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Minimal Seifert manifolds for higher ribbon knots

James Howie

Abstract We show that a group presented by a labelled oriented tree pre-
sentation in which the tree has diameter at most three is an HNN extension
of a finitely presented group. From results of Silver, it then follows that
the corresponding higher dimensional ribbon knots admit minimal Seifert
manifolds.
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1 Introduction

It is well known that every classical knot k (knotted circle in S3 ) bounds a
compact orientable surface, known as a Seifert surface for the knot. A Seifert
surface Σ of minimal genus (among all Seifert surfaces for the given knot k) is
called minimal, and satisfies the following property: the inclusion-induced map
π1(Σ\k)→ π1(S3\k) is injective.

For a higher dimensional knot, or more generally a knotted (closed, orientable)
n–manifold M in Sn+2 , a Seifert manifold is defined to be a compact, orientable
(n+1)–manifold W in Sn+2 , such that ∂W = M . A Seifert manifold W for M
is defined to be minimal if the inclusion-induced map π1(W\M)→ π1(Sn+2\M)
is injective. In general, any M will always admit Seifert manifolds, but not
necessarily minimal Seifert manifolds. For example, Silver [13] has shown that,
for any n ≥ 3, there exist n–knots in Sn+2 with no minimal Seifert manifolds,
and Maeda [9] has constructed, for all g ≥ 1, a knotted surface of genus g in
S4 that has no minimal Seifert manifold. Further examples of knotted tori in
S4 without minimal Seifert manifolds are constructed by Silver [16].

A theorem of Silver [14] says that, for n ≥ 3, a knotted n–sphere K in Sn+2

has a minimal Seifert manifold if and only if its group GK = π1(Sn+2\K) can
be expressed as an HNN extension with a finitely presented base group. (It is
standard that any higher knot group can be expressed as an HNN extension
with a finitely generated base group.)
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As Silver remarks, the proof of his theorem does not extend to the case n = 2.
However, it remains a necessary condition for the existence of a minimal Seifert
manifold that the group be an HNN extension with finitely presented base
group. This applies also to knotted n–manifolds in Sn+2 , a fact which is
used implicitly by Maeda in the result mentioned above. It remains an open
question whether every 2–knot in S4 has a minimal Seifert manifold. This seems
unlikely, however. For example Hillman [5], p. 139 shows that, provided the
3–dimensional Poincaré Conjecture holds, there is an infinite family of distinct
2–knots, all with the same group G, such that the commutator subgroup of G
is finite of order 3; and at most one of these knots can admit a minimal Seifert
manifold.

In the present article we consider the case of higher dimensional ribbon knots,
for which the existence of minimal Seifert manifolds is also an open question.
Indeed, as we shall point out in the next section, higher ribbon knot groups are
special cases of knot-like groups, in the sense of Rapaport [12], and Silver [15]
has conjectured that every finitely generated HNN base for a knot-like group
is finitely presented. It would therefore follow from Silver’s conjecture (and his
Theorem) that every higher ribbon knot has a minimal Seifert manifold.

Now any higher ribbon knot group has a Wirtinger-like presentation that can
be encoded in the form of a labelled oriented tree (LOT) [7]. Indeed the LOT
encodes not only a presentation for the knot group, but the complete homotopy
type of the knot complement. In [7] it was shown that, if the diameter of the
tree is at most 3, then the group is locally indicable, and using this that the 2–
complex model of the associated Wirtinger presentation is aspherical. A shorter
proof of this fact is given in [8], where it is shown that the presentation is in
fact diagrammatically aspherical.

In the present paper, we show that, under the same hypothesis on the diameter
of the tree, the group is an HNN extension with finitely presented base group,
and hence that the higher ribbon knot has a minimal Seifert manifold.

Theorem 1.1 Let Γ be a labelled oriented tree of diameter at most 3, and
G = G(Γ) the corresponding group. Then G is an HNN extension with finitely
presented base group.

Corollary 1.2 Let K be a ribbon n–knot in Sn+2 , where n ≥ 3, such that
the associated labelled oriented tree has diameter at most 3. Then K admits
a minimal Seifert manifold.
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The paper is arranged as follows. In section 2 we recall some basic definitions
relating to LOTs and higher ribbon knots. In section 3 we prove some prelim-
inary results about HNN bases for one-relator products of groups, which will
allow us to simplify the original problem. In section 4 we reduce the problem
to the study of minimal LOTs, In section 5 we construct a finitely generated
HNN base B for G, and describe a finite set of relators in these generators. In
section 6 we prove some technical results about the structure of these relations,
which we apply in section 7 to complete the proof of Theorem 1.1 by proving
that this finite set is a set of defining relators for B . We close, in section 8,
with a geometric description of our generators and relators for the HNN base,
and a discussion of how this might be used to generalise Theorem 1.1.
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2 LOTs and higher ribbon knots

A labelled oriented tree (LOT) is a tree Γ, with vertex set V = V (Γ), edge set
E = E(Γ), and initial and terminal vertex maps ι, τ : E → V , together with an
additional map λ: E → V . For any edge e of Γ, λ(e) is called the label of e.
In general, one can consider LOTs of any cardinality, but for the purposes of
the present paper, every LOT will be assumed to be finite.

To any LOT Γ we associate a presentation

P = P(Γ) : 〈 V (Γ) | ι(e)λ(e) = λ(e)τ(e) 〉

of a group G = G(Γ), and hence also a 2–complex K = K(Γ) modelled on P .
The 2–complex K is a spine of a ribbon disk complement D4\k(D2) [7], that is
the complement of an embedded 2–disk in D4 , such that the radial function on
D4 composed with the embedding k is a Morse function on D2 with no local
maximum. Conversely, any ribbon disk complement has a 2–dimensional spine
of the form K(Γ) for some LOT Γ.

By doubling a ribbon disk, we obtain a ribbon 2–knot in S4 , and by successively
spinning we can obtain ribbon n–knots in Sn+2 for all n ≥ 2. In each case
the group of the knot is isomorphic to the fundamental group of the ribbon
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disk complement that we started with. Conversely, every ribbon n–knot (for
n ≥ 2) can be constructed this way, so that higher ribbon knot groups and
LOT groups are precisely the same thing.

Recall [12] that a group G is knot-like if it has a finite presentation with defi-
ciency 1 (in other words, one more generator than defining relator), and infinite
cyclic abelianisation. It is clear that every LOT group has these properties, so
LOT groups are special cases of knot-like groups.

The diameter of a finite connected graph Γ is the maximum distance between
two vertices of Γ, in the edge-path-length metric. A key factor in our situation
is the special nature of trees of diameter 3 or less. For any LOT Γ of diameter
0 or 1, it is easy to see that G(Γ) is infinite cyclic, so such LOTs are of little
interest.

Remark Every tree of diameter 2 has a single non-extremal vertex. Every
tree of diameter 3 has precisely 2 non-extremal vertices.

We recall from [7] that a LOT Γ is reduced if:

(i) for all e ∈ E , ι(e) 6= λ(e) 6= τ(e);

(ii) for all e1 6= e2 ∈ E , if λ(e1) = λ(e2) then ι(e1) 6= ι(e2) and τ(e1) 6= τ(e2);

(iii) every vertex of degree 1 in Γ occurs as a label of some edge of Γ.

For every LOT Γ there is a reduced LOT Γ′ with the same group as Γ, and
the same or smaller diameter, so we may also restrict our attention to reduced
LOTs.

A subgraph Γ′ of a LOT Γ is admissible if λ(e) ∈ V (Γ′) for all e ∈ E(Γ′). If Γ′

is connected and admissible, then it is also a LOT. A LOT is minimal if every
connected admissible subgraph consists only of a single vertex.

If Γ is a LOT and A ⊆ V (Γ), we define the span of A (in Γ) to be the smallest
subgraph Γ′ of G such that:

(i) A ⊆ V (Γ′); and

(ii) if e ∈ E(Γ) with λ(e) ∈ V (Γ′) and at least one of ι(e), τ(e) belongs to
V (Γ′), then e ∈ E(Γ′).
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We write span(A) for the span of A, and say that A spans, or generates Γ′ if
Γ′ = span(A). The following is essentially Proposition 4.2 of [7].

Lemma 2.1 If Γ is a LOT spanned by A, then P(Γ) is Andrews–Curtis
equivalent to a presentation with generating set A. If Γ′ is an admissible
subgraph of Γ with V (Γ′) ⊆ A, then the presentation may be chosen to contain
P(Γ′), and the Andrews–Curtis moves can be taken relative to P(Γ′).

Corollary 2.2 If Γ is a LOT spanned by two vertices, then G(Γ) is a torsion-
free one-relator group.

Proof Let A be a set of two vertices spanning Γ. Then P(Γ) is Andrews–
Curtis equivalent to a presentation 〈A|R〉. Since P(Γ) has deficiency 1, the
same is true of the equivalent presentation 〈A|R〉. In other words |R| = 1, and
G(Γ) is a one-relator group. But the abelianisation Gab of G is infinite cyclic,
so the relator r ∈ R cannot be a proper power, and so G is torsion-free.

We will require the following generalisation of Corollary 2.2. Recall that a one-
relator product of two groups A,B is the quotient of the free product A ∗B by
the normal closure of a single word w , called the relator.

Corollary 2.3 If Γ is a LOT spanned by V (Γ′)∪{x}, where Γ′ is an admissi-
ble subgraph of Γ and x is a vertex in V (Γ)\V (Γ′), then G(Γ) is a one-relator
product of G(Γ′) and Z, where the relator is not a proper power.

