Let €1 := min; §(x;)/2. Let y € ¢o(T7) be such that
4-1) length(y) < inf length(y') + o5€1-
y'€co(Th)

Without loss of generality, we can assume that y intersects all dB; transversely. To finish the proof, it
suffices to show that y avoids | J; %Bi: This would contradict the definition of 77.

Lemma 4.7 The curve y does not intersect | J; %B,’.

Proof We prove by contradiction. Suppose that y intersects some %B,-. We will produce an element of
co(T1) whose length is too small.

Without loss of generality, we can assume that no connected component of y N B; is a closed loop.
This is because we could just remove all such loops from y, and the resulting curve is still in ¢o(77) by
Theorem 2.5(6). Hence, letting B be a connected component of y N B;, we can assume that § is a line
segment.

Now, by Theorem 2.5(5) and our choice that 77 € N;J(x;), Win(T7) N dB; consists of at most two disks.
There are two cases: Either

(1) P starts and ends on the same disk, say Dy, or

(2) P starts and ends on different disks, Dy and D,.
We will show that both are impossible.

For case (1), since B intersects %Bi, whose distance to dB; is §(x;)/2, we know that length(f) is at
least §(x;). On the other hand, note that by Theorem 2.5(1), (2) and (4), D1 is a convex disc on dB; with
diameter less than 6(x;)/50 (recall R > 100). Thus, we can join the end points of 8, from 8(1) to 8(0),
by a segment B; on D; of length less than §(x;)/50: see Figure 9, left. Then, we consider the new loop
y — B — B’, which replaces B C y with B’. This loop lies in ¢o(77), because B + B’ bounds a disc in
Win(T1) N B; by Theorem 2.5(6).

Geometry & Topology, Volume 29 (2025)



Genus-one singularities in mean curvature flow 4329

Figure 9

Moreover, this new loop is impossibly short:
length(y — B — B') < length(y) — §(x;) + 556(x:)
< length(y) — %S(x,-)
<length(y) — €,
< inf  length(y’),

y'€co(T1)
in which the last inequality is from the definition of y. Thus, a contradiction arises, and case (1) is
impossible.

For case (2), suppose the starting point 8(0) is in D; and the ending point 8(1) is in D,. We claim that
there is another connected component § of y N B; such that starting point 8(0) is in D, and ending
point (1) is in € D;. This claim follows immediately from the following facts:

e By Theorem 2.5 (6), M(Ty) N dB; is a cylinder.

e By Lemma 4.6, link(y, dD;) = link(y, 0D,) = 0.

e (Case (1) was proven impossible.
Finally, let 8 be a segment on D; connecting 3 (1) to B(0), and B, be a segment on D, connecting ,BA (0)
to B(1); see Figure 9, right. As in case (1), we can guarantee lengthgﬂl), length(B,) < 8(x;)/50. Hence,
we consider the new loop y — 8 — 8 — B1 — B2, which replaces 8 +  C y with —f; — ,. This new loop

lies in co(T7), because B + B + B1 + B bounds a disc in Wiy (T;) N B; by Theorem 2.5(6). Moreover,
as in case (1), we can show that

length(y — B — 3— B1—pB2) < inf length(y’),
v’ €co(T1)
which is a contradiction. Therefore, case (2) is also impossible. This leads to a contradiction. O
This finishes the proof of Theorem 4.5. O
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4.2 MCF through cylindrical and spherical singularities from torus

In Section 4.2 , we will focus on two-dimensional MCF M = { M (¢)},>¢ through cylindrical and spherical
singularities in R3, where M (0) is a smooth forus. The main goal of Section 4.2 is to prove the following.

Theorem 4.8 The setting is as follows.
e Let {M(t)};>0 be a MCF through cylindrical and spherical singularities with M (0) a smooth torus
inR3.
e Let ag be a generator of Hy(Wiy(0)) = Z, and by be a generator of Hy(Wyu(0)) = Z.
e Let T = min{t(ayp), t(by)}.
Then T < o0, and genus(M (¢)) = 1 for a.e. t < T, while genus(M (¢)) = 0 or M (t) is empty for a.e.
t>T.

Throughout Section 4.2, we will retain the notation in this theorem.

