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Hilbert’s 3rd Problem and Invariants of 3–manifolds

Walter D Neumann

Abstract This paper is an expansion of my lecture for David Epstein’s
birthday, which traced a logical progression from ideas of Euclid on sub-
dividing polygons to some recent research on invariants of hyperbolic 3–
manifolds. This “logical progression” makes a good story but distorts his-
tory a bit: the ultimate aims of the characters in the story were often far
from 3–manifold theory.

We start in section 1 with an exposition of the current state of Hilbert’s 3rd
problem on scissors congruence for dimension 3. In section 2 we explain the
relevance to 3–manifold theory and use this to motivate the Bloch group
via a refined “orientation sensitive” version of scissors congruence. This
is not the historical motivation for it, which was to study algebraic K –
theory of C . Some analogies involved in this “orientation sensitive” scissors
congruence are not perfect and motivate a further refinement in section 4.
Section 5 ties together various threads and discusses some questions and
conjectures.
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1 Hilbert’s 3rd Problem

It was known to Euclid that two plane polygons of the same area are related
by scissors congruence: one can always cut one of them up into polygonal
pieces that can be re-assembled to give the other. In the 19th century the
analogous result was proved with euclidean geometry replaced by 2–dimensional
hyperbolic geometry or 2–dimensional spherical geometry.

The 3rd problem in Hilbert’s famous 1900 Congress address [18] posed the
analogous question for 3–dimensional euclidean geometry: are two euclidean
polytopes of the same volume “scissors congruent,” that is, can one be cut into
subpolytopes that can be re-assembled to give the other. Hilbert made clear
that he expected a negative answer.
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One reason for the nineteenth century interest in this question was the in-
terest in a sound foundation for the concepts of area and volume. By “equal
area” Euclid meant scissors congruent, and the attempt in Euclid’s Book XII to
provide the same approach for 3–dimensional euclidean volume involved what
was called an “exhaustion argument” — essentially a continuity assumption —
that mathematicians of the nineteenth century were uncomfortable with (by
Hilbert’s time mostly for aesthetic reasons).

The negative answer that Hilbert expected to his problem was provided the
same year1 by Max Dehn [7]. Dehn’s answer is delighfully simple in modern
terms, so we describe it here in full.

Definition 1.1 Consider the free Z–module generated by the set of congru-
ence classes of 3–dimensional polytopes. The scissors congruence group P(E3)
is the quotient of this module by the relations of scissors congruence. That is,
if polytopes P1, . . . , Pn can be glued along faces to form a polytope P then we
set

[P ] = [P1] + · · · + [Pn] in P(E3).

(A polytope is a compact domain in E3 that is bounded by finitely many planar
polygonal “faces.”)

Volume defines a map
vol : P(E3)→ R

and Hilbert’s problem asks2 about injectivity of this map.

Dehn defined a new invariant of scissors congrence, now called the Dehn in-
variant, which can be formulated as a map δ : P(E3) → R ⊗ R/πQ, where
the tensor product is a tensor product of Z–modules (in this case the same as
tensor product as Q–vector spaces).

1In fact, the same answer had been given in 1896 by Bricard, although it was only
fully clarified around 1980 that Bricard was answering an equivalent question — see
Sah’s review 85f:52014 (AMS Mathematical Reviews) of [9] for a concise exposition of
this history.

2Strictly speaking this is not quite the same question since two polytopes P1 and P2

represent the same element of P(E3) if and only if they are stably scissors congruent
rather than scissors congruent, that is, there exists a polytope Q such that P1 + Q
(disjoint union) is scissors congruent to P2 +Q . But, in fact, stable scissors congruence
implies scissors congruence ([47, 48], see [35] for an exposition).

Walter D Neumann

Geometry and Topology Monographs, Volume 1 (1998)

384



Definition 1.2 If E is an edge of a polytope P we will denote by `(E) and
θ(E) the length of E and dihedral angle (in radians) at E . For a polytope P
we define the Dehn invariant δ(P ) as

δ(P ) :=
∑
E

`(E) ⊗ θ(E) ∈ R⊗ (R/πQ), sum over all edges E of P .

We then extend this linearly to a homomorphism on P(E3).

It is an easy but instructive exercise to verify that

• δ is well-defined on P(E3), that is, it is compatible with scissors congru-
ence;

• δ and vol are independent on P(E3) in the sense that their kernels gen-
erate P(E3) (whence Im(δ|Ker(vol)) = Im(δ) and Im(vol |Ker(δ)) = R);

• the image of δ is uncountable.

In particular, ker(vol) is not just non-trivial, but even uncountable, giving a
strong answer to Hilbert’s question. To give an explicit example, the regular
simplex and cube of equal volume are not scissors congruent: a regular simplex
has non-zero Dehn invariant, and the Dehn invariant of a cube is zero.

Of course, this answer to Hilbert’s problem is really just a start. It immediately
raises other questions:

• Are volume and Dehn invariant sufficient to classify polytopes up to scis-
sors congruence?

• What about other dimensions?

• What about other geometries?

The answer to the first question is “yes.” Sydler proved in 1965 that

(vol, δ) : P(E3)→ R⊕ (R ⊗ R/πQ)

is injective. Later Jessen [19, 20] simplified his difficult argument somewhat
and proved an analogous result for P(E4) and the argument has been further
simplified in [13]. Except for these results and the classical results for dimen-
sions ≤ 2 no complete answers are known. In particular, fundamental questions
remain open about P(H3) and P(S3).

Note that the definition of Dehn invariant applies with no change to P(H3) and
P(S3). The Dehn invariant should be thought of as an “elementary” invariant,
since it is defined in terms of 1–dimensional measure. For this reason (and other
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reasons that will become clear later) we are particularly interested in the kernel
of Dehn invariant, so we will abbreviate it: for X = E3,H3,S3

D(X) := Ker(δ : P(X)→ R⊗R/πQ)

In terms of this notation Sydler’s theorem that volume and Dehn invariant
classify scissors congruence for E3 can be reformulated:

vol : D(E3)→ R is injective.

It is believed that volume and Dehn invariant classify scissors congruence also
for hyperbolic and spherical geometry:

Conjecture 1.3 Dehn Invariant Sufficiency vol : D(H3)→ R is injective and
vol : D(S3)→ R is injective.

On the other hand vol : D(E3)→ R is also surjective, but this results from the
existence of similarity transformations in euclidean space, which do not exist in
hyperbolic or spherical geometry. In fact, Dupont [8] proved:

Theorem 1.4 vol : D(H3)→ R and vol : D(S3)→ R have countable image.

Thus the Dehn invariant sufficiency conjecture would imply:

Conjecture 1.5 Scissors Congruence Rigidity D(H3) and D(S3) are count-
able.

The following collects results of Bökstedt, Brun, Dupont, Parry, Sah and Suslin
([3], [12], [36], [37]).

Theorem 1.6 P(H3) and P(S3) and their subspaces D(H3) and D(S3) are
uniquely divisible groups, so they have the structure of Q–vector spaces. As Q–
vector spaces they have infinite rank. The rigidity conjecture thus says D(H3)
and D(S3) are Q–vector spaces of countably infinite rank.