Proof Let A = V (Γ′)∪{x} and apply the Theorem. Then P(Γ) is equivalent,
relative to P(Γ′), to a presentation Q with generating set A and containing
P(Γ′). Now each of P(Γ), P(Γ′) and Q has deficiency 1. Moreover, Q has
one more generator than P(Γ′), so Q also has one more defining relator than
P(Γ′). It follows that G(Γ) is a one relator product of G(Γ′) with the infinite
cyclic group 〈x〉. Finally, since the abelianisations of G(Γ), G(Γ′) and 〈x〉 are
all infinite cyclic, it follows that the relator cannot be a proper power.

3 One-relator groups and one-relator products

The following result is merely a summary of some well-known properties of one-
relator groups, which have useful applications to our situation. Recall that a
group G is locally indicable if, for every nontrivial, finitely generated subgroup
H of G, there exists an epimorphism H → Z.

Minimal Seifert manifolds for higher ribbon knots

Geometry and Topology Monographs, Volume 1 (1998)

265



Theorem 3.1 Let G be a finitely generated one-relator group. Then

(i) G is either a finite cyclic group, or an HNN extension of a finitely pre-
sented, one-relator group (with shorter defining relator);

(ii) if the defining relator of G is not a proper power, then G is locally
indicable.

Proof See [11] and [3] respectively.

In order to complete the process of reducing ourselves to a simple special case,
we require a generalisation of the above theorem to one-relator products. Sup-
pose that A and B are locally indicable groups, and N = N(w) is the normal
closure in A ∗B of a cyclically reduced word w of length at least 2 that is not
a proper power. Then the one-relator product G = (A ∗B)/N is known [6] to
be locally indicable. We show also that G has a finitely presented HNN base,
provided that A and B also have this property.

Theorem 3.2 Let G = (A ∗B)/N(w) be a one-relator product of two finitely
presented, locally indicable groups A and B , each of which has a finitely pre-
sented HNN base. Suppose also that Gab is infinite cyclic, with each of the
natural maps Aab → Gab and Bab → Gab an isomorphism. Then G is a finitely
presented, locally indicable group with a finitely presented HNN base.

Remark The condition on Gab in this theorem is unnecessary for the proof
that G has a finitely presented HNN base. It can be removed at the expense of
a less straightforward proof. However the condition does hold for all the groups
that we are considering in this paper, so there is no loss of generality for us in
imposing that condition. The condition also ensures that w cannot be a proper
power, so that G is locally indicable by the results of [6].

Proof A presentation for G can be obtained by taking the disjoint union of
finite presentations for A and for B , and imposing the single additional relation
w = 1. Hence G is finitely presented. As pointed out in the remark above, w
cannot be a proper power, so G is locally indicable by [6]. It remains only to
prove that G has a finitely presented HNN base.

Let
A = 〈A0, a|a−1ga = α(g) (g ∈ A1)〉

and
B = 〈B0, b|b−1hb = β(h) (h ∈ B1)〉
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be HNN presentations for A and B with finitely presented bases A0 and B0

respectively. Since A and B are finitely presented, it follows also that the
associated subgroups A1 and B1 are finitely generated.

The commutator subgroup G′ of G can be expressed in the form

(A′ ∗B′ ∗ 〈 cn (n ∈ N)〉)/N({wn (n ∈ N)}),
where cn = an+1b−1a−n and wn = a−nwan .

Now A′ is an infinite stem product

· · · (a−1A0a) ∗ A0 ∗ (aA0a
−1) · · ·

(a−1A1a) A1

Since A0 is finitely presented and A1 is finitely generated, the subgroup

(a−kA0a
k) ∗ · · · · · · ∗ (akA0a

−k)
(a−kA1a

k) (ak−1A1a
1−k)

is finitely presented for each k . Moreover it is also an HNN base for A. Re-
placing A0 by this subgroup, for any sufficiently large k , we may assume that
w0 ∈ A0 ∗B′ ∗ 〈 cn (n ∈ N)〉.
Similarly, possibly after replacing B0 by a sufficiently large finitely presented
HNN base for B , we may assume that w0 ∈ A0 ∗ B0 ∗ 〈 cn (n ∈ N)〉. Now let
µ and ν be the least and greatest indices i such that ci occurs in w0 . (Note
that at least one ci occurs in w0 , for otherwise w0 ∈ A0 ∗ B0 , so w ∈ A′ ∗ B′ ,
whence Gab ∼= Aab × Bab 6∼= Z, a contradiction.) Define G0 = (A0 ∗ B0 ∗
〈cµ, . . . , cν〉)/N(w0) and G1 = A0 ∗B0 ∗ 〈cµ, . . . , cν−1〉, and observe that G0 is
a finitely presented HNN base for G, with associated subgroup G1 .

4 Reduction of the problem

Recall from section 2 that a LOT Γ is minimal if it contains no admissible
subtree with more than one vertex. In this section we reduce the proof of the
main theorem to the case of a minimal LOT of diameter 3, using the results of
section 3. The key point is that a non-minimal LOT can be obtained from a
minimal admissible subtree by successively expanding to the span of the existing
tree with one extra vertex. By Corollary 2.3, this construction corresponds at
the group level to taking a one-relator product of a given group with an infinite
cyclic group.
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Lemma 4.1 Let Γ be a LOT of diameter at most 3, containing a proper
admissible subtree with more than one vertex. Then there is such an admissible
subtree Γ′ and a vertex x ∈ V (Γ)\V (Γ′) such that Γ is spanned by V (Γ′)∪{x}.

Proof Suppose first that some extremal vertex x of Γ does not occur as a
label of any edge of Γ. In this case we take Γ′ to consist of Γ with the vertex x
and the edge incident to x removed. Clearly Γ′ is connected, so a subtree of Γ.
Since x is not the label of any edge in E(Γ′), it follows that Γ′ is admissible.
Moreover Γ is spanned by V (Γ) = V (Γ′) ∪ {x}, as required.

We may therefore assume that every extremal vertex of Γ occurs at least once
as the label of an edge of Γ.

Next suppose that Γ has a proper admissible subtree that contains all the non-
extremal vertices of Γ. Let Γ′ be a maximal such admissible subtree. The
vertices in V (Γ)\V (Γ′) are all extremal in Γ, so occur as labels of edges of
Γ. But since Γ′ is admissible, no such vertex can be a label of an edge of Γ′ .
Since the finite sets V (Γ)\V (Γ′) and E(Γ)\E(Γ′) have the same cardinality,
it follows that each vertex in V (Γ)\V (Γ′) is the label of precisely one edge
in E(Γ)\E(Γ′). In turn, this edge has precisely one endpoint in V (Γ)\V (Γ′),
so we can define a permutation σ on V (Γ)\V (Γ′) by defining σ(x) to be the
extremal endpoint of the unique edge labelled x, for all x ∈ V (Γ)\V (Γ′). Now
fix some vertex x ∈ V (Γ)\V (Γ′), let t be the size of the orbit of σ that contains
x, and define xi = σi(x), i = 1, . . . , t. Now ∆ = span(V (Γ′) ∪ {x}) contains
the vertex x = xt , together with any non-extremal vertex of Γ. Hence ∆
contains the edge labelled xt , and hence its endpoint x1 . Similarly ∆ contains
x2, . . . , xt−1 , as well as the edges labelled x1, . . . , xt−1 . On the other hand, The
vertices x1, . . . , xt , the edges labelled by them, and the vertices and edges of Γ′

together form an admissible subtree of Γ, which by maximality of Γ′ must be
the whole of Γ. Hence ∆ = Γ, in other words Γ is spanned by V (Γ′) ∪ {x}.

Finally, suppose that no proper admissible subtree of Γ contains all the non-
extremal vertices of Γ. In particular, Γ must have more than one non-extremal
vertex, so has diameter 3. By hypothesis, there is a proper admissible subtree
Γ′ of Γ that contains more than one vertex. Hence Γ′ contains precisely one of
the two nonextremal vertices of Γ, say u. As an abstract graph, Γ is the union
of Γ′ with another tree Γ′′ , such that Γ′ ∩ Γ′′ = {u}. Note that Γ′′ contains
both of the non-extremal vertices of Γ, so cannot be an admissible subtree, by
hypothesis. Hence at least one edge f of Γ′′ is labelled by a vertex a of Γ′

(other than u). Let e be the edge of Γ that joins the two non-extremal vertices
u, v , and let ∆ = span(V (Γ′) ∪ {λ(e)}). Then ∆ contains Γ′ and the edge e,
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and hence v , and hence the edge f . Each extremal vertex of ∆ is the label of
an edge of Γ, and hence of ∆, since ∆ contains at least one endpoint (namely
u or v) of every edge of Γ. Moreover there are |E(Γ′)|+ 1 edges of ∆ labelled
by the |V (Γ′)| = |E(Γ′)|+1 vertices of Γ′ , so an easy counting argument shows
that there must be at least |V (∆)| − 1 edges in ∆. In other words ∆ is a tree,
so the whole of Γ. In other words Γ is spanned by V (Γ′) ∪ {λ(e)}.

Remark If Γ is a minimal LOT of diameter 2, then the above argument still
applies (to the subtree consisting of only the unique non-extremal vertex). In
this case we see that the permutation σ is transitive, and that Γ is spanned by
two vertices.

Lemma 4.2 Let Γ be a minimal LOT of diameter 3, and let u, v be the two
non-extremal vertices of Γ. Then one of the following holds:

(i) One of u, v is a label in Γ, and Γ is spanned by {u, v};
(ii) Some vertex a occurs twice as a label in Γ, and Γ is spanned by {a, u, v}.

