Volume 1 (1998)

Download this article
For printing
Recent Volumes
Volume 1, 1998
Volume 2, 1999
Volume 3, 2000
Volume 4, 2002
Volume 5, 2002
Volume 6, 2003
Volume 7, 2004
Volume 8, 2006
Volume 9, 2006
Volume 10, 2007
Volume 11, 2007
Volume 12, 2007
Volume 13, 2008
Volume 14, 2008
Volume 15, 2008
Volume 16, 2009
Volume 17, 2011
Volume 18, 2012
Volume 19, 2015
The Series
About this Series
Editorial Board
Ethics Statement
Submission Guidelines
Purchases
ISSN (electronic): 1464-8997
ISSN (print): 1464-8989
Author Index
 
MSP Books and Monographs
Other MSP Publications

The mean curvature integral is invariant under bending

Frederic J Almgren Jr and Igor Rivin

Geometry & Topology Monographs 1 (1998) 1–21

DOI: 10.2140/gtm.1998.1.1

Bibliography
1 W K Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972) 417–491 MR0307015
2 M Berger, B Gostiaux, Géométrie différentielle: variétés, courbes et surfaces, Mathématiques, Presses Universitaires de France (1987) MR903026
3 J Cheeger, W Müller, R Schrader, On the curvature of piecewise flat spaces, Comm. Math. Phys. 92 (1984) 405–454 MR734226
4 R Connelly, I Sabitov, A Walz, The bellows conjecture, Beiträge Algebra Geom. 38 (1997) 1–10 MR1447981
5 G Herglotz, Über die Starrheit der Eiflächen, Abh. Math. Sem. Hansischen Univ. 15 (1943) 127–129 MR0014714
6 I Rivin, J M Schlenker, Schläfli formula and Einstein manifolds, IHES preprint (1998)
7 D V Alekseevskij, È B Vinberg, A S Solodovnikov, Geometry of spaces of constant curvature, from: "Geometry II", Encyclopaedia Math. Sci. 29, Springer (1993) 1–138 MR1254932
8 M Spivak, A comprehensive introduction to differential geometry, Publish or Perish (1979) MR532830