Corollary 1.7 The subgroups vol(D(H3)) and vol(D(S3)) of R are Q–vector
subspaces of countable dimension.
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1.1 Further comments

Many generalizations of Hilbert’s problem have been considered, see eg [35] for
an overview. There are generalizations of Dehn invariant to all dimensions and
the analog of the Dehn invariant sufficiency conjectures have often been made
in greater generality, see eg [35], [12], [16]. The particular Dehn invariant that
we are discussing here is a codimension 2 Dehn invariant.

Conjecture 1.3 appears in various other guises in the literature. For example, as
we shall see, the H3 case is equivalent to a conjecture about rational relations
among special values of the dilogarithm function which includes as a very special
case a conjecture of Milnor [22] about rational linear relations among values of
the dilogarithm at roots of unity. Conventional wisdom is that even this very
special case is a very difficult conjecture which is unlikely to be resolved in the
forseeable future. In fact, Dehn invariant sufficiency would imply the ranks of
the vector spaces of volumes in Corollary 1.7 are infinite, but at present these
ranks are not even proved to be greater than 1. Even worse: although it is
believed that the volumes in question are always irrational, it is not known if a
single one of them is!

As we describe later, work of Bloch, Dupont, Parry, Sah, Wagoner, and Suslin
connects the Dehn invariant kernels with algebraic K–theory of C, and the
above conjectures are then equivalent to standard conjectures in algebraic K–
theory. In particular, the scissors congruence rigidity conjectures for H3 and
S3 are together equivalent to the rigidity conjecture for K3(C), which can be
formulated that Kind

3 (C) (indecomposable part of Quillen’s K3 ) is countable.
This conjecture is probably much easier than the Dehn invariant sufficiency
conjecture.

The conjecture about rational relations among special values of the dilogarithm
has been broadly generalized to polylogarithms of all degrees by Zagier (section
10 of [46]). The connections between scissors congruence and algebraic K–
theory have been generalised to higher dimensions, in part conjecturally, by
Goncharov [16].

We will return to some of these issues later. We also refer the reader to the
very attractive exposition in [14] of these connnections in dimension 3.

I would like to acknowledge the support of the Australian Research Council for
this research, as well as the the Max–Planck–Institut für Mathematik in Bonn,
where much of this paper was written.
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2 Hyperbolic 3–manifolds

Thurston’s geometrization conjecture, much of which is proven to be true, as-
serts that, up to a certain kind of canonical decomposition, 3–manifolds have
geometric structures. These geometric structures belong to eight different ge-
ometries, but seven of these lead to manifolds that are describable in terms
of surface topology and are very easily classified. The eighth geometry is hy-
perbolic geometry H3 . Thus if one accepts the geometrization conjecture then
the central issue in understanding 3–manifolds is to understand hyperbolic 3–
manifolds.

Suppose therefore that M = H3/Γ is a hyperbolic 3–manifold. We will always
assume M is oriented and for the moment we will also assume M is compact,
though we will be able to relax this assumption later. We can subdivide M
into small geodesic tetrahedra, and then the sum of these tetrahedra represents
a class β0(M) ∈ P(H3) which is an invariant of M . We call this the scissors
congruence class of M .

Note that when we apply the Dehn invariant to β0(M) the contributions coming
from each edge E of the triangulation sum to `(E) ⊗ 2π which is zero in
R⊗ R/πQ. Thus

Proposition 2.1 The scissors congruence class β0(M) lies in D(H3).

How useful is this invariant of M ? We can immediately see that it is non-trivial,
since at least it detects volume of M :

vol(M) = vol(β0(M)).

Now it was suggested by Thurston in [42] that the volume of hyperbolic 3–
manifolds should have some close relationship with another geometric invari-
ant, the Chern–Simons invariant CS(M). A precise analytic relationship was
then conjectured in [30] and proved in [44] (a new proof follows from the work
discussed here, see [24]). We will not discuss the definition of this invariant here
(it is an invariant of compact riemmanian manifolds, see [6, 5], which was ex-
tended also to non-compact finite volume hyperbolic 3–manifolds by Meyerhoff
[21]). It suffices for the present discussion to know that for a finite volume hy-
perbolic 3–manifold M the Chern–Simons invariant lies in R/π2Z. Moreover,
the combination vol(M) + iCS(M) ∈ C/π2Z turns out to have good analytic
properties and is therefore a natural “complexification” of volume for hyperbolic
manifolds. Given this intimate relationship between volume and Chern–Simons
invariant, it becomes natural to ask if CS(M) is also detected by β0(M).
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The answer, unfortunately, is an easy “no.” The point is that CS(M) is an
orientation sensitive invariant: CS(−M) = −CS(M), where −M means M
with reversed orientation. But, as Gerling pointed out in a letter to Gauss on
15 April 1844: scissors congruence cannot see orientation because any polytope
is scissors congruent to its mirror image3. Thus β0(−M) = β0(M) and there is
no hope of CS(M) being computable from β0(M). This raises the question:

Question 2.2 Is there some way to repair the orientation insensitivity of scis-
sors congruence and thus capture Chern–Simons invariant?

The answer to this question is “yes” and lies in the so called “Bloch group,”
which was invented for entirely different purposes by Bloch (it was put in final
form by Wigner and Suslin). To explain this we start with a result of Dupont
and Sah [12] about ideal polytopes — hyperbolic polytopes whose vertices are
at infinity (such polytopes exist in hyperbolic geometry, and still have finite
volume).

Proposition 2.3 Ideal hyperbolic tetrahedra represent elements in P(H3)
and, moreover, P(H3) is generated by ideal tetrahedra.

To help understand this proposition observe that if ABCD is a non-ideal tetra-
hedron and E is the ideal point at which the extension of edge AD meets infinity
then ABCD can be represented as the difference of the two tetrahedra ABCE
and DBCE , each of which have one ideal vertex. We have thus, in effect,
“pushed” one vertex off to infinity. In the same way one can push a second
and third vertex off to infinity, . . . and the fourth, but this is rather harder.
Anyway, we will accept this proposition and discuss its consequence for scissors
congruence.

The first consequence is a great gain in convenience: a non-ideal tetrahedron
needs six real parameters satisfying complicated inequalities to characterise it
up to congruence while an ideal tetrahedron can be neatly characterised by a
single complex parameter in the upper half plane.

We shall denote the standard compactification of H3 by H3 = H3 ∪ CP1 . An
ideal simplex ∆ with vertices z1, z2, z3, z4 ∈ CP1 = C ∪ {∞} is determined up
to congruence by the cross-ratio

z = [z1 : z2 : z3 : z4] =
(z3 − z2)(z4 − z1)
(z3 − z1)(z4 − z2)

.

3Gauss, Werke, Vol. 10, p. 242; the argument for a tetrahedron is to barycentrically
subdivide by dropping perpendiculars from the circumcenter to each of the faces; the
resulting 24 tetrahedra occur in 12 mirror image pairs.
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Permuting the vertices by an even (ie orientation preserving) permutation re-
places z by one of

z, z′ =
1

1− z , or z′′ = 1− 1
z
.