Proof By minimality of Γ, every extremal vertex of Γ occurs as a label. There
are |V | − 2 extremal vertices, and |V | − 1 edges, so either one of u, v occurs
as a label or some unique extremal vertex a occurs twice as a label. Note that
every edge of Γ is incident to at least one of u, v , so if u, v ∈ A ⊂ V then every
edge labelled by a vertex of span(A) is an edge of span(A).

(i) Suppose that u occurs as a label, and let Γ′ = span({u, v}). If Γ′ has
k + 2 vertices u, v, x1, . . . , xk , then x1, . . . , xk are all extremal in Γ, so
each of u, x1, . . . , xk is a label of an edge of Γ, which must therefore be
an edge of Γ′ . Hence Γ′ has at least k − 1 edges, so is connected. By
minimality of Γ we have Γ = Γ′ = span({u, v}).

(ii) Suppose that an extremal vertex a appears twice as a label, and let
Γ′ = span({a, u, v}). If Γ′ has k+ 3 vertices a, u, v, x1, . . . , xk , then each
of x1, . . . , xk is extremal, so the label of an edge of Γ, while a is the label
of 2 edges of Γ. Each of these k + 2 edges is an edge of Γ′ , so Γ′ is
connected, and by minimality again we have Γ = Γ′ = span({a, u, v}).

Corollary 4.3 If Γ is either a minimal LOT of diameter 2, or a minimal LOT
of diameter 3 in which no vertex occurs twice as a label, then G(Γ) is a locally
indicable group with a finitely presented HNN base.
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Proof By Lemma 4.2 or the remark following Lemma 4.1, Γ is spanned by
two vertices. Hence G = G(Γ) is a 2–generator, one-relator group. Since Gab

is infinite cyclic, G is not finite, and the relator of G cannot be a proper power.
The result follows immediately from Theorem 3.1.

Using the above results, we can reduce our problem to the case of a minimal
LOT of diameter 3 that is not spanned by two vertices. In particular, some
extremal vertex must occur twice as a label.

Corollary 4.4 If the group of every reduced, minimal LOT of diameter 3
which is not spanned by two vertices is locally indicable with finitely presented
HNN base, then the same is true for every LOT of diameter 3 or less.

Recall [7] that the initial graph I(Γ) of Γ is the graph with the same vertex
and edge sets as Γ, but with incidence maps ι, λ. Similarly the terminal graph
T (Γ) of Γ has the same vertex and edges sets as Γ, but incidence maps λ, τ . It
was shown in [7] that the commutator subgroup of G(Γ) is locally free if either
I(Γ) or T (Γ) is connected. (If I(Γ) and T (Γ) are both connected, then G(Γ)′

is free of finite rank.) In particular, any finitely generated HNN base for G(Γ)
is free, so automatically finitely presented.

Hence we can concentrate attention on the case of a minimal LOT Γ of diameter
3, not spanned by any two of its vertices, such that neither I(Γ) nor T (Γ) is
connected. Our next result gives a detailed description of the structure of I(Γ).
In particular it will show us that I(Γ) has precisely two connected components,
one containing each of the nonextremal vertices of Γ. A similar statement holds
for T (Γ).

Lemma 4.5 Let Γ be a minimal LOT of diameter 3, with nonextremal vertices
u and v , and an extremal vertex a that occurs twice as a label of edges of Γ.
Then:

(i) u and v are sources in I(Γ);

(ii) no vertex other than u or v is the initial vertex of more than one edge of
I(Γ);

(iii) a is the terminal vertex of precisely two edges of I(Γ);

(iv) each vertex other than a, u, v is the terminal vertex of precisely one edge
of I(Γ);

(v) any directed cycle in I(Γ) contains a;

(vi) each component of I(Γ) contains at least one of u, v ;
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(vii) I(Γ) has at most two connected components.

Proof (i) Since λ(e) 6= u for all e ∈ E(Γ), u is not the terminal vertex of
any edge in I(Γ), in other words u is a source. Similarly v is a source in
I(Γ).

(ii) Any vertex x of Γ, with the exception of u and v , is extremal in Γ, so
the initial vertex of at most one edge of Γ. Hence x is also the initial
vertex of at most one edge in I(Γ).

(iii) a = λ(e) for precisely two edges e ∈ E(Γ).

(iv) If x ∈ V (Γ)\{a, u, v} then x = λ(e) for precisely one edge e ∈ E(Γ).

(v) Suppose (e1, e2, . . . , en) is a directed cycle in I(Γ). Then there are vertices
x1, . . . , xn ∈ V (Γ) with xi = ι(ei) for all i, λ(ei) = xi+1 for i < n, and
λ(en) = x1 . Now each xi is extremal since it occurs as a label. If no xi
is equal to a then we can remove the vertices x1, . . . , xn and the edges
e1, e2, . . . , en from Γ to form a connected, admissible subgraph Γ′ that
contains at least three vertices (a, u, v). This contradicts the minimality
of Γ, and so xi = a for some i, as claimed.

(vi) By (iv) if x 6∈ {a, u, v} then x is the terminal vertex in I(Γ) of a unique
edge. If the initial vertex of this edge is not one of a, u, v then it also
is the terminal vertex of a unique edge. Continuing in this way, we can
construct a directed path that ends at x, and either begins at one of
a, u, v or contains a cycle. By (v) any directed cycle contains a, so in any
case we have a directed path from one of a, u, v to x. It suffices therefore
to find a path in I(Γ) from u or v to a. But a is the terminal vertex
in I(Γ) of precisely two edges, with initial vertices x1 and x2 say. Now
apply the above argument to each of x1, x2 . If there is a path from u or
v to x1 or x2 then we are done. Otherwise there are directed paths from
a to each of x1, x2 . Neither u nor v can belong to these paths, since they
are sources in I(Γ). But then from (ii) it follows that there is at most
one directed path of any given length beginning at a, whence x1 = x2 , a
contradiction. Hence there is a directed path in I(Γ) from u or v to a,
as claimed.

(vii) This follows immediately from (vi).

A similar result holds for T (Γ).

Lemma 4.6 Let Γ be a minimal LOT of diameter 3, with nonextremal vertices
u and v , and an extremal vertex a that occurs twice as a label of edges of Γ.
Then:
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(i) u and v are sinks in T (Γ);

(ii) no vertex other than u or v is the terminal vertex of more than one edge
of T (Γ);

(iii) a is the initial vertex of precisely two edges of T (Γ);

(iv) each vertex other than a, u, v is the initial vertex of precisely one edge of
T (Γ);

(v) any directed cycle in T (Γ) contains a;

(vi) each component of T (Γ) contains at least one of u, v ;

(vii) T (Γ) has at most two connected components.

Corollary 4.7 Suppose that Γ is a reduced, minimal LOT of diameter 3,
which is not spanned by two vertices, and such that neither I(Γ) nor T (Γ) is
connected. Then

(i) There is a unique extremal vertex a of Γ that is the label of two distinct
edges of Γ. One of these edges has an extremal initial vertex, and the
other has an extremal terminal vertex.

(ii) I(Γ) has precisely two connected components, each containing one of the
two nonextremal vertices u, v of Γ.

(iii) There is a unique cycle in I(Γ), which is either a directed cycle containing
a, or consists of two directed paths (one of length 1, the other of length
at least 2), from u or v to a.

(iv) T (Γ) has precisely two connected components, each containing one of the
two nonextremal vertices u, v of Γ.

(v) There is a unique cycle in T (Γ), which is either a directed cycle containing
a, or consists of two directed paths (one of length 1, the other of length
at least 2), from a to u or v .

(vi) The cycles in I(Γ) and T (Γ) are not both directed.

Proof (i) We already know that there is an extremal vertex a occurring
twice as a label, by Lemma 4.2, since otherwise Γ can be spanned by
two vertices. We also know that a is unique, since every extremal vertex
occurs at least once as a label. Now suppose that neither of the edges la-
belled a has extremal initial vertex. The initial vertices of these two edges
must be distinct, since Γ is reduced, and so must be the two nonextremal
vertices u, v of Γ. But then there are edges of I(Γ) from both u and v
to a. Hence u and v belong to the same connected component of I(Γ).
By Lemma 4.5, (vi) it follows that I(Γ) is connected, a contradiction.
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A similar contradiction arises if neither edge has an extremal terminal
vertex.

(ii) This is just a restatement of Lemma 4.5, (vi), together with the hypothesis
that I(Γ) is not connected.

(iii) Since I(Γ) has the same vertex and edge sets as Γ, it has the same euler
characteristic, namely 1. Since I(Γ) has two components, it follows that
H1(Γ) ∼= Z, so there is a unique cycle in I(Γ). If this cycle is directed,
then it must contain a, by Lemma 4.5, (v). Otherwise it must contain
at least two vertices at which the orientation of the edges of the cycle
changes. This is possible only at a vertex which is either the initial vertex
of at least two edges or the terminal vertex of at least two edges, and by
Lemma 4.5 the only such vertices are a, u, v . Let us assume that a is in
the same component of I(Γ) as u. Then the cycle must contain both a
and u, and indeed must consist of two directed paths from u to a. By
uniqueness of the cycle (or directly from Lemma 4.5), we see that there
only two directed paths in I(Γ) from u to a. Moreover, precisely one of
these paths is of length 1, since precisely one of the edges of Γ labelled a
has a nonextremal initial vertex.