Let us first sketch the proof. By [Colding and Minicozzi 2016], M (¢) is smooth for a.e. time. And by
[White 1995], genus(M (¢)), when well-defined, is nonincreasing in ¢. Thus, there exists some time 7
such that genus(M (¢)) = 1 for a.e. t < Ty, while genus(M (7)) = 0 or M (t) is empty for a.e. t > Tg.
Our goal is to show T' = Tg.
The proof consists of proving the following six claims one-by-one:
o T <o0.
e Let?>0.If M(¢) is a smooth torus and a(¢) exists, then aqo(¢) generates Hy (Wi, (¢)). And the
case for by is analogous.
e To>T.
e t(ao) # t(bo).
o If t(ag) < t(bg), then by () is trivial for each ¢ > t(ag). And if t(bg) < t(ag), then ag(?) is trivial
for each ¢ > t(by).

e Ty =T.
We now begin the proof of Theorem 4.8.

Proposition 4.9 T < o0.

Proof Suppose otherwise, ie that ay and by both never terminate. Since M (0) is compact, eventually
Kou(t) = R3. So ao(T) and bo(T) both become trivial for some large 7 > 0. As a result, if we pick
some loops &g € ag and By € by, then there exist 2-chains A C Wj,[0, T'] and B C Wy, [0, T] such that
04 = ag and 0B = By.

Now, denote by B CR3x [T, 0] the reflection of B across R* x {0}. Let B = B U B, which can be
viewed as a closed 2-chain in R*. Then we view 4 C R*\ B. Thus, to derive a contradiction, it suffices
to show that ag is homologically nontrivial in R*\ B.
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Without loss of generality, we can assume that B is connected by discarding all those connected components
that do not contain By. By Alexander duality,

H (R*\B)~ H*(B) = Z.

One can check that ag C R*\ B actually generates Z as the linking number link(aq, bg) = 1. This shows
that o is homologically nontrivial in R*\ B, contradicting the existence of A. |

Remark 4.10 The above proof works also in the case when M (0) is a closed surface of any genus with
aog € Hi(Win(0)) and by € Hy (W, (0)) linked, and the flow {M (¢)},>¢ is a general level set flow (whose
singularities are not necessarily cylindrical or spherical).

Proposition 4.11 Let ¢t > 0. If M (¢t) is a smooth torus and a(t) exists, then ay(t) generates Hy(Win(?)).
The case for by is analogous.

Proof We will just prove the case for ag. Let @ be a generator of Hy(Wi,(¢)) = Z. It suffices to show
that @ = ag(¢) up to a sign.

By definition, there exist g € ag and «; € a¢(t) such that «g —a; = 9dA4 for some A C WJ0,¢]. On
the other hand, pick a loop &; € a, then by [White 1995, Theorem 1(ii)], there exists a homotopy H in
W10, T'] joining & back to some loop &g C W(0) (which means 0H = & — ). So [¢g] = kag for some
integer k, and so &g — kag = 0A( for some Ag C W(0). If we manage to show ay = [®g] or —[cg], then
by the fact that @( can only descend into one class at time ¢ (Proposition 3.3), we would know ay(¢) = a
or —a, as desired. Hence, it suffices to show that k = +1.

Let us glue H, A and k A together, so that we have
&1 —kOtl = B(H—I— A() +kA).

Thus, since the inclusion Hy(Wiy(t)) — H;(Win[0, f]) is injective by [White 1995, Theorem 1(iii)],
a=kagy(t) in H (Wi(¢)). Since a is a generator by definition, k = £1, as desired. a

Proposition 4.12 Tg>T.

Proof Let us assume that 7" = t(aq), as the other case, T = t(by), is analogous. Recall that we have
shown T < co. Since genus(M (¢)), if well-defined, is nonincreasing in ¢, it suffices to prove that there
exists 71 < T such that for a dense set of 1 € (T, T'), genus(M (¢t)) = 1.

By Theorem 4.5, T = t(ap) implies that ay breaks at some inward neck singularity (x, 7). Then,
applying Proposition 4.2 to (x, T') with o = 1 and an R > Ry, we obtain constants §, § and a dense set
JC[T =8, T+8]withT —§eJ. Welet Ty =T —§, and B = Bg(x).

Now, fix any ¢ € (T1,T), and D let be one of the two connected components of Kj,(¢) N dB: recall
that Ki,(¢) N B is a solid cylinder by Proposition 4.2. By Proposition 4.2, some element « € aq(?)
has a nonzero intersection number with D. Now, we push dD slightly into K, (¢) N B and call that
loop B. Then the linking number link(8, ) is nonzero, with « inside M (¢) and 8 outside M (¢). Hence,
genus(M (¢)) is nonzero, and thus has to be one, as desired. a
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Proposition 4.13 t(ag) # t(by).