The parameter z lies in the upper half plane of C if the orientation induced by
the given ordering of the vertices agrees with the orientation of H3 .

There is another way of describing the cross-ratio parameter z = [z1 : z2 : z3 : z4]
of a simplex. The group of orientation preserving isometries of H3 fixing the
points z1 and z2 is isomorphic to the multiplicative group C∗ of nonzero com-
plex numbers. The element of this C∗ that takes z4 to z3 is z . Thus the
cross-ratio parameter z is associated with the edge z1z2 of the simplex. The
parameter associated in this way with the other two edges z1z4 and z1z3 out
of z1 are z′ and z′′ respectively, while the edges z3z4 , z2z3 , and z2z4 have
the same parameters z , z′ , and z′′ as their opposite edges. See figure 1. This
description makes clear that the dihedral angles at the edges of the simplex
are arg(z), arg(z′), arg(z′′) respectively, with opposite edges having the same
angle.

z z

z1

z2z3

z4 z′

z′

z′′

z′′

Figure 1

Now suppose we have five points z0, z1, z2, z3, z4 ∈ CP1 = C ∪ {∞}. Any four-
tuple of these five points spans an ideal simplex, and the convex hull of these five
points decomposes in two ways into such simplices, once into two of them and
once into three of them. We thus get a scissors congruence relation equating
the two simplices with the three simplices. It is often called the “five-term
relation.” To express it in terms of the cross-ratio parameters it is convenient
first to make an orientation convention.

We allow simplices whose vertex ordering does not agree with the orientation of
H3 (so the cross-ratio parameter is in the lower complex half-plane) but make
the convention that this represents the negative element in scissors congruence.
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An odd permutation of the vertices of a simplex replaces the cross-ratio param-
eter z by

1
z
,

z

z − 1
, or 1− z,

so if we denote by [z] the element in P(H3) represented by an ideal simplex
with parameter z , then our orientation rules say:

[z] = [1− 1
z

] = [
1

1− z ] = −[
1
z

] = −[
z − 1
z

] = −[1− z]. (1)

These orientation rules make the five-term scissors congruence relation de-
scribed above particularly easy to state:

4∑
i=0

(−1)i[z0 : . . . : ẑi : . . . : z4] = 0.

The cross-ratio parameters occuring in this formula can be expressed in terms
of the first two as

[z1 : z2 : z3 : z4] =: x [z0 : z2 : z3 : z4] =: y

[z0 : z1 : z3 : z4] =
y

x
[z0 : z1 : z2 : z4] =

1− x−1

1− y−1
[z0 : z1 : z2 : z3] =

1− x
1− y

so the five-term relation can also be written:

[x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y ] = 0. (2)

We lose nothing if we also allow degenerate ideal simplices whose vertices lie in
one plane so the parameter z is real (we always require that the vertices are
distinct, so the parameter is in R− {0, 1}), since the five-term relation can be
used to express such a “flat” simplex in terms of non-flat ones, and one readily
checks no additional relations result. Thus we may take the parameter z of
an ideal simplex to lie in C − {0, 1} and every such z corresponds to an ideal
simplex.

One can show that relations (1) follow from the five-term relation (2), so we
consider the quotient

P(C) := Z〈C− {0, 1}〉/(five-term relations (2))

of the free Z–module on C−{0, 1}. Proposition 2.3 can be restated that there is
a natural surjection P(C)→ P(H3). In fact Dupont and Sah (loc. cit.) prove:
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Theorem 2.4 The scissors congruence group P(H3) is the quotient of P(C)
by the relations [z] = −[z] which identify each ideal simplex with its mirror
image4.

Thus P(C) is a candidate for the orientation sensitive scissors congruence group
that we were seeking. Indeed, it turns out to do (almost) exactly what we want.

The analog of the Dehn invariant has a particularly elegant expression in these
terms. First note that the above theorem expresses P(H3) as the “imaginary
part” P(C)− (negative co-eigenspace under conjugation5) of P(C).

Proposition/Definition 2.5 The Dehn invariant δ : P(H3)→ R⊗R/πQ is
twice the “imaginary part” of the map

δC : P(C)→ C∗ ∧ C∗, [z] 7→ (1− z) ∧ z

so we shall call this map the “complex Dehn invariant.” We denote the kernel
of complex Dehn invariant

B(C) := Ker(δC),

and call it the “Bloch group of C.”

(We shall explain this proposition further in an appendix to this section.)

A hyperbolic 3–manifold M now has an “orientation sensitive scissors con-
gruence class” which lies in this Bloch group and captures both volume and
Chern–Simons invariant of M . Namely, there is a map

ρ : B(C)→ C/π2Q

introduced by Bloch and Wigner called the Bloch regulator map, whose imagi-
nary part is the volume map on B(C), and one has:

Theorem 2.6 ([29], [8]) Let M be a complete oriented hyperbolic 3–manifold
of finite volume. Then there is a natural class β(M) ∈ B(C) associated with
M and ρ(β(M)) = 1

i (vol(M) + iCS(M)).

This theorem answers Question 2.2. But there are still two aesthetic problems:

4The minus sign in this relation comes from the orientation convention described
earlier.

5P(C) turns out to be a Q–vector space and is therefore the sum of its ±1
eigenspaces, so “co-eigenspace” is the same as “eigenspace.”
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• The Bloch regulator ρ plays the rôle for orientation sensitive scissors
congruence that volume plays for ordinary scissors congruence. But vol
is defined on the whole scissors congruence group P(H3) while ρ is only
defined on the kernel B(C) of complex Dehn invariant.

• The Chern–Simons invariant CS(M) is an invariant in R/π2Z but the
invariant ρ(β(M)) only computes it in R/π2Q.

We resolve both these problems in section 4.

We describe the Bloch regulator map ρ later. It would be a little messy to
describe at present, although its imaginary part (volume) has a very nice de-
scription in terms of ideal simplices. Indeed, the volume of an ideal simplex with
parameter z is D2(z), where D2 is the so called “Bloch–Wigner dilogarithm
function” given by:

D2(z) = Im ln2(z) + log |z| arg(1− z), z ∈ C− {0, 1}

and ln2(z) is the classical dilogarithm function. It follows that D2(z) satisfies
a functional equation corresponding to the five-term relation (see below).

2.1 Further comments

To worry about the second “aesthetic problem” above could be considered
rather greedy. After all, CS(M) takes values in R/π2Z which is the direct
sum of Q/π2Z and uncountably many copies of Q, and we have only lost part
of the former summand. However, it is not even known if the Chern–Simons
invariant takes any non-zero values6 in R/π2Q. As we shall see, this would be
implied by the sufficiency of Dehn invariant for S3 (Conjecture 1.3).

The analogous conjecture in our current situation is:

Conjecture 2.7 Complex Dehn Invariant Sufficiency ρ : B(C) → C/π2Q is
injective.

Again, the following is known by work of Bloch:

Theorem 2.8 ρ : B(C)→ C/π2Q has countable image.

Thus the complex Dehn invariant sufficiency conjecture would imply:
6According to J Dupont, Jim Simons deserted mathematics in part because he could

not resolve this issue!
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Conjecture 2.9 Bloch Rigidity B(C) is countable.