(iv) Similar to (ii).
(v) Similar to (iii).
(vi) If the cycle in I(Γ) is directed, then there is an edge of I(Γ) with initial

vertex a, and so also there is an edge of Γ with initial vertex a. Similarly,
if the cycle in T (Γ) is directed, then there is an edge of Γ with terminal
vertex a. Since a is extremal in Γ, these cannot both occur.

5 Construction of the HNN base

In this section, we construct a presentation of a group that will turn out to be
an HNN base for G. As a first step, we fix names for the various vertices of Γ.
Throughout we make the following assumptions:

• Γ is a minimal LOT of diameter 3, which cannot be spanned by fewer
than three vertices.

• The non-extremal vertices of Γ are u and v .
• The unique vertex of Γ that appears twice as a label is a.
• Of the edges labelled a, one has its initial vertex in {u, v} and its terminal

vertex extremal, while the other has its initial vertex extremal and its
terminal vertex in {u, v}.
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• Neither I(Γ) nor T (Γ) is connected.

We know from Lemma 4.2 that Γ is then spanned by {a, u, v}. Let ∆ denote
the subtree of Γ whose vertex set is {a, u, v}. We give inductive definitions
of two sequences {b1, b2, . . . , bP } and {c1, c2, . . . , cQ} of vertices of Γ, and two
sequences {e0, . . . , eP }, {f0, . . . , fQ} of edges of Γ as follows.

Define e0 to be the edge of Γ whose label is a and whose terminal vertex is
in {u, v}. For i ≥ 0, assume inductively that ei has been defined. If ei is an
edge of ∆, then we define P = i and stop the construction of the sequences
{b1, b2, . . . , bP } and {e0, . . . , eP }. Otherwise ei joins one of {u, v} to an ex-
tremal vertex other than a, and we define bi+1 to be that extremal vertex, and
ei+1 to be the unique edge of Γ labelled bi+1 .

Similarly, define f0 to be the edge of Γ whose label is a and whose initial
vertex is in {u, v}. For i ≥ 0, assume inductively that fi has been defined.
If fi is an edge of ∆, then we define Q = i and stop the construction of the
sequences {c1, c2, . . . , cQ} and {f0, . . . , fQ}. Otherwise fi joins one of {u, v}
to an extremal vertex other than a, and we define ci+1 to be that extremal
vertex, and fi+1 to be the unique edge labelled by ci+1 .

Note that the P+Q+3 vertices {u, v, a, b1, . . . , bP , c1, . . . , cQ} and the P+Q+2
edges {e0, . . . , eP , f0, . . . , fQ} together form an admissible subgraph of Γ, which
has euler characteristic 1 and hence is connected, and hence by minimality of
Γ must be the whole of Γ. In other words

V = V (Γ) = {u, v, a, b1, . . . , bP , c1, . . . , cQ},

and
E = E(Γ) = {e0, . . . , eP , f0, . . . , fQ}.

We also introduce the following notation. For i = 1, . . . , P , xi denotes the
unique non-extremal vertex of Γ (ie xi ∈ {u, v}) incident with the edge ei−1 .
For i = 1, . . . , Q, yi denotes the unique non-extremal vertex of Γ incident with
the edge fi−1 . In other words, xi is the vertex adjacent to bi in Γ, and yi is
the vertex adjacent to ci .

Lemma 5.1 (i) If x2 = . . . = xP = u, then x1 = v and eP is incident at
v .

(ii) If x2 = . . . = xP = v , then x1 = u and eP is incident at u.

(iii) If y2 = . . . = xQ = u, then y1 = v and fQ is incident at v .

(iv) If y2 = . . . = yQ = v , then y1 = u and fQ is incident at u.
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Proof We prove (i). The other proofs are similar.

Suppose first that x1 = x2 = . . . = xP = u, and consider the subgraph Γ0 =
span{a, u} of Γ. Since λ(e0) = a and e0 is incident to u, we have e0 ∈ E(Γ0),
and since b1 is an endpoint of e0 we have b1 ∈ V (Γ0). Similarly e1 ∈ E(Γ0)
and b2 ∈ V (Γ0), and so on, until eP ∈ E(Γ0). If eP is incident with v , then
v ∈ V (Γ0), and since Γ is spanned by {a, u, v} it follows that Γ = Γ0 is
spanned by {a, u}, a contradiction. Otherwise, eP joins a to u, in which case
the vertices a, u, p1, . . . , bP and the edges e0, . . . , eP form an admissible subtree
of Γ of diameter two, which again is a contradiction.

Now suppose that x1 = v and x2 = . . . = xP = u, and let Γ0 = span{b1, u}.
Arguing as above, we see that Γ0 contains the edges e1, . . . , eP−1 and the
vertices u, b1, . . . , bP . If eP is not incident at v , then it joins u to a, so eP and
a also belong to Γ0 . But then e0 joins b1 to v and has label a, so we also have
v ∈ V (Γ0). Hence Γ = Γ0 since Γ is spanned by {a, u, v}, and so Γ is spanned
by {b1, u}, a contradiction.

We next subdivide each of the sequences {bi}, {ci} into two subsequences,
depending on the orientation of the edges labelled by these vertices. Specifically,
let:

• p(1), . . . , p(s) be the sequence, in ascending order, of integers i such that
0 < i ≤ P and bi = τ(ei−1);

• p′(1), . . . , p′(s′) be the sequence, in ascending order, of integers i such
that 0 < i ≤ P and bi = ι(ei−1);

• q(1), . . . , q(t) be the sequence, in ascending order, of integers i such that
0 < i ≤ Q and ci = ι(fi−1); and

• q′(1), . . . , q′(t′) be the sequence, in ascending order, of integers i such
that 0 < i ≤ Q and ci = τ(fi−1).

For consistency of notation in what follows, we set p(0) = p′(0) = q(0) =
q′(0) = 0.

Thus each bi , for i = 1, . . . , P , can be written uniquely as bp(j) or as bp′(j) , and
each ci , for i = 1, . . . , Q, can be written uniquely as cq(j) or as cq′(j) .

This notation allows us to give a more precise description of the structure of
the initial and terminal graphs of Γ. Specifically, I(Γ) is constructed from the
vertices {a, u, v} by adding two edges
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x x x- �

y1 b1a

f0 e0

together with directed chains

x x x x- . . . . . . . . . . . . . . . . . -

xp(i)+1 bp(i) bp(i−1)+2 bp(i−1)+1

ep(i) ep(i−1)+1

for each i = 1, . . . , s, and

x x x x- . . . . . . . . . . . . . . . . . -

yq′(i)+1 cq′(i) cq′(i−1)+2 cq′(i−1)+1

fq′(i) fq′(i−1)+1

for each i = 1, . . . , t′ ; and finally single edges

x x-

xj+1 bj

ej

for p(s) < j ≤ P and

x x-

yj+1 cj

fj

for q′(t′) < j ≤ Q.

In the above diagrams xP+1 and yQ+1 (which have not been defined) should
be interpreted as ι(eP ) and ι(fQ) respectively. Note that at most one of these
is equal to a. (This happens if and only if a is the initial vertex of its incident
edge in Γ.) All other xj and yj belong to {u, v}.

If I(Γ) contains a directed cycle, for example, then this cycle must contain a.
From the above, we see that this can happen only if s = 1, p(1) = P , and
xP+1 = a.
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The structure of T (Γ) is entirely analogous, and similar remarks apply. We
omit the details.

Now we are ready to construct a specific presentation for an HNN base for
G = G(Γ). Recall that G is given by a finite presentation

P(Γ) = 〈V (Γ) | ι(e)λ(e) = λ(e)τ(e), e ∈ E(Γ)〉.

Since Γ is connected, we have Gab ∼= Z, and the commutator subgroup G′ is
the normal closure in G of the subgroup B = B(Γ) generated by the finite set
{xy−1 ; x, y ∈ V (Γ)}. A theorem of Bieri and Strebel [2] says that G is an
HNN extension of B with stable letter t (which can be taken to be any element
of V (Γ)) and associated subgroups A0 = B ∩ tBt−1 and A1 = B ∩ t−1Bt:

G = 〈B, t | t−1αt = φ(α), α ∈ A0〉,

where φ: A0 → A1 is the isomorphism induced by conjugation by t.

Clearly B is finitely generated. It remains to prove that B is finitely pre-
sentable, and we do this by constructing an explicit set of defining relators.

Recall that our assumptions on Γ imply that each of I(Γ) and T (Γ) has pre-
cisely two connected components, with the vertices u, v belonging to separate
components in each case.

Let F denote the subgroup of the free group on V (Γ) generated by

{xy−1 ; x, y ∈ V (Γ)}.

Then F is free of rank |V (Γ)| − 1 = |E(Γ)|, and any basis for F can be chosen
as a finite generating set for B . Rather than fix a specific basis for F , we
proceed as follows. Let K̄ = K̄(Γ) be the maximal abelian cover of the 2–
complex K = K(Γ) associated to Γ (which is the standard 2–complex model
of the presentation P(Γ)). Then since K has a single 0–cell, we identify the
0–cells of K̄ with integers, via the isomorphism H1(K) ∼= Gab ∼= Z. The 1–cells
of K̄ with initial vertex i ∈ Z can be denoted wi , where w ∈ V (Γ), and each
wi has terminal vertex i+1 ∈ Z. Let L be the 1–subcomplex of K̄ with 0–cells
0, 1 and 1–cells {w0, w ∈ V (Γ)}. Then F is naturally identified with π1(L, 0).