Proof If t(bg) < t(ag), we are done. So let us assume t(ag) < t(bgy) and aim to show t(bg) > t(ag).

Let us focus on the time ¢t = T, with Ty := T —§, as defined in the proof of Proposition 4.12. We know
that genus(M (7)) = 1 from before. Now, consider the loops @ € ag(7T7) and 8 C Wy (T7) N B defined in
the previous proof. Then by Proposition 4.11, « is a generator of Hy(Wiy(77)), and from the construction
of B itis clear link(8, @) = +1. So B actually generates Hy(Wou(77)). Then by Proposition 4.11 again
and the assumption t(bg) > t(ag), we have [B] = bo(T), possibly after changing the orientation of S.

Finally, by the mean convex neighborhood property, B C Wou(77) N B will survive after time 7'. So
t(bg) > t(ag). O

Proposition 4.14 If t(ag) < t(bg), then by(t) exists and is trivial for each t > t(ag). If t(bg) < t(ay),
then ao(t) exists and is trivial for each t > t(bg).

Proof We prove the first statement, and the second statement is similar. Let us retain the notation from
the previous proof. By Proposition 4.2, M (T7) N B (recall that Ty = T — 8) is close to a round cylinder.
Now, enclose this cylinder by an Angenent torus, and run the MCF. Note that:

¢ Since the time interval around 7" given by the mean convex neighborhood property is independent
of R (in Proposition 4.2), we can, by making R very large and thus the Angenent torus very small,
assume that the mean convex neighborhood property still holds at the moment the Angenent torus
vanishes.

¢ By the avoidance principle, the distance between the Angenent torus and M (¢) is nondecreasing.

Hence, when the Angenent torus vanishes, the neck M (¢) N B has already been “cut into disconnected
pieces”. As a result, the loop B, which remains disjoint from the evolving surface, would have become
trivial at the moment the Angenent torus disappears.

Finally, note that as R — oo, § — 0; see Theorem 2.5(1). By the definition of cylindrical singularity, we
know that Ty =T —8 — T and M (T — g) N B tends to be an actual round cylinder after rescaling by
the factor R. This shows that the moment when the Angenent torus vanishes will tend to 7". Therefore,
bo(2) is trivial for each ¢ > T'. |

Finally, since we have already proven T > T, to complete the proof of Theorem 4.8, it remains to show:
Proposition 4.15 Te <T.

Proof Suppose for the sake of contradiction that 7y > 7. Again, we can just consider the case
t(ap) < t(bo). By Proposition 4.14, we can pick a time T, € (T, Tg) when M (T3) is a smooth torus
and bo(T>,) exists and is trivial. This contradicts Proposition 4.11, which says that by(7,) generates
Hy (Wou(T3)). d

This completes the proof of Theorem 4.8.
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4.3 Termination time of limit of MCF

Finally, in Section 4.3, let us mention a proposition that describes a relationship between the termination
time and a convergent sequence of initial conditions.

Proposition 4.16 The setting is as follows.
o Let M = {M(t)}s>o fori =1,2,...,and M = {M(t)};>¢ all be MCF through cylindrical and
spherical singularities, such that each M (0) and M (0) are smooth, closed hypersurfaces.

e Foreach i, assume M (0) is sufficiently close in C® to M (0) so that each H; (W’W (0)) can be
canonically identified with Hy (W*(0)). Moreover, M (0) — M (0) in C*°.

o Letcy € H;(W™(0)). Note that ¢y can be viewed as an element of H; (W‘W (0)) for eachi too.
Then _
lim inf ¢ (co) = t(co).
l
Proof Let T = t!(cy).

We first consider the case 7' < co. Suppose for the sake of contradiction that there exists a subsequence
{ix}r—, and some T < T such that Lk (co) < T for each k. Pick some element y, C W (0) with
[Yo] = co, and y; C WM(%(Tl + T)) with [y] = co(%(Tl + T)). By definition, yy and y; together
bound some I' C W[0, 1(T; + T)].

Now, recall that it/ — J in the Hausdorff sense by Proposition 2.8. Thus, since I" is compact, for all
sufficiently large i, I' ¢ W [0, %(T 1+ T )]. Moreover, y, represents ¢o € Hy (W (0)) for such large .
This contradicts that t'* (co) < T} for each k.