Theorem 2.10 ([37, 38]) P(C) and its subgroup B(C) are uniquely divisible
groups, so they have the structure of Q–vector spaces. As Q–vector spaces they
have infinite rank.

Note that the Bloch group B(C) is defined purely algebraically in terms of C,
so we can define a Bloch group B(k) analogously7 for any field k . This group
B(k) is uniquely divisible whenever k contains an algebraically closed field.

It is not hard to see that the rigidity conjecture 2.9 is equivalent to the con-
jecture that B(Q) → B(C) is an isomorphism (here Q is the field of algebraic
numbers; it is known that B(Q) → B(C) is injective). Suslin has conjectured
more generally that B(k) → B(K) is an isomorphism if k is the algebraic clo-
sure of the prime field in K . Conjecture 2.7 has been made in greater generality
by Ramakrishnan [32] in the context of algebraic K–theory.

Conjectures 2.7 and 2.9 are in fact equivalent to the Dehn invariant sufficiency
and rigidity conjectures 1.3 and 1.5 respectively for H3 and S3 together. This
is because of the following theorem which connects the various Dehn kernels.
It also describes the connections with algebraic K–theory and homology of the
lie group SL(2,C) considered as a discrete group. It collates results of of Bloch,
Bökstedt, Brun, Dupont, Parry and Sah and Wigner (see [3] and [11]).

Theorem 2.11 There is a natural exact sequence

0→ Q/Z→ H3(SL(2,C))→ B(C)→ 0.

Moreover there are natural isomorphisms:

H3(SL(2,C)) ∼= Kind
3 (C),

H3(SL(2,C))− ∼= B(C)− ∼= D(H3),

H3(SL(2,C))+ ∼= D(S3)/Z and B(C)+ ∼= D(S3)/Q,

where Z ⊂ D(S3) is generated by the class of the 3–sphere and Q ⊂ D(S3) is
the subgroup generated by suspensions of triangles in S2 with rational angles.

The Cheeger–Simons map c2 : H3(SL(2,C)) → C/4π2Z of [5] induces on the
one hand the Bloch regulator map ρ : B(C) → C/π2Q and on the other hand
its real and imaginary parts correspond to the volume maps on D(S3)/Z and
D(H3) via the above isomorphisms.

7Definitions of B(k) in the literature vary in ways that can mildly affect its torsion
if k is not algebraically closed.
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The isomorphisms of the theorem are proved via isomorphisms H3(SL(2,C))− ∼=
H3(SL(2, R)) and H3(SL(2,C))+ ∼= H3(SU(2)). We have described the geome-
try of the isomorphism B(C)− ∼= D(H3) in Theorem 2.4. The geometry of the
isomorphism B(C)+ ∼= D(S3)/Q remains rather mysterious.

The exact sequence and first isomorphism in the above theorem are valid for
any algebraically closed field of characteristic 0. Thus Conjecture 2.9 is also
equivalent to each of the four:

• Is Kind
3 (Q)→ Kind

3 (C) an isomorphism? Is Kind
3 (C) countable?

• Is H3(SL(2,Q))→ H3(SL(2,C)) an isomorphism? Is H3(SL(2,C)) count-
able?

The fact that volume of an ideal simplex is given by the Bloch–Wigner diloga-
rithm function D2(z) clarifies why the H3 Dehn invariant sufficiency conjecture
1.3 is equivalent to a statement about rational relations among special values
of the dilogarithm function. Don Zagier’s conjecture about such rational rela-
tions, mentioned earlier, is that any rational linear relation among values of D2

at algebraic arguments must be a consequence of the relations D2(z) = D2(z)
and the five-term functional relation for D2 :

D2(x)−D2(y) +D2(
y

x
)−D2(

1− x−1

1− y−1
) +D2(

1− x
1− y ) = 0.

Differently expressed, he conjectures that the volume map is injective on P(Q)− .
If one assumes the scissors congruence rigidity conjecture for H3 (that B(Q)− ∼=
B(C)− ) then the Dehn invariant sufficiency conjecture for H3 is just that D2

is injective on the subgroup B(Q)− ⊂ P(Q)− , so under this assumption Za-
gier’s conjecture is much stronger. Milnor’s conjecture, mentioned earlier, can
be formulated that the values of D2(ξ), as ξ runs through the primitive n-
th roots of unity in the upper half plane, are rationally independent for any
n. This is equivalent to injectivity modulo torsion of the volume map D2 on
B(kn) for the cyclotomic field kn = Q(e2πi/n). For this field B(kn)− = B(kn)
modulo torsion. This is of finite rank but P(kn)− is of infinite rank, so even
when restricted to kn Zagier’s conjecture is much stronger than Milnor’s. Za-
gier himself has expressed doubt that Milnor’s conjecture can be resolved in the
forseeable future.

Conjecture 2.7 can be similarly formulated as a statement about special values
of a different dilogarithm function, the “Rogers dilogarithm,” which we will
define later.
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2.2 Appendix to section 2: Dehn invariant of ideal polytopes

To define the Dehn invariant of an ideal polytope we first cut off each ideal
vertex by a horoball based at that vertex. We then have a polytope with some
horospherical faces but with all edges finite. We now compute the Dehn in-
variant using the geodesic edges of this truncated polytope (that is, only the
edges that come from the original polytope and not those that bound horo-
spherical faces). This is well defined in that it does not depend on the sizes of
the horoballs we used to truncate our polytope. (To see this, note that dihedral
angles of the edges incident on an ideal vertex sum to a multiple of π , since
they are the angles of the horospherical face created by truncation, which is
an euclidean polygon. Changing the size of the horoball used to truncate these
edges thus changes the Dehn invariant by a multiple of something of the form
l ⊗ π , which is zero in R⊗ R/πQ.)

Now consider the ideal tetrahedron ∆(z) with parameter z . We may position its
vertices at 0, 1,∞, z . There is a Klein 4–group of symmetries of this tetrahedron
and it is easily verified that it takes the following horoballs to each other:

• At ∞ the horoball {(w, t) ∈ C× R+|t ≥ a};
• at 0 the horoball of euclidean diameter |z|/a;

• at 1 the horoball of euclidean diameter |1− z|/a;

• at z the horoball of euclidean diameter |z(z − 1)|/a.

After truncation, the vertical edges thus have lengths 2 log a− log |z|, 2 log a−
log |1− z|, and 2 log a− log |z(z−1)| respectively, and we have earlier said that
their angles are arg(z), arg(1/(1−z)), arg((z−1)/z) respectively. Thus, adding
contributions, we find that these three edges contribute log |1 − z| ⊗ arg(z) −
log |z| ⊗ arg(1 − z) to the Dehn invariant. By symmetry the other three edges
contribute the same, so the Dehn invariant is:

δ(∆(z)) = 2
(
log |1− z| ⊗ arg(z)− log |z| ⊗ arg(1− z)

)
∈ R⊗ R/πQ.