We also construct a graph L̂ and an immersion π: L̂→ L as follows. V (L̂) =
{0, 1} × {u, v}, E(L̂) = E(L), ι(w0) = (0, x) where x ∈ {u, v} belongs to the
same component of I(Γ) as w , and τ(w0) = (1, y) where y ∈ {u, v} belongs to
the same component of T (Γ) as w . The graph homomorphism π is defined to
be the identity map on edges, and is defined on vertices by π(i, u) = π(i, v) = i,
i = 0, 1. It is not difficult to see that L̂ is connected. Indeed, if the edge of
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Γ between u and v has label w , then the edges u, v,w of L̂ form a spanning
tree. Since π is bijective on edges, it is an immersion, and hence injective
on fundamental groups. Indeed, the fundamental group F̂ of L̂ embeds as a
free factor of F = π1(L) via π∗ , as we can see by the following construction:
add an edge X to L̂ with ι(X) = (0, u) and τ(X) = (0, v), and an edge Y
with ι(Y ) = (1, u), τ(Y ) = (1, v), to form a larger graph L̃. The immersion
π: L̂→ L extends to a homotopy equivalence π: L̃→ L that shrinks the edge
X to the vertex 0, and the edge Y to the vertex 1. Hence we have

F = π1(L) ∼= π1(L̃) = π1(L̂) ∗ 〈X,Y 〉.

Since the map π: L̂→ L is bijective on edges, any path in L which lifts to a path
in L̂ does so uniquely. Given a closed path C in L that lifts to a closed path
Ĉ in L̂, we define two related paths in L, namely the forward derivative ∂+C
of C and the backward derivative ∂−C of C , as follows. For ∂+C we first fix a
maximal subforest ΦI of I(Γ). Next, we cyclically permute Ĉ so that it begins
and ends at one of the vertices (1, u) or (1, v). Hence Ĉ is a concatenation of
length two subpaths of the form x−1y , where x, y ∈ E(L̂) = V (Γ) belong to
the same component of I(Γ). The next step is to replace each such subword
x−1y by the product

(x−1z0)(z−1
0 z1) . . . (z−1

m y),

where (x, z0, z1, . . . , zm, y) is the geodesic from x to y in ΦI . We now have a
concatenation of length 2 subwords of the form x−1y where x and y are joined
by an edge in ΦI . This edge corresponds to an edge of Γ, and hence to a
defining relation in P(Γ) that can be written

x−1y = gh−1

for some g, h ∈ V (Γ). The final step is to replace each such word x−1y by the
corresponding word gh−1 . The result is a closed path ∂+C in L.

Remarks (i) ∂+C depends on the choice of maximal forest ΦI , and then
is well-defined only up to cyclic permutation.

(ii) If C ′ is a cyclic permutation of C , then C ′ also lifts to a closed path in
L̂, so ∂+C

′ is defined. It is equal to (a cyclic permutation of) ∂+C .

(iii) The definition of ∂+C does not depend on C being (cyclically) reduced.
Indeed the insertion into C of a cancelling pair xx−1 may alter ∂+C .
However, the insertion of a cancelling pair x−1x will not alter ∂+C .

(iv) C and ∂+C are (freely) homotopic in K̄ (since the last part of the con-
struction involves replacing a path x−1y by a homotopic path gh−1 ). In
particular, if C is nullhomotopic in K̄ , then so is ∂+C .
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(v) The unique lift of ∂+C in L̃ does not contain the edge Y .

The backward derivative ∂−C is defined similarly. This time we fix a maximal
forest ΦT of T (Γ), and choose a cyclic permutation of Ĉ beginning at (0, u) or
(0, v), split Ĉ into subpaths of the form xy−1 with x, y in the same component
of T (Γ), and then use relations of P corresponding to edges of ΦT to transform
Ĉ . Remarks analogous to the above hold also for ∂−C .

Now consider the unique cycle in T (Γ). If z0, . . . , zm are the vertices of this
cycle in cyclic order, define R̂0 to be the nullhomotopic path

(zmz−1
0 )(z0z

−1
1 ) . . . (zm−1z

−1
m )

in L̂ and R0 = π(R̂0) the corresponding nullhomotopic path in L. Now define
R1 = ∂−R0 . If R1 lifts to L̂ then define R2 = ∂−R1 , and so on. In this way we
obtain either an infinite sequence R1, R2, . . . of paths in L, or a finite sequence
R1, . . . , RM such that RM does not lift to L̂.

In a similar way, the unique cycle in I(Γ) determines a nullhomotopic closed
path S0 in L that lifts to L̂, so a sequence S1, . . . of closed paths in L (finite
or infinite), such that Si = ∂+Si−1 for each i ≥ 1, and if the sequence is finite
with final term SN then SN does not lift to L̂.

Lemma 5.2 The paths Ri and Sj are all nullhomotopic in K̄ .

Proof This follows by induction and Remark (iv) above, since R0 and S0 are
nullhomotopic.

Now suppose that the sequence {Ri} contains at least m terms. We con-
struct a 2–complex Lm as follows. The 1–skeleton of Lm is the subcomplex
of K̄ consisting of L, together with the 0–cells 2, . . . ,m + 1 and the 1–cells
u1, v1, . . . , um, vm . Then Lm has precisely m 2–cells attached to L using the
paths R1, . . . , Rm . We also consider the full subcomplex K̄m of K̄ on the set
{0, 1, . . . ,m+ 1} of 0–cells.

Lemma 5.3 The 2–complexes Lm and K̄m are homotopy equivalent.

Proof We argue by induction on m, there being nothing to prove in the case
m = 0. Let γ denote the covering transformation of K̄ that sends a 0–cell n ∈ Z
to n+ 1. Note that the link of the 0–cell m+ 1 in K̄m is naturally identifiable
with the graph T (Γ). Let d be the unique edge in E(Γ) = E(T (Γ)) that does
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not belong to the maximal forest ΦT ⊂ T (Γ). Then d is contained in the
unique cycle in T (Γ), so R0 has a subword xy−1 , where x, y are the endpoints
of d in T (Γ). Corresponding to d is a relator xy−1h−1g in P , which lifts to
a 2–cell α with boundary path xmy

−1
m h−1

m−1gm−1 in K̄m . Modulo the other
2–cells of K̄m , the boundary path of α is homotopic to γm(R0)−1 · γm−1(R1).
Since R0 is nullhomotopic in the 1–skeleton of K̄ , this is in fact homotopic to
γm−1(R1). This in turn is homotopic (in K̄m−1 ) to γm−2(R2), etc. Repeating
this argument, we see that the boundary path of α is homotopic in K̄m\α
to Rm . A simple homotopy move allows us to replace α by a 2–cell whose
boundary path is Rm .

The link of m+1 in the resulting 2–complex K ′ is then isomorphic to T (Γ)\d =
ΦT . Since ΦT is a forest with two components (one containing u and the other
containing v), it collapses to the graph with no edges and vertex set {u, v}.
Each move in this collapsing process (removing a vertex and an edge from
the graph) can be mirrored by a collapse in the 2–complex K ′ (removing a
1–cell and a 2–cell that are incident at the 0–cell m + 1). After performing
all these collapsing moves, we are left with a 2–complex K ′′ , simple homotopy
equivalent to K̄m . By inspection, K ′′ is formed from K̄m−1 by adding a 2–cell
with boundary path Rm , a 0–cell m+ 1, and two 1–cells um, vm , each joining
m to m+ 1.

By inductive hypothesis, K̄m−1 is homotopy equivalent to Lm−1 , so K̄m is
homotopy equivalent to the 2–complex obtained from Lm−1 by adding a 2–cell
with boundary path Rm , a 0–cell m+ 1, and two 1–cells um, vm , each joining
m to m+1. But this 2–complex is precisely Lm , and the proof is complete.

Remark An analogous result holds for the Sj . We omit the details, but will
use this result implicitly in what follows.

Corollary 5.4 If R1, . . . , Rm and S1, . . . , Sn are all defined, then m + n <
|V (Γ)|.

Proof By the Lemma and its analogue for the Sj , K̄m is homotopy equivalent
to a 2–complex formed from L by attaching m 2–cells and then wedging on m
circles; and γ−n(K̄n) is homotopy equivalent to a complex obtained from L by
adding n 2–cells and then wedging on n circles. Since γ−n(K̄m+n) = γ−n(K̄n)∪
K̄m , with γ−n(K̄n) ∩ K̄m = K̄1 = L, it follows that γ−n(K̄m+n) is homotopy
equivalent to a complex formed from L by adding m + n 2–cells and then
wedging on m+n circles. Hence β1(K̄m+n) ≥ m+n. Now H2(K) = 0, and K̄
is a Z–cover of K , so H2(K̄) = 0 by [1], Proposition 1. Hence also H2(K ′) = 0
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for any subcomplex K ′ ⊆ K . In particular H2(K̄m+n) = 0 = H2(L). Since
also H0(K̄m+n) = Z = H0(L) and χ(K̄m+n) = χ(L) = 2 − |V (Γ)|, it follows
that

m+ n ≤ β1(K̄m+n) = β1(L) = |V (Γ)| − 1.

Corollary 5.5 Each of the sequences {Ri} and {Sj} are finite, and if the final
terms are RM and SN respectively then M +N < |V (Γ)|.

We claim that the finite sequences {Ri} and {Sj} form a full set of defining
relators for the HNN base B of G, which completes the proof of our Theorem
1.1. In order to prove this claim, we need to derive some further information
about the structure of the words Ri and Sj .