Lastly, the case T' = 0o can be done similarly using the fact that the flow .l vanishes in finite time. O

5 Proof of main theorems

5.1 Proof of Theorem 1.1

Suppose for the sake of contradiction that for each s € [0, 1], {M5(¢)};>¢ is a MCF through cylindrical
and spherical singularities. For each s € [0, 1], let

T¢ = min{t'" (ao), t" (bo)}.

Furthermore, Propositions 4.13 and 4.14 show that either aq or by will terminate, but not both. As a result,
we can represent [0, 1] as a disjoint union A L B, where A4 contains those s for which 7% = ! (a¢), and
B contains those s for which 7% = ! (by). Note that 0 € 4 and 1 € B by the assumption. Thus, the
following lemma leads us directly to a contradiction.
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bo do
(=)
< > <>

N

L

inward neck
outward . pinch <> bo
neck pinch
Figure 10

Lemma 5.1 The sets A and B are both closed.

Proof We will just prove that A is closed. Let s € [0, 1] be an accumulation point of A, and pick a
sequence s; in A with s; — 5. Note that:

¢ For each i, by Theorem 4.8, genus(M % (¢)) = 1 for a.e. t < T*, and genus(M % (¢)) = 0 for a.e.
t>T5,

o Similarly, genus(M*(z)) = 1 for a.e. t < T*, and genus(M*(¢)) = 0 fora.e. t > T%.

Thus, together with Proposition 2.8, which says M’ (t) — M*(¢) in C* fora.e. t > 0, we know 77 — T°%.
Hence,

T =liminf T% = liminft"" (a¢) > "’ (ao).
l 1

Note that the second equality holds because s; € 4, and the inequality holds by Proposition 4.16. Thus,

we know T = '’ (a), which means for the flow L, ay will terminate but by will not. So s € A. This

shows that A is closed. |
This finishes the proof of Theorem 1.1.

Remark 5.2 Let us explain why Theorem 1.1 would not hold if the initial conditions had genus greater
than one. For example, consider the genus-2 surface depicted in Figure 10, left, where a¢ and b are
linked as shown. Then, the MCF actually could develop both inward and outward cylindrical singularities
simultaneously, with a¢ breaking at the inward one and b breaking at the outward one. This phenomenon
may prevent a genus-one singularity from showing up in any intermediate flow between { M °(#)};>0 and
{M'(t)}s>0, in the setting of Theorem 1.1.

One might think that if we were to choose ag and b better, like in Figure 10, right, then the conclusion
of Theorem 1.1 might hold. However, the left and right diagrams in Figure 10 are actually homotopic to
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each other. In conclusion, in a genus-two surface, we cannot force a genus-one singularity to appear just
by topology: the geometry of the initial conditions must play a role.

5.2 Proof of Corollary 1.2

Let M := {M*(t)};>0 be the level set flow starting from M*(0) := M*. We can apply Theorem 1.1 to
the flows A with s € [0, 1], which shows there exists sq € [0, 1] such that M has a singularity (x, 7") that
is not (multiplicity one) cylindrical or spherical. In other words, every tangent flow Jl’ at (x, T') is not the
shrinking cylinder or sphere of multiplicity one. Recall that by [Ilmanen 1995], A’ is a smooth, embedded,
self-shrinking flow {+/—tmX’}; .o with genus at most one and multiplicity 7. But the multiplicity can
only be 1 by the entropy bound Ent(M*9) < 2 and the monotonicity formula. Thus, X’ has genus 1.

5.3 Proof of Theorem 1.3

Note that we have Ent(M*) < 2 for each s as M is close to T, which has entropy less than 2. To
apply Corollary 1.2, it suffices to show that for the MCF starting from M (resp. M), the inward
(resp. outward) torus neck will pinch. But this is given by Proposition 3.16.

5.4 Proof of Theorem 1.4

Let ¥ be a genus-one embedded shrinker in R3 with the least entropy. Recall that by [Colding and
Minicozzi 2012], index(X;) > 5. Therefore, in order to prove Theorem 1.4, let us suppose for the sake of
contradiction that ¥; is compact with index at least 6.

We first need a family of initial conditions to run MCEFE. That will be provided by the following lemma.