Proof of Proposition 2.5 To understand the “imaginary part” of (1− z) ∧
z ∈ C∗ ∧ C∗ we use the isomorphism

C∗ → R⊕ R/2πZ, z 7→ log |z| ⊕ arg z,

to represent

C∗ ∧ C∗ = (R⊕ R/2πZ) ∧ (R ⊕R/2πZ)
= (R ∧ R)⊕ (R/2πZ ∧R/2πZ) ⊕ (R⊗ R/2πZ)
= (R ∧ R)⊕ (R/πQ ∧ R/πQ) ⊕ (R⊗ R/πQ),
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(the equality on the third line is because tensoring over Z with a divisible group
is effectively the same as tensoring over Q). Under this isomorphism we have

(1− z) ∧ z =
(
log |1− z| ∧ log |z| ⊕ arg(1− z) ∧ arg z

)
⊕

(
log |1− z| ⊗ arg z − log |z| ⊗ arg(1− z)

)
,

confirming the Proposition 2.5.

3 Computing β(M)

The scissors congruence invariant β(M) turns out to be a very computable
invariant. To explain this we must first describe the “invariant trace field” or
“field of definition” of a hyperbolic 3–manifold. Suppose therefore that M =
H3/Γ is a hyperbolic manifold, so Γ is a discrete subgroup of the orientation
preserving isometry group PSL(2,C) of H3 .

Definition 3.1 [33] The invariant trace field of M is the subfield of C gener-
ated over Q by the squares of traces of elements of Γ. We will denote it k(M)
or k(Γ).

This field k(M) is an algebraic number field (finite extension of Q) and is a
commensurability invariant, that is, it is unchanged on passing to finite covers of
M (finite index subgroups of Γ). Moreover, if M is an arithmetic hyperbolic 3–
manifold (that is, Γ is an arithmetic group), then k(M) is the field of definition
of this arithmetic group in the usual sense. See [33, 26].

Now if k is an algebraic number field then B(k) is isomorphic to Zr2⊕(torsion),
where r2 is the number of conjugate pairs of complex embeddings k → C of k .
Indeed, if these complex embeddings are σ1, . . . , σr2 then a reinterpretation of
a theorem of Borel [4] about K3(C) says:

Theorem 3.2 The “Borel regulator map”

B(k)→ Rr2

induced on generators of P(k) by [z] 7→ (vol[σ1(z)], . . . , vol[σr2(z)]) maps
B(k)/(torsion) isomorphically onto a full lattice in Rr2 .

A corollary of this theorem is that an embedding σ : k → C induces an em-
bedding B(k)⊗ Q→ B(C)⊗Q. (This is because the theorem implies that an
element of B(k) is determined modulo torsion by the set of volumes of its Galois

Hilbert’s 3rd problem and invariants of 3-manifolds

Geometry and Topology Monographs, Volume 1 (1998)

397



conjugates, which are invariants defined on B(C).) Moreover, since B(C) is a
Q–vector space, B(C)⊗Q = B(C).

Now if M is a hyperbolic manifold then its invariant trace field k(M) comes
embedded in C so we get an explicit embedding B(k(M)) ⊗ Q→ B(C) whose
image, which is isomorphic to Qr2 , we denote by B(k(M))Q .

Theorem 3.3 ([28, 29]) The element β(M) lies in the subspace B(k(M))Q ⊂
B(C).

In fact Neumann and Yang show that β(M) is well defined in B(K) for some
explicit multi-quadratic field extension K of k(M), which implies that 2cβ(M)
is actually well defined in B(k(M)) for some c. Moreover, one can always take
c = 0 if M is non-compact, but we do not know if one can for compact M .

In view of this theorem we see that the following data effectively determines
β(M) modulo torsion:

• The invariant trace field k(M).

• The image of β(M) in Rr2 under the Borel regulator map of Theorem
3.2.

To compute β(M) we need a collection of ideal simplices that triangulates M
in some fashion. If M is compact, this clearly cannot be a triangulation in
the usual sense. In [29] it is shown that one can use any “degree one ideal
triangulation” to compute β(M). This means a finite complex formed of ideal
hyperbolic simplices plus a map of it to M that takes each ideal simplex locally
isometrically to M and is degree one almost everywhere. These always exist
(see [29] for a discussion). Special degree one ideal triangulations have been used
extensively in practice, eg in Jeff Weeks’ program Snappea [43] for computing
with hyperbolic 3–manifolds. Oliver Goodman has written a program Snap [17]
(building on Snappea) which finds degree one ideal triangulations using exact
arithmetic in number fields and computes the invariant trace field and high
precision values for the Borel regulator on β(M).

Such calculations can provide numerical evidence for the complex Dehn invari-
ant sufficiency conjecture. Here is a typical result of such calculations.

3.1 Examples

To ensure that the Bloch group has rank > 1 we want a field with at least two
complex embeddings. One of the simplest is the (unique) quartic field over Q of
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discriminant 257. This is the field k = Q(x)/(f(x)) with f(x) = x4+x2−x+1.
This polynomial is irreducible with roots τ±1 = 0.54742 . . . ± 0.58565 . . . i and
τ±2 = −0.54742 . . .±1.12087 . . . i. The field k thus has two complex embeddings
σ1, σ2 up to complex conjugation, one with image σ1(k) = Q(τ−1 ) and one with
image σ2(k) = Q(τ−2 ). The Bloch group B(k) is thus isomorphic to Z2 modulo
torsion.

This field occurs as the invariant trace field for two different hyperbolic knot
complements in the standard knot tables up to 8 crossings, the 6–crossing knot
61 and the 7–crossing knot 77 , but the embeddings in C are different. For 61

one gets σ1(k) and for 77 one gets σ2(k). The scissors congruence classes are

β(61) =: β1 = 2[
1
2

(1− τ2 − τ3)] + [1− τ ] + [
1
2

(1− τ2 + τ3)] ∈ B(k)

β(77) =: β2 = 4[2 − τ − τ3] + 4[τ + τ2 + τ3] ∈ B(k)

where τ is the class of x in k = Q(x)/(x4 + x2 − x+ 1). These map under the
Borel regulator B(k)→ R2 (with respect to the embeddings σ1, σ2 ) to

61 : (3.163963228883143983991014716..,−1.415104897265563340689508587..)
77 : (−1.397088165568881439461453224.., 7.643375172359955478221844448..)

In particular, the volumes of these knot complements are 3.1639632288831439..
and 7.6433751723599554.. respectively

Snap has access to a large database of small volume compact manifolds. Search-
ing this database for manifolds whose volumes are small rational linear com-
binations of vol(σ1(β1)) = 3.1639632.. and vol(σ1(β2)) = −1.3970881.. yielded
just eight examples, three with volume 3.16396322888314.., four with volume
4.396672801932495.. and one with volume 5.629382374981847.. . The complex
Dehn invariant sufficiency conjecture predicts (under the assumption that the
rational dependencies found are exact) that these should all have invariant trace
field containing σ1(k).

Checking with Snap confirms that their invariant trace fields equal σ1(k) and
their scissors congruence classes in B(k)⊗Q (computed numerically using the
Borel regulator) are β1 , (3/2)β1 + (1/2)β2 , and 2β1 + β2 respectively.