Remark The definitions of Ri and Si depend, a priori, on specific choices
for the maximal forests ΦT and ΦI respectively. Suppose we were to choose a
different maximal tree Φ′I in I(Γ), for example. Then geodesics in ΦI and Φ′I
would differ at most by the unique cycle in I(Γ). It follows from this that the
resulting definitions of ∂+C , for any closed path C in L that lifts to L̂, are
equal modulo the normal closure of S1 . An easy induction shows that, for any
i, the definitions of Si resulting from different choices of ΦI are equal modulo
the normal closure of {S1, . . . , Si−1}. Hence our set of defining relators does
not depend in an essential way upon the choices of maximal forests ΦI and ΦT .

6 Structure of the relations

In this section we examine the structure of the proposed defining relators Ri
and Si of the HNN base B for G. Recall that each of Ri and Si is a closed
path in the 2–complex L, and that we have a homotopy equivalence π: L̃→ L,
which restricts to an edge-bijective graph immersion on L̂ = L̃\{X,Y } and
shrinks each of the 1–cells X,Y to a point. Let C̃ denote the unique (up to
cyclic permutation) cyclically reduced closed path in L̃ that maps to a given
cyclically reduced closed path C in L. Then C lifts to L̂ if and only if C̃ is a
path in L̂, in which case C̃ is the unique lift. By definition, each Ri (resp Si )
is defined if and only if Ri−1 (resp Si−1 ) lifts to L̂. Hence R̃i is a path in L̂
for 1 ≤ i ≤ M − 1, and Si is a path in L̂ for 1 ≤ i ≤ N − 1. Moreover, the
path R̃M involves Y but not X , while the path S̃N involves X but not Y .

For any group A and letter Z , we say that a word w ∈ A ∗ 〈Z〉 is positive (resp
negative) in Z if only positive (resp negative) powers of Z occur in w . We
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say that w is strictly positive (resp strictly negative) if in addition at least one
positive (resp negative) power of Z does occur in w , in other words w 6∈ A.

We will concentrate our attention on the relators Si . The analysis of the Ri is
entirely analogous.

We first treat the case where I(Γ) contains a directed cycle C .

Theorem 6.1 Suppose that the unique cycle C in I(Γ) is directed. Then:

• N = 1;

• S̃1 is either strictly positive or strictly negative in X ;

• S1 involves each of a, b1, . . . , bP exactly once, and no cj ;

• each of a, b1, . . . , bP is an extremal source in Γ.

Proof The vertex a is contained in C , by Lemma 4.5, (v). Since ι(f0) ∈
{u, v}, f0 is not an edge of C , so the edge of C coming into a is e0 . Hence
b1 = ι(e0) is a vertex of C , and since e1 is the only edge with λ(e1) = b1 ,
it is also an edge of C , and so on. Hence each of b1, . . . , bP are vertices of
C , ι(eP ) = a, and the edges of C are precisely eP , . . . , e0 (in the order of the
orientation of C ). Each of the vertices of C is extremal in Γ, and since it is
the initial vertex of an edge of I(Γ) it is also the initial vertex of an edge of Γ,
ie a source in Γ. Moreover

S0 = (a−1bP )(b−1
P bP−1) . . . (b−1

1 a),

so
S1 = ∂+S0 = (bP τ(eP )−1)(bP−1x

−1
P ) . . . (b1x−1

2 )(ax−1
1 ),

where each xi ∈ {u, v}.
Suppose that S1 lifts to L̂. Then τ(eP ) belongs to the same component of I(Γ)
as bP−1 , xP to the same component as bP−2 , and so on. Since a, b1, . . . , bP all
belong to the same component of I(Γ), it follows that the xi also all belong
to the same component. But u and v belong to different components of I(Γ),
and so the xi are all equal, which contradicts Lemma 5.1.

Hence S1 does not lift to L̂, and so N = 1. Moreover, by the above argument,
some of the xi belong to the opposite component of I(Γ) from a. If a, u belong
to the same component of I(Γ), this means that some of the xi are equal to v .
Then S̃1 is formed from S1 by replacing each occurrence of v−1 by v−1X−1 , and
so S̃1 is strictly negative in X . Similarly, if a, v belong to the same component
of I(Γ), then S̃1 is strictly positive in X .
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For the rest of the section, we can assume that the cycle C is not directed.
Then y1 = ι(f0) = ι(ep(1)) ∈ {u, v}. We may assume that y1 = u. Then C has
the form

x x x x

x x

- . . . . . . . . . . . . . . . . . -

-

6?

a

bp(1) bp(1)−1 b2 b1

u

Figure 1

For the purpose of defining forward derivatives, and hence the Si , we fix ΦI to
be the maximal subforest of I(Γ) obtained by removing the edge f0 (the edge
joining u to a in C ).

For k ≤ min(s, t′ + 1), let Ik(Γ) denote the subgraph of ΦI consisting of the
edges {ei, 0 ≤ i ≤ p(k)} and {fi, 1 ≤ i ≤ q′(k − 1)}, together with all their
incident vertices. Note that Ik contains no more than two components, one
contained in each component of ΦI . Hence whenever two vertices of Ik belong
to the same component of ΦI , then the geodesic between them is also contained
in Ik .

Theorem 6.2 Suppose that the cycle in I(Γ) has the form shown in Figure
1. Then:

(i) Each Si can be written, up to cyclic permutation, in the form aUia
−1Vi ,

where Ui is a word in

{a, u, v, c1, . . . , cq′(i−1)+1};
and Vi is a word in

{a, u, v, b1, . . . , bp(i)+1}.
(ii) If p(i) < P , then Vi contains a single occurrence of bp(i)+1 and does not

contain a.

(iii) If q′(i − 1) < Q, then Ui contains a single occurrence of cq′(i−1)+1 and
does not contain a.

(iv) Every letter occurring in Si , other than bp(i)+1 and cq′(i−1)+1 , is a vertex
of the subgraph Ii ⊆ I(Γ).

Minimal Seifert manifolds for higher ribbon knots

Geometry and Topology Monographs, Volume 1 (1998)

283



(v) If p(i) = P or q′(i− 1) = Q then i = N .

Proof We prove this by induction on i, the initial case being when i = 1. We
have

S0 = (u−1a)(a−1b1)(b−1
1 b2) . . . (b−1

p(1)u),

so
S1 = ∂+S0 = (ac−1

1 )(x1a
−1)(x2b

−1
1 ) . . . (xp(1)b

−1
p(1)−1)(bp(1)+1b

−1
p(1))

(if p(1) < P ). The vertices a, u, b1, . . . , bp(1) are contained in I1 , but not
c1 , bp(1)+1 . The first four statements of the result (for i = 1) follow, setting
U1 = c−1

1 x1 and

V1 = (x2b
−1
1 ) . . . (xp(1)b

−1
p(1)−1)(bp(1)+1b

−1
p(1)).

For the last statement, certainly Q > 0 = q′(0). Suppose that p(1) = P and
i < N . Then

S1 = (ac−1
1 )(x1a

−1)(x2b
−1
1 ) . . . (xP b−1

P−1)(τ(eP )b−1
P )

lifts to L̂, so each of x2, . . . , xP belongs to the same component of I(Γ) as
a, b1, . . . , bP−1 , in other words x2 = . . . = xP = u. By Lemma 5.1 we have
x1 = v and eP incident with v . But ι(eP ) = u so τ(eP ) = v , which does not
belong to the same component of I(Γ) as bP−1 . It follows that S1 does not,
after all, lift to L̂, a contradiction.

This completes the proof of the initial case of the induction.

Now assume inductively that i > 1 and the result is true for i−1. In particular,
i − 1 < N , so p(i − 1) < P and q′(i − 2) < Q. Hence Ui−1 contains a
single occurrence of cq′(i−2)+1 , Vi−1 contains a single occurrence of bp(i−1)+1 ,
and every other letter occurring in Si−1 is a vertex of the subgraph Ii−1 of
I(Γ). Consider the construction of Si = ∂+Si−1 from Si−1 . We first write a
suitable cyclic permutation of Si−1 as a product of length two subwords of the
form g−1h. For all but two of these subwords, both g and h are vertices of
Ii−1 . (There are precisely two exceptions, since the occurrences of bp(i−1)+1

and cq′(i−2)+1 in Si−1 are separated at least by an occurrence of a±1 .)

Suppose first that g, h are vertices of Ii−1 . The next step is to replace g−1h
by the product

(g−1z1)(z−1
1 z2) . . . (z−1

t h)

where g, z1, z2, . . . , zt, h are the vertices on the geodesic from g to h in ΦI . This
geodesic is contained in Ii−1 , so each bracketed term here is (ι(e)−1λ(e))±1 for
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some edge e of Ii−1 . The final step is to replace this by (λ(e)τ(e)−1)±1 . Note
that τ(e) is a vertex of Ii , and τ(e) 6= a. Also, none of the intermediate vertices
zi in the geodesic is equal to a, since a is an extremal vertex of ΦI . Note that,
if g−1h is a subword of Ui−1 , then all letters in the resulting subword of Si
come from {u, v, c1, . . . , cq′(i−1)}, while if it is a subword of a−1Vi−1a then all
letters come from {a, u, v, b1, . . . , bp(i)}.