Lemma 5.3 Let X" by any smooth, embedded, compact, n-dimensional shrinker in R"*! with index at
least 6. Let € > 0 be sufficiently small. Then there exists a one-parameter family of smooth, compact,
embedded surfaces { M *(0)}se[o,1] such that:

(1) The family varies continuous in the C°°-topology, and each M ®(0) is e-close to C*° to X.

(2) Each M*(0) has entropy less than that of X.

(3) M°(0), M (0) and X are all disjoint, with M °(0) inside ¥ and M ' (0) outside.
Proof Fix an outward unit normal vector field n to X. Since index(X) > 6, the eigenfunctions of its
Jacobi operator, with respect to the Gaussian metric, that have negative eigenvalues include

o three induced by translation in R3,
¢ one by scaling,
¢ the unique one-sided one which has the lowest eigenvalue, denoted by ¢, and

¢ at least one more, denoted by ¢,

all of which are orthonormal under the L2-inner product. We will choose ¢q > 0.
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Let € > 0, and define M*(0) to be the following perturbation of X:
M?*(0) := I + e(— cos(sm)pg + sin(sm)p;)n.

Thus, if € > 0 is sufficiently small, clearly the family {M*(0)}s¢[o,1] is smooth. Item (3) holds because
¢o > 0. Finally, (2) holds because ¢ and ¢ are not induced by translation or scaling; see [Colding and
Minicozzi 2012, Theorem 0.15]. O

Applying the above lemma to X1, we obtain a one-parameter family {M*(0)}4e[o,1] of tori. Then
Ent(M?*(0)) < Ent(2;) <Ent(T) < 2.

Thus, applying Corollary 1.2, and by the monotonicity formula, we obtain another embedded genus-one
shrinker with entropy less than X, which contradicts the definition of X;.

5.5 Proof of Theorem 1.5

Since T is rotationally symmetric, by [Liu 2016], it has index at least 7. Again, we need a family of MCF.
We will apply [Choi and Mantoulidis 2022, Theorem 1.6]. Namely, since T is a minimal surface with
index at least 6 under the Gaussian metric, it has, as we saw in the proof of Lemma 5.3, two orthonormal
eigenfunctions ¢, ¢ to the Jacobi operator that

¢ have negative eigenvalues, and

¢ are both orthogonal to the other 4 eigenfunctions induced by translation and scaling.
Now, pick an € > 0. Applying [Choi and Mantoulidis 2022, Theorem 1.6] to the two-dimensional function
space spanned by ¢ and ¢, we obtain a one-parameter family of smooth ancient rescaled MCF (ie MCF
under the Gaussian metric) M* = {M* (t)}r<o With s € [0, 1], such that:

¢ For each s, Ms(t) — T in C*® as t - —o0.

e MO(0) lies inside T, while M !(0) lies outside.

. {M (0)}se[0,1] is a smooth family of tori, each e-close to T in C*°; see [Choi and Mantoulidis

2022, Corollary 3.4].

If € is small enough, we can apply Theorem 1.3 to the family {1\2 %(0)}se[o,1] to obtain an sq € [0, 1] such
that the level set flow { M (¢)};>¢ with initial condition M (0) = M*(0) would develop a singularity at
which every tangent flow is given by a multiplicity-one, embedded, genus-one self-shrinker.

Finally, we define an ancient smooth MCF {]\2 (t)}s<—1 by rescaling the rescaled MCF {M 50 (1) }r<o:
M (t) = V=t M (—=log(—t)) for t <—1.

Note that AAI(—I) = M(O) = M (0). Hence, combining the two flows {M(t)},S_I and {M(¢)}s>0, We
obtain an ancient MCF satisfying Theorem 1.5.
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5.6 Proof of Corollary 1.7

Let ¥ be an embedded shrinker with the fourth least entropy in R?, whose existence was established
in Section 1 already. Suppose for the sake of contradiction that ¥ is rotationally symmetric. Then by
Kleene and Mgller [2014], X is closed with genus one. Moreover, X has entropy less than 2 since the
shrinking doughnut T in [Drugan and Nguyen 2018] does, and by [Liu 2016], ¥ has index at least 7.
Therefore, Theorem 1.5 still holds with T replaced by X: the exact same proof will work. As a result,
we obtain a genus-one shrinker with entropy strictly lower than . However, the self-shrinkers with the
three lowest entropy are the plane, the sphere, and the cylinder [Colding et al. 2013; Bernstein and Wang
2017]; contradiction arises.
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