4 Extended Bloch group

In section 2 we saw that P(C) and B(C) play a role of “orientation sensitive”
scissors congruence group and kernel of Dehn invariant respectively, and that
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the analog of the volume map is then the Borel regulator ρ. But, as we described
there, this analogy suffers because ρ is defined on the Dehn kernel B(C) rather
than on the whole of P(C) and moreover, it takes values in C/π2Q, rather than
in C/π2Z.

The repair turns out to be to use, instead of C−{0, 1}, a certain disconnected
Z×Z cover of C−{0, 1} to define “extended versions” of the groups P(C) and
B(C). This idea developed out of a suggestion by Jun Yang.

We shall denote the relevant cover of C − {0, 1} by Ĉ. We start with two
descriptions of it. The second will be a geometric interpretation in terms of
ideal simplices.

Let P be C − {0, 1} split along the rays (−∞, 0) and (1,∞). Thus each
real number r outside the interval [0, 1] occurs twice in P , once in the upper
half plane of C and once in the lower half plane of C. We denote these two
occurences of r by r+ 0i and r−0i. We construct Ĉ as an identification space
from P × Z× Z by identifying

(x+ 0i, p, q) ∼ (x− 0i, p + 2, q) for each x ∈ (−∞, 0)
(x+ 0i, p, q) ∼ (x− 0i, p, q + 2) for each x ∈ (1,∞).

We will denote the equivalence class of (z, p, q) by (z; p, q). Ĉ has four compo-
nents:

Ĉ = X00 ∪X01 ∪X10 ∪X11

where Xε0ε1 is the set of (z; p, q) ∈ Ĉ with p ≡ ε0 and q ≡ ε1 (mod 2).

We may think of X00 as the riemann surface for the function C− {0, 1} → C2

defined by z 7→ (log z,− log(1 − z)). If for each p, q ∈ Z we take the branch
(log z+ 2pπi,− log(1− z) + 2qπi) of this function on the portion P ×{(2p, 2q)}
of X00 we get an analytic function from X00 to C2 . In the same way, we
may think of Ĉ as the riemann surface for the collection of all branches of the
functions (log z + pπi,− log(1− z) + qπi) on C− {0, 1}.

We can interpret Ĉ in terms of ideal simplices. Suppose we have an ideal simplex
∆ with parameter z ∈ C − {0, 1}. Recall that this parameter is associated to
an edge of ∆ and that other edges of ∆ have parameters

z′ =
1

1− z , z′′ = 1− 1
z
,

with opposite edges of ∆ having the same parameter (see figure 1). Note that
zz′z′′ = −1, so the sum

log z + log z′ + log z′′
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is an odd multiple of πi, depending on the branches of log used. In fact, if
we use the standard branch of log then this sum is πi or −πi depending on
whether z is in the upper or lower half plane. This reflects the fact that the
three dihedral angles of an ideal simplex sum to π .

Definition 4.1 We shall call any triple of the form

w = (w0, w1, w2) = (log z + pπi, log z′ + qπi, log z′′ + rπi)

with
p, q, r ∈ Z and w0 + w1 + w2 = 0

a combinatorial flattening for our simplex ∆. Thus a combinatorial flattening
is an adjustment of each of the three dihedral angles of ∆ by a multiple of π
so that the resulting angle sum is zero.

Each edge E of ∆ is assigned one of the components wi of w , with opposite
edges being assigned the same component. We call wi the log-parameter for
the edge E and denote it lE(∆,w).

For (z; p, q) ∈ Ĉ we define

`(z; p, q) := (log z + pπi,− log(1− z) + qπi, log(1− z)− log z − (p + q)πi),

and ` is then a map of Ĉ to the set of combinatorial flattenings of simplices.

Lemma 4.2 This map ` is a bijection, so Ĉ may be identified with the set of
all combinatorial flattenings of ideal tetrahedra.

Proof We must show that (w0, w1, w2) = `(z; p, q) determines (z; p, q). It
clearly suffices to recover z . But up to sign z equals ew0 and 1 − z equals
e−w1 , and the knowledge of both z and 1− z up to sign determines z .

4.1 The extended groups

We shall define a group P̂(C) as Z〈Ĉ〉/(relations), where the relations in ques-
tion are a lift of the five-term relations (2) that define P(C), plus an extra
relation that just eliminates an element of order 2.

We first recall the situation of the five-term relation (2). If z0, . . . , z4 are five
distinct points of ∂H3 , then each choice of four of five points z0, . . . , z4 gives an
ideal simplex. We denote the simplex which omits vertex zi by ∆i . We denote
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the cross-ratio parameters of these simplices by xi = [z0 : . . . : ẑi : . . . : z4].
Recall that (x0, . . . , x4) can be written in terms of x = x0 and y = x1 as

(x0, . . . , x4) =
(
x, y,

y

x
,
1− x−1

1− y−1
,
1− x
1− y

)
The five-term relation was

∑4
i=0(−1)i[xi] = 0, so the lifted five-term relation

will have the form
4∑
i=0

(−1)i(xi; pi, qi) = 0 (3)

with certain relations on the pi and qi . We need to describe these relations.

Using the map of Lemma 4.2, each summand in this relation (3) represents a
choice `(xi; pi, qi) of combinatorial flattening for one of the five ideal simplices.
For each edge E connecting two of the points zi we get a corresponding linear
combination

4∑
i=0

(−1)ilE(∆i, `(xi; pi, qi)) (4)

of log-parameters (Definition 4.1), where we put lE(∆i, `(xi; pi, qi)) = 0 if the
line E is not an edge of ∆i . This linear combination has just three non-zero
terms corresponding to the three simplices that meet at the edge E . One easily
checks that the real part is zero and the imaginary part can be interpreted
(with care about orientations) as the sum of the “adjusted angles” of the three
flattened simplices meeting at E .

Definition 4.3 We say that the (xi; pi, qi) satisfy the flattening condition if
each of the above linear combinations (4) of log-parameters is equal to zero.
That is, the adjusted angle sum of the three simplices meeting at each edge is
zero. In this case relation (3) is an instance of the lifted five-term relation.

There are ten edges in question, so the flattening conditions are ten linear
relations on the ten integers pi, qi . But these equations turn out to be linearly
dependant, and the space of solutions is 5–dimensional. For example, if the five
parameters x0, . . . , x4 are all in the upper half-plane (one can check that this
means y is in the upper half-plane and x is inside the triangle with vertices
0, 1, y) then the conditions are equivalent to:

p2 = p1 − p0, p3 = p1 − p0 + q1 − q0, p4 = q1 − q0

q3 = q2 − q1, q4 = q2 − q1 − p0
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which express p2 , p3 , p4 , q3 , q4 in terms of p0 , p1 , q0 , q1 , q2 . Thus, in this
case the lifted five-term relation becomes:

(x0; p0, q0)− (x1; p1, q1) + (x2; p1 − p0, q2)−
− (x3; p1 − p0 + q1 − q0, q2 − q1) + (x4; q1 − q0, q2 − q1 − p0) = 0

This situation corresponds to the configuration of figure 2 for the ideal vertices
z0, . . . , z4 , with z1 and z3 on opposite sides of the plane of the triangle z0z2z4

z0

z1

z2

z3

z4

Figure 2

and the line from z1 to z3 passing through the interior of this triangle.