A similar argument holds if, say g = bp(i−1)+1 . Here, however, the geodesic
from g to h is not contained in Ii−1 . It is the union of the geodesic from
bp(i−1)+1 to z in Ii , where z ∈ {u, v}, with the geodesic (in Ii−1 ) from z
to h. Edges in Ii−1 give rise to length 2 subwords of Si consisting of letters
which are vertices in Ii . The same is true for an edge ej from bj to bj+1 , for
p(i − 1) < j < p(i). (The corresponding word is xjb

−1
j .) Finally, the edge

ep(i) (from bp(i) to z ) contributes a subword τ(ep(i))b
−1
p(i) . If p(i) < P then

τ(ep(i)) = bp(i)+1 ; otherwise τ(ep(i)) ∈ {a, u, v}.

The analysis if h = bp(i−1)+1 , or if one of g, h is cq′(p−2)+1 is similar to the
above.

Each of the two subwords g−1h of Si−1 that contain the letter a gives rise to a
subword of Si containing an occurrence of a with the same exponent. If g = a
then the subword begins (x1a

−1) . . . , while if h = a then the subword ends
. . . (ax−1

1 ). If p(i) < P and q′(i− 1) < Q then this will be the only occurrence
of a in this subword of Si .

Statements (i)–(iv) follow.

To prove (v), suppose for example that i < N and p(i) = P . Another induction
on i shows that x2 = . . . = xP = u. An argument similar to that given above in
the initial case of the induction again gives rise to a contradiction: by Lemma
5.1, τ(eP ) = v , which does not belong to the same component of I(Γ) as bP−1 ,
so Si does not lift to L̂ and i = N .

If i < N and q′(i− 1) = Q then a similar argument applies. Here we can show
that y1 = . . . = yQ = x1 ∈ {u, v}, which contradicts Lemma 5.1.

This result contains all the necessary information about Si if i < N . We now
need to investigate further the structure of S̃N , particularly as regards occur-
rences of X . Note that, up to cyclic permutation, we have S̃N = aŨNa

−1ṼN ,
by Theorem 6.2 (i).
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Lemma 6.3 Each of ŨN , ṼN is either positive or negative in X .

Proof As indicated in the proof of Theorem 6.2, all of VN , except for the part
arising from the geodesic γ from bp(N−1)+1 to u, consists of letters which are
vertices in IN−1 . All of these vertices are in the same component of I(Γ) as u.
The part of VN arising from γ is

[(xp(N−1)+2b
−1
p(N−1)+1) . . . (xp(N)b

−1
p(N)−1)(τ(ep(N))b

−1
p(N))]

±1,

or, if γ passes through a (ie if ι(ep(N)) = a):

[(xp(N−1)+2b
−1
p(N−1)+1) . . . (τ(ep(N))b

−1
p(N))(x1a

−1) . . . (bp(1)+1b
−1
p(1))]

±1.

The expression in square brackets is a product of terms gh−1 with h in the same
component of I(Γ) as u. To lift to L̃, we replace h−1g by h−1Xg whenever
g belongs to the same component of I(Γ) as v and h to the same component
as u, and by h−1X−1g if g belongs to the same component as u and h to the
same component as v . Hence ṼN is either positive or negative in X

A similar argument applies to ŨN , replacing u by x1 in the above.

We will also need to investigate possible occurrences of a in SN other than
those indicated in Theorem 6.2.

Lemma 6.4 The words ŨN and ṼN contain in total at most one occurrence
of a.

Proof From the discussion in the proof of Lemma 6.3, the word VN (and hence
also ṼN ) contains a single occurrence of a if ep(N) is incident with a in Γ, and
no occurrence of a otherwise. Similarly UN (and hence also ŨN ) contains a
single occurrence of a if fq′(N−1) is incident with a in Γ, and no occurrence of
a otherwise. The result now follows from the fact that a is extremal in Γ.

7 Completion of the proof

Define
G0 = π1(L̂)/{R1, . . . , RM−1, S1, . . . , SN−1},

G+ = (G0 ∗ 〈X〉)/{S̃N},
G− = (G0 ∗ 〈Y 〉)/{R̃M},

and

G1 = (G0 ∗ 〈X,Y 〉)/{R̃M , S̃N} ∼= (π1(L))/{R1, . . . , RM , S1, . . . , SN}.
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Lemma 7.1 The group G0 is free.

Proof By Theorems 6.1 and 6.2, and the analogous results for the Ri , the
set of M + N − 2 distinct numbers B = {p(1) + 1, . . . , p(N − 1) + 1, p′(0) +
1, . . . , p′(M − 2) + 1} has the property that each j ∈ B is the greatest index
of a b–letter occurring in a unique relator Ri or Si , and moreover that relator
contains precisely one occurrence of bj .

It follows that the 1–complex L′ obtained from L̂ by removing the 1–cells
bj , j ∈ B is connected, with fundamental group isomorphic to G0 .

Lemma 7.2 The natural maps G0 → G+ and G0 → G− are injective.

Proof We show that the map G0 → G+ is injective. The proof of injectivity
of G0 → G− is entirely analogous. Since G0 is a free group and G+ is a one-
relator group G+ = (G0 ∗ 〈X〉)/{S̃N }, we need only show that S̃N , regarded as
a word in (G0 ∗ 〈X〉), genuinely involves X . The result then follows from the
Freiheitssatz for one-relator groups [10].

Consider the various possibilities for the structure of S̃N . If the initial graph
I(Γ) contains a directed cycle, then N = 1 and S̃1 is a strictly positive (or
strictly negative) word in X , by Theorem 6.1. Thus S̃1 , regarded as a word in
the free product G0 ∗ 〈X〉, is also strictly positive (or strictly negative) in X ,
and so genuinely involves X .

Suppose then that I(Γ) does not contain a directed cycle. By Theorem 6.2 (i)
and Corollary 6.3 we have (up to cyclic permutation) S̃N = aŨNa

−1ṼN , with
each of ŨN and ṼN being either positive or negative in X . We also have S̃N
definitely involving X , since otherwise SN would lift to L̂.

If X occurs in S̃N with nonzero exponent-sum, then occurrences of X survive
modulo the relators R1, . . . , RM−1, S1, . . . , SN−1 , so we may assume that X
appears with exponent-sum zero. Thus one of ŨN , ṼN is strictly positive, and
the other is strictly negative, with precisely the same number of occurrences of
X±1 . We may rewrite S̃N (again, up to cyclic permutation) as

S̃N = XA1X . . . AtXW1X
−1BtX

−1 . . . B1X
−1W2

for some t ≥ 0 and words Ai, Bi and W1,W2 that do not involve X . If we can
show that neither W1 nor W2 is equal to the identity element in G0 , then it
will follow that the above expression for S̃N does not allow for cancellation of
X –symbols, when reducing modulo the relators of G0 . The result will follow.
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Now a occurs with exponent-sum zero in each of the relators R1, . . . , RM−1

and S1, . . . , SN−1 of the group G0 , by Theorem 6.2. If neither UN nor VN
contains the letter a, then each of W1 , W2 contains precisely one occurrence
of a, and so has infinite order in G0 . In particular, they are nontrivial in G0 ,
as required.

This reduces us to the case where one of UN , VN involves the letter a. By
Corollary 6.4 we know that this can happen for only one of UN , VN .

First suppose that a occurs in UN . Then q′(N − 1) = Q (and so also N > 1).
As in the proof of Corollary 6.3, the part of UN that gives rise to occurrences
of X comes from the geodesic δ in ΦI from cq′(N−2)+1 to x1 . The relevant
subword of UN has the form:

[(yq′(N−2)+2c
−1
q′(N−2)+1) . . . (yQc−1

Q−1)(τ(fQ)c−1
Q )]±1,

or, if δ passes through a:

[(yq′(N−2)+2c
−1
q′(N−2)+1) . . . (τ(fQ)c−1

Q )(x1a
−1) . . . (bp(1)+1b

−1
p(1))]

±1.

The occurrences of X in ŨN correspond to those yj , j ≥ q′(N −2)+2 that are
not equal to x1 , and also from τ(fQ) if this is not in the same component of I(Γ)
as x1 . In the case where δ passes through a, we see that, in S̃N = aŨNa

−1ṼN
the a–letters that occur in the same Wi have the same exponent, and hence the
Wi are both nontrivial in G0 , as required. In the other case, τ(fQ) = a and
the unique occurrence of cQ in ṼN lies on the same side of all the X –letters
as the unique occurrence of a. Hence cQ occurs (precisely once) in the same
Wi that contains two a–letters. To prove that this Wi is nontrivial in G0 , it
suffices to show that cQ does not occur in any of the relators R1, . . . , RM−1

or S1, . . . , SN−1 . But cQ can occur in Sj (j < N ) only if j = N − 1 and
q′(N − 2) = Q− 1, while cQ can occur in Rj (j < M ) only if j = M − 1 and
q(M − 1) = Q− 1. In either case y2 = . . . = yQ = x1 (since RM−1 and SN−1

lift to L̂) and fQ joins a to x1 , which contradicts Lemma 5.1.

Suppose next that a occurs in VN . Then p(N) = P . The occurrences of X
in ṼN arise as indicated in the proof of Corollary 6.3. The relevant subword of
VN has the form:

[(xp(N−1)+2b
−1
p(N−1)+1) . . . (xP b−1

P−1)(τ(eP )b−1
P )]±1,

or, if γ passes through a:

[(xp(N−1)+2b
−1
p(N−1)+1) . . . (τ(eP )b−1

P )(x1a
−1) . . . (bp(1)+1b

−1
p(1))]

±1.
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The occurrences of X in ṼN correspond to those xj , j ≥ p(N − 1) + 2 in this
subword that are equal to v , and also to τ(eP ) if τ(eP ) = v . If a = τ(eP ) then
since

S̃N ∼ aŨNa−1ṼN ∼ XA1X . . . AtXW1X
−1BtX

−1 . . . B1X
−1W2

we see that the two a–letters that occur in the same Wi have the same exponent,
and hence both Wi are nontrivial in G0 , as required.

If a = ι(eP ) then γ passes through a. Assume for the moment that x1 =
u. Then the unique occurrence of bP in ŨN lies on the same side of all the
X –letters as the unique occurrence of a. Hence the Wi that contains two
a–letters also contains a single occurrence of bP . To prove that this Wi is
nontrivial in G0 , it suffices to show that bP does not occur in any of the relators
R1, . . . , RM−1 or S1, . . . , SN−1 of G0 . But bP can occur in Sj (j < N ) only
if j = N − 1 and p(N − 1) = P − 1, while if bP occurs in Rj (j < M ),
then j = M − 1 and p′(M − 2) = P − 1. In either case x1 = . . . = xP = u,
contradicting Lemma 5.1.

This last argument does not apply if x1 = v . In this case we still have x2 =
. . . = xP = u, and since a = ι(eP ) it follows from Lemma 5.1 that τ(eP ) = v .

If, say, W1 = 1 in G0 , then At = vb−1
P and AtW1Bt = AtBt 6= 1 in G0 , since

this word contains a single occurrence of bP , which by similar arguments to the
above cannot occur in any of the relators of G0 . Hence no more than one pair
of letters X±1 in SN can cancel modulo the relators of G0 , and so SN , as a
word in G0 ∗ 〈X〉, definitely involves X , as required.

This completes the proof of the Lemma.

Corollary 7.3 The maps G± → G1 are injective.

Proof The commutative square

-
? ?

-

G−

G0 G+

G1

is a pushout, and the maps G0 → G± are injective by the lemma. Hence G1 is
the free product of G+ and G− , amalgamated over G0 .
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Let L+ be the 1–complex obtained from L̂ by identifying the 0–cells (0, u) and
(0, v) to a single 0–cell 0. Then L+ is homotopy equivalent to the subcomplex
L̂ ∪X of L̃, and G+ is a homomorphic image of the free group π1(L̂) ∗ 〈X〉,
which is naturally identifiable with π1(L+). Let us fix the 0–cell 0 as a base-
point for L+ , and consider the generating set

B+ = {θe = τ(e)λ(e)−1 ; e ∈ E(Γ)}
for π1(L+, 0). Note that B+ is not a basis, since the unique cycle in T (Γ) gives
rise to a relation R0 among the θe . However, this is the only relation, in the
sense that π1(L+, 0) has a one-relator presentation 〈B+ | R0〉.
Similarly, if L− is obtained from L̂ by identifying the 0–cells (1, u) and (1, v) to
a single 0–cell 1, then G− is a homomorphic image of the free group π1(L−, 1),
which is generated by

B− = {φe = λ(e)−1ι(e) ; e ∈ E(Γ)}
modulo a single relator S0 arising from the unique cycle in I(Γ).

Theorem 7.4 The correspondence θe ↔ φe (e ∈ E(Γ)) induces a group iso-
morphism G+ ↔ G− .

Proof The relation R0 among the generators B+ is precisely the nullhomo-
topic path R0 in L, which lifts to L+ (indeed to L̂). Under the isomorphism
Ψ: F (B+)→ F (B−) induced by the map θe 7→ φE , this relation R0 is mapped
to ∂−R0 = R1 , which is a relation in G− . Hence we have an induced homomor-
phism π1L+ → G− . In order to show that this in turn induces a homomorphism
G+ → G− , we must show that each relation of G+ is mapped to a relation of
G− .

Each word Ri , 1 ≤ i ≤ M − 1 is mapped under Ψ to ∂+Ri = Ri+1 , which is
a relation in G− . Similarly, for 1 ≤ j ≤ N we have Ψ−1(Sj−1) = ∂−Sj−1 =
Sj , so Ψ(Sj) = Sj−1 , which is also a relation in G− . Hence Ψ induces a
group homomorphism G+ → G− , as claimed. Similarly Ψ−1 induces a group
homomorphism G− → G+ , and these homomorphisms are mutually inverse
isomorphisms, by standard arguments.

Corollary 7.5 G(Γ) is isomorphic to an HNN extension of the finitely pre-
sented group G1 , with associated subgroups G± .

Proof This is an easy exercise, given the isomorphism described in the previ-
ous lemma.

This completes the proof of our main result, Theorem 1.1.
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8 Further remarks

In the proof of Theorem 1.1, we have relied heavily on one-relator theory to
show that our HNN base G1 is indeed defined by the relators Ri and Si . If we
look at LOTs of larger diameter, we no longer have these tools at our disposal.

As long as I(Γ) and T (Γ) each have only two components (and hence only
one cycle), a great deal of the proof goes through. Certainly the forward and
backward derivatives give rise to two finite sequences Ri and Si of relators for
G1 , but in order to prove that these relations are sufficient to define G1 we
would need to prove a Freiheitssatz for the one-relator products (G0 ∗ 〈X〉)/SN
and (G0∗〈Y 〉)/RM . In our case, we have used the combinatorics of the diameter
3 situation in a nontrivial way to show that G0 is free and that SN properly
involves X (resp RM properly involves Y ) modulo the relations of G0 , from
which the Freiheitssatz follows.

It seems reasonable to conjecture in more generality that the HNN base B for
G, generated by {xy−1, x, y ∈ V } will be finitely presented. One may construct
sets of relations on this generating set analogous to the Ri and Si above, by
repeatedly applying the forward derivative construction to nullhomotopic paths
arising from closed paths in I(Γ) (analogous to our S0 ), and the backward
derivative construction to nullhomotopic paths arising from closed paths in
T (Γ) (analogous to our R0 ). Provided we restrict attention to simple closed
paths, only finitely many relations arise in this way, and one can conjecture
that these form a set of defining relators for B .

Before making this conjecture precise, let us first give a geometric interpretation
of these relations. On the 2–complex K = K(Γ) we define a track T in the
sense of Dunwoody [4] as follows: T intersects each 1–cell in a single point, and
each 2–cell in two arcs as in the diagram below.

-

6 6

-

@
@
@
@
@@

@
@
@
@
@@

Figure 2
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The initial graph I(Γ) is naturally embedded as a subgraph of the link of the
0–cell in K . Corresponding to a cycle

C = (x1, . . . , xn)

in I(Γ) is a Dehn diagram D1 over P(Γ) with a single interior vertex (whose
link maps isomorphically to C ). We also have a nullhomotopic closed path

S0 = (x−1
1 x2) . . . (x−1

n x1)

in K(1) . The boundary label of D1 is S1 = ∂+S0 . Moreover, if we regard D1

as a map from the disc D2 to K , then the track T on K induces a track on
D2 . This track consists of a single circle in the interior of D2 , together with a
collection of arcs, each connecting two adjacent track points on ∂D2 .

Now suppose that S1 lifts to L̂. Then the Dehn diagram D1 can be extended
to a diagram D2 with boundary label S2 = ∂+S1 , and so on. On any Dehn
diagram arising in this way, the track induced by T consists of a collection of
concentric circles in the interior of D2 , together with a collection of arcs, each
connecting two adjacent track points on ∂D2 .

Dual to the track T is a flow on K , indicated on the boundary of the 2–cells by
the arrows in Figure 2. The flow induced on D2 by any of the Dehn diagrams
obtained as above has only one singular point in the interior of D2 , which is a
sink.

We can perform a similar construction for any cycle in T (Γ). The boundary
label of the resulting Dehn diagram is obtained by repeatedly applying the
backward derivative operator to a nullhomotopic closed path in K(1) . Again,
the induced track on D2 consists of a collection of concentric circles in the
interior of D2 , together with a collection of arcs, each connecting two adjacent
track points on ∂D2 . The induced flow has only one singular point in the
interior of D2 , which is a source.

Let us define a Dehn diagram to be tame if the induced track on D2 consists of
a collection of concentric circles in the interior of D2 , together with a collection
of arcs, each connecting two adjacent track points on ∂D2 . This is equivalent
to the induced flow having only one singular point in the interior of D2 , which
is either a sink or a source. It is not difficult to show that every tame Dehn
diagram arises by the above construction from a cycle in I(Γ) or T (Γ), and
that its boundary label is an alternating word in the generators V (Γ) of G(Γ).

Conjecture 8.1 Let B be the subgroup of G(Γ) generated by the alternating
words in V (Γ). Then B has a finite presentation in which the defining relators
are the boundary labels of tame Dehn diagrams.
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[3] S D Brodskĭı, Equations over groups and groups with a single defining relator,
Siberian Mathematical Journal 25 (1984) 231–251

[4] M J Dunwoody, The accessibility of finitely presented groups, Invent. Math.
81 (1985) 449–457

[5] J Hillman, 2-Knots and their Groups, Austral. Math. Soc. Lecture Series 5,
Cambridge University Press (1989)

[6] J Howie, On locally indicable groups, Math. Z. 180 (1982) 445–461
[7] J Howie, The asphericity of ribbon disc complements, Trans. AMS 289 (1985)

281–302
[8] S V Ivanov, On asphericity of group presentations given by labelled oriented

trees, preprint (1996)
[9] T Maeda, Knotted surfaces in the 4-sphere with no minimal Seifert manifolds,

from: “Combinatorial and Geometric Group Theory” (A J Duncan, N D Gilbert
and J Howie, editors), LMS Lecture Note Series 204, Cambridge University Press
(1994) 239–246
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