Definition 4.4 The extended pre-Bloch group P̂(C) is the group

P̂(C) := Z〈Ĉ〉/(lifted five-term relations and the following relation)

[x; p, q] + [x; p′, q′] = [x; p, q′] + [x; p′, q]. (5)

(We call relation (5) the transfer relation; one can show that if one omits it then
P̂(C) is replaced by P̂(C) ⊕ Z/2, where the Z/2 is generated by the element
κ := [x, 1, 1] + [x, 0, 0] − [x, 1, 0] − [x, 0, 1], which is independant of x.)

The relations we are using are remarkably natural. To explain this we need a
beautiful version of the dilogarithm function called the Rogers dilogarithm:

R(z) = −1
2

(∫ z

0

( log t
1− t +

log(1− t)
t

)
dt

)
− π2

6
.
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The extra −π2/6 is not always included in the definition but it improves the
functional equation. R(z) is singular at 0 and 1 and is not well defined on
C− {0, 1}, but it lifts to an analytic function

R : Ĉ→ C/π2Z

R(z; p, q) = R(z) +
πi

2
(p log(1− z) + q log z).

We also consider the map

δ̂ : Ĉ→ C ∧ C, δ̂(z; p, q) =
(
log z + pπi

)
∧
(
− log(1− z) + qπi

)
.

Relation (5) is clearly a functional equation for both R and δ̂ . It turns out
that the same is true for the lifted five-term relation. In fact:

Proposition 4.5 If (xi; pi, qi), i = 0, . . . , 4 satisfy the flattening condition, so

4∑
i=0

(−1)i(xi; pi, qi) = 0

is an instance of the lifted five-term relation, then

4∑
i=0

(−1)iR(xi; pi, qi) = 0

and
4∑
i=0

(−1)iδ̂(xi; pi, qi) = 0.

Moreover, each of these equations also characterises the flattening condition.

Thus the flattening condition can be defined either geometrically, as we intro-
duced it, or as the condition that makes the five-term functional equation for
either R or δ̂ valid. In any case, we now have:

Theorem 4.6 R and δ̂ define maps

R : P̂(C)→ C/π2Z

δ̂ : P̂(C)→ C ∧ C.

We call δ̂ the extended Dehn invariant and call its kernel

B̂(C) := ker(δ̂)

the extended Bloch group. The final step in our path from Hilbert’s 3rd problem
to invariants of 3–manifolds is given by the following theorem.
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Theorem 4.7 A hyperbolic 3–manifold M has a natural class β̂(M) ∈ B̂(C).
Moreover, R(β̂(M)) = 1

i (vol(M) + iCS(M)) ∈ C/π2Z.

To define the class β̂(M) directly from an ideal triangulation one needs to use
a more restrictive type of ideal triangulation than the degree one ideal triangu-
lations that suffice for β(M). For instance, the triangulations constructed by
Epstein and Penner [15] in the non-compact case and by Thurston [41] in the
compact case are of the appropriate type. One then chooses flattenings of the
ideal simplices of K so that the whole complex K satisfies certain “flatness”
conditions. The sum of the flattened ideal simplices then represents β̂(M) up
to a Z/6 correction. The main part of the flatness conditions on K are the
conditions that adjusted angles around each edge of K sum to zero together
with similar conditions on homology classes at the cusps of M . If one just
requires these conditions one obtains β̂(M) up to 12–torsion. Additional mod
2 flatness conditions on homology classes determine β̂(M) modulo 6–torsion.
The final Z/6 correction is eliminated by appropriately ordering the vertices of
the simplices of K . It takes some work to see that all these conditions can be
satisfied and that the resulting element of B̂(C) is well defined, see [23, 24].

5 Comments and questions

5.1 Relation with the non-extended Bloch group

What really underlies the above Theorem 4.7 is the

Theorem? 5.1 There is a natural short exact sequence

0→ Z/2→ H3(PSL(2,C);Z)→ B̂(C)→ 0.

The reason for the question mark is that, at the time of writing, the proof that
the kernel is exactly Z/2 has not yet been written down carefully.

The relationship of our extended groups with the “classical” ones is as follows.
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Theorem 5.2 There is a commutative diagram with exact rows and columns:

0 0 0y y y
0 −−−→ µ∗ −−−→ C∗ −−−→ C∗/µ∗ −−−→ 0

χ|µ∗
y χ

y ξ

y y
0 −−−→ B̂(C) −−−→ P̂(C) δ̂−−−→ C ∧ C −−−→ K2(C) −−−→ 0y y ε

y =

y
0 −−−→ B(C) −−−→ P(C) δ−−−→ C∗ ∧ C∗ −−−→ K2(C) −−−→ 0y y y y

0 0 0 0

Here µ∗ is the group of roots of unity and the labelled maps that have not yet
been defined are:

χ(z) = [z, 0, 1] − [z, 0, 0] ∈ P̂(C);
ξ[z] = log z ∧ πi;

ε(w1 ∧ w2) = (ew1 ∧ ew2).

5.2 Extended extended Bloch

The use of the disconnected cover Ĉ of C − {0, 1} rather than the universal
abelian cover (the component X00 of Ĉ) in defining the extended Bloch group
may seem unnatural. If one uses X00 instead of Ĉ one obtains extended Bloch
groups EP(C) and EB(C) which are non-trivial Z/2 extensions of P̂(C) and
B̂(C). Theorem 5.1 then implies a natural isomorphism H3(PSL(2,C);Z) →
EB(C). The homomorphism of Theorem 5.1 is given explicitely by “flattening”
homology classes in the way sketched after Theorem 4.7, and the isomorphism
H3(PSL(2,C);Z)→ EB(C) presumably has a similar explicit description using
“X00 –flattenings,” but we have not yet proved that these always exist (note that
an X00 –flattening of a simplex presupposes a choice of a pair of opposite edges
of the simplex; changing this choice turns it into a X01– or X10 –flattening).

For the same reason, we do not yet have a simplicial description of the class
β̂(M) ∈ EBC for a closed hyperbolic manifold M , although this class exists
for homological reasons. It is essential here that M be closed — the class
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β̂(M) ∈ B̂(C) almost certainly has no natural lift to EB(C) in the non-compact
case.

The Rogers dilogarithm induces a natural map R : EB(C)→ C/2π2Z, and this
is the Cheeger–Simons class H3(PSL(2,C) → C/2π2Z via the above isomor-
phism.

5.3 Computing Chern–Simons invariant

The formula of [23] for CS(M) used in the programs Snappea and Snap uses
ideal triangulations that arise in Dehn surgery. These triangulations are not
of the type mentioned after Theorem 4.7, but by modifying them one can put
them in the desired form and use Theorem 4.7 to compute β̂(M), reconfirming
the formula of [23]. The formula computes CS(M) up to a constant for the
infinite class of manifolds that arise by Dehn surgery on a given manifold. It
was conjectured in [23] that this constant is always a multiple of π2/6, and this
too is confirmed. The theorem also gives an independent proof of the relation
of volume and Chern–Simons invariant conjectured in [30] and proved in [44],
from which a formula for eta-invariant was also deduced in [25] and [31].

5.4 Realizing elements in the Bloch group and Gromov norm

One way to prove the Bloch group rigidity conjecture 2.9 would be to show
that B(C) is generated by the classes β(M) of 3–manifolds. This question is
presumably much harder than the rigidity conjecture, although modifications
of it have been used in attempts on it. More specifically, one can ask

Question 5.3 For which number fields k is B(k)Q generated as a Q vector
space by classes β(M) of 3–manifolds with invariant trace field contained in k?

For totally real number fields (ie r2 = 0) the answer is trivially “yes” while for
number fields with r2 = 1 the existence of arithmetic manifolds again shows the
answer is “yes.” But beyond this little is known. In fact it is not even known if
for every non-real number field k ⊂ C a 3–manifold exists with invariant trace
field k . (For a few cases, eg multi-quadratic extensions of Q, the author and A
Reid have unpublished constructions to show the answer is “yes.”)

Jun Yang has pointed out that “Gromov norm” gives an obstruction to a class
α ∈ B(C) being realizable as β(M) (essentially the same observation also occurs
in [34]). We define the Gromov norm ν(α) as

ν(α) = inf
{∑∣∣ni

k

∣∣ : kα =
∑

ni[zi], zi ∈ C
}
,
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and it is essentially a result of Gromov, with proof given in [40], that:

Theorem 5.4
| vol(α)| ≤ V ν(α),

where V = 1.00149416... is the volume of a regular ideal tetrahedron. If α =
β(M) for some 3–manifold M then

vol(α) = V ν(α).

In particular, since ν(α) is invariant under the action of Galois, for α = β(M)
one sees that the vol(M) component of the Borel regulator is the largest in
absolute value and equals V ν(α). This suggests the question:

Question 5.5 Is it true for any number field k and for any α ∈ B(k) that
V ν(α) equals the largest absolute value of a component of the Borel regulator
of α?

This question is rather naive, and at this point we have no evidence for or
against. Another naive question is the following. For α ∈ B(k)Q , where k is a
number field, we can define a stricter version of Gromov norm by

νk(α) = inf
{∑∣∣ni

k

∣∣ : kα =
∑

ni[zi], zi ∈ k
}
.

Question 5.6 Is νk(α) = ν(α) for α ∈ B(k)Q?

If not, then νk gives a sharper obstruction to realizing α as β(M) since it is
easy to show that for α = β(M) one has vol(α) = V νK(α) for some at most
quadratic extension K of k .

References

[1] C Batut, D Bernardi, H Cohen, M Olivier, Pari-GP, the program, avail-
able from: ftp://megrez.ceremab.u-bordeaux.fr/pub/pari/
and http://pari.home.ml.org

[2] S Bloch, Higher regulators, algebraic K –theory, and zeta functions of elliptic
curves, Lecture notes UC Irvine (1978)

[3] M Bökstedt, M Brun, J L Dupont, Homology of O(n) and O1(1, n) made
discrete: an application of edgewise subdivision, J. Pure Appl. Algebra (to ap-
pear)

Walter D Neumann

Geometry and Topology Monographs, Volume 1 (1998)

408



[4] A Borel, Cohomologie de SLn et valeurs de fonction zeta aux points entiers,
Ann. Scuola Norm. Sup. Pisa Cl. Sup. (4) 4 (1977) 613–636

[5] J Cheeger, J Simons, Differential characters and geometric invariants,
Springer Lecture Notes in Math. 1167 (1985) 50–80

[6] S Chern, J Simons, Some cohomology classes in principal fiber bundles and
their application to Riemannian geometry, Proc. Nat. Acad. Sci. USA 68 (1971)
791-794

[7] M Dehn, Über den Rauminhalt, Math. Ann. 55 (1901) 465–478

[8] J L Dupont, The dilogarithm as a characteristic class for flat bundles, J. Pure
and App. Algebra 44 (1987) 137–164

[9] J L Dupont, Algebra of polytopes and homology of flag complexes, Osaka J.
Math. 19 (1982) 599–641

[10] J L Dupont, F L Kamber, Cheeger–Chern–Simons classes of transversally
symmetric foliations: dependance relations and eta-invariants, Math. Ann. 295
(1993) 449–468

[11] J L Dupont, W Parry, H Sah, Homology of classical Lie groups made discrete
II, J. Algebra 113 (1988) 215–260

[12] J L Dupont, H Sah, Scissors congruences II, J. Pure and Appl. Algebra 25
(1982) 159–195

[13] J L Dupont, H Sah, Homology of Euclidean groups of motions made discrete
and Euclidean scissors congruences, Acta Math. 164 (1990) 1–27

[14] J L Dupont, H Sah, Three questions about simplices in spherical and hyper-
bolic 3–space, preprint (1997)

[15] D B A Epstein, R Penner, Euclidean decompositions of non-compact hyper-
bolic manifolds, J. Diff. Geom. 27 (1988) 67–80

[16] A B Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives,
preprint MPI/96-10 Max-Planck-Institut für Math. Bonn (1996)

[17] O Goodman, Snap, the program, (an ARC funded project) available from
http://www.ms.unimelb.edu.au/˜snap/

[18] D Hilbert, Mathematical Problems, English translation from: “Mathematical
developements arising from Hilbert’s problems”, Proc. Symp. Pure Math. 28
part 1 Amer. Math. Soc. (1976)

[19] B Jessen, The algebra of polyhedra and the Dehn–Sydler theorem, Math. Scand.
22 (1968) 241–256

[20] B Jessen, Zur Algebra der Polytope, Göttinger Nachr. Math. Phys. (1972) 47–
53

[21] R Meyerhoff, Hyperbolic 3–manifolds with equal volumes but different Chern–
Simons invariants, from: “Low-dimensional topology and Kleinian groups”,
D B A Epstein (editor), London Math. Soc. Lecture notes 112 (1986) 209–215

Hilbert’s 3rd problem and invariants of 3-manifolds

Geometry and Topology Monographs, Volume 1 (1998)

409



[22] J Milnor, Hyperbolic geometry: the first 150 years, Bulletin Amer. Math. Soc.
6 (1982) 9–24

[23] W D Neumann, Combinatorics of triangulations and the Chern–Simons in-
variant for hyperbolic 3–manifolds, from: “Topology 90, Proceedings of the
Research Semester in Low Dimensional Topology at Ohio State”, Walter de
Gruyter Verlag, Berlin–New York (1992) 243–272

[24] W D Neumann, Extended Bloch group and the Chern–Simons class, in prepa-
ration

[25] R Meyerhoff, W Neumann, An asymptotic formula for the η–invariant of
hyperbolic 3–manifolds, Comment. Math. Helvetici 67 (1992) 28–46

[26] W D Neumann, A W Reid, Arithmetic of hyperbolic manifolds, from:
“Topology 90, Proceedings of the Research Semester in Low Dimensional Topol-
ogy at Ohio State” Walter de Gruyter Verlag, Berlin–New York (1992) 273–310

[27] W D Neumann, J Yang, Problems for K –theory and Chern–Simons Invari-
ants of Hyperbolic 3–Manifolds, L’Enseignement Mathématique 41 (1995) 281–
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